[gcc]
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blob9ec3647fedd3ae15c113484b0fd6d42c23a41a15
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
33 /* Definitions for the object file format. These are set at
34 compile-time. */
36 #define OBJECT_XCOFF 1
37 #define OBJECT_ELF 2
38 #define OBJECT_PEF 3
39 #define OBJECT_MACHO 4
41 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
42 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
43 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
44 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
46 #ifndef TARGET_AIX
47 #define TARGET_AIX 0
48 #endif
50 #ifndef TARGET_AIX_OS
51 #define TARGET_AIX_OS 0
52 #endif
54 /* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56 #define DOT_SYMBOLS 1
58 /* Default string to use for cpu if not specified. */
59 #ifndef TARGET_CPU_DEFAULT
60 #define TARGET_CPU_DEFAULT ((char *)0)
61 #endif
63 /* If configured for PPC405, support PPC405CR Erratum77. */
64 #ifdef CONFIG_PPC405CR
65 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66 #else
67 #define PPC405_ERRATUM77 0
68 #endif
70 #ifndef TARGET_PAIRED_FLOAT
71 #define TARGET_PAIRED_FLOAT 0
72 #endif
74 #ifdef HAVE_AS_POPCNTB
75 #define ASM_CPU_POWER5_SPEC "-mpower5"
76 #else
77 #define ASM_CPU_POWER5_SPEC "-mpower4"
78 #endif
80 #ifdef HAVE_AS_DFP
81 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82 #else
83 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84 #endif
86 #ifdef HAVE_AS_POPCNTD
87 #define ASM_CPU_POWER7_SPEC "-mpower7"
88 #else
89 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90 #endif
92 #ifdef HAVE_AS_POWER8
93 #define ASM_CPU_POWER8_SPEC "-mpower8"
94 #else
95 #define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
96 #endif
98 #ifdef HAVE_AS_DCI
99 #define ASM_CPU_476_SPEC "-m476"
100 #else
101 #define ASM_CPU_476_SPEC "-mpower4"
102 #endif
104 /* Common ASM definitions used by ASM_SPEC among the various targets for
105 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
106 provide the default assembler options if the user uses -mcpu=native, so if
107 you make changes here, make them also there. */
108 #define ASM_CPU_SPEC \
109 "%{!mcpu*: \
110 %{mpowerpc64*: -mppc64} \
111 %{!mpowerpc64*: %(asm_default)}} \
112 %{mcpu=native: %(asm_cpu_native)} \
113 %{mcpu=cell: -mcell} \
114 %{mcpu=power3: -mppc64} \
115 %{mcpu=power4: -mpower4} \
116 %{mcpu=power5: %(asm_cpu_power5)} \
117 %{mcpu=power5+: %(asm_cpu_power5)} \
118 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
119 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
120 %{mcpu=power7: %(asm_cpu_power7)} \
121 %{mcpu=power8: %(asm_cpu_power8)} \
122 %{mcpu=a2: -ma2} \
123 %{mcpu=powerpc: -mppc} \
124 %{mcpu=rs64a: -mppc64} \
125 %{mcpu=401: -mppc} \
126 %{mcpu=403: -m403} \
127 %{mcpu=405: -m405} \
128 %{mcpu=405fp: -m405} \
129 %{mcpu=440: -m440} \
130 %{mcpu=440fp: -m440} \
131 %{mcpu=464: -m440} \
132 %{mcpu=464fp: -m440} \
133 %{mcpu=476: %(asm_cpu_476)} \
134 %{mcpu=476fp: %(asm_cpu_476)} \
135 %{mcpu=505: -mppc} \
136 %{mcpu=601: -m601} \
137 %{mcpu=602: -mppc} \
138 %{mcpu=603: -mppc} \
139 %{mcpu=603e: -mppc} \
140 %{mcpu=ec603e: -mppc} \
141 %{mcpu=604: -mppc} \
142 %{mcpu=604e: -mppc} \
143 %{mcpu=620: -mppc64} \
144 %{mcpu=630: -mppc64} \
145 %{mcpu=740: -mppc} \
146 %{mcpu=750: -mppc} \
147 %{mcpu=G3: -mppc} \
148 %{mcpu=7400: -mppc -maltivec} \
149 %{mcpu=7450: -mppc -maltivec} \
150 %{mcpu=G4: -mppc -maltivec} \
151 %{mcpu=801: -mppc} \
152 %{mcpu=821: -mppc} \
153 %{mcpu=823: -mppc} \
154 %{mcpu=860: -mppc} \
155 %{mcpu=970: -mpower4 -maltivec} \
156 %{mcpu=G5: -mpower4 -maltivec} \
157 %{mcpu=8540: -me500} \
158 %{mcpu=8548: -me500} \
159 %{mcpu=e300c2: -me300} \
160 %{mcpu=e300c3: -me300} \
161 %{mcpu=e500mc: -me500mc} \
162 %{mcpu=e500mc64: -me500mc64} \
163 %{mcpu=e5500: -me5500} \
164 %{mcpu=e6500: -me6500} \
165 %{maltivec: -maltivec} \
166 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
167 %{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
168 -many"
170 #define CPP_DEFAULT_SPEC ""
172 #define ASM_DEFAULT_SPEC ""
174 /* This macro defines names of additional specifications to put in the specs
175 that can be used in various specifications like CC1_SPEC. Its definition
176 is an initializer with a subgrouping for each command option.
178 Each subgrouping contains a string constant, that defines the
179 specification name, and a string constant that used by the GCC driver
180 program.
182 Do not define this macro if it does not need to do anything. */
184 #define SUBTARGET_EXTRA_SPECS
186 #define EXTRA_SPECS \
187 { "cpp_default", CPP_DEFAULT_SPEC }, \
188 { "asm_cpu", ASM_CPU_SPEC }, \
189 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
190 { "asm_default", ASM_DEFAULT_SPEC }, \
191 { "cc1_cpu", CC1_CPU_SPEC }, \
192 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
193 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
194 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
195 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
196 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
197 SUBTARGET_EXTRA_SPECS
199 /* -mcpu=native handling only makes sense with compiler running on
200 an PowerPC chip. If changing this condition, also change
201 the condition in driver-rs6000.c. */
202 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
203 /* In driver-rs6000.c. */
204 extern const char *host_detect_local_cpu (int argc, const char **argv);
205 #define EXTRA_SPEC_FUNCTIONS \
206 { "local_cpu_detect", host_detect_local_cpu },
207 #define HAVE_LOCAL_CPU_DETECT
208 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
210 #else
211 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
212 #endif
214 #ifndef CC1_CPU_SPEC
215 #ifdef HAVE_LOCAL_CPU_DETECT
216 #define CC1_CPU_SPEC \
217 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
218 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
219 #else
220 #define CC1_CPU_SPEC ""
221 #endif
222 #endif
224 /* Architecture type. */
226 /* Define TARGET_MFCRF if the target assembler does not support the
227 optional field operand for mfcr. */
229 #ifndef HAVE_AS_MFCRF
230 #undef TARGET_MFCRF
231 #define TARGET_MFCRF 0
232 #endif
234 /* Define TARGET_POPCNTB if the target assembler does not support the
235 popcount byte instruction. */
237 #ifndef HAVE_AS_POPCNTB
238 #undef TARGET_POPCNTB
239 #define TARGET_POPCNTB 0
240 #endif
242 /* Define TARGET_FPRND if the target assembler does not support the
243 fp rounding instructions. */
245 #ifndef HAVE_AS_FPRND
246 #undef TARGET_FPRND
247 #define TARGET_FPRND 0
248 #endif
250 /* Define TARGET_CMPB if the target assembler does not support the
251 cmpb instruction. */
253 #ifndef HAVE_AS_CMPB
254 #undef TARGET_CMPB
255 #define TARGET_CMPB 0
256 #endif
258 /* Define TARGET_MFPGPR if the target assembler does not support the
259 mffpr and mftgpr instructions. */
261 #ifndef HAVE_AS_MFPGPR
262 #undef TARGET_MFPGPR
263 #define TARGET_MFPGPR 0
264 #endif
266 /* Define TARGET_DFP if the target assembler does not support decimal
267 floating point instructions. */
268 #ifndef HAVE_AS_DFP
269 #undef TARGET_DFP
270 #define TARGET_DFP 0
271 #endif
273 /* Define TARGET_POPCNTD if the target assembler does not support the
274 popcount word and double word instructions. */
276 #ifndef HAVE_AS_POPCNTD
277 #undef TARGET_POPCNTD
278 #define TARGET_POPCNTD 0
279 #endif
281 /* Define the ISA 2.07 flags as 0 if the target assembler does not support the
282 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
283 instructions. */
285 #ifndef HAVE_AS_POWER8
286 #undef TARGET_DIRECT_MOVE
287 #undef TARGET_CRYPTO
288 #undef TARGET_HTM
289 #undef TARGET_P8_VECTOR
290 #define TARGET_DIRECT_MOVE 0
291 #define TARGET_CRYPTO 0
292 #define TARGET_HTM 0
293 #define TARGET_P8_VECTOR 0
294 #endif
296 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
297 not, generate the lwsync code as an integer constant. */
298 #ifdef HAVE_AS_LWSYNC
299 #define TARGET_LWSYNC_INSTRUCTION 1
300 #else
301 #define TARGET_LWSYNC_INSTRUCTION 0
302 #endif
304 /* Define TARGET_TLS_MARKERS if the target assembler does not support
305 arg markers for __tls_get_addr calls. */
306 #ifndef HAVE_AS_TLS_MARKERS
307 #undef TARGET_TLS_MARKERS
308 #define TARGET_TLS_MARKERS 0
309 #else
310 #define TARGET_TLS_MARKERS tls_markers
311 #endif
313 #ifndef TARGET_SECURE_PLT
314 #define TARGET_SECURE_PLT 0
315 #endif
317 #ifndef TARGET_CMODEL
318 #define TARGET_CMODEL CMODEL_SMALL
319 #endif
321 #define TARGET_32BIT (! TARGET_64BIT)
323 #ifndef HAVE_AS_TLS
324 #define HAVE_AS_TLS 0
325 #endif
327 #ifndef TARGET_LINK_STACK
328 #define TARGET_LINK_STACK 0
329 #endif
331 #ifndef SET_TARGET_LINK_STACK
332 #define SET_TARGET_LINK_STACK(X) do { } while (0)
333 #endif
335 /* Return 1 for a symbol ref for a thread-local storage symbol. */
336 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
337 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
339 #ifdef IN_LIBGCC2
340 /* For libgcc2 we make sure this is a compile time constant */
341 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
342 #undef TARGET_POWERPC64
343 #define TARGET_POWERPC64 1
344 #else
345 #undef TARGET_POWERPC64
346 #define TARGET_POWERPC64 0
347 #endif
348 #else
349 /* The option machinery will define this. */
350 #endif
352 #define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
354 /* FPU operations supported.
355 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
356 also test TARGET_HARD_FLOAT. */
357 #define TARGET_SINGLE_FLOAT 1
358 #define TARGET_DOUBLE_FLOAT 1
359 #define TARGET_SINGLE_FPU 0
360 #define TARGET_SIMPLE_FPU 0
361 #define TARGET_XILINX_FPU 0
363 /* Recast the processor type to the cpu attribute. */
364 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
366 /* Define generic processor types based upon current deployment. */
367 #define PROCESSOR_COMMON PROCESSOR_PPC601
368 #define PROCESSOR_POWERPC PROCESSOR_PPC604
369 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
371 /* Define the default processor. This is overridden by other tm.h files. */
372 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
373 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
375 /* Specify the dialect of assembler to use. Only new mnemonics are supported
376 starting with GCC 4.8, i.e. just one dialect, but for backwards
377 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
378 defined. */
379 #define ASSEMBLER_DIALECT 1
381 /* Debug support */
382 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
383 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
384 #define MASK_DEBUG_REG 0x04 /* debug register handling */
385 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
386 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
387 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
388 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
389 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
390 | MASK_DEBUG_ARG \
391 | MASK_DEBUG_REG \
392 | MASK_DEBUG_ADDR \
393 | MASK_DEBUG_COST \
394 | MASK_DEBUG_TARGET \
395 | MASK_DEBUG_BUILTIN)
397 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
398 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
399 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
400 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
401 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
402 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
403 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
405 /* Describe the vector unit used for arithmetic operations. */
406 extern enum rs6000_vector rs6000_vector_unit[];
408 #define VECTOR_UNIT_NONE_P(MODE) \
409 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
411 #define VECTOR_UNIT_VSX_P(MODE) \
412 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
414 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
415 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
417 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
418 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
420 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
421 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
422 (int)VECTOR_VSX, \
423 (int)VECTOR_P8_VECTOR))
425 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
426 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
427 compatible, so allow it as well, rather than changing all of the uses of the
428 macro. */
429 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
430 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
431 (int)VECTOR_ALTIVEC, \
432 (int)VECTOR_P8_VECTOR))
434 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
435 same unit as the vector unit we are using, but we may want to migrate to
436 using VSX style loads even for types handled by altivec. */
437 extern enum rs6000_vector rs6000_vector_mem[];
439 #define VECTOR_MEM_NONE_P(MODE) \
440 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
442 #define VECTOR_MEM_VSX_P(MODE) \
443 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
445 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
446 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
448 #define VECTOR_MEM_ALTIVEC_P(MODE) \
449 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
451 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
452 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
453 (int)VECTOR_VSX, \
454 (int)VECTOR_P8_VECTOR))
456 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
457 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
458 (int)VECTOR_ALTIVEC, \
459 (int)VECTOR_P8_VECTOR))
461 /* Return the alignment of a given vector type, which is set based on the
462 vector unit use. VSX for instance can load 32 or 64 bit aligned words
463 without problems, while Altivec requires 128-bit aligned vectors. */
464 extern int rs6000_vector_align[];
466 #define VECTOR_ALIGN(MODE) \
467 ((rs6000_vector_align[(MODE)] != 0) \
468 ? rs6000_vector_align[(MODE)] \
469 : (int)GET_MODE_BITSIZE ((MODE)))
471 /* Determine the element order to use for vector instructions. By
472 default we use big-endian element order when targeting big-endian,
473 and little-endian element order when targeting little-endian. For
474 programs being ported from BE Power to LE Power, it can sometimes
475 be useful to use big-endian element order when targeting little-endian.
476 This is set via -maltivec=be, for example. */
477 #define VECTOR_ELT_ORDER_BIG \
478 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
480 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
481 with scalar instructions. */
482 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
484 /* Alignment options for fields in structures for sub-targets following
485 AIX-like ABI.
486 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
487 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
489 Override the macro definitions when compiling libobjc to avoid undefined
490 reference to rs6000_alignment_flags due to library's use of GCC alignment
491 macros which use the macros below. */
493 #ifndef IN_TARGET_LIBS
494 #define MASK_ALIGN_POWER 0x00000000
495 #define MASK_ALIGN_NATURAL 0x00000001
496 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
497 #else
498 #define TARGET_ALIGN_NATURAL 0
499 #endif
501 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
502 #define TARGET_IEEEQUAD rs6000_ieeequad
503 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
504 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
506 #define TARGET_SPE_ABI 0
507 #define TARGET_SPE 0
508 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
509 #define TARGET_FPRS 1
510 #define TARGET_E500_SINGLE 0
511 #define TARGET_E500_DOUBLE 0
512 #define CHECK_E500_OPTIONS do { } while (0)
514 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
515 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
516 XILINX. */
517 #define TARGET_FCFID (TARGET_POWERPC64 \
518 || TARGET_PPC_GPOPT /* 970/power4 */ \
519 || TARGET_POPCNTB /* ISA 2.02 */ \
520 || TARGET_CMPB /* ISA 2.05 */ \
521 || TARGET_POPCNTD /* ISA 2.06 */ \
522 || TARGET_XILINX_FPU)
524 #define TARGET_FCTIDZ TARGET_FCFID
525 #define TARGET_STFIWX TARGET_PPC_GFXOPT
526 #define TARGET_LFIWAX TARGET_CMPB
527 #define TARGET_LFIWZX TARGET_POPCNTD
528 #define TARGET_FCFIDS TARGET_POPCNTD
529 #define TARGET_FCFIDU TARGET_POPCNTD
530 #define TARGET_FCFIDUS TARGET_POPCNTD
531 #define TARGET_FCTIDUZ TARGET_POPCNTD
532 #define TARGET_FCTIWUZ TARGET_POPCNTD
534 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
535 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
536 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
538 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
539 in power7, so conditionalize them on p8 features. TImode syncs need quad
540 memory support. */
541 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
542 || TARGET_QUAD_MEMORY_ATOMIC \
543 || TARGET_DIRECT_MOVE)
545 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
547 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
548 to allocate the SDmode stack slot to get the value into the proper location
549 in the register. */
550 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
552 /* In switching from using target_flags to using rs6000_isa_flags, the options
553 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
554 OPTION_MASK_<xxx> back into MASK_<xxx>. */
555 #define MASK_ALTIVEC OPTION_MASK_ALTIVEC
556 #define MASK_CMPB OPTION_MASK_CMPB
557 #define MASK_CRYPTO OPTION_MASK_CRYPTO
558 #define MASK_DFP OPTION_MASK_DFP
559 #define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
560 #define MASK_DLMZB OPTION_MASK_DLMZB
561 #define MASK_EABI OPTION_MASK_EABI
562 #define MASK_FPRND OPTION_MASK_FPRND
563 #define MASK_P8_FUSION OPTION_MASK_P8_FUSION
564 #define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
565 #define MASK_HTM OPTION_MASK_HTM
566 #define MASK_ISEL OPTION_MASK_ISEL
567 #define MASK_MFCRF OPTION_MASK_MFCRF
568 #define MASK_MFPGPR OPTION_MASK_MFPGPR
569 #define MASK_MULHW OPTION_MASK_MULHW
570 #define MASK_MULTIPLE OPTION_MASK_MULTIPLE
571 #define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
572 #define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
573 #define MASK_POPCNTB OPTION_MASK_POPCNTB
574 #define MASK_POPCNTD OPTION_MASK_POPCNTD
575 #define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
576 #define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
577 #define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
578 #define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
579 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
580 #define MASK_STRING OPTION_MASK_STRING
581 #define MASK_UPDATE OPTION_MASK_UPDATE
582 #define MASK_VSX OPTION_MASK_VSX
583 #define MASK_VSX_TIMODE OPTION_MASK_VSX_TIMODE
585 #ifndef IN_LIBGCC2
586 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
587 #endif
589 #ifdef TARGET_64BIT
590 #define MASK_64BIT OPTION_MASK_64BIT
591 #endif
593 #ifdef TARGET_RELOCATABLE
594 #define MASK_RELOCATABLE OPTION_MASK_RELOCATABLE
595 #endif
597 #ifdef TARGET_LITTLE_ENDIAN
598 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
599 #endif
601 #ifdef TARGET_MINIMAL_TOC
602 #define MASK_MINIMAL_TOC OPTION_MASK_MINIMAL_TOC
603 #endif
605 #ifdef TARGET_REGNAMES
606 #define MASK_REGNAMES OPTION_MASK_REGNAMES
607 #endif
609 #ifdef TARGET_PROTOTYPE
610 #define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
611 #endif
613 /* For power systems, we want to enable Altivec and VSX builtins even if the
614 user did not use -maltivec or -mvsx to allow the builtins to be used inside
615 of #pragma GCC target or the target attribute to change the code level for a
616 given system. The SPE and Paired builtins are only enabled if you configure
617 the compiler for those builtins, and those machines don't support altivec or
618 VSX. */
620 #define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
621 && ((TARGET_POWERPC64 \
622 || TARGET_PPC_GPOPT /* 970/power4 */ \
623 || TARGET_POPCNTB /* ISA 2.02 */ \
624 || TARGET_CMPB /* ISA 2.05 */ \
625 || TARGET_POPCNTD /* ISA 2.06 */ \
626 || TARGET_ALTIVEC \
627 || TARGET_VSX)))
629 /* E500 cores only support plain "sync", not lwsync. */
630 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
631 || rs6000_cpu == PROCESSOR_PPC8548)
634 /* Whether SF/DF operations are supported on the E500. */
635 #define TARGET_SF_SPE (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT \
636 && !TARGET_FPRS)
638 #define TARGET_DF_SPE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
639 && !TARGET_FPRS && TARGET_E500_DOUBLE)
641 /* Whether SF/DF operations are supported by by the normal floating point unit
642 (or the vector/scalar unit). */
643 #define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
644 && TARGET_SINGLE_FLOAT)
646 #define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
647 && TARGET_DOUBLE_FLOAT)
649 /* Whether SF/DF operations are supported by any hardware. */
650 #define TARGET_SF_INSN (TARGET_SF_FPR || TARGET_SF_SPE)
651 #define TARGET_DF_INSN (TARGET_DF_FPR || TARGET_DF_SPE)
653 /* Which machine supports the various reciprocal estimate instructions. */
654 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
655 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
657 #define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
658 && TARGET_DOUBLE_FLOAT \
659 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
661 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
662 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
664 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
665 && TARGET_DOUBLE_FLOAT \
666 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
668 /* Whether the various reciprocal divide/square root estimate instructions
669 exist, and whether we should automatically generate code for the instruction
670 by default. */
671 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
672 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
673 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
674 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
676 extern unsigned char rs6000_recip_bits[];
678 #define RS6000_RECIP_HAVE_RE_P(MODE) \
679 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
681 #define RS6000_RECIP_AUTO_RE_P(MODE) \
682 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
684 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
685 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
687 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
688 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
690 /* The default CPU for TARGET_OPTION_OVERRIDE. */
691 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
693 /* Target pragma. */
694 #define REGISTER_TARGET_PRAGMAS() do { \
695 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
696 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
697 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
698 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
699 } while (0)
701 /* Target #defines. */
702 #define TARGET_CPU_CPP_BUILTINS() \
703 rs6000_cpu_cpp_builtins (pfile)
705 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
706 we're compiling for. Some configurations may need to override it. */
707 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
708 do \
710 if (BYTES_BIG_ENDIAN) \
712 builtin_define ("__BIG_ENDIAN__"); \
713 builtin_define ("_BIG_ENDIAN"); \
714 builtin_assert ("machine=bigendian"); \
716 else \
718 builtin_define ("__LITTLE_ENDIAN__"); \
719 builtin_define ("_LITTLE_ENDIAN"); \
720 builtin_assert ("machine=littleendian"); \
723 while (0)
725 /* Target machine storage layout. */
727 /* Define this macro if it is advisable to hold scalars in registers
728 in a wider mode than that declared by the program. In such cases,
729 the value is constrained to be within the bounds of the declared
730 type, but kept valid in the wider mode. The signedness of the
731 extension may differ from that of the type. */
733 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
734 if (GET_MODE_CLASS (MODE) == MODE_INT \
735 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
736 (MODE) = TARGET_32BIT ? SImode : DImode;
738 /* Define this if most significant bit is lowest numbered
739 in instructions that operate on numbered bit-fields. */
740 /* That is true on RS/6000. */
741 #define BITS_BIG_ENDIAN 1
743 /* Define this if most significant byte of a word is the lowest numbered. */
744 /* That is true on RS/6000. */
745 #define BYTES_BIG_ENDIAN 1
747 /* Define this if most significant word of a multiword number is lowest
748 numbered.
750 For RS/6000 we can decide arbitrarily since there are no machine
751 instructions for them. Might as well be consistent with bits and bytes. */
752 #define WORDS_BIG_ENDIAN 1
754 /* This says that for the IBM long double the larger magnitude double
755 comes first. It's really a two element double array, and arrays
756 don't index differently between little- and big-endian. */
757 #define LONG_DOUBLE_LARGE_FIRST 1
759 #define MAX_BITS_PER_WORD 64
761 /* Width of a word, in units (bytes). */
762 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
763 #ifdef IN_LIBGCC2
764 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
765 #else
766 #define MIN_UNITS_PER_WORD 4
767 #endif
768 #define UNITS_PER_FP_WORD 8
769 #define UNITS_PER_ALTIVEC_WORD 16
770 #define UNITS_PER_VSX_WORD 16
771 #define UNITS_PER_SPE_WORD 8
772 #define UNITS_PER_PAIRED_WORD 8
774 /* Type used for ptrdiff_t, as a string used in a declaration. */
775 #define PTRDIFF_TYPE "int"
777 /* Type used for size_t, as a string used in a declaration. */
778 #define SIZE_TYPE "long unsigned int"
780 /* Type used for wchar_t, as a string used in a declaration. */
781 #define WCHAR_TYPE "short unsigned int"
783 /* Width of wchar_t in bits. */
784 #define WCHAR_TYPE_SIZE 16
786 /* A C expression for the size in bits of the type `short' on the
787 target machine. If you don't define this, the default is half a
788 word. (If this would be less than one storage unit, it is
789 rounded up to one unit.) */
790 #define SHORT_TYPE_SIZE 16
792 /* A C expression for the size in bits of the type `int' on the
793 target machine. If you don't define this, the default is one
794 word. */
795 #define INT_TYPE_SIZE 32
797 /* A C expression for the size in bits of the type `long' on the
798 target machine. If you don't define this, the default is one
799 word. */
800 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
802 /* A C expression for the size in bits of the type `long long' on the
803 target machine. If you don't define this, the default is two
804 words. */
805 #define LONG_LONG_TYPE_SIZE 64
807 /* A C expression for the size in bits of the type `float' on the
808 target machine. If you don't define this, the default is one
809 word. */
810 #define FLOAT_TYPE_SIZE 32
812 /* A C expression for the size in bits of the type `double' on the
813 target machine. If you don't define this, the default is two
814 words. */
815 #define DOUBLE_TYPE_SIZE 64
817 /* A C expression for the size in bits of the type `long double' on
818 the target machine. If you don't define this, the default is two
819 words. */
820 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
822 /* Define this to set long double type size to use in libgcc2.c, which can
823 not depend on target_flags. */
824 #ifdef __LONG_DOUBLE_128__
825 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
826 #else
827 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
828 #endif
830 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
831 #define WIDEST_HARDWARE_FP_SIZE 64
833 /* Width in bits of a pointer.
834 See also the macro `Pmode' defined below. */
835 extern unsigned rs6000_pointer_size;
836 #define POINTER_SIZE rs6000_pointer_size
838 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
839 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
841 /* Boundary (in *bits*) on which stack pointer should be aligned. */
842 #define STACK_BOUNDARY \
843 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
844 ? 64 : 128)
846 /* Allocation boundary (in *bits*) for the code of a function. */
847 #define FUNCTION_BOUNDARY 32
849 /* No data type wants to be aligned rounder than this. */
850 #define BIGGEST_ALIGNMENT 128
852 /* Alignment of field after `int : 0' in a structure. */
853 #define EMPTY_FIELD_BOUNDARY 32
855 /* Every structure's size must be a multiple of this. */
856 #define STRUCTURE_SIZE_BOUNDARY 8
858 /* A bit-field declared as `int' forces `int' alignment for the struct. */
859 #define PCC_BITFIELD_TYPE_MATTERS 1
861 enum data_align { align_abi, align_opt, align_both };
863 /* A C expression to compute the alignment for a variables in the
864 local store. TYPE is the data type, and ALIGN is the alignment
865 that the object would ordinarily have. */
866 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
867 rs6000_data_alignment (TYPE, ALIGN, align_both)
869 /* Make strings word-aligned so strcpy from constants will be faster. */
870 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
871 (TREE_CODE (EXP) == STRING_CST \
872 && (STRICT_ALIGNMENT || !optimize_size) \
873 && (ALIGN) < BITS_PER_WORD \
874 ? BITS_PER_WORD \
875 : (ALIGN))
877 /* Make arrays of chars word-aligned for the same reasons. */
878 #define DATA_ALIGNMENT(TYPE, ALIGN) \
879 rs6000_data_alignment (TYPE, ALIGN, align_opt)
881 /* Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
882 64 bits. */
883 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
884 rs6000_data_alignment (TYPE, ALIGN, align_abi)
886 /* Nonzero if move instructions will actually fail to work
887 when given unaligned data. */
888 #define STRICT_ALIGNMENT 0
890 /* Define this macro to be the value 1 if unaligned accesses have a cost
891 many times greater than aligned accesses, for example if they are
892 emulated in a trap handler. */
893 /* Altivec vector memory instructions simply ignore the low bits; SPE vector
894 memory instructions trap on unaligned accesses; VSX memory instructions are
895 aligned to 4 or 8 bytes. */
896 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
897 (STRICT_ALIGNMENT \
898 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
899 || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode) \
900 && (ALIGN) < 32) \
901 || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
904 /* Standard register usage. */
906 /* Number of actual hardware registers.
907 The hardware registers are assigned numbers for the compiler
908 from 0 to just below FIRST_PSEUDO_REGISTER.
909 All registers that the compiler knows about must be given numbers,
910 even those that are not normally considered general registers.
912 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
913 a count register, a link register, and 8 condition register fields,
914 which we view here as separate registers. AltiVec adds 32 vector
915 registers and a VRsave register.
917 In addition, the difference between the frame and argument pointers is
918 a function of the number of registers saved, so we need to have a
919 register for AP that will later be eliminated in favor of SP or FP.
920 This is a normal register, but it is fixed.
922 We also create a pseudo register for float/int conversions, that will
923 really represent the memory location used. It is represented here as
924 a register, in order to work around problems in allocating stack storage
925 in inline functions.
927 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
928 pointer, which is eventually eliminated in favor of SP or FP.
930 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
932 #define FIRST_PSEUDO_REGISTER 117
934 /* This must be included for pre gcc 3.0 glibc compatibility. */
935 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
937 /* Add 32 dwarf columns for synthetic SPE registers. */
938 #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 4) + 32)
940 /* The SPE has an additional 32 synthetic registers, with DWARF debug
941 info numbering for these registers starting at 1200. While eh_frame
942 register numbering need not be the same as the debug info numbering,
943 we choose to number these regs for eh_frame at 1200 too. This allows
944 future versions of the rs6000 backend to add hard registers and
945 continue to use the gcc hard register numbering for eh_frame. If the
946 extra SPE registers in eh_frame were numbered starting from the
947 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
948 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
949 avoid invalidating older SPE eh_frame info.
951 We must map them here to avoid huge unwinder tables mostly consisting
952 of unused space. */
953 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
954 ((r) > 1200 ? ((r) - 1200 + (DWARF_FRAME_REGISTERS - 32)) : (r))
956 /* Use standard DWARF numbering for DWARF debugging information. */
957 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
959 /* Use gcc hard register numbering for eh_frame. */
960 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
962 /* Map register numbers held in the call frame info that gcc has
963 collected using DWARF_FRAME_REGNUM to those that should be output in
964 .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
965 for .eh_frame, but use the numbers mandated by the various ABIs for
966 .debug_frame. rs6000_emit_prologue has translated any combination of
967 CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
968 the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
969 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
970 ((FOR_EH) ? (REGNO) \
971 : (REGNO) == CR2_REGNO ? 64 \
972 : DBX_REGISTER_NUMBER (REGNO))
974 /* 1 for registers that have pervasive standard uses
975 and are not available for the register allocator.
977 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
978 as a local register; for all other OS's r2 is the TOC pointer.
980 cr5 is not supposed to be used.
982 On System V implementations, r13 is fixed and not available for use. */
984 #define FIXED_REGISTERS \
985 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
986 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
987 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
988 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
989 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
990 /* AltiVec registers. */ \
991 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
992 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
993 1, 1 \
994 , 1, 1, 1, 1, 1, 1 \
997 /* 1 for registers not available across function calls.
998 These must include the FIXED_REGISTERS and also any
999 registers that can be used without being saved.
1000 The latter must include the registers where values are returned
1001 and the register where structure-value addresses are passed.
1002 Aside from that, you can include as many other registers as you like. */
1004 #define CALL_USED_REGISTERS \
1005 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1006 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1007 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1008 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1009 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1010 /* AltiVec registers. */ \
1011 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1012 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1013 1, 1 \
1014 , 1, 1, 1, 1, 1, 1 \
1017 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1018 the entire set of `FIXED_REGISTERS' be included.
1019 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1020 This macro is optional. If not specified, it defaults to the value
1021 of `CALL_USED_REGISTERS'. */
1023 #define CALL_REALLY_USED_REGISTERS \
1024 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1025 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1026 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1027 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1028 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1029 /* AltiVec registers. */ \
1030 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1031 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1032 0, 0 \
1033 , 0, 0, 0, 0, 0, 0 \
1036 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
1038 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
1039 #define FIRST_SAVED_FP_REGNO (14+32)
1040 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
1042 /* List the order in which to allocate registers. Each register must be
1043 listed once, even those in FIXED_REGISTERS.
1045 We allocate in the following order:
1046 fp0 (not saved or used for anything)
1047 fp13 - fp2 (not saved; incoming fp arg registers)
1048 fp1 (not saved; return value)
1049 fp31 - fp14 (saved; order given to save least number)
1050 cr7, cr6 (not saved or special)
1051 cr1 (not saved, but used for FP operations)
1052 cr0 (not saved, but used for arithmetic operations)
1053 cr4, cr3, cr2 (saved)
1054 r9 (not saved; best for TImode)
1055 r10, r8-r4 (not saved; highest first for less conflict with params)
1056 r3 (not saved; return value register)
1057 r11 (not saved; later alloc to help shrink-wrap)
1058 r0 (not saved; cannot be base reg)
1059 r31 - r13 (saved; order given to save least number)
1060 r12 (not saved; if used for DImode or DFmode would use r13)
1061 ctr (not saved; when we have the choice ctr is better)
1062 lr (saved)
1063 cr5, r1, r2, ap, ca (fixed)
1064 v0 - v1 (not saved or used for anything)
1065 v13 - v3 (not saved; incoming vector arg registers)
1066 v2 (not saved; incoming vector arg reg; return value)
1067 v19 - v14 (not saved or used for anything)
1068 v31 - v20 (saved; order given to save least number)
1069 vrsave, vscr (fixed)
1070 spe_acc, spefscr (fixed)
1071 sfp (fixed)
1072 tfhar (fixed)
1073 tfiar (fixed)
1074 texasr (fixed)
1077 #if FIXED_R2 == 1
1078 #define MAYBE_R2_AVAILABLE
1079 #define MAYBE_R2_FIXED 2,
1080 #else
1081 #define MAYBE_R2_AVAILABLE 2,
1082 #define MAYBE_R2_FIXED
1083 #endif
1085 #if FIXED_R13 == 1
1086 #define EARLY_R12 12,
1087 #define LATE_R12
1088 #else
1089 #define EARLY_R12
1090 #define LATE_R12 12,
1091 #endif
1093 #define REG_ALLOC_ORDER \
1094 {32, \
1095 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1096 /* not use fr14 which is a saved register. */ \
1097 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
1098 33, \
1099 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1100 50, 49, 48, 47, 46, \
1101 75, 74, 69, 68, 72, 71, 70, \
1102 MAYBE_R2_AVAILABLE \
1103 9, 10, 8, 7, 6, 5, 4, \
1104 3, EARLY_R12 11, 0, \
1105 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
1106 18, 17, 16, 15, 14, 13, LATE_R12 \
1107 66, 65, \
1108 73, 1, MAYBE_R2_FIXED 67, 76, \
1109 /* AltiVec registers. */ \
1110 77, 78, \
1111 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1112 79, \
1113 96, 95, 94, 93, 92, 91, \
1114 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1115 109, 110, \
1116 111, 112, 113, 114, 115, 116 \
1119 /* True if register is floating-point. */
1120 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1122 /* True if register is a condition register. */
1123 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
1125 /* True if register is a condition register, but not cr0. */
1126 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1128 /* True if register is an integer register. */
1129 #define INT_REGNO_P(N) \
1130 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1132 /* SPE SIMD registers are just the GPRs. */
1133 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1135 /* PAIRED SIMD registers are just the FPRs. */
1136 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1138 /* True if register is the CA register. */
1139 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1141 /* True if register is an AltiVec register. */
1142 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1144 /* True if register is a VSX register. */
1145 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1147 /* Alternate name for any vector register supporting floating point, no matter
1148 which instruction set(s) are available. */
1149 #define VFLOAT_REGNO_P(N) \
1150 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1152 /* Alternate name for any vector register supporting integer, no matter which
1153 instruction set(s) are available. */
1154 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1156 /* Alternate name for any vector register supporting logical operations, no
1157 matter which instruction set(s) are available. Allow GPRs as well as the
1158 vector registers. */
1159 #define VLOGICAL_REGNO_P(N) \
1160 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1161 || (TARGET_VSX && FP_REGNO_P (N))) \
1163 /* Return number of consecutive hard regs needed starting at reg REGNO
1164 to hold something of mode MODE. */
1166 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1168 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1169 enough space to account for vectors in FP regs. However, TFmode/TDmode
1170 should not use VSX instructions to do a caller save. */
1171 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1172 (TARGET_VSX \
1173 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1174 && FP_REGNO_P (REGNO) \
1175 ? V2DFmode \
1176 : ((MODE) == TFmode && FP_REGNO_P (REGNO)) \
1177 ? DFmode \
1178 : ((MODE) == TDmode && FP_REGNO_P (REGNO)) \
1179 ? DImode \
1180 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1182 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1183 (((TARGET_32BIT && TARGET_POWERPC64 \
1184 && (GET_MODE_SIZE (MODE) > 4) \
1185 && INT_REGNO_P (REGNO)) ? 1 : 0) \
1186 || (TARGET_VSX && FP_REGNO_P (REGNO) \
1187 && GET_MODE_SIZE (MODE) > 8 && ((MODE) != TDmode) \
1188 && ((MODE) != TFmode)))
1190 #define VSX_VECTOR_MODE(MODE) \
1191 ((MODE) == V4SFmode \
1192 || (MODE) == V2DFmode) \
1194 #define ALTIVEC_VECTOR_MODE(MODE) \
1195 ((MODE) == V16QImode \
1196 || (MODE) == V8HImode \
1197 || (MODE) == V4SFmode \
1198 || (MODE) == V4SImode)
1200 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1201 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1202 || (MODE) == V2DImode || (MODE) == V1TImode)
1204 #define SPE_VECTOR_MODE(MODE) \
1205 ((MODE) == V4HImode \
1206 || (MODE) == V2SFmode \
1207 || (MODE) == V1DImode \
1208 || (MODE) == V2SImode)
1210 #define PAIRED_VECTOR_MODE(MODE) \
1211 ((MODE) == V2SFmode)
1213 /* Value is TRUE if hard register REGNO can hold a value of
1214 machine-mode MODE. */
1215 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1216 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
1218 /* Value is 1 if it is a good idea to tie two pseudo registers
1219 when one has mode MODE1 and one has mode MODE2.
1220 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1221 for any hard reg, then this must be 0 for correct output.
1223 PTImode cannot tie with other modes because PTImode is restricted to even
1224 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
1225 57744). */
1226 #define MODES_TIEABLE_P(MODE1, MODE2) \
1227 ((MODE1) == PTImode \
1228 ? (MODE2) == PTImode \
1229 : (MODE2) == PTImode \
1230 ? 0 \
1231 : SCALAR_FLOAT_MODE_P (MODE1) \
1232 ? SCALAR_FLOAT_MODE_P (MODE2) \
1233 : SCALAR_FLOAT_MODE_P (MODE2) \
1234 ? 0 \
1235 : GET_MODE_CLASS (MODE1) == MODE_CC \
1236 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1237 : GET_MODE_CLASS (MODE2) == MODE_CC \
1238 ? 0 \
1239 : SPE_VECTOR_MODE (MODE1) \
1240 ? SPE_VECTOR_MODE (MODE2) \
1241 : SPE_VECTOR_MODE (MODE2) \
1242 ? 0 \
1243 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1244 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1245 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1246 ? 0 \
1247 : 1)
1249 /* Post-reload, we can't use any new AltiVec registers, as we already
1250 emitted the vrsave mask. */
1252 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1253 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1255 /* Specify the cost of a branch insn; roughly the number of extra insns that
1256 should be added to avoid a branch.
1258 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1259 unscheduled conditional branch. */
1261 #define BRANCH_COST(speed_p, predictable_p) 3
1263 /* Override BRANCH_COST heuristic which empirically produces worse
1264 performance for removing short circuiting from the logical ops. */
1266 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1268 /* A fixed register used at epilogue generation to address SPE registers
1269 with negative offsets. The 64-bit load/store instructions on the SPE
1270 only take positive offsets (and small ones at that), so we need to
1271 reserve a register for consing up negative offsets. */
1273 #define FIXED_SCRATCH 0
1275 /* Specify the registers used for certain standard purposes.
1276 The values of these macros are register numbers. */
1278 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1279 /* #define PC_REGNUM */
1281 /* Register to use for pushing function arguments. */
1282 #define STACK_POINTER_REGNUM 1
1284 /* Base register for access to local variables of the function. */
1285 #define HARD_FRAME_POINTER_REGNUM 31
1287 /* Base register for access to local variables of the function. */
1288 #define FRAME_POINTER_REGNUM 113
1290 /* Base register for access to arguments of the function. */
1291 #define ARG_POINTER_REGNUM 67
1293 /* Place to put static chain when calling a function that requires it. */
1294 #define STATIC_CHAIN_REGNUM 11
1297 /* Define the classes of registers for register constraints in the
1298 machine description. Also define ranges of constants.
1300 One of the classes must always be named ALL_REGS and include all hard regs.
1301 If there is more than one class, another class must be named NO_REGS
1302 and contain no registers.
1304 The name GENERAL_REGS must be the name of a class (or an alias for
1305 another name such as ALL_REGS). This is the class of registers
1306 that is allowed by "g" or "r" in a register constraint.
1307 Also, registers outside this class are allocated only when
1308 instructions express preferences for them.
1310 The classes must be numbered in nondecreasing order; that is,
1311 a larger-numbered class must never be contained completely
1312 in a smaller-numbered class.
1314 For any two classes, it is very desirable that there be another
1315 class that represents their union. */
1317 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1318 condition registers, plus three special registers, CTR, and the link
1319 register. AltiVec adds a vector register class. VSX registers overlap the
1320 FPR registers and the Altivec registers.
1322 However, r0 is special in that it cannot be used as a base register.
1323 So make a class for registers valid as base registers.
1325 Also, cr0 is the only condition code register that can be used in
1326 arithmetic insns, so make a separate class for it. */
1328 enum reg_class
1330 NO_REGS,
1331 BASE_REGS,
1332 GENERAL_REGS,
1333 FLOAT_REGS,
1334 ALTIVEC_REGS,
1335 VSX_REGS,
1336 VRSAVE_REGS,
1337 VSCR_REGS,
1338 SPE_ACC_REGS,
1339 SPEFSCR_REGS,
1340 SPR_REGS,
1341 NON_SPECIAL_REGS,
1342 LINK_REGS,
1343 CTR_REGS,
1344 LINK_OR_CTR_REGS,
1345 SPECIAL_REGS,
1346 SPEC_OR_GEN_REGS,
1347 CR0_REGS,
1348 CR_REGS,
1349 NON_FLOAT_REGS,
1350 CA_REGS,
1351 ALL_REGS,
1352 LIM_REG_CLASSES
1355 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1357 /* Give names of register classes as strings for dump file. */
1359 #define REG_CLASS_NAMES \
1361 "NO_REGS", \
1362 "BASE_REGS", \
1363 "GENERAL_REGS", \
1364 "FLOAT_REGS", \
1365 "ALTIVEC_REGS", \
1366 "VSX_REGS", \
1367 "VRSAVE_REGS", \
1368 "VSCR_REGS", \
1369 "SPE_ACC_REGS", \
1370 "SPEFSCR_REGS", \
1371 "SPR_REGS", \
1372 "NON_SPECIAL_REGS", \
1373 "LINK_REGS", \
1374 "CTR_REGS", \
1375 "LINK_OR_CTR_REGS", \
1376 "SPECIAL_REGS", \
1377 "SPEC_OR_GEN_REGS", \
1378 "CR0_REGS", \
1379 "CR_REGS", \
1380 "NON_FLOAT_REGS", \
1381 "CA_REGS", \
1382 "ALL_REGS" \
1385 /* Define which registers fit in which classes.
1386 This is an initializer for a vector of HARD_REG_SET
1387 of length N_REG_CLASSES. */
1389 #define REG_CLASS_CONTENTS \
1391 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1392 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
1393 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
1394 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1395 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1396 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */ \
1397 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1398 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1399 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1400 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1401 { 0x00000000, 0x00000000, 0x00000000, 0x00040000 }, /* SPR_REGS */ \
1402 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1403 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1404 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1405 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1406 { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, /* SPECIAL_REGS */ \
1407 { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1408 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1409 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1410 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000 }, /* NON_FLOAT_REGS */ \
1411 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* CA_REGS */ \
1412 { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0007ffff } /* ALL_REGS */ \
1415 /* The same information, inverted:
1416 Return the class number of the smallest class containing
1417 reg number REGNO. This could be a conditional expression
1418 or could index an array. */
1420 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1422 #if ENABLE_CHECKING
1423 #define REGNO_REG_CLASS(REGNO) \
1424 (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)), \
1425 rs6000_regno_regclass[(REGNO)])
1427 #else
1428 #define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
1429 #endif
1431 /* Register classes for various constraints that are based on the target
1432 switches. */
1433 enum r6000_reg_class_enum {
1434 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1435 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1436 RS6000_CONSTRAINT_v, /* Altivec registers */
1437 RS6000_CONSTRAINT_wa, /* Any VSX register */
1438 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1439 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
1440 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
1441 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
1442 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
1443 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1444 RS6000_CONSTRAINT_ws, /* VSX register for DF */
1445 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
1446 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1447 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1448 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
1449 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1450 RS6000_CONSTRAINT_wy, /* VSX register for SF */
1451 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
1452 RS6000_CONSTRAINT_MAX
1455 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1457 /* The class value for index registers, and the one for base regs. */
1458 #define INDEX_REG_CLASS GENERAL_REGS
1459 #define BASE_REG_CLASS BASE_REGS
1461 /* Return whether a given register class can hold VSX objects. */
1462 #define VSX_REG_CLASS_P(CLASS) \
1463 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1465 /* Given an rtx X being reloaded into a reg required to be
1466 in class CLASS, return the class of reg to actually use.
1467 In general this is just CLASS; but on some machines
1468 in some cases it is preferable to use a more restrictive class.
1470 On the RS/6000, we have to return NO_REGS when we want to reload a
1471 floating-point CONST_DOUBLE to force it to be copied to memory.
1473 We also don't want to reload integer values into floating-point
1474 registers if we can at all help it. In fact, this can
1475 cause reload to die, if it tries to generate a reload of CTR
1476 into a FP register and discovers it doesn't have the memory location
1477 required.
1479 ??? Would it be a good idea to have reload do the converse, that is
1480 try to reload floating modes into FP registers if possible?
1483 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1484 rs6000_preferred_reload_class_ptr (X, CLASS)
1486 /* Return the register class of a scratch register needed to copy IN into
1487 or out of a register in CLASS in MODE. If it can be done directly,
1488 NO_REGS is returned. */
1490 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1491 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1493 /* If we are copying between FP or AltiVec registers and anything
1494 else, we need a memory location. The exception is when we are
1495 targeting ppc64 and the move to/from fpr to gpr instructions
1496 are available.*/
1498 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1499 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1501 /* For cpus that cannot load/store SDmode values from the 64-bit
1502 FP registers without using a full 64-bit load/store, we need
1503 to allocate a full 64-bit stack slot for them. */
1505 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1506 rs6000_secondary_memory_needed_rtx (MODE)
1508 /* Specify the mode to be used for memory when a secondary memory
1509 location is needed. For cpus that cannot load/store SDmode values
1510 from the 64-bit FP registers without using a full 64-bit
1511 load/store, we need a wider mode. */
1512 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1513 rs6000_secondary_memory_needed_mode (MODE)
1515 /* Return the maximum number of consecutive registers
1516 needed to represent mode MODE in a register of class CLASS.
1518 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1519 a single reg is enough for two words, unless we have VSX, where the FP
1520 registers can hold 128 bits. */
1521 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1523 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1525 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1526 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1528 /* Stack layout; function entry, exit and calling. */
1530 /* Define this if pushing a word on the stack
1531 makes the stack pointer a smaller address. */
1532 #define STACK_GROWS_DOWNWARD
1534 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1535 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1537 /* Define this to nonzero if the nominal address of the stack frame
1538 is at the high-address end of the local variables;
1539 that is, each additional local variable allocated
1540 goes at a more negative offset in the frame.
1542 On the RS/6000, we grow upwards, from the area after the outgoing
1543 arguments. */
1544 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1545 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1547 /* Size of the fixed area on the stack */
1548 #define RS6000_SAVE_AREA \
1549 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1550 << (TARGET_64BIT ? 1 : 0))
1552 /* Stack offset for toc save slot. */
1553 #define RS6000_TOC_SAVE_SLOT \
1554 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1556 /* Align an address */
1557 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1559 /* Offset within stack frame to start allocating local variables at.
1560 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1561 first local allocated. Otherwise, it is the offset to the BEGINNING
1562 of the first local allocated.
1564 On the RS/6000, the frame pointer is the same as the stack pointer,
1565 except for dynamic allocations. So we start after the fixed area and
1566 outgoing parameter area. */
1568 #define STARTING_FRAME_OFFSET \
1569 (FRAME_GROWS_DOWNWARD \
1570 ? 0 \
1571 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1572 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1573 + RS6000_SAVE_AREA))
1575 /* Offset from the stack pointer register to an item dynamically
1576 allocated on the stack, e.g., by `alloca'.
1578 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1579 length of the outgoing arguments. The default is correct for most
1580 machines. See `function.c' for details. */
1581 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1582 (RS6000_ALIGN (crtl->outgoing_args_size, \
1583 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1584 + (STACK_POINTER_OFFSET))
1586 /* If we generate an insn to push BYTES bytes,
1587 this says how many the stack pointer really advances by.
1588 On RS/6000, don't define this because there are no push insns. */
1589 /* #define PUSH_ROUNDING(BYTES) */
1591 /* Offset of first parameter from the argument pointer register value.
1592 On the RS/6000, we define the argument pointer to the start of the fixed
1593 area. */
1594 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1596 /* Offset from the argument pointer register value to the top of
1597 stack. This is different from FIRST_PARM_OFFSET because of the
1598 register save area. */
1599 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1601 /* Define this if stack space is still allocated for a parameter passed
1602 in a register. The value is the number of bytes allocated to this
1603 area. */
1604 #define REG_PARM_STACK_SPACE(FNDECL) rs6000_reg_parm_stack_space((FNDECL))
1606 /* Define this if the above stack space is to be considered part of the
1607 space allocated by the caller. */
1608 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1610 /* This is the difference between the logical top of stack and the actual sp.
1612 For the RS/6000, sp points past the fixed area. */
1613 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1615 /* Define this if the maximum size of all the outgoing args is to be
1616 accumulated and pushed during the prologue. The amount can be
1617 found in the variable crtl->outgoing_args_size. */
1618 #define ACCUMULATE_OUTGOING_ARGS 1
1620 /* Define how to find the value returned by a library function
1621 assuming the value has mode MODE. */
1623 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1625 /* DRAFT_V4_STRUCT_RET defaults off. */
1626 #define DRAFT_V4_STRUCT_RET 0
1628 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1629 #define DEFAULT_PCC_STRUCT_RETURN 0
1631 /* Mode of stack savearea.
1632 FUNCTION is VOIDmode because calling convention maintains SP.
1633 BLOCK needs Pmode for SP.
1634 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1635 #define STACK_SAVEAREA_MODE(LEVEL) \
1636 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1637 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1639 /* Minimum and maximum general purpose registers used to hold arguments. */
1640 #define GP_ARG_MIN_REG 3
1641 #define GP_ARG_MAX_REG 10
1642 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1644 /* Minimum and maximum floating point registers used to hold arguments. */
1645 #define FP_ARG_MIN_REG 33
1646 #define FP_ARG_AIX_MAX_REG 45
1647 #define FP_ARG_V4_MAX_REG 40
1648 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1649 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1650 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1652 /* Minimum and maximum AltiVec registers used to hold arguments. */
1653 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1654 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1655 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1657 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1658 #define AGGR_ARG_NUM_REG 8
1660 /* Return registers */
1661 #define GP_ARG_RETURN GP_ARG_MIN_REG
1662 #define FP_ARG_RETURN FP_ARG_MIN_REG
1663 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1664 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1665 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1666 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? ALTIVEC_ARG_RETURN \
1667 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1669 /* Flags for the call/call_value rtl operations set up by function_arg */
1670 #define CALL_NORMAL 0x00000000 /* no special processing */
1671 /* Bits in 0x00000001 are unused. */
1672 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1673 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1674 #define CALL_LONG 0x00000008 /* always call indirect */
1675 #define CALL_LIBCALL 0x00000010 /* libcall */
1677 /* We don't have prologue and epilogue functions to save/restore
1678 everything for most ABIs. */
1679 #define WORLD_SAVE_P(INFO) 0
1681 /* 1 if N is a possible register number for a function value
1682 as seen by the caller.
1684 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1685 #define FUNCTION_VALUE_REGNO_P(N) \
1686 ((N) == GP_ARG_RETURN \
1687 || ((N) >= FP_ARG_RETURN && (N) <= FP_ARG_MAX_RETURN \
1688 && TARGET_HARD_FLOAT && TARGET_FPRS) \
1689 || ((N) >= ALTIVEC_ARG_RETURN && (N) <= ALTIVEC_ARG_MAX_RETURN \
1690 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1692 /* 1 if N is a possible register number for function argument passing.
1693 On RS/6000, these are r3-r10 and fp1-fp13.
1694 On AltiVec, v2 - v13 are used for passing vectors. */
1695 #define FUNCTION_ARG_REGNO_P(N) \
1696 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1697 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1698 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1699 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1700 && TARGET_HARD_FLOAT && TARGET_FPRS))
1702 /* Define a data type for recording info about an argument list
1703 during the scan of that argument list. This data type should
1704 hold all necessary information about the function itself
1705 and about the args processed so far, enough to enable macros
1706 such as FUNCTION_ARG to determine where the next arg should go.
1708 On the RS/6000, this is a structure. The first element is the number of
1709 total argument words, the second is used to store the next
1710 floating-point register number, and the third says how many more args we
1711 have prototype types for.
1713 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1714 the next available GP register, `fregno' is the next available FP
1715 register, and `words' is the number of words used on the stack.
1717 The varargs/stdarg support requires that this structure's size
1718 be a multiple of sizeof(int). */
1720 typedef struct rs6000_args
1722 int words; /* # words used for passing GP registers */
1723 int fregno; /* next available FP register */
1724 int vregno; /* next available AltiVec register */
1725 int nargs_prototype; /* # args left in the current prototype */
1726 int prototype; /* Whether a prototype was defined */
1727 int stdarg; /* Whether function is a stdarg function. */
1728 int call_cookie; /* Do special things for this call */
1729 int sysv_gregno; /* next available GP register */
1730 int intoffset; /* running offset in struct (darwin64) */
1731 int use_stack; /* any part of struct on stack (darwin64) */
1732 int floats_in_gpr; /* count of SFmode floats taking up
1733 GPR space (darwin64) */
1734 int named; /* false for varargs params */
1735 int escapes; /* if function visible outside tu */
1736 } CUMULATIVE_ARGS;
1738 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1739 for a call to a function whose data type is FNTYPE.
1740 For a library call, FNTYPE is 0. */
1742 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1743 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1744 N_NAMED_ARGS, FNDECL, VOIDmode)
1746 /* Similar, but when scanning the definition of a procedure. We always
1747 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1749 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1750 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1751 1000, current_function_decl, VOIDmode)
1753 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1755 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1756 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1757 0, NULL_TREE, MODE)
1759 /* If defined, a C expression which determines whether, and in which
1760 direction, to pad out an argument with extra space. The value
1761 should be of type `enum direction': either `upward' to pad above
1762 the argument, `downward' to pad below, or `none' to inhibit
1763 padding. */
1765 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1767 #define PAD_VARARGS_DOWN \
1768 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1770 /* Output assembler code to FILE to increment profiler label # LABELNO
1771 for profiling a function entry. */
1773 #define FUNCTION_PROFILER(FILE, LABELNO) \
1774 output_function_profiler ((FILE), (LABELNO));
1776 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1777 the stack pointer does not matter. No definition is equivalent to
1778 always zero.
1780 On the RS/6000, this is nonzero because we can restore the stack from
1781 its backpointer, which we maintain. */
1782 #define EXIT_IGNORE_STACK 1
1784 /* Define this macro as a C expression that is nonzero for registers
1785 that are used by the epilogue or the return' pattern. The stack
1786 and frame pointer registers are already be assumed to be used as
1787 needed. */
1789 #define EPILOGUE_USES(REGNO) \
1790 ((reload_completed && (REGNO) == LR_REGNO) \
1791 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1792 || (crtl->calls_eh_return \
1793 && TARGET_AIX \
1794 && (REGNO) == 2))
1797 /* Length in units of the trampoline for entering a nested function. */
1799 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1801 /* Definitions for __builtin_return_address and __builtin_frame_address.
1802 __builtin_return_address (0) should give link register (65), enable
1803 this. */
1804 /* This should be uncommented, so that the link register is used, but
1805 currently this would result in unmatched insns and spilling fixed
1806 registers so we'll leave it for another day. When these problems are
1807 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1808 (mrs) */
1809 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1811 /* Number of bytes into the frame return addresses can be found. See
1812 rs6000_stack_info in rs6000.c for more information on how the different
1813 abi's store the return address. */
1814 #define RETURN_ADDRESS_OFFSET \
1815 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1817 /* The current return address is in link register (65). The return address
1818 of anything farther back is accessed normally at an offset of 8 from the
1819 frame pointer. */
1820 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1821 (rs6000_return_addr (COUNT, FRAME))
1824 /* Definitions for register eliminations.
1826 We have two registers that can be eliminated on the RS/6000. First, the
1827 frame pointer register can often be eliminated in favor of the stack
1828 pointer register. Secondly, the argument pointer register can always be
1829 eliminated; it is replaced with either the stack or frame pointer.
1831 In addition, we use the elimination mechanism to see if r30 is needed
1832 Initially we assume that it isn't. If it is, we spill it. This is done
1833 by making it an eliminable register. We replace it with itself so that
1834 if it isn't needed, then existing uses won't be modified. */
1836 /* This is an array of structures. Each structure initializes one pair
1837 of eliminable registers. The "from" register number is given first,
1838 followed by "to". Eliminations of the same "from" register are listed
1839 in order of preference. */
1840 #define ELIMINABLE_REGS \
1841 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1842 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1843 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1844 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1845 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1846 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1848 /* Define the offset between two registers, one to be eliminated, and the other
1849 its replacement, at the start of a routine. */
1850 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1851 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1853 /* Addressing modes, and classification of registers for them. */
1855 #define HAVE_PRE_DECREMENT 1
1856 #define HAVE_PRE_INCREMENT 1
1857 #define HAVE_PRE_MODIFY_DISP 1
1858 #define HAVE_PRE_MODIFY_REG 1
1860 /* Macros to check register numbers against specific register classes. */
1862 /* These assume that REGNO is a hard or pseudo reg number.
1863 They give nonzero only if REGNO is a hard reg of the suitable class
1864 or a pseudo reg currently allocated to a suitable hard reg.
1865 Since they use reg_renumber, they are safe only once reg_renumber
1866 has been allocated, which happens in reginfo.c during register
1867 allocation. */
1869 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1870 ((REGNO) < FIRST_PSEUDO_REGISTER \
1871 ? (REGNO) <= 31 || (REGNO) == 67 \
1872 || (REGNO) == FRAME_POINTER_REGNUM \
1873 : (reg_renumber[REGNO] >= 0 \
1874 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1875 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1877 #define REGNO_OK_FOR_BASE_P(REGNO) \
1878 ((REGNO) < FIRST_PSEUDO_REGISTER \
1879 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1880 || (REGNO) == FRAME_POINTER_REGNUM \
1881 : (reg_renumber[REGNO] > 0 \
1882 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1883 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1885 /* Nonzero if X is a hard reg that can be used as an index
1886 or if it is a pseudo reg in the non-strict case. */
1887 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1888 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1889 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1891 /* Nonzero if X is a hard reg that can be used as a base reg
1892 or if it is a pseudo reg in the non-strict case. */
1893 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1894 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1895 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1898 /* Maximum number of registers that can appear in a valid memory address. */
1900 #define MAX_REGS_PER_ADDRESS 2
1902 /* Recognize any constant value that is a valid address. */
1904 #define CONSTANT_ADDRESS_P(X) \
1905 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1906 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1907 || GET_CODE (X) == HIGH)
1909 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1910 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1911 && EASY_VECTOR_15((n) >> 1) \
1912 && ((n) & 1) == 0)
1914 #define EASY_VECTOR_MSB(n,mode) \
1915 (((unsigned HOST_WIDE_INT)n) == \
1916 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1919 /* Try a machine-dependent way of reloading an illegitimate address
1920 operand. If we find one, push the reload and jump to WIN. This
1921 macro is used in only one place: `find_reloads_address' in reload.c.
1923 Implemented on rs6000 by rs6000_legitimize_reload_address.
1924 Note that (X) is evaluated twice; this is safe in current usage. */
1926 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1927 do { \
1928 int win; \
1929 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
1930 (int)(TYPE), (IND_LEVELS), &win); \
1931 if ( win ) \
1932 goto WIN; \
1933 } while (0)
1935 #define FIND_BASE_TERM rs6000_find_base_term
1937 /* The register number of the register used to address a table of
1938 static data addresses in memory. In some cases this register is
1939 defined by a processor's "application binary interface" (ABI).
1940 When this macro is defined, RTL is generated for this register
1941 once, as with the stack pointer and frame pointer registers. If
1942 this macro is not defined, it is up to the machine-dependent files
1943 to allocate such a register (if necessary). */
1945 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1946 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1948 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1950 /* Define this macro if the register defined by
1951 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1952 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1954 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1956 /* A C expression that is nonzero if X is a legitimate immediate
1957 operand on the target machine when generating position independent
1958 code. You can assume that X satisfies `CONSTANT_P', so you need
1959 not check this. You can also assume FLAG_PIC is true, so you need
1960 not check it either. You need not define this macro if all
1961 constants (including `SYMBOL_REF') can be immediate operands when
1962 generating position independent code. */
1964 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1966 /* Define this if some processing needs to be done immediately before
1967 emitting code for an insn. */
1969 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1970 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
1972 /* Specify the machine mode that this machine uses
1973 for the index in the tablejump instruction. */
1974 #define CASE_VECTOR_MODE SImode
1976 /* Define as C expression which evaluates to nonzero if the tablejump
1977 instruction expects the table to contain offsets from the address of the
1978 table.
1979 Do not define this if the table should contain absolute addresses. */
1980 #define CASE_VECTOR_PC_RELATIVE 1
1982 /* Define this as 1 if `char' should by default be signed; else as 0. */
1983 #define DEFAULT_SIGNED_CHAR 0
1985 /* An integer expression for the size in bits of the largest integer machine
1986 mode that should actually be used. */
1988 /* Allow pairs of registers to be used, which is the intent of the default. */
1989 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1991 /* Max number of bytes we can move from memory to memory
1992 in one reasonably fast instruction. */
1993 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1994 #define MAX_MOVE_MAX 8
1996 /* Nonzero if access to memory by bytes is no faster than for words.
1997 Also nonzero if doing byte operations (specifically shifts) in registers
1998 is undesirable. */
1999 #define SLOW_BYTE_ACCESS 1
2001 /* Define if operations between registers always perform the operation
2002 on the full register even if a narrower mode is specified. */
2003 #define WORD_REGISTER_OPERATIONS
2005 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2006 will either zero-extend or sign-extend. The value of this macro should
2007 be the code that says which one of the two operations is implicitly
2008 done, UNKNOWN if none. */
2009 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2011 /* Define if loading short immediate values into registers sign extends. */
2012 #define SHORT_IMMEDIATES_SIGN_EXTEND
2014 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2015 is done just by pretending it is already truncated. */
2016 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2018 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
2019 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2020 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
2022 /* The CTZ patterns return -1 for input of zero. */
2023 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
2025 /* Specify the machine mode that pointers have.
2026 After generation of rtl, the compiler makes no further distinction
2027 between pointers and any other objects of this machine mode. */
2028 extern unsigned rs6000_pmode;
2029 #define Pmode ((enum machine_mode)rs6000_pmode)
2031 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
2032 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2034 /* Mode of a function address in a call instruction (for indexing purposes).
2035 Doesn't matter on RS/6000. */
2036 #define FUNCTION_MODE SImode
2038 /* Define this if addresses of constant functions
2039 shouldn't be put through pseudo regs where they can be cse'd.
2040 Desirable on machines where ordinary constants are expensive
2041 but a CALL with constant address is cheap. */
2042 #define NO_FUNCTION_CSE
2044 /* Define this to be nonzero if shift instructions ignore all but the low-order
2045 few bits.
2047 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2048 have been dropped from the PowerPC architecture. */
2049 #define SHIFT_COUNT_TRUNCATED 0
2051 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2052 should be adjusted to reflect any required changes. This macro is used when
2053 there is some systematic length adjustment required that would be difficult
2054 to express in the length attribute. */
2056 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2058 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2059 COMPARE, return the mode to be used for the comparison. For
2060 floating-point, CCFPmode should be used. CCUNSmode should be used
2061 for unsigned comparisons. CCEQmode should be used when we are
2062 doing an inequality comparison on the result of a
2063 comparison. CCmode should be used in all other cases. */
2065 #define SELECT_CC_MODE(OP,X,Y) \
2066 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
2067 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2068 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
2069 ? CCEQmode : CCmode))
2071 /* Can the condition code MODE be safely reversed? This is safe in
2072 all cases on this port, because at present it doesn't use the
2073 trapping FP comparisons (fcmpo). */
2074 #define REVERSIBLE_CC_MODE(MODE) 1
2076 /* Given a condition code and a mode, return the inverse condition. */
2077 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2080 /* Control the assembler format that we output. */
2082 /* A C string constant describing how to begin a comment in the target
2083 assembler language. The compiler assumes that the comment will end at
2084 the end of the line. */
2085 #define ASM_COMMENT_START " #"
2087 /* Flag to say the TOC is initialized */
2088 extern int toc_initialized;
2090 /* Macro to output a special constant pool entry. Go to WIN if we output
2091 it. Otherwise, it is written the usual way.
2093 On the RS/6000, toc entries are handled this way. */
2095 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2096 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2098 output_toc (FILE, X, LABELNO, MODE); \
2099 goto WIN; \
2103 #ifdef HAVE_GAS_WEAK
2104 #define RS6000_WEAK 1
2105 #else
2106 #define RS6000_WEAK 0
2107 #endif
2109 #if RS6000_WEAK
2110 /* Used in lieu of ASM_WEAKEN_LABEL. */
2111 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2112 do \
2114 fputs ("\t.weak\t", (FILE)); \
2115 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2116 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2117 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2119 if (TARGET_XCOFF) \
2120 fputs ("[DS]", (FILE)); \
2121 fputs ("\n\t.weak\t.", (FILE)); \
2122 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2124 fputc ('\n', (FILE)); \
2125 if (VAL) \
2127 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2128 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2129 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2131 fputs ("\t.set\t.", (FILE)); \
2132 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2133 fputs (",.", (FILE)); \
2134 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2135 fputc ('\n', (FILE)); \
2139 while (0)
2140 #endif
2142 #if HAVE_GAS_WEAKREF
2143 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2144 do \
2146 fputs ("\t.weakref\t", (FILE)); \
2147 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2148 fputs (", ", (FILE)); \
2149 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2150 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2151 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2153 fputs ("\n\t.weakref\t.", (FILE)); \
2154 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2155 fputs (", .", (FILE)); \
2156 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2158 fputc ('\n', (FILE)); \
2159 } while (0)
2160 #endif
2162 /* This implements the `alias' attribute. */
2163 #undef ASM_OUTPUT_DEF_FROM_DECLS
2164 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2165 do \
2167 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2168 const char *name = IDENTIFIER_POINTER (TARGET); \
2169 if (TREE_CODE (DECL) == FUNCTION_DECL \
2170 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2172 if (TREE_PUBLIC (DECL)) \
2174 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2176 fputs ("\t.globl\t.", FILE); \
2177 RS6000_OUTPUT_BASENAME (FILE, alias); \
2178 putc ('\n', FILE); \
2181 else if (TARGET_XCOFF) \
2183 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2185 fputs ("\t.lglobl\t.", FILE); \
2186 RS6000_OUTPUT_BASENAME (FILE, alias); \
2187 putc ('\n', FILE); \
2188 fputs ("\t.lglobl\t", FILE); \
2189 RS6000_OUTPUT_BASENAME (FILE, alias); \
2190 putc ('\n', FILE); \
2193 fputs ("\t.set\t.", FILE); \
2194 RS6000_OUTPUT_BASENAME (FILE, alias); \
2195 fputs (",.", FILE); \
2196 RS6000_OUTPUT_BASENAME (FILE, name); \
2197 fputc ('\n', FILE); \
2199 ASM_OUTPUT_DEF (FILE, alias, name); \
2201 while (0)
2203 #define TARGET_ASM_FILE_START rs6000_file_start
2205 /* Output to assembler file text saying following lines
2206 may contain character constants, extra white space, comments, etc. */
2208 #define ASM_APP_ON ""
2210 /* Output to assembler file text saying following lines
2211 no longer contain unusual constructs. */
2213 #define ASM_APP_OFF ""
2215 /* How to refer to registers in assembler output.
2216 This sequence is indexed by compiler's hard-register-number (see above). */
2218 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2220 #define REGISTER_NAMES \
2222 &rs6000_reg_names[ 0][0], /* r0 */ \
2223 &rs6000_reg_names[ 1][0], /* r1 */ \
2224 &rs6000_reg_names[ 2][0], /* r2 */ \
2225 &rs6000_reg_names[ 3][0], /* r3 */ \
2226 &rs6000_reg_names[ 4][0], /* r4 */ \
2227 &rs6000_reg_names[ 5][0], /* r5 */ \
2228 &rs6000_reg_names[ 6][0], /* r6 */ \
2229 &rs6000_reg_names[ 7][0], /* r7 */ \
2230 &rs6000_reg_names[ 8][0], /* r8 */ \
2231 &rs6000_reg_names[ 9][0], /* r9 */ \
2232 &rs6000_reg_names[10][0], /* r10 */ \
2233 &rs6000_reg_names[11][0], /* r11 */ \
2234 &rs6000_reg_names[12][0], /* r12 */ \
2235 &rs6000_reg_names[13][0], /* r13 */ \
2236 &rs6000_reg_names[14][0], /* r14 */ \
2237 &rs6000_reg_names[15][0], /* r15 */ \
2238 &rs6000_reg_names[16][0], /* r16 */ \
2239 &rs6000_reg_names[17][0], /* r17 */ \
2240 &rs6000_reg_names[18][0], /* r18 */ \
2241 &rs6000_reg_names[19][0], /* r19 */ \
2242 &rs6000_reg_names[20][0], /* r20 */ \
2243 &rs6000_reg_names[21][0], /* r21 */ \
2244 &rs6000_reg_names[22][0], /* r22 */ \
2245 &rs6000_reg_names[23][0], /* r23 */ \
2246 &rs6000_reg_names[24][0], /* r24 */ \
2247 &rs6000_reg_names[25][0], /* r25 */ \
2248 &rs6000_reg_names[26][0], /* r26 */ \
2249 &rs6000_reg_names[27][0], /* r27 */ \
2250 &rs6000_reg_names[28][0], /* r28 */ \
2251 &rs6000_reg_names[29][0], /* r29 */ \
2252 &rs6000_reg_names[30][0], /* r30 */ \
2253 &rs6000_reg_names[31][0], /* r31 */ \
2255 &rs6000_reg_names[32][0], /* fr0 */ \
2256 &rs6000_reg_names[33][0], /* fr1 */ \
2257 &rs6000_reg_names[34][0], /* fr2 */ \
2258 &rs6000_reg_names[35][0], /* fr3 */ \
2259 &rs6000_reg_names[36][0], /* fr4 */ \
2260 &rs6000_reg_names[37][0], /* fr5 */ \
2261 &rs6000_reg_names[38][0], /* fr6 */ \
2262 &rs6000_reg_names[39][0], /* fr7 */ \
2263 &rs6000_reg_names[40][0], /* fr8 */ \
2264 &rs6000_reg_names[41][0], /* fr9 */ \
2265 &rs6000_reg_names[42][0], /* fr10 */ \
2266 &rs6000_reg_names[43][0], /* fr11 */ \
2267 &rs6000_reg_names[44][0], /* fr12 */ \
2268 &rs6000_reg_names[45][0], /* fr13 */ \
2269 &rs6000_reg_names[46][0], /* fr14 */ \
2270 &rs6000_reg_names[47][0], /* fr15 */ \
2271 &rs6000_reg_names[48][0], /* fr16 */ \
2272 &rs6000_reg_names[49][0], /* fr17 */ \
2273 &rs6000_reg_names[50][0], /* fr18 */ \
2274 &rs6000_reg_names[51][0], /* fr19 */ \
2275 &rs6000_reg_names[52][0], /* fr20 */ \
2276 &rs6000_reg_names[53][0], /* fr21 */ \
2277 &rs6000_reg_names[54][0], /* fr22 */ \
2278 &rs6000_reg_names[55][0], /* fr23 */ \
2279 &rs6000_reg_names[56][0], /* fr24 */ \
2280 &rs6000_reg_names[57][0], /* fr25 */ \
2281 &rs6000_reg_names[58][0], /* fr26 */ \
2282 &rs6000_reg_names[59][0], /* fr27 */ \
2283 &rs6000_reg_names[60][0], /* fr28 */ \
2284 &rs6000_reg_names[61][0], /* fr29 */ \
2285 &rs6000_reg_names[62][0], /* fr30 */ \
2286 &rs6000_reg_names[63][0], /* fr31 */ \
2288 &rs6000_reg_names[64][0], /* was mq */ \
2289 &rs6000_reg_names[65][0], /* lr */ \
2290 &rs6000_reg_names[66][0], /* ctr */ \
2291 &rs6000_reg_names[67][0], /* ap */ \
2293 &rs6000_reg_names[68][0], /* cr0 */ \
2294 &rs6000_reg_names[69][0], /* cr1 */ \
2295 &rs6000_reg_names[70][0], /* cr2 */ \
2296 &rs6000_reg_names[71][0], /* cr3 */ \
2297 &rs6000_reg_names[72][0], /* cr4 */ \
2298 &rs6000_reg_names[73][0], /* cr5 */ \
2299 &rs6000_reg_names[74][0], /* cr6 */ \
2300 &rs6000_reg_names[75][0], /* cr7 */ \
2302 &rs6000_reg_names[76][0], /* ca */ \
2304 &rs6000_reg_names[77][0], /* v0 */ \
2305 &rs6000_reg_names[78][0], /* v1 */ \
2306 &rs6000_reg_names[79][0], /* v2 */ \
2307 &rs6000_reg_names[80][0], /* v3 */ \
2308 &rs6000_reg_names[81][0], /* v4 */ \
2309 &rs6000_reg_names[82][0], /* v5 */ \
2310 &rs6000_reg_names[83][0], /* v6 */ \
2311 &rs6000_reg_names[84][0], /* v7 */ \
2312 &rs6000_reg_names[85][0], /* v8 */ \
2313 &rs6000_reg_names[86][0], /* v9 */ \
2314 &rs6000_reg_names[87][0], /* v10 */ \
2315 &rs6000_reg_names[88][0], /* v11 */ \
2316 &rs6000_reg_names[89][0], /* v12 */ \
2317 &rs6000_reg_names[90][0], /* v13 */ \
2318 &rs6000_reg_names[91][0], /* v14 */ \
2319 &rs6000_reg_names[92][0], /* v15 */ \
2320 &rs6000_reg_names[93][0], /* v16 */ \
2321 &rs6000_reg_names[94][0], /* v17 */ \
2322 &rs6000_reg_names[95][0], /* v18 */ \
2323 &rs6000_reg_names[96][0], /* v19 */ \
2324 &rs6000_reg_names[97][0], /* v20 */ \
2325 &rs6000_reg_names[98][0], /* v21 */ \
2326 &rs6000_reg_names[99][0], /* v22 */ \
2327 &rs6000_reg_names[100][0], /* v23 */ \
2328 &rs6000_reg_names[101][0], /* v24 */ \
2329 &rs6000_reg_names[102][0], /* v25 */ \
2330 &rs6000_reg_names[103][0], /* v26 */ \
2331 &rs6000_reg_names[104][0], /* v27 */ \
2332 &rs6000_reg_names[105][0], /* v28 */ \
2333 &rs6000_reg_names[106][0], /* v29 */ \
2334 &rs6000_reg_names[107][0], /* v30 */ \
2335 &rs6000_reg_names[108][0], /* v31 */ \
2336 &rs6000_reg_names[109][0], /* vrsave */ \
2337 &rs6000_reg_names[110][0], /* vscr */ \
2338 &rs6000_reg_names[111][0], /* spe_acc */ \
2339 &rs6000_reg_names[112][0], /* spefscr */ \
2340 &rs6000_reg_names[113][0], /* sfp */ \
2341 &rs6000_reg_names[114][0], /* tfhar */ \
2342 &rs6000_reg_names[115][0], /* tfiar */ \
2343 &rs6000_reg_names[116][0], /* texasr */ \
2346 /* Table of additional register names to use in user input. */
2348 #define ADDITIONAL_REGISTER_NAMES \
2349 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2350 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2351 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2352 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2353 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2354 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2355 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2356 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2357 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2358 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2359 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2360 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2361 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2362 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2363 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2364 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2365 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2366 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2367 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2368 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2369 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2370 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2371 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2372 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2373 {"vrsave", 109}, {"vscr", 110}, \
2374 {"spe_acc", 111}, {"spefscr", 112}, \
2375 /* no additional names for: lr, ctr, ap */ \
2376 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2377 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2378 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2379 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2380 {"xer", 76}, \
2381 /* VSX registers overlaid on top of FR, Altivec registers */ \
2382 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2383 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2384 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2385 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2386 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2387 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2388 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2389 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2390 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2391 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2392 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2393 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2394 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2395 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2396 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2397 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2398 /* Transactional Memory Facility (HTM) Registers. */ \
2399 {"tfhar", 114}, {"tfiar", 115}, {"texasr", 116} }
2401 /* This is how to output an element of a case-vector that is relative. */
2403 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2404 do { char buf[100]; \
2405 fputs ("\t.long ", FILE); \
2406 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2407 assemble_name (FILE, buf); \
2408 putc ('-', FILE); \
2409 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2410 assemble_name (FILE, buf); \
2411 putc ('\n', FILE); \
2412 } while (0)
2414 /* This is how to output an assembler line
2415 that says to advance the location counter
2416 to a multiple of 2**LOG bytes. */
2418 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2419 if ((LOG) != 0) \
2420 fprintf (FILE, "\t.align %d\n", (LOG))
2422 /* How to align the given loop. */
2423 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2425 /* Alignment guaranteed by __builtin_malloc. */
2426 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2427 However, specifying the stronger guarantee currently leads to
2428 a regression in SPEC CPU2006 437.leslie3d. The stronger
2429 guarantee should be implemented here once that's fixed. */
2430 #define MALLOC_ABI_ALIGNMENT (64)
2432 /* Pick up the return address upon entry to a procedure. Used for
2433 dwarf2 unwind information. This also enables the table driven
2434 mechanism. */
2436 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2437 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2439 /* Describe how we implement __builtin_eh_return. */
2440 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2441 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2443 /* Print operand X (an rtx) in assembler syntax to file FILE.
2444 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2445 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2447 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2449 /* Define which CODE values are valid. */
2451 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2453 /* Print a memory address as an operand to reference that memory location. */
2455 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2457 /* For switching between functions with different target attributes. */
2458 #define SWITCHABLE_TARGET 1
2460 /* uncomment for disabling the corresponding default options */
2461 /* #define MACHINE_no_sched_interblock */
2462 /* #define MACHINE_no_sched_speculative */
2463 /* #define MACHINE_no_sched_speculative_load */
2465 /* General flags. */
2466 extern int frame_pointer_needed;
2468 /* Classification of the builtin functions as to which switches enable the
2469 builtin, and what attributes it should have. We used to use the target
2470 flags macros, but we've run out of bits, so we now map the options into new
2471 settings used here. */
2473 /* Builtin attributes. */
2474 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2475 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2476 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2477 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2478 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2479 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2480 #define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
2481 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2482 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2484 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2485 #define RS6000_BTC_CONST 0x00000100 /* uses no global state. */
2486 #define RS6000_BTC_PURE 0x00000200 /* reads global state/mem. */
2487 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2488 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2490 /* Miscellaneous information. */
2491 #define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2492 #define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
2493 #define RS6000_BTC_OVERLOADED 0x04000000 /* function is overloaded. */
2494 #define RS6000_BTC_32BIT 0x08000000 /* function references SPRs. */
2495 #define RS6000_BTC_64BIT 0x10000000 /* function references SPRs. */
2496 #define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
2498 /* Convenience macros to document the instruction type. */
2499 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2500 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2502 /* Builtin targets. For now, we reuse the masks for those options that are in
2503 target flags, and pick two random bits for SPE and paired which aren't in
2504 target_flags. */
2505 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2506 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2507 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2508 #define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2509 #define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
2510 #define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
2511 #define RS6000_BTM_SPE MASK_STRING /* E500 */
2512 #define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2513 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2514 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2515 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2516 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2517 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2518 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2520 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2521 | RS6000_BTM_VSX \
2522 | RS6000_BTM_P8_VECTOR \
2523 | RS6000_BTM_CRYPTO \
2524 | RS6000_BTM_FRE \
2525 | RS6000_BTM_FRES \
2526 | RS6000_BTM_FRSQRTE \
2527 | RS6000_BTM_FRSQRTES \
2528 | RS6000_BTM_HTM \
2529 | RS6000_BTM_POPCNTD \
2530 | RS6000_BTM_CELL)
2532 /* Define builtin enum index. */
2534 #undef RS6000_BUILTIN_1
2535 #undef RS6000_BUILTIN_2
2536 #undef RS6000_BUILTIN_3
2537 #undef RS6000_BUILTIN_A
2538 #undef RS6000_BUILTIN_D
2539 #undef RS6000_BUILTIN_E
2540 #undef RS6000_BUILTIN_H
2541 #undef RS6000_BUILTIN_P
2542 #undef RS6000_BUILTIN_Q
2543 #undef RS6000_BUILTIN_S
2544 #undef RS6000_BUILTIN_X
2546 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2547 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2548 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2549 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2550 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2551 #define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2552 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2553 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2554 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2555 #define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2556 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2558 enum rs6000_builtins
2560 #include "rs6000-builtin.def"
2562 RS6000_BUILTIN_COUNT
2565 #undef RS6000_BUILTIN_1
2566 #undef RS6000_BUILTIN_2
2567 #undef RS6000_BUILTIN_3
2568 #undef RS6000_BUILTIN_A
2569 #undef RS6000_BUILTIN_D
2570 #undef RS6000_BUILTIN_E
2571 #undef RS6000_BUILTIN_H
2572 #undef RS6000_BUILTIN_P
2573 #undef RS6000_BUILTIN_Q
2574 #undef RS6000_BUILTIN_S
2575 #undef RS6000_BUILTIN_X
2577 enum rs6000_builtin_type_index
2579 RS6000_BTI_NOT_OPAQUE,
2580 RS6000_BTI_opaque_V2SI,
2581 RS6000_BTI_opaque_V2SF,
2582 RS6000_BTI_opaque_p_V2SI,
2583 RS6000_BTI_opaque_V4SI,
2584 RS6000_BTI_V16QI,
2585 RS6000_BTI_V1TI,
2586 RS6000_BTI_V2SI,
2587 RS6000_BTI_V2SF,
2588 RS6000_BTI_V2DI,
2589 RS6000_BTI_V2DF,
2590 RS6000_BTI_V4HI,
2591 RS6000_BTI_V4SI,
2592 RS6000_BTI_V4SF,
2593 RS6000_BTI_V8HI,
2594 RS6000_BTI_unsigned_V16QI,
2595 RS6000_BTI_unsigned_V1TI,
2596 RS6000_BTI_unsigned_V8HI,
2597 RS6000_BTI_unsigned_V4SI,
2598 RS6000_BTI_unsigned_V2DI,
2599 RS6000_BTI_bool_char, /* __bool char */
2600 RS6000_BTI_bool_short, /* __bool short */
2601 RS6000_BTI_bool_int, /* __bool int */
2602 RS6000_BTI_bool_long, /* __bool long */
2603 RS6000_BTI_pixel, /* __pixel */
2604 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2605 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2606 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2607 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2608 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2609 RS6000_BTI_long, /* long_integer_type_node */
2610 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2611 RS6000_BTI_long_long, /* long_long_integer_type_node */
2612 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2613 RS6000_BTI_INTQI, /* intQI_type_node */
2614 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2615 RS6000_BTI_INTHI, /* intHI_type_node */
2616 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2617 RS6000_BTI_INTSI, /* intSI_type_node */
2618 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2619 RS6000_BTI_INTDI, /* intDI_type_node */
2620 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2621 RS6000_BTI_INTTI, /* intTI_type_node */
2622 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
2623 RS6000_BTI_float, /* float_type_node */
2624 RS6000_BTI_double, /* double_type_node */
2625 RS6000_BTI_void, /* void_type_node */
2626 RS6000_BTI_MAX
2630 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2631 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2632 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2633 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2634 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2635 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2636 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2637 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2638 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2639 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2640 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2641 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2642 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2643 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2644 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2645 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2646 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2647 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2648 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2649 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2650 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2651 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2652 #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
2653 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2654 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2655 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2656 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2657 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2658 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2660 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2661 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2662 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2663 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2664 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2665 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2666 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2667 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2668 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2669 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2670 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2671 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2672 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2673 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2674 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2675 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2676 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2678 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2679 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];