PR lto/83954
[official-gcc.git] / gcc / ada / checks.adb
bloba283fabd646264692fdfd7e84005dd105f49bd19
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Casing; use Casing;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Eval_Fat; use Eval_Fat;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Ch2; use Exp_Ch2;
34 with Exp_Ch4; use Exp_Ch4;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Expander; use Expander;
38 with Freeze; use Freeze;
39 with Lib; use Lib;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Output; use Output;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Eval; use Sem_Eval;
53 with Sem_Res; use Sem_Res;
54 with Sem_Util; use Sem_Util;
55 with Sem_Warn; use Sem_Warn;
56 with Sinfo; use Sinfo;
57 with Sinput; use Sinput;
58 with Snames; use Snames;
59 with Sprint; use Sprint;
60 with Stand; use Stand;
61 with Stringt; use Stringt;
62 with Targparm; use Targparm;
63 with Tbuild; use Tbuild;
64 with Ttypes; use Ttypes;
65 with Validsw; use Validsw;
67 package body Checks is
69 -- General note: many of these routines are concerned with generating
70 -- checking code to make sure that constraint error is raised at runtime.
71 -- Clearly this code is only needed if the expander is active, since
72 -- otherwise we will not be generating code or going into the runtime
73 -- execution anyway.
75 -- We therefore disconnect most of these checks if the expander is
76 -- inactive. This has the additional benefit that we do not need to
77 -- worry about the tree being messed up by previous errors (since errors
78 -- turn off expansion anyway).
80 -- There are a few exceptions to the above rule. For instance routines
81 -- such as Apply_Scalar_Range_Check that do not insert any code can be
82 -- safely called even when the Expander is inactive (but Errors_Detected
83 -- is 0). The benefit of executing this code when expansion is off, is
84 -- the ability to emit constraint error warning for static expressions
85 -- even when we are not generating code.
87 -- The above is modified in gnatprove mode to ensure that proper check
88 -- flags are always placed, even if expansion is off.
90 -------------------------------------
91 -- Suppression of Redundant Checks --
92 -------------------------------------
94 -- This unit implements a limited circuit for removal of redundant
95 -- checks. The processing is based on a tracing of simple sequential
96 -- flow. For any sequence of statements, we save expressions that are
97 -- marked to be checked, and then if the same expression appears later
98 -- with the same check, then under certain circumstances, the second
99 -- check can be suppressed.
101 -- Basically, we can suppress the check if we know for certain that
102 -- the previous expression has been elaborated (together with its
103 -- check), and we know that the exception frame is the same, and that
104 -- nothing has happened to change the result of the exception.
106 -- Let us examine each of these three conditions in turn to describe
107 -- how we ensure that this condition is met.
109 -- First, we need to know for certain that the previous expression has
110 -- been executed. This is done principally by the mechanism of calling
111 -- Conditional_Statements_Begin at the start of any statement sequence
112 -- and Conditional_Statements_End at the end. The End call causes all
113 -- checks remembered since the Begin call to be discarded. This does
114 -- miss a few cases, notably the case of a nested BEGIN-END block with
115 -- no exception handlers. But the important thing is to be conservative.
116 -- The other protection is that all checks are discarded if a label
117 -- is encountered, since then the assumption of sequential execution
118 -- is violated, and we don't know enough about the flow.
120 -- Second, we need to know that the exception frame is the same. We
121 -- do this by killing all remembered checks when we enter a new frame.
122 -- Again, that's over-conservative, but generally the cases we can help
123 -- with are pretty local anyway (like the body of a loop for example).
125 -- Third, we must be sure to forget any checks which are no longer valid.
126 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
127 -- used to note any changes to local variables. We only attempt to deal
128 -- with checks involving local variables, so we do not need to worry
129 -- about global variables. Second, a call to any non-global procedure
130 -- causes us to abandon all stored checks, since such a all may affect
131 -- the values of any local variables.
133 -- The following define the data structures used to deal with remembering
134 -- checks so that redundant checks can be eliminated as described above.
136 -- Right now, the only expressions that we deal with are of the form of
137 -- simple local objects (either declared locally, or IN parameters) or
138 -- such objects plus/minus a compile time known constant. We can do
139 -- more later on if it seems worthwhile, but this catches many simple
140 -- cases in practice.
142 -- The following record type reflects a single saved check. An entry
143 -- is made in the stack of saved checks if and only if the expression
144 -- has been elaborated with the indicated checks.
146 type Saved_Check is record
147 Killed : Boolean;
148 -- Set True if entry is killed by Kill_Checks
150 Entity : Entity_Id;
151 -- The entity involved in the expression that is checked
153 Offset : Uint;
154 -- A compile time value indicating the result of adding or
155 -- subtracting a compile time value. This value is to be
156 -- added to the value of the Entity. A value of zero is
157 -- used for the case of a simple entity reference.
159 Check_Type : Character;
160 -- This is set to 'R' for a range check (in which case Target_Type
161 -- is set to the target type for the range check) or to 'O' for an
162 -- overflow check (in which case Target_Type is set to Empty).
164 Target_Type : Entity_Id;
165 -- Used only if Do_Range_Check is set. Records the target type for
166 -- the check. We need this, because a check is a duplicate only if
167 -- it has the same target type (or more accurately one with a
168 -- range that is smaller or equal to the stored target type of a
169 -- saved check).
170 end record;
172 -- The following table keeps track of saved checks. Rather than use an
173 -- extensible table, we just use a table of fixed size, and we discard
174 -- any saved checks that do not fit. That's very unlikely to happen and
175 -- this is only an optimization in any case.
177 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
178 -- Array of saved checks
180 Num_Saved_Checks : Nat := 0;
181 -- Number of saved checks
183 -- The following stack keeps track of statement ranges. It is treated
184 -- as a stack. When Conditional_Statements_Begin is called, an entry
185 -- is pushed onto this stack containing the value of Num_Saved_Checks
186 -- at the time of the call. Then when Conditional_Statements_End is
187 -- called, this value is popped off and used to reset Num_Saved_Checks.
189 -- Note: again, this is a fixed length stack with a size that should
190 -- always be fine. If the value of the stack pointer goes above the
191 -- limit, then we just forget all saved checks.
193 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
194 Saved_Checks_TOS : Nat := 0;
196 -----------------------
197 -- Local Subprograms --
198 -----------------------
200 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
201 -- Used to apply arithmetic overflow checks for all cases except operators
202 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
203 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
204 -- signed integer arithmetic operator (but not an if or case expression).
205 -- It is also called for types other than signed integers.
207 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
208 -- Used to apply arithmetic overflow checks for the case where the overflow
209 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
210 -- arithmetic op (which includes the case of if and case expressions). Note
211 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
212 -- we have work to do even if overflow checking is suppressed.
214 procedure Apply_Division_Check
215 (N : Node_Id;
216 Rlo : Uint;
217 Rhi : Uint;
218 ROK : Boolean);
219 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
220 -- division checks as required if the Do_Division_Check flag is set.
221 -- Rlo and Rhi give the possible range of the right operand, these values
222 -- can be referenced and trusted only if ROK is set True.
224 procedure Apply_Float_Conversion_Check
225 (Ck_Node : Node_Id;
226 Target_Typ : Entity_Id);
227 -- The checks on a conversion from a floating-point type to an integer
228 -- type are delicate. They have to be performed before conversion, they
229 -- have to raise an exception when the operand is a NaN, and rounding must
230 -- be taken into account to determine the safe bounds of the operand.
232 procedure Apply_Selected_Length_Checks
233 (Ck_Node : Node_Id;
234 Target_Typ : Entity_Id;
235 Source_Typ : Entity_Id;
236 Do_Static : Boolean);
237 -- This is the subprogram that does all the work for Apply_Length_Check
238 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
239 -- described for the above routines. The Do_Static flag indicates that
240 -- only a static check is to be done.
242 procedure Apply_Selected_Range_Checks
243 (Ck_Node : Node_Id;
244 Target_Typ : Entity_Id;
245 Source_Typ : Entity_Id;
246 Do_Static : Boolean);
247 -- This is the subprogram that does all the work for Apply_Range_Check.
248 -- Expr, Target_Typ and Source_Typ are as described for the above
249 -- routine. The Do_Static flag indicates that only a static check is
250 -- to be done.
252 type Check_Type is new Check_Id range Access_Check .. Division_Check;
253 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
254 -- This function is used to see if an access or division by zero check is
255 -- needed. The check is to be applied to a single variable appearing in the
256 -- source, and N is the node for the reference. If N is not of this form,
257 -- True is returned with no further processing. If N is of the right form,
258 -- then further processing determines if the given Check is needed.
260 -- The particular circuit is to see if we have the case of a check that is
261 -- not needed because it appears in the right operand of a short circuited
262 -- conditional where the left operand guards the check. For example:
264 -- if Var = 0 or else Q / Var > 12 then
265 -- ...
266 -- end if;
268 -- In this example, the division check is not required. At the same time
269 -- we can issue warnings for suspicious use of non-short-circuited forms,
270 -- such as:
272 -- if Var = 0 or Q / Var > 12 then
273 -- ...
274 -- end if;
276 procedure Find_Check
277 (Expr : Node_Id;
278 Check_Type : Character;
279 Target_Type : Entity_Id;
280 Entry_OK : out Boolean;
281 Check_Num : out Nat;
282 Ent : out Entity_Id;
283 Ofs : out Uint);
284 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
285 -- to see if a check is of the form for optimization, and if so, to see
286 -- if it has already been performed. Expr is the expression to check,
287 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
288 -- Target_Type is the target type for a range check, and Empty for an
289 -- overflow check. If the entry is not of the form for optimization,
290 -- then Entry_OK is set to False, and the remaining out parameters
291 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
292 -- entity and offset from the expression. Check_Num is the number of
293 -- a matching saved entry in Saved_Checks, or zero if no such entry
294 -- is located.
296 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
297 -- If a discriminal is used in constraining a prival, Return reference
298 -- to the discriminal of the protected body (which renames the parameter
299 -- of the enclosing protected operation). This clumsy transformation is
300 -- needed because privals are created too late and their actual subtypes
301 -- are not available when analysing the bodies of the protected operations.
302 -- This function is called whenever the bound is an entity and the scope
303 -- indicates a protected operation. If the bound is an in-parameter of
304 -- a protected operation that is not a prival, the function returns the
305 -- bound itself.
306 -- To be cleaned up???
308 function Guard_Access
309 (Cond : Node_Id;
310 Loc : Source_Ptr;
311 Ck_Node : Node_Id) return Node_Id;
312 -- In the access type case, guard the test with a test to ensure
313 -- that the access value is non-null, since the checks do not
314 -- not apply to null access values.
316 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
317 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
318 -- Constraint_Error node.
320 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
321 -- Returns True if node N is for an arithmetic operation with signed
322 -- integer operands. This includes unary and binary operators, and also
323 -- if and case expression nodes where the dependent expressions are of
324 -- a signed integer type. These are the kinds of nodes for which special
325 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
327 function Range_Or_Validity_Checks_Suppressed
328 (Expr : Node_Id) return Boolean;
329 -- Returns True if either range or validity checks or both are suppressed
330 -- for the type of the given expression, or, if the expression is the name
331 -- of an entity, if these checks are suppressed for the entity.
333 function Selected_Length_Checks
334 (Ck_Node : Node_Id;
335 Target_Typ : Entity_Id;
336 Source_Typ : Entity_Id;
337 Warn_Node : Node_Id) return Check_Result;
338 -- Like Apply_Selected_Length_Checks, except it doesn't modify
339 -- anything, just returns a list of nodes as described in the spec of
340 -- this package for the Range_Check function.
341 -- ??? In fact it does construct the test and insert it into the tree,
342 -- and insert actions in various ways (calling Insert_Action directly
343 -- in particular) so we do not call it in GNATprove mode, contrary to
344 -- Selected_Range_Checks.
346 function Selected_Range_Checks
347 (Ck_Node : Node_Id;
348 Target_Typ : Entity_Id;
349 Source_Typ : Entity_Id;
350 Warn_Node : Node_Id) return Check_Result;
351 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
352 -- just returns a list of nodes as described in the spec of this package
353 -- for the Range_Check function.
355 ------------------------------
356 -- Access_Checks_Suppressed --
357 ------------------------------
359 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
360 begin
361 if Present (E) and then Checks_May_Be_Suppressed (E) then
362 return Is_Check_Suppressed (E, Access_Check);
363 else
364 return Scope_Suppress.Suppress (Access_Check);
365 end if;
366 end Access_Checks_Suppressed;
368 -------------------------------------
369 -- Accessibility_Checks_Suppressed --
370 -------------------------------------
372 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
373 begin
374 if Present (E) and then Checks_May_Be_Suppressed (E) then
375 return Is_Check_Suppressed (E, Accessibility_Check);
376 else
377 return Scope_Suppress.Suppress (Accessibility_Check);
378 end if;
379 end Accessibility_Checks_Suppressed;
381 -----------------------------
382 -- Activate_Division_Check --
383 -----------------------------
385 procedure Activate_Division_Check (N : Node_Id) is
386 begin
387 Set_Do_Division_Check (N, True);
388 Possible_Local_Raise (N, Standard_Constraint_Error);
389 end Activate_Division_Check;
391 -----------------------------
392 -- Activate_Overflow_Check --
393 -----------------------------
395 procedure Activate_Overflow_Check (N : Node_Id) is
396 Typ : constant Entity_Id := Etype (N);
398 begin
399 -- Floating-point case. If Etype is not set (this can happen when we
400 -- activate a check on a node that has not yet been analyzed), then
401 -- we assume we do not have a floating-point type (as per our spec).
403 if Present (Typ) and then Is_Floating_Point_Type (Typ) then
405 -- Ignore call if we have no automatic overflow checks on the target
406 -- and Check_Float_Overflow mode is not set. These are the cases in
407 -- which we expect to generate infinities and NaN's with no check.
409 if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
410 return;
412 -- Ignore for unary operations ("+", "-", abs) since these can never
413 -- result in overflow for floating-point cases.
415 elsif Nkind (N) in N_Unary_Op then
416 return;
418 -- Otherwise we will set the flag
420 else
421 null;
422 end if;
424 -- Discrete case
426 else
427 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
428 -- for zero-divide is a divide check, not an overflow check).
430 if Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
431 return;
432 end if;
433 end if;
435 -- Fall through for cases where we do set the flag
437 Set_Do_Overflow_Check (N, True);
438 Possible_Local_Raise (N, Standard_Constraint_Error);
439 end Activate_Overflow_Check;
441 --------------------------
442 -- Activate_Range_Check --
443 --------------------------
445 procedure Activate_Range_Check (N : Node_Id) is
446 begin
447 Set_Do_Range_Check (N, True);
448 Possible_Local_Raise (N, Standard_Constraint_Error);
449 end Activate_Range_Check;
451 ---------------------------------
452 -- Alignment_Checks_Suppressed --
453 ---------------------------------
455 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
456 begin
457 if Present (E) and then Checks_May_Be_Suppressed (E) then
458 return Is_Check_Suppressed (E, Alignment_Check);
459 else
460 return Scope_Suppress.Suppress (Alignment_Check);
461 end if;
462 end Alignment_Checks_Suppressed;
464 ----------------------------------
465 -- Allocation_Checks_Suppressed --
466 ----------------------------------
468 -- Note: at the current time there are no calls to this function, because
469 -- the relevant check is in the run-time, so it is not a check that the
470 -- compiler can suppress anyway, but we still have to recognize the check
471 -- name Allocation_Check since it is part of the standard.
473 function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
474 begin
475 if Present (E) and then Checks_May_Be_Suppressed (E) then
476 return Is_Check_Suppressed (E, Allocation_Check);
477 else
478 return Scope_Suppress.Suppress (Allocation_Check);
479 end if;
480 end Allocation_Checks_Suppressed;
482 -------------------------
483 -- Append_Range_Checks --
484 -------------------------
486 procedure Append_Range_Checks
487 (Checks : Check_Result;
488 Stmts : List_Id;
489 Suppress_Typ : Entity_Id;
490 Static_Sloc : Source_Ptr;
491 Flag_Node : Node_Id)
493 Checks_On : constant Boolean :=
494 not Index_Checks_Suppressed (Suppress_Typ)
495 or else
496 not Range_Checks_Suppressed (Suppress_Typ);
498 Internal_Flag_Node : constant Node_Id := Flag_Node;
499 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
501 begin
502 -- For now we just return if Checks_On is false, however this should be
503 -- enhanced to check for an always True value in the condition and to
504 -- generate a compilation warning???
506 if not Checks_On then
507 return;
508 end if;
510 for J in 1 .. 2 loop
511 exit when No (Checks (J));
513 if Nkind (Checks (J)) = N_Raise_Constraint_Error
514 and then Present (Condition (Checks (J)))
515 then
516 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
517 Append_To (Stmts, Checks (J));
518 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
519 end if;
521 else
522 Append_To
523 (Stmts,
524 Make_Raise_Constraint_Error (Internal_Static_Sloc,
525 Reason => CE_Range_Check_Failed));
526 end if;
527 end loop;
528 end Append_Range_Checks;
530 ------------------------
531 -- Apply_Access_Check --
532 ------------------------
534 procedure Apply_Access_Check (N : Node_Id) is
535 P : constant Node_Id := Prefix (N);
537 begin
538 -- We do not need checks if we are not generating code (i.e. the
539 -- expander is not active). This is not just an optimization, there
540 -- are cases (e.g. with pragma Debug) where generating the checks
541 -- can cause real trouble).
543 if not Expander_Active then
544 return;
545 end if;
547 -- No check if short circuiting makes check unnecessary
549 if not Check_Needed (P, Access_Check) then
550 return;
551 end if;
553 -- No check if accessing the Offset_To_Top component of a dispatch
554 -- table. They are safe by construction.
556 if Tagged_Type_Expansion
557 and then Present (Etype (P))
558 and then RTU_Loaded (Ada_Tags)
559 and then RTE_Available (RE_Offset_To_Top_Ptr)
560 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
561 then
562 return;
563 end if;
565 -- Otherwise go ahead and install the check
567 Install_Null_Excluding_Check (P);
568 end Apply_Access_Check;
570 -------------------------------
571 -- Apply_Accessibility_Check --
572 -------------------------------
574 procedure Apply_Accessibility_Check
575 (N : Node_Id;
576 Typ : Entity_Id;
577 Insert_Node : Node_Id)
579 Loc : constant Source_Ptr := Sloc (N);
580 Param_Ent : Entity_Id := Param_Entity (N);
581 Param_Level : Node_Id;
582 Type_Level : Node_Id;
584 begin
585 if Ada_Version >= Ada_2012
586 and then not Present (Param_Ent)
587 and then Is_Entity_Name (N)
588 and then Ekind_In (Entity (N), E_Constant, E_Variable)
589 and then Present (Effective_Extra_Accessibility (Entity (N)))
590 then
591 Param_Ent := Entity (N);
592 while Present (Renamed_Object (Param_Ent)) loop
594 -- Renamed_Object must return an Entity_Name here
595 -- because of preceding "Present (E_E_A (...))" test.
597 Param_Ent := Entity (Renamed_Object (Param_Ent));
598 end loop;
599 end if;
601 if Inside_A_Generic then
602 return;
604 -- Only apply the run-time check if the access parameter has an
605 -- associated extra access level parameter and when the level of the
606 -- type is less deep than the level of the access parameter, and
607 -- accessibility checks are not suppressed.
609 elsif Present (Param_Ent)
610 and then Present (Extra_Accessibility (Param_Ent))
611 and then UI_Gt (Object_Access_Level (N),
612 Deepest_Type_Access_Level (Typ))
613 and then not Accessibility_Checks_Suppressed (Param_Ent)
614 and then not Accessibility_Checks_Suppressed (Typ)
615 then
616 Param_Level :=
617 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
619 Type_Level :=
620 Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
622 -- Raise Program_Error if the accessibility level of the access
623 -- parameter is deeper than the level of the target access type.
625 Insert_Action (Insert_Node,
626 Make_Raise_Program_Error (Loc,
627 Condition =>
628 Make_Op_Gt (Loc,
629 Left_Opnd => Param_Level,
630 Right_Opnd => Type_Level),
631 Reason => PE_Accessibility_Check_Failed));
633 Analyze_And_Resolve (N);
634 end if;
635 end Apply_Accessibility_Check;
637 --------------------------------
638 -- Apply_Address_Clause_Check --
639 --------------------------------
641 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
642 pragma Assert (Nkind (N) = N_Freeze_Entity);
644 AC : constant Node_Id := Address_Clause (E);
645 Loc : constant Source_Ptr := Sloc (AC);
646 Typ : constant Entity_Id := Etype (E);
648 Expr : Node_Id;
649 -- Address expression (not necessarily the same as Aexp, for example
650 -- when Aexp is a reference to a constant, in which case Expr gets
651 -- reset to reference the value expression of the constant).
653 begin
654 -- See if alignment check needed. Note that we never need a check if the
655 -- maximum alignment is one, since the check will always succeed.
657 -- Note: we do not check for checks suppressed here, since that check
658 -- was done in Sem_Ch13 when the address clause was processed. We are
659 -- only called if checks were not suppressed. The reason for this is
660 -- that we have to delay the call to Apply_Alignment_Check till freeze
661 -- time (so that all types etc are elaborated), but we have to check
662 -- the status of check suppressing at the point of the address clause.
664 if No (AC)
665 or else not Check_Address_Alignment (AC)
666 or else Maximum_Alignment = 1
667 then
668 return;
669 end if;
671 -- Obtain expression from address clause
673 Expr := Address_Value (Expression (AC));
675 -- See if we know that Expr has an acceptable value at compile time. If
676 -- it hasn't or we don't know, we defer issuing the warning until the
677 -- end of the compilation to take into account back end annotations.
679 if Compile_Time_Known_Value (Expr)
680 and then (Known_Alignment (E) or else Known_Alignment (Typ))
681 then
682 declare
683 AL : Uint := Alignment (Typ);
685 begin
686 -- The object alignment might be more restrictive than the type
687 -- alignment.
689 if Known_Alignment (E) then
690 AL := Alignment (E);
691 end if;
693 if Expr_Value (Expr) mod AL = 0 then
694 return;
695 end if;
696 end;
698 -- If the expression has the form X'Address, then we can find out if the
699 -- object X has an alignment that is compatible with the object E. If it
700 -- hasn't or we don't know, we defer issuing the warning until the end
701 -- of the compilation to take into account back end annotations.
703 elsif Nkind (Expr) = N_Attribute_Reference
704 and then Attribute_Name (Expr) = Name_Address
705 and then
706 Has_Compatible_Alignment (E, Prefix (Expr), False) = Known_Compatible
707 then
708 return;
709 end if;
711 -- Here we do not know if the value is acceptable. Strictly we don't
712 -- have to do anything, since if the alignment is bad, we have an
713 -- erroneous program. However we are allowed to check for erroneous
714 -- conditions and we decide to do this by default if the check is not
715 -- suppressed.
717 -- However, don't do the check if elaboration code is unwanted
719 if Restriction_Active (No_Elaboration_Code) then
720 return;
722 -- Generate a check to raise PE if alignment may be inappropriate
724 else
725 -- If the original expression is a non-static constant, use the name
726 -- of the constant itself rather than duplicating its initialization
727 -- expression, which was extracted above.
729 -- Note: Expr is empty if the address-clause is applied to in-mode
730 -- actuals (allowed by 13.1(22)).
732 if not Present (Expr)
733 or else
734 (Is_Entity_Name (Expression (AC))
735 and then Ekind (Entity (Expression (AC))) = E_Constant
736 and then Nkind (Parent (Entity (Expression (AC)))) =
737 N_Object_Declaration)
738 then
739 Expr := New_Copy_Tree (Expression (AC));
740 else
741 Remove_Side_Effects (Expr);
742 end if;
744 if No (Actions (N)) then
745 Set_Actions (N, New_List);
746 end if;
748 Prepend_To (Actions (N),
749 Make_Raise_Program_Error (Loc,
750 Condition =>
751 Make_Op_Ne (Loc,
752 Left_Opnd =>
753 Make_Op_Mod (Loc,
754 Left_Opnd =>
755 Unchecked_Convert_To
756 (RTE (RE_Integer_Address), Expr),
757 Right_Opnd =>
758 Make_Attribute_Reference (Loc,
759 Prefix => New_Occurrence_Of (E, Loc),
760 Attribute_Name => Name_Alignment)),
761 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
762 Reason => PE_Misaligned_Address_Value));
764 Warning_Msg := No_Error_Msg;
765 Analyze (First (Actions (N)), Suppress => All_Checks);
767 -- If the above raise action generated a warning message (for example
768 -- from Warn_On_Non_Local_Exception mode with the active restriction
769 -- No_Exception_Propagation).
771 if Warning_Msg /= No_Error_Msg then
773 -- If the expression has a known at compile time value, then
774 -- once we know the alignment of the type, we can check if the
775 -- exception will be raised or not, and if not, we don't need
776 -- the warning so we will kill the warning later on.
778 if Compile_Time_Known_Value (Expr) then
779 Alignment_Warnings.Append
780 ((E => E, A => Expr_Value (Expr), W => Warning_Msg));
782 -- Add explanation of the warning generated by the check
784 else
785 Error_Msg_N
786 ("\address value may be incompatible with alignment of "
787 & "object?X?", AC);
788 end if;
789 end if;
791 return;
792 end if;
794 exception
796 -- If we have some missing run time component in configurable run time
797 -- mode then just skip the check (it is not required in any case).
799 when RE_Not_Available =>
800 return;
801 end Apply_Address_Clause_Check;
803 -------------------------------------
804 -- Apply_Arithmetic_Overflow_Check --
805 -------------------------------------
807 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
808 begin
809 -- Use old routine in almost all cases (the only case we are treating
810 -- specially is the case of a signed integer arithmetic op with the
811 -- overflow checking mode set to MINIMIZED or ELIMINATED).
813 if Overflow_Check_Mode = Strict
814 or else not Is_Signed_Integer_Arithmetic_Op (N)
815 then
816 Apply_Arithmetic_Overflow_Strict (N);
818 -- Otherwise use the new routine for the case of a signed integer
819 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
820 -- mode is MINIMIZED or ELIMINATED.
822 else
823 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
824 end if;
825 end Apply_Arithmetic_Overflow_Check;
827 --------------------------------------
828 -- Apply_Arithmetic_Overflow_Strict --
829 --------------------------------------
831 -- This routine is called only if the type is an integer type and an
832 -- arithmetic overflow check may be needed for op (add, subtract, or
833 -- multiply). This check is performed if Backend_Overflow_Checks_On_Target
834 -- is not enabled and Do_Overflow_Check is set. In this case we expand the
835 -- operation into a more complex sequence of tests that ensures that
836 -- overflow is properly caught.
838 -- This is used in CHECKED modes. It is identical to the code for this
839 -- cases before the big overflow earthquake, thus ensuring that in this
840 -- modes we have compatible behavior (and reliability) to what was there
841 -- before. It is also called for types other than signed integers, and if
842 -- the Do_Overflow_Check flag is off.
844 -- Note: we also call this routine if we decide in the MINIMIZED case
845 -- to give up and just generate an overflow check without any fuss.
847 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
848 Loc : constant Source_Ptr := Sloc (N);
849 Typ : constant Entity_Id := Etype (N);
850 Rtyp : constant Entity_Id := Root_Type (Typ);
852 begin
853 -- Nothing to do if Do_Overflow_Check not set or overflow checks
854 -- suppressed.
856 if not Do_Overflow_Check (N) then
857 return;
858 end if;
860 -- An interesting special case. If the arithmetic operation appears as
861 -- the operand of a type conversion:
863 -- type1 (x op y)
865 -- and all the following conditions apply:
867 -- arithmetic operation is for a signed integer type
868 -- target type type1 is a static integer subtype
869 -- range of x and y are both included in the range of type1
870 -- range of x op y is included in the range of type1
871 -- size of type1 is at least twice the result size of op
873 -- then we don't do an overflow check in any case. Instead, we transform
874 -- the operation so that we end up with:
876 -- type1 (type1 (x) op type1 (y))
878 -- This avoids intermediate overflow before the conversion. It is
879 -- explicitly permitted by RM 3.5.4(24):
881 -- For the execution of a predefined operation of a signed integer
882 -- type, the implementation need not raise Constraint_Error if the
883 -- result is outside the base range of the type, so long as the
884 -- correct result is produced.
886 -- It's hard to imagine that any programmer counts on the exception
887 -- being raised in this case, and in any case it's wrong coding to
888 -- have this expectation, given the RM permission. Furthermore, other
889 -- Ada compilers do allow such out of range results.
891 -- Note that we do this transformation even if overflow checking is
892 -- off, since this is precisely about giving the "right" result and
893 -- avoiding the need for an overflow check.
895 -- Note: this circuit is partially redundant with respect to the similar
896 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
897 -- with cases that do not come through here. We still need the following
898 -- processing even with the Exp_Ch4 code in place, since we want to be
899 -- sure not to generate the arithmetic overflow check in these cases
900 -- (Exp_Ch4 would have a hard time removing them once generated).
902 if Is_Signed_Integer_Type (Typ)
903 and then Nkind (Parent (N)) = N_Type_Conversion
904 then
905 Conversion_Optimization : declare
906 Target_Type : constant Entity_Id :=
907 Base_Type (Entity (Subtype_Mark (Parent (N))));
909 Llo, Lhi : Uint;
910 Rlo, Rhi : Uint;
911 LOK, ROK : Boolean;
913 Vlo : Uint;
914 Vhi : Uint;
915 VOK : Boolean;
917 Tlo : Uint;
918 Thi : Uint;
920 begin
921 if Is_Integer_Type (Target_Type)
922 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
923 then
924 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
925 Thi := Expr_Value (Type_High_Bound (Target_Type));
927 Determine_Range
928 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
929 Determine_Range
930 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
932 if (LOK and ROK)
933 and then Tlo <= Llo and then Lhi <= Thi
934 and then Tlo <= Rlo and then Rhi <= Thi
935 then
936 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
938 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
939 Rewrite (Left_Opnd (N),
940 Make_Type_Conversion (Loc,
941 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
942 Expression => Relocate_Node (Left_Opnd (N))));
944 Rewrite (Right_Opnd (N),
945 Make_Type_Conversion (Loc,
946 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
947 Expression => Relocate_Node (Right_Opnd (N))));
949 -- Rewrite the conversion operand so that the original
950 -- node is retained, in order to avoid the warning for
951 -- redundant conversions in Resolve_Type_Conversion.
953 Rewrite (N, Relocate_Node (N));
955 Set_Etype (N, Target_Type);
957 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
958 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
960 -- Given that the target type is twice the size of the
961 -- source type, overflow is now impossible, so we can
962 -- safely kill the overflow check and return.
964 Set_Do_Overflow_Check (N, False);
965 return;
966 end if;
967 end if;
968 end if;
969 end Conversion_Optimization;
970 end if;
972 -- Now see if an overflow check is required
974 declare
975 Siz : constant Int := UI_To_Int (Esize (Rtyp));
976 Dsiz : constant Int := Siz * 2;
977 Opnod : Node_Id;
978 Ctyp : Entity_Id;
979 Opnd : Node_Id;
980 Cent : RE_Id;
982 begin
983 -- Skip check if back end does overflow checks, or the overflow flag
984 -- is not set anyway, or we are not doing code expansion, or the
985 -- parent node is a type conversion whose operand is an arithmetic
986 -- operation on signed integers on which the expander can promote
987 -- later the operands to type Integer (see Expand_N_Type_Conversion).
989 if Backend_Overflow_Checks_On_Target
990 or else not Do_Overflow_Check (N)
991 or else not Expander_Active
992 or else (Present (Parent (N))
993 and then Nkind (Parent (N)) = N_Type_Conversion
994 and then Integer_Promotion_Possible (Parent (N)))
995 then
996 return;
997 end if;
999 -- Otherwise, generate the full general code for front end overflow
1000 -- detection, which works by doing arithmetic in a larger type:
1002 -- x op y
1004 -- is expanded into
1006 -- Typ (Checktyp (x) op Checktyp (y));
1008 -- where Typ is the type of the original expression, and Checktyp is
1009 -- an integer type of sufficient length to hold the largest possible
1010 -- result.
1012 -- If the size of check type exceeds the size of Long_Long_Integer,
1013 -- we use a different approach, expanding to:
1015 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
1017 -- where xxx is Add, Multiply or Subtract as appropriate
1019 -- Find check type if one exists
1021 if Dsiz <= Standard_Integer_Size then
1022 Ctyp := Standard_Integer;
1024 elsif Dsiz <= Standard_Long_Long_Integer_Size then
1025 Ctyp := Standard_Long_Long_Integer;
1027 -- No check type exists, use runtime call
1029 else
1030 if Nkind (N) = N_Op_Add then
1031 Cent := RE_Add_With_Ovflo_Check;
1033 elsif Nkind (N) = N_Op_Multiply then
1034 Cent := RE_Multiply_With_Ovflo_Check;
1036 else
1037 pragma Assert (Nkind (N) = N_Op_Subtract);
1038 Cent := RE_Subtract_With_Ovflo_Check;
1039 end if;
1041 Rewrite (N,
1042 OK_Convert_To (Typ,
1043 Make_Function_Call (Loc,
1044 Name => New_Occurrence_Of (RTE (Cent), Loc),
1045 Parameter_Associations => New_List (
1046 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
1047 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
1049 Analyze_And_Resolve (N, Typ);
1050 return;
1051 end if;
1053 -- If we fall through, we have the case where we do the arithmetic
1054 -- in the next higher type and get the check by conversion. In these
1055 -- cases Ctyp is set to the type to be used as the check type.
1057 Opnod := Relocate_Node (N);
1059 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
1061 Analyze (Opnd);
1062 Set_Etype (Opnd, Ctyp);
1063 Set_Analyzed (Opnd, True);
1064 Set_Left_Opnd (Opnod, Opnd);
1066 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
1068 Analyze (Opnd);
1069 Set_Etype (Opnd, Ctyp);
1070 Set_Analyzed (Opnd, True);
1071 Set_Right_Opnd (Opnod, Opnd);
1073 -- The type of the operation changes to the base type of the check
1074 -- type, and we reset the overflow check indication, since clearly no
1075 -- overflow is possible now that we are using a double length type.
1076 -- We also set the Analyzed flag to avoid a recursive attempt to
1077 -- expand the node.
1079 Set_Etype (Opnod, Base_Type (Ctyp));
1080 Set_Do_Overflow_Check (Opnod, False);
1081 Set_Analyzed (Opnod, True);
1083 -- Now build the outer conversion
1085 Opnd := OK_Convert_To (Typ, Opnod);
1086 Analyze (Opnd);
1087 Set_Etype (Opnd, Typ);
1089 -- In the discrete type case, we directly generate the range check
1090 -- for the outer operand. This range check will implement the
1091 -- required overflow check.
1093 if Is_Discrete_Type (Typ) then
1094 Rewrite (N, Opnd);
1095 Generate_Range_Check
1096 (Expression (N), Typ, CE_Overflow_Check_Failed);
1098 -- For other types, we enable overflow checking on the conversion,
1099 -- after setting the node as analyzed to prevent recursive attempts
1100 -- to expand the conversion node.
1102 else
1103 Set_Analyzed (Opnd, True);
1104 Enable_Overflow_Check (Opnd);
1105 Rewrite (N, Opnd);
1106 end if;
1108 exception
1109 when RE_Not_Available =>
1110 return;
1111 end;
1112 end Apply_Arithmetic_Overflow_Strict;
1114 ----------------------------------------------------
1115 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1116 ----------------------------------------------------
1118 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1119 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
1121 Loc : constant Source_Ptr := Sloc (Op);
1122 P : constant Node_Id := Parent (Op);
1124 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1125 -- Operands and results are of this type when we convert
1127 Result_Type : constant Entity_Id := Etype (Op);
1128 -- Original result type
1130 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1131 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1133 Lo, Hi : Uint;
1134 -- Ranges of values for result
1136 begin
1137 -- Nothing to do if our parent is one of the following:
1139 -- Another signed integer arithmetic op
1140 -- A membership operation
1141 -- A comparison operation
1143 -- In all these cases, we will process at the higher level (and then
1144 -- this node will be processed during the downwards recursion that
1145 -- is part of the processing in Minimize_Eliminate_Overflows).
1147 if Is_Signed_Integer_Arithmetic_Op (P)
1148 or else Nkind (P) in N_Membership_Test
1149 or else Nkind (P) in N_Op_Compare
1151 -- This is also true for an alternative in a case expression
1153 or else Nkind (P) = N_Case_Expression_Alternative
1155 -- This is also true for a range operand in a membership test
1157 or else (Nkind (P) = N_Range
1158 and then Nkind (Parent (P)) in N_Membership_Test)
1159 then
1160 -- If_Expressions and Case_Expressions are treated as arithmetic
1161 -- ops, but if they appear in an assignment or similar contexts
1162 -- there is no overflow check that starts from that parent node,
1163 -- so apply check now.
1165 if Nkind_In (P, N_If_Expression, N_Case_Expression)
1166 and then not Is_Signed_Integer_Arithmetic_Op (Parent (P))
1167 then
1168 null;
1169 else
1170 return;
1171 end if;
1172 end if;
1174 -- Otherwise, we have a top level arithmetic operation node, and this
1175 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1176 -- modes. This is the case where we tell the machinery not to move into
1177 -- Bignum mode at this top level (of course the top level operation
1178 -- will still be in Bignum mode if either of its operands are of type
1179 -- Bignum).
1181 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
1183 -- That call may but does not necessarily change the result type of Op.
1184 -- It is the job of this routine to undo such changes, so that at the
1185 -- top level, we have the proper type. This "undoing" is a point at
1186 -- which a final overflow check may be applied.
1188 -- If the result type was not fiddled we are all set. We go to base
1189 -- types here because things may have been rewritten to generate the
1190 -- base type of the operand types.
1192 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
1193 return;
1195 -- Bignum case
1197 elsif Is_RTE (Etype (Op), RE_Bignum) then
1199 -- We need a sequence that looks like:
1201 -- Rnn : Result_Type;
1203 -- declare
1204 -- M : Mark_Id := SS_Mark;
1205 -- begin
1206 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1207 -- SS_Release (M);
1208 -- end;
1210 -- This block is inserted (using Insert_Actions), and then the node
1211 -- is replaced with a reference to Rnn.
1213 -- If our parent is a conversion node then there is no point in
1214 -- generating a conversion to Result_Type. Instead, we let the parent
1215 -- handle this. Note that this special case is not just about
1216 -- optimization. Consider
1218 -- A,B,C : Integer;
1219 -- ...
1220 -- X := Long_Long_Integer'Base (A * (B ** C));
1222 -- Now the product may fit in Long_Long_Integer but not in Integer.
1223 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1224 -- overflow exception for this intermediate value.
1226 declare
1227 Blk : constant Node_Id := Make_Bignum_Block (Loc);
1228 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1229 RHS : Node_Id;
1231 Rtype : Entity_Id;
1233 begin
1234 RHS := Convert_From_Bignum (Op);
1236 if Nkind (P) /= N_Type_Conversion then
1237 Convert_To_And_Rewrite (Result_Type, RHS);
1238 Rtype := Result_Type;
1240 -- Interesting question, do we need a check on that conversion
1241 -- operation. Answer, not if we know the result is in range.
1242 -- At the moment we are not taking advantage of this. To be
1243 -- looked at later ???
1245 else
1246 Rtype := LLIB;
1247 end if;
1249 Insert_Before
1250 (First (Statements (Handled_Statement_Sequence (Blk))),
1251 Make_Assignment_Statement (Loc,
1252 Name => New_Occurrence_Of (Rnn, Loc),
1253 Expression => RHS));
1255 Insert_Actions (Op, New_List (
1256 Make_Object_Declaration (Loc,
1257 Defining_Identifier => Rnn,
1258 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1259 Blk));
1261 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1262 Analyze_And_Resolve (Op);
1263 end;
1265 -- Here we know the result is Long_Long_Integer'Base, or that it has
1266 -- been rewritten because the parent operation is a conversion. See
1267 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1269 else
1270 pragma Assert
1271 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
1273 -- All we need to do here is to convert the result to the proper
1274 -- result type. As explained above for the Bignum case, we can
1275 -- omit this if our parent is a type conversion.
1277 if Nkind (P) /= N_Type_Conversion then
1278 Convert_To_And_Rewrite (Result_Type, Op);
1279 end if;
1281 Analyze_And_Resolve (Op);
1282 end if;
1283 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
1285 ----------------------------
1286 -- Apply_Constraint_Check --
1287 ----------------------------
1289 procedure Apply_Constraint_Check
1290 (N : Node_Id;
1291 Typ : Entity_Id;
1292 No_Sliding : Boolean := False)
1294 Desig_Typ : Entity_Id;
1296 begin
1297 -- No checks inside a generic (check the instantiations)
1299 if Inside_A_Generic then
1300 return;
1301 end if;
1303 -- Apply required constraint checks
1305 if Is_Scalar_Type (Typ) then
1306 Apply_Scalar_Range_Check (N, Typ);
1308 elsif Is_Array_Type (Typ) then
1310 -- A useful optimization: an aggregate with only an others clause
1311 -- always has the right bounds.
1313 if Nkind (N) = N_Aggregate
1314 and then No (Expressions (N))
1315 and then Nkind
1316 (First (Choices (First (Component_Associations (N)))))
1317 = N_Others_Choice
1318 then
1319 return;
1320 end if;
1322 if Is_Constrained (Typ) then
1323 Apply_Length_Check (N, Typ);
1325 if No_Sliding then
1326 Apply_Range_Check (N, Typ);
1327 end if;
1328 else
1329 Apply_Range_Check (N, Typ);
1330 end if;
1332 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
1333 and then Has_Discriminants (Base_Type (Typ))
1334 and then Is_Constrained (Typ)
1335 then
1336 Apply_Discriminant_Check (N, Typ);
1338 elsif Is_Access_Type (Typ) then
1340 Desig_Typ := Designated_Type (Typ);
1342 -- No checks necessary if expression statically null
1344 if Known_Null (N) then
1345 if Can_Never_Be_Null (Typ) then
1346 Install_Null_Excluding_Check (N);
1347 end if;
1349 -- No sliding possible on access to arrays
1351 elsif Is_Array_Type (Desig_Typ) then
1352 if Is_Constrained (Desig_Typ) then
1353 Apply_Length_Check (N, Typ);
1354 end if;
1356 Apply_Range_Check (N, Typ);
1358 -- Do not install a discriminant check for a constrained subtype
1359 -- created for an unconstrained nominal type because the subtype
1360 -- has the correct constraints by construction.
1362 elsif Has_Discriminants (Base_Type (Desig_Typ))
1363 and then Is_Constrained (Desig_Typ)
1364 and then not Is_Constr_Subt_For_U_Nominal (Desig_Typ)
1365 then
1366 Apply_Discriminant_Check (N, Typ);
1367 end if;
1369 -- Apply the 2005 Null_Excluding check. Note that we do not apply
1370 -- this check if the constraint node is illegal, as shown by having
1371 -- an error posted. This additional guard prevents cascaded errors
1372 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1374 if Can_Never_Be_Null (Typ)
1375 and then not Can_Never_Be_Null (Etype (N))
1376 and then not Error_Posted (N)
1377 then
1378 Install_Null_Excluding_Check (N);
1379 end if;
1380 end if;
1381 end Apply_Constraint_Check;
1383 ------------------------------
1384 -- Apply_Discriminant_Check --
1385 ------------------------------
1387 procedure Apply_Discriminant_Check
1388 (N : Node_Id;
1389 Typ : Entity_Id;
1390 Lhs : Node_Id := Empty)
1392 Loc : constant Source_Ptr := Sloc (N);
1393 Do_Access : constant Boolean := Is_Access_Type (Typ);
1394 S_Typ : Entity_Id := Etype (N);
1395 Cond : Node_Id;
1396 T_Typ : Entity_Id;
1398 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1399 -- A heap object with an indefinite subtype is constrained by its
1400 -- initial value, and assigning to it requires a constraint_check.
1401 -- The target may be an explicit dereference, or a renaming of one.
1403 function Is_Aliased_Unconstrained_Component return Boolean;
1404 -- It is possible for an aliased component to have a nominal
1405 -- unconstrained subtype (through instantiation). If this is a
1406 -- discriminated component assigned in the expansion of an aggregate
1407 -- in an initialization, the check must be suppressed. This unusual
1408 -- situation requires a predicate of its own.
1410 ----------------------------------
1411 -- Denotes_Explicit_Dereference --
1412 ----------------------------------
1414 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1415 begin
1416 return
1417 Nkind (Obj) = N_Explicit_Dereference
1418 or else
1419 (Is_Entity_Name (Obj)
1420 and then Present (Renamed_Object (Entity (Obj)))
1421 and then Nkind (Renamed_Object (Entity (Obj))) =
1422 N_Explicit_Dereference);
1423 end Denotes_Explicit_Dereference;
1425 ----------------------------------------
1426 -- Is_Aliased_Unconstrained_Component --
1427 ----------------------------------------
1429 function Is_Aliased_Unconstrained_Component return Boolean is
1430 Comp : Entity_Id;
1431 Pref : Node_Id;
1433 begin
1434 if Nkind (Lhs) /= N_Selected_Component then
1435 return False;
1436 else
1437 Comp := Entity (Selector_Name (Lhs));
1438 Pref := Prefix (Lhs);
1439 end if;
1441 if Ekind (Comp) /= E_Component
1442 or else not Is_Aliased (Comp)
1443 then
1444 return False;
1445 end if;
1447 return not Comes_From_Source (Pref)
1448 and then In_Instance
1449 and then not Is_Constrained (Etype (Comp));
1450 end Is_Aliased_Unconstrained_Component;
1452 -- Start of processing for Apply_Discriminant_Check
1454 begin
1455 if Do_Access then
1456 T_Typ := Designated_Type (Typ);
1457 else
1458 T_Typ := Typ;
1459 end if;
1461 -- Only apply checks when generating code and discriminant checks are
1462 -- not suppressed. In GNATprove mode, we do not apply the checks, but we
1463 -- still analyze the expression to possibly issue errors on SPARK code
1464 -- when a run-time error can be detected at compile time.
1466 if not GNATprove_Mode then
1467 if not Expander_Active
1468 or else Discriminant_Checks_Suppressed (T_Typ)
1469 then
1470 return;
1471 end if;
1472 end if;
1474 -- No discriminant checks necessary for an access when expression is
1475 -- statically Null. This is not only an optimization, it is fundamental
1476 -- because otherwise discriminant checks may be generated in init procs
1477 -- for types containing an access to a not-yet-frozen record, causing a
1478 -- deadly forward reference.
1480 -- Also, if the expression is of an access type whose designated type is
1481 -- incomplete, then the access value must be null and we suppress the
1482 -- check.
1484 if Known_Null (N) then
1485 return;
1487 elsif Is_Access_Type (S_Typ) then
1488 S_Typ := Designated_Type (S_Typ);
1490 if Ekind (S_Typ) = E_Incomplete_Type then
1491 return;
1492 end if;
1493 end if;
1495 -- If an assignment target is present, then we need to generate the
1496 -- actual subtype if the target is a parameter or aliased object with
1497 -- an unconstrained nominal subtype.
1499 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1500 -- subtype to the parameter and dereference cases, since other aliased
1501 -- objects are unconstrained (unless the nominal subtype is explicitly
1502 -- constrained).
1504 if Present (Lhs)
1505 and then (Present (Param_Entity (Lhs))
1506 or else (Ada_Version < Ada_2005
1507 and then not Is_Constrained (T_Typ)
1508 and then Is_Aliased_View (Lhs)
1509 and then not Is_Aliased_Unconstrained_Component)
1510 or else (Ada_Version >= Ada_2005
1511 and then not Is_Constrained (T_Typ)
1512 and then Denotes_Explicit_Dereference (Lhs)
1513 and then Nkind (Original_Node (Lhs)) /=
1514 N_Function_Call))
1515 then
1516 T_Typ := Get_Actual_Subtype (Lhs);
1517 end if;
1519 -- Nothing to do if the type is unconstrained (this is the case where
1520 -- the actual subtype in the RM sense of N is unconstrained and no check
1521 -- is required).
1523 if not Is_Constrained (T_Typ) then
1524 return;
1526 -- Ada 2005: nothing to do if the type is one for which there is a
1527 -- partial view that is constrained.
1529 elsif Ada_Version >= Ada_2005
1530 and then Object_Type_Has_Constrained_Partial_View
1531 (Typ => Base_Type (T_Typ),
1532 Scop => Current_Scope)
1533 then
1534 return;
1535 end if;
1537 -- Nothing to do if the type is an Unchecked_Union
1539 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1540 return;
1541 end if;
1543 -- Suppress checks if the subtypes are the same. The check must be
1544 -- preserved in an assignment to a formal, because the constraint is
1545 -- given by the actual.
1547 if Nkind (Original_Node (N)) /= N_Allocator
1548 and then (No (Lhs)
1549 or else not Is_Entity_Name (Lhs)
1550 or else No (Param_Entity (Lhs)))
1551 then
1552 if (Etype (N) = Typ
1553 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1554 and then not Is_Aliased_View (Lhs)
1555 then
1556 return;
1557 end if;
1559 -- We can also eliminate checks on allocators with a subtype mark that
1560 -- coincides with the context type. The context type may be a subtype
1561 -- without a constraint (common case, a generic actual).
1563 elsif Nkind (Original_Node (N)) = N_Allocator
1564 and then Is_Entity_Name (Expression (Original_Node (N)))
1565 then
1566 declare
1567 Alloc_Typ : constant Entity_Id :=
1568 Entity (Expression (Original_Node (N)));
1570 begin
1571 if Alloc_Typ = T_Typ
1572 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1573 and then Is_Entity_Name (
1574 Subtype_Indication (Parent (T_Typ)))
1575 and then Alloc_Typ = Base_Type (T_Typ))
1577 then
1578 return;
1579 end if;
1580 end;
1581 end if;
1583 -- See if we have a case where the types are both constrained, and all
1584 -- the constraints are constants. In this case, we can do the check
1585 -- successfully at compile time.
1587 -- We skip this check for the case where the node is rewritten as
1588 -- an allocator, because it already carries the context subtype,
1589 -- and extracting the discriminants from the aggregate is messy.
1591 if Is_Constrained (S_Typ)
1592 and then Nkind (Original_Node (N)) /= N_Allocator
1593 then
1594 declare
1595 DconT : Elmt_Id;
1596 Discr : Entity_Id;
1597 DconS : Elmt_Id;
1598 ItemS : Node_Id;
1599 ItemT : Node_Id;
1601 begin
1602 -- S_Typ may not have discriminants in the case where it is a
1603 -- private type completed by a default discriminated type. In that
1604 -- case, we need to get the constraints from the underlying type.
1605 -- If the underlying type is unconstrained (i.e. has no default
1606 -- discriminants) no check is needed.
1608 if Has_Discriminants (S_Typ) then
1609 Discr := First_Discriminant (S_Typ);
1610 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1612 else
1613 Discr := First_Discriminant (Underlying_Type (S_Typ));
1614 DconS :=
1615 First_Elmt
1616 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1618 if No (DconS) then
1619 return;
1620 end if;
1622 -- A further optimization: if T_Typ is derived from S_Typ
1623 -- without imposing a constraint, no check is needed.
1625 if Nkind (Original_Node (Parent (T_Typ))) =
1626 N_Full_Type_Declaration
1627 then
1628 declare
1629 Type_Def : constant Node_Id :=
1630 Type_Definition (Original_Node (Parent (T_Typ)));
1631 begin
1632 if Nkind (Type_Def) = N_Derived_Type_Definition
1633 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1634 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1635 then
1636 return;
1637 end if;
1638 end;
1639 end if;
1640 end if;
1642 -- Constraint may appear in full view of type
1644 if Ekind (T_Typ) = E_Private_Subtype
1645 and then Present (Full_View (T_Typ))
1646 then
1647 DconT :=
1648 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
1649 else
1650 DconT :=
1651 First_Elmt (Discriminant_Constraint (T_Typ));
1652 end if;
1654 while Present (Discr) loop
1655 ItemS := Node (DconS);
1656 ItemT := Node (DconT);
1658 -- For a discriminated component type constrained by the
1659 -- current instance of an enclosing type, there is no
1660 -- applicable discriminant check.
1662 if Nkind (ItemT) = N_Attribute_Reference
1663 and then Is_Access_Type (Etype (ItemT))
1664 and then Is_Entity_Name (Prefix (ItemT))
1665 and then Is_Type (Entity (Prefix (ItemT)))
1666 then
1667 return;
1668 end if;
1670 -- If the expressions for the discriminants are identical
1671 -- and it is side-effect free (for now just an entity),
1672 -- this may be a shared constraint, e.g. from a subtype
1673 -- without a constraint introduced as a generic actual.
1674 -- Examine other discriminants if any.
1676 if ItemS = ItemT
1677 and then Is_Entity_Name (ItemS)
1678 then
1679 null;
1681 elsif not Is_OK_Static_Expression (ItemS)
1682 or else not Is_OK_Static_Expression (ItemT)
1683 then
1684 exit;
1686 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
1687 if Do_Access then -- needs run-time check.
1688 exit;
1689 else
1690 Apply_Compile_Time_Constraint_Error
1691 (N, "incorrect value for discriminant&??",
1692 CE_Discriminant_Check_Failed, Ent => Discr);
1693 return;
1694 end if;
1695 end if;
1697 Next_Elmt (DconS);
1698 Next_Elmt (DconT);
1699 Next_Discriminant (Discr);
1700 end loop;
1702 if No (Discr) then
1703 return;
1704 end if;
1705 end;
1706 end if;
1708 -- In GNATprove mode, we do not apply the checks
1710 if GNATprove_Mode then
1711 return;
1712 end if;
1714 -- Here we need a discriminant check. First build the expression
1715 -- for the comparisons of the discriminants:
1717 -- (n.disc1 /= typ.disc1) or else
1718 -- (n.disc2 /= typ.disc2) or else
1719 -- ...
1720 -- (n.discn /= typ.discn)
1722 Cond := Build_Discriminant_Checks (N, T_Typ);
1724 -- If Lhs is set and is a parameter, then the condition is guarded by:
1725 -- lhs'constrained and then (condition built above)
1727 if Present (Param_Entity (Lhs)) then
1728 Cond :=
1729 Make_And_Then (Loc,
1730 Left_Opnd =>
1731 Make_Attribute_Reference (Loc,
1732 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1733 Attribute_Name => Name_Constrained),
1734 Right_Opnd => Cond);
1735 end if;
1737 if Do_Access then
1738 Cond := Guard_Access (Cond, Loc, N);
1739 end if;
1741 Insert_Action (N,
1742 Make_Raise_Constraint_Error (Loc,
1743 Condition => Cond,
1744 Reason => CE_Discriminant_Check_Failed));
1745 end Apply_Discriminant_Check;
1747 -------------------------
1748 -- Apply_Divide_Checks --
1749 -------------------------
1751 procedure Apply_Divide_Checks (N : Node_Id) is
1752 Loc : constant Source_Ptr := Sloc (N);
1753 Typ : constant Entity_Id := Etype (N);
1754 Left : constant Node_Id := Left_Opnd (N);
1755 Right : constant Node_Id := Right_Opnd (N);
1757 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1758 -- Current overflow checking mode
1760 LLB : Uint;
1761 Llo : Uint;
1762 Lhi : Uint;
1763 LOK : Boolean;
1764 Rlo : Uint;
1765 Rhi : Uint;
1766 ROK : Boolean;
1768 pragma Warnings (Off, Lhi);
1769 -- Don't actually use this value
1771 begin
1772 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1773 -- operating on signed integer types, then the only thing this routine
1774 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1775 -- procedure will (possibly later on during recursive downward calls),
1776 -- ensure that any needed overflow/division checks are properly applied.
1778 if Mode in Minimized_Or_Eliminated
1779 and then Is_Signed_Integer_Type (Typ)
1780 then
1781 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1782 return;
1783 end if;
1785 -- Proceed here in SUPPRESSED or CHECKED modes
1787 if Expander_Active
1788 and then not Backend_Divide_Checks_On_Target
1789 and then Check_Needed (Right, Division_Check)
1790 then
1791 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
1793 -- Deal with division check
1795 if Do_Division_Check (N)
1796 and then not Division_Checks_Suppressed (Typ)
1797 then
1798 Apply_Division_Check (N, Rlo, Rhi, ROK);
1799 end if;
1801 -- Deal with overflow check
1803 if Do_Overflow_Check (N)
1804 and then not Overflow_Checks_Suppressed (Etype (N))
1805 then
1806 Set_Do_Overflow_Check (N, False);
1808 -- Test for extremely annoying case of xxx'First divided by -1
1809 -- for division of signed integer types (only overflow case).
1811 if Nkind (N) = N_Op_Divide
1812 and then Is_Signed_Integer_Type (Typ)
1813 then
1814 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
1815 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1817 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1818 and then
1819 ((not LOK) or else (Llo = LLB))
1820 then
1821 -- Ensure that expressions are not evaluated twice (once
1822 -- for their runtime checks and once for their regular
1823 -- computation).
1825 Force_Evaluation (Left, Mode => Strict);
1826 Force_Evaluation (Right, Mode => Strict);
1828 Insert_Action (N,
1829 Make_Raise_Constraint_Error (Loc,
1830 Condition =>
1831 Make_And_Then (Loc,
1832 Left_Opnd =>
1833 Make_Op_Eq (Loc,
1834 Left_Opnd =>
1835 Duplicate_Subexpr_Move_Checks (Left),
1836 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1838 Right_Opnd =>
1839 Make_Op_Eq (Loc,
1840 Left_Opnd => Duplicate_Subexpr (Right),
1841 Right_Opnd => Make_Integer_Literal (Loc, -1))),
1843 Reason => CE_Overflow_Check_Failed));
1844 end if;
1845 end if;
1846 end if;
1847 end if;
1848 end Apply_Divide_Checks;
1850 --------------------------
1851 -- Apply_Division_Check --
1852 --------------------------
1854 procedure Apply_Division_Check
1855 (N : Node_Id;
1856 Rlo : Uint;
1857 Rhi : Uint;
1858 ROK : Boolean)
1860 pragma Assert (Do_Division_Check (N));
1862 Loc : constant Source_Ptr := Sloc (N);
1863 Right : constant Node_Id := Right_Opnd (N);
1865 begin
1866 if Expander_Active
1867 and then not Backend_Divide_Checks_On_Target
1868 and then Check_Needed (Right, Division_Check)
1869 then
1870 -- See if division by zero possible, and if so generate test. This
1871 -- part of the test is not controlled by the -gnato switch, since
1872 -- it is a Division_Check and not an Overflow_Check.
1874 if Do_Division_Check (N) then
1875 Set_Do_Division_Check (N, False);
1877 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1878 Insert_Action (N,
1879 Make_Raise_Constraint_Error (Loc,
1880 Condition =>
1881 Make_Op_Eq (Loc,
1882 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1883 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1884 Reason => CE_Divide_By_Zero));
1885 end if;
1886 end if;
1887 end if;
1888 end Apply_Division_Check;
1890 ----------------------------------
1891 -- Apply_Float_Conversion_Check --
1892 ----------------------------------
1894 -- Let F and I be the source and target types of the conversion. The RM
1895 -- specifies that a floating-point value X is rounded to the nearest
1896 -- integer, with halfway cases being rounded away from zero. The rounded
1897 -- value of X is checked against I'Range.
1899 -- The catch in the above paragraph is that there is no good way to know
1900 -- whether the round-to-integer operation resulted in overflow. A remedy is
1901 -- to perform a range check in the floating-point domain instead, however:
1903 -- (1) The bounds may not be known at compile time
1904 -- (2) The check must take into account rounding or truncation.
1905 -- (3) The range of type I may not be exactly representable in F.
1906 -- (4) For the rounding case, The end-points I'First - 0.5 and
1907 -- I'Last + 0.5 may or may not be in range, depending on the
1908 -- sign of I'First and I'Last.
1909 -- (5) X may be a NaN, which will fail any comparison
1911 -- The following steps correctly convert X with rounding:
1913 -- (1) If either I'First or I'Last is not known at compile time, use
1914 -- I'Base instead of I in the next three steps and perform a
1915 -- regular range check against I'Range after conversion.
1916 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1917 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1918 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1919 -- In other words, take one of the closest floating-point numbers
1920 -- (which is an integer value) to I'First, and see if it is in
1921 -- range or not.
1922 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1923 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1924 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1925 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1926 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1928 -- For the truncating case, replace steps (2) and (3) as follows:
1929 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1930 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1931 -- Lo_OK be True.
1932 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1933 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1934 -- Hi_OK be True.
1936 procedure Apply_Float_Conversion_Check
1937 (Ck_Node : Node_Id;
1938 Target_Typ : Entity_Id)
1940 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1941 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1942 Loc : constant Source_Ptr := Sloc (Ck_Node);
1943 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
1944 Target_Base : constant Entity_Id :=
1945 Implementation_Base_Type (Target_Typ);
1947 Par : constant Node_Id := Parent (Ck_Node);
1948 pragma Assert (Nkind (Par) = N_Type_Conversion);
1949 -- Parent of check node, must be a type conversion
1951 Truncate : constant Boolean := Float_Truncate (Par);
1952 Max_Bound : constant Uint :=
1953 UI_Expon
1954 (Machine_Radix_Value (Expr_Type),
1955 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
1957 -- Largest bound, so bound plus or minus half is a machine number of F
1959 Ifirst, Ilast : Uint;
1960 -- Bounds of integer type
1962 Lo, Hi : Ureal;
1963 -- Bounds to check in floating-point domain
1965 Lo_OK, Hi_OK : Boolean;
1966 -- True iff Lo resp. Hi belongs to I'Range
1968 Lo_Chk, Hi_Chk : Node_Id;
1969 -- Expressions that are False iff check fails
1971 Reason : RT_Exception_Code;
1973 begin
1974 -- We do not need checks if we are not generating code (i.e. the full
1975 -- expander is not active). In SPARK mode, we specifically don't want
1976 -- the frontend to expand these checks, which are dealt with directly
1977 -- in the formal verification backend.
1979 if not Expander_Active then
1980 return;
1981 end if;
1983 if not Compile_Time_Known_Value (LB)
1984 or not Compile_Time_Known_Value (HB)
1985 then
1986 declare
1987 -- First check that the value falls in the range of the base type,
1988 -- to prevent overflow during conversion and then perform a
1989 -- regular range check against the (dynamic) bounds.
1991 pragma Assert (Target_Base /= Target_Typ);
1993 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
1995 begin
1996 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1997 Set_Etype (Temp, Target_Base);
1999 Insert_Action (Parent (Par),
2000 Make_Object_Declaration (Loc,
2001 Defining_Identifier => Temp,
2002 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
2003 Expression => New_Copy_Tree (Par)),
2004 Suppress => All_Checks);
2006 Insert_Action (Par,
2007 Make_Raise_Constraint_Error (Loc,
2008 Condition =>
2009 Make_Not_In (Loc,
2010 Left_Opnd => New_Occurrence_Of (Temp, Loc),
2011 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
2012 Reason => CE_Range_Check_Failed));
2013 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
2015 return;
2016 end;
2017 end if;
2019 -- Get the (static) bounds of the target type
2021 Ifirst := Expr_Value (LB);
2022 Ilast := Expr_Value (HB);
2024 -- A simple optimization: if the expression is a universal literal,
2025 -- we can do the comparison with the bounds and the conversion to
2026 -- an integer type statically. The range checks are unchanged.
2028 if Nkind (Ck_Node) = N_Real_Literal
2029 and then Etype (Ck_Node) = Universal_Real
2030 and then Is_Integer_Type (Target_Typ)
2031 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
2032 then
2033 declare
2034 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
2036 begin
2037 if Int_Val <= Ilast and then Int_Val >= Ifirst then
2039 -- Conversion is safe
2041 Rewrite (Parent (Ck_Node),
2042 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
2043 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
2044 return;
2045 end if;
2046 end;
2047 end if;
2049 -- Check against lower bound
2051 if Truncate and then Ifirst > 0 then
2052 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2053 Lo_OK := False;
2055 elsif Truncate then
2056 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2057 Lo_OK := True;
2059 elsif abs (Ifirst) < Max_Bound then
2060 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2061 Lo_OK := (Ifirst > 0);
2063 else
2064 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
2065 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2066 end if;
2068 if Lo_OK then
2070 -- Lo_Chk := (X >= Lo)
2072 Lo_Chk := Make_Op_Ge (Loc,
2073 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2074 Right_Opnd => Make_Real_Literal (Loc, Lo));
2076 else
2077 -- Lo_Chk := (X > Lo)
2079 Lo_Chk := Make_Op_Gt (Loc,
2080 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2081 Right_Opnd => Make_Real_Literal (Loc, Lo));
2082 end if;
2084 -- Check against higher bound
2086 if Truncate and then Ilast < 0 then
2087 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
2088 Hi_OK := False;
2090 elsif Truncate then
2091 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2092 Hi_OK := True;
2094 elsif abs (Ilast) < Max_Bound then
2095 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2096 Hi_OK := (Ilast < 0);
2097 else
2098 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2099 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2100 end if;
2102 if Hi_OK then
2104 -- Hi_Chk := (X <= Hi)
2106 Hi_Chk := Make_Op_Le (Loc,
2107 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2108 Right_Opnd => Make_Real_Literal (Loc, Hi));
2110 else
2111 -- Hi_Chk := (X < Hi)
2113 Hi_Chk := Make_Op_Lt (Loc,
2114 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2115 Right_Opnd => Make_Real_Literal (Loc, Hi));
2116 end if;
2118 -- If the bounds of the target type are the same as those of the base
2119 -- type, the check is an overflow check as a range check is not
2120 -- performed in these cases.
2122 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2123 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2124 then
2125 Reason := CE_Overflow_Check_Failed;
2126 else
2127 Reason := CE_Range_Check_Failed;
2128 end if;
2130 -- Raise CE if either conditions does not hold
2132 Insert_Action (Ck_Node,
2133 Make_Raise_Constraint_Error (Loc,
2134 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
2135 Reason => Reason));
2136 end Apply_Float_Conversion_Check;
2138 ------------------------
2139 -- Apply_Length_Check --
2140 ------------------------
2142 procedure Apply_Length_Check
2143 (Ck_Node : Node_Id;
2144 Target_Typ : Entity_Id;
2145 Source_Typ : Entity_Id := Empty)
2147 begin
2148 Apply_Selected_Length_Checks
2149 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2150 end Apply_Length_Check;
2152 -------------------------------------
2153 -- Apply_Parameter_Aliasing_Checks --
2154 -------------------------------------
2156 procedure Apply_Parameter_Aliasing_Checks
2157 (Call : Node_Id;
2158 Subp : Entity_Id)
2160 Loc : constant Source_Ptr := Sloc (Call);
2162 function May_Cause_Aliasing
2163 (Formal_1 : Entity_Id;
2164 Formal_2 : Entity_Id) return Boolean;
2165 -- Determine whether two formal parameters can alias each other
2166 -- depending on their modes.
2168 function Original_Actual (N : Node_Id) return Node_Id;
2169 -- The expander may replace an actual with a temporary for the sake of
2170 -- side effect removal. The temporary may hide a potential aliasing as
2171 -- it does not share the address of the actual. This routine attempts
2172 -- to retrieve the original actual.
2174 procedure Overlap_Check
2175 (Actual_1 : Node_Id;
2176 Actual_2 : Node_Id;
2177 Formal_1 : Entity_Id;
2178 Formal_2 : Entity_Id;
2179 Check : in out Node_Id);
2180 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2181 -- If detailed exception messages are enabled, the check is augmented to
2182 -- provide information about the names of the corresponding formals. See
2183 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2184 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2185 -- Check contains all and-ed simple tests generated so far or remains
2186 -- unchanged in the case of detailed exception messaged.
2188 ------------------------
2189 -- May_Cause_Aliasing --
2190 ------------------------
2192 function May_Cause_Aliasing
2193 (Formal_1 : Entity_Id;
2194 Formal_2 : Entity_Id) return Boolean
2196 begin
2197 -- The following combination cannot lead to aliasing
2199 -- Formal 1 Formal 2
2200 -- IN IN
2202 if Ekind (Formal_1) = E_In_Parameter
2203 and then
2204 Ekind (Formal_2) = E_In_Parameter
2205 then
2206 return False;
2208 -- The following combinations may lead to aliasing
2210 -- Formal 1 Formal 2
2211 -- IN OUT
2212 -- IN IN OUT
2213 -- OUT IN
2214 -- OUT IN OUT
2215 -- OUT OUT
2217 else
2218 return True;
2219 end if;
2220 end May_Cause_Aliasing;
2222 ---------------------
2223 -- Original_Actual --
2224 ---------------------
2226 function Original_Actual (N : Node_Id) return Node_Id is
2227 begin
2228 if Nkind (N) = N_Type_Conversion then
2229 return Expression (N);
2231 -- The expander created a temporary to capture the result of a type
2232 -- conversion where the expression is the real actual.
2234 elsif Nkind (N) = N_Identifier
2235 and then Present (Original_Node (N))
2236 and then Nkind (Original_Node (N)) = N_Type_Conversion
2237 then
2238 return Expression (Original_Node (N));
2239 end if;
2241 return N;
2242 end Original_Actual;
2244 -------------------
2245 -- Overlap_Check --
2246 -------------------
2248 procedure Overlap_Check
2249 (Actual_1 : Node_Id;
2250 Actual_2 : Node_Id;
2251 Formal_1 : Entity_Id;
2252 Formal_2 : Entity_Id;
2253 Check : in out Node_Id)
2255 Cond : Node_Id;
2256 ID_Casing : constant Casing_Type :=
2257 Identifier_Casing (Source_Index (Current_Sem_Unit));
2259 begin
2260 -- Generate:
2261 -- Actual_1'Overlaps_Storage (Actual_2)
2263 Cond :=
2264 Make_Attribute_Reference (Loc,
2265 Prefix => New_Copy_Tree (Original_Actual (Actual_1)),
2266 Attribute_Name => Name_Overlaps_Storage,
2267 Expressions =>
2268 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2270 -- Generate the following check when detailed exception messages are
2271 -- enabled:
2273 -- if Actual_1'Overlaps_Storage (Actual_2) then
2274 -- raise Program_Error with <detailed message>;
2275 -- end if;
2277 if Exception_Extra_Info then
2278 Start_String;
2280 -- Do not generate location information for internal calls
2282 if Comes_From_Source (Call) then
2283 Store_String_Chars (Build_Location_String (Loc));
2284 Store_String_Char (' ');
2285 end if;
2287 Store_String_Chars ("aliased parameters, actuals for """);
2289 Get_Name_String (Chars (Formal_1));
2290 Set_Casing (ID_Casing);
2291 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2293 Store_String_Chars (""" and """);
2295 Get_Name_String (Chars (Formal_2));
2296 Set_Casing (ID_Casing);
2297 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2299 Store_String_Chars (""" overlap");
2301 Insert_Action (Call,
2302 Make_If_Statement (Loc,
2303 Condition => Cond,
2304 Then_Statements => New_List (
2305 Make_Raise_Statement (Loc,
2306 Name =>
2307 New_Occurrence_Of (Standard_Program_Error, Loc),
2308 Expression => Make_String_Literal (Loc, End_String)))));
2310 -- Create a sequence of overlapping checks by and-ing them all
2311 -- together.
2313 else
2314 if No (Check) then
2315 Check := Cond;
2316 else
2317 Check :=
2318 Make_And_Then (Loc,
2319 Left_Opnd => Check,
2320 Right_Opnd => Cond);
2321 end if;
2322 end if;
2323 end Overlap_Check;
2325 -- Local variables
2327 Actual_1 : Node_Id;
2328 Actual_2 : Node_Id;
2329 Check : Node_Id;
2330 Formal_1 : Entity_Id;
2331 Formal_2 : Entity_Id;
2332 Orig_Act_1 : Node_Id;
2333 Orig_Act_2 : Node_Id;
2335 -- Start of processing for Apply_Parameter_Aliasing_Checks
2337 begin
2338 Check := Empty;
2340 Actual_1 := First_Actual (Call);
2341 Formal_1 := First_Formal (Subp);
2342 while Present (Actual_1) and then Present (Formal_1) loop
2343 Orig_Act_1 := Original_Actual (Actual_1);
2345 -- Ensure that the actual is an object that is not passed by value.
2346 -- Elementary types are always passed by value, therefore actuals of
2347 -- such types cannot lead to aliasing. An aggregate is an object in
2348 -- Ada 2012, but an actual that is an aggregate cannot overlap with
2349 -- another actual. A type that is By_Reference (such as an array of
2350 -- controlled types) is not subject to the check because any update
2351 -- will be done in place and a subsequent read will always see the
2352 -- correct value, see RM 6.2 (12/3).
2354 if Nkind (Orig_Act_1) = N_Aggregate
2355 or else (Nkind (Orig_Act_1) = N_Qualified_Expression
2356 and then Nkind (Expression (Orig_Act_1)) = N_Aggregate)
2357 then
2358 null;
2360 elsif Is_Object_Reference (Orig_Act_1)
2361 and then not Is_Elementary_Type (Etype (Orig_Act_1))
2362 and then not Is_By_Reference_Type (Etype (Orig_Act_1))
2363 then
2364 Actual_2 := Next_Actual (Actual_1);
2365 Formal_2 := Next_Formal (Formal_1);
2366 while Present (Actual_2) and then Present (Formal_2) loop
2367 Orig_Act_2 := Original_Actual (Actual_2);
2369 -- The other actual we are testing against must also denote
2370 -- a non pass-by-value object. Generate the check only when
2371 -- the mode of the two formals may lead to aliasing.
2373 if Is_Object_Reference (Orig_Act_2)
2374 and then not Is_Elementary_Type (Etype (Orig_Act_2))
2375 and then May_Cause_Aliasing (Formal_1, Formal_2)
2376 then
2377 Remove_Side_Effects (Actual_1);
2378 Remove_Side_Effects (Actual_2);
2380 Overlap_Check
2381 (Actual_1 => Actual_1,
2382 Actual_2 => Actual_2,
2383 Formal_1 => Formal_1,
2384 Formal_2 => Formal_2,
2385 Check => Check);
2386 end if;
2388 Next_Actual (Actual_2);
2389 Next_Formal (Formal_2);
2390 end loop;
2391 end if;
2393 Next_Actual (Actual_1);
2394 Next_Formal (Formal_1);
2395 end loop;
2397 -- Place a simple check right before the call
2399 if Present (Check) and then not Exception_Extra_Info then
2400 Insert_Action (Call,
2401 Make_Raise_Program_Error (Loc,
2402 Condition => Check,
2403 Reason => PE_Aliased_Parameters));
2404 end if;
2405 end Apply_Parameter_Aliasing_Checks;
2407 -------------------------------------
2408 -- Apply_Parameter_Validity_Checks --
2409 -------------------------------------
2411 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2412 Subp_Decl : Node_Id;
2414 procedure Add_Validity_Check
2415 (Formal : Entity_Id;
2416 Prag_Nam : Name_Id;
2417 For_Result : Boolean := False);
2418 -- Add a single 'Valid[_Scalar] check which verifies the initialization
2419 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
2420 -- Set flag For_Result when to verify the result of a function.
2422 ------------------------
2423 -- Add_Validity_Check --
2424 ------------------------
2426 procedure Add_Validity_Check
2427 (Formal : Entity_Id;
2428 Prag_Nam : Name_Id;
2429 For_Result : Boolean := False)
2431 procedure Build_Pre_Post_Condition (Expr : Node_Id);
2432 -- Create a pre/postcondition pragma that tests expression Expr
2434 ------------------------------
2435 -- Build_Pre_Post_Condition --
2436 ------------------------------
2438 procedure Build_Pre_Post_Condition (Expr : Node_Id) is
2439 Loc : constant Source_Ptr := Sloc (Subp);
2440 Decls : List_Id;
2441 Prag : Node_Id;
2443 begin
2444 Prag :=
2445 Make_Pragma (Loc,
2446 Chars => Prag_Nam,
2447 Pragma_Argument_Associations => New_List (
2448 Make_Pragma_Argument_Association (Loc,
2449 Chars => Name_Check,
2450 Expression => Expr)));
2452 -- Add a message unless exception messages are suppressed
2454 if not Exception_Locations_Suppressed then
2455 Append_To (Pragma_Argument_Associations (Prag),
2456 Make_Pragma_Argument_Association (Loc,
2457 Chars => Name_Message,
2458 Expression =>
2459 Make_String_Literal (Loc,
2460 Strval => "failed "
2461 & Get_Name_String (Prag_Nam)
2462 & " from "
2463 & Build_Location_String (Loc))));
2464 end if;
2466 -- Insert the pragma in the tree
2468 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2469 Add_Global_Declaration (Prag);
2470 Analyze (Prag);
2472 -- PPC pragmas associated with subprogram bodies must be inserted
2473 -- in the declarative part of the body.
2475 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2476 Decls := Declarations (Subp_Decl);
2478 if No (Decls) then
2479 Decls := New_List;
2480 Set_Declarations (Subp_Decl, Decls);
2481 end if;
2483 Prepend_To (Decls, Prag);
2484 Analyze (Prag);
2486 -- For subprogram declarations insert the PPC pragma right after
2487 -- the declarative node.
2489 else
2490 Insert_After_And_Analyze (Subp_Decl, Prag);
2491 end if;
2492 end Build_Pre_Post_Condition;
2494 -- Local variables
2496 Loc : constant Source_Ptr := Sloc (Subp);
2497 Typ : constant Entity_Id := Etype (Formal);
2498 Check : Node_Id;
2499 Nam : Name_Id;
2501 -- Start of processing for Add_Validity_Check
2503 begin
2504 -- For scalars, generate 'Valid test
2506 if Is_Scalar_Type (Typ) then
2507 Nam := Name_Valid;
2509 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2511 elsif Scalar_Part_Present (Typ) then
2512 Nam := Name_Valid_Scalars;
2514 -- No test needed for other cases (no scalars to test)
2516 else
2517 return;
2518 end if;
2520 -- Step 1: Create the expression to verify the validity of the
2521 -- context.
2523 Check := New_Occurrence_Of (Formal, Loc);
2525 -- When processing a function result, use 'Result. Generate
2526 -- Context'Result
2528 if For_Result then
2529 Check :=
2530 Make_Attribute_Reference (Loc,
2531 Prefix => Check,
2532 Attribute_Name => Name_Result);
2533 end if;
2535 -- Generate:
2536 -- Context['Result]'Valid[_Scalars]
2538 Check :=
2539 Make_Attribute_Reference (Loc,
2540 Prefix => Check,
2541 Attribute_Name => Nam);
2543 -- Step 2: Create a pre or post condition pragma
2545 Build_Pre_Post_Condition (Check);
2546 end Add_Validity_Check;
2548 -- Local variables
2550 Formal : Entity_Id;
2551 Subp_Spec : Node_Id;
2553 -- Start of processing for Apply_Parameter_Validity_Checks
2555 begin
2556 -- Extract the subprogram specification and declaration nodes
2558 Subp_Spec := Parent (Subp);
2560 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2561 Subp_Spec := Parent (Subp_Spec);
2562 end if;
2564 Subp_Decl := Parent (Subp_Spec);
2566 if not Comes_From_Source (Subp)
2568 -- Do not process formal subprograms because the corresponding actual
2569 -- will receive the proper checks when the instance is analyzed.
2571 or else Is_Formal_Subprogram (Subp)
2573 -- Do not process imported subprograms since pre and postconditions
2574 -- are never verified on routines coming from a different language.
2576 or else Is_Imported (Subp)
2577 or else Is_Intrinsic_Subprogram (Subp)
2579 -- The PPC pragmas generated by this routine do not correspond to
2580 -- source aspects, therefore they cannot be applied to abstract
2581 -- subprograms.
2583 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
2585 -- Do not consider subprogram renaminds because the renamed entity
2586 -- already has the proper PPC pragmas.
2588 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2590 -- Do not process null procedures because there is no benefit of
2591 -- adding the checks to a no action routine.
2593 or else (Nkind (Subp_Spec) = N_Procedure_Specification
2594 and then Null_Present (Subp_Spec))
2595 then
2596 return;
2597 end if;
2599 -- Inspect all the formals applying aliasing and scalar initialization
2600 -- checks where applicable.
2602 Formal := First_Formal (Subp);
2603 while Present (Formal) loop
2605 -- Generate the following scalar initialization checks for each
2606 -- formal parameter:
2608 -- mode IN - Pre => Formal'Valid[_Scalars]
2609 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2610 -- mode OUT - Post => Formal'Valid[_Scalars]
2612 if Check_Validity_Of_Parameters then
2613 if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2614 Add_Validity_Check (Formal, Name_Precondition, False);
2615 end if;
2617 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2618 Add_Validity_Check (Formal, Name_Postcondition, False);
2619 end if;
2620 end if;
2622 Next_Formal (Formal);
2623 end loop;
2625 -- Generate following scalar initialization check for function result:
2627 -- Post => Subp'Result'Valid[_Scalars]
2629 if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
2630 Add_Validity_Check (Subp, Name_Postcondition, True);
2631 end if;
2632 end Apply_Parameter_Validity_Checks;
2634 ---------------------------
2635 -- Apply_Predicate_Check --
2636 ---------------------------
2638 procedure Apply_Predicate_Check
2639 (N : Node_Id;
2640 Typ : Entity_Id;
2641 Fun : Entity_Id := Empty)
2643 S : Entity_Id;
2645 begin
2646 if Predicate_Checks_Suppressed (Empty) then
2647 return;
2649 elsif Predicates_Ignored (Typ) then
2650 return;
2652 elsif Present (Predicate_Function (Typ)) then
2653 S := Current_Scope;
2654 while Present (S) and then not Is_Subprogram (S) loop
2655 S := Scope (S);
2656 end loop;
2658 -- A predicate check does not apply within internally generated
2659 -- subprograms, such as TSS functions.
2661 if Within_Internal_Subprogram then
2662 return;
2664 -- If the check appears within the predicate function itself, it
2665 -- means that the user specified a check whose formal is the
2666 -- predicated subtype itself, rather than some covering type. This
2667 -- is likely to be a common error, and thus deserves a warning.
2669 elsif Present (S) and then S = Predicate_Function (Typ) then
2670 Error_Msg_NE
2671 ("predicate check includes a call to& that requires a "
2672 & "predicate check??", Parent (N), Fun);
2673 Error_Msg_N
2674 ("\this will result in infinite recursion??", Parent (N));
2676 if Is_First_Subtype (Typ) then
2677 Error_Msg_NE
2678 ("\use an explicit subtype of& to carry the predicate",
2679 Parent (N), Typ);
2680 end if;
2682 Insert_Action (N,
2683 Make_Raise_Storage_Error (Sloc (N),
2684 Reason => SE_Infinite_Recursion));
2686 -- Here for normal case of predicate active
2688 else
2689 -- If the type has a static predicate and the expression is known
2690 -- at compile time, see if the expression satisfies the predicate.
2692 Check_Expression_Against_Static_Predicate (N, Typ);
2694 if not Expander_Active then
2695 return;
2696 end if;
2698 -- For an entity of the type, generate a call to the predicate
2699 -- function, unless its type is an actual subtype, which is not
2700 -- visible outside of the enclosing subprogram.
2702 if Is_Entity_Name (N)
2703 and then not Is_Actual_Subtype (Typ)
2704 then
2705 Insert_Action (N,
2706 Make_Predicate_Check
2707 (Typ, New_Occurrence_Of (Entity (N), Sloc (N))));
2709 -- If the expression is not an entity it may have side effects,
2710 -- and the following call will create an object declaration for
2711 -- it. We disable checks during its analysis, to prevent an
2712 -- infinite recursion.
2714 -- If the prefix is an aggregate in an assignment, apply the
2715 -- check to the LHS after assignment, rather than create a
2716 -- redundant temporary. This is only necessary in rare cases
2717 -- of array types (including strings) initialized with an
2718 -- aggregate with an "others" clause, either coming from source
2719 -- or generated by an Initialize_Scalars pragma.
2721 elsif Nkind (N) = N_Aggregate
2722 and then Nkind (Parent (N)) = N_Assignment_Statement
2723 then
2724 Insert_Action_After (Parent (N),
2725 Make_Predicate_Check
2726 (Typ, Duplicate_Subexpr (Name (Parent (N)))));
2728 else
2729 Insert_Action (N,
2730 Make_Predicate_Check
2731 (Typ, Duplicate_Subexpr (N)), Suppress => All_Checks);
2732 end if;
2733 end if;
2734 end if;
2735 end Apply_Predicate_Check;
2737 -----------------------
2738 -- Apply_Range_Check --
2739 -----------------------
2741 procedure Apply_Range_Check
2742 (Ck_Node : Node_Id;
2743 Target_Typ : Entity_Id;
2744 Source_Typ : Entity_Id := Empty)
2746 begin
2747 Apply_Selected_Range_Checks
2748 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2749 end Apply_Range_Check;
2751 ------------------------------
2752 -- Apply_Scalar_Range_Check --
2753 ------------------------------
2755 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2756 -- off if it is already set on.
2758 procedure Apply_Scalar_Range_Check
2759 (Expr : Node_Id;
2760 Target_Typ : Entity_Id;
2761 Source_Typ : Entity_Id := Empty;
2762 Fixed_Int : Boolean := False)
2764 Parnt : constant Node_Id := Parent (Expr);
2765 S_Typ : Entity_Id;
2766 Arr : Node_Id := Empty; -- initialize to prevent warning
2767 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
2769 Is_Subscr_Ref : Boolean;
2770 -- Set true if Expr is a subscript
2772 Is_Unconstrained_Subscr_Ref : Boolean;
2773 -- Set true if Expr is a subscript of an unconstrained array. In this
2774 -- case we do not attempt to do an analysis of the value against the
2775 -- range of the subscript, since we don't know the actual subtype.
2777 Int_Real : Boolean;
2778 -- Set to True if Expr should be regarded as a real value even though
2779 -- the type of Expr might be discrete.
2781 procedure Bad_Value (Warn : Boolean := False);
2782 -- Procedure called if value is determined to be out of range. Warn is
2783 -- True to force a warning instead of an error, even when SPARK_Mode is
2784 -- On.
2786 ---------------
2787 -- Bad_Value --
2788 ---------------
2790 procedure Bad_Value (Warn : Boolean := False) is
2791 begin
2792 Apply_Compile_Time_Constraint_Error
2793 (Expr, "value not in range of}??", CE_Range_Check_Failed,
2794 Ent => Target_Typ,
2795 Typ => Target_Typ,
2796 Warn => Warn);
2797 end Bad_Value;
2799 -- Start of processing for Apply_Scalar_Range_Check
2801 begin
2802 -- Return if check obviously not needed
2805 -- Not needed inside generic
2807 Inside_A_Generic
2809 -- Not needed if previous error
2811 or else Target_Typ = Any_Type
2812 or else Nkind (Expr) = N_Error
2814 -- Not needed for non-scalar type
2816 or else not Is_Scalar_Type (Target_Typ)
2818 -- Not needed if we know node raises CE already
2820 or else Raises_Constraint_Error (Expr)
2821 then
2822 return;
2823 end if;
2825 -- Now, see if checks are suppressed
2827 Is_Subscr_Ref :=
2828 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2830 if Is_Subscr_Ref then
2831 Arr := Prefix (Parnt);
2832 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
2834 if Is_Access_Type (Arr_Typ) then
2835 Arr_Typ := Designated_Type (Arr_Typ);
2836 end if;
2837 end if;
2839 if not Do_Range_Check (Expr) then
2841 -- Subscript reference. Check for Index_Checks suppressed
2843 if Is_Subscr_Ref then
2845 -- Check array type and its base type
2847 if Index_Checks_Suppressed (Arr_Typ)
2848 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
2849 then
2850 return;
2852 -- Check array itself if it is an entity name
2854 elsif Is_Entity_Name (Arr)
2855 and then Index_Checks_Suppressed (Entity (Arr))
2856 then
2857 return;
2859 -- Check expression itself if it is an entity name
2861 elsif Is_Entity_Name (Expr)
2862 and then Index_Checks_Suppressed (Entity (Expr))
2863 then
2864 return;
2865 end if;
2867 -- All other cases, check for Range_Checks suppressed
2869 else
2870 -- Check target type and its base type
2872 if Range_Checks_Suppressed (Target_Typ)
2873 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
2874 then
2875 return;
2877 -- Check expression itself if it is an entity name
2879 elsif Is_Entity_Name (Expr)
2880 and then Range_Checks_Suppressed (Entity (Expr))
2881 then
2882 return;
2884 -- If Expr is part of an assignment statement, then check left
2885 -- side of assignment if it is an entity name.
2887 elsif Nkind (Parnt) = N_Assignment_Statement
2888 and then Is_Entity_Name (Name (Parnt))
2889 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
2890 then
2891 return;
2892 end if;
2893 end if;
2894 end if;
2896 -- Do not set range checks if they are killed
2898 if Nkind (Expr) = N_Unchecked_Type_Conversion
2899 and then Kill_Range_Check (Expr)
2900 then
2901 return;
2902 end if;
2904 -- Do not set range checks for any values from System.Scalar_Values
2905 -- since the whole idea of such values is to avoid checking them.
2907 if Is_Entity_Name (Expr)
2908 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
2909 then
2910 return;
2911 end if;
2913 -- Now see if we need a check
2915 if No (Source_Typ) then
2916 S_Typ := Etype (Expr);
2917 else
2918 S_Typ := Source_Typ;
2919 end if;
2921 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
2922 return;
2923 end if;
2925 Is_Unconstrained_Subscr_Ref :=
2926 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
2928 -- Special checks for floating-point type
2930 if Is_Floating_Point_Type (S_Typ) then
2932 -- Always do a range check if the source type includes infinities and
2933 -- the target type does not include infinities. We do not do this if
2934 -- range checks are killed.
2935 -- If the expression is a literal and the bounds of the type are
2936 -- static constants it may be possible to optimize the check.
2938 if Has_Infinities (S_Typ)
2939 and then not Has_Infinities (Target_Typ)
2940 then
2941 -- If the expression is a literal and the bounds of the type are
2942 -- static constants it may be possible to optimize the check.
2944 if Nkind (Expr) = N_Real_Literal then
2945 declare
2946 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2947 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2949 begin
2950 if Compile_Time_Known_Value (Tlo)
2951 and then Compile_Time_Known_Value (Thi)
2952 and then Expr_Value_R (Expr) >= Expr_Value_R (Tlo)
2953 and then Expr_Value_R (Expr) <= Expr_Value_R (Thi)
2954 then
2955 return;
2956 else
2957 Enable_Range_Check (Expr);
2958 end if;
2959 end;
2961 else
2962 Enable_Range_Check (Expr);
2963 end if;
2964 end if;
2965 end if;
2967 -- Return if we know expression is definitely in the range of the target
2968 -- type as determined by Determine_Range. Right now we only do this for
2969 -- discrete types, and not fixed-point or floating-point types.
2971 -- The additional less-precise tests below catch these cases
2973 -- In GNATprove_Mode, also deal with the case of a conversion from
2974 -- floating-point to integer. It is only possible because analysis
2975 -- in GNATprove rules out the possibility of a NaN or infinite value.
2977 -- Note: skip this if we are given a source_typ, since the point of
2978 -- supplying a Source_Typ is to stop us looking at the expression.
2979 -- We could sharpen this test to be out parameters only ???
2981 if Is_Discrete_Type (Target_Typ)
2982 and then (Is_Discrete_Type (Etype (Expr))
2983 or else (GNATprove_Mode
2984 and then Is_Floating_Point_Type (Etype (Expr))))
2985 and then not Is_Unconstrained_Subscr_Ref
2986 and then No (Source_Typ)
2987 then
2988 declare
2989 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2990 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2992 begin
2993 if Compile_Time_Known_Value (Tlo)
2994 and then Compile_Time_Known_Value (Thi)
2995 then
2996 declare
2997 OK : Boolean := False; -- initialize to prevent warning
2998 Hiv : constant Uint := Expr_Value (Thi);
2999 Lov : constant Uint := Expr_Value (Tlo);
3000 Hi : Uint := No_Uint;
3001 Lo : Uint := No_Uint;
3003 begin
3004 -- If range is null, we for sure have a constraint error (we
3005 -- don't even need to look at the value involved, since all
3006 -- possible values will raise CE).
3008 if Lov > Hiv then
3010 -- When SPARK_Mode is On, force a warning instead of
3011 -- an error in that case, as this likely corresponds
3012 -- to deactivated code.
3014 Bad_Value (Warn => SPARK_Mode = On);
3016 -- In GNATprove mode, we enable the range check so that
3017 -- GNATprove will issue a message if it cannot be proved.
3019 if GNATprove_Mode then
3020 Enable_Range_Check (Expr);
3021 end if;
3023 return;
3024 end if;
3026 -- Otherwise determine range of value
3028 if Is_Discrete_Type (Etype (Expr)) then
3029 Determine_Range
3030 (Expr, OK, Lo, Hi, Assume_Valid => True);
3032 -- When converting a float to an integer type, determine the
3033 -- range in real first, and then convert the bounds using
3034 -- UR_To_Uint which correctly rounds away from zero when
3035 -- half way between two integers, as required by normal
3036 -- Ada 95 rounding semantics. It is only possible because
3037 -- analysis in GNATprove rules out the possibility of a NaN
3038 -- or infinite value.
3040 elsif GNATprove_Mode
3041 and then Is_Floating_Point_Type (Etype (Expr))
3042 then
3043 declare
3044 Hir : Ureal;
3045 Lor : Ureal;
3047 begin
3048 Determine_Range_R
3049 (Expr, OK, Lor, Hir, Assume_Valid => True);
3051 if OK then
3052 Lo := UR_To_Uint (Lor);
3053 Hi := UR_To_Uint (Hir);
3054 end if;
3055 end;
3056 end if;
3058 if OK then
3060 -- If definitely in range, all OK
3062 if Lo >= Lov and then Hi <= Hiv then
3063 return;
3065 -- If definitely not in range, warn
3067 elsif Lov > Hi or else Hiv < Lo then
3068 Bad_Value;
3069 return;
3071 -- Otherwise we don't know
3073 else
3074 null;
3075 end if;
3076 end if;
3077 end;
3078 end if;
3079 end;
3080 end if;
3082 Int_Real :=
3083 Is_Floating_Point_Type (S_Typ)
3084 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
3086 -- Check if we can determine at compile time whether Expr is in the
3087 -- range of the target type. Note that if S_Typ is within the bounds
3088 -- of Target_Typ then this must be the case. This check is meaningful
3089 -- only if this is not a conversion between integer and real types.
3091 if not Is_Unconstrained_Subscr_Ref
3092 and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
3093 and then
3094 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
3096 -- Also check if the expression itself is in the range of the
3097 -- target type if it is a known at compile time value. We skip
3098 -- this test if S_Typ is set since for OUT and IN OUT parameters
3099 -- the Expr itself is not relevant to the checking.
3101 or else
3102 (No (Source_Typ)
3103 and then Is_In_Range (Expr, Target_Typ,
3104 Assume_Valid => True,
3105 Fixed_Int => Fixed_Int,
3106 Int_Real => Int_Real)))
3107 then
3108 return;
3110 elsif Is_Out_Of_Range (Expr, Target_Typ,
3111 Assume_Valid => True,
3112 Fixed_Int => Fixed_Int,
3113 Int_Real => Int_Real)
3114 then
3115 Bad_Value;
3116 return;
3118 -- Floating-point case
3119 -- In the floating-point case, we only do range checks if the type is
3120 -- constrained. We definitely do NOT want range checks for unconstrained
3121 -- types, since we want to have infinities, except when
3122 -- Check_Float_Overflow is set.
3124 elsif Is_Floating_Point_Type (S_Typ) then
3125 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
3126 Enable_Range_Check (Expr);
3127 end if;
3129 -- For all other cases we enable a range check unconditionally
3131 else
3132 Enable_Range_Check (Expr);
3133 return;
3134 end if;
3135 end Apply_Scalar_Range_Check;
3137 ----------------------------------
3138 -- Apply_Selected_Length_Checks --
3139 ----------------------------------
3141 procedure Apply_Selected_Length_Checks
3142 (Ck_Node : Node_Id;
3143 Target_Typ : Entity_Id;
3144 Source_Typ : Entity_Id;
3145 Do_Static : Boolean)
3147 Checks_On : constant Boolean :=
3148 not Index_Checks_Suppressed (Target_Typ)
3149 or else
3150 not Length_Checks_Suppressed (Target_Typ);
3152 Loc : constant Source_Ptr := Sloc (Ck_Node);
3154 Cond : Node_Id;
3155 R_Cno : Node_Id;
3156 R_Result : Check_Result;
3158 begin
3159 -- Only apply checks when generating code
3161 -- Note: this means that we lose some useful warnings if the expander
3162 -- is not active.
3164 if not Expander_Active then
3165 return;
3166 end if;
3168 R_Result :=
3169 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3171 for J in 1 .. 2 loop
3172 R_Cno := R_Result (J);
3173 exit when No (R_Cno);
3175 -- A length check may mention an Itype which is attached to a
3176 -- subsequent node. At the top level in a package this can cause
3177 -- an order-of-elaboration problem, so we make sure that the itype
3178 -- is referenced now.
3180 if Ekind (Current_Scope) = E_Package
3181 and then Is_Compilation_Unit (Current_Scope)
3182 then
3183 Ensure_Defined (Target_Typ, Ck_Node);
3185 if Present (Source_Typ) then
3186 Ensure_Defined (Source_Typ, Ck_Node);
3188 elsif Is_Itype (Etype (Ck_Node)) then
3189 Ensure_Defined (Etype (Ck_Node), Ck_Node);
3190 end if;
3191 end if;
3193 -- If the item is a conditional raise of constraint error, then have
3194 -- a look at what check is being performed and ???
3196 if Nkind (R_Cno) = N_Raise_Constraint_Error
3197 and then Present (Condition (R_Cno))
3198 then
3199 Cond := Condition (R_Cno);
3201 -- Case where node does not now have a dynamic check
3203 if not Has_Dynamic_Length_Check (Ck_Node) then
3205 -- If checks are on, just insert the check
3207 if Checks_On then
3208 Insert_Action (Ck_Node, R_Cno);
3210 if not Do_Static then
3211 Set_Has_Dynamic_Length_Check (Ck_Node);
3212 end if;
3214 -- If checks are off, then analyze the length check after
3215 -- temporarily attaching it to the tree in case the relevant
3216 -- condition can be evaluated at compile time. We still want a
3217 -- compile time warning in this case.
3219 else
3220 Set_Parent (R_Cno, Ck_Node);
3221 Analyze (R_Cno);
3222 end if;
3223 end if;
3225 -- Output a warning if the condition is known to be True
3227 if Is_Entity_Name (Cond)
3228 and then Entity (Cond) = Standard_True
3229 then
3230 Apply_Compile_Time_Constraint_Error
3231 (Ck_Node, "wrong length for array of}??",
3232 CE_Length_Check_Failed,
3233 Ent => Target_Typ,
3234 Typ => Target_Typ);
3236 -- If we were only doing a static check, or if checks are not
3237 -- on, then we want to delete the check, since it is not needed.
3238 -- We do this by replacing the if statement by a null statement
3240 elsif Do_Static or else not Checks_On then
3241 Remove_Warning_Messages (R_Cno);
3242 Rewrite (R_Cno, Make_Null_Statement (Loc));
3243 end if;
3245 else
3246 Install_Static_Check (R_Cno, Loc);
3247 end if;
3248 end loop;
3249 end Apply_Selected_Length_Checks;
3251 ---------------------------------
3252 -- Apply_Selected_Range_Checks --
3253 ---------------------------------
3255 procedure Apply_Selected_Range_Checks
3256 (Ck_Node : Node_Id;
3257 Target_Typ : Entity_Id;
3258 Source_Typ : Entity_Id;
3259 Do_Static : Boolean)
3261 Checks_On : constant Boolean :=
3262 not Index_Checks_Suppressed (Target_Typ)
3263 or else
3264 not Range_Checks_Suppressed (Target_Typ);
3266 Loc : constant Source_Ptr := Sloc (Ck_Node);
3268 Cond : Node_Id;
3269 R_Cno : Node_Id;
3270 R_Result : Check_Result;
3272 begin
3273 -- Only apply checks when generating code. In GNATprove mode, we do not
3274 -- apply the checks, but we still call Selected_Range_Checks to possibly
3275 -- issue errors on SPARK code when a run-time error can be detected at
3276 -- compile time.
3278 if not GNATprove_Mode then
3279 if not Expander_Active or not Checks_On then
3280 return;
3281 end if;
3282 end if;
3284 R_Result :=
3285 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3287 if GNATprove_Mode then
3288 return;
3289 end if;
3291 for J in 1 .. 2 loop
3292 R_Cno := R_Result (J);
3293 exit when No (R_Cno);
3295 -- The range check requires runtime evaluation. Depending on what its
3296 -- triggering condition is, the check may be converted into a compile
3297 -- time constraint check.
3299 if Nkind (R_Cno) = N_Raise_Constraint_Error
3300 and then Present (Condition (R_Cno))
3301 then
3302 Cond := Condition (R_Cno);
3304 -- Insert the range check before the related context. Note that
3305 -- this action analyses the triggering condition.
3307 Insert_Action (Ck_Node, R_Cno);
3309 -- This old code doesn't make sense, why is the context flagged as
3310 -- requiring dynamic range checks now in the middle of generating
3311 -- them ???
3313 if not Do_Static then
3314 Set_Has_Dynamic_Range_Check (Ck_Node);
3315 end if;
3317 -- The triggering condition evaluates to True, the range check
3318 -- can be converted into a compile time constraint check.
3320 if Is_Entity_Name (Cond)
3321 and then Entity (Cond) = Standard_True
3322 then
3323 -- Since an N_Range is technically not an expression, we have
3324 -- to set one of the bounds to C_E and then just flag the
3325 -- N_Range. The warning message will point to the lower bound
3326 -- and complain about a range, which seems OK.
3328 if Nkind (Ck_Node) = N_Range then
3329 Apply_Compile_Time_Constraint_Error
3330 (Low_Bound (Ck_Node),
3331 "static range out of bounds of}??",
3332 CE_Range_Check_Failed,
3333 Ent => Target_Typ,
3334 Typ => Target_Typ);
3336 Set_Raises_Constraint_Error (Ck_Node);
3338 else
3339 Apply_Compile_Time_Constraint_Error
3340 (Ck_Node,
3341 "static value out of range of}??",
3342 CE_Range_Check_Failed,
3343 Ent => Target_Typ,
3344 Typ => Target_Typ);
3345 end if;
3347 -- If we were only doing a static check, or if checks are not
3348 -- on, then we want to delete the check, since it is not needed.
3349 -- We do this by replacing the if statement by a null statement
3351 elsif Do_Static then
3352 Remove_Warning_Messages (R_Cno);
3353 Rewrite (R_Cno, Make_Null_Statement (Loc));
3354 end if;
3356 -- The range check raises Constraint_Error explicitly
3358 else
3359 Install_Static_Check (R_Cno, Loc);
3360 end if;
3361 end loop;
3362 end Apply_Selected_Range_Checks;
3364 -------------------------------
3365 -- Apply_Static_Length_Check --
3366 -------------------------------
3368 procedure Apply_Static_Length_Check
3369 (Expr : Node_Id;
3370 Target_Typ : Entity_Id;
3371 Source_Typ : Entity_Id := Empty)
3373 begin
3374 Apply_Selected_Length_Checks
3375 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3376 end Apply_Static_Length_Check;
3378 -------------------------------------
3379 -- Apply_Subscript_Validity_Checks --
3380 -------------------------------------
3382 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3383 Sub : Node_Id;
3385 begin
3386 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3388 -- Loop through subscripts
3390 Sub := First (Expressions (Expr));
3391 while Present (Sub) loop
3393 -- Check one subscript. Note that we do not worry about enumeration
3394 -- type with holes, since we will convert the value to a Pos value
3395 -- for the subscript, and that convert will do the necessary validity
3396 -- check.
3398 Ensure_Valid (Sub, Holes_OK => True);
3400 -- Move to next subscript
3402 Sub := Next (Sub);
3403 end loop;
3404 end Apply_Subscript_Validity_Checks;
3406 ----------------------------------
3407 -- Apply_Type_Conversion_Checks --
3408 ----------------------------------
3410 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3411 Target_Type : constant Entity_Id := Etype (N);
3412 Target_Base : constant Entity_Id := Base_Type (Target_Type);
3413 Expr : constant Node_Id := Expression (N);
3415 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
3416 -- Note: if Etype (Expr) is a private type without discriminants, its
3417 -- full view might have discriminants with defaults, so we need the
3418 -- full view here to retrieve the constraints.
3420 begin
3421 if Inside_A_Generic then
3422 return;
3424 -- Skip these checks if serious errors detected, there are some nasty
3425 -- situations of incomplete trees that blow things up.
3427 elsif Serious_Errors_Detected > 0 then
3428 return;
3430 -- Never generate discriminant checks for Unchecked_Union types
3432 elsif Present (Expr_Type)
3433 and then Is_Unchecked_Union (Expr_Type)
3434 then
3435 return;
3437 -- Scalar type conversions of the form Target_Type (Expr) require a
3438 -- range check if we cannot be sure that Expr is in the base type of
3439 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3440 -- are not quite the same condition from an implementation point of
3441 -- view, but clearly the second includes the first.
3443 elsif Is_Scalar_Type (Target_Type) then
3444 declare
3445 Conv_OK : constant Boolean := Conversion_OK (N);
3446 -- If the Conversion_OK flag on the type conversion is set and no
3447 -- floating-point type is involved in the type conversion then
3448 -- fixed-point values must be read as integral values.
3450 Float_To_Int : constant Boolean :=
3451 Is_Floating_Point_Type (Expr_Type)
3452 and then Is_Integer_Type (Target_Type);
3454 begin
3455 if not Overflow_Checks_Suppressed (Target_Base)
3456 and then not Overflow_Checks_Suppressed (Target_Type)
3457 and then not
3458 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
3459 and then not Float_To_Int
3460 then
3461 -- A small optimization: the attribute 'Pos applied to an
3462 -- enumeration type has a known range, even though its type is
3463 -- Universal_Integer. So in numeric conversions it is usually
3464 -- within range of the target integer type. Use the static
3465 -- bounds of the base types to check. Disable this optimization
3466 -- in case of a generic formal discrete type, because we don't
3467 -- necessarily know the upper bound yet.
3469 if Nkind (Expr) = N_Attribute_Reference
3470 and then Attribute_Name (Expr) = Name_Pos
3471 and then Is_Enumeration_Type (Etype (Prefix (Expr)))
3472 and then not Is_Generic_Type (Etype (Prefix (Expr)))
3473 and then Is_Integer_Type (Target_Type)
3474 then
3475 declare
3476 Enum_T : constant Entity_Id :=
3477 Root_Type (Etype (Prefix (Expr)));
3478 Int_T : constant Entity_Id := Base_Type (Target_Type);
3479 Last_I : constant Uint :=
3480 Intval (High_Bound (Scalar_Range (Int_T)));
3481 Last_E : Uint;
3483 begin
3484 -- Character types have no explicit literals, so we use
3485 -- the known number of characters in the type.
3487 if Root_Type (Enum_T) = Standard_Character then
3488 Last_E := UI_From_Int (255);
3490 elsif Enum_T = Standard_Wide_Character
3491 or else Enum_T = Standard_Wide_Wide_Character
3492 then
3493 Last_E := UI_From_Int (65535);
3495 else
3496 Last_E :=
3497 Enumeration_Pos
3498 (Entity (High_Bound (Scalar_Range (Enum_T))));
3499 end if;
3501 if Last_E <= Last_I then
3502 null;
3504 else
3505 Activate_Overflow_Check (N);
3506 end if;
3507 end;
3509 else
3510 Activate_Overflow_Check (N);
3511 end if;
3512 end if;
3514 if not Range_Checks_Suppressed (Target_Type)
3515 and then not Range_Checks_Suppressed (Expr_Type)
3516 then
3517 if Float_To_Int
3518 and then not GNATprove_Mode
3519 then
3520 Apply_Float_Conversion_Check (Expr, Target_Type);
3521 else
3522 Apply_Scalar_Range_Check
3523 (Expr, Target_Type, Fixed_Int => Conv_OK);
3525 -- If the target type has predicates, we need to indicate
3526 -- the need for a check, even if Determine_Range finds that
3527 -- the value is within bounds. This may be the case e.g for
3528 -- a division with a constant denominator.
3530 if Has_Predicates (Target_Type) then
3531 Enable_Range_Check (Expr);
3532 end if;
3533 end if;
3534 end if;
3535 end;
3537 elsif Comes_From_Source (N)
3538 and then not Discriminant_Checks_Suppressed (Target_Type)
3539 and then Is_Record_Type (Target_Type)
3540 and then Is_Derived_Type (Target_Type)
3541 and then not Is_Tagged_Type (Target_Type)
3542 and then not Is_Constrained (Target_Type)
3543 and then Present (Stored_Constraint (Target_Type))
3544 then
3545 -- An unconstrained derived type may have inherited discriminant.
3546 -- Build an actual discriminant constraint list using the stored
3547 -- constraint, to verify that the expression of the parent type
3548 -- satisfies the constraints imposed by the (unconstrained) derived
3549 -- type. This applies to value conversions, not to view conversions
3550 -- of tagged types.
3552 declare
3553 Loc : constant Source_Ptr := Sloc (N);
3554 Cond : Node_Id;
3555 Constraint : Elmt_Id;
3556 Discr_Value : Node_Id;
3557 Discr : Entity_Id;
3559 New_Constraints : constant Elist_Id := New_Elmt_List;
3560 Old_Constraints : constant Elist_Id :=
3561 Discriminant_Constraint (Expr_Type);
3563 begin
3564 Constraint := First_Elmt (Stored_Constraint (Target_Type));
3565 while Present (Constraint) loop
3566 Discr_Value := Node (Constraint);
3568 if Is_Entity_Name (Discr_Value)
3569 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3570 then
3571 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3573 if Present (Discr)
3574 and then Scope (Discr) = Base_Type (Expr_Type)
3575 then
3576 -- Parent is constrained by new discriminant. Obtain
3577 -- Value of original discriminant in expression. If the
3578 -- new discriminant has been used to constrain more than
3579 -- one of the stored discriminants, this will provide the
3580 -- required consistency check.
3582 Append_Elmt
3583 (Make_Selected_Component (Loc,
3584 Prefix =>
3585 Duplicate_Subexpr_No_Checks
3586 (Expr, Name_Req => True),
3587 Selector_Name =>
3588 Make_Identifier (Loc, Chars (Discr))),
3589 New_Constraints);
3591 else
3592 -- Discriminant of more remote ancestor ???
3594 return;
3595 end if;
3597 -- Derived type definition has an explicit value for this
3598 -- stored discriminant.
3600 else
3601 Append_Elmt
3602 (Duplicate_Subexpr_No_Checks (Discr_Value),
3603 New_Constraints);
3604 end if;
3606 Next_Elmt (Constraint);
3607 end loop;
3609 -- Use the unconstrained expression type to retrieve the
3610 -- discriminants of the parent, and apply momentarily the
3611 -- discriminant constraint synthesized above.
3613 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3614 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3615 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3617 Insert_Action (N,
3618 Make_Raise_Constraint_Error (Loc,
3619 Condition => Cond,
3620 Reason => CE_Discriminant_Check_Failed));
3621 end;
3623 -- For arrays, checks are set now, but conversions are applied during
3624 -- expansion, to take into accounts changes of representation. The
3625 -- checks become range checks on the base type or length checks on the
3626 -- subtype, depending on whether the target type is unconstrained or
3627 -- constrained. Note that the range check is put on the expression of a
3628 -- type conversion, while the length check is put on the type conversion
3629 -- itself.
3631 elsif Is_Array_Type (Target_Type) then
3632 if Is_Constrained (Target_Type) then
3633 Set_Do_Length_Check (N);
3634 else
3635 Set_Do_Range_Check (Expr);
3636 end if;
3637 end if;
3638 end Apply_Type_Conversion_Checks;
3640 ----------------------------------------------
3641 -- Apply_Universal_Integer_Attribute_Checks --
3642 ----------------------------------------------
3644 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3645 Loc : constant Source_Ptr := Sloc (N);
3646 Typ : constant Entity_Id := Etype (N);
3648 begin
3649 if Inside_A_Generic then
3650 return;
3652 -- Nothing to do if checks are suppressed
3654 elsif Range_Checks_Suppressed (Typ)
3655 and then Overflow_Checks_Suppressed (Typ)
3656 then
3657 return;
3659 -- Nothing to do if the attribute does not come from source. The
3660 -- internal attributes we generate of this type do not need checks,
3661 -- and furthermore the attempt to check them causes some circular
3662 -- elaboration orders when dealing with packed types.
3664 elsif not Comes_From_Source (N) then
3665 return;
3667 -- If the prefix is a selected component that depends on a discriminant
3668 -- the check may improperly expose a discriminant instead of using
3669 -- the bounds of the object itself. Set the type of the attribute to
3670 -- the base type of the context, so that a check will be imposed when
3671 -- needed (e.g. if the node appears as an index).
3673 elsif Nkind (Prefix (N)) = N_Selected_Component
3674 and then Ekind (Typ) = E_Signed_Integer_Subtype
3675 and then Depends_On_Discriminant (Scalar_Range (Typ))
3676 then
3677 Set_Etype (N, Base_Type (Typ));
3679 -- Otherwise, replace the attribute node with a type conversion node
3680 -- whose expression is the attribute, retyped to universal integer, and
3681 -- whose subtype mark is the target type. The call to analyze this
3682 -- conversion will set range and overflow checks as required for proper
3683 -- detection of an out of range value.
3685 else
3686 Set_Etype (N, Universal_Integer);
3687 Set_Analyzed (N, True);
3689 Rewrite (N,
3690 Make_Type_Conversion (Loc,
3691 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3692 Expression => Relocate_Node (N)));
3694 Analyze_And_Resolve (N, Typ);
3695 return;
3696 end if;
3697 end Apply_Universal_Integer_Attribute_Checks;
3699 -------------------------------------
3700 -- Atomic_Synchronization_Disabled --
3701 -------------------------------------
3703 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3704 -- using a bogus check called Atomic_Synchronization. This is to make it
3705 -- more convenient to get exactly the same semantics as [Un]Suppress.
3707 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3708 begin
3709 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3710 -- looks enabled, since it is never disabled.
3712 if Debug_Flag_Dot_E then
3713 return False;
3715 -- If debug flag d.d is set then always return True, i.e. all atomic
3716 -- sync looks disabled, since it always tests True.
3718 elsif Debug_Flag_Dot_D then
3719 return True;
3721 -- If entity present, then check result for that entity
3723 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
3724 return Is_Check_Suppressed (E, Atomic_Synchronization);
3726 -- Otherwise result depends on current scope setting
3728 else
3729 return Scope_Suppress.Suppress (Atomic_Synchronization);
3730 end if;
3731 end Atomic_Synchronization_Disabled;
3733 -------------------------------
3734 -- Build_Discriminant_Checks --
3735 -------------------------------
3737 function Build_Discriminant_Checks
3738 (N : Node_Id;
3739 T_Typ : Entity_Id) return Node_Id
3741 Loc : constant Source_Ptr := Sloc (N);
3742 Cond : Node_Id;
3743 Disc : Elmt_Id;
3744 Disc_Ent : Entity_Id;
3745 Dref : Node_Id;
3746 Dval : Node_Id;
3748 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3750 ----------------------------------
3751 -- Aggregate_Discriminant_Value --
3752 ----------------------------------
3754 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3755 Assoc : Node_Id;
3757 begin
3758 -- The aggregate has been normalized with named associations. We use
3759 -- the Chars field to locate the discriminant to take into account
3760 -- discriminants in derived types, which carry the same name as those
3761 -- in the parent.
3763 Assoc := First (Component_Associations (N));
3764 while Present (Assoc) loop
3765 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3766 return Expression (Assoc);
3767 else
3768 Next (Assoc);
3769 end if;
3770 end loop;
3772 -- Discriminant must have been found in the loop above
3774 raise Program_Error;
3775 end Aggregate_Discriminant_Val;
3777 -- Start of processing for Build_Discriminant_Checks
3779 begin
3780 -- Loop through discriminants evolving the condition
3782 Cond := Empty;
3783 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3785 -- For a fully private type, use the discriminants of the parent type
3787 if Is_Private_Type (T_Typ)
3788 and then No (Full_View (T_Typ))
3789 then
3790 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3791 else
3792 Disc_Ent := First_Discriminant (T_Typ);
3793 end if;
3795 while Present (Disc) loop
3796 Dval := Node (Disc);
3798 if Nkind (Dval) = N_Identifier
3799 and then Ekind (Entity (Dval)) = E_Discriminant
3800 then
3801 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3802 else
3803 Dval := Duplicate_Subexpr_No_Checks (Dval);
3804 end if;
3806 -- If we have an Unchecked_Union node, we can infer the discriminants
3807 -- of the node.
3809 if Is_Unchecked_Union (Base_Type (T_Typ)) then
3810 Dref := New_Copy (
3811 Get_Discriminant_Value (
3812 First_Discriminant (T_Typ),
3813 T_Typ,
3814 Stored_Constraint (T_Typ)));
3816 elsif Nkind (N) = N_Aggregate then
3817 Dref :=
3818 Duplicate_Subexpr_No_Checks
3819 (Aggregate_Discriminant_Val (Disc_Ent));
3821 else
3822 Dref :=
3823 Make_Selected_Component (Loc,
3824 Prefix =>
3825 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
3826 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
3828 Set_Is_In_Discriminant_Check (Dref);
3829 end if;
3831 Evolve_Or_Else (Cond,
3832 Make_Op_Ne (Loc,
3833 Left_Opnd => Dref,
3834 Right_Opnd => Dval));
3836 Next_Elmt (Disc);
3837 Next_Discriminant (Disc_Ent);
3838 end loop;
3840 return Cond;
3841 end Build_Discriminant_Checks;
3843 ------------------
3844 -- Check_Needed --
3845 ------------------
3847 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3848 N : Node_Id;
3849 P : Node_Id;
3850 K : Node_Kind;
3851 L : Node_Id;
3852 R : Node_Id;
3854 function Left_Expression (Op : Node_Id) return Node_Id;
3855 -- Return the relevant expression from the left operand of the given
3856 -- short circuit form: this is LO itself, except if LO is a qualified
3857 -- expression, a type conversion, or an expression with actions, in
3858 -- which case this is Left_Expression (Expression (LO)).
3860 ---------------------
3861 -- Left_Expression --
3862 ---------------------
3864 function Left_Expression (Op : Node_Id) return Node_Id is
3865 LE : Node_Id := Left_Opnd (Op);
3866 begin
3867 while Nkind_In (LE, N_Qualified_Expression,
3868 N_Type_Conversion,
3869 N_Expression_With_Actions)
3870 loop
3871 LE := Expression (LE);
3872 end loop;
3874 return LE;
3875 end Left_Expression;
3877 -- Start of processing for Check_Needed
3879 begin
3880 -- Always check if not simple entity
3882 if Nkind (Nod) not in N_Has_Entity
3883 or else not Comes_From_Source (Nod)
3884 then
3885 return True;
3886 end if;
3888 -- Look up tree for short circuit
3890 N := Nod;
3891 loop
3892 P := Parent (N);
3893 K := Nkind (P);
3895 -- Done if out of subexpression (note that we allow generated stuff
3896 -- such as itype declarations in this context, to keep the loop going
3897 -- since we may well have generated such stuff in complex situations.
3898 -- Also done if no parent (probably an error condition, but no point
3899 -- in behaving nasty if we find it).
3901 if No (P)
3902 or else (K not in N_Subexpr and then Comes_From_Source (P))
3903 then
3904 return True;
3906 -- Or/Or Else case, where test is part of the right operand, or is
3907 -- part of one of the actions associated with the right operand, and
3908 -- the left operand is an equality test.
3910 elsif K = N_Op_Or then
3911 exit when N = Right_Opnd (P)
3912 and then Nkind (Left_Expression (P)) = N_Op_Eq;
3914 elsif K = N_Or_Else then
3915 exit when (N = Right_Opnd (P)
3916 or else
3917 (Is_List_Member (N)
3918 and then List_Containing (N) = Actions (P)))
3919 and then Nkind (Left_Expression (P)) = N_Op_Eq;
3921 -- Similar test for the And/And then case, where the left operand
3922 -- is an inequality test.
3924 elsif K = N_Op_And then
3925 exit when N = Right_Opnd (P)
3926 and then Nkind (Left_Expression (P)) = N_Op_Ne;
3928 elsif K = N_And_Then then
3929 exit when (N = Right_Opnd (P)
3930 or else
3931 (Is_List_Member (N)
3932 and then List_Containing (N) = Actions (P)))
3933 and then Nkind (Left_Expression (P)) = N_Op_Ne;
3934 end if;
3936 N := P;
3937 end loop;
3939 -- If we fall through the loop, then we have a conditional with an
3940 -- appropriate test as its left operand, so look further.
3942 L := Left_Expression (P);
3944 -- L is an "=" or "/=" operator: extract its operands
3946 R := Right_Opnd (L);
3947 L := Left_Opnd (L);
3949 -- Left operand of test must match original variable
3951 if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
3952 return True;
3953 end if;
3955 -- Right operand of test must be key value (zero or null)
3957 case Check is
3958 when Access_Check =>
3959 if not Known_Null (R) then
3960 return True;
3961 end if;
3963 when Division_Check =>
3964 if not Compile_Time_Known_Value (R)
3965 or else Expr_Value (R) /= Uint_0
3966 then
3967 return True;
3968 end if;
3970 when others =>
3971 raise Program_Error;
3972 end case;
3974 -- Here we have the optimizable case, warn if not short-circuited
3976 if K = N_Op_And or else K = N_Op_Or then
3977 Error_Msg_Warn := SPARK_Mode /= On;
3979 case Check is
3980 when Access_Check =>
3981 if GNATprove_Mode then
3982 Error_Msg_N
3983 ("Constraint_Error might have been raised (access check)",
3984 Parent (Nod));
3985 else
3986 Error_Msg_N
3987 ("Constraint_Error may be raised (access check)??",
3988 Parent (Nod));
3989 end if;
3991 when Division_Check =>
3992 if GNATprove_Mode then
3993 Error_Msg_N
3994 ("Constraint_Error might have been raised (zero divide)",
3995 Parent (Nod));
3996 else
3997 Error_Msg_N
3998 ("Constraint_Error may be raised (zero divide)??",
3999 Parent (Nod));
4000 end if;
4002 when others =>
4003 raise Program_Error;
4004 end case;
4006 if K = N_Op_And then
4007 Error_Msg_N -- CODEFIX
4008 ("use `AND THEN` instead of AND??", P);
4009 else
4010 Error_Msg_N -- CODEFIX
4011 ("use `OR ELSE` instead of OR??", P);
4012 end if;
4014 -- If not short-circuited, we need the check
4016 return True;
4018 -- If short-circuited, we can omit the check
4020 else
4021 return False;
4022 end if;
4023 end Check_Needed;
4025 -----------------------------------
4026 -- Check_Valid_Lvalue_Subscripts --
4027 -----------------------------------
4029 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
4030 begin
4031 -- Skip this if range checks are suppressed
4033 if Range_Checks_Suppressed (Etype (Expr)) then
4034 return;
4036 -- Only do this check for expressions that come from source. We assume
4037 -- that expander generated assignments explicitly include any necessary
4038 -- checks. Note that this is not just an optimization, it avoids
4039 -- infinite recursions.
4041 elsif not Comes_From_Source (Expr) then
4042 return;
4044 -- For a selected component, check the prefix
4046 elsif Nkind (Expr) = N_Selected_Component then
4047 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4048 return;
4050 -- Case of indexed component
4052 elsif Nkind (Expr) = N_Indexed_Component then
4053 Apply_Subscript_Validity_Checks (Expr);
4055 -- Prefix may itself be or contain an indexed component, and these
4056 -- subscripts need checking as well.
4058 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4059 end if;
4060 end Check_Valid_Lvalue_Subscripts;
4062 ----------------------------------
4063 -- Null_Exclusion_Static_Checks --
4064 ----------------------------------
4066 procedure Null_Exclusion_Static_Checks
4067 (N : Node_Id;
4068 Comp : Node_Id := Empty;
4069 Array_Comp : Boolean := False)
4071 Has_Null : constant Boolean := Has_Null_Exclusion (N);
4072 Kind : constant Node_Kind := Nkind (N);
4073 Error_Nod : Node_Id;
4074 Expr : Node_Id;
4075 Typ : Entity_Id;
4077 begin
4078 pragma Assert
4079 (Nkind_In (Kind, N_Component_Declaration,
4080 N_Discriminant_Specification,
4081 N_Function_Specification,
4082 N_Object_Declaration,
4083 N_Parameter_Specification));
4085 if Kind = N_Function_Specification then
4086 Typ := Etype (Defining_Entity (N));
4087 else
4088 Typ := Etype (Defining_Identifier (N));
4089 end if;
4091 case Kind is
4092 when N_Component_Declaration =>
4093 if Present (Access_Definition (Component_Definition (N))) then
4094 Error_Nod := Component_Definition (N);
4095 else
4096 Error_Nod := Subtype_Indication (Component_Definition (N));
4097 end if;
4099 when N_Discriminant_Specification =>
4100 Error_Nod := Discriminant_Type (N);
4102 when N_Function_Specification =>
4103 Error_Nod := Result_Definition (N);
4105 when N_Object_Declaration =>
4106 Error_Nod := Object_Definition (N);
4108 when N_Parameter_Specification =>
4109 Error_Nod := Parameter_Type (N);
4111 when others =>
4112 raise Program_Error;
4113 end case;
4115 if Has_Null then
4117 -- Enforce legality rule 3.10 (13): A null exclusion can only be
4118 -- applied to an access [sub]type.
4120 if not Is_Access_Type (Typ) then
4121 Error_Msg_N
4122 ("`NOT NULL` allowed only for an access type", Error_Nod);
4124 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
4125 -- be applied to a [sub]type that does not exclude null already.
4127 elsif Can_Never_Be_Null (Typ) and then Comes_From_Source (Typ) then
4128 Error_Msg_NE
4129 ("`NOT NULL` not allowed (& already excludes null)",
4130 Error_Nod, Typ);
4131 end if;
4132 end if;
4134 -- Check that null-excluding objects are always initialized, except for
4135 -- deferred constants, for which the expression will appear in the full
4136 -- declaration.
4138 if Kind = N_Object_Declaration
4139 and then No (Expression (N))
4140 and then not Constant_Present (N)
4141 and then not No_Initialization (N)
4142 then
4143 if Present (Comp) then
4145 -- Specialize the warning message to indicate that we are dealing
4146 -- with an uninitialized composite object that has a defaulted
4147 -- null-excluding component.
4149 Error_Msg_Name_1 := Chars (Defining_Identifier (Comp));
4150 Error_Msg_Name_2 := Chars (Defining_Identifier (N));
4152 Discard_Node
4153 (Compile_Time_Constraint_Error
4154 (N => N,
4155 Msg =>
4156 "(Ada 2005) null-excluding component % of object % must "
4157 & "be initialized??",
4158 Ent => Defining_Identifier (Comp)));
4160 -- This is a case of an array with null-excluding components, so
4161 -- indicate that in the warning.
4163 elsif Array_Comp then
4164 Discard_Node
4165 (Compile_Time_Constraint_Error
4166 (N => N,
4167 Msg =>
4168 "(Ada 2005) null-excluding array components must "
4169 & "be initialized??",
4170 Ent => Defining_Identifier (N)));
4172 -- Normal case of object of a null-excluding access type
4174 else
4175 -- Add an expression that assigns null. This node is needed by
4176 -- Apply_Compile_Time_Constraint_Error, which will replace this
4177 -- with a Constraint_Error node.
4179 Set_Expression (N, Make_Null (Sloc (N)));
4180 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
4182 Apply_Compile_Time_Constraint_Error
4183 (N => Expression (N),
4184 Msg =>
4185 "(Ada 2005) null-excluding objects must be initialized??",
4186 Reason => CE_Null_Not_Allowed);
4187 end if;
4188 end if;
4190 -- Check that a null-excluding component, formal or object is not being
4191 -- assigned a null value. Otherwise generate a warning message and
4192 -- replace Expression (N) by an N_Constraint_Error node.
4194 if Kind /= N_Function_Specification then
4195 Expr := Expression (N);
4197 if Present (Expr) and then Known_Null (Expr) then
4198 case Kind is
4199 when N_Component_Declaration
4200 | N_Discriminant_Specification
4202 Apply_Compile_Time_Constraint_Error
4203 (N => Expr,
4204 Msg =>
4205 "(Ada 2005) null not allowed in null-excluding "
4206 & "components??",
4207 Reason => CE_Null_Not_Allowed);
4209 when N_Object_Declaration =>
4210 Apply_Compile_Time_Constraint_Error
4211 (N => Expr,
4212 Msg =>
4213 "(Ada 2005) null not allowed in null-excluding "
4214 & "objects??",
4215 Reason => CE_Null_Not_Allowed);
4217 when N_Parameter_Specification =>
4218 Apply_Compile_Time_Constraint_Error
4219 (N => Expr,
4220 Msg =>
4221 "(Ada 2005) null not allowed in null-excluding "
4222 & "formals??",
4223 Reason => CE_Null_Not_Allowed);
4225 when others =>
4226 null;
4227 end case;
4228 end if;
4229 end if;
4230 end Null_Exclusion_Static_Checks;
4232 ----------------------------------
4233 -- Conditional_Statements_Begin --
4234 ----------------------------------
4236 procedure Conditional_Statements_Begin is
4237 begin
4238 Saved_Checks_TOS := Saved_Checks_TOS + 1;
4240 -- If stack overflows, kill all checks, that way we know to simply reset
4241 -- the number of saved checks to zero on return. This should never occur
4242 -- in practice.
4244 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4245 Kill_All_Checks;
4247 -- In the normal case, we just make a new stack entry saving the current
4248 -- number of saved checks for a later restore.
4250 else
4251 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4253 if Debug_Flag_CC then
4254 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4255 Num_Saved_Checks);
4256 end if;
4257 end if;
4258 end Conditional_Statements_Begin;
4260 --------------------------------
4261 -- Conditional_Statements_End --
4262 --------------------------------
4264 procedure Conditional_Statements_End is
4265 begin
4266 pragma Assert (Saved_Checks_TOS > 0);
4268 -- If the saved checks stack overflowed, then we killed all checks, so
4269 -- setting the number of saved checks back to zero is correct. This
4270 -- should never occur in practice.
4272 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4273 Num_Saved_Checks := 0;
4275 -- In the normal case, restore the number of saved checks from the top
4276 -- stack entry.
4278 else
4279 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
4281 if Debug_Flag_CC then
4282 w ("Conditional_Statements_End: Num_Saved_Checks = ",
4283 Num_Saved_Checks);
4284 end if;
4285 end if;
4287 Saved_Checks_TOS := Saved_Checks_TOS - 1;
4288 end Conditional_Statements_End;
4290 -------------------------
4291 -- Convert_From_Bignum --
4292 -------------------------
4294 function Convert_From_Bignum (N : Node_Id) return Node_Id is
4295 Loc : constant Source_Ptr := Sloc (N);
4297 begin
4298 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4300 -- Construct call From Bignum
4302 return
4303 Make_Function_Call (Loc,
4304 Name =>
4305 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4306 Parameter_Associations => New_List (Relocate_Node (N)));
4307 end Convert_From_Bignum;
4309 -----------------------
4310 -- Convert_To_Bignum --
4311 -----------------------
4313 function Convert_To_Bignum (N : Node_Id) return Node_Id is
4314 Loc : constant Source_Ptr := Sloc (N);
4316 begin
4317 -- Nothing to do if Bignum already except call Relocate_Node
4319 if Is_RTE (Etype (N), RE_Bignum) then
4320 return Relocate_Node (N);
4322 -- Otherwise construct call to To_Bignum, converting the operand to the
4323 -- required Long_Long_Integer form.
4325 else
4326 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4327 return
4328 Make_Function_Call (Loc,
4329 Name =>
4330 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4331 Parameter_Associations => New_List (
4332 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4333 end if;
4334 end Convert_To_Bignum;
4336 ---------------------
4337 -- Determine_Range --
4338 ---------------------
4340 Cache_Size : constant := 2 ** 10;
4341 type Cache_Index is range 0 .. Cache_Size - 1;
4342 -- Determine size of below cache (power of 2 is more efficient)
4344 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
4345 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
4346 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
4347 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
4348 Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4349 Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
4350 -- The above arrays are used to implement a small direct cache for
4351 -- Determine_Range and Determine_Range_R calls. Because of the way these
4352 -- subprograms recursively traces subexpressions, and because overflow
4353 -- checking calls the routine on the way up the tree, a quadratic behavior
4354 -- can otherwise be encountered in large expressions. The cache entry for
4355 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4356 -- by checking the actual node value stored there. The Range_Cache_V array
4357 -- records the setting of Assume_Valid for the cache entry.
4359 procedure Determine_Range
4360 (N : Node_Id;
4361 OK : out Boolean;
4362 Lo : out Uint;
4363 Hi : out Uint;
4364 Assume_Valid : Boolean := False)
4366 Typ : Entity_Id := Etype (N);
4367 -- Type to use, may get reset to base type for possibly invalid entity
4369 Lo_Left : Uint;
4370 Hi_Left : Uint;
4371 -- Lo and Hi bounds of left operand
4373 Lo_Right : Uint := No_Uint;
4374 Hi_Right : Uint := No_Uint;
4375 -- Lo and Hi bounds of right (or only) operand
4377 Bound : Node_Id;
4378 -- Temp variable used to hold a bound node
4380 Hbound : Uint;
4381 -- High bound of base type of expression
4383 Lor : Uint;
4384 Hir : Uint;
4385 -- Refined values for low and high bounds, after tightening
4387 OK1 : Boolean;
4388 -- Used in lower level calls to indicate if call succeeded
4390 Cindex : Cache_Index;
4391 -- Used to search cache
4393 Btyp : Entity_Id;
4394 -- Base type
4396 function OK_Operands return Boolean;
4397 -- Used for binary operators. Determines the ranges of the left and
4398 -- right operands, and if they are both OK, returns True, and puts
4399 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4401 -----------------
4402 -- OK_Operands --
4403 -----------------
4405 function OK_Operands return Boolean is
4406 begin
4407 Determine_Range
4408 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4410 if not OK1 then
4411 return False;
4412 end if;
4414 Determine_Range
4415 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4416 return OK1;
4417 end OK_Operands;
4419 -- Start of processing for Determine_Range
4421 begin
4422 -- Prevent junk warnings by initializing range variables
4424 Lo := No_Uint;
4425 Hi := No_Uint;
4426 Lor := No_Uint;
4427 Hir := No_Uint;
4429 -- For temporary constants internally generated to remove side effects
4430 -- we must use the corresponding expression to determine the range of
4431 -- the expression. But note that the expander can also generate
4432 -- constants in other cases, including deferred constants.
4434 if Is_Entity_Name (N)
4435 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4436 and then Ekind (Entity (N)) = E_Constant
4437 and then Is_Internal_Name (Chars (Entity (N)))
4438 then
4439 if Present (Expression (Parent (Entity (N)))) then
4440 Determine_Range
4441 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4443 elsif Present (Full_View (Entity (N))) then
4444 Determine_Range
4445 (Expression (Parent (Full_View (Entity (N)))),
4446 OK, Lo, Hi, Assume_Valid);
4448 else
4449 OK := False;
4450 end if;
4451 return;
4452 end if;
4454 -- If type is not defined, we can't determine its range
4456 if No (Typ)
4458 -- We don't deal with anything except discrete types
4460 or else not Is_Discrete_Type (Typ)
4462 -- Ignore type for which an error has been posted, since range in
4463 -- this case may well be a bogosity deriving from the error. Also
4464 -- ignore if error posted on the reference node.
4466 or else Error_Posted (N) or else Error_Posted (Typ)
4467 then
4468 OK := False;
4469 return;
4470 end if;
4472 -- For all other cases, we can determine the range
4474 OK := True;
4476 -- If value is compile time known, then the possible range is the one
4477 -- value that we know this expression definitely has.
4479 if Compile_Time_Known_Value (N) then
4480 Lo := Expr_Value (N);
4481 Hi := Lo;
4482 return;
4483 end if;
4485 -- Return if already in the cache
4487 Cindex := Cache_Index (N mod Cache_Size);
4489 if Determine_Range_Cache_N (Cindex) = N
4490 and then
4491 Determine_Range_Cache_V (Cindex) = Assume_Valid
4492 then
4493 Lo := Determine_Range_Cache_Lo (Cindex);
4494 Hi := Determine_Range_Cache_Hi (Cindex);
4495 return;
4496 end if;
4498 -- Otherwise, start by finding the bounds of the type of the expression,
4499 -- the value cannot be outside this range (if it is, then we have an
4500 -- overflow situation, which is a separate check, we are talking here
4501 -- only about the expression value).
4503 -- First a check, never try to find the bounds of a generic type, since
4504 -- these bounds are always junk values, and it is only valid to look at
4505 -- the bounds in an instance.
4507 if Is_Generic_Type (Typ) then
4508 OK := False;
4509 return;
4510 end if;
4512 -- First step, change to use base type unless we know the value is valid
4514 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4515 or else Assume_No_Invalid_Values
4516 or else Assume_Valid
4517 then
4518 null;
4519 else
4520 Typ := Underlying_Type (Base_Type (Typ));
4521 end if;
4523 -- Retrieve the base type. Handle the case where the base type is a
4524 -- private enumeration type.
4526 Btyp := Base_Type (Typ);
4528 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4529 Btyp := Full_View (Btyp);
4530 end if;
4532 -- We use the actual bound unless it is dynamic, in which case use the
4533 -- corresponding base type bound if possible. If we can't get a bound
4534 -- then we figure we can't determine the range (a peculiar case, that
4535 -- perhaps cannot happen, but there is no point in bombing in this
4536 -- optimization circuit.
4538 -- First the low bound
4540 Bound := Type_Low_Bound (Typ);
4542 if Compile_Time_Known_Value (Bound) then
4543 Lo := Expr_Value (Bound);
4545 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4546 Lo := Expr_Value (Type_Low_Bound (Btyp));
4548 else
4549 OK := False;
4550 return;
4551 end if;
4553 -- Now the high bound
4555 Bound := Type_High_Bound (Typ);
4557 -- We need the high bound of the base type later on, and this should
4558 -- always be compile time known. Again, it is not clear that this
4559 -- can ever be false, but no point in bombing.
4561 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4562 Hbound := Expr_Value (Type_High_Bound (Btyp));
4563 Hi := Hbound;
4565 else
4566 OK := False;
4567 return;
4568 end if;
4570 -- If we have a static subtype, then that may have a tighter bound so
4571 -- use the upper bound of the subtype instead in this case.
4573 if Compile_Time_Known_Value (Bound) then
4574 Hi := Expr_Value (Bound);
4575 end if;
4577 -- We may be able to refine this value in certain situations. If any
4578 -- refinement is possible, then Lor and Hir are set to possibly tighter
4579 -- bounds, and OK1 is set to True.
4581 case Nkind (N) is
4583 -- For unary plus, result is limited by range of operand
4585 when N_Op_Plus =>
4586 Determine_Range
4587 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
4589 -- For unary minus, determine range of operand, and negate it
4591 when N_Op_Minus =>
4592 Determine_Range
4593 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4595 if OK1 then
4596 Lor := -Hi_Right;
4597 Hir := -Lo_Right;
4598 end if;
4600 -- For binary addition, get range of each operand and do the
4601 -- addition to get the result range.
4603 when N_Op_Add =>
4604 if OK_Operands then
4605 Lor := Lo_Left + Lo_Right;
4606 Hir := Hi_Left + Hi_Right;
4607 end if;
4609 -- Division is tricky. The only case we consider is where the right
4610 -- operand is a positive constant, and in this case we simply divide
4611 -- the bounds of the left operand
4613 when N_Op_Divide =>
4614 if OK_Operands then
4615 if Lo_Right = Hi_Right
4616 and then Lo_Right > 0
4617 then
4618 Lor := Lo_Left / Lo_Right;
4619 Hir := Hi_Left / Lo_Right;
4620 else
4621 OK1 := False;
4622 end if;
4623 end if;
4625 -- For binary subtraction, get range of each operand and do the worst
4626 -- case subtraction to get the result range.
4628 when N_Op_Subtract =>
4629 if OK_Operands then
4630 Lor := Lo_Left - Hi_Right;
4631 Hir := Hi_Left - Lo_Right;
4632 end if;
4634 -- For MOD, if right operand is a positive constant, then result must
4635 -- be in the allowable range of mod results.
4637 when N_Op_Mod =>
4638 if OK_Operands then
4639 if Lo_Right = Hi_Right
4640 and then Lo_Right /= 0
4641 then
4642 if Lo_Right > 0 then
4643 Lor := Uint_0;
4644 Hir := Lo_Right - 1;
4646 else -- Lo_Right < 0
4647 Lor := Lo_Right + 1;
4648 Hir := Uint_0;
4649 end if;
4651 else
4652 OK1 := False;
4653 end if;
4654 end if;
4656 -- For REM, if right operand is a positive constant, then result must
4657 -- be in the allowable range of mod results.
4659 when N_Op_Rem =>
4660 if OK_Operands then
4661 if Lo_Right = Hi_Right and then Lo_Right /= 0 then
4662 declare
4663 Dval : constant Uint := (abs Lo_Right) - 1;
4665 begin
4666 -- The sign of the result depends on the sign of the
4667 -- dividend (but not on the sign of the divisor, hence
4668 -- the abs operation above).
4670 if Lo_Left < 0 then
4671 Lor := -Dval;
4672 else
4673 Lor := Uint_0;
4674 end if;
4676 if Hi_Left < 0 then
4677 Hir := Uint_0;
4678 else
4679 Hir := Dval;
4680 end if;
4681 end;
4683 else
4684 OK1 := False;
4685 end if;
4686 end if;
4688 -- Attribute reference cases
4690 when N_Attribute_Reference =>
4691 case Attribute_Name (N) is
4693 -- For Pos/Val attributes, we can refine the range using the
4694 -- possible range of values of the attribute expression.
4696 when Name_Pos
4697 | Name_Val
4699 Determine_Range
4700 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
4702 -- For Length attribute, use the bounds of the corresponding
4703 -- index type to refine the range.
4705 when Name_Length =>
4706 declare
4707 Atyp : Entity_Id := Etype (Prefix (N));
4708 Inum : Nat;
4709 Indx : Node_Id;
4711 LL, LU : Uint;
4712 UL, UU : Uint;
4714 begin
4715 if Is_Access_Type (Atyp) then
4716 Atyp := Designated_Type (Atyp);
4717 end if;
4719 -- For string literal, we know exact value
4721 if Ekind (Atyp) = E_String_Literal_Subtype then
4722 OK := True;
4723 Lo := String_Literal_Length (Atyp);
4724 Hi := String_Literal_Length (Atyp);
4725 return;
4726 end if;
4728 -- Otherwise check for expression given
4730 if No (Expressions (N)) then
4731 Inum := 1;
4732 else
4733 Inum :=
4734 UI_To_Int (Expr_Value (First (Expressions (N))));
4735 end if;
4737 Indx := First_Index (Atyp);
4738 for J in 2 .. Inum loop
4739 Indx := Next_Index (Indx);
4740 end loop;
4742 -- If the index type is a formal type or derived from
4743 -- one, the bounds are not static.
4745 if Is_Generic_Type (Root_Type (Etype (Indx))) then
4746 OK := False;
4747 return;
4748 end if;
4750 Determine_Range
4751 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4752 Assume_Valid);
4754 if OK1 then
4755 Determine_Range
4756 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4757 Assume_Valid);
4759 if OK1 then
4761 -- The maximum value for Length is the biggest
4762 -- possible gap between the values of the bounds.
4763 -- But of course, this value cannot be negative.
4765 Hir := UI_Max (Uint_0, UU - LL + 1);
4767 -- For constrained arrays, the minimum value for
4768 -- Length is taken from the actual value of the
4769 -- bounds, since the index will be exactly of this
4770 -- subtype.
4772 if Is_Constrained (Atyp) then
4773 Lor := UI_Max (Uint_0, UL - LU + 1);
4775 -- For an unconstrained array, the minimum value
4776 -- for length is always zero.
4778 else
4779 Lor := Uint_0;
4780 end if;
4781 end if;
4782 end if;
4783 end;
4785 -- No special handling for other attributes
4786 -- Probably more opportunities exist here???
4788 when others =>
4789 OK1 := False;
4791 end case;
4793 when N_Type_Conversion =>
4795 -- For type conversion from one discrete type to another, we can
4796 -- refine the range using the converted value.
4798 if Is_Discrete_Type (Etype (Expression (N))) then
4799 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
4801 -- When converting a float to an integer type, determine the range
4802 -- in real first, and then convert the bounds using UR_To_Uint
4803 -- which correctly rounds away from zero when half way between two
4804 -- integers, as required by normal Ada 95 rounding semantics. It
4805 -- is only possible because analysis in GNATprove rules out the
4806 -- possibility of a NaN or infinite value.
4808 elsif GNATprove_Mode
4809 and then Is_Floating_Point_Type (Etype (Expression (N)))
4810 then
4811 declare
4812 Lor_Real, Hir_Real : Ureal;
4813 begin
4814 Determine_Range_R (Expression (N), OK1, Lor_Real, Hir_Real,
4815 Assume_Valid);
4817 if OK1 then
4818 Lor := UR_To_Uint (Lor_Real);
4819 Hir := UR_To_Uint (Hir_Real);
4820 end if;
4821 end;
4823 else
4824 OK1 := False;
4825 end if;
4827 -- Nothing special to do for all other expression kinds
4829 when others =>
4830 OK1 := False;
4831 Lor := No_Uint;
4832 Hir := No_Uint;
4833 end case;
4835 -- At this stage, if OK1 is true, then we know that the actual result of
4836 -- the computed expression is in the range Lor .. Hir. We can use this
4837 -- to restrict the possible range of results.
4839 if OK1 then
4841 -- If the refined value of the low bound is greater than the type
4842 -- low bound, then reset it to the more restrictive value. However,
4843 -- we do NOT do this for the case of a modular type where the
4844 -- possible upper bound on the value is above the base type high
4845 -- bound, because that means the result could wrap.
4847 if Lor > Lo
4848 and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
4849 then
4850 Lo := Lor;
4851 end if;
4853 -- Similarly, if the refined value of the high bound is less than the
4854 -- value so far, then reset it to the more restrictive value. Again,
4855 -- we do not do this if the refined low bound is negative for a
4856 -- modular type, since this would wrap.
4858 if Hir < Hi
4859 and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
4860 then
4861 Hi := Hir;
4862 end if;
4863 end if;
4865 -- Set cache entry for future call and we are all done
4867 Determine_Range_Cache_N (Cindex) := N;
4868 Determine_Range_Cache_V (Cindex) := Assume_Valid;
4869 Determine_Range_Cache_Lo (Cindex) := Lo;
4870 Determine_Range_Cache_Hi (Cindex) := Hi;
4871 return;
4873 -- If any exception occurs, it means that we have some bug in the compiler,
4874 -- possibly triggered by a previous error, or by some unforeseen peculiar
4875 -- occurrence. However, this is only an optimization attempt, so there is
4876 -- really no point in crashing the compiler. Instead we just decide, too
4877 -- bad, we can't figure out a range in this case after all.
4879 exception
4880 when others =>
4882 -- Debug flag K disables this behavior (useful for debugging)
4884 if Debug_Flag_K then
4885 raise;
4886 else
4887 OK := False;
4888 Lo := No_Uint;
4889 Hi := No_Uint;
4890 return;
4891 end if;
4892 end Determine_Range;
4894 -----------------------
4895 -- Determine_Range_R --
4896 -----------------------
4898 procedure Determine_Range_R
4899 (N : Node_Id;
4900 OK : out Boolean;
4901 Lo : out Ureal;
4902 Hi : out Ureal;
4903 Assume_Valid : Boolean := False)
4905 Typ : Entity_Id := Etype (N);
4906 -- Type to use, may get reset to base type for possibly invalid entity
4908 Lo_Left : Ureal;
4909 Hi_Left : Ureal;
4910 -- Lo and Hi bounds of left operand
4912 Lo_Right : Ureal := No_Ureal;
4913 Hi_Right : Ureal := No_Ureal;
4914 -- Lo and Hi bounds of right (or only) operand
4916 Bound : Node_Id;
4917 -- Temp variable used to hold a bound node
4919 Hbound : Ureal;
4920 -- High bound of base type of expression
4922 Lor : Ureal;
4923 Hir : Ureal;
4924 -- Refined values for low and high bounds, after tightening
4926 OK1 : Boolean;
4927 -- Used in lower level calls to indicate if call succeeded
4929 Cindex : Cache_Index;
4930 -- Used to search cache
4932 Btyp : Entity_Id;
4933 -- Base type
4935 function OK_Operands return Boolean;
4936 -- Used for binary operators. Determines the ranges of the left and
4937 -- right operands, and if they are both OK, returns True, and puts
4938 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4940 function Round_Machine (B : Ureal) return Ureal;
4941 -- B is a real bound. Round it using mode Round_Even.
4943 -----------------
4944 -- OK_Operands --
4945 -----------------
4947 function OK_Operands return Boolean is
4948 begin
4949 Determine_Range_R
4950 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4952 if not OK1 then
4953 return False;
4954 end if;
4956 Determine_Range_R
4957 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4958 return OK1;
4959 end OK_Operands;
4961 -------------------
4962 -- Round_Machine --
4963 -------------------
4965 function Round_Machine (B : Ureal) return Ureal is
4966 begin
4967 return Machine (Typ, B, Round_Even, N);
4968 end Round_Machine;
4970 -- Start of processing for Determine_Range_R
4972 begin
4973 -- Prevent junk warnings by initializing range variables
4975 Lo := No_Ureal;
4976 Hi := No_Ureal;
4977 Lor := No_Ureal;
4978 Hir := No_Ureal;
4980 -- For temporary constants internally generated to remove side effects
4981 -- we must use the corresponding expression to determine the range of
4982 -- the expression. But note that the expander can also generate
4983 -- constants in other cases, including deferred constants.
4985 if Is_Entity_Name (N)
4986 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4987 and then Ekind (Entity (N)) = E_Constant
4988 and then Is_Internal_Name (Chars (Entity (N)))
4989 then
4990 if Present (Expression (Parent (Entity (N)))) then
4991 Determine_Range_R
4992 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4994 elsif Present (Full_View (Entity (N))) then
4995 Determine_Range_R
4996 (Expression (Parent (Full_View (Entity (N)))),
4997 OK, Lo, Hi, Assume_Valid);
4999 else
5000 OK := False;
5001 end if;
5003 return;
5004 end if;
5006 -- If type is not defined, we can't determine its range
5008 if No (Typ)
5010 -- We don't deal with anything except IEEE floating-point types
5012 or else not Is_Floating_Point_Type (Typ)
5013 or else Float_Rep (Typ) /= IEEE_Binary
5015 -- Ignore type for which an error has been posted, since range in
5016 -- this case may well be a bogosity deriving from the error. Also
5017 -- ignore if error posted on the reference node.
5019 or else Error_Posted (N) or else Error_Posted (Typ)
5020 then
5021 OK := False;
5022 return;
5023 end if;
5025 -- For all other cases, we can determine the range
5027 OK := True;
5029 -- If value is compile time known, then the possible range is the one
5030 -- value that we know this expression definitely has.
5032 if Compile_Time_Known_Value (N) then
5033 Lo := Expr_Value_R (N);
5034 Hi := Lo;
5035 return;
5036 end if;
5038 -- Return if already in the cache
5040 Cindex := Cache_Index (N mod Cache_Size);
5042 if Determine_Range_Cache_N (Cindex) = N
5043 and then
5044 Determine_Range_Cache_V (Cindex) = Assume_Valid
5045 then
5046 Lo := Determine_Range_Cache_Lo_R (Cindex);
5047 Hi := Determine_Range_Cache_Hi_R (Cindex);
5048 return;
5049 end if;
5051 -- Otherwise, start by finding the bounds of the type of the expression,
5052 -- the value cannot be outside this range (if it is, then we have an
5053 -- overflow situation, which is a separate check, we are talking here
5054 -- only about the expression value).
5056 -- First a check, never try to find the bounds of a generic type, since
5057 -- these bounds are always junk values, and it is only valid to look at
5058 -- the bounds in an instance.
5060 if Is_Generic_Type (Typ) then
5061 OK := False;
5062 return;
5063 end if;
5065 -- First step, change to use base type unless we know the value is valid
5067 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5068 or else Assume_No_Invalid_Values
5069 or else Assume_Valid
5070 then
5071 null;
5072 else
5073 Typ := Underlying_Type (Base_Type (Typ));
5074 end if;
5076 -- Retrieve the base type. Handle the case where the base type is a
5077 -- private type.
5079 Btyp := Base_Type (Typ);
5081 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5082 Btyp := Full_View (Btyp);
5083 end if;
5085 -- We use the actual bound unless it is dynamic, in which case use the
5086 -- corresponding base type bound if possible. If we can't get a bound
5087 -- then we figure we can't determine the range (a peculiar case, that
5088 -- perhaps cannot happen, but there is no point in bombing in this
5089 -- optimization circuit).
5091 -- First the low bound
5093 Bound := Type_Low_Bound (Typ);
5095 if Compile_Time_Known_Value (Bound) then
5096 Lo := Expr_Value_R (Bound);
5098 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5099 Lo := Expr_Value_R (Type_Low_Bound (Btyp));
5101 else
5102 OK := False;
5103 return;
5104 end if;
5106 -- Now the high bound
5108 Bound := Type_High_Bound (Typ);
5110 -- We need the high bound of the base type later on, and this should
5111 -- always be compile time known. Again, it is not clear that this
5112 -- can ever be false, but no point in bombing.
5114 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5115 Hbound := Expr_Value_R (Type_High_Bound (Btyp));
5116 Hi := Hbound;
5118 else
5119 OK := False;
5120 return;
5121 end if;
5123 -- If we have a static subtype, then that may have a tighter bound so
5124 -- use the upper bound of the subtype instead in this case.
5126 if Compile_Time_Known_Value (Bound) then
5127 Hi := Expr_Value_R (Bound);
5128 end if;
5130 -- We may be able to refine this value in certain situations. If any
5131 -- refinement is possible, then Lor and Hir are set to possibly tighter
5132 -- bounds, and OK1 is set to True.
5134 case Nkind (N) is
5136 -- For unary plus, result is limited by range of operand
5138 when N_Op_Plus =>
5139 Determine_Range_R
5140 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
5142 -- For unary minus, determine range of operand, and negate it
5144 when N_Op_Minus =>
5145 Determine_Range_R
5146 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5148 if OK1 then
5149 Lor := -Hi_Right;
5150 Hir := -Lo_Right;
5151 end if;
5153 -- For binary addition, get range of each operand and do the
5154 -- addition to get the result range.
5156 when N_Op_Add =>
5157 if OK_Operands then
5158 Lor := Round_Machine (Lo_Left + Lo_Right);
5159 Hir := Round_Machine (Hi_Left + Hi_Right);
5160 end if;
5162 -- For binary subtraction, get range of each operand and do the worst
5163 -- case subtraction to get the result range.
5165 when N_Op_Subtract =>
5166 if OK_Operands then
5167 Lor := Round_Machine (Lo_Left - Hi_Right);
5168 Hir := Round_Machine (Hi_Left - Lo_Right);
5169 end if;
5171 -- For multiplication, get range of each operand and do the
5172 -- four multiplications to get the result range.
5174 when N_Op_Multiply =>
5175 if OK_Operands then
5176 declare
5177 M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
5178 M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
5179 M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
5180 M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
5182 begin
5183 Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
5184 Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
5185 end;
5186 end if;
5188 -- For division, consider separately the cases where the right
5189 -- operand is positive or negative. Otherwise, the right operand
5190 -- can be arbitrarily close to zero, so the result is likely to
5191 -- be unbounded in one direction, do not attempt to compute it.
5193 when N_Op_Divide =>
5194 if OK_Operands then
5196 -- Right operand is positive
5198 if Lo_Right > Ureal_0 then
5200 -- If the low bound of the left operand is negative, obtain
5201 -- the overall low bound by dividing it by the smallest
5202 -- value of the right operand, and otherwise by the largest
5203 -- value of the right operand.
5205 if Lo_Left < Ureal_0 then
5206 Lor := Round_Machine (Lo_Left / Lo_Right);
5207 else
5208 Lor := Round_Machine (Lo_Left / Hi_Right);
5209 end if;
5211 -- If the high bound of the left operand is negative, obtain
5212 -- the overall high bound by dividing it by the largest
5213 -- value of the right operand, and otherwise by the
5214 -- smallest value of the right operand.
5216 if Hi_Left < Ureal_0 then
5217 Hir := Round_Machine (Hi_Left / Hi_Right);
5218 else
5219 Hir := Round_Machine (Hi_Left / Lo_Right);
5220 end if;
5222 -- Right operand is negative
5224 elsif Hi_Right < Ureal_0 then
5226 -- If the low bound of the left operand is negative, obtain
5227 -- the overall low bound by dividing it by the largest
5228 -- value of the right operand, and otherwise by the smallest
5229 -- value of the right operand.
5231 if Lo_Left < Ureal_0 then
5232 Lor := Round_Machine (Lo_Left / Hi_Right);
5233 else
5234 Lor := Round_Machine (Lo_Left / Lo_Right);
5235 end if;
5237 -- If the high bound of the left operand is negative, obtain
5238 -- the overall high bound by dividing it by the smallest
5239 -- value of the right operand, and otherwise by the
5240 -- largest value of the right operand.
5242 if Hi_Left < Ureal_0 then
5243 Hir := Round_Machine (Hi_Left / Lo_Right);
5244 else
5245 Hir := Round_Machine (Hi_Left / Hi_Right);
5246 end if;
5248 else
5249 OK1 := False;
5250 end if;
5251 end if;
5253 when N_Type_Conversion =>
5255 -- For type conversion from one floating-point type to another, we
5256 -- can refine the range using the converted value.
5258 if Is_Floating_Point_Type (Etype (Expression (N))) then
5259 Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
5261 -- When converting an integer to a floating-point type, determine
5262 -- the range in integer first, and then convert the bounds.
5264 elsif Is_Discrete_Type (Etype (Expression (N))) then
5265 declare
5266 Hir_Int : Uint;
5267 Lor_Int : Uint;
5269 begin
5270 Determine_Range
5271 (Expression (N), OK1, Lor_Int, Hir_Int, Assume_Valid);
5273 if OK1 then
5274 Lor := Round_Machine (UR_From_Uint (Lor_Int));
5275 Hir := Round_Machine (UR_From_Uint (Hir_Int));
5276 end if;
5277 end;
5279 else
5280 OK1 := False;
5281 end if;
5283 -- Nothing special to do for all other expression kinds
5285 when others =>
5286 OK1 := False;
5287 Lor := No_Ureal;
5288 Hir := No_Ureal;
5289 end case;
5291 -- At this stage, if OK1 is true, then we know that the actual result of
5292 -- the computed expression is in the range Lor .. Hir. We can use this
5293 -- to restrict the possible range of results.
5295 if OK1 then
5297 -- If the refined value of the low bound is greater than the type
5298 -- low bound, then reset it to the more restrictive value.
5300 if Lor > Lo then
5301 Lo := Lor;
5302 end if;
5304 -- Similarly, if the refined value of the high bound is less than the
5305 -- value so far, then reset it to the more restrictive value.
5307 if Hir < Hi then
5308 Hi := Hir;
5309 end if;
5310 end if;
5312 -- Set cache entry for future call and we are all done
5314 Determine_Range_Cache_N (Cindex) := N;
5315 Determine_Range_Cache_V (Cindex) := Assume_Valid;
5316 Determine_Range_Cache_Lo_R (Cindex) := Lo;
5317 Determine_Range_Cache_Hi_R (Cindex) := Hi;
5318 return;
5320 -- If any exception occurs, it means that we have some bug in the compiler,
5321 -- possibly triggered by a previous error, or by some unforeseen peculiar
5322 -- occurrence. However, this is only an optimization attempt, so there is
5323 -- really no point in crashing the compiler. Instead we just decide, too
5324 -- bad, we can't figure out a range in this case after all.
5326 exception
5327 when others =>
5329 -- Debug flag K disables this behavior (useful for debugging)
5331 if Debug_Flag_K then
5332 raise;
5333 else
5334 OK := False;
5335 Lo := No_Ureal;
5336 Hi := No_Ureal;
5337 return;
5338 end if;
5339 end Determine_Range_R;
5341 ------------------------------------
5342 -- Discriminant_Checks_Suppressed --
5343 ------------------------------------
5345 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
5346 begin
5347 if Present (E) then
5348 if Is_Unchecked_Union (E) then
5349 return True;
5350 elsif Checks_May_Be_Suppressed (E) then
5351 return Is_Check_Suppressed (E, Discriminant_Check);
5352 end if;
5353 end if;
5355 return Scope_Suppress.Suppress (Discriminant_Check);
5356 end Discriminant_Checks_Suppressed;
5358 --------------------------------
5359 -- Division_Checks_Suppressed --
5360 --------------------------------
5362 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
5363 begin
5364 if Present (E) and then Checks_May_Be_Suppressed (E) then
5365 return Is_Check_Suppressed (E, Division_Check);
5366 else
5367 return Scope_Suppress.Suppress (Division_Check);
5368 end if;
5369 end Division_Checks_Suppressed;
5371 --------------------------------------
5372 -- Duplicated_Tag_Checks_Suppressed --
5373 --------------------------------------
5375 function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
5376 begin
5377 if Present (E) and then Checks_May_Be_Suppressed (E) then
5378 return Is_Check_Suppressed (E, Duplicated_Tag_Check);
5379 else
5380 return Scope_Suppress.Suppress (Duplicated_Tag_Check);
5381 end if;
5382 end Duplicated_Tag_Checks_Suppressed;
5384 -----------------------------------
5385 -- Elaboration_Checks_Suppressed --
5386 -----------------------------------
5388 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
5389 begin
5390 -- The complication in this routine is that if we are in the dynamic
5391 -- model of elaboration, we also check All_Checks, since All_Checks
5392 -- does not set Elaboration_Check explicitly.
5394 if Present (E) then
5395 if Kill_Elaboration_Checks (E) then
5396 return True;
5398 elsif Checks_May_Be_Suppressed (E) then
5399 if Is_Check_Suppressed (E, Elaboration_Check) then
5400 return True;
5402 elsif Dynamic_Elaboration_Checks then
5403 return Is_Check_Suppressed (E, All_Checks);
5405 else
5406 return False;
5407 end if;
5408 end if;
5409 end if;
5411 if Scope_Suppress.Suppress (Elaboration_Check) then
5412 return True;
5414 elsif Dynamic_Elaboration_Checks then
5415 return Scope_Suppress.Suppress (All_Checks);
5417 else
5418 return False;
5419 end if;
5420 end Elaboration_Checks_Suppressed;
5422 ---------------------------
5423 -- Enable_Overflow_Check --
5424 ---------------------------
5426 procedure Enable_Overflow_Check (N : Node_Id) is
5427 Typ : constant Entity_Id := Base_Type (Etype (N));
5428 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
5429 Chk : Nat;
5430 OK : Boolean;
5431 Ent : Entity_Id;
5432 Ofs : Uint;
5433 Lo : Uint;
5434 Hi : Uint;
5436 Do_Ovflow_Check : Boolean;
5438 begin
5439 if Debug_Flag_CC then
5440 w ("Enable_Overflow_Check for node ", Int (N));
5441 Write_Str (" Source location = ");
5442 wl (Sloc (N));
5443 pg (Union_Id (N));
5444 end if;
5446 -- No check if overflow checks suppressed for type of node
5448 if Overflow_Checks_Suppressed (Etype (N)) then
5449 return;
5451 -- Nothing to do for unsigned integer types, which do not overflow
5453 elsif Is_Modular_Integer_Type (Typ) then
5454 return;
5455 end if;
5457 -- This is the point at which processing for STRICT mode diverges
5458 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
5459 -- probably more extreme that it needs to be, but what is going on here
5460 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
5461 -- to leave the processing for STRICT mode untouched. There were
5462 -- two reasons for this. First it avoided any incompatible change of
5463 -- behavior. Second, it guaranteed that STRICT mode continued to be
5464 -- legacy reliable.
5466 -- The big difference is that in STRICT mode there is a fair amount of
5467 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
5468 -- know that no check is needed. We skip all that in the two new modes,
5469 -- since really overflow checking happens over a whole subtree, and we
5470 -- do the corresponding optimizations later on when applying the checks.
5472 if Mode in Minimized_Or_Eliminated then
5473 if not (Overflow_Checks_Suppressed (Etype (N)))
5474 and then not (Is_Entity_Name (N)
5475 and then Overflow_Checks_Suppressed (Entity (N)))
5476 then
5477 Activate_Overflow_Check (N);
5478 end if;
5480 if Debug_Flag_CC then
5481 w ("Minimized/Eliminated mode");
5482 end if;
5484 return;
5485 end if;
5487 -- Remainder of processing is for STRICT case, and is unchanged from
5488 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
5490 -- Nothing to do if the range of the result is known OK. We skip this
5491 -- for conversions, since the caller already did the check, and in any
5492 -- case the condition for deleting the check for a type conversion is
5493 -- different.
5495 if Nkind (N) /= N_Type_Conversion then
5496 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
5498 -- Note in the test below that we assume that the range is not OK
5499 -- if a bound of the range is equal to that of the type. That's not
5500 -- quite accurate but we do this for the following reasons:
5502 -- a) The way that Determine_Range works, it will typically report
5503 -- the bounds of the value as being equal to the bounds of the
5504 -- type, because it either can't tell anything more precise, or
5505 -- does not think it is worth the effort to be more precise.
5507 -- b) It is very unusual to have a situation in which this would
5508 -- generate an unnecessary overflow check (an example would be
5509 -- a subtype with a range 0 .. Integer'Last - 1 to which the
5510 -- literal value one is added).
5512 -- c) The alternative is a lot of special casing in this routine
5513 -- which would partially duplicate Determine_Range processing.
5515 if OK then
5516 Do_Ovflow_Check := True;
5518 -- Note that the following checks are quite deliberately > and <
5519 -- rather than >= and <= as explained above.
5521 if Lo > Expr_Value (Type_Low_Bound (Typ))
5522 and then
5523 Hi < Expr_Value (Type_High_Bound (Typ))
5524 then
5525 Do_Ovflow_Check := False;
5527 -- Despite the comments above, it is worth dealing specially with
5528 -- division specially. The only case where integer division can
5529 -- overflow is (largest negative number) / (-1). So we will do
5530 -- an extra range analysis to see if this is possible.
5532 elsif Nkind (N) = N_Op_Divide then
5533 Determine_Range
5534 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5536 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
5537 Do_Ovflow_Check := False;
5539 else
5540 Determine_Range
5541 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5543 if OK and then (Lo > Uint_Minus_1
5544 or else
5545 Hi < Uint_Minus_1)
5546 then
5547 Do_Ovflow_Check := False;
5548 end if;
5549 end if;
5550 end if;
5552 -- If no overflow check required, we are done
5554 if not Do_Ovflow_Check then
5555 if Debug_Flag_CC then
5556 w ("No overflow check required");
5557 end if;
5559 return;
5560 end if;
5561 end if;
5562 end if;
5564 -- If not in optimizing mode, set flag and we are done. We are also done
5565 -- (and just set the flag) if the type is not a discrete type, since it
5566 -- is not worth the effort to eliminate checks for other than discrete
5567 -- types. In addition, we take this same path if we have stored the
5568 -- maximum number of checks possible already (a very unlikely situation,
5569 -- but we do not want to blow up).
5571 if Optimization_Level = 0
5572 or else not Is_Discrete_Type (Etype (N))
5573 or else Num_Saved_Checks = Saved_Checks'Last
5574 then
5575 Activate_Overflow_Check (N);
5577 if Debug_Flag_CC then
5578 w ("Optimization off");
5579 end if;
5581 return;
5582 end if;
5584 -- Otherwise evaluate and check the expression
5586 Find_Check
5587 (Expr => N,
5588 Check_Type => 'O',
5589 Target_Type => Empty,
5590 Entry_OK => OK,
5591 Check_Num => Chk,
5592 Ent => Ent,
5593 Ofs => Ofs);
5595 if Debug_Flag_CC then
5596 w ("Called Find_Check");
5597 w (" OK = ", OK);
5599 if OK then
5600 w (" Check_Num = ", Chk);
5601 w (" Ent = ", Int (Ent));
5602 Write_Str (" Ofs = ");
5603 pid (Ofs);
5604 end if;
5605 end if;
5607 -- If check is not of form to optimize, then set flag and we are done
5609 if not OK then
5610 Activate_Overflow_Check (N);
5611 return;
5612 end if;
5614 -- If check is already performed, then return without setting flag
5616 if Chk /= 0 then
5617 if Debug_Flag_CC then
5618 w ("Check suppressed!");
5619 end if;
5621 return;
5622 end if;
5624 -- Here we will make a new entry for the new check
5626 Activate_Overflow_Check (N);
5627 Num_Saved_Checks := Num_Saved_Checks + 1;
5628 Saved_Checks (Num_Saved_Checks) :=
5629 (Killed => False,
5630 Entity => Ent,
5631 Offset => Ofs,
5632 Check_Type => 'O',
5633 Target_Type => Empty);
5635 if Debug_Flag_CC then
5636 w ("Make new entry, check number = ", Num_Saved_Checks);
5637 w (" Entity = ", Int (Ent));
5638 Write_Str (" Offset = ");
5639 pid (Ofs);
5640 w (" Check_Type = O");
5641 w (" Target_Type = Empty");
5642 end if;
5644 -- If we get an exception, then something went wrong, probably because of
5645 -- an error in the structure of the tree due to an incorrect program. Or
5646 -- it may be a bug in the optimization circuit. In either case the safest
5647 -- thing is simply to set the check flag unconditionally.
5649 exception
5650 when others =>
5651 Activate_Overflow_Check (N);
5653 if Debug_Flag_CC then
5654 w (" exception occurred, overflow flag set");
5655 end if;
5657 return;
5658 end Enable_Overflow_Check;
5660 ------------------------
5661 -- Enable_Range_Check --
5662 ------------------------
5664 procedure Enable_Range_Check (N : Node_Id) is
5665 Chk : Nat;
5666 OK : Boolean;
5667 Ent : Entity_Id;
5668 Ofs : Uint;
5669 Ttyp : Entity_Id;
5670 P : Node_Id;
5672 begin
5673 -- Return if unchecked type conversion with range check killed. In this
5674 -- case we never set the flag (that's what Kill_Range_Check is about).
5676 if Nkind (N) = N_Unchecked_Type_Conversion
5677 and then Kill_Range_Check (N)
5678 then
5679 return;
5680 end if;
5682 -- Do not set range check flag if parent is assignment statement or
5683 -- object declaration with Suppress_Assignment_Checks flag set
5685 if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
5686 and then Suppress_Assignment_Checks (Parent (N))
5687 then
5688 return;
5689 end if;
5691 -- Check for various cases where we should suppress the range check
5693 -- No check if range checks suppressed for type of node
5695 if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
5696 return;
5698 -- No check if node is an entity name, and range checks are suppressed
5699 -- for this entity, or for the type of this entity.
5701 elsif Is_Entity_Name (N)
5702 and then (Range_Checks_Suppressed (Entity (N))
5703 or else Range_Checks_Suppressed (Etype (Entity (N))))
5704 then
5705 return;
5707 -- No checks if index of array, and index checks are suppressed for
5708 -- the array object or the type of the array.
5710 elsif Nkind (Parent (N)) = N_Indexed_Component then
5711 declare
5712 Pref : constant Node_Id := Prefix (Parent (N));
5713 begin
5714 if Is_Entity_Name (Pref)
5715 and then Index_Checks_Suppressed (Entity (Pref))
5716 then
5717 return;
5718 elsif Index_Checks_Suppressed (Etype (Pref)) then
5719 return;
5720 end if;
5721 end;
5722 end if;
5724 -- Debug trace output
5726 if Debug_Flag_CC then
5727 w ("Enable_Range_Check for node ", Int (N));
5728 Write_Str (" Source location = ");
5729 wl (Sloc (N));
5730 pg (Union_Id (N));
5731 end if;
5733 -- If not in optimizing mode, set flag and we are done. We are also done
5734 -- (and just set the flag) if the type is not a discrete type, since it
5735 -- is not worth the effort to eliminate checks for other than discrete
5736 -- types. In addition, we take this same path if we have stored the
5737 -- maximum number of checks possible already (a very unlikely situation,
5738 -- but we do not want to blow up).
5740 if Optimization_Level = 0
5741 or else No (Etype (N))
5742 or else not Is_Discrete_Type (Etype (N))
5743 or else Num_Saved_Checks = Saved_Checks'Last
5744 then
5745 Activate_Range_Check (N);
5747 if Debug_Flag_CC then
5748 w ("Optimization off");
5749 end if;
5751 return;
5752 end if;
5754 -- Otherwise find out the target type
5756 P := Parent (N);
5758 -- For assignment, use left side subtype
5760 if Nkind (P) = N_Assignment_Statement
5761 and then Expression (P) = N
5762 then
5763 Ttyp := Etype (Name (P));
5765 -- For indexed component, use subscript subtype
5767 elsif Nkind (P) = N_Indexed_Component then
5768 declare
5769 Atyp : Entity_Id;
5770 Indx : Node_Id;
5771 Subs : Node_Id;
5773 begin
5774 Atyp := Etype (Prefix (P));
5776 if Is_Access_Type (Atyp) then
5777 Atyp := Designated_Type (Atyp);
5779 -- If the prefix is an access to an unconstrained array,
5780 -- perform check unconditionally: it depends on the bounds of
5781 -- an object and we cannot currently recognize whether the test
5782 -- may be redundant.
5784 if not Is_Constrained (Atyp) then
5785 Activate_Range_Check (N);
5786 return;
5787 end if;
5789 -- Ditto if prefix is simply an unconstrained array. We used
5790 -- to think this case was OK, if the prefix was not an explicit
5791 -- dereference, but we have now seen a case where this is not
5792 -- true, so it is safer to just suppress the optimization in this
5793 -- case. The back end is getting better at eliminating redundant
5794 -- checks in any case, so the loss won't be important.
5796 elsif Is_Array_Type (Atyp)
5797 and then not Is_Constrained (Atyp)
5798 then
5799 Activate_Range_Check (N);
5800 return;
5801 end if;
5803 Indx := First_Index (Atyp);
5804 Subs := First (Expressions (P));
5805 loop
5806 if Subs = N then
5807 Ttyp := Etype (Indx);
5808 exit;
5809 end if;
5811 Next_Index (Indx);
5812 Next (Subs);
5813 end loop;
5814 end;
5816 -- For now, ignore all other cases, they are not so interesting
5818 else
5819 if Debug_Flag_CC then
5820 w (" target type not found, flag set");
5821 end if;
5823 Activate_Range_Check (N);
5824 return;
5825 end if;
5827 -- Evaluate and check the expression
5829 Find_Check
5830 (Expr => N,
5831 Check_Type => 'R',
5832 Target_Type => Ttyp,
5833 Entry_OK => OK,
5834 Check_Num => Chk,
5835 Ent => Ent,
5836 Ofs => Ofs);
5838 if Debug_Flag_CC then
5839 w ("Called Find_Check");
5840 w ("Target_Typ = ", Int (Ttyp));
5841 w (" OK = ", OK);
5843 if OK then
5844 w (" Check_Num = ", Chk);
5845 w (" Ent = ", Int (Ent));
5846 Write_Str (" Ofs = ");
5847 pid (Ofs);
5848 end if;
5849 end if;
5851 -- If check is not of form to optimize, then set flag and we are done
5853 if not OK then
5854 if Debug_Flag_CC then
5855 w (" expression not of optimizable type, flag set");
5856 end if;
5858 Activate_Range_Check (N);
5859 return;
5860 end if;
5862 -- If check is already performed, then return without setting flag
5864 if Chk /= 0 then
5865 if Debug_Flag_CC then
5866 w ("Check suppressed!");
5867 end if;
5869 return;
5870 end if;
5872 -- Here we will make a new entry for the new check
5874 Activate_Range_Check (N);
5875 Num_Saved_Checks := Num_Saved_Checks + 1;
5876 Saved_Checks (Num_Saved_Checks) :=
5877 (Killed => False,
5878 Entity => Ent,
5879 Offset => Ofs,
5880 Check_Type => 'R',
5881 Target_Type => Ttyp);
5883 if Debug_Flag_CC then
5884 w ("Make new entry, check number = ", Num_Saved_Checks);
5885 w (" Entity = ", Int (Ent));
5886 Write_Str (" Offset = ");
5887 pid (Ofs);
5888 w (" Check_Type = R");
5889 w (" Target_Type = ", Int (Ttyp));
5890 pg (Union_Id (Ttyp));
5891 end if;
5893 -- If we get an exception, then something went wrong, probably because of
5894 -- an error in the structure of the tree due to an incorrect program. Or
5895 -- it may be a bug in the optimization circuit. In either case the safest
5896 -- thing is simply to set the check flag unconditionally.
5898 exception
5899 when others =>
5900 Activate_Range_Check (N);
5902 if Debug_Flag_CC then
5903 w (" exception occurred, range flag set");
5904 end if;
5906 return;
5907 end Enable_Range_Check;
5909 ------------------
5910 -- Ensure_Valid --
5911 ------------------
5913 procedure Ensure_Valid
5914 (Expr : Node_Id;
5915 Holes_OK : Boolean := False;
5916 Related_Id : Entity_Id := Empty;
5917 Is_Low_Bound : Boolean := False;
5918 Is_High_Bound : Boolean := False)
5920 Typ : constant Entity_Id := Etype (Expr);
5922 begin
5923 -- Ignore call if we are not doing any validity checking
5925 if not Validity_Checks_On then
5926 return;
5928 -- Ignore call if range or validity checks suppressed on entity or type
5930 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
5931 return;
5933 -- No check required if expression is from the expander, we assume the
5934 -- expander will generate whatever checks are needed. Note that this is
5935 -- not just an optimization, it avoids infinite recursions.
5937 -- Unchecked conversions must be checked, unless they are initialized
5938 -- scalar values, as in a component assignment in an init proc.
5940 -- In addition, we force a check if Force_Validity_Checks is set
5942 elsif not Comes_From_Source (Expr)
5943 and then not
5944 (Nkind (Expr) = N_Identifier
5945 and then Present (Renamed_Object (Entity (Expr)))
5946 and then Comes_From_Source (Renamed_Object (Entity (Expr))))
5947 and then not Force_Validity_Checks
5948 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
5949 or else Kill_Range_Check (Expr))
5950 then
5951 return;
5953 -- No check required if expression is known to have valid value
5955 elsif Expr_Known_Valid (Expr) then
5956 return;
5958 -- No check needed within a generated predicate function. Validity
5959 -- of input value will have been checked earlier.
5961 elsif Ekind (Current_Scope) = E_Function
5962 and then Is_Predicate_Function (Current_Scope)
5963 then
5964 return;
5966 -- Ignore case of enumeration with holes where the flag is set not to
5967 -- worry about holes, since no special validity check is needed
5969 elsif Is_Enumeration_Type (Typ)
5970 and then Has_Non_Standard_Rep (Typ)
5971 and then Holes_OK
5972 then
5973 return;
5975 -- No check required on the left-hand side of an assignment
5977 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
5978 and then Expr = Name (Parent (Expr))
5979 then
5980 return;
5982 -- No check on a universal real constant. The context will eventually
5983 -- convert it to a machine number for some target type, or report an
5984 -- illegality.
5986 elsif Nkind (Expr) = N_Real_Literal
5987 and then Etype (Expr) = Universal_Real
5988 then
5989 return;
5991 -- If the expression denotes a component of a packed boolean array,
5992 -- no possible check applies. We ignore the old ACATS chestnuts that
5993 -- involve Boolean range True..True.
5995 -- Note: validity checks are generated for expressions that yield a
5996 -- scalar type, when it is possible to create a value that is outside of
5997 -- the type. If this is a one-bit boolean no such value exists. This is
5998 -- an optimization, and it also prevents compiler blowing up during the
5999 -- elaboration of improperly expanded packed array references.
6001 elsif Nkind (Expr) = N_Indexed_Component
6002 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
6003 and then Root_Type (Etype (Expr)) = Standard_Boolean
6004 then
6005 return;
6007 -- For an expression with actions, we want to insert the validity check
6008 -- on the final Expression.
6010 elsif Nkind (Expr) = N_Expression_With_Actions then
6011 Ensure_Valid (Expression (Expr));
6012 return;
6014 -- An annoying special case. If this is an out parameter of a scalar
6015 -- type, then the value is not going to be accessed, therefore it is
6016 -- inappropriate to do any validity check at the call site.
6018 else
6019 -- Only need to worry about scalar types
6021 if Is_Scalar_Type (Typ) then
6022 declare
6023 P : Node_Id;
6024 N : Node_Id;
6025 E : Entity_Id;
6026 F : Entity_Id;
6027 A : Node_Id;
6028 L : List_Id;
6030 begin
6031 -- Find actual argument (which may be a parameter association)
6032 -- and the parent of the actual argument (the call statement)
6034 N := Expr;
6035 P := Parent (Expr);
6037 if Nkind (P) = N_Parameter_Association then
6038 N := P;
6039 P := Parent (N);
6040 end if;
6042 -- Only need to worry if we are argument of a procedure call
6043 -- since functions don't have out parameters. If this is an
6044 -- indirect or dispatching call, get signature from the
6045 -- subprogram type.
6047 if Nkind (P) = N_Procedure_Call_Statement then
6048 L := Parameter_Associations (P);
6050 if Is_Entity_Name (Name (P)) then
6051 E := Entity (Name (P));
6052 else
6053 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
6054 E := Etype (Name (P));
6055 end if;
6057 -- Only need to worry if there are indeed actuals, and if
6058 -- this could be a procedure call, otherwise we cannot get a
6059 -- match (either we are not an argument, or the mode of the
6060 -- formal is not OUT). This test also filters out the
6061 -- generic case.
6063 if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
6065 -- This is the loop through parameters, looking for an
6066 -- OUT parameter for which we are the argument.
6068 F := First_Formal (E);
6069 A := First (L);
6070 while Present (F) loop
6071 if Ekind (F) = E_Out_Parameter and then A = N then
6072 return;
6073 end if;
6075 Next_Formal (F);
6076 Next (A);
6077 end loop;
6078 end if;
6079 end if;
6080 end;
6081 end if;
6082 end if;
6084 -- If this is a boolean expression, only its elementary operands need
6085 -- checking: if they are valid, a boolean or short-circuit operation
6086 -- with them will be valid as well.
6088 if Base_Type (Typ) = Standard_Boolean
6089 and then
6090 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
6091 then
6092 return;
6093 end if;
6095 -- If we fall through, a validity check is required
6097 Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);
6099 if Is_Entity_Name (Expr)
6100 and then Safe_To_Capture_Value (Expr, Entity (Expr))
6101 then
6102 Set_Is_Known_Valid (Entity (Expr));
6103 end if;
6104 end Ensure_Valid;
6106 ----------------------
6107 -- Expr_Known_Valid --
6108 ----------------------
6110 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
6111 Typ : constant Entity_Id := Etype (Expr);
6113 begin
6114 -- Non-scalar types are always considered valid, since they never give
6115 -- rise to the issues of erroneous or bounded error behavior that are
6116 -- the concern. In formal reference manual terms the notion of validity
6117 -- only applies to scalar types. Note that even when packed arrays are
6118 -- represented using modular types, they are still arrays semantically,
6119 -- so they are also always valid (in particular, the unused bits can be
6120 -- random rubbish without affecting the validity of the array value).
6122 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
6123 return True;
6125 -- If no validity checking, then everything is considered valid
6127 elsif not Validity_Checks_On then
6128 return True;
6130 -- Floating-point types are considered valid unless floating-point
6131 -- validity checks have been specifically turned on.
6133 elsif Is_Floating_Point_Type (Typ)
6134 and then not Validity_Check_Floating_Point
6135 then
6136 return True;
6138 -- If the expression is the value of an object that is known to be
6139 -- valid, then clearly the expression value itself is valid.
6141 elsif Is_Entity_Name (Expr)
6142 and then Is_Known_Valid (Entity (Expr))
6144 -- Exclude volatile variables
6146 and then not Treat_As_Volatile (Entity (Expr))
6147 then
6148 return True;
6150 -- References to discriminants are always considered valid. The value
6151 -- of a discriminant gets checked when the object is built. Within the
6152 -- record, we consider it valid, and it is important to do so, since
6153 -- otherwise we can try to generate bogus validity checks which
6154 -- reference discriminants out of scope. Discriminants of concurrent
6155 -- types are excluded for the same reason.
6157 elsif Is_Entity_Name (Expr)
6158 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
6159 then
6160 return True;
6162 -- If the type is one for which all values are known valid, then we are
6163 -- sure that the value is valid except in the slightly odd case where
6164 -- the expression is a reference to a variable whose size has been
6165 -- explicitly set to a value greater than the object size.
6167 elsif Is_Known_Valid (Typ) then
6168 if Is_Entity_Name (Expr)
6169 and then Ekind (Entity (Expr)) = E_Variable
6170 and then Esize (Entity (Expr)) > Esize (Typ)
6171 then
6172 return False;
6173 else
6174 return True;
6175 end if;
6177 -- Integer and character literals always have valid values, where
6178 -- appropriate these will be range checked in any case.
6180 elsif Nkind_In (Expr, N_Integer_Literal, N_Character_Literal) then
6181 return True;
6183 -- If we have a type conversion or a qualification of a known valid
6184 -- value, then the result will always be valid.
6186 elsif Nkind_In (Expr, N_Type_Conversion, N_Qualified_Expression) then
6187 return Expr_Known_Valid (Expression (Expr));
6189 -- Case of expression is a non-floating-point operator. In this case we
6190 -- can assume the result is valid the generated code for the operator
6191 -- will include whatever checks are needed (e.g. range checks) to ensure
6192 -- validity. This assumption does not hold for the floating-point case,
6193 -- since floating-point operators can generate Infinite or NaN results
6194 -- which are considered invalid.
6196 -- Historical note: in older versions, the exemption of floating-point
6197 -- types from this assumption was done only in cases where the parent
6198 -- was an assignment, function call or parameter association. Presumably
6199 -- the idea was that in other contexts, the result would be checked
6200 -- elsewhere, but this list of cases was missing tests (at least the
6201 -- N_Object_Declaration case, as shown by a reported missing validity
6202 -- check), and it is not clear why function calls but not procedure
6203 -- calls were tested for. It really seems more accurate and much
6204 -- safer to recognize that expressions which are the result of a
6205 -- floating-point operator can never be assumed to be valid.
6207 elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
6208 return True;
6210 -- The result of a membership test is always valid, since it is true or
6211 -- false, there are no other possibilities.
6213 elsif Nkind (Expr) in N_Membership_Test then
6214 return True;
6216 -- For all other cases, we do not know the expression is valid
6218 else
6219 return False;
6220 end if;
6221 end Expr_Known_Valid;
6223 ----------------
6224 -- Find_Check --
6225 ----------------
6227 procedure Find_Check
6228 (Expr : Node_Id;
6229 Check_Type : Character;
6230 Target_Type : Entity_Id;
6231 Entry_OK : out Boolean;
6232 Check_Num : out Nat;
6233 Ent : out Entity_Id;
6234 Ofs : out Uint)
6236 function Within_Range_Of
6237 (Target_Type : Entity_Id;
6238 Check_Type : Entity_Id) return Boolean;
6239 -- Given a requirement for checking a range against Target_Type, and
6240 -- and a range Check_Type against which a check has already been made,
6241 -- determines if the check against check type is sufficient to ensure
6242 -- that no check against Target_Type is required.
6244 ---------------------
6245 -- Within_Range_Of --
6246 ---------------------
6248 function Within_Range_Of
6249 (Target_Type : Entity_Id;
6250 Check_Type : Entity_Id) return Boolean
6252 begin
6253 if Target_Type = Check_Type then
6254 return True;
6256 else
6257 declare
6258 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
6259 Thi : constant Node_Id := Type_High_Bound (Target_Type);
6260 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
6261 Chi : constant Node_Id := Type_High_Bound (Check_Type);
6263 begin
6264 if (Tlo = Clo
6265 or else (Compile_Time_Known_Value (Tlo)
6266 and then
6267 Compile_Time_Known_Value (Clo)
6268 and then
6269 Expr_Value (Clo) >= Expr_Value (Tlo)))
6270 and then
6271 (Thi = Chi
6272 or else (Compile_Time_Known_Value (Thi)
6273 and then
6274 Compile_Time_Known_Value (Chi)
6275 and then
6276 Expr_Value (Chi) <= Expr_Value (Clo)))
6277 then
6278 return True;
6279 else
6280 return False;
6281 end if;
6282 end;
6283 end if;
6284 end Within_Range_Of;
6286 -- Start of processing for Find_Check
6288 begin
6289 -- Establish default, in case no entry is found
6291 Check_Num := 0;
6293 -- Case of expression is simple entity reference
6295 if Is_Entity_Name (Expr) then
6296 Ent := Entity (Expr);
6297 Ofs := Uint_0;
6299 -- Case of expression is entity + known constant
6301 elsif Nkind (Expr) = N_Op_Add
6302 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6303 and then Is_Entity_Name (Left_Opnd (Expr))
6304 then
6305 Ent := Entity (Left_Opnd (Expr));
6306 Ofs := Expr_Value (Right_Opnd (Expr));
6308 -- Case of expression is entity - known constant
6310 elsif Nkind (Expr) = N_Op_Subtract
6311 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6312 and then Is_Entity_Name (Left_Opnd (Expr))
6313 then
6314 Ent := Entity (Left_Opnd (Expr));
6315 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
6317 -- Any other expression is not of the right form
6319 else
6320 Ent := Empty;
6321 Ofs := Uint_0;
6322 Entry_OK := False;
6323 return;
6324 end if;
6326 -- Come here with expression of appropriate form, check if entity is an
6327 -- appropriate one for our purposes.
6329 if (Ekind (Ent) = E_Variable
6330 or else Is_Constant_Object (Ent))
6331 and then not Is_Library_Level_Entity (Ent)
6332 then
6333 Entry_OK := True;
6334 else
6335 Entry_OK := False;
6336 return;
6337 end if;
6339 -- See if there is matching check already
6341 for J in reverse 1 .. Num_Saved_Checks loop
6342 declare
6343 SC : Saved_Check renames Saved_Checks (J);
6344 begin
6345 if SC.Killed = False
6346 and then SC.Entity = Ent
6347 and then SC.Offset = Ofs
6348 and then SC.Check_Type = Check_Type
6349 and then Within_Range_Of (Target_Type, SC.Target_Type)
6350 then
6351 Check_Num := J;
6352 return;
6353 end if;
6354 end;
6355 end loop;
6357 -- If we fall through entry was not found
6359 return;
6360 end Find_Check;
6362 ---------------------------------
6363 -- Generate_Discriminant_Check --
6364 ---------------------------------
6366 -- Note: the code for this procedure is derived from the
6367 -- Emit_Discriminant_Check Routine in trans.c.
6369 procedure Generate_Discriminant_Check (N : Node_Id) is
6370 Loc : constant Source_Ptr := Sloc (N);
6371 Pref : constant Node_Id := Prefix (N);
6372 Sel : constant Node_Id := Selector_Name (N);
6374 Orig_Comp : constant Entity_Id :=
6375 Original_Record_Component (Entity (Sel));
6376 -- The original component to be checked
6378 Discr_Fct : constant Entity_Id :=
6379 Discriminant_Checking_Func (Orig_Comp);
6380 -- The discriminant checking function
6382 Discr : Entity_Id;
6383 -- One discriminant to be checked in the type
6385 Real_Discr : Entity_Id;
6386 -- Actual discriminant in the call
6388 Pref_Type : Entity_Id;
6389 -- Type of relevant prefix (ignoring private/access stuff)
6391 Args : List_Id;
6392 -- List of arguments for function call
6394 Formal : Entity_Id;
6395 -- Keep track of the formal corresponding to the actual we build for
6396 -- each discriminant, in order to be able to perform the necessary type
6397 -- conversions.
6399 Scomp : Node_Id;
6400 -- Selected component reference for checking function argument
6402 begin
6403 Pref_Type := Etype (Pref);
6405 -- Force evaluation of the prefix, so that it does not get evaluated
6406 -- twice (once for the check, once for the actual reference). Such a
6407 -- double evaluation is always a potential source of inefficiency, and
6408 -- is functionally incorrect in the volatile case, or when the prefix
6409 -- may have side effects. A nonvolatile entity or a component of a
6410 -- nonvolatile entity requires no evaluation.
6412 if Is_Entity_Name (Pref) then
6413 if Treat_As_Volatile (Entity (Pref)) then
6414 Force_Evaluation (Pref, Name_Req => True);
6415 end if;
6417 elsif Treat_As_Volatile (Etype (Pref)) then
6418 Force_Evaluation (Pref, Name_Req => True);
6420 elsif Nkind (Pref) = N_Selected_Component
6421 and then Is_Entity_Name (Prefix (Pref))
6422 then
6423 null;
6425 else
6426 Force_Evaluation (Pref, Name_Req => True);
6427 end if;
6429 -- For a tagged type, use the scope of the original component to
6430 -- obtain the type, because ???
6432 if Is_Tagged_Type (Scope (Orig_Comp)) then
6433 Pref_Type := Scope (Orig_Comp);
6435 -- For an untagged derived type, use the discriminants of the parent
6436 -- which have been renamed in the derivation, possibly by a one-to-many
6437 -- discriminant constraint. For untagged type, initially get the Etype
6438 -- of the prefix
6440 else
6441 if Is_Derived_Type (Pref_Type)
6442 and then Number_Discriminants (Pref_Type) /=
6443 Number_Discriminants (Etype (Base_Type (Pref_Type)))
6444 then
6445 Pref_Type := Etype (Base_Type (Pref_Type));
6446 end if;
6447 end if;
6449 -- We definitely should have a checking function, This routine should
6450 -- not be called if no discriminant checking function is present.
6452 pragma Assert (Present (Discr_Fct));
6454 -- Create the list of the actual parameters for the call. This list
6455 -- is the list of the discriminant fields of the record expression to
6456 -- be discriminant checked.
6458 Args := New_List;
6459 Formal := First_Formal (Discr_Fct);
6460 Discr := First_Discriminant (Pref_Type);
6461 while Present (Discr) loop
6463 -- If we have a corresponding discriminant field, and a parent
6464 -- subtype is present, then we want to use the corresponding
6465 -- discriminant since this is the one with the useful value.
6467 if Present (Corresponding_Discriminant (Discr))
6468 and then Ekind (Pref_Type) = E_Record_Type
6469 and then Present (Parent_Subtype (Pref_Type))
6470 then
6471 Real_Discr := Corresponding_Discriminant (Discr);
6472 else
6473 Real_Discr := Discr;
6474 end if;
6476 -- Construct the reference to the discriminant
6478 Scomp :=
6479 Make_Selected_Component (Loc,
6480 Prefix =>
6481 Unchecked_Convert_To (Pref_Type,
6482 Duplicate_Subexpr (Pref)),
6483 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
6485 -- Manually analyze and resolve this selected component. We really
6486 -- want it just as it appears above, and do not want the expander
6487 -- playing discriminal games etc with this reference. Then we append
6488 -- the argument to the list we are gathering.
6490 Set_Etype (Scomp, Etype (Real_Discr));
6491 Set_Analyzed (Scomp, True);
6492 Append_To (Args, Convert_To (Etype (Formal), Scomp));
6494 Next_Formal_With_Extras (Formal);
6495 Next_Discriminant (Discr);
6496 end loop;
6498 -- Now build and insert the call
6500 Insert_Action (N,
6501 Make_Raise_Constraint_Error (Loc,
6502 Condition =>
6503 Make_Function_Call (Loc,
6504 Name => New_Occurrence_Of (Discr_Fct, Loc),
6505 Parameter_Associations => Args),
6506 Reason => CE_Discriminant_Check_Failed));
6507 end Generate_Discriminant_Check;
6509 ---------------------------
6510 -- Generate_Index_Checks --
6511 ---------------------------
6513 procedure Generate_Index_Checks (N : Node_Id) is
6515 function Entity_Of_Prefix return Entity_Id;
6516 -- Returns the entity of the prefix of N (or Empty if not found)
6518 ----------------------
6519 -- Entity_Of_Prefix --
6520 ----------------------
6522 function Entity_Of_Prefix return Entity_Id is
6523 P : Node_Id;
6525 begin
6526 P := Prefix (N);
6527 while not Is_Entity_Name (P) loop
6528 if not Nkind_In (P, N_Selected_Component,
6529 N_Indexed_Component)
6530 then
6531 return Empty;
6532 end if;
6534 P := Prefix (P);
6535 end loop;
6537 return Entity (P);
6538 end Entity_Of_Prefix;
6540 -- Local variables
6542 Loc : constant Source_Ptr := Sloc (N);
6543 A : constant Node_Id := Prefix (N);
6544 A_Ent : constant Entity_Id := Entity_Of_Prefix;
6545 Sub : Node_Id;
6547 -- Start of processing for Generate_Index_Checks
6549 begin
6550 -- Ignore call if the prefix is not an array since we have a serious
6551 -- error in the sources. Ignore it also if index checks are suppressed
6552 -- for array object or type.
6554 if not Is_Array_Type (Etype (A))
6555 or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
6556 or else Index_Checks_Suppressed (Etype (A))
6557 then
6558 return;
6560 -- The indexed component we are dealing with contains 'Loop_Entry in its
6561 -- prefix. This case arises when analysis has determined that constructs
6562 -- such as
6564 -- Prefix'Loop_Entry (Expr)
6565 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6567 -- require rewriting for error detection purposes. A side effect of this
6568 -- action is the generation of index checks that mention 'Loop_Entry.
6569 -- Delay the generation of the check until 'Loop_Entry has been properly
6570 -- expanded. This is done in Expand_Loop_Entry_Attributes.
6572 elsif Nkind (Prefix (N)) = N_Attribute_Reference
6573 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
6574 then
6575 return;
6576 end if;
6578 -- Generate a raise of constraint error with the appropriate reason and
6579 -- a condition of the form:
6581 -- Base_Type (Sub) not in Array'Range (Subscript)
6583 -- Note that the reason we generate the conversion to the base type here
6584 -- is that we definitely want the range check to take place, even if it
6585 -- looks like the subtype is OK. Optimization considerations that allow
6586 -- us to omit the check have already been taken into account in the
6587 -- setting of the Do_Range_Check flag earlier on.
6589 Sub := First (Expressions (N));
6591 -- Handle string literals
6593 if Ekind (Etype (A)) = E_String_Literal_Subtype then
6594 if Do_Range_Check (Sub) then
6595 Set_Do_Range_Check (Sub, False);
6597 -- For string literals we obtain the bounds of the string from the
6598 -- associated subtype.
6600 Insert_Action (N,
6601 Make_Raise_Constraint_Error (Loc,
6602 Condition =>
6603 Make_Not_In (Loc,
6604 Left_Opnd =>
6605 Convert_To (Base_Type (Etype (Sub)),
6606 Duplicate_Subexpr_Move_Checks (Sub)),
6607 Right_Opnd =>
6608 Make_Attribute_Reference (Loc,
6609 Prefix => New_Occurrence_Of (Etype (A), Loc),
6610 Attribute_Name => Name_Range)),
6611 Reason => CE_Index_Check_Failed));
6612 end if;
6614 -- General case
6616 else
6617 declare
6618 A_Idx : Node_Id := Empty;
6619 A_Range : Node_Id;
6620 Ind : Nat;
6621 Num : List_Id;
6622 Range_N : Node_Id;
6624 begin
6625 A_Idx := First_Index (Etype (A));
6626 Ind := 1;
6627 while Present (Sub) loop
6628 if Do_Range_Check (Sub) then
6629 Set_Do_Range_Check (Sub, False);
6631 -- Force evaluation except for the case of a simple name of
6632 -- a nonvolatile entity.
6634 if not Is_Entity_Name (Sub)
6635 or else Treat_As_Volatile (Entity (Sub))
6636 then
6637 Force_Evaluation (Sub);
6638 end if;
6640 if Nkind (A_Idx) = N_Range then
6641 A_Range := A_Idx;
6643 elsif Nkind (A_Idx) = N_Identifier
6644 or else Nkind (A_Idx) = N_Expanded_Name
6645 then
6646 A_Range := Scalar_Range (Entity (A_Idx));
6648 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
6649 A_Range := Range_Expression (Constraint (A_Idx));
6650 end if;
6652 -- For array objects with constant bounds we can generate
6653 -- the index check using the bounds of the type of the index
6655 if Present (A_Ent)
6656 and then Ekind (A_Ent) = E_Variable
6657 and then Is_Constant_Bound (Low_Bound (A_Range))
6658 and then Is_Constant_Bound (High_Bound (A_Range))
6659 then
6660 Range_N :=
6661 Make_Attribute_Reference (Loc,
6662 Prefix =>
6663 New_Occurrence_Of (Etype (A_Idx), Loc),
6664 Attribute_Name => Name_Range);
6666 -- For arrays with non-constant bounds we cannot generate
6667 -- the index check using the bounds of the type of the index
6668 -- since it may reference discriminants of some enclosing
6669 -- type. We obtain the bounds directly from the prefix
6670 -- object.
6672 else
6673 if Ind = 1 then
6674 Num := No_List;
6675 else
6676 Num := New_List (Make_Integer_Literal (Loc, Ind));
6677 end if;
6679 Range_N :=
6680 Make_Attribute_Reference (Loc,
6681 Prefix =>
6682 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
6683 Attribute_Name => Name_Range,
6684 Expressions => Num);
6685 end if;
6687 Insert_Action (N,
6688 Make_Raise_Constraint_Error (Loc,
6689 Condition =>
6690 Make_Not_In (Loc,
6691 Left_Opnd =>
6692 Convert_To (Base_Type (Etype (Sub)),
6693 Duplicate_Subexpr_Move_Checks (Sub)),
6694 Right_Opnd => Range_N),
6695 Reason => CE_Index_Check_Failed));
6696 end if;
6698 A_Idx := Next_Index (A_Idx);
6699 Ind := Ind + 1;
6700 Next (Sub);
6701 end loop;
6702 end;
6703 end if;
6704 end Generate_Index_Checks;
6706 --------------------------
6707 -- Generate_Range_Check --
6708 --------------------------
6710 procedure Generate_Range_Check
6711 (N : Node_Id;
6712 Target_Type : Entity_Id;
6713 Reason : RT_Exception_Code)
6715 Loc : constant Source_Ptr := Sloc (N);
6716 Source_Type : constant Entity_Id := Etype (N);
6717 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
6718 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
6720 procedure Convert_And_Check_Range;
6721 -- Convert the conversion operand to the target base type and save in
6722 -- a temporary. Then check the converted value against the range of the
6723 -- target subtype.
6725 -----------------------------
6726 -- Convert_And_Check_Range --
6727 -----------------------------
6729 procedure Convert_And_Check_Range is
6730 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
6732 begin
6733 -- We make a temporary to hold the value of the converted value
6734 -- (converted to the base type), and then do the test against this
6735 -- temporary. The conversion itself is replaced by an occurrence of
6736 -- Tnn and followed by the explicit range check. Note that checks
6737 -- are suppressed for this code, since we don't want a recursive
6738 -- range check popping up.
6740 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
6741 -- [constraint_error when Tnn not in Target_Type]
6743 Insert_Actions (N, New_List (
6744 Make_Object_Declaration (Loc,
6745 Defining_Identifier => Tnn,
6746 Object_Definition => New_Occurrence_Of (Target_Base_Type, Loc),
6747 Constant_Present => True,
6748 Expression =>
6749 Make_Type_Conversion (Loc,
6750 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
6751 Expression => Duplicate_Subexpr (N))),
6753 Make_Raise_Constraint_Error (Loc,
6754 Condition =>
6755 Make_Not_In (Loc,
6756 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6757 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6758 Reason => Reason)),
6759 Suppress => All_Checks);
6761 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6763 -- Set the type of N, because the declaration for Tnn might not
6764 -- be analyzed yet, as is the case if N appears within a record
6765 -- declaration, as a discriminant constraint or expression.
6767 Set_Etype (N, Target_Base_Type);
6768 end Convert_And_Check_Range;
6770 -- Start of processing for Generate_Range_Check
6772 begin
6773 -- First special case, if the source type is already within the range
6774 -- of the target type, then no check is needed (probably we should have
6775 -- stopped Do_Range_Check from being set in the first place, but better
6776 -- late than never in preventing junk code and junk flag settings.
6778 if In_Subrange_Of (Source_Type, Target_Type)
6780 -- We do NOT apply this if the source node is a literal, since in this
6781 -- case the literal has already been labeled as having the subtype of
6782 -- the target.
6784 and then not
6785 (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
6786 or else
6787 (Is_Entity_Name (N)
6788 and then Ekind (Entity (N)) = E_Enumeration_Literal))
6789 then
6790 Set_Do_Range_Check (N, False);
6791 return;
6792 end if;
6794 -- Here a check is needed. If the expander is not active, or if we are
6795 -- in GNATProve mode, then simply set the Do_Range_Check flag and we
6796 -- are done. In both these cases, we just want to see the range check
6797 -- flag set, we do not want to generate the explicit range check code.
6799 if GNATprove_Mode or else not Expander_Active then
6800 Set_Do_Range_Check (N, True);
6801 return;
6802 end if;
6804 -- Here we will generate an explicit range check, so we don't want to
6805 -- set the Do_Range check flag, since the range check is taken care of
6806 -- by the code we will generate.
6808 Set_Do_Range_Check (N, False);
6810 -- Force evaluation of the node, so that it does not get evaluated twice
6811 -- (once for the check, once for the actual reference). Such a double
6812 -- evaluation is always a potential source of inefficiency, and is
6813 -- functionally incorrect in the volatile case.
6815 -- We skip the evaluation of attribute references because, after these
6816 -- runtime checks are generated, the expander may need to rewrite this
6817 -- node (for example, see Attribute_Max_Size_In_Storage_Elements in
6818 -- Expand_N_Attribute_Reference).
6820 if Nkind (N) /= N_Attribute_Reference
6821 and then (not Is_Entity_Name (N)
6822 or else Treat_As_Volatile (Entity (N)))
6823 then
6824 Force_Evaluation (N, Mode => Strict);
6825 end if;
6827 -- The easiest case is when Source_Base_Type and Target_Base_Type are
6828 -- the same since in this case we can simply do a direct check of the
6829 -- value of N against the bounds of Target_Type.
6831 -- [constraint_error when N not in Target_Type]
6833 -- Note: this is by far the most common case, for example all cases of
6834 -- checks on the RHS of assignments are in this category, but not all
6835 -- cases are like this. Notably conversions can involve two types.
6837 if Source_Base_Type = Target_Base_Type then
6839 -- Insert the explicit range check. Note that we suppress checks for
6840 -- this code, since we don't want a recursive range check popping up.
6842 Insert_Action (N,
6843 Make_Raise_Constraint_Error (Loc,
6844 Condition =>
6845 Make_Not_In (Loc,
6846 Left_Opnd => Duplicate_Subexpr (N),
6847 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6848 Reason => Reason),
6849 Suppress => All_Checks);
6851 -- Next test for the case where the target type is within the bounds
6852 -- of the base type of the source type, since in this case we can
6853 -- simply convert these bounds to the base type of T to do the test.
6855 -- [constraint_error when N not in
6856 -- Source_Base_Type (Target_Type'First)
6857 -- ..
6858 -- Source_Base_Type(Target_Type'Last))]
6860 -- The conversions will always work and need no check
6862 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
6863 -- of converting from an enumeration value to an integer type, such as
6864 -- occurs for the case of generating a range check on Enum'Val(Exp)
6865 -- (which used to be handled by gigi). This is OK, since the conversion
6866 -- itself does not require a check.
6868 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
6870 -- Insert the explicit range check. Note that we suppress checks for
6871 -- this code, since we don't want a recursive range check popping up.
6873 if Is_Discrete_Type (Source_Base_Type)
6874 and then
6875 Is_Discrete_Type (Target_Base_Type)
6876 then
6877 Insert_Action (N,
6878 Make_Raise_Constraint_Error (Loc,
6879 Condition =>
6880 Make_Not_In (Loc,
6881 Left_Opnd => Duplicate_Subexpr (N),
6883 Right_Opnd =>
6884 Make_Range (Loc,
6885 Low_Bound =>
6886 Unchecked_Convert_To (Source_Base_Type,
6887 Make_Attribute_Reference (Loc,
6888 Prefix =>
6889 New_Occurrence_Of (Target_Type, Loc),
6890 Attribute_Name => Name_First)),
6892 High_Bound =>
6893 Unchecked_Convert_To (Source_Base_Type,
6894 Make_Attribute_Reference (Loc,
6895 Prefix =>
6896 New_Occurrence_Of (Target_Type, Loc),
6897 Attribute_Name => Name_Last)))),
6898 Reason => Reason),
6899 Suppress => All_Checks);
6901 -- For conversions involving at least one type that is not discrete,
6902 -- first convert to target type and then generate the range check.
6903 -- This avoids problems with values that are close to a bound of the
6904 -- target type that would fail a range check when done in a larger
6905 -- source type before converting but would pass if converted with
6906 -- rounding and then checked (such as in float-to-float conversions).
6908 else
6909 Convert_And_Check_Range;
6910 end if;
6912 -- Note that at this stage we now that the Target_Base_Type is not in
6913 -- the range of the Source_Base_Type (since even the Target_Type itself
6914 -- is not in this range). It could still be the case that Source_Type is
6915 -- in range of the target base type since we have not checked that case.
6917 -- If that is the case, we can freely convert the source to the target,
6918 -- and then test the target result against the bounds.
6920 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
6921 Convert_And_Check_Range;
6923 -- At this stage, we know that we have two scalar types, which are
6924 -- directly convertible, and where neither scalar type has a base
6925 -- range that is in the range of the other scalar type.
6927 -- The only way this can happen is with a signed and unsigned type.
6928 -- So test for these two cases:
6930 else
6931 -- Case of the source is unsigned and the target is signed
6933 if Is_Unsigned_Type (Source_Base_Type)
6934 and then not Is_Unsigned_Type (Target_Base_Type)
6935 then
6936 -- If the source is unsigned and the target is signed, then we
6937 -- know that the source is not shorter than the target (otherwise
6938 -- the source base type would be in the target base type range).
6940 -- In other words, the unsigned type is either the same size as
6941 -- the target, or it is larger. It cannot be smaller.
6943 pragma Assert
6944 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
6946 -- We only need to check the low bound if the low bound of the
6947 -- target type is non-negative. If the low bound of the target
6948 -- type is negative, then we know that we will fit fine.
6950 -- If the high bound of the target type is negative, then we
6951 -- know we have a constraint error, since we can't possibly
6952 -- have a negative source.
6954 -- With these two checks out of the way, we can do the check
6955 -- using the source type safely
6957 -- This is definitely the most annoying case.
6959 -- [constraint_error
6960 -- when (Target_Type'First >= 0
6961 -- and then
6962 -- N < Source_Base_Type (Target_Type'First))
6963 -- or else Target_Type'Last < 0
6964 -- or else N > Source_Base_Type (Target_Type'Last)];
6966 -- We turn off all checks since we know that the conversions
6967 -- will work fine, given the guards for negative values.
6969 Insert_Action (N,
6970 Make_Raise_Constraint_Error (Loc,
6971 Condition =>
6972 Make_Or_Else (Loc,
6973 Make_Or_Else (Loc,
6974 Left_Opnd =>
6975 Make_And_Then (Loc,
6976 Left_Opnd => Make_Op_Ge (Loc,
6977 Left_Opnd =>
6978 Make_Attribute_Reference (Loc,
6979 Prefix =>
6980 New_Occurrence_Of (Target_Type, Loc),
6981 Attribute_Name => Name_First),
6982 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
6984 Right_Opnd =>
6985 Make_Op_Lt (Loc,
6986 Left_Opnd => Duplicate_Subexpr (N),
6987 Right_Opnd =>
6988 Convert_To (Source_Base_Type,
6989 Make_Attribute_Reference (Loc,
6990 Prefix =>
6991 New_Occurrence_Of (Target_Type, Loc),
6992 Attribute_Name => Name_First)))),
6994 Right_Opnd =>
6995 Make_Op_Lt (Loc,
6996 Left_Opnd =>
6997 Make_Attribute_Reference (Loc,
6998 Prefix => New_Occurrence_Of (Target_Type, Loc),
6999 Attribute_Name => Name_Last),
7000 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
7002 Right_Opnd =>
7003 Make_Op_Gt (Loc,
7004 Left_Opnd => Duplicate_Subexpr (N),
7005 Right_Opnd =>
7006 Convert_To (Source_Base_Type,
7007 Make_Attribute_Reference (Loc,
7008 Prefix => New_Occurrence_Of (Target_Type, Loc),
7009 Attribute_Name => Name_Last)))),
7011 Reason => Reason),
7012 Suppress => All_Checks);
7014 -- Only remaining possibility is that the source is signed and
7015 -- the target is unsigned.
7017 else
7018 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
7019 and then Is_Unsigned_Type (Target_Base_Type));
7021 -- If the source is signed and the target is unsigned, then we
7022 -- know that the target is not shorter than the source (otherwise
7023 -- the target base type would be in the source base type range).
7025 -- In other words, the unsigned type is either the same size as
7026 -- the target, or it is larger. It cannot be smaller.
7028 -- Clearly we have an error if the source value is negative since
7029 -- no unsigned type can have negative values. If the source type
7030 -- is non-negative, then the check can be done using the target
7031 -- type.
7033 -- Tnn : constant Target_Base_Type (N) := Target_Type;
7035 -- [constraint_error
7036 -- when N < 0 or else Tnn not in Target_Type];
7038 -- We turn off all checks for the conversion of N to the target
7039 -- base type, since we generate the explicit check to ensure that
7040 -- the value is non-negative
7042 declare
7043 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
7045 begin
7046 Insert_Actions (N, New_List (
7047 Make_Object_Declaration (Loc,
7048 Defining_Identifier => Tnn,
7049 Object_Definition =>
7050 New_Occurrence_Of (Target_Base_Type, Loc),
7051 Constant_Present => True,
7052 Expression =>
7053 Make_Unchecked_Type_Conversion (Loc,
7054 Subtype_Mark =>
7055 New_Occurrence_Of (Target_Base_Type, Loc),
7056 Expression => Duplicate_Subexpr (N))),
7058 Make_Raise_Constraint_Error (Loc,
7059 Condition =>
7060 Make_Or_Else (Loc,
7061 Left_Opnd =>
7062 Make_Op_Lt (Loc,
7063 Left_Opnd => Duplicate_Subexpr (N),
7064 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7066 Right_Opnd =>
7067 Make_Not_In (Loc,
7068 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
7069 Right_Opnd =>
7070 New_Occurrence_Of (Target_Type, Loc))),
7072 Reason => Reason)),
7073 Suppress => All_Checks);
7075 -- Set the Etype explicitly, because Insert_Actions may have
7076 -- placed the declaration in the freeze list for an enclosing
7077 -- construct, and thus it is not analyzed yet.
7079 Set_Etype (Tnn, Target_Base_Type);
7080 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7081 end;
7082 end if;
7083 end if;
7084 end Generate_Range_Check;
7086 ------------------
7087 -- Get_Check_Id --
7088 ------------------
7090 function Get_Check_Id (N : Name_Id) return Check_Id is
7091 begin
7092 -- For standard check name, we can do a direct computation
7094 if N in First_Check_Name .. Last_Check_Name then
7095 return Check_Id (N - (First_Check_Name - 1));
7097 -- For non-standard names added by pragma Check_Name, search table
7099 else
7100 for J in All_Checks + 1 .. Check_Names.Last loop
7101 if Check_Names.Table (J) = N then
7102 return J;
7103 end if;
7104 end loop;
7105 end if;
7107 -- No matching name found
7109 return No_Check_Id;
7110 end Get_Check_Id;
7112 ---------------------
7113 -- Get_Discriminal --
7114 ---------------------
7116 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
7117 Loc : constant Source_Ptr := Sloc (E);
7118 D : Entity_Id;
7119 Sc : Entity_Id;
7121 begin
7122 -- The bound can be a bona fide parameter of a protected operation,
7123 -- rather than a prival encoded as an in-parameter.
7125 if No (Discriminal_Link (Entity (Bound))) then
7126 return Bound;
7127 end if;
7129 -- Climb the scope stack looking for an enclosing protected type. If
7130 -- we run out of scopes, return the bound itself.
7132 Sc := Scope (E);
7133 while Present (Sc) loop
7134 if Sc = Standard_Standard then
7135 return Bound;
7136 elsif Ekind (Sc) = E_Protected_Type then
7137 exit;
7138 end if;
7140 Sc := Scope (Sc);
7141 end loop;
7143 D := First_Discriminant (Sc);
7144 while Present (D) loop
7145 if Chars (D) = Chars (Bound) then
7146 return New_Occurrence_Of (Discriminal (D), Loc);
7147 end if;
7149 Next_Discriminant (D);
7150 end loop;
7152 return Bound;
7153 end Get_Discriminal;
7155 ----------------------
7156 -- Get_Range_Checks --
7157 ----------------------
7159 function Get_Range_Checks
7160 (Ck_Node : Node_Id;
7161 Target_Typ : Entity_Id;
7162 Source_Typ : Entity_Id := Empty;
7163 Warn_Node : Node_Id := Empty) return Check_Result
7165 begin
7166 return
7167 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
7168 end Get_Range_Checks;
7170 ------------------
7171 -- Guard_Access --
7172 ------------------
7174 function Guard_Access
7175 (Cond : Node_Id;
7176 Loc : Source_Ptr;
7177 Ck_Node : Node_Id) return Node_Id
7179 begin
7180 if Nkind (Cond) = N_Or_Else then
7181 Set_Paren_Count (Cond, 1);
7182 end if;
7184 if Nkind (Ck_Node) = N_Allocator then
7185 return Cond;
7187 else
7188 return
7189 Make_And_Then (Loc,
7190 Left_Opnd =>
7191 Make_Op_Ne (Loc,
7192 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
7193 Right_Opnd => Make_Null (Loc)),
7194 Right_Opnd => Cond);
7195 end if;
7196 end Guard_Access;
7198 -----------------------------
7199 -- Index_Checks_Suppressed --
7200 -----------------------------
7202 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
7203 begin
7204 if Present (E) and then Checks_May_Be_Suppressed (E) then
7205 return Is_Check_Suppressed (E, Index_Check);
7206 else
7207 return Scope_Suppress.Suppress (Index_Check);
7208 end if;
7209 end Index_Checks_Suppressed;
7211 ----------------
7212 -- Initialize --
7213 ----------------
7215 procedure Initialize is
7216 begin
7217 for J in Determine_Range_Cache_N'Range loop
7218 Determine_Range_Cache_N (J) := Empty;
7219 end loop;
7221 Check_Names.Init;
7223 for J in Int range 1 .. All_Checks loop
7224 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
7225 end loop;
7226 end Initialize;
7228 -------------------------
7229 -- Insert_Range_Checks --
7230 -------------------------
7232 procedure Insert_Range_Checks
7233 (Checks : Check_Result;
7234 Node : Node_Id;
7235 Suppress_Typ : Entity_Id;
7236 Static_Sloc : Source_Ptr := No_Location;
7237 Flag_Node : Node_Id := Empty;
7238 Do_Before : Boolean := False)
7240 Checks_On : constant Boolean :=
7241 not Index_Checks_Suppressed (Suppress_Typ)
7242 or else
7243 not Range_Checks_Suppressed (Suppress_Typ);
7245 Check_Node : Node_Id;
7246 Internal_Flag_Node : Node_Id := Flag_Node;
7247 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
7249 begin
7250 -- For now we just return if Checks_On is false, however this should be
7251 -- enhanced to check for an always True value in the condition and to
7252 -- generate a compilation warning???
7254 if not Expander_Active or not Checks_On then
7255 return;
7256 end if;
7258 if Static_Sloc = No_Location then
7259 Internal_Static_Sloc := Sloc (Node);
7260 end if;
7262 if No (Flag_Node) then
7263 Internal_Flag_Node := Node;
7264 end if;
7266 for J in 1 .. 2 loop
7267 exit when No (Checks (J));
7269 if Nkind (Checks (J)) = N_Raise_Constraint_Error
7270 and then Present (Condition (Checks (J)))
7271 then
7272 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
7273 Check_Node := Checks (J);
7274 Mark_Rewrite_Insertion (Check_Node);
7276 if Do_Before then
7277 Insert_Before_And_Analyze (Node, Check_Node);
7278 else
7279 Insert_After_And_Analyze (Node, Check_Node);
7280 end if;
7282 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
7283 end if;
7285 else
7286 Check_Node :=
7287 Make_Raise_Constraint_Error (Internal_Static_Sloc,
7288 Reason => CE_Range_Check_Failed);
7289 Mark_Rewrite_Insertion (Check_Node);
7291 if Do_Before then
7292 Insert_Before_And_Analyze (Node, Check_Node);
7293 else
7294 Insert_After_And_Analyze (Node, Check_Node);
7295 end if;
7296 end if;
7297 end loop;
7298 end Insert_Range_Checks;
7300 ------------------------
7301 -- Insert_Valid_Check --
7302 ------------------------
7304 procedure Insert_Valid_Check
7305 (Expr : Node_Id;
7306 Related_Id : Entity_Id := Empty;
7307 Is_Low_Bound : Boolean := False;
7308 Is_High_Bound : Boolean := False)
7310 Loc : constant Source_Ptr := Sloc (Expr);
7311 Typ : constant Entity_Id := Etype (Expr);
7312 Exp : Node_Id;
7314 begin
7315 -- Do not insert if checks off, or if not checking validity or if
7316 -- expression is known to be valid.
7318 if not Validity_Checks_On
7319 or else Range_Or_Validity_Checks_Suppressed (Expr)
7320 or else Expr_Known_Valid (Expr)
7321 then
7322 return;
7324 -- Do not insert checks within a predicate function. This will arise
7325 -- if the current unit and the predicate function are being compiled
7326 -- with validity checks enabled.
7328 elsif Present (Predicate_Function (Typ))
7329 and then Current_Scope = Predicate_Function (Typ)
7330 then
7331 return;
7333 -- If the expression is a packed component of a modular type of the
7334 -- right size, the data is always valid.
7336 elsif Nkind (Expr) = N_Selected_Component
7337 and then Present (Component_Clause (Entity (Selector_Name (Expr))))
7338 and then Is_Modular_Integer_Type (Typ)
7339 and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
7340 then
7341 return;
7343 -- Do not generate a validity check when inside a generic unit as this
7344 -- is an expansion activity.
7346 elsif Inside_A_Generic then
7347 return;
7348 end if;
7350 -- If we have a checked conversion, then validity check applies to
7351 -- the expression inside the conversion, not the result, since if
7352 -- the expression inside is valid, then so is the conversion result.
7354 Exp := Expr;
7355 while Nkind (Exp) = N_Type_Conversion loop
7356 Exp := Expression (Exp);
7357 end loop;
7359 -- Do not generate a check for a variable which already validates the
7360 -- value of an assignable object.
7362 if Is_Validation_Variable_Reference (Exp) then
7363 return;
7364 end if;
7366 declare
7367 CE : Node_Id;
7368 PV : Node_Id;
7369 Var_Id : Entity_Id;
7371 begin
7372 -- If the expression denotes an assignable object, capture its value
7373 -- in a variable and replace the original expression by the variable.
7374 -- This approach has several effects:
7376 -- 1) The evaluation of the object results in only one read in the
7377 -- case where the object is atomic or volatile.
7379 -- Var ... := Object; -- read
7381 -- 2) The captured value is the one verified by attribute 'Valid.
7382 -- As a result the object is not evaluated again, which would
7383 -- result in an unwanted read in the case where the object is
7384 -- atomic or volatile.
7386 -- if not Var'Valid then -- OK, no read of Object
7388 -- if not Object'Valid then -- Wrong, extra read of Object
7390 -- 3) The captured value replaces the original object reference.
7391 -- As a result the object is not evaluated again, in the same
7392 -- vein as 2).
7394 -- ... Var ... -- OK, no read of Object
7396 -- ... Object ... -- Wrong, extra read of Object
7398 -- 4) The use of a variable to capture the value of the object
7399 -- allows the propagation of any changes back to the original
7400 -- object.
7402 -- procedure Call (Val : in out ...);
7404 -- Var : ... := Object; -- read Object
7405 -- if not Var'Valid then -- validity check
7406 -- Call (Var); -- modify Var
7407 -- Object := Var; -- update Object
7409 if Is_Variable (Exp) then
7410 Var_Id := Make_Temporary (Loc, 'T', Exp);
7412 -- Because we could be dealing with a transient scope which would
7413 -- cause our object declaration to remain unanalyzed we must do
7414 -- some manual decoration.
7416 Set_Ekind (Var_Id, E_Variable);
7417 Set_Etype (Var_Id, Typ);
7419 Insert_Action (Exp,
7420 Make_Object_Declaration (Loc,
7421 Defining_Identifier => Var_Id,
7422 Object_Definition => New_Occurrence_Of (Typ, Loc),
7423 Expression => New_Copy_Tree (Exp)),
7424 Suppress => Validity_Check);
7426 Set_Validated_Object (Var_Id, New_Copy_Tree (Exp));
7427 Rewrite (Exp, New_Occurrence_Of (Var_Id, Loc));
7428 PV := New_Occurrence_Of (Var_Id, Loc);
7430 -- Copy the Do_Range_Check flag over to the new Exp, so it doesn't
7431 -- get lost. Floating point types are handled elsewhere.
7433 if not Is_Floating_Point_Type (Typ) then
7434 Set_Do_Range_Check (Exp, Do_Range_Check (Original_Node (Exp)));
7435 end if;
7437 -- Otherwise the expression does not denote a variable. Force its
7438 -- evaluation by capturing its value in a constant. Generate:
7440 -- Temp : constant ... := Exp;
7442 else
7443 Force_Evaluation
7444 (Exp => Exp,
7445 Related_Id => Related_Id,
7446 Is_Low_Bound => Is_Low_Bound,
7447 Is_High_Bound => Is_High_Bound);
7449 PV := New_Copy_Tree (Exp);
7450 end if;
7452 -- A rather specialized test. If PV is an analyzed expression which
7453 -- is an indexed component of a packed array that has not been
7454 -- properly expanded, turn off its Analyzed flag to make sure it
7455 -- gets properly reexpanded. If the prefix is an access value,
7456 -- the dereference will be added later.
7458 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
7459 -- an analyze with the old parent pointer. This may point e.g. to
7460 -- a subprogram call, which deactivates this expansion.
7462 if Analyzed (PV)
7463 and then Nkind (PV) = N_Indexed_Component
7464 and then Is_Array_Type (Etype (Prefix (PV)))
7465 and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
7466 then
7467 Set_Analyzed (PV, False);
7468 end if;
7470 -- Build the raise CE node to check for validity. We build a type
7471 -- qualification for the prefix, since it may not be of the form of
7472 -- a name, and we don't care in this context!
7474 CE :=
7475 Make_Raise_Constraint_Error (Loc,
7476 Condition =>
7477 Make_Op_Not (Loc,
7478 Right_Opnd =>
7479 Make_Attribute_Reference (Loc,
7480 Prefix => PV,
7481 Attribute_Name => Name_Valid)),
7482 Reason => CE_Invalid_Data);
7484 -- Insert the validity check. Note that we do this with validity
7485 -- checks turned off, to avoid recursion, we do not want validity
7486 -- checks on the validity checking code itself.
7488 Insert_Action (Expr, CE, Suppress => Validity_Check);
7490 -- If the expression is a reference to an element of a bit-packed
7491 -- array, then it is rewritten as a renaming declaration. If the
7492 -- expression is an actual in a call, it has not been expanded,
7493 -- waiting for the proper point at which to do it. The same happens
7494 -- with renamings, so that we have to force the expansion now. This
7495 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7496 -- and exp_ch6.adb.
7498 if Is_Entity_Name (Exp)
7499 and then Nkind (Parent (Entity (Exp))) =
7500 N_Object_Renaming_Declaration
7501 then
7502 declare
7503 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
7504 begin
7505 if Nkind (Old_Exp) = N_Indexed_Component
7506 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
7507 then
7508 Expand_Packed_Element_Reference (Old_Exp);
7509 end if;
7510 end;
7511 end if;
7512 end;
7513 end Insert_Valid_Check;
7515 -------------------------------------
7516 -- Is_Signed_Integer_Arithmetic_Op --
7517 -------------------------------------
7519 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
7520 begin
7521 case Nkind (N) is
7522 when N_Op_Abs
7523 | N_Op_Add
7524 | N_Op_Divide
7525 | N_Op_Expon
7526 | N_Op_Minus
7527 | N_Op_Mod
7528 | N_Op_Multiply
7529 | N_Op_Plus
7530 | N_Op_Rem
7531 | N_Op_Subtract
7533 return Is_Signed_Integer_Type (Etype (N));
7535 when N_Case_Expression
7536 | N_If_Expression
7538 return Is_Signed_Integer_Type (Etype (N));
7540 when others =>
7541 return False;
7542 end case;
7543 end Is_Signed_Integer_Arithmetic_Op;
7545 ----------------------------------
7546 -- Install_Null_Excluding_Check --
7547 ----------------------------------
7549 procedure Install_Null_Excluding_Check (N : Node_Id) is
7550 Loc : constant Source_Ptr := Sloc (Parent (N));
7551 Typ : constant Entity_Id := Etype (N);
7553 function Safe_To_Capture_In_Parameter_Value return Boolean;
7554 -- Determines if it is safe to capture Known_Non_Null status for an
7555 -- the entity referenced by node N. The caller ensures that N is indeed
7556 -- an entity name. It is safe to capture the non-null status for an IN
7557 -- parameter when the reference occurs within a declaration that is sure
7558 -- to be executed as part of the declarative region.
7560 procedure Mark_Non_Null;
7561 -- After installation of check, if the node in question is an entity
7562 -- name, then mark this entity as non-null if possible.
7564 function Safe_To_Capture_In_Parameter_Value return Boolean is
7565 E : constant Entity_Id := Entity (N);
7566 S : constant Entity_Id := Current_Scope;
7567 S_Par : Node_Id;
7569 begin
7570 if Ekind (E) /= E_In_Parameter then
7571 return False;
7572 end if;
7574 -- Two initial context checks. We must be inside a subprogram body
7575 -- with declarations and reference must not appear in nested scopes.
7577 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
7578 or else Scope (E) /= S
7579 then
7580 return False;
7581 end if;
7583 S_Par := Parent (Parent (S));
7585 if Nkind (S_Par) /= N_Subprogram_Body
7586 or else No (Declarations (S_Par))
7587 then
7588 return False;
7589 end if;
7591 declare
7592 N_Decl : Node_Id;
7593 P : Node_Id;
7595 begin
7596 -- Retrieve the declaration node of N (if any). Note that N
7597 -- may be a part of a complex initialization expression.
7599 P := Parent (N);
7600 N_Decl := Empty;
7601 while Present (P) loop
7603 -- If we have a short circuit form, and we are within the right
7604 -- hand expression, we return false, since the right hand side
7605 -- is not guaranteed to be elaborated.
7607 if Nkind (P) in N_Short_Circuit
7608 and then N = Right_Opnd (P)
7609 then
7610 return False;
7611 end if;
7613 -- Similarly, if we are in an if expression and not part of the
7614 -- condition, then we return False, since neither the THEN or
7615 -- ELSE dependent expressions will always be elaborated.
7617 if Nkind (P) = N_If_Expression
7618 and then N /= First (Expressions (P))
7619 then
7620 return False;
7621 end if;
7623 -- If within a case expression, and not part of the expression,
7624 -- then return False, since a particular dependent expression
7625 -- may not always be elaborated
7627 if Nkind (P) = N_Case_Expression
7628 and then N /= Expression (P)
7629 then
7630 return False;
7631 end if;
7633 -- While traversing the parent chain, if node N belongs to a
7634 -- statement, then it may never appear in a declarative region.
7636 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
7637 or else Nkind (P) = N_Procedure_Call_Statement
7638 then
7639 return False;
7640 end if;
7642 -- If we are at a declaration, record it and exit
7644 if Nkind (P) in N_Declaration
7645 and then Nkind (P) not in N_Subprogram_Specification
7646 then
7647 N_Decl := P;
7648 exit;
7649 end if;
7651 P := Parent (P);
7652 end loop;
7654 if No (N_Decl) then
7655 return False;
7656 end if;
7658 return List_Containing (N_Decl) = Declarations (S_Par);
7659 end;
7660 end Safe_To_Capture_In_Parameter_Value;
7662 -------------------
7663 -- Mark_Non_Null --
7664 -------------------
7666 procedure Mark_Non_Null is
7667 begin
7668 -- Only case of interest is if node N is an entity name
7670 if Is_Entity_Name (N) then
7672 -- For sure, we want to clear an indication that this is known to
7673 -- be null, since if we get past this check, it definitely is not.
7675 Set_Is_Known_Null (Entity (N), False);
7677 -- We can mark the entity as known to be non-null if either it is
7678 -- safe to capture the value, or in the case of an IN parameter,
7679 -- which is a constant, if the check we just installed is in the
7680 -- declarative region of the subprogram body. In this latter case,
7681 -- a check is decisive for the rest of the body if the expression
7682 -- is sure to be elaborated, since we know we have to elaborate
7683 -- all declarations before executing the body.
7685 -- Couldn't this always be part of Safe_To_Capture_Value ???
7687 if Safe_To_Capture_Value (N, Entity (N))
7688 or else Safe_To_Capture_In_Parameter_Value
7689 then
7690 Set_Is_Known_Non_Null (Entity (N));
7691 end if;
7692 end if;
7693 end Mark_Non_Null;
7695 -- Start of processing for Install_Null_Excluding_Check
7697 begin
7698 pragma Assert (Is_Access_Type (Typ));
7700 -- No check inside a generic, check will be emitted in instance
7702 if Inside_A_Generic then
7703 return;
7704 end if;
7706 -- No check needed if known to be non-null
7708 if Known_Non_Null (N) then
7709 return;
7710 end if;
7712 -- If known to be null, here is where we generate a compile time check
7714 if Known_Null (N) then
7716 -- Avoid generating warning message inside init procs. In SPARK mode
7717 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
7718 -- since it will be turned into an error in any case.
7720 if (not Inside_Init_Proc or else SPARK_Mode = On)
7722 -- Do not emit the warning within a conditional expression,
7723 -- where the expression might not be evaluated, and the warning
7724 -- appear as extraneous noise.
7726 and then not Within_Case_Or_If_Expression (N)
7727 then
7728 Apply_Compile_Time_Constraint_Error
7729 (N, "null value not allowed here??", CE_Access_Check_Failed);
7731 -- Remaining cases, where we silently insert the raise
7733 else
7734 Insert_Action (N,
7735 Make_Raise_Constraint_Error (Loc,
7736 Reason => CE_Access_Check_Failed));
7737 end if;
7739 Mark_Non_Null;
7740 return;
7741 end if;
7743 -- If entity is never assigned, for sure a warning is appropriate
7745 if Is_Entity_Name (N) then
7746 Check_Unset_Reference (N);
7747 end if;
7749 -- No check needed if checks are suppressed on the range. Note that we
7750 -- don't set Is_Known_Non_Null in this case (we could legitimately do
7751 -- so, since the program is erroneous, but we don't like to casually
7752 -- propagate such conclusions from erroneosity).
7754 if Access_Checks_Suppressed (Typ) then
7755 return;
7756 end if;
7758 -- No check needed for access to concurrent record types generated by
7759 -- the expander. This is not just an optimization (though it does indeed
7760 -- remove junk checks). It also avoids generation of junk warnings.
7762 if Nkind (N) in N_Has_Chars
7763 and then Chars (N) = Name_uObject
7764 and then Is_Concurrent_Record_Type
7765 (Directly_Designated_Type (Etype (N)))
7766 then
7767 return;
7768 end if;
7770 -- No check needed in interface thunks since the runtime check is
7771 -- already performed at the caller side.
7773 if Is_Thunk (Current_Scope) then
7774 return;
7775 end if;
7777 -- No check needed for the Get_Current_Excep.all.all idiom generated by
7778 -- the expander within exception handlers, since we know that the value
7779 -- can never be null.
7781 -- Is this really the right way to do this? Normally we generate such
7782 -- code in the expander with checks off, and that's how we suppress this
7783 -- kind of junk check ???
7785 if Nkind (N) = N_Function_Call
7786 and then Nkind (Name (N)) = N_Explicit_Dereference
7787 and then Nkind (Prefix (Name (N))) = N_Identifier
7788 and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
7789 then
7790 return;
7791 end if;
7793 -- Otherwise install access check
7795 Insert_Action (N,
7796 Make_Raise_Constraint_Error (Loc,
7797 Condition =>
7798 Make_Op_Eq (Loc,
7799 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
7800 Right_Opnd => Make_Null (Loc)),
7801 Reason => CE_Access_Check_Failed));
7803 Mark_Non_Null;
7804 end Install_Null_Excluding_Check;
7806 -----------------------------------------
7807 -- Install_Primitive_Elaboration_Check --
7808 -----------------------------------------
7810 procedure Install_Primitive_Elaboration_Check (Subp_Body : Node_Id) is
7811 function Within_Compilation_Unit_Instance
7812 (Subp_Id : Entity_Id) return Boolean;
7813 -- Determine whether subprogram Subp_Id appears within an instance which
7814 -- acts as a compilation unit.
7816 --------------------------------------
7817 -- Within_Compilation_Unit_Instance --
7818 --------------------------------------
7820 function Within_Compilation_Unit_Instance
7821 (Subp_Id : Entity_Id) return Boolean
7823 Pack : Entity_Id;
7825 begin
7826 -- Examine the scope chain looking for a compilation-unit-level
7827 -- instance.
7829 Pack := Scope (Subp_Id);
7830 while Present (Pack) and then Pack /= Standard_Standard loop
7831 if Ekind (Pack) = E_Package
7832 and then Is_Generic_Instance (Pack)
7833 and then Nkind (Parent (Unit_Declaration_Node (Pack))) =
7834 N_Compilation_Unit
7835 then
7836 return True;
7837 end if;
7839 Pack := Scope (Pack);
7840 end loop;
7842 return False;
7843 end Within_Compilation_Unit_Instance;
7845 -- Local declarations
7847 Context : constant Node_Id := Parent (Subp_Body);
7848 Loc : constant Source_Ptr := Sloc (Subp_Body);
7849 Subp_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Body);
7850 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
7852 Decls : List_Id;
7853 Flag_Id : Entity_Id;
7854 Set_Ins : Node_Id;
7855 Set_Stmt : Node_Id;
7856 Tag_Typ : Entity_Id;
7858 -- Start of processing for Install_Primitive_Elaboration_Check
7860 begin
7861 -- Do not generate an elaboration check in compilation modes where
7862 -- expansion is not desirable.
7864 if ASIS_Mode or GNATprove_Mode then
7865 return;
7867 -- Do not generate an elaboration check if all checks have been
7868 -- suppressed.
7870 elsif Suppress_Checks then
7871 return;
7873 -- Do not generate an elaboration check if the related subprogram is
7874 -- not subjected to accessibility checks.
7876 elsif Elaboration_Checks_Suppressed (Subp_Id) then
7877 return;
7879 -- Do not generate an elaboration check if such code is not desirable
7881 elsif Restriction_Active (No_Elaboration_Code) then
7882 return;
7884 -- Do not consider subprograms which act as compilation units, because
7885 -- they cannot be the target of a dispatching call.
7887 elsif Nkind (Context) = N_Compilation_Unit then
7888 return;
7890 -- Do not consider anything other than nonabstract library-level source
7891 -- primitives.
7893 elsif not
7894 (Comes_From_Source (Subp_Id)
7895 and then Is_Library_Level_Entity (Subp_Id)
7896 and then Is_Primitive (Subp_Id)
7897 and then not Is_Abstract_Subprogram (Subp_Id))
7898 then
7899 return;
7901 -- Do not consider inlined primitives, because once the body is inlined
7902 -- the reference to the elaboration flag will be out of place and will
7903 -- result in an undefined symbol.
7905 elsif Is_Inlined (Subp_Id) or else Has_Pragma_Inline (Subp_Id) then
7906 return;
7908 -- Do not generate a duplicate elaboration check. This happens only in
7909 -- the case of primitives completed by an expression function, as the
7910 -- corresponding body is apparently analyzed and expanded twice.
7912 elsif Analyzed (Subp_Body) then
7913 return;
7915 -- Do not consider primitives which occur within an instance that acts
7916 -- as a compilation unit. Such an instance defines its spec and body out
7917 -- of order (body is first) within the tree, which causes the reference
7918 -- to the elaboration flag to appear as an undefined symbol.
7920 elsif Within_Compilation_Unit_Instance (Subp_Id) then
7921 return;
7922 end if;
7924 Tag_Typ := Find_Dispatching_Type (Subp_Id);
7926 -- Only tagged primitives may be the target of a dispatching call
7928 if No (Tag_Typ) then
7929 return;
7931 -- Do not consider finalization-related primitives, because they may
7932 -- need to be called while elaboration is taking place.
7934 elsif Is_Controlled (Tag_Typ)
7935 and then Nam_In (Chars (Subp_Id), Name_Adjust,
7936 Name_Finalize,
7937 Name_Initialize)
7938 then
7939 return;
7940 end if;
7942 -- Create the declaration of the elaboration flag. The name carries a
7943 -- unique counter in case of name overloading.
7945 Flag_Id :=
7946 Make_Defining_Identifier (Loc,
7947 Chars => New_External_Name (Chars (Subp_Id), 'E', -1));
7948 Set_Is_Frozen (Flag_Id);
7950 -- Insert the declaration of the elaboration flag in front of the
7951 -- primitive spec and analyze it in the proper context.
7953 Push_Scope (Scope (Subp_Id));
7955 -- Generate:
7956 -- E : Boolean := False;
7958 Insert_Action (Subp_Decl,
7959 Make_Object_Declaration (Loc,
7960 Defining_Identifier => Flag_Id,
7961 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
7962 Expression => New_Occurrence_Of (Standard_False, Loc)));
7963 Pop_Scope;
7965 -- Prevent the compiler from optimizing the elaboration check by killing
7966 -- the current value of the flag and the associated assignment.
7968 Set_Current_Value (Flag_Id, Empty);
7969 Set_Last_Assignment (Flag_Id, Empty);
7971 -- Add a check at the top of the body declarations to ensure that the
7972 -- elaboration flag has been set.
7974 Decls := Declarations (Subp_Body);
7976 if No (Decls) then
7977 Decls := New_List;
7978 Set_Declarations (Subp_Body, Decls);
7979 end if;
7981 -- Generate:
7982 -- if not F then
7983 -- raise Program_Error with "access before elaboration";
7984 -- end if;
7986 Prepend_To (Decls,
7987 Make_Raise_Program_Error (Loc,
7988 Condition =>
7989 Make_Op_Not (Loc,
7990 Right_Opnd => New_Occurrence_Of (Flag_Id, Loc)),
7991 Reason => PE_Access_Before_Elaboration));
7993 Analyze (First (Decls));
7995 -- Set the elaboration flag once the body has been elaborated. Insert
7996 -- the statement after the subprogram stub when the primitive body is
7997 -- a subunit.
7999 if Nkind (Context) = N_Subunit then
8000 Set_Ins := Corresponding_Stub (Context);
8001 else
8002 Set_Ins := Subp_Body;
8003 end if;
8005 -- Generate:
8006 -- E := True;
8008 Set_Stmt :=
8009 Make_Assignment_Statement (Loc,
8010 Name => New_Occurrence_Of (Flag_Id, Loc),
8011 Expression => New_Occurrence_Of (Standard_True, Loc));
8013 -- Mark the assignment statement as elaboration code. This allows the
8014 -- early call region mechanism (see Sem_Elab) to properly ignore such
8015 -- assignments even though they are non-preelaborable code.
8017 Set_Is_Elaboration_Code (Set_Stmt);
8019 Insert_After_And_Analyze (Set_Ins, Set_Stmt);
8020 end Install_Primitive_Elaboration_Check;
8022 --------------------------
8023 -- Install_Static_Check --
8024 --------------------------
8026 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
8027 Stat : constant Boolean := Is_OK_Static_Expression (R_Cno);
8028 Typ : constant Entity_Id := Etype (R_Cno);
8030 begin
8031 Rewrite (R_Cno,
8032 Make_Raise_Constraint_Error (Loc,
8033 Reason => CE_Range_Check_Failed));
8034 Set_Analyzed (R_Cno);
8035 Set_Etype (R_Cno, Typ);
8036 Set_Raises_Constraint_Error (R_Cno);
8037 Set_Is_Static_Expression (R_Cno, Stat);
8039 -- Now deal with possible local raise handling
8041 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
8042 end Install_Static_Check;
8044 -------------------------
8045 -- Is_Check_Suppressed --
8046 -------------------------
8048 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
8049 Ptr : Suppress_Stack_Entry_Ptr;
8051 begin
8052 -- First search the local entity suppress stack. We search this from the
8053 -- top of the stack down so that we get the innermost entry that applies
8054 -- to this case if there are nested entries.
8056 Ptr := Local_Suppress_Stack_Top;
8057 while Ptr /= null loop
8058 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8059 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8060 then
8061 return Ptr.Suppress;
8062 end if;
8064 Ptr := Ptr.Prev;
8065 end loop;
8067 -- Now search the global entity suppress table for a matching entry.
8068 -- We also search this from the top down so that if there are multiple
8069 -- pragmas for the same entity, the last one applies (not clear what
8070 -- or whether the RM specifies this handling, but it seems reasonable).
8072 Ptr := Global_Suppress_Stack_Top;
8073 while Ptr /= null loop
8074 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8075 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8076 then
8077 return Ptr.Suppress;
8078 end if;
8080 Ptr := Ptr.Prev;
8081 end loop;
8083 -- If we did not find a matching entry, then use the normal scope
8084 -- suppress value after all (actually this will be the global setting
8085 -- since it clearly was not overridden at any point). For a predefined
8086 -- check, we test the specific flag. For a user defined check, we check
8087 -- the All_Checks flag. The Overflow flag requires special handling to
8088 -- deal with the General vs Assertion case.
8090 if C = Overflow_Check then
8091 return Overflow_Checks_Suppressed (Empty);
8093 elsif C in Predefined_Check_Id then
8094 return Scope_Suppress.Suppress (C);
8096 else
8097 return Scope_Suppress.Suppress (All_Checks);
8098 end if;
8099 end Is_Check_Suppressed;
8101 ---------------------
8102 -- Kill_All_Checks --
8103 ---------------------
8105 procedure Kill_All_Checks is
8106 begin
8107 if Debug_Flag_CC then
8108 w ("Kill_All_Checks");
8109 end if;
8111 -- We reset the number of saved checks to zero, and also modify all
8112 -- stack entries for statement ranges to indicate that the number of
8113 -- checks at each level is now zero.
8115 Num_Saved_Checks := 0;
8117 -- Note: the Int'Min here avoids any possibility of J being out of
8118 -- range when called from e.g. Conditional_Statements_Begin.
8120 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
8121 Saved_Checks_Stack (J) := 0;
8122 end loop;
8123 end Kill_All_Checks;
8125 -----------------
8126 -- Kill_Checks --
8127 -----------------
8129 procedure Kill_Checks (V : Entity_Id) is
8130 begin
8131 if Debug_Flag_CC then
8132 w ("Kill_Checks for entity", Int (V));
8133 end if;
8135 for J in 1 .. Num_Saved_Checks loop
8136 if Saved_Checks (J).Entity = V then
8137 if Debug_Flag_CC then
8138 w (" Checks killed for saved check ", J);
8139 end if;
8141 Saved_Checks (J).Killed := True;
8142 end if;
8143 end loop;
8144 end Kill_Checks;
8146 ------------------------------
8147 -- Length_Checks_Suppressed --
8148 ------------------------------
8150 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
8151 begin
8152 if Present (E) and then Checks_May_Be_Suppressed (E) then
8153 return Is_Check_Suppressed (E, Length_Check);
8154 else
8155 return Scope_Suppress.Suppress (Length_Check);
8156 end if;
8157 end Length_Checks_Suppressed;
8159 -----------------------
8160 -- Make_Bignum_Block --
8161 -----------------------
8163 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
8164 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
8165 begin
8166 return
8167 Make_Block_Statement (Loc,
8168 Declarations =>
8169 New_List (Build_SS_Mark_Call (Loc, M)),
8170 Handled_Statement_Sequence =>
8171 Make_Handled_Sequence_Of_Statements (Loc,
8172 Statements => New_List (Build_SS_Release_Call (Loc, M))));
8173 end Make_Bignum_Block;
8175 ----------------------------------
8176 -- Minimize_Eliminate_Overflows --
8177 ----------------------------------
8179 -- This is a recursive routine that is called at the top of an expression
8180 -- tree to properly process overflow checking for a whole subtree by making
8181 -- recursive calls to process operands. This processing may involve the use
8182 -- of bignum or long long integer arithmetic, which will change the types
8183 -- of operands and results. That's why we can't do this bottom up (since
8184 -- it would interfere with semantic analysis).
8186 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
8187 -- the operator expansion routines, as well as the expansion routines for
8188 -- if/case expression, do nothing (for the moment) except call the routine
8189 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
8190 -- routine does nothing for non top-level nodes, so at the point where the
8191 -- call is made for the top level node, the entire expression subtree has
8192 -- not been expanded, or processed for overflow. All that has to happen as
8193 -- a result of the top level call to this routine.
8195 -- As noted above, the overflow processing works by making recursive calls
8196 -- for the operands, and figuring out what to do, based on the processing
8197 -- of these operands (e.g. if a bignum operand appears, the parent op has
8198 -- to be done in bignum mode), and the determined ranges of the operands.
8200 -- After possible rewriting of a constituent subexpression node, a call is
8201 -- made to either reexpand the node (if nothing has changed) or reanalyze
8202 -- the node (if it has been modified by the overflow check processing). The
8203 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
8204 -- a recursive call into the whole overflow apparatus, an important rule
8205 -- for this call is that the overflow handling mode must be temporarily set
8206 -- to STRICT.
8208 procedure Minimize_Eliminate_Overflows
8209 (N : Node_Id;
8210 Lo : out Uint;
8211 Hi : out Uint;
8212 Top_Level : Boolean)
8214 Rtyp : constant Entity_Id := Etype (N);
8215 pragma Assert (Is_Signed_Integer_Type (Rtyp));
8216 -- Result type, must be a signed integer type
8218 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
8219 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
8221 Loc : constant Source_Ptr := Sloc (N);
8223 Rlo, Rhi : Uint;
8224 -- Ranges of values for right operand (operator case)
8226 Llo : Uint := No_Uint; -- initialize to prevent warning
8227 Lhi : Uint := No_Uint; -- initialize to prevent warning
8228 -- Ranges of values for left operand (operator case)
8230 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
8231 -- Operands and results are of this type when we convert
8233 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
8234 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
8235 -- Bounds of Long_Long_Integer
8237 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
8238 -- Indicates binary operator case
8240 OK : Boolean;
8241 -- Used in call to Determine_Range
8243 Bignum_Operands : Boolean;
8244 -- Set True if one or more operands is already of type Bignum, meaning
8245 -- that for sure (regardless of Top_Level setting) we are committed to
8246 -- doing the operation in Bignum mode (or in the case of a case or if
8247 -- expression, converting all the dependent expressions to Bignum).
8249 Long_Long_Integer_Operands : Boolean;
8250 -- Set True if one or more operands is already of type Long_Long_Integer
8251 -- which means that if the result is known to be in the result type
8252 -- range, then we must convert such operands back to the result type.
8254 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
8255 -- This is called when we have modified the node and we therefore need
8256 -- to reanalyze it. It is important that we reset the mode to STRICT for
8257 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
8258 -- we would reenter this routine recursively which would not be good.
8259 -- The argument Suppress is set True if we also want to suppress
8260 -- overflow checking for the reexpansion (this is set when we know
8261 -- overflow is not possible). Typ is the type for the reanalysis.
8263 procedure Reexpand (Suppress : Boolean := False);
8264 -- This is like Reanalyze, but does not do the Analyze step, it only
8265 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
8266 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
8267 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
8268 -- Note that skipping reanalysis is not just an optimization, testing
8269 -- has showed up several complex cases in which reanalyzing an already
8270 -- analyzed node causes incorrect behavior.
8272 function In_Result_Range return Boolean;
8273 -- Returns True iff Lo .. Hi are within range of the result type
8275 procedure Max (A : in out Uint; B : Uint);
8276 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
8278 procedure Min (A : in out Uint; B : Uint);
8279 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
8281 ---------------------
8282 -- In_Result_Range --
8283 ---------------------
8285 function In_Result_Range return Boolean is
8286 begin
8287 if Lo = No_Uint or else Hi = No_Uint then
8288 return False;
8290 elsif Is_OK_Static_Subtype (Etype (N)) then
8291 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
8292 and then
8293 Hi <= Expr_Value (Type_High_Bound (Rtyp));
8295 else
8296 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
8297 and then
8298 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
8299 end if;
8300 end In_Result_Range;
8302 ---------
8303 -- Max --
8304 ---------
8306 procedure Max (A : in out Uint; B : Uint) is
8307 begin
8308 if A = No_Uint or else B > A then
8309 A := B;
8310 end if;
8311 end Max;
8313 ---------
8314 -- Min --
8315 ---------
8317 procedure Min (A : in out Uint; B : Uint) is
8318 begin
8319 if A = No_Uint or else B < A then
8320 A := B;
8321 end if;
8322 end Min;
8324 ---------------
8325 -- Reanalyze --
8326 ---------------
8328 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
8329 Svg : constant Overflow_Mode_Type :=
8330 Scope_Suppress.Overflow_Mode_General;
8331 Sva : constant Overflow_Mode_Type :=
8332 Scope_Suppress.Overflow_Mode_Assertions;
8333 Svo : constant Boolean :=
8334 Scope_Suppress.Suppress (Overflow_Check);
8336 begin
8337 Scope_Suppress.Overflow_Mode_General := Strict;
8338 Scope_Suppress.Overflow_Mode_Assertions := Strict;
8340 if Suppress then
8341 Scope_Suppress.Suppress (Overflow_Check) := True;
8342 end if;
8344 Analyze_And_Resolve (N, Typ);
8346 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8347 Scope_Suppress.Overflow_Mode_General := Svg;
8348 Scope_Suppress.Overflow_Mode_Assertions := Sva;
8349 end Reanalyze;
8351 --------------
8352 -- Reexpand --
8353 --------------
8355 procedure Reexpand (Suppress : Boolean := False) is
8356 Svg : constant Overflow_Mode_Type :=
8357 Scope_Suppress.Overflow_Mode_General;
8358 Sva : constant Overflow_Mode_Type :=
8359 Scope_Suppress.Overflow_Mode_Assertions;
8360 Svo : constant Boolean :=
8361 Scope_Suppress.Suppress (Overflow_Check);
8363 begin
8364 Scope_Suppress.Overflow_Mode_General := Strict;
8365 Scope_Suppress.Overflow_Mode_Assertions := Strict;
8366 Set_Analyzed (N, False);
8368 if Suppress then
8369 Scope_Suppress.Suppress (Overflow_Check) := True;
8370 end if;
8372 Expand (N);
8374 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8375 Scope_Suppress.Overflow_Mode_General := Svg;
8376 Scope_Suppress.Overflow_Mode_Assertions := Sva;
8377 end Reexpand;
8379 -- Start of processing for Minimize_Eliminate_Overflows
8381 begin
8382 -- Case where we do not have a signed integer arithmetic operation
8384 if not Is_Signed_Integer_Arithmetic_Op (N) then
8386 -- Use the normal Determine_Range routine to get the range. We
8387 -- don't require operands to be valid, invalid values may result in
8388 -- rubbish results where the result has not been properly checked for
8389 -- overflow, that's fine.
8391 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
8393 -- If Determine_Range did not work (can this in fact happen? Not
8394 -- clear but might as well protect), use type bounds.
8396 if not OK then
8397 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
8398 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
8399 end if;
8401 -- If we don't have a binary operator, all we have to do is to set
8402 -- the Hi/Lo range, so we are done.
8404 return;
8406 -- Processing for if expression
8408 elsif Nkind (N) = N_If_Expression then
8409 declare
8410 Then_DE : constant Node_Id := Next (First (Expressions (N)));
8411 Else_DE : constant Node_Id := Next (Then_DE);
8413 begin
8414 Bignum_Operands := False;
8416 Minimize_Eliminate_Overflows
8417 (Then_DE, Lo, Hi, Top_Level => False);
8419 if Lo = No_Uint then
8420 Bignum_Operands := True;
8421 end if;
8423 Minimize_Eliminate_Overflows
8424 (Else_DE, Rlo, Rhi, Top_Level => False);
8426 if Rlo = No_Uint then
8427 Bignum_Operands := True;
8428 else
8429 Long_Long_Integer_Operands :=
8430 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
8432 Min (Lo, Rlo);
8433 Max (Hi, Rhi);
8434 end if;
8436 -- If at least one of our operands is now Bignum, we must rebuild
8437 -- the if expression to use Bignum operands. We will analyze the
8438 -- rebuilt if expression with overflow checks off, since once we
8439 -- are in bignum mode, we are all done with overflow checks.
8441 if Bignum_Operands then
8442 Rewrite (N,
8443 Make_If_Expression (Loc,
8444 Expressions => New_List (
8445 Remove_Head (Expressions (N)),
8446 Convert_To_Bignum (Then_DE),
8447 Convert_To_Bignum (Else_DE)),
8448 Is_Elsif => Is_Elsif (N)));
8450 Reanalyze (RTE (RE_Bignum), Suppress => True);
8452 -- If we have no Long_Long_Integer operands, then we are in result
8453 -- range, since it means that none of our operands felt the need
8454 -- to worry about overflow (otherwise it would have already been
8455 -- converted to long long integer or bignum). We reexpand to
8456 -- complete the expansion of the if expression (but we do not
8457 -- need to reanalyze).
8459 elsif not Long_Long_Integer_Operands then
8460 Set_Do_Overflow_Check (N, False);
8461 Reexpand;
8463 -- Otherwise convert us to long long integer mode. Note that we
8464 -- don't need any further overflow checking at this level.
8466 else
8467 Convert_To_And_Rewrite (LLIB, Then_DE);
8468 Convert_To_And_Rewrite (LLIB, Else_DE);
8469 Set_Etype (N, LLIB);
8471 -- Now reanalyze with overflow checks off
8473 Set_Do_Overflow_Check (N, False);
8474 Reanalyze (LLIB, Suppress => True);
8475 end if;
8476 end;
8478 return;
8480 -- Here for case expression
8482 elsif Nkind (N) = N_Case_Expression then
8483 Bignum_Operands := False;
8484 Long_Long_Integer_Operands := False;
8486 declare
8487 Alt : Node_Id;
8489 begin
8490 -- Loop through expressions applying recursive call
8492 Alt := First (Alternatives (N));
8493 while Present (Alt) loop
8494 declare
8495 Aexp : constant Node_Id := Expression (Alt);
8497 begin
8498 Minimize_Eliminate_Overflows
8499 (Aexp, Lo, Hi, Top_Level => False);
8501 if Lo = No_Uint then
8502 Bignum_Operands := True;
8503 elsif Etype (Aexp) = LLIB then
8504 Long_Long_Integer_Operands := True;
8505 end if;
8506 end;
8508 Next (Alt);
8509 end loop;
8511 -- If we have no bignum or long long integer operands, it means
8512 -- that none of our dependent expressions could raise overflow.
8513 -- In this case, we simply return with no changes except for
8514 -- resetting the overflow flag, since we are done with overflow
8515 -- checks for this node. We will reexpand to get the needed
8516 -- expansion for the case expression, but we do not need to
8517 -- reanalyze, since nothing has changed.
8519 if not (Bignum_Operands or Long_Long_Integer_Operands) then
8520 Set_Do_Overflow_Check (N, False);
8521 Reexpand (Suppress => True);
8523 -- Otherwise we are going to rebuild the case expression using
8524 -- either bignum or long long integer operands throughout.
8526 else
8527 declare
8528 Rtype : Entity_Id;
8529 pragma Warnings (Off, Rtype);
8530 New_Alts : List_Id;
8531 New_Exp : Node_Id;
8533 begin
8534 New_Alts := New_List;
8535 Alt := First (Alternatives (N));
8536 while Present (Alt) loop
8537 if Bignum_Operands then
8538 New_Exp := Convert_To_Bignum (Expression (Alt));
8539 Rtype := RTE (RE_Bignum);
8540 else
8541 New_Exp := Convert_To (LLIB, Expression (Alt));
8542 Rtype := LLIB;
8543 end if;
8545 Append_To (New_Alts,
8546 Make_Case_Expression_Alternative (Sloc (Alt),
8547 Actions => No_List,
8548 Discrete_Choices => Discrete_Choices (Alt),
8549 Expression => New_Exp));
8551 Next (Alt);
8552 end loop;
8554 Rewrite (N,
8555 Make_Case_Expression (Loc,
8556 Expression => Expression (N),
8557 Alternatives => New_Alts));
8559 Reanalyze (Rtype, Suppress => True);
8560 end;
8561 end if;
8562 end;
8564 return;
8565 end if;
8567 -- If we have an arithmetic operator we make recursive calls on the
8568 -- operands to get the ranges (and to properly process the subtree
8569 -- that lies below us).
8571 Minimize_Eliminate_Overflows
8572 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
8574 if Binary then
8575 Minimize_Eliminate_Overflows
8576 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
8577 end if;
8579 -- Record if we have Long_Long_Integer operands
8581 Long_Long_Integer_Operands :=
8582 Etype (Right_Opnd (N)) = LLIB
8583 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
8585 -- If either operand is a bignum, then result will be a bignum and we
8586 -- don't need to do any range analysis. As previously discussed we could
8587 -- do range analysis in such cases, but it could mean working with giant
8588 -- numbers at compile time for very little gain (the number of cases
8589 -- in which we could slip back from bignum mode is small).
8591 if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
8592 Lo := No_Uint;
8593 Hi := No_Uint;
8594 Bignum_Operands := True;
8596 -- Otherwise compute result range
8598 else
8599 Bignum_Operands := False;
8601 case Nkind (N) is
8603 -- Absolute value
8605 when N_Op_Abs =>
8606 Lo := Uint_0;
8607 Hi := UI_Max (abs Rlo, abs Rhi);
8609 -- Addition
8611 when N_Op_Add =>
8612 Lo := Llo + Rlo;
8613 Hi := Lhi + Rhi;
8615 -- Division
8617 when N_Op_Divide =>
8619 -- If the right operand can only be zero, set 0..0
8621 if Rlo = 0 and then Rhi = 0 then
8622 Lo := Uint_0;
8623 Hi := Uint_0;
8625 -- Possible bounds of division must come from dividing end
8626 -- values of the input ranges (four possibilities), provided
8627 -- zero is not included in the possible values of the right
8628 -- operand.
8630 -- Otherwise, we just consider two intervals of values for
8631 -- the right operand: the interval of negative values (up to
8632 -- -1) and the interval of positive values (starting at 1).
8633 -- Since division by 1 is the identity, and division by -1
8634 -- is negation, we get all possible bounds of division in that
8635 -- case by considering:
8636 -- - all values from the division of end values of input
8637 -- ranges;
8638 -- - the end values of the left operand;
8639 -- - the negation of the end values of the left operand.
8641 else
8642 declare
8643 Mrk : constant Uintp.Save_Mark := Mark;
8644 -- Mark so we can release the RR and Ev values
8646 Ev1 : Uint;
8647 Ev2 : Uint;
8648 Ev3 : Uint;
8649 Ev4 : Uint;
8651 begin
8652 -- Discard extreme values of zero for the divisor, since
8653 -- they will simply result in an exception in any case.
8655 if Rlo = 0 then
8656 Rlo := Uint_1;
8657 elsif Rhi = 0 then
8658 Rhi := -Uint_1;
8659 end if;
8661 -- Compute possible bounds coming from dividing end
8662 -- values of the input ranges.
8664 Ev1 := Llo / Rlo;
8665 Ev2 := Llo / Rhi;
8666 Ev3 := Lhi / Rlo;
8667 Ev4 := Lhi / Rhi;
8669 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8670 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8672 -- If the right operand can be both negative or positive,
8673 -- include the end values of the left operand in the
8674 -- extreme values, as well as their negation.
8676 if Rlo < 0 and then Rhi > 0 then
8677 Ev1 := Llo;
8678 Ev2 := -Llo;
8679 Ev3 := Lhi;
8680 Ev4 := -Lhi;
8682 Min (Lo,
8683 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
8684 Max (Hi,
8685 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
8686 end if;
8688 -- Release the RR and Ev values
8690 Release_And_Save (Mrk, Lo, Hi);
8691 end;
8692 end if;
8694 -- Exponentiation
8696 when N_Op_Expon =>
8698 -- Discard negative values for the exponent, since they will
8699 -- simply result in an exception in any case.
8701 if Rhi < 0 then
8702 Rhi := Uint_0;
8703 elsif Rlo < 0 then
8704 Rlo := Uint_0;
8705 end if;
8707 -- Estimate number of bits in result before we go computing
8708 -- giant useless bounds. Basically the number of bits in the
8709 -- result is the number of bits in the base multiplied by the
8710 -- value of the exponent. If this is big enough that the result
8711 -- definitely won't fit in Long_Long_Integer, switch to bignum
8712 -- mode immediately, and avoid computing giant bounds.
8714 -- The comparison here is approximate, but conservative, it
8715 -- only clicks on cases that are sure to exceed the bounds.
8717 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
8718 Lo := No_Uint;
8719 Hi := No_Uint;
8721 -- If right operand is zero then result is 1
8723 elsif Rhi = 0 then
8724 Lo := Uint_1;
8725 Hi := Uint_1;
8727 else
8728 -- High bound comes either from exponentiation of largest
8729 -- positive value to largest exponent value, or from
8730 -- the exponentiation of most negative value to an
8731 -- even exponent.
8733 declare
8734 Hi1, Hi2 : Uint;
8736 begin
8737 if Lhi > 0 then
8738 Hi1 := Lhi ** Rhi;
8739 else
8740 Hi1 := Uint_0;
8741 end if;
8743 if Llo < 0 then
8744 if Rhi mod 2 = 0 then
8745 Hi2 := Llo ** Rhi;
8746 else
8747 Hi2 := Llo ** (Rhi - 1);
8748 end if;
8749 else
8750 Hi2 := Uint_0;
8751 end if;
8753 Hi := UI_Max (Hi1, Hi2);
8754 end;
8756 -- Result can only be negative if base can be negative
8758 if Llo < 0 then
8759 if Rhi mod 2 = 0 then
8760 Lo := Llo ** (Rhi - 1);
8761 else
8762 Lo := Llo ** Rhi;
8763 end if;
8765 -- Otherwise low bound is minimum ** minimum
8767 else
8768 Lo := Llo ** Rlo;
8769 end if;
8770 end if;
8772 -- Negation
8774 when N_Op_Minus =>
8775 Lo := -Rhi;
8776 Hi := -Rlo;
8778 -- Mod
8780 when N_Op_Mod =>
8781 declare
8782 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8783 -- This is the maximum absolute value of the result
8785 begin
8786 Lo := Uint_0;
8787 Hi := Uint_0;
8789 -- The result depends only on the sign and magnitude of
8790 -- the right operand, it does not depend on the sign or
8791 -- magnitude of the left operand.
8793 if Rlo < 0 then
8794 Lo := -Maxabs;
8795 end if;
8797 if Rhi > 0 then
8798 Hi := Maxabs;
8799 end if;
8800 end;
8802 -- Multiplication
8804 when N_Op_Multiply =>
8806 -- Possible bounds of multiplication must come from multiplying
8807 -- end values of the input ranges (four possibilities).
8809 declare
8810 Mrk : constant Uintp.Save_Mark := Mark;
8811 -- Mark so we can release the Ev values
8813 Ev1 : constant Uint := Llo * Rlo;
8814 Ev2 : constant Uint := Llo * Rhi;
8815 Ev3 : constant Uint := Lhi * Rlo;
8816 Ev4 : constant Uint := Lhi * Rhi;
8818 begin
8819 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8820 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8822 -- Release the Ev values
8824 Release_And_Save (Mrk, Lo, Hi);
8825 end;
8827 -- Plus operator (affirmation)
8829 when N_Op_Plus =>
8830 Lo := Rlo;
8831 Hi := Rhi;
8833 -- Remainder
8835 when N_Op_Rem =>
8836 declare
8837 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8838 -- This is the maximum absolute value of the result. Note
8839 -- that the result range does not depend on the sign of the
8840 -- right operand.
8842 begin
8843 Lo := Uint_0;
8844 Hi := Uint_0;
8846 -- Case of left operand negative, which results in a range
8847 -- of -Maxabs .. 0 for those negative values. If there are
8848 -- no negative values then Lo value of result is always 0.
8850 if Llo < 0 then
8851 Lo := -Maxabs;
8852 end if;
8854 -- Case of left operand positive
8856 if Lhi > 0 then
8857 Hi := Maxabs;
8858 end if;
8859 end;
8861 -- Subtract
8863 when N_Op_Subtract =>
8864 Lo := Llo - Rhi;
8865 Hi := Lhi - Rlo;
8867 -- Nothing else should be possible
8869 when others =>
8870 raise Program_Error;
8871 end case;
8872 end if;
8874 -- Here for the case where we have not rewritten anything (no bignum
8875 -- operands or long long integer operands), and we know the result.
8876 -- If we know we are in the result range, and we do not have Bignum
8877 -- operands or Long_Long_Integer operands, we can just reexpand with
8878 -- overflow checks turned off (since we know we cannot have overflow).
8879 -- As always the reexpansion is required to complete expansion of the
8880 -- operator, but we do not need to reanalyze, and we prevent recursion
8881 -- by suppressing the check.
8883 if not (Bignum_Operands or Long_Long_Integer_Operands)
8884 and then In_Result_Range
8885 then
8886 Set_Do_Overflow_Check (N, False);
8887 Reexpand (Suppress => True);
8888 return;
8890 -- Here we know that we are not in the result range, and in the general
8891 -- case we will move into either the Bignum or Long_Long_Integer domain
8892 -- to compute the result. However, there is one exception. If we are
8893 -- at the top level, and we do not have Bignum or Long_Long_Integer
8894 -- operands, we will have to immediately convert the result back to
8895 -- the result type, so there is no point in Bignum/Long_Long_Integer
8896 -- fiddling.
8898 elsif Top_Level
8899 and then not (Bignum_Operands or Long_Long_Integer_Operands)
8901 -- One further refinement. If we are at the top level, but our parent
8902 -- is a type conversion, then go into bignum or long long integer node
8903 -- since the result will be converted to that type directly without
8904 -- going through the result type, and we may avoid an overflow. This
8905 -- is the case for example of Long_Long_Integer (A ** 4), where A is
8906 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
8907 -- but does not fit in Integer.
8909 and then Nkind (Parent (N)) /= N_Type_Conversion
8910 then
8911 -- Here keep original types, but we need to complete analysis
8913 -- One subtlety. We can't just go ahead and do an analyze operation
8914 -- here because it will cause recursion into the whole MINIMIZED/
8915 -- ELIMINATED overflow processing which is not what we want. Here
8916 -- we are at the top level, and we need a check against the result
8917 -- mode (i.e. we want to use STRICT mode). So do exactly that.
8918 -- Also, we have not modified the node, so this is a case where
8919 -- we need to reexpand, but not reanalyze.
8921 Reexpand;
8922 return;
8924 -- Cases where we do the operation in Bignum mode. This happens either
8925 -- because one of our operands is in Bignum mode already, or because
8926 -- the computed bounds are outside the bounds of Long_Long_Integer,
8927 -- which in some cases can be indicated by Hi and Lo being No_Uint.
8929 -- Note: we could do better here and in some cases switch back from
8930 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
8931 -- 0 .. 1, but the cases are rare and it is not worth the effort.
8932 -- Failing to do this switching back is only an efficiency issue.
8934 elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
8936 -- OK, we are definitely outside the range of Long_Long_Integer. The
8937 -- question is whether to move to Bignum mode, or stay in the domain
8938 -- of Long_Long_Integer, signalling that an overflow check is needed.
8940 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
8941 -- the Bignum business. In ELIMINATED mode, we will normally move
8942 -- into Bignum mode, but there is an exception if neither of our
8943 -- operands is Bignum now, and we are at the top level (Top_Level
8944 -- set True). In this case, there is no point in moving into Bignum
8945 -- mode to prevent overflow if the caller will immediately convert
8946 -- the Bignum value back to LLI with an overflow check. It's more
8947 -- efficient to stay in LLI mode with an overflow check (if needed)
8949 if Check_Mode = Minimized
8950 or else (Top_Level and not Bignum_Operands)
8951 then
8952 if Do_Overflow_Check (N) then
8953 Enable_Overflow_Check (N);
8954 end if;
8956 -- The result now has to be in Long_Long_Integer mode, so adjust
8957 -- the possible range to reflect this. Note these calls also
8958 -- change No_Uint values from the top level case to LLI bounds.
8960 Max (Lo, LLLo);
8961 Min (Hi, LLHi);
8963 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
8965 else
8966 pragma Assert (Check_Mode = Eliminated);
8968 declare
8969 Fent : Entity_Id;
8970 Args : List_Id;
8972 begin
8973 case Nkind (N) is
8974 when N_Op_Abs =>
8975 Fent := RTE (RE_Big_Abs);
8977 when N_Op_Add =>
8978 Fent := RTE (RE_Big_Add);
8980 when N_Op_Divide =>
8981 Fent := RTE (RE_Big_Div);
8983 when N_Op_Expon =>
8984 Fent := RTE (RE_Big_Exp);
8986 when N_Op_Minus =>
8987 Fent := RTE (RE_Big_Neg);
8989 when N_Op_Mod =>
8990 Fent := RTE (RE_Big_Mod);
8992 when N_Op_Multiply =>
8993 Fent := RTE (RE_Big_Mul);
8995 when N_Op_Rem =>
8996 Fent := RTE (RE_Big_Rem);
8998 when N_Op_Subtract =>
8999 Fent := RTE (RE_Big_Sub);
9001 -- Anything else is an internal error, this includes the
9002 -- N_Op_Plus case, since how can plus cause the result
9003 -- to be out of range if the operand is in range?
9005 when others =>
9006 raise Program_Error;
9007 end case;
9009 -- Construct argument list for Bignum call, converting our
9010 -- operands to Bignum form if they are not already there.
9012 Args := New_List;
9014 if Binary then
9015 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
9016 end if;
9018 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
9020 -- Now rewrite the arithmetic operator with a call to the
9021 -- corresponding bignum function.
9023 Rewrite (N,
9024 Make_Function_Call (Loc,
9025 Name => New_Occurrence_Of (Fent, Loc),
9026 Parameter_Associations => Args));
9027 Reanalyze (RTE (RE_Bignum), Suppress => True);
9029 -- Indicate result is Bignum mode
9031 Lo := No_Uint;
9032 Hi := No_Uint;
9033 return;
9034 end;
9035 end if;
9037 -- Otherwise we are in range of Long_Long_Integer, so no overflow
9038 -- check is required, at least not yet.
9040 else
9041 Set_Do_Overflow_Check (N, False);
9042 end if;
9044 -- Here we are not in Bignum territory, but we may have long long
9045 -- integer operands that need special handling. First a special check:
9046 -- If an exponentiation operator exponent is of type Long_Long_Integer,
9047 -- it means we converted it to prevent overflow, but exponentiation
9048 -- requires a Natural right operand, so convert it back to Natural.
9049 -- This conversion may raise an exception which is fine.
9051 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
9052 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
9053 end if;
9055 -- Here we will do the operation in Long_Long_Integer. We do this even
9056 -- if we know an overflow check is required, better to do this in long
9057 -- long integer mode, since we are less likely to overflow.
9059 -- Convert right or only operand to Long_Long_Integer, except that
9060 -- we do not touch the exponentiation right operand.
9062 if Nkind (N) /= N_Op_Expon then
9063 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
9064 end if;
9066 -- Convert left operand to Long_Long_Integer for binary case
9068 if Binary then
9069 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
9070 end if;
9072 -- Reset node to unanalyzed
9074 Set_Analyzed (N, False);
9075 Set_Etype (N, Empty);
9076 Set_Entity (N, Empty);
9078 -- Now analyze this new node. This reanalysis will complete processing
9079 -- for the node. In particular we will complete the expansion of an
9080 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
9081 -- we will complete any division checks (since we have not changed the
9082 -- setting of the Do_Division_Check flag).
9084 -- We do this reanalysis in STRICT mode to avoid recursion into the
9085 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
9087 declare
9088 SG : constant Overflow_Mode_Type :=
9089 Scope_Suppress.Overflow_Mode_General;
9090 SA : constant Overflow_Mode_Type :=
9091 Scope_Suppress.Overflow_Mode_Assertions;
9093 begin
9094 Scope_Suppress.Overflow_Mode_General := Strict;
9095 Scope_Suppress.Overflow_Mode_Assertions := Strict;
9097 if not Do_Overflow_Check (N) then
9098 Reanalyze (LLIB, Suppress => True);
9099 else
9100 Reanalyze (LLIB);
9101 end if;
9103 Scope_Suppress.Overflow_Mode_General := SG;
9104 Scope_Suppress.Overflow_Mode_Assertions := SA;
9105 end;
9106 end Minimize_Eliminate_Overflows;
9108 -------------------------
9109 -- Overflow_Check_Mode --
9110 -------------------------
9112 function Overflow_Check_Mode return Overflow_Mode_Type is
9113 begin
9114 if In_Assertion_Expr = 0 then
9115 return Scope_Suppress.Overflow_Mode_General;
9116 else
9117 return Scope_Suppress.Overflow_Mode_Assertions;
9118 end if;
9119 end Overflow_Check_Mode;
9121 --------------------------------
9122 -- Overflow_Checks_Suppressed --
9123 --------------------------------
9125 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
9126 begin
9127 if Present (E) and then Checks_May_Be_Suppressed (E) then
9128 return Is_Check_Suppressed (E, Overflow_Check);
9129 else
9130 return Scope_Suppress.Suppress (Overflow_Check);
9131 end if;
9132 end Overflow_Checks_Suppressed;
9134 ---------------------------------
9135 -- Predicate_Checks_Suppressed --
9136 ---------------------------------
9138 function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
9139 begin
9140 if Present (E) and then Checks_May_Be_Suppressed (E) then
9141 return Is_Check_Suppressed (E, Predicate_Check);
9142 else
9143 return Scope_Suppress.Suppress (Predicate_Check);
9144 end if;
9145 end Predicate_Checks_Suppressed;
9147 -----------------------------
9148 -- Range_Checks_Suppressed --
9149 -----------------------------
9151 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
9152 begin
9153 if Present (E) then
9154 if Kill_Range_Checks (E) then
9155 return True;
9157 elsif Checks_May_Be_Suppressed (E) then
9158 return Is_Check_Suppressed (E, Range_Check);
9159 end if;
9160 end if;
9162 return Scope_Suppress.Suppress (Range_Check);
9163 end Range_Checks_Suppressed;
9165 -----------------------------------------
9166 -- Range_Or_Validity_Checks_Suppressed --
9167 -----------------------------------------
9169 -- Note: the coding would be simpler here if we simply made appropriate
9170 -- calls to Range/Validity_Checks_Suppressed, but that would result in
9171 -- duplicated checks which we prefer to avoid.
9173 function Range_Or_Validity_Checks_Suppressed
9174 (Expr : Node_Id) return Boolean
9176 begin
9177 -- Immediate return if scope checks suppressed for either check
9179 if Scope_Suppress.Suppress (Range_Check)
9181 Scope_Suppress.Suppress (Validity_Check)
9182 then
9183 return True;
9184 end if;
9186 -- If no expression, that's odd, decide that checks are suppressed,
9187 -- since we don't want anyone trying to do checks in this case, which
9188 -- is most likely the result of some other error.
9190 if No (Expr) then
9191 return True;
9192 end if;
9194 -- Expression is present, so perform suppress checks on type
9196 declare
9197 Typ : constant Entity_Id := Etype (Expr);
9198 begin
9199 if Checks_May_Be_Suppressed (Typ)
9200 and then (Is_Check_Suppressed (Typ, Range_Check)
9201 or else
9202 Is_Check_Suppressed (Typ, Validity_Check))
9203 then
9204 return True;
9205 end if;
9206 end;
9208 -- If expression is an entity name, perform checks on this entity
9210 if Is_Entity_Name (Expr) then
9211 declare
9212 Ent : constant Entity_Id := Entity (Expr);
9213 begin
9214 if Checks_May_Be_Suppressed (Ent) then
9215 return Is_Check_Suppressed (Ent, Range_Check)
9216 or else Is_Check_Suppressed (Ent, Validity_Check);
9217 end if;
9218 end;
9219 end if;
9221 -- If we fall through, no checks suppressed
9223 return False;
9224 end Range_Or_Validity_Checks_Suppressed;
9226 -------------------
9227 -- Remove_Checks --
9228 -------------------
9230 procedure Remove_Checks (Expr : Node_Id) is
9231 function Process (N : Node_Id) return Traverse_Result;
9232 -- Process a single node during the traversal
9234 procedure Traverse is new Traverse_Proc (Process);
9235 -- The traversal procedure itself
9237 -------------
9238 -- Process --
9239 -------------
9241 function Process (N : Node_Id) return Traverse_Result is
9242 begin
9243 if Nkind (N) not in N_Subexpr then
9244 return Skip;
9245 end if;
9247 Set_Do_Range_Check (N, False);
9249 case Nkind (N) is
9250 when N_And_Then =>
9251 Traverse (Left_Opnd (N));
9252 return Skip;
9254 when N_Attribute_Reference =>
9255 Set_Do_Overflow_Check (N, False);
9257 when N_Function_Call =>
9258 Set_Do_Tag_Check (N, False);
9260 when N_Op =>
9261 Set_Do_Overflow_Check (N, False);
9263 case Nkind (N) is
9264 when N_Op_Divide =>
9265 Set_Do_Division_Check (N, False);
9267 when N_Op_And =>
9268 Set_Do_Length_Check (N, False);
9270 when N_Op_Mod =>
9271 Set_Do_Division_Check (N, False);
9273 when N_Op_Or =>
9274 Set_Do_Length_Check (N, False);
9276 when N_Op_Rem =>
9277 Set_Do_Division_Check (N, False);
9279 when N_Op_Xor =>
9280 Set_Do_Length_Check (N, False);
9282 when others =>
9283 null;
9284 end case;
9286 when N_Or_Else =>
9287 Traverse (Left_Opnd (N));
9288 return Skip;
9290 when N_Selected_Component =>
9291 Set_Do_Discriminant_Check (N, False);
9293 when N_Type_Conversion =>
9294 Set_Do_Length_Check (N, False);
9295 Set_Do_Tag_Check (N, False);
9296 Set_Do_Overflow_Check (N, False);
9298 when others =>
9299 null;
9300 end case;
9302 return OK;
9303 end Process;
9305 -- Start of processing for Remove_Checks
9307 begin
9308 Traverse (Expr);
9309 end Remove_Checks;
9311 ----------------------------
9312 -- Selected_Length_Checks --
9313 ----------------------------
9315 function Selected_Length_Checks
9316 (Ck_Node : Node_Id;
9317 Target_Typ : Entity_Id;
9318 Source_Typ : Entity_Id;
9319 Warn_Node : Node_Id) return Check_Result
9321 Loc : constant Source_Ptr := Sloc (Ck_Node);
9322 S_Typ : Entity_Id;
9323 T_Typ : Entity_Id;
9324 Expr_Actual : Node_Id;
9325 Exptyp : Entity_Id;
9326 Cond : Node_Id := Empty;
9327 Do_Access : Boolean := False;
9328 Wnode : Node_Id := Warn_Node;
9329 Ret_Result : Check_Result := (Empty, Empty);
9330 Num_Checks : Natural := 0;
9332 procedure Add_Check (N : Node_Id);
9333 -- Adds the action given to Ret_Result if N is non-Empty
9335 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
9336 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
9337 -- Comments required ???
9339 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
9340 -- True for equal literals and for nodes that denote the same constant
9341 -- entity, even if its value is not a static constant. This includes the
9342 -- case of a discriminal reference within an init proc. Removes some
9343 -- obviously superfluous checks.
9345 function Length_E_Cond
9346 (Exptyp : Entity_Id;
9347 Typ : Entity_Id;
9348 Indx : Nat) return Node_Id;
9349 -- Returns expression to compute:
9350 -- Typ'Length /= Exptyp'Length
9352 function Length_N_Cond
9353 (Expr : Node_Id;
9354 Typ : Entity_Id;
9355 Indx : Nat) return Node_Id;
9356 -- Returns expression to compute:
9357 -- Typ'Length /= Expr'Length
9359 ---------------
9360 -- Add_Check --
9361 ---------------
9363 procedure Add_Check (N : Node_Id) is
9364 begin
9365 if Present (N) then
9367 -- For now, ignore attempt to place more than two checks ???
9368 -- This is really worrisome, are we really discarding checks ???
9370 if Num_Checks = 2 then
9371 return;
9372 end if;
9374 pragma Assert (Num_Checks <= 1);
9375 Num_Checks := Num_Checks + 1;
9376 Ret_Result (Num_Checks) := N;
9377 end if;
9378 end Add_Check;
9380 ------------------
9381 -- Get_E_Length --
9382 ------------------
9384 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
9385 SE : constant Entity_Id := Scope (E);
9386 N : Node_Id;
9387 E1 : Entity_Id := E;
9389 begin
9390 if Ekind (Scope (E)) = E_Record_Type
9391 and then Has_Discriminants (Scope (E))
9392 then
9393 N := Build_Discriminal_Subtype_Of_Component (E);
9395 if Present (N) then
9396 Insert_Action (Ck_Node, N);
9397 E1 := Defining_Identifier (N);
9398 end if;
9399 end if;
9401 if Ekind (E1) = E_String_Literal_Subtype then
9402 return
9403 Make_Integer_Literal (Loc,
9404 Intval => String_Literal_Length (E1));
9406 elsif SE /= Standard_Standard
9407 and then Ekind (Scope (SE)) = E_Protected_Type
9408 and then Has_Discriminants (Scope (SE))
9409 and then Has_Completion (Scope (SE))
9410 and then not Inside_Init_Proc
9411 then
9412 -- If the type whose length is needed is a private component
9413 -- constrained by a discriminant, we must expand the 'Length
9414 -- attribute into an explicit computation, using the discriminal
9415 -- of the current protected operation. This is because the actual
9416 -- type of the prival is constructed after the protected opera-
9417 -- tion has been fully expanded.
9419 declare
9420 Indx_Type : Node_Id;
9421 Lo : Node_Id;
9422 Hi : Node_Id;
9423 Do_Expand : Boolean := False;
9425 begin
9426 Indx_Type := First_Index (E);
9428 for J in 1 .. Indx - 1 loop
9429 Next_Index (Indx_Type);
9430 end loop;
9432 Get_Index_Bounds (Indx_Type, Lo, Hi);
9434 if Nkind (Lo) = N_Identifier
9435 and then Ekind (Entity (Lo)) = E_In_Parameter
9436 then
9437 Lo := Get_Discriminal (E, Lo);
9438 Do_Expand := True;
9439 end if;
9441 if Nkind (Hi) = N_Identifier
9442 and then Ekind (Entity (Hi)) = E_In_Parameter
9443 then
9444 Hi := Get_Discriminal (E, Hi);
9445 Do_Expand := True;
9446 end if;
9448 if Do_Expand then
9449 if not Is_Entity_Name (Lo) then
9450 Lo := Duplicate_Subexpr_No_Checks (Lo);
9451 end if;
9453 if not Is_Entity_Name (Hi) then
9454 Lo := Duplicate_Subexpr_No_Checks (Hi);
9455 end if;
9457 N :=
9458 Make_Op_Add (Loc,
9459 Left_Opnd =>
9460 Make_Op_Subtract (Loc,
9461 Left_Opnd => Hi,
9462 Right_Opnd => Lo),
9464 Right_Opnd => Make_Integer_Literal (Loc, 1));
9465 return N;
9467 else
9468 N :=
9469 Make_Attribute_Reference (Loc,
9470 Attribute_Name => Name_Length,
9471 Prefix =>
9472 New_Occurrence_Of (E1, Loc));
9474 if Indx > 1 then
9475 Set_Expressions (N, New_List (
9476 Make_Integer_Literal (Loc, Indx)));
9477 end if;
9479 return N;
9480 end if;
9481 end;
9483 else
9484 N :=
9485 Make_Attribute_Reference (Loc,
9486 Attribute_Name => Name_Length,
9487 Prefix =>
9488 New_Occurrence_Of (E1, Loc));
9490 if Indx > 1 then
9491 Set_Expressions (N, New_List (
9492 Make_Integer_Literal (Loc, Indx)));
9493 end if;
9495 return N;
9496 end if;
9497 end Get_E_Length;
9499 ------------------
9500 -- Get_N_Length --
9501 ------------------
9503 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
9504 begin
9505 return
9506 Make_Attribute_Reference (Loc,
9507 Attribute_Name => Name_Length,
9508 Prefix =>
9509 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
9510 Expressions => New_List (
9511 Make_Integer_Literal (Loc, Indx)));
9512 end Get_N_Length;
9514 -------------------
9515 -- Length_E_Cond --
9516 -------------------
9518 function Length_E_Cond
9519 (Exptyp : Entity_Id;
9520 Typ : Entity_Id;
9521 Indx : Nat) return Node_Id
9523 begin
9524 return
9525 Make_Op_Ne (Loc,
9526 Left_Opnd => Get_E_Length (Typ, Indx),
9527 Right_Opnd => Get_E_Length (Exptyp, Indx));
9528 end Length_E_Cond;
9530 -------------------
9531 -- Length_N_Cond --
9532 -------------------
9534 function Length_N_Cond
9535 (Expr : Node_Id;
9536 Typ : Entity_Id;
9537 Indx : Nat) return Node_Id
9539 begin
9540 return
9541 Make_Op_Ne (Loc,
9542 Left_Opnd => Get_E_Length (Typ, Indx),
9543 Right_Opnd => Get_N_Length (Expr, Indx));
9544 end Length_N_Cond;
9546 -----------------
9547 -- Same_Bounds --
9548 -----------------
9550 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
9551 begin
9552 return
9553 (Nkind (L) = N_Integer_Literal
9554 and then Nkind (R) = N_Integer_Literal
9555 and then Intval (L) = Intval (R))
9557 or else
9558 (Is_Entity_Name (L)
9559 and then Ekind (Entity (L)) = E_Constant
9560 and then ((Is_Entity_Name (R)
9561 and then Entity (L) = Entity (R))
9562 or else
9563 (Nkind (R) = N_Type_Conversion
9564 and then Is_Entity_Name (Expression (R))
9565 and then Entity (L) = Entity (Expression (R)))))
9567 or else
9568 (Is_Entity_Name (R)
9569 and then Ekind (Entity (R)) = E_Constant
9570 and then Nkind (L) = N_Type_Conversion
9571 and then Is_Entity_Name (Expression (L))
9572 and then Entity (R) = Entity (Expression (L)))
9574 or else
9575 (Is_Entity_Name (L)
9576 and then Is_Entity_Name (R)
9577 and then Entity (L) = Entity (R)
9578 and then Ekind (Entity (L)) = E_In_Parameter
9579 and then Inside_Init_Proc);
9580 end Same_Bounds;
9582 -- Start of processing for Selected_Length_Checks
9584 begin
9585 -- Checks will be applied only when generating code
9587 if not Expander_Active then
9588 return Ret_Result;
9589 end if;
9591 if Target_Typ = Any_Type
9592 or else Target_Typ = Any_Composite
9593 or else Raises_Constraint_Error (Ck_Node)
9594 then
9595 return Ret_Result;
9596 end if;
9598 if No (Wnode) then
9599 Wnode := Ck_Node;
9600 end if;
9602 T_Typ := Target_Typ;
9604 if No (Source_Typ) then
9605 S_Typ := Etype (Ck_Node);
9606 else
9607 S_Typ := Source_Typ;
9608 end if;
9610 if S_Typ = Any_Type or else S_Typ = Any_Composite then
9611 return Ret_Result;
9612 end if;
9614 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
9615 S_Typ := Designated_Type (S_Typ);
9616 T_Typ := Designated_Type (T_Typ);
9617 Do_Access := True;
9619 -- A simple optimization for the null case
9621 if Known_Null (Ck_Node) then
9622 return Ret_Result;
9623 end if;
9624 end if;
9626 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9627 if Is_Constrained (T_Typ) then
9629 -- The checking code to be generated will freeze the corresponding
9630 -- array type. However, we must freeze the type now, so that the
9631 -- freeze node does not appear within the generated if expression,
9632 -- but ahead of it.
9634 Freeze_Before (Ck_Node, T_Typ);
9636 Expr_Actual := Get_Referenced_Object (Ck_Node);
9637 Exptyp := Get_Actual_Subtype (Ck_Node);
9639 if Is_Access_Type (Exptyp) then
9640 Exptyp := Designated_Type (Exptyp);
9641 end if;
9643 -- String_Literal case. This needs to be handled specially be-
9644 -- cause no index types are available for string literals. The
9645 -- condition is simply:
9647 -- T_Typ'Length = string-literal-length
9649 if Nkind (Expr_Actual) = N_String_Literal
9650 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
9651 then
9652 Cond :=
9653 Make_Op_Ne (Loc,
9654 Left_Opnd => Get_E_Length (T_Typ, 1),
9655 Right_Opnd =>
9656 Make_Integer_Literal (Loc,
9657 Intval =>
9658 String_Literal_Length (Etype (Expr_Actual))));
9660 -- General array case. Here we have a usable actual subtype for
9661 -- the expression, and the condition is built from the two types
9662 -- (Do_Length):
9664 -- T_Typ'Length /= Exptyp'Length or else
9665 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
9666 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
9667 -- ...
9669 elsif Is_Constrained (Exptyp) then
9670 declare
9671 Ndims : constant Nat := Number_Dimensions (T_Typ);
9673 L_Index : Node_Id;
9674 R_Index : Node_Id;
9675 L_Low : Node_Id;
9676 L_High : Node_Id;
9677 R_Low : Node_Id;
9678 R_High : Node_Id;
9679 L_Length : Uint;
9680 R_Length : Uint;
9681 Ref_Node : Node_Id;
9683 begin
9684 -- At the library level, we need to ensure that the type of
9685 -- the object is elaborated before the check itself is
9686 -- emitted. This is only done if the object is in the
9687 -- current compilation unit, otherwise the type is frozen
9688 -- and elaborated in its unit.
9690 if Is_Itype (Exptyp)
9691 and then
9692 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
9693 and then
9694 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
9695 and then In_Open_Scopes (Scope (Exptyp))
9696 then
9697 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
9698 Set_Itype (Ref_Node, Exptyp);
9699 Insert_Action (Ck_Node, Ref_Node);
9700 end if;
9702 L_Index := First_Index (T_Typ);
9703 R_Index := First_Index (Exptyp);
9705 for Indx in 1 .. Ndims loop
9706 if not (Nkind (L_Index) = N_Raise_Constraint_Error
9707 or else
9708 Nkind (R_Index) = N_Raise_Constraint_Error)
9709 then
9710 Get_Index_Bounds (L_Index, L_Low, L_High);
9711 Get_Index_Bounds (R_Index, R_Low, R_High);
9713 -- Deal with compile time length check. Note that we
9714 -- skip this in the access case, because the access
9715 -- value may be null, so we cannot know statically.
9717 if not Do_Access
9718 and then Compile_Time_Known_Value (L_Low)
9719 and then Compile_Time_Known_Value (L_High)
9720 and then Compile_Time_Known_Value (R_Low)
9721 and then Compile_Time_Known_Value (R_High)
9722 then
9723 if Expr_Value (L_High) >= Expr_Value (L_Low) then
9724 L_Length := Expr_Value (L_High) -
9725 Expr_Value (L_Low) + 1;
9726 else
9727 L_Length := UI_From_Int (0);
9728 end if;
9730 if Expr_Value (R_High) >= Expr_Value (R_Low) then
9731 R_Length := Expr_Value (R_High) -
9732 Expr_Value (R_Low) + 1;
9733 else
9734 R_Length := UI_From_Int (0);
9735 end if;
9737 if L_Length > R_Length then
9738 Add_Check
9739 (Compile_Time_Constraint_Error
9740 (Wnode, "too few elements for}??", T_Typ));
9742 elsif L_Length < R_Length then
9743 Add_Check
9744 (Compile_Time_Constraint_Error
9745 (Wnode, "too many elements for}??", T_Typ));
9746 end if;
9748 -- The comparison for an individual index subtype
9749 -- is omitted if the corresponding index subtypes
9750 -- statically match, since the result is known to
9751 -- be true. Note that this test is worth while even
9752 -- though we do static evaluation, because non-static
9753 -- subtypes can statically match.
9755 elsif not
9756 Subtypes_Statically_Match
9757 (Etype (L_Index), Etype (R_Index))
9759 and then not
9760 (Same_Bounds (L_Low, R_Low)
9761 and then Same_Bounds (L_High, R_High))
9762 then
9763 Evolve_Or_Else
9764 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
9765 end if;
9767 Next (L_Index);
9768 Next (R_Index);
9769 end if;
9770 end loop;
9771 end;
9773 -- Handle cases where we do not get a usable actual subtype that
9774 -- is constrained. This happens for example in the function call
9775 -- and explicit dereference cases. In these cases, we have to get
9776 -- the length or range from the expression itself, making sure we
9777 -- do not evaluate it more than once.
9779 -- Here Ck_Node is the original expression, or more properly the
9780 -- result of applying Duplicate_Expr to the original tree, forcing
9781 -- the result to be a name.
9783 else
9784 declare
9785 Ndims : constant Nat := Number_Dimensions (T_Typ);
9787 begin
9788 -- Build the condition for the explicit dereference case
9790 for Indx in 1 .. Ndims loop
9791 Evolve_Or_Else
9792 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
9793 end loop;
9794 end;
9795 end if;
9796 end if;
9797 end if;
9799 -- Construct the test and insert into the tree
9801 if Present (Cond) then
9802 if Do_Access then
9803 Cond := Guard_Access (Cond, Loc, Ck_Node);
9804 end if;
9806 Add_Check
9807 (Make_Raise_Constraint_Error (Loc,
9808 Condition => Cond,
9809 Reason => CE_Length_Check_Failed));
9810 end if;
9812 return Ret_Result;
9813 end Selected_Length_Checks;
9815 ---------------------------
9816 -- Selected_Range_Checks --
9817 ---------------------------
9819 function Selected_Range_Checks
9820 (Ck_Node : Node_Id;
9821 Target_Typ : Entity_Id;
9822 Source_Typ : Entity_Id;
9823 Warn_Node : Node_Id) return Check_Result
9825 Loc : constant Source_Ptr := Sloc (Ck_Node);
9826 S_Typ : Entity_Id;
9827 T_Typ : Entity_Id;
9828 Expr_Actual : Node_Id;
9829 Exptyp : Entity_Id;
9830 Cond : Node_Id := Empty;
9831 Do_Access : Boolean := False;
9832 Wnode : Node_Id := Warn_Node;
9833 Ret_Result : Check_Result := (Empty, Empty);
9834 Num_Checks : Natural := 0;
9836 procedure Add_Check (N : Node_Id);
9837 -- Adds the action given to Ret_Result if N is non-Empty
9839 function Discrete_Range_Cond
9840 (Expr : Node_Id;
9841 Typ : Entity_Id) return Node_Id;
9842 -- Returns expression to compute:
9843 -- Low_Bound (Expr) < Typ'First
9844 -- or else
9845 -- High_Bound (Expr) > Typ'Last
9847 function Discrete_Expr_Cond
9848 (Expr : Node_Id;
9849 Typ : Entity_Id) return Node_Id;
9850 -- Returns expression to compute:
9851 -- Expr < Typ'First
9852 -- or else
9853 -- Expr > Typ'Last
9855 function Get_E_First_Or_Last
9856 (Loc : Source_Ptr;
9857 E : Entity_Id;
9858 Indx : Nat;
9859 Nam : Name_Id) return Node_Id;
9860 -- Returns an attribute reference
9861 -- E'First or E'Last
9862 -- with a source location of Loc.
9864 -- Nam is Name_First or Name_Last, according to which attribute is
9865 -- desired. If Indx is non-zero, it is passed as a literal in the
9866 -- Expressions of the attribute reference (identifying the desired
9867 -- array dimension).
9869 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
9870 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
9871 -- Returns expression to compute:
9872 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
9874 function Range_E_Cond
9875 (Exptyp : Entity_Id;
9876 Typ : Entity_Id;
9877 Indx : Nat)
9878 return Node_Id;
9879 -- Returns expression to compute:
9880 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
9882 function Range_Equal_E_Cond
9883 (Exptyp : Entity_Id;
9884 Typ : Entity_Id;
9885 Indx : Nat) return Node_Id;
9886 -- Returns expression to compute:
9887 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
9889 function Range_N_Cond
9890 (Expr : Node_Id;
9891 Typ : Entity_Id;
9892 Indx : Nat) return Node_Id;
9893 -- Return expression to compute:
9894 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
9896 ---------------
9897 -- Add_Check --
9898 ---------------
9900 procedure Add_Check (N : Node_Id) is
9901 begin
9902 if Present (N) then
9904 -- For now, ignore attempt to place more than 2 checks ???
9906 if Num_Checks = 2 then
9907 return;
9908 end if;
9910 pragma Assert (Num_Checks <= 1);
9911 Num_Checks := Num_Checks + 1;
9912 Ret_Result (Num_Checks) := N;
9913 end if;
9914 end Add_Check;
9916 -------------------------
9917 -- Discrete_Expr_Cond --
9918 -------------------------
9920 function Discrete_Expr_Cond
9921 (Expr : Node_Id;
9922 Typ : Entity_Id) return Node_Id
9924 begin
9925 return
9926 Make_Or_Else (Loc,
9927 Left_Opnd =>
9928 Make_Op_Lt (Loc,
9929 Left_Opnd =>
9930 Convert_To (Base_Type (Typ),
9931 Duplicate_Subexpr_No_Checks (Expr)),
9932 Right_Opnd =>
9933 Convert_To (Base_Type (Typ),
9934 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
9936 Right_Opnd =>
9937 Make_Op_Gt (Loc,
9938 Left_Opnd =>
9939 Convert_To (Base_Type (Typ),
9940 Duplicate_Subexpr_No_Checks (Expr)),
9941 Right_Opnd =>
9942 Convert_To
9943 (Base_Type (Typ),
9944 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
9945 end Discrete_Expr_Cond;
9947 -------------------------
9948 -- Discrete_Range_Cond --
9949 -------------------------
9951 function Discrete_Range_Cond
9952 (Expr : Node_Id;
9953 Typ : Entity_Id) return Node_Id
9955 LB : Node_Id := Low_Bound (Expr);
9956 HB : Node_Id := High_Bound (Expr);
9958 Left_Opnd : Node_Id;
9959 Right_Opnd : Node_Id;
9961 begin
9962 if Nkind (LB) = N_Identifier
9963 and then Ekind (Entity (LB)) = E_Discriminant
9964 then
9965 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
9966 end if;
9968 Left_Opnd :=
9969 Make_Op_Lt (Loc,
9970 Left_Opnd =>
9971 Convert_To
9972 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
9974 Right_Opnd =>
9975 Convert_To
9976 (Base_Type (Typ),
9977 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
9979 if Nkind (HB) = N_Identifier
9980 and then Ekind (Entity (HB)) = E_Discriminant
9981 then
9982 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
9983 end if;
9985 Right_Opnd :=
9986 Make_Op_Gt (Loc,
9987 Left_Opnd =>
9988 Convert_To
9989 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
9991 Right_Opnd =>
9992 Convert_To
9993 (Base_Type (Typ),
9994 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
9996 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
9997 end Discrete_Range_Cond;
9999 -------------------------
10000 -- Get_E_First_Or_Last --
10001 -------------------------
10003 function Get_E_First_Or_Last
10004 (Loc : Source_Ptr;
10005 E : Entity_Id;
10006 Indx : Nat;
10007 Nam : Name_Id) return Node_Id
10009 Exprs : List_Id;
10010 begin
10011 if Indx > 0 then
10012 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
10013 else
10014 Exprs := No_List;
10015 end if;
10017 return Make_Attribute_Reference (Loc,
10018 Prefix => New_Occurrence_Of (E, Loc),
10019 Attribute_Name => Nam,
10020 Expressions => Exprs);
10021 end Get_E_First_Or_Last;
10023 -----------------
10024 -- Get_N_First --
10025 -----------------
10027 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
10028 begin
10029 return
10030 Make_Attribute_Reference (Loc,
10031 Attribute_Name => Name_First,
10032 Prefix =>
10033 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10034 Expressions => New_List (
10035 Make_Integer_Literal (Loc, Indx)));
10036 end Get_N_First;
10038 ----------------
10039 -- Get_N_Last --
10040 ----------------
10042 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
10043 begin
10044 return
10045 Make_Attribute_Reference (Loc,
10046 Attribute_Name => Name_Last,
10047 Prefix =>
10048 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10049 Expressions => New_List (
10050 Make_Integer_Literal (Loc, Indx)));
10051 end Get_N_Last;
10053 ------------------
10054 -- Range_E_Cond --
10055 ------------------
10057 function Range_E_Cond
10058 (Exptyp : Entity_Id;
10059 Typ : Entity_Id;
10060 Indx : Nat) return Node_Id
10062 begin
10063 return
10064 Make_Or_Else (Loc,
10065 Left_Opnd =>
10066 Make_Op_Lt (Loc,
10067 Left_Opnd =>
10068 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10069 Right_Opnd =>
10070 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10072 Right_Opnd =>
10073 Make_Op_Gt (Loc,
10074 Left_Opnd =>
10075 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10076 Right_Opnd =>
10077 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10078 end Range_E_Cond;
10080 ------------------------
10081 -- Range_Equal_E_Cond --
10082 ------------------------
10084 function Range_Equal_E_Cond
10085 (Exptyp : Entity_Id;
10086 Typ : Entity_Id;
10087 Indx : Nat) return Node_Id
10089 begin
10090 return
10091 Make_Or_Else (Loc,
10092 Left_Opnd =>
10093 Make_Op_Ne (Loc,
10094 Left_Opnd =>
10095 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10096 Right_Opnd =>
10097 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10099 Right_Opnd =>
10100 Make_Op_Ne (Loc,
10101 Left_Opnd =>
10102 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10103 Right_Opnd =>
10104 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10105 end Range_Equal_E_Cond;
10107 ------------------
10108 -- Range_N_Cond --
10109 ------------------
10111 function Range_N_Cond
10112 (Expr : Node_Id;
10113 Typ : Entity_Id;
10114 Indx : Nat) return Node_Id
10116 begin
10117 return
10118 Make_Or_Else (Loc,
10119 Left_Opnd =>
10120 Make_Op_Lt (Loc,
10121 Left_Opnd =>
10122 Get_N_First (Expr, Indx),
10123 Right_Opnd =>
10124 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10126 Right_Opnd =>
10127 Make_Op_Gt (Loc,
10128 Left_Opnd =>
10129 Get_N_Last (Expr, Indx),
10130 Right_Opnd =>
10131 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10132 end Range_N_Cond;
10134 -- Start of processing for Selected_Range_Checks
10136 begin
10137 -- Checks will be applied only when generating code. In GNATprove mode,
10138 -- we do not apply the checks, but we still call Selected_Range_Checks
10139 -- to possibly issue errors on SPARK code when a run-time error can be
10140 -- detected at compile time.
10142 if not Expander_Active and not GNATprove_Mode then
10143 return Ret_Result;
10144 end if;
10146 if Target_Typ = Any_Type
10147 or else Target_Typ = Any_Composite
10148 or else Raises_Constraint_Error (Ck_Node)
10149 then
10150 return Ret_Result;
10151 end if;
10153 if No (Wnode) then
10154 Wnode := Ck_Node;
10155 end if;
10157 T_Typ := Target_Typ;
10159 if No (Source_Typ) then
10160 S_Typ := Etype (Ck_Node);
10161 else
10162 S_Typ := Source_Typ;
10163 end if;
10165 if S_Typ = Any_Type or else S_Typ = Any_Composite then
10166 return Ret_Result;
10167 end if;
10169 -- The order of evaluating T_Typ before S_Typ seems to be critical
10170 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
10171 -- in, and since Node can be an N_Range node, it might be invalid.
10172 -- Should there be an assert check somewhere for taking the Etype of
10173 -- an N_Range node ???
10175 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10176 S_Typ := Designated_Type (S_Typ);
10177 T_Typ := Designated_Type (T_Typ);
10178 Do_Access := True;
10180 -- A simple optimization for the null case
10182 if Known_Null (Ck_Node) then
10183 return Ret_Result;
10184 end if;
10185 end if;
10187 -- For an N_Range Node, check for a null range and then if not
10188 -- null generate a range check action.
10190 if Nkind (Ck_Node) = N_Range then
10192 -- There's no point in checking a range against itself
10194 if Ck_Node = Scalar_Range (T_Typ) then
10195 return Ret_Result;
10196 end if;
10198 declare
10199 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
10200 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
10201 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
10202 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
10204 LB : Node_Id := Low_Bound (Ck_Node);
10205 HB : Node_Id := High_Bound (Ck_Node);
10206 Known_LB : Boolean := False;
10207 Known_HB : Boolean := False;
10209 Null_Range : Boolean;
10210 Out_Of_Range_L : Boolean;
10211 Out_Of_Range_H : Boolean;
10213 begin
10214 -- Compute what is known at compile time
10216 if Known_T_LB and Known_T_HB then
10217 if Compile_Time_Known_Value (LB) then
10218 Known_LB := True;
10220 -- There's no point in checking that a bound is within its
10221 -- own range so pretend that it is known in this case. First
10222 -- deal with low bound.
10224 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
10225 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
10226 then
10227 LB := T_LB;
10228 Known_LB := True;
10229 end if;
10231 -- Likewise for the high bound
10233 if Compile_Time_Known_Value (HB) then
10234 Known_HB := True;
10236 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
10237 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
10238 then
10239 HB := T_HB;
10240 Known_HB := True;
10241 end if;
10242 end if;
10244 -- Check for case where everything is static and we can do the
10245 -- check at compile time. This is skipped if we have an access
10246 -- type, since the access value may be null.
10248 -- ??? This code can be improved since you only need to know that
10249 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
10250 -- compile time to emit pertinent messages.
10252 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
10253 and not Do_Access
10254 then
10255 -- Floating-point case
10257 if Is_Floating_Point_Type (S_Typ) then
10258 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
10259 Out_Of_Range_L :=
10260 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
10261 or else
10262 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
10264 Out_Of_Range_H :=
10265 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
10266 or else
10267 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
10269 -- Fixed or discrete type case
10271 else
10272 Null_Range := Expr_Value (HB) < Expr_Value (LB);
10273 Out_Of_Range_L :=
10274 (Expr_Value (LB) < Expr_Value (T_LB))
10275 or else
10276 (Expr_Value (LB) > Expr_Value (T_HB));
10278 Out_Of_Range_H :=
10279 (Expr_Value (HB) > Expr_Value (T_HB))
10280 or else
10281 (Expr_Value (HB) < Expr_Value (T_LB));
10282 end if;
10284 if not Null_Range then
10285 if Out_Of_Range_L then
10286 if No (Warn_Node) then
10287 Add_Check
10288 (Compile_Time_Constraint_Error
10289 (Low_Bound (Ck_Node),
10290 "static value out of range of}??", T_Typ));
10292 else
10293 Add_Check
10294 (Compile_Time_Constraint_Error
10295 (Wnode,
10296 "static range out of bounds of}??", T_Typ));
10297 end if;
10298 end if;
10300 if Out_Of_Range_H then
10301 if No (Warn_Node) then
10302 Add_Check
10303 (Compile_Time_Constraint_Error
10304 (High_Bound (Ck_Node),
10305 "static value out of range of}??", T_Typ));
10307 else
10308 Add_Check
10309 (Compile_Time_Constraint_Error
10310 (Wnode,
10311 "static range out of bounds of}??", T_Typ));
10312 end if;
10313 end if;
10314 end if;
10316 else
10317 declare
10318 LB : Node_Id := Low_Bound (Ck_Node);
10319 HB : Node_Id := High_Bound (Ck_Node);
10321 begin
10322 -- If either bound is a discriminant and we are within the
10323 -- record declaration, it is a use of the discriminant in a
10324 -- constraint of a component, and nothing can be checked
10325 -- here. The check will be emitted within the init proc.
10326 -- Before then, the discriminal has no real meaning.
10327 -- Similarly, if the entity is a discriminal, there is no
10328 -- check to perform yet.
10330 -- The same holds within a discriminated synchronized type,
10331 -- where the discriminant may constrain a component or an
10332 -- entry family.
10334 if Nkind (LB) = N_Identifier
10335 and then Denotes_Discriminant (LB, True)
10336 then
10337 if Current_Scope = Scope (Entity (LB))
10338 or else Is_Concurrent_Type (Current_Scope)
10339 or else Ekind (Entity (LB)) /= E_Discriminant
10340 then
10341 return Ret_Result;
10342 else
10343 LB :=
10344 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10345 end if;
10346 end if;
10348 if Nkind (HB) = N_Identifier
10349 and then Denotes_Discriminant (HB, True)
10350 then
10351 if Current_Scope = Scope (Entity (HB))
10352 or else Is_Concurrent_Type (Current_Scope)
10353 or else Ekind (Entity (HB)) /= E_Discriminant
10354 then
10355 return Ret_Result;
10356 else
10357 HB :=
10358 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10359 end if;
10360 end if;
10362 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
10363 Set_Paren_Count (Cond, 1);
10365 Cond :=
10366 Make_And_Then (Loc,
10367 Left_Opnd =>
10368 Make_Op_Ge (Loc,
10369 Left_Opnd =>
10370 Convert_To (Base_Type (Etype (HB)),
10371 Duplicate_Subexpr_No_Checks (HB)),
10372 Right_Opnd =>
10373 Convert_To (Base_Type (Etype (LB)),
10374 Duplicate_Subexpr_No_Checks (LB))),
10375 Right_Opnd => Cond);
10376 end;
10377 end if;
10378 end;
10380 elsif Is_Scalar_Type (S_Typ) then
10382 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
10383 -- except the above simply sets a flag in the node and lets
10384 -- gigi generate the check base on the Etype of the expression.
10385 -- Sometimes, however we want to do a dynamic check against an
10386 -- arbitrary target type, so we do that here.
10388 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
10389 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10391 -- For literals, we can tell if the constraint error will be
10392 -- raised at compile time, so we never need a dynamic check, but
10393 -- if the exception will be raised, then post the usual warning,
10394 -- and replace the literal with a raise constraint error
10395 -- expression. As usual, skip this for access types
10397 elsif Compile_Time_Known_Value (Ck_Node) and then not Do_Access then
10398 declare
10399 LB : constant Node_Id := Type_Low_Bound (T_Typ);
10400 UB : constant Node_Id := Type_High_Bound (T_Typ);
10402 Out_Of_Range : Boolean;
10403 Static_Bounds : constant Boolean :=
10404 Compile_Time_Known_Value (LB)
10405 and Compile_Time_Known_Value (UB);
10407 begin
10408 -- Following range tests should use Sem_Eval routine ???
10410 if Static_Bounds then
10411 if Is_Floating_Point_Type (S_Typ) then
10412 Out_Of_Range :=
10413 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
10414 or else
10415 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
10417 -- Fixed or discrete type
10419 else
10420 Out_Of_Range :=
10421 Expr_Value (Ck_Node) < Expr_Value (LB)
10422 or else
10423 Expr_Value (Ck_Node) > Expr_Value (UB);
10424 end if;
10426 -- Bounds of the type are static and the literal is out of
10427 -- range so output a warning message.
10429 if Out_Of_Range then
10430 if No (Warn_Node) then
10431 Add_Check
10432 (Compile_Time_Constraint_Error
10433 (Ck_Node,
10434 "static value out of range of}??", T_Typ));
10436 else
10437 Add_Check
10438 (Compile_Time_Constraint_Error
10439 (Wnode,
10440 "static value out of range of}??", T_Typ));
10441 end if;
10442 end if;
10444 else
10445 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10446 end if;
10447 end;
10449 -- Here for the case of a non-static expression, we need a runtime
10450 -- check unless the source type range is guaranteed to be in the
10451 -- range of the target type.
10453 else
10454 if not In_Subrange_Of (S_Typ, T_Typ) then
10455 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10456 end if;
10457 end if;
10458 end if;
10460 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
10461 if Is_Constrained (T_Typ) then
10463 Expr_Actual := Get_Referenced_Object (Ck_Node);
10464 Exptyp := Get_Actual_Subtype (Expr_Actual);
10466 if Is_Access_Type (Exptyp) then
10467 Exptyp := Designated_Type (Exptyp);
10468 end if;
10470 -- String_Literal case. This needs to be handled specially be-
10471 -- cause no index types are available for string literals. The
10472 -- condition is simply:
10474 -- T_Typ'Length = string-literal-length
10476 if Nkind (Expr_Actual) = N_String_Literal then
10477 null;
10479 -- General array case. Here we have a usable actual subtype for
10480 -- the expression, and the condition is built from the two types
10482 -- T_Typ'First < Exptyp'First or else
10483 -- T_Typ'Last > Exptyp'Last or else
10484 -- T_Typ'First(1) < Exptyp'First(1) or else
10485 -- T_Typ'Last(1) > Exptyp'Last(1) or else
10486 -- ...
10488 elsif Is_Constrained (Exptyp) then
10489 declare
10490 Ndims : constant Nat := Number_Dimensions (T_Typ);
10492 L_Index : Node_Id;
10493 R_Index : Node_Id;
10495 begin
10496 L_Index := First_Index (T_Typ);
10497 R_Index := First_Index (Exptyp);
10499 for Indx in 1 .. Ndims loop
10500 if not (Nkind (L_Index) = N_Raise_Constraint_Error
10501 or else
10502 Nkind (R_Index) = N_Raise_Constraint_Error)
10503 then
10504 -- Deal with compile time length check. Note that we
10505 -- skip this in the access case, because the access
10506 -- value may be null, so we cannot know statically.
10508 if not
10509 Subtypes_Statically_Match
10510 (Etype (L_Index), Etype (R_Index))
10511 then
10512 -- If the target type is constrained then we
10513 -- have to check for exact equality of bounds
10514 -- (required for qualified expressions).
10516 if Is_Constrained (T_Typ) then
10517 Evolve_Or_Else
10518 (Cond,
10519 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
10520 else
10521 Evolve_Or_Else
10522 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
10523 end if;
10524 end if;
10526 Next (L_Index);
10527 Next (R_Index);
10528 end if;
10529 end loop;
10530 end;
10532 -- Handle cases where we do not get a usable actual subtype that
10533 -- is constrained. This happens for example in the function call
10534 -- and explicit dereference cases. In these cases, we have to get
10535 -- the length or range from the expression itself, making sure we
10536 -- do not evaluate it more than once.
10538 -- Here Ck_Node is the original expression, or more properly the
10539 -- result of applying Duplicate_Expr to the original tree,
10540 -- forcing the result to be a name.
10542 else
10543 declare
10544 Ndims : constant Nat := Number_Dimensions (T_Typ);
10546 begin
10547 -- Build the condition for the explicit dereference case
10549 for Indx in 1 .. Ndims loop
10550 Evolve_Or_Else
10551 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
10552 end loop;
10553 end;
10554 end if;
10556 else
10557 -- For a conversion to an unconstrained array type, generate an
10558 -- Action to check that the bounds of the source value are within
10559 -- the constraints imposed by the target type (RM 4.6(38)). No
10560 -- check is needed for a conversion to an access to unconstrained
10561 -- array type, as 4.6(24.15/2) requires the designated subtypes
10562 -- of the two access types to statically match.
10564 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
10565 and then not Do_Access
10566 then
10567 declare
10568 Opnd_Index : Node_Id;
10569 Targ_Index : Node_Id;
10570 Opnd_Range : Node_Id;
10572 begin
10573 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
10574 Targ_Index := First_Index (T_Typ);
10575 while Present (Opnd_Index) loop
10577 -- If the index is a range, use its bounds. If it is an
10578 -- entity (as will be the case if it is a named subtype
10579 -- or an itype created for a slice) retrieve its range.
10581 if Is_Entity_Name (Opnd_Index)
10582 and then Is_Type (Entity (Opnd_Index))
10583 then
10584 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
10585 else
10586 Opnd_Range := Opnd_Index;
10587 end if;
10589 if Nkind (Opnd_Range) = N_Range then
10590 if Is_In_Range
10591 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10592 Assume_Valid => True)
10593 and then
10594 Is_In_Range
10595 (High_Bound (Opnd_Range), Etype (Targ_Index),
10596 Assume_Valid => True)
10597 then
10598 null;
10600 -- If null range, no check needed
10602 elsif
10603 Compile_Time_Known_Value (High_Bound (Opnd_Range))
10604 and then
10605 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
10606 and then
10607 Expr_Value (High_Bound (Opnd_Range)) <
10608 Expr_Value (Low_Bound (Opnd_Range))
10609 then
10610 null;
10612 elsif Is_Out_Of_Range
10613 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10614 Assume_Valid => True)
10615 or else
10616 Is_Out_Of_Range
10617 (High_Bound (Opnd_Range), Etype (Targ_Index),
10618 Assume_Valid => True)
10619 then
10620 Add_Check
10621 (Compile_Time_Constraint_Error
10622 (Wnode, "value out of range of}??", T_Typ));
10624 else
10625 Evolve_Or_Else
10626 (Cond,
10627 Discrete_Range_Cond
10628 (Opnd_Range, Etype (Targ_Index)));
10629 end if;
10630 end if;
10632 Next_Index (Opnd_Index);
10633 Next_Index (Targ_Index);
10634 end loop;
10635 end;
10636 end if;
10637 end if;
10638 end if;
10640 -- Construct the test and insert into the tree
10642 if Present (Cond) then
10643 if Do_Access then
10644 Cond := Guard_Access (Cond, Loc, Ck_Node);
10645 end if;
10647 Add_Check
10648 (Make_Raise_Constraint_Error (Loc,
10649 Condition => Cond,
10650 Reason => CE_Range_Check_Failed));
10651 end if;
10653 return Ret_Result;
10654 end Selected_Range_Checks;
10656 -------------------------------
10657 -- Storage_Checks_Suppressed --
10658 -------------------------------
10660 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
10661 begin
10662 if Present (E) and then Checks_May_Be_Suppressed (E) then
10663 return Is_Check_Suppressed (E, Storage_Check);
10664 else
10665 return Scope_Suppress.Suppress (Storage_Check);
10666 end if;
10667 end Storage_Checks_Suppressed;
10669 ---------------------------
10670 -- Tag_Checks_Suppressed --
10671 ---------------------------
10673 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
10674 begin
10675 if Present (E)
10676 and then Checks_May_Be_Suppressed (E)
10677 then
10678 return Is_Check_Suppressed (E, Tag_Check);
10679 else
10680 return Scope_Suppress.Suppress (Tag_Check);
10681 end if;
10682 end Tag_Checks_Suppressed;
10684 ---------------------------------------
10685 -- Validate_Alignment_Check_Warnings --
10686 ---------------------------------------
10688 procedure Validate_Alignment_Check_Warnings is
10689 begin
10690 for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
10691 declare
10692 AWR : Alignment_Warnings_Record
10693 renames Alignment_Warnings.Table (J);
10694 begin
10695 if Known_Alignment (AWR.E)
10696 and then AWR.A mod Alignment (AWR.E) = 0
10697 then
10698 Delete_Warning_And_Continuations (AWR.W);
10699 end if;
10700 end;
10701 end loop;
10702 end Validate_Alignment_Check_Warnings;
10704 --------------------------
10705 -- Validity_Check_Range --
10706 --------------------------
10708 procedure Validity_Check_Range
10709 (N : Node_Id;
10710 Related_Id : Entity_Id := Empty)
10712 begin
10713 if Validity_Checks_On and Validity_Check_Operands then
10714 if Nkind (N) = N_Range then
10715 Ensure_Valid
10716 (Expr => Low_Bound (N),
10717 Related_Id => Related_Id,
10718 Is_Low_Bound => True);
10720 Ensure_Valid
10721 (Expr => High_Bound (N),
10722 Related_Id => Related_Id,
10723 Is_High_Bound => True);
10724 end if;
10725 end if;
10726 end Validity_Check_Range;
10728 --------------------------------
10729 -- Validity_Checks_Suppressed --
10730 --------------------------------
10732 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
10733 begin
10734 if Present (E) and then Checks_May_Be_Suppressed (E) then
10735 return Is_Check_Suppressed (E, Validity_Check);
10736 else
10737 return Scope_Suppress.Suppress (Validity_Check);
10738 end if;
10739 end Validity_Checks_Suppressed;
10741 end Checks;