Fix compilation failure with C++98 compilers
[official-gcc.git] / gcc / ada / exp_ch6.adb
blob076e0c28e506ef2e7ec65ef1888637190da274fe
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Aspects; use Aspects;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Elists; use Elists;
34 with Expander; use Expander;
35 with Exp_Aggr; use Exp_Aggr;
36 with Exp_Atag; use Exp_Atag;
37 with Exp_Ch2; use Exp_Ch2;
38 with Exp_Ch3; use Exp_Ch3;
39 with Exp_Ch7; use Exp_Ch7;
40 with Exp_Ch9; use Exp_Ch9;
41 with Exp_Dbug; use Exp_Dbug;
42 with Exp_Disp; use Exp_Disp;
43 with Exp_Dist; use Exp_Dist;
44 with Exp_Intr; use Exp_Intr;
45 with Exp_Pakd; use Exp_Pakd;
46 with Exp_Tss; use Exp_Tss;
47 with Exp_Util; use Exp_Util;
48 with Freeze; use Freeze;
49 with Inline; use Inline;
50 with Itypes; use Itypes;
51 with Lib; use Lib;
52 with Namet; use Namet;
53 with Nlists; use Nlists;
54 with Nmake; use Nmake;
55 with Opt; use Opt;
56 with Restrict; use Restrict;
57 with Rident; use Rident;
58 with Rtsfind; use Rtsfind;
59 with Sem; use Sem;
60 with Sem_Aux; use Sem_Aux;
61 with Sem_Ch6; use Sem_Ch6;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch12; use Sem_Ch12;
64 with Sem_Ch13; use Sem_Ch13;
65 with Sem_Dim; use Sem_Dim;
66 with Sem_Disp; use Sem_Disp;
67 with Sem_Dist; use Sem_Dist;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Mech; use Sem_Mech;
70 with Sem_Res; use Sem_Res;
71 with Sem_SCIL; use Sem_SCIL;
72 with Sem_Util; use Sem_Util;
73 with Sinfo; use Sinfo;
74 with Snames; use Snames;
75 with Stand; use Stand;
76 with Tbuild; use Tbuild;
77 with Uintp; use Uintp;
78 with Validsw; use Validsw;
80 package body Exp_Ch6 is
82 -----------------------
83 -- Local Subprograms --
84 -----------------------
86 procedure Add_Access_Actual_To_Build_In_Place_Call
87 (Function_Call : Node_Id;
88 Function_Id : Entity_Id;
89 Return_Object : Node_Id;
90 Is_Access : Boolean := False);
91 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
92 -- object name given by Return_Object and add the attribute to the end of
93 -- the actual parameter list associated with the build-in-place function
94 -- call denoted by Function_Call. However, if Is_Access is True, then
95 -- Return_Object is already an access expression, in which case it's passed
96 -- along directly to the build-in-place function. Finally, if Return_Object
97 -- is empty, then pass a null literal as the actual.
99 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
100 (Function_Call : Node_Id;
101 Function_Id : Entity_Id;
102 Alloc_Form : BIP_Allocation_Form := Unspecified;
103 Alloc_Form_Exp : Node_Id := Empty;
104 Pool_Actual : Node_Id := Make_Null (No_Location));
105 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
106 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
107 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
108 -- otherwise pass a literal corresponding to the Alloc_Form parameter
109 -- (which must not be Unspecified in that case). Pool_Actual is the
110 -- parameter to pass to BIP_Storage_Pool.
112 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
113 (Func_Call : Node_Id;
114 Func_Id : Entity_Id;
115 Ptr_Typ : Entity_Id := Empty;
116 Master_Exp : Node_Id := Empty);
117 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
118 -- finalization actions, add an actual parameter which is a pointer to the
119 -- finalization master of the caller. If Master_Exp is not Empty, then that
120 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
121 -- will result in an automatic "null" value for the actual.
123 procedure Add_Task_Actuals_To_Build_In_Place_Call
124 (Function_Call : Node_Id;
125 Function_Id : Entity_Id;
126 Master_Actual : Node_Id;
127 Chain : Node_Id := Empty);
128 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
129 -- contains tasks, add two actual parameters: the master, and a pointer to
130 -- the caller's activation chain. Master_Actual is the actual parameter
131 -- expression to pass for the master. In most cases, this is the current
132 -- master (_master). The two exceptions are: If the function call is the
133 -- initialization expression for an allocator, we pass the master of the
134 -- access type. If the function call is the initialization expression for a
135 -- return object, we pass along the master passed in by the caller. In most
136 -- contexts, the activation chain to pass is the local one, which is
137 -- indicated by No (Chain). However, in an allocator, the caller passes in
138 -- the activation Chain. Note: Master_Actual can be Empty, but only if
139 -- there are no tasks.
141 function Caller_Known_Size
142 (Func_Call : Node_Id;
143 Result_Subt : Entity_Id) return Boolean;
144 -- True if result subtype is definite, or has a size that does not require
145 -- secondary stack usage (i.e. no variant part or components whose type
146 -- depends on discriminants). In particular, untagged types with only
147 -- access discriminants do not require secondary stack use. Note we must
148 -- always use the secondary stack for dispatching-on-result calls.
150 procedure Check_Overriding_Operation (Subp : Entity_Id);
151 -- Subp is a dispatching operation. Check whether it may override an
152 -- inherited private operation, in which case its DT entry is that of
153 -- the hidden operation, not the one it may have received earlier.
154 -- This must be done before emitting the code to set the corresponding
155 -- DT to the address of the subprogram. The actual placement of Subp in
156 -- the proper place in the list of primitive operations is done in
157 -- Declare_Inherited_Private_Subprograms, which also has to deal with
158 -- implicit operations. This duplication is unavoidable for now???
160 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
161 -- This procedure is called only if the subprogram body N, whose spec
162 -- has the given entity Spec, contains a parameterless recursive call.
163 -- It attempts to generate runtime code to detect if this a case of
164 -- infinite recursion.
166 -- The body is scanned to determine dependencies. If the only external
167 -- dependencies are on a small set of scalar variables, then the values
168 -- of these variables are captured on entry to the subprogram, and if
169 -- the values are not changed for the call, we know immediately that
170 -- we have an infinite recursion.
172 procedure Expand_Actuals
173 (N : Node_Id;
174 Subp : Entity_Id;
175 Post_Call : out List_Id);
176 -- Return a list of actions to take place after the call in Post_Call. The
177 -- call will later be rewritten as an Expression_With_Actions, with the
178 -- Post_Call actions inserted, and the call inside.
180 -- For each actual of an in-out or out parameter which is a numeric (view)
181 -- conversion of the form T (A), where A denotes a variable, we insert the
182 -- declaration:
184 -- Temp : T[ := T (A)];
186 -- prior to the call. Then we replace the actual with a reference to Temp,
187 -- and append the assignment:
189 -- A := TypeA (Temp);
191 -- after the call. Here TypeA is the actual type of variable A. For out
192 -- parameters, the initial declaration has no expression. If A is not an
193 -- entity name, we generate instead:
195 -- Var : TypeA renames A;
196 -- Temp : T := Var; -- omitting expression for out parameter.
197 -- ...
198 -- Var := TypeA (Temp);
200 -- For other in-out parameters, we emit the required constraint checks
201 -- before and/or after the call.
203 -- For all parameter modes, actuals that denote components and slices of
204 -- packed arrays are expanded into suitable temporaries.
206 -- For non-scalar objects that are possibly unaligned, add call by copy
207 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
209 -- For OUT and IN OUT parameters, add predicate checks after the call
210 -- based on the predicates of the actual type.
212 procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id);
213 -- Does the main work of Expand_Call. Post_Call is as for Expand_Actuals.
215 procedure Expand_Ctrl_Function_Call (N : Node_Id);
216 -- N is a function call which returns a controlled object. Transform the
217 -- call into a temporary which retrieves the returned object from the
218 -- secondary stack using 'reference.
220 procedure Expand_Non_Function_Return (N : Node_Id);
221 -- Expand a simple return statement found in a procedure body, entry body,
222 -- accept statement, or an extended return statement. Note that all non-
223 -- function returns are simple return statements.
225 function Expand_Protected_Object_Reference
226 (N : Node_Id;
227 Scop : Entity_Id) return Node_Id;
229 procedure Expand_Protected_Subprogram_Call
230 (N : Node_Id;
231 Subp : Entity_Id;
232 Scop : Entity_Id);
233 -- A call to a protected subprogram within the protected object may appear
234 -- as a regular call. The list of actuals must be expanded to contain a
235 -- reference to the object itself, and the call becomes a call to the
236 -- corresponding protected subprogram.
238 procedure Expand_Simple_Function_Return (N : Node_Id);
239 -- Expand simple return from function. In the case where we are returning
240 -- from a function body this is called by Expand_N_Simple_Return_Statement.
242 function Has_Unconstrained_Access_Discriminants
243 (Subtyp : Entity_Id) return Boolean;
244 -- Returns True if the given subtype is unconstrained and has one or more
245 -- access discriminants.
247 procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id);
248 -- Insert the Post_Call list previously produced by routine Expand_Actuals
249 -- or Expand_Call_Helper into the tree.
251 procedure Replace_Renaming_Declaration_Id
252 (New_Decl : Node_Id;
253 Orig_Decl : Node_Id);
254 -- Replace the internal identifier of the new renaming declaration New_Decl
255 -- with the identifier of its original declaration Orig_Decl exchanging the
256 -- entities containing their defining identifiers to ensure the correct
257 -- replacement of the object declaration by the object renaming declaration
258 -- to avoid homograph conflicts (since the object declaration's defining
259 -- identifier was already entered in the current scope). The Next_Entity
260 -- links of the two entities are also swapped since the entities are part
261 -- of the return scope's entity list and the list structure would otherwise
262 -- be corrupted. The homonym chain is preserved as well.
264 procedure Rewrite_Function_Call_For_C (N : Node_Id);
265 -- When generating C code, replace a call to a function that returns an
266 -- array into the generated procedure with an additional out parameter.
268 procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id);
269 -- N is a return statement for a function that returns its result on the
270 -- secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
271 -- function and all blocks and loops that the return statement is jumping
272 -- out of. This ensures that the secondary stack is not released; otherwise
273 -- the function result would be reclaimed before returning to the caller.
275 ----------------------------------------------
276 -- Add_Access_Actual_To_Build_In_Place_Call --
277 ----------------------------------------------
279 procedure Add_Access_Actual_To_Build_In_Place_Call
280 (Function_Call : Node_Id;
281 Function_Id : Entity_Id;
282 Return_Object : Node_Id;
283 Is_Access : Boolean := False)
285 Loc : constant Source_Ptr := Sloc (Function_Call);
286 Obj_Address : Node_Id;
287 Obj_Acc_Formal : Entity_Id;
289 begin
290 -- Locate the implicit access parameter in the called function
292 Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
294 -- If no return object is provided, then pass null
296 if not Present (Return_Object) then
297 Obj_Address := Make_Null (Loc);
298 Set_Parent (Obj_Address, Function_Call);
300 -- If Return_Object is already an expression of an access type, then use
301 -- it directly, since it must be an access value denoting the return
302 -- object, and couldn't possibly be the return object itself.
304 elsif Is_Access then
305 Obj_Address := Return_Object;
306 Set_Parent (Obj_Address, Function_Call);
308 -- Apply Unrestricted_Access to caller's return object
310 else
311 Obj_Address :=
312 Make_Attribute_Reference (Loc,
313 Prefix => Return_Object,
314 Attribute_Name => Name_Unrestricted_Access);
316 Set_Parent (Return_Object, Obj_Address);
317 Set_Parent (Obj_Address, Function_Call);
318 end if;
320 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
322 -- Build the parameter association for the new actual and add it to the
323 -- end of the function's actuals.
325 Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
326 end Add_Access_Actual_To_Build_In_Place_Call;
328 ------------------------------------------------------
329 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
330 ------------------------------------------------------
332 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
333 (Function_Call : Node_Id;
334 Function_Id : Entity_Id;
335 Alloc_Form : BIP_Allocation_Form := Unspecified;
336 Alloc_Form_Exp : Node_Id := Empty;
337 Pool_Actual : Node_Id := Make_Null (No_Location))
339 Loc : constant Source_Ptr := Sloc (Function_Call);
341 Alloc_Form_Actual : Node_Id;
342 Alloc_Form_Formal : Node_Id;
343 Pool_Formal : Node_Id;
345 begin
346 -- Nothing to do when the size of the object is known, and the caller is
347 -- in charge of allocating it, and the callee doesn't unconditionally
348 -- require an allocation form (such as due to having a tagged result).
350 if not Needs_BIP_Alloc_Form (Function_Id) then
351 return;
352 end if;
354 -- Locate the implicit allocation form parameter in the called function.
355 -- Maybe it would be better for each implicit formal of a build-in-place
356 -- function to have a flag or a Uint attribute to identify it. ???
358 Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
360 if Present (Alloc_Form_Exp) then
361 pragma Assert (Alloc_Form = Unspecified);
363 Alloc_Form_Actual := Alloc_Form_Exp;
365 else
366 pragma Assert (Alloc_Form /= Unspecified);
368 Alloc_Form_Actual :=
369 Make_Integer_Literal (Loc,
370 Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
371 end if;
373 Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
375 -- Build the parameter association for the new actual and add it to the
376 -- end of the function's actuals.
378 Add_Extra_Actual_To_Call
379 (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
381 -- Pass the Storage_Pool parameter. This parameter is omitted on ZFP as
382 -- those targets do not support pools.
384 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
385 Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
386 Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
387 Add_Extra_Actual_To_Call
388 (Function_Call, Pool_Formal, Pool_Actual);
389 end if;
390 end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
392 -----------------------------------------------------------
393 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
394 -----------------------------------------------------------
396 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
397 (Func_Call : Node_Id;
398 Func_Id : Entity_Id;
399 Ptr_Typ : Entity_Id := Empty;
400 Master_Exp : Node_Id := Empty)
402 begin
403 if not Needs_BIP_Finalization_Master (Func_Id) then
404 return;
405 end if;
407 declare
408 Formal : constant Entity_Id :=
409 Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
410 Loc : constant Source_Ptr := Sloc (Func_Call);
412 Actual : Node_Id;
413 Desig_Typ : Entity_Id;
415 begin
416 -- If there is a finalization master actual, such as the implicit
417 -- finalization master of an enclosing build-in-place function,
418 -- then this must be added as an extra actual of the call.
420 if Present (Master_Exp) then
421 Actual := Master_Exp;
423 -- Case where the context does not require an actual master
425 elsif No (Ptr_Typ) then
426 Actual := Make_Null (Loc);
428 else
429 Desig_Typ := Directly_Designated_Type (Ptr_Typ);
431 -- Check for a library-level access type whose designated type has
432 -- suppressed finalization or the access type is subject to pragma
433 -- No_Heap_Finalization. Such an access type lacks a master. Pass
434 -- a null actual to callee in order to signal a missing master.
436 if Is_Library_Level_Entity (Ptr_Typ)
437 and then (Finalize_Storage_Only (Desig_Typ)
438 or else No_Heap_Finalization (Ptr_Typ))
439 then
440 Actual := Make_Null (Loc);
442 -- Types in need of finalization actions
444 elsif Needs_Finalization (Desig_Typ) then
446 -- The general mechanism of creating finalization masters for
447 -- anonymous access types is disabled by default, otherwise
448 -- finalization masters will pop all over the place. Such types
449 -- use context-specific masters.
451 if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
452 and then No (Finalization_Master (Ptr_Typ))
453 then
454 Build_Anonymous_Master (Ptr_Typ);
455 end if;
457 -- Access-to-controlled types should always have a master
459 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
461 Actual :=
462 Make_Attribute_Reference (Loc,
463 Prefix =>
464 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
465 Attribute_Name => Name_Unrestricted_Access);
467 -- Tagged types
469 else
470 Actual := Make_Null (Loc);
471 end if;
472 end if;
474 Analyze_And_Resolve (Actual, Etype (Formal));
476 -- Build the parameter association for the new actual and add it to
477 -- the end of the function's actuals.
479 Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
480 end;
481 end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
483 ------------------------------
484 -- Add_Extra_Actual_To_Call --
485 ------------------------------
487 procedure Add_Extra_Actual_To_Call
488 (Subprogram_Call : Node_Id;
489 Extra_Formal : Entity_Id;
490 Extra_Actual : Node_Id)
492 Loc : constant Source_Ptr := Sloc (Subprogram_Call);
493 Param_Assoc : Node_Id;
495 begin
496 Param_Assoc :=
497 Make_Parameter_Association (Loc,
498 Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
499 Explicit_Actual_Parameter => Extra_Actual);
501 Set_Parent (Param_Assoc, Subprogram_Call);
502 Set_Parent (Extra_Actual, Param_Assoc);
504 if Present (Parameter_Associations (Subprogram_Call)) then
505 if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
506 N_Parameter_Association
507 then
509 -- Find last named actual, and append
511 declare
512 L : Node_Id;
513 begin
514 L := First_Actual (Subprogram_Call);
515 while Present (L) loop
516 if No (Next_Actual (L)) then
517 Set_Next_Named_Actual (Parent (L), Extra_Actual);
518 exit;
519 end if;
520 Next_Actual (L);
521 end loop;
522 end;
524 else
525 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
526 end if;
528 Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
530 else
531 Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
532 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
533 end if;
534 end Add_Extra_Actual_To_Call;
536 ---------------------------------------------
537 -- Add_Task_Actuals_To_Build_In_Place_Call --
538 ---------------------------------------------
540 procedure Add_Task_Actuals_To_Build_In_Place_Call
541 (Function_Call : Node_Id;
542 Function_Id : Entity_Id;
543 Master_Actual : Node_Id;
544 Chain : Node_Id := Empty)
546 Loc : constant Source_Ptr := Sloc (Function_Call);
547 Result_Subt : constant Entity_Id :=
548 Available_View (Etype (Function_Id));
549 Actual : Node_Id;
550 Chain_Actual : Node_Id;
551 Chain_Formal : Node_Id;
552 Master_Formal : Node_Id;
554 begin
555 -- No such extra parameters are needed if there are no tasks
557 if not Has_Task (Result_Subt) then
558 return;
559 end if;
561 Actual := Master_Actual;
563 -- Use a dummy _master actual in case of No_Task_Hierarchy
565 if Restriction_Active (No_Task_Hierarchy) then
566 Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
568 -- In the case where we use the master associated with an access type,
569 -- the actual is an entity and requires an explicit reference.
571 elsif Nkind (Actual) = N_Defining_Identifier then
572 Actual := New_Occurrence_Of (Actual, Loc);
573 end if;
575 -- Locate the implicit master parameter in the called function
577 Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
578 Analyze_And_Resolve (Actual, Etype (Master_Formal));
580 -- Build the parameter association for the new actual and add it to the
581 -- end of the function's actuals.
583 Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
585 -- Locate the implicit activation chain parameter in the called function
587 Chain_Formal :=
588 Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
590 -- Create the actual which is a pointer to the current activation chain
592 if No (Chain) then
593 Chain_Actual :=
594 Make_Attribute_Reference (Loc,
595 Prefix => Make_Identifier (Loc, Name_uChain),
596 Attribute_Name => Name_Unrestricted_Access);
598 -- Allocator case; make a reference to the Chain passed in by the caller
600 else
601 Chain_Actual :=
602 Make_Attribute_Reference (Loc,
603 Prefix => New_Occurrence_Of (Chain, Loc),
604 Attribute_Name => Name_Unrestricted_Access);
605 end if;
607 Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
609 -- Build the parameter association for the new actual and add it to the
610 -- end of the function's actuals.
612 Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
613 end Add_Task_Actuals_To_Build_In_Place_Call;
615 -----------------------
616 -- BIP_Formal_Suffix --
617 -----------------------
619 function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
620 begin
621 case Kind is
622 when BIP_Alloc_Form =>
623 return "BIPalloc";
625 when BIP_Storage_Pool =>
626 return "BIPstoragepool";
628 when BIP_Finalization_Master =>
629 return "BIPfinalizationmaster";
631 when BIP_Task_Master =>
632 return "BIPtaskmaster";
634 when BIP_Activation_Chain =>
635 return "BIPactivationchain";
637 when BIP_Object_Access =>
638 return "BIPaccess";
639 end case;
640 end BIP_Formal_Suffix;
642 ---------------------------
643 -- Build_In_Place_Formal --
644 ---------------------------
646 function Build_In_Place_Formal
647 (Func : Entity_Id;
648 Kind : BIP_Formal_Kind) return Entity_Id
650 Formal_Suffix : constant String := BIP_Formal_Suffix (Kind);
651 Extra_Formal : Entity_Id := Extra_Formals (Func);
653 begin
654 -- Maybe it would be better for each implicit formal of a build-in-place
655 -- function to have a flag or a Uint attribute to identify it. ???
657 -- The return type in the function declaration may have been a limited
658 -- view, and the extra formals for the function were not generated at
659 -- that point. At the point of call the full view must be available and
660 -- the extra formals can be created.
662 if No (Extra_Formal) then
663 Create_Extra_Formals (Func);
664 Extra_Formal := Extra_Formals (Func);
665 end if;
667 -- We search for a formal with a matching suffix. We can't search
668 -- for the full name, because of the code at the end of Sem_Ch6.-
669 -- Create_Extra_Formals, which copies the Extra_Formals over to
670 -- the Alias of an instance, which will cause the formals to have
671 -- "incorrect" names.
673 loop
674 pragma Assert (Present (Extra_Formal));
675 declare
676 Name : constant String := Get_Name_String (Chars (Extra_Formal));
677 begin
678 exit when Name'Length >= Formal_Suffix'Length
679 and then Formal_Suffix =
680 Name (Name'Last - Formal_Suffix'Length + 1 .. Name'Last);
681 end;
683 Next_Formal_With_Extras (Extra_Formal);
684 end loop;
686 return Extra_Formal;
687 end Build_In_Place_Formal;
689 -------------------------------
690 -- Build_Procedure_Body_Form --
691 -------------------------------
693 function Build_Procedure_Body_Form
694 (Func_Id : Entity_Id;
695 Func_Body : Node_Id) return Node_Id
697 Loc : constant Source_Ptr := Sloc (Func_Body);
699 Proc_Decl : constant Node_Id :=
700 Next (Unit_Declaration_Node (Func_Id));
701 -- It is assumed that the next node following the declaration of the
702 -- corresponding subprogram spec is the declaration of the procedure
703 -- form.
705 Proc_Id : constant Entity_Id := Defining_Entity (Proc_Decl);
707 procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id);
708 -- Replace each return statement found in the list Stmts with an
709 -- assignment of the return expression to parameter Param_Id.
711 ---------------------
712 -- Replace_Returns --
713 ---------------------
715 procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id) is
716 Stmt : Node_Id;
718 begin
719 Stmt := First (Stmts);
720 while Present (Stmt) loop
721 if Nkind (Stmt) = N_Block_Statement then
722 Replace_Returns (Param_Id,
723 Statements (Handled_Statement_Sequence (Stmt)));
725 elsif Nkind (Stmt) = N_Case_Statement then
726 declare
727 Alt : Node_Id;
728 begin
729 Alt := First (Alternatives (Stmt));
730 while Present (Alt) loop
731 Replace_Returns (Param_Id, Statements (Alt));
732 Next (Alt);
733 end loop;
734 end;
736 elsif Nkind (Stmt) = N_Extended_Return_Statement then
737 declare
738 Ret_Obj : constant Entity_Id :=
739 Defining_Entity
740 (First (Return_Object_Declarations (Stmt)));
741 Assign : constant Node_Id :=
742 Make_Assignment_Statement (Sloc (Stmt),
743 Name =>
744 New_Occurrence_Of (Param_Id, Loc),
745 Expression =>
746 New_Occurrence_Of (Ret_Obj, Sloc (Stmt)));
747 Stmts : List_Id;
749 begin
750 -- The extended return may just contain the declaration
752 if Present (Handled_Statement_Sequence (Stmt)) then
753 Stmts := Statements (Handled_Statement_Sequence (Stmt));
754 else
755 Stmts := New_List;
756 end if;
758 Set_Assignment_OK (Name (Assign));
760 Rewrite (Stmt,
761 Make_Block_Statement (Sloc (Stmt),
762 Declarations =>
763 Return_Object_Declarations (Stmt),
764 Handled_Statement_Sequence =>
765 Make_Handled_Sequence_Of_Statements (Loc,
766 Statements => Stmts)));
768 Replace_Returns (Param_Id, Stmts);
770 Append_To (Stmts, Assign);
771 Append_To (Stmts, Make_Simple_Return_Statement (Loc));
772 end;
774 elsif Nkind (Stmt) = N_If_Statement then
775 Replace_Returns (Param_Id, Then_Statements (Stmt));
776 Replace_Returns (Param_Id, Else_Statements (Stmt));
778 declare
779 Part : Node_Id;
780 begin
781 Part := First (Elsif_Parts (Stmt));
782 while Present (Part) loop
783 Replace_Returns (Param_Id, Then_Statements (Part));
784 Next (Part);
785 end loop;
786 end;
788 elsif Nkind (Stmt) = N_Loop_Statement then
789 Replace_Returns (Param_Id, Statements (Stmt));
791 elsif Nkind (Stmt) = N_Simple_Return_Statement then
793 -- Generate:
794 -- Param := Expr;
795 -- return;
797 Rewrite (Stmt,
798 Make_Assignment_Statement (Sloc (Stmt),
799 Name => New_Occurrence_Of (Param_Id, Loc),
800 Expression => Relocate_Node (Expression (Stmt))));
802 Insert_After (Stmt, Make_Simple_Return_Statement (Loc));
804 -- Skip the added return
806 Next (Stmt);
807 end if;
809 Next (Stmt);
810 end loop;
811 end Replace_Returns;
813 -- Local variables
815 Stmts : List_Id;
816 New_Body : Node_Id;
818 -- Start of processing for Build_Procedure_Body_Form
820 begin
821 -- This routine replaces the original function body:
823 -- function F (...) return Array_Typ is
824 -- begin
825 -- ...
826 -- return Something;
827 -- end F;
829 -- with the following:
831 -- procedure P (..., Result : out Array_Typ) is
832 -- begin
833 -- ...
834 -- Result := Something;
835 -- end P;
837 Stmts :=
838 Statements (Handled_Statement_Sequence (Func_Body));
839 Replace_Returns (Last_Entity (Proc_Id), Stmts);
841 New_Body :=
842 Make_Subprogram_Body (Loc,
843 Specification =>
844 Copy_Subprogram_Spec (Specification (Proc_Decl)),
845 Declarations => Declarations (Func_Body),
846 Handled_Statement_Sequence =>
847 Make_Handled_Sequence_Of_Statements (Loc,
848 Statements => Stmts));
850 -- If the function is a generic instance, so is the new procedure.
851 -- Set flag accordingly so that the proper renaming declarations are
852 -- generated.
854 Set_Is_Generic_Instance (Proc_Id, Is_Generic_Instance (Func_Id));
855 return New_Body;
856 end Build_Procedure_Body_Form;
858 -----------------------
859 -- Caller_Known_Size --
860 -----------------------
862 function Caller_Known_Size
863 (Func_Call : Node_Id;
864 Result_Subt : Entity_Id) return Boolean
866 begin
867 return
868 (Is_Definite_Subtype (Underlying_Type (Result_Subt))
869 and then No (Controlling_Argument (Func_Call)))
870 or else not Requires_Transient_Scope (Underlying_Type (Result_Subt));
871 end Caller_Known_Size;
873 --------------------------------
874 -- Check_Overriding_Operation --
875 --------------------------------
877 procedure Check_Overriding_Operation (Subp : Entity_Id) is
878 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
879 Op_List : constant Elist_Id := Primitive_Operations (Typ);
880 Op_Elmt : Elmt_Id;
881 Prim_Op : Entity_Id;
882 Par_Op : Entity_Id;
884 begin
885 if Is_Derived_Type (Typ)
886 and then not Is_Private_Type (Typ)
887 and then In_Open_Scopes (Scope (Etype (Typ)))
888 and then Is_Base_Type (Typ)
889 then
890 -- Subp overrides an inherited private operation if there is an
891 -- inherited operation with a different name than Subp (see
892 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
893 -- same name as Subp.
895 Op_Elmt := First_Elmt (Op_List);
896 while Present (Op_Elmt) loop
897 Prim_Op := Node (Op_Elmt);
898 Par_Op := Alias (Prim_Op);
900 if Present (Par_Op)
901 and then not Comes_From_Source (Prim_Op)
902 and then Chars (Prim_Op) /= Chars (Par_Op)
903 and then Chars (Par_Op) = Chars (Subp)
904 and then Is_Hidden (Par_Op)
905 and then Type_Conformant (Prim_Op, Subp)
906 then
907 Set_DT_Position_Value (Subp, DT_Position (Prim_Op));
908 end if;
910 Next_Elmt (Op_Elmt);
911 end loop;
912 end if;
913 end Check_Overriding_Operation;
915 -------------------------------
916 -- Detect_Infinite_Recursion --
917 -------------------------------
919 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
920 Loc : constant Source_Ptr := Sloc (N);
922 Var_List : constant Elist_Id := New_Elmt_List;
923 -- List of globals referenced by body of procedure
925 Call_List : constant Elist_Id := New_Elmt_List;
926 -- List of recursive calls in body of procedure
928 Shad_List : constant Elist_Id := New_Elmt_List;
929 -- List of entity id's for entities created to capture the value of
930 -- referenced globals on entry to the procedure.
932 Scop : constant Uint := Scope_Depth (Spec);
933 -- This is used to record the scope depth of the current procedure, so
934 -- that we can identify global references.
936 Max_Vars : constant := 4;
937 -- Do not test more than four global variables
939 Count_Vars : Natural := 0;
940 -- Count variables found so far
942 Var : Entity_Id;
943 Elm : Elmt_Id;
944 Ent : Entity_Id;
945 Call : Elmt_Id;
946 Decl : Node_Id;
947 Test : Node_Id;
948 Elm1 : Elmt_Id;
949 Elm2 : Elmt_Id;
950 Last : Node_Id;
952 function Process (Nod : Node_Id) return Traverse_Result;
953 -- Function to traverse the subprogram body (using Traverse_Func)
955 -------------
956 -- Process --
957 -------------
959 function Process (Nod : Node_Id) return Traverse_Result is
960 begin
961 -- Procedure call
963 if Nkind (Nod) = N_Procedure_Call_Statement then
965 -- Case of one of the detected recursive calls
967 if Is_Entity_Name (Name (Nod))
968 and then Has_Recursive_Call (Entity (Name (Nod)))
969 and then Entity (Name (Nod)) = Spec
970 then
971 Append_Elmt (Nod, Call_List);
972 return Skip;
974 -- Any other procedure call may have side effects
976 else
977 return Abandon;
978 end if;
980 -- A call to a pure function can always be ignored
982 elsif Nkind (Nod) = N_Function_Call
983 and then Is_Entity_Name (Name (Nod))
984 and then Is_Pure (Entity (Name (Nod)))
985 then
986 return Skip;
988 -- Case of an identifier reference
990 elsif Nkind (Nod) = N_Identifier then
991 Ent := Entity (Nod);
993 -- If no entity, then ignore the reference
995 -- Not clear why this can happen. To investigate, remove this
996 -- test and look at the crash that occurs here in 3401-004 ???
998 if No (Ent) then
999 return Skip;
1001 -- Ignore entities with no Scope, again not clear how this
1002 -- can happen, to investigate, look at 4108-008 ???
1004 elsif No (Scope (Ent)) then
1005 return Skip;
1007 -- Ignore the reference if not to a more global object
1009 elsif Scope_Depth (Scope (Ent)) >= Scop then
1010 return Skip;
1012 -- References to types, exceptions and constants are always OK
1014 elsif Is_Type (Ent)
1015 or else Ekind (Ent) = E_Exception
1016 or else Ekind (Ent) = E_Constant
1017 then
1018 return Skip;
1020 -- If other than a non-volatile scalar variable, we have some
1021 -- kind of global reference (e.g. to a function) that we cannot
1022 -- deal with so we forget the attempt.
1024 elsif Ekind (Ent) /= E_Variable
1025 or else not Is_Scalar_Type (Etype (Ent))
1026 or else Treat_As_Volatile (Ent)
1027 then
1028 return Abandon;
1030 -- Otherwise we have a reference to a global scalar
1032 else
1033 -- Loop through global entities already detected
1035 Elm := First_Elmt (Var_List);
1036 loop
1037 -- If not detected before, record this new global reference
1039 if No (Elm) then
1040 Count_Vars := Count_Vars + 1;
1042 if Count_Vars <= Max_Vars then
1043 Append_Elmt (Entity (Nod), Var_List);
1044 else
1045 return Abandon;
1046 end if;
1048 exit;
1050 -- If recorded before, ignore
1052 elsif Node (Elm) = Entity (Nod) then
1053 return Skip;
1055 -- Otherwise keep looking
1057 else
1058 Next_Elmt (Elm);
1059 end if;
1060 end loop;
1062 return Skip;
1063 end if;
1065 -- For all other node kinds, recursively visit syntactic children
1067 else
1068 return OK;
1069 end if;
1070 end Process;
1072 function Traverse_Body is new Traverse_Func (Process);
1074 -- Start of processing for Detect_Infinite_Recursion
1076 begin
1077 -- Do not attempt detection in No_Implicit_Conditional mode, since we
1078 -- won't be able to generate the code to handle the recursion in any
1079 -- case.
1081 if Restriction_Active (No_Implicit_Conditionals) then
1082 return;
1083 end if;
1085 -- Otherwise do traversal and quit if we get abandon signal
1087 if Traverse_Body (N) = Abandon then
1088 return;
1090 -- We must have a call, since Has_Recursive_Call was set. If not just
1091 -- ignore (this is only an error check, so if we have a funny situation,
1092 -- due to bugs or errors, we do not want to bomb).
1094 elsif Is_Empty_Elmt_List (Call_List) then
1095 return;
1096 end if;
1098 -- Here is the case where we detect recursion at compile time
1100 -- Push our current scope for analyzing the declarations and code that
1101 -- we will insert for the checking.
1103 Push_Scope (Spec);
1105 -- This loop builds temporary variables for each of the referenced
1106 -- globals, so that at the end of the loop the list Shad_List contains
1107 -- these temporaries in one-to-one correspondence with the elements in
1108 -- Var_List.
1110 Last := Empty;
1111 Elm := First_Elmt (Var_List);
1112 while Present (Elm) loop
1113 Var := Node (Elm);
1114 Ent := Make_Temporary (Loc, 'S');
1115 Append_Elmt (Ent, Shad_List);
1117 -- Insert a declaration for this temporary at the start of the
1118 -- declarations for the procedure. The temporaries are declared as
1119 -- constant objects initialized to the current values of the
1120 -- corresponding temporaries.
1122 Decl :=
1123 Make_Object_Declaration (Loc,
1124 Defining_Identifier => Ent,
1125 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
1126 Constant_Present => True,
1127 Expression => New_Occurrence_Of (Var, Loc));
1129 if No (Last) then
1130 Prepend (Decl, Declarations (N));
1131 else
1132 Insert_After (Last, Decl);
1133 end if;
1135 Last := Decl;
1136 Analyze (Decl);
1137 Next_Elmt (Elm);
1138 end loop;
1140 -- Loop through calls
1142 Call := First_Elmt (Call_List);
1143 while Present (Call) loop
1145 -- Build a predicate expression of the form
1147 -- True
1148 -- and then global1 = temp1
1149 -- and then global2 = temp2
1150 -- ...
1152 -- This predicate determines if any of the global values
1153 -- referenced by the procedure have changed since the
1154 -- current call, if not an infinite recursion is assured.
1156 Test := New_Occurrence_Of (Standard_True, Loc);
1158 Elm1 := First_Elmt (Var_List);
1159 Elm2 := First_Elmt (Shad_List);
1160 while Present (Elm1) loop
1161 Test :=
1162 Make_And_Then (Loc,
1163 Left_Opnd => Test,
1164 Right_Opnd =>
1165 Make_Op_Eq (Loc,
1166 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
1167 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
1169 Next_Elmt (Elm1);
1170 Next_Elmt (Elm2);
1171 end loop;
1173 -- Now we replace the call with the sequence
1175 -- if no-changes (see above) then
1176 -- raise Storage_Error;
1177 -- else
1178 -- original-call
1179 -- end if;
1181 Rewrite (Node (Call),
1182 Make_If_Statement (Loc,
1183 Condition => Test,
1184 Then_Statements => New_List (
1185 Make_Raise_Storage_Error (Loc,
1186 Reason => SE_Infinite_Recursion)),
1188 Else_Statements => New_List (
1189 Relocate_Node (Node (Call)))));
1191 Analyze (Node (Call));
1193 Next_Elmt (Call);
1194 end loop;
1196 -- Remove temporary scope stack entry used for analysis
1198 Pop_Scope;
1199 end Detect_Infinite_Recursion;
1201 --------------------
1202 -- Expand_Actuals --
1203 --------------------
1205 procedure Expand_Actuals
1206 (N : Node_Id;
1207 Subp : Entity_Id;
1208 Post_Call : out List_Id)
1210 Loc : constant Source_Ptr := Sloc (N);
1211 Actual : Node_Id;
1212 Formal : Entity_Id;
1213 N_Node : Node_Id;
1214 E_Actual : Entity_Id;
1215 E_Formal : Entity_Id;
1217 procedure Add_Call_By_Copy_Code;
1218 -- For cases where the parameter must be passed by copy, this routine
1219 -- generates a temporary variable into which the actual is copied and
1220 -- then passes this as the parameter. For an OUT or IN OUT parameter,
1221 -- an assignment is also generated to copy the result back. The call
1222 -- also takes care of any constraint checks required for the type
1223 -- conversion case (on both the way in and the way out).
1225 procedure Add_Simple_Call_By_Copy_Code;
1226 -- This is similar to the above, but is used in cases where we know
1227 -- that all that is needed is to simply create a temporary and copy
1228 -- the value in and out of the temporary.
1230 procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id);
1231 -- Perform copy-back for actual parameter Act which denotes a validation
1232 -- variable.
1234 procedure Check_Fortran_Logical;
1235 -- A value of type Logical that is passed through a formal parameter
1236 -- must be normalized because .TRUE. usually does not have the same
1237 -- representation as True. We assume that .FALSE. = False = 0.
1238 -- What about functions that return a logical type ???
1240 function Is_Legal_Copy return Boolean;
1241 -- Check that an actual can be copied before generating the temporary
1242 -- to be used in the call. If the actual is of a by_reference type then
1243 -- the program is illegal (this can only happen in the presence of
1244 -- rep. clauses that force an incorrect alignment). If the formal is
1245 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1246 -- the effect that this might lead to unaligned arguments.
1248 function Make_Var (Actual : Node_Id) return Entity_Id;
1249 -- Returns an entity that refers to the given actual parameter, Actual
1250 -- (not including any type conversion). If Actual is an entity name,
1251 -- then this entity is returned unchanged, otherwise a renaming is
1252 -- created to provide an entity for the actual.
1254 procedure Reset_Packed_Prefix;
1255 -- The expansion of a packed array component reference is delayed in
1256 -- the context of a call. Now we need to complete the expansion, so we
1257 -- unmark the analyzed bits in all prefixes.
1259 ---------------------------
1260 -- Add_Call_By_Copy_Code --
1261 ---------------------------
1263 procedure Add_Call_By_Copy_Code is
1264 Crep : Boolean;
1265 Expr : Node_Id;
1266 F_Typ : Entity_Id := Etype (Formal);
1267 Indic : Node_Id;
1268 Init : Node_Id;
1269 Temp : Entity_Id;
1270 V_Typ : Entity_Id;
1271 Var : Entity_Id;
1273 begin
1274 if not Is_Legal_Copy then
1275 return;
1276 end if;
1278 Temp := Make_Temporary (Loc, 'T', Actual);
1280 -- Handle formals whose type comes from the limited view
1282 if From_Limited_With (F_Typ)
1283 and then Has_Non_Limited_View (F_Typ)
1284 then
1285 F_Typ := Non_Limited_View (F_Typ);
1286 end if;
1288 -- Use formal type for temp, unless formal type is an unconstrained
1289 -- array, in which case we don't have to worry about bounds checks,
1290 -- and we use the actual type, since that has appropriate bounds.
1292 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1293 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1294 else
1295 Indic := New_Occurrence_Of (F_Typ, Loc);
1296 end if;
1298 if Nkind (Actual) = N_Type_Conversion then
1299 V_Typ := Etype (Expression (Actual));
1301 -- If the formal is an (in-)out parameter, capture the name
1302 -- of the variable in order to build the post-call assignment.
1304 Var := Make_Var (Expression (Actual));
1306 Crep := not Same_Representation
1307 (F_Typ, Etype (Expression (Actual)));
1309 else
1310 V_Typ := Etype (Actual);
1311 Var := Make_Var (Actual);
1312 Crep := False;
1313 end if;
1315 -- Setup initialization for case of in out parameter, or an out
1316 -- parameter where the formal is an unconstrained array (in the
1317 -- latter case, we have to pass in an object with bounds).
1319 -- If this is an out parameter, the initial copy is wasteful, so as
1320 -- an optimization for the one-dimensional case we extract the
1321 -- bounds of the actual and build an uninitialized temporary of the
1322 -- right size.
1324 -- If the formal is an out parameter with discriminants, the
1325 -- discriminants must be captured even if the rest of the object
1326 -- is in principle uninitialized, because the discriminants may
1327 -- be read by the called subprogram.
1329 if Ekind (Formal) = E_In_Out_Parameter
1330 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1331 or else Has_Discriminants (F_Typ)
1332 then
1333 if Nkind (Actual) = N_Type_Conversion then
1334 if Conversion_OK (Actual) then
1335 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1336 else
1337 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1338 end if;
1340 elsif Ekind (Formal) = E_Out_Parameter
1341 and then Is_Array_Type (F_Typ)
1342 and then Number_Dimensions (F_Typ) = 1
1343 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1344 then
1345 -- Actual is a one-dimensional array or slice, and the type
1346 -- requires no initialization. Create a temporary of the
1347 -- right size, but do not copy actual into it (optimization).
1349 Init := Empty;
1350 Indic :=
1351 Make_Subtype_Indication (Loc,
1352 Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
1353 Constraint =>
1354 Make_Index_Or_Discriminant_Constraint (Loc,
1355 Constraints => New_List (
1356 Make_Range (Loc,
1357 Low_Bound =>
1358 Make_Attribute_Reference (Loc,
1359 Prefix => New_Occurrence_Of (Var, Loc),
1360 Attribute_Name => Name_First),
1361 High_Bound =>
1362 Make_Attribute_Reference (Loc,
1363 Prefix => New_Occurrence_Of (Var, Loc),
1364 Attribute_Name => Name_Last)))));
1366 else
1367 Init := New_Occurrence_Of (Var, Loc);
1368 end if;
1370 -- An initialization is created for packed conversions as
1371 -- actuals for out parameters to enable Make_Object_Declaration
1372 -- to determine the proper subtype for N_Node. Note that this
1373 -- is wasteful because the extra copying on the call side is
1374 -- not required for such out parameters. ???
1376 elsif Ekind (Formal) = E_Out_Parameter
1377 and then Nkind (Actual) = N_Type_Conversion
1378 and then (Is_Bit_Packed_Array (F_Typ)
1379 or else
1380 Is_Bit_Packed_Array (Etype (Expression (Actual))))
1381 then
1382 if Conversion_OK (Actual) then
1383 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1384 else
1385 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1386 end if;
1388 elsif Ekind (Formal) = E_In_Parameter then
1390 -- Handle the case in which the actual is a type conversion
1392 if Nkind (Actual) = N_Type_Conversion then
1393 if Conversion_OK (Actual) then
1394 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1395 else
1396 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1397 end if;
1398 else
1399 Init := New_Occurrence_Of (Var, Loc);
1400 end if;
1402 else
1403 Init := Empty;
1404 end if;
1406 N_Node :=
1407 Make_Object_Declaration (Loc,
1408 Defining_Identifier => Temp,
1409 Object_Definition => Indic,
1410 Expression => Init);
1411 Set_Assignment_OK (N_Node);
1412 Insert_Action (N, N_Node);
1414 -- Now, normally the deal here is that we use the defining
1415 -- identifier created by that object declaration. There is
1416 -- one exception to this. In the change of representation case
1417 -- the above declaration will end up looking like:
1419 -- temp : type := identifier;
1421 -- And in this case we might as well use the identifier directly
1422 -- and eliminate the temporary. Note that the analysis of the
1423 -- declaration was not a waste of time in that case, since it is
1424 -- what generated the necessary change of representation code. If
1425 -- the change of representation introduced additional code, as in
1426 -- a fixed-integer conversion, the expression is not an identifier
1427 -- and must be kept.
1429 if Crep
1430 and then Present (Expression (N_Node))
1431 and then Is_Entity_Name (Expression (N_Node))
1432 then
1433 Temp := Entity (Expression (N_Node));
1434 Rewrite (N_Node, Make_Null_Statement (Loc));
1435 end if;
1437 -- For IN parameter, all we do is to replace the actual
1439 if Ekind (Formal) = E_In_Parameter then
1440 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1441 Analyze (Actual);
1443 -- Processing for OUT or IN OUT parameter
1445 else
1446 -- Kill current value indications for the temporary variable we
1447 -- created, since we just passed it as an OUT parameter.
1449 Kill_Current_Values (Temp);
1450 Set_Is_Known_Valid (Temp, False);
1451 Set_Is_True_Constant (Temp, False);
1453 -- If type conversion, use reverse conversion on exit
1455 if Nkind (Actual) = N_Type_Conversion then
1456 if Conversion_OK (Actual) then
1457 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1458 else
1459 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1460 end if;
1461 else
1462 Expr := New_Occurrence_Of (Temp, Loc);
1463 end if;
1465 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1466 Analyze (Actual);
1468 -- If the actual is a conversion of a packed reference, it may
1469 -- already have been expanded by Remove_Side_Effects, and the
1470 -- resulting variable is a temporary which does not designate
1471 -- the proper out-parameter, which may not be addressable. In
1472 -- that case, generate an assignment to the original expression
1473 -- (before expansion of the packed reference) so that the proper
1474 -- expansion of assignment to a packed component can take place.
1476 declare
1477 Obj : Node_Id;
1478 Lhs : Node_Id;
1480 begin
1481 if Is_Renaming_Of_Object (Var)
1482 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1483 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1484 = N_Indexed_Component
1485 and then
1486 Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1487 then
1488 Obj := Renamed_Object (Var);
1489 Lhs :=
1490 Make_Selected_Component (Loc,
1491 Prefix =>
1492 New_Copy_Tree (Original_Node (Prefix (Obj))),
1493 Selector_Name => New_Copy (Selector_Name (Obj)));
1494 Reset_Analyzed_Flags (Lhs);
1496 else
1497 Lhs := New_Occurrence_Of (Var, Loc);
1498 end if;
1500 Set_Assignment_OK (Lhs);
1502 if Is_Access_Type (E_Formal)
1503 and then Is_Entity_Name (Lhs)
1504 and then
1505 Present (Effective_Extra_Accessibility (Entity (Lhs)))
1506 then
1507 -- Copyback target is an Ada 2012 stand-alone object of an
1508 -- anonymous access type.
1510 pragma Assert (Ada_Version >= Ada_2012);
1512 if Type_Access_Level (E_Formal) >
1513 Object_Access_Level (Lhs)
1514 then
1515 Append_To (Post_Call,
1516 Make_Raise_Program_Error (Loc,
1517 Reason => PE_Accessibility_Check_Failed));
1518 end if;
1520 Append_To (Post_Call,
1521 Make_Assignment_Statement (Loc,
1522 Name => Lhs,
1523 Expression => Expr));
1525 -- We would like to somehow suppress generation of the
1526 -- extra_accessibility assignment generated by the expansion
1527 -- of the above assignment statement. It's not a correctness
1528 -- issue because the following assignment renders it dead,
1529 -- but generating back-to-back assignments to the same
1530 -- target is undesirable. ???
1532 Append_To (Post_Call,
1533 Make_Assignment_Statement (Loc,
1534 Name => New_Occurrence_Of (
1535 Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1536 Expression => Make_Integer_Literal (Loc,
1537 Type_Access_Level (E_Formal))));
1539 else
1540 Append_To (Post_Call,
1541 Make_Assignment_Statement (Loc,
1542 Name => Lhs,
1543 Expression => Expr));
1544 end if;
1545 end;
1546 end if;
1547 end Add_Call_By_Copy_Code;
1549 ----------------------------------
1550 -- Add_Simple_Call_By_Copy_Code --
1551 ----------------------------------
1553 procedure Add_Simple_Call_By_Copy_Code is
1554 Decl : Node_Id;
1555 F_Typ : Entity_Id := Etype (Formal);
1556 Incod : Node_Id;
1557 Indic : Node_Id;
1558 Lhs : Node_Id;
1559 Outcod : Node_Id;
1560 Rhs : Node_Id;
1561 Temp : Entity_Id;
1563 begin
1564 if not Is_Legal_Copy then
1565 return;
1566 end if;
1568 -- Handle formals whose type comes from the limited view
1570 if From_Limited_With (F_Typ)
1571 and then Has_Non_Limited_View (F_Typ)
1572 then
1573 F_Typ := Non_Limited_View (F_Typ);
1574 end if;
1576 -- Use formal type for temp, unless formal type is an unconstrained
1577 -- array, in which case we don't have to worry about bounds checks,
1578 -- and we use the actual type, since that has appropriate bounds.
1580 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1581 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1582 else
1583 Indic := New_Occurrence_Of (F_Typ, Loc);
1584 end if;
1586 -- Prepare to generate code
1588 Reset_Packed_Prefix;
1590 Temp := Make_Temporary (Loc, 'T', Actual);
1591 Incod := Relocate_Node (Actual);
1592 Outcod := New_Copy_Tree (Incod);
1594 -- Generate declaration of temporary variable, initializing it
1595 -- with the input parameter unless we have an OUT formal or
1596 -- this is an initialization call.
1598 -- If the formal is an out parameter with discriminants, the
1599 -- discriminants must be captured even if the rest of the object
1600 -- is in principle uninitialized, because the discriminants may
1601 -- be read by the called subprogram.
1603 if Ekind (Formal) = E_Out_Parameter then
1604 Incod := Empty;
1606 if Has_Discriminants (F_Typ) then
1607 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1608 end if;
1610 elsif Inside_Init_Proc then
1612 -- Could use a comment here to match comment below ???
1614 if Nkind (Actual) /= N_Selected_Component
1615 or else
1616 not Has_Discriminant_Dependent_Constraint
1617 (Entity (Selector_Name (Actual)))
1618 then
1619 Incod := Empty;
1621 -- Otherwise, keep the component in order to generate the proper
1622 -- actual subtype, that depends on enclosing discriminants.
1624 else
1625 null;
1626 end if;
1627 end if;
1629 Decl :=
1630 Make_Object_Declaration (Loc,
1631 Defining_Identifier => Temp,
1632 Object_Definition => Indic,
1633 Expression => Incod);
1635 if Inside_Init_Proc
1636 and then No (Incod)
1637 then
1638 -- If the call is to initialize a component of a composite type,
1639 -- and the component does not depend on discriminants, use the
1640 -- actual type of the component. This is required in case the
1641 -- component is constrained, because in general the formal of the
1642 -- initialization procedure will be unconstrained. Note that if
1643 -- the component being initialized is constrained by an enclosing
1644 -- discriminant, the presence of the initialization in the
1645 -- declaration will generate an expression for the actual subtype.
1647 Set_No_Initialization (Decl);
1648 Set_Object_Definition (Decl,
1649 New_Occurrence_Of (Etype (Actual), Loc));
1650 end if;
1652 Insert_Action (N, Decl);
1654 -- The actual is simply a reference to the temporary
1656 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1658 -- Generate copy out if OUT or IN OUT parameter
1660 if Ekind (Formal) /= E_In_Parameter then
1661 Lhs := Outcod;
1662 Rhs := New_Occurrence_Of (Temp, Loc);
1663 Set_Is_True_Constant (Temp, False);
1665 -- Deal with conversion
1667 if Nkind (Lhs) = N_Type_Conversion then
1668 Lhs := Expression (Lhs);
1669 Rhs := Convert_To (Etype (Actual), Rhs);
1670 end if;
1672 Append_To (Post_Call,
1673 Make_Assignment_Statement (Loc,
1674 Name => Lhs,
1675 Expression => Rhs));
1676 Set_Assignment_OK (Name (Last (Post_Call)));
1677 end if;
1678 end Add_Simple_Call_By_Copy_Code;
1680 --------------------------------------
1681 -- Add_Validation_Call_By_Copy_Code --
1682 --------------------------------------
1684 procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id) is
1685 Expr : Node_Id;
1686 Obj : Node_Id;
1687 Obj_Typ : Entity_Id;
1688 Var : constant Node_Id := Unqual_Conv (Act);
1689 Var_Id : Entity_Id;
1691 begin
1692 -- Copy the value of the validation variable back into the object
1693 -- being validated.
1695 if Is_Entity_Name (Var) then
1696 Var_Id := Entity (Var);
1697 Obj := Validated_Object (Var_Id);
1698 Obj_Typ := Etype (Obj);
1700 Expr := New_Occurrence_Of (Var_Id, Loc);
1702 -- A type conversion is needed when the validation variable and
1703 -- the validated object carry different types. This case occurs
1704 -- when the actual is qualified in some fashion.
1706 -- Common:
1707 -- subtype Int is Integer range ...;
1708 -- procedure Call (Val : in out Integer);
1710 -- Original:
1711 -- Object : Int;
1712 -- Call (Integer (Object));
1714 -- Expanded:
1715 -- Object : Int;
1716 -- Var : Integer := Object; -- conversion to base type
1717 -- if not Var'Valid then -- validity check
1718 -- Call (Var); -- modify Var
1719 -- Object := Int (Var); -- conversion to subtype
1721 if Etype (Var_Id) /= Obj_Typ then
1722 Expr :=
1723 Make_Type_Conversion (Loc,
1724 Subtype_Mark => New_Occurrence_Of (Obj_Typ, Loc),
1725 Expression => Expr);
1726 end if;
1728 -- Generate:
1729 -- Object := Var;
1730 -- <or>
1731 -- Object := Object_Type (Var);
1733 Append_To (Post_Call,
1734 Make_Assignment_Statement (Loc,
1735 Name => Obj,
1736 Expression => Expr));
1738 -- If the flow reaches this point, then this routine was invoked with
1739 -- an actual which does not denote a validation variable.
1741 else
1742 pragma Assert (False);
1743 null;
1744 end if;
1745 end Add_Validation_Call_By_Copy_Code;
1747 ---------------------------
1748 -- Check_Fortran_Logical --
1749 ---------------------------
1751 procedure Check_Fortran_Logical is
1752 Logical : constant Entity_Id := Etype (Formal);
1753 Var : Entity_Id;
1755 -- Note: this is very incomplete, e.g. it does not handle arrays
1756 -- of logical values. This is really not the right approach at all???)
1758 begin
1759 if Convention (Subp) = Convention_Fortran
1760 and then Root_Type (Etype (Formal)) = Standard_Boolean
1761 and then Ekind (Formal) /= E_In_Parameter
1762 then
1763 Var := Make_Var (Actual);
1764 Append_To (Post_Call,
1765 Make_Assignment_Statement (Loc,
1766 Name => New_Occurrence_Of (Var, Loc),
1767 Expression =>
1768 Unchecked_Convert_To (
1769 Logical,
1770 Make_Op_Ne (Loc,
1771 Left_Opnd => New_Occurrence_Of (Var, Loc),
1772 Right_Opnd =>
1773 Unchecked_Convert_To (
1774 Logical,
1775 New_Occurrence_Of (Standard_False, Loc))))));
1776 end if;
1777 end Check_Fortran_Logical;
1779 -------------------
1780 -- Is_Legal_Copy --
1781 -------------------
1783 function Is_Legal_Copy return Boolean is
1784 begin
1785 -- An attempt to copy a value of such a type can only occur if
1786 -- representation clauses give the actual a misaligned address.
1788 if Is_By_Reference_Type (Etype (Formal)) then
1790 -- The actual may in fact be properly aligned but there is not
1791 -- enough front-end information to determine this. In that case
1792 -- gigi will emit an error if a copy is not legal, or generate
1793 -- the proper code.
1795 return False;
1797 -- For users of Starlet, we assume that the specification of by-
1798 -- reference mechanism is mandatory. This may lead to unaligned
1799 -- objects but at least for DEC legacy code it is known to work.
1800 -- The warning will alert users of this code that a problem may
1801 -- be lurking.
1803 elsif Mechanism (Formal) = By_Reference
1804 and then Is_Valued_Procedure (Scope (Formal))
1805 then
1806 Error_Msg_N
1807 ("by_reference actual may be misaligned??", Actual);
1808 return False;
1810 else
1811 return True;
1812 end if;
1813 end Is_Legal_Copy;
1815 --------------
1816 -- Make_Var --
1817 --------------
1819 function Make_Var (Actual : Node_Id) return Entity_Id is
1820 Var : Entity_Id;
1822 begin
1823 if Is_Entity_Name (Actual) then
1824 return Entity (Actual);
1826 else
1827 Var := Make_Temporary (Loc, 'T', Actual);
1829 N_Node :=
1830 Make_Object_Renaming_Declaration (Loc,
1831 Defining_Identifier => Var,
1832 Subtype_Mark =>
1833 New_Occurrence_Of (Etype (Actual), Loc),
1834 Name => Relocate_Node (Actual));
1836 Insert_Action (N, N_Node);
1837 return Var;
1838 end if;
1839 end Make_Var;
1841 -------------------------
1842 -- Reset_Packed_Prefix --
1843 -------------------------
1845 procedure Reset_Packed_Prefix is
1846 Pfx : Node_Id := Actual;
1847 begin
1848 loop
1849 Set_Analyzed (Pfx, False);
1850 exit when
1851 not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
1852 Pfx := Prefix (Pfx);
1853 end loop;
1854 end Reset_Packed_Prefix;
1856 -- Start of processing for Expand_Actuals
1858 begin
1859 Post_Call := New_List;
1861 Formal := First_Formal (Subp);
1862 Actual := First_Actual (N);
1863 while Present (Formal) loop
1864 E_Formal := Etype (Formal);
1865 E_Actual := Etype (Actual);
1867 -- Handle formals whose type comes from the limited view
1869 if From_Limited_With (E_Formal)
1870 and then Has_Non_Limited_View (E_Formal)
1871 then
1872 E_Formal := Non_Limited_View (E_Formal);
1873 end if;
1875 if Is_Scalar_Type (E_Formal)
1876 or else Nkind (Actual) = N_Slice
1877 then
1878 Check_Fortran_Logical;
1880 -- RM 6.4.1 (11)
1882 elsif Ekind (Formal) /= E_Out_Parameter then
1884 -- The unusual case of the current instance of a protected type
1885 -- requires special handling. This can only occur in the context
1886 -- of a call within the body of a protected operation.
1888 if Is_Entity_Name (Actual)
1889 and then Ekind (Entity (Actual)) = E_Protected_Type
1890 and then In_Open_Scopes (Entity (Actual))
1891 then
1892 if Scope (Subp) /= Entity (Actual) then
1893 Error_Msg_N
1894 ("operation outside protected type may not "
1895 & "call back its protected operations??", Actual);
1896 end if;
1898 Rewrite (Actual,
1899 Expand_Protected_Object_Reference (N, Entity (Actual)));
1900 end if;
1902 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1903 -- build-in-place function, then a temporary return object needs
1904 -- to be created and access to it must be passed to the function.
1905 -- Currently we limit such functions to those with inherently
1906 -- limited result subtypes, but eventually we plan to expand the
1907 -- functions that are treated as build-in-place to include other
1908 -- composite result types.
1910 if Is_Build_In_Place_Function_Call (Actual) then
1911 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1913 -- Ada 2005 (AI-318-02): Specialization of the previous case for
1914 -- actuals containing build-in-place function calls whose returned
1915 -- object covers interface types.
1917 elsif Present (Unqual_BIP_Iface_Function_Call (Actual)) then
1918 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Actual);
1919 end if;
1921 Apply_Constraint_Check (Actual, E_Formal);
1923 -- Out parameter case. No constraint checks on access type
1924 -- RM 6.4.1 (13)
1926 elsif Is_Access_Type (E_Formal) then
1927 null;
1929 -- RM 6.4.1 (14)
1931 elsif Has_Discriminants (Base_Type (E_Formal))
1932 or else Has_Non_Null_Base_Init_Proc (E_Formal)
1933 then
1934 Apply_Constraint_Check (Actual, E_Formal);
1936 -- RM 6.4.1 (15)
1938 else
1939 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1940 end if;
1942 -- Processing for IN-OUT and OUT parameters
1944 if Ekind (Formal) /= E_In_Parameter then
1946 -- For type conversions of arrays, apply length/range checks
1948 if Is_Array_Type (E_Formal)
1949 and then Nkind (Actual) = N_Type_Conversion
1950 then
1951 if Is_Constrained (E_Formal) then
1952 Apply_Length_Check (Expression (Actual), E_Formal);
1953 else
1954 Apply_Range_Check (Expression (Actual), E_Formal);
1955 end if;
1956 end if;
1958 -- The actual denotes a variable which captures the value of an
1959 -- object for validation purposes. Add a copy-back to reflect any
1960 -- potential changes in value back into the original object.
1962 -- Var : ... := Object;
1963 -- if not Var'Valid then -- validity check
1964 -- Call (Var); -- modify var
1965 -- Object := Var; -- update Object
1967 -- This case is given higher priority because the subsequent check
1968 -- for type conversion may add an extra copy of the variable and
1969 -- prevent proper value propagation back in the original object.
1971 if Is_Validation_Variable_Reference (Actual) then
1972 Add_Validation_Call_By_Copy_Code (Actual);
1974 -- If argument is a type conversion for a type that is passed by
1975 -- copy, then we must pass the parameter by copy.
1977 elsif Nkind (Actual) = N_Type_Conversion
1978 and then
1979 (Is_Numeric_Type (E_Formal)
1980 or else Is_Access_Type (E_Formal)
1981 or else Is_Enumeration_Type (E_Formal)
1982 or else Is_Bit_Packed_Array (Etype (Formal))
1983 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1985 -- Also pass by copy if change of representation
1987 or else not Same_Representation
1988 (Etype (Formal),
1989 Etype (Expression (Actual))))
1990 then
1991 Add_Call_By_Copy_Code;
1993 -- References to components of bit-packed arrays are expanded
1994 -- at this point, rather than at the point of analysis of the
1995 -- actuals, to handle the expansion of the assignment to
1996 -- [in] out parameters.
1998 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1999 Add_Simple_Call_By_Copy_Code;
2001 -- If a non-scalar actual is possibly bit-aligned, we need a copy
2002 -- because the back-end cannot cope with such objects. In other
2003 -- cases where alignment forces a copy, the back-end generates
2004 -- it properly. It should not be generated unconditionally in the
2005 -- front-end because it does not know precisely the alignment
2006 -- requirements of the target, and makes too conservative an
2007 -- estimate, leading to superfluous copies or spurious errors
2008 -- on by-reference parameters.
2010 elsif Nkind (Actual) = N_Selected_Component
2011 and then
2012 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
2013 and then not Represented_As_Scalar (Etype (Formal))
2014 then
2015 Add_Simple_Call_By_Copy_Code;
2017 -- References to slices of bit-packed arrays are expanded
2019 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2020 Add_Call_By_Copy_Code;
2022 -- References to possibly unaligned slices of arrays are expanded
2024 elsif Is_Possibly_Unaligned_Slice (Actual) then
2025 Add_Call_By_Copy_Code;
2027 -- Deal with access types where the actual subtype and the
2028 -- formal subtype are not the same, requiring a check.
2030 -- It is necessary to exclude tagged types because of "downward
2031 -- conversion" errors.
2033 elsif Is_Access_Type (E_Formal)
2034 and then not Same_Type (E_Formal, E_Actual)
2035 and then not Is_Tagged_Type (Designated_Type (E_Formal))
2036 then
2037 Add_Call_By_Copy_Code;
2039 -- If the actual is not a scalar and is marked for volatile
2040 -- treatment, whereas the formal is not volatile, then pass
2041 -- by copy unless it is a by-reference type.
2043 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
2044 -- because this is the enforcement of a language rule that applies
2045 -- only to "real" volatile variables, not e.g. to the address
2046 -- clause overlay case.
2048 elsif Is_Entity_Name (Actual)
2049 and then Is_Volatile (Entity (Actual))
2050 and then not Is_By_Reference_Type (E_Actual)
2051 and then not Is_Scalar_Type (Etype (Entity (Actual)))
2052 and then not Is_Volatile (E_Formal)
2053 then
2054 Add_Call_By_Copy_Code;
2056 elsif Nkind (Actual) = N_Indexed_Component
2057 and then Is_Entity_Name (Prefix (Actual))
2058 and then Has_Volatile_Components (Entity (Prefix (Actual)))
2059 then
2060 Add_Call_By_Copy_Code;
2062 -- Add call-by-copy code for the case of scalar out parameters
2063 -- when it is not known at compile time that the subtype of the
2064 -- formal is a subrange of the subtype of the actual (or vice
2065 -- versa for in out parameters), in order to get range checks
2066 -- on such actuals. (Maybe this case should be handled earlier
2067 -- in the if statement???)
2069 elsif Is_Scalar_Type (E_Formal)
2070 and then
2071 (not In_Subrange_Of (E_Formal, E_Actual)
2072 or else
2073 (Ekind (Formal) = E_In_Out_Parameter
2074 and then not In_Subrange_Of (E_Actual, E_Formal)))
2075 then
2076 -- Perhaps the setting back to False should be done within
2077 -- Add_Call_By_Copy_Code, since it could get set on other
2078 -- cases occurring above???
2080 if Do_Range_Check (Actual) then
2081 Set_Do_Range_Check (Actual, False);
2082 end if;
2084 Add_Call_By_Copy_Code;
2085 end if;
2087 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
2088 -- by-reference parameters on exit from the call. If the actual
2089 -- is a derived type and the operation is inherited, the body
2090 -- of the operation will not contain a call to the predicate
2091 -- function, so it must be done explicitly after the call. Ditto
2092 -- if the actual is an entity of a predicated subtype.
2094 -- The rule refers to by-reference types, but a check is needed
2095 -- for by-copy types as well. That check is subsumed by the rule
2096 -- for subtype conversion on assignment, but we can generate the
2097 -- required check now.
2099 -- Note also that Subp may be either a subprogram entity for
2100 -- direct calls, or a type entity for indirect calls, which must
2101 -- be handled separately because the name does not denote an
2102 -- overloadable entity.
2104 By_Ref_Predicate_Check : declare
2105 Aund : constant Entity_Id := Underlying_Type (E_Actual);
2106 Atyp : Entity_Id;
2108 function Is_Public_Subp return Boolean;
2109 -- Check whether the subprogram being called is a visible
2110 -- operation of the type of the actual. Used to determine
2111 -- whether an invariant check must be generated on the
2112 -- caller side.
2114 ---------------------
2115 -- Is_Public_Subp --
2116 ---------------------
2118 function Is_Public_Subp return Boolean is
2119 Pack : constant Entity_Id := Scope (Subp);
2120 Subp_Decl : Node_Id;
2122 begin
2123 if not Is_Subprogram (Subp) then
2124 return False;
2126 -- The operation may be inherited, or a primitive of the
2127 -- root type.
2129 elsif
2130 Nkind_In (Parent (Subp), N_Private_Extension_Declaration,
2131 N_Full_Type_Declaration)
2132 then
2133 Subp_Decl := Parent (Subp);
2135 else
2136 Subp_Decl := Unit_Declaration_Node (Subp);
2137 end if;
2139 return Ekind (Pack) = E_Package
2140 and then
2141 List_Containing (Subp_Decl) =
2142 Visible_Declarations
2143 (Specification (Unit_Declaration_Node (Pack)));
2144 end Is_Public_Subp;
2146 -- Start of processing for By_Ref_Predicate_Check
2148 begin
2149 if No (Aund) then
2150 Atyp := E_Actual;
2151 else
2152 Atyp := Aund;
2153 end if;
2155 if Has_Predicates (Atyp)
2156 and then Present (Predicate_Function (Atyp))
2158 -- Skip predicate checks for special cases
2160 and then Predicate_Tests_On_Arguments (Subp)
2161 then
2162 Append_To (Post_Call,
2163 Make_Predicate_Check (Atyp, Actual));
2164 end if;
2166 -- We generated caller-side invariant checks in two cases:
2168 -- a) when calling an inherited operation, where there is an
2169 -- implicit view conversion of the actual to the parent type.
2171 -- b) When the conversion is explicit
2173 -- We treat these cases separately because the required
2174 -- conversion for a) is added later when expanding the call.
2176 if Has_Invariants (Etype (Actual))
2177 and then
2178 Nkind (Parent (Subp)) = N_Private_Extension_Declaration
2179 then
2180 if Comes_From_Source (N) and then Is_Public_Subp then
2181 Append_To (Post_Call, Make_Invariant_Call (Actual));
2182 end if;
2184 elsif Nkind (Actual) = N_Type_Conversion
2185 and then Has_Invariants (Etype (Expression (Actual)))
2186 then
2187 if Comes_From_Source (N) and then Is_Public_Subp then
2188 Append_To (Post_Call,
2189 Make_Invariant_Call (Expression (Actual)));
2190 end if;
2191 end if;
2192 end By_Ref_Predicate_Check;
2194 -- Processing for IN parameters
2196 else
2197 -- For IN parameters in the bit-packed array case, we expand an
2198 -- indexed component (the circuit in Exp_Ch4 deliberately left
2199 -- indexed components appearing as actuals untouched, so that
2200 -- the special processing above for the OUT and IN OUT cases
2201 -- could be performed. We could make the test in Exp_Ch4 more
2202 -- complex and have it detect the parameter mode, but it is
2203 -- easier simply to handle all cases here.)
2205 if Nkind (Actual) = N_Indexed_Component
2206 and then Is_Bit_Packed_Array (Etype (Prefix (Actual)))
2207 then
2208 Reset_Packed_Prefix;
2209 Expand_Packed_Element_Reference (Actual);
2211 -- If we have a reference to a bit-packed array, we copy it, since
2212 -- the actual must be byte aligned.
2214 -- Is this really necessary in all cases???
2216 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
2217 Add_Simple_Call_By_Copy_Code;
2219 -- If a non-scalar actual is possibly unaligned, we need a copy
2221 elsif Is_Possibly_Unaligned_Object (Actual)
2222 and then not Represented_As_Scalar (Etype (Formal))
2223 then
2224 Add_Simple_Call_By_Copy_Code;
2226 -- Similarly, we have to expand slices of packed arrays here
2227 -- because the result must be byte aligned.
2229 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2230 Add_Call_By_Copy_Code;
2232 -- Only processing remaining is to pass by copy if this is a
2233 -- reference to a possibly unaligned slice, since the caller
2234 -- expects an appropriately aligned argument.
2236 elsif Is_Possibly_Unaligned_Slice (Actual) then
2237 Add_Call_By_Copy_Code;
2239 -- An unusual case: a current instance of an enclosing task can be
2240 -- an actual, and must be replaced by a reference to self.
2242 elsif Is_Entity_Name (Actual)
2243 and then Is_Task_Type (Entity (Actual))
2244 then
2245 if In_Open_Scopes (Entity (Actual)) then
2246 Rewrite (Actual,
2247 (Make_Function_Call (Loc,
2248 Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
2249 Analyze (Actual);
2251 -- A task type cannot otherwise appear as an actual
2253 else
2254 raise Program_Error;
2255 end if;
2256 end if;
2257 end if;
2259 Next_Formal (Formal);
2260 Next_Actual (Actual);
2261 end loop;
2262 end Expand_Actuals;
2264 -----------------
2265 -- Expand_Call --
2266 -----------------
2268 procedure Expand_Call (N : Node_Id) is
2269 Post_Call : List_Id;
2271 begin
2272 pragma Assert (Nkind_In (N, N_Entry_Call_Statement,
2273 N_Function_Call,
2274 N_Procedure_Call_Statement));
2276 Expand_Call_Helper (N, Post_Call);
2277 Insert_Post_Call_Actions (N, Post_Call);
2278 end Expand_Call;
2280 ------------------------
2281 -- Expand_Call_Helper --
2282 ------------------------
2284 -- This procedure handles expansion of function calls and procedure call
2285 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
2286 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
2288 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
2289 -- Provide values of actuals for all formals in Extra_Formals list
2290 -- Replace "call" to enumeration literal function by literal itself
2291 -- Rewrite call to predefined operator as operator
2292 -- Replace actuals to in-out parameters that are numeric conversions,
2293 -- with explicit assignment to temporaries before and after the call.
2295 -- Note that the list of actuals has been filled with default expressions
2296 -- during semantic analysis of the call. Only the extra actuals required
2297 -- for the 'Constrained attribute and for accessibility checks are added
2298 -- at this point.
2300 procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id) is
2301 Loc : constant Source_Ptr := Sloc (N);
2302 Call_Node : Node_Id := N;
2303 Extra_Actuals : List_Id := No_List;
2304 Prev : Node_Id := Empty;
2306 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
2307 -- Adds one entry to the end of the actual parameter list. Used for
2308 -- default parameters and for extra actuals (for Extra_Formals). The
2309 -- argument is an N_Parameter_Association node.
2311 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
2312 -- Adds an extra actual to the list of extra actuals. Expr is the
2313 -- expression for the value of the actual, EF is the entity for the
2314 -- extra formal.
2316 procedure Add_View_Conversion_Invariants
2317 (Formal : Entity_Id;
2318 Actual : Node_Id);
2319 -- Adds invariant checks for every intermediate type between the range
2320 -- of a view converted argument to its ancestor (from parent to child).
2322 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
2323 -- Within an instance, a type derived from an untagged formal derived
2324 -- type inherits from the original parent, not from the actual. The
2325 -- current derivation mechanism has the derived type inherit from the
2326 -- actual, which is only correct outside of the instance. If the
2327 -- subprogram is inherited, we test for this particular case through a
2328 -- convoluted tree traversal before setting the proper subprogram to be
2329 -- called.
2331 function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
2332 -- Return true if E comes from an instance that is not yet frozen
2334 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
2335 -- Determine if Subp denotes a non-dispatching call to a Deep routine
2337 function New_Value (From : Node_Id) return Node_Id;
2338 -- From is the original Expression. New_Value is equivalent to a call
2339 -- to Duplicate_Subexpr with an explicit dereference when From is an
2340 -- access parameter.
2342 --------------------------
2343 -- Add_Actual_Parameter --
2344 --------------------------
2346 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
2347 Actual_Expr : constant Node_Id :=
2348 Explicit_Actual_Parameter (Insert_Param);
2350 begin
2351 -- Case of insertion is first named actual
2353 if No (Prev) or else
2354 Nkind (Parent (Prev)) /= N_Parameter_Association
2355 then
2356 Set_Next_Named_Actual
2357 (Insert_Param, First_Named_Actual (Call_Node));
2358 Set_First_Named_Actual (Call_Node, Actual_Expr);
2360 if No (Prev) then
2361 if No (Parameter_Associations (Call_Node)) then
2362 Set_Parameter_Associations (Call_Node, New_List);
2363 end if;
2365 Append (Insert_Param, Parameter_Associations (Call_Node));
2367 else
2368 Insert_After (Prev, Insert_Param);
2369 end if;
2371 -- Case of insertion is not first named actual
2373 else
2374 Set_Next_Named_Actual
2375 (Insert_Param, Next_Named_Actual (Parent (Prev)));
2376 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
2377 Append (Insert_Param, Parameter_Associations (Call_Node));
2378 end if;
2380 Prev := Actual_Expr;
2381 end Add_Actual_Parameter;
2383 ----------------------
2384 -- Add_Extra_Actual --
2385 ----------------------
2387 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
2388 Loc : constant Source_Ptr := Sloc (Expr);
2390 begin
2391 if Extra_Actuals = No_List then
2392 Extra_Actuals := New_List;
2393 Set_Parent (Extra_Actuals, Call_Node);
2394 end if;
2396 Append_To (Extra_Actuals,
2397 Make_Parameter_Association (Loc,
2398 Selector_Name => New_Occurrence_Of (EF, Loc),
2399 Explicit_Actual_Parameter => Expr));
2401 Analyze_And_Resolve (Expr, Etype (EF));
2403 if Nkind (Call_Node) = N_Function_Call then
2404 Set_Is_Accessibility_Actual (Parent (Expr));
2405 end if;
2406 end Add_Extra_Actual;
2408 ------------------------------------
2409 -- Add_View_Conversion_Invariants --
2410 ------------------------------------
2412 procedure Add_View_Conversion_Invariants
2413 (Formal : Entity_Id;
2414 Actual : Node_Id)
2416 Arg : Entity_Id;
2417 Curr_Typ : Entity_Id;
2418 Inv_Checks : List_Id;
2419 Par_Typ : Entity_Id;
2421 begin
2422 Inv_Checks := No_List;
2424 -- Extract the argument from a potentially nested set of view
2425 -- conversions.
2427 Arg := Actual;
2428 while Nkind (Arg) = N_Type_Conversion loop
2429 Arg := Expression (Arg);
2430 end loop;
2432 -- Move up the derivation chain starting with the type of the formal
2433 -- parameter down to the type of the actual object.
2435 Curr_Typ := Empty;
2436 Par_Typ := Etype (Arg);
2437 while Par_Typ /= Etype (Formal) and Par_Typ /= Curr_Typ loop
2438 Curr_Typ := Par_Typ;
2440 if Has_Invariants (Curr_Typ)
2441 and then Present (Invariant_Procedure (Curr_Typ))
2442 then
2443 -- Verify the invariate of the current type. Generate:
2445 -- <Curr_Typ>Invariant (Curr_Typ (Arg));
2447 Prepend_New_To (Inv_Checks,
2448 Make_Procedure_Call_Statement (Loc,
2449 Name =>
2450 New_Occurrence_Of
2451 (Invariant_Procedure (Curr_Typ), Loc),
2452 Parameter_Associations => New_List (
2453 Make_Type_Conversion (Loc,
2454 Subtype_Mark => New_Occurrence_Of (Curr_Typ, Loc),
2455 Expression => New_Copy_Tree (Arg)))));
2456 end if;
2458 Par_Typ := Base_Type (Etype (Curr_Typ));
2459 end loop;
2461 if not Is_Empty_List (Inv_Checks) then
2462 Insert_Actions_After (N, Inv_Checks);
2463 end if;
2464 end Add_View_Conversion_Invariants;
2466 ---------------------------
2467 -- Inherited_From_Formal --
2468 ---------------------------
2470 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
2471 Par : Entity_Id;
2472 Gen_Par : Entity_Id;
2473 Gen_Prim : Elist_Id;
2474 Elmt : Elmt_Id;
2475 Indic : Node_Id;
2477 begin
2478 -- If the operation is inherited, it is attached to the corresponding
2479 -- type derivation. If the parent in the derivation is a generic
2480 -- actual, it is a subtype of the actual, and we have to recover the
2481 -- original derived type declaration to find the proper parent.
2483 if Nkind (Parent (S)) /= N_Full_Type_Declaration
2484 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2485 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
2486 N_Derived_Type_Definition
2487 or else not In_Instance
2488 then
2489 return Empty;
2491 else
2492 Indic :=
2493 Subtype_Indication
2494 (Type_Definition (Original_Node (Parent (S))));
2496 if Nkind (Indic) = N_Subtype_Indication then
2497 Par := Entity (Subtype_Mark (Indic));
2498 else
2499 Par := Entity (Indic);
2500 end if;
2501 end if;
2503 if not Is_Generic_Actual_Type (Par)
2504 or else Is_Tagged_Type (Par)
2505 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
2506 or else not In_Open_Scopes (Scope (Par))
2507 then
2508 return Empty;
2509 else
2510 Gen_Par := Generic_Parent_Type (Parent (Par));
2511 end if;
2513 -- If the actual has no generic parent type, the formal is not
2514 -- a formal derived type, so nothing to inherit.
2516 if No (Gen_Par) then
2517 return Empty;
2518 end if;
2520 -- If the generic parent type is still the generic type, this is a
2521 -- private formal, not a derived formal, and there are no operations
2522 -- inherited from the formal.
2524 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
2525 return Empty;
2526 end if;
2528 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
2530 Elmt := First_Elmt (Gen_Prim);
2531 while Present (Elmt) loop
2532 if Chars (Node (Elmt)) = Chars (S) then
2533 declare
2534 F1 : Entity_Id;
2535 F2 : Entity_Id;
2537 begin
2538 F1 := First_Formal (S);
2539 F2 := First_Formal (Node (Elmt));
2540 while Present (F1)
2541 and then Present (F2)
2542 loop
2543 if Etype (F1) = Etype (F2)
2544 or else Etype (F2) = Gen_Par
2545 then
2546 Next_Formal (F1);
2547 Next_Formal (F2);
2548 else
2549 Next_Elmt (Elmt);
2550 exit; -- not the right subprogram
2551 end if;
2553 return Node (Elmt);
2554 end loop;
2555 end;
2557 else
2558 Next_Elmt (Elmt);
2559 end if;
2560 end loop;
2562 raise Program_Error;
2563 end Inherited_From_Formal;
2565 --------------------------
2566 -- In_Unfrozen_Instance --
2567 --------------------------
2569 function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
2570 S : Entity_Id;
2572 begin
2573 S := E;
2574 while Present (S) and then S /= Standard_Standard loop
2575 if Is_Generic_Instance (S)
2576 and then Present (Freeze_Node (S))
2577 and then not Analyzed (Freeze_Node (S))
2578 then
2579 return True;
2580 end if;
2582 S := Scope (S);
2583 end loop;
2585 return False;
2586 end In_Unfrozen_Instance;
2588 -------------------------
2589 -- Is_Direct_Deep_Call --
2590 -------------------------
2592 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
2593 begin
2594 if Is_TSS (Subp, TSS_Deep_Adjust)
2595 or else Is_TSS (Subp, TSS_Deep_Finalize)
2596 or else Is_TSS (Subp, TSS_Deep_Initialize)
2597 then
2598 declare
2599 Actual : Node_Id;
2600 Formal : Node_Id;
2602 begin
2603 Actual := First (Parameter_Associations (N));
2604 Formal := First_Formal (Subp);
2605 while Present (Actual)
2606 and then Present (Formal)
2607 loop
2608 if Nkind (Actual) = N_Identifier
2609 and then Is_Controlling_Actual (Actual)
2610 and then Etype (Actual) = Etype (Formal)
2611 then
2612 return True;
2613 end if;
2615 Next (Actual);
2616 Next_Formal (Formal);
2617 end loop;
2618 end;
2619 end if;
2621 return False;
2622 end Is_Direct_Deep_Call;
2624 ---------------
2625 -- New_Value --
2626 ---------------
2628 function New_Value (From : Node_Id) return Node_Id is
2629 Res : constant Node_Id := Duplicate_Subexpr (From);
2630 begin
2631 if Is_Access_Type (Etype (From)) then
2632 return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
2633 else
2634 return Res;
2635 end if;
2636 end New_Value;
2638 -- Local variables
2640 Remote : constant Boolean := Is_Remote_Call (Call_Node);
2641 Actual : Node_Id;
2642 Formal : Entity_Id;
2643 Orig_Subp : Entity_Id := Empty;
2644 Param_Count : Natural := 0;
2645 Parent_Formal : Entity_Id;
2646 Parent_Subp : Entity_Id;
2647 Pref_Entity : Entity_Id;
2648 Scop : Entity_Id;
2649 Subp : Entity_Id;
2651 Prev_Orig : Node_Id;
2652 -- Original node for an actual, which may have been rewritten. If the
2653 -- actual is a function call that has been transformed from a selected
2654 -- component, the original node is unanalyzed. Otherwise, it carries
2655 -- semantic information used to generate additional actuals.
2657 CW_Interface_Formals_Present : Boolean := False;
2659 -- Start of processing for Expand_Call_Helper
2661 begin
2662 Post_Call := New_List;
2664 -- Expand the function or procedure call if the first actual has a
2665 -- declared dimension aspect, and the subprogram is declared in one
2666 -- of the dimension I/O packages.
2668 if Ada_Version >= Ada_2012
2669 and then
2670 Nkind_In (Call_Node, N_Procedure_Call_Statement, N_Function_Call)
2671 and then Present (Parameter_Associations (Call_Node))
2672 then
2673 Expand_Put_Call_With_Symbol (Call_Node);
2674 end if;
2676 -- Ignore if previous error
2678 if Nkind (Call_Node) in N_Has_Etype
2679 and then Etype (Call_Node) = Any_Type
2680 then
2681 return;
2682 end if;
2684 -- Call using access to subprogram with explicit dereference
2686 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2687 Subp := Etype (Name (Call_Node));
2688 Parent_Subp := Empty;
2690 -- Case of call to simple entry, where the Name is a selected component
2691 -- whose prefix is the task, and whose selector name is the entry name
2693 elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2694 Subp := Entity (Selector_Name (Name (Call_Node)));
2695 Parent_Subp := Empty;
2697 -- Case of call to member of entry family, where Name is an indexed
2698 -- component, with the prefix being a selected component giving the
2699 -- task and entry family name, and the index being the entry index.
2701 elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2702 Subp := Entity (Selector_Name (Prefix (Name (Call_Node))));
2703 Parent_Subp := Empty;
2705 -- Normal case
2707 else
2708 Subp := Entity (Name (Call_Node));
2709 Parent_Subp := Alias (Subp);
2711 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2712 -- if we can tell that the first parameter cannot possibly be null.
2713 -- This improves efficiency by avoiding a run-time test.
2715 -- We do not do this if Raise_Exception_Always does not exist, which
2716 -- can happen in configurable run time profiles which provide only a
2717 -- Raise_Exception.
2719 if Is_RTE (Subp, RE_Raise_Exception)
2720 and then RTE_Available (RE_Raise_Exception_Always)
2721 then
2722 declare
2723 FA : constant Node_Id :=
2724 Original_Node (First_Actual (Call_Node));
2726 begin
2727 -- The case we catch is where the first argument is obtained
2728 -- using the Identity attribute (which must always be
2729 -- non-null).
2731 if Nkind (FA) = N_Attribute_Reference
2732 and then Attribute_Name (FA) = Name_Identity
2733 then
2734 Subp := RTE (RE_Raise_Exception_Always);
2735 Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
2736 end if;
2737 end;
2738 end if;
2740 if Ekind (Subp) = E_Entry then
2741 Parent_Subp := Empty;
2742 end if;
2743 end if;
2745 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2746 -- alternative in an asynchronous select or as an entry call in
2747 -- a conditional or timed select. Check whether the procedure call
2748 -- is a renaming of an entry and rewrite it as an entry call.
2750 if Ada_Version >= Ada_2005
2751 and then Nkind (Call_Node) = N_Procedure_Call_Statement
2752 and then
2753 ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
2754 and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
2755 or else
2756 (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
2757 and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
2758 then
2759 declare
2760 Ren_Decl : Node_Id;
2761 Ren_Root : Entity_Id := Subp;
2763 begin
2764 -- This may be a chain of renamings, find the root
2766 if Present (Alias (Ren_Root)) then
2767 Ren_Root := Alias (Ren_Root);
2768 end if;
2770 if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2771 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2773 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
2774 Rewrite (Call_Node,
2775 Make_Entry_Call_Statement (Loc,
2776 Name =>
2777 New_Copy_Tree (Name (Ren_Decl)),
2778 Parameter_Associations =>
2779 New_Copy_List_Tree
2780 (Parameter_Associations (Call_Node))));
2782 return;
2783 end if;
2784 end if;
2785 end;
2786 end if;
2788 if Modify_Tree_For_C
2789 and then Nkind (Call_Node) = N_Function_Call
2790 and then Is_Entity_Name (Name (Call_Node))
2791 then
2792 declare
2793 Func_Id : constant Entity_Id :=
2794 Ultimate_Alias (Entity (Name (Call_Node)));
2795 begin
2796 -- When generating C code, transform a function call that returns
2797 -- a constrained array type into procedure form.
2799 if Rewritten_For_C (Func_Id) then
2801 -- For internally generated calls ensure that they reference
2802 -- the entity of the spec of the called function (needed since
2803 -- the expander may generate calls using the entity of their
2804 -- body). See for example Expand_Boolean_Operator().
2806 if not (Comes_From_Source (Call_Node))
2807 and then Nkind (Unit_Declaration_Node (Func_Id)) =
2808 N_Subprogram_Body
2809 then
2810 Set_Entity (Name (Call_Node),
2811 Corresponding_Function
2812 (Corresponding_Procedure (Func_Id)));
2813 end if;
2815 Rewrite_Function_Call_For_C (Call_Node);
2816 return;
2818 -- Also introduce a temporary for functions that return a record
2819 -- called within another procedure or function call, since records
2820 -- are passed by pointer in the generated C code, and we cannot
2821 -- take a pointer from a subprogram call.
2823 elsif Nkind (Parent (Call_Node)) in N_Subprogram_Call
2824 and then Is_Record_Type (Etype (Func_Id))
2825 then
2826 declare
2827 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
2828 Decl : Node_Id;
2830 begin
2831 -- Generate:
2832 -- Temp : ... := Func_Call (...);
2834 Decl :=
2835 Make_Object_Declaration (Loc,
2836 Defining_Identifier => Temp_Id,
2837 Object_Definition =>
2838 New_Occurrence_Of (Etype (Func_Id), Loc),
2839 Expression =>
2840 Make_Function_Call (Loc,
2841 Name =>
2842 New_Occurrence_Of (Func_Id, Loc),
2843 Parameter_Associations =>
2844 Parameter_Associations (Call_Node)));
2846 Insert_Action (Parent (Call_Node), Decl);
2847 Rewrite (Call_Node, New_Occurrence_Of (Temp_Id, Loc));
2848 return;
2849 end;
2850 end if;
2851 end;
2852 end if;
2854 -- First step, compute extra actuals, corresponding to any Extra_Formals
2855 -- present. Note that we do not access Extra_Formals directly, instead
2856 -- we simply note the presence of the extra formals as we process the
2857 -- regular formals collecting corresponding actuals in Extra_Actuals.
2859 -- We also generate any required range checks for actuals for in formals
2860 -- as we go through the loop, since this is a convenient place to do it.
2861 -- (Though it seems that this would be better done in Expand_Actuals???)
2863 -- Special case: Thunks must not compute the extra actuals; they must
2864 -- just propagate to the target primitive their extra actuals.
2866 if Is_Thunk (Current_Scope)
2867 and then Thunk_Entity (Current_Scope) = Subp
2868 and then Present (Extra_Formals (Subp))
2869 then
2870 pragma Assert (Present (Extra_Formals (Current_Scope)));
2872 declare
2873 Target_Formal : Entity_Id;
2874 Thunk_Formal : Entity_Id;
2876 begin
2877 Target_Formal := Extra_Formals (Subp);
2878 Thunk_Formal := Extra_Formals (Current_Scope);
2879 while Present (Target_Formal) loop
2880 Add_Extra_Actual
2881 (Expr => New_Occurrence_Of (Thunk_Formal, Loc),
2882 EF => Thunk_Formal);
2884 Target_Formal := Extra_Formal (Target_Formal);
2885 Thunk_Formal := Extra_Formal (Thunk_Formal);
2886 end loop;
2888 while Is_Non_Empty_List (Extra_Actuals) loop
2889 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2890 end loop;
2892 Expand_Actuals (Call_Node, Subp, Post_Call);
2893 pragma Assert (Is_Empty_List (Post_Call));
2894 return;
2895 end;
2896 end if;
2898 Formal := First_Formal (Subp);
2899 Actual := First_Actual (Call_Node);
2900 Param_Count := 1;
2901 while Present (Formal) loop
2903 -- Generate range check if required
2905 if Do_Range_Check (Actual)
2906 and then Ekind (Formal) = E_In_Parameter
2907 then
2908 Generate_Range_Check
2909 (Actual, Etype (Formal), CE_Range_Check_Failed);
2910 end if;
2912 -- Prepare to examine current entry
2914 Prev := Actual;
2915 Prev_Orig := Original_Node (Prev);
2917 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2918 -- to expand it in a further round.
2920 CW_Interface_Formals_Present :=
2921 CW_Interface_Formals_Present
2922 or else
2923 (Is_Class_Wide_Type (Etype (Formal))
2924 and then Is_Interface (Etype (Etype (Formal))))
2925 or else
2926 (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2927 and then Is_Class_Wide_Type (Directly_Designated_Type
2928 (Etype (Etype (Formal))))
2929 and then Is_Interface (Directly_Designated_Type
2930 (Etype (Etype (Formal)))));
2932 -- Create possible extra actual for constrained case. Usually, the
2933 -- extra actual is of the form actual'constrained, but since this
2934 -- attribute is only available for unconstrained records, TRUE is
2935 -- expanded if the type of the formal happens to be constrained (for
2936 -- instance when this procedure is inherited from an unconstrained
2937 -- record to a constrained one) or if the actual has no discriminant
2938 -- (its type is constrained). An exception to this is the case of a
2939 -- private type without discriminants. In this case we pass FALSE
2940 -- because the object has underlying discriminants with defaults.
2942 if Present (Extra_Constrained (Formal)) then
2943 if Ekind (Etype (Prev)) in Private_Kind
2944 and then not Has_Discriminants (Base_Type (Etype (Prev)))
2945 then
2946 Add_Extra_Actual
2947 (Expr => New_Occurrence_Of (Standard_False, Loc),
2948 EF => Extra_Constrained (Formal));
2950 elsif Is_Constrained (Etype (Formal))
2951 or else not Has_Discriminants (Etype (Prev))
2952 then
2953 Add_Extra_Actual
2954 (Expr => New_Occurrence_Of (Standard_True, Loc),
2955 EF => Extra_Constrained (Formal));
2957 -- Do not produce extra actuals for Unchecked_Union parameters.
2958 -- Jump directly to the end of the loop.
2960 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2961 goto Skip_Extra_Actual_Generation;
2963 else
2964 -- If the actual is a type conversion, then the constrained
2965 -- test applies to the actual, not the target type.
2967 declare
2968 Act_Prev : Node_Id;
2970 begin
2971 -- Test for unchecked conversions as well, which can occur
2972 -- as out parameter actuals on calls to stream procedures.
2974 Act_Prev := Prev;
2975 while Nkind_In (Act_Prev, N_Type_Conversion,
2976 N_Unchecked_Type_Conversion)
2977 loop
2978 Act_Prev := Expression (Act_Prev);
2979 end loop;
2981 -- If the expression is a conversion of a dereference, this
2982 -- is internally generated code that manipulates addresses,
2983 -- e.g. when building interface tables. No check should
2984 -- occur in this case, and the discriminated object is not
2985 -- directly a hand.
2987 if not Comes_From_Source (Actual)
2988 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2989 and then Nkind (Act_Prev) = N_Explicit_Dereference
2990 then
2991 Add_Extra_Actual
2992 (Expr => New_Occurrence_Of (Standard_False, Loc),
2993 EF => Extra_Constrained (Formal));
2995 else
2996 Add_Extra_Actual
2997 (Expr =>
2998 Make_Attribute_Reference (Sloc (Prev),
2999 Prefix =>
3000 Duplicate_Subexpr_No_Checks
3001 (Act_Prev, Name_Req => True),
3002 Attribute_Name => Name_Constrained),
3003 EF => Extra_Constrained (Formal));
3004 end if;
3005 end;
3006 end if;
3007 end if;
3009 -- Create possible extra actual for accessibility level
3011 if Present (Extra_Accessibility (Formal)) then
3013 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
3014 -- attribute, then the original actual may be an aliased object
3015 -- occurring as the prefix in a call using "Object.Operation"
3016 -- notation. In that case we must pass the level of the object,
3017 -- so Prev_Orig is reset to Prev and the attribute will be
3018 -- processed by the code for Access attributes further below.
3020 if Prev_Orig /= Prev
3021 and then Nkind (Prev) = N_Attribute_Reference
3022 and then Get_Attribute_Id (Attribute_Name (Prev)) =
3023 Attribute_Access
3024 and then Is_Aliased_View (Prev_Orig)
3025 then
3026 Prev_Orig := Prev;
3028 -- A class-wide precondition generates a test in which formals of
3029 -- the subprogram are replaced by actuals that came from source.
3030 -- In that case as well, the accessiblity comes from the actual.
3031 -- This is the one case in which there are references to formals
3032 -- outside of their subprogram.
3034 elsif Prev_Orig /= Prev
3035 and then Is_Entity_Name (Prev_Orig)
3036 and then Present (Entity (Prev_Orig))
3037 and then Is_Formal (Entity (Prev_Orig))
3038 and then not In_Open_Scopes (Scope (Entity (Prev_Orig)))
3039 then
3040 Prev_Orig := Prev;
3042 -- If the actual is a formal of an enclosing subprogram it is
3043 -- the right entity, even if it is a rewriting. This happens
3044 -- when the call is within an inherited condition or predicate.
3046 elsif Is_Entity_Name (Actual)
3047 and then Is_Formal (Entity (Actual))
3048 and then In_Open_Scopes (Scope (Entity (Actual)))
3049 then
3050 Prev_Orig := Prev;
3052 elsif Nkind (Prev_Orig) = N_Type_Conversion then
3053 Prev_Orig := Expression (Prev_Orig);
3054 end if;
3056 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
3057 -- accessibility levels.
3059 if Is_Thunk (Current_Scope) then
3060 declare
3061 Parm_Ent : Entity_Id;
3063 begin
3064 if Is_Controlling_Actual (Actual) then
3066 -- Find the corresponding actual of the thunk
3068 Parm_Ent := First_Entity (Current_Scope);
3069 for J in 2 .. Param_Count loop
3070 Next_Entity (Parm_Ent);
3071 end loop;
3073 -- Handle unchecked conversion of access types generated
3074 -- in thunks (cf. Expand_Interface_Thunk).
3076 elsif Is_Access_Type (Etype (Actual))
3077 and then Nkind (Actual) = N_Unchecked_Type_Conversion
3078 then
3079 Parm_Ent := Entity (Expression (Actual));
3081 else pragma Assert (Is_Entity_Name (Actual));
3082 Parm_Ent := Entity (Actual);
3083 end if;
3085 Add_Extra_Actual
3086 (Expr =>
3087 New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
3088 EF => Extra_Accessibility (Formal));
3089 end;
3091 elsif Is_Entity_Name (Prev_Orig) then
3093 -- When passing an access parameter, or a renaming of an access
3094 -- parameter, as the actual to another access parameter we need
3095 -- to pass along the actual's own access level parameter. This
3096 -- is done if we are within the scope of the formal access
3097 -- parameter (if this is an inlined body the extra formal is
3098 -- irrelevant).
3100 if (Is_Formal (Entity (Prev_Orig))
3101 or else
3102 (Present (Renamed_Object (Entity (Prev_Orig)))
3103 and then
3104 Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
3105 and then
3106 Is_Formal
3107 (Entity (Renamed_Object (Entity (Prev_Orig))))))
3108 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
3109 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
3110 then
3111 declare
3112 Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
3114 begin
3115 pragma Assert (Present (Parm_Ent));
3117 if Present (Extra_Accessibility (Parm_Ent)) then
3118 Add_Extra_Actual
3119 (Expr =>
3120 New_Occurrence_Of
3121 (Extra_Accessibility (Parm_Ent), Loc),
3122 EF => Extra_Accessibility (Formal));
3124 -- If the actual access parameter does not have an
3125 -- associated extra formal providing its scope level,
3126 -- then treat the actual as having library-level
3127 -- accessibility.
3129 else
3130 Add_Extra_Actual
3131 (Expr =>
3132 Make_Integer_Literal (Loc,
3133 Intval => Scope_Depth (Standard_Standard)),
3134 EF => Extra_Accessibility (Formal));
3135 end if;
3136 end;
3138 -- The actual is a normal access value, so just pass the level
3139 -- of the actual's access type.
3141 else
3142 Add_Extra_Actual
3143 (Expr => Dynamic_Accessibility_Level (Prev_Orig),
3144 EF => Extra_Accessibility (Formal));
3145 end if;
3147 -- If the actual is an access discriminant, then pass the level
3148 -- of the enclosing object (RM05-3.10.2(12.4/2)).
3150 elsif Nkind (Prev_Orig) = N_Selected_Component
3151 and then Ekind (Entity (Selector_Name (Prev_Orig))) =
3152 E_Discriminant
3153 and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
3154 E_Anonymous_Access_Type
3155 then
3156 Add_Extra_Actual
3157 (Expr =>
3158 Make_Integer_Literal (Loc,
3159 Intval => Object_Access_Level (Prefix (Prev_Orig))),
3160 EF => Extra_Accessibility (Formal));
3162 -- All other cases
3164 else
3165 case Nkind (Prev_Orig) is
3166 when N_Attribute_Reference =>
3167 case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
3169 -- For X'Access, pass on the level of the prefix X
3171 when Attribute_Access =>
3173 -- Accessibility level of S'Access is that of A
3175 Prev_Orig := Prefix (Prev_Orig);
3177 -- If the expression is a view conversion, the
3178 -- accessibility level is that of the expression.
3180 if Nkind (Original_Node (Prev_Orig)) =
3181 N_Type_Conversion
3182 and then
3183 Nkind (Expression (Original_Node (Prev_Orig))) =
3184 N_Explicit_Dereference
3185 then
3186 Prev_Orig :=
3187 Expression (Original_Node (Prev_Orig));
3188 end if;
3190 -- If this is an Access attribute applied to the
3191 -- the current instance object passed to a type
3192 -- initialization procedure, then use the level
3193 -- of the type itself. This is not really correct,
3194 -- as there should be an extra level parameter
3195 -- passed in with _init formals (only in the case
3196 -- where the type is immutably limited), but we
3197 -- don't have an easy way currently to create such
3198 -- an extra formal (init procs aren't ever frozen).
3199 -- For now we just use the level of the type,
3200 -- which may be too shallow, but that works better
3201 -- than passing Object_Access_Level of the type,
3202 -- which can be one level too deep in some cases.
3203 -- ???
3205 -- A further case that requires special handling
3206 -- is the common idiom E.all'access. If E is a
3207 -- formal of the enclosing subprogram, the
3208 -- accessibility of the expression is that of E.
3210 if Is_Entity_Name (Prev_Orig) then
3211 Pref_Entity := Entity (Prev_Orig);
3213 elsif Nkind (Prev_Orig) = N_Explicit_Dereference
3214 and then Is_Entity_Name (Prefix (Prev_Orig))
3215 then
3216 Pref_Entity := Entity (Prefix ((Prev_Orig)));
3218 else
3219 Pref_Entity := Empty;
3220 end if;
3222 if Is_Entity_Name (Prev_Orig)
3223 and then Is_Type (Entity (Prev_Orig))
3224 then
3225 Add_Extra_Actual
3226 (Expr =>
3227 Make_Integer_Literal (Loc,
3228 Intval =>
3229 Type_Access_Level (Pref_Entity)),
3230 EF => Extra_Accessibility (Formal));
3232 elsif Nkind (Prev_Orig) = N_Explicit_Dereference
3233 and then Present (Pref_Entity)
3234 and then Is_Formal (Pref_Entity)
3235 and then Present
3236 (Extra_Accessibility (Pref_Entity))
3237 then
3238 Add_Extra_Actual
3239 (Expr =>
3240 New_Occurrence_Of
3241 (Extra_Accessibility (Pref_Entity), Loc),
3242 EF => Extra_Accessibility (Formal));
3244 else
3245 Add_Extra_Actual
3246 (Expr =>
3247 Make_Integer_Literal (Loc,
3248 Intval =>
3249 Object_Access_Level (Prev_Orig)),
3250 EF => Extra_Accessibility (Formal));
3251 end if;
3253 -- Treat the unchecked attributes as library-level
3255 when Attribute_Unchecked_Access
3256 | Attribute_Unrestricted_Access
3258 Add_Extra_Actual
3259 (Expr =>
3260 Make_Integer_Literal (Loc,
3261 Intval => Scope_Depth (Standard_Standard)),
3262 EF => Extra_Accessibility (Formal));
3264 -- No other cases of attributes returning access
3265 -- values that can be passed to access parameters.
3267 when others =>
3268 raise Program_Error;
3270 end case;
3272 -- For allocators we pass the level of the execution of the
3273 -- called subprogram, which is one greater than the current
3274 -- scope level.
3276 when N_Allocator =>
3277 Add_Extra_Actual
3278 (Expr =>
3279 Make_Integer_Literal (Loc,
3280 Intval => Scope_Depth (Current_Scope) + 1),
3281 EF => Extra_Accessibility (Formal));
3283 -- For most other cases we simply pass the level of the
3284 -- actual's access type. The type is retrieved from
3285 -- Prev rather than Prev_Orig, because in some cases
3286 -- Prev_Orig denotes an original expression that has
3287 -- not been analyzed.
3289 when others =>
3290 Add_Extra_Actual
3291 (Expr => Dynamic_Accessibility_Level (Prev),
3292 EF => Extra_Accessibility (Formal));
3293 end case;
3294 end if;
3295 end if;
3297 -- Perform the check of 4.6(49) that prevents a null value from being
3298 -- passed as an actual to an access parameter. Note that the check
3299 -- is elided in the common cases of passing an access attribute or
3300 -- access parameter as an actual. Also, we currently don't enforce
3301 -- this check for expander-generated actuals and when -gnatdj is set.
3303 if Ada_Version >= Ada_2005 then
3305 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
3306 -- the intent of 6.4.1(13) is that null-exclusion checks should
3307 -- not be done for 'out' parameters, even though it refers only
3308 -- to constraint checks, and a null_exclusion is not a constraint.
3309 -- Note that AI05-0196-1 corrects this mistake in the RM.
3311 if Is_Access_Type (Etype (Formal))
3312 and then Can_Never_Be_Null (Etype (Formal))
3313 and then Ekind (Formal) /= E_Out_Parameter
3314 and then Nkind (Prev) /= N_Raise_Constraint_Error
3315 and then (Known_Null (Prev)
3316 or else not Can_Never_Be_Null (Etype (Prev)))
3317 then
3318 Install_Null_Excluding_Check (Prev);
3319 end if;
3321 -- Ada_Version < Ada_2005
3323 else
3324 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
3325 or else Access_Checks_Suppressed (Subp)
3326 then
3327 null;
3329 elsif Debug_Flag_J then
3330 null;
3332 elsif not Comes_From_Source (Prev) then
3333 null;
3335 elsif Is_Entity_Name (Prev)
3336 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
3337 then
3338 null;
3340 elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
3341 null;
3343 else
3344 Install_Null_Excluding_Check (Prev);
3345 end if;
3346 end if;
3348 -- Perform appropriate validity checks on parameters that
3349 -- are entities.
3351 if Validity_Checks_On then
3352 if (Ekind (Formal) = E_In_Parameter
3353 and then Validity_Check_In_Params)
3354 or else
3355 (Ekind (Formal) = E_In_Out_Parameter
3356 and then Validity_Check_In_Out_Params)
3357 then
3358 -- If the actual is an indexed component of a packed type (or
3359 -- is an indexed or selected component whose prefix recursively
3360 -- meets this condition), it has not been expanded yet. It will
3361 -- be copied in the validity code that follows, and has to be
3362 -- expanded appropriately, so reanalyze it.
3364 -- What we do is just to unset analyzed bits on prefixes till
3365 -- we reach something that does not have a prefix.
3367 declare
3368 Nod : Node_Id;
3370 begin
3371 Nod := Actual;
3372 while Nkind_In (Nod, N_Indexed_Component,
3373 N_Selected_Component)
3374 loop
3375 Set_Analyzed (Nod, False);
3376 Nod := Prefix (Nod);
3377 end loop;
3378 end;
3380 Ensure_Valid (Actual);
3381 end if;
3382 end if;
3384 -- For IN OUT and OUT parameters, ensure that subscripts are valid
3385 -- since this is a left side reference. We only do this for calls
3386 -- from the source program since we assume that compiler generated
3387 -- calls explicitly generate any required checks. We also need it
3388 -- only if we are doing standard validity checks, since clearly it is
3389 -- not needed if validity checks are off, and in subscript validity
3390 -- checking mode, all indexed components are checked with a call
3391 -- directly from Expand_N_Indexed_Component.
3393 if Comes_From_Source (Call_Node)
3394 and then Ekind (Formal) /= E_In_Parameter
3395 and then Validity_Checks_On
3396 and then Validity_Check_Default
3397 and then not Validity_Check_Subscripts
3398 then
3399 Check_Valid_Lvalue_Subscripts (Actual);
3400 end if;
3402 -- Mark any scalar OUT parameter that is a simple variable as no
3403 -- longer known to be valid (unless the type is always valid). This
3404 -- reflects the fact that if an OUT parameter is never set in a
3405 -- procedure, then it can become invalid on the procedure return.
3407 if Ekind (Formal) = E_Out_Parameter
3408 and then Is_Entity_Name (Actual)
3409 and then Ekind (Entity (Actual)) = E_Variable
3410 and then not Is_Known_Valid (Etype (Actual))
3411 then
3412 Set_Is_Known_Valid (Entity (Actual), False);
3413 end if;
3415 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3416 -- clear current values, since they can be clobbered. We are probably
3417 -- doing this in more places than we need to, but better safe than
3418 -- sorry when it comes to retaining bad current values.
3420 if Ekind (Formal) /= E_In_Parameter
3421 and then Is_Entity_Name (Actual)
3422 and then Present (Entity (Actual))
3423 then
3424 declare
3425 Ent : constant Entity_Id := Entity (Actual);
3426 Sav : Node_Id;
3428 begin
3429 -- For an OUT or IN OUT parameter that is an assignable entity,
3430 -- we do not want to clobber the Last_Assignment field, since
3431 -- if it is set, it was precisely because it is indeed an OUT
3432 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
3433 -- since the subprogram could have returned in invalid value.
3435 if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
3436 and then Is_Assignable (Ent)
3437 then
3438 Sav := Last_Assignment (Ent);
3439 Kill_Current_Values (Ent);
3440 Set_Last_Assignment (Ent, Sav);
3441 Set_Is_Known_Valid (Ent, False);
3442 Set_Is_True_Constant (Ent, False);
3444 -- For all other cases, just kill the current values
3446 else
3447 Kill_Current_Values (Ent);
3448 end if;
3449 end;
3450 end if;
3452 -- If the formal is class wide and the actual is an aggregate, force
3453 -- evaluation so that the back end who does not know about class-wide
3454 -- type, does not generate a temporary of the wrong size.
3456 if not Is_Class_Wide_Type (Etype (Formal)) then
3457 null;
3459 elsif Nkind (Actual) = N_Aggregate
3460 or else (Nkind (Actual) = N_Qualified_Expression
3461 and then Nkind (Expression (Actual)) = N_Aggregate)
3462 then
3463 Force_Evaluation (Actual);
3464 end if;
3466 -- In a remote call, if the formal is of a class-wide type, check
3467 -- that the actual meets the requirements described in E.4(18).
3469 if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
3470 Insert_Action (Actual,
3471 Make_Transportable_Check (Loc,
3472 Duplicate_Subexpr_Move_Checks (Actual)));
3473 end if;
3475 -- Perform invariant checks for all intermediate types in a view
3476 -- conversion after successful return from a call that passes the
3477 -- view conversion as an IN OUT or OUT parameter (RM 7.3.2 (12/3,
3478 -- 13/3, 14/3)). Consider only source conversion in order to avoid
3479 -- generating spurious checks on complex expansion such as object
3480 -- initialization through an extension aggregate.
3482 if Comes_From_Source (N)
3483 and then Ekind (Formal) /= E_In_Parameter
3484 and then Nkind (Actual) = N_Type_Conversion
3485 then
3486 Add_View_Conversion_Invariants (Formal, Actual);
3487 end if;
3489 -- Generating C the initialization of an allocator is performed by
3490 -- means of individual statements, and hence it must be done before
3491 -- the call.
3493 if Modify_Tree_For_C
3494 and then Nkind (Actual) = N_Allocator
3495 and then Nkind (Expression (Actual)) = N_Qualified_Expression
3496 then
3497 Remove_Side_Effects (Actual);
3498 end if;
3500 -- This label is required when skipping extra actual generation for
3501 -- Unchecked_Union parameters.
3503 <<Skip_Extra_Actual_Generation>>
3505 Param_Count := Param_Count + 1;
3506 Next_Actual (Actual);
3507 Next_Formal (Formal);
3508 end loop;
3510 -- If we are calling an Ada 2012 function which needs to have the
3511 -- "accessibility level determined by the point of call" (AI05-0234)
3512 -- passed in to it, then pass it in.
3514 if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
3515 and then
3516 Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
3517 then
3518 declare
3519 Ancestor : Node_Id := Parent (Call_Node);
3520 Level : Node_Id := Empty;
3521 Defer : Boolean := False;
3523 begin
3524 -- Unimplemented: if Subp returns an anonymous access type, then
3526 -- a) if the call is the operand of an explict conversion, then
3527 -- the target type of the conversion (a named access type)
3528 -- determines the accessibility level pass in;
3530 -- b) if the call defines an access discriminant of an object
3531 -- (e.g., the discriminant of an object being created by an
3532 -- allocator, or the discriminant of a function result),
3533 -- then the accessibility level to pass in is that of the
3534 -- discriminated object being initialized).
3536 -- ???
3538 while Nkind (Ancestor) = N_Qualified_Expression
3539 loop
3540 Ancestor := Parent (Ancestor);
3541 end loop;
3543 case Nkind (Ancestor) is
3544 when N_Allocator =>
3546 -- At this point, we'd like to assign
3548 -- Level := Dynamic_Accessibility_Level (Ancestor);
3550 -- but Etype of Ancestor may not have been set yet,
3551 -- so that doesn't work.
3553 -- Handle this later in Expand_Allocator_Expression.
3555 Defer := True;
3557 when N_Object_Declaration
3558 | N_Object_Renaming_Declaration
3560 declare
3561 Def_Id : constant Entity_Id :=
3562 Defining_Identifier (Ancestor);
3564 begin
3565 if Is_Return_Object (Def_Id) then
3566 if Present (Extra_Accessibility_Of_Result
3567 (Return_Applies_To (Scope (Def_Id))))
3568 then
3569 -- Pass along value that was passed in if the
3570 -- routine we are returning from also has an
3571 -- Accessibility_Of_Result formal.
3573 Level :=
3574 New_Occurrence_Of
3575 (Extra_Accessibility_Of_Result
3576 (Return_Applies_To (Scope (Def_Id))), Loc);
3577 end if;
3578 else
3579 Level :=
3580 Make_Integer_Literal (Loc,
3581 Intval => Object_Access_Level (Def_Id));
3582 end if;
3583 end;
3585 when N_Simple_Return_Statement =>
3586 if Present (Extra_Accessibility_Of_Result
3587 (Return_Applies_To
3588 (Return_Statement_Entity (Ancestor))))
3589 then
3590 -- Pass along value that was passed in if the returned
3591 -- routine also has an Accessibility_Of_Result formal.
3593 Level :=
3594 New_Occurrence_Of
3595 (Extra_Accessibility_Of_Result
3596 (Return_Applies_To
3597 (Return_Statement_Entity (Ancestor))), Loc);
3598 end if;
3600 when others =>
3601 null;
3602 end case;
3604 if not Defer then
3605 if not Present (Level) then
3607 -- The "innermost master that evaluates the function call".
3609 -- ??? - Should we use Integer'Last here instead in order
3610 -- to deal with (some of) the problems associated with
3611 -- calls to subps whose enclosing scope is unknown (e.g.,
3612 -- Anon_Access_To_Subp_Param.all)?
3614 Level :=
3615 Make_Integer_Literal (Loc,
3616 Intval => Scope_Depth (Current_Scope) + 1);
3617 end if;
3619 Add_Extra_Actual
3620 (Expr => Level,
3621 EF =>
3622 Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
3623 end if;
3624 end;
3625 end if;
3627 -- If we are expanding the RHS of an assignment we need to check if tag
3628 -- propagation is needed. You might expect this processing to be in
3629 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3630 -- assignment might be transformed to a declaration for an unconstrained
3631 -- value if the expression is classwide.
3633 if Nkind (Call_Node) = N_Function_Call
3634 and then Is_Tag_Indeterminate (Call_Node)
3635 and then Is_Entity_Name (Name (Call_Node))
3636 then
3637 declare
3638 Ass : Node_Id := Empty;
3640 begin
3641 if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
3642 Ass := Parent (Call_Node);
3644 elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3645 and then Nkind (Parent (Parent (Call_Node))) =
3646 N_Assignment_Statement
3647 then
3648 Ass := Parent (Parent (Call_Node));
3650 elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3651 and then Nkind (Parent (Parent (Call_Node))) =
3652 N_Assignment_Statement
3653 then
3654 Ass := Parent (Parent (Call_Node));
3655 end if;
3657 if Present (Ass)
3658 and then Is_Class_Wide_Type (Etype (Name (Ass)))
3659 then
3660 if Is_Access_Type (Etype (Call_Node)) then
3661 if Designated_Type (Etype (Call_Node)) /=
3662 Root_Type (Etype (Name (Ass)))
3663 then
3664 Error_Msg_NE
3665 ("tag-indeterminate expression must have designated "
3666 & "type& (RM 5.2 (6))",
3667 Call_Node, Root_Type (Etype (Name (Ass))));
3668 else
3669 Propagate_Tag (Name (Ass), Call_Node);
3670 end if;
3672 elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
3673 Error_Msg_NE
3674 ("tag-indeterminate expression must have type & "
3675 & "(RM 5.2 (6))",
3676 Call_Node, Root_Type (Etype (Name (Ass))));
3678 else
3679 Propagate_Tag (Name (Ass), Call_Node);
3680 end if;
3682 -- The call will be rewritten as a dispatching call, and
3683 -- expanded as such.
3685 return;
3686 end if;
3687 end;
3688 end if;
3690 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3691 -- it to point to the correct secondary virtual table
3693 if Nkind (Call_Node) in N_Subprogram_Call
3694 and then CW_Interface_Formals_Present
3695 then
3696 Expand_Interface_Actuals (Call_Node);
3697 end if;
3699 -- Deals with Dispatch_Call if we still have a call, before expanding
3700 -- extra actuals since this will be done on the re-analysis of the
3701 -- dispatching call. Note that we do not try to shorten the actual list
3702 -- for a dispatching call, it would not make sense to do so. Expansion
3703 -- of dispatching calls is suppressed for VM targets, because the VM
3704 -- back-ends directly handle the generation of dispatching calls and
3705 -- would have to undo any expansion to an indirect call.
3707 if Nkind (Call_Node) in N_Subprogram_Call
3708 and then Present (Controlling_Argument (Call_Node))
3709 then
3710 declare
3711 Call_Typ : constant Entity_Id := Etype (Call_Node);
3712 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
3713 Eq_Prim_Op : Entity_Id := Empty;
3714 New_Call : Node_Id;
3715 Param : Node_Id;
3716 Prev_Call : Node_Id;
3718 begin
3719 if not Is_Limited_Type (Typ) then
3720 Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
3721 end if;
3723 if Tagged_Type_Expansion then
3724 Expand_Dispatching_Call (Call_Node);
3726 -- The following return is worrisome. Is it really OK to skip
3727 -- all remaining processing in this procedure ???
3729 return;
3731 -- VM targets
3733 else
3734 Apply_Tag_Checks (Call_Node);
3736 -- If this is a dispatching "=", we must first compare the
3737 -- tags so we generate: x.tag = y.tag and then x = y
3739 if Subp = Eq_Prim_Op then
3741 -- Mark the node as analyzed to avoid reanalyzing this
3742 -- dispatching call (which would cause a never-ending loop)
3744 Prev_Call := Relocate_Node (Call_Node);
3745 Set_Analyzed (Prev_Call);
3747 Param := First_Actual (Call_Node);
3748 New_Call :=
3749 Make_And_Then (Loc,
3750 Left_Opnd =>
3751 Make_Op_Eq (Loc,
3752 Left_Opnd =>
3753 Make_Selected_Component (Loc,
3754 Prefix => New_Value (Param),
3755 Selector_Name =>
3756 New_Occurrence_Of
3757 (First_Tag_Component (Typ), Loc)),
3759 Right_Opnd =>
3760 Make_Selected_Component (Loc,
3761 Prefix =>
3762 Unchecked_Convert_To (Typ,
3763 New_Value (Next_Actual (Param))),
3764 Selector_Name =>
3765 New_Occurrence_Of
3766 (First_Tag_Component (Typ), Loc))),
3767 Right_Opnd => Prev_Call);
3769 Rewrite (Call_Node, New_Call);
3771 Analyze_And_Resolve
3772 (Call_Node, Call_Typ, Suppress => All_Checks);
3773 end if;
3775 -- Expansion of a dispatching call results in an indirect call,
3776 -- which in turn causes current values to be killed (see
3777 -- Resolve_Call), so on VM targets we do the call here to
3778 -- ensure consistent warnings between VM and non-VM targets.
3780 Kill_Current_Values;
3781 end if;
3783 -- If this is a dispatching "=" then we must update the reference
3784 -- to the call node because we generated:
3785 -- x.tag = y.tag and then x = y
3787 if Subp = Eq_Prim_Op then
3788 Call_Node := Right_Opnd (Call_Node);
3789 end if;
3790 end;
3791 end if;
3793 -- Similarly, expand calls to RCI subprograms on which pragma
3794 -- All_Calls_Remote applies. The rewriting will be reanalyzed
3795 -- later. Do this only when the call comes from source since we
3796 -- do not want such a rewriting to occur in expanded code.
3798 if Is_All_Remote_Call (Call_Node) then
3799 Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
3801 -- Similarly, do not add extra actuals for an entry call whose entity
3802 -- is a protected procedure, or for an internal protected subprogram
3803 -- call, because it will be rewritten as a protected subprogram call
3804 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3806 elsif Is_Protected_Type (Scope (Subp))
3807 and then (Ekind (Subp) = E_Procedure
3808 or else Ekind (Subp) = E_Function)
3809 then
3810 null;
3812 -- During that loop we gathered the extra actuals (the ones that
3813 -- correspond to Extra_Formals), so now they can be appended.
3815 else
3816 while Is_Non_Empty_List (Extra_Actuals) loop
3817 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
3818 end loop;
3819 end if;
3821 -- At this point we have all the actuals, so this is the point at which
3822 -- the various expansion activities for actuals is carried out.
3824 Expand_Actuals (Call_Node, Subp, Post_Call);
3826 -- Verify that the actuals do not share storage. This check must be done
3827 -- on the caller side rather that inside the subprogram to avoid issues
3828 -- of parameter passing.
3830 if Check_Aliasing_Of_Parameters then
3831 Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
3832 end if;
3834 -- If the subprogram is a renaming, or if it is inherited, replace it in
3835 -- the call with the name of the actual subprogram being called. If this
3836 -- is a dispatching call, the run-time decides what to call. The Alias
3837 -- attribute does not apply to entries.
3839 if Nkind (Call_Node) /= N_Entry_Call_Statement
3840 and then No (Controlling_Argument (Call_Node))
3841 and then Present (Parent_Subp)
3842 and then not Is_Direct_Deep_Call (Subp)
3843 then
3844 if Present (Inherited_From_Formal (Subp)) then
3845 Parent_Subp := Inherited_From_Formal (Subp);
3846 else
3847 Parent_Subp := Ultimate_Alias (Parent_Subp);
3848 end if;
3850 -- The below setting of Entity is suspect, see F109-018 discussion???
3852 Set_Entity (Name (Call_Node), Parent_Subp);
3854 if Is_Abstract_Subprogram (Parent_Subp)
3855 and then not In_Instance
3856 then
3857 Error_Msg_NE
3858 ("cannot call abstract subprogram &!",
3859 Name (Call_Node), Parent_Subp);
3860 end if;
3862 -- Inspect all formals of derived subprogram Subp. Compare parameter
3863 -- types with the parent subprogram and check whether an actual may
3864 -- need a type conversion to the corresponding formal of the parent
3865 -- subprogram.
3867 -- Not clear whether intrinsic subprograms need such conversions. ???
3869 if not Is_Intrinsic_Subprogram (Parent_Subp)
3870 or else Is_Generic_Instance (Parent_Subp)
3871 then
3872 declare
3873 procedure Convert (Act : Node_Id; Typ : Entity_Id);
3874 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3875 -- and resolve the newly generated construct.
3877 -------------
3878 -- Convert --
3879 -------------
3881 procedure Convert (Act : Node_Id; Typ : Entity_Id) is
3882 begin
3883 Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
3884 Analyze (Act);
3885 Resolve (Act, Typ);
3886 end Convert;
3888 -- Local variables
3890 Actual_Typ : Entity_Id;
3891 Formal_Typ : Entity_Id;
3892 Parent_Typ : Entity_Id;
3894 begin
3895 Actual := First_Actual (Call_Node);
3896 Formal := First_Formal (Subp);
3897 Parent_Formal := First_Formal (Parent_Subp);
3898 while Present (Formal) loop
3899 Actual_Typ := Etype (Actual);
3900 Formal_Typ := Etype (Formal);
3901 Parent_Typ := Etype (Parent_Formal);
3903 -- For an IN parameter of a scalar type, the parent formal
3904 -- type and derived formal type differ or the parent formal
3905 -- type and actual type do not match statically.
3907 if Is_Scalar_Type (Formal_Typ)
3908 and then Ekind (Formal) = E_In_Parameter
3909 and then Formal_Typ /= Parent_Typ
3910 and then
3911 not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
3912 and then not Raises_Constraint_Error (Actual)
3913 then
3914 Convert (Actual, Parent_Typ);
3915 Enable_Range_Check (Actual);
3917 -- If the actual has been marked as requiring a range
3918 -- check, then generate it here.
3920 if Do_Range_Check (Actual) then
3921 Generate_Range_Check
3922 (Actual, Etype (Formal), CE_Range_Check_Failed);
3923 end if;
3925 -- For access types, the parent formal type and actual type
3926 -- differ.
3928 elsif Is_Access_Type (Formal_Typ)
3929 and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
3930 then
3931 if Ekind (Formal) /= E_In_Parameter then
3932 Convert (Actual, Parent_Typ);
3934 elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
3935 and then Designated_Type (Parent_Typ) /=
3936 Designated_Type (Actual_Typ)
3937 and then not Is_Controlling_Formal (Formal)
3938 then
3939 -- This unchecked conversion is not necessary unless
3940 -- inlining is enabled, because in that case the type
3941 -- mismatch may become visible in the body about to be
3942 -- inlined.
3944 Rewrite (Actual,
3945 Unchecked_Convert_To (Parent_Typ,
3946 Relocate_Node (Actual)));
3947 Analyze (Actual);
3948 Resolve (Actual, Parent_Typ);
3949 end if;
3951 -- If there is a change of representation, then generate a
3952 -- warning, and do the change of representation.
3954 elsif not Same_Representation (Formal_Typ, Parent_Typ) then
3955 Error_Msg_N
3956 ("??change of representation required", Actual);
3957 Convert (Actual, Parent_Typ);
3959 -- For array and record types, the parent formal type and
3960 -- derived formal type have different sizes or pragma Pack
3961 -- status.
3963 elsif ((Is_Array_Type (Formal_Typ)
3964 and then Is_Array_Type (Parent_Typ))
3965 or else
3966 (Is_Record_Type (Formal_Typ)
3967 and then Is_Record_Type (Parent_Typ)))
3968 and then
3969 (Esize (Formal_Typ) /= Esize (Parent_Typ)
3970 or else Has_Pragma_Pack (Formal_Typ) /=
3971 Has_Pragma_Pack (Parent_Typ))
3972 then
3973 Convert (Actual, Parent_Typ);
3974 end if;
3976 Next_Actual (Actual);
3977 Next_Formal (Formal);
3978 Next_Formal (Parent_Formal);
3979 end loop;
3980 end;
3981 end if;
3983 Orig_Subp := Subp;
3984 Subp := Parent_Subp;
3985 end if;
3987 -- Deal with case where call is an explicit dereference
3989 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
3991 -- Handle case of access to protected subprogram type
3993 if Is_Access_Protected_Subprogram_Type
3994 (Base_Type (Etype (Prefix (Name (Call_Node)))))
3995 then
3996 -- If this is a call through an access to protected operation, the
3997 -- prefix has the form (object'address, operation'access). Rewrite
3998 -- as a for other protected calls: the object is the 1st parameter
3999 -- of the list of actuals.
4001 declare
4002 Call : Node_Id;
4003 Parm : List_Id;
4004 Nam : Node_Id;
4005 Obj : Node_Id;
4006 Ptr : constant Node_Id := Prefix (Name (Call_Node));
4008 T : constant Entity_Id :=
4009 Equivalent_Type (Base_Type (Etype (Ptr)));
4011 D_T : constant Entity_Id :=
4012 Designated_Type (Base_Type (Etype (Ptr)));
4014 begin
4015 Obj :=
4016 Make_Selected_Component (Loc,
4017 Prefix => Unchecked_Convert_To (T, Ptr),
4018 Selector_Name =>
4019 New_Occurrence_Of (First_Entity (T), Loc));
4021 Nam :=
4022 Make_Selected_Component (Loc,
4023 Prefix => Unchecked_Convert_To (T, Ptr),
4024 Selector_Name =>
4025 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
4027 Nam :=
4028 Make_Explicit_Dereference (Loc,
4029 Prefix => Nam);
4031 if Present (Parameter_Associations (Call_Node)) then
4032 Parm := Parameter_Associations (Call_Node);
4033 else
4034 Parm := New_List;
4035 end if;
4037 Prepend (Obj, Parm);
4039 if Etype (D_T) = Standard_Void_Type then
4040 Call :=
4041 Make_Procedure_Call_Statement (Loc,
4042 Name => Nam,
4043 Parameter_Associations => Parm);
4044 else
4045 Call :=
4046 Make_Function_Call (Loc,
4047 Name => Nam,
4048 Parameter_Associations => Parm);
4049 end if;
4051 Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
4052 Set_Etype (Call, Etype (D_T));
4054 -- We do not re-analyze the call to avoid infinite recursion.
4055 -- We analyze separately the prefix and the object, and set
4056 -- the checks on the prefix that would otherwise be emitted
4057 -- when resolving a call.
4059 Rewrite (Call_Node, Call);
4060 Analyze (Nam);
4061 Apply_Access_Check (Nam);
4062 Analyze (Obj);
4063 return;
4064 end;
4065 end if;
4066 end if;
4068 -- If this is a call to an intrinsic subprogram, then perform the
4069 -- appropriate expansion to the corresponding tree node and we
4070 -- are all done (since after that the call is gone).
4072 -- In the case where the intrinsic is to be processed by the back end,
4073 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
4074 -- since the idea in this case is to pass the call unchanged. If the
4075 -- intrinsic is an inherited unchecked conversion, and the derived type
4076 -- is the target type of the conversion, we must retain it as the return
4077 -- type of the expression. Otherwise the expansion below, which uses the
4078 -- parent operation, will yield the wrong type.
4080 if Is_Intrinsic_Subprogram (Subp) then
4081 Expand_Intrinsic_Call (Call_Node, Subp);
4083 if Nkind (Call_Node) = N_Unchecked_Type_Conversion
4084 and then Parent_Subp /= Orig_Subp
4085 and then Etype (Parent_Subp) /= Etype (Orig_Subp)
4086 then
4087 Set_Etype (Call_Node, Etype (Orig_Subp));
4088 end if;
4090 return;
4091 end if;
4093 if Ekind_In (Subp, E_Function, E_Procedure) then
4095 -- We perform a simple optimization on calls for To_Address by
4096 -- replacing them with an unchecked conversion. Not only is this
4097 -- efficient, but it also avoids order of elaboration problems when
4098 -- address clauses are inlined (address expression elaborated at the
4099 -- wrong point).
4101 -- We perform this optimization regardless of whether we are in the
4102 -- main unit or in a unit in the context of the main unit, to ensure
4103 -- that the generated tree is the same in both cases, for CodePeer
4104 -- use.
4106 if Is_RTE (Subp, RE_To_Address) then
4107 Rewrite (Call_Node,
4108 Unchecked_Convert_To
4109 (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
4110 return;
4112 -- A call to a null procedure is replaced by a null statement, but we
4113 -- are not allowed to ignore possible side effects of the call, so we
4114 -- make sure that actuals are evaluated.
4115 -- We also suppress this optimization for GNATCoverage.
4117 elsif Is_Null_Procedure (Subp)
4118 and then not Opt.Suppress_Control_Flow_Optimizations
4119 then
4120 Actual := First_Actual (Call_Node);
4121 while Present (Actual) loop
4122 Remove_Side_Effects (Actual);
4123 Next_Actual (Actual);
4124 end loop;
4126 Rewrite (Call_Node, Make_Null_Statement (Loc));
4127 return;
4128 end if;
4130 -- Handle inlining. No action needed if the subprogram is not inlined
4132 if not Is_Inlined (Subp) then
4133 null;
4135 -- Frontend inlining of expression functions (performed also when
4136 -- backend inlining is enabled).
4138 elsif Is_Inlinable_Expression_Function (Subp) then
4139 Rewrite (N, New_Copy (Expression_Of_Expression_Function (Subp)));
4140 Analyze (N);
4141 return;
4143 -- Handle frontend inlining
4145 elsif not Back_End_Inlining then
4146 Inlined_Subprogram : declare
4147 Bod : Node_Id;
4148 Must_Inline : Boolean := False;
4149 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
4151 begin
4152 -- Verify that the body to inline has already been seen, and
4153 -- that if the body is in the current unit the inlining does
4154 -- not occur earlier. This avoids order-of-elaboration problems
4155 -- in the back end.
4157 -- This should be documented in sinfo/einfo ???
4159 if No (Spec)
4160 or else Nkind (Spec) /= N_Subprogram_Declaration
4161 or else No (Body_To_Inline (Spec))
4162 then
4163 Must_Inline := False;
4165 -- If this an inherited function that returns a private type,
4166 -- do not inline if the full view is an unconstrained array,
4167 -- because such calls cannot be inlined.
4169 elsif Present (Orig_Subp)
4170 and then Is_Array_Type (Etype (Orig_Subp))
4171 and then not Is_Constrained (Etype (Orig_Subp))
4172 then
4173 Must_Inline := False;
4175 elsif In_Unfrozen_Instance (Scope (Subp)) then
4176 Must_Inline := False;
4178 else
4179 Bod := Body_To_Inline (Spec);
4181 if (In_Extended_Main_Code_Unit (Call_Node)
4182 or else In_Extended_Main_Code_Unit (Parent (Call_Node))
4183 or else Has_Pragma_Inline_Always (Subp))
4184 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
4185 or else
4186 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
4187 then
4188 Must_Inline := True;
4190 -- If we are compiling a package body that is not the main
4191 -- unit, it must be for inlining/instantiation purposes,
4192 -- in which case we inline the call to insure that the same
4193 -- temporaries are generated when compiling the body by
4194 -- itself. Otherwise link errors can occur.
4196 -- If the function being called is itself in the main unit,
4197 -- we cannot inline, because there is a risk of double
4198 -- elaboration and/or circularity: the inlining can make
4199 -- visible a private entity in the body of the main unit,
4200 -- that gigi will see before its sees its proper definition.
4202 elsif not (In_Extended_Main_Code_Unit (Call_Node))
4203 and then In_Package_Body
4204 then
4205 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
4207 -- Inline calls to _postconditions when generating C code
4209 elsif Modify_Tree_For_C
4210 and then In_Same_Extended_Unit (Sloc (Bod), Loc)
4211 and then Chars (Name (N)) = Name_uPostconditions
4212 then
4213 Must_Inline := True;
4214 end if;
4215 end if;
4217 if Must_Inline then
4218 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
4220 else
4221 -- Let the back end handle it
4223 Add_Inlined_Body (Subp, Call_Node);
4225 if Front_End_Inlining
4226 and then Nkind (Spec) = N_Subprogram_Declaration
4227 and then (In_Extended_Main_Code_Unit (Call_Node))
4228 and then No (Body_To_Inline (Spec))
4229 and then not Has_Completion (Subp)
4230 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
4231 then
4232 Cannot_Inline
4233 ("cannot inline& (body not seen yet)?",
4234 Call_Node, Subp);
4235 end if;
4236 end if;
4237 end Inlined_Subprogram;
4239 -- Back end inlining: let the back end handle it
4241 elsif No (Unit_Declaration_Node (Subp))
4242 or else Nkind (Unit_Declaration_Node (Subp)) /=
4243 N_Subprogram_Declaration
4244 or else No (Body_To_Inline (Unit_Declaration_Node (Subp)))
4245 or else Nkind (Body_To_Inline (Unit_Declaration_Node (Subp))) in
4246 N_Entity
4247 then
4248 Add_Inlined_Body (Subp, Call_Node);
4250 -- If the inlined call appears within an instantiation and some
4251 -- level of optimization is required, ensure that the enclosing
4252 -- instance body is available so that the back-end can actually
4253 -- perform the inlining.
4255 if In_Instance
4256 and then Comes_From_Source (Subp)
4257 and then Optimization_Level > 0
4258 then
4259 declare
4260 Decl : Node_Id;
4261 Inst : Entity_Id;
4262 Inst_Node : Node_Id;
4264 begin
4265 Inst := Scope (Subp);
4267 -- Find enclosing instance
4269 while Present (Inst) and then Inst /= Standard_Standard loop
4270 exit when Is_Generic_Instance (Inst);
4271 Inst := Scope (Inst);
4272 end loop;
4274 if Present (Inst)
4275 and then Is_Generic_Instance (Inst)
4276 and then not Is_Inlined (Inst)
4277 then
4278 Set_Is_Inlined (Inst);
4279 Decl := Unit_Declaration_Node (Inst);
4281 -- Do not add a pending instantiation if the body exits
4282 -- already, or if the instance is a compilation unit, or
4283 -- the instance node is missing.
4285 if Present (Corresponding_Body (Decl))
4286 or else Nkind (Parent (Decl)) = N_Compilation_Unit
4287 or else No (Next (Decl))
4288 then
4289 null;
4291 else
4292 -- The instantiation node usually follows the package
4293 -- declaration for the instance. If the generic unit
4294 -- has aspect specifications, they are transformed
4295 -- into pragmas in the instance, and the instance node
4296 -- appears after them.
4298 Inst_Node := Next (Decl);
4300 while Nkind (Inst_Node) /= N_Package_Instantiation loop
4301 Inst_Node := Next (Inst_Node);
4302 end loop;
4304 Add_Pending_Instantiation (Inst_Node, Decl);
4305 end if;
4306 end if;
4307 end;
4308 end if;
4310 -- Front end expansion of simple functions returning unconstrained
4311 -- types (see Check_And_Split_Unconstrained_Function). Note that the
4312 -- case of a simple renaming (Body_To_Inline in N_Entity above, see
4313 -- also Build_Renamed_Body) cannot be expanded here because this may
4314 -- give rise to order-of-elaboration issues for the types of the
4315 -- parameters of the subprogram, if any.
4317 else
4318 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
4319 end if;
4320 end if;
4322 -- Check for protected subprogram. This is either an intra-object call,
4323 -- or a protected function call. Protected procedure calls are rewritten
4324 -- as entry calls and handled accordingly.
4326 -- In Ada 2005, this may be an indirect call to an access parameter that
4327 -- is an access_to_subprogram. In that case the anonymous type has a
4328 -- scope that is a protected operation, but the call is a regular one.
4329 -- In either case do not expand call if subprogram is eliminated.
4331 Scop := Scope (Subp);
4333 if Nkind (Call_Node) /= N_Entry_Call_Statement
4334 and then Is_Protected_Type (Scop)
4335 and then Ekind (Subp) /= E_Subprogram_Type
4336 and then not Is_Eliminated (Subp)
4337 then
4338 -- If the call is an internal one, it is rewritten as a call to the
4339 -- corresponding unprotected subprogram.
4341 Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
4342 end if;
4344 -- Functions returning controlled objects need special attention. If
4345 -- the return type is limited, then the context is initialization and
4346 -- different processing applies. If the call is to a protected function,
4347 -- the expansion above will call Expand_Call recursively. Otherwise the
4348 -- function call is transformed into a temporary which obtains the
4349 -- result from the secondary stack.
4351 if Needs_Finalization (Etype (Subp)) then
4352 if not Is_Build_In_Place_Function_Call (Call_Node)
4353 and then
4354 (No (First_Formal (Subp))
4355 or else
4356 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
4357 then
4358 Expand_Ctrl_Function_Call (Call_Node);
4360 -- Build-in-place function calls which appear in anonymous contexts
4361 -- need a transient scope to ensure the proper finalization of the
4362 -- intermediate result after its use.
4364 elsif Is_Build_In_Place_Function_Call (Call_Node)
4365 and then Nkind_In (Parent (Unqual_Conv (Call_Node)),
4366 N_Attribute_Reference,
4367 N_Function_Call,
4368 N_Indexed_Component,
4369 N_Object_Renaming_Declaration,
4370 N_Procedure_Call_Statement,
4371 N_Selected_Component,
4372 N_Slice)
4373 and then
4374 (Ekind (Current_Scope) /= E_Loop
4375 or else Nkind (Parent (N)) /= N_Function_Call
4376 or else not Is_Build_In_Place_Function_Call (Parent (N)))
4377 then
4378 Establish_Transient_Scope (Call_Node, Manage_Sec_Stack => True);
4379 end if;
4380 end if;
4381 end Expand_Call_Helper;
4383 -------------------------------
4384 -- Expand_Ctrl_Function_Call --
4385 -------------------------------
4387 procedure Expand_Ctrl_Function_Call (N : Node_Id) is
4388 function Is_Element_Reference (N : Node_Id) return Boolean;
4389 -- Determine whether node N denotes a reference to an Ada 2012 container
4390 -- element.
4392 --------------------------
4393 -- Is_Element_Reference --
4394 --------------------------
4396 function Is_Element_Reference (N : Node_Id) return Boolean is
4397 Ref : constant Node_Id := Original_Node (N);
4399 begin
4400 -- Analysis marks an element reference by setting the generalized
4401 -- indexing attribute of an indexed component before the component
4402 -- is rewritten into a function call.
4404 return
4405 Nkind (Ref) = N_Indexed_Component
4406 and then Present (Generalized_Indexing (Ref));
4407 end Is_Element_Reference;
4409 -- Start of processing for Expand_Ctrl_Function_Call
4411 begin
4412 -- Optimization, if the returned value (which is on the sec-stack) is
4413 -- returned again, no need to copy/readjust/finalize, we can just pass
4414 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
4415 -- attachment is needed
4417 if Nkind (Parent (N)) = N_Simple_Return_Statement then
4418 return;
4419 end if;
4421 -- Resolution is now finished, make sure we don't start analysis again
4422 -- because of the duplication.
4424 Set_Analyzed (N);
4426 -- A function which returns a controlled object uses the secondary
4427 -- stack. Rewrite the call into a temporary which obtains the result of
4428 -- the function using 'reference.
4430 Remove_Side_Effects (N);
4432 -- The side effect removal of the function call produced a temporary.
4433 -- When the context is a case expression, if expression, or expression
4434 -- with actions, the lifetime of the temporary must be extended to match
4435 -- that of the context. Otherwise the function result will be finalized
4436 -- too early and affect the result of the expression. To prevent this
4437 -- unwanted effect, the temporary should not be considered for clean up
4438 -- actions by the general finalization machinery.
4440 -- Exception to this rule are references to Ada 2012 container elements.
4441 -- Such references must be finalized at the end of each iteration of the
4442 -- related quantified expression, otherwise the container will remain
4443 -- busy.
4445 if Nkind (N) = N_Explicit_Dereference
4446 and then Within_Case_Or_If_Expression (N)
4447 and then not Is_Element_Reference (N)
4448 then
4449 Set_Is_Ignored_Transient (Entity (Prefix (N)));
4450 end if;
4451 end Expand_Ctrl_Function_Call;
4453 ----------------------------------------
4454 -- Expand_N_Extended_Return_Statement --
4455 ----------------------------------------
4457 -- If there is a Handled_Statement_Sequence, we rewrite this:
4459 -- return Result : T := <expression> do
4460 -- <handled_seq_of_stms>
4461 -- end return;
4463 -- to be:
4465 -- declare
4466 -- Result : T := <expression>;
4467 -- begin
4468 -- <handled_seq_of_stms>
4469 -- return Result;
4470 -- end;
4472 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
4474 -- return Result : T := <expression>;
4476 -- to be:
4478 -- return <expression>;
4480 -- unless it's build-in-place or there's no <expression>, in which case
4481 -- we generate:
4483 -- declare
4484 -- Result : T := <expression>;
4485 -- begin
4486 -- return Result;
4487 -- end;
4489 -- Note that this case could have been written by the user as an extended
4490 -- return statement, or could have been transformed to this from a simple
4491 -- return statement.
4493 -- That is, we need to have a reified return object if there are statements
4494 -- (which might refer to it) or if we're doing build-in-place (so we can
4495 -- set its address to the final resting place or if there is no expression
4496 -- (in which case default initial values might need to be set)).
4498 procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
4499 Loc : constant Source_Ptr := Sloc (N);
4501 function Build_Heap_Or_Pool_Allocator
4502 (Temp_Id : Entity_Id;
4503 Temp_Typ : Entity_Id;
4504 Func_Id : Entity_Id;
4505 Ret_Typ : Entity_Id;
4506 Alloc_Expr : Node_Id) return Node_Id;
4507 -- Create the statements necessary to allocate a return object on the
4508 -- heap or user-defined storage pool. The object may need finalization
4509 -- actions depending on the return type.
4511 -- * Controlled case
4513 -- if BIPfinalizationmaster = null then
4514 -- Temp_Id := <Alloc_Expr>;
4515 -- else
4516 -- declare
4517 -- type Ptr_Typ is access Ret_Typ;
4518 -- for Ptr_Typ'Storage_Pool use
4519 -- Base_Pool (BIPfinalizationmaster.all).all;
4520 -- Local : Ptr_Typ;
4522 -- begin
4523 -- procedure Allocate (...) is
4524 -- begin
4525 -- System.Storage_Pools.Subpools.Allocate_Any (...);
4526 -- end Allocate;
4528 -- Local := <Alloc_Expr>;
4529 -- Temp_Id := Temp_Typ (Local);
4530 -- end;
4531 -- end if;
4533 -- * Non-controlled case
4535 -- Temp_Id := <Alloc_Expr>;
4537 -- Temp_Id is the temporary which is used to reference the internally
4538 -- created object in all allocation forms. Temp_Typ is the type of the
4539 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4540 -- type of Func_Id. Alloc_Expr is the actual allocator.
4542 function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id;
4543 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4544 -- with parameters:
4545 -- From current activation chain
4546 -- To activation chain passed in by the caller
4547 -- New_Master master passed in by the caller
4549 -- Func_Id is the entity of the function where the extended return
4550 -- statement appears.
4552 ----------------------------------
4553 -- Build_Heap_Or_Pool_Allocator --
4554 ----------------------------------
4556 function Build_Heap_Or_Pool_Allocator
4557 (Temp_Id : Entity_Id;
4558 Temp_Typ : Entity_Id;
4559 Func_Id : Entity_Id;
4560 Ret_Typ : Entity_Id;
4561 Alloc_Expr : Node_Id) return Node_Id
4563 begin
4564 pragma Assert (Is_Build_In_Place_Function (Func_Id));
4566 -- Processing for objects that require finalization actions
4568 if Needs_Finalization (Ret_Typ) then
4569 declare
4570 Decls : constant List_Id := New_List;
4571 Fin_Mas_Id : constant Entity_Id :=
4572 Build_In_Place_Formal
4573 (Func_Id, BIP_Finalization_Master);
4574 Orig_Expr : constant Node_Id :=
4575 New_Copy_Tree
4576 (Source => Alloc_Expr,
4577 Scopes_In_EWA_OK => True);
4578 Stmts : constant List_Id := New_List;
4579 Desig_Typ : Entity_Id;
4580 Local_Id : Entity_Id;
4581 Pool_Id : Entity_Id;
4582 Ptr_Typ : Entity_Id;
4584 begin
4585 -- Generate:
4586 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4588 Pool_Id := Make_Temporary (Loc, 'P');
4590 Append_To (Decls,
4591 Make_Object_Renaming_Declaration (Loc,
4592 Defining_Identifier => Pool_Id,
4593 Subtype_Mark =>
4594 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
4595 Name =>
4596 Make_Explicit_Dereference (Loc,
4597 Prefix =>
4598 Make_Function_Call (Loc,
4599 Name =>
4600 New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
4601 Parameter_Associations => New_List (
4602 Make_Explicit_Dereference (Loc,
4603 Prefix =>
4604 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
4606 -- Create an access type which uses the storage pool of the
4607 -- caller's master. This additional type is necessary because
4608 -- the finalization master cannot be associated with the type
4609 -- of the temporary. Otherwise the secondary stack allocation
4610 -- will fail.
4612 Desig_Typ := Ret_Typ;
4614 -- Ensure that the build-in-place machinery uses a fat pointer
4615 -- when allocating an unconstrained array on the heap. In this
4616 -- case the result object type is a constrained array type even
4617 -- though the function type is unconstrained.
4619 if Ekind (Desig_Typ) = E_Array_Subtype then
4620 Desig_Typ := Base_Type (Desig_Typ);
4621 end if;
4623 -- Generate:
4624 -- type Ptr_Typ is access Desig_Typ;
4626 Ptr_Typ := Make_Temporary (Loc, 'P');
4628 Append_To (Decls,
4629 Make_Full_Type_Declaration (Loc,
4630 Defining_Identifier => Ptr_Typ,
4631 Type_Definition =>
4632 Make_Access_To_Object_Definition (Loc,
4633 Subtype_Indication =>
4634 New_Occurrence_Of (Desig_Typ, Loc))));
4636 -- Perform minor decoration in order to set the master and the
4637 -- storage pool attributes.
4639 Set_Ekind (Ptr_Typ, E_Access_Type);
4640 Set_Finalization_Master (Ptr_Typ, Fin_Mas_Id);
4641 Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4643 -- Create the temporary, generate:
4644 -- Local_Id : Ptr_Typ;
4646 Local_Id := Make_Temporary (Loc, 'T');
4648 Append_To (Decls,
4649 Make_Object_Declaration (Loc,
4650 Defining_Identifier => Local_Id,
4651 Object_Definition =>
4652 New_Occurrence_Of (Ptr_Typ, Loc)));
4654 -- Allocate the object, generate:
4655 -- Local_Id := <Alloc_Expr>;
4657 Append_To (Stmts,
4658 Make_Assignment_Statement (Loc,
4659 Name => New_Occurrence_Of (Local_Id, Loc),
4660 Expression => Alloc_Expr));
4662 -- Generate:
4663 -- Temp_Id := Temp_Typ (Local_Id);
4665 Append_To (Stmts,
4666 Make_Assignment_Statement (Loc,
4667 Name => New_Occurrence_Of (Temp_Id, Loc),
4668 Expression =>
4669 Unchecked_Convert_To (Temp_Typ,
4670 New_Occurrence_Of (Local_Id, Loc))));
4672 -- Wrap the allocation in a block. This is further conditioned
4673 -- by checking the caller finalization master at runtime. A
4674 -- null value indicates a non-existent master, most likely due
4675 -- to a Finalize_Storage_Only allocation.
4677 -- Generate:
4678 -- if BIPfinalizationmaster = null then
4679 -- Temp_Id := <Orig_Expr>;
4680 -- else
4681 -- declare
4682 -- <Decls>
4683 -- begin
4684 -- <Stmts>
4685 -- end;
4686 -- end if;
4688 return
4689 Make_If_Statement (Loc,
4690 Condition =>
4691 Make_Op_Eq (Loc,
4692 Left_Opnd => New_Occurrence_Of (Fin_Mas_Id, Loc),
4693 Right_Opnd => Make_Null (Loc)),
4695 Then_Statements => New_List (
4696 Make_Assignment_Statement (Loc,
4697 Name => New_Occurrence_Of (Temp_Id, Loc),
4698 Expression => Orig_Expr)),
4700 Else_Statements => New_List (
4701 Make_Block_Statement (Loc,
4702 Declarations => Decls,
4703 Handled_Statement_Sequence =>
4704 Make_Handled_Sequence_Of_Statements (Loc,
4705 Statements => Stmts))));
4706 end;
4708 -- For all other cases, generate:
4709 -- Temp_Id := <Alloc_Expr>;
4711 else
4712 return
4713 Make_Assignment_Statement (Loc,
4714 Name => New_Occurrence_Of (Temp_Id, Loc),
4715 Expression => Alloc_Expr);
4716 end if;
4717 end Build_Heap_Or_Pool_Allocator;
4719 ---------------------------
4720 -- Move_Activation_Chain --
4721 ---------------------------
4723 function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id is
4724 begin
4725 return
4726 Make_Procedure_Call_Statement (Loc,
4727 Name =>
4728 New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
4730 Parameter_Associations => New_List (
4732 -- Source chain
4734 Make_Attribute_Reference (Loc,
4735 Prefix => Make_Identifier (Loc, Name_uChain),
4736 Attribute_Name => Name_Unrestricted_Access),
4738 -- Destination chain
4740 New_Occurrence_Of
4741 (Build_In_Place_Formal (Func_Id, BIP_Activation_Chain), Loc),
4743 -- New master
4745 New_Occurrence_Of
4746 (Build_In_Place_Formal (Func_Id, BIP_Task_Master), Loc)));
4747 end Move_Activation_Chain;
4749 -- Local variables
4751 Func_Id : constant Entity_Id :=
4752 Return_Applies_To (Return_Statement_Entity (N));
4753 Is_BIP_Func : constant Boolean :=
4754 Is_Build_In_Place_Function (Func_Id);
4755 Ret_Obj_Id : constant Entity_Id :=
4756 First_Entity (Return_Statement_Entity (N));
4757 Ret_Obj_Decl : constant Node_Id := Parent (Ret_Obj_Id);
4758 Ret_Typ : constant Entity_Id := Etype (Func_Id);
4760 Exp : Node_Id;
4761 HSS : Node_Id;
4762 Result : Node_Id;
4763 Stmts : List_Id;
4765 Return_Stmt : Node_Id := Empty;
4766 -- Force initialization to facilitate static analysis
4768 -- Start of processing for Expand_N_Extended_Return_Statement
4770 begin
4771 -- Given that functionality of interface thunks is simple (just displace
4772 -- the pointer to the object) they are always handled by means of
4773 -- simple return statements.
4775 pragma Assert (not Is_Thunk (Current_Subprogram));
4777 if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4778 Exp := Expression (Ret_Obj_Decl);
4780 -- Assert that if F says "return R : T := G(...) do..."
4781 -- then F and G are both b-i-p, or neither b-i-p.
4783 if Nkind (Exp) = N_Function_Call then
4784 pragma Assert (Ekind (Current_Subprogram) = E_Function);
4785 pragma Assert
4786 (Is_Build_In_Place_Function (Current_Subprogram) =
4787 Is_Build_In_Place_Function_Call (Exp));
4788 null;
4789 end if;
4790 else
4791 Exp := Empty;
4792 end if;
4794 HSS := Handled_Statement_Sequence (N);
4796 -- If the returned object needs finalization actions, the function must
4797 -- perform the appropriate cleanup should it fail to return. The state
4798 -- of the function itself is tracked through a flag which is coupled
4799 -- with the scope finalizer. There is one flag per each return object
4800 -- in case of multiple returns.
4802 if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
4803 declare
4804 Flag_Decl : Node_Id;
4805 Flag_Id : Entity_Id;
4806 Func_Bod : Node_Id;
4808 begin
4809 -- Recover the function body
4811 Func_Bod := Unit_Declaration_Node (Func_Id);
4813 if Nkind (Func_Bod) = N_Subprogram_Declaration then
4814 Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
4815 end if;
4817 if Nkind (Func_Bod) = N_Function_Specification then
4818 Func_Bod := Parent (Func_Bod); -- one more level for child units
4819 end if;
4821 pragma Assert (Nkind (Func_Bod) = N_Subprogram_Body);
4823 -- Create a flag to track the function state
4825 Flag_Id := Make_Temporary (Loc, 'F');
4826 Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
4828 -- Insert the flag at the beginning of the function declarations,
4829 -- generate:
4830 -- Fnn : Boolean := False;
4832 Flag_Decl :=
4833 Make_Object_Declaration (Loc,
4834 Defining_Identifier => Flag_Id,
4835 Object_Definition =>
4836 New_Occurrence_Of (Standard_Boolean, Loc),
4837 Expression =>
4838 New_Occurrence_Of (Standard_False, Loc));
4840 Prepend_To (Declarations (Func_Bod), Flag_Decl);
4841 Analyze (Flag_Decl);
4842 end;
4843 end if;
4845 -- Build a simple_return_statement that returns the return object when
4846 -- there is a statement sequence, or no expression, or the result will
4847 -- be built in place. Note however that we currently do this for all
4848 -- composite cases, even though not all are built in place.
4850 if Present (HSS)
4851 or else Is_Composite_Type (Ret_Typ)
4852 or else No (Exp)
4853 then
4854 if No (HSS) then
4855 Stmts := New_List;
4857 -- If the extended return has a handled statement sequence, then wrap
4858 -- it in a block and use the block as the first statement.
4860 else
4861 Stmts := New_List (
4862 Make_Block_Statement (Loc,
4863 Declarations => New_List,
4864 Handled_Statement_Sequence => HSS));
4865 end if;
4867 -- If the result type contains tasks, we call Move_Activation_Chain.
4868 -- Later, the cleanup code will call Complete_Master, which will
4869 -- terminate any unactivated tasks belonging to the return statement
4870 -- master. But Move_Activation_Chain updates their master to be that
4871 -- of the caller, so they will not be terminated unless the return
4872 -- statement completes unsuccessfully due to exception, abort, goto,
4873 -- or exit. As a formality, we test whether the function requires the
4874 -- result to be built in place, though that's necessarily true for
4875 -- the case of result types with task parts.
4877 if Is_BIP_Func and then Has_Task (Ret_Typ) then
4879 -- The return expression is an aggregate for a complex type which
4880 -- contains tasks. This particular case is left unexpanded since
4881 -- the regular expansion would insert all temporaries and
4882 -- initialization code in the wrong block.
4884 if Nkind (Exp) = N_Aggregate then
4885 Expand_N_Aggregate (Exp);
4886 end if;
4888 -- Do not move the activation chain if the return object does not
4889 -- contain tasks.
4891 if Has_Task (Etype (Ret_Obj_Id)) then
4892 Append_To (Stmts, Move_Activation_Chain (Func_Id));
4893 end if;
4894 end if;
4896 -- Update the state of the function right before the object is
4897 -- returned.
4899 if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
4900 declare
4901 Flag_Id : constant Entity_Id :=
4902 Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
4904 begin
4905 -- Generate:
4906 -- Fnn := True;
4908 Append_To (Stmts,
4909 Make_Assignment_Statement (Loc,
4910 Name => New_Occurrence_Of (Flag_Id, Loc),
4911 Expression => New_Occurrence_Of (Standard_True, Loc)));
4912 end;
4913 end if;
4915 -- Build a simple_return_statement that returns the return object
4917 Return_Stmt :=
4918 Make_Simple_Return_Statement (Loc,
4919 Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
4920 Append_To (Stmts, Return_Stmt);
4922 HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
4923 end if;
4925 -- Case where we build a return statement block
4927 if Present (HSS) then
4928 Result :=
4929 Make_Block_Statement (Loc,
4930 Declarations => Return_Object_Declarations (N),
4931 Handled_Statement_Sequence => HSS);
4933 -- We set the entity of the new block statement to be that of the
4934 -- return statement. This is necessary so that various fields, such
4935 -- as Finalization_Chain_Entity carry over from the return statement
4936 -- to the block. Note that this block is unusual, in that its entity
4937 -- is an E_Return_Statement rather than an E_Block.
4939 Set_Identifier
4940 (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
4942 -- If the object decl was already rewritten as a renaming, then we
4943 -- don't want to do the object allocation and transformation of
4944 -- the return object declaration to a renaming. This case occurs
4945 -- when the return object is initialized by a call to another
4946 -- build-in-place function, and that function is responsible for
4947 -- the allocation of the return object.
4949 if Is_BIP_Func
4950 and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
4951 then
4952 pragma Assert
4953 (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
4954 and then
4956 -- It is a regular BIP object declaration
4958 (Is_Build_In_Place_Function_Call
4959 (Expression (Original_Node (Ret_Obj_Decl)))
4961 -- It is a BIP object declaration that displaces the pointer
4962 -- to the object to reference a convered interface type.
4964 or else
4965 Present (Unqual_BIP_Iface_Function_Call
4966 (Expression (Original_Node (Ret_Obj_Decl))))));
4968 -- Return the build-in-place result by reference
4970 Set_By_Ref (Return_Stmt);
4972 elsif Is_BIP_Func then
4974 -- Locate the implicit access parameter associated with the
4975 -- caller-supplied return object and convert the return
4976 -- statement's return object declaration to a renaming of a
4977 -- dereference of the access parameter. If the return object's
4978 -- declaration includes an expression that has not already been
4979 -- expanded as separate assignments, then add an assignment
4980 -- statement to ensure the return object gets initialized.
4982 -- declare
4983 -- Result : T [:= <expression>];
4984 -- begin
4985 -- ...
4987 -- is converted to
4989 -- declare
4990 -- Result : T renames FuncRA.all;
4991 -- [Result := <expression;]
4992 -- begin
4993 -- ...
4995 declare
4996 Ret_Obj_Expr : constant Node_Id := Expression (Ret_Obj_Decl);
4997 Ret_Obj_Typ : constant Entity_Id := Etype (Ret_Obj_Id);
4999 Init_Assignment : Node_Id := Empty;
5000 Obj_Acc_Formal : Entity_Id;
5001 Obj_Acc_Deref : Node_Id;
5002 Obj_Alloc_Formal : Entity_Id;
5004 begin
5005 -- Build-in-place results must be returned by reference
5007 Set_By_Ref (Return_Stmt);
5009 -- Retrieve the implicit access parameter passed by the caller
5011 Obj_Acc_Formal :=
5012 Build_In_Place_Formal (Func_Id, BIP_Object_Access);
5014 -- If the return object's declaration includes an expression
5015 -- and the declaration isn't marked as No_Initialization, then
5016 -- we need to generate an assignment to the object and insert
5017 -- it after the declaration before rewriting it as a renaming
5018 -- (otherwise we'll lose the initialization). The case where
5019 -- the result type is an interface (or class-wide interface)
5020 -- is also excluded because the context of the function call
5021 -- must be unconstrained, so the initialization will always
5022 -- be done as part of an allocator evaluation (storage pool
5023 -- or secondary stack), never to a constrained target object
5024 -- passed in by the caller. Besides the assignment being
5025 -- unneeded in this case, it avoids problems with trying to
5026 -- generate a dispatching assignment when the return expression
5027 -- is a nonlimited descendant of a limited interface (the
5028 -- interface has no assignment operation).
5030 if Present (Ret_Obj_Expr)
5031 and then not No_Initialization (Ret_Obj_Decl)
5032 and then not Is_Interface (Ret_Obj_Typ)
5033 then
5034 Init_Assignment :=
5035 Make_Assignment_Statement (Loc,
5036 Name => New_Occurrence_Of (Ret_Obj_Id, Loc),
5037 Expression =>
5038 New_Copy_Tree
5039 (Source => Ret_Obj_Expr,
5040 Scopes_In_EWA_OK => True));
5042 Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
5043 Set_Assignment_OK (Name (Init_Assignment));
5044 Set_No_Ctrl_Actions (Init_Assignment);
5046 Set_Parent (Name (Init_Assignment), Init_Assignment);
5047 Set_Parent (Expression (Init_Assignment), Init_Assignment);
5049 Set_Expression (Ret_Obj_Decl, Empty);
5051 if Is_Class_Wide_Type (Etype (Ret_Obj_Id))
5052 and then not Is_Class_Wide_Type
5053 (Etype (Expression (Init_Assignment)))
5054 then
5055 Rewrite (Expression (Init_Assignment),
5056 Make_Type_Conversion (Loc,
5057 Subtype_Mark =>
5058 New_Occurrence_Of (Etype (Ret_Obj_Id), Loc),
5059 Expression =>
5060 Relocate_Node (Expression (Init_Assignment))));
5061 end if;
5063 -- In the case of functions where the calling context can
5064 -- determine the form of allocation needed, initialization
5065 -- is done with each part of the if statement that handles
5066 -- the different forms of allocation (this is true for
5067 -- unconstrained, tagged, and controlled result subtypes).
5069 if not Needs_BIP_Alloc_Form (Func_Id) then
5070 Insert_After (Ret_Obj_Decl, Init_Assignment);
5071 end if;
5072 end if;
5074 -- When the function's subtype is unconstrained, a run-time
5075 -- test is needed to determine the form of allocation to use
5076 -- for the return object. The function has an implicit formal
5077 -- parameter indicating this. If the BIP_Alloc_Form formal has
5078 -- the value one, then the caller has passed access to an
5079 -- existing object for use as the return object. If the value
5080 -- is two, then the return object must be allocated on the
5081 -- secondary stack. Otherwise, the object must be allocated in
5082 -- a storage pool. We generate an if statement to test the
5083 -- implicit allocation formal and initialize a local access
5084 -- value appropriately, creating allocators in the secondary
5085 -- stack and global heap cases. The special formal also exists
5086 -- and must be tested when the function has a tagged result,
5087 -- even when the result subtype is constrained, because in
5088 -- general such functions can be called in dispatching contexts
5089 -- and must be handled similarly to functions with a class-wide
5090 -- result.
5092 if Needs_BIP_Alloc_Form (Func_Id) then
5093 Obj_Alloc_Formal :=
5094 Build_In_Place_Formal (Func_Id, BIP_Alloc_Form);
5096 declare
5097 Pool_Id : constant Entity_Id :=
5098 Make_Temporary (Loc, 'P');
5099 Alloc_Obj_Id : Entity_Id;
5100 Alloc_Obj_Decl : Node_Id;
5101 Alloc_If_Stmt : Node_Id;
5102 Heap_Allocator : Node_Id;
5103 Pool_Decl : Node_Id;
5104 Pool_Allocator : Node_Id;
5105 Ptr_Type_Decl : Node_Id;
5106 Ref_Type : Entity_Id;
5107 SS_Allocator : Node_Id;
5109 begin
5110 -- Reuse the itype created for the function's implicit
5111 -- access formal. This avoids the need to create a new
5112 -- access type here, plus it allows assigning the access
5113 -- formal directly without applying a conversion.
5115 -- Ref_Type := Etype (Object_Access);
5117 -- Create an access type designating the function's
5118 -- result subtype.
5120 Ref_Type := Make_Temporary (Loc, 'A');
5122 Ptr_Type_Decl :=
5123 Make_Full_Type_Declaration (Loc,
5124 Defining_Identifier => Ref_Type,
5125 Type_Definition =>
5126 Make_Access_To_Object_Definition (Loc,
5127 All_Present => True,
5128 Subtype_Indication =>
5129 New_Occurrence_Of (Ret_Obj_Typ, Loc)));
5131 Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
5133 -- Create an access object that will be initialized to an
5134 -- access value denoting the return object, either coming
5135 -- from an implicit access value passed in by the caller
5136 -- or from the result of an allocator.
5138 Alloc_Obj_Id := Make_Temporary (Loc, 'R');
5139 Set_Etype (Alloc_Obj_Id, Ref_Type);
5141 Alloc_Obj_Decl :=
5142 Make_Object_Declaration (Loc,
5143 Defining_Identifier => Alloc_Obj_Id,
5144 Object_Definition =>
5145 New_Occurrence_Of (Ref_Type, Loc));
5147 Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
5149 -- Create allocators for both the secondary stack and
5150 -- global heap. If there's an initialization expression,
5151 -- then create these as initialized allocators.
5153 if Present (Ret_Obj_Expr)
5154 and then not No_Initialization (Ret_Obj_Decl)
5155 then
5156 -- Always use the type of the expression for the
5157 -- qualified expression, rather than the result type.
5158 -- In general we cannot always use the result type
5159 -- for the allocator, because the expression might be
5160 -- of a specific type, such as in the case of an
5161 -- aggregate or even a nonlimited object when the
5162 -- result type is a limited class-wide interface type.
5164 Heap_Allocator :=
5165 Make_Allocator (Loc,
5166 Expression =>
5167 Make_Qualified_Expression (Loc,
5168 Subtype_Mark =>
5169 New_Occurrence_Of
5170 (Etype (Ret_Obj_Expr), Loc),
5171 Expression =>
5172 New_Copy_Tree
5173 (Source => Ret_Obj_Expr,
5174 Scopes_In_EWA_OK => True)));
5176 else
5177 -- If the function returns a class-wide type we cannot
5178 -- use the return type for the allocator. Instead we
5179 -- use the type of the expression, which must be an
5180 -- aggregate of a definite type.
5182 if Is_Class_Wide_Type (Ret_Obj_Typ) then
5183 Heap_Allocator :=
5184 Make_Allocator (Loc,
5185 Expression =>
5186 New_Occurrence_Of
5187 (Etype (Ret_Obj_Expr), Loc));
5188 else
5189 Heap_Allocator :=
5190 Make_Allocator (Loc,
5191 Expression =>
5192 New_Occurrence_Of (Ret_Obj_Typ, Loc));
5193 end if;
5195 -- If the object requires default initialization then
5196 -- that will happen later following the elaboration of
5197 -- the object renaming. If we don't turn it off here
5198 -- then the object will be default initialized twice.
5200 Set_No_Initialization (Heap_Allocator);
5201 end if;
5203 -- Set the flag indicating that the allocator came from
5204 -- a build-in-place return statement, so we can avoid
5205 -- adjusting the allocated object. Note that this flag
5206 -- will be inherited by the copies made below.
5208 Set_Alloc_For_BIP_Return (Heap_Allocator);
5210 -- The Pool_Allocator is just like the Heap_Allocator,
5211 -- except we set Storage_Pool and Procedure_To_Call so
5212 -- it will use the user-defined storage pool.
5214 Pool_Allocator :=
5215 New_Copy_Tree
5216 (Source => Heap_Allocator,
5217 Scopes_In_EWA_OK => True);
5219 pragma Assert (Alloc_For_BIP_Return (Pool_Allocator));
5221 -- Do not generate the renaming of the build-in-place
5222 -- pool parameter on ZFP because the parameter is not
5223 -- created in the first place.
5225 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
5226 Pool_Decl :=
5227 Make_Object_Renaming_Declaration (Loc,
5228 Defining_Identifier => Pool_Id,
5229 Subtype_Mark =>
5230 New_Occurrence_Of
5231 (RTE (RE_Root_Storage_Pool), Loc),
5232 Name =>
5233 Make_Explicit_Dereference (Loc,
5234 New_Occurrence_Of
5235 (Build_In_Place_Formal
5236 (Func_Id, BIP_Storage_Pool), Loc)));
5237 Set_Storage_Pool (Pool_Allocator, Pool_Id);
5238 Set_Procedure_To_Call
5239 (Pool_Allocator, RTE (RE_Allocate_Any));
5240 else
5241 Pool_Decl := Make_Null_Statement (Loc);
5242 end if;
5244 -- If the No_Allocators restriction is active, then only
5245 -- an allocator for secondary stack allocation is needed.
5246 -- It's OK for such allocators to have Comes_From_Source
5247 -- set to False, because gigi knows not to flag them as
5248 -- being a violation of No_Implicit_Heap_Allocations.
5250 if Restriction_Active (No_Allocators) then
5251 SS_Allocator := Heap_Allocator;
5252 Heap_Allocator := Make_Null (Loc);
5253 Pool_Allocator := Make_Null (Loc);
5255 -- Otherwise the heap and pool allocators may be needed,
5256 -- so we make another allocator for secondary stack
5257 -- allocation.
5259 else
5260 SS_Allocator :=
5261 New_Copy_Tree
5262 (Source => Heap_Allocator,
5263 Scopes_In_EWA_OK => True);
5265 pragma Assert (Alloc_For_BIP_Return (SS_Allocator));
5267 -- The heap and pool allocators are marked as
5268 -- Comes_From_Source since they correspond to an
5269 -- explicit user-written allocator (that is, it will
5270 -- only be executed on behalf of callers that call the
5271 -- function as initialization for such an allocator).
5272 -- Prevents errors when No_Implicit_Heap_Allocations
5273 -- is in force.
5275 Set_Comes_From_Source (Heap_Allocator, True);
5276 Set_Comes_From_Source (Pool_Allocator, True);
5277 end if;
5279 -- The allocator is returned on the secondary stack
5281 Check_Restriction (No_Secondary_Stack, N);
5282 Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
5283 Set_Procedure_To_Call
5284 (SS_Allocator, RTE (RE_SS_Allocate));
5286 -- The allocator is returned on the secondary stack,
5287 -- so indicate that the function return, as well as
5288 -- all blocks that encloses the allocator, must not
5289 -- release it. The flags must be set now because
5290 -- the decision to use the secondary stack is done
5291 -- very late in the course of expanding the return
5292 -- statement, past the point where these flags are
5293 -- normally set.
5295 Set_Uses_Sec_Stack (Func_Id);
5296 Set_Uses_Sec_Stack (Return_Statement_Entity (N));
5297 Set_Sec_Stack_Needed_For_Return
5298 (Return_Statement_Entity (N));
5299 Set_Enclosing_Sec_Stack_Return (N);
5301 -- Create an if statement to test the BIP_Alloc_Form
5302 -- formal and initialize the access object to either the
5303 -- BIP_Object_Access formal (BIP_Alloc_Form =
5304 -- Caller_Allocation), the result of allocating the
5305 -- object in the secondary stack (BIP_Alloc_Form =
5306 -- Secondary_Stack), or else an allocator to create the
5307 -- return object in the heap or user-defined pool
5308 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
5310 -- ??? An unchecked type conversion must be made in the
5311 -- case of assigning the access object formal to the
5312 -- local access object, because a normal conversion would
5313 -- be illegal in some cases (such as converting access-
5314 -- to-unconstrained to access-to-constrained), but the
5315 -- the unchecked conversion will presumably fail to work
5316 -- right in just such cases. It's not clear at all how to
5317 -- handle this. ???
5319 Alloc_If_Stmt :=
5320 Make_If_Statement (Loc,
5321 Condition =>
5322 Make_Op_Eq (Loc,
5323 Left_Opnd =>
5324 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5325 Right_Opnd =>
5326 Make_Integer_Literal (Loc,
5327 UI_From_Int (BIP_Allocation_Form'Pos
5328 (Caller_Allocation)))),
5330 Then_Statements => New_List (
5331 Make_Assignment_Statement (Loc,
5332 Name =>
5333 New_Occurrence_Of (Alloc_Obj_Id, Loc),
5334 Expression =>
5335 Make_Unchecked_Type_Conversion (Loc,
5336 Subtype_Mark =>
5337 New_Occurrence_Of (Ref_Type, Loc),
5338 Expression =>
5339 New_Occurrence_Of (Obj_Acc_Formal, Loc)))),
5341 Elsif_Parts => New_List (
5342 Make_Elsif_Part (Loc,
5343 Condition =>
5344 Make_Op_Eq (Loc,
5345 Left_Opnd =>
5346 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5347 Right_Opnd =>
5348 Make_Integer_Literal (Loc,
5349 UI_From_Int (BIP_Allocation_Form'Pos
5350 (Secondary_Stack)))),
5352 Then_Statements => New_List (
5353 Make_Assignment_Statement (Loc,
5354 Name =>
5355 New_Occurrence_Of (Alloc_Obj_Id, Loc),
5356 Expression => SS_Allocator))),
5358 Make_Elsif_Part (Loc,
5359 Condition =>
5360 Make_Op_Eq (Loc,
5361 Left_Opnd =>
5362 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5363 Right_Opnd =>
5364 Make_Integer_Literal (Loc,
5365 UI_From_Int (BIP_Allocation_Form'Pos
5366 (Global_Heap)))),
5368 Then_Statements => New_List (
5369 Build_Heap_Or_Pool_Allocator
5370 (Temp_Id => Alloc_Obj_Id,
5371 Temp_Typ => Ref_Type,
5372 Func_Id => Func_Id,
5373 Ret_Typ => Ret_Obj_Typ,
5374 Alloc_Expr => Heap_Allocator))),
5376 -- ???If all is well, we can put the following
5377 -- 'elsif' in the 'else', but this is a useful
5378 -- self-check in case caller and callee don't agree
5379 -- on whether BIPAlloc and so on should be passed.
5381 Make_Elsif_Part (Loc,
5382 Condition =>
5383 Make_Op_Eq (Loc,
5384 Left_Opnd =>
5385 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5386 Right_Opnd =>
5387 Make_Integer_Literal (Loc,
5388 UI_From_Int (BIP_Allocation_Form'Pos
5389 (User_Storage_Pool)))),
5391 Then_Statements => New_List (
5392 Pool_Decl,
5393 Build_Heap_Or_Pool_Allocator
5394 (Temp_Id => Alloc_Obj_Id,
5395 Temp_Typ => Ref_Type,
5396 Func_Id => Func_Id,
5397 Ret_Typ => Ret_Obj_Typ,
5398 Alloc_Expr => Pool_Allocator)))),
5400 -- Raise Program_Error if it's none of the above;
5401 -- this is a compiler bug.
5403 Else_Statements => New_List (
5404 Make_Raise_Program_Error (Loc,
5405 Reason => PE_Build_In_Place_Mismatch)));
5407 -- If a separate initialization assignment was created
5408 -- earlier, append that following the assignment of the
5409 -- implicit access formal to the access object, to ensure
5410 -- that the return object is initialized in that case. In
5411 -- this situation, the target of the assignment must be
5412 -- rewritten to denote a dereference of the access to the
5413 -- return object passed in by the caller.
5415 if Present (Init_Assignment) then
5416 Rewrite (Name (Init_Assignment),
5417 Make_Explicit_Dereference (Loc,
5418 Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
5419 pragma Assert
5420 (Assignment_OK
5421 (Original_Node (Name (Init_Assignment))));
5422 Set_Assignment_OK (Name (Init_Assignment));
5424 Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
5426 Append_To
5427 (Then_Statements (Alloc_If_Stmt), Init_Assignment);
5428 end if;
5430 Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
5432 -- Remember the local access object for use in the
5433 -- dereference of the renaming created below.
5435 Obj_Acc_Formal := Alloc_Obj_Id;
5436 end;
5437 end if;
5439 -- Replace the return object declaration with a renaming of a
5440 -- dereference of the access value designating the return
5441 -- object.
5443 Obj_Acc_Deref :=
5444 Make_Explicit_Dereference (Loc,
5445 Prefix => New_Occurrence_Of (Obj_Acc_Formal, Loc));
5447 Rewrite (Ret_Obj_Decl,
5448 Make_Object_Renaming_Declaration (Loc,
5449 Defining_Identifier => Ret_Obj_Id,
5450 Access_Definition => Empty,
5451 Subtype_Mark => New_Occurrence_Of (Ret_Obj_Typ, Loc),
5452 Name => Obj_Acc_Deref));
5454 Set_Renamed_Object (Ret_Obj_Id, Obj_Acc_Deref);
5455 end;
5456 end if;
5458 -- Case where we do not build a block
5460 else
5461 -- We're about to drop Return_Object_Declarations on the floor, so
5462 -- we need to insert it, in case it got expanded into useful code.
5463 -- Remove side effects from expression, which may be duplicated in
5464 -- subsequent checks (see Expand_Simple_Function_Return).
5466 Insert_List_Before (N, Return_Object_Declarations (N));
5467 Remove_Side_Effects (Exp);
5469 -- Build simple_return_statement that returns the expression directly
5471 Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
5472 Result := Return_Stmt;
5473 end if;
5475 -- Set the flag to prevent infinite recursion
5477 Set_Comes_From_Extended_Return_Statement (Return_Stmt);
5479 Rewrite (N, Result);
5480 Analyze (N);
5481 end Expand_N_Extended_Return_Statement;
5483 ----------------------------
5484 -- Expand_N_Function_Call --
5485 ----------------------------
5487 procedure Expand_N_Function_Call (N : Node_Id) is
5488 begin
5489 Expand_Call (N);
5490 end Expand_N_Function_Call;
5492 ---------------------------------------
5493 -- Expand_N_Procedure_Call_Statement --
5494 ---------------------------------------
5496 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
5497 begin
5498 Expand_Call (N);
5499 end Expand_N_Procedure_Call_Statement;
5501 --------------------------------------
5502 -- Expand_N_Simple_Return_Statement --
5503 --------------------------------------
5505 procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5506 begin
5507 -- Defend against previous errors (i.e. the return statement calls a
5508 -- function that is not available in configurable runtime).
5510 if Present (Expression (N))
5511 and then Nkind (Expression (N)) = N_Empty
5512 then
5513 Check_Error_Detected;
5514 return;
5515 end if;
5517 -- Distinguish the function and non-function cases:
5519 case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
5520 when E_Function
5521 | E_Generic_Function
5523 Expand_Simple_Function_Return (N);
5525 when E_Entry
5526 | E_Entry_Family
5527 | E_Generic_Procedure
5528 | E_Procedure
5529 | E_Return_Statement
5531 Expand_Non_Function_Return (N);
5533 when others =>
5534 raise Program_Error;
5535 end case;
5537 exception
5538 when RE_Not_Available =>
5539 return;
5540 end Expand_N_Simple_Return_Statement;
5542 ------------------------------
5543 -- Expand_N_Subprogram_Body --
5544 ------------------------------
5546 -- Add poll call if ATC polling is enabled, unless the body will be inlined
5547 -- by the back-end.
5549 -- Add dummy push/pop label nodes at start and end to clear any local
5550 -- exception indications if local-exception-to-goto optimization is active.
5552 -- Add return statement if last statement in body is not a return statement
5553 -- (this makes things easier on Gigi which does not want to have to handle
5554 -- a missing return).
5556 -- Add call to Activate_Tasks if body is a task activator
5558 -- Deal with possible detection of infinite recursion
5560 -- Eliminate body completely if convention stubbed
5562 -- Encode entity names within body, since we will not need to reference
5563 -- these entities any longer in the front end.
5565 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5567 -- Reset Pure indication if any parameter has root type System.Address
5568 -- or has any parameters of limited types, where limited means that the
5569 -- run-time view is limited (i.e. the full type is limited).
5571 -- Wrap thread body
5573 procedure Expand_N_Subprogram_Body (N : Node_Id) is
5574 Body_Id : constant Entity_Id := Defining_Entity (N);
5575 HSS : constant Node_Id := Handled_Statement_Sequence (N);
5576 Loc : constant Source_Ptr := Sloc (N);
5578 procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id);
5579 -- Append a return statement to the statement sequence Stmts if the last
5580 -- statement is not already a return or a goto statement. Note that the
5581 -- latter test is not critical, it does not matter if we add a few extra
5582 -- returns, since they get eliminated anyway later on. Spec_Id denotes
5583 -- the corresponding spec of the subprogram body.
5585 ----------------
5586 -- Add_Return --
5587 ----------------
5589 procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id) is
5590 Last_Stmt : Node_Id;
5591 Loc : Source_Ptr;
5592 Stmt : Node_Id;
5594 begin
5595 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5596 -- not relevant in this context since they are not executable.
5598 Last_Stmt := Last (Stmts);
5599 while Nkind (Last_Stmt) in N_Pop_xxx_Label loop
5600 Prev (Last_Stmt);
5601 end loop;
5603 -- Now insert return unless last statement is a transfer
5605 if not Is_Transfer (Last_Stmt) then
5607 -- The source location for the return is the end label of the
5608 -- procedure if present. Otherwise use the sloc of the last
5609 -- statement in the list. If the list comes from a generated
5610 -- exception handler and we are not debugging generated code,
5611 -- all the statements within the handler are made invisible
5612 -- to the debugger.
5614 if Nkind (Parent (Stmts)) = N_Exception_Handler
5615 and then not Comes_From_Source (Parent (Stmts))
5616 then
5617 Loc := Sloc (Last_Stmt);
5618 elsif Present (End_Label (HSS)) then
5619 Loc := Sloc (End_Label (HSS));
5620 else
5621 Loc := Sloc (Last_Stmt);
5622 end if;
5624 -- Append return statement, and set analyzed manually. We can't
5625 -- call Analyze on this return since the scope is wrong.
5627 -- Note: it almost works to push the scope and then do the Analyze
5628 -- call, but something goes wrong in some weird cases and it is
5629 -- not worth worrying about ???
5631 Stmt := Make_Simple_Return_Statement (Loc);
5633 -- The return statement is handled properly, and the call to the
5634 -- postcondition, inserted below, does not require information
5635 -- from the body either. However, that call is analyzed in the
5636 -- enclosing scope, and an elaboration check might improperly be
5637 -- added to it. A guard in Sem_Elab is needed to prevent that
5638 -- spurious check, see Check_Elab_Call.
5640 Append_To (Stmts, Stmt);
5641 Set_Analyzed (Stmt);
5643 -- Call the _Postconditions procedure if the related subprogram
5644 -- has contract assertions that need to be verified on exit.
5646 if Ekind (Spec_Id) = E_Procedure
5647 and then Present (Postconditions_Proc (Spec_Id))
5648 then
5649 Insert_Action (Stmt,
5650 Make_Procedure_Call_Statement (Loc,
5651 Name =>
5652 New_Occurrence_Of (Postconditions_Proc (Spec_Id), Loc)));
5653 end if;
5654 end if;
5655 end Add_Return;
5657 -- Local variables
5659 Except_H : Node_Id;
5660 L : List_Id;
5661 Spec_Id : Entity_Id;
5663 -- Start of processing for Expand_N_Subprogram_Body
5665 begin
5666 if Present (Corresponding_Spec (N)) then
5667 Spec_Id := Corresponding_Spec (N);
5668 else
5669 Spec_Id := Body_Id;
5670 end if;
5672 -- If this is a Pure function which has any parameters whose root type
5673 -- is System.Address, reset the Pure indication.
5674 -- This check is also performed when the subprogram is frozen, but we
5675 -- repeat it on the body so that the indication is consistent, and so
5676 -- it applies as well to bodies without separate specifications.
5678 if Is_Pure (Spec_Id)
5679 and then Is_Subprogram (Spec_Id)
5680 and then not Has_Pragma_Pure_Function (Spec_Id)
5681 then
5682 Check_Function_With_Address_Parameter (Spec_Id);
5684 if Spec_Id /= Body_Id then
5685 Set_Is_Pure (Body_Id, Is_Pure (Spec_Id));
5686 end if;
5687 end if;
5689 -- Set L to either the list of declarations if present, or to the list
5690 -- of statements if no declarations are present. This is used to insert
5691 -- new stuff at the start.
5693 if Is_Non_Empty_List (Declarations (N)) then
5694 L := Declarations (N);
5695 else
5696 L := Statements (HSS);
5697 end if;
5699 -- If local-exception-to-goto optimization active, insert dummy push
5700 -- statements at start, and dummy pop statements at end, but inhibit
5701 -- this if we have No_Exception_Handlers, since they are useless and
5702 -- interfere with analysis, e.g. by CodePeer. We also don't need these
5703 -- if we're unnesting subprograms because the only purpose of these
5704 -- nodes is to ensure we don't set a label in one subprogram and branch
5705 -- to it in another.
5707 if (Debug_Flag_Dot_G
5708 or else Restriction_Active (No_Exception_Propagation))
5709 and then not Restriction_Active (No_Exception_Handlers)
5710 and then not CodePeer_Mode
5711 and then not Unnest_Subprogram_Mode
5712 and then Is_Non_Empty_List (L)
5713 then
5714 declare
5715 FS : constant Node_Id := First (L);
5716 FL : constant Source_Ptr := Sloc (FS);
5717 LS : Node_Id;
5718 LL : Source_Ptr;
5720 begin
5721 -- LS points to either last statement, if statements are present
5722 -- or to the last declaration if there are no statements present.
5723 -- It is the node after which the pop's are generated.
5725 if Is_Non_Empty_List (Statements (HSS)) then
5726 LS := Last (Statements (HSS));
5727 else
5728 LS := Last (L);
5729 end if;
5731 LL := Sloc (LS);
5733 Insert_List_Before_And_Analyze (FS, New_List (
5734 Make_Push_Constraint_Error_Label (FL),
5735 Make_Push_Program_Error_Label (FL),
5736 Make_Push_Storage_Error_Label (FL)));
5738 Insert_List_After_And_Analyze (LS, New_List (
5739 Make_Pop_Constraint_Error_Label (LL),
5740 Make_Pop_Program_Error_Label (LL),
5741 Make_Pop_Storage_Error_Label (LL)));
5742 end;
5743 end if;
5745 -- Need poll on entry to subprogram if polling enabled. We only do this
5746 -- for non-empty subprograms, since it does not seem necessary to poll
5747 -- for a dummy null subprogram.
5749 if Is_Non_Empty_List (L) then
5751 -- Do not add a polling call if the subprogram is to be inlined by
5752 -- the back-end, to avoid repeated calls with multiple inlinings.
5754 if Is_Inlined (Spec_Id)
5755 and then Front_End_Inlining
5756 and then Optimization_Level > 1
5757 then
5758 null;
5759 else
5760 Generate_Poll_Call (First (L));
5761 end if;
5762 end if;
5764 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5766 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
5767 declare
5768 F : Entity_Id;
5769 A : Node_Id;
5771 begin
5772 -- Loop through formals
5774 F := First_Formal (Spec_Id);
5775 while Present (F) loop
5776 if Is_Scalar_Type (Etype (F))
5777 and then Ekind (F) = E_Out_Parameter
5778 then
5779 Check_Restriction (No_Default_Initialization, F);
5781 -- Insert the initialization. We turn off validity checks
5782 -- for this assignment, since we do not want any check on
5783 -- the initial value itself (which may well be invalid).
5784 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5786 A :=
5787 Make_Assignment_Statement (Loc,
5788 Name => New_Occurrence_Of (F, Loc),
5789 Expression => Get_Simple_Init_Val (Etype (F), N));
5790 Set_Suppress_Assignment_Checks (A);
5792 Insert_Before_And_Analyze (First (L),
5793 A, Suppress => Validity_Check);
5794 end if;
5796 Next_Formal (F);
5797 end loop;
5798 end;
5799 end if;
5801 -- Clear out statement list for stubbed procedure
5803 if Present (Corresponding_Spec (N)) then
5804 Set_Elaboration_Flag (N, Spec_Id);
5806 if Convention (Spec_Id) = Convention_Stubbed
5807 or else Is_Eliminated (Spec_Id)
5808 then
5809 Set_Declarations (N, Empty_List);
5810 Set_Handled_Statement_Sequence (N,
5811 Make_Handled_Sequence_Of_Statements (Loc,
5812 Statements => New_List (Make_Null_Statement (Loc))));
5814 return;
5815 end if;
5816 end if;
5818 -- Create a set of discriminals for the next protected subprogram body
5820 if Is_List_Member (N)
5821 and then Present (Parent (List_Containing (N)))
5822 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5823 and then Present (Next_Protected_Operation (N))
5824 then
5825 Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
5826 end if;
5828 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5829 -- subprograms with no specs are not frozen.
5831 declare
5832 Typ : constant Entity_Id := Etype (Spec_Id);
5833 Utyp : constant Entity_Id := Underlying_Type (Typ);
5835 begin
5836 if Is_Limited_View (Typ) then
5837 Set_Returns_By_Ref (Spec_Id);
5839 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5840 Set_Returns_By_Ref (Spec_Id);
5841 end if;
5842 end;
5844 -- For a procedure, we add a return for all possible syntactic ends of
5845 -- the subprogram.
5847 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
5848 Add_Return (Spec_Id, Statements (HSS));
5850 if Present (Exception_Handlers (HSS)) then
5851 Except_H := First_Non_Pragma (Exception_Handlers (HSS));
5852 while Present (Except_H) loop
5853 Add_Return (Spec_Id, Statements (Except_H));
5854 Next_Non_Pragma (Except_H);
5855 end loop;
5856 end if;
5858 -- For a function, we must deal with the case where there is at least
5859 -- one missing return. What we do is to wrap the entire body of the
5860 -- function in a block:
5862 -- begin
5863 -- ...
5864 -- end;
5866 -- becomes
5868 -- begin
5869 -- begin
5870 -- ...
5871 -- end;
5873 -- raise Program_Error;
5874 -- end;
5876 -- This approach is necessary because the raise must be signalled to the
5877 -- caller, not handled by any local handler (RM 6.4(11)).
5879 -- Note: we do not need to analyze the constructed sequence here, since
5880 -- it has no handler, and an attempt to analyze the handled statement
5881 -- sequence twice is risky in various ways (e.g. the issue of expanding
5882 -- cleanup actions twice).
5884 elsif Has_Missing_Return (Spec_Id) then
5885 declare
5886 Hloc : constant Source_Ptr := Sloc (HSS);
5887 Blok : constant Node_Id :=
5888 Make_Block_Statement (Hloc,
5889 Handled_Statement_Sequence => HSS);
5890 Rais : constant Node_Id :=
5891 Make_Raise_Program_Error (Hloc,
5892 Reason => PE_Missing_Return);
5894 begin
5895 Set_Handled_Statement_Sequence (N,
5896 Make_Handled_Sequence_Of_Statements (Hloc,
5897 Statements => New_List (Blok, Rais)));
5899 Push_Scope (Spec_Id);
5900 Analyze (Blok);
5901 Analyze (Rais);
5902 Pop_Scope;
5903 end;
5904 end if;
5906 -- If subprogram contains a parameterless recursive call, then we may
5907 -- have an infinite recursion, so see if we can generate code to check
5908 -- for this possibility if storage checks are not suppressed.
5910 if Ekind (Spec_Id) = E_Procedure
5911 and then Has_Recursive_Call (Spec_Id)
5912 and then not Storage_Checks_Suppressed (Spec_Id)
5913 then
5914 Detect_Infinite_Recursion (N, Spec_Id);
5915 end if;
5917 -- Set to encode entity names in package body before gigi is called
5919 Qualify_Entity_Names (N);
5921 -- If the body belongs to a nonabstract library-level source primitive
5922 -- of a tagged type, install an elaboration check which ensures that a
5923 -- dispatching call targeting the primitive will not execute the body
5924 -- without it being previously elaborated.
5926 Install_Primitive_Elaboration_Check (N);
5927 end Expand_N_Subprogram_Body;
5929 -----------------------------------
5930 -- Expand_N_Subprogram_Body_Stub --
5931 -----------------------------------
5933 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
5934 Bod : Node_Id;
5936 begin
5937 if Present (Corresponding_Body (N)) then
5938 Bod := Unit_Declaration_Node (Corresponding_Body (N));
5940 -- The body may have been expanded already when it is analyzed
5941 -- through the subunit node. Do no expand again: it interferes
5942 -- with the construction of unnesting tables when generating C.
5944 if not Analyzed (Bod) then
5945 Expand_N_Subprogram_Body (Bod);
5946 end if;
5948 -- Add full qualification to entities that may be created late
5949 -- during unnesting.
5951 Qualify_Entity_Names (N);
5952 end if;
5953 end Expand_N_Subprogram_Body_Stub;
5955 -------------------------------------
5956 -- Expand_N_Subprogram_Declaration --
5957 -------------------------------------
5959 -- If the declaration appears within a protected body, it is a private
5960 -- operation of the protected type. We must create the corresponding
5961 -- protected subprogram an associated formals. For a normal protected
5962 -- operation, this is done when expanding the protected type declaration.
5964 -- If the declaration is for a null procedure, emit null body
5966 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
5967 Loc : constant Source_Ptr := Sloc (N);
5968 Subp : constant Entity_Id := Defining_Entity (N);
5970 -- Local variables
5972 Scop : constant Entity_Id := Scope (Subp);
5973 Prot_Bod : Node_Id;
5974 Prot_Decl : Node_Id;
5975 Prot_Id : Entity_Id;
5977 -- Start of processing for Expand_N_Subprogram_Declaration
5979 begin
5980 -- In SPARK, subprogram declarations are only allowed in package
5981 -- specifications.
5983 if Nkind (Parent (N)) /= N_Package_Specification then
5984 if Nkind (Parent (N)) = N_Compilation_Unit then
5985 Check_SPARK_05_Restriction
5986 ("subprogram declaration is not a library item", N);
5988 elsif Present (Next (N))
5989 and then Nkind (Next (N)) = N_Pragma
5990 and then Get_Pragma_Id (Next (N)) = Pragma_Import
5991 then
5992 -- In SPARK, subprogram declarations are also permitted in
5993 -- declarative parts when immediately followed by a corresponding
5994 -- pragma Import. We only check here that there is some pragma
5995 -- Import.
5997 null;
5998 else
5999 Check_SPARK_05_Restriction
6000 ("subprogram declaration is not allowed here", N);
6001 end if;
6002 end if;
6004 -- Deal with case of protected subprogram. Do not generate protected
6005 -- operation if operation is flagged as eliminated.
6007 if Is_List_Member (N)
6008 and then Present (Parent (List_Containing (N)))
6009 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
6010 and then Is_Protected_Type (Scop)
6011 then
6012 if No (Protected_Body_Subprogram (Subp))
6013 and then not Is_Eliminated (Subp)
6014 then
6015 Prot_Decl :=
6016 Make_Subprogram_Declaration (Loc,
6017 Specification =>
6018 Build_Protected_Sub_Specification
6019 (N, Scop, Unprotected_Mode));
6021 -- The protected subprogram is declared outside of the protected
6022 -- body. Given that the body has frozen all entities so far, we
6023 -- analyze the subprogram and perform freezing actions explicitly.
6024 -- including the generation of an explicit freeze node, to ensure
6025 -- that gigi has the proper order of elaboration.
6026 -- If the body is a subunit, the insertion point is before the
6027 -- stub in the parent.
6029 Prot_Bod := Parent (List_Containing (N));
6031 if Nkind (Parent (Prot_Bod)) = N_Subunit then
6032 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
6033 end if;
6035 Insert_Before (Prot_Bod, Prot_Decl);
6036 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
6037 Set_Has_Delayed_Freeze (Prot_Id);
6039 Push_Scope (Scope (Scop));
6040 Analyze (Prot_Decl);
6041 Freeze_Before (N, Prot_Id);
6042 Set_Protected_Body_Subprogram (Subp, Prot_Id);
6044 -- Create protected operation as well. Even though the operation
6045 -- is only accessible within the body, it is possible to make it
6046 -- available outside of the protected object by using 'Access to
6047 -- provide a callback, so build protected version in all cases.
6049 Prot_Decl :=
6050 Make_Subprogram_Declaration (Loc,
6051 Specification =>
6052 Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
6053 Insert_Before (Prot_Bod, Prot_Decl);
6054 Analyze (Prot_Decl);
6056 Pop_Scope;
6057 end if;
6059 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
6060 -- cases this is superfluous because calls to it will be automatically
6061 -- inlined, but we definitely need the body if preconditions for the
6062 -- procedure are present, or if performing coverage analysis.
6064 elsif Nkind (Specification (N)) = N_Procedure_Specification
6065 and then Null_Present (Specification (N))
6066 then
6067 declare
6068 Bod : constant Node_Id := Body_To_Inline (N);
6070 begin
6071 Set_Has_Completion (Subp, False);
6072 Append_Freeze_Action (Subp, Bod);
6074 -- The body now contains raise statements, so calls to it will
6075 -- not be inlined.
6077 Set_Is_Inlined (Subp, False);
6078 end;
6079 end if;
6081 -- When generating C code, transform a function that returns a
6082 -- constrained array type into a procedure with an out parameter
6083 -- that carries the return value.
6085 -- We skip this transformation for unchecked conversions, since they
6086 -- are not needed by the C generator (and this also produces cleaner
6087 -- output).
6089 if Modify_Tree_For_C
6090 and then Nkind (Specification (N)) = N_Function_Specification
6091 and then Is_Array_Type (Etype (Subp))
6092 and then Is_Constrained (Etype (Subp))
6093 and then not Is_Unchecked_Conversion_Instance (Subp)
6094 then
6095 Build_Procedure_Form (N);
6096 end if;
6097 end Expand_N_Subprogram_Declaration;
6099 --------------------------------
6100 -- Expand_Non_Function_Return --
6101 --------------------------------
6103 procedure Expand_Non_Function_Return (N : Node_Id) is
6104 pragma Assert (No (Expression (N)));
6106 Loc : constant Source_Ptr := Sloc (N);
6107 Scope_Id : Entity_Id := Return_Applies_To (Return_Statement_Entity (N));
6108 Kind : constant Entity_Kind := Ekind (Scope_Id);
6109 Call : Node_Id;
6110 Acc_Stat : Node_Id;
6111 Goto_Stat : Node_Id;
6112 Lab_Node : Node_Id;
6114 begin
6115 -- Call the _Postconditions procedure if the related subprogram has
6116 -- contract assertions that need to be verified on exit.
6118 if Ekind_In (Scope_Id, E_Entry, E_Entry_Family, E_Procedure)
6119 and then Present (Postconditions_Proc (Scope_Id))
6120 then
6121 Insert_Action (N,
6122 Make_Procedure_Call_Statement (Loc,
6123 Name => New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc)));
6124 end if;
6126 -- If it is a return from a procedure do no extra steps
6128 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
6129 return;
6131 -- If it is a nested return within an extended one, replace it with a
6132 -- return of the previously declared return object.
6134 elsif Kind = E_Return_Statement then
6135 Rewrite (N,
6136 Make_Simple_Return_Statement (Loc,
6137 Expression =>
6138 New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
6139 Set_Comes_From_Extended_Return_Statement (N);
6140 Set_Return_Statement_Entity (N, Scope_Id);
6141 Expand_Simple_Function_Return (N);
6142 return;
6143 end if;
6145 pragma Assert (Is_Entry (Scope_Id));
6147 -- Look at the enclosing block to see whether the return is from an
6148 -- accept statement or an entry body.
6150 for J in reverse 0 .. Scope_Stack.Last loop
6151 Scope_Id := Scope_Stack.Table (J).Entity;
6152 exit when Is_Concurrent_Type (Scope_Id);
6153 end loop;
6155 -- If it is a return from accept statement it is expanded as call to
6156 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
6158 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
6159 -- Expand_N_Accept_Alternative in exp_ch9.adb)
6161 if Is_Task_Type (Scope_Id) then
6163 Call :=
6164 Make_Procedure_Call_Statement (Loc,
6165 Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
6166 Insert_Before (N, Call);
6167 -- why not insert actions here???
6168 Analyze (Call);
6170 Acc_Stat := Parent (N);
6171 while Nkind (Acc_Stat) /= N_Accept_Statement loop
6172 Acc_Stat := Parent (Acc_Stat);
6173 end loop;
6175 Lab_Node := Last (Statements
6176 (Handled_Statement_Sequence (Acc_Stat)));
6178 Goto_Stat := Make_Goto_Statement (Loc,
6179 Name => New_Occurrence_Of
6180 (Entity (Identifier (Lab_Node)), Loc));
6182 Set_Analyzed (Goto_Stat);
6184 Rewrite (N, Goto_Stat);
6185 Analyze (N);
6187 -- If it is a return from an entry body, put a Complete_Entry_Body call
6188 -- in front of the return.
6190 elsif Is_Protected_Type (Scope_Id) then
6191 Call :=
6192 Make_Procedure_Call_Statement (Loc,
6193 Name =>
6194 New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
6195 Parameter_Associations => New_List (
6196 Make_Attribute_Reference (Loc,
6197 Prefix =>
6198 New_Occurrence_Of
6199 (Find_Protection_Object (Current_Scope), Loc),
6200 Attribute_Name => Name_Unchecked_Access)));
6202 Insert_Before (N, Call);
6203 Analyze (Call);
6204 end if;
6205 end Expand_Non_Function_Return;
6207 ---------------------------------------
6208 -- Expand_Protected_Object_Reference --
6209 ---------------------------------------
6211 function Expand_Protected_Object_Reference
6212 (N : Node_Id;
6213 Scop : Entity_Id) return Node_Id
6215 Loc : constant Source_Ptr := Sloc (N);
6216 Corr : Entity_Id;
6217 Rec : Node_Id;
6218 Param : Entity_Id;
6219 Proc : Entity_Id;
6221 begin
6222 Rec := Make_Identifier (Loc, Name_uObject);
6223 Set_Etype (Rec, Corresponding_Record_Type (Scop));
6225 -- Find enclosing protected operation, and retrieve its first parameter,
6226 -- which denotes the enclosing protected object. If the enclosing
6227 -- operation is an entry, we are immediately within the protected body,
6228 -- and we can retrieve the object from the service entries procedure. A
6229 -- barrier function has the same signature as an entry. A barrier
6230 -- function is compiled within the protected object, but unlike
6231 -- protected operations its never needs locks, so that its protected
6232 -- body subprogram points to itself.
6234 Proc := Current_Scope;
6235 while Present (Proc)
6236 and then Scope (Proc) /= Scop
6237 loop
6238 Proc := Scope (Proc);
6239 end loop;
6241 Corr := Protected_Body_Subprogram (Proc);
6243 if No (Corr) then
6245 -- Previous error left expansion incomplete.
6246 -- Nothing to do on this call.
6248 return Empty;
6249 end if;
6251 Param :=
6252 Defining_Identifier
6253 (First (Parameter_Specifications (Parent (Corr))));
6255 if Is_Subprogram (Proc) and then Proc /= Corr then
6257 -- Protected function or procedure
6259 Set_Entity (Rec, Param);
6261 -- Rec is a reference to an entity which will not be in scope when
6262 -- the call is reanalyzed, and needs no further analysis.
6264 Set_Analyzed (Rec);
6266 else
6267 -- Entry or barrier function for entry body. The first parameter of
6268 -- the entry body procedure is pointer to the object. We create a
6269 -- local variable of the proper type, duplicating what is done to
6270 -- define _object later on.
6272 declare
6273 Decls : List_Id;
6274 Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
6276 begin
6277 Decls := New_List (
6278 Make_Full_Type_Declaration (Loc,
6279 Defining_Identifier => Obj_Ptr,
6280 Type_Definition =>
6281 Make_Access_To_Object_Definition (Loc,
6282 Subtype_Indication =>
6283 New_Occurrence_Of
6284 (Corresponding_Record_Type (Scop), Loc))));
6286 Insert_Actions (N, Decls);
6287 Freeze_Before (N, Obj_Ptr);
6289 Rec :=
6290 Make_Explicit_Dereference (Loc,
6291 Prefix =>
6292 Unchecked_Convert_To (Obj_Ptr,
6293 New_Occurrence_Of (Param, Loc)));
6295 -- Analyze new actual. Other actuals in calls are already analyzed
6296 -- and the list of actuals is not reanalyzed after rewriting.
6298 Set_Parent (Rec, N);
6299 Analyze (Rec);
6300 end;
6301 end if;
6303 return Rec;
6304 end Expand_Protected_Object_Reference;
6306 --------------------------------------
6307 -- Expand_Protected_Subprogram_Call --
6308 --------------------------------------
6310 procedure Expand_Protected_Subprogram_Call
6311 (N : Node_Id;
6312 Subp : Entity_Id;
6313 Scop : Entity_Id)
6315 Rec : Node_Id;
6317 procedure Expand_Internal_Init_Call;
6318 -- A call to an operation of the type may occur in the initialization
6319 -- of a private component. In that case the prefix of the call is an
6320 -- entity name and the call is treated as internal even though it
6321 -- appears in code outside of the protected type.
6323 procedure Freeze_Called_Function;
6324 -- If it is a function call it can appear in elaboration code and
6325 -- the called entity must be frozen before the call. This must be
6326 -- done before the call is expanded, as the expansion may rewrite it
6327 -- to something other than a call (e.g. a temporary initialized in a
6328 -- transient block).
6330 -------------------------------
6331 -- Expand_Internal_Init_Call --
6332 -------------------------------
6334 procedure Expand_Internal_Init_Call is
6335 begin
6336 -- If the context is a protected object (rather than a protected
6337 -- type) the call itself is bound to raise program_error because
6338 -- the protected body will not have been elaborated yet. This is
6339 -- diagnosed subsequently in Sem_Elab.
6341 Freeze_Called_Function;
6343 -- The target of the internal call is the first formal of the
6344 -- enclosing initialization procedure.
6346 Rec := New_Occurrence_Of (First_Formal (Current_Scope), Sloc (N));
6347 Build_Protected_Subprogram_Call (N,
6348 Name => Name (N),
6349 Rec => Rec,
6350 External => False);
6351 Analyze (N);
6352 Resolve (N, Etype (Subp));
6353 end Expand_Internal_Init_Call;
6355 ----------------------------
6356 -- Freeze_Called_Function --
6357 ----------------------------
6359 procedure Freeze_Called_Function is
6360 begin
6361 if Ekind (Subp) = E_Function then
6362 Freeze_Expression (Name (N));
6363 end if;
6364 end Freeze_Called_Function;
6366 -- Start of processing for Expand_Protected_Subprogram_Call
6368 begin
6369 -- If the protected object is not an enclosing scope, this is an inter-
6370 -- object function call. Inter-object procedure calls are expanded by
6371 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
6372 -- subprogram being called is in the protected body being compiled, and
6373 -- if the protected object in the call is statically the enclosing type.
6374 -- The object may be a component of some other data structure, in which
6375 -- case this must be handled as an inter-object call.
6377 if not In_Open_Scopes (Scop)
6378 or else Is_Entry_Wrapper (Current_Scope)
6379 or else not Is_Entity_Name (Name (N))
6380 then
6381 if Nkind (Name (N)) = N_Selected_Component then
6382 Rec := Prefix (Name (N));
6384 elsif Nkind (Name (N)) = N_Indexed_Component then
6385 Rec := Prefix (Prefix (Name (N)));
6387 -- If this is a call within an entry wrapper, it appears within a
6388 -- precondition that calls another primitive of the synchronized
6389 -- type. The target object of the call is the first actual on the
6390 -- wrapper. Note that this is an external call, because the wrapper
6391 -- is called outside of the synchronized object. This means that
6392 -- an entry call to an entry with preconditions involves two
6393 -- synchronized operations.
6395 elsif Ekind (Current_Scope) = E_Procedure
6396 and then Is_Entry_Wrapper (Current_Scope)
6397 then
6398 Rec := New_Occurrence_Of (First_Entity (Current_Scope), Sloc (N));
6400 -- A default parameter of a protected operation may be a call to
6401 -- a protected function of the type. This appears as an internal
6402 -- call in the profile of the operation, but if the context is an
6403 -- external call we must convert the call into an external one,
6404 -- using the protected object that is the target, so that:
6406 -- Prot.P (F)
6407 -- is transformed into
6408 -- Prot.P (Prot.F)
6410 elsif Nkind (Parent (N)) = N_Procedure_Call_Statement
6411 and then Nkind (Name (Parent (N))) = N_Selected_Component
6412 and then Is_Protected_Type (Etype (Prefix (Name (Parent (N)))))
6413 and then Is_Entity_Name (Name (N))
6414 and then Scope (Entity (Name (N))) =
6415 Etype (Prefix (Name (Parent (N))))
6416 then
6417 Rewrite (Name (N),
6418 Make_Selected_Component (Sloc (N),
6419 Prefix => New_Copy_Tree (Prefix (Name (Parent (N)))),
6420 Selector_Name => Relocate_Node (Name (N))));
6422 Analyze_And_Resolve (N);
6423 return;
6425 else
6426 -- If the context is the initialization procedure for a protected
6427 -- type, the call is legal because the called entity must be a
6428 -- function of that enclosing type, and this is treated as an
6429 -- internal call.
6431 pragma Assert
6432 (Is_Entity_Name (Name (N)) and then Inside_Init_Proc);
6434 Expand_Internal_Init_Call;
6435 return;
6436 end if;
6438 Freeze_Called_Function;
6439 Build_Protected_Subprogram_Call (N,
6440 Name => New_Occurrence_Of (Subp, Sloc (N)),
6441 Rec => Convert_Concurrent (Rec, Etype (Rec)),
6442 External => True);
6444 else
6445 Rec := Expand_Protected_Object_Reference (N, Scop);
6447 if No (Rec) then
6448 return;
6449 end if;
6451 Freeze_Called_Function;
6452 Build_Protected_Subprogram_Call (N,
6453 Name => Name (N),
6454 Rec => Rec,
6455 External => False);
6456 end if;
6458 -- Analyze and resolve the new call. The actuals have already been
6459 -- resolved, but expansion of a function call will add extra actuals
6460 -- if needed. Analysis of a procedure call already includes resolution.
6462 Analyze (N);
6464 if Ekind (Subp) = E_Function then
6465 Resolve (N, Etype (Subp));
6466 end if;
6467 end Expand_Protected_Subprogram_Call;
6469 -----------------------------------
6470 -- Expand_Simple_Function_Return --
6471 -----------------------------------
6473 -- The "simple" comes from the syntax rule simple_return_statement. The
6474 -- semantics are not at all simple.
6476 procedure Expand_Simple_Function_Return (N : Node_Id) is
6477 Loc : constant Source_Ptr := Sloc (N);
6479 Scope_Id : constant Entity_Id :=
6480 Return_Applies_To (Return_Statement_Entity (N));
6481 -- The function we are returning from
6483 R_Type : constant Entity_Id := Etype (Scope_Id);
6484 -- The result type of the function
6486 Utyp : constant Entity_Id := Underlying_Type (R_Type);
6488 Exp : Node_Id := Expression (N);
6489 pragma Assert (Present (Exp));
6491 Exptyp : constant Entity_Id := Etype (Exp);
6492 -- The type of the expression (not necessarily the same as R_Type)
6494 Subtype_Ind : Node_Id;
6495 -- If the result type of the function is class-wide and the expression
6496 -- has a specific type, then we use the expression's type as the type of
6497 -- the return object. In cases where the expression is an aggregate that
6498 -- is built in place, this avoids the need for an expensive conversion
6499 -- of the return object to the specific type on assignments to the
6500 -- individual components.
6502 begin
6503 if Is_Class_Wide_Type (R_Type)
6504 and then not Is_Class_Wide_Type (Exptyp)
6505 and then Nkind (Exp) /= N_Type_Conversion
6506 then
6507 Subtype_Ind := New_Occurrence_Of (Exptyp, Loc);
6508 else
6509 Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
6511 -- If the result type is class-wide and the expression is a view
6512 -- conversion, the conversion plays no role in the expansion because
6513 -- it does not modify the tag of the object. Remove the conversion
6514 -- altogether to prevent tag overwriting.
6516 if Is_Class_Wide_Type (R_Type)
6517 and then not Is_Class_Wide_Type (Exptyp)
6518 and then Nkind (Exp) = N_Type_Conversion
6519 then
6520 Exp := Expression (Exp);
6521 end if;
6522 end if;
6524 -- Assert that if F says "return G(...);"
6525 -- then F and G are both b-i-p, or neither b-i-p.
6527 if Nkind (Exp) = N_Function_Call then
6528 pragma Assert (Ekind (Scope_Id) = E_Function);
6529 pragma Assert
6530 (Is_Build_In_Place_Function (Scope_Id) =
6531 Is_Build_In_Place_Function_Call (Exp));
6532 null;
6533 end if;
6535 -- For the case of a simple return that does not come from an
6536 -- extended return, in the case of build-in-place, we rewrite
6537 -- "return <expression>;" to be:
6539 -- return _anon_ : <return_subtype> := <expression>
6541 -- The expansion produced by Expand_N_Extended_Return_Statement will
6542 -- contain simple return statements (for example, a block containing
6543 -- simple return of the return object), which brings us back here with
6544 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6545 -- checking for a simple return that does not come from an extended
6546 -- return is to avoid this infinite recursion.
6548 -- The reason for this design is that for Ada 2005 limited returns, we
6549 -- need to reify the return object, so we can build it "in place", and
6550 -- we need a block statement to hang finalization and tasking stuff.
6552 -- ??? In order to avoid disruption, we avoid translating to extended
6553 -- return except in the cases where we really need to (Ada 2005 for
6554 -- inherently limited). We might prefer to do this translation in all
6555 -- cases (except perhaps for the case of Ada 95 inherently limited),
6556 -- in order to fully exercise the Expand_N_Extended_Return_Statement
6557 -- code. This would also allow us to do the build-in-place optimization
6558 -- for efficiency even in cases where it is semantically not required.
6560 -- As before, we check the type of the return expression rather than the
6561 -- return type of the function, because the latter may be a limited
6562 -- class-wide interface type, which is not a limited type, even though
6563 -- the type of the expression may be.
6565 pragma Assert
6566 (Comes_From_Extended_Return_Statement (N)
6567 or else not Is_Build_In_Place_Function_Call (Exp)
6568 or else Is_Build_In_Place_Function (Scope_Id));
6570 if not Comes_From_Extended_Return_Statement (N)
6571 and then Is_Build_In_Place_Function (Scope_Id)
6572 and then not Debug_Flag_Dot_L
6574 -- The functionality of interface thunks is simple and it is always
6575 -- handled by means of simple return statements. This leaves their
6576 -- expansion simple and clean.
6578 and then not Is_Thunk (Current_Scope)
6579 then
6580 declare
6581 Return_Object_Entity : constant Entity_Id :=
6582 Make_Temporary (Loc, 'R', Exp);
6584 Obj_Decl : constant Node_Id :=
6585 Make_Object_Declaration (Loc,
6586 Defining_Identifier => Return_Object_Entity,
6587 Object_Definition => Subtype_Ind,
6588 Expression => Exp);
6590 Ext : constant Node_Id :=
6591 Make_Extended_Return_Statement (Loc,
6592 Return_Object_Declarations => New_List (Obj_Decl));
6593 -- Do not perform this high-level optimization if the result type
6594 -- is an interface because the "this" pointer must be displaced.
6596 begin
6597 Rewrite (N, Ext);
6598 Analyze (N);
6599 return;
6600 end;
6601 end if;
6603 -- Here we have a simple return statement that is part of the expansion
6604 -- of an extended return statement (either written by the user, or
6605 -- generated by the above code).
6607 -- Always normalize C/Fortran boolean result. This is not always needed,
6608 -- but it seems a good idea to minimize the passing around of non-
6609 -- normalized values, and in any case this handles the processing of
6610 -- barrier functions for protected types, which turn the condition into
6611 -- a return statement.
6613 if Is_Boolean_Type (Exptyp)
6614 and then Nonzero_Is_True (Exptyp)
6615 then
6616 Adjust_Condition (Exp);
6617 Adjust_Result_Type (Exp, Exptyp);
6618 end if;
6620 -- Do validity check if enabled for returns
6622 if Validity_Checks_On
6623 and then Validity_Check_Returns
6624 then
6625 Ensure_Valid (Exp);
6626 end if;
6628 -- Check the result expression of a scalar function against the subtype
6629 -- of the function by inserting a conversion. This conversion must
6630 -- eventually be performed for other classes of types, but for now it's
6631 -- only done for scalars.
6632 -- ???
6634 if Is_Scalar_Type (Exptyp) then
6635 Rewrite (Exp, Convert_To (R_Type, Exp));
6637 -- The expression is resolved to ensure that the conversion gets
6638 -- expanded to generate a possible constraint check.
6640 Analyze_And_Resolve (Exp, R_Type);
6641 end if;
6643 -- Deal with returning variable length objects and controlled types
6645 -- Nothing to do if we are returning by reference, or this is not a
6646 -- type that requires special processing (indicated by the fact that
6647 -- it requires a cleanup scope for the secondary stack case).
6649 if Is_Build_In_Place_Function (Scope_Id)
6650 or else Is_Limited_Interface (Exptyp)
6651 then
6652 null;
6654 -- No copy needed for thunks returning interface type objects since
6655 -- the object is returned by reference and the maximum functionality
6656 -- required is just to displace the pointer.
6658 elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
6659 null;
6661 -- If the call is within a thunk and the type is a limited view, the
6662 -- backend will eventually see the non-limited view of the type.
6664 elsif Is_Thunk (Current_Scope) and then Is_Incomplete_Type (Exptyp) then
6665 return;
6667 elsif not Requires_Transient_Scope (R_Type) then
6669 -- Mutable records with variable-length components are not returned
6670 -- on the sec-stack, so we need to make sure that the back end will
6671 -- only copy back the size of the actual value, and not the maximum
6672 -- size. We create an actual subtype for this purpose. However we
6673 -- need not do it if the expression is a function call since this
6674 -- will be done in the called function and doing it here too would
6675 -- cause a temporary with maximum size to be created.
6677 declare
6678 Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
6679 Decl : Node_Id;
6680 Ent : Entity_Id;
6681 begin
6682 if Nkind (Exp) /= N_Function_Call
6683 and then Has_Discriminants (Ubt)
6684 and then not Is_Constrained (Ubt)
6685 and then not Has_Unchecked_Union (Ubt)
6686 then
6687 Decl := Build_Actual_Subtype (Ubt, Exp);
6688 Ent := Defining_Identifier (Decl);
6689 Insert_Action (Exp, Decl);
6690 Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6691 Analyze_And_Resolve (Exp);
6692 end if;
6693 end;
6695 -- Here if secondary stack is used
6697 else
6698 -- Prevent the reclamation of the secondary stack by all enclosing
6699 -- blocks and loops as well as the related function; otherwise the
6700 -- result would be reclaimed too early.
6702 Set_Enclosing_Sec_Stack_Return (N);
6704 -- Optimize the case where the result is a function call. In this
6705 -- case either the result is already on the secondary stack, or is
6706 -- already being returned with the stack pointer depressed and no
6707 -- further processing is required except to set the By_Ref flag
6708 -- to ensure that gigi does not attempt an extra unnecessary copy.
6709 -- (actually not just unnecessary but harmfully wrong in the case
6710 -- of a controlled type, where gigi does not know how to do a copy).
6711 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6712 -- for array types if the constrained status of the target type is
6713 -- different from that of the expression.
6715 if Requires_Transient_Scope (Exptyp)
6716 and then
6717 (not Is_Array_Type (Exptyp)
6718 or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
6719 or else CW_Or_Has_Controlled_Part (Utyp))
6720 and then Nkind (Exp) = N_Function_Call
6721 then
6722 Set_By_Ref (N);
6724 -- Remove side effects from the expression now so that other parts
6725 -- of the expander do not have to reanalyze this node without this
6726 -- optimization
6728 Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6730 -- Ada 2005 (AI-251): If the type of the returned object is
6731 -- an interface then add an implicit type conversion to force
6732 -- displacement of the "this" pointer.
6734 if Is_Interface (R_Type) then
6735 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6736 end if;
6738 Analyze_And_Resolve (Exp, R_Type);
6740 -- For controlled types, do the allocation on the secondary stack
6741 -- manually in order to call adjust at the right time:
6743 -- type Anon1 is access R_Type;
6744 -- for Anon1'Storage_pool use ss_pool;
6745 -- Anon2 : anon1 := new R_Type'(expr);
6746 -- return Anon2.all;
6748 -- We do the same for classwide types that are not potentially
6749 -- controlled (by the virtue of restriction No_Finalization) because
6750 -- gigi is not able to properly allocate class-wide types.
6752 elsif CW_Or_Has_Controlled_Part (Utyp) then
6753 declare
6754 Loc : constant Source_Ptr := Sloc (N);
6755 Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
6756 Alloc_Node : Node_Id;
6757 Temp : Entity_Id;
6759 begin
6760 Set_Ekind (Acc_Typ, E_Access_Type);
6762 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
6764 -- This is an allocator for the secondary stack, and it's fine
6765 -- to have Comes_From_Source set False on it, as gigi knows not
6766 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6768 Alloc_Node :=
6769 Make_Allocator (Loc,
6770 Expression =>
6771 Make_Qualified_Expression (Loc,
6772 Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
6773 Expression => Relocate_Node (Exp)));
6775 -- We do not want discriminant checks on the declaration,
6776 -- given that it gets its value from the allocator.
6778 Set_No_Initialization (Alloc_Node);
6780 Temp := Make_Temporary (Loc, 'R', Alloc_Node);
6782 Insert_List_Before_And_Analyze (N, New_List (
6783 Make_Full_Type_Declaration (Loc,
6784 Defining_Identifier => Acc_Typ,
6785 Type_Definition =>
6786 Make_Access_To_Object_Definition (Loc,
6787 Subtype_Indication => Subtype_Ind)),
6789 Make_Object_Declaration (Loc,
6790 Defining_Identifier => Temp,
6791 Object_Definition => New_Occurrence_Of (Acc_Typ, Loc),
6792 Expression => Alloc_Node)));
6794 Rewrite (Exp,
6795 Make_Explicit_Dereference (Loc,
6796 Prefix => New_Occurrence_Of (Temp, Loc)));
6798 -- Ada 2005 (AI-251): If the type of the returned object is
6799 -- an interface then add an implicit type conversion to force
6800 -- displacement of the "this" pointer.
6802 if Is_Interface (R_Type) then
6803 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6804 end if;
6806 Analyze_And_Resolve (Exp, R_Type);
6807 end;
6809 -- Otherwise use the gigi mechanism to allocate result on the
6810 -- secondary stack.
6812 else
6813 Check_Restriction (No_Secondary_Stack, N);
6814 Set_Storage_Pool (N, RTE (RE_SS_Pool));
6815 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
6816 end if;
6817 end if;
6819 -- Implement the rules of 6.5(8-10), which require a tag check in
6820 -- the case of a limited tagged return type, and tag reassignment for
6821 -- nonlimited tagged results. These actions are needed when the return
6822 -- type is a specific tagged type and the result expression is a
6823 -- conversion or a formal parameter, because in that case the tag of
6824 -- the expression might differ from the tag of the specific result type.
6826 -- We must also verify an underlying type exists for the return type in
6827 -- case it is incomplete - in which case is not necessary to generate a
6828 -- check anyway since an incomplete limited tagged return type would
6829 -- qualify as a premature usage.
6831 if Present (Utyp)
6832 and then Is_Tagged_Type (Utyp)
6833 and then not Is_Class_Wide_Type (Utyp)
6834 and then (Nkind_In (Exp, N_Type_Conversion,
6835 N_Unchecked_Type_Conversion)
6836 or else (Is_Entity_Name (Exp)
6837 and then Is_Formal (Entity (Exp))))
6838 then
6839 -- When the return type is limited, perform a check that the tag of
6840 -- the result is the same as the tag of the return type.
6842 if Is_Limited_Type (R_Type) then
6843 Insert_Action (Exp,
6844 Make_Raise_Constraint_Error (Loc,
6845 Condition =>
6846 Make_Op_Ne (Loc,
6847 Left_Opnd =>
6848 Make_Selected_Component (Loc,
6849 Prefix => Duplicate_Subexpr (Exp),
6850 Selector_Name => Make_Identifier (Loc, Name_uTag)),
6851 Right_Opnd =>
6852 Make_Attribute_Reference (Loc,
6853 Prefix =>
6854 New_Occurrence_Of (Base_Type (Utyp), Loc),
6855 Attribute_Name => Name_Tag)),
6856 Reason => CE_Tag_Check_Failed));
6858 -- If the result type is a specific nonlimited tagged type, then we
6859 -- have to ensure that the tag of the result is that of the result
6860 -- type. This is handled by making a copy of the expression in
6861 -- the case where it might have a different tag, namely when the
6862 -- expression is a conversion or a formal parameter. We create a new
6863 -- object of the result type and initialize it from the expression,
6864 -- which will implicitly force the tag to be set appropriately.
6866 else
6867 declare
6868 ExpR : constant Node_Id := Relocate_Node (Exp);
6869 Result_Id : constant Entity_Id :=
6870 Make_Temporary (Loc, 'R', ExpR);
6871 Result_Exp : constant Node_Id :=
6872 New_Occurrence_Of (Result_Id, Loc);
6873 Result_Obj : constant Node_Id :=
6874 Make_Object_Declaration (Loc,
6875 Defining_Identifier => Result_Id,
6876 Object_Definition =>
6877 New_Occurrence_Of (R_Type, Loc),
6878 Constant_Present => True,
6879 Expression => ExpR);
6881 begin
6882 Set_Assignment_OK (Result_Obj);
6883 Insert_Action (Exp, Result_Obj);
6885 Rewrite (Exp, Result_Exp);
6886 Analyze_And_Resolve (Exp, R_Type);
6887 end;
6888 end if;
6890 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6891 -- a check that the level of the return expression's underlying type
6892 -- is not deeper than the level of the master enclosing the function.
6893 -- Always generate the check when the type of the return expression
6894 -- is class-wide, when it's a type conversion, or when it's a formal
6895 -- parameter. Otherwise, suppress the check in the case where the
6896 -- return expression has a specific type whose level is known not to
6897 -- be statically deeper than the function's result type.
6899 -- No runtime check needed in interface thunks since it is performed
6900 -- by the target primitive associated with the thunk.
6902 -- Note: accessibility check is skipped in the VM case, since there
6903 -- does not seem to be any practical way to implement this check.
6905 elsif Ada_Version >= Ada_2005
6906 and then Tagged_Type_Expansion
6907 and then Is_Class_Wide_Type (R_Type)
6908 and then not Is_Thunk (Current_Scope)
6909 and then not Scope_Suppress.Suppress (Accessibility_Check)
6910 and then
6911 (Is_Class_Wide_Type (Etype (Exp))
6912 or else Nkind_In (Exp, N_Type_Conversion,
6913 N_Unchecked_Type_Conversion)
6914 or else (Is_Entity_Name (Exp)
6915 and then Is_Formal (Entity (Exp)))
6916 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
6917 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
6918 then
6919 declare
6920 Tag_Node : Node_Id;
6922 begin
6923 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6924 -- "this" to reference the base of the object. This is required to
6925 -- get access to the TSD of the object.
6927 if Is_Class_Wide_Type (Etype (Exp))
6928 and then Is_Interface (Etype (Exp))
6929 then
6930 -- If the expression is an explicit dereference then we can
6931 -- directly displace the pointer to reference the base of
6932 -- the object.
6934 if Nkind (Exp) = N_Explicit_Dereference then
6935 Tag_Node :=
6936 Make_Explicit_Dereference (Loc,
6937 Prefix =>
6938 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6939 Make_Function_Call (Loc,
6940 Name =>
6941 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6942 Parameter_Associations => New_List (
6943 Unchecked_Convert_To (RTE (RE_Address),
6944 Duplicate_Subexpr (Prefix (Exp)))))));
6946 -- Similar case to the previous one but the expression is a
6947 -- renaming of an explicit dereference.
6949 elsif Nkind (Exp) = N_Identifier
6950 and then Present (Renamed_Object (Entity (Exp)))
6951 and then Nkind (Renamed_Object (Entity (Exp)))
6952 = N_Explicit_Dereference
6953 then
6954 Tag_Node :=
6955 Make_Explicit_Dereference (Loc,
6956 Prefix =>
6957 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6958 Make_Function_Call (Loc,
6959 Name =>
6960 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6961 Parameter_Associations => New_List (
6962 Unchecked_Convert_To (RTE (RE_Address),
6963 Duplicate_Subexpr
6964 (Prefix
6965 (Renamed_Object (Entity (Exp)))))))));
6967 -- Common case: obtain the address of the actual object and
6968 -- displace the pointer to reference the base of the object.
6970 else
6971 Tag_Node :=
6972 Make_Explicit_Dereference (Loc,
6973 Prefix =>
6974 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6975 Make_Function_Call (Loc,
6976 Name =>
6977 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6978 Parameter_Associations => New_List (
6979 Make_Attribute_Reference (Loc,
6980 Prefix => Duplicate_Subexpr (Exp),
6981 Attribute_Name => Name_Address)))));
6982 end if;
6983 else
6984 Tag_Node :=
6985 Make_Attribute_Reference (Loc,
6986 Prefix => Duplicate_Subexpr (Exp),
6987 Attribute_Name => Name_Tag);
6988 end if;
6990 -- CodePeer does not do anything useful with
6991 -- Ada.Tags.Type_Specific_Data components.
6993 if not CodePeer_Mode then
6994 Insert_Action (Exp,
6995 Make_Raise_Program_Error (Loc,
6996 Condition =>
6997 Make_Op_Gt (Loc,
6998 Left_Opnd => Build_Get_Access_Level (Loc, Tag_Node),
6999 Right_Opnd =>
7000 Make_Integer_Literal (Loc,
7001 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
7002 Reason => PE_Accessibility_Check_Failed));
7003 end if;
7004 end;
7006 -- AI05-0073: If function has a controlling access result, check that
7007 -- the tag of the return value, if it is not null, matches designated
7008 -- type of return type.
7010 -- The return expression is referenced twice in the code below, so it
7011 -- must be made free of side effects. Given that different compilers
7012 -- may evaluate these parameters in different order, both occurrences
7013 -- perform a copy.
7015 elsif Ekind (R_Type) = E_Anonymous_Access_Type
7016 and then Has_Controlling_Result (Scope_Id)
7017 then
7018 Insert_Action (N,
7019 Make_Raise_Constraint_Error (Loc,
7020 Condition =>
7021 Make_And_Then (Loc,
7022 Left_Opnd =>
7023 Make_Op_Ne (Loc,
7024 Left_Opnd => Duplicate_Subexpr (Exp),
7025 Right_Opnd => Make_Null (Loc)),
7027 Right_Opnd => Make_Op_Ne (Loc,
7028 Left_Opnd =>
7029 Make_Selected_Component (Loc,
7030 Prefix => Duplicate_Subexpr (Exp),
7031 Selector_Name => Make_Identifier (Loc, Name_uTag)),
7033 Right_Opnd =>
7034 Make_Attribute_Reference (Loc,
7035 Prefix =>
7036 New_Occurrence_Of (Designated_Type (R_Type), Loc),
7037 Attribute_Name => Name_Tag))),
7039 Reason => CE_Tag_Check_Failed),
7040 Suppress => All_Checks);
7041 end if;
7043 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
7044 -- ensure that the function result does not outlive an
7045 -- object designated by one of it discriminants.
7047 if Present (Extra_Accessibility_Of_Result (Scope_Id))
7048 and then Has_Unconstrained_Access_Discriminants (R_Type)
7049 then
7050 declare
7051 Discrim_Source : Node_Id;
7053 procedure Check_Against_Result_Level (Level : Node_Id);
7054 -- Check the given accessibility level against the level
7055 -- determined by the point of call. (AI05-0234).
7057 --------------------------------
7058 -- Check_Against_Result_Level --
7059 --------------------------------
7061 procedure Check_Against_Result_Level (Level : Node_Id) is
7062 begin
7063 Insert_Action (N,
7064 Make_Raise_Program_Error (Loc,
7065 Condition =>
7066 Make_Op_Gt (Loc,
7067 Left_Opnd => Level,
7068 Right_Opnd =>
7069 New_Occurrence_Of
7070 (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
7071 Reason => PE_Accessibility_Check_Failed));
7072 end Check_Against_Result_Level;
7074 begin
7075 Discrim_Source := Exp;
7076 while Nkind (Discrim_Source) = N_Qualified_Expression loop
7077 Discrim_Source := Expression (Discrim_Source);
7078 end loop;
7080 if Nkind (Discrim_Source) = N_Identifier
7081 and then Is_Return_Object (Entity (Discrim_Source))
7082 then
7083 Discrim_Source := Entity (Discrim_Source);
7085 if Is_Constrained (Etype (Discrim_Source)) then
7086 Discrim_Source := Etype (Discrim_Source);
7087 else
7088 Discrim_Source := Expression (Parent (Discrim_Source));
7089 end if;
7091 elsif Nkind (Discrim_Source) = N_Identifier
7092 and then Nkind_In (Original_Node (Discrim_Source),
7093 N_Aggregate, N_Extension_Aggregate)
7094 then
7095 Discrim_Source := Original_Node (Discrim_Source);
7097 elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
7098 Nkind (Original_Node (Discrim_Source)) = N_Function_Call
7099 then
7100 Discrim_Source := Original_Node (Discrim_Source);
7101 end if;
7103 Discrim_Source := Unqual_Conv (Discrim_Source);
7105 case Nkind (Discrim_Source) is
7106 when N_Defining_Identifier =>
7107 pragma Assert (Is_Composite_Type (Discrim_Source)
7108 and then Has_Discriminants (Discrim_Source)
7109 and then Is_Constrained (Discrim_Source));
7111 declare
7112 Discrim : Entity_Id :=
7113 First_Discriminant (Base_Type (R_Type));
7114 Disc_Elmt : Elmt_Id :=
7115 First_Elmt (Discriminant_Constraint
7116 (Discrim_Source));
7117 begin
7118 loop
7119 if Ekind (Etype (Discrim)) =
7120 E_Anonymous_Access_Type
7121 then
7122 Check_Against_Result_Level
7123 (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
7124 end if;
7126 Next_Elmt (Disc_Elmt);
7127 Next_Discriminant (Discrim);
7128 exit when not Present (Discrim);
7129 end loop;
7130 end;
7132 when N_Aggregate
7133 | N_Extension_Aggregate
7135 -- Unimplemented: extension aggregate case where discrims
7136 -- come from ancestor part, not extension part.
7138 declare
7139 Discrim : Entity_Id :=
7140 First_Discriminant (Base_Type (R_Type));
7142 Disc_Exp : Node_Id := Empty;
7144 Positionals_Exhausted
7145 : Boolean := not Present (Expressions
7146 (Discrim_Source));
7148 function Associated_Expr
7149 (Comp_Id : Entity_Id;
7150 Associations : List_Id) return Node_Id;
7152 -- Given a component and a component associations list,
7153 -- locate the expression for that component; returns
7154 -- Empty if no such expression is found.
7156 ---------------------
7157 -- Associated_Expr --
7158 ---------------------
7160 function Associated_Expr
7161 (Comp_Id : Entity_Id;
7162 Associations : List_Id) return Node_Id
7164 Assoc : Node_Id;
7165 Choice : Node_Id;
7167 begin
7168 -- Simple linear search seems ok here
7170 Assoc := First (Associations);
7171 while Present (Assoc) loop
7172 Choice := First (Choices (Assoc));
7173 while Present (Choice) loop
7174 if (Nkind (Choice) = N_Identifier
7175 and then Chars (Choice) = Chars (Comp_Id))
7176 or else (Nkind (Choice) = N_Others_Choice)
7177 then
7178 return Expression (Assoc);
7179 end if;
7181 Next (Choice);
7182 end loop;
7184 Next (Assoc);
7185 end loop;
7187 return Empty;
7188 end Associated_Expr;
7190 begin
7191 if not Positionals_Exhausted then
7192 Disc_Exp := First (Expressions (Discrim_Source));
7193 end if;
7195 loop
7196 if Positionals_Exhausted then
7197 Disc_Exp :=
7198 Associated_Expr
7199 (Discrim,
7200 Component_Associations (Discrim_Source));
7201 end if;
7203 if Ekind (Etype (Discrim)) =
7204 E_Anonymous_Access_Type
7205 then
7206 Check_Against_Result_Level
7207 (Dynamic_Accessibility_Level (Disc_Exp));
7208 end if;
7210 Next_Discriminant (Discrim);
7211 exit when not Present (Discrim);
7213 if not Positionals_Exhausted then
7214 Next (Disc_Exp);
7215 Positionals_Exhausted := not Present (Disc_Exp);
7216 end if;
7217 end loop;
7218 end;
7220 when N_Function_Call =>
7222 -- No check needed (check performed by callee)
7224 null;
7226 when others =>
7227 declare
7228 Level : constant Node_Id :=
7229 Make_Integer_Literal (Loc,
7230 Object_Access_Level (Discrim_Source));
7232 begin
7233 -- Unimplemented: check for name prefix that includes
7234 -- a dereference of an access value with a dynamic
7235 -- accessibility level (e.g., an access param or a
7236 -- saooaaat) and use dynamic level in that case. For
7237 -- example:
7238 -- return Access_Param.all(Some_Index).Some_Component;
7239 -- ???
7241 Set_Etype (Level, Standard_Natural);
7242 Check_Against_Result_Level (Level);
7243 end;
7244 end case;
7245 end;
7246 end if;
7248 -- If we are returning an object that may not be bit-aligned, then copy
7249 -- the value into a temporary first. This copy may need to expand to a
7250 -- loop of component operations.
7252 if Is_Possibly_Unaligned_Slice (Exp)
7253 or else Is_Possibly_Unaligned_Object (Exp)
7254 then
7255 declare
7256 ExpR : constant Node_Id := Relocate_Node (Exp);
7257 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
7258 begin
7259 Insert_Action (Exp,
7260 Make_Object_Declaration (Loc,
7261 Defining_Identifier => Tnn,
7262 Constant_Present => True,
7263 Object_Definition => New_Occurrence_Of (R_Type, Loc),
7264 Expression => ExpR),
7265 Suppress => All_Checks);
7266 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
7267 end;
7268 end if;
7270 -- Call the _Postconditions procedure if the related function has
7271 -- contract assertions that need to be verified on exit.
7273 if Ekind (Scope_Id) = E_Function
7274 and then Present (Postconditions_Proc (Scope_Id))
7275 then
7276 -- In the case of discriminated objects, we have created a
7277 -- constrained subtype above, and used the underlying type. This
7278 -- transformation is post-analysis and harmless, except that now the
7279 -- call to the post-condition will be analyzed and the type kinds
7280 -- have to match.
7282 if Nkind (Exp) = N_Unchecked_Type_Conversion
7283 and then Is_Private_Type (R_Type) /= Is_Private_Type (Etype (Exp))
7284 then
7285 Rewrite (Exp, Expression (Relocate_Node (Exp)));
7286 end if;
7288 -- We are going to reference the returned value twice in this case,
7289 -- once in the call to _Postconditions, and once in the actual return
7290 -- statement, but we can't have side effects happening twice.
7292 Force_Evaluation (Exp, Mode => Strict);
7294 -- Generate call to _Postconditions
7296 Insert_Action (Exp,
7297 Make_Procedure_Call_Statement (Loc,
7298 Name =>
7299 New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc),
7300 Parameter_Associations => New_List (New_Copy_Tree (Exp))));
7301 end if;
7303 -- Ada 2005 (AI-251): If this return statement corresponds with an
7304 -- simple return statement associated with an extended return statement
7305 -- and the type of the returned object is an interface then generate an
7306 -- implicit conversion to force displacement of the "this" pointer.
7308 if Ada_Version >= Ada_2005
7309 and then Comes_From_Extended_Return_Statement (N)
7310 and then Nkind (Expression (N)) = N_Identifier
7311 and then Is_Interface (Utyp)
7312 and then Utyp /= Underlying_Type (Exptyp)
7313 then
7314 Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
7315 Analyze_And_Resolve (Exp);
7316 end if;
7317 end Expand_Simple_Function_Return;
7319 -----------------------
7320 -- Freeze_Subprogram --
7321 -----------------------
7323 procedure Freeze_Subprogram (N : Node_Id) is
7324 Loc : constant Source_Ptr := Sloc (N);
7326 procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
7327 -- (Ada 2005): Register a predefined primitive in all the secondary
7328 -- dispatch tables of its primitive type.
7330 ----------------------------------
7331 -- Register_Predefined_DT_Entry --
7332 ----------------------------------
7334 procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
7335 Iface_DT_Ptr : Elmt_Id;
7336 Tagged_Typ : Entity_Id;
7337 Thunk_Id : Entity_Id;
7338 Thunk_Code : Node_Id;
7340 begin
7341 Tagged_Typ := Find_Dispatching_Type (Prim);
7343 if No (Access_Disp_Table (Tagged_Typ))
7344 or else not Has_Interfaces (Tagged_Typ)
7345 or else not RTE_Available (RE_Interface_Tag)
7346 or else Restriction_Active (No_Dispatching_Calls)
7347 then
7348 return;
7349 end if;
7351 -- Skip the first two access-to-dispatch-table pointers since they
7352 -- leads to the primary dispatch table (predefined DT and user
7353 -- defined DT). We are only concerned with the secondary dispatch
7354 -- table pointers. Note that the access-to- dispatch-table pointer
7355 -- corresponds to the first implemented interface retrieved below.
7357 Iface_DT_Ptr :=
7358 Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
7360 while Present (Iface_DT_Ptr)
7361 and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
7362 loop
7363 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7364 Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
7366 if Present (Thunk_Code) then
7367 Insert_Actions_After (N, New_List (
7368 Thunk_Code,
7370 Build_Set_Predefined_Prim_Op_Address (Loc,
7371 Tag_Node =>
7372 New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
7373 Position => DT_Position (Prim),
7374 Address_Node =>
7375 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7376 Make_Attribute_Reference (Loc,
7377 Prefix => New_Occurrence_Of (Thunk_Id, Loc),
7378 Attribute_Name => Name_Unrestricted_Access))),
7380 Build_Set_Predefined_Prim_Op_Address (Loc,
7381 Tag_Node =>
7382 New_Occurrence_Of
7383 (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
7384 Loc),
7385 Position => DT_Position (Prim),
7386 Address_Node =>
7387 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7388 Make_Attribute_Reference (Loc,
7389 Prefix => New_Occurrence_Of (Prim, Loc),
7390 Attribute_Name => Name_Unrestricted_Access)))));
7391 end if;
7393 -- Skip the tag of the predefined primitives dispatch table
7395 Next_Elmt (Iface_DT_Ptr);
7396 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7398 -- Skip tag of the no-thunks dispatch table
7400 Next_Elmt (Iface_DT_Ptr);
7401 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7403 -- Skip tag of predefined primitives no-thunks dispatch table
7405 Next_Elmt (Iface_DT_Ptr);
7406 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7408 Next_Elmt (Iface_DT_Ptr);
7409 end loop;
7410 end Register_Predefined_DT_Entry;
7412 -- Local variables
7414 Subp : constant Entity_Id := Entity (N);
7416 -- Start of processing for Freeze_Subprogram
7418 begin
7419 -- We suppress the initialization of the dispatch table entry when
7420 -- not Tagged_Type_Expansion because the dispatching mechanism is
7421 -- handled internally by the target.
7423 if Is_Dispatching_Operation (Subp)
7424 and then not Is_Abstract_Subprogram (Subp)
7425 and then Present (DTC_Entity (Subp))
7426 and then Present (Scope (DTC_Entity (Subp)))
7427 and then Tagged_Type_Expansion
7428 and then not Restriction_Active (No_Dispatching_Calls)
7429 and then RTE_Available (RE_Tag)
7430 then
7431 declare
7432 Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
7434 begin
7435 -- Handle private overridden primitives
7437 if not Is_CPP_Class (Typ) then
7438 Check_Overriding_Operation (Subp);
7439 end if;
7441 -- We assume that imported CPP primitives correspond with objects
7442 -- whose constructor is in the CPP side; therefore we don't need
7443 -- to generate code to register them in the dispatch table.
7445 if Is_CPP_Class (Typ) then
7446 null;
7448 -- Handle CPP primitives found in derivations of CPP_Class types.
7449 -- These primitives must have been inherited from some parent, and
7450 -- there is no need to register them in the dispatch table because
7451 -- Build_Inherit_Prims takes care of initializing these slots.
7453 elsif Is_Imported (Subp)
7454 and then (Convention (Subp) = Convention_CPP
7455 or else Convention (Subp) = Convention_C)
7456 then
7457 null;
7459 -- Generate code to register the primitive in non statically
7460 -- allocated dispatch tables
7462 elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
7464 -- When a primitive is frozen, enter its name in its dispatch
7465 -- table slot.
7467 if not Is_Interface (Typ)
7468 or else Present (Interface_Alias (Subp))
7469 then
7470 if Is_Predefined_Dispatching_Operation (Subp) then
7471 Register_Predefined_DT_Entry (Subp);
7472 end if;
7474 Insert_Actions_After (N,
7475 Register_Primitive (Loc, Prim => Subp));
7476 end if;
7477 end if;
7478 end;
7479 end if;
7481 -- Mark functions that return by reference. Note that it cannot be part
7482 -- of the normal semantic analysis of the spec since the underlying
7483 -- returned type may not be known yet (for private types).
7485 declare
7486 Typ : constant Entity_Id := Etype (Subp);
7487 Utyp : constant Entity_Id := Underlying_Type (Typ);
7489 begin
7490 if Is_Limited_View (Typ) then
7491 Set_Returns_By_Ref (Subp);
7493 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
7494 Set_Returns_By_Ref (Subp);
7495 end if;
7496 end;
7498 -- Wnen freezing a null procedure, analyze its delayed aspects now
7499 -- because we may not have reached the end of the declarative list when
7500 -- delayed aspects are normally analyzed. This ensures that dispatching
7501 -- calls are properly rewritten when the generated _Postcondition
7502 -- procedure is analyzed in the null procedure body.
7504 if Nkind (Parent (Subp)) = N_Procedure_Specification
7505 and then Null_Present (Parent (Subp))
7506 then
7507 Analyze_Entry_Or_Subprogram_Contract (Subp);
7508 end if;
7509 end Freeze_Subprogram;
7511 --------------------------------------------
7512 -- Has_Unconstrained_Access_Discriminants --
7513 --------------------------------------------
7515 function Has_Unconstrained_Access_Discriminants
7516 (Subtyp : Entity_Id) return Boolean
7518 Discr : Entity_Id;
7520 begin
7521 if Has_Discriminants (Subtyp)
7522 and then not Is_Constrained (Subtyp)
7523 then
7524 Discr := First_Discriminant (Subtyp);
7525 while Present (Discr) loop
7526 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
7527 return True;
7528 end if;
7530 Next_Discriminant (Discr);
7531 end loop;
7532 end if;
7534 return False;
7535 end Has_Unconstrained_Access_Discriminants;
7537 ------------------------------
7538 -- Insert_Post_Call_Actions --
7539 ------------------------------
7541 procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id) is
7542 Context : constant Node_Id := Parent (N);
7544 begin
7545 if Is_Empty_List (Post_Call) then
7546 return;
7547 end if;
7549 -- Cases where the call is not a member of a statement list. This
7550 -- includes the case where the call is an actual in another function
7551 -- call or indexing, i.e. an expression context as well.
7553 if not Is_List_Member (N)
7554 or else Nkind_In (Context, N_Function_Call, N_Indexed_Component)
7555 then
7556 -- In Ada 2012 the call may be a function call in an expression
7557 -- (since OUT and IN OUT parameters are now allowed for such calls).
7558 -- The write-back of (in)-out parameters is handled by the back-end,
7559 -- but the constraint checks generated when subtypes of formal and
7560 -- actual don't match must be inserted in the form of assignments.
7562 if Nkind (Original_Node (N)) = N_Function_Call then
7563 pragma Assert (Ada_Version >= Ada_2012);
7564 -- Functions with '[in] out' parameters are only allowed in Ada
7565 -- 2012.
7567 -- We used to handle this by climbing up parents to a
7568 -- non-statement/declaration and then simply making a call to
7569 -- Insert_Actions_After (P, Post_Call), but that doesn't work
7570 -- for Ada 2012. If we are in the middle of an expression, e.g.
7571 -- the condition of an IF, this call would insert after the IF
7572 -- statement, which is much too late to be doing the write back.
7573 -- For example:
7575 -- if Clobber (X) then
7576 -- Put_Line (X'Img);
7577 -- else
7578 -- goto Junk
7579 -- end if;
7581 -- Now assume Clobber changes X, if we put the write back after
7582 -- the IF, the Put_Line gets the wrong value and the goto causes
7583 -- the write back to be skipped completely.
7585 -- To deal with this, we replace the call by
7587 -- do
7588 -- Tnnn : constant function-result-type := function-call;
7589 -- Post_Call actions
7590 -- in
7591 -- Tnnn;
7592 -- end;
7594 declare
7595 Loc : constant Source_Ptr := Sloc (N);
7596 Tnnn : constant Entity_Id := Make_Temporary (Loc, 'T');
7597 FRTyp : constant Entity_Id := Etype (N);
7598 Name : constant Node_Id := Relocate_Node (N);
7600 begin
7601 Prepend_To (Post_Call,
7602 Make_Object_Declaration (Loc,
7603 Defining_Identifier => Tnnn,
7604 Object_Definition => New_Occurrence_Of (FRTyp, Loc),
7605 Constant_Present => True,
7606 Expression => Name));
7608 Rewrite (N,
7609 Make_Expression_With_Actions (Loc,
7610 Actions => Post_Call,
7611 Expression => New_Occurrence_Of (Tnnn, Loc)));
7613 -- We don't want to just blindly call Analyze_And_Resolve
7614 -- because that would cause unwanted recursion on the call.
7615 -- So for a moment set the call as analyzed to prevent that
7616 -- recursion, and get the rest analyzed properly, then reset
7617 -- the analyzed flag, so our caller can continue.
7619 Set_Analyzed (Name, True);
7620 Analyze_And_Resolve (N, FRTyp);
7621 Set_Analyzed (Name, False);
7622 end;
7624 -- If not the special Ada 2012 case of a function call, then we must
7625 -- have the triggering statement of a triggering alternative or an
7626 -- entry call alternative, and we can add the post call stuff to the
7627 -- corresponding statement list.
7629 else
7630 pragma Assert (Nkind_In (Context, N_Entry_Call_Alternative,
7631 N_Triggering_Alternative));
7633 if Is_Non_Empty_List (Statements (Context)) then
7634 Insert_List_Before_And_Analyze
7635 (First (Statements (Context)), Post_Call);
7636 else
7637 Set_Statements (Context, Post_Call);
7638 end if;
7639 end if;
7641 -- A procedure call is always part of a declarative or statement list,
7642 -- however a function call may appear nested within a construct. Most
7643 -- cases of function call nesting are handled in the special case above.
7644 -- The only exception is when the function call acts as an actual in a
7645 -- procedure call. In this case the function call is in a list, but the
7646 -- post-call actions must be inserted after the procedure call.
7648 elsif Nkind (Context) = N_Procedure_Call_Statement then
7649 Insert_Actions_After (Context, Post_Call);
7651 -- Otherwise, normal case where N is in a statement sequence, just put
7652 -- the post-call stuff after the call statement.
7654 else
7655 Insert_Actions_After (N, Post_Call);
7656 end if;
7657 end Insert_Post_Call_Actions;
7659 -----------------------------------
7660 -- Is_Build_In_Place_Result_Type --
7661 -----------------------------------
7663 function Is_Build_In_Place_Result_Type (Typ : Entity_Id) return Boolean is
7664 begin
7665 if not Expander_Active then
7666 return False;
7667 end if;
7669 -- In Ada 2005 all functions with an inherently limited return type
7670 -- must be handled using a build-in-place profile, including the case
7671 -- of a function with a limited interface result, where the function
7672 -- may return objects of nonlimited descendants.
7674 if Is_Limited_View (Typ) then
7675 return Ada_Version >= Ada_2005 and then not Debug_Flag_Dot_L;
7677 else
7678 if Debug_Flag_Dot_9 then
7679 return False;
7680 end if;
7682 if Has_Interfaces (Typ) then
7683 return False;
7684 end if;
7686 declare
7687 T : Entity_Id := Typ;
7688 begin
7689 -- For T'Class, return True if it's True for T. This is necessary
7690 -- because a class-wide function might say "return F (...)", where
7691 -- F returns the corresponding specific type. We need a loop in
7692 -- case T is a subtype of a class-wide type.
7694 while Is_Class_Wide_Type (T) loop
7695 T := Etype (T);
7696 end loop;
7698 -- If this is a generic formal type in an instance, return True if
7699 -- it's True for the generic actual type.
7701 if Nkind (Parent (T)) = N_Subtype_Declaration
7702 and then Present (Generic_Parent_Type (Parent (T)))
7703 then
7704 T := Entity (Subtype_Indication (Parent (T)));
7706 if Present (Full_View (T)) then
7707 T := Full_View (T);
7708 end if;
7709 end if;
7711 if Present (Underlying_Type (T)) then
7712 T := Underlying_Type (T);
7713 end if;
7715 declare
7716 Result : Boolean;
7717 -- So we can stop here in the debugger
7718 begin
7719 -- ???For now, enable build-in-place for a very narrow set of
7720 -- controlled types. Change "if True" to "if False" to
7721 -- experiment with more controlled types. Eventually, we might
7722 -- like to enable build-in-place for all tagged types, all
7723 -- types that need finalization, and all caller-unknown-size
7724 -- types.
7726 if True then
7727 Result := Is_Controlled (T)
7728 and then Present (Enclosing_Subprogram (T))
7729 and then not Is_Compilation_Unit (Enclosing_Subprogram (T))
7730 and then Ekind (Enclosing_Subprogram (T)) = E_Procedure;
7731 else
7732 Result := Is_Controlled (T);
7733 end if;
7735 return Result;
7736 end;
7737 end;
7738 end if;
7739 end Is_Build_In_Place_Result_Type;
7741 --------------------------------
7742 -- Is_Build_In_Place_Function --
7743 --------------------------------
7745 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
7746 begin
7747 -- This function is called from Expand_Subtype_From_Expr during
7748 -- semantic analysis, even when expansion is off. In those cases
7749 -- the build_in_place expansion will not take place.
7751 if not Expander_Active then
7752 return False;
7753 end if;
7755 -- For now we test whether E denotes a function or access-to-function
7756 -- type whose result subtype is inherently limited. Later this test
7757 -- may be revised to allow composite nonlimited types. Functions with
7758 -- a foreign convention or whose result type has a foreign convention
7759 -- never qualify.
7761 if Ekind_In (E, E_Function, E_Generic_Function)
7762 or else (Ekind (E) = E_Subprogram_Type
7763 and then Etype (E) /= Standard_Void_Type)
7764 then
7765 -- Note: If the function has a foreign convention, it cannot build
7766 -- its result in place, so you're on your own. On the other hand,
7767 -- if only the return type has a foreign convention, its layout is
7768 -- intended to be compatible with the other language, but the build-
7769 -- in place machinery can ensure that the object is not copied.
7771 return Is_Build_In_Place_Result_Type (Etype (E))
7772 and then not Has_Foreign_Convention (E)
7773 and then not Debug_Flag_Dot_L;
7774 else
7775 return False;
7776 end if;
7777 end Is_Build_In_Place_Function;
7779 -------------------------------------
7780 -- Is_Build_In_Place_Function_Call --
7781 -------------------------------------
7783 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
7784 Exp_Node : constant Node_Id := Unqual_Conv (N);
7785 Function_Id : Entity_Id;
7787 begin
7788 -- Return False if the expander is currently inactive, since awareness
7789 -- of build-in-place treatment is only relevant during expansion. Note
7790 -- that Is_Build_In_Place_Function, which is called as part of this
7791 -- function, is also conditioned this way, but we need to check here as
7792 -- well to avoid blowing up on processing protected calls when expansion
7793 -- is disabled (such as with -gnatc) since those would trip over the
7794 -- raise of Program_Error below.
7796 -- In SPARK mode, build-in-place calls are not expanded, so that we
7797 -- may end up with a call that is neither resolved to an entity, nor
7798 -- an indirect call.
7800 if not Expander_Active or else Nkind (Exp_Node) /= N_Function_Call then
7801 return False;
7802 end if;
7804 if Is_Entity_Name (Name (Exp_Node)) then
7805 Function_Id := Entity (Name (Exp_Node));
7807 -- In the case of an explicitly dereferenced call, use the subprogram
7808 -- type generated for the dereference.
7810 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
7811 Function_Id := Etype (Name (Exp_Node));
7813 -- This may be a call to a protected function.
7815 elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
7816 Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
7818 else
7819 raise Program_Error;
7820 end if;
7822 declare
7823 Result : constant Boolean := Is_Build_In_Place_Function (Function_Id);
7824 -- So we can stop here in the debugger
7825 begin
7826 return Result;
7827 end;
7828 end Is_Build_In_Place_Function_Call;
7830 -----------------------
7831 -- Is_Null_Procedure --
7832 -----------------------
7834 function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
7835 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
7837 begin
7838 if Ekind (Subp) /= E_Procedure then
7839 return False;
7841 -- Check if this is a declared null procedure
7843 elsif Nkind (Decl) = N_Subprogram_Declaration then
7844 if not Null_Present (Specification (Decl)) then
7845 return False;
7847 elsif No (Body_To_Inline (Decl)) then
7848 return False;
7850 -- Check if the body contains only a null statement, followed by
7851 -- the return statement added during expansion.
7853 else
7854 declare
7855 Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
7857 Stat : Node_Id;
7858 Stat2 : Node_Id;
7860 begin
7861 if Nkind (Orig_Bod) /= N_Subprogram_Body then
7862 return False;
7863 else
7864 -- We must skip SCIL nodes because they are currently
7865 -- implemented as special N_Null_Statement nodes.
7867 Stat :=
7868 First_Non_SCIL_Node
7869 (Statements (Handled_Statement_Sequence (Orig_Bod)));
7870 Stat2 := Next_Non_SCIL_Node (Stat);
7872 return
7873 Is_Empty_List (Declarations (Orig_Bod))
7874 and then Nkind (Stat) = N_Null_Statement
7875 and then
7876 (No (Stat2)
7877 or else
7878 (Nkind (Stat2) = N_Simple_Return_Statement
7879 and then No (Next (Stat2))));
7880 end if;
7881 end;
7882 end if;
7884 else
7885 return False;
7886 end if;
7887 end Is_Null_Procedure;
7889 -------------------------------------------
7890 -- Make_Build_In_Place_Call_In_Allocator --
7891 -------------------------------------------
7893 procedure Make_Build_In_Place_Call_In_Allocator
7894 (Allocator : Node_Id;
7895 Function_Call : Node_Id)
7897 Acc_Type : constant Entity_Id := Etype (Allocator);
7898 Loc : constant Source_Ptr := Sloc (Function_Call);
7899 Func_Call : Node_Id := Function_Call;
7900 Ref_Func_Call : Node_Id;
7901 Function_Id : Entity_Id;
7902 Result_Subt : Entity_Id;
7903 New_Allocator : Node_Id;
7904 Return_Obj_Access : Entity_Id; -- temp for function result
7905 Temp_Init : Node_Id; -- initial value of Return_Obj_Access
7906 Alloc_Form : BIP_Allocation_Form;
7907 Pool : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
7908 Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
7909 Chain : Entity_Id; -- activation chain, in case of tasks
7911 begin
7912 -- Step past qualification or unchecked conversion (the latter can occur
7913 -- in cases of calls to 'Input).
7915 if Nkind_In (Func_Call, N_Qualified_Expression,
7916 N_Type_Conversion,
7917 N_Unchecked_Type_Conversion)
7918 then
7919 Func_Call := Expression (Func_Call);
7920 end if;
7922 -- Mark the call as processed as a build-in-place call
7924 pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
7925 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7927 if Is_Entity_Name (Name (Func_Call)) then
7928 Function_Id := Entity (Name (Func_Call));
7930 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7931 Function_Id := Etype (Name (Func_Call));
7933 else
7934 raise Program_Error;
7935 end if;
7937 Result_Subt := Available_View (Etype (Function_Id));
7939 -- Create a temp for the function result. In the caller-allocates case,
7940 -- this will be initialized to the result of a new uninitialized
7941 -- allocator. Note: we do not use Allocator as the Related_Node of
7942 -- Return_Obj_Access in call to Make_Temporary below as this would
7943 -- create a sort of infinite "recursion".
7945 Return_Obj_Access := Make_Temporary (Loc, 'R');
7946 Set_Etype (Return_Obj_Access, Acc_Type);
7947 Set_Can_Never_Be_Null (Acc_Type, False);
7948 -- It gets initialized to null, so we can't have that
7950 -- When the result subtype is constrained, the return object is created
7951 -- on the caller side, and access to it is passed to the function. This
7952 -- optimization is disabled when the result subtype needs finalization
7953 -- actions because the caller side allocation may result in undesirable
7954 -- finalization. Consider the following example:
7956 -- function Make_Lim_Ctrl return Lim_Ctrl is
7957 -- begin
7958 -- return Result : Lim_Ctrl := raise Program_Error do
7959 -- null;
7960 -- end return;
7961 -- end Make_Lim_Ctrl;
7963 -- Obj : Lim_Ctrl_Ptr := new Lim_Ctrl'(Make_Lim_Ctrl);
7965 -- Even though the size of limited controlled type Lim_Ctrl is known,
7966 -- allocating Obj at the caller side will chain Obj on Lim_Ctrl_Ptr's
7967 -- finalization master. The subsequent call to Make_Lim_Ctrl will fail
7968 -- during the initialization actions for Result, which implies that
7969 -- Result (and Obj by extension) should not be finalized. However Obj
7970 -- will be finalized when access type Lim_Ctrl_Ptr goes out of scope
7971 -- since it is already attached on the related finalization master.
7973 -- Here and in related routines, we must examine the full view of the
7974 -- type, because the view at the point of call may differ from that
7975 -- that in the function body, and the expansion mechanism depends on
7976 -- the characteristics of the full view.
7978 if Is_Constrained (Underlying_Type (Result_Subt))
7979 and then not Needs_Finalization (Underlying_Type (Result_Subt))
7980 then
7981 -- Replace the initialized allocator of form "new T'(Func (...))"
7982 -- with an uninitialized allocator of form "new T", where T is the
7983 -- result subtype of the called function. The call to the function
7984 -- is handled separately further below.
7986 New_Allocator :=
7987 Make_Allocator (Loc,
7988 Expression => New_Occurrence_Of (Result_Subt, Loc));
7989 Set_No_Initialization (New_Allocator);
7991 -- Copy attributes to new allocator. Note that the new allocator
7992 -- logically comes from source if the original one did, so copy the
7993 -- relevant flag. This ensures proper treatment of the restriction
7994 -- No_Implicit_Heap_Allocations in this case.
7996 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
7997 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
7998 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
8000 Rewrite (Allocator, New_Allocator);
8002 -- Initial value of the temp is the result of the uninitialized
8003 -- allocator. Unchecked_Convert is needed for T'Input where T is
8004 -- derived from a controlled type.
8006 Temp_Init := Relocate_Node (Allocator);
8008 if Nkind_In (Function_Call, N_Type_Conversion,
8009 N_Unchecked_Type_Conversion)
8010 then
8011 Temp_Init := Unchecked_Convert_To (Acc_Type, Temp_Init);
8012 end if;
8014 -- Indicate that caller allocates, and pass in the return object
8016 Alloc_Form := Caller_Allocation;
8017 Pool := Make_Null (No_Location);
8018 Return_Obj_Actual :=
8019 Make_Unchecked_Type_Conversion (Loc,
8020 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8021 Expression =>
8022 Make_Explicit_Dereference (Loc,
8023 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
8025 -- When the result subtype is unconstrained, the function itself must
8026 -- perform the allocation of the return object, so we pass parameters
8027 -- indicating that.
8029 else
8030 Temp_Init := Empty;
8032 -- Case of a user-defined storage pool. Pass an allocation parameter
8033 -- indicating that the function should allocate its result in the
8034 -- pool, and pass the pool. Use 'Unrestricted_Access because the
8035 -- pool may not be aliased.
8037 if Present (Associated_Storage_Pool (Acc_Type)) then
8038 Alloc_Form := User_Storage_Pool;
8039 Pool :=
8040 Make_Attribute_Reference (Loc,
8041 Prefix =>
8042 New_Occurrence_Of
8043 (Associated_Storage_Pool (Acc_Type), Loc),
8044 Attribute_Name => Name_Unrestricted_Access);
8046 -- No user-defined pool; pass an allocation parameter indicating that
8047 -- the function should allocate its result on the heap.
8049 else
8050 Alloc_Form := Global_Heap;
8051 Pool := Make_Null (No_Location);
8052 end if;
8054 -- The caller does not provide the return object in this case, so we
8055 -- have to pass null for the object access actual.
8057 Return_Obj_Actual := Empty;
8058 end if;
8060 -- Declare the temp object
8062 Insert_Action (Allocator,
8063 Make_Object_Declaration (Loc,
8064 Defining_Identifier => Return_Obj_Access,
8065 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
8066 Expression => Temp_Init));
8068 Ref_Func_Call := Make_Reference (Loc, Func_Call);
8070 -- Ada 2005 (AI-251): If the type of the allocator is an interface
8071 -- then generate an implicit conversion to force displacement of the
8072 -- "this" pointer.
8074 if Is_Interface (Designated_Type (Acc_Type)) then
8075 Rewrite
8076 (Ref_Func_Call,
8077 OK_Convert_To (Acc_Type, Ref_Func_Call));
8079 -- If the types are incompatible, we need an unchecked conversion. Note
8080 -- that the full types will be compatible, but the types not visibly
8081 -- compatible.
8083 elsif Nkind_In (Function_Call, N_Type_Conversion,
8084 N_Unchecked_Type_Conversion)
8085 then
8086 Ref_Func_Call := Unchecked_Convert_To (Acc_Type, Ref_Func_Call);
8087 end if;
8089 declare
8090 Assign : constant Node_Id :=
8091 Make_Assignment_Statement (Loc,
8092 Name => New_Occurrence_Of (Return_Obj_Access, Loc),
8093 Expression => Ref_Func_Call);
8094 -- Assign the result of the function call into the temp. In the
8095 -- caller-allocates case, this is overwriting the temp with its
8096 -- initial value, which has no effect. In the callee-allocates case,
8097 -- this is setting the temp to point to the object allocated by the
8098 -- callee. Unchecked_Convert is needed for T'Input where T is derived
8099 -- from a controlled type.
8101 Actions : List_Id;
8102 -- Actions to be inserted. If there are no tasks, this is just the
8103 -- assignment statement. If the allocated object has tasks, we need
8104 -- to wrap the assignment in a block that activates them. The
8105 -- activation chain of that block must be passed to the function,
8106 -- rather than some outer chain.
8108 begin
8109 if Has_Task (Result_Subt) then
8110 Actions := New_List;
8111 Build_Task_Allocate_Block_With_Init_Stmts
8112 (Actions, Allocator, Init_Stmts => New_List (Assign));
8113 Chain := Activation_Chain_Entity (Last (Actions));
8114 else
8115 Actions := New_List (Assign);
8116 Chain := Empty;
8117 end if;
8119 Insert_Actions (Allocator, Actions);
8120 end;
8122 -- When the function has a controlling result, an allocation-form
8123 -- parameter must be passed indicating that the caller is allocating
8124 -- the result object. This is needed because such a function can be
8125 -- called as a dispatching operation and must be treated similarly
8126 -- to functions with unconstrained result subtypes.
8128 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8129 (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
8131 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8132 (Func_Call, Function_Id, Acc_Type);
8134 Add_Task_Actuals_To_Build_In_Place_Call
8135 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
8136 Chain => Chain);
8138 -- Add an implicit actual to the function call that provides access
8139 -- to the allocated object. An unchecked conversion to the (specific)
8140 -- result subtype of the function is inserted to handle cases where
8141 -- the access type of the allocator has a class-wide designated type.
8143 Add_Access_Actual_To_Build_In_Place_Call
8144 (Func_Call, Function_Id, Return_Obj_Actual);
8146 -- Finally, replace the allocator node with a reference to the temp
8148 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8150 Analyze_And_Resolve (Allocator, Acc_Type);
8151 end Make_Build_In_Place_Call_In_Allocator;
8153 ---------------------------------------------------
8154 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8155 ---------------------------------------------------
8157 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8158 (Function_Call : Node_Id)
8160 Loc : constant Source_Ptr := Sloc (Function_Call);
8161 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8162 Function_Id : Entity_Id;
8163 Result_Subt : Entity_Id;
8164 Return_Obj_Id : Entity_Id;
8165 Return_Obj_Decl : Entity_Id;
8167 begin
8168 -- If the call has already been processed to add build-in-place actuals
8169 -- then return. One place this can occur is for calls to build-in-place
8170 -- functions that occur within a call to a protected operation, where
8171 -- due to rewriting and expansion of the protected call there can be
8172 -- more than one call to Expand_Actuals for the same set of actuals.
8174 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8175 return;
8176 end if;
8178 -- Mark the call as processed as a build-in-place call
8180 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8182 if Is_Entity_Name (Name (Func_Call)) then
8183 Function_Id := Entity (Name (Func_Call));
8185 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8186 Function_Id := Etype (Name (Func_Call));
8188 else
8189 raise Program_Error;
8190 end if;
8192 Result_Subt := Etype (Function_Id);
8194 -- If the build-in-place function returns a controlled object, then the
8195 -- object needs to be finalized immediately after the context. Since
8196 -- this case produces a transient scope, the servicing finalizer needs
8197 -- to name the returned object. Create a temporary which is initialized
8198 -- with the function call:
8200 -- Temp_Id : Func_Type := BIP_Func_Call;
8202 -- The initialization expression of the temporary will be rewritten by
8203 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8204 -- Call_In_Object_Declaration.
8206 if Needs_Finalization (Result_Subt) then
8207 declare
8208 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
8209 Temp_Decl : Node_Id;
8211 begin
8212 -- Reset the guard on the function call since the following does
8213 -- not perform actual call expansion.
8215 Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
8217 Temp_Decl :=
8218 Make_Object_Declaration (Loc,
8219 Defining_Identifier => Temp_Id,
8220 Object_Definition =>
8221 New_Occurrence_Of (Result_Subt, Loc),
8222 Expression =>
8223 New_Copy_Tree (Function_Call));
8225 Insert_Action (Function_Call, Temp_Decl);
8227 Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
8228 Analyze (Function_Call);
8229 end;
8231 -- When the result subtype is definite, an object of the subtype is
8232 -- declared and an access value designating it is passed as an actual.
8234 elsif Caller_Known_Size (Func_Call, Result_Subt) then
8236 -- Create a temporary object to hold the function result
8238 Return_Obj_Id := Make_Temporary (Loc, 'R');
8239 Set_Etype (Return_Obj_Id, Result_Subt);
8241 Return_Obj_Decl :=
8242 Make_Object_Declaration (Loc,
8243 Defining_Identifier => Return_Obj_Id,
8244 Aliased_Present => True,
8245 Object_Definition => New_Occurrence_Of (Result_Subt, Loc));
8247 Set_No_Initialization (Return_Obj_Decl);
8249 Insert_Action (Func_Call, Return_Obj_Decl);
8251 -- When the function has a controlling result, an allocation-form
8252 -- parameter must be passed indicating that the caller is allocating
8253 -- the result object. This is needed because such a function can be
8254 -- called as a dispatching operation and must be treated similarly
8255 -- to functions with unconstrained result subtypes.
8257 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8258 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8260 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8261 (Func_Call, Function_Id);
8263 Add_Task_Actuals_To_Build_In_Place_Call
8264 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8266 -- Add an implicit actual to the function call that provides access
8267 -- to the caller's return object.
8269 Add_Access_Actual_To_Build_In_Place_Call
8270 (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
8272 -- When the result subtype is unconstrained, the function must allocate
8273 -- the return object in the secondary stack, so appropriate implicit
8274 -- parameters are added to the call to indicate that. A transient
8275 -- scope is established to ensure eventual cleanup of the result.
8277 else
8278 -- Pass an allocation parameter indicating that the function should
8279 -- allocate its result on the secondary stack.
8281 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8282 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8284 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8285 (Func_Call, Function_Id);
8287 Add_Task_Actuals_To_Build_In_Place_Call
8288 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8290 -- Pass a null value to the function since no return object is
8291 -- available on the caller side.
8293 Add_Access_Actual_To_Build_In_Place_Call
8294 (Func_Call, Function_Id, Empty);
8295 end if;
8296 end Make_Build_In_Place_Call_In_Anonymous_Context;
8298 --------------------------------------------
8299 -- Make_Build_In_Place_Call_In_Assignment --
8300 --------------------------------------------
8302 procedure Make_Build_In_Place_Call_In_Assignment
8303 (Assign : Node_Id;
8304 Function_Call : Node_Id)
8306 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8307 Lhs : constant Node_Id := Name (Assign);
8308 Loc : constant Source_Ptr := Sloc (Function_Call);
8309 Func_Id : Entity_Id;
8310 Obj_Decl : Node_Id;
8311 Obj_Id : Entity_Id;
8312 Ptr_Typ : Entity_Id;
8313 Ptr_Typ_Decl : Node_Id;
8314 New_Expr : Node_Id;
8315 Result_Subt : Entity_Id;
8317 begin
8318 -- Mark the call as processed as a build-in-place call
8320 pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
8321 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8323 if Is_Entity_Name (Name (Func_Call)) then
8324 Func_Id := Entity (Name (Func_Call));
8326 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8327 Func_Id := Etype (Name (Func_Call));
8329 else
8330 raise Program_Error;
8331 end if;
8333 Result_Subt := Etype (Func_Id);
8335 -- When the result subtype is unconstrained, an additional actual must
8336 -- be passed to indicate that the caller is providing the return object.
8337 -- This parameter must also be passed when the called function has a
8338 -- controlling result, because dispatching calls to the function needs
8339 -- to be treated effectively the same as calls to class-wide functions.
8341 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8342 (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
8344 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8345 (Func_Call, Func_Id);
8347 Add_Task_Actuals_To_Build_In_Place_Call
8348 (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
8350 -- Add an implicit actual to the function call that provides access to
8351 -- the caller's return object.
8353 Add_Access_Actual_To_Build_In_Place_Call
8354 (Func_Call,
8355 Func_Id,
8356 Make_Unchecked_Type_Conversion (Loc,
8357 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8358 Expression => Relocate_Node (Lhs)));
8360 -- Create an access type designating the function's result subtype
8362 Ptr_Typ := Make_Temporary (Loc, 'A');
8364 Ptr_Typ_Decl :=
8365 Make_Full_Type_Declaration (Loc,
8366 Defining_Identifier => Ptr_Typ,
8367 Type_Definition =>
8368 Make_Access_To_Object_Definition (Loc,
8369 All_Present => True,
8370 Subtype_Indication =>
8371 New_Occurrence_Of (Result_Subt, Loc)));
8372 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
8374 -- Finally, create an access object initialized to a reference to the
8375 -- function call. We know this access value is non-null, so mark the
8376 -- entity accordingly to suppress junk access checks.
8378 New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
8380 -- Add a conversion if it's the wrong type
8382 if Etype (New_Expr) /= Ptr_Typ then
8383 New_Expr :=
8384 Make_Unchecked_Type_Conversion (Loc,
8385 New_Occurrence_Of (Ptr_Typ, Loc), New_Expr);
8386 end if;
8388 Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
8389 Set_Etype (Obj_Id, Ptr_Typ);
8390 Set_Is_Known_Non_Null (Obj_Id);
8392 Obj_Decl :=
8393 Make_Object_Declaration (Loc,
8394 Defining_Identifier => Obj_Id,
8395 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8396 Expression => New_Expr);
8397 Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
8399 Rewrite (Assign, Make_Null_Statement (Loc));
8400 end Make_Build_In_Place_Call_In_Assignment;
8402 ----------------------------------------------------
8403 -- Make_Build_In_Place_Call_In_Object_Declaration --
8404 ----------------------------------------------------
8406 procedure Make_Build_In_Place_Call_In_Object_Declaration
8407 (Obj_Decl : Node_Id;
8408 Function_Call : Node_Id)
8410 function Get_Function_Id (Func_Call : Node_Id) return Entity_Id;
8411 -- Get the value of Function_Id, below
8413 ---------------------
8414 -- Get_Function_Id --
8415 ---------------------
8417 function Get_Function_Id (Func_Call : Node_Id) return Entity_Id is
8418 begin
8419 if Is_Entity_Name (Name (Func_Call)) then
8420 return Entity (Name (Func_Call));
8422 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8423 return Etype (Name (Func_Call));
8425 else
8426 raise Program_Error;
8427 end if;
8428 end Get_Function_Id;
8430 -- Local variables
8432 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8433 Function_Id : constant Entity_Id := Get_Function_Id (Func_Call);
8434 Loc : constant Source_Ptr := Sloc (Function_Call);
8435 Obj_Loc : constant Source_Ptr := Sloc (Obj_Decl);
8436 Obj_Def_Id : constant Entity_Id := Defining_Identifier (Obj_Decl);
8437 Obj_Typ : constant Entity_Id := Etype (Obj_Def_Id);
8438 Encl_Func : constant Entity_Id := Enclosing_Subprogram (Obj_Def_Id);
8439 Result_Subt : constant Entity_Id := Etype (Function_Id);
8441 Call_Deref : Node_Id;
8442 Caller_Object : Node_Id;
8443 Def_Id : Entity_Id;
8444 Designated_Type : Entity_Id;
8445 Fmaster_Actual : Node_Id := Empty;
8446 Pool_Actual : Node_Id;
8447 Ptr_Typ : Entity_Id;
8448 Ptr_Typ_Decl : Node_Id;
8449 Pass_Caller_Acc : Boolean := False;
8450 Res_Decl : Node_Id;
8452 Definite : constant Boolean :=
8453 Caller_Known_Size (Func_Call, Result_Subt)
8454 and then not Is_Class_Wide_Type (Obj_Typ);
8455 -- In the case of "X : T'Class := F(...);", where F returns a
8456 -- Caller_Known_Size (specific) tagged type, we treat it as
8457 -- indefinite, because the code for the Definite case below sets the
8458 -- initialization expression of the object to Empty, which would be
8459 -- illegal Ada, and would cause gigi to misallocate X.
8461 -- Start of processing for Make_Build_In_Place_Call_In_Object_Declaration
8463 begin
8464 -- If the call has already been processed to add build-in-place actuals
8465 -- then return.
8467 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8468 return;
8469 end if;
8471 -- Mark the call as processed as a build-in-place call
8473 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8475 -- Create an access type designating the function's result subtype.
8476 -- We use the type of the original call because it may be a call to an
8477 -- inherited operation, which the expansion has replaced with the parent
8478 -- operation that yields the parent type. Note that this access type
8479 -- must be declared before we establish a transient scope, so that it
8480 -- receives the proper accessibility level.
8482 if Is_Class_Wide_Type (Obj_Typ)
8483 and then not Is_Interface (Obj_Typ)
8484 and then not Is_Class_Wide_Type (Etype (Function_Call))
8485 then
8486 Designated_Type := Obj_Typ;
8487 else
8488 Designated_Type := Etype (Function_Call);
8489 end if;
8491 Ptr_Typ := Make_Temporary (Loc, 'A');
8492 Ptr_Typ_Decl :=
8493 Make_Full_Type_Declaration (Loc,
8494 Defining_Identifier => Ptr_Typ,
8495 Type_Definition =>
8496 Make_Access_To_Object_Definition (Loc,
8497 All_Present => True,
8498 Subtype_Indication =>
8499 New_Occurrence_Of (Designated_Type, Loc)));
8501 -- The access type and its accompanying object must be inserted after
8502 -- the object declaration in the constrained case, so that the function
8503 -- call can be passed access to the object. In the indefinite case, or
8504 -- if the object declaration is for a return object, the access type and
8505 -- object must be inserted before the object, since the object
8506 -- declaration is rewritten to be a renaming of a dereference of the
8507 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8508 -- the result object is in a different (transient) scope, so won't cause
8509 -- freezing.
8511 if Definite and then not Is_Return_Object (Obj_Def_Id) then
8513 -- The presence of an address clause complicates the build-in-place
8514 -- expansion because the indicated address must be processed before
8515 -- the indirect call is generated (including the definition of a
8516 -- local pointer to the object). The address clause may come from
8517 -- an aspect specification or from an explicit attribute
8518 -- specification appearing after the object declaration. These two
8519 -- cases require different processing.
8521 if Has_Aspect (Obj_Def_Id, Aspect_Address) then
8523 -- Skip non-delayed pragmas that correspond to other aspects, if
8524 -- any, to find proper insertion point for freeze node of object.
8526 declare
8527 D : Node_Id := Obj_Decl;
8528 N : Node_Id := Next (D);
8530 begin
8531 while Present (N)
8532 and then Nkind_In (N, N_Attribute_Reference, N_Pragma)
8533 loop
8534 Analyze (N);
8535 D := N;
8536 Next (N);
8537 end loop;
8539 Insert_After (D, Ptr_Typ_Decl);
8541 -- Freeze object before pointer declaration, to ensure that
8542 -- generated attribute for address is inserted at the proper
8543 -- place.
8545 Freeze_Before (Ptr_Typ_Decl, Obj_Def_Id);
8546 end;
8548 Analyze (Ptr_Typ_Decl);
8550 elsif Present (Following_Address_Clause (Obj_Decl)) then
8552 -- Locate explicit address clause, which may also follow pragmas
8553 -- generated by other aspect specifications.
8555 declare
8556 Addr : constant Node_Id := Following_Address_Clause (Obj_Decl);
8557 D : Node_Id := Next (Obj_Decl);
8559 begin
8560 while Present (D) loop
8561 Analyze (D);
8562 exit when D = Addr;
8563 Next (D);
8564 end loop;
8566 Insert_After_And_Analyze (Addr, Ptr_Typ_Decl);
8567 end;
8569 else
8570 Insert_After_And_Analyze (Obj_Decl, Ptr_Typ_Decl);
8571 end if;
8572 else
8573 Insert_Action (Obj_Decl, Ptr_Typ_Decl);
8574 end if;
8576 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8577 -- elaborated in an inner (transient) scope and thus won't cause
8578 -- freezing by itself. It's not an itype, but it needs to be frozen
8579 -- inside the current subprogram (see Freeze_Outside in freeze.adb).
8581 Freeze_Itype (Ptr_Typ, Ptr_Typ_Decl);
8583 -- If the object is a return object of an enclosing build-in-place
8584 -- function, then the implicit build-in-place parameters of the
8585 -- enclosing function are simply passed along to the called function.
8586 -- (Unfortunately, this won't cover the case of extension aggregates
8587 -- where the ancestor part is a build-in-place indefinite function
8588 -- call that should be passed along the caller's parameters.
8589 -- Currently those get mishandled by reassigning the result of the
8590 -- call to the aggregate return object, when the call result should
8591 -- really be directly built in place in the aggregate and not in a
8592 -- temporary. ???)
8594 if Is_Return_Object (Obj_Def_Id) then
8595 Pass_Caller_Acc := True;
8597 -- When the enclosing function has a BIP_Alloc_Form formal then we
8598 -- pass it along to the callee (such as when the enclosing function
8599 -- has an unconstrained or tagged result type).
8601 if Needs_BIP_Alloc_Form (Encl_Func) then
8602 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8603 Pool_Actual :=
8604 New_Occurrence_Of
8605 (Build_In_Place_Formal
8606 (Encl_Func, BIP_Storage_Pool), Loc);
8608 -- The build-in-place pool formal is not built on e.g. ZFP
8610 else
8611 Pool_Actual := Empty;
8612 end if;
8614 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8615 (Function_Call => Func_Call,
8616 Function_Id => Function_Id,
8617 Alloc_Form_Exp =>
8618 New_Occurrence_Of
8619 (Build_In_Place_Formal (Encl_Func, BIP_Alloc_Form), Loc),
8620 Pool_Actual => Pool_Actual);
8622 -- Otherwise, if enclosing function has a definite result subtype,
8623 -- then caller allocation will be used.
8625 else
8626 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8627 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8628 end if;
8630 if Needs_BIP_Finalization_Master (Encl_Func) then
8631 Fmaster_Actual :=
8632 New_Occurrence_Of
8633 (Build_In_Place_Formal
8634 (Encl_Func, BIP_Finalization_Master), Loc);
8635 end if;
8637 -- Retrieve the BIPacc formal from the enclosing function and convert
8638 -- it to the access type of the callee's BIP_Object_Access formal.
8640 Caller_Object :=
8641 Make_Unchecked_Type_Conversion (Loc,
8642 Subtype_Mark =>
8643 New_Occurrence_Of
8644 (Etype (Build_In_Place_Formal
8645 (Function_Id, BIP_Object_Access)),
8646 Loc),
8647 Expression =>
8648 New_Occurrence_Of
8649 (Build_In_Place_Formal (Encl_Func, BIP_Object_Access),
8650 Loc));
8652 -- In the definite case, add an implicit actual to the function call
8653 -- that provides access to the declared object. An unchecked conversion
8654 -- to the (specific) result type of the function is inserted to handle
8655 -- the case where the object is declared with a class-wide type.
8657 elsif Definite then
8658 Caller_Object :=
8659 Make_Unchecked_Type_Conversion (Loc,
8660 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8661 Expression => New_Occurrence_Of (Obj_Def_Id, Loc));
8663 -- When the function has a controlling result, an allocation-form
8664 -- parameter must be passed indicating that the caller is allocating
8665 -- the result object. This is needed because such a function can be
8666 -- called as a dispatching operation and must be treated similarly to
8667 -- functions with indefinite result subtypes.
8669 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8670 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8672 -- The allocation for indefinite library-level objects occurs on the
8673 -- heap as opposed to the secondary stack. This accommodates DLLs where
8674 -- the secondary stack is destroyed after each library unload. This is a
8675 -- hybrid mechanism where a stack-allocated object lives on the heap.
8677 elsif Is_Library_Level_Entity (Obj_Def_Id)
8678 and then not Restriction_Active (No_Implicit_Heap_Allocations)
8679 then
8680 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8681 (Func_Call, Function_Id, Alloc_Form => Global_Heap);
8682 Caller_Object := Empty;
8684 -- Create a finalization master for the access result type to ensure
8685 -- that the heap allocation can properly chain the object and later
8686 -- finalize it when the library unit goes out of scope.
8688 if Needs_Finalization (Etype (Func_Call)) then
8689 Build_Finalization_Master
8690 (Typ => Ptr_Typ,
8691 For_Lib_Level => True,
8692 Insertion_Node => Ptr_Typ_Decl);
8694 Fmaster_Actual :=
8695 Make_Attribute_Reference (Loc,
8696 Prefix =>
8697 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
8698 Attribute_Name => Name_Unrestricted_Access);
8699 end if;
8701 -- In other indefinite cases, pass an indication to do the allocation
8702 -- on the secondary stack and set Caller_Object to Empty so that a null
8703 -- value will be passed for the caller's object address. A transient
8704 -- scope is established to ensure eventual cleanup of the result.
8706 else
8707 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8708 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8709 Caller_Object := Empty;
8711 Establish_Transient_Scope (Obj_Decl, Manage_Sec_Stack => True);
8712 end if;
8714 -- Pass along any finalization master actual, which is needed in the
8715 -- case where the called function initializes a return object of an
8716 -- enclosing build-in-place function.
8718 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8719 (Func_Call => Func_Call,
8720 Func_Id => Function_Id,
8721 Master_Exp => Fmaster_Actual);
8723 if Nkind (Parent (Obj_Decl)) = N_Extended_Return_Statement
8724 and then Has_Task (Result_Subt)
8725 then
8726 -- Here we're passing along the master that was passed in to this
8727 -- function.
8729 Add_Task_Actuals_To_Build_In_Place_Call
8730 (Func_Call, Function_Id,
8731 Master_Actual =>
8732 New_Occurrence_Of
8733 (Build_In_Place_Formal (Encl_Func, BIP_Task_Master), Loc));
8735 else
8736 Add_Task_Actuals_To_Build_In_Place_Call
8737 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8738 end if;
8740 Add_Access_Actual_To_Build_In_Place_Call
8741 (Func_Call,
8742 Function_Id,
8743 Caller_Object,
8744 Is_Access => Pass_Caller_Acc);
8746 -- Finally, create an access object initialized to a reference to the
8747 -- function call. We know this access value cannot be null, so mark the
8748 -- entity accordingly to suppress the access check.
8750 Def_Id := Make_Temporary (Loc, 'R', Func_Call);
8751 Set_Etype (Def_Id, Ptr_Typ);
8752 Set_Is_Known_Non_Null (Def_Id);
8754 if Nkind_In (Function_Call, N_Type_Conversion,
8755 N_Unchecked_Type_Conversion)
8756 then
8757 Res_Decl :=
8758 Make_Object_Declaration (Loc,
8759 Defining_Identifier => Def_Id,
8760 Constant_Present => True,
8761 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8762 Expression =>
8763 Make_Unchecked_Type_Conversion (Loc,
8764 New_Occurrence_Of (Ptr_Typ, Loc),
8765 Make_Reference (Loc, Relocate_Node (Func_Call))));
8766 else
8767 Res_Decl :=
8768 Make_Object_Declaration (Loc,
8769 Defining_Identifier => Def_Id,
8770 Constant_Present => True,
8771 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8772 Expression =>
8773 Make_Reference (Loc, Relocate_Node (Func_Call)));
8774 end if;
8776 Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
8778 -- If the result subtype of the called function is definite and is not
8779 -- itself the return expression of an enclosing BIP function, then mark
8780 -- the object as having no initialization.
8782 if Definite and then not Is_Return_Object (Obj_Def_Id) then
8784 -- The related object declaration is encased in a transient block
8785 -- because the build-in-place function call contains at least one
8786 -- nested function call that produces a controlled transient
8787 -- temporary:
8789 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
8791 -- Since the build-in-place expansion decouples the call from the
8792 -- object declaration, the finalization machinery lacks the context
8793 -- which prompted the generation of the transient block. To resolve
8794 -- this scenario, store the build-in-place call.
8796 if Scope_Is_Transient and then Node_To_Be_Wrapped = Obj_Decl then
8797 Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
8798 end if;
8800 Set_Expression (Obj_Decl, Empty);
8801 Set_No_Initialization (Obj_Decl);
8803 -- In case of an indefinite result subtype, or if the call is the
8804 -- return expression of an enclosing BIP function, rewrite the object
8805 -- declaration as an object renaming where the renamed object is a
8806 -- dereference of <function_Call>'reference:
8808 -- Obj : Subt renames <function_call>'Ref.all;
8810 else
8811 Call_Deref :=
8812 Make_Explicit_Dereference (Obj_Loc,
8813 Prefix => New_Occurrence_Of (Def_Id, Obj_Loc));
8815 Rewrite (Obj_Decl,
8816 Make_Object_Renaming_Declaration (Obj_Loc,
8817 Defining_Identifier => Make_Temporary (Obj_Loc, 'D'),
8818 Subtype_Mark =>
8819 New_Occurrence_Of (Designated_Type, Obj_Loc),
8820 Name => Call_Deref));
8822 -- At this point, Defining_Identifier (Obj_Decl) is no longer equal
8823 -- to Obj_Def_Id.
8825 Set_Renamed_Object (Defining_Identifier (Obj_Decl), Call_Deref);
8827 -- If the original entity comes from source, then mark the new
8828 -- entity as needing debug information, even though it's defined
8829 -- by a generated renaming that does not come from source, so that
8830 -- the Materialize_Entity flag will be set on the entity when
8831 -- Debug_Renaming_Declaration is called during analysis.
8833 if Comes_From_Source (Obj_Def_Id) then
8834 Set_Debug_Info_Needed (Defining_Identifier (Obj_Decl));
8835 end if;
8837 Analyze (Obj_Decl);
8838 Replace_Renaming_Declaration_Id
8839 (Obj_Decl, Original_Node (Obj_Decl));
8840 end if;
8841 end Make_Build_In_Place_Call_In_Object_Declaration;
8843 -------------------------------------------------
8844 -- Make_Build_In_Place_Iface_Call_In_Allocator --
8845 -------------------------------------------------
8847 procedure Make_Build_In_Place_Iface_Call_In_Allocator
8848 (Allocator : Node_Id;
8849 Function_Call : Node_Id)
8851 BIP_Func_Call : constant Node_Id :=
8852 Unqual_BIP_Iface_Function_Call (Function_Call);
8853 Loc : constant Source_Ptr := Sloc (Function_Call);
8855 Anon_Type : Entity_Id;
8856 Tmp_Decl : Node_Id;
8857 Tmp_Id : Entity_Id;
8859 begin
8860 -- No action of the call has already been processed
8862 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8863 return;
8864 end if;
8866 Tmp_Id := Make_Temporary (Loc, 'D');
8868 -- Insert a temporary before N initialized with the BIP function call
8869 -- without its enclosing type conversions and analyze it without its
8870 -- expansion. This temporary facilitates us reusing the BIP machinery,
8871 -- which takes care of adding the extra build-in-place actuals and
8872 -- transforms this object declaration into an object renaming
8873 -- declaration.
8875 Anon_Type := Create_Itype (E_Anonymous_Access_Type, Function_Call);
8876 Set_Directly_Designated_Type (Anon_Type, Etype (BIP_Func_Call));
8877 Set_Etype (Anon_Type, Anon_Type);
8879 Tmp_Decl :=
8880 Make_Object_Declaration (Loc,
8881 Defining_Identifier => Tmp_Id,
8882 Object_Definition => New_Occurrence_Of (Anon_Type, Loc),
8883 Expression =>
8884 Make_Allocator (Loc,
8885 Expression =>
8886 Make_Qualified_Expression (Loc,
8887 Subtype_Mark =>
8888 New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
8889 Expression => New_Copy_Tree (BIP_Func_Call))));
8891 Expander_Mode_Save_And_Set (False);
8892 Insert_Action (Allocator, Tmp_Decl);
8893 Expander_Mode_Restore;
8895 Make_Build_In_Place_Call_In_Allocator
8896 (Allocator => Expression (Tmp_Decl),
8897 Function_Call => Expression (Expression (Tmp_Decl)));
8899 Rewrite (Allocator, New_Occurrence_Of (Tmp_Id, Loc));
8900 end Make_Build_In_Place_Iface_Call_In_Allocator;
8902 ---------------------------------------------------------
8903 -- Make_Build_In_Place_Iface_Call_In_Anonymous_Context --
8904 ---------------------------------------------------------
8906 procedure Make_Build_In_Place_Iface_Call_In_Anonymous_Context
8907 (Function_Call : Node_Id)
8909 BIP_Func_Call : constant Node_Id :=
8910 Unqual_BIP_Iface_Function_Call (Function_Call);
8911 Loc : constant Source_Ptr := Sloc (Function_Call);
8913 Tmp_Decl : Node_Id;
8914 Tmp_Id : Entity_Id;
8916 begin
8917 -- No action of the call has already been processed
8919 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8920 return;
8921 end if;
8923 pragma Assert (Needs_Finalization (Etype (BIP_Func_Call)));
8925 -- Insert a temporary before the call initialized with function call to
8926 -- reuse the BIP machinery which takes care of adding the extra build-in
8927 -- place actuals and transforms this object declaration into an object
8928 -- renaming declaration.
8930 Tmp_Id := Make_Temporary (Loc, 'D');
8932 Tmp_Decl :=
8933 Make_Object_Declaration (Loc,
8934 Defining_Identifier => Tmp_Id,
8935 Object_Definition =>
8936 New_Occurrence_Of (Etype (Function_Call), Loc),
8937 Expression => Relocate_Node (Function_Call));
8939 Expander_Mode_Save_And_Set (False);
8940 Insert_Action (Function_Call, Tmp_Decl);
8941 Expander_Mode_Restore;
8943 Make_Build_In_Place_Iface_Call_In_Object_Declaration
8944 (Obj_Decl => Tmp_Decl,
8945 Function_Call => Expression (Tmp_Decl));
8946 end Make_Build_In_Place_Iface_Call_In_Anonymous_Context;
8948 ----------------------------------------------------------
8949 -- Make_Build_In_Place_Iface_Call_In_Object_Declaration --
8950 ----------------------------------------------------------
8952 procedure Make_Build_In_Place_Iface_Call_In_Object_Declaration
8953 (Obj_Decl : Node_Id;
8954 Function_Call : Node_Id)
8956 BIP_Func_Call : constant Node_Id :=
8957 Unqual_BIP_Iface_Function_Call (Function_Call);
8958 Loc : constant Source_Ptr := Sloc (Function_Call);
8959 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
8961 Tmp_Decl : Node_Id;
8962 Tmp_Id : Entity_Id;
8964 begin
8965 -- No action of the call has already been processed
8967 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8968 return;
8969 end if;
8971 Tmp_Id := Make_Temporary (Loc, 'D');
8973 -- Insert a temporary before N initialized with the BIP function call
8974 -- without its enclosing type conversions and analyze it without its
8975 -- expansion. This temporary facilitates us reusing the BIP machinery,
8976 -- which takes care of adding the extra build-in-place actuals and
8977 -- transforms this object declaration into an object renaming
8978 -- declaration.
8980 Tmp_Decl :=
8981 Make_Object_Declaration (Loc,
8982 Defining_Identifier => Tmp_Id,
8983 Object_Definition =>
8984 New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
8985 Expression => New_Copy_Tree (BIP_Func_Call));
8987 Expander_Mode_Save_And_Set (False);
8988 Insert_Action (Obj_Decl, Tmp_Decl);
8989 Expander_Mode_Restore;
8991 Make_Build_In_Place_Call_In_Object_Declaration
8992 (Obj_Decl => Tmp_Decl,
8993 Function_Call => Expression (Tmp_Decl));
8995 pragma Assert (Nkind (Tmp_Decl) = N_Object_Renaming_Declaration);
8997 -- Replace the original build-in-place function call by a reference to
8998 -- the resulting temporary object renaming declaration. In this way,
8999 -- all the interface conversions performed in the original Function_Call
9000 -- on the build-in-place object are preserved.
9002 Rewrite (BIP_Func_Call, New_Occurrence_Of (Tmp_Id, Loc));
9004 -- Replace the original object declaration by an internal object
9005 -- renaming declaration. This leaves the generated code more clean (the
9006 -- build-in-place function call in an object renaming declaration and
9007 -- displacements of the pointer to the build-in-place object in another
9008 -- renaming declaration) and allows us to invoke the routine that takes
9009 -- care of replacing the identifier of the renaming declaration (routine
9010 -- originally developed for the regular build-in-place management).
9012 Rewrite (Obj_Decl,
9013 Make_Object_Renaming_Declaration (Loc,
9014 Defining_Identifier => Make_Temporary (Loc, 'D'),
9015 Subtype_Mark => New_Occurrence_Of (Etype (Obj_Id), Loc),
9016 Name => Function_Call));
9017 Analyze (Obj_Decl);
9019 Replace_Renaming_Declaration_Id (Obj_Decl, Original_Node (Obj_Decl));
9020 end Make_Build_In_Place_Iface_Call_In_Object_Declaration;
9022 --------------------------------------------
9023 -- Make_CPP_Constructor_Call_In_Allocator --
9024 --------------------------------------------
9026 procedure Make_CPP_Constructor_Call_In_Allocator
9027 (Allocator : Node_Id;
9028 Function_Call : Node_Id)
9030 Loc : constant Source_Ptr := Sloc (Function_Call);
9031 Acc_Type : constant Entity_Id := Etype (Allocator);
9032 Function_Id : constant Entity_Id := Entity (Name (Function_Call));
9033 Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
9035 New_Allocator : Node_Id;
9036 Return_Obj_Access : Entity_Id;
9037 Tmp_Obj : Node_Id;
9039 begin
9040 pragma Assert (Nkind (Allocator) = N_Allocator
9041 and then Nkind (Function_Call) = N_Function_Call);
9042 pragma Assert (Convention (Function_Id) = Convention_CPP
9043 and then Is_Constructor (Function_Id));
9044 pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
9046 -- Replace the initialized allocator of form "new T'(Func (...))" with
9047 -- an uninitialized allocator of form "new T", where T is the result
9048 -- subtype of the called function. The call to the function is handled
9049 -- separately further below.
9051 New_Allocator :=
9052 Make_Allocator (Loc,
9053 Expression => New_Occurrence_Of (Result_Subt, Loc));
9054 Set_No_Initialization (New_Allocator);
9056 -- Copy attributes to new allocator. Note that the new allocator
9057 -- logically comes from source if the original one did, so copy the
9058 -- relevant flag. This ensures proper treatment of the restriction
9059 -- No_Implicit_Heap_Allocations in this case.
9061 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
9062 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
9063 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
9065 Rewrite (Allocator, New_Allocator);
9067 -- Create a new access object and initialize it to the result of the
9068 -- new uninitialized allocator. Note: we do not use Allocator as the
9069 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
9070 -- as this would create a sort of infinite "recursion".
9072 Return_Obj_Access := Make_Temporary (Loc, 'R');
9073 Set_Etype (Return_Obj_Access, Acc_Type);
9075 -- Generate:
9076 -- Rnnn : constant ptr_T := new (T);
9077 -- Init (Rnn.all,...);
9079 Tmp_Obj :=
9080 Make_Object_Declaration (Loc,
9081 Defining_Identifier => Return_Obj_Access,
9082 Constant_Present => True,
9083 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
9084 Expression => Relocate_Node (Allocator));
9085 Insert_Action (Allocator, Tmp_Obj);
9087 Insert_List_After_And_Analyze (Tmp_Obj,
9088 Build_Initialization_Call (Loc,
9089 Id_Ref =>
9090 Make_Explicit_Dereference (Loc,
9091 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
9092 Typ => Etype (Function_Id),
9093 Constructor_Ref => Function_Call));
9095 -- Finally, replace the allocator node with a reference to the result of
9096 -- the function call itself (which will effectively be an access to the
9097 -- object created by the allocator).
9099 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
9101 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
9102 -- generate an implicit conversion to force displacement of the "this"
9103 -- pointer.
9105 if Is_Interface (Designated_Type (Acc_Type)) then
9106 Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
9107 end if;
9109 Analyze_And_Resolve (Allocator, Acc_Type);
9110 end Make_CPP_Constructor_Call_In_Allocator;
9112 -----------------------------------
9113 -- Needs_BIP_Finalization_Master --
9114 -----------------------------------
9116 function Needs_BIP_Finalization_Master
9117 (Func_Id : Entity_Id) return Boolean
9119 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9120 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9121 begin
9122 -- A formal giving the finalization master is needed for build-in-place
9123 -- functions whose result type needs finalization or is a tagged type.
9124 -- Tagged primitive build-in-place functions need such a formal because
9125 -- they can be called by a dispatching call, and extensions may require
9126 -- finalization even if the root type doesn't. This means they're also
9127 -- needed for tagged nonprimitive build-in-place functions with tagged
9128 -- results, since such functions can be called via access-to-function
9129 -- types, and those can be used to call primitives, so masters have to
9130 -- be passed to all such build-in-place functions, primitive or not.
9132 return
9133 not Restriction_Active (No_Finalization)
9134 and then (Needs_Finalization (Func_Typ)
9135 or else Is_Tagged_Type (Func_Typ));
9136 end Needs_BIP_Finalization_Master;
9138 --------------------------
9139 -- Needs_BIP_Alloc_Form --
9140 --------------------------
9142 function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
9143 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9144 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9146 begin
9147 -- A build-in-place function needs to know which allocation form to
9148 -- use when:
9150 -- 1) The result subtype is unconstrained. In this case, depending on
9151 -- the context of the call, the object may need to be created in the
9152 -- secondary stack, the heap, or a user-defined storage pool.
9154 -- 2) The result subtype is tagged. In this case the function call may
9155 -- dispatch on result and thus needs to be treated in the same way as
9156 -- calls to functions with class-wide results, because a callee that
9157 -- can be dispatched to may have any of various result subtypes, so
9158 -- if any of the possible callees would require an allocation form to
9159 -- be passed then they all do.
9161 -- 3) The result subtype needs finalization actions. In this case, based
9162 -- on the context of the call, the object may need to be created at
9163 -- the caller site, in the heap, or in a user-defined storage pool.
9165 return
9166 not Is_Constrained (Func_Typ)
9167 or else Is_Tagged_Type (Func_Typ)
9168 or else Needs_Finalization (Func_Typ);
9169 end Needs_BIP_Alloc_Form;
9171 --------------------------------------
9172 -- Needs_Result_Accessibility_Level --
9173 --------------------------------------
9175 function Needs_Result_Accessibility_Level
9176 (Func_Id : Entity_Id) return Boolean
9178 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9180 function Has_Unconstrained_Access_Discriminant_Component
9181 (Comp_Typ : Entity_Id) return Boolean;
9182 -- Returns True if any component of the type has an unconstrained access
9183 -- discriminant.
9185 -----------------------------------------------------
9186 -- Has_Unconstrained_Access_Discriminant_Component --
9187 -----------------------------------------------------
9189 function Has_Unconstrained_Access_Discriminant_Component
9190 (Comp_Typ : Entity_Id) return Boolean
9192 begin
9193 if not Is_Limited_Type (Comp_Typ) then
9194 return False;
9196 -- Only limited types can have access discriminants with
9197 -- defaults.
9199 elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
9200 return True;
9202 elsif Is_Array_Type (Comp_Typ) then
9203 return Has_Unconstrained_Access_Discriminant_Component
9204 (Underlying_Type (Component_Type (Comp_Typ)));
9206 elsif Is_Record_Type (Comp_Typ) then
9207 declare
9208 Comp : Entity_Id;
9210 begin
9211 Comp := First_Component (Comp_Typ);
9212 while Present (Comp) loop
9213 if Has_Unconstrained_Access_Discriminant_Component
9214 (Underlying_Type (Etype (Comp)))
9215 then
9216 return True;
9217 end if;
9219 Next_Component (Comp);
9220 end loop;
9221 end;
9222 end if;
9224 return False;
9225 end Has_Unconstrained_Access_Discriminant_Component;
9227 Feature_Disabled : constant Boolean := True;
9228 -- Temporary
9230 -- Start of processing for Needs_Result_Accessibility_Level
9232 begin
9233 -- False if completion unavailable (how does this happen???)
9235 if not Present (Func_Typ) then
9236 return False;
9238 elsif Feature_Disabled then
9239 return False;
9241 -- False if not a function, also handle enum-lit renames case
9243 elsif Func_Typ = Standard_Void_Type
9244 or else Is_Scalar_Type (Func_Typ)
9245 then
9246 return False;
9248 -- Handle a corner case, a cross-dialect subp renaming. For example,
9249 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9250 -- an Ada 2005 (or earlier) unit references predefined run-time units.
9252 elsif Present (Alias (Func_Id)) then
9254 -- Unimplemented: a cross-dialect subp renaming which does not set
9255 -- the Alias attribute (e.g., a rename of a dereference of an access
9256 -- to subprogram value). ???
9258 return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
9260 -- Remaining cases require Ada 2012 mode
9262 elsif Ada_Version < Ada_2012 then
9263 return False;
9265 elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
9266 or else Is_Tagged_Type (Func_Typ)
9267 then
9268 -- In the case of, say, a null tagged record result type, the need
9269 -- for this extra parameter might not be obvious. This function
9270 -- returns True for all tagged types for compatibility reasons.
9271 -- A function with, say, a tagged null controlling result type might
9272 -- be overridden by a primitive of an extension having an access
9273 -- discriminant and the overrider and overridden must have compatible
9274 -- calling conventions (including implicitly declared parameters).
9275 -- Similarly, values of one access-to-subprogram type might designate
9276 -- both a primitive subprogram of a given type and a function
9277 -- which is, for example, not a primitive subprogram of any type.
9278 -- Again, this requires calling convention compatibility.
9279 -- It might be possible to solve these issues by introducing
9280 -- wrappers, but that is not the approach that was chosen.
9282 return True;
9284 elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
9285 return True;
9287 elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
9288 return True;
9290 -- False for all other cases
9292 else
9293 return False;
9294 end if;
9295 end Needs_Result_Accessibility_Level;
9297 -------------------------------------
9298 -- Replace_Renaming_Declaration_Id --
9299 -------------------------------------
9301 procedure Replace_Renaming_Declaration_Id
9302 (New_Decl : Node_Id;
9303 Orig_Decl : Node_Id)
9305 New_Id : constant Entity_Id := Defining_Entity (New_Decl);
9306 Orig_Id : constant Entity_Id := Defining_Entity (Orig_Decl);
9308 begin
9309 Set_Chars (New_Id, Chars (Orig_Id));
9311 -- Swap next entity links in preparation for exchanging entities
9313 declare
9314 Next_Id : constant Entity_Id := Next_Entity (New_Id);
9315 begin
9316 Link_Entities (New_Id, Next_Entity (Orig_Id));
9317 Link_Entities (Orig_Id, Next_Id);
9318 end;
9320 Set_Homonym (New_Id, Homonym (Orig_Id));
9321 Exchange_Entities (New_Id, Orig_Id);
9323 -- Preserve source indication of original declaration, so that xref
9324 -- information is properly generated for the right entity.
9326 Preserve_Comes_From_Source (New_Decl, Orig_Decl);
9327 Preserve_Comes_From_Source (Orig_Id, Orig_Decl);
9329 Set_Comes_From_Source (New_Id, False);
9330 end Replace_Renaming_Declaration_Id;
9332 ---------------------------------
9333 -- Rewrite_Function_Call_For_C --
9334 ---------------------------------
9336 procedure Rewrite_Function_Call_For_C (N : Node_Id) is
9337 Orig_Func : constant Entity_Id := Entity (Name (N));
9338 Func_Id : constant Entity_Id := Ultimate_Alias (Orig_Func);
9339 Par : constant Node_Id := Parent (N);
9340 Proc_Id : constant Entity_Id := Corresponding_Procedure (Func_Id);
9341 Loc : constant Source_Ptr := Sloc (Par);
9342 Actuals : List_Id;
9343 Last_Actual : Node_Id;
9344 Last_Formal : Entity_Id;
9346 -- Start of processing for Rewrite_Function_Call_For_C
9348 begin
9349 -- The actuals may be given by named associations, so the added actual
9350 -- that is the target of the return value of the call must be a named
9351 -- association as well, so we retrieve the name of the generated
9352 -- out_formal.
9354 Last_Formal := First_Formal (Proc_Id);
9355 while Present (Next_Formal (Last_Formal)) loop
9356 Last_Formal := Next_Formal (Last_Formal);
9357 end loop;
9359 Actuals := Parameter_Associations (N);
9361 -- The original function may lack parameters
9363 if No (Actuals) then
9364 Actuals := New_List;
9365 end if;
9367 -- If the function call is the expression of an assignment statement,
9368 -- transform the assignment into a procedure call. Generate:
9370 -- LHS := Func_Call (...);
9372 -- Proc_Call (..., LHS);
9374 -- If function is inherited, a conversion may be necessary.
9376 if Nkind (Par) = N_Assignment_Statement then
9377 Last_Actual := Name (Par);
9379 if not Comes_From_Source (Orig_Func)
9380 and then Etype (Orig_Func) /= Etype (Func_Id)
9381 then
9382 Last_Actual :=
9383 Make_Type_Conversion (Loc,
9384 New_Occurrence_Of (Etype (Func_Id), Loc),
9385 Last_Actual);
9386 end if;
9388 Append_To (Actuals,
9389 Make_Parameter_Association (Loc,
9390 Selector_Name =>
9391 Make_Identifier (Loc, Chars (Last_Formal)),
9392 Explicit_Actual_Parameter => Last_Actual));
9394 Rewrite (Par,
9395 Make_Procedure_Call_Statement (Loc,
9396 Name => New_Occurrence_Of (Proc_Id, Loc),
9397 Parameter_Associations => Actuals));
9398 Analyze (Par);
9400 -- Otherwise the context is an expression. Generate a temporary and a
9401 -- procedure call to obtain the function result. Generate:
9403 -- ... Func_Call (...) ...
9405 -- Temp : ...;
9406 -- Proc_Call (..., Temp);
9407 -- ... Temp ...
9409 else
9410 declare
9411 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
9412 Call : Node_Id;
9413 Decl : Node_Id;
9415 begin
9416 -- Generate:
9417 -- Temp : ...;
9419 Decl :=
9420 Make_Object_Declaration (Loc,
9421 Defining_Identifier => Temp_Id,
9422 Object_Definition =>
9423 New_Occurrence_Of (Etype (Func_Id), Loc));
9425 -- Generate:
9426 -- Proc_Call (..., Temp);
9428 Append_To (Actuals,
9429 Make_Parameter_Association (Loc,
9430 Selector_Name =>
9431 Make_Identifier (Loc, Chars (Last_Formal)),
9432 Explicit_Actual_Parameter =>
9433 New_Occurrence_Of (Temp_Id, Loc)));
9435 Call :=
9436 Make_Procedure_Call_Statement (Loc,
9437 Name => New_Occurrence_Of (Proc_Id, Loc),
9438 Parameter_Associations => Actuals);
9440 Insert_Actions (Par, New_List (Decl, Call));
9441 Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
9442 end;
9443 end if;
9444 end Rewrite_Function_Call_For_C;
9446 ------------------------------------
9447 -- Set_Enclosing_Sec_Stack_Return --
9448 ------------------------------------
9450 procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id) is
9451 P : Node_Id := N;
9453 begin
9454 -- Due to a possible mix of internally generated blocks, source blocks
9455 -- and loops, the scope stack may not be contiguous as all labels are
9456 -- inserted at the top level within the related function. Instead,
9457 -- perform a parent-based traversal and mark all appropriate constructs.
9459 while Present (P) loop
9461 -- Mark the label of a source or internally generated block or
9462 -- loop.
9464 if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
9465 Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
9467 -- Mark the enclosing function
9469 elsif Nkind (P) = N_Subprogram_Body then
9470 if Present (Corresponding_Spec (P)) then
9471 Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
9472 else
9473 Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
9474 end if;
9476 -- Do not go beyond the enclosing function
9478 exit;
9479 end if;
9481 P := Parent (P);
9482 end loop;
9483 end Set_Enclosing_Sec_Stack_Return;
9485 ------------------------------------
9486 -- Unqual_BIP_Iface_Function_Call --
9487 ------------------------------------
9489 function Unqual_BIP_Iface_Function_Call (Expr : Node_Id) return Node_Id is
9490 Has_Pointer_Displacement : Boolean := False;
9491 On_Object_Declaration : Boolean := False;
9492 -- Remember if processing the renaming expressions on recursion we have
9493 -- traversed an object declaration, since we can traverse many object
9494 -- declaration renamings but just one regular object declaration.
9496 function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id;
9497 -- Search for a build-in-place function call skipping any qualification
9498 -- including qualified expressions, type conversions, references, calls
9499 -- to displace the pointer to the object, and renamings. Return Empty if
9500 -- no build-in-place function call is found.
9502 ------------------------------
9503 -- Unqual_BIP_Function_Call --
9504 ------------------------------
9506 function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id is
9507 begin
9508 -- Recurse to handle case of multiple levels of qualification and/or
9509 -- conversion.
9511 if Nkind_In (Expr, N_Qualified_Expression,
9512 N_Type_Conversion,
9513 N_Unchecked_Type_Conversion)
9514 then
9515 return Unqual_BIP_Function_Call (Expression (Expr));
9517 -- Recurse to handle case of multiple levels of references and
9518 -- explicit dereferences.
9520 elsif Nkind_In (Expr, N_Attribute_Reference,
9521 N_Explicit_Dereference,
9522 N_Reference)
9523 then
9524 return Unqual_BIP_Function_Call (Prefix (Expr));
9526 -- Recurse on object renamings
9528 elsif Nkind (Expr) = N_Identifier
9529 and then Present (Entity (Expr))
9530 and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
9531 and then Nkind (Parent (Entity (Expr))) =
9532 N_Object_Renaming_Declaration
9533 and then Present (Renamed_Object (Entity (Expr)))
9534 then
9535 return Unqual_BIP_Function_Call (Renamed_Object (Entity (Expr)));
9537 -- Recurse on the initializing expression of the first reference of
9538 -- an object declaration.
9540 elsif not On_Object_Declaration
9541 and then Nkind (Expr) = N_Identifier
9542 and then Present (Entity (Expr))
9543 and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
9544 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
9545 and then Present (Expression (Parent (Entity (Expr))))
9546 then
9547 On_Object_Declaration := True;
9548 return
9549 Unqual_BIP_Function_Call (Expression (Parent (Entity (Expr))));
9551 -- Recurse to handle calls to displace the pointer to the object to
9552 -- reference a secondary dispatch table.
9554 elsif Nkind (Expr) = N_Function_Call
9555 and then Nkind (Name (Expr)) in N_Has_Entity
9556 and then Present (Entity (Name (Expr)))
9557 and then RTU_Loaded (Ada_Tags)
9558 and then RTE_Available (RE_Displace)
9559 and then Is_RTE (Entity (Name (Expr)), RE_Displace)
9560 then
9561 Has_Pointer_Displacement := True;
9562 return
9563 Unqual_BIP_Function_Call (First (Parameter_Associations (Expr)));
9565 -- Normal case: check if the inner expression is a BIP function call
9566 -- and the pointer to the object is displaced.
9568 elsif Has_Pointer_Displacement
9569 and then Is_Build_In_Place_Function_Call (Expr)
9570 then
9571 return Expr;
9573 else
9574 return Empty;
9575 end if;
9576 end Unqual_BIP_Function_Call;
9578 -- Start of processing for Unqual_BIP_Iface_Function_Call
9580 begin
9581 if Nkind (Expr) = N_Identifier and then No (Entity (Expr)) then
9583 -- Can happen for X'Elab_Spec in the binder-generated file
9585 return Empty;
9586 end if;
9588 return Unqual_BIP_Function_Call (Expr);
9589 end Unqual_BIP_Iface_Function_Call;
9591 end Exp_Ch6;