Ranger: Mark a few classes as final
[official-gcc.git] / libgo / go / container / heap / heap.go
blobc3168f9b2779bd96ad3d78067bc8ccf59e0f9bd5
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Package heap provides heap operations for any type that implements
6 // heap.Interface. A heap is a tree with the property that each node is the
7 // minimum-valued node in its subtree.
8 //
9 // The minimum element in the tree is the root, at index 0.
11 // A heap is a common way to implement a priority queue. To build a priority
12 // queue, implement the Heap interface with the (negative) priority as the
13 // ordering for the Less method, so Push adds items while Pop removes the
14 // highest-priority item from the queue. The Examples include such an
15 // implementation; the file example_pq_test.go has the complete source.
17 package heap
19 import "sort"
21 // The Interface type describes the requirements
22 // for a type using the routines in this package.
23 // Any type that implements it may be used as a
24 // min-heap with the following invariants (established after
25 // Init has been called or if the data is empty or sorted):
27 // !h.Less(j, i) for 0 <= i < h.Len() and 2*i+1 <= j <= 2*i+2 and j < h.Len()
29 // Note that Push and Pop in this interface are for package heap's
30 // implementation to call. To add and remove things from the heap,
31 // use heap.Push and heap.Pop.
32 type Interface interface {
33 sort.Interface
34 Push(x any) // add x as element Len()
35 Pop() any // remove and return element Len() - 1.
38 // Init establishes the heap invariants required by the other routines in this package.
39 // Init is idempotent with respect to the heap invariants
40 // and may be called whenever the heap invariants may have been invalidated.
41 // The complexity is O(n) where n = h.Len().
42 func Init(h Interface) {
43 // heapify
44 n := h.Len()
45 for i := n/2 - 1; i >= 0; i-- {
46 down(h, i, n)
50 // Push pushes the element x onto the heap.
51 // The complexity is O(log n) where n = h.Len().
52 func Push(h Interface, x any) {
53 h.Push(x)
54 up(h, h.Len()-1)
57 // Pop removes and returns the minimum element (according to Less) from the heap.
58 // The complexity is O(log n) where n = h.Len().
59 // Pop is equivalent to Remove(h, 0).
60 func Pop(h Interface) any {
61 n := h.Len() - 1
62 h.Swap(0, n)
63 down(h, 0, n)
64 return h.Pop()
67 // Remove removes and returns the element at index i from the heap.
68 // The complexity is O(log n) where n = h.Len().
69 func Remove(h Interface, i int) any {
70 n := h.Len() - 1
71 if n != i {
72 h.Swap(i, n)
73 if !down(h, i, n) {
74 up(h, i)
77 return h.Pop()
80 // Fix re-establishes the heap ordering after the element at index i has changed its value.
81 // Changing the value of the element at index i and then calling Fix is equivalent to,
82 // but less expensive than, calling Remove(h, i) followed by a Push of the new value.
83 // The complexity is O(log n) where n = h.Len().
84 func Fix(h Interface, i int) {
85 if !down(h, i, h.Len()) {
86 up(h, i)
90 func up(h Interface, j int) {
91 for {
92 i := (j - 1) / 2 // parent
93 if i == j || !h.Less(j, i) {
94 break
96 h.Swap(i, j)
97 j = i
101 func down(h Interface, i0, n int) bool {
102 i := i0
103 for {
104 j1 := 2*i + 1
105 if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
106 break
108 j := j1 // left child
109 if j2 := j1 + 1; j2 < n && h.Less(j2, j1) {
110 j = j2 // = 2*i + 2 // right child
112 if !h.Less(j, i) {
113 break
115 h.Swap(i, j)
116 i = j
118 return i > i0