1 /* Code for GIMPLE range related routines.
2 Copyright (C) 2019-2023 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
26 #include "insn-codes.h"
30 #include "gimple-pretty-print.h"
31 #include "optabs-tree.h"
32 #include "gimple-iterator.h"
33 #include "gimple-fold.h"
35 #include "fold-const.h"
36 #include "case-cfn-macros.h"
37 #include "omp-general.h"
39 #include "tree-ssa-loop.h"
40 #include "tree-scalar-evolution.h"
41 #include "langhooks.h"
42 #include "vr-values.h"
44 #include "value-query.h"
45 #include "gimple-range-op.h"
46 #include "gimple-range.h"
47 // Construct a fur_source, and set the m_query field.
49 fur_source::fur_source (range_query
*q
)
54 m_query
= get_range_query (cfun
);
56 m_query
= get_global_range_query ();
60 // Invoke range_of_expr on EXPR.
63 fur_source::get_operand (vrange
&r
, tree expr
)
65 return m_query
->range_of_expr (r
, expr
);
68 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
69 // range_query to get the range on the edge.
72 fur_source::get_phi_operand (vrange
&r
, tree expr
, edge e
)
74 return m_query
->range_on_edge (r
, e
, expr
);
77 // Default is no relation.
80 fur_source::query_relation (tree op1 ATTRIBUTE_UNUSED
,
81 tree op2 ATTRIBUTE_UNUSED
)
86 // Default registers nothing.
89 fur_source::register_relation (gimple
*s ATTRIBUTE_UNUSED
,
90 relation_kind k ATTRIBUTE_UNUSED
,
91 tree op1 ATTRIBUTE_UNUSED
,
92 tree op2 ATTRIBUTE_UNUSED
)
96 // Default registers nothing.
99 fur_source::register_relation (edge e ATTRIBUTE_UNUSED
,
100 relation_kind k ATTRIBUTE_UNUSED
,
101 tree op1 ATTRIBUTE_UNUSED
,
102 tree op2 ATTRIBUTE_UNUSED
)
106 // This version of fur_source will pick a range up off an edge.
108 class fur_edge
: public fur_source
111 fur_edge (edge e
, range_query
*q
= NULL
);
112 virtual bool get_operand (vrange
&r
, tree expr
) override
;
113 virtual bool get_phi_operand (vrange
&r
, tree expr
, edge e
) override
;
118 // Instantiate an edge based fur_source.
121 fur_edge::fur_edge (edge e
, range_query
*q
) : fur_source (q
)
126 // Get the value of EXPR on edge m_edge.
129 fur_edge::get_operand (vrange
&r
, tree expr
)
131 return m_query
->range_on_edge (r
, m_edge
, expr
);
134 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
135 // range_query to get the range on the edge.
138 fur_edge::get_phi_operand (vrange
&r
, tree expr
, edge e
)
140 // Edge to edge recalculations not supported yet, until we sort it out.
141 gcc_checking_assert (e
== m_edge
);
142 return m_query
->range_on_edge (r
, e
, expr
);
145 // Instantiate a stmt based fur_source.
147 fur_stmt::fur_stmt (gimple
*s
, range_query
*q
) : fur_source (q
)
152 // Retrieve range of EXPR as it occurs as a use on stmt M_STMT.
155 fur_stmt::get_operand (vrange
&r
, tree expr
)
157 return m_query
->range_of_expr (r
, expr
, m_stmt
);
160 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
161 // range_query to get the range on the edge.
164 fur_stmt::get_phi_operand (vrange
&r
, tree expr
, edge e
)
166 // Pick up the range of expr from edge E.
167 fur_edge
e_src (e
, m_query
);
168 return e_src
.get_operand (r
, expr
);
171 // Return relation based from m_stmt.
174 fur_stmt::query_relation (tree op1
, tree op2
)
176 return m_query
->query_relation (m_stmt
, op1
, op2
);
179 // Instantiate a stmt based fur_source with a GORI object.
182 fur_depend::fur_depend (gimple
*s
, gori_compute
*gori
, range_query
*q
)
185 gcc_checking_assert (gori
);
187 // Set relations if there is an oracle in the range_query.
188 // This will enable registering of relationships as they are discovered.
189 m_oracle
= q
->oracle ();
193 // Register a relation on a stmt if there is an oracle.
196 fur_depend::register_relation (gimple
*s
, relation_kind k
, tree op1
, tree op2
)
199 m_oracle
->register_stmt (s
, k
, op1
, op2
);
202 // Register a relation on an edge if there is an oracle.
205 fur_depend::register_relation (edge e
, relation_kind k
, tree op1
, tree op2
)
208 m_oracle
->register_edge (e
, k
, op1
, op2
);
211 // This version of fur_source will pick a range up from a list of ranges
212 // supplied by the caller.
214 class fur_list
: public fur_source
217 fur_list (vrange
&r1
, range_query
*q
= NULL
);
218 fur_list (vrange
&r1
, vrange
&r2
, range_query
*q
= NULL
);
219 fur_list (unsigned num
, vrange
**list
, range_query
*q
= NULL
);
220 virtual bool get_operand (vrange
&r
, tree expr
) override
;
221 virtual bool get_phi_operand (vrange
&r
, tree expr
, edge e
) override
;
229 // One range supplied for unary operations.
231 fur_list::fur_list (vrange
&r1
, range_query
*q
) : fur_source (q
)
239 // Two ranges supplied for binary operations.
241 fur_list::fur_list (vrange
&r1
, vrange
&r2
, range_query
*q
) : fur_source (q
)
250 // Arbitrary number of ranges in a vector.
252 fur_list::fur_list (unsigned num
, vrange
**list
, range_query
*q
)
260 // Get the next operand from the vector, ensure types are compatible.
263 fur_list::get_operand (vrange
&r
, tree expr
)
265 if (m_index
>= m_limit
)
266 return m_query
->range_of_expr (r
, expr
);
267 r
= *m_list
[m_index
++];
268 gcc_checking_assert (range_compatible_p (TREE_TYPE (expr
), r
.type ()));
272 // This will simply pick the next operand from the vector.
274 fur_list::get_phi_operand (vrange
&r
, tree expr
, edge e ATTRIBUTE_UNUSED
)
276 return get_operand (r
, expr
);
279 // Fold stmt S into range R using R1 as the first operand.
282 fold_range (vrange
&r
, gimple
*s
, vrange
&r1
, range_query
*q
)
285 fur_list
src (r1
, q
);
286 return f
.fold_stmt (r
, s
, src
);
289 // Fold stmt S into range R using R1 and R2 as the first two operands.
292 fold_range (vrange
&r
, gimple
*s
, vrange
&r1
, vrange
&r2
, range_query
*q
)
295 fur_list
src (r1
, r2
, q
);
296 return f
.fold_stmt (r
, s
, src
);
299 // Fold stmt S into range R using NUM_ELEMENTS from VECTOR as the initial
300 // operands encountered.
303 fold_range (vrange
&r
, gimple
*s
, unsigned num_elements
, vrange
**vector
,
307 fur_list
src (num_elements
, vector
, q
);
308 return f
.fold_stmt (r
, s
, src
);
311 // Fold stmt S into range R using range query Q.
314 fold_range (vrange
&r
, gimple
*s
, range_query
*q
)
318 return f
.fold_stmt (r
, s
, src
);
321 // Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE.
324 fold_range (vrange
&r
, gimple
*s
, edge on_edge
, range_query
*q
)
327 fur_edge
src (on_edge
, q
);
328 return f
.fold_stmt (r
, s
, src
);
331 // Provide a fur_source which can be used to determine any relations on
332 // a statement. It manages the callback from fold_using_ranges to determine
333 // a relation_trio for a statement.
335 class fur_relation
: public fur_stmt
338 fur_relation (gimple
*s
, range_query
*q
= NULL
);
339 virtual void register_relation (gimple
*stmt
, relation_kind k
, tree op1
,
341 virtual void register_relation (edge e
, relation_kind k
, tree op1
,
343 relation_trio
trio() const;
345 relation_kind def_op1
, def_op2
, op1_op2
;
348 fur_relation::fur_relation (gimple
*s
, range_query
*q
) : fur_stmt (s
, q
)
350 def_op1
= def_op2
= op1_op2
= VREL_VARYING
;
353 // Construct a trio from what is known.
356 fur_relation::trio () const
358 return relation_trio (def_op1
, def_op2
, op1_op2
);
361 // Don't support edges, but avoid a compiler warning by providing the routine.
364 fur_relation::register_relation (edge
, relation_kind
, tree
, tree
)
368 // Register relation K between OP1 and OP2 on STMT.
371 fur_relation::register_relation (gimple
*stmt
, relation_kind k
, tree op1
,
374 tree lhs
= gimple_get_lhs (stmt
);
377 switch (gimple_code (stmt
))
380 a1
= gimple_cond_lhs (stmt
);
381 a2
= gimple_cond_rhs (stmt
);
384 a1
= gimple_assign_rhs1 (stmt
);
385 if (gimple_num_ops (stmt
) >= 3)
386 a2
= gimple_assign_rhs2 (stmt
);
391 // STMT is of the form LHS = A1 op A2, now map the relation to these
392 // operands, if possible.
403 def_op1
= relation_swap (k
);
405 def_op2
= relation_swap (k
);
409 if (op1
== a1
&& op2
== a2
)
411 else if (op2
== a1
&& op1
== a2
)
412 op1_op2
= relation_swap (k
);
416 // Return the relation trio for stmt S using query Q.
419 fold_relations (gimple
*s
, range_query
*q
)
422 fur_relation
src (s
, q
);
423 tree lhs
= gimple_range_ssa_p (gimple_get_lhs (s
));
426 Value_Range
vr(TREE_TYPE (lhs
));
427 if (f
.fold_stmt (vr
, s
, src
))
433 // -------------------------------------------------------------------------
435 // Adjust the range for a pointer difference where the operands came
438 // This notices the following sequence:
440 // def = __builtin_memchr (arg, 0, sz)
443 // The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
446 adjust_pointer_diff_expr (irange
&res
, const gimple
*diff_stmt
)
448 tree op0
= gimple_assign_rhs1 (diff_stmt
);
449 tree op1
= gimple_assign_rhs2 (diff_stmt
);
450 tree op0_ptype
= TREE_TYPE (TREE_TYPE (op0
));
451 tree op1_ptype
= TREE_TYPE (TREE_TYPE (op1
));
454 if (TREE_CODE (op0
) == SSA_NAME
455 && TREE_CODE (op1
) == SSA_NAME
456 && (call
= SSA_NAME_DEF_STMT (op0
))
457 && is_gimple_call (call
)
458 && gimple_call_builtin_p (call
, BUILT_IN_MEMCHR
)
459 && TYPE_MODE (op0_ptype
) == TYPE_MODE (char_type_node
)
460 && TYPE_PRECISION (op0_ptype
) == TYPE_PRECISION (char_type_node
)
461 && TYPE_MODE (op1_ptype
) == TYPE_MODE (char_type_node
)
462 && TYPE_PRECISION (op1_ptype
) == TYPE_PRECISION (char_type_node
)
463 && gimple_call_builtin_p (call
, BUILT_IN_MEMCHR
)
464 && vrp_operand_equal_p (op1
, gimple_call_arg (call
, 0))
465 && integer_zerop (gimple_call_arg (call
, 1)))
467 wide_int maxm1
= irange_val_max (ptrdiff_type_node
) - 1;
468 res
.intersect (int_range
<2> (ptrdiff_type_node
,
469 wi::zero (TYPE_PRECISION (ptrdiff_type_node
)),
474 // Adjust the range for an IMAGPART_EXPR.
477 adjust_imagpart_expr (vrange
&res
, const gimple
*stmt
)
479 tree name
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
481 if (TREE_CODE (name
) != SSA_NAME
|| !SSA_NAME_DEF_STMT (name
))
484 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
485 if (is_gimple_call (def_stmt
) && gimple_call_internal_p (def_stmt
))
487 switch (gimple_call_internal_fn (def_stmt
))
489 case IFN_ADD_OVERFLOW
:
490 case IFN_SUB_OVERFLOW
:
491 case IFN_MUL_OVERFLOW
:
494 case IFN_ATOMIC_COMPARE_EXCHANGE
:
497 r
.set_varying (boolean_type_node
);
498 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
499 range_cast (r
, type
);
507 if (is_gimple_assign (def_stmt
)
508 && gimple_assign_rhs_code (def_stmt
) == COMPLEX_CST
)
510 tree cst
= gimple_assign_rhs1 (def_stmt
);
511 if (TREE_CODE (cst
) == COMPLEX_CST
512 && TREE_CODE (TREE_TYPE (TREE_TYPE (cst
))) == INTEGER_TYPE
)
514 wide_int w
= wi::to_wide (TREE_IMAGPART (cst
));
515 int_range
<1> imag (TREE_TYPE (TREE_IMAGPART (cst
)), w
, w
);
516 res
.intersect (imag
);
521 // Adjust the range for a REALPART_EXPR.
524 adjust_realpart_expr (vrange
&res
, const gimple
*stmt
)
526 tree name
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
528 if (TREE_CODE (name
) != SSA_NAME
)
531 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
532 if (!SSA_NAME_DEF_STMT (name
))
535 if (is_gimple_assign (def_stmt
)
536 && gimple_assign_rhs_code (def_stmt
) == COMPLEX_CST
)
538 tree cst
= gimple_assign_rhs1 (def_stmt
);
539 if (TREE_CODE (cst
) == COMPLEX_CST
540 && TREE_CODE (TREE_TYPE (TREE_TYPE (cst
))) == INTEGER_TYPE
)
542 wide_int imag
= wi::to_wide (TREE_REALPART (cst
));
543 int_range
<2> tmp (TREE_TYPE (TREE_REALPART (cst
)), imag
, imag
);
549 // This function looks for situations when walking the use/def chains
550 // may provide additional contextual range information not exposed on
554 gimple_range_adjustment (vrange
&res
, const gimple
*stmt
)
556 switch (gimple_expr_code (stmt
))
558 case POINTER_DIFF_EXPR
:
559 adjust_pointer_diff_expr (as_a
<irange
> (res
), stmt
);
563 adjust_imagpart_expr (res
, stmt
);
567 adjust_realpart_expr (res
, stmt
);
575 // Calculate a range for statement S and return it in R. If NAME is provided it
576 // represents the SSA_NAME on the LHS of the statement. It is only required
577 // if there is more than one lhs/output. If a range cannot
578 // be calculated, return false.
581 fold_using_range::fold_stmt (vrange
&r
, gimple
*s
, fur_source
&src
, tree name
)
584 // If name and S are specified, make sure it is an LHS of S.
585 gcc_checking_assert (!name
|| !gimple_get_lhs (s
) ||
586 name
== gimple_get_lhs (s
));
589 name
= gimple_get_lhs (s
);
591 // Process addresses.
592 if (gimple_code (s
) == GIMPLE_ASSIGN
593 && gimple_assign_rhs_code (s
) == ADDR_EXPR
)
594 return range_of_address (as_a
<irange
> (r
), s
, src
);
596 gimple_range_op_handler
handler (s
);
598 res
= range_of_range_op (r
, handler
, src
);
599 else if (is_a
<gphi
*>(s
))
600 res
= range_of_phi (r
, as_a
<gphi
*> (s
), src
);
601 else if (is_a
<gcall
*>(s
))
602 res
= range_of_call (r
, as_a
<gcall
*> (s
), src
);
603 else if (is_a
<gassign
*> (s
) && gimple_assign_rhs_code (s
) == COND_EXPR
)
604 res
= range_of_cond_expr (r
, as_a
<gassign
*> (s
), src
);
606 // If the result is varying, check for basic nonnegativeness.
607 // Specifically this helps for now with strict enum in cases like
608 // g++.dg/warn/pr33738.C.
610 if (res
&& r
.varying_p () && INTEGRAL_TYPE_P (r
.type ())
611 && gimple_stmt_nonnegative_warnv_p (s
, &so_p
))
612 r
.set_nonnegative (r
.type ());
616 // If no name specified or range is unsupported, bail.
617 if (!name
|| !gimple_range_ssa_p (name
))
619 // We don't understand the stmt, so return the global range.
620 gimple_range_global (r
, name
);
624 if (r
.undefined_p ())
627 // We sometimes get compatible types copied from operands, make sure
628 // the correct type is being returned.
629 if (name
&& TREE_TYPE (name
) != r
.type ())
631 gcc_checking_assert (range_compatible_p (r
.type (), TREE_TYPE (name
)));
632 range_cast (r
, TREE_TYPE (name
));
637 // Calculate a range for range_op statement S and return it in R. If any
638 // If a range cannot be calculated, return false.
641 fold_using_range::range_of_range_op (vrange
&r
,
642 gimple_range_op_handler
&handler
,
645 gcc_checking_assert (handler
);
646 gimple
*s
= handler
.stmt ();
647 tree type
= gimple_range_type (s
);
651 tree lhs
= handler
.lhs ();
652 tree op1
= handler
.operand1 ();
653 tree op2
= handler
.operand2 ();
655 // Certain types of builtin functions may have no arguments.
658 Value_Range
r1 (type
);
659 if (!handler
.fold_range (r
, type
, r1
, r1
))
660 r
.set_varying (type
);
664 Value_Range
range1 (TREE_TYPE (op1
));
665 Value_Range
range2 (op2
? TREE_TYPE (op2
) : TREE_TYPE (op1
));
667 if (src
.get_operand (range1
, op1
))
671 // Fold range, and register any dependency if available.
672 Value_Range
r2 (type
);
673 r2
.set_varying (type
);
674 if (!handler
.fold_range (r
, type
, range1
, r2
))
675 r
.set_varying (type
);
676 if (lhs
&& gimple_range_ssa_p (op1
))
679 src
.gori ()->register_dependency (lhs
, op1
);
681 rel
= handler
.lhs_op1_relation (r
, range1
, range1
);
682 if (rel
!= VREL_VARYING
)
683 src
.register_relation (s
, rel
, lhs
, op1
);
686 else if (src
.get_operand (range2
, op2
))
688 relation_kind rel
= src
.query_relation (op1
, op2
);
689 if (dump_file
&& (dump_flags
& TDF_DETAILS
) && rel
!= VREL_VARYING
)
691 fprintf (dump_file
, " folding with relation ");
692 print_generic_expr (dump_file
, op1
, TDF_SLIM
);
693 print_relation (dump_file
, rel
);
694 print_generic_expr (dump_file
, op2
, TDF_SLIM
);
695 fputc ('\n', dump_file
);
697 // Fold range, and register any dependency if available.
698 if (!handler
.fold_range (r
, type
, range1
, range2
,
699 relation_trio::op1_op2 (rel
)))
700 r
.set_varying (type
);
701 if (irange::supports_p (type
))
702 relation_fold_and_or (as_a
<irange
> (r
), s
, src
);
707 src
.gori ()->register_dependency (lhs
, op1
);
708 src
.gori ()->register_dependency (lhs
, op2
);
710 if (gimple_range_ssa_p (op1
))
712 rel
= handler
.lhs_op1_relation (r
, range1
, range2
, rel
);
713 if (rel
!= VREL_VARYING
)
714 src
.register_relation (s
, rel
, lhs
, op1
);
716 if (gimple_range_ssa_p (op2
))
718 rel
= handler
.lhs_op2_relation (r
, range1
, range2
, rel
);
719 if (rel
!= VREL_VARYING
)
720 src
.register_relation (s
, rel
, lhs
, op2
);
723 // Check for an existing BB, as we maybe asked to fold an
724 // artificial statement not in the CFG.
725 else if (is_a
<gcond
*> (s
) && gimple_bb (s
))
727 basic_block bb
= gimple_bb (s
);
728 edge e0
= EDGE_SUCC (bb
, 0);
729 edge e1
= EDGE_SUCC (bb
, 1);
731 if (!single_pred_p (e0
->dest
))
733 if (!single_pred_p (e1
->dest
))
735 src
.register_outgoing_edges (as_a
<gcond
*> (s
),
736 as_a
<irange
> (r
), e0
, e1
);
740 r
.set_varying (type
);
743 r
.set_varying (type
);
744 // Make certain range-op adjustments that aren't handled any other way.
745 gimple_range_adjustment (r
, s
);
749 // Calculate the range of an assignment containing an ADDR_EXPR.
750 // Return the range in R.
751 // If a range cannot be calculated, set it to VARYING and return true.
754 fold_using_range::range_of_address (irange
&r
, gimple
*stmt
, fur_source
&src
)
756 gcc_checking_assert (gimple_code (stmt
) == GIMPLE_ASSIGN
);
757 gcc_checking_assert (gimple_assign_rhs_code (stmt
) == ADDR_EXPR
);
759 bool strict_overflow_p
;
760 tree expr
= gimple_assign_rhs1 (stmt
);
761 poly_int64 bitsize
, bitpos
;
764 int unsignedp
, reversep
, volatilep
;
765 tree base
= get_inner_reference (TREE_OPERAND (expr
, 0), &bitsize
,
766 &bitpos
, &offset
, &mode
, &unsignedp
,
767 &reversep
, &volatilep
);
770 if (base
!= NULL_TREE
771 && TREE_CODE (base
) == MEM_REF
772 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
774 tree ssa
= TREE_OPERAND (base
, 0);
775 tree lhs
= gimple_get_lhs (stmt
);
776 if (lhs
&& gimple_range_ssa_p (ssa
) && src
.gori ())
777 src
.gori ()->register_dependency (lhs
, ssa
);
778 src
.get_operand (r
, ssa
);
779 range_cast (r
, TREE_TYPE (gimple_assign_rhs1 (stmt
)));
781 poly_offset_int off
= 0;
782 bool off_cst
= false;
783 if (offset
== NULL_TREE
|| TREE_CODE (offset
) == INTEGER_CST
)
785 off
= mem_ref_offset (base
);
787 off
+= poly_offset_int::from (wi::to_poly_wide (offset
),
789 off
<<= LOG2_BITS_PER_UNIT
;
793 /* If &X->a is equal to X, the range of X is the result. */
794 if (off_cst
&& known_eq (off
, 0))
796 else if (flag_delete_null_pointer_checks
797 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr
)))
799 /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
800 allow going from non-NULL pointer to NULL. */
802 || !r
.contains_p (wi::zero (TYPE_PRECISION (TREE_TYPE (expr
)))))
804 /* We could here instead adjust r by off >> LOG2_BITS_PER_UNIT
805 using POINTER_PLUS_EXPR if off_cst and just fall back to
807 r
.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt
)));
811 /* If MEM_REF has a "positive" offset, consider it non-NULL
812 always, for -fdelete-null-pointer-checks also "negative"
813 ones. Punt for unknown offsets (e.g. variable ones). */
814 if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr
))
817 && (flag_delete_null_pointer_checks
|| known_gt (off
, 0)))
819 r
.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt
)));
822 r
.set_varying (TREE_TYPE (gimple_assign_rhs1 (stmt
)));
827 if (tree_single_nonzero_warnv_p (expr
, &strict_overflow_p
))
829 r
.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt
)));
833 // Otherwise return varying.
834 r
.set_varying (TREE_TYPE (gimple_assign_rhs1 (stmt
)));
838 // Calculate a range for phi statement S and return it in R.
839 // If a range cannot be calculated, return false.
842 fold_using_range::range_of_phi (vrange
&r
, gphi
*phi
, fur_source
&src
)
844 tree phi_def
= gimple_phi_result (phi
);
845 tree type
= gimple_range_type (phi
);
846 Value_Range
arg_range (type
);
847 Value_Range
equiv_range (type
);
853 // Track if all executable arguments are the same.
854 tree single_arg
= NULL_TREE
;
855 bool seen_arg
= false;
857 // Start with an empty range, unioning in each argument's range.
859 for (x
= 0; x
< gimple_phi_num_args (phi
); x
++)
861 tree arg
= gimple_phi_arg_def (phi
, x
);
862 // An argument that is the same as the def provides no new range.
866 edge e
= gimple_phi_arg_edge (phi
, x
);
868 // Get the range of the argument on its edge.
869 src
.get_phi_operand (arg_range
, arg
, e
);
871 if (!arg_range
.undefined_p ())
873 // Register potential dependencies for stale value tracking.
874 // Likewise, if the incoming PHI argument is equivalent to this
875 // PHI definition, it provides no new info. Accumulate these ranges
876 // in case all arguments are equivalences.
877 if (src
.query ()->query_relation (e
, arg
, phi_def
, false) == VREL_EQ
)
878 equiv_range
.union_(arg_range
);
880 r
.union_ (arg_range
);
882 if (gimple_range_ssa_p (arg
) && src
.gori ())
883 src
.gori ()->register_dependency (phi_def
, arg
);
886 // Track if all arguments are the same.
892 else if (single_arg
!= arg
)
893 single_arg
= NULL_TREE
;
895 // Once the value reaches varying, stop looking.
896 if (r
.varying_p () && single_arg
== NULL_TREE
)
900 // If all arguments were equivalences, use the equivalence ranges as no
901 // arguments were processed.
902 if (r
.undefined_p () && !equiv_range
.undefined_p ())
905 // If the PHI boils down to a single effective argument, look at it.
908 // Symbolic arguments can be equivalences.
909 if (gimple_range_ssa_p (single_arg
))
911 // Only allow the equivalence if the PHI definition does not
912 // dominate any incoming edge for SINGLE_ARG.
913 // See PR 108139 and 109462.
914 basic_block bb
= gimple_bb (phi
);
915 if (!dom_info_available_p (CDI_DOMINATORS
))
918 for (x
= 0; x
< gimple_phi_num_args (phi
); x
++)
919 if (gimple_phi_arg_def (phi
, x
) == single_arg
920 && dominated_by_p (CDI_DOMINATORS
,
921 gimple_phi_arg_edge (phi
, x
)->src
,
928 src
.register_relation (phi
, VREL_EQ
, phi_def
, single_arg
);
930 else if (src
.get_operand (arg_range
, single_arg
)
931 && arg_range
.singleton_p ())
933 // Numerical arguments that are a constant can be returned as
934 // the constant. This can help fold later cases where even this
935 // constant might have been UNDEFINED via an unreachable edge.
941 bool loop_info_p
= false;
942 // If SCEV is available, query if this PHI has any known values.
943 if (scev_initialized_p ()
944 && !POINTER_TYPE_P (TREE_TYPE (phi_def
)))
946 class loop
*l
= loop_containing_stmt (phi
);
947 if (l
&& loop_outer (l
))
949 Value_Range
loop_range (type
);
950 range_of_ssa_name_with_loop_info (loop_range
, phi_def
, l
, phi
, src
);
951 if (!loop_range
.varying_p ())
953 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
955 fprintf (dump_file
, " Loops range found for ");
956 print_generic_expr (dump_file
, phi_def
, TDF_SLIM
);
957 fprintf (dump_file
, ": ");
958 loop_range
.dump (dump_file
);
959 fprintf (dump_file
, " and calculated range :");
961 fprintf (dump_file
, "\n");
963 r
.intersect (loop_range
);
969 if (!loop_info_p
&& phi_analysis_available_p ()
970 && irange::supports_p (TREE_TYPE (phi_def
)))
972 phi_group
*g
= (phi_analysis())[phi_def
];
973 if (g
&& !(g
->range ().varying_p ()))
975 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
977 fprintf (dump_file
, " PHI group range found for ");
978 print_generic_expr (dump_file
, phi_def
, TDF_SLIM
);
979 fprintf (dump_file
, ": ");
980 g
->range ().dump (dump_file
);
981 fprintf (dump_file
, " and adjusted original range from :");
984 r
.intersect (g
->range ());
985 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
987 fprintf (dump_file
, " to :");
989 fprintf (dump_file
, "\n");
997 // Calculate a range for call statement S and return it in R.
998 // If a range cannot be calculated, return false.
1001 fold_using_range::range_of_call (vrange
&r
, gcall
*call
, fur_source
&)
1003 tree type
= gimple_range_type (call
);
1007 tree lhs
= gimple_call_lhs (call
);
1008 bool strict_overflow_p
;
1010 if (gimple_stmt_nonnegative_warnv_p (call
, &strict_overflow_p
))
1011 r
.set_nonnegative (type
);
1012 else if (gimple_call_nonnull_result_p (call
)
1013 || gimple_call_nonnull_arg (call
))
1014 r
.set_nonzero (type
);
1016 r
.set_varying (type
);
1018 // If there is an LHS, intersect that with what is known.
1021 Value_Range
def (TREE_TYPE (lhs
));
1022 gimple_range_global (def
, lhs
);
1028 // Calculate a range for COND_EXPR statement S and return it in R.
1029 // If a range cannot be calculated, return false.
1032 fold_using_range::range_of_cond_expr (vrange
&r
, gassign
*s
, fur_source
&src
)
1034 tree cond
= gimple_assign_rhs1 (s
);
1035 tree op1
= gimple_assign_rhs2 (s
);
1036 tree op2
= gimple_assign_rhs3 (s
);
1038 tree type
= gimple_range_type (s
);
1042 Value_Range
range1 (TREE_TYPE (op1
));
1043 Value_Range
range2 (TREE_TYPE (op2
));
1044 Value_Range
cond_range (TREE_TYPE (cond
));
1045 gcc_checking_assert (gimple_assign_rhs_code (s
) == COND_EXPR
);
1046 gcc_checking_assert (range_compatible_p (TREE_TYPE (op1
), TREE_TYPE (op2
)));
1047 src
.get_operand (cond_range
, cond
);
1048 src
.get_operand (range1
, op1
);
1049 src
.get_operand (range2
, op2
);
1051 // Try to see if there is a dependence between the COND and either operand
1053 if (src
.gori ()->condexpr_adjust (range1
, range2
, s
, cond
, op1
, op2
, src
))
1054 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1056 fprintf (dump_file
, "Possible COND_EXPR adjustment. Range op1 : ");
1057 range1
.dump(dump_file
);
1058 fprintf (dump_file
, " and Range op2: ");
1059 range2
.dump(dump_file
);
1060 fprintf (dump_file
, "\n");
1063 // If the condition is known, choose the appropriate expression.
1064 if (cond_range
.singleton_p ())
1066 // False, pick second operand.
1067 if (cond_range
.zero_p ())
1077 gcc_checking_assert (r
.undefined_p ()
1078 || range_compatible_p (r
.type (), type
));
1082 // If SCEV has any information about phi node NAME, return it as a range in R.
1085 fold_using_range::range_of_ssa_name_with_loop_info (vrange
&r
, tree name
,
1086 class loop
*l
, gphi
*phi
,
1089 gcc_checking_assert (TREE_CODE (name
) == SSA_NAME
);
1090 if (!range_of_var_in_loop (r
, name
, l
, phi
, src
.query ()))
1091 r
.set_varying (TREE_TYPE (name
));
1094 // -----------------------------------------------------------------------
1096 // Check if an && or || expression can be folded based on relations. ie
1100 // c_2 and c_3 can never be true at the same time,
1101 // Therefore c_4 can always resolve to false based purely on the relations.
1104 fold_using_range::relation_fold_and_or (irange
& lhs_range
, gimple
*s
,
1107 // No queries or already folded.
1108 if (!src
.gori () || !src
.query ()->oracle () || lhs_range
.singleton_p ())
1111 // Only care about AND and OR expressions.
1112 enum tree_code code
= gimple_expr_code (s
);
1113 bool is_and
= false;
1114 if (code
== BIT_AND_EXPR
|| code
== TRUTH_AND_EXPR
)
1116 else if (code
!= BIT_IOR_EXPR
&& code
!= TRUTH_OR_EXPR
)
1119 gimple_range_op_handler
handler (s
);
1120 tree lhs
= handler
.lhs ();
1121 tree ssa1
= gimple_range_ssa_p (handler
.operand1 ());
1122 tree ssa2
= gimple_range_ssa_p (handler
.operand2 ());
1124 // Deal with || and && only when there is a full set of symbolics.
1125 if (!lhs
|| !ssa1
|| !ssa2
1126 || (TREE_CODE (TREE_TYPE (lhs
)) != BOOLEAN_TYPE
)
1127 || (TREE_CODE (TREE_TYPE (ssa1
)) != BOOLEAN_TYPE
)
1128 || (TREE_CODE (TREE_TYPE (ssa2
)) != BOOLEAN_TYPE
))
1131 // Now we know its a boolean AND or OR expression with boolean operands.
1132 // Ideally we search dependencies for common names, and see what pops out.
1133 // until then, simply try to resolve direct dependencies.
1135 gimple
*ssa1_stmt
= SSA_NAME_DEF_STMT (ssa1
);
1136 gimple
*ssa2_stmt
= SSA_NAME_DEF_STMT (ssa2
);
1138 gimple_range_op_handler
handler1 (ssa1_stmt
);
1139 gimple_range_op_handler
handler2 (ssa2_stmt
);
1141 // If either handler is not present, no relation can be found.
1142 if (!handler1
|| !handler2
)
1145 // Both stmts will need to have 2 ssa names in the stmt.
1146 tree ssa1_dep1
= gimple_range_ssa_p (handler1
.operand1 ());
1147 tree ssa1_dep2
= gimple_range_ssa_p (handler1
.operand2 ());
1148 tree ssa2_dep1
= gimple_range_ssa_p (handler2
.operand1 ());
1149 tree ssa2_dep2
= gimple_range_ssa_p (handler2
.operand2 ());
1151 if (!ssa1_dep1
|| !ssa1_dep2
|| !ssa2_dep1
|| !ssa2_dep2
)
1154 if (HONOR_NANS (TREE_TYPE (ssa1_dep1
)))
1157 // Make sure they are the same dependencies, and detect the order of the
1159 bool reverse_op2
= true;
1160 if (ssa1_dep1
== ssa2_dep1
&& ssa1_dep2
== ssa2_dep2
)
1161 reverse_op2
= false;
1162 else if (ssa1_dep1
!= ssa2_dep2
|| ssa1_dep2
!= ssa2_dep1
)
1165 int_range
<2> bool_one
= range_true ();
1167 relation_kind relation1
= handler1
.op1_op2_relation (bool_one
);
1168 relation_kind relation2
= handler2
.op1_op2_relation (bool_one
);
1169 if (relation1
== VREL_VARYING
|| relation2
== VREL_VARYING
)
1173 relation2
= relation_negate (relation2
);
1175 // x && y is false if the relation intersection of the true cases is NULL.
1176 if (is_and
&& relation_intersect (relation1
, relation2
) == VREL_UNDEFINED
)
1177 lhs_range
= range_false (boolean_type_node
);
1178 // x || y is true if the union of the true cases is NO-RELATION..
1179 // ie, one or the other being true covers the full range of possibilities.
1180 else if (!is_and
&& relation_union (relation1
, relation2
) == VREL_VARYING
)
1181 lhs_range
= bool_one
;
1185 range_cast (lhs_range
, TREE_TYPE (lhs
));
1186 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1188 fprintf (dump_file
, " Relation adjustment: ");
1189 print_generic_expr (dump_file
, ssa1
, TDF_SLIM
);
1190 fprintf (dump_file
, " and ");
1191 print_generic_expr (dump_file
, ssa2
, TDF_SLIM
);
1192 fprintf (dump_file
, " combine to produce ");
1193 lhs_range
.dump (dump_file
);
1194 fputc ('\n', dump_file
);
1200 // Register any outgoing edge relations from a conditional branch.
1203 fur_source::register_outgoing_edges (gcond
*s
, irange
&lhs_range
, edge e0
, edge e1
)
1205 int_range
<2> e0_range
, e1_range
;
1207 basic_block bb
= gimple_bb (s
);
1209 gimple_range_op_handler
handler (s
);
1215 // If this edge is never taken, ignore it.
1216 gcond_edge_range (e0_range
, e0
);
1217 e0_range
.intersect (lhs_range
);
1218 if (e0_range
.undefined_p ())
1224 // If this edge is never taken, ignore it.
1225 gcond_edge_range (e1_range
, e1
);
1226 e1_range
.intersect (lhs_range
);
1227 if (e1_range
.undefined_p ())
1234 // First, register the gcond itself. This will catch statements like
1236 tree ssa1
= gimple_range_ssa_p (handler
.operand1 ());
1237 tree ssa2
= gimple_range_ssa_p (handler
.operand2 ());
1242 relation_kind relation
= handler
.op1_op2_relation (e0_range
);
1243 if (relation
!= VREL_VARYING
)
1244 register_relation (e0
, relation
, ssa1
, ssa2
);
1248 relation_kind relation
= handler
.op1_op2_relation (e1_range
);
1249 if (relation
!= VREL_VARYING
)
1250 register_relation (e1
, relation
, ssa1
, ssa2
);
1254 // Outgoing relations of GORI exports require a gori engine.
1258 // Now look for other relations in the exports. This will find stmts
1259 // leading to the condition such as:
1262 FOR_EACH_GORI_EXPORT_NAME (*(gori ()), bb
, name
)
1264 if (TREE_CODE (TREE_TYPE (name
)) != BOOLEAN_TYPE
)
1266 gimple
*stmt
= SSA_NAME_DEF_STMT (name
);
1267 gimple_range_op_handler
handler (stmt
);
1270 tree ssa1
= gimple_range_ssa_p (handler
.operand1 ());
1271 tree ssa2
= gimple_range_ssa_p (handler
.operand2 ());
1272 Value_Range
r (TREE_TYPE (name
));
1275 if (e0
&& gori ()->outgoing_edge_range_p (r
, e0
, name
, *m_query
)
1276 && r
.singleton_p ())
1278 relation_kind relation
= handler
.op1_op2_relation (r
);
1279 if (relation
!= VREL_VARYING
)
1280 register_relation (e0
, relation
, ssa1
, ssa2
);
1282 if (e1
&& gori ()->outgoing_edge_range_p (r
, e1
, name
, *m_query
)
1283 && r
.singleton_p ())
1285 relation_kind relation
= handler
.op1_op2_relation (r
);
1286 if (relation
!= VREL_VARYING
)
1287 register_relation (e1
, relation
, ssa1
, ssa2
);