mips.c (mips_file_start): Add ".previous" directives to both ".section"s.
[official-gcc.git] / gcc / config / mips / mips.h
blobd38bba8a63df8fa1b2bd644c1fba866c5f2eda88
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5 Contributed by A. Lichnewsky (lich@inria.inria.fr).
6 Changed by Michael Meissner (meissner@osf.org).
7 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
8 Brendan Eich (brendan@microunity.com).
10 This file is part of GCC.
12 GCC is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
17 GCC is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
27 #include "config/vxworks-dummy.h"
29 /* MIPS external variables defined in mips.c. */
31 /* Which processor to schedule for. Since there is no difference between
32 a R2000 and R3000 in terms of the scheduler, we collapse them into
33 just an R3000. The elements of the enumeration must match exactly
34 the cpu attribute in the mips.md machine description. */
36 enum processor_type {
37 PROCESSOR_R3000,
38 PROCESSOR_4KC,
39 PROCESSOR_4KP,
40 PROCESSOR_5KC,
41 PROCESSOR_5KF,
42 PROCESSOR_20KC,
43 PROCESSOR_24KC,
44 PROCESSOR_24KF2_1,
45 PROCESSOR_24KF1_1,
46 PROCESSOR_74KC,
47 PROCESSOR_74KF2_1,
48 PROCESSOR_74KF1_1,
49 PROCESSOR_74KF3_2,
50 PROCESSOR_M4K,
51 PROCESSOR_R3900,
52 PROCESSOR_R6000,
53 PROCESSOR_R4000,
54 PROCESSOR_R4100,
55 PROCESSOR_R4111,
56 PROCESSOR_R4120,
57 PROCESSOR_R4130,
58 PROCESSOR_R4300,
59 PROCESSOR_R4600,
60 PROCESSOR_R4650,
61 PROCESSOR_R5000,
62 PROCESSOR_R5400,
63 PROCESSOR_R5500,
64 PROCESSOR_R7000,
65 PROCESSOR_R8000,
66 PROCESSOR_R9000,
67 PROCESSOR_SB1,
68 PROCESSOR_SB1A,
69 PROCESSOR_SR71000,
70 PROCESSOR_MAX
73 /* Costs of various operations on the different architectures. */
75 struct mips_rtx_cost_data
77 unsigned short fp_add;
78 unsigned short fp_mult_sf;
79 unsigned short fp_mult_df;
80 unsigned short fp_div_sf;
81 unsigned short fp_div_df;
82 unsigned short int_mult_si;
83 unsigned short int_mult_di;
84 unsigned short int_div_si;
85 unsigned short int_div_di;
86 unsigned short branch_cost;
87 unsigned short memory_latency;
90 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
91 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
92 to work on a 64-bit machine. */
94 #define ABI_32 0
95 #define ABI_N32 1
96 #define ABI_64 2
97 #define ABI_EABI 3
98 #define ABI_O64 4
100 /* Information about one recognized processor. Defined here for the
101 benefit of TARGET_CPU_CPP_BUILTINS. */
102 struct mips_cpu_info {
103 /* The 'canonical' name of the processor as far as GCC is concerned.
104 It's typically a manufacturer's prefix followed by a numerical
105 designation. It should be lowercase. */
106 const char *name;
108 /* The internal processor number that most closely matches this
109 entry. Several processors can have the same value, if there's no
110 difference between them from GCC's point of view. */
111 enum processor_type cpu;
113 /* The ISA level that the processor implements. */
114 int isa;
117 /* Enumerates the setting of the -mcode-readable option. */
118 enum mips_code_readable_setting {
119 CODE_READABLE_NO,
120 CODE_READABLE_PCREL,
121 CODE_READABLE_YES
125 /* Enumerates the setting of the -mllsc option. */
126 enum mips_llsc_setting {
127 LLSC_DEFAULT,
128 LLSC_NO,
129 LLSC_YES
132 #ifndef USED_FOR_TARGET
133 extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
134 extern const char *current_function_file; /* filename current function is in */
135 extern int num_source_filenames; /* current .file # */
136 extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
137 extern int sym_lineno; /* sgi next label # for each stmt */
138 extern int set_noreorder; /* # of nested .set noreorder's */
139 extern int set_nomacro; /* # of nested .set nomacro's */
140 extern int set_noat; /* # of nested .set noat's */
141 extern int set_volatile; /* # of nested .set volatile's */
142 extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
143 extern int mips_dbx_regno[];
144 extern int mips_dwarf_regno[];
145 extern bool mips_split_p[];
146 extern GTY(()) rtx cmp_operands[2];
147 extern enum processor_type mips_arch; /* which cpu to codegen for */
148 extern enum processor_type mips_tune; /* which cpu to schedule for */
149 extern int mips_isa; /* architectural level */
150 extern int mips_abi; /* which ABI to use */
151 extern const struct mips_cpu_info mips_cpu_info_table[];
152 extern const struct mips_cpu_info *mips_arch_info;
153 extern const struct mips_cpu_info *mips_tune_info;
154 extern const struct mips_rtx_cost_data *mips_cost;
155 extern enum mips_code_readable_setting mips_code_readable;
156 extern enum mips_llsc_setting mips_llsc;
157 #endif
159 /* Macros to silence warnings about numbers being signed in traditional
160 C and unsigned in ISO C when compiled on 32-bit hosts. */
162 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
163 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
164 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
167 /* Run-time compilation parameters selecting different hardware subsets. */
169 /* True if we are generating position-independent VxWorks RTP code. */
170 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
172 /* True if the call patterns should be split into a jalr followed by
173 an instruction to restore $gp. It is only safe to split the load
174 from the call when every use of $gp is explicit. */
176 #define TARGET_SPLIT_CALLS \
177 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP)
179 /* True if we're generating a form of -mabicalls in which we can use
180 operators like %hi and %lo to refer to locally-binding symbols.
181 We can only do this for -mno-shared, and only then if we can use
182 relocation operations instead of assembly macros. It isn't really
183 worth using absolute sequences for 64-bit symbols because GOT
184 accesses are so much shorter. */
186 #define TARGET_ABSOLUTE_ABICALLS \
187 (TARGET_ABICALLS \
188 && !TARGET_SHARED \
189 && TARGET_EXPLICIT_RELOCS \
190 && !ABI_HAS_64BIT_SYMBOLS)
192 /* True if we can optimize sibling calls. For simplicity, we only
193 handle cases in which call_insn_operand will reject invalid
194 sibcall addresses. There are two cases in which this isn't true:
196 - TARGET_MIPS16. call_insn_operand accepts constant addresses
197 but there is no direct jump instruction. It isn't worth
198 using sibling calls in this case anyway; they would usually
199 be longer than normal calls.
201 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
202 accepts global constants, but all sibcalls must be indirect. */
203 #define TARGET_SIBCALLS \
204 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
206 /* True if we need to use a global offset table to access some symbols. */
207 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
209 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
210 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
212 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
213 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
215 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
216 This is true for both the PIC and non-PIC VxWorks RTP modes. */
217 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
219 /* True if .gpword or .gpdword should be used for switch tables.
221 Although GAS does understand .gpdword, the SGI linker mishandles
222 the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
223 We therefore disable GP-relative switch tables for n64 on IRIX targets. */
224 #define TARGET_GPWORD (TARGET_ABICALLS && !(mips_abi == ABI_64 && TARGET_IRIX))
226 /* Generate mips16 code */
227 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
228 /* Generate mips16e code. Default 16bit ASE for mips32/mips32r2/mips64 */
229 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
230 /* Generate mips16e register save/restore sequences. */
231 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
233 /* True if we're generating a form of MIPS16 code in which general
234 text loads are allowed. */
235 #define TARGET_MIPS16_TEXT_LOADS \
236 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
238 /* True if we're generating a form of MIPS16 code in which PC-relative
239 loads are allowed. */
240 #define TARGET_MIPS16_PCREL_LOADS \
241 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
243 /* Generic ISA defines. */
244 #define ISA_MIPS1 (mips_isa == 1)
245 #define ISA_MIPS2 (mips_isa == 2)
246 #define ISA_MIPS3 (mips_isa == 3)
247 #define ISA_MIPS4 (mips_isa == 4)
248 #define ISA_MIPS32 (mips_isa == 32)
249 #define ISA_MIPS32R2 (mips_isa == 33)
250 #define ISA_MIPS64 (mips_isa == 64)
252 /* Architecture target defines. */
253 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
254 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
255 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
256 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
257 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
258 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
259 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
260 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
261 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
262 || mips_arch == PROCESSOR_SB1A)
263 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
265 /* Scheduling target defines. */
266 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
267 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
268 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
269 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
270 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
271 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
272 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
273 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
274 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
275 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
276 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
277 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
278 || mips_tune == PROCESSOR_SB1A)
279 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
280 || mips_tune == PROCESSOR_24KF2_1 \
281 || mips_tune == PROCESSOR_24KF1_1)
282 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
283 || mips_tune == PROCESSOR_74KF2_1 \
284 || mips_tune == PROCESSOR_74KF1_1 \
285 || mips_tune == PROCESSOR_74KF3_2)
286 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
288 /* True if the pre-reload scheduler should try to create chains of
289 multiply-add or multiply-subtract instructions. For example,
290 suppose we have:
292 t1 = a * b
293 t2 = t1 + c * d
294 t3 = e * f
295 t4 = t3 - g * h
297 t1 will have a higher priority than t2 and t3 will have a higher
298 priority than t4. However, before reload, there is no dependence
299 between t1 and t3, and they can often have similar priorities.
300 The scheduler will then tend to prefer:
302 t1 = a * b
303 t3 = e * f
304 t2 = t1 + c * d
305 t4 = t3 - g * h
307 which stops us from making full use of macc/madd-style instructions.
308 This sort of situation occurs frequently in Fourier transforms and
309 in unrolled loops.
311 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
312 queue so that chained multiply-add and multiply-subtract instructions
313 appear ahead of any other instruction that is likely to clobber lo.
314 In the example above, if t2 and t3 become ready at the same time,
315 the code ensures that t2 is scheduled first.
317 Multiply-accumulate instructions are a bigger win for some targets
318 than others, so this macro is defined on an opt-in basis. */
319 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
320 || TUNE_MIPS4120 \
321 || TUNE_MIPS4130 \
322 || TUNE_24K)
324 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
325 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
327 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
328 directly accessible, while the command-line options select
329 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
330 in use. */
331 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
332 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
334 /* IRIX specific stuff. */
335 #define TARGET_IRIX 0
336 #define TARGET_IRIX6 0
338 /* Define preprocessor macros for the -march and -mtune options.
339 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
340 processor. If INFO's canonical name is "foo", define PREFIX to
341 be "foo", and define an additional macro PREFIX_FOO. */
342 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
343 do \
345 char *macro, *p; \
347 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
348 for (p = macro; *p != 0; p++) \
349 *p = TOUPPER (*p); \
351 builtin_define (macro); \
352 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
353 free (macro); \
355 while (0)
357 /* Target CPU builtins. */
358 #define TARGET_CPU_CPP_BUILTINS() \
359 do \
361 /* Everyone but IRIX defines this to mips. */ \
362 if (!TARGET_IRIX) \
363 builtin_assert ("machine=mips"); \
365 builtin_assert ("cpu=mips"); \
366 builtin_define ("__mips__"); \
367 builtin_define ("_mips"); \
369 /* We do this here because __mips is defined below and so we \
370 can't use builtin_define_std. We don't ever want to define \
371 "mips" for VxWorks because some of the VxWorks headers \
372 construct include filenames from a root directory macro, \
373 an architecture macro and a filename, where the architecture \
374 macro expands to 'mips'. If we define 'mips' to 1, the \
375 architecture macro expands to 1 as well. */ \
376 if (!flag_iso && !TARGET_VXWORKS) \
377 builtin_define ("mips"); \
379 if (TARGET_64BIT) \
380 builtin_define ("__mips64"); \
382 if (!TARGET_IRIX) \
384 /* Treat _R3000 and _R4000 like register-size \
385 defines, which is how they've historically \
386 been used. */ \
387 if (TARGET_64BIT) \
389 builtin_define_std ("R4000"); \
390 builtin_define ("_R4000"); \
392 else \
394 builtin_define_std ("R3000"); \
395 builtin_define ("_R3000"); \
398 if (TARGET_FLOAT64) \
399 builtin_define ("__mips_fpr=64"); \
400 else \
401 builtin_define ("__mips_fpr=32"); \
403 if (TARGET_MIPS16) \
404 builtin_define ("__mips16"); \
406 if (TARGET_MIPS3D) \
407 builtin_define ("__mips3d"); \
409 if (TARGET_SMARTMIPS) \
410 builtin_define ("__mips_smartmips"); \
412 if (TARGET_DSP) \
414 builtin_define ("__mips_dsp"); \
415 if (TARGET_DSPR2) \
417 builtin_define ("__mips_dspr2"); \
418 builtin_define ("__mips_dsp_rev=2"); \
420 else \
421 builtin_define ("__mips_dsp_rev=1"); \
424 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
425 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
427 if (ISA_MIPS1) \
429 builtin_define ("__mips=1"); \
430 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
432 else if (ISA_MIPS2) \
434 builtin_define ("__mips=2"); \
435 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
437 else if (ISA_MIPS3) \
439 builtin_define ("__mips=3"); \
440 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
442 else if (ISA_MIPS4) \
444 builtin_define ("__mips=4"); \
445 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
447 else if (ISA_MIPS32) \
449 builtin_define ("__mips=32"); \
450 builtin_define ("__mips_isa_rev=1"); \
451 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
453 else if (ISA_MIPS32R2) \
455 builtin_define ("__mips=32"); \
456 builtin_define ("__mips_isa_rev=2"); \
457 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
459 else if (ISA_MIPS64) \
461 builtin_define ("__mips=64"); \
462 builtin_define ("__mips_isa_rev=1"); \
463 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
466 switch (mips_abi) \
468 case ABI_32: \
469 builtin_define ("_ABIO32=1"); \
470 builtin_define ("_MIPS_SIM=_ABIO32"); \
471 break; \
473 case ABI_N32: \
474 builtin_define ("_ABIN32=2"); \
475 builtin_define ("_MIPS_SIM=_ABIN32"); \
476 break; \
478 case ABI_64: \
479 builtin_define ("_ABI64=3"); \
480 builtin_define ("_MIPS_SIM=_ABI64"); \
481 break; \
483 case ABI_O64: \
484 builtin_define ("_ABIO64=4"); \
485 builtin_define ("_MIPS_SIM=_ABIO64"); \
486 break; \
489 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
490 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
491 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
492 builtin_define_with_int_value ("_MIPS_FPSET", \
493 32 / MAX_FPRS_PER_FMT); \
495 /* These defines reflect the ABI in use, not whether the \
496 FPU is directly accessible. */ \
497 if (TARGET_HARD_FLOAT_ABI) \
498 builtin_define ("__mips_hard_float"); \
499 else \
500 builtin_define ("__mips_soft_float"); \
502 if (TARGET_SINGLE_FLOAT) \
503 builtin_define ("__mips_single_float"); \
505 if (TARGET_PAIRED_SINGLE_FLOAT) \
506 builtin_define ("__mips_paired_single_float"); \
508 if (TARGET_BIG_ENDIAN) \
510 builtin_define_std ("MIPSEB"); \
511 builtin_define ("_MIPSEB"); \
513 else \
515 builtin_define_std ("MIPSEL"); \
516 builtin_define ("_MIPSEL"); \
519 /* Macros dependent on the C dialect. */ \
520 if (preprocessing_asm_p ()) \
522 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
523 builtin_define ("_LANGUAGE_ASSEMBLY"); \
525 else if (c_dialect_cxx ()) \
527 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
528 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
529 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
531 else \
533 builtin_define_std ("LANGUAGE_C"); \
534 builtin_define ("_LANGUAGE_C"); \
536 if (c_dialect_objc ()) \
538 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
539 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
540 /* Bizarre, but needed at least for Irix. */ \
541 builtin_define_std ("LANGUAGE_C"); \
542 builtin_define ("_LANGUAGE_C"); \
545 if (mips_abi == ABI_EABI) \
546 builtin_define ("__mips_eabi"); \
548 while (0)
550 /* Default target_flags if no switches are specified */
552 #ifndef TARGET_DEFAULT
553 #define TARGET_DEFAULT 0
554 #endif
556 #ifndef TARGET_CPU_DEFAULT
557 #define TARGET_CPU_DEFAULT 0
558 #endif
560 #ifndef TARGET_ENDIAN_DEFAULT
561 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
562 #endif
564 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
565 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
566 #endif
568 /* 'from-abi' makes a good default: you get whatever the ABI requires. */
569 #ifndef MIPS_ISA_DEFAULT
570 #ifndef MIPS_CPU_STRING_DEFAULT
571 #define MIPS_CPU_STRING_DEFAULT "from-abi"
572 #endif
573 #endif
575 #ifdef IN_LIBGCC2
576 #undef TARGET_64BIT
577 /* Make this compile time constant for libgcc2 */
578 #ifdef __mips64
579 #define TARGET_64BIT 1
580 #else
581 #define TARGET_64BIT 0
582 #endif
583 #endif /* IN_LIBGCC2 */
585 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
586 when compiled with hardware floating point. This is because MIPS16
587 code cannot save and restore the floating-point registers, which is
588 important if in a mixed MIPS16/non-MIPS16 environment. */
590 #ifdef IN_LIBGCC2
591 #if __mips_hard_float
592 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
593 #endif
594 #endif /* IN_LIBGCC2 */
596 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
598 #ifndef MULTILIB_ENDIAN_DEFAULT
599 #if TARGET_ENDIAN_DEFAULT == 0
600 #define MULTILIB_ENDIAN_DEFAULT "EL"
601 #else
602 #define MULTILIB_ENDIAN_DEFAULT "EB"
603 #endif
604 #endif
606 #ifndef MULTILIB_ISA_DEFAULT
607 # if MIPS_ISA_DEFAULT == 1
608 # define MULTILIB_ISA_DEFAULT "mips1"
609 # else
610 # if MIPS_ISA_DEFAULT == 2
611 # define MULTILIB_ISA_DEFAULT "mips2"
612 # else
613 # if MIPS_ISA_DEFAULT == 3
614 # define MULTILIB_ISA_DEFAULT "mips3"
615 # else
616 # if MIPS_ISA_DEFAULT == 4
617 # define MULTILIB_ISA_DEFAULT "mips4"
618 # else
619 # if MIPS_ISA_DEFAULT == 32
620 # define MULTILIB_ISA_DEFAULT "mips32"
621 # else
622 # if MIPS_ISA_DEFAULT == 33
623 # define MULTILIB_ISA_DEFAULT "mips32r2"
624 # else
625 # if MIPS_ISA_DEFAULT == 64
626 # define MULTILIB_ISA_DEFAULT "mips64"
627 # else
628 # define MULTILIB_ISA_DEFAULT "mips1"
629 # endif
630 # endif
631 # endif
632 # endif
633 # endif
634 # endif
635 # endif
636 #endif
638 #ifndef MULTILIB_DEFAULTS
639 #define MULTILIB_DEFAULTS \
640 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
641 #endif
643 /* We must pass -EL to the linker by default for little endian embedded
644 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
645 linker will default to using big-endian output files. The OUTPUT_FORMAT
646 line must be in the linker script, otherwise -EB/-EL will not work. */
648 #ifndef ENDIAN_SPEC
649 #if TARGET_ENDIAN_DEFAULT == 0
650 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
651 #else
652 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
653 #endif
654 #endif
656 /* A spec condition that matches all non-mips16 -mips arguments. */
658 #define MIPS_ISA_LEVEL_OPTION_SPEC \
659 "mips1|mips2|mips3|mips4|mips32*|mips64*"
661 /* A spec condition that matches all non-mips16 architecture arguments. */
663 #define MIPS_ARCH_OPTION_SPEC \
664 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
666 /* A spec that infers a -mips argument from an -march argument,
667 or injects the default if no architecture is specified. */
669 #define MIPS_ISA_LEVEL_SPEC \
670 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
671 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
672 %{march=mips2|march=r6000:-mips2} \
673 %{march=mips3|march=r4*|march=vr4*|march=orion:-mips3} \
674 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000:-mips4} \
675 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
676 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
677 |march=34k*|march=74k*: -mips32r2} \
678 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000: -mips64} \
679 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
681 /* A spec that infers a -mhard-float or -msoft-float setting from an
682 -march argument. Note that soft-float and hard-float code are not
683 link-compatible. */
685 #define MIPS_ARCH_FLOAT_SPEC \
686 "%{mhard-float|msoft-float|march=mips*:; \
687 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
688 |march=34kc|march=74kc|march=5kc: -msoft-float; \
689 march=*: -mhard-float}"
691 /* A spec condition that matches 32-bit options. It only works if
692 MIPS_ISA_LEVEL_SPEC has been applied. */
694 #define MIPS_32BIT_OPTION_SPEC \
695 "mips1|mips2|mips32*|mgp32"
697 /* Support for a compile-time default CPU, et cetera. The rules are:
698 --with-arch is ignored if -march is specified or a -mips is specified
699 (other than -mips16).
700 --with-tune is ignored if -mtune is specified.
701 --with-abi is ignored if -mabi is specified.
702 --with-float is ignored if -mhard-float or -msoft-float are
703 specified.
704 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
705 specified. */
706 #define OPTION_DEFAULT_SPECS \
707 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
708 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
709 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
710 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
711 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
712 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }
715 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
716 && ISA_HAS_COND_TRAP)
718 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY \
719 && !TARGET_SR71K \
720 && !TARGET_MIPS16)
722 /* True if the ABI can only work with 64-bit integer registers. We
723 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
724 otherwise floating-point registers must also be 64-bit. */
725 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
727 /* Likewise for 32-bit regs. */
728 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
730 /* True if symbols are 64 bits wide. At present, n64 is the only
731 ABI for which this is true. */
732 #define ABI_HAS_64BIT_SYMBOLS (mips_abi == ABI_64 && !TARGET_SYM32)
734 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
735 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
736 || ISA_MIPS4 \
737 || ISA_MIPS64)
739 /* ISA has branch likely instructions (e.g. mips2). */
740 /* Disable branchlikely for tx39 until compare rewrite. They haven't
741 been generated up to this point. */
742 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
744 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
745 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
746 || TARGET_MIPS5400 \
747 || TARGET_MIPS5500 \
748 || TARGET_MIPS7000 \
749 || TARGET_MIPS9000 \
750 || TARGET_MAD \
751 || ISA_MIPS32 \
752 || ISA_MIPS32R2 \
753 || ISA_MIPS64) \
754 && !TARGET_MIPS16)
756 /* ISA has the conditional move instructions introduced in mips4. */
757 #define ISA_HAS_CONDMOVE ((ISA_MIPS4 \
758 || ISA_MIPS32 \
759 || ISA_MIPS32R2 \
760 || ISA_MIPS64) \
761 && !TARGET_MIPS5500 \
762 && !TARGET_MIPS16)
764 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
765 branch on CC, and move (both FP and non-FP) on CC. */
766 #define ISA_HAS_8CC (ISA_MIPS4 \
767 || ISA_MIPS32 \
768 || ISA_MIPS32R2 \
769 || ISA_MIPS64)
771 /* This is a catch all for other mips4 instructions: indexed load, the
772 FP madd and msub instructions, and the FP recip and recip sqrt
773 instructions. */
774 #define ISA_HAS_FP4 ((ISA_MIPS4 \
775 || (ISA_MIPS32R2 && TARGET_FLOAT64) \
776 || ISA_MIPS64) \
777 && !TARGET_MIPS16)
779 /* ISA has conditional trap instructions. */
780 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
781 && !TARGET_MIPS16)
783 /* ISA has integer multiply-accumulate instructions, madd and msub. */
784 #define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
785 || ISA_MIPS32R2 \
786 || ISA_MIPS64) \
787 && !TARGET_MIPS16)
789 /* Integer multiply-accumulate instructions should be generated. */
790 #define GENERATE_MADD_MSUB (ISA_HAS_MADD_MSUB && !TUNE_74K)
792 /* ISA has floating-point nmadd and nmsub instructions. */
793 #define ISA_HAS_NMADD_NMSUB ((ISA_MIPS4 \
794 || ISA_MIPS64) \
795 && (!TARGET_MIPS5400 || TARGET_MAD) \
796 && !TARGET_MIPS16)
798 /* ISA has count leading zeroes/ones instruction (not implemented). */
799 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
800 || ISA_MIPS32R2 \
801 || ISA_MIPS64) \
802 && !TARGET_MIPS16)
804 /* ISA has three operand multiply instructions that put
805 the high part in an accumulator: mulhi or mulhiu. */
806 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
807 || TARGET_MIPS5500 \
808 || TARGET_SR71K) \
809 && !TARGET_MIPS16)
811 /* ISA has three operand multiply instructions that
812 negates the result and puts the result in an accumulator. */
813 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
814 || TARGET_MIPS5500 \
815 || TARGET_SR71K) \
816 && !TARGET_MIPS16)
818 /* ISA has three operand multiply instructions that subtracts the
819 result from a 4th operand and puts the result in an accumulator. */
820 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
821 || TARGET_MIPS5500 \
822 || TARGET_SR71K) \
823 && !TARGET_MIPS16)
825 /* ISA has three operand multiply instructions that the result
826 from a 4th operand and puts the result in an accumulator. */
827 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
828 || TARGET_MIPS4130 \
829 || TARGET_MIPS5400 \
830 || TARGET_MIPS5500 \
831 || TARGET_SR71K) \
832 && !TARGET_MIPS16)
834 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
835 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
836 || TARGET_MIPS4130) \
837 && !TARGET_MIPS16)
839 /* ISA has the "ror" (rotate right) instructions. */
840 #define ISA_HAS_ROR ((ISA_MIPS32R2 \
841 || TARGET_MIPS5400 \
842 || TARGET_MIPS5500 \
843 || TARGET_SR71K \
844 || TARGET_SMARTMIPS) \
845 && !TARGET_MIPS16)
847 /* ISA has data prefetch instructions. This controls use of 'pref'. */
848 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
849 || ISA_MIPS32 \
850 || ISA_MIPS32R2 \
851 || ISA_MIPS64) \
852 && !TARGET_MIPS16)
854 /* ISA has data indexed prefetch instructions. This controls use of
855 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
856 (prefx is a cop1x instruction, so can only be used if FP is
857 enabled.) */
858 #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
859 || ISA_MIPS32R2 \
860 || ISA_MIPS64) \
861 && !TARGET_MIPS16)
863 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
864 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
865 also requires TARGET_DOUBLE_FLOAT. */
866 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
868 /* ISA includes the MIPS32r2 seb and seh instructions. */
869 #define ISA_HAS_SEB_SEH (ISA_MIPS32R2 \
870 && !TARGET_MIPS16)
872 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
873 #define ISA_HAS_EXT_INS (ISA_MIPS32R2 \
874 && !TARGET_MIPS16)
876 /* ISA has instructions for accessing top part of 64-bit fp regs. */
877 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 && ISA_MIPS32R2)
879 /* ISA has lwxs instruction (load w/scaled index address. */
880 #define ISA_HAS_LWXS (TARGET_SMARTMIPS && !TARGET_MIPS16)
882 /* True if the result of a load is not available to the next instruction.
883 A nop will then be needed between instructions like "lw $4,..."
884 and "addiu $4,$4,1". */
885 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
886 && !TARGET_MIPS3900 \
887 && !TARGET_MIPS16)
889 /* Likewise mtc1 and mfc1. */
890 #define ISA_HAS_XFER_DELAY (mips_isa <= 3)
892 /* Likewise floating-point comparisons. */
893 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3)
895 /* True if mflo and mfhi can be immediately followed by instructions
896 which write to the HI and LO registers.
898 According to MIPS specifications, MIPS ISAs I, II, and III need
899 (at least) two instructions between the reads of HI/LO and
900 instructions which write them, and later ISAs do not. Contradicting
901 the MIPS specifications, some MIPS IV processor user manuals (e.g.
902 the UM for the NEC Vr5000) document needing the instructions between
903 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
904 MIPS64 and later ISAs to have the interlocks, plus any specific
905 earlier-ISA CPUs for which CPU documentation declares that the
906 instructions are really interlocked. */
907 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
908 || ISA_MIPS32R2 \
909 || ISA_MIPS64 \
910 || TARGET_MIPS5500)
912 /* ISA includes synci, jr.hb and jalr.hb. */
913 #define ISA_HAS_SYNCI (ISA_MIPS32R2 && !TARGET_MIPS16)
915 /* ISA includes sync. */
916 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
917 #define GENERATE_SYNC (mips_llsc == LLSC_YES \
918 || (mips_llsc == LLSC_DEFAULT && ISA_HAS_SYNC))
920 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
921 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
922 instructions. */
923 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS16)
924 #define GENERATE_LL_SC (mips_llsc == LLSC_YES \
925 || (mips_llsc == LLSC_DEFAULT && ISA_HAS_LL_SC))
927 /* Add -G xx support. */
929 #undef SWITCH_TAKES_ARG
930 #define SWITCH_TAKES_ARG(CHAR) \
931 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
933 #define OVERRIDE_OPTIONS override_options ()
935 #define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
937 /* Show we can debug even without a frame pointer. */
938 #define CAN_DEBUG_WITHOUT_FP
940 /* Tell collect what flags to pass to nm. */
941 #ifndef NM_FLAGS
942 #define NM_FLAGS "-Bn"
943 #endif
946 #ifndef MIPS_ABI_DEFAULT
947 #define MIPS_ABI_DEFAULT ABI_32
948 #endif
950 /* Use the most portable ABI flag for the ASM specs. */
952 #if MIPS_ABI_DEFAULT == ABI_32
953 #define MULTILIB_ABI_DEFAULT "mabi=32"
954 #endif
956 #if MIPS_ABI_DEFAULT == ABI_O64
957 #define MULTILIB_ABI_DEFAULT "mabi=o64"
958 #endif
960 #if MIPS_ABI_DEFAULT == ABI_N32
961 #define MULTILIB_ABI_DEFAULT "mabi=n32"
962 #endif
964 #if MIPS_ABI_DEFAULT == ABI_64
965 #define MULTILIB_ABI_DEFAULT "mabi=64"
966 #endif
968 #if MIPS_ABI_DEFAULT == ABI_EABI
969 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
970 #endif
972 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
973 to the assembler. It may be overridden by subtargets. */
974 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
975 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
976 %{noasmopt:-O0} \
977 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
978 #endif
980 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
981 the assembler. It may be overridden by subtargets.
983 Beginning with gas 2.13, -mdebug must be passed to correctly handle
984 COFF debugging info. */
986 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
987 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
988 %{g} %{g0} %{g1} %{g2} %{g3} \
989 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
990 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
991 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
992 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
993 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
994 #endif
996 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
997 overridden by subtargets. */
999 #ifndef SUBTARGET_ASM_SPEC
1000 #define SUBTARGET_ASM_SPEC ""
1001 #endif
1003 #undef ASM_SPEC
1004 #define ASM_SPEC "\
1005 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1006 %{mips32} %{mips32r2} %{mips64} \
1007 %{mips16} %{mno-mips16:-no-mips16} \
1008 %{mips3d} %{mno-mips3d:-no-mips3d} \
1009 %{mdmx} %{mno-mdmx:-no-mdmx} \
1010 %{mdsp} %{mno-dsp} \
1011 %{mdspr2} %{mno-dspr2} \
1012 %{msmartmips} %{mno-smartmips} \
1013 %{mmt} %{mno-mt} \
1014 %{mfix-vr4120} %{mfix-vr4130} \
1015 %(subtarget_asm_optimizing_spec) \
1016 %(subtarget_asm_debugging_spec) \
1017 %{mabi=*} %{!mabi*: %(asm_abi_default_spec)} \
1018 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1019 %{mfp32} %{mfp64} \
1020 %{mshared} %{mno-shared} \
1021 %{msym32} %{mno-sym32} \
1022 %{mtune=*} %{v} \
1023 %(subtarget_asm_spec)"
1025 /* Extra switches sometimes passed to the linker. */
1026 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
1027 will interpret it as a -b option. */
1029 #ifndef LINK_SPEC
1030 #define LINK_SPEC "\
1031 %(endian_spec) \
1032 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips32r2} %{mips64} \
1033 %{bestGnum} %{shared} %{non_shared}"
1034 #endif /* LINK_SPEC defined */
1037 /* Specs for the compiler proper */
1039 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1040 overridden by subtargets. */
1041 #ifndef SUBTARGET_CC1_SPEC
1042 #define SUBTARGET_CC1_SPEC ""
1043 #endif
1045 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1047 #undef CC1_SPEC
1048 #define CC1_SPEC "\
1049 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
1050 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1051 %{save-temps: } \
1052 %(subtarget_cc1_spec)"
1054 /* Preprocessor specs. */
1056 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1057 overridden by subtargets. */
1058 #ifndef SUBTARGET_CPP_SPEC
1059 #define SUBTARGET_CPP_SPEC ""
1060 #endif
1062 #define CPP_SPEC "%(subtarget_cpp_spec)"
1064 /* This macro defines names of additional specifications to put in the specs
1065 that can be used in various specifications like CC1_SPEC. Its definition
1066 is an initializer with a subgrouping for each command option.
1068 Each subgrouping contains a string constant, that defines the
1069 specification name, and a string constant that used by the GCC driver
1070 program.
1072 Do not define this macro if it does not need to do anything. */
1074 #define EXTRA_SPECS \
1075 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1076 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1077 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
1078 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1079 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1080 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1081 { "endian_spec", ENDIAN_SPEC }, \
1082 SUBTARGET_EXTRA_SPECS
1084 #ifndef SUBTARGET_EXTRA_SPECS
1085 #define SUBTARGET_EXTRA_SPECS
1086 #endif
1088 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1089 #define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
1090 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1092 #ifndef PREFERRED_DEBUGGING_TYPE
1093 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1094 #endif
1096 #define DWARF2_ADDR_SIZE (ABI_HAS_64BIT_SYMBOLS ? 8 : 4)
1098 /* By default, turn on GDB extensions. */
1099 #define DEFAULT_GDB_EXTENSIONS 1
1101 /* Local compiler-generated symbols must have a prefix that the assembler
1102 understands. By default, this is $, although some targets (e.g.,
1103 NetBSD-ELF) need to override this. */
1105 #ifndef LOCAL_LABEL_PREFIX
1106 #define LOCAL_LABEL_PREFIX "$"
1107 #endif
1109 /* By default on the mips, external symbols do not have an underscore
1110 prepended, but some targets (e.g., NetBSD) require this. */
1112 #ifndef USER_LABEL_PREFIX
1113 #define USER_LABEL_PREFIX ""
1114 #endif
1116 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1117 since the length can run past this up to a continuation point. */
1118 #undef DBX_CONTIN_LENGTH
1119 #define DBX_CONTIN_LENGTH 1500
1121 /* How to renumber registers for dbx and gdb. */
1122 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1124 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1125 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1127 /* The DWARF 2 CFA column which tracks the return address. */
1128 #define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
1130 /* Before the prologue, RA lives in r31. */
1131 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
1133 /* Describe how we implement __builtin_eh_return. */
1134 #define EH_RETURN_DATA_REGNO(N) \
1135 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1137 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1139 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1140 The default for this in 64-bit mode is 8, which causes problems with
1141 SFmode register saves. */
1142 #define DWARF_CIE_DATA_ALIGNMENT -4
1144 /* Correct the offset of automatic variables and arguments. Note that
1145 the MIPS debug format wants all automatic variables and arguments
1146 to be in terms of the virtual frame pointer (stack pointer before
1147 any adjustment in the function), while the MIPS 3.0 linker wants
1148 the frame pointer to be the stack pointer after the initial
1149 adjustment. */
1151 #define DEBUGGER_AUTO_OFFSET(X) \
1152 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1153 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1154 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1156 /* Target machine storage layout */
1158 #define BITS_BIG_ENDIAN 0
1159 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1160 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1162 /* Define this to set the endianness to use in libgcc2.c, which can
1163 not depend on target_flags. */
1164 #if !defined(MIPSEL) && !defined(__MIPSEL__)
1165 #define LIBGCC2_WORDS_BIG_ENDIAN 1
1166 #else
1167 #define LIBGCC2_WORDS_BIG_ENDIAN 0
1168 #endif
1170 #define MAX_BITS_PER_WORD 64
1172 /* Width of a word, in units (bytes). */
1173 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1174 #ifndef IN_LIBGCC2
1175 #define MIN_UNITS_PER_WORD 4
1176 #endif
1178 /* For MIPS, width of a floating point register. */
1179 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1181 /* The number of consecutive floating-point registers needed to store the
1182 largest format supported by the FPU. */
1183 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1185 /* The number of consecutive floating-point registers needed to store the
1186 smallest format supported by the FPU. */
1187 #define MIN_FPRS_PER_FMT \
1188 (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 ? 1 : MAX_FPRS_PER_FMT)
1190 /* The largest size of value that can be held in floating-point
1191 registers and moved with a single instruction. */
1192 #define UNITS_PER_HWFPVALUE \
1193 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1195 /* The largest size of value that can be held in floating-point
1196 registers. */
1197 #define UNITS_PER_FPVALUE \
1198 (TARGET_SOFT_FLOAT_ABI ? 0 \
1199 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1200 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1202 /* The number of bytes in a double. */
1203 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1205 #define UNITS_PER_SIMD_WORD (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
1207 /* Set the sizes of the core types. */
1208 #define SHORT_TYPE_SIZE 16
1209 #define INT_TYPE_SIZE 32
1210 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1211 #define LONG_LONG_TYPE_SIZE 64
1213 #define FLOAT_TYPE_SIZE 32
1214 #define DOUBLE_TYPE_SIZE 64
1215 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1217 /* Define the sizes of fixed-point types. */
1218 #define SHORT_FRACT_TYPE_SIZE 8
1219 #define FRACT_TYPE_SIZE 16
1220 #define LONG_FRACT_TYPE_SIZE 32
1221 #define LONG_LONG_FRACT_TYPE_SIZE 64
1223 #define SHORT_ACCUM_TYPE_SIZE 16
1224 #define ACCUM_TYPE_SIZE 32
1225 #define LONG_ACCUM_TYPE_SIZE 64
1226 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1227 doesn't support 128-bit integers for MIPS32 currently. */
1228 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1230 /* long double is not a fixed mode, but the idea is that, if we
1231 support long double, we also want a 128-bit integer type. */
1232 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1234 #ifdef IN_LIBGCC2
1235 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1236 || (defined _ABI64 && _MIPS_SIM == _ABI64)
1237 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1238 # else
1239 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1240 # endif
1241 #endif
1243 /* Width in bits of a pointer. */
1244 #ifndef POINTER_SIZE
1245 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1246 #endif
1248 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1249 #define PARM_BOUNDARY BITS_PER_WORD
1251 /* Allocation boundary (in *bits*) for the code of a function. */
1252 #define FUNCTION_BOUNDARY 32
1254 /* Alignment of field after `int : 0' in a structure. */
1255 #define EMPTY_FIELD_BOUNDARY 32
1257 /* Every structure's size must be a multiple of this. */
1258 /* 8 is observed right on a DECstation and on riscos 4.02. */
1259 #define STRUCTURE_SIZE_BOUNDARY 8
1261 /* There is no point aligning anything to a rounder boundary than this. */
1262 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1264 /* All accesses must be aligned. */
1265 #define STRICT_ALIGNMENT 1
1267 /* Define this if you wish to imitate the way many other C compilers
1268 handle alignment of bitfields and the structures that contain
1269 them.
1271 The behavior is that the type written for a bit-field (`int',
1272 `short', or other integer type) imposes an alignment for the
1273 entire structure, as if the structure really did contain an
1274 ordinary field of that type. In addition, the bit-field is placed
1275 within the structure so that it would fit within such a field,
1276 not crossing a boundary for it.
1278 Thus, on most machines, a bit-field whose type is written as `int'
1279 would not cross a four-byte boundary, and would force four-byte
1280 alignment for the whole structure. (The alignment used may not
1281 be four bytes; it is controlled by the other alignment
1282 parameters.)
1284 If the macro is defined, its definition should be a C expression;
1285 a nonzero value for the expression enables this behavior. */
1287 #define PCC_BITFIELD_TYPE_MATTERS 1
1289 /* If defined, a C expression to compute the alignment given to a
1290 constant that is being placed in memory. CONSTANT is the constant
1291 and ALIGN is the alignment that the object would ordinarily have.
1292 The value of this macro is used instead of that alignment to align
1293 the object.
1295 If this macro is not defined, then ALIGN is used.
1297 The typical use of this macro is to increase alignment for string
1298 constants to be word aligned so that `strcpy' calls that copy
1299 constants can be done inline. */
1301 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1302 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1303 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1305 /* If defined, a C expression to compute the alignment for a static
1306 variable. TYPE is the data type, and ALIGN is the alignment that
1307 the object would ordinarily have. The value of this macro is used
1308 instead of that alignment to align the object.
1310 If this macro is not defined, then ALIGN is used.
1312 One use of this macro is to increase alignment of medium-size
1313 data to make it all fit in fewer cache lines. Another is to
1314 cause character arrays to be word-aligned so that `strcpy' calls
1315 that copy constants to character arrays can be done inline. */
1317 #undef DATA_ALIGNMENT
1318 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1319 ((((ALIGN) < BITS_PER_WORD) \
1320 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1321 || TREE_CODE (TYPE) == UNION_TYPE \
1322 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1325 #define PAD_VARARGS_DOWN \
1326 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1328 /* Define if operations between registers always perform the operation
1329 on the full register even if a narrower mode is specified. */
1330 #define WORD_REGISTER_OPERATIONS
1332 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1333 moves. All other references are zero extended. */
1334 #define LOAD_EXTEND_OP(MODE) \
1335 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1336 ? SIGN_EXTEND : ZERO_EXTEND)
1338 /* Define this macro if it is advisable to hold scalars in registers
1339 in a wider mode than that declared by the program. In such cases,
1340 the value is constrained to be within the bounds of the declared
1341 type, but kept valid in the wider mode. The signedness of the
1342 extension may differ from that of the type. */
1344 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1345 if (GET_MODE_CLASS (MODE) == MODE_INT \
1346 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1348 if ((MODE) == SImode) \
1349 (UNSIGNEDP) = 0; \
1350 (MODE) = Pmode; \
1353 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1354 Extensions of pointers to word_mode must be signed. */
1355 #define POINTERS_EXTEND_UNSIGNED false
1357 /* Define if loading short immediate values into registers sign extends. */
1358 #define SHORT_IMMEDIATES_SIGN_EXTEND
1360 /* The [d]clz instructions have the natural values at 0. */
1362 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1363 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1365 /* Standard register usage. */
1367 /* Number of hardware registers. We have:
1369 - 32 integer registers
1370 - 32 floating point registers
1371 - 8 condition code registers
1372 - 2 accumulator registers (hi and lo)
1373 - 32 registers each for coprocessors 0, 2 and 3
1374 - 3 fake registers:
1375 - ARG_POINTER_REGNUM
1376 - FRAME_POINTER_REGNUM
1377 - FAKE_CALL_REGNO (see the comment above load_callsi for details)
1378 - 3 dummy entries that were used at various times in the past.
1379 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1380 - 6 DSP control registers */
1382 #define FIRST_PSEUDO_REGISTER 188
1384 /* By default, fix the kernel registers ($26 and $27), the global
1385 pointer ($28) and the stack pointer ($29). This can change
1386 depending on the command-line options.
1388 Regarding coprocessor registers: without evidence to the contrary,
1389 it's best to assume that each coprocessor register has a unique
1390 use. This can be overridden, in, e.g., override_options() or
1391 CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1392 for a particular target. */
1394 #define FIXED_REGISTERS \
1396 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1397 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1398 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1399 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1400 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1401 /* COP0 registers */ \
1402 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1403 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1404 /* COP2 registers */ \
1405 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1406 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1407 /* COP3 registers */ \
1408 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1409 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1410 /* 6 DSP accumulator registers & 6 control registers */ \
1411 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1415 /* Set up this array for o32 by default.
1417 Note that we don't mark $31 as a call-clobbered register. The idea is
1418 that it's really the call instructions themselves which clobber $31.
1419 We don't care what the called function does with it afterwards.
1421 This approach makes it easier to implement sibcalls. Unlike normal
1422 calls, sibcalls don't clobber $31, so the register reaches the
1423 called function in tact. EPILOGUE_USES says that $31 is useful
1424 to the called function. */
1426 #define CALL_USED_REGISTERS \
1428 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1429 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1430 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1431 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1432 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1433 /* COP0 registers */ \
1434 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1435 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1436 /* COP2 registers */ \
1437 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1438 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1439 /* COP3 registers */ \
1440 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1441 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1442 /* 6 DSP accumulator registers & 6 control registers */ \
1443 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1447 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1449 #define CALL_REALLY_USED_REGISTERS \
1450 { /* General registers. */ \
1451 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1452 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1453 /* Floating-point registers. */ \
1454 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1455 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1456 /* Others. */ \
1457 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1458 /* COP0 registers */ \
1459 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1460 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1461 /* COP2 registers */ \
1462 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1463 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1464 /* COP3 registers */ \
1465 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1466 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1467 /* 6 DSP accumulator registers & 6 control registers */ \
1468 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1471 /* Internal macros to classify a register number as to whether it's a
1472 general purpose register, a floating point register, a
1473 multiply/divide register, or a status register. */
1475 #define GP_REG_FIRST 0
1476 #define GP_REG_LAST 31
1477 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1478 #define GP_DBX_FIRST 0
1480 #define FP_REG_FIRST 32
1481 #define FP_REG_LAST 63
1482 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1483 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1485 #define MD_REG_FIRST 64
1486 #define MD_REG_LAST 65
1487 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1488 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1490 /* The DWARF 2 CFA column which tracks the return address from a
1491 signal handler context. This means that to maintain backwards
1492 compatibility, no hard register can be assigned this column if it
1493 would need to be handled by the DWARF unwinder. */
1494 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1496 #define ST_REG_FIRST 67
1497 #define ST_REG_LAST 74
1498 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1501 /* FIXME: renumber. */
1502 #define COP0_REG_FIRST 80
1503 #define COP0_REG_LAST 111
1504 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1506 #define COP2_REG_FIRST 112
1507 #define COP2_REG_LAST 143
1508 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1510 #define COP3_REG_FIRST 144
1511 #define COP3_REG_LAST 175
1512 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1513 /* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1514 #define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1516 #define DSP_ACC_REG_FIRST 176
1517 #define DSP_ACC_REG_LAST 181
1518 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1520 #define AT_REGNUM (GP_REG_FIRST + 1)
1521 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1522 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1524 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1525 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1526 should be used instead. */
1527 #define FPSW_REGNUM ST_REG_FIRST
1529 #define GP_REG_P(REGNO) \
1530 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1531 #define M16_REG_P(REGNO) \
1532 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1533 #define FP_REG_P(REGNO) \
1534 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1535 #define MD_REG_P(REGNO) \
1536 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1537 #define ST_REG_P(REGNO) \
1538 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1539 #define COP0_REG_P(REGNO) \
1540 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1541 #define COP2_REG_P(REGNO) \
1542 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1543 #define COP3_REG_P(REGNO) \
1544 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1545 #define ALL_COP_REG_P(REGNO) \
1546 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1547 /* Test if REGNO is one of the 6 new DSP accumulators. */
1548 #define DSP_ACC_REG_P(REGNO) \
1549 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1550 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1551 #define ACC_REG_P(REGNO) \
1552 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1554 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1556 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1557 to initialize the mips16 gp pseudo register. */
1558 #define CONST_GP_P(X) \
1559 (GET_CODE (X) == CONST \
1560 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1561 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1563 /* Return coprocessor number from register number. */
1565 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1566 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1567 : COP3_REG_P (REGNO) ? '3' : '?')
1570 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1572 /* To make the code simpler, HARD_REGNO_MODE_OK just references an
1573 array built in override_options. Because machmodes.h is not yet
1574 included before this file is processed, the MODE bound can't be
1575 expressed here. */
1577 extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1579 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1580 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1582 /* Value is 1 if it is a good idea to tie two pseudo registers
1583 when one has mode MODE1 and one has mode MODE2.
1584 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1585 for any hard reg, then this must be 0 for correct output. */
1586 #define MODES_TIEABLE_P(MODE1, MODE2) \
1587 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1588 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1589 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1590 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1592 /* Register to use for pushing function arguments. */
1593 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1595 /* These two registers don't really exist: they get eliminated to either
1596 the stack or hard frame pointer. */
1597 #define ARG_POINTER_REGNUM 77
1598 #define FRAME_POINTER_REGNUM 78
1600 /* $30 is not available on the mips16, so we use $17 as the frame
1601 pointer. */
1602 #define HARD_FRAME_POINTER_REGNUM \
1603 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1605 /* Value should be nonzero if functions must have frame pointers.
1606 Zero means the frame pointer need not be set up (and parms
1607 may be accessed via the stack pointer) in functions that seem suitable.
1608 This is computed in `reload', in reload1.c. */
1609 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1611 /* Register in which static-chain is passed to a function. */
1612 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1614 /* Registers used as temporaries in prologue/epilogue code. If we're
1615 generating mips16 code, these registers must come from the core set
1616 of 8. The prologue register mustn't conflict with any incoming
1617 arguments, the static chain pointer, or the frame pointer. The
1618 epilogue temporary mustn't conflict with the return registers, the
1619 frame pointer, the EH stack adjustment, or the EH data registers. */
1621 #define MIPS_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 3)
1622 #define MIPS_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1624 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1625 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1627 /* Define this macro if it is as good or better to call a constant
1628 function address than to call an address kept in a register. */
1629 #define NO_FUNCTION_CSE 1
1631 /* The ABI-defined global pointer. Sometimes we use a different
1632 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1633 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1635 /* We normally use $28 as the global pointer. However, when generating
1636 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1637 register instead. They can then avoid saving and restoring $28
1638 and perhaps avoid using a frame at all.
1640 When a leaf function uses something other than $28, mips_expand_prologue
1641 will modify pic_offset_table_rtx in place. Take the register number
1642 from there after reload. */
1643 #define PIC_OFFSET_TABLE_REGNUM \
1644 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1646 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1648 /* Define the classes of registers for register constraints in the
1649 machine description. Also define ranges of constants.
1651 One of the classes must always be named ALL_REGS and include all hard regs.
1652 If there is more than one class, another class must be named NO_REGS
1653 and contain no registers.
1655 The name GENERAL_REGS must be the name of a class (or an alias for
1656 another name such as ALL_REGS). This is the class of registers
1657 that is allowed by "g" or "r" in a register constraint.
1658 Also, registers outside this class are allocated only when
1659 instructions express preferences for them.
1661 The classes must be numbered in nondecreasing order; that is,
1662 a larger-numbered class must never be contained completely
1663 in a smaller-numbered class.
1665 For any two classes, it is very desirable that there be another
1666 class that represents their union. */
1668 enum reg_class
1670 NO_REGS, /* no registers in set */
1671 M16_NA_REGS, /* mips16 regs not used to pass args */
1672 M16_REGS, /* mips16 directly accessible registers */
1673 T_REG, /* mips16 T register ($24) */
1674 M16_T_REGS, /* mips16 registers plus T register */
1675 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1676 V1_REG, /* Register $v1 ($3) used for TLS access. */
1677 LEA_REGS, /* Every GPR except $25 */
1678 GR_REGS, /* integer registers */
1679 FP_REGS, /* floating point registers */
1680 MD0_REG, /* first multiply/divide register */
1681 MD1_REG, /* second multiply/divide register */
1682 MD_REGS, /* multiply/divide registers (hi/lo) */
1683 COP0_REGS, /* generic coprocessor classes */
1684 COP2_REGS,
1685 COP3_REGS,
1686 HI_AND_GR_REGS, /* union classes */
1687 LO_AND_GR_REGS,
1688 HI_AND_FP_REGS,
1689 COP0_AND_GR_REGS,
1690 COP2_AND_GR_REGS,
1691 COP3_AND_GR_REGS,
1692 ALL_COP_REGS,
1693 ALL_COP_AND_GR_REGS,
1694 ST_REGS, /* status registers (fp status) */
1695 DSP_ACC_REGS, /* DSP accumulator registers */
1696 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1697 ALL_REGS, /* all registers */
1698 LIM_REG_CLASSES /* max value + 1 */
1701 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1703 #define GENERAL_REGS GR_REGS
1705 /* An initializer containing the names of the register classes as C
1706 string constants. These names are used in writing some of the
1707 debugging dumps. */
1709 #define REG_CLASS_NAMES \
1711 "NO_REGS", \
1712 "M16_NA_REGS", \
1713 "M16_REGS", \
1714 "T_REG", \
1715 "M16_T_REGS", \
1716 "PIC_FN_ADDR_REG", \
1717 "V1_REG", \
1718 "LEA_REGS", \
1719 "GR_REGS", \
1720 "FP_REGS", \
1721 "MD0_REG", \
1722 "MD1_REG", \
1723 "MD_REGS", \
1724 /* coprocessor registers */ \
1725 "COP0_REGS", \
1726 "COP2_REGS", \
1727 "COP3_REGS", \
1728 "HI_AND_GR_REGS", \
1729 "LO_AND_GR_REGS", \
1730 "HI_AND_FP_REGS", \
1731 "COP0_AND_GR_REGS", \
1732 "COP2_AND_GR_REGS", \
1733 "COP3_AND_GR_REGS", \
1734 "ALL_COP_REGS", \
1735 "ALL_COP_AND_GR_REGS", \
1736 "ST_REGS", \
1737 "DSP_ACC_REGS", \
1738 "ACC_REGS", \
1739 "ALL_REGS" \
1742 /* An initializer containing the contents of the register classes,
1743 as integers which are bit masks. The Nth integer specifies the
1744 contents of class N. The way the integer MASK is interpreted is
1745 that register R is in the class if `MASK & (1 << R)' is 1.
1747 When the machine has more than 32 registers, an integer does not
1748 suffice. Then the integers are replaced by sub-initializers,
1749 braced groupings containing several integers. Each
1750 sub-initializer must be suitable as an initializer for the type
1751 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1753 #define REG_CLASS_CONTENTS \
1755 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
1756 { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
1757 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 registers */ \
1758 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
1759 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
1760 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SVR4 PIC function address register */ \
1761 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* only $v1 */ \
1762 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* Every other GPR except $25 */ \
1763 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* integer registers */ \
1764 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* floating registers*/ \
1765 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* hi register */ \
1766 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* lo register */ \
1767 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* mul/div registers */ \
1768 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* cop0 registers */ \
1769 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* cop2 registers */ \
1770 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* cop3 registers */ \
1771 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* union classes */ \
1772 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, \
1773 { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, \
1774 { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, \
1775 { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, \
1776 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, \
1777 { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
1778 { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
1779 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* status registers */ \
1780 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* dsp accumulator registers */ \
1781 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* hi/lo and dsp accumulator registers */ \
1782 { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* all registers */ \
1786 /* A C expression whose value is a register class containing hard
1787 register REGNO. In general there is more that one such class;
1788 choose a class which is "minimal", meaning that no smaller class
1789 also contains the register. */
1791 extern const enum reg_class mips_regno_to_class[];
1793 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1795 /* A macro whose definition is the name of the class to which a
1796 valid base register must belong. A base register is one used in
1797 an address which is the register value plus a displacement. */
1799 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1801 /* A macro whose definition is the name of the class to which a
1802 valid index register must belong. An index register is one used
1803 in an address where its value is either multiplied by a scale
1804 factor or added to another register (as well as added to a
1805 displacement). */
1807 #define INDEX_REG_CLASS NO_REGS
1809 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1810 registers explicitly used in the rtl to be used as spill registers
1811 but prevents the compiler from extending the lifetime of these
1812 registers. */
1814 #define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1816 /* REG_ALLOC_ORDER is to order in which to allocate registers. This
1817 is the default value (allocate the registers in numeric order). We
1818 define it just so that we can override it for the mips16 target in
1819 ORDER_REGS_FOR_LOCAL_ALLOC. */
1821 #define REG_ALLOC_ORDER \
1822 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1823 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1824 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1825 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1826 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
1827 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
1828 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
1829 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
1830 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
1831 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
1832 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
1833 176,177,178,179,180,181,182,183,184,185,186,187 \
1836 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1837 to be rearranged based on a particular function. On the mips16, we
1838 want to allocate $24 (T_REG) before other registers for
1839 instructions for which it is possible. */
1841 #define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
1843 /* True if VALUE is an unsigned 6-bit number. */
1845 #define UIMM6_OPERAND(VALUE) \
1846 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
1848 /* True if VALUE is a signed 10-bit number. */
1850 #define IMM10_OPERAND(VALUE) \
1851 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
1853 /* True if VALUE is a signed 16-bit number. */
1855 #define SMALL_OPERAND(VALUE) \
1856 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
1858 /* True if VALUE is an unsigned 16-bit number. */
1860 #define SMALL_OPERAND_UNSIGNED(VALUE) \
1861 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
1863 /* True if VALUE can be loaded into a register using LUI. */
1865 #define LUI_OPERAND(VALUE) \
1866 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
1867 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
1869 /* Return a value X with the low 16 bits clear, and such that
1870 VALUE - X is a signed 16-bit value. */
1872 #define CONST_HIGH_PART(VALUE) \
1873 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
1875 #define CONST_LOW_PART(VALUE) \
1876 ((VALUE) - CONST_HIGH_PART (VALUE))
1878 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
1879 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
1880 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
1882 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1883 mips_preferred_reload_class (X, CLASS)
1885 /* The HI and LO registers can only be reloaded via the general
1886 registers. Condition code registers can only be loaded to the
1887 general registers, and from the floating point registers. */
1889 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1890 mips_secondary_reload_class (CLASS, MODE, X, 1)
1891 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1892 mips_secondary_reload_class (CLASS, MODE, X, 0)
1894 /* Return the maximum number of consecutive registers
1895 needed to represent mode MODE in a register of class CLASS. */
1897 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
1899 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1900 mips_cannot_change_mode_class (FROM, TO, CLASS)
1902 /* Stack layout; function entry, exit and calling. */
1904 #define STACK_GROWS_DOWNWARD
1906 /* The offset of the first local variable from the beginning of the frame.
1907 See compute_frame_size for details about the frame layout.
1909 ??? If flag_profile_values is true, and we are generating 32-bit code, then
1910 we assume that we will need 16 bytes of argument space. This is because
1911 the value profiling code may emit calls to cmpdi2 in leaf functions.
1912 Without this hack, the local variables will start at sp+8 and the gp save
1913 area will be at sp+16, and thus they will overlap. compute_frame_size is
1914 OK because it uses STARTING_FRAME_OFFSET to compute cprestore_size, which
1915 will end up as 24 instead of 8. This won't be needed if profiling code is
1916 inserted before virtual register instantiation. */
1918 #define STARTING_FRAME_OFFSET \
1919 ((flag_profile_values && ! TARGET_64BIT \
1920 ? MAX (REG_PARM_STACK_SPACE(NULL), current_function_outgoing_args_size) \
1921 : current_function_outgoing_args_size) \
1922 + (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1924 #define RETURN_ADDR_RTX mips_return_addr
1926 /* Since the mips16 ISA mode is encoded in the least-significant bit
1927 of the address, mask it off return addresses for purposes of
1928 finding exception handling regions. */
1930 #define MASK_RETURN_ADDR GEN_INT (-2)
1933 /* Similarly, don't use the least-significant bit to tell pointers to
1934 code from vtable index. */
1936 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
1938 /* The eliminations to $17 are only used for mips16 code. See the
1939 definition of HARD_FRAME_POINTER_REGNUM. */
1941 #define ELIMINABLE_REGS \
1942 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1943 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
1944 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
1945 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1946 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
1947 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
1949 /* We can always eliminate to the hard frame pointer. We can eliminate
1950 to the stack pointer unless a frame pointer is needed.
1952 In mips16 mode, we need a frame pointer for a large frame; otherwise,
1953 reload may be unable to compute the address of a local variable,
1954 since there is no way to add a large constant to the stack pointer
1955 without using a temporary register. */
1956 #define CAN_ELIMINATE(FROM, TO) \
1957 ((TO) == HARD_FRAME_POINTER_REGNUM \
1958 || ((TO) == STACK_POINTER_REGNUM && !frame_pointer_needed \
1959 && (!TARGET_MIPS16 \
1960 || compute_frame_size (get_frame_size ()) < 32768)))
1962 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1963 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
1965 /* Allocate stack space for arguments at the beginning of each function. */
1966 #define ACCUMULATE_OUTGOING_ARGS 1
1968 /* The argument pointer always points to the first argument. */
1969 #define FIRST_PARM_OFFSET(FNDECL) 0
1971 /* o32 and o64 reserve stack space for all argument registers. */
1972 #define REG_PARM_STACK_SPACE(FNDECL) \
1973 (TARGET_OLDABI \
1974 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
1975 : 0)
1977 /* Define this if it is the responsibility of the caller to
1978 allocate the area reserved for arguments passed in registers.
1979 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
1980 of this macro is to determine whether the space is included in
1981 `current_function_outgoing_args_size'. */
1982 #define OUTGOING_REG_PARM_STACK_SPACE 1
1984 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
1986 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1988 /* Symbolic macros for the registers used to return integer and floating
1989 point values. */
1991 #define GP_RETURN (GP_REG_FIRST + 2)
1992 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
1994 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
1996 /* Symbolic macros for the first/last argument registers. */
1998 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
1999 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2000 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2001 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2003 #define LIBCALL_VALUE(MODE) \
2004 mips_function_value (NULL_TREE, NULL, (MODE))
2006 #define FUNCTION_VALUE(VALTYPE, FUNC) \
2007 mips_function_value ((VALTYPE), (FUNC), VOIDmode)
2009 /* 1 if N is a possible register number for a function value.
2010 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2011 Currently, R2 and F0 are only implemented here (C has no complex type) */
2013 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
2014 || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
2015 && (N) == FP_RETURN + 2))
2017 /* 1 if N is a possible register number for function argument passing.
2018 We have no FP argument registers when soft-float. When FP registers
2019 are 32 bits, we can't directly reference the odd numbered ones. */
2021 #define FUNCTION_ARG_REGNO_P(N) \
2022 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2023 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2024 && !fixed_regs[N])
2026 /* This structure has to cope with two different argument allocation
2027 schemes. Most MIPS ABIs view the arguments as a structure, of which
2028 the first N words go in registers and the rest go on the stack. If I
2029 < N, the Ith word might go in Ith integer argument register or in a
2030 floating-point register. For these ABIs, we only need to remember
2031 the offset of the current argument into the structure.
2033 The EABI instead allocates the integer and floating-point arguments
2034 separately. The first N words of FP arguments go in FP registers,
2035 the rest go on the stack. Likewise, the first N words of the other
2036 arguments go in integer registers, and the rest go on the stack. We
2037 need to maintain three counts: the number of integer registers used,
2038 the number of floating-point registers used, and the number of words
2039 passed on the stack.
2041 We could keep separate information for the two ABIs (a word count for
2042 the standard ABIs, and three separate counts for the EABI). But it
2043 seems simpler to view the standard ABIs as forms of EABI that do not
2044 allocate floating-point registers.
2046 So for the standard ABIs, the first N words are allocated to integer
2047 registers, and function_arg decides on an argument-by-argument basis
2048 whether that argument should really go in an integer register, or in
2049 a floating-point one. */
2051 typedef struct mips_args {
2052 /* Always true for varargs functions. Otherwise true if at least
2053 one argument has been passed in an integer register. */
2054 int gp_reg_found;
2056 /* The number of arguments seen so far. */
2057 unsigned int arg_number;
2059 /* The number of integer registers used so far. For all ABIs except
2060 EABI, this is the number of words that have been added to the
2061 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2062 unsigned int num_gprs;
2064 /* For EABI, the number of floating-point registers used so far. */
2065 unsigned int num_fprs;
2067 /* The number of words passed on the stack. */
2068 unsigned int stack_words;
2070 /* On the mips16, we need to keep track of which floating point
2071 arguments were passed in general registers, but would have been
2072 passed in the FP regs if this were a 32-bit function, so that we
2073 can move them to the FP regs if we wind up calling a 32-bit
2074 function. We record this information in fp_code, encoded in base
2075 four. A zero digit means no floating point argument, a one digit
2076 means an SFmode argument, and a two digit means a DFmode argument,
2077 and a three digit is not used. The low order digit is the first
2078 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2079 an SFmode argument. ??? A more sophisticated approach will be
2080 needed if MIPS_ABI != ABI_32. */
2081 int fp_code;
2083 /* True if the function has a prototype. */
2084 int prototype;
2085 } CUMULATIVE_ARGS;
2087 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2088 for a call to a function whose data type is FNTYPE.
2089 For a library call, FNTYPE is 0. */
2091 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2092 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
2094 /* Update the data in CUM to advance over an argument
2095 of mode MODE and data type TYPE.
2096 (TYPE is null for libcalls where that information may not be available.) */
2098 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2099 function_arg_advance (&CUM, MODE, TYPE, NAMED)
2101 /* Determine where to put an argument to a function.
2102 Value is zero to push the argument on the stack,
2103 or a hard register in which to store the argument.
2105 MODE is the argument's machine mode.
2106 TYPE is the data type of the argument (as a tree).
2107 This is null for libcalls where that information may
2108 not be available.
2109 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2110 the preceding args and about the function being called.
2111 NAMED is nonzero if this argument is a named parameter
2112 (otherwise it is an extra parameter matching an ellipsis). */
2114 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2115 function_arg( &CUM, MODE, TYPE, NAMED)
2117 #define FUNCTION_ARG_BOUNDARY function_arg_boundary
2119 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2120 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2122 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2123 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2125 /* True if using EABI and varargs can be passed in floating-point
2126 registers. Under these conditions, we need a more complex form
2127 of va_list, which tracks GPR, FPR and stack arguments separately. */
2128 #define EABI_FLOAT_VARARGS_P \
2129 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2132 /* Say that the epilogue uses the return address register. Note that
2133 in the case of sibcalls, the values "used by the epilogue" are
2134 considered live at the start of the called function. */
2135 #define EPILOGUE_USES(REGNO) ((REGNO) == 31)
2137 /* Treat LOC as a byte offset from the stack pointer and round it up
2138 to the next fully-aligned offset. */
2139 #define MIPS_STACK_ALIGN(LOC) \
2140 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2143 /* Implement `va_start' for varargs and stdarg. */
2144 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
2145 mips_va_start (valist, nextarg)
2147 /* Output assembler code to FILE to increment profiler label # LABELNO
2148 for profiling a function entry. */
2150 #define FUNCTION_PROFILER(FILE, LABELNO) \
2152 if (TARGET_MIPS16) \
2153 sorry ("mips16 function profiling"); \
2154 fprintf (FILE, "\t.set\tnoat\n"); \
2155 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2156 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2157 if (!TARGET_NEWABI) \
2159 fprintf (FILE, \
2160 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2161 TARGET_64BIT ? "dsubu" : "subu", \
2162 reg_names[STACK_POINTER_REGNUM], \
2163 reg_names[STACK_POINTER_REGNUM], \
2164 Pmode == DImode ? 16 : 8); \
2166 fprintf (FILE, "\tjal\t_mcount\n"); \
2167 fprintf (FILE, "\t.set\tat\n"); \
2170 /* The profiler preserves all interesting registers, including $31. */
2171 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2173 /* No mips port has ever used the profiler counter word, so don't emit it
2174 or the label for it. */
2176 #define NO_PROFILE_COUNTERS 1
2178 /* Define this macro if the code for function profiling should come
2179 before the function prologue. Normally, the profiling code comes
2180 after. */
2182 /* #define PROFILE_BEFORE_PROLOGUE */
2184 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2185 the stack pointer does not matter. The value is tested only in
2186 functions that have frame pointers.
2187 No definition is equivalent to always zero. */
2189 #define EXIT_IGNORE_STACK 1
2192 /* A C statement to output, on the stream FILE, assembler code for a
2193 block of data that contains the constant parts of a trampoline.
2194 This code should not include a label--the label is taken care of
2195 automatically. */
2197 #define TRAMPOLINE_TEMPLATE(STREAM) \
2199 if (ptr_mode == DImode) \
2200 fprintf (STREAM, "\t.word\t0x03e0082d\t\t# dmove $1,$31\n"); \
2201 else \
2202 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2203 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2204 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
2205 if (ptr_mode == DImode) \
2207 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2208 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2209 fprintf (STREAM, "\t.word\t0x0060c82d\t\t# dmove $25,$3\n"); \
2211 else \
2213 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2214 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
2215 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3\n"); \
2217 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2218 if (ptr_mode == DImode) \
2220 fprintf (STREAM, "\t.word\t0x0020f82d\t\t# dmove $31,$1\n"); \
2221 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2222 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2224 else \
2226 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
2227 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2228 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2232 /* A C expression for the size in bytes of the trampoline, as an
2233 integer. */
2235 #define TRAMPOLINE_SIZE (32 + GET_MODE_SIZE (ptr_mode) * 2)
2237 /* Alignment required for trampolines, in bits. */
2239 #define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
2241 /* INITIALIZE_TRAMPOLINE calls this library function to flush
2242 program and data caches. */
2244 #ifndef CACHE_FLUSH_FUNC
2245 #define CACHE_FLUSH_FUNC "_flush_cache"
2246 #endif
2248 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2249 /* Flush both caches. We need to flush the data cache in case \
2250 the system has a write-back cache. */ \
2251 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2252 0, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2253 GEN_INT (3), TYPE_MODE (integer_type_node))
2255 /* A C statement to initialize the variable parts of a trampoline.
2256 ADDR is an RTX for the address of the trampoline; FNADDR is an
2257 RTX for the address of the nested function; STATIC_CHAIN is an
2258 RTX for the static chain value that should be passed to the
2259 function when it is called. */
2261 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2263 rtx func_addr, chain_addr, end_addr; \
2265 func_addr = plus_constant (ADDR, 32); \
2266 chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode)); \
2267 mips_emit_move (gen_rtx_MEM (ptr_mode, func_addr), FUNC); \
2268 mips_emit_move (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN); \
2269 end_addr = gen_reg_rtx (Pmode); \
2270 emit_insn (gen_add3_insn (end_addr, copy_rtx (ADDR), \
2271 GEN_INT (TRAMPOLINE_SIZE))); \
2272 emit_insn (gen_clear_cache (copy_rtx (ADDR), end_addr)); \
2275 /* Addressing modes, and classification of registers for them. */
2277 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2278 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2279 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2281 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2282 and check its validity for a certain class.
2283 We have two alternate definitions for each of them.
2284 The usual definition accepts all pseudo regs; the other rejects them all.
2285 The symbol REG_OK_STRICT causes the latter definition to be used.
2287 Most source files want to accept pseudo regs in the hope that
2288 they will get allocated to the class that the insn wants them to be in.
2289 Some source files that are used after register allocation
2290 need to be strict. */
2292 #ifndef REG_OK_STRICT
2293 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2294 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2295 #else
2296 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2297 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2298 #endif
2300 #define REG_OK_FOR_INDEX_P(X) 0
2303 /* Maximum number of registers that can appear in a valid memory address. */
2305 #define MAX_REGS_PER_ADDRESS 1
2307 #ifdef REG_OK_STRICT
2308 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2310 if (mips_legitimate_address_p (MODE, X, 1)) \
2311 goto ADDR; \
2313 #else
2314 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2316 if (mips_legitimate_address_p (MODE, X, 0)) \
2317 goto ADDR; \
2319 #endif
2321 /* Check for constness inline but use mips_legitimate_address_p
2322 to check whether a constant really is an address. */
2324 #define CONSTANT_ADDRESS_P(X) \
2325 (CONSTANT_P (X) && mips_legitimate_address_p (SImode, X, 0))
2327 #define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2329 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2330 do { \
2331 if (mips_legitimize_address (&(X), MODE)) \
2332 goto WIN; \
2333 } while (0)
2336 /* A C statement or compound statement with a conditional `goto
2337 LABEL;' executed if memory address X (an RTX) can have different
2338 meanings depending on the machine mode of the memory reference it
2339 is used for.
2341 Autoincrement and autodecrement addresses typically have
2342 mode-dependent effects because the amount of the increment or
2343 decrement is the size of the operand being addressed. Some
2344 machines have other mode-dependent addresses. Many RISC machines
2345 have no mode-dependent addresses.
2347 You may assume that ADDR is a valid address for the machine. */
2349 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2351 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2352 'the start of the function that this code is output in'. */
2354 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2355 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2356 asm_fprintf ((FILE), "%U%s", \
2357 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2358 else \
2359 asm_fprintf ((FILE), "%U%s", (NAME))
2361 /* Flag to mark a function decl symbol that requires a long call. */
2362 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2363 #define SYMBOL_REF_LONG_CALL_P(X) \
2364 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2366 /* True if we're generating a form of MIPS16 code in which jump tables
2367 are stored in the text section and encoded as 16-bit PC-relative
2368 offsets. This is only possible when general text loads are allowed,
2369 since the table access itself will be an "lh" instruction. */
2370 /* ??? 16-bit offsets can overflow in large functions. */
2371 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2373 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2375 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? HImode : ptr_mode)
2377 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2379 /* Define this as 1 if `char' should by default be signed; else as 0. */
2380 #ifndef DEFAULT_SIGNED_CHAR
2381 #define DEFAULT_SIGNED_CHAR 1
2382 #endif
2384 /* Max number of bytes we can move from memory to memory
2385 in one reasonably fast instruction. */
2386 #define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2387 #define MAX_MOVE_MAX 8
2389 /* Define this macro as a C expression which is nonzero if
2390 accessing less than a word of memory (i.e. a `char' or a
2391 `short') is no faster than accessing a word of memory, i.e., if
2392 such access require more than one instruction or if there is no
2393 difference in cost between byte and (aligned) word loads.
2395 On RISC machines, it tends to generate better code to define
2396 this as 1, since it avoids making a QI or HI mode register.
2398 But, generating word accesses for -mips16 is generally bad as shifts
2399 (often extended) would be needed for byte accesses. */
2400 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2402 /* Define this to be nonzero if shift instructions ignore all but the low-order
2403 few bits. */
2404 #define SHIFT_COUNT_TRUNCATED 1
2406 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2407 is done just by pretending it is already truncated. */
2408 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2409 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2412 /* Specify the machine mode that pointers have.
2413 After generation of rtl, the compiler makes no further distinction
2414 between pointers and any other objects of this machine mode. */
2416 #ifndef Pmode
2417 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2418 #endif
2420 /* Give call MEMs SImode since it is the "most permissive" mode
2421 for both 32-bit and 64-bit targets. */
2423 #define FUNCTION_MODE SImode
2426 /* A C expression for the cost of moving data from a register in
2427 class FROM to one in class TO. The classes are expressed using
2428 the enumeration values such as `GENERAL_REGS'. A value of 2 is
2429 the default; other values are interpreted relative to that.
2431 It is not required that the cost always equal 2 when FROM is the
2432 same as TO; on some machines it is expensive to move between
2433 registers if they are not general registers.
2435 If reload sees an insn consisting of a single `set' between two
2436 hard registers, and if `REGISTER_MOVE_COST' applied to their
2437 classes returns a value of 2, reload does not check to ensure
2438 that the constraints of the insn are met. Setting a cost of
2439 other than 2 will allow reload to verify that the constraints are
2440 met. You should do this if the `movM' pattern's constraints do
2441 not allow such copying. */
2443 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
2444 mips_register_move_cost (MODE, FROM, TO)
2446 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
2447 (mips_cost->memory_latency \
2448 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
2450 /* Define if copies to/from condition code registers should be avoided.
2452 This is needed for the MIPS because reload_outcc is not complete;
2453 it needs to handle cases where the source is a general or another
2454 condition code register. */
2455 #define AVOID_CCMODE_COPIES
2457 /* A C expression for the cost of a branch instruction. A value of
2458 1 is the default; other values are interpreted relative to that. */
2460 #define BRANCH_COST mips_branch_cost
2461 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2463 /* If defined, modifies the length assigned to instruction INSN as a
2464 function of the context in which it is used. LENGTH is an lvalue
2465 that contains the initially computed length of the insn and should
2466 be updated with the correct length of the insn. */
2467 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2468 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2470 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2471 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2472 its operands. */
2473 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2474 "%*" OPCODE "%?\t" OPERANDS "%/"
2476 /* Return the asm template for a call. INSN is the instruction's mnemonic
2477 ("j" or "jal"), OPERANDS are its operands, and OPNO is the operand number
2478 of the target.
2480 When generating GOT code without explicit relocation operators,
2481 all calls should use assembly macros. Otherwise, all indirect
2482 calls should use "jr" or "jalr"; we will arrange to restore $gp
2483 afterwards if necessary. Finally, we can only generate direct
2484 calls for -mabicalls by temporarily switching to non-PIC mode. */
2485 #define MIPS_CALL(INSN, OPERANDS, OPNO) \
2486 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2487 ? "%*" INSN "\t%" #OPNO "%/" \
2488 : REG_P (OPERANDS[OPNO]) \
2489 ? "%*" INSN "r\t%" #OPNO "%/" \
2490 : TARGET_ABICALLS \
2491 ? (".option\tpic0\n\t" \
2492 "%*" INSN "\t%" #OPNO "%/\n\t" \
2493 ".option\tpic2") \
2494 : "%*" INSN "\t%" #OPNO "%/")
2496 /* Control the assembler format that we output. */
2498 /* Output to assembler file text saying following lines
2499 may contain character constants, extra white space, comments, etc. */
2501 #ifndef ASM_APP_ON
2502 #define ASM_APP_ON " #APP\n"
2503 #endif
2505 /* Output to assembler file text saying following lines
2506 no longer contain unusual constructs. */
2508 #ifndef ASM_APP_OFF
2509 #define ASM_APP_OFF " #NO_APP\n"
2510 #endif
2512 #define REGISTER_NAMES \
2513 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2514 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2515 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2516 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2517 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2518 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2519 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2520 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2521 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2522 "$fcc5","$fcc6","$fcc7","", "", "$arg", "$frame", "$fakec", \
2523 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2524 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2525 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2526 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2527 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2528 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2529 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2530 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2531 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2532 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2533 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2534 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2535 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2536 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2538 /* List the "software" names for each register. Also list the numerical
2539 names for $fp and $sp. */
2541 #define ADDITIONAL_REGISTER_NAMES \
2543 { "$29", 29 + GP_REG_FIRST }, \
2544 { "$30", 30 + GP_REG_FIRST }, \
2545 { "at", 1 + GP_REG_FIRST }, \
2546 { "v0", 2 + GP_REG_FIRST }, \
2547 { "v1", 3 + GP_REG_FIRST }, \
2548 { "a0", 4 + GP_REG_FIRST }, \
2549 { "a1", 5 + GP_REG_FIRST }, \
2550 { "a2", 6 + GP_REG_FIRST }, \
2551 { "a3", 7 + GP_REG_FIRST }, \
2552 { "t0", 8 + GP_REG_FIRST }, \
2553 { "t1", 9 + GP_REG_FIRST }, \
2554 { "t2", 10 + GP_REG_FIRST }, \
2555 { "t3", 11 + GP_REG_FIRST }, \
2556 { "t4", 12 + GP_REG_FIRST }, \
2557 { "t5", 13 + GP_REG_FIRST }, \
2558 { "t6", 14 + GP_REG_FIRST }, \
2559 { "t7", 15 + GP_REG_FIRST }, \
2560 { "s0", 16 + GP_REG_FIRST }, \
2561 { "s1", 17 + GP_REG_FIRST }, \
2562 { "s2", 18 + GP_REG_FIRST }, \
2563 { "s3", 19 + GP_REG_FIRST }, \
2564 { "s4", 20 + GP_REG_FIRST }, \
2565 { "s5", 21 + GP_REG_FIRST }, \
2566 { "s6", 22 + GP_REG_FIRST }, \
2567 { "s7", 23 + GP_REG_FIRST }, \
2568 { "t8", 24 + GP_REG_FIRST }, \
2569 { "t9", 25 + GP_REG_FIRST }, \
2570 { "k0", 26 + GP_REG_FIRST }, \
2571 { "k1", 27 + GP_REG_FIRST }, \
2572 { "gp", 28 + GP_REG_FIRST }, \
2573 { "sp", 29 + GP_REG_FIRST }, \
2574 { "fp", 30 + GP_REG_FIRST }, \
2575 { "ra", 31 + GP_REG_FIRST }, \
2576 ALL_COP_ADDITIONAL_REGISTER_NAMES \
2579 /* This is meant to be redefined in the host dependent files. It is a
2580 set of alternative names and regnums for mips coprocessors. */
2582 #define ALL_COP_ADDITIONAL_REGISTER_NAMES
2584 /* A C compound statement to output to stdio stream STREAM the
2585 assembler syntax for an instruction operand X. X is an RTL
2586 expression.
2588 CODE is a value that can be used to specify one of several ways
2589 of printing the operand. It is used when identical operands
2590 must be printed differently depending on the context. CODE
2591 comes from the `%' specification that was used to request
2592 printing of the operand. If the specification was just `%DIGIT'
2593 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2594 is the ASCII code for LTR.
2596 If X is a register, this macro should print the register's name.
2597 The names can be found in an array `reg_names' whose type is
2598 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
2600 When the machine description has a specification `%PUNCT' (a `%'
2601 followed by a punctuation character), this macro is called with
2602 a null pointer for X and the punctuation character for CODE.
2604 See mips.c for the MIPS specific codes. */
2606 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2608 /* A C expression which evaluates to true if CODE is a valid
2609 punctuation character for use in the `PRINT_OPERAND' macro. If
2610 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
2611 punctuation characters (except for the standard one, `%') are
2612 used in this way. */
2614 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2616 /* A C compound statement to output to stdio stream STREAM the
2617 assembler syntax for an instruction operand that is a memory
2618 reference whose address is ADDR. ADDR is an RTL expression. */
2620 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2623 /* A C statement, to be executed after all slot-filler instructions
2624 have been output. If necessary, call `dbr_sequence_length' to
2625 determine the number of slots filled in a sequence (zero if not
2626 currently outputting a sequence), to decide how many no-ops to
2627 output, or whatever.
2629 Don't define this macro if it has nothing to do, but it is
2630 helpful in reading assembly output if the extent of the delay
2631 sequence is made explicit (e.g. with white space).
2633 Note that output routines for instructions with delay slots must
2634 be prepared to deal with not being output as part of a sequence
2635 (i.e. when the scheduling pass is not run, or when no slot
2636 fillers could be found.) The variable `final_sequence' is null
2637 when not processing a sequence, otherwise it contains the
2638 `sequence' rtx being output. */
2640 #define DBR_OUTPUT_SEQEND(STREAM) \
2641 do \
2643 if (set_nomacro > 0 && --set_nomacro == 0) \
2644 fputs ("\t.set\tmacro\n", STREAM); \
2646 if (set_noreorder > 0 && --set_noreorder == 0) \
2647 fputs ("\t.set\treorder\n", STREAM); \
2649 fputs ("\n", STREAM); \
2651 while (0)
2654 /* How to tell the debugger about changes of source files. */
2655 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2656 mips_output_filename (STREAM, NAME)
2658 /* mips-tfile does not understand .stabd directives. */
2659 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
2660 dbxout_begin_stabn_sline (LINE); \
2661 dbxout_stab_value_internal_label ("LM", &COUNTER); \
2662 } while (0)
2664 /* Use .loc directives for SDB line numbers. */
2665 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2666 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2668 /* The MIPS implementation uses some labels for its own purpose. The
2669 following lists what labels are created, and are all formed by the
2670 pattern $L[a-z].*. The machine independent portion of GCC creates
2671 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2673 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2674 $Lb[0-9]+ Begin blocks for MIPS debug support
2675 $Lc[0-9]+ Label for use in s<xx> operation.
2676 $Le[0-9]+ End blocks for MIPS debug support */
2678 #undef ASM_DECLARE_OBJECT_NAME
2679 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2680 mips_declare_object (STREAM, NAME, "", ":\n")
2682 /* Globalizing directive for a label. */
2683 #define GLOBAL_ASM_OP "\t.globl\t"
2685 /* This says how to define a global common symbol. */
2687 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2689 /* This says how to define a local common symbol (i.e., not visible to
2690 linker). */
2692 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2693 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2694 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2695 #endif
2697 /* This says how to output an external. It would be possible not to
2698 output anything and let undefined symbol become external. However
2699 the assembler uses length information on externals to allocate in
2700 data/sdata bss/sbss, thereby saving exec time. */
2702 #undef ASM_OUTPUT_EXTERNAL
2703 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2704 mips_output_external(STREAM,DECL,NAME)
2706 /* This is how to declare a function name. The actual work of
2707 emitting the label is moved to function_prologue, so that we can
2708 get the line number correctly emitted before the .ent directive,
2709 and after any .file directives. Define as empty so that the function
2710 is not declared before the .ent directive elsewhere. */
2712 #undef ASM_DECLARE_FUNCTION_NAME
2713 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2715 #ifndef FUNCTION_NAME_ALREADY_DECLARED
2716 #define FUNCTION_NAME_ALREADY_DECLARED 0
2717 #endif
2719 /* This is how to store into the string LABEL
2720 the symbol_ref name of an internal numbered label where
2721 PREFIX is the class of label and NUM is the number within the class.
2722 This is suitable for output with `assemble_name'. */
2724 #undef ASM_GENERATE_INTERNAL_LABEL
2725 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2726 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2728 /* This is how to output an element of a case-vector that is absolute. */
2730 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2731 fprintf (STREAM, "\t%s\t%sL%d\n", \
2732 ptr_mode == DImode ? ".dword" : ".word", \
2733 LOCAL_LABEL_PREFIX, \
2734 VALUE)
2736 /* This is how to output an element of a case-vector. We can make the
2737 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2738 is supported. */
2740 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2741 do { \
2742 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2743 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2744 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2745 else if (TARGET_GPWORD) \
2746 fprintf (STREAM, "\t%s\t%sL%d\n", \
2747 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2748 LOCAL_LABEL_PREFIX, VALUE); \
2749 else if (TARGET_RTP_PIC) \
2751 /* Make the entry relative to the start of the function. */ \
2752 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2753 fprintf (STREAM, "\t%s\t%sL%d-", \
2754 Pmode == DImode ? ".dword" : ".word", \
2755 LOCAL_LABEL_PREFIX, VALUE); \
2756 assemble_name (STREAM, XSTR (fnsym, 0)); \
2757 fprintf (STREAM, "\n"); \
2759 else \
2760 fprintf (STREAM, "\t%s\t%sL%d\n", \
2761 ptr_mode == DImode ? ".dword" : ".word", \
2762 LOCAL_LABEL_PREFIX, VALUE); \
2763 } while (0)
2765 /* This is how to output an assembler line
2766 that says to advance the location counter
2767 to a multiple of 2**LOG bytes. */
2769 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2770 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2772 /* This is how to output an assembler line to advance the location
2773 counter by SIZE bytes. */
2775 #undef ASM_OUTPUT_SKIP
2776 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2777 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2779 /* This is how to output a string. */
2780 #undef ASM_OUTPUT_ASCII
2781 #define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
2782 mips_output_ascii (STREAM, STRING, LEN, "\t.ascii\t")
2784 /* Output #ident as a in the read-only data section. */
2785 #undef ASM_OUTPUT_IDENT
2786 #define ASM_OUTPUT_IDENT(FILE, STRING) \
2788 const char *p = STRING; \
2789 int size = strlen (p) + 1; \
2790 switch_to_section (readonly_data_section); \
2791 assemble_string (p, size); \
2794 /* Default to -G 8 */
2795 #ifndef MIPS_DEFAULT_GVALUE
2796 #define MIPS_DEFAULT_GVALUE 8
2797 #endif
2799 /* Define the strings to put out for each section in the object file. */
2800 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2801 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2803 #undef READONLY_DATA_SECTION_ASM_OP
2804 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2806 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2807 do \
2809 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2810 TARGET_64BIT ? "daddiu" : "addiu", \
2811 reg_names[STACK_POINTER_REGNUM], \
2812 reg_names[STACK_POINTER_REGNUM], \
2813 TARGET_64BIT ? "sd" : "sw", \
2814 reg_names[REGNO], \
2815 reg_names[STACK_POINTER_REGNUM]); \
2817 while (0)
2819 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2820 do \
2822 if (! set_noreorder) \
2823 fprintf (STREAM, "\t.set\tnoreorder\n"); \
2825 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2826 TARGET_64BIT ? "ld" : "lw", \
2827 reg_names[REGNO], \
2828 reg_names[STACK_POINTER_REGNUM], \
2829 TARGET_64BIT ? "daddu" : "addu", \
2830 reg_names[STACK_POINTER_REGNUM], \
2831 reg_names[STACK_POINTER_REGNUM]); \
2833 if (! set_noreorder) \
2834 fprintf (STREAM, "\t.set\treorder\n"); \
2836 while (0)
2838 /* How to start an assembler comment.
2839 The leading space is important (the mips native assembler requires it). */
2840 #ifndef ASM_COMMENT_START
2841 #define ASM_COMMENT_START " #"
2842 #endif
2844 /* Default definitions for size_t and ptrdiff_t. We must override the
2845 definitions from ../svr4.h on mips-*-linux-gnu. */
2847 #undef SIZE_TYPE
2848 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2850 #undef PTRDIFF_TYPE
2851 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2853 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2854 values were determined experimentally by benchmarking with CSiBE.
2855 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2856 for o32 where we have to restore $gp afterwards as well as make an
2857 indirect call), but in practice, bumping this up higher for
2858 TARGET_ABICALLS doesn't make much difference to code size. */
2860 #define MIPS_CALL_RATIO 8
2862 /* Define MOVE_RATIO to encourage use of movmemsi when enabled,
2863 since it should always generate code at least as good as
2864 move_by_pieces(). But when inline movmemsi pattern is disabled
2865 (i.e., with -mips16 or -mmemcpy), instead use a value approximating
2866 the length of a memcpy call sequence, so that move_by_pieces will
2867 generate inline code if it is shorter than a function call.
2868 Since move_by_pieces_ninsns() counts memory-to-memory moves, but
2869 we'll have to generate a load/store pair for each, halve the value of
2870 MIPS_CALL_RATIO to take that into account.
2871 The default value for MOVE_RATIO when HAVE_movmemsi is true is 2.
2872 There is no point to setting it to less than this to try to disable
2873 move_by_pieces entirely, because that also disables some desirable
2874 tree-level optimizations, specifically related to optimizing a
2875 one-byte string copy into a simple move byte operation. */
2877 #define MOVE_RATIO \
2878 ((TARGET_MIPS16 || TARGET_MEMCPY) ? MIPS_CALL_RATIO / 2 : 2)
2880 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
2881 of the length of a memset call, but use the default otherwise. */
2883 #define CLEAR_RATIO \
2884 (optimize_size ? MIPS_CALL_RATIO : 15)
2886 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
2887 optimizing for size adjust the ratio to account for the overhead of
2888 loading the constant and replicating it across the word. */
2890 #define SET_RATIO \
2891 (optimize_size ? MIPS_CALL_RATIO - 2 : 15)
2893 /* STORE_BY_PIECES_P can be used when copying a constant string, but
2894 in that case each word takes 3 insns (lui, ori, sw), or more in
2895 64-bit mode, instead of 2 (lw, sw). For now we always fail this
2896 and let the move_by_pieces code copy the string from read-only
2897 memory. In the future, this could be tuned further for multi-issue
2898 CPUs that can issue stores down one pipe and arithmetic instructions
2899 down another; in that case, the lui/ori/sw combination would be a
2900 win for long enough strings. */
2902 #define STORE_BY_PIECES_P(SIZE, ALIGN) 0
2904 #ifndef __mips16
2905 /* Since the bits of the _init and _fini function is spread across
2906 many object files, each potentially with its own GP, we must assume
2907 we need to load our GP. We don't preserve $gp or $ra, since each
2908 init/fini chunk is supposed to initialize $gp, and crti/crtn
2909 already take care of preserving $ra and, when appropriate, $gp. */
2910 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2911 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2912 asm (SECTION_OP "\n\
2913 .set noreorder\n\
2914 bal 1f\n\
2915 nop\n\
2916 1: .cpload $31\n\
2917 .set reorder\n\
2918 jal " USER_LABEL_PREFIX #FUNC "\n\
2919 " TEXT_SECTION_ASM_OP);
2920 #endif /* Switch to #elif when we're no longer limited by K&R C. */
2921 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2922 || (defined _ABI64 && _MIPS_SIM == _ABI64)
2923 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2924 asm (SECTION_OP "\n\
2925 .set noreorder\n\
2926 bal 1f\n\
2927 nop\n\
2928 1: .set reorder\n\
2929 .cpsetup $31, $2, 1b\n\
2930 jal " USER_LABEL_PREFIX #FUNC "\n\
2931 " TEXT_SECTION_ASM_OP);
2932 #endif
2933 #endif
2935 #ifndef HAVE_AS_TLS
2936 #define HAVE_AS_TLS 0
2937 #endif
2939 /* Return an asm string that atomically:
2941 - Compares memory reference %1 to register %2 and, if they are
2942 equal, changes %1 to %3.
2944 - Sets register %0 to the old value of memory reference %1.
2946 SUFFIX is the suffix that should be added to "ll" and "sc" instructions
2947 and OP is the instruction that should be used to load %3 into a
2948 register. */
2949 #define MIPS_COMPARE_AND_SWAP(SUFFIX, OP) \
2950 "%(%<%[%|sync\n" \
2951 "1:\tll" SUFFIX "\t%0,%1\n" \
2952 "\tbne\t%0,%2,2f\n" \
2953 "\t" OP "\t%@,%3\n" \
2954 "\tsc" SUFFIX "\t%@,%1" \
2955 "%-\n" \
2956 "\tbeq\t%@,%.,1b\n" \
2957 "\tnop\n" \
2958 "2:%]%>%)"
2960 /* Return an asm string that atomically:
2962 - Sets memory reference %0 to %0 INSN %1.
2964 SUFFIX is the suffix that should be added to "ll" and "sc"
2965 instructions. */
2966 #define MIPS_SYNC_OP(SUFFIX, INSN) \
2967 "%(%<%[%|sync\n" \
2968 "1:\tll" SUFFIX "\t%@,%0\n" \
2969 "\t" INSN "\t%@,%@,%1\n" \
2970 "\tsc" SUFFIX "\t%@,%0" \
2971 "%-\n" \
2972 "\tbeq\t%@,%.,1b\n" \
2973 "\tnop%]%>%)"
2975 /* Return an asm string that atomically:
2977 - Sets memory reference %1 to %1 INSN %2.
2979 - Sets register %0 to the old value of memory reference %1.
2981 SUFFIX is the suffix that should be added to "ll" and "sc"
2982 instructions. */
2983 #define MIPS_SYNC_OLD_OP(SUFFIX, INSN) \
2984 "%(%<%[%|sync\n" \
2985 "1:\tll" SUFFIX "\t%0,%1\n" \
2986 "\t" INSN "\t%@,%0,%2\n" \
2987 "\tsc" SUFFIX "\t%@,%1" \
2988 "%-\n" \
2989 "\tbeq\t%@,%.,1b\n" \
2990 "\tnop%]%>%)"
2992 /* Return an asm string that atomically:
2994 - Sets memory reference %1 to %1 INSN %2.
2996 - Sets register %0 to the new value of memory reference %1.
2998 SUFFIX is the suffix that should be added to "ll" and "sc"
2999 instructions. */
3000 #define MIPS_SYNC_NEW_OP(SUFFIX, INSN) \
3001 "%(%<%[%|sync\n" \
3002 "1:\tll" SUFFIX "\t%0,%1\n" \
3003 "\t" INSN "\t%@,%0,%2\n" \
3004 "\tsc" SUFFIX "\t%@,%1" \
3005 "%-\n" \
3006 "\tbeq\t%@,%.,1b\n" \
3007 "\t" INSN "\t%0,%0,%2%]%>%)"
3009 /* Return an asm string that atomically:
3011 - Sets memory reference %0 to ~%0 AND %1.
3013 SUFFIX is the suffix that should be added to "ll" and "sc"
3014 instructions. INSN is the and instruction needed to and a register
3015 with %2. */
3016 #define MIPS_SYNC_NAND(SUFFIX, INSN) \
3017 "%(%<%[%|sync\n" \
3018 "1:\tll" SUFFIX "\t%@,%0\n" \
3019 "\tnor\t%@,%@,%.\n" \
3020 "\t" INSN "\t%@,%@,%1\n" \
3021 "\tsc" SUFFIX "\t%@,%0" \
3022 "%-\n" \
3023 "\tbeq\t%@,%.,1b\n" \
3024 "\tnop%]%>%)"
3026 /* Return an asm string that atomically:
3028 - Sets memory reference %1 to ~%1 AND %2.
3030 - Sets register %0 to the old value of memory reference %1.
3032 SUFFIX is the suffix that should be added to "ll" and "sc"
3033 instructions. INSN is the and instruction needed to and a register
3034 with %2. */
3035 #define MIPS_SYNC_OLD_NAND(SUFFIX, INSN) \
3036 "%(%<%[%|sync\n" \
3037 "1:\tll" SUFFIX "\t%0,%1\n" \
3038 "\tnor\t%@,%0,%.\n" \
3039 "\t" INSN "\t%@,%@,%2\n" \
3040 "\tsc" SUFFIX "\t%@,%1" \
3041 "%-\n" \
3042 "\tbeq\t%@,%.,1b\n" \
3043 "\tnop%]%>%)"
3045 /* Return an asm string that atomically:
3047 - Sets memory reference %1 to ~%1 AND %2.
3049 - Sets register %0 to the new value of memory reference %1.
3051 SUFFIX is the suffix that should be added to "ll" and "sc"
3052 instructions. INSN is the and instruction needed to and a register
3053 with %2. */
3054 #define MIPS_SYNC_NEW_NAND(SUFFIX, INSN) \
3055 "%(%<%[%|sync\n" \
3056 "1:\tll" SUFFIX "\t%0,%1\n" \
3057 "\tnor\t%0,%0,%.\n" \
3058 "\t" INSN "\t%@,%0,%2\n" \
3059 "\tsc" SUFFIX "\t%@,%1" \
3060 "%-\n" \
3061 "\tbeq\t%@,%.,1b\n" \
3062 "\t" INSN "\t%0,%0,%2%]%>%)"
3064 /* Return an asm string that atomically:
3066 - Sets memory reference %1 to %2.
3068 - Sets register %0 to the old value of memory reference %1.
3070 SUFFIX is the suffix that should be added to "ll" and "sc"
3071 instructions. OP is the and instruction that should be used to
3072 load %2 into a register. */
3073 #define MIPS_SYNC_EXCHANGE(SUFFIX, OP) \
3074 "%(%<%[%|\n" \
3075 "1:\tll" SUFFIX "\t%0,%1\n" \
3076 "\t" OP "\t%@,%2\n" \
3077 "\tsc" SUFFIX "\t%@,%1\n" \
3078 "\tbeq\t%@,%.,1b\n" \
3079 "\tnop\n" \
3080 "\tsync%-%]%>%)"