libgo: Update to Go 1.3 release.
[official-gcc.git] / libgo / go / container / heap / heap.go
blobc467a11910c9f5e395d30c75c7078fbdcf53c574
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Package heap provides heap operations for any type that implements
6 // heap.Interface. A heap is a tree with the property that each node is the
7 // minimum-valued node in its subtree.
8 //
9 // The minimum element in the tree is the root, at index 0.
11 // A heap is a common way to implement a priority queue. To build a priority
12 // queue, implement the Heap interface with the (negative) priority as the
13 // ordering for the Less method, so Push adds items while Pop removes the
14 // highest-priority item from the queue. The Examples include such an
15 // implementation; the file example_pq_test.go has the complete source.
17 package heap
19 import "sort"
21 // Any type that implements heap.Interface may be used as a
22 // min-heap with the following invariants (established after
23 // Init has been called or if the data is empty or sorted):
25 // !h.Less(j, i) for 0 <= i < h.Len() and 2*i+1 <= j <= 2*i+2 and j < h.Len()
27 // Note that Push and Pop in this interface are for package heap's
28 // implementation to call. To add and remove things from the heap,
29 // use heap.Push and heap.Pop.
30 type Interface interface {
31 sort.Interface
32 Push(x interface{}) // add x as element Len()
33 Pop() interface{} // remove and return element Len() - 1.
36 // A heap must be initialized before any of the heap operations
37 // can be used. Init is idempotent with respect to the heap invariants
38 // and may be called whenever the heap invariants may have been invalidated.
39 // Its complexity is O(n) where n = h.Len().
41 func Init(h Interface) {
42 // heapify
43 n := h.Len()
44 for i := n/2 - 1; i >= 0; i-- {
45 down(h, i, n)
49 // Push pushes the element x onto the heap. The complexity is
50 // O(log(n)) where n = h.Len().
52 func Push(h Interface, x interface{}) {
53 h.Push(x)
54 up(h, h.Len()-1)
57 // Pop removes the minimum element (according to Less) from the heap
58 // and returns it. The complexity is O(log(n)) where n = h.Len().
59 // It is equivalent to Remove(h, 0).
61 func Pop(h Interface) interface{} {
62 n := h.Len() - 1
63 h.Swap(0, n)
64 down(h, 0, n)
65 return h.Pop()
68 // Remove removes the element at index i from the heap.
69 // The complexity is O(log(n)) where n = h.Len().
71 func Remove(h Interface, i int) interface{} {
72 n := h.Len() - 1
73 if n != i {
74 h.Swap(i, n)
75 down(h, i, n)
76 up(h, i)
78 return h.Pop()
81 // Fix re-establishes the heap ordering after the element at index i has changed its value.
82 // Changing the value of the element at index i and then calling Fix is equivalent to,
83 // but less expensive than, calling Remove(h, i) followed by a Push of the new value.
84 // The complexity is O(log(n)) where n = h.Len().
85 func Fix(h Interface, i int) {
86 down(h, i, h.Len())
87 up(h, i)
90 func up(h Interface, j int) {
91 for {
92 i := (j - 1) / 2 // parent
93 if i == j || !h.Less(j, i) {
94 break
96 h.Swap(i, j)
97 j = i
101 func down(h Interface, i, n int) {
102 for {
103 j1 := 2*i + 1
104 if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
105 break
107 j := j1 // left child
108 if j2 := j1 + 1; j2 < n && !h.Less(j1, j2) {
109 j = j2 // = 2*i + 2 // right child
111 if !h.Less(j, i) {
112 break
114 h.Swap(i, j)
115 i = j