Fix ICE on view conversion between struct and integer
[official-gcc.git] / gcc / gimple-range-fold.cc
blob6f907df5bf55f6073cd7e1ef5d0a2003a3c639f6
1 /* Code for GIMPLE range related routines.
2 Copyright (C) 2019-2022 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "insn-codes.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "ssa.h"
30 #include "gimple-pretty-print.h"
31 #include "optabs-tree.h"
32 #include "gimple-iterator.h"
33 #include "gimple-fold.h"
34 #include "wide-int.h"
35 #include "fold-const.h"
36 #include "case-cfn-macros.h"
37 #include "omp-general.h"
38 #include "cfgloop.h"
39 #include "tree-ssa-loop.h"
40 #include "tree-scalar-evolution.h"
41 #include "langhooks.h"
42 #include "vr-values.h"
43 #include "range.h"
44 #include "value-query.h"
45 #include "range-op.h"
46 #include "gimple-range.h"
47 // Construct a fur_source, and set the m_query field.
49 fur_source::fur_source (range_query *q)
51 if (q)
52 m_query = q;
53 else if (cfun)
54 m_query = get_range_query (cfun);
55 else
56 m_query = get_global_range_query ();
57 m_gori = NULL;
60 // Invoke range_of_expr on EXPR.
62 bool
63 fur_source::get_operand (vrange &r, tree expr)
65 return m_query->range_of_expr (r, expr);
68 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
69 // range_query to get the range on the edge.
71 bool
72 fur_source::get_phi_operand (vrange &r, tree expr, edge e)
74 return m_query->range_on_edge (r, e, expr);
77 // Default is no relation.
79 relation_kind
80 fur_source::query_relation (tree op1 ATTRIBUTE_UNUSED,
81 tree op2 ATTRIBUTE_UNUSED)
83 return VREL_VARYING;
86 // Default registers nothing.
88 void
89 fur_source::register_relation (gimple *s ATTRIBUTE_UNUSED,
90 relation_kind k ATTRIBUTE_UNUSED,
91 tree op1 ATTRIBUTE_UNUSED,
92 tree op2 ATTRIBUTE_UNUSED)
96 // Default registers nothing.
98 void
99 fur_source::register_relation (edge e ATTRIBUTE_UNUSED,
100 relation_kind k ATTRIBUTE_UNUSED,
101 tree op1 ATTRIBUTE_UNUSED,
102 tree op2 ATTRIBUTE_UNUSED)
106 // This version of fur_source will pick a range up off an edge.
108 class fur_edge : public fur_source
110 public:
111 fur_edge (edge e, range_query *q = NULL);
112 virtual bool get_operand (vrange &r, tree expr) override;
113 virtual bool get_phi_operand (vrange &r, tree expr, edge e) override;
114 private:
115 edge m_edge;
118 // Instantiate an edge based fur_source.
120 inline
121 fur_edge::fur_edge (edge e, range_query *q) : fur_source (q)
123 m_edge = e;
126 // Get the value of EXPR on edge m_edge.
128 bool
129 fur_edge::get_operand (vrange &r, tree expr)
131 return m_query->range_on_edge (r, m_edge, expr);
134 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
135 // range_query to get the range on the edge.
137 bool
138 fur_edge::get_phi_operand (vrange &r, tree expr, edge e)
140 // Edge to edge recalculations not supoprted yet, until we sort it out.
141 gcc_checking_assert (e == m_edge);
142 return m_query->range_on_edge (r, e, expr);
145 // Instantiate a stmt based fur_source.
147 fur_stmt::fur_stmt (gimple *s, range_query *q) : fur_source (q)
149 m_stmt = s;
152 // Retreive range of EXPR as it occurs as a use on stmt M_STMT.
154 bool
155 fur_stmt::get_operand (vrange &r, tree expr)
157 return m_query->range_of_expr (r, expr, m_stmt);
160 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
161 // range_query to get the range on the edge.
163 bool
164 fur_stmt::get_phi_operand (vrange &r, tree expr, edge e)
166 // Pick up the range of expr from edge E.
167 fur_edge e_src (e, m_query);
168 return e_src.get_operand (r, expr);
171 // Return relation based from m_stmt.
173 relation_kind
174 fur_stmt::query_relation (tree op1, tree op2)
176 return m_query->query_relation (m_stmt, op1, op2);
179 // Instantiate a stmt based fur_source with a GORI object.
182 fur_depend::fur_depend (gimple *s, gori_compute *gori, range_query *q)
183 : fur_stmt (s, q)
185 gcc_checking_assert (gori);
186 m_gori = gori;
187 // Set relations if there is an oracle in the range_query.
188 // This will enable registering of relationships as they are discovered.
189 m_oracle = q->oracle ();
193 // Register a relation on a stmt if there is an oracle.
195 void
196 fur_depend::register_relation (gimple *s, relation_kind k, tree op1, tree op2)
198 if (m_oracle)
199 m_oracle->register_stmt (s, k, op1, op2);
202 // Register a relation on an edge if there is an oracle.
204 void
205 fur_depend::register_relation (edge e, relation_kind k, tree op1, tree op2)
207 if (m_oracle)
208 m_oracle->register_edge (e, k, op1, op2);
211 // This version of fur_source will pick a range up from a list of ranges
212 // supplied by the caller.
214 class fur_list : public fur_source
216 public:
217 fur_list (vrange &r1);
218 fur_list (vrange &r1, vrange &r2);
219 fur_list (unsigned num, vrange **list);
220 virtual bool get_operand (vrange &r, tree expr) override;
221 virtual bool get_phi_operand (vrange &r, tree expr, edge e) override;
222 private:
223 vrange *m_local[2];
224 vrange **m_list;
225 unsigned m_index;
226 unsigned m_limit;
229 // One range supplied for unary operations.
231 fur_list::fur_list (vrange &r1) : fur_source (NULL)
233 m_list = m_local;
234 m_index = 0;
235 m_limit = 1;
236 m_local[0] = &r1;
239 // Two ranges supplied for binary operations.
241 fur_list::fur_list (vrange &r1, vrange &r2) : fur_source (NULL)
243 m_list = m_local;
244 m_index = 0;
245 m_limit = 2;
246 m_local[0] = &r1;
247 m_local[1] = &r2;
250 // Arbitrary number of ranges in a vector.
252 fur_list::fur_list (unsigned num, vrange **list) : fur_source (NULL)
254 m_list = list;
255 m_index = 0;
256 m_limit = num;
259 // Get the next operand from the vector, ensure types are compatible.
261 bool
262 fur_list::get_operand (vrange &r, tree expr)
264 if (m_index >= m_limit)
265 return m_query->range_of_expr (r, expr);
266 r = *m_list[m_index++];
267 gcc_checking_assert (range_compatible_p (TREE_TYPE (expr), r.type ()));
268 return true;
271 // This will simply pick the next operand from the vector.
272 bool
273 fur_list::get_phi_operand (vrange &r, tree expr, edge e ATTRIBUTE_UNUSED)
275 return get_operand (r, expr);
278 // Fold stmt S into range R using R1 as the first operand.
280 bool
281 fold_range (vrange &r, gimple *s, vrange &r1)
283 fold_using_range f;
284 fur_list src (r1);
285 return f.fold_stmt (r, s, src);
288 // Fold stmt S into range R using R1 and R2 as the first two operands.
290 bool
291 fold_range (vrange &r, gimple *s, vrange &r1, vrange &r2)
293 fold_using_range f;
294 fur_list src (r1, r2);
295 return f.fold_stmt (r, s, src);
298 // Fold stmt S into range R using NUM_ELEMENTS from VECTOR as the initial
299 // operands encountered.
301 bool
302 fold_range (vrange &r, gimple *s, unsigned num_elements, vrange **vector)
304 fold_using_range f;
305 fur_list src (num_elements, vector);
306 return f.fold_stmt (r, s, src);
309 // Fold stmt S into range R using range query Q.
311 bool
312 fold_range (vrange &r, gimple *s, range_query *q)
314 fold_using_range f;
315 fur_stmt src (s, q);
316 return f.fold_stmt (r, s, src);
319 // Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE.
321 bool
322 fold_range (vrange &r, gimple *s, edge on_edge, range_query *q)
324 fold_using_range f;
325 fur_edge src (on_edge, q);
326 return f.fold_stmt (r, s, src);
329 // -------------------------------------------------------------------------
331 // Adjust the range for a pointer difference where the operands came
332 // from a memchr.
334 // This notices the following sequence:
336 // def = __builtin_memchr (arg, 0, sz)
337 // n = def - arg
339 // The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
341 static void
342 adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
344 tree op0 = gimple_assign_rhs1 (diff_stmt);
345 tree op1 = gimple_assign_rhs2 (diff_stmt);
346 tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
347 tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
348 gimple *call;
350 if (TREE_CODE (op0) == SSA_NAME
351 && TREE_CODE (op1) == SSA_NAME
352 && (call = SSA_NAME_DEF_STMT (op0))
353 && is_gimple_call (call)
354 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
355 && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
356 && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
357 && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
358 && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
359 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
360 && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
361 && integer_zerop (gimple_call_arg (call, 1)))
363 tree max = vrp_val_max (ptrdiff_type_node);
364 unsigned prec = TYPE_PRECISION (TREE_TYPE (max));
365 wide_int wmaxm1 = wi::to_wide (max, prec) - 1;
366 res.intersect (int_range<2> (TREE_TYPE (max), wi::zero (prec), wmaxm1));
370 // Adjust the range for an IMAGPART_EXPR.
372 static void
373 adjust_imagpart_expr (vrange &res, const gimple *stmt)
375 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
377 if (TREE_CODE (name) != SSA_NAME || !SSA_NAME_DEF_STMT (name))
378 return;
380 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
381 if (is_gimple_call (def_stmt) && gimple_call_internal_p (def_stmt))
383 switch (gimple_call_internal_fn (def_stmt))
385 case IFN_ADD_OVERFLOW:
386 case IFN_SUB_OVERFLOW:
387 case IFN_MUL_OVERFLOW:
388 case IFN_ATOMIC_COMPARE_EXCHANGE:
390 int_range<2> r;
391 r.set_varying (boolean_type_node);
392 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
393 range_cast (r, type);
394 res.intersect (r);
396 default:
397 break;
399 return;
401 if (is_gimple_assign (def_stmt)
402 && gimple_assign_rhs_code (def_stmt) == COMPLEX_CST)
404 tree cst = gimple_assign_rhs1 (def_stmt);
405 if (TREE_CODE (cst) == COMPLEX_CST)
407 int_range<2> imag (TREE_IMAGPART (cst), TREE_IMAGPART (cst));
408 res.intersect (imag);
413 // Adjust the range for a REALPART_EXPR.
415 static void
416 adjust_realpart_expr (vrange &res, const gimple *stmt)
418 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
420 if (TREE_CODE (name) != SSA_NAME)
421 return;
423 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
424 if (!SSA_NAME_DEF_STMT (name))
425 return;
427 if (is_gimple_assign (def_stmt)
428 && gimple_assign_rhs_code (def_stmt) == COMPLEX_CST)
430 tree cst = gimple_assign_rhs1 (def_stmt);
431 if (TREE_CODE (cst) == COMPLEX_CST)
433 tree imag = TREE_REALPART (cst);
434 int_range<2> tmp (imag, imag);
435 res.intersect (tmp);
440 // This function looks for situations when walking the use/def chains
441 // may provide additonal contextual range information not exposed on
442 // this statement.
444 static void
445 gimple_range_adjustment (vrange &res, const gimple *stmt)
447 switch (gimple_expr_code (stmt))
449 case POINTER_DIFF_EXPR:
450 adjust_pointer_diff_expr (as_a <irange> (res), stmt);
451 return;
453 case IMAGPART_EXPR:
454 adjust_imagpart_expr (res, stmt);
455 return;
457 case REALPART_EXPR:
458 adjust_realpart_expr (res, stmt);
459 return;
461 default:
462 break;
466 // Return the base of the RHS of an assignment.
468 static tree
469 gimple_range_base_of_assignment (const gimple *stmt)
471 gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
472 tree op1 = gimple_assign_rhs1 (stmt);
473 if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
474 return get_base_address (TREE_OPERAND (op1, 0));
475 return op1;
478 // Return the first operand of this statement if it is a valid operand
479 // supported by ranges, otherwise return NULL_TREE. Special case is
480 // &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr.
482 tree
483 gimple_range_operand1 (const gimple *stmt)
485 gcc_checking_assert (range_op_handler (stmt));
487 switch (gimple_code (stmt))
489 case GIMPLE_COND:
490 return gimple_cond_lhs (stmt);
491 case GIMPLE_ASSIGN:
493 tree base = gimple_range_base_of_assignment (stmt);
494 if (base && TREE_CODE (base) == MEM_REF)
496 // If the base address is an SSA_NAME, we return it
497 // here. This allows processing of the range of that
498 // name, while the rest of the expression is simply
499 // ignored. The code in range_ops will see the
500 // ADDR_EXPR and do the right thing.
501 tree ssa = TREE_OPERAND (base, 0);
502 if (TREE_CODE (ssa) == SSA_NAME)
503 return ssa;
505 return base;
507 default:
508 break;
510 return NULL;
513 // Return the second operand of statement STMT, otherwise return NULL_TREE.
515 tree
516 gimple_range_operand2 (const gimple *stmt)
518 gcc_checking_assert (range_op_handler (stmt));
520 switch (gimple_code (stmt))
522 case GIMPLE_COND:
523 return gimple_cond_rhs (stmt);
524 case GIMPLE_ASSIGN:
525 if (gimple_num_ops (stmt) >= 3)
526 return gimple_assign_rhs2 (stmt);
527 default:
528 break;
530 return NULL_TREE;
533 // Calculate a range for statement S and return it in R. If NAME is provided it
534 // represents the SSA_NAME on the LHS of the statement. It is only required
535 // if there is more than one lhs/output. If a range cannot
536 // be calculated, return false.
538 bool
539 fold_using_range::fold_stmt (vrange &r, gimple *s, fur_source &src, tree name)
541 bool res = false;
542 // If name and S are specified, make sure it is an LHS of S.
543 gcc_checking_assert (!name || !gimple_get_lhs (s) ||
544 name == gimple_get_lhs (s));
546 if (!name)
547 name = gimple_get_lhs (s);
549 // Process addresses.
550 if (gimple_code (s) == GIMPLE_ASSIGN
551 && gimple_assign_rhs_code (s) == ADDR_EXPR)
552 return range_of_address (as_a <irange> (r), s, src);
554 if (range_op_handler (s))
555 res = range_of_range_op (r, s, src);
556 else if (is_a<gphi *>(s))
557 res = range_of_phi (r, as_a<gphi *> (s), src);
558 else if (is_a<gcall *>(s))
559 res = range_of_call (r, as_a<gcall *> (s), src);
560 else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
561 res = range_of_cond_expr (r, as_a<gassign *> (s), src);
563 if (!res)
565 // If no name specified or range is unsupported, bail.
566 if (!name || !gimple_range_ssa_p (name))
567 return false;
568 // We don't understand the stmt, so return the global range.
569 gimple_range_global (r, name);
570 return true;
573 if (r.undefined_p ())
574 return true;
576 // We sometimes get compatible types copied from operands, make sure
577 // the correct type is being returned.
578 if (name && TREE_TYPE (name) != r.type ())
580 gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name)));
581 range_cast (r, TREE_TYPE (name));
583 return true;
586 // Calculate a range for range_op statement S and return it in R. If any
587 // If a range cannot be calculated, return false.
589 bool
590 fold_using_range::range_of_range_op (vrange &r, gimple *s, fur_source &src)
592 tree type = gimple_range_type (s);
593 if (!type)
594 return false;
595 range_op_handler handler (s);
596 gcc_checking_assert (handler);
598 tree lhs = gimple_get_lhs (s);
599 tree op1 = gimple_range_operand1 (s);
600 tree op2 = gimple_range_operand2 (s);
601 Value_Range range1 (TREE_TYPE (op1));
602 Value_Range range2 (op2 ? TREE_TYPE (op2) : TREE_TYPE (op1));
604 if (src.get_operand (range1, op1))
606 if (!op2)
608 // Fold range, and register any dependency if available.
609 Value_Range r2 (type);
610 r2.set_varying (type);
611 handler.fold_range (r, type, range1, r2);
612 if (lhs && gimple_range_ssa_p (op1))
614 if (src.gori ())
615 src.gori ()->register_dependency (lhs, op1);
616 relation_kind rel;
617 rel = handler.lhs_op1_relation (r, range1, range1);
618 if (rel != VREL_VARYING)
619 src.register_relation (s, rel, lhs, op1);
622 else if (src.get_operand (range2, op2))
624 relation_kind rel = src.query_relation (op1, op2);
625 if (dump_file && (dump_flags & TDF_DETAILS) && rel != VREL_VARYING)
627 fprintf (dump_file, " folding with relation ");
628 print_generic_expr (dump_file, op1, TDF_SLIM);
629 print_relation (dump_file, rel);
630 print_generic_expr (dump_file, op2, TDF_SLIM);
631 fputc ('\n', dump_file);
633 // Fold range, and register any dependency if available.
634 handler.fold_range (r, type, range1, range2, rel);
635 if (irange::supports_p (type))
636 relation_fold_and_or (as_a <irange> (r), s, src);
637 if (lhs)
639 if (src.gori ())
641 src.gori ()->register_dependency (lhs, op1);
642 src.gori ()->register_dependency (lhs, op2);
644 if (gimple_range_ssa_p (op1))
646 rel = handler.lhs_op1_relation (r, range1, range2, rel);
647 if (rel != VREL_VARYING)
648 src.register_relation (s, rel, lhs, op1);
650 if (gimple_range_ssa_p (op2))
652 rel= handler.lhs_op2_relation (r, range1, range2, rel);
653 if (rel != VREL_VARYING)
654 src.register_relation (s, rel, lhs, op2);
657 // Check for an existing BB, as we maybe asked to fold an
658 // artificial statement not in the CFG.
659 else if (is_a<gcond *> (s) && gimple_bb (s))
661 basic_block bb = gimple_bb (s);
662 edge e0 = EDGE_SUCC (bb, 0);
663 edge e1 = EDGE_SUCC (bb, 1);
665 if (!single_pred_p (e0->dest))
666 e0 = NULL;
667 if (!single_pred_p (e1->dest))
668 e1 = NULL;
669 src.register_outgoing_edges (as_a<gcond *> (s),
670 as_a <irange> (r), e0, e1);
673 else
674 r.set_varying (type);
676 else
677 r.set_varying (type);
678 // Make certain range-op adjustments that aren't handled any other way.
679 gimple_range_adjustment (r, s);
680 return true;
683 // Calculate the range of an assignment containing an ADDR_EXPR.
684 // Return the range in R.
685 // If a range cannot be calculated, set it to VARYING and return true.
687 bool
688 fold_using_range::range_of_address (irange &r, gimple *stmt, fur_source &src)
690 gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
691 gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR);
693 bool strict_overflow_p;
694 tree expr = gimple_assign_rhs1 (stmt);
695 poly_int64 bitsize, bitpos;
696 tree offset;
697 machine_mode mode;
698 int unsignedp, reversep, volatilep;
699 tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
700 &bitpos, &offset, &mode, &unsignedp,
701 &reversep, &volatilep);
704 if (base != NULL_TREE
705 && TREE_CODE (base) == MEM_REF
706 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
708 tree ssa = TREE_OPERAND (base, 0);
709 tree lhs = gimple_get_lhs (stmt);
710 if (lhs && gimple_range_ssa_p (ssa) && src.gori ())
711 src.gori ()->register_dependency (lhs, ssa);
712 src.get_operand (r, ssa);
713 range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt)));
715 poly_offset_int off = 0;
716 bool off_cst = false;
717 if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
719 off = mem_ref_offset (base);
720 if (offset)
721 off += poly_offset_int::from (wi::to_poly_wide (offset),
722 SIGNED);
723 off <<= LOG2_BITS_PER_UNIT;
724 off += bitpos;
725 off_cst = true;
727 /* If &X->a is equal to X, the range of X is the result. */
728 if (off_cst && known_eq (off, 0))
729 return true;
730 else if (flag_delete_null_pointer_checks
731 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
733 /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
734 allow going from non-NULL pointer to NULL. */
735 if (r.undefined_p () || !r.contains_p (build_zero_cst (r.type ())))
737 /* We could here instead adjust r by off >> LOG2_BITS_PER_UNIT
738 using POINTER_PLUS_EXPR if off_cst and just fall back to
739 this. */
740 r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
741 return true;
744 /* If MEM_REF has a "positive" offset, consider it non-NULL
745 always, for -fdelete-null-pointer-checks also "negative"
746 ones. Punt for unknown offsets (e.g. variable ones). */
747 if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
748 && off_cst
749 && known_ne (off, 0)
750 && (flag_delete_null_pointer_checks || known_gt (off, 0)))
752 r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
753 return true;
755 r.set_varying (TREE_TYPE (gimple_assign_rhs1 (stmt)));
756 return true;
759 // Handle "= &a".
760 if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p))
762 r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
763 return true;
766 // Otherwise return varying.
767 r.set_varying (TREE_TYPE (gimple_assign_rhs1 (stmt)));
768 return true;
771 // Calculate a range for phi statement S and return it in R.
772 // If a range cannot be calculated, return false.
774 bool
775 fold_using_range::range_of_phi (vrange &r, gphi *phi, fur_source &src)
777 tree phi_def = gimple_phi_result (phi);
778 tree type = gimple_range_type (phi);
779 Value_Range arg_range (type);
780 Value_Range equiv_range (type);
781 unsigned x;
783 if (!type)
784 return false;
786 // Track if all executable arguments are the same.
787 tree single_arg = NULL_TREE;
788 bool seen_arg = false;
790 // Start with an empty range, unioning in each argument's range.
791 r.set_undefined ();
792 for (x = 0; x < gimple_phi_num_args (phi); x++)
794 tree arg = gimple_phi_arg_def (phi, x);
795 // An argument that is the same as the def provides no new range.
796 if (arg == phi_def)
797 continue;
799 edge e = gimple_phi_arg_edge (phi, x);
801 // Get the range of the argument on its edge.
802 src.get_phi_operand (arg_range, arg, e);
804 if (!arg_range.undefined_p ())
806 // Register potential dependencies for stale value tracking.
807 // Likewise, if the incoming PHI argument is equivalent to this
808 // PHI definition, it provides no new info. Accumulate these ranges
809 // in case all arguments are equivalences.
810 if (src.query ()->query_relation (e, arg, phi_def, false) == VREL_EQ)
811 equiv_range.union_(arg_range);
812 else
813 r.union_ (arg_range);
815 if (gimple_range_ssa_p (arg) && src.gori ())
816 src.gori ()->register_dependency (phi_def, arg);
818 // Track if all arguments are the same.
819 if (!seen_arg)
821 seen_arg = true;
822 single_arg = arg;
824 else if (single_arg != arg)
825 single_arg = NULL_TREE;
828 // Once the value reaches varying, stop looking.
829 if (r.varying_p () && single_arg == NULL_TREE)
830 break;
833 // If all arguments were equivalences, use the equivalence ranges as no
834 // arguments were processed.
835 if (r.undefined_p () && !equiv_range.undefined_p ())
836 r = equiv_range;
838 // If the PHI boils down to a single effective argument, look at it.
839 if (single_arg)
841 // Symbolic arguments are equivalences.
842 if (gimple_range_ssa_p (single_arg))
843 src.register_relation (phi, VREL_EQ, phi_def, single_arg);
844 else if (src.get_operand (arg_range, single_arg)
845 && arg_range.singleton_p ())
847 // Numerical arguments that are a constant can be returned as
848 // the constant. This can help fold later cases where even this
849 // constant might have been UNDEFINED via an unreachable edge.
850 r = arg_range;
851 return true;
855 // If SCEV is available, query if this PHI has any knonwn values.
856 if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def)))
858 value_range loop_range;
859 class loop *l = loop_containing_stmt (phi);
860 if (l && loop_outer (l))
862 range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi, src);
863 if (!loop_range.varying_p ())
865 if (dump_file && (dump_flags & TDF_DETAILS))
867 fprintf (dump_file, " Loops range found for ");
868 print_generic_expr (dump_file, phi_def, TDF_SLIM);
869 fprintf (dump_file, ": ");
870 loop_range.dump (dump_file);
871 fprintf (dump_file, " and calculated range :");
872 r.dump (dump_file);
873 fprintf (dump_file, "\n");
875 r.intersect (loop_range);
880 return true;
883 // Calculate a range for call statement S and return it in R.
884 // If a range cannot be calculated, return false.
886 bool
887 fold_using_range::range_of_call (vrange &r, gcall *call, fur_source &src)
889 tree type = gimple_range_type (call);
890 if (!type)
891 return false;
893 tree lhs = gimple_call_lhs (call);
894 bool strict_overflow_p;
896 if (range_of_builtin_call (r, call, src))
898 else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
899 r.set_nonnegative (type);
900 else if (gimple_call_nonnull_result_p (call)
901 || gimple_call_nonnull_arg (call))
902 r.set_nonzero (type);
903 else
904 r.set_varying (type);
906 // If there is an LHS, intersect that with what is known.
907 if (lhs)
909 Value_Range def (TREE_TYPE (lhs));
910 gimple_range_global (def, lhs);
911 r.intersect (def);
913 return true;
916 // Return the range of a __builtin_ubsan* in CALL and set it in R.
917 // CODE is the type of ubsan call (PLUS_EXPR, MINUS_EXPR or
918 // MULT_EXPR).
920 void
921 fold_using_range::range_of_builtin_ubsan_call (irange &r, gcall *call,
922 tree_code code, fur_source &src)
924 gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR
925 || code == MULT_EXPR);
926 tree type = gimple_range_type (call);
927 range_op_handler op (code, type);
928 gcc_checking_assert (op);
929 int_range_max ir0, ir1;
930 tree arg0 = gimple_call_arg (call, 0);
931 tree arg1 = gimple_call_arg (call, 1);
932 src.get_operand (ir0, arg0);
933 src.get_operand (ir1, arg1);
934 // Check for any relation between arg0 and arg1.
935 relation_kind relation = src.query_relation (arg0, arg1);
937 bool saved_flag_wrapv = flag_wrapv;
938 // Pretend the arithmetic is wrapping. If there is any overflow,
939 // we'll complain, but will actually do wrapping operation.
940 flag_wrapv = 1;
941 op.fold_range (r, type, ir0, ir1, relation);
942 flag_wrapv = saved_flag_wrapv;
944 // If for both arguments vrp_valueize returned non-NULL, this should
945 // have been already folded and if not, it wasn't folded because of
946 // overflow. Avoid removing the UBSAN_CHECK_* calls in that case.
947 if (r.singleton_p ())
948 r.set_varying (type);
951 // Return TRUE if we recognize the target character set and return the
952 // range for lower case and upper case letters.
954 static bool
955 get_letter_range (tree type, irange &lowers, irange &uppers)
957 // ASCII
958 int a = lang_hooks.to_target_charset ('a');
959 int z = lang_hooks.to_target_charset ('z');
960 int A = lang_hooks.to_target_charset ('A');
961 int Z = lang_hooks.to_target_charset ('Z');
963 if ((z - a == 25) && (Z - A == 25))
965 lowers = int_range<2> (build_int_cst (type, a), build_int_cst (type, z));
966 uppers = int_range<2> (build_int_cst (type, A), build_int_cst (type, Z));
967 return true;
969 // Unknown character set.
970 return false;
973 // For a builtin in CALL, return a range in R if known and return
974 // TRUE. Otherwise return FALSE.
976 bool
977 fold_using_range::range_of_builtin_call (vrange &r, gcall *call,
978 fur_source &src)
980 combined_fn func = gimple_call_combined_fn (call);
981 if (func == CFN_LAST)
982 return false;
984 tree type = gimple_range_type (call);
985 gcc_checking_assert (type);
987 if (irange::supports_p (type))
988 return range_of_builtin_int_call (as_a <irange> (r), call, src);
990 return false;
993 bool
994 fold_using_range::range_of_builtin_int_call (irange &r, gcall *call,
995 fur_source &src)
997 combined_fn func = gimple_call_combined_fn (call);
998 if (func == CFN_LAST)
999 return false;
1001 tree type = gimple_range_type (call);
1002 tree arg;
1003 int mini, maxi, zerov = 0, prec;
1004 scalar_int_mode mode;
1006 switch (func)
1008 case CFN_BUILT_IN_CONSTANT_P:
1010 arg = gimple_call_arg (call, 0);
1011 Value_Range tmp (TREE_TYPE (arg));
1012 if (src.get_operand (tmp, arg) && tmp.singleton_p ())
1014 r.set (build_one_cst (type), build_one_cst (type));
1015 return true;
1017 if (cfun->after_inlining)
1019 r.set_zero (type);
1020 return true;
1022 break;
1025 case CFN_BUILT_IN_TOUPPER:
1027 arg = gimple_call_arg (call, 0);
1028 // If the argument isn't compatible with the LHS, do nothing.
1029 if (!range_compatible_p (type, TREE_TYPE (arg)))
1030 return false;
1031 if (!src.get_operand (r, arg))
1032 return false;
1034 int_range<3> lowers;
1035 int_range<3> uppers;
1036 if (!get_letter_range (type, lowers, uppers))
1037 return false;
1039 // Return the range passed in without any lower case characters,
1040 // but including all the upper case ones.
1041 lowers.invert ();
1042 r.intersect (lowers);
1043 r.union_ (uppers);
1044 return true;
1047 case CFN_BUILT_IN_TOLOWER:
1049 arg = gimple_call_arg (call, 0);
1050 // If the argument isn't compatible with the LHS, do nothing.
1051 if (!range_compatible_p (type, TREE_TYPE (arg)))
1052 return false;
1053 if (!src.get_operand (r, arg))
1054 return false;
1056 int_range<3> lowers;
1057 int_range<3> uppers;
1058 if (!get_letter_range (type, lowers, uppers))
1059 return false;
1061 // Return the range passed in without any upper case characters,
1062 // but including all the lower case ones.
1063 uppers.invert ();
1064 r.intersect (uppers);
1065 r.union_ (lowers);
1066 return true;
1069 CASE_CFN_FFS:
1070 CASE_CFN_POPCOUNT:
1071 // __builtin_ffs* and __builtin_popcount* return [0, prec].
1072 arg = gimple_call_arg (call, 0);
1073 prec = TYPE_PRECISION (TREE_TYPE (arg));
1074 mini = 0;
1075 maxi = prec;
1076 src.get_operand (r, arg);
1077 // If arg is non-zero, then ffs or popcount are non-zero.
1078 if (!range_includes_zero_p (&r))
1079 mini = 1;
1080 // If some high bits are known to be zero, decrease the maximum.
1081 if (!r.undefined_p ())
1083 if (TYPE_SIGN (r.type ()) == SIGNED)
1084 range_cast (r, unsigned_type_for (r.type ()));
1085 wide_int max = r.upper_bound ();
1086 maxi = wi::floor_log2 (max) + 1;
1088 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
1089 return true;
1091 CASE_CFN_PARITY:
1092 r.set (build_zero_cst (type), build_one_cst (type));
1093 return true;
1095 CASE_CFN_CLZ:
1096 // __builtin_c[lt]z* return [0, prec-1], except when the
1097 // argument is 0, but that is undefined behavior.
1099 // For __builtin_c[lt]z* consider argument of 0 always undefined
1100 // behavior, for internal fns depending on C?Z_DEFINED_VALUE_AT_ZERO.
1101 arg = gimple_call_arg (call, 0);
1102 prec = TYPE_PRECISION (TREE_TYPE (arg));
1103 mini = 0;
1104 maxi = prec - 1;
1105 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
1106 if (gimple_call_internal_p (call))
1108 if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
1109 && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
1111 // Only handle the single common value.
1112 if (zerov == prec)
1113 maxi = prec;
1114 else
1115 // Magic value to give up, unless we can prove arg is non-zero.
1116 mini = -2;
1120 src.get_operand (r, arg);
1121 // From clz of minimum we can compute result maximum.
1122 if (!r.undefined_p ())
1124 // From clz of minimum we can compute result maximum.
1125 if (wi::gt_p (r.lower_bound (), 0, TYPE_SIGN (r.type ())))
1127 maxi = prec - 1 - wi::floor_log2 (r.lower_bound ());
1128 if (mini == -2)
1129 mini = 0;
1131 else if (!range_includes_zero_p (&r))
1133 mini = 0;
1134 maxi = prec - 1;
1136 if (mini == -2)
1137 break;
1138 // From clz of maximum we can compute result minimum.
1139 wide_int max = r.upper_bound ();
1140 int newmini = prec - 1 - wi::floor_log2 (max);
1141 if (max == 0)
1143 // If CLZ_DEFINED_VALUE_AT_ZERO is 2 with VALUE of prec,
1144 // return [prec, prec], otherwise ignore the range.
1145 if (maxi == prec)
1146 mini = prec;
1148 else
1149 mini = newmini;
1151 if (mini == -2)
1152 break;
1153 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
1154 return true;
1156 CASE_CFN_CTZ:
1157 // __builtin_ctz* return [0, prec-1], except for when the
1158 // argument is 0, but that is undefined behavior.
1160 // For __builtin_ctz* consider argument of 0 always undefined
1161 // behavior, for internal fns depending on CTZ_DEFINED_VALUE_AT_ZERO.
1162 arg = gimple_call_arg (call, 0);
1163 prec = TYPE_PRECISION (TREE_TYPE (arg));
1164 mini = 0;
1165 maxi = prec - 1;
1166 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
1167 if (gimple_call_internal_p (call))
1169 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
1170 && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
1172 // Handle only the two common values.
1173 if (zerov == -1)
1174 mini = -1;
1175 else if (zerov == prec)
1176 maxi = prec;
1177 else
1178 // Magic value to give up, unless we can prove arg is non-zero.
1179 mini = -2;
1182 src.get_operand (r, arg);
1183 if (!r.undefined_p ())
1185 // If arg is non-zero, then use [0, prec - 1].
1186 if (!range_includes_zero_p (&r))
1188 mini = 0;
1189 maxi = prec - 1;
1191 // If some high bits are known to be zero, we can decrease
1192 // the maximum.
1193 wide_int max = r.upper_bound ();
1194 if (max == 0)
1196 // Argument is [0, 0]. If CTZ_DEFINED_VALUE_AT_ZERO
1197 // is 2 with value -1 or prec, return [-1, -1] or [prec, prec].
1198 // Otherwise ignore the range.
1199 if (mini == -1)
1200 maxi = -1;
1201 else if (maxi == prec)
1202 mini = prec;
1204 // If value at zero is prec and 0 is in the range, we can't lower
1205 // the upper bound. We could create two separate ranges though,
1206 // [0,floor_log2(max)][prec,prec] though.
1207 else if (maxi != prec)
1208 maxi = wi::floor_log2 (max);
1210 if (mini == -2)
1211 break;
1212 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
1213 return true;
1215 CASE_CFN_CLRSB:
1216 arg = gimple_call_arg (call, 0);
1217 prec = TYPE_PRECISION (TREE_TYPE (arg));
1218 r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1));
1219 return true;
1220 case CFN_UBSAN_CHECK_ADD:
1221 range_of_builtin_ubsan_call (r, call, PLUS_EXPR, src);
1222 return true;
1223 case CFN_UBSAN_CHECK_SUB:
1224 range_of_builtin_ubsan_call (r, call, MINUS_EXPR, src);
1225 return true;
1226 case CFN_UBSAN_CHECK_MUL:
1227 range_of_builtin_ubsan_call (r, call, MULT_EXPR, src);
1228 return true;
1230 case CFN_GOACC_DIM_SIZE:
1231 case CFN_GOACC_DIM_POS:
1232 // Optimizing these two internal functions helps the loop
1233 // optimizer eliminate outer comparisons. Size is [1,N]
1234 // and pos is [0,N-1].
1236 bool is_pos = func == CFN_GOACC_DIM_POS;
1237 int axis = oacc_get_ifn_dim_arg (call);
1238 int size = oacc_get_fn_dim_size (current_function_decl, axis);
1239 if (!size)
1240 // If it's dynamic, the backend might know a hardware limitation.
1241 size = targetm.goacc.dim_limit (axis);
1243 r.set (build_int_cst (type, is_pos ? 0 : 1),
1244 size
1245 ? build_int_cst (type, size - is_pos) : vrp_val_max (type));
1246 return true;
1249 case CFN_BUILT_IN_STRLEN:
1250 if (tree lhs = gimple_call_lhs (call))
1251 if (ptrdiff_type_node
1252 && (TYPE_PRECISION (ptrdiff_type_node)
1253 == TYPE_PRECISION (TREE_TYPE (lhs))))
1255 tree type = TREE_TYPE (lhs);
1256 tree max = vrp_val_max (ptrdiff_type_node);
1257 wide_int wmax
1258 = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
1259 tree range_min = build_zero_cst (type);
1260 // To account for the terminating NULL, the maximum length
1261 // is one less than the maximum array size, which in turn
1262 // is one less than PTRDIFF_MAX (or SIZE_MAX where it's
1263 // smaller than the former type).
1264 // FIXME: Use max_object_size() - 1 here.
1265 tree range_max = wide_int_to_tree (type, wmax - 2);
1266 r.set (range_min, range_max);
1267 return true;
1269 break;
1270 default:
1271 break;
1273 return false;
1277 // Calculate a range for COND_EXPR statement S and return it in R.
1278 // If a range cannot be calculated, return false.
1280 bool
1281 fold_using_range::range_of_cond_expr (vrange &r, gassign *s, fur_source &src)
1283 tree cond = gimple_assign_rhs1 (s);
1284 tree op1 = gimple_assign_rhs2 (s);
1285 tree op2 = gimple_assign_rhs3 (s);
1287 tree type = gimple_range_type (s);
1288 if (!type)
1289 return false;
1291 Value_Range range1 (TREE_TYPE (op1));
1292 Value_Range range2 (TREE_TYPE (op2));
1293 Value_Range cond_range (TREE_TYPE (cond));
1294 gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
1295 gcc_checking_assert (range_compatible_p (TREE_TYPE (op1), TREE_TYPE (op2)));
1296 src.get_operand (cond_range, cond);
1297 src.get_operand (range1, op1);
1298 src.get_operand (range2, op2);
1300 // Try to see if there is a dependence between the COND and either operand
1301 if (src.gori ())
1302 if (src.gori ()->condexpr_adjust (range1, range2, s, cond, op1, op2, src))
1303 if (dump_file && (dump_flags & TDF_DETAILS))
1305 fprintf (dump_file, "Possible COND_EXPR adjustment. Range op1 : ");
1306 range1.dump(dump_file);
1307 fprintf (dump_file, " and Range op2: ");
1308 range2.dump(dump_file);
1309 fprintf (dump_file, "\n");
1312 // If the condition is known, choose the appropriate expression.
1313 if (cond_range.singleton_p ())
1315 // False, pick second operand.
1316 if (cond_range.zero_p ())
1317 r = range2;
1318 else
1319 r = range1;
1321 else
1323 r = range1;
1324 r.union_ (range2);
1326 gcc_checking_assert (r.undefined_p ()
1327 || range_compatible_p (r.type (), type));
1328 return true;
1331 // If SCEV has any information about phi node NAME, return it as a range in R.
1333 void
1334 fold_using_range::range_of_ssa_name_with_loop_info (irange &r, tree name,
1335 class loop *l, gphi *phi,
1336 fur_source &src)
1338 gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
1339 tree min, max, type = TREE_TYPE (name);
1340 // FIXME: Remove the supports_p() once all this can handle floats, etc.
1341 if (irange::supports_p (type)
1342 && bounds_of_var_in_loop (&min, &max, src.query (), l, phi, name))
1344 if (TREE_CODE (min) != INTEGER_CST)
1346 if (src.query ()->range_of_expr (r, min, phi) && !r.undefined_p ())
1347 min = wide_int_to_tree (type, r.lower_bound ());
1348 else
1349 min = vrp_val_min (type);
1351 if (TREE_CODE (max) != INTEGER_CST)
1353 if (src.query ()->range_of_expr (r, max, phi) && !r.undefined_p ())
1354 max = wide_int_to_tree (type, r.upper_bound ());
1355 else
1356 max = vrp_val_max (type);
1358 r.set (min, max);
1360 else
1361 r.set_varying (type);
1364 // -----------------------------------------------------------------------
1366 // Check if an && or || expression can be folded based on relations. ie
1367 // c_2 = a_6 > b_7
1368 // c_3 = a_6 < b_7
1369 // c_4 = c_2 && c_3
1370 // c_2 and c_3 can never be true at the same time,
1371 // Therefore c_4 can always resolve to false based purely on the relations.
1373 void
1374 fold_using_range::relation_fold_and_or (irange& lhs_range, gimple *s,
1375 fur_source &src)
1377 // No queries or already folded.
1378 if (!src.gori () || !src.query ()->oracle () || lhs_range.singleton_p ())
1379 return;
1381 // Only care about AND and OR expressions.
1382 enum tree_code code = gimple_expr_code (s);
1383 bool is_and = false;
1384 if (code == BIT_AND_EXPR || code == TRUTH_AND_EXPR)
1385 is_and = true;
1386 else if (code != BIT_IOR_EXPR && code != TRUTH_OR_EXPR)
1387 return;
1389 tree lhs = gimple_get_lhs (s);
1390 tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s));
1391 tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s));
1393 // Deal with || and && only when there is a full set of symbolics.
1394 if (!lhs || !ssa1 || !ssa2
1395 || (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE)
1396 || (TREE_CODE (TREE_TYPE (ssa1)) != BOOLEAN_TYPE)
1397 || (TREE_CODE (TREE_TYPE (ssa2)) != BOOLEAN_TYPE))
1398 return;
1400 // Now we know its a boolean AND or OR expression with boolean operands.
1401 // Ideally we search dependencies for common names, and see what pops out.
1402 // until then, simply try to resolve direct dependencies.
1404 gimple *ssa1_stmt = SSA_NAME_DEF_STMT (ssa1);
1405 gimple *ssa2_stmt = SSA_NAME_DEF_STMT (ssa2);
1407 range_op_handler handler1 (SSA_NAME_DEF_STMT (ssa1));
1408 range_op_handler handler2 (SSA_NAME_DEF_STMT (ssa2));
1410 // If either handler is not present, no relation can be found.
1411 if (!handler1 || !handler2)
1412 return;
1414 // Both stmts will need to have 2 ssa names in the stmt.
1415 tree ssa1_dep1 = gimple_range_ssa_p (gimple_range_operand1 (ssa1_stmt));
1416 tree ssa1_dep2 = gimple_range_ssa_p (gimple_range_operand2 (ssa1_stmt));
1417 tree ssa2_dep1 = gimple_range_ssa_p (gimple_range_operand1 (ssa2_stmt));
1418 tree ssa2_dep2 = gimple_range_ssa_p (gimple_range_operand2 (ssa2_stmt));
1420 if (!ssa1_dep1 || !ssa1_dep2 || !ssa2_dep1 || !ssa2_dep2)
1421 return;
1423 // Make sure they are the same dependencies, and detect the order of the
1424 // relationship.
1425 bool reverse_op2 = true;
1426 if (ssa1_dep1 == ssa2_dep1 && ssa1_dep2 == ssa2_dep2)
1427 reverse_op2 = false;
1428 else if (ssa1_dep1 != ssa2_dep2 || ssa1_dep2 != ssa2_dep1)
1429 return;
1431 int_range<2> bool_one (boolean_true_node, boolean_true_node);
1433 relation_kind relation1 = handler1.op1_op2_relation (bool_one);
1434 relation_kind relation2 = handler2.op1_op2_relation (bool_one);
1435 if (relation1 == VREL_VARYING || relation2 == VREL_VARYING)
1436 return;
1438 if (reverse_op2)
1439 relation2 = relation_negate (relation2);
1441 // x && y is false if the relation intersection of the true cases is NULL.
1442 if (is_and && relation_intersect (relation1, relation2) == VREL_UNDEFINED)
1443 lhs_range = int_range<2> (boolean_false_node, boolean_false_node);
1444 // x || y is true if the union of the true cases is NO-RELATION..
1445 // ie, one or the other being true covers the full range of possibilties.
1446 else if (!is_and && relation_union (relation1, relation2) == VREL_VARYING)
1447 lhs_range = bool_one;
1448 else
1449 return;
1451 range_cast (lhs_range, TREE_TYPE (lhs));
1452 if (dump_file && (dump_flags & TDF_DETAILS))
1454 fprintf (dump_file, " Relation adjustment: ");
1455 print_generic_expr (dump_file, ssa1, TDF_SLIM);
1456 fprintf (dump_file, " and ");
1457 print_generic_expr (dump_file, ssa2, TDF_SLIM);
1458 fprintf (dump_file, " combine to produce ");
1459 lhs_range.dump (dump_file);
1460 fputc ('\n', dump_file);
1463 return;
1466 // Register any outgoing edge relations from a conditional branch.
1468 void
1469 fur_source::register_outgoing_edges (gcond *s, irange &lhs_range, edge e0, edge e1)
1471 int_range<2> e0_range, e1_range;
1472 tree name;
1473 basic_block bb = gimple_bb (s);
1475 if (e0)
1477 // If this edge is never taken, ignore it.
1478 gcond_edge_range (e0_range, e0);
1479 e0_range.intersect (lhs_range);
1480 if (e0_range.undefined_p ())
1481 e0 = NULL;
1485 if (e1)
1487 // If this edge is never taken, ignore it.
1488 gcond_edge_range (e1_range, e1);
1489 e1_range.intersect (lhs_range);
1490 if (e1_range.undefined_p ())
1491 e1 = NULL;
1494 if (!e0 && !e1)
1495 return;
1497 // First, register the gcond itself. This will catch statements like
1498 // if (a_2 < b_5)
1499 tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s));
1500 tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s));
1501 if (ssa1 && ssa2)
1503 range_op_handler handler (s);
1504 gcc_checking_assert (handler);
1505 if (e0)
1507 relation_kind relation = handler.op1_op2_relation (e0_range);
1508 if (relation != VREL_VARYING)
1509 register_relation (e0, relation, ssa1, ssa2);
1511 if (e1)
1513 relation_kind relation = handler.op1_op2_relation (e1_range);
1514 if (relation != VREL_VARYING)
1515 register_relation (e1, relation, ssa1, ssa2);
1519 // Outgoing relations of GORI exports require a gori engine.
1520 if (!gori ())
1521 return;
1523 // Now look for other relations in the exports. This will find stmts
1524 // leading to the condition such as:
1525 // c_2 = a_4 < b_7
1526 // if (c_2)
1527 FOR_EACH_GORI_EXPORT_NAME (*(gori ()), bb, name)
1529 if (TREE_CODE (TREE_TYPE (name)) != BOOLEAN_TYPE)
1530 continue;
1531 gimple *stmt = SSA_NAME_DEF_STMT (name);
1532 range_op_handler handler (stmt);
1533 if (!handler)
1534 continue;
1535 tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (stmt));
1536 tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (stmt));
1537 Value_Range r (TREE_TYPE (name));
1538 if (ssa1 && ssa2)
1540 if (e0 && gori ()->outgoing_edge_range_p (r, e0, name, *m_query)
1541 && r.singleton_p ())
1543 relation_kind relation = handler.op1_op2_relation (r);
1544 if (relation != VREL_VARYING)
1545 register_relation (e0, relation, ssa1, ssa2);
1547 if (e1 && gori ()->outgoing_edge_range_p (r, e1, name, *m_query)
1548 && r.singleton_p ())
1550 relation_kind relation = handler.op1_op2_relation (r);
1551 if (relation != VREL_VARYING)
1552 register_relation (e1, relation, ssa1, ssa2);