PR ipa/65130
[official-gcc.git] / gcc / ada / exp_ch6.adb
blob4210968c0ceec6139a7723a5115a1e5da973d7fc
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Elists; use Elists;
32 with Exp_Aggr; use Exp_Aggr;
33 with Exp_Atag; use Exp_Atag;
34 with Exp_Ch2; use Exp_Ch2;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Dist; use Exp_Dist;
41 with Exp_Intr; use Exp_Intr;
42 with Exp_Pakd; use Exp_Pakd;
43 with Exp_Prag; use Exp_Prag;
44 with Exp_Tss; use Exp_Tss;
45 with Exp_Unst; use Exp_Unst;
46 with Exp_Util; use Exp_Util;
47 with Freeze; use Freeze;
48 with Inline; use Inline;
49 with Lib; use Lib;
50 with Namet; use Namet;
51 with Nlists; use Nlists;
52 with Nmake; use Nmake;
53 with Opt; use Opt;
54 with Restrict; use Restrict;
55 with Rident; use Rident;
56 with Rtsfind; use Rtsfind;
57 with Sem; use Sem;
58 with Sem_Aux; use Sem_Aux;
59 with Sem_Ch6; use Sem_Ch6;
60 with Sem_Ch8; use Sem_Ch8;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Res; use Sem_Res;
68 with Sem_SCIL; use Sem_SCIL;
69 with Sem_Util; use Sem_Util;
70 with Sinfo; use Sinfo;
71 with Snames; use Snames;
72 with Stand; use Stand;
73 with Stringt; use Stringt;
74 with Targparm; use Targparm;
75 with Tbuild; use Tbuild;
76 with Uintp; use Uintp;
77 with Validsw; use Validsw;
79 package body Exp_Ch6 is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Add_Access_Actual_To_Build_In_Place_Call
86 (Function_Call : Node_Id;
87 Function_Id : Entity_Id;
88 Return_Object : Node_Id;
89 Is_Access : Boolean := False);
90 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
91 -- object name given by Return_Object and add the attribute to the end of
92 -- the actual parameter list associated with the build-in-place function
93 -- call denoted by Function_Call. However, if Is_Access is True, then
94 -- Return_Object is already an access expression, in which case it's passed
95 -- along directly to the build-in-place function. Finally, if Return_Object
96 -- is empty, then pass a null literal as the actual.
98 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
99 (Function_Call : Node_Id;
100 Function_Id : Entity_Id;
101 Alloc_Form : BIP_Allocation_Form := Unspecified;
102 Alloc_Form_Exp : Node_Id := Empty;
103 Pool_Actual : Node_Id := Make_Null (No_Location));
104 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
105 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
106 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
107 -- otherwise pass a literal corresponding to the Alloc_Form parameter
108 -- (which must not be Unspecified in that case). Pool_Actual is the
109 -- parameter to pass to BIP_Storage_Pool.
111 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
112 (Func_Call : Node_Id;
113 Func_Id : Entity_Id;
114 Ptr_Typ : Entity_Id := Empty;
115 Master_Exp : Node_Id := Empty);
116 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
117 -- finalization actions, add an actual parameter which is a pointer to the
118 -- finalization master of the caller. If Master_Exp is not Empty, then that
119 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
120 -- will result in an automatic "null" value for the actual.
122 procedure Add_Task_Actuals_To_Build_In_Place_Call
123 (Function_Call : Node_Id;
124 Function_Id : Entity_Id;
125 Master_Actual : Node_Id;
126 Chain : Node_Id := Empty);
127 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
128 -- contains tasks, add two actual parameters: the master, and a pointer to
129 -- the caller's activation chain. Master_Actual is the actual parameter
130 -- expression to pass for the master. In most cases, this is the current
131 -- master (_master). The two exceptions are: If the function call is the
132 -- initialization expression for an allocator, we pass the master of the
133 -- access type. If the function call is the initialization expression for a
134 -- return object, we pass along the master passed in by the caller. In most
135 -- contexts, the activation chain to pass is the local one, which is
136 -- indicated by No (Chain). However, in an allocator, the caller passes in
137 -- the activation Chain. Note: Master_Actual can be Empty, but only if
138 -- there are no tasks.
140 procedure Check_Overriding_Operation (Subp : Entity_Id);
141 -- Subp is a dispatching operation. Check whether it may override an
142 -- inherited private operation, in which case its DT entry is that of
143 -- the hidden operation, not the one it may have received earlier.
144 -- This must be done before emitting the code to set the corresponding
145 -- DT to the address of the subprogram. The actual placement of Subp in
146 -- the proper place in the list of primitive operations is done in
147 -- Declare_Inherited_Private_Subprograms, which also has to deal with
148 -- implicit operations. This duplication is unavoidable for now???
150 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
151 -- This procedure is called only if the subprogram body N, whose spec
152 -- has the given entity Spec, contains a parameterless recursive call.
153 -- It attempts to generate runtime code to detect if this a case of
154 -- infinite recursion.
156 -- The body is scanned to determine dependencies. If the only external
157 -- dependencies are on a small set of scalar variables, then the values
158 -- of these variables are captured on entry to the subprogram, and if
159 -- the values are not changed for the call, we know immediately that
160 -- we have an infinite recursion.
162 procedure Expand_Actuals (N : in out Node_Id; Subp : Entity_Id);
163 -- For each actual of an in-out or out parameter which is a numeric
164 -- (view) conversion of the form T (A), where A denotes a variable,
165 -- we insert the declaration:
167 -- Temp : T[ := T (A)];
169 -- prior to the call. Then we replace the actual with a reference to Temp,
170 -- and append the assignment:
172 -- A := TypeA (Temp);
174 -- after the call. Here TypeA is the actual type of variable A. For out
175 -- parameters, the initial declaration has no expression. If A is not an
176 -- entity name, we generate instead:
178 -- Var : TypeA renames A;
179 -- Temp : T := Var; -- omitting expression for out parameter.
180 -- ...
181 -- Var := TypeA (Temp);
183 -- For other in-out parameters, we emit the required constraint checks
184 -- before and/or after the call.
186 -- For all parameter modes, actuals that denote components and slices of
187 -- packed arrays are expanded into suitable temporaries.
189 -- For non-scalar objects that are possibly unaligned, add call by copy
190 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
192 -- For OUT and IN OUT parameters, add predicate checks after the call
193 -- based on the predicates of the actual type.
195 -- The parameter N is IN OUT because in some cases, the expansion code
196 -- rewrites the call as an expression actions with the call inside. In
197 -- this case N is reset to point to the inside call so that the caller
198 -- can continue processing of this call.
200 procedure Expand_Ctrl_Function_Call (N : Node_Id);
201 -- N is a function call which returns a controlled object. Transform the
202 -- call into a temporary which retrieves the returned object from the
203 -- secondary stack using 'reference.
205 procedure Expand_Non_Function_Return (N : Node_Id);
206 -- Expand a simple return statement found in a procedure body, entry body,
207 -- accept statement, or an extended return statement. Note that all non-
208 -- function returns are simple return statements.
210 function Expand_Protected_Object_Reference
211 (N : Node_Id;
212 Scop : Entity_Id) return Node_Id;
214 procedure Expand_Protected_Subprogram_Call
215 (N : Node_Id;
216 Subp : Entity_Id;
217 Scop : Entity_Id);
218 -- A call to a protected subprogram within the protected object may appear
219 -- as a regular call. The list of actuals must be expanded to contain a
220 -- reference to the object itself, and the call becomes a call to the
221 -- corresponding protected subprogram.
223 function Has_Unconstrained_Access_Discriminants
224 (Subtyp : Entity_Id) return Boolean;
225 -- Returns True if the given subtype is unconstrained and has one
226 -- or more access discriminants.
228 procedure Expand_Simple_Function_Return (N : Node_Id);
229 -- Expand simple return from function. In the case where we are returning
230 -- from a function body this is called by Expand_N_Simple_Return_Statement.
232 ----------------------------------------------
233 -- Add_Access_Actual_To_Build_In_Place_Call --
234 ----------------------------------------------
236 procedure Add_Access_Actual_To_Build_In_Place_Call
237 (Function_Call : Node_Id;
238 Function_Id : Entity_Id;
239 Return_Object : Node_Id;
240 Is_Access : Boolean := False)
242 Loc : constant Source_Ptr := Sloc (Function_Call);
243 Obj_Address : Node_Id;
244 Obj_Acc_Formal : Entity_Id;
246 begin
247 -- Locate the implicit access parameter in the called function
249 Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
251 -- If no return object is provided, then pass null
253 if not Present (Return_Object) then
254 Obj_Address := Make_Null (Loc);
255 Set_Parent (Obj_Address, Function_Call);
257 -- If Return_Object is already an expression of an access type, then use
258 -- it directly, since it must be an access value denoting the return
259 -- object, and couldn't possibly be the return object itself.
261 elsif Is_Access then
262 Obj_Address := Return_Object;
263 Set_Parent (Obj_Address, Function_Call);
265 -- Apply Unrestricted_Access to caller's return object
267 else
268 Obj_Address :=
269 Make_Attribute_Reference (Loc,
270 Prefix => Return_Object,
271 Attribute_Name => Name_Unrestricted_Access);
273 Set_Parent (Return_Object, Obj_Address);
274 Set_Parent (Obj_Address, Function_Call);
275 end if;
277 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
279 -- Build the parameter association for the new actual and add it to the
280 -- end of the function's actuals.
282 Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
283 end Add_Access_Actual_To_Build_In_Place_Call;
285 ------------------------------------------------------
286 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
287 ------------------------------------------------------
289 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
290 (Function_Call : Node_Id;
291 Function_Id : Entity_Id;
292 Alloc_Form : BIP_Allocation_Form := Unspecified;
293 Alloc_Form_Exp : Node_Id := Empty;
294 Pool_Actual : Node_Id := Make_Null (No_Location))
296 Loc : constant Source_Ptr := Sloc (Function_Call);
297 Alloc_Form_Actual : Node_Id;
298 Alloc_Form_Formal : Node_Id;
299 Pool_Formal : Node_Id;
301 begin
302 -- The allocation form generally doesn't need to be passed in the case
303 -- of a constrained result subtype, since normally the caller performs
304 -- the allocation in that case. However this formal is still needed in
305 -- the case where the function has a tagged result, because generally
306 -- such functions can be called in a dispatching context and such calls
307 -- must be handled like calls to class-wide functions.
309 if Is_Constrained (Underlying_Type (Etype (Function_Id)))
310 and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
311 then
312 return;
313 end if;
315 -- Locate the implicit allocation form parameter in the called function.
316 -- Maybe it would be better for each implicit formal of a build-in-place
317 -- function to have a flag or a Uint attribute to identify it. ???
319 Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
321 if Present (Alloc_Form_Exp) then
322 pragma Assert (Alloc_Form = Unspecified);
324 Alloc_Form_Actual := Alloc_Form_Exp;
326 else
327 pragma Assert (Alloc_Form /= Unspecified);
329 Alloc_Form_Actual :=
330 Make_Integer_Literal (Loc,
331 Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
332 end if;
334 Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
336 -- Build the parameter association for the new actual and add it to the
337 -- end of the function's actuals.
339 Add_Extra_Actual_To_Call
340 (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
342 -- Pass the Storage_Pool parameter. This parameter is omitted on
343 -- .NET/JVM/ZFP as those targets do not support pools.
345 if VM_Target = No_VM
346 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
347 then
348 Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
349 Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
350 Add_Extra_Actual_To_Call
351 (Function_Call, Pool_Formal, Pool_Actual);
352 end if;
353 end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
355 -----------------------------------------------------------
356 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
357 -----------------------------------------------------------
359 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
360 (Func_Call : Node_Id;
361 Func_Id : Entity_Id;
362 Ptr_Typ : Entity_Id := Empty;
363 Master_Exp : Node_Id := Empty)
365 begin
366 if not Needs_BIP_Finalization_Master (Func_Id) then
367 return;
368 end if;
370 declare
371 Formal : constant Entity_Id :=
372 Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
373 Loc : constant Source_Ptr := Sloc (Func_Call);
375 Actual : Node_Id;
376 Desig_Typ : Entity_Id;
378 begin
379 -- If there is a finalization master actual, such as the implicit
380 -- finalization master of an enclosing build-in-place function,
381 -- then this must be added as an extra actual of the call.
383 if Present (Master_Exp) then
384 Actual := Master_Exp;
386 -- Case where the context does not require an actual master
388 elsif No (Ptr_Typ) then
389 Actual := Make_Null (Loc);
391 else
392 Desig_Typ := Directly_Designated_Type (Ptr_Typ);
394 -- Check for a library-level access type whose designated type has
395 -- supressed finalization. Such an access types lack a master.
396 -- Pass a null actual to the callee in order to signal a missing
397 -- master.
399 if Is_Library_Level_Entity (Ptr_Typ)
400 and then Finalize_Storage_Only (Desig_Typ)
401 then
402 Actual := Make_Null (Loc);
404 -- Types in need of finalization actions
406 elsif Needs_Finalization (Desig_Typ) then
408 -- The general mechanism of creating finalization masters for
409 -- anonymous access types is disabled by default, otherwise
410 -- finalization masters will pop all over the place. Such types
411 -- use context-specific masters.
413 if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
414 and then No (Finalization_Master (Ptr_Typ))
415 then
416 Build_Finalization_Master
417 (Typ => Ptr_Typ,
418 For_Anonymous => True,
419 Context_Scope => Scope (Ptr_Typ),
420 Insertion_Node => Associated_Node_For_Itype (Ptr_Typ));
421 end if;
423 -- Access-to-controlled types should always have a master
425 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
427 Actual :=
428 Make_Attribute_Reference (Loc,
429 Prefix =>
430 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
431 Attribute_Name => Name_Unrestricted_Access);
433 -- Tagged types
435 else
436 Actual := Make_Null (Loc);
437 end if;
438 end if;
440 Analyze_And_Resolve (Actual, Etype (Formal));
442 -- Build the parameter association for the new actual and add it to
443 -- the end of the function's actuals.
445 Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
446 end;
447 end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
449 ------------------------------
450 -- Add_Extra_Actual_To_Call --
451 ------------------------------
453 procedure Add_Extra_Actual_To_Call
454 (Subprogram_Call : Node_Id;
455 Extra_Formal : Entity_Id;
456 Extra_Actual : Node_Id)
458 Loc : constant Source_Ptr := Sloc (Subprogram_Call);
459 Param_Assoc : Node_Id;
461 begin
462 Param_Assoc :=
463 Make_Parameter_Association (Loc,
464 Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
465 Explicit_Actual_Parameter => Extra_Actual);
467 Set_Parent (Param_Assoc, Subprogram_Call);
468 Set_Parent (Extra_Actual, Param_Assoc);
470 if Present (Parameter_Associations (Subprogram_Call)) then
471 if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
472 N_Parameter_Association
473 then
475 -- Find last named actual, and append
477 declare
478 L : Node_Id;
479 begin
480 L := First_Actual (Subprogram_Call);
481 while Present (L) loop
482 if No (Next_Actual (L)) then
483 Set_Next_Named_Actual (Parent (L), Extra_Actual);
484 exit;
485 end if;
486 Next_Actual (L);
487 end loop;
488 end;
490 else
491 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
492 end if;
494 Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
496 else
497 Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
498 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
499 end if;
500 end Add_Extra_Actual_To_Call;
502 ---------------------------------------------
503 -- Add_Task_Actuals_To_Build_In_Place_Call --
504 ---------------------------------------------
506 procedure Add_Task_Actuals_To_Build_In_Place_Call
507 (Function_Call : Node_Id;
508 Function_Id : Entity_Id;
509 Master_Actual : Node_Id;
510 Chain : Node_Id := Empty)
512 Loc : constant Source_Ptr := Sloc (Function_Call);
513 Result_Subt : constant Entity_Id :=
514 Available_View (Etype (Function_Id));
515 Actual : Node_Id;
516 Chain_Actual : Node_Id;
517 Chain_Formal : Node_Id;
518 Master_Formal : Node_Id;
520 begin
521 -- No such extra parameters are needed if there are no tasks
523 if not Has_Task (Result_Subt) then
524 return;
525 end if;
527 Actual := Master_Actual;
529 -- Use a dummy _master actual in case of No_Task_Hierarchy
531 if Restriction_Active (No_Task_Hierarchy) then
532 Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
534 -- In the case where we use the master associated with an access type,
535 -- the actual is an entity and requires an explicit reference.
537 elsif Nkind (Actual) = N_Defining_Identifier then
538 Actual := New_Occurrence_Of (Actual, Loc);
539 end if;
541 -- Locate the implicit master parameter in the called function
543 Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
544 Analyze_And_Resolve (Actual, Etype (Master_Formal));
546 -- Build the parameter association for the new actual and add it to the
547 -- end of the function's actuals.
549 Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
551 -- Locate the implicit activation chain parameter in the called function
553 Chain_Formal :=
554 Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
556 -- Create the actual which is a pointer to the current activation chain
558 if No (Chain) then
559 Chain_Actual :=
560 Make_Attribute_Reference (Loc,
561 Prefix => Make_Identifier (Loc, Name_uChain),
562 Attribute_Name => Name_Unrestricted_Access);
564 -- Allocator case; make a reference to the Chain passed in by the caller
566 else
567 Chain_Actual :=
568 Make_Attribute_Reference (Loc,
569 Prefix => New_Occurrence_Of (Chain, Loc),
570 Attribute_Name => Name_Unrestricted_Access);
571 end if;
573 Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
575 -- Build the parameter association for the new actual and add it to the
576 -- end of the function's actuals.
578 Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
579 end Add_Task_Actuals_To_Build_In_Place_Call;
581 -----------------------
582 -- BIP_Formal_Suffix --
583 -----------------------
585 function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
586 begin
587 case Kind is
588 when BIP_Alloc_Form =>
589 return "BIPalloc";
590 when BIP_Storage_Pool =>
591 return "BIPstoragepool";
592 when BIP_Finalization_Master =>
593 return "BIPfinalizationmaster";
594 when BIP_Task_Master =>
595 return "BIPtaskmaster";
596 when BIP_Activation_Chain =>
597 return "BIPactivationchain";
598 when BIP_Object_Access =>
599 return "BIPaccess";
600 end case;
601 end BIP_Formal_Suffix;
603 ---------------------------
604 -- Build_In_Place_Formal --
605 ---------------------------
607 function Build_In_Place_Formal
608 (Func : Entity_Id;
609 Kind : BIP_Formal_Kind) return Entity_Id
611 Formal_Name : constant Name_Id :=
612 New_External_Name
613 (Chars (Func), BIP_Formal_Suffix (Kind));
614 Extra_Formal : Entity_Id := Extra_Formals (Func);
616 begin
617 -- Maybe it would be better for each implicit formal of a build-in-place
618 -- function to have a flag or a Uint attribute to identify it. ???
620 -- The return type in the function declaration may have been a limited
621 -- view, and the extra formals for the function were not generated at
622 -- that point. At the point of call the full view must be available and
623 -- the extra formals can be created.
625 if No (Extra_Formal) then
626 Create_Extra_Formals (Func);
627 Extra_Formal := Extra_Formals (Func);
628 end if;
630 loop
631 pragma Assert (Present (Extra_Formal));
632 exit when Chars (Extra_Formal) = Formal_Name;
634 Next_Formal_With_Extras (Extra_Formal);
635 end loop;
637 return Extra_Formal;
638 end Build_In_Place_Formal;
640 --------------------------------
641 -- Check_Overriding_Operation --
642 --------------------------------
644 procedure Check_Overriding_Operation (Subp : Entity_Id) is
645 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
646 Op_List : constant Elist_Id := Primitive_Operations (Typ);
647 Op_Elmt : Elmt_Id;
648 Prim_Op : Entity_Id;
649 Par_Op : Entity_Id;
651 begin
652 if Is_Derived_Type (Typ)
653 and then not Is_Private_Type (Typ)
654 and then In_Open_Scopes (Scope (Etype (Typ)))
655 and then Is_Base_Type (Typ)
656 then
657 -- Subp overrides an inherited private operation if there is an
658 -- inherited operation with a different name than Subp (see
659 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
660 -- same name as Subp.
662 Op_Elmt := First_Elmt (Op_List);
663 while Present (Op_Elmt) loop
664 Prim_Op := Node (Op_Elmt);
665 Par_Op := Alias (Prim_Op);
667 if Present (Par_Op)
668 and then not Comes_From_Source (Prim_Op)
669 and then Chars (Prim_Op) /= Chars (Par_Op)
670 and then Chars (Par_Op) = Chars (Subp)
671 and then Is_Hidden (Par_Op)
672 and then Type_Conformant (Prim_Op, Subp)
673 then
674 Set_DT_Position_Value (Subp, DT_Position (Prim_Op));
675 end if;
677 Next_Elmt (Op_Elmt);
678 end loop;
679 end if;
680 end Check_Overriding_Operation;
682 -------------------------------
683 -- Detect_Infinite_Recursion --
684 -------------------------------
686 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
687 Loc : constant Source_Ptr := Sloc (N);
689 Var_List : constant Elist_Id := New_Elmt_List;
690 -- List of globals referenced by body of procedure
692 Call_List : constant Elist_Id := New_Elmt_List;
693 -- List of recursive calls in body of procedure
695 Shad_List : constant Elist_Id := New_Elmt_List;
696 -- List of entity id's for entities created to capture the value of
697 -- referenced globals on entry to the procedure.
699 Scop : constant Uint := Scope_Depth (Spec);
700 -- This is used to record the scope depth of the current procedure, so
701 -- that we can identify global references.
703 Max_Vars : constant := 4;
704 -- Do not test more than four global variables
706 Count_Vars : Natural := 0;
707 -- Count variables found so far
709 Var : Entity_Id;
710 Elm : Elmt_Id;
711 Ent : Entity_Id;
712 Call : Elmt_Id;
713 Decl : Node_Id;
714 Test : Node_Id;
715 Elm1 : Elmt_Id;
716 Elm2 : Elmt_Id;
717 Last : Node_Id;
719 function Process (Nod : Node_Id) return Traverse_Result;
720 -- Function to traverse the subprogram body (using Traverse_Func)
722 -------------
723 -- Process --
724 -------------
726 function Process (Nod : Node_Id) return Traverse_Result is
727 begin
728 -- Procedure call
730 if Nkind (Nod) = N_Procedure_Call_Statement then
732 -- Case of one of the detected recursive calls
734 if Is_Entity_Name (Name (Nod))
735 and then Has_Recursive_Call (Entity (Name (Nod)))
736 and then Entity (Name (Nod)) = Spec
737 then
738 Append_Elmt (Nod, Call_List);
739 return Skip;
741 -- Any other procedure call may have side effects
743 else
744 return Abandon;
745 end if;
747 -- A call to a pure function can always be ignored
749 elsif Nkind (Nod) = N_Function_Call
750 and then Is_Entity_Name (Name (Nod))
751 and then Is_Pure (Entity (Name (Nod)))
752 then
753 return Skip;
755 -- Case of an identifier reference
757 elsif Nkind (Nod) = N_Identifier then
758 Ent := Entity (Nod);
760 -- If no entity, then ignore the reference
762 -- Not clear why this can happen. To investigate, remove this
763 -- test and look at the crash that occurs here in 3401-004 ???
765 if No (Ent) then
766 return Skip;
768 -- Ignore entities with no Scope, again not clear how this
769 -- can happen, to investigate, look at 4108-008 ???
771 elsif No (Scope (Ent)) then
772 return Skip;
774 -- Ignore the reference if not to a more global object
776 elsif Scope_Depth (Scope (Ent)) >= Scop then
777 return Skip;
779 -- References to types, exceptions and constants are always OK
781 elsif Is_Type (Ent)
782 or else Ekind (Ent) = E_Exception
783 or else Ekind (Ent) = E_Constant
784 then
785 return Skip;
787 -- If other than a non-volatile scalar variable, we have some
788 -- kind of global reference (e.g. to a function) that we cannot
789 -- deal with so we forget the attempt.
791 elsif Ekind (Ent) /= E_Variable
792 or else not Is_Scalar_Type (Etype (Ent))
793 or else Treat_As_Volatile (Ent)
794 then
795 return Abandon;
797 -- Otherwise we have a reference to a global scalar
799 else
800 -- Loop through global entities already detected
802 Elm := First_Elmt (Var_List);
803 loop
804 -- If not detected before, record this new global reference
806 if No (Elm) then
807 Count_Vars := Count_Vars + 1;
809 if Count_Vars <= Max_Vars then
810 Append_Elmt (Entity (Nod), Var_List);
811 else
812 return Abandon;
813 end if;
815 exit;
817 -- If recorded before, ignore
819 elsif Node (Elm) = Entity (Nod) then
820 return Skip;
822 -- Otherwise keep looking
824 else
825 Next_Elmt (Elm);
826 end if;
827 end loop;
829 return Skip;
830 end if;
832 -- For all other node kinds, recursively visit syntactic children
834 else
835 return OK;
836 end if;
837 end Process;
839 function Traverse_Body is new Traverse_Func (Process);
841 -- Start of processing for Detect_Infinite_Recursion
843 begin
844 -- Do not attempt detection in No_Implicit_Conditional mode, since we
845 -- won't be able to generate the code to handle the recursion in any
846 -- case.
848 if Restriction_Active (No_Implicit_Conditionals) then
849 return;
850 end if;
852 -- Otherwise do traversal and quit if we get abandon signal
854 if Traverse_Body (N) = Abandon then
855 return;
857 -- We must have a call, since Has_Recursive_Call was set. If not just
858 -- ignore (this is only an error check, so if we have a funny situation,
859 -- due to bugs or errors, we do not want to bomb).
861 elsif Is_Empty_Elmt_List (Call_List) then
862 return;
863 end if;
865 -- Here is the case where we detect recursion at compile time
867 -- Push our current scope for analyzing the declarations and code that
868 -- we will insert for the checking.
870 Push_Scope (Spec);
872 -- This loop builds temporary variables for each of the referenced
873 -- globals, so that at the end of the loop the list Shad_List contains
874 -- these temporaries in one-to-one correspondence with the elements in
875 -- Var_List.
877 Last := Empty;
878 Elm := First_Elmt (Var_List);
879 while Present (Elm) loop
880 Var := Node (Elm);
881 Ent := Make_Temporary (Loc, 'S');
882 Append_Elmt (Ent, Shad_List);
884 -- Insert a declaration for this temporary at the start of the
885 -- declarations for the procedure. The temporaries are declared as
886 -- constant objects initialized to the current values of the
887 -- corresponding temporaries.
889 Decl :=
890 Make_Object_Declaration (Loc,
891 Defining_Identifier => Ent,
892 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
893 Constant_Present => True,
894 Expression => New_Occurrence_Of (Var, Loc));
896 if No (Last) then
897 Prepend (Decl, Declarations (N));
898 else
899 Insert_After (Last, Decl);
900 end if;
902 Last := Decl;
903 Analyze (Decl);
904 Next_Elmt (Elm);
905 end loop;
907 -- Loop through calls
909 Call := First_Elmt (Call_List);
910 while Present (Call) loop
912 -- Build a predicate expression of the form
914 -- True
915 -- and then global1 = temp1
916 -- and then global2 = temp2
917 -- ...
919 -- This predicate determines if any of the global values
920 -- referenced by the procedure have changed since the
921 -- current call, if not an infinite recursion is assured.
923 Test := New_Occurrence_Of (Standard_True, Loc);
925 Elm1 := First_Elmt (Var_List);
926 Elm2 := First_Elmt (Shad_List);
927 while Present (Elm1) loop
928 Test :=
929 Make_And_Then (Loc,
930 Left_Opnd => Test,
931 Right_Opnd =>
932 Make_Op_Eq (Loc,
933 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
934 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
936 Next_Elmt (Elm1);
937 Next_Elmt (Elm2);
938 end loop;
940 -- Now we replace the call with the sequence
942 -- if no-changes (see above) then
943 -- raise Storage_Error;
944 -- else
945 -- original-call
946 -- end if;
948 Rewrite (Node (Call),
949 Make_If_Statement (Loc,
950 Condition => Test,
951 Then_Statements => New_List (
952 Make_Raise_Storage_Error (Loc,
953 Reason => SE_Infinite_Recursion)),
955 Else_Statements => New_List (
956 Relocate_Node (Node (Call)))));
958 Analyze (Node (Call));
960 Next_Elmt (Call);
961 end loop;
963 -- Remove temporary scope stack entry used for analysis
965 Pop_Scope;
966 end Detect_Infinite_Recursion;
968 --------------------
969 -- Expand_Actuals --
970 --------------------
972 --------------------
973 -- Expand_Actuals --
974 --------------------
976 procedure Expand_Actuals (N : in out Node_Id; Subp : Entity_Id) is
977 Loc : constant Source_Ptr := Sloc (N);
978 Actual : Node_Id;
979 Formal : Entity_Id;
980 N_Node : Node_Id;
981 Post_Call : List_Id;
982 E_Actual : Entity_Id;
983 E_Formal : Entity_Id;
985 procedure Add_Call_By_Copy_Code;
986 -- For cases where the parameter must be passed by copy, this routine
987 -- generates a temporary variable into which the actual is copied and
988 -- then passes this as the parameter. For an OUT or IN OUT parameter,
989 -- an assignment is also generated to copy the result back. The call
990 -- also takes care of any constraint checks required for the type
991 -- conversion case (on both the way in and the way out).
993 procedure Add_Simple_Call_By_Copy_Code;
994 -- This is similar to the above, but is used in cases where we know
995 -- that all that is needed is to simply create a temporary and copy
996 -- the value in and out of the temporary.
998 procedure Check_Fortran_Logical;
999 -- A value of type Logical that is passed through a formal parameter
1000 -- must be normalized because .TRUE. usually does not have the same
1001 -- representation as True. We assume that .FALSE. = False = 0.
1002 -- What about functions that return a logical type ???
1004 function Is_Legal_Copy return Boolean;
1005 -- Check that an actual can be copied before generating the temporary
1006 -- to be used in the call. If the actual is of a by_reference type then
1007 -- the program is illegal (this can only happen in the presence of
1008 -- rep. clauses that force an incorrect alignment). If the formal is
1009 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1010 -- the effect that this might lead to unaligned arguments.
1012 function Make_Var (Actual : Node_Id) return Entity_Id;
1013 -- Returns an entity that refers to the given actual parameter, Actual
1014 -- (not including any type conversion). If Actual is an entity name,
1015 -- then this entity is returned unchanged, otherwise a renaming is
1016 -- created to provide an entity for the actual.
1018 procedure Reset_Packed_Prefix;
1019 -- The expansion of a packed array component reference is delayed in
1020 -- the context of a call. Now we need to complete the expansion, so we
1021 -- unmark the analyzed bits in all prefixes.
1023 ---------------------------
1024 -- Add_Call_By_Copy_Code --
1025 ---------------------------
1027 procedure Add_Call_By_Copy_Code is
1028 Expr : Node_Id;
1029 Init : Node_Id;
1030 Temp : Entity_Id;
1031 Indic : Node_Id;
1032 Var : Entity_Id;
1033 F_Typ : constant Entity_Id := Etype (Formal);
1034 V_Typ : Entity_Id;
1035 Crep : Boolean;
1037 begin
1038 if not Is_Legal_Copy then
1039 return;
1040 end if;
1042 Temp := Make_Temporary (Loc, 'T', Actual);
1044 -- Use formal type for temp, unless formal type is an unconstrained
1045 -- array, in which case we don't have to worry about bounds checks,
1046 -- and we use the actual type, since that has appropriate bounds.
1048 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1049 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1050 else
1051 Indic := New_Occurrence_Of (Etype (Formal), Loc);
1052 end if;
1054 if Nkind (Actual) = N_Type_Conversion then
1055 V_Typ := Etype (Expression (Actual));
1057 -- If the formal is an (in-)out parameter, capture the name
1058 -- of the variable in order to build the post-call assignment.
1060 Var := Make_Var (Expression (Actual));
1062 Crep := not Same_Representation
1063 (F_Typ, Etype (Expression (Actual)));
1065 else
1066 V_Typ := Etype (Actual);
1067 Var := Make_Var (Actual);
1068 Crep := False;
1069 end if;
1071 -- Setup initialization for case of in out parameter, or an out
1072 -- parameter where the formal is an unconstrained array (in the
1073 -- latter case, we have to pass in an object with bounds).
1075 -- If this is an out parameter, the initial copy is wasteful, so as
1076 -- an optimization for the one-dimensional case we extract the
1077 -- bounds of the actual and build an uninitialized temporary of the
1078 -- right size.
1080 if Ekind (Formal) = E_In_Out_Parameter
1081 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1082 then
1083 if Nkind (Actual) = N_Type_Conversion then
1084 if Conversion_OK (Actual) then
1085 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1086 else
1087 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1088 end if;
1090 elsif Ekind (Formal) = E_Out_Parameter
1091 and then Is_Array_Type (F_Typ)
1092 and then Number_Dimensions (F_Typ) = 1
1093 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1094 then
1095 -- Actual is a one-dimensional array or slice, and the type
1096 -- requires no initialization. Create a temporary of the
1097 -- right size, but do not copy actual into it (optimization).
1099 Init := Empty;
1100 Indic :=
1101 Make_Subtype_Indication (Loc,
1102 Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
1103 Constraint =>
1104 Make_Index_Or_Discriminant_Constraint (Loc,
1105 Constraints => New_List (
1106 Make_Range (Loc,
1107 Low_Bound =>
1108 Make_Attribute_Reference (Loc,
1109 Prefix => New_Occurrence_Of (Var, Loc),
1110 Attribute_Name => Name_First),
1111 High_Bound =>
1112 Make_Attribute_Reference (Loc,
1113 Prefix => New_Occurrence_Of (Var, Loc),
1114 Attribute_Name => Name_Last)))));
1116 else
1117 Init := New_Occurrence_Of (Var, Loc);
1118 end if;
1120 -- An initialization is created for packed conversions as
1121 -- actuals for out parameters to enable Make_Object_Declaration
1122 -- to determine the proper subtype for N_Node. Note that this
1123 -- is wasteful because the extra copying on the call side is
1124 -- not required for such out parameters. ???
1126 elsif Ekind (Formal) = E_Out_Parameter
1127 and then Nkind (Actual) = N_Type_Conversion
1128 and then (Is_Bit_Packed_Array (F_Typ)
1129 or else
1130 Is_Bit_Packed_Array (Etype (Expression (Actual))))
1131 then
1132 if Conversion_OK (Actual) then
1133 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1134 else
1135 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1136 end if;
1138 elsif Ekind (Formal) = E_In_Parameter then
1140 -- Handle the case in which the actual is a type conversion
1142 if Nkind (Actual) = N_Type_Conversion then
1143 if Conversion_OK (Actual) then
1144 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1145 else
1146 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1147 end if;
1148 else
1149 Init := New_Occurrence_Of (Var, Loc);
1150 end if;
1152 else
1153 Init := Empty;
1154 end if;
1156 N_Node :=
1157 Make_Object_Declaration (Loc,
1158 Defining_Identifier => Temp,
1159 Object_Definition => Indic,
1160 Expression => Init);
1161 Set_Assignment_OK (N_Node);
1162 Insert_Action (N, N_Node);
1164 -- Now, normally the deal here is that we use the defining
1165 -- identifier created by that object declaration. There is
1166 -- one exception to this. In the change of representation case
1167 -- the above declaration will end up looking like:
1169 -- temp : type := identifier;
1171 -- And in this case we might as well use the identifier directly
1172 -- and eliminate the temporary. Note that the analysis of the
1173 -- declaration was not a waste of time in that case, since it is
1174 -- what generated the necessary change of representation code. If
1175 -- the change of representation introduced additional code, as in
1176 -- a fixed-integer conversion, the expression is not an identifier
1177 -- and must be kept.
1179 if Crep
1180 and then Present (Expression (N_Node))
1181 and then Is_Entity_Name (Expression (N_Node))
1182 then
1183 Temp := Entity (Expression (N_Node));
1184 Rewrite (N_Node, Make_Null_Statement (Loc));
1185 end if;
1187 -- For IN parameter, all we do is to replace the actual
1189 if Ekind (Formal) = E_In_Parameter then
1190 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1191 Analyze (Actual);
1193 -- Processing for OUT or IN OUT parameter
1195 else
1196 -- Kill current value indications for the temporary variable we
1197 -- created, since we just passed it as an OUT parameter.
1199 Kill_Current_Values (Temp);
1200 Set_Is_Known_Valid (Temp, False);
1202 -- If type conversion, use reverse conversion on exit
1204 if Nkind (Actual) = N_Type_Conversion then
1205 if Conversion_OK (Actual) then
1206 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1207 else
1208 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1209 end if;
1210 else
1211 Expr := New_Occurrence_Of (Temp, Loc);
1212 end if;
1214 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1215 Analyze (Actual);
1217 -- If the actual is a conversion of a packed reference, it may
1218 -- already have been expanded by Remove_Side_Effects, and the
1219 -- resulting variable is a temporary which does not designate
1220 -- the proper out-parameter, which may not be addressable. In
1221 -- that case, generate an assignment to the original expression
1222 -- (before expansion of the packed reference) so that the proper
1223 -- expansion of assignment to a packed component can take place.
1225 declare
1226 Obj : Node_Id;
1227 Lhs : Node_Id;
1229 begin
1230 if Is_Renaming_Of_Object (Var)
1231 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1232 and then Is_Entity_Name (Prefix (Renamed_Object (Var)))
1233 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1234 = N_Indexed_Component
1235 and then
1236 Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1237 then
1238 Obj := Renamed_Object (Var);
1239 Lhs :=
1240 Make_Selected_Component (Loc,
1241 Prefix =>
1242 New_Copy_Tree (Original_Node (Prefix (Obj))),
1243 Selector_Name => New_Copy (Selector_Name (Obj)));
1244 Reset_Analyzed_Flags (Lhs);
1246 else
1247 Lhs := New_Occurrence_Of (Var, Loc);
1248 end if;
1250 Set_Assignment_OK (Lhs);
1252 if Is_Access_Type (E_Formal)
1253 and then Is_Entity_Name (Lhs)
1254 and then
1255 Present (Effective_Extra_Accessibility (Entity (Lhs)))
1256 then
1257 -- Copyback target is an Ada 2012 stand-alone object of an
1258 -- anonymous access type.
1260 pragma Assert (Ada_Version >= Ada_2012);
1262 if Type_Access_Level (E_Formal) >
1263 Object_Access_Level (Lhs)
1264 then
1265 Append_To (Post_Call,
1266 Make_Raise_Program_Error (Loc,
1267 Reason => PE_Accessibility_Check_Failed));
1268 end if;
1270 Append_To (Post_Call,
1271 Make_Assignment_Statement (Loc,
1272 Name => Lhs,
1273 Expression => Expr));
1275 -- We would like to somehow suppress generation of the
1276 -- extra_accessibility assignment generated by the expansion
1277 -- of the above assignment statement. It's not a correctness
1278 -- issue because the following assignment renders it dead,
1279 -- but generating back-to-back assignments to the same
1280 -- target is undesirable. ???
1282 Append_To (Post_Call,
1283 Make_Assignment_Statement (Loc,
1284 Name => New_Occurrence_Of (
1285 Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1286 Expression => Make_Integer_Literal (Loc,
1287 Type_Access_Level (E_Formal))));
1289 else
1290 Append_To (Post_Call,
1291 Make_Assignment_Statement (Loc,
1292 Name => Lhs,
1293 Expression => Expr));
1294 end if;
1295 end;
1296 end if;
1297 end Add_Call_By_Copy_Code;
1299 ----------------------------------
1300 -- Add_Simple_Call_By_Copy_Code --
1301 ----------------------------------
1303 procedure Add_Simple_Call_By_Copy_Code is
1304 Temp : Entity_Id;
1305 Decl : Node_Id;
1306 Incod : Node_Id;
1307 Outcod : Node_Id;
1308 Lhs : Node_Id;
1309 Rhs : Node_Id;
1310 Indic : Node_Id;
1311 F_Typ : constant Entity_Id := Etype (Formal);
1313 begin
1314 if not Is_Legal_Copy then
1315 return;
1316 end if;
1318 -- Use formal type for temp, unless formal type is an unconstrained
1319 -- array, in which case we don't have to worry about bounds checks,
1320 -- and we use the actual type, since that has appropriate bounds.
1322 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1323 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1324 else
1325 Indic := New_Occurrence_Of (Etype (Formal), Loc);
1326 end if;
1328 -- Prepare to generate code
1330 Reset_Packed_Prefix;
1332 Temp := Make_Temporary (Loc, 'T', Actual);
1333 Incod := Relocate_Node (Actual);
1334 Outcod := New_Copy_Tree (Incod);
1336 -- Generate declaration of temporary variable, initializing it
1337 -- with the input parameter unless we have an OUT formal or
1338 -- this is an initialization call.
1340 -- If the formal is an out parameter with discriminants, the
1341 -- discriminants must be captured even if the rest of the object
1342 -- is in principle uninitialized, because the discriminants may
1343 -- be read by the called subprogram.
1345 if Ekind (Formal) = E_Out_Parameter then
1346 Incod := Empty;
1348 if Has_Discriminants (Etype (Formal)) then
1349 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1350 end if;
1352 elsif Inside_Init_Proc then
1354 -- Could use a comment here to match comment below ???
1356 if Nkind (Actual) /= N_Selected_Component
1357 or else
1358 not Has_Discriminant_Dependent_Constraint
1359 (Entity (Selector_Name (Actual)))
1360 then
1361 Incod := Empty;
1363 -- Otherwise, keep the component in order to generate the proper
1364 -- actual subtype, that depends on enclosing discriminants.
1366 else
1367 null;
1368 end if;
1369 end if;
1371 Decl :=
1372 Make_Object_Declaration (Loc,
1373 Defining_Identifier => Temp,
1374 Object_Definition => Indic,
1375 Expression => Incod);
1377 if Inside_Init_Proc
1378 and then No (Incod)
1379 then
1380 -- If the call is to initialize a component of a composite type,
1381 -- and the component does not depend on discriminants, use the
1382 -- actual type of the component. This is required in case the
1383 -- component is constrained, because in general the formal of the
1384 -- initialization procedure will be unconstrained. Note that if
1385 -- the component being initialized is constrained by an enclosing
1386 -- discriminant, the presence of the initialization in the
1387 -- declaration will generate an expression for the actual subtype.
1389 Set_No_Initialization (Decl);
1390 Set_Object_Definition (Decl,
1391 New_Occurrence_Of (Etype (Actual), Loc));
1392 end if;
1394 Insert_Action (N, Decl);
1396 -- The actual is simply a reference to the temporary
1398 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1400 -- Generate copy out if OUT or IN OUT parameter
1402 if Ekind (Formal) /= E_In_Parameter then
1403 Lhs := Outcod;
1404 Rhs := New_Occurrence_Of (Temp, Loc);
1406 -- Deal with conversion
1408 if Nkind (Lhs) = N_Type_Conversion then
1409 Lhs := Expression (Lhs);
1410 Rhs := Convert_To (Etype (Actual), Rhs);
1411 end if;
1413 Append_To (Post_Call,
1414 Make_Assignment_Statement (Loc,
1415 Name => Lhs,
1416 Expression => Rhs));
1417 Set_Assignment_OK (Name (Last (Post_Call)));
1418 end if;
1419 end Add_Simple_Call_By_Copy_Code;
1421 ---------------------------
1422 -- Check_Fortran_Logical --
1423 ---------------------------
1425 procedure Check_Fortran_Logical is
1426 Logical : constant Entity_Id := Etype (Formal);
1427 Var : Entity_Id;
1429 -- Note: this is very incomplete, e.g. it does not handle arrays
1430 -- of logical values. This is really not the right approach at all???)
1432 begin
1433 if Convention (Subp) = Convention_Fortran
1434 and then Root_Type (Etype (Formal)) = Standard_Boolean
1435 and then Ekind (Formal) /= E_In_Parameter
1436 then
1437 Var := Make_Var (Actual);
1438 Append_To (Post_Call,
1439 Make_Assignment_Statement (Loc,
1440 Name => New_Occurrence_Of (Var, Loc),
1441 Expression =>
1442 Unchecked_Convert_To (
1443 Logical,
1444 Make_Op_Ne (Loc,
1445 Left_Opnd => New_Occurrence_Of (Var, Loc),
1446 Right_Opnd =>
1447 Unchecked_Convert_To (
1448 Logical,
1449 New_Occurrence_Of (Standard_False, Loc))))));
1450 end if;
1451 end Check_Fortran_Logical;
1453 -------------------
1454 -- Is_Legal_Copy --
1455 -------------------
1457 function Is_Legal_Copy return Boolean is
1458 begin
1459 -- An attempt to copy a value of such a type can only occur if
1460 -- representation clauses give the actual a misaligned address.
1462 if Is_By_Reference_Type (Etype (Formal)) then
1464 -- If the front-end does not perform full type layout, the actual
1465 -- may in fact be properly aligned but there is not enough front-
1466 -- end information to determine this. In that case gigi will emit
1467 -- an error if a copy is not legal, or generate the proper code.
1468 -- For other backends we report the error now.
1470 -- Seems wrong to be issuing an error in the expander, since it
1471 -- will be missed in -gnatc mode ???
1473 if Frontend_Layout_On_Target then
1474 Error_Msg_N
1475 ("misaligned actual cannot be passed by reference", Actual);
1476 end if;
1478 return False;
1480 -- For users of Starlet, we assume that the specification of by-
1481 -- reference mechanism is mandatory. This may lead to unaligned
1482 -- objects but at least for DEC legacy code it is known to work.
1483 -- The warning will alert users of this code that a problem may
1484 -- be lurking.
1486 elsif Mechanism (Formal) = By_Reference
1487 and then Is_Valued_Procedure (Scope (Formal))
1488 then
1489 Error_Msg_N
1490 ("by_reference actual may be misaligned??", Actual);
1491 return False;
1493 else
1494 return True;
1495 end if;
1496 end Is_Legal_Copy;
1498 --------------
1499 -- Make_Var --
1500 --------------
1502 function Make_Var (Actual : Node_Id) return Entity_Id is
1503 Var : Entity_Id;
1505 begin
1506 if Is_Entity_Name (Actual) then
1507 return Entity (Actual);
1509 else
1510 Var := Make_Temporary (Loc, 'T', Actual);
1512 N_Node :=
1513 Make_Object_Renaming_Declaration (Loc,
1514 Defining_Identifier => Var,
1515 Subtype_Mark =>
1516 New_Occurrence_Of (Etype (Actual), Loc),
1517 Name => Relocate_Node (Actual));
1519 Insert_Action (N, N_Node);
1520 return Var;
1521 end if;
1522 end Make_Var;
1524 -------------------------
1525 -- Reset_Packed_Prefix --
1526 -------------------------
1528 procedure Reset_Packed_Prefix is
1529 Pfx : Node_Id := Actual;
1530 begin
1531 loop
1532 Set_Analyzed (Pfx, False);
1533 exit when
1534 not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
1535 Pfx := Prefix (Pfx);
1536 end loop;
1537 end Reset_Packed_Prefix;
1539 -- Start of processing for Expand_Actuals
1541 begin
1542 Post_Call := New_List;
1544 Formal := First_Formal (Subp);
1545 Actual := First_Actual (N);
1546 while Present (Formal) loop
1547 E_Formal := Etype (Formal);
1548 E_Actual := Etype (Actual);
1550 if Is_Scalar_Type (E_Formal)
1551 or else Nkind (Actual) = N_Slice
1552 then
1553 Check_Fortran_Logical;
1555 -- RM 6.4.1 (11)
1557 elsif Ekind (Formal) /= E_Out_Parameter then
1559 -- The unusual case of the current instance of a protected type
1560 -- requires special handling. This can only occur in the context
1561 -- of a call within the body of a protected operation.
1563 if Is_Entity_Name (Actual)
1564 and then Ekind (Entity (Actual)) = E_Protected_Type
1565 and then In_Open_Scopes (Entity (Actual))
1566 then
1567 if Scope (Subp) /= Entity (Actual) then
1568 Error_Msg_N
1569 ("operation outside protected type may not "
1570 & "call back its protected operations??", Actual);
1571 end if;
1573 Rewrite (Actual,
1574 Expand_Protected_Object_Reference (N, Entity (Actual)));
1575 end if;
1577 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1578 -- build-in-place function, then a temporary return object needs
1579 -- to be created and access to it must be passed to the function.
1580 -- Currently we limit such functions to those with inherently
1581 -- limited result subtypes, but eventually we plan to expand the
1582 -- functions that are treated as build-in-place to include other
1583 -- composite result types.
1585 if Is_Build_In_Place_Function_Call (Actual) then
1586 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1587 end if;
1589 Apply_Constraint_Check (Actual, E_Formal);
1591 -- Out parameter case. No constraint checks on access type
1592 -- RM 6.4.1 (13)
1594 elsif Is_Access_Type (E_Formal) then
1595 null;
1597 -- RM 6.4.1 (14)
1599 elsif Has_Discriminants (Base_Type (E_Formal))
1600 or else Has_Non_Null_Base_Init_Proc (E_Formal)
1601 then
1602 Apply_Constraint_Check (Actual, E_Formal);
1604 -- RM 6.4.1 (15)
1606 else
1607 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1608 end if;
1610 -- Processing for IN-OUT and OUT parameters
1612 if Ekind (Formal) /= E_In_Parameter then
1614 -- For type conversions of arrays, apply length/range checks
1616 if Is_Array_Type (E_Formal)
1617 and then Nkind (Actual) = N_Type_Conversion
1618 then
1619 if Is_Constrained (E_Formal) then
1620 Apply_Length_Check (Expression (Actual), E_Formal);
1621 else
1622 Apply_Range_Check (Expression (Actual), E_Formal);
1623 end if;
1624 end if;
1626 -- If argument is a type conversion for a type that is passed
1627 -- by copy, then we must pass the parameter by copy.
1629 if Nkind (Actual) = N_Type_Conversion
1630 and then
1631 (Is_Numeric_Type (E_Formal)
1632 or else Is_Access_Type (E_Formal)
1633 or else Is_Enumeration_Type (E_Formal)
1634 or else Is_Bit_Packed_Array (Etype (Formal))
1635 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1637 -- Also pass by copy if change of representation
1639 or else not Same_Representation
1640 (Etype (Formal),
1641 Etype (Expression (Actual))))
1642 then
1643 Add_Call_By_Copy_Code;
1645 -- References to components of bit packed arrays are expanded
1646 -- at this point, rather than at the point of analysis of the
1647 -- actuals, to handle the expansion of the assignment to
1648 -- [in] out parameters.
1650 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1651 Add_Simple_Call_By_Copy_Code;
1653 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1654 -- because the back-end cannot cope with such objects. In other
1655 -- cases where alignment forces a copy, the back-end generates
1656 -- it properly. It should not be generated unconditionally in the
1657 -- front-end because it does not know precisely the alignment
1658 -- requirements of the target, and makes too conservative an
1659 -- estimate, leading to superfluous copies or spurious errors
1660 -- on by-reference parameters.
1662 elsif Nkind (Actual) = N_Selected_Component
1663 and then
1664 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
1665 and then not Represented_As_Scalar (Etype (Formal))
1666 then
1667 Add_Simple_Call_By_Copy_Code;
1669 -- References to slices of bit packed arrays are expanded
1671 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1672 Add_Call_By_Copy_Code;
1674 -- References to possibly unaligned slices of arrays are expanded
1676 elsif Is_Possibly_Unaligned_Slice (Actual) then
1677 Add_Call_By_Copy_Code;
1679 -- Deal with access types where the actual subtype and the
1680 -- formal subtype are not the same, requiring a check.
1682 -- It is necessary to exclude tagged types because of "downward
1683 -- conversion" errors.
1685 elsif Is_Access_Type (E_Formal)
1686 and then not Same_Type (E_Formal, E_Actual)
1687 and then not Is_Tagged_Type (Designated_Type (E_Formal))
1688 then
1689 Add_Call_By_Copy_Code;
1691 -- If the actual is not a scalar and is marked for volatile
1692 -- treatment, whereas the formal is not volatile, then pass
1693 -- by copy unless it is a by-reference type.
1695 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
1696 -- because this is the enforcement of a language rule that applies
1697 -- only to "real" volatile variables, not e.g. to the address
1698 -- clause overlay case.
1700 elsif Is_Entity_Name (Actual)
1701 and then Is_Volatile (Entity (Actual))
1702 and then not Is_By_Reference_Type (E_Actual)
1703 and then not Is_Scalar_Type (Etype (Entity (Actual)))
1704 and then not Is_Volatile (E_Formal)
1705 then
1706 Add_Call_By_Copy_Code;
1708 elsif Nkind (Actual) = N_Indexed_Component
1709 and then Is_Entity_Name (Prefix (Actual))
1710 and then Has_Volatile_Components (Entity (Prefix (Actual)))
1711 then
1712 Add_Call_By_Copy_Code;
1714 -- Add call-by-copy code for the case of scalar out parameters
1715 -- when it is not known at compile time that the subtype of the
1716 -- formal is a subrange of the subtype of the actual (or vice
1717 -- versa for in out parameters), in order to get range checks
1718 -- on such actuals. (Maybe this case should be handled earlier
1719 -- in the if statement???)
1721 elsif Is_Scalar_Type (E_Formal)
1722 and then
1723 (not In_Subrange_Of (E_Formal, E_Actual)
1724 or else
1725 (Ekind (Formal) = E_In_Out_Parameter
1726 and then not In_Subrange_Of (E_Actual, E_Formal)))
1727 then
1728 -- Perhaps the setting back to False should be done within
1729 -- Add_Call_By_Copy_Code, since it could get set on other
1730 -- cases occurring above???
1732 if Do_Range_Check (Actual) then
1733 Set_Do_Range_Check (Actual, False);
1734 end if;
1736 Add_Call_By_Copy_Code;
1737 end if;
1739 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
1740 -- by-reference parameters on exit from the call. If the actual
1741 -- is a derived type and the operation is inherited, the body
1742 -- of the operation will not contain a call to the predicate
1743 -- function, so it must be done explicitly after the call. Ditto
1744 -- if the actual is an entity of a predicated subtype.
1746 -- The rule refers to by-reference types, but a check is needed
1747 -- for by-copy types as well. That check is subsumed by the rule
1748 -- for subtype conversion on assignment, but we can generate the
1749 -- required check now.
1751 -- Note also that Subp may be either a subprogram entity for
1752 -- direct calls, or a type entity for indirect calls, which must
1753 -- be handled separately because the name does not denote an
1754 -- overloadable entity.
1756 By_Ref_Predicate_Check : declare
1757 Aund : constant Entity_Id := Underlying_Type (E_Actual);
1758 Atyp : Entity_Id;
1760 function Is_Public_Subp return Boolean;
1761 -- Check whether the subprogram being called is a visible
1762 -- operation of the type of the actual. Used to determine
1763 -- whether an invariant check must be generated on the
1764 -- caller side.
1766 ---------------------
1767 -- Is_Public_Subp --
1768 ---------------------
1770 function Is_Public_Subp return Boolean is
1771 Pack : constant Entity_Id := Scope (Subp);
1772 Subp_Decl : Node_Id;
1774 begin
1775 if not Is_Subprogram (Subp) then
1776 return False;
1778 -- The operation may be inherited, or a primitive of the
1779 -- root type.
1781 elsif
1782 Nkind_In (Parent (Subp), N_Private_Extension_Declaration,
1783 N_Full_Type_Declaration)
1784 then
1785 Subp_Decl := Parent (Subp);
1787 else
1788 Subp_Decl := Unit_Declaration_Node (Subp);
1789 end if;
1791 return Ekind (Pack) = E_Package
1792 and then
1793 List_Containing (Subp_Decl) =
1794 Visible_Declarations
1795 (Specification (Unit_Declaration_Node (Pack)));
1796 end Is_Public_Subp;
1798 -- Start of processing for By_Ref_Predicate_Check
1800 begin
1801 if No (Aund) then
1802 Atyp := E_Actual;
1803 else
1804 Atyp := Aund;
1805 end if;
1807 if Has_Predicates (Atyp)
1808 and then Present (Predicate_Function (Atyp))
1810 -- Skip predicate checks for special cases
1812 and then Predicate_Tests_On_Arguments (Subp)
1813 then
1814 Append_To (Post_Call,
1815 Make_Predicate_Check (Atyp, Actual));
1816 end if;
1818 -- We generated caller-side invariant checks in two cases:
1820 -- a) when calling an inherited operation, where there is an
1821 -- implicit view conversion of the actual to the parent type.
1823 -- b) When the conversion is explicit
1825 -- We treat these cases separately because the required
1826 -- conversion for a) is added later when expanding the call.
1828 if Has_Invariants (Etype (Actual))
1829 and then
1830 Nkind (Parent (Subp)) = N_Private_Extension_Declaration
1831 then
1832 if Comes_From_Source (N) and then Is_Public_Subp then
1833 Append_To (Post_Call, Make_Invariant_Call (Actual));
1834 end if;
1836 elsif Nkind (Actual) = N_Type_Conversion
1837 and then Has_Invariants (Etype (Expression (Actual)))
1838 then
1839 if Comes_From_Source (N) and then Is_Public_Subp then
1840 Append_To (Post_Call,
1841 Make_Invariant_Call (Expression (Actual)));
1842 end if;
1843 end if;
1844 end By_Ref_Predicate_Check;
1846 -- Processing for IN parameters
1848 else
1849 -- For IN parameters is in the packed array case, we expand an
1850 -- indexed component (the circuit in Exp_Ch4 deliberately left
1851 -- indexed components appearing as actuals untouched, so that
1852 -- the special processing above for the OUT and IN OUT cases
1853 -- could be performed. We could make the test in Exp_Ch4 more
1854 -- complex and have it detect the parameter mode, but it is
1855 -- easier simply to handle all cases here.)
1857 if Nkind (Actual) = N_Indexed_Component
1858 and then Is_Packed (Etype (Prefix (Actual)))
1859 then
1860 Reset_Packed_Prefix;
1861 Expand_Packed_Element_Reference (Actual);
1863 -- If we have a reference to a bit packed array, we copy it, since
1864 -- the actual must be byte aligned.
1866 -- Is this really necessary in all cases???
1868 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1869 Add_Simple_Call_By_Copy_Code;
1871 -- If a non-scalar actual is possibly unaligned, we need a copy
1873 elsif Is_Possibly_Unaligned_Object (Actual)
1874 and then not Represented_As_Scalar (Etype (Formal))
1875 then
1876 Add_Simple_Call_By_Copy_Code;
1878 -- Similarly, we have to expand slices of packed arrays here
1879 -- because the result must be byte aligned.
1881 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1882 Add_Call_By_Copy_Code;
1884 -- Only processing remaining is to pass by copy if this is a
1885 -- reference to a possibly unaligned slice, since the caller
1886 -- expects an appropriately aligned argument.
1888 elsif Is_Possibly_Unaligned_Slice (Actual) then
1889 Add_Call_By_Copy_Code;
1891 -- An unusual case: a current instance of an enclosing task can be
1892 -- an actual, and must be replaced by a reference to self.
1894 elsif Is_Entity_Name (Actual)
1895 and then Is_Task_Type (Entity (Actual))
1896 then
1897 if In_Open_Scopes (Entity (Actual)) then
1898 Rewrite (Actual,
1899 (Make_Function_Call (Loc,
1900 Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
1901 Analyze (Actual);
1903 -- A task type cannot otherwise appear as an actual
1905 else
1906 raise Program_Error;
1907 end if;
1908 end if;
1909 end if;
1911 Next_Formal (Formal);
1912 Next_Actual (Actual);
1913 end loop;
1915 -- Find right place to put post call stuff if it is present
1917 if not Is_Empty_List (Post_Call) then
1919 -- Cases where the call is not a member of a statement list
1921 if not Is_List_Member (N) then
1923 -- In Ada 2012 the call may be a function call in an expression
1924 -- (since OUT and IN OUT parameters are now allowed for such
1925 -- calls). The write-back of (in)-out parameters is handled
1926 -- by the back-end, but the constraint checks generated when
1927 -- subtypes of formal and actual don't match must be inserted
1928 -- in the form of assignments.
1930 if Ada_Version >= Ada_2012
1931 and then Nkind (N) = N_Function_Call
1932 then
1933 -- We used to just do handle this by climbing up parents to
1934 -- a non-statement/declaration and then simply making a call
1935 -- to Insert_Actions_After (P, Post_Call), but that doesn't
1936 -- work. If we are in the middle of an expression, e.g. the
1937 -- condition of an IF, this call would insert after the IF
1938 -- statement, which is much too late to be doing the write
1939 -- back. For example:
1941 -- if Clobber (X) then
1942 -- Put_Line (X'Img);
1943 -- else
1944 -- goto Junk
1945 -- end if;
1947 -- Now assume Clobber changes X, if we put the write back
1948 -- after the IF, the Put_Line gets the wrong value and the
1949 -- goto causes the write back to be skipped completely.
1951 -- To deal with this, we replace the call by
1953 -- do
1954 -- Tnnn : function-result-type renames function-call;
1955 -- Post_Call actions
1956 -- in
1957 -- Tnnn;
1958 -- end;
1960 -- Note: this won't do in Modify_Tree_For_C mode, but we
1961 -- will deal with that later (it will require creating a
1962 -- declaration for Temp, using Insert_Declaration) ???
1964 declare
1965 Tnnn : constant Entity_Id := Make_Temporary (Loc, 'T');
1966 FRTyp : constant Entity_Id := Etype (N);
1967 Name : constant Node_Id := Relocate_Node (N);
1969 begin
1970 Prepend_To (Post_Call,
1971 Make_Object_Renaming_Declaration (Loc,
1972 Defining_Identifier => Tnnn,
1973 Subtype_Mark => New_Occurrence_Of (FRTyp, Loc),
1974 Name => Name));
1976 Rewrite (N,
1977 Make_Expression_With_Actions (Loc,
1978 Actions => Post_Call,
1979 Expression => New_Occurrence_Of (Tnnn, Loc)));
1981 -- We don't want to just blindly call Analyze_And_Resolve
1982 -- because that would cause unwanted recursion on the call.
1983 -- So for a moment set the call as analyzed to prevent that
1984 -- recursion, and get the rest analyzed properly, then reset
1985 -- the analyzed flag, so our caller can continue.
1987 Set_Analyzed (Name, True);
1988 Analyze_And_Resolve (N, FRTyp);
1989 Set_Analyzed (Name, False);
1991 -- Reset calling argument to point to function call inside
1992 -- the expression with actions so the caller can continue
1993 -- to process the call.
1995 N := Name;
1996 end;
1998 -- If not the special Ada 2012 case of a function call, then
1999 -- we must have the triggering statement of a triggering
2000 -- alternative or an entry call alternative, and we can add
2001 -- the post call stuff to the corresponding statement list.
2003 else
2004 declare
2005 P : Node_Id;
2007 begin
2008 P := Parent (N);
2009 pragma Assert (Nkind_In (P, N_Triggering_Alternative,
2010 N_Entry_Call_Alternative));
2012 if Is_Non_Empty_List (Statements (P)) then
2013 Insert_List_Before_And_Analyze
2014 (First (Statements (P)), Post_Call);
2015 else
2016 Set_Statements (P, Post_Call);
2017 end if;
2019 return;
2020 end;
2021 end if;
2023 -- Otherwise, normal case where N is in a statement sequence,
2024 -- just put the post-call stuff after the call statement.
2026 else
2027 Insert_Actions_After (N, Post_Call);
2028 return;
2029 end if;
2030 end if;
2032 -- The call node itself is re-analyzed in Expand_Call
2034 end Expand_Actuals;
2036 -----------------
2037 -- Expand_Call --
2038 -----------------
2040 -- This procedure handles expansion of function calls and procedure call
2041 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
2042 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
2044 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
2045 -- Provide values of actuals for all formals in Extra_Formals list
2046 -- Replace "call" to enumeration literal function by literal itself
2047 -- Rewrite call to predefined operator as operator
2048 -- Replace actuals to in-out parameters that are numeric conversions,
2049 -- with explicit assignment to temporaries before and after the call.
2051 -- Note that the list of actuals has been filled with default expressions
2052 -- during semantic analysis of the call. Only the extra actuals required
2053 -- for the 'Constrained attribute and for accessibility checks are added
2054 -- at this point.
2056 procedure Expand_Call (N : Node_Id) is
2057 Loc : constant Source_Ptr := Sloc (N);
2058 Call_Node : Node_Id := N;
2059 Extra_Actuals : List_Id := No_List;
2060 Prev : Node_Id := Empty;
2062 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
2063 -- Adds one entry to the end of the actual parameter list. Used for
2064 -- default parameters and for extra actuals (for Extra_Formals). The
2065 -- argument is an N_Parameter_Association node.
2067 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
2068 -- Adds an extra actual to the list of extra actuals. Expr is the
2069 -- expression for the value of the actual, EF is the entity for the
2070 -- extra formal.
2072 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
2073 -- Within an instance, a type derived from an untagged formal derived
2074 -- type inherits from the original parent, not from the actual. The
2075 -- current derivation mechanism has the derived type inherit from the
2076 -- actual, which is only correct outside of the instance. If the
2077 -- subprogram is inherited, we test for this particular case through a
2078 -- convoluted tree traversal before setting the proper subprogram to be
2079 -- called.
2081 function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
2082 -- Return true if E comes from an instance that is not yet frozen
2084 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
2085 -- Determine if Subp denotes a non-dispatching call to a Deep routine
2087 function New_Value (From : Node_Id) return Node_Id;
2088 -- From is the original Expression. New_Value is equivalent to a call
2089 -- to Duplicate_Subexpr with an explicit dereference when From is an
2090 -- access parameter.
2092 --------------------------
2093 -- Add_Actual_Parameter --
2094 --------------------------
2096 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
2097 Actual_Expr : constant Node_Id :=
2098 Explicit_Actual_Parameter (Insert_Param);
2100 begin
2101 -- Case of insertion is first named actual
2103 if No (Prev) or else
2104 Nkind (Parent (Prev)) /= N_Parameter_Association
2105 then
2106 Set_Next_Named_Actual
2107 (Insert_Param, First_Named_Actual (Call_Node));
2108 Set_First_Named_Actual (Call_Node, Actual_Expr);
2110 if No (Prev) then
2111 if No (Parameter_Associations (Call_Node)) then
2112 Set_Parameter_Associations (Call_Node, New_List);
2113 end if;
2115 Append (Insert_Param, Parameter_Associations (Call_Node));
2117 else
2118 Insert_After (Prev, Insert_Param);
2119 end if;
2121 -- Case of insertion is not first named actual
2123 else
2124 Set_Next_Named_Actual
2125 (Insert_Param, Next_Named_Actual (Parent (Prev)));
2126 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
2127 Append (Insert_Param, Parameter_Associations (Call_Node));
2128 end if;
2130 Prev := Actual_Expr;
2131 end Add_Actual_Parameter;
2133 ----------------------
2134 -- Add_Extra_Actual --
2135 ----------------------
2137 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
2138 Loc : constant Source_Ptr := Sloc (Expr);
2140 begin
2141 if Extra_Actuals = No_List then
2142 Extra_Actuals := New_List;
2143 Set_Parent (Extra_Actuals, Call_Node);
2144 end if;
2146 Append_To (Extra_Actuals,
2147 Make_Parameter_Association (Loc,
2148 Selector_Name => New_Occurrence_Of (EF, Loc),
2149 Explicit_Actual_Parameter => Expr));
2151 Analyze_And_Resolve (Expr, Etype (EF));
2153 if Nkind (Call_Node) = N_Function_Call then
2154 Set_Is_Accessibility_Actual (Parent (Expr));
2155 end if;
2156 end Add_Extra_Actual;
2158 ---------------------------
2159 -- Inherited_From_Formal --
2160 ---------------------------
2162 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
2163 Par : Entity_Id;
2164 Gen_Par : Entity_Id;
2165 Gen_Prim : Elist_Id;
2166 Elmt : Elmt_Id;
2167 Indic : Node_Id;
2169 begin
2170 -- If the operation is inherited, it is attached to the corresponding
2171 -- type derivation. If the parent in the derivation is a generic
2172 -- actual, it is a subtype of the actual, and we have to recover the
2173 -- original derived type declaration to find the proper parent.
2175 if Nkind (Parent (S)) /= N_Full_Type_Declaration
2176 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2177 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
2178 N_Derived_Type_Definition
2179 or else not In_Instance
2180 then
2181 return Empty;
2183 else
2184 Indic :=
2185 Subtype_Indication
2186 (Type_Definition (Original_Node (Parent (S))));
2188 if Nkind (Indic) = N_Subtype_Indication then
2189 Par := Entity (Subtype_Mark (Indic));
2190 else
2191 Par := Entity (Indic);
2192 end if;
2193 end if;
2195 if not Is_Generic_Actual_Type (Par)
2196 or else Is_Tagged_Type (Par)
2197 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
2198 or else not In_Open_Scopes (Scope (Par))
2199 then
2200 return Empty;
2201 else
2202 Gen_Par := Generic_Parent_Type (Parent (Par));
2203 end if;
2205 -- If the actual has no generic parent type, the formal is not
2206 -- a formal derived type, so nothing to inherit.
2208 if No (Gen_Par) then
2209 return Empty;
2210 end if;
2212 -- If the generic parent type is still the generic type, this is a
2213 -- private formal, not a derived formal, and there are no operations
2214 -- inherited from the formal.
2216 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
2217 return Empty;
2218 end if;
2220 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
2222 Elmt := First_Elmt (Gen_Prim);
2223 while Present (Elmt) loop
2224 if Chars (Node (Elmt)) = Chars (S) then
2225 declare
2226 F1 : Entity_Id;
2227 F2 : Entity_Id;
2229 begin
2230 F1 := First_Formal (S);
2231 F2 := First_Formal (Node (Elmt));
2232 while Present (F1)
2233 and then Present (F2)
2234 loop
2235 if Etype (F1) = Etype (F2)
2236 or else Etype (F2) = Gen_Par
2237 then
2238 Next_Formal (F1);
2239 Next_Formal (F2);
2240 else
2241 Next_Elmt (Elmt);
2242 exit; -- not the right subprogram
2243 end if;
2245 return Node (Elmt);
2246 end loop;
2247 end;
2249 else
2250 Next_Elmt (Elmt);
2251 end if;
2252 end loop;
2254 raise Program_Error;
2255 end Inherited_From_Formal;
2257 --------------------------
2258 -- In_Unfrozen_Instance --
2259 --------------------------
2261 function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
2262 S : Entity_Id;
2264 begin
2265 S := E;
2266 while Present (S) and then S /= Standard_Standard loop
2267 if Is_Generic_Instance (S)
2268 and then Present (Freeze_Node (S))
2269 and then not Analyzed (Freeze_Node (S))
2270 then
2271 return True;
2272 end if;
2274 S := Scope (S);
2275 end loop;
2277 return False;
2278 end In_Unfrozen_Instance;
2280 -------------------------
2281 -- Is_Direct_Deep_Call --
2282 -------------------------
2284 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
2285 begin
2286 if Is_TSS (Subp, TSS_Deep_Adjust)
2287 or else Is_TSS (Subp, TSS_Deep_Finalize)
2288 or else Is_TSS (Subp, TSS_Deep_Initialize)
2289 then
2290 declare
2291 Actual : Node_Id;
2292 Formal : Node_Id;
2294 begin
2295 Actual := First (Parameter_Associations (N));
2296 Formal := First_Formal (Subp);
2297 while Present (Actual)
2298 and then Present (Formal)
2299 loop
2300 if Nkind (Actual) = N_Identifier
2301 and then Is_Controlling_Actual (Actual)
2302 and then Etype (Actual) = Etype (Formal)
2303 then
2304 return True;
2305 end if;
2307 Next (Actual);
2308 Next_Formal (Formal);
2309 end loop;
2310 end;
2311 end if;
2313 return False;
2314 end Is_Direct_Deep_Call;
2316 ---------------
2317 -- New_Value --
2318 ---------------
2320 function New_Value (From : Node_Id) return Node_Id is
2321 Res : constant Node_Id := Duplicate_Subexpr (From);
2322 begin
2323 if Is_Access_Type (Etype (From)) then
2324 return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
2325 else
2326 return Res;
2327 end if;
2328 end New_Value;
2330 -- Local variables
2332 Curr_S : constant Entity_Id := Current_Scope;
2333 Remote : constant Boolean := Is_Remote_Call (Call_Node);
2334 Actual : Node_Id;
2335 Formal : Entity_Id;
2336 Orig_Subp : Entity_Id := Empty;
2337 Param_Count : Natural := 0;
2338 Parent_Formal : Entity_Id;
2339 Parent_Subp : Entity_Id;
2340 Scop : Entity_Id;
2341 Subp : Entity_Id;
2343 Prev_Orig : Node_Id;
2344 -- Original node for an actual, which may have been rewritten. If the
2345 -- actual is a function call that has been transformed from a selected
2346 -- component, the original node is unanalyzed. Otherwise, it carries
2347 -- semantic information used to generate additional actuals.
2349 CW_Interface_Formals_Present : Boolean := False;
2351 -- Start of processing for Expand_Call
2353 begin
2354 -- Expand the procedure call if the first actual has a dimension and if
2355 -- the procedure is Put (Ada 2012).
2357 if Ada_Version >= Ada_2012
2358 and then Nkind (Call_Node) = N_Procedure_Call_Statement
2359 and then Present (Parameter_Associations (Call_Node))
2360 then
2361 Expand_Put_Call_With_Symbol (Call_Node);
2362 end if;
2364 -- Ignore if previous error
2366 if Nkind (Call_Node) in N_Has_Etype
2367 and then Etype (Call_Node) = Any_Type
2368 then
2369 return;
2370 end if;
2372 -- Call using access to subprogram with explicit dereference
2374 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2375 Subp := Etype (Name (Call_Node));
2376 Parent_Subp := Empty;
2378 -- Case of call to simple entry, where the Name is a selected component
2379 -- whose prefix is the task, and whose selector name is the entry name
2381 elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2382 Subp := Entity (Selector_Name (Name (Call_Node)));
2383 Parent_Subp := Empty;
2385 -- Case of call to member of entry family, where Name is an indexed
2386 -- component, with the prefix being a selected component giving the
2387 -- task and entry family name, and the index being the entry index.
2389 elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2390 Subp := Entity (Selector_Name (Prefix (Name (Call_Node))));
2391 Parent_Subp := Empty;
2393 -- Normal case
2395 else
2396 Subp := Entity (Name (Call_Node));
2397 Parent_Subp := Alias (Subp);
2399 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2400 -- if we can tell that the first parameter cannot possibly be null.
2401 -- This improves efficiency by avoiding a run-time test.
2403 -- We do not do this if Raise_Exception_Always does not exist, which
2404 -- can happen in configurable run time profiles which provide only a
2405 -- Raise_Exception.
2407 if Is_RTE (Subp, RE_Raise_Exception)
2408 and then RTE_Available (RE_Raise_Exception_Always)
2409 then
2410 declare
2411 FA : constant Node_Id :=
2412 Original_Node (First_Actual (Call_Node));
2414 begin
2415 -- The case we catch is where the first argument is obtained
2416 -- using the Identity attribute (which must always be
2417 -- non-null).
2419 if Nkind (FA) = N_Attribute_Reference
2420 and then Attribute_Name (FA) = Name_Identity
2421 then
2422 Subp := RTE (RE_Raise_Exception_Always);
2423 Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
2424 end if;
2425 end;
2426 end if;
2428 if Ekind (Subp) = E_Entry then
2429 Parent_Subp := Empty;
2430 end if;
2431 end if;
2433 -- Detect the following code in System.Finalization_Masters only on
2434 -- .NET/JVM targets:
2436 -- procedure Finalize (Master : in out Finalization_Master) is
2437 -- begin
2438 -- . . .
2439 -- begin
2440 -- Finalize (Curr_Ptr.all);
2442 -- Since .NET/JVM compilers lack address arithmetic and Deep_Finalize
2443 -- cannot be named in library or user code, the compiler has to deal
2444 -- with this by transforming the call to Finalize into Deep_Finalize.
2446 if VM_Target /= No_VM
2447 and then Chars (Subp) = Name_Finalize
2448 and then Ekind (Curr_S) = E_Block
2449 and then Ekind (Scope (Curr_S)) = E_Procedure
2450 and then Chars (Scope (Curr_S)) = Name_Finalize
2451 and then Etype (First_Formal (Scope (Curr_S))) =
2452 RTE (RE_Finalization_Master)
2453 then
2454 declare
2455 Deep_Fin : constant Entity_Id :=
2456 Find_Prim_Op (RTE (RE_Root_Controlled),
2457 TSS_Deep_Finalize);
2458 begin
2459 -- Since Root_Controlled is a tagged type, the compiler should
2460 -- always generate Deep_Finalize for it.
2462 pragma Assert (Present (Deep_Fin));
2464 -- Generate:
2465 -- Deep_Finalize (Curr_Ptr.all);
2467 Rewrite (N,
2468 Make_Procedure_Call_Statement (Loc,
2469 Name =>
2470 New_Occurrence_Of (Deep_Fin, Loc),
2471 Parameter_Associations =>
2472 New_Copy_List_Tree (Parameter_Associations (N))));
2474 Analyze (N);
2475 return;
2476 end;
2477 end if;
2479 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2480 -- alternative in an asynchronous select or as an entry call in
2481 -- a conditional or timed select. Check whether the procedure call
2482 -- is a renaming of an entry and rewrite it as an entry call.
2484 if Ada_Version >= Ada_2005
2485 and then Nkind (Call_Node) = N_Procedure_Call_Statement
2486 and then
2487 ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
2488 and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
2489 or else
2490 (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
2491 and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
2492 then
2493 declare
2494 Ren_Decl : Node_Id;
2495 Ren_Root : Entity_Id := Subp;
2497 begin
2498 -- This may be a chain of renamings, find the root
2500 if Present (Alias (Ren_Root)) then
2501 Ren_Root := Alias (Ren_Root);
2502 end if;
2504 if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2505 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2507 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
2508 Rewrite (Call_Node,
2509 Make_Entry_Call_Statement (Loc,
2510 Name =>
2511 New_Copy_Tree (Name (Ren_Decl)),
2512 Parameter_Associations =>
2513 New_Copy_List_Tree
2514 (Parameter_Associations (Call_Node))));
2516 return;
2517 end if;
2518 end if;
2519 end;
2520 end if;
2522 -- First step, compute extra actuals, corresponding to any Extra_Formals
2523 -- present. Note that we do not access Extra_Formals directly, instead
2524 -- we simply note the presence of the extra formals as we process the
2525 -- regular formals collecting corresponding actuals in Extra_Actuals.
2527 -- We also generate any required range checks for actuals for in formals
2528 -- as we go through the loop, since this is a convenient place to do it.
2529 -- (Though it seems that this would be better done in Expand_Actuals???)
2531 -- Special case: Thunks must not compute the extra actuals; they must
2532 -- just propagate to the target primitive their extra actuals.
2534 if Is_Thunk (Current_Scope)
2535 and then Thunk_Entity (Current_Scope) = Subp
2536 and then Present (Extra_Formals (Subp))
2537 then
2538 pragma Assert (Present (Extra_Formals (Current_Scope)));
2540 declare
2541 Target_Formal : Entity_Id;
2542 Thunk_Formal : Entity_Id;
2544 begin
2545 Target_Formal := Extra_Formals (Subp);
2546 Thunk_Formal := Extra_Formals (Current_Scope);
2547 while Present (Target_Formal) loop
2548 Add_Extra_Actual
2549 (New_Occurrence_Of (Thunk_Formal, Loc), Thunk_Formal);
2551 Target_Formal := Extra_Formal (Target_Formal);
2552 Thunk_Formal := Extra_Formal (Thunk_Formal);
2553 end loop;
2555 while Is_Non_Empty_List (Extra_Actuals) loop
2556 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2557 end loop;
2559 Expand_Actuals (Call_Node, Subp);
2560 return;
2561 end;
2562 end if;
2564 Formal := First_Formal (Subp);
2565 Actual := First_Actual (Call_Node);
2566 Param_Count := 1;
2567 while Present (Formal) loop
2569 -- Generate range check if required
2571 if Do_Range_Check (Actual)
2572 and then Ekind (Formal) = E_In_Parameter
2573 then
2574 Generate_Range_Check
2575 (Actual, Etype (Formal), CE_Range_Check_Failed);
2576 end if;
2578 -- Prepare to examine current entry
2580 Prev := Actual;
2581 Prev_Orig := Original_Node (Prev);
2583 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2584 -- to expand it in a further round.
2586 CW_Interface_Formals_Present :=
2587 CW_Interface_Formals_Present
2588 or else
2589 (Ekind (Etype (Formal)) = E_Class_Wide_Type
2590 and then Is_Interface (Etype (Etype (Formal))))
2591 or else
2592 (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2593 and then Is_Interface (Directly_Designated_Type
2594 (Etype (Etype (Formal)))));
2596 -- Create possible extra actual for constrained case. Usually, the
2597 -- extra actual is of the form actual'constrained, but since this
2598 -- attribute is only available for unconstrained records, TRUE is
2599 -- expanded if the type of the formal happens to be constrained (for
2600 -- instance when this procedure is inherited from an unconstrained
2601 -- record to a constrained one) or if the actual has no discriminant
2602 -- (its type is constrained). An exception to this is the case of a
2603 -- private type without discriminants. In this case we pass FALSE
2604 -- because the object has underlying discriminants with defaults.
2606 if Present (Extra_Constrained (Formal)) then
2607 if Ekind (Etype (Prev)) in Private_Kind
2608 and then not Has_Discriminants (Base_Type (Etype (Prev)))
2609 then
2610 Add_Extra_Actual
2611 (New_Occurrence_Of (Standard_False, Loc),
2612 Extra_Constrained (Formal));
2614 elsif Is_Constrained (Etype (Formal))
2615 or else not Has_Discriminants (Etype (Prev))
2616 then
2617 Add_Extra_Actual
2618 (New_Occurrence_Of (Standard_True, Loc),
2619 Extra_Constrained (Formal));
2621 -- Do not produce extra actuals for Unchecked_Union parameters.
2622 -- Jump directly to the end of the loop.
2624 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2625 goto Skip_Extra_Actual_Generation;
2627 else
2628 -- If the actual is a type conversion, then the constrained
2629 -- test applies to the actual, not the target type.
2631 declare
2632 Act_Prev : Node_Id;
2634 begin
2635 -- Test for unchecked conversions as well, which can occur
2636 -- as out parameter actuals on calls to stream procedures.
2638 Act_Prev := Prev;
2639 while Nkind_In (Act_Prev, N_Type_Conversion,
2640 N_Unchecked_Type_Conversion)
2641 loop
2642 Act_Prev := Expression (Act_Prev);
2643 end loop;
2645 -- If the expression is a conversion of a dereference, this
2646 -- is internally generated code that manipulates addresses,
2647 -- e.g. when building interface tables. No check should
2648 -- occur in this case, and the discriminated object is not
2649 -- directly a hand.
2651 if not Comes_From_Source (Actual)
2652 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2653 and then Nkind (Act_Prev) = N_Explicit_Dereference
2654 then
2655 Add_Extra_Actual
2656 (New_Occurrence_Of (Standard_False, Loc),
2657 Extra_Constrained (Formal));
2659 else
2660 Add_Extra_Actual
2661 (Make_Attribute_Reference (Sloc (Prev),
2662 Prefix =>
2663 Duplicate_Subexpr_No_Checks
2664 (Act_Prev, Name_Req => True),
2665 Attribute_Name => Name_Constrained),
2666 Extra_Constrained (Formal));
2667 end if;
2668 end;
2669 end if;
2670 end if;
2672 -- Create possible extra actual for accessibility level
2674 if Present (Extra_Accessibility (Formal)) then
2676 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2677 -- attribute, then the original actual may be an aliased object
2678 -- occurring as the prefix in a call using "Object.Operation"
2679 -- notation. In that case we must pass the level of the object,
2680 -- so Prev_Orig is reset to Prev and the attribute will be
2681 -- processed by the code for Access attributes further below.
2683 if Prev_Orig /= Prev
2684 and then Nkind (Prev) = N_Attribute_Reference
2685 and then
2686 Get_Attribute_Id (Attribute_Name (Prev)) = Attribute_Access
2687 and then Is_Aliased_View (Prev_Orig)
2688 then
2689 Prev_Orig := Prev;
2690 end if;
2692 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
2693 -- accessibility levels.
2695 if Is_Thunk (Current_Scope) then
2696 declare
2697 Parm_Ent : Entity_Id;
2699 begin
2700 if Is_Controlling_Actual (Actual) then
2702 -- Find the corresponding actual of the thunk
2704 Parm_Ent := First_Entity (Current_Scope);
2705 for J in 2 .. Param_Count loop
2706 Next_Entity (Parm_Ent);
2707 end loop;
2709 -- Handle unchecked conversion of access types generated
2710 -- in thunks (cf. Expand_Interface_Thunk).
2712 elsif Is_Access_Type (Etype (Actual))
2713 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2714 then
2715 Parm_Ent := Entity (Expression (Actual));
2717 else pragma Assert (Is_Entity_Name (Actual));
2718 Parm_Ent := Entity (Actual);
2719 end if;
2721 Add_Extra_Actual
2722 (New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
2723 Extra_Accessibility (Formal));
2724 end;
2726 elsif Is_Entity_Name (Prev_Orig) then
2728 -- When passing an access parameter, or a renaming of an access
2729 -- parameter, as the actual to another access parameter we need
2730 -- to pass along the actual's own access level parameter. This
2731 -- is done if we are within the scope of the formal access
2732 -- parameter (if this is an inlined body the extra formal is
2733 -- irrelevant).
2735 if (Is_Formal (Entity (Prev_Orig))
2736 or else
2737 (Present (Renamed_Object (Entity (Prev_Orig)))
2738 and then
2739 Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
2740 and then
2741 Is_Formal
2742 (Entity (Renamed_Object (Entity (Prev_Orig))))))
2743 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
2744 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
2745 then
2746 declare
2747 Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
2749 begin
2750 pragma Assert (Present (Parm_Ent));
2752 if Present (Extra_Accessibility (Parm_Ent)) then
2753 Add_Extra_Actual
2754 (New_Occurrence_Of
2755 (Extra_Accessibility (Parm_Ent), Loc),
2756 Extra_Accessibility (Formal));
2758 -- If the actual access parameter does not have an
2759 -- associated extra formal providing its scope level,
2760 -- then treat the actual as having library-level
2761 -- accessibility.
2763 else
2764 Add_Extra_Actual
2765 (Make_Integer_Literal (Loc,
2766 Intval => Scope_Depth (Standard_Standard)),
2767 Extra_Accessibility (Formal));
2768 end if;
2769 end;
2771 -- The actual is a normal access value, so just pass the level
2772 -- of the actual's access type.
2774 else
2775 Add_Extra_Actual
2776 (Dynamic_Accessibility_Level (Prev_Orig),
2777 Extra_Accessibility (Formal));
2778 end if;
2780 -- If the actual is an access discriminant, then pass the level
2781 -- of the enclosing object (RM05-3.10.2(12.4/2)).
2783 elsif Nkind (Prev_Orig) = N_Selected_Component
2784 and then Ekind (Entity (Selector_Name (Prev_Orig))) =
2785 E_Discriminant
2786 and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
2787 E_Anonymous_Access_Type
2788 then
2789 Add_Extra_Actual
2790 (Make_Integer_Literal (Loc,
2791 Intval => Object_Access_Level (Prefix (Prev_Orig))),
2792 Extra_Accessibility (Formal));
2794 -- All other cases
2796 else
2797 case Nkind (Prev_Orig) is
2799 when N_Attribute_Reference =>
2800 case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
2802 -- For X'Access, pass on the level of the prefix X
2804 when Attribute_Access =>
2806 -- If this is an Access attribute applied to the
2807 -- the current instance object passed to a type
2808 -- initialization procedure, then use the level
2809 -- of the type itself. This is not really correct,
2810 -- as there should be an extra level parameter
2811 -- passed in with _init formals (only in the case
2812 -- where the type is immutably limited), but we
2813 -- don't have an easy way currently to create such
2814 -- an extra formal (init procs aren't ever frozen).
2815 -- For now we just use the level of the type,
2816 -- which may be too shallow, but that works better
2817 -- than passing Object_Access_Level of the type,
2818 -- which can be one level too deep in some cases.
2819 -- ???
2821 if Is_Entity_Name (Prefix (Prev_Orig))
2822 and then Is_Type (Entity (Prefix (Prev_Orig)))
2823 then
2824 Add_Extra_Actual
2825 (Make_Integer_Literal (Loc,
2826 Intval =>
2827 Type_Access_Level
2828 (Entity (Prefix (Prev_Orig)))),
2829 Extra_Accessibility (Formal));
2831 else
2832 Add_Extra_Actual
2833 (Make_Integer_Literal (Loc,
2834 Intval =>
2835 Object_Access_Level
2836 (Prefix (Prev_Orig))),
2837 Extra_Accessibility (Formal));
2838 end if;
2840 -- Treat the unchecked attributes as library-level
2842 when Attribute_Unchecked_Access |
2843 Attribute_Unrestricted_Access =>
2844 Add_Extra_Actual
2845 (Make_Integer_Literal (Loc,
2846 Intval => Scope_Depth (Standard_Standard)),
2847 Extra_Accessibility (Formal));
2849 -- No other cases of attributes returning access
2850 -- values that can be passed to access parameters.
2852 when others =>
2853 raise Program_Error;
2855 end case;
2857 -- For allocators we pass the level of the execution of the
2858 -- called subprogram, which is one greater than the current
2859 -- scope level.
2861 when N_Allocator =>
2862 Add_Extra_Actual
2863 (Make_Integer_Literal (Loc,
2864 Intval => Scope_Depth (Current_Scope) + 1),
2865 Extra_Accessibility (Formal));
2867 -- For most other cases we simply pass the level of the
2868 -- actual's access type. The type is retrieved from
2869 -- Prev rather than Prev_Orig, because in some cases
2870 -- Prev_Orig denotes an original expression that has
2871 -- not been analyzed.
2873 when others =>
2874 Add_Extra_Actual
2875 (Dynamic_Accessibility_Level (Prev),
2876 Extra_Accessibility (Formal));
2877 end case;
2878 end if;
2879 end if;
2881 -- Perform the check of 4.6(49) that prevents a null value from being
2882 -- passed as an actual to an access parameter. Note that the check
2883 -- is elided in the common cases of passing an access attribute or
2884 -- access parameter as an actual. Also, we currently don't enforce
2885 -- this check for expander-generated actuals and when -gnatdj is set.
2887 if Ada_Version >= Ada_2005 then
2889 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
2890 -- the intent of 6.4.1(13) is that null-exclusion checks should
2891 -- not be done for 'out' parameters, even though it refers only
2892 -- to constraint checks, and a null_exclusion is not a constraint.
2893 -- Note that AI05-0196-1 corrects this mistake in the RM.
2895 if Is_Access_Type (Etype (Formal))
2896 and then Can_Never_Be_Null (Etype (Formal))
2897 and then Ekind (Formal) /= E_Out_Parameter
2898 and then Nkind (Prev) /= N_Raise_Constraint_Error
2899 and then (Known_Null (Prev)
2900 or else not Can_Never_Be_Null (Etype (Prev)))
2901 then
2902 Install_Null_Excluding_Check (Prev);
2903 end if;
2905 -- Ada_Version < Ada_2005
2907 else
2908 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
2909 or else Access_Checks_Suppressed (Subp)
2910 then
2911 null;
2913 elsif Debug_Flag_J then
2914 null;
2916 elsif not Comes_From_Source (Prev) then
2917 null;
2919 elsif Is_Entity_Name (Prev)
2920 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
2921 then
2922 null;
2924 elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
2925 null;
2927 -- Suppress null checks when passing to access parameters of Java
2928 -- and CIL subprograms. (Should this be done for other foreign
2929 -- conventions as well ???)
2931 elsif Convention (Subp) = Convention_Java
2932 or else Convention (Subp) = Convention_CIL
2933 then
2934 null;
2936 else
2937 Install_Null_Excluding_Check (Prev);
2938 end if;
2939 end if;
2941 -- Perform appropriate validity checks on parameters that
2942 -- are entities.
2944 if Validity_Checks_On then
2945 if (Ekind (Formal) = E_In_Parameter
2946 and then Validity_Check_In_Params)
2947 or else
2948 (Ekind (Formal) = E_In_Out_Parameter
2949 and then Validity_Check_In_Out_Params)
2950 then
2951 -- If the actual is an indexed component of a packed type (or
2952 -- is an indexed or selected component whose prefix recursively
2953 -- meets this condition), it has not been expanded yet. It will
2954 -- be copied in the validity code that follows, and has to be
2955 -- expanded appropriately, so reanalyze it.
2957 -- What we do is just to unset analyzed bits on prefixes till
2958 -- we reach something that does not have a prefix.
2960 declare
2961 Nod : Node_Id;
2963 begin
2964 Nod := Actual;
2965 while Nkind_In (Nod, N_Indexed_Component,
2966 N_Selected_Component)
2967 loop
2968 Set_Analyzed (Nod, False);
2969 Nod := Prefix (Nod);
2970 end loop;
2971 end;
2973 Ensure_Valid (Actual);
2974 end if;
2975 end if;
2977 -- For IN OUT and OUT parameters, ensure that subscripts are valid
2978 -- since this is a left side reference. We only do this for calls
2979 -- from the source program since we assume that compiler generated
2980 -- calls explicitly generate any required checks. We also need it
2981 -- only if we are doing standard validity checks, since clearly it is
2982 -- not needed if validity checks are off, and in subscript validity
2983 -- checking mode, all indexed components are checked with a call
2984 -- directly from Expand_N_Indexed_Component.
2986 if Comes_From_Source (Call_Node)
2987 and then Ekind (Formal) /= E_In_Parameter
2988 and then Validity_Checks_On
2989 and then Validity_Check_Default
2990 and then not Validity_Check_Subscripts
2991 then
2992 Check_Valid_Lvalue_Subscripts (Actual);
2993 end if;
2995 -- Mark any scalar OUT parameter that is a simple variable as no
2996 -- longer known to be valid (unless the type is always valid). This
2997 -- reflects the fact that if an OUT parameter is never set in a
2998 -- procedure, then it can become invalid on the procedure return.
3000 if Ekind (Formal) = E_Out_Parameter
3001 and then Is_Entity_Name (Actual)
3002 and then Ekind (Entity (Actual)) = E_Variable
3003 and then not Is_Known_Valid (Etype (Actual))
3004 then
3005 Set_Is_Known_Valid (Entity (Actual), False);
3006 end if;
3008 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3009 -- clear current values, since they can be clobbered. We are probably
3010 -- doing this in more places than we need to, but better safe than
3011 -- sorry when it comes to retaining bad current values.
3013 if Ekind (Formal) /= E_In_Parameter
3014 and then Is_Entity_Name (Actual)
3015 and then Present (Entity (Actual))
3016 then
3017 declare
3018 Ent : constant Entity_Id := Entity (Actual);
3019 Sav : Node_Id;
3021 begin
3022 -- For an OUT or IN OUT parameter that is an assignable entity,
3023 -- we do not want to clobber the Last_Assignment field, since
3024 -- if it is set, it was precisely because it is indeed an OUT
3025 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
3026 -- since the subprogram could have returned in invalid value.
3028 if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
3029 and then Is_Assignable (Ent)
3030 then
3031 Sav := Last_Assignment (Ent);
3032 Kill_Current_Values (Ent);
3033 Set_Last_Assignment (Ent, Sav);
3034 Set_Is_Known_Valid (Ent, False);
3036 -- For all other cases, just kill the current values
3038 else
3039 Kill_Current_Values (Ent);
3040 end if;
3041 end;
3042 end if;
3044 -- If the formal is class wide and the actual is an aggregate, force
3045 -- evaluation so that the back end who does not know about class-wide
3046 -- type, does not generate a temporary of the wrong size.
3048 if not Is_Class_Wide_Type (Etype (Formal)) then
3049 null;
3051 elsif Nkind (Actual) = N_Aggregate
3052 or else (Nkind (Actual) = N_Qualified_Expression
3053 and then Nkind (Expression (Actual)) = N_Aggregate)
3054 then
3055 Force_Evaluation (Actual);
3056 end if;
3058 -- In a remote call, if the formal is of a class-wide type, check
3059 -- that the actual meets the requirements described in E.4(18).
3061 if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
3062 Insert_Action (Actual,
3063 Make_Transportable_Check (Loc,
3064 Duplicate_Subexpr_Move_Checks (Actual)));
3065 end if;
3067 -- This label is required when skipping extra actual generation for
3068 -- Unchecked_Union parameters.
3070 <<Skip_Extra_Actual_Generation>>
3072 Param_Count := Param_Count + 1;
3073 Next_Actual (Actual);
3074 Next_Formal (Formal);
3075 end loop;
3077 -- If we are calling an Ada 2012 function which needs to have the
3078 -- "accessibility level determined by the point of call" (AI05-0234)
3079 -- passed in to it, then pass it in.
3081 if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
3082 and then
3083 Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
3084 then
3085 declare
3086 Ancestor : Node_Id := Parent (Call_Node);
3087 Level : Node_Id := Empty;
3088 Defer : Boolean := False;
3090 begin
3091 -- Unimplemented: if Subp returns an anonymous access type, then
3093 -- a) if the call is the operand of an explict conversion, then
3094 -- the target type of the conversion (a named access type)
3095 -- determines the accessibility level pass in;
3097 -- b) if the call defines an access discriminant of an object
3098 -- (e.g., the discriminant of an object being created by an
3099 -- allocator, or the discriminant of a function result),
3100 -- then the accessibility level to pass in is that of the
3101 -- discriminated object being initialized).
3103 -- ???
3105 while Nkind (Ancestor) = N_Qualified_Expression
3106 loop
3107 Ancestor := Parent (Ancestor);
3108 end loop;
3110 case Nkind (Ancestor) is
3111 when N_Allocator =>
3113 -- At this point, we'd like to assign
3115 -- Level := Dynamic_Accessibility_Level (Ancestor);
3117 -- but Etype of Ancestor may not have been set yet,
3118 -- so that doesn't work.
3120 -- Handle this later in Expand_Allocator_Expression.
3122 Defer := True;
3124 when N_Object_Declaration | N_Object_Renaming_Declaration =>
3125 declare
3126 Def_Id : constant Entity_Id :=
3127 Defining_Identifier (Ancestor);
3129 begin
3130 if Is_Return_Object (Def_Id) then
3131 if Present (Extra_Accessibility_Of_Result
3132 (Return_Applies_To (Scope (Def_Id))))
3133 then
3134 -- Pass along value that was passed in if the
3135 -- routine we are returning from also has an
3136 -- Accessibility_Of_Result formal.
3138 Level :=
3139 New_Occurrence_Of
3140 (Extra_Accessibility_Of_Result
3141 (Return_Applies_To (Scope (Def_Id))), Loc);
3142 end if;
3143 else
3144 Level :=
3145 Make_Integer_Literal (Loc,
3146 Intval => Object_Access_Level (Def_Id));
3147 end if;
3148 end;
3150 when N_Simple_Return_Statement =>
3151 if Present (Extra_Accessibility_Of_Result
3152 (Return_Applies_To
3153 (Return_Statement_Entity (Ancestor))))
3154 then
3155 -- Pass along value that was passed in if the returned
3156 -- routine also has an Accessibility_Of_Result formal.
3158 Level :=
3159 New_Occurrence_Of
3160 (Extra_Accessibility_Of_Result
3161 (Return_Applies_To
3162 (Return_Statement_Entity (Ancestor))), Loc);
3163 end if;
3165 when others =>
3166 null;
3167 end case;
3169 if not Defer then
3170 if not Present (Level) then
3172 -- The "innermost master that evaluates the function call".
3174 -- ??? - Should we use Integer'Last here instead in order
3175 -- to deal with (some of) the problems associated with
3176 -- calls to subps whose enclosing scope is unknown (e.g.,
3177 -- Anon_Access_To_Subp_Param.all)?
3179 Level := Make_Integer_Literal (Loc,
3180 Scope_Depth (Current_Scope) + 1);
3181 end if;
3183 Add_Extra_Actual
3184 (Level,
3185 Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
3186 end if;
3187 end;
3188 end if;
3190 -- If we are expanding the RHS of an assignment we need to check if tag
3191 -- propagation is needed. You might expect this processing to be in
3192 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3193 -- assignment might be transformed to a declaration for an unconstrained
3194 -- value if the expression is classwide.
3196 if Nkind (Call_Node) = N_Function_Call
3197 and then Is_Tag_Indeterminate (Call_Node)
3198 and then Is_Entity_Name (Name (Call_Node))
3199 then
3200 declare
3201 Ass : Node_Id := Empty;
3203 begin
3204 if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
3205 Ass := Parent (Call_Node);
3207 elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3208 and then Nkind (Parent (Parent (Call_Node))) =
3209 N_Assignment_Statement
3210 then
3211 Ass := Parent (Parent (Call_Node));
3213 elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3214 and then Nkind (Parent (Parent (Call_Node))) =
3215 N_Assignment_Statement
3216 then
3217 Ass := Parent (Parent (Call_Node));
3218 end if;
3220 if Present (Ass)
3221 and then Is_Class_Wide_Type (Etype (Name (Ass)))
3222 then
3223 if Is_Access_Type (Etype (Call_Node)) then
3224 if Designated_Type (Etype (Call_Node)) /=
3225 Root_Type (Etype (Name (Ass)))
3226 then
3227 Error_Msg_NE
3228 ("tag-indeterminate expression "
3229 & " must have designated type& (RM 5.2 (6))",
3230 Call_Node, Root_Type (Etype (Name (Ass))));
3231 else
3232 Propagate_Tag (Name (Ass), Call_Node);
3233 end if;
3235 elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
3236 Error_Msg_NE
3237 ("tag-indeterminate expression must have type&"
3238 & "(RM 5.2 (6))",
3239 Call_Node, Root_Type (Etype (Name (Ass))));
3241 else
3242 Propagate_Tag (Name (Ass), Call_Node);
3243 end if;
3245 -- The call will be rewritten as a dispatching call, and
3246 -- expanded as such.
3248 return;
3249 end if;
3250 end;
3251 end if;
3253 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3254 -- it to point to the correct secondary virtual table
3256 if Nkind (Call_Node) in N_Subprogram_Call
3257 and then CW_Interface_Formals_Present
3258 then
3259 Expand_Interface_Actuals (Call_Node);
3260 end if;
3262 -- Deals with Dispatch_Call if we still have a call, before expanding
3263 -- extra actuals since this will be done on the re-analysis of the
3264 -- dispatching call. Note that we do not try to shorten the actual list
3265 -- for a dispatching call, it would not make sense to do so. Expansion
3266 -- of dispatching calls is suppressed when VM_Target, because the VM
3267 -- back-ends directly handle the generation of dispatching calls and
3268 -- would have to undo any expansion to an indirect call.
3270 if Nkind (Call_Node) in N_Subprogram_Call
3271 and then Present (Controlling_Argument (Call_Node))
3272 then
3273 declare
3274 Call_Typ : constant Entity_Id := Etype (Call_Node);
3275 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
3276 Eq_Prim_Op : Entity_Id := Empty;
3277 New_Call : Node_Id;
3278 Param : Node_Id;
3279 Prev_Call : Node_Id;
3281 begin
3282 if not Is_Limited_Type (Typ) then
3283 Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
3284 end if;
3286 if Tagged_Type_Expansion then
3287 Expand_Dispatching_Call (Call_Node);
3289 -- The following return is worrisome. Is it really OK to skip
3290 -- all remaining processing in this procedure ???
3292 return;
3294 -- VM targets
3296 else
3297 Apply_Tag_Checks (Call_Node);
3299 -- If this is a dispatching "=", we must first compare the
3300 -- tags so we generate: x.tag = y.tag and then x = y
3302 if Subp = Eq_Prim_Op then
3304 -- Mark the node as analyzed to avoid reanalizing this
3305 -- dispatching call (which would cause a never-ending loop)
3307 Prev_Call := Relocate_Node (Call_Node);
3308 Set_Analyzed (Prev_Call);
3310 Param := First_Actual (Call_Node);
3311 New_Call :=
3312 Make_And_Then (Loc,
3313 Left_Opnd =>
3314 Make_Op_Eq (Loc,
3315 Left_Opnd =>
3316 Make_Selected_Component (Loc,
3317 Prefix => New_Value (Param),
3318 Selector_Name =>
3319 New_Occurrence_Of
3320 (First_Tag_Component (Typ), Loc)),
3322 Right_Opnd =>
3323 Make_Selected_Component (Loc,
3324 Prefix =>
3325 Unchecked_Convert_To (Typ,
3326 New_Value (Next_Actual (Param))),
3327 Selector_Name =>
3328 New_Occurrence_Of
3329 (First_Tag_Component (Typ), Loc))),
3330 Right_Opnd => Prev_Call);
3332 Rewrite (Call_Node, New_Call);
3334 Analyze_And_Resolve
3335 (Call_Node, Call_Typ, Suppress => All_Checks);
3336 end if;
3338 -- Expansion of a dispatching call results in an indirect call,
3339 -- which in turn causes current values to be killed (see
3340 -- Resolve_Call), so on VM targets we do the call here to
3341 -- ensure consistent warnings between VM and non-VM targets.
3343 Kill_Current_Values;
3344 end if;
3346 -- If this is a dispatching "=" then we must update the reference
3347 -- to the call node because we generated:
3348 -- x.tag = y.tag and then x = y
3350 if Subp = Eq_Prim_Op then
3351 Call_Node := Right_Opnd (Call_Node);
3352 end if;
3353 end;
3354 end if;
3356 -- Similarly, expand calls to RCI subprograms on which pragma
3357 -- All_Calls_Remote applies. The rewriting will be reanalyzed
3358 -- later. Do this only when the call comes from source since we
3359 -- do not want such a rewriting to occur in expanded code.
3361 if Is_All_Remote_Call (Call_Node) then
3362 Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
3364 -- Similarly, do not add extra actuals for an entry call whose entity
3365 -- is a protected procedure, or for an internal protected subprogram
3366 -- call, because it will be rewritten as a protected subprogram call
3367 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3369 elsif Is_Protected_Type (Scope (Subp))
3370 and then (Ekind (Subp) = E_Procedure
3371 or else Ekind (Subp) = E_Function)
3372 then
3373 null;
3375 -- During that loop we gathered the extra actuals (the ones that
3376 -- correspond to Extra_Formals), so now they can be appended.
3378 else
3379 while Is_Non_Empty_List (Extra_Actuals) loop
3380 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
3381 end loop;
3382 end if;
3384 -- At this point we have all the actuals, so this is the point at which
3385 -- the various expansion activities for actuals is carried out.
3387 Expand_Actuals (Call_Node, Subp);
3389 -- Verify that the actuals do not share storage. This check must be done
3390 -- on the caller side rather that inside the subprogram to avoid issues
3391 -- of parameter passing.
3393 if Check_Aliasing_Of_Parameters then
3394 Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
3395 end if;
3397 -- If the subprogram is a renaming, or if it is inherited, replace it in
3398 -- the call with the name of the actual subprogram being called. If this
3399 -- is a dispatching call, the run-time decides what to call. The Alias
3400 -- attribute does not apply to entries.
3402 if Nkind (Call_Node) /= N_Entry_Call_Statement
3403 and then No (Controlling_Argument (Call_Node))
3404 and then Present (Parent_Subp)
3405 and then not Is_Direct_Deep_Call (Subp)
3406 then
3407 if Present (Inherited_From_Formal (Subp)) then
3408 Parent_Subp := Inherited_From_Formal (Subp);
3409 else
3410 Parent_Subp := Ultimate_Alias (Parent_Subp);
3411 end if;
3413 -- The below setting of Entity is suspect, see F109-018 discussion???
3415 Set_Entity (Name (Call_Node), Parent_Subp);
3417 if Is_Abstract_Subprogram (Parent_Subp)
3418 and then not In_Instance
3419 then
3420 Error_Msg_NE
3421 ("cannot call abstract subprogram &!",
3422 Name (Call_Node), Parent_Subp);
3423 end if;
3425 -- Inspect all formals of derived subprogram Subp. Compare parameter
3426 -- types with the parent subprogram and check whether an actual may
3427 -- need a type conversion to the corresponding formal of the parent
3428 -- subprogram.
3430 -- Not clear whether intrinsic subprograms need such conversions. ???
3432 if not Is_Intrinsic_Subprogram (Parent_Subp)
3433 or else Is_Generic_Instance (Parent_Subp)
3434 then
3435 declare
3436 procedure Convert (Act : Node_Id; Typ : Entity_Id);
3437 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3438 -- and resolve the newly generated construct.
3440 -------------
3441 -- Convert --
3442 -------------
3444 procedure Convert (Act : Node_Id; Typ : Entity_Id) is
3445 begin
3446 Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
3447 Analyze (Act);
3448 Resolve (Act, Typ);
3449 end Convert;
3451 -- Local variables
3453 Actual_Typ : Entity_Id;
3454 Formal_Typ : Entity_Id;
3455 Parent_Typ : Entity_Id;
3457 begin
3458 Actual := First_Actual (Call_Node);
3459 Formal := First_Formal (Subp);
3460 Parent_Formal := First_Formal (Parent_Subp);
3461 while Present (Formal) loop
3462 Actual_Typ := Etype (Actual);
3463 Formal_Typ := Etype (Formal);
3464 Parent_Typ := Etype (Parent_Formal);
3466 -- For an IN parameter of a scalar type, the parent formal
3467 -- type and derived formal type differ or the parent formal
3468 -- type and actual type do not match statically.
3470 if Is_Scalar_Type (Formal_Typ)
3471 and then Ekind (Formal) = E_In_Parameter
3472 and then Formal_Typ /= Parent_Typ
3473 and then
3474 not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
3475 and then not Raises_Constraint_Error (Actual)
3476 then
3477 Convert (Actual, Parent_Typ);
3478 Enable_Range_Check (Actual);
3480 -- If the actual has been marked as requiring a range
3481 -- check, then generate it here.
3483 if Do_Range_Check (Actual) then
3484 Generate_Range_Check
3485 (Actual, Etype (Formal), CE_Range_Check_Failed);
3486 end if;
3488 -- For access types, the parent formal type and actual type
3489 -- differ.
3491 elsif Is_Access_Type (Formal_Typ)
3492 and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
3493 then
3494 if Ekind (Formal) /= E_In_Parameter then
3495 Convert (Actual, Parent_Typ);
3497 elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
3498 and then Designated_Type (Parent_Typ) /=
3499 Designated_Type (Actual_Typ)
3500 and then not Is_Controlling_Formal (Formal)
3501 then
3502 -- This unchecked conversion is not necessary unless
3503 -- inlining is enabled, because in that case the type
3504 -- mismatch may become visible in the body about to be
3505 -- inlined.
3507 Rewrite (Actual,
3508 Unchecked_Convert_To (Parent_Typ,
3509 Relocate_Node (Actual)));
3510 Analyze (Actual);
3511 Resolve (Actual, Parent_Typ);
3512 end if;
3514 -- If there is a change of representation, then generate a
3515 -- warning, and do the change of representation.
3517 elsif not Same_Representation (Formal_Typ, Parent_Typ) then
3518 Error_Msg_N
3519 ("??change of representation required", Actual);
3520 Convert (Actual, Parent_Typ);
3522 -- For array and record types, the parent formal type and
3523 -- derived formal type have different sizes or pragma Pack
3524 -- status.
3526 elsif ((Is_Array_Type (Formal_Typ)
3527 and then Is_Array_Type (Parent_Typ))
3528 or else
3529 (Is_Record_Type (Formal_Typ)
3530 and then Is_Record_Type (Parent_Typ)))
3531 and then
3532 (Esize (Formal_Typ) /= Esize (Parent_Typ)
3533 or else Has_Pragma_Pack (Formal_Typ) /=
3534 Has_Pragma_Pack (Parent_Typ))
3535 then
3536 Convert (Actual, Parent_Typ);
3537 end if;
3539 Next_Actual (Actual);
3540 Next_Formal (Formal);
3541 Next_Formal (Parent_Formal);
3542 end loop;
3543 end;
3544 end if;
3546 Orig_Subp := Subp;
3547 Subp := Parent_Subp;
3548 end if;
3550 -- Deal with case where call is an explicit dereference
3552 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
3554 -- Handle case of access to protected subprogram type
3556 if Is_Access_Protected_Subprogram_Type
3557 (Base_Type (Etype (Prefix (Name (Call_Node)))))
3558 then
3559 -- If this is a call through an access to protected operation, the
3560 -- prefix has the form (object'address, operation'access). Rewrite
3561 -- as a for other protected calls: the object is the 1st parameter
3562 -- of the list of actuals.
3564 declare
3565 Call : Node_Id;
3566 Parm : List_Id;
3567 Nam : Node_Id;
3568 Obj : Node_Id;
3569 Ptr : constant Node_Id := Prefix (Name (Call_Node));
3571 T : constant Entity_Id :=
3572 Equivalent_Type (Base_Type (Etype (Ptr)));
3574 D_T : constant Entity_Id :=
3575 Designated_Type (Base_Type (Etype (Ptr)));
3577 begin
3578 Obj :=
3579 Make_Selected_Component (Loc,
3580 Prefix => Unchecked_Convert_To (T, Ptr),
3581 Selector_Name =>
3582 New_Occurrence_Of (First_Entity (T), Loc));
3584 Nam :=
3585 Make_Selected_Component (Loc,
3586 Prefix => Unchecked_Convert_To (T, Ptr),
3587 Selector_Name =>
3588 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
3590 Nam :=
3591 Make_Explicit_Dereference (Loc,
3592 Prefix => Nam);
3594 if Present (Parameter_Associations (Call_Node)) then
3595 Parm := Parameter_Associations (Call_Node);
3596 else
3597 Parm := New_List;
3598 end if;
3600 Prepend (Obj, Parm);
3602 if Etype (D_T) = Standard_Void_Type then
3603 Call :=
3604 Make_Procedure_Call_Statement (Loc,
3605 Name => Nam,
3606 Parameter_Associations => Parm);
3607 else
3608 Call :=
3609 Make_Function_Call (Loc,
3610 Name => Nam,
3611 Parameter_Associations => Parm);
3612 end if;
3614 Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
3615 Set_Etype (Call, Etype (D_T));
3617 -- We do not re-analyze the call to avoid infinite recursion.
3618 -- We analyze separately the prefix and the object, and set
3619 -- the checks on the prefix that would otherwise be emitted
3620 -- when resolving a call.
3622 Rewrite (Call_Node, Call);
3623 Analyze (Nam);
3624 Apply_Access_Check (Nam);
3625 Analyze (Obj);
3626 return;
3627 end;
3628 end if;
3629 end if;
3631 -- If this is a call to an intrinsic subprogram, then perform the
3632 -- appropriate expansion to the corresponding tree node and we
3633 -- are all done (since after that the call is gone).
3635 -- In the case where the intrinsic is to be processed by the back end,
3636 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
3637 -- since the idea in this case is to pass the call unchanged. If the
3638 -- intrinsic is an inherited unchecked conversion, and the derived type
3639 -- is the target type of the conversion, we must retain it as the return
3640 -- type of the expression. Otherwise the expansion below, which uses the
3641 -- parent operation, will yield the wrong type.
3643 if Is_Intrinsic_Subprogram (Subp) then
3644 Expand_Intrinsic_Call (Call_Node, Subp);
3646 if Nkind (Call_Node) = N_Unchecked_Type_Conversion
3647 and then Parent_Subp /= Orig_Subp
3648 and then Etype (Parent_Subp) /= Etype (Orig_Subp)
3649 then
3650 Set_Etype (Call_Node, Etype (Orig_Subp));
3651 end if;
3653 return;
3654 end if;
3656 if Ekind_In (Subp, E_Function, E_Procedure) then
3658 -- We perform two simple optimization on calls:
3660 -- a) replace calls to null procedures unconditionally;
3662 -- b) for To_Address, just do an unchecked conversion. Not only is
3663 -- this efficient, but it also avoids order of elaboration problems
3664 -- when address clauses are inlined (address expression elaborated
3665 -- at the wrong point).
3667 -- We perform these optimization regardless of whether we are in the
3668 -- main unit or in a unit in the context of the main unit, to ensure
3669 -- that tree generated is the same in both cases, for CodePeer use.
3671 if Is_RTE (Subp, RE_To_Address) then
3672 Rewrite (Call_Node,
3673 Unchecked_Convert_To
3674 (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
3675 return;
3677 elsif Is_Null_Procedure (Subp) then
3678 Rewrite (Call_Node, Make_Null_Statement (Loc));
3679 return;
3680 end if;
3682 -- Handle inlining. No action needed if the subprogram is not inlined
3684 if not Is_Inlined (Subp) then
3685 null;
3687 -- Handle frontend inlining
3689 elsif not Back_End_Inlining then
3690 Inlined_Subprogram : declare
3691 Bod : Node_Id;
3692 Must_Inline : Boolean := False;
3693 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
3695 begin
3696 -- Verify that the body to inline has already been seen, and
3697 -- that if the body is in the current unit the inlining does
3698 -- not occur earlier. This avoids order-of-elaboration problems
3699 -- in the back end.
3701 -- This should be documented in sinfo/einfo ???
3703 if No (Spec)
3704 or else Nkind (Spec) /= N_Subprogram_Declaration
3705 or else No (Body_To_Inline (Spec))
3706 then
3707 Must_Inline := False;
3709 -- If this an inherited function that returns a private type,
3710 -- do not inline if the full view is an unconstrained array,
3711 -- because such calls cannot be inlined.
3713 elsif Present (Orig_Subp)
3714 and then Is_Array_Type (Etype (Orig_Subp))
3715 and then not Is_Constrained (Etype (Orig_Subp))
3716 then
3717 Must_Inline := False;
3719 elsif In_Unfrozen_Instance (Scope (Subp)) then
3720 Must_Inline := False;
3722 else
3723 Bod := Body_To_Inline (Spec);
3725 if (In_Extended_Main_Code_Unit (Call_Node)
3726 or else In_Extended_Main_Code_Unit (Parent (Call_Node))
3727 or else Has_Pragma_Inline_Always (Subp))
3728 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
3729 or else
3730 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
3731 then
3732 Must_Inline := True;
3734 -- If we are compiling a package body that is not the main
3735 -- unit, it must be for inlining/instantiation purposes,
3736 -- in which case we inline the call to insure that the same
3737 -- temporaries are generated when compiling the body by
3738 -- itself. Otherwise link errors can occur.
3740 -- If the function being called is itself in the main unit,
3741 -- we cannot inline, because there is a risk of double
3742 -- elaboration and/or circularity: the inlining can make
3743 -- visible a private entity in the body of the main unit,
3744 -- that gigi will see before its sees its proper definition.
3746 elsif not (In_Extended_Main_Code_Unit (Call_Node))
3747 and then In_Package_Body
3748 then
3749 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
3750 end if;
3751 end if;
3753 if Must_Inline then
3754 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
3756 else
3757 -- Let the back end handle it
3759 Add_Inlined_Body (Subp, Call_Node);
3761 if Front_End_Inlining
3762 and then Nkind (Spec) = N_Subprogram_Declaration
3763 and then (In_Extended_Main_Code_Unit (Call_Node))
3764 and then No (Body_To_Inline (Spec))
3765 and then not Has_Completion (Subp)
3766 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
3767 then
3768 Cannot_Inline
3769 ("cannot inline& (body not seen yet)?",
3770 Call_Node, Subp);
3771 end if;
3772 end if;
3773 end Inlined_Subprogram;
3775 -- Back end inlining: let the back end handle it
3777 elsif No (Unit_Declaration_Node (Subp))
3778 or else Nkind (Unit_Declaration_Node (Subp)) /=
3779 N_Subprogram_Declaration
3780 or else No (Body_To_Inline (Unit_Declaration_Node (Subp)))
3781 or else Nkind (Body_To_Inline (Unit_Declaration_Node (Subp))) in
3782 N_Entity
3783 then
3784 Add_Inlined_Body (Subp, Call_Node);
3786 -- Front end expansion of simple functions returning unconstrained
3787 -- types (see Check_And_Split_Unconstrained_Function). Note that the
3788 -- case of a simple renaming (Body_To_Inline in N_Entity above, see
3789 -- also Build_Renamed_Body) cannot be expanded here because this may
3790 -- give rise to order-of-elaboration issues for the types of the
3791 -- parameters of the subprogram, if any.
3793 else
3794 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
3795 end if;
3796 end if;
3798 -- Check for protected subprogram. This is either an intra-object call,
3799 -- or a protected function call. Protected procedure calls are rewritten
3800 -- as entry calls and handled accordingly.
3802 -- In Ada 2005, this may be an indirect call to an access parameter that
3803 -- is an access_to_subprogram. In that case the anonymous type has a
3804 -- scope that is a protected operation, but the call is a regular one.
3805 -- In either case do not expand call if subprogram is eliminated.
3807 Scop := Scope (Subp);
3809 if Nkind (Call_Node) /= N_Entry_Call_Statement
3810 and then Is_Protected_Type (Scop)
3811 and then Ekind (Subp) /= E_Subprogram_Type
3812 and then not Is_Eliminated (Subp)
3813 then
3814 -- If the call is an internal one, it is rewritten as a call to the
3815 -- corresponding unprotected subprogram.
3817 Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
3818 end if;
3820 -- Functions returning controlled objects need special attention. If
3821 -- the return type is limited, then the context is initialization and
3822 -- different processing applies. If the call is to a protected function,
3823 -- the expansion above will call Expand_Call recursively. Otherwise the
3824 -- function call is transformed into a temporary which obtains the
3825 -- result from the secondary stack.
3827 if Needs_Finalization (Etype (Subp)) then
3828 if not Is_Limited_View (Etype (Subp))
3829 and then
3830 (No (First_Formal (Subp))
3831 or else
3832 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
3833 then
3834 Expand_Ctrl_Function_Call (Call_Node);
3836 -- Build-in-place function calls which appear in anonymous contexts
3837 -- need a transient scope to ensure the proper finalization of the
3838 -- intermediate result after its use.
3840 elsif Is_Build_In_Place_Function_Call (Call_Node)
3841 and then
3842 Nkind_In (Parent (Call_Node), N_Attribute_Reference,
3843 N_Function_Call,
3844 N_Indexed_Component,
3845 N_Object_Renaming_Declaration,
3846 N_Procedure_Call_Statement,
3847 N_Selected_Component,
3848 N_Slice)
3849 then
3850 Establish_Transient_Scope (Call_Node, Sec_Stack => True);
3851 end if;
3852 end if;
3853 end Expand_Call;
3855 -------------------------------
3856 -- Expand_Ctrl_Function_Call --
3857 -------------------------------
3859 procedure Expand_Ctrl_Function_Call (N : Node_Id) is
3860 function Is_Element_Reference (N : Node_Id) return Boolean;
3861 -- Determine whether node N denotes a reference to an Ada 2012 container
3862 -- element.
3864 --------------------------
3865 -- Is_Element_Reference --
3866 --------------------------
3868 function Is_Element_Reference (N : Node_Id) return Boolean is
3869 Ref : constant Node_Id := Original_Node (N);
3871 begin
3872 -- Analysis marks an element reference by setting the generalized
3873 -- indexing attribute of an indexed component before the component
3874 -- is rewritten into a function call.
3876 return
3877 Nkind (Ref) = N_Indexed_Component
3878 and then Present (Generalized_Indexing (Ref));
3879 end Is_Element_Reference;
3881 -- Local variables
3883 Is_Elem_Ref : constant Boolean := Is_Element_Reference (N);
3885 -- Start of processing for Expand_Ctrl_Function_Call
3887 begin
3888 -- Optimization, if the returned value (which is on the sec-stack) is
3889 -- returned again, no need to copy/readjust/finalize, we can just pass
3890 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
3891 -- attachment is needed
3893 if Nkind (Parent (N)) = N_Simple_Return_Statement then
3894 return;
3895 end if;
3897 -- Resolution is now finished, make sure we don't start analysis again
3898 -- because of the duplication.
3900 Set_Analyzed (N);
3902 -- A function which returns a controlled object uses the secondary
3903 -- stack. Rewrite the call into a temporary which obtains the result of
3904 -- the function using 'reference.
3906 Remove_Side_Effects (N);
3908 -- When the temporary function result appears inside a case expression
3909 -- or an if expression, its lifetime must be extended to match that of
3910 -- the context. If not, the function result will be finalized too early
3911 -- and the evaluation of the expression could yield incorrect result. An
3912 -- exception to this rule are references to Ada 2012 container elements.
3913 -- Such references must be finalized at the end of each iteration of the
3914 -- related quantified expression, otherwise the container will remain
3915 -- busy.
3917 if not Is_Elem_Ref
3918 and then Within_Case_Or_If_Expression (N)
3919 and then Nkind (N) = N_Explicit_Dereference
3920 then
3921 Set_Is_Processed_Transient (Entity (Prefix (N)));
3922 end if;
3923 end Expand_Ctrl_Function_Call;
3925 ----------------------------------------
3926 -- Expand_N_Extended_Return_Statement --
3927 ----------------------------------------
3929 -- If there is a Handled_Statement_Sequence, we rewrite this:
3931 -- return Result : T := <expression> do
3932 -- <handled_seq_of_stms>
3933 -- end return;
3935 -- to be:
3937 -- declare
3938 -- Result : T := <expression>;
3939 -- begin
3940 -- <handled_seq_of_stms>
3941 -- return Result;
3942 -- end;
3944 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
3946 -- return Result : T := <expression>;
3948 -- to be:
3950 -- return <expression>;
3952 -- unless it's build-in-place or there's no <expression>, in which case
3953 -- we generate:
3955 -- declare
3956 -- Result : T := <expression>;
3957 -- begin
3958 -- return Result;
3959 -- end;
3961 -- Note that this case could have been written by the user as an extended
3962 -- return statement, or could have been transformed to this from a simple
3963 -- return statement.
3965 -- That is, we need to have a reified return object if there are statements
3966 -- (which might refer to it) or if we're doing build-in-place (so we can
3967 -- set its address to the final resting place or if there is no expression
3968 -- (in which case default initial values might need to be set).
3970 procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
3971 Loc : constant Source_Ptr := Sloc (N);
3973 Par_Func : constant Entity_Id :=
3974 Return_Applies_To (Return_Statement_Entity (N));
3975 Result_Subt : constant Entity_Id := Etype (Par_Func);
3976 Ret_Obj_Id : constant Entity_Id :=
3977 First_Entity (Return_Statement_Entity (N));
3978 Ret_Obj_Decl : constant Node_Id := Parent (Ret_Obj_Id);
3980 Is_Build_In_Place : constant Boolean :=
3981 Is_Build_In_Place_Function (Par_Func);
3983 Exp : Node_Id;
3984 HSS : Node_Id;
3985 Result : Node_Id;
3986 Return_Stmt : Node_Id;
3987 Stmts : List_Id;
3989 function Build_Heap_Allocator
3990 (Temp_Id : Entity_Id;
3991 Temp_Typ : Entity_Id;
3992 Func_Id : Entity_Id;
3993 Ret_Typ : Entity_Id;
3994 Alloc_Expr : Node_Id) return Node_Id;
3995 -- Create the statements necessary to allocate a return object on the
3996 -- caller's master. The master is available through implicit parameter
3997 -- BIPfinalizationmaster.
3999 -- if BIPfinalizationmaster /= null then
4000 -- declare
4001 -- type Ptr_Typ is access Ret_Typ;
4002 -- for Ptr_Typ'Storage_Pool use
4003 -- Base_Pool (BIPfinalizationmaster.all).all;
4004 -- Local : Ptr_Typ;
4006 -- begin
4007 -- procedure Allocate (...) is
4008 -- begin
4009 -- System.Storage_Pools.Subpools.Allocate_Any (...);
4010 -- end Allocate;
4012 -- Local := <Alloc_Expr>;
4013 -- Temp_Id := Temp_Typ (Local);
4014 -- end;
4015 -- end if;
4017 -- Temp_Id is the temporary which is used to reference the internally
4018 -- created object in all allocation forms. Temp_Typ is the type of the
4019 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4020 -- type of Func_Id. Alloc_Expr is the actual allocator.
4022 function Move_Activation_Chain return Node_Id;
4023 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4024 -- with parameters:
4025 -- From current activation chain
4026 -- To activation chain passed in by the caller
4027 -- New_Master master passed in by the caller
4029 --------------------------
4030 -- Build_Heap_Allocator --
4031 --------------------------
4033 function Build_Heap_Allocator
4034 (Temp_Id : Entity_Id;
4035 Temp_Typ : Entity_Id;
4036 Func_Id : Entity_Id;
4037 Ret_Typ : Entity_Id;
4038 Alloc_Expr : Node_Id) return Node_Id
4040 begin
4041 pragma Assert (Is_Build_In_Place_Function (Func_Id));
4043 -- Processing for build-in-place object allocation. This is disabled
4044 -- on .NET/JVM because the targets do not support pools.
4046 if VM_Target = No_VM
4047 and then Needs_Finalization (Ret_Typ)
4048 then
4049 declare
4050 Decls : constant List_Id := New_List;
4051 Fin_Mas_Id : constant Entity_Id :=
4052 Build_In_Place_Formal
4053 (Func_Id, BIP_Finalization_Master);
4054 Stmts : constant List_Id := New_List;
4055 Desig_Typ : Entity_Id;
4056 Local_Id : Entity_Id;
4057 Pool_Id : Entity_Id;
4058 Ptr_Typ : Entity_Id;
4060 begin
4061 -- Generate:
4062 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4064 Pool_Id := Make_Temporary (Loc, 'P');
4066 Append_To (Decls,
4067 Make_Object_Renaming_Declaration (Loc,
4068 Defining_Identifier => Pool_Id,
4069 Subtype_Mark =>
4070 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
4071 Name =>
4072 Make_Explicit_Dereference (Loc,
4073 Prefix =>
4074 Make_Function_Call (Loc,
4075 Name =>
4076 New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
4077 Parameter_Associations => New_List (
4078 Make_Explicit_Dereference (Loc,
4079 Prefix =>
4080 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
4082 -- Create an access type which uses the storage pool of the
4083 -- caller's master. This additional type is necessary because
4084 -- the finalization master cannot be associated with the type
4085 -- of the temporary. Otherwise the secondary stack allocation
4086 -- will fail.
4088 Desig_Typ := Ret_Typ;
4090 -- Ensure that the build-in-place machinery uses a fat pointer
4091 -- when allocating an unconstrained array on the heap. In this
4092 -- case the result object type is a constrained array type even
4093 -- though the function type is unconstrained.
4095 if Ekind (Desig_Typ) = E_Array_Subtype then
4096 Desig_Typ := Base_Type (Desig_Typ);
4097 end if;
4099 -- Generate:
4100 -- type Ptr_Typ is access Desig_Typ;
4102 Ptr_Typ := Make_Temporary (Loc, 'P');
4104 Append_To (Decls,
4105 Make_Full_Type_Declaration (Loc,
4106 Defining_Identifier => Ptr_Typ,
4107 Type_Definition =>
4108 Make_Access_To_Object_Definition (Loc,
4109 Subtype_Indication =>
4110 New_Occurrence_Of (Desig_Typ, Loc))));
4112 -- Perform minor decoration in order to set the master and the
4113 -- storage pool attributes.
4115 Set_Ekind (Ptr_Typ, E_Access_Type);
4116 Set_Finalization_Master (Ptr_Typ, Fin_Mas_Id);
4117 Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4119 -- Create the temporary, generate:
4120 -- Local_Id : Ptr_Typ;
4122 Local_Id := Make_Temporary (Loc, 'T');
4124 Append_To (Decls,
4125 Make_Object_Declaration (Loc,
4126 Defining_Identifier => Local_Id,
4127 Object_Definition =>
4128 New_Occurrence_Of (Ptr_Typ, Loc)));
4130 -- Allocate the object, generate:
4131 -- Local_Id := <Alloc_Expr>;
4133 Append_To (Stmts,
4134 Make_Assignment_Statement (Loc,
4135 Name => New_Occurrence_Of (Local_Id, Loc),
4136 Expression => Alloc_Expr));
4138 -- Generate:
4139 -- Temp_Id := Temp_Typ (Local_Id);
4141 Append_To (Stmts,
4142 Make_Assignment_Statement (Loc,
4143 Name => New_Occurrence_Of (Temp_Id, Loc),
4144 Expression =>
4145 Unchecked_Convert_To (Temp_Typ,
4146 New_Occurrence_Of (Local_Id, Loc))));
4148 -- Wrap the allocation in a block. This is further conditioned
4149 -- by checking the caller finalization master at runtime. A
4150 -- null value indicates a non-existent master, most likely due
4151 -- to a Finalize_Storage_Only allocation.
4153 -- Generate:
4154 -- if BIPfinalizationmaster /= null then
4155 -- declare
4156 -- <Decls>
4157 -- begin
4158 -- <Stmts>
4159 -- end;
4160 -- end if;
4162 return
4163 Make_If_Statement (Loc,
4164 Condition =>
4165 Make_Op_Ne (Loc,
4166 Left_Opnd => New_Occurrence_Of (Fin_Mas_Id, Loc),
4167 Right_Opnd => Make_Null (Loc)),
4169 Then_Statements => New_List (
4170 Make_Block_Statement (Loc,
4171 Declarations => Decls,
4172 Handled_Statement_Sequence =>
4173 Make_Handled_Sequence_Of_Statements (Loc,
4174 Statements => Stmts))));
4175 end;
4177 -- For all other cases, generate:
4178 -- Temp_Id := <Alloc_Expr>;
4180 else
4181 return
4182 Make_Assignment_Statement (Loc,
4183 Name => New_Occurrence_Of (Temp_Id, Loc),
4184 Expression => Alloc_Expr);
4185 end if;
4186 end Build_Heap_Allocator;
4188 ---------------------------
4189 -- Move_Activation_Chain --
4190 ---------------------------
4192 function Move_Activation_Chain return Node_Id is
4193 begin
4194 return
4195 Make_Procedure_Call_Statement (Loc,
4196 Name =>
4197 New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
4199 Parameter_Associations => New_List (
4201 -- Source chain
4203 Make_Attribute_Reference (Loc,
4204 Prefix => Make_Identifier (Loc, Name_uChain),
4205 Attribute_Name => Name_Unrestricted_Access),
4207 -- Destination chain
4209 New_Occurrence_Of
4210 (Build_In_Place_Formal (Par_Func, BIP_Activation_Chain), Loc),
4212 -- New master
4214 New_Occurrence_Of
4215 (Build_In_Place_Formal (Par_Func, BIP_Task_Master), Loc)));
4216 end Move_Activation_Chain;
4218 -- Start of processing for Expand_N_Extended_Return_Statement
4220 begin
4221 -- Given that functionality of interface thunks is simple (just displace
4222 -- the pointer to the object) they are always handled by means of
4223 -- simple return statements.
4225 pragma Assert (not Is_Thunk (Current_Scope));
4227 if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4228 Exp := Expression (Ret_Obj_Decl);
4229 else
4230 Exp := Empty;
4231 end if;
4233 HSS := Handled_Statement_Sequence (N);
4235 -- If the returned object needs finalization actions, the function must
4236 -- perform the appropriate cleanup should it fail to return. The state
4237 -- of the function itself is tracked through a flag which is coupled
4238 -- with the scope finalizer. There is one flag per each return object
4239 -- in case of multiple returns.
4241 if Is_Build_In_Place
4242 and then Needs_Finalization (Etype (Ret_Obj_Id))
4243 then
4244 declare
4245 Flag_Decl : Node_Id;
4246 Flag_Id : Entity_Id;
4247 Func_Bod : Node_Id;
4249 begin
4250 -- Recover the function body
4252 Func_Bod := Unit_Declaration_Node (Par_Func);
4254 if Nkind (Func_Bod) = N_Subprogram_Declaration then
4255 Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
4256 end if;
4258 -- Create a flag to track the function state
4260 Flag_Id := Make_Temporary (Loc, 'F');
4261 Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
4263 -- Insert the flag at the beginning of the function declarations,
4264 -- generate:
4265 -- Fnn : Boolean := False;
4267 Flag_Decl :=
4268 Make_Object_Declaration (Loc,
4269 Defining_Identifier => Flag_Id,
4270 Object_Definition =>
4271 New_Occurrence_Of (Standard_Boolean, Loc),
4272 Expression =>
4273 New_Occurrence_Of (Standard_False, Loc));
4275 Prepend_To (Declarations (Func_Bod), Flag_Decl);
4276 Analyze (Flag_Decl);
4277 end;
4278 end if;
4280 -- Build a simple_return_statement that returns the return object when
4281 -- there is a statement sequence, or no expression, or the result will
4282 -- be built in place. Note however that we currently do this for all
4283 -- composite cases, even though nonlimited composite results are not yet
4284 -- built in place (though we plan to do so eventually).
4286 if Present (HSS)
4287 or else Is_Composite_Type (Result_Subt)
4288 or else No (Exp)
4289 then
4290 if No (HSS) then
4291 Stmts := New_List;
4293 -- If the extended return has a handled statement sequence, then wrap
4294 -- it in a block and use the block as the first statement.
4296 else
4297 Stmts := New_List (
4298 Make_Block_Statement (Loc,
4299 Declarations => New_List,
4300 Handled_Statement_Sequence => HSS));
4301 end if;
4303 -- If the result type contains tasks, we call Move_Activation_Chain.
4304 -- Later, the cleanup code will call Complete_Master, which will
4305 -- terminate any unactivated tasks belonging to the return statement
4306 -- master. But Move_Activation_Chain updates their master to be that
4307 -- of the caller, so they will not be terminated unless the return
4308 -- statement completes unsuccessfully due to exception, abort, goto,
4309 -- or exit. As a formality, we test whether the function requires the
4310 -- result to be built in place, though that's necessarily true for
4311 -- the case of result types with task parts.
4313 if Is_Build_In_Place
4314 and then Has_Task (Result_Subt)
4315 then
4316 -- The return expression is an aggregate for a complex type which
4317 -- contains tasks. This particular case is left unexpanded since
4318 -- the regular expansion would insert all temporaries and
4319 -- initialization code in the wrong block.
4321 if Nkind (Exp) = N_Aggregate then
4322 Expand_N_Aggregate (Exp);
4323 end if;
4325 -- Do not move the activation chain if the return object does not
4326 -- contain tasks.
4328 if Has_Task (Etype (Ret_Obj_Id)) then
4329 Append_To (Stmts, Move_Activation_Chain);
4330 end if;
4331 end if;
4333 -- Update the state of the function right before the object is
4334 -- returned.
4336 if Is_Build_In_Place
4337 and then Needs_Finalization (Etype (Ret_Obj_Id))
4338 then
4339 declare
4340 Flag_Id : constant Entity_Id :=
4341 Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
4343 begin
4344 -- Generate:
4345 -- Fnn := True;
4347 Append_To (Stmts,
4348 Make_Assignment_Statement (Loc,
4349 Name => New_Occurrence_Of (Flag_Id, Loc),
4350 Expression => New_Occurrence_Of (Standard_True, Loc)));
4351 end;
4352 end if;
4354 -- Build a simple_return_statement that returns the return object
4356 Return_Stmt :=
4357 Make_Simple_Return_Statement (Loc,
4358 Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
4359 Append_To (Stmts, Return_Stmt);
4361 HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
4362 end if;
4364 -- Case where we build a return statement block
4366 if Present (HSS) then
4367 Result :=
4368 Make_Block_Statement (Loc,
4369 Declarations => Return_Object_Declarations (N),
4370 Handled_Statement_Sequence => HSS);
4372 -- We set the entity of the new block statement to be that of the
4373 -- return statement. This is necessary so that various fields, such
4374 -- as Finalization_Chain_Entity carry over from the return statement
4375 -- to the block. Note that this block is unusual, in that its entity
4376 -- is an E_Return_Statement rather than an E_Block.
4378 Set_Identifier
4379 (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
4381 -- If the object decl was already rewritten as a renaming, then we
4382 -- don't want to do the object allocation and transformation of of
4383 -- the return object declaration to a renaming. This case occurs
4384 -- when the return object is initialized by a call to another
4385 -- build-in-place function, and that function is responsible for
4386 -- the allocation of the return object.
4388 if Is_Build_In_Place
4389 and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
4390 then
4391 pragma Assert
4392 (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
4393 and then Is_Build_In_Place_Function_Call
4394 (Expression (Original_Node (Ret_Obj_Decl))));
4396 -- Return the build-in-place result by reference
4398 Set_By_Ref (Return_Stmt);
4400 elsif Is_Build_In_Place then
4402 -- Locate the implicit access parameter associated with the
4403 -- caller-supplied return object and convert the return
4404 -- statement's return object declaration to a renaming of a
4405 -- dereference of the access parameter. If the return object's
4406 -- declaration includes an expression that has not already been
4407 -- expanded as separate assignments, then add an assignment
4408 -- statement to ensure the return object gets initialized.
4410 -- declare
4411 -- Result : T [:= <expression>];
4412 -- begin
4413 -- ...
4415 -- is converted to
4417 -- declare
4418 -- Result : T renames FuncRA.all;
4419 -- [Result := <expression;]
4420 -- begin
4421 -- ...
4423 declare
4424 Return_Obj_Id : constant Entity_Id :=
4425 Defining_Identifier (Ret_Obj_Decl);
4426 Return_Obj_Typ : constant Entity_Id := Etype (Return_Obj_Id);
4427 Return_Obj_Expr : constant Node_Id :=
4428 Expression (Ret_Obj_Decl);
4429 Constr_Result : constant Boolean :=
4430 Is_Constrained (Result_Subt);
4431 Obj_Alloc_Formal : Entity_Id;
4432 Object_Access : Entity_Id;
4433 Obj_Acc_Deref : Node_Id;
4434 Init_Assignment : Node_Id := Empty;
4436 begin
4437 -- Build-in-place results must be returned by reference
4439 Set_By_Ref (Return_Stmt);
4441 -- Retrieve the implicit access parameter passed by the caller
4443 Object_Access :=
4444 Build_In_Place_Formal (Par_Func, BIP_Object_Access);
4446 -- If the return object's declaration includes an expression
4447 -- and the declaration isn't marked as No_Initialization, then
4448 -- we need to generate an assignment to the object and insert
4449 -- it after the declaration before rewriting it as a renaming
4450 -- (otherwise we'll lose the initialization). The case where
4451 -- the result type is an interface (or class-wide interface)
4452 -- is also excluded because the context of the function call
4453 -- must be unconstrained, so the initialization will always
4454 -- be done as part of an allocator evaluation (storage pool
4455 -- or secondary stack), never to a constrained target object
4456 -- passed in by the caller. Besides the assignment being
4457 -- unneeded in this case, it avoids problems with trying to
4458 -- generate a dispatching assignment when the return expression
4459 -- is a nonlimited descendant of a limited interface (the
4460 -- interface has no assignment operation).
4462 if Present (Return_Obj_Expr)
4463 and then not No_Initialization (Ret_Obj_Decl)
4464 and then not Is_Interface (Return_Obj_Typ)
4465 then
4466 Init_Assignment :=
4467 Make_Assignment_Statement (Loc,
4468 Name => New_Occurrence_Of (Return_Obj_Id, Loc),
4469 Expression => Relocate_Node (Return_Obj_Expr));
4471 Set_Etype (Name (Init_Assignment), Etype (Return_Obj_Id));
4472 Set_Assignment_OK (Name (Init_Assignment));
4473 Set_No_Ctrl_Actions (Init_Assignment);
4475 Set_Parent (Name (Init_Assignment), Init_Assignment);
4476 Set_Parent (Expression (Init_Assignment), Init_Assignment);
4478 Set_Expression (Ret_Obj_Decl, Empty);
4480 if Is_Class_Wide_Type (Etype (Return_Obj_Id))
4481 and then not Is_Class_Wide_Type
4482 (Etype (Expression (Init_Assignment)))
4483 then
4484 Rewrite (Expression (Init_Assignment),
4485 Make_Type_Conversion (Loc,
4486 Subtype_Mark =>
4487 New_Occurrence_Of (Etype (Return_Obj_Id), Loc),
4488 Expression =>
4489 Relocate_Node (Expression (Init_Assignment))));
4490 end if;
4492 -- In the case of functions where the calling context can
4493 -- determine the form of allocation needed, initialization
4494 -- is done with each part of the if statement that handles
4495 -- the different forms of allocation (this is true for
4496 -- unconstrained and tagged result subtypes).
4498 if Constr_Result
4499 and then not Is_Tagged_Type (Underlying_Type (Result_Subt))
4500 then
4501 Insert_After (Ret_Obj_Decl, Init_Assignment);
4502 end if;
4503 end if;
4505 -- When the function's subtype is unconstrained, a run-time
4506 -- test is needed to determine the form of allocation to use
4507 -- for the return object. The function has an implicit formal
4508 -- parameter indicating this. If the BIP_Alloc_Form formal has
4509 -- the value one, then the caller has passed access to an
4510 -- existing object for use as the return object. If the value
4511 -- is two, then the return object must be allocated on the
4512 -- secondary stack. Otherwise, the object must be allocated in
4513 -- a storage pool (currently only supported for the global
4514 -- heap, user-defined storage pools TBD ???). We generate an
4515 -- if statement to test the implicit allocation formal and
4516 -- initialize a local access value appropriately, creating
4517 -- allocators in the secondary stack and global heap cases.
4518 -- The special formal also exists and must be tested when the
4519 -- function has a tagged result, even when the result subtype
4520 -- is constrained, because in general such functions can be
4521 -- called in dispatching contexts and must be handled similarly
4522 -- to functions with a class-wide result.
4524 if not Constr_Result
4525 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
4526 then
4527 Obj_Alloc_Formal :=
4528 Build_In_Place_Formal (Par_Func, BIP_Alloc_Form);
4530 declare
4531 Pool_Id : constant Entity_Id :=
4532 Make_Temporary (Loc, 'P');
4533 Alloc_Obj_Id : Entity_Id;
4534 Alloc_Obj_Decl : Node_Id;
4535 Alloc_If_Stmt : Node_Id;
4536 Heap_Allocator : Node_Id;
4537 Pool_Decl : Node_Id;
4538 Pool_Allocator : Node_Id;
4539 Ptr_Type_Decl : Node_Id;
4540 Ref_Type : Entity_Id;
4541 SS_Allocator : Node_Id;
4543 begin
4544 -- Reuse the itype created for the function's implicit
4545 -- access formal. This avoids the need to create a new
4546 -- access type here, plus it allows assigning the access
4547 -- formal directly without applying a conversion.
4549 -- Ref_Type := Etype (Object_Access);
4551 -- Create an access type designating the function's
4552 -- result subtype.
4554 Ref_Type := Make_Temporary (Loc, 'A');
4556 Ptr_Type_Decl :=
4557 Make_Full_Type_Declaration (Loc,
4558 Defining_Identifier => Ref_Type,
4559 Type_Definition =>
4560 Make_Access_To_Object_Definition (Loc,
4561 All_Present => True,
4562 Subtype_Indication =>
4563 New_Occurrence_Of (Return_Obj_Typ, Loc)));
4565 Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
4567 -- Create an access object that will be initialized to an
4568 -- access value denoting the return object, either coming
4569 -- from an implicit access value passed in by the caller
4570 -- or from the result of an allocator.
4572 Alloc_Obj_Id := Make_Temporary (Loc, 'R');
4573 Set_Etype (Alloc_Obj_Id, Ref_Type);
4575 Alloc_Obj_Decl :=
4576 Make_Object_Declaration (Loc,
4577 Defining_Identifier => Alloc_Obj_Id,
4578 Object_Definition =>
4579 New_Occurrence_Of (Ref_Type, Loc));
4581 Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
4583 -- Create allocators for both the secondary stack and
4584 -- global heap. If there's an initialization expression,
4585 -- then create these as initialized allocators.
4587 if Present (Return_Obj_Expr)
4588 and then not No_Initialization (Ret_Obj_Decl)
4589 then
4590 -- Always use the type of the expression for the
4591 -- qualified expression, rather than the result type.
4592 -- In general we cannot always use the result type
4593 -- for the allocator, because the expression might be
4594 -- of a specific type, such as in the case of an
4595 -- aggregate or even a nonlimited object when the
4596 -- result type is a limited class-wide interface type.
4598 Heap_Allocator :=
4599 Make_Allocator (Loc,
4600 Expression =>
4601 Make_Qualified_Expression (Loc,
4602 Subtype_Mark =>
4603 New_Occurrence_Of
4604 (Etype (Return_Obj_Expr), Loc),
4605 Expression =>
4606 New_Copy_Tree (Return_Obj_Expr)));
4608 else
4609 -- If the function returns a class-wide type we cannot
4610 -- use the return type for the allocator. Instead we
4611 -- use the type of the expression, which must be an
4612 -- aggregate of a definite type.
4614 if Is_Class_Wide_Type (Return_Obj_Typ) then
4615 Heap_Allocator :=
4616 Make_Allocator (Loc,
4617 Expression =>
4618 New_Occurrence_Of
4619 (Etype (Return_Obj_Expr), Loc));
4620 else
4621 Heap_Allocator :=
4622 Make_Allocator (Loc,
4623 Expression =>
4624 New_Occurrence_Of (Return_Obj_Typ, Loc));
4625 end if;
4627 -- If the object requires default initialization then
4628 -- that will happen later following the elaboration of
4629 -- the object renaming. If we don't turn it off here
4630 -- then the object will be default initialized twice.
4632 Set_No_Initialization (Heap_Allocator);
4633 end if;
4635 -- The Pool_Allocator is just like the Heap_Allocator,
4636 -- except we set Storage_Pool and Procedure_To_Call so
4637 -- it will use the user-defined storage pool.
4639 Pool_Allocator := New_Copy_Tree (Heap_Allocator);
4641 -- Do not generate the renaming of the build-in-place
4642 -- pool parameter on .NET/JVM/ZFP because the parameter
4643 -- is not created in the first place.
4645 if VM_Target = No_VM
4646 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
4647 then
4648 Pool_Decl :=
4649 Make_Object_Renaming_Declaration (Loc,
4650 Defining_Identifier => Pool_Id,
4651 Subtype_Mark =>
4652 New_Occurrence_Of
4653 (RTE (RE_Root_Storage_Pool), Loc),
4654 Name =>
4655 Make_Explicit_Dereference (Loc,
4656 New_Occurrence_Of
4657 (Build_In_Place_Formal
4658 (Par_Func, BIP_Storage_Pool), Loc)));
4659 Set_Storage_Pool (Pool_Allocator, Pool_Id);
4660 Set_Procedure_To_Call
4661 (Pool_Allocator, RTE (RE_Allocate_Any));
4662 else
4663 Pool_Decl := Make_Null_Statement (Loc);
4664 end if;
4666 -- If the No_Allocators restriction is active, then only
4667 -- an allocator for secondary stack allocation is needed.
4668 -- It's OK for such allocators to have Comes_From_Source
4669 -- set to False, because gigi knows not to flag them as
4670 -- being a violation of No_Implicit_Heap_Allocations.
4672 if Restriction_Active (No_Allocators) then
4673 SS_Allocator := Heap_Allocator;
4674 Heap_Allocator := Make_Null (Loc);
4675 Pool_Allocator := Make_Null (Loc);
4677 -- Otherwise the heap and pool allocators may be needed,
4678 -- so we make another allocator for secondary stack
4679 -- allocation.
4681 else
4682 SS_Allocator := New_Copy_Tree (Heap_Allocator);
4684 -- The heap and pool allocators are marked as
4685 -- Comes_From_Source since they correspond to an
4686 -- explicit user-written allocator (that is, it will
4687 -- only be executed on behalf of callers that call the
4688 -- function as initialization for such an allocator).
4689 -- Prevents errors when No_Implicit_Heap_Allocations
4690 -- is in force.
4692 Set_Comes_From_Source (Heap_Allocator, True);
4693 Set_Comes_From_Source (Pool_Allocator, True);
4694 end if;
4696 -- The allocator is returned on the secondary stack. We
4697 -- don't do this on VM targets, since the SS is not used.
4699 if VM_Target = No_VM then
4700 Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
4701 Set_Procedure_To_Call
4702 (SS_Allocator, RTE (RE_SS_Allocate));
4704 -- The allocator is returned on the secondary stack,
4705 -- so indicate that the function return, as well as
4706 -- the block that encloses the allocator, must not
4707 -- release it. The flags must be set now because
4708 -- the decision to use the secondary stack is done
4709 -- very late in the course of expanding the return
4710 -- statement, past the point where these flags are
4711 -- normally set.
4713 Set_Sec_Stack_Needed_For_Return (Par_Func);
4714 Set_Sec_Stack_Needed_For_Return
4715 (Return_Statement_Entity (N));
4716 Set_Uses_Sec_Stack (Par_Func);
4717 Set_Uses_Sec_Stack (Return_Statement_Entity (N));
4718 end if;
4720 -- Create an if statement to test the BIP_Alloc_Form
4721 -- formal and initialize the access object to either the
4722 -- BIP_Object_Access formal (BIP_Alloc_Form =
4723 -- Caller_Allocation), the result of allocating the
4724 -- object in the secondary stack (BIP_Alloc_Form =
4725 -- Secondary_Stack), or else an allocator to create the
4726 -- return object in the heap or user-defined pool
4727 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
4729 -- ??? An unchecked type conversion must be made in the
4730 -- case of assigning the access object formal to the
4731 -- local access object, because a normal conversion would
4732 -- be illegal in some cases (such as converting access-
4733 -- to-unconstrained to access-to-constrained), but the
4734 -- the unchecked conversion will presumably fail to work
4735 -- right in just such cases. It's not clear at all how to
4736 -- handle this. ???
4738 Alloc_If_Stmt :=
4739 Make_If_Statement (Loc,
4740 Condition =>
4741 Make_Op_Eq (Loc,
4742 Left_Opnd =>
4743 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
4744 Right_Opnd =>
4745 Make_Integer_Literal (Loc,
4746 UI_From_Int (BIP_Allocation_Form'Pos
4747 (Caller_Allocation)))),
4749 Then_Statements => New_List (
4750 Make_Assignment_Statement (Loc,
4751 Name =>
4752 New_Occurrence_Of (Alloc_Obj_Id, Loc),
4753 Expression =>
4754 Make_Unchecked_Type_Conversion (Loc,
4755 Subtype_Mark =>
4756 New_Occurrence_Of (Ref_Type, Loc),
4757 Expression =>
4758 New_Occurrence_Of (Object_Access, Loc)))),
4760 Elsif_Parts => New_List (
4761 Make_Elsif_Part (Loc,
4762 Condition =>
4763 Make_Op_Eq (Loc,
4764 Left_Opnd =>
4765 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
4766 Right_Opnd =>
4767 Make_Integer_Literal (Loc,
4768 UI_From_Int (BIP_Allocation_Form'Pos
4769 (Secondary_Stack)))),
4771 Then_Statements => New_List (
4772 Make_Assignment_Statement (Loc,
4773 Name =>
4774 New_Occurrence_Of (Alloc_Obj_Id, Loc),
4775 Expression => SS_Allocator))),
4777 Make_Elsif_Part (Loc,
4778 Condition =>
4779 Make_Op_Eq (Loc,
4780 Left_Opnd =>
4781 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
4782 Right_Opnd =>
4783 Make_Integer_Literal (Loc,
4784 UI_From_Int (BIP_Allocation_Form'Pos
4785 (Global_Heap)))),
4787 Then_Statements => New_List (
4788 Build_Heap_Allocator
4789 (Temp_Id => Alloc_Obj_Id,
4790 Temp_Typ => Ref_Type,
4791 Func_Id => Par_Func,
4792 Ret_Typ => Return_Obj_Typ,
4793 Alloc_Expr => Heap_Allocator)))),
4795 Else_Statements => New_List (
4796 Pool_Decl,
4797 Build_Heap_Allocator
4798 (Temp_Id => Alloc_Obj_Id,
4799 Temp_Typ => Ref_Type,
4800 Func_Id => Par_Func,
4801 Ret_Typ => Return_Obj_Typ,
4802 Alloc_Expr => Pool_Allocator)));
4804 -- If a separate initialization assignment was created
4805 -- earlier, append that following the assignment of the
4806 -- implicit access formal to the access object, to ensure
4807 -- that the return object is initialized in that case. In
4808 -- this situation, the target of the assignment must be
4809 -- rewritten to denote a dereference of the access to the
4810 -- return object passed in by the caller.
4812 if Present (Init_Assignment) then
4813 Rewrite (Name (Init_Assignment),
4814 Make_Explicit_Dereference (Loc,
4815 Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
4817 Set_Etype
4818 (Name (Init_Assignment), Etype (Return_Obj_Id));
4820 Append_To
4821 (Then_Statements (Alloc_If_Stmt), Init_Assignment);
4822 end if;
4824 Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
4826 -- Remember the local access object for use in the
4827 -- dereference of the renaming created below.
4829 Object_Access := Alloc_Obj_Id;
4830 end;
4831 end if;
4833 -- Replace the return object declaration with a renaming of a
4834 -- dereference of the access value designating the return
4835 -- object.
4837 Obj_Acc_Deref :=
4838 Make_Explicit_Dereference (Loc,
4839 Prefix => New_Occurrence_Of (Object_Access, Loc));
4841 Rewrite (Ret_Obj_Decl,
4842 Make_Object_Renaming_Declaration (Loc,
4843 Defining_Identifier => Return_Obj_Id,
4844 Access_Definition => Empty,
4845 Subtype_Mark =>
4846 New_Occurrence_Of (Return_Obj_Typ, Loc),
4847 Name => Obj_Acc_Deref));
4849 Set_Renamed_Object (Return_Obj_Id, Obj_Acc_Deref);
4850 end;
4851 end if;
4853 -- Case where we do not build a block
4855 else
4856 -- We're about to drop Return_Object_Declarations on the floor, so
4857 -- we need to insert it, in case it got expanded into useful code.
4858 -- Remove side effects from expression, which may be duplicated in
4859 -- subsequent checks (see Expand_Simple_Function_Return).
4861 Insert_List_Before (N, Return_Object_Declarations (N));
4862 Remove_Side_Effects (Exp);
4864 -- Build simple_return_statement that returns the expression directly
4866 Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
4867 Result := Return_Stmt;
4868 end if;
4870 -- Set the flag to prevent infinite recursion
4872 Set_Comes_From_Extended_Return_Statement (Return_Stmt);
4874 Rewrite (N, Result);
4875 Analyze (N);
4876 end Expand_N_Extended_Return_Statement;
4878 ----------------------------
4879 -- Expand_N_Function_Call --
4880 ----------------------------
4882 procedure Expand_N_Function_Call (N : Node_Id) is
4883 begin
4884 Expand_Call (N);
4885 end Expand_N_Function_Call;
4887 ---------------------------------------
4888 -- Expand_N_Procedure_Call_Statement --
4889 ---------------------------------------
4891 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
4892 begin
4893 Expand_Call (N);
4894 end Expand_N_Procedure_Call_Statement;
4896 --------------------------------------
4897 -- Expand_N_Simple_Return_Statement --
4898 --------------------------------------
4900 procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
4901 begin
4902 -- Defend against previous errors (i.e. the return statement calls a
4903 -- function that is not available in configurable runtime).
4905 if Present (Expression (N))
4906 and then Nkind (Expression (N)) = N_Empty
4907 then
4908 Check_Error_Detected;
4909 return;
4910 end if;
4912 -- Distinguish the function and non-function cases:
4914 case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
4916 when E_Function |
4917 E_Generic_Function =>
4918 Expand_Simple_Function_Return (N);
4920 when E_Procedure |
4921 E_Generic_Procedure |
4922 E_Entry |
4923 E_Entry_Family |
4924 E_Return_Statement =>
4925 Expand_Non_Function_Return (N);
4927 when others =>
4928 raise Program_Error;
4929 end case;
4931 exception
4932 when RE_Not_Available =>
4933 return;
4934 end Expand_N_Simple_Return_Statement;
4936 ------------------------------
4937 -- Expand_N_Subprogram_Body --
4938 ------------------------------
4940 -- Add poll call if ATC polling is enabled, unless the body will be inlined
4941 -- by the back-end.
4943 -- Add dummy push/pop label nodes at start and end to clear any local
4944 -- exception indications if local-exception-to-goto optimization is active.
4946 -- Add return statement if last statement in body is not a return statement
4947 -- (this makes things easier on Gigi which does not want to have to handle
4948 -- a missing return).
4950 -- Add call to Activate_Tasks if body is a task activator
4952 -- Deal with possible detection of infinite recursion
4954 -- Eliminate body completely if convention stubbed
4956 -- Encode entity names within body, since we will not need to reference
4957 -- these entities any longer in the front end.
4959 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
4961 -- Reset Pure indication if any parameter has root type System.Address
4962 -- or has any parameters of limited types, where limited means that the
4963 -- run-time view is limited (i.e. the full type is limited).
4965 -- Wrap thread body
4967 procedure Expand_N_Subprogram_Body (N : Node_Id) is
4968 Loc : constant Source_Ptr := Sloc (N);
4969 H : constant Node_Id := Handled_Statement_Sequence (N);
4970 Body_Id : Entity_Id;
4971 Except_H : Node_Id;
4972 L : List_Id;
4973 Spec_Id : Entity_Id;
4975 procedure Add_Return (S : List_Id);
4976 -- Append a return statement to the statement sequence S if the last
4977 -- statement is not already a return or a goto statement. Note that
4978 -- the latter test is not critical, it does not matter if we add a few
4979 -- extra returns, since they get eliminated anyway later on.
4981 ----------------
4982 -- Add_Return --
4983 ----------------
4985 procedure Add_Return (S : List_Id) is
4986 Last_Stmt : Node_Id;
4987 Loc : Source_Ptr;
4988 Stmt : Node_Id;
4990 begin
4991 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
4992 -- not relevant in this context since they are not executable.
4994 Last_Stmt := Last (S);
4995 while Nkind (Last_Stmt) in N_Pop_xxx_Label loop
4996 Prev (Last_Stmt);
4997 end loop;
4999 -- Now insert return unless last statement is a transfer
5001 if not Is_Transfer (Last_Stmt) then
5003 -- The source location for the return is the end label of the
5004 -- procedure if present. Otherwise use the sloc of the last
5005 -- statement in the list. If the list comes from a generated
5006 -- exception handler and we are not debugging generated code,
5007 -- all the statements within the handler are made invisible
5008 -- to the debugger.
5010 if Nkind (Parent (S)) = N_Exception_Handler
5011 and then not Comes_From_Source (Parent (S))
5012 then
5013 Loc := Sloc (Last_Stmt);
5014 elsif Present (End_Label (H)) then
5015 Loc := Sloc (End_Label (H));
5016 else
5017 Loc := Sloc (Last_Stmt);
5018 end if;
5020 -- Append return statement, and set analyzed manually. We can't
5021 -- call Analyze on this return since the scope is wrong.
5023 -- Note: it almost works to push the scope and then do the Analyze
5024 -- call, but something goes wrong in some weird cases and it is
5025 -- not worth worrying about ???
5027 Stmt := Make_Simple_Return_Statement (Loc);
5029 -- The return statement is handled properly, and the call to the
5030 -- postcondition, inserted below, does not require information
5031 -- from the body either. However, that call is analyzed in the
5032 -- enclosing scope, and an elaboration check might improperly be
5033 -- added to it. A guard in Sem_Elab is needed to prevent that
5034 -- spurious check, see Check_Elab_Call.
5036 Append_To (S, Stmt);
5037 Set_Analyzed (Stmt);
5039 -- Call the _Postconditions procedure if the related subprogram
5040 -- has contract assertions that need to be verified on exit.
5042 if Ekind (Spec_Id) = E_Procedure
5043 and then Present (Postconditions_Proc (Spec_Id))
5044 then
5045 Insert_Action (Stmt,
5046 Make_Procedure_Call_Statement (Loc,
5047 Name =>
5048 New_Occurrence_Of (Postconditions_Proc (Spec_Id), Loc)));
5049 end if;
5050 end if;
5051 end Add_Return;
5053 -- Start of processing for Expand_N_Subprogram_Body
5055 begin
5056 -- Set L to either the list of declarations if present, or to the list
5057 -- of statements if no declarations are present. This is used to insert
5058 -- new stuff at the start.
5060 if Is_Non_Empty_List (Declarations (N)) then
5061 L := Declarations (N);
5062 else
5063 L := Statements (H);
5064 end if;
5066 -- If local-exception-to-goto optimization active, insert dummy push
5067 -- statements at start, and dummy pop statements at end, but inhibit
5068 -- this if we have No_Exception_Handlers, since they are useless and
5069 -- intefere with analysis, e.g. by codepeer.
5071 if (Debug_Flag_Dot_G
5072 or else Restriction_Active (No_Exception_Propagation))
5073 and then not Restriction_Active (No_Exception_Handlers)
5074 and then not CodePeer_Mode
5075 and then Is_Non_Empty_List (L)
5076 then
5077 declare
5078 FS : constant Node_Id := First (L);
5079 FL : constant Source_Ptr := Sloc (FS);
5080 LS : Node_Id;
5081 LL : Source_Ptr;
5083 begin
5084 -- LS points to either last statement, if statements are present
5085 -- or to the last declaration if there are no statements present.
5086 -- It is the node after which the pop's are generated.
5088 if Is_Non_Empty_List (Statements (H)) then
5089 LS := Last (Statements (H));
5090 else
5091 LS := Last (L);
5092 end if;
5094 LL := Sloc (LS);
5096 Insert_List_Before_And_Analyze (FS, New_List (
5097 Make_Push_Constraint_Error_Label (FL),
5098 Make_Push_Program_Error_Label (FL),
5099 Make_Push_Storage_Error_Label (FL)));
5101 Insert_List_After_And_Analyze (LS, New_List (
5102 Make_Pop_Constraint_Error_Label (LL),
5103 Make_Pop_Program_Error_Label (LL),
5104 Make_Pop_Storage_Error_Label (LL)));
5105 end;
5106 end if;
5108 -- Find entity for subprogram
5110 Body_Id := Defining_Entity (N);
5112 if Present (Corresponding_Spec (N)) then
5113 Spec_Id := Corresponding_Spec (N);
5114 else
5115 Spec_Id := Body_Id;
5116 end if;
5118 -- Need poll on entry to subprogram if polling enabled. We only do this
5119 -- for non-empty subprograms, since it does not seem necessary to poll
5120 -- for a dummy null subprogram.
5122 if Is_Non_Empty_List (L) then
5124 -- Do not add a polling call if the subprogram is to be inlined by
5125 -- the back-end, to avoid repeated calls with multiple inlinings.
5127 if Is_Inlined (Spec_Id)
5128 and then Front_End_Inlining
5129 and then Optimization_Level > 1
5130 then
5131 null;
5132 else
5133 Generate_Poll_Call (First (L));
5134 end if;
5135 end if;
5137 -- If this is a Pure function which has any parameters whose root type
5138 -- is System.Address, reset the Pure indication, since it will likely
5139 -- cause incorrect code to be generated as the parameter is probably
5140 -- a pointer, and the fact that the same pointer is passed does not mean
5141 -- that the same value is being referenced.
5143 -- Note that if the programmer gave an explicit Pure_Function pragma,
5144 -- then we believe the programmer, and leave the subprogram Pure.
5146 -- This code should probably be at the freeze point, so that it happens
5147 -- even on a -gnatc (or more importantly -gnatt) compile, so that the
5148 -- semantic tree has Is_Pure set properly ???
5150 if Is_Pure (Spec_Id)
5151 and then Is_Subprogram (Spec_Id)
5152 and then not Has_Pragma_Pure_Function (Spec_Id)
5153 then
5154 declare
5155 F : Entity_Id;
5157 begin
5158 F := First_Formal (Spec_Id);
5159 while Present (F) loop
5160 if Is_Descendent_Of_Address (Etype (F))
5162 -- Note that this test is being made in the body of the
5163 -- subprogram, not the spec, so we are testing the full
5164 -- type for being limited here, as required.
5166 or else Is_Limited_Type (Etype (F))
5167 then
5168 Set_Is_Pure (Spec_Id, False);
5170 if Spec_Id /= Body_Id then
5171 Set_Is_Pure (Body_Id, False);
5172 end if;
5174 exit;
5175 end if;
5177 Next_Formal (F);
5178 end loop;
5179 end;
5180 end if;
5182 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5184 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
5185 declare
5186 F : Entity_Id;
5187 A : Node_Id;
5189 begin
5190 -- Loop through formals
5192 F := First_Formal (Spec_Id);
5193 while Present (F) loop
5194 if Is_Scalar_Type (Etype (F))
5195 and then Ekind (F) = E_Out_Parameter
5196 then
5197 Check_Restriction (No_Default_Initialization, F);
5199 -- Insert the initialization. We turn off validity checks
5200 -- for this assignment, since we do not want any check on
5201 -- the initial value itself (which may well be invalid).
5202 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5204 A :=
5205 Make_Assignment_Statement (Loc,
5206 Name => New_Occurrence_Of (F, Loc),
5207 Expression => Get_Simple_Init_Val (Etype (F), N));
5208 Set_Suppress_Assignment_Checks (A);
5210 Insert_Before_And_Analyze (First (L),
5211 A, Suppress => Validity_Check);
5212 end if;
5214 Next_Formal (F);
5215 end loop;
5216 end;
5217 end if;
5219 -- Clear out statement list for stubbed procedure
5221 if Present (Corresponding_Spec (N)) then
5222 Set_Elaboration_Flag (N, Spec_Id);
5224 if Convention (Spec_Id) = Convention_Stubbed
5225 or else Is_Eliminated (Spec_Id)
5226 then
5227 Set_Declarations (N, Empty_List);
5228 Set_Handled_Statement_Sequence (N,
5229 Make_Handled_Sequence_Of_Statements (Loc,
5230 Statements => New_List (Make_Null_Statement (Loc))));
5231 return;
5232 end if;
5233 end if;
5235 -- Create a set of discriminals for the next protected subprogram body
5237 if Is_List_Member (N)
5238 and then Present (Parent (List_Containing (N)))
5239 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5240 and then Present (Next_Protected_Operation (N))
5241 then
5242 Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
5243 end if;
5245 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5246 -- subprograms with no specs are not frozen.
5248 declare
5249 Typ : constant Entity_Id := Etype (Spec_Id);
5250 Utyp : constant Entity_Id := Underlying_Type (Typ);
5252 begin
5253 if not Acts_As_Spec (N)
5254 and then Nkind (Parent (Parent (Spec_Id))) /=
5255 N_Subprogram_Body_Stub
5256 then
5257 null;
5259 elsif Is_Limited_View (Typ) then
5260 Set_Returns_By_Ref (Spec_Id);
5262 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5263 Set_Returns_By_Ref (Spec_Id);
5264 end if;
5265 end;
5267 -- For a procedure, we add a return for all possible syntactic ends of
5268 -- the subprogram.
5270 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
5271 Add_Return (Statements (H));
5273 if Present (Exception_Handlers (H)) then
5274 Except_H := First_Non_Pragma (Exception_Handlers (H));
5275 while Present (Except_H) loop
5276 Add_Return (Statements (Except_H));
5277 Next_Non_Pragma (Except_H);
5278 end loop;
5279 end if;
5281 -- For a function, we must deal with the case where there is at least
5282 -- one missing return. What we do is to wrap the entire body of the
5283 -- function in a block:
5285 -- begin
5286 -- ...
5287 -- end;
5289 -- becomes
5291 -- begin
5292 -- begin
5293 -- ...
5294 -- end;
5296 -- raise Program_Error;
5297 -- end;
5299 -- This approach is necessary because the raise must be signalled to the
5300 -- caller, not handled by any local handler (RM 6.4(11)).
5302 -- Note: we do not need to analyze the constructed sequence here, since
5303 -- it has no handler, and an attempt to analyze the handled statement
5304 -- sequence twice is risky in various ways (e.g. the issue of expanding
5305 -- cleanup actions twice).
5307 elsif Has_Missing_Return (Spec_Id) then
5308 declare
5309 Hloc : constant Source_Ptr := Sloc (H);
5310 Blok : constant Node_Id :=
5311 Make_Block_Statement (Hloc,
5312 Handled_Statement_Sequence => H);
5313 Rais : constant Node_Id :=
5314 Make_Raise_Program_Error (Hloc,
5315 Reason => PE_Missing_Return);
5317 begin
5318 Set_Handled_Statement_Sequence (N,
5319 Make_Handled_Sequence_Of_Statements (Hloc,
5320 Statements => New_List (Blok, Rais)));
5322 Push_Scope (Spec_Id);
5323 Analyze (Blok);
5324 Analyze (Rais);
5325 Pop_Scope;
5326 end;
5327 end if;
5329 -- If subprogram contains a parameterless recursive call, then we may
5330 -- have an infinite recursion, so see if we can generate code to check
5331 -- for this possibility if storage checks are not suppressed.
5333 if Ekind (Spec_Id) = E_Procedure
5334 and then Has_Recursive_Call (Spec_Id)
5335 and then not Storage_Checks_Suppressed (Spec_Id)
5336 then
5337 Detect_Infinite_Recursion (N, Spec_Id);
5338 end if;
5340 -- Set to encode entity names in package body before gigi is called
5342 Qualify_Entity_Names (N);
5344 -- If we are unnesting procedures, and this is an outer level procedure
5345 -- with nested subprograms, do the unnesting operation now.
5347 if Opt.Unnest_Subprogram_Mode
5348 and then Is_Library_Level_Entity (Spec_Id)
5349 and then Has_Nested_Subprogram (Spec_Id)
5350 then
5351 Unnest_Subprogram (Spec_Id, N);
5352 end if;
5353 end Expand_N_Subprogram_Body;
5355 -----------------------------------
5356 -- Expand_N_Subprogram_Body_Stub --
5357 -----------------------------------
5359 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
5360 begin
5361 if Present (Corresponding_Body (N)) then
5362 Expand_N_Subprogram_Body (
5363 Unit_Declaration_Node (Corresponding_Body (N)));
5364 end if;
5365 end Expand_N_Subprogram_Body_Stub;
5367 -------------------------------------
5368 -- Expand_N_Subprogram_Declaration --
5369 -------------------------------------
5371 -- If the declaration appears within a protected body, it is a private
5372 -- operation of the protected type. We must create the corresponding
5373 -- protected subprogram an associated formals. For a normal protected
5374 -- operation, this is done when expanding the protected type declaration.
5376 -- If the declaration is for a null procedure, emit null body
5378 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
5379 Loc : constant Source_Ptr := Sloc (N);
5380 Subp : constant Entity_Id := Defining_Entity (N);
5381 Scop : constant Entity_Id := Scope (Subp);
5382 Prot_Decl : Node_Id;
5383 Prot_Bod : Node_Id;
5384 Prot_Id : Entity_Id;
5386 begin
5387 -- In SPARK, subprogram declarations are only allowed in package
5388 -- specifications.
5390 if Nkind (Parent (N)) /= N_Package_Specification then
5391 if Nkind (Parent (N)) = N_Compilation_Unit then
5392 Check_SPARK_05_Restriction
5393 ("subprogram declaration is not a library item", N);
5395 elsif Present (Next (N))
5396 and then Nkind (Next (N)) = N_Pragma
5397 and then Get_Pragma_Id (Pragma_Name (Next (N))) = Pragma_Import
5398 then
5399 -- In SPARK, subprogram declarations are also permitted in
5400 -- declarative parts when immediately followed by a corresponding
5401 -- pragma Import. We only check here that there is some pragma
5402 -- Import.
5404 null;
5405 else
5406 Check_SPARK_05_Restriction
5407 ("subprogram declaration is not allowed here", N);
5408 end if;
5409 end if;
5411 -- Deal with case of protected subprogram. Do not generate protected
5412 -- operation if operation is flagged as eliminated.
5414 if Is_List_Member (N)
5415 and then Present (Parent (List_Containing (N)))
5416 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5417 and then Is_Protected_Type (Scop)
5418 then
5419 if No (Protected_Body_Subprogram (Subp))
5420 and then not Is_Eliminated (Subp)
5421 then
5422 Prot_Decl :=
5423 Make_Subprogram_Declaration (Loc,
5424 Specification =>
5425 Build_Protected_Sub_Specification
5426 (N, Scop, Unprotected_Mode));
5428 -- The protected subprogram is declared outside of the protected
5429 -- body. Given that the body has frozen all entities so far, we
5430 -- analyze the subprogram and perform freezing actions explicitly.
5431 -- including the generation of an explicit freeze node, to ensure
5432 -- that gigi has the proper order of elaboration.
5433 -- If the body is a subunit, the insertion point is before the
5434 -- stub in the parent.
5436 Prot_Bod := Parent (List_Containing (N));
5438 if Nkind (Parent (Prot_Bod)) = N_Subunit then
5439 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
5440 end if;
5442 Insert_Before (Prot_Bod, Prot_Decl);
5443 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
5444 Set_Has_Delayed_Freeze (Prot_Id);
5446 Push_Scope (Scope (Scop));
5447 Analyze (Prot_Decl);
5448 Freeze_Before (N, Prot_Id);
5449 Set_Protected_Body_Subprogram (Subp, Prot_Id);
5451 -- Create protected operation as well. Even though the operation
5452 -- is only accessible within the body, it is possible to make it
5453 -- available outside of the protected object by using 'Access to
5454 -- provide a callback, so build protected version in all cases.
5456 Prot_Decl :=
5457 Make_Subprogram_Declaration (Loc,
5458 Specification =>
5459 Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
5460 Insert_Before (Prot_Bod, Prot_Decl);
5461 Analyze (Prot_Decl);
5463 Pop_Scope;
5464 end if;
5466 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
5467 -- cases this is superfluous because calls to it will be automatically
5468 -- inlined, but we definitely need the body if preconditions for the
5469 -- procedure are present.
5471 elsif Nkind (Specification (N)) = N_Procedure_Specification
5472 and then Null_Present (Specification (N))
5473 then
5474 declare
5475 Bod : constant Node_Id := Body_To_Inline (N);
5477 begin
5478 Set_Has_Completion (Subp, False);
5479 Append_Freeze_Action (Subp, Bod);
5481 -- The body now contains raise statements, so calls to it will
5482 -- not be inlined.
5484 Set_Is_Inlined (Subp, False);
5485 end;
5486 end if;
5487 end Expand_N_Subprogram_Declaration;
5489 --------------------------------
5490 -- Expand_Non_Function_Return --
5491 --------------------------------
5493 procedure Expand_Non_Function_Return (N : Node_Id) is
5494 pragma Assert (No (Expression (N)));
5496 Loc : constant Source_Ptr := Sloc (N);
5497 Scope_Id : Entity_Id := Return_Applies_To (Return_Statement_Entity (N));
5498 Kind : constant Entity_Kind := Ekind (Scope_Id);
5499 Call : Node_Id;
5500 Acc_Stat : Node_Id;
5501 Goto_Stat : Node_Id;
5502 Lab_Node : Node_Id;
5504 begin
5505 -- Call the _Postconditions procedure if the related subprogram has
5506 -- contract assertions that need to be verified on exit.
5508 if Ekind_In (Scope_Id, E_Entry, E_Entry_Family, E_Procedure)
5509 and then Present (Postconditions_Proc (Scope_Id))
5510 then
5511 Insert_Action (N,
5512 Make_Procedure_Call_Statement (Loc,
5513 Name => New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc)));
5514 end if;
5516 -- If it is a return from a procedure do no extra steps
5518 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
5519 return;
5521 -- If it is a nested return within an extended one, replace it with a
5522 -- return of the previously declared return object.
5524 elsif Kind = E_Return_Statement then
5525 Rewrite (N,
5526 Make_Simple_Return_Statement (Loc,
5527 Expression =>
5528 New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
5529 Set_Comes_From_Extended_Return_Statement (N);
5530 Set_Return_Statement_Entity (N, Scope_Id);
5531 Expand_Simple_Function_Return (N);
5532 return;
5533 end if;
5535 pragma Assert (Is_Entry (Scope_Id));
5537 -- Look at the enclosing block to see whether the return is from an
5538 -- accept statement or an entry body.
5540 for J in reverse 0 .. Scope_Stack.Last loop
5541 Scope_Id := Scope_Stack.Table (J).Entity;
5542 exit when Is_Concurrent_Type (Scope_Id);
5543 end loop;
5545 -- If it is a return from accept statement it is expanded as call to
5546 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
5548 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
5549 -- Expand_N_Accept_Alternative in exp_ch9.adb)
5551 if Is_Task_Type (Scope_Id) then
5553 Call :=
5554 Make_Procedure_Call_Statement (Loc,
5555 Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
5556 Insert_Before (N, Call);
5557 -- why not insert actions here???
5558 Analyze (Call);
5560 Acc_Stat := Parent (N);
5561 while Nkind (Acc_Stat) /= N_Accept_Statement loop
5562 Acc_Stat := Parent (Acc_Stat);
5563 end loop;
5565 Lab_Node := Last (Statements
5566 (Handled_Statement_Sequence (Acc_Stat)));
5568 Goto_Stat := Make_Goto_Statement (Loc,
5569 Name => New_Occurrence_Of
5570 (Entity (Identifier (Lab_Node)), Loc));
5572 Set_Analyzed (Goto_Stat);
5574 Rewrite (N, Goto_Stat);
5575 Analyze (N);
5577 -- If it is a return from an entry body, put a Complete_Entry_Body call
5578 -- in front of the return.
5580 elsif Is_Protected_Type (Scope_Id) then
5581 Call :=
5582 Make_Procedure_Call_Statement (Loc,
5583 Name =>
5584 New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
5585 Parameter_Associations => New_List (
5586 Make_Attribute_Reference (Loc,
5587 Prefix =>
5588 New_Occurrence_Of
5589 (Find_Protection_Object (Current_Scope), Loc),
5590 Attribute_Name => Name_Unchecked_Access)));
5592 Insert_Before (N, Call);
5593 Analyze (Call);
5594 end if;
5595 end Expand_Non_Function_Return;
5597 ---------------------------------------
5598 -- Expand_Protected_Object_Reference --
5599 ---------------------------------------
5601 function Expand_Protected_Object_Reference
5602 (N : Node_Id;
5603 Scop : Entity_Id) return Node_Id
5605 Loc : constant Source_Ptr := Sloc (N);
5606 Corr : Entity_Id;
5607 Rec : Node_Id;
5608 Param : Entity_Id;
5609 Proc : Entity_Id;
5611 begin
5612 Rec := Make_Identifier (Loc, Name_uObject);
5613 Set_Etype (Rec, Corresponding_Record_Type (Scop));
5615 -- Find enclosing protected operation, and retrieve its first parameter,
5616 -- which denotes the enclosing protected object. If the enclosing
5617 -- operation is an entry, we are immediately within the protected body,
5618 -- and we can retrieve the object from the service entries procedure. A
5619 -- barrier function has the same signature as an entry. A barrier
5620 -- function is compiled within the protected object, but unlike
5621 -- protected operations its never needs locks, so that its protected
5622 -- body subprogram points to itself.
5624 Proc := Current_Scope;
5625 while Present (Proc)
5626 and then Scope (Proc) /= Scop
5627 loop
5628 Proc := Scope (Proc);
5629 end loop;
5631 Corr := Protected_Body_Subprogram (Proc);
5633 if No (Corr) then
5635 -- Previous error left expansion incomplete.
5636 -- Nothing to do on this call.
5638 return Empty;
5639 end if;
5641 Param :=
5642 Defining_Identifier
5643 (First (Parameter_Specifications (Parent (Corr))));
5645 if Is_Subprogram (Proc) and then Proc /= Corr then
5647 -- Protected function or procedure
5649 Set_Entity (Rec, Param);
5651 -- Rec is a reference to an entity which will not be in scope when
5652 -- the call is reanalyzed, and needs no further analysis.
5654 Set_Analyzed (Rec);
5656 else
5657 -- Entry or barrier function for entry body. The first parameter of
5658 -- the entry body procedure is pointer to the object. We create a
5659 -- local variable of the proper type, duplicating what is done to
5660 -- define _object later on.
5662 declare
5663 Decls : List_Id;
5664 Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
5666 begin
5667 Decls := New_List (
5668 Make_Full_Type_Declaration (Loc,
5669 Defining_Identifier => Obj_Ptr,
5670 Type_Definition =>
5671 Make_Access_To_Object_Definition (Loc,
5672 Subtype_Indication =>
5673 New_Occurrence_Of
5674 (Corresponding_Record_Type (Scop), Loc))));
5676 Insert_Actions (N, Decls);
5677 Freeze_Before (N, Obj_Ptr);
5679 Rec :=
5680 Make_Explicit_Dereference (Loc,
5681 Prefix =>
5682 Unchecked_Convert_To (Obj_Ptr,
5683 New_Occurrence_Of (Param, Loc)));
5685 -- Analyze new actual. Other actuals in calls are already analyzed
5686 -- and the list of actuals is not reanalyzed after rewriting.
5688 Set_Parent (Rec, N);
5689 Analyze (Rec);
5690 end;
5691 end if;
5693 return Rec;
5694 end Expand_Protected_Object_Reference;
5696 --------------------------------------
5697 -- Expand_Protected_Subprogram_Call --
5698 --------------------------------------
5700 procedure Expand_Protected_Subprogram_Call
5701 (N : Node_Id;
5702 Subp : Entity_Id;
5703 Scop : Entity_Id)
5705 Rec : Node_Id;
5707 procedure Freeze_Called_Function;
5708 -- If it is a function call it can appear in elaboration code and
5709 -- the called entity must be frozen before the call. This must be
5710 -- done before the call is expanded, as the expansion may rewrite it
5711 -- to something other than a call (e.g. a temporary initialized in a
5712 -- transient block).
5714 ----------------------------
5715 -- Freeze_Called_Function --
5716 ----------------------------
5718 procedure Freeze_Called_Function is
5719 begin
5720 if Ekind (Subp) = E_Function then
5721 Freeze_Expression (Name (N));
5722 end if;
5723 end Freeze_Called_Function;
5725 -- Start of processing for Expand_Protected_Subprogram_Call
5727 begin
5728 -- If the protected object is not an enclosing scope, this is an inter-
5729 -- object function call. Inter-object procedure calls are expanded by
5730 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
5731 -- subprogram being called is in the protected body being compiled, and
5732 -- if the protected object in the call is statically the enclosing type.
5733 -- The object may be an component of some other data structure, in which
5734 -- case this must be handled as an inter-object call.
5736 if not In_Open_Scopes (Scop)
5737 or else not Is_Entity_Name (Name (N))
5738 then
5739 if Nkind (Name (N)) = N_Selected_Component then
5740 Rec := Prefix (Name (N));
5742 else
5743 pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
5744 Rec := Prefix (Prefix (Name (N)));
5745 end if;
5747 Freeze_Called_Function;
5748 Build_Protected_Subprogram_Call (N,
5749 Name => New_Occurrence_Of (Subp, Sloc (N)),
5750 Rec => Convert_Concurrent (Rec, Etype (Rec)),
5751 External => True);
5753 else
5754 Rec := Expand_Protected_Object_Reference (N, Scop);
5756 if No (Rec) then
5757 return;
5758 end if;
5760 Freeze_Called_Function;
5761 Build_Protected_Subprogram_Call (N,
5762 Name => Name (N),
5763 Rec => Rec,
5764 External => False);
5766 end if;
5768 -- Analyze and resolve the new call. The actuals have already been
5769 -- resolved, but expansion of a function call will add extra actuals
5770 -- if needed. Analysis of a procedure call already includes resolution.
5772 Analyze (N);
5774 if Ekind (Subp) = E_Function then
5775 Resolve (N, Etype (Subp));
5776 end if;
5777 end Expand_Protected_Subprogram_Call;
5779 --------------------------------------------
5780 -- Has_Unconstrained_Access_Discriminants --
5781 --------------------------------------------
5783 function Has_Unconstrained_Access_Discriminants
5784 (Subtyp : Entity_Id) return Boolean
5786 Discr : Entity_Id;
5788 begin
5789 if Has_Discriminants (Subtyp)
5790 and then not Is_Constrained (Subtyp)
5791 then
5792 Discr := First_Discriminant (Subtyp);
5793 while Present (Discr) loop
5794 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
5795 return True;
5796 end if;
5798 Next_Discriminant (Discr);
5799 end loop;
5800 end if;
5802 return False;
5803 end Has_Unconstrained_Access_Discriminants;
5805 -----------------------------------
5806 -- Expand_Simple_Function_Return --
5807 -----------------------------------
5809 -- The "simple" comes from the syntax rule simple_return_statement. The
5810 -- semantics are not at all simple.
5812 procedure Expand_Simple_Function_Return (N : Node_Id) is
5813 Loc : constant Source_Ptr := Sloc (N);
5815 Scope_Id : constant Entity_Id :=
5816 Return_Applies_To (Return_Statement_Entity (N));
5817 -- The function we are returning from
5819 R_Type : constant Entity_Id := Etype (Scope_Id);
5820 -- The result type of the function
5822 Utyp : constant Entity_Id := Underlying_Type (R_Type);
5824 Exp : constant Node_Id := Expression (N);
5825 pragma Assert (Present (Exp));
5827 Exptyp : constant Entity_Id := Etype (Exp);
5828 -- The type of the expression (not necessarily the same as R_Type)
5830 Subtype_Ind : Node_Id;
5831 -- If the result type of the function is class-wide and the expression
5832 -- has a specific type, then we use the expression's type as the type of
5833 -- the return object. In cases where the expression is an aggregate that
5834 -- is built in place, this avoids the need for an expensive conversion
5835 -- of the return object to the specific type on assignments to the
5836 -- individual components.
5838 begin
5839 if Is_Class_Wide_Type (R_Type)
5840 and then not Is_Class_Wide_Type (Etype (Exp))
5841 then
5842 Subtype_Ind := New_Occurrence_Of (Etype (Exp), Loc);
5843 else
5844 Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
5845 end if;
5847 -- For the case of a simple return that does not come from an extended
5848 -- return, in the case of Ada 2005 where we are returning a limited
5849 -- type, we rewrite "return <expression>;" to be:
5851 -- return _anon_ : <return_subtype> := <expression>
5853 -- The expansion produced by Expand_N_Extended_Return_Statement will
5854 -- contain simple return statements (for example, a block containing
5855 -- simple return of the return object), which brings us back here with
5856 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
5857 -- checking for a simple return that does not come from an extended
5858 -- return is to avoid this infinite recursion.
5860 -- The reason for this design is that for Ada 2005 limited returns, we
5861 -- need to reify the return object, so we can build it "in place", and
5862 -- we need a block statement to hang finalization and tasking stuff.
5864 -- ??? In order to avoid disruption, we avoid translating to extended
5865 -- return except in the cases where we really need to (Ada 2005 for
5866 -- inherently limited). We might prefer to do this translation in all
5867 -- cases (except perhaps for the case of Ada 95 inherently limited),
5868 -- in order to fully exercise the Expand_N_Extended_Return_Statement
5869 -- code. This would also allow us to do the build-in-place optimization
5870 -- for efficiency even in cases where it is semantically not required.
5872 -- As before, we check the type of the return expression rather than the
5873 -- return type of the function, because the latter may be a limited
5874 -- class-wide interface type, which is not a limited type, even though
5875 -- the type of the expression may be.
5877 if not Comes_From_Extended_Return_Statement (N)
5878 and then Is_Limited_View (Etype (Expression (N)))
5879 and then Ada_Version >= Ada_2005
5880 and then not Debug_Flag_Dot_L
5882 -- The functionality of interface thunks is simple and it is always
5883 -- handled by means of simple return statements. This leaves their
5884 -- expansion simple and clean.
5886 and then not Is_Thunk (Current_Scope)
5887 then
5888 declare
5889 Return_Object_Entity : constant Entity_Id :=
5890 Make_Temporary (Loc, 'R', Exp);
5892 Obj_Decl : constant Node_Id :=
5893 Make_Object_Declaration (Loc,
5894 Defining_Identifier => Return_Object_Entity,
5895 Object_Definition => Subtype_Ind,
5896 Expression => Exp);
5898 Ext : constant Node_Id :=
5899 Make_Extended_Return_Statement (Loc,
5900 Return_Object_Declarations => New_List (Obj_Decl));
5901 -- Do not perform this high-level optimization if the result type
5902 -- is an interface because the "this" pointer must be displaced.
5904 begin
5905 Rewrite (N, Ext);
5906 Analyze (N);
5907 return;
5908 end;
5909 end if;
5911 -- Here we have a simple return statement that is part of the expansion
5912 -- of an extended return statement (either written by the user, or
5913 -- generated by the above code).
5915 -- Always normalize C/Fortran boolean result. This is not always needed,
5916 -- but it seems a good idea to minimize the passing around of non-
5917 -- normalized values, and in any case this handles the processing of
5918 -- barrier functions for protected types, which turn the condition into
5919 -- a return statement.
5921 if Is_Boolean_Type (Exptyp)
5922 and then Nonzero_Is_True (Exptyp)
5923 then
5924 Adjust_Condition (Exp);
5925 Adjust_Result_Type (Exp, Exptyp);
5926 end if;
5928 -- Do validity check if enabled for returns
5930 if Validity_Checks_On
5931 and then Validity_Check_Returns
5932 then
5933 Ensure_Valid (Exp);
5934 end if;
5936 -- Check the result expression of a scalar function against the subtype
5937 -- of the function by inserting a conversion. This conversion must
5938 -- eventually be performed for other classes of types, but for now it's
5939 -- only done for scalars.
5940 -- ???
5942 if Is_Scalar_Type (Exptyp) then
5943 Rewrite (Exp, Convert_To (R_Type, Exp));
5945 -- The expression is resolved to ensure that the conversion gets
5946 -- expanded to generate a possible constraint check.
5948 Analyze_And_Resolve (Exp, R_Type);
5949 end if;
5951 -- Deal with returning variable length objects and controlled types
5953 -- Nothing to do if we are returning by reference, or this is not a
5954 -- type that requires special processing (indicated by the fact that
5955 -- it requires a cleanup scope for the secondary stack case).
5957 if Is_Limited_View (Exptyp)
5958 or else Is_Limited_Interface (Exptyp)
5959 then
5960 null;
5962 -- No copy needed for thunks returning interface type objects since
5963 -- the object is returned by reference and the maximum functionality
5964 -- required is just to displace the pointer.
5966 elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
5967 null;
5969 -- If the call is within a thunk and the type is a limited view, the
5970 -- backend will eventually see the non-limited view of the type.
5972 elsif Is_Thunk (Current_Scope) and then Is_Incomplete_Type (Exptyp) then
5973 return;
5975 elsif not Requires_Transient_Scope (R_Type) then
5977 -- Mutable records with no variable length components are not
5978 -- returned on the sec-stack, so we need to make sure that the
5979 -- backend will only copy back the size of the actual value, and not
5980 -- the maximum size. We create an actual subtype for this purpose.
5982 declare
5983 Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
5984 Decl : Node_Id;
5985 Ent : Entity_Id;
5986 begin
5987 if Has_Discriminants (Ubt)
5988 and then not Is_Constrained (Ubt)
5989 and then not Has_Unchecked_Union (Ubt)
5990 then
5991 Decl := Build_Actual_Subtype (Ubt, Exp);
5992 Ent := Defining_Identifier (Decl);
5993 Insert_Action (Exp, Decl);
5994 Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
5995 Analyze_And_Resolve (Exp);
5996 end if;
5997 end;
5999 -- Here if secondary stack is used
6001 else
6002 -- Prevent the reclamation of the secondary stack by all enclosing
6003 -- blocks and loops as well as the related function, otherwise the
6004 -- result will be reclaimed too early or even clobbered. Due to a
6005 -- possible mix of internally generated blocks, source blocks and
6006 -- loops, the scope stack may not be contiguous as all labels are
6007 -- inserted at the top level within the related function. Instead,
6008 -- perform a parent-based traversal and mark all appropriate
6009 -- constructs.
6011 declare
6012 P : Node_Id;
6014 begin
6015 P := N;
6016 while Present (P) loop
6018 -- Mark the label of a source or internally generated block or
6019 -- loop.
6021 if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
6022 Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
6024 -- Mark the enclosing function
6026 elsif Nkind (P) = N_Subprogram_Body then
6027 if Present (Corresponding_Spec (P)) then
6028 Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
6029 else
6030 Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
6031 end if;
6033 -- Do not go beyond the enclosing function
6035 exit;
6036 end if;
6038 P := Parent (P);
6039 end loop;
6040 end;
6042 -- Optimize the case where the result is a function call. In this
6043 -- case either the result is already on the secondary stack, or is
6044 -- already being returned with the stack pointer depressed and no
6045 -- further processing is required except to set the By_Ref flag
6046 -- to ensure that gigi does not attempt an extra unnecessary copy.
6047 -- (actually not just unnecessary but harmfully wrong in the case
6048 -- of a controlled type, where gigi does not know how to do a copy).
6049 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6050 -- for array types if the constrained status of the target type is
6051 -- different from that of the expression.
6053 if Requires_Transient_Scope (Exptyp)
6054 and then
6055 (not Is_Array_Type (Exptyp)
6056 or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
6057 or else CW_Or_Has_Controlled_Part (Utyp))
6058 and then Nkind (Exp) = N_Function_Call
6059 then
6060 Set_By_Ref (N);
6062 -- Remove side effects from the expression now so that other parts
6063 -- of the expander do not have to reanalyze this node without this
6064 -- optimization
6066 Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6068 -- For controlled types, do the allocation on the secondary stack
6069 -- manually in order to call adjust at the right time:
6071 -- type Anon1 is access R_Type;
6072 -- for Anon1'Storage_pool use ss_pool;
6073 -- Anon2 : anon1 := new R_Type'(expr);
6074 -- return Anon2.all;
6076 -- We do the same for classwide types that are not potentially
6077 -- controlled (by the virtue of restriction No_Finalization) because
6078 -- gigi is not able to properly allocate class-wide types.
6080 elsif CW_Or_Has_Controlled_Part (Utyp) then
6081 declare
6082 Loc : constant Source_Ptr := Sloc (N);
6083 Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
6084 Alloc_Node : Node_Id;
6085 Temp : Entity_Id;
6087 begin
6088 Set_Ekind (Acc_Typ, E_Access_Type);
6090 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
6092 -- This is an allocator for the secondary stack, and it's fine
6093 -- to have Comes_From_Source set False on it, as gigi knows not
6094 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6096 Alloc_Node :=
6097 Make_Allocator (Loc,
6098 Expression =>
6099 Make_Qualified_Expression (Loc,
6100 Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
6101 Expression => Relocate_Node (Exp)));
6103 -- We do not want discriminant checks on the declaration,
6104 -- given that it gets its value from the allocator.
6106 Set_No_Initialization (Alloc_Node);
6108 Temp := Make_Temporary (Loc, 'R', Alloc_Node);
6110 Insert_List_Before_And_Analyze (N, New_List (
6111 Make_Full_Type_Declaration (Loc,
6112 Defining_Identifier => Acc_Typ,
6113 Type_Definition =>
6114 Make_Access_To_Object_Definition (Loc,
6115 Subtype_Indication => Subtype_Ind)),
6117 Make_Object_Declaration (Loc,
6118 Defining_Identifier => Temp,
6119 Object_Definition => New_Occurrence_Of (Acc_Typ, Loc),
6120 Expression => Alloc_Node)));
6122 Rewrite (Exp,
6123 Make_Explicit_Dereference (Loc,
6124 Prefix => New_Occurrence_Of (Temp, Loc)));
6126 -- Ada 2005 (AI-251): If the type of the returned object is
6127 -- an interface then add an implicit type conversion to force
6128 -- displacement of the "this" pointer.
6130 if Is_Interface (R_Type) then
6131 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6132 end if;
6134 Analyze_And_Resolve (Exp, R_Type);
6135 end;
6137 -- Otherwise use the gigi mechanism to allocate result on the
6138 -- secondary stack.
6140 else
6141 Check_Restriction (No_Secondary_Stack, N);
6142 Set_Storage_Pool (N, RTE (RE_SS_Pool));
6144 -- If we are generating code for the VM do not use
6145 -- SS_Allocate since everything is heap-allocated anyway.
6147 if VM_Target = No_VM then
6148 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
6149 end if;
6150 end if;
6151 end if;
6153 -- Implement the rules of 6.5(8-10), which require a tag check in
6154 -- the case of a limited tagged return type, and tag reassignment for
6155 -- nonlimited tagged results. These actions are needed when the return
6156 -- type is a specific tagged type and the result expression is a
6157 -- conversion or a formal parameter, because in that case the tag of
6158 -- the expression might differ from the tag of the specific result type.
6160 if Is_Tagged_Type (Utyp)
6161 and then not Is_Class_Wide_Type (Utyp)
6162 and then (Nkind_In (Exp, N_Type_Conversion,
6163 N_Unchecked_Type_Conversion)
6164 or else (Is_Entity_Name (Exp)
6165 and then Ekind (Entity (Exp)) in Formal_Kind))
6166 then
6167 -- When the return type is limited, perform a check that the tag of
6168 -- the result is the same as the tag of the return type.
6170 if Is_Limited_Type (R_Type) then
6171 Insert_Action (Exp,
6172 Make_Raise_Constraint_Error (Loc,
6173 Condition =>
6174 Make_Op_Ne (Loc,
6175 Left_Opnd =>
6176 Make_Selected_Component (Loc,
6177 Prefix => Duplicate_Subexpr (Exp),
6178 Selector_Name => Make_Identifier (Loc, Name_uTag)),
6179 Right_Opnd =>
6180 Make_Attribute_Reference (Loc,
6181 Prefix =>
6182 New_Occurrence_Of (Base_Type (Utyp), Loc),
6183 Attribute_Name => Name_Tag)),
6184 Reason => CE_Tag_Check_Failed));
6186 -- If the result type is a specific nonlimited tagged type, then we
6187 -- have to ensure that the tag of the result is that of the result
6188 -- type. This is handled by making a copy of the expression in
6189 -- the case where it might have a different tag, namely when the
6190 -- expression is a conversion or a formal parameter. We create a new
6191 -- object of the result type and initialize it from the expression,
6192 -- which will implicitly force the tag to be set appropriately.
6194 else
6195 declare
6196 ExpR : constant Node_Id := Relocate_Node (Exp);
6197 Result_Id : constant Entity_Id :=
6198 Make_Temporary (Loc, 'R', ExpR);
6199 Result_Exp : constant Node_Id :=
6200 New_Occurrence_Of (Result_Id, Loc);
6201 Result_Obj : constant Node_Id :=
6202 Make_Object_Declaration (Loc,
6203 Defining_Identifier => Result_Id,
6204 Object_Definition =>
6205 New_Occurrence_Of (R_Type, Loc),
6206 Constant_Present => True,
6207 Expression => ExpR);
6209 begin
6210 Set_Assignment_OK (Result_Obj);
6211 Insert_Action (Exp, Result_Obj);
6213 Rewrite (Exp, Result_Exp);
6214 Analyze_And_Resolve (Exp, R_Type);
6215 end;
6216 end if;
6218 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6219 -- a check that the level of the return expression's underlying type
6220 -- is not deeper than the level of the master enclosing the function.
6221 -- Always generate the check when the type of the return expression
6222 -- is class-wide, when it's a type conversion, or when it's a formal
6223 -- parameter. Otherwise, suppress the check in the case where the
6224 -- return expression has a specific type whose level is known not to
6225 -- be statically deeper than the function's result type.
6227 -- No runtime check needed in interface thunks since it is performed
6228 -- by the target primitive associated with the thunk.
6230 -- Note: accessibility check is skipped in the VM case, since there
6231 -- does not seem to be any practical way to implement this check.
6233 elsif Ada_Version >= Ada_2005
6234 and then Tagged_Type_Expansion
6235 and then Is_Class_Wide_Type (R_Type)
6236 and then not Is_Thunk (Current_Scope)
6237 and then not Scope_Suppress.Suppress (Accessibility_Check)
6238 and then
6239 (Is_Class_Wide_Type (Etype (Exp))
6240 or else Nkind_In (Exp, N_Type_Conversion,
6241 N_Unchecked_Type_Conversion)
6242 or else (Is_Entity_Name (Exp)
6243 and then Ekind (Entity (Exp)) in Formal_Kind)
6244 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
6245 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
6246 then
6247 declare
6248 Tag_Node : Node_Id;
6250 begin
6251 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6252 -- "this" to reference the base of the object. This is required to
6253 -- get access to the TSD of the object.
6255 if Is_Class_Wide_Type (Etype (Exp))
6256 and then Is_Interface (Etype (Exp))
6257 and then Nkind (Exp) = N_Explicit_Dereference
6258 then
6259 Tag_Node :=
6260 Make_Explicit_Dereference (Loc,
6261 Prefix =>
6262 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6263 Make_Function_Call (Loc,
6264 Name =>
6265 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6266 Parameter_Associations => New_List (
6267 Unchecked_Convert_To (RTE (RE_Address),
6268 Duplicate_Subexpr (Prefix (Exp)))))));
6269 else
6270 Tag_Node :=
6271 Make_Attribute_Reference (Loc,
6272 Prefix => Duplicate_Subexpr (Exp),
6273 Attribute_Name => Name_Tag);
6274 end if;
6276 Insert_Action (Exp,
6277 Make_Raise_Program_Error (Loc,
6278 Condition =>
6279 Make_Op_Gt (Loc,
6280 Left_Opnd => Build_Get_Access_Level (Loc, Tag_Node),
6281 Right_Opnd =>
6282 Make_Integer_Literal (Loc,
6283 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
6284 Reason => PE_Accessibility_Check_Failed));
6285 end;
6287 -- AI05-0073: If function has a controlling access result, check that
6288 -- the tag of the return value, if it is not null, matches designated
6289 -- type of return type.
6291 -- The return expression is referenced twice in the code below, so it
6292 -- must be made free of side effects. Given that different compilers
6293 -- may evaluate these parameters in different order, both occurrences
6294 -- perform a copy.
6296 elsif Ekind (R_Type) = E_Anonymous_Access_Type
6297 and then Has_Controlling_Result (Scope_Id)
6298 then
6299 Insert_Action (N,
6300 Make_Raise_Constraint_Error (Loc,
6301 Condition =>
6302 Make_And_Then (Loc,
6303 Left_Opnd =>
6304 Make_Op_Ne (Loc,
6305 Left_Opnd => Duplicate_Subexpr (Exp),
6306 Right_Opnd => Make_Null (Loc)),
6308 Right_Opnd => Make_Op_Ne (Loc,
6309 Left_Opnd =>
6310 Make_Selected_Component (Loc,
6311 Prefix => Duplicate_Subexpr (Exp),
6312 Selector_Name => Make_Identifier (Loc, Name_uTag)),
6314 Right_Opnd =>
6315 Make_Attribute_Reference (Loc,
6316 Prefix =>
6317 New_Occurrence_Of (Designated_Type (R_Type), Loc),
6318 Attribute_Name => Name_Tag))),
6320 Reason => CE_Tag_Check_Failed),
6321 Suppress => All_Checks);
6322 end if;
6324 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6325 -- ensure that the function result does not outlive an
6326 -- object designated by one of it discriminants.
6328 if Present (Extra_Accessibility_Of_Result (Scope_Id))
6329 and then Has_Unconstrained_Access_Discriminants (R_Type)
6330 then
6331 declare
6332 Discrim_Source : Node_Id;
6334 procedure Check_Against_Result_Level (Level : Node_Id);
6335 -- Check the given accessibility level against the level
6336 -- determined by the point of call. (AI05-0234).
6338 --------------------------------
6339 -- Check_Against_Result_Level --
6340 --------------------------------
6342 procedure Check_Against_Result_Level (Level : Node_Id) is
6343 begin
6344 Insert_Action (N,
6345 Make_Raise_Program_Error (Loc,
6346 Condition =>
6347 Make_Op_Gt (Loc,
6348 Left_Opnd => Level,
6349 Right_Opnd =>
6350 New_Occurrence_Of
6351 (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
6352 Reason => PE_Accessibility_Check_Failed));
6353 end Check_Against_Result_Level;
6355 begin
6356 Discrim_Source := Exp;
6357 while Nkind (Discrim_Source) = N_Qualified_Expression loop
6358 Discrim_Source := Expression (Discrim_Source);
6359 end loop;
6361 if Nkind (Discrim_Source) = N_Identifier
6362 and then Is_Return_Object (Entity (Discrim_Source))
6363 then
6364 Discrim_Source := Entity (Discrim_Source);
6366 if Is_Constrained (Etype (Discrim_Source)) then
6367 Discrim_Source := Etype (Discrim_Source);
6368 else
6369 Discrim_Source := Expression (Parent (Discrim_Source));
6370 end if;
6372 elsif Nkind (Discrim_Source) = N_Identifier
6373 and then Nkind_In (Original_Node (Discrim_Source),
6374 N_Aggregate, N_Extension_Aggregate)
6375 then
6376 Discrim_Source := Original_Node (Discrim_Source);
6378 elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
6379 Nkind (Original_Node (Discrim_Source)) = N_Function_Call
6380 then
6381 Discrim_Source := Original_Node (Discrim_Source);
6382 end if;
6384 while Nkind_In (Discrim_Source, N_Qualified_Expression,
6385 N_Type_Conversion,
6386 N_Unchecked_Type_Conversion)
6387 loop
6388 Discrim_Source := Expression (Discrim_Source);
6389 end loop;
6391 case Nkind (Discrim_Source) is
6392 when N_Defining_Identifier =>
6394 pragma Assert (Is_Composite_Type (Discrim_Source)
6395 and then Has_Discriminants (Discrim_Source)
6396 and then Is_Constrained (Discrim_Source));
6398 declare
6399 Discrim : Entity_Id :=
6400 First_Discriminant (Base_Type (R_Type));
6401 Disc_Elmt : Elmt_Id :=
6402 First_Elmt (Discriminant_Constraint
6403 (Discrim_Source));
6404 begin
6405 loop
6406 if Ekind (Etype (Discrim)) =
6407 E_Anonymous_Access_Type
6408 then
6409 Check_Against_Result_Level
6410 (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
6411 end if;
6413 Next_Elmt (Disc_Elmt);
6414 Next_Discriminant (Discrim);
6415 exit when not Present (Discrim);
6416 end loop;
6417 end;
6419 when N_Aggregate | N_Extension_Aggregate =>
6421 -- Unimplemented: extension aggregate case where discrims
6422 -- come from ancestor part, not extension part.
6424 declare
6425 Discrim : Entity_Id :=
6426 First_Discriminant (Base_Type (R_Type));
6428 Disc_Exp : Node_Id := Empty;
6430 Positionals_Exhausted
6431 : Boolean := not Present (Expressions
6432 (Discrim_Source));
6434 function Associated_Expr
6435 (Comp_Id : Entity_Id;
6436 Associations : List_Id) return Node_Id;
6438 -- Given a component and a component associations list,
6439 -- locate the expression for that component; returns
6440 -- Empty if no such expression is found.
6442 ---------------------
6443 -- Associated_Expr --
6444 ---------------------
6446 function Associated_Expr
6447 (Comp_Id : Entity_Id;
6448 Associations : List_Id) return Node_Id
6450 Assoc : Node_Id;
6451 Choice : Node_Id;
6453 begin
6454 -- Simple linear search seems ok here
6456 Assoc := First (Associations);
6457 while Present (Assoc) loop
6458 Choice := First (Choices (Assoc));
6459 while Present (Choice) loop
6460 if (Nkind (Choice) = N_Identifier
6461 and then Chars (Choice) = Chars (Comp_Id))
6462 or else (Nkind (Choice) = N_Others_Choice)
6463 then
6464 return Expression (Assoc);
6465 end if;
6467 Next (Choice);
6468 end loop;
6470 Next (Assoc);
6471 end loop;
6473 return Empty;
6474 end Associated_Expr;
6476 -- Start of processing for Expand_Simple_Function_Return
6478 begin
6479 if not Positionals_Exhausted then
6480 Disc_Exp := First (Expressions (Discrim_Source));
6481 end if;
6483 loop
6484 if Positionals_Exhausted then
6485 Disc_Exp :=
6486 Associated_Expr
6487 (Discrim,
6488 Component_Associations (Discrim_Source));
6489 end if;
6491 if Ekind (Etype (Discrim)) =
6492 E_Anonymous_Access_Type
6493 then
6494 Check_Against_Result_Level
6495 (Dynamic_Accessibility_Level (Disc_Exp));
6496 end if;
6498 Next_Discriminant (Discrim);
6499 exit when not Present (Discrim);
6501 if not Positionals_Exhausted then
6502 Next (Disc_Exp);
6503 Positionals_Exhausted := not Present (Disc_Exp);
6504 end if;
6505 end loop;
6506 end;
6508 when N_Function_Call =>
6510 -- No check needed (check performed by callee)
6512 null;
6514 when others =>
6516 declare
6517 Level : constant Node_Id :=
6518 Make_Integer_Literal (Loc,
6519 Object_Access_Level (Discrim_Source));
6521 begin
6522 -- Unimplemented: check for name prefix that includes
6523 -- a dereference of an access value with a dynamic
6524 -- accessibility level (e.g., an access param or a
6525 -- saooaaat) and use dynamic level in that case. For
6526 -- example:
6527 -- return Access_Param.all(Some_Index).Some_Component;
6528 -- ???
6530 Set_Etype (Level, Standard_Natural);
6531 Check_Against_Result_Level (Level);
6532 end;
6534 end case;
6535 end;
6536 end if;
6538 -- If we are returning an object that may not be bit-aligned, then copy
6539 -- the value into a temporary first. This copy may need to expand to a
6540 -- loop of component operations.
6542 if Is_Possibly_Unaligned_Slice (Exp)
6543 or else Is_Possibly_Unaligned_Object (Exp)
6544 then
6545 declare
6546 ExpR : constant Node_Id := Relocate_Node (Exp);
6547 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
6548 begin
6549 Insert_Action (Exp,
6550 Make_Object_Declaration (Loc,
6551 Defining_Identifier => Tnn,
6552 Constant_Present => True,
6553 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6554 Expression => ExpR),
6555 Suppress => All_Checks);
6556 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6557 end;
6558 end if;
6560 -- Call the _Postconditions procedure if the related function has
6561 -- contract assertions that need to be verified on exit.
6563 if Ekind (Scope_Id) = E_Function
6564 and then Present (Postconditions_Proc (Scope_Id))
6565 then
6566 -- We are going to reference the returned value twice in this case,
6567 -- once in the call to _Postconditions, and once in the actual return
6568 -- statement, but we can't have side effects happening twice, and in
6569 -- any case for efficiency we don't want to do the computation twice.
6571 -- If the returned expression is an entity name, we don't need to
6572 -- worry since it is efficient and safe to reference it twice, that's
6573 -- also true for literals other than string literals, and for the
6574 -- case of X.all where X is an entity name.
6576 if Is_Entity_Name (Exp)
6577 or else Nkind_In (Exp, N_Character_Literal,
6578 N_Integer_Literal,
6579 N_Real_Literal)
6580 or else (Nkind (Exp) = N_Explicit_Dereference
6581 and then Is_Entity_Name (Prefix (Exp)))
6582 then
6583 null;
6585 -- Otherwise we are going to need a temporary to capture the value
6587 else
6588 declare
6589 ExpR : Node_Id := Relocate_Node (Exp);
6590 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
6592 begin
6593 -- In the case of discriminated objects, we have created a
6594 -- constrained subtype above, and used the underlying type.
6595 -- This transformation is post-analysis and harmless, except
6596 -- that now the call to the post-condition will be analyzed and
6597 -- type kinds have to match.
6599 if Nkind (ExpR) = N_Unchecked_Type_Conversion
6600 and then
6601 Is_Private_Type (R_Type) /= Is_Private_Type (Etype (ExpR))
6602 then
6603 ExpR := Expression (ExpR);
6604 end if;
6606 -- For a complex expression of an elementary type, capture
6607 -- value in the temporary and use it as the reference.
6609 if Is_Elementary_Type (R_Type) then
6610 Insert_Action (Exp,
6611 Make_Object_Declaration (Loc,
6612 Defining_Identifier => Tnn,
6613 Constant_Present => True,
6614 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6615 Expression => ExpR),
6616 Suppress => All_Checks);
6618 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6620 -- If we have something we can rename, generate a renaming of
6621 -- the object and replace the expression with a reference
6623 elsif Is_Object_Reference (Exp) then
6624 Insert_Action (Exp,
6625 Make_Object_Renaming_Declaration (Loc,
6626 Defining_Identifier => Tnn,
6627 Subtype_Mark => New_Occurrence_Of (R_Type, Loc),
6628 Name => ExpR),
6629 Suppress => All_Checks);
6631 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6633 -- Otherwise we have something like a string literal or an
6634 -- aggregate. We could copy the value, but that would be
6635 -- inefficient. Instead we make a reference to the value and
6636 -- capture this reference with a renaming, the expression is
6637 -- then replaced by a dereference of this renaming.
6639 else
6640 -- For now, copy the value, since the code below does not
6641 -- seem to work correctly ???
6643 Insert_Action (Exp,
6644 Make_Object_Declaration (Loc,
6645 Defining_Identifier => Tnn,
6646 Constant_Present => True,
6647 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6648 Expression => Relocate_Node (Exp)),
6649 Suppress => All_Checks);
6651 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6653 -- Insert_Action (Exp,
6654 -- Make_Object_Renaming_Declaration (Loc,
6655 -- Defining_Identifier => Tnn,
6656 -- Access_Definition =>
6657 -- Make_Access_Definition (Loc,
6658 -- All_Present => True,
6659 -- Subtype_Mark => New_Occurrence_Of (R_Type, Loc)),
6660 -- Name =>
6661 -- Make_Reference (Loc,
6662 -- Prefix => Relocate_Node (Exp))),
6663 -- Suppress => All_Checks);
6665 -- Rewrite (Exp,
6666 -- Make_Explicit_Dereference (Loc,
6667 -- Prefix => New_Occurrence_Of (Tnn, Loc)));
6668 end if;
6669 end;
6670 end if;
6672 -- Generate call to _Postconditions
6674 Insert_Action (Exp,
6675 Make_Procedure_Call_Statement (Loc,
6676 Name =>
6677 New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc),
6678 Parameter_Associations => New_List (Duplicate_Subexpr (Exp))));
6679 end if;
6681 -- Ada 2005 (AI-251): If this return statement corresponds with an
6682 -- simple return statement associated with an extended return statement
6683 -- and the type of the returned object is an interface then generate an
6684 -- implicit conversion to force displacement of the "this" pointer.
6686 if Ada_Version >= Ada_2005
6687 and then Comes_From_Extended_Return_Statement (N)
6688 and then Nkind (Expression (N)) = N_Identifier
6689 and then Is_Interface (Utyp)
6690 and then Utyp /= Underlying_Type (Exptyp)
6691 then
6692 Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
6693 Analyze_And_Resolve (Exp);
6694 end if;
6695 end Expand_Simple_Function_Return;
6697 --------------------------------
6698 -- Expand_Subprogram_Contract --
6699 --------------------------------
6701 procedure Expand_Subprogram_Contract (N : Node_Id) is
6702 Body_Id : constant Entity_Id := Defining_Entity (N);
6703 Spec_Id : constant Entity_Id := Corresponding_Spec (N);
6705 procedure Add_Invariant_And_Predicate_Checks
6706 (Subp_Id : Entity_Id;
6707 Stmts : in out List_Id;
6708 Result : out Node_Id);
6709 -- Process the result of function Subp_Id (if applicable) and all its
6710 -- formals. Add invariant and predicate checks where applicable. The
6711 -- routine appends all the checks to list Stmts. If Subp_Id denotes a
6712 -- function, Result contains the entity of parameter _Result, to be
6713 -- used in the creation of procedure _Postconditions.
6715 procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id);
6716 -- Append a node to a list. If there is no list, create a new one. When
6717 -- the item denotes a pragma, it is added to the list only when it is
6718 -- enabled.
6720 procedure Build_Postconditions_Procedure
6721 (Subp_Id : Entity_Id;
6722 Stmts : List_Id;
6723 Result : Entity_Id);
6724 -- Create the body of procedure _Postconditions which handles various
6725 -- assertion actions on exit from subprogram Subp_Id. Stmts is the list
6726 -- of statements to be checked on exit. Parameter Result is the entity
6727 -- of parameter _Result when Subp_Id denotes a function.
6729 function Build_Pragma_Check_Equivalent
6730 (Prag : Node_Id;
6731 Subp_Id : Entity_Id := Empty;
6732 Inher_Id : Entity_Id := Empty) return Node_Id;
6733 -- Transform a [refined] pre- or postcondition denoted by Prag into an
6734 -- equivalent pragma Check. When the pre- or postcondition is inherited,
6735 -- the routine corrects the references of all formals of Inher_Id to
6736 -- point to the formals of Subp_Id.
6738 procedure Process_Contract_Cases (Stmts : in out List_Id);
6739 -- Process pragma Contract_Cases. This routine prepends items to the
6740 -- body declarations and appends items to list Stmts.
6742 procedure Process_Postconditions (Stmts : in out List_Id);
6743 -- Collect all [inherited] spec and body postconditions and accumulate
6744 -- their pragma Check equivalents in list Stmts.
6746 procedure Process_Preconditions;
6747 -- Collect all [inherited] spec and body preconditions and prepend their
6748 -- pragma Check equivalents to the declarations of the body.
6750 ----------------------------------------
6751 -- Add_Invariant_And_Predicate_Checks --
6752 ----------------------------------------
6754 procedure Add_Invariant_And_Predicate_Checks
6755 (Subp_Id : Entity_Id;
6756 Stmts : in out List_Id;
6757 Result : out Node_Id)
6759 procedure Add_Invariant_Access_Checks (Id : Entity_Id);
6760 -- Id denotes the return value of a function or a formal parameter.
6761 -- Add an invariant check if the type of Id is access to a type with
6762 -- invariants. The routine appends the generated code to Stmts.
6764 function Invariant_Checks_OK (Typ : Entity_Id) return Boolean;
6765 -- Determine whether type Typ can benefit from invariant checks. To
6766 -- qualify, the type must have a non-null invariant procedure and
6767 -- subprogram Subp_Id must appear visible from the point of view of
6768 -- the type.
6770 ---------------------------------
6771 -- Add_Invariant_Access_Checks --
6772 ---------------------------------
6774 procedure Add_Invariant_Access_Checks (Id : Entity_Id) is
6775 Loc : constant Source_Ptr := Sloc (N);
6776 Ref : Node_Id;
6777 Typ : Entity_Id;
6779 begin
6780 Typ := Etype (Id);
6782 if Is_Access_Type (Typ) and then not Is_Access_Constant (Typ) then
6783 Typ := Designated_Type (Typ);
6785 if Invariant_Checks_OK (Typ) then
6786 Ref :=
6787 Make_Explicit_Dereference (Loc,
6788 Prefix => New_Occurrence_Of (Id, Loc));
6789 Set_Etype (Ref, Typ);
6791 -- Generate:
6792 -- if <Id> /= null then
6793 -- <invariant_call (<Ref>)>
6794 -- end if;
6796 Append_Enabled_Item
6797 (Item =>
6798 Make_If_Statement (Loc,
6799 Condition =>
6800 Make_Op_Ne (Loc,
6801 Left_Opnd => New_Occurrence_Of (Id, Loc),
6802 Right_Opnd => Make_Null (Loc)),
6803 Then_Statements => New_List (
6804 Make_Invariant_Call (Ref))),
6805 List => Stmts);
6806 end if;
6807 end if;
6808 end Add_Invariant_Access_Checks;
6810 -------------------------
6811 -- Invariant_Checks_OK --
6812 -------------------------
6814 function Invariant_Checks_OK (Typ : Entity_Id) return Boolean is
6815 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
6816 -- Determine whether the body of procedure Proc_Id contains a sole
6817 -- null statement, possibly followed by an optional return.
6819 function Has_Public_Visibility_Of_Subprogram return Boolean;
6820 -- Determine whether type Typ has public visibility of subprogram
6821 -- Subp_Id.
6823 -------------------
6824 -- Has_Null_Body --
6825 -------------------
6827 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
6828 Body_Id : Entity_Id;
6829 Decl : Node_Id;
6830 Spec : Node_Id;
6831 Stmt1 : Node_Id;
6832 Stmt2 : Node_Id;
6834 begin
6835 Spec := Parent (Proc_Id);
6836 Decl := Parent (Spec);
6838 -- Retrieve the entity of the invariant procedure body
6840 if Nkind (Spec) = N_Procedure_Specification
6841 and then Nkind (Decl) = N_Subprogram_Declaration
6842 then
6843 Body_Id := Corresponding_Body (Decl);
6845 -- The body acts as a spec
6847 else
6848 Body_Id := Proc_Id;
6849 end if;
6851 -- The body will be generated later
6853 if No (Body_Id) then
6854 return False;
6855 end if;
6857 Spec := Parent (Body_Id);
6858 Decl := Parent (Spec);
6860 pragma Assert
6861 (Nkind (Spec) = N_Procedure_Specification
6862 and then Nkind (Decl) = N_Subprogram_Body);
6864 Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));
6866 -- Look for a null statement followed by an optional return
6867 -- statement.
6869 if Nkind (Stmt1) = N_Null_Statement then
6870 Stmt2 := Next (Stmt1);
6872 if Present (Stmt2) then
6873 return Nkind (Stmt2) = N_Simple_Return_Statement;
6874 else
6875 return True;
6876 end if;
6877 end if;
6879 return False;
6880 end Has_Null_Body;
6882 -----------------------------------------
6883 -- Has_Public_Visibility_Of_Subprogram --
6884 -----------------------------------------
6886 function Has_Public_Visibility_Of_Subprogram return Boolean is
6887 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
6889 begin
6890 -- An Initialization procedure must be considered visible even
6891 -- though it is internally generated.
6893 if Is_Init_Proc (Defining_Entity (Subp_Decl)) then
6894 return True;
6896 elsif Ekind (Scope (Typ)) /= E_Package then
6897 return False;
6899 -- Internally generated code is never publicly visible except
6900 -- for a subprogram that is the implementation of an expression
6901 -- function. In that case the visibility is determined by the
6902 -- last check.
6904 elsif not Comes_From_Source (Subp_Decl)
6905 and then
6906 (Nkind (Original_Node (Subp_Decl)) /= N_Expression_Function
6907 or else not
6908 Comes_From_Source (Defining_Entity (Subp_Decl)))
6909 then
6910 return False;
6912 -- Determine whether the subprogram is declared in the visible
6913 -- declarations of the package containing the type.
6915 else
6916 return List_Containing (Subp_Decl) =
6917 Visible_Declarations
6918 (Specification (Unit_Declaration_Node (Scope (Typ))));
6919 end if;
6920 end Has_Public_Visibility_Of_Subprogram;
6922 -- Start of processing for Invariant_Checks_OK
6924 begin
6925 return
6926 Has_Invariants (Typ)
6927 and then Present (Invariant_Procedure (Typ))
6928 and then not Has_Null_Body (Invariant_Procedure (Typ))
6929 and then Has_Public_Visibility_Of_Subprogram;
6930 end Invariant_Checks_OK;
6932 -- Local variables
6934 Loc : constant Source_Ptr := Sloc (N);
6935 -- Source location of subprogram contract
6937 Formal : Entity_Id;
6938 Typ : Entity_Id;
6940 -- Start of processing for Add_Invariant_And_Predicate_Checks
6942 begin
6943 Result := Empty;
6945 -- Process the result of a function
6947 if Ekind (Subp_Id) = E_Function then
6948 Typ := Etype (Subp_Id);
6950 -- Generate _Result which is used in procedure _Postconditions to
6951 -- verify the return value.
6953 Result := Make_Defining_Identifier (Loc, Name_uResult);
6954 Set_Etype (Result, Typ);
6956 -- Add an invariant check when the return type has invariants and
6957 -- the related function is visible to the outside.
6959 if Invariant_Checks_OK (Typ) then
6960 Append_Enabled_Item
6961 (Item =>
6962 Make_Invariant_Call (New_Occurrence_Of (Result, Loc)),
6963 List => Stmts);
6964 end if;
6966 -- Add an invariant check when the return type is an access to a
6967 -- type with invariants.
6969 Add_Invariant_Access_Checks (Result);
6970 end if;
6972 -- Add invariant and predicates for all formals that qualify
6974 Formal := First_Formal (Subp_Id);
6975 while Present (Formal) loop
6976 Typ := Etype (Formal);
6978 if Ekind (Formal) /= E_In_Parameter
6979 or else Is_Access_Type (Typ)
6980 then
6981 if Invariant_Checks_OK (Typ) then
6982 Append_Enabled_Item
6983 (Item =>
6984 Make_Invariant_Call (New_Occurrence_Of (Formal, Loc)),
6985 List => Stmts);
6986 end if;
6988 Add_Invariant_Access_Checks (Formal);
6990 -- Note: we used to add predicate checks for OUT and IN OUT
6991 -- formals here, but that was misguided, since such checks are
6992 -- performed on the caller side, based on the predicate of the
6993 -- actual, rather than the predicate of the formal.
6995 end if;
6997 Next_Formal (Formal);
6998 end loop;
6999 end Add_Invariant_And_Predicate_Checks;
7001 -------------------------
7002 -- Append_Enabled_Item --
7003 -------------------------
7005 procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id) is
7006 begin
7007 -- Do not chain ignored or disabled pragmas
7009 if Nkind (Item) = N_Pragma
7010 and then (Is_Ignored (Item) or else Is_Disabled (Item))
7011 then
7012 null;
7014 -- Otherwise, add the item
7016 else
7017 if No (List) then
7018 List := New_List;
7019 end if;
7021 -- If the pragma is a conjunct in a composite postcondition, it
7022 -- has been processed in reverse order. In the postcondition body
7023 -- if must appear before the others.
7025 if Nkind (Item) = N_Pragma
7026 and then From_Aspect_Specification (Item)
7027 and then Split_PPC (Item)
7028 then
7029 Prepend (Item, List);
7030 else
7031 Append (Item, List);
7032 end if;
7033 end if;
7034 end Append_Enabled_Item;
7036 ------------------------------------
7037 -- Build_Postconditions_Procedure --
7038 ------------------------------------
7040 procedure Build_Postconditions_Procedure
7041 (Subp_Id : Entity_Id;
7042 Stmts : List_Id;
7043 Result : Entity_Id)
7045 procedure Insert_Before_First_Source_Declaration (Stmt : Node_Id);
7046 -- Insert node Stmt before the first source declaration of the
7047 -- related subprogram's body. If no such declaration exists, Stmt
7048 -- becomes the last declaration.
7050 --------------------------------------------
7051 -- Insert_Before_First_Source_Declaration --
7052 --------------------------------------------
7054 procedure Insert_Before_First_Source_Declaration (Stmt : Node_Id) is
7055 Decls : constant List_Id := Declarations (N);
7056 Decl : Node_Id;
7058 begin
7059 -- Inspect the declarations of the related subprogram body looking
7060 -- for the first source declaration.
7062 if Present (Decls) then
7063 Decl := First (Decls);
7064 while Present (Decl) loop
7065 if Comes_From_Source (Decl) then
7066 Insert_Before (Decl, Stmt);
7067 return;
7068 end if;
7070 Next (Decl);
7071 end loop;
7073 -- If we get there, then the subprogram body lacks any source
7074 -- declarations. The body of _Postconditions now acts as the
7075 -- last declaration.
7077 Append (Stmt, Decls);
7079 -- Ensure that the body has a declaration list
7081 else
7082 Set_Declarations (N, New_List (Stmt));
7083 end if;
7084 end Insert_Before_First_Source_Declaration;
7086 -- Local variables
7088 Loc : constant Source_Ptr := Sloc (N);
7089 Params : List_Id := No_List;
7090 Proc_Bod : Node_Id;
7091 Proc_Id : Entity_Id;
7093 -- Start of processing for Build_Postconditions_Procedure
7095 begin
7096 -- Nothing to do if there are no actions to check on exit
7098 if No (Stmts) then
7099 return;
7100 end if;
7102 Proc_Id := Make_Defining_Identifier (Loc, Name_uPostconditions);
7103 Set_Debug_Info_Needed (Proc_Id);
7104 Set_Postconditions_Proc (Subp_Id, Proc_Id);
7106 -- The related subprogram is a function, create the specification of
7107 -- parameter _Result.
7109 if Present (Result) then
7110 Params := New_List (
7111 Make_Parameter_Specification (Loc,
7112 Defining_Identifier => Result,
7113 Parameter_Type =>
7114 New_Occurrence_Of (Etype (Result), Loc)));
7115 end if;
7117 -- Insert _Postconditions before the first source declaration of the
7118 -- body. This ensures that the body will not cause any premature
7119 -- freezing as it may mention types:
7121 -- procedure Proc (Obj : Array_Typ) is
7122 -- procedure _postconditions is
7123 -- begin
7124 -- ... Obj ...
7125 -- end _postconditions;
7127 -- subtype T is Array_Typ (Obj'First (1) .. Obj'Last (1));
7128 -- begin
7130 -- In the example above, Obj is of type T but the incorrect placement
7131 -- of _Postconditions will cause a crash in gigi due to an out of
7132 -- order reference. The body of _Postconditions must be placed after
7133 -- the declaration of Temp to preserve correct visibility.
7135 -- Set an explicit End_Lavel to override the sloc of the implicit
7136 -- RETURN statement, and prevent it from inheriting the sloc of one
7137 -- the postconditions: this would cause confusing debug into to be
7138 -- produced, interfering with coverage analysis tools.
7140 Proc_Bod :=
7141 Make_Subprogram_Body (Loc,
7142 Specification =>
7143 Make_Procedure_Specification (Loc,
7144 Defining_Unit_Name => Proc_Id,
7145 Parameter_Specifications => Params),
7147 Declarations => Empty_List,
7148 Handled_Statement_Sequence =>
7149 Make_Handled_Sequence_Of_Statements (Loc,
7150 Statements => Stmts,
7151 End_Label => Make_Identifier (Loc, Chars (Proc_Id))));
7153 Insert_Before_First_Source_Declaration (Proc_Bod);
7154 Analyze (Proc_Bod);
7155 end Build_Postconditions_Procedure;
7157 -----------------------------------
7158 -- Build_Pragma_Check_Equivalent --
7159 -----------------------------------
7161 function Build_Pragma_Check_Equivalent
7162 (Prag : Node_Id;
7163 Subp_Id : Entity_Id := Empty;
7164 Inher_Id : Entity_Id := Empty) return Node_Id
7166 Loc : constant Source_Ptr := Sloc (Prag);
7167 Prag_Nam : constant Name_Id := Pragma_Name (Prag);
7168 Check_Prag : Node_Id;
7169 Formals_Map : Elist_Id;
7170 Inher_Formal : Entity_Id;
7171 Msg_Arg : Node_Id;
7172 Nam : Name_Id;
7173 Subp_Formal : Entity_Id;
7175 begin
7176 Formals_Map := No_Elist;
7178 -- When the pre- or postcondition is inherited, map the formals of
7179 -- the inherited subprogram to those of the current subprogram.
7181 if Present (Inher_Id) then
7182 pragma Assert (Present (Subp_Id));
7184 Formals_Map := New_Elmt_List;
7186 -- Create a relation <inherited formal> => <subprogram formal>
7188 Inher_Formal := First_Formal (Inher_Id);
7189 Subp_Formal := First_Formal (Subp_Id);
7190 while Present (Inher_Formal) and then Present (Subp_Formal) loop
7191 Append_Elmt (Inher_Formal, Formals_Map);
7192 Append_Elmt (Subp_Formal, Formals_Map);
7194 Next_Formal (Inher_Formal);
7195 Next_Formal (Subp_Formal);
7196 end loop;
7197 end if;
7199 -- Copy the original pragma while performing substitutions (if
7200 -- applicable).
7202 Check_Prag :=
7203 New_Copy_Tree
7204 (Source => Prag,
7205 Map => Formals_Map,
7206 New_Scope => Current_Scope);
7208 -- Mark the pragma as being internally generated and reset the
7209 -- Analyzed flag.
7211 Set_Comes_From_Source (Check_Prag, False);
7212 Set_Analyzed (Check_Prag, False);
7214 if Present (Corresponding_Aspect (Prag)) then
7215 Nam := Chars (Identifier (Corresponding_Aspect (Prag)));
7216 else
7217 Nam := Prag_Nam;
7218 end if;
7220 -- Convert the copy into pragma Check by correcting the name and
7221 -- adding a check_kind argument.
7223 Set_Pragma_Identifier
7224 (Check_Prag, Make_Identifier (Loc, Name_Check));
7226 Prepend_To (Pragma_Argument_Associations (Check_Prag),
7227 Make_Pragma_Argument_Association (Loc,
7228 Expression => Make_Identifier (Loc, Nam)));
7230 -- Update the error message when the pragma is inherited
7232 if Present (Inher_Id) then
7233 Msg_Arg := Last (Pragma_Argument_Associations (Check_Prag));
7235 if Chars (Msg_Arg) = Name_Message then
7236 String_To_Name_Buffer (Strval (Expression (Msg_Arg)));
7238 -- Insert "inherited" to improve the error message
7240 if Name_Buffer (1 .. 8) = "failed p" then
7241 Insert_Str_In_Name_Buffer ("inherited ", 8);
7242 Set_Strval (Expression (Msg_Arg), String_From_Name_Buffer);
7243 end if;
7244 end if;
7245 end if;
7247 return Check_Prag;
7248 end Build_Pragma_Check_Equivalent;
7250 ----------------------------
7251 -- Process_Contract_Cases --
7252 ----------------------------
7254 procedure Process_Contract_Cases (Stmts : in out List_Id) is
7255 procedure Process_Contract_Cases_For (Subp_Id : Entity_Id);
7256 -- Process pragma Contract_Cases for subprogram Subp_Id
7258 --------------------------------
7259 -- Process_Contract_Cases_For --
7260 --------------------------------
7262 procedure Process_Contract_Cases_For (Subp_Id : Entity_Id) is
7263 Items : constant Node_Id := Contract (Subp_Id);
7264 Prag : Node_Id;
7266 begin
7267 if Present (Items) then
7268 Prag := Contract_Test_Cases (Items);
7269 while Present (Prag) loop
7270 if Pragma_Name (Prag) = Name_Contract_Cases then
7271 Expand_Contract_Cases
7272 (CCs => Prag,
7273 Subp_Id => Subp_Id,
7274 Decls => Declarations (N),
7275 Stmts => Stmts);
7276 end if;
7278 Prag := Next_Pragma (Prag);
7279 end loop;
7280 end if;
7281 end Process_Contract_Cases_For;
7283 -- Start of processing for Process_Contract_Cases
7285 begin
7286 Process_Contract_Cases_For (Body_Id);
7288 if Present (Spec_Id) then
7289 Process_Contract_Cases_For (Spec_Id);
7290 end if;
7291 end Process_Contract_Cases;
7293 ----------------------------
7294 -- Process_Postconditions --
7295 ----------------------------
7297 procedure Process_Postconditions (Stmts : in out List_Id) is
7298 procedure Process_Body_Postconditions (Post_Nam : Name_Id);
7299 -- Collect all [refined] postconditions of a specific kind denoted
7300 -- by Post_Nam that belong to the body and generate pragma Check
7301 -- equivalents in list Stmts.
7303 procedure Process_Spec_Postconditions;
7304 -- Collect all [inherited] postconditions of the spec and generate
7305 -- pragma Check equivalents in list Stmts.
7307 ---------------------------------
7308 -- Process_Body_Postconditions --
7309 ---------------------------------
7311 procedure Process_Body_Postconditions (Post_Nam : Name_Id) is
7312 Items : constant Node_Id := Contract (Body_Id);
7313 Unit_Decl : constant Node_Id := Parent (N);
7314 Decl : Node_Id;
7315 Prag : Node_Id;
7317 begin
7318 -- Process the contract
7320 if Present (Items) then
7321 Prag := Pre_Post_Conditions (Items);
7322 while Present (Prag) loop
7323 if Pragma_Name (Prag) = Post_Nam then
7324 Append_Enabled_Item
7325 (Item => Build_Pragma_Check_Equivalent (Prag),
7326 List => Stmts);
7327 end if;
7329 Prag := Next_Pragma (Prag);
7330 end loop;
7331 end if;
7333 -- The subprogram body being processed is actually the proper body
7334 -- of a stub with a corresponding spec. The subprogram stub may
7335 -- carry a postcondition pragma in which case it must be taken
7336 -- into account. The pragma appears after the stub.
7338 if Present (Spec_Id) and then Nkind (Unit_Decl) = N_Subunit then
7339 Decl := Next (Corresponding_Stub (Unit_Decl));
7340 while Present (Decl) loop
7342 -- Note that non-matching pragmas are skipped
7344 if Nkind (Decl) = N_Pragma then
7345 if Pragma_Name (Decl) = Post_Nam then
7346 Append_Enabled_Item
7347 (Item => Build_Pragma_Check_Equivalent (Decl),
7348 List => Stmts);
7349 end if;
7351 -- Skip internally generated code
7353 elsif not Comes_From_Source (Decl) then
7354 null;
7356 -- Postcondition pragmas are usually grouped together. There
7357 -- is no need to inspect the whole declarative list.
7359 else
7360 exit;
7361 end if;
7363 Next (Decl);
7364 end loop;
7365 end if;
7366 end Process_Body_Postconditions;
7368 ---------------------------------
7369 -- Process_Spec_Postconditions --
7370 ---------------------------------
7372 procedure Process_Spec_Postconditions is
7373 Subps : constant Subprogram_List :=
7374 Inherited_Subprograms (Spec_Id);
7375 Items : Node_Id;
7376 Prag : Node_Id;
7377 Subp_Id : Entity_Id;
7379 begin
7380 -- Process the contract
7382 Items := Contract (Spec_Id);
7384 if Present (Items) then
7385 Prag := Pre_Post_Conditions (Items);
7386 while Present (Prag) loop
7387 if Pragma_Name (Prag) = Name_Postcondition then
7388 Append_Enabled_Item
7389 (Item => Build_Pragma_Check_Equivalent (Prag),
7390 List => Stmts);
7391 end if;
7393 Prag := Next_Pragma (Prag);
7394 end loop;
7395 end if;
7397 -- Process the contracts of all inherited subprograms, looking for
7398 -- class-wide postconditions.
7400 for Index in Subps'Range loop
7401 Subp_Id := Subps (Index);
7402 Items := Contract (Subp_Id);
7404 if Present (Items) then
7405 Prag := Pre_Post_Conditions (Items);
7406 while Present (Prag) loop
7407 if Pragma_Name (Prag) = Name_Postcondition
7408 and then Class_Present (Prag)
7409 then
7410 Append_Enabled_Item
7411 (Item =>
7412 Build_Pragma_Check_Equivalent
7413 (Prag => Prag,
7414 Subp_Id => Spec_Id,
7415 Inher_Id => Subp_Id),
7416 List => Stmts);
7417 end if;
7419 Prag := Next_Pragma (Prag);
7420 end loop;
7421 end if;
7422 end loop;
7423 end Process_Spec_Postconditions;
7425 -- Start of processing for Process_Postconditions
7427 begin
7428 -- The processing of postconditions is done in reverse order (body
7429 -- first) to ensure the following arrangement:
7431 -- <refined postconditions from body>
7432 -- <postconditions from body>
7433 -- <postconditions from spec>
7434 -- <inherited postconditions>
7436 Process_Body_Postconditions (Name_Refined_Post);
7437 Process_Body_Postconditions (Name_Postcondition);
7439 if Present (Spec_Id) then
7440 Process_Spec_Postconditions;
7441 end if;
7442 end Process_Postconditions;
7444 ---------------------------
7445 -- Process_Preconditions --
7446 ---------------------------
7448 procedure Process_Preconditions is
7449 Class_Pre : Node_Id := Empty;
7450 -- The sole [inherited] class-wide precondition pragma that applies
7451 -- to the subprogram.
7453 Insert_Node : Node_Id := Empty;
7454 -- The insertion node after which all pragma Check equivalents are
7455 -- inserted.
7457 procedure Merge_Preconditions (From : Node_Id; Into : Node_Id);
7458 -- Merge two class-wide preconditions by "or else"-ing them. The
7459 -- changes are accumulated in parameter Into. Update the error
7460 -- message of Into.
7462 procedure Prepend_To_Decls (Item : Node_Id);
7463 -- Prepend a single item to the declarations of the subprogram body
7465 procedure Prepend_To_Decls_Or_Save (Prag : Node_Id);
7466 -- Save a class-wide precondition into Class_Pre or prepend a normal
7467 -- precondition ot the declarations of the body and analyze it.
7469 procedure Process_Inherited_Preconditions;
7470 -- Collect all inherited class-wide preconditions and merge them into
7471 -- one big precondition to be evaluated as pragma Check.
7473 procedure Process_Preconditions_For (Subp_Id : Entity_Id);
7474 -- Collect all preconditions of subprogram Subp_Id and prepend their
7475 -- pragma Check equivalents to the declarations of the body.
7477 -------------------------
7478 -- Merge_Preconditions --
7479 -------------------------
7481 procedure Merge_Preconditions (From : Node_Id; Into : Node_Id) is
7482 function Expression_Arg (Prag : Node_Id) return Node_Id;
7483 -- Return the boolean expression argument of a precondition while
7484 -- updating its parenteses count for the subsequent merge.
7486 function Message_Arg (Prag : Node_Id) return Node_Id;
7487 -- Return the message argument of a precondition
7489 --------------------
7490 -- Expression_Arg --
7491 --------------------
7493 function Expression_Arg (Prag : Node_Id) return Node_Id is
7494 Args : constant List_Id := Pragma_Argument_Associations (Prag);
7495 Arg : constant Node_Id := Get_Pragma_Arg (Next (First (Args)));
7497 begin
7498 if Paren_Count (Arg) = 0 then
7499 Set_Paren_Count (Arg, 1);
7500 end if;
7502 return Arg;
7503 end Expression_Arg;
7505 -----------------
7506 -- Message_Arg --
7507 -----------------
7509 function Message_Arg (Prag : Node_Id) return Node_Id is
7510 Args : constant List_Id := Pragma_Argument_Associations (Prag);
7511 begin
7512 return Get_Pragma_Arg (Last (Args));
7513 end Message_Arg;
7515 -- Local variables
7517 From_Expr : constant Node_Id := Expression_Arg (From);
7518 From_Msg : constant Node_Id := Message_Arg (From);
7519 Into_Expr : constant Node_Id := Expression_Arg (Into);
7520 Into_Msg : constant Node_Id := Message_Arg (Into);
7521 Loc : constant Source_Ptr := Sloc (Into);
7523 -- Start of processing for Merge_Preconditions
7525 begin
7526 -- Merge the two preconditions by "or else"-ing them
7528 Rewrite (Into_Expr,
7529 Make_Or_Else (Loc,
7530 Right_Opnd => Relocate_Node (Into_Expr),
7531 Left_Opnd => From_Expr));
7533 -- Merge the two error messages to produce a single message of the
7534 -- form:
7536 -- failed precondition from ...
7537 -- also failed inherited precondition from ...
7539 if not Exception_Locations_Suppressed then
7540 Start_String (Strval (Into_Msg));
7541 Store_String_Char (ASCII.LF);
7542 Store_String_Chars (" also ");
7543 Store_String_Chars (Strval (From_Msg));
7545 Set_Strval (Into_Msg, End_String);
7546 end if;
7547 end Merge_Preconditions;
7549 ----------------------
7550 -- Prepend_To_Decls --
7551 ----------------------
7553 procedure Prepend_To_Decls (Item : Node_Id) is
7554 Decls : List_Id := Declarations (N);
7556 begin
7557 -- Ensure that the body has a declarative list
7559 if No (Decls) then
7560 Decls := New_List;
7561 Set_Declarations (N, Decls);
7562 end if;
7564 Prepend_To (Decls, Item);
7565 end Prepend_To_Decls;
7567 ------------------------------
7568 -- Prepend_To_Decls_Or_Save --
7569 ------------------------------
7571 procedure Prepend_To_Decls_Or_Save (Prag : Node_Id) is
7572 Check_Prag : Node_Id;
7574 begin
7575 Check_Prag := Build_Pragma_Check_Equivalent (Prag);
7577 -- Save the sole class-wide precondition (if any) for the next
7578 -- step where it will be merged with inherited preconditions.
7580 if Class_Present (Prag) then
7581 pragma Assert (No (Class_Pre));
7582 Class_Pre := Check_Prag;
7584 -- Accumulate the corresponding Check pragmas at the top of the
7585 -- declarations. Prepending the items ensures that they will be
7586 -- evaluated in their original order.
7588 else
7589 if Present (Insert_Node) then
7590 Insert_After (Insert_Node, Check_Prag);
7591 else
7592 Prepend_To_Decls (Check_Prag);
7593 end if;
7595 Analyze (Check_Prag);
7596 end if;
7597 end Prepend_To_Decls_Or_Save;
7599 -------------------------------------
7600 -- Process_Inherited_Preconditions --
7601 -------------------------------------
7603 procedure Process_Inherited_Preconditions is
7604 Subps : constant Subprogram_List :=
7605 Inherited_Subprograms (Spec_Id);
7606 Check_Prag : Node_Id;
7607 Items : Node_Id;
7608 Prag : Node_Id;
7609 Subp_Id : Entity_Id;
7611 begin
7612 -- Process the contracts of all inherited subprograms, looking for
7613 -- class-wide preconditions.
7615 for Index in Subps'Range loop
7616 Subp_Id := Subps (Index);
7617 Items := Contract (Subp_Id);
7619 if Present (Items) then
7620 Prag := Pre_Post_Conditions (Items);
7621 while Present (Prag) loop
7622 if Pragma_Name (Prag) = Name_Precondition
7623 and then Class_Present (Prag)
7624 then
7625 Check_Prag :=
7626 Build_Pragma_Check_Equivalent
7627 (Prag => Prag,
7628 Subp_Id => Spec_Id,
7629 Inher_Id => Subp_Id);
7631 -- The spec or an inherited subprogram already yielded
7632 -- a class-wide precondition. Merge the existing
7633 -- precondition with the current one using "or else".
7635 if Present (Class_Pre) then
7636 Merge_Preconditions (Check_Prag, Class_Pre);
7637 else
7638 Class_Pre := Check_Prag;
7639 end if;
7640 end if;
7642 Prag := Next_Pragma (Prag);
7643 end loop;
7644 end if;
7645 end loop;
7647 -- Add the merged class-wide preconditions
7649 if Present (Class_Pre) then
7650 Prepend_To_Decls (Class_Pre);
7651 Analyze (Class_Pre);
7652 end if;
7653 end Process_Inherited_Preconditions;
7655 -------------------------------
7656 -- Process_Preconditions_For --
7657 -------------------------------
7659 procedure Process_Preconditions_For (Subp_Id : Entity_Id) is
7660 Items : constant Node_Id := Contract (Subp_Id);
7661 Decl : Node_Id;
7662 Prag : Node_Id;
7663 Subp_Decl : Node_Id;
7665 begin
7666 -- Process the contract
7668 if Present (Items) then
7669 Prag := Pre_Post_Conditions (Items);
7670 while Present (Prag) loop
7671 if Pragma_Name (Prag) = Name_Precondition then
7672 Prepend_To_Decls_Or_Save (Prag);
7673 end if;
7675 Prag := Next_Pragma (Prag);
7676 end loop;
7677 end if;
7679 -- The subprogram declaration being processed is actually a body
7680 -- stub. The stub may carry a precondition pragma in which case it
7681 -- must be taken into account. The pragma appears after the stub.
7683 Subp_Decl := Unit_Declaration_Node (Subp_Id);
7685 if Nkind (Subp_Decl) = N_Subprogram_Body_Stub then
7687 -- Inspect the declarations following the body stub
7689 Decl := Next (Subp_Decl);
7690 while Present (Decl) loop
7692 -- Note that non-matching pragmas are skipped
7694 if Nkind (Decl) = N_Pragma then
7695 if Pragma_Name (Decl) = Name_Precondition then
7696 Prepend_To_Decls_Or_Save (Decl);
7697 end if;
7699 -- Skip internally generated code
7701 elsif not Comes_From_Source (Decl) then
7702 null;
7704 -- Preconditions are usually grouped together. There is no
7705 -- need to inspect the whole declarative list.
7707 else
7708 exit;
7709 end if;
7711 Next (Decl);
7712 end loop;
7713 end if;
7714 end Process_Preconditions_For;
7716 -- Local variables
7718 Decls : constant List_Id := Declarations (N);
7719 Decl : Node_Id;
7721 -- Start of processing for Process_Preconditions
7723 begin
7724 -- Find the last internally generate declaration starting from the
7725 -- top of the body declarations. This ensures that discriminals and
7726 -- subtypes are properly visible to the pragma Check equivalents.
7728 if Present (Decls) then
7729 Decl := First (Decls);
7730 while Present (Decl) loop
7731 exit when Comes_From_Source (Decl);
7732 Insert_Node := Decl;
7733 Next (Decl);
7734 end loop;
7735 end if;
7737 -- The processing of preconditions is done in reverse order (body
7738 -- first) because each pragma Check equivalent is inserted at the
7739 -- top of the declarations. This ensures that the final order is
7740 -- consistent with following diagram:
7742 -- <inherited preconditions>
7743 -- <preconditions from spec>
7744 -- <preconditions from body>
7746 Process_Preconditions_For (Body_Id);
7748 if Present (Spec_Id) then
7749 Process_Preconditions_For (Spec_Id);
7750 Process_Inherited_Preconditions;
7751 end if;
7752 end Process_Preconditions;
7754 -- Local variables
7756 Restore_Scope : Boolean := False;
7757 Result : Entity_Id;
7758 Stmts : List_Id := No_List;
7759 Subp_Id : Entity_Id;
7761 -- Start of processing for Expand_Subprogram_Contract
7763 begin
7764 -- Obtain the entity of the initial declaration
7766 if Present (Spec_Id) then
7767 Subp_Id := Spec_Id;
7768 else
7769 Subp_Id := Body_Id;
7770 end if;
7772 -- Do not perform expansion activity when it is not needed
7774 if not Expander_Active then
7775 return;
7777 -- ASIS requires an unaltered tree
7779 elsif ASIS_Mode then
7780 return;
7782 -- GNATprove does not need the executable semantics of a contract
7784 elsif GNATprove_Mode then
7785 return;
7787 -- The contract of a generic subprogram or one declared in a generic
7788 -- context is not expanded as the corresponding instance will provide
7789 -- the executable semantics of the contract.
7791 elsif Is_Generic_Subprogram (Subp_Id) or else Inside_A_Generic then
7792 return;
7794 -- All subprograms carry a contract, but for some it is not significant
7795 -- and should not be processed. This is a small optimization.
7797 elsif not Has_Significant_Contract (Subp_Id) then
7798 return;
7799 end if;
7801 -- Do not re-expand the same contract. This scenario occurs when a
7802 -- construct is rewritten into something else during its analysis
7803 -- (expression functions for instance).
7805 if Has_Expanded_Contract (Subp_Id) then
7806 return;
7808 -- Otherwise mark the subprogram
7810 else
7811 Set_Has_Expanded_Contract (Subp_Id);
7812 end if;
7814 -- Ensure that the formal parameters are visible when expanding all
7815 -- contract items.
7817 if not In_Open_Scopes (Subp_Id) then
7818 Restore_Scope := True;
7819 Push_Scope (Subp_Id);
7821 if Is_Generic_Subprogram (Subp_Id) then
7822 Install_Generic_Formals (Subp_Id);
7823 else
7824 Install_Formals (Subp_Id);
7825 end if;
7826 end if;
7828 -- The expansion of a subprogram contract involves the creation of Check
7829 -- pragmas to verify the contract assertions of the spec and body in a
7830 -- particular order. The order is as follows:
7832 -- function Example (...) return ... is
7833 -- procedure _Postconditions (...) is
7834 -- begin
7835 -- <refined postconditions from body>
7836 -- <postconditions from body>
7837 -- <postconditions from spec>
7838 -- <inherited postconditions>
7839 -- <contract case consequences>
7840 -- <invariant check of function result>
7841 -- <invariant and predicate checks of parameters>
7842 -- end _Postconditions;
7844 -- <inherited preconditions>
7845 -- <preconditions from spec>
7846 -- <preconditions from body>
7847 -- <contract case conditions>
7849 -- <source declarations>
7850 -- begin
7851 -- <source statements>
7853 -- _Preconditions (Result);
7854 -- return Result;
7855 -- end Example;
7857 -- Routine _Postconditions holds all contract assertions that must be
7858 -- verified on exit from the related subprogram.
7860 -- Step 1: Handle all preconditions. This action must come before the
7861 -- processing of pragma Contract_Cases because the pragma prepends items
7862 -- to the body declarations.
7864 Process_Preconditions;
7866 -- Step 2: Handle all postconditions. This action must come before the
7867 -- processing of pragma Contract_Cases because the pragma appends items
7868 -- to list Stmts.
7870 Process_Postconditions (Stmts);
7872 -- Step 3: Handle pragma Contract_Cases. This action must come before
7873 -- the processing of invariants and predicates because those append
7874 -- items to list Smts.
7876 Process_Contract_Cases (Stmts);
7878 -- Step 4: Apply invariant and predicate checks on a function result and
7879 -- all formals. The resulting checks are accumulated in list Stmts.
7881 Add_Invariant_And_Predicate_Checks (Subp_Id, Stmts, Result);
7883 -- Step 5: Construct procedure _Postconditions
7885 Build_Postconditions_Procedure (Subp_Id, Stmts, Result);
7887 if Restore_Scope then
7888 End_Scope;
7889 end if;
7890 end Expand_Subprogram_Contract;
7892 --------------------------------
7893 -- Is_Build_In_Place_Function --
7894 --------------------------------
7896 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
7897 begin
7898 -- This function is called from Expand_Subtype_From_Expr during
7899 -- semantic analysis, even when expansion is off. In those cases
7900 -- the build_in_place expansion will not take place.
7902 if not Expander_Active then
7903 return False;
7904 end if;
7906 -- For now we test whether E denotes a function or access-to-function
7907 -- type whose result subtype is inherently limited. Later this test
7908 -- may be revised to allow composite nonlimited types. Functions with
7909 -- a foreign convention or whose result type has a foreign convention
7910 -- never qualify.
7912 if Ekind_In (E, E_Function, E_Generic_Function)
7913 or else (Ekind (E) = E_Subprogram_Type
7914 and then Etype (E) /= Standard_Void_Type)
7915 then
7916 -- Note: If the function has a foreign convention, it cannot build
7917 -- its result in place, so you're on your own. On the other hand,
7918 -- if only the return type has a foreign convention, its layout is
7919 -- intended to be compatible with the other language, but the build-
7920 -- in place machinery can ensure that the object is not copied.
7922 if Has_Foreign_Convention (E) then
7923 return False;
7925 -- In Ada 2005 all functions with an inherently limited return type
7926 -- must be handled using a build-in-place profile, including the case
7927 -- of a function with a limited interface result, where the function
7928 -- may return objects of nonlimited descendants.
7930 else
7931 return Is_Limited_View (Etype (E))
7932 and then Ada_Version >= Ada_2005
7933 and then not Debug_Flag_Dot_L;
7934 end if;
7936 else
7937 return False;
7938 end if;
7939 end Is_Build_In_Place_Function;
7941 -------------------------------------
7942 -- Is_Build_In_Place_Function_Call --
7943 -------------------------------------
7945 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
7946 Exp_Node : Node_Id := N;
7947 Function_Id : Entity_Id;
7949 begin
7950 -- Return False if the expander is currently inactive, since awareness
7951 -- of build-in-place treatment is only relevant during expansion. Note
7952 -- that Is_Build_In_Place_Function, which is called as part of this
7953 -- function, is also conditioned this way, but we need to check here as
7954 -- well to avoid blowing up on processing protected calls when expansion
7955 -- is disabled (such as with -gnatc) since those would trip over the
7956 -- raise of Program_Error below.
7958 -- In SPARK mode, build-in-place calls are not expanded, so that we
7959 -- may end up with a call that is neither resolved to an entity, nor
7960 -- an indirect call.
7962 if not Expander_Active then
7963 return False;
7964 end if;
7966 -- Step past qualification or unchecked conversion (the latter can occur
7967 -- in cases of calls to 'Input).
7969 if Nkind_In (Exp_Node, N_Qualified_Expression,
7970 N_Unchecked_Type_Conversion)
7971 then
7972 Exp_Node := Expression (N);
7973 end if;
7975 if Nkind (Exp_Node) /= N_Function_Call then
7976 return False;
7978 else
7979 if Is_Entity_Name (Name (Exp_Node)) then
7980 Function_Id := Entity (Name (Exp_Node));
7982 -- In the case of an explicitly dereferenced call, use the subprogram
7983 -- type generated for the dereference.
7985 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
7986 Function_Id := Etype (Name (Exp_Node));
7988 -- This may be a call to a protected function.
7990 elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
7991 Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
7993 else
7994 raise Program_Error;
7995 end if;
7997 return Is_Build_In_Place_Function (Function_Id);
7998 end if;
7999 end Is_Build_In_Place_Function_Call;
8001 -----------------------
8002 -- Freeze_Subprogram --
8003 -----------------------
8005 procedure Freeze_Subprogram (N : Node_Id) is
8006 Loc : constant Source_Ptr := Sloc (N);
8008 procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
8009 -- (Ada 2005): Register a predefined primitive in all the secondary
8010 -- dispatch tables of its primitive type.
8012 ----------------------------------
8013 -- Register_Predefined_DT_Entry --
8014 ----------------------------------
8016 procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
8017 Iface_DT_Ptr : Elmt_Id;
8018 Tagged_Typ : Entity_Id;
8019 Thunk_Id : Entity_Id;
8020 Thunk_Code : Node_Id;
8022 begin
8023 Tagged_Typ := Find_Dispatching_Type (Prim);
8025 if No (Access_Disp_Table (Tagged_Typ))
8026 or else not Has_Interfaces (Tagged_Typ)
8027 or else not RTE_Available (RE_Interface_Tag)
8028 or else Restriction_Active (No_Dispatching_Calls)
8029 then
8030 return;
8031 end if;
8033 -- Skip the first two access-to-dispatch-table pointers since they
8034 -- leads to the primary dispatch table (predefined DT and user
8035 -- defined DT). We are only concerned with the secondary dispatch
8036 -- table pointers. Note that the access-to- dispatch-table pointer
8037 -- corresponds to the first implemented interface retrieved below.
8039 Iface_DT_Ptr :=
8040 Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
8042 while Present (Iface_DT_Ptr)
8043 and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
8044 loop
8045 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
8046 Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
8048 if Present (Thunk_Code) then
8049 Insert_Actions_After (N, New_List (
8050 Thunk_Code,
8052 Build_Set_Predefined_Prim_Op_Address (Loc,
8053 Tag_Node =>
8054 New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
8055 Position => DT_Position (Prim),
8056 Address_Node =>
8057 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
8058 Make_Attribute_Reference (Loc,
8059 Prefix => New_Occurrence_Of (Thunk_Id, Loc),
8060 Attribute_Name => Name_Unrestricted_Access))),
8062 Build_Set_Predefined_Prim_Op_Address (Loc,
8063 Tag_Node =>
8064 New_Occurrence_Of
8065 (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
8066 Loc),
8067 Position => DT_Position (Prim),
8068 Address_Node =>
8069 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
8070 Make_Attribute_Reference (Loc,
8071 Prefix => New_Occurrence_Of (Prim, Loc),
8072 Attribute_Name => Name_Unrestricted_Access)))));
8073 end if;
8075 -- Skip the tag of the predefined primitives dispatch table
8077 Next_Elmt (Iface_DT_Ptr);
8078 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
8080 -- Skip tag of the no-thunks dispatch table
8082 Next_Elmt (Iface_DT_Ptr);
8083 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
8085 -- Skip tag of predefined primitives no-thunks dispatch table
8087 Next_Elmt (Iface_DT_Ptr);
8088 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
8090 Next_Elmt (Iface_DT_Ptr);
8091 end loop;
8092 end Register_Predefined_DT_Entry;
8094 -- Local variables
8096 Subp : constant Entity_Id := Entity (N);
8098 -- Start of processing for Freeze_Subprogram
8100 begin
8101 -- We suppress the initialization of the dispatch table entry when
8102 -- VM_Target because the dispatching mechanism is handled internally
8103 -- by the VM.
8105 if Is_Dispatching_Operation (Subp)
8106 and then not Is_Abstract_Subprogram (Subp)
8107 and then Present (DTC_Entity (Subp))
8108 and then Present (Scope (DTC_Entity (Subp)))
8109 and then Tagged_Type_Expansion
8110 and then not Restriction_Active (No_Dispatching_Calls)
8111 and then RTE_Available (RE_Tag)
8112 then
8113 declare
8114 Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
8116 begin
8117 -- Handle private overridden primitives
8119 if not Is_CPP_Class (Typ) then
8120 Check_Overriding_Operation (Subp);
8121 end if;
8123 -- We assume that imported CPP primitives correspond with objects
8124 -- whose constructor is in the CPP side; therefore we don't need
8125 -- to generate code to register them in the dispatch table.
8127 if Is_CPP_Class (Typ) then
8128 null;
8130 -- Handle CPP primitives found in derivations of CPP_Class types.
8131 -- These primitives must have been inherited from some parent, and
8132 -- there is no need to register them in the dispatch table because
8133 -- Build_Inherit_Prims takes care of initializing these slots.
8135 elsif Is_Imported (Subp)
8136 and then (Convention (Subp) = Convention_CPP
8137 or else Convention (Subp) = Convention_C)
8138 then
8139 null;
8141 -- Generate code to register the primitive in non statically
8142 -- allocated dispatch tables
8144 elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
8146 -- When a primitive is frozen, enter its name in its dispatch
8147 -- table slot.
8149 if not Is_Interface (Typ)
8150 or else Present (Interface_Alias (Subp))
8151 then
8152 if Is_Predefined_Dispatching_Operation (Subp) then
8153 Register_Predefined_DT_Entry (Subp);
8154 end if;
8156 Insert_Actions_After (N,
8157 Register_Primitive (Loc, Prim => Subp));
8158 end if;
8159 end if;
8160 end;
8161 end if;
8163 -- Mark functions that return by reference. Note that it cannot be part
8164 -- of the normal semantic analysis of the spec since the underlying
8165 -- returned type may not be known yet (for private types).
8167 declare
8168 Typ : constant Entity_Id := Etype (Subp);
8169 Utyp : constant Entity_Id := Underlying_Type (Typ);
8170 begin
8171 if Is_Limited_View (Typ) then
8172 Set_Returns_By_Ref (Subp);
8173 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
8174 Set_Returns_By_Ref (Subp);
8175 end if;
8176 end;
8178 -- Wnen freezing a null procedure, analyze its delayed aspects now
8179 -- because we may not have reached the end of the declarative list when
8180 -- delayed aspects are normally analyzed. This ensures that dispatching
8181 -- calls are properly rewritten when the generated _Postcondition
8182 -- procedure is analyzed in the null procedure body.
8184 if Nkind (Parent (Subp)) = N_Procedure_Specification
8185 and then Null_Present (Parent (Subp))
8186 then
8187 Analyze_Subprogram_Contract (Subp);
8188 end if;
8189 end Freeze_Subprogram;
8191 -----------------------
8192 -- Is_Null_Procedure --
8193 -----------------------
8195 function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
8196 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
8198 begin
8199 if Ekind (Subp) /= E_Procedure then
8200 return False;
8202 -- Check if this is a declared null procedure
8204 elsif Nkind (Decl) = N_Subprogram_Declaration then
8205 if not Null_Present (Specification (Decl)) then
8206 return False;
8208 elsif No (Body_To_Inline (Decl)) then
8209 return False;
8211 -- Check if the body contains only a null statement, followed by
8212 -- the return statement added during expansion.
8214 else
8215 declare
8216 Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
8218 Stat : Node_Id;
8219 Stat2 : Node_Id;
8221 begin
8222 if Nkind (Orig_Bod) /= N_Subprogram_Body then
8223 return False;
8224 else
8225 -- We must skip SCIL nodes because they are currently
8226 -- implemented as special N_Null_Statement nodes.
8228 Stat :=
8229 First_Non_SCIL_Node
8230 (Statements (Handled_Statement_Sequence (Orig_Bod)));
8231 Stat2 := Next_Non_SCIL_Node (Stat);
8233 return
8234 Is_Empty_List (Declarations (Orig_Bod))
8235 and then Nkind (Stat) = N_Null_Statement
8236 and then
8237 (No (Stat2)
8238 or else
8239 (Nkind (Stat2) = N_Simple_Return_Statement
8240 and then No (Next (Stat2))));
8241 end if;
8242 end;
8243 end if;
8245 else
8246 return False;
8247 end if;
8248 end Is_Null_Procedure;
8250 -------------------------------------------
8251 -- Make_Build_In_Place_Call_In_Allocator --
8252 -------------------------------------------
8254 procedure Make_Build_In_Place_Call_In_Allocator
8255 (Allocator : Node_Id;
8256 Function_Call : Node_Id)
8258 Acc_Type : constant Entity_Id := Etype (Allocator);
8259 Loc : Source_Ptr;
8260 Func_Call : Node_Id := Function_Call;
8261 Ref_Func_Call : Node_Id;
8262 Function_Id : Entity_Id;
8263 Result_Subt : Entity_Id;
8264 New_Allocator : Node_Id;
8265 Return_Obj_Access : Entity_Id; -- temp for function result
8266 Temp_Init : Node_Id; -- initial value of Return_Obj_Access
8267 Alloc_Form : BIP_Allocation_Form;
8268 Pool : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
8269 Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
8270 Chain : Entity_Id; -- activation chain, in case of tasks
8272 begin
8273 -- Step past qualification or unchecked conversion (the latter can occur
8274 -- in cases of calls to 'Input).
8276 if Nkind_In (Func_Call,
8277 N_Qualified_Expression,
8278 N_Unchecked_Type_Conversion)
8279 then
8280 Func_Call := Expression (Func_Call);
8281 end if;
8283 -- If the call has already been processed to add build-in-place actuals
8284 -- then return. This should not normally occur in an allocator context,
8285 -- but we add the protection as a defensive measure.
8287 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8288 return;
8289 end if;
8291 -- Mark the call as processed as a build-in-place call
8293 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8295 Loc := Sloc (Function_Call);
8297 if Is_Entity_Name (Name (Func_Call)) then
8298 Function_Id := Entity (Name (Func_Call));
8300 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8301 Function_Id := Etype (Name (Func_Call));
8303 else
8304 raise Program_Error;
8305 end if;
8307 Result_Subt := Available_View (Etype (Function_Id));
8309 -- Create a temp for the function result. In the caller-allocates case,
8310 -- this will be initialized to the result of a new uninitialized
8311 -- allocator. Note: we do not use Allocator as the Related_Node of
8312 -- Return_Obj_Access in call to Make_Temporary below as this would
8313 -- create a sort of infinite "recursion".
8315 Return_Obj_Access := Make_Temporary (Loc, 'R');
8316 Set_Etype (Return_Obj_Access, Acc_Type);
8318 -- When the result subtype is constrained, the return object is
8319 -- allocated on the caller side, and access to it is passed to the
8320 -- function.
8322 -- Here and in related routines, we must examine the full view of the
8323 -- type, because the view at the point of call may differ from that
8324 -- that in the function body, and the expansion mechanism depends on
8325 -- the characteristics of the full view.
8327 if Is_Constrained (Underlying_Type (Result_Subt)) then
8329 -- Replace the initialized allocator of form "new T'(Func (...))"
8330 -- with an uninitialized allocator of form "new T", where T is the
8331 -- result subtype of the called function. The call to the function
8332 -- is handled separately further below.
8334 New_Allocator :=
8335 Make_Allocator (Loc,
8336 Expression => New_Occurrence_Of (Result_Subt, Loc));
8337 Set_No_Initialization (New_Allocator);
8339 -- Copy attributes to new allocator. Note that the new allocator
8340 -- logically comes from source if the original one did, so copy the
8341 -- relevant flag. This ensures proper treatment of the restriction
8342 -- No_Implicit_Heap_Allocations in this case.
8344 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
8345 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
8346 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
8348 Rewrite (Allocator, New_Allocator);
8350 -- Initial value of the temp is the result of the uninitialized
8351 -- allocator
8353 Temp_Init := Relocate_Node (Allocator);
8355 -- Indicate that caller allocates, and pass in the return object
8357 Alloc_Form := Caller_Allocation;
8358 Pool := Make_Null (No_Location);
8359 Return_Obj_Actual :=
8360 Make_Unchecked_Type_Conversion (Loc,
8361 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8362 Expression =>
8363 Make_Explicit_Dereference (Loc,
8364 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
8366 -- When the result subtype is unconstrained, the function itself must
8367 -- perform the allocation of the return object, so we pass parameters
8368 -- indicating that.
8370 else
8371 Temp_Init := Empty;
8373 -- Case of a user-defined storage pool. Pass an allocation parameter
8374 -- indicating that the function should allocate its result in the
8375 -- pool, and pass the pool. Use 'Unrestricted_Access because the
8376 -- pool may not be aliased.
8378 if VM_Target = No_VM
8379 and then Present (Associated_Storage_Pool (Acc_Type))
8380 then
8381 Alloc_Form := User_Storage_Pool;
8382 Pool :=
8383 Make_Attribute_Reference (Loc,
8384 Prefix =>
8385 New_Occurrence_Of
8386 (Associated_Storage_Pool (Acc_Type), Loc),
8387 Attribute_Name => Name_Unrestricted_Access);
8389 -- No user-defined pool; pass an allocation parameter indicating that
8390 -- the function should allocate its result on the heap.
8392 else
8393 Alloc_Form := Global_Heap;
8394 Pool := Make_Null (No_Location);
8395 end if;
8397 -- The caller does not provide the return object in this case, so we
8398 -- have to pass null for the object access actual.
8400 Return_Obj_Actual := Empty;
8401 end if;
8403 -- Declare the temp object
8405 Insert_Action (Allocator,
8406 Make_Object_Declaration (Loc,
8407 Defining_Identifier => Return_Obj_Access,
8408 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
8409 Expression => Temp_Init));
8411 Ref_Func_Call := Make_Reference (Loc, Func_Call);
8413 -- Ada 2005 (AI-251): If the type of the allocator is an interface
8414 -- then generate an implicit conversion to force displacement of the
8415 -- "this" pointer.
8417 if Is_Interface (Designated_Type (Acc_Type)) then
8418 Rewrite
8419 (Ref_Func_Call,
8420 OK_Convert_To (Acc_Type, Ref_Func_Call));
8421 end if;
8423 declare
8424 Assign : constant Node_Id :=
8425 Make_Assignment_Statement (Loc,
8426 Name => New_Occurrence_Of (Return_Obj_Access, Loc),
8427 Expression => Ref_Func_Call);
8428 -- Assign the result of the function call into the temp. In the
8429 -- caller-allocates case, this is overwriting the temp with its
8430 -- initial value, which has no effect. In the callee-allocates case,
8431 -- this is setting the temp to point to the object allocated by the
8432 -- callee.
8434 Actions : List_Id;
8435 -- Actions to be inserted. If there are no tasks, this is just the
8436 -- assignment statement. If the allocated object has tasks, we need
8437 -- to wrap the assignment in a block that activates them. The
8438 -- activation chain of that block must be passed to the function,
8439 -- rather than some outer chain.
8440 begin
8441 if Has_Task (Result_Subt) then
8442 Actions := New_List;
8443 Build_Task_Allocate_Block_With_Init_Stmts
8444 (Actions, Allocator, Init_Stmts => New_List (Assign));
8445 Chain := Activation_Chain_Entity (Last (Actions));
8446 else
8447 Actions := New_List (Assign);
8448 Chain := Empty;
8449 end if;
8451 Insert_Actions (Allocator, Actions);
8452 end;
8454 -- When the function has a controlling result, an allocation-form
8455 -- parameter must be passed indicating that the caller is allocating
8456 -- the result object. This is needed because such a function can be
8457 -- called as a dispatching operation and must be treated similarly
8458 -- to functions with unconstrained result subtypes.
8460 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8461 (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
8463 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8464 (Func_Call, Function_Id, Acc_Type);
8466 Add_Task_Actuals_To_Build_In_Place_Call
8467 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
8468 Chain => Chain);
8470 -- Add an implicit actual to the function call that provides access
8471 -- to the allocated object. An unchecked conversion to the (specific)
8472 -- result subtype of the function is inserted to handle cases where
8473 -- the access type of the allocator has a class-wide designated type.
8475 Add_Access_Actual_To_Build_In_Place_Call
8476 (Func_Call, Function_Id, Return_Obj_Actual);
8478 -- Finally, replace the allocator node with a reference to the temp
8480 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8482 Analyze_And_Resolve (Allocator, Acc_Type);
8483 end Make_Build_In_Place_Call_In_Allocator;
8485 ---------------------------------------------------
8486 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8487 ---------------------------------------------------
8489 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8490 (Function_Call : Node_Id)
8492 Loc : Source_Ptr;
8493 Func_Call : Node_Id := Function_Call;
8494 Function_Id : Entity_Id;
8495 Result_Subt : Entity_Id;
8496 Return_Obj_Id : Entity_Id;
8497 Return_Obj_Decl : Entity_Id;
8499 begin
8500 -- Step past qualification or unchecked conversion (the latter can occur
8501 -- in cases of calls to 'Input).
8503 if Nkind_In (Func_Call, N_Qualified_Expression,
8504 N_Unchecked_Type_Conversion)
8505 then
8506 Func_Call := Expression (Func_Call);
8507 end if;
8509 -- If the call has already been processed to add build-in-place actuals
8510 -- then return. One place this can occur is for calls to build-in-place
8511 -- functions that occur within a call to a protected operation, where
8512 -- due to rewriting and expansion of the protected call there can be
8513 -- more than one call to Expand_Actuals for the same set of actuals.
8515 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8516 return;
8517 end if;
8519 -- Mark the call as processed as a build-in-place call
8521 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8523 Loc := Sloc (Function_Call);
8525 if Is_Entity_Name (Name (Func_Call)) then
8526 Function_Id := Entity (Name (Func_Call));
8528 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8529 Function_Id := Etype (Name (Func_Call));
8531 else
8532 raise Program_Error;
8533 end if;
8535 Result_Subt := Etype (Function_Id);
8537 -- If the build-in-place function returns a controlled object, then the
8538 -- object needs to be finalized immediately after the context. Since
8539 -- this case produces a transient scope, the servicing finalizer needs
8540 -- to name the returned object. Create a temporary which is initialized
8541 -- with the function call:
8543 -- Temp_Id : Func_Type := BIP_Func_Call;
8545 -- The initialization expression of the temporary will be rewritten by
8546 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8547 -- Call_In_Object_Declaration.
8549 if Needs_Finalization (Result_Subt) then
8550 declare
8551 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
8552 Temp_Decl : Node_Id;
8554 begin
8555 -- Reset the guard on the function call since the following does
8556 -- not perform actual call expansion.
8558 Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
8560 Temp_Decl :=
8561 Make_Object_Declaration (Loc,
8562 Defining_Identifier => Temp_Id,
8563 Object_Definition =>
8564 New_Occurrence_Of (Result_Subt, Loc),
8565 Expression =>
8566 New_Copy_Tree (Function_Call));
8568 Insert_Action (Function_Call, Temp_Decl);
8570 Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
8571 Analyze (Function_Call);
8572 end;
8574 -- When the result subtype is constrained, an object of the subtype is
8575 -- declared and an access value designating it is passed as an actual.
8577 elsif Is_Constrained (Underlying_Type (Result_Subt)) then
8579 -- Create a temporary object to hold the function result
8581 Return_Obj_Id := Make_Temporary (Loc, 'R');
8582 Set_Etype (Return_Obj_Id, Result_Subt);
8584 Return_Obj_Decl :=
8585 Make_Object_Declaration (Loc,
8586 Defining_Identifier => Return_Obj_Id,
8587 Aliased_Present => True,
8588 Object_Definition => New_Occurrence_Of (Result_Subt, Loc));
8590 Set_No_Initialization (Return_Obj_Decl);
8592 Insert_Action (Func_Call, Return_Obj_Decl);
8594 -- When the function has a controlling result, an allocation-form
8595 -- parameter must be passed indicating that the caller is allocating
8596 -- the result object. This is needed because such a function can be
8597 -- called as a dispatching operation and must be treated similarly
8598 -- to functions with unconstrained result subtypes.
8600 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8601 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8603 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8604 (Func_Call, Function_Id);
8606 Add_Task_Actuals_To_Build_In_Place_Call
8607 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8609 -- Add an implicit actual to the function call that provides access
8610 -- to the caller's return object.
8612 Add_Access_Actual_To_Build_In_Place_Call
8613 (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
8615 -- When the result subtype is unconstrained, the function must allocate
8616 -- the return object in the secondary stack, so appropriate implicit
8617 -- parameters are added to the call to indicate that. A transient
8618 -- scope is established to ensure eventual cleanup of the result.
8620 else
8621 -- Pass an allocation parameter indicating that the function should
8622 -- allocate its result on the secondary stack.
8624 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8625 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8627 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8628 (Func_Call, Function_Id);
8630 Add_Task_Actuals_To_Build_In_Place_Call
8631 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8633 -- Pass a null value to the function since no return object is
8634 -- available on the caller side.
8636 Add_Access_Actual_To_Build_In_Place_Call
8637 (Func_Call, Function_Id, Empty);
8638 end if;
8639 end Make_Build_In_Place_Call_In_Anonymous_Context;
8641 --------------------------------------------
8642 -- Make_Build_In_Place_Call_In_Assignment --
8643 --------------------------------------------
8645 procedure Make_Build_In_Place_Call_In_Assignment
8646 (Assign : Node_Id;
8647 Function_Call : Node_Id)
8649 Lhs : constant Node_Id := Name (Assign);
8650 Func_Call : Node_Id := Function_Call;
8651 Func_Id : Entity_Id;
8652 Loc : Source_Ptr;
8653 Obj_Decl : Node_Id;
8654 Obj_Id : Entity_Id;
8655 Ptr_Typ : Entity_Id;
8656 Ptr_Typ_Decl : Node_Id;
8657 New_Expr : Node_Id;
8658 Result_Subt : Entity_Id;
8659 Target : Node_Id;
8661 begin
8662 -- Step past qualification or unchecked conversion (the latter can occur
8663 -- in cases of calls to 'Input).
8665 if Nkind_In (Func_Call, N_Qualified_Expression,
8666 N_Unchecked_Type_Conversion)
8667 then
8668 Func_Call := Expression (Func_Call);
8669 end if;
8671 -- If the call has already been processed to add build-in-place actuals
8672 -- then return. This should not normally occur in an assignment context,
8673 -- but we add the protection as a defensive measure.
8675 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8676 return;
8677 end if;
8679 -- Mark the call as processed as a build-in-place call
8681 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8683 Loc := Sloc (Function_Call);
8685 if Is_Entity_Name (Name (Func_Call)) then
8686 Func_Id := Entity (Name (Func_Call));
8688 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8689 Func_Id := Etype (Name (Func_Call));
8691 else
8692 raise Program_Error;
8693 end if;
8695 Result_Subt := Etype (Func_Id);
8697 -- When the result subtype is unconstrained, an additional actual must
8698 -- be passed to indicate that the caller is providing the return object.
8699 -- This parameter must also be passed when the called function has a
8700 -- controlling result, because dispatching calls to the function needs
8701 -- to be treated effectively the same as calls to class-wide functions.
8703 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8704 (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
8706 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8707 (Func_Call, Func_Id);
8709 Add_Task_Actuals_To_Build_In_Place_Call
8710 (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
8712 -- Add an implicit actual to the function call that provides access to
8713 -- the caller's return object.
8715 Add_Access_Actual_To_Build_In_Place_Call
8716 (Func_Call,
8717 Func_Id,
8718 Make_Unchecked_Type_Conversion (Loc,
8719 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8720 Expression => Relocate_Node (Lhs)));
8722 -- Create an access type designating the function's result subtype
8724 Ptr_Typ := Make_Temporary (Loc, 'A');
8726 Ptr_Typ_Decl :=
8727 Make_Full_Type_Declaration (Loc,
8728 Defining_Identifier => Ptr_Typ,
8729 Type_Definition =>
8730 Make_Access_To_Object_Definition (Loc,
8731 All_Present => True,
8732 Subtype_Indication =>
8733 New_Occurrence_Of (Result_Subt, Loc)));
8734 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
8736 -- Finally, create an access object initialized to a reference to the
8737 -- function call. We know this access value is non-null, so mark the
8738 -- entity accordingly to suppress junk access checks.
8740 New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
8742 Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
8743 Set_Etype (Obj_Id, Ptr_Typ);
8744 Set_Is_Known_Non_Null (Obj_Id);
8746 Obj_Decl :=
8747 Make_Object_Declaration (Loc,
8748 Defining_Identifier => Obj_Id,
8749 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
8750 Expression => New_Expr);
8751 Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
8753 Rewrite (Assign, Make_Null_Statement (Loc));
8755 -- Retrieve the target of the assignment
8757 if Nkind (Lhs) = N_Selected_Component then
8758 Target := Selector_Name (Lhs);
8759 elsif Nkind (Lhs) = N_Type_Conversion then
8760 Target := Expression (Lhs);
8761 else
8762 Target := Lhs;
8763 end if;
8765 -- If we are assigning to a return object or this is an expression of
8766 -- an extension aggregate, the target should either be an identifier
8767 -- or a simple expression. All other cases imply a different scenario.
8769 if Nkind (Target) in N_Has_Entity then
8770 Target := Entity (Target);
8771 else
8772 return;
8773 end if;
8774 end Make_Build_In_Place_Call_In_Assignment;
8776 ----------------------------------------------------
8777 -- Make_Build_In_Place_Call_In_Object_Declaration --
8778 ----------------------------------------------------
8780 procedure Make_Build_In_Place_Call_In_Object_Declaration
8781 (Object_Decl : Node_Id;
8782 Function_Call : Node_Id)
8784 Loc : Source_Ptr;
8785 Obj_Def_Id : constant Entity_Id :=
8786 Defining_Identifier (Object_Decl);
8787 Enclosing_Func : constant Entity_Id :=
8788 Enclosing_Subprogram (Obj_Def_Id);
8789 Call_Deref : Node_Id;
8790 Caller_Object : Node_Id;
8791 Def_Id : Entity_Id;
8792 Fmaster_Actual : Node_Id := Empty;
8793 Func_Call : Node_Id := Function_Call;
8794 Function_Id : Entity_Id;
8795 Pool_Actual : Node_Id;
8796 Ptr_Typ : Entity_Id;
8797 Ptr_Typ_Decl : Node_Id;
8798 Pass_Caller_Acc : Boolean := False;
8799 Res_Decl : Node_Id;
8800 Result_Subt : Entity_Id;
8802 begin
8803 -- Step past qualification or unchecked conversion (the latter can occur
8804 -- in cases of calls to 'Input).
8806 if Nkind_In (Func_Call, N_Qualified_Expression,
8807 N_Unchecked_Type_Conversion)
8808 then
8809 Func_Call := Expression (Func_Call);
8810 end if;
8812 -- If the call has already been processed to add build-in-place actuals
8813 -- then return. This should not normally occur in an object declaration,
8814 -- but we add the protection as a defensive measure.
8816 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8817 return;
8818 end if;
8820 -- Mark the call as processed as a build-in-place call
8822 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8824 Loc := Sloc (Function_Call);
8826 if Is_Entity_Name (Name (Func_Call)) then
8827 Function_Id := Entity (Name (Func_Call));
8829 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8830 Function_Id := Etype (Name (Func_Call));
8832 else
8833 raise Program_Error;
8834 end if;
8836 Result_Subt := Etype (Function_Id);
8838 -- Create an access type designating the function's result subtype. We
8839 -- use the type of the original call because it may be a call to an
8840 -- inherited operation, which the expansion has replaced with the parent
8841 -- operation that yields the parent type. Note that this access type
8842 -- must be declared before we establish a transient scope, so that it
8843 -- receives the proper accessibility level.
8845 Ptr_Typ := Make_Temporary (Loc, 'A');
8846 Ptr_Typ_Decl :=
8847 Make_Full_Type_Declaration (Loc,
8848 Defining_Identifier => Ptr_Typ,
8849 Type_Definition =>
8850 Make_Access_To_Object_Definition (Loc,
8851 All_Present => True,
8852 Subtype_Indication =>
8853 New_Occurrence_Of (Etype (Function_Call), Loc)));
8855 -- The access type and its accompanying object must be inserted after
8856 -- the object declaration in the constrained case, so that the function
8857 -- call can be passed access to the object. In the unconstrained case,
8858 -- or if the object declaration is for a return object, the access type
8859 -- and object must be inserted before the object, since the object
8860 -- declaration is rewritten to be a renaming of a dereference of the
8861 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8862 -- the result object is in a different (transient) scope, so won't
8863 -- cause freezing.
8865 if Is_Constrained (Underlying_Type (Result_Subt))
8866 and then not Is_Return_Object (Defining_Identifier (Object_Decl))
8867 then
8868 Insert_After_And_Analyze (Object_Decl, Ptr_Typ_Decl);
8869 else
8870 Insert_Action (Object_Decl, Ptr_Typ_Decl);
8871 end if;
8873 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8874 -- elaborated in an inner (transient) scope and thus won't cause
8875 -- freezing by itself.
8877 declare
8878 Ptr_Typ_Freeze_Ref : constant Node_Id :=
8879 New_Occurrence_Of (Ptr_Typ, Loc);
8880 begin
8881 Set_Parent (Ptr_Typ_Freeze_Ref, Ptr_Typ_Decl);
8882 Freeze_Expression (Ptr_Typ_Freeze_Ref);
8883 end;
8885 -- If the the object is a return object of an enclosing build-in-place
8886 -- function, then the implicit build-in-place parameters of the
8887 -- enclosing function are simply passed along to the called function.
8888 -- (Unfortunately, this won't cover the case of extension aggregates
8889 -- where the ancestor part is a build-in-place unconstrained function
8890 -- call that should be passed along the caller's parameters. Currently
8891 -- those get mishandled by reassigning the result of the call to the
8892 -- aggregate return object, when the call result should really be
8893 -- directly built in place in the aggregate and not in a temporary. ???)
8895 if Is_Return_Object (Defining_Identifier (Object_Decl)) then
8896 Pass_Caller_Acc := True;
8898 -- When the enclosing function has a BIP_Alloc_Form formal then we
8899 -- pass it along to the callee (such as when the enclosing function
8900 -- has an unconstrained or tagged result type).
8902 if Needs_BIP_Alloc_Form (Enclosing_Func) then
8903 if VM_Target = No_VM and then
8904 RTE_Available (RE_Root_Storage_Pool_Ptr)
8905 then
8906 Pool_Actual :=
8907 New_Occurrence_Of (Build_In_Place_Formal
8908 (Enclosing_Func, BIP_Storage_Pool), Loc);
8910 -- The build-in-place pool formal is not built on .NET/JVM
8912 else
8913 Pool_Actual := Empty;
8914 end if;
8916 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8917 (Func_Call,
8918 Function_Id,
8919 Alloc_Form_Exp =>
8920 New_Occurrence_Of
8921 (Build_In_Place_Formal (Enclosing_Func, BIP_Alloc_Form),
8922 Loc),
8923 Pool_Actual => Pool_Actual);
8925 -- Otherwise, if enclosing function has a constrained result subtype,
8926 -- then caller allocation will be used.
8928 else
8929 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8930 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8931 end if;
8933 if Needs_BIP_Finalization_Master (Enclosing_Func) then
8934 Fmaster_Actual :=
8935 New_Occurrence_Of
8936 (Build_In_Place_Formal
8937 (Enclosing_Func, BIP_Finalization_Master), Loc);
8938 end if;
8940 -- Retrieve the BIPacc formal from the enclosing function and convert
8941 -- it to the access type of the callee's BIP_Object_Access formal.
8943 Caller_Object :=
8944 Make_Unchecked_Type_Conversion (Loc,
8945 Subtype_Mark =>
8946 New_Occurrence_Of
8947 (Etype
8948 (Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
8949 Loc),
8950 Expression =>
8951 New_Occurrence_Of
8952 (Build_In_Place_Formal (Enclosing_Func, BIP_Object_Access),
8953 Loc));
8955 -- In the constrained case, add an implicit actual to the function call
8956 -- that provides access to the declared object. An unchecked conversion
8957 -- to the (specific) result type of the function is inserted to handle
8958 -- the case where the object is declared with a class-wide type.
8960 elsif Is_Constrained (Underlying_Type (Result_Subt)) then
8961 Caller_Object :=
8962 Make_Unchecked_Type_Conversion (Loc,
8963 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8964 Expression => New_Occurrence_Of (Obj_Def_Id, Loc));
8966 -- When the function has a controlling result, an allocation-form
8967 -- parameter must be passed indicating that the caller is allocating
8968 -- the result object. This is needed because such a function can be
8969 -- called as a dispatching operation and must be treated similarly
8970 -- to functions with unconstrained result subtypes.
8972 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8973 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8975 -- In other unconstrained cases, pass an indication to do the allocation
8976 -- on the secondary stack and set Caller_Object to Empty so that a null
8977 -- value will be passed for the caller's object address. A transient
8978 -- scope is established to ensure eventual cleanup of the result.
8980 else
8981 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8982 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8983 Caller_Object := Empty;
8985 Establish_Transient_Scope (Object_Decl, Sec_Stack => True);
8986 end if;
8988 -- Pass along any finalization master actual, which is needed in the
8989 -- case where the called function initializes a return object of an
8990 -- enclosing build-in-place function.
8992 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8993 (Func_Call => Func_Call,
8994 Func_Id => Function_Id,
8995 Master_Exp => Fmaster_Actual);
8997 if Nkind (Parent (Object_Decl)) = N_Extended_Return_Statement
8998 and then Has_Task (Result_Subt)
8999 then
9000 -- Here we're passing along the master that was passed in to this
9001 -- function.
9003 Add_Task_Actuals_To_Build_In_Place_Call
9004 (Func_Call, Function_Id,
9005 Master_Actual =>
9006 New_Occurrence_Of (Build_In_Place_Formal
9007 (Enclosing_Func, BIP_Task_Master), Loc));
9009 else
9010 Add_Task_Actuals_To_Build_In_Place_Call
9011 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
9012 end if;
9014 Add_Access_Actual_To_Build_In_Place_Call
9015 (Func_Call, Function_Id, Caller_Object, Is_Access => Pass_Caller_Acc);
9017 -- Finally, create an access object initialized to a reference to the
9018 -- function call. We know this access value cannot be null, so mark the
9019 -- entity accordingly to suppress the access check.
9021 Def_Id := Make_Temporary (Loc, 'R', Func_Call);
9022 Set_Etype (Def_Id, Ptr_Typ);
9023 Set_Is_Known_Non_Null (Def_Id);
9025 Res_Decl :=
9026 Make_Object_Declaration (Loc,
9027 Defining_Identifier => Def_Id,
9028 Constant_Present => True,
9029 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
9030 Expression =>
9031 Make_Reference (Loc, Relocate_Node (Func_Call)));
9033 Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
9035 -- If the result subtype of the called function is constrained and
9036 -- is not itself the return expression of an enclosing BIP function,
9037 -- then mark the object as having no initialization.
9039 if Is_Constrained (Underlying_Type (Result_Subt))
9040 and then not Is_Return_Object (Defining_Identifier (Object_Decl))
9041 then
9042 -- The related object declaration is encased in a transient block
9043 -- because the build-in-place function call contains at least one
9044 -- nested function call that produces a controlled transient
9045 -- temporary:
9047 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
9049 -- Since the build-in-place expansion decouples the call from the
9050 -- object declaration, the finalization machinery lacks the context
9051 -- which prompted the generation of the transient block. To resolve
9052 -- this scenario, store the build-in-place call.
9054 if Scope_Is_Transient
9055 and then Node_To_Be_Wrapped = Object_Decl
9056 then
9057 Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
9058 end if;
9060 Set_Expression (Object_Decl, Empty);
9061 Set_No_Initialization (Object_Decl);
9063 -- In case of an unconstrained result subtype, or if the call is the
9064 -- return expression of an enclosing BIP function, rewrite the object
9065 -- declaration as an object renaming where the renamed object is a
9066 -- dereference of <function_Call>'reference:
9068 -- Obj : Subt renames <function_call>'Ref.all;
9070 else
9071 Call_Deref :=
9072 Make_Explicit_Dereference (Loc,
9073 Prefix => New_Occurrence_Of (Def_Id, Loc));
9075 Loc := Sloc (Object_Decl);
9076 Rewrite (Object_Decl,
9077 Make_Object_Renaming_Declaration (Loc,
9078 Defining_Identifier => Make_Temporary (Loc, 'D'),
9079 Access_Definition => Empty,
9080 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
9081 Name => Call_Deref));
9083 Set_Renamed_Object (Defining_Identifier (Object_Decl), Call_Deref);
9085 Analyze (Object_Decl);
9087 -- Replace the internal identifier of the renaming declaration's
9088 -- entity with identifier of the original object entity. We also have
9089 -- to exchange the entities containing their defining identifiers to
9090 -- ensure the correct replacement of the object declaration by the
9091 -- object renaming declaration to avoid homograph conflicts (since
9092 -- the object declaration's defining identifier was already entered
9093 -- in current scope). The Next_Entity links of the two entities also
9094 -- have to be swapped since the entities are part of the return
9095 -- scope's entity list and the list structure would otherwise be
9096 -- corrupted. Finally, the homonym chain must be preserved as well.
9098 declare
9099 Renaming_Def_Id : constant Entity_Id :=
9100 Defining_Identifier (Object_Decl);
9101 Next_Entity_Temp : constant Entity_Id :=
9102 Next_Entity (Renaming_Def_Id);
9103 begin
9104 Set_Chars (Renaming_Def_Id, Chars (Obj_Def_Id));
9106 -- Swap next entity links in preparation for exchanging entities
9108 Set_Next_Entity (Renaming_Def_Id, Next_Entity (Obj_Def_Id));
9109 Set_Next_Entity (Obj_Def_Id, Next_Entity_Temp);
9110 Set_Homonym (Renaming_Def_Id, Homonym (Obj_Def_Id));
9112 Exchange_Entities (Renaming_Def_Id, Obj_Def_Id);
9114 -- Preserve source indication of original declaration, so that
9115 -- xref information is properly generated for the right entity.
9117 Preserve_Comes_From_Source
9118 (Object_Decl, Original_Node (Object_Decl));
9120 Preserve_Comes_From_Source
9121 (Obj_Def_Id, Original_Node (Object_Decl));
9123 Set_Comes_From_Source (Renaming_Def_Id, False);
9124 end;
9125 end if;
9127 -- If the object entity has a class-wide Etype, then we need to change
9128 -- it to the result subtype of the function call, because otherwise the
9129 -- object will be class-wide without an explicit initialization and
9130 -- won't be allocated properly by the back end. It seems unclean to make
9131 -- such a revision to the type at this point, and we should try to
9132 -- improve this treatment when build-in-place functions with class-wide
9133 -- results are implemented. ???
9135 if Is_Class_Wide_Type (Etype (Defining_Identifier (Object_Decl))) then
9136 Set_Etype (Defining_Identifier (Object_Decl), Result_Subt);
9137 end if;
9138 end Make_Build_In_Place_Call_In_Object_Declaration;
9140 --------------------------------------------
9141 -- Make_CPP_Constructor_Call_In_Allocator --
9142 --------------------------------------------
9144 procedure Make_CPP_Constructor_Call_In_Allocator
9145 (Allocator : Node_Id;
9146 Function_Call : Node_Id)
9148 Loc : constant Source_Ptr := Sloc (Function_Call);
9149 Acc_Type : constant Entity_Id := Etype (Allocator);
9150 Function_Id : constant Entity_Id := Entity (Name (Function_Call));
9151 Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
9153 New_Allocator : Node_Id;
9154 Return_Obj_Access : Entity_Id;
9155 Tmp_Obj : Node_Id;
9157 begin
9158 pragma Assert (Nkind (Allocator) = N_Allocator
9159 and then Nkind (Function_Call) = N_Function_Call);
9160 pragma Assert (Convention (Function_Id) = Convention_CPP
9161 and then Is_Constructor (Function_Id));
9162 pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
9164 -- Replace the initialized allocator of form "new T'(Func (...))" with
9165 -- an uninitialized allocator of form "new T", where T is the result
9166 -- subtype of the called function. The call to the function is handled
9167 -- separately further below.
9169 New_Allocator :=
9170 Make_Allocator (Loc,
9171 Expression => New_Occurrence_Of (Result_Subt, Loc));
9172 Set_No_Initialization (New_Allocator);
9174 -- Copy attributes to new allocator. Note that the new allocator
9175 -- logically comes from source if the original one did, so copy the
9176 -- relevant flag. This ensures proper treatment of the restriction
9177 -- No_Implicit_Heap_Allocations in this case.
9179 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
9180 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
9181 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
9183 Rewrite (Allocator, New_Allocator);
9185 -- Create a new access object and initialize it to the result of the
9186 -- new uninitialized allocator. Note: we do not use Allocator as the
9187 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
9188 -- as this would create a sort of infinite "recursion".
9190 Return_Obj_Access := Make_Temporary (Loc, 'R');
9191 Set_Etype (Return_Obj_Access, Acc_Type);
9193 -- Generate:
9194 -- Rnnn : constant ptr_T := new (T);
9195 -- Init (Rnn.all,...);
9197 Tmp_Obj :=
9198 Make_Object_Declaration (Loc,
9199 Defining_Identifier => Return_Obj_Access,
9200 Constant_Present => True,
9201 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
9202 Expression => Relocate_Node (Allocator));
9203 Insert_Action (Allocator, Tmp_Obj);
9205 Insert_List_After_And_Analyze (Tmp_Obj,
9206 Build_Initialization_Call (Loc,
9207 Id_Ref =>
9208 Make_Explicit_Dereference (Loc,
9209 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
9210 Typ => Etype (Function_Id),
9211 Constructor_Ref => Function_Call));
9213 -- Finally, replace the allocator node with a reference to the result of
9214 -- the function call itself (which will effectively be an access to the
9215 -- object created by the allocator).
9217 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
9219 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
9220 -- generate an implicit conversion to force displacement of the "this"
9221 -- pointer.
9223 if Is_Interface (Designated_Type (Acc_Type)) then
9224 Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
9225 end if;
9227 Analyze_And_Resolve (Allocator, Acc_Type);
9228 end Make_CPP_Constructor_Call_In_Allocator;
9230 -----------------------------------
9231 -- Needs_BIP_Finalization_Master --
9232 -----------------------------------
9234 function Needs_BIP_Finalization_Master
9235 (Func_Id : Entity_Id) return Boolean
9237 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9238 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9239 begin
9240 return
9241 not Restriction_Active (No_Finalization)
9242 and then Needs_Finalization (Func_Typ);
9243 end Needs_BIP_Finalization_Master;
9245 --------------------------
9246 -- Needs_BIP_Alloc_Form --
9247 --------------------------
9249 function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
9250 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9251 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9252 begin
9253 return not Is_Constrained (Func_Typ) or else Is_Tagged_Type (Func_Typ);
9254 end Needs_BIP_Alloc_Form;
9256 --------------------------------------
9257 -- Needs_Result_Accessibility_Level --
9258 --------------------------------------
9260 function Needs_Result_Accessibility_Level
9261 (Func_Id : Entity_Id) return Boolean
9263 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9265 function Has_Unconstrained_Access_Discriminant_Component
9266 (Comp_Typ : Entity_Id) return Boolean;
9267 -- Returns True if any component of the type has an unconstrained access
9268 -- discriminant.
9270 -----------------------------------------------------
9271 -- Has_Unconstrained_Access_Discriminant_Component --
9272 -----------------------------------------------------
9274 function Has_Unconstrained_Access_Discriminant_Component
9275 (Comp_Typ : Entity_Id) return Boolean
9277 begin
9278 if not Is_Limited_Type (Comp_Typ) then
9279 return False;
9281 -- Only limited types can have access discriminants with
9282 -- defaults.
9284 elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
9285 return True;
9287 elsif Is_Array_Type (Comp_Typ) then
9288 return Has_Unconstrained_Access_Discriminant_Component
9289 (Underlying_Type (Component_Type (Comp_Typ)));
9291 elsif Is_Record_Type (Comp_Typ) then
9292 declare
9293 Comp : Entity_Id;
9295 begin
9296 Comp := First_Component (Comp_Typ);
9297 while Present (Comp) loop
9298 if Has_Unconstrained_Access_Discriminant_Component
9299 (Underlying_Type (Etype (Comp)))
9300 then
9301 return True;
9302 end if;
9304 Next_Component (Comp);
9305 end loop;
9306 end;
9307 end if;
9309 return False;
9310 end Has_Unconstrained_Access_Discriminant_Component;
9312 Feature_Disabled : constant Boolean := True;
9313 -- Temporary
9315 -- Start of processing for Needs_Result_Accessibility_Level
9317 begin
9318 -- False if completion unavailable (how does this happen???)
9320 if not Present (Func_Typ) then
9321 return False;
9323 elsif Feature_Disabled then
9324 return False;
9326 -- False if not a function, also handle enum-lit renames case
9328 elsif Func_Typ = Standard_Void_Type
9329 or else Is_Scalar_Type (Func_Typ)
9330 then
9331 return False;
9333 -- Handle a corner case, a cross-dialect subp renaming. For example,
9334 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9335 -- an Ada 2005 (or earlier) unit references predefined run-time units.
9337 elsif Present (Alias (Func_Id)) then
9339 -- Unimplemented: a cross-dialect subp renaming which does not set
9340 -- the Alias attribute (e.g., a rename of a dereference of an access
9341 -- to subprogram value). ???
9343 return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
9345 -- Remaining cases require Ada 2012 mode
9347 elsif Ada_Version < Ada_2012 then
9348 return False;
9350 elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
9351 or else Is_Tagged_Type (Func_Typ)
9352 then
9353 -- In the case of, say, a null tagged record result type, the need
9354 -- for this extra parameter might not be obvious. This function
9355 -- returns True for all tagged types for compatibility reasons.
9356 -- A function with, say, a tagged null controlling result type might
9357 -- be overridden by a primitive of an extension having an access
9358 -- discriminant and the overrider and overridden must have compatible
9359 -- calling conventions (including implicitly declared parameters).
9360 -- Similarly, values of one access-to-subprogram type might designate
9361 -- both a primitive subprogram of a given type and a function
9362 -- which is, for example, not a primitive subprogram of any type.
9363 -- Again, this requires calling convention compatibility.
9364 -- It might be possible to solve these issues by introducing
9365 -- wrappers, but that is not the approach that was chosen.
9367 return True;
9369 elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
9370 return True;
9372 elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
9373 return True;
9375 -- False for all other cases
9377 else
9378 return False;
9379 end if;
9380 end Needs_Result_Accessibility_Level;
9382 end Exp_Ch6;