objc/
[official-gcc.git] / gcc / ada / checks.adb
blobf93594c27004fbe5a4540c5c9767ff5fbe3d5bdf
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Exp_Ch2; use Exp_Ch2;
32 with Exp_Pakd; use Exp_Pakd;
33 with Exp_Util; use Exp_Util;
34 with Elists; use Elists;
35 with Eval_Fat; use Eval_Fat;
36 with Freeze; use Freeze;
37 with Lib; use Lib;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Output; use Output;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Rtsfind; use Rtsfind;
45 with Sem; use Sem;
46 with Sem_Eval; use Sem_Eval;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch8; use Sem_Ch8;
49 with Sem_Res; use Sem_Res;
50 with Sem_Util; use Sem_Util;
51 with Sem_Warn; use Sem_Warn;
52 with Sinfo; use Sinfo;
53 with Sinput; use Sinput;
54 with Snames; use Snames;
55 with Sprint; use Sprint;
56 with Stand; use Stand;
57 with Targparm; use Targparm;
58 with Tbuild; use Tbuild;
59 with Ttypes; use Ttypes;
60 with Urealp; use Urealp;
61 with Validsw; use Validsw;
63 package body Checks is
65 -- General note: many of these routines are concerned with generating
66 -- checking code to make sure that constraint error is raised at runtime.
67 -- Clearly this code is only needed if the expander is active, since
68 -- otherwise we will not be generating code or going into the runtime
69 -- execution anyway.
71 -- We therefore disconnect most of these checks if the expander is
72 -- inactive. This has the additional benefit that we do not need to
73 -- worry about the tree being messed up by previous errors (since errors
74 -- turn off expansion anyway).
76 -- There are a few exceptions to the above rule. For instance routines
77 -- such as Apply_Scalar_Range_Check that do not insert any code can be
78 -- safely called even when the Expander is inactive (but Errors_Detected
79 -- is 0). The benefit of executing this code when expansion is off, is
80 -- the ability to emit constraint error warning for static expressions
81 -- even when we are not generating code.
83 -------------------------------------
84 -- Suppression of Redundant Checks --
85 -------------------------------------
87 -- This unit implements a limited circuit for removal of redundant
88 -- checks. The processing is based on a tracing of simple sequential
89 -- flow. For any sequence of statements, we save expressions that are
90 -- marked to be checked, and then if the same expression appears later
91 -- with the same check, then under certain circumstances, the second
92 -- check can be suppressed.
94 -- Basically, we can suppress the check if we know for certain that
95 -- the previous expression has been elaborated (together with its
96 -- check), and we know that the exception frame is the same, and that
97 -- nothing has happened to change the result of the exception.
99 -- Let us examine each of these three conditions in turn to describe
100 -- how we ensure that this condition is met.
102 -- First, we need to know for certain that the previous expression has
103 -- been executed. This is done principly by the mechanism of calling
104 -- Conditional_Statements_Begin at the start of any statement sequence
105 -- and Conditional_Statements_End at the end. The End call causes all
106 -- checks remembered since the Begin call to be discarded. This does
107 -- miss a few cases, notably the case of a nested BEGIN-END block with
108 -- no exception handlers. But the important thing is to be conservative.
109 -- The other protection is that all checks are discarded if a label
110 -- is encountered, since then the assumption of sequential execution
111 -- is violated, and we don't know enough about the flow.
113 -- Second, we need to know that the exception frame is the same. We
114 -- do this by killing all remembered checks when we enter a new frame.
115 -- Again, that's over-conservative, but generally the cases we can help
116 -- with are pretty local anyway (like the body of a loop for example).
118 -- Third, we must be sure to forget any checks which are no longer valid.
119 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
120 -- used to note any changes to local variables. We only attempt to deal
121 -- with checks involving local variables, so we do not need to worry
122 -- about global variables. Second, a call to any non-global procedure
123 -- causes us to abandon all stored checks, since such a all may affect
124 -- the values of any local variables.
126 -- The following define the data structures used to deal with remembering
127 -- checks so that redundant checks can be eliminated as described above.
129 -- Right now, the only expressions that we deal with are of the form of
130 -- simple local objects (either declared locally, or IN parameters) or
131 -- such objects plus/minus a compile time known constant. We can do
132 -- more later on if it seems worthwhile, but this catches many simple
133 -- cases in practice.
135 -- The following record type reflects a single saved check. An entry
136 -- is made in the stack of saved checks if and only if the expression
137 -- has been elaborated with the indicated checks.
139 type Saved_Check is record
140 Killed : Boolean;
141 -- Set True if entry is killed by Kill_Checks
143 Entity : Entity_Id;
144 -- The entity involved in the expression that is checked
146 Offset : Uint;
147 -- A compile time value indicating the result of adding or
148 -- subtracting a compile time value. This value is to be
149 -- added to the value of the Entity. A value of zero is
150 -- used for the case of a simple entity reference.
152 Check_Type : Character;
153 -- This is set to 'R' for a range check (in which case Target_Type
154 -- is set to the target type for the range check) or to 'O' for an
155 -- overflow check (in which case Target_Type is set to Empty).
157 Target_Type : Entity_Id;
158 -- Used only if Do_Range_Check is set. Records the target type for
159 -- the check. We need this, because a check is a duplicate only if
160 -- it has a the same target type (or more accurately one with a
161 -- range that is smaller or equal to the stored target type of a
162 -- saved check).
163 end record;
165 -- The following table keeps track of saved checks. Rather than use an
166 -- extensible table. We just use a table of fixed size, and we discard
167 -- any saved checks that do not fit. That's very unlikely to happen and
168 -- this is only an optimization in any case.
170 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
171 -- Array of saved checks
173 Num_Saved_Checks : Nat := 0;
174 -- Number of saved checks
176 -- The following stack keeps track of statement ranges. It is treated
177 -- as a stack. When Conditional_Statements_Begin is called, an entry
178 -- is pushed onto this stack containing the value of Num_Saved_Checks
179 -- at the time of the call. Then when Conditional_Statements_End is
180 -- called, this value is popped off and used to reset Num_Saved_Checks.
182 -- Note: again, this is a fixed length stack with a size that should
183 -- always be fine. If the value of the stack pointer goes above the
184 -- limit, then we just forget all saved checks.
186 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
187 Saved_Checks_TOS : Nat := 0;
189 -----------------------
190 -- Local Subprograms --
191 -----------------------
193 procedure Apply_Float_Conversion_Check
194 (Ck_Node : Node_Id;
195 Target_Typ : Entity_Id);
196 -- The checks on a conversion from a floating-point type to an integer
197 -- type are delicate. They have to be performed before conversion, they
198 -- have to raise an exception when the operand is a NaN, and rounding must
199 -- be taken into account to determine the safe bounds of the operand.
201 procedure Apply_Selected_Length_Checks
202 (Ck_Node : Node_Id;
203 Target_Typ : Entity_Id;
204 Source_Typ : Entity_Id;
205 Do_Static : Boolean);
206 -- This is the subprogram that does all the work for Apply_Length_Check
207 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
208 -- described for the above routines. The Do_Static flag indicates that
209 -- only a static check is to be done.
211 procedure Apply_Selected_Range_Checks
212 (Ck_Node : Node_Id;
213 Target_Typ : Entity_Id;
214 Source_Typ : Entity_Id;
215 Do_Static : Boolean);
216 -- This is the subprogram that does all the work for Apply_Range_Check.
217 -- Expr, Target_Typ and Source_Typ are as described for the above
218 -- routine. The Do_Static flag indicates that only a static check is
219 -- to be done.
221 procedure Find_Check
222 (Expr : Node_Id;
223 Check_Type : Character;
224 Target_Type : Entity_Id;
225 Entry_OK : out Boolean;
226 Check_Num : out Nat;
227 Ent : out Entity_Id;
228 Ofs : out Uint);
229 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
230 -- to see if a check is of the form for optimization, and if so, to see
231 -- if it has already been performed. Expr is the expression to check,
232 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
233 -- Target_Type is the target type for a range check, and Empty for an
234 -- overflow check. If the entry is not of the form for optimization,
235 -- then Entry_OK is set to False, and the remaining out parameters
236 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
237 -- entity and offset from the expression. Check_Num is the number of
238 -- a matching saved entry in Saved_Checks, or zero if no such entry
239 -- is located.
241 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
242 -- If a discriminal is used in constraining a prival, Return reference
243 -- to the discriminal of the protected body (which renames the parameter
244 -- of the enclosing protected operation). This clumsy transformation is
245 -- needed because privals are created too late and their actual subtypes
246 -- are not available when analysing the bodies of the protected operations.
247 -- To be cleaned up???
249 function Guard_Access
250 (Cond : Node_Id;
251 Loc : Source_Ptr;
252 Ck_Node : Node_Id) return Node_Id;
253 -- In the access type case, guard the test with a test to ensure
254 -- that the access value is non-null, since the checks do not
255 -- not apply to null access values.
257 procedure Install_Null_Excluding_Check (N : Node_Id);
258 -- Determines whether an access node requires a runtime access check and
259 -- if so inserts the appropriate run-time check
261 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
262 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
263 -- Constraint_Error node.
265 function Selected_Length_Checks
266 (Ck_Node : Node_Id;
267 Target_Typ : Entity_Id;
268 Source_Typ : Entity_Id;
269 Warn_Node : Node_Id) return Check_Result;
270 -- Like Apply_Selected_Length_Checks, except it doesn't modify
271 -- anything, just returns a list of nodes as described in the spec of
272 -- this package for the Range_Check function.
274 function Selected_Range_Checks
275 (Ck_Node : Node_Id;
276 Target_Typ : Entity_Id;
277 Source_Typ : Entity_Id;
278 Warn_Node : Node_Id) return Check_Result;
279 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
280 -- just returns a list of nodes as described in the spec of this package
281 -- for the Range_Check function.
283 ------------------------------
284 -- Access_Checks_Suppressed --
285 ------------------------------
287 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
288 begin
289 if Present (E) and then Checks_May_Be_Suppressed (E) then
290 return Is_Check_Suppressed (E, Access_Check);
291 else
292 return Scope_Suppress (Access_Check);
293 end if;
294 end Access_Checks_Suppressed;
296 -------------------------------------
297 -- Accessibility_Checks_Suppressed --
298 -------------------------------------
300 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
301 begin
302 if Present (E) and then Checks_May_Be_Suppressed (E) then
303 return Is_Check_Suppressed (E, Accessibility_Check);
304 else
305 return Scope_Suppress (Accessibility_Check);
306 end if;
307 end Accessibility_Checks_Suppressed;
309 -------------------------
310 -- Append_Range_Checks --
311 -------------------------
313 procedure Append_Range_Checks
314 (Checks : Check_Result;
315 Stmts : List_Id;
316 Suppress_Typ : Entity_Id;
317 Static_Sloc : Source_Ptr;
318 Flag_Node : Node_Id)
320 Internal_Flag_Node : constant Node_Id := Flag_Node;
321 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
323 Checks_On : constant Boolean :=
324 (not Index_Checks_Suppressed (Suppress_Typ))
325 or else
326 (not Range_Checks_Suppressed (Suppress_Typ));
328 begin
329 -- For now we just return if Checks_On is false, however this should
330 -- be enhanced to check for an always True value in the condition
331 -- and to generate a compilation warning???
333 if not Checks_On then
334 return;
335 end if;
337 for J in 1 .. 2 loop
338 exit when No (Checks (J));
340 if Nkind (Checks (J)) = N_Raise_Constraint_Error
341 and then Present (Condition (Checks (J)))
342 then
343 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
344 Append_To (Stmts, Checks (J));
345 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
346 end if;
348 else
349 Append_To
350 (Stmts,
351 Make_Raise_Constraint_Error (Internal_Static_Sloc,
352 Reason => CE_Range_Check_Failed));
353 end if;
354 end loop;
355 end Append_Range_Checks;
357 ------------------------
358 -- Apply_Access_Check --
359 ------------------------
361 procedure Apply_Access_Check (N : Node_Id) is
362 P : constant Node_Id := Prefix (N);
364 begin
365 if Inside_A_Generic then
366 return;
367 end if;
369 if Is_Entity_Name (P) then
370 Check_Unset_Reference (P);
371 end if;
373 -- We do not need access checks if prefix is known to be non-null
375 if Known_Non_Null (P) then
376 return;
378 -- We do not need access checks if they are suppressed on the type
380 elsif Access_Checks_Suppressed (Etype (P)) then
381 return;
383 -- We do not need checks if we are not generating code (i.e. the
384 -- expander is not active). This is not just an optimization, there
385 -- are cases (e.g. with pragma Debug) where generating the checks
386 -- can cause real trouble).
388 elsif not Expander_Active then
389 return;
390 end if;
392 -- Case where P is an entity name
394 if Is_Entity_Name (P) then
395 declare
396 Ent : constant Entity_Id := Entity (P);
398 begin
399 if Access_Checks_Suppressed (Ent) then
400 return;
401 end if;
403 -- Otherwise we are going to generate an access check, and
404 -- are we have done it, the entity will now be known non null
405 -- But we have to check for safe sequential semantics here!
407 if Safe_To_Capture_Value (N, Ent) then
408 Set_Is_Known_Non_Null (Ent);
409 end if;
410 end;
411 end if;
413 -- Access check is required
415 Install_Null_Excluding_Check (P);
416 end Apply_Access_Check;
418 -------------------------------
419 -- Apply_Accessibility_Check --
420 -------------------------------
422 procedure Apply_Accessibility_Check (N : Node_Id; Typ : Entity_Id) is
423 Loc : constant Source_Ptr := Sloc (N);
424 Param_Ent : constant Entity_Id := Param_Entity (N);
425 Param_Level : Node_Id;
426 Type_Level : Node_Id;
428 begin
429 if Inside_A_Generic then
430 return;
432 -- Only apply the run-time check if the access parameter
433 -- has an associated extra access level parameter and
434 -- when the level of the type is less deep than the level
435 -- of the access parameter.
437 elsif Present (Param_Ent)
438 and then Present (Extra_Accessibility (Param_Ent))
439 and then UI_Gt (Object_Access_Level (N),
440 Type_Access_Level (Typ))
441 and then not Accessibility_Checks_Suppressed (Param_Ent)
442 and then not Accessibility_Checks_Suppressed (Typ)
443 then
444 Param_Level :=
445 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
447 Type_Level :=
448 Make_Integer_Literal (Loc, Type_Access_Level (Typ));
450 -- Raise Program_Error if the accessibility level of the
451 -- the access parameter is deeper than the level of the
452 -- target access type.
454 Insert_Action (N,
455 Make_Raise_Program_Error (Loc,
456 Condition =>
457 Make_Op_Gt (Loc,
458 Left_Opnd => Param_Level,
459 Right_Opnd => Type_Level),
460 Reason => PE_Accessibility_Check_Failed));
462 Analyze_And_Resolve (N);
463 end if;
464 end Apply_Accessibility_Check;
466 ---------------------------
467 -- Apply_Alignment_Check --
468 ---------------------------
470 procedure Apply_Alignment_Check (E : Entity_Id; N : Node_Id) is
471 AC : constant Node_Id := Address_Clause (E);
472 Typ : constant Entity_Id := Etype (E);
473 Expr : Node_Id;
474 Loc : Source_Ptr;
476 Alignment_Required : constant Boolean := Maximum_Alignment > 1;
477 -- Constant to show whether target requires alignment checks
479 begin
480 -- See if check needed. Note that we never need a check if the
481 -- maximum alignment is one, since the check will always succeed
483 if No (AC)
484 or else not Check_Address_Alignment (AC)
485 or else not Alignment_Required
486 then
487 return;
488 end if;
490 Loc := Sloc (AC);
491 Expr := Expression (AC);
493 if Nkind (Expr) = N_Unchecked_Type_Conversion then
494 Expr := Expression (Expr);
496 elsif Nkind (Expr) = N_Function_Call
497 and then Is_Entity_Name (Name (Expr))
498 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
499 then
500 Expr := First (Parameter_Associations (Expr));
502 if Nkind (Expr) = N_Parameter_Association then
503 Expr := Explicit_Actual_Parameter (Expr);
504 end if;
505 end if;
507 -- Here Expr is the address value. See if we know that the
508 -- value is unacceptable at compile time.
510 if Compile_Time_Known_Value (Expr)
511 and then (Known_Alignment (E) or else Known_Alignment (Typ))
512 then
513 declare
514 AL : Uint := Alignment (Typ);
516 begin
517 -- The object alignment might be more restrictive than the
518 -- type alignment.
520 if Known_Alignment (E) then
521 AL := Alignment (E);
522 end if;
524 if Expr_Value (Expr) mod AL /= 0 then
525 Insert_Action (N,
526 Make_Raise_Program_Error (Loc,
527 Reason => PE_Misaligned_Address_Value));
528 Error_Msg_NE
529 ("?specified address for& not " &
530 "consistent with alignment ('R'M 13.3(27))", Expr, E);
531 end if;
532 end;
534 -- Here we do not know if the value is acceptable, generate
535 -- code to raise PE if alignment is inappropriate.
537 else
538 -- Skip generation of this code if we don't want elab code
540 if not Restriction_Active (No_Elaboration_Code) then
541 Insert_After_And_Analyze (N,
542 Make_Raise_Program_Error (Loc,
543 Condition =>
544 Make_Op_Ne (Loc,
545 Left_Opnd =>
546 Make_Op_Mod (Loc,
547 Left_Opnd =>
548 Unchecked_Convert_To
549 (RTE (RE_Integer_Address),
550 Duplicate_Subexpr_No_Checks (Expr)),
551 Right_Opnd =>
552 Make_Attribute_Reference (Loc,
553 Prefix => New_Occurrence_Of (E, Loc),
554 Attribute_Name => Name_Alignment)),
555 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
556 Reason => PE_Misaligned_Address_Value),
557 Suppress => All_Checks);
558 end if;
559 end if;
561 return;
563 exception
564 when RE_Not_Available =>
565 return;
566 end Apply_Alignment_Check;
568 -------------------------------------
569 -- Apply_Arithmetic_Overflow_Check --
570 -------------------------------------
572 -- This routine is called only if the type is an integer type, and
573 -- a software arithmetic overflow check must be performed for op
574 -- (add, subtract, multiply). The check is performed only if
575 -- Software_Overflow_Checking is enabled and Do_Overflow_Check
576 -- is set. In this case we expand the operation into a more complex
577 -- sequence of tests that ensures that overflow is properly caught.
579 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
580 Loc : constant Source_Ptr := Sloc (N);
581 Typ : constant Entity_Id := Etype (N);
582 Rtyp : constant Entity_Id := Root_Type (Typ);
583 Siz : constant Int := UI_To_Int (Esize (Rtyp));
584 Dsiz : constant Int := Siz * 2;
585 Opnod : Node_Id;
586 Ctyp : Entity_Id;
587 Opnd : Node_Id;
588 Cent : RE_Id;
590 begin
591 -- Skip this if overflow checks are done in back end, or the overflow
592 -- flag is not set anyway, or we are not doing code expansion.
594 if Backend_Overflow_Checks_On_Target
595 or else not Do_Overflow_Check (N)
596 or else not Expander_Active
597 then
598 return;
599 end if;
601 -- Otherwise, we generate the full general code for front end overflow
602 -- detection, which works by doing arithmetic in a larger type:
604 -- x op y
606 -- is expanded into
608 -- Typ (Checktyp (x) op Checktyp (y));
610 -- where Typ is the type of the original expression, and Checktyp is
611 -- an integer type of sufficient length to hold the largest possible
612 -- result.
614 -- In the case where check type exceeds the size of Long_Long_Integer,
615 -- we use a different approach, expanding to:
617 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
619 -- where xxx is Add, Multiply or Subtract as appropriate
621 -- Find check type if one exists
623 if Dsiz <= Standard_Integer_Size then
624 Ctyp := Standard_Integer;
626 elsif Dsiz <= Standard_Long_Long_Integer_Size then
627 Ctyp := Standard_Long_Long_Integer;
629 -- No check type exists, use runtime call
631 else
632 if Nkind (N) = N_Op_Add then
633 Cent := RE_Add_With_Ovflo_Check;
635 elsif Nkind (N) = N_Op_Multiply then
636 Cent := RE_Multiply_With_Ovflo_Check;
638 else
639 pragma Assert (Nkind (N) = N_Op_Subtract);
640 Cent := RE_Subtract_With_Ovflo_Check;
641 end if;
643 Rewrite (N,
644 OK_Convert_To (Typ,
645 Make_Function_Call (Loc,
646 Name => New_Reference_To (RTE (Cent), Loc),
647 Parameter_Associations => New_List (
648 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
649 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
651 Analyze_And_Resolve (N, Typ);
652 return;
653 end if;
655 -- If we fall through, we have the case where we do the arithmetic in
656 -- the next higher type and get the check by conversion. In these cases
657 -- Ctyp is set to the type to be used as the check type.
659 Opnod := Relocate_Node (N);
661 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
663 Analyze (Opnd);
664 Set_Etype (Opnd, Ctyp);
665 Set_Analyzed (Opnd, True);
666 Set_Left_Opnd (Opnod, Opnd);
668 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
670 Analyze (Opnd);
671 Set_Etype (Opnd, Ctyp);
672 Set_Analyzed (Opnd, True);
673 Set_Right_Opnd (Opnod, Opnd);
675 -- The type of the operation changes to the base type of the check
676 -- type, and we reset the overflow check indication, since clearly
677 -- no overflow is possible now that we are using a double length
678 -- type. We also set the Analyzed flag to avoid a recursive attempt
679 -- to expand the node.
681 Set_Etype (Opnod, Base_Type (Ctyp));
682 Set_Do_Overflow_Check (Opnod, False);
683 Set_Analyzed (Opnod, True);
685 -- Now build the outer conversion
687 Opnd := OK_Convert_To (Typ, Opnod);
688 Analyze (Opnd);
689 Set_Etype (Opnd, Typ);
691 -- In the discrete type case, we directly generate the range check
692 -- for the outer operand. This range check will implement the required
693 -- overflow check.
695 if Is_Discrete_Type (Typ) then
696 Rewrite (N, Opnd);
697 Generate_Range_Check (Expression (N), Typ, CE_Overflow_Check_Failed);
699 -- For other types, we enable overflow checking on the conversion,
700 -- after setting the node as analyzed to prevent recursive attempts
701 -- to expand the conversion node.
703 else
704 Set_Analyzed (Opnd, True);
705 Enable_Overflow_Check (Opnd);
706 Rewrite (N, Opnd);
707 end if;
709 exception
710 when RE_Not_Available =>
711 return;
712 end Apply_Arithmetic_Overflow_Check;
714 ----------------------------
715 -- Apply_Array_Size_Check --
716 ----------------------------
718 -- The situation is as follows. In GNAT 3 (GCC 2.x), the size in bits
719 -- is computed in 32 bits without an overflow check. That's a real
720 -- problem for Ada. So what we do in GNAT 3 is to approximate the
721 -- size of an array by manually multiplying the element size by the
722 -- number of elements, and comparing that against the allowed limits.
724 -- In GNAT 5, the size in byte is still computed in 32 bits without
725 -- an overflow check in the dynamic case, but the size in bits is
726 -- computed in 64 bits. We assume that's good enough, and we do not
727 -- bother to generate any front end test.
729 procedure Apply_Array_Size_Check (N : Node_Id; Typ : Entity_Id) is
730 Loc : constant Source_Ptr := Sloc (N);
731 Ctyp : constant Entity_Id := Component_Type (Typ);
732 Ent : constant Entity_Id := Defining_Identifier (N);
733 Decl : Node_Id;
734 Lo : Node_Id;
735 Hi : Node_Id;
736 Lob : Uint;
737 Hib : Uint;
738 Siz : Uint;
739 Xtyp : Entity_Id;
740 Indx : Node_Id;
741 Sizx : Node_Id;
742 Code : Node_Id;
744 Static : Boolean := True;
745 -- Set false if any index subtye bound is non-static
747 Umark : constant Uintp.Save_Mark := Uintp.Mark;
748 -- We can throw away all the Uint computations here, since they are
749 -- done only to generate boolean test results.
751 Check_Siz : Uint;
752 -- Size to check against
754 function Is_Address_Or_Import (Decl : Node_Id) return Boolean;
755 -- Determines if Decl is an address clause or Import/Interface pragma
756 -- that references the defining identifier of the current declaration.
758 --------------------------
759 -- Is_Address_Or_Import --
760 --------------------------
762 function Is_Address_Or_Import (Decl : Node_Id) return Boolean is
763 begin
764 if Nkind (Decl) = N_At_Clause then
765 return Chars (Identifier (Decl)) = Chars (Ent);
767 elsif Nkind (Decl) = N_Attribute_Definition_Clause then
768 return
769 Chars (Decl) = Name_Address
770 and then
771 Nkind (Name (Decl)) = N_Identifier
772 and then
773 Chars (Name (Decl)) = Chars (Ent);
775 elsif Nkind (Decl) = N_Pragma then
776 if (Chars (Decl) = Name_Import
777 or else
778 Chars (Decl) = Name_Interface)
779 and then Present (Pragma_Argument_Associations (Decl))
780 then
781 declare
782 F : constant Node_Id :=
783 First (Pragma_Argument_Associations (Decl));
785 begin
786 return
787 Present (F)
788 and then
789 Present (Next (F))
790 and then
791 Nkind (Expression (Next (F))) = N_Identifier
792 and then
793 Chars (Expression (Next (F))) = Chars (Ent);
794 end;
796 else
797 return False;
798 end if;
800 else
801 return False;
802 end if;
803 end Is_Address_Or_Import;
805 -- Start of processing for Apply_Array_Size_Check
807 begin
808 -- Do size check on local arrays. We only need this in the GCC 2
809 -- case, since in GCC 3, we expect the back end to properly handle
810 -- things. This routine can be removed when we baseline GNAT 3.
812 if Opt.GCC_Version >= 3 then
813 return;
814 end if;
816 -- No need for a check if not expanding
818 if not Expander_Active then
819 return;
820 end if;
822 -- No need for a check if checks are suppressed
824 if Storage_Checks_Suppressed (Typ) then
825 return;
826 end if;
828 -- It is pointless to insert this check inside an init proc, because
829 -- that's too late, we have already built the object to be the right
830 -- size, and if it's too large, too bad!
832 if Inside_Init_Proc then
833 return;
834 end if;
836 -- Look head for pragma interface/import or address clause applying
837 -- to this entity. If found, we suppress the check entirely. For now
838 -- we only look ahead 20 declarations to stop this becoming too slow
839 -- Note that eventually this whole routine gets moved to gigi.
841 Decl := N;
842 for Ctr in 1 .. 20 loop
843 Next (Decl);
844 exit when No (Decl);
846 if Is_Address_Or_Import (Decl) then
847 return;
848 end if;
849 end loop;
851 -- First step is to calculate the maximum number of elements. For
852 -- this calculation, we use the actual size of the subtype if it is
853 -- static, and if a bound of a subtype is non-static, we go to the
854 -- bound of the base type.
856 Siz := Uint_1;
857 Indx := First_Index (Typ);
858 while Present (Indx) loop
859 Xtyp := Etype (Indx);
860 Lo := Type_Low_Bound (Xtyp);
861 Hi := Type_High_Bound (Xtyp);
863 -- If any bound raises constraint error, we will never get this
864 -- far, so there is no need to generate any kind of check.
866 if Raises_Constraint_Error (Lo)
867 or else
868 Raises_Constraint_Error (Hi)
869 then
870 Uintp.Release (Umark);
871 return;
872 end if;
874 -- Otherwise get bounds values
876 if Is_Static_Expression (Lo) then
877 Lob := Expr_Value (Lo);
878 else
879 Lob := Expr_Value (Type_Low_Bound (Base_Type (Xtyp)));
880 Static := False;
881 end if;
883 if Is_Static_Expression (Hi) then
884 Hib := Expr_Value (Hi);
885 else
886 Hib := Expr_Value (Type_High_Bound (Base_Type (Xtyp)));
887 Static := False;
888 end if;
890 Siz := Siz * UI_Max (Hib - Lob + 1, Uint_0);
891 Next_Index (Indx);
892 end loop;
894 -- Compute the limit against which we want to check. For subprograms,
895 -- where the array will go on the stack, we use 8*2**24, which (in
896 -- bits) is the size of a 16 megabyte array.
898 if Is_Subprogram (Scope (Ent)) then
899 Check_Siz := Uint_2 ** 27;
900 else
901 Check_Siz := Uint_2 ** 31;
902 end if;
904 -- If we have all static bounds and Siz is too large, then we know
905 -- we know we have a storage error right now, so generate message
907 if Static and then Siz >= Check_Siz then
908 Insert_Action (N,
909 Make_Raise_Storage_Error (Loc,
910 Reason => SE_Object_Too_Large));
911 Error_Msg_N ("?Storage_Error will be raised at run-time", N);
912 Uintp.Release (Umark);
913 return;
914 end if;
916 -- Case of component size known at compile time. If the array
917 -- size is definitely in range, then we do not need a check.
919 if Known_Esize (Ctyp)
920 and then Siz * Esize (Ctyp) < Check_Siz
921 then
922 Uintp.Release (Umark);
923 return;
924 end if;
926 -- Here if a dynamic check is required
928 -- What we do is to build an expression for the size of the array,
929 -- which is computed as the 'Size of the array component, times
930 -- the size of each dimension.
932 Uintp.Release (Umark);
934 Sizx :=
935 Make_Attribute_Reference (Loc,
936 Prefix => New_Occurrence_Of (Ctyp, Loc),
937 Attribute_Name => Name_Size);
939 Indx := First_Index (Typ);
940 for J in 1 .. Number_Dimensions (Typ) loop
941 if Sloc (Etype (Indx)) = Sloc (N) then
942 Ensure_Defined (Etype (Indx), N);
943 end if;
945 Sizx :=
946 Make_Op_Multiply (Loc,
947 Left_Opnd => Sizx,
948 Right_Opnd =>
949 Make_Attribute_Reference (Loc,
950 Prefix => New_Occurrence_Of (Typ, Loc),
951 Attribute_Name => Name_Length,
952 Expressions => New_List (
953 Make_Integer_Literal (Loc, J))));
954 Next_Index (Indx);
955 end loop;
957 -- Emit the check
959 Code :=
960 Make_Raise_Storage_Error (Loc,
961 Condition =>
962 Make_Op_Ge (Loc,
963 Left_Opnd => Sizx,
964 Right_Opnd =>
965 Make_Integer_Literal (Loc,
966 Intval => Check_Siz)),
967 Reason => SE_Object_Too_Large);
969 Set_Size_Check_Code (Defining_Identifier (N), Code);
970 Insert_Action (N, Code, Suppress => All_Checks);
971 end Apply_Array_Size_Check;
973 ----------------------------
974 -- Apply_Constraint_Check --
975 ----------------------------
977 procedure Apply_Constraint_Check
978 (N : Node_Id;
979 Typ : Entity_Id;
980 No_Sliding : Boolean := False)
982 Desig_Typ : Entity_Id;
984 begin
985 if Inside_A_Generic then
986 return;
988 elsif Is_Scalar_Type (Typ) then
989 Apply_Scalar_Range_Check (N, Typ);
991 elsif Is_Array_Type (Typ) then
993 -- A useful optimization: an aggregate with only an others clause
994 -- always has the right bounds.
996 if Nkind (N) = N_Aggregate
997 and then No (Expressions (N))
998 and then Nkind
999 (First (Choices (First (Component_Associations (N)))))
1000 = N_Others_Choice
1001 then
1002 return;
1003 end if;
1005 if Is_Constrained (Typ) then
1006 Apply_Length_Check (N, Typ);
1008 if No_Sliding then
1009 Apply_Range_Check (N, Typ);
1010 end if;
1011 else
1012 Apply_Range_Check (N, Typ);
1013 end if;
1015 elsif (Is_Record_Type (Typ)
1016 or else Is_Private_Type (Typ))
1017 and then Has_Discriminants (Base_Type (Typ))
1018 and then Is_Constrained (Typ)
1019 then
1020 Apply_Discriminant_Check (N, Typ);
1022 elsif Is_Access_Type (Typ) then
1024 Desig_Typ := Designated_Type (Typ);
1026 -- No checks necessary if expression statically null
1028 if Nkind (N) = N_Null then
1029 null;
1031 -- No sliding possible on access to arrays
1033 elsif Is_Array_Type (Desig_Typ) then
1034 if Is_Constrained (Desig_Typ) then
1035 Apply_Length_Check (N, Typ);
1036 end if;
1038 Apply_Range_Check (N, Typ);
1040 elsif Has_Discriminants (Base_Type (Desig_Typ))
1041 and then Is_Constrained (Desig_Typ)
1042 then
1043 Apply_Discriminant_Check (N, Typ);
1044 end if;
1046 if Can_Never_Be_Null (Typ)
1047 and then not Can_Never_Be_Null (Etype (N))
1048 then
1049 Install_Null_Excluding_Check (N);
1050 end if;
1051 end if;
1052 end Apply_Constraint_Check;
1054 ------------------------------
1055 -- Apply_Discriminant_Check --
1056 ------------------------------
1058 procedure Apply_Discriminant_Check
1059 (N : Node_Id;
1060 Typ : Entity_Id;
1061 Lhs : Node_Id := Empty)
1063 Loc : constant Source_Ptr := Sloc (N);
1064 Do_Access : constant Boolean := Is_Access_Type (Typ);
1065 S_Typ : Entity_Id := Etype (N);
1066 Cond : Node_Id;
1067 T_Typ : Entity_Id;
1069 function Is_Aliased_Unconstrained_Component return Boolean;
1070 -- It is possible for an aliased component to have a nominal
1071 -- unconstrained subtype (through instantiation). If this is a
1072 -- discriminated component assigned in the expansion of an aggregate
1073 -- in an initialization, the check must be suppressed. This unusual
1074 -- situation requires a predicate of its own (see 7503-008).
1076 ----------------------------------------
1077 -- Is_Aliased_Unconstrained_Component --
1078 ----------------------------------------
1080 function Is_Aliased_Unconstrained_Component return Boolean is
1081 Comp : Entity_Id;
1082 Pref : Node_Id;
1084 begin
1085 if Nkind (Lhs) /= N_Selected_Component then
1086 return False;
1087 else
1088 Comp := Entity (Selector_Name (Lhs));
1089 Pref := Prefix (Lhs);
1090 end if;
1092 if Ekind (Comp) /= E_Component
1093 or else not Is_Aliased (Comp)
1094 then
1095 return False;
1096 end if;
1098 return not Comes_From_Source (Pref)
1099 and then In_Instance
1100 and then not Is_Constrained (Etype (Comp));
1101 end Is_Aliased_Unconstrained_Component;
1103 -- Start of processing for Apply_Discriminant_Check
1105 begin
1106 if Do_Access then
1107 T_Typ := Designated_Type (Typ);
1108 else
1109 T_Typ := Typ;
1110 end if;
1112 -- Nothing to do if discriminant checks are suppressed or else no code
1113 -- is to be generated
1115 if not Expander_Active
1116 or else Discriminant_Checks_Suppressed (T_Typ)
1117 then
1118 return;
1119 end if;
1121 -- No discriminant checks necessary for an access when expression
1122 -- is statically Null. This is not only an optimization, this is
1123 -- fundamental because otherwise discriminant checks may be generated
1124 -- in init procs for types containing an access to a not-yet-frozen
1125 -- record, causing a deadly forward reference.
1127 -- Also, if the expression is of an access type whose designated
1128 -- type is incomplete, then the access value must be null and
1129 -- we suppress the check.
1131 if Nkind (N) = N_Null then
1132 return;
1134 elsif Is_Access_Type (S_Typ) then
1135 S_Typ := Designated_Type (S_Typ);
1137 if Ekind (S_Typ) = E_Incomplete_Type then
1138 return;
1139 end if;
1140 end if;
1142 -- If an assignment target is present, then we need to generate
1143 -- the actual subtype if the target is a parameter or aliased
1144 -- object with an unconstrained nominal subtype.
1146 if Present (Lhs)
1147 and then (Present (Param_Entity (Lhs))
1148 or else (not Is_Constrained (T_Typ)
1149 and then Is_Aliased_View (Lhs)
1150 and then not Is_Aliased_Unconstrained_Component))
1151 then
1152 T_Typ := Get_Actual_Subtype (Lhs);
1153 end if;
1155 -- Nothing to do if the type is unconstrained (this is the case
1156 -- where the actual subtype in the RM sense of N is unconstrained
1157 -- and no check is required).
1159 if not Is_Constrained (T_Typ) then
1160 return;
1162 -- Ada 2005: nothing to do if the type is one for which there is a
1163 -- partial view that is constrained.
1165 elsif Ada_Version >= Ada_05
1166 and then Has_Constrained_Partial_View (Base_Type (T_Typ))
1167 then
1168 return;
1169 end if;
1171 -- Nothing to do if the type is an Unchecked_Union
1173 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1174 return;
1175 end if;
1177 -- Suppress checks if the subtypes are the same.
1178 -- the check must be preserved in an assignment to a formal, because
1179 -- the constraint is given by the actual.
1181 if Nkind (Original_Node (N)) /= N_Allocator
1182 and then (No (Lhs)
1183 or else not Is_Entity_Name (Lhs)
1184 or else No (Param_Entity (Lhs)))
1185 then
1186 if (Etype (N) = Typ
1187 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1188 and then not Is_Aliased_View (Lhs)
1189 then
1190 return;
1191 end if;
1193 -- We can also eliminate checks on allocators with a subtype mark
1194 -- that coincides with the context type. The context type may be a
1195 -- subtype without a constraint (common case, a generic actual).
1197 elsif Nkind (Original_Node (N)) = N_Allocator
1198 and then Is_Entity_Name (Expression (Original_Node (N)))
1199 then
1200 declare
1201 Alloc_Typ : constant Entity_Id :=
1202 Entity (Expression (Original_Node (N)));
1204 begin
1205 if Alloc_Typ = T_Typ
1206 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1207 and then Is_Entity_Name (
1208 Subtype_Indication (Parent (T_Typ)))
1209 and then Alloc_Typ = Base_Type (T_Typ))
1211 then
1212 return;
1213 end if;
1214 end;
1215 end if;
1217 -- See if we have a case where the types are both constrained, and
1218 -- all the constraints are constants. In this case, we can do the
1219 -- check successfully at compile time.
1221 -- We skip this check for the case where the node is a rewritten`
1222 -- allocator, because it already carries the context subtype, and
1223 -- extracting the discriminants from the aggregate is messy.
1225 if Is_Constrained (S_Typ)
1226 and then Nkind (Original_Node (N)) /= N_Allocator
1227 then
1228 declare
1229 DconT : Elmt_Id;
1230 Discr : Entity_Id;
1231 DconS : Elmt_Id;
1232 ItemS : Node_Id;
1233 ItemT : Node_Id;
1235 begin
1236 -- S_Typ may not have discriminants in the case where it is a
1237 -- private type completed by a default discriminated type. In
1238 -- that case, we need to get the constraints from the
1239 -- underlying_type. If the underlying type is unconstrained (i.e.
1240 -- has no default discriminants) no check is needed.
1242 if Has_Discriminants (S_Typ) then
1243 Discr := First_Discriminant (S_Typ);
1244 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1246 else
1247 Discr := First_Discriminant (Underlying_Type (S_Typ));
1248 DconS :=
1249 First_Elmt
1250 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1252 if No (DconS) then
1253 return;
1254 end if;
1256 -- A further optimization: if T_Typ is derived from S_Typ
1257 -- without imposing a constraint, no check is needed.
1259 if Nkind (Original_Node (Parent (T_Typ))) =
1260 N_Full_Type_Declaration
1261 then
1262 declare
1263 Type_Def : constant Node_Id :=
1264 Type_Definition
1265 (Original_Node (Parent (T_Typ)));
1266 begin
1267 if Nkind (Type_Def) = N_Derived_Type_Definition
1268 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1269 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1270 then
1271 return;
1272 end if;
1273 end;
1274 end if;
1275 end if;
1277 DconT := First_Elmt (Discriminant_Constraint (T_Typ));
1279 while Present (Discr) loop
1280 ItemS := Node (DconS);
1281 ItemT := Node (DconT);
1283 exit when
1284 not Is_OK_Static_Expression (ItemS)
1285 or else
1286 not Is_OK_Static_Expression (ItemT);
1288 if Expr_Value (ItemS) /= Expr_Value (ItemT) then
1289 if Do_Access then -- needs run-time check.
1290 exit;
1291 else
1292 Apply_Compile_Time_Constraint_Error
1293 (N, "incorrect value for discriminant&?",
1294 CE_Discriminant_Check_Failed, Ent => Discr);
1295 return;
1296 end if;
1297 end if;
1299 Next_Elmt (DconS);
1300 Next_Elmt (DconT);
1301 Next_Discriminant (Discr);
1302 end loop;
1304 if No (Discr) then
1305 return;
1306 end if;
1307 end;
1308 end if;
1310 -- Here we need a discriminant check. First build the expression
1311 -- for the comparisons of the discriminants:
1313 -- (n.disc1 /= typ.disc1) or else
1314 -- (n.disc2 /= typ.disc2) or else
1315 -- ...
1316 -- (n.discn /= typ.discn)
1318 Cond := Build_Discriminant_Checks (N, T_Typ);
1320 -- If Lhs is set and is a parameter, then the condition is
1321 -- guarded by: lhs'constrained and then (condition built above)
1323 if Present (Param_Entity (Lhs)) then
1324 Cond :=
1325 Make_And_Then (Loc,
1326 Left_Opnd =>
1327 Make_Attribute_Reference (Loc,
1328 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1329 Attribute_Name => Name_Constrained),
1330 Right_Opnd => Cond);
1331 end if;
1333 if Do_Access then
1334 Cond := Guard_Access (Cond, Loc, N);
1335 end if;
1337 Insert_Action (N,
1338 Make_Raise_Constraint_Error (Loc,
1339 Condition => Cond,
1340 Reason => CE_Discriminant_Check_Failed));
1341 end Apply_Discriminant_Check;
1343 ------------------------
1344 -- Apply_Divide_Check --
1345 ------------------------
1347 procedure Apply_Divide_Check (N : Node_Id) is
1348 Loc : constant Source_Ptr := Sloc (N);
1349 Typ : constant Entity_Id := Etype (N);
1350 Left : constant Node_Id := Left_Opnd (N);
1351 Right : constant Node_Id := Right_Opnd (N);
1353 LLB : Uint;
1354 Llo : Uint;
1355 Lhi : Uint;
1356 LOK : Boolean;
1357 Rlo : Uint;
1358 Rhi : Uint;
1359 ROK : Boolean;
1361 begin
1362 if Expander_Active
1363 and not Backend_Divide_Checks_On_Target
1364 then
1365 Determine_Range (Right, ROK, Rlo, Rhi);
1367 -- See if division by zero possible, and if so generate test. This
1368 -- part of the test is not controlled by the -gnato switch.
1370 if Do_Division_Check (N) then
1371 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1372 Insert_Action (N,
1373 Make_Raise_Constraint_Error (Loc,
1374 Condition =>
1375 Make_Op_Eq (Loc,
1376 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1377 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1378 Reason => CE_Divide_By_Zero));
1379 end if;
1380 end if;
1382 -- Test for extremely annoying case of xxx'First divided by -1
1384 if Do_Overflow_Check (N) then
1386 if Nkind (N) = N_Op_Divide
1387 and then Is_Signed_Integer_Type (Typ)
1388 then
1389 Determine_Range (Left, LOK, Llo, Lhi);
1390 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1392 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1393 and then
1394 ((not LOK) or else (Llo = LLB))
1395 then
1396 Insert_Action (N,
1397 Make_Raise_Constraint_Error (Loc,
1398 Condition =>
1399 Make_And_Then (Loc,
1401 Make_Op_Eq (Loc,
1402 Left_Opnd =>
1403 Duplicate_Subexpr_Move_Checks (Left),
1404 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1406 Make_Op_Eq (Loc,
1407 Left_Opnd =>
1408 Duplicate_Subexpr (Right),
1409 Right_Opnd =>
1410 Make_Integer_Literal (Loc, -1))),
1411 Reason => CE_Overflow_Check_Failed));
1412 end if;
1413 end if;
1414 end if;
1415 end if;
1416 end Apply_Divide_Check;
1418 ----------------------------------
1419 -- Apply_Float_Conversion_Check --
1420 ----------------------------------
1422 -- Let F and I be the source and target types of the conversion.
1423 -- The Ada standard specifies that a floating-point value X is rounded
1424 -- to the nearest integer, with halfway cases being rounded away from
1425 -- zero. The rounded value of X is checked against I'Range.
1427 -- The catch in the above paragraph is that there is no good way
1428 -- to know whether the round-to-integer operation resulted in
1429 -- overflow. A remedy is to perform a range check in the floating-point
1430 -- domain instead, however:
1431 -- (1) The bounds may not be known at compile time
1432 -- (2) The check must take into account possible rounding.
1433 -- (3) The range of type I may not be exactly representable in F.
1434 -- (4) The end-points I'First - 0.5 and I'Last + 0.5 may or may
1435 -- not be in range, depending on the sign of I'First and I'Last.
1436 -- (5) X may be a NaN, which will fail any comparison
1438 -- The following steps take care of these issues converting X:
1439 -- (1) If either I'First or I'Last is not known at compile time, use
1440 -- I'Base instead of I in the next three steps and perform a
1441 -- regular range check against I'Range after conversion.
1442 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1443 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1444 -- F'Machine (T) and let Lo_OK be (Lo >= I'First). In other words,
1445 -- take one of the closest floating-point numbers to T, and see if
1446 -- it is in range or not.
1447 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1448 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1449 -- F'Rounding (T) and let Hi_OK be (Hi <= I'Last).
1450 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1451 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1453 procedure Apply_Float_Conversion_Check
1454 (Ck_Node : Node_Id;
1455 Target_Typ : Entity_Id)
1457 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1458 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1459 Loc : constant Source_Ptr := Sloc (Ck_Node);
1460 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
1461 Target_Base : constant Entity_Id := Implementation_Base_Type
1462 (Target_Typ);
1463 Max_Bound : constant Uint := UI_Expon
1464 (Machine_Radix (Expr_Type),
1465 Machine_Mantissa (Expr_Type) - 1) - 1;
1466 -- Largest bound, so bound plus or minus half is a machine number of F
1468 Ifirst,
1469 Ilast : Uint; -- Bounds of integer type
1470 Lo, Hi : Ureal; -- Bounds to check in floating-point domain
1471 Lo_OK,
1472 Hi_OK : Boolean; -- True iff Lo resp. Hi belongs to I'Range
1474 Lo_Chk,
1475 Hi_Chk : Node_Id; -- Expressions that are False iff check fails
1477 Reason : RT_Exception_Code;
1479 begin
1480 if not Compile_Time_Known_Value (LB)
1481 or not Compile_Time_Known_Value (HB)
1482 then
1483 declare
1484 -- First check that the value falls in the range of the base
1485 -- type, to prevent overflow during conversion and then
1486 -- perform a regular range check against the (dynamic) bounds.
1488 Par : constant Node_Id := Parent (Ck_Node);
1490 pragma Assert (Target_Base /= Target_Typ);
1491 pragma Assert (Nkind (Par) = N_Type_Conversion);
1493 Temp : constant Entity_Id :=
1494 Make_Defining_Identifier (Loc,
1495 Chars => New_Internal_Name ('T'));
1497 begin
1498 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1499 Set_Etype (Temp, Target_Base);
1501 Insert_Action (Parent (Par),
1502 Make_Object_Declaration (Loc,
1503 Defining_Identifier => Temp,
1504 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
1505 Expression => New_Copy_Tree (Par)),
1506 Suppress => All_Checks);
1508 Insert_Action (Par,
1509 Make_Raise_Constraint_Error (Loc,
1510 Condition =>
1511 Make_Not_In (Loc,
1512 Left_Opnd => New_Occurrence_Of (Temp, Loc),
1513 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
1514 Reason => CE_Range_Check_Failed));
1515 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
1517 return;
1518 end;
1519 end if;
1521 -- Get the bounds of the target type
1523 Ifirst := Expr_Value (LB);
1524 Ilast := Expr_Value (HB);
1526 -- Check against lower bound
1528 if abs (Ifirst) < Max_Bound then
1529 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
1530 Lo_OK := (Ifirst > 0);
1531 else
1532 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
1533 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
1534 end if;
1536 if Lo_OK then
1538 -- Lo_Chk := (X >= Lo)
1540 Lo_Chk := Make_Op_Ge (Loc,
1541 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1542 Right_Opnd => Make_Real_Literal (Loc, Lo));
1544 else
1545 -- Lo_Chk := (X > Lo)
1547 Lo_Chk := Make_Op_Gt (Loc,
1548 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1549 Right_Opnd => Make_Real_Literal (Loc, Lo));
1550 end if;
1552 -- Check against higher bound
1554 if abs (Ilast) < Max_Bound then
1555 Hi := UR_From_Uint (Ilast) + Ureal_Half;
1556 Hi_OK := (Ilast < 0);
1557 else
1558 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
1559 Hi_OK := (Hi <= UR_From_Uint (Ilast));
1560 end if;
1562 if Hi_OK then
1564 -- Hi_Chk := (X <= Hi)
1566 Hi_Chk := Make_Op_Le (Loc,
1567 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1568 Right_Opnd => Make_Real_Literal (Loc, Hi));
1570 else
1571 -- Hi_Chk := (X < Hi)
1573 Hi_Chk := Make_Op_Lt (Loc,
1574 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
1575 Right_Opnd => Make_Real_Literal (Loc, Hi));
1576 end if;
1578 -- If the bounds of the target type are the same as those of the
1579 -- base type, the check is an overflow check as a range check is
1580 -- not performed in these cases.
1582 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
1583 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
1584 then
1585 Reason := CE_Overflow_Check_Failed;
1586 else
1587 Reason := CE_Range_Check_Failed;
1588 end if;
1590 -- Raise CE if either conditions does not hold
1592 Insert_Action (Ck_Node,
1593 Make_Raise_Constraint_Error (Loc,
1594 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
1595 Reason => Reason));
1596 end Apply_Float_Conversion_Check;
1598 ------------------------
1599 -- Apply_Length_Check --
1600 ------------------------
1602 procedure Apply_Length_Check
1603 (Ck_Node : Node_Id;
1604 Target_Typ : Entity_Id;
1605 Source_Typ : Entity_Id := Empty)
1607 begin
1608 Apply_Selected_Length_Checks
1609 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1610 end Apply_Length_Check;
1612 -----------------------
1613 -- Apply_Range_Check --
1614 -----------------------
1616 procedure Apply_Range_Check
1617 (Ck_Node : Node_Id;
1618 Target_Typ : Entity_Id;
1619 Source_Typ : Entity_Id := Empty)
1621 begin
1622 Apply_Selected_Range_Checks
1623 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
1624 end Apply_Range_Check;
1626 ------------------------------
1627 -- Apply_Scalar_Range_Check --
1628 ------------------------------
1630 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check
1631 -- flag off if it is already set on.
1633 procedure Apply_Scalar_Range_Check
1634 (Expr : Node_Id;
1635 Target_Typ : Entity_Id;
1636 Source_Typ : Entity_Id := Empty;
1637 Fixed_Int : Boolean := False)
1639 Parnt : constant Node_Id := Parent (Expr);
1640 S_Typ : Entity_Id;
1641 Arr : Node_Id := Empty; -- initialize to prevent warning
1642 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
1643 OK : Boolean;
1645 Is_Subscr_Ref : Boolean;
1646 -- Set true if Expr is a subscript
1648 Is_Unconstrained_Subscr_Ref : Boolean;
1649 -- Set true if Expr is a subscript of an unconstrained array. In this
1650 -- case we do not attempt to do an analysis of the value against the
1651 -- range of the subscript, since we don't know the actual subtype.
1653 Int_Real : Boolean;
1654 -- Set to True if Expr should be regarded as a real value
1655 -- even though the type of Expr might be discrete.
1657 procedure Bad_Value;
1658 -- Procedure called if value is determined to be out of range
1660 ---------------
1661 -- Bad_Value --
1662 ---------------
1664 procedure Bad_Value is
1665 begin
1666 Apply_Compile_Time_Constraint_Error
1667 (Expr, "value not in range of}?", CE_Range_Check_Failed,
1668 Ent => Target_Typ,
1669 Typ => Target_Typ);
1670 end Bad_Value;
1672 -- Start of processing for Apply_Scalar_Range_Check
1674 begin
1675 if Inside_A_Generic then
1676 return;
1678 -- Return if check obviously not needed. Note that we do not check
1679 -- for the expander being inactive, since this routine does not
1680 -- insert any code, but it does generate useful warnings sometimes,
1681 -- which we would like even if we are in semantics only mode.
1683 elsif Target_Typ = Any_Type
1684 or else not Is_Scalar_Type (Target_Typ)
1685 or else Raises_Constraint_Error (Expr)
1686 then
1687 return;
1688 end if;
1690 -- Now, see if checks are suppressed
1692 Is_Subscr_Ref :=
1693 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
1695 if Is_Subscr_Ref then
1696 Arr := Prefix (Parnt);
1697 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
1698 end if;
1700 if not Do_Range_Check (Expr) then
1702 -- Subscript reference. Check for Index_Checks suppressed
1704 if Is_Subscr_Ref then
1706 -- Check array type and its base type
1708 if Index_Checks_Suppressed (Arr_Typ)
1709 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
1710 then
1711 return;
1713 -- Check array itself if it is an entity name
1715 elsif Is_Entity_Name (Arr)
1716 and then Index_Checks_Suppressed (Entity (Arr))
1717 then
1718 return;
1720 -- Check expression itself if it is an entity name
1722 elsif Is_Entity_Name (Expr)
1723 and then Index_Checks_Suppressed (Entity (Expr))
1724 then
1725 return;
1726 end if;
1728 -- All other cases, check for Range_Checks suppressed
1730 else
1731 -- Check target type and its base type
1733 if Range_Checks_Suppressed (Target_Typ)
1734 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
1735 then
1736 return;
1738 -- Check expression itself if it is an entity name
1740 elsif Is_Entity_Name (Expr)
1741 and then Range_Checks_Suppressed (Entity (Expr))
1742 then
1743 return;
1745 -- If Expr is part of an assignment statement, then check
1746 -- left side of assignment if it is an entity name.
1748 elsif Nkind (Parnt) = N_Assignment_Statement
1749 and then Is_Entity_Name (Name (Parnt))
1750 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
1751 then
1752 return;
1753 end if;
1754 end if;
1755 end if;
1757 -- Do not set range checks if they are killed
1759 if Nkind (Expr) = N_Unchecked_Type_Conversion
1760 and then Kill_Range_Check (Expr)
1761 then
1762 return;
1763 end if;
1765 -- Do not set range checks for any values from System.Scalar_Values
1766 -- since the whole idea of such values is to avoid checking them!
1768 if Is_Entity_Name (Expr)
1769 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
1770 then
1771 return;
1772 end if;
1774 -- Now see if we need a check
1776 if No (Source_Typ) then
1777 S_Typ := Etype (Expr);
1778 else
1779 S_Typ := Source_Typ;
1780 end if;
1782 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
1783 return;
1784 end if;
1786 Is_Unconstrained_Subscr_Ref :=
1787 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
1789 -- Always do a range check if the source type includes infinities
1790 -- and the target type does not include infinities. We do not do
1791 -- this if range checks are killed.
1793 if Is_Floating_Point_Type (S_Typ)
1794 and then Has_Infinities (S_Typ)
1795 and then not Has_Infinities (Target_Typ)
1796 then
1797 Enable_Range_Check (Expr);
1798 end if;
1800 -- Return if we know expression is definitely in the range of
1801 -- the target type as determined by Determine_Range. Right now
1802 -- we only do this for discrete types, and not fixed-point or
1803 -- floating-point types.
1805 -- The additional less-precise tests below catch these cases
1807 -- Note: skip this if we are given a source_typ, since the point
1808 -- of supplying a Source_Typ is to stop us looking at the expression.
1809 -- could sharpen this test to be out parameters only ???
1811 if Is_Discrete_Type (Target_Typ)
1812 and then Is_Discrete_Type (Etype (Expr))
1813 and then not Is_Unconstrained_Subscr_Ref
1814 and then No (Source_Typ)
1815 then
1816 declare
1817 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
1818 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
1819 Lo : Uint;
1820 Hi : Uint;
1822 begin
1823 if Compile_Time_Known_Value (Tlo)
1824 and then Compile_Time_Known_Value (Thi)
1825 then
1826 declare
1827 Lov : constant Uint := Expr_Value (Tlo);
1828 Hiv : constant Uint := Expr_Value (Thi);
1830 begin
1831 -- If range is null, we for sure have a constraint error
1832 -- (we don't even need to look at the value involved,
1833 -- since all possible values will raise CE).
1835 if Lov > Hiv then
1836 Bad_Value;
1837 return;
1838 end if;
1840 -- Otherwise determine range of value
1842 Determine_Range (Expr, OK, Lo, Hi);
1844 if OK then
1846 -- If definitely in range, all OK
1848 if Lo >= Lov and then Hi <= Hiv then
1849 return;
1851 -- If definitely not in range, warn
1853 elsif Lov > Hi or else Hiv < Lo then
1854 Bad_Value;
1855 return;
1857 -- Otherwise we don't know
1859 else
1860 null;
1861 end if;
1862 end if;
1863 end;
1864 end if;
1865 end;
1866 end if;
1868 Int_Real :=
1869 Is_Floating_Point_Type (S_Typ)
1870 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
1872 -- Check if we can determine at compile time whether Expr is in the
1873 -- range of the target type. Note that if S_Typ is within the bounds
1874 -- of Target_Typ then this must be the case. This check is meaningful
1875 -- only if this is not a conversion between integer and real types.
1877 if not Is_Unconstrained_Subscr_Ref
1878 and then
1879 Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
1880 and then
1881 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
1882 or else
1883 Is_In_Range (Expr, Target_Typ, Fixed_Int, Int_Real))
1884 then
1885 return;
1887 elsif Is_Out_Of_Range (Expr, Target_Typ, Fixed_Int, Int_Real) then
1888 Bad_Value;
1889 return;
1891 -- In the floating-point case, we only do range checks if the
1892 -- type is constrained. We definitely do NOT want range checks
1893 -- for unconstrained types, since we want to have infinities
1895 elsif Is_Floating_Point_Type (S_Typ) then
1896 if Is_Constrained (S_Typ) then
1897 Enable_Range_Check (Expr);
1898 end if;
1900 -- For all other cases we enable a range check unconditionally
1902 else
1903 Enable_Range_Check (Expr);
1904 return;
1905 end if;
1906 end Apply_Scalar_Range_Check;
1908 ----------------------------------
1909 -- Apply_Selected_Length_Checks --
1910 ----------------------------------
1912 procedure Apply_Selected_Length_Checks
1913 (Ck_Node : Node_Id;
1914 Target_Typ : Entity_Id;
1915 Source_Typ : Entity_Id;
1916 Do_Static : Boolean)
1918 Cond : Node_Id;
1919 R_Result : Check_Result;
1920 R_Cno : Node_Id;
1922 Loc : constant Source_Ptr := Sloc (Ck_Node);
1923 Checks_On : constant Boolean :=
1924 (not Index_Checks_Suppressed (Target_Typ))
1925 or else
1926 (not Length_Checks_Suppressed (Target_Typ));
1928 begin
1929 if not Expander_Active then
1930 return;
1931 end if;
1933 R_Result :=
1934 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
1936 for J in 1 .. 2 loop
1937 R_Cno := R_Result (J);
1938 exit when No (R_Cno);
1940 -- A length check may mention an Itype which is attached to a
1941 -- subsequent node. At the top level in a package this can cause
1942 -- an order-of-elaboration problem, so we make sure that the itype
1943 -- is referenced now.
1945 if Ekind (Current_Scope) = E_Package
1946 and then Is_Compilation_Unit (Current_Scope)
1947 then
1948 Ensure_Defined (Target_Typ, Ck_Node);
1950 if Present (Source_Typ) then
1951 Ensure_Defined (Source_Typ, Ck_Node);
1953 elsif Is_Itype (Etype (Ck_Node)) then
1954 Ensure_Defined (Etype (Ck_Node), Ck_Node);
1955 end if;
1956 end if;
1958 -- If the item is a conditional raise of constraint error,
1959 -- then have a look at what check is being performed and
1960 -- ???
1962 if Nkind (R_Cno) = N_Raise_Constraint_Error
1963 and then Present (Condition (R_Cno))
1964 then
1965 Cond := Condition (R_Cno);
1967 if not Has_Dynamic_Length_Check (Ck_Node)
1968 and then Checks_On
1969 then
1970 Insert_Action (Ck_Node, R_Cno);
1972 if not Do_Static then
1973 Set_Has_Dynamic_Length_Check (Ck_Node);
1974 end if;
1975 end if;
1977 -- Output a warning if the condition is known to be True
1979 if Is_Entity_Name (Cond)
1980 and then Entity (Cond) = Standard_True
1981 then
1982 Apply_Compile_Time_Constraint_Error
1983 (Ck_Node, "wrong length for array of}?",
1984 CE_Length_Check_Failed,
1985 Ent => Target_Typ,
1986 Typ => Target_Typ);
1988 -- If we were only doing a static check, or if checks are not
1989 -- on, then we want to delete the check, since it is not needed.
1990 -- We do this by replacing the if statement by a null statement
1992 elsif Do_Static or else not Checks_On then
1993 Rewrite (R_Cno, Make_Null_Statement (Loc));
1994 end if;
1996 else
1997 Install_Static_Check (R_Cno, Loc);
1998 end if;
2000 end loop;
2002 end Apply_Selected_Length_Checks;
2004 ---------------------------------
2005 -- Apply_Selected_Range_Checks --
2006 ---------------------------------
2008 procedure Apply_Selected_Range_Checks
2009 (Ck_Node : Node_Id;
2010 Target_Typ : Entity_Id;
2011 Source_Typ : Entity_Id;
2012 Do_Static : Boolean)
2014 Cond : Node_Id;
2015 R_Result : Check_Result;
2016 R_Cno : Node_Id;
2018 Loc : constant Source_Ptr := Sloc (Ck_Node);
2019 Checks_On : constant Boolean :=
2020 (not Index_Checks_Suppressed (Target_Typ))
2021 or else
2022 (not Range_Checks_Suppressed (Target_Typ));
2024 begin
2025 if not Expander_Active or else not Checks_On then
2026 return;
2027 end if;
2029 R_Result :=
2030 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2032 for J in 1 .. 2 loop
2034 R_Cno := R_Result (J);
2035 exit when No (R_Cno);
2037 -- If the item is a conditional raise of constraint error,
2038 -- then have a look at what check is being performed and
2039 -- ???
2041 if Nkind (R_Cno) = N_Raise_Constraint_Error
2042 and then Present (Condition (R_Cno))
2043 then
2044 Cond := Condition (R_Cno);
2046 if not Has_Dynamic_Range_Check (Ck_Node) then
2047 Insert_Action (Ck_Node, R_Cno);
2049 if not Do_Static then
2050 Set_Has_Dynamic_Range_Check (Ck_Node);
2051 end if;
2052 end if;
2054 -- Output a warning if the condition is known to be True
2056 if Is_Entity_Name (Cond)
2057 and then Entity (Cond) = Standard_True
2058 then
2059 -- Since an N_Range is technically not an expression, we
2060 -- have to set one of the bounds to C_E and then just flag
2061 -- the N_Range. The warning message will point to the
2062 -- lower bound and complain about a range, which seems OK.
2064 if Nkind (Ck_Node) = N_Range then
2065 Apply_Compile_Time_Constraint_Error
2066 (Low_Bound (Ck_Node), "static range out of bounds of}?",
2067 CE_Range_Check_Failed,
2068 Ent => Target_Typ,
2069 Typ => Target_Typ);
2071 Set_Raises_Constraint_Error (Ck_Node);
2073 else
2074 Apply_Compile_Time_Constraint_Error
2075 (Ck_Node, "static value out of range of}?",
2076 CE_Range_Check_Failed,
2077 Ent => Target_Typ,
2078 Typ => Target_Typ);
2079 end if;
2081 -- If we were only doing a static check, or if checks are not
2082 -- on, then we want to delete the check, since it is not needed.
2083 -- We do this by replacing the if statement by a null statement
2085 elsif Do_Static or else not Checks_On then
2086 Rewrite (R_Cno, Make_Null_Statement (Loc));
2087 end if;
2089 else
2090 Install_Static_Check (R_Cno, Loc);
2091 end if;
2092 end loop;
2093 end Apply_Selected_Range_Checks;
2095 -------------------------------
2096 -- Apply_Static_Length_Check --
2097 -------------------------------
2099 procedure Apply_Static_Length_Check
2100 (Expr : Node_Id;
2101 Target_Typ : Entity_Id;
2102 Source_Typ : Entity_Id := Empty)
2104 begin
2105 Apply_Selected_Length_Checks
2106 (Expr, Target_Typ, Source_Typ, Do_Static => True);
2107 end Apply_Static_Length_Check;
2109 -------------------------------------
2110 -- Apply_Subscript_Validity_Checks --
2111 -------------------------------------
2113 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
2114 Sub : Node_Id;
2116 begin
2117 pragma Assert (Nkind (Expr) = N_Indexed_Component);
2119 -- Loop through subscripts
2121 Sub := First (Expressions (Expr));
2122 while Present (Sub) loop
2124 -- Check one subscript. Note that we do not worry about
2125 -- enumeration type with holes, since we will convert the
2126 -- value to a Pos value for the subscript, and that convert
2127 -- will do the necessary validity check.
2129 Ensure_Valid (Sub, Holes_OK => True);
2131 -- Move to next subscript
2133 Sub := Next (Sub);
2134 end loop;
2135 end Apply_Subscript_Validity_Checks;
2137 ----------------------------------
2138 -- Apply_Type_Conversion_Checks --
2139 ----------------------------------
2141 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
2142 Target_Type : constant Entity_Id := Etype (N);
2143 Target_Base : constant Entity_Id := Base_Type (Target_Type);
2144 Expr : constant Node_Id := Expression (N);
2145 Expr_Type : constant Entity_Id := Etype (Expr);
2147 begin
2148 if Inside_A_Generic then
2149 return;
2151 -- Skip these checks if serious errors detected, there are some nasty
2152 -- situations of incomplete trees that blow things up.
2154 elsif Serious_Errors_Detected > 0 then
2155 return;
2157 -- Scalar type conversions of the form Target_Type (Expr) require
2158 -- a range check if we cannot be sure that Expr is in the base type
2159 -- of Target_Typ and also that Expr is in the range of Target_Typ.
2160 -- These are not quite the same condition from an implementation
2161 -- point of view, but clearly the second includes the first.
2163 elsif Is_Scalar_Type (Target_Type) then
2164 declare
2165 Conv_OK : constant Boolean := Conversion_OK (N);
2166 -- If the Conversion_OK flag on the type conversion is set
2167 -- and no floating point type is involved in the type conversion
2168 -- then fixed point values must be read as integral values.
2170 Float_To_Int : constant Boolean :=
2171 Is_Floating_Point_Type (Expr_Type)
2172 and then Is_Integer_Type (Target_Type);
2174 begin
2175 if not Overflow_Checks_Suppressed (Target_Base)
2176 and then not In_Subrange_Of (Expr_Type, Target_Base, Conv_OK)
2177 and then not Float_To_Int
2178 then
2179 Set_Do_Overflow_Check (N);
2180 end if;
2182 if not Range_Checks_Suppressed (Target_Type)
2183 and then not Range_Checks_Suppressed (Expr_Type)
2184 then
2185 if Float_To_Int then
2186 Apply_Float_Conversion_Check (Expr, Target_Type);
2187 else
2188 Apply_Scalar_Range_Check
2189 (Expr, Target_Type, Fixed_Int => Conv_OK);
2190 end if;
2191 end if;
2192 end;
2194 elsif Comes_From_Source (N)
2195 and then Is_Record_Type (Target_Type)
2196 and then Is_Derived_Type (Target_Type)
2197 and then not Is_Tagged_Type (Target_Type)
2198 and then not Is_Constrained (Target_Type)
2199 and then Present (Stored_Constraint (Target_Type))
2200 then
2201 -- An unconstrained derived type may have inherited discriminant
2202 -- Build an actual discriminant constraint list using the stored
2203 -- constraint, to verify that the expression of the parent type
2204 -- satisfies the constraints imposed by the (unconstrained!)
2205 -- derived type. This applies to value conversions, not to view
2206 -- conversions of tagged types.
2208 declare
2209 Loc : constant Source_Ptr := Sloc (N);
2210 Cond : Node_Id;
2211 Constraint : Elmt_Id;
2212 Discr_Value : Node_Id;
2213 Discr : Entity_Id;
2215 New_Constraints : constant Elist_Id := New_Elmt_List;
2216 Old_Constraints : constant Elist_Id :=
2217 Discriminant_Constraint (Expr_Type);
2219 begin
2220 Constraint := First_Elmt (Stored_Constraint (Target_Type));
2222 while Present (Constraint) loop
2223 Discr_Value := Node (Constraint);
2225 if Is_Entity_Name (Discr_Value)
2226 and then Ekind (Entity (Discr_Value)) = E_Discriminant
2227 then
2228 Discr := Corresponding_Discriminant (Entity (Discr_Value));
2230 if Present (Discr)
2231 and then Scope (Discr) = Base_Type (Expr_Type)
2232 then
2233 -- Parent is constrained by new discriminant. Obtain
2234 -- Value of original discriminant in expression. If
2235 -- the new discriminant has been used to constrain more
2236 -- than one of the stored discriminants, this will
2237 -- provide the required consistency check.
2239 Append_Elmt (
2240 Make_Selected_Component (Loc,
2241 Prefix =>
2242 Duplicate_Subexpr_No_Checks
2243 (Expr, Name_Req => True),
2244 Selector_Name =>
2245 Make_Identifier (Loc, Chars (Discr))),
2246 New_Constraints);
2248 else
2249 -- Discriminant of more remote ancestor ???
2251 return;
2252 end if;
2254 -- Derived type definition has an explicit value for
2255 -- this stored discriminant.
2257 else
2258 Append_Elmt
2259 (Duplicate_Subexpr_No_Checks (Discr_Value),
2260 New_Constraints);
2261 end if;
2263 Next_Elmt (Constraint);
2264 end loop;
2266 -- Use the unconstrained expression type to retrieve the
2267 -- discriminants of the parent, and apply momentarily the
2268 -- discriminant constraint synthesized above.
2270 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
2271 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
2272 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
2274 Insert_Action (N,
2275 Make_Raise_Constraint_Error (Loc,
2276 Condition => Cond,
2277 Reason => CE_Discriminant_Check_Failed));
2278 end;
2280 -- For arrays, conversions are applied during expansion, to take
2281 -- into accounts changes of representation. The checks become range
2282 -- checks on the base type or length checks on the subtype, depending
2283 -- on whether the target type is unconstrained or constrained.
2285 else
2286 null;
2287 end if;
2288 end Apply_Type_Conversion_Checks;
2290 ----------------------------------------------
2291 -- Apply_Universal_Integer_Attribute_Checks --
2292 ----------------------------------------------
2294 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
2295 Loc : constant Source_Ptr := Sloc (N);
2296 Typ : constant Entity_Id := Etype (N);
2298 begin
2299 if Inside_A_Generic then
2300 return;
2302 -- Nothing to do if checks are suppressed
2304 elsif Range_Checks_Suppressed (Typ)
2305 and then Overflow_Checks_Suppressed (Typ)
2306 then
2307 return;
2309 -- Nothing to do if the attribute does not come from source. The
2310 -- internal attributes we generate of this type do not need checks,
2311 -- and furthermore the attempt to check them causes some circular
2312 -- elaboration orders when dealing with packed types.
2314 elsif not Comes_From_Source (N) then
2315 return;
2317 -- If the prefix is a selected component that depends on a discriminant
2318 -- the check may improperly expose a discriminant instead of using
2319 -- the bounds of the object itself. Set the type of the attribute to
2320 -- the base type of the context, so that a check will be imposed when
2321 -- needed (e.g. if the node appears as an index).
2323 elsif Nkind (Prefix (N)) = N_Selected_Component
2324 and then Ekind (Typ) = E_Signed_Integer_Subtype
2325 and then Depends_On_Discriminant (Scalar_Range (Typ))
2326 then
2327 Set_Etype (N, Base_Type (Typ));
2329 -- Otherwise, replace the attribute node with a type conversion
2330 -- node whose expression is the attribute, retyped to universal
2331 -- integer, and whose subtype mark is the target type. The call
2332 -- to analyze this conversion will set range and overflow checks
2333 -- as required for proper detection of an out of range value.
2335 else
2336 Set_Etype (N, Universal_Integer);
2337 Set_Analyzed (N, True);
2339 Rewrite (N,
2340 Make_Type_Conversion (Loc,
2341 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2342 Expression => Relocate_Node (N)));
2344 Analyze_And_Resolve (N, Typ);
2345 return;
2346 end if;
2348 end Apply_Universal_Integer_Attribute_Checks;
2350 -------------------------------
2351 -- Build_Discriminant_Checks --
2352 -------------------------------
2354 function Build_Discriminant_Checks
2355 (N : Node_Id;
2356 T_Typ : Entity_Id) return Node_Id
2358 Loc : constant Source_Ptr := Sloc (N);
2359 Cond : Node_Id;
2360 Disc : Elmt_Id;
2361 Disc_Ent : Entity_Id;
2362 Dref : Node_Id;
2363 Dval : Node_Id;
2365 begin
2366 Cond := Empty;
2367 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
2369 -- For a fully private type, use the discriminants of the parent type
2371 if Is_Private_Type (T_Typ)
2372 and then No (Full_View (T_Typ))
2373 then
2374 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
2375 else
2376 Disc_Ent := First_Discriminant (T_Typ);
2377 end if;
2379 while Present (Disc) loop
2380 Dval := Node (Disc);
2382 if Nkind (Dval) = N_Identifier
2383 and then Ekind (Entity (Dval)) = E_Discriminant
2384 then
2385 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
2386 else
2387 Dval := Duplicate_Subexpr_No_Checks (Dval);
2388 end if;
2390 -- If we have an Unchecked_Union node, we can infer the discriminants
2391 -- of the node.
2393 if Is_Unchecked_Union (Base_Type (T_Typ)) then
2394 Dref := New_Copy (
2395 Get_Discriminant_Value (
2396 First_Discriminant (T_Typ),
2397 T_Typ,
2398 Stored_Constraint (T_Typ)));
2400 else
2401 Dref :=
2402 Make_Selected_Component (Loc,
2403 Prefix =>
2404 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
2405 Selector_Name =>
2406 Make_Identifier (Loc, Chars (Disc_Ent)));
2408 Set_Is_In_Discriminant_Check (Dref);
2409 end if;
2411 Evolve_Or_Else (Cond,
2412 Make_Op_Ne (Loc,
2413 Left_Opnd => Dref,
2414 Right_Opnd => Dval));
2416 Next_Elmt (Disc);
2417 Next_Discriminant (Disc_Ent);
2418 end loop;
2420 return Cond;
2421 end Build_Discriminant_Checks;
2423 -----------------------------------
2424 -- Check_Valid_Lvalue_Subscripts --
2425 -----------------------------------
2427 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
2428 begin
2429 -- Skip this if range checks are suppressed
2431 if Range_Checks_Suppressed (Etype (Expr)) then
2432 return;
2434 -- Only do this check for expressions that come from source. We
2435 -- assume that expander generated assignments explicitly include
2436 -- any necessary checks. Note that this is not just an optimization,
2437 -- it avoids infinite recursions!
2439 elsif not Comes_From_Source (Expr) then
2440 return;
2442 -- For a selected component, check the prefix
2444 elsif Nkind (Expr) = N_Selected_Component then
2445 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2446 return;
2448 -- Case of indexed component
2450 elsif Nkind (Expr) = N_Indexed_Component then
2451 Apply_Subscript_Validity_Checks (Expr);
2453 -- Prefix may itself be or contain an indexed component, and
2454 -- these subscripts need checking as well
2456 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
2457 end if;
2458 end Check_Valid_Lvalue_Subscripts;
2460 ----------------------------------
2461 -- Null_Exclusion_Static_Checks --
2462 ----------------------------------
2464 procedure Null_Exclusion_Static_Checks (N : Node_Id) is
2465 K : constant Node_Kind := Nkind (N);
2466 Typ : Entity_Id;
2467 Related_Nod : Node_Id;
2468 Has_Null_Exclusion : Boolean := False;
2470 type Msg_Kind is (Components, Formals, Objects);
2471 Msg_K : Msg_Kind := Objects;
2472 -- Used by local subprograms to generate precise error messages
2474 procedure Check_Must_Be_Access
2475 (Typ : Entity_Id;
2476 Has_Null_Exclusion : Boolean);
2477 -- ??? local subprograms must have comment on spec
2479 procedure Check_Already_Null_Excluding_Type
2480 (Typ : Entity_Id;
2481 Has_Null_Exclusion : Boolean;
2482 Related_Nod : Node_Id);
2483 -- ??? local subprograms must have comment on spec
2485 procedure Check_Must_Be_Initialized
2486 (N : Node_Id;
2487 Related_Nod : Node_Id);
2488 -- ??? local subprograms must have comment on spec
2490 procedure Check_Null_Not_Allowed (N : Node_Id);
2491 -- ??? local subprograms must have comment on spec
2493 -- ??? following bodies lack comments
2495 --------------------------
2496 -- Check_Must_Be_Access --
2497 --------------------------
2499 procedure Check_Must_Be_Access
2500 (Typ : Entity_Id;
2501 Has_Null_Exclusion : Boolean)
2503 begin
2504 if Has_Null_Exclusion
2505 and then not Is_Access_Type (Typ)
2506 then
2507 Error_Msg_N ("(Ada 2005) must be an access type", Related_Nod);
2508 end if;
2509 end Check_Must_Be_Access;
2511 ---------------------------------------
2512 -- Check_Already_Null_Excluding_Type --
2513 ---------------------------------------
2515 procedure Check_Already_Null_Excluding_Type
2516 (Typ : Entity_Id;
2517 Has_Null_Exclusion : Boolean;
2518 Related_Nod : Node_Id)
2520 begin
2521 if Has_Null_Exclusion
2522 and then Can_Never_Be_Null (Typ)
2523 then
2524 Error_Msg_N
2525 ("(Ada 2005) already a null-excluding type", Related_Nod);
2526 end if;
2527 end Check_Already_Null_Excluding_Type;
2529 -------------------------------
2530 -- Check_Must_Be_Initialized --
2531 -------------------------------
2533 procedure Check_Must_Be_Initialized
2534 (N : Node_Id;
2535 Related_Nod : Node_Id)
2537 Expr : constant Node_Id := Expression (N);
2539 begin
2540 pragma Assert (Nkind (N) = N_Component_Declaration
2541 or else Nkind (N) = N_Object_Declaration);
2543 if not Present (Expr) then
2544 case Msg_K is
2545 when Components =>
2546 Error_Msg_N
2547 ("(Ada 2005) null-excluding components must be " &
2548 "initialized", Related_Nod);
2550 when Formals =>
2551 Error_Msg_N
2552 ("(Ada 2005) null-excluding formals must be initialized",
2553 Related_Nod);
2555 when Objects =>
2556 Error_Msg_N
2557 ("(Ada 2005) null-excluding objects must be initialized",
2558 Related_Nod);
2559 end case;
2560 end if;
2561 end Check_Must_Be_Initialized;
2563 ----------------------------
2564 -- Check_Null_Not_Allowed --
2565 ----------------------------
2567 procedure Check_Null_Not_Allowed (N : Node_Id) is
2568 Expr : constant Node_Id := Expression (N);
2570 begin
2571 if Present (Expr)
2572 and then Nkind (Expr) = N_Null
2573 then
2574 case Msg_K is
2575 when Components =>
2576 Apply_Compile_Time_Constraint_Error
2577 (N => Expr,
2578 Msg => "(Ada 2005) NULL not allowed in"
2579 & " null-excluding components?",
2580 Reason => CE_Null_Not_Allowed,
2581 Rep => False);
2583 when Formals =>
2584 Apply_Compile_Time_Constraint_Error
2585 (N => Expr,
2586 Msg => "(Ada 2005) NULL not allowed in"
2587 & " null-excluding formals?",
2588 Reason => CE_Null_Not_Allowed,
2589 Rep => False);
2591 when Objects =>
2592 Apply_Compile_Time_Constraint_Error
2593 (N => Expr,
2594 Msg => "(Ada 2005) NULL not allowed in"
2595 & " null-excluding objects?",
2596 Reason => CE_Null_Not_Allowed,
2597 Rep => False);
2598 end case;
2599 end if;
2600 end Check_Null_Not_Allowed;
2602 -- Start of processing for Null_Exclusion_Static_Checks
2604 begin
2605 pragma Assert (K = N_Component_Declaration
2606 or else K = N_Parameter_Specification
2607 or else K = N_Object_Declaration
2608 or else K = N_Discriminant_Specification
2609 or else K = N_Allocator);
2611 case K is
2612 when N_Component_Declaration =>
2613 Msg_K := Components;
2615 if not Present (Access_Definition (Component_Definition (N))) then
2616 Has_Null_Exclusion := Null_Exclusion_Present
2617 (Component_Definition (N));
2618 Typ := Etype (Subtype_Indication (Component_Definition (N)));
2619 Related_Nod := Subtype_Indication (Component_Definition (N));
2620 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2621 Check_Already_Null_Excluding_Type
2622 (Typ, Has_Null_Exclusion, Related_Nod);
2623 Check_Must_Be_Initialized (N, Related_Nod);
2624 end if;
2626 Check_Null_Not_Allowed (N);
2628 when N_Parameter_Specification =>
2629 Msg_K := Formals;
2630 Has_Null_Exclusion := Null_Exclusion_Present (N);
2631 Typ := Entity (Parameter_Type (N));
2632 Related_Nod := Parameter_Type (N);
2633 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2634 Check_Already_Null_Excluding_Type
2635 (Typ, Has_Null_Exclusion, Related_Nod);
2636 Check_Null_Not_Allowed (N);
2638 when N_Object_Declaration =>
2639 Msg_K := Objects;
2640 Has_Null_Exclusion := Null_Exclusion_Present (N);
2641 Typ := Entity (Object_Definition (N));
2642 Related_Nod := Object_Definition (N);
2643 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2644 Check_Already_Null_Excluding_Type
2645 (Typ, Has_Null_Exclusion, Related_Nod);
2646 Check_Must_Be_Initialized (N, Related_Nod);
2647 Check_Null_Not_Allowed (N);
2649 when N_Discriminant_Specification =>
2650 Msg_K := Components;
2652 if Nkind (Discriminant_Type (N)) /= N_Access_Definition then
2653 Has_Null_Exclusion := Null_Exclusion_Present (N);
2654 Typ := Etype (Defining_Identifier (N));
2655 Related_Nod := Discriminant_Type (N);
2656 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2657 Check_Already_Null_Excluding_Type
2658 (Typ, Has_Null_Exclusion, Related_Nod);
2659 end if;
2661 Check_Null_Not_Allowed (N);
2663 when N_Allocator =>
2664 Msg_K := Objects;
2665 Has_Null_Exclusion := Null_Exclusion_Present (N);
2666 Typ := Etype (Expression (N));
2668 if Nkind (Expression (N)) = N_Qualified_Expression then
2669 Related_Nod := Subtype_Mark (Expression (N));
2670 else
2671 Related_Nod := Expression (N);
2672 end if;
2674 Check_Must_Be_Access (Typ, Has_Null_Exclusion);
2675 Check_Already_Null_Excluding_Type
2676 (Typ, Has_Null_Exclusion, Related_Nod);
2677 Check_Null_Not_Allowed (N);
2679 when others =>
2680 raise Program_Error;
2681 end case;
2682 end Null_Exclusion_Static_Checks;
2684 ----------------------------------
2685 -- Conditional_Statements_Begin --
2686 ----------------------------------
2688 procedure Conditional_Statements_Begin is
2689 begin
2690 Saved_Checks_TOS := Saved_Checks_TOS + 1;
2692 -- If stack overflows, kill all checks, that way we know to
2693 -- simply reset the number of saved checks to zero on return.
2694 -- This should never occur in practice.
2696 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2697 Kill_All_Checks;
2699 -- In the normal case, we just make a new stack entry saving
2700 -- the current number of saved checks for a later restore.
2702 else
2703 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
2705 if Debug_Flag_CC then
2706 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
2707 Num_Saved_Checks);
2708 end if;
2709 end if;
2710 end Conditional_Statements_Begin;
2712 --------------------------------
2713 -- Conditional_Statements_End --
2714 --------------------------------
2716 procedure Conditional_Statements_End is
2717 begin
2718 pragma Assert (Saved_Checks_TOS > 0);
2720 -- If the saved checks stack overflowed, then we killed all
2721 -- checks, so setting the number of saved checks back to
2722 -- zero is correct. This should never occur in practice.
2724 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
2725 Num_Saved_Checks := 0;
2727 -- In the normal case, restore the number of saved checks
2728 -- from the top stack entry.
2730 else
2731 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
2732 if Debug_Flag_CC then
2733 w ("Conditional_Statements_End: Num_Saved_Checks = ",
2734 Num_Saved_Checks);
2735 end if;
2736 end if;
2738 Saved_Checks_TOS := Saved_Checks_TOS - 1;
2739 end Conditional_Statements_End;
2741 ---------------------
2742 -- Determine_Range --
2743 ---------------------
2745 Cache_Size : constant := 2 ** 10;
2746 type Cache_Index is range 0 .. Cache_Size - 1;
2747 -- Determine size of below cache (power of 2 is more efficient!)
2749 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
2750 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
2751 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
2752 -- The above arrays are used to implement a small direct cache
2753 -- for Determine_Range calls. Because of the way Determine_Range
2754 -- recursively traces subexpressions, and because overflow checking
2755 -- calls the routine on the way up the tree, a quadratic behavior
2756 -- can otherwise be encountered in large expressions. The cache
2757 -- entry for node N is stored in the (N mod Cache_Size) entry, and
2758 -- can be validated by checking the actual node value stored there.
2760 procedure Determine_Range
2761 (N : Node_Id;
2762 OK : out Boolean;
2763 Lo : out Uint;
2764 Hi : out Uint)
2766 Typ : constant Entity_Id := Etype (N);
2768 Lo_Left : Uint;
2769 Hi_Left : Uint;
2770 -- Lo and Hi bounds of left operand
2772 Lo_Right : Uint;
2773 Hi_Right : Uint;
2774 -- Lo and Hi bounds of right (or only) operand
2776 Bound : Node_Id;
2777 -- Temp variable used to hold a bound node
2779 Hbound : Uint;
2780 -- High bound of base type of expression
2782 Lor : Uint;
2783 Hir : Uint;
2784 -- Refined values for low and high bounds, after tightening
2786 OK1 : Boolean;
2787 -- Used in lower level calls to indicate if call succeeded
2789 Cindex : Cache_Index;
2790 -- Used to search cache
2792 function OK_Operands return Boolean;
2793 -- Used for binary operators. Determines the ranges of the left and
2794 -- right operands, and if they are both OK, returns True, and puts
2795 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left
2797 -----------------
2798 -- OK_Operands --
2799 -----------------
2801 function OK_Operands return Boolean is
2802 begin
2803 Determine_Range (Left_Opnd (N), OK1, Lo_Left, Hi_Left);
2805 if not OK1 then
2806 return False;
2807 end if;
2809 Determine_Range (Right_Opnd (N), OK1, Lo_Right, Hi_Right);
2810 return OK1;
2811 end OK_Operands;
2813 -- Start of processing for Determine_Range
2815 begin
2816 -- Prevent junk warnings by initializing range variables
2818 Lo := No_Uint;
2819 Hi := No_Uint;
2820 Lor := No_Uint;
2821 Hir := No_Uint;
2823 -- If the type is not discrete, or is undefined, then we can't
2824 -- do anything about determining the range.
2826 if No (Typ) or else not Is_Discrete_Type (Typ)
2827 or else Error_Posted (N)
2828 then
2829 OK := False;
2830 return;
2831 end if;
2833 -- For all other cases, we can determine the range
2835 OK := True;
2837 -- If value is compile time known, then the possible range is the
2838 -- one value that we know this expression definitely has!
2840 if Compile_Time_Known_Value (N) then
2841 Lo := Expr_Value (N);
2842 Hi := Lo;
2843 return;
2844 end if;
2846 -- Return if already in the cache
2848 Cindex := Cache_Index (N mod Cache_Size);
2850 if Determine_Range_Cache_N (Cindex) = N then
2851 Lo := Determine_Range_Cache_Lo (Cindex);
2852 Hi := Determine_Range_Cache_Hi (Cindex);
2853 return;
2854 end if;
2856 -- Otherwise, start by finding the bounds of the type of the
2857 -- expression, the value cannot be outside this range (if it
2858 -- is, then we have an overflow situation, which is a separate
2859 -- check, we are talking here only about the expression value).
2861 -- We use the actual bound unless it is dynamic, in which case
2862 -- use the corresponding base type bound if possible. If we can't
2863 -- get a bound then we figure we can't determine the range (a
2864 -- peculiar case, that perhaps cannot happen, but there is no
2865 -- point in bombing in this optimization circuit.
2867 -- First the low bound
2869 Bound := Type_Low_Bound (Typ);
2871 if Compile_Time_Known_Value (Bound) then
2872 Lo := Expr_Value (Bound);
2874 elsif Compile_Time_Known_Value (Type_Low_Bound (Base_Type (Typ))) then
2875 Lo := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
2877 else
2878 OK := False;
2879 return;
2880 end if;
2882 -- Now the high bound
2884 Bound := Type_High_Bound (Typ);
2886 -- We need the high bound of the base type later on, and this should
2887 -- always be compile time known. Again, it is not clear that this
2888 -- can ever be false, but no point in bombing.
2890 if Compile_Time_Known_Value (Type_High_Bound (Base_Type (Typ))) then
2891 Hbound := Expr_Value (Type_High_Bound (Base_Type (Typ)));
2892 Hi := Hbound;
2894 else
2895 OK := False;
2896 return;
2897 end if;
2899 -- If we have a static subtype, then that may have a tighter bound
2900 -- so use the upper bound of the subtype instead in this case.
2902 if Compile_Time_Known_Value (Bound) then
2903 Hi := Expr_Value (Bound);
2904 end if;
2906 -- We may be able to refine this value in certain situations. If
2907 -- refinement is possible, then Lor and Hir are set to possibly
2908 -- tighter bounds, and OK1 is set to True.
2910 case Nkind (N) is
2912 -- For unary plus, result is limited by range of operand
2914 when N_Op_Plus =>
2915 Determine_Range (Right_Opnd (N), OK1, Lor, Hir);
2917 -- For unary minus, determine range of operand, and negate it
2919 when N_Op_Minus =>
2920 Determine_Range (Right_Opnd (N), OK1, Lo_Right, Hi_Right);
2922 if OK1 then
2923 Lor := -Hi_Right;
2924 Hir := -Lo_Right;
2925 end if;
2927 -- For binary addition, get range of each operand and do the
2928 -- addition to get the result range.
2930 when N_Op_Add =>
2931 if OK_Operands then
2932 Lor := Lo_Left + Lo_Right;
2933 Hir := Hi_Left + Hi_Right;
2934 end if;
2936 -- Division is tricky. The only case we consider is where the
2937 -- right operand is a positive constant, and in this case we
2938 -- simply divide the bounds of the left operand
2940 when N_Op_Divide =>
2941 if OK_Operands then
2942 if Lo_Right = Hi_Right
2943 and then Lo_Right > 0
2944 then
2945 Lor := Lo_Left / Lo_Right;
2946 Hir := Hi_Left / Lo_Right;
2948 else
2949 OK1 := False;
2950 end if;
2951 end if;
2953 -- For binary subtraction, get range of each operand and do
2954 -- the worst case subtraction to get the result range.
2956 when N_Op_Subtract =>
2957 if OK_Operands then
2958 Lor := Lo_Left - Hi_Right;
2959 Hir := Hi_Left - Lo_Right;
2960 end if;
2962 -- For MOD, if right operand is a positive constant, then
2963 -- result must be in the allowable range of mod results.
2965 when N_Op_Mod =>
2966 if OK_Operands then
2967 if Lo_Right = Hi_Right
2968 and then Lo_Right /= 0
2969 then
2970 if Lo_Right > 0 then
2971 Lor := Uint_0;
2972 Hir := Lo_Right - 1;
2974 else -- Lo_Right < 0
2975 Lor := Lo_Right + 1;
2976 Hir := Uint_0;
2977 end if;
2979 else
2980 OK1 := False;
2981 end if;
2982 end if;
2984 -- For REM, if right operand is a positive constant, then
2985 -- result must be in the allowable range of mod results.
2987 when N_Op_Rem =>
2988 if OK_Operands then
2989 if Lo_Right = Hi_Right
2990 and then Lo_Right /= 0
2991 then
2992 declare
2993 Dval : constant Uint := (abs Lo_Right) - 1;
2995 begin
2996 -- The sign of the result depends on the sign of the
2997 -- dividend (but not on the sign of the divisor, hence
2998 -- the abs operation above).
3000 if Lo_Left < 0 then
3001 Lor := -Dval;
3002 else
3003 Lor := Uint_0;
3004 end if;
3006 if Hi_Left < 0 then
3007 Hir := Uint_0;
3008 else
3009 Hir := Dval;
3010 end if;
3011 end;
3013 else
3014 OK1 := False;
3015 end if;
3016 end if;
3018 -- Attribute reference cases
3020 when N_Attribute_Reference =>
3021 case Attribute_Name (N) is
3023 -- For Pos/Val attributes, we can refine the range using the
3024 -- possible range of values of the attribute expression
3026 when Name_Pos | Name_Val =>
3027 Determine_Range (First (Expressions (N)), OK1, Lor, Hir);
3029 -- For Length attribute, use the bounds of the corresponding
3030 -- index type to refine the range.
3032 when Name_Length =>
3033 declare
3034 Atyp : Entity_Id := Etype (Prefix (N));
3035 Inum : Nat;
3036 Indx : Node_Id;
3038 LL, LU : Uint;
3039 UL, UU : Uint;
3041 begin
3042 if Is_Access_Type (Atyp) then
3043 Atyp := Designated_Type (Atyp);
3044 end if;
3046 -- For string literal, we know exact value
3048 if Ekind (Atyp) = E_String_Literal_Subtype then
3049 OK := True;
3050 Lo := String_Literal_Length (Atyp);
3051 Hi := String_Literal_Length (Atyp);
3052 return;
3053 end if;
3055 -- Otherwise check for expression given
3057 if No (Expressions (N)) then
3058 Inum := 1;
3059 else
3060 Inum :=
3061 UI_To_Int (Expr_Value (First (Expressions (N))));
3062 end if;
3064 Indx := First_Index (Atyp);
3065 for J in 2 .. Inum loop
3066 Indx := Next_Index (Indx);
3067 end loop;
3069 Determine_Range
3070 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU);
3072 if OK1 then
3073 Determine_Range
3074 (Type_High_Bound (Etype (Indx)), OK1, UL, UU);
3076 if OK1 then
3078 -- The maximum value for Length is the biggest
3079 -- possible gap between the values of the bounds.
3080 -- But of course, this value cannot be negative.
3082 Hir := UI_Max (Uint_0, UU - LL);
3084 -- For constrained arrays, the minimum value for
3085 -- Length is taken from the actual value of the
3086 -- bounds, since the index will be exactly of
3087 -- this subtype.
3089 if Is_Constrained (Atyp) then
3090 Lor := UI_Max (Uint_0, UL - LU);
3092 -- For an unconstrained array, the minimum value
3093 -- for length is always zero.
3095 else
3096 Lor := Uint_0;
3097 end if;
3098 end if;
3099 end if;
3100 end;
3102 -- No special handling for other attributes
3103 -- Probably more opportunities exist here ???
3105 when others =>
3106 OK1 := False;
3108 end case;
3110 -- For type conversion from one discrete type to another, we
3111 -- can refine the range using the converted value.
3113 when N_Type_Conversion =>
3114 Determine_Range (Expression (N), OK1, Lor, Hir);
3116 -- Nothing special to do for all other expression kinds
3118 when others =>
3119 OK1 := False;
3120 Lor := No_Uint;
3121 Hir := No_Uint;
3122 end case;
3124 -- At this stage, if OK1 is true, then we know that the actual
3125 -- result of the computed expression is in the range Lor .. Hir.
3126 -- We can use this to restrict the possible range of results.
3128 if OK1 then
3130 -- If the refined value of the low bound is greater than the
3131 -- type high bound, then reset it to the more restrictive
3132 -- value. However, we do NOT do this for the case of a modular
3133 -- type where the possible upper bound on the value is above the
3134 -- base type high bound, because that means the result could wrap.
3136 if Lor > Lo
3137 and then not (Is_Modular_Integer_Type (Typ)
3138 and then Hir > Hbound)
3139 then
3140 Lo := Lor;
3141 end if;
3143 -- Similarly, if the refined value of the high bound is less
3144 -- than the value so far, then reset it to the more restrictive
3145 -- value. Again, we do not do this if the refined low bound is
3146 -- negative for a modular type, since this would wrap.
3148 if Hir < Hi
3149 and then not (Is_Modular_Integer_Type (Typ)
3150 and then Lor < Uint_0)
3151 then
3152 Hi := Hir;
3153 end if;
3154 end if;
3156 -- Set cache entry for future call and we are all done
3158 Determine_Range_Cache_N (Cindex) := N;
3159 Determine_Range_Cache_Lo (Cindex) := Lo;
3160 Determine_Range_Cache_Hi (Cindex) := Hi;
3161 return;
3163 -- If any exception occurs, it means that we have some bug in the compiler
3164 -- possibly triggered by a previous error, or by some unforseen peculiar
3165 -- occurrence. However, this is only an optimization attempt, so there is
3166 -- really no point in crashing the compiler. Instead we just decide, too
3167 -- bad, we can't figure out a range in this case after all.
3169 exception
3170 when others =>
3172 -- Debug flag K disables this behavior (useful for debugging)
3174 if Debug_Flag_K then
3175 raise;
3176 else
3177 OK := False;
3178 Lo := No_Uint;
3179 Hi := No_Uint;
3180 return;
3181 end if;
3182 end Determine_Range;
3184 ------------------------------------
3185 -- Discriminant_Checks_Suppressed --
3186 ------------------------------------
3188 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
3189 begin
3190 if Present (E) then
3191 if Is_Unchecked_Union (E) then
3192 return True;
3193 elsif Checks_May_Be_Suppressed (E) then
3194 return Is_Check_Suppressed (E, Discriminant_Check);
3195 end if;
3196 end if;
3198 return Scope_Suppress (Discriminant_Check);
3199 end Discriminant_Checks_Suppressed;
3201 --------------------------------
3202 -- Division_Checks_Suppressed --
3203 --------------------------------
3205 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
3206 begin
3207 if Present (E) and then Checks_May_Be_Suppressed (E) then
3208 return Is_Check_Suppressed (E, Division_Check);
3209 else
3210 return Scope_Suppress (Division_Check);
3211 end if;
3212 end Division_Checks_Suppressed;
3214 -----------------------------------
3215 -- Elaboration_Checks_Suppressed --
3216 -----------------------------------
3218 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
3219 begin
3220 if Present (E) then
3221 if Kill_Elaboration_Checks (E) then
3222 return True;
3223 elsif Checks_May_Be_Suppressed (E) then
3224 return Is_Check_Suppressed (E, Elaboration_Check);
3225 end if;
3226 end if;
3228 return Scope_Suppress (Elaboration_Check);
3229 end Elaboration_Checks_Suppressed;
3231 ---------------------------
3232 -- Enable_Overflow_Check --
3233 ---------------------------
3235 procedure Enable_Overflow_Check (N : Node_Id) is
3236 Typ : constant Entity_Id := Base_Type (Etype (N));
3237 Chk : Nat;
3238 OK : Boolean;
3239 Ent : Entity_Id;
3240 Ofs : Uint;
3241 Lo : Uint;
3242 Hi : Uint;
3244 begin
3245 if Debug_Flag_CC then
3246 w ("Enable_Overflow_Check for node ", Int (N));
3247 Write_Str (" Source location = ");
3248 wl (Sloc (N));
3249 pg (N);
3250 end if;
3252 -- Nothing to do if the range of the result is known OK. We skip
3253 -- this for conversions, since the caller already did the check,
3254 -- and in any case the condition for deleting the check for a
3255 -- type conversion is different in any case.
3257 if Nkind (N) /= N_Type_Conversion then
3258 Determine_Range (N, OK, Lo, Hi);
3260 -- Note in the test below that we assume that if a bound of the
3261 -- range is equal to that of the type. That's not quite accurate
3262 -- but we do this for the following reasons:
3264 -- a) The way that Determine_Range works, it will typically report
3265 -- the bounds of the value as being equal to the bounds of the
3266 -- type, because it either can't tell anything more precise, or
3267 -- does not think it is worth the effort to be more precise.
3269 -- b) It is very unusual to have a situation in which this would
3270 -- generate an unnecessary overflow check (an example would be
3271 -- a subtype with a range 0 .. Integer'Last - 1 to which the
3272 -- literal value one is added.
3274 -- c) The alternative is a lot of special casing in this routine
3275 -- which would partially duplicate Determine_Range processing.
3277 if OK
3278 and then Lo > Expr_Value (Type_Low_Bound (Typ))
3279 and then Hi < Expr_Value (Type_High_Bound (Typ))
3280 then
3281 if Debug_Flag_CC then
3282 w ("No overflow check required");
3283 end if;
3285 return;
3286 end if;
3287 end if;
3289 -- If not in optimizing mode, set flag and we are done. We are also
3290 -- done (and just set the flag) if the type is not a discrete type,
3291 -- since it is not worth the effort to eliminate checks for other
3292 -- than discrete types. In addition, we take this same path if we
3293 -- have stored the maximum number of checks possible already (a
3294 -- very unlikely situation, but we do not want to blow up!)
3296 if Optimization_Level = 0
3297 or else not Is_Discrete_Type (Etype (N))
3298 or else Num_Saved_Checks = Saved_Checks'Last
3299 then
3300 Set_Do_Overflow_Check (N, True);
3302 if Debug_Flag_CC then
3303 w ("Optimization off");
3304 end if;
3306 return;
3307 end if;
3309 -- Otherwise evaluate and check the expression
3311 Find_Check
3312 (Expr => N,
3313 Check_Type => 'O',
3314 Target_Type => Empty,
3315 Entry_OK => OK,
3316 Check_Num => Chk,
3317 Ent => Ent,
3318 Ofs => Ofs);
3320 if Debug_Flag_CC then
3321 w ("Called Find_Check");
3322 w (" OK = ", OK);
3324 if OK then
3325 w (" Check_Num = ", Chk);
3326 w (" Ent = ", Int (Ent));
3327 Write_Str (" Ofs = ");
3328 pid (Ofs);
3329 end if;
3330 end if;
3332 -- If check is not of form to optimize, then set flag and we are done
3334 if not OK then
3335 Set_Do_Overflow_Check (N, True);
3336 return;
3337 end if;
3339 -- If check is already performed, then return without setting flag
3341 if Chk /= 0 then
3342 if Debug_Flag_CC then
3343 w ("Check suppressed!");
3344 end if;
3346 return;
3347 end if;
3349 -- Here we will make a new entry for the new check
3351 Set_Do_Overflow_Check (N, True);
3352 Num_Saved_Checks := Num_Saved_Checks + 1;
3353 Saved_Checks (Num_Saved_Checks) :=
3354 (Killed => False,
3355 Entity => Ent,
3356 Offset => Ofs,
3357 Check_Type => 'O',
3358 Target_Type => Empty);
3360 if Debug_Flag_CC then
3361 w ("Make new entry, check number = ", Num_Saved_Checks);
3362 w (" Entity = ", Int (Ent));
3363 Write_Str (" Offset = ");
3364 pid (Ofs);
3365 w (" Check_Type = O");
3366 w (" Target_Type = Empty");
3367 end if;
3369 -- If we get an exception, then something went wrong, probably because
3370 -- of an error in the structure of the tree due to an incorrect program.
3371 -- Or it may be a bug in the optimization circuit. In either case the
3372 -- safest thing is simply to set the check flag unconditionally.
3374 exception
3375 when others =>
3376 Set_Do_Overflow_Check (N, True);
3378 if Debug_Flag_CC then
3379 w (" exception occurred, overflow flag set");
3380 end if;
3382 return;
3383 end Enable_Overflow_Check;
3385 ------------------------
3386 -- Enable_Range_Check --
3387 ------------------------
3389 procedure Enable_Range_Check (N : Node_Id) is
3390 Chk : Nat;
3391 OK : Boolean;
3392 Ent : Entity_Id;
3393 Ofs : Uint;
3394 Ttyp : Entity_Id;
3395 P : Node_Id;
3397 begin
3398 -- Return if unchecked type conversion with range check killed.
3399 -- In this case we never set the flag (that's what Kill_Range_Check
3400 -- is all about!)
3402 if Nkind (N) = N_Unchecked_Type_Conversion
3403 and then Kill_Range_Check (N)
3404 then
3405 return;
3406 end if;
3408 -- Debug trace output
3410 if Debug_Flag_CC then
3411 w ("Enable_Range_Check for node ", Int (N));
3412 Write_Str (" Source location = ");
3413 wl (Sloc (N));
3414 pg (N);
3415 end if;
3417 -- If not in optimizing mode, set flag and we are done. We are also
3418 -- done (and just set the flag) if the type is not a discrete type,
3419 -- since it is not worth the effort to eliminate checks for other
3420 -- than discrete types. In addition, we take this same path if we
3421 -- have stored the maximum number of checks possible already (a
3422 -- very unlikely situation, but we do not want to blow up!)
3424 if Optimization_Level = 0
3425 or else No (Etype (N))
3426 or else not Is_Discrete_Type (Etype (N))
3427 or else Num_Saved_Checks = Saved_Checks'Last
3428 then
3429 Set_Do_Range_Check (N, True);
3431 if Debug_Flag_CC then
3432 w ("Optimization off");
3433 end if;
3435 return;
3436 end if;
3438 -- Otherwise find out the target type
3440 P := Parent (N);
3442 -- For assignment, use left side subtype
3444 if Nkind (P) = N_Assignment_Statement
3445 and then Expression (P) = N
3446 then
3447 Ttyp := Etype (Name (P));
3449 -- For indexed component, use subscript subtype
3451 elsif Nkind (P) = N_Indexed_Component then
3452 declare
3453 Atyp : Entity_Id;
3454 Indx : Node_Id;
3455 Subs : Node_Id;
3457 begin
3458 Atyp := Etype (Prefix (P));
3460 if Is_Access_Type (Atyp) then
3461 Atyp := Designated_Type (Atyp);
3463 -- If the prefix is an access to an unconstrained array,
3464 -- perform check unconditionally: it depends on the bounds
3465 -- of an object and we cannot currently recognize whether
3466 -- the test may be redundant.
3468 if not Is_Constrained (Atyp) then
3469 Set_Do_Range_Check (N, True);
3470 return;
3471 end if;
3473 -- Ditto if the prefix is an explicit dereference whose
3474 -- designated type is unconstrained.
3476 elsif Nkind (Prefix (P)) = N_Explicit_Dereference
3477 and then not Is_Constrained (Atyp)
3478 then
3479 Set_Do_Range_Check (N, True);
3480 return;
3481 end if;
3483 Indx := First_Index (Atyp);
3484 Subs := First (Expressions (P));
3485 loop
3486 if Subs = N then
3487 Ttyp := Etype (Indx);
3488 exit;
3489 end if;
3491 Next_Index (Indx);
3492 Next (Subs);
3493 end loop;
3494 end;
3496 -- For now, ignore all other cases, they are not so interesting
3498 else
3499 if Debug_Flag_CC then
3500 w (" target type not found, flag set");
3501 end if;
3503 Set_Do_Range_Check (N, True);
3504 return;
3505 end if;
3507 -- Evaluate and check the expression
3509 Find_Check
3510 (Expr => N,
3511 Check_Type => 'R',
3512 Target_Type => Ttyp,
3513 Entry_OK => OK,
3514 Check_Num => Chk,
3515 Ent => Ent,
3516 Ofs => Ofs);
3518 if Debug_Flag_CC then
3519 w ("Called Find_Check");
3520 w ("Target_Typ = ", Int (Ttyp));
3521 w (" OK = ", OK);
3523 if OK then
3524 w (" Check_Num = ", Chk);
3525 w (" Ent = ", Int (Ent));
3526 Write_Str (" Ofs = ");
3527 pid (Ofs);
3528 end if;
3529 end if;
3531 -- If check is not of form to optimize, then set flag and we are done
3533 if not OK then
3534 if Debug_Flag_CC then
3535 w (" expression not of optimizable type, flag set");
3536 end if;
3538 Set_Do_Range_Check (N, True);
3539 return;
3540 end if;
3542 -- If check is already performed, then return without setting flag
3544 if Chk /= 0 then
3545 if Debug_Flag_CC then
3546 w ("Check suppressed!");
3547 end if;
3549 return;
3550 end if;
3552 -- Here we will make a new entry for the new check
3554 Set_Do_Range_Check (N, True);
3555 Num_Saved_Checks := Num_Saved_Checks + 1;
3556 Saved_Checks (Num_Saved_Checks) :=
3557 (Killed => False,
3558 Entity => Ent,
3559 Offset => Ofs,
3560 Check_Type => 'R',
3561 Target_Type => Ttyp);
3563 if Debug_Flag_CC then
3564 w ("Make new entry, check number = ", Num_Saved_Checks);
3565 w (" Entity = ", Int (Ent));
3566 Write_Str (" Offset = ");
3567 pid (Ofs);
3568 w (" Check_Type = R");
3569 w (" Target_Type = ", Int (Ttyp));
3570 pg (Ttyp);
3571 end if;
3573 -- If we get an exception, then something went wrong, probably because
3574 -- of an error in the structure of the tree due to an incorrect program.
3575 -- Or it may be a bug in the optimization circuit. In either case the
3576 -- safest thing is simply to set the check flag unconditionally.
3578 exception
3579 when others =>
3580 Set_Do_Range_Check (N, True);
3582 if Debug_Flag_CC then
3583 w (" exception occurred, range flag set");
3584 end if;
3586 return;
3587 end Enable_Range_Check;
3589 ------------------
3590 -- Ensure_Valid --
3591 ------------------
3593 procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
3594 Typ : constant Entity_Id := Etype (Expr);
3596 begin
3597 -- Ignore call if we are not doing any validity checking
3599 if not Validity_Checks_On then
3600 return;
3602 -- Ignore call if range checks suppressed on entity in question
3604 elsif Is_Entity_Name (Expr)
3605 and then Range_Checks_Suppressed (Entity (Expr))
3606 then
3607 return;
3609 -- No check required if expression is from the expander, we assume
3610 -- the expander will generate whatever checks are needed. Note that
3611 -- this is not just an optimization, it avoids infinite recursions!
3613 -- Unchecked conversions must be checked, unless they are initialized
3614 -- scalar values, as in a component assignment in an init proc.
3616 -- In addition, we force a check if Force_Validity_Checks is set
3618 elsif not Comes_From_Source (Expr)
3619 and then not Force_Validity_Checks
3620 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
3621 or else Kill_Range_Check (Expr))
3622 then
3623 return;
3625 -- No check required if expression is known to have valid value
3627 elsif Expr_Known_Valid (Expr) then
3628 return;
3630 -- No check required if checks off
3632 elsif Range_Checks_Suppressed (Typ) then
3633 return;
3635 -- Ignore case of enumeration with holes where the flag is set not
3636 -- to worry about holes, since no special validity check is needed
3638 elsif Is_Enumeration_Type (Typ)
3639 and then Has_Non_Standard_Rep (Typ)
3640 and then Holes_OK
3641 then
3642 return;
3644 -- No check required on the left-hand side of an assignment
3646 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
3647 and then Expr = Name (Parent (Expr))
3648 then
3649 return;
3651 -- An annoying special case. If this is an out parameter of a scalar
3652 -- type, then the value is not going to be accessed, therefore it is
3653 -- inappropriate to do any validity check at the call site.
3655 else
3656 -- Only need to worry about scalar types
3658 if Is_Scalar_Type (Typ) then
3659 declare
3660 P : Node_Id;
3661 N : Node_Id;
3662 E : Entity_Id;
3663 F : Entity_Id;
3664 A : Node_Id;
3665 L : List_Id;
3667 begin
3668 -- Find actual argument (which may be a parameter association)
3669 -- and the parent of the actual argument (the call statement)
3671 N := Expr;
3672 P := Parent (Expr);
3674 if Nkind (P) = N_Parameter_Association then
3675 N := P;
3676 P := Parent (N);
3677 end if;
3679 -- Only need to worry if we are argument of a procedure
3680 -- call since functions don't have out parameters. If this
3681 -- is an indirect or dispatching call, get signature from
3682 -- the subprogram type.
3684 if Nkind (P) = N_Procedure_Call_Statement then
3685 L := Parameter_Associations (P);
3687 if Is_Entity_Name (Name (P)) then
3688 E := Entity (Name (P));
3689 else
3690 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
3691 E := Etype (Name (P));
3692 end if;
3694 -- Only need to worry if there are indeed actuals, and
3695 -- if this could be a procedure call, otherwise we cannot
3696 -- get a match (either we are not an argument, or the
3697 -- mode of the formal is not OUT). This test also filters
3698 -- out the generic case.
3700 if Is_Non_Empty_List (L)
3701 and then Is_Subprogram (E)
3702 then
3703 -- This is the loop through parameters, looking to
3704 -- see if there is an OUT parameter for which we are
3705 -- the argument.
3707 F := First_Formal (E);
3708 A := First (L);
3710 while Present (F) loop
3711 if Ekind (F) = E_Out_Parameter and then A = N then
3712 return;
3713 end if;
3715 Next_Formal (F);
3716 Next (A);
3717 end loop;
3718 end if;
3719 end if;
3720 end;
3721 end if;
3722 end if;
3724 -- If we fall through, a validity check is required. Note that it would
3725 -- not be good to set Do_Range_Check, even in contexts where this is
3726 -- permissible, since this flag causes checking against the target type,
3727 -- not the source type in contexts such as assignments
3729 Insert_Valid_Check (Expr);
3730 end Ensure_Valid;
3732 ----------------------
3733 -- Expr_Known_Valid --
3734 ----------------------
3736 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
3737 Typ : constant Entity_Id := Etype (Expr);
3739 begin
3740 -- Non-scalar types are always considered valid, since they never
3741 -- give rise to the issues of erroneous or bounded error behavior
3742 -- that are the concern. In formal reference manual terms the
3743 -- notion of validity only applies to scalar types. Note that
3744 -- even when packed arrays are represented using modular types,
3745 -- they are still arrays semantically, so they are also always
3746 -- valid (in particular, the unused bits can be random rubbish
3747 -- without affecting the validity of the array value).
3749 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Type (Typ) then
3750 return True;
3752 -- If no validity checking, then everything is considered valid
3754 elsif not Validity_Checks_On then
3755 return True;
3757 -- Floating-point types are considered valid unless floating-point
3758 -- validity checks have been specifically turned on.
3760 elsif Is_Floating_Point_Type (Typ)
3761 and then not Validity_Check_Floating_Point
3762 then
3763 return True;
3765 -- If the expression is the value of an object that is known to
3766 -- be valid, then clearly the expression value itself is valid.
3768 elsif Is_Entity_Name (Expr)
3769 and then Is_Known_Valid (Entity (Expr))
3770 then
3771 return True;
3773 -- If the type is one for which all values are known valid, then
3774 -- we are sure that the value is valid except in the slightly odd
3775 -- case where the expression is a reference to a variable whose size
3776 -- has been explicitly set to a value greater than the object size.
3778 elsif Is_Known_Valid (Typ) then
3779 if Is_Entity_Name (Expr)
3780 and then Ekind (Entity (Expr)) = E_Variable
3781 and then Esize (Entity (Expr)) > Esize (Typ)
3782 then
3783 return False;
3784 else
3785 return True;
3786 end if;
3788 -- Integer and character literals always have valid values, where
3789 -- appropriate these will be range checked in any case.
3791 elsif Nkind (Expr) = N_Integer_Literal
3792 or else
3793 Nkind (Expr) = N_Character_Literal
3794 then
3795 return True;
3797 -- If we have a type conversion or a qualification of a known valid
3798 -- value, then the result will always be valid.
3800 elsif Nkind (Expr) = N_Type_Conversion
3801 or else
3802 Nkind (Expr) = N_Qualified_Expression
3803 then
3804 return Expr_Known_Valid (Expression (Expr));
3806 -- The result of any function call or operator is always considered
3807 -- valid, since we assume the necessary checks are done by the call.
3808 -- For operators on floating-point operations, we must also check
3809 -- when the operation is the right-hand side of an assignment, or
3810 -- is an actual in a call.
3812 elsif
3813 Nkind (Expr) in N_Binary_Op or else Nkind (Expr) in N_Unary_Op
3814 then
3815 if Is_Floating_Point_Type (Typ)
3816 and then Validity_Check_Floating_Point
3817 and then
3818 (Nkind (Parent (Expr)) = N_Assignment_Statement
3819 or else Nkind (Parent (Expr)) = N_Function_Call
3820 or else Nkind (Parent (Expr)) = N_Parameter_Association)
3821 then
3822 return False;
3823 else
3824 return True;
3825 end if;
3827 elsif Nkind (Expr) = N_Function_Call then
3828 return True;
3830 -- For all other cases, we do not know the expression is valid
3832 else
3833 return False;
3834 end if;
3835 end Expr_Known_Valid;
3837 ----------------
3838 -- Find_Check --
3839 ----------------
3841 procedure Find_Check
3842 (Expr : Node_Id;
3843 Check_Type : Character;
3844 Target_Type : Entity_Id;
3845 Entry_OK : out Boolean;
3846 Check_Num : out Nat;
3847 Ent : out Entity_Id;
3848 Ofs : out Uint)
3850 function Within_Range_Of
3851 (Target_Type : Entity_Id;
3852 Check_Type : Entity_Id) return Boolean;
3853 -- Given a requirement for checking a range against Target_Type, and
3854 -- and a range Check_Type against which a check has already been made,
3855 -- determines if the check against check type is sufficient to ensure
3856 -- that no check against Target_Type is required.
3858 ---------------------
3859 -- Within_Range_Of --
3860 ---------------------
3862 function Within_Range_Of
3863 (Target_Type : Entity_Id;
3864 Check_Type : Entity_Id) return Boolean
3866 begin
3867 if Target_Type = Check_Type then
3868 return True;
3870 else
3871 declare
3872 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
3873 Thi : constant Node_Id := Type_High_Bound (Target_Type);
3874 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
3875 Chi : constant Node_Id := Type_High_Bound (Check_Type);
3877 begin
3878 if (Tlo = Clo
3879 or else (Compile_Time_Known_Value (Tlo)
3880 and then
3881 Compile_Time_Known_Value (Clo)
3882 and then
3883 Expr_Value (Clo) >= Expr_Value (Tlo)))
3884 and then
3885 (Thi = Chi
3886 or else (Compile_Time_Known_Value (Thi)
3887 and then
3888 Compile_Time_Known_Value (Chi)
3889 and then
3890 Expr_Value (Chi) <= Expr_Value (Clo)))
3891 then
3892 return True;
3893 else
3894 return False;
3895 end if;
3896 end;
3897 end if;
3898 end Within_Range_Of;
3900 -- Start of processing for Find_Check
3902 begin
3903 -- Establish default, to avoid warnings from GCC
3905 Check_Num := 0;
3907 -- Case of expression is simple entity reference
3909 if Is_Entity_Name (Expr) then
3910 Ent := Entity (Expr);
3911 Ofs := Uint_0;
3913 -- Case of expression is entity + known constant
3915 elsif Nkind (Expr) = N_Op_Add
3916 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3917 and then Is_Entity_Name (Left_Opnd (Expr))
3918 then
3919 Ent := Entity (Left_Opnd (Expr));
3920 Ofs := Expr_Value (Right_Opnd (Expr));
3922 -- Case of expression is entity - known constant
3924 elsif Nkind (Expr) = N_Op_Subtract
3925 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3926 and then Is_Entity_Name (Left_Opnd (Expr))
3927 then
3928 Ent := Entity (Left_Opnd (Expr));
3929 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
3931 -- Any other expression is not of the right form
3933 else
3934 Ent := Empty;
3935 Ofs := Uint_0;
3936 Entry_OK := False;
3937 return;
3938 end if;
3940 -- Come here with expression of appropriate form, check if
3941 -- entity is an appropriate one for our purposes.
3943 if (Ekind (Ent) = E_Variable
3944 or else
3945 Ekind (Ent) = E_Constant
3946 or else
3947 Ekind (Ent) = E_Loop_Parameter
3948 or else
3949 Ekind (Ent) = E_In_Parameter)
3950 and then not Is_Library_Level_Entity (Ent)
3951 then
3952 Entry_OK := True;
3953 else
3954 Entry_OK := False;
3955 return;
3956 end if;
3958 -- See if there is matching check already
3960 for J in reverse 1 .. Num_Saved_Checks loop
3961 declare
3962 SC : Saved_Check renames Saved_Checks (J);
3964 begin
3965 if SC.Killed = False
3966 and then SC.Entity = Ent
3967 and then SC.Offset = Ofs
3968 and then SC.Check_Type = Check_Type
3969 and then Within_Range_Of (Target_Type, SC.Target_Type)
3970 then
3971 Check_Num := J;
3972 return;
3973 end if;
3974 end;
3975 end loop;
3977 -- If we fall through entry was not found
3979 Check_Num := 0;
3980 return;
3981 end Find_Check;
3983 ---------------------------------
3984 -- Generate_Discriminant_Check --
3985 ---------------------------------
3987 -- Note: the code for this procedure is derived from the
3988 -- emit_discriminant_check routine a-trans.c v1.659.
3990 procedure Generate_Discriminant_Check (N : Node_Id) is
3991 Loc : constant Source_Ptr := Sloc (N);
3992 Pref : constant Node_Id := Prefix (N);
3993 Sel : constant Node_Id := Selector_Name (N);
3995 Orig_Comp : constant Entity_Id :=
3996 Original_Record_Component (Entity (Sel));
3997 -- The original component to be checked
3999 Discr_Fct : constant Entity_Id :=
4000 Discriminant_Checking_Func (Orig_Comp);
4001 -- The discriminant checking function
4003 Discr : Entity_Id;
4004 -- One discriminant to be checked in the type
4006 Real_Discr : Entity_Id;
4007 -- Actual discriminant in the call
4009 Pref_Type : Entity_Id;
4010 -- Type of relevant prefix (ignoring private/access stuff)
4012 Args : List_Id;
4013 -- List of arguments for function call
4015 Formal : Entity_Id;
4016 -- Keep track of the formal corresponding to the actual we build
4017 -- for each discriminant, in order to be able to perform the
4018 -- necessary type conversions.
4020 Scomp : Node_Id;
4021 -- Selected component reference for checking function argument
4023 begin
4024 Pref_Type := Etype (Pref);
4026 -- Force evaluation of the prefix, so that it does not get evaluated
4027 -- twice (once for the check, once for the actual reference). Such a
4028 -- double evaluation is always a potential source of inefficiency,
4029 -- and is functionally incorrect in the volatile case, or when the
4030 -- prefix may have side-effects. An entity or a component of an
4031 -- entity requires no evaluation.
4033 if Is_Entity_Name (Pref) then
4034 if Treat_As_Volatile (Entity (Pref)) then
4035 Force_Evaluation (Pref, Name_Req => True);
4036 end if;
4038 elsif Treat_As_Volatile (Etype (Pref)) then
4039 Force_Evaluation (Pref, Name_Req => True);
4041 elsif Nkind (Pref) = N_Selected_Component
4042 and then Is_Entity_Name (Prefix (Pref))
4043 then
4044 null;
4046 else
4047 Force_Evaluation (Pref, Name_Req => True);
4048 end if;
4050 -- For a tagged type, use the scope of the original component to
4051 -- obtain the type, because ???
4053 if Is_Tagged_Type (Scope (Orig_Comp)) then
4054 Pref_Type := Scope (Orig_Comp);
4056 -- For an untagged derived type, use the discriminants of the
4057 -- parent which have been renamed in the derivation, possibly
4058 -- by a one-to-many discriminant constraint.
4059 -- For non-tagged type, initially get the Etype of the prefix
4061 else
4062 if Is_Derived_Type (Pref_Type)
4063 and then Number_Discriminants (Pref_Type) /=
4064 Number_Discriminants (Etype (Base_Type (Pref_Type)))
4065 then
4066 Pref_Type := Etype (Base_Type (Pref_Type));
4067 end if;
4068 end if;
4070 -- We definitely should have a checking function, This routine should
4071 -- not be called if no discriminant checking function is present.
4073 pragma Assert (Present (Discr_Fct));
4075 -- Create the list of the actual parameters for the call. This list
4076 -- is the list of the discriminant fields of the record expression to
4077 -- be discriminant checked.
4079 Args := New_List;
4080 Formal := First_Formal (Discr_Fct);
4081 Discr := First_Discriminant (Pref_Type);
4082 while Present (Discr) loop
4084 -- If we have a corresponding discriminant field, and a parent
4085 -- subtype is present, then we want to use the corresponding
4086 -- discriminant since this is the one with the useful value.
4088 if Present (Corresponding_Discriminant (Discr))
4089 and then Ekind (Pref_Type) = E_Record_Type
4090 and then Present (Parent_Subtype (Pref_Type))
4091 then
4092 Real_Discr := Corresponding_Discriminant (Discr);
4093 else
4094 Real_Discr := Discr;
4095 end if;
4097 -- Construct the reference to the discriminant
4099 Scomp :=
4100 Make_Selected_Component (Loc,
4101 Prefix =>
4102 Unchecked_Convert_To (Pref_Type,
4103 Duplicate_Subexpr (Pref)),
4104 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
4106 -- Manually analyze and resolve this selected component. We really
4107 -- want it just as it appears above, and do not want the expander
4108 -- playing discriminal games etc with this reference. Then we
4109 -- append the argument to the list we are gathering.
4111 Set_Etype (Scomp, Etype (Real_Discr));
4112 Set_Analyzed (Scomp, True);
4113 Append_To (Args, Convert_To (Etype (Formal), Scomp));
4115 Next_Formal_With_Extras (Formal);
4116 Next_Discriminant (Discr);
4117 end loop;
4119 -- Now build and insert the call
4121 Insert_Action (N,
4122 Make_Raise_Constraint_Error (Loc,
4123 Condition =>
4124 Make_Function_Call (Loc,
4125 Name => New_Occurrence_Of (Discr_Fct, Loc),
4126 Parameter_Associations => Args),
4127 Reason => CE_Discriminant_Check_Failed));
4128 end Generate_Discriminant_Check;
4130 ---------------------------
4131 -- Generate_Index_Checks --
4132 ---------------------------
4134 procedure Generate_Index_Checks (N : Node_Id) is
4135 Loc : constant Source_Ptr := Sloc (N);
4136 A : constant Node_Id := Prefix (N);
4137 Sub : Node_Id;
4138 Ind : Nat;
4139 Num : List_Id;
4141 begin
4142 Sub := First (Expressions (N));
4143 Ind := 1;
4144 while Present (Sub) loop
4145 if Do_Range_Check (Sub) then
4146 Set_Do_Range_Check (Sub, False);
4148 -- Force evaluation except for the case of a simple name of
4149 -- a non-volatile entity.
4151 if not Is_Entity_Name (Sub)
4152 or else Treat_As_Volatile (Entity (Sub))
4153 then
4154 Force_Evaluation (Sub);
4155 end if;
4157 -- Generate a raise of constraint error with the appropriate
4158 -- reason and a condition of the form:
4160 -- Base_Type(Sub) not in array'range (subscript)
4162 -- Note that the reason we generate the conversion to the
4163 -- base type here is that we definitely want the range check
4164 -- to take place, even if it looks like the subtype is OK.
4165 -- Optimization considerations that allow us to omit the
4166 -- check have already been taken into account in the setting
4167 -- of the Do_Range_Check flag earlier on.
4169 if Ind = 1 then
4170 Num := No_List;
4171 else
4172 Num := New_List (Make_Integer_Literal (Loc, Ind));
4173 end if;
4175 Insert_Action (N,
4176 Make_Raise_Constraint_Error (Loc,
4177 Condition =>
4178 Make_Not_In (Loc,
4179 Left_Opnd =>
4180 Convert_To (Base_Type (Etype (Sub)),
4181 Duplicate_Subexpr_Move_Checks (Sub)),
4182 Right_Opnd =>
4183 Make_Attribute_Reference (Loc,
4184 Prefix => Duplicate_Subexpr_Move_Checks (A),
4185 Attribute_Name => Name_Range,
4186 Expressions => Num)),
4187 Reason => CE_Index_Check_Failed));
4188 end if;
4190 Ind := Ind + 1;
4191 Next (Sub);
4192 end loop;
4193 end Generate_Index_Checks;
4195 --------------------------
4196 -- Generate_Range_Check --
4197 --------------------------
4199 procedure Generate_Range_Check
4200 (N : Node_Id;
4201 Target_Type : Entity_Id;
4202 Reason : RT_Exception_Code)
4204 Loc : constant Source_Ptr := Sloc (N);
4205 Source_Type : constant Entity_Id := Etype (N);
4206 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
4207 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
4209 begin
4210 -- First special case, if the source type is already within the
4211 -- range of the target type, then no check is needed (probably we
4212 -- should have stopped Do_Range_Check from being set in the first
4213 -- place, but better late than later in preventing junk code!
4215 -- We do NOT apply this if the source node is a literal, since in
4216 -- this case the literal has already been labeled as having the
4217 -- subtype of the target.
4219 if In_Subrange_Of (Source_Type, Target_Type)
4220 and then not
4221 (Nkind (N) = N_Integer_Literal
4222 or else
4223 Nkind (N) = N_Real_Literal
4224 or else
4225 Nkind (N) = N_Character_Literal
4226 or else
4227 (Is_Entity_Name (N)
4228 and then Ekind (Entity (N)) = E_Enumeration_Literal))
4229 then
4230 return;
4231 end if;
4233 -- We need a check, so force evaluation of the node, so that it does
4234 -- not get evaluated twice (once for the check, once for the actual
4235 -- reference). Such a double evaluation is always a potential source
4236 -- of inefficiency, and is functionally incorrect in the volatile case.
4238 if not Is_Entity_Name (N)
4239 or else Treat_As_Volatile (Entity (N))
4240 then
4241 Force_Evaluation (N);
4242 end if;
4244 -- The easiest case is when Source_Base_Type and Target_Base_Type
4245 -- are the same since in this case we can simply do a direct
4246 -- check of the value of N against the bounds of Target_Type.
4248 -- [constraint_error when N not in Target_Type]
4250 -- Note: this is by far the most common case, for example all cases of
4251 -- checks on the RHS of assignments are in this category, but not all
4252 -- cases are like this. Notably conversions can involve two types.
4254 if Source_Base_Type = Target_Base_Type then
4255 Insert_Action (N,
4256 Make_Raise_Constraint_Error (Loc,
4257 Condition =>
4258 Make_Not_In (Loc,
4259 Left_Opnd => Duplicate_Subexpr (N),
4260 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4261 Reason => Reason));
4263 -- Next test for the case where the target type is within the bounds
4264 -- of the base type of the source type, since in this case we can
4265 -- simply convert these bounds to the base type of T to do the test.
4267 -- [constraint_error when N not in
4268 -- Source_Base_Type (Target_Type'First)
4269 -- ..
4270 -- Source_Base_Type(Target_Type'Last))]
4272 -- The conversions will always work and need no check
4274 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
4275 Insert_Action (N,
4276 Make_Raise_Constraint_Error (Loc,
4277 Condition =>
4278 Make_Not_In (Loc,
4279 Left_Opnd => Duplicate_Subexpr (N),
4281 Right_Opnd =>
4282 Make_Range (Loc,
4283 Low_Bound =>
4284 Convert_To (Source_Base_Type,
4285 Make_Attribute_Reference (Loc,
4286 Prefix =>
4287 New_Occurrence_Of (Target_Type, Loc),
4288 Attribute_Name => Name_First)),
4290 High_Bound =>
4291 Convert_To (Source_Base_Type,
4292 Make_Attribute_Reference (Loc,
4293 Prefix =>
4294 New_Occurrence_Of (Target_Type, Loc),
4295 Attribute_Name => Name_Last)))),
4296 Reason => Reason));
4298 -- Note that at this stage we now that the Target_Base_Type is
4299 -- not in the range of the Source_Base_Type (since even the
4300 -- Target_Type itself is not in this range). It could still be
4301 -- the case that the Source_Type is in range of the target base
4302 -- type, since we have not checked that case.
4304 -- If that is the case, we can freely convert the source to the
4305 -- target, and then test the target result against the bounds.
4307 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
4309 -- We make a temporary to hold the value of the converted
4310 -- value (converted to the base type), and then we will
4311 -- do the test against this temporary.
4313 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
4314 -- [constraint_error when Tnn not in Target_Type]
4316 -- Then the conversion itself is replaced by an occurrence of Tnn
4318 declare
4319 Tnn : constant Entity_Id :=
4320 Make_Defining_Identifier (Loc,
4321 Chars => New_Internal_Name ('T'));
4323 begin
4324 Insert_Actions (N, New_List (
4325 Make_Object_Declaration (Loc,
4326 Defining_Identifier => Tnn,
4327 Object_Definition =>
4328 New_Occurrence_Of (Target_Base_Type, Loc),
4329 Constant_Present => True,
4330 Expression =>
4331 Make_Type_Conversion (Loc,
4332 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
4333 Expression => Duplicate_Subexpr (N))),
4335 Make_Raise_Constraint_Error (Loc,
4336 Condition =>
4337 Make_Not_In (Loc,
4338 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
4339 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
4341 Reason => Reason)));
4343 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4344 end;
4346 -- At this stage, we know that we have two scalar types, which are
4347 -- directly convertible, and where neither scalar type has a base
4348 -- range that is in the range of the other scalar type.
4350 -- The only way this can happen is with a signed and unsigned type.
4351 -- So test for these two cases:
4353 else
4354 -- Case of the source is unsigned and the target is signed
4356 if Is_Unsigned_Type (Source_Base_Type)
4357 and then not Is_Unsigned_Type (Target_Base_Type)
4358 then
4359 -- If the source is unsigned and the target is signed, then we
4360 -- know that the source is not shorter than the target (otherwise
4361 -- the source base type would be in the target base type range).
4363 -- In other words, the unsigned type is either the same size
4364 -- as the target, or it is larger. It cannot be smaller.
4366 pragma Assert
4367 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
4369 -- We only need to check the low bound if the low bound of the
4370 -- target type is non-negative. If the low bound of the target
4371 -- type is negative, then we know that we will fit fine.
4373 -- If the high bound of the target type is negative, then we
4374 -- know we have a constraint error, since we can't possibly
4375 -- have a negative source.
4377 -- With these two checks out of the way, we can do the check
4378 -- using the source type safely
4380 -- This is definitely the most annoying case!
4382 -- [constraint_error
4383 -- when (Target_Type'First >= 0
4384 -- and then
4385 -- N < Source_Base_Type (Target_Type'First))
4386 -- or else Target_Type'Last < 0
4387 -- or else N > Source_Base_Type (Target_Type'Last)];
4389 -- We turn off all checks since we know that the conversions
4390 -- will work fine, given the guards for negative values.
4392 Insert_Action (N,
4393 Make_Raise_Constraint_Error (Loc,
4394 Condition =>
4395 Make_Or_Else (Loc,
4396 Make_Or_Else (Loc,
4397 Left_Opnd =>
4398 Make_And_Then (Loc,
4399 Left_Opnd => Make_Op_Ge (Loc,
4400 Left_Opnd =>
4401 Make_Attribute_Reference (Loc,
4402 Prefix =>
4403 New_Occurrence_Of (Target_Type, Loc),
4404 Attribute_Name => Name_First),
4405 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4407 Right_Opnd =>
4408 Make_Op_Lt (Loc,
4409 Left_Opnd => Duplicate_Subexpr (N),
4410 Right_Opnd =>
4411 Convert_To (Source_Base_Type,
4412 Make_Attribute_Reference (Loc,
4413 Prefix =>
4414 New_Occurrence_Of (Target_Type, Loc),
4415 Attribute_Name => Name_First)))),
4417 Right_Opnd =>
4418 Make_Op_Lt (Loc,
4419 Left_Opnd =>
4420 Make_Attribute_Reference (Loc,
4421 Prefix => New_Occurrence_Of (Target_Type, Loc),
4422 Attribute_Name => Name_Last),
4423 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
4425 Right_Opnd =>
4426 Make_Op_Gt (Loc,
4427 Left_Opnd => Duplicate_Subexpr (N),
4428 Right_Opnd =>
4429 Convert_To (Source_Base_Type,
4430 Make_Attribute_Reference (Loc,
4431 Prefix => New_Occurrence_Of (Target_Type, Loc),
4432 Attribute_Name => Name_Last)))),
4434 Reason => Reason),
4435 Suppress => All_Checks);
4437 -- Only remaining possibility is that the source is signed and
4438 -- the target is unsigned
4440 else
4441 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
4442 and then Is_Unsigned_Type (Target_Base_Type));
4444 -- If the source is signed and the target is unsigned, then
4445 -- we know that the target is not shorter than the source
4446 -- (otherwise the target base type would be in the source
4447 -- base type range).
4449 -- In other words, the unsigned type is either the same size
4450 -- as the target, or it is larger. It cannot be smaller.
4452 -- Clearly we have an error if the source value is negative
4453 -- since no unsigned type can have negative values. If the
4454 -- source type is non-negative, then the check can be done
4455 -- using the target type.
4457 -- Tnn : constant Target_Base_Type (N) := Target_Type;
4459 -- [constraint_error
4460 -- when N < 0 or else Tnn not in Target_Type];
4462 -- We turn off all checks for the conversion of N to the
4463 -- target base type, since we generate the explicit check
4464 -- to ensure that the value is non-negative
4466 declare
4467 Tnn : constant Entity_Id :=
4468 Make_Defining_Identifier (Loc,
4469 Chars => New_Internal_Name ('T'));
4471 begin
4472 Insert_Actions (N, New_List (
4473 Make_Object_Declaration (Loc,
4474 Defining_Identifier => Tnn,
4475 Object_Definition =>
4476 New_Occurrence_Of (Target_Base_Type, Loc),
4477 Constant_Present => True,
4478 Expression =>
4479 Make_Type_Conversion (Loc,
4480 Subtype_Mark =>
4481 New_Occurrence_Of (Target_Base_Type, Loc),
4482 Expression => Duplicate_Subexpr (N))),
4484 Make_Raise_Constraint_Error (Loc,
4485 Condition =>
4486 Make_Or_Else (Loc,
4487 Left_Opnd =>
4488 Make_Op_Lt (Loc,
4489 Left_Opnd => Duplicate_Subexpr (N),
4490 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
4492 Right_Opnd =>
4493 Make_Not_In (Loc,
4494 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
4495 Right_Opnd =>
4496 New_Occurrence_Of (Target_Type, Loc))),
4498 Reason => Reason)),
4499 Suppress => All_Checks);
4501 -- Set the Etype explicitly, because Insert_Actions may
4502 -- have placed the declaration in the freeze list for an
4503 -- enclosing construct, and thus it is not analyzed yet.
4505 Set_Etype (Tnn, Target_Base_Type);
4506 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
4507 end;
4508 end if;
4509 end if;
4510 end Generate_Range_Check;
4512 ---------------------
4513 -- Get_Discriminal --
4514 ---------------------
4516 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
4517 Loc : constant Source_Ptr := Sloc (E);
4518 D : Entity_Id;
4519 Sc : Entity_Id;
4521 begin
4522 -- The entity E is the type of a private component of the protected
4523 -- type, or the type of a renaming of that component within a protected
4524 -- operation of that type.
4526 Sc := Scope (E);
4528 if Ekind (Sc) /= E_Protected_Type then
4529 Sc := Scope (Sc);
4531 if Ekind (Sc) /= E_Protected_Type then
4532 return Bound;
4533 end if;
4534 end if;
4536 D := First_Discriminant (Sc);
4538 while Present (D)
4539 and then Chars (D) /= Chars (Bound)
4540 loop
4541 Next_Discriminant (D);
4542 end loop;
4544 return New_Occurrence_Of (Discriminal (D), Loc);
4545 end Get_Discriminal;
4547 ------------------
4548 -- Guard_Access --
4549 ------------------
4551 function Guard_Access
4552 (Cond : Node_Id;
4553 Loc : Source_Ptr;
4554 Ck_Node : Node_Id) return Node_Id
4556 begin
4557 if Nkind (Cond) = N_Or_Else then
4558 Set_Paren_Count (Cond, 1);
4559 end if;
4561 if Nkind (Ck_Node) = N_Allocator then
4562 return Cond;
4563 else
4564 return
4565 Make_And_Then (Loc,
4566 Left_Opnd =>
4567 Make_Op_Ne (Loc,
4568 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
4569 Right_Opnd => Make_Null (Loc)),
4570 Right_Opnd => Cond);
4571 end if;
4572 end Guard_Access;
4574 -----------------------------
4575 -- Index_Checks_Suppressed --
4576 -----------------------------
4578 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
4579 begin
4580 if Present (E) and then Checks_May_Be_Suppressed (E) then
4581 return Is_Check_Suppressed (E, Index_Check);
4582 else
4583 return Scope_Suppress (Index_Check);
4584 end if;
4585 end Index_Checks_Suppressed;
4587 ----------------
4588 -- Initialize --
4589 ----------------
4591 procedure Initialize is
4592 begin
4593 for J in Determine_Range_Cache_N'Range loop
4594 Determine_Range_Cache_N (J) := Empty;
4595 end loop;
4596 end Initialize;
4598 -------------------------
4599 -- Insert_Range_Checks --
4600 -------------------------
4602 procedure Insert_Range_Checks
4603 (Checks : Check_Result;
4604 Node : Node_Id;
4605 Suppress_Typ : Entity_Id;
4606 Static_Sloc : Source_Ptr := No_Location;
4607 Flag_Node : Node_Id := Empty;
4608 Do_Before : Boolean := False)
4610 Internal_Flag_Node : Node_Id := Flag_Node;
4611 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
4613 Check_Node : Node_Id;
4614 Checks_On : constant Boolean :=
4615 (not Index_Checks_Suppressed (Suppress_Typ))
4616 or else
4617 (not Range_Checks_Suppressed (Suppress_Typ));
4619 begin
4620 -- For now we just return if Checks_On is false, however this should
4621 -- be enhanced to check for an always True value in the condition
4622 -- and to generate a compilation warning???
4624 if not Expander_Active or else not Checks_On then
4625 return;
4626 end if;
4628 if Static_Sloc = No_Location then
4629 Internal_Static_Sloc := Sloc (Node);
4630 end if;
4632 if No (Flag_Node) then
4633 Internal_Flag_Node := Node;
4634 end if;
4636 for J in 1 .. 2 loop
4637 exit when No (Checks (J));
4639 if Nkind (Checks (J)) = N_Raise_Constraint_Error
4640 and then Present (Condition (Checks (J)))
4641 then
4642 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
4643 Check_Node := Checks (J);
4644 Mark_Rewrite_Insertion (Check_Node);
4646 if Do_Before then
4647 Insert_Before_And_Analyze (Node, Check_Node);
4648 else
4649 Insert_After_And_Analyze (Node, Check_Node);
4650 end if;
4652 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
4653 end if;
4655 else
4656 Check_Node :=
4657 Make_Raise_Constraint_Error (Internal_Static_Sloc,
4658 Reason => CE_Range_Check_Failed);
4659 Mark_Rewrite_Insertion (Check_Node);
4661 if Do_Before then
4662 Insert_Before_And_Analyze (Node, Check_Node);
4663 else
4664 Insert_After_And_Analyze (Node, Check_Node);
4665 end if;
4666 end if;
4667 end loop;
4668 end Insert_Range_Checks;
4670 ------------------------
4671 -- Insert_Valid_Check --
4672 ------------------------
4674 procedure Insert_Valid_Check (Expr : Node_Id) is
4675 Loc : constant Source_Ptr := Sloc (Expr);
4676 Exp : Node_Id;
4678 begin
4679 -- Do not insert if checks off, or if not checking validity
4681 if Range_Checks_Suppressed (Etype (Expr))
4682 or else (not Validity_Checks_On)
4683 then
4684 return;
4685 end if;
4687 -- If we have a checked conversion, then validity check applies to
4688 -- the expression inside the conversion, not the result, since if
4689 -- the expression inside is valid, then so is the conversion result.
4691 Exp := Expr;
4692 while Nkind (Exp) = N_Type_Conversion loop
4693 Exp := Expression (Exp);
4694 end loop;
4696 -- Insert the validity check. Note that we do this with validity
4697 -- checks turned off, to avoid recursion, we do not want validity
4698 -- checks on the validity checking code itself!
4700 Validity_Checks_On := False;
4701 Insert_Action
4702 (Expr,
4703 Make_Raise_Constraint_Error (Loc,
4704 Condition =>
4705 Make_Op_Not (Loc,
4706 Right_Opnd =>
4707 Make_Attribute_Reference (Loc,
4708 Prefix =>
4709 Duplicate_Subexpr_No_Checks (Exp, Name_Req => True),
4710 Attribute_Name => Name_Valid)),
4711 Reason => CE_Invalid_Data),
4712 Suppress => All_Checks);
4714 -- If the expression is a a reference to an element of a bit-packed
4715 -- array, it is rewritten as a renaming declaration. If the expression
4716 -- is an actual in a call, it has not been expanded, waiting for the
4717 -- proper point at which to do it. The same happens with renamings, so
4718 -- that we have to force the expansion now. This non-local complication
4719 -- is due to code in exp_ch2,adb, exp_ch4.adb and exp_ch6.adb.
4721 if Is_Entity_Name (Exp)
4722 and then Nkind (Parent (Entity (Exp))) = N_Object_Renaming_Declaration
4723 then
4724 declare
4725 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
4726 begin
4727 if Nkind (Old_Exp) = N_Indexed_Component
4728 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
4729 then
4730 Expand_Packed_Element_Reference (Old_Exp);
4731 end if;
4732 end;
4733 end if;
4735 Validity_Checks_On := True;
4736 end Insert_Valid_Check;
4738 ----------------------------------
4739 -- Install_Null_Excluding_Check --
4740 ----------------------------------
4742 procedure Install_Null_Excluding_Check (N : Node_Id) is
4743 Loc : constant Source_Ptr := Sloc (N);
4744 Etyp : constant Entity_Id := Etype (N);
4746 begin
4747 pragma Assert (Is_Access_Type (Etyp));
4749 -- Don't need access check if:
4750 -- 1) we are analyzing a generic
4751 -- 2) it is known to be non-null
4752 -- 3) the check was suppressed on the type
4753 -- 4) This is an attribute reference that returns an access type.
4755 if Inside_A_Generic
4756 or else Access_Checks_Suppressed (Etyp)
4757 then
4758 return;
4759 elsif Nkind (N) = N_Attribute_Reference
4760 and then
4761 (Attribute_Name (N) = Name_Access
4762 or else
4763 Attribute_Name (N) = Name_Unchecked_Access
4764 or else
4765 Attribute_Name (N) = Name_Unrestricted_Access)
4766 then
4767 return;
4768 -- Otherwise install access check
4770 else
4771 Insert_Action (N,
4772 Make_Raise_Constraint_Error (Loc,
4773 Condition =>
4774 Make_Op_Eq (Loc,
4775 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
4776 Right_Opnd => Make_Null (Loc)),
4777 Reason => CE_Access_Check_Failed));
4778 end if;
4779 end Install_Null_Excluding_Check;
4781 --------------------------
4782 -- Install_Static_Check --
4783 --------------------------
4785 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
4786 Stat : constant Boolean := Is_Static_Expression (R_Cno);
4787 Typ : constant Entity_Id := Etype (R_Cno);
4789 begin
4790 Rewrite (R_Cno,
4791 Make_Raise_Constraint_Error (Loc,
4792 Reason => CE_Range_Check_Failed));
4793 Set_Analyzed (R_Cno);
4794 Set_Etype (R_Cno, Typ);
4795 Set_Raises_Constraint_Error (R_Cno);
4796 Set_Is_Static_Expression (R_Cno, Stat);
4797 end Install_Static_Check;
4799 ---------------------
4800 -- Kill_All_Checks --
4801 ---------------------
4803 procedure Kill_All_Checks is
4804 begin
4805 if Debug_Flag_CC then
4806 w ("Kill_All_Checks");
4807 end if;
4809 -- We reset the number of saved checks to zero, and also modify
4810 -- all stack entries for statement ranges to indicate that the
4811 -- number of checks at each level is now zero.
4813 Num_Saved_Checks := 0;
4815 for J in 1 .. Saved_Checks_TOS loop
4816 Saved_Checks_Stack (J) := 0;
4817 end loop;
4818 end Kill_All_Checks;
4820 -----------------
4821 -- Kill_Checks --
4822 -----------------
4824 procedure Kill_Checks (V : Entity_Id) is
4825 begin
4826 if Debug_Flag_CC then
4827 w ("Kill_Checks for entity", Int (V));
4828 end if;
4830 for J in 1 .. Num_Saved_Checks loop
4831 if Saved_Checks (J).Entity = V then
4832 if Debug_Flag_CC then
4833 w (" Checks killed for saved check ", J);
4834 end if;
4836 Saved_Checks (J).Killed := True;
4837 end if;
4838 end loop;
4839 end Kill_Checks;
4841 ------------------------------
4842 -- Length_Checks_Suppressed --
4843 ------------------------------
4845 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
4846 begin
4847 if Present (E) and then Checks_May_Be_Suppressed (E) then
4848 return Is_Check_Suppressed (E, Length_Check);
4849 else
4850 return Scope_Suppress (Length_Check);
4851 end if;
4852 end Length_Checks_Suppressed;
4854 --------------------------------
4855 -- Overflow_Checks_Suppressed --
4856 --------------------------------
4858 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
4859 begin
4860 if Present (E) and then Checks_May_Be_Suppressed (E) then
4861 return Is_Check_Suppressed (E, Overflow_Check);
4862 else
4863 return Scope_Suppress (Overflow_Check);
4864 end if;
4865 end Overflow_Checks_Suppressed;
4867 -----------------
4868 -- Range_Check --
4869 -----------------
4871 function Range_Check
4872 (Ck_Node : Node_Id;
4873 Target_Typ : Entity_Id;
4874 Source_Typ : Entity_Id := Empty;
4875 Warn_Node : Node_Id := Empty) return Check_Result
4877 begin
4878 return Selected_Range_Checks
4879 (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
4880 end Range_Check;
4882 -----------------------------
4883 -- Range_Checks_Suppressed --
4884 -----------------------------
4886 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
4887 begin
4888 if Present (E) then
4890 -- Note: for now we always suppress range checks on Vax float types,
4891 -- since Gigi does not know how to generate these checks.
4893 if Vax_Float (E) then
4894 return True;
4895 elsif Kill_Range_Checks (E) then
4896 return True;
4897 elsif Checks_May_Be_Suppressed (E) then
4898 return Is_Check_Suppressed (E, Range_Check);
4899 end if;
4900 end if;
4902 return Scope_Suppress (Range_Check);
4903 end Range_Checks_Suppressed;
4905 -------------------
4906 -- Remove_Checks --
4907 -------------------
4909 procedure Remove_Checks (Expr : Node_Id) is
4910 Discard : Traverse_Result;
4911 pragma Warnings (Off, Discard);
4913 function Process (N : Node_Id) return Traverse_Result;
4914 -- Process a single node during the traversal
4916 function Traverse is new Traverse_Func (Process);
4917 -- The traversal function itself
4919 -------------
4920 -- Process --
4921 -------------
4923 function Process (N : Node_Id) return Traverse_Result is
4924 begin
4925 if Nkind (N) not in N_Subexpr then
4926 return Skip;
4927 end if;
4929 Set_Do_Range_Check (N, False);
4931 case Nkind (N) is
4932 when N_And_Then =>
4933 Discard := Traverse (Left_Opnd (N));
4934 return Skip;
4936 when N_Attribute_Reference =>
4937 Set_Do_Overflow_Check (N, False);
4939 when N_Function_Call =>
4940 Set_Do_Tag_Check (N, False);
4942 when N_Op =>
4943 Set_Do_Overflow_Check (N, False);
4945 case Nkind (N) is
4946 when N_Op_Divide =>
4947 Set_Do_Division_Check (N, False);
4949 when N_Op_And =>
4950 Set_Do_Length_Check (N, False);
4952 when N_Op_Mod =>
4953 Set_Do_Division_Check (N, False);
4955 when N_Op_Or =>
4956 Set_Do_Length_Check (N, False);
4958 when N_Op_Rem =>
4959 Set_Do_Division_Check (N, False);
4961 when N_Op_Xor =>
4962 Set_Do_Length_Check (N, False);
4964 when others =>
4965 null;
4966 end case;
4968 when N_Or_Else =>
4969 Discard := Traverse (Left_Opnd (N));
4970 return Skip;
4972 when N_Selected_Component =>
4973 Set_Do_Discriminant_Check (N, False);
4975 when N_Type_Conversion =>
4976 Set_Do_Length_Check (N, False);
4977 Set_Do_Tag_Check (N, False);
4978 Set_Do_Overflow_Check (N, False);
4980 when others =>
4981 null;
4982 end case;
4984 return OK;
4985 end Process;
4987 -- Start of processing for Remove_Checks
4989 begin
4990 Discard := Traverse (Expr);
4991 end Remove_Checks;
4993 ----------------------------
4994 -- Selected_Length_Checks --
4995 ----------------------------
4997 function Selected_Length_Checks
4998 (Ck_Node : Node_Id;
4999 Target_Typ : Entity_Id;
5000 Source_Typ : Entity_Id;
5001 Warn_Node : Node_Id) return Check_Result
5003 Loc : constant Source_Ptr := Sloc (Ck_Node);
5004 S_Typ : Entity_Id;
5005 T_Typ : Entity_Id;
5006 Expr_Actual : Node_Id;
5007 Exptyp : Entity_Id;
5008 Cond : Node_Id := Empty;
5009 Do_Access : Boolean := False;
5010 Wnode : Node_Id := Warn_Node;
5011 Ret_Result : Check_Result := (Empty, Empty);
5012 Num_Checks : Natural := 0;
5014 procedure Add_Check (N : Node_Id);
5015 -- Adds the action given to Ret_Result if N is non-Empty
5017 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
5018 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
5019 -- Comments required ???
5021 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
5022 -- True for equal literals and for nodes that denote the same constant
5023 -- entity, even if its value is not a static constant. This includes the
5024 -- case of a discriminal reference within an init proc. Removes some
5025 -- obviously superfluous checks.
5027 function Length_E_Cond
5028 (Exptyp : Entity_Id;
5029 Typ : Entity_Id;
5030 Indx : Nat) return Node_Id;
5031 -- Returns expression to compute:
5032 -- Typ'Length /= Exptyp'Length
5034 function Length_N_Cond
5035 (Expr : Node_Id;
5036 Typ : Entity_Id;
5037 Indx : Nat) return Node_Id;
5038 -- Returns expression to compute:
5039 -- Typ'Length /= Expr'Length
5041 ---------------
5042 -- Add_Check --
5043 ---------------
5045 procedure Add_Check (N : Node_Id) is
5046 begin
5047 if Present (N) then
5049 -- For now, ignore attempt to place more than 2 checks ???
5051 if Num_Checks = 2 then
5052 return;
5053 end if;
5055 pragma Assert (Num_Checks <= 1);
5056 Num_Checks := Num_Checks + 1;
5057 Ret_Result (Num_Checks) := N;
5058 end if;
5059 end Add_Check;
5061 ------------------
5062 -- Get_E_Length --
5063 ------------------
5065 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
5066 Pt : constant Entity_Id := Scope (Scope (E));
5067 N : Node_Id;
5068 E1 : Entity_Id := E;
5070 begin
5071 if Ekind (Scope (E)) = E_Record_Type
5072 and then Has_Discriminants (Scope (E))
5073 then
5074 N := Build_Discriminal_Subtype_Of_Component (E);
5076 if Present (N) then
5077 Insert_Action (Ck_Node, N);
5078 E1 := Defining_Identifier (N);
5079 end if;
5080 end if;
5082 if Ekind (E1) = E_String_Literal_Subtype then
5083 return
5084 Make_Integer_Literal (Loc,
5085 Intval => String_Literal_Length (E1));
5087 elsif Ekind (Pt) = E_Protected_Type
5088 and then Has_Discriminants (Pt)
5089 and then Has_Completion (Pt)
5090 and then not Inside_Init_Proc
5091 then
5093 -- If the type whose length is needed is a private component
5094 -- constrained by a discriminant, we must expand the 'Length
5095 -- attribute into an explicit computation, using the discriminal
5096 -- of the current protected operation. This is because the actual
5097 -- type of the prival is constructed after the protected opera-
5098 -- tion has been fully expanded.
5100 declare
5101 Indx_Type : Node_Id;
5102 Lo : Node_Id;
5103 Hi : Node_Id;
5104 Do_Expand : Boolean := False;
5106 begin
5107 Indx_Type := First_Index (E);
5109 for J in 1 .. Indx - 1 loop
5110 Next_Index (Indx_Type);
5111 end loop;
5113 Get_Index_Bounds (Indx_Type, Lo, Hi);
5115 if Nkind (Lo) = N_Identifier
5116 and then Ekind (Entity (Lo)) = E_In_Parameter
5117 then
5118 Lo := Get_Discriminal (E, Lo);
5119 Do_Expand := True;
5120 end if;
5122 if Nkind (Hi) = N_Identifier
5123 and then Ekind (Entity (Hi)) = E_In_Parameter
5124 then
5125 Hi := Get_Discriminal (E, Hi);
5126 Do_Expand := True;
5127 end if;
5129 if Do_Expand then
5130 if not Is_Entity_Name (Lo) then
5131 Lo := Duplicate_Subexpr_No_Checks (Lo);
5132 end if;
5134 if not Is_Entity_Name (Hi) then
5135 Lo := Duplicate_Subexpr_No_Checks (Hi);
5136 end if;
5138 N :=
5139 Make_Op_Add (Loc,
5140 Left_Opnd =>
5141 Make_Op_Subtract (Loc,
5142 Left_Opnd => Hi,
5143 Right_Opnd => Lo),
5145 Right_Opnd => Make_Integer_Literal (Loc, 1));
5146 return N;
5148 else
5149 N :=
5150 Make_Attribute_Reference (Loc,
5151 Attribute_Name => Name_Length,
5152 Prefix =>
5153 New_Occurrence_Of (E1, Loc));
5155 if Indx > 1 then
5156 Set_Expressions (N, New_List (
5157 Make_Integer_Literal (Loc, Indx)));
5158 end if;
5160 return N;
5161 end if;
5162 end;
5164 else
5165 N :=
5166 Make_Attribute_Reference (Loc,
5167 Attribute_Name => Name_Length,
5168 Prefix =>
5169 New_Occurrence_Of (E1, Loc));
5171 if Indx > 1 then
5172 Set_Expressions (N, New_List (
5173 Make_Integer_Literal (Loc, Indx)));
5174 end if;
5176 return N;
5178 end if;
5179 end Get_E_Length;
5181 ------------------
5182 -- Get_N_Length --
5183 ------------------
5185 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
5186 begin
5187 return
5188 Make_Attribute_Reference (Loc,
5189 Attribute_Name => Name_Length,
5190 Prefix =>
5191 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5192 Expressions => New_List (
5193 Make_Integer_Literal (Loc, Indx)));
5195 end Get_N_Length;
5197 -------------------
5198 -- Length_E_Cond --
5199 -------------------
5201 function Length_E_Cond
5202 (Exptyp : Entity_Id;
5203 Typ : Entity_Id;
5204 Indx : Nat) return Node_Id
5206 begin
5207 return
5208 Make_Op_Ne (Loc,
5209 Left_Opnd => Get_E_Length (Typ, Indx),
5210 Right_Opnd => Get_E_Length (Exptyp, Indx));
5212 end Length_E_Cond;
5214 -------------------
5215 -- Length_N_Cond --
5216 -------------------
5218 function Length_N_Cond
5219 (Expr : Node_Id;
5220 Typ : Entity_Id;
5221 Indx : Nat) return Node_Id
5223 begin
5224 return
5225 Make_Op_Ne (Loc,
5226 Left_Opnd => Get_E_Length (Typ, Indx),
5227 Right_Opnd => Get_N_Length (Expr, Indx));
5229 end Length_N_Cond;
5231 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
5232 begin
5233 return
5234 (Nkind (L) = N_Integer_Literal
5235 and then Nkind (R) = N_Integer_Literal
5236 and then Intval (L) = Intval (R))
5238 or else
5239 (Is_Entity_Name (L)
5240 and then Ekind (Entity (L)) = E_Constant
5241 and then ((Is_Entity_Name (R)
5242 and then Entity (L) = Entity (R))
5243 or else
5244 (Nkind (R) = N_Type_Conversion
5245 and then Is_Entity_Name (Expression (R))
5246 and then Entity (L) = Entity (Expression (R)))))
5248 or else
5249 (Is_Entity_Name (R)
5250 and then Ekind (Entity (R)) = E_Constant
5251 and then Nkind (L) = N_Type_Conversion
5252 and then Is_Entity_Name (Expression (L))
5253 and then Entity (R) = Entity (Expression (L)))
5255 or else
5256 (Is_Entity_Name (L)
5257 and then Is_Entity_Name (R)
5258 and then Entity (L) = Entity (R)
5259 and then Ekind (Entity (L)) = E_In_Parameter
5260 and then Inside_Init_Proc);
5261 end Same_Bounds;
5263 -- Start of processing for Selected_Length_Checks
5265 begin
5266 if not Expander_Active then
5267 return Ret_Result;
5268 end if;
5270 if Target_Typ = Any_Type
5271 or else Target_Typ = Any_Composite
5272 or else Raises_Constraint_Error (Ck_Node)
5273 then
5274 return Ret_Result;
5275 end if;
5277 if No (Wnode) then
5278 Wnode := Ck_Node;
5279 end if;
5281 T_Typ := Target_Typ;
5283 if No (Source_Typ) then
5284 S_Typ := Etype (Ck_Node);
5285 else
5286 S_Typ := Source_Typ;
5287 end if;
5289 if S_Typ = Any_Type or else S_Typ = Any_Composite then
5290 return Ret_Result;
5291 end if;
5293 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
5294 S_Typ := Designated_Type (S_Typ);
5295 T_Typ := Designated_Type (T_Typ);
5296 Do_Access := True;
5298 -- A simple optimization
5300 if Nkind (Ck_Node) = N_Null then
5301 return Ret_Result;
5302 end if;
5303 end if;
5305 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
5306 if Is_Constrained (T_Typ) then
5308 -- The checking code to be generated will freeze the
5309 -- corresponding array type. However, we must freeze the
5310 -- type now, so that the freeze node does not appear within
5311 -- the generated condional expression, but ahead of it.
5313 Freeze_Before (Ck_Node, T_Typ);
5315 Expr_Actual := Get_Referenced_Object (Ck_Node);
5316 Exptyp := Get_Actual_Subtype (Expr_Actual);
5318 if Is_Access_Type (Exptyp) then
5319 Exptyp := Designated_Type (Exptyp);
5320 end if;
5322 -- String_Literal case. This needs to be handled specially be-
5323 -- cause no index types are available for string literals. The
5324 -- condition is simply:
5326 -- T_Typ'Length = string-literal-length
5328 if Nkind (Expr_Actual) = N_String_Literal
5329 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
5330 then
5331 Cond :=
5332 Make_Op_Ne (Loc,
5333 Left_Opnd => Get_E_Length (T_Typ, 1),
5334 Right_Opnd =>
5335 Make_Integer_Literal (Loc,
5336 Intval =>
5337 String_Literal_Length (Etype (Expr_Actual))));
5339 -- General array case. Here we have a usable actual subtype for
5340 -- the expression, and the condition is built from the two types
5341 -- (Do_Length):
5343 -- T_Typ'Length /= Exptyp'Length or else
5344 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
5345 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
5346 -- ...
5348 elsif Is_Constrained (Exptyp) then
5349 declare
5350 Ndims : constant Nat := Number_Dimensions (T_Typ);
5352 L_Index : Node_Id;
5353 R_Index : Node_Id;
5354 L_Low : Node_Id;
5355 L_High : Node_Id;
5356 R_Low : Node_Id;
5357 R_High : Node_Id;
5358 L_Length : Uint;
5359 R_Length : Uint;
5360 Ref_Node : Node_Id;
5362 begin
5364 -- At the library level, we need to ensure that the
5365 -- type of the object is elaborated before the check
5366 -- itself is emitted. This is only done if the object
5367 -- is in the current compilation unit, otherwise the
5368 -- type is frozen and elaborated in its unit.
5370 if Is_Itype (Exptyp)
5371 and then
5372 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
5373 and then
5374 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
5375 and then In_Open_Scopes (Scope (Exptyp))
5376 then
5377 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
5378 Set_Itype (Ref_Node, Exptyp);
5379 Insert_Action (Ck_Node, Ref_Node);
5380 end if;
5382 L_Index := First_Index (T_Typ);
5383 R_Index := First_Index (Exptyp);
5385 for Indx in 1 .. Ndims loop
5386 if not (Nkind (L_Index) = N_Raise_Constraint_Error
5387 or else
5388 Nkind (R_Index) = N_Raise_Constraint_Error)
5389 then
5390 Get_Index_Bounds (L_Index, L_Low, L_High);
5391 Get_Index_Bounds (R_Index, R_Low, R_High);
5393 -- Deal with compile time length check. Note that we
5394 -- skip this in the access case, because the access
5395 -- value may be null, so we cannot know statically.
5397 if not Do_Access
5398 and then Compile_Time_Known_Value (L_Low)
5399 and then Compile_Time_Known_Value (L_High)
5400 and then Compile_Time_Known_Value (R_Low)
5401 and then Compile_Time_Known_Value (R_High)
5402 then
5403 if Expr_Value (L_High) >= Expr_Value (L_Low) then
5404 L_Length := Expr_Value (L_High) -
5405 Expr_Value (L_Low) + 1;
5406 else
5407 L_Length := UI_From_Int (0);
5408 end if;
5410 if Expr_Value (R_High) >= Expr_Value (R_Low) then
5411 R_Length := Expr_Value (R_High) -
5412 Expr_Value (R_Low) + 1;
5413 else
5414 R_Length := UI_From_Int (0);
5415 end if;
5417 if L_Length > R_Length then
5418 Add_Check
5419 (Compile_Time_Constraint_Error
5420 (Wnode, "too few elements for}?", T_Typ));
5422 elsif L_Length < R_Length then
5423 Add_Check
5424 (Compile_Time_Constraint_Error
5425 (Wnode, "too many elements for}?", T_Typ));
5426 end if;
5428 -- The comparison for an individual index subtype
5429 -- is omitted if the corresponding index subtypes
5430 -- statically match, since the result is known to
5431 -- be true. Note that this test is worth while even
5432 -- though we do static evaluation, because non-static
5433 -- subtypes can statically match.
5435 elsif not
5436 Subtypes_Statically_Match
5437 (Etype (L_Index), Etype (R_Index))
5439 and then not
5440 (Same_Bounds (L_Low, R_Low)
5441 and then Same_Bounds (L_High, R_High))
5442 then
5443 Evolve_Or_Else
5444 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
5445 end if;
5447 Next (L_Index);
5448 Next (R_Index);
5449 end if;
5450 end loop;
5451 end;
5453 -- Handle cases where we do not get a usable actual subtype that
5454 -- is constrained. This happens for example in the function call
5455 -- and explicit dereference cases. In these cases, we have to get
5456 -- the length or range from the expression itself, making sure we
5457 -- do not evaluate it more than once.
5459 -- Here Ck_Node is the original expression, or more properly the
5460 -- result of applying Duplicate_Expr to the original tree,
5461 -- forcing the result to be a name.
5463 else
5464 declare
5465 Ndims : constant Nat := Number_Dimensions (T_Typ);
5467 begin
5468 -- Build the condition for the explicit dereference case
5470 for Indx in 1 .. Ndims loop
5471 Evolve_Or_Else
5472 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
5473 end loop;
5474 end;
5475 end if;
5476 end if;
5477 end if;
5479 -- Construct the test and insert into the tree
5481 if Present (Cond) then
5482 if Do_Access then
5483 Cond := Guard_Access (Cond, Loc, Ck_Node);
5484 end if;
5486 Add_Check
5487 (Make_Raise_Constraint_Error (Loc,
5488 Condition => Cond,
5489 Reason => CE_Length_Check_Failed));
5490 end if;
5492 return Ret_Result;
5493 end Selected_Length_Checks;
5495 ---------------------------
5496 -- Selected_Range_Checks --
5497 ---------------------------
5499 function Selected_Range_Checks
5500 (Ck_Node : Node_Id;
5501 Target_Typ : Entity_Id;
5502 Source_Typ : Entity_Id;
5503 Warn_Node : Node_Id) return Check_Result
5505 Loc : constant Source_Ptr := Sloc (Ck_Node);
5506 S_Typ : Entity_Id;
5507 T_Typ : Entity_Id;
5508 Expr_Actual : Node_Id;
5509 Exptyp : Entity_Id;
5510 Cond : Node_Id := Empty;
5511 Do_Access : Boolean := False;
5512 Wnode : Node_Id := Warn_Node;
5513 Ret_Result : Check_Result := (Empty, Empty);
5514 Num_Checks : Integer := 0;
5516 procedure Add_Check (N : Node_Id);
5517 -- Adds the action given to Ret_Result if N is non-Empty
5519 function Discrete_Range_Cond
5520 (Expr : Node_Id;
5521 Typ : Entity_Id) return Node_Id;
5522 -- Returns expression to compute:
5523 -- Low_Bound (Expr) < Typ'First
5524 -- or else
5525 -- High_Bound (Expr) > Typ'Last
5527 function Discrete_Expr_Cond
5528 (Expr : Node_Id;
5529 Typ : Entity_Id) return Node_Id;
5530 -- Returns expression to compute:
5531 -- Expr < Typ'First
5532 -- or else
5533 -- Expr > Typ'Last
5535 function Get_E_First_Or_Last
5536 (E : Entity_Id;
5537 Indx : Nat;
5538 Nam : Name_Id) return Node_Id;
5539 -- Returns expression to compute:
5540 -- E'First or E'Last
5542 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
5543 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
5544 -- Returns expression to compute:
5545 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
5547 function Range_E_Cond
5548 (Exptyp : Entity_Id;
5549 Typ : Entity_Id;
5550 Indx : Nat)
5551 return Node_Id;
5552 -- Returns expression to compute:
5553 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
5555 function Range_Equal_E_Cond
5556 (Exptyp : Entity_Id;
5557 Typ : Entity_Id;
5558 Indx : Nat) return Node_Id;
5559 -- Returns expression to compute:
5560 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
5562 function Range_N_Cond
5563 (Expr : Node_Id;
5564 Typ : Entity_Id;
5565 Indx : Nat) return Node_Id;
5566 -- Return expression to compute:
5567 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
5569 ---------------
5570 -- Add_Check --
5571 ---------------
5573 procedure Add_Check (N : Node_Id) is
5574 begin
5575 if Present (N) then
5577 -- For now, ignore attempt to place more than 2 checks ???
5579 if Num_Checks = 2 then
5580 return;
5581 end if;
5583 pragma Assert (Num_Checks <= 1);
5584 Num_Checks := Num_Checks + 1;
5585 Ret_Result (Num_Checks) := N;
5586 end if;
5587 end Add_Check;
5589 -------------------------
5590 -- Discrete_Expr_Cond --
5591 -------------------------
5593 function Discrete_Expr_Cond
5594 (Expr : Node_Id;
5595 Typ : Entity_Id) return Node_Id
5597 begin
5598 return
5599 Make_Or_Else (Loc,
5600 Left_Opnd =>
5601 Make_Op_Lt (Loc,
5602 Left_Opnd =>
5603 Convert_To (Base_Type (Typ),
5604 Duplicate_Subexpr_No_Checks (Expr)),
5605 Right_Opnd =>
5606 Convert_To (Base_Type (Typ),
5607 Get_E_First_Or_Last (Typ, 0, Name_First))),
5609 Right_Opnd =>
5610 Make_Op_Gt (Loc,
5611 Left_Opnd =>
5612 Convert_To (Base_Type (Typ),
5613 Duplicate_Subexpr_No_Checks (Expr)),
5614 Right_Opnd =>
5615 Convert_To
5616 (Base_Type (Typ),
5617 Get_E_First_Or_Last (Typ, 0, Name_Last))));
5618 end Discrete_Expr_Cond;
5620 -------------------------
5621 -- Discrete_Range_Cond --
5622 -------------------------
5624 function Discrete_Range_Cond
5625 (Expr : Node_Id;
5626 Typ : Entity_Id) return Node_Id
5628 LB : Node_Id := Low_Bound (Expr);
5629 HB : Node_Id := High_Bound (Expr);
5631 Left_Opnd : Node_Id;
5632 Right_Opnd : Node_Id;
5634 begin
5635 if Nkind (LB) = N_Identifier
5636 and then Ekind (Entity (LB)) = E_Discriminant then
5637 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
5638 end if;
5640 if Nkind (HB) = N_Identifier
5641 and then Ekind (Entity (HB)) = E_Discriminant then
5642 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
5643 end if;
5645 Left_Opnd :=
5646 Make_Op_Lt (Loc,
5647 Left_Opnd =>
5648 Convert_To
5649 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
5651 Right_Opnd =>
5652 Convert_To
5653 (Base_Type (Typ), Get_E_First_Or_Last (Typ, 0, Name_First)));
5655 if Base_Type (Typ) = Typ then
5656 return Left_Opnd;
5658 elsif Compile_Time_Known_Value (High_Bound (Scalar_Range (Typ)))
5659 and then
5660 Compile_Time_Known_Value (High_Bound (Scalar_Range
5661 (Base_Type (Typ))))
5662 then
5663 if Is_Floating_Point_Type (Typ) then
5664 if Expr_Value_R (High_Bound (Scalar_Range (Typ))) =
5665 Expr_Value_R (High_Bound (Scalar_Range (Base_Type (Typ))))
5666 then
5667 return Left_Opnd;
5668 end if;
5670 else
5671 if Expr_Value (High_Bound (Scalar_Range (Typ))) =
5672 Expr_Value (High_Bound (Scalar_Range (Base_Type (Typ))))
5673 then
5674 return Left_Opnd;
5675 end if;
5676 end if;
5677 end if;
5679 Right_Opnd :=
5680 Make_Op_Gt (Loc,
5681 Left_Opnd =>
5682 Convert_To
5683 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
5685 Right_Opnd =>
5686 Convert_To
5687 (Base_Type (Typ),
5688 Get_E_First_Or_Last (Typ, 0, Name_Last)));
5690 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
5691 end Discrete_Range_Cond;
5693 -------------------------
5694 -- Get_E_First_Or_Last --
5695 -------------------------
5697 function Get_E_First_Or_Last
5698 (E : Entity_Id;
5699 Indx : Nat;
5700 Nam : Name_Id) return Node_Id
5702 N : Node_Id;
5703 LB : Node_Id;
5704 HB : Node_Id;
5705 Bound : Node_Id;
5707 begin
5708 if Is_Array_Type (E) then
5709 N := First_Index (E);
5711 for J in 2 .. Indx loop
5712 Next_Index (N);
5713 end loop;
5715 else
5716 N := Scalar_Range (E);
5717 end if;
5719 if Nkind (N) = N_Subtype_Indication then
5720 LB := Low_Bound (Range_Expression (Constraint (N)));
5721 HB := High_Bound (Range_Expression (Constraint (N)));
5723 elsif Is_Entity_Name (N) then
5724 LB := Type_Low_Bound (Etype (N));
5725 HB := Type_High_Bound (Etype (N));
5727 else
5728 LB := Low_Bound (N);
5729 HB := High_Bound (N);
5730 end if;
5732 if Nam = Name_First then
5733 Bound := LB;
5734 else
5735 Bound := HB;
5736 end if;
5738 if Nkind (Bound) = N_Identifier
5739 and then Ekind (Entity (Bound)) = E_Discriminant
5740 then
5741 -- If this is a task discriminant, and we are the body, we must
5742 -- retrieve the corresponding body discriminal. This is another
5743 -- consequence of the early creation of discriminals, and the
5744 -- need to generate constraint checks before their declarations
5745 -- are made visible.
5747 if Is_Concurrent_Record_Type (Scope (Entity (Bound))) then
5748 declare
5749 Tsk : constant Entity_Id :=
5750 Corresponding_Concurrent_Type
5751 (Scope (Entity (Bound)));
5752 Disc : Entity_Id;
5754 begin
5755 if In_Open_Scopes (Tsk)
5756 and then Has_Completion (Tsk)
5757 then
5758 -- Find discriminant of original task, and use its
5759 -- current discriminal, which is the renaming within
5760 -- the task body.
5762 Disc := First_Discriminant (Tsk);
5763 while Present (Disc) loop
5764 if Chars (Disc) = Chars (Entity (Bound)) then
5765 Set_Scope (Discriminal (Disc), Tsk);
5766 return New_Occurrence_Of (Discriminal (Disc), Loc);
5767 end if;
5769 Next_Discriminant (Disc);
5770 end loop;
5772 -- That loop should always succeed in finding a matching
5773 -- entry and returning. Fatal error if not.
5775 raise Program_Error;
5777 else
5778 return
5779 New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
5780 end if;
5781 end;
5782 else
5783 return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
5784 end if;
5786 elsif Nkind (Bound) = N_Identifier
5787 and then Ekind (Entity (Bound)) = E_In_Parameter
5788 and then not Inside_Init_Proc
5789 then
5790 return Get_Discriminal (E, Bound);
5792 elsif Nkind (Bound) = N_Integer_Literal then
5793 return Make_Integer_Literal (Loc, Intval (Bound));
5795 -- Case of a bound that has been rewritten to an
5796 -- N_Raise_Constraint_Error node because it is an out-of-range
5797 -- value. We may not call Duplicate_Subexpr on this node because
5798 -- an N_Raise_Constraint_Error is not side effect free, and we may
5799 -- not assume that we are in the proper context to remove side
5800 -- effects on it at the point of reference.
5802 elsif Nkind (Bound) = N_Raise_Constraint_Error then
5803 return New_Copy_Tree (Bound);
5805 else
5806 return Duplicate_Subexpr_No_Checks (Bound);
5807 end if;
5808 end Get_E_First_Or_Last;
5810 -----------------
5811 -- Get_N_First --
5812 -----------------
5814 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
5815 begin
5816 return
5817 Make_Attribute_Reference (Loc,
5818 Attribute_Name => Name_First,
5819 Prefix =>
5820 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5821 Expressions => New_List (
5822 Make_Integer_Literal (Loc, Indx)));
5823 end Get_N_First;
5825 ----------------
5826 -- Get_N_Last --
5827 ----------------
5829 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
5830 begin
5831 return
5832 Make_Attribute_Reference (Loc,
5833 Attribute_Name => Name_Last,
5834 Prefix =>
5835 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
5836 Expressions => New_List (
5837 Make_Integer_Literal (Loc, Indx)));
5838 end Get_N_Last;
5840 ------------------
5841 -- Range_E_Cond --
5842 ------------------
5844 function Range_E_Cond
5845 (Exptyp : Entity_Id;
5846 Typ : Entity_Id;
5847 Indx : Nat) return Node_Id
5849 begin
5850 return
5851 Make_Or_Else (Loc,
5852 Left_Opnd =>
5853 Make_Op_Lt (Loc,
5854 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
5855 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
5857 Right_Opnd =>
5858 Make_Op_Gt (Loc,
5859 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
5860 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
5862 end Range_E_Cond;
5864 ------------------------
5865 -- Range_Equal_E_Cond --
5866 ------------------------
5868 function Range_Equal_E_Cond
5869 (Exptyp : Entity_Id;
5870 Typ : Entity_Id;
5871 Indx : Nat) return Node_Id
5873 begin
5874 return
5875 Make_Or_Else (Loc,
5876 Left_Opnd =>
5877 Make_Op_Ne (Loc,
5878 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
5879 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
5880 Right_Opnd =>
5881 Make_Op_Ne (Loc,
5882 Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
5883 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
5884 end Range_Equal_E_Cond;
5886 ------------------
5887 -- Range_N_Cond --
5888 ------------------
5890 function Range_N_Cond
5891 (Expr : Node_Id;
5892 Typ : Entity_Id;
5893 Indx : Nat) return Node_Id
5895 begin
5896 return
5897 Make_Or_Else (Loc,
5898 Left_Opnd =>
5899 Make_Op_Lt (Loc,
5900 Left_Opnd => Get_N_First (Expr, Indx),
5901 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
5903 Right_Opnd =>
5904 Make_Op_Gt (Loc,
5905 Left_Opnd => Get_N_Last (Expr, Indx),
5906 Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
5907 end Range_N_Cond;
5909 -- Start of processing for Selected_Range_Checks
5911 begin
5912 if not Expander_Active then
5913 return Ret_Result;
5914 end if;
5916 if Target_Typ = Any_Type
5917 or else Target_Typ = Any_Composite
5918 or else Raises_Constraint_Error (Ck_Node)
5919 then
5920 return Ret_Result;
5921 end if;
5923 if No (Wnode) then
5924 Wnode := Ck_Node;
5925 end if;
5927 T_Typ := Target_Typ;
5929 if No (Source_Typ) then
5930 S_Typ := Etype (Ck_Node);
5931 else
5932 S_Typ := Source_Typ;
5933 end if;
5935 if S_Typ = Any_Type or else S_Typ = Any_Composite then
5936 return Ret_Result;
5937 end if;
5939 -- The order of evaluating T_Typ before S_Typ seems to be critical
5940 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
5941 -- in, and since Node can be an N_Range node, it might be invalid.
5942 -- Should there be an assert check somewhere for taking the Etype of
5943 -- an N_Range node ???
5945 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
5946 S_Typ := Designated_Type (S_Typ);
5947 T_Typ := Designated_Type (T_Typ);
5948 Do_Access := True;
5950 -- A simple optimization
5952 if Nkind (Ck_Node) = N_Null then
5953 return Ret_Result;
5954 end if;
5955 end if;
5957 -- For an N_Range Node, check for a null range and then if not
5958 -- null generate a range check action.
5960 if Nkind (Ck_Node) = N_Range then
5962 -- There's no point in checking a range against itself
5964 if Ck_Node = Scalar_Range (T_Typ) then
5965 return Ret_Result;
5966 end if;
5968 declare
5969 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
5970 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
5971 LB : constant Node_Id := Low_Bound (Ck_Node);
5972 HB : constant Node_Id := High_Bound (Ck_Node);
5973 Null_Range : Boolean;
5975 Out_Of_Range_L : Boolean;
5976 Out_Of_Range_H : Boolean;
5978 begin
5979 -- Check for case where everything is static and we can
5980 -- do the check at compile time. This is skipped if we
5981 -- have an access type, since the access value may be null.
5983 -- ??? This code can be improved since you only need to know
5984 -- that the two respective bounds (LB & T_LB or HB & T_HB)
5985 -- are known at compile time to emit pertinent messages.
5987 if Compile_Time_Known_Value (LB)
5988 and then Compile_Time_Known_Value (HB)
5989 and then Compile_Time_Known_Value (T_LB)
5990 and then Compile_Time_Known_Value (T_HB)
5991 and then not Do_Access
5992 then
5993 -- Floating-point case
5995 if Is_Floating_Point_Type (S_Typ) then
5996 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
5997 Out_Of_Range_L :=
5998 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
5999 or else
6000 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
6002 Out_Of_Range_H :=
6003 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
6004 or else
6005 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
6007 -- Fixed or discrete type case
6009 else
6010 Null_Range := Expr_Value (HB) < Expr_Value (LB);
6011 Out_Of_Range_L :=
6012 (Expr_Value (LB) < Expr_Value (T_LB))
6013 or else
6014 (Expr_Value (LB) > Expr_Value (T_HB));
6016 Out_Of_Range_H :=
6017 (Expr_Value (HB) > Expr_Value (T_HB))
6018 or else
6019 (Expr_Value (HB) < Expr_Value (T_LB));
6020 end if;
6022 if not Null_Range then
6023 if Out_Of_Range_L then
6024 if No (Warn_Node) then
6025 Add_Check
6026 (Compile_Time_Constraint_Error
6027 (Low_Bound (Ck_Node),
6028 "static value out of range of}?", T_Typ));
6030 else
6031 Add_Check
6032 (Compile_Time_Constraint_Error
6033 (Wnode,
6034 "static range out of bounds of}?", T_Typ));
6035 end if;
6036 end if;
6038 if Out_Of_Range_H then
6039 if No (Warn_Node) then
6040 Add_Check
6041 (Compile_Time_Constraint_Error
6042 (High_Bound (Ck_Node),
6043 "static value out of range of}?", T_Typ));
6045 else
6046 Add_Check
6047 (Compile_Time_Constraint_Error
6048 (Wnode,
6049 "static range out of bounds of}?", T_Typ));
6050 end if;
6051 end if;
6053 end if;
6055 else
6056 declare
6057 LB : Node_Id := Low_Bound (Ck_Node);
6058 HB : Node_Id := High_Bound (Ck_Node);
6060 begin
6062 -- If either bound is a discriminant and we are within
6063 -- the record declaration, it is a use of the discriminant
6064 -- in a constraint of a component, and nothing can be
6065 -- checked here. The check will be emitted within the
6066 -- init proc. Before then, the discriminal has no real
6067 -- meaning.
6069 if Nkind (LB) = N_Identifier
6070 and then Ekind (Entity (LB)) = E_Discriminant
6071 then
6072 if Current_Scope = Scope (Entity (LB)) then
6073 return Ret_Result;
6074 else
6075 LB :=
6076 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
6077 end if;
6078 end if;
6080 if Nkind (HB) = N_Identifier
6081 and then Ekind (Entity (HB)) = E_Discriminant
6082 then
6083 if Current_Scope = Scope (Entity (HB)) then
6084 return Ret_Result;
6085 else
6086 HB :=
6087 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
6088 end if;
6089 end if;
6091 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
6092 Set_Paren_Count (Cond, 1);
6094 Cond :=
6095 Make_And_Then (Loc,
6096 Left_Opnd =>
6097 Make_Op_Ge (Loc,
6098 Left_Opnd => Duplicate_Subexpr_No_Checks (HB),
6099 Right_Opnd => Duplicate_Subexpr_No_Checks (LB)),
6100 Right_Opnd => Cond);
6101 end;
6103 end if;
6104 end;
6106 elsif Is_Scalar_Type (S_Typ) then
6108 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
6109 -- except the above simply sets a flag in the node and lets
6110 -- gigi generate the check base on the Etype of the expression.
6111 -- Sometimes, however we want to do a dynamic check against an
6112 -- arbitrary target type, so we do that here.
6114 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
6115 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6117 -- For literals, we can tell if the constraint error will be
6118 -- raised at compile time, so we never need a dynamic check, but
6119 -- if the exception will be raised, then post the usual warning,
6120 -- and replace the literal with a raise constraint error
6121 -- expression. As usual, skip this for access types
6123 elsif Compile_Time_Known_Value (Ck_Node)
6124 and then not Do_Access
6125 then
6126 declare
6127 LB : constant Node_Id := Type_Low_Bound (T_Typ);
6128 UB : constant Node_Id := Type_High_Bound (T_Typ);
6130 Out_Of_Range : Boolean;
6131 Static_Bounds : constant Boolean :=
6132 Compile_Time_Known_Value (LB)
6133 and Compile_Time_Known_Value (UB);
6135 begin
6136 -- Following range tests should use Sem_Eval routine ???
6138 if Static_Bounds then
6139 if Is_Floating_Point_Type (S_Typ) then
6140 Out_Of_Range :=
6141 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
6142 or else
6143 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
6145 else -- fixed or discrete type
6146 Out_Of_Range :=
6147 Expr_Value (Ck_Node) < Expr_Value (LB)
6148 or else
6149 Expr_Value (Ck_Node) > Expr_Value (UB);
6150 end if;
6152 -- Bounds of the type are static and the literal is
6153 -- out of range so make a warning message.
6155 if Out_Of_Range then
6156 if No (Warn_Node) then
6157 Add_Check
6158 (Compile_Time_Constraint_Error
6159 (Ck_Node,
6160 "static value out of range of}?", T_Typ));
6162 else
6163 Add_Check
6164 (Compile_Time_Constraint_Error
6165 (Wnode,
6166 "static value out of range of}?", T_Typ));
6167 end if;
6168 end if;
6170 else
6171 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6172 end if;
6173 end;
6175 -- Here for the case of a non-static expression, we need a runtime
6176 -- check unless the source type range is guaranteed to be in the
6177 -- range of the target type.
6179 else
6180 if not In_Subrange_Of (S_Typ, T_Typ) then
6181 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
6182 end if;
6183 end if;
6184 end if;
6186 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
6187 if Is_Constrained (T_Typ) then
6189 Expr_Actual := Get_Referenced_Object (Ck_Node);
6190 Exptyp := Get_Actual_Subtype (Expr_Actual);
6192 if Is_Access_Type (Exptyp) then
6193 Exptyp := Designated_Type (Exptyp);
6194 end if;
6196 -- String_Literal case. This needs to be handled specially be-
6197 -- cause no index types are available for string literals. The
6198 -- condition is simply:
6200 -- T_Typ'Length = string-literal-length
6202 if Nkind (Expr_Actual) = N_String_Literal then
6203 null;
6205 -- General array case. Here we have a usable actual subtype for
6206 -- the expression, and the condition is built from the two types
6208 -- T_Typ'First < Exptyp'First or else
6209 -- T_Typ'Last > Exptyp'Last or else
6210 -- T_Typ'First(1) < Exptyp'First(1) or else
6211 -- T_Typ'Last(1) > Exptyp'Last(1) or else
6212 -- ...
6214 elsif Is_Constrained (Exptyp) then
6215 declare
6216 Ndims : constant Nat := Number_Dimensions (T_Typ);
6218 L_Index : Node_Id;
6219 R_Index : Node_Id;
6220 L_Low : Node_Id;
6221 L_High : Node_Id;
6222 R_Low : Node_Id;
6223 R_High : Node_Id;
6225 begin
6226 L_Index := First_Index (T_Typ);
6227 R_Index := First_Index (Exptyp);
6229 for Indx in 1 .. Ndims loop
6230 if not (Nkind (L_Index) = N_Raise_Constraint_Error
6231 or else
6232 Nkind (R_Index) = N_Raise_Constraint_Error)
6233 then
6234 Get_Index_Bounds (L_Index, L_Low, L_High);
6235 Get_Index_Bounds (R_Index, R_Low, R_High);
6237 -- Deal with compile time length check. Note that we
6238 -- skip this in the access case, because the access
6239 -- value may be null, so we cannot know statically.
6241 if not
6242 Subtypes_Statically_Match
6243 (Etype (L_Index), Etype (R_Index))
6244 then
6245 -- If the target type is constrained then we
6246 -- have to check for exact equality of bounds
6247 -- (required for qualified expressions).
6249 if Is_Constrained (T_Typ) then
6250 Evolve_Or_Else
6251 (Cond,
6252 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
6254 else
6255 Evolve_Or_Else
6256 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
6257 end if;
6258 end if;
6260 Next (L_Index);
6261 Next (R_Index);
6263 end if;
6264 end loop;
6265 end;
6267 -- Handle cases where we do not get a usable actual subtype that
6268 -- is constrained. This happens for example in the function call
6269 -- and explicit dereference cases. In these cases, we have to get
6270 -- the length or range from the expression itself, making sure we
6271 -- do not evaluate it more than once.
6273 -- Here Ck_Node is the original expression, or more properly the
6274 -- result of applying Duplicate_Expr to the original tree,
6275 -- forcing the result to be a name.
6277 else
6278 declare
6279 Ndims : constant Nat := Number_Dimensions (T_Typ);
6281 begin
6282 -- Build the condition for the explicit dereference case
6284 for Indx in 1 .. Ndims loop
6285 Evolve_Or_Else
6286 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
6287 end loop;
6288 end;
6290 end if;
6292 else
6293 -- Generate an Action to check that the bounds of the
6294 -- source value are within the constraints imposed by the
6295 -- target type for a conversion to an unconstrained type.
6296 -- Rule is 4.6(38).
6298 if Nkind (Parent (Ck_Node)) = N_Type_Conversion then
6299 declare
6300 Opnd_Index : Node_Id;
6301 Targ_Index : Node_Id;
6303 begin
6304 Opnd_Index
6305 := First_Index (Get_Actual_Subtype (Ck_Node));
6306 Targ_Index := First_Index (T_Typ);
6308 while Opnd_Index /= Empty loop
6309 if Nkind (Opnd_Index) = N_Range then
6310 if Is_In_Range
6311 (Low_Bound (Opnd_Index), Etype (Targ_Index))
6312 and then
6313 Is_In_Range
6314 (High_Bound (Opnd_Index), Etype (Targ_Index))
6315 then
6316 null;
6318 -- If null range, no check needed
6320 elsif
6321 Compile_Time_Known_Value (High_Bound (Opnd_Index))
6322 and then
6323 Compile_Time_Known_Value (Low_Bound (Opnd_Index))
6324 and then
6325 Expr_Value (High_Bound (Opnd_Index)) <
6326 Expr_Value (Low_Bound (Opnd_Index))
6327 then
6328 null;
6330 elsif Is_Out_Of_Range
6331 (Low_Bound (Opnd_Index), Etype (Targ_Index))
6332 or else
6333 Is_Out_Of_Range
6334 (High_Bound (Opnd_Index), Etype (Targ_Index))
6335 then
6336 Add_Check
6337 (Compile_Time_Constraint_Error
6338 (Wnode, "value out of range of}?", T_Typ));
6340 else
6341 Evolve_Or_Else
6342 (Cond,
6343 Discrete_Range_Cond
6344 (Opnd_Index, Etype (Targ_Index)));
6345 end if;
6346 end if;
6348 Next_Index (Opnd_Index);
6349 Next_Index (Targ_Index);
6350 end loop;
6351 end;
6352 end if;
6353 end if;
6354 end if;
6356 -- Construct the test and insert into the tree
6358 if Present (Cond) then
6359 if Do_Access then
6360 Cond := Guard_Access (Cond, Loc, Ck_Node);
6361 end if;
6363 Add_Check
6364 (Make_Raise_Constraint_Error (Loc,
6365 Condition => Cond,
6366 Reason => CE_Range_Check_Failed));
6367 end if;
6369 return Ret_Result;
6370 end Selected_Range_Checks;
6372 -------------------------------
6373 -- Storage_Checks_Suppressed --
6374 -------------------------------
6376 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
6377 begin
6378 if Present (E) and then Checks_May_Be_Suppressed (E) then
6379 return Is_Check_Suppressed (E, Storage_Check);
6380 else
6381 return Scope_Suppress (Storage_Check);
6382 end if;
6383 end Storage_Checks_Suppressed;
6385 ---------------------------
6386 -- Tag_Checks_Suppressed --
6387 ---------------------------
6389 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
6390 begin
6391 if Present (E) then
6392 if Kill_Tag_Checks (E) then
6393 return True;
6394 elsif Checks_May_Be_Suppressed (E) then
6395 return Is_Check_Suppressed (E, Tag_Check);
6396 end if;
6397 end if;
6399 return Scope_Suppress (Tag_Check);
6400 end Tag_Checks_Suppressed;
6402 end Checks;