PR lto/83954
[official-gcc.git] / gcc / ada / freeze.adb
blob08163ef90623251f1a427dfab72d8c23b6b13750
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Pakd; use Exp_Pakd;
38 with Exp_Util; use Exp_Util;
39 with Exp_Tss; use Exp_Tss;
40 with Ghost; use Ghost;
41 with Layout; use Layout;
42 with Lib; use Lib;
43 with Namet; use Namet;
44 with Nlists; use Nlists;
45 with Nmake; use Nmake;
46 with Opt; use Opt;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Sem; use Sem;
51 with Sem_Aux; use Sem_Aux;
52 with Sem_Cat; use Sem_Cat;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch7; use Sem_Ch7;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Ch13; use Sem_Ch13;
57 with Sem_Eval; use Sem_Eval;
58 with Sem_Mech; use Sem_Mech;
59 with Sem_Prag; use Sem_Prag;
60 with Sem_Res; use Sem_Res;
61 with Sem_Util; use Sem_Util;
62 with Sinfo; use Sinfo;
63 with Snames; use Snames;
64 with Stand; use Stand;
65 with Targparm; use Targparm;
66 with Tbuild; use Tbuild;
67 with Ttypes; use Ttypes;
68 with Uintp; use Uintp;
69 with Urealp; use Urealp;
70 with Warnsw; use Warnsw;
72 package body Freeze is
74 -----------------------
75 -- Local Subprograms --
76 -----------------------
78 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
79 -- Typ is a type that is being frozen. If no size clause is given,
80 -- but a default Esize has been computed, then this default Esize is
81 -- adjusted up if necessary to be consistent with a given alignment,
82 -- but never to a value greater than Long_Long_Integer'Size. This
83 -- is used for all discrete types and for fixed-point types.
85 procedure Build_And_Analyze_Renamed_Body
86 (Decl : Node_Id;
87 New_S : Entity_Id;
88 After : in out Node_Id);
89 -- Build body for a renaming declaration, insert in tree and analyze
91 procedure Check_Address_Clause (E : Entity_Id);
92 -- Apply legality checks to address clauses for object declarations,
93 -- at the point the object is frozen. Also ensure any initialization is
94 -- performed only after the object has been frozen.
96 procedure Check_Component_Storage_Order
97 (Encl_Type : Entity_Id;
98 Comp : Entity_Id;
99 ADC : Node_Id;
100 Comp_ADC_Present : out Boolean);
101 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
102 -- clause, verify that the component type has an explicit and compatible
103 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
104 -- entity of the component under consideration. For an Encl_Type that
105 -- does not have a Scalar_Storage_Order attribute definition clause,
106 -- verify that the component also does not have such a clause.
107 -- ADC is the attribute definition clause if present (or Empty). On return,
108 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
109 -- attribute definition clause.
111 procedure Check_Debug_Info_Needed (T : Entity_Id);
112 -- As each entity is frozen, this routine is called to deal with the
113 -- setting of Debug_Info_Needed for the entity. This flag is set if
114 -- the entity comes from source, or if we are in Debug_Generated_Code
115 -- mode or if the -gnatdV debug flag is set. However, it never sets
116 -- the flag if Debug_Info_Off is set. This procedure also ensures that
117 -- subsidiary entities have the flag set as required.
119 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
120 -- When an expression function is frozen by a use of it, the expression
121 -- itself is frozen. Check that the expression does not include references
122 -- to deferred constants without completion. We report this at the freeze
123 -- point of the function, to provide a better error message.
125 -- In most cases the expression itself is frozen by the time the function
126 -- itself is frozen, because the formals will be frozen by then. However,
127 -- Attribute references to outer types are freeze points for those types;
128 -- this routine generates the required freeze nodes for them.
130 procedure Check_Inherited_Conditions (R : Entity_Id);
131 -- For a tagged derived type, create wrappers for inherited operations
132 -- that have a class-wide condition, so it can be properly rewritten if
133 -- it involves calls to other overriding primitives.
135 procedure Check_Strict_Alignment (E : Entity_Id);
136 -- E is a base type. If E is tagged or has a component that is aliased
137 -- or tagged or contains something this is aliased or tagged, set
138 -- Strict_Alignment.
140 procedure Check_Unsigned_Type (E : Entity_Id);
141 pragma Inline (Check_Unsigned_Type);
142 -- If E is a fixed-point or discrete type, then all the necessary work
143 -- to freeze it is completed except for possible setting of the flag
144 -- Is_Unsigned_Type, which is done by this procedure. The call has no
145 -- effect if the entity E is not a discrete or fixed-point type.
147 procedure Freeze_And_Append
148 (Ent : Entity_Id;
149 N : Node_Id;
150 Result : in out List_Id);
151 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
152 -- nodes to Result, modifying Result from No_List if necessary. N has
153 -- the same usage as in Freeze_Entity.
155 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
156 -- Freeze enumeration type. The Esize field is set as processing
157 -- proceeds (i.e. set by default when the type is declared and then
158 -- adjusted by rep clauses. What this procedure does is to make sure
159 -- that if a foreign convention is specified, and no specific size
160 -- is given, then the size must be at least Integer'Size.
162 procedure Freeze_Static_Object (E : Entity_Id);
163 -- If an object is frozen which has Is_Statically_Allocated set, then
164 -- all referenced types must also be marked with this flag. This routine
165 -- is in charge of meeting this requirement for the object entity E.
167 procedure Freeze_Subprogram (E : Entity_Id);
168 -- Perform freezing actions for a subprogram (create extra formals,
169 -- and set proper default mechanism values). Note that this routine
170 -- is not called for internal subprograms, for which neither of these
171 -- actions is needed (or desirable, we do not want for example to have
172 -- these extra formals present in initialization procedures, where they
173 -- would serve no purpose). In this call E is either a subprogram or
174 -- a subprogram type (i.e. an access to a subprogram).
176 function Is_Fully_Defined (T : Entity_Id) return Boolean;
177 -- True if T is not private and has no private components, or has a full
178 -- view. Used to determine whether the designated type of an access type
179 -- should be frozen when the access type is frozen. This is done when an
180 -- allocator is frozen, or an expression that may involve attributes of
181 -- the designated type. Otherwise freezing the access type does not freeze
182 -- the designated type.
184 procedure Process_Default_Expressions
185 (E : Entity_Id;
186 After : in out Node_Id);
187 -- This procedure is called for each subprogram to complete processing of
188 -- default expressions at the point where all types are known to be frozen.
189 -- The expressions must be analyzed in full, to make sure that all error
190 -- processing is done (they have only been pre-analyzed). If the expression
191 -- is not an entity or literal, its analysis may generate code which must
192 -- not be executed. In that case we build a function body to hold that
193 -- code. This wrapper function serves no other purpose (it used to be
194 -- called to evaluate the default, but now the default is inlined at each
195 -- point of call).
197 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
198 -- Typ is a record or array type that is being frozen. This routine sets
199 -- the default component alignment from the scope stack values if the
200 -- alignment is otherwise not specified.
202 procedure Set_SSO_From_Default (T : Entity_Id);
203 -- T is a record or array type that is being frozen. If it is a base type,
204 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
205 -- will be set appropriately. Note that an explicit occurrence of aspect
206 -- Scalar_Storage_Order or an explicit setting of this aspect with an
207 -- attribute definition clause occurs, then these two flags are reset in
208 -- any case, so call will have no effect.
210 procedure Undelay_Type (T : Entity_Id);
211 -- T is a type of a component that we know to be an Itype. We don't want
212 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
213 -- Full_View or Corresponding_Record_Type.
215 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id);
216 -- Expr is the expression for an address clause for entity Nam whose type
217 -- is Typ. If Typ has a default initialization, and there is no explicit
218 -- initialization in the source declaration, check whether the address
219 -- clause might cause overlaying of an entity, and emit a warning on the
220 -- side effect that the initialization will cause.
222 -------------------------------
223 -- Adjust_Esize_For_Alignment --
224 -------------------------------
226 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
227 Align : Uint;
229 begin
230 if Known_Esize (Typ) and then Known_Alignment (Typ) then
231 Align := Alignment_In_Bits (Typ);
233 if Align > Esize (Typ)
234 and then Align <= Standard_Long_Long_Integer_Size
235 then
236 Set_Esize (Typ, Align);
237 end if;
238 end if;
239 end Adjust_Esize_For_Alignment;
241 ------------------------------------
242 -- Build_And_Analyze_Renamed_Body --
243 ------------------------------------
245 procedure Build_And_Analyze_Renamed_Body
246 (Decl : Node_Id;
247 New_S : Entity_Id;
248 After : in out Node_Id)
250 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
251 Ent : constant Entity_Id := Defining_Entity (Decl);
252 Body_Node : Node_Id;
253 Renamed_Subp : Entity_Id;
255 begin
256 -- If the renamed subprogram is intrinsic, there is no need for a
257 -- wrapper body: we set the alias that will be called and expanded which
258 -- completes the declaration. This transformation is only legal if the
259 -- renamed entity has already been elaborated.
261 -- Note that it is legal for a renaming_as_body to rename an intrinsic
262 -- subprogram, as long as the renaming occurs before the new entity
263 -- is frozen (RM 8.5.4 (5)).
265 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
266 and then Is_Entity_Name (Name (Body_Decl))
267 then
268 Renamed_Subp := Entity (Name (Body_Decl));
269 else
270 Renamed_Subp := Empty;
271 end if;
273 if Present (Renamed_Subp)
274 and then Is_Intrinsic_Subprogram (Renamed_Subp)
275 and then
276 (not In_Same_Source_Unit (Renamed_Subp, Ent)
277 or else Sloc (Renamed_Subp) < Sloc (Ent))
279 -- We can make the renaming entity intrinsic if the renamed function
280 -- has an interface name, or if it is one of the shift/rotate
281 -- operations known to the compiler.
283 and then
284 (Present (Interface_Name (Renamed_Subp))
285 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
286 Name_Rotate_Right,
287 Name_Shift_Left,
288 Name_Shift_Right,
289 Name_Shift_Right_Arithmetic))
290 then
291 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
293 if Present (Alias (Renamed_Subp)) then
294 Set_Alias (Ent, Alias (Renamed_Subp));
295 else
296 Set_Alias (Ent, Renamed_Subp);
297 end if;
299 Set_Is_Intrinsic_Subprogram (Ent);
300 Set_Has_Completion (Ent);
302 else
303 Body_Node := Build_Renamed_Body (Decl, New_S);
304 Insert_After (After, Body_Node);
305 Mark_Rewrite_Insertion (Body_Node);
306 Analyze (Body_Node);
307 After := Body_Node;
308 end if;
309 end Build_And_Analyze_Renamed_Body;
311 ------------------------
312 -- Build_Renamed_Body --
313 ------------------------
315 function Build_Renamed_Body
316 (Decl : Node_Id;
317 New_S : Entity_Id) return Node_Id
319 Loc : constant Source_Ptr := Sloc (New_S);
320 -- We use for the source location of the renamed body, the location of
321 -- the spec entity. It might seem more natural to use the location of
322 -- the renaming declaration itself, but that would be wrong, since then
323 -- the body we create would look as though it was created far too late,
324 -- and this could cause problems with elaboration order analysis,
325 -- particularly in connection with instantiations.
327 N : constant Node_Id := Unit_Declaration_Node (New_S);
328 Nam : constant Node_Id := Name (N);
329 Old_S : Entity_Id;
330 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
331 Actuals : List_Id := No_List;
332 Call_Node : Node_Id;
333 Call_Name : Node_Id;
334 Body_Node : Node_Id;
335 Formal : Entity_Id;
336 O_Formal : Entity_Id;
337 Param_Spec : Node_Id;
339 Pref : Node_Id := Empty;
340 -- If the renamed entity is a primitive operation given in prefix form,
341 -- the prefix is the target object and it has to be added as the first
342 -- actual in the generated call.
344 begin
345 -- Determine the entity being renamed, which is the target of the call
346 -- statement. If the name is an explicit dereference, this is a renaming
347 -- of a subprogram type rather than a subprogram. The name itself is
348 -- fully analyzed.
350 if Nkind (Nam) = N_Selected_Component then
351 Old_S := Entity (Selector_Name (Nam));
353 elsif Nkind (Nam) = N_Explicit_Dereference then
354 Old_S := Etype (Nam);
356 elsif Nkind (Nam) = N_Indexed_Component then
357 if Is_Entity_Name (Prefix (Nam)) then
358 Old_S := Entity (Prefix (Nam));
359 else
360 Old_S := Entity (Selector_Name (Prefix (Nam)));
361 end if;
363 elsif Nkind (Nam) = N_Character_Literal then
364 Old_S := Etype (New_S);
366 else
367 Old_S := Entity (Nam);
368 end if;
370 if Is_Entity_Name (Nam) then
372 -- If the renamed entity is a predefined operator, retain full name
373 -- to ensure its visibility.
375 if Ekind (Old_S) = E_Operator
376 and then Nkind (Nam) = N_Expanded_Name
377 then
378 Call_Name := New_Copy (Name (N));
379 else
380 Call_Name := New_Occurrence_Of (Old_S, Loc);
381 end if;
383 else
384 if Nkind (Nam) = N_Selected_Component
385 and then Present (First_Formal (Old_S))
386 and then
387 (Is_Controlling_Formal (First_Formal (Old_S))
388 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
389 then
391 -- Retrieve the target object, to be added as a first actual
392 -- in the call.
394 Call_Name := New_Occurrence_Of (Old_S, Loc);
395 Pref := Prefix (Nam);
397 else
398 Call_Name := New_Copy (Name (N));
399 end if;
401 -- Original name may have been overloaded, but is fully resolved now
403 Set_Is_Overloaded (Call_Name, False);
404 end if;
406 -- For simple renamings, subsequent calls can be expanded directly as
407 -- calls to the renamed entity. The body must be generated in any case
408 -- for calls that may appear elsewhere. This is not done in the case
409 -- where the subprogram is an instantiation because the actual proper
410 -- body has not been built yet.
412 if Ekind_In (Old_S, E_Function, E_Procedure)
413 and then Nkind (Decl) = N_Subprogram_Declaration
414 and then not Is_Generic_Instance (Old_S)
415 then
416 Set_Body_To_Inline (Decl, Old_S);
417 end if;
419 -- Check whether the return type is a limited view. If the subprogram
420 -- is already frozen the generated body may have a non-limited view
421 -- of the type, that must be used, because it is the one in the spec
422 -- of the renaming declaration.
424 if Ekind (Old_S) = E_Function
425 and then Is_Entity_Name (Result_Definition (Spec))
426 then
427 declare
428 Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
429 begin
430 if Has_Non_Limited_View (Ret_Type) then
431 Set_Result_Definition
432 (Spec, New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
433 end if;
434 end;
435 end if;
437 -- The body generated for this renaming is an internal artifact, and
438 -- does not constitute a freeze point for the called entity.
440 Set_Must_Not_Freeze (Call_Name);
442 Formal := First_Formal (Defining_Entity (Decl));
444 if Present (Pref) then
445 declare
446 Pref_Type : constant Entity_Id := Etype (Pref);
447 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
449 begin
450 -- The controlling formal may be an access parameter, or the
451 -- actual may be an access value, so adjust accordingly.
453 if Is_Access_Type (Pref_Type)
454 and then not Is_Access_Type (Form_Type)
455 then
456 Actuals := New_List
457 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
459 elsif Is_Access_Type (Form_Type)
460 and then not Is_Access_Type (Pref)
461 then
462 Actuals :=
463 New_List (
464 Make_Attribute_Reference (Loc,
465 Attribute_Name => Name_Access,
466 Prefix => Relocate_Node (Pref)));
467 else
468 Actuals := New_List (Pref);
469 end if;
470 end;
472 elsif Present (Formal) then
473 Actuals := New_List;
475 else
476 Actuals := No_List;
477 end if;
479 if Present (Formal) then
480 while Present (Formal) loop
481 Append (New_Occurrence_Of (Formal, Loc), Actuals);
482 Next_Formal (Formal);
483 end loop;
484 end if;
486 -- If the renamed entity is an entry, inherit its profile. For other
487 -- renamings as bodies, both profiles must be subtype conformant, so it
488 -- is not necessary to replace the profile given in the declaration.
489 -- However, default values that are aggregates are rewritten when
490 -- partially analyzed, so we recover the original aggregate to insure
491 -- that subsequent conformity checking works. Similarly, if the default
492 -- expression was constant-folded, recover the original expression.
494 Formal := First_Formal (Defining_Entity (Decl));
496 if Present (Formal) then
497 O_Formal := First_Formal (Old_S);
498 Param_Spec := First (Parameter_Specifications (Spec));
499 while Present (Formal) loop
500 if Is_Entry (Old_S) then
501 if Nkind (Parameter_Type (Param_Spec)) /=
502 N_Access_Definition
503 then
504 Set_Etype (Formal, Etype (O_Formal));
505 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
506 end if;
508 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
509 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
510 Nkind (Default_Value (O_Formal))
511 then
512 Set_Expression (Param_Spec,
513 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
514 end if;
516 Next_Formal (Formal);
517 Next_Formal (O_Formal);
518 Next (Param_Spec);
519 end loop;
520 end if;
522 -- If the renamed entity is a function, the generated body contains a
523 -- return statement. Otherwise, build a procedure call. If the entity is
524 -- an entry, subsequent analysis of the call will transform it into the
525 -- proper entry or protected operation call. If the renamed entity is
526 -- a character literal, return it directly.
528 if Ekind (Old_S) = E_Function
529 or else Ekind (Old_S) = E_Operator
530 or else (Ekind (Old_S) = E_Subprogram_Type
531 and then Etype (Old_S) /= Standard_Void_Type)
532 then
533 Call_Node :=
534 Make_Simple_Return_Statement (Loc,
535 Expression =>
536 Make_Function_Call (Loc,
537 Name => Call_Name,
538 Parameter_Associations => Actuals));
540 elsif Ekind (Old_S) = E_Enumeration_Literal then
541 Call_Node :=
542 Make_Simple_Return_Statement (Loc,
543 Expression => New_Occurrence_Of (Old_S, Loc));
545 elsif Nkind (Nam) = N_Character_Literal then
546 Call_Node :=
547 Make_Simple_Return_Statement (Loc, Expression => Call_Name);
549 else
550 Call_Node :=
551 Make_Procedure_Call_Statement (Loc,
552 Name => Call_Name,
553 Parameter_Associations => Actuals);
554 end if;
556 -- Create entities for subprogram body and formals
558 Set_Defining_Unit_Name (Spec,
559 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
561 Param_Spec := First (Parameter_Specifications (Spec));
562 while Present (Param_Spec) loop
563 Set_Defining_Identifier (Param_Spec,
564 Make_Defining_Identifier (Loc,
565 Chars => Chars (Defining_Identifier (Param_Spec))));
566 Next (Param_Spec);
567 end loop;
569 Body_Node :=
570 Make_Subprogram_Body (Loc,
571 Specification => Spec,
572 Declarations => New_List,
573 Handled_Statement_Sequence =>
574 Make_Handled_Sequence_Of_Statements (Loc,
575 Statements => New_List (Call_Node)));
577 if Nkind (Decl) /= N_Subprogram_Declaration then
578 Rewrite (N,
579 Make_Subprogram_Declaration (Loc,
580 Specification => Specification (N)));
581 end if;
583 -- Link the body to the entity whose declaration it completes. If
584 -- the body is analyzed when the renamed entity is frozen, it may
585 -- be necessary to restore the proper scope (see package Exp_Ch13).
587 if Nkind (N) = N_Subprogram_Renaming_Declaration
588 and then Present (Corresponding_Spec (N))
589 then
590 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
591 else
592 Set_Corresponding_Spec (Body_Node, New_S);
593 end if;
595 return Body_Node;
596 end Build_Renamed_Body;
598 --------------------------
599 -- Check_Address_Clause --
600 --------------------------
602 procedure Check_Address_Clause (E : Entity_Id) is
603 Addr : constant Node_Id := Address_Clause (E);
604 Typ : constant Entity_Id := Etype (E);
605 Decl : Node_Id;
606 Expr : Node_Id;
607 Init : Node_Id;
608 Lhs : Node_Id;
609 Tag_Assign : Node_Id;
611 begin
612 if Present (Addr) then
614 -- For a deferred constant, the initialization value is on full view
616 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
617 Decl := Declaration_Node (Full_View (E));
618 else
619 Decl := Declaration_Node (E);
620 end if;
622 Expr := Expression (Addr);
624 if Needs_Constant_Address (Decl, Typ) then
625 Check_Constant_Address_Clause (Expr, E);
627 -- Has_Delayed_Freeze was set on E when the address clause was
628 -- analyzed, and must remain set because we want the address
629 -- clause to be elaborated only after any entity it references
630 -- has been elaborated.
631 end if;
633 -- If Rep_Clauses are to be ignored, remove address clause from
634 -- list attached to entity, because it may be illegal for gigi,
635 -- for example by breaking order of elaboration..
637 if Ignore_Rep_Clauses then
638 declare
639 Rep : Node_Id;
641 begin
642 Rep := First_Rep_Item (E);
644 if Rep = Addr then
645 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
647 else
648 while Present (Rep)
649 and then Next_Rep_Item (Rep) /= Addr
650 loop
651 Rep := Next_Rep_Item (Rep);
652 end loop;
653 end if;
655 if Present (Rep) then
656 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
657 end if;
658 end;
660 -- And now remove the address clause
662 Kill_Rep_Clause (Addr);
664 elsif not Error_Posted (Expr)
665 and then not Needs_Finalization (Typ)
666 then
667 Warn_Overlay (Expr, Typ, Name (Addr));
668 end if;
670 Init := Expression (Decl);
672 -- If a variable, or a non-imported constant, overlays a constant
673 -- object and has an initialization value, then the initialization
674 -- may end up writing into read-only memory. Detect the cases of
675 -- statically identical values and remove the initialization. In
676 -- the other cases, give a warning. We will give other warnings
677 -- later for the variable if it is assigned.
679 if (Ekind (E) = E_Variable
680 or else (Ekind (E) = E_Constant
681 and then not Is_Imported (E)))
682 and then Overlays_Constant (E)
683 and then Present (Init)
684 then
685 declare
686 O_Ent : Entity_Id;
687 Off : Boolean;
689 begin
690 Find_Overlaid_Entity (Addr, O_Ent, Off);
692 if Ekind (O_Ent) = E_Constant
693 and then Etype (O_Ent) = Typ
694 and then Present (Constant_Value (O_Ent))
695 and then Compile_Time_Compare
696 (Init,
697 Constant_Value (O_Ent),
698 Assume_Valid => True) = EQ
699 then
700 Set_No_Initialization (Decl);
701 return;
703 elsif Comes_From_Source (Init)
704 and then Address_Clause_Overlay_Warnings
705 then
706 Error_Msg_Sloc := Sloc (Addr);
707 Error_Msg_NE
708 ("??constant& may be modified via address clause#",
709 Decl, O_Ent);
710 end if;
711 end;
712 end if;
714 -- Remove side effects from initial expression, except in the case
715 -- of a build-in-place call, which has its own later expansion.
717 if Present (Init)
718 and then (Nkind (Init) /= N_Function_Call
719 or else not Is_Expanded_Build_In_Place_Call (Init))
720 then
722 -- Capture initialization value at point of declaration, and make
723 -- explicit assignment legal, because object may be a constant.
725 Remove_Side_Effects (Init);
726 Lhs := New_Occurrence_Of (E, Sloc (Decl));
727 Set_Assignment_OK (Lhs);
729 -- Move initialization to freeze actions, once the object has
730 -- been frozen and the address clause alignment check has been
731 -- performed.
733 Append_Freeze_Action (E,
734 Make_Assignment_Statement (Sloc (Decl),
735 Name => Lhs,
736 Expression => Expression (Decl)));
738 Set_No_Initialization (Decl);
740 -- If the objet is tagged, check whether the tag must be
741 -- reassigned explicitly.
743 Tag_Assign := Make_Tag_Assignment (Decl);
744 if Present (Tag_Assign) then
745 Append_Freeze_Action (E, Tag_Assign);
746 end if;
747 end if;
748 end if;
749 end Check_Address_Clause;
751 -----------------------------
752 -- Check_Compile_Time_Size --
753 -----------------------------
755 procedure Check_Compile_Time_Size (T : Entity_Id) is
757 procedure Set_Small_Size (T : Entity_Id; S : Uint);
758 -- Sets the compile time known size (64 bits or less) in the RM_Size
759 -- field of T, checking for a size clause that was given which attempts
760 -- to give a smaller size.
762 function Size_Known (T : Entity_Id) return Boolean;
763 -- Recursive function that does all the work
765 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
766 -- If T is a constrained subtype, its size is not known if any of its
767 -- discriminant constraints is not static and it is not a null record.
768 -- The test is conservative and doesn't check that the components are
769 -- in fact constrained by non-static discriminant values. Could be made
770 -- more precise ???
772 --------------------
773 -- Set_Small_Size --
774 --------------------
776 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
777 begin
778 if S > 64 then
779 return;
781 -- Check for bad size clause given
783 elsif Has_Size_Clause (T) then
784 if RM_Size (T) < S then
785 Error_Msg_Uint_1 := S;
786 Error_Msg_NE
787 ("size for& too small, minimum allowed is ^",
788 Size_Clause (T), T);
789 end if;
791 -- Set size if not set already
793 elsif Unknown_RM_Size (T) then
794 Set_RM_Size (T, S);
795 end if;
796 end Set_Small_Size;
798 ----------------
799 -- Size_Known --
800 ----------------
802 function Size_Known (T : Entity_Id) return Boolean is
803 Index : Entity_Id;
804 Comp : Entity_Id;
805 Ctyp : Entity_Id;
806 Low : Node_Id;
807 High : Node_Id;
809 begin
810 if Size_Known_At_Compile_Time (T) then
811 return True;
813 -- Always True for elementary types, even generic formal elementary
814 -- types. We used to return False in the latter case, but the size
815 -- is known at compile time, even in the template, we just do not
816 -- know the exact size but that's not the point of this routine.
818 elsif Is_Elementary_Type (T) or else Is_Task_Type (T) then
819 return True;
821 -- Array types
823 elsif Is_Array_Type (T) then
825 -- String literals always have known size, and we can set it
827 if Ekind (T) = E_String_Literal_Subtype then
828 Set_Small_Size
829 (T, Component_Size (T) * String_Literal_Length (T));
830 return True;
832 -- Unconstrained types never have known at compile time size
834 elsif not Is_Constrained (T) then
835 return False;
837 -- Don't do any recursion on type with error posted, since we may
838 -- have a malformed type that leads us into a loop.
840 elsif Error_Posted (T) then
841 return False;
843 -- Otherwise if component size unknown, then array size unknown
845 elsif not Size_Known (Component_Type (T)) then
846 return False;
847 end if;
849 -- Check for all indexes static, and also compute possible size
850 -- (in case it is not greater than 64 and may be packable).
852 declare
853 Size : Uint := Component_Size (T);
854 Dim : Uint;
856 begin
857 Index := First_Index (T);
858 while Present (Index) loop
859 if Nkind (Index) = N_Range then
860 Get_Index_Bounds (Index, Low, High);
862 elsif Error_Posted (Scalar_Range (Etype (Index))) then
863 return False;
865 else
866 Low := Type_Low_Bound (Etype (Index));
867 High := Type_High_Bound (Etype (Index));
868 end if;
870 if not Compile_Time_Known_Value (Low)
871 or else not Compile_Time_Known_Value (High)
872 or else Etype (Index) = Any_Type
873 then
874 return False;
876 else
877 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
879 if Dim >= 0 then
880 Size := Size * Dim;
881 else
882 Size := Uint_0;
883 end if;
884 end if;
886 Next_Index (Index);
887 end loop;
889 Set_Small_Size (T, Size);
890 return True;
891 end;
893 -- For non-generic private types, go to underlying type if present
895 elsif Is_Private_Type (T)
896 and then not Is_Generic_Type (T)
897 and then Present (Underlying_Type (T))
898 then
899 -- Don't do any recursion on type with error posted, since we may
900 -- have a malformed type that leads us into a loop.
902 if Error_Posted (T) then
903 return False;
904 else
905 return Size_Known (Underlying_Type (T));
906 end if;
908 -- Record types
910 elsif Is_Record_Type (T) then
912 -- A class-wide type is never considered to have a known size
914 if Is_Class_Wide_Type (T) then
915 return False;
917 -- A subtype of a variant record must not have non-static
918 -- discriminated components.
920 elsif T /= Base_Type (T)
921 and then not Static_Discriminated_Components (T)
922 then
923 return False;
925 -- Don't do any recursion on type with error posted, since we may
926 -- have a malformed type that leads us into a loop.
928 elsif Error_Posted (T) then
929 return False;
930 end if;
932 -- Now look at the components of the record
934 declare
935 -- The following two variables are used to keep track of the
936 -- size of packed records if we can tell the size of the packed
937 -- record in the front end. Packed_Size_Known is True if so far
938 -- we can figure out the size. It is initialized to True for a
939 -- packed record, unless the record has discriminants or atomic
940 -- components or independent components.
942 -- The reason we eliminate the discriminated case is that
943 -- we don't know the way the back end lays out discriminated
944 -- packed records. If Packed_Size_Known is True, then
945 -- Packed_Size is the size in bits so far.
947 Packed_Size_Known : Boolean :=
948 Is_Packed (T)
949 and then not Has_Discriminants (T)
950 and then not Has_Atomic_Components (T)
951 and then not Has_Independent_Components (T);
953 Packed_Size : Uint := Uint_0;
954 -- Size in bits so far
956 begin
957 -- Test for variant part present
959 if Has_Discriminants (T)
960 and then Present (Parent (T))
961 and then Nkind (Parent (T)) = N_Full_Type_Declaration
962 and then Nkind (Type_Definition (Parent (T))) =
963 N_Record_Definition
964 and then not Null_Present (Type_Definition (Parent (T)))
965 and then
966 Present (Variant_Part
967 (Component_List (Type_Definition (Parent (T)))))
968 then
969 -- If variant part is present, and type is unconstrained,
970 -- then we must have defaulted discriminants, or a size
971 -- clause must be present for the type, or else the size
972 -- is definitely not known at compile time.
974 if not Is_Constrained (T)
975 and then
976 No (Discriminant_Default_Value (First_Discriminant (T)))
977 and then Unknown_RM_Size (T)
978 then
979 return False;
980 end if;
981 end if;
983 -- Loop through components
985 Comp := First_Component_Or_Discriminant (T);
986 while Present (Comp) loop
987 Ctyp := Etype (Comp);
989 -- We do not know the packed size if there is a component
990 -- clause present (we possibly could, but this would only
991 -- help in the case of a record with partial rep clauses.
992 -- That's because in the case of full rep clauses, the
993 -- size gets figured out anyway by a different circuit).
995 if Present (Component_Clause (Comp)) then
996 Packed_Size_Known := False;
997 end if;
999 -- We do not know the packed size for an atomic/VFA type
1000 -- or component, or an independent type or component, or a
1001 -- by-reference type or aliased component (because packing
1002 -- does not touch these).
1004 if Is_Atomic_Or_VFA (Ctyp)
1005 or else Is_Atomic_Or_VFA (Comp)
1006 or else Is_Independent (Ctyp)
1007 or else Is_Independent (Comp)
1008 or else Is_By_Reference_Type (Ctyp)
1009 or else Is_Aliased (Comp)
1010 then
1011 Packed_Size_Known := False;
1012 end if;
1014 -- We need to identify a component that is an array where
1015 -- the index type is an enumeration type with non-standard
1016 -- representation, and some bound of the type depends on a
1017 -- discriminant.
1019 -- This is because gigi computes the size by doing a
1020 -- substitution of the appropriate discriminant value in
1021 -- the size expression for the base type, and gigi is not
1022 -- clever enough to evaluate the resulting expression (which
1023 -- involves a call to rep_to_pos) at compile time.
1025 -- It would be nice if gigi would either recognize that
1026 -- this expression can be computed at compile time, or
1027 -- alternatively figured out the size from the subtype
1028 -- directly, where all the information is at hand ???
1030 if Is_Array_Type (Etype (Comp))
1031 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
1032 then
1033 declare
1034 Ocomp : constant Entity_Id :=
1035 Original_Record_Component (Comp);
1036 OCtyp : constant Entity_Id := Etype (Ocomp);
1037 Ind : Node_Id;
1038 Indtyp : Entity_Id;
1039 Lo, Hi : Node_Id;
1041 begin
1042 Ind := First_Index (OCtyp);
1043 while Present (Ind) loop
1044 Indtyp := Etype (Ind);
1046 if Is_Enumeration_Type (Indtyp)
1047 and then Has_Non_Standard_Rep (Indtyp)
1048 then
1049 Lo := Type_Low_Bound (Indtyp);
1050 Hi := Type_High_Bound (Indtyp);
1052 if Is_Entity_Name (Lo)
1053 and then Ekind (Entity (Lo)) = E_Discriminant
1054 then
1055 return False;
1057 elsif Is_Entity_Name (Hi)
1058 and then Ekind (Entity (Hi)) = E_Discriminant
1059 then
1060 return False;
1061 end if;
1062 end if;
1064 Next_Index (Ind);
1065 end loop;
1066 end;
1067 end if;
1069 -- Clearly size of record is not known if the size of one of
1070 -- the components is not known.
1072 if not Size_Known (Ctyp) then
1073 return False;
1074 end if;
1076 -- Accumulate packed size if possible
1078 if Packed_Size_Known then
1080 -- We can deal with elementary types, small packed arrays
1081 -- if the representation is a modular type and also small
1082 -- record types (if the size is not greater than 64, but
1083 -- the condition is checked by Set_Small_Size).
1085 if Is_Elementary_Type (Ctyp)
1086 or else (Is_Array_Type (Ctyp)
1087 and then Present
1088 (Packed_Array_Impl_Type (Ctyp))
1089 and then Is_Modular_Integer_Type
1090 (Packed_Array_Impl_Type (Ctyp)))
1091 or else Is_Record_Type (Ctyp)
1092 then
1093 -- If RM_Size is known and static, then we can keep
1094 -- accumulating the packed size.
1096 if Known_Static_RM_Size (Ctyp) then
1098 Packed_Size := Packed_Size + RM_Size (Ctyp);
1100 -- If we have a field whose RM_Size is not known then
1101 -- we can't figure out the packed size here.
1103 else
1104 Packed_Size_Known := False;
1105 end if;
1107 -- For other types we can't figure out the packed size
1109 else
1110 Packed_Size_Known := False;
1111 end if;
1112 end if;
1114 Next_Component_Or_Discriminant (Comp);
1115 end loop;
1117 if Packed_Size_Known then
1118 Set_Small_Size (T, Packed_Size);
1119 end if;
1121 return True;
1122 end;
1124 -- All other cases, size not known at compile time
1126 else
1127 return False;
1128 end if;
1129 end Size_Known;
1131 -------------------------------------
1132 -- Static_Discriminated_Components --
1133 -------------------------------------
1135 function Static_Discriminated_Components
1136 (T : Entity_Id) return Boolean
1138 Constraint : Elmt_Id;
1140 begin
1141 if Has_Discriminants (T)
1142 and then Present (Discriminant_Constraint (T))
1143 and then Present (First_Component (T))
1144 then
1145 Constraint := First_Elmt (Discriminant_Constraint (T));
1146 while Present (Constraint) loop
1147 if not Compile_Time_Known_Value (Node (Constraint)) then
1148 return False;
1149 end if;
1151 Next_Elmt (Constraint);
1152 end loop;
1153 end if;
1155 return True;
1156 end Static_Discriminated_Components;
1158 -- Start of processing for Check_Compile_Time_Size
1160 begin
1161 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1162 end Check_Compile_Time_Size;
1164 -----------------------------------
1165 -- Check_Component_Storage_Order --
1166 -----------------------------------
1168 procedure Check_Component_Storage_Order
1169 (Encl_Type : Entity_Id;
1170 Comp : Entity_Id;
1171 ADC : Node_Id;
1172 Comp_ADC_Present : out Boolean)
1174 Comp_Base : Entity_Id;
1175 Comp_ADC : Node_Id;
1176 Encl_Base : Entity_Id;
1177 Err_Node : Node_Id;
1179 Component_Aliased : Boolean;
1181 Comp_Byte_Aligned : Boolean := False;
1182 -- Set for the record case, True if Comp is aligned on byte boundaries
1183 -- (in which case it is allowed to have different storage order).
1185 Comp_SSO_Differs : Boolean;
1186 -- Set True when the component is a nested composite, and it does not
1187 -- have the same scalar storage order as Encl_Type.
1189 begin
1190 -- Record case
1192 if Present (Comp) then
1193 Err_Node := Comp;
1194 Comp_Base := Etype (Comp);
1196 if Is_Tag (Comp) then
1197 Comp_Byte_Aligned := True;
1198 Component_Aliased := False;
1200 else
1201 -- If a component clause is present, check if the component starts
1202 -- and ends on byte boundaries. Otherwise conservatively assume it
1203 -- does so only in the case where the record is not packed.
1205 if Present (Component_Clause (Comp)) then
1206 Comp_Byte_Aligned :=
1207 (Normalized_First_Bit (Comp) mod System_Storage_Unit = 0)
1208 and then
1209 (Esize (Comp) mod System_Storage_Unit = 0);
1210 else
1211 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1212 end if;
1214 Component_Aliased := Is_Aliased (Comp);
1215 end if;
1217 -- Array case
1219 else
1220 Err_Node := Encl_Type;
1221 Comp_Base := Component_Type (Encl_Type);
1223 Component_Aliased := Has_Aliased_Components (Encl_Type);
1224 end if;
1226 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1227 -- the attribute definition clause is attached to the first subtype.
1228 -- Also, if the base type is incomplete or private, go to full view
1229 -- if known
1231 Encl_Base := Base_Type (Encl_Type);
1232 if Present (Underlying_Type (Encl_Base)) then
1233 Encl_Base := Underlying_Type (Encl_Base);
1234 end if;
1236 Comp_Base := Base_Type (Comp_Base);
1237 if Present (Underlying_Type (Comp_Base)) then
1238 Comp_Base := Underlying_Type (Comp_Base);
1239 end if;
1241 Comp_ADC :=
1242 Get_Attribute_Definition_Clause
1243 (First_Subtype (Comp_Base), Attribute_Scalar_Storage_Order);
1244 Comp_ADC_Present := Present (Comp_ADC);
1246 -- Case of record or array component: check storage order compatibility.
1247 -- But, if the record has Complex_Representation, then it is treated as
1248 -- a scalar in the back end so the storage order is irrelevant.
1250 if (Is_Record_Type (Comp_Base)
1251 and then not Has_Complex_Representation (Comp_Base))
1252 or else Is_Array_Type (Comp_Base)
1253 then
1254 Comp_SSO_Differs :=
1255 Reverse_Storage_Order (Encl_Base) /=
1256 Reverse_Storage_Order (Comp_Base);
1258 -- Parent and extension must have same storage order
1260 if Present (Comp) and then Chars (Comp) = Name_uParent then
1261 if Comp_SSO_Differs then
1262 Error_Msg_N
1263 ("record extension must have same scalar storage order as "
1264 & "parent", Err_Node);
1265 end if;
1267 -- If component and composite SSO differs, check that component
1268 -- falls on byte boundaries and isn't bit packed.
1270 elsif Comp_SSO_Differs then
1272 -- Component SSO differs from enclosing composite:
1274 -- Reject if composite is a bit-packed array, as it is rewritten
1275 -- into an array of scalars.
1277 if Is_Bit_Packed_Array (Encl_Base) then
1278 Error_Msg_N
1279 ("type of packed array must have same scalar storage order "
1280 & "as component", Err_Node);
1282 -- Reject if not byte aligned
1284 elsif Is_Record_Type (Encl_Base)
1285 and then not Comp_Byte_Aligned
1286 then
1287 Error_Msg_N
1288 ("type of non-byte-aligned component must have same scalar "
1289 & "storage order as enclosing composite", Err_Node);
1291 -- Warn if specified only for the outer composite
1293 elsif Present (ADC) and then No (Comp_ADC) then
1294 Error_Msg_NE
1295 ("scalar storage order specified for & does not apply to "
1296 & "component?", Err_Node, Encl_Base);
1297 end if;
1298 end if;
1300 -- Enclosing type has explicit SSO: non-composite component must not
1301 -- be aliased.
1303 elsif Present (ADC) and then Component_Aliased then
1304 Error_Msg_N
1305 ("aliased component not permitted for type with explicit "
1306 & "Scalar_Storage_Order", Err_Node);
1307 end if;
1308 end Check_Component_Storage_Order;
1310 -----------------------------
1311 -- Check_Debug_Info_Needed --
1312 -----------------------------
1314 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1315 begin
1316 if Debug_Info_Off (T) then
1317 return;
1319 elsif Comes_From_Source (T)
1320 or else Debug_Generated_Code
1321 or else Debug_Flag_VV
1322 or else Needs_Debug_Info (T)
1323 then
1324 Set_Debug_Info_Needed (T);
1325 end if;
1326 end Check_Debug_Info_Needed;
1328 -------------------------------
1329 -- Check_Expression_Function --
1330 -------------------------------
1332 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
1333 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1334 -- Function to search for deferred constant
1336 -------------------
1337 -- Find_Constant --
1338 -------------------
1340 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1341 begin
1342 -- When a constant is initialized with the result of a dispatching
1343 -- call, the constant declaration is rewritten as a renaming of the
1344 -- displaced function result. This scenario is not a premature use of
1345 -- a constant even though the Has_Completion flag is not set.
1347 if Is_Entity_Name (Nod)
1348 and then Present (Entity (Nod))
1349 and then Ekind (Entity (Nod)) = E_Constant
1350 and then Scope (Entity (Nod)) = Current_Scope
1351 and then Nkind (Declaration_Node (Entity (Nod))) =
1352 N_Object_Declaration
1353 and then not Is_Imported (Entity (Nod))
1354 and then not Has_Completion (Entity (Nod))
1355 and then not Is_Frozen (Entity (Nod))
1356 then
1357 Error_Msg_NE
1358 ("premature use of& in call or instance", N, Entity (Nod));
1360 elsif Nkind (Nod) = N_Attribute_Reference then
1361 Analyze (Prefix (Nod));
1363 if Is_Entity_Name (Prefix (Nod))
1364 and then Is_Type (Entity (Prefix (Nod)))
1365 then
1366 Freeze_Before (N, Entity (Prefix (Nod)));
1367 end if;
1368 end if;
1370 return OK;
1371 end Find_Constant;
1373 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1375 -- Local variables
1377 Decl : Node_Id;
1379 -- Start of processing for Check_Expression_Function
1381 begin
1382 Decl := Original_Node (Unit_Declaration_Node (Nam));
1384 -- The subprogram body created for the expression function is not
1385 -- itself a freeze point.
1387 if Scope (Nam) = Current_Scope
1388 and then Nkind (Decl) = N_Expression_Function
1389 and then Nkind (N) /= N_Subprogram_Body
1390 then
1391 Check_Deferred (Expression (Decl));
1392 end if;
1393 end Check_Expression_Function;
1395 --------------------------------
1396 -- Check_Inherited_Conditions --
1397 --------------------------------
1399 procedure Check_Inherited_Conditions (R : Entity_Id) is
1400 Prim_Ops : constant Elist_Id := Primitive_Operations (R);
1401 Decls : List_Id;
1402 Needs_Wrapper : Boolean;
1403 Op_Node : Elmt_Id;
1404 Par_Prim : Entity_Id;
1405 Prim : Entity_Id;
1407 procedure Build_Inherited_Condition_Pragmas (Subp : Entity_Id);
1408 -- Build corresponding pragmas for an operation whose ancestor has
1409 -- class-wide pre/postconditions. If the operation is inherited, the
1410 -- pragmas force the creation of a wrapper for the inherited operation.
1411 -- If the ancestor is being overridden, the pragmas are constructed only
1412 -- to verify their legality, in case they contain calls to other
1413 -- primitives that may haven been overridden.
1415 ---------------------------------------
1416 -- Build_Inherited_Condition_Pragmas --
1417 ---------------------------------------
1419 procedure Build_Inherited_Condition_Pragmas (Subp : Entity_Id) is
1420 A_Post : Node_Id;
1421 A_Pre : Node_Id;
1422 New_Prag : Node_Id;
1424 begin
1425 A_Pre := Get_Class_Wide_Pragma (Par_Prim, Pragma_Precondition);
1427 if Present (A_Pre) then
1428 New_Prag := New_Copy_Tree (A_Pre);
1429 Build_Class_Wide_Expression
1430 (Prag => New_Prag,
1431 Subp => Prim,
1432 Par_Subp => Par_Prim,
1433 Adjust_Sloc => False,
1434 Needs_Wrapper => Needs_Wrapper);
1436 if Needs_Wrapper
1437 and then not Comes_From_Source (Subp)
1438 and then Expander_Active
1439 then
1440 Append (New_Prag, Decls);
1441 end if;
1442 end if;
1444 A_Post := Get_Class_Wide_Pragma (Par_Prim, Pragma_Postcondition);
1446 if Present (A_Post) then
1447 New_Prag := New_Copy_Tree (A_Post);
1448 Build_Class_Wide_Expression
1449 (Prag => New_Prag,
1450 Subp => Prim,
1451 Par_Subp => Par_Prim,
1452 Adjust_Sloc => False,
1453 Needs_Wrapper => Needs_Wrapper);
1455 if Needs_Wrapper
1456 and then not Comes_From_Source (Subp)
1457 and then Expander_Active
1458 then
1459 Append (New_Prag, Decls);
1460 end if;
1461 end if;
1462 end Build_Inherited_Condition_Pragmas;
1464 -- Start of processing for Check_Inherited_Conditions
1466 begin
1467 Op_Node := First_Elmt (Prim_Ops);
1468 while Present (Op_Node) loop
1469 Prim := Node (Op_Node);
1471 -- Map the overridden primitive to the overriding one. This takes
1472 -- care of all overridings and is done only once.
1474 if Present (Overridden_Operation (Prim))
1475 and then Comes_From_Source (Prim)
1476 then
1477 Par_Prim := Overridden_Operation (Prim);
1478 Update_Primitives_Mapping (Par_Prim, Prim);
1479 end if;
1481 Next_Elmt (Op_Node);
1482 end loop;
1484 -- Perform validity checks on the inherited conditions of overriding
1485 -- operations, for conformance with LSP, and apply SPARK-specific
1486 -- restrictions on inherited conditions.
1488 Op_Node := First_Elmt (Prim_Ops);
1489 while Present (Op_Node) loop
1490 Prim := Node (Op_Node);
1492 if Present (Overridden_Operation (Prim))
1493 and then Comes_From_Source (Prim)
1494 then
1495 Par_Prim := Overridden_Operation (Prim);
1497 -- Analyze the contract items of the overridden operation, before
1498 -- they are rewritten as pragmas.
1500 Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
1502 -- In GNATprove mode this is where we can collect the inherited
1503 -- conditions, because we do not create the Check pragmas that
1504 -- normally convey the the modified class-wide conditions on
1505 -- overriding operations.
1507 if GNATprove_Mode then
1508 Collect_Inherited_Class_Wide_Conditions (Prim);
1510 -- Otherwise build the corresponding pragmas to check for legality
1511 -- of the inherited condition.
1513 else
1514 Build_Inherited_Condition_Pragmas (Prim);
1515 end if;
1516 end if;
1518 Next_Elmt (Op_Node);
1519 end loop;
1521 -- Now examine the inherited operations to check whether they require
1522 -- a wrapper to handle inherited conditions that call other primitives,
1523 -- so that LSP can be verified/enforced.
1525 Op_Node := First_Elmt (Prim_Ops);
1526 Needs_Wrapper := False;
1528 while Present (Op_Node) loop
1529 Decls := Empty_List;
1530 Prim := Node (Op_Node);
1532 if not Comes_From_Source (Prim) and then Present (Alias (Prim)) then
1533 Par_Prim := Alias (Prim);
1535 -- Analyze the contract items of the parent operation, and
1536 -- determine whether a wrapper is needed. This is determined
1537 -- when the condition is rewritten in sem_prag, using the
1538 -- mapping between overridden and overriding operations built
1539 -- in the loop above.
1541 Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
1542 Build_Inherited_Condition_Pragmas (Prim);
1543 end if;
1545 if Needs_Wrapper
1546 and then not Is_Abstract_Subprogram (Par_Prim)
1547 and then Expander_Active
1548 then
1549 -- We need to build a new primitive that overrides the inherited
1550 -- one, and whose inherited expression has been updated above.
1551 -- These expressions are the arguments of pragmas that are part
1552 -- of the declarations of the wrapper. The wrapper holds a single
1553 -- statement that is a call to the class-wide clone, where the
1554 -- controlling actuals are conversions to the corresponding type
1555 -- in the parent primitive:
1557 -- procedure New_Prim (F1 : T1; ...);
1558 -- procedure New_Prim (F1 : T1; ...) is
1559 -- pragma Check (Precondition, Expr);
1560 -- begin
1561 -- Par_Prim_Clone (Par_Type (F1), ...);
1562 -- end;
1564 -- If the primitive is a function the statement is a return
1565 -- statement with a call.
1567 declare
1568 Loc : constant Source_Ptr := Sloc (R);
1569 Par_R : constant Node_Id := Parent (R);
1570 New_Body : Node_Id;
1571 New_Decl : Node_Id;
1572 New_Spec : Node_Id;
1574 begin
1575 New_Spec := Build_Overriding_Spec (Par_Prim, R);
1576 New_Decl :=
1577 Make_Subprogram_Declaration (Loc,
1578 Specification => New_Spec);
1580 -- Insert the declaration and the body of the wrapper after
1581 -- type declaration that generates inherited operation. For
1582 -- a null procedure, the declaration implies a null body.
1584 if Nkind (New_Spec) = N_Procedure_Specification
1585 and then Null_Present (New_Spec)
1586 then
1587 Insert_After_And_Analyze (Par_R, New_Decl);
1589 else
1590 -- Build body as wrapper to a call to the already built
1591 -- class-wide clone.
1593 New_Body :=
1594 Build_Class_Wide_Clone_Call
1595 (Loc, Decls, Par_Prim, New_Spec);
1597 Insert_List_After_And_Analyze
1598 (Par_R, New_List (New_Decl, New_Body));
1599 end if;
1600 end;
1602 Needs_Wrapper := False;
1603 end if;
1605 Next_Elmt (Op_Node);
1606 end loop;
1607 end Check_Inherited_Conditions;
1609 ----------------------------
1610 -- Check_Strict_Alignment --
1611 ----------------------------
1613 procedure Check_Strict_Alignment (E : Entity_Id) is
1614 Comp : Entity_Id;
1616 begin
1617 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1618 Set_Strict_Alignment (E);
1620 elsif Is_Array_Type (E) then
1621 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1623 elsif Is_Record_Type (E) then
1624 if Is_Limited_Record (E) then
1625 Set_Strict_Alignment (E);
1626 return;
1627 end if;
1629 Comp := First_Component (E);
1630 while Present (Comp) loop
1631 if not Is_Type (Comp)
1632 and then (Strict_Alignment (Etype (Comp))
1633 or else Is_Aliased (Comp))
1634 then
1635 Set_Strict_Alignment (E);
1636 return;
1637 end if;
1639 Next_Component (Comp);
1640 end loop;
1641 end if;
1642 end Check_Strict_Alignment;
1644 -------------------------
1645 -- Check_Unsigned_Type --
1646 -------------------------
1648 procedure Check_Unsigned_Type (E : Entity_Id) is
1649 Ancestor : Entity_Id;
1650 Lo_Bound : Node_Id;
1651 Btyp : Entity_Id;
1653 begin
1654 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1655 return;
1656 end if;
1658 -- Do not attempt to analyze case where range was in error
1660 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
1661 return;
1662 end if;
1664 -- The situation that is nontrivial is something like:
1666 -- subtype x1 is integer range -10 .. +10;
1667 -- subtype x2 is x1 range 0 .. V1;
1668 -- subtype x3 is x2 range V2 .. V3;
1669 -- subtype x4 is x3 range V4 .. V5;
1671 -- where Vn are variables. Here the base type is signed, but we still
1672 -- know that x4 is unsigned because of the lower bound of x2.
1674 -- The only way to deal with this is to look up the ancestor chain
1676 Ancestor := E;
1677 loop
1678 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1679 return;
1680 end if;
1682 Lo_Bound := Type_Low_Bound (Ancestor);
1684 if Compile_Time_Known_Value (Lo_Bound) then
1685 if Expr_Rep_Value (Lo_Bound) >= 0 then
1686 Set_Is_Unsigned_Type (E, True);
1687 end if;
1689 return;
1691 else
1692 Ancestor := Ancestor_Subtype (Ancestor);
1694 -- If no ancestor had a static lower bound, go to base type
1696 if No (Ancestor) then
1698 -- Note: the reason we still check for a compile time known
1699 -- value for the base type is that at least in the case of
1700 -- generic formals, we can have bounds that fail this test,
1701 -- and there may be other cases in error situations.
1703 Btyp := Base_Type (E);
1705 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1706 return;
1707 end if;
1709 Lo_Bound := Type_Low_Bound (Base_Type (E));
1711 if Compile_Time_Known_Value (Lo_Bound)
1712 and then Expr_Rep_Value (Lo_Bound) >= 0
1713 then
1714 Set_Is_Unsigned_Type (E, True);
1715 end if;
1717 return;
1718 end if;
1719 end if;
1720 end loop;
1721 end Check_Unsigned_Type;
1723 -----------------------------
1724 -- Is_Atomic_VFA_Aggregate --
1725 -----------------------------
1727 function Is_Atomic_VFA_Aggregate (N : Node_Id) return Boolean is
1728 Loc : constant Source_Ptr := Sloc (N);
1729 New_N : Node_Id;
1730 Par : Node_Id;
1731 Temp : Entity_Id;
1732 Typ : Entity_Id;
1734 begin
1735 Par := Parent (N);
1737 -- Array may be qualified, so find outer context
1739 if Nkind (Par) = N_Qualified_Expression then
1740 Par := Parent (Par);
1741 end if;
1743 if not Comes_From_Source (Par) then
1744 return False;
1745 end if;
1747 case Nkind (Par) is
1748 when N_Assignment_Statement =>
1749 Typ := Etype (Name (Par));
1751 if not Is_Atomic_Or_VFA (Typ)
1752 and then not (Is_Entity_Name (Name (Par))
1753 and then Is_Atomic_Or_VFA (Entity (Name (Par))))
1754 then
1755 return False;
1756 end if;
1758 when N_Object_Declaration =>
1759 Typ := Etype (Defining_Identifier (Par));
1761 if not Is_Atomic_Or_VFA (Typ)
1762 and then not Is_Atomic_Or_VFA (Defining_Identifier (Par))
1763 then
1764 return False;
1765 end if;
1767 when others =>
1768 return False;
1769 end case;
1771 Temp := Make_Temporary (Loc, 'T', N);
1772 New_N :=
1773 Make_Object_Declaration (Loc,
1774 Defining_Identifier => Temp,
1775 Object_Definition => New_Occurrence_Of (Typ, Loc),
1776 Expression => Relocate_Node (N));
1777 Insert_Before (Par, New_N);
1778 Analyze (New_N);
1780 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1781 return True;
1782 end Is_Atomic_VFA_Aggregate;
1784 -----------------------------------------------
1785 -- Explode_Initialization_Compound_Statement --
1786 -----------------------------------------------
1788 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
1789 Init_Stmts : constant Node_Id := Initialization_Statements (E);
1791 begin
1792 if Present (Init_Stmts)
1793 and then Nkind (Init_Stmts) = N_Compound_Statement
1794 then
1795 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
1797 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1798 -- just removing it, because Freeze_All may rely on this particular
1799 -- Node_Id still being present in the enclosing list to know where to
1800 -- stop freezing.
1802 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
1804 Set_Initialization_Statements (E, Empty);
1805 end if;
1806 end Explode_Initialization_Compound_Statement;
1808 ----------------
1809 -- Freeze_All --
1810 ----------------
1812 -- Note: the easy coding for this procedure would be to just build a
1813 -- single list of freeze nodes and then insert them and analyze them
1814 -- all at once. This won't work, because the analysis of earlier freeze
1815 -- nodes may recursively freeze types which would otherwise appear later
1816 -- on in the freeze list. So we must analyze and expand the freeze nodes
1817 -- as they are generated.
1819 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1820 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1821 -- This is the internal recursive routine that does freezing of entities
1822 -- (but NOT the analysis of default expressions, which should not be
1823 -- recursive, we don't want to analyze those till we are sure that ALL
1824 -- the types are frozen).
1826 --------------------
1827 -- Freeze_All_Ent --
1828 --------------------
1830 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1831 E : Entity_Id;
1832 Flist : List_Id;
1833 Lastn : Node_Id;
1835 procedure Process_Flist;
1836 -- If freeze nodes are present, insert and analyze, and reset cursor
1837 -- for next insertion.
1839 -------------------
1840 -- Process_Flist --
1841 -------------------
1843 procedure Process_Flist is
1844 begin
1845 if Is_Non_Empty_List (Flist) then
1846 Lastn := Next (After);
1847 Insert_List_After_And_Analyze (After, Flist);
1849 if Present (Lastn) then
1850 After := Prev (Lastn);
1851 else
1852 After := Last (List_Containing (After));
1853 end if;
1854 end if;
1855 end Process_Flist;
1857 -- Start of processing for Freeze_All_Ent
1859 begin
1860 E := From;
1861 while Present (E) loop
1863 -- If the entity is an inner package which is not a package
1864 -- renaming, then its entities must be frozen at this point. Note
1865 -- that such entities do NOT get frozen at the end of the nested
1866 -- package itself (only library packages freeze).
1868 -- Same is true for task declarations, where anonymous records
1869 -- created for entry parameters must be frozen.
1871 if Ekind (E) = E_Package
1872 and then No (Renamed_Object (E))
1873 and then not Is_Child_Unit (E)
1874 and then not Is_Frozen (E)
1875 then
1876 Push_Scope (E);
1878 Install_Visible_Declarations (E);
1879 Install_Private_Declarations (E);
1880 Freeze_All (First_Entity (E), After);
1882 End_Package_Scope (E);
1884 if Is_Generic_Instance (E)
1885 and then Has_Delayed_Freeze (E)
1886 then
1887 Set_Has_Delayed_Freeze (E, False);
1888 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1889 end if;
1891 elsif Ekind (E) in Task_Kind
1892 and then Nkind_In (Parent (E), N_Single_Task_Declaration,
1893 N_Task_Type_Declaration)
1894 then
1895 Push_Scope (E);
1896 Freeze_All (First_Entity (E), After);
1897 End_Scope;
1899 -- For a derived tagged type, we must ensure that all the
1900 -- primitive operations of the parent have been frozen, so that
1901 -- their addresses will be in the parent's dispatch table at the
1902 -- point it is inherited.
1904 elsif Ekind (E) = E_Record_Type
1905 and then Is_Tagged_Type (E)
1906 and then Is_Tagged_Type (Etype (E))
1907 and then Is_Derived_Type (E)
1908 then
1909 declare
1910 Prim_List : constant Elist_Id :=
1911 Primitive_Operations (Etype (E));
1913 Prim : Elmt_Id;
1914 Subp : Entity_Id;
1916 begin
1917 Prim := First_Elmt (Prim_List);
1918 while Present (Prim) loop
1919 Subp := Node (Prim);
1921 if Comes_From_Source (Subp)
1922 and then not Is_Frozen (Subp)
1923 then
1924 Flist := Freeze_Entity (Subp, After);
1925 Process_Flist;
1926 end if;
1928 Next_Elmt (Prim);
1929 end loop;
1930 end;
1931 end if;
1933 if not Is_Frozen (E) then
1934 Flist := Freeze_Entity (E, After);
1935 Process_Flist;
1937 -- If already frozen, and there are delayed aspects, this is where
1938 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1939 -- for a description of how we handle aspect visibility).
1941 elsif Has_Delayed_Aspects (E) then
1943 -- Retrieve the visibility to the discriminants in order to
1944 -- analyze properly the aspects.
1946 Push_Scope_And_Install_Discriminants (E);
1948 declare
1949 Ritem : Node_Id;
1951 begin
1952 Ritem := First_Rep_Item (E);
1953 while Present (Ritem) loop
1954 if Nkind (Ritem) = N_Aspect_Specification
1955 and then Entity (Ritem) = E
1956 and then Is_Delayed_Aspect (Ritem)
1957 then
1958 Check_Aspect_At_End_Of_Declarations (Ritem);
1959 end if;
1961 Ritem := Next_Rep_Item (Ritem);
1962 end loop;
1963 end;
1965 Uninstall_Discriminants_And_Pop_Scope (E);
1966 end if;
1968 -- If an incomplete type is still not frozen, this may be a
1969 -- premature freezing because of a body declaration that follows.
1970 -- Indicate where the freezing took place. Freezing will happen
1971 -- if the body comes from source, but not if it is internally
1972 -- generated, for example as the body of a type invariant.
1974 -- If the freezing is caused by the end of the current declarative
1975 -- part, it is a Taft Amendment type, and there is no error.
1977 if not Is_Frozen (E)
1978 and then Ekind (E) = E_Incomplete_Type
1979 then
1980 declare
1981 Bod : constant Node_Id := Next (After);
1983 begin
1984 -- The presence of a body freezes all entities previously
1985 -- declared in the current list of declarations, but this
1986 -- does not apply if the body does not come from source.
1987 -- A type invariant is transformed into a subprogram body
1988 -- which is placed at the end of the private part of the
1989 -- current package, but this body does not freeze incomplete
1990 -- types that may be declared in this private part.
1992 if (Nkind_In (Bod, N_Entry_Body,
1993 N_Package_Body,
1994 N_Protected_Body,
1995 N_Subprogram_Body,
1996 N_Task_Body)
1997 or else Nkind (Bod) in N_Body_Stub)
1998 and then
1999 List_Containing (After) = List_Containing (Parent (E))
2000 and then Comes_From_Source (Bod)
2001 then
2002 Error_Msg_Sloc := Sloc (Next (After));
2003 Error_Msg_NE
2004 ("type& is frozen# before its full declaration",
2005 Parent (E), E);
2006 end if;
2007 end;
2008 end if;
2010 Next_Entity (E);
2011 end loop;
2012 end Freeze_All_Ent;
2014 -- Local variables
2016 Decl : Node_Id;
2017 E : Entity_Id;
2018 Item : Entity_Id;
2020 -- Start of processing for Freeze_All
2022 begin
2023 Freeze_All_Ent (From, After);
2025 -- Now that all types are frozen, we can deal with default expressions
2026 -- that require us to build a default expression functions. This is the
2027 -- point at which such functions are constructed (after all types that
2028 -- might be used in such expressions have been frozen).
2030 -- For subprograms that are renaming_as_body, we create the wrapper
2031 -- bodies as needed.
2033 -- We also add finalization chains to access types whose designated
2034 -- types are controlled. This is normally done when freezing the type,
2035 -- but this misses recursive type definitions where the later members
2036 -- of the recursion introduce controlled components.
2038 -- Loop through entities
2040 E := From;
2041 while Present (E) loop
2042 if Is_Subprogram (E) then
2043 if not Default_Expressions_Processed (E) then
2044 Process_Default_Expressions (E, After);
2045 end if;
2047 if not Has_Completion (E) then
2048 Decl := Unit_Declaration_Node (E);
2050 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
2051 if Error_Posted (Decl) then
2052 Set_Has_Completion (E);
2053 else
2054 Build_And_Analyze_Renamed_Body (Decl, E, After);
2055 end if;
2057 elsif Nkind (Decl) = N_Subprogram_Declaration
2058 and then Present (Corresponding_Body (Decl))
2059 and then
2060 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) =
2061 N_Subprogram_Renaming_Declaration
2062 then
2063 Build_And_Analyze_Renamed_Body
2064 (Decl, Corresponding_Body (Decl), After);
2065 end if;
2066 end if;
2068 -- Freeze the default expressions of entries, entry families, and
2069 -- protected subprograms.
2071 elsif Is_Concurrent_Type (E) then
2072 Item := First_Entity (E);
2073 while Present (Item) loop
2074 if (Is_Entry (Item) or else Is_Subprogram (Item))
2075 and then not Default_Expressions_Processed (Item)
2076 then
2077 Process_Default_Expressions (Item, After);
2078 end if;
2080 Next_Entity (Item);
2081 end loop;
2082 end if;
2084 -- Historical note: We used to create a finalization master for an
2085 -- access type whose designated type is not controlled, but contains
2086 -- private controlled compoments. This form of postprocessing is no
2087 -- longer needed because the finalization master is now created when
2088 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
2090 Next_Entity (E);
2091 end loop;
2092 end Freeze_All;
2094 -----------------------
2095 -- Freeze_And_Append --
2096 -----------------------
2098 procedure Freeze_And_Append
2099 (Ent : Entity_Id;
2100 N : Node_Id;
2101 Result : in out List_Id)
2103 L : constant List_Id := Freeze_Entity (Ent, N);
2104 begin
2105 if Is_Non_Empty_List (L) then
2106 if Result = No_List then
2107 Result := L;
2108 else
2109 Append_List (L, Result);
2110 end if;
2111 end if;
2112 end Freeze_And_Append;
2114 -------------------
2115 -- Freeze_Before --
2116 -------------------
2118 procedure Freeze_Before
2119 (N : Node_Id;
2120 T : Entity_Id;
2121 Do_Freeze_Profile : Boolean := True)
2123 -- Freeze T, then insert the generated Freeze nodes before the node N.
2124 -- Flag Freeze_Profile is used when T is an overloadable entity, and
2125 -- indicates whether its profile should be frozen at the same time.
2127 Freeze_Nodes : constant List_Id :=
2128 Freeze_Entity (T, N, Do_Freeze_Profile);
2129 Pack : constant Entity_Id := Scope (T);
2131 begin
2132 if Ekind (T) = E_Function then
2133 Check_Expression_Function (N, T);
2134 end if;
2136 if Is_Non_Empty_List (Freeze_Nodes) then
2138 -- If the entity is a type declared in an inner package, it may be
2139 -- frozen by an outer declaration before the package itself is
2140 -- frozen. Install the package scope to analyze the freeze nodes,
2141 -- which may include generated subprograms such as predicate
2142 -- functions, etc.
2144 if Is_Type (T) and then From_Nested_Package (T) then
2145 Push_Scope (Pack);
2146 Install_Visible_Declarations (Pack);
2147 Install_Private_Declarations (Pack);
2148 Insert_Actions (N, Freeze_Nodes);
2149 End_Package_Scope (Pack);
2151 else
2152 Insert_Actions (N, Freeze_Nodes);
2153 end if;
2154 end if;
2155 end Freeze_Before;
2157 -------------------
2158 -- Freeze_Entity --
2159 -------------------
2161 -- WARNING: This routine manages Ghost regions. Return statements must be
2162 -- replaced by gotos which jump to the end of the routine and restore the
2163 -- Ghost mode.
2165 function Freeze_Entity
2166 (E : Entity_Id;
2167 N : Node_Id;
2168 Do_Freeze_Profile : Boolean := True) return List_Id
2170 Loc : constant Source_Ptr := Sloc (N);
2171 Atype : Entity_Id;
2172 Comp : Entity_Id;
2173 F_Node : Node_Id;
2174 Formal : Entity_Id;
2175 Indx : Node_Id;
2177 Has_Default_Initialization : Boolean := False;
2178 -- This flag gets set to true for a variable with default initialization
2180 Result : List_Id := No_List;
2181 -- List of freezing actions, left at No_List if none
2183 Test_E : Entity_Id := E;
2184 -- This could use a comment ???
2186 procedure Add_To_Result (N : Node_Id);
2187 -- N is a freezing action to be appended to the Result
2189 function After_Last_Declaration return Boolean;
2190 -- If Loc is a freeze_entity that appears after the last declaration
2191 -- in the scope, inhibit error messages on late completion.
2193 procedure Check_Current_Instance (Comp_Decl : Node_Id);
2194 -- Check that an Access or Unchecked_Access attribute with a prefix
2195 -- which is the current instance type can only be applied when the type
2196 -- is limited.
2198 procedure Check_Suspicious_Convention (Rec_Type : Entity_Id);
2199 -- Give a warning for pragma Convention with language C or C++ applied
2200 -- to a discriminated record type. This is suppressed for the unchecked
2201 -- union case, since the whole point in this case is interface C. We
2202 -- also do not generate this within instantiations, since we will have
2203 -- generated a message on the template.
2205 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
2206 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
2207 -- integer literal without an explicit corresponding size clause. The
2208 -- caller has checked that Utype is a modular integer type.
2210 procedure Freeze_Array_Type (Arr : Entity_Id);
2211 -- Freeze array type, including freezing index and component types
2213 procedure Freeze_Object_Declaration (E : Entity_Id);
2214 -- Perform checks and generate freeze node if needed for a constant or
2215 -- variable declared by an object declaration.
2217 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
2218 -- Create Freeze_Generic_Entity nodes for types declared in a generic
2219 -- package. Recurse on inner generic packages.
2221 function Freeze_Profile (E : Entity_Id) return Boolean;
2222 -- Freeze formals and return type of subprogram. If some type in the
2223 -- profile is incomplete and we are in an instance, freezing of the
2224 -- entity will take place elsewhere, and the function returns False.
2226 procedure Freeze_Record_Type (Rec : Entity_Id);
2227 -- Freeze record type, including freezing component types, and freezing
2228 -- primitive operations if this is a tagged type.
2230 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
2231 -- Determine whether an arbitrary entity is subject to Boolean aspect
2232 -- Import and its value is specified as True.
2234 procedure Inherit_Freeze_Node
2235 (Fnod : Node_Id;
2236 Typ : Entity_Id);
2237 -- Set type Typ's freeze node to refer to Fnode. This routine ensures
2238 -- that any attributes attached to Typ's original node are preserved.
2240 procedure Wrap_Imported_Subprogram (E : Entity_Id);
2241 -- If E is an entity for an imported subprogram with pre/post-conditions
2242 -- then this procedure will create a wrapper to ensure that proper run-
2243 -- time checking of the pre/postconditions. See body for details.
2245 -------------------
2246 -- Add_To_Result --
2247 -------------------
2249 procedure Add_To_Result (N : Node_Id) is
2250 begin
2251 if No (Result) then
2252 Result := New_List (N);
2253 else
2254 Append (N, Result);
2255 end if;
2256 end Add_To_Result;
2258 ----------------------------
2259 -- After_Last_Declaration --
2260 ----------------------------
2262 function After_Last_Declaration return Boolean is
2263 Spec : constant Node_Id := Parent (Current_Scope);
2265 begin
2266 if Nkind (Spec) = N_Package_Specification then
2267 if Present (Private_Declarations (Spec)) then
2268 return Loc >= Sloc (Last (Private_Declarations (Spec)));
2269 elsif Present (Visible_Declarations (Spec)) then
2270 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
2271 else
2272 return False;
2273 end if;
2275 else
2276 return False;
2277 end if;
2278 end After_Last_Declaration;
2280 ----------------------------
2281 -- Check_Current_Instance --
2282 ----------------------------
2284 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
2286 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
2287 -- Determine whether Typ is compatible with the rules for aliased
2288 -- views of types as defined in RM 3.10 in the various dialects.
2290 function Process (N : Node_Id) return Traverse_Result;
2291 -- Process routine to apply check to given node
2293 -----------------------------
2294 -- Is_Aliased_View_Of_Type --
2295 -----------------------------
2297 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
2298 Typ_Decl : constant Node_Id := Parent (Typ);
2300 begin
2301 -- Common case
2303 if Nkind (Typ_Decl) = N_Full_Type_Declaration
2304 and then Limited_Present (Type_Definition (Typ_Decl))
2305 then
2306 return True;
2308 -- The following paragraphs describe what a legal aliased view of
2309 -- a type is in the various dialects of Ada.
2311 -- Ada 95
2313 -- The current instance of a limited type, and a formal parameter
2314 -- or generic formal object of a tagged type.
2316 -- Ada 95 limited type
2317 -- * Type with reserved word "limited"
2318 -- * A protected or task type
2319 -- * A composite type with limited component
2321 elsif Ada_Version <= Ada_95 then
2322 return Is_Limited_Type (Typ);
2324 -- Ada 2005
2326 -- The current instance of a limited tagged type, a protected
2327 -- type, a task type, or a type that has the reserved word
2328 -- "limited" in its full definition ... a formal parameter or
2329 -- generic formal object of a tagged type.
2331 -- Ada 2005 limited type
2332 -- * Type with reserved word "limited", "synchronized", "task"
2333 -- or "protected"
2334 -- * A composite type with limited component
2335 -- * A derived type whose parent is a non-interface limited type
2337 elsif Ada_Version = Ada_2005 then
2338 return
2339 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
2340 or else
2341 (Is_Derived_Type (Typ)
2342 and then not Is_Interface (Etype (Typ))
2343 and then Is_Limited_Type (Etype (Typ)));
2345 -- Ada 2012 and beyond
2347 -- The current instance of an immutably limited type ... a formal
2348 -- parameter or generic formal object of a tagged type.
2350 -- Ada 2012 limited type
2351 -- * Type with reserved word "limited", "synchronized", "task"
2352 -- or "protected"
2353 -- * A composite type with limited component
2354 -- * A derived type whose parent is a non-interface limited type
2355 -- * An incomplete view
2357 -- Ada 2012 immutably limited type
2358 -- * Explicitly limited record type
2359 -- * Record extension with "limited" present
2360 -- * Non-formal limited private type that is either tagged
2361 -- or has at least one access discriminant with a default
2362 -- expression
2363 -- * Task type, protected type or synchronized interface
2364 -- * Type derived from immutably limited type
2366 else
2367 return
2368 Is_Immutably_Limited_Type (Typ)
2369 or else Is_Incomplete_Type (Typ);
2370 end if;
2371 end Is_Aliased_View_Of_Type;
2373 -------------
2374 -- Process --
2375 -------------
2377 function Process (N : Node_Id) return Traverse_Result is
2378 begin
2379 case Nkind (N) is
2380 when N_Attribute_Reference =>
2381 if Nam_In (Attribute_Name (N), Name_Access,
2382 Name_Unchecked_Access)
2383 and then Is_Entity_Name (Prefix (N))
2384 and then Is_Type (Entity (Prefix (N)))
2385 and then Entity (Prefix (N)) = E
2386 then
2387 if Ada_Version < Ada_2012 then
2388 Error_Msg_N
2389 ("current instance must be a limited type",
2390 Prefix (N));
2391 else
2392 Error_Msg_N
2393 ("current instance must be an immutably limited "
2394 & "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
2395 end if;
2397 return Abandon;
2399 else
2400 return OK;
2401 end if;
2403 when others =>
2404 return OK;
2405 end case;
2406 end Process;
2408 procedure Traverse is new Traverse_Proc (Process);
2410 -- Local variables
2412 Rec_Type : constant Entity_Id :=
2413 Scope (Defining_Identifier (Comp_Decl));
2415 -- Start of processing for Check_Current_Instance
2417 begin
2418 if not Is_Aliased_View_Of_Type (Rec_Type) then
2419 Traverse (Comp_Decl);
2420 end if;
2421 end Check_Current_Instance;
2423 ---------------------------------
2424 -- Check_Suspicious_Convention --
2425 ---------------------------------
2427 procedure Check_Suspicious_Convention (Rec_Type : Entity_Id) is
2428 begin
2429 if Has_Discriminants (Rec_Type)
2430 and then Is_Base_Type (Rec_Type)
2431 and then not Is_Unchecked_Union (Rec_Type)
2432 and then (Convention (Rec_Type) = Convention_C
2433 or else
2434 Convention (Rec_Type) = Convention_CPP)
2435 and then Comes_From_Source (Rec_Type)
2436 and then not In_Instance
2437 and then not Has_Warnings_Off (Rec_Type)
2438 then
2439 declare
2440 Cprag : constant Node_Id :=
2441 Get_Rep_Pragma (Rec_Type, Name_Convention);
2442 A2 : Node_Id;
2444 begin
2445 if Present (Cprag) then
2446 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2448 if Convention (Rec_Type) = Convention_C then
2449 Error_Msg_N
2450 ("?x?discriminated record has no direct equivalent in "
2451 & "C", A2);
2452 else
2453 Error_Msg_N
2454 ("?x?discriminated record has no direct equivalent in "
2455 & "C++", A2);
2456 end if;
2458 Error_Msg_NE
2459 ("\?x?use of convention for type& is dubious",
2460 A2, Rec_Type);
2461 end if;
2462 end;
2463 end if;
2464 end Check_Suspicious_Convention;
2466 ------------------------------
2467 -- Check_Suspicious_Modulus --
2468 ------------------------------
2470 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
2471 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
2473 begin
2474 if not Warn_On_Suspicious_Modulus_Value then
2475 return;
2476 end if;
2478 if Nkind (Decl) = N_Full_Type_Declaration then
2479 declare
2480 Tdef : constant Node_Id := Type_Definition (Decl);
2482 begin
2483 if Nkind (Tdef) = N_Modular_Type_Definition then
2484 declare
2485 Modulus : constant Node_Id :=
2486 Original_Node (Expression (Tdef));
2488 begin
2489 if Nkind (Modulus) = N_Integer_Literal then
2490 declare
2491 Modv : constant Uint := Intval (Modulus);
2492 Sizv : constant Uint := RM_Size (Utype);
2494 begin
2495 -- First case, modulus and size are the same. This
2496 -- happens if you have something like mod 32, with
2497 -- an explicit size of 32, this is for sure a case
2498 -- where the warning is given, since it is seems
2499 -- very unlikely that someone would want e.g. a
2500 -- five bit type stored in 32 bits. It is much
2501 -- more likely they wanted a 32-bit type.
2503 if Modv = Sizv then
2504 null;
2506 -- Second case, the modulus is 32 or 64 and no
2507 -- size clause is present. This is a less clear
2508 -- case for giving the warning, but in the case
2509 -- of 32/64 (5-bit or 6-bit types) these seem rare
2510 -- enough that it is a likely error (and in any
2511 -- case using 2**5 or 2**6 in these cases seems
2512 -- clearer. We don't include 8 or 16 here, simply
2513 -- because in practice 3-bit and 4-bit types are
2514 -- more common and too many false positives if
2515 -- we warn in these cases.
2517 elsif not Has_Size_Clause (Utype)
2518 and then (Modv = Uint_32 or else Modv = Uint_64)
2519 then
2520 null;
2522 -- No warning needed
2524 else
2525 return;
2526 end if;
2528 -- If we fall through, give warning
2530 Error_Msg_Uint_1 := Modv;
2531 Error_Msg_N
2532 ("?M?2 '*'*^' may have been intended here",
2533 Modulus);
2534 end;
2535 end if;
2536 end;
2537 end if;
2538 end;
2539 end if;
2540 end Check_Suspicious_Modulus;
2542 -----------------------
2543 -- Freeze_Array_Type --
2544 -----------------------
2546 procedure Freeze_Array_Type (Arr : Entity_Id) is
2547 FS : constant Entity_Id := First_Subtype (Arr);
2548 Ctyp : constant Entity_Id := Component_Type (Arr);
2549 Clause : Entity_Id;
2551 Non_Standard_Enum : Boolean := False;
2552 -- Set true if any of the index types is an enumeration type with a
2553 -- non-standard representation.
2555 begin
2556 Freeze_And_Append (Ctyp, N, Result);
2558 Indx := First_Index (Arr);
2559 while Present (Indx) loop
2560 Freeze_And_Append (Etype (Indx), N, Result);
2562 if Is_Enumeration_Type (Etype (Indx))
2563 and then Has_Non_Standard_Rep (Etype (Indx))
2564 then
2565 Non_Standard_Enum := True;
2566 end if;
2568 Next_Index (Indx);
2569 end loop;
2571 -- Processing that is done only for base types
2573 if Ekind (Arr) = E_Array_Type then
2575 -- Deal with default setting of reverse storage order
2577 Set_SSO_From_Default (Arr);
2579 -- Propagate flags for component type
2581 if Is_Controlled (Component_Type (Arr))
2582 or else Has_Controlled_Component (Ctyp)
2583 then
2584 Set_Has_Controlled_Component (Arr);
2585 end if;
2587 if Has_Unchecked_Union (Component_Type (Arr)) then
2588 Set_Has_Unchecked_Union (Arr);
2589 end if;
2591 -- The array type requires its own invariant procedure in order to
2592 -- verify the component invariant over all elements. In GNATprove
2593 -- mode, the component invariants are checked by other means. They
2594 -- should not be added to the array type invariant procedure, so
2595 -- that the procedure can be used to check the array type
2596 -- invariants if any.
2598 if Has_Invariants (Component_Type (Arr))
2599 and then not GNATprove_Mode
2600 then
2601 Set_Has_Own_Invariants (Arr);
2603 -- The array type is an implementation base type. Propagate the
2604 -- same property to the first subtype.
2606 if Is_Itype (Arr) then
2607 Set_Has_Own_Invariants (First_Subtype (Arr));
2608 end if;
2609 end if;
2611 -- Warn for pragma Pack overriding foreign convention
2613 if Has_Foreign_Convention (Ctyp)
2614 and then Has_Pragma_Pack (Arr)
2615 then
2616 declare
2617 CN : constant Name_Id :=
2618 Get_Convention_Name (Convention (Ctyp));
2619 PP : constant Node_Id :=
2620 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2621 begin
2622 if Present (PP) then
2623 Error_Msg_Name_1 := CN;
2624 Error_Msg_Sloc := Sloc (Arr);
2625 Error_Msg_N
2626 ("pragma Pack affects convention % components #??", PP);
2627 Error_Msg_Name_1 := CN;
2628 Error_Msg_N
2629 ("\array components may not have % compatible "
2630 & "representation??", PP);
2631 end if;
2632 end;
2633 end if;
2635 -- If packing was requested or if the component size was
2636 -- set explicitly, then see if bit packing is required. This
2637 -- processing is only done for base types, since all of the
2638 -- representation aspects involved are type-related.
2640 -- This is not just an optimization, if we start processing the
2641 -- subtypes, they interfere with the settings on the base type
2642 -- (this is because Is_Packed has a slightly different meaning
2643 -- before and after freezing).
2645 declare
2646 Csiz : Uint;
2647 Esiz : Uint;
2649 begin
2650 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2651 and then Known_Static_RM_Size (Ctyp)
2652 and then not Has_Component_Size_Clause (Arr)
2653 then
2654 Csiz := UI_Max (RM_Size (Ctyp), 1);
2656 elsif Known_Component_Size (Arr) then
2657 Csiz := Component_Size (Arr);
2659 elsif not Known_Static_Esize (Ctyp) then
2660 Csiz := Uint_0;
2662 else
2663 Esiz := Esize (Ctyp);
2665 -- We can set the component size if it is less than 16,
2666 -- rounding it up to the next storage unit size.
2668 if Esiz <= 8 then
2669 Csiz := Uint_8;
2670 elsif Esiz <= 16 then
2671 Csiz := Uint_16;
2672 else
2673 Csiz := Uint_0;
2674 end if;
2676 -- Set component size up to match alignment if it would
2677 -- otherwise be less than the alignment. This deals with
2678 -- cases of types whose alignment exceeds their size (the
2679 -- padded type cases).
2681 if Csiz /= 0 then
2682 declare
2683 A : constant Uint := Alignment_In_Bits (Ctyp);
2684 begin
2685 if Csiz < A then
2686 Csiz := A;
2687 end if;
2688 end;
2689 end if;
2690 end if;
2692 -- Case of component size that may result in bit packing
2694 if 1 <= Csiz and then Csiz <= 64 then
2695 declare
2696 Ent : constant Entity_Id :=
2697 First_Subtype (Arr);
2698 Pack_Pragma : constant Node_Id :=
2699 Get_Rep_Pragma (Ent, Name_Pack);
2700 Comp_Size_C : constant Node_Id :=
2701 Get_Attribute_Definition_Clause
2702 (Ent, Attribute_Component_Size);
2704 begin
2705 -- Warn if we have pack and component size so that the
2706 -- pack is ignored.
2708 -- Note: here we must check for the presence of a
2709 -- component size before checking for a Pack pragma to
2710 -- deal with the case where the array type is a derived
2711 -- type whose parent is currently private.
2713 if Present (Comp_Size_C)
2714 and then Has_Pragma_Pack (Ent)
2715 and then Warn_On_Redundant_Constructs
2716 then
2717 Error_Msg_Sloc := Sloc (Comp_Size_C);
2718 Error_Msg_NE
2719 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
2720 Error_Msg_N
2721 ("\?r?explicit component size given#!", Pack_Pragma);
2722 Set_Is_Packed (Base_Type (Ent), False);
2723 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2724 end if;
2726 -- Set component size if not already set by a component
2727 -- size clause.
2729 if not Present (Comp_Size_C) then
2730 Set_Component_Size (Arr, Csiz);
2731 end if;
2733 -- Check for base type of 8, 16, 32 bits, where an
2734 -- unsigned subtype has a length one less than the
2735 -- base type (e.g. Natural subtype of Integer).
2737 -- In such cases, if a component size was not set
2738 -- explicitly, then generate a warning.
2740 if Has_Pragma_Pack (Arr)
2741 and then not Present (Comp_Size_C)
2742 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2743 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2744 then
2745 Error_Msg_Uint_1 := Csiz;
2747 if Present (Pack_Pragma) then
2748 Error_Msg_N
2749 ("??pragma Pack causes component size to be ^!",
2750 Pack_Pragma);
2751 Error_Msg_N
2752 ("\??use Component_Size to set desired value!",
2753 Pack_Pragma);
2754 end if;
2755 end if;
2757 -- Bit packing is never needed for 8, 16, 32, 64
2759 if Addressable (Csiz) then
2761 -- If the Esize of the component is known and equal to
2762 -- the component size then even packing is not needed.
2764 if Known_Static_Esize (Component_Type (Arr))
2765 and then Esize (Component_Type (Arr)) = Csiz
2766 then
2767 -- Here the array was requested to be packed, but
2768 -- the packing request had no effect whatsoever,
2769 -- so flag Is_Packed is reset.
2771 -- Note: semantically this means that we lose track
2772 -- of the fact that a derived type inherited pragma
2773 -- Pack that was non-effective, but that is fine.
2775 -- We regard a Pack pragma as a request to set a
2776 -- representation characteristic, and this request
2777 -- may be ignored.
2779 Set_Is_Packed (Base_Type (Arr), False);
2780 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
2781 else
2782 Set_Is_Packed (Base_Type (Arr), True);
2783 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2784 end if;
2786 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2788 -- Bit packing is not needed for multiples of the storage
2789 -- unit if the type is composite because the back end can
2790 -- byte pack composite types.
2792 elsif Csiz mod System_Storage_Unit = 0
2793 and then Is_Composite_Type (Ctyp)
2794 then
2795 Set_Is_Packed (Base_Type (Arr), True);
2796 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2797 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2799 -- In all other cases, bit packing is needed
2801 else
2802 Set_Is_Packed (Base_Type (Arr), True);
2803 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2804 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2805 end if;
2806 end;
2807 end if;
2808 end;
2810 -- Check for Aliased or Atomic_Components/Atomic/VFA with
2811 -- unsuitable packing or explicit component size clause given.
2813 if (Has_Aliased_Components (Arr)
2814 or else Has_Atomic_Components (Arr)
2815 or else Is_Atomic_Or_VFA (Ctyp))
2816 and then
2817 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2818 then
2819 Alias_Atomic_Check : declare
2821 procedure Complain_CS (T : String);
2822 -- Outputs error messages for incorrect CS clause or pragma
2823 -- Pack for aliased or atomic/VFA components (T is "aliased"
2824 -- or "atomic/vfa");
2826 -----------------
2827 -- Complain_CS --
2828 -----------------
2830 procedure Complain_CS (T : String) is
2831 begin
2832 if Has_Component_Size_Clause (Arr) then
2833 Clause :=
2834 Get_Attribute_Definition_Clause
2835 (FS, Attribute_Component_Size);
2837 Error_Msg_N
2838 ("incorrect component size for "
2839 & T & " components", Clause);
2840 Error_Msg_Uint_1 := Esize (Ctyp);
2841 Error_Msg_N
2842 ("\only allowed value is^", Clause);
2844 else
2845 Error_Msg_N
2846 ("cannot pack " & T & " components",
2847 Get_Rep_Pragma (FS, Name_Pack));
2848 end if;
2849 end Complain_CS;
2851 -- Start of processing for Alias_Atomic_Check
2853 begin
2854 -- If object size of component type isn't known, we cannot
2855 -- be sure so we defer to the back end.
2857 if not Known_Static_Esize (Ctyp) then
2858 null;
2860 -- Case where component size has no effect. First check for
2861 -- object size of component type multiple of the storage
2862 -- unit size.
2864 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2866 -- OK in both packing case and component size case if RM
2867 -- size is known and static and same as the object size.
2869 and then
2870 ((Known_Static_RM_Size (Ctyp)
2871 and then Esize (Ctyp) = RM_Size (Ctyp))
2873 -- Or if we have an explicit component size clause and
2874 -- the component size and object size are equal.
2876 or else
2877 (Has_Component_Size_Clause (Arr)
2878 and then Component_Size (Arr) = Esize (Ctyp)))
2879 then
2880 null;
2882 elsif Has_Aliased_Components (Arr) then
2883 Complain_CS ("aliased");
2885 elsif Has_Atomic_Components (Arr)
2886 or else Is_Atomic (Ctyp)
2887 then
2888 Complain_CS ("atomic");
2890 elsif Is_Volatile_Full_Access (Ctyp) then
2891 Complain_CS ("volatile full access");
2892 end if;
2893 end Alias_Atomic_Check;
2894 end if;
2896 -- Check for Independent_Components/Independent with unsuitable
2897 -- packing or explicit component size clause given.
2899 if (Has_Independent_Components (Arr) or else Is_Independent (Ctyp))
2900 and then
2901 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2902 then
2903 begin
2904 -- If object size of component type isn't known, we cannot
2905 -- be sure so we defer to the back end.
2907 if not Known_Static_Esize (Ctyp) then
2908 null;
2910 -- Case where component size has no effect. First check for
2911 -- object size of component type multiple of the storage
2912 -- unit size.
2914 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2916 -- OK in both packing case and component size case if RM
2917 -- size is known and multiple of the storage unit size.
2919 and then
2920 ((Known_Static_RM_Size (Ctyp)
2921 and then RM_Size (Ctyp) mod System_Storage_Unit = 0)
2923 -- Or if we have an explicit component size clause and
2924 -- the component size is larger than the object size.
2926 or else
2927 (Has_Component_Size_Clause (Arr)
2928 and then Component_Size (Arr) >= Esize (Ctyp)))
2929 then
2930 null;
2932 else
2933 if Has_Component_Size_Clause (Arr) then
2934 Clause :=
2935 Get_Attribute_Definition_Clause
2936 (FS, Attribute_Component_Size);
2938 Error_Msg_N
2939 ("incorrect component size for "
2940 & "independent components", Clause);
2941 Error_Msg_Uint_1 := Esize (Ctyp);
2942 Error_Msg_N
2943 ("\minimum allowed is^", Clause);
2945 else
2946 Error_Msg_N
2947 ("cannot pack independent components",
2948 Get_Rep_Pragma (FS, Name_Pack));
2949 end if;
2950 end if;
2951 end;
2952 end if;
2954 -- Warn for case of atomic type
2956 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2958 if Present (Clause)
2959 and then not Addressable (Component_Size (FS))
2960 then
2961 Error_Msg_NE
2962 ("non-atomic components of type& may not be "
2963 & "accessible by separate tasks??", Clause, Arr);
2965 if Has_Component_Size_Clause (Arr) then
2966 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2967 (FS, Attribute_Component_Size));
2968 Error_Msg_N ("\because of component size clause#??", Clause);
2970 elsif Has_Pragma_Pack (Arr) then
2971 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2972 Error_Msg_N ("\because of pragma Pack#??", Clause);
2973 end if;
2974 end if;
2976 -- Check for scalar storage order
2978 declare
2979 Dummy : Boolean;
2980 begin
2981 Check_Component_Storage_Order
2982 (Encl_Type => Arr,
2983 Comp => Empty,
2984 ADC => Get_Attribute_Definition_Clause
2985 (First_Subtype (Arr),
2986 Attribute_Scalar_Storage_Order),
2987 Comp_ADC_Present => Dummy);
2988 end;
2990 -- Processing that is done only for subtypes
2992 else
2993 -- Acquire alignment from base type
2995 if Unknown_Alignment (Arr) then
2996 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2997 Adjust_Esize_Alignment (Arr);
2998 end if;
2999 end if;
3001 -- Specific checks for bit-packed arrays
3003 if Is_Bit_Packed_Array (Arr) then
3005 -- Check number of elements for bit-packed arrays that come from
3006 -- source and have compile time known ranges. The bit-packed
3007 -- arrays circuitry does not support arrays with more than
3008 -- Integer'Last + 1 elements, and when this restriction is
3009 -- violated, causes incorrect data access.
3011 -- For the case where this is not compile time known, a run-time
3012 -- check should be generated???
3014 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
3015 declare
3016 Elmts : Uint;
3017 Index : Node_Id;
3018 Ilen : Node_Id;
3019 Ityp : Entity_Id;
3021 begin
3022 Elmts := Uint_1;
3023 Index := First_Index (Arr);
3024 while Present (Index) loop
3025 Ityp := Etype (Index);
3027 -- Never generate an error if any index is of a generic
3028 -- type. We will check this in instances.
3030 if Is_Generic_Type (Ityp) then
3031 Elmts := Uint_0;
3032 exit;
3033 end if;
3035 Ilen :=
3036 Make_Attribute_Reference (Loc,
3037 Prefix => New_Occurrence_Of (Ityp, Loc),
3038 Attribute_Name => Name_Range_Length);
3039 Analyze_And_Resolve (Ilen);
3041 -- No attempt is made to check number of elements if not
3042 -- compile time known.
3044 if Nkind (Ilen) /= N_Integer_Literal then
3045 Elmts := Uint_0;
3046 exit;
3047 end if;
3049 Elmts := Elmts * Intval (Ilen);
3050 Next_Index (Index);
3051 end loop;
3053 if Elmts > Intval (High_Bound
3054 (Scalar_Range (Standard_Integer))) + 1
3055 then
3056 Error_Msg_N
3057 ("bit packed array type may not have "
3058 & "more than Integer''Last+1 elements", Arr);
3059 end if;
3060 end;
3061 end if;
3063 -- Check size
3065 if Known_RM_Size (Arr) then
3066 declare
3067 SizC : constant Node_Id := Size_Clause (Arr);
3068 Discard : Boolean;
3070 begin
3071 -- It is not clear if it is possible to have no size clause
3072 -- at this stage, but it is not worth worrying about. Post
3073 -- error on the entity name in the size clause if present,
3074 -- else on the type entity itself.
3076 if Present (SizC) then
3077 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
3078 else
3079 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
3080 end if;
3081 end;
3082 end if;
3083 end if;
3085 -- If any of the index types was an enumeration type with a non-
3086 -- standard rep clause, then we indicate that the array type is
3087 -- always packed (even if it is not bit-packed).
3089 if Non_Standard_Enum then
3090 Set_Has_Non_Standard_Rep (Base_Type (Arr));
3091 Set_Is_Packed (Base_Type (Arr));
3092 end if;
3094 Set_Component_Alignment_If_Not_Set (Arr);
3096 -- If the array is packed and bit-packed or packed to eliminate holes
3097 -- in the non-contiguous enumeration index types, we must create the
3098 -- packed array type to be used to actually implement the type. This
3099 -- is only needed for real array types (not for string literal types,
3100 -- since they are present only for the front end).
3102 if Is_Packed (Arr)
3103 and then (Is_Bit_Packed_Array (Arr) or else Non_Standard_Enum)
3104 and then Ekind (Arr) /= E_String_Literal_Subtype
3105 then
3106 Create_Packed_Array_Impl_Type (Arr);
3107 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
3109 -- Make sure that we have the necessary routines to implement the
3110 -- packing, and complain now if not. Note that we only test this
3111 -- for constrained array types.
3113 if Is_Constrained (Arr)
3114 and then Is_Bit_Packed_Array (Arr)
3115 and then Present (Packed_Array_Impl_Type (Arr))
3116 and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
3117 then
3118 declare
3119 CS : constant Uint := Component_Size (Arr);
3120 RE : constant RE_Id := Get_Id (UI_To_Int (CS));
3122 begin
3123 if RE /= RE_Null
3124 and then not RTE_Available (RE)
3125 then
3126 Error_Msg_CRT
3127 ("packing of " & UI_Image (CS) & "-bit components",
3128 First_Subtype (Etype (Arr)));
3130 -- Cancel the packing
3132 Set_Is_Packed (Base_Type (Arr), False);
3133 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
3134 Set_Packed_Array_Impl_Type (Arr, Empty);
3135 goto Skip_Packed;
3136 end if;
3137 end;
3138 end if;
3140 -- Size information of packed array type is copied to the array
3141 -- type, since this is really the representation. But do not
3142 -- override explicit existing size values. If the ancestor subtype
3143 -- is constrained the Packed_Array_Impl_Type will be inherited
3144 -- from it, but the size may have been provided already, and
3145 -- must not be overridden either.
3147 if not Has_Size_Clause (Arr)
3148 and then
3149 (No (Ancestor_Subtype (Arr))
3150 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
3151 then
3152 Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
3153 Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
3154 end if;
3156 if not Has_Alignment_Clause (Arr) then
3157 Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
3158 end if;
3159 end if;
3161 <<Skip_Packed>>
3163 -- For non-packed arrays set the alignment of the array to the
3164 -- alignment of the component type if it is unknown. Skip this
3165 -- in atomic/VFA case (atomic/VFA arrays may need larger alignments).
3167 if not Is_Packed (Arr)
3168 and then Unknown_Alignment (Arr)
3169 and then Known_Alignment (Ctyp)
3170 and then Known_Static_Component_Size (Arr)
3171 and then Known_Static_Esize (Ctyp)
3172 and then Esize (Ctyp) = Component_Size (Arr)
3173 and then not Is_Atomic_Or_VFA (Arr)
3174 then
3175 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
3176 end if;
3178 -- A Ghost type cannot have a component of protected or task type
3179 -- (SPARK RM 6.9(19)).
3181 if Is_Ghost_Entity (Arr) and then Is_Concurrent_Type (Ctyp) then
3182 Error_Msg_N
3183 ("ghost array type & cannot have concurrent component type",
3184 Arr);
3185 end if;
3186 end Freeze_Array_Type;
3188 -------------------------------
3189 -- Freeze_Object_Declaration --
3190 -------------------------------
3192 procedure Freeze_Object_Declaration (E : Entity_Id) is
3193 begin
3194 -- Abstract type allowed only for C++ imported variables or constants
3196 -- Note: we inhibit this check for objects that do not come from
3197 -- source because there is at least one case (the expansion of
3198 -- x'Class'Input where x is abstract) where we legitimately
3199 -- generate an abstract object.
3201 if Is_Abstract_Type (Etype (E))
3202 and then Comes_From_Source (Parent (E))
3203 and then not (Is_Imported (E) and then Is_CPP_Class (Etype (E)))
3204 then
3205 Error_Msg_N ("type of object cannot be abstract",
3206 Object_Definition (Parent (E)));
3208 if Is_CPP_Class (Etype (E)) then
3209 Error_Msg_NE
3210 ("\} may need a cpp_constructor",
3211 Object_Definition (Parent (E)), Etype (E));
3213 elsif Present (Expression (Parent (E))) then
3214 Error_Msg_N -- CODEFIX
3215 ("\maybe a class-wide type was meant",
3216 Object_Definition (Parent (E)));
3217 end if;
3218 end if;
3220 -- For object created by object declaration, perform required
3221 -- categorization (preelaborate and pure) checks. Defer these
3222 -- checks to freeze time since pragma Import inhibits default
3223 -- initialization and thus pragma Import affects these checks.
3225 Validate_Object_Declaration (Declaration_Node (E));
3227 -- If there is an address clause, check that it is valid
3228 -- and if need be move initialization to the freeze node.
3230 Check_Address_Clause (E);
3232 -- Similar processing is needed for aspects that may affect
3233 -- object layout, like Alignment, if there is an initialization
3234 -- expression. We don't do this if there is a pragma Linker_Section,
3235 -- because it would prevent the back end from statically initializing
3236 -- the object; we don't want elaboration code in that case.
3238 if Has_Delayed_Aspects (E)
3239 and then Expander_Active
3240 and then Is_Array_Type (Etype (E))
3241 and then Present (Expression (Parent (E)))
3242 and then No (Linker_Section_Pragma (E))
3243 then
3244 declare
3245 Decl : constant Node_Id := Parent (E);
3246 Lhs : constant Node_Id := New_Occurrence_Of (E, Loc);
3248 begin
3250 -- Capture initialization value at point of declaration, and
3251 -- make explicit assignment legal, because object may be a
3252 -- constant.
3254 Remove_Side_Effects (Expression (Decl));
3255 Set_Assignment_OK (Lhs);
3257 -- Move initialization to freeze actions.
3259 Append_Freeze_Action (E,
3260 Make_Assignment_Statement (Loc,
3261 Name => Lhs,
3262 Expression => Expression (Decl)));
3264 Set_No_Initialization (Decl);
3265 -- Set_Is_Frozen (E, False);
3266 end;
3267 end if;
3269 -- Reset Is_True_Constant for non-constant aliased object. We
3270 -- consider that the fact that a non-constant object is aliased may
3271 -- indicate that some funny business is going on, e.g. an aliased
3272 -- object is passed by reference to a procedure which captures the
3273 -- address of the object, which is later used to assign a new value,
3274 -- even though the compiler thinks that it is not modified. Such
3275 -- code is highly dubious, but we choose to make it "work" for
3276 -- non-constant aliased objects.
3278 -- Note that we used to do this for all aliased objects, whether or
3279 -- not constant, but this caused anomalies down the line because we
3280 -- ended up with static objects that were not Is_True_Constant. Not
3281 -- resetting Is_True_Constant for (aliased) constant objects ensures
3282 -- that this anomaly never occurs.
3284 -- However, we don't do that for internal entities. We figure that if
3285 -- we deliberately set Is_True_Constant for an internal entity, e.g.
3286 -- a dispatch table entry, then we mean it.
3288 if Ekind (E) /= E_Constant
3289 and then (Is_Aliased (E) or else Is_Aliased (Etype (E)))
3290 and then not Is_Internal_Name (Chars (E))
3291 then
3292 Set_Is_True_Constant (E, False);
3293 end if;
3295 -- If the object needs any kind of default initialization, an error
3296 -- must be issued if No_Default_Initialization applies. The check
3297 -- doesn't apply to imported objects, which are not ever default
3298 -- initialized, and is why the check is deferred until freezing, at
3299 -- which point we know if Import applies. Deferred constants are also
3300 -- exempted from this test because their completion is explicit, or
3301 -- through an import pragma.
3303 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
3304 null;
3306 elsif Comes_From_Source (E)
3307 and then not Is_Imported (E)
3308 and then not Has_Init_Expression (Declaration_Node (E))
3309 and then
3310 ((Has_Non_Null_Base_Init_Proc (Etype (E))
3311 and then not No_Initialization (Declaration_Node (E))
3312 and then not Initialization_Suppressed (Etype (E)))
3313 or else
3314 (Needs_Simple_Initialization (Etype (E))
3315 and then not Is_Internal (E)))
3316 then
3317 Has_Default_Initialization := True;
3318 Check_Restriction
3319 (No_Default_Initialization, Declaration_Node (E));
3320 end if;
3322 -- Check that a Thread_Local_Storage variable does not have
3323 -- default initialization, and any explicit initialization must
3324 -- either be the null constant or a static constant.
3326 if Has_Pragma_Thread_Local_Storage (E) then
3327 declare
3328 Decl : constant Node_Id := Declaration_Node (E);
3329 begin
3330 if Has_Default_Initialization
3331 or else
3332 (Has_Init_Expression (Decl)
3333 and then
3334 (No (Expression (Decl))
3335 or else not
3336 (Is_OK_Static_Expression (Expression (Decl))
3337 or else Nkind (Expression (Decl)) = N_Null)))
3338 then
3339 Error_Msg_NE
3340 ("Thread_Local_Storage variable& is "
3341 & "improperly initialized", Decl, E);
3342 Error_Msg_NE
3343 ("\only allowed initialization is explicit "
3344 & "NULL or static expression", Decl, E);
3345 end if;
3346 end;
3347 end if;
3349 -- For imported objects, set Is_Public unless there is also an
3350 -- address clause, which means that there is no external symbol
3351 -- needed for the Import (Is_Public may still be set for other
3352 -- unrelated reasons). Note that we delayed this processing
3353 -- till freeze time so that we can be sure not to set the flag
3354 -- if there is an address clause. If there is such a clause,
3355 -- then the only purpose of the Import pragma is to suppress
3356 -- implicit initialization.
3358 if Is_Imported (E) and then No (Address_Clause (E)) then
3359 Set_Is_Public (E);
3360 end if;
3362 -- For source objects that are not Imported and are library
3363 -- level, if no linker section pragma was given inherit the
3364 -- appropriate linker section from the corresponding type.
3366 if Comes_From_Source (E)
3367 and then not Is_Imported (E)
3368 and then Is_Library_Level_Entity (E)
3369 and then No (Linker_Section_Pragma (E))
3370 then
3371 Set_Linker_Section_Pragma
3372 (E, Linker_Section_Pragma (Etype (E)));
3373 end if;
3375 -- For convention C objects of an enumeration type, warn if the
3376 -- size is not integer size and no explicit size given. Skip
3377 -- warning for Boolean, and Character, assume programmer expects
3378 -- 8-bit sizes for these cases.
3380 if (Convention (E) = Convention_C
3381 or else
3382 Convention (E) = Convention_CPP)
3383 and then Is_Enumeration_Type (Etype (E))
3384 and then not Is_Character_Type (Etype (E))
3385 and then not Is_Boolean_Type (Etype (E))
3386 and then Esize (Etype (E)) < Standard_Integer_Size
3387 and then not Has_Size_Clause (E)
3388 then
3389 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
3390 Error_Msg_N
3391 ("??convention C enumeration object has size less than ^", E);
3392 Error_Msg_N ("\??use explicit size clause to set size", E);
3393 end if;
3394 end Freeze_Object_Declaration;
3396 -----------------------------
3397 -- Freeze_Generic_Entities --
3398 -----------------------------
3400 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
3401 E : Entity_Id;
3402 F : Node_Id;
3403 Flist : List_Id;
3405 begin
3406 Flist := New_List;
3407 E := First_Entity (Pack);
3408 while Present (E) loop
3409 if Is_Type (E) and then not Is_Generic_Type (E) then
3410 F := Make_Freeze_Generic_Entity (Sloc (Pack));
3411 Set_Entity (F, E);
3412 Append_To (Flist, F);
3414 elsif Ekind (E) = E_Generic_Package then
3415 Append_List_To (Flist, Freeze_Generic_Entities (E));
3416 end if;
3418 Next_Entity (E);
3419 end loop;
3421 return Flist;
3422 end Freeze_Generic_Entities;
3424 --------------------
3425 -- Freeze_Profile --
3426 --------------------
3428 function Freeze_Profile (E : Entity_Id) return Boolean is
3429 F_Type : Entity_Id;
3430 R_Type : Entity_Id;
3431 Warn_Node : Node_Id;
3433 begin
3434 -- Loop through formals
3436 Formal := First_Formal (E);
3437 while Present (Formal) loop
3438 F_Type := Etype (Formal);
3440 -- AI05-0151: incomplete types can appear in a profile. By the
3441 -- time the entity is frozen, the full view must be available,
3442 -- unless it is a limited view.
3444 if Is_Incomplete_Type (F_Type)
3445 and then Present (Full_View (F_Type))
3446 and then not From_Limited_With (F_Type)
3447 then
3448 F_Type := Full_View (F_Type);
3449 Set_Etype (Formal, F_Type);
3450 end if;
3452 if not From_Limited_With (F_Type) then
3453 Freeze_And_Append (F_Type, N, Result);
3454 end if;
3456 if Is_Private_Type (F_Type)
3457 and then Is_Private_Type (Base_Type (F_Type))
3458 and then No (Full_View (Base_Type (F_Type)))
3459 and then not Is_Generic_Type (F_Type)
3460 and then not Is_Derived_Type (F_Type)
3461 then
3462 -- If the type of a formal is incomplete, subprogram is being
3463 -- frozen prematurely. Within an instance (but not within a
3464 -- wrapper package) this is an artifact of our need to regard
3465 -- the end of an instantiation as a freeze point. Otherwise it
3466 -- is a definite error.
3468 if In_Instance then
3469 Set_Is_Frozen (E, False);
3470 Result := No_List;
3471 return False;
3473 elsif not After_Last_Declaration
3474 and then not Freezing_Library_Level_Tagged_Type
3475 then
3476 Error_Msg_Node_1 := F_Type;
3477 Error_Msg
3478 ("type & must be fully defined before this point", Loc);
3479 end if;
3480 end if;
3482 -- Check suspicious parameter for C function. These tests apply
3483 -- only to exported/imported subprograms.
3485 if Warn_On_Export_Import
3486 and then Comes_From_Source (E)
3487 and then (Convention (E) = Convention_C
3488 or else
3489 Convention (E) = Convention_CPP)
3490 and then (Is_Imported (E) or else Is_Exported (E))
3491 and then Convention (E) /= Convention (Formal)
3492 and then not Has_Warnings_Off (E)
3493 and then not Has_Warnings_Off (F_Type)
3494 and then not Has_Warnings_Off (Formal)
3495 then
3496 -- Qualify mention of formals with subprogram name
3498 Error_Msg_Qual_Level := 1;
3500 -- Check suspicious use of fat C pointer
3502 if Is_Access_Type (F_Type)
3503 and then Esize (F_Type) > Ttypes.System_Address_Size
3504 then
3505 Error_Msg_N
3506 ("?x?type of & does not correspond to C pointer!", Formal);
3508 -- Check suspicious return of boolean
3510 elsif Root_Type (F_Type) = Standard_Boolean
3511 and then Convention (F_Type) = Convention_Ada
3512 and then not Has_Warnings_Off (F_Type)
3513 and then not Has_Size_Clause (F_Type)
3514 then
3515 Error_Msg_N
3516 ("& is an 8-bit Ada Boolean?x?", Formal);
3517 Error_Msg_N
3518 ("\use appropriate corresponding type in C "
3519 & "(e.g. char)?x?", Formal);
3521 -- Check suspicious tagged type
3523 elsif (Is_Tagged_Type (F_Type)
3524 or else
3525 (Is_Access_Type (F_Type)
3526 and then Is_Tagged_Type (Designated_Type (F_Type))))
3527 and then Convention (E) = Convention_C
3528 then
3529 Error_Msg_N
3530 ("?x?& involves a tagged type which does not "
3531 & "correspond to any C type!", Formal);
3533 -- Check wrong convention subprogram pointer
3535 elsif Ekind (F_Type) = E_Access_Subprogram_Type
3536 and then not Has_Foreign_Convention (F_Type)
3537 then
3538 Error_Msg_N
3539 ("?x?subprogram pointer & should "
3540 & "have foreign convention!", Formal);
3541 Error_Msg_Sloc := Sloc (F_Type);
3542 Error_Msg_NE
3543 ("\?x?add Convention pragma to declaration of &#",
3544 Formal, F_Type);
3545 end if;
3547 -- Turn off name qualification after message output
3549 Error_Msg_Qual_Level := 0;
3550 end if;
3552 -- Check for unconstrained array in exported foreign convention
3553 -- case.
3555 if Has_Foreign_Convention (E)
3556 and then not Is_Imported (E)
3557 and then Is_Array_Type (F_Type)
3558 and then not Is_Constrained (F_Type)
3559 and then Warn_On_Export_Import
3560 then
3561 Error_Msg_Qual_Level := 1;
3563 -- If this is an inherited operation, place the warning on
3564 -- the derived type declaration, rather than on the original
3565 -- subprogram.
3567 if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
3568 then
3569 Warn_Node := Parent (E);
3571 if Formal = First_Formal (E) then
3572 Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
3573 end if;
3574 else
3575 Warn_Node := Formal;
3576 end if;
3578 Error_Msg_NE ("?x?type of argument& is unconstrained array",
3579 Warn_Node, Formal);
3580 Error_Msg_NE ("?x?foreign caller must pass bounds explicitly",
3581 Warn_Node, Formal);
3582 Error_Msg_Qual_Level := 0;
3583 end if;
3585 if not From_Limited_With (F_Type) then
3586 if Is_Access_Type (F_Type) then
3587 F_Type := Designated_Type (F_Type);
3588 end if;
3590 -- If the formal is an anonymous_access_to_subprogram
3591 -- freeze the subprogram type as well, to prevent
3592 -- scope anomalies in gigi, because there is no other
3593 -- clear point at which it could be frozen.
3595 if Is_Itype (Etype (Formal))
3596 and then Ekind (F_Type) = E_Subprogram_Type
3597 then
3598 Freeze_And_Append (F_Type, N, Result);
3599 end if;
3600 end if;
3602 Next_Formal (Formal);
3603 end loop;
3605 -- Case of function: similar checks on return type
3607 if Ekind (E) = E_Function then
3609 -- Freeze return type
3611 R_Type := Etype (E);
3613 -- AI05-0151: the return type may have been incomplete at the
3614 -- point of declaration. Replace it with the full view, unless the
3615 -- current type is a limited view. In that case the full view is
3616 -- in a different unit, and gigi finds the non-limited view after
3617 -- the other unit is elaborated.
3619 if Ekind (R_Type) = E_Incomplete_Type
3620 and then Present (Full_View (R_Type))
3621 and then not From_Limited_With (R_Type)
3622 then
3623 R_Type := Full_View (R_Type);
3624 Set_Etype (E, R_Type);
3625 end if;
3627 Freeze_And_Append (R_Type, N, Result);
3629 -- Check suspicious return type for C function
3631 if Warn_On_Export_Import
3632 and then (Convention (E) = Convention_C
3633 or else
3634 Convention (E) = Convention_CPP)
3635 and then (Is_Imported (E) or else Is_Exported (E))
3636 then
3637 -- Check suspicious return of fat C pointer
3639 if Is_Access_Type (R_Type)
3640 and then Esize (R_Type) > Ttypes.System_Address_Size
3641 and then not Has_Warnings_Off (E)
3642 and then not Has_Warnings_Off (R_Type)
3643 then
3644 Error_Msg_N
3645 ("?x?return type of& does not correspond to C pointer!",
3648 -- Check suspicious return of boolean
3650 elsif Root_Type (R_Type) = Standard_Boolean
3651 and then Convention (R_Type) = Convention_Ada
3652 and then not Has_Warnings_Off (E)
3653 and then not Has_Warnings_Off (R_Type)
3654 and then not Has_Size_Clause (R_Type)
3655 then
3656 declare
3657 N : constant Node_Id :=
3658 Result_Definition (Declaration_Node (E));
3659 begin
3660 Error_Msg_NE
3661 ("return type of & is an 8-bit Ada Boolean?x?", N, E);
3662 Error_Msg_NE
3663 ("\use appropriate corresponding type in C "
3664 & "(e.g. char)?x?", N, E);
3665 end;
3667 -- Check suspicious return tagged type
3669 elsif (Is_Tagged_Type (R_Type)
3670 or else (Is_Access_Type (R_Type)
3671 and then
3672 Is_Tagged_Type
3673 (Designated_Type (R_Type))))
3674 and then Convention (E) = Convention_C
3675 and then not Has_Warnings_Off (E)
3676 and then not Has_Warnings_Off (R_Type)
3677 then
3678 Error_Msg_N ("?x?return type of & does not "
3679 & "correspond to C type!", E);
3681 -- Check return of wrong convention subprogram pointer
3683 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3684 and then not Has_Foreign_Convention (R_Type)
3685 and then not Has_Warnings_Off (E)
3686 and then not Has_Warnings_Off (R_Type)
3687 then
3688 Error_Msg_N ("?x?& should return a foreign "
3689 & "convention subprogram pointer", E);
3690 Error_Msg_Sloc := Sloc (R_Type);
3691 Error_Msg_NE
3692 ("\?x?add Convention pragma to declaration of& #",
3693 E, R_Type);
3694 end if;
3695 end if;
3697 -- Give warning for suspicious return of a result of an
3698 -- unconstrained array type in a foreign convention function.
3700 if Has_Foreign_Convention (E)
3702 -- We are looking for a return of unconstrained array
3704 and then Is_Array_Type (R_Type)
3705 and then not Is_Constrained (R_Type)
3707 -- Exclude imported routines, the warning does not belong on
3708 -- the import, but rather on the routine definition.
3710 and then not Is_Imported (E)
3712 -- Check that general warning is enabled, and that it is not
3713 -- suppressed for this particular case.
3715 and then Warn_On_Export_Import
3716 and then not Has_Warnings_Off (E)
3717 and then not Has_Warnings_Off (R_Type)
3718 then
3719 Error_Msg_N
3720 ("?x?foreign convention function& should not return "
3721 & "unconstrained array!", E);
3722 end if;
3723 end if;
3725 -- Check suspicious use of Import in pure unit (cases where the RM
3726 -- allows calls to be omitted).
3728 if Is_Imported (E)
3730 -- It might be suspicious if the compilation unit has the Pure
3731 -- aspect/pragma.
3733 and then Has_Pragma_Pure (Cunit_Entity (Current_Sem_Unit))
3735 -- The RM allows omission of calls only in the case of
3736 -- library-level subprograms (see RM-10.2.1(18)).
3738 and then Is_Library_Level_Entity (E)
3740 -- Ignore internally generated entity. This happens in some cases
3741 -- of subprograms in specs, where we generate an implied body.
3743 and then Comes_From_Source (Import_Pragma (E))
3745 -- Assume run-time knows what it is doing
3747 and then not GNAT_Mode
3749 -- Assume explicit Pure_Function means import is pure
3751 and then not Has_Pragma_Pure_Function (E)
3753 -- Don't need warning in relaxed semantics mode
3755 and then not Relaxed_RM_Semantics
3757 -- Assume convention Intrinsic is OK, since this is specialized.
3758 -- This deals with the DEC unit current_exception.ads
3760 and then Convention (E) /= Convention_Intrinsic
3762 -- Assume that ASM interface knows what it is doing. This deals
3763 -- with e.g. unsigned.ads in the AAMP back end.
3765 and then Convention (E) /= Convention_Assembler
3766 then
3767 Error_Msg_N
3768 ("pragma Import in Pure unit??", Import_Pragma (E));
3769 Error_Msg_NE
3770 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
3771 Import_Pragma (E), E);
3772 end if;
3774 return True;
3775 end Freeze_Profile;
3777 ------------------------
3778 -- Freeze_Record_Type --
3779 ------------------------
3781 procedure Freeze_Record_Type (Rec : Entity_Id) is
3782 ADC : Node_Id;
3783 Comp : Entity_Id;
3784 IR : Node_Id;
3785 Prev : Entity_Id;
3787 Junk : Boolean;
3788 pragma Warnings (Off, Junk);
3790 Aliased_Component : Boolean := False;
3791 -- Set True if we find at least one component which is aliased. This
3792 -- is used to prevent Implicit_Packing of the record, since packing
3793 -- cannot modify the size of alignment of an aliased component.
3795 All_Elem_Components : Boolean := True;
3796 -- True if all components are of a type whose underlying type is
3797 -- elementary.
3799 All_Sized_Components : Boolean := True;
3800 -- True if all components have a known RM_Size
3802 All_Storage_Unit_Components : Boolean := True;
3803 -- True if all components have an RM_Size that is a multiple of the
3804 -- storage unit.
3806 Elem_Component_Total_Esize : Uint := Uint_0;
3807 -- Accumulates total Esize values of all elementary components. Used
3808 -- for processing of Implicit_Packing.
3810 Placed_Component : Boolean := False;
3811 -- Set True if we find at least one component with a component
3812 -- clause (used to warn about useless Bit_Order pragmas, and also
3813 -- to detect cases where Implicit_Packing may have an effect).
3815 Rec_Pushed : Boolean := False;
3816 -- Set True if the record type scope Rec has been pushed on the scope
3817 -- stack. Needed for the analysis of delayed aspects specified to the
3818 -- components of Rec.
3820 Sized_Component_Total_RM_Size : Uint := Uint_0;
3821 -- Accumulates total RM_Size values of all sized components. Used
3822 -- for processing of Implicit_Packing.
3824 Sized_Component_Total_Round_RM_Size : Uint := Uint_0;
3825 -- Accumulates total RM_Size values of all sized components, rounded
3826 -- individually to a multiple of the storage unit.
3828 SSO_ADC : Node_Id;
3829 -- Scalar_Storage_Order attribute definition clause for the record
3831 SSO_ADC_Component : Boolean := False;
3832 -- Set True if we find at least one component whose type has a
3833 -- Scalar_Storage_Order attribute definition clause.
3835 Unplaced_Component : Boolean := False;
3836 -- Set True if we find at least one component with no component
3837 -- clause (used to warn about useless Pack pragmas).
3839 function Check_Allocator (N : Node_Id) return Node_Id;
3840 -- If N is an allocator, possibly wrapped in one or more level of
3841 -- qualified expression(s), return the inner allocator node, else
3842 -- return Empty.
3844 procedure Check_Itype (Typ : Entity_Id);
3845 -- If the component subtype is an access to a constrained subtype of
3846 -- an already frozen type, make the subtype frozen as well. It might
3847 -- otherwise be frozen in the wrong scope, and a freeze node on
3848 -- subtype has no effect. Similarly, if the component subtype is a
3849 -- regular (not protected) access to subprogram, set the anonymous
3850 -- subprogram type to frozen as well, to prevent an out-of-scope
3851 -- freeze node at some eventual point of call. Protected operations
3852 -- are handled elsewhere.
3854 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
3855 -- Make sure that all types mentioned in Discrete_Choices of the
3856 -- variants referenceed by the Variant_Part VP are frozen. This is
3857 -- a recursive routine to deal with nested variants.
3859 ---------------------
3860 -- Check_Allocator --
3861 ---------------------
3863 function Check_Allocator (N : Node_Id) return Node_Id is
3864 Inner : Node_Id;
3865 begin
3866 Inner := N;
3867 loop
3868 if Nkind (Inner) = N_Allocator then
3869 return Inner;
3870 elsif Nkind (Inner) = N_Qualified_Expression then
3871 Inner := Expression (Inner);
3872 else
3873 return Empty;
3874 end if;
3875 end loop;
3876 end Check_Allocator;
3878 -----------------
3879 -- Check_Itype --
3880 -----------------
3882 procedure Check_Itype (Typ : Entity_Id) is
3883 Desig : constant Entity_Id := Designated_Type (Typ);
3885 begin
3886 if not Is_Frozen (Desig)
3887 and then Is_Frozen (Base_Type (Desig))
3888 then
3889 Set_Is_Frozen (Desig);
3891 -- In addition, add an Itype_Reference to ensure that the
3892 -- access subtype is elaborated early enough. This cannot be
3893 -- done if the subtype may depend on discriminants.
3895 if Ekind (Comp) = E_Component
3896 and then Is_Itype (Etype (Comp))
3897 and then not Has_Discriminants (Rec)
3898 then
3899 IR := Make_Itype_Reference (Sloc (Comp));
3900 Set_Itype (IR, Desig);
3901 Add_To_Result (IR);
3902 end if;
3904 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
3905 and then Convention (Desig) /= Convention_Protected
3906 then
3907 Set_Is_Frozen (Desig);
3908 end if;
3909 end Check_Itype;
3911 ------------------------------------
3912 -- Freeze_Choices_In_Variant_Part --
3913 ------------------------------------
3915 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
3916 pragma Assert (Nkind (VP) = N_Variant_Part);
3918 Variant : Node_Id;
3919 Choice : Node_Id;
3920 CL : Node_Id;
3922 begin
3923 -- Loop through variants
3925 Variant := First_Non_Pragma (Variants (VP));
3926 while Present (Variant) loop
3928 -- Loop through choices, checking that all types are frozen
3930 Choice := First_Non_Pragma (Discrete_Choices (Variant));
3931 while Present (Choice) loop
3932 if Nkind (Choice) in N_Has_Etype
3933 and then Present (Etype (Choice))
3934 then
3935 Freeze_And_Append (Etype (Choice), N, Result);
3936 end if;
3938 Next_Non_Pragma (Choice);
3939 end loop;
3941 -- Check for nested variant part to process
3943 CL := Component_List (Variant);
3945 if not Null_Present (CL) then
3946 if Present (Variant_Part (CL)) then
3947 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
3948 end if;
3949 end if;
3951 Next_Non_Pragma (Variant);
3952 end loop;
3953 end Freeze_Choices_In_Variant_Part;
3955 -- Start of processing for Freeze_Record_Type
3957 begin
3958 -- Deal with delayed aspect specifications for components. The
3959 -- analysis of the aspect is required to be delayed to the freeze
3960 -- point, thus we analyze the pragma or attribute definition
3961 -- clause in the tree at this point. We also analyze the aspect
3962 -- specification node at the freeze point when the aspect doesn't
3963 -- correspond to pragma/attribute definition clause.
3965 Comp := First_Entity (Rec);
3966 while Present (Comp) loop
3967 if Ekind (Comp) = E_Component
3968 and then Has_Delayed_Aspects (Comp)
3969 then
3970 if not Rec_Pushed then
3971 Push_Scope (Rec);
3972 Rec_Pushed := True;
3974 -- The visibility to the discriminants must be restored in
3975 -- order to properly analyze the aspects.
3977 if Has_Discriminants (Rec) then
3978 Install_Discriminants (Rec);
3979 end if;
3980 end if;
3982 Analyze_Aspects_At_Freeze_Point (Comp);
3983 end if;
3985 Next_Entity (Comp);
3986 end loop;
3988 -- Pop the scope if Rec scope has been pushed on the scope stack
3989 -- during the delayed aspect analysis process.
3991 if Rec_Pushed then
3992 if Has_Discriminants (Rec) then
3993 Uninstall_Discriminants (Rec);
3994 end if;
3996 Pop_Scope;
3997 end if;
3999 -- Freeze components and embedded subtypes
4001 Comp := First_Entity (Rec);
4002 Prev := Empty;
4003 while Present (Comp) loop
4004 if Is_Aliased (Comp) then
4005 Aliased_Component := True;
4006 end if;
4008 -- Handle the component and discriminant case
4010 if Ekind_In (Comp, E_Component, E_Discriminant) then
4011 declare
4012 CC : constant Node_Id := Component_Clause (Comp);
4014 begin
4015 -- Freezing a record type freezes the type of each of its
4016 -- components. However, if the type of the component is
4017 -- part of this record, we do not want or need a separate
4018 -- Freeze_Node. Note that Is_Itype is wrong because that's
4019 -- also set in private type cases. We also can't check for
4020 -- the Scope being exactly Rec because of private types and
4021 -- record extensions.
4023 if Is_Itype (Etype (Comp))
4024 and then Is_Record_Type (Underlying_Type
4025 (Scope (Etype (Comp))))
4026 then
4027 Undelay_Type (Etype (Comp));
4028 end if;
4030 Freeze_And_Append (Etype (Comp), N, Result);
4032 -- Warn for pragma Pack overriding foreign convention
4034 if Has_Foreign_Convention (Etype (Comp))
4035 and then Has_Pragma_Pack (Rec)
4037 -- Don't warn for aliased components, since override
4038 -- cannot happen in that case.
4040 and then not Is_Aliased (Comp)
4041 then
4042 declare
4043 CN : constant Name_Id :=
4044 Get_Convention_Name (Convention (Etype (Comp)));
4045 PP : constant Node_Id :=
4046 Get_Pragma (Rec, Pragma_Pack);
4047 begin
4048 if Present (PP) then
4049 Error_Msg_Name_1 := CN;
4050 Error_Msg_Sloc := Sloc (Comp);
4051 Error_Msg_N
4052 ("pragma Pack affects convention % component#??",
4053 PP);
4054 Error_Msg_Name_1 := CN;
4055 Error_Msg_NE
4056 ("\component & may not have % compatible "
4057 & "representation??", PP, Comp);
4058 end if;
4059 end;
4060 end if;
4062 -- Check for error of component clause given for variable
4063 -- sized type. We have to delay this test till this point,
4064 -- since the component type has to be frozen for us to know
4065 -- if it is variable length.
4067 if Present (CC) then
4068 Placed_Component := True;
4070 -- We omit this test in a generic context, it will be
4071 -- applied at instantiation time.
4073 if Inside_A_Generic then
4074 null;
4076 -- Also omit this test in CodePeer mode, since we do not
4077 -- have sufficient info on size and rep clauses.
4079 elsif CodePeer_Mode then
4080 null;
4082 -- Omit check if component has a generic type. This can
4083 -- happen in an instantiation within a generic in ASIS
4084 -- mode, where we force freeze actions without full
4085 -- expansion.
4087 elsif Is_Generic_Type (Etype (Comp)) then
4088 null;
4090 -- Do the check
4092 elsif not
4093 Size_Known_At_Compile_Time
4094 (Underlying_Type (Etype (Comp)))
4095 then
4096 Error_Msg_N
4097 ("component clause not allowed for variable " &
4098 "length component", CC);
4099 end if;
4101 else
4102 Unplaced_Component := True;
4103 end if;
4105 -- Case of component requires byte alignment
4107 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
4109 -- Set the enclosing record to also require byte align
4111 Set_Must_Be_On_Byte_Boundary (Rec);
4113 -- Check for component clause that is inconsistent with
4114 -- the required byte boundary alignment.
4116 if Present (CC)
4117 and then Normalized_First_Bit (Comp) mod
4118 System_Storage_Unit /= 0
4119 then
4120 Error_Msg_N
4121 ("component & must be byte aligned",
4122 Component_Name (Component_Clause (Comp)));
4123 end if;
4124 end if;
4125 end;
4126 end if;
4128 -- Gather data for possible Implicit_Packing later. Note that at
4129 -- this stage we might be dealing with a real component, or with
4130 -- an implicit subtype declaration.
4132 if Known_Static_RM_Size (Etype (Comp)) then
4133 declare
4134 Comp_Type : constant Entity_Id := Etype (Comp);
4135 Comp_Size : constant Uint := RM_Size (Comp_Type);
4136 SSU : constant Int := Ttypes.System_Storage_Unit;
4138 begin
4139 Sized_Component_Total_RM_Size :=
4140 Sized_Component_Total_RM_Size + Comp_Size;
4142 Sized_Component_Total_Round_RM_Size :=
4143 Sized_Component_Total_Round_RM_Size +
4144 (Comp_Size + SSU - 1) / SSU * SSU;
4146 if Present (Underlying_Type (Comp_Type))
4147 and then Is_Elementary_Type (Underlying_Type (Comp_Type))
4148 then
4149 Elem_Component_Total_Esize :=
4150 Elem_Component_Total_Esize + Esize (Comp_Type);
4151 else
4152 All_Elem_Components := False;
4154 if Comp_Size mod SSU /= 0 then
4155 All_Storage_Unit_Components := False;
4156 end if;
4157 end if;
4158 end;
4159 else
4160 All_Sized_Components := False;
4161 end if;
4163 -- If the component is an Itype with Delayed_Freeze and is either
4164 -- a record or array subtype and its base type has not yet been
4165 -- frozen, we must remove this from the entity list of this record
4166 -- and put it on the entity list of the scope of its base type.
4167 -- Note that we know that this is not the type of a component
4168 -- since we cleared Has_Delayed_Freeze for it in the previous
4169 -- loop. Thus this must be the Designated_Type of an access type,
4170 -- which is the type of a component.
4172 if Is_Itype (Comp)
4173 and then Is_Type (Scope (Comp))
4174 and then Is_Composite_Type (Comp)
4175 and then Base_Type (Comp) /= Comp
4176 and then Has_Delayed_Freeze (Comp)
4177 and then not Is_Frozen (Base_Type (Comp))
4178 then
4179 declare
4180 Will_Be_Frozen : Boolean := False;
4181 S : Entity_Id;
4183 begin
4184 -- We have a difficult case to handle here. Suppose Rec is
4185 -- subtype being defined in a subprogram that's created as
4186 -- part of the freezing of Rec'Base. In that case, we know
4187 -- that Comp'Base must have already been frozen by the time
4188 -- we get to elaborate this because Gigi doesn't elaborate
4189 -- any bodies until it has elaborated all of the declarative
4190 -- part. But Is_Frozen will not be set at this point because
4191 -- we are processing code in lexical order.
4193 -- We detect this case by going up the Scope chain of Rec
4194 -- and seeing if we have a subprogram scope before reaching
4195 -- the top of the scope chain or that of Comp'Base. If we
4196 -- do, then mark that Comp'Base will actually be frozen. If
4197 -- so, we merely undelay it.
4199 S := Scope (Rec);
4200 while Present (S) loop
4201 if Is_Subprogram (S) then
4202 Will_Be_Frozen := True;
4203 exit;
4204 elsif S = Scope (Base_Type (Comp)) then
4205 exit;
4206 end if;
4208 S := Scope (S);
4209 end loop;
4211 if Will_Be_Frozen then
4212 Undelay_Type (Comp);
4214 else
4215 if Present (Prev) then
4216 Set_Next_Entity (Prev, Next_Entity (Comp));
4217 else
4218 Set_First_Entity (Rec, Next_Entity (Comp));
4219 end if;
4221 -- Insert in entity list of scope of base type (which
4222 -- must be an enclosing scope, because still unfrozen).
4224 Append_Entity (Comp, Scope (Base_Type (Comp)));
4225 end if;
4226 end;
4228 -- If the component is an access type with an allocator as default
4229 -- value, the designated type will be frozen by the corresponding
4230 -- expression in init_proc. In order to place the freeze node for
4231 -- the designated type before that for the current record type,
4232 -- freeze it now.
4234 -- Same process if the component is an array of access types,
4235 -- initialized with an aggregate. If the designated type is
4236 -- private, it cannot contain allocators, and it is premature
4237 -- to freeze the type, so we check for this as well.
4239 elsif Is_Access_Type (Etype (Comp))
4240 and then Present (Parent (Comp))
4241 and then Present (Expression (Parent (Comp)))
4242 then
4243 declare
4244 Alloc : constant Node_Id :=
4245 Check_Allocator (Expression (Parent (Comp)));
4247 begin
4248 if Present (Alloc) then
4250 -- If component is pointer to a class-wide type, freeze
4251 -- the specific type in the expression being allocated.
4252 -- The expression may be a subtype indication, in which
4253 -- case freeze the subtype mark.
4255 if Is_Class_Wide_Type
4256 (Designated_Type (Etype (Comp)))
4257 then
4258 if Is_Entity_Name (Expression (Alloc)) then
4259 Freeze_And_Append
4260 (Entity (Expression (Alloc)), N, Result);
4262 elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
4263 then
4264 Freeze_And_Append
4265 (Entity (Subtype_Mark (Expression (Alloc))),
4266 N, Result);
4267 end if;
4269 elsif Is_Itype (Designated_Type (Etype (Comp))) then
4270 Check_Itype (Etype (Comp));
4272 else
4273 Freeze_And_Append
4274 (Designated_Type (Etype (Comp)), N, Result);
4275 end if;
4276 end if;
4277 end;
4279 elsif Is_Access_Type (Etype (Comp))
4280 and then Is_Itype (Designated_Type (Etype (Comp)))
4281 then
4282 Check_Itype (Etype (Comp));
4284 -- Freeze the designated type when initializing a component with
4285 -- an aggregate in case the aggregate contains allocators.
4287 -- type T is ...;
4288 -- type T_Ptr is access all T;
4289 -- type T_Array is array ... of T_Ptr;
4291 -- type Rec is record
4292 -- Comp : T_Array := (others => ...);
4293 -- end record;
4295 elsif Is_Array_Type (Etype (Comp))
4296 and then Is_Access_Type (Component_Type (Etype (Comp)))
4297 then
4298 declare
4299 Comp_Par : constant Node_Id := Parent (Comp);
4300 Desig_Typ : constant Entity_Id :=
4301 Designated_Type
4302 (Component_Type (Etype (Comp)));
4304 begin
4305 -- The only case when this sort of freezing is not done is
4306 -- when the designated type is class-wide and the root type
4307 -- is the record owning the component. This scenario results
4308 -- in a circularity because the class-wide type requires
4309 -- primitives that have not been created yet as the root
4310 -- type is in the process of being frozen.
4312 -- type Rec is tagged;
4313 -- type Rec_Ptr is access all Rec'Class;
4314 -- type Rec_Array is array ... of Rec_Ptr;
4316 -- type Rec is record
4317 -- Comp : Rec_Array := (others => ...);
4318 -- end record;
4320 if Is_Class_Wide_Type (Desig_Typ)
4321 and then Root_Type (Desig_Typ) = Rec
4322 then
4323 null;
4325 elsif Is_Fully_Defined (Desig_Typ)
4326 and then Present (Comp_Par)
4327 and then Nkind (Comp_Par) = N_Component_Declaration
4328 and then Present (Expression (Comp_Par))
4329 and then Nkind (Expression (Comp_Par)) = N_Aggregate
4330 then
4331 Freeze_And_Append (Desig_Typ, N, Result);
4332 end if;
4333 end;
4334 end if;
4336 Prev := Comp;
4337 Next_Entity (Comp);
4338 end loop;
4340 SSO_ADC :=
4341 Get_Attribute_Definition_Clause
4342 (Rec, Attribute_Scalar_Storage_Order);
4344 -- If the record type has Complex_Representation, then it is treated
4345 -- as a scalar in the back end so the storage order is irrelevant.
4347 if Has_Complex_Representation (Rec) then
4348 if Present (SSO_ADC) then
4349 Error_Msg_N
4350 ("??storage order has no effect with Complex_Representation",
4351 SSO_ADC);
4352 end if;
4354 else
4355 -- Deal with default setting of reverse storage order
4357 Set_SSO_From_Default (Rec);
4359 -- Check consistent attribute setting on component types
4361 declare
4362 Comp_ADC_Present : Boolean;
4363 begin
4364 Comp := First_Component (Rec);
4365 while Present (Comp) loop
4366 Check_Component_Storage_Order
4367 (Encl_Type => Rec,
4368 Comp => Comp,
4369 ADC => SSO_ADC,
4370 Comp_ADC_Present => Comp_ADC_Present);
4371 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
4372 Next_Component (Comp);
4373 end loop;
4374 end;
4376 -- Now deal with reverse storage order/bit order issues
4378 if Present (SSO_ADC) then
4380 -- Check compatibility of Scalar_Storage_Order with Bit_Order,
4381 -- if the former is specified.
4383 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
4385 -- Note: report error on Rec, not on SSO_ADC, as ADC may
4386 -- apply to some ancestor type.
4388 Error_Msg_Sloc := Sloc (SSO_ADC);
4389 Error_Msg_N
4390 ("scalar storage order for& specified# inconsistent with "
4391 & "bit order", Rec);
4392 end if;
4394 -- Warn if there is a Scalar_Storage_Order attribute definition
4395 -- clause but no component clause, no component that itself has
4396 -- such an attribute definition, and no pragma Pack.
4398 if not (Placed_Component
4399 or else
4400 SSO_ADC_Component
4401 or else
4402 Is_Packed (Rec))
4403 then
4404 Error_Msg_N
4405 ("??scalar storage order specified but no component "
4406 & "clause", SSO_ADC);
4407 end if;
4408 end if;
4409 end if;
4411 -- Deal with Bit_Order aspect
4413 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
4415 if Present (ADC) and then Base_Type (Rec) = Rec then
4416 if not (Placed_Component
4417 or else Present (SSO_ADC)
4418 or else Is_Packed (Rec))
4419 then
4420 -- Warn if clause has no effect when no component clause is
4421 -- present, but suppress warning if the Bit_Order is required
4422 -- due to the presence of a Scalar_Storage_Order attribute.
4424 Error_Msg_N
4425 ("??bit order specification has no effect", ADC);
4426 Error_Msg_N
4427 ("\??since no component clauses were specified", ADC);
4429 -- Here is where we do the processing to adjust component clauses
4430 -- for reversed bit order, when not using reverse SSO. If an error
4431 -- has been reported on Rec already (such as SSO incompatible with
4432 -- bit order), don't bother adjusting as this may generate extra
4433 -- noise.
4435 elsif Reverse_Bit_Order (Rec)
4436 and then not Reverse_Storage_Order (Rec)
4437 and then not Error_Posted (Rec)
4438 then
4439 Adjust_Record_For_Reverse_Bit_Order (Rec);
4441 -- Case where we have both an explicit Bit_Order and the same
4442 -- Scalar_Storage_Order: leave record untouched, the back-end
4443 -- will take care of required layout conversions.
4445 else
4446 null;
4448 end if;
4449 end if;
4451 -- Complete error checking on record representation clause (e.g.
4452 -- overlap of components). This is called after adjusting the
4453 -- record for reverse bit order.
4455 declare
4456 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
4457 begin
4458 if Present (RRC) then
4459 Check_Record_Representation_Clause (RRC);
4460 end if;
4461 end;
4463 -- Check for useless pragma Pack when all components placed. We only
4464 -- do this check for record types, not subtypes, since a subtype may
4465 -- have all its components placed, and it still makes perfectly good
4466 -- sense to pack other subtypes or the parent type. We do not give
4467 -- this warning if Optimize_Alignment is set to Space, since the
4468 -- pragma Pack does have an effect in this case (it always resets
4469 -- the alignment to one).
4471 if Ekind (Rec) = E_Record_Type
4472 and then Is_Packed (Rec)
4473 and then not Unplaced_Component
4474 and then Optimize_Alignment /= 'S'
4475 then
4476 -- Reset packed status. Probably not necessary, but we do it so
4477 -- that there is no chance of the back end doing something strange
4478 -- with this redundant indication of packing.
4480 Set_Is_Packed (Rec, False);
4482 -- Give warning if redundant constructs warnings on
4484 if Warn_On_Redundant_Constructs then
4485 Error_Msg_N -- CODEFIX
4486 ("??pragma Pack has no effect, no unplaced components",
4487 Get_Rep_Pragma (Rec, Name_Pack));
4488 end if;
4489 end if;
4491 -- If this is the record corresponding to a remote type, freeze the
4492 -- remote type here since that is what we are semantically freezing.
4493 -- This prevents the freeze node for that type in an inner scope.
4495 if Ekind (Rec) = E_Record_Type then
4496 if Present (Corresponding_Remote_Type (Rec)) then
4497 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
4498 end if;
4500 -- Check for controlled components, unchecked unions, and type
4501 -- invariants.
4503 Comp := First_Component (Rec);
4504 while Present (Comp) loop
4506 -- Do not set Has_Controlled_Component on a class-wide
4507 -- equivalent type. See Make_CW_Equivalent_Type.
4509 if not Is_Class_Wide_Equivalent_Type (Rec)
4510 and then
4511 (Has_Controlled_Component (Etype (Comp))
4512 or else
4513 (Chars (Comp) /= Name_uParent
4514 and then Is_Controlled (Etype (Comp)))
4515 or else
4516 (Is_Protected_Type (Etype (Comp))
4517 and then
4518 Present (Corresponding_Record_Type (Etype (Comp)))
4519 and then
4520 Has_Controlled_Component
4521 (Corresponding_Record_Type (Etype (Comp)))))
4522 then
4523 Set_Has_Controlled_Component (Rec);
4524 end if;
4526 if Has_Unchecked_Union (Etype (Comp)) then
4527 Set_Has_Unchecked_Union (Rec);
4528 end if;
4530 -- The record type requires its own invariant procedure in
4531 -- order to verify the invariant of each individual component.
4532 -- Do not consider internal components such as _parent because
4533 -- parent class-wide invariants are always inherited.
4534 -- In GNATprove mode, the component invariants are checked by
4535 -- other means. They should not be added to the record type
4536 -- invariant procedure, so that the procedure can be used to
4537 -- check the recordy type invariants if any.
4539 if Comes_From_Source (Comp)
4540 and then Has_Invariants (Etype (Comp))
4541 and then not GNATprove_Mode
4542 then
4543 Set_Has_Own_Invariants (Rec);
4544 end if;
4546 -- Scan component declaration for likely misuses of current
4547 -- instance, either in a constraint or a default expression.
4549 if Has_Per_Object_Constraint (Comp) then
4550 Check_Current_Instance (Parent (Comp));
4551 end if;
4553 Next_Component (Comp);
4554 end loop;
4555 end if;
4557 -- Enforce the restriction that access attributes with a current
4558 -- instance prefix can only apply to limited types. This comment
4559 -- is floating here, but does not seem to belong here???
4561 -- Set component alignment if not otherwise already set
4563 Set_Component_Alignment_If_Not_Set (Rec);
4565 -- For first subtypes, check if there are any fixed-point fields with
4566 -- component clauses, where we must check the size. This is not done
4567 -- till the freeze point since for fixed-point types, we do not know
4568 -- the size until the type is frozen. Similar processing applies to
4569 -- bit-packed arrays.
4571 if Is_First_Subtype (Rec) then
4572 Comp := First_Component (Rec);
4573 while Present (Comp) loop
4574 if Present (Component_Clause (Comp))
4575 and then (Is_Fixed_Point_Type (Etype (Comp))
4576 or else Is_Bit_Packed_Array (Etype (Comp)))
4577 then
4578 Check_Size
4579 (Component_Name (Component_Clause (Comp)),
4580 Etype (Comp),
4581 Esize (Comp),
4582 Junk);
4583 end if;
4585 Next_Component (Comp);
4586 end loop;
4587 end if;
4589 -- See if Size is too small as is (and implicit packing might help)
4591 if not Is_Packed (Rec)
4593 -- No implicit packing if even one component is explicitly placed
4595 and then not Placed_Component
4597 -- Or even one component is aliased
4599 and then not Aliased_Component
4601 -- Must have size clause and all sized components
4603 and then Has_Size_Clause (Rec)
4604 and then All_Sized_Components
4606 -- Do not try implicit packing on records with discriminants, too
4607 -- complicated, especially in the variant record case.
4609 and then not Has_Discriminants (Rec)
4611 -- We want to implicitly pack if the specified size of the record
4612 -- is less than the sum of the object sizes (no point in packing
4613 -- if this is not the case), if we can compute it, i.e. if we have
4614 -- only elementary components. Otherwise, we have at least one
4615 -- composite component and we want to implicitly pack only if bit
4616 -- packing is required for it, as we are sure in this case that
4617 -- the back end cannot do the expected layout without packing.
4619 and then
4620 ((All_Elem_Components
4621 and then RM_Size (Rec) < Elem_Component_Total_Esize)
4622 or else
4623 (not All_Elem_Components
4624 and then not All_Storage_Unit_Components
4625 and then RM_Size (Rec) < Sized_Component_Total_Round_RM_Size))
4627 -- And the total RM size cannot be greater than the specified size
4628 -- since otherwise packing will not get us where we have to be.
4630 and then Sized_Component_Total_RM_Size <= RM_Size (Rec)
4632 -- Never do implicit packing in CodePeer or SPARK modes since
4633 -- we don't do any packing in these modes, since this generates
4634 -- over-complex code that confuses static analysis, and in
4635 -- general, neither CodePeer not GNATprove care about the
4636 -- internal representation of objects.
4638 and then not (CodePeer_Mode or GNATprove_Mode)
4639 then
4640 -- If implicit packing enabled, do it
4642 if Implicit_Packing then
4643 Set_Is_Packed (Rec);
4645 -- Otherwise flag the size clause
4647 else
4648 declare
4649 Sz : constant Node_Id := Size_Clause (Rec);
4650 begin
4651 Error_Msg_NE -- CODEFIX
4652 ("size given for& too small", Sz, Rec);
4653 Error_Msg_N -- CODEFIX
4654 ("\use explicit pragma Pack "
4655 & "or use pragma Implicit_Packing", Sz);
4656 end;
4657 end if;
4658 end if;
4660 -- The following checks are relevant only when SPARK_Mode is on as
4661 -- they are not standard Ada legality rules.
4663 if SPARK_Mode = On then
4665 -- A discriminated type cannot be effectively volatile
4666 -- (SPARK RM 7.1.3(5)).
4668 if Is_Effectively_Volatile (Rec) then
4669 if Has_Discriminants (Rec) then
4670 Error_Msg_N ("discriminated type & cannot be volatile", Rec);
4671 end if;
4673 -- A non-effectively volatile record type cannot contain
4674 -- effectively volatile components (SPARK RM 7.1.3(6)).
4676 else
4677 Comp := First_Component (Rec);
4678 while Present (Comp) loop
4679 if Comes_From_Source (Comp)
4680 and then Is_Effectively_Volatile (Etype (Comp))
4681 then
4682 Error_Msg_Name_1 := Chars (Rec);
4683 Error_Msg_N
4684 ("component & of non-volatile type % cannot be "
4685 & "volatile", Comp);
4686 end if;
4688 Next_Component (Comp);
4689 end loop;
4690 end if;
4692 -- A type which does not yield a synchronized object cannot have
4693 -- a component that yields a synchronized object (SPARK RM 9.5).
4695 if not Yields_Synchronized_Object (Rec) then
4696 Comp := First_Component (Rec);
4697 while Present (Comp) loop
4698 if Comes_From_Source (Comp)
4699 and then Yields_Synchronized_Object (Etype (Comp))
4700 then
4701 Error_Msg_Name_1 := Chars (Rec);
4702 Error_Msg_N
4703 ("component & of non-synchronized type % cannot be "
4704 & "synchronized", Comp);
4705 end if;
4707 Next_Component (Comp);
4708 end loop;
4709 end if;
4711 -- A Ghost type cannot have a component of protected or task type
4712 -- (SPARK RM 6.9(19)).
4714 if Is_Ghost_Entity (Rec) then
4715 Comp := First_Component (Rec);
4716 while Present (Comp) loop
4717 if Comes_From_Source (Comp)
4718 and then Is_Concurrent_Type (Etype (Comp))
4719 then
4720 Error_Msg_Name_1 := Chars (Rec);
4721 Error_Msg_N
4722 ("component & of ghost type % cannot be concurrent",
4723 Comp);
4724 end if;
4726 Next_Component (Comp);
4727 end loop;
4728 end if;
4729 end if;
4731 -- Make sure that if we have an iterator aspect, then we have
4732 -- either Constant_Indexing or Variable_Indexing.
4734 declare
4735 Iterator_Aspect : Node_Id;
4737 begin
4738 Iterator_Aspect := Find_Aspect (Rec, Aspect_Iterator_Element);
4740 if No (Iterator_Aspect) then
4741 Iterator_Aspect := Find_Aspect (Rec, Aspect_Default_Iterator);
4742 end if;
4744 if Present (Iterator_Aspect) then
4745 if Has_Aspect (Rec, Aspect_Constant_Indexing)
4746 or else
4747 Has_Aspect (Rec, Aspect_Variable_Indexing)
4748 then
4749 null;
4750 else
4751 Error_Msg_N
4752 ("Iterator_Element requires indexing aspect",
4753 Iterator_Aspect);
4754 end if;
4755 end if;
4756 end;
4758 -- All done if not a full record definition
4760 if Ekind (Rec) /= E_Record_Type then
4761 return;
4762 end if;
4764 -- Finally we need to check the variant part to make sure that
4765 -- all types within choices are properly frozen as part of the
4766 -- freezing of the record type.
4768 Check_Variant_Part : declare
4769 D : constant Node_Id := Declaration_Node (Rec);
4770 T : Node_Id;
4771 C : Node_Id;
4773 begin
4774 -- Find component list
4776 C := Empty;
4778 if Nkind (D) = N_Full_Type_Declaration then
4779 T := Type_Definition (D);
4781 if Nkind (T) = N_Record_Definition then
4782 C := Component_List (T);
4784 elsif Nkind (T) = N_Derived_Type_Definition
4785 and then Present (Record_Extension_Part (T))
4786 then
4787 C := Component_List (Record_Extension_Part (T));
4788 end if;
4789 end if;
4791 -- Case of variant part present
4793 if Present (C) and then Present (Variant_Part (C)) then
4794 Freeze_Choices_In_Variant_Part (Variant_Part (C));
4795 end if;
4797 -- Note: we used to call Check_Choices here, but it is too early,
4798 -- since predicated subtypes are frozen here, but their freezing
4799 -- actions are in Analyze_Freeze_Entity, which has not been called
4800 -- yet for entities frozen within this procedure, so we moved that
4801 -- call to the Analyze_Freeze_Entity for the record type.
4803 end Check_Variant_Part;
4805 -- Check that all the primitives of an interface type are abstract
4806 -- or null procedures.
4808 if Is_Interface (Rec)
4809 and then not Error_Posted (Parent (Rec))
4810 then
4811 declare
4812 Elmt : Elmt_Id;
4813 Subp : Entity_Id;
4815 begin
4816 Elmt := First_Elmt (Primitive_Operations (Rec));
4817 while Present (Elmt) loop
4818 Subp := Node (Elmt);
4820 if not Is_Abstract_Subprogram (Subp)
4822 -- Avoid reporting the error on inherited primitives
4824 and then Comes_From_Source (Subp)
4825 then
4826 Error_Msg_Name_1 := Chars (Subp);
4828 if Ekind (Subp) = E_Procedure then
4829 if not Null_Present (Parent (Subp)) then
4830 Error_Msg_N
4831 ("interface procedure % must be abstract or null",
4832 Parent (Subp));
4833 end if;
4834 else
4835 Error_Msg_N
4836 ("interface function % must be abstract",
4837 Parent (Subp));
4838 end if;
4839 end if;
4841 Next_Elmt (Elmt);
4842 end loop;
4843 end;
4844 end if;
4846 -- For a derived tagged type, check whether inherited primitives
4847 -- might require a wrapper to handle class-wide conditions.
4849 if Is_Tagged_Type (Rec) and then Is_Derived_Type (Rec) then
4850 Check_Inherited_Conditions (Rec);
4851 end if;
4852 end Freeze_Record_Type;
4854 -------------------------------
4855 -- Has_Boolean_Aspect_Import --
4856 -------------------------------
4858 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
4859 Decl : constant Node_Id := Declaration_Node (E);
4860 Asp : Node_Id;
4861 Expr : Node_Id;
4863 begin
4864 if Has_Aspects (Decl) then
4865 Asp := First (Aspect_Specifications (Decl));
4866 while Present (Asp) loop
4867 Expr := Expression (Asp);
4869 -- The value of aspect Import is True when the expression is
4870 -- either missing or it is explicitly set to True.
4872 if Get_Aspect_Id (Asp) = Aspect_Import
4873 and then (No (Expr)
4874 or else (Compile_Time_Known_Value (Expr)
4875 and then Is_True (Expr_Value (Expr))))
4876 then
4877 return True;
4878 end if;
4880 Next (Asp);
4881 end loop;
4882 end if;
4884 return False;
4885 end Has_Boolean_Aspect_Import;
4887 -------------------------
4888 -- Inherit_Freeze_Node --
4889 -------------------------
4891 procedure Inherit_Freeze_Node
4892 (Fnod : Node_Id;
4893 Typ : Entity_Id)
4895 Typ_Fnod : constant Node_Id := Freeze_Node (Typ);
4897 begin
4898 Set_Freeze_Node (Typ, Fnod);
4899 Set_Entity (Fnod, Typ);
4901 -- The input type had an existing node. Propagate relevant attributes
4902 -- from the old freeze node to the inherited freeze node.
4904 -- ??? if both freeze nodes have attributes, would they differ?
4906 if Present (Typ_Fnod) then
4908 -- Attribute Access_Types_To_Process
4910 if Present (Access_Types_To_Process (Typ_Fnod))
4911 and then No (Access_Types_To_Process (Fnod))
4912 then
4913 Set_Access_Types_To_Process (Fnod,
4914 Access_Types_To_Process (Typ_Fnod));
4915 end if;
4917 -- Attribute Actions
4919 if Present (Actions (Typ_Fnod)) and then No (Actions (Fnod)) then
4920 Set_Actions (Fnod, Actions (Typ_Fnod));
4921 end if;
4923 -- Attribute First_Subtype_Link
4925 if Present (First_Subtype_Link (Typ_Fnod))
4926 and then No (First_Subtype_Link (Fnod))
4927 then
4928 Set_First_Subtype_Link (Fnod, First_Subtype_Link (Typ_Fnod));
4929 end if;
4931 -- Attribute TSS_Elist
4933 if Present (TSS_Elist (Typ_Fnod))
4934 and then No (TSS_Elist (Fnod))
4935 then
4936 Set_TSS_Elist (Fnod, TSS_Elist (Typ_Fnod));
4937 end if;
4938 end if;
4939 end Inherit_Freeze_Node;
4941 ------------------------------
4942 -- Wrap_Imported_Subprogram --
4943 ------------------------------
4945 -- The issue here is that our normal approach of checking preconditions
4946 -- and postconditions does not work for imported procedures, since we
4947 -- are not generating code for the body. To get around this we create
4948 -- a wrapper, as shown by the following example:
4950 -- procedure K (A : Integer);
4951 -- pragma Import (C, K);
4953 -- The spec is rewritten by removing the effects of pragma Import, but
4954 -- leaving the convention unchanged, as though the source had said:
4956 -- procedure K (A : Integer);
4957 -- pragma Convention (C, K);
4959 -- and we create a body, added to the entity K freeze actions, which
4960 -- looks like:
4962 -- procedure K (A : Integer) is
4963 -- procedure K (A : Integer);
4964 -- pragma Import (C, K);
4965 -- begin
4966 -- K (A);
4967 -- end K;
4969 -- Now the contract applies in the normal way to the outer procedure,
4970 -- and the inner procedure has no contracts, so there is no problem
4971 -- in just calling it to get the original effect.
4973 -- In the case of a function, we create an appropriate return statement
4974 -- for the subprogram body that calls the inner procedure.
4976 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
4977 function Copy_Import_Pragma return Node_Id;
4978 -- Obtain a copy of the Import_Pragma which belongs to subprogram E
4980 ------------------------
4981 -- Copy_Import_Pragma --
4982 ------------------------
4984 function Copy_Import_Pragma return Node_Id is
4986 -- The subprogram should have an import pragma, otherwise it does
4987 -- need a wrapper.
4989 Prag : constant Node_Id := Import_Pragma (E);
4990 pragma Assert (Present (Prag));
4992 -- Save all semantic fields of the pragma
4994 Save_Asp : constant Node_Id := Corresponding_Aspect (Prag);
4995 Save_From : constant Boolean := From_Aspect_Specification (Prag);
4996 Save_Prag : constant Node_Id := Next_Pragma (Prag);
4997 Save_Rep : constant Node_Id := Next_Rep_Item (Prag);
4999 Result : Node_Id;
5001 begin
5002 -- Reset all semantic fields. This avoids a potential infinite
5003 -- loop when the pragma comes from an aspect as the duplication
5004 -- will copy the aspect, then copy the corresponding pragma and
5005 -- so on.
5007 Set_Corresponding_Aspect (Prag, Empty);
5008 Set_From_Aspect_Specification (Prag, False);
5009 Set_Next_Pragma (Prag, Empty);
5010 Set_Next_Rep_Item (Prag, Empty);
5012 Result := Copy_Separate_Tree (Prag);
5014 -- Restore the original semantic fields
5016 Set_Corresponding_Aspect (Prag, Save_Asp);
5017 Set_From_Aspect_Specification (Prag, Save_From);
5018 Set_Next_Pragma (Prag, Save_Prag);
5019 Set_Next_Rep_Item (Prag, Save_Rep);
5021 return Result;
5022 end Copy_Import_Pragma;
5024 -- Local variables
5026 Loc : constant Source_Ptr := Sloc (E);
5027 CE : constant Name_Id := Chars (E);
5028 Bod : Node_Id;
5029 Forml : Entity_Id;
5030 Parms : List_Id;
5031 Prag : Node_Id;
5032 Spec : Node_Id;
5033 Stmt : Node_Id;
5035 -- Start of processing for Wrap_Imported_Subprogram
5037 begin
5038 -- Nothing to do if not imported
5040 if not Is_Imported (E) then
5041 return;
5043 -- Test enabling conditions for wrapping
5045 elsif Is_Subprogram (E)
5046 and then Present (Contract (E))
5047 and then Present (Pre_Post_Conditions (Contract (E)))
5048 and then not GNATprove_Mode
5049 then
5050 -- Here we do the wrap
5052 -- Note on calls to Copy_Separate_Tree. The trees we are copying
5053 -- here are fully analyzed, but we definitely want fully syntactic
5054 -- unanalyzed trees in the body we construct, so that the analysis
5055 -- generates the right visibility, and that is exactly what the
5056 -- calls to Copy_Separate_Tree give us.
5058 Prag := Copy_Import_Pragma;
5060 -- Fix up spec so it is no longer imported and has convention Ada
5062 Set_Has_Completion (E, False);
5063 Set_Import_Pragma (E, Empty);
5064 Set_Interface_Name (E, Empty);
5065 Set_Is_Imported (E, False);
5066 Set_Convention (E, Convention_Ada);
5068 -- Grab the subprogram declaration and specification
5070 Spec := Declaration_Node (E);
5072 -- Build parameter list that we need
5074 Parms := New_List;
5075 Forml := First_Formal (E);
5076 while Present (Forml) loop
5077 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
5078 Next_Formal (Forml);
5079 end loop;
5081 -- Build the call
5083 if Ekind_In (E, E_Function, E_Generic_Function) then
5084 Stmt :=
5085 Make_Simple_Return_Statement (Loc,
5086 Expression =>
5087 Make_Function_Call (Loc,
5088 Name => Make_Identifier (Loc, CE),
5089 Parameter_Associations => Parms));
5091 else
5092 Stmt :=
5093 Make_Procedure_Call_Statement (Loc,
5094 Name => Make_Identifier (Loc, CE),
5095 Parameter_Associations => Parms);
5096 end if;
5098 -- Now build the body
5100 Bod :=
5101 Make_Subprogram_Body (Loc,
5102 Specification =>
5103 Copy_Separate_Tree (Spec),
5104 Declarations => New_List (
5105 Make_Subprogram_Declaration (Loc,
5106 Specification => Copy_Separate_Tree (Spec)),
5107 Prag),
5108 Handled_Statement_Sequence =>
5109 Make_Handled_Sequence_Of_Statements (Loc,
5110 Statements => New_List (Stmt),
5111 End_Label => Make_Identifier (Loc, CE)));
5113 -- Append the body to freeze result
5115 Add_To_Result (Bod);
5116 return;
5118 -- Case of imported subprogram that does not get wrapped
5120 else
5121 -- Set Is_Public. All imported entities need an external symbol
5122 -- created for them since they are always referenced from another
5123 -- object file. Note this used to be set when we set Is_Imported
5124 -- back in Sem_Prag, but now we delay it to this point, since we
5125 -- don't want to set this flag if we wrap an imported subprogram.
5127 Set_Is_Public (E);
5128 end if;
5129 end Wrap_Imported_Subprogram;
5131 -- Local variables
5133 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
5134 -- Save the Ghost mode to restore on exit
5136 -- Start of processing for Freeze_Entity
5138 begin
5139 -- The entity being frozen may be subject to pragma Ghost. Set the mode
5140 -- now to ensure that any nodes generated during freezing are properly
5141 -- flagged as Ghost.
5143 Set_Ghost_Mode (E);
5145 -- We are going to test for various reasons why this entity need not be
5146 -- frozen here, but in the case of an Itype that's defined within a
5147 -- record, that test actually applies to the record.
5149 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
5150 Test_E := Scope (E);
5151 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
5152 and then Is_Record_Type (Underlying_Type (Scope (E)))
5153 then
5154 Test_E := Underlying_Type (Scope (E));
5155 end if;
5157 -- Do not freeze if already frozen since we only need one freeze node
5159 if Is_Frozen (E) then
5160 Result := No_List;
5161 goto Leave;
5163 elsif Ekind (E) = E_Generic_Package then
5164 Result := Freeze_Generic_Entities (E);
5165 goto Leave;
5167 -- It is improper to freeze an external entity within a generic because
5168 -- its freeze node will appear in a non-valid context. The entity will
5169 -- be frozen in the proper scope after the current generic is analyzed.
5170 -- However, aspects must be analyzed because they may be queried later
5171 -- within the generic itself, and the corresponding pragma or attribute
5172 -- definition has not been analyzed yet.
5174 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
5175 if Has_Delayed_Aspects (E) then
5176 Analyze_Aspects_At_Freeze_Point (E);
5177 end if;
5179 Result := No_List;
5180 goto Leave;
5182 -- AI05-0213: A formal incomplete type does not freeze the actual. In
5183 -- the instance, the same applies to the subtype renaming the actual.
5185 elsif Is_Private_Type (E)
5186 and then Is_Generic_Actual_Type (E)
5187 and then No (Full_View (Base_Type (E)))
5188 and then Ada_Version >= Ada_2012
5189 then
5190 Result := No_List;
5191 goto Leave;
5193 -- Formal subprograms are never frozen
5195 elsif Is_Formal_Subprogram (E) then
5196 Result := No_List;
5197 goto Leave;
5199 -- Generic types are never frozen as they lack delayed semantic checks
5201 elsif Is_Generic_Type (E) then
5202 Result := No_List;
5203 goto Leave;
5205 -- Do not freeze a global entity within an inner scope created during
5206 -- expansion. A call to subprogram E within some internal procedure
5207 -- (a stream attribute for example) might require freezing E, but the
5208 -- freeze node must appear in the same declarative part as E itself.
5209 -- The two-pass elaboration mechanism in gigi guarantees that E will
5210 -- be frozen before the inner call is elaborated. We exclude constants
5211 -- from this test, because deferred constants may be frozen early, and
5212 -- must be diagnosed (e.g. in the case of a deferred constant being used
5213 -- in a default expression). If the enclosing subprogram comes from
5214 -- source, or is a generic instance, then the freeze point is the one
5215 -- mandated by the language, and we freeze the entity. A subprogram that
5216 -- is a child unit body that acts as a spec does not have a spec that
5217 -- comes from source, but can only come from source.
5219 elsif In_Open_Scopes (Scope (Test_E))
5220 and then Scope (Test_E) /= Current_Scope
5221 and then Ekind (Test_E) /= E_Constant
5222 then
5223 declare
5224 S : Entity_Id;
5226 begin
5227 S := Current_Scope;
5228 while Present (S) loop
5229 if Is_Overloadable (S) then
5230 if Comes_From_Source (S)
5231 or else Is_Generic_Instance (S)
5232 or else Is_Child_Unit (S)
5233 then
5234 exit;
5235 else
5236 Result := No_List;
5237 goto Leave;
5238 end if;
5239 end if;
5241 S := Scope (S);
5242 end loop;
5243 end;
5245 -- Similarly, an inlined instance body may make reference to global
5246 -- entities, but these references cannot be the proper freezing point
5247 -- for them, and in the absence of inlining freezing will take place in
5248 -- their own scope. Normally instance bodies are analyzed after the
5249 -- enclosing compilation, and everything has been frozen at the proper
5250 -- place, but with front-end inlining an instance body is compiled
5251 -- before the end of the enclosing scope, and as a result out-of-order
5252 -- freezing must be prevented.
5254 elsif Front_End_Inlining
5255 and then In_Instance_Body
5256 and then Present (Scope (Test_E))
5257 then
5258 declare
5259 S : Entity_Id;
5261 begin
5262 S := Scope (Test_E);
5263 while Present (S) loop
5264 if Is_Generic_Instance (S) then
5265 exit;
5266 else
5267 S := Scope (S);
5268 end if;
5269 end loop;
5271 if No (S) then
5272 Result := No_List;
5273 goto Leave;
5274 end if;
5275 end;
5276 end if;
5278 -- Add checks to detect proper initialization of scalars that may appear
5279 -- as subprogram parameters.
5281 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
5282 Apply_Parameter_Validity_Checks (E);
5283 end if;
5285 -- Deal with delayed aspect specifications. The analysis of the aspect
5286 -- is required to be delayed to the freeze point, thus we analyze the
5287 -- pragma or attribute definition clause in the tree at this point. We
5288 -- also analyze the aspect specification node at the freeze point when
5289 -- the aspect doesn't correspond to pragma/attribute definition clause.
5290 -- In addition, a derived type may have inherited aspects that were
5291 -- delayed in the parent, so these must also be captured now.
5293 if Has_Delayed_Aspects (E)
5294 or else May_Inherit_Delayed_Rep_Aspects (E)
5295 then
5296 Analyze_Aspects_At_Freeze_Point (E);
5297 end if;
5299 -- Here to freeze the entity
5301 Set_Is_Frozen (E);
5303 -- Case of entity being frozen is other than a type
5305 if not Is_Type (E) then
5307 -- If entity is exported or imported and does not have an external
5308 -- name, now is the time to provide the appropriate default name.
5309 -- Skip this if the entity is stubbed, since we don't need a name
5310 -- for any stubbed routine. For the case on intrinsics, if no
5311 -- external name is specified, then calls will be handled in
5312 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
5313 -- external name is provided, then Expand_Intrinsic_Call leaves
5314 -- calls in place for expansion by GIGI.
5316 if (Is_Imported (E) or else Is_Exported (E))
5317 and then No (Interface_Name (E))
5318 and then Convention (E) /= Convention_Stubbed
5319 and then Convention (E) /= Convention_Intrinsic
5320 then
5321 Set_Encoded_Interface_Name
5322 (E, Get_Default_External_Name (E));
5324 -- If entity is an atomic object appearing in a declaration and
5325 -- the expression is an aggregate, assign it to a temporary to
5326 -- ensure that the actual assignment is done atomically rather
5327 -- than component-wise (the assignment to the temp may be done
5328 -- component-wise, but that is harmless).
5330 elsif Is_Atomic_Or_VFA (E)
5331 and then Nkind (Parent (E)) = N_Object_Declaration
5332 and then Present (Expression (Parent (E)))
5333 and then Nkind (Expression (Parent (E))) = N_Aggregate
5334 and then Is_Atomic_VFA_Aggregate (Expression (Parent (E)))
5335 then
5336 null;
5337 end if;
5339 -- Subprogram case
5341 if Is_Subprogram (E) then
5343 -- Check for needing to wrap imported subprogram
5345 Wrap_Imported_Subprogram (E);
5347 -- Freeze all parameter types and the return type (RM 13.14(14)).
5348 -- However skip this for internal subprograms. This is also where
5349 -- any extra formal parameters are created since we now know
5350 -- whether the subprogram will use a foreign convention.
5352 -- In Ada 2012, freezing a subprogram does not always freeze the
5353 -- corresponding profile (see AI05-019). An attribute reference
5354 -- is not a freezing point of the profile. Flag Do_Freeze_Profile
5355 -- indicates whether the profile should be frozen now.
5356 -- Other constructs that should not freeze ???
5358 -- This processing doesn't apply to internal entities (see below)
5360 if not Is_Internal (E) and then Do_Freeze_Profile then
5361 if not Freeze_Profile (E) then
5362 goto Leave;
5363 end if;
5364 end if;
5366 -- Must freeze its parent first if it is a derived subprogram
5368 if Present (Alias (E)) then
5369 Freeze_And_Append (Alias (E), N, Result);
5370 end if;
5372 -- We don't freeze internal subprograms, because we don't normally
5373 -- want addition of extra formals or mechanism setting to happen
5374 -- for those. However we do pass through predefined dispatching
5375 -- cases, since extra formals may be needed in some cases, such as
5376 -- for the stream 'Input function (build-in-place formals).
5378 if not Is_Internal (E)
5379 or else Is_Predefined_Dispatching_Operation (E)
5380 then
5381 Freeze_Subprogram (E);
5382 end if;
5384 -- If warning on suspicious contracts then check for the case of
5385 -- a postcondition other than False for a No_Return subprogram.
5387 if No_Return (E)
5388 and then Warn_On_Suspicious_Contract
5389 and then Present (Contract (E))
5390 then
5391 declare
5392 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
5393 Exp : Node_Id;
5395 begin
5396 while Present (Prag) loop
5397 if Nam_In (Pragma_Name_Unmapped (Prag),
5398 Name_Post,
5399 Name_Postcondition,
5400 Name_Refined_Post)
5401 then
5402 Exp :=
5403 Expression
5404 (First (Pragma_Argument_Associations (Prag)));
5406 if Nkind (Exp) /= N_Identifier
5407 or else Chars (Exp) /= Name_False
5408 then
5409 Error_Msg_NE
5410 ("useless postcondition, & is marked "
5411 & "No_Return?T?", Exp, E);
5412 end if;
5413 end if;
5415 Prag := Next_Pragma (Prag);
5416 end loop;
5417 end;
5418 end if;
5420 -- Here for other than a subprogram or type
5422 else
5423 -- If entity has a type, and it is not a generic unit, then
5424 -- freeze it first (RM 13.14(10)).
5426 if Present (Etype (E))
5427 and then Ekind (E) /= E_Generic_Function
5428 then
5429 Freeze_And_Append (Etype (E), N, Result);
5431 -- For an object of an anonymous array type, aspects on the
5432 -- object declaration apply to the type itself. This is the
5433 -- case for Atomic_Components, Volatile_Components, and
5434 -- Independent_Components. In these cases analysis of the
5435 -- generated pragma will mark the anonymous types accordingly,
5436 -- and the object itself does not require a freeze node.
5438 if Ekind (E) = E_Variable
5439 and then Is_Itype (Etype (E))
5440 and then Is_Array_Type (Etype (E))
5441 and then Has_Delayed_Aspects (E)
5442 then
5443 Set_Has_Delayed_Aspects (E, False);
5444 Set_Has_Delayed_Freeze (E, False);
5445 Set_Freeze_Node (E, Empty);
5446 end if;
5447 end if;
5449 -- Special processing for objects created by object declaration
5451 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
5452 Freeze_Object_Declaration (E);
5453 end if;
5455 -- Check that a constant which has a pragma Volatile[_Components]
5456 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
5458 -- Note: Atomic[_Components] also sets Volatile[_Components]
5460 if Ekind (E) = E_Constant
5461 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
5462 and then not Is_Imported (E)
5463 and then not Has_Boolean_Aspect_Import (E)
5464 then
5465 -- Make sure we actually have a pragma, and have not merely
5466 -- inherited the indication from elsewhere (e.g. an address
5467 -- clause, which is not good enough in RM terms).
5469 if Has_Rep_Pragma (E, Name_Atomic)
5470 or else
5471 Has_Rep_Pragma (E, Name_Atomic_Components)
5472 then
5473 Error_Msg_N
5474 ("stand alone atomic constant must be " &
5475 "imported (RM C.6(13))", E);
5477 elsif Has_Rep_Pragma (E, Name_Volatile)
5478 or else
5479 Has_Rep_Pragma (E, Name_Volatile_Components)
5480 then
5481 Error_Msg_N
5482 ("stand alone volatile constant must be " &
5483 "imported (RM C.6(13))", E);
5484 end if;
5485 end if;
5487 -- Static objects require special handling
5489 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
5490 and then Is_Statically_Allocated (E)
5491 then
5492 Freeze_Static_Object (E);
5493 end if;
5495 -- Remaining step is to layout objects
5497 if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
5498 or else Is_Formal (E)
5499 then
5500 Layout_Object (E);
5501 end if;
5503 -- For an object that does not have delayed freezing, and whose
5504 -- initialization actions have been captured in a compound
5505 -- statement, move them back now directly within the enclosing
5506 -- statement sequence.
5508 if Ekind_In (E, E_Constant, E_Variable)
5509 and then not Has_Delayed_Freeze (E)
5510 then
5511 Explode_Initialization_Compound_Statement (E);
5512 end if;
5514 -- Do not generate a freeze node for a generic unit
5516 if Is_Generic_Unit (E) then
5517 Result := No_List;
5518 goto Leave;
5519 end if;
5520 end if;
5522 -- Case of a type or subtype being frozen
5524 else
5525 -- Verify several SPARK legality rules related to Ghost types now
5526 -- that the type is frozen.
5528 Check_Ghost_Type (E);
5530 -- We used to check here that a full type must have preelaborable
5531 -- initialization if it completes a private type specified with
5532 -- pragma Preelaborable_Initialization, but that missed cases where
5533 -- the types occur within a generic package, since the freezing
5534 -- that occurs within a containing scope generally skips traversal
5535 -- of a generic unit's declarations (those will be frozen within
5536 -- instances). This check was moved to Analyze_Package_Specification.
5538 -- The type may be defined in a generic unit. This can occur when
5539 -- freezing a generic function that returns the type (which is
5540 -- defined in a parent unit). It is clearly meaningless to freeze
5541 -- this type. However, if it is a subtype, its size may be determi-
5542 -- nable and used in subsequent checks, so might as well try to
5543 -- compute it.
5545 -- In Ada 2012, Freeze_Entities is also used in the front end to
5546 -- trigger the analysis of aspect expressions, so in this case we
5547 -- want to continue the freezing process.
5549 -- Is_Generic_Unit (Scope (E)) is dubious here, do we want instead
5550 -- In_Generic_Scope (E)???
5552 if Present (Scope (E))
5553 and then Is_Generic_Unit (Scope (E))
5554 and then
5555 (not Has_Predicates (E)
5556 and then not Has_Delayed_Freeze (E))
5557 then
5558 Check_Compile_Time_Size (E);
5559 Result := No_List;
5560 goto Leave;
5561 end if;
5563 -- Check for error of Type_Invariant'Class applied to an untagged
5564 -- type (check delayed to freeze time when full type is available).
5566 declare
5567 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
5568 begin
5569 if Present (Prag)
5570 and then Class_Present (Prag)
5571 and then not Is_Tagged_Type (E)
5572 then
5573 Error_Msg_NE
5574 ("Type_Invariant''Class cannot be specified for &", Prag, E);
5575 Error_Msg_N
5576 ("\can only be specified for a tagged type", Prag);
5577 end if;
5578 end;
5580 -- Deal with special cases of freezing for subtype
5582 if E /= Base_Type (E) then
5584 -- Before we do anything else, a specific test for the case of a
5585 -- size given for an array where the array would need to be packed
5586 -- in order for the size to be honored, but is not. This is the
5587 -- case where implicit packing may apply. The reason we do this so
5588 -- early is that, if we have implicit packing, the layout of the
5589 -- base type is affected, so we must do this before we freeze the
5590 -- base type.
5592 -- We could do this processing only if implicit packing is enabled
5593 -- since in all other cases, the error would be caught by the back
5594 -- end. However, we choose to do the check even if we do not have
5595 -- implicit packing enabled, since this allows us to give a more
5596 -- useful error message (advising use of pragma Implicit_Packing
5597 -- or pragma Pack).
5599 if Is_Array_Type (E) then
5600 declare
5601 Ctyp : constant Entity_Id := Component_Type (E);
5602 Rsiz : constant Uint := RM_Size (Ctyp);
5603 SZ : constant Node_Id := Size_Clause (E);
5604 Btyp : constant Entity_Id := Base_Type (E);
5606 Lo : Node_Id;
5607 Hi : Node_Id;
5608 Indx : Node_Id;
5610 Dim : Uint;
5611 Num_Elmts : Uint := Uint_1;
5612 -- Number of elements in array
5614 begin
5615 -- Check enabling conditions. These are straightforward
5616 -- except for the test for a limited composite type. This
5617 -- eliminates the rare case of a array of limited components
5618 -- where there are issues of whether or not we can go ahead
5619 -- and pack the array (since we can't freely pack and unpack
5620 -- arrays if they are limited).
5622 -- Note that we check the root type explicitly because the
5623 -- whole point is we are doing this test before we have had
5624 -- a chance to freeze the base type (and it is that freeze
5625 -- action that causes stuff to be inherited).
5627 -- The conditions on the size are identical to those used in
5628 -- Freeze_Array_Type to set the Is_Packed flag.
5630 if Has_Size_Clause (E)
5631 and then Known_Static_RM_Size (E)
5632 and then not Is_Packed (E)
5633 and then not Has_Pragma_Pack (E)
5634 and then not Has_Component_Size_Clause (E)
5635 and then Known_Static_RM_Size (Ctyp)
5636 and then Rsiz <= 64
5637 and then not (Addressable (Rsiz)
5638 and then Known_Static_Esize (Ctyp)
5639 and then Esize (Ctyp) = Rsiz)
5640 and then not (Rsiz mod System_Storage_Unit = 0
5641 and then Is_Composite_Type (Ctyp))
5642 and then not Is_Limited_Composite (E)
5643 and then not Is_Packed (Root_Type (E))
5644 and then not Has_Component_Size_Clause (Root_Type (E))
5645 and then not (CodePeer_Mode or GNATprove_Mode)
5646 then
5647 -- Compute number of elements in array
5649 Indx := First_Index (E);
5650 while Present (Indx) loop
5651 Get_Index_Bounds (Indx, Lo, Hi);
5653 if not (Compile_Time_Known_Value (Lo)
5654 and then
5655 Compile_Time_Known_Value (Hi))
5656 then
5657 goto No_Implicit_Packing;
5658 end if;
5660 Dim := Expr_Value (Hi) - Expr_Value (Lo) + 1;
5662 if Dim >= 0 then
5663 Num_Elmts := Num_Elmts * Dim;
5664 else
5665 Num_Elmts := Uint_0;
5666 end if;
5668 Next_Index (Indx);
5669 end loop;
5671 -- What we are looking for here is the situation where
5672 -- the RM_Size given would be exactly right if there was
5673 -- a pragma Pack, resulting in the component size being
5674 -- the RM_Size of the component type.
5676 if RM_Size (E) = Num_Elmts * Rsiz then
5678 -- For implicit packing mode, just set the component
5679 -- size and Freeze_Array_Type will do the rest.
5681 if Implicit_Packing then
5682 Set_Component_Size (Btyp, Rsiz);
5684 -- Otherwise give an error message
5686 else
5687 Error_Msg_NE
5688 ("size given for& too small", SZ, E);
5689 Error_Msg_N -- CODEFIX
5690 ("\use explicit pragma Pack or use pragma "
5691 & "Implicit_Packing", SZ);
5692 end if;
5693 end if;
5694 end if;
5695 end;
5696 end if;
5698 <<No_Implicit_Packing>>
5700 -- If ancestor subtype present, freeze that first. Note that this
5701 -- will also get the base type frozen. Need RM reference ???
5703 Atype := Ancestor_Subtype (E);
5705 if Present (Atype) then
5706 Freeze_And_Append (Atype, N, Result);
5708 -- No ancestor subtype present
5710 else
5711 -- See if we have a nearest ancestor that has a predicate.
5712 -- That catches the case of derived type with a predicate.
5713 -- Need RM reference here ???
5715 Atype := Nearest_Ancestor (E);
5717 if Present (Atype) and then Has_Predicates (Atype) then
5718 Freeze_And_Append (Atype, N, Result);
5719 end if;
5721 -- Freeze base type before freezing the entity (RM 13.14(15))
5723 if E /= Base_Type (E) then
5724 Freeze_And_Append (Base_Type (E), N, Result);
5725 end if;
5726 end if;
5728 -- A subtype inherits all the type-related representation aspects
5729 -- from its parents (RM 13.1(8)).
5731 Inherit_Aspects_At_Freeze_Point (E);
5733 -- For a derived type, freeze its parent type first (RM 13.14(15))
5735 elsif Is_Derived_Type (E) then
5736 Freeze_And_Append (Etype (E), N, Result);
5737 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
5739 -- A derived type inherits each type-related representation aspect
5740 -- of its parent type that was directly specified before the
5741 -- declaration of the derived type (RM 13.1(15)).
5743 Inherit_Aspects_At_Freeze_Point (E);
5744 end if;
5746 -- Check for incompatible size and alignment for record type
5748 if Warn_On_Size_Alignment
5749 and then Is_Record_Type (E)
5750 and then Has_Size_Clause (E) and then Has_Alignment_Clause (E)
5752 -- If explicit Object_Size clause given assume that the programmer
5753 -- knows what he is doing, and expects the compiler behavior.
5755 and then not Has_Object_Size_Clause (E)
5757 -- Check for size not a multiple of alignment
5759 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
5760 then
5761 declare
5762 SC : constant Node_Id := Size_Clause (E);
5763 AC : constant Node_Id := Alignment_Clause (E);
5764 Loc : Node_Id;
5765 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
5767 begin
5768 if Present (SC) and then Present (AC) then
5770 -- Give a warning
5772 if Sloc (SC) > Sloc (AC) then
5773 Loc := SC;
5774 Error_Msg_NE
5775 ("?Z?size is not a multiple of alignment for &",
5776 Loc, E);
5777 Error_Msg_Sloc := Sloc (AC);
5778 Error_Msg_Uint_1 := Alignment (E);
5779 Error_Msg_N ("\?Z?alignment of ^ specified #", Loc);
5781 else
5782 Loc := AC;
5783 Error_Msg_NE
5784 ("?Z?size is not a multiple of alignment for &",
5785 Loc, E);
5786 Error_Msg_Sloc := Sloc (SC);
5787 Error_Msg_Uint_1 := RM_Size (E);
5788 Error_Msg_N ("\?Z?size of ^ specified #", Loc);
5789 end if;
5791 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
5792 Error_Msg_N ("\?Z?Object_Size will be increased to ^", Loc);
5793 end if;
5794 end;
5795 end if;
5797 -- Array type
5799 if Is_Array_Type (E) then
5800 Freeze_Array_Type (E);
5802 -- For a class-wide type, the corresponding specific type is
5803 -- frozen as well (RM 13.14(15))
5805 elsif Is_Class_Wide_Type (E) then
5806 Freeze_And_Append (Root_Type (E), N, Result);
5808 -- If the base type of the class-wide type is still incomplete,
5809 -- the class-wide remains unfrozen as well. This is legal when
5810 -- E is the formal of a primitive operation of some other type
5811 -- which is being frozen.
5813 if not Is_Frozen (Root_Type (E)) then
5814 Set_Is_Frozen (E, False);
5815 goto Leave;
5816 end if;
5818 -- The equivalent type associated with a class-wide subtype needs
5819 -- to be frozen to ensure that its layout is done.
5821 if Ekind (E) = E_Class_Wide_Subtype
5822 and then Present (Equivalent_Type (E))
5823 then
5824 Freeze_And_Append (Equivalent_Type (E), N, Result);
5825 end if;
5827 -- Generate an itype reference for a library-level class-wide type
5828 -- at the freeze point. Otherwise the first explicit reference to
5829 -- the type may appear in an inner scope which will be rejected by
5830 -- the back-end.
5832 if Is_Itype (E)
5833 and then Is_Compilation_Unit (Scope (E))
5834 then
5835 declare
5836 Ref : constant Node_Id := Make_Itype_Reference (Loc);
5838 begin
5839 Set_Itype (Ref, E);
5841 -- From a gigi point of view, a class-wide subtype derives
5842 -- from its record equivalent type. As a result, the itype
5843 -- reference must appear after the freeze node of the
5844 -- equivalent type or gigi will reject the reference.
5846 if Ekind (E) = E_Class_Wide_Subtype
5847 and then Present (Equivalent_Type (E))
5848 then
5849 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
5850 else
5851 Add_To_Result (Ref);
5852 end if;
5853 end;
5854 end if;
5856 -- For a record type or record subtype, freeze all component types
5857 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5858 -- using Is_Record_Type, because we don't want to attempt the freeze
5859 -- for the case of a private type with record extension (we will do
5860 -- that later when the full type is frozen).
5862 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype) then
5863 if not In_Generic_Scope (E) then
5864 Freeze_Record_Type (E);
5865 end if;
5867 -- Report a warning if a discriminated record base type has a
5868 -- convention with language C or C++ applied to it. This check is
5869 -- done even within generic scopes (but not in instantiations),
5870 -- which is why we don't do it as part of Freeze_Record_Type.
5872 Check_Suspicious_Convention (E);
5874 -- For a concurrent type, freeze corresponding record type. This does
5875 -- not correspond to any specific rule in the RM, but the record type
5876 -- is essentially part of the concurrent type. Also freeze all local
5877 -- entities. This includes record types created for entry parameter
5878 -- blocks and whatever local entities may appear in the private part.
5880 elsif Is_Concurrent_Type (E) then
5881 if Present (Corresponding_Record_Type (E)) then
5882 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
5883 end if;
5885 Comp := First_Entity (E);
5886 while Present (Comp) loop
5887 if Is_Type (Comp) then
5888 Freeze_And_Append (Comp, N, Result);
5890 elsif (Ekind (Comp)) /= E_Function then
5892 -- The guard on the presence of the Etype seems to be needed
5893 -- for some CodePeer (-gnatcC) cases, but not clear why???
5895 if Present (Etype (Comp)) then
5896 if Is_Itype (Etype (Comp))
5897 and then Underlying_Type (Scope (Etype (Comp))) = E
5898 then
5899 Undelay_Type (Etype (Comp));
5900 end if;
5902 Freeze_And_Append (Etype (Comp), N, Result);
5903 end if;
5904 end if;
5906 Next_Entity (Comp);
5907 end loop;
5909 -- Private types are required to point to the same freeze node as
5910 -- their corresponding full views. The freeze node itself has to
5911 -- point to the partial view of the entity (because from the partial
5912 -- view, we can retrieve the full view, but not the reverse).
5913 -- However, in order to freeze correctly, we need to freeze the full
5914 -- view. If we are freezing at the end of a scope (or within the
5915 -- scope) of the private type, the partial and full views will have
5916 -- been swapped, the full view appears first in the entity chain and
5917 -- the swapping mechanism ensures that the pointers are properly set
5918 -- (on scope exit).
5920 -- If we encounter the partial view before the full view (e.g. when
5921 -- freezing from another scope), we freeze the full view, and then
5922 -- set the pointers appropriately since we cannot rely on swapping to
5923 -- fix things up (subtypes in an outer scope might not get swapped).
5925 -- If the full view is itself private, the above requirements apply
5926 -- to the underlying full view instead of the full view. But there is
5927 -- no swapping mechanism for the underlying full view so we need to
5928 -- set the pointers appropriately in both cases.
5930 elsif Is_Incomplete_Or_Private_Type (E)
5931 and then not Is_Generic_Type (E)
5932 then
5933 -- The construction of the dispatch table associated with library
5934 -- level tagged types forces freezing of all the primitives of the
5935 -- type, which may cause premature freezing of the partial view.
5936 -- For example:
5938 -- package Pkg is
5939 -- type T is tagged private;
5940 -- type DT is new T with private;
5941 -- procedure Prim (X : in out T; Y : in out DT'Class);
5942 -- private
5943 -- type T is tagged null record;
5944 -- Obj : T;
5945 -- type DT is new T with null record;
5946 -- end;
5948 -- In this case the type will be frozen later by the usual
5949 -- mechanism: an object declaration, an instantiation, or the
5950 -- end of a declarative part.
5952 if Is_Library_Level_Tagged_Type (E)
5953 and then not Present (Full_View (E))
5954 then
5955 Set_Is_Frozen (E, False);
5956 goto Leave;
5958 -- Case of full view present
5960 elsif Present (Full_View (E)) then
5962 -- If full view has already been frozen, then no further
5963 -- processing is required
5965 if Is_Frozen (Full_View (E)) then
5966 Set_Has_Delayed_Freeze (E, False);
5967 Set_Freeze_Node (E, Empty);
5969 -- Otherwise freeze full view and patch the pointers so that
5970 -- the freeze node will elaborate both views in the back end.
5971 -- However, if full view is itself private, freeze underlying
5972 -- full view instead and patch the pointers so that the freeze
5973 -- node will elaborate the three views in the back end.
5975 else
5976 declare
5977 Full : Entity_Id := Full_View (E);
5979 begin
5980 if Is_Private_Type (Full)
5981 and then Present (Underlying_Full_View (Full))
5982 then
5983 Full := Underlying_Full_View (Full);
5984 end if;
5986 Freeze_And_Append (Full, N, Result);
5988 if Full /= Full_View (E)
5989 and then Has_Delayed_Freeze (Full_View (E))
5990 then
5991 F_Node := Freeze_Node (Full);
5993 if Present (F_Node) then
5994 Inherit_Freeze_Node
5995 (Fnod => F_Node,
5996 Typ => Full_View (E));
5997 else
5998 Set_Has_Delayed_Freeze (Full_View (E), False);
5999 Set_Freeze_Node (Full_View (E), Empty);
6000 end if;
6001 end if;
6003 if Has_Delayed_Freeze (E) then
6004 F_Node := Freeze_Node (Full_View (E));
6006 if Present (F_Node) then
6007 Inherit_Freeze_Node
6008 (Fnod => F_Node,
6009 Typ => E);
6010 else
6011 -- {Incomplete,Private}_Subtypes with Full_Views
6012 -- constrained by discriminants.
6014 Set_Has_Delayed_Freeze (E, False);
6015 Set_Freeze_Node (E, Empty);
6016 end if;
6017 end if;
6018 end;
6019 end if;
6021 Check_Debug_Info_Needed (E);
6023 -- AI-117 requires that the convention of a partial view be the
6024 -- same as the convention of the full view. Note that this is a
6025 -- recognized breach of privacy, but it's essential for logical
6026 -- consistency of representation, and the lack of a rule in
6027 -- RM95 was an oversight.
6029 Set_Convention (E, Convention (Full_View (E)));
6031 Set_Size_Known_At_Compile_Time (E,
6032 Size_Known_At_Compile_Time (Full_View (E)));
6034 -- Size information is copied from the full view to the
6035 -- incomplete or private view for consistency.
6037 -- We skip this is the full view is not a type. This is very
6038 -- strange of course, and can only happen as a result of
6039 -- certain illegalities, such as a premature attempt to derive
6040 -- from an incomplete type.
6042 if Is_Type (Full_View (E)) then
6043 Set_Size_Info (E, Full_View (E));
6044 Set_RM_Size (E, RM_Size (Full_View (E)));
6045 end if;
6047 goto Leave;
6049 -- Case of underlying full view present
6051 elsif Is_Private_Type (E)
6052 and then Present (Underlying_Full_View (E))
6053 then
6054 if not Is_Frozen (Underlying_Full_View (E)) then
6055 Freeze_And_Append (Underlying_Full_View (E), N, Result);
6056 end if;
6058 -- Patch the pointers so that the freeze node will elaborate
6059 -- both views in the back end.
6061 if Has_Delayed_Freeze (E) then
6062 F_Node := Freeze_Node (Underlying_Full_View (E));
6064 if Present (F_Node) then
6065 Inherit_Freeze_Node
6066 (Fnod => F_Node,
6067 Typ => E);
6068 else
6069 Set_Has_Delayed_Freeze (E, False);
6070 Set_Freeze_Node (E, Empty);
6071 end if;
6072 end if;
6074 Check_Debug_Info_Needed (E);
6076 goto Leave;
6078 -- Case of no full view present. If entity is derived or subtype,
6079 -- it is safe to freeze, correctness depends on the frozen status
6080 -- of parent. Otherwise it is either premature usage, or a Taft
6081 -- amendment type, so diagnosis is at the point of use and the
6082 -- type might be frozen later.
6084 elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
6085 null;
6087 else
6088 Set_Is_Frozen (E, False);
6089 Result := No_List;
6090 goto Leave;
6091 end if;
6093 -- For access subprogram, freeze types of all formals, the return
6094 -- type was already frozen, since it is the Etype of the function.
6095 -- Formal types can be tagged Taft amendment types, but otherwise
6096 -- they cannot be incomplete.
6098 elsif Ekind (E) = E_Subprogram_Type then
6099 Formal := First_Formal (E);
6100 while Present (Formal) loop
6101 if Ekind (Etype (Formal)) = E_Incomplete_Type
6102 and then No (Full_View (Etype (Formal)))
6103 then
6104 if Is_Tagged_Type (Etype (Formal)) then
6105 null;
6107 -- AI05-151: Incomplete types are allowed in access to
6108 -- subprogram specifications.
6110 elsif Ada_Version < Ada_2012 then
6111 Error_Msg_NE
6112 ("invalid use of incomplete type&", E, Etype (Formal));
6113 end if;
6114 end if;
6116 Freeze_And_Append (Etype (Formal), N, Result);
6117 Next_Formal (Formal);
6118 end loop;
6120 Freeze_Subprogram (E);
6122 -- For access to a protected subprogram, freeze the equivalent type
6123 -- (however this is not set if we are not generating code or if this
6124 -- is an anonymous type used just for resolution).
6126 elsif Is_Access_Protected_Subprogram_Type (E) then
6127 if Present (Equivalent_Type (E)) then
6128 Freeze_And_Append (Equivalent_Type (E), N, Result);
6129 end if;
6130 end if;
6132 -- Generic types are never seen by the back-end, and are also not
6133 -- processed by the expander (since the expander is turned off for
6134 -- generic processing), so we never need freeze nodes for them.
6136 if Is_Generic_Type (E) then
6137 goto Leave;
6138 end if;
6140 -- Some special processing for non-generic types to complete
6141 -- representation details not known till the freeze point.
6143 if Is_Fixed_Point_Type (E) then
6144 Freeze_Fixed_Point_Type (E);
6146 -- Some error checks required for ordinary fixed-point type. Defer
6147 -- these till the freeze-point since we need the small and range
6148 -- values. We only do these checks for base types
6150 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
6151 if Small_Value (E) < Ureal_2_M_80 then
6152 Error_Msg_Name_1 := Name_Small;
6153 Error_Msg_N
6154 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
6156 elsif Small_Value (E) > Ureal_2_80 then
6157 Error_Msg_Name_1 := Name_Small;
6158 Error_Msg_N
6159 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
6160 end if;
6162 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
6163 Error_Msg_Name_1 := Name_First;
6164 Error_Msg_N
6165 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
6166 end if;
6168 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
6169 Error_Msg_Name_1 := Name_Last;
6170 Error_Msg_N
6171 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
6172 end if;
6173 end if;
6175 elsif Is_Enumeration_Type (E) then
6176 Freeze_Enumeration_Type (E);
6178 elsif Is_Integer_Type (E) then
6179 Adjust_Esize_For_Alignment (E);
6181 if Is_Modular_Integer_Type (E)
6182 and then Warn_On_Suspicious_Modulus_Value
6183 then
6184 Check_Suspicious_Modulus (E);
6185 end if;
6187 -- The pool applies to named and anonymous access types, but not
6188 -- to subprogram and to internal types generated for 'Access
6189 -- references.
6191 elsif Is_Access_Type (E)
6192 and then not Is_Access_Subprogram_Type (E)
6193 and then Ekind (E) /= E_Access_Attribute_Type
6194 then
6195 -- If a pragma Default_Storage_Pool applies, and this type has no
6196 -- Storage_Pool or Storage_Size clause (which must have occurred
6197 -- before the freezing point), then use the default. This applies
6198 -- only to base types.
6200 -- None of this applies to access to subprograms, for which there
6201 -- are clearly no pools.
6203 if Present (Default_Pool)
6204 and then Is_Base_Type (E)
6205 and then not Has_Storage_Size_Clause (E)
6206 and then No (Associated_Storage_Pool (E))
6207 then
6208 -- Case of pragma Default_Storage_Pool (null)
6210 if Nkind (Default_Pool) = N_Null then
6211 Set_No_Pool_Assigned (E);
6213 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
6215 else
6216 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
6217 end if;
6218 end if;
6220 -- Check restriction for standard storage pool
6222 if No (Associated_Storage_Pool (E)) then
6223 Check_Restriction (No_Standard_Storage_Pools, E);
6224 end if;
6226 -- Deal with error message for pure access type. This is not an
6227 -- error in Ada 2005 if there is no pool (see AI-366).
6229 if Is_Pure_Unit_Access_Type (E)
6230 and then (Ada_Version < Ada_2005
6231 or else not No_Pool_Assigned (E))
6232 and then not Is_Generic_Unit (Scope (E))
6233 then
6234 Error_Msg_N ("named access type not allowed in pure unit", E);
6236 if Ada_Version >= Ada_2005 then
6237 Error_Msg_N
6238 ("\would be legal if Storage_Size of 0 given??", E);
6240 elsif No_Pool_Assigned (E) then
6241 Error_Msg_N
6242 ("\would be legal in Ada 2005??", E);
6244 else
6245 Error_Msg_N
6246 ("\would be legal in Ada 2005 if "
6247 & "Storage_Size of 0 given??", E);
6248 end if;
6249 end if;
6250 end if;
6252 -- Case of composite types
6254 if Is_Composite_Type (E) then
6256 -- AI-117 requires that all new primitives of a tagged type must
6257 -- inherit the convention of the full view of the type. Inherited
6258 -- and overriding operations are defined to inherit the convention
6259 -- of their parent or overridden subprogram (also specified in
6260 -- AI-117), which will have occurred earlier (in Derive_Subprogram
6261 -- and New_Overloaded_Entity). Here we set the convention of
6262 -- primitives that are still convention Ada, which will ensure
6263 -- that any new primitives inherit the type's convention. Class-
6264 -- wide types can have a foreign convention inherited from their
6265 -- specific type, but are excluded from this since they don't have
6266 -- any associated primitives.
6268 if Is_Tagged_Type (E)
6269 and then not Is_Class_Wide_Type (E)
6270 and then Convention (E) /= Convention_Ada
6271 then
6272 declare
6273 Prim_List : constant Elist_Id := Primitive_Operations (E);
6274 Prim : Elmt_Id;
6276 begin
6277 Prim := First_Elmt (Prim_List);
6278 while Present (Prim) loop
6279 if Convention (Node (Prim)) = Convention_Ada then
6280 Set_Convention (Node (Prim), Convention (E));
6281 end if;
6283 Next_Elmt (Prim);
6284 end loop;
6285 end;
6286 end if;
6288 -- If the type is a simple storage pool type, then this is where
6289 -- we attempt to locate and validate its Allocate, Deallocate, and
6290 -- Storage_Size operations (the first is required, and the latter
6291 -- two are optional). We also verify that the full type for a
6292 -- private type is allowed to be a simple storage pool type.
6294 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
6295 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
6296 then
6297 -- If the type is marked Has_Private_Declaration, then this is
6298 -- a full type for a private type that was specified with the
6299 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
6300 -- pragma is allowed for the full type (for example, it can't
6301 -- be an array type, or a nonlimited record type).
6303 if Has_Private_Declaration (E) then
6304 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
6305 and then not Is_Private_Type (E)
6306 then
6307 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
6308 Error_Msg_N
6309 ("pragma% can only apply to full type that is an " &
6310 "explicitly limited type", E);
6311 end if;
6312 end if;
6314 Validate_Simple_Pool_Ops : declare
6315 Pool_Type : Entity_Id renames E;
6316 Address_Type : constant Entity_Id := RTE (RE_Address);
6317 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
6319 procedure Validate_Simple_Pool_Op_Formal
6320 (Pool_Op : Entity_Id;
6321 Pool_Op_Formal : in out Entity_Id;
6322 Expected_Mode : Formal_Kind;
6323 Expected_Type : Entity_Id;
6324 Formal_Name : String;
6325 OK_Formal : in out Boolean);
6326 -- Validate one formal Pool_Op_Formal of the candidate pool
6327 -- operation Pool_Op. The formal must be of Expected_Type
6328 -- and have mode Expected_Mode. OK_Formal will be set to
6329 -- False if the formal doesn't match. If OK_Formal is False
6330 -- on entry, then the formal will effectively be ignored
6331 -- (because validation of the pool op has already failed).
6332 -- Upon return, Pool_Op_Formal will be updated to the next
6333 -- formal, if any.
6335 procedure Validate_Simple_Pool_Operation
6336 (Op_Name : Name_Id);
6337 -- Search for and validate a simple pool operation with the
6338 -- name Op_Name. If the name is Allocate, then there must be
6339 -- exactly one such primitive operation for the simple pool
6340 -- type. If the name is Deallocate or Storage_Size, then
6341 -- there can be at most one such primitive operation. The
6342 -- profile of the located primitive must conform to what
6343 -- is expected for each operation.
6345 ------------------------------------
6346 -- Validate_Simple_Pool_Op_Formal --
6347 ------------------------------------
6349 procedure Validate_Simple_Pool_Op_Formal
6350 (Pool_Op : Entity_Id;
6351 Pool_Op_Formal : in out Entity_Id;
6352 Expected_Mode : Formal_Kind;
6353 Expected_Type : Entity_Id;
6354 Formal_Name : String;
6355 OK_Formal : in out Boolean)
6357 begin
6358 -- If OK_Formal is False on entry, then simply ignore
6359 -- the formal, because an earlier formal has already
6360 -- been flagged.
6362 if not OK_Formal then
6363 return;
6365 -- If no formal is passed in, then issue an error for a
6366 -- missing formal.
6368 elsif not Present (Pool_Op_Formal) then
6369 Error_Msg_NE
6370 ("simple storage pool op missing formal " &
6371 Formal_Name & " of type&", Pool_Op, Expected_Type);
6372 OK_Formal := False;
6374 return;
6375 end if;
6377 if Etype (Pool_Op_Formal) /= Expected_Type then
6379 -- If the pool type was expected for this formal, then
6380 -- this will not be considered a candidate operation
6381 -- for the simple pool, so we unset OK_Formal so that
6382 -- the op and any later formals will be ignored.
6384 if Expected_Type = Pool_Type then
6385 OK_Formal := False;
6387 return;
6389 else
6390 Error_Msg_NE
6391 ("wrong type for formal " & Formal_Name &
6392 " of simple storage pool op; expected type&",
6393 Pool_Op_Formal, Expected_Type);
6394 end if;
6395 end if;
6397 -- Issue error if formal's mode is not the expected one
6399 if Ekind (Pool_Op_Formal) /= Expected_Mode then
6400 Error_Msg_N
6401 ("wrong mode for formal of simple storage pool op",
6402 Pool_Op_Formal);
6403 end if;
6405 -- Advance to the next formal
6407 Next_Formal (Pool_Op_Formal);
6408 end Validate_Simple_Pool_Op_Formal;
6410 ------------------------------------
6411 -- Validate_Simple_Pool_Operation --
6412 ------------------------------------
6414 procedure Validate_Simple_Pool_Operation
6415 (Op_Name : Name_Id)
6417 Op : Entity_Id;
6418 Found_Op : Entity_Id := Empty;
6419 Formal : Entity_Id;
6420 Is_OK : Boolean;
6422 begin
6423 pragma Assert
6424 (Nam_In (Op_Name, Name_Allocate,
6425 Name_Deallocate,
6426 Name_Storage_Size));
6428 Error_Msg_Name_1 := Op_Name;
6430 -- For each homonym declared immediately in the scope
6431 -- of the simple storage pool type, determine whether
6432 -- the homonym is an operation of the pool type, and,
6433 -- if so, check that its profile is as expected for
6434 -- a simple pool operation of that name.
6436 Op := Get_Name_Entity_Id (Op_Name);
6437 while Present (Op) loop
6438 if Ekind_In (Op, E_Function, E_Procedure)
6439 and then Scope (Op) = Current_Scope
6440 then
6441 Formal := First_Entity (Op);
6443 Is_OK := True;
6445 -- The first parameter must be of the pool type
6446 -- in order for the operation to qualify.
6448 if Op_Name = Name_Storage_Size then
6449 Validate_Simple_Pool_Op_Formal
6450 (Op, Formal, E_In_Parameter, Pool_Type,
6451 "Pool", Is_OK);
6452 else
6453 Validate_Simple_Pool_Op_Formal
6454 (Op, Formal, E_In_Out_Parameter, Pool_Type,
6455 "Pool", Is_OK);
6456 end if;
6458 -- If another operation with this name has already
6459 -- been located for the type, then flag an error,
6460 -- since we only allow the type to have a single
6461 -- such primitive.
6463 if Present (Found_Op) and then Is_OK then
6464 Error_Msg_NE
6465 ("only one % operation allowed for " &
6466 "simple storage pool type&", Op, Pool_Type);
6467 end if;
6469 -- In the case of Allocate and Deallocate, a formal
6470 -- of type System.Address is required.
6472 if Op_Name = Name_Allocate then
6473 Validate_Simple_Pool_Op_Formal
6474 (Op, Formal, E_Out_Parameter,
6475 Address_Type, "Storage_Address", Is_OK);
6477 elsif Op_Name = Name_Deallocate then
6478 Validate_Simple_Pool_Op_Formal
6479 (Op, Formal, E_In_Parameter,
6480 Address_Type, "Storage_Address", Is_OK);
6481 end if;
6483 -- In the case of Allocate and Deallocate, formals
6484 -- of type Storage_Count are required as the third
6485 -- and fourth parameters.
6487 if Op_Name /= Name_Storage_Size then
6488 Validate_Simple_Pool_Op_Formal
6489 (Op, Formal, E_In_Parameter,
6490 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
6491 Validate_Simple_Pool_Op_Formal
6492 (Op, Formal, E_In_Parameter,
6493 Stg_Cnt_Type, "Alignment", Is_OK);
6494 end if;
6496 -- If no mismatched formals have been found (Is_OK)
6497 -- and no excess formals are present, then this
6498 -- operation has been validated, so record it.
6500 if not Present (Formal) and then Is_OK then
6501 Found_Op := Op;
6502 end if;
6503 end if;
6505 Op := Homonym (Op);
6506 end loop;
6508 -- There must be a valid Allocate operation for the type,
6509 -- so issue an error if none was found.
6511 if Op_Name = Name_Allocate
6512 and then not Present (Found_Op)
6513 then
6514 Error_Msg_N ("missing % operation for simple " &
6515 "storage pool type", Pool_Type);
6517 elsif Present (Found_Op) then
6519 -- Simple pool operations can't be abstract
6521 if Is_Abstract_Subprogram (Found_Op) then
6522 Error_Msg_N
6523 ("simple storage pool operation must not be " &
6524 "abstract", Found_Op);
6525 end if;
6527 -- The Storage_Size operation must be a function with
6528 -- Storage_Count as its result type.
6530 if Op_Name = Name_Storage_Size then
6531 if Ekind (Found_Op) = E_Procedure then
6532 Error_Msg_N
6533 ("% operation must be a function", Found_Op);
6535 elsif Etype (Found_Op) /= Stg_Cnt_Type then
6536 Error_Msg_NE
6537 ("wrong result type for%, expected type&",
6538 Found_Op, Stg_Cnt_Type);
6539 end if;
6541 -- Allocate and Deallocate must be procedures
6543 elsif Ekind (Found_Op) = E_Function then
6544 Error_Msg_N
6545 ("% operation must be a procedure", Found_Op);
6546 end if;
6547 end if;
6548 end Validate_Simple_Pool_Operation;
6550 -- Start of processing for Validate_Simple_Pool_Ops
6552 begin
6553 Validate_Simple_Pool_Operation (Name_Allocate);
6554 Validate_Simple_Pool_Operation (Name_Deallocate);
6555 Validate_Simple_Pool_Operation (Name_Storage_Size);
6556 end Validate_Simple_Pool_Ops;
6557 end if;
6558 end if;
6560 -- Now that all types from which E may depend are frozen, see if the
6561 -- size is known at compile time, if it must be unsigned, or if
6562 -- strict alignment is required
6564 Check_Compile_Time_Size (E);
6565 Check_Unsigned_Type (E);
6567 if Base_Type (E) = E then
6568 Check_Strict_Alignment (E);
6569 end if;
6571 -- Do not allow a size clause for a type which does not have a size
6572 -- that is known at compile time
6574 if Has_Size_Clause (E)
6575 and then not Size_Known_At_Compile_Time (E)
6576 then
6577 -- Suppress this message if errors posted on E, even if we are
6578 -- in all errors mode, since this is often a junk message
6580 if not Error_Posted (E) then
6581 Error_Msg_N
6582 ("size clause not allowed for variable length type",
6583 Size_Clause (E));
6584 end if;
6585 end if;
6587 -- Now we set/verify the representation information, in particular
6588 -- the size and alignment values. This processing is not required for
6589 -- generic types, since generic types do not play any part in code
6590 -- generation, and so the size and alignment values for such types
6591 -- are irrelevant. Ditto for types declared within a generic unit,
6592 -- which may have components that depend on generic parameters, and
6593 -- that will be recreated in an instance.
6595 if Inside_A_Generic then
6596 null;
6598 -- Otherwise we call the layout procedure
6600 else
6601 Layout_Type (E);
6602 end if;
6604 -- If this is an access to subprogram whose designated type is itself
6605 -- a subprogram type, the return type of this anonymous subprogram
6606 -- type must be decorated as well.
6608 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
6609 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
6610 then
6611 Layout_Type (Etype (Designated_Type (E)));
6612 end if;
6614 -- If the type has a Defaut_Value/Default_Component_Value aspect,
6615 -- this is where we analye the expression (after the type is frozen,
6616 -- since in the case of Default_Value, we are analyzing with the
6617 -- type itself, and we treat Default_Component_Value similarly for
6618 -- the sake of uniformity).
6620 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
6621 declare
6622 Nam : Name_Id;
6623 Exp : Node_Id;
6624 Typ : Entity_Id;
6626 begin
6627 if Is_Scalar_Type (E) then
6628 Nam := Name_Default_Value;
6629 Typ := E;
6630 Exp := Default_Aspect_Value (Typ);
6631 else
6632 Nam := Name_Default_Component_Value;
6633 Typ := Component_Type (E);
6634 Exp := Default_Aspect_Component_Value (E);
6635 end if;
6637 Analyze_And_Resolve (Exp, Typ);
6639 if Etype (Exp) /= Any_Type then
6640 if not Is_OK_Static_Expression (Exp) then
6641 Error_Msg_Name_1 := Nam;
6642 Flag_Non_Static_Expr
6643 ("aspect% requires static expression", Exp);
6644 end if;
6645 end if;
6646 end;
6647 end if;
6649 -- End of freeze processing for type entities
6650 end if;
6652 -- Here is where we logically freeze the current entity. If it has a
6653 -- freeze node, then this is the point at which the freeze node is
6654 -- linked into the result list.
6656 if Has_Delayed_Freeze (E) then
6658 -- If a freeze node is already allocated, use it, otherwise allocate
6659 -- a new one. The preallocation happens in the case of anonymous base
6660 -- types, where we preallocate so that we can set First_Subtype_Link.
6661 -- Note that we reset the Sloc to the current freeze location.
6663 if Present (Freeze_Node (E)) then
6664 F_Node := Freeze_Node (E);
6665 Set_Sloc (F_Node, Loc);
6667 else
6668 F_Node := New_Node (N_Freeze_Entity, Loc);
6669 Set_Freeze_Node (E, F_Node);
6670 Set_Access_Types_To_Process (F_Node, No_Elist);
6671 Set_TSS_Elist (F_Node, No_Elist);
6672 Set_Actions (F_Node, No_List);
6673 end if;
6675 Set_Entity (F_Node, E);
6676 Add_To_Result (F_Node);
6678 -- A final pass over record types with discriminants. If the type
6679 -- has an incomplete declaration, there may be constrained access
6680 -- subtypes declared elsewhere, which do not depend on the discrimi-
6681 -- nants of the type, and which are used as component types (i.e.
6682 -- the full view is a recursive type). The designated types of these
6683 -- subtypes can only be elaborated after the type itself, and they
6684 -- need an itype reference.
6686 if Ekind (E) = E_Record_Type and then Has_Discriminants (E) then
6687 declare
6688 Comp : Entity_Id;
6689 IR : Node_Id;
6690 Typ : Entity_Id;
6692 begin
6693 Comp := First_Component (E);
6694 while Present (Comp) loop
6695 Typ := Etype (Comp);
6697 if Ekind (Comp) = E_Component
6698 and then Is_Access_Type (Typ)
6699 and then Scope (Typ) /= E
6700 and then Base_Type (Designated_Type (Typ)) = E
6701 and then Is_Itype (Designated_Type (Typ))
6702 then
6703 IR := Make_Itype_Reference (Sloc (Comp));
6704 Set_Itype (IR, Designated_Type (Typ));
6705 Append (IR, Result);
6706 end if;
6708 Next_Component (Comp);
6709 end loop;
6710 end;
6711 end if;
6712 end if;
6714 -- When a type is frozen, the first subtype of the type is frozen as
6715 -- well (RM 13.14(15)). This has to be done after freezing the type,
6716 -- since obviously the first subtype depends on its own base type.
6718 if Is_Type (E) then
6719 Freeze_And_Append (First_Subtype (E), N, Result);
6721 -- If we just froze a tagged non-class wide record, then freeze the
6722 -- corresponding class-wide type. This must be done after the tagged
6723 -- type itself is frozen, because the class-wide type refers to the
6724 -- tagged type which generates the class.
6726 if Is_Tagged_Type (E)
6727 and then not Is_Class_Wide_Type (E)
6728 and then Present (Class_Wide_Type (E))
6729 then
6730 Freeze_And_Append (Class_Wide_Type (E), N, Result);
6731 end if;
6732 end if;
6734 Check_Debug_Info_Needed (E);
6736 -- Special handling for subprograms
6738 if Is_Subprogram (E) then
6740 -- If subprogram has address clause then reset Is_Public flag, since
6741 -- we do not want the backend to generate external references.
6743 if Present (Address_Clause (E))
6744 and then not Is_Library_Level_Entity (E)
6745 then
6746 Set_Is_Public (E, False);
6747 end if;
6748 end if;
6750 <<Leave>>
6751 Restore_Ghost_Mode (Saved_GM);
6753 return Result;
6754 end Freeze_Entity;
6756 -----------------------------
6757 -- Freeze_Enumeration_Type --
6758 -----------------------------
6760 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
6761 begin
6762 -- By default, if no size clause is present, an enumeration type with
6763 -- Convention C is assumed to interface to a C enum, and has integer
6764 -- size. This applies to types. For subtypes, verify that its base
6765 -- type has no size clause either. Treat other foreign conventions
6766 -- in the same way, and also make sure alignment is set right.
6768 if Has_Foreign_Convention (Typ)
6769 and then not Has_Size_Clause (Typ)
6770 and then not Has_Size_Clause (Base_Type (Typ))
6771 and then Esize (Typ) < Standard_Integer_Size
6773 -- Don't do this if Short_Enums on target
6775 and then not Target_Short_Enums
6776 then
6777 Init_Esize (Typ, Standard_Integer_Size);
6778 Set_Alignment (Typ, Alignment (Standard_Integer));
6780 -- Normal Ada case or size clause present or not Long_C_Enums on target
6782 else
6783 -- If the enumeration type interfaces to C, and it has a size clause
6784 -- that specifies less than int size, it warrants a warning. The
6785 -- user may intend the C type to be an enum or a char, so this is
6786 -- not by itself an error that the Ada compiler can detect, but it
6787 -- it is a worth a heads-up. For Boolean and Character types we
6788 -- assume that the programmer has the proper C type in mind.
6790 if Convention (Typ) = Convention_C
6791 and then Has_Size_Clause (Typ)
6792 and then Esize (Typ) /= Esize (Standard_Integer)
6793 and then not Is_Boolean_Type (Typ)
6794 and then not Is_Character_Type (Typ)
6796 -- Don't do this if Short_Enums on target
6798 and then not Target_Short_Enums
6799 then
6800 Error_Msg_N
6801 ("C enum types have the size of a C int??", Size_Clause (Typ));
6802 end if;
6804 Adjust_Esize_For_Alignment (Typ);
6805 end if;
6806 end Freeze_Enumeration_Type;
6808 -----------------------
6809 -- Freeze_Expression --
6810 -----------------------
6812 procedure Freeze_Expression (N : Node_Id) is
6813 In_Spec_Exp : constant Boolean := In_Spec_Expression;
6814 Typ : Entity_Id;
6815 Nam : Entity_Id;
6816 Desig_Typ : Entity_Id;
6817 P : Node_Id;
6818 Parent_P : Node_Id;
6820 Freeze_Outside : Boolean := False;
6821 -- This flag is set true if the entity must be frozen outside the
6822 -- current subprogram. This happens in the case of expander generated
6823 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
6824 -- not freeze all entities like other bodies, but which nevertheless
6825 -- may reference entities that have to be frozen before the body and
6826 -- obviously cannot be frozen inside the body.
6828 function Find_Aggregate_Component_Desig_Type return Entity_Id;
6829 -- If the expression is an array aggregate, the type of the component
6830 -- expressions is also frozen. If the component type is an access type
6831 -- and the expressions include allocators, the designed type is frozen
6832 -- as well.
6834 function In_Expanded_Body (N : Node_Id) return Boolean;
6835 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
6836 -- it is the handled statement sequence of an expander-generated
6837 -- subprogram (init proc, stream subprogram, or renaming as body).
6838 -- If so, this is not a freezing context.
6840 -----------------------------------------
6841 -- Find_Aggregate_Component_Desig_Type --
6842 -----------------------------------------
6844 function Find_Aggregate_Component_Desig_Type return Entity_Id is
6845 Assoc : Node_Id;
6846 Exp : Node_Id;
6848 begin
6849 if Present (Expressions (N)) then
6850 Exp := First (Expressions (N));
6851 while Present (Exp) loop
6852 if Nkind (Exp) = N_Allocator then
6853 return Designated_Type (Component_Type (Etype (N)));
6854 end if;
6856 Next (Exp);
6857 end loop;
6858 end if;
6860 if Present (Component_Associations (N)) then
6861 Assoc := First (Component_Associations (N));
6862 while Present (Assoc) loop
6863 if Nkind (Expression (Assoc)) = N_Allocator then
6864 return Designated_Type (Component_Type (Etype (N)));
6865 end if;
6867 Next (Assoc);
6868 end loop;
6869 end if;
6871 return Empty;
6872 end Find_Aggregate_Component_Desig_Type;
6874 ----------------------
6875 -- In_Expanded_Body --
6876 ----------------------
6878 function In_Expanded_Body (N : Node_Id) return Boolean is
6879 P : Node_Id;
6880 Id : Entity_Id;
6882 begin
6883 if Nkind (N) = N_Subprogram_Body then
6884 P := N;
6885 else
6886 P := Parent (N);
6887 end if;
6889 if Nkind (P) /= N_Subprogram_Body then
6890 return False;
6892 else
6893 Id := Defining_Unit_Name (Specification (P));
6895 -- The following are expander-created bodies, or bodies that
6896 -- are not freeze points.
6898 if Nkind (Id) = N_Defining_Identifier
6899 and then (Is_Init_Proc (Id)
6900 or else Is_TSS (Id, TSS_Stream_Input)
6901 or else Is_TSS (Id, TSS_Stream_Output)
6902 or else Is_TSS (Id, TSS_Stream_Read)
6903 or else Is_TSS (Id, TSS_Stream_Write)
6904 or else Nkind_In (Original_Node (P),
6905 N_Subprogram_Renaming_Declaration,
6906 N_Expression_Function))
6907 then
6908 return True;
6909 else
6910 return False;
6911 end if;
6912 end if;
6913 end In_Expanded_Body;
6915 -- Start of processing for Freeze_Expression
6917 begin
6918 -- Immediate return if freezing is inhibited. This flag is set by the
6919 -- analyzer to stop freezing on generated expressions that would cause
6920 -- freezing if they were in the source program, but which are not
6921 -- supposed to freeze, since they are created.
6923 if Must_Not_Freeze (N) then
6924 return;
6925 end if;
6927 -- If expression is non-static, then it does not freeze in a default
6928 -- expression, see section "Handling of Default Expressions" in the
6929 -- spec of package Sem for further details. Note that we have to make
6930 -- sure that we actually have a real expression (if we have a subtype
6931 -- indication, we can't test Is_OK_Static_Expression). However, we
6932 -- exclude the case of the prefix of an attribute of a static scalar
6933 -- subtype from this early return, because static subtype attributes
6934 -- should always cause freezing, even in default expressions, but
6935 -- the attribute may not have been marked as static yet (because in
6936 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6937 -- Freeze_Expression on the prefix).
6939 if In_Spec_Exp
6940 and then Nkind (N) in N_Subexpr
6941 and then not Is_OK_Static_Expression (N)
6942 and then (Nkind (Parent (N)) /= N_Attribute_Reference
6943 or else not (Is_Entity_Name (N)
6944 and then Is_Type (Entity (N))
6945 and then Is_OK_Static_Subtype (Entity (N))))
6946 then
6947 return;
6948 end if;
6950 -- Freeze type of expression if not frozen already
6952 Typ := Empty;
6954 if Nkind (N) in N_Has_Etype then
6955 if not Is_Frozen (Etype (N)) then
6956 Typ := Etype (N);
6958 -- Base type may be an derived numeric type that is frozen at
6959 -- the point of declaration, but first_subtype is still unfrozen.
6961 elsif not Is_Frozen (First_Subtype (Etype (N))) then
6962 Typ := First_Subtype (Etype (N));
6963 end if;
6964 end if;
6966 -- For entity name, freeze entity if not frozen already. A special
6967 -- exception occurs for an identifier that did not come from source.
6968 -- We don't let such identifiers freeze a non-internal entity, i.e.
6969 -- an entity that did come from source, since such an identifier was
6970 -- generated by the expander, and cannot have any semantic effect on
6971 -- the freezing semantics. For example, this stops the parameter of
6972 -- an initialization procedure from freezing the variable.
6974 if Is_Entity_Name (N)
6975 and then not Is_Frozen (Entity (N))
6976 and then (Nkind (N) /= N_Identifier
6977 or else Comes_From_Source (N)
6978 or else not Comes_From_Source (Entity (N)))
6979 then
6980 Nam := Entity (N);
6982 if Present (Nam) and then Ekind (Nam) = E_Function then
6983 Check_Expression_Function (N, Nam);
6984 end if;
6986 else
6987 Nam := Empty;
6988 end if;
6990 -- For an allocator freeze designated type if not frozen already
6992 -- For an aggregate whose component type is an access type, freeze the
6993 -- designated type now, so that its freeze does not appear within the
6994 -- loop that might be created in the expansion of the aggregate. If the
6995 -- designated type is a private type without full view, the expression
6996 -- cannot contain an allocator, so the type is not frozen.
6998 -- For a function, we freeze the entity when the subprogram declaration
6999 -- is frozen, but a function call may appear in an initialization proc.
7000 -- before the declaration is frozen. We need to generate the extra
7001 -- formals, if any, to ensure that the expansion of the call includes
7002 -- the proper actuals. This only applies to Ada subprograms, not to
7003 -- imported ones.
7005 Desig_Typ := Empty;
7007 case Nkind (N) is
7008 when N_Allocator =>
7009 Desig_Typ := Designated_Type (Etype (N));
7011 when N_Aggregate =>
7012 if Is_Array_Type (Etype (N))
7013 and then Is_Access_Type (Component_Type (Etype (N)))
7014 then
7016 -- Check whether aggregate includes allocators.
7018 Desig_Typ := Find_Aggregate_Component_Desig_Type;
7019 end if;
7021 when N_Indexed_Component
7022 | N_Selected_Component
7023 | N_Slice
7025 if Is_Access_Type (Etype (Prefix (N))) then
7026 Desig_Typ := Designated_Type (Etype (Prefix (N)));
7027 end if;
7029 when N_Identifier =>
7030 if Present (Nam)
7031 and then Ekind (Nam) = E_Function
7032 and then Nkind (Parent (N)) = N_Function_Call
7033 and then Convention (Nam) = Convention_Ada
7034 then
7035 Create_Extra_Formals (Nam);
7036 end if;
7038 when others =>
7039 null;
7040 end case;
7042 if Desig_Typ /= Empty
7043 and then (Is_Frozen (Desig_Typ)
7044 or else (not Is_Fully_Defined (Desig_Typ)))
7045 then
7046 Desig_Typ := Empty;
7047 end if;
7049 -- All done if nothing needs freezing
7051 if No (Typ)
7052 and then No (Nam)
7053 and then No (Desig_Typ)
7054 then
7055 return;
7056 end if;
7058 -- Examine the enclosing context by climbing the parent chain. The
7059 -- traversal serves two purposes - to detect scenarios where freezeing
7060 -- is not needed and to find the proper insertion point for the freeze
7061 -- nodes. Although somewhat similar to Insert_Actions, this traversal
7062 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
7063 -- the tree may result in types being frozen too early.
7065 P := N;
7066 loop
7067 Parent_P := Parent (P);
7069 -- If we don't have a parent, then we are not in a well-formed tree.
7070 -- This is an unusual case, but there are some legitimate situations
7071 -- in which this occurs, notably when the expressions in the range of
7072 -- a type declaration are resolved. We simply ignore the freeze
7073 -- request in this case. Is this right ???
7075 if No (Parent_P) then
7076 return;
7077 end if;
7079 -- See if we have got to an appropriate point in the tree
7081 case Nkind (Parent_P) is
7083 -- A special test for the exception of (RM 13.14(8)) for the case
7084 -- of per-object expressions (RM 3.8(18)) occurring in component
7085 -- definition or a discrete subtype definition. Note that we test
7086 -- for a component declaration which includes both cases we are
7087 -- interested in, and furthermore the tree does not have explicit
7088 -- nodes for either of these two constructs.
7090 when N_Component_Declaration =>
7092 -- The case we want to test for here is an identifier that is
7093 -- a per-object expression, this is either a discriminant that
7094 -- appears in a context other than the component declaration
7095 -- or it is a reference to the type of the enclosing construct.
7097 -- For either of these cases, we skip the freezing
7099 if not In_Spec_Expression
7100 and then Nkind (N) = N_Identifier
7101 and then (Present (Entity (N)))
7102 then
7103 -- We recognize the discriminant case by just looking for
7104 -- a reference to a discriminant. It can only be one for
7105 -- the enclosing construct. Skip freezing in this case.
7107 if Ekind (Entity (N)) = E_Discriminant then
7108 return;
7110 -- For the case of a reference to the enclosing record,
7111 -- (or task or protected type), we look for a type that
7112 -- matches the current scope.
7114 elsif Entity (N) = Current_Scope then
7115 return;
7116 end if;
7117 end if;
7119 -- If we have an enumeration literal that appears as the choice in
7120 -- the aggregate of an enumeration representation clause, then
7121 -- freezing does not occur (RM 13.14(10)).
7123 when N_Enumeration_Representation_Clause =>
7125 -- The case we are looking for is an enumeration literal
7127 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
7128 and then Is_Enumeration_Type (Etype (N))
7129 then
7130 -- If enumeration literal appears directly as the choice,
7131 -- do not freeze (this is the normal non-overloaded case)
7133 if Nkind (Parent (N)) = N_Component_Association
7134 and then First (Choices (Parent (N))) = N
7135 then
7136 return;
7138 -- If enumeration literal appears as the name of function
7139 -- which is the choice, then also do not freeze. This
7140 -- happens in the overloaded literal case, where the
7141 -- enumeration literal is temporarily changed to a function
7142 -- call for overloading analysis purposes.
7144 elsif Nkind (Parent (N)) = N_Function_Call
7145 and then
7146 Nkind (Parent (Parent (N))) = N_Component_Association
7147 and then
7148 First (Choices (Parent (Parent (N)))) = Parent (N)
7149 then
7150 return;
7151 end if;
7152 end if;
7154 -- Normally if the parent is a handled sequence of statements,
7155 -- then the current node must be a statement, and that is an
7156 -- appropriate place to insert a freeze node.
7158 when N_Handled_Sequence_Of_Statements =>
7160 -- An exception occurs when the sequence of statements is for
7161 -- an expander generated body that did not do the usual freeze
7162 -- all operation. In this case we usually want to freeze
7163 -- outside this body, not inside it, and we skip past the
7164 -- subprogram body that we are inside.
7166 if In_Expanded_Body (Parent_P) then
7167 declare
7168 Subp : constant Node_Id := Parent (Parent_P);
7169 Spec : Entity_Id;
7171 begin
7172 -- Freeze the entity only when it is declared inside the
7173 -- body of the expander generated procedure. This case
7174 -- is recognized by the scope of the entity or its type,
7175 -- which is either the spec for some enclosing body, or
7176 -- (in the case of init_procs, for which there are no
7177 -- separate specs) the current scope.
7179 if Nkind (Subp) = N_Subprogram_Body then
7180 Spec := Corresponding_Spec (Subp);
7182 if (Present (Typ) and then Scope (Typ) = Spec)
7183 or else
7184 (Present (Nam) and then Scope (Nam) = Spec)
7185 then
7186 exit;
7188 elsif Present (Typ)
7189 and then Scope (Typ) = Current_Scope
7190 and then Defining_Entity (Subp) = Current_Scope
7191 then
7192 exit;
7193 end if;
7194 end if;
7196 -- An expression function may act as a completion of
7197 -- a function declaration. As such, it can reference
7198 -- entities declared between the two views:
7200 -- Hidden []; -- 1
7201 -- function F return ...;
7202 -- private
7203 -- function Hidden return ...;
7204 -- function F return ... is (Hidden); -- 2
7206 -- Refering to the example above, freezing the expression
7207 -- of F (2) would place Hidden's freeze node (1) in the
7208 -- wrong place. Avoid explicit freezing and let the usual
7209 -- scenarios do the job - for example, reaching the end
7210 -- of the private declarations, or a call to F.
7212 if Nkind (Original_Node (Subp)) =
7213 N_Expression_Function
7214 then
7215 null;
7217 -- Freeze outside the body
7219 else
7220 Parent_P := Parent (Parent_P);
7221 Freeze_Outside := True;
7222 end if;
7223 end;
7225 -- Here if normal case where we are in handled statement
7226 -- sequence and want to do the insertion right there.
7228 else
7229 exit;
7230 end if;
7232 -- If parent is a body or a spec or a block, then the current node
7233 -- is a statement or declaration and we can insert the freeze node
7234 -- before it.
7236 when N_Block_Statement
7237 | N_Entry_Body
7238 | N_Package_Body
7239 | N_Package_Specification
7240 | N_Protected_Body
7241 | N_Subprogram_Body
7242 | N_Task_Body
7244 exit;
7246 -- The expander is allowed to define types in any statements list,
7247 -- so any of the following parent nodes also mark a freezing point
7248 -- if the actual node is in a list of statements or declarations.
7250 when N_Abortable_Part
7251 | N_Accept_Alternative
7252 | N_And_Then
7253 | N_Case_Statement_Alternative
7254 | N_Compilation_Unit_Aux
7255 | N_Conditional_Entry_Call
7256 | N_Delay_Alternative
7257 | N_Elsif_Part
7258 | N_Entry_Call_Alternative
7259 | N_Exception_Handler
7260 | N_Extended_Return_Statement
7261 | N_Freeze_Entity
7262 | N_If_Statement
7263 | N_Or_Else
7264 | N_Selective_Accept
7265 | N_Triggering_Alternative
7267 exit when Is_List_Member (P);
7269 -- Freeze nodes produced by an expression coming from the Actions
7270 -- list of a N_Expression_With_Actions node must remain within the
7271 -- Actions list. Inserting the freeze nodes further up the tree
7272 -- may lead to use before declaration issues in the case of array
7273 -- types.
7275 when N_Expression_With_Actions =>
7276 if Is_List_Member (P)
7277 and then List_Containing (P) = Actions (Parent_P)
7278 then
7279 exit;
7280 end if;
7282 -- Note: N_Loop_Statement is a special case. A type that appears
7283 -- in the source can never be frozen in a loop (this occurs only
7284 -- because of a loop expanded by the expander), so we keep on
7285 -- going. Otherwise we terminate the search. Same is true of any
7286 -- entity which comes from source. (if they have predefined type,
7287 -- that type does not appear to come from source, but the entity
7288 -- should not be frozen here).
7290 when N_Loop_Statement =>
7291 exit when not Comes_From_Source (Etype (N))
7292 and then (No (Nam) or else not Comes_From_Source (Nam));
7294 -- For all other cases, keep looking at parents
7296 when others =>
7297 null;
7298 end case;
7300 -- We fall through the case if we did not yet find the proper
7301 -- place in the free for inserting the freeze node, so climb.
7303 P := Parent_P;
7304 end loop;
7306 -- If the expression appears in a record or an initialization procedure,
7307 -- the freeze nodes are collected and attached to the current scope, to
7308 -- be inserted and analyzed on exit from the scope, to insure that
7309 -- generated entities appear in the correct scope. If the expression is
7310 -- a default for a discriminant specification, the scope is still void.
7311 -- The expression can also appear in the discriminant part of a private
7312 -- or concurrent type.
7314 -- If the expression appears in a constrained subcomponent of an
7315 -- enclosing record declaration, the freeze nodes must be attached to
7316 -- the outer record type so they can eventually be placed in the
7317 -- enclosing declaration list.
7319 -- The other case requiring this special handling is if we are in a
7320 -- default expression, since in that case we are about to freeze a
7321 -- static type, and the freeze scope needs to be the outer scope, not
7322 -- the scope of the subprogram with the default parameter.
7324 -- For default expressions and other spec expressions in generic units,
7325 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
7326 -- placing them at the proper place, after the generic unit.
7328 if (In_Spec_Exp and not Inside_A_Generic)
7329 or else Freeze_Outside
7330 or else (Is_Type (Current_Scope)
7331 and then (not Is_Concurrent_Type (Current_Scope)
7332 or else not Has_Completion (Current_Scope)))
7333 or else Ekind (Current_Scope) = E_Void
7334 then
7335 declare
7336 N : constant Node_Id := Current_Scope;
7337 Freeze_Nodes : List_Id := No_List;
7338 Pos : Int := Scope_Stack.Last;
7340 begin
7341 if Present (Desig_Typ) then
7342 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
7343 end if;
7345 if Present (Typ) then
7346 Freeze_And_Append (Typ, N, Freeze_Nodes);
7347 end if;
7349 if Present (Nam) then
7350 Freeze_And_Append (Nam, N, Freeze_Nodes);
7351 end if;
7353 -- The current scope may be that of a constrained component of
7354 -- an enclosing record declaration, or of a loop of an enclosing
7355 -- quantified expression, which is above the current scope in the
7356 -- scope stack. Indeed in the context of a quantified expression,
7357 -- a scope is created and pushed above the current scope in order
7358 -- to emulate the loop-like behavior of the quantified expression.
7359 -- If the expression is within a top-level pragma, as for a pre-
7360 -- condition on a library-level subprogram, nothing to do.
7362 if not Is_Compilation_Unit (Current_Scope)
7363 and then (Is_Record_Type (Scope (Current_Scope))
7364 or else Nkind (Parent (Current_Scope)) =
7365 N_Quantified_Expression)
7366 then
7367 Pos := Pos - 1;
7368 end if;
7370 if Is_Non_Empty_List (Freeze_Nodes) then
7371 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
7372 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
7373 Freeze_Nodes;
7374 else
7375 Append_List (Freeze_Nodes,
7376 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
7377 end if;
7378 end if;
7379 end;
7381 return;
7382 end if;
7384 -- Now we have the right place to do the freezing. First, a special
7385 -- adjustment, if we are in spec-expression analysis mode, these freeze
7386 -- actions must not be thrown away (normally all inserted actions are
7387 -- thrown away in this mode. However, the freeze actions are from static
7388 -- expressions and one of the important reasons we are doing this
7389 -- special analysis is to get these freeze actions. Therefore we turn
7390 -- off the In_Spec_Expression mode to propagate these freeze actions.
7391 -- This also means they get properly analyzed and expanded.
7393 In_Spec_Expression := False;
7395 -- Freeze the designated type of an allocator (RM 13.14(13))
7397 if Present (Desig_Typ) then
7398 Freeze_Before (P, Desig_Typ);
7399 end if;
7401 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
7402 -- the enumeration representation clause exception in the loop above.
7404 if Present (Typ) then
7405 Freeze_Before (P, Typ);
7406 end if;
7408 -- Freeze name if one is present (RM 13.14(11))
7410 if Present (Nam) then
7411 Freeze_Before (P, Nam);
7412 end if;
7414 -- Restore In_Spec_Expression flag
7416 In_Spec_Expression := In_Spec_Exp;
7417 end Freeze_Expression;
7419 -----------------------------
7420 -- Freeze_Fixed_Point_Type --
7421 -----------------------------
7423 -- Certain fixed-point types and subtypes, including implicit base types
7424 -- and declared first subtypes, have not yet set up a range. This is
7425 -- because the range cannot be set until the Small and Size values are
7426 -- known, and these are not known till the type is frozen.
7428 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
7429 -- whose bounds are unanalyzed real literals. This routine will recognize
7430 -- this case, and transform this range node into a properly typed range
7431 -- with properly analyzed and resolved values.
7433 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
7434 Rng : constant Node_Id := Scalar_Range (Typ);
7435 Lo : constant Node_Id := Low_Bound (Rng);
7436 Hi : constant Node_Id := High_Bound (Rng);
7437 Btyp : constant Entity_Id := Base_Type (Typ);
7438 Brng : constant Node_Id := Scalar_Range (Btyp);
7439 BLo : constant Node_Id := Low_Bound (Brng);
7440 BHi : constant Node_Id := High_Bound (Brng);
7441 Small : constant Ureal := Small_Value (Typ);
7442 Loval : Ureal;
7443 Hival : Ureal;
7444 Atype : Entity_Id;
7446 Orig_Lo : Ureal;
7447 Orig_Hi : Ureal;
7448 -- Save original bounds (for shaving tests)
7450 Actual_Size : Nat;
7451 -- Actual size chosen
7453 function Fsize (Lov, Hiv : Ureal) return Nat;
7454 -- Returns size of type with given bounds. Also leaves these
7455 -- bounds set as the current bounds of the Typ.
7457 -----------
7458 -- Fsize --
7459 -----------
7461 function Fsize (Lov, Hiv : Ureal) return Nat is
7462 begin
7463 Set_Realval (Lo, Lov);
7464 Set_Realval (Hi, Hiv);
7465 return Minimum_Size (Typ);
7466 end Fsize;
7468 -- Start of processing for Freeze_Fixed_Point_Type
7470 begin
7471 -- If Esize of a subtype has not previously been set, set it now
7473 if Unknown_Esize (Typ) then
7474 Atype := Ancestor_Subtype (Typ);
7476 if Present (Atype) then
7477 Set_Esize (Typ, Esize (Atype));
7478 else
7479 Set_Esize (Typ, Esize (Base_Type (Typ)));
7480 end if;
7481 end if;
7483 -- Immediate return if the range is already analyzed. This means that
7484 -- the range is already set, and does not need to be computed by this
7485 -- routine.
7487 if Analyzed (Rng) then
7488 return;
7489 end if;
7491 -- Immediate return if either of the bounds raises Constraint_Error
7493 if Raises_Constraint_Error (Lo)
7494 or else Raises_Constraint_Error (Hi)
7495 then
7496 return;
7497 end if;
7499 Loval := Realval (Lo);
7500 Hival := Realval (Hi);
7502 Orig_Lo := Loval;
7503 Orig_Hi := Hival;
7505 -- Ordinary fixed-point case
7507 if Is_Ordinary_Fixed_Point_Type (Typ) then
7509 -- For the ordinary fixed-point case, we are allowed to fudge the
7510 -- end-points up or down by small. Generally we prefer to fudge up,
7511 -- i.e. widen the bounds for non-model numbers so that the end points
7512 -- are included. However there are cases in which this cannot be
7513 -- done, and indeed cases in which we may need to narrow the bounds.
7514 -- The following circuit makes the decision.
7516 -- Note: our terminology here is that Incl_EP means that the bounds
7517 -- are widened by Small if necessary to include the end points, and
7518 -- Excl_EP means that the bounds are narrowed by Small to exclude the
7519 -- end-points if this reduces the size.
7521 -- Note that in the Incl case, all we care about is including the
7522 -- end-points. In the Excl case, we want to narrow the bounds as
7523 -- much as permitted by the RM, to give the smallest possible size.
7525 Fudge : declare
7526 Loval_Incl_EP : Ureal;
7527 Hival_Incl_EP : Ureal;
7529 Loval_Excl_EP : Ureal;
7530 Hival_Excl_EP : Ureal;
7532 Size_Incl_EP : Nat;
7533 Size_Excl_EP : Nat;
7535 Model_Num : Ureal;
7536 First_Subt : Entity_Id;
7537 Actual_Lo : Ureal;
7538 Actual_Hi : Ureal;
7540 begin
7541 -- First step. Base types are required to be symmetrical. Right
7542 -- now, the base type range is a copy of the first subtype range.
7543 -- This will be corrected before we are done, but right away we
7544 -- need to deal with the case where both bounds are non-negative.
7545 -- In this case, we set the low bound to the negative of the high
7546 -- bound, to make sure that the size is computed to include the
7547 -- required sign. Note that we do not need to worry about the
7548 -- case of both bounds negative, because the sign will be dealt
7549 -- with anyway. Furthermore we can't just go making such a bound
7550 -- symmetrical, since in a twos-complement system, there is an
7551 -- extra negative value which could not be accommodated on the
7552 -- positive side.
7554 if Typ = Btyp
7555 and then not UR_Is_Negative (Loval)
7556 and then Hival > Loval
7557 then
7558 Loval := -Hival;
7559 Set_Realval (Lo, Loval);
7560 end if;
7562 -- Compute the fudged bounds. If the number is a model number,
7563 -- then we do nothing to include it, but we are allowed to backoff
7564 -- to the next adjacent model number when we exclude it. If it is
7565 -- not a model number then we straddle the two values with the
7566 -- model numbers on either side.
7568 Model_Num := UR_Trunc (Loval / Small) * Small;
7570 if Loval = Model_Num then
7571 Loval_Incl_EP := Model_Num;
7572 else
7573 Loval_Incl_EP := Model_Num - Small;
7574 end if;
7576 -- The low value excluding the end point is Small greater, but
7577 -- we do not do this exclusion if the low value is positive,
7578 -- since it can't help the size and could actually hurt by
7579 -- crossing the high bound.
7581 if UR_Is_Negative (Loval_Incl_EP) then
7582 Loval_Excl_EP := Loval_Incl_EP + Small;
7584 -- If the value went from negative to zero, then we have the
7585 -- case where Loval_Incl_EP is the model number just below
7586 -- zero, so we want to stick to the negative value for the
7587 -- base type to maintain the condition that the size will
7588 -- include signed values.
7590 if Typ = Btyp
7591 and then UR_Is_Zero (Loval_Excl_EP)
7592 then
7593 Loval_Excl_EP := Loval_Incl_EP;
7594 end if;
7596 else
7597 Loval_Excl_EP := Loval_Incl_EP;
7598 end if;
7600 -- Similar processing for upper bound and high value
7602 Model_Num := UR_Trunc (Hival / Small) * Small;
7604 if Hival = Model_Num then
7605 Hival_Incl_EP := Model_Num;
7606 else
7607 Hival_Incl_EP := Model_Num + Small;
7608 end if;
7610 if UR_Is_Positive (Hival_Incl_EP) then
7611 Hival_Excl_EP := Hival_Incl_EP - Small;
7612 else
7613 Hival_Excl_EP := Hival_Incl_EP;
7614 end if;
7616 -- One further adjustment is needed. In the case of subtypes, we
7617 -- cannot go outside the range of the base type, or we get
7618 -- peculiarities, and the base type range is already set. This
7619 -- only applies to the Incl values, since clearly the Excl values
7620 -- are already as restricted as they are allowed to be.
7622 if Typ /= Btyp then
7623 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
7624 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
7625 end if;
7627 -- Get size including and excluding end points
7629 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
7630 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
7632 -- No need to exclude end-points if it does not reduce size
7634 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
7635 Loval_Excl_EP := Loval_Incl_EP;
7636 end if;
7638 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
7639 Hival_Excl_EP := Hival_Incl_EP;
7640 end if;
7642 -- Now we set the actual size to be used. We want to use the
7643 -- bounds fudged up to include the end-points but only if this
7644 -- can be done without violating a specifically given size
7645 -- size clause or causing an unacceptable increase in size.
7647 -- Case of size clause given
7649 if Has_Size_Clause (Typ) then
7651 -- Use the inclusive size only if it is consistent with
7652 -- the explicitly specified size.
7654 if Size_Incl_EP <= RM_Size (Typ) then
7655 Actual_Lo := Loval_Incl_EP;
7656 Actual_Hi := Hival_Incl_EP;
7657 Actual_Size := Size_Incl_EP;
7659 -- If the inclusive size is too large, we try excluding
7660 -- the end-points (will be caught later if does not work).
7662 else
7663 Actual_Lo := Loval_Excl_EP;
7664 Actual_Hi := Hival_Excl_EP;
7665 Actual_Size := Size_Excl_EP;
7666 end if;
7668 -- Case of size clause not given
7670 else
7671 -- If we have a base type whose corresponding first subtype
7672 -- has an explicit size that is large enough to include our
7673 -- end-points, then do so. There is no point in working hard
7674 -- to get a base type whose size is smaller than the specified
7675 -- size of the first subtype.
7677 First_Subt := First_Subtype (Typ);
7679 if Has_Size_Clause (First_Subt)
7680 and then Size_Incl_EP <= Esize (First_Subt)
7681 then
7682 Actual_Size := Size_Incl_EP;
7683 Actual_Lo := Loval_Incl_EP;
7684 Actual_Hi := Hival_Incl_EP;
7686 -- If excluding the end-points makes the size smaller and
7687 -- results in a size of 8,16,32,64, then we take the smaller
7688 -- size. For the 64 case, this is compulsory. For the other
7689 -- cases, it seems reasonable. We like to include end points
7690 -- if we can, but not at the expense of moving to the next
7691 -- natural boundary of size.
7693 elsif Size_Incl_EP /= Size_Excl_EP
7694 and then Addressable (Size_Excl_EP)
7695 then
7696 Actual_Size := Size_Excl_EP;
7697 Actual_Lo := Loval_Excl_EP;
7698 Actual_Hi := Hival_Excl_EP;
7700 -- Otherwise we can definitely include the end points
7702 else
7703 Actual_Size := Size_Incl_EP;
7704 Actual_Lo := Loval_Incl_EP;
7705 Actual_Hi := Hival_Incl_EP;
7706 end if;
7708 -- One pathological case: normally we never fudge a low bound
7709 -- down, since it would seem to increase the size (if it has
7710 -- any effect), but for ranges containing single value, or no
7711 -- values, the high bound can be small too large. Consider:
7713 -- type t is delta 2.0**(-14)
7714 -- range 131072.0 .. 0;
7716 -- That lower bound is *just* outside the range of 32 bits, and
7717 -- does need fudging down in this case. Note that the bounds
7718 -- will always have crossed here, since the high bound will be
7719 -- fudged down if necessary, as in the case of:
7721 -- type t is delta 2.0**(-14)
7722 -- range 131072.0 .. 131072.0;
7724 -- So we detect the situation by looking for crossed bounds,
7725 -- and if the bounds are crossed, and the low bound is greater
7726 -- than zero, we will always back it off by small, since this
7727 -- is completely harmless.
7729 if Actual_Lo > Actual_Hi then
7730 if UR_Is_Positive (Actual_Lo) then
7731 Actual_Lo := Loval_Incl_EP - Small;
7732 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7734 -- And of course, we need to do exactly the same parallel
7735 -- fudge for flat ranges in the negative region.
7737 elsif UR_Is_Negative (Actual_Hi) then
7738 Actual_Hi := Hival_Incl_EP + Small;
7739 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7740 end if;
7741 end if;
7742 end if;
7744 Set_Realval (Lo, Actual_Lo);
7745 Set_Realval (Hi, Actual_Hi);
7746 end Fudge;
7748 -- For the decimal case, none of this fudging is required, since there
7749 -- are no end-point problems in the decimal case (the end-points are
7750 -- always included).
7752 else
7753 Actual_Size := Fsize (Loval, Hival);
7754 end if;
7756 -- At this stage, the actual size has been calculated and the proper
7757 -- required bounds are stored in the low and high bounds.
7759 if Actual_Size > 64 then
7760 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
7761 Error_Msg_N
7762 ("size required (^) for type& too large, maximum allowed is 64",
7763 Typ);
7764 Actual_Size := 64;
7765 end if;
7767 -- Check size against explicit given size
7769 if Has_Size_Clause (Typ) then
7770 if Actual_Size > RM_Size (Typ) then
7771 Error_Msg_Uint_1 := RM_Size (Typ);
7772 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
7773 Error_Msg_NE
7774 ("size given (^) for type& too small, minimum allowed is ^",
7775 Size_Clause (Typ), Typ);
7777 else
7778 Actual_Size := UI_To_Int (Esize (Typ));
7779 end if;
7781 -- Increase size to next natural boundary if no size clause given
7783 else
7784 if Actual_Size <= 8 then
7785 Actual_Size := 8;
7786 elsif Actual_Size <= 16 then
7787 Actual_Size := 16;
7788 elsif Actual_Size <= 32 then
7789 Actual_Size := 32;
7790 else
7791 Actual_Size := 64;
7792 end if;
7794 Init_Esize (Typ, Actual_Size);
7795 Adjust_Esize_For_Alignment (Typ);
7796 end if;
7798 -- If we have a base type, then expand the bounds so that they extend to
7799 -- the full width of the allocated size in bits, to avoid junk range
7800 -- checks on intermediate computations.
7802 if Base_Type (Typ) = Typ then
7803 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
7804 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
7805 end if;
7807 -- Final step is to reanalyze the bounds using the proper type
7808 -- and set the Corresponding_Integer_Value fields of the literals.
7810 Set_Etype (Lo, Empty);
7811 Set_Analyzed (Lo, False);
7812 Analyze (Lo);
7814 -- Resolve with universal fixed if the base type, and the base type if
7815 -- it is a subtype. Note we can't resolve the base type with itself,
7816 -- that would be a reference before definition.
7818 if Typ = Btyp then
7819 Resolve (Lo, Universal_Fixed);
7820 else
7821 Resolve (Lo, Btyp);
7822 end if;
7824 -- Set corresponding integer value for bound
7826 Set_Corresponding_Integer_Value
7827 (Lo, UR_To_Uint (Realval (Lo) / Small));
7829 -- Similar processing for high bound
7831 Set_Etype (Hi, Empty);
7832 Set_Analyzed (Hi, False);
7833 Analyze (Hi);
7835 if Typ = Btyp then
7836 Resolve (Hi, Universal_Fixed);
7837 else
7838 Resolve (Hi, Btyp);
7839 end if;
7841 Set_Corresponding_Integer_Value
7842 (Hi, UR_To_Uint (Realval (Hi) / Small));
7844 -- Set type of range to correspond to bounds
7846 Set_Etype (Rng, Etype (Lo));
7848 -- Set Esize to calculated size if not set already
7850 if Unknown_Esize (Typ) then
7851 Init_Esize (Typ, Actual_Size);
7852 end if;
7854 -- Set RM_Size if not already set. If already set, check value
7856 declare
7857 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
7859 begin
7860 if RM_Size (Typ) /= Uint_0 then
7861 if RM_Size (Typ) < Minsiz then
7862 Error_Msg_Uint_1 := RM_Size (Typ);
7863 Error_Msg_Uint_2 := Minsiz;
7864 Error_Msg_NE
7865 ("size given (^) for type& too small, minimum allowed is ^",
7866 Size_Clause (Typ), Typ);
7867 end if;
7869 else
7870 Set_RM_Size (Typ, Minsiz);
7871 end if;
7872 end;
7874 -- Check for shaving
7876 if Comes_From_Source (Typ) then
7878 -- In SPARK mode the given bounds must be strictly representable
7880 if SPARK_Mode = On then
7881 if Orig_Lo < Expr_Value_R (Lo) then
7882 Error_Msg_NE
7883 ("declared low bound of type & is outside type range",
7884 Lo, Typ);
7885 end if;
7887 if Orig_Hi > Expr_Value_R (Hi) then
7888 Error_Msg_NE
7889 ("declared high bound of type & is outside type range",
7890 Hi, Typ);
7891 end if;
7893 else
7894 if Orig_Lo < Expr_Value_R (Lo) then
7895 Error_Msg_N
7896 ("declared low bound of type & is outside type range??", Typ);
7897 Error_Msg_N
7898 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
7899 end if;
7901 if Orig_Hi > Expr_Value_R (Hi) then
7902 Error_Msg_N
7903 ("declared high bound of type & is outside type range??",
7904 Typ);
7905 Error_Msg_N
7906 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
7907 end if;
7908 end if;
7909 end if;
7910 end Freeze_Fixed_Point_Type;
7912 ------------------
7913 -- Freeze_Itype --
7914 ------------------
7916 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
7917 L : List_Id;
7919 begin
7920 Set_Has_Delayed_Freeze (T);
7921 L := Freeze_Entity (T, N);
7923 if Is_Non_Empty_List (L) then
7924 Insert_Actions (N, L);
7925 end if;
7926 end Freeze_Itype;
7928 --------------------------
7929 -- Freeze_Static_Object --
7930 --------------------------
7932 procedure Freeze_Static_Object (E : Entity_Id) is
7934 Cannot_Be_Static : exception;
7935 -- Exception raised if the type of a static object cannot be made
7936 -- static. This happens if the type depends on non-global objects.
7938 procedure Ensure_Expression_Is_SA (N : Node_Id);
7939 -- Called to ensure that an expression used as part of a type definition
7940 -- is statically allocatable, which means that the expression type is
7941 -- statically allocatable, and the expression is either static, or a
7942 -- reference to a library level constant.
7944 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
7945 -- Called to mark a type as static, checking that it is possible
7946 -- to set the type as static. If it is not possible, then the
7947 -- exception Cannot_Be_Static is raised.
7949 -----------------------------
7950 -- Ensure_Expression_Is_SA --
7951 -----------------------------
7953 procedure Ensure_Expression_Is_SA (N : Node_Id) is
7954 Ent : Entity_Id;
7956 begin
7957 Ensure_Type_Is_SA (Etype (N));
7959 if Is_OK_Static_Expression (N) then
7960 return;
7962 elsif Nkind (N) = N_Identifier then
7963 Ent := Entity (N);
7965 if Present (Ent)
7966 and then Ekind (Ent) = E_Constant
7967 and then Is_Library_Level_Entity (Ent)
7968 then
7969 return;
7970 end if;
7971 end if;
7973 raise Cannot_Be_Static;
7974 end Ensure_Expression_Is_SA;
7976 -----------------------
7977 -- Ensure_Type_Is_SA --
7978 -----------------------
7980 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
7981 N : Node_Id;
7982 C : Entity_Id;
7984 begin
7985 -- If type is library level, we are all set
7987 if Is_Library_Level_Entity (Typ) then
7988 return;
7989 end if;
7991 -- We are also OK if the type already marked as statically allocated,
7992 -- which means we processed it before.
7994 if Is_Statically_Allocated (Typ) then
7995 return;
7996 end if;
7998 -- Mark type as statically allocated
8000 Set_Is_Statically_Allocated (Typ);
8002 -- Check that it is safe to statically allocate this type
8004 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
8005 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
8006 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
8008 elsif Is_Array_Type (Typ) then
8009 N := First_Index (Typ);
8010 while Present (N) loop
8011 Ensure_Type_Is_SA (Etype (N));
8012 Next_Index (N);
8013 end loop;
8015 Ensure_Type_Is_SA (Component_Type (Typ));
8017 elsif Is_Access_Type (Typ) then
8018 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
8020 declare
8021 F : Entity_Id;
8022 T : constant Entity_Id := Etype (Designated_Type (Typ));
8024 begin
8025 if T /= Standard_Void_Type then
8026 Ensure_Type_Is_SA (T);
8027 end if;
8029 F := First_Formal (Designated_Type (Typ));
8030 while Present (F) loop
8031 Ensure_Type_Is_SA (Etype (F));
8032 Next_Formal (F);
8033 end loop;
8034 end;
8036 else
8037 Ensure_Type_Is_SA (Designated_Type (Typ));
8038 end if;
8040 elsif Is_Record_Type (Typ) then
8041 C := First_Entity (Typ);
8042 while Present (C) loop
8043 if Ekind (C) = E_Discriminant
8044 or else Ekind (C) = E_Component
8045 then
8046 Ensure_Type_Is_SA (Etype (C));
8048 elsif Is_Type (C) then
8049 Ensure_Type_Is_SA (C);
8050 end if;
8052 Next_Entity (C);
8053 end loop;
8055 elsif Ekind (Typ) = E_Subprogram_Type then
8056 Ensure_Type_Is_SA (Etype (Typ));
8058 C := First_Formal (Typ);
8059 while Present (C) loop
8060 Ensure_Type_Is_SA (Etype (C));
8061 Next_Formal (C);
8062 end loop;
8064 else
8065 raise Cannot_Be_Static;
8066 end if;
8067 end Ensure_Type_Is_SA;
8069 -- Start of processing for Freeze_Static_Object
8071 begin
8072 Ensure_Type_Is_SA (Etype (E));
8074 exception
8075 when Cannot_Be_Static =>
8077 -- If the object that cannot be static is imported or exported, then
8078 -- issue an error message saying that this object cannot be imported
8079 -- or exported. If it has an address clause it is an overlay in the
8080 -- current partition and the static requirement is not relevant.
8081 -- Do not issue any error message when ignoring rep clauses.
8083 if Ignore_Rep_Clauses then
8084 null;
8086 elsif Is_Imported (E) then
8087 if No (Address_Clause (E)) then
8088 Error_Msg_N
8089 ("& cannot be imported (local type is not constant)", E);
8090 end if;
8092 -- Otherwise must be exported, something is wrong if compiler
8093 -- is marking something as statically allocated which cannot be).
8095 else pragma Assert (Is_Exported (E));
8096 Error_Msg_N
8097 ("& cannot be exported (local type is not constant)", E);
8098 end if;
8099 end Freeze_Static_Object;
8101 -----------------------
8102 -- Freeze_Subprogram --
8103 -----------------------
8105 procedure Freeze_Subprogram (E : Entity_Id) is
8106 procedure Set_Profile_Convention (Subp_Id : Entity_Id);
8107 -- Set the conventions of all anonymous access-to-subprogram formals and
8108 -- result subtype of subprogram Subp_Id to the convention of Subp_Id.
8110 ----------------------------
8111 -- Set_Profile_Convention --
8112 ----------------------------
8114 procedure Set_Profile_Convention (Subp_Id : Entity_Id) is
8115 Conv : constant Convention_Id := Convention (Subp_Id);
8117 procedure Set_Type_Convention (Typ : Entity_Id);
8118 -- Set the convention of anonymous access-to-subprogram type Typ and
8119 -- its designated type to Conv.
8121 -------------------------
8122 -- Set_Type_Convention --
8123 -------------------------
8125 procedure Set_Type_Convention (Typ : Entity_Id) is
8126 begin
8127 -- Set the convention on both the anonymous access-to-subprogram
8128 -- type and the subprogram type it points to because both types
8129 -- participate in conformance-related checks.
8131 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
8132 Set_Convention (Typ, Conv);
8133 Set_Convention (Designated_Type (Typ), Conv);
8134 end if;
8135 end Set_Type_Convention;
8137 -- Local variables
8139 Formal : Entity_Id;
8141 -- Start of processing for Set_Profile_Convention
8143 begin
8144 Formal := First_Formal (Subp_Id);
8145 while Present (Formal) loop
8146 Set_Type_Convention (Etype (Formal));
8147 Next_Formal (Formal);
8148 end loop;
8150 if Ekind (Subp_Id) = E_Function then
8151 Set_Type_Convention (Etype (Subp_Id));
8152 end if;
8153 end Set_Profile_Convention;
8155 -- Local variables
8157 F : Entity_Id;
8158 Retype : Entity_Id;
8160 -- Start of processing for Freeze_Subprogram
8162 begin
8163 -- Subprogram may not have an address clause unless it is imported
8165 if Present (Address_Clause (E)) then
8166 if not Is_Imported (E) then
8167 Error_Msg_N
8168 ("address clause can only be given for imported subprogram",
8169 Name (Address_Clause (E)));
8170 end if;
8171 end if;
8173 -- Reset the Pure indication on an imported subprogram unless an
8174 -- explicit Pure_Function pragma was present or the subprogram is an
8175 -- intrinsic. We do this because otherwise it is an insidious error
8176 -- to call a non-pure function from pure unit and have calls
8177 -- mysteriously optimized away. What happens here is that the Import
8178 -- can bypass the normal check to ensure that pure units call only pure
8179 -- subprograms.
8181 -- The reason for the intrinsic exception is that in general, intrinsic
8182 -- functions (such as shifts) are pure anyway. The only exceptions are
8183 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
8184 -- in any case, so no problem arises.
8186 if Is_Imported (E)
8187 and then Is_Pure (E)
8188 and then not Has_Pragma_Pure_Function (E)
8189 and then not Is_Intrinsic_Subprogram (E)
8190 then
8191 Set_Is_Pure (E, False);
8192 end if;
8194 -- We also reset the Pure indication on a subprogram with an Address
8195 -- parameter, because the parameter may be used as a pointer and the
8196 -- referenced data may change even if the address value does not.
8198 -- Note that if the programmer gave an explicit Pure_Function pragma,
8199 -- then we believe the programmer, and leave the subprogram Pure. We
8200 -- also suppress this check on run-time files.
8202 if Is_Pure (E)
8203 and then Is_Subprogram (E)
8204 and then not Has_Pragma_Pure_Function (E)
8205 and then not Is_Internal_Unit (Current_Sem_Unit)
8206 then
8207 Check_Function_With_Address_Parameter (E);
8208 end if;
8210 -- Ensure that all anonymous access-to-subprogram types inherit the
8211 -- convention of their related subprogram (RM 6.3.1 13.1/3). This is
8212 -- not done for a defaulted convention Ada because those types also
8213 -- default to Ada. Convention Protected must not be propagated when
8214 -- the subprogram is an entry because this would be illegal. The only
8215 -- way to force convention Protected on these kinds of types is to
8216 -- include keyword "protected" in the access definition.
8218 if Convention (E) /= Convention_Ada
8219 and then Convention (E) /= Convention_Protected
8220 then
8221 Set_Profile_Convention (E);
8222 end if;
8224 -- For non-foreign convention subprograms, this is where we create
8225 -- the extra formals (for accessibility level and constrained bit
8226 -- information). We delay this till the freeze point precisely so
8227 -- that we know the convention.
8229 if not Has_Foreign_Convention (E) then
8230 if No (Extra_Formals (E)) then
8231 Create_Extra_Formals (E);
8232 end if;
8234 Set_Mechanisms (E);
8236 -- If this is convention Ada and a Valued_Procedure, that's odd
8238 if Ekind (E) = E_Procedure
8239 and then Is_Valued_Procedure (E)
8240 and then Convention (E) = Convention_Ada
8241 and then Warn_On_Export_Import
8242 then
8243 Error_Msg_N
8244 ("??Valued_Procedure has no effect for convention Ada", E);
8245 Set_Is_Valued_Procedure (E, False);
8246 end if;
8248 -- Case of foreign convention
8250 else
8251 Set_Mechanisms (E);
8253 -- For foreign conventions, warn about return of unconstrained array
8255 if Ekind (E) = E_Function then
8256 Retype := Underlying_Type (Etype (E));
8258 -- If no return type, probably some other error, e.g. a
8259 -- missing full declaration, so ignore.
8261 if No (Retype) then
8262 null;
8264 -- If the return type is generic, we have emitted a warning
8265 -- earlier on, and there is nothing else to check here. Specific
8266 -- instantiations may lead to erroneous behavior.
8268 elsif Is_Generic_Type (Etype (E)) then
8269 null;
8271 -- Display warning if returning unconstrained array
8273 elsif Is_Array_Type (Retype)
8274 and then not Is_Constrained (Retype)
8276 -- Check appropriate warning is enabled (should we check for
8277 -- Warnings (Off) on specific entities here, probably so???)
8279 and then Warn_On_Export_Import
8280 then
8281 Error_Msg_N
8282 ("?x?foreign convention function& should not return " &
8283 "unconstrained array", E);
8284 return;
8285 end if;
8286 end if;
8288 -- If any of the formals for an exported foreign convention
8289 -- subprogram have defaults, then emit an appropriate warning since
8290 -- this is odd (default cannot be used from non-Ada code)
8292 if Is_Exported (E) then
8293 F := First_Formal (E);
8294 while Present (F) loop
8295 if Warn_On_Export_Import
8296 and then Present (Default_Value (F))
8297 then
8298 Error_Msg_N
8299 ("?x?parameter cannot be defaulted in non-Ada call",
8300 Default_Value (F));
8301 end if;
8303 Next_Formal (F);
8304 end loop;
8305 end if;
8306 end if;
8308 -- Pragma Inline_Always is disallowed for dispatching subprograms
8309 -- because the address of such subprograms is saved in the dispatch
8310 -- table to support dispatching calls, and dispatching calls cannot
8311 -- be inlined. This is consistent with the restriction against using
8312 -- 'Access or 'Address on an Inline_Always subprogram.
8314 if Is_Dispatching_Operation (E)
8315 and then Has_Pragma_Inline_Always (E)
8316 then
8317 Error_Msg_N
8318 ("pragma Inline_Always not allowed for dispatching subprograms", E);
8319 end if;
8321 -- Because of the implicit representation of inherited predefined
8322 -- operators in the front-end, the overriding status of the operation
8323 -- may be affected when a full view of a type is analyzed, and this is
8324 -- not captured by the analysis of the corresponding type declaration.
8325 -- Therefore the correctness of a not-overriding indicator must be
8326 -- rechecked when the subprogram is frozen.
8328 if Nkind (E) = N_Defining_Operator_Symbol
8329 and then not Error_Posted (Parent (E))
8330 then
8331 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
8332 end if;
8334 if Modify_Tree_For_C
8335 and then Nkind (Parent (E)) = N_Function_Specification
8336 and then Is_Array_Type (Etype (E))
8337 and then Is_Constrained (Etype (E))
8338 and then not Is_Unchecked_Conversion_Instance (E)
8339 and then not Rewritten_For_C (E)
8340 then
8341 Build_Procedure_Form (Unit_Declaration_Node (E));
8342 end if;
8343 end Freeze_Subprogram;
8345 ----------------------
8346 -- Is_Fully_Defined --
8347 ----------------------
8349 function Is_Fully_Defined (T : Entity_Id) return Boolean is
8350 begin
8351 if Ekind (T) = E_Class_Wide_Type then
8352 return Is_Fully_Defined (Etype (T));
8354 elsif Is_Array_Type (T) then
8355 return Is_Fully_Defined (Component_Type (T));
8357 elsif Is_Record_Type (T)
8358 and not Is_Private_Type (T)
8359 then
8360 -- Verify that the record type has no components with private types
8361 -- without completion.
8363 declare
8364 Comp : Entity_Id;
8366 begin
8367 Comp := First_Component (T);
8368 while Present (Comp) loop
8369 if not Is_Fully_Defined (Etype (Comp)) then
8370 return False;
8371 end if;
8373 Next_Component (Comp);
8374 end loop;
8375 return True;
8376 end;
8378 -- For the designated type of an access to subprogram, all types in
8379 -- the profile must be fully defined.
8381 elsif Ekind (T) = E_Subprogram_Type then
8382 declare
8383 F : Entity_Id;
8385 begin
8386 F := First_Formal (T);
8387 while Present (F) loop
8388 if not Is_Fully_Defined (Etype (F)) then
8389 return False;
8390 end if;
8392 Next_Formal (F);
8393 end loop;
8395 return Is_Fully_Defined (Etype (T));
8396 end;
8398 else
8399 return not Is_Private_Type (T)
8400 or else Present (Full_View (Base_Type (T)));
8401 end if;
8402 end Is_Fully_Defined;
8404 ---------------------------------
8405 -- Process_Default_Expressions --
8406 ---------------------------------
8408 procedure Process_Default_Expressions
8409 (E : Entity_Id;
8410 After : in out Node_Id)
8412 Loc : constant Source_Ptr := Sloc (E);
8413 Dbody : Node_Id;
8414 Formal : Node_Id;
8415 Dcopy : Node_Id;
8416 Dnam : Entity_Id;
8418 begin
8419 Set_Default_Expressions_Processed (E);
8421 -- A subprogram instance and its associated anonymous subprogram share
8422 -- their signature. The default expression functions are defined in the
8423 -- wrapper packages for the anonymous subprogram, and should not be
8424 -- generated again for the instance.
8426 if Is_Generic_Instance (E)
8427 and then Present (Alias (E))
8428 and then Default_Expressions_Processed (Alias (E))
8429 then
8430 return;
8431 end if;
8433 Formal := First_Formal (E);
8434 while Present (Formal) loop
8435 if Present (Default_Value (Formal)) then
8437 -- We work with a copy of the default expression because we
8438 -- do not want to disturb the original, since this would mess
8439 -- up the conformance checking.
8441 Dcopy := New_Copy_Tree (Default_Value (Formal));
8443 -- The analysis of the expression may generate insert actions,
8444 -- which of course must not be executed. We wrap those actions
8445 -- in a procedure that is not called, and later on eliminated.
8446 -- The following cases have no side effects, and are analyzed
8447 -- directly.
8449 if Nkind (Dcopy) = N_Identifier
8450 or else Nkind_In (Dcopy, N_Expanded_Name,
8451 N_Integer_Literal,
8452 N_Character_Literal,
8453 N_String_Literal,
8454 N_Real_Literal)
8455 or else (Nkind (Dcopy) = N_Attribute_Reference
8456 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
8457 or else Known_Null (Dcopy)
8458 then
8459 -- If there is no default function, we must still do a full
8460 -- analyze call on the default value, to ensure that all error
8461 -- checks are performed, e.g. those associated with static
8462 -- evaluation. Note: this branch will always be taken if the
8463 -- analyzer is turned off (but we still need the error checks).
8465 -- Note: the setting of parent here is to meet the requirement
8466 -- that we can only analyze the expression while attached to
8467 -- the tree. Really the requirement is that the parent chain
8468 -- be set, we don't actually need to be in the tree.
8470 Set_Parent (Dcopy, Declaration_Node (Formal));
8471 Analyze (Dcopy);
8473 -- Default expressions are resolved with their own type if the
8474 -- context is generic, to avoid anomalies with private types.
8476 if Ekind (Scope (E)) = E_Generic_Package then
8477 Resolve (Dcopy);
8478 else
8479 Resolve (Dcopy, Etype (Formal));
8480 end if;
8482 -- If that resolved expression will raise constraint error,
8483 -- then flag the default value as raising constraint error.
8484 -- This allows a proper error message on the calls.
8486 if Raises_Constraint_Error (Dcopy) then
8487 Set_Raises_Constraint_Error (Default_Value (Formal));
8488 end if;
8490 -- If the default is a parameterless call, we use the name of
8491 -- the called function directly, and there is no body to build.
8493 elsif Nkind (Dcopy) = N_Function_Call
8494 and then No (Parameter_Associations (Dcopy))
8495 then
8496 null;
8498 -- Else construct and analyze the body of a wrapper procedure
8499 -- that contains an object declaration to hold the expression.
8500 -- Given that this is done only to complete the analysis, it is
8501 -- simpler to build a procedure than a function which might
8502 -- involve secondary stack expansion.
8504 else
8505 Dnam := Make_Temporary (Loc, 'D');
8507 Dbody :=
8508 Make_Subprogram_Body (Loc,
8509 Specification =>
8510 Make_Procedure_Specification (Loc,
8511 Defining_Unit_Name => Dnam),
8513 Declarations => New_List (
8514 Make_Object_Declaration (Loc,
8515 Defining_Identifier => Make_Temporary (Loc, 'T'),
8516 Object_Definition =>
8517 New_Occurrence_Of (Etype (Formal), Loc),
8518 Expression => New_Copy_Tree (Dcopy))),
8520 Handled_Statement_Sequence =>
8521 Make_Handled_Sequence_Of_Statements (Loc,
8522 Statements => Empty_List));
8524 Set_Scope (Dnam, Scope (E));
8525 Set_Assignment_OK (First (Declarations (Dbody)));
8526 Set_Is_Eliminated (Dnam);
8527 Insert_After (After, Dbody);
8528 Analyze (Dbody);
8529 After := Dbody;
8530 end if;
8531 end if;
8533 Next_Formal (Formal);
8534 end loop;
8535 end Process_Default_Expressions;
8537 ----------------------------------------
8538 -- Set_Component_Alignment_If_Not_Set --
8539 ----------------------------------------
8541 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
8542 begin
8543 -- Ignore if not base type, subtypes don't need anything
8545 if Typ /= Base_Type (Typ) then
8546 return;
8547 end if;
8549 -- Do not override existing representation
8551 if Is_Packed (Typ) then
8552 return;
8554 elsif Has_Specified_Layout (Typ) then
8555 return;
8557 elsif Component_Alignment (Typ) /= Calign_Default then
8558 return;
8560 else
8561 Set_Component_Alignment
8562 (Typ, Scope_Stack.Table
8563 (Scope_Stack.Last).Component_Alignment_Default);
8564 end if;
8565 end Set_Component_Alignment_If_Not_Set;
8567 --------------------------
8568 -- Set_SSO_From_Default --
8569 --------------------------
8571 procedure Set_SSO_From_Default (T : Entity_Id) is
8572 Reversed : Boolean;
8574 begin
8575 -- Set default SSO for an array or record base type, except in case of
8576 -- a type extension (which always inherits the SSO of its parent type).
8578 if Is_Base_Type (T)
8579 and then (Is_Array_Type (T)
8580 or else (Is_Record_Type (T)
8581 and then not (Is_Tagged_Type (T)
8582 and then Is_Derived_Type (T))))
8583 then
8584 Reversed :=
8585 (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
8586 or else
8587 (not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
8589 if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
8591 -- For a record type, if bit order is specified explicitly,
8592 -- then do not set SSO from default if not consistent. Note that
8593 -- we do not want to look at a Bit_Order attribute definition
8594 -- for a parent: if we were to inherit Bit_Order, then both
8595 -- SSO_Set_*_By_Default flags would have been cleared already
8596 -- (by Inherit_Aspects_At_Freeze_Point).
8598 and then not
8599 (Is_Record_Type (T)
8600 and then
8601 Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False)
8602 and then Reverse_Bit_Order (T) /= Reversed)
8603 then
8604 -- If flags cause reverse storage order, then set the result. Note
8605 -- that we would have ignored the pragma setting the non default
8606 -- storage order in any case, hence the assertion at this point.
8608 pragma Assert
8609 (not Reversed or else Support_Nondefault_SSO_On_Target);
8611 Set_Reverse_Storage_Order (T, Reversed);
8613 -- For a record type, also set reversed bit order. Note: if a bit
8614 -- order has been specified explicitly, then this is a no-op.
8616 if Is_Record_Type (T) then
8617 Set_Reverse_Bit_Order (T, Reversed);
8618 end if;
8619 end if;
8620 end if;
8621 end Set_SSO_From_Default;
8623 ------------------
8624 -- Undelay_Type --
8625 ------------------
8627 procedure Undelay_Type (T : Entity_Id) is
8628 begin
8629 Set_Has_Delayed_Freeze (T, False);
8630 Set_Freeze_Node (T, Empty);
8632 -- Since we don't want T to have a Freeze_Node, we don't want its
8633 -- Full_View or Corresponding_Record_Type to have one either.
8635 -- ??? Fundamentally, this whole handling is unpleasant. What we really
8636 -- want is to be sure that for an Itype that's part of record R and is a
8637 -- subtype of type T, that it's frozen after the later of the freeze
8638 -- points of R and T. We have no way of doing that directly, so what we
8639 -- do is force most such Itypes to be frozen as part of freezing R via
8640 -- this procedure and only delay the ones that need to be delayed
8641 -- (mostly the designated types of access types that are defined as part
8642 -- of the record).
8644 if Is_Private_Type (T)
8645 and then Present (Full_View (T))
8646 and then Is_Itype (Full_View (T))
8647 and then Is_Record_Type (Scope (Full_View (T)))
8648 then
8649 Undelay_Type (Full_View (T));
8650 end if;
8652 if Is_Concurrent_Type (T)
8653 and then Present (Corresponding_Record_Type (T))
8654 and then Is_Itype (Corresponding_Record_Type (T))
8655 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
8656 then
8657 Undelay_Type (Corresponding_Record_Type (T));
8658 end if;
8659 end Undelay_Type;
8661 ------------------
8662 -- Warn_Overlay --
8663 ------------------
8665 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Entity_Id) is
8666 Ent : constant Entity_Id := Entity (Nam);
8667 -- The object to which the address clause applies
8669 Init : Node_Id;
8670 Old : Entity_Id := Empty;
8671 Decl : Node_Id;
8673 begin
8674 -- No warning if address clause overlay warnings are off
8676 if not Address_Clause_Overlay_Warnings then
8677 return;
8678 end if;
8680 -- No warning if there is an explicit initialization
8682 Init := Original_Node (Expression (Declaration_Node (Ent)));
8684 if Present (Init) and then Comes_From_Source (Init) then
8685 return;
8686 end if;
8688 -- We only give the warning for non-imported entities of a type for
8689 -- which a non-null base init proc is defined, or for objects of access
8690 -- types with implicit null initialization, or when Normalize_Scalars
8691 -- applies and the type is scalar or a string type (the latter being
8692 -- tested for because predefined String types are initialized by inline
8693 -- code rather than by an init_proc). Note that we do not give the
8694 -- warning for Initialize_Scalars, since we suppressed initialization
8695 -- in this case. Also, do not warn if Suppress_Initialization is set.
8697 if Present (Expr)
8698 and then not Is_Imported (Ent)
8699 and then not Initialization_Suppressed (Typ)
8700 and then (Has_Non_Null_Base_Init_Proc (Typ)
8701 or else Is_Access_Type (Typ)
8702 or else (Normalize_Scalars
8703 and then (Is_Scalar_Type (Typ)
8704 or else Is_String_Type (Typ))))
8705 then
8706 if Nkind (Expr) = N_Attribute_Reference
8707 and then Is_Entity_Name (Prefix (Expr))
8708 then
8709 Old := Entity (Prefix (Expr));
8711 elsif Is_Entity_Name (Expr)
8712 and then Ekind (Entity (Expr)) = E_Constant
8713 then
8714 Decl := Declaration_Node (Entity (Expr));
8716 if Nkind (Decl) = N_Object_Declaration
8717 and then Present (Expression (Decl))
8718 and then Nkind (Expression (Decl)) = N_Attribute_Reference
8719 and then Is_Entity_Name (Prefix (Expression (Decl)))
8720 then
8721 Old := Entity (Prefix (Expression (Decl)));
8723 elsif Nkind (Expr) = N_Function_Call then
8724 return;
8725 end if;
8727 -- A function call (most likely to To_Address) is probably not an
8728 -- overlay, so skip warning. Ditto if the function call was inlined
8729 -- and transformed into an entity.
8731 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
8732 return;
8733 end if;
8735 -- If a pragma Import follows, we assume that it is for the current
8736 -- target of the address clause, and skip the warning. There may be
8737 -- a source pragma or an aspect that specifies import and generates
8738 -- the corresponding pragma. These will indicate that the entity is
8739 -- imported and that is checked above so that the spurious warning
8740 -- (generated when the entity is frozen) will be suppressed. The
8741 -- pragma may be attached to the aspect, so it is not yet a list
8742 -- member.
8744 if Is_List_Member (Parent (Expr)) then
8745 Decl := Next (Parent (Expr));
8747 if Present (Decl)
8748 and then Nkind (Decl) = N_Pragma
8749 and then Pragma_Name (Decl) = Name_Import
8750 then
8751 return;
8752 end if;
8753 end if;
8755 -- Otherwise give warning message
8757 if Present (Old) then
8758 Error_Msg_Node_2 := Old;
8759 Error_Msg_N
8760 ("default initialization of & may modify &??",
8761 Nam);
8762 else
8763 Error_Msg_N
8764 ("default initialization of & may modify overlaid storage??",
8765 Nam);
8766 end if;
8768 -- Add friendly warning if initialization comes from a packed array
8769 -- component.
8771 if Is_Record_Type (Typ) then
8772 declare
8773 Comp : Entity_Id;
8775 begin
8776 Comp := First_Component (Typ);
8777 while Present (Comp) loop
8778 if Nkind (Parent (Comp)) = N_Component_Declaration
8779 and then Present (Expression (Parent (Comp)))
8780 then
8781 exit;
8782 elsif Is_Array_Type (Etype (Comp))
8783 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
8784 then
8785 Error_Msg_NE
8786 ("\packed array component& " &
8787 "will be initialized to zero??",
8788 Nam, Comp);
8789 exit;
8790 else
8791 Next_Component (Comp);
8792 end if;
8793 end loop;
8794 end;
8795 end if;
8797 Error_Msg_N
8798 ("\use pragma Import for & to " &
8799 "suppress initialization (RM B.1(24))??",
8800 Nam);
8801 end if;
8802 end Warn_Overlay;
8804 end Freeze;