1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
30 #include "config/rs6000/rs6000-opts.h"
33 /* Definitions for the object file format. These are set at
36 #define OBJECT_XCOFF 1
39 #define OBJECT_MACHO 4
41 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
42 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
43 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
44 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
51 #define TARGET_AIX_OS 0
54 /* Control whether function entry points use a "dot" symbol when
58 /* Default string to use for cpu if not specified. */
59 #ifndef TARGET_CPU_DEFAULT
60 #define TARGET_CPU_DEFAULT ((char *)0)
63 /* If configured for PPC405, support PPC405CR Erratum77. */
64 #ifdef CONFIG_PPC405CR
65 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
67 #define PPC405_ERRATUM77 0
70 #ifndef TARGET_PAIRED_FLOAT
71 #define TARGET_PAIRED_FLOAT 0
74 #ifdef HAVE_AS_POPCNTB
75 #define ASM_CPU_POWER5_SPEC "-mpower5"
77 #define ASM_CPU_POWER5_SPEC "-mpower4"
81 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
83 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
86 #ifdef HAVE_AS_POPCNTD
87 #define ASM_CPU_POWER7_SPEC "-mpower7"
89 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
93 #define ASM_CPU_POWER8_SPEC "-mpower8"
95 #define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
99 #define ASM_CPU_POWER9_SPEC "-mpower9"
101 #define ASM_CPU_POWER9_SPEC ASM_CPU_POWER8_SPEC
105 #define ASM_CPU_476_SPEC "-m476"
107 #define ASM_CPU_476_SPEC "-mpower4"
110 /* Common ASM definitions used by ASM_SPEC among the various targets for
111 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
112 provide the default assembler options if the user uses -mcpu=native, so if
113 you make changes here, make them also there. */
114 #define ASM_CPU_SPEC \
116 %{mpowerpc64*: -mppc64} \
117 %{!mpowerpc64*: %(asm_default)}} \
118 %{mcpu=native: %(asm_cpu_native)} \
119 %{mcpu=cell: -mcell} \
120 %{mcpu=power3: -mppc64} \
121 %{mcpu=power4: -mpower4} \
122 %{mcpu=power5: %(asm_cpu_power5)} \
123 %{mcpu=power5+: %(asm_cpu_power5)} \
124 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
125 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
126 %{mcpu=power7: %(asm_cpu_power7)} \
127 %{mcpu=power8: %(asm_cpu_power8)} \
128 %{mcpu=power9: %(asm_cpu_power9)} \
130 %{mcpu=powerpc: -mppc} \
131 %{mcpu=powerpc64le: %(asm_cpu_power8)} \
132 %{mcpu=rs64a: -mppc64} \
136 %{mcpu=405fp: -m405} \
138 %{mcpu=440fp: -m440} \
140 %{mcpu=464fp: -m440} \
141 %{mcpu=476: %(asm_cpu_476)} \
142 %{mcpu=476fp: %(asm_cpu_476)} \
147 %{mcpu=603e: -mppc} \
148 %{mcpu=ec603e: -mppc} \
150 %{mcpu=604e: -mppc} \
151 %{mcpu=620: -mppc64} \
152 %{mcpu=630: -mppc64} \
156 %{mcpu=7400: -mppc -maltivec} \
157 %{mcpu=7450: -mppc -maltivec} \
158 %{mcpu=G4: -mppc -maltivec} \
163 %{mcpu=970: -mpower4 -maltivec} \
164 %{mcpu=G5: -mpower4 -maltivec} \
165 %{mcpu=8540: -me500} \
166 %{mcpu=8548: -me500} \
167 %{mcpu=e300c2: -me300} \
168 %{mcpu=e300c3: -me300} \
169 %{mcpu=e500mc: -me500mc} \
170 %{mcpu=e500mc64: -me500mc64} \
171 %{mcpu=e5500: -me5500} \
172 %{mcpu=e6500: -me6500} \
173 %{maltivec: -maltivec} \
174 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
175 %{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
178 #define CPP_DEFAULT_SPEC ""
180 #define ASM_DEFAULT_SPEC ""
182 /* This macro defines names of additional specifications to put in the specs
183 that can be used in various specifications like CC1_SPEC. Its definition
184 is an initializer with a subgrouping for each command option.
186 Each subgrouping contains a string constant, that defines the
187 specification name, and a string constant that used by the GCC driver
190 Do not define this macro if it does not need to do anything. */
192 #define SUBTARGET_EXTRA_SPECS
194 #define EXTRA_SPECS \
195 { "cpp_default", CPP_DEFAULT_SPEC }, \
196 { "asm_cpu", ASM_CPU_SPEC }, \
197 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
198 { "asm_default", ASM_DEFAULT_SPEC }, \
199 { "cc1_cpu", CC1_CPU_SPEC }, \
200 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
201 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
202 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
203 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
204 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
205 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
206 SUBTARGET_EXTRA_SPECS
208 /* -mcpu=native handling only makes sense with compiler running on
209 an PowerPC chip. If changing this condition, also change
210 the condition in driver-rs6000.c. */
211 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
212 /* In driver-rs6000.c. */
213 extern const char *host_detect_local_cpu (int argc
, const char **argv
);
214 #define EXTRA_SPEC_FUNCTIONS \
215 { "local_cpu_detect", host_detect_local_cpu },
216 #define HAVE_LOCAL_CPU_DETECT
217 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
220 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
224 #ifdef HAVE_LOCAL_CPU_DETECT
225 #define CC1_CPU_SPEC \
226 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
227 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
229 #define CC1_CPU_SPEC ""
233 /* Architecture type. */
235 /* Define TARGET_MFCRF if the target assembler does not support the
236 optional field operand for mfcr. */
238 #ifndef HAVE_AS_MFCRF
240 #define TARGET_MFCRF 0
243 /* Define TARGET_POPCNTB if the target assembler does not support the
244 popcount byte instruction. */
246 #ifndef HAVE_AS_POPCNTB
247 #undef TARGET_POPCNTB
248 #define TARGET_POPCNTB 0
251 /* Define TARGET_FPRND if the target assembler does not support the
252 fp rounding instructions. */
254 #ifndef HAVE_AS_FPRND
256 #define TARGET_FPRND 0
259 /* Define TARGET_CMPB if the target assembler does not support the
264 #define TARGET_CMPB 0
267 /* Define TARGET_MFPGPR if the target assembler does not support the
268 mffpr and mftgpr instructions. */
270 #ifndef HAVE_AS_MFPGPR
272 #define TARGET_MFPGPR 0
275 /* Define TARGET_DFP if the target assembler does not support decimal
276 floating point instructions. */
282 /* Define TARGET_POPCNTD if the target assembler does not support the
283 popcount word and double word instructions. */
285 #ifndef HAVE_AS_POPCNTD
286 #undef TARGET_POPCNTD
287 #define TARGET_POPCNTD 0
290 /* Define the ISA 2.07 flags as 0 if the target assembler does not support the
291 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
294 #ifndef HAVE_AS_POWER8
295 #undef TARGET_DIRECT_MOVE
298 #undef TARGET_P8_VECTOR
299 #define TARGET_DIRECT_MOVE 0
300 #define TARGET_CRYPTO 0
302 #define TARGET_P8_VECTOR 0
305 /* Define the ISA 3.0 flags as 0 if the target assembler does not support
306 Power9 instructions. Allow -mpower9-fusion, since it does not add new
307 instructions. Allow -misel, since it predates ISA 3.0 and does
308 not require any Power9 features. */
310 #ifndef HAVE_AS_POWER9
311 #undef TARGET_FLOAT128_HW
313 #undef TARGET_P9_VECTOR
314 #undef TARGET_P9_MINMAX
315 #undef TARGET_P9_MISC
316 #define TARGET_FLOAT128_HW 0
317 #define TARGET_MODULO 0
318 #define TARGET_P9_VECTOR 0
319 #define TARGET_P9_MINMAX 0
320 #define TARGET_P9_MISC 0
323 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
324 not, generate the lwsync code as an integer constant. */
325 #ifdef HAVE_AS_LWSYNC
326 #define TARGET_LWSYNC_INSTRUCTION 1
328 #define TARGET_LWSYNC_INSTRUCTION 0
331 /* Define TARGET_TLS_MARKERS if the target assembler does not support
332 arg markers for __tls_get_addr calls. */
333 #ifndef HAVE_AS_TLS_MARKERS
334 #undef TARGET_TLS_MARKERS
335 #define TARGET_TLS_MARKERS 0
337 #define TARGET_TLS_MARKERS tls_markers
340 #ifndef TARGET_SECURE_PLT
341 #define TARGET_SECURE_PLT 0
344 #ifndef TARGET_CMODEL
345 #define TARGET_CMODEL CMODEL_SMALL
348 #define TARGET_32BIT (! TARGET_64BIT)
351 #define HAVE_AS_TLS 0
354 #ifndef TARGET_LINK_STACK
355 #define TARGET_LINK_STACK 0
358 #ifndef SET_TARGET_LINK_STACK
359 #define SET_TARGET_LINK_STACK(X) do { } while (0)
362 #ifndef TARGET_FLOAT128_ENABLE_TYPE
363 #define TARGET_FLOAT128_ENABLE_TYPE 0
366 /* Return 1 for a symbol ref for a thread-local storage symbol. */
367 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
368 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
371 /* For libgcc2 we make sure this is a compile time constant */
372 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
373 #undef TARGET_POWERPC64
374 #define TARGET_POWERPC64 1
376 #undef TARGET_POWERPC64
377 #define TARGET_POWERPC64 0
380 /* The option machinery will define this. */
383 #define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
385 /* FPU operations supported.
386 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
387 also test TARGET_HARD_FLOAT. */
388 #define TARGET_SINGLE_FLOAT 1
389 #define TARGET_DOUBLE_FLOAT 1
390 #define TARGET_SINGLE_FPU 0
391 #define TARGET_SIMPLE_FPU 0
392 #define TARGET_XILINX_FPU 0
394 /* Recast the processor type to the cpu attribute. */
395 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
397 /* Define generic processor types based upon current deployment. */
398 #define PROCESSOR_COMMON PROCESSOR_PPC601
399 #define PROCESSOR_POWERPC PROCESSOR_PPC604
400 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
402 /* Define the default processor. This is overridden by other tm.h files. */
403 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
404 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
406 /* Specify the dialect of assembler to use. Only new mnemonics are supported
407 starting with GCC 4.8, i.e. just one dialect, but for backwards
408 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
410 #define ASSEMBLER_DIALECT 1
413 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
414 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
415 #define MASK_DEBUG_REG 0x04 /* debug register handling */
416 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
417 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
418 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
419 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
420 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
425 | MASK_DEBUG_TARGET \
426 | MASK_DEBUG_BUILTIN)
428 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
429 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
430 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
431 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
432 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
433 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
434 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
436 /* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
437 long double format that uses a pair of doubles, or IEEE 128-bit floating
438 point. KFmode was added as a way to represent IEEE 128-bit floating point,
439 even if the default for long double is the IBM long double format.
440 Similarly IFmode is the IBM long double format even if the default is IEEE
441 128-bit. Don't allow IFmode if -msoft-float. */
442 #define FLOAT128_IEEE_P(MODE) \
443 ((TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
444 || ((MODE) == KFmode) || ((MODE) == KCmode))
446 #define FLOAT128_IBM_P(MODE) \
447 ((!TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
448 || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
450 /* Helper macros to say whether a 128-bit floating point type can go in a
451 single vector register, or whether it needs paired scalar values. */
452 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
454 #define FLOAT128_2REG_P(MODE) \
455 (FLOAT128_IBM_P (MODE) \
456 || ((MODE) == TDmode) \
457 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
459 /* Return true for floating point that does not use a vector register. */
460 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
461 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
463 /* Describe the vector unit used for arithmetic operations. */
464 extern enum rs6000_vector rs6000_vector_unit
[];
466 #define VECTOR_UNIT_NONE_P(MODE) \
467 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
469 #define VECTOR_UNIT_VSX_P(MODE) \
470 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
472 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
473 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
475 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
476 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
478 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
479 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
481 (int)VECTOR_P8_VECTOR))
483 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
484 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
485 compatible, so allow it as well, rather than changing all of the uses of the
487 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
488 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
489 (int)VECTOR_ALTIVEC, \
490 (int)VECTOR_P8_VECTOR))
492 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
493 same unit as the vector unit we are using, but we may want to migrate to
494 using VSX style loads even for types handled by altivec. */
495 extern enum rs6000_vector rs6000_vector_mem
[];
497 #define VECTOR_MEM_NONE_P(MODE) \
498 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
500 #define VECTOR_MEM_VSX_P(MODE) \
501 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
503 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
504 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
506 #define VECTOR_MEM_ALTIVEC_P(MODE) \
507 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
509 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
510 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
512 (int)VECTOR_P8_VECTOR))
514 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
515 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
516 (int)VECTOR_ALTIVEC, \
517 (int)VECTOR_P8_VECTOR))
519 /* Return the alignment of a given vector type, which is set based on the
520 vector unit use. VSX for instance can load 32 or 64 bit aligned words
521 without problems, while Altivec requires 128-bit aligned vectors. */
522 extern int rs6000_vector_align
[];
524 #define VECTOR_ALIGN(MODE) \
525 ((rs6000_vector_align[(MODE)] != 0) \
526 ? rs6000_vector_align[(MODE)] \
527 : (int)GET_MODE_BITSIZE ((MODE)))
529 /* Determine the element order to use for vector instructions. By
530 default we use big-endian element order when targeting big-endian,
531 and little-endian element order when targeting little-endian. For
532 programs being ported from BE Power to LE Power, it can sometimes
533 be useful to use big-endian element order when targeting little-endian.
534 This is set via -maltivec=be, for example. */
535 #define VECTOR_ELT_ORDER_BIG \
536 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
538 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
539 with scalar instructions. */
540 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
542 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
543 with the ISA 3.0 MFVSRLD instructions. */
544 #define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
546 /* Alignment options for fields in structures for sub-targets following
548 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
549 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
551 Override the macro definitions when compiling libobjc to avoid undefined
552 reference to rs6000_alignment_flags due to library's use of GCC alignment
553 macros which use the macros below. */
555 #ifndef IN_TARGET_LIBS
556 #define MASK_ALIGN_POWER 0x00000000
557 #define MASK_ALIGN_NATURAL 0x00000001
558 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
560 #define TARGET_ALIGN_NATURAL 0
563 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
564 #define TARGET_IEEEQUAD rs6000_ieeequad
565 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
566 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
568 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
570 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
571 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
573 #define TARGET_FCFID (TARGET_POWERPC64 \
574 || TARGET_PPC_GPOPT /* 970/power4 */ \
575 || TARGET_POPCNTB /* ISA 2.02 */ \
576 || TARGET_CMPB /* ISA 2.05 */ \
577 || TARGET_POPCNTD /* ISA 2.06 */ \
578 || TARGET_XILINX_FPU)
580 #define TARGET_FCTIDZ TARGET_FCFID
581 #define TARGET_STFIWX TARGET_PPC_GFXOPT
582 #define TARGET_LFIWAX TARGET_CMPB
583 #define TARGET_LFIWZX TARGET_POPCNTD
584 #define TARGET_FCFIDS TARGET_POPCNTD
585 #define TARGET_FCFIDU TARGET_POPCNTD
586 #define TARGET_FCFIDUS TARGET_POPCNTD
587 #define TARGET_FCTIDUZ TARGET_POPCNTD
588 #define TARGET_FCTIWUZ TARGET_POPCNTD
589 #define TARGET_CTZ TARGET_MODULO
590 #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
591 #define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
593 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
594 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
595 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
596 #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
598 #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
601 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
602 #define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
603 #define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
605 /* This wants to be set for p8 and newer. On p7, overlapping unaligned
607 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
609 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
610 in power7, so conditionalize them on p8 features. TImode syncs need quad
612 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
613 || TARGET_QUAD_MEMORY_ATOMIC \
614 || TARGET_DIRECT_MOVE)
616 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
618 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
619 to allocate the SDmode stack slot to get the value into the proper location
621 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
623 /* ISA 3.0 has new min/max functions that don't need fast math that are being
624 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
625 answers if the arguments are not in the normal range. */
626 #define TARGET_MINMAX_SF (TARGET_SF_FPR && TARGET_PPC_GFXOPT \
627 && (TARGET_P9_MINMAX || !flag_trapping_math))
629 #define TARGET_MINMAX_DF (TARGET_DF_FPR && TARGET_PPC_GFXOPT \
630 && (TARGET_P9_MINMAX || !flag_trapping_math))
632 /* In switching from using target_flags to using rs6000_isa_flags, the options
633 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
634 OPTION_MASK_<xxx> back into MASK_<xxx>. */
635 #define MASK_ALTIVEC OPTION_MASK_ALTIVEC
636 #define MASK_CMPB OPTION_MASK_CMPB
637 #define MASK_CRYPTO OPTION_MASK_CRYPTO
638 #define MASK_DFP OPTION_MASK_DFP
639 #define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
640 #define MASK_DLMZB OPTION_MASK_DLMZB
641 #define MASK_EABI OPTION_MASK_EABI
642 #define MASK_FLOAT128_TYPE OPTION_MASK_FLOAT128_TYPE
643 #define MASK_FPRND OPTION_MASK_FPRND
644 #define MASK_P8_FUSION OPTION_MASK_P8_FUSION
645 #define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
646 #define MASK_HTM OPTION_MASK_HTM
647 #define MASK_ISEL OPTION_MASK_ISEL
648 #define MASK_MFCRF OPTION_MASK_MFCRF
649 #define MASK_MFPGPR OPTION_MASK_MFPGPR
650 #define MASK_MULHW OPTION_MASK_MULHW
651 #define MASK_MULTIPLE OPTION_MASK_MULTIPLE
652 #define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
653 #define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
654 #define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
655 #define MASK_P9_MISC OPTION_MASK_P9_MISC
656 #define MASK_POPCNTB OPTION_MASK_POPCNTB
657 #define MASK_POPCNTD OPTION_MASK_POPCNTD
658 #define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
659 #define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
660 #define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
661 #define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
662 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
663 #define MASK_STRING OPTION_MASK_STRING
664 #define MASK_UPDATE OPTION_MASK_UPDATE
665 #define MASK_VSX OPTION_MASK_VSX
668 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
672 #define MASK_64BIT OPTION_MASK_64BIT
675 #ifdef TARGET_LITTLE_ENDIAN
676 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
679 #ifdef TARGET_REGNAMES
680 #define MASK_REGNAMES OPTION_MASK_REGNAMES
683 #ifdef TARGET_PROTOTYPE
684 #define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
688 #define RS6000_BTM_MODULO OPTION_MASK_MODULO
692 /* For power systems, we want to enable Altivec and VSX builtins even if the
693 user did not use -maltivec or -mvsx to allow the builtins to be used inside
694 of #pragma GCC target or the target attribute to change the code level for a
695 given system. The Paired builtins are only enabled if you configure the
696 compiler for those builtins, and those machines don't support altivec or
699 #define TARGET_EXTRA_BUILTINS (!TARGET_PAIRED_FLOAT \
700 && ((TARGET_POWERPC64 \
701 || TARGET_PPC_GPOPT /* 970/power4 */ \
702 || TARGET_POPCNTB /* ISA 2.02 */ \
703 || TARGET_CMPB /* ISA 2.05 */ \
704 || TARGET_POPCNTD /* ISA 2.06 */ \
707 || TARGET_HARD_FLOAT)))
709 /* E500 cores only support plain "sync", not lwsync. */
710 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
711 || rs6000_cpu == PROCESSOR_PPC8548)
714 /* Whether SF/DF operations are supported by the normal floating point unit
715 (or the vector/scalar unit). */
716 #define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT)
717 #define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
719 /* Whether SF/DF operations are supported by any hardware. */
720 #define TARGET_SF_INSN TARGET_SF_FPR
721 #define TARGET_DF_INSN TARGET_DF_FPR
723 /* Which machine supports the various reciprocal estimate instructions. */
724 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
725 && TARGET_SINGLE_FLOAT)
727 #define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
728 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
730 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
731 && TARGET_PPC_GFXOPT && TARGET_SINGLE_FLOAT)
733 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
734 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
736 /* Conditions to allow TOC fusion for loading/storing integers. */
737 #define TARGET_TOC_FUSION_INT (TARGET_P8_FUSION \
738 && TARGET_TOC_FUSION \
739 && (TARGET_CMODEL != CMODEL_SMALL) \
742 /* Conditions to allow TOC fusion for loading/storing floating point. */
743 #define TARGET_TOC_FUSION_FP (TARGET_P9_FUSION \
744 && TARGET_TOC_FUSION \
745 && (TARGET_CMODEL != CMODEL_SMALL) \
746 && TARGET_POWERPC64 \
747 && TARGET_HARD_FLOAT \
748 && TARGET_SINGLE_FLOAT \
749 && TARGET_DOUBLE_FLOAT)
751 /* Macro to say whether we can do optimizations where we need to do parts of
752 the calculation in 64-bit GPRs and then is transfered to the vector
753 registers. Do not allow -maltivec=be for these optimizations, because it
754 adds to the complexity of the code. */
755 #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
756 && TARGET_P8_VECTOR \
757 && TARGET_POWERPC64 \
758 && (rs6000_altivec_element_order != 2))
760 /* Whether the various reciprocal divide/square root estimate instructions
761 exist, and whether we should automatically generate code for the instruction
763 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
764 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
765 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
766 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
768 extern unsigned char rs6000_recip_bits
[];
770 #define RS6000_RECIP_HAVE_RE_P(MODE) \
771 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
773 #define RS6000_RECIP_AUTO_RE_P(MODE) \
774 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
776 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
777 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
779 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
780 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
782 /* The default CPU for TARGET_OPTION_OVERRIDE. */
783 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
786 #define REGISTER_TARGET_PRAGMAS() do { \
787 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
788 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
789 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
790 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
793 /* Target #defines. */
794 #define TARGET_CPU_CPP_BUILTINS() \
795 rs6000_cpu_cpp_builtins (pfile)
797 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
798 we're compiling for. Some configurations may need to override it. */
799 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
802 if (BYTES_BIG_ENDIAN) \
804 builtin_define ("__BIG_ENDIAN__"); \
805 builtin_define ("_BIG_ENDIAN"); \
806 builtin_assert ("machine=bigendian"); \
810 builtin_define ("__LITTLE_ENDIAN__"); \
811 builtin_define ("_LITTLE_ENDIAN"); \
812 builtin_assert ("machine=littleendian"); \
817 /* Target machine storage layout. */
819 /* Define this macro if it is advisable to hold scalars in registers
820 in a wider mode than that declared by the program. In such cases,
821 the value is constrained to be within the bounds of the declared
822 type, but kept valid in the wider mode. The signedness of the
823 extension may differ from that of the type. */
825 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
826 if (GET_MODE_CLASS (MODE) == MODE_INT \
827 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
828 (MODE) = TARGET_32BIT ? SImode : DImode;
830 /* Define this if most significant bit is lowest numbered
831 in instructions that operate on numbered bit-fields. */
832 /* That is true on RS/6000. */
833 #define BITS_BIG_ENDIAN 1
835 /* Define this if most significant byte of a word is the lowest numbered. */
836 /* That is true on RS/6000. */
837 #define BYTES_BIG_ENDIAN 1
839 /* Define this if most significant word of a multiword number is lowest
842 For RS/6000 we can decide arbitrarily since there are no machine
843 instructions for them. Might as well be consistent with bits and bytes. */
844 #define WORDS_BIG_ENDIAN 1
846 /* This says that for the IBM long double the larger magnitude double
847 comes first. It's really a two element double array, and arrays
848 don't index differently between little- and big-endian. */
849 #define LONG_DOUBLE_LARGE_FIRST 1
851 #define MAX_BITS_PER_WORD 64
853 /* Width of a word, in units (bytes). */
854 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
856 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
858 #define MIN_UNITS_PER_WORD 4
860 #define UNITS_PER_FP_WORD 8
861 #define UNITS_PER_ALTIVEC_WORD 16
862 #define UNITS_PER_VSX_WORD 16
863 #define UNITS_PER_PAIRED_WORD 8
865 /* Type used for ptrdiff_t, as a string used in a declaration. */
866 #define PTRDIFF_TYPE "int"
868 /* Type used for size_t, as a string used in a declaration. */
869 #define SIZE_TYPE "long unsigned int"
871 /* Type used for wchar_t, as a string used in a declaration. */
872 #define WCHAR_TYPE "short unsigned int"
874 /* Width of wchar_t in bits. */
875 #define WCHAR_TYPE_SIZE 16
877 /* A C expression for the size in bits of the type `short' on the
878 target machine. If you don't define this, the default is half a
879 word. (If this would be less than one storage unit, it is
880 rounded up to one unit.) */
881 #define SHORT_TYPE_SIZE 16
883 /* A C expression for the size in bits of the type `int' on the
884 target machine. If you don't define this, the default is one
886 #define INT_TYPE_SIZE 32
888 /* A C expression for the size in bits of the type `long' on the
889 target machine. If you don't define this, the default is one
891 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
893 /* A C expression for the size in bits of the type `long long' on the
894 target machine. If you don't define this, the default is two
896 #define LONG_LONG_TYPE_SIZE 64
898 /* A C expression for the size in bits of the type `float' on the
899 target machine. If you don't define this, the default is one
901 #define FLOAT_TYPE_SIZE 32
903 /* A C expression for the size in bits of the type `double' on the
904 target machine. If you don't define this, the default is two
906 #define DOUBLE_TYPE_SIZE 64
908 /* A C expression for the size in bits of the type `long double' on
909 the target machine. If you don't define this, the default is two
911 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
913 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
914 #define WIDEST_HARDWARE_FP_SIZE 64
916 /* Width in bits of a pointer.
917 See also the macro `Pmode' defined below. */
918 extern unsigned rs6000_pointer_size
;
919 #define POINTER_SIZE rs6000_pointer_size
921 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
922 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
924 /* Boundary (in *bits*) on which stack pointer should be aligned. */
925 #define STACK_BOUNDARY \
926 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
929 /* Allocation boundary (in *bits*) for the code of a function. */
930 #define FUNCTION_BOUNDARY 32
932 /* No data type wants to be aligned rounder than this. */
933 #define BIGGEST_ALIGNMENT 128
935 /* Alignment of field after `int : 0' in a structure. */
936 #define EMPTY_FIELD_BOUNDARY 32
938 /* Every structure's size must be a multiple of this. */
939 #define STRUCTURE_SIZE_BOUNDARY 8
941 /* A bit-field declared as `int' forces `int' alignment for the struct. */
942 #define PCC_BITFIELD_TYPE_MATTERS 1
944 enum data_align
{ align_abi
, align_opt
, align_both
};
946 /* A C expression to compute the alignment for a variables in the
947 local store. TYPE is the data type, and ALIGN is the alignment
948 that the object would ordinarily have. */
949 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
950 rs6000_data_alignment (TYPE, ALIGN, align_both)
952 /* Make strings word-aligned so strcpy from constants will be faster. */
953 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
954 (TREE_CODE (EXP) == STRING_CST \
955 && (STRICT_ALIGNMENT || !optimize_size) \
956 && (ALIGN) < BITS_PER_WORD \
960 /* Make arrays of chars word-aligned for the same reasons. */
961 #define DATA_ALIGNMENT(TYPE, ALIGN) \
962 rs6000_data_alignment (TYPE, ALIGN, align_opt)
964 /* Align vectors to 128 bits. */
965 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
966 rs6000_data_alignment (TYPE, ALIGN, align_abi)
968 /* Nonzero if move instructions will actually fail to work
969 when given unaligned data. */
970 #define STRICT_ALIGNMENT 0
972 /* Define this macro to be the value 1 if unaligned accesses have a cost
973 many times greater than aligned accesses, for example if they are
974 emulated in a trap handler. */
975 /* Altivec vector memory instructions simply ignore the low bits; VSX memory
976 instructions are aligned to 4 or 8 bytes. */
977 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
979 || (!TARGET_EFFICIENT_UNALIGNED_VSX \
980 && ((SCALAR_FLOAT_MODE_NOT_VECTOR_P (MODE) && (ALIGN) < 32) \
981 || ((VECTOR_MODE_P (MODE) || FLOAT128_VECTOR_P (MODE)) \
982 && (int) (ALIGN) < VECTOR_ALIGN (MODE)))))
985 /* Standard register usage. */
987 /* Number of actual hardware registers.
988 The hardware registers are assigned numbers for the compiler
989 from 0 to just below FIRST_PSEUDO_REGISTER.
990 All registers that the compiler knows about must be given numbers,
991 even those that are not normally considered general registers.
993 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
994 a count register, a link register, and 8 condition register fields,
995 which we view here as separate registers. AltiVec adds 32 vector
996 registers and a VRsave register.
998 In addition, the difference between the frame and argument pointers is
999 a function of the number of registers saved, so we need to have a
1000 register for AP that will later be eliminated in favor of SP or FP.
1001 This is a normal register, but it is fixed.
1003 We also create a pseudo register for float/int conversions, that will
1004 really represent the memory location used. It is represented here as
1005 a register, in order to work around problems in allocating stack storage
1006 in inline functions.
1008 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
1009 pointer, which is eventually eliminated in favor of SP or FP.
1011 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
1013 #define FIRST_PSEUDO_REGISTER 115
1015 /* This must be included for pre gcc 3.0 glibc compatibility. */
1016 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
1018 /* The sfp register and 3 HTM registers
1019 aren't included in DWARF_FRAME_REGISTERS. */
1020 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
1022 /* Use standard DWARF numbering for DWARF debugging information. */
1023 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
1025 /* Use gcc hard register numbering for eh_frame. */
1026 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
1028 /* Map register numbers held in the call frame info that gcc has
1029 collected using DWARF_FRAME_REGNUM to those that should be output in
1030 .debug_frame and .eh_frame. */
1031 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
1032 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
1034 /* 1 for registers that have pervasive standard uses
1035 and are not available for the register allocator.
1037 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
1038 as a local register; for all other OS's r2 is the TOC pointer.
1040 On System V implementations, r13 is fixed and not available for use. */
1042 #define FIXED_REGISTERS \
1043 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
1044 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1045 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1046 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1047 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
1048 /* AltiVec registers. */ \
1049 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1050 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1055 /* 1 for registers not available across function calls.
1056 These must include the FIXED_REGISTERS and also any
1057 registers that can be used without being saved.
1058 The latter must include the registers where values are returned
1059 and the register where structure-value addresses are passed.
1060 Aside from that, you can include as many other registers as you like. */
1062 #define CALL_USED_REGISTERS \
1063 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1064 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1065 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1066 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1067 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1068 /* AltiVec registers. */ \
1069 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1070 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1075 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1076 the entire set of `FIXED_REGISTERS' be included.
1077 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1078 This macro is optional. If not specified, it defaults to the value
1079 of `CALL_USED_REGISTERS'. */
1081 #define CALL_REALLY_USED_REGISTERS \
1082 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1083 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1084 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1085 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1086 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1087 /* AltiVec registers. */ \
1088 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1089 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1094 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
1096 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
1097 #define FIRST_SAVED_FP_REGNO (14+32)
1098 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
1100 /* List the order in which to allocate registers. Each register must be
1101 listed once, even those in FIXED_REGISTERS.
1103 We allocate in the following order:
1104 fp0 (not saved or used for anything)
1105 fp13 - fp2 (not saved; incoming fp arg registers)
1106 fp1 (not saved; return value)
1107 fp31 - fp14 (saved; order given to save least number)
1108 cr7, cr5 (not saved or special)
1109 cr6 (not saved, but used for vector operations)
1110 cr1 (not saved, but used for FP operations)
1111 cr0 (not saved, but used for arithmetic operations)
1112 cr4, cr3, cr2 (saved)
1113 r9 (not saved; best for TImode)
1114 r10, r8-r4 (not saved; highest first for less conflict with params)
1115 r3 (not saved; return value register)
1116 r11 (not saved; later alloc to help shrink-wrap)
1117 r0 (not saved; cannot be base reg)
1118 r31 - r13 (saved; order given to save least number)
1119 r12 (not saved; if used for DImode or DFmode would use r13)
1120 ctr (not saved; when we have the choice ctr is better)
1122 r1, r2, ap, ca (fixed)
1123 v0 - v1 (not saved or used for anything)
1124 v13 - v3 (not saved; incoming vector arg registers)
1125 v2 (not saved; incoming vector arg reg; return value)
1126 v19 - v14 (not saved or used for anything)
1127 v31 - v20 (saved; order given to save least number)
1128 vrsave, vscr (fixed)
1136 #define MAYBE_R2_AVAILABLE
1137 #define MAYBE_R2_FIXED 2,
1139 #define MAYBE_R2_AVAILABLE 2,
1140 #define MAYBE_R2_FIXED
1144 #define EARLY_R12 12,
1148 #define LATE_R12 12,
1151 #define REG_ALLOC_ORDER \
1153 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1154 /* not use fr14 which is a saved register. */ \
1155 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
1157 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1158 50, 49, 48, 47, 46, \
1159 75, 73, 74, 69, 68, 72, 71, 70, \
1160 MAYBE_R2_AVAILABLE \
1161 9, 10, 8, 7, 6, 5, 4, \
1162 3, EARLY_R12 11, 0, \
1163 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
1164 18, 17, 16, 15, 14, 13, LATE_R12 \
1166 1, MAYBE_R2_FIXED 67, 76, \
1167 /* AltiVec registers. */ \
1169 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1171 96, 95, 94, 93, 92, 91, \
1172 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1174 111, 112, 113, 114 \
1177 /* True if register is floating-point. */
1178 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1180 /* True if register is a condition register. */
1181 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
1183 /* True if register is a condition register, but not cr0. */
1184 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1186 /* True if register is an integer register. */
1187 #define INT_REGNO_P(N) \
1188 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1190 /* PAIRED SIMD registers are just the FPRs. */
1191 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1193 /* True if register is the CA register. */
1194 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1196 /* True if register is an AltiVec register. */
1197 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1199 /* True if register is a VSX register. */
1200 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1202 /* Alternate name for any vector register supporting floating point, no matter
1203 which instruction set(s) are available. */
1204 #define VFLOAT_REGNO_P(N) \
1205 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1207 /* Alternate name for any vector register supporting integer, no matter which
1208 instruction set(s) are available. */
1209 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1211 /* Alternate name for any vector register supporting logical operations, no
1212 matter which instruction set(s) are available. Allow GPRs as well as the
1213 vector registers. */
1214 #define VLOGICAL_REGNO_P(N) \
1215 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1216 || (TARGET_VSX && FP_REGNO_P (N))) \
1218 /* Return number of consecutive hard regs needed starting at reg REGNO
1219 to hold something of mode MODE. */
1221 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1223 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1224 enough space to account for vectors in FP regs. However, TFmode/TDmode
1225 should not use VSX instructions to do a caller save. */
1226 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1227 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
1230 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1231 && FP_REGNO_P (REGNO) \
1233 : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
1235 : (MODE) == TDmode && FP_REGNO_P (REGNO) \
1237 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1239 #define VSX_VECTOR_MODE(MODE) \
1240 ((MODE) == V4SFmode \
1241 || (MODE) == V2DFmode) \
1243 /* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1244 really a vector, but we want to treat it as a vector for moves, and
1247 #define ALTIVEC_VECTOR_MODE(MODE) \
1248 ((MODE) == V16QImode \
1249 || (MODE) == V8HImode \
1250 || (MODE) == V4SFmode \
1251 || (MODE) == V4SImode \
1252 || FLOAT128_VECTOR_P (MODE))
1254 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1255 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1256 || (MODE) == V2DImode || (MODE) == V1TImode)
1258 #define PAIRED_VECTOR_MODE(MODE) \
1259 ((MODE) == V2SFmode)
1261 /* Value is 1 if it is a good idea to tie two pseudo registers
1262 when one has mode MODE1 and one has mode MODE2.
1263 If TARGET_HARD_REGNO_MODE_OK could produce different values for MODE1
1264 and MODE2, for any hard reg, then this must be 0 for correct output.
1266 PTImode cannot tie with other modes because PTImode is restricted to even
1267 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
1270 Altivec/VSX vector tests were moved ahead of scalar float mode, so that IEEE
1271 128-bit floating point on VSX systems ties with other vectors. */
1272 #define MODES_TIEABLE_P(MODE1, MODE2) \
1273 ((MODE1) == PTImode \
1274 ? (MODE2) == PTImode \
1275 : (MODE2) == PTImode \
1277 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1278 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1279 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1281 : SCALAR_FLOAT_MODE_P (MODE1) \
1282 ? SCALAR_FLOAT_MODE_P (MODE2) \
1283 : SCALAR_FLOAT_MODE_P (MODE2) \
1285 : GET_MODE_CLASS (MODE1) == MODE_CC \
1286 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1287 : GET_MODE_CLASS (MODE2) == MODE_CC \
1289 : PAIRED_VECTOR_MODE (MODE1) \
1290 ? PAIRED_VECTOR_MODE (MODE2) \
1291 : PAIRED_VECTOR_MODE (MODE2) \
1295 /* Post-reload, we can't use any new AltiVec registers, as we already
1296 emitted the vrsave mask. */
1298 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1299 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1301 /* Specify the cost of a branch insn; roughly the number of extra insns that
1302 should be added to avoid a branch.
1304 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1305 unscheduled conditional branch. */
1307 #define BRANCH_COST(speed_p, predictable_p) 3
1309 /* Override BRANCH_COST heuristic which empirically produces worse
1310 performance for removing short circuiting from the logical ops. */
1312 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1314 /* Specify the registers used for certain standard purposes.
1315 The values of these macros are register numbers. */
1317 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1318 /* #define PC_REGNUM */
1320 /* Register to use for pushing function arguments. */
1321 #define STACK_POINTER_REGNUM 1
1323 /* Base register for access to local variables of the function. */
1324 #define HARD_FRAME_POINTER_REGNUM 31
1326 /* Base register for access to local variables of the function. */
1327 #define FRAME_POINTER_REGNUM 111
1329 /* Base register for access to arguments of the function. */
1330 #define ARG_POINTER_REGNUM 67
1332 /* Place to put static chain when calling a function that requires it. */
1333 #define STATIC_CHAIN_REGNUM 11
1335 /* Base register for access to thread local storage variables. */
1336 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1339 /* Define the classes of registers for register constraints in the
1340 machine description. Also define ranges of constants.
1342 One of the classes must always be named ALL_REGS and include all hard regs.
1343 If there is more than one class, another class must be named NO_REGS
1344 and contain no registers.
1346 The name GENERAL_REGS must be the name of a class (or an alias for
1347 another name such as ALL_REGS). This is the class of registers
1348 that is allowed by "g" or "r" in a register constraint.
1349 Also, registers outside this class are allocated only when
1350 instructions express preferences for them.
1352 The classes must be numbered in nondecreasing order; that is,
1353 a larger-numbered class must never be contained completely
1354 in a smaller-numbered class.
1356 For any two classes, it is very desirable that there be another
1357 class that represents their union. */
1359 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1360 condition registers, plus three special registers, CTR, and the link
1361 register. AltiVec adds a vector register class. VSX registers overlap the
1362 FPR registers and the Altivec registers.
1364 However, r0 is special in that it cannot be used as a base register.
1365 So make a class for registers valid as base registers.
1367 Also, cr0 is the only condition code register that can be used in
1368 arithmetic insns, so make a separate class for it. */
1395 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1397 /* Give names of register classes as strings for dump file. */
1399 #define REG_CLASS_NAMES \
1410 "NON_SPECIAL_REGS", \
1413 "LINK_OR_CTR_REGS", \
1415 "SPEC_OR_GEN_REGS", \
1423 /* Define which registers fit in which classes.
1424 This is an initializer for a vector of HARD_REG_SET
1425 of length N_REG_CLASSES. */
1427 #define REG_CLASS_CONTENTS \
1430 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1432 { 0xfffffffe, 0x00000000, 0x00000008, 0x00008000 }, \
1433 /* GENERAL_REGS. */ \
1434 { 0xffffffff, 0x00000000, 0x00000008, 0x00008000 }, \
1436 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \
1437 /* ALTIVEC_REGS. */ \
1438 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, \
1440 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, \
1441 /* VRSAVE_REGS. */ \
1442 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \
1444 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, \
1446 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, \
1447 /* NON_SPECIAL_REGS. */ \
1448 { 0xffffffff, 0xffffffff, 0x00000008, 0x00008000 }, \
1450 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, \
1452 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, \
1453 /* LINK_OR_CTR_REGS. */ \
1454 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, \
1455 /* SPECIAL_REGS. */ \
1456 { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, \
1457 /* SPEC_OR_GEN_REGS. */ \
1458 { 0xffffffff, 0x00000000, 0x0000000e, 0x0000a000 }, \
1460 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, \
1462 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, \
1463 /* NON_FLOAT_REGS. */ \
1464 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00008000 }, \
1466 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, \
1468 { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0001ffff } \
1471 /* The same information, inverted:
1472 Return the class number of the smallest class containing
1473 reg number REGNO. This could be a conditional expression
1474 or could index an array. */
1476 extern enum reg_class rs6000_regno_regclass
[FIRST_PSEUDO_REGISTER
];
1478 #define REGNO_REG_CLASS(REGNO) \
1479 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1480 rs6000_regno_regclass[(REGNO)])
1482 /* Register classes for various constraints that are based on the target
1484 enum r6000_reg_class_enum
{
1485 RS6000_CONSTRAINT_d
, /* fpr registers for double values */
1486 RS6000_CONSTRAINT_f
, /* fpr registers for single values */
1487 RS6000_CONSTRAINT_v
, /* Altivec registers */
1488 RS6000_CONSTRAINT_wa
, /* Any VSX register */
1489 RS6000_CONSTRAINT_wb
, /* Altivec register if ISA 3.0 vector. */
1490 RS6000_CONSTRAINT_wd
, /* VSX register for V2DF */
1491 RS6000_CONSTRAINT_we
, /* VSX register if ISA 3.0 vector. */
1492 RS6000_CONSTRAINT_wf
, /* VSX register for V4SF */
1493 RS6000_CONSTRAINT_wg
, /* FPR register for -mmfpgpr */
1494 RS6000_CONSTRAINT_wh
, /* FPR register for direct moves. */
1495 RS6000_CONSTRAINT_wi
, /* FPR/VSX register to hold DImode */
1496 RS6000_CONSTRAINT_wj
, /* FPR/VSX register for DImode direct moves. */
1497 RS6000_CONSTRAINT_wk
, /* FPR/VSX register for DFmode direct moves. */
1498 RS6000_CONSTRAINT_wl
, /* FPR register for LFIWAX */
1499 RS6000_CONSTRAINT_wm
, /* VSX register for direct move */
1500 RS6000_CONSTRAINT_wo
, /* VSX register for power9 vector. */
1501 RS6000_CONSTRAINT_wp
, /* VSX reg for IEEE 128-bit fp TFmode. */
1502 RS6000_CONSTRAINT_wq
, /* VSX reg for IEEE 128-bit fp KFmode. */
1503 RS6000_CONSTRAINT_wr
, /* GPR register if 64-bit */
1504 RS6000_CONSTRAINT_ws
, /* VSX register for DF */
1505 RS6000_CONSTRAINT_wt
, /* VSX register for TImode */
1506 RS6000_CONSTRAINT_wu
, /* Altivec register for float load/stores. */
1507 RS6000_CONSTRAINT_wv
, /* Altivec register for double load/stores. */
1508 RS6000_CONSTRAINT_ww
, /* FP or VSX register for vsx float ops. */
1509 RS6000_CONSTRAINT_wx
, /* FPR register for STFIWX */
1510 RS6000_CONSTRAINT_wy
, /* VSX register for SF */
1511 RS6000_CONSTRAINT_wz
, /* FPR register for LFIWZX */
1512 RS6000_CONSTRAINT_wA
, /* BASE_REGS if 64-bit. */
1513 RS6000_CONSTRAINT_wH
, /* Altivec register for 32-bit integers. */
1514 RS6000_CONSTRAINT_wI
, /* VSX register for 32-bit integers. */
1515 RS6000_CONSTRAINT_wJ
, /* VSX register for 8/16-bit integers. */
1516 RS6000_CONSTRAINT_wK
, /* Altivec register for 16/32-bit integers. */
1517 RS6000_CONSTRAINT_MAX
1520 extern enum reg_class rs6000_constraints
[RS6000_CONSTRAINT_MAX
];
1522 /* The class value for index registers, and the one for base regs. */
1523 #define INDEX_REG_CLASS GENERAL_REGS
1524 #define BASE_REG_CLASS BASE_REGS
1526 /* Return whether a given register class can hold VSX objects. */
1527 #define VSX_REG_CLASS_P(CLASS) \
1528 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1530 /* Return whether a given register class targets general purpose registers. */
1531 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1533 /* Given an rtx X being reloaded into a reg required to be
1534 in class CLASS, return the class of reg to actually use.
1535 In general this is just CLASS; but on some machines
1536 in some cases it is preferable to use a more restrictive class.
1538 On the RS/6000, we have to return NO_REGS when we want to reload a
1539 floating-point CONST_DOUBLE to force it to be copied to memory.
1541 We also don't want to reload integer values into floating-point
1542 registers if we can at all help it. In fact, this can
1543 cause reload to die, if it tries to generate a reload of CTR
1544 into a FP register and discovers it doesn't have the memory location
1547 ??? Would it be a good idea to have reload do the converse, that is
1548 try to reload floating modes into FP registers if possible?
1551 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1552 rs6000_preferred_reload_class_ptr (X, CLASS)
1554 /* Return the register class of a scratch register needed to copy IN into
1555 or out of a register in CLASS in MODE. If it can be done directly,
1556 NO_REGS is returned. */
1558 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1559 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1561 /* If we are copying between FP or AltiVec registers and anything
1562 else, we need a memory location. The exception is when we are
1563 targeting ppc64 and the move to/from fpr to gpr instructions
1566 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1567 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1569 /* Specify the mode to be used for memory when a secondary memory
1570 location is needed. For cpus that cannot load/store SDmode values
1571 from the 64-bit FP registers without using a full 64-bit
1572 load/store, we need a wider mode. */
1573 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1574 rs6000_secondary_memory_needed_mode (MODE)
1576 /* Return the maximum number of consecutive registers
1577 needed to represent mode MODE in a register of class CLASS.
1579 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1580 a single reg is enough for two words, unless we have VSX, where the FP
1581 registers can hold 128 bits. */
1582 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1584 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1586 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1587 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1589 /* Stack layout; function entry, exit and calling. */
1591 /* Define this if pushing a word on the stack
1592 makes the stack pointer a smaller address. */
1593 #define STACK_GROWS_DOWNWARD 1
1595 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1596 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1598 /* Define this to nonzero if the nominal address of the stack frame
1599 is at the high-address end of the local variables;
1600 that is, each additional local variable allocated
1601 goes at a more negative offset in the frame.
1603 On the RS/6000, we grow upwards, from the area after the outgoing
1605 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1606 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1608 /* Size of the fixed area on the stack */
1609 #define RS6000_SAVE_AREA \
1610 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1611 << (TARGET_64BIT ? 1 : 0))
1613 /* Stack offset for toc save slot. */
1614 #define RS6000_TOC_SAVE_SLOT \
1615 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1617 /* Align an address */
1618 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1620 /* Offset within stack frame to start allocating local variables at.
1621 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1622 first local allocated. Otherwise, it is the offset to the BEGINNING
1623 of the first local allocated.
1625 On the RS/6000, the frame pointer is the same as the stack pointer,
1626 except for dynamic allocations. So we start after the fixed area and
1627 outgoing parameter area.
1629 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1630 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1631 sizes of the fixed area and the parameter area must be a multiple of
1634 #define STARTING_FRAME_OFFSET \
1635 (FRAME_GROWS_DOWNWARD \
1637 : (cfun->calls_alloca \
1638 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1639 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1640 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1641 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1642 + RS6000_SAVE_AREA)))
1644 /* Offset from the stack pointer register to an item dynamically
1645 allocated on the stack, e.g., by `alloca'.
1647 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1648 length of the outgoing arguments. The default is correct for most
1649 machines. See `function.c' for details.
1651 This value must be a multiple of STACK_BOUNDARY (hard coded in
1653 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1654 RS6000_ALIGN (crtl->outgoing_args_size + STACK_POINTER_OFFSET, \
1655 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1657 /* If we generate an insn to push BYTES bytes,
1658 this says how many the stack pointer really advances by.
1659 On RS/6000, don't define this because there are no push insns. */
1660 /* #define PUSH_ROUNDING(BYTES) */
1662 /* Offset of first parameter from the argument pointer register value.
1663 On the RS/6000, we define the argument pointer to the start of the fixed
1665 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1667 /* Offset from the argument pointer register value to the top of
1668 stack. This is different from FIRST_PARM_OFFSET because of the
1669 register save area. */
1670 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1672 /* Define this if stack space is still allocated for a parameter passed
1673 in a register. The value is the number of bytes allocated to this
1675 #define REG_PARM_STACK_SPACE(FNDECL) \
1676 rs6000_reg_parm_stack_space ((FNDECL), false)
1678 /* Define this macro if space guaranteed when compiling a function body
1679 is different to space required when making a call, a situation that
1680 can arise with K&R style function definitions. */
1681 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1682 rs6000_reg_parm_stack_space ((FNDECL), true)
1684 /* Define this if the above stack space is to be considered part of the
1685 space allocated by the caller. */
1686 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1688 /* This is the difference between the logical top of stack and the actual sp.
1690 For the RS/6000, sp points past the fixed area. */
1691 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1693 /* Define this if the maximum size of all the outgoing args is to be
1694 accumulated and pushed during the prologue. The amount can be
1695 found in the variable crtl->outgoing_args_size. */
1696 #define ACCUMULATE_OUTGOING_ARGS 1
1698 /* Define how to find the value returned by a library function
1699 assuming the value has mode MODE. */
1701 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1703 /* DRAFT_V4_STRUCT_RET defaults off. */
1704 #define DRAFT_V4_STRUCT_RET 0
1706 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1707 #define DEFAULT_PCC_STRUCT_RETURN 0
1709 /* Mode of stack savearea.
1710 FUNCTION is VOIDmode because calling convention maintains SP.
1711 BLOCK needs Pmode for SP.
1712 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1713 #define STACK_SAVEAREA_MODE(LEVEL) \
1714 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1715 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1717 /* Minimum and maximum general purpose registers used to hold arguments. */
1718 #define GP_ARG_MIN_REG 3
1719 #define GP_ARG_MAX_REG 10
1720 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1722 /* Minimum and maximum floating point registers used to hold arguments. */
1723 #define FP_ARG_MIN_REG 33
1724 #define FP_ARG_AIX_MAX_REG 45
1725 #define FP_ARG_V4_MAX_REG 40
1726 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1727 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1728 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1730 /* Minimum and maximum AltiVec registers used to hold arguments. */
1731 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1732 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1733 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1735 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1736 #define AGGR_ARG_NUM_REG 8
1738 /* Return registers */
1739 #define GP_ARG_RETURN GP_ARG_MIN_REG
1740 #define FP_ARG_RETURN FP_ARG_MIN_REG
1741 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1742 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1743 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1744 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1745 ? (ALTIVEC_ARG_RETURN \
1746 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
1747 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1749 /* Flags for the call/call_value rtl operations set up by function_arg */
1750 #define CALL_NORMAL 0x00000000 /* no special processing */
1751 /* Bits in 0x00000001 are unused. */
1752 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1753 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1754 #define CALL_LONG 0x00000008 /* always call indirect */
1755 #define CALL_LIBCALL 0x00000010 /* libcall */
1757 /* We don't have prologue and epilogue functions to save/restore
1758 everything for most ABIs. */
1759 #define WORLD_SAVE_P(INFO) 0
1761 /* 1 if N is a possible register number for a function value
1762 as seen by the caller.
1764 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1765 #define FUNCTION_VALUE_REGNO_P(N) \
1766 ((N) == GP_ARG_RETURN \
1767 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
1768 && TARGET_HARD_FLOAT) \
1769 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
1770 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1772 /* 1 if N is a possible register number for function argument passing.
1773 On RS/6000, these are r3-r10 and fp1-fp13.
1774 On AltiVec, v2 - v13 are used for passing vectors. */
1775 #define FUNCTION_ARG_REGNO_P(N) \
1776 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1777 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
1778 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1779 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
1780 && TARGET_HARD_FLOAT))
1782 /* Define a data type for recording info about an argument list
1783 during the scan of that argument list. This data type should
1784 hold all necessary information about the function itself
1785 and about the args processed so far, enough to enable macros
1786 such as FUNCTION_ARG to determine where the next arg should go.
1788 On the RS/6000, this is a structure. The first element is the number of
1789 total argument words, the second is used to store the next
1790 floating-point register number, and the third says how many more args we
1791 have prototype types for.
1793 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1794 the next available GP register, `fregno' is the next available FP
1795 register, and `words' is the number of words used on the stack.
1797 The varargs/stdarg support requires that this structure's size
1798 be a multiple of sizeof(int). */
1800 typedef struct rs6000_args
1802 int words
; /* # words used for passing GP registers */
1803 int fregno
; /* next available FP register */
1804 int vregno
; /* next available AltiVec register */
1805 int nargs_prototype
; /* # args left in the current prototype */
1806 int prototype
; /* Whether a prototype was defined */
1807 int stdarg
; /* Whether function is a stdarg function. */
1808 int call_cookie
; /* Do special things for this call */
1809 int sysv_gregno
; /* next available GP register */
1810 int intoffset
; /* running offset in struct (darwin64) */
1811 int use_stack
; /* any part of struct on stack (darwin64) */
1812 int floats_in_gpr
; /* count of SFmode floats taking up
1813 GPR space (darwin64) */
1814 int named
; /* false for varargs params */
1815 int escapes
; /* if function visible outside tu */
1816 int libcall
; /* If this is a compiler generated call. */
1819 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1820 for a call to a function whose data type is FNTYPE.
1821 For a library call, FNTYPE is 0. */
1823 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1824 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1825 N_NAMED_ARGS, FNDECL, VOIDmode)
1827 /* Similar, but when scanning the definition of a procedure. We always
1828 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1830 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1831 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1832 1000, current_function_decl, VOIDmode)
1834 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1836 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1837 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1840 /* If defined, a C expression which determines whether, and in which
1841 direction, to pad out an argument with extra space. The value
1842 should be of type `enum direction': either `upward' to pad above
1843 the argument, `downward' to pad below, or `none' to inhibit
1846 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1848 #define PAD_VARARGS_DOWN \
1849 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1851 /* Output assembler code to FILE to increment profiler label # LABELNO
1852 for profiling a function entry. */
1854 #define FUNCTION_PROFILER(FILE, LABELNO) \
1855 output_function_profiler ((FILE), (LABELNO));
1857 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1858 the stack pointer does not matter. No definition is equivalent to
1861 On the RS/6000, this is nonzero because we can restore the stack from
1862 its backpointer, which we maintain. */
1863 #define EXIT_IGNORE_STACK 1
1865 /* Define this macro as a C expression that is nonzero for registers
1866 that are used by the epilogue or the return' pattern. The stack
1867 and frame pointer registers are already be assumed to be used as
1870 #define EPILOGUE_USES(REGNO) \
1871 ((reload_completed && (REGNO) == LR_REGNO) \
1872 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1873 || (crtl->calls_eh_return \
1878 /* Length in units of the trampoline for entering a nested function. */
1880 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1882 /* Definitions for __builtin_return_address and __builtin_frame_address.
1883 __builtin_return_address (0) should give link register (LR_REGNO), enable
1885 /* This should be uncommented, so that the link register is used, but
1886 currently this would result in unmatched insns and spilling fixed
1887 registers so we'll leave it for another day. When these problems are
1888 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1890 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1892 /* Number of bytes into the frame return addresses can be found. See
1893 rs6000_stack_info in rs6000.c for more information on how the different
1894 abi's store the return address. */
1895 #define RETURN_ADDRESS_OFFSET \
1896 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1898 /* The current return address is in link register (65). The return address
1899 of anything farther back is accessed normally at an offset of 8 from the
1901 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1902 (rs6000_return_addr (COUNT, FRAME))
1905 /* Definitions for register eliminations.
1907 We have two registers that can be eliminated on the RS/6000. First, the
1908 frame pointer register can often be eliminated in favor of the stack
1909 pointer register. Secondly, the argument pointer register can always be
1910 eliminated; it is replaced with either the stack or frame pointer.
1912 In addition, we use the elimination mechanism to see if r30 is needed
1913 Initially we assume that it isn't. If it is, we spill it. This is done
1914 by making it an eliminable register. We replace it with itself so that
1915 if it isn't needed, then existing uses won't be modified. */
1917 /* This is an array of structures. Each structure initializes one pair
1918 of eliminable registers. The "from" register number is given first,
1919 followed by "to". Eliminations of the same "from" register are listed
1920 in order of preference. */
1921 #define ELIMINABLE_REGS \
1922 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1923 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1924 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1925 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1926 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1927 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1929 /* Define the offset between two registers, one to be eliminated, and the other
1930 its replacement, at the start of a routine. */
1931 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1932 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1934 /* Addressing modes, and classification of registers for them. */
1936 #define HAVE_PRE_DECREMENT 1
1937 #define HAVE_PRE_INCREMENT 1
1938 #define HAVE_PRE_MODIFY_DISP 1
1939 #define HAVE_PRE_MODIFY_REG 1
1941 /* Macros to check register numbers against specific register classes. */
1943 /* These assume that REGNO is a hard or pseudo reg number.
1944 They give nonzero only if REGNO is a hard reg of the suitable class
1945 or a pseudo reg currently allocated to a suitable hard reg.
1946 Since they use reg_renumber, they are safe only once reg_renumber
1947 has been allocated, which happens in reginfo.c during register
1950 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1951 ((REGNO) < FIRST_PSEUDO_REGISTER \
1952 ? (REGNO) <= 31 || (REGNO) == 67 \
1953 || (REGNO) == FRAME_POINTER_REGNUM \
1954 : (reg_renumber[REGNO] >= 0 \
1955 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1956 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1958 #define REGNO_OK_FOR_BASE_P(REGNO) \
1959 ((REGNO) < FIRST_PSEUDO_REGISTER \
1960 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1961 || (REGNO) == FRAME_POINTER_REGNUM \
1962 : (reg_renumber[REGNO] > 0 \
1963 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1964 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1966 /* Nonzero if X is a hard reg that can be used as an index
1967 or if it is a pseudo reg in the non-strict case. */
1968 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1969 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1970 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1972 /* Nonzero if X is a hard reg that can be used as a base reg
1973 or if it is a pseudo reg in the non-strict case. */
1974 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1975 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1976 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1979 /* Maximum number of registers that can appear in a valid memory address. */
1981 #define MAX_REGS_PER_ADDRESS 2
1983 /* Recognize any constant value that is a valid address. */
1985 #define CONSTANT_ADDRESS_P(X) \
1986 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1987 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1988 || GET_CODE (X) == HIGH)
1990 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1991 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1992 && EASY_VECTOR_15((n) >> 1) \
1995 #define EASY_VECTOR_MSB(n,mode) \
1996 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
1997 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
2000 /* Try a machine-dependent way of reloading an illegitimate address
2001 operand. If we find one, push the reload and jump to WIN. This
2002 macro is used in only one place: `find_reloads_address' in reload.c.
2004 Implemented on rs6000 by rs6000_legitimize_reload_address.
2005 Note that (X) is evaluated twice; this is safe in current usage. */
2007 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2010 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
2011 (int)(TYPE), (IND_LEVELS), &win); \
2016 #define FIND_BASE_TERM rs6000_find_base_term
2018 /* The register number of the register used to address a table of
2019 static data addresses in memory. In some cases this register is
2020 defined by a processor's "application binary interface" (ABI).
2021 When this macro is defined, RTL is generated for this register
2022 once, as with the stack pointer and frame pointer registers. If
2023 this macro is not defined, it is up to the machine-dependent files
2024 to allocate such a register (if necessary). */
2026 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2027 #define PIC_OFFSET_TABLE_REGNUM \
2028 (TARGET_TOC ? TOC_REGISTER \
2029 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
2032 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2034 /* Define this macro if the register defined by
2035 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2036 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
2038 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2040 /* A C expression that is nonzero if X is a legitimate immediate
2041 operand on the target machine when generating position independent
2042 code. You can assume that X satisfies `CONSTANT_P', so you need
2043 not check this. You can also assume FLAG_PIC is true, so you need
2044 not check it either. You need not define this macro if all
2045 constants (including `SYMBOL_REF') can be immediate operands when
2046 generating position independent code. */
2048 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2050 /* Specify the machine mode that this machine uses
2051 for the index in the tablejump instruction. */
2052 #define CASE_VECTOR_MODE SImode
2054 /* Define as C expression which evaluates to nonzero if the tablejump
2055 instruction expects the table to contain offsets from the address of the
2057 Do not define this if the table should contain absolute addresses. */
2058 #define CASE_VECTOR_PC_RELATIVE 1
2060 /* Define this as 1 if `char' should by default be signed; else as 0. */
2061 #define DEFAULT_SIGNED_CHAR 0
2063 /* An integer expression for the size in bits of the largest integer machine
2064 mode that should actually be used. */
2066 /* Allow pairs of registers to be used, which is the intent of the default. */
2067 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
2069 /* Max number of bytes we can move from memory to memory
2070 in one reasonably fast instruction. */
2071 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2072 #define MAX_MOVE_MAX 8
2074 /* Nonzero if access to memory by bytes is no faster than for words.
2075 Also nonzero if doing byte operations (specifically shifts) in registers
2077 #define SLOW_BYTE_ACCESS 1
2079 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2080 will either zero-extend or sign-extend. The value of this macro should
2081 be the code that says which one of the two operations is implicitly
2082 done, UNKNOWN if none. */
2083 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2085 /* Define if loading short immediate values into registers sign extends. */
2086 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
2088 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2089 is done just by pretending it is already truncated. */
2090 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2092 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
2093 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2094 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
2096 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
2097 zero. The hardware instructions added in Power9 and the sequences using
2098 popcount return 32 or 64. */
2099 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2100 (TARGET_CTZ || TARGET_POPCNTD \
2101 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
2102 : ((VALUE) = -1, 2))
2104 /* Specify the machine mode that pointers have.
2105 After generation of rtl, the compiler makes no further distinction
2106 between pointers and any other objects of this machine mode. */
2107 extern scalar_int_mode rs6000_pmode
;
2108 #define Pmode rs6000_pmode
2110 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
2111 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2113 /* Mode of a function address in a call instruction (for indexing purposes).
2114 Doesn't matter on RS/6000. */
2115 #define FUNCTION_MODE SImode
2117 /* Define this if addresses of constant functions
2118 shouldn't be put through pseudo regs where they can be cse'd.
2119 Desirable on machines where ordinary constants are expensive
2120 but a CALL with constant address is cheap. */
2121 #define NO_FUNCTION_CSE 1
2123 /* Define this to be nonzero if shift instructions ignore all but the low-order
2126 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2127 have been dropped from the PowerPC architecture. */
2128 #define SHIFT_COUNT_TRUNCATED 0
2130 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2131 should be adjusted to reflect any required changes. This macro is used when
2132 there is some systematic length adjustment required that would be difficult
2133 to express in the length attribute. */
2135 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2137 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2138 COMPARE, return the mode to be used for the comparison. For
2139 floating-point, CCFPmode should be used. CCUNSmode should be used
2140 for unsigned comparisons. CCEQmode should be used when we are
2141 doing an inequality comparison on the result of a
2142 comparison. CCmode should be used in all other cases. */
2144 #define SELECT_CC_MODE(OP,X,Y) \
2145 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
2146 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2147 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
2148 ? CCEQmode : CCmode))
2150 /* Can the condition code MODE be safely reversed? This is safe in
2151 all cases on this port, because at present it doesn't use the
2152 trapping FP comparisons (fcmpo). */
2153 #define REVERSIBLE_CC_MODE(MODE) 1
2155 /* Given a condition code and a mode, return the inverse condition. */
2156 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2159 /* Control the assembler format that we output. */
2161 /* A C string constant describing how to begin a comment in the target
2162 assembler language. The compiler assumes that the comment will end at
2163 the end of the line. */
2164 #define ASM_COMMENT_START " #"
2166 /* Flag to say the TOC is initialized */
2167 extern int toc_initialized
;
2169 /* Macro to output a special constant pool entry. Go to WIN if we output
2170 it. Otherwise, it is written the usual way.
2172 On the RS/6000, toc entries are handled this way. */
2174 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2175 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2177 output_toc (FILE, X, LABELNO, MODE); \
2182 #ifdef HAVE_GAS_WEAK
2183 #define RS6000_WEAK 1
2185 #define RS6000_WEAK 0
2189 /* Used in lieu of ASM_WEAKEN_LABEL. */
2190 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2191 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
2194 #if HAVE_GAS_WEAKREF
2195 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2198 fputs ("\t.weakref\t", (FILE)); \
2199 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2200 fputs (", ", (FILE)); \
2201 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2202 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2203 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2205 fputs ("\n\t.weakref\t.", (FILE)); \
2206 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2207 fputs (", .", (FILE)); \
2208 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2210 fputc ('\n', (FILE)); \
2214 /* This implements the `alias' attribute. */
2215 #undef ASM_OUTPUT_DEF_FROM_DECLS
2216 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2219 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2220 const char *name = IDENTIFIER_POINTER (TARGET); \
2221 if (TREE_CODE (DECL) == FUNCTION_DECL \
2222 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2224 if (TREE_PUBLIC (DECL)) \
2226 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2228 fputs ("\t.globl\t.", FILE); \
2229 RS6000_OUTPUT_BASENAME (FILE, alias); \
2230 putc ('\n', FILE); \
2233 else if (TARGET_XCOFF) \
2235 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2237 fputs ("\t.lglobl\t.", FILE); \
2238 RS6000_OUTPUT_BASENAME (FILE, alias); \
2239 putc ('\n', FILE); \
2240 fputs ("\t.lglobl\t", FILE); \
2241 RS6000_OUTPUT_BASENAME (FILE, alias); \
2242 putc ('\n', FILE); \
2245 fputs ("\t.set\t.", FILE); \
2246 RS6000_OUTPUT_BASENAME (FILE, alias); \
2247 fputs (",.", FILE); \
2248 RS6000_OUTPUT_BASENAME (FILE, name); \
2249 fputc ('\n', FILE); \
2251 ASM_OUTPUT_DEF (FILE, alias, name); \
2255 #define TARGET_ASM_FILE_START rs6000_file_start
2257 /* Output to assembler file text saying following lines
2258 may contain character constants, extra white space, comments, etc. */
2260 #define ASM_APP_ON ""
2262 /* Output to assembler file text saying following lines
2263 no longer contain unusual constructs. */
2265 #define ASM_APP_OFF ""
2267 /* How to refer to registers in assembler output.
2268 This sequence is indexed by compiler's hard-register-number (see above). */
2270 extern char rs6000_reg_names
[][8]; /* register names (0 vs. %r0). */
2272 #define REGISTER_NAMES \
2274 &rs6000_reg_names[ 0][0], /* r0 */ \
2275 &rs6000_reg_names[ 1][0], /* r1 */ \
2276 &rs6000_reg_names[ 2][0], /* r2 */ \
2277 &rs6000_reg_names[ 3][0], /* r3 */ \
2278 &rs6000_reg_names[ 4][0], /* r4 */ \
2279 &rs6000_reg_names[ 5][0], /* r5 */ \
2280 &rs6000_reg_names[ 6][0], /* r6 */ \
2281 &rs6000_reg_names[ 7][0], /* r7 */ \
2282 &rs6000_reg_names[ 8][0], /* r8 */ \
2283 &rs6000_reg_names[ 9][0], /* r9 */ \
2284 &rs6000_reg_names[10][0], /* r10 */ \
2285 &rs6000_reg_names[11][0], /* r11 */ \
2286 &rs6000_reg_names[12][0], /* r12 */ \
2287 &rs6000_reg_names[13][0], /* r13 */ \
2288 &rs6000_reg_names[14][0], /* r14 */ \
2289 &rs6000_reg_names[15][0], /* r15 */ \
2290 &rs6000_reg_names[16][0], /* r16 */ \
2291 &rs6000_reg_names[17][0], /* r17 */ \
2292 &rs6000_reg_names[18][0], /* r18 */ \
2293 &rs6000_reg_names[19][0], /* r19 */ \
2294 &rs6000_reg_names[20][0], /* r20 */ \
2295 &rs6000_reg_names[21][0], /* r21 */ \
2296 &rs6000_reg_names[22][0], /* r22 */ \
2297 &rs6000_reg_names[23][0], /* r23 */ \
2298 &rs6000_reg_names[24][0], /* r24 */ \
2299 &rs6000_reg_names[25][0], /* r25 */ \
2300 &rs6000_reg_names[26][0], /* r26 */ \
2301 &rs6000_reg_names[27][0], /* r27 */ \
2302 &rs6000_reg_names[28][0], /* r28 */ \
2303 &rs6000_reg_names[29][0], /* r29 */ \
2304 &rs6000_reg_names[30][0], /* r30 */ \
2305 &rs6000_reg_names[31][0], /* r31 */ \
2307 &rs6000_reg_names[32][0], /* fr0 */ \
2308 &rs6000_reg_names[33][0], /* fr1 */ \
2309 &rs6000_reg_names[34][0], /* fr2 */ \
2310 &rs6000_reg_names[35][0], /* fr3 */ \
2311 &rs6000_reg_names[36][0], /* fr4 */ \
2312 &rs6000_reg_names[37][0], /* fr5 */ \
2313 &rs6000_reg_names[38][0], /* fr6 */ \
2314 &rs6000_reg_names[39][0], /* fr7 */ \
2315 &rs6000_reg_names[40][0], /* fr8 */ \
2316 &rs6000_reg_names[41][0], /* fr9 */ \
2317 &rs6000_reg_names[42][0], /* fr10 */ \
2318 &rs6000_reg_names[43][0], /* fr11 */ \
2319 &rs6000_reg_names[44][0], /* fr12 */ \
2320 &rs6000_reg_names[45][0], /* fr13 */ \
2321 &rs6000_reg_names[46][0], /* fr14 */ \
2322 &rs6000_reg_names[47][0], /* fr15 */ \
2323 &rs6000_reg_names[48][0], /* fr16 */ \
2324 &rs6000_reg_names[49][0], /* fr17 */ \
2325 &rs6000_reg_names[50][0], /* fr18 */ \
2326 &rs6000_reg_names[51][0], /* fr19 */ \
2327 &rs6000_reg_names[52][0], /* fr20 */ \
2328 &rs6000_reg_names[53][0], /* fr21 */ \
2329 &rs6000_reg_names[54][0], /* fr22 */ \
2330 &rs6000_reg_names[55][0], /* fr23 */ \
2331 &rs6000_reg_names[56][0], /* fr24 */ \
2332 &rs6000_reg_names[57][0], /* fr25 */ \
2333 &rs6000_reg_names[58][0], /* fr26 */ \
2334 &rs6000_reg_names[59][0], /* fr27 */ \
2335 &rs6000_reg_names[60][0], /* fr28 */ \
2336 &rs6000_reg_names[61][0], /* fr29 */ \
2337 &rs6000_reg_names[62][0], /* fr30 */ \
2338 &rs6000_reg_names[63][0], /* fr31 */ \
2340 &rs6000_reg_names[64][0], /* was mq */ \
2341 &rs6000_reg_names[65][0], /* lr */ \
2342 &rs6000_reg_names[66][0], /* ctr */ \
2343 &rs6000_reg_names[67][0], /* ap */ \
2345 &rs6000_reg_names[68][0], /* cr0 */ \
2346 &rs6000_reg_names[69][0], /* cr1 */ \
2347 &rs6000_reg_names[70][0], /* cr2 */ \
2348 &rs6000_reg_names[71][0], /* cr3 */ \
2349 &rs6000_reg_names[72][0], /* cr4 */ \
2350 &rs6000_reg_names[73][0], /* cr5 */ \
2351 &rs6000_reg_names[74][0], /* cr6 */ \
2352 &rs6000_reg_names[75][0], /* cr7 */ \
2354 &rs6000_reg_names[76][0], /* ca */ \
2356 &rs6000_reg_names[77][0], /* v0 */ \
2357 &rs6000_reg_names[78][0], /* v1 */ \
2358 &rs6000_reg_names[79][0], /* v2 */ \
2359 &rs6000_reg_names[80][0], /* v3 */ \
2360 &rs6000_reg_names[81][0], /* v4 */ \
2361 &rs6000_reg_names[82][0], /* v5 */ \
2362 &rs6000_reg_names[83][0], /* v6 */ \
2363 &rs6000_reg_names[84][0], /* v7 */ \
2364 &rs6000_reg_names[85][0], /* v8 */ \
2365 &rs6000_reg_names[86][0], /* v9 */ \
2366 &rs6000_reg_names[87][0], /* v10 */ \
2367 &rs6000_reg_names[88][0], /* v11 */ \
2368 &rs6000_reg_names[89][0], /* v12 */ \
2369 &rs6000_reg_names[90][0], /* v13 */ \
2370 &rs6000_reg_names[91][0], /* v14 */ \
2371 &rs6000_reg_names[92][0], /* v15 */ \
2372 &rs6000_reg_names[93][0], /* v16 */ \
2373 &rs6000_reg_names[94][0], /* v17 */ \
2374 &rs6000_reg_names[95][0], /* v18 */ \
2375 &rs6000_reg_names[96][0], /* v19 */ \
2376 &rs6000_reg_names[97][0], /* v20 */ \
2377 &rs6000_reg_names[98][0], /* v21 */ \
2378 &rs6000_reg_names[99][0], /* v22 */ \
2379 &rs6000_reg_names[100][0], /* v23 */ \
2380 &rs6000_reg_names[101][0], /* v24 */ \
2381 &rs6000_reg_names[102][0], /* v25 */ \
2382 &rs6000_reg_names[103][0], /* v26 */ \
2383 &rs6000_reg_names[104][0], /* v27 */ \
2384 &rs6000_reg_names[105][0], /* v28 */ \
2385 &rs6000_reg_names[106][0], /* v29 */ \
2386 &rs6000_reg_names[107][0], /* v30 */ \
2387 &rs6000_reg_names[108][0], /* v31 */ \
2388 &rs6000_reg_names[109][0], /* vrsave */ \
2389 &rs6000_reg_names[110][0], /* vscr */ \
2390 &rs6000_reg_names[111][0], /* sfp */ \
2391 &rs6000_reg_names[112][0], /* tfhar */ \
2392 &rs6000_reg_names[113][0], /* tfiar */ \
2393 &rs6000_reg_names[114][0], /* texasr */ \
2396 /* Table of additional register names to use in user input. */
2398 #define ADDITIONAL_REGISTER_NAMES \
2399 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2400 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2401 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2402 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2403 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2404 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2405 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2406 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2407 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2408 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2409 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2410 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2411 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2412 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2413 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2414 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2415 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2416 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2417 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2418 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2419 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2420 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2421 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2422 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2423 {"vrsave", 109}, {"vscr", 110}, \
2424 /* no additional names for: lr, ctr, ap */ \
2425 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2426 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2427 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2428 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2430 /* VSX registers overlaid on top of FR, Altivec registers */ \
2431 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2432 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2433 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2434 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2435 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2436 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2437 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2438 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2439 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2440 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2441 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2442 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2443 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2444 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2445 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2446 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2447 /* Transactional Memory Facility (HTM) Registers. */ \
2448 {"tfhar", 112}, {"tfiar", 113}, {"texasr", 114}, \
2451 /* This is how to output an element of a case-vector that is relative. */
2453 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2454 do { char buf[100]; \
2455 fputs ("\t.long ", FILE); \
2456 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2457 assemble_name (FILE, buf); \
2459 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2460 assemble_name (FILE, buf); \
2461 putc ('\n', FILE); \
2464 /* This is how to output an assembler line
2465 that says to advance the location counter
2466 to a multiple of 2**LOG bytes. */
2468 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2470 fprintf (FILE, "\t.align %d\n", (LOG))
2472 /* How to align the given loop. */
2473 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2475 /* Alignment guaranteed by __builtin_malloc. */
2476 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2477 However, specifying the stronger guarantee currently leads to
2478 a regression in SPEC CPU2006 437.leslie3d. The stronger
2479 guarantee should be implemented here once that's fixed. */
2480 #define MALLOC_ABI_ALIGNMENT (64)
2482 /* Pick up the return address upon entry to a procedure. Used for
2483 dwarf2 unwind information. This also enables the table driven
2486 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2487 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2489 /* Describe how we implement __builtin_eh_return. */
2490 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2491 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2493 /* Print operand X (an rtx) in assembler syntax to file FILE.
2494 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2495 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2497 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2499 /* Define which CODE values are valid. */
2501 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2503 /* Print a memory address as an operand to reference that memory location. */
2505 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2507 /* For switching between functions with different target attributes. */
2508 #define SWITCHABLE_TARGET 1
2510 /* uncomment for disabling the corresponding default options */
2511 /* #define MACHINE_no_sched_interblock */
2512 /* #define MACHINE_no_sched_speculative */
2513 /* #define MACHINE_no_sched_speculative_load */
2515 /* General flags. */
2516 extern int frame_pointer_needed
;
2518 /* Classification of the builtin functions as to which switches enable the
2519 builtin, and what attributes it should have. We used to use the target
2520 flags macros, but we've run out of bits, so we now map the options into new
2521 settings used here. */
2523 /* Builtin attributes. */
2524 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2525 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2526 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2527 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2528 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2529 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2530 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2531 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2533 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2534 #define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor
2535 modifies global state. */
2536 #define RS6000_BTC_PURE 0x00000200 /* reads global
2538 not modify global state. */
2539 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2540 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2542 /* Miscellaneous information. */
2543 #define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2544 #define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
2545 #define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2546 #define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
2547 #define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
2549 /* Convenience macros to document the instruction type. */
2550 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2551 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2553 /* Builtin targets. For now, we reuse the masks for those options that are in
2554 target flags, and pick two random bits for paired and ldbl128, which
2555 aren't in target_flags. */
2556 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2557 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2558 #define RS6000_BTM_CMPB MASK_CMPB /* ISA 2.05: compare bytes. */
2559 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2560 #define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2561 #define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
2562 #define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
2563 #define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
2564 #define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
2565 #define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2566 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2567 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2568 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2569 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2570 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2571 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2572 #define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
2573 #define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
2574 #define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
2575 #define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
2576 #define RS6000_BTM_FLOAT128 MASK_FLOAT128_TYPE /* IEEE 128-bit float. */
2578 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2580 | RS6000_BTM_P8_VECTOR \
2581 | RS6000_BTM_P9_VECTOR \
2582 | RS6000_BTM_P9_MISC \
2583 | RS6000_BTM_MODULO \
2584 | RS6000_BTM_CRYPTO \
2587 | RS6000_BTM_FRSQRTE \
2588 | RS6000_BTM_FRSQRTES \
2590 | RS6000_BTM_POPCNTD \
2593 | RS6000_BTM_HARD_FLOAT \
2594 | RS6000_BTM_LDBL128 \
2595 | RS6000_BTM_FLOAT128)
2597 /* Define builtin enum index. */
2599 #undef RS6000_BUILTIN_0
2600 #undef RS6000_BUILTIN_1
2601 #undef RS6000_BUILTIN_2
2602 #undef RS6000_BUILTIN_3
2603 #undef RS6000_BUILTIN_A
2604 #undef RS6000_BUILTIN_D
2605 #undef RS6000_BUILTIN_H
2606 #undef RS6000_BUILTIN_P
2607 #undef RS6000_BUILTIN_Q
2608 #undef RS6000_BUILTIN_X
2610 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2611 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2612 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2613 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2614 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2615 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2616 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2617 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2618 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2619 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2621 enum rs6000_builtins
2623 #include "rs6000-builtin.def"
2625 RS6000_BUILTIN_COUNT
2628 #undef RS6000_BUILTIN_0
2629 #undef RS6000_BUILTIN_1
2630 #undef RS6000_BUILTIN_2
2631 #undef RS6000_BUILTIN_3
2632 #undef RS6000_BUILTIN_A
2633 #undef RS6000_BUILTIN_D
2634 #undef RS6000_BUILTIN_H
2635 #undef RS6000_BUILTIN_P
2636 #undef RS6000_BUILTIN_Q
2637 #undef RS6000_BUILTIN_X
2639 enum rs6000_builtin_type_index
2641 RS6000_BTI_NOT_OPAQUE
,
2642 RS6000_BTI_opaque_V2SI
,
2643 RS6000_BTI_opaque_V2SF
,
2644 RS6000_BTI_opaque_p_V2SI
,
2645 RS6000_BTI_opaque_V4SI
,
2656 RS6000_BTI_unsigned_V16QI
,
2657 RS6000_BTI_unsigned_V1TI
,
2658 RS6000_BTI_unsigned_V8HI
,
2659 RS6000_BTI_unsigned_V4SI
,
2660 RS6000_BTI_unsigned_V2DI
,
2661 RS6000_BTI_bool_char
, /* __bool char */
2662 RS6000_BTI_bool_short
, /* __bool short */
2663 RS6000_BTI_bool_int
, /* __bool int */
2664 RS6000_BTI_bool_long
, /* __bool long */
2665 RS6000_BTI_pixel
, /* __pixel */
2666 RS6000_BTI_bool_V16QI
, /* __vector __bool char */
2667 RS6000_BTI_bool_V8HI
, /* __vector __bool short */
2668 RS6000_BTI_bool_V4SI
, /* __vector __bool int */
2669 RS6000_BTI_bool_V2DI
, /* __vector __bool long */
2670 RS6000_BTI_pixel_V8HI
, /* __vector __pixel */
2671 RS6000_BTI_long
, /* long_integer_type_node */
2672 RS6000_BTI_unsigned_long
, /* long_unsigned_type_node */
2673 RS6000_BTI_long_long
, /* long_long_integer_type_node */
2674 RS6000_BTI_unsigned_long_long
, /* long_long_unsigned_type_node */
2675 RS6000_BTI_INTQI
, /* intQI_type_node */
2676 RS6000_BTI_UINTQI
, /* unsigned_intQI_type_node */
2677 RS6000_BTI_INTHI
, /* intHI_type_node */
2678 RS6000_BTI_UINTHI
, /* unsigned_intHI_type_node */
2679 RS6000_BTI_INTSI
, /* intSI_type_node */
2680 RS6000_BTI_UINTSI
, /* unsigned_intSI_type_node */
2681 RS6000_BTI_INTDI
, /* intDI_type_node */
2682 RS6000_BTI_UINTDI
, /* unsigned_intDI_type_node */
2683 RS6000_BTI_INTTI
, /* intTI_type_node */
2684 RS6000_BTI_UINTTI
, /* unsigned_intTI_type_node */
2685 RS6000_BTI_float
, /* float_type_node */
2686 RS6000_BTI_double
, /* double_type_node */
2687 RS6000_BTI_long_double
, /* long_double_type_node */
2688 RS6000_BTI_dfloat64
, /* dfloat64_type_node */
2689 RS6000_BTI_dfloat128
, /* dfloat128_type_node */
2690 RS6000_BTI_void
, /* void_type_node */
2691 RS6000_BTI_ieee128_float
, /* ieee 128-bit floating point */
2692 RS6000_BTI_ibm128_float
, /* IBM 128-bit floating point */
2693 RS6000_BTI_const_str
, /* pointer to const char * */
2698 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2699 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2700 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2701 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2702 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2703 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2704 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2705 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2706 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2707 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2708 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2709 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2710 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2711 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2712 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2713 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2714 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2715 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2716 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2717 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2718 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2719 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2720 #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
2721 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2722 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2723 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2724 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2725 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2726 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2728 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2729 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2730 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2731 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2732 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2733 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2734 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2735 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2736 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2737 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2738 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2739 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2740 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2741 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2742 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2743 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2744 #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2745 #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2746 #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
2747 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2748 #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2749 #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2750 #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
2752 extern GTY(()) tree rs6000_builtin_types
[RS6000_BTI_MAX
];
2753 extern GTY(()) tree rs6000_builtin_decls
[RS6000_BUILTIN_COUNT
];
2755 #define TARGET_SUPPORTS_WIDE_INT 1
2757 #if (GCC_VERSION >= 3000)
2758 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128