Daily bump.
[official-gcc.git] / gcc / ada / sem_util.ads
blob21e90dcf53bdfe741d0ad05eee22e3d274f10b21
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- Package containing utility procedures used throughout the semantics
28 with Aspects; use Aspects;
29 with Atree; use Atree;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Exp_Tss; use Exp_Tss;
33 with Namet; use Namet;
34 with Opt; use Opt;
35 with Snames; use Snames;
36 with Types; use Types;
37 with Uintp; use Uintp;
38 with Urealp; use Urealp;
40 package Sem_Util is
42 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
43 -- The list of interfaces implemented by Typ. Empty if there are none,
44 -- including the cases where there can't be any because e.g. the type is
45 -- not tagged.
47 function Acquire_Warning_Match_String (Str_Lit : Node_Id) return String;
48 -- Used by pragma Warnings (Off, string), and Warn_As_Error (string) to get
49 -- the given string argument, adding leading and trailing asterisks if they
50 -- are not already present. Str_Lit is the static value of the pragma
51 -- argument.
53 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
54 -- Add A to the list of access types to process when expanding the
55 -- freeze node of E.
57 procedure Add_Global_Declaration (N : Node_Id);
58 -- These procedures adds a declaration N at the library level, to be
59 -- elaborated before any other code in the unit. It is used for example
60 -- for the entity that marks whether a unit has been elaborated. The
61 -- declaration is added to the Declarations list of the Aux_Decls_Node
62 -- for the current unit. The declarations are added in the current scope,
63 -- so the caller should push a new scope as required before the call.
65 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
66 -- Returns the name of E adding Suffix
68 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
69 -- Given two types, returns True if we are in Allow_Integer_Address mode
70 -- and one of the types is (a descendant of) System.Address (and this type
71 -- is private), and the other type is any integer type.
73 function Address_Value (N : Node_Id) return Node_Id;
74 -- Return the underlying value of the expression N of an address clause
76 function Addressable (V : Uint) return Boolean;
77 function Addressable (V : Int) return Boolean;
78 pragma Inline (Addressable);
79 -- Returns True if the value of V is the word size or an addressable factor
80 -- or multiple of the word size (typically 8, 16, 32, 64 or 128).
82 procedure Aggregate_Constraint_Checks
83 (Exp : Node_Id;
84 Check_Typ : Entity_Id);
85 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
86 -- and Check_Typ a constrained record type with discriminants, we generate
87 -- the appropriate discriminant checks. If Exp is an array aggregate then
88 -- emit the appropriate length checks. If Exp is a scalar type, or a string
89 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
90 -- are performed at run time. Also used for expressions in the argument of
91 -- 'Update, which shares some of the features of an aggregate.
93 function Alignment_In_Bits (E : Entity_Id) return Uint;
94 -- If the alignment of the type or object E is currently known to the
95 -- compiler, then this function returns the alignment value in bits.
96 -- Otherwise Uint_0 is returned, indicating that the alignment of the
97 -- entity is not yet known to the compiler.
99 function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
100 -- Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
101 -- Given a constraint or subtree of a constraint on a composite
102 -- subtype/object, returns True if there are no nonstatic constraints,
103 -- which might cause objects to be created with dynamic size.
104 -- Called for subtype declarations (including implicit ones created for
105 -- subtype indications in object declarations, as well as discriminated
106 -- record aggregate cases). For record aggregates, only records containing
107 -- discriminant-dependent arrays matter, because the discriminants must be
108 -- static when governing a variant part. Access discriminants are
109 -- irrelevant. Also called for array aggregates, but only named notation,
110 -- because those are the only dynamic cases.
112 procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id);
113 -- Construct a user-readable expanded name for E, for printing in messages,
114 -- such as run-time errors for unhandled exceptions. Names created for
115 -- internal use are not included. The name is appended to Buf.
117 procedure Append_Inherited_Subprogram (S : Entity_Id);
118 -- If the parent of the operation is declared in the visible part of
119 -- the current scope, the inherited operation is visible even though the
120 -- derived type that inherits the operation may be completed in the private
121 -- part of the current package.
123 procedure Apply_Compile_Time_Constraint_Error
124 (N : Node_Id;
125 Msg : String;
126 Reason : RT_Exception_Code;
127 Ent : Entity_Id := Empty;
128 Typ : Entity_Id := Empty;
129 Loc : Source_Ptr := No_Location;
130 Warn : Boolean := False;
131 Emit_Message : Boolean := True);
132 -- N is a subexpression that will raise Constraint_Error when evaluated
133 -- at run time. Msg is a message that explains the reason for raising the
134 -- exception. The last character is ? if the message is always a warning,
135 -- even in Ada 95, and is not a ? if the message represents an illegality
136 -- (because of violation of static expression rules) in Ada 95 (but not
137 -- in Ada 83). Typically this routine posts all messages at the Sloc of
138 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
139 -- the message. After posting the appropriate message, this routine
140 -- replaces the expression with an appropriate N_Raise_Constraint_Error
141 -- node using the given Reason code. This node is then marked as being
142 -- static if the original node is static, but sets the flag
143 -- Raises_Constraint_Error, preventing further evaluation. The error
144 -- message may contain a } or & insertion character. This normally
145 -- references Etype (N), unless the Ent argument is given explicitly, in
146 -- which case it is used instead. The type of the raise node that is built
147 -- is normally Etype (N), but if the Typ parameter is present, this is used
148 -- instead. Warn is normally False. If it is True then the message is
149 -- treated as a warning even though it does not end with a ? (this is used
150 -- when the caller wants to parameterize whether an error or warning is
151 -- given), or when the message should be treated as a warning even when
152 -- SPARK_Mode is On (which otherwise would force an error).
153 -- If Emit_Message is False, then do not emit any message.
155 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
156 -- Id should be the entity of a state abstraction, an object, or a type.
157 -- Returns True iff Id is subject to external property Async_Readers.
159 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
160 -- Id should be the entity of a state abstraction, an object, or a type.
161 -- Returns True iff Id is subject to external property Async_Writers.
163 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
164 -- If at the point of declaration an array type has a private or limited
165 -- component, several array operations are not available on the type, and
166 -- the array type is flagged accordingly. If in the immediate scope of
167 -- the array type the component becomes non-private or non-limited, these
168 -- operations become available. This can happen if the scopes of both types
169 -- are open, and the scope of the array is not outside the scope of the
170 -- component.
172 procedure Bad_Aspect
173 (N : Node_Id;
174 Nam : Name_Id;
175 Warn : Boolean := False);
176 -- Called when node N is expected to contain a valid aspect name, and
177 -- Nam is found instead. If Warn is set True this is a warning, else this
178 -- is an error.
180 procedure Bad_Attribute
181 (N : Node_Id;
182 Nam : Name_Id;
183 Warn : Boolean := False);
184 -- Called when node N is expected to contain a valid attribute name, and
185 -- Nam is found instead. If Warn is set True this is a warning, else this
186 -- is an error.
188 procedure Bad_Predicated_Subtype_Use
189 (Msg : String;
190 N : Node_Id;
191 Typ : Entity_Id;
192 Suggest_Static : Boolean := False);
193 -- This is called when Typ, a predicated subtype, is used in a context
194 -- which does not allow the use of a predicated subtype. Msg is passed to
195 -- Error_Msg_FE to output an appropriate message using N as the location,
196 -- and Typ as the entity. The caller must set up any insertions other than
197 -- the & for the type itself. Note that if Typ is a generic actual type,
198 -- then the message will be output as a warning, and a raise Program_Error
199 -- is inserted using Insert_Action with node N as the insertion point. Node
200 -- N also supplies the source location for construction of the raise node.
201 -- If Typ does not have any predicates, the call has no effect. Set flag
202 -- Suggest_Static when the context warrants an advice on how to avoid the
203 -- use error.
205 function Bad_Unordered_Enumeration_Reference
206 (N : Node_Id;
207 T : Entity_Id) return Boolean;
208 -- Node N contains a potentially dubious reference to type T, either an
209 -- explicit comparison, or an explicit range. This function returns True
210 -- if the type T is an enumeration type for which No pragma Order has been
211 -- given, and the reference N is not in the same extended source unit as
212 -- the declaration of T.
214 function Begin_Keyword_Location (N : Node_Id) return Source_Ptr;
215 -- Given block statement, entry body, package body, subprogram body, or
216 -- task body N, return the closest source location to the "begin" keyword.
218 function Build_Actual_Subtype
219 (T : Entity_Id;
220 N : Node_Or_Entity_Id) return Node_Id;
221 -- Build an anonymous subtype for an entity or expression, using the
222 -- bounds of the entity or the discriminants of the enclosing record.
223 -- T is the type for which the actual subtype is required, and N is either
224 -- a defining identifier, or any subexpression.
226 function Build_Actual_Subtype_Of_Component
227 (T : Entity_Id;
228 N : Node_Id) return Node_Id;
229 -- Determine whether a selected component has a type that depends on
230 -- discriminants, and build actual subtype for it if so.
232 -- Handling of inherited primitives whose ancestors have class-wide
233 -- pre/postconditions.
235 -- If a primitive operation of a parent type has a class-wide pre/post-
236 -- condition that includes calls to other primitives, and that operation
237 -- is inherited by a descendant type that also overrides some of these
238 -- other primitives, the condition that applies to the inherited
239 -- operation has a modified condition in which the overridden primitives
240 -- have been replaced by the primitives of the descendent type. A call
241 -- to the inherited operation cannot be simply a call to the parent
242 -- operation (with an appropriate conversion) as is the case for other
243 -- inherited operations, but must appear with a wrapper subprogram to which
244 -- the modified conditions apply. Furthermore the call to the parent
245 -- operation must not be subject to the original class-wide condition,
246 -- given that modified conditions apply. To implement these semantics
247 -- economically we create a subprogram body (a "class-wide clone") to
248 -- which no pre/postconditions apply, and we create bodies for the
249 -- original and the inherited operation that have their respective
250 -- pre/postconditions and simply call the clone. The following operations
251 -- take care of constructing declaration and body of the clone, and
252 -- building the calls to it within the appropriate wrappers.
254 procedure Build_Constrained_Itype
255 (N : Node_Id;
256 Typ : Entity_Id;
257 New_Assoc_List : List_Id);
258 -- Build a constrained itype for the newly created record aggregate N and
259 -- set it as a type of N. The itype will have Typ as its base type and
260 -- will be constrained by the values of discriminants from the component
261 -- association list New_Assoc_List.
263 -- ??? This code used to be pretty much a copy of Build_Subtype, but now
264 -- those two routines behave differently for types with unknown
265 -- discriminants. They are both exported in from this package in the hope
266 -- to eventually unify them (a not duplicate them even more until then).
268 -- ??? Performance WARNING. The current implementation creates a new itype
269 -- for all aggregates whose base type is discriminated. This means that
270 -- for record aggregates nested inside an array aggregate we will create
271 -- a new itype for each record aggregate if the array component type has
272 -- discriminants. For large aggregates this may be a problem. What should
273 -- be done in this case is to reuse itypes as much as possible.
275 function Build_Default_Subtype
276 (T : Entity_Id;
277 N : Node_Id) return Entity_Id;
278 -- If T is an unconstrained type with defaulted discriminants, build a
279 -- subtype constrained by the default values, insert the subtype
280 -- declaration in the tree before N, and return the entity of that
281 -- subtype. Otherwise, simply return T.
283 function Build_Default_Subtype_OK (T : Entity_Id) return Boolean;
284 -- When analyzing object declarations, it is possible, in some cases, to
285 -- build subtypes for discriminated types. This is worthwhile to avoid the
286 -- backend allocating the maximum possible size for objects of the type.
287 -- In particular, when T is limited, the discriminants and therefore the
288 -- size of an object of type T cannot change. Furthermore, if T is definite
289 -- with initialized defaulted discriminants, we are able and want to build
290 -- a constrained subtype of the right size.
292 function Build_Discriminal_Subtype_Of_Component
293 (T : Entity_Id) return Node_Id;
294 -- Determine whether a record component has a type that depends on
295 -- discriminants, and build actual subtype for it if so.
297 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
298 -- Given a compilation unit node N, allocate an elaboration counter for
299 -- the compilation unit, and install it in the Elaboration_Entity field
300 -- of Spec_Id, the entity for the compilation unit.
302 procedure Build_Explicit_Dereference
303 (Expr : Node_Id;
304 Disc : Entity_Id);
305 -- AI05-139: Names with implicit dereference. If the expression N is a
306 -- reference type and the context imposes the corresponding designated
307 -- type, convert N into N.Disc.all. Such expressions are always over-
308 -- loaded with both interpretations, and the dereference interpretation
309 -- carries the name of the reference discriminant.
311 function Build_Overriding_Spec
312 (Op : Entity_Id;
313 Typ : Entity_Id) return Node_Id;
314 -- Build a subprogram specification for the wrapper of an inherited
315 -- operation with a modified pre- or postcondition (See AI12-0113).
316 -- Op is the parent operation, and Typ is the descendant type that
317 -- inherits the operation.
319 function Build_Subtype
320 (Related_Node : Node_Id;
321 Loc : Source_Ptr;
322 Typ : Entity_Id;
323 Constraints : List_Id)
324 return Entity_Id;
325 -- Typ is an array or discriminated type, Constraints is a list of
326 -- constraints that apply to Typ. This routine builds the constrained
327 -- subtype using Loc as the source location and attached this subtype
328 -- declaration to Related_Node. The returned subtype inherits predicates
329 -- from Typ.
331 -- ??? The routine is mostly a duplicate of Build_Constrained_Itype, so be
332 -- careful which of the two better suits your needs (and certainly do not
333 -- duplicate their code).
335 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
336 -- Returns True if the expression cannot possibly raise Constraint_Error.
337 -- The response is conservative in the sense that a result of False does
338 -- not necessarily mean that CE could be raised, but a response of True
339 -- means that for sure CE cannot be raised.
341 procedure Check_Ambiguous_Aggregate (Call : Node_Id);
342 -- Additional information on an ambiguous call in Ada_2022 when a
343 -- subprogram call has an actual that is an aggregate, and the
344 -- presence of container aggregates (or types with the corresponding
345 -- aspect) provides an additional interpretation. Message indicates
346 -- that an aggregate actual should carry a type qualification.
348 procedure Check_Dynamically_Tagged_Expression
349 (Expr : Node_Id;
350 Typ : Entity_Id;
351 Related_Nod : Node_Id);
352 -- Check wrong use of dynamically tagged expression
354 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
355 -- Verify that the full declaration of type T has been seen. If not, place
356 -- error message on node N. Used in object declarations, type conversions
357 -- and qualified expressions.
359 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
360 -- A subprogram that has an Address parameter and is declared in a Pure
361 -- package is not considered Pure, because the parameter may be used as a
362 -- pointer and the referenced data may change even if the address value
363 -- itself does not.
364 -- If the programmer gave an explicit Pure_Function pragma, then we respect
365 -- the pragma and leave the subprogram Pure.
367 procedure Check_Function_Writable_Actuals (N : Node_Id);
368 -- (Ada 2012): If the construct N has two or more direct constituents that
369 -- are names or expressions whose evaluation may occur in an arbitrary
370 -- order, at least one of which contains a function call with an in out or
371 -- out parameter, then the construct is legal only if: for each name that
372 -- is passed as a parameter of mode in out or out to some inner function
373 -- call C2 (not including the construct N itself), there is no other name
374 -- anywhere within a direct constituent of the construct C other than
375 -- the one containing C2, that is known to refer to the same object (RM
376 -- 6.4.1(6.18-6.19)).
378 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
379 -- AI05-139-2: Accessors and iterators for containers. This procedure
380 -- checks whether T is a reference type, and if so it adds an interprettion
381 -- to N whose type is the designated type of the reference_discriminant.
382 -- If N is a generalized indexing operation, the interpretation is added
383 -- both to the corresponding function call, and to the indexing node.
385 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
386 -- Within a protected function, the current object is a constant, and
387 -- internal calls to a procedure or entry are illegal. Similarly, other
388 -- uses of a protected procedure in a renaming or a generic instantiation
389 -- in the context of a protected function are illegal (AI05-0225).
391 procedure Check_Later_Vs_Basic_Declarations
392 (Decls : List_Id;
393 During_Parsing : Boolean);
394 -- If During_Parsing is True, check for misplacement of later vs basic
395 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
396 -- restriction is set, do the same: although SPARK 95 removes the
397 -- distinction between initial and later declarative items, the distinction
398 -- remains in the Examiner (JB01-005). Note that the Examiner does not
399 -- count package declarations in later declarative items.
401 procedure Check_No_Hidden_State (Id : Entity_Id);
402 -- Determine whether object or state Id introduces a hidden state. If this
403 -- is the case, emit an error.
405 procedure Check_Inherited_Nonoverridable_Aspects
406 (Inheritor : Entity_Id;
407 Interface_List : List_Id;
408 Parent_Type : Entity_Id);
409 -- Verify consistency of inherited nonoverridable aspects
410 -- when aspects are inherited from more than one source.
411 -- Parent_Type may be void (e.g., for a tagged task/protected type
412 -- whose declaration includes a non-empty interface list).
413 -- In the error case, error message is associate with Inheritor;
414 -- Inheritor parameter is otherwise unused.
416 function Check_Parents (N : Node_Id; List : Elist_Id) return Boolean;
417 -- Return True if all the occurrences of subtree N referencing entities in
418 -- the given List have the right value in their Parent field.
420 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
421 -- Verify the legality of reference Ref to variable Var_Id when the
422 -- variable is a constituent of a single protected/task type.
424 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
425 -- N is one of the statement forms that is a potentially blocking
426 -- operation. If it appears within a protected action, emit warning.
428 procedure Check_Previous_Null_Procedure
429 (Decl : Node_Id;
430 Prev : Entity_Id);
431 -- A null procedure or a subprogram renaming can complete a previous
432 -- declaration, unless that previous declaration is itself a null
433 -- procedure. This must be treated specially because the analysis of
434 -- the null procedure leaves the corresponding entity as having no
435 -- completion, because its completion is provided by a generated body
436 -- inserted after all other declarations.
438 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
439 -- Determine whether the contract of subprogram Subp_Id mentions attribute
440 -- 'Result and it contains an expression that evaluates differently in pre-
441 -- and post-state.
443 procedure Check_State_Refinements
444 (Context : Node_Id;
445 Is_Main_Unit : Boolean := False);
446 -- Verify that all abstract states declared in a block statement, entry
447 -- body, package body, protected body, subprogram body, task body, or a
448 -- package declaration denoted by Context have proper refinement. Emit an
449 -- error if this is not the case. Flag Is_Main_Unit should be set when
450 -- Context denotes the main compilation unit.
452 procedure Check_Unused_Body_States (Body_Id : Entity_Id);
453 -- Verify that all abstract states and objects declared in the state space
454 -- of package body Body_Id are used as constituents. Emit an error if this
455 -- is not the case.
457 procedure Check_Unprotected_Access
458 (Context : Node_Id;
459 Expr : Node_Id);
460 -- Check whether the expression is a pointer to a protected component,
461 -- and the context is external to the protected operation, to warn against
462 -- a possible unlocked access to data.
464 function Choice_List (N : Node_Id) return List_Id;
465 -- Utility to retrieve the choices of a Component_Association or the
466 -- Discrete_Choices of an Iterated_Component_Association. For various
467 -- reasons these nodes have a different structure even though they play
468 -- similar roles in array aggregates.
470 type Condition_Kind is
471 (Ignored_Class_Precondition,
472 Ignored_Class_Postcondition,
473 Class_Precondition,
474 Class_Postcondition);
475 -- Kind of class-wide conditions
477 function Class_Condition
478 (Kind : Condition_Kind;
479 Subp : Entity_Id) return Node_Id;
480 -- Class-wide Kind condition of Subp
482 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
483 -- Gather the entities of all abstract states and objects declared in the
484 -- body state space of package body Body_Id.
486 procedure Collect_Interfaces
487 (T : Entity_Id;
488 Ifaces_List : out Elist_Id;
489 Exclude_Parents : Boolean := False;
490 Use_Full_View : Boolean := True);
491 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
492 -- directly or indirectly implemented by T. Exclude_Parents is used to
493 -- avoid the addition of inherited interfaces to the generated list.
494 -- Use_Full_View is used to collect the interfaces using the full-view
495 -- (if available).
497 procedure Collect_Interface_Components
498 (Tagged_Type : Entity_Id;
499 Components_List : out Elist_Id);
500 -- Ada 2005 (AI-251): Collect all the tag components associated with the
501 -- secondary dispatch tables of a tagged type.
503 procedure Collect_Interfaces_Info
504 (T : Entity_Id;
505 Ifaces_List : out Elist_Id;
506 Components_List : out Elist_Id;
507 Tags_List : out Elist_Id);
508 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
509 -- the record component and tag associated with each of these interfaces.
510 -- On exit Ifaces_List, Components_List and Tags_List have the same number
511 -- of elements, and elements at the same position on these tables provide
512 -- information on the same interface type.
514 procedure Collect_Parents
515 (T : Entity_Id;
516 List : out Elist_Id;
517 Use_Full_View : Boolean := True);
518 -- Collect all the parents of Typ. Use_Full_View is used to collect them
519 -- using the full-view of private parents (if available).
521 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
522 -- Called upon type derivation and extension. We scan the declarative part
523 -- in which the type appears, and collect subprograms that have one
524 -- subsidiary subtype of the type. These subprograms can only appear after
525 -- the type itself.
527 function Compile_Time_Constraint_Error
528 (N : Node_Id;
529 Msg : String;
530 Ent : Entity_Id := Empty;
531 Loc : Source_Ptr := No_Location;
532 Warn : Boolean := False;
533 Extra_Msg : String := "") return Node_Id;
534 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
535 -- generates a warning (or error) message in the same manner, but it does
536 -- not replace any nodes. For convenience, the function always returns its
537 -- first argument. The message is a warning if the message ends with ?, or
538 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
539 -- If Extra_Msg is not a null string, then it's associated with N and
540 -- emitted immediately after the main message (and before output of any
541 -- message indicating that Constraint_Error will be raised).
543 procedure Compute_Returns_By_Ref (Func : Entity_Id);
544 -- Set the Returns_By_Ref flag on Func if appropriate
546 generic
547 with function Predicate (Typ : Entity_Id) return Boolean;
548 function Collect_Types_In_Hierarchy
549 (Typ : Entity_Id;
550 Examine_Components : Boolean := False) return Elist_Id;
551 -- Inspect the ancestor and progenitor types of Typ and Typ itself -
552 -- collecting those for which function Predicate is True. The resulting
553 -- list is ordered in a type-to-ultimate-ancestor fashion.
555 -- When Examine_Components is True, components types in the hierarchy also
556 -- get collected.
558 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
559 -- Sets the Has_Delayed_Freeze flag of New_Ent if the Delayed_Freeze flag
560 -- of Old_Ent is set and Old_Ent has not yet been Frozen (i.e. Is_Frozen is
561 -- False).
563 function Copy_Component_List
564 (R_Typ : Entity_Id;
565 Loc : Source_Ptr) return List_Id;
566 -- Copy components from record type R_Typ that come from source. Used to
567 -- create a new compatible record type. Loc is the source location assigned
568 -- to the created nodes.
570 procedure Copy_Ghost_Aspect (From : Node_Id; To : Node_Id);
571 -- Copy the Ghost aspect if present in the aspect specifications of node
572 -- From to node To. On entry it is assumed that To does not have aspect
573 -- specifications. If From has no aspects, the routine has no effect.
575 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
576 -- Utility to create a parameter profile for a new subprogram spec, when
577 -- the subprogram has a body that acts as spec. This is done for some cases
578 -- of inlining, and for private protected ops. Also used to create bodies
579 -- for stubbed subprograms.
581 procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id);
582 -- Copy the SPARK_Mode aspect if present in the aspect specifications
583 -- of node From to node To. On entry it is assumed that To does not have
584 -- aspect specifications. If From has no aspects, the routine has no
585 -- effect.
587 function Copy_Subprogram_Spec
588 (Spec : Node_Id;
589 New_Sloc : Source_Ptr := No_Location) return Node_Id;
590 -- Replicate a function or a procedure specification denoted by Spec. The
591 -- resulting tree is an exact duplicate of the original tree. New entities
592 -- are created for the unit name and the formal parameters. For definition
593 -- of New_Sloc, see the comment for New_Copy_Tree.
595 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
596 -- If a type is a generic actual type, return the corresponding formal in
597 -- the generic parent unit. There is no direct link in the tree for this
598 -- attribute, except in the case of formal private and derived types.
599 -- Possible optimization???
601 function Corresponding_Primitive_Op
602 (Ancestor_Op : Entity_Id;
603 Descendant_Type : Entity_Id) return Entity_Id;
604 -- Given a primitive subprogram of a first type and a (distinct)
605 -- descendant type of that type, find the corresponding primitive
606 -- subprogram of the descendant type.
608 function Current_Entity (N : Node_Id) return Entity_Id;
609 pragma Inline (Current_Entity);
610 -- Find the currently visible definition for a given identifier, that is to
611 -- say the first entry in the visibility chain for the Chars of N.
613 function Current_Entity_In_Scope (N : Name_Id) return Entity_Id;
614 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
615 -- Find whether there is a previous definition for name or identifier N in
616 -- the current scope. Because declarations for a scope are not necessarily
617 -- contiguous (e.g. for packages) the first entry on the visibility chain
618 -- for N is not necessarily in the current scope.
620 function Current_Scope return Entity_Id;
621 -- Get entity representing current scope
623 function Current_Scope_No_Loops return Entity_Id;
624 -- Return the current scope ignoring internally generated loops
626 procedure Add_Block_Identifier
627 (N : Node_Id;
628 Id : out Entity_Id;
629 Scope : Entity_Id := Current_Scope);
630 -- Given a block statement N, generate an internal E_Block label and make
631 -- it the identifier of the block. Scope denotes the scope in which the
632 -- generated entity Id is created and defaults to the current scope. If the
633 -- block already has an identifier, Id returns the entity of its label.
635 function Current_Subprogram return Entity_Id;
636 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
637 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
638 -- Current_Scope is returned. The returned value is Empty if this is called
639 -- from a library package which is not within any subprogram.
641 function CW_Or_Needs_Finalization (Typ : Entity_Id) return Boolean;
642 -- True if Typ is a class-wide type or requires finalization actions. Same
643 -- as Needs_Finalization except with pragma Restrictions (No_Finalization),
644 -- in which case we know that class-wide objects do not need finalization.
646 function Defining_Entity (N : Node_Id) return Entity_Id;
647 -- Given a declaration N, returns the associated defining entity. If the
648 -- declaration has a specification, the entity is obtained from the
649 -- specification. If the declaration has a defining unit name, then the
650 -- defining entity is obtained from the defining unit name ignoring any
651 -- child unit prefixes.
653 -- Iterator loops also have a defining entity, which holds the list of
654 -- local entities declared during loop expansion. These entities need
655 -- debugging information, generated through Qualify_Entity_Names, and
656 -- the loop declaration must be placed in the table Name_Qualify_Units.
658 -- WARNING: There is a matching C declaration of this subprogram in fe.h
660 function Defining_Entity_Or_Empty (N : Node_Id) return Entity_Id;
661 -- This is equivalent to Defining_Entity but it returns Empty for nodes
662 -- without an entity instead of raising Program_Error.
664 function Denotes_Discriminant
665 (N : Node_Id;
666 Check_Concurrent : Boolean := False) return Boolean;
667 -- Returns True if node N is an Entity_Name node for a discriminant. If the
668 -- flag Check_Concurrent is true, function also returns true when N denotes
669 -- the discriminal of the discriminant of a concurrent type. This is needed
670 -- to disable some optimizations on private components of protected types,
671 -- and constraint checks on entry families constrained by discriminants.
673 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
674 -- Detect suspicious overlapping between actuals in a call, when both are
675 -- writable (RM 2012 6.4.1(6.4/3)).
677 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
678 -- Functions to detect suspicious overlapping between actuals in a call,
679 -- when one of them is writable. The predicates are those proposed in
680 -- AI05-0144, to detect dangerous order dependence in complex calls.
681 -- I would add a parameter Warn which enables more extensive testing of
682 -- cases as we find appropriate when we are only warning ??? Or perhaps
683 -- return an indication of (Error, Warn, OK) ???
685 function Denotes_Variable (N : Node_Id) return Boolean;
686 -- Returns True if node N denotes a single variable without parentheses
688 function Depends_On_Discriminant (N : Node_Id) return Boolean;
689 -- Returns True if N denotes a discriminant or if N is a range, a subtype
690 -- indication or a scalar subtype where one of the bounds is a
691 -- discriminant.
693 function Derivation_Too_Early_To_Inherit
694 (Typ : Entity_Id; Streaming_Op : TSS_Name_Type) return Boolean;
695 -- Returns True if Typ is a derived type, the given Streaming_Op
696 -- (one of Read, Write, Input, or Output) is explicitly specified
697 -- for Typ's parent type, and that attribute specification is *not*
698 -- inherited by Typ because the declaration of Typ precedes that
699 -- of the attribute specification.
701 function Designate_Same_Unit
702 (Name1 : Node_Id;
703 Name2 : Node_Id) return Boolean;
704 -- Returns True if Name1 and Name2 designate the same unit name; each of
705 -- these names is supposed to be a selected component name, an expanded
706 -- name, a defining program unit name or an identifier.
708 procedure Diagnose_Iterated_Component_Association (N : Node_Id);
709 -- Emit an error if iterated component association N is actually an illegal
710 -- quantified expression lacking a quantifier.
712 function Discriminated_Size (Comp : Entity_Id) return Boolean;
713 -- If a component size is not static then a warning will be emitted
714 -- in Ravenscar or other restricted contexts. When a component is non-
715 -- static because of a discriminant constraint we can specialize the
716 -- warning by mentioning discriminants explicitly. This was created for
717 -- private components of protected objects, but is generally useful when
718 -- restriction No_Implicit_Heap_Allocation is active.
720 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
721 -- Id should be the entity of a state abstraction, an object, or a type.
722 -- Returns True iff Id is subject to external property Effective_Reads.
724 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
725 -- Id should be the entity of a state abstraction, an object, or a type.
726 -- Returns True iff Id is subject to external property Effective_Writes.
728 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
729 -- Returns the enclosing N_Compilation_Unit node that is the root of a
730 -- subtree containing N.
732 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
733 -- Returns the closest ancestor of Typ that is a CPP type.
735 function Enclosing_Declaration (N : Node_Id) return Node_Id;
736 -- Returns the declaration node enclosing N (including possibly N itself),
737 -- if any, or Empty otherwise.
739 function Enclosing_Declaration_Or_Statement (N : Node_Id) return Node_Id;
740 -- Return the nearest enclosing declaration or statement that houses
741 -- arbitrary node N.
743 function Enclosing_Generic_Body (N : Node_Id) return Node_Id;
744 -- Returns the Node_Id associated with the innermost enclosing generic
745 -- body, if any. If none, then returns Empty.
747 function Enclosing_Generic_Unit (N : Node_Id) return Node_Id;
748 -- Returns the Node_Id associated with the innermost enclosing generic
749 -- unit, if any. If none, then returns Empty.
751 function Enclosing_HSS (Stmt : Node_Id) return Node_Id;
752 -- Returns the nearest handled sequence of statements that encloses a given
753 -- statement, or Empty.
755 function Enclosing_Lib_Unit_Entity
756 (E : Entity_Id := Current_Scope) return Entity_Id;
757 -- Returns the entity of enclosing library unit node which is the root of
758 -- the current scope (which must not be Standard_Standard, and the caller
759 -- is responsible for ensuring this condition) or other specified entity.
761 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
762 -- Returns the N_Compilation_Unit node of the library unit that is directly
763 -- or indirectly (through a subunit) at the root of a subtree containing
764 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if
765 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
766 -- library unit. If no such item is found, returns Empty.
768 function Enclosing_Package (N : Node_Or_Entity_Id) return Entity_Id;
769 -- Utility function to return the Ada entity of the package enclosing
770 -- the entity or node N, if any. Returns Empty if no enclosing package.
772 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
773 -- Returns the entity of the package or subprogram enclosing E, if any.
774 -- Returns Empty if no enclosing package or subprogram.
776 function Enclosing_Subprogram (N : Node_Or_Entity_Id) return Entity_Id;
777 -- Utility function to return the Ada entity of the subprogram enclosing
778 -- N, if any. Returns Empty if no enclosing subprogram.
780 function End_Keyword_Location (N : Node_Id) return Source_Ptr;
781 -- Given block statement, entry body, package body, package declaration,
782 -- protected body, [single] protected type declaration, subprogram body,
783 -- task body, or [single] task type declaration N, return the closest
784 -- source location of the "end" keyword.
786 procedure Ensure_Freeze_Node (E : Entity_Id);
787 -- Make sure a freeze node is allocated for entity E. If necessary, build
788 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
790 procedure Enter_Name (Def_Id : Entity_Id);
791 -- Insert new name in symbol table of current scope with check for
792 -- duplications (error message is issued if a conflict is found).
793 -- Note: Enter_Name is not used for most overloadable entities, instead
794 -- they are entered using Sem_Ch6.Enter_Overloaded_Entity. However,
795 -- this is used for SOME overloadable entities, such as enumeration
796 -- literals and certain operator symbols.
798 function Entity_Of (N : Node_Id) return Entity_Id;
799 -- Obtain the entity of arbitrary node N. If N is a renaming, return the
800 -- entity of the earliest renamed source abstract state or whole object.
801 -- If no suitable entity is available, return Empty. This routine carries
802 -- out actions that are tied to SPARK semantics.
804 function Exceptions_OK return Boolean;
805 -- Determine whether exceptions are allowed to be caught, propagated, or
806 -- raised.
808 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
809 -- This procedure is called after issuing a message complaining about an
810 -- inappropriate use of limited type T. If useful, it adds additional
811 -- continuation lines to the message explaining why type T is limited.
812 -- Messages are placed at node N.
814 function Expression_Of_Expression_Function
815 (Subp : Entity_Id) return Node_Id;
816 -- Return the expression of expression function Subp
818 type Extensions_Visible_Mode is
819 (Extensions_Visible_None,
820 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
821 -- value acts as a default in a non-SPARK compilation.
823 Extensions_Visible_False,
824 -- A value of "False" signifies that Extensions_Visible is either
825 -- missing or the pragma is present and the value of its Boolean
826 -- expression is False.
828 Extensions_Visible_True);
829 -- A value of "True" signifies that Extensions_Visible is present and
830 -- the value of its Boolean expression is True.
832 function Extensions_Visible_Status
833 (Id : Entity_Id) return Extensions_Visible_Mode;
834 -- Given the entity of a subprogram or formal parameter subject to pragma
835 -- Extensions_Visible, return the Boolean value denoted by the expression
836 -- of the pragma.
838 procedure Find_Actual
839 (N : Node_Id;
840 Formal : out Entity_Id;
841 Call : out Node_Id);
842 -- Determines if the node N is an actual parameter of a function or a
843 -- procedure call. If so, then Formal points to the entity for the formal
844 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
845 -- Call is set to the node for the corresponding call. If the node N is not
846 -- an actual parameter then Formal and Call are set to Empty.
848 function Find_Body_Discriminal
849 (Spec_Discriminant : Entity_Id) return Entity_Id;
850 -- Given a discriminant of the record type that implements a task or
851 -- protected type, return the discriminal of the corresponding discriminant
852 -- of the actual concurrent type.
854 function Find_Corresponding_Discriminant
855 (Id : Node_Id;
856 Typ : Entity_Id) return Entity_Id;
857 -- Because discriminants may have different names in a generic unit and in
858 -- an instance, they are resolved positionally when possible. A reference
859 -- to a discriminant carries the discriminant that it denotes when it is
860 -- analyzed. Subsequent uses of this id on a different type denotes the
861 -- discriminant at the same position in this new type.
863 function Find_DIC_Type (Typ : Entity_Id) return Entity_Id;
864 -- Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which
865 -- defines the Default_Initial_Condition pragma of type Typ. This is either
866 -- Typ itself or a parent type when the pragma is inherited.
868 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
869 -- Find the nearest iterator loop which encloses arbitrary entity Id. If
870 -- such a loop exists, return the entity of its identifier (E_Loop scope),
871 -- otherwise return Empty.
873 function Find_Enclosing_Scope (N : Node_Id) return Scope_Kind_Id with
874 Post => Find_Enclosing_Scope'Result /= N;
875 -- Find the nearest scope which encloses arbitrary node N
877 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
878 -- Find the nested loop statement in a conditional block. Loops subject to
879 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
880 -- loop are nested within the block.
882 procedure Find_Overlaid_Entity
883 (N : Node_Id;
884 Ent : out Entity_Id;
885 Off : out Boolean);
886 -- The node N should be an address representation clause. Determines if the
887 -- target expression is the address of an entity with an optional offset.
888 -- If so, set Ent to the entity and, if there is an offset, set Off to
889 -- True, otherwise to False. If it is not possible to determine that the
890 -- address is of this form, then set Ent to Empty.
892 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
893 -- Return the type of formal parameter Param as determined by its
894 -- specification.
896 -- The following type describes the placement of an arbitrary entity with
897 -- respect to SPARK visible / hidden state space.
899 type State_Space_Kind is
900 (Not_In_Package,
901 -- An entity is not in the visible, private or body state space when
902 -- the immediate enclosing construct is not a package.
904 Visible_State_Space,
905 -- An entity is in the visible state space when it appears immediately
906 -- within the visible declarations of a package or when it appears in
907 -- the visible state space of a nested package which in turn is declared
908 -- in the visible declarations of an enclosing package:
910 -- package Pack is
911 -- Visible_Variable : ...
912 -- package Nested
913 -- with Abstract_State => Visible_State
914 -- is
915 -- Visible_Nested_Variable : ...
916 -- end Nested;
917 -- end Pack;
919 -- Entities associated with a package instantiation inherit the state
920 -- space from the instance placement:
922 -- generic
923 -- package Gen is
924 -- Generic_Variable : ...
925 -- end Gen;
927 -- with Gen;
928 -- package Pack is
929 -- package Inst is new Gen;
930 -- -- Generic_Variable is in the visible state space of Pack
931 -- end Pack;
933 Private_State_Space,
934 -- An entity is in the private state space when it appears immediately
935 -- within the private declarations of a package or when it appears in
936 -- the visible state space of a nested package which in turn is declared
937 -- in the private declarations of an enclosing package:
939 -- package Pack is
940 -- private
941 -- Private_Variable : ...
942 -- package Nested
943 -- with Abstract_State => Private_State
944 -- is
945 -- Private_Nested_Variable : ...
946 -- end Nested;
947 -- end Pack;
949 -- The same placement principle applies to package instantiations
951 Body_State_Space);
952 -- An entity is in the body state space when it appears immediately
953 -- within the declarations of a package body or when it appears in the
954 -- visible state space of a nested package which in turn is declared in
955 -- the declarations of an enclosing package body:
957 -- package body Pack is
958 -- Body_Variable : ...
959 -- package Nested
960 -- with Abstract_State => Body_State
961 -- is
962 -- Body_Nested_Variable : ...
963 -- end Nested;
964 -- end Pack;
966 -- The same placement principle applies to package instantiations
968 procedure Find_Placement_In_State_Space
969 (Item_Id : Entity_Id;
970 Placement : out State_Space_Kind;
971 Pack_Id : out Entity_Id);
972 -- Determine the state space placement of an item. Item_Id denotes the
973 -- entity of an abstract state, object, or package instantiation. Placement
974 -- captures the precise placement of the item in the enclosing state space.
975 -- If the state space is that of a package, Pack_Id denotes its entity,
976 -- otherwise Pack_Id is Empty.
978 function Find_Primitive_Eq (Typ : Entity_Id) return Entity_Id;
979 -- Locate primitive equality for type if it exists. Return Empty if it is
980 -- not available.
982 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
983 -- Find specific type of a class-wide type, and handle the case of an
984 -- incomplete type coming either from a limited_with clause or from an
985 -- incomplete type declaration. If resulting type is private return its
986 -- full view.
988 function Find_Static_Alternative (N : Node_Id) return Node_Id;
989 -- N is a case statement whose expression is a compile-time value.
990 -- Determine the alternative chosen, so that the code of non-selected
991 -- alternatives, and the warnings that may apply to them, are removed.
993 function First_Actual (Node : Node_Id) return Node_Id;
994 -- Node is an N_Function_Call, N_Procedure_Call_Statement or
995 -- N_Entry_Call_Statement node. The result returned is the first actual
996 -- parameter in declaration order (not the order of parameters as they
997 -- appeared in the source, which can be quite different as a result of the
998 -- use of named parameters). Empty is returned for a call with no
999 -- parameters. The procedure for iterating through the actuals in
1000 -- declaration order is to use this function to find the first actual, and
1001 -- then use Next_Actual to obtain the next actual in declaration order.
1002 -- Note that the value returned is always the expression (not the
1003 -- N_Parameter_Association nodes, even if named association is used).
1005 -- WARNING: There is a matching C declaration of this subprogram in fe.h
1007 function First_Global
1008 (Subp : Entity_Id;
1009 Global_Mode : Name_Id;
1010 Refined : Boolean := False) return Node_Id;
1011 -- Returns the first global item of mode Global_Mode (which can be
1012 -- Name_Input, Name_Output, Name_In_Out or Name_Proof_In) associated to
1013 -- subprogram Subp, or Empty otherwise. If Refined is True, the global item
1014 -- is retrieved from the Refined_Global aspect/pragma associated to the
1015 -- body of Subp if present. Next_Global can be used to get the next global
1016 -- item with the same mode.
1018 function Fix_Msg (Id : Entity_Id; Msg : String) return String;
1019 -- Replace all occurrences of a particular word in string Msg depending on
1020 -- the Ekind of Id as follows:
1021 -- * Replace "subprogram" with
1022 -- - "entry" when Id is an entry [family]
1023 -- - "task type" when Id is a single task object, task type or task
1024 -- body.
1025 -- * Replace "protected" with
1026 -- - "task" when Id is a single task object, task type or task body
1027 -- All other non-matching words remain as is
1029 function From_Nested_Package (T : Entity_Id) return Boolean;
1030 -- A type declared in a nested package may be frozen by a declaration
1031 -- appearing after the package but before the package is frozen. If the
1032 -- type has aspects that generate subprograms, these may contain references
1033 -- to entities local to the nested package. In that case the package must
1034 -- be installed on the scope stack to prevent spurious visibility errors.
1036 procedure Gather_Components
1037 (Typ : Entity_Id;
1038 Comp_List : Node_Id;
1039 Governed_By : List_Id;
1040 Into : Elist_Id;
1041 Report_Errors : out Boolean;
1042 Allow_Compile_Time : Boolean := False;
1043 Include_Interface_Tag : Boolean := False);
1044 -- The purpose of this procedure is to gather the valid components in a
1045 -- record type according to the values of its discriminants, in order to
1046 -- validate the components of a record aggregate.
1048 -- Typ is the type of the aggregate when its constrained discriminants
1049 -- need to be collected, otherwise it is Empty.
1051 -- Comp_List is an N_Component_List node.
1053 -- Governed_By is a list of N_Component_Association nodes, where each
1054 -- choice list contains the name of a discriminant and the expression
1055 -- field gives its value. The values of the discriminants governing
1056 -- the (possibly nested) variant parts in Comp_List are found in this
1057 -- Component_Association List.
1059 -- Into is the list where the valid components are appended. Note that
1060 -- Into need not be an Empty list. If it's not, components are attached
1061 -- to its tail.
1063 -- Report_Errors is set to True if the values of the discriminants are
1064 -- insufficiently static (see body for details of what that means).
1066 -- Allow_Compile_Time if set to True, allows compile time known values in
1067 -- Governed_By expressions in addition to static expressions.
1069 -- Include_Interface_Tag if set to True, gather any interface tag
1070 -- component, otherwise exclude them.
1072 -- This procedure is also used when building a record subtype. If the
1073 -- discriminant constraint of the subtype is static, the components of the
1074 -- subtype are only those of the variants selected by the values of the
1075 -- discriminants. Otherwise all components of the parent must be included
1076 -- in the subtype for semantic analysis.
1078 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
1079 -- Given a node for an expression, obtain the actual subtype of the
1080 -- expression. In the case of a parameter where the formal is an
1081 -- unconstrained array or discriminated type, this will be the previously
1082 -- constructed subtype of the actual. Note that this is not quite the
1083 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
1084 -- it is the subtype of the value of the actual. The actual subtype is also
1085 -- returned in other cases where it has already been constructed for an
1086 -- object. Otherwise the expression type is returned unchanged, except for
1087 -- the case of an unconstrained array type, where an actual subtype is
1088 -- created, using Insert_Actions if necessary to insert any associated
1089 -- actions.
1091 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
1092 -- This is like Get_Actual_Subtype, except that it never constructs an
1093 -- actual subtype. If an actual subtype is already available, i.e. the
1094 -- Actual_Subtype field of the corresponding entity is set, then it is
1095 -- returned. Otherwise the Etype of the node is returned.
1097 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
1098 -- Return the body node for a stub
1100 function Get_Cursor_Type
1101 (Aspect : Node_Id;
1102 Typ : Entity_Id) return Entity_Id;
1103 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1104 -- primitive operation First. For use in resolving the other primitive
1105 -- operations of an Iterable type and expanding loops and quantified
1106 -- expressions over formal containers.
1108 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1109 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1110 -- primitive operation First. For use after resolving the primitive
1111 -- operations of an Iterable type.
1113 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
1114 -- This is used to construct the string literal node representing a
1115 -- default external name, i.e. one that is constructed from the name of an
1116 -- entity, or (in the case of extended DEC import/export pragmas) an
1117 -- identifier provided as the external name. Letters in the name are
1118 -- according to the setting of Opt.External_Name_Default_Casing.
1120 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
1121 -- If expression N references a part of an object, return this object.
1122 -- Otherwise return Empty. Expression N should have been resolved already.
1124 function Get_Enclosing_Deep_Object (N : Node_Id) return Entity_Id;
1125 -- If expression N references a reachable part of an object (as defined in
1126 -- SPARK RM 6.9), return this object. Otherwise return Empty. It is similar
1127 -- to Get_Enclosing_Object, but treats pointer dereference like component
1128 -- selection. Expression N should have been resolved already.
1130 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
1131 -- Returns the true generic entity in an instantiation. If the name in the
1132 -- instantiation is a renaming, the function returns the renamed generic.
1134 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
1135 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
1136 -- in a child unit a derived type is within the derivation class of an
1137 -- ancestor declared in a parent unit, even if there is an intermediate
1138 -- derivation that does not see the full view of that ancestor.
1140 procedure Get_Index_Bounds
1141 (N : Node_Id;
1142 L : out Node_Id;
1143 H : out Node_Id;
1144 Use_Full_View : Boolean := False);
1145 -- This procedure assigns to L and H respectively the values of the low and
1146 -- high bounds of node N, which must be a range, subtype indication, or the
1147 -- name of a scalar subtype. The result in L, H may be set to Error if
1148 -- there was an earlier error in the range.
1149 -- Use_Full_View is intended for use by clients other than the compiler
1150 -- (specifically, gnat2scil) to indicate that we want the full view if
1151 -- the index type turns out to be a partial view; this case should not
1152 -- arise during normal compilation of semantically correct programs.
1154 type Range_Nodes is record
1155 First, Last : Node_Id; -- First and Last nodes of a discrete_range
1156 end record;
1158 type Range_Values is record
1159 First, Last : Uint; -- First and Last values of a discrete_range
1160 end record;
1162 function Get_Index_Bounds
1163 (N : Node_Id;
1164 Use_Full_View : Boolean := False) return Range_Nodes;
1165 -- Same as the above procedure, but returns the result as a record.
1166 -- ???This should probably replace the procedure.
1168 function Get_Index_Bounds
1169 (N : Node_Id;
1170 Use_Full_View : Boolean := False) return Range_Values;
1171 -- Same as the above function, but returns the values, which must be known
1172 -- at compile time.
1174 procedure Get_Interfacing_Aspects
1175 (Iface_Asp : Node_Id;
1176 Conv_Asp : out Node_Id;
1177 EN_Asp : out Node_Id;
1178 Expo_Asp : out Node_Id;
1179 Imp_Asp : out Node_Id;
1180 LN_Asp : out Node_Id;
1181 Do_Checks : Boolean := False);
1182 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
1183 -- aspects that apply to the same related entity. The aspects considered by
1184 -- this routine are as follows:
1186 -- Conv_Asp - aspect Convention
1187 -- EN_Asp - aspect External_Name
1188 -- Expo_Asp - aspect Export
1189 -- Imp_Asp - aspect Import
1190 -- LN_Asp - aspect Link_Name
1192 -- When flag Do_Checks is set, this routine will flag duplicate uses of
1193 -- aspects.
1195 function Get_Enum_Lit_From_Pos
1196 (T : Entity_Id;
1197 Pos : Uint;
1198 Loc : Source_Ptr) return Node_Id;
1199 -- This function returns an identifier denoting the E_Enumeration_Literal
1200 -- entity for the specified value from the enumeration type or subtype T.
1201 -- The second argument is the Pos value. Constraint_Error is raised if
1202 -- argument Pos is not in range. The third argument supplies a source
1203 -- location for constructed nodes returned by this function. If No_Location
1204 -- is supplied as source location, the location of the returned node is
1205 -- copied from the original source location for the enumeration literal,
1206 -- when available.
1208 function Get_Iterable_Type_Primitive
1209 (Typ : Entity_Id;
1210 Nam : Name_Id) return Entity_Id;
1211 -- Retrieve one of the primitives First, Last, Next, Previous, Has_Element,
1212 -- Element from the value of the Iterable aspect of a type.
1214 function Get_Library_Unit_Name (Decl_Node : Node_Id) return String_Id;
1215 -- Return the full expanded name of the library unit declared by Decl_Node
1217 function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
1218 -- Return the argument of pragma Max_Queue_Length or zero if the annotation
1219 -- is not present. It is assumed that Id denotes an entry.
1221 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
1222 pragma Inline (Get_Name_Entity_Id);
1223 -- An entity value is associated with each name in the name table. The
1224 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
1225 -- is the innermost visible entity with the given name. See the body of
1226 -- Sem_Ch8 for further details on handling of entity visibility.
1228 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
1229 -- Return the Name component of Test_Case pragma N
1230 -- Bad name now that this no longer applies to Contract_Case ???
1232 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
1233 -- Get defining entity of parent unit of a child unit. In most cases this
1234 -- is the defining entity of the unit, but for a child instance whose
1235 -- parent needs a body for inlining, the instantiation node of the parent
1236 -- has not yet been rewritten as a package declaration, and the entity has
1237 -- to be retrieved from the Instance_Spec of the unit.
1239 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
1240 pragma Inline (Get_Pragma_Id);
1241 -- Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
1243 function Get_Qualified_Name
1244 (Id : Entity_Id;
1245 Suffix : Entity_Id := Empty) return Name_Id;
1246 -- Obtain the fully qualified form of entity Id. The format is:
1247 -- scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
1249 function Get_Qualified_Name
1250 (Nam : Name_Id;
1251 Suffix : Name_Id := No_Name;
1252 Scop : Entity_Id := Current_Scope) return Name_Id;
1253 -- Obtain the fully qualified form of name Nam assuming it appears in scope
1254 -- Scop. The format is:
1255 -- scop-1__scop__nam__suffix
1257 procedure Get_Reason_String (N : Node_Id);
1258 -- Recursive routine to analyze reason argument for pragma Warnings. The
1259 -- value of the reason argument is appended to the current string using
1260 -- Store_String_Chars. The reason argument is expected to be a string
1261 -- literal or concatenation of string literals. An error is given for
1262 -- any other form.
1264 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
1265 -- If Typ has Implicit_Dereference, return discriminant specified in the
1266 -- corresponding aspect.
1268 function Get_Referenced_Object (N : Node_Id) return Node_Id;
1269 -- Given an arbitrary node, return the renamed object if the node
1270 -- represents a renamed object; otherwise return the node unchanged.
1271 -- The node can represent an arbitrary expression or any other kind of
1272 -- node (such as the name of a type).
1274 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
1275 -- Given an entity for an exception, package, subprogram or generic unit,
1276 -- returns the ultimately renamed entity if this is a renaming. If this is
1277 -- not a renamed entity, returns its argument. It is an error to call this
1278 -- with any other kind of entity.
1280 function Get_Return_Object (N : Node_Id) return Entity_Id;
1281 -- Given an extended return statement, return the corresponding return
1282 -- object, identified as the one for which Is_Return_Object = True.
1284 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
1285 -- Nod is either a procedure call statement, or a function call, or an
1286 -- accept statement node. This procedure finds the Entity_Id of the related
1287 -- subprogram or entry and returns it, or if no subprogram can be found,
1288 -- returns Empty.
1290 function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id;
1291 -- Given an entity for a task type or subtype, retrieves the
1292 -- Task_Body_Procedure field from the corresponding task type declaration.
1294 function Get_User_Defined_Equality (E : Entity_Id) return Entity_Id;
1295 -- For a type entity, return the entity of the primitive equality function
1296 -- for the type if it exists, otherwise return Empty.
1298 procedure Get_Views
1299 (Typ : Entity_Id;
1300 Priv_Typ : out Entity_Id;
1301 Full_Typ : out Entity_Id;
1302 UFull_Typ : out Entity_Id;
1303 CRec_Typ : out Entity_Id);
1304 -- Obtain the partial and full views of type Typ and in addition any extra
1305 -- types the full views may have. The return entities are as follows:
1307 -- Priv_Typ - the partial view (a private type)
1308 -- Full_Typ - the full view
1309 -- UFull_Typ - the underlying full view, if the full view is private
1310 -- CRec_Typ - the corresponding record type of the full views
1312 function Get_Fullest_View
1313 (E : Entity_Id;
1314 Include_PAT : Boolean := True;
1315 Recurse : Boolean := True) return Entity_Id;
1316 -- Get the fullest possible view of E, looking through private, limited,
1317 -- packed array and other implementation types. If Include_PAT is False,
1318 -- don't look inside packed array types. If Recurse is False, just
1319 -- go down one level (so it's no longer the "fullest" view).
1321 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1322 -- Result of Has_Compatible_Alignment test, description found below. Note
1323 -- that the values are arranged in increasing order of problematicness.
1325 function Has_Compatible_Alignment
1326 (Obj : Entity_Id;
1327 Expr : Node_Id;
1328 Layout_Done : Boolean) return Alignment_Result;
1329 -- Obj is an object entity, and expr is a node for an object reference. If
1330 -- the alignment of the object referenced by Expr is known to be compatible
1331 -- with the alignment of Obj (i.e. is larger or the same), then the result
1332 -- is Known_Compatible. If the alignment of the object referenced by Expr
1333 -- is known to be less than the alignment of Obj, then Known_Incompatible
1334 -- is returned. If neither condition can be reliably established at compile
1335 -- time, then Unknown is returned. If Layout_Done is True, the function can
1336 -- assume that the information on size and alignment of types and objects
1337 -- is present in the tree. This is used to determine if alignment checks
1338 -- are required for address clauses (Layout_Done is False in this case) as
1339 -- well as to issue appropriate warnings for them in the post compilation
1340 -- phase (Layout_Done is True in this case).
1342 -- Note: Known_Incompatible does not mean that at run time the alignment
1343 -- of Expr is known to be wrong for Obj, just that it can be determined
1344 -- that alignments have been explicitly or implicitly specified which are
1345 -- incompatible (whereas Unknown means that even this is not known). The
1346 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
1347 -- Unknown, but issue a warning that there may be an alignment error.
1349 function Has_Declarations (N : Node_Id) return Boolean;
1350 -- Determines if the node can have declarations
1352 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1353 -- Simple predicate to test for defaulted discriminants
1355 function Has_Denormals (E : Entity_Id) return Boolean;
1356 -- Determines if the floating-point type E supports denormal numbers.
1357 -- Returns False if E is not a floating-point type.
1359 function Has_Discriminant_Dependent_Constraint
1360 (Comp : Entity_Id) return Boolean;
1361 -- Returns True if and only if Comp has a constrained subtype that depends
1362 -- on a discriminant.
1364 function Has_Effectively_Volatile_Profile
1365 (Subp_Id : Entity_Id) return Boolean;
1366 -- Determine whether subprogram Subp_Id has an effectively volatile formal
1367 -- parameter for reading or returns an effectively volatile value for
1368 -- reading.
1370 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1371 -- Determine whether type Typ defines "full default initialization" as
1372 -- specified by SPARK RM 3.1. To qualify as such, the type must be
1373 -- * A scalar type with specified Default_Value
1374 -- * An array-of-scalar type with specified Default_Component_Value
1375 -- * An array type whose element type defines full default initialization
1376 -- * A protected type, record type or type extension whose components
1377 -- either include a default expression or have a type which defines
1378 -- full default initialization. In the case of type extensions, the
1379 -- parent type defines full default initialization.
1380 -- * A task type
1381 -- * A private type with pragma Default_Initial_Condition that provides
1382 -- full default initialization.
1383 -- This function is not used in GNATprove anymore, but is used in CodePeer.
1385 function Has_Fully_Default_Initializing_DIC_Pragma
1386 (Typ : Entity_Id) return Boolean;
1387 -- Determine whether type Typ has a suitable Default_Initial_Condition
1388 -- pragma which provides the full default initialization of the type.
1390 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
1391 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
1392 -- discriminants if it has a constrained nominal type, unless the object
1393 -- is a component of an enclosing Unchecked_Union object that is subject
1394 -- to a per-object constraint and the enclosing object lacks inferable
1395 -- discriminants.
1397 -- An expression of an Unchecked_Union type has inferable discriminants
1398 -- if it is either a name of an object with inferable discriminants or a
1399 -- qualified expression whose subtype mark denotes a constrained subtype.
1401 function Has_Infinities (E : Entity_Id) return Boolean;
1402 -- Determines if the range of the floating-point type E includes
1403 -- infinities. Returns False if E is not a floating-point type.
1405 function Has_Interfaces
1406 (T : Entity_Id;
1407 Use_Full_View : Boolean := True) return Boolean;
1408 -- Where T is a concurrent type or a record type, returns true if T covers
1409 -- any abstract interface types. In case of private types the argument
1410 -- Use_Full_View controls if the check is done using its full view (if
1411 -- available).
1413 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1414 -- Determine whether Id is subject to pragma Max_Queue_Length. It is
1415 -- assumed that Id denotes an entry.
1417 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1418 -- This is a simple minded function for determining whether an expression
1419 -- has no obvious side effects. It is used only for determining whether
1420 -- warnings are needed in certain situations, and is not guaranteed to
1421 -- be accurate in either direction. Exceptions may mean an expression
1422 -- does in fact have side effects, but this may be ignored and True is
1423 -- returned, or a complex expression may in fact be side effect free
1424 -- but we don't recognize it here and return False. The Side_Effect_Free
1425 -- routine in Remove_Side_Effects is much more extensive and perhaps could
1426 -- be shared, so that this routine would be more accurate.
1428 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1429 -- Determine whether abstract state Id has at least one nonnull constituent
1430 -- as expressed in pragma Refined_State. This function does not take into
1431 -- account the visible refinement region of abstract state Id.
1433 function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean;
1434 -- Determine whether subprogram Subp has a class-wide precondition that is
1435 -- not statically True.
1437 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1438 -- Determine whether the body of procedure Proc_Id contains a sole null
1439 -- statement, possibly followed by an optional return. Used to optimize
1440 -- useless calls to assertion checks.
1442 function Has_Null_Exclusion (N : Node_Id) return Boolean;
1443 -- Determine whether node N has a null exclusion
1445 function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1446 -- Determine whether abstract state Id has a null refinement as expressed
1447 -- in pragma Refined_State. This function does not take into account the
1448 -- visible refinement region of abstract state Id.
1450 function Has_Non_Null_Statements (L : List_Id) return Boolean;
1451 -- Return True if L has non-null statements
1453 function Side_Effect_Free_Statements (L : List_Id) return Boolean;
1454 -- Return True if L has no statements with side effects
1456 function Side_Effect_Free_Loop (N : Node_Id) return Boolean;
1457 -- Return True if the loop has no side effect and can therefore be
1458 -- marked for removal. Return False if N is not a N_Loop_Statement.
1460 function Is_Container_Aggregate (Exp : Node_Id) return Boolean;
1461 -- Is the given expression a container aggregate?
1463 function Is_Function_With_Side_Effects (Subp : Entity_Id) return Boolean;
1464 -- Return True if Subp is a function with side effects, ie. it has a
1465 -- (direct or inherited) pragma Side_Effects with static value True.
1467 function Is_Newly_Constructed
1468 (Exp : Node_Id; Context_Requires_NC : Boolean) return Boolean;
1469 -- Indicates whether a given expression is "newly constructed" (RM 4.4).
1470 -- Context_Requires_NC determines the result returned for cases like a
1471 -- raise expression or a conditional expression where some-but-not-all
1472 -- operative constituents are newly constructed. Thus, this is a
1473 -- somewhat unusual predicate in that the result required in order to
1474 -- satisfy whatever legality rule is being checked can influence the
1475 -- result of the predicate. Context_Requires_NC might be True for
1476 -- something like the "newly constructed" rule for a limited expression
1477 -- of a return statement, and False for something like the
1478 -- "newly constructed" rule pertaining to a limited object renaming in a
1479 -- declare expression. Eventually, the code to implement every
1480 -- RM legality rule requiring/prohibiting a "newly constructed" expression
1481 -- should be implemented by calling this function; that's not done yet.
1482 -- The function name doesn't quite match the RM definition of the term if
1483 -- Context_Requires_NC = False; in that case, "Might_Be_Newly_Constructed"
1484 -- might be a more accurate name.
1486 function Is_Prim_Of_Abst_Type_With_Nonstatic_CW_Pre_Post
1487 (Subp : Entity_Id) return Boolean;
1488 -- Return True if Subp is a primitive of an abstract type, where the
1489 -- primitive has a class-wide pre- or postcondition whose expression
1490 -- is nonstatic.
1492 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1493 -- Predicate to determine whether a controlled type has a user-defined
1494 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1495 -- non-null), which causes the type to not have preelaborable
1496 -- initialization.
1498 function Has_Preelaborable_Initialization
1499 (E : Entity_Id;
1500 Preelab_Init_Expr : Node_Id := Empty) return Boolean;
1501 -- Return True iff type E has preelaborable initialization as defined in
1502 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1503 -- If Preelab_Init_Expr is present, indicates that the function should
1504 -- presume that for any subcomponent of E that is of a formal private or
1505 -- derived type that is referenced by a Preelaborable_Initialization
1506 -- attribute within the expression Preelab_Init_Expr, the formal type has
1507 -- preelaborable initialization (RM 10.2.1(11.8/5) and AI12-0409).
1509 function Has_Prefix (N : Node_Id) return Boolean;
1510 -- Return True if N has attribute Prefix
1512 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1513 -- Check if a type has a (sub)component of a private type that has not
1514 -- yet received a full declaration.
1516 function Has_Relaxed_Initialization (E : Entity_Id) return Boolean;
1517 -- Returns True iff entity E is subject to the Relaxed_Initialization
1518 -- aspect. Entity E can be either type, variable, constant, subprogram or
1519 -- entry. For private types and deferred constants E should be the private
1520 -- view, because aspect can only be attached there.
1522 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1523 -- Determines if the floating-point type E supports signed zeros.
1524 -- Returns False if E is not a floating-point type.
1526 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1527 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1528 -- All subprograms have a N_Contract node, but this does not mean that the
1529 -- contract is useful.
1531 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1532 -- Return whether an array type has static bounds
1534 function Has_Static_Non_Empty_Array_Bounds (Typ : Node_Id) return Boolean;
1535 -- Determine whether array type Typ has static non-empty bounds
1537 function Has_Stream (T : Entity_Id) return Boolean;
1538 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1539 -- case of a composite type, has a component for which this predicate is
1540 -- True, and if so returns True. Otherwise a result of False means that
1541 -- there is no Stream type in sight. For a private type, the test is
1542 -- applied to the underlying type (or returns False if there is no
1543 -- underlying type).
1545 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1546 -- Returns true if the last character of E is Suffix. Used in Assertions.
1548 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1549 -- Returns True if Typ is a composite type (array or record) that is either
1550 -- a tagged type or has a subcomponent that is tagged. Returns False for a
1551 -- noncomposite type, or if no tagged subcomponents are present.
1553 function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1554 -- Given arbitrary expression Expr, determine whether it contains at
1555 -- least one name whose entity is Any_Id.
1557 function Has_Effectively_Volatile_Component
1558 (Typ : Entity_Id) return Boolean;
1559 -- Given arbitrary type Typ, determine whether it contains at least one
1560 -- effectively volatile component.
1562 function Has_Enabled_Aspect (Id : Entity_Id; A : Aspect_Id) return Boolean
1563 with Pre => A in Boolean_Aspects;
1564 -- Returns True if a Boolean-valued aspect is enabled on entity Id; i.e. it
1565 -- is present and either has no aspect definition or its aspect definition
1566 -- statically evaluates to True.
1568 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1569 -- Given arbitrary type Typ, determine whether it contains at least one
1570 -- volatile component.
1572 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1573 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1574 -- implementation requirement which the pragma imposes. The return value is
1575 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1577 function Implements_Interface
1578 (Typ_Ent : Entity_Id;
1579 Iface_Ent : Entity_Id;
1580 Exclude_Parents : Boolean := False) return Boolean;
1581 -- Returns true if the Typ_Ent implements interface Iface_Ent
1583 function Implicitly_Designated_Type (Typ : Entity_Id) return Entity_Id;
1584 -- Called when Typ is the type of the prefix of an implicit dereference.
1585 -- Return the designated type of Typ, taking into account that this type
1586 -- may be a limited view, when the nonlimited view is visible.
1588 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1589 -- Returns True if node N appears within a pragma that acts as an assertion
1590 -- expression. See Sem_Prag for the list of qualifying pragmas.
1592 function In_Check_Node (N : Node_Id) return Boolean;
1593 -- Return True if N is part of a N_Raise_xxx_Error node
1595 function In_Generic_Formal_Package (E : Entity_Id) return Boolean;
1596 -- Returns True if entity E is inside a generic formal package
1598 function In_Generic_Scope (E : Entity_Id) return Boolean;
1599 -- Returns True if entity E is inside a generic scope
1601 function In_Instance return Boolean;
1602 -- Returns True if the current scope is within a generic instance
1604 function In_Instance_Body return Boolean;
1605 -- Returns True if current scope is within the body of an instance, where
1606 -- several semantic checks (e.g. accessibility checks) are relaxed.
1608 function In_Instance_Not_Visible return Boolean;
1609 -- Returns True if current scope is with the private part or the body of
1610 -- an instance. Other semantic checks are suppressed in this context.
1612 function In_Instance_Visible_Part
1613 (Id : Entity_Id := Current_Scope) return Boolean;
1614 -- Returns True if arbitrary entity Id is within the visible part of a
1615 -- package instance, where several additional semantic checks apply.
1617 function In_Package_Body return Boolean;
1618 -- Returns True if current scope is within a package body
1620 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1621 -- Returns true if the expression N occurs within a pragma with name Nam
1623 function In_Pre_Post_Condition
1624 (N : Node_Id; Class_Wide_Only : Boolean := False) return Boolean;
1625 -- Returns True if node N appears within a pre/postcondition pragma. Note
1626 -- the pragma Check equivalents are NOT considered. If Class_Wide_Only is
1627 -- True, then tests for N appearing within a class-wide pre/postcondition.
1629 function In_Quantified_Expression (N : Node_Id) return Boolean;
1630 -- Returns true if the expression N occurs within a quantified expression
1632 function In_Return_Value (Expr : Node_Id) return Boolean;
1633 -- Returns true if the expression Expr occurs within a simple return
1634 -- statement or is part of an assignment to the return object in an
1635 -- extended return statement.
1637 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1638 -- Returns True if N denotes a component or subcomponent in a record or
1639 -- array that has Reverse_Storage_Order.
1641 function In_Same_Declarative_Part
1642 (Context : Node_Id;
1643 N : Node_Id) return Boolean;
1644 -- True if the node N appears within the same declarative part denoted by
1645 -- the node Context.
1647 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1648 -- Determines if the current scope is within a subprogram compilation unit
1649 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1650 -- declaration) or within a task or protected body. The test is for
1651 -- appearing anywhere within such a construct (that is it does not need
1652 -- to be directly within).
1654 function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean;
1655 -- Determine whether node N is within the subtree rooted at Root
1657 function In_Subtree
1658 (N : Node_Id;
1659 Root1 : Node_Id;
1660 Root2 : Node_Id) return Boolean;
1661 -- Determine whether node N is within the subtree rooted at Root1 or Root2.
1662 -- This version is more efficient than calling the single root version of
1663 -- Is_Subtree twice.
1665 function In_Statement_Condition_With_Actions (N : Node_Id) return Boolean;
1666 -- Returns true if the expression N occurs within the condition of a
1667 -- statement node with actions. Subsidiary to inlining for GNATprove, where
1668 -- inlining of function calls in such expressions would expand the called
1669 -- body into actions list of the condition node. GNATprove cannot yet cope
1670 -- with such a complex AST.
1672 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1673 -- Determine whether a declaration occurs within the visible part of a
1674 -- package specification. The package must be on the scope stack, and the
1675 -- corresponding private part must not.
1677 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1678 -- Given the entity of a constant or a type, retrieve the incomplete or
1679 -- partial view of the same entity. Note that Id may not have a partial
1680 -- view in which case the function returns Empty.
1682 function Incomplete_View_From_Limited_With
1683 (Typ : Entity_Id) return Entity_Id;
1684 -- Typ is a type entity. This normally returns Typ. However, if there is
1685 -- an incomplete view of this entity that comes from a limited-with'ed
1686 -- package, then this returns that incomplete view.
1688 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1689 -- Given an N_Indexed_Component node, return the first bit position of the
1690 -- component if it is known at compile time. A value of No_Uint means that
1691 -- either the value is not yet known before back-end processing or it is
1692 -- not known at compile time after back-end processing.
1694 procedure Inherit_Predicate_Flags
1695 (Subt, Par : Entity_Id;
1696 Only_Flags : Boolean := False);
1697 -- Propagate static and dynamic predicate flags from a parent to the
1698 -- subtype in a subtype declaration with and without constraints, or from
1699 -- a parent to the derived type in a derived type declaration. Only_Flags
1700 -- is True in the case of a derived type declaration to inherit only the
1701 -- flags, not the predicate functions.
1703 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1704 -- Inherit the rep item chain of type From_Typ without clobbering any
1705 -- existing rep items on Typ's chain. Typ is the destination type.
1707 function Inherits_From_Tagged_Full_View (Typ : Entity_Id) return Boolean;
1708 pragma Inline (Inherits_From_Tagged_Full_View);
1709 -- Return True if Typ is an untagged private type completed with a
1710 -- derivation of an untagged private type declaration whose full view
1711 -- is a tagged type.
1713 procedure Insert_Explicit_Dereference (N : Node_Id);
1714 -- In a context that requires a composite or subprogram type and where a
1715 -- prefix is an access type, rewrite the access type node N (which is the
1716 -- prefix, e.g. of an indexed component) as an explicit dereference.
1718 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1719 -- Examine all deferred constants in the declaration list Decls and check
1720 -- whether they have been completed by a full constant declaration or an
1721 -- Import pragma. Emit the error message if that is not the case.
1723 procedure Install_Elaboration_Model (Unit_Id : Entity_Id);
1724 -- Install the elaboration model specified by pragma Elaboration_Checks
1725 -- associated with compilation unit Unit_Id. No action is taken when the
1726 -- unit lacks such pragma.
1728 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1729 -- Install both the generic formal parameters and the formal parameters of
1730 -- generic subprogram Subp_Id into visibility.
1732 procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
1733 -- Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect
1735 function Invalid_Scalar_Value
1736 (Loc : Source_Ptr;
1737 Scal_Typ : Scalar_Id) return Node_Id;
1738 -- Obtain the invalid value for scalar type Scal_Typ as either specified by
1739 -- pragma Initialize_Scalars or by the binder. Return an expression created
1740 -- at source location Loc, which denotes the invalid value.
1742 function Is_Access_Subprogram_Wrapper (E : Entity_Id) return Boolean;
1743 -- True if E is the constructed wrapper for an access_to_subprogram
1744 -- type with Pre/Postconditions.
1746 function Is_Access_Variable (E : Entity_Id) return Boolean;
1747 -- Determines if type E is an access-to-variable
1749 function Is_Actual_In_Out_Parameter (N : Node_Id) return Boolean;
1750 -- Determines if N is an actual parameter of in-out mode in a subprogram
1751 -- call.
1753 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1754 -- Determines if N is an actual parameter of out mode in a subprogram call
1756 function Is_Actual_Out_Or_In_Out_Parameter (N : Node_Id) return Boolean;
1757 -- Determines if N is an actual parameter of out or in out mode in a
1758 -- subprogram call.
1760 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1761 -- Determines if N is an actual parameter in a subprogram or entry call
1763 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1764 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1765 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1766 -- rules of the language, it does not take into account the restriction
1767 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1768 -- and Obj violates the restriction. The caller is responsible for calling
1769 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1770 -- requirement for obeying the restriction in the call context.
1772 function Is_Ancestor_Package
1773 (E1 : Entity_Id;
1774 E2 : Entity_Id) return Boolean;
1775 -- Determine whether package E1 is an ancestor of E2
1777 function Is_Atomic_Object (N : Node_Id) return Boolean;
1778 -- Determine whether arbitrary node N denotes a reference to an atomic
1779 -- object as per RM C.6(7) and the crucial remark in RM C.6(8).
1781 function Is_Attribute_Loop_Entry (N : Node_Id) return Boolean;
1782 -- Determine whether node N denotes attribute 'Loop_Entry
1784 function Is_Attribute_Old (N : Node_Id) return Boolean;
1785 -- Determine whether node N denotes attribute 'Old
1787 function Is_Attribute_Result (N : Node_Id) return Boolean;
1788 -- Determine whether node N denotes attribute 'Result
1790 function Is_Attribute_Update (N : Node_Id) return Boolean;
1791 -- Determine whether node N denotes attribute 'Update
1793 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean
1794 with Inline;
1795 -- Determine whether node N denotes a body or a package declaration
1797 function Is_Bounded_String (T : Entity_Id) return Boolean;
1798 -- True if T is a bounded string type. Used to make sure "=" composes
1799 -- properly for bounded string types (see 4.5.2(32.1/1)).
1801 function Is_By_Protected_Procedure (Id : Entity_Id) return Boolean;
1802 -- Determine whether entity Id denotes a procedure with synchronization
1803 -- kind By_Protected_Procedure.
1805 function Is_Confirming (Aspect : Nonoverridable_Aspect_Id;
1806 Aspect_Spec_1, Aspect_Spec_2 : Node_Id)
1807 return Boolean;
1808 -- Returns true if the two specifications of the given
1809 -- nonoverridable aspect are compatible.
1811 function Is_Conjunction_Of_Formal_Preelab_Init_Attributes
1812 (Expr : Node_Id) return Boolean;
1813 -- Returns True if Expr is a Preelaborable_Initialization attribute applied
1814 -- to a formal type, or a sequence of two or more such attributes connected
1815 -- by "and" operators, or if the Original_Node of Expr or its constituents
1816 -- is such an attribute.
1818 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1819 -- Exp is the expression for an array bound. Determines whether the
1820 -- bound is a compile-time known value, or a constant entity, or an
1821 -- enumeration literal, or an expression composed of constant-bound
1822 -- subexpressions which are evaluated by means of standard operators.
1824 function Is_Container_Element (Exp : Node_Id) return Boolean;
1825 -- This routine recognizes expressions that denote an element of one of
1826 -- the predefined containers, when the source only contains an indexing
1827 -- operation and an implicit dereference is inserted by the compiler.
1828 -- In the absence of this optimization, the indexing creates a temporary
1829 -- controlled cursor that sets the tampering bit of the container, and
1830 -- restricts the use of the convenient notation C (X) to contexts that
1831 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1832 -- explicit dereference. The transformation applies when it has the form
1833 -- F (X).Discr.all.
1835 function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1836 -- Determine whether aspect specification or pragma Item is a contract
1837 -- annotation.
1839 function Is_Controlling_Limited_Procedure
1840 (Proc_Nam : Entity_Id) return Boolean;
1841 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1842 -- of a limited interface with a controlling first parameter.
1844 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1845 -- Returns True if N is a call to a CPP constructor
1847 function Is_CCT_Instance
1848 (Ref_Id : Entity_Id;
1849 Context_Id : Entity_Id) return Boolean;
1850 -- Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_]
1851 -- Global; also used when analyzing default expressions of protected and
1852 -- record components. Determine whether entity Ref_Id (which must represent
1853 -- either a protected type or a task type) denotes the current instance of
1854 -- a concurrent type. Context_Id denotes the associated context where the
1855 -- pragma appears.
1857 function Is_Child_Or_Sibling
1858 (Pack_1 : Entity_Id;
1859 Pack_2 : Entity_Id) return Boolean;
1860 -- Determine the following relations between two arbitrary packages:
1861 -- 1) One package is the parent of a child package
1862 -- 2) Both packages are siblings and share a common parent
1864 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1865 -- First determine whether type T is an interface and then check whether
1866 -- it is of protected, synchronized or task kind.
1868 function Is_Current_Instance (N : Node_Id) return Boolean;
1869 -- Predicate is true if N legally denotes a type name within its own
1870 -- declaration. Prior to Ada 2012 this covered only synchronized type
1871 -- declarations. In Ada 2012 it also covers type and subtype declarations
1872 -- with aspects: Invariant, Predicate, and Default_Initial_Condition.
1874 function Is_Current_Instance_Reference_In_Type_Aspect
1875 (N : Node_Id) return Boolean;
1876 -- True if N is a reference to a current instance object that occurs within
1877 -- an aspect_specification for a type or subtype. In this case N will be
1878 -- a formal parameter of a subprogram created for a predicate, invariant,
1879 -- or Default_Initial_Condition aspect.
1881 function Is_Declaration
1882 (N : Node_Id;
1883 Body_OK : Boolean := True;
1884 Concurrent_OK : Boolean := True;
1885 Formal_OK : Boolean := True;
1886 Generic_OK : Boolean := True;
1887 Instantiation_OK : Boolean := True;
1888 Renaming_OK : Boolean := True;
1889 Stub_OK : Boolean := True;
1890 Subprogram_OK : Boolean := True;
1891 Type_OK : Boolean := True) return Boolean;
1892 -- Determine whether arbitrary node N denotes a declaration depending
1893 -- on the allowed subsets of declarations. Set the following flags to
1894 -- consider specific subsets of declarations:
1896 -- * Body_OK - body declarations
1898 -- * Concurrent_OK - concurrent type declarations
1900 -- * Formal_OK - formal declarations
1902 -- * Generic_OK - generic declarations, including generic renamings
1904 -- * Instantiation_OK - generic instantiations
1906 -- * Renaming_OK - renaming declarations, including generic renamings
1908 -- * Stub_OK - stub declarations
1910 -- * Subprogram_OK - entry, expression function, and subprogram
1911 -- declarations.
1913 -- * Type_OK - type declarations, including concurrent types
1915 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1916 -- Returns True iff component Comp is declared within a variant part
1918 function Is_Dependent_Component_Of_Mutable_Object
1919 (Object : Node_Id) return Boolean;
1920 -- Returns True if Object is the name of a subcomponent that depends on
1921 -- discriminants of a variable whose nominal subtype is unconstrained and
1922 -- not indefinite, and the variable is not aliased. Otherwise returns
1923 -- False. The nodes passed to this function are assumed to denote objects.
1925 function Is_Dereferenced (N : Node_Id) return Boolean;
1926 -- N is a subexpression node of an access type. This function returns true
1927 -- if N appears as the prefix of a node that does a dereference of the
1928 -- access value (selected/indexed component, explicit dereference or a
1929 -- slice), and false otherwise.
1931 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1932 -- Returns True if type T1 is a descendant of type T2, and false otherwise.
1933 -- This is the RM definition, a type is a descendant of another type if it
1934 -- is the same type or is derived from a descendant of the other type.
1936 function Is_Descendant_Of_Suspension_Object
1937 (Typ : Entity_Id) return Boolean;
1938 -- Determine whether type Typ is a descendant of type Suspension_Object
1939 -- defined in Ada.Synchronous_Task_Control. This version is different from
1940 -- Is_Descendant_Of as the detection of Suspension_Object does not involve
1941 -- an entity and by extension a call to RTSfind.
1943 function Is_Double_Precision_Floating_Point_Type
1944 (E : Entity_Id) return Boolean;
1945 -- Return whether E is a double precision floating point type,
1946 -- characterized by:
1947 -- . machine_radix = 2
1948 -- . machine_mantissa = 53
1949 -- . machine_emax = 2**10
1950 -- . machine_emin = 3 - machine_emax
1952 function Is_Effectively_Volatile
1953 (Id : Entity_Id;
1954 Ignore_Protected : Boolean := False) return Boolean;
1955 -- Determine whether a type or object denoted by entity Id is effectively
1956 -- volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
1957 -- * Volatile without No_Caching
1958 -- * An array type subject to aspect Volatile_Components
1959 -- * An array type whose component type is effectively volatile
1960 -- * A protected type
1961 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1963 -- If Ignore_Protected is True, then a protected object/type is treated
1964 -- like a non-protected record object/type for computing the result of
1965 -- this query.
1967 function Is_Effectively_Volatile_For_Reading
1968 (Id : Entity_Id;
1969 Ignore_Protected : Boolean := False) return Boolean;
1970 -- Determine whether a type or object denoted by entity Id is effectively
1971 -- volatile for reading (SPARK RM 7.1.2). To qualify as such, the entity
1972 -- must be either
1973 -- * Volatile without No_Caching and have Async_Writers or
1974 -- Effective_Reads set to True
1975 -- * An array type subject to aspect Volatile_Components, unless it has
1976 -- Async_Writers and Effective_Reads set to False
1977 -- * An array type whose component type is effectively volatile for
1978 -- reading
1979 -- * A protected type
1980 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1982 -- If Ignore_Protected is True, then a protected object/type is treated
1983 -- like a non-protected record object/type for computing the result of
1984 -- this query.
1986 function Is_Effectively_Volatile_Object
1987 (N : Node_Id) return Boolean;
1988 -- Determine whether an arbitrary node denotes an effectively volatile
1989 -- object (SPARK RM 7.1.2).
1991 function Is_Effectively_Volatile_Object_For_Reading
1992 (N : Node_Id) return Boolean;
1993 -- Determine whether an arbitrary node denotes an effectively volatile
1994 -- object for reading (SPARK RM 7.1.2).
1996 function Is_Entity_Of_Quantified_Expression (Id : Entity_Id) return Boolean;
1997 -- Determine whether entity Id is the entity of a quantified expression
1999 function Is_Entry_Body (Id : Entity_Id) return Boolean;
2000 -- Determine whether entity Id is the body entity of an entry [family]
2002 function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
2003 -- Determine whether entity Id is the spec entity of an entry [family]
2005 function Is_Explicitly_Aliased (N : Node_Id) return Boolean;
2006 -- Determine if a given node N is an explicitly aliased formal parameter.
2008 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
2009 -- Check whether a function in a call is an expanded priority attribute,
2010 -- which is transformed into an Rtsfind call to Get_Ceiling. This expansion
2011 -- does not take place in a configurable runtime.
2013 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
2014 -- Determine whether subprogram [body] Subp denotes an expression function
2016 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2018 function Is_Expression_Function_Or_Completion
2019 (Subp : Entity_Id) return Boolean;
2020 -- Determine whether subprogram [body] Subp denotes an expression function
2021 -- or is completed by an expression function body.
2023 function Is_Extended_Precision_Floating_Point_Type
2024 (E : Entity_Id) return Boolean;
2025 -- Return whether E is an extended precision floating point type,
2026 -- characterized by:
2027 -- . machine_radix = 2
2028 -- . machine_mantissa = 64
2029 -- . machine_emax = 2**14
2030 -- . machine_emin = 3 - machine_emax
2032 function Is_EVF_Expression (N : Node_Id) return Boolean;
2033 -- Determine whether node N denotes a reference to a formal parameter of
2034 -- a specific tagged type whose related subprogram is subject to pragma
2035 -- Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
2036 -- constructs fall under this category:
2037 -- 1) A qualified expression whose operand is EVF
2038 -- 2) A type conversion whose operand is EVF
2039 -- 3) An if expression with at least one EVF dependent_expression
2040 -- 4) A case expression with at least one EVF dependent_expression
2042 function Is_False (U : Opt_Ubool) return Boolean;
2043 pragma Inline (Is_False);
2044 -- True if U is Boolean'Pos (False) (i.e. Uint_0)
2046 function Is_True (U : Opt_Ubool) return Boolean;
2047 pragma Inline (Is_True);
2048 -- True if U is Boolean'Pos (True) (i.e. Uint_1). Also True if U is
2049 -- No_Uint; we allow No_Uint because Static_Boolean returns that in
2050 -- case of error. It doesn't really matter whether the error case is
2051 -- considered True or False, but we don't want this to blow up in that
2052 -- case.
2054 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
2055 -- Returns True iff the number U is a model number of the fixed-point type
2056 -- T, i.e. if it is an exact multiple of Small.
2058 function Is_Full_Access_Object (N : Node_Id) return Boolean;
2059 -- Determine whether arbitrary node N denotes a reference to a full access
2060 -- object as per Ada 2022 RM C.6(8.2).
2062 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
2063 -- Typ is a type entity. This function returns true if this type is fully
2064 -- initialized, meaning that an object of the type is fully initialized.
2065 -- Note that initialization resulting from use of pragma Normalize_Scalars
2066 -- does not count. Note that this is only used for the purpose of issuing
2067 -- warnings for objects that are potentially referenced uninitialized. This
2068 -- means that the result returned is not crucial, but should err on the
2069 -- side of thinking things are fully initialized if it does not know.
2071 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
2072 -- Determine whether arbitrary declaration Decl denotes a generic package,
2073 -- a generic subprogram or a generic body.
2075 function Is_Independent_Object (N : Node_Id) return Boolean;
2076 -- Determine whether arbitrary node N denotes a reference to an independent
2077 -- object as per RM C.6(8).
2079 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
2080 -- E is a subprogram. Return True is E is an implicit operation inherited
2081 -- by a derived type declaration.
2083 function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean;
2084 -- Return True if Subp is an expression function that fulfills all the
2085 -- following requirements for inlining:
2086 -- 1. pragma/aspect Inline_Always
2087 -- 2. No formals
2088 -- 3. No contracts
2089 -- 4. No dispatching primitive
2090 -- 5. Result subtype controlled (or with controlled components)
2091 -- 6. Result subtype not subject to type-invariant checks
2092 -- 7. Result subtype not a class-wide type
2093 -- 8. Return expression naming an object global to the function
2094 -- 9. Nominal subtype of the returned object statically compatible
2095 -- with the result subtype of the expression function.
2097 function Is_Internal_Block (N : Node_Id) return Boolean;
2098 pragma Inline (Is_Internal_Block);
2099 -- Determine if N is an N_Block_Statement with an internal label. See
2100 -- Add_Block_Identifier.
2102 function Is_Iterator (Typ : Entity_Id) return Boolean;
2103 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
2104 -- Ada.Iterator_Interfaces, or it is derived from one.
2106 function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
2107 -- N is an iterator specification. Returns True iff N is an iterator over
2108 -- an array, either inside a loop of the form 'for X of A' or a quantified
2109 -- expression of the form 'for all/some X of A' where A is of array type.
2111 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
2112 -- A library-level declaration is one that is accessible from Standard,
2113 -- i.e. a library unit or an entity declared in a library package.
2115 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
2116 -- Determine whether a given type is a limited class-wide type, in which
2117 -- case it needs a Master_Id, because extensions of its designated type
2118 -- may include task components. A class-wide type that comes from a
2119 -- limited view must be treated in the same way.
2121 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
2122 -- Determines whether Expr is a reference to a variable or formal parameter
2123 -- of mode OUT or IN OUT of the current enclosing subprogram.
2125 function Is_Master (N : Node_Id) return Boolean;
2126 -- Determine if the given node N constitutes a finalization master
2128 function Is_Name_Reference (N : Node_Id) return Boolean;
2129 -- Determine whether arbitrary node N is a reference to a name. This is
2130 -- similar to Is_Object_Reference but returns True only if N can be renamed
2131 -- without the need for a temporary, the typical example of an object not
2132 -- in this category being a function call.
2134 function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean;
2135 -- Determine whether arbitrary construct N violates preelaborability as
2136 -- defined in ARM 10.2.1 5-9/3. This routine takes into account both the
2137 -- syntactic and semantic properties of the construct.
2139 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
2140 -- Determine whether entity Id denotes the procedure that verifies the
2141 -- assertion expression of pragma Default_Initial_Condition and if it does,
2142 -- the encapsulated expression is nontrivial.
2144 function Is_Null_Extension
2145 (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean;
2146 -- Given a tagged type, returns True if argument is a type extension
2147 -- that introduces no new components (discriminant or nondiscriminant).
2148 -- Ignore_Privacy should be True for use in implementing dynamic semantics.
2149 -- Cannot be called with class-wide types.
2151 function Is_Null_Extension_Of
2152 (Descendant, Ancestor : Entity_Id) return Boolean;
2153 -- Given two tagged types, the first a descendant of the second,
2154 -- returns True if every component of Descendant is inherited
2155 -- (directly or indirectly) from Ancestor. Privacy is ignored.
2156 -- Cannot be called with class-wide types.
2158 function Is_Null_Record_Definition (Record_Def : Node_Id) return Boolean;
2159 -- Returns True for an N_Record_Definition node that has no user-defined
2160 -- components (and no variant part).
2162 function Is_Null_Record_Type
2163 (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean;
2164 -- Determine whether T is declared with a null record definition, a
2165 -- null component list, or as a type derived from a null record type
2166 -- (with a null extension if tagged). Returns True for interface types,
2167 -- False for discriminated types.
2169 function Is_Object_Image (Prefix : Node_Id) return Boolean;
2170 -- Returns True if an 'Img, 'Image, 'Wide_Image, or 'Wide_Wide_Image
2171 -- attribute is applied to an object.
2173 function Is_Object_Reference (N : Node_Id) return Boolean;
2174 -- Determines if the tree referenced by N represents an object. Both
2175 -- variable and constant objects return True (compare Is_Variable).
2177 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
2178 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
2179 -- Note that the Is_Variable function is not quite the right test because
2180 -- this is a case in which conversions whose expression is a variable (in
2181 -- the Is_Variable sense) with an untagged type target are considered view
2182 -- conversions and hence variables.
2184 function Is_OK_Volatile_Context
2185 (Context : Node_Id;
2186 Obj_Ref : Node_Id;
2187 Check_Actuals : Boolean) return Boolean;
2188 -- Determine whether node Context denotes a "non-interfering context" (as
2189 -- defined in SPARK RM 7.1.3(9)) where volatile reference Obj_Ref can
2190 -- safely reside. When examining references that might be located within
2191 -- actual parameters of a subprogram call that has not been resolved yet,
2192 -- Check_Actuals should be False; such references will be assumed to be
2193 -- legal. They will need to be checked again after subprogram call has
2194 -- been resolved.
2196 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
2197 -- Determine whether aspect specification or pragma Item is one of the
2198 -- following package contract annotations:
2199 -- Abstract_State
2200 -- Initial_Condition
2201 -- Initializes
2202 -- Refined_State
2204 function Is_Partially_Initialized_Type
2205 (Typ : Entity_Id;
2206 Include_Implicit : Boolean := True) return Boolean;
2207 -- Typ is a type entity. This function returns true if this type is partly
2208 -- initialized, meaning that an object of the type is at least partly
2209 -- initialized (in particular in the record case, that at least one
2210 -- component has an initialization expression, including via Default_Value
2211 -- and Default_Component_Value aspects). Note that initialization
2212 -- resulting from the use of pragma Normalize_Scalars does not count.
2213 -- Include_Implicit controls whether implicit initialization of access
2214 -- values to null, and of discriminant values, is counted as making the
2215 -- type be partially initialized. For the default setting of True, these
2216 -- implicit cases do count, and discriminated types or types containing
2217 -- access values not explicitly initialized will return True. Otherwise
2218 -- if Include_Implicit is False, these cases do not count as making the
2219 -- type be partially initialized.
2221 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
2222 -- Predicate to implement definition given in RM 2012 6.1.1 (20/3)
2224 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
2225 -- Determines if type T is a potentially persistent type. A potentially
2226 -- persistent type is defined (recursively) as a scalar type, an untagged
2227 -- record whose components are all of a potentially persistent type, or an
2228 -- array with all static constraints whose component type is potentially
2229 -- persistent. A private type is potentially persistent if the full type
2230 -- is potentially persistent.
2232 function Is_Predefined_Dispatching_Operation (E : Entity_Id) return Boolean;
2233 -- Ada 2005 (AI-251): Determines if E is a predefined primitive operation
2235 function Is_Predefined_Interface_Primitive (E : Entity_Id) return Boolean;
2236 -- Ada 2005 (AI-345): Returns True if E is one of the predefined primitives
2237 -- required to implement interfaces.
2239 function Is_Predefined_Internal_Operation (E : Entity_Id) return Boolean;
2240 -- Similar to the previous one, but excludes stream operations, because
2241 -- these may be overridden, and need extra formals, like user-defined
2242 -- operations.
2244 function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean;
2245 -- Determine whether aggregate Aggr violates the restrictions of
2246 -- preelaborable constructs as defined in ARM 10.2.1(5-9).
2248 function Is_Preelaborable_Construct (N : Node_Id) return Boolean;
2249 -- Determine whether arbitrary node N violates the restrictions of
2250 -- preelaborable constructs as defined in ARM 10.2.1(5-9). Routine
2251 -- Is_Non_Preelaborable_Construct takes into account the syntactic
2252 -- and semantic properties of N for a more accurate diagnostic.
2254 function Is_Private_Library_Unit (Unit : Entity_Id) return Boolean;
2255 -- Returns True if and only if the library unit is declared with an
2256 -- explicit designation of private.
2258 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
2259 -- Return True if node N denotes a protected type name which represents
2260 -- the current instance of a protected object according to RM 9.4(21/2).
2262 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
2263 -- Return True if a compilation unit is the specification or the
2264 -- body of a remote call interface package.
2266 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
2267 -- Return True if E is a remote access-to-class-wide type
2269 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
2270 -- Return True if E is a remote access to subprogram type
2272 function Is_Remote_Call (N : Node_Id) return Boolean;
2273 -- Return True if N denotes a potentially remote call
2275 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
2276 -- Return True if Proc_Nam is a procedure renaming of an entry
2278 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
2279 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
2280 -- Ada.Iterator_Interfaces.Reversible_Iterator.
2282 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
2283 -- Determine whether arbitrary entity Id denotes the anonymous object
2284 -- created for a single protected or single task type.
2286 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
2287 -- Determine whether arbitrary entity Id denotes a single protected or
2288 -- single task type.
2290 function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
2291 -- Determine whether arbitrary node N denotes the declaration of a single
2292 -- protected type or single task type.
2294 function Is_Single_Precision_Floating_Point_Type
2295 (E : Entity_Id) return Boolean;
2296 -- Return whether E is a single precision floating point type,
2297 -- characterized by:
2298 -- . machine_radix = 2
2299 -- . machine_mantissa = 24
2300 -- . machine_emax = 2**7
2301 -- . machine_emin = 3 - machine_emax
2303 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
2304 -- Determine whether arbitrary entity Id denotes the anonymous object
2305 -- created for a single protected type.
2307 function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
2308 -- Determine whether arbitrary entity Id denotes the anonymous object
2309 -- created for a single task type.
2311 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
2312 -- Determine whether an arbitrary [private] type is specifically tagged
2314 function Is_Statement (N : Node_Id) return Boolean;
2315 pragma Inline (Is_Statement);
2316 -- Check if the node N is a statement node. Note that this includes
2317 -- the case of procedure call statements (unlike the direct use of
2318 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
2319 -- Note that a label is *not* a statement, and will return False.
2321 function Is_Static_Discriminant_Component (N : Node_Id) return Boolean;
2322 -- Return True if N is guaranteed to a selected component containing a
2323 -- statically known discriminant.
2324 -- Note that this routine takes a conservative view and may return False
2325 -- in some cases where N would match the criteria. In other words this
2326 -- routine should be used to simplify or optimize the expanded code.
2328 function Is_Static_Function (Subp : Entity_Id) return Boolean;
2329 -- Determine whether subprogram Subp denotes a static function,
2330 -- which is a function with the aspect Static with value True.
2332 function Is_Static_Function_Call (Call : Node_Id) return Boolean;
2333 -- Determine whether Call is a static call to a static function,
2334 -- meaning that the name of the call denotes a static function
2335 -- and all of the call's actual parameters are given by static expressions.
2337 function Is_Subcomponent_Of_Full_Access_Object (N : Node_Id) return Boolean;
2338 -- Determine whether arbitrary node N denotes a reference to a subcomponent
2339 -- of a full access object as per RM C.6(7).
2341 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
2342 -- Determine whether aspect specification or pragma Item is one of the
2343 -- following subprogram contract annotations:
2344 -- Always_Terminates
2345 -- Contract_Cases
2346 -- Depends
2347 -- Exceptional_Cases
2348 -- Extensions_Visible
2349 -- Global
2350 -- Post
2351 -- Post_Class
2352 -- Postcondition
2353 -- Pre
2354 -- Pre_Class
2355 -- Precondition
2356 -- Refined_Depends
2357 -- Refined_Global
2358 -- Refined_Post
2359 -- Subprogram_Variant
2360 -- Test_Case
2362 function Is_Subprogram_Stub_Without_Prior_Declaration
2363 (N : Node_Id) return Boolean;
2364 -- Given an N_Subprogram_Body_Stub node N, return True if N is a subprogram
2365 -- stub with no prior subprogram declaration.
2367 function Is_Suitable_Primitive (Subp_Id : Entity_Id) return Boolean;
2368 -- Determine whether arbitrary subprogram Subp_Id may act as a primitive of
2369 -- an arbitrary tagged type.
2371 function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
2372 -- Determine whether entity Id denotes an object and if it does, whether
2373 -- this object is synchronized as specified in SPARK RM 9.1. To qualify as
2374 -- such, the object must be
2375 -- * Of a type that yields a synchronized object
2376 -- * An atomic object with enabled Async_Writers
2377 -- * A constant not of access-to-variable type
2378 -- * A variable subject to pragma Constant_After_Elaboration
2380 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
2381 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
2383 function Is_Transfer (N : Node_Id) return Boolean;
2384 -- Returns True if the node N is a statement which is known to cause an
2385 -- unconditional transfer of control at run time, i.e. the following
2386 -- statement definitely will not be executed.
2388 function Is_Trivial_Boolean (N : Node_Id) return Boolean;
2389 -- Determine whether source node N denotes "True" or "False". Note that
2390 -- this is not true for expressions that got folded to True or False.
2392 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
2393 -- Determine whether an arbitrary entity denotes an instance of function
2394 -- Ada.Unchecked_Conversion.
2396 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
2397 pragma Inline (Is_Universal_Numeric_Type);
2398 -- True if T is Universal_Integer or Universal_Real
2400 function Is_Unconstrained_Or_Tagged_Item (Item : Entity_Id) return Boolean;
2401 -- Subsidiary to Collect_Subprogram_Inputs_Outputs and the analysis of
2402 -- pragma Depends. Determine whether the type of dependency item Item is
2403 -- tagged, unconstrained array or unconstrained record.
2405 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
2406 -- Determine whether an entity denotes a user-defined equality
2408 function Is_User_Defined_Literal
2409 (N : Node_Id;
2410 Typ : Entity_Id) return Boolean;
2411 pragma Inline (Is_User_Defined_Literal);
2412 -- Determine whether N is a user-defined literal for Typ, including
2413 -- the case where N denotes a named number of the appropriate kind
2414 -- when Typ has an Integer_Literal or Real_Literal aspect.
2416 function Is_Validation_Variable_Reference (N : Node_Id) return Boolean;
2417 -- Determine whether N denotes a reference to a variable which captures the
2418 -- value of an object for validation purposes.
2420 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
2421 -- Returns true if E has variable size components
2423 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
2424 -- Returns true if E has variable size components
2426 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2428 function Is_Variable
2429 (N : Node_Id;
2430 Use_Original_Node : Boolean := True) return Boolean;
2431 -- Determines if the tree referenced by N represents a variable, i.e. can
2432 -- appear on the left side of an assignment. There is one situation (formal
2433 -- parameters) in which untagged type conversions are also considered
2434 -- variables, but Is_Variable returns False for such cases, since it has
2435 -- no knowledge of the context. Note that this is the point at which
2436 -- Assignment_OK is checked, and True is returned for any tree thus marked.
2437 -- Use_Original_Node is used to perform the test on Original_Node (N). By
2438 -- default is True since this routine is commonly invoked as part of the
2439 -- semantic analysis and it must not be disturbed by the rewriten nodes.
2441 function Is_View_Conversion (N : Node_Id) return Boolean;
2442 -- Returns True if N is a type_conversion whose operand is the name of an
2443 -- object and both its target type and operand type are tagged, or it
2444 -- appears in a call as an actual parameter of mode out or in out
2445 -- (RM 4.6(5/2)).
2447 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
2448 -- Check whether T is derived from a visibly controlled type. This is true
2449 -- if the root type is declared in Ada.Finalization. If T is derived
2450 -- instead from a private type whose full view is controlled, an explicit
2451 -- Initialize/Adjust/Finalize subprogram does not override the inherited
2452 -- one.
2454 function Is_Volatile_Full_Access_Object_Ref (N : Node_Id) return Boolean;
2455 -- Determine whether arbitrary node N denotes a reference to an object
2456 -- which is Volatile_Full_Access.
2458 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
2459 -- Determine whether [generic] function Func_Id is subject to enabled
2460 -- pragma Volatile_Function. Protected functions are treated as volatile
2461 -- (SPARK RM 7.1.2).
2463 function Is_Volatile_Object_Ref (N : Node_Id) return Boolean;
2464 -- Determine whether arbitrary node N denotes a reference to a volatile
2465 -- object as per RM C.6(8). Note that the test here is for something that
2466 -- is actually declared as volatile, not for an object that gets treated
2467 -- as volatile (see Einfo.Treat_As_Volatile).
2469 generic
2470 with procedure Handle_Parameter (Formal : Entity_Id; Actual : Node_Id);
2471 procedure Iterate_Call_Parameters (Call : Node_Id);
2472 -- Calls Handle_Parameter for each pair of formal and actual parameters of
2473 -- a function, procedure, or entry call.
2475 function Iterator_Interface_Ancestor (Typ : Entity_Id) return Entity_Id;
2476 -- If Typ has an ancestor that is an iterator interface type declared in
2477 -- an instance of Ada.Iterator_Interfaces, then returns that interface
2478 -- type. Otherwise returns Empty. (It's not clear what it means if there
2479 -- is more than one such ancestor, perhaps coming from multiple instances,
2480 -- but this function returns the first such ancestor it finds. ???)
2482 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
2483 -- This procedure is called to clear all constant indications from all
2484 -- entities in the current scope and in any parent scopes if the current
2485 -- scope is a block or a package (and that recursion continues to the top
2486 -- scope that is not a block or a package). This is used when the
2487 -- sequential flow-of-control assumption is violated (occurrence of a
2488 -- label, head of a loop, or start of an exception handler). The effect of
2489 -- the call is to clear the Current_Value field (but we do not need to
2490 -- clear the Is_True_Constant flag, since that only gets reset if there
2491 -- really is an assignment somewhere in the entity scope). This procedure
2492 -- also calls Kill_All_Checks, since this is a special case of needing to
2493 -- forget saved values. This procedure also clears the Is_Known_Null and
2494 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
2495 -- parameters since these are also not known to be trustable any more.
2497 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
2498 -- fields and leave other fields unchanged. This is used when we encounter
2499 -- an unconditional flow of control change (return, goto, raise). In such
2500 -- cases we don't need to clear the current values, since it may be that
2501 -- the flow of control change occurs in a conditional context, and if it
2502 -- is not taken, then it is just fine to keep the current values. But the
2503 -- Last_Assignment field is different, if we have a sequence assign-to-v,
2504 -- conditional-return, assign-to-v, we do not want to complain that the
2505 -- second assignment clobbers the first.
2507 procedure Kill_Current_Values
2508 (Ent : Entity_Id;
2509 Last_Assignment_Only : Boolean := False);
2510 -- This performs the same processing as described above for the form with
2511 -- no argument, but for the specific entity given. The call has no effect
2512 -- if the entity Ent is not for an object. Last_Assignment_Only has the
2513 -- same meaning as for the call with no Ent.
2515 procedure Kill_Size_Check_Code (E : Entity_Id);
2516 -- Called when an address clause or pragma Import is applied to an entity.
2517 -- If the entity is a variable or a constant, and size check code is
2518 -- present, this size check code is killed, since the object will not be
2519 -- allocated by the program.
2521 function Known_Non_Null (N : Node_Id) return Boolean;
2522 -- Given a node N for a subexpression of an access type, determines if
2523 -- this subexpression yields a value that is known at compile time to
2524 -- be non-null and returns True if so. Returns False otherwise. It is
2525 -- an error to call this function if N is not of an access type.
2527 function Known_Null (N : Node_Id) return Boolean;
2528 -- Given a node N for a subexpression of an access type, determines if this
2529 -- subexpression yields a value that is known at compile time to be null
2530 -- and returns True if so. Returns False otherwise. It is an error to call
2531 -- this function if N is not of an access type.
2533 function Known_To_Be_Assigned
2534 (N : Node_Id;
2535 Only_LHS : Boolean := False) return Boolean;
2536 -- The node N is an entity reference. This function determines whether the
2537 -- reference is for sure an assignment of the entity, returning True if
2538 -- so. Only_LHS will modify this behavior such that actuals for out or
2539 -- in out parameters will not be considered assigned.
2541 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
2542 -- HSS is a handled statement sequence. This function returns the last
2543 -- statement in Statements (HSS) that has Comes_From_Source set. If no
2544 -- such statement exists, Empty is returned.
2546 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
2547 -- Given a node which designates the context of analysis and an origin in
2548 -- the tree, traverse from Root_Nod and mark all allocators as either
2549 -- dynamic or static depending on Context_Nod. Any incorrect marking is
2550 -- cleaned up during resolution.
2552 procedure Mark_Elaboration_Attributes
2553 (N_Id : Node_Or_Entity_Id;
2554 Checks : Boolean := False;
2555 Level : Boolean := False;
2556 Modes : Boolean := False;
2557 Warnings : Boolean := False);
2558 -- Preserve relevant elaboration-related properties of the context in
2559 -- arbitrary entity or node N_Id. The flags control the properties as
2560 -- follows:
2562 -- Checks - Save the status of Elaboration_Check
2563 -- Level - Save the declaration level of N_Id (if applicable)
2564 -- Modes - Save the Ghost and SPARK modes in effect (if applicable)
2565 -- Warnings - Save the status of Elab_Warnings
2567 procedure Mark_Save_Invocation_Graph_Of_Body;
2568 -- Notify the body of the main unit that the invocation constructs and
2569 -- relations expressed within it must be recorded by the ABE mechanism.
2571 function Matching_Static_Array_Bounds
2572 (L_Typ : Node_Id;
2573 R_Typ : Node_Id) return Boolean;
2574 -- L_Typ and R_Typ are two array types. Returns True when they have the
2575 -- same number of dimensions, and the same static bounds for each index
2576 -- position.
2578 function Might_Raise (N : Node_Id) return Boolean;
2579 -- True if evaluation of N might raise an exception. This is conservative;
2580 -- if we're not sure, we return True. If N is a subprogram body, this is
2581 -- about whether execution of that body can raise.
2583 function Nearest_Class_Condition_Subprogram
2584 (Kind : Condition_Kind;
2585 Spec_Id : Entity_Id) return Entity_Id;
2586 -- Return the nearest ancestor containing the merged class-wide conditions
2587 -- that statically apply to Spec_Id; return Empty otherwise.
2589 function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id;
2590 -- Return the entity of the nearest enclosing instance which encapsulates
2591 -- entity E. If no such instance exits, return Empty.
2593 function Needs_Finalization (Typ : Entity_Id) return Boolean;
2594 -- True if Typ requires finalization actions
2596 function Needs_One_Actual (E : Entity_Id) return Boolean;
2597 -- Returns True if a function has defaults for all but its first formal,
2598 -- which is a controlling formal. Used in Ada 2005 mode to solve the
2599 -- syntactic ambiguity that results from an indexing of a function call
2600 -- that returns an array, so that Obj.F (X, Y) may mean F (Ob) (X, Y).
2602 function Needs_Secondary_Stack (Id : Entity_Id) return Boolean;
2603 -- Return true if functions whose result type is Id must return on the
2604 -- secondary stack, i.e. allocate the return object on this stack.
2606 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2608 function Needs_Simple_Initialization
2609 (Typ : Entity_Id;
2610 Consider_IS : Boolean := True) return Boolean;
2611 -- Certain types need initialization even though there is no specific
2612 -- initialization routine:
2613 -- Access types (which need initializing to null)
2614 -- All scalar types if Normalize_Scalars mode set
2615 -- Descendants of standard string types if Normalize_Scalars mode set
2616 -- Scalar types having a Default_Value attribute
2617 -- Regarding Initialize_Scalars mode, this is ignored if Consider_IS is
2618 -- set to False, but if Consider_IS is set to True, then the cases above
2619 -- mentioning Normalize_Scalars also apply for Initialize_Scalars mode.
2621 function Needs_Variable_Reference_Marker
2622 (N : Node_Id;
2623 Calls_OK : Boolean) return Boolean;
2624 -- Determine whether arbitrary node N denotes a reference to a variable
2625 -- which is suitable for SPARK elaboration checks. Flag Calls_OK should
2626 -- be set when the reference is allowed to appear within calls.
2628 function New_Copy_List_Tree (List : List_Id) return List_Id;
2629 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
2630 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
2631 -- nodes (entities) either directly or indirectly using this function.
2633 function New_Copy_Tree
2634 (Source : Node_Id;
2635 Map : Elist_Id := No_Elist;
2636 New_Sloc : Source_Ptr := No_Location;
2637 New_Scope : Entity_Id := Empty) return Node_Id;
2638 -- Perform a deep copy of the subtree rooted at Source. Entities, itypes,
2639 -- and nodes are handled separately as follows:
2641 -- * A node is replicated by first creating a shallow copy, then copying
2642 -- its syntactic fields, where all Parent pointers of the fields are
2643 -- updated to refer to the copy. In addition, the following semantic
2644 -- fields are recreated after the replication takes place.
2646 -- First_Named_Actual
2647 -- Next_Named_Actual
2648 -- Controlling_Argument
2650 -- If applicable, the Etype field (if any) is updated to refer to a
2651 -- local itype or type (see below).
2653 -- * An entity defined within an N_Expression_With_Actions node in the
2654 -- subtree is given a new entity, and all references to the original
2655 -- entity are updated to refer to the new entity. In addition, the
2656 -- following semantic fields are replicated and/or updated to refer
2657 -- to a local entity or itype.
2659 -- Discriminant_Constraint
2660 -- Etype
2661 -- First_Index
2662 -- Next_Entity
2663 -- Packed_Array_Impl_Type
2664 -- Scalar_Range
2665 -- Scope
2667 -- Note that currently no other expression can define entities.
2669 -- * An itype whose Associated_Node_For_Itype node is in the subtree
2670 -- is given a new entity, and all references to the original itype
2671 -- are updated to refer to the new itype. In addition, the following
2672 -- semantic fields are replicated and/or updated to refer to a local
2673 -- entity or itype.
2675 -- Discriminant_Constraint
2676 -- Etype
2677 -- First_Index
2678 -- Next_Entity
2679 -- Packed_Array_Impl_Type
2680 -- Scalar_Range
2681 -- Scope
2683 -- The Associated_Node_For_Itype is updated to refer to a replicated
2684 -- node.
2686 -- The routine can replicate both analyzed and unanalyzed trees. Copying an
2687 -- Empty or Error node yields the same node.
2689 -- Parameter Map may be used to specify a set of mappings between entities.
2690 -- These mappings are then taken into account when replicating entities.
2691 -- The format of Map must be as follows:
2693 -- old entity 1
2694 -- new entity to replace references to entity 1
2695 -- old entity 2
2696 -- new entity to replace references to entity 2
2697 -- ...
2699 -- Map and its contents are left unchanged.
2701 -- Parameter New_Sloc may be used to specify a new source location for all
2702 -- replicated entities, itypes, and nodes. The Comes_From_Source indicator
2703 -- is defaulted if a new source location is provided.
2705 -- Parameter New_Scope may be used to specify a new scope for all copied
2706 -- entities and itypes.
2708 function New_External_Entity
2709 (Kind : Entity_Kind;
2710 Scope_Id : Entity_Id;
2711 Sloc_Value : Source_Ptr;
2712 Related_Id : Entity_Id;
2713 Suffix : Character;
2714 Suffix_Index : Int := 0;
2715 Prefix : Character := ' ') return Entity_Id;
2716 -- This function creates an N_Defining_Identifier node for an internal
2717 -- created entity, such as an implicit type or subtype, or a record
2718 -- initialization procedure. The entity name is constructed with a call
2719 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
2720 -- that the generated name may be referenced as a public entry, and the
2721 -- Is_Public flag is set if needed (using Set_Public_Status). If the
2722 -- entity is for a type or subtype, the size/align fields are initialized
2723 -- to unknown (Uint_0).
2725 function New_Internal_Entity
2726 (Kind : Entity_Kind;
2727 Scope_Id : Entity_Id;
2728 Sloc_Value : Source_Ptr;
2729 Id_Char : Character) return Entity_Id;
2730 -- This function is similar to New_External_Entity, except that the
2731 -- name is constructed by New_Internal_Name (Id_Char). This is used
2732 -- when the resulting entity does not have to be referenced as a
2733 -- public entity (and in this case Is_Public is not set).
2735 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
2736 -- Find next actual parameter in declaration order. As described for
2737 -- First_Actual, this is the next actual in the declaration order, not
2738 -- the call order, so this does not correspond to simply taking the
2739 -- next entry of the Parameter_Associations list. The argument is an
2740 -- actual previously returned by a call to First_Actual or Next_Actual.
2741 -- Note that the result produced is always an expression, not a parameter
2742 -- association node, even if named notation was used.
2744 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2746 procedure Next_Actual (Actual_Id : in out Node_Id);
2747 pragma Inline (Next_Actual);
2748 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
2749 -- inline this procedural form, but not the functional form above.
2751 function Next_Global (Node : Node_Id) return Node_Id;
2752 -- Node is a global item from a list, obtained through calling First_Global
2753 -- and possibly Next_Global a number of times. Returns the next global item
2754 -- with the same mode.
2756 procedure Next_Global (Node : in out Node_Id);
2757 pragma Inline (Next_Global);
2758 -- Next_Global (N) is equivalent to N := Next_Global (N). Note that we
2759 -- inline this procedural form, but not the functional form above.
2761 function No_Caching_Enabled (Id : Entity_Id) return Boolean;
2762 -- Given any entity Id, determine whether Id is subject to volatility
2763 -- property No_Caching and if it is, the related expression evaluates
2764 -- to True.
2766 function No_Heap_Finalization (Typ : Entity_Id) return Boolean;
2767 -- Determine whether type Typ is subject to pragma No_Heap_Finalization
2769 procedure Normalize_Actuals
2770 (N : Node_Id;
2771 S : Entity_Id;
2772 Report : Boolean;
2773 Success : out Boolean);
2774 -- Reorders lists of actuals according to names of formals, value returned
2775 -- in Success indicates success of reordering. For more details, see body.
2776 -- Errors are reported only if Report is set to True.
2778 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
2779 -- This routine is called if the sub-expression N maybe the target of
2780 -- an assignment (e.g. it is the left side of an assignment, used as
2781 -- an out parameters, or used as prefixes of access attributes). It
2782 -- sets Never_Set_In_Source in the associated entity if there is one,
2783 -- taking into account the rule that in the case of renamed objects,
2784 -- it is the flag in the renamed object that must be set.
2786 -- The parameter Sure is set True if the modification is sure to occur
2787 -- (e.g. target of assignment, or out parameter), and to False if the
2788 -- modification is only potential (e.g. address of entity taken).
2790 function Null_To_Null_Address_Convert_OK
2791 (N : Node_Id;
2792 Typ : Entity_Id := Empty) return Boolean;
2793 -- Return True if we are compiling in relaxed RM semantics mode and:
2794 -- 1) N is a N_Null node and Typ is a descendant of System.Address, or
2795 -- 2) N is a comparison operator, one of the operands is null, and the
2796 -- type of the other operand is a descendant of System.Address.
2798 function Number_Of_Elements_In_Array (T : Entity_Id) return Nat;
2799 -- Returns the number of elements in the array T if the index bounds of T
2800 -- is known at compile time. If the bounds are not known at compile time,
2801 -- the function returns the value zero.
2803 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
2804 -- Retrieve the name of aspect or pragma N, taking into account a possible
2805 -- rewrite and whether the pragma is generated from an aspect as the names
2806 -- may be different. The routine also deals with 'Class in which case it
2807 -- returns the following values:
2809 -- Invariant -> Name_uInvariant
2810 -- Post'Class -> Name_uPost
2811 -- Pre'Class -> Name_uPre
2812 -- Type_Invariant -> Name_uType_Invariant
2813 -- Type_Invariant'Class -> Name_uType_Invariant
2815 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
2816 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
2817 -- or overrides an inherited dispatching primitive S2, the original
2818 -- corresponding operation of S is the original corresponding operation of
2819 -- S2. Otherwise, it is S itself.
2821 function Original_View_In_Visible_Part (Typ : Entity_Id) return Boolean;
2822 -- Returns True if the type Typ has a private view or if the public view
2823 -- appears in the visible part of a package spec.
2825 procedure Output_Entity (Id : Entity_Id);
2826 -- Print entity Id to standard output. The name of the entity appears in
2827 -- fully qualified form.
2829 -- WARNING: this routine should be used in debugging scenarios such as
2830 -- tracking down undefined symbols as it is fairly low level.
2832 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
2833 -- Print name Nam to standard output. The name appears in fully qualified
2834 -- form assuming it appears in scope Scop. Note that this may not reflect
2835 -- the final qualification as the entity which carries the name may be
2836 -- relocated to a different scope.
2838 -- WARNING: this routine should be used in debugging scenarios such as
2839 -- tracking down undefined symbols as it is fairly low level.
2841 function Param_Entity (N : Node_Id) return Entity_Id;
2842 -- Given an expression N, determines if the expression is a reference
2843 -- to a formal (of a subprogram or entry), and if so returns the Id
2844 -- of the corresponding formal entity, otherwise returns Empty. Also
2845 -- handles the case of references to renamings of formals.
2847 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2848 -- Given a policy, return the policy identifier associated with it. If no
2849 -- such policy is in effect, the value returned is No_Name.
2851 function Predicate_Enabled (Typ : Entity_Id) return Boolean;
2852 -- Return True if a predicate check should be emitted for the given type
2853 -- Typ, taking into account Predicates_Ignored and
2854 -- Predicate_Checks_Suppressed.
2856 function Predicate_Failure_Expression
2857 (Typ : Entity_Id; Inherited_OK : Boolean) return Node_Id;
2858 -- If the given type or subtype is subject to a Predicate_Failure
2859 -- aspect specification, then returns the specified expression.
2860 -- Otherwise, if Inherited_OK is False then returns Empty.
2861 -- Otherwise, if Typ denotes a subtype or a derived type then
2862 -- returns the result of recursing on the ancestor subtype.
2863 -- Otherwise, returns Empty.
2865 function Predicate_Function_Needs_Membership_Parameter (Typ : Entity_Id)
2866 return Boolean is
2867 (Present (Predicate_Failure_Expression (Typ, Inherited_OK => True)));
2868 -- The predicate function for some, but not all, subtypes needs to
2869 -- know whether the predicate is being evaluated as part of a membership
2870 -- test. The predicate function for such a subtype takes an additional
2871 -- boolean to convey this information. This function returns True if this
2872 -- additional parameter is needed. More specifically, this function
2873 -- returns true if the Predicate_Failure aspect is specified for the
2874 -- given subtype or for any of its "ancestor" subtypes.
2876 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2877 -- Subp is the entity for a subprogram call. This function returns True if
2878 -- predicate tests are required for the arguments in this call (this is the
2879 -- normal case). It returns False for special cases where these predicate
2880 -- tests should be skipped (see body for details).
2882 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2883 -- Returns True if the names of both entities correspond with matching
2884 -- primitives. This routine includes support for the case in which one
2885 -- or both entities correspond with entities built by Derive_Subprogram
2886 -- with a special name to avoid being overridden (i.e. return true in case
2887 -- of entities with names "nameP" and "name" or vice versa).
2889 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2890 -- Returns some private component (if any) of the given Type_Id.
2891 -- Used to enforce the rules on visibility of operations on composite
2892 -- types, that depend on the full view of the component type. For a
2893 -- record type there may be several such components, we just return
2894 -- the first one.
2896 procedure Process_End_Label
2897 (N : Node_Id;
2898 Typ : Character;
2899 Ent : Entity_Id);
2900 -- N is a node whose End_Label is to be processed, generating all
2901 -- appropriate cross-reference entries, and performing style checks
2902 -- for any identifier references in the end label. Typ is either
2903 -- 'e' or 't indicating the type of the cross-reference entity
2904 -- (e for spec, t for body, see Lib.Xref spec for details). The
2905 -- parameter Ent gives the entity to which the End_Label refers,
2906 -- and to which cross-references are to be generated.
2908 procedure Propagate_Concurrent_Flags
2909 (Typ : Entity_Id;
2910 Comp_Typ : Entity_Id);
2911 -- Set Has_Task, Has_Protected, and Has_Timing_Event on Typ when the flags
2912 -- are set on Comp_Typ. This follows the definition of these flags, which
2913 -- are set (recursively) on any composite type that has a component marked
2914 -- by one of these flags. This procedure can only set flags for Typ, and
2915 -- never clear them. Comp_Typ is the type of a component or a parent.
2917 procedure Propagate_Controlled_Flags
2918 (Typ : Entity_Id;
2919 From_Typ : Entity_Id;
2920 Comp : Boolean := False;
2921 Deriv : Boolean := False);
2922 -- Set Disable_Controlled, Finalize_Storage_Only, Has_Controlled_Component,
2923 -- Has_Relaxed_Finalization, and Is_Controlled_Active on Typ when the flags
2924 -- are set on From_Typ. If Comp is True, From_Typ is assumed to be the type
2925 -- of a component of Typ while, if Deriv is True, From_Typ is assumed to be
2926 -- the parent type of Typ. This procedure can only set flags for Typ, and
2927 -- never clear them.
2929 procedure Propagate_DIC_Attributes
2930 (Typ : Entity_Id;
2931 From_Typ : Entity_Id);
2932 -- Inherit all Default_Initial_Condition-related attributes from type
2933 -- From_Typ. Typ is the destination type.
2935 procedure Propagate_Invariant_Attributes
2936 (Typ : Entity_Id;
2937 From_Typ : Entity_Id);
2938 -- Inherit all invariant-related attributes from type From_Typ. Typ is the
2939 -- destination type.
2941 procedure Propagate_Predicate_Attributes
2942 (Typ : Entity_Id;
2943 From_Typ : Entity_Id);
2944 -- Inherit predicate functions and Has_Predicates flag from type From_Typ.
2945 -- Typ is the destination type.
2947 procedure Record_Possible_Part_Of_Reference
2948 (Var_Id : Entity_Id;
2949 Ref : Node_Id);
2950 -- Save reference Ref to variable Var_Id when the variable is subject to
2951 -- pragma Part_Of. If the variable is known to be a constituent of a single
2952 -- protected/task type, the legality of the reference is verified and the
2953 -- save does not take place.
2955 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
2956 -- Determine whether entity Id is referenced within expression Expr
2958 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
2959 -- Returns True if the expression Expr contains any references to a generic
2960 -- type. This can only happen within a generic template.
2962 procedure Remove_Entity_And_Homonym (Id : Entity_Id);
2963 -- Remove arbitrary entity Id from both the homonym and scope chains. Use
2964 -- Remove_Overloaded_Entity for overloadable entities. Note: the removal
2965 -- performed by this routine does not affect the visibility of existing
2966 -- homonyms.
2968 procedure Remove_Homonym (Id : Entity_Id);
2969 -- Removes entity Id from the homonym chain
2971 procedure Remove_Overloaded_Entity (Id : Entity_Id);
2972 -- Remove arbitrary entity Id from the homonym chain, the scope chain and
2973 -- the primitive operations list of the associated controlling type. Use
2974 -- Remove_Entity for non-overloadable entities. Note: the removal performed
2975 -- by this routine does not affect the visibility of existing homonyms.
2977 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
2978 -- Returns the name of E without Suffix
2980 procedure Replace_Null_By_Null_Address (N : Node_Id);
2981 -- N is N_Null or a binary comparison operator, we are compiling in relaxed
2982 -- RM semantics mode, and one of the operands is null. Replace null with
2983 -- System.Null_Address.
2985 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
2986 -- This is used to construct the second argument in a call to Rep_To_Pos
2987 -- which is True if range checks are enabled (E is an entity to which the
2988 -- Range_Checks_Suppressed test is applied), and False if range checks are
2989 -- suppressed. Loc is the location for the node that is returned (which is
2990 -- a New_Occurrence of the appropriate entity).
2992 -- Note: one might think that it would be fine to always use True and to
2993 -- ignore the suppress in this case, but there is at least one case in the
2994 -- generated code (the code for array assignment in a loop) that depends on
2995 -- this suppression. Anyway, it is generally better to believe a request to
2996 -- suppress exceptions if possible.
2998 procedure Require_Entity (N : Node_Id);
2999 -- N is a node which should have an entity value if it is an entity name.
3000 -- If not, then check if there were previous errors. If so, just fill
3001 -- in with Any_Id and ignore. Otherwise signal a program error exception.
3002 -- This is used as a defense mechanism against ill-formed trees caused by
3003 -- previous errors (particularly in -gnatq mode).
3005 function Requires_Transient_Scope (Typ : Entity_Id) return Boolean;
3006 pragma Inline (Requires_Transient_Scope);
3007 -- Return true if temporaries of Typ need to be wrapped in a transient
3008 -- scope, either because they are allocated on the secondary stack or
3009 -- finalization actions must be generated before the next instruction.
3010 -- Examples of types requiring such wrapping are variable-sized types,
3011 -- including unconstrained arrays, and controlled types.
3013 procedure Reset_Analyzed_Flags (N : Node_Id);
3014 -- Reset the Analyzed flags in all nodes of the tree whose root is N
3016 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
3017 -- Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This
3018 -- routine must be used in tandem with Set_SPARK_Mode.
3020 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
3021 -- Return true if Subp is a function that returns an unconstrained type
3023 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
3024 -- Similar to attribute Root_Type, but this version always follows the
3025 -- Full_View of a private type (if available) while searching for the
3026 -- ultimate derivation ancestor.
3028 function Safe_To_Capture_Value
3029 (N : Node_Id;
3030 Ent : Entity_Id;
3031 Cond : Boolean := False) return Boolean;
3032 -- The caller is interested in capturing a value (either the current
3033 -- value, an indication that the value is [non-]null or an indication that
3034 -- the value is valid) for the given entity Ent. This value can only be
3035 -- captured if sequential execution semantics can be properly guaranteed so
3036 -- that a subsequent reference will indeed be sure that this current value
3037 -- indication is correct. The node N is the construct that resulted in the
3038 -- possible capture of the value (this is used to check if we are in a
3039 -- conditional).
3041 -- Cond is used to skip the test for being inside a conditional. It is used
3042 -- in the case of capturing values from if/while tests, which already do a
3043 -- proper job of handling scoping issues without this help.
3045 -- The only entities whose values can be captured are OUT and IN OUT formal
3046 -- parameters, and variables unless Cond is True, in which case we also
3047 -- allow IN formals, loop parameters and constants, where we cannot ever
3048 -- capture actual value information, but we can capture conditional tests.
3050 function Same_Name (N1, N2 : Node_Id) return Boolean;
3051 -- Determine if two (possibly expanded) names are the same name. This is
3052 -- a purely syntactic test, and N1 and N2 need not be analyzed.
3054 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
3055 -- Determine if Node1 and Node2 are known to designate the same object.
3056 -- This is a semantic test and both nodes must be fully analyzed. A result
3057 -- of True is decisively correct. A result of False does not necessarily
3058 -- mean that different objects are designated, just that this could not
3059 -- be reliably determined at compile time.
3061 function Same_Or_Aliased_Subprograms
3062 (S : Entity_Id;
3063 E : Entity_Id) return Boolean;
3064 -- Returns True if the subprogram entity S is the same as E or else S is an
3065 -- alias of E.
3067 function Same_Type (T1, T2 : Entity_Id) return Boolean;
3068 -- Determines if T1 and T2 represent exactly the same type. Two types
3069 -- are the same if they are identical, or if one is an unconstrained
3070 -- subtype of the other, or they are both common subtypes of the same
3071 -- type with identical constraints. The result returned is conservative.
3072 -- It is True if the types are known to be the same, but a result of
3073 -- False is indecisive (e.g. the compiler may not be able to tell that
3074 -- two constraints are identical).
3076 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
3077 -- Determines if Node1 and Node2 are known to be the same value, which is
3078 -- true if they are both compile time known values and have the same value,
3079 -- or if they are the same object (in the sense of function Same_Object).
3080 -- A result of False does not necessarily mean they have different values,
3081 -- just that it is not possible to determine they have the same value.
3083 function Scalar_Part_Present (Typ : Entity_Id) return Boolean;
3084 -- Determine whether arbitrary type Typ is a scalar type, or contains at
3085 -- least one scalar subcomponent.
3087 function Scope_Within
3088 (Inner : Entity_Id;
3089 Outer : Entity_Id) return Boolean;
3090 -- Determine whether scope Inner appears within scope Outer. Note that
3091 -- scopes are partially ordered, so Scope_Within (A, B) and Scope_Within
3092 -- (B, A) may both return False.
3094 function Scope_Within_Or_Same
3095 (Inner : Entity_Id;
3096 Outer : Entity_Id) return Boolean;
3097 -- Determine whether scope Inner appears within scope Outer or both denote
3098 -- the same scope. Note that scopes are partially ordered, so Scope_Within
3099 -- (A, B) and Scope_Within (B, A) may both return False.
3101 procedure Set_Current_Entity (E : Entity_Id);
3102 pragma Inline (Set_Current_Entity);
3103 -- Establish the entity E as the currently visible definition of its
3104 -- associated name (i.e. the Node_Id associated with its name).
3106 procedure Set_Debug_Info_Defining_Id (N : Node_Id);
3107 -- Call Set_Debug_Info_Needed on Defining_Identifier (N) if it comes from
3108 -- source or we are in -gnatD mode, where we are debugging generated code.
3110 procedure Set_Debug_Info_Needed (T : Entity_Id);
3111 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
3112 -- that are needed by T (for an object, the type of the object is needed,
3113 -- and for a type, various subsidiary types are needed -- see body for
3114 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
3115 -- This routine should always be used instead of Set_Needs_Debug_Info to
3116 -- ensure that subsidiary entities are properly handled.
3118 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
3119 -- This procedure has the same calling sequence as Set_Entity, but it
3120 -- performs additional checks as follows:
3122 -- If Style_Check is set, then it calls a style checking routine that
3123 -- can check identifier spelling style.
3125 -- If restriction No_Abort_Statements is set, then it checks that the
3126 -- entity is not Ada.Task_Identification.Abort_Task.
3128 -- If restriction No_Dynamic_Attachment is set, then it checks that the
3129 -- entity is not one of the restricted names for this restriction.
3131 -- If restriction No_Long_Long_Integers is set, then it checks that the
3132 -- entity is not Standard.Long_Long_Integer.
3134 -- If restriction No_Implementation_Identifiers is set, then it checks
3135 -- that the entity is not implementation defined.
3137 procedure Set_Invalid_Scalar_Value
3138 (Scal_Typ : Float_Scalar_Id;
3139 Value : Ureal);
3140 -- Associate invalid value Value with scalar type Scal_Typ as specified by
3141 -- pragma Initialize_Scalars.
3143 procedure Set_Invalid_Scalar_Value
3144 (Scal_Typ : Integer_Scalar_Id;
3145 Value : Uint);
3146 -- Associate invalid value Value with scalar type Scal_Typ as specified by
3147 -- pragma Initialize_Scalars.
3149 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
3150 pragma Inline (Set_Name_Entity_Id);
3151 -- Sets the Entity_Id value associated with the given name, which is the
3152 -- Id of the innermost visible entity with the given name. See the body
3153 -- of package Sem_Ch8 for further details on the handling of visibility.
3155 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
3156 -- The arguments may be parameter associations, whose descendants
3157 -- are the optional formal name and the actual parameter. Positional
3158 -- parameters are already members of a list, and do not need to be
3159 -- chained separately. See also First_Actual and Next_Actual.
3161 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
3162 pragma Inline (Set_Optimize_Alignment_Flags);
3163 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
3165 procedure Set_Public_Status (Id : Entity_Id);
3166 -- If an entity (visible or otherwise) is defined in a library
3167 -- package, or a package that is itself public, then this subprogram
3168 -- labels the entity public as well.
3170 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
3171 -- N is the node for either a left hand side (Out_Param set to False),
3172 -- or an Out or In_Out parameter (Out_Param set to True). If there is
3173 -- an assignable entity being referenced, then the appropriate flag
3174 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
3175 -- if Out_Param is True) is set True, and the other flag set False.
3177 procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id);
3178 pragma Inline (Set_Rep_Info);
3179 -- Copies the Is_Atomic, Is_Independent and Is_Volatile_Full_Access flags
3180 -- from sub(type) entity T2 to (sub)type entity T1, as well as Is_Volatile
3181 -- if T1 is a base type.
3183 procedure Set_Size_Info (T1, T2 : Entity_Id);
3184 pragma Inline (Set_Size_Info);
3185 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
3186 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
3187 -- in the fixed-point and discrete cases, and also copies the alignment
3188 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
3189 -- separately set if this is required to be copied also.
3191 procedure Set_SPARK_Mode (Context : Entity_Id);
3192 -- Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or
3193 -- a subprogram denoted by Context. This routine must be used in tandem
3194 -- with Restore_SPARK_Mode.
3196 function Scope_Is_Transient return Boolean;
3197 -- True if the current scope is transient
3199 function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean;
3200 function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean;
3201 -- True if we should ignore pragmas with the specified name. In particular,
3202 -- this returns True if pragma Ignore_Pragma applies, and we are not in a
3203 -- predefined unit. The _Par version should be called only from the parser;
3204 -- the _Sem version should be called only during semantic analysis.
3206 function Static_Boolean (N : Node_Id) return Opt_Ubool;
3207 -- This function analyzes the given expression node and then resolves it
3208 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
3209 -- returned corresponding to the value, otherwise an error message is
3210 -- output and No_Uint is returned.
3212 function Static_Integer (N : Node_Id) return Uint;
3213 -- This function analyzes the given expression node and then resolves it
3214 -- as any integer type. If the result is static, then the value of the
3215 -- universal expression is returned, otherwise an error message is output
3216 -- and a value of No_Uint is returned.
3218 function Statically_Denotes_Entity (N : Node_Id) return Boolean;
3219 -- Return True iff N is a name that "statically denotes" an entity.
3221 function Statically_Denotes_Object (N : Node_Id) return Boolean;
3222 -- Return True iff N is a name that "statically denotes" an object.
3224 function Statically_Different (E1, E2 : Node_Id) return Boolean;
3225 -- Return True if it can be statically determined that the Expressions
3226 -- E1 and E2 refer to different objects
3228 function Statically_Names_Object (N : Node_Id) return Boolean;
3229 -- Return True iff N is a name that "statically names" an object.
3231 function String_From_Numeric_Literal (N : Node_Id) return String_Id;
3232 -- Return the string that corresponds to the numeric literal N as it
3233 -- appears in the source.
3235 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
3236 -- Determine whether node N is a loop statement subject to at least one
3237 -- 'Loop_Entry attribute.
3239 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
3240 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
3241 -- Typ is properly sized and aligned).
3243 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
3244 -- Print debugging information on entry to each unit being analyzed
3246 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
3247 -- Move a list of entities from one scope to another, and recompute
3248 -- Is_Public based upon the new scope.
3250 generic
3251 with function Process (N : Node_Id) return Traverse_Result is <>;
3252 Process_Itypes : Boolean := False;
3253 function Traverse_More_Func (Node : Node_Id) return Traverse_Final_Result;
3254 -- This is a version of Atree.Traverse_Func that not only traverses
3255 -- syntactic children of nodes, but also semantic children which are
3256 -- logically children of the node. This concerns currently lists of
3257 -- action nodes and ranges under Itypes, both inserted by the compiler.
3258 -- Itypes are only traversed when Process_Itypes is True.
3260 generic
3261 with function Process (N : Node_Id) return Traverse_Result is <>;
3262 Process_Itypes : Boolean := False;
3263 procedure Traverse_More_Proc (Node : Node_Id);
3264 pragma Inline (Traverse_More_Proc);
3265 -- This is the same as Traverse_More_Func except that no result is
3266 -- returned, i.e. Traverse_More_Func is called and the result is simply
3267 -- discarded.
3269 function Type_Without_Stream_Operation
3270 (T : Entity_Id;
3271 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
3272 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
3273 -- is active then we cannot generate stream subprograms for composite types
3274 -- with elementary subcomponents that lack user-defined stream subprograms.
3275 -- This predicate determines whether a type has such an elementary
3276 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
3277 -- prevents the construction of a composite stream operation. If Op is
3278 -- specified we check only for the given stream operation.
3280 function Ultimate_Overlaid_Entity (E : Entity_Id) return Entity_Id;
3281 -- If entity E is overlaying some other entity via an Address clause (which
3282 -- possibly overlays yet another entity via its own Address clause), then
3283 -- return the ultimate overlaid entity. If entity E is not overlaying any
3284 -- other entity (or the overlaid entity cannot be determined statically),
3285 -- then return Empty.
3287 -- Subsidiary to the analysis of object overlays in SPARK.
3289 function Ultimate_Prefix (N : Node_Id) return Node_Id;
3290 -- Obtain the "outermost" prefix of arbitrary node N. Return N if no such
3291 -- prefix exists.
3293 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
3294 -- Return the entity that represents declaration N, so that different
3295 -- views of the same entity have the same unique defining entity:
3296 -- * private view and full view of a deferred constant
3297 -- --> full view
3298 -- * entry spec and entry body
3299 -- --> entry spec
3300 -- * formal parameter on spec and body
3301 -- --> formal parameter on spec
3302 -- * package spec, body, and body stub
3303 -- --> package spec
3304 -- * protected type, protected body, and protected body stub
3305 -- --> protected type (full view if private)
3306 -- * subprogram spec, body, and body stub
3307 -- --> subprogram spec
3308 -- * task type, task body, and task body stub
3309 -- --> task type (full view if private)
3310 -- * private or incomplete view and full view of a type
3311 -- --> full view
3312 -- In other cases, return the defining entity for N.
3314 function Unique_Entity (E : Entity_Id) return Entity_Id;
3315 -- Return the unique entity for entity E, which would be returned by
3316 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
3318 function Unique_Name (E : Entity_Id) return String;
3319 -- Return a unique name for entity E, which could be used to identify E
3320 -- across compilation units.
3322 Child_Prefix : constant String := "ada___";
3323 -- Prefix for child packages when building a unique name for an entity. It
3324 -- is included here to share between Unique_Name and gnatprove.
3326 function Unit_Is_Visible (U : Entity_Id) return Boolean;
3327 -- Determine whether a compilation unit is visible in the current context,
3328 -- because there is a with_clause that makes the unit available. Used to
3329 -- provide better messages on common visiblity errors on operators.
3331 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
3332 -- Yields Universal_Integer or Universal_Real if this is a candidate
3334 function Unqualify (Expr : Node_Id) return Node_Id;
3335 pragma Inline (Unqualify);
3336 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
3337 -- returns X. If Expr is not a qualified expression, returns Expr.
3339 function Unqual_Conv (Expr : Node_Id) return Node_Id;
3340 pragma Inline (Unqual_Conv);
3341 -- Similar to Unqualify, but removes qualified expressions, type
3342 -- conversions, and unchecked conversions.
3344 function Validated_View (Typ : Entity_Id) return Entity_Id;
3345 -- Obtain the "validated view" of arbitrary type Typ which is suitable for
3346 -- verification by attribute 'Valid_Scalars. This view is the type itself
3347 -- or its full view or nonlimited view, while stripping away concurrency,
3348 -- derivations, and privacy.
3350 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
3351 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
3352 -- of a type extension or private extension declaration. If the full-view
3353 -- of private parents and progenitors is available then it is used to
3354 -- generate the list of visible ancestors; otherwise their partial
3355 -- view is added to the resulting list.
3357 function Within_Init_Proc return Boolean;
3358 -- Determines if Current_Scope is within an init proc
3360 function Within_Protected_Type (E : Entity_Id) return Boolean;
3361 -- Returns True if entity E is declared within a protected type
3363 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
3364 -- Returns True if entity E is declared within scope S
3366 procedure Warn_On_Hiding_Entity
3367 (N : Node_Id;
3368 Hidden, Visible : Entity_Id;
3369 On_Use_Clause : Boolean);
3370 -- Warn on hiding of an entity, either because a new declaration hides
3371 -- an entity directly visible or potentially visible through a use_clause
3372 -- (On_Use_Clause = False), or because the entity would be potentially
3373 -- visible through a use_clause if it was now hidden by a visible
3374 -- declaration (On_Use_Clause = True). N is the node on which the warning
3375 -- is potentially issued: it is the visible entity in the former case, and
3376 -- the use_clause in the latter case.
3378 procedure Wrong_Type
3379 (Expr : Node_Id;
3380 Expected_Type : Entity_Id;
3381 Multiple : Boolean := False);
3382 -- Output error message for incorrectly typed expression. Expr is the node
3383 -- for the incorrectly typed construct (Etype (Expr) is the type found),
3384 -- and Expected_Type is the entity for the expected type. Note that Expr
3385 -- does not have to be a subexpression, anything with an Etype field may
3386 -- be used. If Multiple is False, do not output the message if an error
3387 -- has already been posted for Expr.
3389 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
3390 -- Determine whether type Typ "yields synchronized object" as specified by
3391 -- SPARK RM 9.1. To qualify as such, a type must be
3392 -- * An array type whose element type yields a synchronized object
3393 -- * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
3394 -- * A protected type
3395 -- * A record type or type extension without defaulted discriminants
3396 -- whose components are of a type that yields a synchronized object.
3397 -- * A synchronized interface type
3398 -- * A task type
3400 function Yields_Universal_Type (N : Node_Id) return Boolean;
3401 -- Determine whether unanalyzed node N yields a universal type
3403 procedure Preanalyze_And_Resolve_Without_Errors (N : Node_Id);
3404 -- Preanalyze and resolve N without reporting errors
3406 procedure Preanalyze_Without_Errors (N : Node_Id);
3407 -- Preanalyze N without reporting errors
3409 package Interval_Lists is
3410 type Discrete_Interval is
3411 record
3412 Low, High : Uint;
3413 end record;
3415 type Discrete_Interval_List is
3416 array (Pos range <>) of Discrete_Interval;
3417 -- A sorted (in ascending order) list of non-empty pairwise-disjoint
3418 -- intervals, always with a gap of at least one value between
3419 -- successive intervals (i.e., mergeable intervals are merged).
3420 -- Low bound is one; high bound is nonnegative.
3422 function Aggregate_Intervals (N : Node_Id) return Discrete_Interval_List;
3423 -- Given an array aggregate N, returns the (unique) interval list
3424 -- representing the values of the aggregate choices; if all the array
3425 -- components are covered by the others choice then the length of the
3426 -- result is zero.
3428 function Choice_List_Intervals
3429 (Discrete_Choices : List_Id) return Discrete_Interval_List;
3430 -- Given a discrete choice list, returns the (unique) interval
3431 -- list representing the chosen values.
3433 function Type_Intervals (Typ : Entity_Id) return Discrete_Interval_List;
3434 -- Given a static discrete type or subtype, returns the (unique)
3435 -- interval list representing the values of the type/subtype.
3436 -- If no static predicates are involved, the length of the result
3437 -- will be at most one.
3439 function Is_Subset (Subset, Of_Set : Discrete_Interval_List)
3440 return Boolean;
3441 -- Returns True iff every value belonging to some interval of
3442 -- Subset also belongs to some interval of Of_Set.
3444 -- When we get around to implementing "is statically compatible"
3445 -- correctly for real types with static predicates, we may need
3446 -- an analogous Real_Interval_List type. Most of the language
3447 -- rules that reference "is statically compatible" pertain to
3448 -- discriminants and therefore do not require support for real types;
3449 -- the exception is 12.5.1(8).
3451 Intervals_Error : exception;
3452 -- Raised when the list of non-empty pair-wise disjoint intervals cannot
3453 -- be built.
3454 end Interval_Lists;
3456 package Old_Attr_Util is
3457 -- Operations related to 'Old attribute evaluation. This
3458 -- includes cases where a level of indirection is needed due to
3459 -- conditional evaluation as well as support for the
3460 -- "known on entry" rules.
3462 package Conditional_Evaluation is
3463 function Eligible_For_Conditional_Evaluation
3464 (Expr : Node_Id) return Boolean;
3465 -- Given a subexpression of a Postcondition expression
3466 -- (typically a 'Old attribute reference), returns True if
3467 -- - the expression is conditionally evaluated; and
3468 -- - its determining expressions are all known on entry; and
3469 -- - Ada_Version >= Ada_2022.
3470 -- See RM 6.1.1 for definitions of these terms.
3472 -- Also returns True if Expr is of an anonymous access type;
3473 -- this is just because we want the code that knows how to build
3474 -- 'Old temps in that case to reside in only one place.
3476 function Conditional_Evaluation_Condition
3477 (Expr : Node_Id) return Node_Id;
3478 -- Given an expression which is eligible for conditional evaluation,
3479 -- build a Boolean expression whose value indicates whether the
3480 -- expression should be evaluated.
3481 end Conditional_Evaluation;
3483 package Indirect_Temps is
3484 generic
3485 with procedure Append_Item (N : Node_Id; Is_Eval_Stmt : Boolean);
3486 -- If Is_Eval_Stmt is True, then N is a statement that should
3487 -- only be executed in the case where the 'Old prefix is to be
3488 -- evaluated. If Is_Eval_Stmt is False, then N is a declaration
3489 -- which should be elaborated unconditionally.
3490 -- Client is responsible for ensuring that any appended
3491 -- Eval_Stmt nodes are eventually analyzed.
3493 Append_Decls_In_Reverse_Order : Boolean := False;
3494 -- This parameter is for the convenience of exp_prag.adb, where we
3495 -- want to Prepend rather than Append so it is better to get the
3496 -- Append calls in reverse order.
3498 procedure Declare_Indirect_Temp
3499 (Attr_Prefix : Node_Id; -- prefix of 'Old attribute (or similar?)
3500 Indirect_Temp : out Entity_Id);
3501 -- Indirect_Temp is of an access type; it is unconditionally
3502 -- declared but only conditionally initialized to reference the
3503 -- saved value of Attr_Prefix.
3505 function Indirect_Temp_Needed (Typ : Entity_Id) return Boolean;
3506 -- Returns True for a specific tagged type because the temp must
3507 -- be of the class-wide type in order to preserve the underlying tag.
3509 -- Also returns True in the case of an anonymous access type
3510 -- because we want the code that knows how to deal with
3511 -- this case to reside in only one place.
3513 -- For an unconstrained-but-definite discriminated subtype, returns
3514 -- True if the potential difference in size between an
3515 -- unconstrained object and a constrained object is large.
3516 -- [This part is not implemented yet.]
3518 -- Otherwise, returns False if a declaration of the form
3519 -- Temp : Typ;
3520 -- is legal and side-effect-free (assuming that default
3521 -- initialization is suppressed). For example, returns True if Typ is
3522 -- indefinite, or if Typ has a controlled part.
3525 function Indirect_Temp_Value
3526 (Temp : Entity_Id;
3527 Typ : Entity_Id;
3528 Loc : Source_Ptr) return Node_Id;
3529 -- Evaluate a temp declared by Declare_Indirect_Temp.
3531 function Is_Access_Type_For_Indirect_Temp
3532 (T : Entity_Id) return Boolean;
3533 -- True for an access type that was declared via a call
3534 -- to Declare_Indirect_Temp.
3535 -- Indicates that the given access type should be treated
3536 -- the same with respect to finalization as a
3537 -- user-defined "comes from source" access type.
3539 end Indirect_Temps;
3540 end Old_Attr_Util;
3542 package Storage_Model_Support is
3544 -- This package provides a set of utility functions related to support
3545 -- for the Storage_Model feature. These functions provide an interface
3546 -- that the compiler (in particular back-end phases such as gigi and
3547 -- GNAT-LLVM) can use to easily obtain entities and operations that
3548 -- are specified for types that have aspects Storage_Model_Type or
3549 -- Designated_Storage_Model.
3551 function Has_Storage_Model_Type_Aspect (Typ : Entity_Id) return Boolean;
3552 -- Returns True iff Typ specifies aspect Storage_Model_Type
3554 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3556 function Has_Designated_Storage_Model_Aspect
3557 (Typ : Entity_Id) return Boolean;
3558 -- Returns True iff Typ specifies aspect Designated_Storage_Model
3560 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3562 function Storage_Model_Object (Typ : Entity_Id) return Entity_Id;
3563 -- Given an access type Typ with aspect Designated_Storage_Model,
3564 -- returns the storage-model object associated with that type.
3565 -- The object Entity_Ids returned by this function can be passed
3566 -- other functions declared in this interface to retrieve operations
3567 -- associated with Storage_Model_Type aspect of the object's type.
3569 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3571 function Storage_Model_Type (Obj : Entity_Id) return Entity_Id;
3572 -- Given an object Obj of a type specifying aspect Storage_Model_Type,
3573 -- returns that type.
3575 function Get_Storage_Model_Type_Entity
3576 (SM_Obj_Or_Type : Entity_Id;
3577 Nam : Name_Id) return Entity_Id;
3578 -- Given a type with aspect Storage_Model_Type or an object of such a
3579 -- type, and Nam denoting the name of one of the argument kinds allowed
3580 -- for that aspect, returns the Entity_Id corresponding to the entity
3581 -- associated with Nam in the aspect. If an entity was not explicitly
3582 -- specified for Nam, then returns Empty, except that in the defaulted
3583 -- Address_Type case, System.Address will be returned, and in the
3584 -- defaulted Null_Address case, System.Null_Address will be returned.
3585 -- (Note: This function is modeled on Get_Iterable_Type_Primitive.)
3587 function Storage_Model_Address_Type
3588 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3589 -- Given a type with aspect Storage_Model_Type or an object of such a
3590 -- type, returns the type specified for the Address_Type choice in that
3591 -- aspect; returns type System.Address if the address type was not
3592 -- explicitly specified (indicating use of the native memory model).
3594 function Storage_Model_Null_Address
3595 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3596 -- Given a type with aspect Storage_Model_Type or an object of such a
3597 -- type, returns the constant specified for the Null_Address choice in
3598 -- that aspect; returns Empty if the constant object isn't specified,
3599 -- unless the native memory model is in use (System.Address), in which
3600 -- case it returns System.Null_Address.
3602 function Storage_Model_Allocate
3603 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3604 -- Given a type with aspect Storage_Model_Type or an object of such a
3605 -- type, returns the procedure specified for the Allocate choice in that
3606 -- aspect; returns Empty if the procedure isn't specified.
3608 function Storage_Model_Deallocate
3609 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3610 -- Given a type with aspect Storage_Model_Type or an object of such a
3611 -- type, returns the procedure specified for the Deallocate choice in
3612 -- that aspect; returns Empty if the procedure isn't specified.
3614 function Storage_Model_Copy_From
3615 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3616 -- Given a type with aspect Storage_Model_Type or an object of such a
3617 -- type, returns the procedure specified for the Copy_From choice in
3618 -- that aspect; returns Empty if the procedure isn't specified.
3620 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3622 function Storage_Model_Copy_To
3623 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3624 -- Given a type with aspect Storage_Model_Type or an object of such a
3625 -- type, returns the procedure specified for the Copy_To choice in that
3626 -- aspect; returns Empty if the procedure isn't specified.
3628 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3630 function Storage_Model_Storage_Size
3631 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3632 -- Given a type with aspect Storage_Model_Type or an object of such a
3633 -- type, returns the function specified for the Storage_Size choice in
3634 -- that aspect; returns Empty if the procedure isn't specified.
3636 end Storage_Model_Support;
3638 end Sem_Util;