1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 -- Package containing utility procedures used throughout the semantics
28 with Einfo
; use Einfo
;
29 with Exp_Tss
; use Exp_Tss
;
30 with Namet
; use Namet
;
32 with Snames
; use Snames
;
33 with Types
; use Types
;
34 with Uintp
; use Uintp
;
35 with Urealp
; use Urealp
;
39 function Abstract_Interface_List
(Typ
: Entity_Id
) return List_Id
;
40 -- Given a type that implements interfaces look for its associated
41 -- definition node and return its list of interfaces.
43 procedure Add_Access_Type_To_Process
(E
: Entity_Id
; A
: Entity_Id
);
44 -- Add A to the list of access types to process when expanding the
47 procedure Add_Block_Identifier
(N
: Node_Id
; Id
: out Entity_Id
);
48 -- Given a block statement N, generate an internal E_Block label and make
49 -- it the identifier of the block. Id denotes the generated entity. If the
50 -- block already has an identifier, Id returns the entity of its label.
52 procedure Add_Contract_Item
(Prag
: Node_Id
; Id
: Entity_Id
);
53 -- Add pragma Prag to the contract of a constant, entry, package [body],
54 -- subprogram [body] or variable denoted by Id. The following are valid
76 procedure Add_Global_Declaration
(N
: Node_Id
);
77 -- These procedures adds a declaration N at the library level, to be
78 -- elaborated before any other code in the unit. It is used for example
79 -- for the entity that marks whether a unit has been elaborated. The
80 -- declaration is added to the Declarations list of the Aux_Decls_Node
81 -- for the current unit. The declarations are added in the current scope,
82 -- so the caller should push a new scope as required before the call.
84 function Address_Integer_Convert_OK
(T1
, T2
: Entity_Id
) return Boolean;
85 -- Given two types, returns True if we are in Allow_Integer_Address mode
86 -- and one of the types is (a descendent of) System.Address (and this type
87 -- is private), and the other type is any integer type.
89 function Addressable
(V
: Uint
) return Boolean;
90 function Addressable
(V
: Int
) return Boolean;
91 pragma Inline
(Addressable
);
92 -- Returns True if the value of V is the word size or an addressable factor
93 -- of the word size (typically 8, 16, 32 or 64).
95 procedure Aggregate_Constraint_Checks
97 Check_Typ
: Entity_Id
);
98 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
99 -- and Check_Typ a constrained record type with discriminants, we generate
100 -- the appropriate discriminant checks. If Exp is an array aggregate then
101 -- emit the appropriate length checks. If Exp is a scalar type, or a string
102 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
103 -- are performed at run time. Also used for expressions in the argument of
104 -- 'Update, which shares some of the features of an aggregate.
106 function Alignment_In_Bits
(E
: Entity_Id
) return Uint
;
107 -- If the alignment of the type or object E is currently known to the
108 -- compiler, then this function returns the alignment value in bits.
109 -- Otherwise Uint_0 is returned, indicating that the alignment of the
110 -- entity is not yet known to the compiler.
112 procedure Append_Inherited_Subprogram
(S
: Entity_Id
);
113 -- If the parent of the operation is declared in the visible part of
114 -- the current scope, the inherited operation is visible even though the
115 -- derived type that inherits the operation may be completed in the private
116 -- part of the current package.
118 procedure Apply_Compile_Time_Constraint_Error
121 Reason
: RT_Exception_Code
;
122 Ent
: Entity_Id
:= Empty
;
123 Typ
: Entity_Id
:= Empty
;
124 Loc
: Source_Ptr
:= No_Location
;
125 Rep
: Boolean := True;
126 Warn
: Boolean := False);
127 -- N is a subexpression which will raise constraint error when evaluated
128 -- at runtime. Msg is a message that explains the reason for raising the
129 -- exception. The last character is ? if the message is always a warning,
130 -- even in Ada 95, and is not a ? if the message represents an illegality
131 -- (because of violation of static expression rules) in Ada 95 (but not
132 -- in Ada 83). Typically this routine posts all messages at the Sloc of
133 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
134 -- the message. After posting the appropriate message, and if the flag
135 -- Rep is set, this routine replaces the expression with an appropriate
136 -- N_Raise_Constraint_Error node using the given Reason code. This node
137 -- is then marked as being static if the original node is static, but
138 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
139 -- The error message may contain a } or & insertion character. This
140 -- normally references Etype (N), unless the Ent argument is given
141 -- explicitly, in which case it is used instead. The type of the raise
142 -- node that is built is normally Etype (N), but if the Typ parameter
143 -- is present, this is used instead. Warn is normally False. If it is
144 -- True then the message is treated as a warning even though it does
145 -- not end with a ? (this is used when the caller wants to parameterize
146 -- whether an error or warning is given).
148 function Async_Readers_Enabled
(Id
: Entity_Id
) return Boolean;
149 -- Given the entity of an abstract state or a variable, determine whether
150 -- Id is subject to external property Async_Readers and if it is, the
151 -- related expression evaluates to True.
153 function Async_Writers_Enabled
(Id
: Entity_Id
) return Boolean;
154 -- Given the entity of an abstract state or a variable, determine whether
155 -- Id is subject to external property Async_Writers and if it is, the
156 -- related expression evaluates to True.
158 function Available_Full_View_Of_Component
(T
: Entity_Id
) return Boolean;
159 -- If at the point of declaration an array type has a private or limited
160 -- component, several array operations are not avaiable on the type, and
161 -- the array type is flagged accordingly. If in the immediate scope of
162 -- the array type the component becomes non-private or non-limited, these
163 -- operations become avaiable. This can happen if the scopes of both types
164 -- are open, and the scope of the array is not outside the scope of the
167 procedure Bad_Attribute
170 Warn
: Boolean := False);
171 -- Called when node N is expected to contain a valid attribute name, and
172 -- Nam is found instead. If Warn is set True this is a warning, else this
175 procedure Bad_Predicated_Subtype_Use
179 Suggest_Static
: Boolean := False);
180 -- This is called when Typ, a predicated subtype, is used in a context
181 -- which does not allow the use of a predicated subtype. Msg is passed to
182 -- Error_Msg_FE to output an appropriate message using N as the location,
183 -- and Typ as the entity. The caller must set up any insertions other than
184 -- the & for the type itself. Note that if Typ is a generic actual type,
185 -- then the message will be output as a warning, and a raise Program_Error
186 -- is inserted using Insert_Action with node N as the insertion point. Node
187 -- N also supplies the source location for construction of the raise node.
188 -- If Typ does not have any predicates, the call has no effect. Set flag
189 -- Suggest_Static when the context warrants an advice on how to avoid the
192 function Bad_Unordered_Enumeration_Reference
194 T
: Entity_Id
) return Boolean;
195 -- Node N contains a potentially dubious reference to type T, either an
196 -- explicit comparison, or an explicit range. This function returns True
197 -- if the type T is an enumeration type for which No pragma Order has been
198 -- given, and the reference N is not in the same extended source unit as
199 -- the declaration of T.
201 function Build_Actual_Subtype
203 N
: Node_Or_Entity_Id
) return Node_Id
;
204 -- Build an anonymous subtype for an entity or expression, using the
205 -- bounds of the entity or the discriminants of the enclosing record.
206 -- T is the type for which the actual subtype is required, and N is either
207 -- a defining identifier, or any subexpression.
209 function Build_Actual_Subtype_Of_Component
211 N
: Node_Id
) return Node_Id
;
212 -- Determine whether a selected component has a type that depends on
213 -- discriminants, and build actual subtype for it if so.
215 function Build_Default_Init_Cond_Call
218 Typ
: Entity_Id
) return Node_Id
;
219 -- Build a call to the default initial condition procedure of type Typ with
220 -- Obj_Id as the actual parameter.
222 procedure Build_Default_Init_Cond_Procedure_Bodies
(Priv_Decls
: List_Id
);
223 -- Inspect the contents of private declarations Priv_Decls and build the
224 -- bodies the default initial condition procedures for all types subject
225 -- to pragma Default_Initial_Condition.
227 procedure Build_Default_Init_Cond_Procedure_Declaration
(Typ
: Entity_Id
);
228 -- If private type Typ is subject to pragma Default_Initial_Condition,
229 -- build the declaration of the procedure which verifies the assumption
230 -- of the pragma at runtime. The declaration is inserted after the related
233 function Build_Default_Subtype
235 N
: Node_Id
) return Entity_Id
;
236 -- If T is an unconstrained type with defaulted discriminants, build a
237 -- subtype constrained by the default values, insert the subtype
238 -- declaration in the tree before N, and return the entity of that
239 -- subtype. Otherwise, simply return T.
241 function Build_Discriminal_Subtype_Of_Component
242 (T
: Entity_Id
) return Node_Id
;
243 -- Determine whether a record component has a type that depends on
244 -- discriminants, and build actual subtype for it if so.
246 procedure Build_Elaboration_Entity
(N
: Node_Id
; Spec_Id
: Entity_Id
);
247 -- Given a compilation unit node N, allocate an elaboration counter for
248 -- the compilation unit, and install it in the Elaboration_Entity field
249 -- of Spec_Id, the entity for the compilation unit.
251 procedure Build_Explicit_Dereference
254 -- AI05-139: Names with implicit dereference. If the expression N is a
255 -- reference type and the context imposes the corresponding designated
256 -- type, convert N into N.Disc.all. Such expressions are always over-
257 -- loaded with both interpretations, and the dereference interpretation
258 -- carries the name of the reference discriminant.
260 function Cannot_Raise_Constraint_Error
(Expr
: Node_Id
) return Boolean;
261 -- Returns True if the expression cannot possibly raise Constraint_Error.
262 -- The response is conservative in the sense that a result of False does
263 -- not necessarily mean that CE could be raised, but a response of True
264 -- means that for sure CE cannot be raised.
266 procedure Check_Dynamically_Tagged_Expression
269 Related_Nod
: Node_Id
);
270 -- Check wrong use of dynamically tagged expression
272 procedure Check_Fully_Declared
(T
: Entity_Id
; N
: Node_Id
);
273 -- Verify that the full declaration of type T has been seen. If not, place
274 -- error message on node N. Used in object declarations, type conversions
275 -- and qualified expressions.
277 procedure Check_Function_Writable_Actuals
(N
: Node_Id
);
278 -- (Ada 2012): If the construct N has two or more direct constituents that
279 -- are names or expressions whose evaluation may occur in an arbitrary
280 -- order, at least one of which contains a function call with an in out or
281 -- out parameter, then the construct is legal only if: for each name that
282 -- is passed as a parameter of mode in out or out to some inner function
283 -- call C2 (not including the construct N itself), there is no other name
284 -- anywhere within a direct constituent of the construct C other than
285 -- the one containing C2, that is known to refer to the same object (RM
288 procedure Check_Implicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
);
289 -- AI05-139-2: Accessors and iterators for containers. This procedure
290 -- checks whether T is a reference type, and if so it adds an interprettion
291 -- to N whose type is the designated type of the reference_discriminant.
292 -- If N is a generalized indexing operation, the interpretation is added
293 -- both to the corresponding function call, and to the indexing node.
295 procedure Check_Internal_Protected_Use
(N
: Node_Id
; Nam
: Entity_Id
);
296 -- Within a protected function, the current object is a constant, and
297 -- internal calls to a procedure or entry are illegal. Similarly, other
298 -- uses of a protected procedure in a renaming or a generic instantiation
299 -- in the context of a protected function are illegal (AI05-0225).
301 procedure Check_Later_Vs_Basic_Declarations
303 During_Parsing
: Boolean);
304 -- If During_Parsing is True, check for misplacement of later vs basic
305 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
306 -- restriction is set, do the same: although SPARK 95 removes the
307 -- distinction between initial and later declarative items, the distinction
308 -- remains in the Examiner (JB01-005). Note that the Examiner does not
309 -- count package declarations in later declarative items.
311 procedure Check_Nested_Access
(Ent
: Entity_Id
);
312 -- Check whether Ent denotes an entity declared in an uplevel scope, which
313 -- is accessed inside a nested procedure, and set Has_Uplevel_Reference
314 -- flag accordingly. This is currently only enabled for if on a VM target.
316 procedure Check_No_Hidden_State
(Id
: Entity_Id
);
317 -- Determine whether object or state Id introduces a hidden state. If this
318 -- is the case, emit an error.
320 procedure Check_Potentially_Blocking_Operation
(N
: Node_Id
);
321 -- N is one of the statement forms that is a potentially blocking
322 -- operation. If it appears within a protected action, emit warning.
324 procedure Check_Result_And_Post_State
(Subp_Id
: Entity_Id
);
325 -- Determine whether the contract of subprogram Subp_Id mentions attribute
326 -- 'Result and it contains an expression that evaluates differently in pre-
329 procedure Check_Unprotected_Access
332 -- Check whether the expression is a pointer to a protected component,
333 -- and the context is external to the protected operation, to warn against
334 -- a possible unlocked access to data.
336 procedure Collect_Interfaces
338 Ifaces_List
: out Elist_Id
;
339 Exclude_Parents
: Boolean := False;
340 Use_Full_View
: Boolean := True);
341 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
342 -- directly or indirectly implemented by T. Exclude_Parents is used to
343 -- avoid the addition of inherited interfaces to the generated list.
344 -- Use_Full_View is used to collect the interfaces using the full-view
347 procedure Collect_Interface_Components
348 (Tagged_Type
: Entity_Id
;
349 Components_List
: out Elist_Id
);
350 -- Ada 2005 (AI-251): Collect all the tag components associated with the
351 -- secondary dispatch tables of a tagged type.
353 procedure Collect_Interfaces_Info
355 Ifaces_List
: out Elist_Id
;
356 Components_List
: out Elist_Id
;
357 Tags_List
: out Elist_Id
);
358 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
359 -- the record component and tag associated with each of these interfaces.
360 -- On exit Ifaces_List, Components_List and Tags_List have the same number
361 -- of elements, and elements at the same position on these tables provide
362 -- information on the same interface type.
364 procedure Collect_Parents
367 Use_Full_View
: Boolean := True);
368 -- Collect all the parents of Typ. Use_Full_View is used to collect them
369 -- using the full-view of private parents (if available).
371 function Collect_Primitive_Operations
(T
: Entity_Id
) return Elist_Id
;
372 -- Called upon type derivation and extension. We scan the declarative part
373 -- in which the type appears, and collect subprograms that have one
374 -- subsidiary subtype of the type. These subprograms can only appear after
377 function Compile_Time_Constraint_Error
380 Ent
: Entity_Id
:= Empty
;
381 Loc
: Source_Ptr
:= No_Location
;
382 Warn
: Boolean := False) return Node_Id
;
383 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
384 -- generates a warning (or error) message in the same manner, but it does
385 -- not replace any nodes. For convenience, the function always returns its
386 -- first argument. The message is a warning if the message ends with ?, or
387 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
389 procedure Conditional_Delay
(New_Ent
, Old_Ent
: Entity_Id
);
390 -- Sets the Has_Delayed_Freeze flag of New if the Delayed_Freeze flag of
391 -- Old is set and Old has no yet been Frozen (i.e. Is_Frozen is false).
393 function Contains_Refined_State
(Prag
: Node_Id
) return Boolean;
394 -- Determine whether pragma Prag contains a reference to the entity of an
395 -- abstract state with a visible refinement. Prag must denote one of the
396 -- following pragmas:
400 function Copy_Component_List
402 Loc
: Source_Ptr
) return List_Id
;
403 -- Copy components from record type R_Typ that come from source. Used to
404 -- create a new compatible record type. Loc is the source location assigned
405 -- to the created nodes.
407 function Copy_Parameter_List
(Subp_Id
: Entity_Id
) return List_Id
;
408 -- Utility to create a parameter profile for a new subprogram spec, when
409 -- the subprogram has a body that acts as spec. This is done for some cases
410 -- of inlining, and for private protected ops. Also used to create bodies
411 -- for stubbed subprograms.
413 function Copy_Subprogram_Spec
(Spec
: Node_Id
) return Node_Id
;
414 -- Replicate a function or a procedure specification denoted by Spec. The
415 -- resulting tree is an exact duplicate of the original tree. New entities
416 -- are created for the unit name and the formal parameters.
418 function Corresponding_Generic_Type
(T
: Entity_Id
) return Entity_Id
;
419 -- If a type is a generic actual type, return the corresponding formal in
420 -- the generic parent unit. There is no direct link in the tree for this
421 -- attribute, except in the case of formal private and derived types.
422 -- Possible optimization???
424 function Corresponding_Spec_Of
(Decl
: Node_Id
) return Entity_Id
;
425 -- Return the corresponding spec of Decl when it denotes a package or a
426 -- subprogram [stub], or the defining entity of Decl.
428 procedure Create_Generic_Contract
(Unit
: Node_Id
);
429 -- Create a contract node for a generic package, generic subprogram or a
430 -- generic body denoted by Unit by collecting all source contract-related
431 -- pragmas in the contract of the unit.
433 function Current_Entity
(N
: Node_Id
) return Entity_Id
;
434 pragma Inline
(Current_Entity
);
435 -- Find the currently visible definition for a given identifier, that is to
436 -- say the first entry in the visibility chain for the Chars of N.
438 function Current_Entity_In_Scope
(N
: Node_Id
) return Entity_Id
;
439 -- Find whether there is a previous definition for identifier N in the
440 -- current scope. Because declarations for a scope are not necessarily
441 -- contiguous (e.g. for packages) the first entry on the visibility chain
442 -- for N is not necessarily in the current scope.
444 function Current_Scope
return Entity_Id
;
445 -- Get entity representing current scope
447 function Current_Subprogram
return Entity_Id
;
448 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
449 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
450 -- Current_Scope is returned. The returned value is Empty if this is called
451 -- from a library package which is not within any subprogram.
453 function Deepest_Type_Access_Level
(Typ
: Entity_Id
) return Uint
;
454 -- Same as Type_Access_Level, except that if the type is the type of an Ada
455 -- 2012 stand-alone object of an anonymous access type, then return the
456 -- static accesssibility level of the object. In that case, the dynamic
457 -- accessibility level of the object may take on values in a range. The low
458 -- bound of of that range is returned by Type_Access_Level; this function
459 -- yields the high bound of that range. Also differs from Type_Access_Level
460 -- in the case of a descendant of a generic formal type (returns Int'Last
463 function Defining_Entity
(N
: Node_Id
) return Entity_Id
;
464 -- Given a declaration N, returns the associated defining entity. If the
465 -- declaration has a specification, the entity is obtained from the
466 -- specification. If the declaration has a defining unit name, then the
467 -- defining entity is obtained from the defining unit name ignoring any
468 -- child unit prefixes.
470 -- Iterator loops also have a defining entity, which holds the list of
471 -- local entities declared during loop expansion. These entities need
472 -- debugging information, generated through Qualify_Entity_Names, and
473 -- the loop declaration must be placed in the table Name_Qualify_Units.
475 function Denotes_Discriminant
477 Check_Concurrent
: Boolean := False) return Boolean;
478 -- Returns True if node N is an Entity_Name node for a discriminant. If the
479 -- flag Check_Concurrent is true, function also returns true when N denotes
480 -- the discriminal of the discriminant of a concurrent type. This is needed
481 -- to disable some optimizations on private components of protected types,
482 -- and constraint checks on entry families constrained by discriminants.
484 function Denotes_Same_Object
(A1
, A2
: Node_Id
) return Boolean;
485 -- Detect suspicious overlapping between actuals in a call, when both are
486 -- writable (RM 2012 6.4.1(6.4/3))
488 function Denotes_Same_Prefix
(A1
, A2
: Node_Id
) return Boolean;
489 -- Functions to detect suspicious overlapping between actuals in a call,
490 -- when one of them is writable. The predicates are those proposed in
491 -- AI05-0144, to detect dangerous order dependence in complex calls.
492 -- I would add a parameter Warn which enables more extensive testing of
493 -- cases as we find appropriate when we are only warning ??? Or perhaps
494 -- return an indication of (Error, Warn, OK) ???
496 function Denotes_Variable
(N
: Node_Id
) return Boolean;
497 -- Returns True if node N denotes a single variable without parentheses
499 function Depends_On_Discriminant
(N
: Node_Id
) return Boolean;
500 -- Returns True if N denotes a discriminant or if N is a range, a subtype
501 -- indication or a scalar subtype where one of the bounds is a
504 function Designate_Same_Unit
506 Name2
: Node_Id
) return Boolean;
507 -- Returns True if Name1 and Name2 designate the same unit name; each of
508 -- these names is supposed to be a selected component name, an expanded
509 -- name, a defining program unit name or an identifier.
511 function Dynamic_Accessibility_Level
(Expr
: Node_Id
) return Node_Id
;
512 -- Expr should be an expression of an access type. Builds an integer
513 -- literal except in cases involving anonymous access types where
514 -- accessibility levels are tracked at runtime (access parameters and Ada
515 -- 2012 stand-alone objects).
517 function Effective_Extra_Accessibility
(Id
: Entity_Id
) return Entity_Id
;
518 -- Same as Einfo.Extra_Accessibility except thtat object renames
519 -- are looked through.
521 function Effective_Reads_Enabled
(Id
: Entity_Id
) return Boolean;
522 -- Given the entity of an abstract state or a variable, determine whether
523 -- Id is subject to external property Effective_Reads and if it is, the
524 -- related expression evaluates to True.
526 function Effective_Writes_Enabled
(Id
: Entity_Id
) return Boolean;
527 -- Given the entity of an abstract state or a variable, determine whether
528 -- Id is subject to external property Effective_Writes and if it is, the
529 -- related expression evaluates to True.
531 function Enclosing_Comp_Unit_Node
(N
: Node_Id
) return Node_Id
;
532 -- Returns the enclosing N_Compilation_Unit Node that is the root of a
533 -- subtree containing N.
535 function Enclosing_CPP_Parent
(Typ
: Entity_Id
) return Entity_Id
;
536 -- Returns the closest ancestor of Typ that is a CPP type.
538 function Enclosing_Generic_Body
539 (N
: Node_Id
) return Node_Id
;
540 -- Returns the Node_Id associated with the innermost enclosing generic
541 -- body, if any. If none, then returns Empty.
543 function Enclosing_Generic_Unit
544 (N
: Node_Id
) return Node_Id
;
545 -- Returns the Node_Id associated with the innermost enclosing generic
546 -- unit, if any. If none, then returns Empty.
548 function Enclosing_Lib_Unit_Entity
549 (E
: Entity_Id
:= Current_Scope
) return Entity_Id
;
550 -- Returns the entity of enclosing library unit node which is the
551 -- root of the current scope (which must not be Standard_Standard, and the
552 -- caller is responsible for ensuring this condition) or other specified
555 function Enclosing_Package
(E
: Entity_Id
) return Entity_Id
;
556 -- Utility function to return the Ada entity of the package enclosing
557 -- the entity E, if any. Returns Empty if no enclosing package.
559 function Enclosing_Subprogram
(E
: Entity_Id
) return Entity_Id
;
560 -- Utility function to return the Ada entity of the subprogram enclosing
561 -- the entity E, if any. Returns Empty if no enclosing subprogram.
563 procedure Ensure_Freeze_Node
(E
: Entity_Id
);
564 -- Make sure a freeze node is allocated for entity E. If necessary, build
565 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
567 procedure Enter_Name
(Def_Id
: Entity_Id
);
568 -- Insert new name in symbol table of current scope with check for
569 -- duplications (error message is issued if a conflict is found).
570 -- Note: Enter_Name is not used for overloadable entities, instead these
571 -- are entered using Sem_Ch6.Enter_Overloadable_Entity.
573 function Entity_Of
(N
: Node_Id
) return Entity_Id
;
574 -- Return the entity of N or Empty. If N is a renaming, return the entity
575 -- of the root renamed object.
577 procedure Explain_Limited_Type
(T
: Entity_Id
; N
: Node_Id
);
578 -- This procedure is called after issuing a message complaining about an
579 -- inappropriate use of limited type T. If useful, it adds additional
580 -- continuation lines to the message explaining why type T is limited.
581 -- Messages are placed at node N.
583 type Extensions_Visible_Mode
is
584 (Extensions_Visible_None
,
585 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
586 -- value acts as a default in a non-SPARK compilation.
588 Extensions_Visible_False
,
589 -- A value of "False" signifies that Extensions_Visible is either
590 -- missing or the pragma is present and the value of its Boolean
591 -- expression is False.
593 Extensions_Visible_True
);
594 -- A value of "True" signifies that Extensions_Visible is present and
595 -- the value of its Boolean expression is True.
597 function Extensions_Visible_Status
598 (Id
: Entity_Id
) return Extensions_Visible_Mode
;
599 -- Given the entity of a subprogram or formal parameter subject to pragma
600 -- Extensions_Visible, return the Boolean value denoted by the expression
603 procedure Find_Actual
605 Formal
: out Entity_Id
;
607 -- Determines if the node N is an actual parameter of a function of a
608 -- procedure call. If so, then Formal points to the entity for the formal
609 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
610 -- Call is set to the node for the corresponding call. If the node N is not
611 -- an actual parameter then Formal and Call are set to Empty.
613 function Find_Specific_Type
(CW
: Entity_Id
) return Entity_Id
;
614 -- Find specific type of a class-wide type, and handle the case of an
615 -- incomplete type coming either from a limited_with clause or from an
616 -- incomplete type declaration. If resulting type is private return its
619 function Find_Body_Discriminal
620 (Spec_Discriminant
: Entity_Id
) return Entity_Id
;
621 -- Given a discriminant of the record type that implements a task or
622 -- protected type, return the discriminal of the corresponding discriminant
623 -- of the actual concurrent type.
625 function Find_Corresponding_Discriminant
627 Typ
: Entity_Id
) return Entity_Id
;
628 -- Because discriminants may have different names in a generic unit and in
629 -- an instance, they are resolved positionally when possible. A reference
630 -- to a discriminant carries the discriminant that it denotes when it is
631 -- analyzed. Subsequent uses of this id on a different type denotes the
632 -- discriminant at the same position in this new type.
634 function Find_Enclosing_Iterator_Loop
(Id
: Entity_Id
) return Entity_Id
;
635 -- Given an arbitrary entity, try to find the nearest enclosing iterator
636 -- loop. If such a loop is found, return the entity of its identifier (the
637 -- E_Loop scope), otherwise return Empty.
639 function Find_Loop_In_Conditional_Block
(N
: Node_Id
) return Node_Id
;
640 -- Find the nested loop statement in a conditional block. Loops subject to
641 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
642 -- loop are nested within the block.
644 procedure Find_Overlaid_Entity
648 -- The node N should be an address representation clause. Determines if
649 -- the target expression is the address of an entity with an optional
650 -- offset. If so, set Ent to the entity and, if there is an offset, set
651 -- Off to True, otherwise to False. If N is not an address representation
652 -- clause, or if it is not possible to determine that the address is of
653 -- this form, then set Ent to Empty.
655 function Find_Parameter_Type
(Param
: Node_Id
) return Entity_Id
;
656 -- Return the type of formal parameter Param as determined by its
659 -- The following type describes the placement of an arbitrary entity with
660 -- respect to SPARK visible / hidden state space.
662 type State_Space_Kind
is
664 -- An entity is not in the visible, private or body state space when
665 -- the immediate enclosing construct is not a package.
668 -- An entity is in the visible state space when it appears immediately
669 -- within the visible declarations of a package or when it appears in
670 -- the visible state space of a nested package which in turn is declared
671 -- in the visible declarations of an enclosing package:
674 -- Visible_Variable : ...
676 -- with Abstract_State => Visible_State
678 -- Visible_Nested_Variable : ...
682 -- Entities associated with a package instantiation inherit the state
683 -- space from the instance placement:
687 -- Generic_Variable : ...
692 -- package Inst is new Gen;
693 -- -- Generic_Variable is in the visible state space of Pack
697 -- An entity is in the private state space when it appears immediately
698 -- within the private declarations of a package or when it appears in
699 -- the visible state space of a nested package which in turn is declared
700 -- in the private declarations of an enclosing package:
704 -- Private_Variable : ...
706 -- with Abstract_State => Private_State
708 -- Private_Nested_Variable : ...
712 -- The same placement principle applies to package instantiations
715 -- An entity is in the body state space when it appears immediately
716 -- within the declarations of a package body or when it appears in the
717 -- visible state space of a nested package which in turn is declared in
718 -- the declarations of an enclosing package body:
720 -- package body Pack is
721 -- Body_Variable : ...
723 -- with Abstract_State => Body_State
725 -- Body_Nested_Variable : ...
729 -- The same placement principle applies to package instantiations
731 procedure Find_Placement_In_State_Space
732 (Item_Id
: Entity_Id
;
733 Placement
: out State_Space_Kind
;
734 Pack_Id
: out Entity_Id
);
735 -- Determine the state space placement of an item. Item_Id denotes the
736 -- entity of an abstract state, object or package instantiation. Placement
737 -- captures the precise placement of the item in the enclosing state space.
738 -- If the state space is that of a package, Pack_Id denotes its entity,
739 -- otherwise Pack_Id is Empty.
741 function Find_Static_Alternative
(N
: Node_Id
) return Node_Id
;
742 -- N is a case statement whose expression is a compile-time value.
743 -- Determine the alternative chosen, so that the code of non-selected
744 -- alternatives, and the warnings that may apply to them, are removed.
746 function First_Actual
(Node
: Node_Id
) return Node_Id
;
747 -- Node is an N_Function_Call or N_Procedure_Call_Statement node. The
748 -- result returned is the first actual parameter in declaration order
749 -- (not the order of parameters as they appeared in the source, which
750 -- can be quite different as a result of the use of named parameters).
751 -- Empty is returned for a call with no parameters. The procedure for
752 -- iterating through the actuals in declaration order is to use this
753 -- function to find the first actual, and then use Next_Actual to obtain
754 -- the next actual in declaration order. Note that the value returned
755 -- is always the expression (not the N_Parameter_Association nodes,
756 -- even if named association is used).
758 procedure Gather_Components
761 Governed_By
: List_Id
;
763 Report_Errors
: out Boolean);
764 -- The purpose of this procedure is to gather the valid components in a
765 -- record type according to the values of its discriminants, in order to
766 -- validate the components of a record aggregate.
768 -- Typ is the type of the aggregate when its constrained discriminants
769 -- need to be collected, otherwise it is Empty.
771 -- Comp_List is an N_Component_List node.
773 -- Governed_By is a list of N_Component_Association nodes, where each
774 -- choice list contains the name of a discriminant and the expression
775 -- field gives its value. The values of the discriminants governing
776 -- the (possibly nested) variant parts in Comp_List are found in this
777 -- Component_Association List.
779 -- Into is the list where the valid components are appended. Note that
780 -- Into need not be an Empty list. If it's not, components are attached
783 -- Report_Errors is set to True if the values of the discriminants are
786 -- This procedure is also used when building a record subtype. If the
787 -- discriminant constraint of the subtype is static, the components of the
788 -- subtype are only those of the variants selected by the values of the
789 -- discriminants. Otherwise all components of the parent must be included
790 -- in the subtype for semantic analysis.
792 function Get_Actual_Subtype
(N
: Node_Id
) return Entity_Id
;
793 -- Given a node for an expression, obtain the actual subtype of the
794 -- expression. In the case of a parameter where the formal is an
795 -- unconstrained array or discriminated type, this will be the previously
796 -- constructed subtype of the actual. Note that this is not quite the
797 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
798 -- it is the subtype of the value of the actual. The actual subtype is also
799 -- returned in other cases where it has already been constructed for an
800 -- object. Otherwise the expression type is returned unchanged, except for
801 -- the case of an unconstrained array type, where an actual subtype is
802 -- created, using Insert_Actions if necessary to insert any associated
805 function Get_Actual_Subtype_If_Available
(N
: Node_Id
) return Entity_Id
;
806 -- This is like Get_Actual_Subtype, except that it never constructs an
807 -- actual subtype. If an actual subtype is already available, i.e. the
808 -- Actual_Subtype field of the corresponding entity is set, then it is
809 -- returned. Otherwise the Etype of the node is returned.
811 function Get_Body_From_Stub
(N
: Node_Id
) return Node_Id
;
812 -- Return the body node for a stub (subprogram or package)
814 function Get_Cursor_Type
816 Typ
: Entity_Id
) return Entity_Id
;
817 -- Find Cursor type in scope of formal container Typ, by locating primitive
818 -- operation First. For use in resolving the other primitive operations
819 -- of an Iterable type and expanding loops and quantified expressions
820 -- over formal containers.
822 function Get_Default_External_Name
(E
: Node_Or_Entity_Id
) return Node_Id
;
823 -- This is used to construct the string literal node representing a
824 -- default external name, i.e. one that is constructed from the name of an
825 -- entity, or (in the case of extended DEC import/export pragmas, an
826 -- identifier provided as the external name. Letters in the name are
827 -- according to the setting of Opt.External_Name_Default_Casing.
829 function Get_Enclosing_Object
(N
: Node_Id
) return Entity_Id
;
830 -- If expression N references a part of an object, return this object.
831 -- Otherwise return Empty. Expression N should have been resolved already.
833 function Get_Generic_Entity
(N
: Node_Id
) return Entity_Id
;
834 -- Returns the true generic entity in an instantiation. If the name in the
835 -- instantiation is a renaming, the function returns the renamed generic.
837 function Get_Incomplete_View_Of_Ancestor
(E
: Entity_Id
) return Entity_Id
;
838 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
839 -- in a child unit a derived type is within the derivation class of an
840 -- ancestor declared in a parent unit, even if there is an intermediate
841 -- derivation that does not see the full view of that ancestor.
843 procedure Get_Index_Bounds
(N
: Node_Id
; L
, H
: out Node_Id
);
844 -- This procedure assigns to L and H respectively the values of the low and
845 -- high bounds of node N, which must be a range, subtype indication, or the
846 -- name of a scalar subtype. The result in L, H may be set to Error if
847 -- there was an earlier error in the range.
849 function Get_Enum_Lit_From_Pos
852 Loc
: Source_Ptr
) return Node_Id
;
853 -- This function returns an identifier denoting the E_Enumeration_Literal
854 -- entity for the specified value from the enumeration type or subtype T.
855 -- The second argument is the Pos value, which is assumed to be in range.
856 -- The third argument supplies a source location for constructed nodes
857 -- returned by this function.
859 function Get_Iterable_Type_Primitive
861 Nam
: Name_Id
) return Entity_Id
;
862 -- Retrieve one of the primitives First, Next, Has_Element, Element from
863 -- the value of the Iterable aspect of a formal type.
865 procedure Get_Library_Unit_Name_String
(Decl_Node
: Node_Id
);
866 -- Retrieve the fully expanded name of the library unit declared by
867 -- Decl_Node into the name buffer.
869 function Get_Name_Entity_Id
(Id
: Name_Id
) return Entity_Id
;
870 pragma Inline
(Get_Name_Entity_Id
);
871 -- An entity value is associated with each name in the name table. The
872 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
873 -- is the innermost visible entity with the given name. See the body of
874 -- Sem_Ch8 for further details on handling of entity visibility.
876 function Get_Name_From_CTC_Pragma
(N
: Node_Id
) return String_Id
;
877 -- Return the Name component of Test_Case pragma N
878 -- Bad name now that this no longer applies to Contract_Case ???
880 function Get_Parent_Entity
(Unit
: Node_Id
) return Entity_Id
;
881 -- Get defining entity of parent unit of a child unit. In most cases this
882 -- is the defining entity of the unit, but for a child instance whose
883 -- parent needs a body for inlining, the instantiation node of the parent
884 -- has not yet been rewritten as a package declaration, and the entity has
885 -- to be retrieved from the Instance_Spec of the unit.
887 function Get_Pragma_Id
(N
: Node_Id
) return Pragma_Id
;
888 pragma Inline
(Get_Pragma_Id
);
889 -- Obtains the Pragma_Id from the Chars field of Pragma_Identifier (N)
891 procedure Get_Reason_String
(N
: Node_Id
);
892 -- Recursive routine to analyze reason argument for pragma Warnings. The
893 -- value of the reason argument is appended to the current string using
894 -- Store_String_Chars. The reason argument is expected to be a string
895 -- literal or concatenation of string literals. An error is given for
898 function Get_Referenced_Object
(N
: Node_Id
) return Node_Id
;
899 -- Given a node, return the renamed object if the node represents a renamed
900 -- object, otherwise return the node unchanged. The node may represent an
901 -- arbitrary expression.
903 function Get_Renamed_Entity
(E
: Entity_Id
) return Entity_Id
;
904 -- Given an entity for an exception, package, subprogram or generic unit,
905 -- returns the ultimately renamed entity if this is a renaming. If this is
906 -- not a renamed entity, returns its argument. It is an error to call this
907 -- with any other kind of entity.
909 function Get_Subprogram_Entity
(Nod
: Node_Id
) return Entity_Id
;
910 -- Nod is either a procedure call statement, or a function call, or an
911 -- accept statement node. This procedure finds the Entity_Id of the related
912 -- subprogram or entry and returns it, or if no subprogram can be found,
915 function Get_Subprogram_Body
(E
: Entity_Id
) return Node_Id
;
916 -- Given the entity for a subprogram (E_Function or E_Procedure), return
917 -- the corresponding N_Subprogram_Body node. If the corresponding body
918 -- is missing (as for an imported subprogram), return Empty.
920 function Get_Task_Body_Procedure
(E
: Entity_Id
) return Node_Id
;
921 pragma Inline
(Get_Task_Body_Procedure
);
922 -- Given an entity for a task type or subtype, retrieves the
923 -- Task_Body_Procedure field from the corresponding task type declaration.
925 function Has_Access_Values
(T
: Entity_Id
) return Boolean;
926 -- Returns true if type or subtype T is an access type, or has a component
927 -- (at any recursive level) that is an access type. This is a conservative
928 -- predicate, if it is not known whether or not T contains access values
929 -- (happens for generic formals in some cases), then False is returned.
930 -- Note that tagged types return False. Even though the tag is implemented
931 -- as an access type internally, this function tests only for access types
932 -- known to the programmer. See also Has_Tagged_Component.
934 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean;
935 -- Simple predicate to test for defaulted discriminants
937 type Alignment_Result
is (Known_Compatible
, Unknown
, Known_Incompatible
);
938 -- Result of Has_Compatible_Alignment test, description found below. Note
939 -- that the values are arranged in increasing order of problematicness.
941 function Has_Compatible_Alignment
943 Expr
: Node_Id
) return Alignment_Result
;
944 -- Obj is an object entity, and expr is a node for an object reference. If
945 -- the alignment of the object referenced by Expr is known to be compatible
946 -- with the alignment of Obj (i.e. is larger or the same), then the result
947 -- is Known_Compatible. If the alignment of the object referenced by Expr
948 -- is known to be less than the alignment of Obj, then Known_Incompatible
949 -- is returned. If neither condition can be reliably established at compile
950 -- time, then Unknown is returned. This is used to determine if alignment
951 -- checks are required for address clauses, and also whether copies must
952 -- be made when objects are passed by reference.
954 -- Note: Known_Incompatible does not mean that at run time the alignment
955 -- of Expr is known to be wrong for Obj, just that it can be determined
956 -- that alignments have been explicitly or implicitly specified which are
957 -- incompatible (whereas Unknown means that even this is not known). The
958 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
959 -- Unknown, but issue a warning that there may be an alignment error.
961 function Has_Declarations
(N
: Node_Id
) return Boolean;
962 -- Determines if the node can have declarations
964 function Has_Denormals
(E
: Entity_Id
) return Boolean;
965 -- Determines if the floating-point type E supports denormal numbers.
966 -- Returns False if E is not a floating-point type.
968 function Has_Discriminant_Dependent_Constraint
969 (Comp
: Entity_Id
) return Boolean;
970 -- Returns True if and only if Comp has a constrained subtype that depends
971 -- on a discriminant.
973 function Has_Infinities
(E
: Entity_Id
) return Boolean;
974 -- Determines if the range of the floating-point type E includes
975 -- infinities. Returns False if E is not a floating-point type.
977 function Has_Interfaces
979 Use_Full_View
: Boolean := True) return Boolean;
980 -- Where T is a concurrent type or a record type, returns true if T covers
981 -- any abstract interface types. In case of private types the argument
982 -- Use_Full_View controls if the check is done using its full view (if
985 function Has_No_Obvious_Side_Effects
(N
: Node_Id
) return Boolean;
986 -- This is a simple minded function for determining whether an expression
987 -- has no obvious side effects. It is used only for determining whether
988 -- warnings are needed in certain situations, and is not guaranteed to
989 -- be accurate in either direction. Exceptions may mean an expression
990 -- does in fact have side effects, but this may be ignored and True is
991 -- returned, or a complex expression may in fact be side effect free
992 -- but we don't recognize it here and return False. The Side_Effect_Free
993 -- routine in Remove_Side_Effects is much more extensive and perhaps could
994 -- be shared, so that this routine would be more accurate.
996 function Has_Null_Exclusion
(N
: Node_Id
) return Boolean;
997 -- Determine whether node N has a null exclusion
999 function Has_Overriding_Initialize
(T
: Entity_Id
) return Boolean;
1000 -- Predicate to determine whether a controlled type has a user-defined
1001 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1002 -- non-null), which causes the type to not have preelaborable
1005 function Has_Preelaborable_Initialization
(E
: Entity_Id
) return Boolean;
1006 -- Return True iff type E has preelaborable initialization as defined in
1007 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1009 function Has_Private_Component
(Type_Id
: Entity_Id
) return Boolean;
1010 -- Check if a type has a (sub)component of a private type that has not
1011 -- yet received a full declaration.
1013 function Has_Signed_Zeros
(E
: Entity_Id
) return Boolean;
1014 -- Determines if the floating-point type E supports signed zeros.
1015 -- Returns False if E is not a floating-point type.
1017 function Has_Significant_Contract
(Subp_Id
: Entity_Id
) return Boolean;
1018 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1019 -- All subprograms have a N_Contract node, but this does not mean that the
1020 -- contract is useful.
1022 function Has_Static_Array_Bounds
(Typ
: Node_Id
) return Boolean;
1023 -- Return whether an array type has static bounds
1025 function Has_Stream
(T
: Entity_Id
) return Boolean;
1026 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1027 -- case of a composite type, has a component for which this predicate is
1028 -- True, and if so returns True. Otherwise a result of False means that
1029 -- there is no Stream type in sight. For a private type, the test is
1030 -- applied to the underlying type (or returns False if there is no
1031 -- underlying type).
1033 function Has_Suffix
(E
: Entity_Id
; Suffix
: Character) return Boolean;
1034 -- Returns true if the last character of E is Suffix. Used in Assertions.
1036 function Add_Suffix
(E
: Entity_Id
; Suffix
: Character) return Name_Id
;
1037 -- Returns the name of E adding Suffix
1039 function Remove_Suffix
(E
: Entity_Id
; Suffix
: Character) return Name_Id
;
1040 -- Returns the name of E without Suffix
1042 function Has_Tagged_Component
(Typ
: Entity_Id
) return Boolean;
1043 -- Returns True if Typ is a composite type (array or record) which is
1044 -- either itself a tagged type, or has a component (recursively) which is
1045 -- a tagged type. Returns False for non-composite type, or if no tagged
1046 -- component is present. This function is used to check if "=" has to be
1047 -- expanded into a bunch component comparisons.
1049 function Has_Volatile_Component
(Typ
: Entity_Id
) return Boolean;
1050 -- Given an arbitrary type, determine whether it contains at least one
1051 -- volatile component.
1053 function Implementation_Kind
(Subp
: Entity_Id
) return Name_Id
;
1054 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1055 -- implementation requirement which the pragma imposes. The return value is
1056 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1058 function Implements_Interface
1059 (Typ_Ent
: Entity_Id
;
1060 Iface_Ent
: Entity_Id
;
1061 Exclude_Parents
: Boolean := False) return Boolean;
1062 -- Returns true if the Typ_Ent implements interface Iface_Ent
1064 function In_Assertion_Expression_Pragma
(N
: Node_Id
) return Boolean;
1065 -- Determine whether an arbitrary node appears in a pragma that acts as an
1066 -- assertion expression. See Sem_Prag for the list of qualifying pragmas.
1068 function In_Instance
return Boolean;
1069 -- Returns True if the current scope is within a generic instance
1071 function In_Instance_Body
return Boolean;
1072 -- Returns True if current scope is within the body of an instance, where
1073 -- several semantic checks (e.g. accessibility checks) are relaxed.
1075 function In_Instance_Not_Visible
return Boolean;
1076 -- Returns True if current scope is with the private part or the body of
1077 -- an instance. Other semantic checks are suppressed in this context.
1079 function In_Instance_Visible_Part
return Boolean;
1080 -- Returns True if current scope is within the visible part of a package
1081 -- instance, where several additional semantic checks apply.
1083 function In_Package_Body
return Boolean;
1084 -- Returns True if current scope is within a package body
1086 function In_Parameter_Specification
(N
: Node_Id
) return Boolean;
1087 -- Returns True if node N belongs to a parameter specification
1089 function In_Pragma_Expression
(N
: Node_Id
; Nam
: Name_Id
) return Boolean;
1090 -- Returns true if the expression N occurs within a pragma with name Nam
1092 function In_Reverse_Storage_Order_Object
(N
: Node_Id
) return Boolean;
1093 -- Returns True if N denotes a component or subcomponent in a record or
1094 -- array that has Reverse_Storage_Order.
1096 function In_Subprogram_Or_Concurrent_Unit
return Boolean;
1097 -- Determines if the current scope is within a subprogram compilation unit
1098 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1099 -- declaration) or within a task or protected body. The test is for
1100 -- appearing anywhere within such a construct (that is it does not need
1101 -- to be directly within).
1103 function In_Visible_Part
(Scope_Id
: Entity_Id
) return Boolean;
1104 -- Determine whether a declaration occurs within the visible part of a
1105 -- package specification. The package must be on the scope stack, and the
1106 -- corresponding private part must not.
1108 function Incomplete_Or_Partial_View
(Id
: Entity_Id
) return Entity_Id
;
1109 -- Given the entity of a constant or a type, retrieve the incomplete or
1110 -- partial view of the same entity. Note that Id may not have a partial
1111 -- view in which case the function returns Empty.
1113 procedure Inherit_Default_Init_Cond_Procedure
(Typ
: Entity_Id
);
1114 -- Inherit the default initial condition procedure from the parent type of
1115 -- derived type Typ.
1117 procedure Inherit_Rep_Item_Chain
(Typ
: Entity_Id
; From_Typ
: Entity_Id
);
1118 -- Inherit the rep item chain of type From_Typ without clobbering any
1119 -- existing rep items on Typ's chain. Typ is the destination type.
1121 procedure Inherit_Subprogram_Contract
1123 From_Subp
: Entity_Id
);
1124 -- Inherit relevant contract items from source subprogram From_Subp. Subp
1125 -- denotes the destination subprogram. The inherited items are:
1126 -- Extensions_Visible
1127 -- ??? it would be nice if this routine handles Pre'Class and Post'Class
1129 procedure Insert_Explicit_Dereference
(N
: Node_Id
);
1130 -- In a context that requires a composite or subprogram type and where a
1131 -- prefix is an access type, rewrite the access type node N (which is the
1132 -- prefix, e.g. of an indexed component) as an explicit dereference.
1134 procedure Inspect_Deferred_Constant_Completion
(Decls
: List_Id
);
1135 -- Examine all deferred constants in the declaration list Decls and check
1136 -- whether they have been completed by a full constant declaration or an
1137 -- Import pragma. Emit the error message if that is not the case.
1139 procedure Install_Generic_Formals
(Subp_Id
: Entity_Id
);
1140 -- Install both the generic formal parameters and the formal parameters of
1141 -- generic subprogram Subp_Id into visibility.
1143 function Is_Actual_Out_Parameter
(N
: Node_Id
) return Boolean;
1144 -- Determines if N is an actual parameter of out mode in a subprogram call
1146 function Is_Actual_Parameter
(N
: Node_Id
) return Boolean;
1147 -- Determines if N is an actual parameter in a subprogram call
1149 function Is_Actual_Tagged_Parameter
(N
: Node_Id
) return Boolean;
1150 -- Determines if N is an actual parameter of a formal of tagged type in a
1153 function Is_Aliased_View
(Obj
: Node_Id
) return Boolean;
1154 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1155 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1156 -- rules of the language, it does not take into account the restriction
1157 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1158 -- and Obj violates the restriction. The caller is responsible for calling
1159 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1160 -- requirement for obeying the restriction in the call context.
1162 function Is_Ancestor_Package
1164 E2
: Entity_Id
) return Boolean;
1165 -- Determine whether package E1 is an ancestor of E2
1167 function Is_Atomic_Object
(N
: Node_Id
) return Boolean;
1168 -- Determines if the given node denotes an atomic object in the sense of
1169 -- the legality checks described in RM C.6(12).
1171 function Is_Atomic_Or_VFA_Object
(N
: Node_Id
) return Boolean;
1172 -- Determines if the given node is an atomic object (Is_Atomic_Object true)
1173 -- or else is an object for which VFA is present.
1175 function Is_Attribute_Result
(N
: Node_Id
) return Boolean;
1176 -- Determine whether node N denotes attribute 'Result
1178 function Is_Body_Or_Package_Declaration
(N
: Node_Id
) return Boolean;
1179 -- Determine whether node N denotes a body or a package declaration
1181 function Is_Bounded_String
(T
: Entity_Id
) return Boolean;
1182 -- True if T is a bounded string type. Used to make sure "=" composes
1183 -- properly for bounded string types.
1185 function Is_Constant_Bound
(Exp
: Node_Id
) return Boolean;
1186 -- Exp is the expression for an array bound. Determines whether the
1187 -- bound is a compile-time known value, or a constant entity, or an
1188 -- enumeration literal, or an expression composed of constant-bound
1189 -- subexpressions which are evaluated by means of standard operators.
1191 function Is_Container_Element
(Exp
: Node_Id
) return Boolean;
1192 -- This routine recognizes expressions that denote an element of one of
1193 -- the predefined containers, when the source only contains an indexing
1194 -- operation and an implicit dereference is inserted by the compiler.
1195 -- In the absence of this optimization, the indexing creates a temporary
1196 -- controlled cursor that sets the tampering bit of the container, and
1197 -- restricts the use of the convenient notation C (X) to contexts that
1198 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1199 -- explicit dereference. The transformation applies when it has the form
1202 function Is_Contract_Annotation
(Item
: Node_Id
) return Boolean;
1203 -- Determine whether aspect specification or pragma Item is a contract
1206 function Is_Controlling_Limited_Procedure
1207 (Proc_Nam
: Entity_Id
) return Boolean;
1208 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1209 -- of a limited interface with a controlling first parameter.
1211 function Is_CPP_Constructor_Call
(N
: Node_Id
) return Boolean;
1212 -- Returns True if N is a call to a CPP constructor
1214 function Is_Child_Or_Sibling
1215 (Pack_1
: Entity_Id
;
1216 Pack_2
: Entity_Id
) return Boolean;
1217 -- Determine the following relations between two arbitrary packages:
1218 -- 1) One package is the parent of a child package
1219 -- 2) Both packages are siblings and share a common parent
1221 function Is_Concurrent_Interface
(T
: Entity_Id
) return Boolean;
1222 -- First determine whether type T is an interface and then check whether
1223 -- it is of protected, synchronized or task kind.
1225 function Is_Declaration
(N
: Node_Id
) return Boolean;
1226 -- Determine whether arbitrary node N denotes a declaration
1228 function Is_Delegate
(T
: Entity_Id
) return Boolean;
1229 -- Returns true if type T represents a delegate. A Delegate is the CIL
1230 -- object used to represent access-to-subprogram types. This is only
1231 -- relevant to CIL, will always return false for other targets.
1233 function Is_Dependent_Component_Of_Mutable_Object
1234 (Object
: Node_Id
) return Boolean;
1235 -- Returns True if Object is the name of a subcomponent that depends on
1236 -- discriminants of a variable whose nominal subtype is unconstrained and
1237 -- not indefinite, and the variable is not aliased. Otherwise returns
1238 -- False. The nodes passed to this function are assumed to denote objects.
1240 function Is_Dereferenced
(N
: Node_Id
) return Boolean;
1241 -- N is a subexpression node of an access type. This function returns true
1242 -- if N appears as the prefix of a node that does a dereference of the
1243 -- access value (selected/indexed component, explicit dereference or a
1244 -- slice), and false otherwise.
1246 function Is_Descendent_Of
(T1
: Entity_Id
; T2
: Entity_Id
) return Boolean;
1247 -- Returns True if type T1 is a descendent of type T2, and false otherwise.
1248 -- This is the RM definition, a type is a descendent of another type if it
1249 -- is the same type or is derived from a descendent of the other type.
1251 function Is_Effectively_Volatile
(Id
: Entity_Id
) return Boolean;
1252 -- The SPARK property "effectively volatile" applies to both types and
1253 -- objects. To qualify as such, an entity must be either volatile or be
1254 -- (of) an array type subject to aspect Volatile_Components.
1256 function Is_Effectively_Volatile_Object
(N
: Node_Id
) return Boolean;
1257 -- Determine whether an arbitrary node denotes an effectively volatile
1260 function Is_Expression_Function
(Subp
: Entity_Id
) return Boolean;
1261 -- Predicate to determine whether a scope entity comes from a rewritten
1262 -- expression function call, and should be inlined unconditionally. Also
1263 -- used to determine that such a call does not constitute a freeze point.
1265 function Is_EVF_Expression
(N
: Node_Id
) return Boolean;
1266 -- Determine whether node N denotes a reference to a formal parameter of
1267 -- a specific tagged type whose related subprogram is subject to pragma
1268 -- Extensions_Visible with value "False". Several other constructs fall
1269 -- under this category:
1270 -- 1) A qualified expression whose operand is EVF
1271 -- 2) A type conversion whose operand is EVF
1272 -- 3) An if expression with at least one EVF dependent_expression
1273 -- 4) A case expression with at least one EVF dependent_expression
1275 function Is_False
(U
: Uint
) return Boolean;
1276 pragma Inline
(Is_False
);
1277 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1278 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1279 -- if it is False (i.e. zero).
1281 function Is_Fixed_Model_Number
(U
: Ureal
; T
: Entity_Id
) return Boolean;
1282 -- Returns True iff the number U is a model number of the fixed-point type
1283 -- T, i.e. if it is an exact multiple of Small.
1285 function Is_Fully_Initialized_Type
(Typ
: Entity_Id
) return Boolean;
1286 -- Typ is a type entity. This function returns true if this type is fully
1287 -- initialized, meaning that an object of the type is fully initialized.
1288 -- Note that initialization resulting from use of pragma Normalized_Scalars
1289 -- does not count. Note that this is only used for the purpose of issuing
1290 -- warnings for objects that are potentially referenced uninitialized. This
1291 -- means that the result returned is not crucial, but should err on the
1292 -- side of thinking things are fully initialized if it does not know.
1294 function Is_Generic_Declaration_Or_Body
(Decl
: Node_Id
) return Boolean;
1295 -- Determine whether arbitrary declaration Decl denotes a generic package,
1296 -- a generic subprogram or a generic body.
1298 function Is_Inherited_Operation
(E
: Entity_Id
) return Boolean;
1299 -- E is a subprogram. Return True is E is an implicit operation inherited
1300 -- by a derived type declaration.
1302 function Is_Inherited_Operation_For_Type
1304 Typ
: Entity_Id
) return Boolean;
1305 -- E is a subprogram. Return True is E is an implicit operation inherited
1306 -- by the derived type declaration for type Typ.
1308 function Is_Iterator
(Typ
: Entity_Id
) return Boolean;
1309 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
1310 -- Ada.Iterator_Interfaces, or it is derived from one.
1312 type Is_LHS_Result
is (Yes
, No
, Unknown
);
1313 function Is_LHS
(N
: Node_Id
) return Is_LHS_Result
;
1314 -- Returns Yes if N is definitely used as Name in an assignment statement.
1315 -- Returns No if N is definitely NOT used as a Name in an assignment
1316 -- statement. Returns Unknown if we can't tell at this stage (happens in
1317 -- the case where we don't know the type of N yet, and we have something
1318 -- like N.A := 3, where this counts as N being used on the left side of
1319 -- an assignment only if N is not an access type. If it is an access type
1320 -- then it is N.all.A that is assigned, not N.
1322 function Is_Library_Level_Entity
(E
: Entity_Id
) return Boolean;
1323 -- A library-level declaration is one that is accessible from Standard,
1324 -- i.e. a library unit or an entity declared in a library package.
1326 function Is_Limited_Class_Wide_Type
(Typ
: Entity_Id
) return Boolean;
1327 -- Determine whether a given type is a limited class-wide type, in which
1328 -- case it needs a Master_Id, because extensions of its designated type
1329 -- may include task components. A class-wide type that comes from a
1330 -- limited view must be treated in the same way.
1332 function Is_Local_Variable_Reference
(Expr
: Node_Id
) return Boolean;
1333 -- Determines whether Expr is a reference to a variable or IN OUT mode
1334 -- parameter of the current enclosing subprogram.
1335 -- Why are OUT parameters not considered here ???
1337 function Is_Object_Reference
(N
: Node_Id
) return Boolean;
1338 -- Determines if the tree referenced by N represents an object. Both
1339 -- variable and constant objects return True (compare Is_Variable).
1341 function Is_OK_Variable_For_Out_Formal
(AV
: Node_Id
) return Boolean;
1342 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
1343 -- Note that the Is_Variable function is not quite the right test because
1344 -- this is a case in which conversions whose expression is a variable (in
1345 -- the Is_Variable sense) with an untagged type target are considered view
1346 -- conversions and hence variables.
1348 function Is_Package_Contract_Annotation
(Item
: Node_Id
) return Boolean;
1349 -- Determine whether aspect specification or pragma Item is one of the
1350 -- following package contract annotations:
1352 -- Initial_Condition
1356 function Is_Partially_Initialized_Type
1358 Include_Implicit
: Boolean := True) return Boolean;
1359 -- Typ is a type entity. This function returns true if this type is partly
1360 -- initialized, meaning that an object of the type is at least partly
1361 -- initialized (in particular in the record case, that at least one
1362 -- component has an initialization expression). Note that initialization
1363 -- resulting from the use of pragma Normalized_Scalars does not count.
1364 -- Include_Implicit controls whether implicit initialization of access
1365 -- values to null, and of discriminant values, is counted as making the
1366 -- type be partially initialized. For the default setting of True, these
1367 -- implicit cases do count, and discriminated types or types containing
1368 -- access values not explicitly initialized will return True. Otherwise
1369 -- if Include_Implicit is False, these cases do not count as making the
1370 -- type be partially initialized.
1372 function Is_Potentially_Unevaluated
(N
: Node_Id
) return Boolean;
1373 -- Predicate to implement definition given in RM 6.1.1 (20/3)
1375 function Is_Potentially_Persistent_Type
(T
: Entity_Id
) return Boolean;
1376 -- Determines if type T is a potentially persistent type. A potentially
1377 -- persistent type is defined (recursively) as a scalar type, an untagged
1378 -- record whose components are all of a potentially persistent type, or an
1379 -- array with all static constraints whose component type is potentially
1380 -- persistent. A private type is potentially persistent if the full type
1381 -- is potentially persistent.
1383 function Is_Protected_Self_Reference
(N
: Node_Id
) return Boolean;
1384 -- Return True if node N denotes a protected type name which represents
1385 -- the current instance of a protected object according to RM 9.4(21/2).
1387 function Is_RCI_Pkg_Spec_Or_Body
(Cunit
: Node_Id
) return Boolean;
1388 -- Return True if a compilation unit is the specification or the
1389 -- body of a remote call interface package.
1391 function Is_Remote_Access_To_Class_Wide_Type
(E
: Entity_Id
) return Boolean;
1392 -- Return True if E is a remote access-to-class-wide type
1394 function Is_Remote_Access_To_Subprogram_Type
(E
: Entity_Id
) return Boolean;
1395 -- Return True if E is a remote access to subprogram type
1397 function Is_Remote_Call
(N
: Node_Id
) return Boolean;
1398 -- Return True if N denotes a potentially remote call
1400 function Is_Renamed_Entry
(Proc_Nam
: Entity_Id
) return Boolean;
1401 -- Return True if Proc_Nam is a procedure renaming of an entry
1403 function Is_Reversible_Iterator
(Typ
: Entity_Id
) return Boolean;
1404 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
1405 -- Ada.Iterator_Interfaces.Reversible_Iterator.
1407 function Is_Selector_Name
(N
: Node_Id
) return Boolean;
1408 -- Given an N_Identifier node N, determines if it is a Selector_Name.
1409 -- As described in Sinfo, Selector_Names are special because they
1410 -- represent use of the N_Identifier node for a true identifier, when
1411 -- normally such nodes represent a direct name.
1413 function Is_SPARK_05_Initialization_Expr
(N
: Node_Id
) return Boolean;
1414 -- Determines if the tree referenced by N represents an initialization
1415 -- expression in SPARK 2005, suitable for initializing an object in an
1416 -- object declaration.
1418 function Is_SPARK_05_Object_Reference
(N
: Node_Id
) return Boolean;
1419 -- Determines if the tree referenced by N represents an object in SPARK
1420 -- 2005. This differs from Is_Object_Reference in that only variables,
1421 -- constants, formal parameters, and selected_components of those are
1422 -- valid objects in SPARK 2005.
1424 function Is_Specific_Tagged_Type
(Typ
: Entity_Id
) return Boolean;
1425 -- Determine whether an arbitrary [private] type is specifically tagged
1427 function Is_Statement
(N
: Node_Id
) return Boolean;
1428 pragma Inline
(Is_Statement
);
1429 -- Check if the node N is a statement node. Note that this includes
1430 -- the case of procedure call statements (unlike the direct use of
1431 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
1432 -- Note that a label is *not* a statement, and will return False.
1434 function Is_Subprogram_Contract_Annotation
(Item
: Node_Id
) return Boolean;
1435 -- Determine whether aspect specification or pragma Item is one of the
1436 -- following subprogram contract annotations:
1439 -- Extensions_Visible
1452 function Is_Subprogram_Stub_Without_Prior_Declaration
1453 (N
: Node_Id
) return Boolean;
1454 -- Return True if N is a subprogram stub with no prior subprogram
1457 function Is_Synchronized_Tagged_Type
(E
: Entity_Id
) return Boolean;
1458 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
1460 function Is_Transfer
(N
: Node_Id
) return Boolean;
1461 -- Returns True if the node N is a statement which is known to cause an
1462 -- unconditional transfer of control at runtime, i.e. the following
1463 -- statement definitely will not be executed.
1465 function Is_True
(U
: Uint
) return Boolean;
1466 pragma Inline
(Is_True
);
1467 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1468 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1469 -- if it is True (i.e. non-zero).
1471 function Is_Unchecked_Conversion_Instance
(Id
: Entity_Id
) return Boolean;
1472 -- Determine whether an arbitrary entity denotes an instance of function
1473 -- Ada.Unchecked_Conversion.
1475 function Is_Universal_Numeric_Type
(T
: Entity_Id
) return Boolean;
1476 pragma Inline
(Is_Universal_Numeric_Type
);
1477 -- True if T is Universal_Integer or Universal_Real
1479 function Is_Value_Type
(T
: Entity_Id
) return Boolean;
1480 -- Returns true if type T represents a value type. This is only relevant to
1481 -- CIL, will always return false for other targets. A value type is a CIL
1482 -- object that is accessed directly, as opposed to the other CIL objects
1483 -- that are accessed through managed pointers.
1485 function Is_Variable_Size_Array
(E
: Entity_Id
) return Boolean;
1486 -- Returns true if E has variable size components
1488 function Is_Variable_Size_Record
(E
: Entity_Id
) return Boolean;
1489 -- Returns true if E has variable size components
1491 function Is_Variable
1493 Use_Original_Node
: Boolean := True) return Boolean;
1494 -- Determines if the tree referenced by N represents a variable, i.e. can
1495 -- appear on the left side of an assignment. There is one situation (formal
1496 -- parameters) in which untagged type conversions are also considered
1497 -- variables, but Is_Variable returns False for such cases, since it has
1498 -- no knowledge of the context. Note that this is the point at which
1499 -- Assignment_OK is checked, and True is returned for any tree thus marked.
1500 -- Use_Original_Node is used to perform the test on Original_Node (N). By
1501 -- default is True since this routine is commonly invoked as part of the
1502 -- semantic analysis and it must not be disturbed by the rewriten nodes.
1504 function Is_Visibly_Controlled
(T
: Entity_Id
) return Boolean;
1505 -- Check whether T is derived from a visibly controlled type. This is true
1506 -- if the root type is declared in Ada.Finalization. If T is derived
1507 -- instead from a private type whose full view is controlled, an explicit
1508 -- Initialize/Adjust/Finalize subprogram does not override the inherited
1511 function Is_Volatile_Object
(N
: Node_Id
) return Boolean;
1512 -- Determines if the given node denotes an volatile object in the sense of
1513 -- the legality checks described in RM C.6(12). Note that the test here is
1514 -- for something actually declared as volatile, not for an object that gets
1515 -- treated as volatile (see Einfo.Treat_As_Volatile).
1517 function Itype_Has_Declaration
(Id
: Entity_Id
) return Boolean;
1518 -- Applies to Itypes. True if the Itype is attached to a declaration for
1519 -- the type through its Parent field, which may or not be present in the
1522 procedure Kill_Current_Values
(Last_Assignment_Only
: Boolean := False);
1523 -- This procedure is called to clear all constant indications from all
1524 -- entities in the current scope and in any parent scopes if the current
1525 -- scope is a block or a package (and that recursion continues to the top
1526 -- scope that is not a block or a package). This is used when the
1527 -- sequential flow-of-control assumption is violated (occurrence of a
1528 -- label, head of a loop, or start of an exception handler). The effect of
1529 -- the call is to clear the Current_Value field (but we do not need to
1530 -- clear the Is_True_Constant flag, since that only gets reset if there
1531 -- really is an assignment somewhere in the entity scope). This procedure
1532 -- also calls Kill_All_Checks, since this is a special case of needing to
1533 -- forget saved values. This procedure also clears the Is_Known_Null and
1534 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
1535 -- parameters since these are also not known to be trustable any more.
1537 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
1538 -- fields and leave other fields unchanged. This is used when we encounter
1539 -- an unconditional flow of control change (return, goto, raise). In such
1540 -- cases we don't need to clear the current values, since it may be that
1541 -- the flow of control change occurs in a conditional context, and if it
1542 -- is not taken, then it is just fine to keep the current values. But the
1543 -- Last_Assignment field is different, if we have a sequence assign-to-v,
1544 -- conditional-return, assign-to-v, we do not want to complain that the
1545 -- second assignment clobbers the first.
1547 procedure Kill_Current_Values
1549 Last_Assignment_Only
: Boolean := False);
1550 -- This performs the same processing as described above for the form with
1551 -- no argument, but for the specific entity given. The call has no effect
1552 -- if the entity Ent is not for an object. Last_Assignment_Only has the
1553 -- same meaning as for the call with no Ent.
1555 procedure Kill_Size_Check_Code
(E
: Entity_Id
);
1556 -- Called when an address clause or pragma Import is applied to an entity.
1557 -- If the entity is a variable or a constant, and size check code is
1558 -- present, this size check code is killed, since the object will not be
1559 -- allocated by the program.
1561 function Known_To_Be_Assigned
(N
: Node_Id
) return Boolean;
1562 -- The node N is an entity reference. This function determines whether the
1563 -- reference is for sure an assignment of the entity, returning True if
1564 -- so. This differs from May_Be_Lvalue in that it defaults in the other
1565 -- direction. Cases which may possibly be assignments but are not known to
1566 -- be may return True from May_Be_Lvalue, but False from this function.
1568 function Last_Source_Statement
(HSS
: Node_Id
) return Node_Id
;
1569 -- HSS is a handled statement sequence. This function returns the last
1570 -- statement in Statements (HSS) that has Comes_From_Source set. If no
1571 -- such statement exists, Empty is returned.
1573 function Matching_Static_Array_Bounds
1575 R_Typ
: Node_Id
) return Boolean;
1576 -- L_Typ and R_Typ are two array types. Returns True when they have the
1577 -- same number of dimensions, and the same static bounds for each index
1580 procedure Mark_Coextensions
(Context_Nod
: Node_Id
; Root_Nod
: Node_Id
);
1581 -- Given a node which designates the context of analysis and an origin in
1582 -- the tree, traverse from Root_Nod and mark all allocators as either
1583 -- dynamic or static depending on Context_Nod. Any incorrect marking is
1584 -- cleaned up during resolution.
1586 function May_Be_Lvalue
(N
: Node_Id
) return Boolean;
1587 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
1588 -- An lvalue is defined as any expression which appears in a context where
1589 -- a name is required by the syntax, and the identity, rather than merely
1590 -- the value of the node is needed (for example, the prefix of an Access
1591 -- attribute is in this category). Note that, as implied by the name, this
1592 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
1593 -- it returns True. It tries hard to get the answer right, but it is hard
1594 -- to guarantee this in all cases. Note that it is more possible to give
1595 -- correct answer if the tree is fully analyzed.
1597 function Needs_One_Actual
(E
: Entity_Id
) return Boolean;
1598 -- Returns True if a function has defaults for all but its first
1599 -- formal. Used in Ada 2005 mode to solve the syntactic ambiguity that
1600 -- results from an indexing of a function call written in prefix form.
1602 function New_Copy_List_Tree
(List
: List_Id
) return List_Id
;
1603 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
1604 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
1605 -- nodes (entities) either directly or indirectly using this function.
1607 function New_Copy_Tree
1609 Map
: Elist_Id
:= No_Elist
;
1610 New_Sloc
: Source_Ptr
:= No_Location
;
1611 New_Scope
: Entity_Id
:= Empty
) return Node_Id
;
1612 -- Given a node that is the root of a subtree, Copy_Tree copies the entire
1613 -- syntactic subtree, including recursively any descendents whose parent
1614 -- field references a copied node (descendents not linked to a copied node
1615 -- by the parent field are not copied, instead the copied tree references
1616 -- the same descendent as the original in this case, which is appropriate
1617 -- for non-syntactic fields such as Etype). The parent pointers in the
1618 -- copy are properly set. Copy_Tree (Empty/Error) returns Empty/Error.
1619 -- The one exception to the rule of not copying semantic fields is that
1620 -- any implicit types attached to the subtree are duplicated, so that
1621 -- the copy contains a distinct set of implicit type entities. Thus this
1622 -- function is used when it is necessary to duplicate an analyzed tree,
1623 -- declared in the same or some other compilation unit. This function is
1624 -- declared here rather than in atree because it uses semantic information
1625 -- in particular concerning the structure of itypes and the generation of
1628 -- The Map argument, if set to a non-empty Elist, specifies a set of
1629 -- mappings to be applied to entities in the tree. The map has the form:
1632 -- new entity to replace references to entity 1
1634 -- new entity to replace references to entity 2
1637 -- The call destroys the contents of Map in this case
1639 -- The parameter New_Sloc, if set to a value other than No_Location, is
1640 -- used as the Sloc value for all nodes in the new copy. If New_Sloc is
1641 -- set to its default value No_Location, then the Sloc values of the
1642 -- nodes in the copy are simply copied from the corresponding original.
1644 -- The Comes_From_Source indication is unchanged if New_Sloc is set to
1645 -- the default No_Location value, but is reset if New_Sloc is given, since
1646 -- in this case the result clearly is neither a source node or an exact
1647 -- copy of a source node.
1649 -- The parameter New_Scope, if set to a value other than Empty, is the
1650 -- value to use as the Scope for any Itypes that are copied. The most
1651 -- typical value for this parameter, if given, is Current_Scope.
1653 function New_External_Entity
1654 (Kind
: Entity_Kind
;
1655 Scope_Id
: Entity_Id
;
1656 Sloc_Value
: Source_Ptr
;
1657 Related_Id
: Entity_Id
;
1659 Suffix_Index
: Nat
:= 0;
1660 Prefix
: Character := ' ') return Entity_Id
;
1661 -- This function creates an N_Defining_Identifier node for an internal
1662 -- created entity, such as an implicit type or subtype, or a record
1663 -- initialization procedure. The entity name is constructed with a call
1664 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
1665 -- that the generated name may be referenced as a public entry, and the
1666 -- Is_Public flag is set if needed (using Set_Public_Status). If the
1667 -- entity is for a type or subtype, the size/align fields are initialized
1668 -- to unknown (Uint_0).
1670 function New_Internal_Entity
1671 (Kind
: Entity_Kind
;
1672 Scope_Id
: Entity_Id
;
1673 Sloc_Value
: Source_Ptr
;
1674 Id_Char
: Character) return Entity_Id
;
1675 -- This function is similar to New_External_Entity, except that the
1676 -- name is constructed by New_Internal_Name (Id_Char). This is used
1677 -- when the resulting entity does not have to be referenced as a
1678 -- public entity (and in this case Is_Public is not set).
1680 procedure Next_Actual
(Actual_Id
: in out Node_Id
);
1681 pragma Inline
(Next_Actual
);
1682 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
1683 -- inline this procedural form, but not the functional form that follows.
1685 function Next_Actual
(Actual_Id
: Node_Id
) return Node_Id
;
1686 -- Find next actual parameter in declaration order. As described for
1687 -- First_Actual, this is the next actual in the declaration order, not
1688 -- the call order, so this does not correspond to simply taking the
1689 -- next entry of the Parameter_Associations list. The argument is an
1690 -- actual previously returned by a call to First_Actual or Next_Actual.
1691 -- Note that the result produced is always an expression, not a parameter
1692 -- association node, even if named notation was used.
1694 procedure Normalize_Actuals
1698 Success
: out Boolean);
1699 -- Reorders lists of actuals according to names of formals, value returned
1700 -- in Success indicates success of reordering. For more details, see body.
1701 -- Errors are reported only if Report is set to True.
1703 procedure Note_Possible_Modification
(N
: Node_Id
; Sure
: Boolean);
1704 -- This routine is called if the sub-expression N maybe the target of
1705 -- an assignment (e.g. it is the left side of an assignment, used as
1706 -- an out parameters, or used as prefixes of access attributes). It
1707 -- sets May_Be_Modified in the associated entity if there is one,
1708 -- taking into account the rule that in the case of renamed objects,
1709 -- it is the flag in the renamed object that must be set.
1711 -- The parameter Sure is set True if the modification is sure to occur
1712 -- (e.g. target of assignment, or out parameter), and to False if the
1713 -- modification is only potential (e.g. address of entity taken).
1715 function Object_Access_Level
(Obj
: Node_Id
) return Uint
;
1716 -- Return the accessibility level of the view of the object Obj. For
1717 -- convenience, qualified expressions applied to object names are also
1718 -- allowed as actuals for this function.
1720 function Original_Corresponding_Operation
(S
: Entity_Id
) return Entity_Id
;
1721 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
1722 -- or overrides an inherited dispatching primitive S2, the original
1723 -- corresponding operation of S is the original corresponding operation of
1724 -- S2. Otherwise, it is S itself.
1726 function Original_Aspect_Pragma_Name
(N
: Node_Id
) return Name_Id
;
1727 -- Retrieve the name of aspect or pragma N taking into account a possible
1728 -- rewrite and whether the pragma is generated from an aspect as the names
1729 -- may be different. The routine also deals with 'Class in which case it
1730 -- returns the following values:
1732 -- Invariant -> Name_uInvariant
1733 -- Post'Class -> Name_uPost
1734 -- Pre'Class -> Name_uPre
1735 -- Type_Invariant -> Name_uType_Invariant
1736 -- Type_Invariant'Class -> Name_uType_Invariant
1738 function Policy_In_Effect
(Policy
: Name_Id
) return Name_Id
;
1739 -- Given a policy, return the policy identifier associated with it. If no
1740 -- such policy is in effect, the value returned is No_Name.
1742 function Predicate_Tests_On_Arguments
(Subp
: Entity_Id
) return Boolean;
1743 -- Subp is the entity for a subprogram call. This function returns True if
1744 -- predicate tests are required for the arguments in this call (this is the
1745 -- normal case). It returns False for special cases where these predicate
1746 -- tests should be skipped (see body for details).
1748 function Primitive_Names_Match
(E1
, E2
: Entity_Id
) return Boolean;
1749 -- Returns True if the names of both entities correspond with matching
1750 -- primitives. This routine includes support for the case in which one
1751 -- or both entities correspond with entities built by Derive_Subprogram
1752 -- with a special name to avoid being overridden (i.e. return true in case
1753 -- of entities with names "nameP" and "name" or vice versa).
1755 function Private_Component
(Type_Id
: Entity_Id
) return Entity_Id
;
1756 -- Returns some private component (if any) of the given Type_Id.
1757 -- Used to enforce the rules on visibility of operations on composite
1758 -- types, that depend on the full view of the component type. For a
1759 -- record type there may be several such components, we just return
1762 procedure Process_End_Label
1766 -- N is a node whose End_Label is to be processed, generating all
1767 -- appropriate cross-reference entries, and performing style checks
1768 -- for any identifier references in the end label. Typ is either
1769 -- 'e' or 't indicating the type of the cross-reference entity
1770 -- (e for spec, t for body, see Lib.Xref spec for details). The
1771 -- parameter Ent gives the entity to which the End_Label refers,
1772 -- and to which cross-references are to be generated.
1774 function Referenced
(Id
: Entity_Id
; Expr
: Node_Id
) return Boolean;
1775 -- Determine whether entity Id is referenced within expression Expr
1777 function References_Generic_Formal_Type
(N
: Node_Id
) return Boolean;
1778 -- Returns True if the expression Expr contains any references to a
1779 -- generic type. This can only happen within a generic template.
1781 procedure Remove_Homonym
(E
: Entity_Id
);
1782 -- Removes E from the homonym chain
1784 function Rep_To_Pos_Flag
(E
: Entity_Id
; Loc
: Source_Ptr
) return Node_Id
;
1785 -- This is used to construct the second argument in a call to Rep_To_Pos
1786 -- which is Standard_True if range checks are enabled (E is an entity to
1787 -- which the Range_Checks_Suppressed test is applied), and Standard_False
1788 -- if range checks are suppressed. Loc is the location for the node that
1789 -- is returned (which is a New_Occurrence of the appropriate entity).
1791 -- Note: one might think that it would be fine to always use True and
1792 -- to ignore the suppress in this case, but it is generally better to
1793 -- believe a request to suppress exceptions if possible, and further
1794 -- more there is at least one case in the generated code (the code for
1795 -- array assignment in a loop) that depends on this suppression.
1797 procedure Require_Entity
(N
: Node_Id
);
1798 -- N is a node which should have an entity value if it is an entity name.
1799 -- If not, then check if there were previous errors. If so, just fill
1800 -- in with Any_Id and ignore. Otherwise signal a program error exception.
1801 -- This is used as a defense mechanism against ill-formed trees caused by
1802 -- previous errors (particularly in -gnatq mode).
1804 function Requires_State_Refinement
1805 (Spec_Id
: Entity_Id
;
1806 Body_Id
: Entity_Id
) return Boolean;
1807 -- Determine whether a package denoted by its spec and body entities
1808 -- requires refinement of abstract states.
1810 function Requires_Transient_Scope
(Id
: Entity_Id
) return Boolean;
1811 -- Id is a type entity. The result is True when temporaries of this type
1812 -- need to be wrapped in a transient scope to be reclaimed properly when a
1813 -- secondary stack is in use. Examples of types requiring such wrapping are
1814 -- controlled types and variable-sized types including unconstrained
1817 procedure Reset_Analyzed_Flags
(N
: Node_Id
);
1818 -- Reset the Analyzed flags in all nodes of the tree whose root is N
1820 procedure Restore_SPARK_Mode
(Mode
: SPARK_Mode_Type
);
1821 -- Set the current SPARK_Mode to whatever Mode denotes. This routime must
1822 -- be used in tandem with Save_SPARK_Mode_And_Set.
1824 function Returns_Unconstrained_Type
(Subp
: Entity_Id
) return Boolean;
1825 -- Return true if Subp is a function that returns an unconstrained type
1827 function Root_Type_Of_Full_View
(T
: Entity_Id
) return Entity_Id
;
1828 -- Similar to attribute Root_Type, but this version always follows the
1829 -- Full_View of a private type (if available) while searching for the
1830 -- ultimate derivation ancestor.
1832 function Safe_To_Capture_Value
1835 Cond
: Boolean := False) return Boolean;
1836 -- The caller is interested in capturing a value (either the current value,
1837 -- or an indication that the value is non-null) for the given entity Ent.
1838 -- This value can only be captured if sequential execution semantics can be
1839 -- properly guaranteed so that a subsequent reference will indeed be sure
1840 -- that this current value indication is correct. The node N is the
1841 -- construct which resulted in the possible capture of the value (this
1842 -- is used to check if we are in a conditional).
1844 -- Cond is used to skip the test for being inside a conditional. It is used
1845 -- in the case of capturing values from if/while tests, which already do a
1846 -- proper job of handling scoping issues without this help.
1848 -- The only entities whose values can be captured are OUT and IN OUT formal
1849 -- parameters, and variables unless Cond is True, in which case we also
1850 -- allow IN formals, loop parameters and constants, where we cannot ever
1851 -- capture actual value information, but we can capture conditional tests.
1853 function Same_Name
(N1
, N2
: Node_Id
) return Boolean;
1854 -- Determine if two (possibly expanded) names are the same name. This is
1855 -- a purely syntactic test, and N1 and N2 need not be analyzed.
1857 function Same_Object
(Node1
, Node2
: Node_Id
) return Boolean;
1858 -- Determine if Node1 and Node2 are known to designate the same object.
1859 -- This is a semantic test and both nodes must be fully analyzed. A result
1860 -- of True is decisively correct. A result of False does not necessarily
1861 -- mean that different objects are designated, just that this could not
1862 -- be reliably determined at compile time.
1864 function Same_Type
(T1
, T2
: Entity_Id
) return Boolean;
1865 -- Determines if T1 and T2 represent exactly the same type. Two types
1866 -- are the same if they are identical, or if one is an unconstrained
1867 -- subtype of the other, or they are both common subtypes of the same
1868 -- type with identical constraints. The result returned is conservative.
1869 -- It is True if the types are known to be the same, but a result of
1870 -- False is indecisive (e.g. the compiler may not be able to tell that
1871 -- two constraints are identical).
1873 function Same_Value
(Node1
, Node2
: Node_Id
) return Boolean;
1874 -- Determines if Node1 and Node2 are known to be the same value, which is
1875 -- true if they are both compile time known values and have the same value,
1876 -- or if they are the same object (in the sense of function Same_Object).
1877 -- A result of False does not necessarily mean they have different values,
1878 -- just that it is not possible to determine they have the same value.
1880 procedure Save_SPARK_Mode_And_Set
1881 (Context
: Entity_Id
;
1882 Mode
: out SPARK_Mode_Type
);
1883 -- Save the current SPARK_Mode in effect in Mode. Establish the SPARK_Mode
1884 -- (if any) of a package or a subprogram denoted by Context. This routine
1885 -- must be used in tandem with Restore_SPARK_Mode.
1887 function Scalar_Part_Present
(T
: Entity_Id
) return Boolean;
1888 -- Tests if type T can be determined at compile time to have at least one
1889 -- scalar part in the sense of the Valid_Scalars attribute. Returns True if
1890 -- this is the case, and False if no scalar parts are present (meaning that
1891 -- the result of Valid_Scalars applied to T is always vacuously True).
1893 function Scope_Within_Or_Same
(Scope1
, Scope2
: Entity_Id
) return Boolean;
1894 -- Determines if the entity Scope1 is the same as Scope2, or if it is
1895 -- inside it, where both entities represent scopes. Note that scopes
1896 -- are only partially ordered, so Scope_Within_Or_Same (A,B) and
1897 -- Scope_Within_Or_Same (B,A) can both be False for a given pair A,B.
1899 function Scope_Within
(Scope1
, Scope2
: Entity_Id
) return Boolean;
1900 -- Like Scope_Within_Or_Same, except that this function returns
1901 -- False in the case where Scope1 and Scope2 are the same scope.
1903 procedure Set_Convention
(E
: Entity_Id
; Val
: Convention_Id
);
1904 -- Same as Basic_Set_Convention, but with an extra check for access types.
1905 -- In particular, if E is an access-to-subprogram type, and Val is a
1906 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
1907 -- Also, if the Etype of E is set and is an anonymous access type with
1908 -- no convention set, this anonymous type inherits the convention of E.
1910 procedure Set_Current_Entity
(E
: Entity_Id
);
1911 pragma Inline
(Set_Current_Entity
);
1912 -- Establish the entity E as the currently visible definition of its
1913 -- associated name (i.e. the Node_Id associated with its name).
1915 procedure Set_Debug_Info_Needed
(T
: Entity_Id
);
1916 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
1917 -- that are needed by T (for an object, the type of the object is needed,
1918 -- and for a type, various subsidiary types are needed -- see body for
1919 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
1920 -- This routine should always be used instead of Set_Needs_Debug_Info to
1921 -- ensure that subsidiary entities are properly handled.
1923 procedure Set_Entity_With_Checks
(N
: Node_Id
; Val
: Entity_Id
);
1924 -- This procedure has the same calling sequence as Set_Entity, but it
1925 -- performs additional checks as follows:
1927 -- If Style_Check is set, then it calls a style checking routine which
1928 -- can check identifier spelling style. This procedure also takes care
1929 -- of checking the restriction No_Implementation_Identifiers.
1931 -- If restriction No_Abort_Statements is set, then it checks that the
1932 -- entity is not Ada.Task_Identification.Abort_Task.
1934 -- If restriction No_Dynamic_Attachment is set, then it checks that the
1935 -- entity is not one of the restricted names for this restriction.
1937 -- If restriction No_Long_Long_Integers is set, then it checks that the
1938 -- entity is not Standard.Long_Long_Integer.
1940 -- If restriction No_Implementation_Identifiers is set, then it checks
1941 -- that the entity is not implementation defined.
1943 procedure Set_Name_Entity_Id
(Id
: Name_Id
; Val
: Entity_Id
);
1944 pragma Inline
(Set_Name_Entity_Id
);
1945 -- Sets the Entity_Id value associated with the given name, which is the
1946 -- Id of the innermost visible entity with the given name. See the body
1947 -- of package Sem_Ch8 for further details on the handling of visibility.
1949 procedure Set_Next_Actual
(Ass1_Id
: Node_Id
; Ass2_Id
: Node_Id
);
1950 -- The arguments may be parameter associations, whose descendants
1951 -- are the optional formal name and the actual parameter. Positional
1952 -- parameters are already members of a list, and do not need to be
1953 -- chained separately. See also First_Actual and Next_Actual.
1955 procedure Set_Optimize_Alignment_Flags
(E
: Entity_Id
);
1956 pragma Inline
(Set_Optimize_Alignment_Flags
);
1957 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
1959 procedure Set_Public_Status
(Id
: Entity_Id
);
1960 -- If an entity (visible or otherwise) is defined in a library
1961 -- package, or a package that is itself public, then this subprogram
1962 -- labels the entity public as well.
1964 procedure Set_Referenced_Modified
(N
: Node_Id
; Out_Param
: Boolean);
1965 -- N is the node for either a left hand side (Out_Param set to False),
1966 -- or an Out or In_Out parameter (Out_Param set to True). If there is
1967 -- an assignable entity being referenced, then the appropriate flag
1968 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
1969 -- if Out_Param is True) is set True, and the other flag set False.
1971 procedure Set_Scope_Is_Transient
(V
: Boolean := True);
1972 -- Set the flag Is_Transient of the current scope
1974 procedure Set_Size_Info
(T1
, T2
: Entity_Id
);
1975 pragma Inline
(Set_Size_Info
);
1976 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
1977 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
1978 -- in the fixed-point and discrete cases, and also copies the alignment
1979 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
1980 -- separately set if this is required to be copied also.
1982 function Scope_Is_Transient
return Boolean;
1983 -- True if the current scope is transient
1985 function Static_Boolean
(N
: Node_Id
) return Uint
;
1986 -- This function analyzes the given expression node and then resolves it
1987 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
1988 -- returned corresponding to the value, otherwise an error message is
1989 -- output and No_Uint is returned.
1991 function Static_Integer
(N
: Node_Id
) return Uint
;
1992 -- This function analyzes the given expression node and then resolves it
1993 -- as any integer type. If the result is static, then the value of the
1994 -- universal expression is returned, otherwise an error message is output
1995 -- and a value of No_Uint is returned.
1997 function Statically_Different
(E1
, E2
: Node_Id
) return Boolean;
1998 -- Return True if it can be statically determined that the Expressions
1999 -- E1 and E2 refer to different objects
2001 function Subject_To_Loop_Entry_Attributes
(N
: Node_Id
) return Boolean;
2002 -- Determine whether node N is a loop statement subject to at least one
2003 -- 'Loop_Entry attribute.
2005 function Subprogram_Access_Level
(Subp
: Entity_Id
) return Uint
;
2006 -- Return the accessibility level of the view denoted by Subp
2008 function Support_Atomic_Primitives
(Typ
: Entity_Id
) return Boolean;
2009 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
2010 -- Typ is properly sized and aligned).
2012 procedure Trace_Scope
(N
: Node_Id
; E
: Entity_Id
; Msg
: String);
2013 -- Print debugging information on entry to each unit being analyzed
2015 procedure Transfer_Entities
(From
: Entity_Id
; To
: Entity_Id
);
2016 -- Move a list of entities from one scope to another, and recompute
2017 -- Is_Public based upon the new scope.
2019 function Type_Access_Level
(Typ
: Entity_Id
) return Uint
;
2020 -- Return the accessibility level of Typ
2022 function Type_Without_Stream_Operation
2024 Op
: TSS_Name_Type
:= TSS_Null
) return Entity_Id
;
2025 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
2026 -- is active then we cannot generate stream subprograms for composite types
2027 -- with elementary subcomponents that lack user-defined stream subprograms.
2028 -- This predicate determines whether a type has such an elementary
2029 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
2030 -- prevents the construction of a composite stream operation. If Op is
2031 -- specified we check only for the given stream operation.
2033 function Unique_Defining_Entity
(N
: Node_Id
) return Entity_Id
;
2034 -- Return the entity which represents declaration N, so that different
2035 -- views of the same entity have the same unique defining entity:
2036 -- * package spec and body;
2037 -- * subprogram declaration, subprogram stub and subprogram body;
2038 -- * private view and full view of a type;
2039 -- * private view and full view of a deferred constant.
2040 -- In other cases, return the defining entity for N.
2042 function Unique_Entity
(E
: Entity_Id
) return Entity_Id
;
2043 -- Return the unique entity for entity E, which would be returned by
2044 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
2046 function Unique_Name
(E
: Entity_Id
) return String;
2047 -- Return a unique name for entity E, which could be used to identify E
2048 -- across compilation units.
2050 function Unit_Is_Visible
(U
: Entity_Id
) return Boolean;
2051 -- Determine whether a compilation unit is visible in the current context,
2052 -- because there is a with_clause that makes the unit available. Used to
2053 -- provide better messages on common visiblity errors on operators.
2055 function Universal_Interpretation
(Opnd
: Node_Id
) return Entity_Id
;
2056 -- Yields Universal_Integer or Universal_Real if this is a candidate
2058 function Unqualify
(Expr
: Node_Id
) return Node_Id
;
2059 pragma Inline
(Unqualify
);
2060 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
2061 -- returns X. If Expr is not a qualified expression, returns Expr.
2063 function Visible_Ancestors
(Typ
: Entity_Id
) return Elist_Id
;
2064 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
2065 -- of a type extension or private extension declaration. If the full-view
2066 -- of private parents and progenitors is available then it is used to
2067 -- generate the list of visible ancestors; otherwise their partial
2068 -- view is added to the resulting list.
2070 function Within_Init_Proc
return Boolean;
2071 -- Determines if Current_Scope is within an init proc
2073 function Within_Scope
(E
: Entity_Id
; S
: Entity_Id
) return Boolean;
2074 -- Returns True if entity Id is declared within scope S
2076 procedure Wrong_Type
(Expr
: Node_Id
; Expected_Type
: Entity_Id
);
2077 -- Output error message for incorrectly typed expression. Expr is the node
2078 -- for the incorrectly typed construct (Etype (Expr) is the type found),
2079 -- and Expected_Type is the entity for the expected type. Note that Expr
2080 -- does not have to be a subexpression, anything with an Etype field may