1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Exp_Ch3
; use Exp_Ch3
;
34 with Exp_Ch7
; use Exp_Ch7
;
35 with Exp_Disp
; use Exp_Disp
;
36 with Exp_Pakd
; use Exp_Pakd
;
37 with Exp_Util
; use Exp_Util
;
38 with Exp_Tss
; use Exp_Tss
;
39 with Ghost
; use Ghost
;
40 with Layout
; use Layout
;
42 with Namet
; use Namet
;
43 with Nlists
; use Nlists
;
44 with Nmake
; use Nmake
;
46 with Restrict
; use Restrict
;
47 with Rident
; use Rident
;
48 with Rtsfind
; use Rtsfind
;
50 with Sem_Aux
; use Sem_Aux
;
51 with Sem_Cat
; use Sem_Cat
;
52 with Sem_Ch6
; use Sem_Ch6
;
53 with Sem_Ch7
; use Sem_Ch7
;
54 with Sem_Ch8
; use Sem_Ch8
;
55 with Sem_Ch13
; use Sem_Ch13
;
56 with Sem_Eval
; use Sem_Eval
;
57 with Sem_Mech
; use Sem_Mech
;
58 with Sem_Prag
; use Sem_Prag
;
59 with Sem_Res
; use Sem_Res
;
60 with Sem_Util
; use Sem_Util
;
61 with Sinfo
; use Sinfo
;
62 with Snames
; use Snames
;
63 with Stand
; use Stand
;
64 with Targparm
; use Targparm
;
65 with Tbuild
; use Tbuild
;
66 with Ttypes
; use Ttypes
;
67 with Uintp
; use Uintp
;
68 with Urealp
; use Urealp
;
69 with Warnsw
; use Warnsw
;
71 package body Freeze
is
73 -----------------------
74 -- Local Subprograms --
75 -----------------------
77 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
);
78 -- Typ is a type that is being frozen. If no size clause is given,
79 -- but a default Esize has been computed, then this default Esize is
80 -- adjusted up if necessary to be consistent with a given alignment,
81 -- but never to a value greater than Long_Long_Integer'Size. This
82 -- is used for all discrete types and for fixed-point types.
84 procedure Build_And_Analyze_Renamed_Body
87 After
: in out Node_Id
);
88 -- Build body for a renaming declaration, insert in tree and analyze
90 procedure Check_Address_Clause
(E
: Entity_Id
);
91 -- Apply legality checks to address clauses for object declarations,
92 -- at the point the object is frozen. Also ensure any initialization is
93 -- performed only after the object has been frozen.
95 procedure Check_Component_Storage_Order
96 (Encl_Type
: Entity_Id
;
99 Comp_ADC_Present
: out Boolean);
100 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
101 -- clause, verify that the component type has an explicit and compatible
102 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
103 -- entity of the component under consideration. For an Encl_Type that
104 -- does not have a Scalar_Storage_Order attribute definition clause,
105 -- verify that the component also does not have such a clause.
106 -- ADC is the attribute definition clause if present (or Empty). On return,
107 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
108 -- attribute definition clause.
110 procedure Check_Expression_Function
(N
: Node_Id
; Nam
: Entity_Id
);
111 -- When an expression function is frozen by a use of it, the expression
112 -- itself is frozen. Check that the expression does not include references
113 -- to deferred constants without completion. We report this at the freeze
114 -- point of the function, to provide a better error message.
116 -- In most cases the expression itself is frozen by the time the function
117 -- itself is frozen, because the formals will be frozen by then. However,
118 -- Attribute references to outer types are freeze points for those types;
119 -- this routine generates the required freeze nodes for them.
121 procedure Check_Strict_Alignment
(E
: Entity_Id
);
122 -- E is a base type. If E is tagged or has a component that is aliased
123 -- or tagged or contains something this is aliased or tagged, set
126 procedure Check_Unsigned_Type
(E
: Entity_Id
);
127 pragma Inline
(Check_Unsigned_Type
);
128 -- If E is a fixed-point or discrete type, then all the necessary work
129 -- to freeze it is completed except for possible setting of the flag
130 -- Is_Unsigned_Type, which is done by this procedure. The call has no
131 -- effect if the entity E is not a discrete or fixed-point type.
133 procedure Freeze_And_Append
136 Result
: in out List_Id
);
137 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
138 -- nodes to Result, modifying Result from No_List if necessary. N has
139 -- the same usage as in Freeze_Entity.
141 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
);
142 -- Freeze enumeration type. The Esize field is set as processing
143 -- proceeds (i.e. set by default when the type is declared and then
144 -- adjusted by rep clauses. What this procedure does is to make sure
145 -- that if a foreign convention is specified, and no specific size
146 -- is given, then the size must be at least Integer'Size.
148 procedure Freeze_Static_Object
(E
: Entity_Id
);
149 -- If an object is frozen which has Is_Statically_Allocated set, then
150 -- all referenced types must also be marked with this flag. This routine
151 -- is in charge of meeting this requirement for the object entity E.
153 procedure Freeze_Subprogram
(E
: Entity_Id
);
154 -- Perform freezing actions for a subprogram (create extra formals,
155 -- and set proper default mechanism values). Note that this routine
156 -- is not called for internal subprograms, for which neither of these
157 -- actions is needed (or desirable, we do not want for example to have
158 -- these extra formals present in initialization procedures, where they
159 -- would serve no purpose). In this call E is either a subprogram or
160 -- a subprogram type (i.e. an access to a subprogram).
162 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean;
163 -- True if T is not private and has no private components, or has a full
164 -- view. Used to determine whether the designated type of an access type
165 -- should be frozen when the access type is frozen. This is done when an
166 -- allocator is frozen, or an expression that may involve attributes of
167 -- the designated type. Otherwise freezing the access type does not freeze
168 -- the designated type.
170 procedure Process_Default_Expressions
172 After
: in out Node_Id
);
173 -- This procedure is called for each subprogram to complete processing of
174 -- default expressions at the point where all types are known to be frozen.
175 -- The expressions must be analyzed in full, to make sure that all error
176 -- processing is done (they have only been pre-analyzed). If the expression
177 -- is not an entity or literal, its analysis may generate code which must
178 -- not be executed. In that case we build a function body to hold that
179 -- code. This wrapper function serves no other purpose (it used to be
180 -- called to evaluate the default, but now the default is inlined at each
183 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
);
184 -- Typ is a record or array type that is being frozen. This routine sets
185 -- the default component alignment from the scope stack values if the
186 -- alignment is otherwise not specified.
188 procedure Check_Debug_Info_Needed
(T
: Entity_Id
);
189 -- As each entity is frozen, this routine is called to deal with the
190 -- setting of Debug_Info_Needed for the entity. This flag is set if
191 -- the entity comes from source, or if we are in Debug_Generated_Code
192 -- mode or if the -gnatdV debug flag is set. However, it never sets
193 -- the flag if Debug_Info_Off is set. This procedure also ensures that
194 -- subsidiary entities have the flag set as required.
196 procedure Set_SSO_From_Default
(T
: Entity_Id
);
197 -- T is a record or array type that is being frozen. If it is a base type,
198 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
199 -- will be set appropriately. Note that an explicit occurrence of aspect
200 -- Scalar_Storage_Order or an explicit setting of this aspect with an
201 -- attribute definition clause occurs, then these two flags are reset in
202 -- any case, so call will have no effect.
204 procedure Undelay_Type
(T
: Entity_Id
);
205 -- T is a type of a component that we know to be an Itype. We don't want
206 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
207 -- Full_View or Corresponding_Record_Type.
209 procedure Warn_Overlay
213 -- Expr is the expression for an address clause for entity Nam whose type
214 -- is Typ. If Typ has a default initialization, and there is no explicit
215 -- initialization in the source declaration, check whether the address
216 -- clause might cause overlaying of an entity, and emit a warning on the
217 -- side effect that the initialization will cause.
219 -------------------------------
220 -- Adjust_Esize_For_Alignment --
221 -------------------------------
223 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
) is
227 if Known_Esize
(Typ
) and then Known_Alignment
(Typ
) then
228 Align
:= Alignment_In_Bits
(Typ
);
230 if Align
> Esize
(Typ
)
231 and then Align
<= Standard_Long_Long_Integer_Size
233 Set_Esize
(Typ
, Align
);
236 end Adjust_Esize_For_Alignment
;
238 ------------------------------------
239 -- Build_And_Analyze_Renamed_Body --
240 ------------------------------------
242 procedure Build_And_Analyze_Renamed_Body
245 After
: in out Node_Id
)
247 Body_Decl
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
248 Ent
: constant Entity_Id
:= Defining_Entity
(Decl
);
250 Renamed_Subp
: Entity_Id
;
253 -- If the renamed subprogram is intrinsic, there is no need for a
254 -- wrapper body: we set the alias that will be called and expanded which
255 -- completes the declaration. This transformation is only legal if the
256 -- renamed entity has already been elaborated.
258 -- Note that it is legal for a renaming_as_body to rename an intrinsic
259 -- subprogram, as long as the renaming occurs before the new entity
260 -- is frozen (RM 8.5.4 (5)).
262 if Nkind
(Body_Decl
) = N_Subprogram_Renaming_Declaration
263 and then Is_Entity_Name
(Name
(Body_Decl
))
265 Renamed_Subp
:= Entity
(Name
(Body_Decl
));
267 Renamed_Subp
:= Empty
;
270 if Present
(Renamed_Subp
)
271 and then Is_Intrinsic_Subprogram
(Renamed_Subp
)
273 (not In_Same_Source_Unit
(Renamed_Subp
, Ent
)
274 or else Sloc
(Renamed_Subp
) < Sloc
(Ent
))
276 -- We can make the renaming entity intrinsic if the renamed function
277 -- has an interface name, or if it is one of the shift/rotate
278 -- operations known to the compiler.
281 (Present
(Interface_Name
(Renamed_Subp
))
282 or else Nam_In
(Chars
(Renamed_Subp
), Name_Rotate_Left
,
286 Name_Shift_Right_Arithmetic
))
288 Set_Interface_Name
(Ent
, Interface_Name
(Renamed_Subp
));
290 if Present
(Alias
(Renamed_Subp
)) then
291 Set_Alias
(Ent
, Alias
(Renamed_Subp
));
293 Set_Alias
(Ent
, Renamed_Subp
);
296 Set_Is_Intrinsic_Subprogram
(Ent
);
297 Set_Has_Completion
(Ent
);
300 Body_Node
:= Build_Renamed_Body
(Decl
, New_S
);
301 Insert_After
(After
, Body_Node
);
302 Mark_Rewrite_Insertion
(Body_Node
);
306 end Build_And_Analyze_Renamed_Body
;
308 ------------------------
309 -- Build_Renamed_Body --
310 ------------------------
312 function Build_Renamed_Body
314 New_S
: Entity_Id
) return Node_Id
316 Loc
: constant Source_Ptr
:= Sloc
(New_S
);
317 -- We use for the source location of the renamed body, the location of
318 -- the spec entity. It might seem more natural to use the location of
319 -- the renaming declaration itself, but that would be wrong, since then
320 -- the body we create would look as though it was created far too late,
321 -- and this could cause problems with elaboration order analysis,
322 -- particularly in connection with instantiations.
324 N
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
325 Nam
: constant Node_Id
:= Name
(N
);
327 Spec
: constant Node_Id
:= New_Copy_Tree
(Specification
(Decl
));
328 Actuals
: List_Id
:= No_List
;
333 O_Formal
: Entity_Id
;
334 Param_Spec
: Node_Id
;
336 Pref
: Node_Id
:= Empty
;
337 -- If the renamed entity is a primitive operation given in prefix form,
338 -- the prefix is the target object and it has to be added as the first
339 -- actual in the generated call.
342 -- Determine the entity being renamed, which is the target of the call
343 -- statement. If the name is an explicit dereference, this is a renaming
344 -- of a subprogram type rather than a subprogram. The name itself is
347 if Nkind
(Nam
) = N_Selected_Component
then
348 Old_S
:= Entity
(Selector_Name
(Nam
));
350 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
351 Old_S
:= Etype
(Nam
);
353 elsif Nkind
(Nam
) = N_Indexed_Component
then
354 if Is_Entity_Name
(Prefix
(Nam
)) then
355 Old_S
:= Entity
(Prefix
(Nam
));
357 Old_S
:= Entity
(Selector_Name
(Prefix
(Nam
)));
360 elsif Nkind
(Nam
) = N_Character_Literal
then
361 Old_S
:= Etype
(New_S
);
364 Old_S
:= Entity
(Nam
);
367 if Is_Entity_Name
(Nam
) then
369 -- If the renamed entity is a predefined operator, retain full name
370 -- to ensure its visibility.
372 if Ekind
(Old_S
) = E_Operator
373 and then Nkind
(Nam
) = N_Expanded_Name
375 Call_Name
:= New_Copy
(Name
(N
));
377 Call_Name
:= New_Occurrence_Of
(Old_S
, Loc
);
381 if Nkind
(Nam
) = N_Selected_Component
382 and then Present
(First_Formal
(Old_S
))
384 (Is_Controlling_Formal
(First_Formal
(Old_S
))
385 or else Is_Class_Wide_Type
(Etype
(First_Formal
(Old_S
))))
388 -- Retrieve the target object, to be added as a first actual
391 Call_Name
:= New_Occurrence_Of
(Old_S
, Loc
);
392 Pref
:= Prefix
(Nam
);
395 Call_Name
:= New_Copy
(Name
(N
));
398 -- Original name may have been overloaded, but is fully resolved now
400 Set_Is_Overloaded
(Call_Name
, False);
403 -- For simple renamings, subsequent calls can be expanded directly as
404 -- calls to the renamed entity. The body must be generated in any case
405 -- for calls that may appear elsewhere. This is not done in the case
406 -- where the subprogram is an instantiation because the actual proper
407 -- body has not been built yet.
409 if Ekind_In
(Old_S
, E_Function
, E_Procedure
)
410 and then Nkind
(Decl
) = N_Subprogram_Declaration
411 and then not Is_Generic_Instance
(Old_S
)
413 Set_Body_To_Inline
(Decl
, Old_S
);
416 -- Check whether the return type is a limited view. If the subprogram
417 -- is already frozen the generated body may have a non-limited view
418 -- of the type, that must be used, because it is the one in the spec
419 -- of the renaming declaration.
421 if Ekind
(Old_S
) = E_Function
422 and then Is_Entity_Name
(Result_Definition
(Spec
))
425 Ret_Type
: constant Entity_Id
:= Etype
(Result_Definition
(Spec
));
427 if Has_Non_Limited_View
(Ret_Type
) then
428 Set_Result_Definition
429 (Spec
, New_Occurrence_Of
(Non_Limited_View
(Ret_Type
), Loc
));
434 -- The body generated for this renaming is an internal artifact, and
435 -- does not constitute a freeze point for the called entity.
437 Set_Must_Not_Freeze
(Call_Name
);
439 Formal
:= First_Formal
(Defining_Entity
(Decl
));
441 if Present
(Pref
) then
443 Pref_Type
: constant Entity_Id
:= Etype
(Pref
);
444 Form_Type
: constant Entity_Id
:= Etype
(First_Formal
(Old_S
));
447 -- The controlling formal may be an access parameter, or the
448 -- actual may be an access value, so adjust accordingly.
450 if Is_Access_Type
(Pref_Type
)
451 and then not Is_Access_Type
(Form_Type
)
454 (Make_Explicit_Dereference
(Loc
, Relocate_Node
(Pref
)));
456 elsif Is_Access_Type
(Form_Type
)
457 and then not Is_Access_Type
(Pref
)
461 Make_Attribute_Reference
(Loc
,
462 Attribute_Name
=> Name_Access
,
463 Prefix
=> Relocate_Node
(Pref
)));
465 Actuals
:= New_List
(Pref
);
469 elsif Present
(Formal
) then
476 if Present
(Formal
) then
477 while Present
(Formal
) loop
478 Append
(New_Occurrence_Of
(Formal
, Loc
), Actuals
);
479 Next_Formal
(Formal
);
483 -- If the renamed entity is an entry, inherit its profile. For other
484 -- renamings as bodies, both profiles must be subtype conformant, so it
485 -- is not necessary to replace the profile given in the declaration.
486 -- However, default values that are aggregates are rewritten when
487 -- partially analyzed, so we recover the original aggregate to insure
488 -- that subsequent conformity checking works. Similarly, if the default
489 -- expression was constant-folded, recover the original expression.
491 Formal
:= First_Formal
(Defining_Entity
(Decl
));
493 if Present
(Formal
) then
494 O_Formal
:= First_Formal
(Old_S
);
495 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
496 while Present
(Formal
) loop
497 if Is_Entry
(Old_S
) then
498 if Nkind
(Parameter_Type
(Param_Spec
)) /=
501 Set_Etype
(Formal
, Etype
(O_Formal
));
502 Set_Entity
(Parameter_Type
(Param_Spec
), Etype
(O_Formal
));
505 elsif Nkind
(Default_Value
(O_Formal
)) = N_Aggregate
506 or else Nkind
(Original_Node
(Default_Value
(O_Formal
))) /=
507 Nkind
(Default_Value
(O_Formal
))
509 Set_Expression
(Param_Spec
,
510 New_Copy_Tree
(Original_Node
(Default_Value
(O_Formal
))));
513 Next_Formal
(Formal
);
514 Next_Formal
(O_Formal
);
519 -- If the renamed entity is a function, the generated body contains a
520 -- return statement. Otherwise, build a procedure call. If the entity is
521 -- an entry, subsequent analysis of the call will transform it into the
522 -- proper entry or protected operation call. If the renamed entity is
523 -- a character literal, return it directly.
525 if Ekind
(Old_S
) = E_Function
526 or else Ekind
(Old_S
) = E_Operator
527 or else (Ekind
(Old_S
) = E_Subprogram_Type
528 and then Etype
(Old_S
) /= Standard_Void_Type
)
531 Make_Simple_Return_Statement
(Loc
,
533 Make_Function_Call
(Loc
,
535 Parameter_Associations
=> Actuals
));
537 elsif Ekind
(Old_S
) = E_Enumeration_Literal
then
539 Make_Simple_Return_Statement
(Loc
,
540 Expression
=> New_Occurrence_Of
(Old_S
, Loc
));
542 elsif Nkind
(Nam
) = N_Character_Literal
then
544 Make_Simple_Return_Statement
(Loc
, Expression
=> Call_Name
);
548 Make_Procedure_Call_Statement
(Loc
,
550 Parameter_Associations
=> Actuals
);
553 -- Create entities for subprogram body and formals
555 Set_Defining_Unit_Name
(Spec
,
556 Make_Defining_Identifier
(Loc
, Chars
=> Chars
(New_S
)));
558 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
559 while Present
(Param_Spec
) loop
560 Set_Defining_Identifier
(Param_Spec
,
561 Make_Defining_Identifier
(Loc
,
562 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
567 Make_Subprogram_Body
(Loc
,
568 Specification
=> Spec
,
569 Declarations
=> New_List
,
570 Handled_Statement_Sequence
=>
571 Make_Handled_Sequence_Of_Statements
(Loc
,
572 Statements
=> New_List
(Call_Node
)));
574 if Nkind
(Decl
) /= N_Subprogram_Declaration
then
576 Make_Subprogram_Declaration
(Loc
,
577 Specification
=> Specification
(N
)));
580 -- Link the body to the entity whose declaration it completes. If
581 -- the body is analyzed when the renamed entity is frozen, it may
582 -- be necessary to restore the proper scope (see package Exp_Ch13).
584 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
585 and then Present
(Corresponding_Spec
(N
))
587 Set_Corresponding_Spec
(Body_Node
, Corresponding_Spec
(N
));
589 Set_Corresponding_Spec
(Body_Node
, New_S
);
593 end Build_Renamed_Body
;
595 --------------------------
596 -- Check_Address_Clause --
597 --------------------------
599 procedure Check_Address_Clause
(E
: Entity_Id
) is
600 Addr
: constant Node_Id
:= Address_Clause
(E
);
602 Decl
: constant Node_Id
:= Declaration_Node
(E
);
603 Loc
: constant Source_Ptr
:= Sloc
(Decl
);
604 Typ
: constant Entity_Id
:= Etype
(E
);
606 Tag_Assign
: Node_Id
;
609 if Present
(Addr
) then
610 Expr
:= Expression
(Addr
);
612 if Needs_Constant_Address
(Decl
, Typ
) then
613 Check_Constant_Address_Clause
(Expr
, E
);
615 -- Has_Delayed_Freeze was set on E when the address clause was
616 -- analyzed, and must remain set because we want the address
617 -- clause to be elaborated only after any entity it references
618 -- has been elaborated.
621 -- If Rep_Clauses are to be ignored, remove address clause from
622 -- list attached to entity, because it may be illegal for gigi,
623 -- for example by breaking order of elaboration..
625 if Ignore_Rep_Clauses
then
630 Rep
:= First_Rep_Item
(E
);
633 Set_First_Rep_Item
(E
, Next_Rep_Item
(Addr
));
637 and then Next_Rep_Item
(Rep
) /= Addr
639 Rep
:= Next_Rep_Item
(Rep
);
643 if Present
(Rep
) then
644 Set_Next_Rep_Item
(Rep
, Next_Rep_Item
(Addr
));
648 -- And now remove the address clause
650 Kill_Rep_Clause
(Addr
);
652 elsif not Error_Posted
(Expr
)
653 and then not Needs_Finalization
(Typ
)
655 Warn_Overlay
(Expr
, Typ
, Name
(Addr
));
658 if Present
(Expression
(Decl
)) then
660 -- Capture initialization value at point of declaration,
661 -- and make explicit assignment legal, because object may
664 Remove_Side_Effects
(Expression
(Decl
));
665 Lhs
:= New_Occurrence_Of
(E
, Loc
);
666 Set_Assignment_OK
(Lhs
);
668 -- Move initialization to freeze actions (once the object has
669 -- been frozen, and the address clause alignment check has been
672 Append_Freeze_Action
(E
,
673 Make_Assignment_Statement
(Loc
,
675 Expression
=> Expression
(Decl
)));
677 Set_No_Initialization
(Decl
);
679 -- If the objet is tagged, check whether the tag must be
680 -- reassigned expliitly.
682 Tag_Assign
:= Make_Tag_Assignment
(Decl
);
683 if Present
(Tag_Assign
) then
684 Append_Freeze_Action
(E
, Tag_Assign
);
688 end Check_Address_Clause
;
690 -----------------------------
691 -- Check_Compile_Time_Size --
692 -----------------------------
694 procedure Check_Compile_Time_Size
(T
: Entity_Id
) is
696 procedure Set_Small_Size
(T
: Entity_Id
; S
: Uint
);
697 -- Sets the compile time known size (32 bits or less) in the Esize
698 -- field, of T checking for a size clause that was given which attempts
699 -- to give a smaller size, and also checking for an alignment clause.
701 function Size_Known
(T
: Entity_Id
) return Boolean;
702 -- Recursive function that does all the work
704 function Static_Discriminated_Components
(T
: Entity_Id
) return Boolean;
705 -- If T is a constrained subtype, its size is not known if any of its
706 -- discriminant constraints is not static and it is not a null record.
707 -- The test is conservative and doesn't check that the components are
708 -- in fact constrained by non-static discriminant values. Could be made
715 procedure Set_Small_Size
(T
: Entity_Id
; S
: Uint
) is
720 -- Check for bad size clause given
722 elsif Has_Size_Clause
(T
) then
723 if RM_Size
(T
) < S
then
724 Error_Msg_Uint_1
:= S
;
726 ("size for& too small, minimum allowed is ^",
730 -- Set size if not set already
732 elsif Unknown_RM_Size
(T
) then
741 function Size_Known
(T
: Entity_Id
) return Boolean is
749 if Size_Known_At_Compile_Time
(T
) then
752 -- Always True for scalar types. This is true even for generic formal
753 -- scalar types. We used to return False in the latter case, but the
754 -- size is known at compile time, even in the template, we just do
755 -- not know the exact size but that's not the point of this routine.
757 elsif Is_Scalar_Type
(T
)
758 or else Is_Task_Type
(T
)
764 elsif Is_Array_Type
(T
) then
766 -- String literals always have known size, and we can set it
768 if Ekind
(T
) = E_String_Literal_Subtype
then
769 Set_Small_Size
(T
, Component_Size
(T
)
770 * String_Literal_Length
(T
));
773 -- Unconstrained types never have known at compile time size
775 elsif not Is_Constrained
(T
) then
778 -- Don't do any recursion on type with error posted, since we may
779 -- have a malformed type that leads us into a loop.
781 elsif Error_Posted
(T
) then
784 -- Otherwise if component size unknown, then array size unknown
786 elsif not Size_Known
(Component_Type
(T
)) then
790 -- Check for all indexes static, and also compute possible size
791 -- (in case it is less than 32 and may be packable).
794 Esiz
: Uint
:= Component_Size
(T
);
798 Index
:= First_Index
(T
);
799 while Present
(Index
) loop
800 if Nkind
(Index
) = N_Range
then
801 Get_Index_Bounds
(Index
, Low
, High
);
803 elsif Error_Posted
(Scalar_Range
(Etype
(Index
))) then
807 Low
:= Type_Low_Bound
(Etype
(Index
));
808 High
:= Type_High_Bound
(Etype
(Index
));
811 if not Compile_Time_Known_Value
(Low
)
812 or else not Compile_Time_Known_Value
(High
)
813 or else Etype
(Index
) = Any_Type
818 Dim
:= Expr_Value
(High
) - Expr_Value
(Low
) + 1;
830 Set_Small_Size
(T
, Esiz
);
834 -- Access types always have known at compile time sizes
836 elsif Is_Access_Type
(T
) then
839 -- For non-generic private types, go to underlying type if present
841 elsif Is_Private_Type
(T
)
842 and then not Is_Generic_Type
(T
)
843 and then Present
(Underlying_Type
(T
))
845 -- Don't do any recursion on type with error posted, since we may
846 -- have a malformed type that leads us into a loop.
848 if Error_Posted
(T
) then
851 return Size_Known
(Underlying_Type
(T
));
856 elsif Is_Record_Type
(T
) then
858 -- A class-wide type is never considered to have a known size
860 if Is_Class_Wide_Type
(T
) then
863 -- A subtype of a variant record must not have non-static
864 -- discriminated components.
866 elsif T
/= Base_Type
(T
)
867 and then not Static_Discriminated_Components
(T
)
871 -- Don't do any recursion on type with error posted, since we may
872 -- have a malformed type that leads us into a loop.
874 elsif Error_Posted
(T
) then
878 -- Now look at the components of the record
881 -- The following two variables are used to keep track of the
882 -- size of packed records if we can tell the size of the packed
883 -- record in the front end. Packed_Size_Known is True if so far
884 -- we can figure out the size. It is initialized to True for a
885 -- packed record, unless the record has discriminants or atomic
886 -- components or independent components.
888 -- The reason we eliminate the discriminated case is that
889 -- we don't know the way the back end lays out discriminated
890 -- packed records. If Packed_Size_Known is True, then
891 -- Packed_Size is the size in bits so far.
893 Packed_Size_Known
: Boolean :=
895 and then not Has_Discriminants
(T
)
896 and then not Has_Atomic_Components
(T
)
897 and then not Has_Independent_Components
(T
);
899 Packed_Size
: Uint
:= Uint_0
;
900 -- Size in bits so far
903 -- Test for variant part present
905 if Has_Discriminants
(T
)
906 and then Present
(Parent
(T
))
907 and then Nkind
(Parent
(T
)) = N_Full_Type_Declaration
908 and then Nkind
(Type_Definition
(Parent
(T
))) =
910 and then not Null_Present
(Type_Definition
(Parent
(T
)))
912 Present
(Variant_Part
913 (Component_List
(Type_Definition
(Parent
(T
)))))
915 -- If variant part is present, and type is unconstrained,
916 -- then we must have defaulted discriminants, or a size
917 -- clause must be present for the type, or else the size
918 -- is definitely not known at compile time.
920 if not Is_Constrained
(T
)
922 No
(Discriminant_Default_Value
(First_Discriminant
(T
)))
923 and then Unknown_RM_Size
(T
)
929 -- Loop through components
931 Comp
:= First_Component_Or_Discriminant
(T
);
932 while Present
(Comp
) loop
933 Ctyp
:= Etype
(Comp
);
935 -- We do not know the packed size if there is a component
936 -- clause present (we possibly could, but this would only
937 -- help in the case of a record with partial rep clauses.
938 -- That's because in the case of full rep clauses, the
939 -- size gets figured out anyway by a different circuit).
941 if Present
(Component_Clause
(Comp
)) then
942 Packed_Size_Known
:= False;
945 -- We do not know the packed size for an atomic/VFA type
946 -- or component, or an independent type or component, or a
947 -- by-reference type or aliased component (because packing
948 -- does not touch these).
950 if Is_Atomic_Or_VFA
(Ctyp
)
951 or else Is_Atomic_Or_VFA
(Comp
)
952 or else Is_Independent
(Ctyp
)
953 or else Is_Independent
(Comp
)
954 or else Is_By_Reference_Type
(Ctyp
)
955 or else Is_Aliased
(Comp
)
957 Packed_Size_Known
:= False;
960 -- We need to identify a component that is an array where
961 -- the index type is an enumeration type with non-standard
962 -- representation, and some bound of the type depends on a
965 -- This is because gigi computes the size by doing a
966 -- substitution of the appropriate discriminant value in
967 -- the size expression for the base type, and gigi is not
968 -- clever enough to evaluate the resulting expression (which
969 -- involves a call to rep_to_pos) at compile time.
971 -- It would be nice if gigi would either recognize that
972 -- this expression can be computed at compile time, or
973 -- alternatively figured out the size from the subtype
974 -- directly, where all the information is at hand ???
976 if Is_Array_Type
(Etype
(Comp
))
977 and then Present
(Packed_Array_Impl_Type
(Etype
(Comp
)))
980 Ocomp
: constant Entity_Id
:=
981 Original_Record_Component
(Comp
);
982 OCtyp
: constant Entity_Id
:= Etype
(Ocomp
);
988 Ind
:= First_Index
(OCtyp
);
989 while Present
(Ind
) loop
990 Indtyp
:= Etype
(Ind
);
992 if Is_Enumeration_Type
(Indtyp
)
993 and then Has_Non_Standard_Rep
(Indtyp
)
995 Lo
:= Type_Low_Bound
(Indtyp
);
996 Hi
:= Type_High_Bound
(Indtyp
);
998 if Is_Entity_Name
(Lo
)
999 and then Ekind
(Entity
(Lo
)) = E_Discriminant
1003 elsif Is_Entity_Name
(Hi
)
1004 and then Ekind
(Entity
(Hi
)) = E_Discriminant
1015 -- Clearly size of record is not known if the size of one of
1016 -- the components is not known.
1018 if not Size_Known
(Ctyp
) then
1022 -- Accumulate packed size if possible
1024 if Packed_Size_Known
then
1026 -- We can only deal with elementary types, since for
1027 -- non-elementary components, alignment enters into the
1028 -- picture, and we don't know enough to handle proper
1029 -- alignment in this context. Packed arrays count as
1030 -- elementary if the representation is a modular type.
1032 if Is_Elementary_Type
(Ctyp
)
1033 or else (Is_Array_Type
(Ctyp
)
1035 (Packed_Array_Impl_Type
(Ctyp
))
1036 and then Is_Modular_Integer_Type
1037 (Packed_Array_Impl_Type
(Ctyp
)))
1039 -- Packed size unknown if we have an atomic/VFA type
1040 -- or a by-reference type, since the back end knows
1041 -- how these are layed out.
1043 if Is_Atomic_Or_VFA
(Ctyp
)
1044 or else Is_By_Reference_Type
(Ctyp
)
1046 Packed_Size_Known
:= False;
1048 -- If RM_Size is known and static, then we can keep
1049 -- accumulating the packed size
1051 elsif Known_Static_RM_Size
(Ctyp
) then
1053 -- A little glitch, to be removed sometime ???
1054 -- gigi does not understand zero sizes yet.
1056 if RM_Size
(Ctyp
) = Uint_0
then
1057 Packed_Size_Known
:= False;
1059 -- Normal case where we can keep accumulating the
1060 -- packed array size.
1063 Packed_Size
:= Packed_Size
+ RM_Size
(Ctyp
);
1066 -- If we have a field whose RM_Size is not known then
1067 -- we can't figure out the packed size here.
1070 Packed_Size_Known
:= False;
1073 -- If we have a non-elementary type we can't figure out
1074 -- the packed array size (alignment issues).
1077 Packed_Size_Known
:= False;
1081 Next_Component_Or_Discriminant
(Comp
);
1084 if Packed_Size_Known
then
1085 Set_Small_Size
(T
, Packed_Size
);
1091 -- All other cases, size not known at compile time
1098 -------------------------------------
1099 -- Static_Discriminated_Components --
1100 -------------------------------------
1102 function Static_Discriminated_Components
1103 (T
: Entity_Id
) return Boolean
1105 Constraint
: Elmt_Id
;
1108 if Has_Discriminants
(T
)
1109 and then Present
(Discriminant_Constraint
(T
))
1110 and then Present
(First_Component
(T
))
1112 Constraint
:= First_Elmt
(Discriminant_Constraint
(T
));
1113 while Present
(Constraint
) loop
1114 if not Compile_Time_Known_Value
(Node
(Constraint
)) then
1118 Next_Elmt
(Constraint
);
1123 end Static_Discriminated_Components
;
1125 -- Start of processing for Check_Compile_Time_Size
1128 Set_Size_Known_At_Compile_Time
(T
, Size_Known
(T
));
1129 end Check_Compile_Time_Size
;
1131 -----------------------------------
1132 -- Check_Component_Storage_Order --
1133 -----------------------------------
1135 procedure Check_Component_Storage_Order
1136 (Encl_Type
: Entity_Id
;
1139 Comp_ADC_Present
: out Boolean)
1141 Comp_Type
: Entity_Id
;
1145 Comp_Byte_Aligned
: Boolean;
1146 -- Set for the record case, True if Comp starts on a byte boundary
1147 -- (in which case it is allowed to have different storage order).
1149 Comp_SSO_Differs
: Boolean;
1150 -- Set True when the component is a nested composite, and it does not
1151 -- have the same scalar storage order as Encl_Type.
1153 Component_Aliased
: Boolean;
1158 if Present
(Comp
) then
1160 Comp_Type
:= Etype
(Comp
);
1162 if Is_Tag
(Comp
) then
1163 Comp_Byte_Aligned
:= True;
1164 Component_Aliased
:= False;
1167 -- If a component clause is present, check if the component starts
1168 -- on a storage element boundary. Otherwise conservatively assume
1169 -- it does so only in the case where the record is not packed.
1171 if Present
(Component_Clause
(Comp
)) then
1172 Comp_Byte_Aligned
:=
1173 Normalized_First_Bit
(Comp
) mod System_Storage_Unit
= 0;
1175 Comp_Byte_Aligned
:= not Is_Packed
(Encl_Type
);
1178 Component_Aliased
:= Is_Aliased
(Comp
);
1184 Err_Node
:= Encl_Type
;
1185 Comp_Type
:= Component_Type
(Encl_Type
);
1187 Component_Aliased
:= Has_Aliased_Components
(Encl_Type
);
1190 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1191 -- the attribute definition clause is attached to the first subtype.
1193 Comp_Type
:= Base_Type
(Comp_Type
);
1194 Comp_ADC
:= Get_Attribute_Definition_Clause
1195 (First_Subtype
(Comp_Type
),
1196 Attribute_Scalar_Storage_Order
);
1197 Comp_ADC_Present
:= Present
(Comp_ADC
);
1199 -- Case of record or array component: check storage order compatibility
1201 if Is_Record_Type
(Comp_Type
) or else Is_Array_Type
(Comp_Type
) then
1203 Reverse_Storage_Order
(Encl_Type
)
1205 Reverse_Storage_Order
(Comp_Type
);
1207 -- Parent and extension must have same storage order
1209 if Present
(Comp
) and then Chars
(Comp
) = Name_uParent
then
1210 if Comp_SSO_Differs
then
1212 ("record extension must have same scalar storage order as "
1213 & "parent", Err_Node
);
1216 -- If enclosing composite has explicit SSO then nested composite must
1217 -- have explicit SSO as well.
1219 elsif Present
(ADC
) and then No
(Comp_ADC
) then
1220 Error_Msg_N
("nested composite must have explicit scalar "
1221 & "storage order", Err_Node
);
1223 -- If component and composite SSO differs, check that component
1224 -- falls on byte boundaries and isn't packed.
1226 elsif Comp_SSO_Differs
then
1228 -- Component SSO differs from enclosing composite:
1230 -- Reject if component is a packed array, as it may be represented
1231 -- as a scalar internally.
1233 if Is_Packed_Array
(Comp_Type
) then
1235 ("type of packed component must have same scalar "
1236 & "storage order as enclosing composite", Err_Node
);
1238 -- Reject if composite is a packed array, as it may be rewritten
1239 -- into an array of scalars.
1241 elsif Is_Packed_Array
(Encl_Type
) then
1242 Error_Msg_N
("type of packed array must have same scalar "
1243 & "storage order as component", Err_Node
);
1245 -- Reject if not byte aligned
1247 elsif Is_Record_Type
(Encl_Type
)
1248 and then not Comp_Byte_Aligned
1251 ("type of non-byte-aligned component must have same scalar "
1252 & "storage order as enclosing composite", Err_Node
);
1256 -- Enclosing type has explicit SSO: non-composite component must not
1259 elsif Present
(ADC
) and then Component_Aliased
then
1261 ("aliased component not permitted for type with "
1262 & "explicit Scalar_Storage_Order", Err_Node
);
1264 end Check_Component_Storage_Order
;
1266 -----------------------------
1267 -- Check_Debug_Info_Needed --
1268 -----------------------------
1270 procedure Check_Debug_Info_Needed
(T
: Entity_Id
) is
1272 if Debug_Info_Off
(T
) then
1275 elsif Comes_From_Source
(T
)
1276 or else Debug_Generated_Code
1277 or else Debug_Flag_VV
1278 or else Needs_Debug_Info
(T
)
1280 Set_Debug_Info_Needed
(T
);
1282 end Check_Debug_Info_Needed
;
1284 -------------------------------
1285 -- Check_Expression_Function --
1286 -------------------------------
1288 procedure Check_Expression_Function
(N
: Node_Id
; Nam
: Entity_Id
) is
1291 function Find_Constant
(Nod
: Node_Id
) return Traverse_Result
;
1292 -- Function to search for deferred constant
1298 function Find_Constant
(Nod
: Node_Id
) return Traverse_Result
is
1300 -- When a constant is initialized with the result of a dispatching
1301 -- call, the constant declaration is rewritten as a renaming of the
1302 -- displaced function result. This scenario is not a premature use of
1303 -- a constant even though the Has_Completion flag is not set.
1305 if Is_Entity_Name
(Nod
)
1306 and then Present
(Entity
(Nod
))
1307 and then Ekind
(Entity
(Nod
)) = E_Constant
1308 and then Scope
(Entity
(Nod
)) = Current_Scope
1309 and then Nkind
(Declaration_Node
(Entity
(Nod
))) =
1310 N_Object_Declaration
1311 and then not Is_Imported
(Entity
(Nod
))
1312 and then not Has_Completion
(Entity
(Nod
))
1315 ("premature use of& in call or instance", N
, Entity
(Nod
));
1317 elsif Nkind
(Nod
) = N_Attribute_Reference
then
1318 Analyze
(Prefix
(Nod
));
1320 if Is_Entity_Name
(Prefix
(Nod
))
1321 and then Is_Type
(Entity
(Prefix
(Nod
)))
1323 Freeze_Before
(N
, Entity
(Prefix
(Nod
)));
1330 procedure Check_Deferred
is new Traverse_Proc
(Find_Constant
);
1332 -- Start of processing for Check_Expression_Function
1335 Decl
:= Original_Node
(Unit_Declaration_Node
(Nam
));
1337 if Scope
(Nam
) = Current_Scope
1338 and then Nkind
(Decl
) = N_Expression_Function
1340 Check_Deferred
(Expression
(Decl
));
1342 end Check_Expression_Function
;
1344 ----------------------------
1345 -- Check_Strict_Alignment --
1346 ----------------------------
1348 procedure Check_Strict_Alignment
(E
: Entity_Id
) is
1352 if Is_Tagged_Type
(E
) or else Is_Concurrent_Type
(E
) then
1353 Set_Strict_Alignment
(E
);
1355 elsif Is_Array_Type
(E
) then
1356 Set_Strict_Alignment
(E
, Strict_Alignment
(Component_Type
(E
)));
1358 elsif Is_Record_Type
(E
) then
1359 if Is_Limited_Record
(E
) then
1360 Set_Strict_Alignment
(E
);
1364 Comp
:= First_Component
(E
);
1365 while Present
(Comp
) loop
1366 if not Is_Type
(Comp
)
1367 and then (Strict_Alignment
(Etype
(Comp
))
1368 or else Is_Aliased
(Comp
))
1370 Set_Strict_Alignment
(E
);
1374 Next_Component
(Comp
);
1377 end Check_Strict_Alignment
;
1379 -------------------------
1380 -- Check_Unsigned_Type --
1381 -------------------------
1383 procedure Check_Unsigned_Type
(E
: Entity_Id
) is
1384 Ancestor
: Entity_Id
;
1389 if not Is_Discrete_Or_Fixed_Point_Type
(E
) then
1393 -- Do not attempt to analyze case where range was in error
1395 if No
(Scalar_Range
(E
)) or else Error_Posted
(Scalar_Range
(E
)) then
1399 -- The situation that is non trivial is something like
1401 -- subtype x1 is integer range -10 .. +10;
1402 -- subtype x2 is x1 range 0 .. V1;
1403 -- subtype x3 is x2 range V2 .. V3;
1404 -- subtype x4 is x3 range V4 .. V5;
1406 -- where Vn are variables. Here the base type is signed, but we still
1407 -- know that x4 is unsigned because of the lower bound of x2.
1409 -- The only way to deal with this is to look up the ancestor chain
1413 if Ancestor
= Any_Type
or else Etype
(Ancestor
) = Any_Type
then
1417 Lo_Bound
:= Type_Low_Bound
(Ancestor
);
1419 if Compile_Time_Known_Value
(Lo_Bound
) then
1420 if Expr_Rep_Value
(Lo_Bound
) >= 0 then
1421 Set_Is_Unsigned_Type
(E
, True);
1427 Ancestor
:= Ancestor_Subtype
(Ancestor
);
1429 -- If no ancestor had a static lower bound, go to base type
1431 if No
(Ancestor
) then
1433 -- Note: the reason we still check for a compile time known
1434 -- value for the base type is that at least in the case of
1435 -- generic formals, we can have bounds that fail this test,
1436 -- and there may be other cases in error situations.
1438 Btyp
:= Base_Type
(E
);
1440 if Btyp
= Any_Type
or else Etype
(Btyp
) = Any_Type
then
1444 Lo_Bound
:= Type_Low_Bound
(Base_Type
(E
));
1446 if Compile_Time_Known_Value
(Lo_Bound
)
1447 and then Expr_Rep_Value
(Lo_Bound
) >= 0
1449 Set_Is_Unsigned_Type
(E
, True);
1456 end Check_Unsigned_Type
;
1458 -----------------------------
1459 -- Is_Atomic_VFA_Aggregate --
1460 -----------------------------
1462 function Is_Atomic_VFA_Aggregate
(N
: Node_Id
) return Boolean is
1463 Loc
: constant Source_Ptr
:= Sloc
(N
);
1472 -- Array may be qualified, so find outer context
1474 if Nkind
(Par
) = N_Qualified_Expression
then
1475 Par
:= Parent
(Par
);
1478 if not Comes_From_Source
(Par
) then
1483 when N_Assignment_Statement
=>
1484 Typ
:= Etype
(Name
(Par
));
1486 if not Is_Atomic_Or_VFA
(Typ
)
1487 and then not (Is_Entity_Name
(Name
(Par
))
1488 and then Is_Atomic_Or_VFA
(Entity
(Name
(Par
))))
1493 when N_Object_Declaration
=>
1494 Typ
:= Etype
(Defining_Identifier
(Par
));
1496 if not Is_Atomic_Or_VFA
(Typ
)
1497 and then not Is_Atomic_Or_VFA
(Defining_Identifier
(Par
))
1506 Temp
:= Make_Temporary
(Loc
, 'T', N
);
1508 Make_Object_Declaration
(Loc
,
1509 Defining_Identifier
=> Temp
,
1510 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
1511 Expression
=> Relocate_Node
(N
));
1512 Insert_Before
(Par
, New_N
);
1515 Set_Expression
(Par
, New_Occurrence_Of
(Temp
, Loc
));
1517 end Is_Atomic_VFA_Aggregate
;
1519 -----------------------------------------------
1520 -- Explode_Initialization_Compound_Statement --
1521 -----------------------------------------------
1523 procedure Explode_Initialization_Compound_Statement
(E
: Entity_Id
) is
1524 Init_Stmts
: constant Node_Id
:= Initialization_Statements
(E
);
1527 if Present
(Init_Stmts
)
1528 and then Nkind
(Init_Stmts
) = N_Compound_Statement
1530 Insert_List_Before
(Init_Stmts
, Actions
(Init_Stmts
));
1532 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1533 -- just removing it, because Freeze_All may rely on this particular
1534 -- Node_Id still being present in the enclosing list to know where to
1537 Rewrite
(Init_Stmts
, Make_Null_Statement
(Sloc
(Init_Stmts
)));
1539 Set_Initialization_Statements
(E
, Empty
);
1541 end Explode_Initialization_Compound_Statement
;
1547 -- Note: the easy coding for this procedure would be to just build a
1548 -- single list of freeze nodes and then insert them and analyze them
1549 -- all at once. This won't work, because the analysis of earlier freeze
1550 -- nodes may recursively freeze types which would otherwise appear later
1551 -- on in the freeze list. So we must analyze and expand the freeze nodes
1552 -- as they are generated.
1554 procedure Freeze_All
(From
: Entity_Id
; After
: in out Node_Id
) is
1558 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
);
1559 -- This is the internal recursive routine that does freezing of entities
1560 -- (but NOT the analysis of default expressions, which should not be
1561 -- recursive, we don't want to analyze those till we are sure that ALL
1562 -- the types are frozen).
1564 --------------------
1565 -- Freeze_All_Ent --
1566 --------------------
1568 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
) is
1573 procedure Process_Flist
;
1574 -- If freeze nodes are present, insert and analyze, and reset cursor
1575 -- for next insertion.
1581 procedure Process_Flist
is
1583 if Is_Non_Empty_List
(Flist
) then
1584 Lastn
:= Next
(After
);
1585 Insert_List_After_And_Analyze
(After
, Flist
);
1587 if Present
(Lastn
) then
1588 After
:= Prev
(Lastn
);
1590 After
:= Last
(List_Containing
(After
));
1595 -- Start or processing for Freeze_All_Ent
1599 while Present
(E
) loop
1601 -- If the entity is an inner package which is not a package
1602 -- renaming, then its entities must be frozen at this point. Note
1603 -- that such entities do NOT get frozen at the end of the nested
1604 -- package itself (only library packages freeze).
1606 -- Same is true for task declarations, where anonymous records
1607 -- created for entry parameters must be frozen.
1609 if Ekind
(E
) = E_Package
1610 and then No
(Renamed_Object
(E
))
1611 and then not Is_Child_Unit
(E
)
1612 and then not Is_Frozen
(E
)
1615 Install_Visible_Declarations
(E
);
1616 Install_Private_Declarations
(E
);
1618 Freeze_All
(First_Entity
(E
), After
);
1620 End_Package_Scope
(E
);
1622 if Is_Generic_Instance
(E
)
1623 and then Has_Delayed_Freeze
(E
)
1625 Set_Has_Delayed_Freeze
(E
, False);
1626 Expand_N_Package_Declaration
(Unit_Declaration_Node
(E
));
1629 elsif Ekind
(E
) in Task_Kind
1630 and then Nkind_In
(Parent
(E
), N_Task_Type_Declaration
,
1631 N_Single_Task_Declaration
)
1634 Freeze_All
(First_Entity
(E
), After
);
1637 -- For a derived tagged type, we must ensure that all the
1638 -- primitive operations of the parent have been frozen, so that
1639 -- their addresses will be in the parent's dispatch table at the
1640 -- point it is inherited.
1642 elsif Ekind
(E
) = E_Record_Type
1643 and then Is_Tagged_Type
(E
)
1644 and then Is_Tagged_Type
(Etype
(E
))
1645 and then Is_Derived_Type
(E
)
1648 Prim_List
: constant Elist_Id
:=
1649 Primitive_Operations
(Etype
(E
));
1655 Prim
:= First_Elmt
(Prim_List
);
1656 while Present
(Prim
) loop
1657 Subp
:= Node
(Prim
);
1659 if Comes_From_Source
(Subp
)
1660 and then not Is_Frozen
(Subp
)
1662 Flist
:= Freeze_Entity
(Subp
, After
);
1671 if not Is_Frozen
(E
) then
1672 Flist
:= Freeze_Entity
(E
, After
);
1675 -- If already frozen, and there are delayed aspects, this is where
1676 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1677 -- for a description of how we handle aspect visibility).
1679 elsif Has_Delayed_Aspects
(E
) then
1681 -- Retrieve the visibility to the discriminants in order to
1682 -- analyze properly the aspects.
1684 Push_Scope_And_Install_Discriminants
(E
);
1690 Ritem
:= First_Rep_Item
(E
);
1691 while Present
(Ritem
) loop
1692 if Nkind
(Ritem
) = N_Aspect_Specification
1693 and then Entity
(Ritem
) = E
1694 and then Is_Delayed_Aspect
(Ritem
)
1696 Check_Aspect_At_End_Of_Declarations
(Ritem
);
1699 Ritem
:= Next_Rep_Item
(Ritem
);
1703 Uninstall_Discriminants_And_Pop_Scope
(E
);
1706 -- If an incomplete type is still not frozen, this may be a
1707 -- premature freezing because of a body declaration that follows.
1708 -- Indicate where the freezing took place. Freezing will happen
1709 -- if the body comes from source, but not if it is internally
1710 -- generated, for example as the body of a type invariant.
1712 -- If the freezing is caused by the end of the current declarative
1713 -- part, it is a Taft Amendment type, and there is no error.
1715 if not Is_Frozen
(E
)
1716 and then Ekind
(E
) = E_Incomplete_Type
1719 Bod
: constant Node_Id
:= Next
(After
);
1722 -- The presence of a body freezes all entities previously
1723 -- declared in the current list of declarations, but this
1724 -- does not apply if the body does not come from source.
1725 -- A type invariant is transformed into a subprogram body
1726 -- which is placed at the end of the private part of the
1727 -- current package, but this body does not freeze incomplete
1728 -- types that may be declared in this private part.
1730 if (Nkind_In
(Bod
, N_Subprogram_Body
,
1735 or else Nkind
(Bod
) in N_Body_Stub
)
1737 List_Containing
(After
) = List_Containing
(Parent
(E
))
1738 and then Comes_From_Source
(Bod
)
1740 Error_Msg_Sloc
:= Sloc
(Next
(After
));
1742 ("type& is frozen# before its full declaration",
1752 -- Start of processing for Freeze_All
1755 Freeze_All_Ent
(From
, After
);
1757 -- Now that all types are frozen, we can deal with default expressions
1758 -- that require us to build a default expression functions. This is the
1759 -- point at which such functions are constructed (after all types that
1760 -- might be used in such expressions have been frozen).
1762 -- For subprograms that are renaming_as_body, we create the wrapper
1763 -- bodies as needed.
1765 -- We also add finalization chains to access types whose designated
1766 -- types are controlled. This is normally done when freezing the type,
1767 -- but this misses recursive type definitions where the later members
1768 -- of the recursion introduce controlled components.
1770 -- Loop through entities
1773 while Present
(E
) loop
1774 if Is_Subprogram
(E
) then
1775 if not Default_Expressions_Processed
(E
) then
1776 Process_Default_Expressions
(E
, After
);
1779 if not Has_Completion
(E
) then
1780 Decl
:= Unit_Declaration_Node
(E
);
1782 if Nkind
(Decl
) = N_Subprogram_Renaming_Declaration
then
1783 if Error_Posted
(Decl
) then
1784 Set_Has_Completion
(E
);
1786 Build_And_Analyze_Renamed_Body
(Decl
, E
, After
);
1789 elsif Nkind
(Decl
) = N_Subprogram_Declaration
1790 and then Present
(Corresponding_Body
(Decl
))
1792 Nkind
(Unit_Declaration_Node
(Corresponding_Body
(Decl
)))
1793 = N_Subprogram_Renaming_Declaration
1795 Build_And_Analyze_Renamed_Body
1796 (Decl
, Corresponding_Body
(Decl
), After
);
1800 elsif Ekind
(E
) in Task_Kind
1801 and then Nkind_In
(Parent
(E
), N_Task_Type_Declaration
,
1802 N_Single_Task_Declaration
)
1808 Ent
:= First_Entity
(E
);
1809 while Present
(Ent
) loop
1811 and then not Default_Expressions_Processed
(Ent
)
1813 Process_Default_Expressions
(Ent
, After
);
1821 -- Historical note: We used to create a finalization master for an
1822 -- access type whose designated type is not controlled, but contains
1823 -- private controlled compoments. This form of postprocessing is no
1824 -- longer needed because the finalization master is now created when
1825 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
1831 -----------------------
1832 -- Freeze_And_Append --
1833 -----------------------
1835 procedure Freeze_And_Append
1838 Result
: in out List_Id
)
1840 L
: constant List_Id
:= Freeze_Entity
(Ent
, N
);
1842 if Is_Non_Empty_List
(L
) then
1843 if Result
= No_List
then
1846 Append_List
(L
, Result
);
1849 end Freeze_And_Append
;
1855 procedure Freeze_Before
(N
: Node_Id
; T
: Entity_Id
) is
1856 Freeze_Nodes
: constant List_Id
:= Freeze_Entity
(T
, N
);
1859 if Ekind
(T
) = E_Function
then
1860 Check_Expression_Function
(N
, T
);
1863 if Is_Non_Empty_List
(Freeze_Nodes
) then
1864 Insert_Actions
(N
, Freeze_Nodes
);
1872 function Freeze_Entity
(E
: Entity_Id
; N
: Node_Id
) return List_Id
is
1873 GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
1874 -- Save the current Ghost mode in effect in case the entity being frozen
1875 -- sets a different mode.
1877 Loc
: constant Source_Ptr
:= Sloc
(N
);
1884 Has_Default_Initialization
: Boolean := False;
1885 -- This flag gets set to true for a variable with default initialization
1887 Late_Freezing
: Boolean := False;
1888 -- Used to detect attempt to freeze function declared in another unit
1890 Result
: List_Id
:= No_List
;
1891 -- List of freezing actions, left at No_List if none
1893 Test_E
: Entity_Id
:= E
;
1894 -- This could use a comment ???
1896 procedure Add_To_Result
(N
: Node_Id
);
1897 -- N is a freezing action to be appended to the Result
1899 function After_Last_Declaration
return Boolean;
1900 -- If Loc is a freeze_entity that appears after the last declaration
1901 -- in the scope, inhibit error messages on late completion.
1903 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
);
1904 -- Check that an Access or Unchecked_Access attribute with a prefix
1905 -- which is the current instance type can only be applied when the type
1908 procedure Check_Suspicious_Modulus
(Utype
: Entity_Id
);
1909 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1910 -- integer literal without an explicit corresponding size clause. The
1911 -- caller has checked that Utype is a modular integer type.
1913 procedure Freeze_Array_Type
(Arr
: Entity_Id
);
1914 -- Freeze array type, including freezing index and component types
1916 procedure Freeze_Object_Declaration
(E
: Entity_Id
);
1917 -- Perform checks and generate freeze node if needed for a constant or
1918 -- variable declared by an object declaration.
1920 function Freeze_Generic_Entities
(Pack
: Entity_Id
) return List_Id
;
1921 -- Create Freeze_Generic_Entity nodes for types declared in a generic
1922 -- package. Recurse on inner generic packages.
1924 function Freeze_Profile
(E
: Entity_Id
) return Boolean;
1925 -- Freeze formals and return type of subprogram. If some type in the
1926 -- profile is a limited view, freezing of the entity will take place
1927 -- elsewhere, and the function returns False. This routine will be
1928 -- modified if and when we can implement AI05-019 efficiently ???
1930 procedure Freeze_Record_Type
(Rec
: Entity_Id
);
1931 -- Freeze record type, including freezing component types, and freezing
1932 -- primitive operations if this is a tagged type.
1934 function Has_Boolean_Aspect_Import
(E
: Entity_Id
) return Boolean;
1935 -- Determine whether an arbitrary entity is subject to Boolean aspect
1936 -- Import and its value is specified as True.
1938 procedure Late_Freeze_Subprogram
(E
: Entity_Id
);
1939 -- Following AI05-151, a function can return a limited view of a type
1940 -- declared elsewhere. In that case the function cannot be frozen at
1941 -- the end of its enclosing package. If its first use is in a different
1942 -- unit, it cannot be frozen there, but if the call is legal the full
1943 -- view of the return type is available and the subprogram can now be
1944 -- frozen. However the freeze node cannot be inserted at the point of
1945 -- call, but rather must go in the package holding the function, so that
1946 -- the backend can process it in the proper context.
1948 procedure Restore_Globals
;
1949 -- Restore the values of all saved global variables
1951 procedure Wrap_Imported_Subprogram
(E
: Entity_Id
);
1952 -- If E is an entity for an imported subprogram with pre/post-conditions
1953 -- then this procedure will create a wrapper to ensure that proper run-
1954 -- time checking of the pre/postconditions. See body for details.
1960 procedure Add_To_Result
(N
: Node_Id
) is
1963 Result
:= New_List
(N
);
1969 ----------------------------
1970 -- After_Last_Declaration --
1971 ----------------------------
1973 function After_Last_Declaration
return Boolean is
1974 Spec
: constant Node_Id
:= Parent
(Current_Scope
);
1977 if Nkind
(Spec
) = N_Package_Specification
then
1978 if Present
(Private_Declarations
(Spec
)) then
1979 return Loc
>= Sloc
(Last
(Private_Declarations
(Spec
)));
1980 elsif Present
(Visible_Declarations
(Spec
)) then
1981 return Loc
>= Sloc
(Last
(Visible_Declarations
(Spec
)));
1989 end After_Last_Declaration
;
1991 ----------------------------
1992 -- Check_Current_Instance --
1993 ----------------------------
1995 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
) is
1997 function Is_Aliased_View_Of_Type
(Typ
: Entity_Id
) return Boolean;
1998 -- Determine whether Typ is compatible with the rules for aliased
1999 -- views of types as defined in RM 3.10 in the various dialects.
2001 function Process
(N
: Node_Id
) return Traverse_Result
;
2002 -- Process routine to apply check to given node
2004 -----------------------------
2005 -- Is_Aliased_View_Of_Type --
2006 -----------------------------
2008 function Is_Aliased_View_Of_Type
(Typ
: Entity_Id
) return Boolean is
2009 Typ_Decl
: constant Node_Id
:= Parent
(Typ
);
2014 if Nkind
(Typ_Decl
) = N_Full_Type_Declaration
2015 and then Limited_Present
(Type_Definition
(Typ_Decl
))
2019 -- The following paragraphs describe what a legal aliased view of
2020 -- a type is in the various dialects of Ada.
2024 -- The current instance of a limited type, and a formal parameter
2025 -- or generic formal object of a tagged type.
2027 -- Ada 95 limited type
2028 -- * Type with reserved word "limited"
2029 -- * A protected or task type
2030 -- * A composite type with limited component
2032 elsif Ada_Version
<= Ada_95
then
2033 return Is_Limited_Type
(Typ
);
2037 -- The current instance of a limited tagged type, a protected
2038 -- type, a task type, or a type that has the reserved word
2039 -- "limited" in its full definition ... a formal parameter or
2040 -- generic formal object of a tagged type.
2042 -- Ada 2005 limited type
2043 -- * Type with reserved word "limited", "synchronized", "task"
2045 -- * A composite type with limited component
2046 -- * A derived type whose parent is a non-interface limited type
2048 elsif Ada_Version
= Ada_2005
then
2050 (Is_Limited_Type
(Typ
) and then Is_Tagged_Type
(Typ
))
2052 (Is_Derived_Type
(Typ
)
2053 and then not Is_Interface
(Etype
(Typ
))
2054 and then Is_Limited_Type
(Etype
(Typ
)));
2056 -- Ada 2012 and beyond
2058 -- The current instance of an immutably limited type ... a formal
2059 -- parameter or generic formal object of a tagged type.
2061 -- Ada 2012 limited type
2062 -- * Type with reserved word "limited", "synchronized", "task"
2064 -- * A composite type with limited component
2065 -- * A derived type whose parent is a non-interface limited type
2066 -- * An incomplete view
2068 -- Ada 2012 immutably limited type
2069 -- * Explicitly limited record type
2070 -- * Record extension with "limited" present
2071 -- * Non-formal limited private type that is either tagged
2072 -- or has at least one access discriminant with a default
2074 -- * Task type, protected type or synchronized interface
2075 -- * Type derived from immutably limited type
2079 Is_Immutably_Limited_Type
(Typ
)
2080 or else Is_Incomplete_Type
(Typ
);
2082 end Is_Aliased_View_Of_Type
;
2088 function Process
(N
: Node_Id
) return Traverse_Result
is
2091 when N_Attribute_Reference
=>
2092 if Nam_In
(Attribute_Name
(N
), Name_Access
,
2093 Name_Unchecked_Access
)
2094 and then Is_Entity_Name
(Prefix
(N
))
2095 and then Is_Type
(Entity
(Prefix
(N
)))
2096 and then Entity
(Prefix
(N
)) = E
2098 if Ada_Version
< Ada_2012
then
2100 ("current instance must be a limited type",
2104 ("current instance must be an immutably limited "
2105 & "type (RM-2012, 7.5 (8.1/3))", Prefix
(N
));
2114 when others => return OK
;
2118 procedure Traverse
is new Traverse_Proc
(Process
);
2122 Rec_Type
: constant Entity_Id
:=
2123 Scope
(Defining_Identifier
(Comp_Decl
));
2125 -- Start of processing for Check_Current_Instance
2128 if not Is_Aliased_View_Of_Type
(Rec_Type
) then
2129 Traverse
(Comp_Decl
);
2131 end Check_Current_Instance
;
2133 ------------------------------
2134 -- Check_Suspicious_Modulus --
2135 ------------------------------
2137 procedure Check_Suspicious_Modulus
(Utype
: Entity_Id
) is
2138 Decl
: constant Node_Id
:= Declaration_Node
(Underlying_Type
(Utype
));
2141 if not Warn_On_Suspicious_Modulus_Value
then
2145 if Nkind
(Decl
) = N_Full_Type_Declaration
then
2147 Tdef
: constant Node_Id
:= Type_Definition
(Decl
);
2150 if Nkind
(Tdef
) = N_Modular_Type_Definition
then
2152 Modulus
: constant Node_Id
:=
2153 Original_Node
(Expression
(Tdef
));
2156 if Nkind
(Modulus
) = N_Integer_Literal
then
2158 Modv
: constant Uint
:= Intval
(Modulus
);
2159 Sizv
: constant Uint
:= RM_Size
(Utype
);
2162 -- First case, modulus and size are the same. This
2163 -- happens if you have something like mod 32, with
2164 -- an explicit size of 32, this is for sure a case
2165 -- where the warning is given, since it is seems
2166 -- very unlikely that someone would want e.g. a
2167 -- five bit type stored in 32 bits. It is much
2168 -- more likely they wanted a 32-bit type.
2173 -- Second case, the modulus is 32 or 64 and no
2174 -- size clause is present. This is a less clear
2175 -- case for giving the warning, but in the case
2176 -- of 32/64 (5-bit or 6-bit types) these seem rare
2177 -- enough that it is a likely error (and in any
2178 -- case using 2**5 or 2**6 in these cases seems
2179 -- clearer. We don't include 8 or 16 here, simply
2180 -- because in practice 3-bit and 4-bit types are
2181 -- more common and too many false positives if
2182 -- we warn in these cases.
2184 elsif not Has_Size_Clause
(Utype
)
2185 and then (Modv
= Uint_32
or else Modv
= Uint_64
)
2189 -- No warning needed
2195 -- If we fall through, give warning
2197 Error_Msg_Uint_1
:= Modv
;
2199 ("?M?2 '*'*^' may have been intended here",
2207 end Check_Suspicious_Modulus
;
2209 -----------------------
2210 -- Freeze_Array_Type --
2211 -----------------------
2213 procedure Freeze_Array_Type
(Arr
: Entity_Id
) is
2214 FS
: constant Entity_Id
:= First_Subtype
(Arr
);
2215 Ctyp
: constant Entity_Id
:= Component_Type
(Arr
);
2218 Non_Standard_Enum
: Boolean := False;
2219 -- Set true if any of the index types is an enumeration type with a
2220 -- non-standard representation.
2223 Freeze_And_Append
(Ctyp
, N
, Result
);
2225 Indx
:= First_Index
(Arr
);
2226 while Present
(Indx
) loop
2227 Freeze_And_Append
(Etype
(Indx
), N
, Result
);
2229 if Is_Enumeration_Type
(Etype
(Indx
))
2230 and then Has_Non_Standard_Rep
(Etype
(Indx
))
2232 Non_Standard_Enum
:= True;
2238 -- Processing that is done only for base types
2240 if Ekind
(Arr
) = E_Array_Type
then
2242 -- Deal with default setting of reverse storage order
2244 Set_SSO_From_Default
(Arr
);
2246 -- Propagate flags for component type
2248 if Is_Controlled_Active
(Component_Type
(Arr
))
2249 or else Has_Controlled_Component
(Ctyp
)
2251 Set_Has_Controlled_Component
(Arr
);
2254 if Has_Unchecked_Union
(Component_Type
(Arr
)) then
2255 Set_Has_Unchecked_Union
(Arr
);
2258 -- Warn for pragma Pack overriding foreign convention
2260 if Has_Foreign_Convention
(Ctyp
)
2261 and then Has_Pragma_Pack
(Arr
)
2264 CN
: constant Name_Id
:=
2265 Get_Convention_Name
(Convention
(Ctyp
));
2266 PP
: constant Node_Id
:=
2267 Get_Pragma
(First_Subtype
(Arr
), Pragma_Pack
);
2269 if Present
(PP
) then
2270 Error_Msg_Name_1
:= CN
;
2271 Error_Msg_Sloc
:= Sloc
(Arr
);
2273 ("pragma Pack affects convention % components #??", PP
);
2274 Error_Msg_Name_1
:= CN
;
2276 ("\array components may not have % compatible "
2277 & "representation??", PP
);
2282 -- If packing was requested or if the component size was
2283 -- set explicitly, then see if bit packing is required. This
2284 -- processing is only done for base types, since all of the
2285 -- representation aspects involved are type-related.
2287 -- This is not just an optimization, if we start processing the
2288 -- subtypes, they interfere with the settings on the base type
2289 -- (this is because Is_Packed has a slightly different meaning
2290 -- before and after freezing).
2297 if (Is_Packed
(Arr
) or else Has_Pragma_Pack
(Arr
))
2298 and then Known_Static_RM_Size
(Ctyp
)
2299 and then not Has_Component_Size_Clause
(Arr
)
2301 Csiz
:= UI_Max
(RM_Size
(Ctyp
), 1);
2303 elsif Known_Component_Size
(Arr
) then
2304 Csiz
:= Component_Size
(Arr
);
2306 elsif not Known_Static_Esize
(Ctyp
) then
2310 Esiz
:= Esize
(Ctyp
);
2312 -- We can set the component size if it is less than 16,
2313 -- rounding it up to the next storage unit size.
2317 elsif Esiz
<= 16 then
2323 -- Set component size up to match alignment if it would
2324 -- otherwise be less than the alignment. This deals with
2325 -- cases of types whose alignment exceeds their size (the
2326 -- padded type cases).
2330 A
: constant Uint
:= Alignment_In_Bits
(Ctyp
);
2339 -- Case of component size that may result in packing
2341 if 1 <= Csiz
and then Csiz
<= 64 then
2343 Ent
: constant Entity_Id
:=
2344 First_Subtype
(Arr
);
2345 Pack_Pragma
: constant Node_Id
:=
2346 Get_Rep_Pragma
(Ent
, Name_Pack
);
2347 Comp_Size_C
: constant Node_Id
:=
2348 Get_Attribute_Definition_Clause
2349 (Ent
, Attribute_Component_Size
);
2352 -- Warn if we have pack and component size so that the
2355 -- Note: here we must check for the presence of a
2356 -- component size before checking for a Pack pragma to
2357 -- deal with the case where the array type is a derived
2358 -- type whose parent is currently private.
2360 if Present
(Comp_Size_C
)
2361 and then Has_Pragma_Pack
(Ent
)
2362 and then Warn_On_Redundant_Constructs
2364 Error_Msg_Sloc
:= Sloc
(Comp_Size_C
);
2366 ("?r?pragma Pack for& ignored!", Pack_Pragma
, Ent
);
2368 ("\?r?explicit component size given#!", Pack_Pragma
);
2369 Set_Is_Packed
(Base_Type
(Ent
), False);
2370 Set_Is_Bit_Packed_Array
(Base_Type
(Ent
), False);
2373 -- Set component size if not already set by a component
2376 if not Present
(Comp_Size_C
) then
2377 Set_Component_Size
(Arr
, Csiz
);
2380 -- Check for base type of 8, 16, 32 bits, where an
2381 -- unsigned subtype has a length one less than the
2382 -- base type (e.g. Natural subtype of Integer).
2384 -- In such cases, if a component size was not set
2385 -- explicitly, then generate a warning.
2387 if Has_Pragma_Pack
(Arr
)
2388 and then not Present
(Comp_Size_C
)
2389 and then (Csiz
= 7 or else Csiz
= 15 or else Csiz
= 31)
2390 and then Esize
(Base_Type
(Ctyp
)) = Csiz
+ 1
2392 Error_Msg_Uint_1
:= Csiz
;
2394 if Present
(Pack_Pragma
) then
2396 ("??pragma Pack causes component size to be ^!",
2399 ("\??use Component_Size to set desired value!",
2404 -- Actual packing is not needed for 8, 16, 32, 64. Also
2405 -- not needed for 24 if alignment is 1.
2411 or else (Csiz
= 24 and then Alignment
(Ctyp
) = 1)
2413 -- Here the array was requested to be packed, but
2414 -- the packing request had no effect, so Is_Packed
2417 -- Note: semantically this means that we lose track
2418 -- of the fact that a derived type inherited a pragma
2419 -- Pack that was non- effective, but that seems fine.
2421 -- We regard a Pack pragma as a request to set a
2422 -- representation characteristic, and this request
2425 Set_Is_Packed
(Base_Type
(Arr
), False);
2426 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), False);
2428 if Known_Static_Esize
(Component_Type
(Arr
))
2429 and then Esize
(Component_Type
(Arr
)) = Csiz
2431 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), False);
2434 -- In all other cases, packing is indeed needed
2437 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), True);
2438 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), True);
2439 Set_Is_Packed
(Base_Type
(Arr
), True);
2445 -- Check for Aliased or Atomic_Components/Atomic/VFA with
2446 -- unsuitable packing or explicit component size clause given.
2448 if (Has_Aliased_Components
(Arr
)
2449 or else Has_Atomic_Components
(Arr
)
2450 or else Is_Atomic_Or_VFA
(Ctyp
))
2452 (Has_Component_Size_Clause
(Arr
) or else Is_Packed
(Arr
))
2454 Alias_Atomic_Check
: declare
2456 procedure Complain_CS
(T
: String);
2457 -- Outputs error messages for incorrect CS clause or pragma
2458 -- Pack for aliased or atomic/VFA components (T is "aliased"
2459 -- or "atomic/vfa");
2465 procedure Complain_CS
(T
: String) is
2467 if Has_Component_Size_Clause
(Arr
) then
2469 Get_Attribute_Definition_Clause
2470 (FS
, Attribute_Component_Size
);
2473 ("incorrect component size for "
2474 & T
& " components", Clause
);
2475 Error_Msg_Uint_1
:= Esize
(Ctyp
);
2477 ("\only allowed value is^", Clause
);
2481 ("cannot pack " & T
& " components",
2482 Get_Rep_Pragma
(FS
, Name_Pack
));
2486 -- Start of processing for Alias_Atomic_Check
2489 -- If object size of component type isn't known, we cannot
2490 -- be sure so we defer to the back end.
2492 if not Known_Static_Esize
(Ctyp
) then
2495 -- Case where component size has no effect. First check for
2496 -- object size of component type multiple of the storage
2499 elsif Esize
(Ctyp
) mod System_Storage_Unit
= 0
2501 -- OK in both packing case and component size case if RM
2502 -- size is known and static and same as the object size.
2505 ((Known_Static_RM_Size
(Ctyp
)
2506 and then Esize
(Ctyp
) = RM_Size
(Ctyp
))
2508 -- Or if we have an explicit component size clause and
2509 -- the component size and object size are equal.
2512 (Has_Component_Size_Clause
(Arr
)
2513 and then Component_Size
(Arr
) = Esize
(Ctyp
)))
2517 elsif Has_Aliased_Components
(Arr
) then
2518 Complain_CS
("aliased");
2520 elsif Has_Atomic_Components
(Arr
)
2521 or else Is_Atomic
(Ctyp
)
2523 Complain_CS
("atomic");
2525 elsif Is_Volatile_Full_Access
(Ctyp
) then
2526 Complain_CS
("volatile full access");
2528 end Alias_Atomic_Check
;
2531 -- Check for Independent_Components/Independent with unsuitable
2532 -- packing or explicit component size clause given.
2534 if (Has_Independent_Components
(Arr
) or else Is_Independent
(Ctyp
))
2536 (Has_Component_Size_Clause
(Arr
) or else Is_Packed
(Arr
))
2539 -- If object size of component type isn't known, we cannot
2540 -- be sure so we defer to the back end.
2542 if not Known_Static_Esize
(Ctyp
) then
2545 -- Case where component size has no effect. First check for
2546 -- object size of component type multiple of the storage
2549 elsif Esize
(Ctyp
) mod System_Storage_Unit
= 0
2551 -- OK in both packing case and component size case if RM
2552 -- size is known and multiple of the storage unit size.
2555 ((Known_Static_RM_Size
(Ctyp
)
2556 and then RM_Size
(Ctyp
) mod System_Storage_Unit
= 0)
2558 -- Or if we have an explicit component size clause and
2559 -- the component size is larger than the object size.
2562 (Has_Component_Size_Clause
(Arr
)
2563 and then Component_Size
(Arr
) >= Esize
(Ctyp
)))
2568 if Has_Component_Size_Clause
(Arr
) then
2570 Get_Attribute_Definition_Clause
2571 (FS
, Attribute_Component_Size
);
2574 ("incorrect component size for "
2575 & "independent components", Clause
);
2576 Error_Msg_Uint_1
:= Esize
(Ctyp
);
2578 ("\minimum allowed is^", Clause
);
2582 ("cannot pack independent components",
2583 Get_Rep_Pragma
(FS
, Name_Pack
));
2589 -- Warn for case of atomic type
2591 Clause
:= Get_Rep_Pragma
(FS
, Name_Atomic
);
2594 and then not Addressable
(Component_Size
(FS
))
2597 ("non-atomic components of type& may not be "
2598 & "accessible by separate tasks??", Clause
, Arr
);
2600 if Has_Component_Size_Clause
(Arr
) then
2601 Error_Msg_Sloc
:= Sloc
(Get_Attribute_Definition_Clause
2602 (FS
, Attribute_Component_Size
));
2603 Error_Msg_N
("\because of component size clause#??", Clause
);
2605 elsif Has_Pragma_Pack
(Arr
) then
2606 Error_Msg_Sloc
:= Sloc
(Get_Rep_Pragma
(FS
, Name_Pack
));
2607 Error_Msg_N
("\because of pragma Pack#??", Clause
);
2611 -- Check for scalar storage order
2616 Check_Component_Storage_Order
2619 ADC
=> Get_Attribute_Definition_Clause
2620 (First_Subtype
(Arr
),
2621 Attribute_Scalar_Storage_Order
),
2622 Comp_ADC_Present
=> Dummy
);
2625 -- Processing that is done only for subtypes
2628 -- Acquire alignment from base type
2630 if Unknown_Alignment
(Arr
) then
2631 Set_Alignment
(Arr
, Alignment
(Base_Type
(Arr
)));
2632 Adjust_Esize_Alignment
(Arr
);
2636 -- Specific checks for bit-packed arrays
2638 if Is_Bit_Packed_Array
(Arr
) then
2640 -- Check number of elements for bit packed arrays that come from
2641 -- source and have compile time known ranges. The bit-packed
2642 -- arrays circuitry does not support arrays with more than
2643 -- Integer'Last + 1 elements, and when this restriction is
2644 -- violated, causes incorrect data access.
2646 -- For the case where this is not compile time known, a run-time
2647 -- check should be generated???
2649 if Comes_From_Source
(Arr
) and then Is_Constrained
(Arr
) then
2658 Index
:= First_Index
(Arr
);
2659 while Present
(Index
) loop
2660 Ityp
:= Etype
(Index
);
2662 -- Never generate an error if any index is of a generic
2663 -- type. We will check this in instances.
2665 if Is_Generic_Type
(Ityp
) then
2671 Make_Attribute_Reference
(Loc
,
2672 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
2673 Attribute_Name
=> Name_Range_Length
);
2674 Analyze_And_Resolve
(Ilen
);
2676 -- No attempt is made to check number of elements if not
2677 -- compile time known.
2679 if Nkind
(Ilen
) /= N_Integer_Literal
then
2684 Elmts
:= Elmts
* Intval
(Ilen
);
2688 if Elmts
> Intval
(High_Bound
2689 (Scalar_Range
(Standard_Integer
))) + 1
2692 ("bit packed array type may not have "
2693 & "more than Integer''Last+1 elements", Arr
);
2700 if Known_RM_Size
(Arr
) then
2702 SizC
: constant Node_Id
:= Size_Clause
(Arr
);
2706 -- It is not clear if it is possible to have no size clause
2707 -- at this stage, but it is not worth worrying about. Post
2708 -- error on the entity name in the size clause if present,
2709 -- else on the type entity itself.
2711 if Present
(SizC
) then
2712 Check_Size
(Name
(SizC
), Arr
, RM_Size
(Arr
), Discard
);
2714 Check_Size
(Arr
, Arr
, RM_Size
(Arr
), Discard
);
2720 -- If any of the index types was an enumeration type with a non-
2721 -- standard rep clause, then we indicate that the array type is
2722 -- always packed (even if it is not bit packed).
2724 if Non_Standard_Enum
then
2725 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
));
2726 Set_Is_Packed
(Base_Type
(Arr
));
2729 Set_Component_Alignment_If_Not_Set
(Arr
);
2731 -- If the array is packed, we must create the packed array type to be
2732 -- used to actually implement the type. This is only needed for real
2733 -- array types (not for string literal types, since they are present
2734 -- only for the front end).
2737 and then Ekind
(Arr
) /= E_String_Literal_Subtype
2739 Create_Packed_Array_Impl_Type
(Arr
);
2740 Freeze_And_Append
(Packed_Array_Impl_Type
(Arr
), N
, Result
);
2742 -- Make sure that we have the necessary routines to implement the
2743 -- packing, and complain now if not. Note that we only test this
2744 -- for constrained array types.
2746 if Is_Constrained
(Arr
)
2747 and then Is_Bit_Packed_Array
(Arr
)
2748 and then Present
(Packed_Array_Impl_Type
(Arr
))
2749 and then Is_Array_Type
(Packed_Array_Impl_Type
(Arr
))
2752 CS
: constant Uint
:= Component_Size
(Arr
);
2753 RE
: constant RE_Id
:= Get_Id
(UI_To_Int
(CS
));
2757 and then not RTE_Available
(RE
)
2760 ("packing of " & UI_Image
(CS
) & "-bit components",
2761 First_Subtype
(Etype
(Arr
)));
2763 -- Cancel the packing
2765 Set_Is_Packed
(Base_Type
(Arr
), False);
2766 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), False);
2767 Set_Packed_Array_Impl_Type
(Arr
, Empty
);
2773 -- Size information of packed array type is copied to the array
2774 -- type, since this is really the representation. But do not
2775 -- override explicit existing size values. If the ancestor subtype
2776 -- is constrained the Packed_Array_Impl_Type will be inherited
2777 -- from it, but the size may have been provided already, and
2778 -- must not be overridden either.
2780 if not Has_Size_Clause
(Arr
)
2782 (No
(Ancestor_Subtype
(Arr
))
2783 or else not Has_Size_Clause
(Ancestor_Subtype
(Arr
)))
2785 Set_Esize
(Arr
, Esize
(Packed_Array_Impl_Type
(Arr
)));
2786 Set_RM_Size
(Arr
, RM_Size
(Packed_Array_Impl_Type
(Arr
)));
2789 if not Has_Alignment_Clause
(Arr
) then
2790 Set_Alignment
(Arr
, Alignment
(Packed_Array_Impl_Type
(Arr
)));
2796 -- For non-packed arrays set the alignment of the array to the
2797 -- alignment of the component type if it is unknown. Skip this
2798 -- in atomic/VFA case (atomic/VFA arrays may need larger alignments).
2800 if not Is_Packed
(Arr
)
2801 and then Unknown_Alignment
(Arr
)
2802 and then Known_Alignment
(Ctyp
)
2803 and then Known_Static_Component_Size
(Arr
)
2804 and then Known_Static_Esize
(Ctyp
)
2805 and then Esize
(Ctyp
) = Component_Size
(Arr
)
2806 and then not Is_Atomic_Or_VFA
(Arr
)
2808 Set_Alignment
(Arr
, Alignment
(Component_Type
(Arr
)));
2810 end Freeze_Array_Type
;
2812 -------------------------------
2813 -- Freeze_Object_Declaration --
2814 -------------------------------
2816 procedure Freeze_Object_Declaration
(E
: Entity_Id
) is
2818 -- Abstract type allowed only for C++ imported variables or constants
2820 -- Note: we inhibit this check for objects that do not come from
2821 -- source because there is at least one case (the expansion of
2822 -- x'Class'Input where x is abstract) where we legitimately
2823 -- generate an abstract object.
2825 if Is_Abstract_Type
(Etype
(E
))
2826 and then Comes_From_Source
(Parent
(E
))
2827 and then not (Is_Imported
(E
) and then Is_CPP_Class
(Etype
(E
)))
2829 Error_Msg_N
("type of object cannot be abstract",
2830 Object_Definition
(Parent
(E
)));
2832 if Is_CPP_Class
(Etype
(E
)) then
2834 ("\} may need a cpp_constructor",
2835 Object_Definition
(Parent
(E
)), Etype
(E
));
2837 elsif Present
(Expression
(Parent
(E
))) then
2838 Error_Msg_N
-- CODEFIX
2839 ("\maybe a class-wide type was meant",
2840 Object_Definition
(Parent
(E
)));
2844 -- For object created by object declaration, perform required
2845 -- categorization (preelaborate and pure) checks. Defer these
2846 -- checks to freeze time since pragma Import inhibits default
2847 -- initialization and thus pragma Import affects these checks.
2849 Validate_Object_Declaration
(Declaration_Node
(E
));
2851 -- If there is an address clause, check that it is valid
2852 -- and if need be move initialization to the freeze node.
2854 Check_Address_Clause
(E
);
2856 -- Similar processing is needed for aspects that may affect
2857 -- object layout, like Alignment, if there is an initialization
2860 if Has_Delayed_Aspects
(E
)
2861 and then Expander_Active
2862 and then Is_Array_Type
(Etype
(E
))
2863 and then Present
(Expression
(Parent
(E
)))
2866 Decl
: constant Node_Id
:= Parent
(E
);
2867 Lhs
: constant Node_Id
:= New_Occurrence_Of
(E
, Loc
);
2871 -- Capture initialization value at point of declaration, and
2872 -- make explicit assignment legal, because object may be a
2875 Remove_Side_Effects
(Expression
(Decl
));
2876 Set_Assignment_OK
(Lhs
);
2878 -- Move initialization to freeze actions.
2880 Append_Freeze_Action
(E
,
2881 Make_Assignment_Statement
(Loc
,
2883 Expression
=> Expression
(Decl
)));
2885 Set_No_Initialization
(Decl
);
2886 -- Set_Is_Frozen (E, False);
2890 -- Reset Is_True_Constant for non-constant aliased object. We
2891 -- consider that the fact that a non-constant object is aliased may
2892 -- indicate that some funny business is going on, e.g. an aliased
2893 -- object is passed by reference to a procedure which captures the
2894 -- address of the object, which is later used to assign a new value,
2895 -- even though the compiler thinks that it is not modified. Such
2896 -- code is highly dubious, but we choose to make it "work" for
2897 -- non-constant aliased objects.
2899 -- Note that we used to do this for all aliased objects, whether or
2900 -- not constant, but this caused anomalies down the line because we
2901 -- ended up with static objects that were not Is_True_Constant. Not
2902 -- resetting Is_True_Constant for (aliased) constant objects ensures
2903 -- that this anomaly never occurs.
2905 -- However, we don't do that for internal entities. We figure that if
2906 -- we deliberately set Is_True_Constant for an internal entity, e.g.
2907 -- a dispatch table entry, then we mean it.
2909 if Ekind
(E
) /= E_Constant
2910 and then (Is_Aliased
(E
) or else Is_Aliased
(Etype
(E
)))
2911 and then not Is_Internal_Name
(Chars
(E
))
2913 Set_Is_True_Constant
(E
, False);
2916 -- If the object needs any kind of default initialization, an error
2917 -- must be issued if No_Default_Initialization applies. The check
2918 -- doesn't apply to imported objects, which are not ever default
2919 -- initialized, and is why the check is deferred until freezing, at
2920 -- which point we know if Import applies. Deferred constants are also
2921 -- exempted from this test because their completion is explicit, or
2922 -- through an import pragma.
2924 if Ekind
(E
) = E_Constant
and then Present
(Full_View
(E
)) then
2927 elsif Comes_From_Source
(E
)
2928 and then not Is_Imported
(E
)
2929 and then not Has_Init_Expression
(Declaration_Node
(E
))
2931 ((Has_Non_Null_Base_Init_Proc
(Etype
(E
))
2932 and then not No_Initialization
(Declaration_Node
(E
))
2933 and then not Is_Value_Type
(Etype
(E
))
2934 and then not Initialization_Suppressed
(Etype
(E
)))
2936 (Needs_Simple_Initialization
(Etype
(E
))
2937 and then not Is_Internal
(E
)))
2939 Has_Default_Initialization
:= True;
2941 (No_Default_Initialization
, Declaration_Node
(E
));
2944 -- Check that a Thread_Local_Storage variable does not have
2945 -- default initialization, and any explicit initialization must
2946 -- either be the null constant or a static constant.
2948 if Has_Pragma_Thread_Local_Storage
(E
) then
2950 Decl
: constant Node_Id
:= Declaration_Node
(E
);
2952 if Has_Default_Initialization
2954 (Has_Init_Expression
(Decl
)
2956 (No
(Expression
(Decl
))
2958 (Is_OK_Static_Expression
(Expression
(Decl
))
2959 or else Nkind
(Expression
(Decl
)) = N_Null
)))
2962 ("Thread_Local_Storage variable& is "
2963 & "improperly initialized", Decl
, E
);
2965 ("\only allowed initialization is explicit "
2966 & "NULL or static expression", Decl
, E
);
2971 -- For imported objects, set Is_Public unless there is also an
2972 -- address clause, which means that there is no external symbol
2973 -- needed for the Import (Is_Public may still be set for other
2974 -- unrelated reasons). Note that we delayed this processing
2975 -- till freeze time so that we can be sure not to set the flag
2976 -- if there is an address clause. If there is such a clause,
2977 -- then the only purpose of the Import pragma is to suppress
2978 -- implicit initialization.
2980 if Is_Imported
(E
) and then No
(Address_Clause
(E
)) then
2984 -- For source objects that are not Imported and are library
2985 -- level, if no linker section pragma was given inherit the
2986 -- appropriate linker section from the corresponding type.
2988 if Comes_From_Source
(E
)
2989 and then not Is_Imported
(E
)
2990 and then Is_Library_Level_Entity
(E
)
2991 and then No
(Linker_Section_Pragma
(E
))
2993 Set_Linker_Section_Pragma
2994 (E
, Linker_Section_Pragma
(Etype
(E
)));
2997 -- For convention C objects of an enumeration type, warn if the
2998 -- size is not integer size and no explicit size given. Skip
2999 -- warning for Boolean, and Character, assume programmer expects
3000 -- 8-bit sizes for these cases.
3002 if (Convention
(E
) = Convention_C
3004 Convention
(E
) = Convention_CPP
)
3005 and then Is_Enumeration_Type
(Etype
(E
))
3006 and then not Is_Character_Type
(Etype
(E
))
3007 and then not Is_Boolean_Type
(Etype
(E
))
3008 and then Esize
(Etype
(E
)) < Standard_Integer_Size
3009 and then not Has_Size_Clause
(E
)
3011 Error_Msg_Uint_1
:= UI_From_Int
(Standard_Integer_Size
);
3013 ("??convention C enumeration object has size less than ^", E
);
3014 Error_Msg_N
("\??use explicit size clause to set size", E
);
3016 end Freeze_Object_Declaration
;
3018 -----------------------------
3019 -- Freeze_Generic_Entities --
3020 -----------------------------
3022 function Freeze_Generic_Entities
(Pack
: Entity_Id
) return List_Id
is
3029 E
:= First_Entity
(Pack
);
3030 while Present
(E
) loop
3031 if Is_Type
(E
) and then not Is_Generic_Type
(E
) then
3032 F
:= Make_Freeze_Generic_Entity
(Sloc
(Pack
));
3034 Append_To
(Flist
, F
);
3036 elsif Ekind
(E
) = E_Generic_Package
then
3037 Append_List_To
(Flist
, Freeze_Generic_Entities
(E
));
3044 end Freeze_Generic_Entities
;
3046 --------------------
3047 -- Freeze_Profile --
3048 --------------------
3050 function Freeze_Profile
(E
: Entity_Id
) return Boolean is
3053 Warn_Node
: Node_Id
;
3056 -- Loop through formals
3058 Formal
:= First_Formal
(E
);
3059 while Present
(Formal
) loop
3060 F_Type
:= Etype
(Formal
);
3062 -- AI05-0151: incomplete types can appear in a profile. By the
3063 -- time the entity is frozen, the full view must be available,
3064 -- unless it is a limited view.
3066 if Is_Incomplete_Type
(F_Type
)
3067 and then Present
(Full_View
(F_Type
))
3068 and then not From_Limited_With
(F_Type
)
3070 F_Type
:= Full_View
(F_Type
);
3071 Set_Etype
(Formal
, F_Type
);
3074 if not From_Limited_With
(F_Type
) then
3075 Freeze_And_Append
(F_Type
, N
, Result
);
3078 if Is_Private_Type
(F_Type
)
3079 and then Is_Private_Type
(Base_Type
(F_Type
))
3080 and then No
(Full_View
(Base_Type
(F_Type
)))
3081 and then not Is_Generic_Type
(F_Type
)
3082 and then not Is_Derived_Type
(F_Type
)
3084 -- If the type of a formal is incomplete, subprogram is being
3085 -- frozen prematurely. Within an instance (but not within a
3086 -- wrapper package) this is an artifact of our need to regard
3087 -- the end of an instantiation as a freeze point. Otherwise it
3088 -- is a definite error.
3091 Set_Is_Frozen
(E
, False);
3095 elsif not After_Last_Declaration
3096 and then not Freezing_Library_Level_Tagged_Type
3098 Error_Msg_Node_1
:= F_Type
;
3100 ("type & must be fully defined before this point", Loc
);
3104 -- Check suspicious parameter for C function. These tests apply
3105 -- only to exported/imported subprograms.
3107 if Warn_On_Export_Import
3108 and then Comes_From_Source
(E
)
3109 and then (Convention
(E
) = Convention_C
3111 Convention
(E
) = Convention_CPP
)
3112 and then (Is_Imported
(E
) or else Is_Exported
(E
))
3113 and then Convention
(E
) /= Convention
(Formal
)
3114 and then not Has_Warnings_Off
(E
)
3115 and then not Has_Warnings_Off
(F_Type
)
3116 and then not Has_Warnings_Off
(Formal
)
3118 -- Qualify mention of formals with subprogram name
3120 Error_Msg_Qual_Level
:= 1;
3122 -- Check suspicious use of fat C pointer
3124 if Is_Access_Type
(F_Type
)
3125 and then Esize
(F_Type
) > Ttypes
.System_Address_Size
3128 ("?x?type of & does not correspond to C pointer!", Formal
);
3130 -- Check suspicious return of boolean
3132 elsif Root_Type
(F_Type
) = Standard_Boolean
3133 and then Convention
(F_Type
) = Convention_Ada
3134 and then not Has_Warnings_Off
(F_Type
)
3135 and then not Has_Size_Clause
(F_Type
)
3136 and then VM_Target
= No_VM
3139 ("& is an 8-bit Ada Boolean?x?", Formal
);
3141 ("\use appropriate corresponding type in C "
3142 & "(e.g. char)?x?", Formal
);
3144 -- Check suspicious tagged type
3146 elsif (Is_Tagged_Type
(F_Type
)
3148 (Is_Access_Type
(F_Type
)
3149 and then Is_Tagged_Type
(Designated_Type
(F_Type
))))
3150 and then Convention
(E
) = Convention_C
3153 ("?x?& involves a tagged type which does not "
3154 & "correspond to any C type!", Formal
);
3156 -- Check wrong convention subprogram pointer
3158 elsif Ekind
(F_Type
) = E_Access_Subprogram_Type
3159 and then not Has_Foreign_Convention
(F_Type
)
3162 ("?x?subprogram pointer & should "
3163 & "have foreign convention!", Formal
);
3164 Error_Msg_Sloc
:= Sloc
(F_Type
);
3166 ("\?x?add Convention pragma to declaration of &#",
3170 -- Turn off name qualification after message output
3172 Error_Msg_Qual_Level
:= 0;
3175 -- Check for unconstrained array in exported foreign convention
3178 if Has_Foreign_Convention
(E
)
3179 and then not Is_Imported
(E
)
3180 and then Is_Array_Type
(F_Type
)
3181 and then not Is_Constrained
(F_Type
)
3182 and then Warn_On_Export_Import
3184 -- Exclude VM case, since both .NET and JVM can handle
3185 -- unconstrained arrays without a problem.
3187 and then VM_Target
= No_VM
3189 Error_Msg_Qual_Level
:= 1;
3191 -- If this is an inherited operation, place the warning on
3192 -- the derived type declaration, rather than on the original
3195 if Nkind
(Original_Node
(Parent
(E
))) = N_Full_Type_Declaration
3197 Warn_Node
:= Parent
(E
);
3199 if Formal
= First_Formal
(E
) then
3200 Error_Msg_NE
("??in inherited operation&", Warn_Node
, E
);
3203 Warn_Node
:= Formal
;
3206 Error_Msg_NE
("?x?type of argument& is unconstrained array",
3208 Error_Msg_NE
("?x?foreign caller must pass bounds explicitly",
3210 Error_Msg_Qual_Level
:= 0;
3213 if not From_Limited_With
(F_Type
) then
3214 if Is_Access_Type
(F_Type
) then
3215 F_Type
:= Designated_Type
(F_Type
);
3218 -- If the formal is an anonymous_access_to_subprogram
3219 -- freeze the subprogram type as well, to prevent
3220 -- scope anomalies in gigi, because there is no other
3221 -- clear point at which it could be frozen.
3223 if Is_Itype
(Etype
(Formal
))
3224 and then Ekind
(F_Type
) = E_Subprogram_Type
3226 Freeze_And_Append
(F_Type
, N
, Result
);
3230 Next_Formal
(Formal
);
3233 -- Case of function: similar checks on return type
3235 if Ekind
(E
) = E_Function
then
3237 -- Check whether function is declared elsewhere.
3240 Get_Source_Unit
(E
) /= Get_Source_Unit
(N
)
3241 and then Returns_Limited_View
(E
)
3242 and then not In_Open_Scopes
(Scope
(E
));
3244 -- Freeze return type
3246 R_Type
:= Etype
(E
);
3248 -- AI05-0151: the return type may have been incomplete
3249 -- at the point of declaration. Replace it with the full
3250 -- view, unless the current type is a limited view. In
3251 -- that case the full view is in a different unit, and
3252 -- gigi finds the non-limited view after the other unit
3255 if Ekind
(R_Type
) = E_Incomplete_Type
3256 and then Present
(Full_View
(R_Type
))
3257 and then not From_Limited_With
(R_Type
)
3259 R_Type
:= Full_View
(R_Type
);
3260 Set_Etype
(E
, R_Type
);
3262 -- If the return type is a limited view and the non-limited
3263 -- view is still incomplete, the function has to be frozen at a
3264 -- later time. If the function is abstract there is no place at
3265 -- which the full view will become available, and no code to be
3266 -- generated for it, so mark type as frozen.
3268 elsif Ekind
(R_Type
) = E_Incomplete_Type
3269 and then From_Limited_With
(R_Type
)
3270 and then Ekind
(Non_Limited_View
(R_Type
)) = E_Incomplete_Type
3272 if Is_Abstract_Subprogram
(E
) then
3275 Set_Is_Frozen
(E
, False);
3276 Set_Returns_Limited_View
(E
);
3281 Freeze_And_Append
(R_Type
, N
, Result
);
3283 -- Check suspicious return type for C function
3285 if Warn_On_Export_Import
3286 and then (Convention
(E
) = Convention_C
3288 Convention
(E
) = Convention_CPP
)
3289 and then (Is_Imported
(E
) or else Is_Exported
(E
))
3291 -- Check suspicious return of fat C pointer
3293 if Is_Access_Type
(R_Type
)
3294 and then Esize
(R_Type
) > Ttypes
.System_Address_Size
3295 and then not Has_Warnings_Off
(E
)
3296 and then not Has_Warnings_Off
(R_Type
)
3298 Error_Msg_N
("?x?return type of& does not "
3299 & "correspond to C pointer!", E
);
3301 -- Check suspicious return of boolean
3303 elsif Root_Type
(R_Type
) = Standard_Boolean
3304 and then Convention
(R_Type
) = Convention_Ada
3305 and then VM_Target
= No_VM
3306 and then not Has_Warnings_Off
(E
)
3307 and then not Has_Warnings_Off
(R_Type
)
3308 and then not Has_Size_Clause
(R_Type
)
3311 N
: constant Node_Id
:=
3312 Result_Definition
(Declaration_Node
(E
));
3315 ("return type of & is an 8-bit Ada Boolean?x?", N
, E
);
3317 ("\use appropriate corresponding type in C "
3318 & "(e.g. char)?x?", N
, E
);
3321 -- Check suspicious return tagged type
3323 elsif (Is_Tagged_Type
(R_Type
)
3324 or else (Is_Access_Type
(R_Type
)
3327 (Designated_Type
(R_Type
))))
3328 and then Convention
(E
) = Convention_C
3329 and then not Has_Warnings_Off
(E
)
3330 and then not Has_Warnings_Off
(R_Type
)
3332 Error_Msg_N
("?x?return type of & does not "
3333 & "correspond to C type!", E
);
3335 -- Check return of wrong convention subprogram pointer
3337 elsif Ekind
(R_Type
) = E_Access_Subprogram_Type
3338 and then not Has_Foreign_Convention
(R_Type
)
3339 and then not Has_Warnings_Off
(E
)
3340 and then not Has_Warnings_Off
(R_Type
)
3342 Error_Msg_N
("?x?& should return a foreign "
3343 & "convention subprogram pointer", E
);
3344 Error_Msg_Sloc
:= Sloc
(R_Type
);
3346 ("\?x?add Convention pragma to declaration of& #",
3351 -- Give warning for suspicious return of a result of an
3352 -- unconstrained array type in a foreign convention function.
3354 if Has_Foreign_Convention
(E
)
3356 -- We are looking for a return of unconstrained array
3358 and then Is_Array_Type
(R_Type
)
3359 and then not Is_Constrained
(R_Type
)
3361 -- Exclude imported routines, the warning does not belong on
3362 -- the import, but rather on the routine definition.
3364 and then not Is_Imported
(E
)
3366 -- Exclude VM case, since both .NET and JVM can handle return
3367 -- of unconstrained arrays without a problem.
3369 and then VM_Target
= No_VM
3371 -- Check that general warning is enabled, and that it is not
3372 -- suppressed for this particular case.
3374 and then Warn_On_Export_Import
3375 and then not Has_Warnings_Off
(E
)
3376 and then not Has_Warnings_Off
(R_Type
)
3378 Error_Msg_N
("?x?foreign convention function& should not " &
3379 "return unconstrained array!", E
);
3383 -- Check suspicious use of Import in pure unit (cases where the RM
3384 -- allows calls to be omitted).
3388 -- It might be suspicious if the compilation unit has the Pure
3391 and then Has_Pragma_Pure
(Cunit_Entity
(Current_Sem_Unit
))
3393 -- The RM allows omission of calls only in the case of
3394 -- library-level subprograms (see RM-10.2.1(18)).
3396 and then Is_Library_Level_Entity
(E
)
3398 -- Ignore internally generated entity. This happens in some cases
3399 -- of subprograms in specs, where we generate an implied body.
3401 and then Comes_From_Source
(Import_Pragma
(E
))
3403 -- Assume run-time knows what it is doing
3405 and then not GNAT_Mode
3407 -- Assume explicit Pure_Function means import is pure
3409 and then not Has_Pragma_Pure_Function
(E
)
3411 -- Don't need warning in relaxed semantics mode
3413 and then not Relaxed_RM_Semantics
3415 -- Assume convention Intrinsic is OK, since this is specialized.
3416 -- This deals with the DEC unit current_exception.ads
3418 and then Convention
(E
) /= Convention_Intrinsic
3420 -- Assume that ASM interface knows what it is doing. This deals
3421 -- with unsigned.ads in the AAMP back end.
3423 and then Convention
(E
) /= Convention_Assembler
3426 ("pragma Import in Pure unit??", Import_Pragma
(E
));
3428 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
3429 Import_Pragma
(E
), E
);
3435 ------------------------
3436 -- Freeze_Record_Type --
3437 ------------------------
3439 procedure Freeze_Record_Type
(Rec
: Entity_Id
) is
3446 pragma Warnings
(Off
, Junk
);
3448 Rec_Pushed
: Boolean := False;
3449 -- Set True if the record type scope Rec has been pushed on the scope
3450 -- stack. Needed for the analysis of delayed aspects specified to the
3451 -- components of Rec.
3454 -- Scalar_Storage_Order attribute definition clause for the record
3456 Unplaced_Component
: Boolean := False;
3457 -- Set True if we find at least one component with no component
3458 -- clause (used to warn about useless Pack pragmas).
3460 Placed_Component
: Boolean := False;
3461 -- Set True if we find at least one component with a component
3462 -- clause (used to warn about useless Bit_Order pragmas, and also
3463 -- to detect cases where Implicit_Packing may have an effect).
3465 Aliased_Component
: Boolean := False;
3466 -- Set True if we find at least one component which is aliased. This
3467 -- is used to prevent Implicit_Packing of the record, since packing
3468 -- cannot modify the size of alignment of an aliased component.
3470 SSO_ADC_Component
: Boolean := False;
3471 -- Set True if we find at least one component whose type has a
3472 -- Scalar_Storage_Order attribute definition clause.
3474 All_Scalar_Components
: Boolean := True;
3475 -- Set False if we encounter a component of a non-scalar type
3477 Scalar_Component_Total_RM_Size
: Uint
:= Uint_0
;
3478 Scalar_Component_Total_Esize
: Uint
:= Uint_0
;
3479 -- Accumulates total RM_Size values and total Esize values of all
3480 -- scalar components. Used for processing of Implicit_Packing.
3482 function Check_Allocator
(N
: Node_Id
) return Node_Id
;
3483 -- If N is an allocator, possibly wrapped in one or more level of
3484 -- qualified expression(s), return the inner allocator node, else
3487 procedure Check_Itype
(Typ
: Entity_Id
);
3488 -- If the component subtype is an access to a constrained subtype of
3489 -- an already frozen type, make the subtype frozen as well. It might
3490 -- otherwise be frozen in the wrong scope, and a freeze node on
3491 -- subtype has no effect. Similarly, if the component subtype is a
3492 -- regular (not protected) access to subprogram, set the anonymous
3493 -- subprogram type to frozen as well, to prevent an out-of-scope
3494 -- freeze node at some eventual point of call. Protected operations
3495 -- are handled elsewhere.
3497 procedure Freeze_Choices_In_Variant_Part
(VP
: Node_Id
);
3498 -- Make sure that all types mentioned in Discrete_Choices of the
3499 -- variants referenceed by the Variant_Part VP are frozen. This is
3500 -- a recursive routine to deal with nested variants.
3502 ---------------------
3503 -- Check_Allocator --
3504 ---------------------
3506 function Check_Allocator
(N
: Node_Id
) return Node_Id
is
3511 if Nkind
(Inner
) = N_Allocator
then
3513 elsif Nkind
(Inner
) = N_Qualified_Expression
then
3514 Inner
:= Expression
(Inner
);
3519 end Check_Allocator
;
3525 procedure Check_Itype
(Typ
: Entity_Id
) is
3526 Desig
: constant Entity_Id
:= Designated_Type
(Typ
);
3529 if not Is_Frozen
(Desig
)
3530 and then Is_Frozen
(Base_Type
(Desig
))
3532 Set_Is_Frozen
(Desig
);
3534 -- In addition, add an Itype_Reference to ensure that the
3535 -- access subtype is elaborated early enough. This cannot be
3536 -- done if the subtype may depend on discriminants.
3538 if Ekind
(Comp
) = E_Component
3539 and then Is_Itype
(Etype
(Comp
))
3540 and then not Has_Discriminants
(Rec
)
3542 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
3543 Set_Itype
(IR
, Desig
);
3547 elsif Ekind
(Typ
) = E_Anonymous_Access_Subprogram_Type
3548 and then Convention
(Desig
) /= Convention_Protected
3550 Set_Is_Frozen
(Desig
);
3554 ------------------------------------
3555 -- Freeze_Choices_In_Variant_Part --
3556 ------------------------------------
3558 procedure Freeze_Choices_In_Variant_Part
(VP
: Node_Id
) is
3559 pragma Assert
(Nkind
(VP
) = N_Variant_Part
);
3566 -- Loop through variants
3568 Variant
:= First_Non_Pragma
(Variants
(VP
));
3569 while Present
(Variant
) loop
3571 -- Loop through choices, checking that all types are frozen
3573 Choice
:= First_Non_Pragma
(Discrete_Choices
(Variant
));
3574 while Present
(Choice
) loop
3575 if Nkind
(Choice
) in N_Has_Etype
3576 and then Present
(Etype
(Choice
))
3578 Freeze_And_Append
(Etype
(Choice
), N
, Result
);
3581 Next_Non_Pragma
(Choice
);
3584 -- Check for nested variant part to process
3586 CL
:= Component_List
(Variant
);
3588 if not Null_Present
(CL
) then
3589 if Present
(Variant_Part
(CL
)) then
3590 Freeze_Choices_In_Variant_Part
(Variant_Part
(CL
));
3594 Next_Non_Pragma
(Variant
);
3596 end Freeze_Choices_In_Variant_Part
;
3598 -- Start of processing for Freeze_Record_Type
3601 -- Deal with delayed aspect specifications for components. The
3602 -- analysis of the aspect is required to be delayed to the freeze
3603 -- point, thus we analyze the pragma or attribute definition
3604 -- clause in the tree at this point. We also analyze the aspect
3605 -- specification node at the freeze point when the aspect doesn't
3606 -- correspond to pragma/attribute definition clause.
3608 Comp
:= First_Entity
(Rec
);
3609 while Present
(Comp
) loop
3610 if Ekind
(Comp
) = E_Component
3611 and then Has_Delayed_Aspects
(Comp
)
3613 if not Rec_Pushed
then
3617 -- The visibility to the discriminants must be restored in
3618 -- order to properly analyze the aspects.
3620 if Has_Discriminants
(Rec
) then
3621 Install_Discriminants
(Rec
);
3625 Analyze_Aspects_At_Freeze_Point
(Comp
);
3631 -- Pop the scope if Rec scope has been pushed on the scope stack
3632 -- during the delayed aspect analysis process.
3635 if Has_Discriminants
(Rec
) then
3636 Uninstall_Discriminants
(Rec
);
3642 -- Freeze components and embedded subtypes
3644 Comp
:= First_Entity
(Rec
);
3646 while Present
(Comp
) loop
3647 if Is_Aliased
(Comp
) then
3648 Aliased_Component
:= True;
3651 -- Handle the component and discriminant case
3653 if Ekind_In
(Comp
, E_Component
, E_Discriminant
) then
3655 CC
: constant Node_Id
:= Component_Clause
(Comp
);
3658 -- Freezing a record type freezes the type of each of its
3659 -- components. However, if the type of the component is
3660 -- part of this record, we do not want or need a separate
3661 -- Freeze_Node. Note that Is_Itype is wrong because that's
3662 -- also set in private type cases. We also can't check for
3663 -- the Scope being exactly Rec because of private types and
3664 -- record extensions.
3666 if Is_Itype
(Etype
(Comp
))
3667 and then Is_Record_Type
(Underlying_Type
3668 (Scope
(Etype
(Comp
))))
3670 Undelay_Type
(Etype
(Comp
));
3673 Freeze_And_Append
(Etype
(Comp
), N
, Result
);
3675 -- Warn for pragma Pack overriding foreign convention
3677 if Has_Foreign_Convention
(Etype
(Comp
))
3678 and then Has_Pragma_Pack
(Rec
)
3680 -- Don't warn for aliased components, since override
3681 -- cannot happen in that case.
3683 and then not Is_Aliased
(Comp
)
3686 CN
: constant Name_Id
:=
3687 Get_Convention_Name
(Convention
(Etype
(Comp
)));
3688 PP
: constant Node_Id
:=
3689 Get_Pragma
(Rec
, Pragma_Pack
);
3691 if Present
(PP
) then
3692 Error_Msg_Name_1
:= CN
;
3693 Error_Msg_Sloc
:= Sloc
(Comp
);
3695 ("pragma Pack affects convention % component#??",
3697 Error_Msg_Name_1
:= CN
;
3699 ("\component & may not have % compatible "
3700 & "representation??", PP
, Comp
);
3705 -- Check for error of component clause given for variable
3706 -- sized type. We have to delay this test till this point,
3707 -- since the component type has to be frozen for us to know
3708 -- if it is variable length.
3710 if Present
(CC
) then
3711 Placed_Component
:= True;
3713 -- We omit this test in a generic context, it will be
3714 -- applied at instantiation time.
3716 if Inside_A_Generic
then
3719 -- Also omit this test in CodePeer mode, since we do not
3720 -- have sufficient info on size and rep clauses.
3722 elsif CodePeer_Mode
then
3725 -- Omit check if component has a generic type. This can
3726 -- happen in an instantiation within a generic in ASIS
3727 -- mode, where we force freeze actions without full
3730 elsif Is_Generic_Type
(Etype
(Comp
)) then
3736 Size_Known_At_Compile_Time
3737 (Underlying_Type
(Etype
(Comp
)))
3740 ("component clause not allowed for variable " &
3741 "length component", CC
);
3745 Unplaced_Component
:= True;
3748 -- Case of component requires byte alignment
3750 if Must_Be_On_Byte_Boundary
(Etype
(Comp
)) then
3752 -- Set the enclosing record to also require byte align
3754 Set_Must_Be_On_Byte_Boundary
(Rec
);
3756 -- Check for component clause that is inconsistent with
3757 -- the required byte boundary alignment.
3760 and then Normalized_First_Bit
(Comp
) mod
3761 System_Storage_Unit
/= 0
3764 ("component & must be byte aligned",
3765 Component_Name
(Component_Clause
(Comp
)));
3771 -- Gather data for possible Implicit_Packing later. Note that at
3772 -- this stage we might be dealing with a real component, or with
3773 -- an implicit subtype declaration.
3775 if not Is_Scalar_Type
(Etype
(Comp
)) then
3776 All_Scalar_Components
:= False;
3778 Scalar_Component_Total_RM_Size
:=
3779 Scalar_Component_Total_RM_Size
+ RM_Size
(Etype
(Comp
));
3780 Scalar_Component_Total_Esize
:=
3781 Scalar_Component_Total_Esize
+ Esize
(Etype
(Comp
));
3784 -- If the component is an Itype with Delayed_Freeze and is either
3785 -- a record or array subtype and its base type has not yet been
3786 -- frozen, we must remove this from the entity list of this record
3787 -- and put it on the entity list of the scope of its base type.
3788 -- Note that we know that this is not the type of a component
3789 -- since we cleared Has_Delayed_Freeze for it in the previous
3790 -- loop. Thus this must be the Designated_Type of an access type,
3791 -- which is the type of a component.
3794 and then Is_Type
(Scope
(Comp
))
3795 and then Is_Composite_Type
(Comp
)
3796 and then Base_Type
(Comp
) /= Comp
3797 and then Has_Delayed_Freeze
(Comp
)
3798 and then not Is_Frozen
(Base_Type
(Comp
))
3801 Will_Be_Frozen
: Boolean := False;
3805 -- We have a difficult case to handle here. Suppose Rec is
3806 -- subtype being defined in a subprogram that's created as
3807 -- part of the freezing of Rec'Base. In that case, we know
3808 -- that Comp'Base must have already been frozen by the time
3809 -- we get to elaborate this because Gigi doesn't elaborate
3810 -- any bodies until it has elaborated all of the declarative
3811 -- part. But Is_Frozen will not be set at this point because
3812 -- we are processing code in lexical order.
3814 -- We detect this case by going up the Scope chain of Rec
3815 -- and seeing if we have a subprogram scope before reaching
3816 -- the top of the scope chain or that of Comp'Base. If we
3817 -- do, then mark that Comp'Base will actually be frozen. If
3818 -- so, we merely undelay it.
3821 while Present
(S
) loop
3822 if Is_Subprogram
(S
) then
3823 Will_Be_Frozen
:= True;
3825 elsif S
= Scope
(Base_Type
(Comp
)) then
3832 if Will_Be_Frozen
then
3833 Undelay_Type
(Comp
);
3836 if Present
(Prev
) then
3837 Set_Next_Entity
(Prev
, Next_Entity
(Comp
));
3839 Set_First_Entity
(Rec
, Next_Entity
(Comp
));
3842 -- Insert in entity list of scope of base type (which
3843 -- must be an enclosing scope, because still unfrozen).
3845 Append_Entity
(Comp
, Scope
(Base_Type
(Comp
)));
3849 -- If the component is an access type with an allocator as default
3850 -- value, the designated type will be frozen by the corresponding
3851 -- expression in init_proc. In order to place the freeze node for
3852 -- the designated type before that for the current record type,
3855 -- Same process if the component is an array of access types,
3856 -- initialized with an aggregate. If the designated type is
3857 -- private, it cannot contain allocators, and it is premature
3858 -- to freeze the type, so we check for this as well.
3860 elsif Is_Access_Type
(Etype
(Comp
))
3861 and then Present
(Parent
(Comp
))
3862 and then Present
(Expression
(Parent
(Comp
)))
3865 Alloc
: constant Node_Id
:=
3866 Check_Allocator
(Expression
(Parent
(Comp
)));
3869 if Present
(Alloc
) then
3871 -- If component is pointer to a class-wide type, freeze
3872 -- the specific type in the expression being allocated.
3873 -- The expression may be a subtype indication, in which
3874 -- case freeze the subtype mark.
3876 if Is_Class_Wide_Type
3877 (Designated_Type
(Etype
(Comp
)))
3879 if Is_Entity_Name
(Expression
(Alloc
)) then
3881 (Entity
(Expression
(Alloc
)), N
, Result
);
3883 elsif Nkind
(Expression
(Alloc
)) = N_Subtype_Indication
3886 (Entity
(Subtype_Mark
(Expression
(Alloc
))),
3890 elsif Is_Itype
(Designated_Type
(Etype
(Comp
))) then
3891 Check_Itype
(Etype
(Comp
));
3895 (Designated_Type
(Etype
(Comp
)), N
, Result
);
3900 elsif Is_Access_Type
(Etype
(Comp
))
3901 and then Is_Itype
(Designated_Type
(Etype
(Comp
)))
3903 Check_Itype
(Etype
(Comp
));
3905 -- Freeze the designated type when initializing a component with
3906 -- an aggregate in case the aggregate contains allocators.
3909 -- type T_Ptr is access all T;
3910 -- type T_Array is array ... of T_Ptr;
3912 -- type Rec is record
3913 -- Comp : T_Array := (others => ...);
3916 elsif Is_Array_Type
(Etype
(Comp
))
3917 and then Is_Access_Type
(Component_Type
(Etype
(Comp
)))
3920 Comp_Par
: constant Node_Id
:= Parent
(Comp
);
3921 Desig_Typ
: constant Entity_Id
:=
3923 (Component_Type
(Etype
(Comp
)));
3926 -- The only case when this sort of freezing is not done is
3927 -- when the designated type is class-wide and the root type
3928 -- is the record owning the component. This scenario results
3929 -- in a circularity because the class-wide type requires
3930 -- primitives that have not been created yet as the root
3931 -- type is in the process of being frozen.
3933 -- type Rec is tagged;
3934 -- type Rec_Ptr is access all Rec'Class;
3935 -- type Rec_Array is array ... of Rec_Ptr;
3937 -- type Rec is record
3938 -- Comp : Rec_Array := (others => ...);
3941 if Is_Class_Wide_Type
(Desig_Typ
)
3942 and then Root_Type
(Desig_Typ
) = Rec
3946 elsif Is_Fully_Defined
(Desig_Typ
)
3947 and then Present
(Comp_Par
)
3948 and then Nkind
(Comp_Par
) = N_Component_Declaration
3949 and then Present
(Expression
(Comp_Par
))
3950 and then Nkind
(Expression
(Comp_Par
)) = N_Aggregate
3952 Freeze_And_Append
(Desig_Typ
, N
, Result
);
3961 -- Deal with default setting of reverse storage order
3963 Set_SSO_From_Default
(Rec
);
3965 -- Check consistent attribute setting on component types
3967 SSO_ADC
:= Get_Attribute_Definition_Clause
3968 (Rec
, Attribute_Scalar_Storage_Order
);
3971 Comp_ADC_Present
: Boolean;
3973 Comp
:= First_Component
(Rec
);
3974 while Present
(Comp
) loop
3975 Check_Component_Storage_Order
3979 Comp_ADC_Present
=> Comp_ADC_Present
);
3980 SSO_ADC_Component
:= SSO_ADC_Component
or Comp_ADC_Present
;
3981 Next_Component
(Comp
);
3985 -- Now deal with reverse storage order/bit order issues
3987 if Present
(SSO_ADC
) then
3989 -- Check compatibility of Scalar_Storage_Order with Bit_Order, if
3990 -- the former is specified.
3992 if Reverse_Bit_Order
(Rec
) /= Reverse_Storage_Order
(Rec
) then
3994 -- Note: report error on Rec, not on SSO_ADC, as ADC may apply
3995 -- to some ancestor type.
3997 Error_Msg_Sloc
:= Sloc
(SSO_ADC
);
3999 ("scalar storage order for& specified# inconsistent with "
4000 & "bit order", Rec
);
4003 -- Warn if there is an Scalar_Storage_Order attribute definition
4004 -- clause but no component clause, no component that itself has
4005 -- such an attribute definition, and no pragma Pack.
4007 if not (Placed_Component
4014 ("??scalar storage order specified but no component clause",
4019 -- Deal with Bit_Order aspect
4021 ADC
:= Get_Attribute_Definition_Clause
(Rec
, Attribute_Bit_Order
);
4023 if Present
(ADC
) and then Base_Type
(Rec
) = Rec
then
4024 if not (Placed_Component
4025 or else Present
(SSO_ADC
)
4026 or else Is_Packed
(Rec
))
4028 -- Warn if clause has no effect when no component clause is
4029 -- present, but suppress warning if the Bit_Order is required
4030 -- due to the presence of a Scalar_Storage_Order attribute.
4033 ("??bit order specification has no effect", ADC
);
4035 ("\??since no component clauses were specified", ADC
);
4037 -- Here is where we do the processing to adjust component clauses
4038 -- for reversed bit order, when not using reverse SSO.
4040 elsif Reverse_Bit_Order
(Rec
)
4041 and then not Reverse_Storage_Order
(Rec
)
4043 Adjust_Record_For_Reverse_Bit_Order
(Rec
);
4045 -- Case where we have both an explicit Bit_Order and the same
4046 -- Scalar_Storage_Order: leave record untouched, the back-end
4047 -- will take care of required layout conversions.
4055 -- Complete error checking on record representation clause (e.g.
4056 -- overlap of components). This is called after adjusting the
4057 -- record for reverse bit order.
4060 RRC
: constant Node_Id
:= Get_Record_Representation_Clause
(Rec
);
4062 if Present
(RRC
) then
4063 Check_Record_Representation_Clause
(RRC
);
4067 -- Set OK_To_Reorder_Components depending on debug flags
4069 if Is_Base_Type
(Rec
) and then Convention
(Rec
) = Convention_Ada
then
4070 if (Has_Discriminants
(Rec
) and then Debug_Flag_Dot_V
)
4072 (not Has_Discriminants
(Rec
) and then Debug_Flag_Dot_R
)
4074 Set_OK_To_Reorder_Components
(Rec
);
4078 -- Check for useless pragma Pack when all components placed. We only
4079 -- do this check for record types, not subtypes, since a subtype may
4080 -- have all its components placed, and it still makes perfectly good
4081 -- sense to pack other subtypes or the parent type. We do not give
4082 -- this warning if Optimize_Alignment is set to Space, since the
4083 -- pragma Pack does have an effect in this case (it always resets
4084 -- the alignment to one).
4086 if Ekind
(Rec
) = E_Record_Type
4087 and then Is_Packed
(Rec
)
4088 and then not Unplaced_Component
4089 and then Optimize_Alignment
/= 'S'
4091 -- Reset packed status. Probably not necessary, but we do it so
4092 -- that there is no chance of the back end doing something strange
4093 -- with this redundant indication of packing.
4095 Set_Is_Packed
(Rec
, False);
4097 -- Give warning if redundant constructs warnings on
4099 if Warn_On_Redundant_Constructs
then
4100 Error_Msg_N
-- CODEFIX
4101 ("??pragma Pack has no effect, no unplaced components",
4102 Get_Rep_Pragma
(Rec
, Name_Pack
));
4106 -- If this is the record corresponding to a remote type, freeze the
4107 -- remote type here since that is what we are semantically freezing.
4108 -- This prevents the freeze node for that type in an inner scope.
4110 if Ekind
(Rec
) = E_Record_Type
then
4111 if Present
(Corresponding_Remote_Type
(Rec
)) then
4112 Freeze_And_Append
(Corresponding_Remote_Type
(Rec
), N
, Result
);
4115 -- Check for controlled components and unchecked unions.
4117 Comp
:= First_Component
(Rec
);
4118 while Present
(Comp
) loop
4120 -- Do not set Has_Controlled_Component on a class-wide
4121 -- equivalent type. See Make_CW_Equivalent_Type.
4123 if not Is_Class_Wide_Equivalent_Type
(Rec
)
4125 (Has_Controlled_Component
(Etype
(Comp
))
4127 (Chars
(Comp
) /= Name_uParent
4128 and then Is_Controlled_Active
(Etype
(Comp
)))
4130 (Is_Protected_Type
(Etype
(Comp
))
4132 Present
(Corresponding_Record_Type
(Etype
(Comp
)))
4134 Has_Controlled_Component
4135 (Corresponding_Record_Type
(Etype
(Comp
)))))
4137 Set_Has_Controlled_Component
(Rec
);
4140 if Has_Unchecked_Union
(Etype
(Comp
)) then
4141 Set_Has_Unchecked_Union
(Rec
);
4144 -- Scan component declaration for likely misuses of current
4145 -- instance, either in a constraint or a default expression.
4147 if Has_Per_Object_Constraint
(Comp
) then
4148 Check_Current_Instance
(Parent
(Comp
));
4151 Next_Component
(Comp
);
4155 -- Enforce the restriction that access attributes with a current
4156 -- instance prefix can only apply to limited types. This comment
4157 -- is floating here, but does not seem to belong here???
4159 -- Set component alignment if not otherwise already set
4161 Set_Component_Alignment_If_Not_Set
(Rec
);
4163 -- For first subtypes, check if there are any fixed-point fields with
4164 -- component clauses, where we must check the size. This is not done
4165 -- till the freeze point since for fixed-point types, we do not know
4166 -- the size until the type is frozen. Similar processing applies to
4167 -- bit packed arrays.
4169 if Is_First_Subtype
(Rec
) then
4170 Comp
:= First_Component
(Rec
);
4171 while Present
(Comp
) loop
4172 if Present
(Component_Clause
(Comp
))
4173 and then (Is_Fixed_Point_Type
(Etype
(Comp
))
4174 or else Is_Bit_Packed_Array
(Etype
(Comp
)))
4177 (Component_Name
(Component_Clause
(Comp
)),
4183 Next_Component
(Comp
);
4187 -- Generate warning for applying C or C++ convention to a record
4188 -- with discriminants. This is suppressed for the unchecked union
4189 -- case, since the whole point in this case is interface C. We also
4190 -- do not generate this within instantiations, since we will have
4191 -- generated a message on the template.
4193 if Has_Discriminants
(E
)
4194 and then not Is_Unchecked_Union
(E
)
4195 and then (Convention
(E
) = Convention_C
4197 Convention
(E
) = Convention_CPP
)
4198 and then Comes_From_Source
(E
)
4199 and then not In_Instance
4200 and then not Has_Warnings_Off
(E
)
4201 and then not Has_Warnings_Off
(Base_Type
(E
))
4204 Cprag
: constant Node_Id
:= Get_Rep_Pragma
(E
, Name_Convention
);
4208 if Present
(Cprag
) then
4209 A2
:= Next
(First
(Pragma_Argument_Associations
(Cprag
)));
4211 if Convention
(E
) = Convention_C
then
4213 ("?x?variant record has no direct equivalent in C",
4217 ("?x?variant record has no direct equivalent in C++",
4222 ("\?x?use of convention for type& is dubious", A2
, E
);
4227 -- See if Size is too small as is (and implicit packing might help)
4229 if not Is_Packed
(Rec
)
4231 -- No implicit packing if even one component is explicitly placed
4233 and then not Placed_Component
4235 -- Or even one component is aliased
4237 and then not Aliased_Component
4239 -- Must have size clause and all scalar components
4241 and then Has_Size_Clause
(Rec
)
4242 and then All_Scalar_Components
4244 -- Do not try implicit packing on records with discriminants, too
4245 -- complicated, especially in the variant record case.
4247 and then not Has_Discriminants
(Rec
)
4249 -- We can implicitly pack if the specified size of the record is
4250 -- less than the sum of the object sizes (no point in packing if
4251 -- this is not the case).
4253 and then RM_Size
(Rec
) < Scalar_Component_Total_Esize
4255 -- And the total RM size cannot be greater than the specified size
4256 -- since otherwise packing will not get us where we have to be.
4258 and then RM_Size
(Rec
) >= Scalar_Component_Total_RM_Size
4260 -- Never do implicit packing in CodePeer or SPARK modes since
4261 -- we don't do any packing in these modes, since this generates
4262 -- over-complex code that confuses static analysis, and in
4263 -- general, neither CodePeer not GNATprove care about the
4264 -- internal representation of objects.
4266 and then not (CodePeer_Mode
or GNATprove_Mode
)
4268 -- If implicit packing enabled, do it
4270 if Implicit_Packing
then
4271 Set_Is_Packed
(Rec
);
4273 -- Otherwise flag the size clause
4277 Sz
: constant Node_Id
:= Size_Clause
(Rec
);
4279 Error_Msg_NE
-- CODEFIX
4280 ("size given for& too small", Sz
, Rec
);
4281 Error_Msg_N
-- CODEFIX
4282 ("\use explicit pragma Pack "
4283 & "or use pragma Implicit_Packing", Sz
);
4288 -- The following checks are only relevant when SPARK_Mode is on as
4289 -- they are not standard Ada legality rules.
4291 if SPARK_Mode
= On
then
4292 if Is_Effectively_Volatile
(Rec
) then
4294 -- A discriminated type cannot be effectively volatile
4295 -- (SPARK RM C.6(4)).
4297 if Has_Discriminants
(Rec
) then
4298 Error_Msg_N
("discriminated type & cannot be volatile", Rec
);
4300 -- A tagged type cannot be effectively volatile
4301 -- (SPARK RM C.6(5)).
4303 elsif Is_Tagged_Type
(Rec
) then
4304 Error_Msg_N
("tagged type & cannot be volatile", Rec
);
4307 -- A non-effectively volatile record type cannot contain
4308 -- effectively volatile components (SPARK RM C.6(2)).
4311 Comp
:= First_Component
(Rec
);
4312 while Present
(Comp
) loop
4313 if Comes_From_Source
(Comp
)
4314 and then Is_Effectively_Volatile
(Etype
(Comp
))
4316 Error_Msg_Name_1
:= Chars
(Rec
);
4318 ("component & of non-volatile type % cannot be "
4319 & "volatile", Comp
);
4322 Next_Component
(Comp
);
4327 -- Make sure that if we have an iterator aspect, then we have
4328 -- either Constant_Indexing or Variable_Indexing.
4331 Iterator_Aspect
: Node_Id
;
4334 Iterator_Aspect
:= Find_Aspect
(Rec
, Aspect_Iterator_Element
);
4336 if No
(Iterator_Aspect
) then
4337 Iterator_Aspect
:= Find_Aspect
(Rec
, Aspect_Default_Iterator
);
4340 if Present
(Iterator_Aspect
) then
4341 if Has_Aspect
(Rec
, Aspect_Constant_Indexing
)
4343 Has_Aspect
(Rec
, Aspect_Variable_Indexing
)
4348 ("Iterator_Element requires indexing aspect",
4354 -- All done if not a full record definition
4356 if Ekind
(Rec
) /= E_Record_Type
then
4360 -- Finally we need to check the variant part to make sure that
4361 -- all types within choices are properly frozen as part of the
4362 -- freezing of the record type.
4364 Check_Variant_Part
: declare
4365 D
: constant Node_Id
:= Declaration_Node
(Rec
);
4370 -- Find component list
4374 if Nkind
(D
) = N_Full_Type_Declaration
then
4375 T
:= Type_Definition
(D
);
4377 if Nkind
(T
) = N_Record_Definition
then
4378 C
:= Component_List
(T
);
4380 elsif Nkind
(T
) = N_Derived_Type_Definition
4381 and then Present
(Record_Extension_Part
(T
))
4383 C
:= Component_List
(Record_Extension_Part
(T
));
4387 -- Case of variant part present
4389 if Present
(C
) and then Present
(Variant_Part
(C
)) then
4390 Freeze_Choices_In_Variant_Part
(Variant_Part
(C
));
4393 -- Note: we used to call Check_Choices here, but it is too early,
4394 -- since predicated subtypes are frozen here, but their freezing
4395 -- actions are in Analyze_Freeze_Entity, which has not been called
4396 -- yet for entities frozen within this procedure, so we moved that
4397 -- call to the Analyze_Freeze_Entity for the record type.
4399 end Check_Variant_Part
;
4401 -- Check that all the primitives of an interface type are abstract
4402 -- or null procedures.
4404 if Is_Interface
(Rec
)
4405 and then not Error_Posted
(Parent
(Rec
))
4412 Elmt
:= First_Elmt
(Primitive_Operations
(Rec
));
4413 while Present
(Elmt
) loop
4414 Subp
:= Node
(Elmt
);
4416 if not Is_Abstract_Subprogram
(Subp
)
4418 -- Avoid reporting the error on inherited primitives
4420 and then Comes_From_Source
(Subp
)
4422 Error_Msg_Name_1
:= Chars
(Subp
);
4424 if Ekind
(Subp
) = E_Procedure
then
4425 if not Null_Present
(Parent
(Subp
)) then
4427 ("interface procedure % must be abstract or null",
4432 ("interface function % must be abstract",
4441 end Freeze_Record_Type
;
4443 -------------------------------
4444 -- Has_Boolean_Aspect_Import --
4445 -------------------------------
4447 function Has_Boolean_Aspect_Import
(E
: Entity_Id
) return Boolean is
4448 Decl
: constant Node_Id
:= Declaration_Node
(E
);
4453 if Has_Aspects
(Decl
) then
4454 Asp
:= First
(Aspect_Specifications
(Decl
));
4455 while Present
(Asp
) loop
4456 Expr
:= Expression
(Asp
);
4458 -- The value of aspect Import is True when the expression is
4459 -- either missing or it is explicitly set to True.
4461 if Get_Aspect_Id
(Asp
) = Aspect_Import
4463 or else (Compile_Time_Known_Value
(Expr
)
4464 and then Is_True
(Expr_Value
(Expr
))))
4474 end Has_Boolean_Aspect_Import
;
4476 ----------------------------
4477 -- Late_Freeze_Subprogram --
4478 ----------------------------
4480 procedure Late_Freeze_Subprogram
(E
: Entity_Id
) is
4481 Spec
: constant Node_Id
:=
4482 Specification
(Unit_Declaration_Node
(Scope
(E
)));
4486 if Present
(Private_Declarations
(Spec
)) then
4487 Decls
:= Private_Declarations
(Spec
);
4489 Decls
:= Visible_Declarations
(Spec
);
4492 Append_List
(Result
, Decls
);
4493 end Late_Freeze_Subprogram
;
4495 ---------------------
4496 -- Restore_Globals --
4497 ---------------------
4499 procedure Restore_Globals
is
4502 end Restore_Globals
;
4504 ------------------------------
4505 -- Wrap_Imported_Subprogram --
4506 ------------------------------
4508 -- The issue here is that our normal approach of checking preconditions
4509 -- and postconditions does not work for imported procedures, since we
4510 -- are not generating code for the body. To get around this we create
4511 -- a wrapper, as shown by the following example:
4513 -- procedure K (A : Integer);
4514 -- pragma Import (C, K);
4516 -- The spec is rewritten by removing the effects of pragma Import, but
4517 -- leaving the convention unchanged, as though the source had said:
4519 -- procedure K (A : Integer);
4520 -- pragma Convention (C, K);
4522 -- and we create a body, added to the entity K freeze actions, which
4525 -- procedure K (A : Integer) is
4526 -- procedure K (A : Integer);
4527 -- pragma Import (C, K);
4532 -- Now the contract applies in the normal way to the outer procedure,
4533 -- and the inner procedure has no contracts, so there is no problem
4534 -- in just calling it to get the original effect.
4536 -- In the case of a function, we create an appropriate return statement
4537 -- for the subprogram body that calls the inner procedure.
4539 procedure Wrap_Imported_Subprogram
(E
: Entity_Id
) is
4540 Loc
: constant Source_Ptr
:= Sloc
(E
);
4541 CE
: constant Name_Id
:= Chars
(E
);
4550 -- Nothing to do if not imported
4552 if not Is_Imported
(E
) then
4555 -- Test enabling conditions for wrapping
4557 elsif Is_Subprogram
(E
)
4558 and then Present
(Contract
(E
))
4559 and then Present
(Pre_Post_Conditions
(Contract
(E
)))
4560 and then not GNATprove_Mode
4562 -- Here we do the wrap
4564 -- Note on calls to Copy_Separate_Tree. The trees we are copying
4565 -- here are fully analyzed, but we definitely want fully syntactic
4566 -- unanalyzed trees in the body we construct, so that the analysis
4567 -- generates the right visibility, and that is exactly what the
4568 -- calls to Copy_Separate_Tree give us.
4570 -- Acquire copy of Inline pragma, and indicate that it does not
4571 -- come from an aspect, as it applies to an internal entity.
4573 Iprag
:= Copy_Separate_Tree
(Import_Pragma
(E
));
4574 Set_From_Aspect_Specification
(Iprag
, False);
4576 -- Fix up spec to be not imported any more
4578 Set_Is_Imported
(E
, False);
4579 Set_Interface_Name
(E
, Empty
);
4580 Set_Has_Completion
(E
, False);
4581 Set_Import_Pragma
(E
, Empty
);
4583 -- Grab the subprogram declaration and specification
4585 Spec
:= Declaration_Node
(E
);
4587 -- Build parameter list that we need
4590 Forml
:= First_Formal
(E
);
4591 while Present
(Forml
) loop
4592 Append_To
(Parms
, Make_Identifier
(Loc
, Chars
(Forml
)));
4593 Next_Formal
(Forml
);
4598 if Ekind_In
(E
, E_Function
, E_Generic_Function
) then
4600 Make_Simple_Return_Statement
(Loc
,
4602 Make_Function_Call
(Loc
,
4603 Name
=> Make_Identifier
(Loc
, CE
),
4604 Parameter_Associations
=> Parms
));
4608 Make_Procedure_Call_Statement
(Loc
,
4609 Name
=> Make_Identifier
(Loc
, CE
),
4610 Parameter_Associations
=> Parms
);
4613 -- Now build the body
4616 Make_Subprogram_Body
(Loc
,
4618 Copy_Separate_Tree
(Spec
),
4619 Declarations
=> New_List
(
4620 Make_Subprogram_Declaration
(Loc
,
4622 Copy_Separate_Tree
(Spec
)),
4624 Handled_Statement_Sequence
=>
4625 Make_Handled_Sequence_Of_Statements
(Loc
,
4626 Statements
=> New_List
(Stmt
),
4627 End_Label
=> Make_Identifier
(Loc
, CE
)));
4629 -- Append the body to freeze result
4631 Add_To_Result
(Bod
);
4634 -- Case of imported subprogram that does not get wrapped
4637 -- Set Is_Public. All imported entities need an external symbol
4638 -- created for them since they are always referenced from another
4639 -- object file. Note this used to be set when we set Is_Imported
4640 -- back in Sem_Prag, but now we delay it to this point, since we
4641 -- don't want to set this flag if we wrap an imported subprogram.
4645 end Wrap_Imported_Subprogram
;
4647 -- Start of processing for Freeze_Entity
4650 -- The entity being frozen may be subject to pragma Ghost with policy
4651 -- Ignore. Set the mode now to ensure that any nodes generated during
4652 -- freezing are properly flagged as ignored Ghost.
4654 Set_Ghost_Mode_From_Entity
(E
);
4656 -- We are going to test for various reasons why this entity need not be
4657 -- frozen here, but in the case of an Itype that's defined within a
4658 -- record, that test actually applies to the record.
4660 if Is_Itype
(E
) and then Is_Record_Type
(Scope
(E
)) then
4661 Test_E
:= Scope
(E
);
4662 elsif Is_Itype
(E
) and then Present
(Underlying_Type
(Scope
(E
)))
4663 and then Is_Record_Type
(Underlying_Type
(Scope
(E
)))
4665 Test_E
:= Underlying_Type
(Scope
(E
));
4668 -- Do not freeze if already frozen since we only need one freeze node
4670 if Is_Frozen
(E
) then
4674 -- It is improper to freeze an external entity within a generic because
4675 -- its freeze node will appear in a non-valid context. The entity will
4676 -- be frozen in the proper scope after the current generic is analyzed.
4677 -- However, aspects must be analyzed because they may be queried later
4678 -- within the generic itself, and the corresponding pragma or attribute
4679 -- definition has not been analyzed yet.
4681 elsif Inside_A_Generic
and then External_Ref_In_Generic
(Test_E
) then
4682 if Has_Delayed_Aspects
(E
) then
4683 Analyze_Aspects_At_Freeze_Point
(E
);
4689 -- AI05-0213: A formal incomplete type does not freeze the actual. In
4690 -- the instance, the same applies to the subtype renaming the actual.
4692 elsif Is_Private_Type
(E
)
4693 and then Is_Generic_Actual_Type
(E
)
4694 and then No
(Full_View
(Base_Type
(E
)))
4695 and then Ada_Version
>= Ada_2012
4700 -- Formal subprograms are never frozen
4702 elsif Is_Formal_Subprogram
(E
) then
4706 -- Generic types are never frozen as they lack delayed semantic checks
4708 elsif Is_Generic_Type
(E
) then
4712 -- Do not freeze a global entity within an inner scope created during
4713 -- expansion. A call to subprogram E within some internal procedure
4714 -- (a stream attribute for example) might require freezing E, but the
4715 -- freeze node must appear in the same declarative part as E itself.
4716 -- The two-pass elaboration mechanism in gigi guarantees that E will
4717 -- be frozen before the inner call is elaborated. We exclude constants
4718 -- from this test, because deferred constants may be frozen early, and
4719 -- must be diagnosed (e.g. in the case of a deferred constant being used
4720 -- in a default expression). If the enclosing subprogram comes from
4721 -- source, or is a generic instance, then the freeze point is the one
4722 -- mandated by the language, and we freeze the entity. A subprogram that
4723 -- is a child unit body that acts as a spec does not have a spec that
4724 -- comes from source, but can only come from source.
4726 elsif In_Open_Scopes
(Scope
(Test_E
))
4727 and then Scope
(Test_E
) /= Current_Scope
4728 and then Ekind
(Test_E
) /= E_Constant
4735 while Present
(S
) loop
4736 if Is_Overloadable
(S
) then
4737 if Comes_From_Source
(S
)
4738 or else Is_Generic_Instance
(S
)
4739 or else Is_Child_Unit
(S
)
4752 -- Similarly, an inlined instance body may make reference to global
4753 -- entities, but these references cannot be the proper freezing point
4754 -- for them, and in the absence of inlining freezing will take place in
4755 -- their own scope. Normally instance bodies are analyzed after the
4756 -- enclosing compilation, and everything has been frozen at the proper
4757 -- place, but with front-end inlining an instance body is compiled
4758 -- before the end of the enclosing scope, and as a result out-of-order
4759 -- freezing must be prevented.
4761 elsif Front_End_Inlining
4762 and then In_Instance_Body
4763 and then Present
(Scope
(Test_E
))
4769 S
:= Scope
(Test_E
);
4770 while Present
(S
) loop
4771 if Is_Generic_Instance
(S
) then
4784 elsif Ekind
(E
) = E_Generic_Package
then
4785 Result
:= Freeze_Generic_Entities
(E
);
4791 -- Add checks to detect proper initialization of scalars that may appear
4792 -- as subprogram parameters.
4794 if Is_Subprogram
(E
) and then Check_Validity_Of_Parameters
then
4795 Apply_Parameter_Validity_Checks
(E
);
4798 -- Deal with delayed aspect specifications. The analysis of the aspect
4799 -- is required to be delayed to the freeze point, thus we analyze the
4800 -- pragma or attribute definition clause in the tree at this point. We
4801 -- also analyze the aspect specification node at the freeze point when
4802 -- the aspect doesn't correspond to pragma/attribute definition clause.
4804 if Has_Delayed_Aspects
(E
) then
4805 Analyze_Aspects_At_Freeze_Point
(E
);
4808 -- Here to freeze the entity
4812 -- Case of entity being frozen is other than a type
4814 if not Is_Type
(E
) then
4816 -- If entity is exported or imported and does not have an external
4817 -- name, now is the time to provide the appropriate default name.
4818 -- Skip this if the entity is stubbed, since we don't need a name
4819 -- for any stubbed routine. For the case on intrinsics, if no
4820 -- external name is specified, then calls will be handled in
4821 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
4822 -- external name is provided, then Expand_Intrinsic_Call leaves
4823 -- calls in place for expansion by GIGI.
4825 if (Is_Imported
(E
) or else Is_Exported
(E
))
4826 and then No
(Interface_Name
(E
))
4827 and then Convention
(E
) /= Convention_Stubbed
4828 and then Convention
(E
) /= Convention_Intrinsic
4830 Set_Encoded_Interface_Name
4831 (E
, Get_Default_External_Name
(E
));
4833 -- If entity is an atomic object appearing in a declaration and
4834 -- the expression is an aggregate, assign it to a temporary to
4835 -- ensure that the actual assignment is done atomically rather
4836 -- than component-wise (the assignment to the temp may be done
4837 -- component-wise, but that is harmless).
4839 elsif Is_Atomic_Or_VFA
(E
)
4840 and then Nkind
(Parent
(E
)) = N_Object_Declaration
4841 and then Present
(Expression
(Parent
(E
)))
4842 and then Nkind
(Expression
(Parent
(E
))) = N_Aggregate
4843 and then Is_Atomic_VFA_Aggregate
(Expression
(Parent
(E
)))
4850 if Is_Subprogram
(E
) then
4852 -- Check for needing to wrap imported subprogram
4854 Wrap_Imported_Subprogram
(E
);
4856 -- Freeze all parameter types and the return type (RM 13.14(14)).
4857 -- However skip this for internal subprograms. This is also where
4858 -- any extra formal parameters are created since we now know
4859 -- whether the subprogram will use a foreign convention.
4861 -- In Ada 2012, freezing a subprogram does not always freeze
4862 -- the corresponding profile (see AI05-019). An attribute
4863 -- reference is not a freezing point of the profile.
4864 -- Other constructs that should not freeze ???
4866 -- This processing doesn't apply to internal entities (see below)
4868 if not Is_Internal
(E
) then
4869 if not Freeze_Profile
(E
) then
4875 -- Must freeze its parent first if it is a derived subprogram
4877 if Present
(Alias
(E
)) then
4878 Freeze_And_Append
(Alias
(E
), N
, Result
);
4881 -- We don't freeze internal subprograms, because we don't normally
4882 -- want addition of extra formals or mechanism setting to happen
4883 -- for those. However we do pass through predefined dispatching
4884 -- cases, since extra formals may be needed in some cases, such as
4885 -- for the stream 'Input function (build-in-place formals).
4887 if not Is_Internal
(E
)
4888 or else Is_Predefined_Dispatching_Operation
(E
)
4890 Freeze_Subprogram
(E
);
4893 if Late_Freezing
then
4894 Late_Freeze_Subprogram
(E
);
4899 -- If warning on suspicious contracts then check for the case of
4900 -- a postcondition other than False for a No_Return subprogram.
4903 and then Warn_On_Suspicious_Contract
4904 and then Present
(Contract
(E
))
4907 Prag
: Node_Id
:= Pre_Post_Conditions
(Contract
(E
));
4911 while Present
(Prag
) loop
4912 if Nam_In
(Pragma_Name
(Prag
), Name_Post
,
4918 (First
(Pragma_Argument_Associations
(Prag
)));
4920 if Nkind
(Exp
) /= N_Identifier
4921 or else Chars
(Exp
) /= Name_False
4924 ("useless postcondition, & is marked "
4925 & "No_Return?T?", Exp
, E
);
4929 Prag
:= Next_Pragma
(Prag
);
4934 -- Here for other than a subprogram or type
4937 -- If entity has a type, and it is not a generic unit, then
4938 -- freeze it first (RM 13.14(10)).
4940 if Present
(Etype
(E
))
4941 and then Ekind
(E
) /= E_Generic_Function
4943 Freeze_And_Append
(Etype
(E
), N
, Result
);
4945 -- For an object of an anonymous array type, aspects on the
4946 -- object declaration apply to the type itself. This is the
4947 -- case for Atomic_Components, Volatile_Components, and
4948 -- Independent_Components. In these cases analysis of the
4949 -- generated pragma will mark the anonymous types accordingly,
4950 -- and the object itself does not require a freeze node.
4952 if Ekind
(E
) = E_Variable
4953 and then Is_Itype
(Etype
(E
))
4954 and then Is_Array_Type
(Etype
(E
))
4955 and then Has_Delayed_Aspects
(E
)
4957 Set_Has_Delayed_Aspects
(E
, False);
4958 Set_Has_Delayed_Freeze
(E
, False);
4959 Set_Freeze_Node
(E
, Empty
);
4963 -- Special processing for objects created by object declaration
4965 if Nkind
(Declaration_Node
(E
)) = N_Object_Declaration
then
4966 Freeze_Object_Declaration
(E
);
4969 -- Check that a constant which has a pragma Volatile[_Components]
4970 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
4972 -- Note: Atomic[_Components] also sets Volatile[_Components]
4974 if Ekind
(E
) = E_Constant
4975 and then (Has_Volatile_Components
(E
) or else Is_Volatile
(E
))
4976 and then not Is_Imported
(E
)
4977 and then not Has_Boolean_Aspect_Import
(E
)
4979 -- Make sure we actually have a pragma, and have not merely
4980 -- inherited the indication from elsewhere (e.g. an address
4981 -- clause, which is not good enough in RM terms).
4983 if Has_Rep_Pragma
(E
, Name_Atomic
)
4985 Has_Rep_Pragma
(E
, Name_Atomic_Components
)
4988 ("stand alone atomic constant must be " &
4989 "imported (RM C.6(13))", E
);
4991 elsif Has_Rep_Pragma
(E
, Name_Volatile
)
4993 Has_Rep_Pragma
(E
, Name_Volatile_Components
)
4996 ("stand alone volatile constant must be " &
4997 "imported (RM C.6(13))", E
);
5001 -- Static objects require special handling
5003 if (Ekind
(E
) = E_Constant
or else Ekind
(E
) = E_Variable
)
5004 and then Is_Statically_Allocated
(E
)
5006 Freeze_Static_Object
(E
);
5009 -- Remaining step is to layout objects
5011 if Ekind_In
(E
, E_Variable
, E_Constant
, E_Loop_Parameter
)
5012 or else Is_Formal
(E
)
5017 -- For an object that does not have delayed freezing, and whose
5018 -- initialization actions have been captured in a compound
5019 -- statement, move them back now directly within the enclosing
5020 -- statement sequence.
5022 if Ekind_In
(E
, E_Constant
, E_Variable
)
5023 and then not Has_Delayed_Freeze
(E
)
5025 Explode_Initialization_Compound_Statement
(E
);
5029 -- Case of a type or subtype being frozen
5032 -- We used to check here that a full type must have preelaborable
5033 -- initialization if it completes a private type specified with
5034 -- pragma Preelaborable_Initialization, but that missed cases where
5035 -- the types occur within a generic package, since the freezing
5036 -- that occurs within a containing scope generally skips traversal
5037 -- of a generic unit's declarations (those will be frozen within
5038 -- instances). This check was moved to Analyze_Package_Specification.
5040 -- The type may be defined in a generic unit. This can occur when
5041 -- freezing a generic function that returns the type (which is
5042 -- defined in a parent unit). It is clearly meaningless to freeze
5043 -- this type. However, if it is a subtype, its size may be determi-
5044 -- nable and used in subsequent checks, so might as well try to
5047 -- In Ada 2012, Freeze_Entities is also used in the front end to
5048 -- trigger the analysis of aspect expressions, so in this case we
5049 -- want to continue the freezing process.
5051 if Present
(Scope
(E
))
5052 and then Is_Generic_Unit
(Scope
(E
))
5054 (not Has_Predicates
(E
)
5055 and then not Has_Delayed_Freeze
(E
))
5057 Check_Compile_Time_Size
(E
);
5062 -- Check for error of Type_Invariant'Class applied to an untagged
5063 -- type (check delayed to freeze time when full type is available).
5066 Prag
: constant Node_Id
:= Get_Pragma
(E
, Pragma_Invariant
);
5069 and then Class_Present
(Prag
)
5070 and then not Is_Tagged_Type
(E
)
5073 ("Type_Invariant''Class cannot be specified for &",
5076 ("\can only be specified for a tagged type", Prag
);
5080 -- A Ghost type cannot be effectively volatile (SPARK RM 6.9(8))
5082 if Is_Ghost_Entity
(E
)
5083 and then Is_Effectively_Volatile
(E
)
5085 Error_Msg_N
("ghost type & cannot be volatile", E
);
5088 -- Deal with special cases of freezing for subtype
5090 if E
/= Base_Type
(E
) then
5092 -- Before we do anything else, a specialized test for the case of
5093 -- a size given for an array where the array needs to be packed,
5094 -- but was not so the size cannot be honored. This is the case
5095 -- where implicit packing may apply. The reason we do this so
5096 -- early is that if we have implicit packing, the layout of the
5097 -- base type is affected, so we must do this before we freeze
5100 -- We could do this processing only if implicit packing is enabled
5101 -- since in all other cases, the error would be caught by the back
5102 -- end. However, we choose to do the check even if we do not have
5103 -- implicit packing enabled, since this allows us to give a more
5104 -- useful error message (advising use of pragmas Implicit_Packing
5107 if Is_Array_Type
(E
) then
5109 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
5110 Rsiz
: constant Uint
:= RM_Size
(Ctyp
);
5111 SZ
: constant Node_Id
:= Size_Clause
(E
);
5112 Btyp
: constant Entity_Id
:= Base_Type
(E
);
5119 -- Number of elements in array
5122 -- Check enabling conditions. These are straightforward
5123 -- except for the test for a limited composite type. This
5124 -- eliminates the rare case of a array of limited components
5125 -- where there are issues of whether or not we can go ahead
5126 -- and pack the array (since we can't freely pack and unpack
5127 -- arrays if they are limited).
5129 -- Note that we check the root type explicitly because the
5130 -- whole point is we are doing this test before we have had
5131 -- a chance to freeze the base type (and it is that freeze
5132 -- action that causes stuff to be inherited).
5134 if Has_Size_Clause
(E
)
5135 and then Known_Static_RM_Size
(E
)
5136 and then not Is_Packed
(E
)
5137 and then not Has_Pragma_Pack
(E
)
5138 and then not Has_Component_Size_Clause
(E
)
5139 and then Known_Static_RM_Size
(Ctyp
)
5140 and then RM_Size
(Ctyp
) < 64
5141 and then not Is_Limited_Composite
(E
)
5142 and then not Is_Packed
(Root_Type
(E
))
5143 and then not Has_Component_Size_Clause
(Root_Type
(E
))
5144 and then not (CodePeer_Mode
or GNATprove_Mode
)
5146 -- Compute number of elements in array
5148 Num_Elmts
:= Uint_1
;
5149 Indx
:= First_Index
(E
);
5150 while Present
(Indx
) loop
5151 Get_Index_Bounds
(Indx
, Lo
, Hi
);
5153 if not (Compile_Time_Known_Value
(Lo
)
5155 Compile_Time_Known_Value
(Hi
))
5157 goto No_Implicit_Packing
;
5163 Expr_Value
(Hi
) - Expr_Value
(Lo
) + 1);
5167 -- What we are looking for here is the situation where
5168 -- the RM_Size given would be exactly right if there was
5169 -- a pragma Pack (resulting in the component size being
5170 -- the same as the RM_Size). Furthermore, the component
5171 -- type size must be an odd size (not a multiple of
5172 -- storage unit). If the component RM size is an exact
5173 -- number of storage units that is a power of two, the
5174 -- array is not packed and has a standard representation.
5176 if RM_Size
(E
) = Num_Elmts
* Rsiz
5177 and then Rsiz
mod System_Storage_Unit
/= 0
5179 -- For implicit packing mode, just set the component
5182 if Implicit_Packing
then
5183 Set_Component_Size
(Btyp
, Rsiz
);
5184 Set_Is_Bit_Packed_Array
(Btyp
);
5185 Set_Is_Packed
(Btyp
);
5186 Set_Has_Non_Standard_Rep
(Btyp
);
5188 -- Otherwise give an error message
5192 ("size given for& too small", SZ
, E
);
5193 Error_Msg_N
-- CODEFIX
5194 ("\use explicit pragma Pack "
5195 & "or use pragma Implicit_Packing", SZ
);
5198 elsif RM_Size
(E
) = Num_Elmts
* Rsiz
5199 and then Implicit_Packing
5201 (Rsiz
/ System_Storage_Unit
= 1
5203 Rsiz
/ System_Storage_Unit
= 2
5205 Rsiz
/ System_Storage_Unit
= 4)
5207 -- Not a packed array, but indicate the desired
5208 -- component size, for the back-end.
5210 Set_Component_Size
(Btyp
, Rsiz
);
5216 <<No_Implicit_Packing
>>
5218 -- If ancestor subtype present, freeze that first. Note that this
5219 -- will also get the base type frozen. Need RM reference ???
5221 Atype
:= Ancestor_Subtype
(E
);
5223 if Present
(Atype
) then
5224 Freeze_And_Append
(Atype
, N
, Result
);
5226 -- No ancestor subtype present
5229 -- See if we have a nearest ancestor that has a predicate.
5230 -- That catches the case of derived type with a predicate.
5231 -- Need RM reference here ???
5233 Atype
:= Nearest_Ancestor
(E
);
5235 if Present
(Atype
) and then Has_Predicates
(Atype
) then
5236 Freeze_And_Append
(Atype
, N
, Result
);
5239 -- Freeze base type before freezing the entity (RM 13.14(15))
5241 if E
/= Base_Type
(E
) then
5242 Freeze_And_Append
(Base_Type
(E
), N
, Result
);
5246 -- A subtype inherits all the type-related representation aspects
5247 -- from its parents (RM 13.1(8)).
5249 Inherit_Aspects_At_Freeze_Point
(E
);
5251 -- For a derived type, freeze its parent type first (RM 13.14(15))
5253 elsif Is_Derived_Type
(E
) then
5254 Freeze_And_Append
(Etype
(E
), N
, Result
);
5255 Freeze_And_Append
(First_Subtype
(Etype
(E
)), N
, Result
);
5257 -- A derived type inherits each type-related representation aspect
5258 -- of its parent type that was directly specified before the
5259 -- declaration of the derived type (RM 13.1(15)).
5261 Inherit_Aspects_At_Freeze_Point
(E
);
5264 -- Check for incompatible size and alignment for record type
5266 if Warn_On_Size_Alignment
5267 and then Is_Record_Type
(E
)
5268 and then Has_Size_Clause
(E
) and then Has_Alignment_Clause
(E
)
5270 -- If explicit Object_Size clause given assume that the programmer
5271 -- knows what he is doing, and expects the compiler behavior.
5273 and then not Has_Object_Size_Clause
(E
)
5275 -- Check for size not a multiple of alignment
5277 and then RM_Size
(E
) mod (Alignment
(E
) * System_Storage_Unit
) /= 0
5280 SC
: constant Node_Id
:= Size_Clause
(E
);
5281 AC
: constant Node_Id
:= Alignment_Clause
(E
);
5283 Abits
: constant Uint
:= Alignment
(E
) * System_Storage_Unit
;
5286 if Present
(SC
) and then Present
(AC
) then
5290 if Sloc
(SC
) > Sloc
(AC
) then
5293 ("?Z?size is not a multiple of alignment for &",
5295 Error_Msg_Sloc
:= Sloc
(AC
);
5296 Error_Msg_Uint_1
:= Alignment
(E
);
5297 Error_Msg_N
("\?Z?alignment of ^ specified #", Loc
);
5302 ("?Z?size is not a multiple of alignment for &",
5304 Error_Msg_Sloc
:= Sloc
(SC
);
5305 Error_Msg_Uint_1
:= RM_Size
(E
);
5306 Error_Msg_N
("\?Z?size of ^ specified #", Loc
);
5309 Error_Msg_Uint_1
:= ((RM_Size
(E
) / Abits
) + 1) * Abits
;
5310 Error_Msg_N
("\?Z?Object_Size will be increased to ^", Loc
);
5317 if Is_Array_Type
(E
) then
5318 Freeze_Array_Type
(E
);
5320 -- For a class-wide type, the corresponding specific type is
5321 -- frozen as well (RM 13.14(15))
5323 elsif Is_Class_Wide_Type
(E
) then
5324 Freeze_And_Append
(Root_Type
(E
), N
, Result
);
5326 -- If the base type of the class-wide type is still incomplete,
5327 -- the class-wide remains unfrozen as well. This is legal when
5328 -- E is the formal of a primitive operation of some other type
5329 -- which is being frozen.
5331 if not Is_Frozen
(Root_Type
(E
)) then
5332 Set_Is_Frozen
(E
, False);
5337 -- The equivalent type associated with a class-wide subtype needs
5338 -- to be frozen to ensure that its layout is done.
5340 if Ekind
(E
) = E_Class_Wide_Subtype
5341 and then Present
(Equivalent_Type
(E
))
5343 Freeze_And_Append
(Equivalent_Type
(E
), N
, Result
);
5346 -- Generate an itype reference for a library-level class-wide type
5347 -- at the freeze point. Otherwise the first explicit reference to
5348 -- the type may appear in an inner scope which will be rejected by
5352 and then Is_Compilation_Unit
(Scope
(E
))
5355 Ref
: constant Node_Id
:= Make_Itype_Reference
(Loc
);
5360 -- From a gigi point of view, a class-wide subtype derives
5361 -- from its record equivalent type. As a result, the itype
5362 -- reference must appear after the freeze node of the
5363 -- equivalent type or gigi will reject the reference.
5365 if Ekind
(E
) = E_Class_Wide_Subtype
5366 and then Present
(Equivalent_Type
(E
))
5368 Insert_After
(Freeze_Node
(Equivalent_Type
(E
)), Ref
);
5370 Add_To_Result
(Ref
);
5375 -- For a record type or record subtype, freeze all component types
5376 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5377 -- using Is_Record_Type, because we don't want to attempt the freeze
5378 -- for the case of a private type with record extension (we will do
5379 -- that later when the full type is frozen).
5381 elsif Ekind_In
(E
, E_Record_Type
, E_Record_Subtype
)
5382 and then not (Present
(Scope
(E
))
5383 and then Is_Generic_Unit
(Scope
(E
)))
5385 Freeze_Record_Type
(E
);
5387 -- For a concurrent type, freeze corresponding record type. This does
5388 -- not correspond to any specific rule in the RM, but the record type
5389 -- is essentially part of the concurrent type. Also freeze all local
5390 -- entities. This includes record types created for entry parameter
5391 -- blocks and whatever local entities may appear in the private part.
5393 elsif Is_Concurrent_Type
(E
) then
5394 if Present
(Corresponding_Record_Type
(E
)) then
5395 Freeze_And_Append
(Corresponding_Record_Type
(E
), N
, Result
);
5398 Comp
:= First_Entity
(E
);
5399 while Present
(Comp
) loop
5400 if Is_Type
(Comp
) then
5401 Freeze_And_Append
(Comp
, N
, Result
);
5403 elsif (Ekind
(Comp
)) /= E_Function
then
5405 -- The guard on the presence of the Etype seems to be needed
5406 -- for some CodePeer (-gnatcC) cases, but not clear why???
5408 if Present
(Etype
(Comp
)) then
5409 if Is_Itype
(Etype
(Comp
))
5410 and then Underlying_Type
(Scope
(Etype
(Comp
))) = E
5412 Undelay_Type
(Etype
(Comp
));
5415 Freeze_And_Append
(Etype
(Comp
), N
, Result
);
5422 -- Private types are required to point to the same freeze node as
5423 -- their corresponding full views. The freeze node itself has to
5424 -- point to the partial view of the entity (because from the partial
5425 -- view, we can retrieve the full view, but not the reverse).
5426 -- However, in order to freeze correctly, we need to freeze the full
5427 -- view. If we are freezing at the end of a scope (or within the
5428 -- scope) of the private type, the partial and full views will have
5429 -- been swapped, the full view appears first in the entity chain and
5430 -- the swapping mechanism ensures that the pointers are properly set
5433 -- If we encounter the partial view before the full view (e.g. when
5434 -- freezing from another scope), we freeze the full view, and then
5435 -- set the pointers appropriately since we cannot rely on swapping to
5436 -- fix things up (subtypes in an outer scope might not get swapped).
5438 -- If the full view is itself private, the above requirements apply
5439 -- to the underlying full view instead of the full view. But there is
5440 -- no swapping mechanism for the underlying full view so we need to
5441 -- set the pointers appropriately in both cases.
5443 elsif Is_Incomplete_Or_Private_Type
(E
)
5444 and then not Is_Generic_Type
(E
)
5446 -- The construction of the dispatch table associated with library
5447 -- level tagged types forces freezing of all the primitives of the
5448 -- type, which may cause premature freezing of the partial view.
5452 -- type T is tagged private;
5453 -- type DT is new T with private;
5454 -- procedure Prim (X : in out T; Y : in out DT'Class);
5456 -- type T is tagged null record;
5458 -- type DT is new T with null record;
5461 -- In this case the type will be frozen later by the usual
5462 -- mechanism: an object declaration, an instantiation, or the
5463 -- end of a declarative part.
5465 if Is_Library_Level_Tagged_Type
(E
)
5466 and then not Present
(Full_View
(E
))
5468 Set_Is_Frozen
(E
, False);
5472 -- Case of full view present
5474 elsif Present
(Full_View
(E
)) then
5476 -- If full view has already been frozen, then no further
5477 -- processing is required
5479 if Is_Frozen
(Full_View
(E
)) then
5480 Set_Has_Delayed_Freeze
(E
, False);
5481 Set_Freeze_Node
(E
, Empty
);
5483 -- Otherwise freeze full view and patch the pointers so that
5484 -- the freeze node will elaborate both views in the back end.
5485 -- However, if full view is itself private, freeze underlying
5486 -- full view instead and patch the pointers so that the freeze
5487 -- node will elaborate the three views in the back end.
5491 Full
: Entity_Id
:= Full_View
(E
);
5494 if Is_Private_Type
(Full
)
5495 and then Present
(Underlying_Full_View
(Full
))
5497 Full
:= Underlying_Full_View
(Full
);
5500 Freeze_And_Append
(Full
, N
, Result
);
5502 if Full
/= Full_View
(E
)
5503 and then Has_Delayed_Freeze
(Full_View
(E
))
5505 F_Node
:= Freeze_Node
(Full
);
5507 if Present
(F_Node
) then
5508 Set_Freeze_Node
(Full_View
(E
), F_Node
);
5509 Set_Entity
(F_Node
, Full_View
(E
));
5512 Set_Has_Delayed_Freeze
(Full_View
(E
), False);
5513 Set_Freeze_Node
(Full_View
(E
), Empty
);
5517 if Has_Delayed_Freeze
(E
) then
5518 F_Node
:= Freeze_Node
(Full_View
(E
));
5520 if Present
(F_Node
) then
5521 Set_Freeze_Node
(E
, F_Node
);
5522 Set_Entity
(F_Node
, E
);
5525 -- {Incomplete,Private}_Subtypes with Full_Views
5526 -- constrained by discriminants.
5528 Set_Has_Delayed_Freeze
(E
, False);
5529 Set_Freeze_Node
(E
, Empty
);
5535 Check_Debug_Info_Needed
(E
);
5537 -- AI-117 requires that the convention of a partial view be the
5538 -- same as the convention of the full view. Note that this is a
5539 -- recognized breach of privacy, but it's essential for logical
5540 -- consistency of representation, and the lack of a rule in
5541 -- RM95 was an oversight.
5543 Set_Convention
(E
, Convention
(Full_View
(E
)));
5545 Set_Size_Known_At_Compile_Time
(E
,
5546 Size_Known_At_Compile_Time
(Full_View
(E
)));
5548 -- Size information is copied from the full view to the
5549 -- incomplete or private view for consistency.
5551 -- We skip this is the full view is not a type. This is very
5552 -- strange of course, and can only happen as a result of
5553 -- certain illegalities, such as a premature attempt to derive
5554 -- from an incomplete type.
5556 if Is_Type
(Full_View
(E
)) then
5557 Set_Size_Info
(E
, Full_View
(E
));
5558 Set_RM_Size
(E
, RM_Size
(Full_View
(E
)));
5564 -- Case of underlying full view present
5566 elsif Is_Private_Type
(E
)
5567 and then Present
(Underlying_Full_View
(E
))
5569 if not Is_Frozen
(Underlying_Full_View
(E
)) then
5570 Freeze_And_Append
(Underlying_Full_View
(E
), N
, Result
);
5573 -- Patch the pointers so that the freeze node will elaborate
5574 -- both views in the back end.
5576 if Has_Delayed_Freeze
(E
) then
5577 F_Node
:= Freeze_Node
(Underlying_Full_View
(E
));
5579 if Present
(F_Node
) then
5580 Set_Freeze_Node
(E
, F_Node
);
5581 Set_Entity
(F_Node
, E
);
5584 Set_Has_Delayed_Freeze
(E
, False);
5585 Set_Freeze_Node
(E
, Empty
);
5589 Check_Debug_Info_Needed
(E
);
5594 -- Case of no full view present. If entity is derived or subtype,
5595 -- it is safe to freeze, correctness depends on the frozen status
5596 -- of parent. Otherwise it is either premature usage, or a Taft
5597 -- amendment type, so diagnosis is at the point of use and the
5598 -- type might be frozen later.
5600 elsif E
/= Base_Type
(E
) or else Is_Derived_Type
(E
) then
5604 Set_Is_Frozen
(E
, False);
5609 -- For access subprogram, freeze types of all formals, the return
5610 -- type was already frozen, since it is the Etype of the function.
5611 -- Formal types can be tagged Taft amendment types, but otherwise
5612 -- they cannot be incomplete.
5614 elsif Ekind
(E
) = E_Subprogram_Type
then
5615 Formal
:= First_Formal
(E
);
5616 while Present
(Formal
) loop
5617 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
5618 and then No
(Full_View
(Etype
(Formal
)))
5619 and then not Is_Value_Type
(Etype
(Formal
))
5621 if Is_Tagged_Type
(Etype
(Formal
)) then
5624 -- AI05-151: Incomplete types are allowed in access to
5625 -- subprogram specifications.
5627 elsif Ada_Version
< Ada_2012
then
5629 ("invalid use of incomplete type&", E
, Etype
(Formal
));
5633 Freeze_And_Append
(Etype
(Formal
), N
, Result
);
5634 Next_Formal
(Formal
);
5637 Freeze_Subprogram
(E
);
5639 -- For access to a protected subprogram, freeze the equivalent type
5640 -- (however this is not set if we are not generating code or if this
5641 -- is an anonymous type used just for resolution).
5643 elsif Is_Access_Protected_Subprogram_Type
(E
) then
5644 if Present
(Equivalent_Type
(E
)) then
5645 Freeze_And_Append
(Equivalent_Type
(E
), N
, Result
);
5649 -- Generic types are never seen by the back-end, and are also not
5650 -- processed by the expander (since the expander is turned off for
5651 -- generic processing), so we never need freeze nodes for them.
5653 if Is_Generic_Type
(E
) then
5658 -- Some special processing for non-generic types to complete
5659 -- representation details not known till the freeze point.
5661 if Is_Fixed_Point_Type
(E
) then
5662 Freeze_Fixed_Point_Type
(E
);
5664 -- Some error checks required for ordinary fixed-point type. Defer
5665 -- these till the freeze-point since we need the small and range
5666 -- values. We only do these checks for base types
5668 if Is_Ordinary_Fixed_Point_Type
(E
) and then Is_Base_Type
(E
) then
5669 if Small_Value
(E
) < Ureal_2_M_80
then
5670 Error_Msg_Name_1
:= Name_Small
;
5672 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E
);
5674 elsif Small_Value
(E
) > Ureal_2_80
then
5675 Error_Msg_Name_1
:= Name_Small
;
5677 ("`&''%` too large, maximum allowed is 2.0'*'*80", E
);
5680 if Expr_Value_R
(Type_Low_Bound
(E
)) < Ureal_M_10_36
then
5681 Error_Msg_Name_1
:= Name_First
;
5683 ("`&''%` too small, minimum allowed is -10.0'*'*36", E
);
5686 if Expr_Value_R
(Type_High_Bound
(E
)) > Ureal_10_36
then
5687 Error_Msg_Name_1
:= Name_Last
;
5689 ("`&''%` too large, maximum allowed is 10.0'*'*36", E
);
5693 elsif Is_Enumeration_Type
(E
) then
5694 Freeze_Enumeration_Type
(E
);
5696 elsif Is_Integer_Type
(E
) then
5697 Adjust_Esize_For_Alignment
(E
);
5699 if Is_Modular_Integer_Type
(E
)
5700 and then Warn_On_Suspicious_Modulus_Value
5702 Check_Suspicious_Modulus
(E
);
5705 -- The pool applies to named and anonymous access types, but not
5706 -- to subprogram and to internal types generated for 'Access
5709 elsif Is_Access_Type
(E
)
5710 and then not Is_Access_Subprogram_Type
(E
)
5711 and then Ekind
(E
) /= E_Access_Attribute_Type
5713 -- If a pragma Default_Storage_Pool applies, and this type has no
5714 -- Storage_Pool or Storage_Size clause (which must have occurred
5715 -- before the freezing point), then use the default. This applies
5716 -- only to base types.
5718 -- None of this applies to access to subprograms, for which there
5719 -- are clearly no pools.
5721 if Present
(Default_Pool
)
5722 and then Is_Base_Type
(E
)
5723 and then not Has_Storage_Size_Clause
(E
)
5724 and then No
(Associated_Storage_Pool
(E
))
5726 -- Case of pragma Default_Storage_Pool (null)
5728 if Nkind
(Default_Pool
) = N_Null
then
5729 Set_No_Pool_Assigned
(E
);
5731 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
5734 Set_Associated_Storage_Pool
(E
, Entity
(Default_Pool
));
5738 -- Check restriction for standard storage pool
5740 if No
(Associated_Storage_Pool
(E
)) then
5741 Check_Restriction
(No_Standard_Storage_Pools
, E
);
5744 -- Deal with error message for pure access type. This is not an
5745 -- error in Ada 2005 if there is no pool (see AI-366).
5747 if Is_Pure_Unit_Access_Type
(E
)
5748 and then (Ada_Version
< Ada_2005
5749 or else not No_Pool_Assigned
(E
))
5750 and then not Is_Generic_Unit
(Scope
(E
))
5752 Error_Msg_N
("named access type not allowed in pure unit", E
);
5754 if Ada_Version
>= Ada_2005
then
5756 ("\would be legal if Storage_Size of 0 given??", E
);
5758 elsif No_Pool_Assigned
(E
) then
5760 ("\would be legal in Ada 2005??", E
);
5764 ("\would be legal in Ada 2005 if "
5765 & "Storage_Size of 0 given??", E
);
5770 -- Case of composite types
5772 if Is_Composite_Type
(E
) then
5774 -- AI-117 requires that all new primitives of a tagged type must
5775 -- inherit the convention of the full view of the type. Inherited
5776 -- and overriding operations are defined to inherit the convention
5777 -- of their parent or overridden subprogram (also specified in
5778 -- AI-117), which will have occurred earlier (in Derive_Subprogram
5779 -- and New_Overloaded_Entity). Here we set the convention of
5780 -- primitives that are still convention Ada, which will ensure
5781 -- that any new primitives inherit the type's convention. Class-
5782 -- wide types can have a foreign convention inherited from their
5783 -- specific type, but are excluded from this since they don't have
5784 -- any associated primitives.
5786 if Is_Tagged_Type
(E
)
5787 and then not Is_Class_Wide_Type
(E
)
5788 and then Convention
(E
) /= Convention_Ada
5791 Prim_List
: constant Elist_Id
:= Primitive_Operations
(E
);
5795 Prim
:= First_Elmt
(Prim_List
);
5796 while Present
(Prim
) loop
5797 if Convention
(Node
(Prim
)) = Convention_Ada
then
5798 Set_Convention
(Node
(Prim
), Convention
(E
));
5806 -- If the type is a simple storage pool type, then this is where
5807 -- we attempt to locate and validate its Allocate, Deallocate, and
5808 -- Storage_Size operations (the first is required, and the latter
5809 -- two are optional). We also verify that the full type for a
5810 -- private type is allowed to be a simple storage pool type.
5812 if Present
(Get_Rep_Pragma
(E
, Name_Simple_Storage_Pool_Type
))
5813 and then (Is_Base_Type
(E
) or else Has_Private_Declaration
(E
))
5815 -- If the type is marked Has_Private_Declaration, then this is
5816 -- a full type for a private type that was specified with the
5817 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
5818 -- pragma is allowed for the full type (for example, it can't
5819 -- be an array type, or a nonlimited record type).
5821 if Has_Private_Declaration
(E
) then
5822 if (not Is_Record_Type
(E
) or else not Is_Limited_View
(E
))
5823 and then not Is_Private_Type
(E
)
5825 Error_Msg_Name_1
:= Name_Simple_Storage_Pool_Type
;
5827 ("pragma% can only apply to full type that is an " &
5828 "explicitly limited type", E
);
5832 Validate_Simple_Pool_Ops
: declare
5833 Pool_Type
: Entity_Id
renames E
;
5834 Address_Type
: constant Entity_Id
:= RTE
(RE_Address
);
5835 Stg_Cnt_Type
: constant Entity_Id
:= RTE
(RE_Storage_Count
);
5837 procedure Validate_Simple_Pool_Op_Formal
5838 (Pool_Op
: Entity_Id
;
5839 Pool_Op_Formal
: in out Entity_Id
;
5840 Expected_Mode
: Formal_Kind
;
5841 Expected_Type
: Entity_Id
;
5842 Formal_Name
: String;
5843 OK_Formal
: in out Boolean);
5844 -- Validate one formal Pool_Op_Formal of the candidate pool
5845 -- operation Pool_Op. The formal must be of Expected_Type
5846 -- and have mode Expected_Mode. OK_Formal will be set to
5847 -- False if the formal doesn't match. If OK_Formal is False
5848 -- on entry, then the formal will effectively be ignored
5849 -- (because validation of the pool op has already failed).
5850 -- Upon return, Pool_Op_Formal will be updated to the next
5853 procedure Validate_Simple_Pool_Operation
5854 (Op_Name
: Name_Id
);
5855 -- Search for and validate a simple pool operation with the
5856 -- name Op_Name. If the name is Allocate, then there must be
5857 -- exactly one such primitive operation for the simple pool
5858 -- type. If the name is Deallocate or Storage_Size, then
5859 -- there can be at most one such primitive operation. The
5860 -- profile of the located primitive must conform to what
5861 -- is expected for each operation.
5863 ------------------------------------
5864 -- Validate_Simple_Pool_Op_Formal --
5865 ------------------------------------
5867 procedure Validate_Simple_Pool_Op_Formal
5868 (Pool_Op
: Entity_Id
;
5869 Pool_Op_Formal
: in out Entity_Id
;
5870 Expected_Mode
: Formal_Kind
;
5871 Expected_Type
: Entity_Id
;
5872 Formal_Name
: String;
5873 OK_Formal
: in out Boolean)
5876 -- If OK_Formal is False on entry, then simply ignore
5877 -- the formal, because an earlier formal has already
5880 if not OK_Formal
then
5883 -- If no formal is passed in, then issue an error for a
5886 elsif not Present
(Pool_Op_Formal
) then
5888 ("simple storage pool op missing formal " &
5889 Formal_Name
& " of type&", Pool_Op
, Expected_Type
);
5895 if Etype
(Pool_Op_Formal
) /= Expected_Type
then
5897 -- If the pool type was expected for this formal, then
5898 -- this will not be considered a candidate operation
5899 -- for the simple pool, so we unset OK_Formal so that
5900 -- the op and any later formals will be ignored.
5902 if Expected_Type
= Pool_Type
then
5909 ("wrong type for formal " & Formal_Name
&
5910 " of simple storage pool op; expected type&",
5911 Pool_Op_Formal
, Expected_Type
);
5915 -- Issue error if formal's mode is not the expected one
5917 if Ekind
(Pool_Op_Formal
) /= Expected_Mode
then
5919 ("wrong mode for formal of simple storage pool op",
5923 -- Advance to the next formal
5925 Next_Formal
(Pool_Op_Formal
);
5926 end Validate_Simple_Pool_Op_Formal
;
5928 ------------------------------------
5929 -- Validate_Simple_Pool_Operation --
5930 ------------------------------------
5932 procedure Validate_Simple_Pool_Operation
5936 Found_Op
: Entity_Id
:= Empty
;
5942 (Nam_In
(Op_Name
, Name_Allocate
,
5944 Name_Storage_Size
));
5946 Error_Msg_Name_1
:= Op_Name
;
5948 -- For each homonym declared immediately in the scope
5949 -- of the simple storage pool type, determine whether
5950 -- the homonym is an operation of the pool type, and,
5951 -- if so, check that its profile is as expected for
5952 -- a simple pool operation of that name.
5954 Op
:= Get_Name_Entity_Id
(Op_Name
);
5955 while Present
(Op
) loop
5956 if Ekind_In
(Op
, E_Function
, E_Procedure
)
5957 and then Scope
(Op
) = Current_Scope
5959 Formal
:= First_Entity
(Op
);
5963 -- The first parameter must be of the pool type
5964 -- in order for the operation to qualify.
5966 if Op_Name
= Name_Storage_Size
then
5967 Validate_Simple_Pool_Op_Formal
5968 (Op
, Formal
, E_In_Parameter
, Pool_Type
,
5971 Validate_Simple_Pool_Op_Formal
5972 (Op
, Formal
, E_In_Out_Parameter
, Pool_Type
,
5976 -- If another operation with this name has already
5977 -- been located for the type, then flag an error,
5978 -- since we only allow the type to have a single
5981 if Present
(Found_Op
) and then Is_OK
then
5983 ("only one % operation allowed for " &
5984 "simple storage pool type&", Op
, Pool_Type
);
5987 -- In the case of Allocate and Deallocate, a formal
5988 -- of type System.Address is required.
5990 if Op_Name
= Name_Allocate
then
5991 Validate_Simple_Pool_Op_Formal
5992 (Op
, Formal
, E_Out_Parameter
,
5993 Address_Type
, "Storage_Address", Is_OK
);
5995 elsif Op_Name
= Name_Deallocate
then
5996 Validate_Simple_Pool_Op_Formal
5997 (Op
, Formal
, E_In_Parameter
,
5998 Address_Type
, "Storage_Address", Is_OK
);
6001 -- In the case of Allocate and Deallocate, formals
6002 -- of type Storage_Count are required as the third
6003 -- and fourth parameters.
6005 if Op_Name
/= Name_Storage_Size
then
6006 Validate_Simple_Pool_Op_Formal
6007 (Op
, Formal
, E_In_Parameter
,
6008 Stg_Cnt_Type
, "Size_In_Storage_Units", Is_OK
);
6009 Validate_Simple_Pool_Op_Formal
6010 (Op
, Formal
, E_In_Parameter
,
6011 Stg_Cnt_Type
, "Alignment", Is_OK
);
6014 -- If no mismatched formals have been found (Is_OK)
6015 -- and no excess formals are present, then this
6016 -- operation has been validated, so record it.
6018 if not Present
(Formal
) and then Is_OK
then
6026 -- There must be a valid Allocate operation for the type,
6027 -- so issue an error if none was found.
6029 if Op_Name
= Name_Allocate
6030 and then not Present
(Found_Op
)
6032 Error_Msg_N
("missing % operation for simple " &
6033 "storage pool type", Pool_Type
);
6035 elsif Present
(Found_Op
) then
6037 -- Simple pool operations can't be abstract
6039 if Is_Abstract_Subprogram
(Found_Op
) then
6041 ("simple storage pool operation must not be " &
6042 "abstract", Found_Op
);
6045 -- The Storage_Size operation must be a function with
6046 -- Storage_Count as its result type.
6048 if Op_Name
= Name_Storage_Size
then
6049 if Ekind
(Found_Op
) = E_Procedure
then
6051 ("% operation must be a function", Found_Op
);
6053 elsif Etype
(Found_Op
) /= Stg_Cnt_Type
then
6055 ("wrong result type for%, expected type&",
6056 Found_Op
, Stg_Cnt_Type
);
6059 -- Allocate and Deallocate must be procedures
6061 elsif Ekind
(Found_Op
) = E_Function
then
6063 ("% operation must be a procedure", Found_Op
);
6066 end Validate_Simple_Pool_Operation
;
6068 -- Start of processing for Validate_Simple_Pool_Ops
6071 Validate_Simple_Pool_Operation
(Name_Allocate
);
6072 Validate_Simple_Pool_Operation
(Name_Deallocate
);
6073 Validate_Simple_Pool_Operation
(Name_Storage_Size
);
6074 end Validate_Simple_Pool_Ops
;
6078 -- Now that all types from which E may depend are frozen, see if the
6079 -- size is known at compile time, if it must be unsigned, or if
6080 -- strict alignment is required
6082 Check_Compile_Time_Size
(E
);
6083 Check_Unsigned_Type
(E
);
6085 if Base_Type
(E
) = E
then
6086 Check_Strict_Alignment
(E
);
6089 -- Do not allow a size clause for a type which does not have a size
6090 -- that is known at compile time
6092 if Has_Size_Clause
(E
)
6093 and then not Size_Known_At_Compile_Time
(E
)
6095 -- Suppress this message if errors posted on E, even if we are
6096 -- in all errors mode, since this is often a junk message
6098 if not Error_Posted
(E
) then
6100 ("size clause not allowed for variable length type",
6105 -- Now we set/verify the representation information, in particular
6106 -- the size and alignment values. This processing is not required for
6107 -- generic types, since generic types do not play any part in code
6108 -- generation, and so the size and alignment values for such types
6109 -- are irrelevant. Ditto for types declared within a generic unit,
6110 -- which may have components that depend on generic parameters, and
6111 -- that will be recreated in an instance.
6113 if Inside_A_Generic
then
6116 -- Otherwise we call the layout procedure
6122 -- If this is an access to subprogram whose designated type is itself
6123 -- a subprogram type, the return type of this anonymous subprogram
6124 -- type must be decorated as well.
6126 if Ekind
(E
) = E_Anonymous_Access_Subprogram_Type
6127 and then Ekind
(Designated_Type
(E
)) = E_Subprogram_Type
6129 Layout_Type
(Etype
(Designated_Type
(E
)));
6132 -- If the type has a Defaut_Value/Default_Component_Value aspect,
6133 -- this is where we analye the expression (after the type is frozen,
6134 -- since in the case of Default_Value, we are analyzing with the
6135 -- type itself, and we treat Default_Component_Value similarly for
6136 -- the sake of uniformity).
6138 if Is_First_Subtype
(E
) and then Has_Default_Aspect
(E
) then
6145 if Is_Scalar_Type
(E
) then
6146 Nam
:= Name_Default_Value
;
6148 Exp
:= Default_Aspect_Value
(Typ
);
6150 Nam
:= Name_Default_Component_Value
;
6151 Typ
:= Component_Type
(E
);
6152 Exp
:= Default_Aspect_Component_Value
(E
);
6155 Analyze_And_Resolve
(Exp
, Typ
);
6157 if Etype
(Exp
) /= Any_Type
then
6158 if not Is_OK_Static_Expression
(Exp
) then
6159 Error_Msg_Name_1
:= Nam
;
6160 Flag_Non_Static_Expr
6161 ("aspect% requires static expression", Exp
);
6167 -- End of freeze processing for type entities
6170 -- Here is where we logically freeze the current entity. If it has a
6171 -- freeze node, then this is the point at which the freeze node is
6172 -- linked into the result list.
6174 if Has_Delayed_Freeze
(E
) then
6176 -- If a freeze node is already allocated, use it, otherwise allocate
6177 -- a new one. The preallocation happens in the case of anonymous base
6178 -- types, where we preallocate so that we can set First_Subtype_Link.
6179 -- Note that we reset the Sloc to the current freeze location.
6181 if Present
(Freeze_Node
(E
)) then
6182 F_Node
:= Freeze_Node
(E
);
6183 Set_Sloc
(F_Node
, Loc
);
6186 F_Node
:= New_Node
(N_Freeze_Entity
, Loc
);
6187 Set_Freeze_Node
(E
, F_Node
);
6188 Set_Access_Types_To_Process
(F_Node
, No_Elist
);
6189 Set_TSS_Elist
(F_Node
, No_Elist
);
6190 Set_Actions
(F_Node
, No_List
);
6193 Set_Entity
(F_Node
, E
);
6194 Add_To_Result
(F_Node
);
6196 -- A final pass over record types with discriminants. If the type
6197 -- has an incomplete declaration, there may be constrained access
6198 -- subtypes declared elsewhere, which do not depend on the discrimi-
6199 -- nants of the type, and which are used as component types (i.e.
6200 -- the full view is a recursive type). The designated types of these
6201 -- subtypes can only be elaborated after the type itself, and they
6202 -- need an itype reference.
6204 if Ekind
(E
) = E_Record_Type
6205 and then Has_Discriminants
(E
)
6213 Comp
:= First_Component
(E
);
6214 while Present
(Comp
) loop
6215 Typ
:= Etype
(Comp
);
6217 if Ekind
(Comp
) = E_Component
6218 and then Is_Access_Type
(Typ
)
6219 and then Scope
(Typ
) /= E
6220 and then Base_Type
(Designated_Type
(Typ
)) = E
6221 and then Is_Itype
(Designated_Type
(Typ
))
6223 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
6224 Set_Itype
(IR
, Designated_Type
(Typ
));
6225 Append
(IR
, Result
);
6228 Next_Component
(Comp
);
6234 -- When a type is frozen, the first subtype of the type is frozen as
6235 -- well (RM 13.14(15)). This has to be done after freezing the type,
6236 -- since obviously the first subtype depends on its own base type.
6239 Freeze_And_Append
(First_Subtype
(E
), N
, Result
);
6241 -- If we just froze a tagged non-class wide record, then freeze the
6242 -- corresponding class-wide type. This must be done after the tagged
6243 -- type itself is frozen, because the class-wide type refers to the
6244 -- tagged type which generates the class.
6246 if Is_Tagged_Type
(E
)
6247 and then not Is_Class_Wide_Type
(E
)
6248 and then Present
(Class_Wide_Type
(E
))
6250 Freeze_And_Append
(Class_Wide_Type
(E
), N
, Result
);
6254 Check_Debug_Info_Needed
(E
);
6256 -- Special handling for subprograms
6258 if Is_Subprogram
(E
) then
6260 -- If subprogram has address clause then reset Is_Public flag, since
6261 -- we do not want the backend to generate external references.
6263 if Present
(Address_Clause
(E
))
6264 and then not Is_Library_Level_Entity
(E
)
6266 Set_Is_Public
(E
, False);
6274 -----------------------------
6275 -- Freeze_Enumeration_Type --
6276 -----------------------------
6278 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
) is
6280 -- By default, if no size clause is present, an enumeration type with
6281 -- Convention C is assumed to interface to a C enum, and has integer
6282 -- size. This applies to types. For subtypes, verify that its base
6283 -- type has no size clause either. Treat other foreign conventions
6284 -- in the same way, and also make sure alignment is set right.
6286 if Has_Foreign_Convention
(Typ
)
6287 and then not Has_Size_Clause
(Typ
)
6288 and then not Has_Size_Clause
(Base_Type
(Typ
))
6289 and then Esize
(Typ
) < Standard_Integer_Size
6291 -- Don't do this if Short_Enums on target
6293 and then not Target_Short_Enums
6295 Init_Esize
(Typ
, Standard_Integer_Size
);
6296 Set_Alignment
(Typ
, Alignment
(Standard_Integer
));
6298 -- Normal Ada case or size clause present or not Long_C_Enums on target
6301 -- If the enumeration type interfaces to C, and it has a size clause
6302 -- that specifies less than int size, it warrants a warning. The
6303 -- user may intend the C type to be an enum or a char, so this is
6304 -- not by itself an error that the Ada compiler can detect, but it
6305 -- it is a worth a heads-up. For Boolean and Character types we
6306 -- assume that the programmer has the proper C type in mind.
6308 if Convention
(Typ
) = Convention_C
6309 and then Has_Size_Clause
(Typ
)
6310 and then Esize
(Typ
) /= Esize
(Standard_Integer
)
6311 and then not Is_Boolean_Type
(Typ
)
6312 and then not Is_Character_Type
(Typ
)
6314 -- Don't do this if Short_Enums on target
6316 and then not Target_Short_Enums
6319 ("C enum types have the size of a C int??", Size_Clause
(Typ
));
6322 Adjust_Esize_For_Alignment
(Typ
);
6324 end Freeze_Enumeration_Type
;
6326 -----------------------
6327 -- Freeze_Expression --
6328 -----------------------
6330 procedure Freeze_Expression
(N
: Node_Id
) is
6331 In_Spec_Exp
: constant Boolean := In_Spec_Expression
;
6334 Desig_Typ
: Entity_Id
;
6338 Freeze_Outside
: Boolean := False;
6339 -- This flag is set true if the entity must be frozen outside the
6340 -- current subprogram. This happens in the case of expander generated
6341 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
6342 -- not freeze all entities like other bodies, but which nevertheless
6343 -- may reference entities that have to be frozen before the body and
6344 -- obviously cannot be frozen inside the body.
6346 function Find_Aggregate_Component_Desig_Type
return Entity_Id
;
6347 -- If the expression is an array aggregate, the type of the component
6348 -- expressions is also frozen. If the component type is an access type
6349 -- and the expressions include allocators, the designed type is frozen
6352 function In_Expanded_Body
(N
: Node_Id
) return Boolean;
6353 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
6354 -- it is the handled statement sequence of an expander-generated
6355 -- subprogram (init proc, stream subprogram, or renaming as body).
6356 -- If so, this is not a freezing context.
6358 -----------------------------------------
6359 -- Find_Aggregate_Component_Desig_Type --
6360 -----------------------------------------
6362 function Find_Aggregate_Component_Desig_Type
return Entity_Id
is
6367 if Present
(Expressions
(N
)) then
6368 Exp
:= First
(Expressions
(N
));
6369 while Present
(Exp
) loop
6370 if Nkind
(Exp
) = N_Allocator
then
6371 return Designated_Type
(Component_Type
(Etype
(N
)));
6378 if Present
(Component_Associations
(N
)) then
6379 Assoc
:= First
(Component_Associations
(N
));
6380 while Present
(Assoc
) loop
6381 if Nkind
(Expression
(Assoc
)) = N_Allocator
then
6382 return Designated_Type
(Component_Type
(Etype
(N
)));
6390 end Find_Aggregate_Component_Desig_Type
;
6392 ----------------------
6393 -- In_Expanded_Body --
6394 ----------------------
6396 function In_Expanded_Body
(N
: Node_Id
) return Boolean is
6401 if Nkind
(N
) = N_Subprogram_Body
then
6407 if Nkind
(P
) /= N_Subprogram_Body
then
6411 Id
:= Defining_Unit_Name
(Specification
(P
));
6413 -- The following are expander-created bodies, or bodies that
6414 -- are not freeze points.
6416 if Nkind
(Id
) = N_Defining_Identifier
6417 and then (Is_Init_Proc
(Id
)
6418 or else Is_TSS
(Id
, TSS_Stream_Input
)
6419 or else Is_TSS
(Id
, TSS_Stream_Output
)
6420 or else Is_TSS
(Id
, TSS_Stream_Read
)
6421 or else Is_TSS
(Id
, TSS_Stream_Write
)
6422 or else Nkind_In
(Original_Node
(P
),
6423 N_Subprogram_Renaming_Declaration
,
6424 N_Expression_Function
))
6431 end In_Expanded_Body
;
6433 -- Start of processing for Freeze_Expression
6436 -- Immediate return if freezing is inhibited. This flag is set by the
6437 -- analyzer to stop freezing on generated expressions that would cause
6438 -- freezing if they were in the source program, but which are not
6439 -- supposed to freeze, since they are created.
6441 if Must_Not_Freeze
(N
) then
6445 -- If expression is non-static, then it does not freeze in a default
6446 -- expression, see section "Handling of Default Expressions" in the
6447 -- spec of package Sem for further details. Note that we have to make
6448 -- sure that we actually have a real expression (if we have a subtype
6449 -- indication, we can't test Is_OK_Static_Expression). However, we
6450 -- exclude the case of the prefix of an attribute of a static scalar
6451 -- subtype from this early return, because static subtype attributes
6452 -- should always cause freezing, even in default expressions, but
6453 -- the attribute may not have been marked as static yet (because in
6454 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6455 -- Freeze_Expression on the prefix).
6458 and then Nkind
(N
) in N_Subexpr
6459 and then not Is_OK_Static_Expression
(N
)
6460 and then (Nkind
(Parent
(N
)) /= N_Attribute_Reference
6461 or else not (Is_Entity_Name
(N
)
6462 and then Is_Type
(Entity
(N
))
6463 and then Is_OK_Static_Subtype
(Entity
(N
))))
6468 -- Freeze type of expression if not frozen already
6472 if Nkind
(N
) in N_Has_Etype
then
6473 if not Is_Frozen
(Etype
(N
)) then
6476 -- Base type may be an derived numeric type that is frozen at
6477 -- the point of declaration, but first_subtype is still unfrozen.
6479 elsif not Is_Frozen
(First_Subtype
(Etype
(N
))) then
6480 Typ
:= First_Subtype
(Etype
(N
));
6484 -- For entity name, freeze entity if not frozen already. A special
6485 -- exception occurs for an identifier that did not come from source.
6486 -- We don't let such identifiers freeze a non-internal entity, i.e.
6487 -- an entity that did come from source, since such an identifier was
6488 -- generated by the expander, and cannot have any semantic effect on
6489 -- the freezing semantics. For example, this stops the parameter of
6490 -- an initialization procedure from freezing the variable.
6492 if Is_Entity_Name
(N
)
6493 and then not Is_Frozen
(Entity
(N
))
6494 and then (Nkind
(N
) /= N_Identifier
6495 or else Comes_From_Source
(N
)
6496 or else not Comes_From_Source
(Entity
(N
)))
6500 if Present
(Nam
) and then Ekind
(Nam
) = E_Function
then
6501 Check_Expression_Function
(N
, Nam
);
6508 -- For an allocator freeze designated type if not frozen already
6510 -- For an aggregate whose component type is an access type, freeze the
6511 -- designated type now, so that its freeze does not appear within the
6512 -- loop that might be created in the expansion of the aggregate. If the
6513 -- designated type is a private type without full view, the expression
6514 -- cannot contain an allocator, so the type is not frozen.
6516 -- For a function, we freeze the entity when the subprogram declaration
6517 -- is frozen, but a function call may appear in an initialization proc.
6518 -- before the declaration is frozen. We need to generate the extra
6519 -- formals, if any, to ensure that the expansion of the call includes
6520 -- the proper actuals. This only applies to Ada subprograms, not to
6527 Desig_Typ
:= Designated_Type
(Etype
(N
));
6530 if Is_Array_Type
(Etype
(N
))
6531 and then Is_Access_Type
(Component_Type
(Etype
(N
)))
6534 -- Check whether aggregate includes allocators.
6536 Desig_Typ
:= Find_Aggregate_Component_Desig_Type
;
6539 when N_Selected_Component |
6540 N_Indexed_Component |
6543 if Is_Access_Type
(Etype
(Prefix
(N
))) then
6544 Desig_Typ
:= Designated_Type
(Etype
(Prefix
(N
)));
6547 when N_Identifier
=>
6549 and then Ekind
(Nam
) = E_Function
6550 and then Nkind
(Parent
(N
)) = N_Function_Call
6551 and then Convention
(Nam
) = Convention_Ada
6553 Create_Extra_Formals
(Nam
);
6560 if Desig_Typ
/= Empty
6561 and then (Is_Frozen
(Desig_Typ
)
6562 or else (not Is_Fully_Defined
(Desig_Typ
)))
6567 -- All done if nothing needs freezing
6571 and then No
(Desig_Typ
)
6576 -- Examine the enclosing context by climbing the parent chain. The
6577 -- traversal serves two purposes - to detect scenarios where freezeing
6578 -- is not needed and to find the proper insertion point for the freeze
6579 -- nodes. Although somewhat similar to Insert_Actions, this traversal
6580 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
6581 -- the tree may result in types being frozen too early.
6585 Parent_P
:= Parent
(P
);
6587 -- If we don't have a parent, then we are not in a well-formed tree.
6588 -- This is an unusual case, but there are some legitimate situations
6589 -- in which this occurs, notably when the expressions in the range of
6590 -- a type declaration are resolved. We simply ignore the freeze
6591 -- request in this case. Is this right ???
6593 if No
(Parent_P
) then
6597 -- See if we have got to an appropriate point in the tree
6599 case Nkind
(Parent_P
) is
6601 -- A special test for the exception of (RM 13.14(8)) for the case
6602 -- of per-object expressions (RM 3.8(18)) occurring in component
6603 -- definition or a discrete subtype definition. Note that we test
6604 -- for a component declaration which includes both cases we are
6605 -- interested in, and furthermore the tree does not have explicit
6606 -- nodes for either of these two constructs.
6608 when N_Component_Declaration
=>
6610 -- The case we want to test for here is an identifier that is
6611 -- a per-object expression, this is either a discriminant that
6612 -- appears in a context other than the component declaration
6613 -- or it is a reference to the type of the enclosing construct.
6615 -- For either of these cases, we skip the freezing
6617 if not In_Spec_Expression
6618 and then Nkind
(N
) = N_Identifier
6619 and then (Present
(Entity
(N
)))
6621 -- We recognize the discriminant case by just looking for
6622 -- a reference to a discriminant. It can only be one for
6623 -- the enclosing construct. Skip freezing in this case.
6625 if Ekind
(Entity
(N
)) = E_Discriminant
then
6628 -- For the case of a reference to the enclosing record,
6629 -- (or task or protected type), we look for a type that
6630 -- matches the current scope.
6632 elsif Entity
(N
) = Current_Scope
then
6637 -- If we have an enumeration literal that appears as the choice in
6638 -- the aggregate of an enumeration representation clause, then
6639 -- freezing does not occur (RM 13.14(10)).
6641 when N_Enumeration_Representation_Clause
=>
6643 -- The case we are looking for is an enumeration literal
6645 if (Nkind
(N
) = N_Identifier
or Nkind
(N
) = N_Character_Literal
)
6646 and then Is_Enumeration_Type
(Etype
(N
))
6648 -- If enumeration literal appears directly as the choice,
6649 -- do not freeze (this is the normal non-overloaded case)
6651 if Nkind
(Parent
(N
)) = N_Component_Association
6652 and then First
(Choices
(Parent
(N
))) = N
6656 -- If enumeration literal appears as the name of function
6657 -- which is the choice, then also do not freeze. This
6658 -- happens in the overloaded literal case, where the
6659 -- enumeration literal is temporarily changed to a function
6660 -- call for overloading analysis purposes.
6662 elsif Nkind
(Parent
(N
)) = N_Function_Call
6664 Nkind
(Parent
(Parent
(N
))) = N_Component_Association
6666 First
(Choices
(Parent
(Parent
(N
)))) = Parent
(N
)
6672 -- Normally if the parent is a handled sequence of statements,
6673 -- then the current node must be a statement, and that is an
6674 -- appropriate place to insert a freeze node.
6676 when N_Handled_Sequence_Of_Statements
=>
6678 -- An exception occurs when the sequence of statements is for
6679 -- an expander generated body that did not do the usual freeze
6680 -- all operation. In this case we usually want to freeze
6681 -- outside this body, not inside it, and we skip past the
6682 -- subprogram body that we are inside.
6684 if In_Expanded_Body
(Parent_P
) then
6686 Subp
: constant Node_Id
:= Parent
(Parent_P
);
6690 -- Freeze the entity only when it is declared inside the
6691 -- body of the expander generated procedure. This case
6692 -- is recognized by the scope of the entity or its type,
6693 -- which is either the spec for some enclosing body, or
6694 -- (in the case of init_procs, for which there are no
6695 -- separate specs) the current scope.
6697 if Nkind
(Subp
) = N_Subprogram_Body
then
6698 Spec
:= Corresponding_Spec
(Subp
);
6700 if (Present
(Typ
) and then Scope
(Typ
) = Spec
)
6702 (Present
(Nam
) and then Scope
(Nam
) = Spec
)
6707 and then Scope
(Typ
) = Current_Scope
6708 and then Defining_Entity
(Subp
) = Current_Scope
6714 -- An expression function may act as a completion of
6715 -- a function declaration. As such, it can reference
6716 -- entities declared between the two views:
6719 -- function F return ...;
6721 -- function Hidden return ...;
6722 -- function F return ... is (Hidden); -- 2
6724 -- Refering to the example above, freezing the expression
6725 -- of F (2) would place Hidden's freeze node (1) in the
6726 -- wrong place. Avoid explicit freezing and let the usual
6727 -- scenarios do the job - for example, reaching the end
6728 -- of the private declarations, or a call to F.
6730 if Nkind
(Original_Node
(Subp
)) =
6731 N_Expression_Function
6735 -- Freeze outside the body
6738 Parent_P
:= Parent
(Parent_P
);
6739 Freeze_Outside
:= True;
6743 -- Here if normal case where we are in handled statement
6744 -- sequence and want to do the insertion right there.
6750 -- If parent is a body or a spec or a block, then the current node
6751 -- is a statement or declaration and we can insert the freeze node
6754 when N_Block_Statement |
6757 N_Package_Specification |
6760 N_Task_Body
=> exit;
6762 -- The expander is allowed to define types in any statements list,
6763 -- so any of the following parent nodes also mark a freezing point
6764 -- if the actual node is in a list of statements or declarations.
6766 when N_Abortable_Part |
6767 N_Accept_Alternative |
6769 N_Case_Statement_Alternative |
6770 N_Compilation_Unit_Aux |
6771 N_Conditional_Entry_Call |
6772 N_Delay_Alternative |
6774 N_Entry_Call_Alternative |
6775 N_Exception_Handler |
6776 N_Extended_Return_Statement |
6780 N_Selective_Accept |
6781 N_Triggering_Alternative
=>
6783 exit when Is_List_Member
(P
);
6785 -- Freeze nodes produced by an expression coming from the Actions
6786 -- list of a N_Expression_With_Actions node must remain within the
6787 -- Actions list. Inserting the freeze nodes further up the tree
6788 -- may lead to use before declaration issues in the case of array
6791 when N_Expression_With_Actions
=>
6792 if Is_List_Member
(P
)
6793 and then List_Containing
(P
) = Actions
(Parent_P
)
6798 -- Note: N_Loop_Statement is a special case. A type that appears
6799 -- in the source can never be frozen in a loop (this occurs only
6800 -- because of a loop expanded by the expander), so we keep on
6801 -- going. Otherwise we terminate the search. Same is true of any
6802 -- entity which comes from source. (if they have predefined type,
6803 -- that type does not appear to come from source, but the entity
6804 -- should not be frozen here).
6806 when N_Loop_Statement
=>
6807 exit when not Comes_From_Source
(Etype
(N
))
6808 and then (No
(Nam
) or else not Comes_From_Source
(Nam
));
6810 -- For all other cases, keep looking at parents
6816 -- We fall through the case if we did not yet find the proper
6817 -- place in the free for inserting the freeze node, so climb.
6822 -- If the expression appears in a record or an initialization procedure,
6823 -- the freeze nodes are collected and attached to the current scope, to
6824 -- be inserted and analyzed on exit from the scope, to insure that
6825 -- generated entities appear in the correct scope. If the expression is
6826 -- a default for a discriminant specification, the scope is still void.
6827 -- The expression can also appear in the discriminant part of a private
6828 -- or concurrent type.
6830 -- If the expression appears in a constrained subcomponent of an
6831 -- enclosing record declaration, the freeze nodes must be attached to
6832 -- the outer record type so they can eventually be placed in the
6833 -- enclosing declaration list.
6835 -- The other case requiring this special handling is if we are in a
6836 -- default expression, since in that case we are about to freeze a
6837 -- static type, and the freeze scope needs to be the outer scope, not
6838 -- the scope of the subprogram with the default parameter.
6840 -- For default expressions and other spec expressions in generic units,
6841 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
6842 -- placing them at the proper place, after the generic unit.
6844 if (In_Spec_Exp
and not Inside_A_Generic
)
6845 or else Freeze_Outside
6846 or else (Is_Type
(Current_Scope
)
6847 and then (not Is_Concurrent_Type
(Current_Scope
)
6848 or else not Has_Completion
(Current_Scope
)))
6849 or else Ekind
(Current_Scope
) = E_Void
6852 N
: constant Node_Id
:= Current_Scope
;
6853 Freeze_Nodes
: List_Id
:= No_List
;
6854 Pos
: Int
:= Scope_Stack
.Last
;
6857 if Present
(Desig_Typ
) then
6858 Freeze_And_Append
(Desig_Typ
, N
, Freeze_Nodes
);
6861 if Present
(Typ
) then
6862 Freeze_And_Append
(Typ
, N
, Freeze_Nodes
);
6865 if Present
(Nam
) then
6866 Freeze_And_Append
(Nam
, N
, Freeze_Nodes
);
6869 -- The current scope may be that of a constrained component of
6870 -- an enclosing record declaration, or of a loop of an enclosing
6871 -- quantified expression, which is above the current scope in the
6872 -- scope stack. Indeed in the context of a quantified expression,
6873 -- a scope is created and pushed above the current scope in order
6874 -- to emulate the loop-like behavior of the quantified expression.
6875 -- If the expression is within a top-level pragma, as for a pre-
6876 -- condition on a library-level subprogram, nothing to do.
6878 if not Is_Compilation_Unit
(Current_Scope
)
6879 and then (Is_Record_Type
(Scope
(Current_Scope
))
6880 or else Nkind
(Parent
(Current_Scope
)) =
6881 N_Quantified_Expression
)
6886 if Is_Non_Empty_List
(Freeze_Nodes
) then
6887 if No
(Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
) then
6888 Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
:=
6891 Append_List
(Freeze_Nodes
,
6892 Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
);
6900 -- Now we have the right place to do the freezing. First, a special
6901 -- adjustment, if we are in spec-expression analysis mode, these freeze
6902 -- actions must not be thrown away (normally all inserted actions are
6903 -- thrown away in this mode. However, the freeze actions are from static
6904 -- expressions and one of the important reasons we are doing this
6905 -- special analysis is to get these freeze actions. Therefore we turn
6906 -- off the In_Spec_Expression mode to propagate these freeze actions.
6907 -- This also means they get properly analyzed and expanded.
6909 In_Spec_Expression
:= False;
6911 -- Freeze the designated type of an allocator (RM 13.14(13))
6913 if Present
(Desig_Typ
) then
6914 Freeze_Before
(P
, Desig_Typ
);
6917 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
6918 -- the enumeration representation clause exception in the loop above.
6920 if Present
(Typ
) then
6921 Freeze_Before
(P
, Typ
);
6924 -- Freeze name if one is present (RM 13.14(11))
6926 if Present
(Nam
) then
6927 Freeze_Before
(P
, Nam
);
6930 -- Restore In_Spec_Expression flag
6932 In_Spec_Expression
:= In_Spec_Exp
;
6933 end Freeze_Expression
;
6935 -----------------------------
6936 -- Freeze_Fixed_Point_Type --
6937 -----------------------------
6939 -- Certain fixed-point types and subtypes, including implicit base types
6940 -- and declared first subtypes, have not yet set up a range. This is
6941 -- because the range cannot be set until the Small and Size values are
6942 -- known, and these are not known till the type is frozen.
6944 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
6945 -- whose bounds are unanalyzed real literals. This routine will recognize
6946 -- this case, and transform this range node into a properly typed range
6947 -- with properly analyzed and resolved values.
6949 procedure Freeze_Fixed_Point_Type
(Typ
: Entity_Id
) is
6950 Rng
: constant Node_Id
:= Scalar_Range
(Typ
);
6951 Lo
: constant Node_Id
:= Low_Bound
(Rng
);
6952 Hi
: constant Node_Id
:= High_Bound
(Rng
);
6953 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
6954 Brng
: constant Node_Id
:= Scalar_Range
(Btyp
);
6955 BLo
: constant Node_Id
:= Low_Bound
(Brng
);
6956 BHi
: constant Node_Id
:= High_Bound
(Brng
);
6957 Small
: constant Ureal
:= Small_Value
(Typ
);
6964 -- Save original bounds (for shaving tests)
6967 -- Actual size chosen
6969 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
;
6970 -- Returns size of type with given bounds. Also leaves these
6971 -- bounds set as the current bounds of the Typ.
6977 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
is
6979 Set_Realval
(Lo
, Lov
);
6980 Set_Realval
(Hi
, Hiv
);
6981 return Minimum_Size
(Typ
);
6984 -- Start of processing for Freeze_Fixed_Point_Type
6987 -- If Esize of a subtype has not previously been set, set it now
6989 if Unknown_Esize
(Typ
) then
6990 Atype
:= Ancestor_Subtype
(Typ
);
6992 if Present
(Atype
) then
6993 Set_Esize
(Typ
, Esize
(Atype
));
6995 Set_Esize
(Typ
, Esize
(Base_Type
(Typ
)));
6999 -- Immediate return if the range is already analyzed. This means that
7000 -- the range is already set, and does not need to be computed by this
7003 if Analyzed
(Rng
) then
7007 -- Immediate return if either of the bounds raises Constraint_Error
7009 if Raises_Constraint_Error
(Lo
)
7010 or else Raises_Constraint_Error
(Hi
)
7015 Loval
:= Realval
(Lo
);
7016 Hival
:= Realval
(Hi
);
7021 -- Ordinary fixed-point case
7023 if Is_Ordinary_Fixed_Point_Type
(Typ
) then
7025 -- For the ordinary fixed-point case, we are allowed to fudge the
7026 -- end-points up or down by small. Generally we prefer to fudge up,
7027 -- i.e. widen the bounds for non-model numbers so that the end points
7028 -- are included. However there are cases in which this cannot be
7029 -- done, and indeed cases in which we may need to narrow the bounds.
7030 -- The following circuit makes the decision.
7032 -- Note: our terminology here is that Incl_EP means that the bounds
7033 -- are widened by Small if necessary to include the end points, and
7034 -- Excl_EP means that the bounds are narrowed by Small to exclude the
7035 -- end-points if this reduces the size.
7037 -- Note that in the Incl case, all we care about is including the
7038 -- end-points. In the Excl case, we want to narrow the bounds as
7039 -- much as permitted by the RM, to give the smallest possible size.
7042 Loval_Incl_EP
: Ureal
;
7043 Hival_Incl_EP
: Ureal
;
7045 Loval_Excl_EP
: Ureal
;
7046 Hival_Excl_EP
: Ureal
;
7052 First_Subt
: Entity_Id
;
7057 -- First step. Base types are required to be symmetrical. Right
7058 -- now, the base type range is a copy of the first subtype range.
7059 -- This will be corrected before we are done, but right away we
7060 -- need to deal with the case where both bounds are non-negative.
7061 -- In this case, we set the low bound to the negative of the high
7062 -- bound, to make sure that the size is computed to include the
7063 -- required sign. Note that we do not need to worry about the
7064 -- case of both bounds negative, because the sign will be dealt
7065 -- with anyway. Furthermore we can't just go making such a bound
7066 -- symmetrical, since in a twos-complement system, there is an
7067 -- extra negative value which could not be accommodated on the
7071 and then not UR_Is_Negative
(Loval
)
7072 and then Hival
> Loval
7075 Set_Realval
(Lo
, Loval
);
7078 -- Compute the fudged bounds. If the number is a model number,
7079 -- then we do nothing to include it, but we are allowed to backoff
7080 -- to the next adjacent model number when we exclude it. If it is
7081 -- not a model number then we straddle the two values with the
7082 -- model numbers on either side.
7084 Model_Num
:= UR_Trunc
(Loval
/ Small
) * Small
;
7086 if Loval
= Model_Num
then
7087 Loval_Incl_EP
:= Model_Num
;
7089 Loval_Incl_EP
:= Model_Num
- Small
;
7092 -- The low value excluding the end point is Small greater, but
7093 -- we do not do this exclusion if the low value is positive,
7094 -- since it can't help the size and could actually hurt by
7095 -- crossing the high bound.
7097 if UR_Is_Negative
(Loval_Incl_EP
) then
7098 Loval_Excl_EP
:= Loval_Incl_EP
+ Small
;
7100 -- If the value went from negative to zero, then we have the
7101 -- case where Loval_Incl_EP is the model number just below
7102 -- zero, so we want to stick to the negative value for the
7103 -- base type to maintain the condition that the size will
7104 -- include signed values.
7107 and then UR_Is_Zero
(Loval_Excl_EP
)
7109 Loval_Excl_EP
:= Loval_Incl_EP
;
7113 Loval_Excl_EP
:= Loval_Incl_EP
;
7116 -- Similar processing for upper bound and high value
7118 Model_Num
:= UR_Trunc
(Hival
/ Small
) * Small
;
7120 if Hival
= Model_Num
then
7121 Hival_Incl_EP
:= Model_Num
;
7123 Hival_Incl_EP
:= Model_Num
+ Small
;
7126 if UR_Is_Positive
(Hival_Incl_EP
) then
7127 Hival_Excl_EP
:= Hival_Incl_EP
- Small
;
7129 Hival_Excl_EP
:= Hival_Incl_EP
;
7132 -- One further adjustment is needed. In the case of subtypes, we
7133 -- cannot go outside the range of the base type, or we get
7134 -- peculiarities, and the base type range is already set. This
7135 -- only applies to the Incl values, since clearly the Excl values
7136 -- are already as restricted as they are allowed to be.
7139 Loval_Incl_EP
:= UR_Max
(Loval_Incl_EP
, Realval
(BLo
));
7140 Hival_Incl_EP
:= UR_Min
(Hival_Incl_EP
, Realval
(BHi
));
7143 -- Get size including and excluding end points
7145 Size_Incl_EP
:= Fsize
(Loval_Incl_EP
, Hival_Incl_EP
);
7146 Size_Excl_EP
:= Fsize
(Loval_Excl_EP
, Hival_Excl_EP
);
7148 -- No need to exclude end-points if it does not reduce size
7150 if Fsize
(Loval_Incl_EP
, Hival_Excl_EP
) = Size_Excl_EP
then
7151 Loval_Excl_EP
:= Loval_Incl_EP
;
7154 if Fsize
(Loval_Excl_EP
, Hival_Incl_EP
) = Size_Excl_EP
then
7155 Hival_Excl_EP
:= Hival_Incl_EP
;
7158 -- Now we set the actual size to be used. We want to use the
7159 -- bounds fudged up to include the end-points but only if this
7160 -- can be done without violating a specifically given size
7161 -- size clause or causing an unacceptable increase in size.
7163 -- Case of size clause given
7165 if Has_Size_Clause
(Typ
) then
7167 -- Use the inclusive size only if it is consistent with
7168 -- the explicitly specified size.
7170 if Size_Incl_EP
<= RM_Size
(Typ
) then
7171 Actual_Lo
:= Loval_Incl_EP
;
7172 Actual_Hi
:= Hival_Incl_EP
;
7173 Actual_Size
:= Size_Incl_EP
;
7175 -- If the inclusive size is too large, we try excluding
7176 -- the end-points (will be caught later if does not work).
7179 Actual_Lo
:= Loval_Excl_EP
;
7180 Actual_Hi
:= Hival_Excl_EP
;
7181 Actual_Size
:= Size_Excl_EP
;
7184 -- Case of size clause not given
7187 -- If we have a base type whose corresponding first subtype
7188 -- has an explicit size that is large enough to include our
7189 -- end-points, then do so. There is no point in working hard
7190 -- to get a base type whose size is smaller than the specified
7191 -- size of the first subtype.
7193 First_Subt
:= First_Subtype
(Typ
);
7195 if Has_Size_Clause
(First_Subt
)
7196 and then Size_Incl_EP
<= Esize
(First_Subt
)
7198 Actual_Size
:= Size_Incl_EP
;
7199 Actual_Lo
:= Loval_Incl_EP
;
7200 Actual_Hi
:= Hival_Incl_EP
;
7202 -- If excluding the end-points makes the size smaller and
7203 -- results in a size of 8,16,32,64, then we take the smaller
7204 -- size. For the 64 case, this is compulsory. For the other
7205 -- cases, it seems reasonable. We like to include end points
7206 -- if we can, but not at the expense of moving to the next
7207 -- natural boundary of size.
7209 elsif Size_Incl_EP
/= Size_Excl_EP
7210 and then Addressable
(Size_Excl_EP
)
7212 Actual_Size
:= Size_Excl_EP
;
7213 Actual_Lo
:= Loval_Excl_EP
;
7214 Actual_Hi
:= Hival_Excl_EP
;
7216 -- Otherwise we can definitely include the end points
7219 Actual_Size
:= Size_Incl_EP
;
7220 Actual_Lo
:= Loval_Incl_EP
;
7221 Actual_Hi
:= Hival_Incl_EP
;
7224 -- One pathological case: normally we never fudge a low bound
7225 -- down, since it would seem to increase the size (if it has
7226 -- any effect), but for ranges containing single value, or no
7227 -- values, the high bound can be small too large. Consider:
7229 -- type t is delta 2.0**(-14)
7230 -- range 131072.0 .. 0;
7232 -- That lower bound is *just* outside the range of 32 bits, and
7233 -- does need fudging down in this case. Note that the bounds
7234 -- will always have crossed here, since the high bound will be
7235 -- fudged down if necessary, as in the case of:
7237 -- type t is delta 2.0**(-14)
7238 -- range 131072.0 .. 131072.0;
7240 -- So we detect the situation by looking for crossed bounds,
7241 -- and if the bounds are crossed, and the low bound is greater
7242 -- than zero, we will always back it off by small, since this
7243 -- is completely harmless.
7245 if Actual_Lo
> Actual_Hi
then
7246 if UR_Is_Positive
(Actual_Lo
) then
7247 Actual_Lo
:= Loval_Incl_EP
- Small
;
7248 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
7250 -- And of course, we need to do exactly the same parallel
7251 -- fudge for flat ranges in the negative region.
7253 elsif UR_Is_Negative
(Actual_Hi
) then
7254 Actual_Hi
:= Hival_Incl_EP
+ Small
;
7255 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
7260 Set_Realval
(Lo
, Actual_Lo
);
7261 Set_Realval
(Hi
, Actual_Hi
);
7264 -- For the decimal case, none of this fudging is required, since there
7265 -- are no end-point problems in the decimal case (the end-points are
7266 -- always included).
7269 Actual_Size
:= Fsize
(Loval
, Hival
);
7272 -- At this stage, the actual size has been calculated and the proper
7273 -- required bounds are stored in the low and high bounds.
7275 if Actual_Size
> 64 then
7276 Error_Msg_Uint_1
:= UI_From_Int
(Actual_Size
);
7278 ("size required (^) for type& too large, maximum allowed is 64",
7283 -- Check size against explicit given size
7285 if Has_Size_Clause
(Typ
) then
7286 if Actual_Size
> RM_Size
(Typ
) then
7287 Error_Msg_Uint_1
:= RM_Size
(Typ
);
7288 Error_Msg_Uint_2
:= UI_From_Int
(Actual_Size
);
7290 ("size given (^) for type& too small, minimum allowed is ^",
7291 Size_Clause
(Typ
), Typ
);
7294 Actual_Size
:= UI_To_Int
(Esize
(Typ
));
7297 -- Increase size to next natural boundary if no size clause given
7300 if Actual_Size
<= 8 then
7302 elsif Actual_Size
<= 16 then
7304 elsif Actual_Size
<= 32 then
7310 Init_Esize
(Typ
, Actual_Size
);
7311 Adjust_Esize_For_Alignment
(Typ
);
7314 -- If we have a base type, then expand the bounds so that they extend to
7315 -- the full width of the allocated size in bits, to avoid junk range
7316 -- checks on intermediate computations.
7318 if Base_Type
(Typ
) = Typ
then
7319 Set_Realval
(Lo
, -(Small
* (Uint_2
** (Actual_Size
- 1))));
7320 Set_Realval
(Hi
, (Small
* (Uint_2
** (Actual_Size
- 1) - 1)));
7323 -- Final step is to reanalyze the bounds using the proper type
7324 -- and set the Corresponding_Integer_Value fields of the literals.
7326 Set_Etype
(Lo
, Empty
);
7327 Set_Analyzed
(Lo
, False);
7330 -- Resolve with universal fixed if the base type, and the base type if
7331 -- it is a subtype. Note we can't resolve the base type with itself,
7332 -- that would be a reference before definition.
7335 Resolve
(Lo
, Universal_Fixed
);
7340 -- Set corresponding integer value for bound
7342 Set_Corresponding_Integer_Value
7343 (Lo
, UR_To_Uint
(Realval
(Lo
) / Small
));
7345 -- Similar processing for high bound
7347 Set_Etype
(Hi
, Empty
);
7348 Set_Analyzed
(Hi
, False);
7352 Resolve
(Hi
, Universal_Fixed
);
7357 Set_Corresponding_Integer_Value
7358 (Hi
, UR_To_Uint
(Realval
(Hi
) / Small
));
7360 -- Set type of range to correspond to bounds
7362 Set_Etype
(Rng
, Etype
(Lo
));
7364 -- Set Esize to calculated size if not set already
7366 if Unknown_Esize
(Typ
) then
7367 Init_Esize
(Typ
, Actual_Size
);
7370 -- Set RM_Size if not already set. If already set, check value
7373 Minsiz
: constant Uint
:= UI_From_Int
(Minimum_Size
(Typ
));
7376 if RM_Size
(Typ
) /= Uint_0
then
7377 if RM_Size
(Typ
) < Minsiz
then
7378 Error_Msg_Uint_1
:= RM_Size
(Typ
);
7379 Error_Msg_Uint_2
:= Minsiz
;
7381 ("size given (^) for type& too small, minimum allowed is ^",
7382 Size_Clause
(Typ
), Typ
);
7386 Set_RM_Size
(Typ
, Minsiz
);
7390 -- Check for shaving
7392 if Comes_From_Source
(Typ
) then
7393 if Orig_Lo
< Expr_Value_R
(Lo
) then
7395 ("declared low bound of type & is outside type range??", Typ
);
7397 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ
);
7400 if Orig_Hi
> Expr_Value_R
(Hi
) then
7402 ("declared high bound of type & is outside type range??", Typ
);
7404 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ
);
7407 end Freeze_Fixed_Point_Type
;
7413 procedure Freeze_Itype
(T
: Entity_Id
; N
: Node_Id
) is
7417 Set_Has_Delayed_Freeze
(T
);
7418 L
:= Freeze_Entity
(T
, N
);
7420 if Is_Non_Empty_List
(L
) then
7421 Insert_Actions
(N
, L
);
7425 --------------------------
7426 -- Freeze_Static_Object --
7427 --------------------------
7429 procedure Freeze_Static_Object
(E
: Entity_Id
) is
7431 Cannot_Be_Static
: exception;
7432 -- Exception raised if the type of a static object cannot be made
7433 -- static. This happens if the type depends on non-global objects.
7435 procedure Ensure_Expression_Is_SA
(N
: Node_Id
);
7436 -- Called to ensure that an expression used as part of a type definition
7437 -- is statically allocatable, which means that the expression type is
7438 -- statically allocatable, and the expression is either static, or a
7439 -- reference to a library level constant.
7441 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
);
7442 -- Called to mark a type as static, checking that it is possible
7443 -- to set the type as static. If it is not possible, then the
7444 -- exception Cannot_Be_Static is raised.
7446 -----------------------------
7447 -- Ensure_Expression_Is_SA --
7448 -----------------------------
7450 procedure Ensure_Expression_Is_SA
(N
: Node_Id
) is
7454 Ensure_Type_Is_SA
(Etype
(N
));
7456 if Is_OK_Static_Expression
(N
) then
7459 elsif Nkind
(N
) = N_Identifier
then
7463 and then Ekind
(Ent
) = E_Constant
7464 and then Is_Library_Level_Entity
(Ent
)
7470 raise Cannot_Be_Static
;
7471 end Ensure_Expression_Is_SA
;
7473 -----------------------
7474 -- Ensure_Type_Is_SA --
7475 -----------------------
7477 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
) is
7482 -- If type is library level, we are all set
7484 if Is_Library_Level_Entity
(Typ
) then
7488 -- We are also OK if the type already marked as statically allocated,
7489 -- which means we processed it before.
7491 if Is_Statically_Allocated
(Typ
) then
7495 -- Mark type as statically allocated
7497 Set_Is_Statically_Allocated
(Typ
);
7499 -- Check that it is safe to statically allocate this type
7501 if Is_Scalar_Type
(Typ
) or else Is_Real_Type
(Typ
) then
7502 Ensure_Expression_Is_SA
(Type_Low_Bound
(Typ
));
7503 Ensure_Expression_Is_SA
(Type_High_Bound
(Typ
));
7505 elsif Is_Array_Type
(Typ
) then
7506 N
:= First_Index
(Typ
);
7507 while Present
(N
) loop
7508 Ensure_Type_Is_SA
(Etype
(N
));
7512 Ensure_Type_Is_SA
(Component_Type
(Typ
));
7514 elsif Is_Access_Type
(Typ
) then
7515 if Ekind
(Designated_Type
(Typ
)) = E_Subprogram_Type
then
7519 T
: constant Entity_Id
:= Etype
(Designated_Type
(Typ
));
7522 if T
/= Standard_Void_Type
then
7523 Ensure_Type_Is_SA
(T
);
7526 F
:= First_Formal
(Designated_Type
(Typ
));
7527 while Present
(F
) loop
7528 Ensure_Type_Is_SA
(Etype
(F
));
7534 Ensure_Type_Is_SA
(Designated_Type
(Typ
));
7537 elsif Is_Record_Type
(Typ
) then
7538 C
:= First_Entity
(Typ
);
7539 while Present
(C
) loop
7540 if Ekind
(C
) = E_Discriminant
7541 or else Ekind
(C
) = E_Component
7543 Ensure_Type_Is_SA
(Etype
(C
));
7545 elsif Is_Type
(C
) then
7546 Ensure_Type_Is_SA
(C
);
7552 elsif Ekind
(Typ
) = E_Subprogram_Type
then
7553 Ensure_Type_Is_SA
(Etype
(Typ
));
7555 C
:= First_Formal
(Typ
);
7556 while Present
(C
) loop
7557 Ensure_Type_Is_SA
(Etype
(C
));
7562 raise Cannot_Be_Static
;
7564 end Ensure_Type_Is_SA
;
7566 -- Start of processing for Freeze_Static_Object
7569 Ensure_Type_Is_SA
(Etype
(E
));
7572 when Cannot_Be_Static
=>
7574 -- If the object that cannot be static is imported or exported, then
7575 -- issue an error message saying that this object cannot be imported
7576 -- or exported. If it has an address clause it is an overlay in the
7577 -- current partition and the static requirement is not relevant.
7578 -- Do not issue any error message when ignoring rep clauses.
7580 if Ignore_Rep_Clauses
then
7583 elsif Is_Imported
(E
) then
7584 if No
(Address_Clause
(E
)) then
7586 ("& cannot be imported (local type is not constant)", E
);
7589 -- Otherwise must be exported, something is wrong if compiler
7590 -- is marking something as statically allocated which cannot be).
7592 else pragma Assert
(Is_Exported
(E
));
7594 ("& cannot be exported (local type is not constant)", E
);
7596 end Freeze_Static_Object
;
7598 -----------------------
7599 -- Freeze_Subprogram --
7600 -----------------------
7602 procedure Freeze_Subprogram
(E
: Entity_Id
) is
7607 -- Subprogram may not have an address clause unless it is imported
7609 if Present
(Address_Clause
(E
)) then
7610 if not Is_Imported
(E
) then
7612 ("address clause can only be given " &
7613 "for imported subprogram",
7614 Name
(Address_Clause
(E
)));
7618 -- Reset the Pure indication on an imported subprogram unless an
7619 -- explicit Pure_Function pragma was present or the subprogram is an
7620 -- intrinsic. We do this because otherwise it is an insidious error
7621 -- to call a non-pure function from pure unit and have calls
7622 -- mysteriously optimized away. What happens here is that the Import
7623 -- can bypass the normal check to ensure that pure units call only pure
7626 -- The reason for the intrinsic exception is that in general, intrinsic
7627 -- functions (such as shifts) are pure anyway. The only exceptions are
7628 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
7629 -- in any case, so no problem arises.
7632 and then Is_Pure
(E
)
7633 and then not Has_Pragma_Pure_Function
(E
)
7634 and then not Is_Intrinsic_Subprogram
(E
)
7636 Set_Is_Pure
(E
, False);
7639 -- For non-foreign convention subprograms, this is where we create
7640 -- the extra formals (for accessibility level and constrained bit
7641 -- information). We delay this till the freeze point precisely so
7642 -- that we know the convention.
7644 if not Has_Foreign_Convention
(E
) then
7645 Create_Extra_Formals
(E
);
7648 -- If this is convention Ada and a Valued_Procedure, that's odd
7650 if Ekind
(E
) = E_Procedure
7651 and then Is_Valued_Procedure
(E
)
7652 and then Convention
(E
) = Convention_Ada
7653 and then Warn_On_Export_Import
7656 ("??Valued_Procedure has no effect for convention Ada", E
);
7657 Set_Is_Valued_Procedure
(E
, False);
7660 -- Case of foreign convention
7665 -- For foreign conventions, warn about return of unconstrained array
7667 if Ekind
(E
) = E_Function
then
7668 Retype
:= Underlying_Type
(Etype
(E
));
7670 -- If no return type, probably some other error, e.g. a
7671 -- missing full declaration, so ignore.
7676 -- If the return type is generic, we have emitted a warning
7677 -- earlier on, and there is nothing else to check here. Specific
7678 -- instantiations may lead to erroneous behavior.
7680 elsif Is_Generic_Type
(Etype
(E
)) then
7683 -- Display warning if returning unconstrained array
7685 elsif Is_Array_Type
(Retype
)
7686 and then not Is_Constrained
(Retype
)
7688 -- Check appropriate warning is enabled (should we check for
7689 -- Warnings (Off) on specific entities here, probably so???)
7691 and then Warn_On_Export_Import
7693 -- Exclude the VM case, since return of unconstrained arrays
7694 -- is properly handled in both the JVM and .NET cases.
7696 and then VM_Target
= No_VM
7699 ("?x?foreign convention function& should not return " &
7700 "unconstrained array", E
);
7705 -- If any of the formals for an exported foreign convention
7706 -- subprogram have defaults, then emit an appropriate warning since
7707 -- this is odd (default cannot be used from non-Ada code)
7709 if Is_Exported
(E
) then
7710 F
:= First_Formal
(E
);
7711 while Present
(F
) loop
7712 if Warn_On_Export_Import
7713 and then Present
(Default_Value
(F
))
7716 ("?x?parameter cannot be defaulted in non-Ada call",
7725 -- Pragma Inline_Always is disallowed for dispatching subprograms
7726 -- because the address of such subprograms is saved in the dispatch
7727 -- table to support dispatching calls, and dispatching calls cannot
7728 -- be inlined. This is consistent with the restriction against using
7729 -- 'Access or 'Address on an Inline_Always subprogram.
7731 if Is_Dispatching_Operation
(E
)
7732 and then Has_Pragma_Inline_Always
(E
)
7735 ("pragma Inline_Always not allowed for dispatching subprograms", E
);
7738 -- Because of the implicit representation of inherited predefined
7739 -- operators in the front-end, the overriding status of the operation
7740 -- may be affected when a full view of a type is analyzed, and this is
7741 -- not captured by the analysis of the corresponding type declaration.
7742 -- Therefore the correctness of a not-overriding indicator must be
7743 -- rechecked when the subprogram is frozen.
7745 if Nkind
(E
) = N_Defining_Operator_Symbol
7746 and then not Error_Posted
(Parent
(E
))
7748 Check_Overriding_Indicator
(E
, Empty
, Is_Primitive
(E
));
7750 end Freeze_Subprogram
;
7752 ----------------------
7753 -- Is_Fully_Defined --
7754 ----------------------
7756 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean is
7758 if Ekind
(T
) = E_Class_Wide_Type
then
7759 return Is_Fully_Defined
(Etype
(T
));
7761 elsif Is_Array_Type
(T
) then
7762 return Is_Fully_Defined
(Component_Type
(T
));
7764 elsif Is_Record_Type
(T
)
7765 and not Is_Private_Type
(T
)
7767 -- Verify that the record type has no components with private types
7768 -- without completion.
7774 Comp
:= First_Component
(T
);
7775 while Present
(Comp
) loop
7776 if not Is_Fully_Defined
(Etype
(Comp
)) then
7780 Next_Component
(Comp
);
7785 -- For the designated type of an access to subprogram, all types in
7786 -- the profile must be fully defined.
7788 elsif Ekind
(T
) = E_Subprogram_Type
then
7793 F
:= First_Formal
(T
);
7794 while Present
(F
) loop
7795 if not Is_Fully_Defined
(Etype
(F
)) then
7802 return Is_Fully_Defined
(Etype
(T
));
7806 return not Is_Private_Type
(T
)
7807 or else Present
(Full_View
(Base_Type
(T
)));
7809 end Is_Fully_Defined
;
7811 ---------------------------------
7812 -- Process_Default_Expressions --
7813 ---------------------------------
7815 procedure Process_Default_Expressions
7817 After
: in out Node_Id
)
7819 Loc
: constant Source_Ptr
:= Sloc
(E
);
7826 Set_Default_Expressions_Processed
(E
);
7828 -- A subprogram instance and its associated anonymous subprogram share
7829 -- their signature. The default expression functions are defined in the
7830 -- wrapper packages for the anonymous subprogram, and should not be
7831 -- generated again for the instance.
7833 if Is_Generic_Instance
(E
)
7834 and then Present
(Alias
(E
))
7835 and then Default_Expressions_Processed
(Alias
(E
))
7840 Formal
:= First_Formal
(E
);
7841 while Present
(Formal
) loop
7842 if Present
(Default_Value
(Formal
)) then
7844 -- We work with a copy of the default expression because we
7845 -- do not want to disturb the original, since this would mess
7846 -- up the conformance checking.
7848 Dcopy
:= New_Copy_Tree
(Default_Value
(Formal
));
7850 -- The analysis of the expression may generate insert actions,
7851 -- which of course must not be executed. We wrap those actions
7852 -- in a procedure that is not called, and later on eliminated.
7853 -- The following cases have no side-effects, and are analyzed
7856 if Nkind
(Dcopy
) = N_Identifier
7857 or else Nkind_In
(Dcopy
, N_Expanded_Name
,
7859 N_Character_Literal
,
7862 or else (Nkind
(Dcopy
) = N_Attribute_Reference
7863 and then Attribute_Name
(Dcopy
) = Name_Null_Parameter
)
7864 or else Known_Null
(Dcopy
)
7866 -- If there is no default function, we must still do a full
7867 -- analyze call on the default value, to ensure that all error
7868 -- checks are performed, e.g. those associated with static
7869 -- evaluation. Note: this branch will always be taken if the
7870 -- analyzer is turned off (but we still need the error checks).
7872 -- Note: the setting of parent here is to meet the requirement
7873 -- that we can only analyze the expression while attached to
7874 -- the tree. Really the requirement is that the parent chain
7875 -- be set, we don't actually need to be in the tree.
7877 Set_Parent
(Dcopy
, Declaration_Node
(Formal
));
7880 -- Default expressions are resolved with their own type if the
7881 -- context is generic, to avoid anomalies with private types.
7883 if Ekind
(Scope
(E
)) = E_Generic_Package
then
7886 Resolve
(Dcopy
, Etype
(Formal
));
7889 -- If that resolved expression will raise constraint error,
7890 -- then flag the default value as raising constraint error.
7891 -- This allows a proper error message on the calls.
7893 if Raises_Constraint_Error
(Dcopy
) then
7894 Set_Raises_Constraint_Error
(Default_Value
(Formal
));
7897 -- If the default is a parameterless call, we use the name of
7898 -- the called function directly, and there is no body to build.
7900 elsif Nkind
(Dcopy
) = N_Function_Call
7901 and then No
(Parameter_Associations
(Dcopy
))
7905 -- Else construct and analyze the body of a wrapper procedure
7906 -- that contains an object declaration to hold the expression.
7907 -- Given that this is done only to complete the analysis, it
7908 -- simpler to build a procedure than a function which might
7909 -- involve secondary stack expansion.
7912 Dnam
:= Make_Temporary
(Loc
, 'D');
7915 Make_Subprogram_Body
(Loc
,
7917 Make_Procedure_Specification
(Loc
,
7918 Defining_Unit_Name
=> Dnam
),
7920 Declarations
=> New_List
(
7921 Make_Object_Declaration
(Loc
,
7922 Defining_Identifier
=> Make_Temporary
(Loc
, 'T'),
7923 Object_Definition
=>
7924 New_Occurrence_Of
(Etype
(Formal
), Loc
),
7925 Expression
=> New_Copy_Tree
(Dcopy
))),
7927 Handled_Statement_Sequence
=>
7928 Make_Handled_Sequence_Of_Statements
(Loc
,
7929 Statements
=> Empty_List
));
7931 Set_Scope
(Dnam
, Scope
(E
));
7932 Set_Assignment_OK
(First
(Declarations
(Dbody
)));
7933 Set_Is_Eliminated
(Dnam
);
7934 Insert_After
(After
, Dbody
);
7940 Next_Formal
(Formal
);
7942 end Process_Default_Expressions
;
7944 ----------------------------------------
7945 -- Set_Component_Alignment_If_Not_Set --
7946 ----------------------------------------
7948 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
) is
7950 -- Ignore if not base type, subtypes don't need anything
7952 if Typ
/= Base_Type
(Typ
) then
7956 -- Do not override existing representation
7958 if Is_Packed
(Typ
) then
7961 elsif Has_Specified_Layout
(Typ
) then
7964 elsif Component_Alignment
(Typ
) /= Calign_Default
then
7968 Set_Component_Alignment
7969 (Typ
, Scope_Stack
.Table
7970 (Scope_Stack
.Last
).Component_Alignment_Default
);
7972 end Set_Component_Alignment_If_Not_Set
;
7974 --------------------------
7975 -- Set_SSO_From_Default --
7976 --------------------------
7978 procedure Set_SSO_From_Default
(T
: Entity_Id
) is
7982 -- Set default SSO for an array or record base type, except in case of
7983 -- a type extension (which always inherits the SSO of its parent type).
7986 and then (Is_Array_Type
(T
)
7987 or else (Is_Record_Type
(T
)
7988 and then not (Is_Tagged_Type
(T
)
7989 and then Is_Derived_Type
(T
))))
7992 (Bytes_Big_Endian
and then SSO_Set_Low_By_Default
(T
))
7994 (not Bytes_Big_Endian
and then SSO_Set_High_By_Default
(T
));
7996 if (SSO_Set_Low_By_Default
(T
) or else SSO_Set_High_By_Default
(T
))
7998 -- For a record type, if bit order is specified explicitly,
7999 -- then do not set SSO from default if not consistent. Note that
8000 -- we do not want to look at a Bit_Order attribute definition
8001 -- for a parent: if we were to inherit Bit_Order, then both
8002 -- SSO_Set_*_By_Default flags would have been cleared already
8003 -- (by Inherit_Aspects_At_Freeze_Point).
8008 Has_Rep_Item
(T
, Name_Bit_Order
, Check_Parents
=> False)
8009 and then Reverse_Bit_Order
(T
) /= Reversed
)
8011 -- If flags cause reverse storage order, then set the result. Note
8012 -- that we would have ignored the pragma setting the non default
8013 -- storage order in any case, hence the assertion at this point.
8016 (not Reversed
or else Support_Nondefault_SSO_On_Target
);
8018 Set_Reverse_Storage_Order
(T
, Reversed
);
8020 -- For a record type, also set reversed bit order. Note: if a bit
8021 -- order has been specified explicitly, then this is a no-op.
8023 if Is_Record_Type
(T
) then
8024 Set_Reverse_Bit_Order
(T
, Reversed
);
8028 end Set_SSO_From_Default
;
8034 procedure Undelay_Type
(T
: Entity_Id
) is
8036 Set_Has_Delayed_Freeze
(T
, False);
8037 Set_Freeze_Node
(T
, Empty
);
8039 -- Since we don't want T to have a Freeze_Node, we don't want its
8040 -- Full_View or Corresponding_Record_Type to have one either.
8042 -- ??? Fundamentally, this whole handling is unpleasant. What we really
8043 -- want is to be sure that for an Itype that's part of record R and is a
8044 -- subtype of type T, that it's frozen after the later of the freeze
8045 -- points of R and T. We have no way of doing that directly, so what we
8046 -- do is force most such Itypes to be frozen as part of freezing R via
8047 -- this procedure and only delay the ones that need to be delayed
8048 -- (mostly the designated types of access types that are defined as part
8051 if Is_Private_Type
(T
)
8052 and then Present
(Full_View
(T
))
8053 and then Is_Itype
(Full_View
(T
))
8054 and then Is_Record_Type
(Scope
(Full_View
(T
)))
8056 Undelay_Type
(Full_View
(T
));
8059 if Is_Concurrent_Type
(T
)
8060 and then Present
(Corresponding_Record_Type
(T
))
8061 and then Is_Itype
(Corresponding_Record_Type
(T
))
8062 and then Is_Record_Type
(Scope
(Corresponding_Record_Type
(T
)))
8064 Undelay_Type
(Corresponding_Record_Type
(T
));
8072 procedure Warn_Overlay
8077 Ent
: constant Entity_Id
:= Entity
(Nam
);
8078 -- The object to which the address clause applies
8081 Old
: Entity_Id
:= Empty
;
8085 -- No warning if address clause overlay warnings are off
8087 if not Address_Clause_Overlay_Warnings
then
8091 -- No warning if there is an explicit initialization
8093 Init
:= Original_Node
(Expression
(Declaration_Node
(Ent
)));
8095 if Present
(Init
) and then Comes_From_Source
(Init
) then
8099 -- We only give the warning for non-imported entities of a type for
8100 -- which a non-null base init proc is defined, or for objects of access
8101 -- types with implicit null initialization, or when Normalize_Scalars
8102 -- applies and the type is scalar or a string type (the latter being
8103 -- tested for because predefined String types are initialized by inline
8104 -- code rather than by an init_proc). Note that we do not give the
8105 -- warning for Initialize_Scalars, since we suppressed initialization
8106 -- in this case. Also, do not warn if Suppress_Initialization is set.
8109 and then not Is_Imported
(Ent
)
8110 and then not Initialization_Suppressed
(Typ
)
8111 and then (Has_Non_Null_Base_Init_Proc
(Typ
)
8112 or else Is_Access_Type
(Typ
)
8113 or else (Normalize_Scalars
8114 and then (Is_Scalar_Type
(Typ
)
8115 or else Is_String_Type
(Typ
))))
8117 if Nkind
(Expr
) = N_Attribute_Reference
8118 and then Is_Entity_Name
(Prefix
(Expr
))
8120 Old
:= Entity
(Prefix
(Expr
));
8122 elsif Is_Entity_Name
(Expr
)
8123 and then Ekind
(Entity
(Expr
)) = E_Constant
8125 Decl
:= Declaration_Node
(Entity
(Expr
));
8127 if Nkind
(Decl
) = N_Object_Declaration
8128 and then Present
(Expression
(Decl
))
8129 and then Nkind
(Expression
(Decl
)) = N_Attribute_Reference
8130 and then Is_Entity_Name
(Prefix
(Expression
(Decl
)))
8132 Old
:= Entity
(Prefix
(Expression
(Decl
)));
8134 elsif Nkind
(Expr
) = N_Function_Call
then
8138 -- A function call (most likely to To_Address) is probably not an
8139 -- overlay, so skip warning. Ditto if the function call was inlined
8140 -- and transformed into an entity.
8142 elsif Nkind
(Original_Node
(Expr
)) = N_Function_Call
then
8146 -- If a pragma Import follows, we assume that it is for the current
8147 -- target of the address clause, and skip the warning. There may be
8148 -- a source pragma or an aspect that specifies import and generates
8149 -- the corresponding pragma. These will indicate that the entity is
8150 -- imported and that is checked above so that the spurious warning
8151 -- (generated when the entity is frozen) will be suppressed. The
8152 -- pragma may be attached to the aspect, so it is not yet a list
8155 if Is_List_Member
(Parent
(Expr
)) then
8156 Decl
:= Next
(Parent
(Expr
));
8159 and then Nkind
(Decl
) = N_Pragma
8160 and then Pragma_Name
(Decl
) = Name_Import
8166 -- Otherwise give warning message
8168 if Present
(Old
) then
8169 Error_Msg_Node_2
:= Old
;
8171 ("default initialization of & may modify &??",
8175 ("default initialization of & may modify overlaid storage??",
8179 -- Add friendly warning if initialization comes from a packed array
8182 if Is_Record_Type
(Typ
) then
8187 Comp
:= First_Component
(Typ
);
8188 while Present
(Comp
) loop
8189 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
8190 and then Present
(Expression
(Parent
(Comp
)))
8193 elsif Is_Array_Type
(Etype
(Comp
))
8194 and then Present
(Packed_Array_Impl_Type
(Etype
(Comp
)))
8197 ("\packed array component& " &
8198 "will be initialized to zero??",
8202 Next_Component
(Comp
);
8209 ("\use pragma Import for & to " &
8210 "suppress initialization (RM B.1(24))??",