1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Casing
; use Casing
;
29 with Checks
; use Checks
;
30 with Debug
; use Debug
;
31 with Einfo
; use Einfo
;
32 with Elists
; use Elists
;
33 with Errout
; use Errout
;
34 with Exp_Aggr
; use Exp_Aggr
;
35 with Exp_Ch6
; use Exp_Ch6
;
36 with Exp_Ch7
; use Exp_Ch7
;
37 with Exp_Ch11
; use Exp_Ch11
;
38 with Ghost
; use Ghost
;
39 with Inline
; use Inline
;
40 with Itypes
; use Itypes
;
42 with Nlists
; use Nlists
;
43 with Nmake
; use Nmake
;
45 with Restrict
; use Restrict
;
46 with Rident
; use Rident
;
48 with Sem_Aux
; use Sem_Aux
;
49 with Sem_Ch3
; use Sem_Ch3
;
50 with Sem_Ch6
; use Sem_Ch6
;
51 with Sem_Ch8
; use Sem_Ch8
;
52 with Sem_Ch12
; use Sem_Ch12
;
53 with Sem_Ch13
; use Sem_Ch13
;
54 with Sem_Disp
; use Sem_Disp
;
55 with Sem_Elab
; use Sem_Elab
;
56 with Sem_Eval
; use Sem_Eval
;
57 with Sem_Res
; use Sem_Res
;
58 with Sem_Type
; use Sem_Type
;
59 with Sem_Util
; use Sem_Util
;
60 with Snames
; use Snames
;
61 with Stand
; use Stand
;
62 with Stringt
; use Stringt
;
63 with Targparm
; use Targparm
;
64 with Tbuild
; use Tbuild
;
65 with Ttypes
; use Ttypes
;
66 with Urealp
; use Urealp
;
67 with Validsw
; use Validsw
;
70 package body Exp_Util
is
72 ---------------------------------------------------------
73 -- Handling of inherited class-wide pre/postconditions --
74 ---------------------------------------------------------
76 -- Following AI12-0113, the expression for a class-wide condition is
77 -- transformed for a subprogram that inherits it, by replacing calls
78 -- to primitive operations of the original controlling type into the
79 -- corresponding overriding operations of the derived type. The following
80 -- hash table manages this mapping, and is expanded on demand whenever
81 -- such inherited expression needs to be constructed.
83 -- The mapping is also used to check whether an inherited operation has
84 -- a condition that depends on overridden operations. For such an
85 -- operation we must create a wrapper that is then treated as a normal
86 -- overriding. In SPARK mode such operations are illegal.
88 -- For a given root type there may be several type extensions with their
89 -- own overriding operations, so at various times a given operation of
90 -- the root will be mapped into different overridings. The root type is
91 -- also mapped into the current type extension to indicate that its
92 -- operations are mapped into the overriding operations of that current
95 -- The contents of the map are as follows:
99 -- Discriminant (Entity_Id) Discriminant (Entity_Id)
100 -- Discriminant (Entity_Id) Non-discriminant name (Entity_Id)
101 -- Discriminant (Entity_Id) Expression (Node_Id)
102 -- Primitive subprogram (Entity_Id) Primitive subprogram (Entity_Id)
103 -- Type (Entity_Id) Type (Entity_Id)
105 Type_Map_Size
: constant := 511;
107 subtype Type_Map_Header
is Integer range 0 .. Type_Map_Size
- 1;
108 function Type_Map_Hash
(Id
: Entity_Id
) return Type_Map_Header
;
110 package Type_Map
is new GNAT
.HTable
.Simple_HTable
111 (Header_Num
=> Type_Map_Header
,
113 Element
=> Node_Or_Entity_Id
,
115 Hash
=> Type_Map_Hash
,
118 -----------------------
119 -- Local Subprograms --
120 -----------------------
122 function Build_Task_Array_Image
126 Dyn
: Boolean := False) return Node_Id
;
127 -- Build function to generate the image string for a task that is an array
128 -- component, concatenating the images of each index. To avoid storage
129 -- leaks, the string is built with successive slice assignments. The flag
130 -- Dyn indicates whether this is called for the initialization procedure of
131 -- an array of tasks, or for the name of a dynamically created task that is
132 -- assigned to an indexed component.
134 function Build_Task_Image_Function
138 Res
: Entity_Id
) return Node_Id
;
139 -- Common processing for Task_Array_Image and Task_Record_Image. Build
140 -- function body that computes image.
142 procedure Build_Task_Image_Prefix
151 -- Common processing for Task_Array_Image and Task_Record_Image. Create
152 -- local variables and assign prefix of name to result string.
154 function Build_Task_Record_Image
157 Dyn
: Boolean := False) return Node_Id
;
158 -- Build function to generate the image string for a task that is a record
159 -- component. Concatenate name of variable with that of selector. The flag
160 -- Dyn indicates whether this is called for the initialization procedure of
161 -- record with task components, or for a dynamically created task that is
162 -- assigned to a selected component.
164 procedure Evaluate_Slice_Bounds
(Slice
: Node_Id
);
165 -- Force evaluation of bounds of a slice, which may be given by a range
166 -- or by a subtype indication with or without a constraint.
168 function Make_CW_Equivalent_Type
170 E
: Node_Id
) return Entity_Id
;
171 -- T is a class-wide type entity, E is the initial expression node that
172 -- constrains T in case such as: " X: T := E" or "new T'(E)". This function
173 -- returns the entity of the Equivalent type and inserts on the fly the
174 -- necessary declaration such as:
176 -- type anon is record
177 -- _parent : Root_Type (T); constrained with E discriminants (if any)
178 -- Extension : String (1 .. expr to match size of E);
181 -- This record is compatible with any object of the class of T thanks to
182 -- the first field and has the same size as E thanks to the second.
184 function Make_Literal_Range
186 Literal_Typ
: Entity_Id
) return Node_Id
;
187 -- Produce a Range node whose bounds are:
188 -- Low_Bound (Literal_Type) ..
189 -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
190 -- this is used for expanding declarations like X : String := "sdfgdfg";
192 -- If the index type of the target array is not integer, we generate:
193 -- Low_Bound (Literal_Type) ..
195 -- (Literal_Type'Pos (Low_Bound (Literal_Type))
196 -- + (Length (Literal_Typ) -1))
198 function Make_Non_Empty_Check
200 N
: Node_Id
) return Node_Id
;
201 -- Produce a boolean expression checking that the unidimensional array
202 -- node N is not empty.
204 function New_Class_Wide_Subtype
206 N
: Node_Id
) return Entity_Id
;
207 -- Create an implicit subtype of CW_Typ attached to node N
209 function Requires_Cleanup_Actions
212 Nested_Constructs
: Boolean) return Boolean;
213 -- Given a list L, determine whether it contains one of the following:
215 -- 1) controlled objects
216 -- 2) library-level tagged types
218 -- Lib_Level is True when the list comes from a construct at the library
219 -- level, and False otherwise. Nested_Constructs is True when any nested
220 -- packages declared in L must be processed, and False otherwise.
222 -------------------------------------
223 -- Activate_Atomic_Synchronization --
224 -------------------------------------
226 procedure Activate_Atomic_Synchronization
(N
: Node_Id
) is
230 case Nkind
(Parent
(N
)) is
232 -- Check for cases of appearing in the prefix of a construct where we
233 -- don't need atomic synchronization for this kind of usage.
236 -- Nothing to do if we are the prefix of an attribute, since we
237 -- do not want an atomic sync operation for things like 'Size.
239 N_Attribute_Reference
241 -- The N_Reference node is like an attribute
245 -- Nothing to do for a reference to a component (or components)
246 -- of a composite object. Only reads and updates of the object
247 -- as a whole require atomic synchronization (RM C.6 (15)).
249 | N_Indexed_Component
250 | N_Selected_Component
253 -- For all the above cases, nothing to do if we are the prefix
255 if Prefix
(Parent
(N
)) = N
then
263 -- Nothing to do for the identifier in an object renaming declaration,
264 -- the renaming itself does not need atomic synchronization.
266 if Nkind
(Parent
(N
)) = N_Object_Renaming_Declaration
then
270 -- Go ahead and set the flag
272 Set_Atomic_Sync_Required
(N
);
274 -- Generate info message if requested
276 if Warn_On_Atomic_Synchronization
then
282 | N_Selected_Component
284 Msg_Node
:= Selector_Name
(N
);
286 when N_Explicit_Dereference
287 | N_Indexed_Component
292 pragma Assert
(False);
296 if Present
(Msg_Node
) then
298 ("info: atomic synchronization set for &?N?", Msg_Node
);
301 ("info: atomic synchronization set?N?", N
);
304 end Activate_Atomic_Synchronization
;
306 ----------------------
307 -- Adjust_Condition --
308 ----------------------
310 procedure Adjust_Condition
(N
: Node_Id
) is
317 Loc
: constant Source_Ptr
:= Sloc
(N
);
318 T
: constant Entity_Id
:= Etype
(N
);
322 -- Defend against a call where the argument has no type, or has a
323 -- type that is not Boolean. This can occur because of prior errors.
325 if No
(T
) or else not Is_Boolean_Type
(T
) then
329 -- Apply validity checking if needed
331 if Validity_Checks_On
and Validity_Check_Tests
then
335 -- Immediate return if standard boolean, the most common case,
336 -- where nothing needs to be done.
338 if Base_Type
(T
) = Standard_Boolean
then
342 -- Case of zero/non-zero semantics or non-standard enumeration
343 -- representation. In each case, we rewrite the node as:
345 -- ityp!(N) /= False'Enum_Rep
347 -- where ityp is an integer type with large enough size to hold any
350 if Nonzero_Is_True
(T
) or else Has_Non_Standard_Rep
(T
) then
351 if Esize
(T
) <= Esize
(Standard_Integer
) then
352 Ti
:= Standard_Integer
;
354 Ti
:= Standard_Long_Long_Integer
;
359 Left_Opnd
=> Unchecked_Convert_To
(Ti
, N
),
361 Make_Attribute_Reference
(Loc
,
362 Attribute_Name
=> Name_Enum_Rep
,
364 New_Occurrence_Of
(First_Literal
(T
), Loc
))));
365 Analyze_And_Resolve
(N
, Standard_Boolean
);
368 Rewrite
(N
, Convert_To
(Standard_Boolean
, N
));
369 Analyze_And_Resolve
(N
, Standard_Boolean
);
372 end Adjust_Condition
;
374 ------------------------
375 -- Adjust_Result_Type --
376 ------------------------
378 procedure Adjust_Result_Type
(N
: Node_Id
; T
: Entity_Id
) is
380 -- Ignore call if current type is not Standard.Boolean
382 if Etype
(N
) /= Standard_Boolean
then
386 -- If result is already of correct type, nothing to do. Note that
387 -- this will get the most common case where everything has a type
388 -- of Standard.Boolean.
390 if Base_Type
(T
) = Standard_Boolean
then
395 KP
: constant Node_Kind
:= Nkind
(Parent
(N
));
398 -- If result is to be used as a Condition in the syntax, no need
399 -- to convert it back, since if it was changed to Standard.Boolean
400 -- using Adjust_Condition, that is just fine for this usage.
402 if KP
in N_Raise_xxx_Error
or else KP
in N_Has_Condition
then
405 -- If result is an operand of another logical operation, no need
406 -- to reset its type, since Standard.Boolean is just fine, and
407 -- such operations always do Adjust_Condition on their operands.
409 elsif KP
in N_Op_Boolean
410 or else KP
in N_Short_Circuit
411 or else KP
= N_Op_Not
415 -- Otherwise we perform a conversion from the current type, which
416 -- must be Standard.Boolean, to the desired type. Use the base
417 -- type to prevent spurious constraint checks that are extraneous
418 -- to the transformation. The type and its base have the same
419 -- representation, standard or otherwise.
423 Rewrite
(N
, Convert_To
(Base_Type
(T
), N
));
424 Analyze_And_Resolve
(N
, Base_Type
(T
));
428 end Adjust_Result_Type
;
430 --------------------------
431 -- Append_Freeze_Action --
432 --------------------------
434 procedure Append_Freeze_Action
(T
: Entity_Id
; N
: Node_Id
) is
438 Ensure_Freeze_Node
(T
);
439 Fnode
:= Freeze_Node
(T
);
441 if No
(Actions
(Fnode
)) then
442 Set_Actions
(Fnode
, New_List
(N
));
444 Append
(N
, Actions
(Fnode
));
447 end Append_Freeze_Action
;
449 ---------------------------
450 -- Append_Freeze_Actions --
451 ---------------------------
453 procedure Append_Freeze_Actions
(T
: Entity_Id
; L
: List_Id
) is
461 Ensure_Freeze_Node
(T
);
462 Fnode
:= Freeze_Node
(T
);
464 if No
(Actions
(Fnode
)) then
465 Set_Actions
(Fnode
, L
);
467 Append_List
(L
, Actions
(Fnode
));
469 end Append_Freeze_Actions
;
471 ------------------------------------
472 -- Build_Allocate_Deallocate_Proc --
473 ------------------------------------
475 procedure Build_Allocate_Deallocate_Proc
477 Is_Allocate
: Boolean)
479 function Find_Object
(E
: Node_Id
) return Node_Id
;
480 -- Given an arbitrary expression of an allocator, try to find an object
481 -- reference in it, otherwise return the original expression.
483 function Is_Allocate_Deallocate_Proc
(Subp
: Entity_Id
) return Boolean;
484 -- Determine whether subprogram Subp denotes a custom allocate or
491 function Find_Object
(E
: Node_Id
) return Node_Id
is
495 pragma Assert
(Is_Allocate
);
499 if Nkind
(Expr
) = N_Explicit_Dereference
then
500 Expr
:= Prefix
(Expr
);
502 elsif Nkind
(Expr
) = N_Qualified_Expression
then
503 Expr
:= Expression
(Expr
);
505 elsif Nkind
(Expr
) = N_Unchecked_Type_Conversion
then
507 -- When interface class-wide types are involved in allocation,
508 -- the expander introduces several levels of address arithmetic
509 -- to perform dispatch table displacement. In this scenario the
510 -- object appears as:
512 -- Tag_Ptr (Base_Address (<object>'Address))
514 -- Detect this case and utilize the whole expression as the
515 -- "object" since it now points to the proper dispatch table.
517 if Is_RTE
(Etype
(Expr
), RE_Tag_Ptr
) then
520 -- Continue to strip the object
523 Expr
:= Expression
(Expr
);
534 ---------------------------------
535 -- Is_Allocate_Deallocate_Proc --
536 ---------------------------------
538 function Is_Allocate_Deallocate_Proc
(Subp
: Entity_Id
) return Boolean is
540 -- Look for a subprogram body with only one statement which is a
541 -- call to Allocate_Any_Controlled / Deallocate_Any_Controlled.
543 if Ekind
(Subp
) = E_Procedure
544 and then Nkind
(Parent
(Parent
(Subp
))) = N_Subprogram_Body
547 HSS
: constant Node_Id
:=
548 Handled_Statement_Sequence
(Parent
(Parent
(Subp
)));
552 if Present
(Statements
(HSS
))
553 and then Nkind
(First
(Statements
(HSS
))) =
554 N_Procedure_Call_Statement
556 Proc
:= Entity
(Name
(First
(Statements
(HSS
))));
559 Is_RTE
(Proc
, RE_Allocate_Any_Controlled
)
560 or else Is_RTE
(Proc
, RE_Deallocate_Any_Controlled
);
566 end Is_Allocate_Deallocate_Proc
;
570 Desig_Typ
: Entity_Id
;
574 Proc_To_Call
: Node_Id
:= Empty
;
577 -- Start of processing for Build_Allocate_Deallocate_Proc
580 -- Obtain the attributes of the allocation / deallocation
582 if Nkind
(N
) = N_Free_Statement
then
583 Expr
:= Expression
(N
);
584 Ptr_Typ
:= Base_Type
(Etype
(Expr
));
585 Proc_To_Call
:= Procedure_To_Call
(N
);
588 if Nkind
(N
) = N_Object_Declaration
then
589 Expr
:= Expression
(N
);
594 -- In certain cases an allocator with a qualified expression may
595 -- be relocated and used as the initialization expression of a
599 -- Obj : Ptr_Typ := new Desig_Typ'(...);
602 -- Tmp : Ptr_Typ := new Desig_Typ'(...);
603 -- Obj : Ptr_Typ := Tmp;
605 -- Since the allocator is always marked as analyzed to avoid infinite
606 -- expansion, it will never be processed by this routine given that
607 -- the designated type needs finalization actions. Detect this case
608 -- and complete the expansion of the allocator.
610 if Nkind
(Expr
) = N_Identifier
611 and then Nkind
(Parent
(Entity
(Expr
))) = N_Object_Declaration
612 and then Nkind
(Expression
(Parent
(Entity
(Expr
)))) = N_Allocator
614 Build_Allocate_Deallocate_Proc
(Parent
(Entity
(Expr
)), True);
618 -- The allocator may have been rewritten into something else in which
619 -- case the expansion performed by this routine does not apply.
621 if Nkind
(Expr
) /= N_Allocator
then
625 Ptr_Typ
:= Base_Type
(Etype
(Expr
));
626 Proc_To_Call
:= Procedure_To_Call
(Expr
);
629 Pool_Id
:= Associated_Storage_Pool
(Ptr_Typ
);
630 Desig_Typ
:= Available_View
(Designated_Type
(Ptr_Typ
));
632 -- Handle concurrent types
634 if Is_Concurrent_Type
(Desig_Typ
)
635 and then Present
(Corresponding_Record_Type
(Desig_Typ
))
637 Desig_Typ
:= Corresponding_Record_Type
(Desig_Typ
);
640 -- Do not process allocations / deallocations without a pool
645 -- Do not process allocations on / deallocations from the secondary
648 elsif Is_RTE
(Pool_Id
, RE_SS_Pool
)
649 or else (Nkind
(Expr
) = N_Allocator
650 and then Is_RTE
(Storage_Pool
(Expr
), RE_SS_Pool
))
654 -- Optimize the case where we are using the default Global_Pool_Object,
655 -- and we don't need the heavy finalization machinery.
657 elsif Pool_Id
= RTE
(RE_Global_Pool_Object
)
658 and then not Needs_Finalization
(Desig_Typ
)
662 -- Do not replicate the machinery if the allocator / free has already
663 -- been expanded and has a custom Allocate / Deallocate.
665 elsif Present
(Proc_To_Call
)
666 and then Is_Allocate_Deallocate_Proc
(Proc_To_Call
)
671 -- Finalization actions are required when the object to be allocated or
672 -- deallocated needs these actions and the associated access type is not
673 -- subject to pragma No_Heap_Finalization.
676 Needs_Finalization
(Desig_Typ
)
677 and then not No_Heap_Finalization
(Ptr_Typ
);
681 -- Certain run-time configurations and targets do not provide support
682 -- for controlled types.
684 if Restriction_Active
(No_Finalization
) then
687 -- Do nothing if the access type may never allocate / deallocate
690 elsif No_Pool_Assigned
(Ptr_Typ
) then
694 -- The allocation / deallocation of a controlled object must be
695 -- chained on / detached from a finalization master.
697 pragma Assert
(Present
(Finalization_Master
(Ptr_Typ
)));
699 -- The only other kind of allocation / deallocation supported by this
700 -- routine is on / from a subpool.
702 elsif Nkind
(Expr
) = N_Allocator
703 and then No
(Subpool_Handle_Name
(Expr
))
709 Loc
: constant Source_Ptr
:= Sloc
(N
);
710 Addr_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
711 Alig_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
712 Proc_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'P');
713 Size_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
716 Fin_Addr_Id
: Entity_Id
;
717 Fin_Mas_Act
: Node_Id
;
718 Fin_Mas_Id
: Entity_Id
;
719 Proc_To_Call
: Entity_Id
;
720 Subpool
: Node_Id
:= Empty
;
723 -- Step 1: Construct all the actuals for the call to library routine
724 -- Allocate_Any_Controlled / Deallocate_Any_Controlled.
728 Actuals
:= New_List
(New_Occurrence_Of
(Pool_Id
, Loc
));
734 if Nkind
(Expr
) = N_Allocator
then
735 Subpool
:= Subpool_Handle_Name
(Expr
);
738 -- If a subpool is present it can be an arbitrary name, so make
739 -- the actual by copying the tree.
741 if Present
(Subpool
) then
742 Append_To
(Actuals
, New_Copy_Tree
(Subpool
, New_Sloc
=> Loc
));
744 Append_To
(Actuals
, Make_Null
(Loc
));
747 -- c) Finalization master
750 Fin_Mas_Id
:= Finalization_Master
(Ptr_Typ
);
751 Fin_Mas_Act
:= New_Occurrence_Of
(Fin_Mas_Id
, Loc
);
753 -- Handle the case where the master is actually a pointer to a
754 -- master. This case arises in build-in-place functions.
756 if Is_Access_Type
(Etype
(Fin_Mas_Id
)) then
757 Append_To
(Actuals
, Fin_Mas_Act
);
760 Make_Attribute_Reference
(Loc
,
761 Prefix
=> Fin_Mas_Act
,
762 Attribute_Name
=> Name_Unrestricted_Access
));
765 Append_To
(Actuals
, Make_Null
(Loc
));
768 -- d) Finalize_Address
770 -- Primitive Finalize_Address is never generated in CodePeer mode
771 -- since it contains an Unchecked_Conversion.
773 if Needs_Fin
and then not CodePeer_Mode
then
774 Fin_Addr_Id
:= Finalize_Address
(Desig_Typ
);
775 pragma Assert
(Present
(Fin_Addr_Id
));
778 Make_Attribute_Reference
(Loc
,
779 Prefix
=> New_Occurrence_Of
(Fin_Addr_Id
, Loc
),
780 Attribute_Name
=> Name_Unrestricted_Access
));
782 Append_To
(Actuals
, Make_Null
(Loc
));
790 Append_To
(Actuals
, New_Occurrence_Of
(Addr_Id
, Loc
));
791 Append_To
(Actuals
, New_Occurrence_Of
(Size_Id
, Loc
));
793 if Is_Allocate
or else not Is_Class_Wide_Type
(Desig_Typ
) then
794 Append_To
(Actuals
, New_Occurrence_Of
(Alig_Id
, Loc
));
796 -- For deallocation of class-wide types we obtain the value of
797 -- alignment from the Type Specific Record of the deallocated object.
798 -- This is needed because the frontend expansion of class-wide types
799 -- into equivalent types confuses the back end.
805 -- ... because 'Alignment applied to class-wide types is expanded
806 -- into the code that reads the value of alignment from the TSD
807 -- (see Expand_N_Attribute_Reference)
810 Unchecked_Convert_To
(RTE
(RE_Storage_Offset
),
811 Make_Attribute_Reference
(Loc
,
813 Make_Explicit_Dereference
(Loc
, Relocate_Node
(Expr
)),
814 Attribute_Name
=> Name_Alignment
)));
820 Is_Controlled
: declare
821 Flag_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'F');
829 Temp
:= Find_Object
(Expression
(Expr
));
834 -- Processing for allocations where the expression is a subtype
838 and then Is_Entity_Name
(Temp
)
839 and then Is_Type
(Entity
(Temp
))
844 (Needs_Finalization
(Entity
(Temp
))), Loc
);
846 -- The allocation / deallocation of a class-wide object relies
847 -- on a runtime check to determine whether the object is truly
848 -- controlled or not. Depending on this check, the finalization
849 -- machinery will request or reclaim extra storage reserved for
852 elsif Is_Class_Wide_Type
(Desig_Typ
) then
854 -- Detect a special case where interface class-wide types
855 -- are involved as the object appears as:
857 -- Tag_Ptr (Base_Address (<object>'Address))
859 -- The expression already yields the proper tag, generate:
863 if Is_RTE
(Etype
(Temp
), RE_Tag_Ptr
) then
865 Make_Explicit_Dereference
(Loc
,
866 Prefix
=> Relocate_Node
(Temp
));
868 -- In the default case, obtain the tag of the object about
869 -- to be allocated / deallocated. Generate:
873 -- If the object is an unchecked conversion (typically to
874 -- an access to class-wide type), we must preserve the
875 -- conversion to ensure that the object is seen as tagged
876 -- in the code that follows.
881 if Nkind
(Parent
(Pref
)) = N_Unchecked_Type_Conversion
883 Pref
:= Parent
(Pref
);
887 Make_Attribute_Reference
(Loc
,
888 Prefix
=> Relocate_Node
(Pref
),
889 Attribute_Name
=> Name_Tag
);
893 -- Needs_Finalization (<Param>)
896 Make_Function_Call
(Loc
,
898 New_Occurrence_Of
(RTE
(RE_Needs_Finalization
), Loc
),
899 Parameter_Associations
=> New_List
(Param
));
901 -- Processing for generic actuals
903 elsif Is_Generic_Actual_Type
(Desig_Typ
) then
905 New_Occurrence_Of
(Boolean_Literals
906 (Needs_Finalization
(Base_Type
(Desig_Typ
))), Loc
);
908 -- The object does not require any specialized checks, it is
909 -- known to be controlled.
912 Flag_Expr
:= New_Occurrence_Of
(Standard_True
, Loc
);
915 -- Create the temporary which represents the finalization state
916 -- of the expression. Generate:
918 -- F : constant Boolean := <Flag_Expr>;
921 Make_Object_Declaration
(Loc
,
922 Defining_Identifier
=> Flag_Id
,
923 Constant_Present
=> True,
925 New_Occurrence_Of
(Standard_Boolean
, Loc
),
926 Expression
=> Flag_Expr
));
928 Append_To
(Actuals
, New_Occurrence_Of
(Flag_Id
, Loc
));
931 -- The object is not controlled
934 Append_To
(Actuals
, New_Occurrence_Of
(Standard_False
, Loc
));
941 New_Occurrence_Of
(Boolean_Literals
(Present
(Subpool
)), Loc
));
944 -- Step 2: Build a wrapper Allocate / Deallocate which internally
945 -- calls Allocate_Any_Controlled / Deallocate_Any_Controlled.
947 -- Select the proper routine to call
950 Proc_To_Call
:= RTE
(RE_Allocate_Any_Controlled
);
952 Proc_To_Call
:= RTE
(RE_Deallocate_Any_Controlled
);
955 -- Create a custom Allocate / Deallocate routine which has identical
956 -- profile to that of System.Storage_Pools.
959 Make_Subprogram_Body
(Loc
,
964 Make_Procedure_Specification
(Loc
,
965 Defining_Unit_Name
=> Proc_Id
,
966 Parameter_Specifications
=> New_List
(
968 -- P : Root_Storage_Pool
970 Make_Parameter_Specification
(Loc
,
971 Defining_Identifier
=> Make_Temporary
(Loc
, 'P'),
973 New_Occurrence_Of
(RTE
(RE_Root_Storage_Pool
), Loc
)),
977 Make_Parameter_Specification
(Loc
,
978 Defining_Identifier
=> Addr_Id
,
979 Out_Present
=> Is_Allocate
,
981 New_Occurrence_Of
(RTE
(RE_Address
), Loc
)),
985 Make_Parameter_Specification
(Loc
,
986 Defining_Identifier
=> Size_Id
,
988 New_Occurrence_Of
(RTE
(RE_Storage_Count
), Loc
)),
992 Make_Parameter_Specification
(Loc
,
993 Defining_Identifier
=> Alig_Id
,
995 New_Occurrence_Of
(RTE
(RE_Storage_Count
), Loc
)))),
997 Declarations
=> No_List
,
999 Handled_Statement_Sequence
=>
1000 Make_Handled_Sequence_Of_Statements
(Loc
,
1001 Statements
=> New_List
(
1002 Make_Procedure_Call_Statement
(Loc
,
1004 New_Occurrence_Of
(Proc_To_Call
, Loc
),
1005 Parameter_Associations
=> Actuals
)))),
1006 Suppress
=> All_Checks
);
1008 -- The newly generated Allocate / Deallocate becomes the default
1009 -- procedure to call when the back end processes the allocation /
1013 Set_Procedure_To_Call
(Expr
, Proc_Id
);
1015 Set_Procedure_To_Call
(N
, Proc_Id
);
1018 end Build_Allocate_Deallocate_Proc
;
1020 -------------------------------
1021 -- Build_Abort_Undefer_Block --
1022 -------------------------------
1024 function Build_Abort_Undefer_Block
1027 Context
: Node_Id
) return Node_Id
1029 Exceptions_OK
: constant Boolean :=
1030 not Restriction_Active
(No_Exception_Propagation
);
1038 -- The block should be generated only when undeferring abort in the
1039 -- context of a potential exception.
1041 pragma Assert
(Abort_Allowed
and Exceptions_OK
);
1047 -- Abort_Undefer_Direct;
1050 AUD
:= RTE
(RE_Abort_Undefer_Direct
);
1053 Make_Handled_Sequence_Of_Statements
(Loc
,
1054 Statements
=> Stmts
,
1055 At_End_Proc
=> New_Occurrence_Of
(AUD
, Loc
));
1058 Make_Block_Statement
(Loc
,
1059 Handled_Statement_Sequence
=> HSS
);
1060 Set_Is_Abort_Block
(Blk
);
1062 Add_Block_Identifier
(Blk
, Blk_Id
);
1063 Expand_At_End_Handler
(HSS
, Blk_Id
);
1065 -- Present the Abort_Undefer_Direct function to the back end to inline
1066 -- the call to the routine.
1068 Add_Inlined_Body
(AUD
, Context
);
1071 end Build_Abort_Undefer_Block
;
1073 ---------------------------------
1074 -- Build_Class_Wide_Expression --
1075 ---------------------------------
1077 procedure Build_Class_Wide_Expression
1080 Par_Subp
: Entity_Id
;
1081 Adjust_Sloc
: Boolean;
1082 Needs_Wrapper
: out Boolean)
1084 function Replace_Entity
(N
: Node_Id
) return Traverse_Result
;
1085 -- Replace reference to formal of inherited operation or to primitive
1086 -- operation of root type, with corresponding entity for derived type,
1087 -- when constructing the class-wide condition of an overriding
1090 --------------------
1091 -- Replace_Entity --
1092 --------------------
1094 function Replace_Entity
(N
: Node_Id
) return Traverse_Result
is
1099 Adjust_Inherited_Pragma_Sloc
(N
);
1102 if Nkind
(N
) = N_Identifier
1103 and then Present
(Entity
(N
))
1105 (Is_Formal
(Entity
(N
)) or else Is_Subprogram
(Entity
(N
)))
1107 (Nkind
(Parent
(N
)) /= N_Attribute_Reference
1108 or else Attribute_Name
(Parent
(N
)) /= Name_Class
)
1110 -- The replacement does not apply to dispatching calls within the
1111 -- condition, but only to calls whose static tag is that of the
1114 if Is_Subprogram
(Entity
(N
))
1115 and then Nkind
(Parent
(N
)) = N_Function_Call
1116 and then Present
(Controlling_Argument
(Parent
(N
)))
1121 -- Determine whether entity has a renaming
1123 New_E
:= Type_Map
.Get
(Entity
(N
));
1125 if Present
(New_E
) then
1126 Rewrite
(N
, New_Occurrence_Of
(New_E
, Sloc
(N
)));
1128 -- If the entity is an overridden primitive and we are not
1129 -- in GNATprove mode, we must build a wrapper for the current
1130 -- inherited operation. If the reference is the prefix of an
1131 -- attribute such as 'Result (or others ???) there is no need
1132 -- for a wrapper: the condition is just rewritten in terms of
1133 -- the inherited subprogram.
1135 if Is_Subprogram
(New_E
)
1136 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
1137 and then not GNATprove_Mode
1139 Needs_Wrapper
:= True;
1143 -- Check that there are no calls left to abstract operations if
1144 -- the current subprogram is not abstract.
1146 if Nkind
(Parent
(N
)) = N_Function_Call
1147 and then N
= Name
(Parent
(N
))
1149 if not Is_Abstract_Subprogram
(Subp
)
1150 and then Is_Abstract_Subprogram
(Entity
(N
))
1152 Error_Msg_Sloc
:= Sloc
(Current_Scope
);
1153 Error_Msg_Node_2
:= Subp
;
1154 if Comes_From_Source
(Subp
) then
1156 ("cannot call abstract subprogram & in inherited "
1157 & "condition for&#", Subp
, Entity
(N
));
1160 ("cannot call abstract subprogram & in inherited "
1161 & "condition for inherited&#", Subp
, Entity
(N
));
1164 -- In SPARK mode, reject an inherited condition for an
1165 -- inherited operation if it contains a call to an overriding
1166 -- operation, because this implies that the pre/postconditions
1167 -- of the inherited operation have changed silently.
1169 elsif SPARK_Mode
= On
1170 and then Warn_On_Suspicious_Contract
1171 and then Present
(Alias
(Subp
))
1172 and then Present
(New_E
)
1173 and then Comes_From_Source
(New_E
)
1176 ("cannot modify inherited condition (SPARK RM 6.1.1(1))",
1178 Error_Msg_Sloc
:= Sloc
(New_E
);
1179 Error_Msg_Node_2
:= Subp
;
1181 ("\overriding of&# forces overriding of&",
1182 Parent
(Subp
), New_E
);
1186 -- Update type of function call node, which should be the same as
1187 -- the function's return type.
1189 if Is_Subprogram
(Entity
(N
))
1190 and then Nkind
(Parent
(N
)) = N_Function_Call
1192 Set_Etype
(Parent
(N
), Etype
(Entity
(N
)));
1195 -- The whole expression will be reanalyzed
1197 elsif Nkind
(N
) in N_Has_Etype
then
1198 Set_Analyzed
(N
, False);
1204 procedure Replace_Condition_Entities
is
1205 new Traverse_Proc
(Replace_Entity
);
1209 Par_Formal
: Entity_Id
;
1210 Subp_Formal
: Entity_Id
;
1212 -- Start of processing for Build_Class_Wide_Expression
1215 Needs_Wrapper
:= False;
1217 -- Add mapping from old formals to new formals
1219 Par_Formal
:= First_Formal
(Par_Subp
);
1220 Subp_Formal
:= First_Formal
(Subp
);
1222 while Present
(Par_Formal
) and then Present
(Subp_Formal
) loop
1223 Type_Map
.Set
(Par_Formal
, Subp_Formal
);
1224 Next_Formal
(Par_Formal
);
1225 Next_Formal
(Subp_Formal
);
1228 Replace_Condition_Entities
(Prag
);
1229 end Build_Class_Wide_Expression
;
1231 --------------------
1232 -- Build_DIC_Call --
1233 --------------------
1235 function Build_DIC_Call
1238 Typ
: Entity_Id
) return Node_Id
1240 Proc_Id
: constant Entity_Id
:= DIC_Procedure
(Typ
);
1241 Formal_Typ
: constant Entity_Id
:= Etype
(First_Formal
(Proc_Id
));
1245 Make_Procedure_Call_Statement
(Loc
,
1246 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
1247 Parameter_Associations
=> New_List
(
1248 Make_Unchecked_Type_Conversion
(Loc
,
1249 Subtype_Mark
=> New_Occurrence_Of
(Formal_Typ
, Loc
),
1250 Expression
=> New_Occurrence_Of
(Obj_Id
, Loc
))));
1253 ------------------------------
1254 -- Build_DIC_Procedure_Body --
1255 ------------------------------
1257 -- WARNING: This routine manages Ghost regions. Return statements must be
1258 -- replaced by gotos which jump to the end of the routine and restore the
1261 procedure Build_DIC_Procedure_Body
1263 For_Freeze
: Boolean := False)
1265 procedure Add_DIC_Check
1266 (DIC_Prag
: Node_Id
;
1268 Stmts
: in out List_Id
);
1269 -- Subsidiary to all Add_xxx_DIC routines. Add a runtime check to verify
1270 -- assertion expression DIC_Expr of pragma DIC_Prag. All generated code
1271 -- is added to list Stmts.
1273 procedure Add_Inherited_DIC
1274 (DIC_Prag
: Node_Id
;
1275 Par_Typ
: Entity_Id
;
1276 Deriv_Typ
: Entity_Id
;
1277 Stmts
: in out List_Id
);
1278 -- Add a runtime check to verify the assertion expression of inherited
1279 -- pragma DIC_Prag. Par_Typ is parent type, which is also the owner of
1280 -- the DIC pragma. Deriv_Typ is the derived type inheriting the DIC
1281 -- pragma. All generated code is added to list Stmts.
1283 procedure Add_Inherited_Tagged_DIC
1284 (DIC_Prag
: Node_Id
;
1285 Par_Typ
: Entity_Id
;
1286 Deriv_Typ
: Entity_Id
;
1287 Stmts
: in out List_Id
);
1288 -- Add a runtime check to verify assertion expression DIC_Expr of
1289 -- inherited pragma DIC_Prag. This routine applies class-wide pre- and
1290 -- postcondition-like runtime semantics to the check. Par_Typ is the
1291 -- parent type whose DIC pragma is being inherited. Deriv_Typ is the
1292 -- derived type inheriting the DIC pragma. All generated code is added
1295 procedure Add_Own_DIC
1296 (DIC_Prag
: Node_Id
;
1297 DIC_Typ
: Entity_Id
;
1298 Stmts
: in out List_Id
);
1299 -- Add a runtime check to verify the assertion expression of pragma
1300 -- DIC_Prag. DIC_Typ is the owner of the DIC pragma. All generated code
1301 -- is added to list Stmts.
1307 procedure Add_DIC_Check
1308 (DIC_Prag
: Node_Id
;
1310 Stmts
: in out List_Id
)
1312 Loc
: constant Source_Ptr
:= Sloc
(DIC_Prag
);
1313 Nam
: constant Name_Id
:= Original_Aspect_Pragma_Name
(DIC_Prag
);
1316 -- The DIC pragma is ignored, nothing left to do
1318 if Is_Ignored
(DIC_Prag
) then
1321 -- Otherwise the DIC expression must be checked at run time.
1324 -- pragma Check (<Nam>, <DIC_Expr>);
1327 Append_New_To
(Stmts
,
1329 Pragma_Identifier
=>
1330 Make_Identifier
(Loc
, Name_Check
),
1332 Pragma_Argument_Associations
=> New_List
(
1333 Make_Pragma_Argument_Association
(Loc
,
1334 Expression
=> Make_Identifier
(Loc
, Nam
)),
1336 Make_Pragma_Argument_Association
(Loc
,
1337 Expression
=> DIC_Expr
))));
1341 -----------------------
1342 -- Add_Inherited_DIC --
1343 -----------------------
1345 procedure Add_Inherited_DIC
1346 (DIC_Prag
: Node_Id
;
1347 Par_Typ
: Entity_Id
;
1348 Deriv_Typ
: Entity_Id
;
1349 Stmts
: in out List_Id
)
1351 Deriv_Proc
: constant Entity_Id
:= DIC_Procedure
(Deriv_Typ
);
1352 Deriv_Obj
: constant Entity_Id
:= First_Entity
(Deriv_Proc
);
1353 Par_Proc
: constant Entity_Id
:= DIC_Procedure
(Par_Typ
);
1354 Par_Obj
: constant Entity_Id
:= First_Entity
(Par_Proc
);
1355 Loc
: constant Source_Ptr
:= Sloc
(DIC_Prag
);
1358 pragma Assert
(Present
(Deriv_Proc
) and then Present
(Par_Proc
));
1360 -- Verify the inherited DIC assertion expression by calling the DIC
1361 -- procedure of the parent type.
1364 -- <Par_Typ>DIC (Par_Typ (_object));
1366 Append_New_To
(Stmts
,
1367 Make_Procedure_Call_Statement
(Loc
,
1368 Name
=> New_Occurrence_Of
(Par_Proc
, Loc
),
1369 Parameter_Associations
=> New_List
(
1371 (Typ
=> Etype
(Par_Obj
),
1372 Expr
=> New_Occurrence_Of
(Deriv_Obj
, Loc
)))));
1373 end Add_Inherited_DIC
;
1375 ------------------------------
1376 -- Add_Inherited_Tagged_DIC --
1377 ------------------------------
1379 procedure Add_Inherited_Tagged_DIC
1380 (DIC_Prag
: Node_Id
;
1381 Par_Typ
: Entity_Id
;
1382 Deriv_Typ
: Entity_Id
;
1383 Stmts
: in out List_Id
)
1385 Deriv_Proc
: constant Entity_Id
:= DIC_Procedure
(Deriv_Typ
);
1386 DIC_Args
: constant List_Id
:=
1387 Pragma_Argument_Associations
(DIC_Prag
);
1388 DIC_Arg
: constant Node_Id
:= First
(DIC_Args
);
1389 DIC_Expr
: constant Node_Id
:= Expression_Copy
(DIC_Arg
);
1390 Par_Proc
: constant Entity_Id
:= DIC_Procedure
(Par_Typ
);
1395 -- The processing of an inherited DIC assertion expression starts off
1396 -- with a copy of the original parent expression where all references
1397 -- to the parent type have already been replaced with references to
1398 -- the _object formal parameter of the parent type's DIC procedure.
1400 pragma Assert
(Present
(DIC_Expr
));
1401 Expr
:= New_Copy_Tree
(DIC_Expr
);
1403 -- Perform the following substitutions:
1405 -- * Replace a reference to the _object parameter of the parent
1406 -- type's DIC procedure with a reference to the _object parameter
1407 -- of the derived types' DIC procedure.
1409 -- * Replace a reference to a discriminant of the parent type with
1410 -- a suitable value from the point of view of the derived type.
1412 -- * Replace a call to an overridden parent primitive with a call
1413 -- to the overriding derived type primitive.
1415 -- * Replace a call to an inherited parent primitive with a call to
1416 -- the internally-generated inherited derived type primitive.
1418 -- Note that primitives defined in the private part are automatically
1419 -- handled by the overriding/inheritance mechanism and do not require
1420 -- an extra replacement pass.
1422 pragma Assert
(Present
(Deriv_Proc
) and then Present
(Par_Proc
));
1427 Deriv_Typ
=> Deriv_Typ
,
1428 Par_Obj
=> First_Formal
(Par_Proc
),
1429 Deriv_Obj
=> First_Formal
(Deriv_Proc
));
1431 -- Once the DIC assertion expression is fully processed, add a check
1432 -- to the statements of the DIC procedure.
1435 (DIC_Prag
=> DIC_Prag
,
1438 end Add_Inherited_Tagged_DIC
;
1444 procedure Add_Own_DIC
1445 (DIC_Prag
: Node_Id
;
1446 DIC_Typ
: Entity_Id
;
1447 Stmts
: in out List_Id
)
1449 DIC_Args
: constant List_Id
:=
1450 Pragma_Argument_Associations
(DIC_Prag
);
1451 DIC_Arg
: constant Node_Id
:= First
(DIC_Args
);
1452 DIC_Asp
: constant Node_Id
:= Corresponding_Aspect
(DIC_Prag
);
1453 DIC_Expr
: constant Node_Id
:= Get_Pragma_Arg
(DIC_Arg
);
1454 DIC_Proc
: constant Entity_Id
:= DIC_Procedure
(DIC_Typ
);
1455 Obj_Id
: constant Entity_Id
:= First_Formal
(DIC_Proc
);
1457 procedure Preanalyze_Own_DIC_For_ASIS
;
1458 -- Preanalyze the original DIC expression of an aspect or a source
1461 ---------------------------------
1462 -- Preanalyze_Own_DIC_For_ASIS --
1463 ---------------------------------
1465 procedure Preanalyze_Own_DIC_For_ASIS
is
1466 Expr
: Node_Id
:= Empty
;
1469 -- The DIC pragma is a source construct, preanalyze the original
1470 -- expression of the pragma.
1472 if Comes_From_Source
(DIC_Prag
) then
1475 -- Otherwise preanalyze the expression of the corresponding aspect
1477 elsif Present
(DIC_Asp
) then
1478 Expr
:= Expression
(DIC_Asp
);
1481 -- The expression must be subjected to the same substitutions as
1482 -- the copy used in the generation of the runtime check.
1484 if Present
(Expr
) then
1485 Replace_Type_References
1490 Preanalyze_Assert_Expression
(Expr
, Any_Boolean
);
1492 end Preanalyze_Own_DIC_For_ASIS
;
1496 Typ_Decl
: constant Node_Id
:= Declaration_Node
(DIC_Typ
);
1500 -- Start of processing for Add_Own_DIC
1503 Expr
:= New_Copy_Tree
(DIC_Expr
);
1505 -- Perform the following substitution:
1507 -- * Replace the current instance of DIC_Typ with a reference to
1508 -- the _object formal parameter of the DIC procedure.
1510 Replace_Type_References
1515 -- Preanalyze the DIC expression to detect errors and at the same
1516 -- time capture the visibility of the proper package part.
1518 Set_Parent
(Expr
, Typ_Decl
);
1519 Preanalyze_Assert_Expression
(Expr
, Any_Boolean
);
1521 -- Save a copy of the expression with all replacements and analysis
1522 -- already taken place in case a derived type inherits the pragma.
1523 -- The copy will be used as the foundation of the derived type's own
1524 -- version of the DIC assertion expression.
1526 if Is_Tagged_Type
(DIC_Typ
) then
1527 Set_Expression_Copy
(DIC_Arg
, New_Copy_Tree
(Expr
));
1530 -- If the pragma comes from an aspect specification, replace the
1531 -- saved expression because all type references must be substituted
1532 -- for the call to Preanalyze_Spec_Expression in Check_Aspect_At_xxx
1535 if Present
(DIC_Asp
) then
1536 Set_Entity
(Identifier
(DIC_Asp
), New_Copy_Tree
(Expr
));
1539 -- Preanalyze the original DIC expression for ASIS
1542 Preanalyze_Own_DIC_For_ASIS
;
1545 -- Once the DIC assertion expression is fully processed, add a check
1546 -- to the statements of the DIC procedure.
1549 (DIC_Prag
=> DIC_Prag
,
1556 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
1558 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
1559 -- Save the Ghost mode to restore on exit
1562 DIC_Typ
: Entity_Id
;
1563 Dummy_1
: Entity_Id
;
1564 Dummy_2
: Entity_Id
;
1565 Proc_Body
: Node_Id
;
1566 Proc_Body_Id
: Entity_Id
;
1567 Proc_Decl
: Node_Id
;
1568 Proc_Id
: Entity_Id
;
1569 Stmts
: List_Id
:= No_List
;
1571 Build_Body
: Boolean := False;
1572 -- Flag set when the type requires a DIC procedure body to be built
1574 Work_Typ
: Entity_Id
;
1577 -- Start of processing for Build_DIC_Procedure_Body
1580 Work_Typ
:= Base_Type
(Typ
);
1582 -- Do not process class-wide types as these are Itypes, but lack a first
1583 -- subtype (see below).
1585 if Is_Class_Wide_Type
(Work_Typ
) then
1588 -- Do not process the underlying full view of a private type. There is
1589 -- no way to get back to the partial view, plus the body will be built
1590 -- by the full view or the base type.
1592 elsif Is_Underlying_Full_View
(Work_Typ
) then
1595 -- Use the first subtype when dealing with various base types
1597 elsif Is_Itype
(Work_Typ
) then
1598 Work_Typ
:= First_Subtype
(Work_Typ
);
1600 -- The input denotes the corresponding record type of a protected or a
1601 -- task type. Work with the concurrent type because the corresponding
1602 -- record type may not be visible to clients of the type.
1604 elsif Ekind
(Work_Typ
) = E_Record_Type
1605 and then Is_Concurrent_Record_Type
(Work_Typ
)
1607 Work_Typ
:= Corresponding_Concurrent_Type
(Work_Typ
);
1610 -- The working type may be subject to pragma Ghost. Set the mode now to
1611 -- ensure that the DIC procedure is properly marked as Ghost.
1613 Set_Ghost_Mode
(Work_Typ
);
1615 -- The working type must be either define a DIC pragma of its own or
1616 -- inherit one from a parent type.
1618 pragma Assert
(Has_DIC
(Work_Typ
));
1620 -- Recover the type which defines the DIC pragma. This is either the
1621 -- working type itself or a parent type when the pragma is inherited.
1623 DIC_Typ
:= Find_DIC_Type
(Work_Typ
);
1624 pragma Assert
(Present
(DIC_Typ
));
1626 DIC_Prag
:= Get_Pragma
(DIC_Typ
, Pragma_Default_Initial_Condition
);
1627 pragma Assert
(Present
(DIC_Prag
));
1629 -- Nothing to do if pragma DIC appears without an argument or its sole
1630 -- argument is "null".
1632 if not Is_Verifiable_DIC_Pragma
(DIC_Prag
) then
1636 -- The working type may lack a DIC procedure declaration. This may be
1637 -- due to several reasons:
1639 -- * The working type's own DIC pragma does not contain a verifiable
1640 -- assertion expression. In this case there is no need to build a
1641 -- DIC procedure because there is nothing to check.
1643 -- * The working type derives from a parent type. In this case a DIC
1644 -- procedure should be built only when the inherited DIC pragma has
1645 -- a verifiable assertion expression.
1647 Proc_Id
:= DIC_Procedure
(Work_Typ
);
1649 -- Build a DIC procedure declaration when the working type derives from
1652 if No
(Proc_Id
) then
1653 Build_DIC_Procedure_Declaration
(Work_Typ
);
1654 Proc_Id
:= DIC_Procedure
(Work_Typ
);
1657 -- At this point there should be a DIC procedure declaration
1659 pragma Assert
(Present
(Proc_Id
));
1660 Proc_Decl
:= Unit_Declaration_Node
(Proc_Id
);
1662 -- Nothing to do if the DIC procedure already has a body
1664 if Present
(Corresponding_Body
(Proc_Decl
)) then
1668 -- Emulate the environment of the DIC procedure by installing its scope
1669 -- and formal parameters.
1671 Push_Scope
(Proc_Id
);
1672 Install_Formals
(Proc_Id
);
1674 -- The working type defines its own DIC pragma. Replace the current
1675 -- instance of the working type with the formal of the DIC procedure.
1676 -- Note that there is no need to consider inherited DIC pragmas from
1677 -- parent types because the working type's DIC pragma "hides" all
1678 -- inherited DIC pragmas.
1680 if Has_Own_DIC
(Work_Typ
) then
1681 pragma Assert
(DIC_Typ
= Work_Typ
);
1684 (DIC_Prag
=> DIC_Prag
,
1690 -- Otherwise the working type inherits a DIC pragma from a parent type.
1691 -- This processing is carried out when the type is frozen because the
1692 -- state of all parent discriminants is known at that point. Note that
1693 -- it is semantically sound to delay the creation of the DIC procedure
1694 -- body till the freeze point. If the type has a DIC pragma of its own,
1695 -- then the DIC procedure body would have already been constructed at
1696 -- the end of the visible declarations and all parent DIC pragmas are
1697 -- effectively "hidden" and irrelevant.
1699 elsif For_Freeze
then
1700 pragma Assert
(Has_Inherited_DIC
(Work_Typ
));
1701 pragma Assert
(DIC_Typ
/= Work_Typ
);
1703 -- The working type is tagged. The verification of the assertion
1704 -- expression is subject to the same semantics as class-wide pre-
1705 -- and postconditions.
1707 if Is_Tagged_Type
(Work_Typ
) then
1708 Add_Inherited_Tagged_DIC
1709 (DIC_Prag
=> DIC_Prag
,
1711 Deriv_Typ
=> Work_Typ
,
1714 -- Otherwise the working type is not tagged. Verify the assertion
1715 -- expression of the inherited DIC pragma by directly calling the
1716 -- DIC procedure of the parent type.
1720 (DIC_Prag
=> DIC_Prag
,
1722 Deriv_Typ
=> Work_Typ
,
1733 -- Produce an empty completing body in the following cases:
1734 -- * Assertions are disabled
1735 -- * The DIC Assertion_Policy is Ignore
1736 -- * Pragma DIC appears without an argument
1737 -- * Pragma DIC appears with argument "null"
1740 Stmts
:= New_List
(Make_Null_Statement
(Loc
));
1744 -- procedure <Work_Typ>DIC (_object : <Work_Typ>) is
1747 -- end <Work_Typ>DIC;
1750 Make_Subprogram_Body
(Loc
,
1752 Copy_Subprogram_Spec
(Parent
(Proc_Id
)),
1753 Declarations
=> Empty_List
,
1754 Handled_Statement_Sequence
=>
1755 Make_Handled_Sequence_Of_Statements
(Loc
,
1756 Statements
=> Stmts
));
1757 Proc_Body_Id
:= Defining_Entity
(Proc_Body
);
1759 -- Perform minor decoration in case the body is not analyzed
1761 Set_Ekind
(Proc_Body_Id
, E_Subprogram_Body
);
1762 Set_Etype
(Proc_Body_Id
, Standard_Void_Type
);
1763 Set_Scope
(Proc_Body_Id
, Current_Scope
);
1764 Set_SPARK_Pragma
(Proc_Body_Id
, SPARK_Pragma
(Proc_Id
));
1765 Set_SPARK_Pragma_Inherited
1766 (Proc_Body_Id
, SPARK_Pragma_Inherited
(Proc_Id
));
1768 -- Link both spec and body to avoid generating duplicates
1770 Set_Corresponding_Body
(Proc_Decl
, Proc_Body_Id
);
1771 Set_Corresponding_Spec
(Proc_Body
, Proc_Id
);
1773 -- The body should not be inserted into the tree when the context
1774 -- is ASIS or a generic unit because it is not part of the template.
1775 -- Note that the body must still be generated in order to resolve the
1776 -- DIC assertion expression.
1778 if ASIS_Mode
or Inside_A_Generic
then
1781 -- Semi-insert the body into the tree for GNATprove by setting its
1782 -- Parent field. This allows for proper upstream tree traversals.
1784 elsif GNATprove_Mode
then
1785 Set_Parent
(Proc_Body
, Parent
(Declaration_Node
(Work_Typ
)));
1787 -- Otherwise the body is part of the freezing actions of the working
1791 Append_Freeze_Action
(Work_Typ
, Proc_Body
);
1796 Restore_Ghost_Mode
(Saved_GM
);
1797 end Build_DIC_Procedure_Body
;
1799 -------------------------------------
1800 -- Build_DIC_Procedure_Declaration --
1801 -------------------------------------
1803 -- WARNING: This routine manages Ghost regions. Return statements must be
1804 -- replaced by gotos which jump to the end of the routine and restore the
1807 procedure Build_DIC_Procedure_Declaration
(Typ
: Entity_Id
) is
1808 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
1810 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
1811 -- Save the Ghost mode to restore on exit
1814 DIC_Typ
: Entity_Id
;
1815 Proc_Decl
: Node_Id
;
1816 Proc_Id
: Entity_Id
;
1819 CRec_Typ
: Entity_Id
;
1820 -- The corresponding record type of Full_Typ
1822 Full_Base
: Entity_Id
;
1823 -- The base type of Full_Typ
1825 Full_Typ
: Entity_Id
;
1826 -- The full view of working type
1829 -- The _object formal parameter of the DIC procedure
1831 Priv_Typ
: Entity_Id
;
1832 -- The partial view of working type
1834 Work_Typ
: Entity_Id
;
1838 Work_Typ
:= Base_Type
(Typ
);
1840 -- Do not process class-wide types as these are Itypes, but lack a first
1841 -- subtype (see below).
1843 if Is_Class_Wide_Type
(Work_Typ
) then
1846 -- Do not process the underlying full view of a private type. There is
1847 -- no way to get back to the partial view, plus the body will be built
1848 -- by the full view or the base type.
1850 elsif Is_Underlying_Full_View
(Work_Typ
) then
1853 -- Use the first subtype when dealing with various base types
1855 elsif Is_Itype
(Work_Typ
) then
1856 Work_Typ
:= First_Subtype
(Work_Typ
);
1858 -- The input denotes the corresponding record type of a protected or a
1859 -- task type. Work with the concurrent type because the corresponding
1860 -- record type may not be visible to clients of the type.
1862 elsif Ekind
(Work_Typ
) = E_Record_Type
1863 and then Is_Concurrent_Record_Type
(Work_Typ
)
1865 Work_Typ
:= Corresponding_Concurrent_Type
(Work_Typ
);
1868 -- The working type may be subject to pragma Ghost. Set the mode now to
1869 -- ensure that the DIC procedure is properly marked as Ghost.
1871 Set_Ghost_Mode
(Work_Typ
);
1873 -- The type must be either subject to a DIC pragma or inherit one from a
1876 pragma Assert
(Has_DIC
(Work_Typ
));
1878 -- Recover the type which defines the DIC pragma. This is either the
1879 -- working type itself or a parent type when the pragma is inherited.
1881 DIC_Typ
:= Find_DIC_Type
(Work_Typ
);
1882 pragma Assert
(Present
(DIC_Typ
));
1884 DIC_Prag
:= Get_Pragma
(DIC_Typ
, Pragma_Default_Initial_Condition
);
1885 pragma Assert
(Present
(DIC_Prag
));
1887 -- Nothing to do if pragma DIC appears without an argument or its sole
1888 -- argument is "null".
1890 if not Is_Verifiable_DIC_Pragma
(DIC_Prag
) then
1893 -- Nothing to do if the type already has a DIC procedure
1895 elsif Present
(DIC_Procedure
(Work_Typ
)) then
1900 Make_Defining_Identifier
(Loc
,
1902 New_External_Name
(Chars
(Work_Typ
), "Default_Initial_Condition"));
1904 -- Perform minor decoration in case the declaration is not analyzed
1906 Set_Ekind
(Proc_Id
, E_Procedure
);
1907 Set_Etype
(Proc_Id
, Standard_Void_Type
);
1908 Set_Is_DIC_Procedure
(Proc_Id
);
1909 Set_Scope
(Proc_Id
, Current_Scope
);
1910 Set_SPARK_Pragma
(Proc_Id
, SPARK_Mode_Pragma
);
1911 Set_SPARK_Pragma_Inherited
(Proc_Id
);
1913 Set_DIC_Procedure
(Work_Typ
, Proc_Id
);
1915 -- The DIC procedure requires debug info when the assertion expression
1916 -- is subject to Source Coverage Obligations.
1918 if Generate_SCO
then
1919 Set_Needs_Debug_Info
(Proc_Id
);
1922 -- Obtain all views of the input type
1924 Get_Views
(Work_Typ
, Priv_Typ
, Full_Typ
, Full_Base
, CRec_Typ
);
1926 -- Associate the DIC procedure and various relevant flags with all views
1928 Propagate_DIC_Attributes
(Priv_Typ
, From_Typ
=> Work_Typ
);
1929 Propagate_DIC_Attributes
(Full_Typ
, From_Typ
=> Work_Typ
);
1930 Propagate_DIC_Attributes
(Full_Base
, From_Typ
=> Work_Typ
);
1931 Propagate_DIC_Attributes
(CRec_Typ
, From_Typ
=> Work_Typ
);
1933 -- The declaration of the DIC procedure must be inserted after the
1934 -- declaration of the partial view as this allows for proper external
1937 if Present
(Priv_Typ
) then
1938 Typ_Decl
:= Declaration_Node
(Priv_Typ
);
1940 -- Derived types with the full view as parent do not have a partial
1941 -- view. Insert the DIC procedure after the derived type.
1944 Typ_Decl
:= Declaration_Node
(Full_Typ
);
1947 -- The type should have a declarative node
1949 pragma Assert
(Present
(Typ_Decl
));
1951 -- Create the formal parameter which emulates the variable-like behavior
1952 -- of the type's current instance.
1954 Obj_Id
:= Make_Defining_Identifier
(Loc
, Chars
=> Name_uObject
);
1956 -- Perform minor decoration in case the declaration is not analyzed
1958 Set_Ekind
(Obj_Id
, E_In_Parameter
);
1959 Set_Etype
(Obj_Id
, Work_Typ
);
1960 Set_Scope
(Obj_Id
, Proc_Id
);
1962 Set_First_Entity
(Proc_Id
, Obj_Id
);
1965 -- procedure <Work_Typ>DIC (_object : <Work_Typ>);
1968 Make_Subprogram_Declaration
(Loc
,
1970 Make_Procedure_Specification
(Loc
,
1971 Defining_Unit_Name
=> Proc_Id
,
1972 Parameter_Specifications
=> New_List
(
1973 Make_Parameter_Specification
(Loc
,
1974 Defining_Identifier
=> Obj_Id
,
1976 New_Occurrence_Of
(Work_Typ
, Loc
)))));
1978 -- The declaration should not be inserted into the tree when the context
1979 -- is ASIS or a generic unit because it is not part of the template.
1981 if ASIS_Mode
or Inside_A_Generic
then
1984 -- Semi-insert the declaration into the tree for GNATprove by setting
1985 -- its Parent field. This allows for proper upstream tree traversals.
1987 elsif GNATprove_Mode
then
1988 Set_Parent
(Proc_Decl
, Parent
(Typ_Decl
));
1990 -- Otherwise insert the declaration
1993 Insert_After_And_Analyze
(Typ_Decl
, Proc_Decl
);
1997 Restore_Ghost_Mode
(Saved_GM
);
1998 end Build_DIC_Procedure_Declaration
;
2000 ------------------------------------
2001 -- Build_Invariant_Procedure_Body --
2002 ------------------------------------
2004 -- WARNING: This routine manages Ghost regions. Return statements must be
2005 -- replaced by gotos which jump to the end of the routine and restore the
2008 procedure Build_Invariant_Procedure_Body
2010 Partial_Invariant
: Boolean := False)
2012 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
2014 Pragmas_Seen
: Elist_Id
:= No_Elist
;
2015 -- This list contains all invariant pragmas processed so far. The list
2016 -- is used to avoid generating redundant invariant checks.
2018 Produced_Check
: Boolean := False;
2019 -- This flag tracks whether the type has produced at least one invariant
2020 -- check. The flag is used as a sanity check at the end of the routine.
2022 -- NOTE: most of the routines in Build_Invariant_Procedure_Body are
2023 -- intentionally unnested to avoid deep indentation of code.
2025 -- NOTE: all Add_xxx_Invariants routines are reactive. In other words
2026 -- they emit checks, loops (for arrays) and case statements (for record
2027 -- variant parts) only when there are invariants to verify. This keeps
2028 -- the body of the invariant procedure free of useless code.
2030 procedure Add_Array_Component_Invariants
2033 Checks
: in out List_Id
);
2034 -- Generate an invariant check for each component of array type T.
2035 -- Obj_Id denotes the entity of the _object formal parameter of the
2036 -- invariant procedure. All created checks are added to list Checks.
2038 procedure Add_Inherited_Invariants
2040 Priv_Typ
: Entity_Id
;
2041 Full_Typ
: Entity_Id
;
2043 Checks
: in out List_Id
);
2044 -- Generate an invariant check for each inherited class-wide invariant
2045 -- coming from all parent types of type T. Priv_Typ and Full_Typ denote
2046 -- the partial and full view of the parent type. Obj_Id denotes the
2047 -- entity of the _object formal parameter of the invariant procedure.
2048 -- All created checks are added to list Checks.
2050 procedure Add_Interface_Invariants
2053 Checks
: in out List_Id
);
2054 -- Generate an invariant check for each inherited class-wide invariant
2055 -- coming from all interfaces implemented by type T. Obj_Id denotes the
2056 -- entity of the _object formal parameter of the invariant procedure.
2057 -- All created checks are added to list Checks.
2059 procedure Add_Invariant_Check
2062 Checks
: in out List_Id
;
2063 Inherited
: Boolean := False);
2064 -- Subsidiary to all Add_xxx_Invariant routines. Add a runtime check to
2065 -- verify assertion expression Expr of pragma Prag. All generated code
2066 -- is added to list Checks. Flag Inherited should be set when the pragma
2067 -- is inherited from a parent or interface type.
2069 procedure Add_Own_Invariants
2072 Checks
: in out List_Id
;
2073 Priv_Item
: Node_Id
:= Empty
);
2074 -- Generate an invariant check for each invariant found for type T.
2075 -- Obj_Id denotes the entity of the _object formal parameter of the
2076 -- invariant procedure. All created checks are added to list Checks.
2077 -- Priv_Item denotes the first rep item of the private type.
2079 procedure Add_Parent_Invariants
2082 Checks
: in out List_Id
);
2083 -- Generate an invariant check for each inherited class-wide invariant
2084 -- coming from all parent types of type T. Obj_Id denotes the entity of
2085 -- the _object formal parameter of the invariant procedure. All created
2086 -- checks are added to list Checks.
2088 procedure Add_Record_Component_Invariants
2091 Checks
: in out List_Id
);
2092 -- Generate an invariant check for each component of record type T.
2093 -- Obj_Id denotes the entity of the _object formal parameter of the
2094 -- invariant procedure. All created checks are added to list Checks.
2096 ------------------------------------
2097 -- Add_Array_Component_Invariants --
2098 ------------------------------------
2100 procedure Add_Array_Component_Invariants
2103 Checks
: in out List_Id
)
2105 Comp_Typ
: constant Entity_Id
:= Component_Type
(T
);
2106 Dims
: constant Pos
:= Number_Dimensions
(T
);
2108 procedure Process_Array_Component
2110 Comp_Checks
: in out List_Id
);
2111 -- Generate an invariant check for an array component identified by
2112 -- the indices in list Indices. All created checks are added to list
2115 procedure Process_One_Dimension
2118 Dim_Checks
: in out List_Id
);
2119 -- Generate a loop over the Nth dimension Dim of an array type. List
2120 -- Indices contains all array indices for the dimension. All created
2121 -- checks are added to list Dim_Checks.
2123 -----------------------------
2124 -- Process_Array_Component --
2125 -----------------------------
2127 procedure Process_Array_Component
2129 Comp_Checks
: in out List_Id
)
2131 Proc_Id
: Entity_Id
;
2134 if Has_Invariants
(Comp_Typ
) then
2136 -- In GNATprove mode, the component invariants are checked by
2137 -- other means. They should not be added to the array type
2138 -- invariant procedure, so that the procedure can be used to
2139 -- check the array type invariants if any.
2141 if GNATprove_Mode
then
2145 Proc_Id
:= Invariant_Procedure
(Base_Type
(Comp_Typ
));
2147 -- The component type should have an invariant procedure
2148 -- if it has invariants of its own or inherits class-wide
2149 -- invariants from parent or interface types.
2151 pragma Assert
(Present
(Proc_Id
));
2154 -- <Comp_Typ>Invariant (_object (<Indices>));
2156 -- Note that the invariant procedure may have a null body if
2157 -- assertions are disabled or Assertion_Policy Ignore is in
2160 if not Has_Null_Body
(Proc_Id
) then
2161 Append_New_To
(Comp_Checks
,
2162 Make_Procedure_Call_Statement
(Loc
,
2164 New_Occurrence_Of
(Proc_Id
, Loc
),
2165 Parameter_Associations
=> New_List
(
2166 Make_Indexed_Component
(Loc
,
2167 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
2168 Expressions
=> New_Copy_List
(Indices
)))));
2172 Produced_Check
:= True;
2174 end Process_Array_Component
;
2176 ---------------------------
2177 -- Process_One_Dimension --
2178 ---------------------------
2180 procedure Process_One_Dimension
2183 Dim_Checks
: in out List_Id
)
2185 Comp_Checks
: List_Id
:= No_List
;
2189 -- Generate the invariant checks for the array component after all
2190 -- dimensions have produced their respective loops.
2193 Process_Array_Component
2194 (Indices
=> Indices
,
2195 Comp_Checks
=> Dim_Checks
);
2197 -- Otherwise create a loop for the current dimension
2200 -- Create a new loop variable for each dimension
2203 Make_Defining_Identifier
(Loc
,
2204 Chars
=> New_External_Name
('I', Dim
));
2205 Append_To
(Indices
, New_Occurrence_Of
(Index
, Loc
));
2207 Process_One_Dimension
2210 Dim_Checks
=> Comp_Checks
);
2213 -- for I<Dim> in _object'Range (<Dim>) loop
2217 -- Note that the invariant procedure may have a null body if
2218 -- assertions are disabled or Assertion_Policy Ignore is in
2221 if Present
(Comp_Checks
) then
2222 Append_New_To
(Dim_Checks
,
2223 Make_Implicit_Loop_Statement
(T
,
2224 Identifier
=> Empty
,
2226 Make_Iteration_Scheme
(Loc
,
2227 Loop_Parameter_Specification
=>
2228 Make_Loop_Parameter_Specification
(Loc
,
2229 Defining_Identifier
=> Index
,
2230 Discrete_Subtype_Definition
=>
2231 Make_Attribute_Reference
(Loc
,
2233 New_Occurrence_Of
(Obj_Id
, Loc
),
2234 Attribute_Name
=> Name_Range
,
2235 Expressions
=> New_List
(
2236 Make_Integer_Literal
(Loc
, Dim
))))),
2237 Statements
=> Comp_Checks
));
2240 end Process_One_Dimension
;
2242 -- Start of processing for Add_Array_Component_Invariants
2245 Process_One_Dimension
2247 Indices
=> New_List
,
2248 Dim_Checks
=> Checks
);
2249 end Add_Array_Component_Invariants
;
2251 ------------------------------
2252 -- Add_Inherited_Invariants --
2253 ------------------------------
2255 procedure Add_Inherited_Invariants
2257 Priv_Typ
: Entity_Id
;
2258 Full_Typ
: Entity_Id
;
2260 Checks
: in out List_Id
)
2262 Deriv_Typ
: Entity_Id
;
2265 Prag_Expr
: Node_Id
;
2266 Prag_Expr_Arg
: Node_Id
;
2268 Prag_Typ_Arg
: Node_Id
;
2270 Par_Proc
: Entity_Id
;
2271 -- The "partial" invariant procedure of Par_Typ
2273 Par_Typ
: Entity_Id
;
2274 -- The suitable view of the parent type used in the substitution of
2278 if not Present
(Priv_Typ
) and then not Present
(Full_Typ
) then
2282 -- When the type inheriting the class-wide invariant is a concurrent
2283 -- type, use the corresponding record type because it contains all
2284 -- primitive operations of the concurrent type and allows for proper
2287 if Is_Concurrent_Type
(T
) then
2288 Deriv_Typ
:= Corresponding_Record_Type
(T
);
2293 pragma Assert
(Present
(Deriv_Typ
));
2295 -- Determine which rep item chain to use. Precedence is given to that
2296 -- of the parent type's partial view since it usually carries all the
2297 -- class-wide invariants.
2299 if Present
(Priv_Typ
) then
2300 Prag
:= First_Rep_Item
(Priv_Typ
);
2302 Prag
:= First_Rep_Item
(Full_Typ
);
2305 while Present
(Prag
) loop
2306 if Nkind
(Prag
) = N_Pragma
2307 and then Pragma_Name
(Prag
) = Name_Invariant
2309 -- Nothing to do if the pragma was already processed
2311 if Contains
(Pragmas_Seen
, Prag
) then
2314 -- Nothing to do when the caller requests the processing of all
2315 -- inherited class-wide invariants, but the pragma does not
2316 -- fall in this category.
2318 elsif not Class_Present
(Prag
) then
2322 -- Extract the arguments of the invariant pragma
2324 Prag_Typ_Arg
:= First
(Pragma_Argument_Associations
(Prag
));
2325 Prag_Expr_Arg
:= Next
(Prag_Typ_Arg
);
2326 Prag_Expr
:= Expression_Copy
(Prag_Expr_Arg
);
2327 Prag_Typ
:= Get_Pragma_Arg
(Prag_Typ_Arg
);
2329 -- The pragma applies to the partial view of the parent type
2331 if Present
(Priv_Typ
)
2332 and then Entity
(Prag_Typ
) = Priv_Typ
2334 Par_Typ
:= Priv_Typ
;
2336 -- The pragma applies to the full view of the parent type
2338 elsif Present
(Full_Typ
)
2339 and then Entity
(Prag_Typ
) = Full_Typ
2341 Par_Typ
:= Full_Typ
;
2343 -- Otherwise the pragma does not belong to the parent type and
2344 -- should not be considered.
2350 -- Perform the following substitutions:
2352 -- * Replace a reference to the _object parameter of the
2353 -- parent type's partial invariant procedure with a
2354 -- reference to the _object parameter of the derived
2355 -- type's full invariant procedure.
2357 -- * Replace a reference to a discriminant of the parent type
2358 -- with a suitable value from the point of view of the
2361 -- * Replace a call to an overridden parent primitive with a
2362 -- call to the overriding derived type primitive.
2364 -- * Replace a call to an inherited parent primitive with a
2365 -- call to the internally-generated inherited derived type
2368 Expr
:= New_Copy_Tree
(Prag_Expr
);
2370 -- The parent type must have a "partial" invariant procedure
2371 -- because class-wide invariants are captured exclusively by
2374 Par_Proc
:= Partial_Invariant_Procedure
(Par_Typ
);
2375 pragma Assert
(Present
(Par_Proc
));
2380 Deriv_Typ
=> Deriv_Typ
,
2381 Par_Obj
=> First_Formal
(Par_Proc
),
2382 Deriv_Obj
=> Obj_Id
);
2384 Add_Invariant_Check
(Prag
, Expr
, Checks
, Inherited
=> True);
2387 Next_Rep_Item
(Prag
);
2389 end Add_Inherited_Invariants
;
2391 ------------------------------
2392 -- Add_Interface_Invariants --
2393 ------------------------------
2395 procedure Add_Interface_Invariants
2398 Checks
: in out List_Id
)
2400 Iface_Elmt
: Elmt_Id
;
2404 -- Generate an invariant check for each class-wide invariant coming
2405 -- from all interfaces implemented by type T.
2407 if Is_Tagged_Type
(T
) then
2408 Collect_Interfaces
(T
, Ifaces
);
2410 -- Process the class-wide invariants of all implemented interfaces
2412 Iface_Elmt
:= First_Elmt
(Ifaces
);
2413 while Present
(Iface_Elmt
) loop
2415 -- The Full_Typ parameter is intentionally left Empty because
2416 -- interfaces are treated as the partial view of a private type
2417 -- in order to achieve uniformity with the general case.
2419 Add_Inherited_Invariants
2421 Priv_Typ
=> Node
(Iface_Elmt
),
2426 Next_Elmt
(Iface_Elmt
);
2429 end Add_Interface_Invariants
;
2431 -------------------------
2432 -- Add_Invariant_Check --
2433 -------------------------
2435 procedure Add_Invariant_Check
2438 Checks
: in out List_Id
;
2439 Inherited
: Boolean := False)
2441 Args
: constant List_Id
:= Pragma_Argument_Associations
(Prag
);
2442 Nam
: constant Name_Id
:= Original_Aspect_Pragma_Name
(Prag
);
2443 Ploc
: constant Source_Ptr
:= Sloc
(Prag
);
2444 Str_Arg
: constant Node_Id
:= Next
(Next
(First
(Args
)));
2450 -- The invariant is ignored, nothing left to do
2452 if Is_Ignored
(Prag
) then
2455 -- Otherwise the invariant is checked. Build a pragma Check to verify
2456 -- the expression at run time.
2460 Make_Pragma_Argument_Association
(Ploc
,
2461 Expression
=> Make_Identifier
(Ploc
, Nam
)),
2462 Make_Pragma_Argument_Association
(Ploc
,
2463 Expression
=> Expr
));
2465 -- Handle the String argument (if any)
2467 if Present
(Str_Arg
) then
2468 Str
:= Strval
(Get_Pragma_Arg
(Str_Arg
));
2470 -- When inheriting an invariant, modify the message from
2471 -- "failed invariant" to "failed inherited invariant".
2474 String_To_Name_Buffer
(Str
);
2476 if Name_Buffer
(1 .. 16) = "failed invariant" then
2477 Insert_Str_In_Name_Buffer
("inherited ", 8);
2478 Str
:= String_From_Name_Buffer
;
2483 Make_Pragma_Argument_Association
(Ploc
,
2484 Expression
=> Make_String_Literal
(Ploc
, Str
)));
2488 -- pragma Check (<Nam>, <Expr>, <Str>);
2490 Append_New_To
(Checks
,
2492 Chars
=> Name_Check
,
2493 Pragma_Argument_Associations
=> Assoc
));
2496 -- Output an info message when inheriting an invariant and the
2497 -- listing option is enabled.
2499 if Inherited
and Opt
.List_Inherited_Aspects
then
2500 Error_Msg_Sloc
:= Sloc
(Prag
);
2502 ("info: & inherits `Invariant''Class` aspect from #?L?", Typ
);
2505 -- Add the pragma to the list of processed pragmas
2507 Append_New_Elmt
(Prag
, Pragmas_Seen
);
2508 Produced_Check
:= True;
2509 end Add_Invariant_Check
;
2511 ---------------------------
2512 -- Add_Parent_Invariants --
2513 ---------------------------
2515 procedure Add_Parent_Invariants
2518 Checks
: in out List_Id
)
2520 Dummy_1
: Entity_Id
;
2521 Dummy_2
: Entity_Id
;
2523 Curr_Typ
: Entity_Id
;
2524 -- The entity of the current type being examined
2526 Full_Typ
: Entity_Id
;
2527 -- The full view of Par_Typ
2529 Par_Typ
: Entity_Id
;
2530 -- The entity of the parent type
2532 Priv_Typ
: Entity_Id
;
2533 -- The partial view of Par_Typ
2536 -- Do not process array types because they cannot have true parent
2537 -- types. This also prevents the generation of a duplicate invariant
2538 -- check when the input type is an array base type because its Etype
2539 -- denotes the first subtype, both of which share the same component
2542 if Is_Array_Type
(T
) then
2546 -- Climb the parent type chain
2550 -- Do not consider subtypes as they inherit the invariants
2551 -- from their base types.
2553 Par_Typ
:= Base_Type
(Etype
(Curr_Typ
));
2555 -- Stop the climb once the root of the parent chain is
2558 exit when Curr_Typ
= Par_Typ
;
2560 -- Process the class-wide invariants of the parent type
2562 Get_Views
(Par_Typ
, Priv_Typ
, Full_Typ
, Dummy_1
, Dummy_2
);
2564 -- Process the elements of an array type
2566 if Is_Array_Type
(Full_Typ
) then
2567 Add_Array_Component_Invariants
(Full_Typ
, Obj_Id
, Checks
);
2569 -- Process the components of a record type
2571 elsif Ekind
(Full_Typ
) = E_Record_Type
then
2572 Add_Record_Component_Invariants
(Full_Typ
, Obj_Id
, Checks
);
2575 Add_Inherited_Invariants
2577 Priv_Typ
=> Priv_Typ
,
2578 Full_Typ
=> Full_Typ
,
2582 Curr_Typ
:= Par_Typ
;
2584 end Add_Parent_Invariants
;
2586 ------------------------
2587 -- Add_Own_Invariants --
2588 ------------------------
2590 procedure Add_Own_Invariants
2593 Checks
: in out List_Id
;
2594 Priv_Item
: Node_Id
:= Empty
)
2596 ASIS_Expr
: Node_Id
;
2600 Prag_Expr
: Node_Id
;
2601 Prag_Expr_Arg
: Node_Id
;
2603 Prag_Typ_Arg
: Node_Id
;
2606 if not Present
(T
) then
2610 Prag
:= First_Rep_Item
(T
);
2611 while Present
(Prag
) loop
2612 if Nkind
(Prag
) = N_Pragma
2613 and then Pragma_Name
(Prag
) = Name_Invariant
2615 -- Stop the traversal of the rep item chain once a specific
2616 -- item is encountered.
2618 if Present
(Priv_Item
) and then Prag
= Priv_Item
then
2622 -- Nothing to do if the pragma was already processed
2624 if Contains
(Pragmas_Seen
, Prag
) then
2628 -- Extract the arguments of the invariant pragma
2630 Prag_Typ_Arg
:= First
(Pragma_Argument_Associations
(Prag
));
2631 Prag_Expr_Arg
:= Next
(Prag_Typ_Arg
);
2632 Prag_Expr
:= Get_Pragma_Arg
(Prag_Expr_Arg
);
2633 Prag_Typ
:= Get_Pragma_Arg
(Prag_Typ_Arg
);
2634 Prag_Asp
:= Corresponding_Aspect
(Prag
);
2636 -- Verify the pragma belongs to T, otherwise the pragma applies
2637 -- to a parent type in which case it will be processed later by
2638 -- Add_Parent_Invariants or Add_Interface_Invariants.
2640 if Entity
(Prag_Typ
) /= T
then
2644 Expr
:= New_Copy_Tree
(Prag_Expr
);
2646 -- Substitute all references to type T with references to the
2647 -- _object formal parameter.
2649 Replace_Type_References
(Expr
, T
, Obj_Id
);
2651 -- Preanalyze the invariant expression to detect errors and at
2652 -- the same time capture the visibility of the proper package
2655 Set_Parent
(Expr
, Parent
(Prag_Expr
));
2656 Preanalyze_Assert_Expression
(Expr
, Any_Boolean
);
2658 -- Save a copy of the expression when T is tagged to detect
2659 -- errors and capture the visibility of the proper package part
2660 -- for the generation of inherited type invariants.
2662 if Is_Tagged_Type
(T
) then
2663 Set_Expression_Copy
(Prag_Expr_Arg
, New_Copy_Tree
(Expr
));
2666 -- If the pragma comes from an aspect specification, replace
2667 -- the saved expression because all type references must be
2668 -- substituted for the call to Preanalyze_Spec_Expression in
2669 -- Check_Aspect_At_xxx routines.
2671 if Present
(Prag_Asp
) then
2672 Set_Entity
(Identifier
(Prag_Asp
), New_Copy_Tree
(Expr
));
2675 -- Analyze the original invariant expression for ASIS
2680 if Comes_From_Source
(Prag
) then
2681 ASIS_Expr
:= Prag_Expr
;
2682 elsif Present
(Prag_Asp
) then
2683 ASIS_Expr
:= Expression
(Prag_Asp
);
2686 if Present
(ASIS_Expr
) then
2687 Replace_Type_References
(ASIS_Expr
, T
, Obj_Id
);
2688 Preanalyze_Assert_Expression
(ASIS_Expr
, Any_Boolean
);
2692 Add_Invariant_Check
(Prag
, Expr
, Checks
);
2695 Next_Rep_Item
(Prag
);
2697 end Add_Own_Invariants
;
2699 -------------------------------------
2700 -- Add_Record_Component_Invariants --
2701 -------------------------------------
2703 procedure Add_Record_Component_Invariants
2706 Checks
: in out List_Id
)
2708 procedure Process_Component_List
2709 (Comp_List
: Node_Id
;
2710 CL_Checks
: in out List_Id
);
2711 -- Generate invariant checks for all record components found in
2712 -- component list Comp_List, including variant parts. All created
2713 -- checks are added to list CL_Checks.
2715 procedure Process_Record_Component
2716 (Comp_Id
: Entity_Id
;
2717 Comp_Checks
: in out List_Id
);
2718 -- Generate an invariant check for a record component identified by
2719 -- Comp_Id. All created checks are added to list Comp_Checks.
2721 ----------------------------
2722 -- Process_Component_List --
2723 ----------------------------
2725 procedure Process_Component_List
2726 (Comp_List
: Node_Id
;
2727 CL_Checks
: in out List_Id
)
2731 Var_Alts
: List_Id
:= No_List
;
2732 Var_Checks
: List_Id
:= No_List
;
2733 Var_Stmts
: List_Id
;
2735 Produced_Variant_Check
: Boolean := False;
2736 -- This flag tracks whether the component has produced at least
2737 -- one invariant check.
2740 -- Traverse the component items
2742 Comp
:= First
(Component_Items
(Comp_List
));
2743 while Present
(Comp
) loop
2744 if Nkind
(Comp
) = N_Component_Declaration
then
2746 -- Generate the component invariant check
2748 Process_Record_Component
2749 (Comp_Id
=> Defining_Entity
(Comp
),
2750 Comp_Checks
=> CL_Checks
);
2756 -- Traverse the variant part
2758 if Present
(Variant_Part
(Comp_List
)) then
2759 Var
:= First
(Variants
(Variant_Part
(Comp_List
)));
2760 while Present
(Var
) loop
2761 Var_Checks
:= No_List
;
2763 -- Generate invariant checks for all components and variant
2764 -- parts that qualify.
2766 Process_Component_List
2767 (Comp_List
=> Component_List
(Var
),
2768 CL_Checks
=> Var_Checks
);
2770 -- The components of the current variant produced at least
2771 -- one invariant check.
2773 if Present
(Var_Checks
) then
2774 Var_Stmts
:= Var_Checks
;
2775 Produced_Variant_Check
:= True;
2777 -- Otherwise there are either no components with invariants,
2778 -- assertions are disabled, or Assertion_Policy Ignore is in
2782 Var_Stmts
:= New_List
(Make_Null_Statement
(Loc
));
2785 Append_New_To
(Var_Alts
,
2786 Make_Case_Statement_Alternative
(Loc
,
2788 New_Copy_List
(Discrete_Choices
(Var
)),
2789 Statements
=> Var_Stmts
));
2794 -- Create a case statement which verifies the invariant checks
2795 -- of a particular component list depending on the discriminant
2796 -- values only when there is at least one real invariant check.
2798 if Produced_Variant_Check
then
2799 Append_New_To
(CL_Checks
,
2800 Make_Case_Statement
(Loc
,
2802 Make_Selected_Component
(Loc
,
2803 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
2806 (Entity
(Name
(Variant_Part
(Comp_List
))), Loc
)),
2807 Alternatives
=> Var_Alts
));
2810 end Process_Component_List
;
2812 ------------------------------
2813 -- Process_Record_Component --
2814 ------------------------------
2816 procedure Process_Record_Component
2817 (Comp_Id
: Entity_Id
;
2818 Comp_Checks
: in out List_Id
)
2820 Comp_Typ
: constant Entity_Id
:= Etype
(Comp_Id
);
2821 Proc_Id
: Entity_Id
;
2823 Produced_Component_Check
: Boolean := False;
2824 -- This flag tracks whether the component has produced at least
2825 -- one invariant check.
2828 -- Nothing to do for internal component _parent. Note that it is
2829 -- not desirable to check whether the component comes from source
2830 -- because protected type components are relocated to an internal
2831 -- corresponding record, but still need processing.
2833 if Chars
(Comp_Id
) = Name_uParent
then
2837 -- Verify the invariant of the component. Note that an access
2838 -- type may have an invariant when it acts as the full view of a
2839 -- private type and the invariant appears on the partial view. In
2840 -- this case verify the access value itself.
2842 if Has_Invariants
(Comp_Typ
) then
2844 -- In GNATprove mode, the component invariants are checked by
2845 -- other means. They should not be added to the record type
2846 -- invariant procedure, so that the procedure can be used to
2847 -- check the record type invariants if any.
2849 if GNATprove_Mode
then
2853 Proc_Id
:= Invariant_Procedure
(Base_Type
(Comp_Typ
));
2855 -- The component type should have an invariant procedure
2856 -- if it has invariants of its own or inherits class-wide
2857 -- invariants from parent or interface types.
2859 pragma Assert
(Present
(Proc_Id
));
2862 -- <Comp_Typ>Invariant (T (_object).<Comp_Id>);
2864 -- Note that the invariant procedure may have a null body if
2865 -- assertions are disabled or Assertion_Policy Ignore is in
2868 if not Has_Null_Body
(Proc_Id
) then
2869 Append_New_To
(Comp_Checks
,
2870 Make_Procedure_Call_Statement
(Loc
,
2872 New_Occurrence_Of
(Proc_Id
, Loc
),
2873 Parameter_Associations
=> New_List
(
2874 Make_Selected_Component
(Loc
,
2876 Unchecked_Convert_To
2877 (T
, New_Occurrence_Of
(Obj_Id
, Loc
)),
2879 New_Occurrence_Of
(Comp_Id
, Loc
)))));
2883 Produced_Check
:= True;
2884 Produced_Component_Check
:= True;
2887 if Produced_Component_Check
and then Has_Unchecked_Union
(T
) then
2889 ("invariants cannot be checked on components of "
2890 & "unchecked_union type &?", Comp_Id
, T
);
2892 end Process_Record_Component
;
2899 -- Start of processing for Add_Record_Component_Invariants
2902 -- An untagged derived type inherits the components of its parent
2903 -- type. In order to avoid creating redundant invariant checks, do
2904 -- not process the components now. Instead wait until the ultimate
2905 -- parent of the untagged derivation chain is reached.
2907 if not Is_Untagged_Derivation
(T
) then
2908 Def
:= Type_Definition
(Parent
(T
));
2910 if Nkind
(Def
) = N_Derived_Type_Definition
then
2911 Def
:= Record_Extension_Part
(Def
);
2914 pragma Assert
(Nkind
(Def
) = N_Record_Definition
);
2915 Comps
:= Component_List
(Def
);
2917 if Present
(Comps
) then
2918 Process_Component_List
2919 (Comp_List
=> Comps
,
2920 CL_Checks
=> Checks
);
2923 end Add_Record_Component_Invariants
;
2927 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
2928 -- Save the Ghost mode to restore on exit
2931 Priv_Item
: Node_Id
;
2932 Proc_Body
: Node_Id
;
2933 Proc_Body_Id
: Entity_Id
;
2934 Proc_Decl
: Node_Id
;
2935 Proc_Id
: Entity_Id
;
2936 Stmts
: List_Id
:= No_List
;
2938 CRec_Typ
: Entity_Id
:= Empty
;
2939 -- The corresponding record type of Full_Typ
2941 Full_Proc
: Entity_Id
:= Empty
;
2942 -- The entity of the "full" invariant procedure
2944 Full_Typ
: Entity_Id
:= Empty
;
2945 -- The full view of the working type
2947 Obj_Id
: Entity_Id
:= Empty
;
2948 -- The _object formal parameter of the invariant procedure
2950 Part_Proc
: Entity_Id
:= Empty
;
2951 -- The entity of the "partial" invariant procedure
2953 Priv_Typ
: Entity_Id
:= Empty
;
2954 -- The partial view of the working type
2956 Work_Typ
: Entity_Id
:= Empty
;
2959 -- Start of processing for Build_Invariant_Procedure_Body
2964 -- The input type denotes the implementation base type of a constrained
2965 -- array type. Work with the first subtype as all invariant pragmas are
2966 -- on its rep item chain.
2968 if Ekind
(Work_Typ
) = E_Array_Type
and then Is_Itype
(Work_Typ
) then
2969 Work_Typ
:= First_Subtype
(Work_Typ
);
2971 -- The input type denotes the corresponding record type of a protected
2972 -- or task type. Work with the concurrent type because the corresponding
2973 -- record type may not be visible to clients of the type.
2975 elsif Ekind
(Work_Typ
) = E_Record_Type
2976 and then Is_Concurrent_Record_Type
(Work_Typ
)
2978 Work_Typ
:= Corresponding_Concurrent_Type
(Work_Typ
);
2981 -- The working type may be subject to pragma Ghost. Set the mode now to
2982 -- ensure that the invariant procedure is properly marked as Ghost.
2984 Set_Ghost_Mode
(Work_Typ
);
2986 -- The type must either have invariants of its own, inherit class-wide
2987 -- invariants from parent types or interfaces, or be an array or record
2988 -- type whose components have invariants.
2990 pragma Assert
(Has_Invariants
(Work_Typ
));
2992 -- Interfaces are treated as the partial view of a private type in order
2993 -- to achieve uniformity with the general case.
2995 if Is_Interface
(Work_Typ
) then
2996 Priv_Typ
:= Work_Typ
;
2998 -- Otherwise obtain both views of the type
3001 Get_Views
(Work_Typ
, Priv_Typ
, Full_Typ
, Dummy
, CRec_Typ
);
3004 -- The caller requests a body for the partial invariant procedure
3006 if Partial_Invariant
then
3007 Full_Proc
:= Invariant_Procedure
(Work_Typ
);
3008 Proc_Id
:= Partial_Invariant_Procedure
(Work_Typ
);
3010 -- The "full" invariant procedure body was already created
3012 if Present
(Full_Proc
)
3014 (Corresponding_Body
(Unit_Declaration_Node
(Full_Proc
)))
3016 -- This scenario happens only when the type is an untagged
3017 -- derivation from a private parent and the underlying full
3018 -- view was processed before the partial view.
3021 (Is_Untagged_Private_Derivation
(Priv_Typ
, Full_Typ
));
3023 -- Nothing to do because the processing of the underlying full
3024 -- view already checked the invariants of the partial view.
3029 -- Create a declaration for the "partial" invariant procedure if it
3030 -- is not available.
3032 if No
(Proc_Id
) then
3033 Build_Invariant_Procedure_Declaration
3035 Partial_Invariant
=> True);
3037 Proc_Id
:= Partial_Invariant_Procedure
(Work_Typ
);
3040 -- The caller requests a body for the "full" invariant procedure
3043 Proc_Id
:= Invariant_Procedure
(Work_Typ
);
3044 Part_Proc
:= Partial_Invariant_Procedure
(Work_Typ
);
3046 -- Create a declaration for the "full" invariant procedure if it is
3049 if No
(Proc_Id
) then
3050 Build_Invariant_Procedure_Declaration
(Work_Typ
);
3051 Proc_Id
:= Invariant_Procedure
(Work_Typ
);
3055 -- At this point there should be an invariant procedure declaration
3057 pragma Assert
(Present
(Proc_Id
));
3058 Proc_Decl
:= Unit_Declaration_Node
(Proc_Id
);
3060 -- Nothing to do if the invariant procedure already has a body
3062 if Present
(Corresponding_Body
(Proc_Decl
)) then
3066 -- Emulate the environment of the invariant procedure by installing its
3067 -- scope and formal parameters. Note that this is not needed, but having
3068 -- the scope installed helps with the detection of invariant-related
3071 Push_Scope
(Proc_Id
);
3072 Install_Formals
(Proc_Id
);
3074 Obj_Id
:= First_Formal
(Proc_Id
);
3075 pragma Assert
(Present
(Obj_Id
));
3077 -- The "partial" invariant procedure verifies the invariants of the
3078 -- partial view only.
3080 if Partial_Invariant
then
3081 pragma Assert
(Present
(Priv_Typ
));
3088 -- Otherwise the "full" invariant procedure verifies the invariants of
3089 -- the full view, all array or record components, as well as class-wide
3090 -- invariants inherited from parent types or interfaces. In addition, it
3091 -- indirectly verifies the invariants of the partial view by calling the
3092 -- "partial" invariant procedure.
3095 pragma Assert
(Present
(Full_Typ
));
3097 -- Check the invariants of the partial view by calling the "partial"
3098 -- invariant procedure. Generate:
3100 -- <Work_Typ>Partial_Invariant (_object);
3102 if Present
(Part_Proc
) then
3103 Append_New_To
(Stmts
,
3104 Make_Procedure_Call_Statement
(Loc
,
3105 Name
=> New_Occurrence_Of
(Part_Proc
, Loc
),
3106 Parameter_Associations
=> New_List
(
3107 New_Occurrence_Of
(Obj_Id
, Loc
))));
3109 Produced_Check
:= True;
3114 -- Derived subtypes do not have a partial view
3116 if Present
(Priv_Typ
) then
3118 -- The processing of the "full" invariant procedure intentionally
3119 -- skips the partial view because a) this may result in changes of
3120 -- visibility and b) lead to duplicate checks. However, when the
3121 -- full view is the underlying full view of an untagged derived
3122 -- type whose parent type is private, partial invariants appear on
3123 -- the rep item chain of the partial view only.
3125 -- package Pack_1 is
3126 -- type Root ... is private;
3128 -- <full view of Root>
3132 -- package Pack_2 is
3133 -- type Child is new Pack_1.Root with Type_Invariant => ...;
3134 -- <underlying full view of Child>
3137 -- As a result, the processing of the full view must also consider
3138 -- all invariants of the partial view.
3140 if Is_Untagged_Private_Derivation
(Priv_Typ
, Full_Typ
) then
3143 -- Otherwise the invariants of the partial view are ignored
3146 -- Note that the rep item chain is shared between the partial
3147 -- and full views of a type. To avoid processing the invariants
3148 -- of the partial view, signal the logic to stop when the first
3149 -- rep item of the partial view has been reached.
3151 Priv_Item
:= First_Rep_Item
(Priv_Typ
);
3153 -- Ignore the invariants of the partial view by eliminating the
3160 -- Process the invariants of the full view and in certain cases those
3161 -- of the partial view. This also handles any invariants on array or
3162 -- record components.
3168 Priv_Item
=> Priv_Item
);
3174 Priv_Item
=> Priv_Item
);
3176 -- Process the elements of an array type
3178 if Is_Array_Type
(Full_Typ
) then
3179 Add_Array_Component_Invariants
(Full_Typ
, Obj_Id
, Stmts
);
3181 -- Process the components of a record type
3183 elsif Ekind
(Full_Typ
) = E_Record_Type
then
3184 Add_Record_Component_Invariants
(Full_Typ
, Obj_Id
, Stmts
);
3186 -- Process the components of a corresponding record
3188 elsif Present
(CRec_Typ
) then
3189 Add_Record_Component_Invariants
(CRec_Typ
, Obj_Id
, Stmts
);
3192 -- Process the inherited class-wide invariants of all parent types.
3193 -- This also handles any invariants on record components.
3195 Add_Parent_Invariants
(Full_Typ
, Obj_Id
, Stmts
);
3197 -- Process the inherited class-wide invariants of all implemented
3200 Add_Interface_Invariants
(Full_Typ
, Obj_Id
, Stmts
);
3205 -- At this point there should be at least one invariant check. If this
3206 -- is not the case, then the invariant-related flags were not properly
3207 -- set, or there is a missing invariant procedure on one of the array
3208 -- or record components.
3210 pragma Assert
(Produced_Check
);
3212 -- Account for the case where assertions are disabled or all invariant
3213 -- checks are subject to Assertion_Policy Ignore. Produce a completing
3217 Stmts
:= New_List
(Make_Null_Statement
(Loc
));
3221 -- procedure <Work_Typ>[Partial_]Invariant (_object : <Obj_Typ>) is
3224 -- end <Work_Typ>[Partial_]Invariant;
3227 Make_Subprogram_Body
(Loc
,
3229 Copy_Subprogram_Spec
(Parent
(Proc_Id
)),
3230 Declarations
=> Empty_List
,
3231 Handled_Statement_Sequence
=>
3232 Make_Handled_Sequence_Of_Statements
(Loc
,
3233 Statements
=> Stmts
));
3234 Proc_Body_Id
:= Defining_Entity
(Proc_Body
);
3236 -- Perform minor decoration in case the body is not analyzed
3238 Set_Ekind
(Proc_Body_Id
, E_Subprogram_Body
);
3239 Set_Etype
(Proc_Body_Id
, Standard_Void_Type
);
3240 Set_Scope
(Proc_Body_Id
, Current_Scope
);
3242 -- Link both spec and body to avoid generating duplicates
3244 Set_Corresponding_Body
(Proc_Decl
, Proc_Body_Id
);
3245 Set_Corresponding_Spec
(Proc_Body
, Proc_Id
);
3247 -- The body should not be inserted into the tree when the context is
3248 -- ASIS or a generic unit because it is not part of the template. Note
3249 -- that the body must still be generated in order to resolve the
3252 if ASIS_Mode
or Inside_A_Generic
then
3255 -- Semi-insert the body into the tree for GNATprove by setting its
3256 -- Parent field. This allows for proper upstream tree traversals.
3258 elsif GNATprove_Mode
then
3259 Set_Parent
(Proc_Body
, Parent
(Declaration_Node
(Work_Typ
)));
3261 -- Otherwise the body is part of the freezing actions of the type
3264 Append_Freeze_Action
(Work_Typ
, Proc_Body
);
3268 Restore_Ghost_Mode
(Saved_GM
);
3269 end Build_Invariant_Procedure_Body
;
3271 -------------------------------------------
3272 -- Build_Invariant_Procedure_Declaration --
3273 -------------------------------------------
3275 -- WARNING: This routine manages Ghost regions. Return statements must be
3276 -- replaced by gotos which jump to the end of the routine and restore the
3279 procedure Build_Invariant_Procedure_Declaration
3281 Partial_Invariant
: Boolean := False)
3283 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
3285 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
3286 -- Save the Ghost mode to restore on exit
3288 Proc_Decl
: Node_Id
;
3289 Proc_Id
: Entity_Id
;
3293 CRec_Typ
: Entity_Id
;
3294 -- The corresponding record type of Full_Typ
3296 Full_Base
: Entity_Id
;
3297 -- The base type of Full_Typ
3299 Full_Typ
: Entity_Id
;
3300 -- The full view of working type
3303 -- The _object formal parameter of the invariant procedure
3305 Obj_Typ
: Entity_Id
;
3306 -- The type of the _object formal parameter
3308 Priv_Typ
: Entity_Id
;
3309 -- The partial view of working type
3311 Work_Typ
: Entity_Id
;
3317 -- The input type denotes the implementation base type of a constrained
3318 -- array type. Work with the first subtype as all invariant pragmas are
3319 -- on its rep item chain.
3321 if Ekind
(Work_Typ
) = E_Array_Type
and then Is_Itype
(Work_Typ
) then
3322 Work_Typ
:= First_Subtype
(Work_Typ
);
3324 -- The input denotes the corresponding record type of a protected or a
3325 -- task type. Work with the concurrent type because the corresponding
3326 -- record type may not be visible to clients of the type.
3328 elsif Ekind
(Work_Typ
) = E_Record_Type
3329 and then Is_Concurrent_Record_Type
(Work_Typ
)
3331 Work_Typ
:= Corresponding_Concurrent_Type
(Work_Typ
);
3334 -- The working type may be subject to pragma Ghost. Set the mode now to
3335 -- ensure that the invariant procedure is properly marked as Ghost.
3337 Set_Ghost_Mode
(Work_Typ
);
3339 -- The type must either have invariants of its own, inherit class-wide
3340 -- invariants from parent or interface types, or be an array or record
3341 -- type whose components have invariants.
3343 pragma Assert
(Has_Invariants
(Work_Typ
));
3345 -- Nothing to do if the type already has a "partial" invariant procedure
3347 if Partial_Invariant
then
3348 if Present
(Partial_Invariant_Procedure
(Work_Typ
)) then
3352 -- Nothing to do if the type already has a "full" invariant procedure
3354 elsif Present
(Invariant_Procedure
(Work_Typ
)) then
3358 -- The caller requests the declaration of the "partial" invariant
3361 if Partial_Invariant
then
3362 Proc_Nam
:= New_External_Name
(Chars
(Work_Typ
), "Partial_Invariant");
3364 -- Otherwise the caller requests the declaration of the "full" invariant
3368 Proc_Nam
:= New_External_Name
(Chars
(Work_Typ
), "Invariant");
3371 Proc_Id
:= Make_Defining_Identifier
(Loc
, Chars
=> Proc_Nam
);
3373 -- Perform minor decoration in case the declaration is not analyzed
3375 Set_Ekind
(Proc_Id
, E_Procedure
);
3376 Set_Etype
(Proc_Id
, Standard_Void_Type
);
3377 Set_Scope
(Proc_Id
, Current_Scope
);
3379 if Partial_Invariant
then
3380 Set_Is_Partial_Invariant_Procedure
(Proc_Id
);
3381 Set_Partial_Invariant_Procedure
(Work_Typ
, Proc_Id
);
3383 Set_Is_Invariant_Procedure
(Proc_Id
);
3384 Set_Invariant_Procedure
(Work_Typ
, Proc_Id
);
3387 -- The invariant procedure requires debug info when the invariants are
3388 -- subject to Source Coverage Obligations.
3390 if Generate_SCO
then
3391 Set_Needs_Debug_Info
(Proc_Id
);
3394 -- Obtain all views of the input type
3396 Get_Views
(Work_Typ
, Priv_Typ
, Full_Typ
, Full_Base
, CRec_Typ
);
3398 -- Associate the invariant procedure with all views
3400 Propagate_Invariant_Attributes
(Priv_Typ
, From_Typ
=> Work_Typ
);
3401 Propagate_Invariant_Attributes
(Full_Typ
, From_Typ
=> Work_Typ
);
3402 Propagate_Invariant_Attributes
(Full_Base
, From_Typ
=> Work_Typ
);
3403 Propagate_Invariant_Attributes
(CRec_Typ
, From_Typ
=> Work_Typ
);
3405 -- The declaration of the invariant procedure is inserted after the
3406 -- declaration of the partial view as this allows for proper external
3409 if Present
(Priv_Typ
) then
3410 Typ_Decl
:= Declaration_Node
(Priv_Typ
);
3412 -- Anonymous arrays in object declarations have no explicit declaration
3413 -- so use the related object declaration as the insertion point.
3415 elsif Is_Itype
(Work_Typ
) and then Is_Array_Type
(Work_Typ
) then
3416 Typ_Decl
:= Associated_Node_For_Itype
(Work_Typ
);
3418 -- Derived types with the full view as parent do not have a partial
3419 -- view. Insert the invariant procedure after the derived type.
3422 Typ_Decl
:= Declaration_Node
(Full_Typ
);
3425 -- The type should have a declarative node
3427 pragma Assert
(Present
(Typ_Decl
));
3429 -- Create the formal parameter which emulates the variable-like behavior
3430 -- of the current type instance.
3432 Obj_Id
:= Make_Defining_Identifier
(Loc
, Chars
=> Name_uObject
);
3434 -- When generating an invariant procedure declaration for an abstract
3435 -- type (including interfaces), use the class-wide type as the _object
3436 -- type. This has several desirable effects:
3438 -- * The invariant procedure does not become a primitive of the type.
3439 -- This eliminates the need to either special case the treatment of
3440 -- invariant procedures, or to make it a predefined primitive and
3441 -- force every derived type to potentially provide an empty body.
3443 -- * The invariant procedure does not need to be declared as abstract.
3444 -- This allows for a proper body, which in turn avoids redundant
3445 -- processing of the same invariants for types with multiple views.
3447 -- * The class-wide type allows for calls to abstract primitives
3448 -- within a nonabstract subprogram. The calls are treated as
3449 -- dispatching and require additional processing when they are
3450 -- remapped to call primitives of derived types. See routine
3451 -- Replace_References for details.
3453 if Is_Abstract_Type
(Work_Typ
) then
3454 Obj_Typ
:= Class_Wide_Type
(Work_Typ
);
3456 Obj_Typ
:= Work_Typ
;
3459 -- Perform minor decoration in case the declaration is not analyzed
3461 Set_Ekind
(Obj_Id
, E_In_Parameter
);
3462 Set_Etype
(Obj_Id
, Obj_Typ
);
3463 Set_Scope
(Obj_Id
, Proc_Id
);
3465 Set_First_Entity
(Proc_Id
, Obj_Id
);
3468 -- procedure <Work_Typ>[Partial_]Invariant (_object : <Obj_Typ>);
3471 Make_Subprogram_Declaration
(Loc
,
3473 Make_Procedure_Specification
(Loc
,
3474 Defining_Unit_Name
=> Proc_Id
,
3475 Parameter_Specifications
=> New_List
(
3476 Make_Parameter_Specification
(Loc
,
3477 Defining_Identifier
=> Obj_Id
,
3478 Parameter_Type
=> New_Occurrence_Of
(Obj_Typ
, Loc
)))));
3480 -- The declaration should not be inserted into the tree when the context
3481 -- is ASIS or a generic unit because it is not part of the template.
3483 if ASIS_Mode
or Inside_A_Generic
then
3486 -- Semi-insert the declaration into the tree for GNATprove by setting
3487 -- its Parent field. This allows for proper upstream tree traversals.
3489 elsif GNATprove_Mode
then
3490 Set_Parent
(Proc_Decl
, Parent
(Typ_Decl
));
3492 -- Otherwise insert the declaration
3495 pragma Assert
(Present
(Typ_Decl
));
3496 Insert_After_And_Analyze
(Typ_Decl
, Proc_Decl
);
3500 Restore_Ghost_Mode
(Saved_GM
);
3501 end Build_Invariant_Procedure_Declaration
;
3503 --------------------------
3504 -- Build_Procedure_Form --
3505 --------------------------
3507 procedure Build_Procedure_Form
(N
: Node_Id
) is
3508 Loc
: constant Source_Ptr
:= Sloc
(N
);
3509 Subp
: constant Entity_Id
:= Defining_Entity
(N
);
3511 Func_Formal
: Entity_Id
;
3512 Proc_Formals
: List_Id
;
3513 Proc_Decl
: Node_Id
;
3516 -- No action needed if this transformation was already done, or in case
3517 -- of subprogram renaming declarations.
3519 if Nkind
(Specification
(N
)) = N_Procedure_Specification
3520 or else Nkind
(N
) = N_Subprogram_Renaming_Declaration
3525 -- Ditto when dealing with an expression function, where both the
3526 -- original expression and the generated declaration end up being
3529 if Rewritten_For_C
(Subp
) then
3533 Proc_Formals
:= New_List
;
3535 -- Create a list of formal parameters with the same types as the
3538 Func_Formal
:= First_Formal
(Subp
);
3539 while Present
(Func_Formal
) loop
3540 Append_To
(Proc_Formals
,
3541 Make_Parameter_Specification
(Loc
,
3542 Defining_Identifier
=>
3543 Make_Defining_Identifier
(Loc
, Chars
(Func_Formal
)),
3545 New_Occurrence_Of
(Etype
(Func_Formal
), Loc
)));
3547 Next_Formal
(Func_Formal
);
3550 -- Add an extra out parameter to carry the function result
3553 Name_Buffer
(1 .. Name_Len
) := "RESULT";
3554 Append_To
(Proc_Formals
,
3555 Make_Parameter_Specification
(Loc
,
3556 Defining_Identifier
=>
3557 Make_Defining_Identifier
(Loc
, Chars
=> Name_Find
),
3558 Out_Present
=> True,
3559 Parameter_Type
=> New_Occurrence_Of
(Etype
(Subp
), Loc
)));
3561 -- The new procedure declaration is inserted immediately after the
3562 -- function declaration. The processing in Build_Procedure_Body_Form
3563 -- relies on this order.
3566 Make_Subprogram_Declaration
(Loc
,
3568 Make_Procedure_Specification
(Loc
,
3569 Defining_Unit_Name
=>
3570 Make_Defining_Identifier
(Loc
, Chars
(Subp
)),
3571 Parameter_Specifications
=> Proc_Formals
));
3573 Insert_After_And_Analyze
(Unit_Declaration_Node
(Subp
), Proc_Decl
);
3575 -- Entity of procedure must remain invisible so that it does not
3576 -- overload subsequent references to the original function.
3578 Set_Is_Immediately_Visible
(Defining_Entity
(Proc_Decl
), False);
3580 -- Mark the function as having a procedure form and link the function
3581 -- and its internally built procedure.
3583 Set_Rewritten_For_C
(Subp
);
3584 Set_Corresponding_Procedure
(Subp
, Defining_Entity
(Proc_Decl
));
3585 Set_Corresponding_Function
(Defining_Entity
(Proc_Decl
), Subp
);
3586 end Build_Procedure_Form
;
3588 ------------------------
3589 -- Build_Runtime_Call --
3590 ------------------------
3592 function Build_Runtime_Call
(Loc
: Source_Ptr
; RE
: RE_Id
) return Node_Id
is
3594 -- If entity is not available, we can skip making the call (this avoids
3595 -- junk duplicated error messages in a number of cases).
3597 if not RTE_Available
(RE
) then
3598 return Make_Null_Statement
(Loc
);
3601 Make_Procedure_Call_Statement
(Loc
,
3602 Name
=> New_Occurrence_Of
(RTE
(RE
), Loc
));
3604 end Build_Runtime_Call
;
3606 ------------------------
3607 -- Build_SS_Mark_Call --
3608 ------------------------
3610 function Build_SS_Mark_Call
3612 Mark
: Entity_Id
) return Node_Id
3616 -- Mark : constant Mark_Id := SS_Mark;
3619 Make_Object_Declaration
(Loc
,
3620 Defining_Identifier
=> Mark
,
3621 Constant_Present
=> True,
3622 Object_Definition
=>
3623 New_Occurrence_Of
(RTE
(RE_Mark_Id
), Loc
),
3625 Make_Function_Call
(Loc
,
3626 Name
=> New_Occurrence_Of
(RTE
(RE_SS_Mark
), Loc
)));
3627 end Build_SS_Mark_Call
;
3629 ---------------------------
3630 -- Build_SS_Release_Call --
3631 ---------------------------
3633 function Build_SS_Release_Call
3635 Mark
: Entity_Id
) return Node_Id
3639 -- SS_Release (Mark);
3642 Make_Procedure_Call_Statement
(Loc
,
3644 New_Occurrence_Of
(RTE
(RE_SS_Release
), Loc
),
3645 Parameter_Associations
=> New_List
(
3646 New_Occurrence_Of
(Mark
, Loc
)));
3647 end Build_SS_Release_Call
;
3649 ----------------------------
3650 -- Build_Task_Array_Image --
3651 ----------------------------
3653 -- This function generates the body for a function that constructs the
3654 -- image string for a task that is an array component. The function is
3655 -- local to the init proc for the array type, and is called for each one
3656 -- of the components. The constructed image has the form of an indexed
3657 -- component, whose prefix is the outer variable of the array type.
3658 -- The n-dimensional array type has known indexes Index, Index2...
3660 -- Id_Ref is an indexed component form created by the enclosing init proc.
3661 -- Its successive indexes are Val1, Val2, ... which are the loop variables
3662 -- in the loops that call the individual task init proc on each component.
3664 -- The generated function has the following structure:
3666 -- function F return String is
3667 -- Pref : string renames Task_Name;
3668 -- T1 : String := Index1'Image (Val1);
3670 -- Tn : String := indexn'image (Valn);
3671 -- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
3672 -- -- Len includes commas and the end parentheses.
3673 -- Res : String (1..Len);
3674 -- Pos : Integer := Pref'Length;
3677 -- Res (1 .. Pos) := Pref;
3679 -- Res (Pos) := '(';
3681 -- Res (Pos .. Pos + T1'Length - 1) := T1;
3682 -- Pos := Pos + T1'Length;
3683 -- Res (Pos) := '.';
3686 -- Res (Pos .. Pos + Tn'Length - 1) := Tn;
3687 -- Res (Len) := ')';
3692 -- Needless to say, multidimensional arrays of tasks are rare enough that
3693 -- the bulkiness of this code is not really a concern.
3695 function Build_Task_Array_Image
3699 Dyn
: Boolean := False) return Node_Id
3701 Dims
: constant Nat
:= Number_Dimensions
(A_Type
);
3702 -- Number of dimensions for array of tasks
3704 Temps
: array (1 .. Dims
) of Entity_Id
;
3705 -- Array of temporaries to hold string for each index
3711 -- Total length of generated name
3714 -- Running index for substring assignments
3716 Pref
: constant Entity_Id
:= Make_Temporary
(Loc
, 'P');
3717 -- Name of enclosing variable, prefix of resulting name
3720 -- String to hold result
3723 -- Value of successive indexes
3726 -- Expression to compute total size of string
3729 -- Entity for name at one index position
3731 Decls
: constant List_Id
:= New_List
;
3732 Stats
: constant List_Id
:= New_List
;
3735 -- For a dynamic task, the name comes from the target variable. For a
3736 -- static one it is a formal of the enclosing init proc.
3739 Get_Name_String
(Chars
(Entity
(Prefix
(Id_Ref
))));
3741 Make_Object_Declaration
(Loc
,
3742 Defining_Identifier
=> Pref
,
3743 Object_Definition
=> New_Occurrence_Of
(Standard_String
, Loc
),
3745 Make_String_Literal
(Loc
,
3746 Strval
=> String_From_Name_Buffer
)));
3750 Make_Object_Renaming_Declaration
(Loc
,
3751 Defining_Identifier
=> Pref
,
3752 Subtype_Mark
=> New_Occurrence_Of
(Standard_String
, Loc
),
3753 Name
=> Make_Identifier
(Loc
, Name_uTask_Name
)));
3756 Indx
:= First_Index
(A_Type
);
3757 Val
:= First
(Expressions
(Id_Ref
));
3759 for J
in 1 .. Dims
loop
3760 T
:= Make_Temporary
(Loc
, 'T');
3764 Make_Object_Declaration
(Loc
,
3765 Defining_Identifier
=> T
,
3766 Object_Definition
=> New_Occurrence_Of
(Standard_String
, Loc
),
3768 Make_Attribute_Reference
(Loc
,
3769 Attribute_Name
=> Name_Image
,
3770 Prefix
=> New_Occurrence_Of
(Etype
(Indx
), Loc
),
3771 Expressions
=> New_List
(New_Copy_Tree
(Val
)))));
3777 Sum
:= Make_Integer_Literal
(Loc
, Dims
+ 1);
3783 Make_Attribute_Reference
(Loc
,
3784 Attribute_Name
=> Name_Length
,
3785 Prefix
=> New_Occurrence_Of
(Pref
, Loc
),
3786 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, 1))));
3788 for J
in 1 .. Dims
loop
3793 Make_Attribute_Reference
(Loc
,
3794 Attribute_Name
=> Name_Length
,
3796 New_Occurrence_Of
(Temps
(J
), Loc
),
3797 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, 1))));
3800 Build_Task_Image_Prefix
(Loc
, Len
, Res
, Pos
, Pref
, Sum
, Decls
, Stats
);
3802 Set_Character_Literal_Name
(Char_Code
(Character'Pos ('(')));
3805 Make_Assignment_Statement
(Loc
,
3807 Make_Indexed_Component
(Loc
,
3808 Prefix
=> New_Occurrence_Of
(Res
, Loc
),
3809 Expressions
=> New_List
(New_Occurrence_Of
(Pos
, Loc
))),
3811 Make_Character_Literal
(Loc
,
3813 Char_Literal_Value
=> UI_From_Int
(Character'Pos ('(')))));
3816 Make_Assignment_Statement
(Loc
,
3817 Name
=> New_Occurrence_Of
(Pos
, Loc
),
3820 Left_Opnd
=> New_Occurrence_Of
(Pos
, Loc
),
3821 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))));
3823 for J
in 1 .. Dims
loop
3826 Make_Assignment_Statement
(Loc
,
3829 Prefix
=> New_Occurrence_Of
(Res
, Loc
),
3832 Low_Bound
=> New_Occurrence_Of
(Pos
, Loc
),
3834 Make_Op_Subtract
(Loc
,
3837 Left_Opnd
=> New_Occurrence_Of
(Pos
, Loc
),
3839 Make_Attribute_Reference
(Loc
,
3840 Attribute_Name
=> Name_Length
,
3842 New_Occurrence_Of
(Temps
(J
), Loc
),
3844 New_List
(Make_Integer_Literal
(Loc
, 1)))),
3845 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)))),
3847 Expression
=> New_Occurrence_Of
(Temps
(J
), Loc
)));
3851 Make_Assignment_Statement
(Loc
,
3852 Name
=> New_Occurrence_Of
(Pos
, Loc
),
3855 Left_Opnd
=> New_Occurrence_Of
(Pos
, Loc
),
3857 Make_Attribute_Reference
(Loc
,
3858 Attribute_Name
=> Name_Length
,
3859 Prefix
=> New_Occurrence_Of
(Temps
(J
), Loc
),
3861 New_List
(Make_Integer_Literal
(Loc
, 1))))));
3863 Set_Character_Literal_Name
(Char_Code
(Character'Pos (',')));
3866 Make_Assignment_Statement
(Loc
,
3867 Name
=> Make_Indexed_Component
(Loc
,
3868 Prefix
=> New_Occurrence_Of
(Res
, Loc
),
3869 Expressions
=> New_List
(New_Occurrence_Of
(Pos
, Loc
))),
3871 Make_Character_Literal
(Loc
,
3873 Char_Literal_Value
=> UI_From_Int
(Character'Pos (',')))));
3876 Make_Assignment_Statement
(Loc
,
3877 Name
=> New_Occurrence_Of
(Pos
, Loc
),
3880 Left_Opnd
=> New_Occurrence_Of
(Pos
, Loc
),
3881 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))));
3885 Set_Character_Literal_Name
(Char_Code
(Character'Pos (')')));
3888 Make_Assignment_Statement
(Loc
,
3890 Make_Indexed_Component
(Loc
,
3891 Prefix
=> New_Occurrence_Of
(Res
, Loc
),
3892 Expressions
=> New_List
(New_Occurrence_Of
(Len
, Loc
))),
3894 Make_Character_Literal
(Loc
,
3896 Char_Literal_Value
=> UI_From_Int
(Character'Pos (')')))));
3897 return Build_Task_Image_Function
(Loc
, Decls
, Stats
, Res
);
3898 end Build_Task_Array_Image
;
3900 ----------------------------
3901 -- Build_Task_Image_Decls --
3902 ----------------------------
3904 function Build_Task_Image_Decls
3908 In_Init_Proc
: Boolean := False) return List_Id
3910 Decls
: constant List_Id
:= New_List
;
3911 T_Id
: Entity_Id
:= Empty
;
3913 Expr
: Node_Id
:= Empty
;
3914 Fun
: Node_Id
:= Empty
;
3915 Is_Dyn
: constant Boolean :=
3916 Nkind
(Parent
(Id_Ref
)) = N_Assignment_Statement
3918 Nkind
(Expression
(Parent
(Id_Ref
))) = N_Allocator
;
3921 -- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
3922 -- generate a dummy declaration only.
3924 if Restriction_Active
(No_Implicit_Heap_Allocations
)
3925 or else Global_Discard_Names
3927 T_Id
:= Make_Temporary
(Loc
, 'J');
3932 Make_Object_Declaration
(Loc
,
3933 Defining_Identifier
=> T_Id
,
3934 Object_Definition
=> New_Occurrence_Of
(Standard_String
, Loc
),
3936 Make_String_Literal
(Loc
,
3937 Strval
=> String_From_Name_Buffer
)));
3940 if Nkind
(Id_Ref
) = N_Identifier
3941 or else Nkind
(Id_Ref
) = N_Defining_Identifier
3943 -- For a simple variable, the image of the task is built from
3944 -- the name of the variable. To avoid possible conflict with the
3945 -- anonymous type created for a single protected object, add a
3949 Make_Defining_Identifier
(Loc
,
3950 New_External_Name
(Chars
(Id_Ref
), 'T', 1));
3952 Get_Name_String
(Chars
(Id_Ref
));
3955 Make_String_Literal
(Loc
,
3956 Strval
=> String_From_Name_Buffer
);
3958 elsif Nkind
(Id_Ref
) = N_Selected_Component
then
3960 Make_Defining_Identifier
(Loc
,
3961 New_External_Name
(Chars
(Selector_Name
(Id_Ref
)), 'T'));
3962 Fun
:= Build_Task_Record_Image
(Loc
, Id_Ref
, Is_Dyn
);
3964 elsif Nkind
(Id_Ref
) = N_Indexed_Component
then
3966 Make_Defining_Identifier
(Loc
,
3967 New_External_Name
(Chars
(A_Type
), 'N'));
3969 Fun
:= Build_Task_Array_Image
(Loc
, Id_Ref
, A_Type
, Is_Dyn
);
3973 if Present
(Fun
) then
3974 Append
(Fun
, Decls
);
3975 Expr
:= Make_Function_Call
(Loc
,
3976 Name
=> New_Occurrence_Of
(Defining_Entity
(Fun
), Loc
));
3978 if not In_Init_Proc
then
3979 Set_Uses_Sec_Stack
(Defining_Entity
(Fun
));
3983 Decl
:= Make_Object_Declaration
(Loc
,
3984 Defining_Identifier
=> T_Id
,
3985 Object_Definition
=> New_Occurrence_Of
(Standard_String
, Loc
),
3986 Constant_Present
=> True,
3987 Expression
=> Expr
);
3989 Append
(Decl
, Decls
);
3991 end Build_Task_Image_Decls
;
3993 -------------------------------
3994 -- Build_Task_Image_Function --
3995 -------------------------------
3997 function Build_Task_Image_Function
4001 Res
: Entity_Id
) return Node_Id
4007 Make_Simple_Return_Statement
(Loc
,
4008 Expression
=> New_Occurrence_Of
(Res
, Loc
)));
4010 Spec
:= Make_Function_Specification
(Loc
,
4011 Defining_Unit_Name
=> Make_Temporary
(Loc
, 'F'),
4012 Result_Definition
=> New_Occurrence_Of
(Standard_String
, Loc
));
4014 -- Calls to 'Image use the secondary stack, which must be cleaned up
4015 -- after the task name is built.
4017 return Make_Subprogram_Body
(Loc
,
4018 Specification
=> Spec
,
4019 Declarations
=> Decls
,
4020 Handled_Statement_Sequence
=>
4021 Make_Handled_Sequence_Of_Statements
(Loc
, Statements
=> Stats
));
4022 end Build_Task_Image_Function
;
4024 -----------------------------
4025 -- Build_Task_Image_Prefix --
4026 -----------------------------
4028 procedure Build_Task_Image_Prefix
4030 Len
: out Entity_Id
;
4031 Res
: out Entity_Id
;
4032 Pos
: out Entity_Id
;
4039 Len
:= Make_Temporary
(Loc
, 'L', Sum
);
4042 Make_Object_Declaration
(Loc
,
4043 Defining_Identifier
=> Len
,
4044 Object_Definition
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
4045 Expression
=> Sum
));
4047 Res
:= Make_Temporary
(Loc
, 'R');
4050 Make_Object_Declaration
(Loc
,
4051 Defining_Identifier
=> Res
,
4052 Object_Definition
=>
4053 Make_Subtype_Indication
(Loc
,
4054 Subtype_Mark
=> New_Occurrence_Of
(Standard_String
, Loc
),
4056 Make_Index_Or_Discriminant_Constraint
(Loc
,
4060 Low_Bound
=> Make_Integer_Literal
(Loc
, 1),
4061 High_Bound
=> New_Occurrence_Of
(Len
, Loc
)))))));
4063 -- Indicate that the result is an internal temporary, so it does not
4064 -- receive a bogus initialization when declaration is expanded. This
4065 -- is both efficient, and prevents anomalies in the handling of
4066 -- dynamic objects on the secondary stack.
4068 Set_Is_Internal
(Res
);
4069 Pos
:= Make_Temporary
(Loc
, 'P');
4072 Make_Object_Declaration
(Loc
,
4073 Defining_Identifier
=> Pos
,
4074 Object_Definition
=> New_Occurrence_Of
(Standard_Integer
, Loc
)));
4076 -- Pos := Prefix'Length;
4079 Make_Assignment_Statement
(Loc
,
4080 Name
=> New_Occurrence_Of
(Pos
, Loc
),
4082 Make_Attribute_Reference
(Loc
,
4083 Attribute_Name
=> Name_Length
,
4084 Prefix
=> New_Occurrence_Of
(Prefix
, Loc
),
4085 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, 1)))));
4087 -- Res (1 .. Pos) := Prefix;
4090 Make_Assignment_Statement
(Loc
,
4093 Prefix
=> New_Occurrence_Of
(Res
, Loc
),
4096 Low_Bound
=> Make_Integer_Literal
(Loc
, 1),
4097 High_Bound
=> New_Occurrence_Of
(Pos
, Loc
))),
4099 Expression
=> New_Occurrence_Of
(Prefix
, Loc
)));
4102 Make_Assignment_Statement
(Loc
,
4103 Name
=> New_Occurrence_Of
(Pos
, Loc
),
4106 Left_Opnd
=> New_Occurrence_Of
(Pos
, Loc
),
4107 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))));
4108 end Build_Task_Image_Prefix
;
4110 -----------------------------
4111 -- Build_Task_Record_Image --
4112 -----------------------------
4114 function Build_Task_Record_Image
4117 Dyn
: Boolean := False) return Node_Id
4120 -- Total length of generated name
4123 -- Index into result
4126 -- String to hold result
4128 Pref
: constant Entity_Id
:= Make_Temporary
(Loc
, 'P');
4129 -- Name of enclosing variable, prefix of resulting name
4132 -- Expression to compute total size of string
4135 -- Entity for selector name
4137 Decls
: constant List_Id
:= New_List
;
4138 Stats
: constant List_Id
:= New_List
;
4141 -- For a dynamic task, the name comes from the target variable. For a
4142 -- static one it is a formal of the enclosing init proc.
4145 Get_Name_String
(Chars
(Entity
(Prefix
(Id_Ref
))));
4147 Make_Object_Declaration
(Loc
,
4148 Defining_Identifier
=> Pref
,
4149 Object_Definition
=> New_Occurrence_Of
(Standard_String
, Loc
),
4151 Make_String_Literal
(Loc
,
4152 Strval
=> String_From_Name_Buffer
)));
4156 Make_Object_Renaming_Declaration
(Loc
,
4157 Defining_Identifier
=> Pref
,
4158 Subtype_Mark
=> New_Occurrence_Of
(Standard_String
, Loc
),
4159 Name
=> Make_Identifier
(Loc
, Name_uTask_Name
)));
4162 Sel
:= Make_Temporary
(Loc
, 'S');
4164 Get_Name_String
(Chars
(Selector_Name
(Id_Ref
)));
4167 Make_Object_Declaration
(Loc
,
4168 Defining_Identifier
=> Sel
,
4169 Object_Definition
=> New_Occurrence_Of
(Standard_String
, Loc
),
4171 Make_String_Literal
(Loc
,
4172 Strval
=> String_From_Name_Buffer
)));
4174 Sum
:= Make_Integer_Literal
(Loc
, Nat
(Name_Len
+ 1));
4180 Make_Attribute_Reference
(Loc
,
4181 Attribute_Name
=> Name_Length
,
4183 New_Occurrence_Of
(Pref
, Loc
),
4184 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, 1))));
4186 Build_Task_Image_Prefix
(Loc
, Len
, Res
, Pos
, Pref
, Sum
, Decls
, Stats
);
4188 Set_Character_Literal_Name
(Char_Code
(Character'Pos ('.')));
4190 -- Res (Pos) := '.';
4193 Make_Assignment_Statement
(Loc
,
4194 Name
=> Make_Indexed_Component
(Loc
,
4195 Prefix
=> New_Occurrence_Of
(Res
, Loc
),
4196 Expressions
=> New_List
(New_Occurrence_Of
(Pos
, Loc
))),
4198 Make_Character_Literal
(Loc
,
4200 Char_Literal_Value
=>
4201 UI_From_Int
(Character'Pos ('.')))));
4204 Make_Assignment_Statement
(Loc
,
4205 Name
=> New_Occurrence_Of
(Pos
, Loc
),
4208 Left_Opnd
=> New_Occurrence_Of
(Pos
, Loc
),
4209 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))));
4211 -- Res (Pos .. Len) := Selector;
4214 Make_Assignment_Statement
(Loc
,
4215 Name
=> Make_Slice
(Loc
,
4216 Prefix
=> New_Occurrence_Of
(Res
, Loc
),
4219 Low_Bound
=> New_Occurrence_Of
(Pos
, Loc
),
4220 High_Bound
=> New_Occurrence_Of
(Len
, Loc
))),
4221 Expression
=> New_Occurrence_Of
(Sel
, Loc
)));
4223 return Build_Task_Image_Function
(Loc
, Decls
, Stats
, Res
);
4224 end Build_Task_Record_Image
;
4226 ---------------------------------------
4227 -- Build_Transient_Object_Statements --
4228 ---------------------------------------
4230 procedure Build_Transient_Object_Statements
4231 (Obj_Decl
: Node_Id
;
4232 Fin_Call
: out Node_Id
;
4233 Hook_Assign
: out Node_Id
;
4234 Hook_Clear
: out Node_Id
;
4235 Hook_Decl
: out Node_Id
;
4236 Ptr_Decl
: out Node_Id
;
4237 Finalize_Obj
: Boolean := True)
4239 Loc
: constant Source_Ptr
:= Sloc
(Obj_Decl
);
4240 Obj_Id
: constant Entity_Id
:= Defining_Entity
(Obj_Decl
);
4241 Obj_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Obj_Id
));
4243 Desig_Typ
: Entity_Id
;
4244 Hook_Expr
: Node_Id
;
4245 Hook_Id
: Entity_Id
;
4247 Ptr_Typ
: Entity_Id
;
4250 -- Recover the type of the object
4252 Desig_Typ
:= Obj_Typ
;
4254 if Is_Access_Type
(Desig_Typ
) then
4255 Desig_Typ
:= Available_View
(Designated_Type
(Desig_Typ
));
4258 -- Create an access type which provides a reference to the transient
4259 -- object. Generate:
4261 -- type Ptr_Typ is access all Desig_Typ;
4263 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
4264 Set_Ekind
(Ptr_Typ
, E_General_Access_Type
);
4265 Set_Directly_Designated_Type
(Ptr_Typ
, Desig_Typ
);
4268 Make_Full_Type_Declaration
(Loc
,
4269 Defining_Identifier
=> Ptr_Typ
,
4271 Make_Access_To_Object_Definition
(Loc
,
4272 All_Present
=> True,
4273 Subtype_Indication
=> New_Occurrence_Of
(Desig_Typ
, Loc
)));
4275 -- Create a temporary check which acts as a hook to the transient
4276 -- object. Generate:
4278 -- Hook : Ptr_Typ := null;
4280 Hook_Id
:= Make_Temporary
(Loc
, 'T');
4281 Set_Ekind
(Hook_Id
, E_Variable
);
4282 Set_Etype
(Hook_Id
, Ptr_Typ
);
4285 Make_Object_Declaration
(Loc
,
4286 Defining_Identifier
=> Hook_Id
,
4287 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
4288 Expression
=> Make_Null
(Loc
));
4290 -- Mark the temporary as a hook. This signals the machinery in
4291 -- Build_Finalizer to recognize this special case.
4293 Set_Status_Flag_Or_Transient_Decl
(Hook_Id
, Obj_Decl
);
4295 -- Hook the transient object to the temporary. Generate:
4297 -- Hook := Ptr_Typ (Obj_Id);
4299 -- Hool := Obj_Id'Unrestricted_Access;
4301 if Is_Access_Type
(Obj_Typ
) then
4303 Unchecked_Convert_To
(Ptr_Typ
, New_Occurrence_Of
(Obj_Id
, Loc
));
4306 Make_Attribute_Reference
(Loc
,
4307 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
4308 Attribute_Name
=> Name_Unrestricted_Access
);
4312 Make_Assignment_Statement
(Loc
,
4313 Name
=> New_Occurrence_Of
(Hook_Id
, Loc
),
4314 Expression
=> Hook_Expr
);
4316 -- Crear the hook prior to finalizing the object. Generate:
4321 Make_Assignment_Statement
(Loc
,
4322 Name
=> New_Occurrence_Of
(Hook_Id
, Loc
),
4323 Expression
=> Make_Null
(Loc
));
4325 -- Finalize the object. Generate:
4327 -- [Deep_]Finalize (Obj_Ref[.all]);
4329 if Finalize_Obj
then
4330 Obj_Ref
:= New_Occurrence_Of
(Obj_Id
, Loc
);
4332 if Is_Access_Type
(Obj_Typ
) then
4333 Obj_Ref
:= Make_Explicit_Dereference
(Loc
, Obj_Ref
);
4334 Set_Etype
(Obj_Ref
, Desig_Typ
);
4339 (Obj_Ref
=> Obj_Ref
,
4342 -- Otherwise finalize the hook. Generate:
4344 -- [Deep_]Finalize (Hook.all);
4350 Make_Explicit_Dereference
(Loc
,
4351 Prefix
=> New_Occurrence_Of
(Hook_Id
, Loc
)),
4354 end Build_Transient_Object_Statements
;
4356 -----------------------------
4357 -- Check_Float_Op_Overflow --
4358 -----------------------------
4360 procedure Check_Float_Op_Overflow
(N
: Node_Id
) is
4362 -- Return if no check needed
4364 if not Is_Floating_Point_Type
(Etype
(N
))
4365 or else not (Do_Overflow_Check
(N
) and then Check_Float_Overflow
)
4367 -- In CodePeer_Mode, rely on the overflow check flag being set instead
4368 -- and do not expand the code for float overflow checking.
4370 or else CodePeer_Mode
4375 -- Otherwise we replace the expression by
4377 -- do Tnn : constant ftype := expression;
4378 -- constraint_error when not Tnn'Valid;
4382 Loc
: constant Source_Ptr
:= Sloc
(N
);
4383 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
4384 Typ
: constant Entity_Id
:= Etype
(N
);
4387 -- Turn off the Do_Overflow_Check flag, since we are doing that work
4388 -- right here. We also set the node as analyzed to prevent infinite
4389 -- recursion from repeating the operation in the expansion.
4391 Set_Do_Overflow_Check
(N
, False);
4392 Set_Analyzed
(N
, True);
4394 -- Do the rewrite to include the check
4397 Make_Expression_With_Actions
(Loc
,
4398 Actions
=> New_List
(
4399 Make_Object_Declaration
(Loc
,
4400 Defining_Identifier
=> Tnn
,
4401 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
4402 Constant_Present
=> True,
4403 Expression
=> Relocate_Node
(N
)),
4404 Make_Raise_Constraint_Error
(Loc
,
4408 Make_Attribute_Reference
(Loc
,
4409 Prefix
=> New_Occurrence_Of
(Tnn
, Loc
),
4410 Attribute_Name
=> Name_Valid
)),
4411 Reason
=> CE_Overflow_Check_Failed
)),
4412 Expression
=> New_Occurrence_Of
(Tnn
, Loc
)));
4414 Analyze_And_Resolve
(N
, Typ
);
4416 end Check_Float_Op_Overflow
;
4418 ----------------------------------
4419 -- Component_May_Be_Bit_Aligned --
4420 ----------------------------------
4422 function Component_May_Be_Bit_Aligned
(Comp
: Entity_Id
) return Boolean is
4426 -- If no component clause, then everything is fine, since the back end
4427 -- never bit-misaligns by default, even if there is a pragma Packed for
4430 if No
(Comp
) or else No
(Component_Clause
(Comp
)) then
4434 UT
:= Underlying_Type
(Etype
(Comp
));
4436 -- It is only array and record types that cause trouble
4438 if not Is_Record_Type
(UT
) and then not Is_Array_Type
(UT
) then
4441 -- If we know that we have a small (64 bits or less) record or small
4442 -- bit-packed array, then everything is fine, since the back end can
4443 -- handle these cases correctly.
4445 elsif Esize
(Comp
) <= 64
4446 and then (Is_Record_Type
(UT
) or else Is_Bit_Packed_Array
(UT
))
4450 -- Otherwise if the component is not byte aligned, we know we have the
4451 -- nasty unaligned case.
4453 elsif Normalized_First_Bit
(Comp
) /= Uint_0
4454 or else Esize
(Comp
) mod System_Storage_Unit
/= Uint_0
4458 -- If we are large and byte aligned, then OK at this level
4463 end Component_May_Be_Bit_Aligned
;
4465 ----------------------------------------
4466 -- Containing_Package_With_Ext_Axioms --
4467 ----------------------------------------
4469 function Containing_Package_With_Ext_Axioms
4470 (E
: Entity_Id
) return Entity_Id
4473 -- E is the package or generic package which is externally axiomatized
4475 if Ekind_In
(E
, E_Generic_Package
, E_Package
)
4476 and then Has_Annotate_Pragma_For_External_Axiomatization
(E
)
4481 -- If E's scope is axiomatized, E is axiomatized
4483 if Present
(Scope
(E
)) then
4485 First_Ax_Parent_Scope
: constant Entity_Id
:=
4486 Containing_Package_With_Ext_Axioms
(Scope
(E
));
4488 if Present
(First_Ax_Parent_Scope
) then
4489 return First_Ax_Parent_Scope
;
4494 -- Otherwise, if E is a package instance, it is axiomatized if the
4495 -- corresponding generic package is axiomatized.
4497 if Ekind
(E
) = E_Package
then
4499 Par
: constant Node_Id
:= Parent
(E
);
4503 if Nkind
(Par
) = N_Defining_Program_Unit_Name
then
4504 Decl
:= Parent
(Par
);
4509 if Present
(Generic_Parent
(Decl
)) then
4511 Containing_Package_With_Ext_Axioms
(Generic_Parent
(Decl
));
4517 end Containing_Package_With_Ext_Axioms
;
4519 -------------------------------
4520 -- Convert_To_Actual_Subtype --
4521 -------------------------------
4523 procedure Convert_To_Actual_Subtype
(Exp
: Entity_Id
) is
4527 Act_ST
:= Get_Actual_Subtype
(Exp
);
4529 if Act_ST
= Etype
(Exp
) then
4532 Rewrite
(Exp
, Convert_To
(Act_ST
, Relocate_Node
(Exp
)));
4533 Analyze_And_Resolve
(Exp
, Act_ST
);
4535 end Convert_To_Actual_Subtype
;
4537 -----------------------------------
4538 -- Corresponding_Runtime_Package --
4539 -----------------------------------
4541 function Corresponding_Runtime_Package
(Typ
: Entity_Id
) return RTU_Id
is
4542 function Has_One_Entry_And_No_Queue
(T
: Entity_Id
) return Boolean;
4543 -- Return True if protected type T has one entry and the maximum queue
4546 --------------------------------
4547 -- Has_One_Entry_And_No_Queue --
4548 --------------------------------
4550 function Has_One_Entry_And_No_Queue
(T
: Entity_Id
) return Boolean is
4552 Is_First
: Boolean := True;
4555 Item
:= First_Entity
(T
);
4556 while Present
(Item
) loop
4557 if Is_Entry
(Item
) then
4559 -- The protected type has more than one entry
4561 if not Is_First
then
4565 -- The queue length is not one
4567 if not Restriction_Active
(No_Entry_Queue
)
4568 and then Get_Max_Queue_Length
(Item
) /= Uint_1
4580 end Has_One_Entry_And_No_Queue
;
4584 Pkg_Id
: RTU_Id
:= RTU_Null
;
4586 -- Start of processing for Corresponding_Runtime_Package
4589 pragma Assert
(Is_Concurrent_Type
(Typ
));
4591 if Ekind
(Typ
) in Protected_Kind
then
4592 if Has_Entries
(Typ
)
4594 -- A protected type without entries that covers an interface and
4595 -- overrides the abstract routines with protected procedures is
4596 -- considered equivalent to a protected type with entries in the
4597 -- context of dispatching select statements. It is sufficient to
4598 -- check for the presence of an interface list in the declaration
4599 -- node to recognize this case.
4601 or else Present
(Interface_List
(Parent
(Typ
)))
4603 -- Protected types with interrupt handlers (when not using a
4604 -- restricted profile) are also considered equivalent to
4605 -- protected types with entries. The types which are used
4606 -- (Static_Interrupt_Protection and Dynamic_Interrupt_Protection)
4607 -- are derived from Protection_Entries.
4609 or else (Has_Attach_Handler
(Typ
) and then not Restricted_Profile
)
4610 or else Has_Interrupt_Handler
(Typ
)
4613 or else Restriction_Active
(No_Select_Statements
) = False
4614 or else not Has_One_Entry_And_No_Queue
(Typ
)
4615 or else (Has_Attach_Handler
(Typ
)
4616 and then not Restricted_Profile
)
4618 Pkg_Id
:= System_Tasking_Protected_Objects_Entries
;
4620 Pkg_Id
:= System_Tasking_Protected_Objects_Single_Entry
;
4624 Pkg_Id
:= System_Tasking_Protected_Objects
;
4629 end Corresponding_Runtime_Package
;
4631 -----------------------------------
4632 -- Current_Sem_Unit_Declarations --
4633 -----------------------------------
4635 function Current_Sem_Unit_Declarations
return List_Id
is
4636 U
: Node_Id
:= Unit
(Cunit
(Current_Sem_Unit
));
4640 -- If the current unit is a package body, locate the visible
4641 -- declarations of the package spec.
4643 if Nkind
(U
) = N_Package_Body
then
4644 U
:= Unit
(Library_Unit
(Cunit
(Current_Sem_Unit
)));
4647 if Nkind
(U
) = N_Package_Declaration
then
4648 U
:= Specification
(U
);
4649 Decls
:= Visible_Declarations
(U
);
4653 Set_Visible_Declarations
(U
, Decls
);
4657 Decls
:= Declarations
(U
);
4661 Set_Declarations
(U
, Decls
);
4666 end Current_Sem_Unit_Declarations
;
4668 -----------------------
4669 -- Duplicate_Subexpr --
4670 -----------------------
4672 function Duplicate_Subexpr
4674 Name_Req
: Boolean := False;
4675 Renaming_Req
: Boolean := False) return Node_Id
4678 Remove_Side_Effects
(Exp
, Name_Req
, Renaming_Req
);
4679 return New_Copy_Tree
(Exp
);
4680 end Duplicate_Subexpr
;
4682 ---------------------------------
4683 -- Duplicate_Subexpr_No_Checks --
4684 ---------------------------------
4686 function Duplicate_Subexpr_No_Checks
4688 Name_Req
: Boolean := False;
4689 Renaming_Req
: Boolean := False;
4690 Related_Id
: Entity_Id
:= Empty
;
4691 Is_Low_Bound
: Boolean := False;
4692 Is_High_Bound
: Boolean := False) return Node_Id
4699 Name_Req
=> Name_Req
,
4700 Renaming_Req
=> Renaming_Req
,
4701 Related_Id
=> Related_Id
,
4702 Is_Low_Bound
=> Is_Low_Bound
,
4703 Is_High_Bound
=> Is_High_Bound
);
4705 New_Exp
:= New_Copy_Tree
(Exp
);
4706 Remove_Checks
(New_Exp
);
4708 end Duplicate_Subexpr_No_Checks
;
4710 -----------------------------------
4711 -- Duplicate_Subexpr_Move_Checks --
4712 -----------------------------------
4714 function Duplicate_Subexpr_Move_Checks
4716 Name_Req
: Boolean := False;
4717 Renaming_Req
: Boolean := False) return Node_Id
4722 Remove_Side_Effects
(Exp
, Name_Req
, Renaming_Req
);
4723 New_Exp
:= New_Copy_Tree
(Exp
);
4724 Remove_Checks
(Exp
);
4726 end Duplicate_Subexpr_Move_Checks
;
4728 --------------------
4729 -- Ensure_Defined --
4730 --------------------
4732 procedure Ensure_Defined
(Typ
: Entity_Id
; N
: Node_Id
) is
4736 -- An itype reference must only be created if this is a local itype, so
4737 -- that gigi can elaborate it on the proper objstack.
4739 if Is_Itype
(Typ
) and then Scope
(Typ
) = Current_Scope
then
4740 IR
:= Make_Itype_Reference
(Sloc
(N
));
4741 Set_Itype
(IR
, Typ
);
4742 Insert_Action
(N
, IR
);
4746 --------------------
4747 -- Entry_Names_OK --
4748 --------------------
4750 function Entry_Names_OK
return Boolean is
4753 not Restricted_Profile
4754 and then not Global_Discard_Names
4755 and then not Restriction_Active
(No_Implicit_Heap_Allocations
)
4756 and then not Restriction_Active
(No_Local_Allocators
);
4763 procedure Evaluate_Name
(Nam
: Node_Id
) is
4765 -- For an attribute reference or an indexed component, evaluate the
4766 -- prefix, which is itself a name, recursively, and then force the
4767 -- evaluation of all the subscripts (or attribute expressions).
4770 when N_Attribute_Reference
4771 | N_Indexed_Component
4773 Evaluate_Name
(Prefix
(Nam
));
4779 E
:= First
(Expressions
(Nam
));
4780 while Present
(E
) loop
4781 Force_Evaluation
(E
);
4783 if Original_Node
(E
) /= E
then
4785 (E
, Do_Range_Check
(Original_Node
(E
)));
4792 -- For an explicit dereference, we simply force the evaluation of
4793 -- the name expression. The dereference provides a value that is the
4794 -- address for the renamed object, and it is precisely this value
4795 -- that we want to preserve.
4797 when N_Explicit_Dereference
=>
4798 Force_Evaluation
(Prefix
(Nam
));
4800 -- For a function call, we evaluate the call
4802 when N_Function_Call
=>
4803 Force_Evaluation
(Nam
);
4805 -- For a qualified expression, we evaluate the underlying object
4806 -- name if any, otherwise we force the evaluation of the underlying
4809 when N_Qualified_Expression
=>
4810 if Is_Object_Reference
(Expression
(Nam
)) then
4811 Evaluate_Name
(Expression
(Nam
));
4813 Force_Evaluation
(Expression
(Nam
));
4816 -- For a selected component, we simply evaluate the prefix
4818 when N_Selected_Component
=>
4819 Evaluate_Name
(Prefix
(Nam
));
4821 -- For a slice, we evaluate the prefix, as for the indexed component
4822 -- case and then, if there is a range present, either directly or as
4823 -- the constraint of a discrete subtype indication, we evaluate the
4824 -- two bounds of this range.
4827 Evaluate_Name
(Prefix
(Nam
));
4828 Evaluate_Slice_Bounds
(Nam
);
4830 -- For a type conversion, the expression of the conversion must be
4831 -- the name of an object, and we simply need to evaluate this name.
4833 when N_Type_Conversion
=>
4834 Evaluate_Name
(Expression
(Nam
));
4836 -- The remaining cases are direct name, operator symbol and character
4837 -- literal. In all these cases, we do nothing, since we want to
4838 -- reevaluate each time the renamed object is used.
4845 ---------------------------
4846 -- Evaluate_Slice_Bounds --
4847 ---------------------------
4849 procedure Evaluate_Slice_Bounds
(Slice
: Node_Id
) is
4850 DR
: constant Node_Id
:= Discrete_Range
(Slice
);
4855 if Nkind
(DR
) = N_Range
then
4856 Force_Evaluation
(Low_Bound
(DR
));
4857 Force_Evaluation
(High_Bound
(DR
));
4859 elsif Nkind
(DR
) = N_Subtype_Indication
then
4860 Constr
:= Constraint
(DR
);
4862 if Nkind
(Constr
) = N_Range_Constraint
then
4863 Rexpr
:= Range_Expression
(Constr
);
4865 Force_Evaluation
(Low_Bound
(Rexpr
));
4866 Force_Evaluation
(High_Bound
(Rexpr
));
4869 end Evaluate_Slice_Bounds
;
4871 ---------------------
4872 -- Evolve_And_Then --
4873 ---------------------
4875 procedure Evolve_And_Then
(Cond
: in out Node_Id
; Cond1
: Node_Id
) is
4881 Make_And_Then
(Sloc
(Cond1
),
4883 Right_Opnd
=> Cond1
);
4885 end Evolve_And_Then
;
4887 --------------------
4888 -- Evolve_Or_Else --
4889 --------------------
4891 procedure Evolve_Or_Else
(Cond
: in out Node_Id
; Cond1
: Node_Id
) is
4897 Make_Or_Else
(Sloc
(Cond1
),
4899 Right_Opnd
=> Cond1
);
4903 -----------------------------------
4904 -- Exceptions_In_Finalization_OK --
4905 -----------------------------------
4907 function Exceptions_In_Finalization_OK
return Boolean is
4910 not (Restriction_Active
(No_Exception_Handlers
) or else
4911 Restriction_Active
(No_Exception_Propagation
) or else
4912 Restriction_Active
(No_Exceptions
));
4913 end Exceptions_In_Finalization_OK
;
4915 -----------------------------------------
4916 -- Expand_Static_Predicates_In_Choices --
4917 -----------------------------------------
4919 procedure Expand_Static_Predicates_In_Choices
(N
: Node_Id
) is
4920 pragma Assert
(Nkind_In
(N
, N_Case_Statement_Alternative
, N_Variant
));
4922 Choices
: constant List_Id
:= Discrete_Choices
(N
);
4930 Choice
:= First
(Choices
);
4931 while Present
(Choice
) loop
4932 Next_C
:= Next
(Choice
);
4934 -- Check for name of subtype with static predicate
4936 if Is_Entity_Name
(Choice
)
4937 and then Is_Type
(Entity
(Choice
))
4938 and then Has_Predicates
(Entity
(Choice
))
4940 -- Loop through entries in predicate list, converting to choices
4941 -- and inserting in the list before the current choice. Note that
4942 -- if the list is empty, corresponding to a False predicate, then
4943 -- no choices are inserted.
4945 P
:= First
(Static_Discrete_Predicate
(Entity
(Choice
)));
4946 while Present
(P
) loop
4948 -- If low bound and high bounds are equal, copy simple choice
4950 if Expr_Value
(Low_Bound
(P
)) = Expr_Value
(High_Bound
(P
)) then
4951 C
:= New_Copy
(Low_Bound
(P
));
4953 -- Otherwise copy a range
4959 -- Change Sloc to referencing choice (rather than the Sloc of
4960 -- the predicate declaration element itself).
4962 Set_Sloc
(C
, Sloc
(Choice
));
4963 Insert_Before
(Choice
, C
);
4967 -- Delete the predicated entry
4972 -- Move to next choice to check
4976 end Expand_Static_Predicates_In_Choices
;
4978 ------------------------------
4979 -- Expand_Subtype_From_Expr --
4980 ------------------------------
4982 -- This function is applicable for both static and dynamic allocation of
4983 -- objects which are constrained by an initial expression. Basically it
4984 -- transforms an unconstrained subtype indication into a constrained one.
4986 -- The expression may also be transformed in certain cases in order to
4987 -- avoid multiple evaluation. In the static allocation case, the general
4992 -- is transformed into
4994 -- Val : Constrained_Subtype_Of_T := Maybe_Modified_Expr;
4996 -- Here are the main cases :
4998 -- <if Expr is a Slice>
4999 -- Val : T ([Index_Subtype (Expr)]) := Expr;
5001 -- <elsif Expr is a String Literal>
5002 -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
5004 -- <elsif Expr is Constrained>
5005 -- subtype T is Type_Of_Expr
5008 -- <elsif Expr is an entity_name>
5009 -- Val : T (constraints taken from Expr) := Expr;
5012 -- type Axxx is access all T;
5013 -- Rval : Axxx := Expr'ref;
5014 -- Val : T (constraints taken from Rval) := Rval.all;
5016 -- ??? note: when the Expression is allocated in the secondary stack
5017 -- we could use it directly instead of copying it by declaring
5018 -- Val : T (...) renames Rval.all
5020 procedure Expand_Subtype_From_Expr
5022 Unc_Type
: Entity_Id
;
5023 Subtype_Indic
: Node_Id
;
5025 Related_Id
: Entity_Id
:= Empty
)
5027 Loc
: constant Source_Ptr
:= Sloc
(N
);
5028 Exp_Typ
: constant Entity_Id
:= Etype
(Exp
);
5032 -- In general we cannot build the subtype if expansion is disabled,
5033 -- because internal entities may not have been defined. However, to
5034 -- avoid some cascaded errors, we try to continue when the expression is
5035 -- an array (or string), because it is safe to compute the bounds. It is
5036 -- in fact required to do so even in a generic context, because there
5037 -- may be constants that depend on the bounds of a string literal, both
5038 -- standard string types and more generally arrays of characters.
5040 -- In GNATprove mode, these extra subtypes are not needed
5042 if GNATprove_Mode
then
5046 if not Expander_Active
5047 and then (No
(Etype
(Exp
)) or else not Is_String_Type
(Etype
(Exp
)))
5052 if Nkind
(Exp
) = N_Slice
then
5054 Slice_Type
: constant Entity_Id
:= Etype
(First_Index
(Exp_Typ
));
5057 Rewrite
(Subtype_Indic
,
5058 Make_Subtype_Indication
(Loc
,
5059 Subtype_Mark
=> New_Occurrence_Of
(Unc_Type
, Loc
),
5061 Make_Index_Or_Discriminant_Constraint
(Loc
,
5062 Constraints
=> New_List
5063 (New_Occurrence_Of
(Slice_Type
, Loc
)))));
5065 -- This subtype indication may be used later for constraint checks
5066 -- we better make sure that if a variable was used as a bound of
5067 -- of the original slice, its value is frozen.
5069 Evaluate_Slice_Bounds
(Exp
);
5072 elsif Ekind
(Exp_Typ
) = E_String_Literal_Subtype
then
5073 Rewrite
(Subtype_Indic
,
5074 Make_Subtype_Indication
(Loc
,
5075 Subtype_Mark
=> New_Occurrence_Of
(Unc_Type
, Loc
),
5077 Make_Index_Or_Discriminant_Constraint
(Loc
,
5078 Constraints
=> New_List
(
5079 Make_Literal_Range
(Loc
,
5080 Literal_Typ
=> Exp_Typ
)))));
5082 -- If the type of the expression is an internally generated type it
5083 -- may not be necessary to create a new subtype. However there are two
5084 -- exceptions: references to the current instances, and aliased array
5085 -- object declarations for which the back end has to create a template.
5087 elsif Is_Constrained
(Exp_Typ
)
5088 and then not Is_Class_Wide_Type
(Unc_Type
)
5090 (Nkind
(N
) /= N_Object_Declaration
5091 or else not Is_Entity_Name
(Expression
(N
))
5092 or else not Comes_From_Source
(Entity
(Expression
(N
)))
5093 or else not Is_Array_Type
(Exp_Typ
)
5094 or else not Aliased_Present
(N
))
5096 if Is_Itype
(Exp_Typ
) then
5098 -- Within an initialization procedure, a selected component
5099 -- denotes a component of the enclosing record, and it appears as
5100 -- an actual in a call to its own initialization procedure. If
5101 -- this component depends on the outer discriminant, we must
5102 -- generate the proper actual subtype for it.
5104 if Nkind
(Exp
) = N_Selected_Component
5105 and then Within_Init_Proc
5108 Decl
: constant Node_Id
:=
5109 Build_Actual_Subtype_Of_Component
(Exp_Typ
, Exp
);
5111 if Present
(Decl
) then
5112 Insert_Action
(N
, Decl
);
5113 T
:= Defining_Identifier
(Decl
);
5119 -- No need to generate a new subtype
5126 T
:= Make_Temporary
(Loc
, 'T');
5129 Make_Subtype_Declaration
(Loc
,
5130 Defining_Identifier
=> T
,
5131 Subtype_Indication
=> New_Occurrence_Of
(Exp_Typ
, Loc
)));
5133 -- This type is marked as an itype even though it has an explicit
5134 -- declaration since otherwise Is_Generic_Actual_Type can get
5135 -- set, resulting in the generation of spurious errors. (See
5136 -- sem_ch8.Analyze_Package_Renaming and sem_type.covers)
5139 Set_Associated_Node_For_Itype
(T
, Exp
);
5142 Rewrite
(Subtype_Indic
, New_Occurrence_Of
(T
, Loc
));
5144 -- Nothing needs to be done for private types with unknown discriminants
5145 -- if the underlying type is not an unconstrained composite type or it
5146 -- is an unchecked union.
5148 elsif Is_Private_Type
(Unc_Type
)
5149 and then Has_Unknown_Discriminants
(Unc_Type
)
5150 and then (not Is_Composite_Type
(Underlying_Type
(Unc_Type
))
5151 or else Is_Constrained
(Underlying_Type
(Unc_Type
))
5152 or else Is_Unchecked_Union
(Underlying_Type
(Unc_Type
)))
5156 -- Case of derived type with unknown discriminants where the parent type
5157 -- also has unknown discriminants.
5159 elsif Is_Record_Type
(Unc_Type
)
5160 and then not Is_Class_Wide_Type
(Unc_Type
)
5161 and then Has_Unknown_Discriminants
(Unc_Type
)
5162 and then Has_Unknown_Discriminants
(Underlying_Type
(Unc_Type
))
5164 -- Nothing to be done if no underlying record view available
5166 -- If this is a limited type derived from a type with unknown
5167 -- discriminants, do not expand either, so that subsequent expansion
5168 -- of the call can add build-in-place parameters to call.
5170 if No
(Underlying_Record_View
(Unc_Type
))
5171 or else Is_Limited_Type
(Unc_Type
)
5175 -- Otherwise use the Underlying_Record_View to create the proper
5176 -- constrained subtype for an object of a derived type with unknown
5180 Remove_Side_Effects
(Exp
);
5181 Rewrite
(Subtype_Indic
,
5182 Make_Subtype_From_Expr
(Exp
, Underlying_Record_View
(Unc_Type
)));
5185 -- Renamings of class-wide interface types require no equivalent
5186 -- constrained type declarations because we only need to reference
5187 -- the tag component associated with the interface. The same is
5188 -- presumably true for class-wide types in general, so this test
5189 -- is broadened to include all class-wide renamings, which also
5190 -- avoids cases of unbounded recursion in Remove_Side_Effects.
5191 -- (Is this really correct, or are there some cases of class-wide
5192 -- renamings that require action in this procedure???)
5195 and then Nkind
(N
) = N_Object_Renaming_Declaration
5196 and then Is_Class_Wide_Type
(Unc_Type
)
5200 -- In Ada 95 nothing to be done if the type of the expression is limited
5201 -- because in this case the expression cannot be copied, and its use can
5202 -- only be by reference.
5204 -- In Ada 2005 the context can be an object declaration whose expression
5205 -- is a function that returns in place. If the nominal subtype has
5206 -- unknown discriminants, the call still provides constraints on the
5207 -- object, and we have to create an actual subtype from it.
5209 -- If the type is class-wide, the expression is dynamically tagged and
5210 -- we do not create an actual subtype either. Ditto for an interface.
5211 -- For now this applies only if the type is immutably limited, and the
5212 -- function being called is build-in-place. This will have to be revised
5213 -- when build-in-place functions are generalized to other types.
5215 elsif Is_Limited_View
(Exp_Typ
)
5217 (Is_Class_Wide_Type
(Exp_Typ
)
5218 or else Is_Interface
(Exp_Typ
)
5219 or else not Has_Unknown_Discriminants
(Exp_Typ
)
5220 or else not Is_Composite_Type
(Unc_Type
))
5224 -- For limited objects initialized with build in place function calls,
5225 -- nothing to be done; otherwise we prematurely introduce an N_Reference
5226 -- node in the expression initializing the object, which breaks the
5227 -- circuitry that detects and adds the additional arguments to the
5230 elsif Is_Build_In_Place_Function_Call
(Exp
) then
5234 Remove_Side_Effects
(Exp
);
5235 Rewrite
(Subtype_Indic
,
5236 Make_Subtype_From_Expr
(Exp
, Unc_Type
, Related_Id
));
5238 end Expand_Subtype_From_Expr
;
5240 ---------------------------------------------
5241 -- Expression_Contains_Primitives_Calls_Of --
5242 ---------------------------------------------
5244 function Expression_Contains_Primitives_Calls_Of
5246 Typ
: Entity_Id
) return Boolean
5248 U_Typ
: constant Entity_Id
:= Unique_Entity
(Typ
);
5250 Calls_OK
: Boolean := False;
5251 -- This flag is set to True when expression Expr contains at least one
5252 -- call to a nondispatching primitive function of Typ.
5254 function Search_Primitive_Calls
(N
: Node_Id
) return Traverse_Result
;
5255 -- Search for nondispatching calls to primitive functions of type Typ
5257 ----------------------------
5258 -- Search_Primitive_Calls --
5259 ----------------------------
5261 function Search_Primitive_Calls
(N
: Node_Id
) return Traverse_Result
is
5262 Disp_Typ
: Entity_Id
;
5266 -- Detect a function call that could denote a nondispatching
5267 -- primitive of the input type.
5269 if Nkind
(N
) = N_Function_Call
5270 and then Is_Entity_Name
(Name
(N
))
5272 Subp
:= Entity
(Name
(N
));
5274 -- Do not consider function calls with a controlling argument, as
5275 -- those are always dispatching calls.
5277 if Is_Dispatching_Operation
(Subp
)
5278 and then No
(Controlling_Argument
(N
))
5280 Disp_Typ
:= Find_Dispatching_Type
(Subp
);
5282 -- To qualify as a suitable primitive, the dispatching type of
5283 -- the function must be the input type.
5285 if Present
(Disp_Typ
)
5286 and then Unique_Entity
(Disp_Typ
) = U_Typ
5290 -- There is no need to continue the traversal, as one such
5299 end Search_Primitive_Calls
;
5301 procedure Search_Calls
is new Traverse_Proc
(Search_Primitive_Calls
);
5303 -- Start of processing for Expression_Contains_Primitives_Calls_Of_Type
5306 Search_Calls
(Expr
);
5308 end Expression_Contains_Primitives_Calls_Of
;
5310 ----------------------
5311 -- Finalize_Address --
5312 ----------------------
5314 function Finalize_Address
(Typ
: Entity_Id
) return Entity_Id
is
5315 Utyp
: Entity_Id
:= Typ
;
5318 -- Handle protected class-wide or task class-wide types
5320 if Is_Class_Wide_Type
(Utyp
) then
5321 if Is_Concurrent_Type
(Root_Type
(Utyp
)) then
5322 Utyp
:= Root_Type
(Utyp
);
5324 elsif Is_Private_Type
(Root_Type
(Utyp
))
5325 and then Present
(Full_View
(Root_Type
(Utyp
)))
5326 and then Is_Concurrent_Type
(Full_View
(Root_Type
(Utyp
)))
5328 Utyp
:= Full_View
(Root_Type
(Utyp
));
5332 -- Handle private types
5334 if Is_Private_Type
(Utyp
) and then Present
(Full_View
(Utyp
)) then
5335 Utyp
:= Full_View
(Utyp
);
5338 -- Handle protected and task types
5340 if Is_Concurrent_Type
(Utyp
)
5341 and then Present
(Corresponding_Record_Type
(Utyp
))
5343 Utyp
:= Corresponding_Record_Type
(Utyp
);
5346 Utyp
:= Underlying_Type
(Base_Type
(Utyp
));
5348 -- Deal with untagged derivation of private views. If the parent is
5349 -- now known to be protected, the finalization routine is the one
5350 -- defined on the corresponding record of the ancestor (corresponding
5351 -- records do not automatically inherit operations, but maybe they
5354 if Is_Untagged_Derivation
(Typ
) then
5355 if Is_Protected_Type
(Typ
) then
5356 Utyp
:= Corresponding_Record_Type
(Root_Type
(Base_Type
(Typ
)));
5359 Utyp
:= Underlying_Type
(Root_Type
(Base_Type
(Typ
)));
5361 if Is_Protected_Type
(Utyp
) then
5362 Utyp
:= Corresponding_Record_Type
(Utyp
);
5367 -- If the underlying_type is a subtype, we are dealing with the
5368 -- completion of a private type. We need to access the base type and
5369 -- generate a conversion to it.
5371 if Utyp
/= Base_Type
(Utyp
) then
5372 pragma Assert
(Is_Private_Type
(Typ
));
5374 Utyp
:= Base_Type
(Utyp
);
5377 -- When dealing with an internally built full view for a type with
5378 -- unknown discriminants, use the original record type.
5380 if Is_Underlying_Record_View
(Utyp
) then
5381 Utyp
:= Etype
(Utyp
);
5384 return TSS
(Utyp
, TSS_Finalize_Address
);
5385 end Finalize_Address
;
5387 ------------------------
5388 -- Find_Interface_ADT --
5389 ------------------------
5391 function Find_Interface_ADT
5393 Iface
: Entity_Id
) return Elmt_Id
5396 Typ
: Entity_Id
:= T
;
5399 pragma Assert
(Is_Interface
(Iface
));
5401 -- Handle private types
5403 if Has_Private_Declaration
(Typ
) and then Present
(Full_View
(Typ
)) then
5404 Typ
:= Full_View
(Typ
);
5407 -- Handle access types
5409 if Is_Access_Type
(Typ
) then
5410 Typ
:= Designated_Type
(Typ
);
5413 -- Handle task and protected types implementing interfaces
5415 if Is_Concurrent_Type
(Typ
) then
5416 Typ
:= Corresponding_Record_Type
(Typ
);
5420 (not Is_Class_Wide_Type
(Typ
)
5421 and then Ekind
(Typ
) /= E_Incomplete_Type
);
5423 if Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True) then
5424 return First_Elmt
(Access_Disp_Table
(Typ
));
5427 ADT
:= Next_Elmt
(Next_Elmt
(First_Elmt
(Access_Disp_Table
(Typ
))));
5429 and then Present
(Related_Type
(Node
(ADT
)))
5430 and then Related_Type
(Node
(ADT
)) /= Iface
5431 and then not Is_Ancestor
(Iface
, Related_Type
(Node
(ADT
)),
5432 Use_Full_View
=> True)
5437 pragma Assert
(Present
(Related_Type
(Node
(ADT
))));
5440 end Find_Interface_ADT
;
5442 ------------------------
5443 -- Find_Interface_Tag --
5444 ------------------------
5446 function Find_Interface_Tag
5448 Iface
: Entity_Id
) return Entity_Id
5450 AI_Tag
: Entity_Id
:= Empty
;
5451 Found
: Boolean := False;
5452 Typ
: Entity_Id
:= T
;
5454 procedure Find_Tag
(Typ
: Entity_Id
);
5455 -- Internal subprogram used to recursively climb to the ancestors
5461 procedure Find_Tag
(Typ
: Entity_Id
) is
5466 -- This routine does not handle the case in which the interface is an
5467 -- ancestor of Typ. That case is handled by the enclosing subprogram.
5469 pragma Assert
(Typ
/= Iface
);
5471 -- Climb to the root type handling private types
5473 if Present
(Full_View
(Etype
(Typ
))) then
5474 if Full_View
(Etype
(Typ
)) /= Typ
then
5475 Find_Tag
(Full_View
(Etype
(Typ
)));
5478 elsif Etype
(Typ
) /= Typ
then
5479 Find_Tag
(Etype
(Typ
));
5482 -- Traverse the list of interfaces implemented by the type
5485 and then Present
(Interfaces
(Typ
))
5486 and then not (Is_Empty_Elmt_List
(Interfaces
(Typ
)))
5488 -- Skip the tag associated with the primary table
5490 pragma Assert
(Etype
(First_Tag_Component
(Typ
)) = RTE
(RE_Tag
));
5491 AI_Tag
:= Next_Tag_Component
(First_Tag_Component
(Typ
));
5492 pragma Assert
(Present
(AI_Tag
));
5494 AI_Elmt
:= First_Elmt
(Interfaces
(Typ
));
5495 while Present
(AI_Elmt
) loop
5496 AI
:= Node
(AI_Elmt
);
5499 or else Is_Ancestor
(Iface
, AI
, Use_Full_View
=> True)
5505 AI_Tag
:= Next_Tag_Component
(AI_Tag
);
5506 Next_Elmt
(AI_Elmt
);
5511 -- Start of processing for Find_Interface_Tag
5514 pragma Assert
(Is_Interface
(Iface
));
5516 -- Handle access types
5518 if Is_Access_Type
(Typ
) then
5519 Typ
:= Designated_Type
(Typ
);
5522 -- Handle class-wide types
5524 if Is_Class_Wide_Type
(Typ
) then
5525 Typ
:= Root_Type
(Typ
);
5528 -- Handle private types
5530 if Has_Private_Declaration
(Typ
) and then Present
(Full_View
(Typ
)) then
5531 Typ
:= Full_View
(Typ
);
5534 -- Handle entities from the limited view
5536 if Ekind
(Typ
) = E_Incomplete_Type
then
5537 pragma Assert
(Present
(Non_Limited_View
(Typ
)));
5538 Typ
:= Non_Limited_View
(Typ
);
5541 -- Handle task and protected types implementing interfaces
5543 if Is_Concurrent_Type
(Typ
) then
5544 Typ
:= Corresponding_Record_Type
(Typ
);
5547 -- If the interface is an ancestor of the type, then it shared the
5548 -- primary dispatch table.
5550 if Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True) then
5551 pragma Assert
(Etype
(First_Tag_Component
(Typ
)) = RTE
(RE_Tag
));
5552 return First_Tag_Component
(Typ
);
5554 -- Otherwise we need to search for its associated tag component
5558 pragma Assert
(Found
);
5561 end Find_Interface_Tag
;
5563 ---------------------------
5564 -- Find_Optional_Prim_Op --
5565 ---------------------------
5567 function Find_Optional_Prim_Op
5568 (T
: Entity_Id
; Name
: Name_Id
) return Entity_Id
5571 Typ
: Entity_Id
:= T
;
5575 if Is_Class_Wide_Type
(Typ
) then
5576 Typ
:= Root_Type
(Typ
);
5579 Typ
:= Underlying_Type
(Typ
);
5581 -- Loop through primitive operations
5583 Prim
:= First_Elmt
(Primitive_Operations
(Typ
));
5584 while Present
(Prim
) loop
5587 -- We can retrieve primitive operations by name if it is an internal
5588 -- name. For equality we must check that both of its operands have
5589 -- the same type, to avoid confusion with user-defined equalities
5590 -- than may have a non-symmetric signature.
5592 exit when Chars
(Op
) = Name
5595 or else Etype
(First_Formal
(Op
)) = Etype
(Last_Formal
(Op
)));
5600 return Node
(Prim
); -- Empty if not found
5601 end Find_Optional_Prim_Op
;
5603 ---------------------------
5604 -- Find_Optional_Prim_Op --
5605 ---------------------------
5607 function Find_Optional_Prim_Op
5609 Name
: TSS_Name_Type
) return Entity_Id
5611 Inher_Op
: Entity_Id
:= Empty
;
5612 Own_Op
: Entity_Id
:= Empty
;
5613 Prim_Elmt
: Elmt_Id
;
5614 Prim_Id
: Entity_Id
;
5615 Typ
: Entity_Id
:= T
;
5618 if Is_Class_Wide_Type
(Typ
) then
5619 Typ
:= Root_Type
(Typ
);
5622 Typ
:= Underlying_Type
(Typ
);
5624 -- This search is based on the assertion that the dispatching version
5625 -- of the TSS routine always precedes the real primitive.
5627 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
5628 while Present
(Prim_Elmt
) loop
5629 Prim_Id
:= Node
(Prim_Elmt
);
5631 if Is_TSS
(Prim_Id
, Name
) then
5632 if Present
(Alias
(Prim_Id
)) then
5633 Inher_Op
:= Prim_Id
;
5639 Next_Elmt
(Prim_Elmt
);
5642 if Present
(Own_Op
) then
5644 elsif Present
(Inher_Op
) then
5649 end Find_Optional_Prim_Op
;
5655 function Find_Prim_Op
5656 (T
: Entity_Id
; Name
: Name_Id
) return Entity_Id
5658 Result
: constant Entity_Id
:= Find_Optional_Prim_Op
(T
, Name
);
5661 raise Program_Error
;
5671 function Find_Prim_Op
5673 Name
: TSS_Name_Type
) return Entity_Id
5675 Result
: constant Entity_Id
:= Find_Optional_Prim_Op
(T
, Name
);
5678 raise Program_Error
;
5684 ----------------------------
5685 -- Find_Protection_Object --
5686 ----------------------------
5688 function Find_Protection_Object
(Scop
: Entity_Id
) return Entity_Id
is
5693 while Present
(S
) loop
5694 if Ekind_In
(S
, E_Entry
, E_Entry_Family
, E_Function
, E_Procedure
)
5695 and then Present
(Protection_Object
(S
))
5697 return Protection_Object
(S
);
5703 -- If we do not find a Protection object in the scope chain, then
5704 -- something has gone wrong, most likely the object was never created.
5706 raise Program_Error
;
5707 end Find_Protection_Object
;
5709 --------------------------
5710 -- Find_Protection_Type --
5711 --------------------------
5713 function Find_Protection_Type
(Conc_Typ
: Entity_Id
) return Entity_Id
is
5715 Typ
: Entity_Id
:= Conc_Typ
;
5718 if Is_Concurrent_Type
(Typ
) then
5719 Typ
:= Corresponding_Record_Type
(Typ
);
5722 -- Since restriction violations are not considered serious errors, the
5723 -- expander remains active, but may leave the corresponding record type
5724 -- malformed. In such cases, component _object is not available so do
5727 if not Analyzed
(Typ
) then
5731 Comp
:= First_Component
(Typ
);
5732 while Present
(Comp
) loop
5733 if Chars
(Comp
) = Name_uObject
then
5734 return Base_Type
(Etype
(Comp
));
5737 Next_Component
(Comp
);
5740 -- The corresponding record of a protected type should always have an
5743 raise Program_Error
;
5744 end Find_Protection_Type
;
5746 -----------------------
5747 -- Find_Hook_Context --
5748 -----------------------
5750 function Find_Hook_Context
(N
: Node_Id
) return Node_Id
is
5754 Wrapped_Node
: Node_Id
;
5755 -- Note: if we are in a transient scope, we want to reuse it as
5756 -- the context for actions insertion, if possible. But if N is itself
5757 -- part of the stored actions for the current transient scope,
5758 -- then we need to insert at the appropriate (inner) location in
5759 -- the not as an action on Node_To_Be_Wrapped.
5761 In_Cond_Expr
: constant Boolean := Within_Case_Or_If_Expression
(N
);
5764 -- When the node is inside a case/if expression, the lifetime of any
5765 -- temporary controlled object is extended. Find a suitable insertion
5766 -- node by locating the topmost case or if expressions.
5768 if In_Cond_Expr
then
5771 while Present
(Par
) loop
5772 if Nkind_In
(Original_Node
(Par
), N_Case_Expression
,
5777 -- Prevent the search from going too far
5779 elsif Is_Body_Or_Package_Declaration
(Par
) then
5783 Par
:= Parent
(Par
);
5786 -- The topmost case or if expression is now recovered, but it may
5787 -- still not be the correct place to add generated code. Climb to
5788 -- find a parent that is part of a declarative or statement list,
5789 -- and is not a list of actuals in a call.
5792 while Present
(Par
) loop
5793 if Is_List_Member
(Par
)
5794 and then not Nkind_In
(Par
, N_Component_Association
,
5795 N_Discriminant_Association
,
5796 N_Parameter_Association
,
5797 N_Pragma_Argument_Association
)
5798 and then not Nkind_In
(Parent
(Par
), N_Function_Call
,
5799 N_Procedure_Call_Statement
,
5800 N_Entry_Call_Statement
)
5805 -- Prevent the search from going too far
5807 elsif Is_Body_Or_Package_Declaration
(Par
) then
5811 Par
:= Parent
(Par
);
5818 while Present
(Par
) loop
5820 -- Keep climbing past various operators
5822 if Nkind
(Parent
(Par
)) in N_Op
5823 or else Nkind_In
(Parent
(Par
), N_And_Then
, N_Or_Else
)
5825 Par
:= Parent
(Par
);
5833 -- The node may be located in a pragma in which case return the
5836 -- pragma Precondition (... and then Ctrl_Func_Call ...);
5838 -- Similar case occurs when the node is related to an object
5839 -- declaration or assignment:
5841 -- Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...;
5843 -- Another case to consider is when the node is part of a return
5846 -- return ... and then Ctrl_Func_Call ...;
5848 -- Another case is when the node acts as a formal in a procedure
5851 -- Proc (... and then Ctrl_Func_Call ...);
5853 if Scope_Is_Transient
then
5854 Wrapped_Node
:= Node_To_Be_Wrapped
;
5856 Wrapped_Node
:= Empty
;
5859 while Present
(Par
) loop
5860 if Par
= Wrapped_Node
5861 or else Nkind_In
(Par
, N_Assignment_Statement
,
5862 N_Object_Declaration
,
5864 N_Procedure_Call_Statement
,
5865 N_Simple_Return_Statement
)
5869 -- Prevent the search from going too far
5871 elsif Is_Body_Or_Package_Declaration
(Par
) then
5875 Par
:= Parent
(Par
);
5878 -- Return the topmost short circuit operator
5882 end Find_Hook_Context
;
5884 ------------------------------
5885 -- Following_Address_Clause --
5886 ------------------------------
5888 function Following_Address_Clause
(D
: Node_Id
) return Node_Id
is
5889 Id
: constant Entity_Id
:= Defining_Identifier
(D
);
5893 function Check_Decls
(D
: Node_Id
) return Node_Id
;
5894 -- This internal function differs from the main function in that it
5895 -- gets called to deal with a following package private part, and
5896 -- it checks declarations starting with D (the main function checks
5897 -- declarations following D). If D is Empty, then Empty is returned.
5903 function Check_Decls
(D
: Node_Id
) return Node_Id
is
5908 while Present
(Decl
) loop
5909 if Nkind
(Decl
) = N_At_Clause
5910 and then Chars
(Identifier
(Decl
)) = Chars
(Id
)
5914 elsif Nkind
(Decl
) = N_Attribute_Definition_Clause
5915 and then Chars
(Decl
) = Name_Address
5916 and then Chars
(Name
(Decl
)) = Chars
(Id
)
5924 -- Otherwise not found, return Empty
5929 -- Start of processing for Following_Address_Clause
5932 -- If parser detected no address clause for the identifier in question,
5933 -- then the answer is a quick NO, without the need for a search.
5935 if not Get_Name_Table_Boolean1
(Chars
(Id
)) then
5939 -- Otherwise search current declarative unit
5941 Result
:= Check_Decls
(Next
(D
));
5943 if Present
(Result
) then
5947 -- Check for possible package private part following
5951 if Nkind
(Par
) = N_Package_Specification
5952 and then Visible_Declarations
(Par
) = List_Containing
(D
)
5953 and then Present
(Private_Declarations
(Par
))
5955 -- Private part present, check declarations there
5957 return Check_Decls
(First
(Private_Declarations
(Par
)));
5960 -- No private part, clause not found, return Empty
5964 end Following_Address_Clause
;
5966 ----------------------
5967 -- Force_Evaluation --
5968 ----------------------
5970 procedure Force_Evaluation
5972 Name_Req
: Boolean := False;
5973 Related_Id
: Entity_Id
:= Empty
;
5974 Is_Low_Bound
: Boolean := False;
5975 Is_High_Bound
: Boolean := False;
5976 Mode
: Force_Evaluation_Mode
:= Relaxed
)
5981 Name_Req
=> Name_Req
,
5982 Variable_Ref
=> True,
5983 Renaming_Req
=> False,
5984 Related_Id
=> Related_Id
,
5985 Is_Low_Bound
=> Is_Low_Bound
,
5986 Is_High_Bound
=> Is_High_Bound
,
5987 Check_Side_Effects
=>
5988 Is_Static_Expression
(Exp
)
5989 or else Mode
= Relaxed
);
5990 end Force_Evaluation
;
5992 ---------------------------------
5993 -- Fully_Qualified_Name_String --
5994 ---------------------------------
5996 function Fully_Qualified_Name_String
5998 Append_NUL
: Boolean := True) return String_Id
6000 procedure Internal_Full_Qualified_Name
(E
: Entity_Id
);
6001 -- Compute recursively the qualified name without NUL at the end, adding
6002 -- it to the currently started string being generated
6004 ----------------------------------
6005 -- Internal_Full_Qualified_Name --
6006 ----------------------------------
6008 procedure Internal_Full_Qualified_Name
(E
: Entity_Id
) is
6012 -- Deal properly with child units
6014 if Nkind
(E
) = N_Defining_Program_Unit_Name
then
6015 Ent
:= Defining_Identifier
(E
);
6020 -- Compute qualification recursively (only "Standard" has no scope)
6022 if Present
(Scope
(Scope
(Ent
))) then
6023 Internal_Full_Qualified_Name
(Scope
(Ent
));
6024 Store_String_Char
(Get_Char_Code
('.'));
6027 -- Every entity should have a name except some expanded blocks
6028 -- don't bother about those.
6030 if Chars
(Ent
) = No_Name
then
6034 -- Generates the entity name in upper case
6036 Get_Decoded_Name_String
(Chars
(Ent
));
6038 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
6040 end Internal_Full_Qualified_Name
;
6042 -- Start of processing for Full_Qualified_Name
6046 Internal_Full_Qualified_Name
(E
);
6049 Store_String_Char
(Get_Char_Code
(ASCII
.NUL
));
6053 end Fully_Qualified_Name_String
;
6055 ------------------------
6056 -- Generate_Poll_Call --
6057 ------------------------
6059 procedure Generate_Poll_Call
(N
: Node_Id
) is
6061 -- No poll call if polling not active
6063 if not Polling_Required
then
6066 -- Otherwise generate require poll call
6069 Insert_Before_And_Analyze
(N
,
6070 Make_Procedure_Call_Statement
(Sloc
(N
),
6071 Name
=> New_Occurrence_Of
(RTE
(RE_Poll
), Sloc
(N
))));
6073 end Generate_Poll_Call
;
6075 ---------------------------------
6076 -- Get_Current_Value_Condition --
6077 ---------------------------------
6079 -- Note: the implementation of this procedure is very closely tied to the
6080 -- implementation of Set_Current_Value_Condition. In the Get procedure, we
6081 -- interpret Current_Value fields set by the Set procedure, so the two
6082 -- procedures need to be closely coordinated.
6084 procedure Get_Current_Value_Condition
6089 Loc
: constant Source_Ptr
:= Sloc
(Var
);
6090 Ent
: constant Entity_Id
:= Entity
(Var
);
6092 procedure Process_Current_Value_Condition
6095 -- N is an expression which holds either True (S = True) or False (S =
6096 -- False) in the condition. This procedure digs out the expression and
6097 -- if it refers to Ent, sets Op and Val appropriately.
6099 -------------------------------------
6100 -- Process_Current_Value_Condition --
6101 -------------------------------------
6103 procedure Process_Current_Value_Condition
6108 Prev_Cond
: Node_Id
;
6118 -- Deal with NOT operators, inverting sense
6120 while Nkind
(Cond
) = N_Op_Not
loop
6121 Cond
:= Right_Opnd
(Cond
);
6125 -- Deal with conversions, qualifications, and expressions with
6128 while Nkind_In
(Cond
,
6130 N_Qualified_Expression
,
6131 N_Expression_With_Actions
)
6133 Cond
:= Expression
(Cond
);
6136 exit when Cond
= Prev_Cond
;
6139 -- Deal with AND THEN and AND cases
6141 if Nkind_In
(Cond
, N_And_Then
, N_Op_And
) then
6143 -- Don't ever try to invert a condition that is of the form of an
6144 -- AND or AND THEN (since we are not doing sufficiently general
6145 -- processing to allow this).
6147 if Sens
= False then
6153 -- Recursively process AND and AND THEN branches
6155 Process_Current_Value_Condition
(Left_Opnd
(Cond
), True);
6157 if Op
/= N_Empty
then
6161 Process_Current_Value_Condition
(Right_Opnd
(Cond
), True);
6164 -- Case of relational operator
6166 elsif Nkind
(Cond
) in N_Op_Compare
then
6169 -- Invert sense of test if inverted test
6171 if Sens
= False then
6173 when N_Op_Eq
=> Op
:= N_Op_Ne
;
6174 when N_Op_Ne
=> Op
:= N_Op_Eq
;
6175 when N_Op_Lt
=> Op
:= N_Op_Ge
;
6176 when N_Op_Gt
=> Op
:= N_Op_Le
;
6177 when N_Op_Le
=> Op
:= N_Op_Gt
;
6178 when N_Op_Ge
=> Op
:= N_Op_Lt
;
6179 when others => raise Program_Error
;
6183 -- Case of entity op value
6185 if Is_Entity_Name
(Left_Opnd
(Cond
))
6186 and then Ent
= Entity
(Left_Opnd
(Cond
))
6187 and then Compile_Time_Known_Value
(Right_Opnd
(Cond
))
6189 Val
:= Right_Opnd
(Cond
);
6191 -- Case of value op entity
6193 elsif Is_Entity_Name
(Right_Opnd
(Cond
))
6194 and then Ent
= Entity
(Right_Opnd
(Cond
))
6195 and then Compile_Time_Known_Value
(Left_Opnd
(Cond
))
6197 Val
:= Left_Opnd
(Cond
);
6199 -- We are effectively swapping operands
6202 when N_Op_Eq
=> null;
6203 when N_Op_Ne
=> null;
6204 when N_Op_Lt
=> Op
:= N_Op_Gt
;
6205 when N_Op_Gt
=> Op
:= N_Op_Lt
;
6206 when N_Op_Le
=> Op
:= N_Op_Ge
;
6207 when N_Op_Ge
=> Op
:= N_Op_Le
;
6208 when others => raise Program_Error
;
6217 elsif Nkind_In
(Cond
,
6219 N_Qualified_Expression
,
6220 N_Expression_With_Actions
)
6222 Cond
:= Expression
(Cond
);
6224 -- Case of Boolean variable reference, return as though the
6225 -- reference had said var = True.
6228 if Is_Entity_Name
(Cond
) and then Ent
= Entity
(Cond
) then
6229 Val
:= New_Occurrence_Of
(Standard_True
, Sloc
(Cond
));
6231 if Sens
= False then
6238 end Process_Current_Value_Condition
;
6240 -- Start of processing for Get_Current_Value_Condition
6246 -- Immediate return, nothing doing, if this is not an object
6248 if Ekind
(Ent
) not in Object_Kind
then
6252 -- Otherwise examine current value
6255 CV
: constant Node_Id
:= Current_Value
(Ent
);
6260 -- If statement. Condition is known true in THEN section, known False
6261 -- in any ELSIF or ELSE part, and unknown outside the IF statement.
6263 if Nkind
(CV
) = N_If_Statement
then
6265 -- Before start of IF statement
6267 if Loc
< Sloc
(CV
) then
6270 -- After end of IF statement
6272 elsif Loc
>= Sloc
(CV
) + Text_Ptr
(UI_To_Int
(End_Span
(CV
))) then
6276 -- At this stage we know that we are within the IF statement, but
6277 -- unfortunately, the tree does not record the SLOC of the ELSE so
6278 -- we cannot use a simple SLOC comparison to distinguish between
6279 -- the then/else statements, so we have to climb the tree.
6286 while Parent
(N
) /= CV
loop
6289 -- If we fall off the top of the tree, then that's odd, but
6290 -- perhaps it could occur in some error situation, and the
6291 -- safest response is simply to assume that the outcome of
6292 -- the condition is unknown. No point in bombing during an
6293 -- attempt to optimize things.
6300 -- Now we have N pointing to a node whose parent is the IF
6301 -- statement in question, so now we can tell if we are within
6302 -- the THEN statements.
6304 if Is_List_Member
(N
)
6305 and then List_Containing
(N
) = Then_Statements
(CV
)
6309 -- If the variable reference does not come from source, we
6310 -- cannot reliably tell whether it appears in the else part.
6311 -- In particular, if it appears in generated code for a node
6312 -- that requires finalization, it may be attached to a list
6313 -- that has not been yet inserted into the code. For now,
6314 -- treat it as unknown.
6316 elsif not Comes_From_Source
(N
) then
6319 -- Otherwise we must be in ELSIF or ELSE part
6326 -- ELSIF part. Condition is known true within the referenced
6327 -- ELSIF, known False in any subsequent ELSIF or ELSE part,
6328 -- and unknown before the ELSE part or after the IF statement.
6330 elsif Nkind
(CV
) = N_Elsif_Part
then
6332 -- if the Elsif_Part had condition_actions, the elsif has been
6333 -- rewritten as a nested if, and the original elsif_part is
6334 -- detached from the tree, so there is no way to obtain useful
6335 -- information on the current value of the variable.
6336 -- Can this be improved ???
6338 if No
(Parent
(CV
)) then
6344 -- If the tree has been otherwise rewritten there is nothing
6345 -- else to be done either.
6347 if Nkind
(Stm
) /= N_If_Statement
then
6351 -- Before start of ELSIF part
6353 if Loc
< Sloc
(CV
) then
6356 -- After end of IF statement
6358 elsif Loc
>= Sloc
(Stm
) +
6359 Text_Ptr
(UI_To_Int
(End_Span
(Stm
)))
6364 -- Again we lack the SLOC of the ELSE, so we need to climb the
6365 -- tree to see if we are within the ELSIF part in question.
6372 while Parent
(N
) /= Stm
loop
6375 -- If we fall off the top of the tree, then that's odd, but
6376 -- perhaps it could occur in some error situation, and the
6377 -- safest response is simply to assume that the outcome of
6378 -- the condition is unknown. No point in bombing during an
6379 -- attempt to optimize things.
6386 -- Now we have N pointing to a node whose parent is the IF
6387 -- statement in question, so see if is the ELSIF part we want.
6388 -- the THEN statements.
6393 -- Otherwise we must be in subsequent ELSIF or ELSE part
6400 -- Iteration scheme of while loop. The condition is known to be
6401 -- true within the body of the loop.
6403 elsif Nkind
(CV
) = N_Iteration_Scheme
then
6405 Loop_Stmt
: constant Node_Id
:= Parent
(CV
);
6408 -- Before start of body of loop
6410 if Loc
< Sloc
(Loop_Stmt
) then
6413 -- After end of LOOP statement
6415 elsif Loc
>= Sloc
(End_Label
(Loop_Stmt
)) then
6418 -- We are within the body of the loop
6425 -- All other cases of Current_Value settings
6431 -- If we fall through here, then we have a reportable condition, Sens
6432 -- is True if the condition is true and False if it needs inverting.
6434 Process_Current_Value_Condition
(Condition
(CV
), Sens
);
6436 end Get_Current_Value_Condition
;
6438 ---------------------
6439 -- Get_Stream_Size --
6440 ---------------------
6442 function Get_Stream_Size
(E
: Entity_Id
) return Uint
is
6444 -- If we have a Stream_Size clause for this type use it
6446 if Has_Stream_Size_Clause
(E
) then
6447 return Static_Integer
(Expression
(Stream_Size_Clause
(E
)));
6449 -- Otherwise the Stream_Size if the size of the type
6454 end Get_Stream_Size
;
6456 ---------------------------
6457 -- Has_Access_Constraint --
6458 ---------------------------
6460 function Has_Access_Constraint
(E
: Entity_Id
) return Boolean is
6462 T
: constant Entity_Id
:= Etype
(E
);
6465 if Has_Per_Object_Constraint
(E
) and then Has_Discriminants
(T
) then
6466 Disc
:= First_Discriminant
(T
);
6467 while Present
(Disc
) loop
6468 if Is_Access_Type
(Etype
(Disc
)) then
6472 Next_Discriminant
(Disc
);
6479 end Has_Access_Constraint
;
6481 -----------------------------------------------------
6482 -- Has_Annotate_Pragma_For_External_Axiomatization --
6483 -----------------------------------------------------
6485 function Has_Annotate_Pragma_For_External_Axiomatization
6486 (E
: Entity_Id
) return Boolean
6488 function Is_Annotate_Pragma_For_External_Axiomatization
6489 (N
: Node_Id
) return Boolean;
6490 -- Returns whether N is
6491 -- pragma Annotate (GNATprove, External_Axiomatization);
6493 ----------------------------------------------------
6494 -- Is_Annotate_Pragma_For_External_Axiomatization --
6495 ----------------------------------------------------
6497 -- The general form of pragma Annotate is
6499 -- pragma Annotate (IDENTIFIER [, IDENTIFIER {, ARG}]);
6500 -- ARG ::= NAME | EXPRESSION
6502 -- The first two arguments are by convention intended to refer to an
6503 -- external tool and a tool-specific function. These arguments are
6506 -- The following is used to annotate a package specification which
6507 -- GNATprove should treat specially, because the axiomatization of
6508 -- this unit is given by the user instead of being automatically
6511 -- pragma Annotate (GNATprove, External_Axiomatization);
6513 function Is_Annotate_Pragma_For_External_Axiomatization
6514 (N
: Node_Id
) return Boolean
6516 Name_GNATprove
: constant String :=
6518 Name_External_Axiomatization
: constant String :=
6519 "external_axiomatization";
6523 if Nkind
(N
) = N_Pragma
6524 and then Get_Pragma_Id
(N
) = Pragma_Annotate
6525 and then List_Length
(Pragma_Argument_Associations
(N
)) = 2
6528 Arg1
: constant Node_Id
:=
6529 First
(Pragma_Argument_Associations
(N
));
6530 Arg2
: constant Node_Id
:= Next
(Arg1
);
6535 -- Fill in Name_Buffer with Name_GNATprove first, and then with
6536 -- Name_External_Axiomatization so that Name_Find returns the
6537 -- corresponding name. This takes care of all possible casings.
6540 Add_Str_To_Name_Buffer
(Name_GNATprove
);
6544 Add_Str_To_Name_Buffer
(Name_External_Axiomatization
);
6547 return Chars
(Get_Pragma_Arg
(Arg1
)) = Nam1
6549 Chars
(Get_Pragma_Arg
(Arg2
)) = Nam2
;
6555 end Is_Annotate_Pragma_For_External_Axiomatization
;
6560 Vis_Decls
: List_Id
;
6563 -- Start of processing for Has_Annotate_Pragma_For_External_Axiomatization
6566 if Nkind
(Parent
(E
)) = N_Defining_Program_Unit_Name
then
6567 Decl
:= Parent
(Parent
(E
));
6572 Vis_Decls
:= Visible_Declarations
(Decl
);
6574 N
:= First
(Vis_Decls
);
6575 while Present
(N
) loop
6577 -- Skip declarations generated by the frontend. Skip all pragmas
6578 -- that are not the desired Annotate pragma. Stop the search on
6579 -- the first non-pragma source declaration.
6581 if Comes_From_Source
(N
) then
6582 if Nkind
(N
) = N_Pragma
then
6583 if Is_Annotate_Pragma_For_External_Axiomatization
(N
) then
6595 end Has_Annotate_Pragma_For_External_Axiomatization
;
6597 --------------------
6598 -- Homonym_Number --
6599 --------------------
6601 function Homonym_Number
(Subp
: Entity_Id
) return Nat
is
6607 Hom
:= Homonym
(Subp
);
6608 while Present
(Hom
) loop
6609 if Scope
(Hom
) = Scope
(Subp
) then
6613 Hom
:= Homonym
(Hom
);
6619 -----------------------------------
6620 -- In_Library_Level_Package_Body --
6621 -----------------------------------
6623 function In_Library_Level_Package_Body
(Id
: Entity_Id
) return Boolean is
6625 -- First determine whether the entity appears at the library level, then
6626 -- look at the containing unit.
6628 if Is_Library_Level_Entity
(Id
) then
6630 Container
: constant Node_Id
:= Cunit
(Get_Source_Unit
(Id
));
6633 return Nkind
(Unit
(Container
)) = N_Package_Body
;
6638 end In_Library_Level_Package_Body
;
6640 ------------------------------
6641 -- In_Unconditional_Context --
6642 ------------------------------
6644 function In_Unconditional_Context
(Node
: Node_Id
) return Boolean is
6649 while Present
(P
) loop
6651 when N_Subprogram_Body
=> return True;
6652 when N_If_Statement
=> return False;
6653 when N_Loop_Statement
=> return False;
6654 when N_Case_Statement
=> return False;
6655 when others => P
:= Parent
(P
);
6660 end In_Unconditional_Context
;
6666 procedure Insert_Action
(Assoc_Node
: Node_Id
; Ins_Action
: Node_Id
) is
6668 if Present
(Ins_Action
) then
6669 Insert_Actions
(Assoc_Node
, New_List
(Ins_Action
));
6673 -- Version with check(s) suppressed
6675 procedure Insert_Action
6676 (Assoc_Node
: Node_Id
; Ins_Action
: Node_Id
; Suppress
: Check_Id
)
6679 Insert_Actions
(Assoc_Node
, New_List
(Ins_Action
), Suppress
);
6682 -------------------------
6683 -- Insert_Action_After --
6684 -------------------------
6686 procedure Insert_Action_After
6687 (Assoc_Node
: Node_Id
;
6688 Ins_Action
: Node_Id
)
6691 Insert_Actions_After
(Assoc_Node
, New_List
(Ins_Action
));
6692 end Insert_Action_After
;
6694 --------------------
6695 -- Insert_Actions --
6696 --------------------
6698 procedure Insert_Actions
(Assoc_Node
: Node_Id
; Ins_Actions
: List_Id
) is
6702 Wrapped_Node
: Node_Id
:= Empty
;
6705 if No
(Ins_Actions
) or else Is_Empty_List
(Ins_Actions
) then
6709 -- Ignore insert of actions from inside default expression (or other
6710 -- similar "spec expression") in the special spec-expression analyze
6711 -- mode. Any insertions at this point have no relevance, since we are
6712 -- only doing the analyze to freeze the types of any static expressions.
6713 -- See section "Handling of Default Expressions" in the spec of package
6714 -- Sem for further details.
6716 if In_Spec_Expression
then
6720 -- If the action derives from stuff inside a record, then the actions
6721 -- are attached to the current scope, to be inserted and analyzed on
6722 -- exit from the scope. The reason for this is that we may also be
6723 -- generating freeze actions at the same time, and they must eventually
6724 -- be elaborated in the correct order.
6726 if Is_Record_Type
(Current_Scope
)
6727 and then not Is_Frozen
(Current_Scope
)
6729 if No
(Scope_Stack
.Table
6730 (Scope_Stack
.Last
).Pending_Freeze_Actions
)
6732 Scope_Stack
.Table
(Scope_Stack
.Last
).Pending_Freeze_Actions
:=
6737 Scope_Stack
.Table
(Scope_Stack
.Last
).Pending_Freeze_Actions
);
6743 -- We now intend to climb up the tree to find the right point to
6744 -- insert the actions. We start at Assoc_Node, unless this node is a
6745 -- subexpression in which case we start with its parent. We do this for
6746 -- two reasons. First it speeds things up. Second, if Assoc_Node is
6747 -- itself one of the special nodes like N_And_Then, then we assume that
6748 -- an initial request to insert actions for such a node does not expect
6749 -- the actions to get deposited in the node for later handling when the
6750 -- node is expanded, since clearly the node is being dealt with by the
6751 -- caller. Note that in the subexpression case, N is always the child we
6754 -- N_Raise_xxx_Error is an annoying special case, it is a statement
6755 -- if it has type Standard_Void_Type, and a subexpression otherwise.
6756 -- Procedure calls, and similarly procedure attribute references, are
6759 if Nkind
(Assoc_Node
) in N_Subexpr
6760 and then (Nkind
(Assoc_Node
) not in N_Raise_xxx_Error
6761 or else Etype
(Assoc_Node
) /= Standard_Void_Type
)
6762 and then Nkind
(Assoc_Node
) /= N_Procedure_Call_Statement
6763 and then (Nkind
(Assoc_Node
) /= N_Attribute_Reference
6764 or else not Is_Procedure_Attribute_Name
6765 (Attribute_Name
(Assoc_Node
)))
6768 P
:= Parent
(Assoc_Node
);
6770 -- Non-subexpression case. Note that N is initially Empty in this case
6771 -- (N is only guaranteed Non-Empty in the subexpr case).
6778 -- Capture root of the transient scope
6780 if Scope_Is_Transient
then
6781 Wrapped_Node
:= Node_To_Be_Wrapped
;
6785 pragma Assert
(Present
(P
));
6787 -- Make sure that inserted actions stay in the transient scope
6789 if Present
(Wrapped_Node
) and then N
= Wrapped_Node
then
6790 Store_Before_Actions_In_Scope
(Ins_Actions
);
6796 -- Case of right operand of AND THEN or OR ELSE. Put the actions
6797 -- in the Actions field of the right operand. They will be moved
6798 -- out further when the AND THEN or OR ELSE operator is expanded.
6799 -- Nothing special needs to be done for the left operand since
6800 -- in that case the actions are executed unconditionally.
6802 when N_Short_Circuit
=>
6803 if N
= Right_Opnd
(P
) then
6805 -- We are now going to either append the actions to the
6806 -- actions field of the short-circuit operation. We will
6807 -- also analyze the actions now.
6809 -- This analysis is really too early, the proper thing would
6810 -- be to just park them there now, and only analyze them if
6811 -- we find we really need them, and to it at the proper
6812 -- final insertion point. However attempting to this proved
6813 -- tricky, so for now we just kill current values before and
6814 -- after the analyze call to make sure we avoid peculiar
6815 -- optimizations from this out of order insertion.
6817 Kill_Current_Values
;
6819 -- If P has already been expanded, we can't park new actions
6820 -- on it, so we need to expand them immediately, introducing
6821 -- an Expression_With_Actions. N can't be an expression
6822 -- with actions, or else then the actions would have been
6823 -- inserted at an inner level.
6825 if Analyzed
(P
) then
6826 pragma Assert
(Nkind
(N
) /= N_Expression_With_Actions
);
6828 Make_Expression_With_Actions
(Sloc
(N
),
6829 Actions
=> Ins_Actions
,
6830 Expression
=> Relocate_Node
(N
)));
6831 Analyze_And_Resolve
(N
);
6833 elsif Present
(Actions
(P
)) then
6834 Insert_List_After_And_Analyze
6835 (Last
(Actions
(P
)), Ins_Actions
);
6837 Set_Actions
(P
, Ins_Actions
);
6838 Analyze_List
(Actions
(P
));
6841 Kill_Current_Values
;
6846 -- Then or Else dependent expression of an if expression. Add
6847 -- actions to Then_Actions or Else_Actions field as appropriate.
6848 -- The actions will be moved further out when the if is expanded.
6850 when N_If_Expression
=>
6852 ThenX
: constant Node_Id
:= Next
(First
(Expressions
(P
)));
6853 ElseX
: constant Node_Id
:= Next
(ThenX
);
6856 -- If the enclosing expression is already analyzed, as
6857 -- is the case for nested elaboration checks, insert the
6858 -- conditional further out.
6860 if Analyzed
(P
) then
6863 -- Actions belong to the then expression, temporarily place
6864 -- them as Then_Actions of the if expression. They will be
6865 -- moved to the proper place later when the if expression
6868 elsif N
= ThenX
then
6869 if Present
(Then_Actions
(P
)) then
6870 Insert_List_After_And_Analyze
6871 (Last
(Then_Actions
(P
)), Ins_Actions
);
6873 Set_Then_Actions
(P
, Ins_Actions
);
6874 Analyze_List
(Then_Actions
(P
));
6879 -- Actions belong to the else expression, temporarily place
6880 -- them as Else_Actions of the if expression. They will be
6881 -- moved to the proper place later when the if expression
6884 elsif N
= ElseX
then
6885 if Present
(Else_Actions
(P
)) then
6886 Insert_List_After_And_Analyze
6887 (Last
(Else_Actions
(P
)), Ins_Actions
);
6889 Set_Else_Actions
(P
, Ins_Actions
);
6890 Analyze_List
(Else_Actions
(P
));
6895 -- Actions belong to the condition. In this case they are
6896 -- unconditionally executed, and so we can continue the
6897 -- search for the proper insert point.
6904 -- Alternative of case expression, we place the action in the
6905 -- Actions field of the case expression alternative, this will
6906 -- be handled when the case expression is expanded.
6908 when N_Case_Expression_Alternative
=>
6909 if Present
(Actions
(P
)) then
6910 Insert_List_After_And_Analyze
6911 (Last
(Actions
(P
)), Ins_Actions
);
6913 Set_Actions
(P
, Ins_Actions
);
6914 Analyze_List
(Actions
(P
));
6919 -- Case of appearing within an Expressions_With_Actions node. When
6920 -- the new actions come from the expression of the expression with
6921 -- actions, they must be added to the existing actions. The other
6922 -- alternative is when the new actions are related to one of the
6923 -- existing actions of the expression with actions, and should
6924 -- never reach here: if actions are inserted on a statement
6925 -- within the Actions of an expression with actions, or on some
6926 -- subexpression of such a statement, then the outermost proper
6927 -- insertion point is right before the statement, and we should
6928 -- never climb up as far as the N_Expression_With_Actions itself.
6930 when N_Expression_With_Actions
=>
6931 if N
= Expression
(P
) then
6932 if Is_Empty_List
(Actions
(P
)) then
6933 Append_List_To
(Actions
(P
), Ins_Actions
);
6934 Analyze_List
(Actions
(P
));
6936 Insert_List_After_And_Analyze
6937 (Last
(Actions
(P
)), Ins_Actions
);
6943 raise Program_Error
;
6946 -- Case of appearing in the condition of a while expression or
6947 -- elsif. We insert the actions into the Condition_Actions field.
6948 -- They will be moved further out when the while loop or elsif
6952 | N_Iteration_Scheme
6954 if N
= Condition
(P
) then
6955 if Present
(Condition_Actions
(P
)) then
6956 Insert_List_After_And_Analyze
6957 (Last
(Condition_Actions
(P
)), Ins_Actions
);
6959 Set_Condition_Actions
(P
, Ins_Actions
);
6961 -- Set the parent of the insert actions explicitly. This
6962 -- is not a syntactic field, but we need the parent field
6963 -- set, in particular so that freeze can understand that
6964 -- it is dealing with condition actions, and properly
6965 -- insert the freezing actions.
6967 Set_Parent
(Ins_Actions
, P
);
6968 Analyze_List
(Condition_Actions
(P
));
6974 -- Statements, declarations, pragmas, representation clauses
6979 N_Procedure_Call_Statement
6980 | N_Statement_Other_Than_Procedure_Call
6986 -- Representation_Clause
6989 | N_Attribute_Definition_Clause
6990 | N_Enumeration_Representation_Clause
6991 | N_Record_Representation_Clause
6995 | N_Abstract_Subprogram_Declaration
6997 | N_Exception_Declaration
6998 | N_Exception_Renaming_Declaration
6999 | N_Expression_Function
7000 | N_Formal_Abstract_Subprogram_Declaration
7001 | N_Formal_Concrete_Subprogram_Declaration
7002 | N_Formal_Object_Declaration
7003 | N_Formal_Type_Declaration
7004 | N_Full_Type_Declaration
7005 | N_Function_Instantiation
7006 | N_Generic_Function_Renaming_Declaration
7007 | N_Generic_Package_Declaration
7008 | N_Generic_Package_Renaming_Declaration
7009 | N_Generic_Procedure_Renaming_Declaration
7010 | N_Generic_Subprogram_Declaration
7011 | N_Implicit_Label_Declaration
7012 | N_Incomplete_Type_Declaration
7013 | N_Number_Declaration
7014 | N_Object_Declaration
7015 | N_Object_Renaming_Declaration
7017 | N_Package_Body_Stub
7018 | N_Package_Declaration
7019 | N_Package_Instantiation
7020 | N_Package_Renaming_Declaration
7021 | N_Private_Extension_Declaration
7022 | N_Private_Type_Declaration
7023 | N_Procedure_Instantiation
7025 | N_Protected_Body_Stub
7026 | N_Protected_Type_Declaration
7027 | N_Single_Task_Declaration
7029 | N_Subprogram_Body_Stub
7030 | N_Subprogram_Declaration
7031 | N_Subprogram_Renaming_Declaration
7032 | N_Subtype_Declaration
7035 | N_Task_Type_Declaration
7037 -- Use clauses can appear in lists of declarations
7039 | N_Use_Package_Clause
7042 -- Freeze entity behaves like a declaration or statement
7045 | N_Freeze_Generic_Entity
7047 -- Do not insert here if the item is not a list member (this
7048 -- happens for example with a triggering statement, and the
7049 -- proper approach is to insert before the entire select).
7051 if not Is_List_Member
(P
) then
7054 -- Do not insert if parent of P is an N_Component_Association
7055 -- node (i.e. we are in the context of an N_Aggregate or
7056 -- N_Extension_Aggregate node. In this case we want to insert
7057 -- before the entire aggregate.
7059 elsif Nkind
(Parent
(P
)) = N_Component_Association
then
7062 -- Do not insert if the parent of P is either an N_Variant node
7063 -- or an N_Record_Definition node, meaning in either case that
7064 -- P is a member of a component list, and that therefore the
7065 -- actions should be inserted outside the complete record
7068 elsif Nkind_In
(Parent
(P
), N_Variant
, N_Record_Definition
) then
7071 -- Do not insert freeze nodes within the loop generated for
7072 -- an aggregate, because they may be elaborated too late for
7073 -- subsequent use in the back end: within a package spec the
7074 -- loop is part of the elaboration procedure and is only
7075 -- elaborated during the second pass.
7077 -- If the loop comes from source, or the entity is local to the
7078 -- loop itself it must remain within.
7080 elsif Nkind
(Parent
(P
)) = N_Loop_Statement
7081 and then not Comes_From_Source
(Parent
(P
))
7082 and then Nkind
(First
(Ins_Actions
)) = N_Freeze_Entity
7084 Scope
(Entity
(First
(Ins_Actions
))) /= Current_Scope
7088 -- Otherwise we can go ahead and do the insertion
7090 elsif P
= Wrapped_Node
then
7091 Store_Before_Actions_In_Scope
(Ins_Actions
);
7095 Insert_List_Before_And_Analyze
(P
, Ins_Actions
);
7099 -- A special case, N_Raise_xxx_Error can act either as a statement
7100 -- or a subexpression. We tell the difference by looking at the
7101 -- Etype. It is set to Standard_Void_Type in the statement case.
7103 when N_Raise_xxx_Error
=>
7104 if Etype
(P
) = Standard_Void_Type
then
7105 if P
= Wrapped_Node
then
7106 Store_Before_Actions_In_Scope
(Ins_Actions
);
7108 Insert_List_Before_And_Analyze
(P
, Ins_Actions
);
7113 -- In the subexpression case, keep climbing
7119 -- If a component association appears within a loop created for
7120 -- an array aggregate, attach the actions to the association so
7121 -- they can be subsequently inserted within the loop. For other
7122 -- component associations insert outside of the aggregate. For
7123 -- an association that will generate a loop, its Loop_Actions
7124 -- attribute is already initialized (see exp_aggr.adb).
7126 -- The list of Loop_Actions can in turn generate additional ones,
7127 -- that are inserted before the associated node. If the associated
7128 -- node is outside the aggregate, the new actions are collected
7129 -- at the end of the Loop_Actions, to respect the order in which
7130 -- they are to be elaborated.
7132 when N_Component_Association
7133 | N_Iterated_Component_Association
7135 if Nkind
(Parent
(P
)) = N_Aggregate
7136 and then Present
(Loop_Actions
(P
))
7138 if Is_Empty_List
(Loop_Actions
(P
)) then
7139 Set_Loop_Actions
(P
, Ins_Actions
);
7140 Analyze_List
(Ins_Actions
);
7146 -- Check whether these actions were generated by a
7147 -- declaration that is part of the Loop_Actions for
7148 -- the component_association.
7151 while Present
(Decl
) loop
7152 exit when Parent
(Decl
) = P
7153 and then Is_List_Member
(Decl
)
7155 List_Containing
(Decl
) = Loop_Actions
(P
);
7156 Decl
:= Parent
(Decl
);
7159 if Present
(Decl
) then
7160 Insert_List_Before_And_Analyze
7161 (Decl
, Ins_Actions
);
7163 Insert_List_After_And_Analyze
7164 (Last
(Loop_Actions
(P
)), Ins_Actions
);
7175 -- Special case: an attribute denoting a procedure call
7177 when N_Attribute_Reference
=>
7178 if Is_Procedure_Attribute_Name
(Attribute_Name
(P
)) then
7179 if P
= Wrapped_Node
then
7180 Store_Before_Actions_In_Scope
(Ins_Actions
);
7182 Insert_List_Before_And_Analyze
(P
, Ins_Actions
);
7187 -- In the subexpression case, keep climbing
7193 -- Special case: a marker
7196 | N_Variable_Reference_Marker
7198 if Is_List_Member
(P
) then
7199 Insert_List_Before_And_Analyze
(P
, Ins_Actions
);
7203 -- A contract node should not belong to the tree
7206 raise Program_Error
;
7208 -- For all other node types, keep climbing tree
7210 when N_Abortable_Part
7211 | N_Accept_Alternative
7212 | N_Access_Definition
7213 | N_Access_Function_Definition
7214 | N_Access_Procedure_Definition
7215 | N_Access_To_Object_Definition
7218 | N_Aspect_Specification
7220 | N_Case_Statement_Alternative
7221 | N_Character_Literal
7222 | N_Compilation_Unit
7223 | N_Compilation_Unit_Aux
7224 | N_Component_Clause
7225 | N_Component_Declaration
7226 | N_Component_Definition
7228 | N_Constrained_Array_Definition
7229 | N_Decimal_Fixed_Point_Definition
7230 | N_Defining_Character_Literal
7231 | N_Defining_Identifier
7232 | N_Defining_Operator_Symbol
7233 | N_Defining_Program_Unit_Name
7234 | N_Delay_Alternative
7236 | N_Delta_Constraint
7237 | N_Derived_Type_Definition
7239 | N_Digits_Constraint
7240 | N_Discriminant_Association
7241 | N_Discriminant_Specification
7243 | N_Entry_Body_Formal_Part
7244 | N_Entry_Call_Alternative
7245 | N_Entry_Declaration
7246 | N_Entry_Index_Specification
7247 | N_Enumeration_Type_Definition
7249 | N_Exception_Handler
7251 | N_Explicit_Dereference
7252 | N_Extension_Aggregate
7253 | N_Floating_Point_Definition
7254 | N_Formal_Decimal_Fixed_Point_Definition
7255 | N_Formal_Derived_Type_Definition
7256 | N_Formal_Discrete_Type_Definition
7257 | N_Formal_Floating_Point_Definition
7258 | N_Formal_Modular_Type_Definition
7259 | N_Formal_Ordinary_Fixed_Point_Definition
7260 | N_Formal_Package_Declaration
7261 | N_Formal_Private_Type_Definition
7262 | N_Formal_Incomplete_Type_Definition
7263 | N_Formal_Signed_Integer_Type_Definition
7265 | N_Function_Specification
7266 | N_Generic_Association
7267 | N_Handled_Sequence_Of_Statements
7270 | N_Index_Or_Discriminant_Constraint
7271 | N_Indexed_Component
7273 | N_Iterator_Specification
7276 | N_Loop_Parameter_Specification
7278 | N_Modular_Type_Definition
7304 | N_Op_Shift_Right_Arithmetic
7308 | N_Ordinary_Fixed_Point_Definition
7310 | N_Package_Specification
7311 | N_Parameter_Association
7312 | N_Parameter_Specification
7313 | N_Pop_Constraint_Error_Label
7314 | N_Pop_Program_Error_Label
7315 | N_Pop_Storage_Error_Label
7316 | N_Pragma_Argument_Association
7317 | N_Procedure_Specification
7318 | N_Protected_Definition
7319 | N_Push_Constraint_Error_Label
7320 | N_Push_Program_Error_Label
7321 | N_Push_Storage_Error_Label
7322 | N_Qualified_Expression
7323 | N_Quantified_Expression
7324 | N_Raise_Expression
7326 | N_Range_Constraint
7328 | N_Real_Range_Specification
7329 | N_Record_Definition
7331 | N_SCIL_Dispatch_Table_Tag_Init
7332 | N_SCIL_Dispatching_Call
7333 | N_SCIL_Membership_Test
7334 | N_Selected_Component
7335 | N_Signed_Integer_Type_Definition
7336 | N_Single_Protected_Declaration
7339 | N_Subtype_Indication
7343 | N_Terminate_Alternative
7344 | N_Triggering_Alternative
7346 | N_Unchecked_Expression
7347 | N_Unchecked_Type_Conversion
7348 | N_Unconstrained_Array_Definition
7353 | N_Validate_Unchecked_Conversion
7359 -- If we fall through above tests, keep climbing tree
7363 if Nkind
(Parent
(N
)) = N_Subunit
then
7365 -- This is the proper body corresponding to a stub. Insertion must
7366 -- be done at the point of the stub, which is in the declarative
7367 -- part of the parent unit.
7369 P
:= Corresponding_Stub
(Parent
(N
));
7377 -- Version with check(s) suppressed
7379 procedure Insert_Actions
7380 (Assoc_Node
: Node_Id
;
7381 Ins_Actions
: List_Id
;
7382 Suppress
: Check_Id
)
7385 if Suppress
= All_Checks
then
7387 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
7389 Scope_Suppress
.Suppress
:= (others => True);
7390 Insert_Actions
(Assoc_Node
, Ins_Actions
);
7391 Scope_Suppress
.Suppress
:= Sva
;
7396 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
7398 Scope_Suppress
.Suppress
(Suppress
) := True;
7399 Insert_Actions
(Assoc_Node
, Ins_Actions
);
7400 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
7405 --------------------------
7406 -- Insert_Actions_After --
7407 --------------------------
7409 procedure Insert_Actions_After
7410 (Assoc_Node
: Node_Id
;
7411 Ins_Actions
: List_Id
)
7414 if Scope_Is_Transient
and then Assoc_Node
= Node_To_Be_Wrapped
then
7415 Store_After_Actions_In_Scope
(Ins_Actions
);
7417 Insert_List_After_And_Analyze
(Assoc_Node
, Ins_Actions
);
7419 end Insert_Actions_After
;
7421 ------------------------
7422 -- Insert_Declaration --
7423 ------------------------
7425 procedure Insert_Declaration
(N
: Node_Id
; Decl
: Node_Id
) is
7429 pragma Assert
(Nkind
(N
) in N_Subexpr
);
7431 -- Climb until we find a procedure or a package
7435 pragma Assert
(Present
(Parent
(P
)));
7438 if Is_List_Member
(P
) then
7439 exit when Nkind_In
(Parent
(P
), N_Package_Specification
,
7442 -- Special handling for handled sequence of statements, we must
7443 -- insert in the statements not the exception handlers!
7445 if Nkind
(Parent
(P
)) = N_Handled_Sequence_Of_Statements
then
7446 P
:= First
(Statements
(Parent
(P
)));
7452 -- Now do the insertion
7454 Insert_Before
(P
, Decl
);
7456 end Insert_Declaration
;
7458 ---------------------------------
7459 -- Insert_Library_Level_Action --
7460 ---------------------------------
7462 procedure Insert_Library_Level_Action
(N
: Node_Id
) is
7463 Aux
: constant Node_Id
:= Aux_Decls_Node
(Cunit
(Main_Unit
));
7466 Push_Scope
(Cunit_Entity
(Current_Sem_Unit
));
7467 -- And not Main_Unit as previously. If the main unit is a body,
7468 -- the scope needed to analyze the actions is the entity of the
7469 -- corresponding declaration.
7471 if No
(Actions
(Aux
)) then
7472 Set_Actions
(Aux
, New_List
(N
));
7474 Append
(N
, Actions
(Aux
));
7479 end Insert_Library_Level_Action
;
7481 ----------------------------------
7482 -- Insert_Library_Level_Actions --
7483 ----------------------------------
7485 procedure Insert_Library_Level_Actions
(L
: List_Id
) is
7486 Aux
: constant Node_Id
:= Aux_Decls_Node
(Cunit
(Main_Unit
));
7489 if Is_Non_Empty_List
(L
) then
7490 Push_Scope
(Cunit_Entity
(Main_Unit
));
7491 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
7493 if No
(Actions
(Aux
)) then
7494 Set_Actions
(Aux
, L
);
7497 Insert_List_After_And_Analyze
(Last
(Actions
(Aux
)), L
);
7502 end Insert_Library_Level_Actions
;
7504 ----------------------
7505 -- Inside_Init_Proc --
7506 ----------------------
7508 function Inside_Init_Proc
return Boolean is
7513 while Present
(S
) and then S
/= Standard_Standard
loop
7514 if Is_Init_Proc
(S
) then
7522 end Inside_Init_Proc
;
7524 ----------------------------
7525 -- Is_All_Null_Statements --
7526 ----------------------------
7528 function Is_All_Null_Statements
(L
: List_Id
) return Boolean is
7533 while Present
(Stm
) loop
7534 if Nkind
(Stm
) /= N_Null_Statement
then
7542 end Is_All_Null_Statements
;
7544 --------------------------------------------------
7545 -- Is_Displacement_Of_Object_Or_Function_Result --
7546 --------------------------------------------------
7548 function Is_Displacement_Of_Object_Or_Function_Result
7549 (Obj_Id
: Entity_Id
) return Boolean
7551 function Is_Controlled_Function_Call
(N
: Node_Id
) return Boolean;
7552 -- Determine whether node N denotes a controlled function call
7554 function Is_Controlled_Indexing
(N
: Node_Id
) return Boolean;
7555 -- Determine whether node N denotes a generalized indexing form which
7556 -- involves a controlled result.
7558 function Is_Displace_Call
(N
: Node_Id
) return Boolean;
7559 -- Determine whether node N denotes a call to Ada.Tags.Displace
7561 function Is_Source_Object
(N
: Node_Id
) return Boolean;
7562 -- Determine whether a particular node denotes a source object
7564 function Strip
(N
: Node_Id
) return Node_Id
;
7565 -- Examine arbitrary node N by stripping various indirections and return
7568 ---------------------------------
7569 -- Is_Controlled_Function_Call --
7570 ---------------------------------
7572 function Is_Controlled_Function_Call
(N
: Node_Id
) return Boolean is
7576 -- When a function call appears in Object.Operation format, the
7577 -- original representation has several possible forms depending on
7578 -- the availability and form of actual parameters:
7580 -- Obj.Func N_Selected_Component
7581 -- Obj.Func (Actual) N_Indexed_Component
7582 -- Obj.Func (Formal => Actual) N_Function_Call, whose Name is an
7583 -- N_Selected_Component
7585 Expr
:= Original_Node
(N
);
7587 if Nkind
(Expr
) = N_Function_Call
then
7588 Expr
:= Name
(Expr
);
7590 -- "Obj.Func (Actual)" case
7592 elsif Nkind
(Expr
) = N_Indexed_Component
then
7593 Expr
:= Prefix
(Expr
);
7595 -- "Obj.Func" or "Obj.Func (Formal => Actual) case
7597 elsif Nkind
(Expr
) = N_Selected_Component
then
7598 Expr
:= Selector_Name
(Expr
);
7606 Nkind
(Expr
) in N_Has_Entity
7607 and then Present
(Entity
(Expr
))
7608 and then Ekind
(Entity
(Expr
)) = E_Function
7609 and then Needs_Finalization
(Etype
(Entity
(Expr
)));
7610 end Is_Controlled_Function_Call
;
7612 ----------------------------
7613 -- Is_Controlled_Indexing --
7614 ----------------------------
7616 function Is_Controlled_Indexing
(N
: Node_Id
) return Boolean is
7617 Expr
: constant Node_Id
:= Original_Node
(N
);
7621 Nkind
(Expr
) = N_Indexed_Component
7622 and then Present
(Generalized_Indexing
(Expr
))
7623 and then Needs_Finalization
(Etype
(Expr
));
7624 end Is_Controlled_Indexing
;
7626 ----------------------
7627 -- Is_Displace_Call --
7628 ----------------------
7630 function Is_Displace_Call
(N
: Node_Id
) return Boolean is
7631 Call
: constant Node_Id
:= Strip
(N
);
7636 and then Nkind
(Call
) = N_Function_Call
7637 and then Nkind
(Name
(Call
)) in N_Has_Entity
7638 and then Is_RTE
(Entity
(Name
(Call
)), RE_Displace
);
7639 end Is_Displace_Call
;
7641 ----------------------
7642 -- Is_Source_Object --
7643 ----------------------
7645 function Is_Source_Object
(N
: Node_Id
) return Boolean is
7646 Obj
: constant Node_Id
:= Strip
(N
);
7651 and then Comes_From_Source
(Obj
)
7652 and then Nkind
(Obj
) in N_Has_Entity
7653 and then Is_Object
(Entity
(Obj
));
7654 end Is_Source_Object
;
7660 function Strip
(N
: Node_Id
) return Node_Id
is
7666 if Nkind
(Result
) = N_Explicit_Dereference
then
7667 Result
:= Prefix
(Result
);
7669 elsif Nkind_In
(Result
, N_Type_Conversion
,
7670 N_Unchecked_Type_Conversion
)
7672 Result
:= Expression
(Result
);
7684 Obj_Decl
: constant Node_Id
:= Declaration_Node
(Obj_Id
);
7685 Obj_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Obj_Id
));
7686 Orig_Decl
: constant Node_Id
:= Original_Node
(Obj_Decl
);
7687 Orig_Expr
: Node_Id
;
7689 -- Start of processing for Is_Displacement_Of_Object_Or_Function_Result
7694 -- Obj : CW_Type := Function_Call (...);
7696 -- is rewritten into:
7698 -- Temp : ... := Function_Call (...)'reference;
7699 -- Obj : CW_Type renames (... Ada.Tags.Displace (Temp));
7701 -- where the return type of the function and the class-wide type require
7702 -- dispatch table pointer displacement.
7706 -- Obj : CW_Type := Container (...);
7708 -- is rewritten into:
7710 -- Temp : ... := Function_Call (Container, ...)'reference;
7711 -- Obj : CW_Type renames (... Ada.Tags.Displace (Temp));
7713 -- where the container element type and the class-wide type require
7714 -- dispatch table pointer dispacement.
7718 -- Obj : CW_Type := Src_Obj;
7720 -- is rewritten into:
7722 -- Obj : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
7724 -- where the type of the source object and the class-wide type require
7725 -- dispatch table pointer displacement.
7727 if Nkind
(Obj_Decl
) = N_Object_Renaming_Declaration
7728 and then Is_Class_Wide_Type
(Obj_Typ
)
7729 and then Is_Displace_Call
(Renamed_Object
(Obj_Id
))
7730 and then Nkind
(Orig_Decl
) = N_Object_Declaration
7731 and then Comes_From_Source
(Orig_Decl
)
7733 Orig_Expr
:= Expression
(Orig_Decl
);
7736 Is_Controlled_Function_Call
(Orig_Expr
)
7737 or else Is_Controlled_Indexing
(Orig_Expr
)
7738 or else Is_Source_Object
(Orig_Expr
);
7742 end Is_Displacement_Of_Object_Or_Function_Result
;
7744 ------------------------------
7745 -- Is_Finalizable_Transient --
7746 ------------------------------
7748 function Is_Finalizable_Transient
7750 Rel_Node
: Node_Id
) return Boolean
7752 Obj_Id
: constant Entity_Id
:= Defining_Identifier
(Decl
);
7753 Obj_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Obj_Id
));
7755 function Initialized_By_Access
(Trans_Id
: Entity_Id
) return Boolean;
7756 -- Determine whether transient object Trans_Id is initialized either
7757 -- by a function call which returns an access type or simply renames
7760 function Initialized_By_Aliased_BIP_Func_Call
7761 (Trans_Id
: Entity_Id
) return Boolean;
7762 -- Determine whether transient object Trans_Id is initialized by a
7763 -- build-in-place function call where the BIPalloc parameter is of
7764 -- value 1 and BIPaccess is not null. This case creates an aliasing
7765 -- between the returned value and the value denoted by BIPaccess.
7768 (Trans_Id
: Entity_Id
;
7769 First_Stmt
: Node_Id
) return Boolean;
7770 -- Determine whether transient object Trans_Id has been renamed or
7771 -- aliased through 'reference in the statement list starting from
7774 function Is_Allocated
(Trans_Id
: Entity_Id
) return Boolean;
7775 -- Determine whether transient object Trans_Id is allocated on the heap
7777 function Is_Iterated_Container
7778 (Trans_Id
: Entity_Id
;
7779 First_Stmt
: Node_Id
) return Boolean;
7780 -- Determine whether transient object Trans_Id denotes a container which
7781 -- is in the process of being iterated in the statement list starting
7784 ---------------------------
7785 -- Initialized_By_Access --
7786 ---------------------------
7788 function Initialized_By_Access
(Trans_Id
: Entity_Id
) return Boolean is
7789 Expr
: constant Node_Id
:= Expression
(Parent
(Trans_Id
));
7794 and then Nkind
(Expr
) /= N_Reference
7795 and then Is_Access_Type
(Etype
(Expr
));
7796 end Initialized_By_Access
;
7798 ------------------------------------------
7799 -- Initialized_By_Aliased_BIP_Func_Call --
7800 ------------------------------------------
7802 function Initialized_By_Aliased_BIP_Func_Call
7803 (Trans_Id
: Entity_Id
) return Boolean
7805 Call
: Node_Id
:= Expression
(Parent
(Trans_Id
));
7808 -- Build-in-place calls usually appear in 'reference format
7810 if Nkind
(Call
) = N_Reference
then
7811 Call
:= Prefix
(Call
);
7814 Call
:= Unqual_Conv
(Call
);
7816 if Is_Build_In_Place_Function_Call
(Call
) then
7818 Access_Nam
: Name_Id
:= No_Name
;
7819 Access_OK
: Boolean := False;
7821 Alloc_Nam
: Name_Id
:= No_Name
;
7822 Alloc_OK
: Boolean := False;
7824 Func_Id
: Entity_Id
;
7828 -- Examine all parameter associations of the function call
7830 Param
:= First
(Parameter_Associations
(Call
));
7831 while Present
(Param
) loop
7832 if Nkind
(Param
) = N_Parameter_Association
7833 and then Nkind
(Selector_Name
(Param
)) = N_Identifier
7835 Actual
:= Explicit_Actual_Parameter
(Param
);
7836 Formal
:= Selector_Name
(Param
);
7838 -- Construct the names of formals BIPaccess and BIPalloc
7839 -- using the function name retrieved from an arbitrary
7842 if Access_Nam
= No_Name
7843 and then Alloc_Nam
= No_Name
7844 and then Present
(Entity
(Formal
))
7846 Func_Id
:= Scope
(Entity
(Formal
));
7849 New_External_Name
(Chars
(Func_Id
),
7850 BIP_Formal_Suffix
(BIP_Object_Access
));
7853 New_External_Name
(Chars
(Func_Id
),
7854 BIP_Formal_Suffix
(BIP_Alloc_Form
));
7857 -- A match for BIPaccess => Temp has been found
7859 if Chars
(Formal
) = Access_Nam
7860 and then Nkind
(Actual
) /= N_Null
7865 -- A match for BIPalloc => 1 has been found
7867 if Chars
(Formal
) = Alloc_Nam
7868 and then Nkind
(Actual
) = N_Integer_Literal
7869 and then Intval
(Actual
) = Uint_1
7878 return Access_OK
and Alloc_OK
;
7883 end Initialized_By_Aliased_BIP_Func_Call
;
7890 (Trans_Id
: Entity_Id
;
7891 First_Stmt
: Node_Id
) return Boolean
7893 function Find_Renamed_Object
(Ren_Decl
: Node_Id
) return Entity_Id
;
7894 -- Given an object renaming declaration, retrieve the entity of the
7895 -- renamed name. Return Empty if the renamed name is anything other
7896 -- than a variable or a constant.
7898 -------------------------
7899 -- Find_Renamed_Object --
7900 -------------------------
7902 function Find_Renamed_Object
(Ren_Decl
: Node_Id
) return Entity_Id
is
7903 Ren_Obj
: Node_Id
:= Empty
;
7905 function Find_Object
(N
: Node_Id
) return Traverse_Result
;
7906 -- Try to detect an object which is either a constant or a
7913 function Find_Object
(N
: Node_Id
) return Traverse_Result
is
7915 -- Stop the search once a constant or a variable has been
7918 if Nkind
(N
) = N_Identifier
7919 and then Present
(Entity
(N
))
7920 and then Ekind_In
(Entity
(N
), E_Constant
, E_Variable
)
7922 Ren_Obj
:= Entity
(N
);
7929 procedure Search
is new Traverse_Proc
(Find_Object
);
7933 Typ
: constant Entity_Id
:= Etype
(Defining_Identifier
(Ren_Decl
));
7935 -- Start of processing for Find_Renamed_Object
7938 -- Actions related to dispatching calls may appear as renamings of
7939 -- tags. Do not process this type of renaming because it does not
7940 -- use the actual value of the object.
7942 if not Is_RTE
(Typ
, RE_Tag_Ptr
) then
7943 Search
(Name
(Ren_Decl
));
7947 end Find_Renamed_Object
;
7952 Ren_Obj
: Entity_Id
;
7955 -- Start of processing for Is_Aliased
7958 -- A controlled transient object is not considered aliased when it
7959 -- appears inside an expression_with_actions node even when there are
7960 -- explicit aliases of it:
7963 -- Trans_Id : Ctrl_Typ ...; -- transient object
7964 -- Alias : ... := Trans_Id; -- object is aliased
7965 -- Val : constant Boolean :=
7966 -- ... Alias ...; -- aliasing ends
7967 -- <finalize Trans_Id> -- object safe to finalize
7970 -- Expansion ensures that all aliases are encapsulated in the actions
7971 -- list and do not leak to the expression by forcing the evaluation
7972 -- of the expression.
7974 if Nkind
(Rel_Node
) = N_Expression_With_Actions
then
7977 -- Otherwise examine the statements after the controlled transient
7978 -- object and look for various forms of aliasing.
7982 while Present
(Stmt
) loop
7983 if Nkind
(Stmt
) = N_Object_Declaration
then
7984 Expr
:= Expression
(Stmt
);
7986 -- Aliasing of the form:
7987 -- Obj : ... := Trans_Id'reference;
7990 and then Nkind
(Expr
) = N_Reference
7991 and then Nkind
(Prefix
(Expr
)) = N_Identifier
7992 and then Entity
(Prefix
(Expr
)) = Trans_Id
7997 elsif Nkind
(Stmt
) = N_Object_Renaming_Declaration
then
7998 Ren_Obj
:= Find_Renamed_Object
(Stmt
);
8000 -- Aliasing of the form:
8001 -- Obj : ... renames ... Trans_Id ...;
8003 if Present
(Ren_Obj
) and then Ren_Obj
= Trans_Id
then
8019 function Is_Allocated
(Trans_Id
: Entity_Id
) return Boolean is
8020 Expr
: constant Node_Id
:= Expression
(Parent
(Trans_Id
));
8023 Is_Access_Type
(Etype
(Trans_Id
))
8024 and then Present
(Expr
)
8025 and then Nkind
(Expr
) = N_Allocator
;
8028 ---------------------------
8029 -- Is_Iterated_Container --
8030 ---------------------------
8032 function Is_Iterated_Container
8033 (Trans_Id
: Entity_Id
;
8034 First_Stmt
: Node_Id
) return Boolean
8044 -- It is not possible to iterate over containers in non-Ada 2012 code
8046 if Ada_Version
< Ada_2012
then
8050 Typ
:= Etype
(Trans_Id
);
8052 -- Handle access type created for secondary stack use
8054 if Is_Access_Type
(Typ
) then
8055 Typ
:= Designated_Type
(Typ
);
8058 -- Look for aspect Default_Iterator. It may be part of a type
8059 -- declaration for a container, or inherited from a base type
8062 Aspect
:= Find_Value_Of_Aspect
(Typ
, Aspect_Default_Iterator
);
8064 if Present
(Aspect
) then
8065 Iter
:= Entity
(Aspect
);
8067 -- Examine the statements following the container object and
8068 -- look for a call to the default iterate routine where the
8069 -- first parameter is the transient. Such a call appears as:
8071 -- It : Access_To_CW_Iterator :=
8072 -- Iterate (Tran_Id.all, ...)'reference;
8075 while Present
(Stmt
) loop
8077 -- Detect an object declaration which is initialized by a
8078 -- secondary stack function call.
8080 if Nkind
(Stmt
) = N_Object_Declaration
8081 and then Present
(Expression
(Stmt
))
8082 and then Nkind
(Expression
(Stmt
)) = N_Reference
8083 and then Nkind
(Prefix
(Expression
(Stmt
))) = N_Function_Call
8085 Call
:= Prefix
(Expression
(Stmt
));
8087 -- The call must invoke the default iterate routine of
8088 -- the container and the transient object must appear as
8089 -- the first actual parameter. Skip any calls whose names
8090 -- are not entities.
8092 if Is_Entity_Name
(Name
(Call
))
8093 and then Entity
(Name
(Call
)) = Iter
8094 and then Present
(Parameter_Associations
(Call
))
8096 Param
:= First
(Parameter_Associations
(Call
));
8098 if Nkind
(Param
) = N_Explicit_Dereference
8099 and then Entity
(Prefix
(Param
)) = Trans_Id
8111 end Is_Iterated_Container
;
8115 Desig
: Entity_Id
:= Obj_Typ
;
8117 -- Start of processing for Is_Finalizable_Transient
8120 -- Handle access types
8122 if Is_Access_Type
(Desig
) then
8123 Desig
:= Available_View
(Designated_Type
(Desig
));
8127 Ekind_In
(Obj_Id
, E_Constant
, E_Variable
)
8128 and then Needs_Finalization
(Desig
)
8129 and then Requires_Transient_Scope
(Desig
)
8130 and then Nkind
(Rel_Node
) /= N_Simple_Return_Statement
8132 -- Do not consider a transient object that was already processed
8134 and then not Is_Finalized_Transient
(Obj_Id
)
8136 -- Do not consider renamed or 'reference-d transient objects because
8137 -- the act of renaming extends the object's lifetime.
8139 and then not Is_Aliased
(Obj_Id
, Decl
)
8141 -- Do not consider transient objects allocated on the heap since
8142 -- they are attached to a finalization master.
8144 and then not Is_Allocated
(Obj_Id
)
8146 -- If the transient object is a pointer, check that it is not
8147 -- initialized by a function that returns a pointer or acts as a
8148 -- renaming of another pointer.
8151 (not Is_Access_Type
(Obj_Typ
)
8152 or else not Initialized_By_Access
(Obj_Id
))
8154 -- Do not consider transient objects which act as indirect aliases
8155 -- of build-in-place function results.
8157 and then not Initialized_By_Aliased_BIP_Func_Call
(Obj_Id
)
8159 -- Do not consider conversions of tags to class-wide types
8161 and then not Is_Tag_To_Class_Wide_Conversion
(Obj_Id
)
8163 -- Do not consider iterators because those are treated as normal
8164 -- controlled objects and are processed by the usual finalization
8165 -- machinery. This avoids the double finalization of an iterator.
8167 and then not Is_Iterator
(Desig
)
8169 -- Do not consider containers in the context of iterator loops. Such
8170 -- transient objects must exist for as long as the loop is around,
8171 -- otherwise any operation carried out by the iterator will fail.
8173 and then not Is_Iterated_Container
(Obj_Id
, Decl
);
8174 end Is_Finalizable_Transient
;
8176 ---------------------------------
8177 -- Is_Fully_Repped_Tagged_Type --
8178 ---------------------------------
8180 function Is_Fully_Repped_Tagged_Type
(T
: Entity_Id
) return Boolean is
8181 U
: constant Entity_Id
:= Underlying_Type
(T
);
8185 if No
(U
) or else not Is_Tagged_Type
(U
) then
8187 elsif Has_Discriminants
(U
) then
8189 elsif not Has_Specified_Layout
(U
) then
8193 -- Here we have a tagged type, see if it has any unlayed out fields
8194 -- other than a possible tag and parent fields. If so, we return False.
8196 Comp
:= First_Component
(U
);
8197 while Present
(Comp
) loop
8198 if not Is_Tag
(Comp
)
8199 and then Chars
(Comp
) /= Name_uParent
8200 and then No
(Component_Clause
(Comp
))
8204 Next_Component
(Comp
);
8208 -- All components are layed out
8211 end Is_Fully_Repped_Tagged_Type
;
8213 ----------------------------------
8214 -- Is_Library_Level_Tagged_Type --
8215 ----------------------------------
8217 function Is_Library_Level_Tagged_Type
(Typ
: Entity_Id
) return Boolean is
8219 return Is_Tagged_Type
(Typ
) and then Is_Library_Level_Entity
(Typ
);
8220 end Is_Library_Level_Tagged_Type
;
8222 --------------------------
8223 -- Is_Non_BIP_Func_Call --
8224 --------------------------
8226 function Is_Non_BIP_Func_Call
(Expr
: Node_Id
) return Boolean is
8228 -- The expected call is of the format
8230 -- Func_Call'reference
8233 Nkind
(Expr
) = N_Reference
8234 and then Nkind
(Prefix
(Expr
)) = N_Function_Call
8235 and then not Is_Build_In_Place_Function_Call
(Prefix
(Expr
));
8236 end Is_Non_BIP_Func_Call
;
8238 ----------------------------------
8239 -- Is_Possibly_Unaligned_Object --
8240 ----------------------------------
8242 function Is_Possibly_Unaligned_Object
(N
: Node_Id
) return Boolean is
8243 T
: constant Entity_Id
:= Etype
(N
);
8246 -- If renamed object, apply test to underlying object
8248 if Is_Entity_Name
(N
)
8249 and then Is_Object
(Entity
(N
))
8250 and then Present
(Renamed_Object
(Entity
(N
)))
8252 return Is_Possibly_Unaligned_Object
(Renamed_Object
(Entity
(N
)));
8255 -- Tagged and controlled types and aliased types are always aligned, as
8256 -- are concurrent types.
8259 or else Has_Controlled_Component
(T
)
8260 or else Is_Concurrent_Type
(T
)
8261 or else Is_Tagged_Type
(T
)
8262 or else Is_Controlled
(T
)
8267 -- If this is an element of a packed array, may be unaligned
8269 if Is_Ref_To_Bit_Packed_Array
(N
) then
8273 -- Case of indexed component reference: test whether prefix is unaligned
8275 if Nkind
(N
) = N_Indexed_Component
then
8276 return Is_Possibly_Unaligned_Object
(Prefix
(N
));
8278 -- Case of selected component reference
8280 elsif Nkind
(N
) = N_Selected_Component
then
8282 P
: constant Node_Id
:= Prefix
(N
);
8283 C
: constant Entity_Id
:= Entity
(Selector_Name
(N
));
8288 -- If component reference is for an array with non-static bounds,
8289 -- then it is always aligned: we can only process unaligned arrays
8290 -- with static bounds (more precisely compile time known bounds).
8292 if Is_Array_Type
(T
)
8293 and then not Compile_Time_Known_Bounds
(T
)
8298 -- If component is aliased, it is definitely properly aligned
8300 if Is_Aliased
(C
) then
8304 -- If component is for a type implemented as a scalar, and the
8305 -- record is packed, and the component is other than the first
8306 -- component of the record, then the component may be unaligned.
8308 if Is_Packed
(Etype
(P
))
8309 and then Represented_As_Scalar
(Etype
(C
))
8310 and then First_Entity
(Scope
(C
)) /= C
8315 -- Compute maximum possible alignment for T
8317 -- If alignment is known, then that settles things
8319 if Known_Alignment
(T
) then
8320 M
:= UI_To_Int
(Alignment
(T
));
8322 -- If alignment is not known, tentatively set max alignment
8325 M
:= Ttypes
.Maximum_Alignment
;
8327 -- We can reduce this if the Esize is known since the default
8328 -- alignment will never be more than the smallest power of 2
8329 -- that does not exceed this Esize value.
8331 if Known_Esize
(T
) then
8332 S
:= UI_To_Int
(Esize
(T
));
8334 while (M
/ 2) >= S
loop
8340 -- The following code is historical, it used to be present but it
8341 -- is too cautious, because the front-end does not know the proper
8342 -- default alignments for the target. Also, if the alignment is
8343 -- not known, the front end can't know in any case. If a copy is
8344 -- needed, the back-end will take care of it. This whole section
8345 -- including this comment can be removed later ???
8347 -- If the component reference is for a record that has a specified
8348 -- alignment, and we either know it is too small, or cannot tell,
8349 -- then the component may be unaligned.
8351 -- What is the following commented out code ???
8353 -- if Known_Alignment (Etype (P))
8354 -- and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
8355 -- and then M > Alignment (Etype (P))
8360 -- Case of component clause present which may specify an
8361 -- unaligned position.
8363 if Present
(Component_Clause
(C
)) then
8365 -- Otherwise we can do a test to make sure that the actual
8366 -- start position in the record, and the length, are both
8367 -- consistent with the required alignment. If not, we know
8368 -- that we are unaligned.
8371 Align_In_Bits
: constant Nat
:= M
* System_Storage_Unit
;
8373 if Component_Bit_Offset
(C
) mod Align_In_Bits
/= 0
8374 or else Esize
(C
) mod Align_In_Bits
/= 0
8381 -- Otherwise, for a component reference, test prefix
8383 return Is_Possibly_Unaligned_Object
(P
);
8386 -- If not a component reference, must be aligned
8391 end Is_Possibly_Unaligned_Object
;
8393 ---------------------------------
8394 -- Is_Possibly_Unaligned_Slice --
8395 ---------------------------------
8397 function Is_Possibly_Unaligned_Slice
(N
: Node_Id
) return Boolean is
8399 -- Go to renamed object
8401 if Is_Entity_Name
(N
)
8402 and then Is_Object
(Entity
(N
))
8403 and then Present
(Renamed_Object
(Entity
(N
)))
8405 return Is_Possibly_Unaligned_Slice
(Renamed_Object
(Entity
(N
)));
8408 -- The reference must be a slice
8410 if Nkind
(N
) /= N_Slice
then
8414 -- We only need to worry if the target has strict alignment
8416 if not Target_Strict_Alignment
then
8420 -- If it is a slice, then look at the array type being sliced
8423 Sarr
: constant Node_Id
:= Prefix
(N
);
8424 -- Prefix of the slice, i.e. the array being sliced
8426 Styp
: constant Entity_Id
:= Etype
(Prefix
(N
));
8427 -- Type of the array being sliced
8433 -- The problems arise if the array object that is being sliced
8434 -- is a component of a record or array, and we cannot guarantee
8435 -- the alignment of the array within its containing object.
8437 -- To investigate this, we look at successive prefixes to see
8438 -- if we have a worrisome indexed or selected component.
8442 -- Case of array is part of an indexed component reference
8444 if Nkind
(Pref
) = N_Indexed_Component
then
8445 Ptyp
:= Etype
(Prefix
(Pref
));
8447 -- The only problematic case is when the array is packed, in
8448 -- which case we really know nothing about the alignment of
8449 -- individual components.
8451 if Is_Bit_Packed_Array
(Ptyp
) then
8455 -- Case of array is part of a selected component reference
8457 elsif Nkind
(Pref
) = N_Selected_Component
then
8458 Ptyp
:= Etype
(Prefix
(Pref
));
8460 -- We are definitely in trouble if the record in question
8461 -- has an alignment, and either we know this alignment is
8462 -- inconsistent with the alignment of the slice, or we don't
8463 -- know what the alignment of the slice should be.
8465 if Known_Alignment
(Ptyp
)
8466 and then (Unknown_Alignment
(Styp
)
8467 or else Alignment
(Styp
) > Alignment
(Ptyp
))
8472 -- We are in potential trouble if the record type is packed.
8473 -- We could special case when we know that the array is the
8474 -- first component, but that's not such a simple case ???
8476 if Is_Packed
(Ptyp
) then
8480 -- We are in trouble if there is a component clause, and
8481 -- either we do not know the alignment of the slice, or
8482 -- the alignment of the slice is inconsistent with the
8483 -- bit position specified by the component clause.
8486 Field
: constant Entity_Id
:= Entity
(Selector_Name
(Pref
));
8488 if Present
(Component_Clause
(Field
))
8490 (Unknown_Alignment
(Styp
)
8492 (Component_Bit_Offset
(Field
) mod
8493 (System_Storage_Unit
* Alignment
(Styp
))) /= 0)
8499 -- For cases other than selected or indexed components we know we
8500 -- are OK, since no issues arise over alignment.
8506 -- We processed an indexed component or selected component
8507 -- reference that looked safe, so keep checking prefixes.
8509 Pref
:= Prefix
(Pref
);
8512 end Is_Possibly_Unaligned_Slice
;
8514 -------------------------------
8515 -- Is_Related_To_Func_Return --
8516 -------------------------------
8518 function Is_Related_To_Func_Return
(Id
: Entity_Id
) return Boolean is
8519 Expr
: constant Node_Id
:= Related_Expression
(Id
);
8523 and then Nkind
(Expr
) = N_Explicit_Dereference
8524 and then Nkind
(Parent
(Expr
)) = N_Simple_Return_Statement
;
8525 end Is_Related_To_Func_Return
;
8527 --------------------------------
8528 -- Is_Ref_To_Bit_Packed_Array --
8529 --------------------------------
8531 function Is_Ref_To_Bit_Packed_Array
(N
: Node_Id
) return Boolean is
8536 if Is_Entity_Name
(N
)
8537 and then Is_Object
(Entity
(N
))
8538 and then Present
(Renamed_Object
(Entity
(N
)))
8540 return Is_Ref_To_Bit_Packed_Array
(Renamed_Object
(Entity
(N
)));
8543 if Nkind_In
(N
, N_Indexed_Component
, N_Selected_Component
) then
8544 if Is_Bit_Packed_Array
(Etype
(Prefix
(N
))) then
8547 Result
:= Is_Ref_To_Bit_Packed_Array
(Prefix
(N
));
8550 if Result
and then Nkind
(N
) = N_Indexed_Component
then
8551 Expr
:= First
(Expressions
(N
));
8552 while Present
(Expr
) loop
8553 Force_Evaluation
(Expr
);
8563 end Is_Ref_To_Bit_Packed_Array
;
8565 --------------------------------
8566 -- Is_Ref_To_Bit_Packed_Slice --
8567 --------------------------------
8569 function Is_Ref_To_Bit_Packed_Slice
(N
: Node_Id
) return Boolean is
8571 if Nkind
(N
) = N_Type_Conversion
then
8572 return Is_Ref_To_Bit_Packed_Slice
(Expression
(N
));
8574 elsif Is_Entity_Name
(N
)
8575 and then Is_Object
(Entity
(N
))
8576 and then Present
(Renamed_Object
(Entity
(N
)))
8578 return Is_Ref_To_Bit_Packed_Slice
(Renamed_Object
(Entity
(N
)));
8580 elsif Nkind
(N
) = N_Slice
8581 and then Is_Bit_Packed_Array
(Etype
(Prefix
(N
)))
8585 elsif Nkind_In
(N
, N_Indexed_Component
, N_Selected_Component
) then
8586 return Is_Ref_To_Bit_Packed_Slice
(Prefix
(N
));
8591 end Is_Ref_To_Bit_Packed_Slice
;
8593 -----------------------
8594 -- Is_Renamed_Object --
8595 -----------------------
8597 function Is_Renamed_Object
(N
: Node_Id
) return Boolean is
8598 Pnod
: constant Node_Id
:= Parent
(N
);
8599 Kind
: constant Node_Kind
:= Nkind
(Pnod
);
8601 if Kind
= N_Object_Renaming_Declaration
then
8603 elsif Nkind_In
(Kind
, N_Indexed_Component
, N_Selected_Component
) then
8604 return Is_Renamed_Object
(Pnod
);
8608 end Is_Renamed_Object
;
8610 --------------------------------------
8611 -- Is_Secondary_Stack_BIP_Func_Call --
8612 --------------------------------------
8614 function Is_Secondary_Stack_BIP_Func_Call
(Expr
: Node_Id
) return Boolean is
8615 Alloc_Nam
: Name_Id
:= No_Name
;
8617 Call
: Node_Id
:= Expr
;
8622 -- Build-in-place calls usually appear in 'reference format. Note that
8623 -- the accessibility check machinery may add an extra 'reference due to
8624 -- side effect removal.
8626 while Nkind
(Call
) = N_Reference
loop
8627 Call
:= Prefix
(Call
);
8630 Call
:= Unqual_Conv
(Call
);
8632 if Is_Build_In_Place_Function_Call
(Call
) then
8634 -- Examine all parameter associations of the function call
8636 Param
:= First
(Parameter_Associations
(Call
));
8637 while Present
(Param
) loop
8638 if Nkind
(Param
) = N_Parameter_Association
then
8639 Formal
:= Selector_Name
(Param
);
8640 Actual
:= Explicit_Actual_Parameter
(Param
);
8642 -- Construct the name of formal BIPalloc. It is much easier to
8643 -- extract the name of the function using an arbitrary formal's
8644 -- scope rather than the Name field of Call.
8646 if Alloc_Nam
= No_Name
and then Present
(Entity
(Formal
)) then
8649 (Chars
(Scope
(Entity
(Formal
))),
8650 BIP_Formal_Suffix
(BIP_Alloc_Form
));
8653 -- A match for BIPalloc => 2 has been found
8655 if Chars
(Formal
) = Alloc_Nam
8656 and then Nkind
(Actual
) = N_Integer_Literal
8657 and then Intval
(Actual
) = Uint_2
8668 end Is_Secondary_Stack_BIP_Func_Call
;
8670 -------------------------------------
8671 -- Is_Tag_To_Class_Wide_Conversion --
8672 -------------------------------------
8674 function Is_Tag_To_Class_Wide_Conversion
8675 (Obj_Id
: Entity_Id
) return Boolean
8677 Expr
: constant Node_Id
:= Expression
(Parent
(Obj_Id
));
8681 Is_Class_Wide_Type
(Etype
(Obj_Id
))
8682 and then Present
(Expr
)
8683 and then Nkind
(Expr
) = N_Unchecked_Type_Conversion
8684 and then Etype
(Expression
(Expr
)) = RTE
(RE_Tag
);
8685 end Is_Tag_To_Class_Wide_Conversion
;
8687 ----------------------------
8688 -- Is_Untagged_Derivation --
8689 ----------------------------
8691 function Is_Untagged_Derivation
(T
: Entity_Id
) return Boolean is
8693 return (not Is_Tagged_Type
(T
) and then Is_Derived_Type
(T
))
8695 (Is_Private_Type
(T
) and then Present
(Full_View
(T
))
8696 and then not Is_Tagged_Type
(Full_View
(T
))
8697 and then Is_Derived_Type
(Full_View
(T
))
8698 and then Etype
(Full_View
(T
)) /= T
);
8699 end Is_Untagged_Derivation
;
8701 ------------------------------------
8702 -- Is_Untagged_Private_Derivation --
8703 ------------------------------------
8705 function Is_Untagged_Private_Derivation
8706 (Priv_Typ
: Entity_Id
;
8707 Full_Typ
: Entity_Id
) return Boolean
8712 and then Is_Untagged_Derivation
(Priv_Typ
)
8713 and then Is_Private_Type
(Etype
(Priv_Typ
))
8714 and then Present
(Full_Typ
)
8715 and then Is_Itype
(Full_Typ
);
8716 end Is_Untagged_Private_Derivation
;
8718 ---------------------------
8719 -- Is_Volatile_Reference --
8720 ---------------------------
8722 function Is_Volatile_Reference
(N
: Node_Id
) return Boolean is
8724 -- Only source references are to be treated as volatile, internally
8725 -- generated stuff cannot have volatile external effects.
8727 if not Comes_From_Source
(N
) then
8730 -- Never true for reference to a type
8732 elsif Is_Entity_Name
(N
) and then Is_Type
(Entity
(N
)) then
8735 -- Never true for a compile time known constant
8737 elsif Compile_Time_Known_Value
(N
) then
8740 -- True if object reference with volatile type
8742 elsif Is_Volatile_Object
(N
) then
8745 -- True if reference to volatile entity
8747 elsif Is_Entity_Name
(N
) then
8748 return Treat_As_Volatile
(Entity
(N
));
8750 -- True for slice of volatile array
8752 elsif Nkind
(N
) = N_Slice
then
8753 return Is_Volatile_Reference
(Prefix
(N
));
8755 -- True if volatile component
8757 elsif Nkind_In
(N
, N_Indexed_Component
, N_Selected_Component
) then
8758 if (Is_Entity_Name
(Prefix
(N
))
8759 and then Has_Volatile_Components
(Entity
(Prefix
(N
))))
8760 or else (Present
(Etype
(Prefix
(N
)))
8761 and then Has_Volatile_Components
(Etype
(Prefix
(N
))))
8765 return Is_Volatile_Reference
(Prefix
(N
));
8773 end Is_Volatile_Reference
;
8775 --------------------
8776 -- Kill_Dead_Code --
8777 --------------------
8779 procedure Kill_Dead_Code
(N
: Node_Id
; Warn
: Boolean := False) is
8780 W
: Boolean := Warn
;
8781 -- Set False if warnings suppressed
8785 Remove_Warning_Messages
(N
);
8787 -- Update the internal structures of the ABE mechanism in case the
8788 -- dead node is an elaboration scenario.
8790 Kill_Elaboration_Scenario
(N
);
8792 -- Generate warning if appropriate
8796 -- We suppress the warning if this code is under control of an
8797 -- if statement, whose condition is a simple identifier, and
8798 -- either we are in an instance, or warnings off is set for this
8799 -- identifier. The reason for killing it in the instance case is
8800 -- that it is common and reasonable for code to be deleted in
8801 -- instances for various reasons.
8803 -- Could we use Is_Statically_Unevaluated here???
8805 if Nkind
(Parent
(N
)) = N_If_Statement
then
8807 C
: constant Node_Id
:= Condition
(Parent
(N
));
8809 if Nkind
(C
) = N_Identifier
8812 or else (Present
(Entity
(C
))
8813 and then Has_Warnings_Off
(Entity
(C
))))
8820 -- Generate warning if not suppressed
8824 ("?t?this code can never be executed and has been deleted!",
8829 -- Recurse into block statements and bodies to process declarations
8832 if Nkind
(N
) = N_Block_Statement
8833 or else Nkind
(N
) = N_Subprogram_Body
8834 or else Nkind
(N
) = N_Package_Body
8836 Kill_Dead_Code
(Declarations
(N
), False);
8837 Kill_Dead_Code
(Statements
(Handled_Statement_Sequence
(N
)));
8839 if Nkind
(N
) = N_Subprogram_Body
then
8840 Set_Is_Eliminated
(Defining_Entity
(N
));
8843 elsif Nkind
(N
) = N_Package_Declaration
then
8844 Kill_Dead_Code
(Visible_Declarations
(Specification
(N
)));
8845 Kill_Dead_Code
(Private_Declarations
(Specification
(N
)));
8847 -- ??? After this point, Delete_Tree has been called on all
8848 -- declarations in Specification (N), so references to entities
8849 -- therein look suspicious.
8852 E
: Entity_Id
:= First_Entity
(Defining_Entity
(N
));
8855 while Present
(E
) loop
8856 if Ekind
(E
) = E_Operator
then
8857 Set_Is_Eliminated
(E
);
8864 -- Recurse into composite statement to kill individual statements in
8865 -- particular instantiations.
8867 elsif Nkind
(N
) = N_If_Statement
then
8868 Kill_Dead_Code
(Then_Statements
(N
));
8869 Kill_Dead_Code
(Elsif_Parts
(N
));
8870 Kill_Dead_Code
(Else_Statements
(N
));
8872 elsif Nkind
(N
) = N_Loop_Statement
then
8873 Kill_Dead_Code
(Statements
(N
));
8875 elsif Nkind
(N
) = N_Case_Statement
then
8879 Alt
:= First
(Alternatives
(N
));
8880 while Present
(Alt
) loop
8881 Kill_Dead_Code
(Statements
(Alt
));
8886 elsif Nkind
(N
) = N_Case_Statement_Alternative
then
8887 Kill_Dead_Code
(Statements
(N
));
8889 -- Deal with dead instances caused by deleting instantiations
8891 elsif Nkind
(N
) in N_Generic_Instantiation
then
8892 Remove_Dead_Instance
(N
);
8897 -- Case where argument is a list of nodes to be killed
8899 procedure Kill_Dead_Code
(L
: List_Id
; Warn
: Boolean := False) is
8906 if Is_Non_Empty_List
(L
) then
8908 while Present
(N
) loop
8909 Kill_Dead_Code
(N
, W
);
8916 ------------------------
8917 -- Known_Non_Negative --
8918 ------------------------
8920 function Known_Non_Negative
(Opnd
: Node_Id
) return Boolean is
8922 if Is_OK_Static_Expression
(Opnd
) and then Expr_Value
(Opnd
) >= 0 then
8927 Lo
: constant Node_Id
:= Type_Low_Bound
(Etype
(Opnd
));
8930 Is_OK_Static_Expression
(Lo
) and then Expr_Value
(Lo
) >= 0;
8933 end Known_Non_Negative
;
8935 -----------------------------
8936 -- Make_CW_Equivalent_Type --
8937 -----------------------------
8939 -- Create a record type used as an equivalent of any member of the class
8940 -- which takes its size from exp.
8942 -- Generate the following code:
8944 -- type Equiv_T is record
8945 -- _parent : T (List of discriminant constraints taken from Exp);
8946 -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
8949 -- ??? Note that this type does not guarantee same alignment as all
8952 function Make_CW_Equivalent_Type
8954 E
: Node_Id
) return Entity_Id
8956 Loc
: constant Source_Ptr
:= Sloc
(E
);
8957 Root_Typ
: constant Entity_Id
:= Root_Type
(T
);
8958 List_Def
: constant List_Id
:= Empty_List
;
8959 Comp_List
: constant List_Id
:= New_List
;
8960 Equiv_Type
: Entity_Id
;
8961 Range_Type
: Entity_Id
;
8962 Str_Type
: Entity_Id
;
8963 Constr_Root
: Entity_Id
;
8967 -- If the root type is already constrained, there are no discriminants
8968 -- in the expression.
8970 if not Has_Discriminants
(Root_Typ
)
8971 or else Is_Constrained
(Root_Typ
)
8973 Constr_Root
:= Root_Typ
;
8975 -- At this point in the expansion, non-limited view of the type
8976 -- must be available, otherwise the error will be reported later.
8978 if From_Limited_With
(Constr_Root
)
8979 and then Present
(Non_Limited_View
(Constr_Root
))
8981 Constr_Root
:= Non_Limited_View
(Constr_Root
);
8985 Constr_Root
:= Make_Temporary
(Loc
, 'R');
8987 -- subtype cstr__n is T (List of discr constraints taken from Exp)
8989 Append_To
(List_Def
,
8990 Make_Subtype_Declaration
(Loc
,
8991 Defining_Identifier
=> Constr_Root
,
8992 Subtype_Indication
=> Make_Subtype_From_Expr
(E
, Root_Typ
)));
8995 -- Generate the range subtype declaration
8997 Range_Type
:= Make_Temporary
(Loc
, 'G');
8999 if not Is_Interface
(Root_Typ
) then
9001 -- subtype rg__xx is
9002 -- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
9005 Make_Op_Subtract
(Loc
,
9007 Make_Attribute_Reference
(Loc
,
9009 OK_Convert_To
(T
, Duplicate_Subexpr_No_Checks
(E
)),
9010 Attribute_Name
=> Name_Size
),
9012 Make_Attribute_Reference
(Loc
,
9013 Prefix
=> New_Occurrence_Of
(Constr_Root
, Loc
),
9014 Attribute_Name
=> Name_Object_Size
));
9016 -- subtype rg__xx is
9017 -- Storage_Offset range 1 .. Expr'size / Storage_Unit
9020 Make_Attribute_Reference
(Loc
,
9022 OK_Convert_To
(T
, Duplicate_Subexpr_No_Checks
(E
)),
9023 Attribute_Name
=> Name_Size
);
9026 Set_Paren_Count
(Sizexpr
, 1);
9028 Append_To
(List_Def
,
9029 Make_Subtype_Declaration
(Loc
,
9030 Defining_Identifier
=> Range_Type
,
9031 Subtype_Indication
=>
9032 Make_Subtype_Indication
(Loc
,
9033 Subtype_Mark
=> New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
),
9034 Constraint
=> Make_Range_Constraint
(Loc
,
9037 Low_Bound
=> Make_Integer_Literal
(Loc
, 1),
9039 Make_Op_Divide
(Loc
,
9040 Left_Opnd
=> Sizexpr
,
9041 Right_Opnd
=> Make_Integer_Literal
(Loc
,
9042 Intval
=> System_Storage_Unit
)))))));
9044 -- subtype str__nn is Storage_Array (rg__x);
9046 Str_Type
:= Make_Temporary
(Loc
, 'S');
9047 Append_To
(List_Def
,
9048 Make_Subtype_Declaration
(Loc
,
9049 Defining_Identifier
=> Str_Type
,
9050 Subtype_Indication
=>
9051 Make_Subtype_Indication
(Loc
,
9052 Subtype_Mark
=> New_Occurrence_Of
(RTE
(RE_Storage_Array
), Loc
),
9054 Make_Index_Or_Discriminant_Constraint
(Loc
,
9056 New_List
(New_Occurrence_Of
(Range_Type
, Loc
))))));
9058 -- type Equiv_T is record
9059 -- [ _parent : Tnn; ]
9063 Equiv_Type
:= Make_Temporary
(Loc
, 'T');
9064 Set_Ekind
(Equiv_Type
, E_Record_Type
);
9065 Set_Parent_Subtype
(Equiv_Type
, Constr_Root
);
9067 -- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
9068 -- treatment for this type. In particular, even though _parent's type
9069 -- is a controlled type or contains controlled components, we do not
9070 -- want to set Has_Controlled_Component on it to avoid making it gain
9071 -- an unwanted _controller component.
9073 Set_Is_Class_Wide_Equivalent_Type
(Equiv_Type
);
9075 -- A class-wide equivalent type does not require initialization
9077 Set_Suppress_Initialization
(Equiv_Type
);
9079 if not Is_Interface
(Root_Typ
) then
9080 Append_To
(Comp_List
,
9081 Make_Component_Declaration
(Loc
,
9082 Defining_Identifier
=>
9083 Make_Defining_Identifier
(Loc
, Name_uParent
),
9084 Component_Definition
=>
9085 Make_Component_Definition
(Loc
,
9086 Aliased_Present
=> False,
9087 Subtype_Indication
=> New_Occurrence_Of
(Constr_Root
, Loc
))));
9090 Append_To
(Comp_List
,
9091 Make_Component_Declaration
(Loc
,
9092 Defining_Identifier
=> Make_Temporary
(Loc
, 'C'),
9093 Component_Definition
=>
9094 Make_Component_Definition
(Loc
,
9095 Aliased_Present
=> False,
9096 Subtype_Indication
=> New_Occurrence_Of
(Str_Type
, Loc
))));
9098 Append_To
(List_Def
,
9099 Make_Full_Type_Declaration
(Loc
,
9100 Defining_Identifier
=> Equiv_Type
,
9102 Make_Record_Definition
(Loc
,
9104 Make_Component_List
(Loc
,
9105 Component_Items
=> Comp_List
,
9106 Variant_Part
=> Empty
))));
9108 -- Suppress all checks during the analysis of the expanded code to avoid
9109 -- the generation of spurious warnings under ZFP run-time.
9111 Insert_Actions
(E
, List_Def
, Suppress
=> All_Checks
);
9113 end Make_CW_Equivalent_Type
;
9115 -------------------------
9116 -- Make_Invariant_Call --
9117 -------------------------
9119 function Make_Invariant_Call
(Expr
: Node_Id
) return Node_Id
is
9120 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
9121 Typ
: constant Entity_Id
:= Base_Type
(Etype
(Expr
));
9123 Proc_Id
: Entity_Id
;
9126 pragma Assert
(Has_Invariants
(Typ
));
9128 Proc_Id
:= Invariant_Procedure
(Typ
);
9129 pragma Assert
(Present
(Proc_Id
));
9132 Make_Procedure_Call_Statement
(Loc
,
9133 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
9134 Parameter_Associations
=> New_List
(Relocate_Node
(Expr
)));
9135 end Make_Invariant_Call
;
9137 ------------------------
9138 -- Make_Literal_Range --
9139 ------------------------
9141 function Make_Literal_Range
9143 Literal_Typ
: Entity_Id
) return Node_Id
9145 Lo
: constant Node_Id
:=
9146 New_Copy_Tree
(String_Literal_Low_Bound
(Literal_Typ
));
9147 Index
: constant Entity_Id
:= Etype
(Lo
);
9148 Length_Expr
: constant Node_Id
:=
9149 Make_Op_Subtract
(Loc
,
9151 Make_Integer_Literal
(Loc
,
9152 Intval
=> String_Literal_Length
(Literal_Typ
)),
9153 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
9158 Set_Analyzed
(Lo
, False);
9160 if Is_Integer_Type
(Index
) then
9163 Left_Opnd
=> New_Copy_Tree
(Lo
),
9164 Right_Opnd
=> Length_Expr
);
9167 Make_Attribute_Reference
(Loc
,
9168 Attribute_Name
=> Name_Val
,
9169 Prefix
=> New_Occurrence_Of
(Index
, Loc
),
9170 Expressions
=> New_List
(
9173 Make_Attribute_Reference
(Loc
,
9174 Attribute_Name
=> Name_Pos
,
9175 Prefix
=> New_Occurrence_Of
(Index
, Loc
),
9176 Expressions
=> New_List
(New_Copy_Tree
(Lo
))),
9177 Right_Opnd
=> Length_Expr
)));
9184 end Make_Literal_Range
;
9186 --------------------------
9187 -- Make_Non_Empty_Check --
9188 --------------------------
9190 function Make_Non_Empty_Check
9192 N
: Node_Id
) return Node_Id
9198 Make_Attribute_Reference
(Loc
,
9199 Attribute_Name
=> Name_Length
,
9200 Prefix
=> Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True)),
9202 Make_Integer_Literal
(Loc
, 0));
9203 end Make_Non_Empty_Check
;
9205 -------------------------
9206 -- Make_Predicate_Call --
9207 -------------------------
9209 -- WARNING: This routine manages Ghost regions. Return statements must be
9210 -- replaced by gotos which jump to the end of the routine and restore the
9213 function Make_Predicate_Call
9216 Mem
: Boolean := False) return Node_Id
9218 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
9220 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
9221 -- Save the Ghost mode to restore on exit
9224 Func_Id
: Entity_Id
;
9227 pragma Assert
(Present
(Predicate_Function
(Typ
)));
9229 -- The related type may be subject to pragma Ghost. Set the mode now to
9230 -- ensure that the call is properly marked as Ghost.
9232 Set_Ghost_Mode
(Typ
);
9234 -- Call special membership version if requested and available
9236 if Mem
and then Present
(Predicate_Function_M
(Typ
)) then
9237 Func_Id
:= Predicate_Function_M
(Typ
);
9239 Func_Id
:= Predicate_Function
(Typ
);
9242 -- Case of calling normal predicate function
9244 -- If the type is tagged, the expression may be class-wide, in which
9245 -- case it has to be converted to its root type, given that the
9246 -- generated predicate function is not dispatching.
9248 if Is_Tagged_Type
(Typ
) then
9250 Make_Function_Call
(Loc
,
9251 Name
=> New_Occurrence_Of
(Func_Id
, Loc
),
9252 Parameter_Associations
=>
9253 New_List
(Convert_To
(Typ
, Relocate_Node
(Expr
))));
9256 Make_Function_Call
(Loc
,
9257 Name
=> New_Occurrence_Of
(Func_Id
, Loc
),
9258 Parameter_Associations
=> New_List
(Relocate_Node
(Expr
)));
9261 Restore_Ghost_Mode
(Saved_GM
);
9264 end Make_Predicate_Call
;
9266 --------------------------
9267 -- Make_Predicate_Check --
9268 --------------------------
9270 function Make_Predicate_Check
9272 Expr
: Node_Id
) return Node_Id
9274 procedure Replace_Subtype_Reference
(N
: Node_Id
);
9275 -- Replace current occurrences of the subtype to which a dynamic
9276 -- predicate applies, by the expression that triggers a predicate
9277 -- check. This is needed for aspect Predicate_Failure, for which
9278 -- we do not generate a wrapper procedure, but simply modify the
9279 -- expression for the pragma of the predicate check.
9281 --------------------------------
9282 -- Replace_Subtype_Reference --
9283 --------------------------------
9285 procedure Replace_Subtype_Reference
(N
: Node_Id
) is
9287 Rewrite
(N
, New_Copy_Tree
(Expr
));
9289 -- We want to treat the node as if it comes from source, so
9290 -- that ASIS will not ignore it.
9292 Set_Comes_From_Source
(N
, True);
9293 end Replace_Subtype_Reference
;
9295 procedure Replace_Subtype_References
is
9296 new Replace_Type_References_Generic
(Replace_Subtype_Reference
);
9300 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
9302 Fail_Expr
: Node_Id
;
9305 -- Start of processing for Make_Predicate_Check
9308 -- If predicate checks are suppressed, then return a null statement. For
9309 -- this call, we check only the scope setting. If the caller wants to
9310 -- check a specific entity's setting, they must do it manually.
9312 if Predicate_Checks_Suppressed
(Empty
) then
9313 return Make_Null_Statement
(Loc
);
9316 -- Do not generate a check within an internal subprogram (stream
9317 -- functions and the like, including including predicate functions).
9319 if Within_Internal_Subprogram
then
9320 return Make_Null_Statement
(Loc
);
9323 -- Compute proper name to use, we need to get this right so that the
9324 -- right set of check policies apply to the Check pragma we are making.
9326 if Has_Dynamic_Predicate_Aspect
(Typ
) then
9327 Nam
:= Name_Dynamic_Predicate
;
9328 elsif Has_Static_Predicate_Aspect
(Typ
) then
9329 Nam
:= Name_Static_Predicate
;
9331 Nam
:= Name_Predicate
;
9334 Arg_List
:= New_List
(
9335 Make_Pragma_Argument_Association
(Loc
,
9336 Expression
=> Make_Identifier
(Loc
, Nam
)),
9337 Make_Pragma_Argument_Association
(Loc
,
9338 Expression
=> Make_Predicate_Call
(Typ
, Expr
)));
9340 -- If subtype has Predicate_Failure defined, add the correponding
9341 -- expression as an additional pragma parameter, after replacing
9342 -- current instances with the expression being checked.
9344 if Has_Aspect
(Typ
, Aspect_Predicate_Failure
) then
9347 (Expression
(Find_Aspect
(Typ
, Aspect_Predicate_Failure
)));
9348 Replace_Subtype_References
(Fail_Expr
, Typ
);
9350 Append_To
(Arg_List
,
9351 Make_Pragma_Argument_Association
(Loc
,
9352 Expression
=> Fail_Expr
));
9357 Chars
=> Name_Check
,
9358 Pragma_Argument_Associations
=> Arg_List
);
9359 end Make_Predicate_Check
;
9361 ----------------------------
9362 -- Make_Subtype_From_Expr --
9363 ----------------------------
9365 -- 1. If Expr is an unconstrained array expression, creates
9366 -- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
9368 -- 2. If Expr is a unconstrained discriminated type expression, creates
9369 -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
9371 -- 3. If Expr is class-wide, creates an implicit class-wide subtype
9373 function Make_Subtype_From_Expr
9375 Unc_Typ
: Entity_Id
;
9376 Related_Id
: Entity_Id
:= Empty
) return Node_Id
9378 List_Constr
: constant List_Id
:= New_List
;
9379 Loc
: constant Source_Ptr
:= Sloc
(E
);
9382 Full_Subtyp
: Entity_Id
;
9383 High_Bound
: Entity_Id
;
9384 Index_Typ
: Entity_Id
;
9385 Low_Bound
: Entity_Id
;
9386 Priv_Subtyp
: Entity_Id
;
9390 if Is_Private_Type
(Unc_Typ
)
9391 and then Has_Unknown_Discriminants
(Unc_Typ
)
9393 -- The caller requests a unique external name for both the private
9394 -- and the full subtype.
9396 if Present
(Related_Id
) then
9398 Make_Defining_Identifier
(Loc
,
9399 Chars
=> New_External_Name
(Chars
(Related_Id
), 'C'));
9401 Make_Defining_Identifier
(Loc
,
9402 Chars
=> New_External_Name
(Chars
(Related_Id
), 'P'));
9405 Full_Subtyp
:= Make_Temporary
(Loc
, 'C');
9406 Priv_Subtyp
:= Make_Temporary
(Loc
, 'P');
9409 -- Prepare the subtype completion. Use the base type to find the
9410 -- underlying type because the type may be a generic actual or an
9411 -- explicit subtype.
9413 Utyp
:= Underlying_Type
(Base_Type
(Unc_Typ
));
9416 Unchecked_Convert_To
(Utyp
, Duplicate_Subexpr_No_Checks
(E
));
9417 Set_Parent
(Full_Exp
, Parent
(E
));
9420 Make_Subtype_Declaration
(Loc
,
9421 Defining_Identifier
=> Full_Subtyp
,
9422 Subtype_Indication
=> Make_Subtype_From_Expr
(Full_Exp
, Utyp
)));
9424 -- Define the dummy private subtype
9426 Set_Ekind
(Priv_Subtyp
, Subtype_Kind
(Ekind
(Unc_Typ
)));
9427 Set_Etype
(Priv_Subtyp
, Base_Type
(Unc_Typ
));
9428 Set_Scope
(Priv_Subtyp
, Full_Subtyp
);
9429 Set_Is_Constrained
(Priv_Subtyp
);
9430 Set_Is_Tagged_Type
(Priv_Subtyp
, Is_Tagged_Type
(Unc_Typ
));
9431 Set_Is_Itype
(Priv_Subtyp
);
9432 Set_Associated_Node_For_Itype
(Priv_Subtyp
, E
);
9434 if Is_Tagged_Type
(Priv_Subtyp
) then
9436 (Base_Type
(Priv_Subtyp
), Class_Wide_Type
(Unc_Typ
));
9437 Set_Direct_Primitive_Operations
(Priv_Subtyp
,
9438 Direct_Primitive_Operations
(Unc_Typ
));
9441 Set_Full_View
(Priv_Subtyp
, Full_Subtyp
);
9443 return New_Occurrence_Of
(Priv_Subtyp
, Loc
);
9445 elsif Is_Array_Type
(Unc_Typ
) then
9446 Index_Typ
:= First_Index
(Unc_Typ
);
9447 for J
in 1 .. Number_Dimensions
(Unc_Typ
) loop
9449 -- Capture the bounds of each index constraint in case the context
9450 -- is an object declaration of an unconstrained type initialized
9451 -- by a function call:
9453 -- Obj : Unconstr_Typ := Func_Call;
9455 -- This scenario requires secondary scope management and the index
9456 -- constraint cannot depend on the temporary used to capture the
9457 -- result of the function call.
9460 -- Temp : Unconstr_Typ_Ptr := Func_Call'reference;
9461 -- subtype S is Unconstr_Typ (Temp.all'First .. Temp.all'Last);
9462 -- Obj : S := Temp.all;
9463 -- SS_Release; -- Temp is gone at this point, bounds of S are
9467 -- Low_Bound : constant Base_Type (Index_Typ) := E'First (J);
9469 Low_Bound
:= Make_Temporary
(Loc
, 'B');
9471 Make_Object_Declaration
(Loc
,
9472 Defining_Identifier
=> Low_Bound
,
9473 Object_Definition
=>
9474 New_Occurrence_Of
(Base_Type
(Etype
(Index_Typ
)), Loc
),
9475 Constant_Present
=> True,
9477 Make_Attribute_Reference
(Loc
,
9478 Prefix
=> Duplicate_Subexpr_No_Checks
(E
),
9479 Attribute_Name
=> Name_First
,
9480 Expressions
=> New_List
(
9481 Make_Integer_Literal
(Loc
, J
)))));
9484 -- High_Bound : constant Base_Type (Index_Typ) := E'Last (J);
9486 High_Bound
:= Make_Temporary
(Loc
, 'B');
9488 Make_Object_Declaration
(Loc
,
9489 Defining_Identifier
=> High_Bound
,
9490 Object_Definition
=>
9491 New_Occurrence_Of
(Base_Type
(Etype
(Index_Typ
)), Loc
),
9492 Constant_Present
=> True,
9494 Make_Attribute_Reference
(Loc
,
9495 Prefix
=> Duplicate_Subexpr_No_Checks
(E
),
9496 Attribute_Name
=> Name_Last
,
9497 Expressions
=> New_List
(
9498 Make_Integer_Literal
(Loc
, J
)))));
9500 Append_To
(List_Constr
,
9502 Low_Bound
=> New_Occurrence_Of
(Low_Bound
, Loc
),
9503 High_Bound
=> New_Occurrence_Of
(High_Bound
, Loc
)));
9505 Index_Typ
:= Next_Index
(Index_Typ
);
9508 elsif Is_Class_Wide_Type
(Unc_Typ
) then
9510 CW_Subtype
: Entity_Id
;
9511 EQ_Typ
: Entity_Id
:= Empty
;
9514 -- A class-wide equivalent type is not needed on VM targets
9515 -- because the VM back-ends handle the class-wide object
9516 -- initialization itself (and doesn't need or want the
9517 -- additional intermediate type to handle the assignment).
9519 if Expander_Active
and then Tagged_Type_Expansion
then
9521 -- If this is the class-wide type of a completion that is a
9522 -- record subtype, set the type of the class-wide type to be
9523 -- the full base type, for use in the expanded code for the
9524 -- equivalent type. Should this be done earlier when the
9525 -- completion is analyzed ???
9527 if Is_Private_Type
(Etype
(Unc_Typ
))
9529 Ekind
(Full_View
(Etype
(Unc_Typ
))) = E_Record_Subtype
9531 Set_Etype
(Unc_Typ
, Base_Type
(Full_View
(Etype
(Unc_Typ
))));
9534 EQ_Typ
:= Make_CW_Equivalent_Type
(Unc_Typ
, E
);
9537 CW_Subtype
:= New_Class_Wide_Subtype
(Unc_Typ
, E
);
9538 Set_Equivalent_Type
(CW_Subtype
, EQ_Typ
);
9539 Set_Cloned_Subtype
(CW_Subtype
, Base_Type
(Unc_Typ
));
9541 return New_Occurrence_Of
(CW_Subtype
, Loc
);
9544 -- Indefinite record type with discriminants
9547 D
:= First_Discriminant
(Unc_Typ
);
9548 while Present
(D
) loop
9549 Append_To
(List_Constr
,
9550 Make_Selected_Component
(Loc
,
9551 Prefix
=> Duplicate_Subexpr_No_Checks
(E
),
9552 Selector_Name
=> New_Occurrence_Of
(D
, Loc
)));
9554 Next_Discriminant
(D
);
9559 Make_Subtype_Indication
(Loc
,
9560 Subtype_Mark
=> New_Occurrence_Of
(Unc_Typ
, Loc
),
9562 Make_Index_Or_Discriminant_Constraint
(Loc
,
9563 Constraints
=> List_Constr
));
9564 end Make_Subtype_From_Expr
;
9570 procedure Map_Types
(Parent_Type
: Entity_Id
; Derived_Type
: Entity_Id
) is
9572 -- NOTE: Most of the routines in Map_Types are intentionally unnested to
9573 -- avoid deep indentation of code.
9575 -- NOTE: Routines which deal with discriminant mapping operate on the
9576 -- [underlying/record] full view of various types because those views
9577 -- contain all discriminants and stored constraints.
9579 procedure Add_Primitive
(Prim
: Entity_Id
; Par_Typ
: Entity_Id
);
9580 -- Subsidiary to Map_Primitives. Find a primitive in the inheritance or
9581 -- overriding chain starting from Prim whose dispatching type is parent
9582 -- type Par_Typ and add a mapping between the result and primitive Prim.
9584 function Ancestor_Primitive
(Subp
: Entity_Id
) return Entity_Id
;
9585 -- Subsidiary to Map_Primitives. Return the next ancestor primitive in
9586 -- the inheritance or overriding chain of subprogram Subp. Return Empty
9587 -- if no such primitive is available.
9589 function Build_Chain
9590 (Par_Typ
: Entity_Id
;
9591 Deriv_Typ
: Entity_Id
) return Elist_Id
;
9592 -- Subsidiary to Map_Discriminants. Recreate the derivation chain from
9593 -- parent type Par_Typ leading down towards derived type Deriv_Typ. The
9594 -- list has the form:
9598 -- <Ancestor_N> -> <Ancestor_N-1> -> <Ancestor_1> -> Deriv_Typ
9600 -- Note that Par_Typ is not part of the resulting derivation chain
9602 function Discriminated_View
(Typ
: Entity_Id
) return Entity_Id
;
9603 -- Return the view of type Typ which could potentially contains either
9604 -- the discriminants or stored constraints of the type.
9606 function Find_Discriminant_Value
9608 Par_Typ
: Entity_Id
;
9609 Deriv_Typ
: Entity_Id
;
9610 Typ_Elmt
: Elmt_Id
) return Node_Or_Entity_Id
;
9611 -- Subsidiary to Map_Discriminants. Find the value of discriminant Discr
9612 -- in the derivation chain starting from parent type Par_Typ leading to
9613 -- derived type Deriv_Typ. The returned value is one of the following:
9615 -- * An entity which is either a discriminant or a non-discriminant
9616 -- name, and renames/constraints Discr.
9618 -- * An expression which constraints Discr
9620 -- Typ_Elmt is an element of the derivation chain created by routine
9621 -- Build_Chain and denotes the current ancestor being examined.
9623 procedure Map_Discriminants
9624 (Par_Typ
: Entity_Id
;
9625 Deriv_Typ
: Entity_Id
);
9626 -- Map each discriminant of type Par_Typ to a meaningful constraint
9627 -- from the point of view of type Deriv_Typ.
9629 procedure Map_Primitives
(Par_Typ
: Entity_Id
; Deriv_Typ
: Entity_Id
);
9630 -- Map each primitive of type Par_Typ to a corresponding primitive of
9637 procedure Add_Primitive
(Prim
: Entity_Id
; Par_Typ
: Entity_Id
) is
9638 Par_Prim
: Entity_Id
;
9641 -- Inspect the inheritance chain through the Alias attribute and the
9642 -- overriding chain through the Overridden_Operation looking for an
9643 -- ancestor primitive with the appropriate dispatching type.
9646 while Present
(Par_Prim
) loop
9647 exit when Find_Dispatching_Type
(Par_Prim
) = Par_Typ
;
9648 Par_Prim
:= Ancestor_Primitive
(Par_Prim
);
9651 -- Create a mapping of the form:
9653 -- parent type primitive -> derived type primitive
9655 if Present
(Par_Prim
) then
9656 Type_Map
.Set
(Par_Prim
, Prim
);
9660 ------------------------
9661 -- Ancestor_Primitive --
9662 ------------------------
9664 function Ancestor_Primitive
(Subp
: Entity_Id
) return Entity_Id
is
9665 Inher_Prim
: constant Entity_Id
:= Alias
(Subp
);
9666 Over_Prim
: constant Entity_Id
:= Overridden_Operation
(Subp
);
9669 -- The current subprogram overrides an ancestor primitive
9671 if Present
(Over_Prim
) then
9674 -- The current subprogram is an internally generated alias of an
9675 -- inherited ancestor primitive.
9677 elsif Present
(Inher_Prim
) then
9680 -- Otherwise the current subprogram is the root of the inheritance or
9681 -- overriding chain.
9686 end Ancestor_Primitive
;
9692 function Build_Chain
9693 (Par_Typ
: Entity_Id
;
9694 Deriv_Typ
: Entity_Id
) return Elist_Id
9696 Anc_Typ
: Entity_Id
;
9698 Curr_Typ
: Entity_Id
;
9701 Chain
:= New_Elmt_List
;
9703 -- Add the derived type to the derivation chain
9705 Prepend_Elmt
(Deriv_Typ
, Chain
);
9707 -- Examine all ancestors starting from the derived type climbing
9708 -- towards parent type Par_Typ.
9710 Curr_Typ
:= Deriv_Typ
;
9712 -- Handle the case where the current type is a record which
9713 -- derives from a subtype.
9715 -- subtype Sub_Typ is Par_Typ ...
9716 -- type Deriv_Typ is Sub_Typ ...
9718 if Ekind
(Curr_Typ
) = E_Record_Type
9719 and then Present
(Parent_Subtype
(Curr_Typ
))
9721 Anc_Typ
:= Parent_Subtype
(Curr_Typ
);
9723 -- Handle the case where the current type is a record subtype of
9726 -- subtype Sub_Typ1 is Par_Typ ...
9727 -- subtype Sub_Typ2 is Sub_Typ1 ...
9729 elsif Ekind
(Curr_Typ
) = E_Record_Subtype
9730 and then Present
(Cloned_Subtype
(Curr_Typ
))
9732 Anc_Typ
:= Cloned_Subtype
(Curr_Typ
);
9734 -- Otherwise use the direct parent type
9737 Anc_Typ
:= Etype
(Curr_Typ
);
9740 -- Use the first subtype when dealing with itypes
9742 if Is_Itype
(Anc_Typ
) then
9743 Anc_Typ
:= First_Subtype
(Anc_Typ
);
9746 -- Work with the view which contains the discriminants and stored
9749 Anc_Typ
:= Discriminated_View
(Anc_Typ
);
9751 -- Stop the climb when either the parent type has been reached or
9752 -- there are no more ancestors left to examine.
9754 exit when Anc_Typ
= Curr_Typ
or else Anc_Typ
= Par_Typ
;
9756 Prepend_Unique_Elmt
(Anc_Typ
, Chain
);
9757 Curr_Typ
:= Anc_Typ
;
9763 ------------------------
9764 -- Discriminated_View --
9765 ------------------------
9767 function Discriminated_View
(Typ
: Entity_Id
) return Entity_Id
is
9773 -- Use the [underlying] full view when dealing with private types
9774 -- because the view contains all inherited discriminants or stored
9777 if Is_Private_Type
(T
) then
9778 if Present
(Underlying_Full_View
(T
)) then
9779 T
:= Underlying_Full_View
(T
);
9781 elsif Present
(Full_View
(T
)) then
9786 -- Use the underlying record view when the type is an extenstion of
9787 -- a parent type with unknown discriminants because the view contains
9788 -- all inherited discriminants or stored constraints.
9790 if Ekind
(T
) = E_Record_Type
9791 and then Present
(Underlying_Record_View
(T
))
9793 T
:= Underlying_Record_View
(T
);
9797 end Discriminated_View
;
9799 -----------------------------
9800 -- Find_Discriminant_Value --
9801 -----------------------------
9803 function Find_Discriminant_Value
9805 Par_Typ
: Entity_Id
;
9806 Deriv_Typ
: Entity_Id
;
9807 Typ_Elmt
: Elmt_Id
) return Node_Or_Entity_Id
9809 Discr_Pos
: constant Uint
:= Discriminant_Number
(Discr
);
9810 Typ
: constant Entity_Id
:= Node
(Typ_Elmt
);
9812 function Find_Constraint_Value
9813 (Constr
: Node_Or_Entity_Id
) return Node_Or_Entity_Id
;
9814 -- Given constraint Constr, find what it denotes. This is either:
9816 -- * An entity which is either a discriminant or a name
9820 ---------------------------
9821 -- Find_Constraint_Value --
9822 ---------------------------
9824 function Find_Constraint_Value
9825 (Constr
: Node_Or_Entity_Id
) return Node_Or_Entity_Id
9828 if Nkind
(Constr
) in N_Entity
then
9830 -- The constraint denotes a discriminant of the curren type
9831 -- which renames the ancestor discriminant:
9834 -- type Typ (D1 : ...; DN : ...) is
9835 -- new Anc (Discr => D1) with ...
9838 if Ekind
(Constr
) = E_Discriminant
then
9840 -- The discriminant belongs to derived type Deriv_Typ. This
9841 -- is the final value for the ancestor discriminant as the
9842 -- derivations chain has been fully exhausted.
9844 if Typ
= Deriv_Typ
then
9847 -- Otherwise the discriminant may be renamed or constrained
9848 -- at a lower level. Continue looking down the derivation
9853 Find_Discriminant_Value
9856 Deriv_Typ
=> Deriv_Typ
,
9857 Typ_Elmt
=> Next_Elmt
(Typ_Elmt
));
9860 -- Otherwise the constraint denotes a reference to some name
9861 -- which results in a Girder discriminant:
9865 -- type Typ (D1 : ...; DN : ...) is
9866 -- new Anc (Discr => Name) with ...
9869 -- Return the name as this is the proper constraint of the
9876 -- The constraint denotes a reference to a name
9878 elsif Is_Entity_Name
(Constr
) then
9879 return Find_Constraint_Value
(Entity
(Constr
));
9881 -- Otherwise the current constraint is an expression which yields
9882 -- a Girder discriminant:
9884 -- type Typ (D1 : ...; DN : ...) is
9885 -- new Anc (Discr => <expression>) with ...
9888 -- Return the expression as this is the proper constraint of the
9894 end Find_Constraint_Value
;
9898 Constrs
: constant Elist_Id
:= Stored_Constraint
(Typ
);
9900 Constr_Elmt
: Elmt_Id
;
9902 Typ_Discr
: Entity_Id
;
9904 -- Start of processing for Find_Discriminant_Value
9907 -- The algorithm for finding the value of a discriminant works as
9908 -- follows. First, it recreates the derivation chain from Par_Typ
9909 -- to Deriv_Typ as a list:
9911 -- Par_Typ (shown for completeness)
9913 -- Ancestor_N <-- head of chain
9917 -- Deriv_Typ <-- tail of chain
9919 -- The algorithm then traces the fate of a parent discriminant down
9920 -- the derivation chain. At each derivation level, the discriminant
9921 -- may be either inherited or constrained.
9923 -- 1) Discriminant is inherited: there are two cases, depending on
9924 -- which type is inheriting.
9926 -- 1.1) Deriv_Typ is inheriting:
9928 -- type Ancestor (D_1 : ...) is tagged ...
9929 -- type Deriv_Typ is new Ancestor ...
9931 -- In this case the inherited discriminant is the final value of
9932 -- the parent discriminant because the end of the derivation chain
9933 -- has been reached.
9935 -- 1.2) Some other type is inheriting:
9937 -- type Ancestor_1 (D_1 : ...) is tagged ...
9938 -- type Ancestor_2 is new Ancestor_1 ...
9940 -- In this case the algorithm continues to trace the fate of the
9941 -- inherited discriminant down the derivation chain because it may
9942 -- be further inherited or constrained.
9944 -- 2) Discriminant is constrained: there are three cases, depending
9945 -- on what the constraint is.
9947 -- 2.1) The constraint is another discriminant (aka renaming):
9949 -- type Ancestor_1 (D_1 : ...) is tagged ...
9950 -- type Ancestor_2 (D_2 : ...) is new Ancestor_1 (D_1 => D_2) ...
9952 -- In this case the constraining discriminant becomes the one to
9953 -- track down the derivation chain. The algorithm already knows
9954 -- that D_2 constrains D_1, therefore if the algorithm finds the
9955 -- value of D_2, then this would also be the value for D_1.
9957 -- 2.2) The constraint is a name (aka Girder):
9960 -- type Ancestor_1 (D_1 : ...) is tagged ...
9961 -- type Ancestor_2 is new Ancestor_1 (D_1 => Name) ...
9963 -- In this case the name is the final value of D_1 because the
9964 -- discriminant cannot be further constrained.
9966 -- 2.3) The constraint is an expression (aka Girder):
9968 -- type Ancestor_1 (D_1 : ...) is tagged ...
9969 -- type Ancestor_2 is new Ancestor_1 (D_1 => 1 + 2) ...
9971 -- Similar to 2.2, the expression is the final value of D_1
9975 -- When a derived type constrains its parent type, all constaints
9976 -- appear in the Stored_Constraint list. Examine the list looking
9977 -- for a positional match.
9979 if Present
(Constrs
) then
9980 Constr_Elmt
:= First_Elmt
(Constrs
);
9981 while Present
(Constr_Elmt
) loop
9983 -- The position of the current constraint matches that of the
9984 -- ancestor discriminant.
9986 if Pos
= Discr_Pos
then
9987 return Find_Constraint_Value
(Node
(Constr_Elmt
));
9990 Next_Elmt
(Constr_Elmt
);
9994 -- Otherwise the derived type does not constraint its parent type in
9995 -- which case it inherits the parent discriminants.
9998 Typ_Discr
:= First_Discriminant
(Typ
);
9999 while Present
(Typ_Discr
) loop
10001 -- The position of the current discriminant matches that of the
10002 -- ancestor discriminant.
10004 if Pos
= Discr_Pos
then
10005 return Find_Constraint_Value
(Typ_Discr
);
10008 Next_Discriminant
(Typ_Discr
);
10013 -- A discriminant must always have a corresponding value. This is
10014 -- either another discriminant, a name, or an expression. If this
10015 -- point is reached, them most likely the derivation chain employs
10016 -- the wrong views of types.
10018 pragma Assert
(False);
10021 end Find_Discriminant_Value
;
10023 -----------------------
10024 -- Map_Discriminants --
10025 -----------------------
10027 procedure Map_Discriminants
10028 (Par_Typ
: Entity_Id
;
10029 Deriv_Typ
: Entity_Id
)
10031 Deriv_Chain
: constant Elist_Id
:= Build_Chain
(Par_Typ
, Deriv_Typ
);
10034 Discr_Val
: Node_Or_Entity_Id
;
10037 -- Examine each discriminant of parent type Par_Typ and find a
10038 -- suitable value for it from the point of view of derived type
10041 if Has_Discriminants
(Par_Typ
) then
10042 Discr
:= First_Discriminant
(Par_Typ
);
10043 while Present
(Discr
) loop
10045 Find_Discriminant_Value
10047 Par_Typ
=> Par_Typ
,
10048 Deriv_Typ
=> Deriv_Typ
,
10049 Typ_Elmt
=> First_Elmt
(Deriv_Chain
));
10051 -- Create a mapping of the form:
10053 -- parent type discriminant -> value
10055 Type_Map
.Set
(Discr
, Discr_Val
);
10057 Next_Discriminant
(Discr
);
10060 end Map_Discriminants
;
10062 --------------------
10063 -- Map_Primitives --
10064 --------------------
10066 procedure Map_Primitives
(Par_Typ
: Entity_Id
; Deriv_Typ
: Entity_Id
) is
10067 Deriv_Prim
: Entity_Id
;
10068 Par_Prim
: Entity_Id
;
10069 Par_Prims
: Elist_Id
;
10070 Prim_Elmt
: Elmt_Id
;
10073 -- Inspect the primitives of the derived type and determine whether
10074 -- they relate to the primitives of the parent type. If there is a
10075 -- meaningful relation, create a mapping of the form:
10077 -- parent type primitive -> perived type primitive
10079 if Present
(Direct_Primitive_Operations
(Deriv_Typ
)) then
10080 Prim_Elmt
:= First_Elmt
(Direct_Primitive_Operations
(Deriv_Typ
));
10081 while Present
(Prim_Elmt
) loop
10082 Deriv_Prim
:= Node
(Prim_Elmt
);
10084 if Is_Subprogram
(Deriv_Prim
)
10085 and then Find_Dispatching_Type
(Deriv_Prim
) = Deriv_Typ
10087 Add_Primitive
(Deriv_Prim
, Par_Typ
);
10090 Next_Elmt
(Prim_Elmt
);
10094 -- If the parent operation is an interface operation, the overriding
10095 -- indicator is not present. Instead, we get from the interface
10096 -- operation the primitive of the current type that implements it.
10098 if Is_Interface
(Par_Typ
) then
10099 Par_Prims
:= Collect_Primitive_Operations
(Par_Typ
);
10101 if Present
(Par_Prims
) then
10102 Prim_Elmt
:= First_Elmt
(Par_Prims
);
10104 while Present
(Prim_Elmt
) loop
10105 Par_Prim
:= Node
(Prim_Elmt
);
10107 Find_Primitive_Covering_Interface
(Deriv_Typ
, Par_Prim
);
10109 if Present
(Deriv_Prim
) then
10110 Type_Map
.Set
(Par_Prim
, Deriv_Prim
);
10113 Next_Elmt
(Prim_Elmt
);
10117 end Map_Primitives
;
10119 -- Start of processing for Map_Types
10122 -- Nothing to do if there are no types to work with
10124 if No
(Parent_Type
) or else No
(Derived_Type
) then
10127 -- Nothing to do if the mapping already exists
10129 elsif Type_Map
.Get
(Parent_Type
) = Derived_Type
then
10132 -- Nothing to do if both types are not tagged. Note that untagged types
10133 -- do not have primitive operations and their discriminants are already
10134 -- handled by gigi.
10136 elsif not Is_Tagged_Type
(Parent_Type
)
10137 or else not Is_Tagged_Type
(Derived_Type
)
10142 -- Create a mapping of the form
10144 -- parent type -> derived type
10146 -- to prevent any subsequent attempts to produce the same relations
10148 Type_Map
.Set
(Parent_Type
, Derived_Type
);
10150 -- Create mappings of the form
10152 -- parent type discriminant -> derived type discriminant
10154 -- parent type discriminant -> constraint
10156 -- Note that mapping of discriminants breaks privacy because it needs to
10157 -- work with those views which contains the discriminants and any stored
10161 (Par_Typ
=> Discriminated_View
(Parent_Type
),
10162 Deriv_Typ
=> Discriminated_View
(Derived_Type
));
10164 -- Create mappings of the form
10166 -- parent type primitive -> derived type primitive
10169 (Par_Typ
=> Parent_Type
,
10170 Deriv_Typ
=> Derived_Type
);
10173 ----------------------------
10174 -- Matching_Standard_Type --
10175 ----------------------------
10177 function Matching_Standard_Type
(Typ
: Entity_Id
) return Entity_Id
is
10178 pragma Assert
(Is_Scalar_Type
(Typ
));
10179 Siz
: constant Uint
:= Esize
(Typ
);
10182 -- Floating-point cases
10184 if Is_Floating_Point_Type
(Typ
) then
10185 if Siz
<= Esize
(Standard_Short_Float
) then
10186 return Standard_Short_Float
;
10187 elsif Siz
<= Esize
(Standard_Float
) then
10188 return Standard_Float
;
10189 elsif Siz
<= Esize
(Standard_Long_Float
) then
10190 return Standard_Long_Float
;
10191 elsif Siz
<= Esize
(Standard_Long_Long_Float
) then
10192 return Standard_Long_Long_Float
;
10194 raise Program_Error
;
10197 -- Integer cases (includes fixed-point types)
10199 -- Unsigned integer cases (includes normal enumeration types)
10201 elsif Is_Unsigned_Type
(Typ
) then
10202 if Siz
<= Esize
(Standard_Short_Short_Unsigned
) then
10203 return Standard_Short_Short_Unsigned
;
10204 elsif Siz
<= Esize
(Standard_Short_Unsigned
) then
10205 return Standard_Short_Unsigned
;
10206 elsif Siz
<= Esize
(Standard_Unsigned
) then
10207 return Standard_Unsigned
;
10208 elsif Siz
<= Esize
(Standard_Long_Unsigned
) then
10209 return Standard_Long_Unsigned
;
10210 elsif Siz
<= Esize
(Standard_Long_Long_Unsigned
) then
10211 return Standard_Long_Long_Unsigned
;
10213 raise Program_Error
;
10216 -- Signed integer cases
10219 if Siz
<= Esize
(Standard_Short_Short_Integer
) then
10220 return Standard_Short_Short_Integer
;
10221 elsif Siz
<= Esize
(Standard_Short_Integer
) then
10222 return Standard_Short_Integer
;
10223 elsif Siz
<= Esize
(Standard_Integer
) then
10224 return Standard_Integer
;
10225 elsif Siz
<= Esize
(Standard_Long_Integer
) then
10226 return Standard_Long_Integer
;
10227 elsif Siz
<= Esize
(Standard_Long_Long_Integer
) then
10228 return Standard_Long_Long_Integer
;
10230 raise Program_Error
;
10233 end Matching_Standard_Type
;
10235 -----------------------------
10236 -- May_Generate_Large_Temp --
10237 -----------------------------
10239 -- At the current time, the only types that we return False for (i.e. where
10240 -- we decide we know they cannot generate large temps) are ones where we
10241 -- know the size is 256 bits or less at compile time, and we are still not
10242 -- doing a thorough job on arrays and records ???
10244 function May_Generate_Large_Temp
(Typ
: Entity_Id
) return Boolean is
10246 if not Size_Known_At_Compile_Time
(Typ
) then
10249 elsif Esize
(Typ
) /= 0 and then Esize
(Typ
) <= 256 then
10252 elsif Is_Array_Type
(Typ
)
10253 and then Present
(Packed_Array_Impl_Type
(Typ
))
10255 return May_Generate_Large_Temp
(Packed_Array_Impl_Type
(Typ
));
10257 -- We could do more here to find other small types ???
10262 end May_Generate_Large_Temp
;
10264 ------------------------
10265 -- Needs_Finalization --
10266 ------------------------
10268 function Needs_Finalization
(Typ
: Entity_Id
) return Boolean is
10269 function Has_Some_Controlled_Component
10270 (Input_Typ
: Entity_Id
) return Boolean;
10271 -- Determine whether type Input_Typ has at least one controlled
10274 -----------------------------------
10275 -- Has_Some_Controlled_Component --
10276 -----------------------------------
10278 function Has_Some_Controlled_Component
10279 (Input_Typ
: Entity_Id
) return Boolean
10284 -- When a type is already frozen and has at least one controlled
10285 -- component, or is manually decorated, it is sufficient to inspect
10286 -- flag Has_Controlled_Component.
10288 if Has_Controlled_Component
(Input_Typ
) then
10291 -- Otherwise inspect the internals of the type
10293 elsif not Is_Frozen
(Input_Typ
) then
10294 if Is_Array_Type
(Input_Typ
) then
10295 return Needs_Finalization
(Component_Type
(Input_Typ
));
10297 elsif Is_Record_Type
(Input_Typ
) then
10298 Comp
:= First_Component
(Input_Typ
);
10299 while Present
(Comp
) loop
10300 if Needs_Finalization
(Etype
(Comp
)) then
10304 Next_Component
(Comp
);
10310 end Has_Some_Controlled_Component
;
10312 -- Start of processing for Needs_Finalization
10315 -- Certain run-time configurations and targets do not provide support
10316 -- for controlled types.
10318 if Restriction_Active
(No_Finalization
) then
10321 -- C++ types are not considered controlled. It is assumed that the non-
10322 -- Ada side will handle their clean up.
10324 elsif Convention
(Typ
) = Convention_CPP
then
10327 -- Class-wide types are treated as controlled because derivations from
10328 -- the root type may introduce controlled components.
10330 elsif Is_Class_Wide_Type
(Typ
) then
10333 -- Concurrent types are controlled as long as their corresponding record
10336 elsif Is_Concurrent_Type
(Typ
)
10337 and then Present
(Corresponding_Record_Type
(Typ
))
10338 and then Needs_Finalization
(Corresponding_Record_Type
(Typ
))
10342 -- Otherwise the type is controlled when it is either derived from type
10343 -- [Limited_]Controlled and not subject to aspect Disable_Controlled, or
10344 -- contains at least one controlled component.
10348 Is_Controlled
(Typ
) or else Has_Some_Controlled_Component
(Typ
);
10350 end Needs_Finalization
;
10352 ----------------------------
10353 -- Needs_Constant_Address --
10354 ----------------------------
10356 function Needs_Constant_Address
10358 Typ
: Entity_Id
) return Boolean
10361 -- If we have no initialization of any kind, then we don't need to place
10362 -- any restrictions on the address clause, because the object will be
10363 -- elaborated after the address clause is evaluated. This happens if the
10364 -- declaration has no initial expression, or the type has no implicit
10365 -- initialization, or the object is imported.
10367 -- The same holds for all initialized scalar types and all access types.
10368 -- Packed bit arrays of size up to 64 are represented using a modular
10369 -- type with an initialization (to zero) and can be processed like other
10370 -- initialized scalar types.
10372 -- If the type is controlled, code to attach the object to a
10373 -- finalization chain is generated at the point of declaration, and
10374 -- therefore the elaboration of the object cannot be delayed: the
10375 -- address expression must be a constant.
10377 if No
(Expression
(Decl
))
10378 and then not Needs_Finalization
(Typ
)
10380 (not Has_Non_Null_Base_Init_Proc
(Typ
)
10381 or else Is_Imported
(Defining_Identifier
(Decl
)))
10385 elsif (Present
(Expression
(Decl
)) and then Is_Scalar_Type
(Typ
))
10386 or else Is_Access_Type
(Typ
)
10388 (Is_Bit_Packed_Array
(Typ
)
10389 and then Is_Modular_Integer_Type
(Packed_Array_Impl_Type
(Typ
)))
10395 -- Otherwise, we require the address clause to be constant because
10396 -- the call to the initialization procedure (or the attach code) has
10397 -- to happen at the point of the declaration.
10399 -- Actually the IP call has been moved to the freeze actions anyway,
10400 -- so maybe we can relax this restriction???
10404 end Needs_Constant_Address
;
10406 ----------------------------
10407 -- New_Class_Wide_Subtype --
10408 ----------------------------
10410 function New_Class_Wide_Subtype
10411 (CW_Typ
: Entity_Id
;
10412 N
: Node_Id
) return Entity_Id
10414 Res
: constant Entity_Id
:= Create_Itype
(E_Void
, N
);
10415 Res_Name
: constant Name_Id
:= Chars
(Res
);
10416 Res_Scope
: constant Entity_Id
:= Scope
(Res
);
10419 Copy_Node
(CW_Typ
, Res
);
10420 Set_Comes_From_Source
(Res
, False);
10421 Set_Sloc
(Res
, Sloc
(N
));
10422 Set_Is_Itype
(Res
);
10423 Set_Associated_Node_For_Itype
(Res
, N
);
10424 Set_Is_Public
(Res
, False); -- By default, may be changed below.
10425 Set_Public_Status
(Res
);
10426 Set_Chars
(Res
, Res_Name
);
10427 Set_Scope
(Res
, Res_Scope
);
10428 Set_Ekind
(Res
, E_Class_Wide_Subtype
);
10429 Set_Next_Entity
(Res
, Empty
);
10430 Set_Etype
(Res
, Base_Type
(CW_Typ
));
10431 Set_Is_Frozen
(Res
, False);
10432 Set_Freeze_Node
(Res
, Empty
);
10434 end New_Class_Wide_Subtype
;
10436 --------------------------------
10437 -- Non_Limited_Designated_Type --
10438 ---------------------------------
10440 function Non_Limited_Designated_Type
(T
: Entity_Id
) return Entity_Id
is
10441 Desig
: constant Entity_Id
:= Designated_Type
(T
);
10443 if Has_Non_Limited_View
(Desig
) then
10444 return Non_Limited_View
(Desig
);
10448 end Non_Limited_Designated_Type
;
10450 -----------------------------------
10451 -- OK_To_Do_Constant_Replacement --
10452 -----------------------------------
10454 function OK_To_Do_Constant_Replacement
(E
: Entity_Id
) return Boolean is
10455 ES
: constant Entity_Id
:= Scope
(E
);
10459 -- Do not replace statically allocated objects, because they may be
10460 -- modified outside the current scope.
10462 if Is_Statically_Allocated
(E
) then
10465 -- Do not replace aliased or volatile objects, since we don't know what
10466 -- else might change the value.
10468 elsif Is_Aliased
(E
) or else Treat_As_Volatile
(E
) then
10471 -- Debug flag -gnatdM disconnects this optimization
10473 elsif Debug_Flag_MM
then
10476 -- Otherwise check scopes
10479 CS
:= Current_Scope
;
10482 -- If we are in right scope, replacement is safe
10487 -- Packages do not affect the determination of safety
10489 elsif Ekind
(CS
) = E_Package
then
10490 exit when CS
= Standard_Standard
;
10493 -- Blocks do not affect the determination of safety
10495 elsif Ekind
(CS
) = E_Block
then
10498 -- Loops do not affect the determination of safety. Note that we
10499 -- kill all current values on entry to a loop, so we are just
10500 -- talking about processing within a loop here.
10502 elsif Ekind
(CS
) = E_Loop
then
10505 -- Otherwise, the reference is dubious, and we cannot be sure that
10506 -- it is safe to do the replacement.
10515 end OK_To_Do_Constant_Replacement
;
10517 ------------------------------------
10518 -- Possible_Bit_Aligned_Component --
10519 ------------------------------------
10521 function Possible_Bit_Aligned_Component
(N
: Node_Id
) return Boolean is
10523 -- Do not process an unanalyzed node because it is not yet decorated and
10524 -- most checks performed below will fail.
10526 if not Analyzed
(N
) then
10532 -- Case of indexed component
10534 when N_Indexed_Component
=>
10536 P
: constant Node_Id
:= Prefix
(N
);
10537 Ptyp
: constant Entity_Id
:= Etype
(P
);
10540 -- If we know the component size and it is less than 64, then
10541 -- we are definitely OK. The back end always does assignment of
10542 -- misaligned small objects correctly.
10544 if Known_Static_Component_Size
(Ptyp
)
10545 and then Component_Size
(Ptyp
) <= 64
10549 -- Otherwise, we need to test the prefix, to see if we are
10550 -- indexing from a possibly unaligned component.
10553 return Possible_Bit_Aligned_Component
(P
);
10557 -- Case of selected component
10559 when N_Selected_Component
=>
10561 P
: constant Node_Id
:= Prefix
(N
);
10562 Comp
: constant Entity_Id
:= Entity
(Selector_Name
(N
));
10565 -- If there is no component clause, then we are in the clear
10566 -- since the back end will never misalign a large component
10567 -- unless it is forced to do so. In the clear means we need
10568 -- only the recursive test on the prefix.
10570 if Component_May_Be_Bit_Aligned
(Comp
) then
10573 return Possible_Bit_Aligned_Component
(P
);
10577 -- For a slice, test the prefix, if that is possibly misaligned,
10578 -- then for sure the slice is.
10581 return Possible_Bit_Aligned_Component
(Prefix
(N
));
10583 -- For an unchecked conversion, check whether the expression may
10586 when N_Unchecked_Type_Conversion
=>
10587 return Possible_Bit_Aligned_Component
(Expression
(N
));
10589 -- If we have none of the above, it means that we have fallen off the
10590 -- top testing prefixes recursively, and we now have a stand alone
10591 -- object, where we don't have a problem, unless this is a renaming,
10592 -- in which case we need to look into the renamed object.
10595 if Is_Entity_Name
(N
)
10596 and then Present
(Renamed_Object
(Entity
(N
)))
10599 Possible_Bit_Aligned_Component
(Renamed_Object
(Entity
(N
)));
10604 end Possible_Bit_Aligned_Component
;
10606 -----------------------------------------------
10607 -- Process_Statements_For_Controlled_Objects --
10608 -----------------------------------------------
10610 procedure Process_Statements_For_Controlled_Objects
(N
: Node_Id
) is
10611 Loc
: constant Source_Ptr
:= Sloc
(N
);
10613 function Are_Wrapped
(L
: List_Id
) return Boolean;
10614 -- Determine whether list L contains only one statement which is a block
10616 function Wrap_Statements_In_Block
10618 Scop
: Entity_Id
:= Current_Scope
) return Node_Id
;
10619 -- Given a list of statements L, wrap it in a block statement and return
10620 -- the generated node. Scop is either the current scope or the scope of
10621 -- the context (if applicable).
10627 function Are_Wrapped
(L
: List_Id
) return Boolean is
10628 Stmt
: constant Node_Id
:= First
(L
);
10632 and then No
(Next
(Stmt
))
10633 and then Nkind
(Stmt
) = N_Block_Statement
;
10636 ------------------------------
10637 -- Wrap_Statements_In_Block --
10638 ------------------------------
10640 function Wrap_Statements_In_Block
10642 Scop
: Entity_Id
:= Current_Scope
) return Node_Id
10644 Block_Id
: Entity_Id
;
10645 Block_Nod
: Node_Id
;
10646 Iter_Loop
: Entity_Id
;
10650 Make_Block_Statement
(Loc
,
10651 Declarations
=> No_List
,
10652 Handled_Statement_Sequence
=>
10653 Make_Handled_Sequence_Of_Statements
(Loc
,
10656 -- Create a label for the block in case the block needs to manage the
10657 -- secondary stack. A label allows for flag Uses_Sec_Stack to be set.
10659 Add_Block_Identifier
(Block_Nod
, Block_Id
);
10661 -- When wrapping the statements of an iterator loop, check whether
10662 -- the loop requires secondary stack management and if so, propagate
10663 -- the appropriate flags to the block. This ensures that the cursor
10664 -- is properly cleaned up at each iteration of the loop.
10666 Iter_Loop
:= Find_Enclosing_Iterator_Loop
(Scop
);
10668 if Present
(Iter_Loop
) then
10669 Set_Uses_Sec_Stack
(Block_Id
, Uses_Sec_Stack
(Iter_Loop
));
10671 -- Secondary stack reclamation is suppressed when the associated
10672 -- iterator loop contains a return statement which uses the stack.
10674 Set_Sec_Stack_Needed_For_Return
10675 (Block_Id
, Sec_Stack_Needed_For_Return
(Iter_Loop
));
10679 end Wrap_Statements_In_Block
;
10685 -- Start of processing for Process_Statements_For_Controlled_Objects
10688 -- Whenever a non-handled statement list is wrapped in a block, the
10689 -- block must be explicitly analyzed to redecorate all entities in the
10690 -- list and ensure that a finalizer is properly built.
10693 when N_Conditional_Entry_Call
10696 | N_Selective_Accept
10698 -- Check the "then statements" for elsif parts and if statements
10700 if Nkind_In
(N
, N_Elsif_Part
, N_If_Statement
)
10701 and then not Is_Empty_List
(Then_Statements
(N
))
10702 and then not Are_Wrapped
(Then_Statements
(N
))
10703 and then Requires_Cleanup_Actions
10704 (Then_Statements
(N
),
10705 Lib_Level
=> False,
10706 Nested_Constructs
=> False)
10708 Block
:= Wrap_Statements_In_Block
(Then_Statements
(N
));
10709 Set_Then_Statements
(N
, New_List
(Block
));
10714 -- Check the "else statements" for conditional entry calls, if
10715 -- statements and selective accepts.
10717 if Nkind_In
(N
, N_Conditional_Entry_Call
,
10719 N_Selective_Accept
)
10720 and then not Is_Empty_List
(Else_Statements
(N
))
10721 and then not Are_Wrapped
(Else_Statements
(N
))
10722 and then Requires_Cleanup_Actions
10723 (Else_Statements
(N
),
10724 Lib_Level
=> False,
10725 Nested_Constructs
=> False)
10727 Block
:= Wrap_Statements_In_Block
(Else_Statements
(N
));
10728 Set_Else_Statements
(N
, New_List
(Block
));
10733 when N_Abortable_Part
10734 | N_Accept_Alternative
10735 | N_Case_Statement_Alternative
10736 | N_Delay_Alternative
10737 | N_Entry_Call_Alternative
10738 | N_Exception_Handler
10740 | N_Triggering_Alternative
10742 if not Is_Empty_List
(Statements
(N
))
10743 and then not Are_Wrapped
(Statements
(N
))
10744 and then Requires_Cleanup_Actions
10746 Lib_Level
=> False,
10747 Nested_Constructs
=> False)
10749 if Nkind
(N
) = N_Loop_Statement
10750 and then Present
(Identifier
(N
))
10753 Wrap_Statements_In_Block
10754 (L
=> Statements
(N
),
10755 Scop
=> Entity
(Identifier
(N
)));
10757 Block
:= Wrap_Statements_In_Block
(Statements
(N
));
10760 Set_Statements
(N
, New_List
(Block
));
10764 -- Could be e.g. a loop that was transformed into a block or null
10765 -- statement. Do nothing for terminate alternatives.
10767 when N_Block_Statement
10769 | N_Terminate_Alternative
10774 raise Program_Error
;
10776 end Process_Statements_For_Controlled_Objects
;
10782 function Power_Of_Two
(N
: Node_Id
) return Nat
is
10783 Typ
: constant Entity_Id
:= Etype
(N
);
10784 pragma Assert
(Is_Integer_Type
(Typ
));
10786 Siz
: constant Nat
:= UI_To_Int
(Esize
(Typ
));
10790 if not Compile_Time_Known_Value
(N
) then
10794 Val
:= Expr_Value
(N
);
10795 for J
in 1 .. Siz
- 1 loop
10796 if Val
= Uint_2
** J
then
10805 ----------------------
10806 -- Remove_Init_Call --
10807 ----------------------
10809 function Remove_Init_Call
10811 Rep_Clause
: Node_Id
) return Node_Id
10813 Par
: constant Node_Id
:= Parent
(Var
);
10814 Typ
: constant Entity_Id
:= Etype
(Var
);
10816 Init_Proc
: Entity_Id
;
10817 -- Initialization procedure for Typ
10819 function Find_Init_Call_In_List
(From
: Node_Id
) return Node_Id
;
10820 -- Look for init call for Var starting at From and scanning the
10821 -- enclosing list until Rep_Clause or the end of the list is reached.
10823 ----------------------------
10824 -- Find_Init_Call_In_List --
10825 ----------------------------
10827 function Find_Init_Call_In_List
(From
: Node_Id
) return Node_Id
is
10828 Init_Call
: Node_Id
;
10832 while Present
(Init_Call
) and then Init_Call
/= Rep_Clause
loop
10833 if Nkind
(Init_Call
) = N_Procedure_Call_Statement
10834 and then Is_Entity_Name
(Name
(Init_Call
))
10835 and then Entity
(Name
(Init_Call
)) = Init_Proc
10844 end Find_Init_Call_In_List
;
10846 Init_Call
: Node_Id
;
10848 -- Start of processing for Find_Init_Call
10851 if Present
(Initialization_Statements
(Var
)) then
10852 Init_Call
:= Initialization_Statements
(Var
);
10853 Set_Initialization_Statements
(Var
, Empty
);
10855 elsif not Has_Non_Null_Base_Init_Proc
(Typ
) then
10857 -- No init proc for the type, so obviously no call to be found
10862 -- We might be able to handle other cases below by just properly
10863 -- setting Initialization_Statements at the point where the init proc
10864 -- call is generated???
10866 Init_Proc
:= Base_Init_Proc
(Typ
);
10868 -- First scan the list containing the declaration of Var
10870 Init_Call
:= Find_Init_Call_In_List
(From
=> Next
(Par
));
10872 -- If not found, also look on Var's freeze actions list, if any,
10873 -- since the init call may have been moved there (case of an address
10874 -- clause applying to Var).
10876 if No
(Init_Call
) and then Present
(Freeze_Node
(Var
)) then
10878 Find_Init_Call_In_List
(First
(Actions
(Freeze_Node
(Var
))));
10881 -- If the initialization call has actuals that use the secondary
10882 -- stack, the call may have been wrapped into a temporary block, in
10883 -- which case the block itself has to be removed.
10885 if No
(Init_Call
) and then Nkind
(Next
(Par
)) = N_Block_Statement
then
10887 Blk
: constant Node_Id
:= Next
(Par
);
10890 (Find_Init_Call_In_List
10891 (First
(Statements
(Handled_Statement_Sequence
(Blk
)))))
10899 if Present
(Init_Call
) then
10900 Remove
(Init_Call
);
10903 end Remove_Init_Call
;
10905 -------------------------
10906 -- Remove_Side_Effects --
10907 -------------------------
10909 procedure Remove_Side_Effects
10911 Name_Req
: Boolean := False;
10912 Renaming_Req
: Boolean := False;
10913 Variable_Ref
: Boolean := False;
10914 Related_Id
: Entity_Id
:= Empty
;
10915 Is_Low_Bound
: Boolean := False;
10916 Is_High_Bound
: Boolean := False;
10917 Check_Side_Effects
: Boolean := True)
10919 function Build_Temporary
10922 Related_Nod
: Node_Id
:= Empty
) return Entity_Id
;
10923 -- Create an external symbol of the form xxx_FIRST/_LAST if Related_Nod
10924 -- is present (xxx is taken from the Chars field of Related_Nod),
10925 -- otherwise it generates an internal temporary. The created temporary
10926 -- entity is marked as internal.
10928 ---------------------
10929 -- Build_Temporary --
10930 ---------------------
10932 function Build_Temporary
10935 Related_Nod
: Node_Id
:= Empty
) return Entity_Id
10937 Temp_Id
: Entity_Id
;
10938 Temp_Nam
: Name_Id
;
10941 -- The context requires an external symbol
10943 if Present
(Related_Id
) then
10944 if Is_Low_Bound
then
10945 Temp_Nam
:= New_External_Name
(Chars
(Related_Id
), "_FIRST");
10946 else pragma Assert
(Is_High_Bound
);
10947 Temp_Nam
:= New_External_Name
(Chars
(Related_Id
), "_LAST");
10950 Temp_Id
:= Make_Defining_Identifier
(Loc
, Temp_Nam
);
10952 -- Otherwise generate an internal temporary
10955 Temp_Id
:= Make_Temporary
(Loc
, Id
, Related_Nod
);
10958 Set_Is_Internal
(Temp_Id
);
10961 end Build_Temporary
;
10965 Loc
: constant Source_Ptr
:= Sloc
(Exp
);
10966 Exp_Type
: constant Entity_Id
:= Etype
(Exp
);
10967 Svg_Suppress
: constant Suppress_Record
:= Scope_Suppress
;
10968 Def_Id
: Entity_Id
;
10971 Ptr_Typ_Decl
: Node_Id
;
10972 Ref_Type
: Entity_Id
;
10975 -- Start of processing for Remove_Side_Effects
10978 -- Handle cases in which there is nothing to do. In GNATprove mode,
10979 -- removal of side effects is useful for the light expansion of
10980 -- renamings. This removal should only occur when not inside a
10981 -- generic and not doing a pre-analysis.
10983 if not Expander_Active
10984 and (Inside_A_Generic
or not Full_Analysis
or not GNATprove_Mode
)
10988 -- Cannot generate temporaries if the invocation to remove side effects
10989 -- was issued too early and the type of the expression is not resolved
10990 -- (this happens because routines Duplicate_Subexpr_XX implicitly invoke
10991 -- Remove_Side_Effects).
10993 elsif No
(Exp_Type
)
10994 or else Ekind
(Exp_Type
) = E_Access_Attribute_Type
10998 -- Nothing to do if prior expansion determined that a function call does
10999 -- not require side effect removal.
11001 elsif Nkind
(Exp
) = N_Function_Call
11002 and then No_Side_Effect_Removal
(Exp
)
11006 -- No action needed for side-effect free expressions
11008 elsif Check_Side_Effects
11009 and then Side_Effect_Free
(Exp
, Name_Req
, Variable_Ref
)
11014 -- The remaining processing is done with all checks suppressed
11016 -- Note: from now on, don't use return statements, instead do a goto
11017 -- Leave, to ensure that we properly restore Scope_Suppress.Suppress.
11019 Scope_Suppress
.Suppress
:= (others => True);
11021 -- If this is an elementary or a small not-by-reference record type, and
11022 -- we need to capture the value, just make a constant; this is cheap and
11023 -- objects of both kinds of types can be bit aligned, so it might not be
11024 -- possible to generate a reference to them. Likewise if this is not a
11025 -- name reference, except for a type conversion, because we would enter
11026 -- an infinite recursion with Checks.Apply_Predicate_Check if the target
11027 -- type has predicates (and type conversions need a specific treatment
11028 -- anyway, see below). Also do it if we have a volatile reference and
11029 -- Name_Req is not set (see comments for Side_Effect_Free).
11031 if (Is_Elementary_Type
(Exp_Type
)
11032 or else (Is_Record_Type
(Exp_Type
)
11033 and then Known_Static_RM_Size
(Exp_Type
)
11034 and then RM_Size
(Exp_Type
) <= 64
11035 and then not Has_Discriminants
(Exp_Type
)
11036 and then not Is_By_Reference_Type
(Exp_Type
)))
11037 and then (Variable_Ref
11038 or else (not Is_Name_Reference
(Exp
)
11039 and then Nkind
(Exp
) /= N_Type_Conversion
)
11040 or else (not Name_Req
11041 and then Is_Volatile_Reference
(Exp
)))
11043 Def_Id
:= Build_Temporary
(Loc
, 'R', Exp
);
11044 Set_Etype
(Def_Id
, Exp_Type
);
11045 Res
:= New_Occurrence_Of
(Def_Id
, Loc
);
11047 -- If the expression is a packed reference, it must be reanalyzed and
11048 -- expanded, depending on context. This is the case for actuals where
11049 -- a constraint check may capture the actual before expansion of the
11050 -- call is complete.
11052 if Nkind
(Exp
) = N_Indexed_Component
11053 and then Is_Packed
(Etype
(Prefix
(Exp
)))
11055 Set_Analyzed
(Exp
, False);
11056 Set_Analyzed
(Prefix
(Exp
), False);
11060 -- Rnn : Exp_Type renames Expr;
11062 if Renaming_Req
then
11064 Make_Object_Renaming_Declaration
(Loc
,
11065 Defining_Identifier
=> Def_Id
,
11066 Subtype_Mark
=> New_Occurrence_Of
(Exp_Type
, Loc
),
11067 Name
=> Relocate_Node
(Exp
));
11070 -- Rnn : constant Exp_Type := Expr;
11074 Make_Object_Declaration
(Loc
,
11075 Defining_Identifier
=> Def_Id
,
11076 Object_Definition
=> New_Occurrence_Of
(Exp_Type
, Loc
),
11077 Constant_Present
=> True,
11078 Expression
=> Relocate_Node
(Exp
));
11080 Set_Assignment_OK
(E
);
11083 Insert_Action
(Exp
, E
);
11085 -- If the expression has the form v.all then we can just capture the
11086 -- pointer, and then do an explicit dereference on the result, but
11087 -- this is not right if this is a volatile reference.
11089 elsif Nkind
(Exp
) = N_Explicit_Dereference
11090 and then not Is_Volatile_Reference
(Exp
)
11092 Def_Id
:= Build_Temporary
(Loc
, 'R', Exp
);
11094 Make_Explicit_Dereference
(Loc
, New_Occurrence_Of
(Def_Id
, Loc
));
11096 Insert_Action
(Exp
,
11097 Make_Object_Declaration
(Loc
,
11098 Defining_Identifier
=> Def_Id
,
11099 Object_Definition
=>
11100 New_Occurrence_Of
(Etype
(Prefix
(Exp
)), Loc
),
11101 Constant_Present
=> True,
11102 Expression
=> Relocate_Node
(Prefix
(Exp
))));
11104 -- Similar processing for an unchecked conversion of an expression of
11105 -- the form v.all, where we want the same kind of treatment.
11107 elsif Nkind
(Exp
) = N_Unchecked_Type_Conversion
11108 and then Nkind
(Expression
(Exp
)) = N_Explicit_Dereference
11110 Remove_Side_Effects
(Expression
(Exp
), Name_Req
, Variable_Ref
);
11113 -- If this is a type conversion, leave the type conversion and remove
11114 -- the side effects in the expression. This is important in several
11115 -- circumstances: for change of representations, and also when this is a
11116 -- view conversion to a smaller object, where gigi can end up creating
11117 -- its own temporary of the wrong size.
11119 elsif Nkind
(Exp
) = N_Type_Conversion
then
11120 Remove_Side_Effects
(Expression
(Exp
), Name_Req
, Variable_Ref
);
11122 -- Generating C code the type conversion of an access to constrained
11123 -- array type into an access to unconstrained array type involves
11124 -- initializing a fat pointer and the expression must be free of
11125 -- side effects to safely compute its bounds.
11127 if Modify_Tree_For_C
11128 and then Is_Access_Type
(Etype
(Exp
))
11129 and then Is_Array_Type
(Designated_Type
(Etype
(Exp
)))
11130 and then not Is_Constrained
(Designated_Type
(Etype
(Exp
)))
11132 Def_Id
:= Build_Temporary
(Loc
, 'R', Exp
);
11133 Set_Etype
(Def_Id
, Exp_Type
);
11134 Res
:= New_Occurrence_Of
(Def_Id
, Loc
);
11136 Insert_Action
(Exp
,
11137 Make_Object_Declaration
(Loc
,
11138 Defining_Identifier
=> Def_Id
,
11139 Object_Definition
=> New_Occurrence_Of
(Exp_Type
, Loc
),
11140 Constant_Present
=> True,
11141 Expression
=> Relocate_Node
(Exp
)));
11146 -- If this is an unchecked conversion that Gigi can't handle, make
11147 -- a copy or a use a renaming to capture the value.
11149 elsif Nkind
(Exp
) = N_Unchecked_Type_Conversion
11150 and then not Safe_Unchecked_Type_Conversion
(Exp
)
11152 if CW_Or_Has_Controlled_Part
(Exp_Type
) then
11154 -- Use a renaming to capture the expression, rather than create
11155 -- a controlled temporary.
11157 Def_Id
:= Build_Temporary
(Loc
, 'R', Exp
);
11158 Res
:= New_Occurrence_Of
(Def_Id
, Loc
);
11160 Insert_Action
(Exp
,
11161 Make_Object_Renaming_Declaration
(Loc
,
11162 Defining_Identifier
=> Def_Id
,
11163 Subtype_Mark
=> New_Occurrence_Of
(Exp_Type
, Loc
),
11164 Name
=> Relocate_Node
(Exp
)));
11167 Def_Id
:= Build_Temporary
(Loc
, 'R', Exp
);
11168 Set_Etype
(Def_Id
, Exp_Type
);
11169 Res
:= New_Occurrence_Of
(Def_Id
, Loc
);
11172 Make_Object_Declaration
(Loc
,
11173 Defining_Identifier
=> Def_Id
,
11174 Object_Definition
=> New_Occurrence_Of
(Exp_Type
, Loc
),
11175 Constant_Present
=> not Is_Variable
(Exp
),
11176 Expression
=> Relocate_Node
(Exp
));
11178 Set_Assignment_OK
(E
);
11179 Insert_Action
(Exp
, E
);
11182 -- For expressions that denote names, we can use a renaming scheme.
11183 -- This is needed for correctness in the case of a volatile object of
11184 -- a non-volatile type because the Make_Reference call of the "default"
11185 -- approach would generate an illegal access value (an access value
11186 -- cannot designate such an object - see Analyze_Reference).
11188 elsif Is_Name_Reference
(Exp
)
11190 -- We skip using this scheme if we have an object of a volatile
11191 -- type and we do not have Name_Req set true (see comments for
11192 -- Side_Effect_Free).
11194 and then (Name_Req
or else not Treat_As_Volatile
(Exp_Type
))
11196 Def_Id
:= Build_Temporary
(Loc
, 'R', Exp
);
11197 Res
:= New_Occurrence_Of
(Def_Id
, Loc
);
11199 Insert_Action
(Exp
,
11200 Make_Object_Renaming_Declaration
(Loc
,
11201 Defining_Identifier
=> Def_Id
,
11202 Subtype_Mark
=> New_Occurrence_Of
(Exp_Type
, Loc
),
11203 Name
=> Relocate_Node
(Exp
)));
11205 -- If this is a packed reference, or a selected component with
11206 -- a non-standard representation, a reference to the temporary
11207 -- will be replaced by a copy of the original expression (see
11208 -- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
11209 -- elaborated by gigi, and is of course not to be replaced in-line
11210 -- by the expression it renames, which would defeat the purpose of
11211 -- removing the side effect.
11213 if Nkind_In
(Exp
, N_Selected_Component
, N_Indexed_Component
)
11214 and then Has_Non_Standard_Rep
(Etype
(Prefix
(Exp
)))
11218 Set_Is_Renaming_Of_Object
(Def_Id
, False);
11221 -- Avoid generating a variable-sized temporary, by generating the
11222 -- reference just for the function call. The transformation could be
11223 -- refined to apply only when the array component is constrained by a
11226 elsif Nkind
(Exp
) = N_Selected_Component
11227 and then Nkind
(Prefix
(Exp
)) = N_Function_Call
11228 and then Is_Array_Type
(Exp_Type
)
11230 Remove_Side_Effects
(Prefix
(Exp
), Name_Req
, Variable_Ref
);
11233 -- Otherwise we generate a reference to the expression
11236 -- An expression which is in SPARK mode is considered side effect
11237 -- free if the resulting value is captured by a variable or a
11241 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11245 -- When generating C code we cannot consider side effect free object
11246 -- declarations that have discriminants and are initialized by means
11247 -- of a function call since on this target there is no secondary
11248 -- stack to store the return value and the expander may generate an
11249 -- extra call to the function to compute the discriminant value. In
11250 -- addition, for targets that have secondary stack, the expansion of
11251 -- functions with side effects involves the generation of an access
11252 -- type to capture the return value stored in the secondary stack;
11253 -- by contrast when generating C code such expansion generates an
11254 -- internal object declaration (no access type involved) which must
11255 -- be identified here to avoid entering into a never-ending loop
11256 -- generating internal object declarations.
11258 elsif Modify_Tree_For_C
11259 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11261 (Nkind
(Exp
) /= N_Function_Call
11262 or else not Has_Discriminants
(Exp_Type
)
11263 or else Is_Internal_Name
11264 (Chars
(Defining_Identifier
(Parent
(Exp
)))))
11269 -- Special processing for function calls that return a limited type.
11270 -- We need to build a declaration that will enable build-in-place
11271 -- expansion of the call. This is not done if the context is already
11272 -- an object declaration, to prevent infinite recursion.
11274 -- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
11275 -- to accommodate functions returning limited objects by reference.
11277 if Ada_Version
>= Ada_2005
11278 and then Nkind
(Exp
) = N_Function_Call
11279 and then Is_Limited_View
(Etype
(Exp
))
11280 and then Nkind
(Parent
(Exp
)) /= N_Object_Declaration
11283 Obj
: constant Entity_Id
:= Make_Temporary
(Loc
, 'F', Exp
);
11288 Make_Object_Declaration
(Loc
,
11289 Defining_Identifier
=> Obj
,
11290 Object_Definition
=> New_Occurrence_Of
(Exp_Type
, Loc
),
11291 Expression
=> Relocate_Node
(Exp
));
11293 Insert_Action
(Exp
, Decl
);
11294 Set_Etype
(Obj
, Exp_Type
);
11295 Rewrite
(Exp
, New_Occurrence_Of
(Obj
, Loc
));
11300 Def_Id
:= Build_Temporary
(Loc
, 'R', Exp
);
11302 -- The regular expansion of functions with side effects involves the
11303 -- generation of an access type to capture the return value found on
11304 -- the secondary stack. Since SPARK (and why) cannot process access
11305 -- types, use a different approach which ignores the secondary stack
11306 -- and "copies" the returned object.
11307 -- When generating C code, no need for a 'reference since the
11308 -- secondary stack is not supported.
11310 if GNATprove_Mode
or Modify_Tree_For_C
then
11311 Res
:= New_Occurrence_Of
(Def_Id
, Loc
);
11312 Ref_Type
:= Exp_Type
;
11314 -- Regular expansion utilizing an access type and 'reference
11318 Make_Explicit_Dereference
(Loc
,
11319 Prefix
=> New_Occurrence_Of
(Def_Id
, Loc
));
11322 -- type Ann is access all <Exp_Type>;
11324 Ref_Type
:= Make_Temporary
(Loc
, 'A');
11327 Make_Full_Type_Declaration
(Loc
,
11328 Defining_Identifier
=> Ref_Type
,
11330 Make_Access_To_Object_Definition
(Loc
,
11331 All_Present
=> True,
11332 Subtype_Indication
=>
11333 New_Occurrence_Of
(Exp_Type
, Loc
)));
11335 Insert_Action
(Exp
, Ptr_Typ_Decl
);
11339 if Nkind
(E
) = N_Explicit_Dereference
then
11340 New_Exp
:= Relocate_Node
(Prefix
(E
));
11343 E
:= Relocate_Node
(E
);
11345 -- Do not generate a 'reference in SPARK mode or C generation
11346 -- since the access type is not created in the first place.
11348 if GNATprove_Mode
or Modify_Tree_For_C
then
11351 -- Otherwise generate reference, marking the value as non-null
11352 -- since we know it cannot be null and we don't want a check.
11355 New_Exp
:= Make_Reference
(Loc
, E
);
11356 Set_Is_Known_Non_Null
(Def_Id
);
11360 if Is_Delayed_Aggregate
(E
) then
11362 -- The expansion of nested aggregates is delayed until the
11363 -- enclosing aggregate is expanded. As aggregates are often
11364 -- qualified, the predicate applies to qualified expressions as
11365 -- well, indicating that the enclosing aggregate has not been
11366 -- expanded yet. At this point the aggregate is part of a
11367 -- stand-alone declaration, and must be fully expanded.
11369 if Nkind
(E
) = N_Qualified_Expression
then
11370 Set_Expansion_Delayed
(Expression
(E
), False);
11371 Set_Analyzed
(Expression
(E
), False);
11373 Set_Expansion_Delayed
(E
, False);
11376 Set_Analyzed
(E
, False);
11379 -- Generating C code of object declarations that have discriminants
11380 -- and are initialized by means of a function call we propagate the
11381 -- discriminants of the parent type to the internally built object.
11382 -- This is needed to avoid generating an extra call to the called
11385 -- For example, if we generate here the following declaration, it
11386 -- will be expanded later adding an extra call to evaluate the value
11387 -- of the discriminant (needed to compute the size of the object).
11389 -- type Rec (D : Integer) is ...
11390 -- Obj : constant Rec := SomeFunc;
11392 if Modify_Tree_For_C
11393 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11394 and then Has_Discriminants
(Exp_Type
)
11395 and then Nkind
(Exp
) = N_Function_Call
11397 Insert_Action
(Exp
,
11398 Make_Object_Declaration
(Loc
,
11399 Defining_Identifier
=> Def_Id
,
11400 Object_Definition
=> New_Copy_Tree
11401 (Object_Definition
(Parent
(Exp
))),
11402 Constant_Present
=> True,
11403 Expression
=> New_Exp
));
11405 Insert_Action
(Exp
,
11406 Make_Object_Declaration
(Loc
,
11407 Defining_Identifier
=> Def_Id
,
11408 Object_Definition
=> New_Occurrence_Of
(Ref_Type
, Loc
),
11409 Constant_Present
=> True,
11410 Expression
=> New_Exp
));
11414 -- Preserve the Assignment_OK flag in all copies, since at least one
11415 -- copy may be used in a context where this flag must be set (otherwise
11416 -- why would the flag be set in the first place).
11418 Set_Assignment_OK
(Res
, Assignment_OK
(Exp
));
11420 -- Finally rewrite the original expression and we are done
11422 Rewrite
(Exp
, Res
);
11423 Analyze_And_Resolve
(Exp
, Exp_Type
);
11426 Scope_Suppress
:= Svg_Suppress
;
11427 end Remove_Side_Effects
;
11429 ------------------------
11430 -- Replace_References --
11431 ------------------------
11433 procedure Replace_References
11435 Par_Typ
: Entity_Id
;
11436 Deriv_Typ
: Entity_Id
;
11437 Par_Obj
: Entity_Id
:= Empty
;
11438 Deriv_Obj
: Entity_Id
:= Empty
)
11440 function Is_Deriv_Obj_Ref
(Ref
: Node_Id
) return Boolean;
11441 -- Determine whether node Ref denotes some component of Deriv_Obj
11443 function Replace_Ref
(Ref
: Node_Id
) return Traverse_Result
;
11444 -- Substitute a reference to an entity with the corresponding value
11445 -- stored in table Type_Map.
11447 function Type_Of_Formal
11449 Actual
: Node_Id
) return Entity_Id
;
11450 -- Find the type of the formal parameter which corresponds to actual
11451 -- parameter Actual in subprogram call Call.
11453 ----------------------
11454 -- Is_Deriv_Obj_Ref --
11455 ----------------------
11457 function Is_Deriv_Obj_Ref
(Ref
: Node_Id
) return Boolean is
11458 Par
: constant Node_Id
:= Parent
(Ref
);
11461 -- Detect the folowing selected component form:
11463 -- Deriv_Obj.(something)
11466 Nkind
(Par
) = N_Selected_Component
11467 and then Is_Entity_Name
(Prefix
(Par
))
11468 and then Entity
(Prefix
(Par
)) = Deriv_Obj
;
11469 end Is_Deriv_Obj_Ref
;
11475 function Replace_Ref
(Ref
: Node_Id
) return Traverse_Result
is
11476 procedure Remove_Controlling_Arguments
(From_Arg
: Node_Id
);
11477 -- Reset the Controlling_Argument of all function calls that
11478 -- encapsulate node From_Arg.
11480 ----------------------------------
11481 -- Remove_Controlling_Arguments --
11482 ----------------------------------
11484 procedure Remove_Controlling_Arguments
(From_Arg
: Node_Id
) is
11489 while Present
(Par
) loop
11490 if Nkind
(Par
) = N_Function_Call
11491 and then Present
(Controlling_Argument
(Par
))
11493 Set_Controlling_Argument
(Par
, Empty
);
11495 -- Prevent the search from going too far
11497 elsif Is_Body_Or_Package_Declaration
(Par
) then
11501 Par
:= Parent
(Par
);
11503 end Remove_Controlling_Arguments
;
11507 Context
: constant Node_Id
:= Parent
(Ref
);
11508 Loc
: constant Source_Ptr
:= Sloc
(Ref
);
11509 Ref_Id
: Entity_Id
;
11510 Result
: Traverse_Result
;
11513 -- The new reference which is intended to substitute the old one
11516 -- The reference designated for replacement. In certain cases this
11517 -- may be a node other than Ref.
11519 Val
: Node_Or_Entity_Id
;
11520 -- The corresponding value of Ref from the type map
11522 -- Start of processing for Replace_Ref
11525 -- Assume that the input reference is to be replaced and that the
11526 -- traversal should examine the children of the reference.
11531 -- The input denotes a meaningful reference
11533 if Nkind
(Ref
) in N_Has_Entity
and then Present
(Entity
(Ref
)) then
11534 Ref_Id
:= Entity
(Ref
);
11535 Val
:= Type_Map
.Get
(Ref_Id
);
11537 -- The reference has a corresponding value in the type map, a
11538 -- substitution is possible.
11540 if Present
(Val
) then
11542 -- The reference denotes a discriminant
11544 if Ekind
(Ref_Id
) = E_Discriminant
then
11545 if Nkind
(Val
) in N_Entity
then
11547 -- The value denotes another discriminant. Replace as
11550 -- _object.Discr -> _object.Val
11552 if Ekind
(Val
) = E_Discriminant
then
11553 New_Ref
:= New_Occurrence_Of
(Val
, Loc
);
11555 -- Otherwise the value denotes the entity of a name which
11556 -- constraints the discriminant. Replace as follows:
11558 -- _object.Discr -> Val
11561 pragma Assert
(Is_Deriv_Obj_Ref
(Old_Ref
));
11563 New_Ref
:= New_Occurrence_Of
(Val
, Loc
);
11564 Old_Ref
:= Parent
(Old_Ref
);
11567 -- Otherwise the value denotes an arbitrary expression which
11568 -- constraints the discriminant. Replace as follows:
11570 -- _object.Discr -> Val
11573 pragma Assert
(Is_Deriv_Obj_Ref
(Old_Ref
));
11575 New_Ref
:= New_Copy_Tree
(Val
);
11576 Old_Ref
:= Parent
(Old_Ref
);
11579 -- Otherwise the reference denotes a primitive. Replace as
11582 -- Primitive -> Val
11585 pragma Assert
(Nkind
(Val
) in N_Entity
);
11586 New_Ref
:= New_Occurrence_Of
(Val
, Loc
);
11589 -- The reference mentions the _object parameter of the parent
11590 -- type's DIC or type invariant procedure. Replace as follows:
11592 -- _object -> _object
11594 elsif Present
(Par_Obj
)
11595 and then Present
(Deriv_Obj
)
11596 and then Ref_Id
= Par_Obj
11598 New_Ref
:= New_Occurrence_Of
(Deriv_Obj
, Loc
);
11600 -- The type of the _object parameter is class-wide when the
11601 -- expression comes from an assertion pragma that applies to
11602 -- an abstract parent type or an interface. The class-wide type
11603 -- facilitates the preanalysis of the expression by treating
11604 -- calls to abstract primitives that mention the current
11605 -- instance of the type as dispatching. Once the calls are
11606 -- remapped to invoke overriding or inherited primitives, the
11607 -- calls no longer need to be dispatching. Examine all function
11608 -- calls that encapsulate the _object parameter and reset their
11609 -- Controlling_Argument attribute.
11611 if Is_Class_Wide_Type
(Etype
(Par_Obj
))
11612 and then Is_Abstract_Type
(Root_Type
(Etype
(Par_Obj
)))
11614 Remove_Controlling_Arguments
(Old_Ref
);
11617 -- The reference to _object acts as an actual parameter in a
11618 -- subprogram call which may be invoking a primitive of the
11621 -- Primitive (... _object ...);
11623 -- The parent type primitive may not be overridden nor
11624 -- inherited when it is declared after the derived type
11627 -- type Parent is tagged private;
11628 -- type Child is new Parent with private;
11629 -- procedure Primitive (Obj : Parent);
11631 -- In this scenario the _object parameter is converted to the
11632 -- parent type. Due to complications with partial/full views
11633 -- and view swaps, the parent type is taken from the formal
11634 -- parameter of the subprogram being called.
11636 if Nkind_In
(Context
, N_Function_Call
,
11637 N_Procedure_Call_Statement
)
11638 and then No
(Type_Map
.Get
(Entity
(Name
(Context
))))
11641 Convert_To
(Type_Of_Formal
(Context
, Old_Ref
), New_Ref
);
11643 -- Do not process the generated type conversion because
11644 -- both the parent type and the derived type are in the
11645 -- Type_Map table. This will clobber the type conversion
11646 -- by resetting its subtype mark.
11651 -- Otherwise there is nothing to replace
11657 if Present
(New_Ref
) then
11658 Rewrite
(Old_Ref
, New_Ref
);
11660 -- Update the return type when the context of the reference
11661 -- acts as the name of a function call. Note that the update
11662 -- should not be performed when the reference appears as an
11663 -- actual in the call.
11665 if Nkind
(Context
) = N_Function_Call
11666 and then Name
(Context
) = Old_Ref
11668 Set_Etype
(Context
, Etype
(Val
));
11673 -- Reanalyze the reference due to potential replacements
11675 if Nkind
(Old_Ref
) in N_Has_Etype
then
11676 Set_Analyzed
(Old_Ref
, False);
11682 procedure Replace_Refs
is new Traverse_Proc
(Replace_Ref
);
11684 --------------------
11685 -- Type_Of_Formal --
11686 --------------------
11688 function Type_Of_Formal
11690 Actual
: Node_Id
) return Entity_Id
11696 -- Examine the list of actual and formal parameters in parallel
11698 A
:= First
(Parameter_Associations
(Call
));
11699 F
:= First_Formal
(Entity
(Name
(Call
)));
11700 while Present
(A
) and then Present
(F
) loop
11709 -- The actual parameter must always have a corresponding formal
11711 pragma Assert
(False);
11714 end Type_Of_Formal
;
11716 -- Start of processing for Replace_References
11719 -- Map the attributes of the parent type to the proper corresponding
11720 -- attributes of the derived type.
11723 (Parent_Type
=> Par_Typ
,
11724 Derived_Type
=> Deriv_Typ
);
11726 -- Inspect the input expression and perform substitutions where
11729 Replace_Refs
(Expr
);
11730 end Replace_References
;
11732 -----------------------------
11733 -- Replace_Type_References --
11734 -----------------------------
11736 procedure Replace_Type_References
11739 Obj_Id
: Entity_Id
)
11741 procedure Replace_Type_Ref
(N
: Node_Id
);
11742 -- Substitute a single reference of the current instance of type Typ
11743 -- with a reference to Obj_Id.
11745 ----------------------
11746 -- Replace_Type_Ref --
11747 ----------------------
11749 procedure Replace_Type_Ref
(N
: Node_Id
) is
11751 -- Decorate the reference to Typ even though it may be rewritten
11752 -- further down. This is done for two reasons:
11754 -- * ASIS has all necessary semantic information in the original
11757 -- * Routines which examine properties of the Original_Node have
11758 -- some semantic information.
11760 if Nkind
(N
) = N_Identifier
then
11761 Set_Entity
(N
, Typ
);
11762 Set_Etype
(N
, Typ
);
11764 elsif Nkind
(N
) = N_Selected_Component
then
11765 Analyze
(Prefix
(N
));
11766 Set_Entity
(Selector_Name
(N
), Typ
);
11767 Set_Etype
(Selector_Name
(N
), Typ
);
11770 -- Perform the following substitution:
11774 Rewrite
(N
, New_Occurrence_Of
(Obj_Id
, Sloc
(N
)));
11775 Set_Comes_From_Source
(N
, True);
11776 end Replace_Type_Ref
;
11778 procedure Replace_Type_Refs
is
11779 new Replace_Type_References_Generic
(Replace_Type_Ref
);
11781 -- Start of processing for Replace_Type_References
11784 Replace_Type_Refs
(Expr
, Typ
);
11785 end Replace_Type_References
;
11787 ---------------------------
11788 -- Represented_As_Scalar --
11789 ---------------------------
11791 function Represented_As_Scalar
(T
: Entity_Id
) return Boolean is
11792 UT
: constant Entity_Id
:= Underlying_Type
(T
);
11794 return Is_Scalar_Type
(UT
)
11795 or else (Is_Bit_Packed_Array
(UT
)
11796 and then Is_Scalar_Type
(Packed_Array_Impl_Type
(UT
)));
11797 end Represented_As_Scalar
;
11799 ------------------------------
11800 -- Requires_Cleanup_Actions --
11801 ------------------------------
11803 function Requires_Cleanup_Actions
11805 Lib_Level
: Boolean) return Boolean
11807 At_Lib_Level
: constant Boolean :=
11809 and then Nkind_In
(N
, N_Package_Body
,
11810 N_Package_Specification
);
11811 -- N is at the library level if the top-most context is a package and
11812 -- the path taken to reach N does not inlcude non-package constructs.
11816 when N_Accept_Statement
11817 | N_Block_Statement
11821 | N_Subprogram_Body
11825 Requires_Cleanup_Actions
11826 (Declarations
(N
), At_Lib_Level
, Nested_Constructs
=> True)
11828 (Present
(Handled_Statement_Sequence
(N
))
11830 Requires_Cleanup_Actions
11831 (Statements
(Handled_Statement_Sequence
(N
)),
11832 At_Lib_Level
, Nested_Constructs
=> True));
11834 -- Extended return statements are the same as the above, except that
11835 -- there is no Declarations field. We do not want to clean up the
11836 -- Return_Object_Declarations.
11838 when N_Extended_Return_Statement
=>
11840 Present
(Handled_Statement_Sequence
(N
))
11841 and then Requires_Cleanup_Actions
11842 (Statements
(Handled_Statement_Sequence
(N
)),
11843 At_Lib_Level
, Nested_Constructs
=> True);
11845 when N_Package_Specification
=>
11847 Requires_Cleanup_Actions
11848 (Visible_Declarations
(N
), At_Lib_Level
,
11849 Nested_Constructs
=> True)
11851 Requires_Cleanup_Actions
11852 (Private_Declarations
(N
), At_Lib_Level
,
11853 Nested_Constructs
=> True);
11856 raise Program_Error
;
11858 end Requires_Cleanup_Actions
;
11860 ------------------------------
11861 -- Requires_Cleanup_Actions --
11862 ------------------------------
11864 function Requires_Cleanup_Actions
11866 Lib_Level
: Boolean;
11867 Nested_Constructs
: Boolean) return Boolean
11871 Obj_Id
: Entity_Id
;
11872 Obj_Typ
: Entity_Id
;
11873 Pack_Id
: Entity_Id
;
11878 or else Is_Empty_List
(L
)
11884 while Present
(Decl
) loop
11886 -- Library-level tagged types
11888 if Nkind
(Decl
) = N_Full_Type_Declaration
then
11889 Typ
:= Defining_Identifier
(Decl
);
11891 -- Ignored Ghost types do not need any cleanup actions because
11892 -- they will not appear in the final tree.
11894 if Is_Ignored_Ghost_Entity
(Typ
) then
11897 elsif Is_Tagged_Type
(Typ
)
11898 and then Is_Library_Level_Entity
(Typ
)
11899 and then Convention
(Typ
) = Convention_Ada
11900 and then Present
(Access_Disp_Table
(Typ
))
11901 and then RTE_Available
(RE_Unregister_Tag
)
11902 and then not Is_Abstract_Type
(Typ
)
11903 and then not No_Run_Time_Mode
11908 -- Regular object declarations
11910 elsif Nkind
(Decl
) = N_Object_Declaration
then
11911 Obj_Id
:= Defining_Identifier
(Decl
);
11912 Obj_Typ
:= Base_Type
(Etype
(Obj_Id
));
11913 Expr
:= Expression
(Decl
);
11915 -- Bypass any form of processing for objects which have their
11916 -- finalization disabled. This applies only to objects at the
11919 if Lib_Level
and then Finalize_Storage_Only
(Obj_Typ
) then
11922 -- Finalization of transient objects are treated separately in
11923 -- order to handle sensitive cases. These include:
11925 -- * Aggregate expansion
11926 -- * If, case, and expression with actions expansion
11927 -- * Transient scopes
11929 -- If one of those contexts has marked the transient object as
11930 -- ignored, do not generate finalization actions for it.
11932 elsif Is_Finalized_Transient
(Obj_Id
)
11933 or else Is_Ignored_Transient
(Obj_Id
)
11937 -- Ignored Ghost objects do not need any cleanup actions because
11938 -- they will not appear in the final tree.
11940 elsif Is_Ignored_Ghost_Entity
(Obj_Id
) then
11943 -- The object is of the form:
11944 -- Obj : [constant] Typ [:= Expr];
11946 -- Do not process tag-to-class-wide conversions because they do
11947 -- not yield an object. Do not process the incomplete view of a
11948 -- deferred constant. Note that an object initialized by means
11949 -- of a build-in-place function call may appear as a deferred
11950 -- constant after expansion activities. These kinds of objects
11951 -- must be finalized.
11953 elsif not Is_Imported
(Obj_Id
)
11954 and then Needs_Finalization
(Obj_Typ
)
11955 and then not Is_Tag_To_Class_Wide_Conversion
(Obj_Id
)
11956 and then not (Ekind
(Obj_Id
) = E_Constant
11957 and then not Has_Completion
(Obj_Id
)
11958 and then No
(BIP_Initialization_Call
(Obj_Id
)))
11962 -- The object is of the form:
11963 -- Obj : Access_Typ := Non_BIP_Function_Call'reference;
11965 -- Obj : Access_Typ :=
11966 -- BIP_Function_Call (BIPalloc => 2, ...)'reference;
11968 elsif Is_Access_Type
(Obj_Typ
)
11969 and then Needs_Finalization
11970 (Available_View
(Designated_Type
(Obj_Typ
)))
11971 and then Present
(Expr
)
11973 (Is_Secondary_Stack_BIP_Func_Call
(Expr
)
11975 (Is_Non_BIP_Func_Call
(Expr
)
11976 and then not Is_Related_To_Func_Return
(Obj_Id
)))
11980 -- Processing for "hook" objects generated for transient objects
11981 -- declared inside an Expression_With_Actions.
11983 elsif Is_Access_Type
(Obj_Typ
)
11984 and then Present
(Status_Flag_Or_Transient_Decl
(Obj_Id
))
11985 and then Nkind
(Status_Flag_Or_Transient_Decl
(Obj_Id
)) =
11986 N_Object_Declaration
11990 -- Processing for intermediate results of if expressions where
11991 -- one of the alternatives uses a controlled function call.
11993 elsif Is_Access_Type
(Obj_Typ
)
11994 and then Present
(Status_Flag_Or_Transient_Decl
(Obj_Id
))
11995 and then Nkind
(Status_Flag_Or_Transient_Decl
(Obj_Id
)) =
11996 N_Defining_Identifier
11997 and then Present
(Expr
)
11998 and then Nkind
(Expr
) = N_Null
12002 -- Simple protected objects which use type System.Tasking.
12003 -- Protected_Objects.Protection to manage their locks should be
12004 -- treated as controlled since they require manual cleanup.
12006 elsif Ekind
(Obj_Id
) = E_Variable
12007 and then (Is_Simple_Protected_Type
(Obj_Typ
)
12008 or else Has_Simple_Protected_Object
(Obj_Typ
))
12013 -- Specific cases of object renamings
12015 elsif Nkind
(Decl
) = N_Object_Renaming_Declaration
then
12016 Obj_Id
:= Defining_Identifier
(Decl
);
12017 Obj_Typ
:= Base_Type
(Etype
(Obj_Id
));
12019 -- Bypass any form of processing for objects which have their
12020 -- finalization disabled. This applies only to objects at the
12023 if Lib_Level
and then Finalize_Storage_Only
(Obj_Typ
) then
12026 -- Ignored Ghost object renamings do not need any cleanup actions
12027 -- because they will not appear in the final tree.
12029 elsif Is_Ignored_Ghost_Entity
(Obj_Id
) then
12032 -- Return object of a build-in-place function. This case is
12033 -- recognized and marked by the expansion of an extended return
12034 -- statement (see Expand_N_Extended_Return_Statement).
12036 elsif Needs_Finalization
(Obj_Typ
)
12037 and then Is_Return_Object
(Obj_Id
)
12038 and then Present
(Status_Flag_Or_Transient_Decl
(Obj_Id
))
12042 -- Detect a case where a source object has been initialized by
12043 -- a controlled function call or another object which was later
12044 -- rewritten as a class-wide conversion of Ada.Tags.Displace.
12046 -- Obj1 : CW_Type := Src_Obj;
12047 -- Obj2 : CW_Type := Function_Call (...);
12049 -- Obj1 : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
12050 -- Tmp : ... := Function_Call (...)'reference;
12051 -- Obj2 : CW_Type renames (... Ada.Tags.Displace (Tmp));
12053 elsif Is_Displacement_Of_Object_Or_Function_Result
(Obj_Id
) then
12057 -- Inspect the freeze node of an access-to-controlled type and look
12058 -- for a delayed finalization master. This case arises when the
12059 -- freeze actions are inserted at a later time than the expansion of
12060 -- the context. Since Build_Finalizer is never called on a single
12061 -- construct twice, the master will be ultimately left out and never
12062 -- finalized. This is also needed for freeze actions of designated
12063 -- types themselves, since in some cases the finalization master is
12064 -- associated with a designated type's freeze node rather than that
12065 -- of the access type (see handling for freeze actions in
12066 -- Build_Finalization_Master).
12068 elsif Nkind
(Decl
) = N_Freeze_Entity
12069 and then Present
(Actions
(Decl
))
12071 Typ
:= Entity
(Decl
);
12073 -- Freeze nodes for ignored Ghost types do not need cleanup
12074 -- actions because they will never appear in the final tree.
12076 if Is_Ignored_Ghost_Entity
(Typ
) then
12079 elsif ((Is_Access_Type
(Typ
)
12080 and then not Is_Access_Subprogram_Type
(Typ
)
12081 and then Needs_Finalization
12082 (Available_View
(Designated_Type
(Typ
))))
12083 or else (Is_Type
(Typ
) and then Needs_Finalization
(Typ
)))
12084 and then Requires_Cleanup_Actions
12085 (Actions
(Decl
), Lib_Level
, Nested_Constructs
)
12090 -- Nested package declarations
12092 elsif Nested_Constructs
12093 and then Nkind
(Decl
) = N_Package_Declaration
12095 Pack_Id
:= Defining_Entity
(Decl
);
12097 -- Do not inspect an ignored Ghost package because all code found
12098 -- within will not appear in the final tree.
12100 if Is_Ignored_Ghost_Entity
(Pack_Id
) then
12103 elsif Ekind
(Pack_Id
) /= E_Generic_Package
12104 and then Requires_Cleanup_Actions
12105 (Specification
(Decl
), Lib_Level
)
12110 -- Nested package bodies
12112 elsif Nested_Constructs
and then Nkind
(Decl
) = N_Package_Body
then
12114 -- Do not inspect an ignored Ghost package body because all code
12115 -- found within will not appear in the final tree.
12117 if Is_Ignored_Ghost_Entity
(Defining_Entity
(Decl
)) then
12120 elsif Ekind
(Corresponding_Spec
(Decl
)) /= E_Generic_Package
12121 and then Requires_Cleanup_Actions
(Decl
, Lib_Level
)
12126 elsif Nkind
(Decl
) = N_Block_Statement
12129 -- Handle a rare case caused by a controlled transient object
12130 -- created as part of a record init proc. The variable is wrapped
12131 -- in a block, but the block is not associated with a transient
12136 -- Handle the case where the original context has been wrapped in
12137 -- a block to avoid interference between exception handlers and
12138 -- At_End handlers. Treat the block as transparent and process its
12141 or else Is_Finalization_Wrapper
(Decl
))
12143 if Requires_Cleanup_Actions
(Decl
, Lib_Level
) then
12152 end Requires_Cleanup_Actions
;
12154 ------------------------------------
12155 -- Safe_Unchecked_Type_Conversion --
12156 ------------------------------------
12158 -- Note: this function knows quite a bit about the exact requirements of
12159 -- Gigi with respect to unchecked type conversions, and its code must be
12160 -- coordinated with any changes in Gigi in this area.
12162 -- The above requirements should be documented in Sinfo ???
12164 function Safe_Unchecked_Type_Conversion
(Exp
: Node_Id
) return Boolean is
12169 Pexp
: constant Node_Id
:= Parent
(Exp
);
12172 -- If the expression is the RHS of an assignment or object declaration
12173 -- we are always OK because there will always be a target.
12175 -- Object renaming declarations, (generated for view conversions of
12176 -- actuals in inlined calls), like object declarations, provide an
12177 -- explicit type, and are safe as well.
12179 if (Nkind
(Pexp
) = N_Assignment_Statement
12180 and then Expression
(Pexp
) = Exp
)
12181 or else Nkind_In
(Pexp
, N_Object_Declaration
,
12182 N_Object_Renaming_Declaration
)
12186 -- If the expression is the prefix of an N_Selected_Component we should
12187 -- also be OK because GCC knows to look inside the conversion except if
12188 -- the type is discriminated. We assume that we are OK anyway if the
12189 -- type is not set yet or if it is controlled since we can't afford to
12190 -- introduce a temporary in this case.
12192 elsif Nkind
(Pexp
) = N_Selected_Component
12193 and then Prefix
(Pexp
) = Exp
12195 if No
(Etype
(Pexp
)) then
12199 not Has_Discriminants
(Etype
(Pexp
))
12200 or else Is_Constrained
(Etype
(Pexp
));
12204 -- Set the output type, this comes from Etype if it is set, otherwise we
12205 -- take it from the subtype mark, which we assume was already fully
12208 if Present
(Etype
(Exp
)) then
12209 Otyp
:= Etype
(Exp
);
12211 Otyp
:= Entity
(Subtype_Mark
(Exp
));
12214 -- The input type always comes from the expression, and we assume this
12215 -- is indeed always analyzed, so we can simply get the Etype.
12217 Ityp
:= Etype
(Expression
(Exp
));
12219 -- Initialize alignments to unknown so far
12224 -- Replace a concurrent type by its corresponding record type and each
12225 -- type by its underlying type and do the tests on those. The original
12226 -- type may be a private type whose completion is a concurrent type, so
12227 -- find the underlying type first.
12229 if Present
(Underlying_Type
(Otyp
)) then
12230 Otyp
:= Underlying_Type
(Otyp
);
12233 if Present
(Underlying_Type
(Ityp
)) then
12234 Ityp
:= Underlying_Type
(Ityp
);
12237 if Is_Concurrent_Type
(Otyp
) then
12238 Otyp
:= Corresponding_Record_Type
(Otyp
);
12241 if Is_Concurrent_Type
(Ityp
) then
12242 Ityp
:= Corresponding_Record_Type
(Ityp
);
12245 -- If the base types are the same, we know there is no problem since
12246 -- this conversion will be a noop.
12248 if Implementation_Base_Type
(Otyp
) = Implementation_Base_Type
(Ityp
) then
12251 -- Same if this is an upwards conversion of an untagged type, and there
12252 -- are no constraints involved (could be more general???)
12254 elsif Etype
(Ityp
) = Otyp
12255 and then not Is_Tagged_Type
(Ityp
)
12256 and then not Has_Discriminants
(Ityp
)
12257 and then No
(First_Rep_Item
(Base_Type
(Ityp
)))
12261 -- If the expression has an access type (object or subprogram) we assume
12262 -- that the conversion is safe, because the size of the target is safe,
12263 -- even if it is a record (which might be treated as having unknown size
12266 elsif Is_Access_Type
(Ityp
) then
12269 -- If the size of output type is known at compile time, there is never
12270 -- a problem. Note that unconstrained records are considered to be of
12271 -- known size, but we can't consider them that way here, because we are
12272 -- talking about the actual size of the object.
12274 -- We also make sure that in addition to the size being known, we do not
12275 -- have a case which might generate an embarrassingly large temp in
12276 -- stack checking mode.
12278 elsif Size_Known_At_Compile_Time
(Otyp
)
12280 (not Stack_Checking_Enabled
12281 or else not May_Generate_Large_Temp
(Otyp
))
12282 and then not (Is_Record_Type
(Otyp
) and then not Is_Constrained
(Otyp
))
12286 -- If either type is tagged, then we know the alignment is OK so Gigi
12287 -- will be able to use pointer punning.
12289 elsif Is_Tagged_Type
(Otyp
) or else Is_Tagged_Type
(Ityp
) then
12292 -- If either type is a limited record type, we cannot do a copy, so say
12293 -- safe since there's nothing else we can do.
12295 elsif Is_Limited_Record
(Otyp
) or else Is_Limited_Record
(Ityp
) then
12298 -- Conversions to and from packed array types are always ignored and
12301 elsif Is_Packed_Array_Impl_Type
(Otyp
)
12302 or else Is_Packed_Array_Impl_Type
(Ityp
)
12307 -- The only other cases known to be safe is if the input type's
12308 -- alignment is known to be at least the maximum alignment for the
12309 -- target or if both alignments are known and the output type's
12310 -- alignment is no stricter than the input's. We can use the component
12311 -- type alignment for an array if a type is an unpacked array type.
12313 if Present
(Alignment_Clause
(Otyp
)) then
12314 Oalign
:= Expr_Value
(Expression
(Alignment_Clause
(Otyp
)));
12316 elsif Is_Array_Type
(Otyp
)
12317 and then Present
(Alignment_Clause
(Component_Type
(Otyp
)))
12319 Oalign
:= Expr_Value
(Expression
(Alignment_Clause
12320 (Component_Type
(Otyp
))));
12323 if Present
(Alignment_Clause
(Ityp
)) then
12324 Ialign
:= Expr_Value
(Expression
(Alignment_Clause
(Ityp
)));
12326 elsif Is_Array_Type
(Ityp
)
12327 and then Present
(Alignment_Clause
(Component_Type
(Ityp
)))
12329 Ialign
:= Expr_Value
(Expression
(Alignment_Clause
12330 (Component_Type
(Ityp
))));
12333 if Ialign
/= No_Uint
and then Ialign
> Maximum_Alignment
then
12336 elsif Ialign
/= No_Uint
12337 and then Oalign
/= No_Uint
12338 and then Ialign
<= Oalign
12342 -- Otherwise, Gigi cannot handle this and we must make a temporary
12347 end Safe_Unchecked_Type_Conversion
;
12349 ---------------------------------
12350 -- Set_Current_Value_Condition --
12351 ---------------------------------
12353 -- Note: the implementation of this procedure is very closely tied to the
12354 -- implementation of Get_Current_Value_Condition. Here we set required
12355 -- Current_Value fields, and in Get_Current_Value_Condition, we interpret
12356 -- them, so they must have a consistent view.
12358 procedure Set_Current_Value_Condition
(Cnode
: Node_Id
) is
12360 procedure Set_Entity_Current_Value
(N
: Node_Id
);
12361 -- If N is an entity reference, where the entity is of an appropriate
12362 -- kind, then set the current value of this entity to Cnode, unless
12363 -- there is already a definite value set there.
12365 procedure Set_Expression_Current_Value
(N
: Node_Id
);
12366 -- If N is of an appropriate form, sets an appropriate entry in current
12367 -- value fields of relevant entities. Multiple entities can be affected
12368 -- in the case of an AND or AND THEN.
12370 ------------------------------
12371 -- Set_Entity_Current_Value --
12372 ------------------------------
12374 procedure Set_Entity_Current_Value
(N
: Node_Id
) is
12376 if Is_Entity_Name
(N
) then
12378 Ent
: constant Entity_Id
:= Entity
(N
);
12381 -- Don't capture if not safe to do so
12383 if not Safe_To_Capture_Value
(N
, Ent
, Cond
=> True) then
12387 -- Here we have a case where the Current_Value field may need
12388 -- to be set. We set it if it is not already set to a compile
12389 -- time expression value.
12391 -- Note that this represents a decision that one condition
12392 -- blots out another previous one. That's certainly right if
12393 -- they occur at the same level. If the second one is nested,
12394 -- then the decision is neither right nor wrong (it would be
12395 -- equally OK to leave the outer one in place, or take the new
12396 -- inner one. Really we should record both, but our data
12397 -- structures are not that elaborate.
12399 if Nkind
(Current_Value
(Ent
)) not in N_Subexpr
then
12400 Set_Current_Value
(Ent
, Cnode
);
12404 end Set_Entity_Current_Value
;
12406 ----------------------------------
12407 -- Set_Expression_Current_Value --
12408 ----------------------------------
12410 procedure Set_Expression_Current_Value
(N
: Node_Id
) is
12416 -- Loop to deal with (ignore for now) any NOT operators present. The
12417 -- presence of NOT operators will be handled properly when we call
12418 -- Get_Current_Value_Condition.
12420 while Nkind
(Cond
) = N_Op_Not
loop
12421 Cond
:= Right_Opnd
(Cond
);
12424 -- For an AND or AND THEN, recursively process operands
12426 if Nkind
(Cond
) = N_Op_And
or else Nkind
(Cond
) = N_And_Then
then
12427 Set_Expression_Current_Value
(Left_Opnd
(Cond
));
12428 Set_Expression_Current_Value
(Right_Opnd
(Cond
));
12432 -- Check possible relational operator
12434 if Nkind
(Cond
) in N_Op_Compare
then
12435 if Compile_Time_Known_Value
(Right_Opnd
(Cond
)) then
12436 Set_Entity_Current_Value
(Left_Opnd
(Cond
));
12437 elsif Compile_Time_Known_Value
(Left_Opnd
(Cond
)) then
12438 Set_Entity_Current_Value
(Right_Opnd
(Cond
));
12441 elsif Nkind_In
(Cond
,
12443 N_Qualified_Expression
,
12444 N_Expression_With_Actions
)
12446 Set_Expression_Current_Value
(Expression
(Cond
));
12448 -- Check possible boolean variable reference
12451 Set_Entity_Current_Value
(Cond
);
12453 end Set_Expression_Current_Value
;
12455 -- Start of processing for Set_Current_Value_Condition
12458 Set_Expression_Current_Value
(Condition
(Cnode
));
12459 end Set_Current_Value_Condition
;
12461 --------------------------
12462 -- Set_Elaboration_Flag --
12463 --------------------------
12465 procedure Set_Elaboration_Flag
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
12466 Loc
: constant Source_Ptr
:= Sloc
(N
);
12467 Ent
: constant Entity_Id
:= Elaboration_Entity
(Spec_Id
);
12471 if Present
(Ent
) then
12473 -- Nothing to do if at the compilation unit level, because in this
12474 -- case the flag is set by the binder generated elaboration routine.
12476 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
12479 -- Here we do need to generate an assignment statement
12482 Check_Restriction
(No_Elaboration_Code
, N
);
12485 Make_Assignment_Statement
(Loc
,
12486 Name
=> New_Occurrence_Of
(Ent
, Loc
),
12487 Expression
=> Make_Integer_Literal
(Loc
, Uint_1
));
12489 -- Mark the assignment statement as elaboration code. This allows
12490 -- the early call region mechanism (see Sem_Elab) to properly
12491 -- ignore such assignments even though they are non-preelaborable
12494 Set_Is_Elaboration_Code
(Asn
);
12496 if Nkind
(Parent
(N
)) = N_Subunit
then
12497 Insert_After
(Corresponding_Stub
(Parent
(N
)), Asn
);
12499 Insert_After
(N
, Asn
);
12504 -- Kill current value indication. This is necessary because the
12505 -- tests of this flag are inserted out of sequence and must not
12506 -- pick up bogus indications of the wrong constant value.
12508 Set_Current_Value
(Ent
, Empty
);
12510 -- If the subprogram is in the current declarative part and
12511 -- 'access has been applied to it, generate an elaboration
12512 -- check at the beginning of the declarations of the body.
12514 if Nkind
(N
) = N_Subprogram_Body
12515 and then Address_Taken
(Spec_Id
)
12517 Ekind_In
(Scope
(Spec_Id
), E_Block
, E_Procedure
, E_Function
)
12520 Loc
: constant Source_Ptr
:= Sloc
(N
);
12521 Decls
: constant List_Id
:= Declarations
(N
);
12525 -- No need to generate this check if first entry in the
12526 -- declaration list is a raise of Program_Error now.
12529 and then Nkind
(First
(Decls
)) = N_Raise_Program_Error
12534 -- Otherwise generate the check
12537 Make_Raise_Program_Error
(Loc
,
12540 Left_Opnd
=> New_Occurrence_Of
(Ent
, Loc
),
12541 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)),
12542 Reason
=> PE_Access_Before_Elaboration
);
12545 Set_Declarations
(N
, New_List
(Chk
));
12547 Prepend
(Chk
, Decls
);
12555 end Set_Elaboration_Flag
;
12557 ----------------------------
12558 -- Set_Renamed_Subprogram --
12559 ----------------------------
12561 procedure Set_Renamed_Subprogram
(N
: Node_Id
; E
: Entity_Id
) is
12563 -- If input node is an identifier, we can just reset it
12565 if Nkind
(N
) = N_Identifier
then
12566 Set_Chars
(N
, Chars
(E
));
12569 -- Otherwise we have to do a rewrite, preserving Comes_From_Source
12573 CS
: constant Boolean := Comes_From_Source
(N
);
12575 Rewrite
(N
, Make_Identifier
(Sloc
(N
), Chars
(E
)));
12577 Set_Comes_From_Source
(N
, CS
);
12578 Set_Analyzed
(N
, True);
12581 end Set_Renamed_Subprogram
;
12583 ----------------------
12584 -- Side_Effect_Free --
12585 ----------------------
12587 function Side_Effect_Free
12589 Name_Req
: Boolean := False;
12590 Variable_Ref
: Boolean := False) return Boolean
12592 Typ
: constant Entity_Id
:= Etype
(N
);
12593 -- Result type of the expression
12595 function Safe_Prefixed_Reference
(N
: Node_Id
) return Boolean;
12596 -- The argument N is a construct where the Prefix is dereferenced if it
12597 -- is an access type and the result is a variable. The call returns True
12598 -- if the construct is side effect free (not considering side effects in
12599 -- other than the prefix which are to be tested by the caller).
12601 function Within_In_Parameter
(N
: Node_Id
) return Boolean;
12602 -- Determines if N is a subcomponent of a composite in-parameter. If so,
12603 -- N is not side-effect free when the actual is global and modifiable
12604 -- indirectly from within a subprogram, because it may be passed by
12605 -- reference. The front-end must be conservative here and assume that
12606 -- this may happen with any array or record type. On the other hand, we
12607 -- cannot create temporaries for all expressions for which this
12608 -- condition is true, for various reasons that might require clearing up
12609 -- ??? For example, discriminant references that appear out of place, or
12610 -- spurious type errors with class-wide expressions. As a result, we
12611 -- limit the transformation to loop bounds, which is so far the only
12612 -- case that requires it.
12614 -----------------------------
12615 -- Safe_Prefixed_Reference --
12616 -----------------------------
12618 function Safe_Prefixed_Reference
(N
: Node_Id
) return Boolean is
12620 -- If prefix is not side effect free, definitely not safe
12622 if not Side_Effect_Free
(Prefix
(N
), Name_Req
, Variable_Ref
) then
12625 -- If the prefix is of an access type that is not access-to-constant,
12626 -- then this construct is a variable reference, which means it is to
12627 -- be considered to have side effects if Variable_Ref is set True.
12629 elsif Is_Access_Type
(Etype
(Prefix
(N
)))
12630 and then not Is_Access_Constant
(Etype
(Prefix
(N
)))
12631 and then Variable_Ref
12633 -- Exception is a prefix that is the result of a previous removal
12634 -- of side effects.
12636 return Is_Entity_Name
(Prefix
(N
))
12637 and then not Comes_From_Source
(Prefix
(N
))
12638 and then Ekind
(Entity
(Prefix
(N
))) = E_Constant
12639 and then Is_Internal_Name
(Chars
(Entity
(Prefix
(N
))));
12641 -- If the prefix is an explicit dereference then this construct is a
12642 -- variable reference, which means it is to be considered to have
12643 -- side effects if Variable_Ref is True.
12645 -- We do NOT exclude dereferences of access-to-constant types because
12646 -- we handle them as constant view of variables.
12648 elsif Nkind
(Prefix
(N
)) = N_Explicit_Dereference
12649 and then Variable_Ref
12653 -- Note: The following test is the simplest way of solving a complex
12654 -- problem uncovered by the following test (Side effect on loop bound
12655 -- that is a subcomponent of a global variable:
12657 -- with Text_Io; use Text_Io;
12658 -- procedure Tloop is
12661 -- V : Natural := 4;
12662 -- S : String (1..5) := (others => 'a');
12669 -- with procedure Action;
12670 -- procedure Loop_G (Arg : X; Msg : String)
12672 -- procedure Loop_G (Arg : X; Msg : String) is
12674 -- Put_Line ("begin loop_g " & Msg & " will loop till: "
12675 -- & Natural'Image (Arg.V));
12676 -- for Index in 1 .. Arg.V loop
12677 -- Text_Io.Put_Line
12678 -- (Natural'Image (Index) & " " & Arg.S (Index));
12679 -- if Index > 2 then
12683 -- Put_Line ("end loop_g " & Msg);
12686 -- procedure Loop1 is new Loop_G (Modi);
12687 -- procedure Modi is
12690 -- Loop1 (X1, "from modi");
12694 -- Loop1 (X1, "initial");
12697 -- The output of the above program should be:
12699 -- begin loop_g initial will loop till: 4
12703 -- begin loop_g from modi will loop till: 1
12705 -- end loop_g from modi
12707 -- begin loop_g from modi will loop till: 1
12709 -- end loop_g from modi
12710 -- end loop_g initial
12712 -- If a loop bound is a subcomponent of a global variable, a
12713 -- modification of that variable within the loop may incorrectly
12714 -- affect the execution of the loop.
12716 elsif Nkind
(Parent
(Parent
(N
))) = N_Loop_Parameter_Specification
12717 and then Within_In_Parameter
(Prefix
(N
))
12718 and then Variable_Ref
12722 -- All other cases are side effect free
12727 end Safe_Prefixed_Reference
;
12729 -------------------------
12730 -- Within_In_Parameter --
12731 -------------------------
12733 function Within_In_Parameter
(N
: Node_Id
) return Boolean is
12735 if not Comes_From_Source
(N
) then
12738 elsif Is_Entity_Name
(N
) then
12739 return Ekind
(Entity
(N
)) = E_In_Parameter
;
12741 elsif Nkind_In
(N
, N_Indexed_Component
, N_Selected_Component
) then
12742 return Within_In_Parameter
(Prefix
(N
));
12747 end Within_In_Parameter
;
12749 -- Start of processing for Side_Effect_Free
12752 -- If volatile reference, always consider it to have side effects
12754 if Is_Volatile_Reference
(N
) then
12758 -- Note on checks that could raise Constraint_Error. Strictly, if we
12759 -- take advantage of 11.6, these checks do not count as side effects.
12760 -- However, we would prefer to consider that they are side effects,
12761 -- since the back end CSE does not work very well on expressions which
12762 -- can raise Constraint_Error. On the other hand if we don't consider
12763 -- them to be side effect free, then we get some awkward expansions
12764 -- in -gnato mode, resulting in code insertions at a point where we
12765 -- do not have a clear model for performing the insertions.
12767 -- Special handling for entity names
12769 if Is_Entity_Name
(N
) then
12771 -- A type reference is always side effect free
12773 if Is_Type
(Entity
(N
)) then
12776 -- Variables are considered to be a side effect if Variable_Ref
12777 -- is set or if we have a volatile reference and Name_Req is off.
12778 -- If Name_Req is True then we can't help returning a name which
12779 -- effectively allows multiple references in any case.
12781 elsif Is_Variable
(N
, Use_Original_Node
=> False) then
12782 return not Variable_Ref
12783 and then (not Is_Volatile_Reference
(N
) or else Name_Req
);
12785 -- Any other entity (e.g. a subtype name) is definitely side
12792 -- A value known at compile time is always side effect free
12794 elsif Compile_Time_Known_Value
(N
) then
12797 -- A variable renaming is not side-effect free, because the renaming
12798 -- will function like a macro in the front-end in some cases, and an
12799 -- assignment can modify the component designated by N, so we need to
12800 -- create a temporary for it.
12802 -- The guard testing for Entity being present is needed at least in
12803 -- the case of rewritten predicate expressions, and may well also be
12804 -- appropriate elsewhere. Obviously we can't go testing the entity
12805 -- field if it does not exist, so it's reasonable to say that this is
12806 -- not the renaming case if it does not exist.
12808 elsif Is_Entity_Name
(Original_Node
(N
))
12809 and then Present
(Entity
(Original_Node
(N
)))
12810 and then Is_Renaming_Of_Object
(Entity
(Original_Node
(N
)))
12811 and then Ekind
(Entity
(Original_Node
(N
))) /= E_Constant
12814 RO
: constant Node_Id
:=
12815 Renamed_Object
(Entity
(Original_Node
(N
)));
12818 -- If the renamed object is an indexed component, or an
12819 -- explicit dereference, then the designated object could
12820 -- be modified by an assignment.
12822 if Nkind_In
(RO
, N_Indexed_Component
,
12823 N_Explicit_Dereference
)
12827 -- A selected component must have a safe prefix
12829 elsif Nkind
(RO
) = N_Selected_Component
then
12830 return Safe_Prefixed_Reference
(RO
);
12832 -- In all other cases, designated object cannot be changed so
12833 -- we are side effect free.
12840 -- Remove_Side_Effects generates an object renaming declaration to
12841 -- capture the expression of a class-wide expression. In VM targets
12842 -- the frontend performs no expansion for dispatching calls to
12843 -- class- wide types since they are handled by the VM. Hence, we must
12844 -- locate here if this node corresponds to a previous invocation of
12845 -- Remove_Side_Effects to avoid a never ending loop in the frontend.
12847 elsif not Tagged_Type_Expansion
12848 and then not Comes_From_Source
(N
)
12849 and then Nkind
(Parent
(N
)) = N_Object_Renaming_Declaration
12850 and then Is_Class_Wide_Type
(Typ
)
12854 -- Generating C the type conversion of an access to constrained array
12855 -- type into an access to unconstrained array type involves initializing
12856 -- a fat pointer and the expression cannot be assumed to be free of side
12857 -- effects since it must referenced several times to compute its bounds.
12859 elsif Modify_Tree_For_C
12860 and then Nkind
(N
) = N_Type_Conversion
12861 and then Is_Access_Type
(Typ
)
12862 and then Is_Array_Type
(Designated_Type
(Typ
))
12863 and then not Is_Constrained
(Designated_Type
(Typ
))
12868 -- For other than entity names and compile time known values,
12869 -- check the node kind for special processing.
12873 -- An attribute reference is side effect free if its expressions
12874 -- are side effect free and its prefix is side effect free or
12875 -- is an entity reference.
12877 -- Is this right? what about x'first where x is a variable???
12879 when N_Attribute_Reference
=>
12880 Attribute_Reference
: declare
12882 function Side_Effect_Free_Attribute
12883 (Attribute_Name
: Name_Id
) return Boolean;
12884 -- Returns True if evaluation of the given attribute is
12885 -- considered side-effect free (independent of prefix and
12888 --------------------------------
12889 -- Side_Effect_Free_Attribute --
12890 --------------------------------
12892 function Side_Effect_Free_Attribute
12893 (Attribute_Name
: Name_Id
) return Boolean
12896 case Attribute_Name
is
12903 | Name_Wide_Wide_Image
12905 -- CodePeer doesn't want to see replicated copies of
12908 return not CodePeer_Mode
;
12913 end Side_Effect_Free_Attribute
;
12915 -- Start of processing for Attribute_Reference
12919 Side_Effect_Free
(Expressions
(N
), Name_Req
, Variable_Ref
)
12920 and then Side_Effect_Free_Attribute
(Attribute_Name
(N
))
12921 and then (Is_Entity_Name
(Prefix
(N
))
12922 or else Side_Effect_Free
12923 (Prefix
(N
), Name_Req
, Variable_Ref
));
12924 end Attribute_Reference
;
12926 -- A binary operator is side effect free if and both operands are
12927 -- side effect free. For this purpose binary operators include
12928 -- membership tests and short circuit forms.
12931 | N_Membership_Test
12934 return Side_Effect_Free
(Left_Opnd
(N
), Name_Req
, Variable_Ref
)
12936 Side_Effect_Free
(Right_Opnd
(N
), Name_Req
, Variable_Ref
);
12938 -- An explicit dereference is side effect free only if it is
12939 -- a side effect free prefixed reference.
12941 when N_Explicit_Dereference
=>
12942 return Safe_Prefixed_Reference
(N
);
12944 -- An expression with action is side effect free if its expression
12945 -- is side effect free and it has no actions.
12947 when N_Expression_With_Actions
=>
12949 Is_Empty_List
(Actions
(N
))
12950 and then Side_Effect_Free
12951 (Expression
(N
), Name_Req
, Variable_Ref
);
12953 -- A call to _rep_to_pos is side effect free, since we generate
12954 -- this pure function call ourselves. Moreover it is critically
12955 -- important to make this exception, since otherwise we can have
12956 -- discriminants in array components which don't look side effect
12957 -- free in the case of an array whose index type is an enumeration
12958 -- type with an enumeration rep clause.
12960 -- All other function calls are not side effect free
12962 when N_Function_Call
=>
12964 Nkind
(Name
(N
)) = N_Identifier
12965 and then Is_TSS
(Name
(N
), TSS_Rep_To_Pos
)
12966 and then Side_Effect_Free
12967 (First
(Parameter_Associations
(N
)),
12968 Name_Req
, Variable_Ref
);
12970 -- An IF expression is side effect free if it's of a scalar type, and
12971 -- all its components are all side effect free (conditions and then
12972 -- actions and else actions). We restrict to scalar types, since it
12973 -- is annoying to deal with things like (if A then B else C)'First
12974 -- where the type involved is a string type.
12976 when N_If_Expression
=>
12978 Is_Scalar_Type
(Typ
)
12979 and then Side_Effect_Free
12980 (Expressions
(N
), Name_Req
, Variable_Ref
);
12982 -- An indexed component is side effect free if it is a side
12983 -- effect free prefixed reference and all the indexing
12984 -- expressions are side effect free.
12986 when N_Indexed_Component
=>
12988 Side_Effect_Free
(Expressions
(N
), Name_Req
, Variable_Ref
)
12989 and then Safe_Prefixed_Reference
(N
);
12991 -- A type qualification, type conversion, or unchecked expression is
12992 -- side effect free if the expression is side effect free.
12994 when N_Qualified_Expression
12995 | N_Type_Conversion
12996 | N_Unchecked_Expression
12998 return Side_Effect_Free
(Expression
(N
), Name_Req
, Variable_Ref
);
13000 -- A selected component is side effect free only if it is a side
13001 -- effect free prefixed reference.
13003 when N_Selected_Component
=>
13004 return Safe_Prefixed_Reference
(N
);
13006 -- A range is side effect free if the bounds are side effect free
13009 return Side_Effect_Free
(Low_Bound
(N
), Name_Req
, Variable_Ref
)
13011 Side_Effect_Free
(High_Bound
(N
), Name_Req
, Variable_Ref
);
13013 -- A slice is side effect free if it is a side effect free
13014 -- prefixed reference and the bounds are side effect free.
13018 Side_Effect_Free
(Discrete_Range
(N
), Name_Req
, Variable_Ref
)
13019 and then Safe_Prefixed_Reference
(N
);
13021 -- A unary operator is side effect free if the operand
13022 -- is side effect free.
13025 return Side_Effect_Free
(Right_Opnd
(N
), Name_Req
, Variable_Ref
);
13027 -- An unchecked type conversion is side effect free only if it
13028 -- is safe and its argument is side effect free.
13030 when N_Unchecked_Type_Conversion
=>
13032 Safe_Unchecked_Type_Conversion
(N
)
13033 and then Side_Effect_Free
13034 (Expression
(N
), Name_Req
, Variable_Ref
);
13036 -- A literal is side effect free
13038 when N_Character_Literal
13039 | N_Integer_Literal
13045 -- We consider that anything else has side effects. This is a bit
13046 -- crude, but we are pretty close for most common cases, and we
13047 -- are certainly correct (i.e. we never return True when the
13048 -- answer should be False).
13053 end Side_Effect_Free
;
13055 -- A list is side effect free if all elements of the list are side
13058 function Side_Effect_Free
13060 Name_Req
: Boolean := False;
13061 Variable_Ref
: Boolean := False) return Boolean
13066 if L
= No_List
or else L
= Error_List
then
13071 while Present
(N
) loop
13072 if not Side_Effect_Free
(N
, Name_Req
, Variable_Ref
) then
13081 end Side_Effect_Free
;
13083 ----------------------------------
13084 -- Silly_Boolean_Array_Not_Test --
13085 ----------------------------------
13087 -- This procedure implements an odd and silly test. We explicitly check
13088 -- for the case where the 'First of the component type is equal to the
13089 -- 'Last of this component type, and if this is the case, we make sure
13090 -- that constraint error is raised. The reason is that the NOT is bound
13091 -- to cause CE in this case, and we will not otherwise catch it.
13093 -- No such check is required for AND and OR, since for both these cases
13094 -- False op False = False, and True op True = True. For the XOR case,
13095 -- see Silly_Boolean_Array_Xor_Test.
13097 -- Believe it or not, this was reported as a bug. Note that nearly always,
13098 -- the test will evaluate statically to False, so the code will be
13099 -- statically removed, and no extra overhead caused.
13101 procedure Silly_Boolean_Array_Not_Test
(N
: Node_Id
; T
: Entity_Id
) is
13102 Loc
: constant Source_Ptr
:= Sloc
(N
);
13103 CT
: constant Entity_Id
:= Component_Type
(T
);
13106 -- The check we install is
13108 -- constraint_error when
13109 -- component_type'first = component_type'last
13110 -- and then array_type'Length /= 0)
13112 -- We need the last guard because we don't want to raise CE for empty
13113 -- arrays since no out of range values result. (Empty arrays with a
13114 -- component type of True .. True -- very useful -- even the ACATS
13115 -- does not test that marginal case).
13118 Make_Raise_Constraint_Error
(Loc
,
13120 Make_And_Then
(Loc
,
13124 Make_Attribute_Reference
(Loc
,
13125 Prefix
=> New_Occurrence_Of
(CT
, Loc
),
13126 Attribute_Name
=> Name_First
),
13129 Make_Attribute_Reference
(Loc
,
13130 Prefix
=> New_Occurrence_Of
(CT
, Loc
),
13131 Attribute_Name
=> Name_Last
)),
13133 Right_Opnd
=> Make_Non_Empty_Check
(Loc
, Right_Opnd
(N
))),
13134 Reason
=> CE_Range_Check_Failed
));
13135 end Silly_Boolean_Array_Not_Test
;
13137 ----------------------------------
13138 -- Silly_Boolean_Array_Xor_Test --
13139 ----------------------------------
13141 -- This procedure implements an odd and silly test. We explicitly check
13142 -- for the XOR case where the component type is True .. True, since this
13143 -- will raise constraint error. A special check is required since CE
13144 -- will not be generated otherwise (cf Expand_Packed_Not).
13146 -- No such check is required for AND and OR, since for both these cases
13147 -- False op False = False, and True op True = True, and no check is
13148 -- required for the case of False .. False, since False xor False = False.
13149 -- See also Silly_Boolean_Array_Not_Test
13151 procedure Silly_Boolean_Array_Xor_Test
(N
: Node_Id
; T
: Entity_Id
) is
13152 Loc
: constant Source_Ptr
:= Sloc
(N
);
13153 CT
: constant Entity_Id
:= Component_Type
(T
);
13156 -- The check we install is
13158 -- constraint_error when
13159 -- Boolean (component_type'First)
13160 -- and then Boolean (component_type'Last)
13161 -- and then array_type'Length /= 0)
13163 -- We need the last guard because we don't want to raise CE for empty
13164 -- arrays since no out of range values result (Empty arrays with a
13165 -- component type of True .. True -- very useful -- even the ACATS
13166 -- does not test that marginal case).
13169 Make_Raise_Constraint_Error
(Loc
,
13171 Make_And_Then
(Loc
,
13173 Make_And_Then
(Loc
,
13175 Convert_To
(Standard_Boolean
,
13176 Make_Attribute_Reference
(Loc
,
13177 Prefix
=> New_Occurrence_Of
(CT
, Loc
),
13178 Attribute_Name
=> Name_First
)),
13181 Convert_To
(Standard_Boolean
,
13182 Make_Attribute_Reference
(Loc
,
13183 Prefix
=> New_Occurrence_Of
(CT
, Loc
),
13184 Attribute_Name
=> Name_Last
))),
13186 Right_Opnd
=> Make_Non_Empty_Check
(Loc
, Right_Opnd
(N
))),
13187 Reason
=> CE_Range_Check_Failed
));
13188 end Silly_Boolean_Array_Xor_Test
;
13190 --------------------------
13191 -- Target_Has_Fixed_Ops --
13192 --------------------------
13194 Integer_Sized_Small
: Ureal
;
13195 -- Set to 2.0 ** -(Integer'Size - 1) the first time that this function is
13196 -- called (we don't want to compute it more than once).
13198 Long_Integer_Sized_Small
: Ureal
;
13199 -- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this function
13200 -- is called (we don't want to compute it more than once)
13202 First_Time_For_THFO
: Boolean := True;
13203 -- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
13205 function Target_Has_Fixed_Ops
13206 (Left_Typ
: Entity_Id
;
13207 Right_Typ
: Entity_Id
;
13208 Result_Typ
: Entity_Id
) return Boolean
13210 function Is_Fractional_Type
(Typ
: Entity_Id
) return Boolean;
13211 -- Return True if the given type is a fixed-point type with a small
13212 -- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
13213 -- an absolute value less than 1.0. This is currently limited to
13214 -- fixed-point types that map to Integer or Long_Integer.
13216 ------------------------
13217 -- Is_Fractional_Type --
13218 ------------------------
13220 function Is_Fractional_Type
(Typ
: Entity_Id
) return Boolean is
13222 if Esize
(Typ
) = Standard_Integer_Size
then
13223 return Small_Value
(Typ
) = Integer_Sized_Small
;
13225 elsif Esize
(Typ
) = Standard_Long_Integer_Size
then
13226 return Small_Value
(Typ
) = Long_Integer_Sized_Small
;
13231 end Is_Fractional_Type
;
13233 -- Start of processing for Target_Has_Fixed_Ops
13236 -- Return False if Fractional_Fixed_Ops_On_Target is false
13238 if not Fractional_Fixed_Ops_On_Target
then
13242 -- Here the target has Fractional_Fixed_Ops, if first time, compute
13243 -- standard constants used by Is_Fractional_Type.
13245 if First_Time_For_THFO
then
13246 First_Time_For_THFO
:= False;
13248 Integer_Sized_Small
:=
13251 Den
=> UI_From_Int
(Standard_Integer_Size
- 1),
13254 Long_Integer_Sized_Small
:=
13257 Den
=> UI_From_Int
(Standard_Long_Integer_Size
- 1),
13261 -- Return True if target supports fixed-by-fixed multiply/divide for
13262 -- fractional fixed-point types (see Is_Fractional_Type) and the operand
13263 -- and result types are equivalent fractional types.
13265 return Is_Fractional_Type
(Base_Type
(Left_Typ
))
13266 and then Is_Fractional_Type
(Base_Type
(Right_Typ
))
13267 and then Is_Fractional_Type
(Base_Type
(Result_Typ
))
13268 and then Esize
(Left_Typ
) = Esize
(Right_Typ
)
13269 and then Esize
(Left_Typ
) = Esize
(Result_Typ
);
13270 end Target_Has_Fixed_Ops
;
13272 -------------------
13273 -- Type_Map_Hash --
13274 -------------------
13276 function Type_Map_Hash
(Id
: Entity_Id
) return Type_Map_Header
is
13278 return Type_Map_Header
(Id
mod Type_Map_Size
);
13281 ------------------------------------------
13282 -- Type_May_Have_Bit_Aligned_Components --
13283 ------------------------------------------
13285 function Type_May_Have_Bit_Aligned_Components
13286 (Typ
: Entity_Id
) return Boolean
13289 -- Array type, check component type
13291 if Is_Array_Type
(Typ
) then
13293 Type_May_Have_Bit_Aligned_Components
(Component_Type
(Typ
));
13295 -- Record type, check components
13297 elsif Is_Record_Type
(Typ
) then
13302 E
:= First_Component_Or_Discriminant
(Typ
);
13303 while Present
(E
) loop
13304 if Component_May_Be_Bit_Aligned
(E
)
13305 or else Type_May_Have_Bit_Aligned_Components
(Etype
(E
))
13310 Next_Component_Or_Discriminant
(E
);
13316 -- Type other than array or record is always OK
13321 end Type_May_Have_Bit_Aligned_Components
;
13323 -------------------------------
13324 -- Update_Primitives_Mapping --
13325 -------------------------------
13327 procedure Update_Primitives_Mapping
13328 (Inher_Id
: Entity_Id
;
13329 Subp_Id
: Entity_Id
)
13333 (Parent_Type
=> Find_Dispatching_Type
(Inher_Id
),
13334 Derived_Type
=> Find_Dispatching_Type
(Subp_Id
));
13335 end Update_Primitives_Mapping
;
13337 ----------------------------------
13338 -- Within_Case_Or_If_Expression --
13339 ----------------------------------
13341 function Within_Case_Or_If_Expression
(N
: Node_Id
) return Boolean is
13345 -- Locate an enclosing case or if expression. Note that these constructs
13346 -- can be expanded into Expression_With_Actions, hence the test of the
13350 while Present
(Par
) loop
13351 if Nkind_In
(Original_Node
(Par
), N_Case_Expression
,
13356 -- Prevent the search from going too far
13358 elsif Is_Body_Or_Package_Declaration
(Par
) then
13362 Par
:= Parent
(Par
);
13366 end Within_Case_Or_If_Expression
;
13368 --------------------------------
13369 -- Within_Internal_Subprogram --
13370 --------------------------------
13372 function Within_Internal_Subprogram
return Boolean is
13376 S
:= Current_Scope
;
13377 while Present
(S
) and then not Is_Subprogram
(S
) loop
13382 and then Get_TSS_Name
(S
) /= TSS_Null
13383 and then not Is_Predicate_Function
(S
)
13384 and then not Is_Predicate_Function_M
(S
);
13385 end Within_Internal_Subprogram
;