2015-11-18 Hristian Kirtchev <kirtchev@adacore.com>
[official-gcc.git] / gcc / ada / sem_util.ads
blob91c5d85a518d46b3117431fac4cd3e7bb95c1a83
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- Package containing utility procedures used throughout the semantics
28 with Einfo; use Einfo;
29 with Exp_Tss; use Exp_Tss;
30 with Namet; use Namet;
31 with Opt; use Opt;
32 with Snames; use Snames;
33 with Types; use Types;
34 with Uintp; use Uintp;
35 with Urealp; use Urealp;
37 package Sem_Util is
39 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
40 -- Given a type that implements interfaces look for its associated
41 -- definition node and return its list of interfaces.
43 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
44 -- Add A to the list of access types to process when expanding the
45 -- freeze node of E.
47 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
48 -- Given a block statement N, generate an internal E_Block label and make
49 -- it the identifier of the block. Id denotes the generated entity. If the
50 -- block already has an identifier, Id returns the entity of its label.
52 procedure Add_Global_Declaration (N : Node_Id);
53 -- These procedures adds a declaration N at the library level, to be
54 -- elaborated before any other code in the unit. It is used for example
55 -- for the entity that marks whether a unit has been elaborated. The
56 -- declaration is added to the Declarations list of the Aux_Decls_Node
57 -- for the current unit. The declarations are added in the current scope,
58 -- so the caller should push a new scope as required before the call.
60 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
61 -- Given two types, returns True if we are in Allow_Integer_Address mode
62 -- and one of the types is (a descendent of) System.Address (and this type
63 -- is private), and the other type is any integer type.
65 function Addressable (V : Uint) return Boolean;
66 function Addressable (V : Int) return Boolean;
67 pragma Inline (Addressable);
68 -- Returns True if the value of V is the word size or an addressable factor
69 -- of the word size (typically 8, 16, 32 or 64).
71 procedure Aggregate_Constraint_Checks
72 (Exp : Node_Id;
73 Check_Typ : Entity_Id);
74 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
75 -- and Check_Typ a constrained record type with discriminants, we generate
76 -- the appropriate discriminant checks. If Exp is an array aggregate then
77 -- emit the appropriate length checks. If Exp is a scalar type, or a string
78 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
79 -- are performed at run time. Also used for expressions in the argument of
80 -- 'Update, which shares some of the features of an aggregate.
82 function Alignment_In_Bits (E : Entity_Id) return Uint;
83 -- If the alignment of the type or object E is currently known to the
84 -- compiler, then this function returns the alignment value in bits.
85 -- Otherwise Uint_0 is returned, indicating that the alignment of the
86 -- entity is not yet known to the compiler.
88 function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
89 -- Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
90 -- Given a constraint or subtree of a constraint on a composite
91 -- subtype/object, returns True if there are no nonstatic constraints,
92 -- which might cause objects to be created with dynamic size.
93 -- Called for subtype declarations (including implicit ones created for
94 -- subtype indications in object declarations, as well as discriminated
95 -- record aggregate cases). For record aggregates, only records containing
96 -- discriminant-dependent arrays matter, because the discriminants must be
97 -- static when governing a variant part. Access discriminants are
98 -- irrelevant. Also called for array aggregates, but only named notation,
99 -- because those are the only dynamic cases.
101 procedure Append_Inherited_Subprogram (S : Entity_Id);
102 -- If the parent of the operation is declared in the visible part of
103 -- the current scope, the inherited operation is visible even though the
104 -- derived type that inherits the operation may be completed in the private
105 -- part of the current package.
107 procedure Apply_Compile_Time_Constraint_Error
108 (N : Node_Id;
109 Msg : String;
110 Reason : RT_Exception_Code;
111 Ent : Entity_Id := Empty;
112 Typ : Entity_Id := Empty;
113 Loc : Source_Ptr := No_Location;
114 Rep : Boolean := True;
115 Warn : Boolean := False);
116 -- N is a subexpression which will raise constraint error when evaluated
117 -- at runtime. Msg is a message that explains the reason for raising the
118 -- exception. The last character is ? if the message is always a warning,
119 -- even in Ada 95, and is not a ? if the message represents an illegality
120 -- (because of violation of static expression rules) in Ada 95 (but not
121 -- in Ada 83). Typically this routine posts all messages at the Sloc of
122 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
123 -- the message. After posting the appropriate message, and if the flag
124 -- Rep is set, this routine replaces the expression with an appropriate
125 -- N_Raise_Constraint_Error node using the given Reason code. This node
126 -- is then marked as being static if the original node is static, but
127 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
128 -- The error message may contain a } or & insertion character. This
129 -- normally references Etype (N), unless the Ent argument is given
130 -- explicitly, in which case it is used instead. The type of the raise
131 -- node that is built is normally Etype (N), but if the Typ parameter
132 -- is present, this is used instead. Warn is normally False. If it is
133 -- True then the message is treated as a warning even though it does
134 -- not end with a ? (this is used when the caller wants to parameterize
135 -- whether an error or warning is given).
137 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
138 -- Given the entity of an abstract state or a variable, determine whether
139 -- Id is subject to external property Async_Readers and if it is, the
140 -- related expression evaluates to True.
142 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
143 -- Given the entity of an abstract state or a variable, determine whether
144 -- Id is subject to external property Async_Writers and if it is, the
145 -- related expression evaluates to True.
147 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
148 -- If at the point of declaration an array type has a private or limited
149 -- component, several array operations are not avaiable on the type, and
150 -- the array type is flagged accordingly. If in the immediate scope of
151 -- the array type the component becomes non-private or non-limited, these
152 -- operations become avaiable. This can happen if the scopes of both types
153 -- are open, and the scope of the array is not outside the scope of the
154 -- component.
156 procedure Bad_Attribute
157 (N : Node_Id;
158 Nam : Name_Id;
159 Warn : Boolean := False);
160 -- Called when node N is expected to contain a valid attribute name, and
161 -- Nam is found instead. If Warn is set True this is a warning, else this
162 -- is an error.
164 procedure Bad_Predicated_Subtype_Use
165 (Msg : String;
166 N : Node_Id;
167 Typ : Entity_Id;
168 Suggest_Static : Boolean := False);
169 -- This is called when Typ, a predicated subtype, is used in a context
170 -- which does not allow the use of a predicated subtype. Msg is passed to
171 -- Error_Msg_FE to output an appropriate message using N as the location,
172 -- and Typ as the entity. The caller must set up any insertions other than
173 -- the & for the type itself. Note that if Typ is a generic actual type,
174 -- then the message will be output as a warning, and a raise Program_Error
175 -- is inserted using Insert_Action with node N as the insertion point. Node
176 -- N also supplies the source location for construction of the raise node.
177 -- If Typ does not have any predicates, the call has no effect. Set flag
178 -- Suggest_Static when the context warrants an advice on how to avoid the
179 -- use error.
181 function Bad_Unordered_Enumeration_Reference
182 (N : Node_Id;
183 T : Entity_Id) return Boolean;
184 -- Node N contains a potentially dubious reference to type T, either an
185 -- explicit comparison, or an explicit range. This function returns True
186 -- if the type T is an enumeration type for which No pragma Order has been
187 -- given, and the reference N is not in the same extended source unit as
188 -- the declaration of T.
190 function Build_Actual_Subtype
191 (T : Entity_Id;
192 N : Node_Or_Entity_Id) return Node_Id;
193 -- Build an anonymous subtype for an entity or expression, using the
194 -- bounds of the entity or the discriminants of the enclosing record.
195 -- T is the type for which the actual subtype is required, and N is either
196 -- a defining identifier, or any subexpression.
198 function Build_Actual_Subtype_Of_Component
199 (T : Entity_Id;
200 N : Node_Id) return Node_Id;
201 -- Determine whether a selected component has a type that depends on
202 -- discriminants, and build actual subtype for it if so.
204 function Build_Default_Init_Cond_Call
205 (Loc : Source_Ptr;
206 Obj_Id : Entity_Id;
207 Typ : Entity_Id) return Node_Id;
208 -- Build a call to the default initial condition procedure of type Typ with
209 -- Obj_Id as the actual parameter.
211 procedure Build_Default_Init_Cond_Procedure_Bodies (Priv_Decls : List_Id);
212 -- Inspect the contents of private declarations Priv_Decls and build the
213 -- bodies the default initial condition procedures for all types subject
214 -- to pragma Default_Initial_Condition.
216 procedure Build_Default_Init_Cond_Procedure_Declaration (Typ : Entity_Id);
217 -- If private type Typ is subject to pragma Default_Initial_Condition,
218 -- build the declaration of the procedure which verifies the assumption
219 -- of the pragma at runtime. The declaration is inserted after the related
220 -- pragma.
222 function Build_Default_Subtype
223 (T : Entity_Id;
224 N : Node_Id) return Entity_Id;
225 -- If T is an unconstrained type with defaulted discriminants, build a
226 -- subtype constrained by the default values, insert the subtype
227 -- declaration in the tree before N, and return the entity of that
228 -- subtype. Otherwise, simply return T.
230 function Build_Discriminal_Subtype_Of_Component
231 (T : Entity_Id) return Node_Id;
232 -- Determine whether a record component has a type that depends on
233 -- discriminants, and build actual subtype for it if so.
235 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
236 -- Given a compilation unit node N, allocate an elaboration counter for
237 -- the compilation unit, and install it in the Elaboration_Entity field
238 -- of Spec_Id, the entity for the compilation unit.
240 procedure Build_Explicit_Dereference
241 (Expr : Node_Id;
242 Disc : Entity_Id);
243 -- AI05-139: Names with implicit dereference. If the expression N is a
244 -- reference type and the context imposes the corresponding designated
245 -- type, convert N into N.Disc.all. Such expressions are always over-
246 -- loaded with both interpretations, and the dereference interpretation
247 -- carries the name of the reference discriminant.
249 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
250 -- Returns True if the expression cannot possibly raise Constraint_Error.
251 -- The response is conservative in the sense that a result of False does
252 -- not necessarily mean that CE could be raised, but a response of True
253 -- means that for sure CE cannot be raised.
255 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
256 -- Verify the legality of reference Ref to variable Var_Id when the
257 -- variable is a constituent of a single protected/task type.
259 procedure Check_Dynamically_Tagged_Expression
260 (Expr : Node_Id;
261 Typ : Entity_Id;
262 Related_Nod : Node_Id);
263 -- Check wrong use of dynamically tagged expression
265 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
266 -- Verify that the full declaration of type T has been seen. If not, place
267 -- error message on node N. Used in object declarations, type conversions
268 -- and qualified expressions.
270 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
271 -- A subprogram that has an Address parameter and is declared in a Pure
272 -- package is not considered Pure, because the parameter may be used as a
273 -- pointer and the referenced data may change even if the address value
274 -- itself does not.
275 -- If the programmer gave an explicit Pure_Function pragma, then we respect
276 -- the pragma and leave the subprogram Pure.
278 procedure Check_Function_Writable_Actuals (N : Node_Id);
279 -- (Ada 2012): If the construct N has two or more direct constituents that
280 -- are names or expressions whose evaluation may occur in an arbitrary
281 -- order, at least one of which contains a function call with an in out or
282 -- out parameter, then the construct is legal only if: for each name that
283 -- is passed as a parameter of mode in out or out to some inner function
284 -- call C2 (not including the construct N itself), there is no other name
285 -- anywhere within a direct constituent of the construct C other than
286 -- the one containing C2, that is known to refer to the same object (RM
287 -- 6.4.1(6.17/3)).
289 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
290 -- AI05-139-2: Accessors and iterators for containers. This procedure
291 -- checks whether T is a reference type, and if so it adds an interprettion
292 -- to N whose type is the designated type of the reference_discriminant.
293 -- If N is a generalized indexing operation, the interpretation is added
294 -- both to the corresponding function call, and to the indexing node.
296 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
297 -- Within a protected function, the current object is a constant, and
298 -- internal calls to a procedure or entry are illegal. Similarly, other
299 -- uses of a protected procedure in a renaming or a generic instantiation
300 -- in the context of a protected function are illegal (AI05-0225).
302 procedure Check_Later_Vs_Basic_Declarations
303 (Decls : List_Id;
304 During_Parsing : Boolean);
305 -- If During_Parsing is True, check for misplacement of later vs basic
306 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
307 -- restriction is set, do the same: although SPARK 95 removes the
308 -- distinction between initial and later declarative items, the distinction
309 -- remains in the Examiner (JB01-005). Note that the Examiner does not
310 -- count package declarations in later declarative items.
312 procedure Check_No_Hidden_State (Id : Entity_Id);
313 -- Determine whether object or state Id introduces a hidden state. If this
314 -- is the case, emit an error.
316 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
317 -- Verify that the profile of nonvolatile function Func_Id does not contain
318 -- effectively volatile parameters or return type.
320 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
321 -- N is one of the statement forms that is a potentially blocking
322 -- operation. If it appears within a protected action, emit warning.
324 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
325 -- Determine whether the contract of subprogram Subp_Id mentions attribute
326 -- 'Result and it contains an expression that evaluates differently in pre-
327 -- and post-state.
329 procedure Check_Unused_Body_States (Body_Id : Entity_Id);
330 -- Verify that all abstract states and object declared in the state space
331 -- of a package body denoted by entity Body_Id are used as constituents.
332 -- Emit an error if this is not the case.
334 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
335 -- Gather the entities of all abstract states and objects declared in the
336 -- body state space of package body Body_Id.
338 procedure Check_Unprotected_Access
339 (Context : Node_Id;
340 Expr : Node_Id);
341 -- Check whether the expression is a pointer to a protected component,
342 -- and the context is external to the protected operation, to warn against
343 -- a possible unlocked access to data.
345 procedure Collect_Interfaces
346 (T : Entity_Id;
347 Ifaces_List : out Elist_Id;
348 Exclude_Parents : Boolean := False;
349 Use_Full_View : Boolean := True);
350 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
351 -- directly or indirectly implemented by T. Exclude_Parents is used to
352 -- avoid the addition of inherited interfaces to the generated list.
353 -- Use_Full_View is used to collect the interfaces using the full-view
354 -- (if available).
356 procedure Collect_Interface_Components
357 (Tagged_Type : Entity_Id;
358 Components_List : out Elist_Id);
359 -- Ada 2005 (AI-251): Collect all the tag components associated with the
360 -- secondary dispatch tables of a tagged type.
362 procedure Collect_Interfaces_Info
363 (T : Entity_Id;
364 Ifaces_List : out Elist_Id;
365 Components_List : out Elist_Id;
366 Tags_List : out Elist_Id);
367 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
368 -- the record component and tag associated with each of these interfaces.
369 -- On exit Ifaces_List, Components_List and Tags_List have the same number
370 -- of elements, and elements at the same position on these tables provide
371 -- information on the same interface type.
373 procedure Collect_Parents
374 (T : Entity_Id;
375 List : out Elist_Id;
376 Use_Full_View : Boolean := True);
377 -- Collect all the parents of Typ. Use_Full_View is used to collect them
378 -- using the full-view of private parents (if available).
380 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
381 -- Called upon type derivation and extension. We scan the declarative part
382 -- in which the type appears, and collect subprograms that have one
383 -- subsidiary subtype of the type. These subprograms can only appear after
384 -- the type itself.
386 function Compile_Time_Constraint_Error
387 (N : Node_Id;
388 Msg : String;
389 Ent : Entity_Id := Empty;
390 Loc : Source_Ptr := No_Location;
391 Warn : Boolean := False) return Node_Id;
392 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
393 -- generates a warning (or error) message in the same manner, but it does
394 -- not replace any nodes. For convenience, the function always returns its
395 -- first argument. The message is a warning if the message ends with ?, or
396 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
398 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
399 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
400 -- Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
402 function Contains_Refined_State (Prag : Node_Id) return Boolean;
403 -- Determine whether pragma Prag contains a reference to the entity of an
404 -- abstract state with a visible refinement. Prag must denote one of the
405 -- following pragmas:
406 -- Depends
407 -- Global
409 function Copy_Component_List
410 (R_Typ : Entity_Id;
411 Loc : Source_Ptr) return List_Id;
412 -- Copy components from record type R_Typ that come from source. Used to
413 -- create a new compatible record type. Loc is the source location assigned
414 -- to the created nodes.
416 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
417 -- Utility to create a parameter profile for a new subprogram spec, when
418 -- the subprogram has a body that acts as spec. This is done for some cases
419 -- of inlining, and for private protected ops. Also used to create bodies
420 -- for stubbed subprograms.
422 function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id;
423 -- Replicate a function or a procedure specification denoted by Spec. The
424 -- resulting tree is an exact duplicate of the original tree. New entities
425 -- are created for the unit name and the formal parameters.
427 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
428 -- If a type is a generic actual type, return the corresponding formal in
429 -- the generic parent unit. There is no direct link in the tree for this
430 -- attribute, except in the case of formal private and derived types.
431 -- Possible optimization???
433 function Current_Entity (N : Node_Id) return Entity_Id;
434 pragma Inline (Current_Entity);
435 -- Find the currently visible definition for a given identifier, that is to
436 -- say the first entry in the visibility chain for the Chars of N.
438 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
439 -- Find whether there is a previous definition for identifier N in the
440 -- current scope. Because declarations for a scope are not necessarily
441 -- contiguous (e.g. for packages) the first entry on the visibility chain
442 -- for N is not necessarily in the current scope.
444 function Current_Scope return Entity_Id;
445 -- Get entity representing current scope
447 function Current_Subprogram return Entity_Id;
448 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
449 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
450 -- Current_Scope is returned. The returned value is Empty if this is called
451 -- from a library package which is not within any subprogram.
453 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
454 -- Same as Type_Access_Level, except that if the type is the type of an Ada
455 -- 2012 stand-alone object of an anonymous access type, then return the
456 -- static accesssibility level of the object. In that case, the dynamic
457 -- accessibility level of the object may take on values in a range. The low
458 -- bound of that range is returned by Type_Access_Level; this function
459 -- yields the high bound of that range. Also differs from Type_Access_Level
460 -- in the case of a descendant of a generic formal type (returns Int'Last
461 -- instead of 0).
463 function Defining_Entity
464 (N : Node_Id;
465 Empty_On_Errors : Boolean := False) return Entity_Id;
466 -- Given a declaration N, returns the associated defining entity. If the
467 -- declaration has a specification, the entity is obtained from the
468 -- specification. If the declaration has a defining unit name, then the
469 -- defining entity is obtained from the defining unit name ignoring any
470 -- child unit prefixes.
472 -- Iterator loops also have a defining entity, which holds the list of
473 -- local entities declared during loop expansion. These entities need
474 -- debugging information, generated through Qualify_Entity_Names, and
475 -- the loop declaration must be placed in the table Name_Qualify_Units.
477 -- Set flag Empty_On_Error to change the behavior of this routine as
478 -- follows:
480 -- * True - A declaration that lacks a defining entity returns Empty.
481 -- A node that does not allow for a defining entity returns Empty.
483 -- * False - A declaration that lacks a defining entity is given a new
484 -- internally generated entity which is subsequently returned. A node
485 -- that does not allow for a defining entity raises Program_Error.
487 -- The former semantics is appropriate for the back end; the latter
488 -- semantics is appropriate for the front end.
490 function Denotes_Discriminant
491 (N : Node_Id;
492 Check_Concurrent : Boolean := False) return Boolean;
493 -- Returns True if node N is an Entity_Name node for a discriminant. If the
494 -- flag Check_Concurrent is true, function also returns true when N denotes
495 -- the discriminal of the discriminant of a concurrent type. This is needed
496 -- to disable some optimizations on private components of protected types,
497 -- and constraint checks on entry families constrained by discriminants.
499 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
500 -- Detect suspicious overlapping between actuals in a call, when both are
501 -- writable (RM 2012 6.4.1(6.4/3))
503 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
504 -- Functions to detect suspicious overlapping between actuals in a call,
505 -- when one of them is writable. The predicates are those proposed in
506 -- AI05-0144, to detect dangerous order dependence in complex calls.
507 -- I would add a parameter Warn which enables more extensive testing of
508 -- cases as we find appropriate when we are only warning ??? Or perhaps
509 -- return an indication of (Error, Warn, OK) ???
511 function Denotes_Variable (N : Node_Id) return Boolean;
512 -- Returns True if node N denotes a single variable without parentheses
514 function Depends_On_Discriminant (N : Node_Id) return Boolean;
515 -- Returns True if N denotes a discriminant or if N is a range, a subtype
516 -- indication or a scalar subtype where one of the bounds is a
517 -- discriminant.
519 function Designate_Same_Unit
520 (Name1 : Node_Id;
521 Name2 : Node_Id) return Boolean;
522 -- Returns True if Name1 and Name2 designate the same unit name; each of
523 -- these names is supposed to be a selected component name, an expanded
524 -- name, a defining program unit name or an identifier.
526 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id;
527 -- Expr should be an expression of an access type. Builds an integer
528 -- literal except in cases involving anonymous access types where
529 -- accessibility levels are tracked at runtime (access parameters and Ada
530 -- 2012 stand-alone objects).
532 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
533 -- Same as Einfo.Extra_Accessibility except thtat object renames
534 -- are looked through.
536 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
537 -- Given the entity of an abstract state or a variable, determine whether
538 -- Id is subject to external property Effective_Reads and if it is, the
539 -- related expression evaluates to True.
541 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
542 -- Given the entity of an abstract state or a variable, determine whether
543 -- Id is subject to external property Effective_Writes and if it is, the
544 -- related expression evaluates to True.
546 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
547 -- Returns the enclosing N_Compilation_Unit node that is the root of a
548 -- subtree containing N.
550 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
551 -- Returns the closest ancestor of Typ that is a CPP type.
553 function Enclosing_Declaration (N : Node_Id) return Node_Id;
554 -- Returns the declaration node enclosing N (including possibly N itself),
555 -- if any, or Empty otherwise.
557 function Enclosing_Generic_Body
558 (N : Node_Id) return Node_Id;
559 -- Returns the Node_Id associated with the innermost enclosing generic
560 -- body, if any. If none, then returns Empty.
562 function Enclosing_Generic_Unit
563 (N : Node_Id) return Node_Id;
564 -- Returns the Node_Id associated with the innermost enclosing generic
565 -- unit, if any. If none, then returns Empty.
567 function Enclosing_Lib_Unit_Entity
568 (E : Entity_Id := Current_Scope) return Entity_Id;
569 -- Returns the entity of enclosing library unit node which is the root of
570 -- the current scope (which must not be Standard_Standard, and the caller
571 -- is responsible for ensuring this condition) or other specified entity.
573 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
574 -- Returns the N_Compilation_Unit node of the library unit that is directly
575 -- or indirectly (through a subunit) at the root of a subtree containing
576 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if
577 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
578 -- library unit. If no such item is found, returns Empty.
580 function Enclosing_Package (E : Entity_Id) return Entity_Id;
581 -- Utility function to return the Ada entity of the package enclosing
582 -- the entity E, if any. Returns Empty if no enclosing package.
584 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
585 -- Returns the entity of the package or subprogram enclosing E, if any.
586 -- Returns Empty if no enclosing package or subprogram.
588 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
589 -- Utility function to return the Ada entity of the subprogram enclosing
590 -- the entity E, if any. Returns Empty if no enclosing subprogram.
592 procedure Ensure_Freeze_Node (E : Entity_Id);
593 -- Make sure a freeze node is allocated for entity E. If necessary, build
594 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
596 procedure Enter_Name (Def_Id : Entity_Id);
597 -- Insert new name in symbol table of current scope with check for
598 -- duplications (error message is issued if a conflict is found).
599 -- Note: Enter_Name is not used for overloadable entities, instead these
600 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
602 function Entity_Of (N : Node_Id) return Entity_Id;
603 -- Return the entity of N or Empty. If N is a renaming, return the entity
604 -- of the root renamed object.
606 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
607 -- This procedure is called after issuing a message complaining about an
608 -- inappropriate use of limited type T. If useful, it adds additional
609 -- continuation lines to the message explaining why type T is limited.
610 -- Messages are placed at node N.
612 type Extensions_Visible_Mode is
613 (Extensions_Visible_None,
614 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
615 -- value acts as a default in a non-SPARK compilation.
617 Extensions_Visible_False,
618 -- A value of "False" signifies that Extensions_Visible is either
619 -- missing or the pragma is present and the value of its Boolean
620 -- expression is False.
622 Extensions_Visible_True);
623 -- A value of "True" signifies that Extensions_Visible is present and
624 -- the value of its Boolean expression is True.
626 function Extensions_Visible_Status
627 (Id : Entity_Id) return Extensions_Visible_Mode;
628 -- Given the entity of a subprogram or formal parameter subject to pragma
629 -- Extensions_Visible, return the Boolean value denoted by the expression
630 -- of the pragma.
632 procedure Find_Actual
633 (N : Node_Id;
634 Formal : out Entity_Id;
635 Call : out Node_Id);
636 -- Determines if the node N is an actual parameter of a function or a
637 -- procedure call. If so, then Formal points to the entity for the formal
638 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
639 -- Call is set to the node for the corresponding call. If the node N is not
640 -- an actual parameter then Formal and Call are set to Empty.
642 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
643 -- Find specific type of a class-wide type, and handle the case of an
644 -- incomplete type coming either from a limited_with clause or from an
645 -- incomplete type declaration. If resulting type is private return its
646 -- full view.
648 function Find_Body_Discriminal
649 (Spec_Discriminant : Entity_Id) return Entity_Id;
650 -- Given a discriminant of the record type that implements a task or
651 -- protected type, return the discriminal of the corresponding discriminant
652 -- of the actual concurrent type.
654 function Find_Corresponding_Discriminant
655 (Id : Node_Id;
656 Typ : Entity_Id) return Entity_Id;
657 -- Because discriminants may have different names in a generic unit and in
658 -- an instance, they are resolved positionally when possible. A reference
659 -- to a discriminant carries the discriminant that it denotes when it is
660 -- analyzed. Subsequent uses of this id on a different type denotes the
661 -- discriminant at the same position in this new type.
663 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
664 -- Given an arbitrary entity, try to find the nearest enclosing iterator
665 -- loop. If such a loop is found, return the entity of its identifier (the
666 -- E_Loop scope), otherwise return Empty.
668 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
669 -- Find the nested loop statement in a conditional block. Loops subject to
670 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
671 -- loop are nested within the block.
673 procedure Find_Overlaid_Entity
674 (N : Node_Id;
675 Ent : out Entity_Id;
676 Off : out Boolean);
677 -- The node N should be an address representation clause. Determines if
678 -- the target expression is the address of an entity with an optional
679 -- offset. If so, set Ent to the entity and, if there is an offset, set
680 -- Off to True, otherwise to False. If N is not an address representation
681 -- clause, or if it is not possible to determine that the address is of
682 -- this form, then set Ent to Empty.
684 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
685 -- Return the type of formal parameter Param as determined by its
686 -- specification.
688 -- The following type describes the placement of an arbitrary entity with
689 -- respect to SPARK visible / hidden state space.
691 type State_Space_Kind is
692 (Not_In_Package,
693 -- An entity is not in the visible, private or body state space when
694 -- the immediate enclosing construct is not a package.
696 Visible_State_Space,
697 -- An entity is in the visible state space when it appears immediately
698 -- within the visible declarations of a package or when it appears in
699 -- the visible state space of a nested package which in turn is declared
700 -- in the visible declarations of an enclosing package:
702 -- package Pack is
703 -- Visible_Variable : ...
704 -- package Nested
705 -- with Abstract_State => Visible_State
706 -- is
707 -- Visible_Nested_Variable : ...
708 -- end Nested;
709 -- end Pack;
711 -- Entities associated with a package instantiation inherit the state
712 -- space from the instance placement:
714 -- generic
715 -- package Gen is
716 -- Generic_Variable : ...
717 -- end Gen;
719 -- with Gen;
720 -- package Pack is
721 -- package Inst is new Gen;
722 -- -- Generic_Variable is in the visible state space of Pack
723 -- end Pack;
725 Private_State_Space,
726 -- An entity is in the private state space when it appears immediately
727 -- within the private declarations of a package or when it appears in
728 -- the visible state space of a nested package which in turn is declared
729 -- in the private declarations of an enclosing package:
731 -- package Pack is
732 -- private
733 -- Private_Variable : ...
734 -- package Nested
735 -- with Abstract_State => Private_State
736 -- is
737 -- Private_Nested_Variable : ...
738 -- end Nested;
739 -- end Pack;
741 -- The same placement principle applies to package instantiations
743 Body_State_Space);
744 -- An entity is in the body state space when it appears immediately
745 -- within the declarations of a package body or when it appears in the
746 -- visible state space of a nested package which in turn is declared in
747 -- the declarations of an enclosing package body:
749 -- package body Pack is
750 -- Body_Variable : ...
751 -- package Nested
752 -- with Abstract_State => Body_State
753 -- is
754 -- Body_Nested_Variable : ...
755 -- end Nested;
756 -- end Pack;
758 -- The same placement principle applies to package instantiations
760 procedure Find_Placement_In_State_Space
761 (Item_Id : Entity_Id;
762 Placement : out State_Space_Kind;
763 Pack_Id : out Entity_Id);
764 -- Determine the state space placement of an item. Item_Id denotes the
765 -- entity of an abstract state, object or package instantiation. Placement
766 -- captures the precise placement of the item in the enclosing state space.
767 -- If the state space is that of a package, Pack_Id denotes its entity,
768 -- otherwise Pack_Id is Empty.
770 function Find_Static_Alternative (N : Node_Id) return Node_Id;
771 -- N is a case statement whose expression is a compile-time value.
772 -- Determine the alternative chosen, so that the code of non-selected
773 -- alternatives, and the warnings that may apply to them, are removed.
775 function First_Actual (Node : Node_Id) return Node_Id;
776 -- Node is an N_Function_Call, N_Procedure_Call_Statement or
777 -- N_Entry_Call_Statement node. The result returned is the first actual
778 -- parameter in declaration order (not the order of parameters as they
779 -- appeared in the source, which can be quite different as a result of the
780 -- use of named parameters). Empty is returned for a call with no
781 -- parameters. The procedure for iterating through the actuals in
782 -- declaration order is to use this function to find the first actual, and
783 -- then use Next_Actual to obtain the next actual in declaration order.
784 -- Note that the value returned is always the expression (not the
785 -- N_Parameter_Association nodes, even if named association is used).
787 function Fix_Msg (Id : Entity_Id; Msg : String) return String;
788 -- Replace all occurrences of a particular word in string Msg depending on
789 -- the Ekind of Id as follows:
790 -- * Replace "subprogram" with
791 -- - "entry" when Id is an entry [family]
792 -- - "task type" when Id is a single task object, task type or task
793 -- body.
794 -- * Replace "protected" with
795 -- - "task" when Id is a single task object, task type or task body
796 -- All other non-matching words remain as is
798 procedure Gather_Components
799 (Typ : Entity_Id;
800 Comp_List : Node_Id;
801 Governed_By : List_Id;
802 Into : Elist_Id;
803 Report_Errors : out Boolean);
804 -- The purpose of this procedure is to gather the valid components in a
805 -- record type according to the values of its discriminants, in order to
806 -- validate the components of a record aggregate.
808 -- Typ is the type of the aggregate when its constrained discriminants
809 -- need to be collected, otherwise it is Empty.
811 -- Comp_List is an N_Component_List node.
813 -- Governed_By is a list of N_Component_Association nodes, where each
814 -- choice list contains the name of a discriminant and the expression
815 -- field gives its value. The values of the discriminants governing
816 -- the (possibly nested) variant parts in Comp_List are found in this
817 -- Component_Association List.
819 -- Into is the list where the valid components are appended. Note that
820 -- Into need not be an Empty list. If it's not, components are attached
821 -- to its tail.
823 -- Report_Errors is set to True if the values of the discriminants are
824 -- non-static.
826 -- This procedure is also used when building a record subtype. If the
827 -- discriminant constraint of the subtype is static, the components of the
828 -- subtype are only those of the variants selected by the values of the
829 -- discriminants. Otherwise all components of the parent must be included
830 -- in the subtype for semantic analysis.
832 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
833 -- Given a node for an expression, obtain the actual subtype of the
834 -- expression. In the case of a parameter where the formal is an
835 -- unconstrained array or discriminated type, this will be the previously
836 -- constructed subtype of the actual. Note that this is not quite the
837 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
838 -- it is the subtype of the value of the actual. The actual subtype is also
839 -- returned in other cases where it has already been constructed for an
840 -- object. Otherwise the expression type is returned unchanged, except for
841 -- the case of an unconstrained array type, where an actual subtype is
842 -- created, using Insert_Actions if necessary to insert any associated
843 -- actions.
845 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
846 -- This is like Get_Actual_Subtype, except that it never constructs an
847 -- actual subtype. If an actual subtype is already available, i.e. the
848 -- Actual_Subtype field of the corresponding entity is set, then it is
849 -- returned. Otherwise the Etype of the node is returned.
851 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
852 -- Return the body node for a stub
854 function Get_Cursor_Type
855 (Aspect : Node_Id;
856 Typ : Entity_Id) return Entity_Id;
857 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
858 -- primitive operation First. For use in resolving the other primitive
859 -- operations of an Iterable type and expanding loops and quantified
860 -- expressions over formal containers.
862 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
863 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
864 -- primitive operation First. For use after resolving the primitive
865 -- operations of an Iterable type.
867 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
868 -- This is used to construct the string literal node representing a
869 -- default external name, i.e. one that is constructed from the name of an
870 -- entity, or (in the case of extended DEC import/export pragmas, an
871 -- identifier provided as the external name. Letters in the name are
872 -- according to the setting of Opt.External_Name_Default_Casing.
874 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
875 -- If expression N references a part of an object, return this object.
876 -- Otherwise return Empty. Expression N should have been resolved already.
878 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
879 -- Returns the true generic entity in an instantiation. If the name in the
880 -- instantiation is a renaming, the function returns the renamed generic.
882 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
883 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
884 -- in a child unit a derived type is within the derivation class of an
885 -- ancestor declared in a parent unit, even if there is an intermediate
886 -- derivation that does not see the full view of that ancestor.
888 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id);
889 -- This procedure assigns to L and H respectively the values of the low and
890 -- high bounds of node N, which must be a range, subtype indication, or the
891 -- name of a scalar subtype. The result in L, H may be set to Error if
892 -- there was an earlier error in the range.
894 function Get_Enum_Lit_From_Pos
895 (T : Entity_Id;
896 Pos : Uint;
897 Loc : Source_Ptr) return Node_Id;
898 -- This function returns an identifier denoting the E_Enumeration_Literal
899 -- entity for the specified value from the enumeration type or subtype T.
900 -- The second argument is the Pos value, which is assumed to be in range.
901 -- The third argument supplies a source location for constructed nodes
902 -- returned by this function.
904 function Get_Iterable_Type_Primitive
905 (Typ : Entity_Id;
906 Nam : Name_Id) return Entity_Id;
907 -- Retrieve one of the primitives First, Next, Has_Element, Element from
908 -- the value of the Iterable aspect of a formal type.
910 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
911 -- Retrieve the fully expanded name of the library unit declared by
912 -- Decl_Node into the name buffer.
914 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
915 pragma Inline (Get_Name_Entity_Id);
916 -- An entity value is associated with each name in the name table. The
917 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
918 -- is the innermost visible entity with the given name. See the body of
919 -- Sem_Ch8 for further details on handling of entity visibility.
921 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
922 -- Return the Name component of Test_Case pragma N
923 -- Bad name now that this no longer applies to Contract_Case ???
925 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
926 -- Get defining entity of parent unit of a child unit. In most cases this
927 -- is the defining entity of the unit, but for a child instance whose
928 -- parent needs a body for inlining, the instantiation node of the parent
929 -- has not yet been rewritten as a package declaration, and the entity has
930 -- to be retrieved from the Instance_Spec of the unit.
932 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
933 pragma Inline (Get_Pragma_Id);
934 -- Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
936 procedure Get_Reason_String (N : Node_Id);
937 -- Recursive routine to analyze reason argument for pragma Warnings. The
938 -- value of the reason argument is appended to the current string using
939 -- Store_String_Chars. The reason argument is expected to be a string
940 -- literal or concatenation of string literals. An error is given for
941 -- any other form.
943 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
944 -- If Typ has Implicit_Dereference, return discriminant specified in the
945 -- corresponding aspect.
947 function Get_Referenced_Object (N : Node_Id) return Node_Id;
948 -- Given a node, return the renamed object if the node represents a renamed
949 -- object, otherwise return the node unchanged. The node may represent an
950 -- arbitrary expression.
952 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
953 -- Given an entity for an exception, package, subprogram or generic unit,
954 -- returns the ultimately renamed entity if this is a renaming. If this is
955 -- not a renamed entity, returns its argument. It is an error to call this
956 -- with any other kind of entity.
958 function Get_Return_Object (N : Node_Id) return Entity_Id;
959 -- Given an extended return statement, return the corresponding return
960 -- object, identified as the one for which Is_Return_Object = True.
962 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
963 -- Nod is either a procedure call statement, or a function call, or an
964 -- accept statement node. This procedure finds the Entity_Id of the related
965 -- subprogram or entry and returns it, or if no subprogram can be found,
966 -- returns Empty.
968 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id;
969 pragma Inline (Get_Task_Body_Procedure);
970 -- Given an entity for a task type or subtype, retrieves the
971 -- Task_Body_Procedure field from the corresponding task type declaration.
973 function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id;
974 -- For a type entity, return the entity of the primitive equality function
975 -- for the type if it exists, otherwise return Empty.
977 function Has_Access_Values (T : Entity_Id) return Boolean;
978 -- Returns true if type or subtype T is an access type, or has a component
979 -- (at any recursive level) that is an access type. This is a conservative
980 -- predicate, if it is not known whether or not T contains access values
981 -- (happens for generic formals in some cases), then False is returned.
982 -- Note that tagged types return False. Even though the tag is implemented
983 -- as an access type internally, this function tests only for access types
984 -- known to the programmer. See also Has_Tagged_Component.
986 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
987 -- Result of Has_Compatible_Alignment test, description found below. Note
988 -- that the values are arranged in increasing order of problematicness.
990 function Has_Compatible_Alignment
991 (Obj : Entity_Id;
992 Expr : Node_Id) return Alignment_Result;
993 -- Obj is an object entity, and expr is a node for an object reference. If
994 -- the alignment of the object referenced by Expr is known to be compatible
995 -- with the alignment of Obj (i.e. is larger or the same), then the result
996 -- is Known_Compatible. If the alignment of the object referenced by Expr
997 -- is known to be less than the alignment of Obj, then Known_Incompatible
998 -- is returned. If neither condition can be reliably established at compile
999 -- time, then Unknown is returned. This is used to determine if alignment
1000 -- checks are required for address clauses, and also whether copies must
1001 -- be made when objects are passed by reference.
1003 -- Note: Known_Incompatible does not mean that at run time the alignment
1004 -- of Expr is known to be wrong for Obj, just that it can be determined
1005 -- that alignments have been explicitly or implicitly specified which are
1006 -- incompatible (whereas Unknown means that even this is not known). The
1007 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
1008 -- Unknown, but issue a warning that there may be an alignment error.
1010 function Has_Declarations (N : Node_Id) return Boolean;
1011 -- Determines if the node can have declarations
1013 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1014 -- Simple predicate to test for defaulted discriminants
1016 function Has_Denormals (E : Entity_Id) return Boolean;
1017 -- Determines if the floating-point type E supports denormal numbers.
1018 -- Returns False if E is not a floating-point type.
1020 function Has_Discriminant_Dependent_Constraint
1021 (Comp : Entity_Id) return Boolean;
1022 -- Returns True if and only if Comp has a constrained subtype that depends
1023 -- on a discriminant.
1025 function Has_Effectively_Volatile_Profile
1026 (Subp_Id : Entity_Id) return Boolean;
1027 -- Determine whether subprogram Subp_Id has an effectively volatile formal
1028 -- parameter or returns an effectively volatile value.
1030 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1031 -- Determine whether type Typ defines "full default initialization" as
1032 -- specified by SPARK RM 3.1. To qualify as such, the type must be
1033 -- * A scalar type with specified Default_Value
1034 -- * An array-of-scalar type with specified Default_Component_Value
1035 -- * An array type whose element type defines full default initialization
1036 -- * A protected type, record type or type extension whose components
1037 -- either include a default expression or have a type which defines
1038 -- full default initialization. In the case of type extensions, the
1039 -- parent type defines full default initialization.
1040 -- * A task type
1041 -- * A private type whose Default_Initial_Condition is non-null
1043 function Has_Infinities (E : Entity_Id) return Boolean;
1044 -- Determines if the range of the floating-point type E includes
1045 -- infinities. Returns False if E is not a floating-point type.
1047 function Has_Interfaces
1048 (T : Entity_Id;
1049 Use_Full_View : Boolean := True) return Boolean;
1050 -- Where T is a concurrent type or a record type, returns true if T covers
1051 -- any abstract interface types. In case of private types the argument
1052 -- Use_Full_View controls if the check is done using its full view (if
1053 -- available).
1055 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1056 -- This is a simple minded function for determining whether an expression
1057 -- has no obvious side effects. It is used only for determining whether
1058 -- warnings are needed in certain situations, and is not guaranteed to
1059 -- be accurate in either direction. Exceptions may mean an expression
1060 -- does in fact have side effects, but this may be ignored and True is
1061 -- returned, or a complex expression may in fact be side effect free
1062 -- but we don't recognize it here and return False. The Side_Effect_Free
1063 -- routine in Remove_Side_Effects is much more extensive and perhaps could
1064 -- be shared, so that this routine would be more accurate.
1066 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1067 -- Determine whether abstract state Id has at least one nonnull constituent
1068 -- as expressed in pragma Refined_State. This function does not take into
1069 -- account the visible refinement region of abstract state Id.
1071 function Has_Null_Exclusion (N : Node_Id) return Boolean;
1072 -- Determine whether node N has a null exclusion
1074 function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1075 -- Determine whether abstract state Id has a null refinement as expressed
1076 -- in pragma Refined_State. This function does not take into account the
1077 -- visible refinement region of abstract state Id.
1079 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1080 -- Predicate to determine whether a controlled type has a user-defined
1081 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1082 -- non-null), which causes the type to not have preelaborable
1083 -- initialization.
1085 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
1086 -- Return True iff type E has preelaborable initialization as defined in
1087 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1089 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1090 -- Check if a type has a (sub)component of a private type that has not
1091 -- yet received a full declaration.
1093 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1094 -- Determines if the floating-point type E supports signed zeros.
1095 -- Returns False if E is not a floating-point type.
1097 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1098 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1099 -- All subprograms have a N_Contract node, but this does not mean that the
1100 -- contract is useful.
1102 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1103 -- Return whether an array type has static bounds
1105 function Has_Stream (T : Entity_Id) return Boolean;
1106 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1107 -- case of a composite type, has a component for which this predicate is
1108 -- True, and if so returns True. Otherwise a result of False means that
1109 -- there is no Stream type in sight. For a private type, the test is
1110 -- applied to the underlying type (or returns False if there is no
1111 -- underlying type).
1113 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1114 -- Returns true if the last character of E is Suffix. Used in Assertions.
1116 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
1117 -- Returns the name of E adding Suffix
1119 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
1120 -- Returns the name of E without Suffix
1122 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1123 -- Returns True if Typ is a composite type (array or record) which is
1124 -- either itself a tagged type, or has a component (recursively) which is
1125 -- a tagged type. Returns False for non-composite type, or if no tagged
1126 -- component is present. This function is used to check if "=" has to be
1127 -- expanded into a bunch component comparisons.
1129 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1130 -- Given an arbitrary type, determine whether it contains at least one
1131 -- volatile component.
1133 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1134 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1135 -- implementation requirement which the pragma imposes. The return value is
1136 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1138 function Implements_Interface
1139 (Typ_Ent : Entity_Id;
1140 Iface_Ent : Entity_Id;
1141 Exclude_Parents : Boolean := False) return Boolean;
1142 -- Returns true if the Typ_Ent implements interface Iface_Ent
1144 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1145 -- Determine whether an arbitrary node appears in a pragma that acts as an
1146 -- assertion expression. See Sem_Prag for the list of qualifying pragmas.
1148 function In_Instance return Boolean;
1149 -- Returns True if the current scope is within a generic instance
1151 function In_Instance_Body return Boolean;
1152 -- Returns True if current scope is within the body of an instance, where
1153 -- several semantic checks (e.g. accessibility checks) are relaxed.
1155 function In_Instance_Not_Visible return Boolean;
1156 -- Returns True if current scope is with the private part or the body of
1157 -- an instance. Other semantic checks are suppressed in this context.
1159 function In_Instance_Visible_Part return Boolean;
1160 -- Returns True if current scope is within the visible part of a package
1161 -- instance, where several additional semantic checks apply.
1163 function In_Package_Body return Boolean;
1164 -- Returns True if current scope is within a package body
1166 function In_Parameter_Specification (N : Node_Id) return Boolean;
1167 -- Returns True if node N belongs to a parameter specification
1169 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1170 -- Returns true if the expression N occurs within a pragma with name Nam
1172 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1173 -- Returns True if N denotes a component or subcomponent in a record or
1174 -- array that has Reverse_Storage_Order.
1176 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1177 -- Determines if the current scope is within a subprogram compilation unit
1178 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1179 -- declaration) or within a task or protected body. The test is for
1180 -- appearing anywhere within such a construct (that is it does not need
1181 -- to be directly within).
1183 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1184 -- Determine whether a declaration occurs within the visible part of a
1185 -- package specification. The package must be on the scope stack, and the
1186 -- corresponding private part must not.
1188 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1189 -- Given the entity of a constant or a type, retrieve the incomplete or
1190 -- partial view of the same entity. Note that Id may not have a partial
1191 -- view in which case the function returns Empty.
1193 procedure Inherit_Default_Init_Cond_Procedure (Typ : Entity_Id);
1194 -- Inherit the default initial condition procedure from the parent type of
1195 -- derived type Typ.
1197 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1198 -- Inherit the rep item chain of type From_Typ without clobbering any
1199 -- existing rep items on Typ's chain. Typ is the destination type.
1201 procedure Insert_Explicit_Dereference (N : Node_Id);
1202 -- In a context that requires a composite or subprogram type and where a
1203 -- prefix is an access type, rewrite the access type node N (which is the
1204 -- prefix, e.g. of an indexed component) as an explicit dereference.
1206 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1207 -- Examine all deferred constants in the declaration list Decls and check
1208 -- whether they have been completed by a full constant declaration or an
1209 -- Import pragma. Emit the error message if that is not the case.
1211 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1212 -- Install both the generic formal parameters and the formal parameters of
1213 -- generic subprogram Subp_Id into visibility.
1215 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1216 -- Determines if N is an actual parameter of out mode in a subprogram call
1218 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1219 -- Determines if N is an actual parameter in a subprogram call
1221 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1222 -- Determines if N is an actual parameter of a formal of tagged type in a
1223 -- subprogram call.
1225 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1226 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1227 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1228 -- rules of the language, it does not take into account the restriction
1229 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1230 -- and Obj violates the restriction. The caller is responsible for calling
1231 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1232 -- requirement for obeying the restriction in the call context.
1234 function Is_Ancestor_Package
1235 (E1 : Entity_Id;
1236 E2 : Entity_Id) return Boolean;
1237 -- Determine whether package E1 is an ancestor of E2
1239 function Is_Atomic_Object (N : Node_Id) return Boolean;
1240 -- Determines if the given node denotes an atomic object in the sense of
1241 -- the legality checks described in RM C.6(12).
1243 function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean;
1244 -- Determines if the given node is an atomic object (Is_Atomic_Object true)
1245 -- or else is an object for which VFA is present.
1247 function Is_Attribute_Result (N : Node_Id) return Boolean;
1248 -- Determine whether node N denotes attribute 'Result
1250 function Is_Attribute_Update (N : Node_Id) return Boolean;
1251 -- Determine whether node N denotes attribute 'Update
1253 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1254 -- Determine whether node N denotes a body or a package declaration
1256 function Is_Bounded_String (T : Entity_Id) return Boolean;
1257 -- True if T is a bounded string type. Used to make sure "=" composes
1258 -- properly for bounded string types.
1260 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1261 -- Exp is the expression for an array bound. Determines whether the
1262 -- bound is a compile-time known value, or a constant entity, or an
1263 -- enumeration literal, or an expression composed of constant-bound
1264 -- subexpressions which are evaluated by means of standard operators.
1266 function Is_Container_Element (Exp : Node_Id) return Boolean;
1267 -- This routine recognizes expressions that denote an element of one of
1268 -- the predefined containers, when the source only contains an indexing
1269 -- operation and an implicit dereference is inserted by the compiler.
1270 -- In the absence of this optimization, the indexing creates a temporary
1271 -- controlled cursor that sets the tampering bit of the container, and
1272 -- restricts the use of the convenient notation C (X) to contexts that
1273 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1274 -- explicit dereference. The transformation applies when it has the form
1275 -- F (X).Discr.all.
1277 function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1278 -- Determine whether aspect specification or pragma Item is a contract
1279 -- annotation.
1281 function Is_Controlling_Limited_Procedure
1282 (Proc_Nam : Entity_Id) return Boolean;
1283 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1284 -- of a limited interface with a controlling first parameter.
1286 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1287 -- Returns True if N is a call to a CPP constructor
1289 function Is_Child_Or_Sibling
1290 (Pack_1 : Entity_Id;
1291 Pack_2 : Entity_Id) return Boolean;
1292 -- Determine the following relations between two arbitrary packages:
1293 -- 1) One package is the parent of a child package
1294 -- 2) Both packages are siblings and share a common parent
1296 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1297 -- First determine whether type T is an interface and then check whether
1298 -- it is of protected, synchronized or task kind.
1300 function Is_Current_Instance (N : Node_Id) return Boolean;
1301 -- Predicate is true if N legally denotes a type name within its own
1302 -- declaration. Prior to Ada 2012 this covered only synchronized type
1303 -- declarations. In Ada 2012 it also covers type and subtype declarations
1304 -- with aspects: Invariant, Predicate, and Default_Initial_Condition.
1306 function Is_Declaration (N : Node_Id) return Boolean;
1307 -- Determine whether arbitrary node N denotes a declaration
1309 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1310 -- Returns True iff component Comp is declared within a variant part
1312 function Is_Dependent_Component_Of_Mutable_Object
1313 (Object : Node_Id) return Boolean;
1314 -- Returns True if Object is the name of a subcomponent that depends on
1315 -- discriminants of a variable whose nominal subtype is unconstrained and
1316 -- not indefinite, and the variable is not aliased. Otherwise returns
1317 -- False. The nodes passed to this function are assumed to denote objects.
1319 function Is_Dereferenced (N : Node_Id) return Boolean;
1320 -- N is a subexpression node of an access type. This function returns true
1321 -- if N appears as the prefix of a node that does a dereference of the
1322 -- access value (selected/indexed component, explicit dereference or a
1323 -- slice), and false otherwise.
1325 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1326 -- Returns True if type T1 is a descendent of type T2, and false otherwise.
1327 -- This is the RM definition, a type is a descendent of another type if it
1328 -- is the same type or is derived from a descendent of the other type.
1330 function Is_Descendant_Of_Suspension_Object
1331 (Typ : Entity_Id) return Boolean;
1332 -- Determine whether type Typ is a descendant of type Suspension_Object
1333 -- defined in Ada.Synchronous_Task_Control. This version is different from
1334 -- Is_Descendent_Of as the detection of Suspension_Object does not involve
1335 -- an entity and by extension a call to RTSfind.
1337 function Is_Double_Precision_Floating_Point_Type
1338 (E : Entity_Id) return Boolean;
1339 -- Return whether E is a double precision floating point type,
1340 -- characterized by:
1341 -- . machine_radix = 2
1342 -- . machine_mantissa = 53
1343 -- . machine_emax = 2**10
1344 -- . machine_emin = 3 - machine_emax
1346 function Is_Effectively_Volatile (Id : Entity_Id) return Boolean;
1347 -- Determine whether a type or object denoted by entity Id is effectively
1348 -- volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
1349 -- * Volatile
1350 -- * An array type subject to aspect Volatile_Components
1351 -- * An array type whose component type is effectively volatile
1352 -- * A protected type
1353 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1355 function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean;
1356 -- Determine whether an arbitrary node denotes an effectively volatile
1357 -- object (SPARK RM 7.1.2).
1359 function Is_Entry_Body (Id : Entity_Id) return Boolean;
1360 -- Determine whether entity Id is the body entity of an entry [family]
1362 function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
1363 -- Determine whether entity Id is the spec entity of an entry [family]
1365 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1366 -- Determine whether subprogram [body] Subp denotes an expression function
1368 function Is_Expression_Function_Or_Completion
1369 (Subp : Entity_Id) return Boolean;
1370 -- Determine whether subprogram [body] Subp denotes an expression function
1371 -- or is completed by an expression function body.
1373 function Is_EVF_Expression (N : Node_Id) return Boolean;
1374 -- Determine whether node N denotes a reference to a formal parameter of
1375 -- a specific tagged type whose related subprogram is subject to pragma
1376 -- Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
1377 -- constructs fall under this category:
1378 -- 1) A qualified expression whose operand is EVF
1379 -- 2) A type conversion whose operand is EVF
1380 -- 3) An if expression with at least one EVF dependent_expression
1381 -- 4) A case expression with at least one EVF dependent_expression
1383 function Is_False (U : Uint) return Boolean;
1384 pragma Inline (Is_False);
1385 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1386 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1387 -- if it is False (i.e. zero).
1389 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1390 -- Returns True iff the number U is a model number of the fixed-point type
1391 -- T, i.e. if it is an exact multiple of Small.
1393 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1394 -- Typ is a type entity. This function returns true if this type is fully
1395 -- initialized, meaning that an object of the type is fully initialized.
1396 -- Note that initialization resulting from use of pragma Normalize_Scalars
1397 -- does not count. Note that this is only used for the purpose of issuing
1398 -- warnings for objects that are potentially referenced uninitialized. This
1399 -- means that the result returned is not crucial, but should err on the
1400 -- side of thinking things are fully initialized if it does not know.
1402 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
1403 -- Determine whether arbitrary declaration Decl denotes a generic package,
1404 -- a generic subprogram or a generic body.
1406 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1407 -- E is a subprogram. Return True is E is an implicit operation inherited
1408 -- by a derived type declaration.
1410 function Is_Inherited_Operation_For_Type
1411 (E : Entity_Id;
1412 Typ : Entity_Id) return Boolean;
1413 -- E is a subprogram. Return True is E is an implicit operation inherited
1414 -- by the derived type declaration for type Typ.
1416 function Is_Iterator (Typ : Entity_Id) return Boolean;
1417 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1418 -- Ada.Iterator_Interfaces, or it is derived from one.
1420 function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
1421 -- N is an iterator specification. Returns True iff N is an iterator over
1422 -- an array, either inside a loop of the form 'for X of A' or a quantified
1423 -- expression of the form 'for all/some X of A' where A is of array type.
1425 type Is_LHS_Result is (Yes, No, Unknown);
1426 function Is_LHS (N : Node_Id) return Is_LHS_Result;
1427 -- Returns Yes if N is definitely used as Name in an assignment statement.
1428 -- Returns No if N is definitely NOT used as a Name in an assignment
1429 -- statement. Returns Unknown if we can't tell at this stage (happens in
1430 -- the case where we don't know the type of N yet, and we have something
1431 -- like N.A := 3, where this counts as N being used on the left side of
1432 -- an assignment only if N is not an access type. If it is an access type
1433 -- then it is N.all.A that is assigned, not N.
1435 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
1436 -- A library-level declaration is one that is accessible from Standard,
1437 -- i.e. a library unit or an entity declared in a library package.
1439 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
1440 -- Determine whether a given type is a limited class-wide type, in which
1441 -- case it needs a Master_Id, because extensions of its designated type
1442 -- may include task components. A class-wide type that comes from a
1443 -- limited view must be treated in the same way.
1445 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
1446 -- Determines whether Expr is a reference to a variable or IN OUT mode
1447 -- parameter of the current enclosing subprogram.
1448 -- Why are OUT parameters not considered here ???
1450 function Is_Nontrivial_Default_Init_Cond_Procedure
1451 (Id : Entity_Id) return Boolean;
1452 -- Determine whether entity Id denotes the procedure that verifies the
1453 -- assertion expression of pragma Default_Initial_Condition and if it does,
1454 -- the encapsulated expression is nontrivial.
1456 function Is_Object_Reference (N : Node_Id) return Boolean;
1457 -- Determines if the tree referenced by N represents an object. Both
1458 -- variable and constant objects return True (compare Is_Variable).
1460 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
1461 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1462 -- Note that the Is_Variable function is not quite the right test because
1463 -- this is a case in which conversions whose expression is a variable (in
1464 -- the Is_Variable sense) with an untagged type target are considered view
1465 -- conversions and hence variables.
1467 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
1468 -- Determine whether aspect specification or pragma Item is one of the
1469 -- following package contract annotations:
1470 -- Abstract_State
1471 -- Initial_Condition
1472 -- Initializes
1473 -- Refined_State
1475 function Is_Partially_Initialized_Type
1476 (Typ : Entity_Id;
1477 Include_Implicit : Boolean := True) return Boolean;
1478 -- Typ is a type entity. This function returns true if this type is partly
1479 -- initialized, meaning that an object of the type is at least partly
1480 -- initialized (in particular in the record case, that at least one
1481 -- component has an initialization expression). Note that initialization
1482 -- resulting from the use of pragma Normalize_Scalars does not count.
1483 -- Include_Implicit controls whether implicit initialization of access
1484 -- values to null, and of discriminant values, is counted as making the
1485 -- type be partially initialized. For the default setting of True, these
1486 -- implicit cases do count, and discriminated types or types containing
1487 -- access values not explicitly initialized will return True. Otherwise
1488 -- if Include_Implicit is False, these cases do not count as making the
1489 -- type be partially initialized.
1491 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
1492 -- Predicate to implement definition given in RM 6.1.1 (20/3)
1494 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
1495 -- Determines if type T is a potentially persistent type. A potentially
1496 -- persistent type is defined (recursively) as a scalar type, an untagged
1497 -- record whose components are all of a potentially persistent type, or an
1498 -- array with all static constraints whose component type is potentially
1499 -- persistent. A private type is potentially persistent if the full type
1500 -- is potentially persistent.
1502 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
1503 -- Return True if node N denotes a protected type name which represents
1504 -- the current instance of a protected object according to RM 9.4(21/2).
1506 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
1507 -- Return True if a compilation unit is the specification or the
1508 -- body of a remote call interface package.
1510 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
1511 -- Return True if E is a remote access-to-class-wide type
1513 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
1514 -- Return True if E is a remote access to subprogram type
1516 function Is_Remote_Call (N : Node_Id) return Boolean;
1517 -- Return True if N denotes a potentially remote call
1519 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
1520 -- Return True if Proc_Nam is a procedure renaming of an entry
1522 function Is_Renaming_Declaration (N : Node_Id) return Boolean;
1523 -- Determine whether arbitrary node N denotes a renaming declaration
1525 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
1526 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
1527 -- Ada.Iterator_Interfaces.Reversible_Iterator.
1529 function Is_Selector_Name (N : Node_Id) return Boolean;
1530 -- Given an N_Identifier node N, determines if it is a Selector_Name.
1531 -- As described in Sinfo, Selector_Names are special because they
1532 -- represent use of the N_Identifier node for a true identifier, when
1533 -- normally such nodes represent a direct name.
1535 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
1536 -- Determine whether arbitrary entity Id denotes the anonymous object
1537 -- created for a single protected or single task type.
1539 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
1540 -- Determine whether arbitrary entity Id denotes a single protected or
1541 -- single task type.
1543 function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
1544 -- Determine whether arbitrary node N denotes the declaration of a single
1545 -- protected type or single task type.
1547 function Is_Single_Precision_Floating_Point_Type
1548 (E : Entity_Id) return Boolean;
1549 -- Return whether E is a single precision floating point type,
1550 -- characterized by:
1551 -- . machine_radix = 2
1552 -- . machine_mantissa = 24
1553 -- . machine_emax = 2**7
1554 -- . machine_emin = 3 - machine_emax
1556 function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean;
1557 -- Determines if the tree referenced by N represents an initialization
1558 -- expression in SPARK 2005, suitable for initializing an object in an
1559 -- object declaration.
1561 function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean;
1562 -- Determines if the tree referenced by N represents an object in SPARK
1563 -- 2005. This differs from Is_Object_Reference in that only variables,
1564 -- constants, formal parameters, and selected_components of those are
1565 -- valid objects in SPARK 2005.
1567 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
1568 -- Determine whether an arbitrary [private] type is specifically tagged
1570 function Is_Statement (N : Node_Id) return Boolean;
1571 pragma Inline (Is_Statement);
1572 -- Check if the node N is a statement node. Note that this includes
1573 -- the case of procedure call statements (unlike the direct use of
1574 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1575 -- Note that a label is *not* a statement, and will return False.
1577 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
1578 -- Determine whether aspect specification or pragma Item is one of the
1579 -- following subprogram contract annotations:
1580 -- Contract_Cases
1581 -- Depends
1582 -- Extensions_Visible
1583 -- Global
1584 -- Post
1585 -- Post_Class
1586 -- Postcondition
1587 -- Pre
1588 -- Pre_Class
1589 -- Precondition
1590 -- Refined_Depends
1591 -- Refined_Global
1592 -- Refined_Post
1593 -- Test_Case
1595 function Is_Subprogram_Stub_Without_Prior_Declaration
1596 (N : Node_Id) return Boolean;
1597 -- Return True if N is a subprogram stub with no prior subprogram
1598 -- declaration.
1600 function Is_Suspension_Object (Id : Entity_Id) return Boolean;
1601 -- Determine whether arbitrary entity Id denotes Suspension_Object defined
1602 -- in Ada.Synchronous_Task_Control.
1604 function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
1605 -- Determine whether entity Id denotes an object and if it does, whether
1606 -- this object is synchronized as specified in SPARK RM 9.1. To qualify as
1607 -- such, the object must be
1608 -- * Of a type that yields a synchronized object
1609 -- * An atomic object with enabled Async_Writers
1610 -- * A constant
1611 -- * A variable subject to pragma Constant_After_Elaboration
1613 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
1614 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
1616 function Is_Transfer (N : Node_Id) return Boolean;
1617 -- Returns True if the node N is a statement which is known to cause an
1618 -- unconditional transfer of control at runtime, i.e. the following
1619 -- statement definitely will not be executed.
1621 function Is_True (U : Uint) return Boolean;
1622 pragma Inline (Is_True);
1623 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1624 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1625 -- if it is True (i.e. non-zero).
1627 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
1628 -- Determine whether an arbitrary entity denotes an instance of function
1629 -- Ada.Unchecked_Conversion.
1631 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
1632 pragma Inline (Is_Universal_Numeric_Type);
1633 -- True if T is Universal_Integer or Universal_Real
1635 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
1636 -- Returns true if E has variable size components
1638 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
1639 -- Returns true if E has variable size components
1641 function Is_Variable
1642 (N : Node_Id;
1643 Use_Original_Node : Boolean := True) return Boolean;
1644 -- Determines if the tree referenced by N represents a variable, i.e. can
1645 -- appear on the left side of an assignment. There is one situation (formal
1646 -- parameters) in which untagged type conversions are also considered
1647 -- variables, but Is_Variable returns False for such cases, since it has
1648 -- no knowledge of the context. Note that this is the point at which
1649 -- Assignment_OK is checked, and True is returned for any tree thus marked.
1650 -- Use_Original_Node is used to perform the test on Original_Node (N). By
1651 -- default is True since this routine is commonly invoked as part of the
1652 -- semantic analysis and it must not be disturbed by the rewriten nodes.
1654 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
1655 -- Check whether T is derived from a visibly controlled type. This is true
1656 -- if the root type is declared in Ada.Finalization. If T is derived
1657 -- instead from a private type whose full view is controlled, an explicit
1658 -- Initialize/Adjust/Finalize subprogram does not override the inherited
1659 -- one.
1661 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
1662 -- Determine whether [generic] function Func_Id is subject to enabled
1663 -- pragma Volatile_Function. Protected functions are treated as volatile
1664 -- (SPARK RM 7.1.2).
1666 function Is_Volatile_Object (N : Node_Id) return Boolean;
1667 -- Determines if the given node denotes an volatile object in the sense of
1668 -- the legality checks described in RM C.6(12). Note that the test here is
1669 -- for something actually declared as volatile, not for an object that gets
1670 -- treated as volatile (see Einfo.Treat_As_Volatile).
1672 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
1673 -- Applies to Itypes. True if the Itype is attached to a declaration for
1674 -- the type through its Parent field, which may or not be present in the
1675 -- tree.
1677 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
1678 -- This procedure is called to clear all constant indications from all
1679 -- entities in the current scope and in any parent scopes if the current
1680 -- scope is a block or a package (and that recursion continues to the top
1681 -- scope that is not a block or a package). This is used when the
1682 -- sequential flow-of-control assumption is violated (occurrence of a
1683 -- label, head of a loop, or start of an exception handler). The effect of
1684 -- the call is to clear the Current_Value field (but we do not need to
1685 -- clear the Is_True_Constant flag, since that only gets reset if there
1686 -- really is an assignment somewhere in the entity scope). This procedure
1687 -- also calls Kill_All_Checks, since this is a special case of needing to
1688 -- forget saved values. This procedure also clears the Is_Known_Null and
1689 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1690 -- parameters since these are also not known to be trustable any more.
1692 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
1693 -- fields and leave other fields unchanged. This is used when we encounter
1694 -- an unconditional flow of control change (return, goto, raise). In such
1695 -- cases we don't need to clear the current values, since it may be that
1696 -- the flow of control change occurs in a conditional context, and if it
1697 -- is not taken, then it is just fine to keep the current values. But the
1698 -- Last_Assignment field is different, if we have a sequence assign-to-v,
1699 -- conditional-return, assign-to-v, we do not want to complain that the
1700 -- second assignment clobbers the first.
1702 procedure Kill_Current_Values
1703 (Ent : Entity_Id;
1704 Last_Assignment_Only : Boolean := False);
1705 -- This performs the same processing as described above for the form with
1706 -- no argument, but for the specific entity given. The call has no effect
1707 -- if the entity Ent is not for an object. Last_Assignment_Only has the
1708 -- same meaning as for the call with no Ent.
1710 procedure Kill_Size_Check_Code (E : Entity_Id);
1711 -- Called when an address clause or pragma Import is applied to an entity.
1712 -- If the entity is a variable or a constant, and size check code is
1713 -- present, this size check code is killed, since the object will not be
1714 -- allocated by the program.
1716 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
1717 -- The node N is an entity reference. This function determines whether the
1718 -- reference is for sure an assignment of the entity, returning True if
1719 -- so. This differs from May_Be_Lvalue in that it defaults in the other
1720 -- direction. Cases which may possibly be assignments but are not known to
1721 -- be may return True from May_Be_Lvalue, but False from this function.
1723 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
1724 -- HSS is a handled statement sequence. This function returns the last
1725 -- statement in Statements (HSS) that has Comes_From_Source set. If no
1726 -- such statement exists, Empty is returned.
1728 function Matching_Static_Array_Bounds
1729 (L_Typ : Node_Id;
1730 R_Typ : Node_Id) return Boolean;
1731 -- L_Typ and R_Typ are two array types. Returns True when they have the
1732 -- same number of dimensions, and the same static bounds for each index
1733 -- position.
1735 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
1736 -- Given a node which designates the context of analysis and an origin in
1737 -- the tree, traverse from Root_Nod and mark all allocators as either
1738 -- dynamic or static depending on Context_Nod. Any incorrect marking is
1739 -- cleaned up during resolution.
1741 function May_Be_Lvalue (N : Node_Id) return Boolean;
1742 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
1743 -- An lvalue is defined as any expression which appears in a context where
1744 -- a name is required by the syntax, and the identity, rather than merely
1745 -- the value of the node is needed (for example, the prefix of an Access
1746 -- attribute is in this category). Note that, as implied by the name, this
1747 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
1748 -- it returns True. It tries hard to get the answer right, but it is hard
1749 -- to guarantee this in all cases. Note that it is more possible to give
1750 -- correct answer if the tree is fully analyzed.
1752 function Needs_One_Actual (E : Entity_Id) return Boolean;
1753 -- Returns True if a function has defaults for all but its first
1754 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1755 -- results from an indexing of a function call written in prefix form.
1757 function New_Copy_List_Tree (List : List_Id) return List_Id;
1758 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1759 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1760 -- nodes (entities) either directly or indirectly using this function.
1762 function New_Copy_Tree
1763 (Source : Node_Id;
1764 Map : Elist_Id := No_Elist;
1765 New_Sloc : Source_Ptr := No_Location;
1766 New_Scope : Entity_Id := Empty) return Node_Id;
1767 -- Given a node that is the root of a subtree, Copy_Tree copies the entire
1768 -- syntactic subtree, including recursively any descendents whose parent
1769 -- field references a copied node (descendents not linked to a copied node
1770 -- by the parent field are not copied, instead the copied tree references
1771 -- the same descendent as the original in this case, which is appropriate
1772 -- for non-syntactic fields such as Etype). The parent pointers in the
1773 -- copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1774 -- The one exception to the rule of not copying semantic fields is that
1775 -- any implicit types attached to the subtree are duplicated, so that
1776 -- the copy contains a distinct set of implicit type entities. Thus this
1777 -- function is used when it is necessary to duplicate an analyzed tree,
1778 -- declared in the same or some other compilation unit. This function is
1779 -- declared here rather than in atree because it uses semantic information
1780 -- in particular concerning the structure of itypes and the generation of
1781 -- public symbols.
1783 -- The Map argument, if set to a non-empty Elist, specifies a set of
1784 -- mappings to be applied to entities in the tree. The map has the form:
1786 -- old entity 1
1787 -- new entity to replace references to entity 1
1788 -- old entity 2
1789 -- new entity to replace references to entity 2
1790 -- ...
1792 -- The call destroys the contents of Map in this case
1794 -- The parameter New_Sloc, if set to a value other than No_Location, is
1795 -- used as the Sloc value for all nodes in the new copy. If New_Sloc is
1796 -- set to its default value No_Location, then the Sloc values of the
1797 -- nodes in the copy are simply copied from the corresponding original.
1799 -- The Comes_From_Source indication is unchanged if New_Sloc is set to
1800 -- the default No_Location value, but is reset if New_Sloc is given, since
1801 -- in this case the result clearly is neither a source node or an exact
1802 -- copy of a source node.
1804 -- The parameter New_Scope, if set to a value other than Empty, is the
1805 -- value to use as the Scope for any Itypes that are copied. The most
1806 -- typical value for this parameter, if given, is Current_Scope.
1808 function New_External_Entity
1809 (Kind : Entity_Kind;
1810 Scope_Id : Entity_Id;
1811 Sloc_Value : Source_Ptr;
1812 Related_Id : Entity_Id;
1813 Suffix : Character;
1814 Suffix_Index : Nat := 0;
1815 Prefix : Character := ' ') return Entity_Id;
1816 -- This function creates an N_Defining_Identifier node for an internal
1817 -- created entity, such as an implicit type or subtype, or a record
1818 -- initialization procedure. The entity name is constructed with a call
1819 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1820 -- that the generated name may be referenced as a public entry, and the
1821 -- Is_Public flag is set if needed (using Set_Public_Status). If the
1822 -- entity is for a type or subtype, the size/align fields are initialized
1823 -- to unknown (Uint_0).
1825 function New_Internal_Entity
1826 (Kind : Entity_Kind;
1827 Scope_Id : Entity_Id;
1828 Sloc_Value : Source_Ptr;
1829 Id_Char : Character) return Entity_Id;
1830 -- This function is similar to New_External_Entity, except that the
1831 -- name is constructed by New_Internal_Name (Id_Char). This is used
1832 -- when the resulting entity does not have to be referenced as a
1833 -- public entity (and in this case Is_Public is not set).
1835 procedure Next_Actual (Actual_Id : in out Node_Id);
1836 pragma Inline (Next_Actual);
1837 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1838 -- inline this procedural form, but not the functional form that follows.
1840 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
1841 -- Find next actual parameter in declaration order. As described for
1842 -- First_Actual, this is the next actual in the declaration order, not
1843 -- the call order, so this does not correspond to simply taking the
1844 -- next entry of the Parameter_Associations list. The argument is an
1845 -- actual previously returned by a call to First_Actual or Next_Actual.
1846 -- Note that the result produced is always an expression, not a parameter
1847 -- association node, even if named notation was used.
1849 procedure Normalize_Actuals
1850 (N : Node_Id;
1851 S : Entity_Id;
1852 Report : Boolean;
1853 Success : out Boolean);
1854 -- Reorders lists of actuals according to names of formals, value returned
1855 -- in Success indicates success of reordering. For more details, see body.
1856 -- Errors are reported only if Report is set to True.
1858 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
1859 -- This routine is called if the sub-expression N maybe the target of
1860 -- an assignment (e.g. it is the left side of an assignment, used as
1861 -- an out parameters, or used as prefixes of access attributes). It
1862 -- sets May_Be_Modified in the associated entity if there is one,
1863 -- taking into account the rule that in the case of renamed objects,
1864 -- it is the flag in the renamed object that must be set.
1866 -- The parameter Sure is set True if the modification is sure to occur
1867 -- (e.g. target of assignment, or out parameter), and to False if the
1868 -- modification is only potential (e.g. address of entity taken).
1870 function Object_Access_Level (Obj : Node_Id) return Uint;
1871 -- Return the accessibility level of the view of the object Obj. For
1872 -- convenience, qualified expressions applied to object names are also
1873 -- allowed as actuals for this function.
1875 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
1876 -- Retrieve the name of aspect or pragma N taking into account a possible
1877 -- rewrite and whether the pragma is generated from an aspect as the names
1878 -- may be different. The routine also deals with 'Class in which case it
1879 -- returns the following values:
1881 -- Invariant -> Name_uInvariant
1882 -- Post'Class -> Name_uPost
1883 -- Pre'Class -> Name_uPre
1884 -- Type_Invariant -> Name_uType_Invariant
1885 -- Type_Invariant'Class -> Name_uType_Invariant
1887 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
1888 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1889 -- or overrides an inherited dispatching primitive S2, the original
1890 -- corresponding operation of S is the original corresponding operation of
1891 -- S2. Otherwise, it is S itself.
1893 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
1894 -- Given a policy, return the policy identifier associated with it. If no
1895 -- such policy is in effect, the value returned is No_Name.
1897 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
1898 -- Subp is the entity for a subprogram call. This function returns True if
1899 -- predicate tests are required for the arguments in this call (this is the
1900 -- normal case). It returns False for special cases where these predicate
1901 -- tests should be skipped (see body for details).
1903 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
1904 -- Returns True if the names of both entities correspond with matching
1905 -- primitives. This routine includes support for the case in which one
1906 -- or both entities correspond with entities built by Derive_Subprogram
1907 -- with a special name to avoid being overridden (i.e. return true in case
1908 -- of entities with names "nameP" and "name" or vice versa).
1910 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
1911 -- Returns some private component (if any) of the given Type_Id.
1912 -- Used to enforce the rules on visibility of operations on composite
1913 -- types, that depend on the full view of the component type. For a
1914 -- record type there may be several such components, we just return
1915 -- the first one.
1917 procedure Process_End_Label
1918 (N : Node_Id;
1919 Typ : Character;
1920 Ent : Entity_Id);
1921 -- N is a node whose End_Label is to be processed, generating all
1922 -- appropriate cross-reference entries, and performing style checks
1923 -- for any identifier references in the end label. Typ is either
1924 -- 'e' or 't indicating the type of the cross-reference entity
1925 -- (e for spec, t for body, see Lib.Xref spec for details). The
1926 -- parameter Ent gives the entity to which the End_Label refers,
1927 -- and to which cross-references are to be generated.
1929 procedure Record_Possible_Part_Of_Reference
1930 (Var_Id : Entity_Id;
1931 Ref : Node_Id);
1932 -- Save reference Ref to variable Var_Id when the variable is subject to
1933 -- pragma Part_Of. If the variable is known to be a constituent of a single
1934 -- protected/task type, the legality of the reference is verified and the
1935 -- save does not take place.
1937 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
1938 -- Determine whether entity Id is referenced within expression Expr
1940 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
1941 -- Returns True if the expression Expr contains any references to a
1942 -- generic type. This can only happen within a generic template.
1944 procedure Remove_Homonym (E : Entity_Id);
1945 -- Removes E from the homonym chain
1947 procedure Remove_Overloaded_Entity (Id : Entity_Id);
1948 -- Remove arbitrary entity Id from the homonym chain, the scope chain and
1949 -- the primitive operations list of the associated controlling type. NOTE:
1950 -- the removal performed by this routine does not affect the visibility of
1951 -- existing homonyms.
1953 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
1954 -- This is used to construct the second argument in a call to Rep_To_Pos
1955 -- which is Standard_True if range checks are enabled (E is an entity to
1956 -- which the Range_Checks_Suppressed test is applied), and Standard_False
1957 -- if range checks are suppressed. Loc is the location for the node that
1958 -- is returned (which is a New_Occurrence of the appropriate entity).
1960 -- Note: one might think that it would be fine to always use True and
1961 -- to ignore the suppress in this case, but it is generally better to
1962 -- believe a request to suppress exceptions if possible, and further
1963 -- more there is at least one case in the generated code (the code for
1964 -- array assignment in a loop) that depends on this suppression.
1966 procedure Report_Unused_Body_States
1967 (Body_Id : Entity_Id;
1968 States : Elist_Id);
1969 -- Emit errors for each abstract state or object found in list States that
1970 -- is declared in package body Body_Id, but is not used as constituent in a
1971 -- state refinement.
1973 procedure Require_Entity (N : Node_Id);
1974 -- N is a node which should have an entity value if it is an entity name.
1975 -- If not, then check if there were previous errors. If so, just fill
1976 -- in with Any_Id and ignore. Otherwise signal a program error exception.
1977 -- This is used as a defense mechanism against ill-formed trees caused by
1978 -- previous errors (particularly in -gnatq mode).
1980 function Requires_State_Refinement
1981 (Spec_Id : Entity_Id;
1982 Body_Id : Entity_Id) return Boolean;
1983 -- Determine whether a package denoted by its spec and body entities
1984 -- requires refinement of abstract states.
1986 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
1987 -- Id is a type entity. The result is True when temporaries of this type
1988 -- need to be wrapped in a transient scope to be reclaimed properly when a
1989 -- secondary stack is in use. Examples of types requiring such wrapping are
1990 -- controlled types and variable-sized types including unconstrained
1991 -- arrays.
1993 procedure Reset_Analyzed_Flags (N : Node_Id);
1994 -- Reset the Analyzed flags in all nodes of the tree whose root is N
1996 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type);
1997 -- Set the current SPARK_Mode to whatever Mode denotes. This routime must
1998 -- be used in tandem with Save_SPARK_Mode_And_Set.
2000 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
2001 -- Return true if Subp is a function that returns an unconstrained type
2003 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
2004 -- Similar to attribute Root_Type, but this version always follows the
2005 -- Full_View of a private type (if available) while searching for the
2006 -- ultimate derivation ancestor.
2008 function Safe_To_Capture_Value
2009 (N : Node_Id;
2010 Ent : Entity_Id;
2011 Cond : Boolean := False) return Boolean;
2012 -- The caller is interested in capturing a value (either the current value,
2013 -- or an indication that the value is non-null) for the given entity Ent.
2014 -- This value can only be captured if sequential execution semantics can be
2015 -- properly guaranteed so that a subsequent reference will indeed be sure
2016 -- that this current value indication is correct. The node N is the
2017 -- construct which resulted in the possible capture of the value (this
2018 -- is used to check if we are in a conditional).
2020 -- Cond is used to skip the test for being inside a conditional. It is used
2021 -- in the case of capturing values from if/while tests, which already do a
2022 -- proper job of handling scoping issues without this help.
2024 -- The only entities whose values can be captured are OUT and IN OUT formal
2025 -- parameters, and variables unless Cond is True, in which case we also
2026 -- allow IN formals, loop parameters and constants, where we cannot ever
2027 -- capture actual value information, but we can capture conditional tests.
2029 function Same_Name (N1, N2 : Node_Id) return Boolean;
2030 -- Determine if two (possibly expanded) names are the same name. This is
2031 -- a purely syntactic test, and N1 and N2 need not be analyzed.
2033 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
2034 -- Determine if Node1 and Node2 are known to designate the same object.
2035 -- This is a semantic test and both nodes must be fully analyzed. A result
2036 -- of True is decisively correct. A result of False does not necessarily
2037 -- mean that different objects are designated, just that this could not
2038 -- be reliably determined at compile time.
2040 function Same_Type (T1, T2 : Entity_Id) return Boolean;
2041 -- Determines if T1 and T2 represent exactly the same type. Two types
2042 -- are the same if they are identical, or if one is an unconstrained
2043 -- subtype of the other, or they are both common subtypes of the same
2044 -- type with identical constraints. The result returned is conservative.
2045 -- It is True if the types are known to be the same, but a result of
2046 -- False is indecisive (e.g. the compiler may not be able to tell that
2047 -- two constraints are identical).
2049 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
2050 -- Determines if Node1 and Node2 are known to be the same value, which is
2051 -- true if they are both compile time known values and have the same value,
2052 -- or if they are the same object (in the sense of function Same_Object).
2053 -- A result of False does not necessarily mean they have different values,
2054 -- just that it is not possible to determine they have the same value.
2056 procedure Save_SPARK_Mode_And_Set
2057 (Context : Entity_Id;
2058 Mode : out SPARK_Mode_Type);
2059 -- Save the current SPARK_Mode in effect in Mode. Establish the SPARK_Mode
2060 -- (if any) of a package or a subprogram denoted by Context. This routine
2061 -- must be used in tandem with Restore_SPARK_Mode.
2063 function Scalar_Part_Present (T : Entity_Id) return Boolean;
2064 -- Tests if type T can be determined at compile time to have at least one
2065 -- scalar part in the sense of the Valid_Scalars attribute. Returns True if
2066 -- this is the case, and False if no scalar parts are present (meaning that
2067 -- the result of Valid_Scalars applied to T is always vacuously True).
2069 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean;
2070 -- Determines if the entity Scope1 is the same as Scope2, or if it is
2071 -- inside it, where both entities represent scopes. Note that scopes
2072 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
2073 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
2075 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean;
2076 -- Like Scope_Within_Or_Same, except that this function returns
2077 -- False in the case where Scope1 and Scope2 are the same scope.
2079 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
2080 -- Same as Basic_Set_Convention, but with an extra check for access types.
2081 -- In particular, if E is an access-to-subprogram type, and Val is a
2082 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
2083 -- Also, if the Etype of E is set and is an anonymous access type with
2084 -- no convention set, this anonymous type inherits the convention of E.
2086 procedure Set_Current_Entity (E : Entity_Id);
2087 pragma Inline (Set_Current_Entity);
2088 -- Establish the entity E as the currently visible definition of its
2089 -- associated name (i.e. the Node_Id associated with its name).
2091 procedure Set_Debug_Info_Needed (T : Entity_Id);
2092 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
2093 -- that are needed by T (for an object, the type of the object is needed,
2094 -- and for a type, various subsidiary types are needed -- see body for
2095 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
2096 -- This routine should always be used instead of Set_Needs_Debug_Info to
2097 -- ensure that subsidiary entities are properly handled.
2099 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
2100 -- This procedure has the same calling sequence as Set_Entity, but it
2101 -- performs additional checks as follows:
2103 -- If Style_Check is set, then it calls a style checking routine which
2104 -- can check identifier spelling style. This procedure also takes care
2105 -- of checking the restriction No_Implementation_Identifiers.
2107 -- If restriction No_Abort_Statements is set, then it checks that the
2108 -- entity is not Ada.Task_Identification.Abort_Task.
2110 -- If restriction No_Dynamic_Attachment is set, then it checks that the
2111 -- entity is not one of the restricted names for this restriction.
2113 -- If restriction No_Long_Long_Integers is set, then it checks that the
2114 -- entity is not Standard.Long_Long_Integer.
2116 -- If restriction No_Implementation_Identifiers is set, then it checks
2117 -- that the entity is not implementation defined.
2119 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
2120 pragma Inline (Set_Name_Entity_Id);
2121 -- Sets the Entity_Id value associated with the given name, which is the
2122 -- Id of the innermost visible entity with the given name. See the body
2123 -- of package Sem_Ch8 for further details on the handling of visibility.
2125 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
2126 -- The arguments may be parameter associations, whose descendants
2127 -- are the optional formal name and the actual parameter. Positional
2128 -- parameters are already members of a list, and do not need to be
2129 -- chained separately. See also First_Actual and Next_Actual.
2131 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
2132 pragma Inline (Set_Optimize_Alignment_Flags);
2133 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
2135 procedure Set_Public_Status (Id : Entity_Id);
2136 -- If an entity (visible or otherwise) is defined in a library
2137 -- package, or a package that is itself public, then this subprogram
2138 -- labels the entity public as well.
2140 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
2141 -- N is the node for either a left hand side (Out_Param set to False),
2142 -- or an Out or In_Out parameter (Out_Param set to True). If there is
2143 -- an assignable entity being referenced, then the appropriate flag
2144 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
2145 -- if Out_Param is True) is set True, and the other flag set False.
2147 procedure Set_Scope_Is_Transient (V : Boolean := True);
2148 -- Set the flag Is_Transient of the current scope
2150 procedure Set_Size_Info (T1, T2 : Entity_Id);
2151 pragma Inline (Set_Size_Info);
2152 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
2153 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
2154 -- in the fixed-point and discrete cases, and also copies the alignment
2155 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
2156 -- separately set if this is required to be copied also.
2158 function Scope_Is_Transient return Boolean;
2159 -- True if the current scope is transient
2161 function Static_Boolean (N : Node_Id) return Uint;
2162 -- This function analyzes the given expression node and then resolves it
2163 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
2164 -- returned corresponding to the value, otherwise an error message is
2165 -- output and No_Uint is returned.
2167 function Static_Integer (N : Node_Id) return Uint;
2168 -- This function analyzes the given expression node and then resolves it
2169 -- as any integer type. If the result is static, then the value of the
2170 -- universal expression is returned, otherwise an error message is output
2171 -- and a value of No_Uint is returned.
2173 function Statically_Different (E1, E2 : Node_Id) return Boolean;
2174 -- Return True if it can be statically determined that the Expressions
2175 -- E1 and E2 refer to different objects
2177 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
2178 -- Determine whether node N is a loop statement subject to at least one
2179 -- 'Loop_Entry attribute.
2181 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
2182 -- Return the accessibility level of the view denoted by Subp
2184 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
2185 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
2186 -- Typ is properly sized and aligned).
2188 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
2189 -- Print debugging information on entry to each unit being analyzed
2191 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
2192 -- Move a list of entities from one scope to another, and recompute
2193 -- Is_Public based upon the new scope.
2195 function Type_Access_Level (Typ : Entity_Id) return Uint;
2196 -- Return the accessibility level of Typ
2198 function Type_Without_Stream_Operation
2199 (T : Entity_Id;
2200 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
2201 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
2202 -- is active then we cannot generate stream subprograms for composite types
2203 -- with elementary subcomponents that lack user-defined stream subprograms.
2204 -- This predicate determines whether a type has such an elementary
2205 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
2206 -- prevents the construction of a composite stream operation. If Op is
2207 -- specified we check only for the given stream operation.
2209 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
2210 -- Return the entity which represents declaration N, so that different
2211 -- views of the same entity have the same unique defining entity:
2212 -- * entry declaration and entry body
2213 -- * package spec and body
2214 -- * protected type declaration, protected body stub and protected body
2215 -- * private view and full view of a deferred constant
2216 -- * private view and full view of a type
2217 -- * subprogram declaration, subprogram stub and subprogram body
2218 -- * task type declaration, task body stub and task body
2219 -- In other cases, return the defining entity for N.
2221 function Unique_Entity (E : Entity_Id) return Entity_Id;
2222 -- Return the unique entity for entity E, which would be returned by
2223 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
2225 function Unique_Name (E : Entity_Id) return String;
2226 -- Return a unique name for entity E, which could be used to identify E
2227 -- across compilation units.
2229 function Unit_Is_Visible (U : Entity_Id) return Boolean;
2230 -- Determine whether a compilation unit is visible in the current context,
2231 -- because there is a with_clause that makes the unit available. Used to
2232 -- provide better messages on common visiblity errors on operators.
2234 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
2235 -- Yields Universal_Integer or Universal_Real if this is a candidate
2237 function Unqualify (Expr : Node_Id) return Node_Id;
2238 pragma Inline (Unqualify);
2239 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
2240 -- returns X. If Expr is not a qualified expression, returns Expr.
2242 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
2243 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
2244 -- of a type extension or private extension declaration. If the full-view
2245 -- of private parents and progenitors is available then it is used to
2246 -- generate the list of visible ancestors; otherwise their partial
2247 -- view is added to the resulting list.
2249 function Within_Init_Proc return Boolean;
2250 -- Determines if Current_Scope is within an init proc
2252 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
2253 -- Returns True if entity E is declared within scope S
2255 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
2256 -- Output error message for incorrectly typed expression. Expr is the node
2257 -- for the incorrectly typed construct (Etype (Expr) is the type found),
2258 -- and Expected_Type is the entity for the expected type. Note that Expr
2259 -- does not have to be a subexpression, anything with an Etype field may
2260 -- be used.
2262 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
2263 -- Determine whether type Typ "yields synchronized object" as specified by
2264 -- SPARK RM 9.1. To qualify as such, a type must be
2265 -- * An array type whose element type yields a synchronized object
2266 -- * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2267 -- * A protected type
2268 -- * A record type or type extension without defaulted discriminants
2269 -- whose components are of a type that yields a synchronized object.
2270 -- * A synchronized interface type
2271 -- * A task type
2273 end Sem_Util;