Implement -mmemcpy-strategy= and -mmemset-strategy= options
[official-gcc.git] / gcc / ada / checks.adb
blob29a185931671ef78f8ce491937a085beb0aaba2c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Exp_Ch2; use Exp_Ch2;
31 with Exp_Ch4; use Exp_Ch4;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Pakd; use Exp_Pakd;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Elists; use Elists;
37 with Expander; use Expander;
38 with Eval_Fat; use Eval_Fat;
39 with Freeze; use Freeze;
40 with Lib; use Lib;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Output; use Output;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Aux; use Sem_Aux;
50 with Sem_Eval; use Sem_Eval;
51 with Sem_Ch3; use Sem_Ch3;
52 with Sem_Ch8; use Sem_Ch8;
53 with Sem_Res; use Sem_Res;
54 with Sem_Util; use Sem_Util;
55 with Sem_Warn; use Sem_Warn;
56 with Sinfo; use Sinfo;
57 with Sinput; use Sinput;
58 with Snames; use Snames;
59 with Sprint; use Sprint;
60 with Stand; use Stand;
61 with Stringt; use Stringt;
62 with Targparm; use Targparm;
63 with Tbuild; use Tbuild;
64 with Ttypes; use Ttypes;
65 with Urealp; use Urealp;
66 with Validsw; use Validsw;
68 package body Checks is
70 -- General note: many of these routines are concerned with generating
71 -- checking code to make sure that constraint error is raised at runtime.
72 -- Clearly this code is only needed if the expander is active, since
73 -- otherwise we will not be generating code or going into the runtime
74 -- execution anyway.
76 -- We therefore disconnect most of these checks if the expander is
77 -- inactive. This has the additional benefit that we do not need to
78 -- worry about the tree being messed up by previous errors (since errors
79 -- turn off expansion anyway).
81 -- There are a few exceptions to the above rule. For instance routines
82 -- such as Apply_Scalar_Range_Check that do not insert any code can be
83 -- safely called even when the Expander is inactive (but Errors_Detected
84 -- is 0). The benefit of executing this code when expansion is off, is
85 -- the ability to emit constraint error warning for static expressions
86 -- even when we are not generating code.
88 -------------------------------------
89 -- Suppression of Redundant Checks --
90 -------------------------------------
92 -- This unit implements a limited circuit for removal of redundant
93 -- checks. The processing is based on a tracing of simple sequential
94 -- flow. For any sequence of statements, we save expressions that are
95 -- marked to be checked, and then if the same expression appears later
96 -- with the same check, then under certain circumstances, the second
97 -- check can be suppressed.
99 -- Basically, we can suppress the check if we know for certain that
100 -- the previous expression has been elaborated (together with its
101 -- check), and we know that the exception frame is the same, and that
102 -- nothing has happened to change the result of the exception.
104 -- Let us examine each of these three conditions in turn to describe
105 -- how we ensure that this condition is met.
107 -- First, we need to know for certain that the previous expression has
108 -- been executed. This is done principally by the mechanism of calling
109 -- Conditional_Statements_Begin at the start of any statement sequence
110 -- and Conditional_Statements_End at the end. The End call causes all
111 -- checks remembered since the Begin call to be discarded. This does
112 -- miss a few cases, notably the case of a nested BEGIN-END block with
113 -- no exception handlers. But the important thing is to be conservative.
114 -- The other protection is that all checks are discarded if a label
115 -- is encountered, since then the assumption of sequential execution
116 -- is violated, and we don't know enough about the flow.
118 -- Second, we need to know that the exception frame is the same. We
119 -- do this by killing all remembered checks when we enter a new frame.
120 -- Again, that's over-conservative, but generally the cases we can help
121 -- with are pretty local anyway (like the body of a loop for example).
123 -- Third, we must be sure to forget any checks which are no longer valid.
124 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
125 -- used to note any changes to local variables. We only attempt to deal
126 -- with checks involving local variables, so we do not need to worry
127 -- about global variables. Second, a call to any non-global procedure
128 -- causes us to abandon all stored checks, since such a all may affect
129 -- the values of any local variables.
131 -- The following define the data structures used to deal with remembering
132 -- checks so that redundant checks can be eliminated as described above.
134 -- Right now, the only expressions that we deal with are of the form of
135 -- simple local objects (either declared locally, or IN parameters) or
136 -- such objects plus/minus a compile time known constant. We can do
137 -- more later on if it seems worthwhile, but this catches many simple
138 -- cases in practice.
140 -- The following record type reflects a single saved check. An entry
141 -- is made in the stack of saved checks if and only if the expression
142 -- has been elaborated with the indicated checks.
144 type Saved_Check is record
145 Killed : Boolean;
146 -- Set True if entry is killed by Kill_Checks
148 Entity : Entity_Id;
149 -- The entity involved in the expression that is checked
151 Offset : Uint;
152 -- A compile time value indicating the result of adding or
153 -- subtracting a compile time value. This value is to be
154 -- added to the value of the Entity. A value of zero is
155 -- used for the case of a simple entity reference.
157 Check_Type : Character;
158 -- This is set to 'R' for a range check (in which case Target_Type
159 -- is set to the target type for the range check) or to 'O' for an
160 -- overflow check (in which case Target_Type is set to Empty).
162 Target_Type : Entity_Id;
163 -- Used only if Do_Range_Check is set. Records the target type for
164 -- the check. We need this, because a check is a duplicate only if
165 -- it has the same target type (or more accurately one with a
166 -- range that is smaller or equal to the stored target type of a
167 -- saved check).
168 end record;
170 -- The following table keeps track of saved checks. Rather than use an
171 -- extensible table. We just use a table of fixed size, and we discard
172 -- any saved checks that do not fit. That's very unlikely to happen and
173 -- this is only an optimization in any case.
175 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
176 -- Array of saved checks
178 Num_Saved_Checks : Nat := 0;
179 -- Number of saved checks
181 -- The following stack keeps track of statement ranges. It is treated
182 -- as a stack. When Conditional_Statements_Begin is called, an entry
183 -- is pushed onto this stack containing the value of Num_Saved_Checks
184 -- at the time of the call. Then when Conditional_Statements_End is
185 -- called, this value is popped off and used to reset Num_Saved_Checks.
187 -- Note: again, this is a fixed length stack with a size that should
188 -- always be fine. If the value of the stack pointer goes above the
189 -- limit, then we just forget all saved checks.
191 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
192 Saved_Checks_TOS : Nat := 0;
194 -----------------------
195 -- Local Subprograms --
196 -----------------------
198 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
199 -- Used to apply arithmetic overflow checks for all cases except operators
200 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
201 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
202 -- signed integer arithmetic operator (but not an if or case expression).
203 -- It is also called for types other than signed integers.
205 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
206 -- Used to apply arithmetic overflow checks for the case where the overflow
207 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
208 -- arithmetic op (which includes the case of if and case expressions). Note
209 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
210 -- we have work to do even if overflow checking is suppressed.
212 procedure Apply_Division_Check
213 (N : Node_Id;
214 Rlo : Uint;
215 Rhi : Uint;
216 ROK : Boolean);
217 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
218 -- division checks as required if the Do_Division_Check flag is set.
219 -- Rlo and Rhi give the possible range of the right operand, these values
220 -- can be referenced and trusted only if ROK is set True.
222 procedure Apply_Float_Conversion_Check
223 (Ck_Node : Node_Id;
224 Target_Typ : Entity_Id);
225 -- The checks on a conversion from a floating-point type to an integer
226 -- type are delicate. They have to be performed before conversion, they
227 -- have to raise an exception when the operand is a NaN, and rounding must
228 -- be taken into account to determine the safe bounds of the operand.
230 procedure Apply_Selected_Length_Checks
231 (Ck_Node : Node_Id;
232 Target_Typ : Entity_Id;
233 Source_Typ : Entity_Id;
234 Do_Static : Boolean);
235 -- This is the subprogram that does all the work for Apply_Length_Check
236 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
237 -- described for the above routines. The Do_Static flag indicates that
238 -- only a static check is to be done.
240 procedure Apply_Selected_Range_Checks
241 (Ck_Node : Node_Id;
242 Target_Typ : Entity_Id;
243 Source_Typ : Entity_Id;
244 Do_Static : Boolean);
245 -- This is the subprogram that does all the work for Apply_Range_Check.
246 -- Expr, Target_Typ and Source_Typ are as described for the above
247 -- routine. The Do_Static flag indicates that only a static check is
248 -- to be done.
250 type Check_Type is new Check_Id range Access_Check .. Division_Check;
251 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
252 -- This function is used to see if an access or division by zero check is
253 -- needed. The check is to be applied to a single variable appearing in the
254 -- source, and N is the node for the reference. If N is not of this form,
255 -- True is returned with no further processing. If N is of the right form,
256 -- then further processing determines if the given Check is needed.
258 -- The particular circuit is to see if we have the case of a check that is
259 -- not needed because it appears in the right operand of a short circuited
260 -- conditional where the left operand guards the check. For example:
262 -- if Var = 0 or else Q / Var > 12 then
263 -- ...
264 -- end if;
266 -- In this example, the division check is not required. At the same time
267 -- we can issue warnings for suspicious use of non-short-circuited forms,
268 -- such as:
270 -- if Var = 0 or Q / Var > 12 then
271 -- ...
272 -- end if;
274 procedure Find_Check
275 (Expr : Node_Id;
276 Check_Type : Character;
277 Target_Type : Entity_Id;
278 Entry_OK : out Boolean;
279 Check_Num : out Nat;
280 Ent : out Entity_Id;
281 Ofs : out Uint);
282 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
283 -- to see if a check is of the form for optimization, and if so, to see
284 -- if it has already been performed. Expr is the expression to check,
285 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
286 -- Target_Type is the target type for a range check, and Empty for an
287 -- overflow check. If the entry is not of the form for optimization,
288 -- then Entry_OK is set to False, and the remaining out parameters
289 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
290 -- entity and offset from the expression. Check_Num is the number of
291 -- a matching saved entry in Saved_Checks, or zero if no such entry
292 -- is located.
294 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
295 -- If a discriminal is used in constraining a prival, Return reference
296 -- to the discriminal of the protected body (which renames the parameter
297 -- of the enclosing protected operation). This clumsy transformation is
298 -- needed because privals are created too late and their actual subtypes
299 -- are not available when analysing the bodies of the protected operations.
300 -- This function is called whenever the bound is an entity and the scope
301 -- indicates a protected operation. If the bound is an in-parameter of
302 -- a protected operation that is not a prival, the function returns the
303 -- bound itself.
304 -- To be cleaned up???
306 function Guard_Access
307 (Cond : Node_Id;
308 Loc : Source_Ptr;
309 Ck_Node : Node_Id) return Node_Id;
310 -- In the access type case, guard the test with a test to ensure
311 -- that the access value is non-null, since the checks do not
312 -- not apply to null access values.
314 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
315 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
316 -- Constraint_Error node.
318 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
319 -- Returns True if node N is for an arithmetic operation with signed
320 -- integer operands. This includes unary and binary operators, and also
321 -- if and case expression nodes where the dependent expressions are of
322 -- a signed integer type. These are the kinds of nodes for which special
323 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
325 function Range_Or_Validity_Checks_Suppressed
326 (Expr : Node_Id) return Boolean;
327 -- Returns True if either range or validity checks or both are suppressed
328 -- for the type of the given expression, or, if the expression is the name
329 -- of an entity, if these checks are suppressed for the entity.
331 function Selected_Length_Checks
332 (Ck_Node : Node_Id;
333 Target_Typ : Entity_Id;
334 Source_Typ : Entity_Id;
335 Warn_Node : Node_Id) return Check_Result;
336 -- Like Apply_Selected_Length_Checks, except it doesn't modify
337 -- anything, just returns a list of nodes as described in the spec of
338 -- this package for the Range_Check function.
340 function Selected_Range_Checks
341 (Ck_Node : Node_Id;
342 Target_Typ : Entity_Id;
343 Source_Typ : Entity_Id;
344 Warn_Node : Node_Id) return Check_Result;
345 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
346 -- just returns a list of nodes as described in the spec of this package
347 -- for the Range_Check function.
349 ------------------------------
350 -- Access_Checks_Suppressed --
351 ------------------------------
353 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
354 begin
355 if Present (E) and then Checks_May_Be_Suppressed (E) then
356 return Is_Check_Suppressed (E, Access_Check);
357 else
358 return Scope_Suppress.Suppress (Access_Check);
359 end if;
360 end Access_Checks_Suppressed;
362 -------------------------------------
363 -- Accessibility_Checks_Suppressed --
364 -------------------------------------
366 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
367 begin
368 if Present (E) and then Checks_May_Be_Suppressed (E) then
369 return Is_Check_Suppressed (E, Accessibility_Check);
370 else
371 return Scope_Suppress.Suppress (Accessibility_Check);
372 end if;
373 end Accessibility_Checks_Suppressed;
375 -----------------------------
376 -- Activate_Division_Check --
377 -----------------------------
379 procedure Activate_Division_Check (N : Node_Id) is
380 begin
381 Set_Do_Division_Check (N, True);
382 Possible_Local_Raise (N, Standard_Constraint_Error);
383 end Activate_Division_Check;
385 -----------------------------
386 -- Activate_Overflow_Check --
387 -----------------------------
389 procedure Activate_Overflow_Check (N : Node_Id) is
390 begin
391 if not Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
392 Set_Do_Overflow_Check (N, True);
393 Possible_Local_Raise (N, Standard_Constraint_Error);
394 end if;
395 end Activate_Overflow_Check;
397 --------------------------
398 -- Activate_Range_Check --
399 --------------------------
401 procedure Activate_Range_Check (N : Node_Id) is
402 begin
403 Set_Do_Range_Check (N, True);
404 Possible_Local_Raise (N, Standard_Constraint_Error);
405 end Activate_Range_Check;
407 ---------------------------------
408 -- Alignment_Checks_Suppressed --
409 ---------------------------------
411 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
412 begin
413 if Present (E) and then Checks_May_Be_Suppressed (E) then
414 return Is_Check_Suppressed (E, Alignment_Check);
415 else
416 return Scope_Suppress.Suppress (Alignment_Check);
417 end if;
418 end Alignment_Checks_Suppressed;
420 -------------------------
421 -- Append_Range_Checks --
422 -------------------------
424 procedure Append_Range_Checks
425 (Checks : Check_Result;
426 Stmts : List_Id;
427 Suppress_Typ : Entity_Id;
428 Static_Sloc : Source_Ptr;
429 Flag_Node : Node_Id)
431 Internal_Flag_Node : constant Node_Id := Flag_Node;
432 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
434 Checks_On : constant Boolean :=
435 (not Index_Checks_Suppressed (Suppress_Typ))
436 or else (not Range_Checks_Suppressed (Suppress_Typ));
438 begin
439 -- For now we just return if Checks_On is false, however this should
440 -- be enhanced to check for an always True value in the condition
441 -- and to generate a compilation warning???
443 if not Checks_On then
444 return;
445 end if;
447 for J in 1 .. 2 loop
448 exit when No (Checks (J));
450 if Nkind (Checks (J)) = N_Raise_Constraint_Error
451 and then Present (Condition (Checks (J)))
452 then
453 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
454 Append_To (Stmts, Checks (J));
455 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
456 end if;
458 else
459 Append_To
460 (Stmts,
461 Make_Raise_Constraint_Error (Internal_Static_Sloc,
462 Reason => CE_Range_Check_Failed));
463 end if;
464 end loop;
465 end Append_Range_Checks;
467 ------------------------
468 -- Apply_Access_Check --
469 ------------------------
471 procedure Apply_Access_Check (N : Node_Id) is
472 P : constant Node_Id := Prefix (N);
474 begin
475 -- We do not need checks if we are not generating code (i.e. the
476 -- expander is not active). This is not just an optimization, there
477 -- are cases (e.g. with pragma Debug) where generating the checks
478 -- can cause real trouble).
480 if not Full_Expander_Active then
481 return;
482 end if;
484 -- No check if short circuiting makes check unnecessary
486 if not Check_Needed (P, Access_Check) then
487 return;
488 end if;
490 -- No check if accessing the Offset_To_Top component of a dispatch
491 -- table. They are safe by construction.
493 if Tagged_Type_Expansion
494 and then Present (Etype (P))
495 and then RTU_Loaded (Ada_Tags)
496 and then RTE_Available (RE_Offset_To_Top_Ptr)
497 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
498 then
499 return;
500 end if;
502 -- Otherwise go ahead and install the check
504 Install_Null_Excluding_Check (P);
505 end Apply_Access_Check;
507 -------------------------------
508 -- Apply_Accessibility_Check --
509 -------------------------------
511 procedure Apply_Accessibility_Check
512 (N : Node_Id;
513 Typ : Entity_Id;
514 Insert_Node : Node_Id)
516 Loc : constant Source_Ptr := Sloc (N);
517 Param_Ent : Entity_Id := Param_Entity (N);
518 Param_Level : Node_Id;
519 Type_Level : Node_Id;
521 begin
522 if Ada_Version >= Ada_2012
523 and then not Present (Param_Ent)
524 and then Is_Entity_Name (N)
525 and then Ekind_In (Entity (N), E_Constant, E_Variable)
526 and then Present (Effective_Extra_Accessibility (Entity (N)))
527 then
528 Param_Ent := Entity (N);
529 while Present (Renamed_Object (Param_Ent)) loop
531 -- Renamed_Object must return an Entity_Name here
532 -- because of preceding "Present (E_E_A (...))" test.
534 Param_Ent := Entity (Renamed_Object (Param_Ent));
535 end loop;
536 end if;
538 if Inside_A_Generic then
539 return;
541 -- Only apply the run-time check if the access parameter has an
542 -- associated extra access level parameter and when the level of the
543 -- type is less deep than the level of the access parameter, and
544 -- accessibility checks are not suppressed.
546 elsif Present (Param_Ent)
547 and then Present (Extra_Accessibility (Param_Ent))
548 and then UI_Gt (Object_Access_Level (N),
549 Deepest_Type_Access_Level (Typ))
550 and then not Accessibility_Checks_Suppressed (Param_Ent)
551 and then not Accessibility_Checks_Suppressed (Typ)
552 then
553 Param_Level :=
554 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
556 Type_Level :=
557 Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
559 -- Raise Program_Error if the accessibility level of the access
560 -- parameter is deeper than the level of the target access type.
562 Insert_Action (Insert_Node,
563 Make_Raise_Program_Error (Loc,
564 Condition =>
565 Make_Op_Gt (Loc,
566 Left_Opnd => Param_Level,
567 Right_Opnd => Type_Level),
568 Reason => PE_Accessibility_Check_Failed));
570 Analyze_And_Resolve (N);
571 end if;
572 end Apply_Accessibility_Check;
574 --------------------------------
575 -- Apply_Address_Clause_Check --
576 --------------------------------
578 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
579 pragma Assert (Nkind (N) = N_Freeze_Entity);
581 AC : constant Node_Id := Address_Clause (E);
582 Loc : constant Source_Ptr := Sloc (AC);
583 Typ : constant Entity_Id := Etype (E);
584 Aexp : constant Node_Id := Expression (AC);
586 Expr : Node_Id;
587 -- Address expression (not necessarily the same as Aexp, for example
588 -- when Aexp is a reference to a constant, in which case Expr gets
589 -- reset to reference the value expression of the constant.
591 procedure Compile_Time_Bad_Alignment;
592 -- Post error warnings when alignment is known to be incompatible. Note
593 -- that we do not go as far as inserting a raise of Program_Error since
594 -- this is an erroneous case, and it may happen that we are lucky and an
595 -- underaligned address turns out to be OK after all.
597 --------------------------------
598 -- Compile_Time_Bad_Alignment --
599 --------------------------------
601 procedure Compile_Time_Bad_Alignment is
602 begin
603 if Address_Clause_Overlay_Warnings then
604 Error_Msg_FE
605 ("?o?specified address for& may be inconsistent with alignment",
606 Aexp, E);
607 Error_Msg_FE
608 ("\?o?program execution may be erroneous (RM 13.3(27))",
609 Aexp, E);
610 Set_Address_Warning_Posted (AC);
611 end if;
612 end Compile_Time_Bad_Alignment;
614 -- Start of processing for Apply_Address_Clause_Check
616 begin
617 -- See if alignment check needed. Note that we never need a check if the
618 -- maximum alignment is one, since the check will always succeed.
620 -- Note: we do not check for checks suppressed here, since that check
621 -- was done in Sem_Ch13 when the address clause was processed. We are
622 -- only called if checks were not suppressed. The reason for this is
623 -- that we have to delay the call to Apply_Alignment_Check till freeze
624 -- time (so that all types etc are elaborated), but we have to check
625 -- the status of check suppressing at the point of the address clause.
627 if No (AC)
628 or else not Check_Address_Alignment (AC)
629 or else Maximum_Alignment = 1
630 then
631 return;
632 end if;
634 -- Obtain expression from address clause
636 Expr := Expression (AC);
638 -- The following loop digs for the real expression to use in the check
640 loop
641 -- For constant, get constant expression
643 if Is_Entity_Name (Expr)
644 and then Ekind (Entity (Expr)) = E_Constant
645 then
646 Expr := Constant_Value (Entity (Expr));
648 -- For unchecked conversion, get result to convert
650 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
651 Expr := Expression (Expr);
653 -- For (common case) of To_Address call, get argument
655 elsif Nkind (Expr) = N_Function_Call
656 and then Is_Entity_Name (Name (Expr))
657 and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
658 then
659 Expr := First (Parameter_Associations (Expr));
661 if Nkind (Expr) = N_Parameter_Association then
662 Expr := Explicit_Actual_Parameter (Expr);
663 end if;
665 -- We finally have the real expression
667 else
668 exit;
669 end if;
670 end loop;
672 -- See if we know that Expr has a bad alignment at compile time
674 if Compile_Time_Known_Value (Expr)
675 and then (Known_Alignment (E) or else Known_Alignment (Typ))
676 then
677 declare
678 AL : Uint := Alignment (Typ);
680 begin
681 -- The object alignment might be more restrictive than the
682 -- type alignment.
684 if Known_Alignment (E) then
685 AL := Alignment (E);
686 end if;
688 if Expr_Value (Expr) mod AL /= 0 then
689 Compile_Time_Bad_Alignment;
690 else
691 return;
692 end if;
693 end;
695 -- If the expression has the form X'Address, then we can find out if
696 -- the object X has an alignment that is compatible with the object E.
697 -- If it hasn't or we don't know, we defer issuing the warning until
698 -- the end of the compilation to take into account back end annotations.
700 elsif Nkind (Expr) = N_Attribute_Reference
701 and then Attribute_Name (Expr) = Name_Address
702 and then Has_Compatible_Alignment (E, Prefix (Expr)) = Known_Compatible
703 then
704 return;
705 end if;
707 -- Here we do not know if the value is acceptable. Strictly we don't
708 -- have to do anything, since if the alignment is bad, we have an
709 -- erroneous program. However we are allowed to check for erroneous
710 -- conditions and we decide to do this by default if the check is not
711 -- suppressed.
713 -- However, don't do the check if elaboration code is unwanted
715 if Restriction_Active (No_Elaboration_Code) then
716 return;
718 -- Generate a check to raise PE if alignment may be inappropriate
720 else
721 -- If the original expression is a non-static constant, use the
722 -- name of the constant itself rather than duplicating its
723 -- defining expression, which was extracted above.
725 -- Note: Expr is empty if the address-clause is applied to in-mode
726 -- actuals (allowed by 13.1(22)).
728 if not Present (Expr)
729 or else
730 (Is_Entity_Name (Expression (AC))
731 and then Ekind (Entity (Expression (AC))) = E_Constant
732 and then Nkind (Parent (Entity (Expression (AC))))
733 = N_Object_Declaration)
734 then
735 Expr := New_Copy_Tree (Expression (AC));
736 else
737 Remove_Side_Effects (Expr);
738 end if;
740 if No (Actions (N)) then
741 Set_Actions (N, New_List);
742 end if;
744 Prepend_To (Actions (N),
745 Make_Raise_Program_Error (Loc,
746 Condition =>
747 Make_Op_Ne (Loc,
748 Left_Opnd =>
749 Make_Op_Mod (Loc,
750 Left_Opnd =>
751 Unchecked_Convert_To
752 (RTE (RE_Integer_Address), Expr),
753 Right_Opnd =>
754 Make_Attribute_Reference (Loc,
755 Prefix => New_Occurrence_Of (E, Loc),
756 Attribute_Name => Name_Alignment)),
757 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
758 Reason => PE_Misaligned_Address_Value));
759 Analyze (First (Actions (N)), Suppress => All_Checks);
760 return;
761 end if;
763 exception
764 -- If we have some missing run time component in configurable run time
765 -- mode then just skip the check (it is not required in any case).
767 when RE_Not_Available =>
768 return;
769 end Apply_Address_Clause_Check;
771 -------------------------------------
772 -- Apply_Arithmetic_Overflow_Check --
773 -------------------------------------
775 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
776 begin
777 -- Use old routine in almost all cases (the only case we are treating
778 -- specially is the case of a signed integer arithmetic op with the
779 -- overflow checking mode set to MINIMIZED or ELIMINATED).
781 if Overflow_Check_Mode = Strict
782 or else not Is_Signed_Integer_Arithmetic_Op (N)
783 then
784 Apply_Arithmetic_Overflow_Strict (N);
786 -- Otherwise use the new routine for the case of a signed integer
787 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
788 -- mode is MINIMIZED or ELIMINATED.
790 else
791 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
792 end if;
793 end Apply_Arithmetic_Overflow_Check;
795 --------------------------------------
796 -- Apply_Arithmetic_Overflow_Strict --
797 --------------------------------------
799 -- This routine is called only if the type is an integer type, and a
800 -- software arithmetic overflow check may be needed for op (add, subtract,
801 -- or multiply). This check is performed only if Software_Overflow_Checking
802 -- is enabled and Do_Overflow_Check is set. In this case we expand the
803 -- operation into a more complex sequence of tests that ensures that
804 -- overflow is properly caught.
806 -- This is used in CHECKED modes. It is identical to the code for this
807 -- cases before the big overflow earthquake, thus ensuring that in this
808 -- modes we have compatible behavior (and reliability) to what was there
809 -- before. It is also called for types other than signed integers, and if
810 -- the Do_Overflow_Check flag is off.
812 -- Note: we also call this routine if we decide in the MINIMIZED case
813 -- to give up and just generate an overflow check without any fuss.
815 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
816 Loc : constant Source_Ptr := Sloc (N);
817 Typ : constant Entity_Id := Etype (N);
818 Rtyp : constant Entity_Id := Root_Type (Typ);
820 begin
821 -- Nothing to do if Do_Overflow_Check not set or overflow checks
822 -- suppressed.
824 if not Do_Overflow_Check (N) then
825 return;
826 end if;
828 -- An interesting special case. If the arithmetic operation appears as
829 -- the operand of a type conversion:
831 -- type1 (x op y)
833 -- and all the following conditions apply:
835 -- arithmetic operation is for a signed integer type
836 -- target type type1 is a static integer subtype
837 -- range of x and y are both included in the range of type1
838 -- range of x op y is included in the range of type1
839 -- size of type1 is at least twice the result size of op
841 -- then we don't do an overflow check in any case, instead we transform
842 -- the operation so that we end up with:
844 -- type1 (type1 (x) op type1 (y))
846 -- This avoids intermediate overflow before the conversion. It is
847 -- explicitly permitted by RM 3.5.4(24):
849 -- For the execution of a predefined operation of a signed integer
850 -- type, the implementation need not raise Constraint_Error if the
851 -- result is outside the base range of the type, so long as the
852 -- correct result is produced.
854 -- It's hard to imagine that any programmer counts on the exception
855 -- being raised in this case, and in any case it's wrong coding to
856 -- have this expectation, given the RM permission. Furthermore, other
857 -- Ada compilers do allow such out of range results.
859 -- Note that we do this transformation even if overflow checking is
860 -- off, since this is precisely about giving the "right" result and
861 -- avoiding the need for an overflow check.
863 -- Note: this circuit is partially redundant with respect to the similar
864 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
865 -- with cases that do not come through here. We still need the following
866 -- processing even with the Exp_Ch4 code in place, since we want to be
867 -- sure not to generate the arithmetic overflow check in these cases
868 -- (Exp_Ch4 would have a hard time removing them once generated).
870 if Is_Signed_Integer_Type (Typ)
871 and then Nkind (Parent (N)) = N_Type_Conversion
872 then
873 Conversion_Optimization : declare
874 Target_Type : constant Entity_Id :=
875 Base_Type (Entity (Subtype_Mark (Parent (N))));
877 Llo, Lhi : Uint;
878 Rlo, Rhi : Uint;
879 LOK, ROK : Boolean;
881 Vlo : Uint;
882 Vhi : Uint;
883 VOK : Boolean;
885 Tlo : Uint;
886 Thi : Uint;
888 begin
889 if Is_Integer_Type (Target_Type)
890 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
891 then
892 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
893 Thi := Expr_Value (Type_High_Bound (Target_Type));
895 Determine_Range
896 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
897 Determine_Range
898 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
900 if (LOK and ROK)
901 and then Tlo <= Llo and then Lhi <= Thi
902 and then Tlo <= Rlo and then Rhi <= Thi
903 then
904 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
906 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
907 Rewrite (Left_Opnd (N),
908 Make_Type_Conversion (Loc,
909 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
910 Expression => Relocate_Node (Left_Opnd (N))));
912 Rewrite (Right_Opnd (N),
913 Make_Type_Conversion (Loc,
914 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
915 Expression => Relocate_Node (Right_Opnd (N))));
917 -- Rewrite the conversion operand so that the original
918 -- node is retained, in order to avoid the warning for
919 -- redundant conversions in Resolve_Type_Conversion.
921 Rewrite (N, Relocate_Node (N));
923 Set_Etype (N, Target_Type);
925 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
926 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
928 -- Given that the target type is twice the size of the
929 -- source type, overflow is now impossible, so we can
930 -- safely kill the overflow check and return.
932 Set_Do_Overflow_Check (N, False);
933 return;
934 end if;
935 end if;
936 end if;
937 end Conversion_Optimization;
938 end if;
940 -- Now see if an overflow check is required
942 declare
943 Siz : constant Int := UI_To_Int (Esize (Rtyp));
944 Dsiz : constant Int := Siz * 2;
945 Opnod : Node_Id;
946 Ctyp : Entity_Id;
947 Opnd : Node_Id;
948 Cent : RE_Id;
950 begin
951 -- Skip check if back end does overflow checks, or the overflow flag
952 -- is not set anyway, or we are not doing code expansion, or the
953 -- parent node is a type conversion whose operand is an arithmetic
954 -- operation on signed integers on which the expander can promote
955 -- later the operands to type Integer (see Expand_N_Type_Conversion).
957 -- Special case CLI target, where arithmetic overflow checks can be
958 -- performed for integer and long_integer
960 if Backend_Overflow_Checks_On_Target
961 or else not Do_Overflow_Check (N)
962 or else not Full_Expander_Active
963 or else (Present (Parent (N))
964 and then Nkind (Parent (N)) = N_Type_Conversion
965 and then Integer_Promotion_Possible (Parent (N)))
966 or else
967 (VM_Target = CLI_Target and then Siz >= Standard_Integer_Size)
968 then
969 return;
970 end if;
972 -- Otherwise, generate the full general code for front end overflow
973 -- detection, which works by doing arithmetic in a larger type:
975 -- x op y
977 -- is expanded into
979 -- Typ (Checktyp (x) op Checktyp (y));
981 -- where Typ is the type of the original expression, and Checktyp is
982 -- an integer type of sufficient length to hold the largest possible
983 -- result.
985 -- If the size of check type exceeds the size of Long_Long_Integer,
986 -- we use a different approach, expanding to:
988 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
990 -- where xxx is Add, Multiply or Subtract as appropriate
992 -- Find check type if one exists
994 if Dsiz <= Standard_Integer_Size then
995 Ctyp := Standard_Integer;
997 elsif Dsiz <= Standard_Long_Long_Integer_Size then
998 Ctyp := Standard_Long_Long_Integer;
1000 -- No check type exists, use runtime call
1002 else
1003 if Nkind (N) = N_Op_Add then
1004 Cent := RE_Add_With_Ovflo_Check;
1006 elsif Nkind (N) = N_Op_Multiply then
1007 Cent := RE_Multiply_With_Ovflo_Check;
1009 else
1010 pragma Assert (Nkind (N) = N_Op_Subtract);
1011 Cent := RE_Subtract_With_Ovflo_Check;
1012 end if;
1014 Rewrite (N,
1015 OK_Convert_To (Typ,
1016 Make_Function_Call (Loc,
1017 Name => New_Reference_To (RTE (Cent), Loc),
1018 Parameter_Associations => New_List (
1019 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
1020 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
1022 Analyze_And_Resolve (N, Typ);
1023 return;
1024 end if;
1026 -- If we fall through, we have the case where we do the arithmetic
1027 -- in the next higher type and get the check by conversion. In these
1028 -- cases Ctyp is set to the type to be used as the check type.
1030 Opnod := Relocate_Node (N);
1032 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
1034 Analyze (Opnd);
1035 Set_Etype (Opnd, Ctyp);
1036 Set_Analyzed (Opnd, True);
1037 Set_Left_Opnd (Opnod, Opnd);
1039 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
1041 Analyze (Opnd);
1042 Set_Etype (Opnd, Ctyp);
1043 Set_Analyzed (Opnd, True);
1044 Set_Right_Opnd (Opnod, Opnd);
1046 -- The type of the operation changes to the base type of the check
1047 -- type, and we reset the overflow check indication, since clearly no
1048 -- overflow is possible now that we are using a double length type.
1049 -- We also set the Analyzed flag to avoid a recursive attempt to
1050 -- expand the node.
1052 Set_Etype (Opnod, Base_Type (Ctyp));
1053 Set_Do_Overflow_Check (Opnod, False);
1054 Set_Analyzed (Opnod, True);
1056 -- Now build the outer conversion
1058 Opnd := OK_Convert_To (Typ, Opnod);
1059 Analyze (Opnd);
1060 Set_Etype (Opnd, Typ);
1062 -- In the discrete type case, we directly generate the range check
1063 -- for the outer operand. This range check will implement the
1064 -- required overflow check.
1066 if Is_Discrete_Type (Typ) then
1067 Rewrite (N, Opnd);
1068 Generate_Range_Check
1069 (Expression (N), Typ, CE_Overflow_Check_Failed);
1071 -- For other types, we enable overflow checking on the conversion,
1072 -- after setting the node as analyzed to prevent recursive attempts
1073 -- to expand the conversion node.
1075 else
1076 Set_Analyzed (Opnd, True);
1077 Enable_Overflow_Check (Opnd);
1078 Rewrite (N, Opnd);
1079 end if;
1081 exception
1082 when RE_Not_Available =>
1083 return;
1084 end;
1085 end Apply_Arithmetic_Overflow_Strict;
1087 ----------------------------------------------------
1088 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1089 ----------------------------------------------------
1091 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1092 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
1094 Loc : constant Source_Ptr := Sloc (Op);
1095 P : constant Node_Id := Parent (Op);
1097 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1098 -- Operands and results are of this type when we convert
1100 Result_Type : constant Entity_Id := Etype (Op);
1101 -- Original result type
1103 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1104 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1106 Lo, Hi : Uint;
1107 -- Ranges of values for result
1109 begin
1110 -- Nothing to do if our parent is one of the following:
1112 -- Another signed integer arithmetic op
1113 -- A membership operation
1114 -- A comparison operation
1116 -- In all these cases, we will process at the higher level (and then
1117 -- this node will be processed during the downwards recursion that
1118 -- is part of the processing in Minimize_Eliminate_Overflows).
1120 if Is_Signed_Integer_Arithmetic_Op (P)
1121 or else Nkind (P) in N_Membership_Test
1122 or else Nkind (P) in N_Op_Compare
1124 -- This is also true for an alternative in a case expression
1126 or else Nkind (P) = N_Case_Expression_Alternative
1128 -- This is also true for a range operand in a membership test
1130 or else (Nkind (P) = N_Range
1131 and then Nkind (Parent (P)) in N_Membership_Test)
1132 then
1133 return;
1134 end if;
1136 -- Otherwise, we have a top level arithmetic operation node, and this
1137 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1138 -- modes. This is the case where we tell the machinery not to move into
1139 -- Bignum mode at this top level (of course the top level operation
1140 -- will still be in Bignum mode if either of its operands are of type
1141 -- Bignum).
1143 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
1145 -- That call may but does not necessarily change the result type of Op.
1146 -- It is the job of this routine to undo such changes, so that at the
1147 -- top level, we have the proper type. This "undoing" is a point at
1148 -- which a final overflow check may be applied.
1150 -- If the result type was not fiddled we are all set. We go to base
1151 -- types here because things may have been rewritten to generate the
1152 -- base type of the operand types.
1154 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
1155 return;
1157 -- Bignum case
1159 elsif Is_RTE (Etype (Op), RE_Bignum) then
1161 -- We need a sequence that looks like:
1163 -- Rnn : Result_Type;
1165 -- declare
1166 -- M : Mark_Id := SS_Mark;
1167 -- begin
1168 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1169 -- SS_Release (M);
1170 -- end;
1172 -- This block is inserted (using Insert_Actions), and then the node
1173 -- is replaced with a reference to Rnn.
1175 -- A special case arises if our parent is a conversion node. In this
1176 -- case no point in generating a conversion to Result_Type, we will
1177 -- let the parent handle this. Note that this special case is not
1178 -- just about optimization. Consider
1180 -- A,B,C : Integer;
1181 -- ...
1182 -- X := Long_Long_Integer'Base (A * (B ** C));
1184 -- Now the product may fit in Long_Long_Integer but not in Integer.
1185 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1186 -- overflow exception for this intermediate value.
1188 declare
1189 Blk : constant Node_Id := Make_Bignum_Block (Loc);
1190 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1191 RHS : Node_Id;
1193 Rtype : Entity_Id;
1195 begin
1196 RHS := Convert_From_Bignum (Op);
1198 if Nkind (P) /= N_Type_Conversion then
1199 Convert_To_And_Rewrite (Result_Type, RHS);
1200 Rtype := Result_Type;
1202 -- Interesting question, do we need a check on that conversion
1203 -- operation. Answer, not if we know the result is in range.
1204 -- At the moment we are not taking advantage of this. To be
1205 -- looked at later ???
1207 else
1208 Rtype := LLIB;
1209 end if;
1211 Insert_Before
1212 (First (Statements (Handled_Statement_Sequence (Blk))),
1213 Make_Assignment_Statement (Loc,
1214 Name => New_Occurrence_Of (Rnn, Loc),
1215 Expression => RHS));
1217 Insert_Actions (Op, New_List (
1218 Make_Object_Declaration (Loc,
1219 Defining_Identifier => Rnn,
1220 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1221 Blk));
1223 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1224 Analyze_And_Resolve (Op);
1225 end;
1227 -- Here we know the result is Long_Long_Integer'Base, of that it has
1228 -- been rewritten because the parent operation is a conversion. See
1229 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1231 else
1232 pragma Assert
1233 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
1235 -- All we need to do here is to convert the result to the proper
1236 -- result type. As explained above for the Bignum case, we can
1237 -- omit this if our parent is a type conversion.
1239 if Nkind (P) /= N_Type_Conversion then
1240 Convert_To_And_Rewrite (Result_Type, Op);
1241 end if;
1243 Analyze_And_Resolve (Op);
1244 end if;
1245 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
1247 ----------------------------
1248 -- Apply_Constraint_Check --
1249 ----------------------------
1251 procedure Apply_Constraint_Check
1252 (N : Node_Id;
1253 Typ : Entity_Id;
1254 No_Sliding : Boolean := False)
1256 Desig_Typ : Entity_Id;
1258 begin
1259 -- No checks inside a generic (check the instantiations)
1261 if Inside_A_Generic then
1262 return;
1263 end if;
1265 -- Apply required constraint checks
1267 if Is_Scalar_Type (Typ) then
1268 Apply_Scalar_Range_Check (N, Typ);
1270 elsif Is_Array_Type (Typ) then
1272 -- A useful optimization: an aggregate with only an others clause
1273 -- always has the right bounds.
1275 if Nkind (N) = N_Aggregate
1276 and then No (Expressions (N))
1277 and then Nkind
1278 (First (Choices (First (Component_Associations (N)))))
1279 = N_Others_Choice
1280 then
1281 return;
1282 end if;
1284 if Is_Constrained (Typ) then
1285 Apply_Length_Check (N, Typ);
1287 if No_Sliding then
1288 Apply_Range_Check (N, Typ);
1289 end if;
1290 else
1291 Apply_Range_Check (N, Typ);
1292 end if;
1294 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
1295 and then Has_Discriminants (Base_Type (Typ))
1296 and then Is_Constrained (Typ)
1297 then
1298 Apply_Discriminant_Check (N, Typ);
1300 elsif Is_Access_Type (Typ) then
1302 Desig_Typ := Designated_Type (Typ);
1304 -- No checks necessary if expression statically null
1306 if Known_Null (N) then
1307 if Can_Never_Be_Null (Typ) then
1308 Install_Null_Excluding_Check (N);
1309 end if;
1311 -- No sliding possible on access to arrays
1313 elsif Is_Array_Type (Desig_Typ) then
1314 if Is_Constrained (Desig_Typ) then
1315 Apply_Length_Check (N, Typ);
1316 end if;
1318 Apply_Range_Check (N, Typ);
1320 elsif Has_Discriminants (Base_Type (Desig_Typ))
1321 and then Is_Constrained (Desig_Typ)
1322 then
1323 Apply_Discriminant_Check (N, Typ);
1324 end if;
1326 -- Apply the 2005 Null_Excluding check. Note that we do not apply
1327 -- this check if the constraint node is illegal, as shown by having
1328 -- an error posted. This additional guard prevents cascaded errors
1329 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1331 if Can_Never_Be_Null (Typ)
1332 and then not Can_Never_Be_Null (Etype (N))
1333 and then not Error_Posted (N)
1334 then
1335 Install_Null_Excluding_Check (N);
1336 end if;
1337 end if;
1338 end Apply_Constraint_Check;
1340 ------------------------------
1341 -- Apply_Discriminant_Check --
1342 ------------------------------
1344 procedure Apply_Discriminant_Check
1345 (N : Node_Id;
1346 Typ : Entity_Id;
1347 Lhs : Node_Id := Empty)
1349 Loc : constant Source_Ptr := Sloc (N);
1350 Do_Access : constant Boolean := Is_Access_Type (Typ);
1351 S_Typ : Entity_Id := Etype (N);
1352 Cond : Node_Id;
1353 T_Typ : Entity_Id;
1355 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1356 -- A heap object with an indefinite subtype is constrained by its
1357 -- initial value, and assigning to it requires a constraint_check.
1358 -- The target may be an explicit dereference, or a renaming of one.
1360 function Is_Aliased_Unconstrained_Component return Boolean;
1361 -- It is possible for an aliased component to have a nominal
1362 -- unconstrained subtype (through instantiation). If this is a
1363 -- discriminated component assigned in the expansion of an aggregate
1364 -- in an initialization, the check must be suppressed. This unusual
1365 -- situation requires a predicate of its own.
1367 ----------------------------------
1368 -- Denotes_Explicit_Dereference --
1369 ----------------------------------
1371 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1372 begin
1373 return
1374 Nkind (Obj) = N_Explicit_Dereference
1375 or else
1376 (Is_Entity_Name (Obj)
1377 and then Present (Renamed_Object (Entity (Obj)))
1378 and then Nkind (Renamed_Object (Entity (Obj))) =
1379 N_Explicit_Dereference);
1380 end Denotes_Explicit_Dereference;
1382 ----------------------------------------
1383 -- Is_Aliased_Unconstrained_Component --
1384 ----------------------------------------
1386 function Is_Aliased_Unconstrained_Component return Boolean is
1387 Comp : Entity_Id;
1388 Pref : Node_Id;
1390 begin
1391 if Nkind (Lhs) /= N_Selected_Component then
1392 return False;
1393 else
1394 Comp := Entity (Selector_Name (Lhs));
1395 Pref := Prefix (Lhs);
1396 end if;
1398 if Ekind (Comp) /= E_Component
1399 or else not Is_Aliased (Comp)
1400 then
1401 return False;
1402 end if;
1404 return not Comes_From_Source (Pref)
1405 and then In_Instance
1406 and then not Is_Constrained (Etype (Comp));
1407 end Is_Aliased_Unconstrained_Component;
1409 -- Start of processing for Apply_Discriminant_Check
1411 begin
1412 if Do_Access then
1413 T_Typ := Designated_Type (Typ);
1414 else
1415 T_Typ := Typ;
1416 end if;
1418 -- Nothing to do if discriminant checks are suppressed or else no code
1419 -- is to be generated
1421 if not Full_Expander_Active
1422 or else Discriminant_Checks_Suppressed (T_Typ)
1423 then
1424 return;
1425 end if;
1427 -- No discriminant checks necessary for an access when expression is
1428 -- statically Null. This is not only an optimization, it is fundamental
1429 -- because otherwise discriminant checks may be generated in init procs
1430 -- for types containing an access to a not-yet-frozen record, causing a
1431 -- deadly forward reference.
1433 -- Also, if the expression is of an access type whose designated type is
1434 -- incomplete, then the access value must be null and we suppress the
1435 -- check.
1437 if Known_Null (N) then
1438 return;
1440 elsif Is_Access_Type (S_Typ) then
1441 S_Typ := Designated_Type (S_Typ);
1443 if Ekind (S_Typ) = E_Incomplete_Type then
1444 return;
1445 end if;
1446 end if;
1448 -- If an assignment target is present, then we need to generate the
1449 -- actual subtype if the target is a parameter or aliased object with
1450 -- an unconstrained nominal subtype.
1452 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1453 -- subtype to the parameter and dereference cases, since other aliased
1454 -- objects are unconstrained (unless the nominal subtype is explicitly
1455 -- constrained).
1457 if Present (Lhs)
1458 and then (Present (Param_Entity (Lhs))
1459 or else (Ada_Version < Ada_2005
1460 and then not Is_Constrained (T_Typ)
1461 and then Is_Aliased_View (Lhs)
1462 and then not Is_Aliased_Unconstrained_Component)
1463 or else (Ada_Version >= Ada_2005
1464 and then not Is_Constrained (T_Typ)
1465 and then Denotes_Explicit_Dereference (Lhs)
1466 and then Nkind (Original_Node (Lhs)) /=
1467 N_Function_Call))
1468 then
1469 T_Typ := Get_Actual_Subtype (Lhs);
1470 end if;
1472 -- Nothing to do if the type is unconstrained (this is the case where
1473 -- the actual subtype in the RM sense of N is unconstrained and no check
1474 -- is required).
1476 if not Is_Constrained (T_Typ) then
1477 return;
1479 -- Ada 2005: nothing to do if the type is one for which there is a
1480 -- partial view that is constrained.
1482 elsif Ada_Version >= Ada_2005
1483 and then Object_Type_Has_Constrained_Partial_View
1484 (Typ => Base_Type (T_Typ),
1485 Scop => Current_Scope)
1486 then
1487 return;
1488 end if;
1490 -- Nothing to do if the type is an Unchecked_Union
1492 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1493 return;
1494 end if;
1496 -- Suppress checks if the subtypes are the same. the check must be
1497 -- preserved in an assignment to a formal, because the constraint is
1498 -- given by the actual.
1500 if Nkind (Original_Node (N)) /= N_Allocator
1501 and then (No (Lhs)
1502 or else not Is_Entity_Name (Lhs)
1503 or else No (Param_Entity (Lhs)))
1504 then
1505 if (Etype (N) = Typ
1506 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1507 and then not Is_Aliased_View (Lhs)
1508 then
1509 return;
1510 end if;
1512 -- We can also eliminate checks on allocators with a subtype mark that
1513 -- coincides with the context type. The context type may be a subtype
1514 -- without a constraint (common case, a generic actual).
1516 elsif Nkind (Original_Node (N)) = N_Allocator
1517 and then Is_Entity_Name (Expression (Original_Node (N)))
1518 then
1519 declare
1520 Alloc_Typ : constant Entity_Id :=
1521 Entity (Expression (Original_Node (N)));
1523 begin
1524 if Alloc_Typ = T_Typ
1525 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1526 and then Is_Entity_Name (
1527 Subtype_Indication (Parent (T_Typ)))
1528 and then Alloc_Typ = Base_Type (T_Typ))
1530 then
1531 return;
1532 end if;
1533 end;
1534 end if;
1536 -- See if we have a case where the types are both constrained, and all
1537 -- the constraints are constants. In this case, we can do the check
1538 -- successfully at compile time.
1540 -- We skip this check for the case where the node is rewritten`as
1541 -- an allocator, because it already carries the context subtype,
1542 -- and extracting the discriminants from the aggregate is messy.
1544 if Is_Constrained (S_Typ)
1545 and then Nkind (Original_Node (N)) /= N_Allocator
1546 then
1547 declare
1548 DconT : Elmt_Id;
1549 Discr : Entity_Id;
1550 DconS : Elmt_Id;
1551 ItemS : Node_Id;
1552 ItemT : Node_Id;
1554 begin
1555 -- S_Typ may not have discriminants in the case where it is a
1556 -- private type completed by a default discriminated type. In that
1557 -- case, we need to get the constraints from the underlying_type.
1558 -- If the underlying type is unconstrained (i.e. has no default
1559 -- discriminants) no check is needed.
1561 if Has_Discriminants (S_Typ) then
1562 Discr := First_Discriminant (S_Typ);
1563 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1565 else
1566 Discr := First_Discriminant (Underlying_Type (S_Typ));
1567 DconS :=
1568 First_Elmt
1569 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1571 if No (DconS) then
1572 return;
1573 end if;
1575 -- A further optimization: if T_Typ is derived from S_Typ
1576 -- without imposing a constraint, no check is needed.
1578 if Nkind (Original_Node (Parent (T_Typ))) =
1579 N_Full_Type_Declaration
1580 then
1581 declare
1582 Type_Def : constant Node_Id :=
1583 Type_Definition (Original_Node (Parent (T_Typ)));
1584 begin
1585 if Nkind (Type_Def) = N_Derived_Type_Definition
1586 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1587 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1588 then
1589 return;
1590 end if;
1591 end;
1592 end if;
1593 end if;
1595 -- Constraint may appear in full view of type
1597 if Ekind (T_Typ) = E_Private_Subtype
1598 and then Present (Full_View (T_Typ))
1599 then
1600 DconT :=
1601 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
1602 else
1603 DconT :=
1604 First_Elmt (Discriminant_Constraint (T_Typ));
1605 end if;
1607 while Present (Discr) loop
1608 ItemS := Node (DconS);
1609 ItemT := Node (DconT);
1611 -- For a discriminated component type constrained by the
1612 -- current instance of an enclosing type, there is no
1613 -- applicable discriminant check.
1615 if Nkind (ItemT) = N_Attribute_Reference
1616 and then Is_Access_Type (Etype (ItemT))
1617 and then Is_Entity_Name (Prefix (ItemT))
1618 and then Is_Type (Entity (Prefix (ItemT)))
1619 then
1620 return;
1621 end if;
1623 -- If the expressions for the discriminants are identical
1624 -- and it is side-effect free (for now just an entity),
1625 -- this may be a shared constraint, e.g. from a subtype
1626 -- without a constraint introduced as a generic actual.
1627 -- Examine other discriminants if any.
1629 if ItemS = ItemT
1630 and then Is_Entity_Name (ItemS)
1631 then
1632 null;
1634 elsif not Is_OK_Static_Expression (ItemS)
1635 or else not Is_OK_Static_Expression (ItemT)
1636 then
1637 exit;
1639 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
1640 if Do_Access then -- needs run-time check.
1641 exit;
1642 else
1643 Apply_Compile_Time_Constraint_Error
1644 (N, "incorrect value for discriminant&??",
1645 CE_Discriminant_Check_Failed, Ent => Discr);
1646 return;
1647 end if;
1648 end if;
1650 Next_Elmt (DconS);
1651 Next_Elmt (DconT);
1652 Next_Discriminant (Discr);
1653 end loop;
1655 if No (Discr) then
1656 return;
1657 end if;
1658 end;
1659 end if;
1661 -- Here we need a discriminant check. First build the expression
1662 -- for the comparisons of the discriminants:
1664 -- (n.disc1 /= typ.disc1) or else
1665 -- (n.disc2 /= typ.disc2) or else
1666 -- ...
1667 -- (n.discn /= typ.discn)
1669 Cond := Build_Discriminant_Checks (N, T_Typ);
1671 -- If Lhs is set and is a parameter, then the condition is guarded by:
1672 -- lhs'constrained and then (condition built above)
1674 if Present (Param_Entity (Lhs)) then
1675 Cond :=
1676 Make_And_Then (Loc,
1677 Left_Opnd =>
1678 Make_Attribute_Reference (Loc,
1679 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1680 Attribute_Name => Name_Constrained),
1681 Right_Opnd => Cond);
1682 end if;
1684 if Do_Access then
1685 Cond := Guard_Access (Cond, Loc, N);
1686 end if;
1688 Insert_Action (N,
1689 Make_Raise_Constraint_Error (Loc,
1690 Condition => Cond,
1691 Reason => CE_Discriminant_Check_Failed));
1692 end Apply_Discriminant_Check;
1694 -------------------------
1695 -- Apply_Divide_Checks --
1696 -------------------------
1698 procedure Apply_Divide_Checks (N : Node_Id) is
1699 Loc : constant Source_Ptr := Sloc (N);
1700 Typ : constant Entity_Id := Etype (N);
1701 Left : constant Node_Id := Left_Opnd (N);
1702 Right : constant Node_Id := Right_Opnd (N);
1704 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1705 -- Current overflow checking mode
1707 LLB : Uint;
1708 Llo : Uint;
1709 Lhi : Uint;
1710 LOK : Boolean;
1711 Rlo : Uint;
1712 Rhi : Uint;
1713 ROK : Boolean;
1715 pragma Warnings (Off, Lhi);
1716 -- Don't actually use this value
1718 begin
1719 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1720 -- operating on signed integer types, then the only thing this routine
1721 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1722 -- procedure will (possibly later on during recursive downward calls),
1723 -- ensure that any needed overflow/division checks are properly applied.
1725 if Mode in Minimized_Or_Eliminated
1726 and then Is_Signed_Integer_Type (Typ)
1727 then
1728 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1729 return;
1730 end if;
1732 -- Proceed here in SUPPRESSED or CHECKED modes
1734 if Full_Expander_Active
1735 and then not Backend_Divide_Checks_On_Target
1736 and then Check_Needed (Right, Division_Check)
1737 then
1738 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
1740 -- Deal with division check
1742 if Do_Division_Check (N)
1743 and then not Division_Checks_Suppressed (Typ)
1744 then
1745 Apply_Division_Check (N, Rlo, Rhi, ROK);
1746 end if;
1748 -- Deal with overflow check
1750 if Do_Overflow_Check (N)
1751 and then not Overflow_Checks_Suppressed (Etype (N))
1752 then
1754 -- Test for extremely annoying case of xxx'First divided by -1
1755 -- for division of signed integer types (only overflow case).
1757 if Nkind (N) = N_Op_Divide
1758 and then Is_Signed_Integer_Type (Typ)
1759 then
1760 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
1761 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1763 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1764 and then
1765 ((not LOK) or else (Llo = LLB))
1766 then
1767 Insert_Action (N,
1768 Make_Raise_Constraint_Error (Loc,
1769 Condition =>
1770 Make_And_Then (Loc,
1771 Left_Opnd =>
1772 Make_Op_Eq (Loc,
1773 Left_Opnd =>
1774 Duplicate_Subexpr_Move_Checks (Left),
1775 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1777 Right_Opnd =>
1778 Make_Op_Eq (Loc,
1779 Left_Opnd => Duplicate_Subexpr (Right),
1780 Right_Opnd => Make_Integer_Literal (Loc, -1))),
1782 Reason => CE_Overflow_Check_Failed));
1783 end if;
1784 end if;
1785 end if;
1786 end if;
1787 end Apply_Divide_Checks;
1789 --------------------------
1790 -- Apply_Division_Check --
1791 --------------------------
1793 procedure Apply_Division_Check
1794 (N : Node_Id;
1795 Rlo : Uint;
1796 Rhi : Uint;
1797 ROK : Boolean)
1799 pragma Assert (Do_Division_Check (N));
1801 Loc : constant Source_Ptr := Sloc (N);
1802 Right : constant Node_Id := Right_Opnd (N);
1804 begin
1805 if Full_Expander_Active
1806 and then not Backend_Divide_Checks_On_Target
1807 and then Check_Needed (Right, Division_Check)
1808 then
1809 -- See if division by zero possible, and if so generate test. This
1810 -- part of the test is not controlled by the -gnato switch, since
1811 -- it is a Division_Check and not an Overflow_Check.
1813 if Do_Division_Check (N) then
1814 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1815 Insert_Action (N,
1816 Make_Raise_Constraint_Error (Loc,
1817 Condition =>
1818 Make_Op_Eq (Loc,
1819 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1820 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1821 Reason => CE_Divide_By_Zero));
1822 end if;
1823 end if;
1824 end if;
1825 end Apply_Division_Check;
1827 ----------------------------------
1828 -- Apply_Float_Conversion_Check --
1829 ----------------------------------
1831 -- Let F and I be the source and target types of the conversion. The RM
1832 -- specifies that a floating-point value X is rounded to the nearest
1833 -- integer, with halfway cases being rounded away from zero. The rounded
1834 -- value of X is checked against I'Range.
1836 -- The catch in the above paragraph is that there is no good way to know
1837 -- whether the round-to-integer operation resulted in overflow. A remedy is
1838 -- to perform a range check in the floating-point domain instead, however:
1840 -- (1) The bounds may not be known at compile time
1841 -- (2) The check must take into account rounding or truncation.
1842 -- (3) The range of type I may not be exactly representable in F.
1843 -- (4) For the rounding case, The end-points I'First - 0.5 and
1844 -- I'Last + 0.5 may or may not be in range, depending on the
1845 -- sign of I'First and I'Last.
1846 -- (5) X may be a NaN, which will fail any comparison
1848 -- The following steps correctly convert X with rounding:
1850 -- (1) If either I'First or I'Last is not known at compile time, use
1851 -- I'Base instead of I in the next three steps and perform a
1852 -- regular range check against I'Range after conversion.
1853 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1854 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1855 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1856 -- In other words, take one of the closest floating-point numbers
1857 -- (which is an integer value) to I'First, and see if it is in
1858 -- range or not.
1859 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1860 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1861 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1862 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1863 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1865 -- For the truncating case, replace steps (2) and (3) as follows:
1866 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1867 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1868 -- Lo_OK be True.
1869 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1870 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1871 -- Hi_OK be True.
1873 procedure Apply_Float_Conversion_Check
1874 (Ck_Node : Node_Id;
1875 Target_Typ : Entity_Id)
1877 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1878 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1879 Loc : constant Source_Ptr := Sloc (Ck_Node);
1880 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
1881 Target_Base : constant Entity_Id :=
1882 Implementation_Base_Type (Target_Typ);
1884 Par : constant Node_Id := Parent (Ck_Node);
1885 pragma Assert (Nkind (Par) = N_Type_Conversion);
1886 -- Parent of check node, must be a type conversion
1888 Truncate : constant Boolean := Float_Truncate (Par);
1889 Max_Bound : constant Uint :=
1890 UI_Expon
1891 (Machine_Radix_Value (Expr_Type),
1892 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
1894 -- Largest bound, so bound plus or minus half is a machine number of F
1896 Ifirst, Ilast : Uint;
1897 -- Bounds of integer type
1899 Lo, Hi : Ureal;
1900 -- Bounds to check in floating-point domain
1902 Lo_OK, Hi_OK : Boolean;
1903 -- True iff Lo resp. Hi belongs to I'Range
1905 Lo_Chk, Hi_Chk : Node_Id;
1906 -- Expressions that are False iff check fails
1908 Reason : RT_Exception_Code;
1910 begin
1911 -- We do not need checks if we are not generating code (i.e. the full
1912 -- expander is not active). In SPARK mode, we specifically don't want
1913 -- the frontend to expand these checks, which are dealt with directly
1914 -- in the formal verification backend.
1916 if not Full_Expander_Active then
1917 return;
1918 end if;
1920 if not Compile_Time_Known_Value (LB)
1921 or not Compile_Time_Known_Value (HB)
1922 then
1923 declare
1924 -- First check that the value falls in the range of the base type,
1925 -- to prevent overflow during conversion and then perform a
1926 -- regular range check against the (dynamic) bounds.
1928 pragma Assert (Target_Base /= Target_Typ);
1930 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
1932 begin
1933 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1934 Set_Etype (Temp, Target_Base);
1936 Insert_Action (Parent (Par),
1937 Make_Object_Declaration (Loc,
1938 Defining_Identifier => Temp,
1939 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
1940 Expression => New_Copy_Tree (Par)),
1941 Suppress => All_Checks);
1943 Insert_Action (Par,
1944 Make_Raise_Constraint_Error (Loc,
1945 Condition =>
1946 Make_Not_In (Loc,
1947 Left_Opnd => New_Occurrence_Of (Temp, Loc),
1948 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
1949 Reason => CE_Range_Check_Failed));
1950 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
1952 return;
1953 end;
1954 end if;
1956 -- Get the (static) bounds of the target type
1958 Ifirst := Expr_Value (LB);
1959 Ilast := Expr_Value (HB);
1961 -- A simple optimization: if the expression is a universal literal,
1962 -- we can do the comparison with the bounds and the conversion to
1963 -- an integer type statically. The range checks are unchanged.
1965 if Nkind (Ck_Node) = N_Real_Literal
1966 and then Etype (Ck_Node) = Universal_Real
1967 and then Is_Integer_Type (Target_Typ)
1968 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
1969 then
1970 declare
1971 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
1973 begin
1974 if Int_Val <= Ilast and then Int_Val >= Ifirst then
1976 -- Conversion is safe
1978 Rewrite (Parent (Ck_Node),
1979 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
1980 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
1981 return;
1982 end if;
1983 end;
1984 end if;
1986 -- Check against lower bound
1988 if Truncate and then Ifirst > 0 then
1989 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
1990 Lo_OK := False;
1992 elsif Truncate then
1993 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
1994 Lo_OK := True;
1996 elsif abs (Ifirst) < Max_Bound then
1997 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
1998 Lo_OK := (Ifirst > 0);
2000 else
2001 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
2002 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2003 end if;
2005 if Lo_OK then
2007 -- Lo_Chk := (X >= Lo)
2009 Lo_Chk := Make_Op_Ge (Loc,
2010 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2011 Right_Opnd => Make_Real_Literal (Loc, Lo));
2013 else
2014 -- Lo_Chk := (X > Lo)
2016 Lo_Chk := Make_Op_Gt (Loc,
2017 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2018 Right_Opnd => Make_Real_Literal (Loc, Lo));
2019 end if;
2021 -- Check against higher bound
2023 if Truncate and then Ilast < 0 then
2024 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
2025 Hi_OK := False;
2027 elsif Truncate then
2028 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2029 Hi_OK := True;
2031 elsif abs (Ilast) < Max_Bound then
2032 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2033 Hi_OK := (Ilast < 0);
2034 else
2035 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2036 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2037 end if;
2039 if Hi_OK then
2041 -- Hi_Chk := (X <= Hi)
2043 Hi_Chk := Make_Op_Le (Loc,
2044 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2045 Right_Opnd => Make_Real_Literal (Loc, Hi));
2047 else
2048 -- Hi_Chk := (X < Hi)
2050 Hi_Chk := Make_Op_Lt (Loc,
2051 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2052 Right_Opnd => Make_Real_Literal (Loc, Hi));
2053 end if;
2055 -- If the bounds of the target type are the same as those of the base
2056 -- type, the check is an overflow check as a range check is not
2057 -- performed in these cases.
2059 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2060 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2061 then
2062 Reason := CE_Overflow_Check_Failed;
2063 else
2064 Reason := CE_Range_Check_Failed;
2065 end if;
2067 -- Raise CE if either conditions does not hold
2069 Insert_Action (Ck_Node,
2070 Make_Raise_Constraint_Error (Loc,
2071 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
2072 Reason => Reason));
2073 end Apply_Float_Conversion_Check;
2075 ------------------------
2076 -- Apply_Length_Check --
2077 ------------------------
2079 procedure Apply_Length_Check
2080 (Ck_Node : Node_Id;
2081 Target_Typ : Entity_Id;
2082 Source_Typ : Entity_Id := Empty)
2084 begin
2085 Apply_Selected_Length_Checks
2086 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2087 end Apply_Length_Check;
2089 -------------------------------------
2090 -- Apply_Parameter_Aliasing_Checks --
2091 -------------------------------------
2093 procedure Apply_Parameter_Aliasing_Checks
2094 (Call : Node_Id;
2095 Subp : Entity_Id)
2097 Loc : constant Source_Ptr := Sloc (Call);
2099 function May_Cause_Aliasing
2100 (Formal_1 : Entity_Id;
2101 Formal_2 : Entity_Id) return Boolean;
2102 -- Determine whether two formal parameters can alias each other
2103 -- depending on their modes.
2105 function Original_Actual (N : Node_Id) return Node_Id;
2106 -- The expander may replace an actual with a temporary for the sake of
2107 -- side effect removal. The temporary may hide a potential aliasing as
2108 -- it does not share the address of the actual. This routine attempts
2109 -- to retrieve the original actual.
2111 procedure Overlap_Check
2112 (Actual_1 : Node_Id;
2113 Actual_2 : Node_Id;
2114 Formal_1 : Entity_Id;
2115 Formal_2 : Entity_Id;
2116 Check : in out Node_Id);
2117 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2118 -- If detailed exception messages are enabled, the check is augmented to
2119 -- provide information about the names of the corresponding formals. See
2120 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2121 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2122 -- Check contains all and-ed simple tests generated so far or remains
2123 -- unchanged in the case of detailed exception messaged.
2125 ------------------------
2126 -- May_Cause_Aliasing --
2127 ------------------------
2129 function May_Cause_Aliasing
2130 (Formal_1 : Entity_Id;
2131 Formal_2 : Entity_Id) return Boolean
2133 begin
2134 -- The following combination cannot lead to aliasing
2136 -- Formal 1 Formal 2
2137 -- IN IN
2139 if Ekind (Formal_1) = E_In_Parameter
2140 and then
2141 Ekind (Formal_2) = E_In_Parameter
2142 then
2143 return False;
2145 -- The following combinations may lead to aliasing
2147 -- Formal 1 Formal 2
2148 -- IN OUT
2149 -- IN IN OUT
2150 -- OUT IN
2151 -- OUT IN OUT
2152 -- OUT OUT
2154 else
2155 return True;
2156 end if;
2157 end May_Cause_Aliasing;
2159 ---------------------
2160 -- Original_Actual --
2161 ---------------------
2163 function Original_Actual (N : Node_Id) return Node_Id is
2164 begin
2165 if Nkind (N) = N_Type_Conversion then
2166 return Expression (N);
2168 -- The expander created a temporary to capture the result of a type
2169 -- conversion where the expression is the real actual.
2171 elsif Nkind (N) = N_Identifier
2172 and then Present (Original_Node (N))
2173 and then Nkind (Original_Node (N)) = N_Type_Conversion
2174 then
2175 return Expression (Original_Node (N));
2176 end if;
2178 return N;
2179 end Original_Actual;
2181 -------------------
2182 -- Overlap_Check --
2183 -------------------
2185 procedure Overlap_Check
2186 (Actual_1 : Node_Id;
2187 Actual_2 : Node_Id;
2188 Formal_1 : Entity_Id;
2189 Formal_2 : Entity_Id;
2190 Check : in out Node_Id)
2192 Cond : Node_Id;
2194 begin
2195 -- Generate:
2196 -- Actual_1'Overlaps_Storage (Actual_2)
2198 Cond :=
2199 Make_Attribute_Reference (Loc,
2200 Prefix => New_Copy_Tree (Original_Actual (Actual_1)),
2201 Attribute_Name => Name_Overlaps_Storage,
2202 Expressions =>
2203 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2205 -- Generate the following check when detailed exception messages are
2206 -- enabled:
2208 -- if Actual_1'Overlaps_Storage (Actual_2) then
2209 -- raise Program_Error with <detailed message>;
2210 -- end if;
2212 if Exception_Extra_Info then
2213 Start_String;
2215 -- Do not generate location information for internal calls
2217 if Comes_From_Source (Call) then
2218 Store_String_Chars (Build_Location_String (Loc));
2219 Store_String_Char (' ');
2220 end if;
2222 Store_String_Chars ("aliased parameters, actuals for """);
2223 Store_String_Chars (Get_Name_String (Chars (Formal_1)));
2224 Store_String_Chars (""" and """);
2225 Store_String_Chars (Get_Name_String (Chars (Formal_2)));
2226 Store_String_Chars (""" overlap");
2228 Insert_Action (Call,
2229 Make_If_Statement (Loc,
2230 Condition => Cond,
2231 Then_Statements => New_List (
2232 Make_Raise_Statement (Loc,
2233 Name =>
2234 New_Reference_To (Standard_Program_Error, Loc),
2235 Expression => Make_String_Literal (Loc, End_String)))));
2237 -- Create a sequence of overlapping checks by and-ing them all
2238 -- together.
2240 else
2241 if No (Check) then
2242 Check := Cond;
2243 else
2244 Check :=
2245 Make_And_Then (Loc,
2246 Left_Opnd => Check,
2247 Right_Opnd => Cond);
2248 end if;
2249 end if;
2250 end Overlap_Check;
2252 -- Local variables
2254 Actual_1 : Node_Id;
2255 Actual_2 : Node_Id;
2256 Check : Node_Id;
2257 Formal_1 : Entity_Id;
2258 Formal_2 : Entity_Id;
2260 -- Start of processing for Apply_Parameter_Aliasing_Checks
2262 begin
2263 Check := Empty;
2265 Actual_1 := First_Actual (Call);
2266 Formal_1 := First_Formal (Subp);
2267 while Present (Actual_1) and then Present (Formal_1) loop
2269 -- Ensure that the actual is an object that is not passed by value.
2270 -- Elementary types are always passed by value, therefore actuals of
2271 -- such types cannot lead to aliasing.
2273 if Is_Object_Reference (Original_Actual (Actual_1))
2274 and then not Is_Elementary_Type (Etype (Original_Actual (Actual_1)))
2275 then
2276 Actual_2 := Next_Actual (Actual_1);
2277 Formal_2 := Next_Formal (Formal_1);
2278 while Present (Actual_2) and then Present (Formal_2) loop
2280 -- The other actual we are testing against must also denote
2281 -- a non pass-by-value object. Generate the check only when
2282 -- the mode of the two formals may lead to aliasing.
2284 if Is_Object_Reference (Original_Actual (Actual_2))
2285 and then not
2286 Is_Elementary_Type (Etype (Original_Actual (Actual_2)))
2287 and then May_Cause_Aliasing (Formal_1, Formal_2)
2288 then
2289 Overlap_Check
2290 (Actual_1 => Actual_1,
2291 Actual_2 => Actual_2,
2292 Formal_1 => Formal_1,
2293 Formal_2 => Formal_2,
2294 Check => Check);
2295 end if;
2297 Next_Actual (Actual_2);
2298 Next_Formal (Formal_2);
2299 end loop;
2300 end if;
2302 Next_Actual (Actual_1);
2303 Next_Formal (Formal_1);
2304 end loop;
2306 -- Place a simple check right before the call
2308 if Present (Check) and then not Exception_Extra_Info then
2309 Insert_Action (Call,
2310 Make_Raise_Program_Error (Loc,
2311 Condition => Check,
2312 Reason => PE_Aliased_Parameters));
2313 end if;
2314 end Apply_Parameter_Aliasing_Checks;
2316 -------------------------------------
2317 -- Apply_Parameter_Validity_Checks --
2318 -------------------------------------
2320 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2321 Subp_Decl : Node_Id;
2323 procedure Add_Validity_Check
2324 (Context : Entity_Id;
2325 PPC_Nam : Name_Id;
2326 For_Result : Boolean := False);
2327 -- Add a single 'Valid[_Scalar] check which verifies the initialization
2328 -- of Context. PPC_Nam denotes the pre or post condition pragma name.
2329 -- Set flag For_Result when to verify the result of a function.
2331 procedure Build_PPC_Pragma (PPC_Nam : Name_Id; Check : Node_Id);
2332 -- Create a pre or post condition pragma with name PPC_Nam which
2333 -- tests expression Check.
2335 ------------------------
2336 -- Add_Validity_Check --
2337 ------------------------
2339 procedure Add_Validity_Check
2340 (Context : Entity_Id;
2341 PPC_Nam : Name_Id;
2342 For_Result : Boolean := False)
2344 Loc : constant Source_Ptr := Sloc (Subp);
2345 Typ : constant Entity_Id := Etype (Context);
2346 Check : Node_Id;
2347 Nam : Name_Id;
2349 begin
2350 -- Pick the proper version of 'Valid depending on the type of the
2351 -- context. If the context is not eligible for such a check, return.
2353 if Is_Scalar_Type (Typ) then
2354 Nam := Name_Valid;
2355 elsif not No_Scalar_Parts (Typ) then
2356 Nam := Name_Valid_Scalars;
2357 else
2358 return;
2359 end if;
2361 -- Step 1: Create the expression to verify the validity of the
2362 -- context.
2364 Check := New_Reference_To (Context, Loc);
2366 -- When processing a function result, use 'Result. Generate
2367 -- Context'Result
2369 if For_Result then
2370 Check :=
2371 Make_Attribute_Reference (Loc,
2372 Prefix => Check,
2373 Attribute_Name => Name_Result);
2374 end if;
2376 -- Generate:
2377 -- Context['Result]'Valid[_Scalars]
2379 Check :=
2380 Make_Attribute_Reference (Loc,
2381 Prefix => Check,
2382 Attribute_Name => Nam);
2384 -- Step 2: Create a pre or post condition pragma
2386 Build_PPC_Pragma (PPC_Nam, Check);
2387 end Add_Validity_Check;
2389 ----------------------
2390 -- Build_PPC_Pragma --
2391 ----------------------
2393 procedure Build_PPC_Pragma (PPC_Nam : Name_Id; Check : Node_Id) is
2394 Loc : constant Source_Ptr := Sloc (Subp);
2395 Decls : List_Id;
2396 Prag : Node_Id;
2398 begin
2399 Prag :=
2400 Make_Pragma (Loc,
2401 Pragma_Identifier => Make_Identifier (Loc, PPC_Nam),
2402 Pragma_Argument_Associations => New_List (
2403 Make_Pragma_Argument_Association (Loc,
2404 Chars => Name_Check,
2405 Expression => Check)));
2407 -- Add a message unless exception messages are suppressed
2409 if not Exception_Locations_Suppressed then
2410 Append_To (Pragma_Argument_Associations (Prag),
2411 Make_Pragma_Argument_Association (Loc,
2412 Chars => Name_Message,
2413 Expression =>
2414 Make_String_Literal (Loc,
2415 Strval => "failed " & Get_Name_String (PPC_Nam) &
2416 " from " & Build_Location_String (Loc))));
2417 end if;
2419 -- Insert the pragma in the tree
2421 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2422 Add_Global_Declaration (Prag);
2423 Analyze (Prag);
2425 -- PPC pragmas associated with subprogram bodies must be inserted in
2426 -- the declarative part of the body.
2428 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2429 Decls := Declarations (Subp_Decl);
2431 if No (Decls) then
2432 Decls := New_List;
2433 Set_Declarations (Subp_Decl, Decls);
2434 end if;
2436 Prepend_To (Decls, Prag);
2438 -- Ensure the proper visibility of the subprogram body and its
2439 -- parameters.
2441 Push_Scope (Subp);
2442 Analyze (Prag);
2443 Pop_Scope;
2445 -- For subprogram declarations insert the PPC pragma right after the
2446 -- declarative node.
2448 else
2449 Insert_After_And_Analyze (Subp_Decl, Prag);
2450 end if;
2451 end Build_PPC_Pragma;
2453 -- Local variables
2455 Formal : Entity_Id;
2456 Subp_Spec : Node_Id;
2458 -- Start of processing for Apply_Parameter_Validity_Checks
2460 begin
2461 -- Extract the subprogram specification and declaration nodes
2463 Subp_Spec := Parent (Subp);
2465 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2466 Subp_Spec := Parent (Subp_Spec);
2467 end if;
2469 Subp_Decl := Parent (Subp_Spec);
2471 if not Comes_From_Source (Subp)
2473 -- Do not process formal subprograms because the corresponding actual
2474 -- will receive the proper checks when the instance is analyzed.
2476 or else Is_Formal_Subprogram (Subp)
2478 -- Do not process imported subprograms since pre and post conditions
2479 -- are never verified on routines coming from a different language.
2481 or else Is_Imported (Subp)
2482 or else Is_Intrinsic_Subprogram (Subp)
2484 -- The PPC pragmas generated by this routine do not correspond to
2485 -- source aspects, therefore they cannot be applied to abstract
2486 -- subprograms.
2488 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
2490 -- Do not consider subprogram renaminds because the renamed entity
2491 -- already has the proper PPC pragmas.
2493 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2495 -- Do not process null procedures because there is no benefit of
2496 -- adding the checks to a no action routine.
2498 or else (Nkind (Subp_Spec) = N_Procedure_Specification
2499 and then Null_Present (Subp_Spec))
2500 then
2501 return;
2502 end if;
2504 -- Inspect all the formals applying aliasing and scalar initialization
2505 -- checks where applicable.
2507 Formal := First_Formal (Subp);
2508 while Present (Formal) loop
2510 -- Generate the following scalar initialization checks for each
2511 -- formal parameter:
2513 -- mode IN - Pre => Formal'Valid[_Scalars]
2514 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2515 -- mode OUT - Post => Formal'Valid[_Scalars]
2517 if Check_Validity_Of_Parameters then
2518 if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2519 Add_Validity_Check (Formal, Name_Precondition, False);
2520 end if;
2522 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2523 Add_Validity_Check (Formal, Name_Postcondition, False);
2524 end if;
2525 end if;
2527 Next_Formal (Formal);
2528 end loop;
2530 -- Generate following scalar initialization check for function result:
2532 -- Post => Subp'Result'Valid[_Scalars]
2534 if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
2535 Add_Validity_Check (Subp, Name_Postcondition, True);
2536 end if;
2537 end Apply_Parameter_Validity_Checks;
2539 ---------------------------
2540 -- Apply_Predicate_Check --
2541 ---------------------------
2543 procedure Apply_Predicate_Check (N : Node_Id; Typ : Entity_Id) is
2544 S : Entity_Id;
2546 begin
2547 if Present (Predicate_Function (Typ)) then
2549 -- A predicate check does not apply within internally generated
2550 -- subprograms, such as TSS functions.
2552 S := Current_Scope;
2553 while Present (S) and then not Is_Subprogram (S) loop
2554 S := Scope (S);
2555 end loop;
2557 if Present (S) and then Get_TSS_Name (S) /= TSS_Null then
2558 return;
2560 -- If the check appears within the predicate function itself, it
2561 -- means that the user specified a check whose formal is the
2562 -- predicated subtype itself, rather than some covering type. This
2563 -- is likely to be a common error, and thus deserves a warning.
2565 elsif S = Predicate_Function (Typ) then
2566 Error_Msg_N
2567 ("predicate check includes a function call that "
2568 & "requires a predicate check??", Parent (N));
2569 Error_Msg_N
2570 ("\this will result in infinite recursion??", Parent (N));
2571 Insert_Action (N,
2572 Make_Raise_Storage_Error (Sloc (N),
2573 Reason => SE_Infinite_Recursion));
2575 -- Here for normal case of predicate active
2577 else
2578 -- If the type has a static predicate and the expression is known
2579 -- at compile time, see if the expression satisfies the predicate.
2581 Check_Expression_Against_Static_Predicate (N, Typ);
2583 Insert_Action (N,
2584 Make_Predicate_Check (Typ, Duplicate_Subexpr (N)));
2585 end if;
2586 end if;
2587 end Apply_Predicate_Check;
2589 -----------------------
2590 -- Apply_Range_Check --
2591 -----------------------
2593 procedure Apply_Range_Check
2594 (Ck_Node : Node_Id;
2595 Target_Typ : Entity_Id;
2596 Source_Typ : Entity_Id := Empty)
2598 begin
2599 Apply_Selected_Range_Checks
2600 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2601 end Apply_Range_Check;
2603 ------------------------------
2604 -- Apply_Scalar_Range_Check --
2605 ------------------------------
2607 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2608 -- off if it is already set on.
2610 procedure Apply_Scalar_Range_Check
2611 (Expr : Node_Id;
2612 Target_Typ : Entity_Id;
2613 Source_Typ : Entity_Id := Empty;
2614 Fixed_Int : Boolean := False)
2616 Parnt : constant Node_Id := Parent (Expr);
2617 S_Typ : Entity_Id;
2618 Arr : Node_Id := Empty; -- initialize to prevent warning
2619 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
2620 OK : Boolean;
2622 Is_Subscr_Ref : Boolean;
2623 -- Set true if Expr is a subscript
2625 Is_Unconstrained_Subscr_Ref : Boolean;
2626 -- Set true if Expr is a subscript of an unconstrained array. In this
2627 -- case we do not attempt to do an analysis of the value against the
2628 -- range of the subscript, since we don't know the actual subtype.
2630 Int_Real : Boolean;
2631 -- Set to True if Expr should be regarded as a real value even though
2632 -- the type of Expr might be discrete.
2634 procedure Bad_Value;
2635 -- Procedure called if value is determined to be out of range
2637 ---------------
2638 -- Bad_Value --
2639 ---------------
2641 procedure Bad_Value is
2642 begin
2643 Apply_Compile_Time_Constraint_Error
2644 (Expr, "value not in range of}??", CE_Range_Check_Failed,
2645 Ent => Target_Typ,
2646 Typ => Target_Typ);
2647 end Bad_Value;
2649 -- Start of processing for Apply_Scalar_Range_Check
2651 begin
2652 -- Return if check obviously not needed
2655 -- Not needed inside generic
2657 Inside_A_Generic
2659 -- Not needed if previous error
2661 or else Target_Typ = Any_Type
2662 or else Nkind (Expr) = N_Error
2664 -- Not needed for non-scalar type
2666 or else not Is_Scalar_Type (Target_Typ)
2668 -- Not needed if we know node raises CE already
2670 or else Raises_Constraint_Error (Expr)
2671 then
2672 return;
2673 end if;
2675 -- Now, see if checks are suppressed
2677 Is_Subscr_Ref :=
2678 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2680 if Is_Subscr_Ref then
2681 Arr := Prefix (Parnt);
2682 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
2684 if Is_Access_Type (Arr_Typ) then
2685 Arr_Typ := Designated_Type (Arr_Typ);
2686 end if;
2687 end if;
2689 if not Do_Range_Check (Expr) then
2691 -- Subscript reference. Check for Index_Checks suppressed
2693 if Is_Subscr_Ref then
2695 -- Check array type and its base type
2697 if Index_Checks_Suppressed (Arr_Typ)
2698 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
2699 then
2700 return;
2702 -- Check array itself if it is an entity name
2704 elsif Is_Entity_Name (Arr)
2705 and then Index_Checks_Suppressed (Entity (Arr))
2706 then
2707 return;
2709 -- Check expression itself if it is an entity name
2711 elsif Is_Entity_Name (Expr)
2712 and then Index_Checks_Suppressed (Entity (Expr))
2713 then
2714 return;
2715 end if;
2717 -- All other cases, check for Range_Checks suppressed
2719 else
2720 -- Check target type and its base type
2722 if Range_Checks_Suppressed (Target_Typ)
2723 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
2724 then
2725 return;
2727 -- Check expression itself if it is an entity name
2729 elsif Is_Entity_Name (Expr)
2730 and then Range_Checks_Suppressed (Entity (Expr))
2731 then
2732 return;
2734 -- If Expr is part of an assignment statement, then check left
2735 -- side of assignment if it is an entity name.
2737 elsif Nkind (Parnt) = N_Assignment_Statement
2738 and then Is_Entity_Name (Name (Parnt))
2739 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
2740 then
2741 return;
2742 end if;
2743 end if;
2744 end if;
2746 -- Do not set range checks if they are killed
2748 if Nkind (Expr) = N_Unchecked_Type_Conversion
2749 and then Kill_Range_Check (Expr)
2750 then
2751 return;
2752 end if;
2754 -- Do not set range checks for any values from System.Scalar_Values
2755 -- since the whole idea of such values is to avoid checking them!
2757 if Is_Entity_Name (Expr)
2758 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
2759 then
2760 return;
2761 end if;
2763 -- Now see if we need a check
2765 if No (Source_Typ) then
2766 S_Typ := Etype (Expr);
2767 else
2768 S_Typ := Source_Typ;
2769 end if;
2771 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
2772 return;
2773 end if;
2775 Is_Unconstrained_Subscr_Ref :=
2776 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
2778 -- Special checks for floating-point type
2780 if Is_Floating_Point_Type (S_Typ) then
2782 -- Always do a range check if the source type includes infinities and
2783 -- the target type does not include infinities. We do not do this if
2784 -- range checks are killed.
2786 if Has_Infinities (S_Typ)
2787 and then not Has_Infinities (Target_Typ)
2788 then
2789 Enable_Range_Check (Expr);
2791 -- Always do a range check for operators if option set
2793 elsif Check_Float_Overflow and then Nkind (Expr) in N_Op then
2794 Enable_Range_Check (Expr);
2795 end if;
2796 end if;
2798 -- Return if we know expression is definitely in the range of the target
2799 -- type as determined by Determine_Range. Right now we only do this for
2800 -- discrete types, and not fixed-point or floating-point types.
2802 -- The additional less-precise tests below catch these cases
2804 -- Note: skip this if we are given a source_typ, since the point of
2805 -- supplying a Source_Typ is to stop us looking at the expression.
2806 -- We could sharpen this test to be out parameters only ???
2808 if Is_Discrete_Type (Target_Typ)
2809 and then Is_Discrete_Type (Etype (Expr))
2810 and then not Is_Unconstrained_Subscr_Ref
2811 and then No (Source_Typ)
2812 then
2813 declare
2814 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2815 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2816 Lo : Uint;
2817 Hi : Uint;
2819 begin
2820 if Compile_Time_Known_Value (Tlo)
2821 and then Compile_Time_Known_Value (Thi)
2822 then
2823 declare
2824 Lov : constant Uint := Expr_Value (Tlo);
2825 Hiv : constant Uint := Expr_Value (Thi);
2827 begin
2828 -- If range is null, we for sure have a constraint error
2829 -- (we don't even need to look at the value involved,
2830 -- since all possible values will raise CE).
2832 if Lov > Hiv then
2833 Bad_Value;
2834 return;
2835 end if;
2837 -- Otherwise determine range of value
2839 Determine_Range (Expr, OK, Lo, Hi, Assume_Valid => True);
2841 if OK then
2843 -- If definitely in range, all OK
2845 if Lo >= Lov and then Hi <= Hiv then
2846 return;
2848 -- If definitely not in range, warn
2850 elsif Lov > Hi or else Hiv < Lo then
2851 Bad_Value;
2852 return;
2854 -- Otherwise we don't know
2856 else
2857 null;
2858 end if;
2859 end if;
2860 end;
2861 end if;
2862 end;
2863 end if;
2865 Int_Real :=
2866 Is_Floating_Point_Type (S_Typ)
2867 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
2869 -- Check if we can determine at compile time whether Expr is in the
2870 -- range of the target type. Note that if S_Typ is within the bounds
2871 -- of Target_Typ then this must be the case. This check is meaningful
2872 -- only if this is not a conversion between integer and real types.
2874 if not Is_Unconstrained_Subscr_Ref
2875 and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
2876 and then
2877 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
2878 or else
2879 Is_In_Range (Expr, Target_Typ,
2880 Assume_Valid => True,
2881 Fixed_Int => Fixed_Int,
2882 Int_Real => Int_Real))
2883 then
2884 return;
2886 elsif Is_Out_Of_Range (Expr, Target_Typ,
2887 Assume_Valid => True,
2888 Fixed_Int => Fixed_Int,
2889 Int_Real => Int_Real)
2890 then
2891 Bad_Value;
2892 return;
2894 -- Floating-point case
2895 -- In the floating-point case, we only do range checks if the type is
2896 -- constrained. We definitely do NOT want range checks for unconstrained
2897 -- types, since we want to have infinities
2899 elsif Is_Floating_Point_Type (S_Typ) then
2901 -- Normally, we only do range checks if the type is constrained. We do
2902 -- NOT want range checks for unconstrained types, since we want to have
2903 -- infinities. Override this decision in Check_Float_Overflow mode.
2905 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
2906 Enable_Range_Check (Expr);
2907 end if;
2909 -- For all other cases we enable a range check unconditionally
2911 else
2912 Enable_Range_Check (Expr);
2913 return;
2914 end if;
2915 end Apply_Scalar_Range_Check;
2917 ----------------------------------
2918 -- Apply_Selected_Length_Checks --
2919 ----------------------------------
2921 procedure Apply_Selected_Length_Checks
2922 (Ck_Node : Node_Id;
2923 Target_Typ : Entity_Id;
2924 Source_Typ : Entity_Id;
2925 Do_Static : Boolean)
2927 Cond : Node_Id;
2928 R_Result : Check_Result;
2929 R_Cno : Node_Id;
2931 Loc : constant Source_Ptr := Sloc (Ck_Node);
2932 Checks_On : constant Boolean :=
2933 (not Index_Checks_Suppressed (Target_Typ))
2934 or else (not Length_Checks_Suppressed (Target_Typ));
2936 begin
2937 if not Full_Expander_Active then
2938 return;
2939 end if;
2941 R_Result :=
2942 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
2944 for J in 1 .. 2 loop
2945 R_Cno := R_Result (J);
2946 exit when No (R_Cno);
2948 -- A length check may mention an Itype which is attached to a
2949 -- subsequent node. At the top level in a package this can cause
2950 -- an order-of-elaboration problem, so we make sure that the itype
2951 -- is referenced now.
2953 if Ekind (Current_Scope) = E_Package
2954 and then Is_Compilation_Unit (Current_Scope)
2955 then
2956 Ensure_Defined (Target_Typ, Ck_Node);
2958 if Present (Source_Typ) then
2959 Ensure_Defined (Source_Typ, Ck_Node);
2961 elsif Is_Itype (Etype (Ck_Node)) then
2962 Ensure_Defined (Etype (Ck_Node), Ck_Node);
2963 end if;
2964 end if;
2966 -- If the item is a conditional raise of constraint error, then have
2967 -- a look at what check is being performed and ???
2969 if Nkind (R_Cno) = N_Raise_Constraint_Error
2970 and then Present (Condition (R_Cno))
2971 then
2972 Cond := Condition (R_Cno);
2974 -- Case where node does not now have a dynamic check
2976 if not Has_Dynamic_Length_Check (Ck_Node) then
2978 -- If checks are on, just insert the check
2980 if Checks_On then
2981 Insert_Action (Ck_Node, R_Cno);
2983 if not Do_Static then
2984 Set_Has_Dynamic_Length_Check (Ck_Node);
2985 end if;
2987 -- If checks are off, then analyze the length check after
2988 -- temporarily attaching it to the tree in case the relevant
2989 -- condition can be evaluated at compile time. We still want a
2990 -- compile time warning in this case.
2992 else
2993 Set_Parent (R_Cno, Ck_Node);
2994 Analyze (R_Cno);
2995 end if;
2996 end if;
2998 -- Output a warning if the condition is known to be True
3000 if Is_Entity_Name (Cond)
3001 and then Entity (Cond) = Standard_True
3002 then
3003 Apply_Compile_Time_Constraint_Error
3004 (Ck_Node, "wrong length for array of}??",
3005 CE_Length_Check_Failed,
3006 Ent => Target_Typ,
3007 Typ => Target_Typ);
3009 -- If we were only doing a static check, or if checks are not
3010 -- on, then we want to delete the check, since it is not needed.
3011 -- We do this by replacing the if statement by a null statement
3013 elsif Do_Static or else not Checks_On then
3014 Remove_Warning_Messages (R_Cno);
3015 Rewrite (R_Cno, Make_Null_Statement (Loc));
3016 end if;
3018 else
3019 Install_Static_Check (R_Cno, Loc);
3020 end if;
3021 end loop;
3022 end Apply_Selected_Length_Checks;
3024 ---------------------------------
3025 -- Apply_Selected_Range_Checks --
3026 ---------------------------------
3028 procedure Apply_Selected_Range_Checks
3029 (Ck_Node : Node_Id;
3030 Target_Typ : Entity_Id;
3031 Source_Typ : Entity_Id;
3032 Do_Static : Boolean)
3034 Cond : Node_Id;
3035 R_Result : Check_Result;
3036 R_Cno : Node_Id;
3038 Loc : constant Source_Ptr := Sloc (Ck_Node);
3039 Checks_On : constant Boolean :=
3040 (not Index_Checks_Suppressed (Target_Typ))
3041 or else (not Range_Checks_Suppressed (Target_Typ));
3043 begin
3044 if not Full_Expander_Active or else not Checks_On then
3045 return;
3046 end if;
3048 R_Result :=
3049 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3051 for J in 1 .. 2 loop
3053 R_Cno := R_Result (J);
3054 exit when No (R_Cno);
3056 -- If the item is a conditional raise of constraint error, then have
3057 -- a look at what check is being performed and ???
3059 if Nkind (R_Cno) = N_Raise_Constraint_Error
3060 and then Present (Condition (R_Cno))
3061 then
3062 Cond := Condition (R_Cno);
3064 if not Has_Dynamic_Range_Check (Ck_Node) then
3065 Insert_Action (Ck_Node, R_Cno);
3067 if not Do_Static then
3068 Set_Has_Dynamic_Range_Check (Ck_Node);
3069 end if;
3070 end if;
3072 -- Output a warning if the condition is known to be True
3074 if Is_Entity_Name (Cond)
3075 and then Entity (Cond) = Standard_True
3076 then
3077 -- Since an N_Range is technically not an expression, we have
3078 -- to set one of the bounds to C_E and then just flag the
3079 -- N_Range. The warning message will point to the lower bound
3080 -- and complain about a range, which seems OK.
3082 if Nkind (Ck_Node) = N_Range then
3083 Apply_Compile_Time_Constraint_Error
3084 (Low_Bound (Ck_Node), "static range out of bounds of}??",
3085 CE_Range_Check_Failed,
3086 Ent => Target_Typ,
3087 Typ => Target_Typ);
3089 Set_Raises_Constraint_Error (Ck_Node);
3091 else
3092 Apply_Compile_Time_Constraint_Error
3093 (Ck_Node, "static value out of range of}?",
3094 CE_Range_Check_Failed,
3095 Ent => Target_Typ,
3096 Typ => Target_Typ);
3097 end if;
3099 -- If we were only doing a static check, or if checks are not
3100 -- on, then we want to delete the check, since it is not needed.
3101 -- We do this by replacing the if statement by a null statement
3103 elsif Do_Static or else not Checks_On then
3104 Remove_Warning_Messages (R_Cno);
3105 Rewrite (R_Cno, Make_Null_Statement (Loc));
3106 end if;
3108 else
3109 Install_Static_Check (R_Cno, Loc);
3110 end if;
3111 end loop;
3112 end Apply_Selected_Range_Checks;
3114 -------------------------------
3115 -- Apply_Static_Length_Check --
3116 -------------------------------
3118 procedure Apply_Static_Length_Check
3119 (Expr : Node_Id;
3120 Target_Typ : Entity_Id;
3121 Source_Typ : Entity_Id := Empty)
3123 begin
3124 Apply_Selected_Length_Checks
3125 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3126 end Apply_Static_Length_Check;
3128 -------------------------------------
3129 -- Apply_Subscript_Validity_Checks --
3130 -------------------------------------
3132 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3133 Sub : Node_Id;
3135 begin
3136 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3138 -- Loop through subscripts
3140 Sub := First (Expressions (Expr));
3141 while Present (Sub) loop
3143 -- Check one subscript. Note that we do not worry about enumeration
3144 -- type with holes, since we will convert the value to a Pos value
3145 -- for the subscript, and that convert will do the necessary validity
3146 -- check.
3148 Ensure_Valid (Sub, Holes_OK => True);
3150 -- Move to next subscript
3152 Sub := Next (Sub);
3153 end loop;
3154 end Apply_Subscript_Validity_Checks;
3156 ----------------------------------
3157 -- Apply_Type_Conversion_Checks --
3158 ----------------------------------
3160 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3161 Target_Type : constant Entity_Id := Etype (N);
3162 Target_Base : constant Entity_Id := Base_Type (Target_Type);
3163 Expr : constant Node_Id := Expression (N);
3165 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
3166 -- Note: if Etype (Expr) is a private type without discriminants, its
3167 -- full view might have discriminants with defaults, so we need the
3168 -- full view here to retrieve the constraints.
3170 begin
3171 if Inside_A_Generic then
3172 return;
3174 -- Skip these checks if serious errors detected, there are some nasty
3175 -- situations of incomplete trees that blow things up.
3177 elsif Serious_Errors_Detected > 0 then
3178 return;
3180 -- Scalar type conversions of the form Target_Type (Expr) require a
3181 -- range check if we cannot be sure that Expr is in the base type of
3182 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3183 -- are not quite the same condition from an implementation point of
3184 -- view, but clearly the second includes the first.
3186 elsif Is_Scalar_Type (Target_Type) then
3187 declare
3188 Conv_OK : constant Boolean := Conversion_OK (N);
3189 -- If the Conversion_OK flag on the type conversion is set and no
3190 -- floating point type is involved in the type conversion then
3191 -- fixed point values must be read as integral values.
3193 Float_To_Int : constant Boolean :=
3194 Is_Floating_Point_Type (Expr_Type)
3195 and then Is_Integer_Type (Target_Type);
3197 begin
3198 if not Overflow_Checks_Suppressed (Target_Base)
3199 and then not Overflow_Checks_Suppressed (Target_Type)
3200 and then not
3201 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
3202 and then not Float_To_Int
3203 then
3204 Activate_Overflow_Check (N);
3205 end if;
3207 if not Range_Checks_Suppressed (Target_Type)
3208 and then not Range_Checks_Suppressed (Expr_Type)
3209 then
3210 if Float_To_Int then
3211 Apply_Float_Conversion_Check (Expr, Target_Type);
3212 else
3213 Apply_Scalar_Range_Check
3214 (Expr, Target_Type, Fixed_Int => Conv_OK);
3216 -- If the target type has predicates, we need to indicate
3217 -- the need for a check, even if Determine_Range finds
3218 -- that the value is within bounds. This may be the case
3219 -- e.g for a division with a constant denominator.
3221 if Has_Predicates (Target_Type) then
3222 Enable_Range_Check (Expr);
3223 end if;
3224 end if;
3225 end if;
3226 end;
3228 elsif Comes_From_Source (N)
3229 and then not Discriminant_Checks_Suppressed (Target_Type)
3230 and then Is_Record_Type (Target_Type)
3231 and then Is_Derived_Type (Target_Type)
3232 and then not Is_Tagged_Type (Target_Type)
3233 and then not Is_Constrained (Target_Type)
3234 and then Present (Stored_Constraint (Target_Type))
3235 then
3236 -- An unconstrained derived type may have inherited discriminant.
3237 -- Build an actual discriminant constraint list using the stored
3238 -- constraint, to verify that the expression of the parent type
3239 -- satisfies the constraints imposed by the (unconstrained!)
3240 -- derived type. This applies to value conversions, not to view
3241 -- conversions of tagged types.
3243 declare
3244 Loc : constant Source_Ptr := Sloc (N);
3245 Cond : Node_Id;
3246 Constraint : Elmt_Id;
3247 Discr_Value : Node_Id;
3248 Discr : Entity_Id;
3250 New_Constraints : constant Elist_Id := New_Elmt_List;
3251 Old_Constraints : constant Elist_Id :=
3252 Discriminant_Constraint (Expr_Type);
3254 begin
3255 Constraint := First_Elmt (Stored_Constraint (Target_Type));
3256 while Present (Constraint) loop
3257 Discr_Value := Node (Constraint);
3259 if Is_Entity_Name (Discr_Value)
3260 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3261 then
3262 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3264 if Present (Discr)
3265 and then Scope (Discr) = Base_Type (Expr_Type)
3266 then
3267 -- Parent is constrained by new discriminant. Obtain
3268 -- Value of original discriminant in expression. If the
3269 -- new discriminant has been used to constrain more than
3270 -- one of the stored discriminants, this will provide the
3271 -- required consistency check.
3273 Append_Elmt
3274 (Make_Selected_Component (Loc,
3275 Prefix =>
3276 Duplicate_Subexpr_No_Checks
3277 (Expr, Name_Req => True),
3278 Selector_Name =>
3279 Make_Identifier (Loc, Chars (Discr))),
3280 New_Constraints);
3282 else
3283 -- Discriminant of more remote ancestor ???
3285 return;
3286 end if;
3288 -- Derived type definition has an explicit value for this
3289 -- stored discriminant.
3291 else
3292 Append_Elmt
3293 (Duplicate_Subexpr_No_Checks (Discr_Value),
3294 New_Constraints);
3295 end if;
3297 Next_Elmt (Constraint);
3298 end loop;
3300 -- Use the unconstrained expression type to retrieve the
3301 -- discriminants of the parent, and apply momentarily the
3302 -- discriminant constraint synthesized above.
3304 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3305 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3306 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3308 Insert_Action (N,
3309 Make_Raise_Constraint_Error (Loc,
3310 Condition => Cond,
3311 Reason => CE_Discriminant_Check_Failed));
3312 end;
3314 -- For arrays, checks are set now, but conversions are applied during
3315 -- expansion, to take into accounts changes of representation. The
3316 -- checks become range checks on the base type or length checks on the
3317 -- subtype, depending on whether the target type is unconstrained or
3318 -- constrained. Note that the range check is put on the expression of a
3319 -- type conversion, while the length check is put on the type conversion
3320 -- itself.
3322 elsif Is_Array_Type (Target_Type) then
3323 if Is_Constrained (Target_Type) then
3324 Set_Do_Length_Check (N);
3325 else
3326 Set_Do_Range_Check (Expr);
3327 end if;
3328 end if;
3329 end Apply_Type_Conversion_Checks;
3331 ----------------------------------------------
3332 -- Apply_Universal_Integer_Attribute_Checks --
3333 ----------------------------------------------
3335 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3336 Loc : constant Source_Ptr := Sloc (N);
3337 Typ : constant Entity_Id := Etype (N);
3339 begin
3340 if Inside_A_Generic then
3341 return;
3343 -- Nothing to do if checks are suppressed
3345 elsif Range_Checks_Suppressed (Typ)
3346 and then Overflow_Checks_Suppressed (Typ)
3347 then
3348 return;
3350 -- Nothing to do if the attribute does not come from source. The
3351 -- internal attributes we generate of this type do not need checks,
3352 -- and furthermore the attempt to check them causes some circular
3353 -- elaboration orders when dealing with packed types.
3355 elsif not Comes_From_Source (N) then
3356 return;
3358 -- If the prefix is a selected component that depends on a discriminant
3359 -- the check may improperly expose a discriminant instead of using
3360 -- the bounds of the object itself. Set the type of the attribute to
3361 -- the base type of the context, so that a check will be imposed when
3362 -- needed (e.g. if the node appears as an index).
3364 elsif Nkind (Prefix (N)) = N_Selected_Component
3365 and then Ekind (Typ) = E_Signed_Integer_Subtype
3366 and then Depends_On_Discriminant (Scalar_Range (Typ))
3367 then
3368 Set_Etype (N, Base_Type (Typ));
3370 -- Otherwise, replace the attribute node with a type conversion node
3371 -- whose expression is the attribute, retyped to universal integer, and
3372 -- whose subtype mark is the target type. The call to analyze this
3373 -- conversion will set range and overflow checks as required for proper
3374 -- detection of an out of range value.
3376 else
3377 Set_Etype (N, Universal_Integer);
3378 Set_Analyzed (N, True);
3380 Rewrite (N,
3381 Make_Type_Conversion (Loc,
3382 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3383 Expression => Relocate_Node (N)));
3385 Analyze_And_Resolve (N, Typ);
3386 return;
3387 end if;
3388 end Apply_Universal_Integer_Attribute_Checks;
3390 -------------------------------------
3391 -- Atomic_Synchronization_Disabled --
3392 -------------------------------------
3394 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3395 -- using a bogus check called Atomic_Synchronization. This is to make it
3396 -- more convenient to get exactly the same semantics as [Un]Suppress.
3398 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3399 begin
3400 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3401 -- looks enabled, since it is never disabled.
3403 if Debug_Flag_Dot_E then
3404 return False;
3406 -- If debug flag d.d is set then always return True, i.e. all atomic
3407 -- sync looks disabled, since it always tests True.
3409 elsif Debug_Flag_Dot_D then
3410 return True;
3412 -- If entity present, then check result for that entity
3414 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
3415 return Is_Check_Suppressed (E, Atomic_Synchronization);
3417 -- Otherwise result depends on current scope setting
3419 else
3420 return Scope_Suppress.Suppress (Atomic_Synchronization);
3421 end if;
3422 end Atomic_Synchronization_Disabled;
3424 -------------------------------
3425 -- Build_Discriminant_Checks --
3426 -------------------------------
3428 function Build_Discriminant_Checks
3429 (N : Node_Id;
3430 T_Typ : Entity_Id) return Node_Id
3432 Loc : constant Source_Ptr := Sloc (N);
3433 Cond : Node_Id;
3434 Disc : Elmt_Id;
3435 Disc_Ent : Entity_Id;
3436 Dref : Node_Id;
3437 Dval : Node_Id;
3439 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3441 ----------------------------------
3442 -- Aggregate_Discriminant_Value --
3443 ----------------------------------
3445 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3446 Assoc : Node_Id;
3448 begin
3449 -- The aggregate has been normalized with named associations. We use
3450 -- the Chars field to locate the discriminant to take into account
3451 -- discriminants in derived types, which carry the same name as those
3452 -- in the parent.
3454 Assoc := First (Component_Associations (N));
3455 while Present (Assoc) loop
3456 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3457 return Expression (Assoc);
3458 else
3459 Next (Assoc);
3460 end if;
3461 end loop;
3463 -- Discriminant must have been found in the loop above
3465 raise Program_Error;
3466 end Aggregate_Discriminant_Val;
3468 -- Start of processing for Build_Discriminant_Checks
3470 begin
3471 -- Loop through discriminants evolving the condition
3473 Cond := Empty;
3474 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3476 -- For a fully private type, use the discriminants of the parent type
3478 if Is_Private_Type (T_Typ)
3479 and then No (Full_View (T_Typ))
3480 then
3481 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3482 else
3483 Disc_Ent := First_Discriminant (T_Typ);
3484 end if;
3486 while Present (Disc) loop
3487 Dval := Node (Disc);
3489 if Nkind (Dval) = N_Identifier
3490 and then Ekind (Entity (Dval)) = E_Discriminant
3491 then
3492 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3493 else
3494 Dval := Duplicate_Subexpr_No_Checks (Dval);
3495 end if;
3497 -- If we have an Unchecked_Union node, we can infer the discriminants
3498 -- of the node.
3500 if Is_Unchecked_Union (Base_Type (T_Typ)) then
3501 Dref := New_Copy (
3502 Get_Discriminant_Value (
3503 First_Discriminant (T_Typ),
3504 T_Typ,
3505 Stored_Constraint (T_Typ)));
3507 elsif Nkind (N) = N_Aggregate then
3508 Dref :=
3509 Duplicate_Subexpr_No_Checks
3510 (Aggregate_Discriminant_Val (Disc_Ent));
3512 else
3513 Dref :=
3514 Make_Selected_Component (Loc,
3515 Prefix =>
3516 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
3517 Selector_Name =>
3518 Make_Identifier (Loc, Chars (Disc_Ent)));
3520 Set_Is_In_Discriminant_Check (Dref);
3521 end if;
3523 Evolve_Or_Else (Cond,
3524 Make_Op_Ne (Loc,
3525 Left_Opnd => Dref,
3526 Right_Opnd => Dval));
3528 Next_Elmt (Disc);
3529 Next_Discriminant (Disc_Ent);
3530 end loop;
3532 return Cond;
3533 end Build_Discriminant_Checks;
3535 ------------------
3536 -- Check_Needed --
3537 ------------------
3539 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3540 N : Node_Id;
3541 P : Node_Id;
3542 K : Node_Kind;
3543 L : Node_Id;
3544 R : Node_Id;
3546 begin
3547 -- Always check if not simple entity
3549 if Nkind (Nod) not in N_Has_Entity
3550 or else not Comes_From_Source (Nod)
3551 then
3552 return True;
3553 end if;
3555 -- Look up tree for short circuit
3557 N := Nod;
3558 loop
3559 P := Parent (N);
3560 K := Nkind (P);
3562 -- Done if out of subexpression (note that we allow generated stuff
3563 -- such as itype declarations in this context, to keep the loop going
3564 -- since we may well have generated such stuff in complex situations.
3565 -- Also done if no parent (probably an error condition, but no point
3566 -- in behaving nasty if we find it!)
3568 if No (P)
3569 or else (K not in N_Subexpr and then Comes_From_Source (P))
3570 then
3571 return True;
3573 -- Or/Or Else case, where test is part of the right operand, or is
3574 -- part of one of the actions associated with the right operand, and
3575 -- the left operand is an equality test.
3577 elsif K = N_Op_Or then
3578 exit when N = Right_Opnd (P)
3579 and then Nkind (Left_Opnd (P)) = N_Op_Eq;
3581 elsif K = N_Or_Else then
3582 exit when (N = Right_Opnd (P)
3583 or else
3584 (Is_List_Member (N)
3585 and then List_Containing (N) = Actions (P)))
3586 and then Nkind (Left_Opnd (P)) = N_Op_Eq;
3588 -- Similar test for the And/And then case, where the left operand
3589 -- is an inequality test.
3591 elsif K = N_Op_And then
3592 exit when N = Right_Opnd (P)
3593 and then Nkind (Left_Opnd (P)) = N_Op_Ne;
3595 elsif K = N_And_Then then
3596 exit when (N = Right_Opnd (P)
3597 or else
3598 (Is_List_Member (N)
3599 and then List_Containing (N) = Actions (P)))
3600 and then Nkind (Left_Opnd (P)) = N_Op_Ne;
3601 end if;
3603 N := P;
3604 end loop;
3606 -- If we fall through the loop, then we have a conditional with an
3607 -- appropriate test as its left operand. So test further.
3609 L := Left_Opnd (P);
3610 R := Right_Opnd (L);
3611 L := Left_Opnd (L);
3613 -- Left operand of test must match original variable
3615 if Nkind (L) not in N_Has_Entity
3616 or else Entity (L) /= Entity (Nod)
3617 then
3618 return True;
3619 end if;
3621 -- Right operand of test must be key value (zero or null)
3623 case Check is
3624 when Access_Check =>
3625 if not Known_Null (R) then
3626 return True;
3627 end if;
3629 when Division_Check =>
3630 if not Compile_Time_Known_Value (R)
3631 or else Expr_Value (R) /= Uint_0
3632 then
3633 return True;
3634 end if;
3636 when others =>
3637 raise Program_Error;
3638 end case;
3640 -- Here we have the optimizable case, warn if not short-circuited
3642 if K = N_Op_And or else K = N_Op_Or then
3643 case Check is
3644 when Access_Check =>
3645 Error_Msg_N
3646 ("Constraint_Error may be raised (access check)??",
3647 Parent (Nod));
3648 when Division_Check =>
3649 Error_Msg_N
3650 ("Constraint_Error may be raised (zero divide)??",
3651 Parent (Nod));
3653 when others =>
3654 raise Program_Error;
3655 end case;
3657 if K = N_Op_And then
3658 Error_Msg_N -- CODEFIX
3659 ("use `AND THEN` instead of AND??", P);
3660 else
3661 Error_Msg_N -- CODEFIX
3662 ("use `OR ELSE` instead of OR??", P);
3663 end if;
3665 -- If not short-circuited, we need the check
3667 return True;
3669 -- If short-circuited, we can omit the check
3671 else
3672 return False;
3673 end if;
3674 end Check_Needed;
3676 -----------------------------------
3677 -- Check_Valid_Lvalue_Subscripts --
3678 -----------------------------------
3680 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
3681 begin
3682 -- Skip this if range checks are suppressed
3684 if Range_Checks_Suppressed (Etype (Expr)) then
3685 return;
3687 -- Only do this check for expressions that come from source. We assume
3688 -- that expander generated assignments explicitly include any necessary
3689 -- checks. Note that this is not just an optimization, it avoids
3690 -- infinite recursions!
3692 elsif not Comes_From_Source (Expr) then
3693 return;
3695 -- For a selected component, check the prefix
3697 elsif Nkind (Expr) = N_Selected_Component then
3698 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
3699 return;
3701 -- Case of indexed component
3703 elsif Nkind (Expr) = N_Indexed_Component then
3704 Apply_Subscript_Validity_Checks (Expr);
3706 -- Prefix may itself be or contain an indexed component, and these
3707 -- subscripts need checking as well.
3709 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
3710 end if;
3711 end Check_Valid_Lvalue_Subscripts;
3713 ----------------------------------
3714 -- Null_Exclusion_Static_Checks --
3715 ----------------------------------
3717 procedure Null_Exclusion_Static_Checks (N : Node_Id) is
3718 Error_Node : Node_Id;
3719 Expr : Node_Id;
3720 Has_Null : constant Boolean := Has_Null_Exclusion (N);
3721 K : constant Node_Kind := Nkind (N);
3722 Typ : Entity_Id;
3724 begin
3725 pragma Assert
3726 (K = N_Component_Declaration
3727 or else K = N_Discriminant_Specification
3728 or else K = N_Function_Specification
3729 or else K = N_Object_Declaration
3730 or else K = N_Parameter_Specification);
3732 if K = N_Function_Specification then
3733 Typ := Etype (Defining_Entity (N));
3734 else
3735 Typ := Etype (Defining_Identifier (N));
3736 end if;
3738 case K is
3739 when N_Component_Declaration =>
3740 if Present (Access_Definition (Component_Definition (N))) then
3741 Error_Node := Component_Definition (N);
3742 else
3743 Error_Node := Subtype_Indication (Component_Definition (N));
3744 end if;
3746 when N_Discriminant_Specification =>
3747 Error_Node := Discriminant_Type (N);
3749 when N_Function_Specification =>
3750 Error_Node := Result_Definition (N);
3752 when N_Object_Declaration =>
3753 Error_Node := Object_Definition (N);
3755 when N_Parameter_Specification =>
3756 Error_Node := Parameter_Type (N);
3758 when others =>
3759 raise Program_Error;
3760 end case;
3762 if Has_Null then
3764 -- Enforce legality rule 3.10 (13): A null exclusion can only be
3765 -- applied to an access [sub]type.
3767 if not Is_Access_Type (Typ) then
3768 Error_Msg_N
3769 ("`NOT NULL` allowed only for an access type", Error_Node);
3771 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
3772 -- be applied to a [sub]type that does not exclude null already.
3774 elsif Can_Never_Be_Null (Typ)
3775 and then Comes_From_Source (Typ)
3776 then
3777 Error_Msg_NE
3778 ("`NOT NULL` not allowed (& already excludes null)",
3779 Error_Node, Typ);
3780 end if;
3781 end if;
3783 -- Check that null-excluding objects are always initialized, except for
3784 -- deferred constants, for which the expression will appear in the full
3785 -- declaration.
3787 if K = N_Object_Declaration
3788 and then No (Expression (N))
3789 and then not Constant_Present (N)
3790 and then not No_Initialization (N)
3791 then
3792 -- Add an expression that assigns null. This node is needed by
3793 -- Apply_Compile_Time_Constraint_Error, which will replace this with
3794 -- a Constraint_Error node.
3796 Set_Expression (N, Make_Null (Sloc (N)));
3797 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
3799 Apply_Compile_Time_Constraint_Error
3800 (N => Expression (N),
3801 Msg =>
3802 "(Ada 2005) null-excluding objects must be initialized??",
3803 Reason => CE_Null_Not_Allowed);
3804 end if;
3806 -- Check that a null-excluding component, formal or object is not being
3807 -- assigned a null value. Otherwise generate a warning message and
3808 -- replace Expression (N) by an N_Constraint_Error node.
3810 if K /= N_Function_Specification then
3811 Expr := Expression (N);
3813 if Present (Expr) and then Known_Null (Expr) then
3814 case K is
3815 when N_Component_Declaration |
3816 N_Discriminant_Specification =>
3817 Apply_Compile_Time_Constraint_Error
3818 (N => Expr,
3819 Msg => "(Ada 2005) null not allowed " &
3820 "in null-excluding components??",
3821 Reason => CE_Null_Not_Allowed);
3823 when N_Object_Declaration =>
3824 Apply_Compile_Time_Constraint_Error
3825 (N => Expr,
3826 Msg => "(Ada 2005) null not allowed " &
3827 "in null-excluding objects?",
3828 Reason => CE_Null_Not_Allowed);
3830 when N_Parameter_Specification =>
3831 Apply_Compile_Time_Constraint_Error
3832 (N => Expr,
3833 Msg => "(Ada 2005) null not allowed " &
3834 "in null-excluding formals??",
3835 Reason => CE_Null_Not_Allowed);
3837 when others =>
3838 null;
3839 end case;
3840 end if;
3841 end if;
3842 end Null_Exclusion_Static_Checks;
3844 ----------------------------------
3845 -- Conditional_Statements_Begin --
3846 ----------------------------------
3848 procedure Conditional_Statements_Begin is
3849 begin
3850 Saved_Checks_TOS := Saved_Checks_TOS + 1;
3852 -- If stack overflows, kill all checks, that way we know to simply reset
3853 -- the number of saved checks to zero on return. This should never occur
3854 -- in practice.
3856 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
3857 Kill_All_Checks;
3859 -- In the normal case, we just make a new stack entry saving the current
3860 -- number of saved checks for a later restore.
3862 else
3863 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
3865 if Debug_Flag_CC then
3866 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
3867 Num_Saved_Checks);
3868 end if;
3869 end if;
3870 end Conditional_Statements_Begin;
3872 --------------------------------
3873 -- Conditional_Statements_End --
3874 --------------------------------
3876 procedure Conditional_Statements_End is
3877 begin
3878 pragma Assert (Saved_Checks_TOS > 0);
3880 -- If the saved checks stack overflowed, then we killed all checks, so
3881 -- setting the number of saved checks back to zero is correct. This
3882 -- should never occur in practice.
3884 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
3885 Num_Saved_Checks := 0;
3887 -- In the normal case, restore the number of saved checks from the top
3888 -- stack entry.
3890 else
3891 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
3892 if Debug_Flag_CC then
3893 w ("Conditional_Statements_End: Num_Saved_Checks = ",
3894 Num_Saved_Checks);
3895 end if;
3896 end if;
3898 Saved_Checks_TOS := Saved_Checks_TOS - 1;
3899 end Conditional_Statements_End;
3901 -------------------------
3902 -- Convert_From_Bignum --
3903 -------------------------
3905 function Convert_From_Bignum (N : Node_Id) return Node_Id is
3906 Loc : constant Source_Ptr := Sloc (N);
3908 begin
3909 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
3911 -- Construct call From Bignum
3913 return
3914 Make_Function_Call (Loc,
3915 Name =>
3916 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
3917 Parameter_Associations => New_List (Relocate_Node (N)));
3918 end Convert_From_Bignum;
3920 -----------------------
3921 -- Convert_To_Bignum --
3922 -----------------------
3924 function Convert_To_Bignum (N : Node_Id) return Node_Id is
3925 Loc : constant Source_Ptr := Sloc (N);
3927 begin
3928 -- Nothing to do if Bignum already except call Relocate_Node
3930 if Is_RTE (Etype (N), RE_Bignum) then
3931 return Relocate_Node (N);
3933 -- Otherwise construct call to To_Bignum, converting the operand to the
3934 -- required Long_Long_Integer form.
3936 else
3937 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
3938 return
3939 Make_Function_Call (Loc,
3940 Name =>
3941 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
3942 Parameter_Associations => New_List (
3943 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
3944 end if;
3945 end Convert_To_Bignum;
3947 ---------------------
3948 -- Determine_Range --
3949 ---------------------
3951 Cache_Size : constant := 2 ** 10;
3952 type Cache_Index is range 0 .. Cache_Size - 1;
3953 -- Determine size of below cache (power of 2 is more efficient!)
3955 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
3956 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
3957 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
3958 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
3959 -- The above arrays are used to implement a small direct cache for
3960 -- Determine_Range calls. Because of the way Determine_Range recursively
3961 -- traces subexpressions, and because overflow checking calls the routine
3962 -- on the way up the tree, a quadratic behavior can otherwise be
3963 -- encountered in large expressions. The cache entry for node N is stored
3964 -- in the (N mod Cache_Size) entry, and can be validated by checking the
3965 -- actual node value stored there. The Range_Cache_V array records the
3966 -- setting of Assume_Valid for the cache entry.
3968 procedure Determine_Range
3969 (N : Node_Id;
3970 OK : out Boolean;
3971 Lo : out Uint;
3972 Hi : out Uint;
3973 Assume_Valid : Boolean := False)
3975 Typ : Entity_Id := Etype (N);
3976 -- Type to use, may get reset to base type for possibly invalid entity
3978 Lo_Left : Uint;
3979 Hi_Left : Uint;
3980 -- Lo and Hi bounds of left operand
3982 Lo_Right : Uint;
3983 Hi_Right : Uint;
3984 -- Lo and Hi bounds of right (or only) operand
3986 Bound : Node_Id;
3987 -- Temp variable used to hold a bound node
3989 Hbound : Uint;
3990 -- High bound of base type of expression
3992 Lor : Uint;
3993 Hir : Uint;
3994 -- Refined values for low and high bounds, after tightening
3996 OK1 : Boolean;
3997 -- Used in lower level calls to indicate if call succeeded
3999 Cindex : Cache_Index;
4000 -- Used to search cache
4002 Btyp : Entity_Id;
4003 -- Base type
4005 function OK_Operands return Boolean;
4006 -- Used for binary operators. Determines the ranges of the left and
4007 -- right operands, and if they are both OK, returns True, and puts
4008 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4010 -----------------
4011 -- OK_Operands --
4012 -----------------
4014 function OK_Operands return Boolean is
4015 begin
4016 Determine_Range
4017 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4019 if not OK1 then
4020 return False;
4021 end if;
4023 Determine_Range
4024 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4025 return OK1;
4026 end OK_Operands;
4028 -- Start of processing for Determine_Range
4030 begin
4031 -- For temporary constants internally generated to remove side effects
4032 -- we must use the corresponding expression to determine the range of
4033 -- the expression.
4035 if Is_Entity_Name (N)
4036 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4037 and then Ekind (Entity (N)) = E_Constant
4038 and then Is_Internal_Name (Chars (Entity (N)))
4039 then
4040 Determine_Range
4041 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4042 return;
4043 end if;
4045 -- Prevent junk warnings by initializing range variables
4047 Lo := No_Uint;
4048 Hi := No_Uint;
4049 Lor := No_Uint;
4050 Hir := No_Uint;
4052 -- If type is not defined, we can't determine its range
4054 if No (Typ)
4056 -- We don't deal with anything except discrete types
4058 or else not Is_Discrete_Type (Typ)
4060 -- Ignore type for which an error has been posted, since range in
4061 -- this case may well be a bogosity deriving from the error. Also
4062 -- ignore if error posted on the reference node.
4064 or else Error_Posted (N) or else Error_Posted (Typ)
4065 then
4066 OK := False;
4067 return;
4068 end if;
4070 -- For all other cases, we can determine the range
4072 OK := True;
4074 -- If value is compile time known, then the possible range is the one
4075 -- value that we know this expression definitely has!
4077 if Compile_Time_Known_Value (N) then
4078 Lo := Expr_Value (N);
4079 Hi := Lo;
4080 return;
4081 end if;
4083 -- Return if already in the cache
4085 Cindex := Cache_Index (N mod Cache_Size);
4087 if Determine_Range_Cache_N (Cindex) = N
4088 and then
4089 Determine_Range_Cache_V (Cindex) = Assume_Valid
4090 then
4091 Lo := Determine_Range_Cache_Lo (Cindex);
4092 Hi := Determine_Range_Cache_Hi (Cindex);
4093 return;
4094 end if;
4096 -- Otherwise, start by finding the bounds of the type of the expression,
4097 -- the value cannot be outside this range (if it is, then we have an
4098 -- overflow situation, which is a separate check, we are talking here
4099 -- only about the expression value).
4101 -- First a check, never try to find the bounds of a generic type, since
4102 -- these bounds are always junk values, and it is only valid to look at
4103 -- the bounds in an instance.
4105 if Is_Generic_Type (Typ) then
4106 OK := False;
4107 return;
4108 end if;
4110 -- First step, change to use base type unless we know the value is valid
4112 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4113 or else Assume_No_Invalid_Values
4114 or else Assume_Valid
4115 then
4116 null;
4117 else
4118 Typ := Underlying_Type (Base_Type (Typ));
4119 end if;
4121 -- Retrieve the base type. Handle the case where the base type is a
4122 -- private enumeration type.
4124 Btyp := Base_Type (Typ);
4126 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4127 Btyp := Full_View (Btyp);
4128 end if;
4130 -- We use the actual bound unless it is dynamic, in which case use the
4131 -- corresponding base type bound if possible. If we can't get a bound
4132 -- then we figure we can't determine the range (a peculiar case, that
4133 -- perhaps cannot happen, but there is no point in bombing in this
4134 -- optimization circuit.
4136 -- First the low bound
4138 Bound := Type_Low_Bound (Typ);
4140 if Compile_Time_Known_Value (Bound) then
4141 Lo := Expr_Value (Bound);
4143 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4144 Lo := Expr_Value (Type_Low_Bound (Btyp));
4146 else
4147 OK := False;
4148 return;
4149 end if;
4151 -- Now the high bound
4153 Bound := Type_High_Bound (Typ);
4155 -- We need the high bound of the base type later on, and this should
4156 -- always be compile time known. Again, it is not clear that this
4157 -- can ever be false, but no point in bombing.
4159 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4160 Hbound := Expr_Value (Type_High_Bound (Btyp));
4161 Hi := Hbound;
4163 else
4164 OK := False;
4165 return;
4166 end if;
4168 -- If we have a static subtype, then that may have a tighter bound so
4169 -- use the upper bound of the subtype instead in this case.
4171 if Compile_Time_Known_Value (Bound) then
4172 Hi := Expr_Value (Bound);
4173 end if;
4175 -- We may be able to refine this value in certain situations. If any
4176 -- refinement is possible, then Lor and Hir are set to possibly tighter
4177 -- bounds, and OK1 is set to True.
4179 case Nkind (N) is
4181 -- For unary plus, result is limited by range of operand
4183 when N_Op_Plus =>
4184 Determine_Range
4185 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
4187 -- For unary minus, determine range of operand, and negate it
4189 when N_Op_Minus =>
4190 Determine_Range
4191 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4193 if OK1 then
4194 Lor := -Hi_Right;
4195 Hir := -Lo_Right;
4196 end if;
4198 -- For binary addition, get range of each operand and do the
4199 -- addition to get the result range.
4201 when N_Op_Add =>
4202 if OK_Operands then
4203 Lor := Lo_Left + Lo_Right;
4204 Hir := Hi_Left + Hi_Right;
4205 end if;
4207 -- Division is tricky. The only case we consider is where the right
4208 -- operand is a positive constant, and in this case we simply divide
4209 -- the bounds of the left operand
4211 when N_Op_Divide =>
4212 if OK_Operands then
4213 if Lo_Right = Hi_Right
4214 and then Lo_Right > 0
4215 then
4216 Lor := Lo_Left / Lo_Right;
4217 Hir := Hi_Left / Lo_Right;
4219 else
4220 OK1 := False;
4221 end if;
4222 end if;
4224 -- For binary subtraction, get range of each operand and do the worst
4225 -- case subtraction to get the result range.
4227 when N_Op_Subtract =>
4228 if OK_Operands then
4229 Lor := Lo_Left - Hi_Right;
4230 Hir := Hi_Left - Lo_Right;
4231 end if;
4233 -- For MOD, if right operand is a positive constant, then result must
4234 -- be in the allowable range of mod results.
4236 when N_Op_Mod =>
4237 if OK_Operands then
4238 if Lo_Right = Hi_Right
4239 and then Lo_Right /= 0
4240 then
4241 if Lo_Right > 0 then
4242 Lor := Uint_0;
4243 Hir := Lo_Right - 1;
4245 else -- Lo_Right < 0
4246 Lor := Lo_Right + 1;
4247 Hir := Uint_0;
4248 end if;
4250 else
4251 OK1 := False;
4252 end if;
4253 end if;
4255 -- For REM, if right operand is a positive constant, then result must
4256 -- be in the allowable range of mod results.
4258 when N_Op_Rem =>
4259 if OK_Operands then
4260 if Lo_Right = Hi_Right
4261 and then Lo_Right /= 0
4262 then
4263 declare
4264 Dval : constant Uint := (abs Lo_Right) - 1;
4266 begin
4267 -- The sign of the result depends on the sign of the
4268 -- dividend (but not on the sign of the divisor, hence
4269 -- the abs operation above).
4271 if Lo_Left < 0 then
4272 Lor := -Dval;
4273 else
4274 Lor := Uint_0;
4275 end if;
4277 if Hi_Left < 0 then
4278 Hir := Uint_0;
4279 else
4280 Hir := Dval;
4281 end if;
4282 end;
4284 else
4285 OK1 := False;
4286 end if;
4287 end if;
4289 -- Attribute reference cases
4291 when N_Attribute_Reference =>
4292 case Attribute_Name (N) is
4294 -- For Pos/Val attributes, we can refine the range using the
4295 -- possible range of values of the attribute expression.
4297 when Name_Pos | Name_Val =>
4298 Determine_Range
4299 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
4301 -- For Length attribute, use the bounds of the corresponding
4302 -- index type to refine the range.
4304 when Name_Length =>
4305 declare
4306 Atyp : Entity_Id := Etype (Prefix (N));
4307 Inum : Nat;
4308 Indx : Node_Id;
4310 LL, LU : Uint;
4311 UL, UU : Uint;
4313 begin
4314 if Is_Access_Type (Atyp) then
4315 Atyp := Designated_Type (Atyp);
4316 end if;
4318 -- For string literal, we know exact value
4320 if Ekind (Atyp) = E_String_Literal_Subtype then
4321 OK := True;
4322 Lo := String_Literal_Length (Atyp);
4323 Hi := String_Literal_Length (Atyp);
4324 return;
4325 end if;
4327 -- Otherwise check for expression given
4329 if No (Expressions (N)) then
4330 Inum := 1;
4331 else
4332 Inum :=
4333 UI_To_Int (Expr_Value (First (Expressions (N))));
4334 end if;
4336 Indx := First_Index (Atyp);
4337 for J in 2 .. Inum loop
4338 Indx := Next_Index (Indx);
4339 end loop;
4341 -- If the index type is a formal type or derived from
4342 -- one, the bounds are not static.
4344 if Is_Generic_Type (Root_Type (Etype (Indx))) then
4345 OK := False;
4346 return;
4347 end if;
4349 Determine_Range
4350 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4351 Assume_Valid);
4353 if OK1 then
4354 Determine_Range
4355 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4356 Assume_Valid);
4358 if OK1 then
4360 -- The maximum value for Length is the biggest
4361 -- possible gap between the values of the bounds.
4362 -- But of course, this value cannot be negative.
4364 Hir := UI_Max (Uint_0, UU - LL + 1);
4366 -- For constrained arrays, the minimum value for
4367 -- Length is taken from the actual value of the
4368 -- bounds, since the index will be exactly of this
4369 -- subtype.
4371 if Is_Constrained (Atyp) then
4372 Lor := UI_Max (Uint_0, UL - LU + 1);
4374 -- For an unconstrained array, the minimum value
4375 -- for length is always zero.
4377 else
4378 Lor := Uint_0;
4379 end if;
4380 end if;
4381 end if;
4382 end;
4384 -- No special handling for other attributes
4385 -- Probably more opportunities exist here???
4387 when others =>
4388 OK1 := False;
4390 end case;
4392 -- For type conversion from one discrete type to another, we can
4393 -- refine the range using the converted value.
4395 when N_Type_Conversion =>
4396 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
4398 -- Nothing special to do for all other expression kinds
4400 when others =>
4401 OK1 := False;
4402 Lor := No_Uint;
4403 Hir := No_Uint;
4404 end case;
4406 -- At this stage, if OK1 is true, then we know that the actual result of
4407 -- the computed expression is in the range Lor .. Hir. We can use this
4408 -- to restrict the possible range of results.
4410 if OK1 then
4412 -- If the refined value of the low bound is greater than the type
4413 -- high bound, then reset it to the more restrictive value. However,
4414 -- we do NOT do this for the case of a modular type where the
4415 -- possible upper bound on the value is above the base type high
4416 -- bound, because that means the result could wrap.
4418 if Lor > Lo
4419 and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
4420 then
4421 Lo := Lor;
4422 end if;
4424 -- Similarly, if the refined value of the high bound is less than the
4425 -- value so far, then reset it to the more restrictive value. Again,
4426 -- we do not do this if the refined low bound is negative for a
4427 -- modular type, since this would wrap.
4429 if Hir < Hi
4430 and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
4431 then
4432 Hi := Hir;
4433 end if;
4434 end if;
4436 -- Set cache entry for future call and we are all done
4438 Determine_Range_Cache_N (Cindex) := N;
4439 Determine_Range_Cache_V (Cindex) := Assume_Valid;
4440 Determine_Range_Cache_Lo (Cindex) := Lo;
4441 Determine_Range_Cache_Hi (Cindex) := Hi;
4442 return;
4444 -- If any exception occurs, it means that we have some bug in the compiler,
4445 -- possibly triggered by a previous error, or by some unforeseen peculiar
4446 -- occurrence. However, this is only an optimization attempt, so there is
4447 -- really no point in crashing the compiler. Instead we just decide, too
4448 -- bad, we can't figure out a range in this case after all.
4450 exception
4451 when others =>
4453 -- Debug flag K disables this behavior (useful for debugging)
4455 if Debug_Flag_K then
4456 raise;
4457 else
4458 OK := False;
4459 Lo := No_Uint;
4460 Hi := No_Uint;
4461 return;
4462 end if;
4463 end Determine_Range;
4465 ------------------------------------
4466 -- Discriminant_Checks_Suppressed --
4467 ------------------------------------
4469 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
4470 begin
4471 if Present (E) then
4472 if Is_Unchecked_Union (E) then
4473 return True;
4474 elsif Checks_May_Be_Suppressed (E) then
4475 return Is_Check_Suppressed (E, Discriminant_Check);
4476 end if;
4477 end if;
4479 return Scope_Suppress.Suppress (Discriminant_Check);
4480 end Discriminant_Checks_Suppressed;
4482 --------------------------------
4483 -- Division_Checks_Suppressed --
4484 --------------------------------
4486 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
4487 begin
4488 if Present (E) and then Checks_May_Be_Suppressed (E) then
4489 return Is_Check_Suppressed (E, Division_Check);
4490 else
4491 return Scope_Suppress.Suppress (Division_Check);
4492 end if;
4493 end Division_Checks_Suppressed;
4495 -----------------------------------
4496 -- Elaboration_Checks_Suppressed --
4497 -----------------------------------
4499 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
4500 begin
4501 -- The complication in this routine is that if we are in the dynamic
4502 -- model of elaboration, we also check All_Checks, since All_Checks
4503 -- does not set Elaboration_Check explicitly.
4505 if Present (E) then
4506 if Kill_Elaboration_Checks (E) then
4507 return True;
4509 elsif Checks_May_Be_Suppressed (E) then
4510 if Is_Check_Suppressed (E, Elaboration_Check) then
4511 return True;
4512 elsif Dynamic_Elaboration_Checks then
4513 return Is_Check_Suppressed (E, All_Checks);
4514 else
4515 return False;
4516 end if;
4517 end if;
4518 end if;
4520 if Scope_Suppress.Suppress (Elaboration_Check) then
4521 return True;
4522 elsif Dynamic_Elaboration_Checks then
4523 return Scope_Suppress.Suppress (All_Checks);
4524 else
4525 return False;
4526 end if;
4527 end Elaboration_Checks_Suppressed;
4529 ---------------------------
4530 -- Enable_Overflow_Check --
4531 ---------------------------
4533 procedure Enable_Overflow_Check (N : Node_Id) is
4534 Typ : constant Entity_Id := Base_Type (Etype (N));
4535 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
4536 Chk : Nat;
4537 OK : Boolean;
4538 Ent : Entity_Id;
4539 Ofs : Uint;
4540 Lo : Uint;
4541 Hi : Uint;
4543 begin
4544 if Debug_Flag_CC then
4545 w ("Enable_Overflow_Check for node ", Int (N));
4546 Write_Str (" Source location = ");
4547 wl (Sloc (N));
4548 pg (Union_Id (N));
4549 end if;
4551 -- No check if overflow checks suppressed for type of node
4553 if Overflow_Checks_Suppressed (Etype (N)) then
4554 return;
4556 -- Nothing to do for unsigned integer types, which do not overflow
4558 elsif Is_Modular_Integer_Type (Typ) then
4559 return;
4560 end if;
4562 -- This is the point at which processing for STRICT mode diverges
4563 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
4564 -- probably more extreme that it needs to be, but what is going on here
4565 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
4566 -- to leave the processing for STRICT mode untouched. There were
4567 -- two reasons for this. First it avoided any incompatible change of
4568 -- behavior. Second, it guaranteed that STRICT mode continued to be
4569 -- legacy reliable.
4571 -- The big difference is that in STRICT mode there is a fair amount of
4572 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
4573 -- know that no check is needed. We skip all that in the two new modes,
4574 -- since really overflow checking happens over a whole subtree, and we
4575 -- do the corresponding optimizations later on when applying the checks.
4577 if Mode in Minimized_Or_Eliminated then
4578 if not (Overflow_Checks_Suppressed (Etype (N)))
4579 and then not (Is_Entity_Name (N)
4580 and then Overflow_Checks_Suppressed (Entity (N)))
4581 then
4582 Activate_Overflow_Check (N);
4583 end if;
4585 if Debug_Flag_CC then
4586 w ("Minimized/Eliminated mode");
4587 end if;
4589 return;
4590 end if;
4592 -- Remainder of processing is for STRICT case, and is unchanged from
4593 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
4595 -- Nothing to do if the range of the result is known OK. We skip this
4596 -- for conversions, since the caller already did the check, and in any
4597 -- case the condition for deleting the check for a type conversion is
4598 -- different.
4600 if Nkind (N) /= N_Type_Conversion then
4601 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
4603 -- Note in the test below that we assume that the range is not OK
4604 -- if a bound of the range is equal to that of the type. That's not
4605 -- quite accurate but we do this for the following reasons:
4607 -- a) The way that Determine_Range works, it will typically report
4608 -- the bounds of the value as being equal to the bounds of the
4609 -- type, because it either can't tell anything more precise, or
4610 -- does not think it is worth the effort to be more precise.
4612 -- b) It is very unusual to have a situation in which this would
4613 -- generate an unnecessary overflow check (an example would be
4614 -- a subtype with a range 0 .. Integer'Last - 1 to which the
4615 -- literal value one is added).
4617 -- c) The alternative is a lot of special casing in this routine
4618 -- which would partially duplicate Determine_Range processing.
4620 if OK
4621 and then Lo > Expr_Value (Type_Low_Bound (Typ))
4622 and then Hi < Expr_Value (Type_High_Bound (Typ))
4623 then
4624 if Debug_Flag_CC then
4625 w ("No overflow check required");
4626 end if;
4628 return;
4629 end if;
4630 end if;
4632 -- If not in optimizing mode, set flag and we are done. We are also done
4633 -- (and just set the flag) if the type is not a discrete type, since it
4634 -- is not worth the effort to eliminate checks for other than discrete
4635 -- types. In addition, we take this same path if we have stored the
4636 -- maximum number of checks possible already (a very unlikely situation,
4637 -- but we do not want to blow up!)
4639 if Optimization_Level = 0
4640 or else not Is_Discrete_Type (Etype (N))
4641 or else Num_Saved_Checks = Saved_Checks'Last
4642 then
4643 Activate_Overflow_Check (N);
4645 if Debug_Flag_CC then
4646 w ("Optimization off");
4647 end if;
4649 return;
4650 end if;
4652 -- Otherwise evaluate and check the expression
4654 Find_Check
4655 (Expr => N,
4656 Check_Type => 'O',
4657 Target_Type => Empty,
4658 Entry_OK => OK,
4659 Check_Num => Chk,
4660 Ent => Ent,
4661 Ofs => Ofs);
4663 if Debug_Flag_CC then
4664 w ("Called Find_Check");
4665 w (" OK = ", OK);
4667 if OK then
4668 w (" Check_Num = ", Chk);
4669 w (" Ent = ", Int (Ent));
4670 Write_Str (" Ofs = ");
4671 pid (Ofs);
4672 end if;
4673 end if;
4675 -- If check is not of form to optimize, then set flag and we are done
4677 if not OK then
4678 Activate_Overflow_Check (N);
4679 return;
4680 end if;
4682 -- If check is already performed, then return without setting flag
4684 if Chk /= 0 then
4685 if Debug_Flag_CC then
4686 w ("Check suppressed!");
4687 end if;
4689 return;
4690 end if;
4692 -- Here we will make a new entry for the new check
4694 Activate_Overflow_Check (N);
4695 Num_Saved_Checks := Num_Saved_Checks + 1;
4696 Saved_Checks (Num_Saved_Checks) :=
4697 (Killed => False,
4698 Entity => Ent,
4699 Offset => Ofs,
4700 Check_Type => 'O',
4701 Target_Type => Empty);
4703 if Debug_Flag_CC then
4704 w ("Make new entry, check number = ", Num_Saved_Checks);
4705 w (" Entity = ", Int (Ent));
4706 Write_Str (" Offset = ");
4707 pid (Ofs);
4708 w (" Check_Type = O");
4709 w (" Target_Type = Empty");
4710 end if;
4712 -- If we get an exception, then something went wrong, probably because of
4713 -- an error in the structure of the tree due to an incorrect program. Or it
4714 -- may be a bug in the optimization circuit. In either case the safest
4715 -- thing is simply to set the check flag unconditionally.
4717 exception
4718 when others =>
4719 Activate_Overflow_Check (N);
4721 if Debug_Flag_CC then
4722 w (" exception occurred, overflow flag set");
4723 end if;
4725 return;
4726 end Enable_Overflow_Check;
4728 ------------------------
4729 -- Enable_Range_Check --
4730 ------------------------
4732 procedure Enable_Range_Check (N : Node_Id) is
4733 Chk : Nat;
4734 OK : Boolean;
4735 Ent : Entity_Id;
4736 Ofs : Uint;
4737 Ttyp : Entity_Id;
4738 P : Node_Id;
4740 begin
4741 -- Return if unchecked type conversion with range check killed. In this
4742 -- case we never set the flag (that's what Kill_Range_Check is about!)
4744 if Nkind (N) = N_Unchecked_Type_Conversion
4745 and then Kill_Range_Check (N)
4746 then
4747 return;
4748 end if;
4750 -- Do not set range check flag if parent is assignment statement or
4751 -- object declaration with Suppress_Assignment_Checks flag set
4753 if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
4754 and then Suppress_Assignment_Checks (Parent (N))
4755 then
4756 return;
4757 end if;
4759 -- Check for various cases where we should suppress the range check
4761 -- No check if range checks suppressed for type of node
4763 if Present (Etype (N))
4764 and then Range_Checks_Suppressed (Etype (N))
4765 then
4766 return;
4768 -- No check if node is an entity name, and range checks are suppressed
4769 -- for this entity, or for the type of this entity.
4771 elsif Is_Entity_Name (N)
4772 and then (Range_Checks_Suppressed (Entity (N))
4773 or else Range_Checks_Suppressed (Etype (Entity (N))))
4774 then
4775 return;
4777 -- No checks if index of array, and index checks are suppressed for
4778 -- the array object or the type of the array.
4780 elsif Nkind (Parent (N)) = N_Indexed_Component then
4781 declare
4782 Pref : constant Node_Id := Prefix (Parent (N));
4783 begin
4784 if Is_Entity_Name (Pref)
4785 and then Index_Checks_Suppressed (Entity (Pref))
4786 then
4787 return;
4788 elsif Index_Checks_Suppressed (Etype (Pref)) then
4789 return;
4790 end if;
4791 end;
4792 end if;
4794 -- Debug trace output
4796 if Debug_Flag_CC then
4797 w ("Enable_Range_Check for node ", Int (N));
4798 Write_Str (" Source location = ");
4799 wl (Sloc (N));
4800 pg (Union_Id (N));
4801 end if;
4803 -- If not in optimizing mode, set flag and we are done. We are also done
4804 -- (and just set the flag) if the type is not a discrete type, since it
4805 -- is not worth the effort to eliminate checks for other than discrete
4806 -- types. In addition, we take this same path if we have stored the
4807 -- maximum number of checks possible already (a very unlikely situation,
4808 -- but we do not want to blow up!)
4810 if Optimization_Level = 0
4811 or else No (Etype (N))
4812 or else not Is_Discrete_Type (Etype (N))
4813 or else Num_Saved_Checks = Saved_Checks'Last
4814 then
4815 Activate_Range_Check (N);
4817 if Debug_Flag_CC then
4818 w ("Optimization off");
4819 end if;
4821 return;
4822 end if;
4824 -- Otherwise find out the target type
4826 P := Parent (N);
4828 -- For assignment, use left side subtype
4830 if Nkind (P) = N_Assignment_Statement
4831 and then Expression (P) = N
4832 then
4833 Ttyp := Etype (Name (P));
4835 -- For indexed component, use subscript subtype
4837 elsif Nkind (P) = N_Indexed_Component then
4838 declare
4839 Atyp : Entity_Id;
4840 Indx : Node_Id;
4841 Subs : Node_Id;
4843 begin
4844 Atyp := Etype (Prefix (P));
4846 if Is_Access_Type (Atyp) then
4847 Atyp := Designated_Type (Atyp);
4849 -- If the prefix is an access to an unconstrained array,
4850 -- perform check unconditionally: it depends on the bounds of
4851 -- an object and we cannot currently recognize whether the test
4852 -- may be redundant.
4854 if not Is_Constrained (Atyp) then
4855 Activate_Range_Check (N);
4856 return;
4857 end if;
4859 -- Ditto if the prefix is an explicit dereference whose designated
4860 -- type is unconstrained.
4862 elsif Nkind (Prefix (P)) = N_Explicit_Dereference
4863 and then not Is_Constrained (Atyp)
4864 then
4865 Activate_Range_Check (N);
4866 return;
4867 end if;
4869 Indx := First_Index (Atyp);
4870 Subs := First (Expressions (P));
4871 loop
4872 if Subs = N then
4873 Ttyp := Etype (Indx);
4874 exit;
4875 end if;
4877 Next_Index (Indx);
4878 Next (Subs);
4879 end loop;
4880 end;
4882 -- For now, ignore all other cases, they are not so interesting
4884 else
4885 if Debug_Flag_CC then
4886 w (" target type not found, flag set");
4887 end if;
4889 Activate_Range_Check (N);
4890 return;
4891 end if;
4893 -- Evaluate and check the expression
4895 Find_Check
4896 (Expr => N,
4897 Check_Type => 'R',
4898 Target_Type => Ttyp,
4899 Entry_OK => OK,
4900 Check_Num => Chk,
4901 Ent => Ent,
4902 Ofs => Ofs);
4904 if Debug_Flag_CC then
4905 w ("Called Find_Check");
4906 w ("Target_Typ = ", Int (Ttyp));
4907 w (" OK = ", OK);
4909 if OK then
4910 w (" Check_Num = ", Chk);
4911 w (" Ent = ", Int (Ent));
4912 Write_Str (" Ofs = ");
4913 pid (Ofs);
4914 end if;
4915 end if;
4917 -- If check is not of form to optimize, then set flag and we are done
4919 if not OK then
4920 if Debug_Flag_CC then
4921 w (" expression not of optimizable type, flag set");
4922 end if;
4924 Activate_Range_Check (N);
4925 return;
4926 end if;
4928 -- If check is already performed, then return without setting flag
4930 if Chk /= 0 then
4931 if Debug_Flag_CC then
4932 w ("Check suppressed!");
4933 end if;
4935 return;
4936 end if;
4938 -- Here we will make a new entry for the new check
4940 Activate_Range_Check (N);
4941 Num_Saved_Checks := Num_Saved_Checks + 1;
4942 Saved_Checks (Num_Saved_Checks) :=
4943 (Killed => False,
4944 Entity => Ent,
4945 Offset => Ofs,
4946 Check_Type => 'R',
4947 Target_Type => Ttyp);
4949 if Debug_Flag_CC then
4950 w ("Make new entry, check number = ", Num_Saved_Checks);
4951 w (" Entity = ", Int (Ent));
4952 Write_Str (" Offset = ");
4953 pid (Ofs);
4954 w (" Check_Type = R");
4955 w (" Target_Type = ", Int (Ttyp));
4956 pg (Union_Id (Ttyp));
4957 end if;
4959 -- If we get an exception, then something went wrong, probably because of
4960 -- an error in the structure of the tree due to an incorrect program. Or
4961 -- it may be a bug in the optimization circuit. In either case the safest
4962 -- thing is simply to set the check flag unconditionally.
4964 exception
4965 when others =>
4966 Activate_Range_Check (N);
4968 if Debug_Flag_CC then
4969 w (" exception occurred, range flag set");
4970 end if;
4972 return;
4973 end Enable_Range_Check;
4975 ------------------
4976 -- Ensure_Valid --
4977 ------------------
4979 procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
4980 Typ : constant Entity_Id := Etype (Expr);
4982 begin
4983 -- Ignore call if we are not doing any validity checking
4985 if not Validity_Checks_On then
4986 return;
4988 -- Ignore call if range or validity checks suppressed on entity or type
4990 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
4991 return;
4993 -- No check required if expression is from the expander, we assume the
4994 -- expander will generate whatever checks are needed. Note that this is
4995 -- not just an optimization, it avoids infinite recursions!
4997 -- Unchecked conversions must be checked, unless they are initialized
4998 -- scalar values, as in a component assignment in an init proc.
5000 -- In addition, we force a check if Force_Validity_Checks is set
5002 elsif not Comes_From_Source (Expr)
5003 and then not Force_Validity_Checks
5004 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
5005 or else Kill_Range_Check (Expr))
5006 then
5007 return;
5009 -- No check required if expression is known to have valid value
5011 elsif Expr_Known_Valid (Expr) then
5012 return;
5014 -- Ignore case of enumeration with holes where the flag is set not to
5015 -- worry about holes, since no special validity check is needed
5017 elsif Is_Enumeration_Type (Typ)
5018 and then Has_Non_Standard_Rep (Typ)
5019 and then Holes_OK
5020 then
5021 return;
5023 -- No check required on the left-hand side of an assignment
5025 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
5026 and then Expr = Name (Parent (Expr))
5027 then
5028 return;
5030 -- No check on a universal real constant. The context will eventually
5031 -- convert it to a machine number for some target type, or report an
5032 -- illegality.
5034 elsif Nkind (Expr) = N_Real_Literal
5035 and then Etype (Expr) = Universal_Real
5036 then
5037 return;
5039 -- If the expression denotes a component of a packed boolean array,
5040 -- no possible check applies. We ignore the old ACATS chestnuts that
5041 -- involve Boolean range True..True.
5043 -- Note: validity checks are generated for expressions that yield a
5044 -- scalar type, when it is possible to create a value that is outside of
5045 -- the type. If this is a one-bit boolean no such value exists. This is
5046 -- an optimization, and it also prevents compiler blowing up during the
5047 -- elaboration of improperly expanded packed array references.
5049 elsif Nkind (Expr) = N_Indexed_Component
5050 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
5051 and then Root_Type (Etype (Expr)) = Standard_Boolean
5052 then
5053 return;
5055 -- An annoying special case. If this is an out parameter of a scalar
5056 -- type, then the value is not going to be accessed, therefore it is
5057 -- inappropriate to do any validity check at the call site.
5059 else
5060 -- Only need to worry about scalar types
5062 if Is_Scalar_Type (Typ) then
5063 declare
5064 P : Node_Id;
5065 N : Node_Id;
5066 E : Entity_Id;
5067 F : Entity_Id;
5068 A : Node_Id;
5069 L : List_Id;
5071 begin
5072 -- Find actual argument (which may be a parameter association)
5073 -- and the parent of the actual argument (the call statement)
5075 N := Expr;
5076 P := Parent (Expr);
5078 if Nkind (P) = N_Parameter_Association then
5079 N := P;
5080 P := Parent (N);
5081 end if;
5083 -- Only need to worry if we are argument of a procedure call
5084 -- since functions don't have out parameters. If this is an
5085 -- indirect or dispatching call, get signature from the
5086 -- subprogram type.
5088 if Nkind (P) = N_Procedure_Call_Statement then
5089 L := Parameter_Associations (P);
5091 if Is_Entity_Name (Name (P)) then
5092 E := Entity (Name (P));
5093 else
5094 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
5095 E := Etype (Name (P));
5096 end if;
5098 -- Only need to worry if there are indeed actuals, and if
5099 -- this could be a procedure call, otherwise we cannot get a
5100 -- match (either we are not an argument, or the mode of the
5101 -- formal is not OUT). This test also filters out the
5102 -- generic case.
5104 if Is_Non_Empty_List (L)
5105 and then Is_Subprogram (E)
5106 then
5107 -- This is the loop through parameters, looking for an
5108 -- OUT parameter for which we are the argument.
5110 F := First_Formal (E);
5111 A := First (L);
5112 while Present (F) loop
5113 if Ekind (F) = E_Out_Parameter and then A = N then
5114 return;
5115 end if;
5117 Next_Formal (F);
5118 Next (A);
5119 end loop;
5120 end if;
5121 end if;
5122 end;
5123 end if;
5124 end if;
5126 -- If this is a boolean expression, only its elementary operands need
5127 -- checking: if they are valid, a boolean or short-circuit operation
5128 -- with them will be valid as well.
5130 if Base_Type (Typ) = Standard_Boolean
5131 and then
5132 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
5133 then
5134 return;
5135 end if;
5137 -- If we fall through, a validity check is required
5139 Insert_Valid_Check (Expr);
5141 if Is_Entity_Name (Expr)
5142 and then Safe_To_Capture_Value (Expr, Entity (Expr))
5143 then
5144 Set_Is_Known_Valid (Entity (Expr));
5145 end if;
5146 end Ensure_Valid;
5148 ----------------------
5149 -- Expr_Known_Valid --
5150 ----------------------
5152 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
5153 Typ : constant Entity_Id := Etype (Expr);
5155 begin
5156 -- Non-scalar types are always considered valid, since they never give
5157 -- rise to the issues of erroneous or bounded error behavior that are
5158 -- the concern. In formal reference manual terms the notion of validity
5159 -- only applies to scalar types. Note that even when packed arrays are
5160 -- represented using modular types, they are still arrays semantically,
5161 -- so they are also always valid (in particular, the unused bits can be
5162 -- random rubbish without affecting the validity of the array value).
5164 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Type (Typ) then
5165 return True;
5167 -- If no validity checking, then everything is considered valid
5169 elsif not Validity_Checks_On then
5170 return True;
5172 -- Floating-point types are considered valid unless floating-point
5173 -- validity checks have been specifically turned on.
5175 elsif Is_Floating_Point_Type (Typ)
5176 and then not Validity_Check_Floating_Point
5177 then
5178 return True;
5180 -- If the expression is the value of an object that is known to be
5181 -- valid, then clearly the expression value itself is valid.
5183 elsif Is_Entity_Name (Expr)
5184 and then Is_Known_Valid (Entity (Expr))
5185 then
5186 return True;
5188 -- References to discriminants are always considered valid. The value
5189 -- of a discriminant gets checked when the object is built. Within the
5190 -- record, we consider it valid, and it is important to do so, since
5191 -- otherwise we can try to generate bogus validity checks which
5192 -- reference discriminants out of scope. Discriminants of concurrent
5193 -- types are excluded for the same reason.
5195 elsif Is_Entity_Name (Expr)
5196 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
5197 then
5198 return True;
5200 -- If the type is one for which all values are known valid, then we are
5201 -- sure that the value is valid except in the slightly odd case where
5202 -- the expression is a reference to a variable whose size has been
5203 -- explicitly set to a value greater than the object size.
5205 elsif Is_Known_Valid (Typ) then
5206 if Is_Entity_Name (Expr)
5207 and then Ekind (Entity (Expr)) = E_Variable
5208 and then Esize (Entity (Expr)) > Esize (Typ)
5209 then
5210 return False;
5211 else
5212 return True;
5213 end if;
5215 -- Integer and character literals always have valid values, where
5216 -- appropriate these will be range checked in any case.
5218 elsif Nkind (Expr) = N_Integer_Literal
5219 or else
5220 Nkind (Expr) = N_Character_Literal
5221 then
5222 return True;
5224 -- Real literals are assumed to be valid in VM targets
5226 elsif VM_Target /= No_VM
5227 and then Nkind (Expr) = N_Real_Literal
5228 then
5229 return True;
5231 -- If we have a type conversion or a qualification of a known valid
5232 -- value, then the result will always be valid.
5234 elsif Nkind (Expr) = N_Type_Conversion
5235 or else
5236 Nkind (Expr) = N_Qualified_Expression
5237 then
5238 return Expr_Known_Valid (Expression (Expr));
5240 -- The result of any operator is always considered valid, since we
5241 -- assume the necessary checks are done by the operator. For operators
5242 -- on floating-point operations, we must also check when the operation
5243 -- is the right-hand side of an assignment, or is an actual in a call.
5245 elsif Nkind (Expr) in N_Op then
5246 if Is_Floating_Point_Type (Typ)
5247 and then Validity_Check_Floating_Point
5248 and then
5249 (Nkind (Parent (Expr)) = N_Assignment_Statement
5250 or else Nkind (Parent (Expr)) = N_Function_Call
5251 or else Nkind (Parent (Expr)) = N_Parameter_Association)
5252 then
5253 return False;
5254 else
5255 return True;
5256 end if;
5258 -- The result of a membership test is always valid, since it is true or
5259 -- false, there are no other possibilities.
5261 elsif Nkind (Expr) in N_Membership_Test then
5262 return True;
5264 -- For all other cases, we do not know the expression is valid
5266 else
5267 return False;
5268 end if;
5269 end Expr_Known_Valid;
5271 ----------------
5272 -- Find_Check --
5273 ----------------
5275 procedure Find_Check
5276 (Expr : Node_Id;
5277 Check_Type : Character;
5278 Target_Type : Entity_Id;
5279 Entry_OK : out Boolean;
5280 Check_Num : out Nat;
5281 Ent : out Entity_Id;
5282 Ofs : out Uint)
5284 function Within_Range_Of
5285 (Target_Type : Entity_Id;
5286 Check_Type : Entity_Id) return Boolean;
5287 -- Given a requirement for checking a range against Target_Type, and
5288 -- and a range Check_Type against which a check has already been made,
5289 -- determines if the check against check type is sufficient to ensure
5290 -- that no check against Target_Type is required.
5292 ---------------------
5293 -- Within_Range_Of --
5294 ---------------------
5296 function Within_Range_Of
5297 (Target_Type : Entity_Id;
5298 Check_Type : Entity_Id) return Boolean
5300 begin
5301 if Target_Type = Check_Type then
5302 return True;
5304 else
5305 declare
5306 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
5307 Thi : constant Node_Id := Type_High_Bound (Target_Type);
5308 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
5309 Chi : constant Node_Id := Type_High_Bound (Check_Type);
5311 begin
5312 if (Tlo = Clo
5313 or else (Compile_Time_Known_Value (Tlo)
5314 and then
5315 Compile_Time_Known_Value (Clo)
5316 and then
5317 Expr_Value (Clo) >= Expr_Value (Tlo)))
5318 and then
5319 (Thi = Chi
5320 or else (Compile_Time_Known_Value (Thi)
5321 and then
5322 Compile_Time_Known_Value (Chi)
5323 and then
5324 Expr_Value (Chi) <= Expr_Value (Clo)))
5325 then
5326 return True;
5327 else
5328 return False;
5329 end if;
5330 end;
5331 end if;
5332 end Within_Range_Of;
5334 -- Start of processing for Find_Check
5336 begin
5337 -- Establish default, in case no entry is found
5339 Check_Num := 0;
5341 -- Case of expression is simple entity reference
5343 if Is_Entity_Name (Expr) then
5344 Ent := Entity (Expr);
5345 Ofs := Uint_0;
5347 -- Case of expression is entity + known constant
5349 elsif Nkind (Expr) = N_Op_Add
5350 and then Compile_Time_Known_Value (Right_Opnd (Expr))
5351 and then Is_Entity_Name (Left_Opnd (Expr))
5352 then
5353 Ent := Entity (Left_Opnd (Expr));
5354 Ofs := Expr_Value (Right_Opnd (Expr));
5356 -- Case of expression is entity - known constant
5358 elsif Nkind (Expr) = N_Op_Subtract
5359 and then Compile_Time_Known_Value (Right_Opnd (Expr))
5360 and then Is_Entity_Name (Left_Opnd (Expr))
5361 then
5362 Ent := Entity (Left_Opnd (Expr));
5363 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
5365 -- Any other expression is not of the right form
5367 else
5368 Ent := Empty;
5369 Ofs := Uint_0;
5370 Entry_OK := False;
5371 return;
5372 end if;
5374 -- Come here with expression of appropriate form, check if entity is an
5375 -- appropriate one for our purposes.
5377 if (Ekind (Ent) = E_Variable
5378 or else Is_Constant_Object (Ent))
5379 and then not Is_Library_Level_Entity (Ent)
5380 then
5381 Entry_OK := True;
5382 else
5383 Entry_OK := False;
5384 return;
5385 end if;
5387 -- See if there is matching check already
5389 for J in reverse 1 .. Num_Saved_Checks loop
5390 declare
5391 SC : Saved_Check renames Saved_Checks (J);
5393 begin
5394 if SC.Killed = False
5395 and then SC.Entity = Ent
5396 and then SC.Offset = Ofs
5397 and then SC.Check_Type = Check_Type
5398 and then Within_Range_Of (Target_Type, SC.Target_Type)
5399 then
5400 Check_Num := J;
5401 return;
5402 end if;
5403 end;
5404 end loop;
5406 -- If we fall through entry was not found
5408 return;
5409 end Find_Check;
5411 ---------------------------------
5412 -- Generate_Discriminant_Check --
5413 ---------------------------------
5415 -- Note: the code for this procedure is derived from the
5416 -- Emit_Discriminant_Check Routine in trans.c.
5418 procedure Generate_Discriminant_Check (N : Node_Id) is
5419 Loc : constant Source_Ptr := Sloc (N);
5420 Pref : constant Node_Id := Prefix (N);
5421 Sel : constant Node_Id := Selector_Name (N);
5423 Orig_Comp : constant Entity_Id :=
5424 Original_Record_Component (Entity (Sel));
5425 -- The original component to be checked
5427 Discr_Fct : constant Entity_Id :=
5428 Discriminant_Checking_Func (Orig_Comp);
5429 -- The discriminant checking function
5431 Discr : Entity_Id;
5432 -- One discriminant to be checked in the type
5434 Real_Discr : Entity_Id;
5435 -- Actual discriminant in the call
5437 Pref_Type : Entity_Id;
5438 -- Type of relevant prefix (ignoring private/access stuff)
5440 Args : List_Id;
5441 -- List of arguments for function call
5443 Formal : Entity_Id;
5444 -- Keep track of the formal corresponding to the actual we build for
5445 -- each discriminant, in order to be able to perform the necessary type
5446 -- conversions.
5448 Scomp : Node_Id;
5449 -- Selected component reference for checking function argument
5451 begin
5452 Pref_Type := Etype (Pref);
5454 -- Force evaluation of the prefix, so that it does not get evaluated
5455 -- twice (once for the check, once for the actual reference). Such a
5456 -- double evaluation is always a potential source of inefficiency,
5457 -- and is functionally incorrect in the volatile case, or when the
5458 -- prefix may have side-effects. An entity or a component of an
5459 -- entity requires no evaluation.
5461 if Is_Entity_Name (Pref) then
5462 if Treat_As_Volatile (Entity (Pref)) then
5463 Force_Evaluation (Pref, Name_Req => True);
5464 end if;
5466 elsif Treat_As_Volatile (Etype (Pref)) then
5467 Force_Evaluation (Pref, Name_Req => True);
5469 elsif Nkind (Pref) = N_Selected_Component
5470 and then Is_Entity_Name (Prefix (Pref))
5471 then
5472 null;
5474 else
5475 Force_Evaluation (Pref, Name_Req => True);
5476 end if;
5478 -- For a tagged type, use the scope of the original component to
5479 -- obtain the type, because ???
5481 if Is_Tagged_Type (Scope (Orig_Comp)) then
5482 Pref_Type := Scope (Orig_Comp);
5484 -- For an untagged derived type, use the discriminants of the parent
5485 -- which have been renamed in the derivation, possibly by a one-to-many
5486 -- discriminant constraint. For non-tagged type, initially get the Etype
5487 -- of the prefix
5489 else
5490 if Is_Derived_Type (Pref_Type)
5491 and then Number_Discriminants (Pref_Type) /=
5492 Number_Discriminants (Etype (Base_Type (Pref_Type)))
5493 then
5494 Pref_Type := Etype (Base_Type (Pref_Type));
5495 end if;
5496 end if;
5498 -- We definitely should have a checking function, This routine should
5499 -- not be called if no discriminant checking function is present.
5501 pragma Assert (Present (Discr_Fct));
5503 -- Create the list of the actual parameters for the call. This list
5504 -- is the list of the discriminant fields of the record expression to
5505 -- be discriminant checked.
5507 Args := New_List;
5508 Formal := First_Formal (Discr_Fct);
5509 Discr := First_Discriminant (Pref_Type);
5510 while Present (Discr) loop
5512 -- If we have a corresponding discriminant field, and a parent
5513 -- subtype is present, then we want to use the corresponding
5514 -- discriminant since this is the one with the useful value.
5516 if Present (Corresponding_Discriminant (Discr))
5517 and then Ekind (Pref_Type) = E_Record_Type
5518 and then Present (Parent_Subtype (Pref_Type))
5519 then
5520 Real_Discr := Corresponding_Discriminant (Discr);
5521 else
5522 Real_Discr := Discr;
5523 end if;
5525 -- Construct the reference to the discriminant
5527 Scomp :=
5528 Make_Selected_Component (Loc,
5529 Prefix =>
5530 Unchecked_Convert_To (Pref_Type,
5531 Duplicate_Subexpr (Pref)),
5532 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
5534 -- Manually analyze and resolve this selected component. We really
5535 -- want it just as it appears above, and do not want the expander
5536 -- playing discriminal games etc with this reference. Then we append
5537 -- the argument to the list we are gathering.
5539 Set_Etype (Scomp, Etype (Real_Discr));
5540 Set_Analyzed (Scomp, True);
5541 Append_To (Args, Convert_To (Etype (Formal), Scomp));
5543 Next_Formal_With_Extras (Formal);
5544 Next_Discriminant (Discr);
5545 end loop;
5547 -- Now build and insert the call
5549 Insert_Action (N,
5550 Make_Raise_Constraint_Error (Loc,
5551 Condition =>
5552 Make_Function_Call (Loc,
5553 Name => New_Occurrence_Of (Discr_Fct, Loc),
5554 Parameter_Associations => Args),
5555 Reason => CE_Discriminant_Check_Failed));
5556 end Generate_Discriminant_Check;
5558 ---------------------------
5559 -- Generate_Index_Checks --
5560 ---------------------------
5562 procedure Generate_Index_Checks (N : Node_Id) is
5564 function Entity_Of_Prefix return Entity_Id;
5565 -- Returns the entity of the prefix of N (or Empty if not found)
5567 ----------------------
5568 -- Entity_Of_Prefix --
5569 ----------------------
5571 function Entity_Of_Prefix return Entity_Id is
5572 P : Node_Id;
5574 begin
5575 P := Prefix (N);
5576 while not Is_Entity_Name (P) loop
5577 if not Nkind_In (P, N_Selected_Component,
5578 N_Indexed_Component)
5579 then
5580 return Empty;
5581 end if;
5583 P := Prefix (P);
5584 end loop;
5586 return Entity (P);
5587 end Entity_Of_Prefix;
5589 -- Local variables
5591 Loc : constant Source_Ptr := Sloc (N);
5592 A : constant Node_Id := Prefix (N);
5593 A_Ent : constant Entity_Id := Entity_Of_Prefix;
5594 Sub : Node_Id;
5596 -- Start of processing for Generate_Index_Checks
5598 begin
5599 -- Ignore call if the prefix is not an array since we have a serious
5600 -- error in the sources. Ignore it also if index checks are suppressed
5601 -- for array object or type.
5603 if not Is_Array_Type (Etype (A))
5604 or else (Present (A_Ent)
5605 and then Index_Checks_Suppressed (A_Ent))
5606 or else Index_Checks_Suppressed (Etype (A))
5607 then
5608 return;
5610 -- The indexed component we are dealing with contains 'Loop_Entry in its
5611 -- prefix. This case arises when analysis has determined that constructs
5612 -- such as
5614 -- Prefix'Loop_Entry (Expr)
5615 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
5617 -- require rewriting for error detection purposes. A side effect of this
5618 -- action is the generation of index checks that mention 'Loop_Entry.
5619 -- Delay the generation of the check until 'Loop_Entry has been properly
5620 -- expanded. This is done in Expand_Loop_Entry_Attributes.
5622 elsif Nkind (Prefix (N)) = N_Attribute_Reference
5623 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
5624 then
5625 return;
5626 end if;
5628 -- Generate a raise of constraint error with the appropriate reason and
5629 -- a condition of the form:
5631 -- Base_Type (Sub) not in Array'Range (Subscript)
5633 -- Note that the reason we generate the conversion to the base type here
5634 -- is that we definitely want the range check to take place, even if it
5635 -- looks like the subtype is OK. Optimization considerations that allow
5636 -- us to omit the check have already been taken into account in the
5637 -- setting of the Do_Range_Check flag earlier on.
5639 Sub := First (Expressions (N));
5641 -- Handle string literals
5643 if Ekind (Etype (A)) = E_String_Literal_Subtype then
5644 if Do_Range_Check (Sub) then
5645 Set_Do_Range_Check (Sub, False);
5647 -- For string literals we obtain the bounds of the string from the
5648 -- associated subtype.
5650 Insert_Action (N,
5651 Make_Raise_Constraint_Error (Loc,
5652 Condition =>
5653 Make_Not_In (Loc,
5654 Left_Opnd =>
5655 Convert_To (Base_Type (Etype (Sub)),
5656 Duplicate_Subexpr_Move_Checks (Sub)),
5657 Right_Opnd =>
5658 Make_Attribute_Reference (Loc,
5659 Prefix => New_Reference_To (Etype (A), Loc),
5660 Attribute_Name => Name_Range)),
5661 Reason => CE_Index_Check_Failed));
5662 end if;
5664 -- General case
5666 else
5667 declare
5668 A_Idx : Node_Id := Empty;
5669 A_Range : Node_Id;
5670 Ind : Nat;
5671 Num : List_Id;
5672 Range_N : Node_Id;
5674 begin
5675 A_Idx := First_Index (Etype (A));
5676 Ind := 1;
5677 while Present (Sub) loop
5678 if Do_Range_Check (Sub) then
5679 Set_Do_Range_Check (Sub, False);
5681 -- Force evaluation except for the case of a simple name of
5682 -- a non-volatile entity.
5684 if not Is_Entity_Name (Sub)
5685 or else Treat_As_Volatile (Entity (Sub))
5686 then
5687 Force_Evaluation (Sub);
5688 end if;
5690 if Nkind (A_Idx) = N_Range then
5691 A_Range := A_Idx;
5693 elsif Nkind (A_Idx) = N_Identifier
5694 or else Nkind (A_Idx) = N_Expanded_Name
5695 then
5696 A_Range := Scalar_Range (Entity (A_Idx));
5698 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
5699 A_Range := Range_Expression (Constraint (A_Idx));
5700 end if;
5702 -- For array objects with constant bounds we can generate
5703 -- the index check using the bounds of the type of the index
5705 if Present (A_Ent)
5706 and then Ekind (A_Ent) = E_Variable
5707 and then Is_Constant_Bound (Low_Bound (A_Range))
5708 and then Is_Constant_Bound (High_Bound (A_Range))
5709 then
5710 Range_N :=
5711 Make_Attribute_Reference (Loc,
5712 Prefix =>
5713 New_Reference_To (Etype (A_Idx), Loc),
5714 Attribute_Name => Name_Range);
5716 -- For arrays with non-constant bounds we cannot generate
5717 -- the index check using the bounds of the type of the index
5718 -- since it may reference discriminants of some enclosing
5719 -- type. We obtain the bounds directly from the prefix
5720 -- object.
5722 else
5723 if Ind = 1 then
5724 Num := No_List;
5725 else
5726 Num := New_List (Make_Integer_Literal (Loc, Ind));
5727 end if;
5729 Range_N :=
5730 Make_Attribute_Reference (Loc,
5731 Prefix =>
5732 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
5733 Attribute_Name => Name_Range,
5734 Expressions => Num);
5735 end if;
5737 Insert_Action (N,
5738 Make_Raise_Constraint_Error (Loc,
5739 Condition =>
5740 Make_Not_In (Loc,
5741 Left_Opnd =>
5742 Convert_To (Base_Type (Etype (Sub)),
5743 Duplicate_Subexpr_Move_Checks (Sub)),
5744 Right_Opnd => Range_N),
5745 Reason => CE_Index_Check_Failed));
5746 end if;
5748 A_Idx := Next_Index (A_Idx);
5749 Ind := Ind + 1;
5750 Next (Sub);
5751 end loop;
5752 end;
5753 end if;
5754 end Generate_Index_Checks;
5756 --------------------------
5757 -- Generate_Range_Check --
5758 --------------------------
5760 procedure Generate_Range_Check
5761 (N : Node_Id;
5762 Target_Type : Entity_Id;
5763 Reason : RT_Exception_Code)
5765 Loc : constant Source_Ptr := Sloc (N);
5766 Source_Type : constant Entity_Id := Etype (N);
5767 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
5768 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
5770 begin
5771 -- First special case, if the source type is already within the range
5772 -- of the target type, then no check is needed (probably we should have
5773 -- stopped Do_Range_Check from being set in the first place, but better
5774 -- late than never in preventing junk code!
5776 if In_Subrange_Of (Source_Type, Target_Type)
5778 -- We do NOT apply this if the source node is a literal, since in this
5779 -- case the literal has already been labeled as having the subtype of
5780 -- the target.
5782 and then not
5783 (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
5784 or else
5785 (Is_Entity_Name (N)
5786 and then Ekind (Entity (N)) = E_Enumeration_Literal))
5788 -- Also do not apply this for floating-point if Check_Float_Overflow
5790 and then not
5791 (Is_Floating_Point_Type (Source_Type) and Check_Float_Overflow)
5792 then
5793 return;
5794 end if;
5796 -- We need a check, so force evaluation of the node, so that it does
5797 -- not get evaluated twice (once for the check, once for the actual
5798 -- reference). Such a double evaluation is always a potential source
5799 -- of inefficiency, and is functionally incorrect in the volatile case.
5801 if not Is_Entity_Name (N) or else Treat_As_Volatile (Entity (N)) then
5802 Force_Evaluation (N);
5803 end if;
5805 -- The easiest case is when Source_Base_Type and Target_Base_Type are
5806 -- the same since in this case we can simply do a direct check of the
5807 -- value of N against the bounds of Target_Type.
5809 -- [constraint_error when N not in Target_Type]
5811 -- Note: this is by far the most common case, for example all cases of
5812 -- checks on the RHS of assignments are in this category, but not all
5813 -- cases are like this. Notably conversions can involve two types.
5815 if Source_Base_Type = Target_Base_Type then
5816 Insert_Action (N,
5817 Make_Raise_Constraint_Error (Loc,
5818 Condition =>
5819 Make_Not_In (Loc,
5820 Left_Opnd => Duplicate_Subexpr (N),
5821 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
5822 Reason => Reason));
5824 -- Next test for the case where the target type is within the bounds
5825 -- of the base type of the source type, since in this case we can
5826 -- simply convert these bounds to the base type of T to do the test.
5828 -- [constraint_error when N not in
5829 -- Source_Base_Type (Target_Type'First)
5830 -- ..
5831 -- Source_Base_Type(Target_Type'Last))]
5833 -- The conversions will always work and need no check
5835 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
5836 -- of converting from an enumeration value to an integer type, such as
5837 -- occurs for the case of generating a range check on Enum'Val(Exp)
5838 -- (which used to be handled by gigi). This is OK, since the conversion
5839 -- itself does not require a check.
5841 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
5842 Insert_Action (N,
5843 Make_Raise_Constraint_Error (Loc,
5844 Condition =>
5845 Make_Not_In (Loc,
5846 Left_Opnd => Duplicate_Subexpr (N),
5848 Right_Opnd =>
5849 Make_Range (Loc,
5850 Low_Bound =>
5851 Unchecked_Convert_To (Source_Base_Type,
5852 Make_Attribute_Reference (Loc,
5853 Prefix =>
5854 New_Occurrence_Of (Target_Type, Loc),
5855 Attribute_Name => Name_First)),
5857 High_Bound =>
5858 Unchecked_Convert_To (Source_Base_Type,
5859 Make_Attribute_Reference (Loc,
5860 Prefix =>
5861 New_Occurrence_Of (Target_Type, Loc),
5862 Attribute_Name => Name_Last)))),
5863 Reason => Reason));
5865 -- Note that at this stage we now that the Target_Base_Type is not in
5866 -- the range of the Source_Base_Type (since even the Target_Type itself
5867 -- is not in this range). It could still be the case that Source_Type is
5868 -- in range of the target base type since we have not checked that case.
5870 -- If that is the case, we can freely convert the source to the target,
5871 -- and then test the target result against the bounds.
5873 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
5875 -- We make a temporary to hold the value of the converted value
5876 -- (converted to the base type), and then we will do the test against
5877 -- this temporary.
5879 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
5880 -- [constraint_error when Tnn not in Target_Type]
5882 -- Then the conversion itself is replaced by an occurrence of Tnn
5884 declare
5885 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
5887 begin
5888 Insert_Actions (N, New_List (
5889 Make_Object_Declaration (Loc,
5890 Defining_Identifier => Tnn,
5891 Object_Definition =>
5892 New_Occurrence_Of (Target_Base_Type, Loc),
5893 Constant_Present => True,
5894 Expression =>
5895 Make_Type_Conversion (Loc,
5896 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
5897 Expression => Duplicate_Subexpr (N))),
5899 Make_Raise_Constraint_Error (Loc,
5900 Condition =>
5901 Make_Not_In (Loc,
5902 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
5903 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
5905 Reason => Reason)));
5907 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
5909 -- Set the type of N, because the declaration for Tnn might not
5910 -- be analyzed yet, as is the case if N appears within a record
5911 -- declaration, as a discriminant constraint or expression.
5913 Set_Etype (N, Target_Base_Type);
5914 end;
5916 -- At this stage, we know that we have two scalar types, which are
5917 -- directly convertible, and where neither scalar type has a base
5918 -- range that is in the range of the other scalar type.
5920 -- The only way this can happen is with a signed and unsigned type.
5921 -- So test for these two cases:
5923 else
5924 -- Case of the source is unsigned and the target is signed
5926 if Is_Unsigned_Type (Source_Base_Type)
5927 and then not Is_Unsigned_Type (Target_Base_Type)
5928 then
5929 -- If the source is unsigned and the target is signed, then we
5930 -- know that the source is not shorter than the target (otherwise
5931 -- the source base type would be in the target base type range).
5933 -- In other words, the unsigned type is either the same size as
5934 -- the target, or it is larger. It cannot be smaller.
5936 pragma Assert
5937 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
5939 -- We only need to check the low bound if the low bound of the
5940 -- target type is non-negative. If the low bound of the target
5941 -- type is negative, then we know that we will fit fine.
5943 -- If the high bound of the target type is negative, then we
5944 -- know we have a constraint error, since we can't possibly
5945 -- have a negative source.
5947 -- With these two checks out of the way, we can do the check
5948 -- using the source type safely
5950 -- This is definitely the most annoying case!
5952 -- [constraint_error
5953 -- when (Target_Type'First >= 0
5954 -- and then
5955 -- N < Source_Base_Type (Target_Type'First))
5956 -- or else Target_Type'Last < 0
5957 -- or else N > Source_Base_Type (Target_Type'Last)];
5959 -- We turn off all checks since we know that the conversions
5960 -- will work fine, given the guards for negative values.
5962 Insert_Action (N,
5963 Make_Raise_Constraint_Error (Loc,
5964 Condition =>
5965 Make_Or_Else (Loc,
5966 Make_Or_Else (Loc,
5967 Left_Opnd =>
5968 Make_And_Then (Loc,
5969 Left_Opnd => Make_Op_Ge (Loc,
5970 Left_Opnd =>
5971 Make_Attribute_Reference (Loc,
5972 Prefix =>
5973 New_Occurrence_Of (Target_Type, Loc),
5974 Attribute_Name => Name_First),
5975 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
5977 Right_Opnd =>
5978 Make_Op_Lt (Loc,
5979 Left_Opnd => Duplicate_Subexpr (N),
5980 Right_Opnd =>
5981 Convert_To (Source_Base_Type,
5982 Make_Attribute_Reference (Loc,
5983 Prefix =>
5984 New_Occurrence_Of (Target_Type, Loc),
5985 Attribute_Name => Name_First)))),
5987 Right_Opnd =>
5988 Make_Op_Lt (Loc,
5989 Left_Opnd =>
5990 Make_Attribute_Reference (Loc,
5991 Prefix => New_Occurrence_Of (Target_Type, Loc),
5992 Attribute_Name => Name_Last),
5993 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
5995 Right_Opnd =>
5996 Make_Op_Gt (Loc,
5997 Left_Opnd => Duplicate_Subexpr (N),
5998 Right_Opnd =>
5999 Convert_To (Source_Base_Type,
6000 Make_Attribute_Reference (Loc,
6001 Prefix => New_Occurrence_Of (Target_Type, Loc),
6002 Attribute_Name => Name_Last)))),
6004 Reason => Reason),
6005 Suppress => All_Checks);
6007 -- Only remaining possibility is that the source is signed and
6008 -- the target is unsigned.
6010 else
6011 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
6012 and then Is_Unsigned_Type (Target_Base_Type));
6014 -- If the source is signed and the target is unsigned, then we
6015 -- know that the target is not shorter than the source (otherwise
6016 -- the target base type would be in the source base type range).
6018 -- In other words, the unsigned type is either the same size as
6019 -- the target, or it is larger. It cannot be smaller.
6021 -- Clearly we have an error if the source value is negative since
6022 -- no unsigned type can have negative values. If the source type
6023 -- is non-negative, then the check can be done using the target
6024 -- type.
6026 -- Tnn : constant Target_Base_Type (N) := Target_Type;
6028 -- [constraint_error
6029 -- when N < 0 or else Tnn not in Target_Type];
6031 -- We turn off all checks for the conversion of N to the target
6032 -- base type, since we generate the explicit check to ensure that
6033 -- the value is non-negative
6035 declare
6036 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
6038 begin
6039 Insert_Actions (N, New_List (
6040 Make_Object_Declaration (Loc,
6041 Defining_Identifier => Tnn,
6042 Object_Definition =>
6043 New_Occurrence_Of (Target_Base_Type, Loc),
6044 Constant_Present => True,
6045 Expression =>
6046 Make_Unchecked_Type_Conversion (Loc,
6047 Subtype_Mark =>
6048 New_Occurrence_Of (Target_Base_Type, Loc),
6049 Expression => Duplicate_Subexpr (N))),
6051 Make_Raise_Constraint_Error (Loc,
6052 Condition =>
6053 Make_Or_Else (Loc,
6054 Left_Opnd =>
6055 Make_Op_Lt (Loc,
6056 Left_Opnd => Duplicate_Subexpr (N),
6057 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
6059 Right_Opnd =>
6060 Make_Not_In (Loc,
6061 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6062 Right_Opnd =>
6063 New_Occurrence_Of (Target_Type, Loc))),
6065 Reason => Reason)),
6066 Suppress => All_Checks);
6068 -- Set the Etype explicitly, because Insert_Actions may have
6069 -- placed the declaration in the freeze list for an enclosing
6070 -- construct, and thus it is not analyzed yet.
6072 Set_Etype (Tnn, Target_Base_Type);
6073 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6074 end;
6075 end if;
6076 end if;
6077 end Generate_Range_Check;
6079 ------------------
6080 -- Get_Check_Id --
6081 ------------------
6083 function Get_Check_Id (N : Name_Id) return Check_Id is
6084 begin
6085 -- For standard check name, we can do a direct computation
6087 if N in First_Check_Name .. Last_Check_Name then
6088 return Check_Id (N - (First_Check_Name - 1));
6090 -- For non-standard names added by pragma Check_Name, search table
6092 else
6093 for J in All_Checks + 1 .. Check_Names.Last loop
6094 if Check_Names.Table (J) = N then
6095 return J;
6096 end if;
6097 end loop;
6098 end if;
6100 -- No matching name found
6102 return No_Check_Id;
6103 end Get_Check_Id;
6105 ---------------------
6106 -- Get_Discriminal --
6107 ---------------------
6109 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
6110 Loc : constant Source_Ptr := Sloc (E);
6111 D : Entity_Id;
6112 Sc : Entity_Id;
6114 begin
6115 -- The bound can be a bona fide parameter of a protected operation,
6116 -- rather than a prival encoded as an in-parameter.
6118 if No (Discriminal_Link (Entity (Bound))) then
6119 return Bound;
6120 end if;
6122 -- Climb the scope stack looking for an enclosing protected type. If
6123 -- we run out of scopes, return the bound itself.
6125 Sc := Scope (E);
6126 while Present (Sc) loop
6127 if Sc = Standard_Standard then
6128 return Bound;
6130 elsif Ekind (Sc) = E_Protected_Type then
6131 exit;
6132 end if;
6134 Sc := Scope (Sc);
6135 end loop;
6137 D := First_Discriminant (Sc);
6138 while Present (D) loop
6139 if Chars (D) = Chars (Bound) then
6140 return New_Occurrence_Of (Discriminal (D), Loc);
6141 end if;
6143 Next_Discriminant (D);
6144 end loop;
6146 return Bound;
6147 end Get_Discriminal;
6149 ----------------------
6150 -- Get_Range_Checks --
6151 ----------------------
6153 function Get_Range_Checks
6154 (Ck_Node : Node_Id;
6155 Target_Typ : Entity_Id;
6156 Source_Typ : Entity_Id := Empty;
6157 Warn_Node : Node_Id := Empty) return Check_Result
6159 begin
6160 return Selected_Range_Checks
6161 (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
6162 end Get_Range_Checks;
6164 ------------------
6165 -- Guard_Access --
6166 ------------------
6168 function Guard_Access
6169 (Cond : Node_Id;
6170 Loc : Source_Ptr;
6171 Ck_Node : Node_Id) return Node_Id
6173 begin
6174 if Nkind (Cond) = N_Or_Else then
6175 Set_Paren_Count (Cond, 1);
6176 end if;
6178 if Nkind (Ck_Node) = N_Allocator then
6179 return Cond;
6180 else
6181 return
6182 Make_And_Then (Loc,
6183 Left_Opnd =>
6184 Make_Op_Ne (Loc,
6185 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
6186 Right_Opnd => Make_Null (Loc)),
6187 Right_Opnd => Cond);
6188 end if;
6189 end Guard_Access;
6191 -----------------------------
6192 -- Index_Checks_Suppressed --
6193 -----------------------------
6195 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
6196 begin
6197 if Present (E) and then Checks_May_Be_Suppressed (E) then
6198 return Is_Check_Suppressed (E, Index_Check);
6199 else
6200 return Scope_Suppress.Suppress (Index_Check);
6201 end if;
6202 end Index_Checks_Suppressed;
6204 ----------------
6205 -- Initialize --
6206 ----------------
6208 procedure Initialize is
6209 begin
6210 for J in Determine_Range_Cache_N'Range loop
6211 Determine_Range_Cache_N (J) := Empty;
6212 end loop;
6214 Check_Names.Init;
6216 for J in Int range 1 .. All_Checks loop
6217 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
6218 end loop;
6219 end Initialize;
6221 -------------------------
6222 -- Insert_Range_Checks --
6223 -------------------------
6225 procedure Insert_Range_Checks
6226 (Checks : Check_Result;
6227 Node : Node_Id;
6228 Suppress_Typ : Entity_Id;
6229 Static_Sloc : Source_Ptr := No_Location;
6230 Flag_Node : Node_Id := Empty;
6231 Do_Before : Boolean := False)
6233 Internal_Flag_Node : Node_Id := Flag_Node;
6234 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
6236 Check_Node : Node_Id;
6237 Checks_On : constant Boolean :=
6238 (not Index_Checks_Suppressed (Suppress_Typ))
6239 or else (not Range_Checks_Suppressed (Suppress_Typ));
6241 begin
6242 -- For now we just return if Checks_On is false, however this should be
6243 -- enhanced to check for an always True value in the condition and to
6244 -- generate a compilation warning???
6246 if not Full_Expander_Active or else not Checks_On then
6247 return;
6248 end if;
6250 if Static_Sloc = No_Location then
6251 Internal_Static_Sloc := Sloc (Node);
6252 end if;
6254 if No (Flag_Node) then
6255 Internal_Flag_Node := Node;
6256 end if;
6258 for J in 1 .. 2 loop
6259 exit when No (Checks (J));
6261 if Nkind (Checks (J)) = N_Raise_Constraint_Error
6262 and then Present (Condition (Checks (J)))
6263 then
6264 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
6265 Check_Node := Checks (J);
6266 Mark_Rewrite_Insertion (Check_Node);
6268 if Do_Before then
6269 Insert_Before_And_Analyze (Node, Check_Node);
6270 else
6271 Insert_After_And_Analyze (Node, Check_Node);
6272 end if;
6274 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
6275 end if;
6277 else
6278 Check_Node :=
6279 Make_Raise_Constraint_Error (Internal_Static_Sloc,
6280 Reason => CE_Range_Check_Failed);
6281 Mark_Rewrite_Insertion (Check_Node);
6283 if Do_Before then
6284 Insert_Before_And_Analyze (Node, Check_Node);
6285 else
6286 Insert_After_And_Analyze (Node, Check_Node);
6287 end if;
6288 end if;
6289 end loop;
6290 end Insert_Range_Checks;
6292 ------------------------
6293 -- Insert_Valid_Check --
6294 ------------------------
6296 procedure Insert_Valid_Check (Expr : Node_Id) is
6297 Loc : constant Source_Ptr := Sloc (Expr);
6298 Typ : constant Entity_Id := Etype (Expr);
6299 Exp : Node_Id;
6301 begin
6302 -- Do not insert if checks off, or if not checking validity or
6303 -- if expression is known to be valid
6305 if not Validity_Checks_On
6306 or else Range_Or_Validity_Checks_Suppressed (Expr)
6307 or else Expr_Known_Valid (Expr)
6308 then
6309 return;
6310 end if;
6312 -- Do not insert checks within a predicate function. This will arise
6313 -- if the current unit and the predicate function are being compiled
6314 -- with validity checks enabled.
6316 if Present (Predicate_Function (Typ))
6317 and then Current_Scope = Predicate_Function (Typ)
6318 then
6319 return;
6320 end if;
6322 -- If we have a checked conversion, then validity check applies to
6323 -- the expression inside the conversion, not the result, since if
6324 -- the expression inside is valid, then so is the conversion result.
6326 Exp := Expr;
6327 while Nkind (Exp) = N_Type_Conversion loop
6328 Exp := Expression (Exp);
6329 end loop;
6331 -- We are about to insert the validity check for Exp. We save and
6332 -- reset the Do_Range_Check flag over this validity check, and then
6333 -- put it back for the final original reference (Exp may be rewritten).
6335 declare
6336 DRC : constant Boolean := Do_Range_Check (Exp);
6337 PV : Node_Id;
6338 CE : Node_Id;
6340 begin
6341 Set_Do_Range_Check (Exp, False);
6343 -- Force evaluation to avoid multiple reads for atomic/volatile
6345 if Is_Entity_Name (Exp)
6346 and then Is_Volatile (Entity (Exp))
6347 then
6348 Force_Evaluation (Exp, Name_Req => True);
6349 end if;
6351 -- Build the prefix for the 'Valid call
6353 PV := Duplicate_Subexpr_No_Checks (Exp, Name_Req => True);
6355 -- A rather specialized kludge. If PV is an analyzed expression
6356 -- which is an indexed component of a packed array that has not
6357 -- been properly expanded, turn off its Analyzed flag to make sure
6358 -- it gets properly reexpanded.
6360 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
6361 -- an analyze with the old parent pointer. This may point e.g. to
6362 -- a subprogram call, which deactivates this expansion.
6364 if Analyzed (PV)
6365 and then Nkind (PV) = N_Indexed_Component
6366 and then Present (Packed_Array_Type (Etype (Prefix (PV))))
6367 then
6368 Set_Analyzed (PV, False);
6369 end if;
6371 -- Build the raise CE node to check for validity
6373 CE :=
6374 Make_Raise_Constraint_Error (Loc,
6375 Condition =>
6376 Make_Op_Not (Loc,
6377 Right_Opnd =>
6378 Make_Attribute_Reference (Loc,
6379 Prefix => PV,
6380 Attribute_Name => Name_Valid)),
6381 Reason => CE_Invalid_Data);
6383 -- Insert the validity check. Note that we do this with validity
6384 -- checks turned off, to avoid recursion, we do not want validity
6385 -- checks on the validity checking code itself!
6387 Insert_Action (Expr, CE, Suppress => Validity_Check);
6389 -- If the expression is a reference to an element of a bit-packed
6390 -- array, then it is rewritten as a renaming declaration. If the
6391 -- expression is an actual in a call, it has not been expanded,
6392 -- waiting for the proper point at which to do it. The same happens
6393 -- with renamings, so that we have to force the expansion now. This
6394 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
6395 -- and exp_ch6.adb.
6397 if Is_Entity_Name (Exp)
6398 and then Nkind (Parent (Entity (Exp))) =
6399 N_Object_Renaming_Declaration
6400 then
6401 declare
6402 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
6403 begin
6404 if Nkind (Old_Exp) = N_Indexed_Component
6405 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
6406 then
6407 Expand_Packed_Element_Reference (Old_Exp);
6408 end if;
6409 end;
6410 end if;
6412 -- Put back the Do_Range_Check flag on the resulting (possibly
6413 -- rewritten) expression.
6415 -- Note: it might be thought that a validity check is not required
6416 -- when a range check is present, but that's not the case, because
6417 -- the back end is allowed to assume for the range check that the
6418 -- operand is within its declared range (an assumption that validity
6419 -- checking is all about NOT assuming!)
6421 -- Note: no need to worry about Possible_Local_Raise here, it will
6422 -- already have been called if original node has Do_Range_Check set.
6424 Set_Do_Range_Check (Exp, DRC);
6425 end;
6426 end Insert_Valid_Check;
6428 -------------------------------------
6429 -- Is_Signed_Integer_Arithmetic_Op --
6430 -------------------------------------
6432 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
6433 begin
6434 case Nkind (N) is
6435 when N_Op_Abs | N_Op_Add | N_Op_Divide | N_Op_Expon |
6436 N_Op_Minus | N_Op_Mod | N_Op_Multiply | N_Op_Plus |
6437 N_Op_Rem | N_Op_Subtract =>
6438 return Is_Signed_Integer_Type (Etype (N));
6440 when N_If_Expression | N_Case_Expression =>
6441 return Is_Signed_Integer_Type (Etype (N));
6443 when others =>
6444 return False;
6445 end case;
6446 end Is_Signed_Integer_Arithmetic_Op;
6448 ----------------------------------
6449 -- Install_Null_Excluding_Check --
6450 ----------------------------------
6452 procedure Install_Null_Excluding_Check (N : Node_Id) is
6453 Loc : constant Source_Ptr := Sloc (Parent (N));
6454 Typ : constant Entity_Id := Etype (N);
6456 function Safe_To_Capture_In_Parameter_Value return Boolean;
6457 -- Determines if it is safe to capture Known_Non_Null status for an
6458 -- the entity referenced by node N. The caller ensures that N is indeed
6459 -- an entity name. It is safe to capture the non-null status for an IN
6460 -- parameter when the reference occurs within a declaration that is sure
6461 -- to be executed as part of the declarative region.
6463 procedure Mark_Non_Null;
6464 -- After installation of check, if the node in question is an entity
6465 -- name, then mark this entity as non-null if possible.
6467 function Safe_To_Capture_In_Parameter_Value return Boolean is
6468 E : constant Entity_Id := Entity (N);
6469 S : constant Entity_Id := Current_Scope;
6470 S_Par : Node_Id;
6472 begin
6473 if Ekind (E) /= E_In_Parameter then
6474 return False;
6475 end if;
6477 -- Two initial context checks. We must be inside a subprogram body
6478 -- with declarations and reference must not appear in nested scopes.
6480 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
6481 or else Scope (E) /= S
6482 then
6483 return False;
6484 end if;
6486 S_Par := Parent (Parent (S));
6488 if Nkind (S_Par) /= N_Subprogram_Body
6489 or else No (Declarations (S_Par))
6490 then
6491 return False;
6492 end if;
6494 declare
6495 N_Decl : Node_Id;
6496 P : Node_Id;
6498 begin
6499 -- Retrieve the declaration node of N (if any). Note that N
6500 -- may be a part of a complex initialization expression.
6502 P := Parent (N);
6503 N_Decl := Empty;
6504 while Present (P) loop
6506 -- If we have a short circuit form, and we are within the right
6507 -- hand expression, we return false, since the right hand side
6508 -- is not guaranteed to be elaborated.
6510 if Nkind (P) in N_Short_Circuit
6511 and then N = Right_Opnd (P)
6512 then
6513 return False;
6514 end if;
6516 -- Similarly, if we are in an if expression and not part of the
6517 -- condition, then we return False, since neither the THEN or
6518 -- ELSE dependent expressions will always be elaborated.
6520 if Nkind (P) = N_If_Expression
6521 and then N /= First (Expressions (P))
6522 then
6523 return False;
6524 end if;
6526 -- If we are in a case expression, and not part of the
6527 -- expression, then we return False, since a particular
6528 -- dependent expression may not always be elaborated
6530 if Nkind (P) = N_Case_Expression
6531 and then N /= Expression (P)
6532 then
6533 return False;
6534 end if;
6536 -- While traversing the parent chain, we find that N
6537 -- belongs to a statement, thus it may never appear in
6538 -- a declarative region.
6540 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
6541 or else Nkind (P) = N_Procedure_Call_Statement
6542 then
6543 return False;
6544 end if;
6546 -- If we are at a declaration, record it and exit
6548 if Nkind (P) in N_Declaration
6549 and then Nkind (P) not in N_Subprogram_Specification
6550 then
6551 N_Decl := P;
6552 exit;
6553 end if;
6555 P := Parent (P);
6556 end loop;
6558 if No (N_Decl) then
6559 return False;
6560 end if;
6562 return List_Containing (N_Decl) = Declarations (S_Par);
6563 end;
6564 end Safe_To_Capture_In_Parameter_Value;
6566 -------------------
6567 -- Mark_Non_Null --
6568 -------------------
6570 procedure Mark_Non_Null is
6571 begin
6572 -- Only case of interest is if node N is an entity name
6574 if Is_Entity_Name (N) then
6576 -- For sure, we want to clear an indication that this is known to
6577 -- be null, since if we get past this check, it definitely is not!
6579 Set_Is_Known_Null (Entity (N), False);
6581 -- We can mark the entity as known to be non-null if either it is
6582 -- safe to capture the value, or in the case of an IN parameter,
6583 -- which is a constant, if the check we just installed is in the
6584 -- declarative region of the subprogram body. In this latter case,
6585 -- a check is decisive for the rest of the body if the expression
6586 -- is sure to be elaborated, since we know we have to elaborate
6587 -- all declarations before executing the body.
6589 -- Couldn't this always be part of Safe_To_Capture_Value ???
6591 if Safe_To_Capture_Value (N, Entity (N))
6592 or else Safe_To_Capture_In_Parameter_Value
6593 then
6594 Set_Is_Known_Non_Null (Entity (N));
6595 end if;
6596 end if;
6597 end Mark_Non_Null;
6599 -- Start of processing for Install_Null_Excluding_Check
6601 begin
6602 pragma Assert (Is_Access_Type (Typ));
6604 -- No check inside a generic (why not???)
6606 if Inside_A_Generic then
6607 return;
6608 end if;
6610 -- No check needed if known to be non-null
6612 if Known_Non_Null (N) then
6613 return;
6614 end if;
6616 -- If known to be null, here is where we generate a compile time check
6618 if Known_Null (N) then
6620 -- Avoid generating warning message inside init procs
6622 if not Inside_Init_Proc then
6623 Apply_Compile_Time_Constraint_Error
6625 "null value not allowed here??",
6626 CE_Access_Check_Failed);
6627 else
6628 Insert_Action (N,
6629 Make_Raise_Constraint_Error (Loc,
6630 Reason => CE_Access_Check_Failed));
6631 end if;
6633 Mark_Non_Null;
6634 return;
6635 end if;
6637 -- If entity is never assigned, for sure a warning is appropriate
6639 if Is_Entity_Name (N) then
6640 Check_Unset_Reference (N);
6641 end if;
6643 -- No check needed if checks are suppressed on the range. Note that we
6644 -- don't set Is_Known_Non_Null in this case (we could legitimately do
6645 -- so, since the program is erroneous, but we don't like to casually
6646 -- propagate such conclusions from erroneosity).
6648 if Access_Checks_Suppressed (Typ) then
6649 return;
6650 end if;
6652 -- No check needed for access to concurrent record types generated by
6653 -- the expander. This is not just an optimization (though it does indeed
6654 -- remove junk checks). It also avoids generation of junk warnings.
6656 if Nkind (N) in N_Has_Chars
6657 and then Chars (N) = Name_uObject
6658 and then Is_Concurrent_Record_Type
6659 (Directly_Designated_Type (Etype (N)))
6660 then
6661 return;
6662 end if;
6664 -- No check needed in interface thunks since the runtime check is
6665 -- already performed at the caller side.
6667 if Is_Thunk (Current_Scope) then
6668 return;
6669 end if;
6671 -- No check needed for the Get_Current_Excep.all.all idiom generated by
6672 -- the expander within exception handlers, since we know that the value
6673 -- can never be null.
6675 -- Is this really the right way to do this? Normally we generate such
6676 -- code in the expander with checks off, and that's how we suppress this
6677 -- kind of junk check ???
6679 if Nkind (N) = N_Function_Call
6680 and then Nkind (Name (N)) = N_Explicit_Dereference
6681 and then Nkind (Prefix (Name (N))) = N_Identifier
6682 and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
6683 then
6684 return;
6685 end if;
6687 -- Otherwise install access check
6689 Insert_Action (N,
6690 Make_Raise_Constraint_Error (Loc,
6691 Condition =>
6692 Make_Op_Eq (Loc,
6693 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
6694 Right_Opnd => Make_Null (Loc)),
6695 Reason => CE_Access_Check_Failed));
6697 Mark_Non_Null;
6698 end Install_Null_Excluding_Check;
6700 --------------------------
6701 -- Install_Static_Check --
6702 --------------------------
6704 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
6705 Stat : constant Boolean := Is_Static_Expression (R_Cno);
6706 Typ : constant Entity_Id := Etype (R_Cno);
6708 begin
6709 Rewrite (R_Cno,
6710 Make_Raise_Constraint_Error (Loc,
6711 Reason => CE_Range_Check_Failed));
6712 Set_Analyzed (R_Cno);
6713 Set_Etype (R_Cno, Typ);
6714 Set_Raises_Constraint_Error (R_Cno);
6715 Set_Is_Static_Expression (R_Cno, Stat);
6717 -- Now deal with possible local raise handling
6719 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
6720 end Install_Static_Check;
6722 -------------------------
6723 -- Is_Check_Suppressed --
6724 -------------------------
6726 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
6727 Ptr : Suppress_Stack_Entry_Ptr;
6729 begin
6730 -- First search the local entity suppress stack. We search this from the
6731 -- top of the stack down so that we get the innermost entry that applies
6732 -- to this case if there are nested entries.
6734 Ptr := Local_Suppress_Stack_Top;
6735 while Ptr /= null loop
6736 if (Ptr.Entity = Empty or else Ptr.Entity = E)
6737 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
6738 then
6739 return Ptr.Suppress;
6740 end if;
6742 Ptr := Ptr.Prev;
6743 end loop;
6745 -- Now search the global entity suppress table for a matching entry.
6746 -- We also search this from the top down so that if there are multiple
6747 -- pragmas for the same entity, the last one applies (not clear what
6748 -- or whether the RM specifies this handling, but it seems reasonable).
6750 Ptr := Global_Suppress_Stack_Top;
6751 while Ptr /= null loop
6752 if (Ptr.Entity = Empty or else Ptr.Entity = E)
6753 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
6754 then
6755 return Ptr.Suppress;
6756 end if;
6758 Ptr := Ptr.Prev;
6759 end loop;
6761 -- If we did not find a matching entry, then use the normal scope
6762 -- suppress value after all (actually this will be the global setting
6763 -- since it clearly was not overridden at any point). For a predefined
6764 -- check, we test the specific flag. For a user defined check, we check
6765 -- the All_Checks flag. The Overflow flag requires special handling to
6766 -- deal with the General vs Assertion case
6768 if C = Overflow_Check then
6769 return Overflow_Checks_Suppressed (Empty);
6770 elsif C in Predefined_Check_Id then
6771 return Scope_Suppress.Suppress (C);
6772 else
6773 return Scope_Suppress.Suppress (All_Checks);
6774 end if;
6775 end Is_Check_Suppressed;
6777 ---------------------
6778 -- Kill_All_Checks --
6779 ---------------------
6781 procedure Kill_All_Checks is
6782 begin
6783 if Debug_Flag_CC then
6784 w ("Kill_All_Checks");
6785 end if;
6787 -- We reset the number of saved checks to zero, and also modify all
6788 -- stack entries for statement ranges to indicate that the number of
6789 -- checks at each level is now zero.
6791 Num_Saved_Checks := 0;
6793 -- Note: the Int'Min here avoids any possibility of J being out of
6794 -- range when called from e.g. Conditional_Statements_Begin.
6796 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
6797 Saved_Checks_Stack (J) := 0;
6798 end loop;
6799 end Kill_All_Checks;
6801 -----------------
6802 -- Kill_Checks --
6803 -----------------
6805 procedure Kill_Checks (V : Entity_Id) is
6806 begin
6807 if Debug_Flag_CC then
6808 w ("Kill_Checks for entity", Int (V));
6809 end if;
6811 for J in 1 .. Num_Saved_Checks loop
6812 if Saved_Checks (J).Entity = V then
6813 if Debug_Flag_CC then
6814 w (" Checks killed for saved check ", J);
6815 end if;
6817 Saved_Checks (J).Killed := True;
6818 end if;
6819 end loop;
6820 end Kill_Checks;
6822 ------------------------------
6823 -- Length_Checks_Suppressed --
6824 ------------------------------
6826 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
6827 begin
6828 if Present (E) and then Checks_May_Be_Suppressed (E) then
6829 return Is_Check_Suppressed (E, Length_Check);
6830 else
6831 return Scope_Suppress.Suppress (Length_Check);
6832 end if;
6833 end Length_Checks_Suppressed;
6835 -----------------------
6836 -- Make_Bignum_Block --
6837 -----------------------
6839 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
6840 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
6842 begin
6843 return
6844 Make_Block_Statement (Loc,
6845 Declarations => New_List (
6846 Make_Object_Declaration (Loc,
6847 Defining_Identifier => M,
6848 Object_Definition =>
6849 New_Occurrence_Of (RTE (RE_Mark_Id), Loc),
6850 Expression =>
6851 Make_Function_Call (Loc,
6852 Name => New_Reference_To (RTE (RE_SS_Mark), Loc)))),
6854 Handled_Statement_Sequence =>
6855 Make_Handled_Sequence_Of_Statements (Loc,
6856 Statements => New_List (
6857 Make_Procedure_Call_Statement (Loc,
6858 Name => New_Occurrence_Of (RTE (RE_SS_Release), Loc),
6859 Parameter_Associations => New_List (
6860 New_Reference_To (M, Loc))))));
6861 end Make_Bignum_Block;
6863 ----------------------------------
6864 -- Minimize_Eliminate_Overflows --
6865 ----------------------------------
6867 -- This is a recursive routine that is called at the top of an expression
6868 -- tree to properly process overflow checking for a whole subtree by making
6869 -- recursive calls to process operands. This processing may involve the use
6870 -- of bignum or long long integer arithmetic, which will change the types
6871 -- of operands and results. That's why we can't do this bottom up (since
6872 -- it would interfere with semantic analysis).
6874 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
6875 -- the operator expansion routines, as well as the expansion routines for
6876 -- if/case expression, do nothing (for the moment) except call the routine
6877 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
6878 -- routine does nothing for non top-level nodes, so at the point where the
6879 -- call is made for the top level node, the entire expression subtree has
6880 -- not been expanded, or processed for overflow. All that has to happen as
6881 -- a result of the top level call to this routine.
6883 -- As noted above, the overflow processing works by making recursive calls
6884 -- for the operands, and figuring out what to do, based on the processing
6885 -- of these operands (e.g. if a bignum operand appears, the parent op has
6886 -- to be done in bignum mode), and the determined ranges of the operands.
6888 -- After possible rewriting of a constituent subexpression node, a call is
6889 -- made to either reexpand the node (if nothing has changed) or reanalyze
6890 -- the node (if it has been modified by the overflow check processing). The
6891 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
6892 -- a recursive call into the whole overflow apparatus, an important rule
6893 -- for this call is that the overflow handling mode must be temporarily set
6894 -- to STRICT.
6896 procedure Minimize_Eliminate_Overflows
6897 (N : Node_Id;
6898 Lo : out Uint;
6899 Hi : out Uint;
6900 Top_Level : Boolean)
6902 Rtyp : constant Entity_Id := Etype (N);
6903 pragma Assert (Is_Signed_Integer_Type (Rtyp));
6904 -- Result type, must be a signed integer type
6906 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
6907 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
6909 Loc : constant Source_Ptr := Sloc (N);
6911 Rlo, Rhi : Uint;
6912 -- Ranges of values for right operand (operator case)
6914 Llo, Lhi : Uint;
6915 -- Ranges of values for left operand (operator case)
6917 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
6918 -- Operands and results are of this type when we convert
6920 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
6921 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
6922 -- Bounds of Long_Long_Integer
6924 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
6925 -- Indicates binary operator case
6927 OK : Boolean;
6928 -- Used in call to Determine_Range
6930 Bignum_Operands : Boolean;
6931 -- Set True if one or more operands is already of type Bignum, meaning
6932 -- that for sure (regardless of Top_Level setting) we are committed to
6933 -- doing the operation in Bignum mode (or in the case of a case or if
6934 -- expression, converting all the dependent expressions to Bignum).
6936 Long_Long_Integer_Operands : Boolean;
6937 -- Set True if one or more operands is already of type Long_Long_Integer
6938 -- which means that if the result is known to be in the result type
6939 -- range, then we must convert such operands back to the result type.
6941 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
6942 -- This is called when we have modified the node and we therefore need
6943 -- to reanalyze it. It is important that we reset the mode to STRICT for
6944 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
6945 -- we would reenter this routine recursively which would not be good!
6946 -- The argument Suppress is set True if we also want to suppress
6947 -- overflow checking for the reexpansion (this is set when we know
6948 -- overflow is not possible). Typ is the type for the reanalysis.
6950 procedure Reexpand (Suppress : Boolean := False);
6951 -- This is like Reanalyze, but does not do the Analyze step, it only
6952 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
6953 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
6954 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
6955 -- Note that skipping reanalysis is not just an optimization, testing
6956 -- has showed up several complex cases in which reanalyzing an already
6957 -- analyzed node causes incorrect behavior.
6959 function In_Result_Range return Boolean;
6960 -- Returns True iff Lo .. Hi are within range of the result type
6962 procedure Max (A : in out Uint; B : Uint);
6963 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
6965 procedure Min (A : in out Uint; B : Uint);
6966 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
6968 ---------------------
6969 -- In_Result_Range --
6970 ---------------------
6972 function In_Result_Range return Boolean is
6973 begin
6974 if Lo = No_Uint or else Hi = No_Uint then
6975 return False;
6977 elsif Is_Static_Subtype (Etype (N)) then
6978 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
6979 and then
6980 Hi <= Expr_Value (Type_High_Bound (Rtyp));
6982 else
6983 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
6984 and then
6985 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
6986 end if;
6987 end In_Result_Range;
6989 ---------
6990 -- Max --
6991 ---------
6993 procedure Max (A : in out Uint; B : Uint) is
6994 begin
6995 if A = No_Uint or else B > A then
6996 A := B;
6997 end if;
6998 end Max;
7000 ---------
7001 -- Min --
7002 ---------
7004 procedure Min (A : in out Uint; B : Uint) is
7005 begin
7006 if A = No_Uint or else B < A then
7007 A := B;
7008 end if;
7009 end Min;
7011 ---------------
7012 -- Reanalyze --
7013 ---------------
7015 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
7016 Svg : constant Overflow_Mode_Type :=
7017 Scope_Suppress.Overflow_Mode_General;
7018 Sva : constant Overflow_Mode_Type :=
7019 Scope_Suppress.Overflow_Mode_Assertions;
7020 Svo : constant Boolean :=
7021 Scope_Suppress.Suppress (Overflow_Check);
7023 begin
7024 Scope_Suppress.Overflow_Mode_General := Strict;
7025 Scope_Suppress.Overflow_Mode_Assertions := Strict;
7027 if Suppress then
7028 Scope_Suppress.Suppress (Overflow_Check) := True;
7029 end if;
7031 Analyze_And_Resolve (N, Typ);
7033 Scope_Suppress.Suppress (Overflow_Check) := Svo;
7034 Scope_Suppress.Overflow_Mode_General := Svg;
7035 Scope_Suppress.Overflow_Mode_Assertions := Sva;
7036 end Reanalyze;
7038 --------------
7039 -- Reexpand --
7040 --------------
7042 procedure Reexpand (Suppress : Boolean := False) is
7043 Svg : constant Overflow_Mode_Type :=
7044 Scope_Suppress.Overflow_Mode_General;
7045 Sva : constant Overflow_Mode_Type :=
7046 Scope_Suppress.Overflow_Mode_Assertions;
7047 Svo : constant Boolean :=
7048 Scope_Suppress.Suppress (Overflow_Check);
7050 begin
7051 Scope_Suppress.Overflow_Mode_General := Strict;
7052 Scope_Suppress.Overflow_Mode_Assertions := Strict;
7053 Set_Analyzed (N, False);
7055 if Suppress then
7056 Scope_Suppress.Suppress (Overflow_Check) := True;
7057 end if;
7059 Expand (N);
7061 Scope_Suppress.Suppress (Overflow_Check) := Svo;
7062 Scope_Suppress.Overflow_Mode_General := Svg;
7063 Scope_Suppress.Overflow_Mode_Assertions := Sva;
7064 end Reexpand;
7066 -- Start of processing for Minimize_Eliminate_Overflows
7068 begin
7069 -- Case where we do not have a signed integer arithmetic operation
7071 if not Is_Signed_Integer_Arithmetic_Op (N) then
7073 -- Use the normal Determine_Range routine to get the range. We
7074 -- don't require operands to be valid, invalid values may result in
7075 -- rubbish results where the result has not been properly checked for
7076 -- overflow, that's fine!
7078 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
7080 -- If Determine_Range did not work (can this in fact happen? Not
7081 -- clear but might as well protect), use type bounds.
7083 if not OK then
7084 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
7085 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
7086 end if;
7088 -- If we don't have a binary operator, all we have to do is to set
7089 -- the Hi/Lo range, so we are done
7091 return;
7093 -- Processing for if expression
7095 elsif Nkind (N) = N_If_Expression then
7096 declare
7097 Then_DE : constant Node_Id := Next (First (Expressions (N)));
7098 Else_DE : constant Node_Id := Next (Then_DE);
7100 begin
7101 Bignum_Operands := False;
7103 Minimize_Eliminate_Overflows
7104 (Then_DE, Lo, Hi, Top_Level => False);
7106 if Lo = No_Uint then
7107 Bignum_Operands := True;
7108 end if;
7110 Minimize_Eliminate_Overflows
7111 (Else_DE, Rlo, Rhi, Top_Level => False);
7113 if Rlo = No_Uint then
7114 Bignum_Operands := True;
7115 else
7116 Long_Long_Integer_Operands :=
7117 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
7119 Min (Lo, Rlo);
7120 Max (Hi, Rhi);
7121 end if;
7123 -- If at least one of our operands is now Bignum, we must rebuild
7124 -- the if expression to use Bignum operands. We will analyze the
7125 -- rebuilt if expression with overflow checks off, since once we
7126 -- are in bignum mode, we are all done with overflow checks!
7128 if Bignum_Operands then
7129 Rewrite (N,
7130 Make_If_Expression (Loc,
7131 Expressions => New_List (
7132 Remove_Head (Expressions (N)),
7133 Convert_To_Bignum (Then_DE),
7134 Convert_To_Bignum (Else_DE)),
7135 Is_Elsif => Is_Elsif (N)));
7137 Reanalyze (RTE (RE_Bignum), Suppress => True);
7139 -- If we have no Long_Long_Integer operands, then we are in result
7140 -- range, since it means that none of our operands felt the need
7141 -- to worry about overflow (otherwise it would have already been
7142 -- converted to long long integer or bignum). We reexpand to
7143 -- complete the expansion of the if expression (but we do not
7144 -- need to reanalyze).
7146 elsif not Long_Long_Integer_Operands then
7147 Set_Do_Overflow_Check (N, False);
7148 Reexpand;
7150 -- Otherwise convert us to long long integer mode. Note that we
7151 -- don't need any further overflow checking at this level.
7153 else
7154 Convert_To_And_Rewrite (LLIB, Then_DE);
7155 Convert_To_And_Rewrite (LLIB, Else_DE);
7156 Set_Etype (N, LLIB);
7158 -- Now reanalyze with overflow checks off
7160 Set_Do_Overflow_Check (N, False);
7161 Reanalyze (LLIB, Suppress => True);
7162 end if;
7163 end;
7165 return;
7167 -- Here for case expression
7169 elsif Nkind (N) = N_Case_Expression then
7170 Bignum_Operands := False;
7171 Long_Long_Integer_Operands := False;
7173 declare
7174 Alt : Node_Id;
7176 begin
7177 -- Loop through expressions applying recursive call
7179 Alt := First (Alternatives (N));
7180 while Present (Alt) loop
7181 declare
7182 Aexp : constant Node_Id := Expression (Alt);
7184 begin
7185 Minimize_Eliminate_Overflows
7186 (Aexp, Lo, Hi, Top_Level => False);
7188 if Lo = No_Uint then
7189 Bignum_Operands := True;
7190 elsif Etype (Aexp) = LLIB then
7191 Long_Long_Integer_Operands := True;
7192 end if;
7193 end;
7195 Next (Alt);
7196 end loop;
7198 -- If we have no bignum or long long integer operands, it means
7199 -- that none of our dependent expressions could raise overflow.
7200 -- In this case, we simply return with no changes except for
7201 -- resetting the overflow flag, since we are done with overflow
7202 -- checks for this node. We will reexpand to get the needed
7203 -- expansion for the case expression, but we do not need to
7204 -- reanalyze, since nothing has changed.
7206 if not (Bignum_Operands or Long_Long_Integer_Operands) then
7207 Set_Do_Overflow_Check (N, False);
7208 Reexpand (Suppress => True);
7210 -- Otherwise we are going to rebuild the case expression using
7211 -- either bignum or long long integer operands throughout.
7213 else
7214 declare
7215 Rtype : Entity_Id;
7216 New_Alts : List_Id;
7217 New_Exp : Node_Id;
7219 begin
7220 New_Alts := New_List;
7221 Alt := First (Alternatives (N));
7222 while Present (Alt) loop
7223 if Bignum_Operands then
7224 New_Exp := Convert_To_Bignum (Expression (Alt));
7225 Rtype := RTE (RE_Bignum);
7226 else
7227 New_Exp := Convert_To (LLIB, Expression (Alt));
7228 Rtype := LLIB;
7229 end if;
7231 Append_To (New_Alts,
7232 Make_Case_Expression_Alternative (Sloc (Alt),
7233 Actions => No_List,
7234 Discrete_Choices => Discrete_Choices (Alt),
7235 Expression => New_Exp));
7237 Next (Alt);
7238 end loop;
7240 Rewrite (N,
7241 Make_Case_Expression (Loc,
7242 Expression => Expression (N),
7243 Alternatives => New_Alts));
7245 Reanalyze (Rtype, Suppress => True);
7246 end;
7247 end if;
7248 end;
7250 return;
7251 end if;
7253 -- If we have an arithmetic operator we make recursive calls on the
7254 -- operands to get the ranges (and to properly process the subtree
7255 -- that lies below us!)
7257 Minimize_Eliminate_Overflows
7258 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
7260 if Binary then
7261 Minimize_Eliminate_Overflows
7262 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
7263 end if;
7265 -- Record if we have Long_Long_Integer operands
7267 Long_Long_Integer_Operands :=
7268 Etype (Right_Opnd (N)) = LLIB
7269 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
7271 -- If either operand is a bignum, then result will be a bignum and we
7272 -- don't need to do any range analysis. As previously discussed we could
7273 -- do range analysis in such cases, but it could mean working with giant
7274 -- numbers at compile time for very little gain (the number of cases
7275 -- in which we could slip back from bignum mode is small).
7277 if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
7278 Lo := No_Uint;
7279 Hi := No_Uint;
7280 Bignum_Operands := True;
7282 -- Otherwise compute result range
7284 else
7285 Bignum_Operands := False;
7287 case Nkind (N) is
7289 -- Absolute value
7291 when N_Op_Abs =>
7292 Lo := Uint_0;
7293 Hi := UI_Max (abs Rlo, abs Rhi);
7295 -- Addition
7297 when N_Op_Add =>
7298 Lo := Llo + Rlo;
7299 Hi := Lhi + Rhi;
7301 -- Division
7303 when N_Op_Divide =>
7305 -- If the right operand can only be zero, set 0..0
7307 if Rlo = 0 and then Rhi = 0 then
7308 Lo := Uint_0;
7309 Hi := Uint_0;
7311 -- Possible bounds of division must come from dividing end
7312 -- values of the input ranges (four possibilities), provided
7313 -- zero is not included in the possible values of the right
7314 -- operand.
7316 -- Otherwise, we just consider two intervals of values for
7317 -- the right operand: the interval of negative values (up to
7318 -- -1) and the interval of positive values (starting at 1).
7319 -- Since division by 1 is the identity, and division by -1
7320 -- is negation, we get all possible bounds of division in that
7321 -- case by considering:
7322 -- - all values from the division of end values of input
7323 -- ranges;
7324 -- - the end values of the left operand;
7325 -- - the negation of the end values of the left operand.
7327 else
7328 declare
7329 Mrk : constant Uintp.Save_Mark := Mark;
7330 -- Mark so we can release the RR and Ev values
7332 Ev1 : Uint;
7333 Ev2 : Uint;
7334 Ev3 : Uint;
7335 Ev4 : Uint;
7337 begin
7338 -- Discard extreme values of zero for the divisor, since
7339 -- they will simply result in an exception in any case.
7341 if Rlo = 0 then
7342 Rlo := Uint_1;
7343 elsif Rhi = 0 then
7344 Rhi := -Uint_1;
7345 end if;
7347 -- Compute possible bounds coming from dividing end
7348 -- values of the input ranges.
7350 Ev1 := Llo / Rlo;
7351 Ev2 := Llo / Rhi;
7352 Ev3 := Lhi / Rlo;
7353 Ev4 := Lhi / Rhi;
7355 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
7356 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
7358 -- If the right operand can be both negative or positive,
7359 -- include the end values of the left operand in the
7360 -- extreme values, as well as their negation.
7362 if Rlo < 0 and then Rhi > 0 then
7363 Ev1 := Llo;
7364 Ev2 := -Llo;
7365 Ev3 := Lhi;
7366 Ev4 := -Lhi;
7368 Min (Lo,
7369 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
7370 Max (Hi,
7371 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
7372 end if;
7374 -- Release the RR and Ev values
7376 Release_And_Save (Mrk, Lo, Hi);
7377 end;
7378 end if;
7380 -- Exponentiation
7382 when N_Op_Expon =>
7384 -- Discard negative values for the exponent, since they will
7385 -- simply result in an exception in any case.
7387 if Rhi < 0 then
7388 Rhi := Uint_0;
7389 elsif Rlo < 0 then
7390 Rlo := Uint_0;
7391 end if;
7393 -- Estimate number of bits in result before we go computing
7394 -- giant useless bounds. Basically the number of bits in the
7395 -- result is the number of bits in the base multiplied by the
7396 -- value of the exponent. If this is big enough that the result
7397 -- definitely won't fit in Long_Long_Integer, switch to bignum
7398 -- mode immediately, and avoid computing giant bounds.
7400 -- The comparison here is approximate, but conservative, it
7401 -- only clicks on cases that are sure to exceed the bounds.
7403 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
7404 Lo := No_Uint;
7405 Hi := No_Uint;
7407 -- If right operand is zero then result is 1
7409 elsif Rhi = 0 then
7410 Lo := Uint_1;
7411 Hi := Uint_1;
7413 else
7414 -- High bound comes either from exponentiation of largest
7415 -- positive value to largest exponent value, or from
7416 -- the exponentiation of most negative value to an
7417 -- even exponent.
7419 declare
7420 Hi1, Hi2 : Uint;
7422 begin
7423 if Lhi > 0 then
7424 Hi1 := Lhi ** Rhi;
7425 else
7426 Hi1 := Uint_0;
7427 end if;
7429 if Llo < 0 then
7430 if Rhi mod 2 = 0 then
7431 Hi2 := Llo ** Rhi;
7432 else
7433 Hi2 := Llo ** (Rhi - 1);
7434 end if;
7435 else
7436 Hi2 := Uint_0;
7437 end if;
7439 Hi := UI_Max (Hi1, Hi2);
7440 end;
7442 -- Result can only be negative if base can be negative
7444 if Llo < 0 then
7445 if Rhi mod 2 = 0 then
7446 Lo := Llo ** (Rhi - 1);
7447 else
7448 Lo := Llo ** Rhi;
7449 end if;
7451 -- Otherwise low bound is minimum ** minimum
7453 else
7454 Lo := Llo ** Rlo;
7455 end if;
7456 end if;
7458 -- Negation
7460 when N_Op_Minus =>
7461 Lo := -Rhi;
7462 Hi := -Rlo;
7464 -- Mod
7466 when N_Op_Mod =>
7467 declare
7468 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
7469 -- This is the maximum absolute value of the result
7471 begin
7472 Lo := Uint_0;
7473 Hi := Uint_0;
7475 -- The result depends only on the sign and magnitude of
7476 -- the right operand, it does not depend on the sign or
7477 -- magnitude of the left operand.
7479 if Rlo < 0 then
7480 Lo := -Maxabs;
7481 end if;
7483 if Rhi > 0 then
7484 Hi := Maxabs;
7485 end if;
7486 end;
7488 -- Multiplication
7490 when N_Op_Multiply =>
7492 -- Possible bounds of multiplication must come from multiplying
7493 -- end values of the input ranges (four possibilities).
7495 declare
7496 Mrk : constant Uintp.Save_Mark := Mark;
7497 -- Mark so we can release the Ev values
7499 Ev1 : constant Uint := Llo * Rlo;
7500 Ev2 : constant Uint := Llo * Rhi;
7501 Ev3 : constant Uint := Lhi * Rlo;
7502 Ev4 : constant Uint := Lhi * Rhi;
7504 begin
7505 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
7506 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
7508 -- Release the Ev values
7510 Release_And_Save (Mrk, Lo, Hi);
7511 end;
7513 -- Plus operator (affirmation)
7515 when N_Op_Plus =>
7516 Lo := Rlo;
7517 Hi := Rhi;
7519 -- Remainder
7521 when N_Op_Rem =>
7522 declare
7523 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
7524 -- This is the maximum absolute value of the result. Note
7525 -- that the result range does not depend on the sign of the
7526 -- right operand.
7528 begin
7529 Lo := Uint_0;
7530 Hi := Uint_0;
7532 -- Case of left operand negative, which results in a range
7533 -- of -Maxabs .. 0 for those negative values. If there are
7534 -- no negative values then Lo value of result is always 0.
7536 if Llo < 0 then
7537 Lo := -Maxabs;
7538 end if;
7540 -- Case of left operand positive
7542 if Lhi > 0 then
7543 Hi := Maxabs;
7544 end if;
7545 end;
7547 -- Subtract
7549 when N_Op_Subtract =>
7550 Lo := Llo - Rhi;
7551 Hi := Lhi - Rlo;
7553 -- Nothing else should be possible
7555 when others =>
7556 raise Program_Error;
7557 end case;
7558 end if;
7560 -- Here for the case where we have not rewritten anything (no bignum
7561 -- operands or long long integer operands), and we know the result.
7562 -- If we know we are in the result range, and we do not have Bignum
7563 -- operands or Long_Long_Integer operands, we can just reexpand with
7564 -- overflow checks turned off (since we know we cannot have overflow).
7565 -- As always the reexpansion is required to complete expansion of the
7566 -- operator, but we do not need to reanalyze, and we prevent recursion
7567 -- by suppressing the check.
7569 if not (Bignum_Operands or Long_Long_Integer_Operands)
7570 and then In_Result_Range
7571 then
7572 Set_Do_Overflow_Check (N, False);
7573 Reexpand (Suppress => True);
7574 return;
7576 -- Here we know that we are not in the result range, and in the general
7577 -- case we will move into either the Bignum or Long_Long_Integer domain
7578 -- to compute the result. However, there is one exception. If we are
7579 -- at the top level, and we do not have Bignum or Long_Long_Integer
7580 -- operands, we will have to immediately convert the result back to
7581 -- the result type, so there is no point in Bignum/Long_Long_Integer
7582 -- fiddling.
7584 elsif Top_Level
7585 and then not (Bignum_Operands or Long_Long_Integer_Operands)
7587 -- One further refinement. If we are at the top level, but our parent
7588 -- is a type conversion, then go into bignum or long long integer node
7589 -- since the result will be converted to that type directly without
7590 -- going through the result type, and we may avoid an overflow. This
7591 -- is the case for example of Long_Long_Integer (A ** 4), where A is
7592 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
7593 -- but does not fit in Integer.
7595 and then Nkind (Parent (N)) /= N_Type_Conversion
7596 then
7597 -- Here keep original types, but we need to complete analysis
7599 -- One subtlety. We can't just go ahead and do an analyze operation
7600 -- here because it will cause recursion into the whole MINIMIZED/
7601 -- ELIMINATED overflow processing which is not what we want. Here
7602 -- we are at the top level, and we need a check against the result
7603 -- mode (i.e. we want to use STRICT mode). So do exactly that!
7604 -- Also, we have not modified the node, so this is a case where
7605 -- we need to reexpand, but not reanalyze.
7607 Reexpand;
7608 return;
7610 -- Cases where we do the operation in Bignum mode. This happens either
7611 -- because one of our operands is in Bignum mode already, or because
7612 -- the computed bounds are outside the bounds of Long_Long_Integer,
7613 -- which in some cases can be indicated by Hi and Lo being No_Uint.
7615 -- Note: we could do better here and in some cases switch back from
7616 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
7617 -- 0 .. 1, but the cases are rare and it is not worth the effort.
7618 -- Failing to do this switching back is only an efficiency issue.
7620 elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
7622 -- OK, we are definitely outside the range of Long_Long_Integer. The
7623 -- question is whether to move to Bignum mode, or stay in the domain
7624 -- of Long_Long_Integer, signalling that an overflow check is needed.
7626 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
7627 -- the Bignum business. In ELIMINATED mode, we will normally move
7628 -- into Bignum mode, but there is an exception if neither of our
7629 -- operands is Bignum now, and we are at the top level (Top_Level
7630 -- set True). In this case, there is no point in moving into Bignum
7631 -- mode to prevent overflow if the caller will immediately convert
7632 -- the Bignum value back to LLI with an overflow check. It's more
7633 -- efficient to stay in LLI mode with an overflow check (if needed)
7635 if Check_Mode = Minimized
7636 or else (Top_Level and not Bignum_Operands)
7637 then
7638 if Do_Overflow_Check (N) then
7639 Enable_Overflow_Check (N);
7640 end if;
7642 -- The result now has to be in Long_Long_Integer mode, so adjust
7643 -- the possible range to reflect this. Note these calls also
7644 -- change No_Uint values from the top level case to LLI bounds.
7646 Max (Lo, LLLo);
7647 Min (Hi, LLHi);
7649 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
7651 else
7652 pragma Assert (Check_Mode = Eliminated);
7654 declare
7655 Fent : Entity_Id;
7656 Args : List_Id;
7658 begin
7659 case Nkind (N) is
7660 when N_Op_Abs =>
7661 Fent := RTE (RE_Big_Abs);
7663 when N_Op_Add =>
7664 Fent := RTE (RE_Big_Add);
7666 when N_Op_Divide =>
7667 Fent := RTE (RE_Big_Div);
7669 when N_Op_Expon =>
7670 Fent := RTE (RE_Big_Exp);
7672 when N_Op_Minus =>
7673 Fent := RTE (RE_Big_Neg);
7675 when N_Op_Mod =>
7676 Fent := RTE (RE_Big_Mod);
7678 when N_Op_Multiply =>
7679 Fent := RTE (RE_Big_Mul);
7681 when N_Op_Rem =>
7682 Fent := RTE (RE_Big_Rem);
7684 when N_Op_Subtract =>
7685 Fent := RTE (RE_Big_Sub);
7687 -- Anything else is an internal error, this includes the
7688 -- N_Op_Plus case, since how can plus cause the result
7689 -- to be out of range if the operand is in range?
7691 when others =>
7692 raise Program_Error;
7693 end case;
7695 -- Construct argument list for Bignum call, converting our
7696 -- operands to Bignum form if they are not already there.
7698 Args := New_List;
7700 if Binary then
7701 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
7702 end if;
7704 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
7706 -- Now rewrite the arithmetic operator with a call to the
7707 -- corresponding bignum function.
7709 Rewrite (N,
7710 Make_Function_Call (Loc,
7711 Name => New_Occurrence_Of (Fent, Loc),
7712 Parameter_Associations => Args));
7713 Reanalyze (RTE (RE_Bignum), Suppress => True);
7715 -- Indicate result is Bignum mode
7717 Lo := No_Uint;
7718 Hi := No_Uint;
7719 return;
7720 end;
7721 end if;
7723 -- Otherwise we are in range of Long_Long_Integer, so no overflow
7724 -- check is required, at least not yet.
7726 else
7727 Set_Do_Overflow_Check (N, False);
7728 end if;
7730 -- Here we are not in Bignum territory, but we may have long long
7731 -- integer operands that need special handling. First a special check:
7732 -- If an exponentiation operator exponent is of type Long_Long_Integer,
7733 -- it means we converted it to prevent overflow, but exponentiation
7734 -- requires a Natural right operand, so convert it back to Natural.
7735 -- This conversion may raise an exception which is fine.
7737 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
7738 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
7739 end if;
7741 -- Here we will do the operation in Long_Long_Integer. We do this even
7742 -- if we know an overflow check is required, better to do this in long
7743 -- long integer mode, since we are less likely to overflow!
7745 -- Convert right or only operand to Long_Long_Integer, except that
7746 -- we do not touch the exponentiation right operand.
7748 if Nkind (N) /= N_Op_Expon then
7749 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
7750 end if;
7752 -- Convert left operand to Long_Long_Integer for binary case
7754 if Binary then
7755 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
7756 end if;
7758 -- Reset node to unanalyzed
7760 Set_Analyzed (N, False);
7761 Set_Etype (N, Empty);
7762 Set_Entity (N, Empty);
7764 -- Now analyze this new node. This reanalysis will complete processing
7765 -- for the node. In particular we will complete the expansion of an
7766 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
7767 -- we will complete any division checks (since we have not changed the
7768 -- setting of the Do_Division_Check flag).
7770 -- We do this reanalysis in STRICT mode to avoid recursion into the
7771 -- MINIMIZED/ELIMINATED handling, since we are now done with that!
7773 declare
7774 SG : constant Overflow_Mode_Type :=
7775 Scope_Suppress.Overflow_Mode_General;
7776 SA : constant Overflow_Mode_Type :=
7777 Scope_Suppress.Overflow_Mode_Assertions;
7779 begin
7780 Scope_Suppress.Overflow_Mode_General := Strict;
7781 Scope_Suppress.Overflow_Mode_Assertions := Strict;
7783 if not Do_Overflow_Check (N) then
7784 Reanalyze (LLIB, Suppress => True);
7785 else
7786 Reanalyze (LLIB);
7787 end if;
7789 Scope_Suppress.Overflow_Mode_General := SG;
7790 Scope_Suppress.Overflow_Mode_Assertions := SA;
7791 end;
7792 end Minimize_Eliminate_Overflows;
7794 -------------------------
7795 -- Overflow_Check_Mode --
7796 -------------------------
7798 function Overflow_Check_Mode return Overflow_Mode_Type is
7799 begin
7800 if In_Assertion_Expr = 0 then
7801 return Scope_Suppress.Overflow_Mode_General;
7802 else
7803 return Scope_Suppress.Overflow_Mode_Assertions;
7804 end if;
7805 end Overflow_Check_Mode;
7807 --------------------------------
7808 -- Overflow_Checks_Suppressed --
7809 --------------------------------
7811 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
7812 begin
7813 if Present (E) and then Checks_May_Be_Suppressed (E) then
7814 return Is_Check_Suppressed (E, Overflow_Check);
7815 else
7816 return Scope_Suppress.Suppress (Overflow_Check);
7817 end if;
7818 end Overflow_Checks_Suppressed;
7820 ---------------------------------
7821 -- Predicate_Checks_Suppressed --
7822 ---------------------------------
7824 function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
7825 begin
7826 if Present (E) and then Checks_May_Be_Suppressed (E) then
7827 return Is_Check_Suppressed (E, Predicate_Check);
7828 else
7829 return Scope_Suppress.Suppress (Predicate_Check);
7830 end if;
7831 end Predicate_Checks_Suppressed;
7833 -----------------------------
7834 -- Range_Checks_Suppressed --
7835 -----------------------------
7837 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
7838 begin
7839 if Present (E) then
7841 -- Note: for now we always suppress range checks on Vax float types,
7842 -- since Gigi does not know how to generate these checks.
7844 if Vax_Float (E) then
7845 return True;
7846 elsif Kill_Range_Checks (E) then
7847 return True;
7848 elsif Checks_May_Be_Suppressed (E) then
7849 return Is_Check_Suppressed (E, Range_Check);
7850 end if;
7851 end if;
7853 return Scope_Suppress.Suppress (Range_Check);
7854 end Range_Checks_Suppressed;
7856 -----------------------------------------
7857 -- Range_Or_Validity_Checks_Suppressed --
7858 -----------------------------------------
7860 -- Note: the coding would be simpler here if we simply made appropriate
7861 -- calls to Range/Validity_Checks_Suppressed, but that would result in
7862 -- duplicated checks which we prefer to avoid.
7864 function Range_Or_Validity_Checks_Suppressed
7865 (Expr : Node_Id) return Boolean
7867 begin
7868 -- Immediate return if scope checks suppressed for either check
7870 if Scope_Suppress.Suppress (Range_Check)
7872 Scope_Suppress.Suppress (Validity_Check)
7873 then
7874 return True;
7875 end if;
7877 -- If no expression, that's odd, decide that checks are suppressed,
7878 -- since we don't want anyone trying to do checks in this case, which
7879 -- is most likely the result of some other error.
7881 if No (Expr) then
7882 return True;
7883 end if;
7885 -- Expression is present, so perform suppress checks on type
7887 declare
7888 Typ : constant Entity_Id := Etype (Expr);
7889 begin
7890 if Vax_Float (Typ) then
7891 return True;
7892 elsif Checks_May_Be_Suppressed (Typ)
7893 and then (Is_Check_Suppressed (Typ, Range_Check)
7894 or else
7895 Is_Check_Suppressed (Typ, Validity_Check))
7896 then
7897 return True;
7898 end if;
7899 end;
7901 -- If expression is an entity name, perform checks on this entity
7903 if Is_Entity_Name (Expr) then
7904 declare
7905 Ent : constant Entity_Id := Entity (Expr);
7906 begin
7907 if Checks_May_Be_Suppressed (Ent) then
7908 return Is_Check_Suppressed (Ent, Range_Check)
7909 or else Is_Check_Suppressed (Ent, Validity_Check);
7910 end if;
7911 end;
7912 end if;
7914 -- If we fall through, no checks suppressed
7916 return False;
7917 end Range_Or_Validity_Checks_Suppressed;
7919 -------------------
7920 -- Remove_Checks --
7921 -------------------
7923 procedure Remove_Checks (Expr : Node_Id) is
7924 function Process (N : Node_Id) return Traverse_Result;
7925 -- Process a single node during the traversal
7927 procedure Traverse is new Traverse_Proc (Process);
7928 -- The traversal procedure itself
7930 -------------
7931 -- Process --
7932 -------------
7934 function Process (N : Node_Id) return Traverse_Result is
7935 begin
7936 if Nkind (N) not in N_Subexpr then
7937 return Skip;
7938 end if;
7940 Set_Do_Range_Check (N, False);
7942 case Nkind (N) is
7943 when N_And_Then =>
7944 Traverse (Left_Opnd (N));
7945 return Skip;
7947 when N_Attribute_Reference =>
7948 Set_Do_Overflow_Check (N, False);
7950 when N_Function_Call =>
7951 Set_Do_Tag_Check (N, False);
7953 when N_Op =>
7954 Set_Do_Overflow_Check (N, False);
7956 case Nkind (N) is
7957 when N_Op_Divide =>
7958 Set_Do_Division_Check (N, False);
7960 when N_Op_And =>
7961 Set_Do_Length_Check (N, False);
7963 when N_Op_Mod =>
7964 Set_Do_Division_Check (N, False);
7966 when N_Op_Or =>
7967 Set_Do_Length_Check (N, False);
7969 when N_Op_Rem =>
7970 Set_Do_Division_Check (N, False);
7972 when N_Op_Xor =>
7973 Set_Do_Length_Check (N, False);
7975 when others =>
7976 null;
7977 end case;
7979 when N_Or_Else =>
7980 Traverse (Left_Opnd (N));
7981 return Skip;
7983 when N_Selected_Component =>
7984 Set_Do_Discriminant_Check (N, False);
7986 when N_Type_Conversion =>
7987 Set_Do_Length_Check (N, False);
7988 Set_Do_Tag_Check (N, False);
7989 Set_Do_Overflow_Check (N, False);
7991 when others =>
7992 null;
7993 end case;
7995 return OK;
7996 end Process;
7998 -- Start of processing for Remove_Checks
8000 begin
8001 Traverse (Expr);
8002 end Remove_Checks;
8004 ----------------------------
8005 -- Selected_Length_Checks --
8006 ----------------------------
8008 function Selected_Length_Checks
8009 (Ck_Node : Node_Id;
8010 Target_Typ : Entity_Id;
8011 Source_Typ : Entity_Id;
8012 Warn_Node : Node_Id) return Check_Result
8014 Loc : constant Source_Ptr := Sloc (Ck_Node);
8015 S_Typ : Entity_Id;
8016 T_Typ : Entity_Id;
8017 Expr_Actual : Node_Id;
8018 Exptyp : Entity_Id;
8019 Cond : Node_Id := Empty;
8020 Do_Access : Boolean := False;
8021 Wnode : Node_Id := Warn_Node;
8022 Ret_Result : Check_Result := (Empty, Empty);
8023 Num_Checks : Natural := 0;
8025 procedure Add_Check (N : Node_Id);
8026 -- Adds the action given to Ret_Result if N is non-Empty
8028 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
8029 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
8030 -- Comments required ???
8032 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
8033 -- True for equal literals and for nodes that denote the same constant
8034 -- entity, even if its value is not a static constant. This includes the
8035 -- case of a discriminal reference within an init proc. Removes some
8036 -- obviously superfluous checks.
8038 function Length_E_Cond
8039 (Exptyp : Entity_Id;
8040 Typ : Entity_Id;
8041 Indx : Nat) return Node_Id;
8042 -- Returns expression to compute:
8043 -- Typ'Length /= Exptyp'Length
8045 function Length_N_Cond
8046 (Expr : Node_Id;
8047 Typ : Entity_Id;
8048 Indx : Nat) return Node_Id;
8049 -- Returns expression to compute:
8050 -- Typ'Length /= Expr'Length
8052 ---------------
8053 -- Add_Check --
8054 ---------------
8056 procedure Add_Check (N : Node_Id) is
8057 begin
8058 if Present (N) then
8060 -- For now, ignore attempt to place more than 2 checks ???
8062 if Num_Checks = 2 then
8063 return;
8064 end if;
8066 pragma Assert (Num_Checks <= 1);
8067 Num_Checks := Num_Checks + 1;
8068 Ret_Result (Num_Checks) := N;
8069 end if;
8070 end Add_Check;
8072 ------------------
8073 -- Get_E_Length --
8074 ------------------
8076 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
8077 SE : constant Entity_Id := Scope (E);
8078 N : Node_Id;
8079 E1 : Entity_Id := E;
8081 begin
8082 if Ekind (Scope (E)) = E_Record_Type
8083 and then Has_Discriminants (Scope (E))
8084 then
8085 N := Build_Discriminal_Subtype_Of_Component (E);
8087 if Present (N) then
8088 Insert_Action (Ck_Node, N);
8089 E1 := Defining_Identifier (N);
8090 end if;
8091 end if;
8093 if Ekind (E1) = E_String_Literal_Subtype then
8094 return
8095 Make_Integer_Literal (Loc,
8096 Intval => String_Literal_Length (E1));
8098 elsif SE /= Standard_Standard
8099 and then Ekind (Scope (SE)) = E_Protected_Type
8100 and then Has_Discriminants (Scope (SE))
8101 and then Has_Completion (Scope (SE))
8102 and then not Inside_Init_Proc
8103 then
8104 -- If the type whose length is needed is a private component
8105 -- constrained by a discriminant, we must expand the 'Length
8106 -- attribute into an explicit computation, using the discriminal
8107 -- of the current protected operation. This is because the actual
8108 -- type of the prival is constructed after the protected opera-
8109 -- tion has been fully expanded.
8111 declare
8112 Indx_Type : Node_Id;
8113 Lo : Node_Id;
8114 Hi : Node_Id;
8115 Do_Expand : Boolean := False;
8117 begin
8118 Indx_Type := First_Index (E);
8120 for J in 1 .. Indx - 1 loop
8121 Next_Index (Indx_Type);
8122 end loop;
8124 Get_Index_Bounds (Indx_Type, Lo, Hi);
8126 if Nkind (Lo) = N_Identifier
8127 and then Ekind (Entity (Lo)) = E_In_Parameter
8128 then
8129 Lo := Get_Discriminal (E, Lo);
8130 Do_Expand := True;
8131 end if;
8133 if Nkind (Hi) = N_Identifier
8134 and then Ekind (Entity (Hi)) = E_In_Parameter
8135 then
8136 Hi := Get_Discriminal (E, Hi);
8137 Do_Expand := True;
8138 end if;
8140 if Do_Expand then
8141 if not Is_Entity_Name (Lo) then
8142 Lo := Duplicate_Subexpr_No_Checks (Lo);
8143 end if;
8145 if not Is_Entity_Name (Hi) then
8146 Lo := Duplicate_Subexpr_No_Checks (Hi);
8147 end if;
8149 N :=
8150 Make_Op_Add (Loc,
8151 Left_Opnd =>
8152 Make_Op_Subtract (Loc,
8153 Left_Opnd => Hi,
8154 Right_Opnd => Lo),
8156 Right_Opnd => Make_Integer_Literal (Loc, 1));
8157 return N;
8159 else
8160 N :=
8161 Make_Attribute_Reference (Loc,
8162 Attribute_Name => Name_Length,
8163 Prefix =>
8164 New_Occurrence_Of (E1, Loc));
8166 if Indx > 1 then
8167 Set_Expressions (N, New_List (
8168 Make_Integer_Literal (Loc, Indx)));
8169 end if;
8171 return N;
8172 end if;
8173 end;
8175 else
8176 N :=
8177 Make_Attribute_Reference (Loc,
8178 Attribute_Name => Name_Length,
8179 Prefix =>
8180 New_Occurrence_Of (E1, Loc));
8182 if Indx > 1 then
8183 Set_Expressions (N, New_List (
8184 Make_Integer_Literal (Loc, Indx)));
8185 end if;
8187 return N;
8188 end if;
8189 end Get_E_Length;
8191 ------------------
8192 -- Get_N_Length --
8193 ------------------
8195 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
8196 begin
8197 return
8198 Make_Attribute_Reference (Loc,
8199 Attribute_Name => Name_Length,
8200 Prefix =>
8201 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
8202 Expressions => New_List (
8203 Make_Integer_Literal (Loc, Indx)));
8204 end Get_N_Length;
8206 -------------------
8207 -- Length_E_Cond --
8208 -------------------
8210 function Length_E_Cond
8211 (Exptyp : Entity_Id;
8212 Typ : Entity_Id;
8213 Indx : Nat) return Node_Id
8215 begin
8216 return
8217 Make_Op_Ne (Loc,
8218 Left_Opnd => Get_E_Length (Typ, Indx),
8219 Right_Opnd => Get_E_Length (Exptyp, Indx));
8220 end Length_E_Cond;
8222 -------------------
8223 -- Length_N_Cond --
8224 -------------------
8226 function Length_N_Cond
8227 (Expr : Node_Id;
8228 Typ : Entity_Id;
8229 Indx : Nat) return Node_Id
8231 begin
8232 return
8233 Make_Op_Ne (Loc,
8234 Left_Opnd => Get_E_Length (Typ, Indx),
8235 Right_Opnd => Get_N_Length (Expr, Indx));
8236 end Length_N_Cond;
8238 -----------------
8239 -- Same_Bounds --
8240 -----------------
8242 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
8243 begin
8244 return
8245 (Nkind (L) = N_Integer_Literal
8246 and then Nkind (R) = N_Integer_Literal
8247 and then Intval (L) = Intval (R))
8249 or else
8250 (Is_Entity_Name (L)
8251 and then Ekind (Entity (L)) = E_Constant
8252 and then ((Is_Entity_Name (R)
8253 and then Entity (L) = Entity (R))
8254 or else
8255 (Nkind (R) = N_Type_Conversion
8256 and then Is_Entity_Name (Expression (R))
8257 and then Entity (L) = Entity (Expression (R)))))
8259 or else
8260 (Is_Entity_Name (R)
8261 and then Ekind (Entity (R)) = E_Constant
8262 and then Nkind (L) = N_Type_Conversion
8263 and then Is_Entity_Name (Expression (L))
8264 and then Entity (R) = Entity (Expression (L)))
8266 or else
8267 (Is_Entity_Name (L)
8268 and then Is_Entity_Name (R)
8269 and then Entity (L) = Entity (R)
8270 and then Ekind (Entity (L)) = E_In_Parameter
8271 and then Inside_Init_Proc);
8272 end Same_Bounds;
8274 -- Start of processing for Selected_Length_Checks
8276 begin
8277 if not Full_Expander_Active then
8278 return Ret_Result;
8279 end if;
8281 if Target_Typ = Any_Type
8282 or else Target_Typ = Any_Composite
8283 or else Raises_Constraint_Error (Ck_Node)
8284 then
8285 return Ret_Result;
8286 end if;
8288 if No (Wnode) then
8289 Wnode := Ck_Node;
8290 end if;
8292 T_Typ := Target_Typ;
8294 if No (Source_Typ) then
8295 S_Typ := Etype (Ck_Node);
8296 else
8297 S_Typ := Source_Typ;
8298 end if;
8300 if S_Typ = Any_Type or else S_Typ = Any_Composite then
8301 return Ret_Result;
8302 end if;
8304 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
8305 S_Typ := Designated_Type (S_Typ);
8306 T_Typ := Designated_Type (T_Typ);
8307 Do_Access := True;
8309 -- A simple optimization for the null case
8311 if Known_Null (Ck_Node) then
8312 return Ret_Result;
8313 end if;
8314 end if;
8316 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
8317 if Is_Constrained (T_Typ) then
8319 -- The checking code to be generated will freeze the corresponding
8320 -- array type. However, we must freeze the type now, so that the
8321 -- freeze node does not appear within the generated if expression,
8322 -- but ahead of it.
8324 Freeze_Before (Ck_Node, T_Typ);
8326 Expr_Actual := Get_Referenced_Object (Ck_Node);
8327 Exptyp := Get_Actual_Subtype (Ck_Node);
8329 if Is_Access_Type (Exptyp) then
8330 Exptyp := Designated_Type (Exptyp);
8331 end if;
8333 -- String_Literal case. This needs to be handled specially be-
8334 -- cause no index types are available for string literals. The
8335 -- condition is simply:
8337 -- T_Typ'Length = string-literal-length
8339 if Nkind (Expr_Actual) = N_String_Literal
8340 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
8341 then
8342 Cond :=
8343 Make_Op_Ne (Loc,
8344 Left_Opnd => Get_E_Length (T_Typ, 1),
8345 Right_Opnd =>
8346 Make_Integer_Literal (Loc,
8347 Intval =>
8348 String_Literal_Length (Etype (Expr_Actual))));
8350 -- General array case. Here we have a usable actual subtype for
8351 -- the expression, and the condition is built from the two types
8352 -- (Do_Length):
8354 -- T_Typ'Length /= Exptyp'Length or else
8355 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
8356 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
8357 -- ...
8359 elsif Is_Constrained (Exptyp) then
8360 declare
8361 Ndims : constant Nat := Number_Dimensions (T_Typ);
8363 L_Index : Node_Id;
8364 R_Index : Node_Id;
8365 L_Low : Node_Id;
8366 L_High : Node_Id;
8367 R_Low : Node_Id;
8368 R_High : Node_Id;
8369 L_Length : Uint;
8370 R_Length : Uint;
8371 Ref_Node : Node_Id;
8373 begin
8374 -- At the library level, we need to ensure that the type of
8375 -- the object is elaborated before the check itself is
8376 -- emitted. This is only done if the object is in the
8377 -- current compilation unit, otherwise the type is frozen
8378 -- and elaborated in its unit.
8380 if Is_Itype (Exptyp)
8381 and then
8382 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
8383 and then
8384 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
8385 and then In_Open_Scopes (Scope (Exptyp))
8386 then
8387 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
8388 Set_Itype (Ref_Node, Exptyp);
8389 Insert_Action (Ck_Node, Ref_Node);
8390 end if;
8392 L_Index := First_Index (T_Typ);
8393 R_Index := First_Index (Exptyp);
8395 for Indx in 1 .. Ndims loop
8396 if not (Nkind (L_Index) = N_Raise_Constraint_Error
8397 or else
8398 Nkind (R_Index) = N_Raise_Constraint_Error)
8399 then
8400 Get_Index_Bounds (L_Index, L_Low, L_High);
8401 Get_Index_Bounds (R_Index, R_Low, R_High);
8403 -- Deal with compile time length check. Note that we
8404 -- skip this in the access case, because the access
8405 -- value may be null, so we cannot know statically.
8407 if not Do_Access
8408 and then Compile_Time_Known_Value (L_Low)
8409 and then Compile_Time_Known_Value (L_High)
8410 and then Compile_Time_Known_Value (R_Low)
8411 and then Compile_Time_Known_Value (R_High)
8412 then
8413 if Expr_Value (L_High) >= Expr_Value (L_Low) then
8414 L_Length := Expr_Value (L_High) -
8415 Expr_Value (L_Low) + 1;
8416 else
8417 L_Length := UI_From_Int (0);
8418 end if;
8420 if Expr_Value (R_High) >= Expr_Value (R_Low) then
8421 R_Length := Expr_Value (R_High) -
8422 Expr_Value (R_Low) + 1;
8423 else
8424 R_Length := UI_From_Int (0);
8425 end if;
8427 if L_Length > R_Length then
8428 Add_Check
8429 (Compile_Time_Constraint_Error
8430 (Wnode, "too few elements for}??", T_Typ));
8432 elsif L_Length < R_Length then
8433 Add_Check
8434 (Compile_Time_Constraint_Error
8435 (Wnode, "too many elements for}??", T_Typ));
8436 end if;
8438 -- The comparison for an individual index subtype
8439 -- is omitted if the corresponding index subtypes
8440 -- statically match, since the result is known to
8441 -- be true. Note that this test is worth while even
8442 -- though we do static evaluation, because non-static
8443 -- subtypes can statically match.
8445 elsif not
8446 Subtypes_Statically_Match
8447 (Etype (L_Index), Etype (R_Index))
8449 and then not
8450 (Same_Bounds (L_Low, R_Low)
8451 and then Same_Bounds (L_High, R_High))
8452 then
8453 Evolve_Or_Else
8454 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
8455 end if;
8457 Next (L_Index);
8458 Next (R_Index);
8459 end if;
8460 end loop;
8461 end;
8463 -- Handle cases where we do not get a usable actual subtype that
8464 -- is constrained. This happens for example in the function call
8465 -- and explicit dereference cases. In these cases, we have to get
8466 -- the length or range from the expression itself, making sure we
8467 -- do not evaluate it more than once.
8469 -- Here Ck_Node is the original expression, or more properly the
8470 -- result of applying Duplicate_Expr to the original tree, forcing
8471 -- the result to be a name.
8473 else
8474 declare
8475 Ndims : constant Nat := Number_Dimensions (T_Typ);
8477 begin
8478 -- Build the condition for the explicit dereference case
8480 for Indx in 1 .. Ndims loop
8481 Evolve_Or_Else
8482 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
8483 end loop;
8484 end;
8485 end if;
8486 end if;
8487 end if;
8489 -- Construct the test and insert into the tree
8491 if Present (Cond) then
8492 if Do_Access then
8493 Cond := Guard_Access (Cond, Loc, Ck_Node);
8494 end if;
8496 Add_Check
8497 (Make_Raise_Constraint_Error (Loc,
8498 Condition => Cond,
8499 Reason => CE_Length_Check_Failed));
8500 end if;
8502 return Ret_Result;
8503 end Selected_Length_Checks;
8505 ---------------------------
8506 -- Selected_Range_Checks --
8507 ---------------------------
8509 function Selected_Range_Checks
8510 (Ck_Node : Node_Id;
8511 Target_Typ : Entity_Id;
8512 Source_Typ : Entity_Id;
8513 Warn_Node : Node_Id) return Check_Result
8515 Loc : constant Source_Ptr := Sloc (Ck_Node);
8516 S_Typ : Entity_Id;
8517 T_Typ : Entity_Id;
8518 Expr_Actual : Node_Id;
8519 Exptyp : Entity_Id;
8520 Cond : Node_Id := Empty;
8521 Do_Access : Boolean := False;
8522 Wnode : Node_Id := Warn_Node;
8523 Ret_Result : Check_Result := (Empty, Empty);
8524 Num_Checks : Integer := 0;
8526 procedure Add_Check (N : Node_Id);
8527 -- Adds the action given to Ret_Result if N is non-Empty
8529 function Discrete_Range_Cond
8530 (Expr : Node_Id;
8531 Typ : Entity_Id) return Node_Id;
8532 -- Returns expression to compute:
8533 -- Low_Bound (Expr) < Typ'First
8534 -- or else
8535 -- High_Bound (Expr) > Typ'Last
8537 function Discrete_Expr_Cond
8538 (Expr : Node_Id;
8539 Typ : Entity_Id) return Node_Id;
8540 -- Returns expression to compute:
8541 -- Expr < Typ'First
8542 -- or else
8543 -- Expr > Typ'Last
8545 function Get_E_First_Or_Last
8546 (Loc : Source_Ptr;
8547 E : Entity_Id;
8548 Indx : Nat;
8549 Nam : Name_Id) return Node_Id;
8550 -- Returns an attribute reference
8551 -- E'First or E'Last
8552 -- with a source location of Loc.
8554 -- Nam is Name_First or Name_Last, according to which attribute is
8555 -- desired. If Indx is non-zero, it is passed as a literal in the
8556 -- Expressions of the attribute reference (identifying the desired
8557 -- array dimension).
8559 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
8560 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
8561 -- Returns expression to compute:
8562 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
8564 function Range_E_Cond
8565 (Exptyp : Entity_Id;
8566 Typ : Entity_Id;
8567 Indx : Nat)
8568 return Node_Id;
8569 -- Returns expression to compute:
8570 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
8572 function Range_Equal_E_Cond
8573 (Exptyp : Entity_Id;
8574 Typ : Entity_Id;
8575 Indx : Nat) return Node_Id;
8576 -- Returns expression to compute:
8577 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
8579 function Range_N_Cond
8580 (Expr : Node_Id;
8581 Typ : Entity_Id;
8582 Indx : Nat) return Node_Id;
8583 -- Return expression to compute:
8584 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
8586 ---------------
8587 -- Add_Check --
8588 ---------------
8590 procedure Add_Check (N : Node_Id) is
8591 begin
8592 if Present (N) then
8594 -- For now, ignore attempt to place more than 2 checks ???
8596 if Num_Checks = 2 then
8597 return;
8598 end if;
8600 pragma Assert (Num_Checks <= 1);
8601 Num_Checks := Num_Checks + 1;
8602 Ret_Result (Num_Checks) := N;
8603 end if;
8604 end Add_Check;
8606 -------------------------
8607 -- Discrete_Expr_Cond --
8608 -------------------------
8610 function Discrete_Expr_Cond
8611 (Expr : Node_Id;
8612 Typ : Entity_Id) return Node_Id
8614 begin
8615 return
8616 Make_Or_Else (Loc,
8617 Left_Opnd =>
8618 Make_Op_Lt (Loc,
8619 Left_Opnd =>
8620 Convert_To (Base_Type (Typ),
8621 Duplicate_Subexpr_No_Checks (Expr)),
8622 Right_Opnd =>
8623 Convert_To (Base_Type (Typ),
8624 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
8626 Right_Opnd =>
8627 Make_Op_Gt (Loc,
8628 Left_Opnd =>
8629 Convert_To (Base_Type (Typ),
8630 Duplicate_Subexpr_No_Checks (Expr)),
8631 Right_Opnd =>
8632 Convert_To
8633 (Base_Type (Typ),
8634 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
8635 end Discrete_Expr_Cond;
8637 -------------------------
8638 -- Discrete_Range_Cond --
8639 -------------------------
8641 function Discrete_Range_Cond
8642 (Expr : Node_Id;
8643 Typ : Entity_Id) return Node_Id
8645 LB : Node_Id := Low_Bound (Expr);
8646 HB : Node_Id := High_Bound (Expr);
8648 Left_Opnd : Node_Id;
8649 Right_Opnd : Node_Id;
8651 begin
8652 if Nkind (LB) = N_Identifier
8653 and then Ekind (Entity (LB)) = E_Discriminant
8654 then
8655 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
8656 end if;
8658 Left_Opnd :=
8659 Make_Op_Lt (Loc,
8660 Left_Opnd =>
8661 Convert_To
8662 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
8664 Right_Opnd =>
8665 Convert_To
8666 (Base_Type (Typ),
8667 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
8669 if Nkind (HB) = N_Identifier
8670 and then Ekind (Entity (HB)) = E_Discriminant
8671 then
8672 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
8673 end if;
8675 Right_Opnd :=
8676 Make_Op_Gt (Loc,
8677 Left_Opnd =>
8678 Convert_To
8679 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
8681 Right_Opnd =>
8682 Convert_To
8683 (Base_Type (Typ),
8684 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
8686 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
8687 end Discrete_Range_Cond;
8689 -------------------------
8690 -- Get_E_First_Or_Last --
8691 -------------------------
8693 function Get_E_First_Or_Last
8694 (Loc : Source_Ptr;
8695 E : Entity_Id;
8696 Indx : Nat;
8697 Nam : Name_Id) return Node_Id
8699 Exprs : List_Id;
8700 begin
8701 if Indx > 0 then
8702 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
8703 else
8704 Exprs := No_List;
8705 end if;
8707 return Make_Attribute_Reference (Loc,
8708 Prefix => New_Occurrence_Of (E, Loc),
8709 Attribute_Name => Nam,
8710 Expressions => Exprs);
8711 end Get_E_First_Or_Last;
8713 -----------------
8714 -- Get_N_First --
8715 -----------------
8717 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
8718 begin
8719 return
8720 Make_Attribute_Reference (Loc,
8721 Attribute_Name => Name_First,
8722 Prefix =>
8723 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
8724 Expressions => New_List (
8725 Make_Integer_Literal (Loc, Indx)));
8726 end Get_N_First;
8728 ----------------
8729 -- Get_N_Last --
8730 ----------------
8732 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
8733 begin
8734 return
8735 Make_Attribute_Reference (Loc,
8736 Attribute_Name => Name_Last,
8737 Prefix =>
8738 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
8739 Expressions => New_List (
8740 Make_Integer_Literal (Loc, Indx)));
8741 end Get_N_Last;
8743 ------------------
8744 -- Range_E_Cond --
8745 ------------------
8747 function Range_E_Cond
8748 (Exptyp : Entity_Id;
8749 Typ : Entity_Id;
8750 Indx : Nat) return Node_Id
8752 begin
8753 return
8754 Make_Or_Else (Loc,
8755 Left_Opnd =>
8756 Make_Op_Lt (Loc,
8757 Left_Opnd =>
8758 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
8759 Right_Opnd =>
8760 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
8762 Right_Opnd =>
8763 Make_Op_Gt (Loc,
8764 Left_Opnd =>
8765 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
8766 Right_Opnd =>
8767 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
8768 end Range_E_Cond;
8770 ------------------------
8771 -- Range_Equal_E_Cond --
8772 ------------------------
8774 function Range_Equal_E_Cond
8775 (Exptyp : Entity_Id;
8776 Typ : Entity_Id;
8777 Indx : Nat) return Node_Id
8779 begin
8780 return
8781 Make_Or_Else (Loc,
8782 Left_Opnd =>
8783 Make_Op_Ne (Loc,
8784 Left_Opnd =>
8785 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
8786 Right_Opnd =>
8787 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
8789 Right_Opnd =>
8790 Make_Op_Ne (Loc,
8791 Left_Opnd =>
8792 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
8793 Right_Opnd =>
8794 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
8795 end Range_Equal_E_Cond;
8797 ------------------
8798 -- Range_N_Cond --
8799 ------------------
8801 function Range_N_Cond
8802 (Expr : Node_Id;
8803 Typ : Entity_Id;
8804 Indx : Nat) return Node_Id
8806 begin
8807 return
8808 Make_Or_Else (Loc,
8809 Left_Opnd =>
8810 Make_Op_Lt (Loc,
8811 Left_Opnd =>
8812 Get_N_First (Expr, Indx),
8813 Right_Opnd =>
8814 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
8816 Right_Opnd =>
8817 Make_Op_Gt (Loc,
8818 Left_Opnd =>
8819 Get_N_Last (Expr, Indx),
8820 Right_Opnd =>
8821 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
8822 end Range_N_Cond;
8824 -- Start of processing for Selected_Range_Checks
8826 begin
8827 if not Full_Expander_Active then
8828 return Ret_Result;
8829 end if;
8831 if Target_Typ = Any_Type
8832 or else Target_Typ = Any_Composite
8833 or else Raises_Constraint_Error (Ck_Node)
8834 then
8835 return Ret_Result;
8836 end if;
8838 if No (Wnode) then
8839 Wnode := Ck_Node;
8840 end if;
8842 T_Typ := Target_Typ;
8844 if No (Source_Typ) then
8845 S_Typ := Etype (Ck_Node);
8846 else
8847 S_Typ := Source_Typ;
8848 end if;
8850 if S_Typ = Any_Type or else S_Typ = Any_Composite then
8851 return Ret_Result;
8852 end if;
8854 -- The order of evaluating T_Typ before S_Typ seems to be critical
8855 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
8856 -- in, and since Node can be an N_Range node, it might be invalid.
8857 -- Should there be an assert check somewhere for taking the Etype of
8858 -- an N_Range node ???
8860 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
8861 S_Typ := Designated_Type (S_Typ);
8862 T_Typ := Designated_Type (T_Typ);
8863 Do_Access := True;
8865 -- A simple optimization for the null case
8867 if Known_Null (Ck_Node) then
8868 return Ret_Result;
8869 end if;
8870 end if;
8872 -- For an N_Range Node, check for a null range and then if not
8873 -- null generate a range check action.
8875 if Nkind (Ck_Node) = N_Range then
8877 -- There's no point in checking a range against itself
8879 if Ck_Node = Scalar_Range (T_Typ) then
8880 return Ret_Result;
8881 end if;
8883 declare
8884 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
8885 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
8886 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
8887 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
8889 LB : Node_Id := Low_Bound (Ck_Node);
8890 HB : Node_Id := High_Bound (Ck_Node);
8891 Known_LB : Boolean;
8892 Known_HB : Boolean;
8894 Null_Range : Boolean;
8895 Out_Of_Range_L : Boolean;
8896 Out_Of_Range_H : Boolean;
8898 begin
8899 -- Compute what is known at compile time
8901 if Known_T_LB and Known_T_HB then
8902 if Compile_Time_Known_Value (LB) then
8903 Known_LB := True;
8905 -- There's no point in checking that a bound is within its
8906 -- own range so pretend that it is known in this case. First
8907 -- deal with low bound.
8909 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
8910 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
8911 then
8912 LB := T_LB;
8913 Known_LB := True;
8915 else
8916 Known_LB := False;
8917 end if;
8919 -- Likewise for the high bound
8921 if Compile_Time_Known_Value (HB) then
8922 Known_HB := True;
8924 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
8925 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
8926 then
8927 HB := T_HB;
8928 Known_HB := True;
8930 else
8931 Known_HB := False;
8932 end if;
8933 end if;
8935 -- Check for case where everything is static and we can do the
8936 -- check at compile time. This is skipped if we have an access
8937 -- type, since the access value may be null.
8939 -- ??? This code can be improved since you only need to know that
8940 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
8941 -- compile time to emit pertinent messages.
8943 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
8944 and not Do_Access
8945 then
8946 -- Floating-point case
8948 if Is_Floating_Point_Type (S_Typ) then
8949 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
8950 Out_Of_Range_L :=
8951 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
8952 or else
8953 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
8955 Out_Of_Range_H :=
8956 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
8957 or else
8958 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
8960 -- Fixed or discrete type case
8962 else
8963 Null_Range := Expr_Value (HB) < Expr_Value (LB);
8964 Out_Of_Range_L :=
8965 (Expr_Value (LB) < Expr_Value (T_LB))
8966 or else
8967 (Expr_Value (LB) > Expr_Value (T_HB));
8969 Out_Of_Range_H :=
8970 (Expr_Value (HB) > Expr_Value (T_HB))
8971 or else
8972 (Expr_Value (HB) < Expr_Value (T_LB));
8973 end if;
8975 if not Null_Range then
8976 if Out_Of_Range_L then
8977 if No (Warn_Node) then
8978 Add_Check
8979 (Compile_Time_Constraint_Error
8980 (Low_Bound (Ck_Node),
8981 "static value out of range of}??", T_Typ));
8983 else
8984 Add_Check
8985 (Compile_Time_Constraint_Error
8986 (Wnode,
8987 "static range out of bounds of}??", T_Typ));
8988 end if;
8989 end if;
8991 if Out_Of_Range_H then
8992 if No (Warn_Node) then
8993 Add_Check
8994 (Compile_Time_Constraint_Error
8995 (High_Bound (Ck_Node),
8996 "static value out of range of}??", T_Typ));
8998 else
8999 Add_Check
9000 (Compile_Time_Constraint_Error
9001 (Wnode,
9002 "static range out of bounds of}??", T_Typ));
9003 end if;
9004 end if;
9005 end if;
9007 else
9008 declare
9009 LB : Node_Id := Low_Bound (Ck_Node);
9010 HB : Node_Id := High_Bound (Ck_Node);
9012 begin
9013 -- If either bound is a discriminant and we are within the
9014 -- record declaration, it is a use of the discriminant in a
9015 -- constraint of a component, and nothing can be checked
9016 -- here. The check will be emitted within the init proc.
9017 -- Before then, the discriminal has no real meaning.
9018 -- Similarly, if the entity is a discriminal, there is no
9019 -- check to perform yet.
9021 -- The same holds within a discriminated synchronized type,
9022 -- where the discriminant may constrain a component or an
9023 -- entry family.
9025 if Nkind (LB) = N_Identifier
9026 and then Denotes_Discriminant (LB, True)
9027 then
9028 if Current_Scope = Scope (Entity (LB))
9029 or else Is_Concurrent_Type (Current_Scope)
9030 or else Ekind (Entity (LB)) /= E_Discriminant
9031 then
9032 return Ret_Result;
9033 else
9034 LB :=
9035 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
9036 end if;
9037 end if;
9039 if Nkind (HB) = N_Identifier
9040 and then Denotes_Discriminant (HB, True)
9041 then
9042 if Current_Scope = Scope (Entity (HB))
9043 or else Is_Concurrent_Type (Current_Scope)
9044 or else Ekind (Entity (HB)) /= E_Discriminant
9045 then
9046 return Ret_Result;
9047 else
9048 HB :=
9049 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
9050 end if;
9051 end if;
9053 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
9054 Set_Paren_Count (Cond, 1);
9056 Cond :=
9057 Make_And_Then (Loc,
9058 Left_Opnd =>
9059 Make_Op_Ge (Loc,
9060 Left_Opnd => Duplicate_Subexpr_No_Checks (HB),
9061 Right_Opnd => Duplicate_Subexpr_No_Checks (LB)),
9062 Right_Opnd => Cond);
9063 end;
9064 end if;
9065 end;
9067 elsif Is_Scalar_Type (S_Typ) then
9069 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
9070 -- except the above simply sets a flag in the node and lets
9071 -- gigi generate the check base on the Etype of the expression.
9072 -- Sometimes, however we want to do a dynamic check against an
9073 -- arbitrary target type, so we do that here.
9075 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
9076 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9078 -- For literals, we can tell if the constraint error will be
9079 -- raised at compile time, so we never need a dynamic check, but
9080 -- if the exception will be raised, then post the usual warning,
9081 -- and replace the literal with a raise constraint error
9082 -- expression. As usual, skip this for access types
9084 elsif Compile_Time_Known_Value (Ck_Node)
9085 and then not Do_Access
9086 then
9087 declare
9088 LB : constant Node_Id := Type_Low_Bound (T_Typ);
9089 UB : constant Node_Id := Type_High_Bound (T_Typ);
9091 Out_Of_Range : Boolean;
9092 Static_Bounds : constant Boolean :=
9093 Compile_Time_Known_Value (LB)
9094 and Compile_Time_Known_Value (UB);
9096 begin
9097 -- Following range tests should use Sem_Eval routine ???
9099 if Static_Bounds then
9100 if Is_Floating_Point_Type (S_Typ) then
9101 Out_Of_Range :=
9102 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
9103 or else
9104 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
9106 -- Fixed or discrete type
9108 else
9109 Out_Of_Range :=
9110 Expr_Value (Ck_Node) < Expr_Value (LB)
9111 or else
9112 Expr_Value (Ck_Node) > Expr_Value (UB);
9113 end if;
9115 -- Bounds of the type are static and the literal is out of
9116 -- range so output a warning message.
9118 if Out_Of_Range then
9119 if No (Warn_Node) then
9120 Add_Check
9121 (Compile_Time_Constraint_Error
9122 (Ck_Node,
9123 "static value out of range of}??", T_Typ));
9125 else
9126 Add_Check
9127 (Compile_Time_Constraint_Error
9128 (Wnode,
9129 "static value out of range of}??", T_Typ));
9130 end if;
9131 end if;
9133 else
9134 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9135 end if;
9136 end;
9138 -- Here for the case of a non-static expression, we need a runtime
9139 -- check unless the source type range is guaranteed to be in the
9140 -- range of the target type.
9142 else
9143 if not In_Subrange_Of (S_Typ, T_Typ) then
9144 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9145 end if;
9146 end if;
9147 end if;
9149 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9150 if Is_Constrained (T_Typ) then
9152 Expr_Actual := Get_Referenced_Object (Ck_Node);
9153 Exptyp := Get_Actual_Subtype (Expr_Actual);
9155 if Is_Access_Type (Exptyp) then
9156 Exptyp := Designated_Type (Exptyp);
9157 end if;
9159 -- String_Literal case. This needs to be handled specially be-
9160 -- cause no index types are available for string literals. The
9161 -- condition is simply:
9163 -- T_Typ'Length = string-literal-length
9165 if Nkind (Expr_Actual) = N_String_Literal then
9166 null;
9168 -- General array case. Here we have a usable actual subtype for
9169 -- the expression, and the condition is built from the two types
9171 -- T_Typ'First < Exptyp'First or else
9172 -- T_Typ'Last > Exptyp'Last or else
9173 -- T_Typ'First(1) < Exptyp'First(1) or else
9174 -- T_Typ'Last(1) > Exptyp'Last(1) or else
9175 -- ...
9177 elsif Is_Constrained (Exptyp) then
9178 declare
9179 Ndims : constant Nat := Number_Dimensions (T_Typ);
9181 L_Index : Node_Id;
9182 R_Index : Node_Id;
9184 begin
9185 L_Index := First_Index (T_Typ);
9186 R_Index := First_Index (Exptyp);
9188 for Indx in 1 .. Ndims loop
9189 if not (Nkind (L_Index) = N_Raise_Constraint_Error
9190 or else
9191 Nkind (R_Index) = N_Raise_Constraint_Error)
9192 then
9193 -- Deal with compile time length check. Note that we
9194 -- skip this in the access case, because the access
9195 -- value may be null, so we cannot know statically.
9197 if not
9198 Subtypes_Statically_Match
9199 (Etype (L_Index), Etype (R_Index))
9200 then
9201 -- If the target type is constrained then we
9202 -- have to check for exact equality of bounds
9203 -- (required for qualified expressions).
9205 if Is_Constrained (T_Typ) then
9206 Evolve_Or_Else
9207 (Cond,
9208 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
9209 else
9210 Evolve_Or_Else
9211 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
9212 end if;
9213 end if;
9215 Next (L_Index);
9216 Next (R_Index);
9217 end if;
9218 end loop;
9219 end;
9221 -- Handle cases where we do not get a usable actual subtype that
9222 -- is constrained. This happens for example in the function call
9223 -- and explicit dereference cases. In these cases, we have to get
9224 -- the length or range from the expression itself, making sure we
9225 -- do not evaluate it more than once.
9227 -- Here Ck_Node is the original expression, or more properly the
9228 -- result of applying Duplicate_Expr to the original tree,
9229 -- forcing the result to be a name.
9231 else
9232 declare
9233 Ndims : constant Nat := Number_Dimensions (T_Typ);
9235 begin
9236 -- Build the condition for the explicit dereference case
9238 for Indx in 1 .. Ndims loop
9239 Evolve_Or_Else
9240 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
9241 end loop;
9242 end;
9243 end if;
9245 else
9246 -- For a conversion to an unconstrained array type, generate an
9247 -- Action to check that the bounds of the source value are within
9248 -- the constraints imposed by the target type (RM 4.6(38)). No
9249 -- check is needed for a conversion to an access to unconstrained
9250 -- array type, as 4.6(24.15/2) requires the designated subtypes
9251 -- of the two access types to statically match.
9253 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
9254 and then not Do_Access
9255 then
9256 declare
9257 Opnd_Index : Node_Id;
9258 Targ_Index : Node_Id;
9259 Opnd_Range : Node_Id;
9261 begin
9262 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
9263 Targ_Index := First_Index (T_Typ);
9264 while Present (Opnd_Index) loop
9266 -- If the index is a range, use its bounds. If it is an
9267 -- entity (as will be the case if it is a named subtype
9268 -- or an itype created for a slice) retrieve its range.
9270 if Is_Entity_Name (Opnd_Index)
9271 and then Is_Type (Entity (Opnd_Index))
9272 then
9273 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
9274 else
9275 Opnd_Range := Opnd_Index;
9276 end if;
9278 if Nkind (Opnd_Range) = N_Range then
9279 if Is_In_Range
9280 (Low_Bound (Opnd_Range), Etype (Targ_Index),
9281 Assume_Valid => True)
9282 and then
9283 Is_In_Range
9284 (High_Bound (Opnd_Range), Etype (Targ_Index),
9285 Assume_Valid => True)
9286 then
9287 null;
9289 -- If null range, no check needed
9291 elsif
9292 Compile_Time_Known_Value (High_Bound (Opnd_Range))
9293 and then
9294 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
9295 and then
9296 Expr_Value (High_Bound (Opnd_Range)) <
9297 Expr_Value (Low_Bound (Opnd_Range))
9298 then
9299 null;
9301 elsif Is_Out_Of_Range
9302 (Low_Bound (Opnd_Range), Etype (Targ_Index),
9303 Assume_Valid => True)
9304 or else
9305 Is_Out_Of_Range
9306 (High_Bound (Opnd_Range), Etype (Targ_Index),
9307 Assume_Valid => True)
9308 then
9309 Add_Check
9310 (Compile_Time_Constraint_Error
9311 (Wnode, "value out of range of}??", T_Typ));
9313 else
9314 Evolve_Or_Else
9315 (Cond,
9316 Discrete_Range_Cond
9317 (Opnd_Range, Etype (Targ_Index)));
9318 end if;
9319 end if;
9321 Next_Index (Opnd_Index);
9322 Next_Index (Targ_Index);
9323 end loop;
9324 end;
9325 end if;
9326 end if;
9327 end if;
9329 -- Construct the test and insert into the tree
9331 if Present (Cond) then
9332 if Do_Access then
9333 Cond := Guard_Access (Cond, Loc, Ck_Node);
9334 end if;
9336 Add_Check
9337 (Make_Raise_Constraint_Error (Loc,
9338 Condition => Cond,
9339 Reason => CE_Range_Check_Failed));
9340 end if;
9342 return Ret_Result;
9343 end Selected_Range_Checks;
9345 -------------------------------
9346 -- Storage_Checks_Suppressed --
9347 -------------------------------
9349 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
9350 begin
9351 if Present (E) and then Checks_May_Be_Suppressed (E) then
9352 return Is_Check_Suppressed (E, Storage_Check);
9353 else
9354 return Scope_Suppress.Suppress (Storage_Check);
9355 end if;
9356 end Storage_Checks_Suppressed;
9358 ---------------------------
9359 -- Tag_Checks_Suppressed --
9360 ---------------------------
9362 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
9363 begin
9364 if Present (E)
9365 and then Checks_May_Be_Suppressed (E)
9366 then
9367 return Is_Check_Suppressed (E, Tag_Check);
9368 end if;
9370 return Scope_Suppress.Suppress (Tag_Check);
9371 end Tag_Checks_Suppressed;
9373 --------------------------
9374 -- Validity_Check_Range --
9375 --------------------------
9377 procedure Validity_Check_Range (N : Node_Id) is
9378 begin
9379 if Validity_Checks_On and Validity_Check_Operands then
9380 if Nkind (N) = N_Range then
9381 Ensure_Valid (Low_Bound (N));
9382 Ensure_Valid (High_Bound (N));
9383 end if;
9384 end if;
9385 end Validity_Check_Range;
9387 --------------------------------
9388 -- Validity_Checks_Suppressed --
9389 --------------------------------
9391 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
9392 begin
9393 if Present (E) and then Checks_May_Be_Suppressed (E) then
9394 return Is_Check_Suppressed (E, Validity_Check);
9395 else
9396 return Scope_Suppress.Suppress (Validity_Check);
9397 end if;
9398 end Validity_Checks_Suppressed;
9400 end Checks;