* gcc.dg/compat/struct-layout-1_generate.c (dg_options): New. Moved
[official-gcc.git] / gcc / ada / freeze.adb
blobf77e1e709609b530c4e7f57c201880bb083ec0b8
1 -----------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Ch3; use Exp_Ch3;
33 with Exp_Ch7; use Exp_Ch7;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Exp_Tss; use Exp_Tss;
38 with Layout; use Layout;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Sem; use Sem;
47 with Sem_Cat; use Sem_Cat;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch7; use Sem_Ch7;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Ch13; use Sem_Ch13;
52 with Sem_Eval; use Sem_Eval;
53 with Sem_Mech; use Sem_Mech;
54 with Sem_Prag; use Sem_Prag;
55 with Sem_Res; use Sem_Res;
56 with Sem_Util; use Sem_Util;
57 with Sinfo; use Sinfo;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Targparm; use Targparm;
61 with Tbuild; use Tbuild;
62 with Ttypes; use Ttypes;
63 with Uintp; use Uintp;
64 with Urealp; use Urealp;
66 package body Freeze is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
73 -- Typ is a type that is being frozen. If no size clause is given,
74 -- but a default Esize has been computed, then this default Esize is
75 -- adjusted up if necessary to be consistent with a given alignment,
76 -- but never to a value greater than Long_Long_Integer'Size. This
77 -- is used for all discrete types and for fixed-point types.
79 procedure Build_And_Analyze_Renamed_Body
80 (Decl : Node_Id;
81 New_S : Entity_Id;
82 After : in out Node_Id);
83 -- Build body for a renaming declaration, insert in tree and analyze
85 procedure Check_Address_Clause (E : Entity_Id);
86 -- Apply legality checks to address clauses for object declarations,
87 -- at the point the object is frozen.
89 procedure Check_Strict_Alignment (E : Entity_Id);
90 -- E is a base type. If E is tagged or has a component that is aliased
91 -- or tagged or contains something this is aliased or tagged, set
92 -- Strict_Alignment.
94 procedure Check_Unsigned_Type (E : Entity_Id);
95 pragma Inline (Check_Unsigned_Type);
96 -- If E is a fixed-point or discrete type, then all the necessary work
97 -- to freeze it is completed except for possible setting of the flag
98 -- Is_Unsigned_Type, which is done by this procedure. The call has no
99 -- effect if the entity E is not a discrete or fixed-point type.
101 procedure Freeze_And_Append
102 (Ent : Entity_Id;
103 Loc : Source_Ptr;
104 Result : in out List_Id);
105 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
106 -- nodes to Result, modifying Result from No_List if necessary.
108 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
109 -- Freeze enumeration type. The Esize field is set as processing
110 -- proceeds (i.e. set by default when the type is declared and then
111 -- adjusted by rep clauses. What this procedure does is to make sure
112 -- that if a foreign convention is specified, and no specific size
113 -- is given, then the size must be at least Integer'Size.
115 procedure Freeze_Static_Object (E : Entity_Id);
116 -- If an object is frozen which has Is_Statically_Allocated set, then
117 -- all referenced types must also be marked with this flag. This routine
118 -- is in charge of meeting this requirement for the object entity E.
120 procedure Freeze_Subprogram (E : Entity_Id);
121 -- Perform freezing actions for a subprogram (create extra formals,
122 -- and set proper default mechanism values). Note that this routine
123 -- is not called for internal subprograms, for which neither of these
124 -- actions is needed (or desirable, we do not want for example to have
125 -- these extra formals present in initialization procedures, where they
126 -- would serve no purpose). In this call E is either a subprogram or
127 -- a subprogram type (i.e. an access to a subprogram).
129 function Is_Fully_Defined (T : Entity_Id) return Boolean;
130 -- True if T is not private and has no private components, or has a full
131 -- view. Used to determine whether the designated type of an access type
132 -- should be frozen when the access type is frozen. This is done when an
133 -- allocator is frozen, or an expression that may involve attributes of
134 -- the designated type. Otherwise freezing the access type does not freeze
135 -- the designated type.
137 procedure Generate_Prim_Op_References (Typ : Entity_Id);
138 -- For a tagged type, generate implicit references to its primitive
139 -- operations, for source navigation.
141 procedure Process_Default_Expressions
142 (E : Entity_Id;
143 After : in out Node_Id);
144 -- This procedure is called for each subprogram to complete processing
145 -- of default expressions at the point where all types are known to be
146 -- frozen. The expressions must be analyzed in full, to make sure that
147 -- all error processing is done (they have only been pre-analyzed). If
148 -- the expression is not an entity or literal, its analysis may generate
149 -- code which must not be executed. In that case we build a function
150 -- body to hold that code. This wrapper function serves no other purpose
151 -- (it used to be called to evaluate the default, but now the default is
152 -- inlined at each point of call).
154 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
155 -- Typ is a record or array type that is being frozen. This routine
156 -- sets the default component alignment from the scope stack values
157 -- if the alignment is otherwise not specified.
159 procedure Check_Debug_Info_Needed (T : Entity_Id);
160 -- As each entity is frozen, this routine is called to deal with the
161 -- setting of Debug_Info_Needed for the entity. This flag is set if
162 -- the entity comes from source, or if we are in Debug_Generated_Code
163 -- mode or if the -gnatdV debug flag is set. However, it never sets
164 -- the flag if Debug_Info_Off is set. This procedure also ensures that
165 -- subsidiary entities have the flag set as required.
167 procedure Undelay_Type (T : Entity_Id);
168 -- T is a type of a component that we know to be an Itype.
169 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
170 -- Do the same for any Full_View or Corresponding_Record_Type.
172 procedure Warn_Overlay
173 (Expr : Node_Id;
174 Typ : Entity_Id;
175 Nam : Node_Id);
176 -- Expr is the expression for an address clause for entity Nam whose type
177 -- is Typ. If Typ has a default initialization, and there is no explicit
178 -- initialization in the source declaration, check whether the address
179 -- clause might cause overlaying of an entity, and emit a warning on the
180 -- side effect that the initialization will cause.
182 -------------------------------
183 -- Adjust_Esize_For_Alignment --
184 -------------------------------
186 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
187 Align : Uint;
189 begin
190 if Known_Esize (Typ) and then Known_Alignment (Typ) then
191 Align := Alignment_In_Bits (Typ);
193 if Align > Esize (Typ)
194 and then Align <= Standard_Long_Long_Integer_Size
195 then
196 Set_Esize (Typ, Align);
197 end if;
198 end if;
199 end Adjust_Esize_For_Alignment;
201 ------------------------------------
202 -- Build_And_Analyze_Renamed_Body --
203 ------------------------------------
205 procedure Build_And_Analyze_Renamed_Body
206 (Decl : Node_Id;
207 New_S : Entity_Id;
208 After : in out Node_Id)
210 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
211 begin
212 Insert_After (After, Body_Node);
213 Mark_Rewrite_Insertion (Body_Node);
214 Analyze (Body_Node);
215 After := Body_Node;
216 end Build_And_Analyze_Renamed_Body;
218 ------------------------
219 -- Build_Renamed_Body --
220 ------------------------
222 function Build_Renamed_Body
223 (Decl : Node_Id;
224 New_S : Entity_Id) return Node_Id
226 Loc : constant Source_Ptr := Sloc (New_S);
227 -- We use for the source location of the renamed body, the location
228 -- of the spec entity. It might seem more natural to use the location
229 -- of the renaming declaration itself, but that would be wrong, since
230 -- then the body we create would look as though it was created far
231 -- too late, and this could cause problems with elaboration order
232 -- analysis, particularly in connection with instantiations.
234 N : constant Node_Id := Unit_Declaration_Node (New_S);
235 Nam : constant Node_Id := Name (N);
236 Old_S : Entity_Id;
237 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
238 Actuals : List_Id := No_List;
239 Call_Node : Node_Id;
240 Call_Name : Node_Id;
241 Body_Node : Node_Id;
242 Formal : Entity_Id;
243 O_Formal : Entity_Id;
244 Param_Spec : Node_Id;
246 Pref : Node_Id := Empty;
247 -- If the renamed entity is a primitive operation given in prefix form,
248 -- the prefix is the target object and it has to be added as the first
249 -- actual in the generated call.
251 begin
252 -- Determine the entity being renamed, which is the target of the call
253 -- statement. If the name is an explicit dereference, this is a renaming
254 -- of a subprogram type rather than a subprogram. The name itself is
255 -- fully analyzed.
257 if Nkind (Nam) = N_Selected_Component then
258 Old_S := Entity (Selector_Name (Nam));
260 elsif Nkind (Nam) = N_Explicit_Dereference then
261 Old_S := Etype (Nam);
263 elsif Nkind (Nam) = N_Indexed_Component then
264 if Is_Entity_Name (Prefix (Nam)) then
265 Old_S := Entity (Prefix (Nam));
266 else
267 Old_S := Entity (Selector_Name (Prefix (Nam)));
268 end if;
270 elsif Nkind (Nam) = N_Character_Literal then
271 Old_S := Etype (New_S);
273 else
274 Old_S := Entity (Nam);
275 end if;
277 if Is_Entity_Name (Nam) then
279 -- If the renamed entity is a predefined operator, retain full name
280 -- to ensure its visibility.
282 if Ekind (Old_S) = E_Operator
283 and then Nkind (Nam) = N_Expanded_Name
284 then
285 Call_Name := New_Copy (Name (N));
286 else
287 Call_Name := New_Reference_To (Old_S, Loc);
288 end if;
290 else
291 if Nkind (Nam) = N_Selected_Component
292 and then Present (First_Formal (Old_S))
293 and then
294 (Is_Controlling_Formal (First_Formal (Old_S))
295 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
296 then
298 -- Retrieve the target object, to be added as a first actual
299 -- in the call.
301 Call_Name := New_Occurrence_Of (Old_S, Loc);
302 Pref := Prefix (Nam);
304 else
305 Call_Name := New_Copy (Name (N));
306 end if;
308 -- The original name may have been overloaded, but
309 -- is fully resolved now.
311 Set_Is_Overloaded (Call_Name, False);
312 end if;
314 -- For simple renamings, subsequent calls can be expanded directly as
315 -- called to the renamed entity. The body must be generated in any case
316 -- for calls they may appear elsewhere.
318 if (Ekind (Old_S) = E_Function
319 or else Ekind (Old_S) = E_Procedure)
320 and then Nkind (Decl) = N_Subprogram_Declaration
321 then
322 Set_Body_To_Inline (Decl, Old_S);
323 end if;
325 -- The body generated for this renaming is an internal artifact, and
326 -- does not constitute a freeze point for the called entity.
328 Set_Must_Not_Freeze (Call_Name);
330 Formal := First_Formal (Defining_Entity (Decl));
332 if Present (Pref) then
333 declare
334 Pref_Type : constant Entity_Id := Etype (Pref);
335 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
337 begin
339 -- The controlling formal may be an access parameter, or the
340 -- actual may be an access value, so adjust accordingly.
342 if Is_Access_Type (Pref_Type)
343 and then not Is_Access_Type (Form_Type)
344 then
345 Actuals := New_List
346 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
348 elsif Is_Access_Type (Form_Type)
349 and then not Is_Access_Type (Pref)
350 then
351 Actuals := New_List
352 (Make_Attribute_Reference (Loc,
353 Attribute_Name => Name_Access,
354 Prefix => Relocate_Node (Pref)));
355 else
356 Actuals := New_List (Pref);
357 end if;
358 end;
360 elsif Present (Formal) then
361 Actuals := New_List;
363 else
364 Actuals := No_List;
365 end if;
367 if Present (Formal) then
368 while Present (Formal) loop
369 Append (New_Reference_To (Formal, Loc), Actuals);
370 Next_Formal (Formal);
371 end loop;
372 end if;
374 -- If the renamed entity is an entry, inherit its profile. For other
375 -- renamings as bodies, both profiles must be subtype conformant, so it
376 -- is not necessary to replace the profile given in the declaration.
377 -- However, default values that are aggregates are rewritten when
378 -- partially analyzed, so we recover the original aggregate to insure
379 -- that subsequent conformity checking works. Similarly, if the default
380 -- expression was constant-folded, recover the original expression.
382 Formal := First_Formal (Defining_Entity (Decl));
384 if Present (Formal) then
385 O_Formal := First_Formal (Old_S);
386 Param_Spec := First (Parameter_Specifications (Spec));
388 while Present (Formal) loop
389 if Is_Entry (Old_S) then
391 if Nkind (Parameter_Type (Param_Spec)) /=
392 N_Access_Definition
393 then
394 Set_Etype (Formal, Etype (O_Formal));
395 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
396 end if;
398 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
399 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
400 Nkind (Default_Value (O_Formal))
401 then
402 Set_Expression (Param_Spec,
403 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
404 end if;
406 Next_Formal (Formal);
407 Next_Formal (O_Formal);
408 Next (Param_Spec);
409 end loop;
410 end if;
412 -- If the renamed entity is a function, the generated body contains a
413 -- return statement. Otherwise, build a procedure call. If the entity is
414 -- an entry, subsequent analysis of the call will transform it into the
415 -- proper entry or protected operation call. If the renamed entity is
416 -- a character literal, return it directly.
418 if Ekind (Old_S) = E_Function
419 or else Ekind (Old_S) = E_Operator
420 or else (Ekind (Old_S) = E_Subprogram_Type
421 and then Etype (Old_S) /= Standard_Void_Type)
422 then
423 Call_Node :=
424 Make_Simple_Return_Statement (Loc,
425 Expression =>
426 Make_Function_Call (Loc,
427 Name => Call_Name,
428 Parameter_Associations => Actuals));
430 elsif Ekind (Old_S) = E_Enumeration_Literal then
431 Call_Node :=
432 Make_Simple_Return_Statement (Loc,
433 Expression => New_Occurrence_Of (Old_S, Loc));
435 elsif Nkind (Nam) = N_Character_Literal then
436 Call_Node :=
437 Make_Simple_Return_Statement (Loc,
438 Expression => Call_Name);
440 else
441 Call_Node :=
442 Make_Procedure_Call_Statement (Loc,
443 Name => Call_Name,
444 Parameter_Associations => Actuals);
445 end if;
447 -- Create entities for subprogram body and formals
449 Set_Defining_Unit_Name (Spec,
450 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
452 Param_Spec := First (Parameter_Specifications (Spec));
454 while Present (Param_Spec) loop
455 Set_Defining_Identifier (Param_Spec,
456 Make_Defining_Identifier (Loc,
457 Chars => Chars (Defining_Identifier (Param_Spec))));
458 Next (Param_Spec);
459 end loop;
461 Body_Node :=
462 Make_Subprogram_Body (Loc,
463 Specification => Spec,
464 Declarations => New_List,
465 Handled_Statement_Sequence =>
466 Make_Handled_Sequence_Of_Statements (Loc,
467 Statements => New_List (Call_Node)));
469 if Nkind (Decl) /= N_Subprogram_Declaration then
470 Rewrite (N,
471 Make_Subprogram_Declaration (Loc,
472 Specification => Specification (N)));
473 end if;
475 -- Link the body to the entity whose declaration it completes. If
476 -- the body is analyzed when the renamed entity is frozen, it may
477 -- be necessary to restore the proper scope (see package Exp_Ch13).
479 if Nkind (N) = N_Subprogram_Renaming_Declaration
480 and then Present (Corresponding_Spec (N))
481 then
482 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
483 else
484 Set_Corresponding_Spec (Body_Node, New_S);
485 end if;
487 return Body_Node;
488 end Build_Renamed_Body;
490 --------------------------
491 -- Check_Address_Clause --
492 --------------------------
494 procedure Check_Address_Clause (E : Entity_Id) is
495 Addr : constant Node_Id := Address_Clause (E);
496 Expr : Node_Id;
497 Decl : constant Node_Id := Declaration_Node (E);
498 Typ : constant Entity_Id := Etype (E);
500 begin
501 if Present (Addr) then
502 Expr := Expression (Addr);
504 -- If we have no initialization of any kind, then we don't need to
505 -- place any restrictions on the address clause, because the object
506 -- will be elaborated after the address clause is evaluated. This
507 -- happens if the declaration has no initial expression, or the type
508 -- has no implicit initialization, or the object is imported.
510 -- The same holds for all initialized scalar types and all access
511 -- types. Packed bit arrays of size up to 64 are represented using a
512 -- modular type with an initialization (to zero) and can be processed
513 -- like other initialized scalar types.
515 -- If the type is controlled, code to attach the object to a
516 -- finalization chain is generated at the point of declaration,
517 -- and therefore the elaboration of the object cannot be delayed:
518 -- the address expression must be a constant.
520 if (No (Expression (Decl))
521 and then not Needs_Finalization (Typ)
522 and then
523 (not Has_Non_Null_Base_Init_Proc (Typ)
524 or else Is_Imported (E)))
526 or else
527 (Present (Expression (Decl))
528 and then Is_Scalar_Type (Typ))
530 or else
531 Is_Access_Type (Typ)
533 or else
534 (Is_Bit_Packed_Array (Typ)
535 and then
536 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
537 then
538 null;
540 -- Otherwise, we require the address clause to be constant because
541 -- the call to the initialization procedure (or the attach code) has
542 -- to happen at the point of the declaration.
544 else
545 Check_Constant_Address_Clause (Expr, E);
546 Set_Has_Delayed_Freeze (E, False);
547 end if;
549 if not Error_Posted (Expr)
550 and then not Needs_Finalization (Typ)
551 then
552 Warn_Overlay (Expr, Typ, Name (Addr));
553 end if;
554 end if;
555 end Check_Address_Clause;
557 -----------------------------
558 -- Check_Compile_Time_Size --
559 -----------------------------
561 procedure Check_Compile_Time_Size (T : Entity_Id) is
563 procedure Set_Small_Size (T : Entity_Id; S : Uint);
564 -- Sets the compile time known size (32 bits or less) in the Esize
565 -- field, of T checking for a size clause that was given which attempts
566 -- to give a smaller size.
568 function Size_Known (T : Entity_Id) return Boolean;
569 -- Recursive function that does all the work
571 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
572 -- If T is a constrained subtype, its size is not known if any of its
573 -- discriminant constraints is not static and it is not a null record.
574 -- The test is conservative and doesn't check that the components are
575 -- in fact constrained by non-static discriminant values. Could be made
576 -- more precise ???
578 --------------------
579 -- Set_Small_Size --
580 --------------------
582 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
583 begin
584 if S > 32 then
585 return;
587 elsif Has_Size_Clause (T) then
588 if RM_Size (T) < S then
589 Error_Msg_Uint_1 := S;
590 Error_Msg_NE
591 ("size for & too small, minimum allowed is ^",
592 Size_Clause (T), T);
594 elsif Unknown_Esize (T) then
595 Set_Esize (T, S);
596 end if;
598 -- Set sizes if not set already
600 else
601 if Unknown_Esize (T) then
602 Set_Esize (T, S);
603 end if;
605 if Unknown_RM_Size (T) then
606 Set_RM_Size (T, S);
607 end if;
608 end if;
609 end Set_Small_Size;
611 ----------------
612 -- Size_Known --
613 ----------------
615 function Size_Known (T : Entity_Id) return Boolean is
616 Index : Entity_Id;
617 Comp : Entity_Id;
618 Ctyp : Entity_Id;
619 Low : Node_Id;
620 High : Node_Id;
622 begin
623 if Size_Known_At_Compile_Time (T) then
624 return True;
626 -- Always True for scalar types. This is true even for generic formal
627 -- scalar types. We used to return False in the latter case, but the
628 -- size is known at compile time, even in the template, we just do
629 -- not know the exact size but that's not the point of this routine.
631 elsif Is_Scalar_Type (T)
632 or else Is_Task_Type (T)
633 then
634 return True;
636 -- Array types
638 elsif Is_Array_Type (T) then
640 -- String literals always have known size, and we can set it
642 if Ekind (T) = E_String_Literal_Subtype then
643 Set_Small_Size (T, Component_Size (T)
644 * String_Literal_Length (T));
645 return True;
647 -- Unconstrained types never have known at compile time size
649 elsif not Is_Constrained (T) then
650 return False;
652 -- Don't do any recursion on type with error posted, since we may
653 -- have a malformed type that leads us into a loop.
655 elsif Error_Posted (T) then
656 return False;
658 -- Otherwise if component size unknown, then array size unknown
660 elsif not Size_Known (Component_Type (T)) then
661 return False;
662 end if;
664 -- Check for all indexes static, and also compute possible size
665 -- (in case it is less than 32 and may be packable).
667 declare
668 Esiz : Uint := Component_Size (T);
669 Dim : Uint;
671 begin
672 Index := First_Index (T);
673 while Present (Index) loop
674 if Nkind (Index) = N_Range then
675 Get_Index_Bounds (Index, Low, High);
677 elsif Error_Posted (Scalar_Range (Etype (Index))) then
678 return False;
680 else
681 Low := Type_Low_Bound (Etype (Index));
682 High := Type_High_Bound (Etype (Index));
683 end if;
685 if not Compile_Time_Known_Value (Low)
686 or else not Compile_Time_Known_Value (High)
687 or else Etype (Index) = Any_Type
688 then
689 return False;
691 else
692 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
694 if Dim >= 0 then
695 Esiz := Esiz * Dim;
696 else
697 Esiz := Uint_0;
698 end if;
699 end if;
701 Next_Index (Index);
702 end loop;
704 Set_Small_Size (T, Esiz);
705 return True;
706 end;
708 -- Access types always have known at compile time sizes
710 elsif Is_Access_Type (T) then
711 return True;
713 -- For non-generic private types, go to underlying type if present
715 elsif Is_Private_Type (T)
716 and then not Is_Generic_Type (T)
717 and then Present (Underlying_Type (T))
718 then
719 -- Don't do any recursion on type with error posted, since we may
720 -- have a malformed type that leads us into a loop.
722 if Error_Posted (T) then
723 return False;
724 else
725 return Size_Known (Underlying_Type (T));
726 end if;
728 -- Record types
730 elsif Is_Record_Type (T) then
732 -- A class-wide type is never considered to have a known size
734 if Is_Class_Wide_Type (T) then
735 return False;
737 -- A subtype of a variant record must not have non-static
738 -- discriminanted components.
740 elsif T /= Base_Type (T)
741 and then not Static_Discriminated_Components (T)
742 then
743 return False;
745 -- Don't do any recursion on type with error posted, since we may
746 -- have a malformed type that leads us into a loop.
748 elsif Error_Posted (T) then
749 return False;
750 end if;
752 -- Now look at the components of the record
754 declare
755 -- The following two variables are used to keep track of the
756 -- size of packed records if we can tell the size of the packed
757 -- record in the front end. Packed_Size_Known is True if so far
758 -- we can figure out the size. It is initialized to True for a
759 -- packed record, unless the record has discriminants. The
760 -- reason we eliminate the discriminated case is that we don't
761 -- know the way the back end lays out discriminated packed
762 -- records. If Packed_Size_Known is True, then Packed_Size is
763 -- the size in bits so far.
765 Packed_Size_Known : Boolean :=
766 Is_Packed (T)
767 and then not Has_Discriminants (T);
769 Packed_Size : Uint := Uint_0;
771 begin
772 -- Test for variant part present
774 if Has_Discriminants (T)
775 and then Present (Parent (T))
776 and then Nkind (Parent (T)) = N_Full_Type_Declaration
777 and then Nkind (Type_Definition (Parent (T))) =
778 N_Record_Definition
779 and then not Null_Present (Type_Definition (Parent (T)))
780 and then Present (Variant_Part
781 (Component_List (Type_Definition (Parent (T)))))
782 then
783 -- If variant part is present, and type is unconstrained,
784 -- then we must have defaulted discriminants, or a size
785 -- clause must be present for the type, or else the size
786 -- is definitely not known at compile time.
788 if not Is_Constrained (T)
789 and then
790 No (Discriminant_Default_Value
791 (First_Discriminant (T)))
792 and then Unknown_Esize (T)
793 then
794 return False;
795 end if;
796 end if;
798 -- Loop through components
800 Comp := First_Component_Or_Discriminant (T);
801 while Present (Comp) loop
802 Ctyp := Etype (Comp);
804 -- We do not know the packed size if there is a component
805 -- clause present (we possibly could, but this would only
806 -- help in the case of a record with partial rep clauses.
807 -- That's because in the case of full rep clauses, the
808 -- size gets figured out anyway by a different circuit).
810 if Present (Component_Clause (Comp)) then
811 Packed_Size_Known := False;
812 end if;
814 -- We need to identify a component that is an array where
815 -- the index type is an enumeration type with non-standard
816 -- representation, and some bound of the type depends on a
817 -- discriminant.
819 -- This is because gigi computes the size by doing a
820 -- substitution of the appropriate discriminant value in
821 -- the size expression for the base type, and gigi is not
822 -- clever enough to evaluate the resulting expression (which
823 -- involves a call to rep_to_pos) at compile time.
825 -- It would be nice if gigi would either recognize that
826 -- this expression can be computed at compile time, or
827 -- alternatively figured out the size from the subtype
828 -- directly, where all the information is at hand ???
830 if Is_Array_Type (Etype (Comp))
831 and then Present (Packed_Array_Type (Etype (Comp)))
832 then
833 declare
834 Ocomp : constant Entity_Id :=
835 Original_Record_Component (Comp);
836 OCtyp : constant Entity_Id := Etype (Ocomp);
837 Ind : Node_Id;
838 Indtyp : Entity_Id;
839 Lo, Hi : Node_Id;
841 begin
842 Ind := First_Index (OCtyp);
843 while Present (Ind) loop
844 Indtyp := Etype (Ind);
846 if Is_Enumeration_Type (Indtyp)
847 and then Has_Non_Standard_Rep (Indtyp)
848 then
849 Lo := Type_Low_Bound (Indtyp);
850 Hi := Type_High_Bound (Indtyp);
852 if Is_Entity_Name (Lo)
853 and then Ekind (Entity (Lo)) = E_Discriminant
854 then
855 return False;
857 elsif Is_Entity_Name (Hi)
858 and then Ekind (Entity (Hi)) = E_Discriminant
859 then
860 return False;
861 end if;
862 end if;
864 Next_Index (Ind);
865 end loop;
866 end;
867 end if;
869 -- Clearly size of record is not known if the size of one of
870 -- the components is not known.
872 if not Size_Known (Ctyp) then
873 return False;
874 end if;
876 -- Accumulate packed size if possible
878 if Packed_Size_Known then
880 -- We can only deal with elementary types, since for
881 -- non-elementary components, alignment enters into the
882 -- picture, and we don't know enough to handle proper
883 -- alignment in this context. Packed arrays count as
884 -- elementary if the representation is a modular type.
886 if Is_Elementary_Type (Ctyp)
887 or else (Is_Array_Type (Ctyp)
888 and then Present (Packed_Array_Type (Ctyp))
889 and then Is_Modular_Integer_Type
890 (Packed_Array_Type (Ctyp)))
891 then
892 -- If RM_Size is known and static, then we can
893 -- keep accumulating the packed size.
895 if Known_Static_RM_Size (Ctyp) then
897 -- A little glitch, to be removed sometime ???
898 -- gigi does not understand zero sizes yet.
900 if RM_Size (Ctyp) = Uint_0 then
901 Packed_Size_Known := False;
903 -- Normal case where we can keep accumulating the
904 -- packed array size.
906 else
907 Packed_Size := Packed_Size + RM_Size (Ctyp);
908 end if;
910 -- If we have a field whose RM_Size is not known then
911 -- we can't figure out the packed size here.
913 else
914 Packed_Size_Known := False;
915 end if;
917 -- If we have a non-elementary type we can't figure out
918 -- the packed array size (alignment issues).
920 else
921 Packed_Size_Known := False;
922 end if;
923 end if;
925 Next_Component_Or_Discriminant (Comp);
926 end loop;
928 if Packed_Size_Known then
929 Set_Small_Size (T, Packed_Size);
930 end if;
932 return True;
933 end;
935 -- All other cases, size not known at compile time
937 else
938 return False;
939 end if;
940 end Size_Known;
942 -------------------------------------
943 -- Static_Discriminated_Components --
944 -------------------------------------
946 function Static_Discriminated_Components
947 (T : Entity_Id) return Boolean
949 Constraint : Elmt_Id;
951 begin
952 if Has_Discriminants (T)
953 and then Present (Discriminant_Constraint (T))
954 and then Present (First_Component (T))
955 then
956 Constraint := First_Elmt (Discriminant_Constraint (T));
957 while Present (Constraint) loop
958 if not Compile_Time_Known_Value (Node (Constraint)) then
959 return False;
960 end if;
962 Next_Elmt (Constraint);
963 end loop;
964 end if;
966 return True;
967 end Static_Discriminated_Components;
969 -- Start of processing for Check_Compile_Time_Size
971 begin
972 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
973 end Check_Compile_Time_Size;
975 -----------------------------
976 -- Check_Debug_Info_Needed --
977 -----------------------------
979 procedure Check_Debug_Info_Needed (T : Entity_Id) is
980 begin
981 if Debug_Info_Off (T) then
982 return;
984 elsif Comes_From_Source (T)
985 or else Debug_Generated_Code
986 or else Debug_Flag_VV
987 or else Needs_Debug_Info (T)
988 then
989 Set_Debug_Info_Needed (T);
990 end if;
991 end Check_Debug_Info_Needed;
993 ----------------------------
994 -- Check_Strict_Alignment --
995 ----------------------------
997 procedure Check_Strict_Alignment (E : Entity_Id) is
998 Comp : Entity_Id;
1000 begin
1001 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1002 Set_Strict_Alignment (E);
1004 elsif Is_Array_Type (E) then
1005 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1007 elsif Is_Record_Type (E) then
1008 if Is_Limited_Record (E) then
1009 Set_Strict_Alignment (E);
1010 return;
1011 end if;
1013 Comp := First_Component (E);
1015 while Present (Comp) loop
1016 if not Is_Type (Comp)
1017 and then (Strict_Alignment (Etype (Comp))
1018 or else Is_Aliased (Comp))
1019 then
1020 Set_Strict_Alignment (E);
1021 return;
1022 end if;
1024 Next_Component (Comp);
1025 end loop;
1026 end if;
1027 end Check_Strict_Alignment;
1029 -------------------------
1030 -- Check_Unsigned_Type --
1031 -------------------------
1033 procedure Check_Unsigned_Type (E : Entity_Id) is
1034 Ancestor : Entity_Id;
1035 Lo_Bound : Node_Id;
1036 Btyp : Entity_Id;
1038 begin
1039 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1040 return;
1041 end if;
1043 -- Do not attempt to analyze case where range was in error
1045 if Error_Posted (Scalar_Range (E)) then
1046 return;
1047 end if;
1049 -- The situation that is non trivial is something like
1051 -- subtype x1 is integer range -10 .. +10;
1052 -- subtype x2 is x1 range 0 .. V1;
1053 -- subtype x3 is x2 range V2 .. V3;
1054 -- subtype x4 is x3 range V4 .. V5;
1056 -- where Vn are variables. Here the base type is signed, but we still
1057 -- know that x4 is unsigned because of the lower bound of x2.
1059 -- The only way to deal with this is to look up the ancestor chain
1061 Ancestor := E;
1062 loop
1063 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1064 return;
1065 end if;
1067 Lo_Bound := Type_Low_Bound (Ancestor);
1069 if Compile_Time_Known_Value (Lo_Bound) then
1071 if Expr_Rep_Value (Lo_Bound) >= 0 then
1072 Set_Is_Unsigned_Type (E, True);
1073 end if;
1075 return;
1077 else
1078 Ancestor := Ancestor_Subtype (Ancestor);
1080 -- If no ancestor had a static lower bound, go to base type
1082 if No (Ancestor) then
1084 -- Note: the reason we still check for a compile time known
1085 -- value for the base type is that at least in the case of
1086 -- generic formals, we can have bounds that fail this test,
1087 -- and there may be other cases in error situations.
1089 Btyp := Base_Type (E);
1091 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1092 return;
1093 end if;
1095 Lo_Bound := Type_Low_Bound (Base_Type (E));
1097 if Compile_Time_Known_Value (Lo_Bound)
1098 and then Expr_Rep_Value (Lo_Bound) >= 0
1099 then
1100 Set_Is_Unsigned_Type (E, True);
1101 end if;
1103 return;
1104 end if;
1105 end if;
1106 end loop;
1107 end Check_Unsigned_Type;
1109 -----------------------------
1110 -- Expand_Atomic_Aggregate --
1111 -----------------------------
1113 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1114 Loc : constant Source_Ptr := Sloc (E);
1115 New_N : Node_Id;
1116 Temp : Entity_Id;
1118 begin
1119 if (Nkind (Parent (E)) = N_Object_Declaration
1120 or else Nkind (Parent (E)) = N_Assignment_Statement)
1121 and then Comes_From_Source (Parent (E))
1122 and then Nkind (E) = N_Aggregate
1123 then
1124 Temp :=
1125 Make_Defining_Identifier (Loc,
1126 New_Internal_Name ('T'));
1128 New_N :=
1129 Make_Object_Declaration (Loc,
1130 Defining_Identifier => Temp,
1131 Object_Definition => New_Occurrence_Of (Typ, Loc),
1132 Expression => Relocate_Node (E));
1133 Insert_Before (Parent (E), New_N);
1134 Analyze (New_N);
1136 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1138 -- To prevent the temporary from being constant-folded (which would
1139 -- lead to the same piecemeal assignment on the original target)
1140 -- indicate to the back-end that the temporary is a variable with
1141 -- real storage. See description of this flag in Einfo, and the notes
1142 -- on N_Assignment_Statement and N_Object_Declaration in Sinfo.
1144 Set_Is_True_Constant (Temp, False);
1145 end if;
1146 end Expand_Atomic_Aggregate;
1148 ----------------
1149 -- Freeze_All --
1150 ----------------
1152 -- Note: the easy coding for this procedure would be to just build a
1153 -- single list of freeze nodes and then insert them and analyze them
1154 -- all at once. This won't work, because the analysis of earlier freeze
1155 -- nodes may recursively freeze types which would otherwise appear later
1156 -- on in the freeze list. So we must analyze and expand the freeze nodes
1157 -- as they are generated.
1159 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1160 Loc : constant Source_Ptr := Sloc (After);
1161 E : Entity_Id;
1162 Decl : Node_Id;
1164 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1165 -- This is the internal recursive routine that does freezing of entities
1166 -- (but NOT the analysis of default expressions, which should not be
1167 -- recursive, we don't want to analyze those till we are sure that ALL
1168 -- the types are frozen).
1170 --------------------
1171 -- Freeze_All_Ent --
1172 --------------------
1174 procedure Freeze_All_Ent
1175 (From : Entity_Id;
1176 After : in out Node_Id)
1178 E : Entity_Id;
1179 Flist : List_Id;
1180 Lastn : Node_Id;
1182 procedure Process_Flist;
1183 -- If freeze nodes are present, insert and analyze, and reset cursor
1184 -- for next insertion.
1186 -------------------
1187 -- Process_Flist --
1188 -------------------
1190 procedure Process_Flist is
1191 begin
1192 if Is_Non_Empty_List (Flist) then
1193 Lastn := Next (After);
1194 Insert_List_After_And_Analyze (After, Flist);
1196 if Present (Lastn) then
1197 After := Prev (Lastn);
1198 else
1199 After := Last (List_Containing (After));
1200 end if;
1201 end if;
1202 end Process_Flist;
1204 -- Start or processing for Freeze_All_Ent
1206 begin
1207 E := From;
1208 while Present (E) loop
1210 -- If the entity is an inner package which is not a package
1211 -- renaming, then its entities must be frozen at this point. Note
1212 -- that such entities do NOT get frozen at the end of the nested
1213 -- package itself (only library packages freeze).
1215 -- Same is true for task declarations, where anonymous records
1216 -- created for entry parameters must be frozen.
1218 if Ekind (E) = E_Package
1219 and then No (Renamed_Object (E))
1220 and then not Is_Child_Unit (E)
1221 and then not Is_Frozen (E)
1222 then
1223 Push_Scope (E);
1224 Install_Visible_Declarations (E);
1225 Install_Private_Declarations (E);
1227 Freeze_All (First_Entity (E), After);
1229 End_Package_Scope (E);
1231 elsif Ekind (E) in Task_Kind
1232 and then
1233 (Nkind (Parent (E)) = N_Task_Type_Declaration
1234 or else
1235 Nkind (Parent (E)) = N_Single_Task_Declaration)
1236 then
1237 Push_Scope (E);
1238 Freeze_All (First_Entity (E), After);
1239 End_Scope;
1241 -- For a derived tagged type, we must ensure that all the
1242 -- primitive operations of the parent have been frozen, so that
1243 -- their addresses will be in the parent's dispatch table at the
1244 -- point it is inherited.
1246 elsif Ekind (E) = E_Record_Type
1247 and then Is_Tagged_Type (E)
1248 and then Is_Tagged_Type (Etype (E))
1249 and then Is_Derived_Type (E)
1250 then
1251 declare
1252 Prim_List : constant Elist_Id :=
1253 Primitive_Operations (Etype (E));
1255 Prim : Elmt_Id;
1256 Subp : Entity_Id;
1258 begin
1259 Prim := First_Elmt (Prim_List);
1261 while Present (Prim) loop
1262 Subp := Node (Prim);
1264 if Comes_From_Source (Subp)
1265 and then not Is_Frozen (Subp)
1266 then
1267 Flist := Freeze_Entity (Subp, Loc);
1268 Process_Flist;
1269 end if;
1271 Next_Elmt (Prim);
1272 end loop;
1273 end;
1274 end if;
1276 if not Is_Frozen (E) then
1277 Flist := Freeze_Entity (E, Loc);
1278 Process_Flist;
1279 end if;
1281 -- If an incomplete type is still not frozen, this may be a
1282 -- premature freezing because of a body declaration that follows.
1283 -- Indicate where the freezing took place.
1285 -- If the freezing is caused by the end of the current declarative
1286 -- part, it is a Taft Amendment type, and there is no error.
1288 if not Is_Frozen (E)
1289 and then Ekind (E) = E_Incomplete_Type
1290 then
1291 declare
1292 Bod : constant Node_Id := Next (After);
1294 begin
1295 if (Nkind (Bod) = N_Subprogram_Body
1296 or else Nkind (Bod) = N_Entry_Body
1297 or else Nkind (Bod) = N_Package_Body
1298 or else Nkind (Bod) = N_Protected_Body
1299 or else Nkind (Bod) = N_Task_Body
1300 or else Nkind (Bod) in N_Body_Stub)
1301 and then
1302 List_Containing (After) = List_Containing (Parent (E))
1303 then
1304 Error_Msg_Sloc := Sloc (Next (After));
1305 Error_Msg_NE
1306 ("type& is frozen# before its full declaration",
1307 Parent (E), E);
1308 end if;
1309 end;
1310 end if;
1312 Next_Entity (E);
1313 end loop;
1314 end Freeze_All_Ent;
1316 -- Start of processing for Freeze_All
1318 begin
1319 Freeze_All_Ent (From, After);
1321 -- Now that all types are frozen, we can deal with default expressions
1322 -- that require us to build a default expression functions. This is the
1323 -- point at which such functions are constructed (after all types that
1324 -- might be used in such expressions have been frozen).
1326 -- We also add finalization chains to access types whose designated
1327 -- types are controlled. This is normally done when freezing the type,
1328 -- but this misses recursive type definitions where the later members
1329 -- of the recursion introduce controlled components.
1331 -- Loop through entities
1333 E := From;
1334 while Present (E) loop
1335 if Is_Subprogram (E) then
1337 if not Default_Expressions_Processed (E) then
1338 Process_Default_Expressions (E, After);
1339 end if;
1341 if not Has_Completion (E) then
1342 Decl := Unit_Declaration_Node (E);
1344 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1345 Build_And_Analyze_Renamed_Body (Decl, E, After);
1347 elsif Nkind (Decl) = N_Subprogram_Declaration
1348 and then Present (Corresponding_Body (Decl))
1349 and then
1350 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1351 = N_Subprogram_Renaming_Declaration
1352 then
1353 Build_And_Analyze_Renamed_Body
1354 (Decl, Corresponding_Body (Decl), After);
1355 end if;
1356 end if;
1358 elsif Ekind (E) in Task_Kind
1359 and then
1360 (Nkind (Parent (E)) = N_Task_Type_Declaration
1361 or else
1362 Nkind (Parent (E)) = N_Single_Task_Declaration)
1363 then
1364 declare
1365 Ent : Entity_Id;
1366 begin
1367 Ent := First_Entity (E);
1369 while Present (Ent) loop
1371 if Is_Entry (Ent)
1372 and then not Default_Expressions_Processed (Ent)
1373 then
1374 Process_Default_Expressions (Ent, After);
1375 end if;
1377 Next_Entity (Ent);
1378 end loop;
1379 end;
1381 elsif Is_Access_Type (E)
1382 and then Comes_From_Source (E)
1383 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1384 and then Needs_Finalization (Designated_Type (E))
1385 and then No (Associated_Final_Chain (E))
1386 then
1387 Build_Final_List (Parent (E), E);
1388 end if;
1390 Next_Entity (E);
1391 end loop;
1392 end Freeze_All;
1394 -----------------------
1395 -- Freeze_And_Append --
1396 -----------------------
1398 procedure Freeze_And_Append
1399 (Ent : Entity_Id;
1400 Loc : Source_Ptr;
1401 Result : in out List_Id)
1403 L : constant List_Id := Freeze_Entity (Ent, Loc);
1404 begin
1405 if Is_Non_Empty_List (L) then
1406 if Result = No_List then
1407 Result := L;
1408 else
1409 Append_List (L, Result);
1410 end if;
1411 end if;
1412 end Freeze_And_Append;
1414 -------------------
1415 -- Freeze_Before --
1416 -------------------
1418 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1419 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
1420 begin
1421 if Is_Non_Empty_List (Freeze_Nodes) then
1422 Insert_Actions (N, Freeze_Nodes);
1423 end if;
1424 end Freeze_Before;
1426 -------------------
1427 -- Freeze_Entity --
1428 -------------------
1430 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
1431 Test_E : Entity_Id := E;
1432 Comp : Entity_Id;
1433 F_Node : Node_Id;
1434 Result : List_Id;
1435 Indx : Node_Id;
1436 Formal : Entity_Id;
1437 Atype : Entity_Id;
1439 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1440 -- Check that an Access or Unchecked_Access attribute with a prefix
1441 -- which is the current instance type can only be applied when the type
1442 -- is limited.
1444 function After_Last_Declaration return Boolean;
1445 -- If Loc is a freeze_entity that appears after the last declaration
1446 -- in the scope, inhibit error messages on late completion.
1448 procedure Freeze_Record_Type (Rec : Entity_Id);
1449 -- Freeze each component, handle some representation clauses, and freeze
1450 -- primitive operations if this is a tagged type.
1452 ----------------------------
1453 -- After_Last_Declaration --
1454 ----------------------------
1456 function After_Last_Declaration return Boolean is
1457 Spec : constant Node_Id := Parent (Current_Scope);
1458 begin
1459 if Nkind (Spec) = N_Package_Specification then
1460 if Present (Private_Declarations (Spec)) then
1461 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1462 elsif Present (Visible_Declarations (Spec)) then
1463 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1464 else
1465 return False;
1466 end if;
1467 else
1468 return False;
1469 end if;
1470 end After_Last_Declaration;
1472 ----------------------------
1473 -- Check_Current_Instance --
1474 ----------------------------
1476 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1478 Rec_Type : constant Entity_Id :=
1479 Scope (Defining_Identifier (Comp_Decl));
1481 Decl : constant Node_Id := Parent (Rec_Type);
1483 function Process (N : Node_Id) return Traverse_Result;
1484 -- Process routine to apply check to given node
1486 -------------
1487 -- Process --
1488 -------------
1490 function Process (N : Node_Id) return Traverse_Result is
1491 begin
1492 case Nkind (N) is
1493 when N_Attribute_Reference =>
1494 if (Attribute_Name (N) = Name_Access
1495 or else
1496 Attribute_Name (N) = Name_Unchecked_Access)
1497 and then Is_Entity_Name (Prefix (N))
1498 and then Is_Type (Entity (Prefix (N)))
1499 and then Entity (Prefix (N)) = E
1500 then
1501 Error_Msg_N
1502 ("current instance must be a limited type", Prefix (N));
1503 return Abandon;
1504 else
1505 return OK;
1506 end if;
1508 when others => return OK;
1509 end case;
1510 end Process;
1512 procedure Traverse is new Traverse_Proc (Process);
1514 -- Start of processing for Check_Current_Instance
1516 begin
1517 -- In Ada95, the (imprecise) rule is that the current instance of a
1518 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1519 -- either a tagged type, or a limited record.
1521 if Is_Limited_Type (Rec_Type)
1522 and then
1523 (Ada_Version < Ada_05
1524 or else Is_Tagged_Type (Rec_Type))
1525 then
1526 return;
1528 elsif Nkind (Decl) = N_Full_Type_Declaration
1529 and then Limited_Present (Type_Definition (Decl))
1530 then
1531 return;
1533 else
1534 Traverse (Comp_Decl);
1535 end if;
1536 end Check_Current_Instance;
1538 ------------------------
1539 -- Freeze_Record_Type --
1540 ------------------------
1542 procedure Freeze_Record_Type (Rec : Entity_Id) is
1543 Comp : Entity_Id;
1544 IR : Node_Id;
1545 ADC : Node_Id;
1546 Prev : Entity_Id;
1548 Junk : Boolean;
1549 pragma Warnings (Off, Junk);
1551 Unplaced_Component : Boolean := False;
1552 -- Set True if we find at least one component with no component
1553 -- clause (used to warn about useless Pack pragmas).
1555 Placed_Component : Boolean := False;
1556 -- Set True if we find at least one component with a component
1557 -- clause (used to warn about useless Bit_Order pragmas).
1559 function Check_Allocator (N : Node_Id) return Node_Id;
1560 -- If N is an allocator, possibly wrapped in one or more level of
1561 -- qualified expression(s), return the inner allocator node, else
1562 -- return Empty.
1564 procedure Check_Itype (Typ : Entity_Id);
1565 -- If the component subtype is an access to a constrained subtype of
1566 -- an already frozen type, make the subtype frozen as well. It might
1567 -- otherwise be frozen in the wrong scope, and a freeze node on
1568 -- subtype has no effect. Similarly, if the component subtype is a
1569 -- regular (not protected) access to subprogram, set the anonymous
1570 -- subprogram type to frozen as well, to prevent an out-of-scope
1571 -- freeze node at some eventual point of call. Protected operations
1572 -- are handled elsewhere.
1574 ---------------------
1575 -- Check_Allocator --
1576 ---------------------
1578 function Check_Allocator (N : Node_Id) return Node_Id is
1579 Inner : Node_Id;
1580 begin
1581 Inner := N;
1582 loop
1583 if Nkind (Inner) = N_Allocator then
1584 return Inner;
1585 elsif Nkind (Inner) = N_Qualified_Expression then
1586 Inner := Expression (Inner);
1587 else
1588 return Empty;
1589 end if;
1590 end loop;
1591 end Check_Allocator;
1593 -----------------
1594 -- Check_Itype --
1595 -----------------
1597 procedure Check_Itype (Typ : Entity_Id) is
1598 Desig : constant Entity_Id := Designated_Type (Typ);
1600 begin
1601 if not Is_Frozen (Desig)
1602 and then Is_Frozen (Base_Type (Desig))
1603 then
1604 Set_Is_Frozen (Desig);
1606 -- In addition, add an Itype_Reference to ensure that the
1607 -- access subtype is elaborated early enough. This cannot be
1608 -- done if the subtype may depend on discriminants.
1610 if Ekind (Comp) = E_Component
1611 and then Is_Itype (Etype (Comp))
1612 and then not Has_Discriminants (Rec)
1613 then
1614 IR := Make_Itype_Reference (Sloc (Comp));
1615 Set_Itype (IR, Desig);
1617 if No (Result) then
1618 Result := New_List (IR);
1619 else
1620 Append (IR, Result);
1621 end if;
1622 end if;
1624 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1625 and then Convention (Desig) /= Convention_Protected
1626 then
1627 Set_Is_Frozen (Desig);
1628 end if;
1629 end Check_Itype;
1631 -- Start of processing for Freeze_Record_Type
1633 begin
1634 -- If this is a subtype of a controlled type, declared without a
1635 -- constraint, the _controller may not appear in the component list
1636 -- if the parent was not frozen at the point of subtype declaration.
1637 -- Inherit the _controller component now.
1639 if Rec /= Base_Type (Rec)
1640 and then Has_Controlled_Component (Rec)
1641 then
1642 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1643 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1644 then
1645 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1647 -- If this is an internal type without a declaration, as for
1648 -- record component, the base type may not yet be frozen, and its
1649 -- controller has not been created. Add an explicit freeze node
1650 -- for the itype, so it will be frozen after the base type. This
1651 -- freeze node is used to communicate with the expander, in order
1652 -- to create the controller for the enclosing record, and it is
1653 -- deleted afterwards (see exp_ch3). It must not be created when
1654 -- expansion is off, because it might appear in the wrong context
1655 -- for the back end.
1657 elsif Is_Itype (Rec)
1658 and then Has_Delayed_Freeze (Base_Type (Rec))
1659 and then
1660 Nkind (Associated_Node_For_Itype (Rec)) =
1661 N_Component_Declaration
1662 and then Expander_Active
1663 then
1664 Ensure_Freeze_Node (Rec);
1665 end if;
1666 end if;
1668 -- Freeze components and embedded subtypes
1670 Comp := First_Entity (Rec);
1671 Prev := Empty;
1672 while Present (Comp) loop
1674 -- First handle the (real) component case
1676 if Ekind (Comp) = E_Component
1677 or else Ekind (Comp) = E_Discriminant
1678 then
1679 declare
1680 CC : constant Node_Id := Component_Clause (Comp);
1682 begin
1683 -- Freezing a record type freezes the type of each of its
1684 -- components. However, if the type of the component is
1685 -- part of this record, we do not want or need a separate
1686 -- Freeze_Node. Note that Is_Itype is wrong because that's
1687 -- also set in private type cases. We also can't check for
1688 -- the Scope being exactly Rec because of private types and
1689 -- record extensions.
1691 if Is_Itype (Etype (Comp))
1692 and then Is_Record_Type (Underlying_Type
1693 (Scope (Etype (Comp))))
1694 then
1695 Undelay_Type (Etype (Comp));
1696 end if;
1698 Freeze_And_Append (Etype (Comp), Loc, Result);
1700 -- Check for error of component clause given for variable
1701 -- sized type. We have to delay this test till this point,
1702 -- since the component type has to be frozen for us to know
1703 -- if it is variable length. We omit this test in a generic
1704 -- context, it will be applied at instantiation time.
1706 if Present (CC) then
1707 Placed_Component := True;
1709 if Inside_A_Generic then
1710 null;
1712 elsif not
1713 Size_Known_At_Compile_Time
1714 (Underlying_Type (Etype (Comp)))
1715 then
1716 Error_Msg_N
1717 ("component clause not allowed for variable " &
1718 "length component", CC);
1719 end if;
1721 else
1722 Unplaced_Component := True;
1723 end if;
1725 -- Case of component requires byte alignment
1727 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
1729 -- Set the enclosing record to also require byte align
1731 Set_Must_Be_On_Byte_Boundary (Rec);
1733 -- Check for component clause that is inconsistent with
1734 -- the required byte boundary alignment.
1736 if Present (CC)
1737 and then Normalized_First_Bit (Comp) mod
1738 System_Storage_Unit /= 0
1739 then
1740 Error_Msg_N
1741 ("component & must be byte aligned",
1742 Component_Name (Component_Clause (Comp)));
1743 end if;
1744 end if;
1746 -- If component clause is present, then deal with the non-
1747 -- default bit order case for Ada 95 mode. The required
1748 -- processing for Ada 2005 mode is handled separately after
1749 -- processing all components.
1751 -- We only do this processing for the base type, and in
1752 -- fact that's important, since otherwise if there are
1753 -- record subtypes, we could reverse the bits once for
1754 -- each subtype, which would be incorrect.
1756 if Present (CC)
1757 and then Reverse_Bit_Order (Rec)
1758 and then Ekind (E) = E_Record_Type
1759 and then Ada_Version <= Ada_95
1760 then
1761 declare
1762 CFB : constant Uint := Component_Bit_Offset (Comp);
1763 CSZ : constant Uint := Esize (Comp);
1764 CLC : constant Node_Id := Component_Clause (Comp);
1765 Pos : constant Node_Id := Position (CLC);
1766 FB : constant Node_Id := First_Bit (CLC);
1768 Storage_Unit_Offset : constant Uint :=
1769 CFB / System_Storage_Unit;
1771 Start_Bit : constant Uint :=
1772 CFB mod System_Storage_Unit;
1774 begin
1775 -- Cases where field goes over storage unit boundary
1777 if Start_Bit + CSZ > System_Storage_Unit then
1779 -- Allow multi-byte field but generate warning
1781 if Start_Bit mod System_Storage_Unit = 0
1782 and then CSZ mod System_Storage_Unit = 0
1783 then
1784 Error_Msg_N
1785 ("multi-byte field specified with non-standard"
1786 & " Bit_Order?", CLC);
1788 if Bytes_Big_Endian then
1789 Error_Msg_N
1790 ("bytes are not reversed "
1791 & "(component is big-endian)?", CLC);
1792 else
1793 Error_Msg_N
1794 ("bytes are not reversed "
1795 & "(component is little-endian)?", CLC);
1796 end if;
1798 -- Do not allow non-contiguous field
1800 else
1801 Error_Msg_N
1802 ("attempt to specify non-contiguous field "
1803 & "not permitted", CLC);
1804 Error_Msg_N
1805 ("\caused by non-standard Bit_Order "
1806 & "specified", CLC);
1807 Error_Msg_N
1808 ("\consider possibility of using "
1809 & "Ada 2005 mode here", CLC);
1810 end if;
1812 -- Case where field fits in one storage unit
1814 else
1815 -- Give warning if suspicious component clause
1817 if Intval (FB) >= System_Storage_Unit
1818 and then Warn_On_Reverse_Bit_Order
1819 then
1820 Error_Msg_N
1821 ("?Bit_Order clause does not affect " &
1822 "byte ordering", Pos);
1823 Error_Msg_Uint_1 :=
1824 Intval (Pos) + Intval (FB) /
1825 System_Storage_Unit;
1826 Error_Msg_N
1827 ("?position normalized to ^ before bit " &
1828 "order interpreted", Pos);
1829 end if;
1831 -- Here is where we fix up the Component_Bit_Offset
1832 -- value to account for the reverse bit order.
1833 -- Some examples of what needs to be done are:
1835 -- First_Bit .. Last_Bit Component_Bit_Offset
1836 -- old new old new
1838 -- 0 .. 0 7 .. 7 0 7
1839 -- 0 .. 1 6 .. 7 0 6
1840 -- 0 .. 2 5 .. 7 0 5
1841 -- 0 .. 7 0 .. 7 0 4
1843 -- 1 .. 1 6 .. 6 1 6
1844 -- 1 .. 4 3 .. 6 1 3
1845 -- 4 .. 7 0 .. 3 4 0
1847 -- The general rule is that the first bit is
1848 -- is obtained by subtracting the old ending bit
1849 -- from storage_unit - 1.
1851 Set_Component_Bit_Offset
1852 (Comp,
1853 (Storage_Unit_Offset * System_Storage_Unit) +
1854 (System_Storage_Unit - 1) -
1855 (Start_Bit + CSZ - 1));
1857 Set_Normalized_First_Bit
1858 (Comp,
1859 Component_Bit_Offset (Comp) mod
1860 System_Storage_Unit);
1861 end if;
1862 end;
1863 end if;
1864 end;
1865 end if;
1867 -- If the component is an Itype with Delayed_Freeze and is either
1868 -- a record or array subtype and its base type has not yet been
1869 -- frozen, we must remove this from the entity list of this
1870 -- record and put it on the entity list of the scope of its base
1871 -- type. Note that we know that this is not the type of a
1872 -- component since we cleared Has_Delayed_Freeze for it in the
1873 -- previous loop. Thus this must be the Designated_Type of an
1874 -- access type, which is the type of a component.
1876 if Is_Itype (Comp)
1877 and then Is_Type (Scope (Comp))
1878 and then Is_Composite_Type (Comp)
1879 and then Base_Type (Comp) /= Comp
1880 and then Has_Delayed_Freeze (Comp)
1881 and then not Is_Frozen (Base_Type (Comp))
1882 then
1883 declare
1884 Will_Be_Frozen : Boolean := False;
1885 S : Entity_Id;
1887 begin
1888 -- We have a pretty bad kludge here. Suppose Rec is subtype
1889 -- being defined in a subprogram that's created as part of
1890 -- the freezing of Rec'Base. In that case, we know that
1891 -- Comp'Base must have already been frozen by the time we
1892 -- get to elaborate this because Gigi doesn't elaborate any
1893 -- bodies until it has elaborated all of the declarative
1894 -- part. But Is_Frozen will not be set at this point because
1895 -- we are processing code in lexical order.
1897 -- We detect this case by going up the Scope chain of Rec
1898 -- and seeing if we have a subprogram scope before reaching
1899 -- the top of the scope chain or that of Comp'Base. If we
1900 -- do, then mark that Comp'Base will actually be frozen. If
1901 -- so, we merely undelay it.
1903 S := Scope (Rec);
1904 while Present (S) loop
1905 if Is_Subprogram (S) then
1906 Will_Be_Frozen := True;
1907 exit;
1908 elsif S = Scope (Base_Type (Comp)) then
1909 exit;
1910 end if;
1912 S := Scope (S);
1913 end loop;
1915 if Will_Be_Frozen then
1916 Undelay_Type (Comp);
1917 else
1918 if Present (Prev) then
1919 Set_Next_Entity (Prev, Next_Entity (Comp));
1920 else
1921 Set_First_Entity (Rec, Next_Entity (Comp));
1922 end if;
1924 -- Insert in entity list of scope of base type (which
1925 -- must be an enclosing scope, because still unfrozen).
1927 Append_Entity (Comp, Scope (Base_Type (Comp)));
1928 end if;
1929 end;
1931 -- If the component is an access type with an allocator as default
1932 -- value, the designated type will be frozen by the corresponding
1933 -- expression in init_proc. In order to place the freeze node for
1934 -- the designated type before that for the current record type,
1935 -- freeze it now.
1937 -- Same process if the component is an array of access types,
1938 -- initialized with an aggregate. If the designated type is
1939 -- private, it cannot contain allocators, and it is premature
1940 -- to freeze the type, so we check for this as well.
1942 elsif Is_Access_Type (Etype (Comp))
1943 and then Present (Parent (Comp))
1944 and then Present (Expression (Parent (Comp)))
1945 then
1946 declare
1947 Alloc : constant Node_Id :=
1948 Check_Allocator (Expression (Parent (Comp)));
1950 begin
1951 if Present (Alloc) then
1953 -- If component is pointer to a classwide type, freeze
1954 -- the specific type in the expression being allocated.
1955 -- The expression may be a subtype indication, in which
1956 -- case freeze the subtype mark.
1958 if Is_Class_Wide_Type
1959 (Designated_Type (Etype (Comp)))
1960 then
1961 if Is_Entity_Name (Expression (Alloc)) then
1962 Freeze_And_Append
1963 (Entity (Expression (Alloc)), Loc, Result);
1964 elsif
1965 Nkind (Expression (Alloc)) = N_Subtype_Indication
1966 then
1967 Freeze_And_Append
1968 (Entity (Subtype_Mark (Expression (Alloc))),
1969 Loc, Result);
1970 end if;
1972 elsif Is_Itype (Designated_Type (Etype (Comp))) then
1973 Check_Itype (Etype (Comp));
1975 else
1976 Freeze_And_Append
1977 (Designated_Type (Etype (Comp)), Loc, Result);
1978 end if;
1979 end if;
1980 end;
1982 elsif Is_Access_Type (Etype (Comp))
1983 and then Is_Itype (Designated_Type (Etype (Comp)))
1984 then
1985 Check_Itype (Etype (Comp));
1987 elsif Is_Array_Type (Etype (Comp))
1988 and then Is_Access_Type (Component_Type (Etype (Comp)))
1989 and then Present (Parent (Comp))
1990 and then Nkind (Parent (Comp)) = N_Component_Declaration
1991 and then Present (Expression (Parent (Comp)))
1992 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1993 and then Is_Fully_Defined
1994 (Designated_Type (Component_Type (Etype (Comp))))
1995 then
1996 Freeze_And_Append
1997 (Designated_Type
1998 (Component_Type (Etype (Comp))), Loc, Result);
1999 end if;
2001 Prev := Comp;
2002 Next_Entity (Comp);
2003 end loop;
2005 -- Deal with pragma Bit_Order
2007 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2008 if not Placed_Component then
2009 ADC :=
2010 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
2011 Error_Msg_N
2012 ("?Bit_Order specification has no effect", ADC);
2013 Error_Msg_N
2014 ("\?since no component clauses were specified", ADC);
2016 -- Here is where we do Ada 2005 processing for bit order (the Ada
2017 -- 95 case was already taken care of above).
2019 elsif Ada_Version >= Ada_05 then
2020 Adjust_Record_For_Reverse_Bit_Order (Rec);
2021 end if;
2022 end if;
2024 -- Set OK_To_Reorder_Components depending on debug flags
2026 if Rec = Base_Type (Rec)
2027 and then Convention (Rec) = Convention_Ada
2028 then
2029 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2030 or else
2031 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2032 then
2033 Set_OK_To_Reorder_Components (Rec);
2034 end if;
2035 end if;
2037 -- Check for useless pragma Pack when all components placed. We only
2038 -- do this check for record types, not subtypes, since a subtype may
2039 -- have all its components placed, and it still makes perfectly good
2040 -- sense to pack other subtypes or the parent type. We do not give
2041 -- this warning if Optimize_Alignment is set to Space, since the
2042 -- pragma Pack does have an effect in this case (it always resets
2043 -- the alignment to one).
2045 if Ekind (Rec) = E_Record_Type
2046 and then Is_Packed (Rec)
2047 and then not Unplaced_Component
2048 and then Optimize_Alignment /= 'S'
2049 then
2050 -- Reset packed status. Probably not necessary, but we do it so
2051 -- that there is no chance of the back end doing something strange
2052 -- with this redundant indication of packing.
2054 Set_Is_Packed (Rec, False);
2056 -- Give warning if redundant constructs warnings on
2058 if Warn_On_Redundant_Constructs then
2059 Error_Msg_N
2060 ("?pragma Pack has no effect, no unplaced components",
2061 Get_Rep_Pragma (Rec, Name_Pack));
2062 end if;
2063 end if;
2065 -- If this is the record corresponding to a remote type, freeze the
2066 -- remote type here since that is what we are semantically freezing.
2067 -- This prevents the freeze node for that type in an inner scope.
2069 -- Also, Check for controlled components and unchecked unions.
2070 -- Finally, enforce the restriction that access attributes with a
2071 -- current instance prefix can only apply to limited types.
2073 if Ekind (Rec) = E_Record_Type then
2074 if Present (Corresponding_Remote_Type (Rec)) then
2075 Freeze_And_Append
2076 (Corresponding_Remote_Type (Rec), Loc, Result);
2077 end if;
2079 Comp := First_Component (Rec);
2080 while Present (Comp) loop
2081 if Has_Controlled_Component (Etype (Comp))
2082 or else (Chars (Comp) /= Name_uParent
2083 and then Is_Controlled (Etype (Comp)))
2084 or else (Is_Protected_Type (Etype (Comp))
2085 and then Present
2086 (Corresponding_Record_Type (Etype (Comp)))
2087 and then Has_Controlled_Component
2088 (Corresponding_Record_Type (Etype (Comp))))
2089 then
2090 Set_Has_Controlled_Component (Rec);
2091 exit;
2092 end if;
2094 if Has_Unchecked_Union (Etype (Comp)) then
2095 Set_Has_Unchecked_Union (Rec);
2096 end if;
2098 if Has_Per_Object_Constraint (Comp) then
2100 -- Scan component declaration for likely misuses of current
2101 -- instance, either in a constraint or a default expression.
2103 Check_Current_Instance (Parent (Comp));
2104 end if;
2106 Next_Component (Comp);
2107 end loop;
2108 end if;
2110 Set_Component_Alignment_If_Not_Set (Rec);
2112 -- For first subtypes, check if there are any fixed-point fields with
2113 -- component clauses, where we must check the size. This is not done
2114 -- till the freeze point, since for fixed-point types, we do not know
2115 -- the size until the type is frozen. Similar processing applies to
2116 -- bit packed arrays.
2118 if Is_First_Subtype (Rec) then
2119 Comp := First_Component (Rec);
2121 while Present (Comp) loop
2122 if Present (Component_Clause (Comp))
2123 and then (Is_Fixed_Point_Type (Etype (Comp))
2124 or else
2125 Is_Bit_Packed_Array (Etype (Comp)))
2126 then
2127 Check_Size
2128 (Component_Name (Component_Clause (Comp)),
2129 Etype (Comp),
2130 Esize (Comp),
2131 Junk);
2132 end if;
2134 Next_Component (Comp);
2135 end loop;
2136 end if;
2138 -- Generate warning for applying C or C++ convention to a record
2139 -- with discriminants. This is suppressed for the unchecked union
2140 -- case, since the whole point in this case is interface C. We also
2141 -- do not generate this within instantiations, since we will have
2142 -- generated a message on the template.
2144 if Has_Discriminants (E)
2145 and then not Is_Unchecked_Union (E)
2146 and then (Convention (E) = Convention_C
2147 or else
2148 Convention (E) = Convention_CPP)
2149 and then Comes_From_Source (E)
2150 and then not In_Instance
2151 and then not Has_Warnings_Off (E)
2152 and then not Has_Warnings_Off (Base_Type (E))
2153 then
2154 declare
2155 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2156 A2 : Node_Id;
2158 begin
2159 if Present (Cprag) then
2160 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2162 if Convention (E) = Convention_C then
2163 Error_Msg_N
2164 ("?variant record has no direct equivalent in C", A2);
2165 else
2166 Error_Msg_N
2167 ("?variant record has no direct equivalent in C++", A2);
2168 end if;
2170 Error_Msg_NE
2171 ("\?use of convention for type& is dubious", A2, E);
2172 end if;
2173 end;
2174 end if;
2175 end Freeze_Record_Type;
2177 -- Start of processing for Freeze_Entity
2179 begin
2180 -- We are going to test for various reasons why this entity need not be
2181 -- frozen here, but in the case of an Itype that's defined within a
2182 -- record, that test actually applies to the record.
2184 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2185 Test_E := Scope (E);
2186 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2187 and then Is_Record_Type (Underlying_Type (Scope (E)))
2188 then
2189 Test_E := Underlying_Type (Scope (E));
2190 end if;
2192 -- Do not freeze if already frozen since we only need one freeze node
2194 if Is_Frozen (E) then
2195 return No_List;
2197 -- It is improper to freeze an external entity within a generic because
2198 -- its freeze node will appear in a non-valid context. The entity will
2199 -- be frozen in the proper scope after the current generic is analyzed.
2201 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
2202 return No_List;
2204 -- Do not freeze a global entity within an inner scope created during
2205 -- expansion. A call to subprogram E within some internal procedure
2206 -- (a stream attribute for example) might require freezing E, but the
2207 -- freeze node must appear in the same declarative part as E itself.
2208 -- The two-pass elaboration mechanism in gigi guarantees that E will
2209 -- be frozen before the inner call is elaborated. We exclude constants
2210 -- from this test, because deferred constants may be frozen early, and
2211 -- must be diagnosed (e.g. in the case of a deferred constant being used
2212 -- in a default expression). If the enclosing subprogram comes from
2213 -- source, or is a generic instance, then the freeze point is the one
2214 -- mandated by the language, and we freeze the entity. A subprogram that
2215 -- is a child unit body that acts as a spec does not have a spec that
2216 -- comes from source, but can only come from source.
2218 elsif In_Open_Scopes (Scope (Test_E))
2219 and then Scope (Test_E) /= Current_Scope
2220 and then Ekind (Test_E) /= E_Constant
2221 then
2222 declare
2223 S : Entity_Id := Current_Scope;
2225 begin
2226 while Present (S) loop
2227 if Is_Overloadable (S) then
2228 if Comes_From_Source (S)
2229 or else Is_Generic_Instance (S)
2230 or else Is_Child_Unit (S)
2231 then
2232 exit;
2233 else
2234 return No_List;
2235 end if;
2236 end if;
2238 S := Scope (S);
2239 end loop;
2240 end;
2242 -- Similarly, an inlined instance body may make reference to global
2243 -- entities, but these references cannot be the proper freezing point
2244 -- for them, and in the absence of inlining freezing will take place in
2245 -- their own scope. Normally instance bodies are analyzed after the
2246 -- enclosing compilation, and everything has been frozen at the proper
2247 -- place, but with front-end inlining an instance body is compiled
2248 -- before the end of the enclosing scope, and as a result out-of-order
2249 -- freezing must be prevented.
2251 elsif Front_End_Inlining
2252 and then In_Instance_Body
2253 and then Present (Scope (Test_E))
2254 then
2255 declare
2256 S : Entity_Id := Scope (Test_E);
2258 begin
2259 while Present (S) loop
2260 if Is_Generic_Instance (S) then
2261 exit;
2262 else
2263 S := Scope (S);
2264 end if;
2265 end loop;
2267 if No (S) then
2268 return No_List;
2269 end if;
2270 end;
2271 end if;
2273 -- Here to freeze the entity
2275 Result := No_List;
2276 Set_Is_Frozen (E);
2278 -- Case of entity being frozen is other than a type
2280 if not Is_Type (E) then
2282 -- If entity is exported or imported and does not have an external
2283 -- name, now is the time to provide the appropriate default name.
2284 -- Skip this if the entity is stubbed, since we don't need a name
2285 -- for any stubbed routine.
2287 if (Is_Imported (E) or else Is_Exported (E))
2288 and then No (Interface_Name (E))
2289 and then Convention (E) /= Convention_Stubbed
2290 then
2291 Set_Encoded_Interface_Name
2292 (E, Get_Default_External_Name (E));
2294 -- Special processing for atomic objects appearing in object decls
2296 elsif Is_Atomic (E)
2297 and then Nkind (Parent (E)) = N_Object_Declaration
2298 and then Present (Expression (Parent (E)))
2299 then
2300 declare
2301 Expr : constant Node_Id := Expression (Parent (E));
2303 begin
2304 -- If expression is an aggregate, assign to a temporary to
2305 -- ensure that the actual assignment is done atomically rather
2306 -- than component-wise (the assignment to the temp may be done
2307 -- component-wise, but that is harmless).
2309 if Nkind (Expr) = N_Aggregate then
2310 Expand_Atomic_Aggregate (Expr, Etype (E));
2312 -- If the expression is a reference to a record or array object
2313 -- entity, then reset Is_True_Constant to False so that the
2314 -- compiler will not optimize away the intermediate object,
2315 -- which we need in this case for the same reason (to ensure
2316 -- that the actual assignment is atomic, rather than
2317 -- component-wise).
2319 elsif Is_Entity_Name (Expr)
2320 and then (Is_Record_Type (Etype (Expr))
2321 or else
2322 Is_Array_Type (Etype (Expr)))
2323 then
2324 Set_Is_True_Constant (Entity (Expr), False);
2325 end if;
2326 end;
2327 end if;
2329 -- For a subprogram, freeze all parameter types and also the return
2330 -- type (RM 13.14(14)). However skip this for internal subprograms.
2331 -- This is also the point where any extra formal parameters are
2332 -- created since we now know whether the subprogram will use
2333 -- a foreign convention.
2335 if Is_Subprogram (E) then
2336 if not Is_Internal (E) then
2337 declare
2338 F_Type : Entity_Id;
2339 R_Type : Entity_Id;
2340 Warn_Node : Node_Id;
2342 begin
2343 -- Loop through formals
2345 Formal := First_Formal (E);
2346 while Present (Formal) loop
2347 F_Type := Etype (Formal);
2348 Freeze_And_Append (F_Type, Loc, Result);
2350 if Is_Private_Type (F_Type)
2351 and then Is_Private_Type (Base_Type (F_Type))
2352 and then No (Full_View (Base_Type (F_Type)))
2353 and then not Is_Generic_Type (F_Type)
2354 and then not Is_Derived_Type (F_Type)
2355 then
2356 -- If the type of a formal is incomplete, subprogram
2357 -- is being frozen prematurely. Within an instance
2358 -- (but not within a wrapper package) this is an
2359 -- an artifact of our need to regard the end of an
2360 -- instantiation as a freeze point. Otherwise it is
2361 -- a definite error.
2363 -- and then not Is_Wrapper_Package (Current_Scope) ???
2365 if In_Instance then
2366 Set_Is_Frozen (E, False);
2367 return No_List;
2369 elsif not After_Last_Declaration
2370 and then not Freezing_Library_Level_Tagged_Type
2371 then
2372 Error_Msg_Node_1 := F_Type;
2373 Error_Msg
2374 ("type& must be fully defined before this point",
2375 Loc);
2376 end if;
2377 end if;
2379 -- Check suspicious parameter for C function. These tests
2380 -- apply only to exported/imported subprograms.
2382 if Warn_On_Export_Import
2383 and then Comes_From_Source (E)
2384 and then (Convention (E) = Convention_C
2385 or else
2386 Convention (E) = Convention_CPP)
2387 and then (Is_Imported (E) or else Is_Exported (E))
2388 and then Convention (E) /= Convention (Formal)
2389 and then not Has_Warnings_Off (E)
2390 and then not Has_Warnings_Off (F_Type)
2391 and then not Has_Warnings_Off (Formal)
2392 then
2393 Error_Msg_Qual_Level := 1;
2395 -- Check suspicious use of fat C pointer
2397 if Is_Access_Type (F_Type)
2398 and then Esize (F_Type) > Ttypes.System_Address_Size
2399 then
2400 Error_Msg_N
2401 ("?type of & does not correspond "
2402 & "to C pointer!", Formal);
2404 -- Check suspicious return of boolean
2406 elsif Root_Type (F_Type) = Standard_Boolean
2407 and then Convention (F_Type) = Convention_Ada
2408 and then not Has_Warnings_Off (F_Type)
2409 and then not Has_Size_Clause (F_Type)
2410 then
2411 Error_Msg_N
2412 ("?& is an 8-bit Ada Boolean, "
2413 & "use char in C!", Formal);
2415 -- Check suspicious tagged type
2417 elsif (Is_Tagged_Type (F_Type)
2418 or else (Is_Access_Type (F_Type)
2419 and then
2420 Is_Tagged_Type
2421 (Designated_Type (F_Type))))
2422 and then Convention (E) = Convention_C
2423 then
2424 Error_Msg_N
2425 ("?& is a tagged type which does not "
2426 & "correspond to any C type!", Formal);
2428 -- Check wrong convention subprogram pointer
2430 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2431 and then not Has_Foreign_Convention (F_Type)
2432 then
2433 Error_Msg_N
2434 ("?subprogram pointer & should "
2435 & "have foreign convention!", Formal);
2436 Error_Msg_Sloc := Sloc (F_Type);
2437 Error_Msg_NE
2438 ("\?add Convention pragma to declaration of &#",
2439 Formal, F_Type);
2440 end if;
2442 Error_Msg_Qual_Level := 0;
2443 end if;
2445 -- Check for unconstrained array in exported foreign
2446 -- convention case.
2448 if Has_Foreign_Convention (E)
2449 and then not Is_Imported (E)
2450 and then Is_Array_Type (F_Type)
2451 and then not Is_Constrained (F_Type)
2452 and then Warn_On_Export_Import
2453 then
2454 Error_Msg_Qual_Level := 1;
2456 -- If this is an inherited operation, place the
2457 -- warning on the derived type declaration, rather
2458 -- than on the original subprogram.
2460 if Nkind (Original_Node (Parent (E))) =
2461 N_Full_Type_Declaration
2462 then
2463 Warn_Node := Parent (E);
2465 if Formal = First_Formal (E) then
2466 Error_Msg_NE
2467 ("?in inherited operation&", Warn_Node, E);
2468 end if;
2469 else
2470 Warn_Node := Formal;
2471 end if;
2473 Error_Msg_NE
2474 ("?type of argument& is unconstrained array",
2475 Warn_Node, Formal);
2476 Error_Msg_NE
2477 ("?foreign caller must pass bounds explicitly",
2478 Warn_Node, Formal);
2479 Error_Msg_Qual_Level := 0;
2480 end if;
2482 -- Ada 2005 (AI-326): Check wrong use of tag incomplete
2483 -- types with unknown discriminants. For example:
2485 -- type T (<>) is tagged;
2486 -- procedure P (X : access T); -- ERROR
2487 -- procedure P (X : T); -- ERROR
2489 if not From_With_Type (F_Type) then
2490 if Is_Access_Type (F_Type) then
2491 F_Type := Designated_Type (F_Type);
2492 end if;
2494 if Ekind (F_Type) = E_Incomplete_Type
2495 and then Is_Tagged_Type (F_Type)
2496 and then not Is_Class_Wide_Type (F_Type)
2497 and then No (Full_View (F_Type))
2498 and then Unknown_Discriminants_Present
2499 (Parent (F_Type))
2500 and then No (Stored_Constraint (F_Type))
2501 then
2502 Error_Msg_N
2503 ("(Ada 2005): invalid use of unconstrained tagged"
2504 & " incomplete type", E);
2506 -- If the formal is an anonymous_access_to_subprogram
2507 -- freeze the subprogram type as well, to prevent
2508 -- scope anomalies in gigi, because there is no other
2509 -- clear point at which it could be frozen.
2511 elsif Is_Itype (Etype (Formal))
2512 and then Ekind (F_Type) = E_Subprogram_Type
2513 then
2514 Freeze_And_Append (F_Type, Loc, Result);
2515 end if;
2516 end if;
2518 Next_Formal (Formal);
2519 end loop;
2521 -- Case of function
2523 if Ekind (E) = E_Function then
2525 -- Freeze return type
2527 R_Type := Etype (E);
2528 Freeze_And_Append (R_Type, Loc, Result);
2530 -- Check suspicious return type for C function
2532 if Warn_On_Export_Import
2533 and then (Convention (E) = Convention_C
2534 or else
2535 Convention (E) = Convention_CPP)
2536 and then (Is_Imported (E) or else Is_Exported (E))
2537 then
2538 -- Check suspicious return of fat C pointer
2540 if Is_Access_Type (R_Type)
2541 and then Esize (R_Type) > Ttypes.System_Address_Size
2542 and then not Has_Warnings_Off (E)
2543 and then not Has_Warnings_Off (R_Type)
2544 then
2545 Error_Msg_N
2546 ("?return type of& does not "
2547 & "correspond to C pointer!", E);
2549 -- Check suspicious return of boolean
2551 elsif Root_Type (R_Type) = Standard_Boolean
2552 and then Convention (R_Type) = Convention_Ada
2553 and then not Has_Warnings_Off (E)
2554 and then not Has_Warnings_Off (R_Type)
2555 and then not Has_Size_Clause (R_Type)
2556 then
2557 Error_Msg_N
2558 ("?return type of & is an 8-bit "
2559 & "Ada Boolean, use char in C!", E);
2561 -- Check suspicious return tagged type
2563 elsif (Is_Tagged_Type (R_Type)
2564 or else (Is_Access_Type (R_Type)
2565 and then
2566 Is_Tagged_Type
2567 (Designated_Type (R_Type))))
2568 and then Convention (E) = Convention_C
2569 and then not Has_Warnings_Off (E)
2570 and then not Has_Warnings_Off (R_Type)
2571 then
2572 Error_Msg_N
2573 ("?return type of & does not "
2574 & "correspond to C type!", E);
2576 -- Check return of wrong convention subprogram pointer
2578 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2579 and then not Has_Foreign_Convention (R_Type)
2580 and then not Has_Warnings_Off (E)
2581 and then not Has_Warnings_Off (R_Type)
2582 then
2583 Error_Msg_N
2584 ("?& should return a foreign "
2585 & "convention subprogram pointer", E);
2586 Error_Msg_Sloc := Sloc (R_Type);
2587 Error_Msg_NE
2588 ("\?add Convention pragma to declaration of& #",
2589 E, R_Type);
2590 end if;
2591 end if;
2593 if Is_Array_Type (Etype (E))
2594 and then not Is_Constrained (Etype (E))
2595 and then not Is_Imported (E)
2596 and then Has_Foreign_Convention (E)
2597 and then Warn_On_Export_Import
2598 and then not Has_Warnings_Off (E)
2599 and then not Has_Warnings_Off (Etype (E))
2600 then
2601 Error_Msg_N
2602 ("?foreign convention function& should not " &
2603 "return unconstrained array!", E);
2605 -- Ada 2005 (AI-326): Check wrong use of tagged
2606 -- incomplete type
2608 -- type T is tagged;
2609 -- function F (X : Boolean) return T; -- ERROR
2611 -- The type must be declared in the current scope for the
2612 -- use to be legal, and the full view must be available
2613 -- when the construct that mentions it is frozen.
2615 elsif Ekind (Etype (E)) = E_Incomplete_Type
2616 and then Is_Tagged_Type (Etype (E))
2617 and then No (Full_View (Etype (E)))
2618 and then not Is_Value_Type (Etype (E))
2619 then
2620 Error_Msg_N
2621 ("(Ada 2005): invalid use of tagged incomplete type",
2623 end if;
2624 end if;
2625 end;
2626 end if;
2628 -- Must freeze its parent first if it is a derived subprogram
2630 if Present (Alias (E)) then
2631 Freeze_And_Append (Alias (E), Loc, Result);
2632 end if;
2634 -- We don't freeze internal subprograms, because we don't normally
2635 -- want addition of extra formals or mechanism setting to happen
2636 -- for those. However we do pass through predefined dispatching
2637 -- cases, since extra formals may be needed in some cases, such as
2638 -- for the stream 'Input function (build-in-place formals).
2640 if not Is_Internal (E)
2641 or else Is_Predefined_Dispatching_Operation (E)
2642 then
2643 Freeze_Subprogram (E);
2644 end if;
2646 -- Here for other than a subprogram or type
2648 else
2649 -- For a generic package, freeze types within, so that proper
2650 -- cross-reference information is generated for tagged types.
2651 -- This is the only freeze processing needed for generic packages.
2653 if Ekind (E) = E_Generic_Package then
2654 declare
2655 T : Entity_Id;
2657 begin
2658 T := First_Entity (E);
2659 while Present (T) loop
2660 if Is_Type (T) then
2661 Generate_Prim_Op_References (T);
2662 end if;
2664 Next_Entity (T);
2665 end loop;
2666 end;
2668 -- If entity has a type, and it is not a generic unit, then
2669 -- freeze it first (RM 13.14(10)).
2671 elsif Present (Etype (E))
2672 and then Ekind (E) /= E_Generic_Function
2673 then
2674 Freeze_And_Append (Etype (E), Loc, Result);
2675 end if;
2677 -- Special processing for objects created by object declaration
2679 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2681 -- For object created by object declaration, perform required
2682 -- categorization (preelaborate and pure) checks. Defer these
2683 -- checks to freeze time since pragma Import inhibits default
2684 -- initialization and thus pragma Import affects these checks.
2686 Validate_Object_Declaration (Declaration_Node (E));
2688 -- If there is an address clause, check that it is valid
2690 Check_Address_Clause (E);
2692 -- If the object needs any kind of default initialization, an
2693 -- error must be issued if No_Default_Initialization applies.
2694 -- The check doesn't apply to imported objects, which are not
2695 -- ever default initialized, and is why the check is deferred
2696 -- until freezing, at which point we know if Import applies.
2697 -- Deferred constants are also exempted from this test because
2698 -- their completion is explicit, or through an import pragma.
2700 if Ekind (E) = E_Constant
2701 and then Present (Full_View (E))
2702 then
2703 null;
2705 elsif Comes_From_Source (E)
2706 and then not Is_Imported (E)
2707 and then not Has_Init_Expression (Declaration_Node (E))
2708 and then
2709 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2710 and then not No_Initialization (Declaration_Node (E))
2711 and then not Is_Value_Type (Etype (E))
2712 and then not Suppress_Init_Proc (Etype (E)))
2713 or else
2714 (Needs_Simple_Initialization (Etype (E))
2715 and then not Is_Internal (E)))
2716 then
2717 Check_Restriction
2718 (No_Default_Initialization, Declaration_Node (E));
2719 end if;
2721 -- For imported objects, set Is_Public unless there is also an
2722 -- address clause, which means that there is no external symbol
2723 -- needed for the Import (Is_Public may still be set for other
2724 -- unrelated reasons). Note that we delayed this processing
2725 -- till freeze time so that we can be sure not to set the flag
2726 -- if there is an address clause. If there is such a clause,
2727 -- then the only purpose of the Import pragma is to suppress
2728 -- implicit initialization.
2730 if Is_Imported (E)
2731 and then No (Address_Clause (E))
2732 then
2733 Set_Is_Public (E);
2734 end if;
2736 -- For convention C objects of an enumeration type, warn if
2737 -- the size is not integer size and no explicit size given.
2738 -- Skip warning for Boolean, and Character, assume programmer
2739 -- expects 8-bit sizes for these cases.
2741 if (Convention (E) = Convention_C
2742 or else
2743 Convention (E) = Convention_CPP)
2744 and then Is_Enumeration_Type (Etype (E))
2745 and then not Is_Character_Type (Etype (E))
2746 and then not Is_Boolean_Type (Etype (E))
2747 and then Esize (Etype (E)) < Standard_Integer_Size
2748 and then not Has_Size_Clause (E)
2749 then
2750 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2751 Error_Msg_N
2752 ("?convention C enumeration object has size less than ^",
2754 Error_Msg_N ("\?use explicit size clause to set size", E);
2755 end if;
2756 end if;
2758 -- Check that a constant which has a pragma Volatile[_Components]
2759 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
2761 -- Note: Atomic[_Components] also sets Volatile[_Components]
2763 if Ekind (E) = E_Constant
2764 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2765 and then not Is_Imported (E)
2766 then
2767 -- Make sure we actually have a pragma, and have not merely
2768 -- inherited the indication from elsewhere (e.g. an address
2769 -- clause, which is not good enough in RM terms!)
2771 if Has_Rep_Pragma (E, Name_Atomic)
2772 or else
2773 Has_Rep_Pragma (E, Name_Atomic_Components)
2774 then
2775 Error_Msg_N
2776 ("stand alone atomic constant must be " &
2777 "imported (RM C.6(13))", E);
2779 elsif Has_Rep_Pragma (E, Name_Volatile)
2780 or else
2781 Has_Rep_Pragma (E, Name_Volatile_Components)
2782 then
2783 Error_Msg_N
2784 ("stand alone volatile constant must be " &
2785 "imported (RM C.6(13))", E);
2786 end if;
2787 end if;
2789 -- Static objects require special handling
2791 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2792 and then Is_Statically_Allocated (E)
2793 then
2794 Freeze_Static_Object (E);
2795 end if;
2797 -- Remaining step is to layout objects
2799 if Ekind (E) = E_Variable
2800 or else
2801 Ekind (E) = E_Constant
2802 or else
2803 Ekind (E) = E_Loop_Parameter
2804 or else
2805 Is_Formal (E)
2806 then
2807 Layout_Object (E);
2808 end if;
2809 end if;
2811 -- Case of a type or subtype being frozen
2813 else
2814 -- We used to check here that a full type must have preelaborable
2815 -- initialization if it completes a private type specified with
2816 -- pragma Preelaborable_Intialization, but that missed cases where
2817 -- the types occur within a generic package, since the freezing
2818 -- that occurs within a containing scope generally skips traversal
2819 -- of a generic unit's declarations (those will be frozen within
2820 -- instances). This check was moved to Analyze_Package_Specification.
2822 -- The type may be defined in a generic unit. This can occur when
2823 -- freezing a generic function that returns the type (which is
2824 -- defined in a parent unit). It is clearly meaningless to freeze
2825 -- this type. However, if it is a subtype, its size may be determi-
2826 -- nable and used in subsequent checks, so might as well try to
2827 -- compute it.
2829 if Present (Scope (E))
2830 and then Is_Generic_Unit (Scope (E))
2831 then
2832 Check_Compile_Time_Size (E);
2833 return No_List;
2834 end if;
2836 -- Deal with special cases of freezing for subtype
2838 if E /= Base_Type (E) then
2840 -- Before we do anything else, a specialized test for the case of
2841 -- a size given for an array where the array needs to be packed,
2842 -- but was not so the size cannot be honored. This would of course
2843 -- be caught by the backend, and indeed we don't catch all cases.
2844 -- The point is that we can give a better error message in those
2845 -- cases that we do catch with the circuitry here. Also if pragma
2846 -- Implicit_Packing is set, this is where the packing occurs.
2848 -- The reason we do this so early is that the processing in the
2849 -- automatic packing case affects the layout of the base type, so
2850 -- it must be done before we freeze the base type.
2852 if Is_Array_Type (E) then
2853 declare
2854 Lo, Hi : Node_Id;
2855 Ctyp : constant Entity_Id := Component_Type (E);
2857 begin
2858 -- Check enabling conditions. These are straightforward
2859 -- except for the test for a limited composite type. This
2860 -- eliminates the rare case of a array of limited components
2861 -- where there are issues of whether or not we can go ahead
2862 -- and pack the array (since we can't freely pack and unpack
2863 -- arrays if they are limited).
2865 -- Note that we check the root type explicitly because the
2866 -- whole point is we are doing this test before we have had
2867 -- a chance to freeze the base type (and it is that freeze
2868 -- action that causes stuff to be inherited).
2870 if Present (Size_Clause (E))
2871 and then Known_Static_Esize (E)
2872 and then not Is_Packed (E)
2873 and then not Has_Pragma_Pack (E)
2874 and then Number_Dimensions (E) = 1
2875 and then not Has_Component_Size_Clause (E)
2876 and then Known_Static_Esize (Ctyp)
2877 and then not Is_Limited_Composite (E)
2878 and then not Is_Packed (Root_Type (E))
2879 and then not Has_Component_Size_Clause (Root_Type (E))
2880 then
2881 Get_Index_Bounds (First_Index (E), Lo, Hi);
2883 if Compile_Time_Known_Value (Lo)
2884 and then Compile_Time_Known_Value (Hi)
2885 and then Known_Static_RM_Size (Ctyp)
2886 and then RM_Size (Ctyp) < 64
2887 then
2888 declare
2889 Lov : constant Uint := Expr_Value (Lo);
2890 Hiv : constant Uint := Expr_Value (Hi);
2891 Len : constant Uint := UI_Max
2892 (Uint_0,
2893 Hiv - Lov + 1);
2894 Rsiz : constant Uint := RM_Size (Ctyp);
2895 SZ : constant Node_Id := Size_Clause (E);
2896 Btyp : constant Entity_Id := Base_Type (E);
2898 -- What we are looking for here is the situation where
2899 -- the RM_Size given would be exactly right if there
2900 -- was a pragma Pack (resulting in the component size
2901 -- being the same as the RM_Size). Furthermore, the
2902 -- component type size must be an odd size (not a
2903 -- multiple of storage unit)
2905 begin
2906 if RM_Size (E) = Len * Rsiz
2907 and then Rsiz mod System_Storage_Unit /= 0
2908 then
2909 -- For implicit packing mode, just set the
2910 -- component size silently
2912 if Implicit_Packing then
2913 Set_Component_Size (Btyp, Rsiz);
2914 Set_Is_Bit_Packed_Array (Btyp);
2915 Set_Is_Packed (Btyp);
2916 Set_Has_Non_Standard_Rep (Btyp);
2918 -- Otherwise give an error message
2920 else
2921 Error_Msg_NE
2922 ("size given for& too small", SZ, E);
2923 Error_Msg_N
2924 ("\use explicit pragma Pack "
2925 & "or use pragma Implicit_Packing", SZ);
2926 end if;
2927 end if;
2928 end;
2929 end if;
2930 end if;
2931 end;
2932 end if;
2934 -- If ancestor subtype present, freeze that first. Note that this
2935 -- will also get the base type frozen.
2937 Atype := Ancestor_Subtype (E);
2939 if Present (Atype) then
2940 Freeze_And_Append (Atype, Loc, Result);
2942 -- Otherwise freeze the base type of the entity before freezing
2943 -- the entity itself (RM 13.14(15)).
2945 elsif E /= Base_Type (E) then
2946 Freeze_And_Append (Base_Type (E), Loc, Result);
2947 end if;
2949 -- For a derived type, freeze its parent type first (RM 13.14(15))
2951 elsif Is_Derived_Type (E) then
2952 Freeze_And_Append (Etype (E), Loc, Result);
2953 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2954 end if;
2956 -- For array type, freeze index types and component type first
2957 -- before freezing the array (RM 13.14(15)).
2959 if Is_Array_Type (E) then
2960 declare
2961 Ctyp : constant Entity_Id := Component_Type (E);
2963 Non_Standard_Enum : Boolean := False;
2964 -- Set true if any of the index types is an enumeration type
2965 -- with a non-standard representation.
2967 begin
2968 Freeze_And_Append (Ctyp, Loc, Result);
2970 Indx := First_Index (E);
2971 while Present (Indx) loop
2972 Freeze_And_Append (Etype (Indx), Loc, Result);
2974 if Is_Enumeration_Type (Etype (Indx))
2975 and then Has_Non_Standard_Rep (Etype (Indx))
2976 then
2977 Non_Standard_Enum := True;
2978 end if;
2980 Next_Index (Indx);
2981 end loop;
2983 -- Processing that is done only for base types
2985 if Ekind (E) = E_Array_Type then
2987 -- Propagate flags for component type
2989 if Is_Controlled (Component_Type (E))
2990 or else Has_Controlled_Component (Ctyp)
2991 then
2992 Set_Has_Controlled_Component (E);
2993 end if;
2995 if Has_Unchecked_Union (Component_Type (E)) then
2996 Set_Has_Unchecked_Union (E);
2997 end if;
2999 -- If packing was requested or if the component size was set
3000 -- explicitly, then see if bit packing is required. This
3001 -- processing is only done for base types, since all the
3002 -- representation aspects involved are type-related. This
3003 -- is not just an optimization, if we start processing the
3004 -- subtypes, they interfere with the settings on the base
3005 -- type (this is because Is_Packed has a slightly different
3006 -- meaning before and after freezing).
3008 declare
3009 Csiz : Uint;
3010 Esiz : Uint;
3012 begin
3013 if (Is_Packed (E) or else Has_Pragma_Pack (E))
3014 and then not Has_Atomic_Components (E)
3015 and then Known_Static_RM_Size (Ctyp)
3016 then
3017 Csiz := UI_Max (RM_Size (Ctyp), 1);
3019 elsif Known_Component_Size (E) then
3020 Csiz := Component_Size (E);
3022 elsif not Known_Static_Esize (Ctyp) then
3023 Csiz := Uint_0;
3025 else
3026 Esiz := Esize (Ctyp);
3028 -- We can set the component size if it is less than
3029 -- 16, rounding it up to the next storage unit size.
3031 if Esiz <= 8 then
3032 Csiz := Uint_8;
3033 elsif Esiz <= 16 then
3034 Csiz := Uint_16;
3035 else
3036 Csiz := Uint_0;
3037 end if;
3039 -- Set component size up to match alignment if it
3040 -- would otherwise be less than the alignment. This
3041 -- deals with cases of types whose alignment exceeds
3042 -- their size (padded types).
3044 if Csiz /= 0 then
3045 declare
3046 A : constant Uint := Alignment_In_Bits (Ctyp);
3047 begin
3048 if Csiz < A then
3049 Csiz := A;
3050 end if;
3051 end;
3052 end if;
3053 end if;
3055 -- Case of component size that may result in packing
3057 if 1 <= Csiz and then Csiz <= 64 then
3058 declare
3059 Ent : constant Entity_Id :=
3060 First_Subtype (E);
3061 Pack_Pragma : constant Node_Id :=
3062 Get_Rep_Pragma (Ent, Name_Pack);
3063 Comp_Size_C : constant Node_Id :=
3064 Get_Attribute_Definition_Clause
3065 (Ent, Attribute_Component_Size);
3066 begin
3067 -- Warn if we have pack and component size so that
3068 -- the pack is ignored.
3070 -- Note: here we must check for the presence of a
3071 -- component size before checking for a Pack pragma
3072 -- to deal with the case where the array type is a
3073 -- derived type whose parent is currently private.
3075 if Present (Comp_Size_C)
3076 and then Has_Pragma_Pack (Ent)
3077 then
3078 Error_Msg_Sloc := Sloc (Comp_Size_C);
3079 Error_Msg_NE
3080 ("?pragma Pack for& ignored!",
3081 Pack_Pragma, Ent);
3082 Error_Msg_N
3083 ("\?explicit component size given#!",
3084 Pack_Pragma);
3085 end if;
3087 -- Set component size if not already set by a
3088 -- component size clause.
3090 if not Present (Comp_Size_C) then
3091 Set_Component_Size (E, Csiz);
3092 end if;
3094 -- Check for base type of 8, 16, 32 bits, where an
3095 -- unsigned subtype has a length one less than the
3096 -- base type (e.g. Natural subtype of Integer).
3098 -- In such cases, if a component size was not set
3099 -- explicitly, then generate a warning.
3101 if Has_Pragma_Pack (E)
3102 and then not Present (Comp_Size_C)
3103 and then
3104 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3105 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3106 then
3107 Error_Msg_Uint_1 := Csiz;
3109 if Present (Pack_Pragma) then
3110 Error_Msg_N
3111 ("?pragma Pack causes component size "
3112 & "to be ^!", Pack_Pragma);
3113 Error_Msg_N
3114 ("\?use Component_Size to set "
3115 & "desired value!", Pack_Pragma);
3116 end if;
3117 end if;
3119 -- Actual packing is not needed for 8, 16, 32, 64.
3120 -- Also not needed for 24 if alignment is 1.
3122 if Csiz = 8
3123 or else Csiz = 16
3124 or else Csiz = 32
3125 or else Csiz = 64
3126 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3127 then
3128 -- Here the array was requested to be packed,
3129 -- but the packing request had no effect, so
3130 -- Is_Packed is reset.
3132 -- Note: semantically this means that we lose
3133 -- track of the fact that a derived type
3134 -- inherited a pragma Pack that was non-
3135 -- effective, but that seems fine.
3137 -- We regard a Pack pragma as a request to set
3138 -- a representation characteristic, and this
3139 -- request may be ignored.
3141 Set_Is_Packed (Base_Type (E), False);
3143 -- In all other cases, packing is indeed needed
3145 else
3146 Set_Has_Non_Standard_Rep (Base_Type (E));
3147 Set_Is_Bit_Packed_Array (Base_Type (E));
3148 Set_Is_Packed (Base_Type (E));
3149 end if;
3150 end;
3151 end if;
3152 end;
3154 -- Processing that is done only for subtypes
3156 else
3157 -- Acquire alignment from base type
3159 if Unknown_Alignment (E) then
3160 Set_Alignment (E, Alignment (Base_Type (E)));
3161 Adjust_Esize_Alignment (E);
3162 end if;
3163 end if;
3165 -- For bit-packed arrays, check the size
3167 if Is_Bit_Packed_Array (E)
3168 and then Known_RM_Size (E)
3169 then
3170 declare
3171 SizC : constant Node_Id := Size_Clause (E);
3173 Discard : Boolean;
3174 pragma Warnings (Off, Discard);
3176 begin
3177 -- It is not clear if it is possible to have no size
3178 -- clause at this stage, but it is not worth worrying
3179 -- about. Post error on the entity name in the size
3180 -- clause if present, else on the type entity itself.
3182 if Present (SizC) then
3183 Check_Size (Name (SizC), E, RM_Size (E), Discard);
3184 else
3185 Check_Size (E, E, RM_Size (E), Discard);
3186 end if;
3187 end;
3188 end if;
3190 -- If any of the index types was an enumeration type with
3191 -- a non-standard rep clause, then we indicate that the
3192 -- array type is always packed (even if it is not bit packed).
3194 if Non_Standard_Enum then
3195 Set_Has_Non_Standard_Rep (Base_Type (E));
3196 Set_Is_Packed (Base_Type (E));
3197 end if;
3199 Set_Component_Alignment_If_Not_Set (E);
3201 -- If the array is packed, we must create the packed array
3202 -- type to be used to actually implement the type. This is
3203 -- only needed for real array types (not for string literal
3204 -- types, since they are present only for the front end).
3206 if Is_Packed (E)
3207 and then Ekind (E) /= E_String_Literal_Subtype
3208 then
3209 Create_Packed_Array_Type (E);
3210 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
3212 -- Size information of packed array type is copied to the
3213 -- array type, since this is really the representation. But
3214 -- do not override explicit existing size values. If the
3215 -- ancestor subtype is constrained the packed_array_type
3216 -- will be inherited from it, but the size may have been
3217 -- provided already, and must not be overridden either.
3219 if not Has_Size_Clause (E)
3220 and then
3221 (No (Ancestor_Subtype (E))
3222 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3223 then
3224 Set_Esize (E, Esize (Packed_Array_Type (E)));
3225 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3226 end if;
3228 if not Has_Alignment_Clause (E) then
3229 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3230 end if;
3231 end if;
3233 -- For non-packed arrays set the alignment of the array to the
3234 -- alignment of the component type if it is unknown. Skip this
3235 -- in atomic case (atomic arrays may need larger alignments).
3237 if not Is_Packed (E)
3238 and then Unknown_Alignment (E)
3239 and then Known_Alignment (Ctyp)
3240 and then Known_Static_Component_Size (E)
3241 and then Known_Static_Esize (Ctyp)
3242 and then Esize (Ctyp) = Component_Size (E)
3243 and then not Is_Atomic (E)
3244 then
3245 Set_Alignment (E, Alignment (Component_Type (E)));
3246 end if;
3247 end;
3249 -- For a class-wide type, the corresponding specific type is
3250 -- frozen as well (RM 13.14(15))
3252 elsif Is_Class_Wide_Type (E) then
3253 Freeze_And_Append (Root_Type (E), Loc, Result);
3255 -- If the base type of the class-wide type is still incomplete,
3256 -- the class-wide remains unfrozen as well. This is legal when
3257 -- E is the formal of a primitive operation of some other type
3258 -- which is being frozen.
3260 if not Is_Frozen (Root_Type (E)) then
3261 Set_Is_Frozen (E, False);
3262 return Result;
3263 end if;
3265 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3266 -- parent of a derived type) and it is a library-level entity,
3267 -- generate an itype reference for it. Otherwise, its first
3268 -- explicit reference may be in an inner scope, which will be
3269 -- rejected by the back-end.
3271 if Is_Itype (E)
3272 and then Is_Compilation_Unit (Scope (E))
3273 then
3274 declare
3275 Ref : constant Node_Id := Make_Itype_Reference (Loc);
3277 begin
3278 Set_Itype (Ref, E);
3279 if No (Result) then
3280 Result := New_List (Ref);
3281 else
3282 Append (Ref, Result);
3283 end if;
3284 end;
3285 end if;
3287 -- The equivalent type associated with a class-wide subtype needs
3288 -- to be frozen to ensure that its layout is done. Class-wide
3289 -- subtypes are currently only frozen on targets requiring
3290 -- front-end layout (see New_Class_Wide_Subtype and
3291 -- Make_CW_Equivalent_Type in exp_util.adb).
3293 if Ekind (E) = E_Class_Wide_Subtype
3294 and then Present (Equivalent_Type (E))
3295 then
3296 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3297 end if;
3299 -- For a record (sub)type, freeze all the component types (RM
3300 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3301 -- Is_Record_Type, because we don't want to attempt the freeze for
3302 -- the case of a private type with record extension (we will do that
3303 -- later when the full type is frozen).
3305 elsif Ekind (E) = E_Record_Type
3306 or else Ekind (E) = E_Record_Subtype
3307 then
3308 Freeze_Record_Type (E);
3310 -- For a concurrent type, freeze corresponding record type. This
3311 -- does not correspond to any specific rule in the RM, but the
3312 -- record type is essentially part of the concurrent type.
3313 -- Freeze as well all local entities. This includes record types
3314 -- created for entry parameter blocks, and whatever local entities
3315 -- may appear in the private part.
3317 elsif Is_Concurrent_Type (E) then
3318 if Present (Corresponding_Record_Type (E)) then
3319 Freeze_And_Append
3320 (Corresponding_Record_Type (E), Loc, Result);
3321 end if;
3323 Comp := First_Entity (E);
3325 while Present (Comp) loop
3326 if Is_Type (Comp) then
3327 Freeze_And_Append (Comp, Loc, Result);
3329 elsif (Ekind (Comp)) /= E_Function then
3330 if Is_Itype (Etype (Comp))
3331 and then Underlying_Type (Scope (Etype (Comp))) = E
3332 then
3333 Undelay_Type (Etype (Comp));
3334 end if;
3336 Freeze_And_Append (Etype (Comp), Loc, Result);
3337 end if;
3339 Next_Entity (Comp);
3340 end loop;
3342 -- Private types are required to point to the same freeze node as
3343 -- their corresponding full views. The freeze node itself has to
3344 -- point to the partial view of the entity (because from the partial
3345 -- view, we can retrieve the full view, but not the reverse).
3346 -- However, in order to freeze correctly, we need to freeze the full
3347 -- view. If we are freezing at the end of a scope (or within the
3348 -- scope of the private type), the partial and full views will have
3349 -- been swapped, the full view appears first in the entity chain and
3350 -- the swapping mechanism ensures that the pointers are properly set
3351 -- (on scope exit).
3353 -- If we encounter the partial view before the full view (e.g. when
3354 -- freezing from another scope), we freeze the full view, and then
3355 -- set the pointers appropriately since we cannot rely on swapping to
3356 -- fix things up (subtypes in an outer scope might not get swapped).
3358 elsif Is_Incomplete_Or_Private_Type (E)
3359 and then not Is_Generic_Type (E)
3360 then
3361 -- The construction of the dispatch table associated with library
3362 -- level tagged types forces freezing of all the primitives of the
3363 -- type, which may cause premature freezing of the partial view.
3364 -- For example:
3366 -- package Pkg is
3367 -- type T is tagged private;
3368 -- type DT is new T with private;
3369 -- procedure Prim (X : in out T; Y : in out DT'class);
3370 -- private
3371 -- type T is tagged null record;
3372 -- Obj : T;
3373 -- type DT is new T with null record;
3374 -- end;
3376 -- In this case the type will be frozen later by the usual
3377 -- mechanism: an object declaration, an instantiation, or the
3378 -- end of a declarative part.
3380 if Is_Library_Level_Tagged_Type (E)
3381 and then not Present (Full_View (E))
3382 then
3383 Set_Is_Frozen (E, False);
3384 return Result;
3386 -- Case of full view present
3388 elsif Present (Full_View (E)) then
3390 -- If full view has already been frozen, then no further
3391 -- processing is required
3393 if Is_Frozen (Full_View (E)) then
3395 Set_Has_Delayed_Freeze (E, False);
3396 Set_Freeze_Node (E, Empty);
3397 Check_Debug_Info_Needed (E);
3399 -- Otherwise freeze full view and patch the pointers so that
3400 -- the freeze node will elaborate both views in the back-end.
3402 else
3403 declare
3404 Full : constant Entity_Id := Full_View (E);
3406 begin
3407 if Is_Private_Type (Full)
3408 and then Present (Underlying_Full_View (Full))
3409 then
3410 Freeze_And_Append
3411 (Underlying_Full_View (Full), Loc, Result);
3412 end if;
3414 Freeze_And_Append (Full, Loc, Result);
3416 if Has_Delayed_Freeze (E) then
3417 F_Node := Freeze_Node (Full);
3419 if Present (F_Node) then
3420 Set_Freeze_Node (E, F_Node);
3421 Set_Entity (F_Node, E);
3423 else
3424 -- {Incomplete,Private}_Subtypes with Full_Views
3425 -- constrained by discriminants.
3427 Set_Has_Delayed_Freeze (E, False);
3428 Set_Freeze_Node (E, Empty);
3429 end if;
3430 end if;
3431 end;
3433 Check_Debug_Info_Needed (E);
3434 end if;
3436 -- AI-117 requires that the convention of a partial view be the
3437 -- same as the convention of the full view. Note that this is a
3438 -- recognized breach of privacy, but it's essential for logical
3439 -- consistency of representation, and the lack of a rule in
3440 -- RM95 was an oversight.
3442 Set_Convention (E, Convention (Full_View (E)));
3444 Set_Size_Known_At_Compile_Time (E,
3445 Size_Known_At_Compile_Time (Full_View (E)));
3447 -- Size information is copied from the full view to the
3448 -- incomplete or private view for consistency.
3450 -- We skip this is the full view is not a type. This is very
3451 -- strange of course, and can only happen as a result of
3452 -- certain illegalities, such as a premature attempt to derive
3453 -- from an incomplete type.
3455 if Is_Type (Full_View (E)) then
3456 Set_Size_Info (E, Full_View (E));
3457 Set_RM_Size (E, RM_Size (Full_View (E)));
3458 end if;
3460 return Result;
3462 -- Case of no full view present. If entity is derived or subtype,
3463 -- it is safe to freeze, correctness depends on the frozen status
3464 -- of parent. Otherwise it is either premature usage, or a Taft
3465 -- amendment type, so diagnosis is at the point of use and the
3466 -- type might be frozen later.
3468 elsif E /= Base_Type (E)
3469 or else Is_Derived_Type (E)
3470 then
3471 null;
3473 else
3474 Set_Is_Frozen (E, False);
3475 return No_List;
3476 end if;
3478 -- For access subprogram, freeze types of all formals, the return
3479 -- type was already frozen, since it is the Etype of the function.
3481 elsif Ekind (E) = E_Subprogram_Type then
3482 Formal := First_Formal (E);
3483 while Present (Formal) loop
3484 Freeze_And_Append (Etype (Formal), Loc, Result);
3485 Next_Formal (Formal);
3486 end loop;
3488 Freeze_Subprogram (E);
3490 -- Ada 2005 (AI-326): Check wrong use of tag incomplete type
3492 -- type T is tagged;
3493 -- type Acc is access function (X : T) return T; -- ERROR
3495 if Ekind (Etype (E)) = E_Incomplete_Type
3496 and then Is_Tagged_Type (Etype (E))
3497 and then No (Full_View (Etype (E)))
3498 and then not Is_Value_Type (Etype (E))
3499 then
3500 Error_Msg_N
3501 ("(Ada 2005): invalid use of tagged incomplete type", E);
3502 end if;
3504 -- For access to a protected subprogram, freeze the equivalent type
3505 -- (however this is not set if we are not generating code or if this
3506 -- is an anonymous type used just for resolution).
3508 elsif Is_Access_Protected_Subprogram_Type (E) then
3510 -- AI-326: Check wrong use of tagged incomplete types
3512 -- type T is tagged;
3513 -- type As3D is access protected
3514 -- function (X : Float) return T; -- ERROR
3516 declare
3517 Etyp : Entity_Id;
3519 begin
3520 Etyp := Etype (Directly_Designated_Type (E));
3522 if Is_Class_Wide_Type (Etyp) then
3523 Etyp := Etype (Etyp);
3524 end if;
3526 if Ekind (Etyp) = E_Incomplete_Type
3527 and then Is_Tagged_Type (Etyp)
3528 and then No (Full_View (Etyp))
3529 and then not Is_Value_Type (Etype (E))
3530 then
3531 Error_Msg_N
3532 ("(Ada 2005): invalid use of tagged incomplete type", E);
3533 end if;
3534 end;
3536 if Present (Equivalent_Type (E)) then
3537 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3538 end if;
3539 end if;
3541 -- Generic types are never seen by the back-end, and are also not
3542 -- processed by the expander (since the expander is turned off for
3543 -- generic processing), so we never need freeze nodes for them.
3545 if Is_Generic_Type (E) then
3546 return Result;
3547 end if;
3549 -- Some special processing for non-generic types to complete
3550 -- representation details not known till the freeze point.
3552 if Is_Fixed_Point_Type (E) then
3553 Freeze_Fixed_Point_Type (E);
3555 -- Some error checks required for ordinary fixed-point type. Defer
3556 -- these till the freeze-point since we need the small and range
3557 -- values. We only do these checks for base types
3559 if Is_Ordinary_Fixed_Point_Type (E)
3560 and then E = Base_Type (E)
3561 then
3562 if Small_Value (E) < Ureal_2_M_80 then
3563 Error_Msg_Name_1 := Name_Small;
3564 Error_Msg_N
3565 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
3567 elsif Small_Value (E) > Ureal_2_80 then
3568 Error_Msg_Name_1 := Name_Small;
3569 Error_Msg_N
3570 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
3571 end if;
3573 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3574 Error_Msg_Name_1 := Name_First;
3575 Error_Msg_N
3576 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
3577 end if;
3579 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3580 Error_Msg_Name_1 := Name_Last;
3581 Error_Msg_N
3582 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
3583 end if;
3584 end if;
3586 elsif Is_Enumeration_Type (E) then
3587 Freeze_Enumeration_Type (E);
3589 elsif Is_Integer_Type (E) then
3590 Adjust_Esize_For_Alignment (E);
3592 elsif Is_Access_Type (E) then
3594 -- Check restriction for standard storage pool
3596 if No (Associated_Storage_Pool (E)) then
3597 Check_Restriction (No_Standard_Storage_Pools, E);
3598 end if;
3600 -- Deal with error message for pure access type. This is not an
3601 -- error in Ada 2005 if there is no pool (see AI-366).
3603 if Is_Pure_Unit_Access_Type (E)
3604 and then (Ada_Version < Ada_05
3605 or else not No_Pool_Assigned (E))
3606 then
3607 Error_Msg_N ("named access type not allowed in pure unit", E);
3609 if Ada_Version >= Ada_05 then
3610 Error_Msg_N
3611 ("\would be legal if Storage_Size of 0 given?", E);
3613 elsif No_Pool_Assigned (E) then
3614 Error_Msg_N
3615 ("\would be legal in Ada 2005?", E);
3617 else
3618 Error_Msg_N
3619 ("\would be legal in Ada 2005 if "
3620 & "Storage_Size of 0 given?", E);
3621 end if;
3622 end if;
3623 end if;
3625 -- Case of composite types
3627 if Is_Composite_Type (E) then
3629 -- AI-117 requires that all new primitives of a tagged type must
3630 -- inherit the convention of the full view of the type. Inherited
3631 -- and overriding operations are defined to inherit the convention
3632 -- of their parent or overridden subprogram (also specified in
3633 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3634 -- and New_Overloaded_Entity). Here we set the convention of
3635 -- primitives that are still convention Ada, which will ensure
3636 -- that any new primitives inherit the type's convention. Class-
3637 -- wide types can have a foreign convention inherited from their
3638 -- specific type, but are excluded from this since they don't have
3639 -- any associated primitives.
3641 if Is_Tagged_Type (E)
3642 and then not Is_Class_Wide_Type (E)
3643 and then Convention (E) /= Convention_Ada
3644 then
3645 declare
3646 Prim_List : constant Elist_Id := Primitive_Operations (E);
3647 Prim : Elmt_Id;
3648 begin
3649 Prim := First_Elmt (Prim_List);
3650 while Present (Prim) loop
3651 if Convention (Node (Prim)) = Convention_Ada then
3652 Set_Convention (Node (Prim), Convention (E));
3653 end if;
3655 Next_Elmt (Prim);
3656 end loop;
3657 end;
3658 end if;
3659 end if;
3661 -- Generate references to primitive operations for a tagged type
3663 Generate_Prim_Op_References (E);
3665 -- Now that all types from which E may depend are frozen, see if the
3666 -- size is known at compile time, if it must be unsigned, or if
3667 -- strict alignment is required
3669 Check_Compile_Time_Size (E);
3670 Check_Unsigned_Type (E);
3672 if Base_Type (E) = E then
3673 Check_Strict_Alignment (E);
3674 end if;
3676 -- Do not allow a size clause for a type which does not have a size
3677 -- that is known at compile time
3679 if Has_Size_Clause (E)
3680 and then not Size_Known_At_Compile_Time (E)
3681 then
3682 -- Suppress this message if errors posted on E, even if we are
3683 -- in all errors mode, since this is often a junk message
3685 if not Error_Posted (E) then
3686 Error_Msg_N
3687 ("size clause not allowed for variable length type",
3688 Size_Clause (E));
3689 end if;
3690 end if;
3692 -- Remaining process is to set/verify the representation information,
3693 -- in particular the size and alignment values. This processing is
3694 -- not required for generic types, since generic types do not play
3695 -- any part in code generation, and so the size and alignment values
3696 -- for such types are irrelevant.
3698 if Is_Generic_Type (E) then
3699 return Result;
3701 -- Otherwise we call the layout procedure
3703 else
3704 Layout_Type (E);
3705 end if;
3707 -- End of freeze processing for type entities
3708 end if;
3710 -- Here is where we logically freeze the current entity. If it has a
3711 -- freeze node, then this is the point at which the freeze node is
3712 -- linked into the result list.
3714 if Has_Delayed_Freeze (E) then
3716 -- If a freeze node is already allocated, use it, otherwise allocate
3717 -- a new one. The preallocation happens in the case of anonymous base
3718 -- types, where we preallocate so that we can set First_Subtype_Link.
3719 -- Note that we reset the Sloc to the current freeze location.
3721 if Present (Freeze_Node (E)) then
3722 F_Node := Freeze_Node (E);
3723 Set_Sloc (F_Node, Loc);
3725 else
3726 F_Node := New_Node (N_Freeze_Entity, Loc);
3727 Set_Freeze_Node (E, F_Node);
3728 Set_Access_Types_To_Process (F_Node, No_Elist);
3729 Set_TSS_Elist (F_Node, No_Elist);
3730 Set_Actions (F_Node, No_List);
3731 end if;
3733 Set_Entity (F_Node, E);
3735 if Result = No_List then
3736 Result := New_List (F_Node);
3737 else
3738 Append (F_Node, Result);
3739 end if;
3741 -- A final pass over record types with discriminants. If the type
3742 -- has an incomplete declaration, there may be constrained access
3743 -- subtypes declared elsewhere, which do not depend on the discrimi-
3744 -- nants of the type, and which are used as component types (i.e.
3745 -- the full view is a recursive type). The designated types of these
3746 -- subtypes can only be elaborated after the type itself, and they
3747 -- need an itype reference.
3749 if Ekind (E) = E_Record_Type
3750 and then Has_Discriminants (E)
3751 then
3752 declare
3753 Comp : Entity_Id;
3754 IR : Node_Id;
3755 Typ : Entity_Id;
3757 begin
3758 Comp := First_Component (E);
3760 while Present (Comp) loop
3761 Typ := Etype (Comp);
3763 if Ekind (Comp) = E_Component
3764 and then Is_Access_Type (Typ)
3765 and then Scope (Typ) /= E
3766 and then Base_Type (Designated_Type (Typ)) = E
3767 and then Is_Itype (Designated_Type (Typ))
3768 then
3769 IR := Make_Itype_Reference (Sloc (Comp));
3770 Set_Itype (IR, Designated_Type (Typ));
3771 Append (IR, Result);
3772 end if;
3774 Next_Component (Comp);
3775 end loop;
3776 end;
3777 end if;
3778 end if;
3780 -- When a type is frozen, the first subtype of the type is frozen as
3781 -- well (RM 13.14(15)). This has to be done after freezing the type,
3782 -- since obviously the first subtype depends on its own base type.
3784 if Is_Type (E) then
3785 Freeze_And_Append (First_Subtype (E), Loc, Result);
3787 -- If we just froze a tagged non-class wide record, then freeze the
3788 -- corresponding class-wide type. This must be done after the tagged
3789 -- type itself is frozen, because the class-wide type refers to the
3790 -- tagged type which generates the class.
3792 if Is_Tagged_Type (E)
3793 and then not Is_Class_Wide_Type (E)
3794 and then Present (Class_Wide_Type (E))
3795 then
3796 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3797 end if;
3798 end if;
3800 Check_Debug_Info_Needed (E);
3802 -- Special handling for subprograms
3804 if Is_Subprogram (E) then
3806 -- If subprogram has address clause then reset Is_Public flag, since
3807 -- we do not want the backend to generate external references.
3809 if Present (Address_Clause (E))
3810 and then not Is_Library_Level_Entity (E)
3811 then
3812 Set_Is_Public (E, False);
3814 -- If no address clause and not intrinsic, then for imported
3815 -- subprogram in main unit, generate descriptor if we are in
3816 -- Propagate_Exceptions mode.
3818 elsif Propagate_Exceptions
3819 and then Is_Imported (E)
3820 and then not Is_Intrinsic_Subprogram (E)
3821 and then Convention (E) /= Convention_Stubbed
3822 then
3823 if Result = No_List then
3824 Result := Empty_List;
3825 end if;
3826 end if;
3827 end if;
3829 return Result;
3830 end Freeze_Entity;
3832 -----------------------------
3833 -- Freeze_Enumeration_Type --
3834 -----------------------------
3836 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3837 begin
3838 -- By default, if no size clause is present, an enumeration type with
3839 -- Convention C is assumed to interface to a C enum, and has integer
3840 -- size. This applies to types. For subtypes, verify that its base
3841 -- type has no size clause either.
3843 if Has_Foreign_Convention (Typ)
3844 and then not Has_Size_Clause (Typ)
3845 and then not Has_Size_Clause (Base_Type (Typ))
3846 and then Esize (Typ) < Standard_Integer_Size
3847 then
3848 Init_Esize (Typ, Standard_Integer_Size);
3850 else
3851 -- If the enumeration type interfaces to C, and it has a size clause
3852 -- that specifies less than int size, it warrants a warning. The
3853 -- user may intend the C type to be an enum or a char, so this is
3854 -- not by itself an error that the Ada compiler can detect, but it
3855 -- it is a worth a heads-up. For Boolean and Character types we
3856 -- assume that the programmer has the proper C type in mind.
3858 if Convention (Typ) = Convention_C
3859 and then Has_Size_Clause (Typ)
3860 and then Esize (Typ) /= Esize (Standard_Integer)
3861 and then not Is_Boolean_Type (Typ)
3862 and then not Is_Character_Type (Typ)
3863 then
3864 Error_Msg_N
3865 ("C enum types have the size of a C int?", Size_Clause (Typ));
3866 end if;
3868 Adjust_Esize_For_Alignment (Typ);
3869 end if;
3870 end Freeze_Enumeration_Type;
3872 -----------------------
3873 -- Freeze_Expression --
3874 -----------------------
3876 procedure Freeze_Expression (N : Node_Id) is
3877 In_Spec_Exp : constant Boolean := In_Spec_Expression;
3878 Typ : Entity_Id;
3879 Nam : Entity_Id;
3880 Desig_Typ : Entity_Id;
3881 P : Node_Id;
3882 Parent_P : Node_Id;
3884 Freeze_Outside : Boolean := False;
3885 -- This flag is set true if the entity must be frozen outside the
3886 -- current subprogram. This happens in the case of expander generated
3887 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3888 -- not freeze all entities like other bodies, but which nevertheless
3889 -- may reference entities that have to be frozen before the body and
3890 -- obviously cannot be frozen inside the body.
3892 function In_Exp_Body (N : Node_Id) return Boolean;
3893 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
3894 -- it is the handled statement sequence of an expander-generated
3895 -- subprogram (init proc, stream subprogram, or renaming as body).
3896 -- If so, this is not a freezing context.
3898 -----------------
3899 -- In_Exp_Body --
3900 -----------------
3902 function In_Exp_Body (N : Node_Id) return Boolean is
3903 P : Node_Id;
3904 Id : Entity_Id;
3906 begin
3907 if Nkind (N) = N_Subprogram_Body then
3908 P := N;
3909 else
3910 P := Parent (N);
3911 end if;
3913 if Nkind (P) /= N_Subprogram_Body then
3914 return False;
3916 else
3917 Id := Defining_Unit_Name (Specification (P));
3919 if Nkind (Id) = N_Defining_Identifier
3920 and then (Is_Init_Proc (Id) or else
3921 Is_TSS (Id, TSS_Stream_Input) or else
3922 Is_TSS (Id, TSS_Stream_Output) or else
3923 Is_TSS (Id, TSS_Stream_Read) or else
3924 Is_TSS (Id, TSS_Stream_Write) or else
3925 Nkind (Original_Node (P)) =
3926 N_Subprogram_Renaming_Declaration)
3927 then
3928 return True;
3929 else
3930 return False;
3931 end if;
3932 end if;
3933 end In_Exp_Body;
3935 -- Start of processing for Freeze_Expression
3937 begin
3938 -- Immediate return if freezing is inhibited. This flag is set by the
3939 -- analyzer to stop freezing on generated expressions that would cause
3940 -- freezing if they were in the source program, but which are not
3941 -- supposed to freeze, since they are created.
3943 if Must_Not_Freeze (N) then
3944 return;
3945 end if;
3947 -- If expression is non-static, then it does not freeze in a default
3948 -- expression, see section "Handling of Default Expressions" in the
3949 -- spec of package Sem for further details. Note that we have to
3950 -- make sure that we actually have a real expression (if we have
3951 -- a subtype indication, we can't test Is_Static_Expression!)
3953 if In_Spec_Exp
3954 and then Nkind (N) in N_Subexpr
3955 and then not Is_Static_Expression (N)
3956 then
3957 return;
3958 end if;
3960 -- Freeze type of expression if not frozen already
3962 Typ := Empty;
3964 if Nkind (N) in N_Has_Etype then
3965 if not Is_Frozen (Etype (N)) then
3966 Typ := Etype (N);
3968 -- Base type may be an derived numeric type that is frozen at
3969 -- the point of declaration, but first_subtype is still unfrozen.
3971 elsif not Is_Frozen (First_Subtype (Etype (N))) then
3972 Typ := First_Subtype (Etype (N));
3973 end if;
3974 end if;
3976 -- For entity name, freeze entity if not frozen already. A special
3977 -- exception occurs for an identifier that did not come from source.
3978 -- We don't let such identifiers freeze a non-internal entity, i.e.
3979 -- an entity that did come from source, since such an identifier was
3980 -- generated by the expander, and cannot have any semantic effect on
3981 -- the freezing semantics. For example, this stops the parameter of
3982 -- an initialization procedure from freezing the variable.
3984 if Is_Entity_Name (N)
3985 and then not Is_Frozen (Entity (N))
3986 and then (Nkind (N) /= N_Identifier
3987 or else Comes_From_Source (N)
3988 or else not Comes_From_Source (Entity (N)))
3989 then
3990 Nam := Entity (N);
3991 else
3992 Nam := Empty;
3993 end if;
3995 -- For an allocator freeze designated type if not frozen already
3997 -- For an aggregate whose component type is an access type, freeze the
3998 -- designated type now, so that its freeze does not appear within the
3999 -- loop that might be created in the expansion of the aggregate. If the
4000 -- designated type is a private type without full view, the expression
4001 -- cannot contain an allocator, so the type is not frozen.
4003 Desig_Typ := Empty;
4005 case Nkind (N) is
4006 when N_Allocator =>
4007 Desig_Typ := Designated_Type (Etype (N));
4009 when N_Aggregate =>
4010 if Is_Array_Type (Etype (N))
4011 and then Is_Access_Type (Component_Type (Etype (N)))
4012 then
4013 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4014 end if;
4016 when N_Selected_Component |
4017 N_Indexed_Component |
4018 N_Slice =>
4020 if Is_Access_Type (Etype (Prefix (N))) then
4021 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4022 end if;
4024 when others =>
4025 null;
4026 end case;
4028 if Desig_Typ /= Empty
4029 and then (Is_Frozen (Desig_Typ)
4030 or else (not Is_Fully_Defined (Desig_Typ)))
4031 then
4032 Desig_Typ := Empty;
4033 end if;
4035 -- All done if nothing needs freezing
4037 if No (Typ)
4038 and then No (Nam)
4039 and then No (Desig_Typ)
4040 then
4041 return;
4042 end if;
4044 -- Loop for looking at the right place to insert the freeze nodes
4045 -- exiting from the loop when it is appropriate to insert the freeze
4046 -- node before the current node P.
4048 -- Also checks some special exceptions to the freezing rules. These
4049 -- cases result in a direct return, bypassing the freeze action.
4051 P := N;
4052 loop
4053 Parent_P := Parent (P);
4055 -- If we don't have a parent, then we are not in a well-formed tree.
4056 -- This is an unusual case, but there are some legitimate situations
4057 -- in which this occurs, notably when the expressions in the range of
4058 -- a type declaration are resolved. We simply ignore the freeze
4059 -- request in this case. Is this right ???
4061 if No (Parent_P) then
4062 return;
4063 end if;
4065 -- See if we have got to an appropriate point in the tree
4067 case Nkind (Parent_P) is
4069 -- A special test for the exception of (RM 13.14(8)) for the case
4070 -- of per-object expressions (RM 3.8(18)) occurring in component
4071 -- definition or a discrete subtype definition. Note that we test
4072 -- for a component declaration which includes both cases we are
4073 -- interested in, and furthermore the tree does not have explicit
4074 -- nodes for either of these two constructs.
4076 when N_Component_Declaration =>
4078 -- The case we want to test for here is an identifier that is
4079 -- a per-object expression, this is either a discriminant that
4080 -- appears in a context other than the component declaration
4081 -- or it is a reference to the type of the enclosing construct.
4083 -- For either of these cases, we skip the freezing
4085 if not In_Spec_Expression
4086 and then Nkind (N) = N_Identifier
4087 and then (Present (Entity (N)))
4088 then
4089 -- We recognize the discriminant case by just looking for
4090 -- a reference to a discriminant. It can only be one for
4091 -- the enclosing construct. Skip freezing in this case.
4093 if Ekind (Entity (N)) = E_Discriminant then
4094 return;
4096 -- For the case of a reference to the enclosing record,
4097 -- (or task or protected type), we look for a type that
4098 -- matches the current scope.
4100 elsif Entity (N) = Current_Scope then
4101 return;
4102 end if;
4103 end if;
4105 -- If we have an enumeration literal that appears as the choice in
4106 -- the aggregate of an enumeration representation clause, then
4107 -- freezing does not occur (RM 13.14(10)).
4109 when N_Enumeration_Representation_Clause =>
4111 -- The case we are looking for is an enumeration literal
4113 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4114 and then Is_Enumeration_Type (Etype (N))
4115 then
4116 -- If enumeration literal appears directly as the choice,
4117 -- do not freeze (this is the normal non-overloaded case)
4119 if Nkind (Parent (N)) = N_Component_Association
4120 and then First (Choices (Parent (N))) = N
4121 then
4122 return;
4124 -- If enumeration literal appears as the name of function
4125 -- which is the choice, then also do not freeze. This
4126 -- happens in the overloaded literal case, where the
4127 -- enumeration literal is temporarily changed to a function
4128 -- call for overloading analysis purposes.
4130 elsif Nkind (Parent (N)) = N_Function_Call
4131 and then
4132 Nkind (Parent (Parent (N))) = N_Component_Association
4133 and then
4134 First (Choices (Parent (Parent (N)))) = Parent (N)
4135 then
4136 return;
4137 end if;
4138 end if;
4140 -- Normally if the parent is a handled sequence of statements,
4141 -- then the current node must be a statement, and that is an
4142 -- appropriate place to insert a freeze node.
4144 when N_Handled_Sequence_Of_Statements =>
4146 -- An exception occurs when the sequence of statements is for
4147 -- an expander generated body that did not do the usual freeze
4148 -- all operation. In this case we usually want to freeze
4149 -- outside this body, not inside it, and we skip past the
4150 -- subprogram body that we are inside.
4152 if In_Exp_Body (Parent_P) then
4154 -- However, we *do* want to freeze at this point if we have
4155 -- an entity to freeze, and that entity is declared *inside*
4156 -- the body of the expander generated procedure. This case
4157 -- is recognized by the scope of the type, which is either
4158 -- the spec for some enclosing body, or (in the case of
4159 -- init_procs, for which there are no separate specs) the
4160 -- current scope.
4162 declare
4163 Subp : constant Node_Id := Parent (Parent_P);
4164 Cspc : Entity_Id;
4166 begin
4167 if Nkind (Subp) = N_Subprogram_Body then
4168 Cspc := Corresponding_Spec (Subp);
4170 if (Present (Typ) and then Scope (Typ) = Cspc)
4171 or else
4172 (Present (Nam) and then Scope (Nam) = Cspc)
4173 then
4174 exit;
4176 elsif Present (Typ)
4177 and then Scope (Typ) = Current_Scope
4178 and then Current_Scope = Defining_Entity (Subp)
4179 then
4180 exit;
4181 end if;
4182 end if;
4183 end;
4185 -- If not that exception to the exception, then this is
4186 -- where we delay the freeze till outside the body.
4188 Parent_P := Parent (Parent_P);
4189 Freeze_Outside := True;
4191 -- Here if normal case where we are in handled statement
4192 -- sequence and want to do the insertion right there.
4194 else
4195 exit;
4196 end if;
4198 -- If parent is a body or a spec or a block, then the current node
4199 -- is a statement or declaration and we can insert the freeze node
4200 -- before it.
4202 when N_Package_Specification |
4203 N_Package_Body |
4204 N_Subprogram_Body |
4205 N_Task_Body |
4206 N_Protected_Body |
4207 N_Entry_Body |
4208 N_Block_Statement => exit;
4210 -- The expander is allowed to define types in any statements list,
4211 -- so any of the following parent nodes also mark a freezing point
4212 -- if the actual node is in a list of statements or declarations.
4214 when N_Exception_Handler |
4215 N_If_Statement |
4216 N_Elsif_Part |
4217 N_Case_Statement_Alternative |
4218 N_Compilation_Unit_Aux |
4219 N_Selective_Accept |
4220 N_Accept_Alternative |
4221 N_Delay_Alternative |
4222 N_Conditional_Entry_Call |
4223 N_Entry_Call_Alternative |
4224 N_Triggering_Alternative |
4225 N_Abortable_Part |
4226 N_Freeze_Entity =>
4228 exit when Is_List_Member (P);
4230 -- Note: The N_Loop_Statement is a special case. A type that
4231 -- appears in the source can never be frozen in a loop (this
4232 -- occurs only because of a loop expanded by the expander), so we
4233 -- keep on going. Otherwise we terminate the search. Same is true
4234 -- of any entity which comes from source. (if they have predefined
4235 -- type, that type does not appear to come from source, but the
4236 -- entity should not be frozen here).
4238 when N_Loop_Statement =>
4239 exit when not Comes_From_Source (Etype (N))
4240 and then (No (Nam) or else not Comes_From_Source (Nam));
4242 -- For all other cases, keep looking at parents
4244 when others =>
4245 null;
4246 end case;
4248 -- We fall through the case if we did not yet find the proper
4249 -- place in the free for inserting the freeze node, so climb!
4251 P := Parent_P;
4252 end loop;
4254 -- If the expression appears in a record or an initialization procedure,
4255 -- the freeze nodes are collected and attached to the current scope, to
4256 -- be inserted and analyzed on exit from the scope, to insure that
4257 -- generated entities appear in the correct scope. If the expression is
4258 -- a default for a discriminant specification, the scope is still void.
4259 -- The expression can also appear in the discriminant part of a private
4260 -- or concurrent type.
4262 -- If the expression appears in a constrained subcomponent of an
4263 -- enclosing record declaration, the freeze nodes must be attached to
4264 -- the outer record type so they can eventually be placed in the
4265 -- enclosing declaration list.
4267 -- The other case requiring this special handling is if we are in a
4268 -- default expression, since in that case we are about to freeze a
4269 -- static type, and the freeze scope needs to be the outer scope, not
4270 -- the scope of the subprogram with the default parameter.
4272 -- For default expressions and other spec expressions in generic units,
4273 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4274 -- placing them at the proper place, after the generic unit.
4276 if (In_Spec_Exp and not Inside_A_Generic)
4277 or else Freeze_Outside
4278 or else (Is_Type (Current_Scope)
4279 and then (not Is_Concurrent_Type (Current_Scope)
4280 or else not Has_Completion (Current_Scope)))
4281 or else Ekind (Current_Scope) = E_Void
4282 then
4283 declare
4284 Loc : constant Source_Ptr := Sloc (Current_Scope);
4285 Freeze_Nodes : List_Id := No_List;
4286 Pos : Int := Scope_Stack.Last;
4288 begin
4289 if Present (Desig_Typ) then
4290 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4291 end if;
4293 if Present (Typ) then
4294 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4295 end if;
4297 if Present (Nam) then
4298 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4299 end if;
4301 -- The current scope may be that of a constrained component of
4302 -- an enclosing record declaration, which is above the current
4303 -- scope in the scope stack.
4305 if Is_Record_Type (Scope (Current_Scope)) then
4306 Pos := Pos - 1;
4307 end if;
4309 if Is_Non_Empty_List (Freeze_Nodes) then
4310 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4311 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
4312 Freeze_Nodes;
4313 else
4314 Append_List (Freeze_Nodes, Scope_Stack.Table
4315 (Pos).Pending_Freeze_Actions);
4316 end if;
4317 end if;
4318 end;
4320 return;
4321 end if;
4323 -- Now we have the right place to do the freezing. First, a special
4324 -- adjustment, if we are in spec-expression analysis mode, these freeze
4325 -- actions must not be thrown away (normally all inserted actions are
4326 -- thrown away in this mode. However, the freeze actions are from static
4327 -- expressions and one of the important reasons we are doing this
4328 -- special analysis is to get these freeze actions. Therefore we turn
4329 -- off the In_Spec_Expression mode to propagate these freeze actions.
4330 -- This also means they get properly analyzed and expanded.
4332 In_Spec_Expression := False;
4334 -- Freeze the designated type of an allocator (RM 13.14(13))
4336 if Present (Desig_Typ) then
4337 Freeze_Before (P, Desig_Typ);
4338 end if;
4340 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
4341 -- the enumeration representation clause exception in the loop above.
4343 if Present (Typ) then
4344 Freeze_Before (P, Typ);
4345 end if;
4347 -- Freeze name if one is present (RM 13.14(11))
4349 if Present (Nam) then
4350 Freeze_Before (P, Nam);
4351 end if;
4353 -- Restore In_Spec_Expression flag
4355 In_Spec_Expression := In_Spec_Exp;
4356 end Freeze_Expression;
4358 -----------------------------
4359 -- Freeze_Fixed_Point_Type --
4360 -----------------------------
4362 -- Certain fixed-point types and subtypes, including implicit base types
4363 -- and declared first subtypes, have not yet set up a range. This is
4364 -- because the range cannot be set until the Small and Size values are
4365 -- known, and these are not known till the type is frozen.
4367 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4368 -- whose bounds are unanalyzed real literals. This routine will recognize
4369 -- this case, and transform this range node into a properly typed range
4370 -- with properly analyzed and resolved values.
4372 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4373 Rng : constant Node_Id := Scalar_Range (Typ);
4374 Lo : constant Node_Id := Low_Bound (Rng);
4375 Hi : constant Node_Id := High_Bound (Rng);
4376 Btyp : constant Entity_Id := Base_Type (Typ);
4377 Brng : constant Node_Id := Scalar_Range (Btyp);
4378 BLo : constant Node_Id := Low_Bound (Brng);
4379 BHi : constant Node_Id := High_Bound (Brng);
4380 Small : constant Ureal := Small_Value (Typ);
4381 Loval : Ureal;
4382 Hival : Ureal;
4383 Atype : Entity_Id;
4385 Actual_Size : Nat;
4387 function Fsize (Lov, Hiv : Ureal) return Nat;
4388 -- Returns size of type with given bounds. Also leaves these
4389 -- bounds set as the current bounds of the Typ.
4391 -----------
4392 -- Fsize --
4393 -----------
4395 function Fsize (Lov, Hiv : Ureal) return Nat is
4396 begin
4397 Set_Realval (Lo, Lov);
4398 Set_Realval (Hi, Hiv);
4399 return Minimum_Size (Typ);
4400 end Fsize;
4402 -- Start of processing for Freeze_Fixed_Point_Type
4404 begin
4405 -- If Esize of a subtype has not previously been set, set it now
4407 if Unknown_Esize (Typ) then
4408 Atype := Ancestor_Subtype (Typ);
4410 if Present (Atype) then
4411 Set_Esize (Typ, Esize (Atype));
4412 else
4413 Set_Esize (Typ, Esize (Base_Type (Typ)));
4414 end if;
4415 end if;
4417 -- Immediate return if the range is already analyzed. This means that
4418 -- the range is already set, and does not need to be computed by this
4419 -- routine.
4421 if Analyzed (Rng) then
4422 return;
4423 end if;
4425 -- Immediate return if either of the bounds raises Constraint_Error
4427 if Raises_Constraint_Error (Lo)
4428 or else Raises_Constraint_Error (Hi)
4429 then
4430 return;
4431 end if;
4433 Loval := Realval (Lo);
4434 Hival := Realval (Hi);
4436 -- Ordinary fixed-point case
4438 if Is_Ordinary_Fixed_Point_Type (Typ) then
4440 -- For the ordinary fixed-point case, we are allowed to fudge the
4441 -- end-points up or down by small. Generally we prefer to fudge up,
4442 -- i.e. widen the bounds for non-model numbers so that the end points
4443 -- are included. However there are cases in which this cannot be
4444 -- done, and indeed cases in which we may need to narrow the bounds.
4445 -- The following circuit makes the decision.
4447 -- Note: our terminology here is that Incl_EP means that the bounds
4448 -- are widened by Small if necessary to include the end points, and
4449 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4450 -- end-points if this reduces the size.
4452 -- Note that in the Incl case, all we care about is including the
4453 -- end-points. In the Excl case, we want to narrow the bounds as
4454 -- much as permitted by the RM, to give the smallest possible size.
4456 Fudge : declare
4457 Loval_Incl_EP : Ureal;
4458 Hival_Incl_EP : Ureal;
4460 Loval_Excl_EP : Ureal;
4461 Hival_Excl_EP : Ureal;
4463 Size_Incl_EP : Nat;
4464 Size_Excl_EP : Nat;
4466 Model_Num : Ureal;
4467 First_Subt : Entity_Id;
4468 Actual_Lo : Ureal;
4469 Actual_Hi : Ureal;
4471 begin
4472 -- First step. Base types are required to be symmetrical. Right
4473 -- now, the base type range is a copy of the first subtype range.
4474 -- This will be corrected before we are done, but right away we
4475 -- need to deal with the case where both bounds are non-negative.
4476 -- In this case, we set the low bound to the negative of the high
4477 -- bound, to make sure that the size is computed to include the
4478 -- required sign. Note that we do not need to worry about the
4479 -- case of both bounds negative, because the sign will be dealt
4480 -- with anyway. Furthermore we can't just go making such a bound
4481 -- symmetrical, since in a twos-complement system, there is an
4482 -- extra negative value which could not be accommodated on the
4483 -- positive side.
4485 if Typ = Btyp
4486 and then not UR_Is_Negative (Loval)
4487 and then Hival > Loval
4488 then
4489 Loval := -Hival;
4490 Set_Realval (Lo, Loval);
4491 end if;
4493 -- Compute the fudged bounds. If the number is a model number,
4494 -- then we do nothing to include it, but we are allowed to backoff
4495 -- to the next adjacent model number when we exclude it. If it is
4496 -- not a model number then we straddle the two values with the
4497 -- model numbers on either side.
4499 Model_Num := UR_Trunc (Loval / Small) * Small;
4501 if Loval = Model_Num then
4502 Loval_Incl_EP := Model_Num;
4503 else
4504 Loval_Incl_EP := Model_Num - Small;
4505 end if;
4507 -- The low value excluding the end point is Small greater, but
4508 -- we do not do this exclusion if the low value is positive,
4509 -- since it can't help the size and could actually hurt by
4510 -- crossing the high bound.
4512 if UR_Is_Negative (Loval_Incl_EP) then
4513 Loval_Excl_EP := Loval_Incl_EP + Small;
4515 -- If the value went from negative to zero, then we have the
4516 -- case where Loval_Incl_EP is the model number just below
4517 -- zero, so we want to stick to the negative value for the
4518 -- base type to maintain the condition that the size will
4519 -- include signed values.
4521 if Typ = Btyp
4522 and then UR_Is_Zero (Loval_Excl_EP)
4523 then
4524 Loval_Excl_EP := Loval_Incl_EP;
4525 end if;
4527 else
4528 Loval_Excl_EP := Loval_Incl_EP;
4529 end if;
4531 -- Similar processing for upper bound and high value
4533 Model_Num := UR_Trunc (Hival / Small) * Small;
4535 if Hival = Model_Num then
4536 Hival_Incl_EP := Model_Num;
4537 else
4538 Hival_Incl_EP := Model_Num + Small;
4539 end if;
4541 if UR_Is_Positive (Hival_Incl_EP) then
4542 Hival_Excl_EP := Hival_Incl_EP - Small;
4543 else
4544 Hival_Excl_EP := Hival_Incl_EP;
4545 end if;
4547 -- One further adjustment is needed. In the case of subtypes, we
4548 -- cannot go outside the range of the base type, or we get
4549 -- peculiarities, and the base type range is already set. This
4550 -- only applies to the Incl values, since clearly the Excl values
4551 -- are already as restricted as they are allowed to be.
4553 if Typ /= Btyp then
4554 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4555 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4556 end if;
4558 -- Get size including and excluding end points
4560 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4561 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4563 -- No need to exclude end-points if it does not reduce size
4565 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4566 Loval_Excl_EP := Loval_Incl_EP;
4567 end if;
4569 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4570 Hival_Excl_EP := Hival_Incl_EP;
4571 end if;
4573 -- Now we set the actual size to be used. We want to use the
4574 -- bounds fudged up to include the end-points but only if this
4575 -- can be done without violating a specifically given size
4576 -- size clause or causing an unacceptable increase in size.
4578 -- Case of size clause given
4580 if Has_Size_Clause (Typ) then
4582 -- Use the inclusive size only if it is consistent with
4583 -- the explicitly specified size.
4585 if Size_Incl_EP <= RM_Size (Typ) then
4586 Actual_Lo := Loval_Incl_EP;
4587 Actual_Hi := Hival_Incl_EP;
4588 Actual_Size := Size_Incl_EP;
4590 -- If the inclusive size is too large, we try excluding
4591 -- the end-points (will be caught later if does not work).
4593 else
4594 Actual_Lo := Loval_Excl_EP;
4595 Actual_Hi := Hival_Excl_EP;
4596 Actual_Size := Size_Excl_EP;
4597 end if;
4599 -- Case of size clause not given
4601 else
4602 -- If we have a base type whose corresponding first subtype
4603 -- has an explicit size that is large enough to include our
4604 -- end-points, then do so. There is no point in working hard
4605 -- to get a base type whose size is smaller than the specified
4606 -- size of the first subtype.
4608 First_Subt := First_Subtype (Typ);
4610 if Has_Size_Clause (First_Subt)
4611 and then Size_Incl_EP <= Esize (First_Subt)
4612 then
4613 Actual_Size := Size_Incl_EP;
4614 Actual_Lo := Loval_Incl_EP;
4615 Actual_Hi := Hival_Incl_EP;
4617 -- If excluding the end-points makes the size smaller and
4618 -- results in a size of 8,16,32,64, then we take the smaller
4619 -- size. For the 64 case, this is compulsory. For the other
4620 -- cases, it seems reasonable. We like to include end points
4621 -- if we can, but not at the expense of moving to the next
4622 -- natural boundary of size.
4624 elsif Size_Incl_EP /= Size_Excl_EP
4625 and then
4626 (Size_Excl_EP = 8 or else
4627 Size_Excl_EP = 16 or else
4628 Size_Excl_EP = 32 or else
4629 Size_Excl_EP = 64)
4630 then
4631 Actual_Size := Size_Excl_EP;
4632 Actual_Lo := Loval_Excl_EP;
4633 Actual_Hi := Hival_Excl_EP;
4635 -- Otherwise we can definitely include the end points
4637 else
4638 Actual_Size := Size_Incl_EP;
4639 Actual_Lo := Loval_Incl_EP;
4640 Actual_Hi := Hival_Incl_EP;
4641 end if;
4643 -- One pathological case: normally we never fudge a low bound
4644 -- down, since it would seem to increase the size (if it has
4645 -- any effect), but for ranges containing single value, or no
4646 -- values, the high bound can be small too large. Consider:
4648 -- type t is delta 2.0**(-14)
4649 -- range 131072.0 .. 0;
4651 -- That lower bound is *just* outside the range of 32 bits, and
4652 -- does need fudging down in this case. Note that the bounds
4653 -- will always have crossed here, since the high bound will be
4654 -- fudged down if necessary, as in the case of:
4656 -- type t is delta 2.0**(-14)
4657 -- range 131072.0 .. 131072.0;
4659 -- So we detect the situation by looking for crossed bounds,
4660 -- and if the bounds are crossed, and the low bound is greater
4661 -- than zero, we will always back it off by small, since this
4662 -- is completely harmless.
4664 if Actual_Lo > Actual_Hi then
4665 if UR_Is_Positive (Actual_Lo) then
4666 Actual_Lo := Loval_Incl_EP - Small;
4667 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4669 -- And of course, we need to do exactly the same parallel
4670 -- fudge for flat ranges in the negative region.
4672 elsif UR_Is_Negative (Actual_Hi) then
4673 Actual_Hi := Hival_Incl_EP + Small;
4674 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4675 end if;
4676 end if;
4677 end if;
4679 Set_Realval (Lo, Actual_Lo);
4680 Set_Realval (Hi, Actual_Hi);
4681 end Fudge;
4683 -- For the decimal case, none of this fudging is required, since there
4684 -- are no end-point problems in the decimal case (the end-points are
4685 -- always included).
4687 else
4688 Actual_Size := Fsize (Loval, Hival);
4689 end if;
4691 -- At this stage, the actual size has been calculated and the proper
4692 -- required bounds are stored in the low and high bounds.
4694 if Actual_Size > 64 then
4695 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4696 Error_Msg_N
4697 ("size required (^) for type& too large, maximum allowed is 64",
4698 Typ);
4699 Actual_Size := 64;
4700 end if;
4702 -- Check size against explicit given size
4704 if Has_Size_Clause (Typ) then
4705 if Actual_Size > RM_Size (Typ) then
4706 Error_Msg_Uint_1 := RM_Size (Typ);
4707 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4708 Error_Msg_NE
4709 ("size given (^) for type& too small, minimum allowed is ^",
4710 Size_Clause (Typ), Typ);
4712 else
4713 Actual_Size := UI_To_Int (Esize (Typ));
4714 end if;
4716 -- Increase size to next natural boundary if no size clause given
4718 else
4719 if Actual_Size <= 8 then
4720 Actual_Size := 8;
4721 elsif Actual_Size <= 16 then
4722 Actual_Size := 16;
4723 elsif Actual_Size <= 32 then
4724 Actual_Size := 32;
4725 else
4726 Actual_Size := 64;
4727 end if;
4729 Init_Esize (Typ, Actual_Size);
4730 Adjust_Esize_For_Alignment (Typ);
4731 end if;
4733 -- If we have a base type, then expand the bounds so that they extend to
4734 -- the full width of the allocated size in bits, to avoid junk range
4735 -- checks on intermediate computations.
4737 if Base_Type (Typ) = Typ then
4738 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4739 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4740 end if;
4742 -- Final step is to reanalyze the bounds using the proper type
4743 -- and set the Corresponding_Integer_Value fields of the literals.
4745 Set_Etype (Lo, Empty);
4746 Set_Analyzed (Lo, False);
4747 Analyze (Lo);
4749 -- Resolve with universal fixed if the base type, and the base type if
4750 -- it is a subtype. Note we can't resolve the base type with itself,
4751 -- that would be a reference before definition.
4753 if Typ = Btyp then
4754 Resolve (Lo, Universal_Fixed);
4755 else
4756 Resolve (Lo, Btyp);
4757 end if;
4759 -- Set corresponding integer value for bound
4761 Set_Corresponding_Integer_Value
4762 (Lo, UR_To_Uint (Realval (Lo) / Small));
4764 -- Similar processing for high bound
4766 Set_Etype (Hi, Empty);
4767 Set_Analyzed (Hi, False);
4768 Analyze (Hi);
4770 if Typ = Btyp then
4771 Resolve (Hi, Universal_Fixed);
4772 else
4773 Resolve (Hi, Btyp);
4774 end if;
4776 Set_Corresponding_Integer_Value
4777 (Hi, UR_To_Uint (Realval (Hi) / Small));
4779 -- Set type of range to correspond to bounds
4781 Set_Etype (Rng, Etype (Lo));
4783 -- Set Esize to calculated size if not set already
4785 if Unknown_Esize (Typ) then
4786 Init_Esize (Typ, Actual_Size);
4787 end if;
4789 -- Set RM_Size if not already set. If already set, check value
4791 declare
4792 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4794 begin
4795 if RM_Size (Typ) /= Uint_0 then
4796 if RM_Size (Typ) < Minsiz then
4797 Error_Msg_Uint_1 := RM_Size (Typ);
4798 Error_Msg_Uint_2 := Minsiz;
4799 Error_Msg_NE
4800 ("size given (^) for type& too small, minimum allowed is ^",
4801 Size_Clause (Typ), Typ);
4802 end if;
4804 else
4805 Set_RM_Size (Typ, Minsiz);
4806 end if;
4807 end;
4808 end Freeze_Fixed_Point_Type;
4810 ------------------
4811 -- Freeze_Itype --
4812 ------------------
4814 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4815 L : List_Id;
4817 begin
4818 Set_Has_Delayed_Freeze (T);
4819 L := Freeze_Entity (T, Sloc (N));
4821 if Is_Non_Empty_List (L) then
4822 Insert_Actions (N, L);
4823 end if;
4824 end Freeze_Itype;
4826 --------------------------
4827 -- Freeze_Static_Object --
4828 --------------------------
4830 procedure Freeze_Static_Object (E : Entity_Id) is
4832 Cannot_Be_Static : exception;
4833 -- Exception raised if the type of a static object cannot be made
4834 -- static. This happens if the type depends on non-global objects.
4836 procedure Ensure_Expression_Is_SA (N : Node_Id);
4837 -- Called to ensure that an expression used as part of a type definition
4838 -- is statically allocatable, which means that the expression type is
4839 -- statically allocatable, and the expression is either static, or a
4840 -- reference to a library level constant.
4842 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4843 -- Called to mark a type as static, checking that it is possible
4844 -- to set the type as static. If it is not possible, then the
4845 -- exception Cannot_Be_Static is raised.
4847 -----------------------------
4848 -- Ensure_Expression_Is_SA --
4849 -----------------------------
4851 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4852 Ent : Entity_Id;
4854 begin
4855 Ensure_Type_Is_SA (Etype (N));
4857 if Is_Static_Expression (N) then
4858 return;
4860 elsif Nkind (N) = N_Identifier then
4861 Ent := Entity (N);
4863 if Present (Ent)
4864 and then Ekind (Ent) = E_Constant
4865 and then Is_Library_Level_Entity (Ent)
4866 then
4867 return;
4868 end if;
4869 end if;
4871 raise Cannot_Be_Static;
4872 end Ensure_Expression_Is_SA;
4874 -----------------------
4875 -- Ensure_Type_Is_SA --
4876 -----------------------
4878 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4879 N : Node_Id;
4880 C : Entity_Id;
4882 begin
4883 -- If type is library level, we are all set
4885 if Is_Library_Level_Entity (Typ) then
4886 return;
4887 end if;
4889 -- We are also OK if the type already marked as statically allocated,
4890 -- which means we processed it before.
4892 if Is_Statically_Allocated (Typ) then
4893 return;
4894 end if;
4896 -- Mark type as statically allocated
4898 Set_Is_Statically_Allocated (Typ);
4900 -- Check that it is safe to statically allocate this type
4902 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4903 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4904 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4906 elsif Is_Array_Type (Typ) then
4907 N := First_Index (Typ);
4908 while Present (N) loop
4909 Ensure_Type_Is_SA (Etype (N));
4910 Next_Index (N);
4911 end loop;
4913 Ensure_Type_Is_SA (Component_Type (Typ));
4915 elsif Is_Access_Type (Typ) then
4916 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4918 declare
4919 F : Entity_Id;
4920 T : constant Entity_Id := Etype (Designated_Type (Typ));
4922 begin
4923 if T /= Standard_Void_Type then
4924 Ensure_Type_Is_SA (T);
4925 end if;
4927 F := First_Formal (Designated_Type (Typ));
4929 while Present (F) loop
4930 Ensure_Type_Is_SA (Etype (F));
4931 Next_Formal (F);
4932 end loop;
4933 end;
4935 else
4936 Ensure_Type_Is_SA (Designated_Type (Typ));
4937 end if;
4939 elsif Is_Record_Type (Typ) then
4940 C := First_Entity (Typ);
4941 while Present (C) loop
4942 if Ekind (C) = E_Discriminant
4943 or else Ekind (C) = E_Component
4944 then
4945 Ensure_Type_Is_SA (Etype (C));
4947 elsif Is_Type (C) then
4948 Ensure_Type_Is_SA (C);
4949 end if;
4951 Next_Entity (C);
4952 end loop;
4954 elsif Ekind (Typ) = E_Subprogram_Type then
4955 Ensure_Type_Is_SA (Etype (Typ));
4957 C := First_Formal (Typ);
4958 while Present (C) loop
4959 Ensure_Type_Is_SA (Etype (C));
4960 Next_Formal (C);
4961 end loop;
4963 else
4964 raise Cannot_Be_Static;
4965 end if;
4966 end Ensure_Type_Is_SA;
4968 -- Start of processing for Freeze_Static_Object
4970 begin
4971 Ensure_Type_Is_SA (Etype (E));
4973 exception
4974 when Cannot_Be_Static =>
4976 -- If the object that cannot be static is imported or exported,
4977 -- then we give an error message saying that this object cannot
4978 -- be imported or exported.
4980 if Is_Imported (E) then
4981 Error_Msg_N
4982 ("& cannot be imported (local type is not constant)", E);
4984 -- Otherwise must be exported, something is wrong if compiler
4985 -- is marking something as statically allocated which cannot be).
4987 else pragma Assert (Is_Exported (E));
4988 Error_Msg_N
4989 ("& cannot be exported (local type is not constant)", E);
4990 end if;
4991 end Freeze_Static_Object;
4993 -----------------------
4994 -- Freeze_Subprogram --
4995 -----------------------
4997 procedure Freeze_Subprogram (E : Entity_Id) is
4998 Retype : Entity_Id;
4999 F : Entity_Id;
5001 begin
5002 -- Subprogram may not have an address clause unless it is imported
5004 if Present (Address_Clause (E)) then
5005 if not Is_Imported (E) then
5006 Error_Msg_N
5007 ("address clause can only be given " &
5008 "for imported subprogram",
5009 Name (Address_Clause (E)));
5010 end if;
5011 end if;
5013 -- Reset the Pure indication on an imported subprogram unless an
5014 -- explicit Pure_Function pragma was present. We do this because
5015 -- otherwise it is an insidious error to call a non-pure function from
5016 -- pure unit and have calls mysteriously optimized away. What happens
5017 -- here is that the Import can bypass the normal check to ensure that
5018 -- pure units call only pure subprograms.
5020 if Is_Imported (E)
5021 and then Is_Pure (E)
5022 and then not Has_Pragma_Pure_Function (E)
5023 then
5024 Set_Is_Pure (E, False);
5025 end if;
5027 -- For non-foreign convention subprograms, this is where we create
5028 -- the extra formals (for accessibility level and constrained bit
5029 -- information). We delay this till the freeze point precisely so
5030 -- that we know the convention!
5032 if not Has_Foreign_Convention (E) then
5033 Create_Extra_Formals (E);
5034 Set_Mechanisms (E);
5036 -- If this is convention Ada and a Valued_Procedure, that's odd
5038 if Ekind (E) = E_Procedure
5039 and then Is_Valued_Procedure (E)
5040 and then Convention (E) = Convention_Ada
5041 and then Warn_On_Export_Import
5042 then
5043 Error_Msg_N
5044 ("?Valued_Procedure has no effect for convention Ada", E);
5045 Set_Is_Valued_Procedure (E, False);
5046 end if;
5048 -- Case of foreign convention
5050 else
5051 Set_Mechanisms (E);
5053 -- For foreign conventions, warn about return of an
5054 -- unconstrained array.
5056 -- Note: we *do* allow a return by descriptor for the VMS case,
5057 -- though here there is probably more to be done ???
5059 if Ekind (E) = E_Function then
5060 Retype := Underlying_Type (Etype (E));
5062 -- If no return type, probably some other error, e.g. a
5063 -- missing full declaration, so ignore.
5065 if No (Retype) then
5066 null;
5068 -- If the return type is generic, we have emitted a warning
5069 -- earlier on, and there is nothing else to check here. Specific
5070 -- instantiations may lead to erroneous behavior.
5072 elsif Is_Generic_Type (Etype (E)) then
5073 null;
5075 elsif Is_Array_Type (Retype)
5076 and then not Is_Constrained (Retype)
5077 and then Mechanism (E) not in Descriptor_Codes
5078 and then Warn_On_Export_Import
5079 then
5080 Error_Msg_N
5081 ("?foreign convention function& should not return " &
5082 "unconstrained array", E);
5083 return;
5084 end if;
5085 end if;
5087 -- If any of the formals for an exported foreign convention
5088 -- subprogram have defaults, then emit an appropriate warning since
5089 -- this is odd (default cannot be used from non-Ada code)
5091 if Is_Exported (E) then
5092 F := First_Formal (E);
5093 while Present (F) loop
5094 if Warn_On_Export_Import
5095 and then Present (Default_Value (F))
5096 then
5097 Error_Msg_N
5098 ("?parameter cannot be defaulted in non-Ada call",
5099 Default_Value (F));
5100 end if;
5102 Next_Formal (F);
5103 end loop;
5104 end if;
5105 end if;
5107 -- For VMS, descriptor mechanisms for parameters are allowed only
5108 -- for imported/exported subprograms. Moreover, the NCA descriptor
5109 -- is not allowed for parameters of exported subprograms.
5111 if OpenVMS_On_Target then
5112 if Is_Exported (E) then
5113 F := First_Formal (E);
5114 while Present (F) loop
5115 if Mechanism (F) = By_Descriptor_NCA then
5116 Error_Msg_N
5117 ("'N'C'A' descriptor for parameter not permitted", F);
5118 Error_Msg_N
5119 ("\can only be used for imported subprogram", F);
5120 end if;
5122 Next_Formal (F);
5123 end loop;
5125 elsif not Is_Imported (E) then
5126 F := First_Formal (E);
5127 while Present (F) loop
5128 if Mechanism (F) in Descriptor_Codes then
5129 Error_Msg_N
5130 ("descriptor mechanism for parameter not permitted", F);
5131 Error_Msg_N
5132 ("\can only be used for imported/exported subprogram", F);
5133 end if;
5135 Next_Formal (F);
5136 end loop;
5137 end if;
5138 end if;
5140 -- Pragma Inline_Always is disallowed for dispatching subprograms
5141 -- because the address of such subprograms is saved in the dispatch
5142 -- table to support dispatching calls, and dispatching calls cannot
5143 -- be inlined. This is consistent with the restriction against using
5144 -- 'Access or 'Address on an Inline_Always subprogram.
5146 if Is_Dispatching_Operation (E)
5147 and then Has_Pragma_Inline_Always (E)
5148 then
5149 Error_Msg_N
5150 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5151 end if;
5153 -- Because of the implicit representation of inherited predefined
5154 -- operators in the front-end, the overriding status of the operation
5155 -- may be affected when a full view of a type is analyzed, and this is
5156 -- not captured by the analysis of the corresponding type declaration.
5157 -- Therefore the correctness of a not-overriding indicator must be
5158 -- rechecked when the subprogram is frozen.
5160 if Nkind (E) = N_Defining_Operator_Symbol
5161 and then not Error_Posted (Parent (E))
5162 then
5163 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5164 end if;
5165 end Freeze_Subprogram;
5167 ----------------------
5168 -- Is_Fully_Defined --
5169 ----------------------
5171 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5172 begin
5173 if Ekind (T) = E_Class_Wide_Type then
5174 return Is_Fully_Defined (Etype (T));
5176 elsif Is_Array_Type (T) then
5177 return Is_Fully_Defined (Component_Type (T));
5179 elsif Is_Record_Type (T)
5180 and not Is_Private_Type (T)
5181 then
5182 -- Verify that the record type has no components with private types
5183 -- without completion.
5185 declare
5186 Comp : Entity_Id;
5188 begin
5189 Comp := First_Component (T);
5191 while Present (Comp) loop
5192 if not Is_Fully_Defined (Etype (Comp)) then
5193 return False;
5194 end if;
5196 Next_Component (Comp);
5197 end loop;
5198 return True;
5199 end;
5201 else
5202 return not Is_Private_Type (T)
5203 or else Present (Full_View (Base_Type (T)));
5204 end if;
5205 end Is_Fully_Defined;
5207 ---------------------------------
5208 -- Generate_Prim_Op_References --
5209 ---------------------------------
5211 procedure Generate_Prim_Op_References (Typ : Entity_Id) is
5212 Base_T : Entity_Id;
5213 Prim : Elmt_Id;
5214 Prim_List : Elist_Id;
5215 Ent : Entity_Id;
5217 begin
5218 -- Handle subtypes of synchronized types
5220 if Ekind (Typ) = E_Protected_Subtype
5221 or else Ekind (Typ) = E_Task_Subtype
5222 then
5223 Base_T := Etype (Typ);
5224 else
5225 Base_T := Typ;
5226 end if;
5228 -- References to primitive operations are only relevant for tagged types
5230 if not Is_Tagged_Type (Base_T)
5231 or else Is_Class_Wide_Type (Base_T)
5232 then
5233 return;
5234 end if;
5236 -- Ada 2005 (AI-345): For synchronized types generate reference
5237 -- to the wrapper that allow us to dispatch calls through their
5238 -- implemented abstract interface types.
5240 -- The check for Present here is to protect against previously
5241 -- reported critical errors.
5243 if Is_Concurrent_Type (Base_T)
5244 and then Present (Corresponding_Record_Type (Base_T))
5245 then
5246 Prim_List := Primitive_Operations
5247 (Corresponding_Record_Type (Base_T));
5248 else
5249 Prim_List := Primitive_Operations (Base_T);
5250 end if;
5252 if No (Prim_List) then
5253 return;
5254 end if;
5256 Prim := First_Elmt (Prim_List);
5257 while Present (Prim) loop
5259 -- If the operation is derived, get the original for cross-reference
5260 -- reference purposes (it is the original for which we want the xref
5261 -- and for which the comes_from_source test must be performed).
5263 Ent := Node (Prim);
5264 while Present (Alias (Ent)) loop
5265 Ent := Alias (Ent);
5266 end loop;
5268 Generate_Reference (Typ, Ent, 'p', Set_Ref => False);
5269 Next_Elmt (Prim);
5270 end loop;
5271 end Generate_Prim_Op_References;
5273 ---------------------------------
5274 -- Process_Default_Expressions --
5275 ---------------------------------
5277 procedure Process_Default_Expressions
5278 (E : Entity_Id;
5279 After : in out Node_Id)
5281 Loc : constant Source_Ptr := Sloc (E);
5282 Dbody : Node_Id;
5283 Formal : Node_Id;
5284 Dcopy : Node_Id;
5285 Dnam : Entity_Id;
5287 begin
5288 Set_Default_Expressions_Processed (E);
5290 -- A subprogram instance and its associated anonymous subprogram share
5291 -- their signature. The default expression functions are defined in the
5292 -- wrapper packages for the anonymous subprogram, and should not be
5293 -- generated again for the instance.
5295 if Is_Generic_Instance (E)
5296 and then Present (Alias (E))
5297 and then Default_Expressions_Processed (Alias (E))
5298 then
5299 return;
5300 end if;
5302 Formal := First_Formal (E);
5303 while Present (Formal) loop
5304 if Present (Default_Value (Formal)) then
5306 -- We work with a copy of the default expression because we
5307 -- do not want to disturb the original, since this would mess
5308 -- up the conformance checking.
5310 Dcopy := New_Copy_Tree (Default_Value (Formal));
5312 -- The analysis of the expression may generate insert actions,
5313 -- which of course must not be executed. We wrap those actions
5314 -- in a procedure that is not called, and later on eliminated.
5315 -- The following cases have no side-effects, and are analyzed
5316 -- directly.
5318 if Nkind (Dcopy) = N_Identifier
5319 or else Nkind (Dcopy) = N_Expanded_Name
5320 or else Nkind (Dcopy) = N_Integer_Literal
5321 or else (Nkind (Dcopy) = N_Real_Literal
5322 and then not Vax_Float (Etype (Dcopy)))
5323 or else Nkind (Dcopy) = N_Character_Literal
5324 or else Nkind (Dcopy) = N_String_Literal
5325 or else Known_Null (Dcopy)
5326 or else (Nkind (Dcopy) = N_Attribute_Reference
5327 and then
5328 Attribute_Name (Dcopy) = Name_Null_Parameter)
5329 then
5331 -- If there is no default function, we must still do a full
5332 -- analyze call on the default value, to ensure that all error
5333 -- checks are performed, e.g. those associated with static
5334 -- evaluation. Note: this branch will always be taken if the
5335 -- analyzer is turned off (but we still need the error checks).
5337 -- Note: the setting of parent here is to meet the requirement
5338 -- that we can only analyze the expression while attached to
5339 -- the tree. Really the requirement is that the parent chain
5340 -- be set, we don't actually need to be in the tree.
5342 Set_Parent (Dcopy, Declaration_Node (Formal));
5343 Analyze (Dcopy);
5345 -- Default expressions are resolved with their own type if the
5346 -- context is generic, to avoid anomalies with private types.
5348 if Ekind (Scope (E)) = E_Generic_Package then
5349 Resolve (Dcopy);
5350 else
5351 Resolve (Dcopy, Etype (Formal));
5352 end if;
5354 -- If that resolved expression will raise constraint error,
5355 -- then flag the default value as raising constraint error.
5356 -- This allows a proper error message on the calls.
5358 if Raises_Constraint_Error (Dcopy) then
5359 Set_Raises_Constraint_Error (Default_Value (Formal));
5360 end if;
5362 -- If the default is a parameterless call, we use the name of
5363 -- the called function directly, and there is no body to build.
5365 elsif Nkind (Dcopy) = N_Function_Call
5366 and then No (Parameter_Associations (Dcopy))
5367 then
5368 null;
5370 -- Else construct and analyze the body of a wrapper procedure
5371 -- that contains an object declaration to hold the expression.
5372 -- Given that this is done only to complete the analysis, it
5373 -- simpler to build a procedure than a function which might
5374 -- involve secondary stack expansion.
5376 else
5377 Dnam :=
5378 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5380 Dbody :=
5381 Make_Subprogram_Body (Loc,
5382 Specification =>
5383 Make_Procedure_Specification (Loc,
5384 Defining_Unit_Name => Dnam),
5386 Declarations => New_List (
5387 Make_Object_Declaration (Loc,
5388 Defining_Identifier =>
5389 Make_Defining_Identifier (Loc,
5390 New_Internal_Name ('T')),
5391 Object_Definition =>
5392 New_Occurrence_Of (Etype (Formal), Loc),
5393 Expression => New_Copy_Tree (Dcopy))),
5395 Handled_Statement_Sequence =>
5396 Make_Handled_Sequence_Of_Statements (Loc,
5397 Statements => New_List));
5399 Set_Scope (Dnam, Scope (E));
5400 Set_Assignment_OK (First (Declarations (Dbody)));
5401 Set_Is_Eliminated (Dnam);
5402 Insert_After (After, Dbody);
5403 Analyze (Dbody);
5404 After := Dbody;
5405 end if;
5406 end if;
5408 Next_Formal (Formal);
5409 end loop;
5410 end Process_Default_Expressions;
5412 ----------------------------------------
5413 -- Set_Component_Alignment_If_Not_Set --
5414 ----------------------------------------
5416 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5417 begin
5418 -- Ignore if not base type, subtypes don't need anything
5420 if Typ /= Base_Type (Typ) then
5421 return;
5422 end if;
5424 -- Do not override existing representation
5426 if Is_Packed (Typ) then
5427 return;
5429 elsif Has_Specified_Layout (Typ) then
5430 return;
5432 elsif Component_Alignment (Typ) /= Calign_Default then
5433 return;
5435 else
5436 Set_Component_Alignment
5437 (Typ, Scope_Stack.Table
5438 (Scope_Stack.Last).Component_Alignment_Default);
5439 end if;
5440 end Set_Component_Alignment_If_Not_Set;
5442 ------------------
5443 -- Undelay_Type --
5444 ------------------
5446 procedure Undelay_Type (T : Entity_Id) is
5447 begin
5448 Set_Has_Delayed_Freeze (T, False);
5449 Set_Freeze_Node (T, Empty);
5451 -- Since we don't want T to have a Freeze_Node, we don't want its
5452 -- Full_View or Corresponding_Record_Type to have one either.
5454 -- ??? Fundamentally, this whole handling is a kludge. What we really
5455 -- want is to be sure that for an Itype that's part of record R and is a
5456 -- subtype of type T, that it's frozen after the later of the freeze
5457 -- points of R and T. We have no way of doing that directly, so what we
5458 -- do is force most such Itypes to be frozen as part of freezing R via
5459 -- this procedure and only delay the ones that need to be delayed
5460 -- (mostly the designated types of access types that are defined as part
5461 -- of the record).
5463 if Is_Private_Type (T)
5464 and then Present (Full_View (T))
5465 and then Is_Itype (Full_View (T))
5466 and then Is_Record_Type (Scope (Full_View (T)))
5467 then
5468 Undelay_Type (Full_View (T));
5469 end if;
5471 if Is_Concurrent_Type (T)
5472 and then Present (Corresponding_Record_Type (T))
5473 and then Is_Itype (Corresponding_Record_Type (T))
5474 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5475 then
5476 Undelay_Type (Corresponding_Record_Type (T));
5477 end if;
5478 end Undelay_Type;
5480 ------------------
5481 -- Warn_Overlay --
5482 ------------------
5484 procedure Warn_Overlay
5485 (Expr : Node_Id;
5486 Typ : Entity_Id;
5487 Nam : Entity_Id)
5489 Ent : constant Entity_Id := Entity (Nam);
5490 -- The object to which the address clause applies
5492 Init : Node_Id;
5493 Old : Entity_Id := Empty;
5494 Decl : Node_Id;
5496 begin
5497 -- No warning if address clause overlay warnings are off
5499 if not Address_Clause_Overlay_Warnings then
5500 return;
5501 end if;
5503 -- No warning if there is an explicit initialization
5505 Init := Original_Node (Expression (Declaration_Node (Ent)));
5507 if Present (Init) and then Comes_From_Source (Init) then
5508 return;
5509 end if;
5511 -- We only give the warning for non-imported entities of a type for
5512 -- which a non-null base init proc is defined (or for access types which
5513 -- have implicit null initialization).
5515 if Present (Expr)
5516 and then (Has_Non_Null_Base_Init_Proc (Typ)
5517 or else Is_Access_Type (Typ))
5518 and then not Is_Imported (Ent)
5519 then
5520 if Nkind (Expr) = N_Attribute_Reference
5521 and then Is_Entity_Name (Prefix (Expr))
5522 then
5523 Old := Entity (Prefix (Expr));
5525 elsif Is_Entity_Name (Expr)
5526 and then Ekind (Entity (Expr)) = E_Constant
5527 then
5528 Decl := Declaration_Node (Entity (Expr));
5530 if Nkind (Decl) = N_Object_Declaration
5531 and then Present (Expression (Decl))
5532 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5533 and then Is_Entity_Name (Prefix (Expression (Decl)))
5534 then
5535 Old := Entity (Prefix (Expression (Decl)));
5537 elsif Nkind (Expr) = N_Function_Call then
5538 return;
5539 end if;
5541 -- A function call (most likely to To_Address) is probably not an
5542 -- overlay, so skip warning. Ditto if the function call was inlined
5543 -- and transformed into an entity.
5545 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5546 return;
5547 end if;
5549 Decl := Next (Parent (Expr));
5551 -- If a pragma Import follows, we assume that it is for the current
5552 -- target of the address clause, and skip the warning.
5554 if Present (Decl)
5555 and then Nkind (Decl) = N_Pragma
5556 and then Pragma_Name (Decl) = Name_Import
5557 then
5558 return;
5559 end if;
5561 if Present (Old) then
5562 Error_Msg_Node_2 := Old;
5563 Error_Msg_N
5564 ("default initialization of & may modify &?",
5565 Nam);
5566 else
5567 Error_Msg_N
5568 ("default initialization of & may modify overlaid storage?",
5569 Nam);
5570 end if;
5572 -- Add friendly warning if initialization comes from a packed array
5573 -- component.
5575 if Is_Record_Type (Typ) then
5576 declare
5577 Comp : Entity_Id;
5579 begin
5580 Comp := First_Component (Typ);
5582 while Present (Comp) loop
5583 if Nkind (Parent (Comp)) = N_Component_Declaration
5584 and then Present (Expression (Parent (Comp)))
5585 then
5586 exit;
5587 elsif Is_Array_Type (Etype (Comp))
5588 and then Present (Packed_Array_Type (Etype (Comp)))
5589 then
5590 Error_Msg_NE
5591 ("\packed array component& " &
5592 "will be initialized to zero?",
5593 Nam, Comp);
5594 exit;
5595 else
5596 Next_Component (Comp);
5597 end if;
5598 end loop;
5599 end;
5600 end if;
5602 Error_Msg_N
5603 ("\use pragma Import for & to " &
5604 "suppress initialization (RM B.1(24))?",
5605 Nam);
5606 end if;
5607 end Warn_Overlay;
5609 end Freeze;