ada: Inline composite node kind AST queries
[official-gcc.git] / gcc / ada / sem_util.ads
blob2126beda510f241b0af7e433dcb2a5b691631fab
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2022, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- Package containing utility procedures used throughout the semantics
28 with Aspects; use Aspects;
29 with Atree; use Atree;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Exp_Tss; use Exp_Tss;
33 with Namet; use Namet;
34 with Opt; use Opt;
35 with Snames; use Snames;
36 with Types; use Types;
37 with Uintp; use Uintp;
38 with Urealp; use Urealp;
40 package Sem_Util is
42 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
43 -- The list of interfaces implemented by Typ. Empty if there are none,
44 -- including the cases where there can't be any because e.g. the type is
45 -- not tagged.
47 type Accessibility_Level_Kind is
48 (Dynamic_Level,
49 Object_Decl_Level,
50 Zero_On_Dynamic_Level);
51 -- Accessibility_Level_Kind is an enumerated type which captures the
52 -- different modes in which an accessibility level could be obtained for
53 -- a given expression.
55 -- When in the context of the function Accessibility_Level,
56 -- Accessibility_Level_Kind signals what type of accessibility level to
57 -- obtain. For example, when Level is Dynamic_Level, a defining identifier
58 -- associated with a SAOOAAT may be returned or an N_Integer_Literal node.
59 -- When the level is Object_Decl_Level, an N_Integer_Literal node is
60 -- returned containing the level of the declaration of the object if
61 -- relevant (be it a SAOOAAT or otherwise). Finally, Zero_On_Dynamic_Level
62 -- returns library level for all cases where the accessibility level is
63 -- dynamic (used to bypass static accessibility checks in dynamic cases).
65 function Accessibility_Level
66 (Expr : Node_Id;
67 Level : Accessibility_Level_Kind;
68 In_Return_Context : Boolean := False;
69 Allow_Alt_Model : Boolean := True) return Node_Id;
70 -- Centralized accessibility level calculation routine for finding the
71 -- accessibility level of a given expression Expr.
73 -- In_Return_Context forces the Accessibility_Level calculations to be
74 -- carried out "as if" Expr existed in a return value. This is useful for
75 -- calculating the accessibility levels for discriminant associations
76 -- and return aggregates.
78 -- The Allow_Alt_Model parameter allows the alternative level calculation
79 -- under the restriction No_Dynamic_Accessibility_Checks to be performed.
81 function Acquire_Warning_Match_String (Str_Lit : Node_Id) return String;
82 -- Used by pragma Warnings (Off, string), and Warn_As_Error (string) to get
83 -- the given string argument, adding leading and trailing asterisks if they
84 -- are not already present. Str_Lit is the static value of the pragma
85 -- argument.
87 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
88 -- Add A to the list of access types to process when expanding the
89 -- freeze node of E.
91 procedure Add_Global_Declaration (N : Node_Id);
92 -- These procedures adds a declaration N at the library level, to be
93 -- elaborated before any other code in the unit. It is used for example
94 -- for the entity that marks whether a unit has been elaborated. The
95 -- declaration is added to the Declarations list of the Aux_Decls_Node
96 -- for the current unit. The declarations are added in the current scope,
97 -- so the caller should push a new scope as required before the call.
99 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
100 -- Returns the name of E adding Suffix
102 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
103 -- Given two types, returns True if we are in Allow_Integer_Address mode
104 -- and one of the types is (a descendant of) System.Address (and this type
105 -- is private), and the other type is any integer type.
107 function Address_Value (N : Node_Id) return Node_Id;
108 -- Return the underlying value of the expression N of an address clause
110 function Addressable (V : Uint) return Boolean;
111 function Addressable (V : Int) return Boolean;
112 pragma Inline (Addressable);
113 -- Returns True if the value of V is the word size or an addressable factor
114 -- or multiple of the word size (typically 8, 16, 32, 64 or 128).
116 procedure Aggregate_Constraint_Checks
117 (Exp : Node_Id;
118 Check_Typ : Entity_Id);
119 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
120 -- and Check_Typ a constrained record type with discriminants, we generate
121 -- the appropriate discriminant checks. If Exp is an array aggregate then
122 -- emit the appropriate length checks. If Exp is a scalar type, or a string
123 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
124 -- are performed at run time. Also used for expressions in the argument of
125 -- 'Update, which shares some of the features of an aggregate.
127 function Alignment_In_Bits (E : Entity_Id) return Uint;
128 -- If the alignment of the type or object E is currently known to the
129 -- compiler, then this function returns the alignment value in bits.
130 -- Otherwise Uint_0 is returned, indicating that the alignment of the
131 -- entity is not yet known to the compiler.
133 function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
134 -- Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
135 -- Given a constraint or subtree of a constraint on a composite
136 -- subtype/object, returns True if there are no nonstatic constraints,
137 -- which might cause objects to be created with dynamic size.
138 -- Called for subtype declarations (including implicit ones created for
139 -- subtype indications in object declarations, as well as discriminated
140 -- record aggregate cases). For record aggregates, only records containing
141 -- discriminant-dependent arrays matter, because the discriminants must be
142 -- static when governing a variant part. Access discriminants are
143 -- irrelevant. Also called for array aggregates, but only named notation,
144 -- because those are the only dynamic cases.
146 procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id);
147 -- Recursive procedure to construct string for qualified name of enclosing
148 -- program unit. The qualification stops at an enclosing scope has no
149 -- source name (block or loop). If entity is a subprogram instance, skip
150 -- enclosing wrapper package. The name is appended to Buf.
152 procedure Append_Inherited_Subprogram (S : Entity_Id);
153 -- If the parent of the operation is declared in the visible part of
154 -- the current scope, the inherited operation is visible even though the
155 -- derived type that inherits the operation may be completed in the private
156 -- part of the current package.
158 procedure Apply_Compile_Time_Constraint_Error
159 (N : Node_Id;
160 Msg : String;
161 Reason : RT_Exception_Code;
162 Ent : Entity_Id := Empty;
163 Typ : Entity_Id := Empty;
164 Loc : Source_Ptr := No_Location;
165 Warn : Boolean := False;
166 Emit_Message : Boolean := True);
167 -- N is a subexpression that will raise Constraint_Error when evaluated
168 -- at run time. Msg is a message that explains the reason for raising the
169 -- exception. The last character is ? if the message is always a warning,
170 -- even in Ada 95, and is not a ? if the message represents an illegality
171 -- (because of violation of static expression rules) in Ada 95 (but not
172 -- in Ada 83). Typically this routine posts all messages at the Sloc of
173 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
174 -- the message. After posting the appropriate message, this routine
175 -- replaces the expression with an appropriate N_Raise_Constraint_Error
176 -- node using the given Reason code. This node is then marked as being
177 -- static if the original node is static, but sets the flag
178 -- Raises_Constraint_Error, preventing further evaluation. The error
179 -- message may contain a } or & insertion character. This normally
180 -- references Etype (N), unless the Ent argument is given explicitly, in
181 -- which case it is used instead. The type of the raise node that is built
182 -- is normally Etype (N), but if the Typ parameter is present, this is used
183 -- instead. Warn is normally False. If it is True then the message is
184 -- treated as a warning even though it does not end with a ? (this is used
185 -- when the caller wants to parameterize whether an error or warning is
186 -- given), or when the message should be treated as a warning even when
187 -- SPARK_Mode is On (which otherwise would force an error).
188 -- If Emit_Message is False, then do not emit any message.
190 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
191 -- Id should be the entity of a state abstraction, an object, or a type.
192 -- Returns True iff Id is subject to external property Async_Readers.
194 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
195 -- Id should be the entity of a state abstraction, an object, or a type.
196 -- Returns True iff Id is subject to external property Async_Writers.
198 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
199 -- If at the point of declaration an array type has a private or limited
200 -- component, several array operations are not available on the type, and
201 -- the array type is flagged accordingly. If in the immediate scope of
202 -- the array type the component becomes non-private or non-limited, these
203 -- operations become available. This can happen if the scopes of both types
204 -- are open, and the scope of the array is not outside the scope of the
205 -- component.
207 procedure Bad_Aspect
208 (N : Node_Id;
209 Nam : Name_Id;
210 Warn : Boolean := False);
211 -- Called when node N is expected to contain a valid aspect name, and
212 -- Nam is found instead. If Warn is set True this is a warning, else this
213 -- is an error.
215 procedure Bad_Attribute
216 (N : Node_Id;
217 Nam : Name_Id;
218 Warn : Boolean := False);
219 -- Called when node N is expected to contain a valid attribute name, and
220 -- Nam is found instead. If Warn is set True this is a warning, else this
221 -- is an error.
223 procedure Bad_Predicated_Subtype_Use
224 (Msg : String;
225 N : Node_Id;
226 Typ : Entity_Id;
227 Suggest_Static : Boolean := False);
228 -- This is called when Typ, a predicated subtype, is used in a context
229 -- which does not allow the use of a predicated subtype. Msg is passed to
230 -- Error_Msg_FE to output an appropriate message using N as the location,
231 -- and Typ as the entity. The caller must set up any insertions other than
232 -- the & for the type itself. Note that if Typ is a generic actual type,
233 -- then the message will be output as a warning, and a raise Program_Error
234 -- is inserted using Insert_Action with node N as the insertion point. Node
235 -- N also supplies the source location for construction of the raise node.
236 -- If Typ does not have any predicates, the call has no effect. Set flag
237 -- Suggest_Static when the context warrants an advice on how to avoid the
238 -- use error.
240 function Bad_Unordered_Enumeration_Reference
241 (N : Node_Id;
242 T : Entity_Id) return Boolean;
243 -- Node N contains a potentially dubious reference to type T, either an
244 -- explicit comparison, or an explicit range. This function returns True
245 -- if the type T is an enumeration type for which No pragma Order has been
246 -- given, and the reference N is not in the same extended source unit as
247 -- the declaration of T.
249 function Begin_Keyword_Location (N : Node_Id) return Source_Ptr;
250 -- Given block statement, entry body, package body, subprogram body, or
251 -- task body N, return the closest source location to the "begin" keyword.
253 function Build_Actual_Subtype
254 (T : Entity_Id;
255 N : Node_Or_Entity_Id) return Node_Id;
256 -- Build an anonymous subtype for an entity or expression, using the
257 -- bounds of the entity or the discriminants of the enclosing record.
258 -- T is the type for which the actual subtype is required, and N is either
259 -- a defining identifier, or any subexpression.
261 function Build_Actual_Subtype_Of_Component
262 (T : Entity_Id;
263 N : Node_Id) return Node_Id;
264 -- Determine whether a selected component has a type that depends on
265 -- discriminants, and build actual subtype for it if so.
267 -- Handling of inherited primitives whose ancestors have class-wide
268 -- pre/postconditions.
270 -- If a primitive operation of a parent type has a class-wide pre/post-
271 -- condition that includes calls to other primitives, and that operation
272 -- is inherited by a descendant type that also overrides some of these
273 -- other primitives, the condition that applies to the inherited
274 -- operation has a modified condition in which the overridden primitives
275 -- have been replaced by the primitives of the descendent type. A call
276 -- to the inherited operation cannot be simply a call to the parent
277 -- operation (with an appropriate conversion) as is the case for other
278 -- inherited operations, but must appear with a wrapper subprogram to which
279 -- the modified conditions apply. Furthermore the call to the parent
280 -- operation must not be subject to the original class-wide condition,
281 -- given that modified conditions apply. To implement these semantics
282 -- economically we create a subprogram body (a "class-wide clone") to
283 -- which no pre/postconditions apply, and we create bodies for the
284 -- original and the inherited operation that have their respective
285 -- pre/postconditions and simply call the clone. The following operations
286 -- take care of constructing declaration and body of the clone, and
287 -- building the calls to it within the appropriate wrappers.
289 procedure Build_Constrained_Itype
290 (N : Node_Id;
291 Typ : Entity_Id;
292 New_Assoc_List : List_Id);
293 -- Build a constrained itype for the newly created record aggregate N and
294 -- set it as a type of N. The itype will have Typ as its base type and
295 -- will be constrained by the values of discriminants from the component
296 -- association list New_Assoc_List.
298 -- ??? This code used to be pretty much a copy of Build_Subtype, but now
299 -- those two routines behave differently for types with unknown
300 -- discriminants. They are both exported in from this package in the hope
301 -- to eventually unify them (a not duplicate them even more until then).
303 -- ??? Performance WARNING. The current implementation creates a new itype
304 -- for all aggregates whose base type is discriminated. This means that
305 -- for record aggregates nested inside an array aggregate we will create
306 -- a new itype for each record aggregate if the array component type has
307 -- discriminants. For large aggregates this may be a problem. What should
308 -- be done in this case is to reuse itypes as much as possible.
310 function Build_Default_Subtype
311 (T : Entity_Id;
312 N : Node_Id) return Entity_Id;
313 -- If T is an unconstrained type with defaulted discriminants, build a
314 -- subtype constrained by the default values, insert the subtype
315 -- declaration in the tree before N, and return the entity of that
316 -- subtype. Otherwise, simply return T.
318 function Build_Default_Subtype_OK (T : Entity_Id) return Boolean;
319 -- When analyzing components or object declarations, it is possible, in
320 -- some cases, to build subtypes for discriminated types. This is
321 -- worthwhile to avoid the backend allocating the maximum possible size for
322 -- objects of the type.
323 -- In particular, when T is limited, the discriminants and therefore the
324 -- size of an object of type T cannot change. Furthermore, if T is definite
325 -- with statically initialized defaulted discriminants, we are able and
326 -- want to build a constrained subtype of the right size.
328 function Build_Discriminal_Subtype_Of_Component
329 (T : Entity_Id) return Node_Id;
330 -- Determine whether a record component has a type that depends on
331 -- discriminants, and build actual subtype for it if so.
333 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
334 -- Given a compilation unit node N, allocate an elaboration counter for
335 -- the compilation unit, and install it in the Elaboration_Entity field
336 -- of Spec_Id, the entity for the compilation unit.
338 procedure Build_Explicit_Dereference
339 (Expr : Node_Id;
340 Disc : Entity_Id);
341 -- AI05-139: Names with implicit dereference. If the expression N is a
342 -- reference type and the context imposes the corresponding designated
343 -- type, convert N into N.Disc.all. Such expressions are always over-
344 -- loaded with both interpretations, and the dereference interpretation
345 -- carries the name of the reference discriminant.
347 function Build_Overriding_Spec
348 (Op : Entity_Id;
349 Typ : Entity_Id) return Node_Id;
350 -- Build a subprogram specification for the wrapper of an inherited
351 -- operation with a modified pre- or postcondition (See AI12-0113).
352 -- Op is the parent operation, and Typ is the descendant type that
353 -- inherits the operation.
355 function Build_Subtype
356 (Related_Node : Node_Id;
357 Loc : Source_Ptr;
358 Typ : Entity_Id;
359 Constraints : List_Id)
360 return Entity_Id;
361 -- Typ is an array or discriminated type, Constraints is a list of
362 -- constraints that apply to Typ. This routine builds the constrained
363 -- subtype using Loc as the source location and attached this subtype
364 -- declaration to Related_Node. The returned subtype inherits predicates
365 -- from Typ.
367 -- ??? The routine is mostly a duplicate of Build_Constrained_Itype, so be
368 -- careful which of the two better suits your needs (and certainly do not
369 -- duplicate their code).
371 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
372 -- Returns True if the expression cannot possibly raise Constraint_Error.
373 -- The response is conservative in the sense that a result of False does
374 -- not necessarily mean that CE could be raised, but a response of True
375 -- means that for sure CE cannot be raised.
377 procedure Check_Ambiguous_Aggregate (Call : Node_Id);
378 -- Additional information on an ambiguous call in Ada_2022 when a
379 -- subprogram call has an actual that is an aggregate, and the
380 -- presence of container aggregates (or types with the corresponding
381 -- aspect) provides an additional interpretation. Message indicates
382 -- that an aggregate actual should carry a type qualification.
384 procedure Check_Dynamically_Tagged_Expression
385 (Expr : Node_Id;
386 Typ : Entity_Id;
387 Related_Nod : Node_Id);
388 -- Check wrong use of dynamically tagged expression
390 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
391 -- Verify that the full declaration of type T has been seen. If not, place
392 -- error message on node N. Used in object declarations, type conversions
393 -- and qualified expressions.
395 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
396 -- A subprogram that has an Address parameter and is declared in a Pure
397 -- package is not considered Pure, because the parameter may be used as a
398 -- pointer and the referenced data may change even if the address value
399 -- itself does not.
400 -- If the programmer gave an explicit Pure_Function pragma, then we respect
401 -- the pragma and leave the subprogram Pure.
403 procedure Check_Function_Writable_Actuals (N : Node_Id);
404 -- (Ada 2012): If the construct N has two or more direct constituents that
405 -- are names or expressions whose evaluation may occur in an arbitrary
406 -- order, at least one of which contains a function call with an in out or
407 -- out parameter, then the construct is legal only if: for each name that
408 -- is passed as a parameter of mode in out or out to some inner function
409 -- call C2 (not including the construct N itself), there is no other name
410 -- anywhere within a direct constituent of the construct C other than
411 -- the one containing C2, that is known to refer to the same object (RM
412 -- 6.4.1(6.17/3)).
414 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
415 -- AI05-139-2: Accessors and iterators for containers. This procedure
416 -- checks whether T is a reference type, and if so it adds an interprettion
417 -- to N whose type is the designated type of the reference_discriminant.
418 -- If N is a generalized indexing operation, the interpretation is added
419 -- both to the corresponding function call, and to the indexing node.
421 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
422 -- Within a protected function, the current object is a constant, and
423 -- internal calls to a procedure or entry are illegal. Similarly, other
424 -- uses of a protected procedure in a renaming or a generic instantiation
425 -- in the context of a protected function are illegal (AI05-0225).
427 procedure Check_Later_Vs_Basic_Declarations
428 (Decls : List_Id;
429 During_Parsing : Boolean);
430 -- If During_Parsing is True, check for misplacement of later vs basic
431 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
432 -- restriction is set, do the same: although SPARK 95 removes the
433 -- distinction between initial and later declarative items, the distinction
434 -- remains in the Examiner (JB01-005). Note that the Examiner does not
435 -- count package declarations in later declarative items.
437 procedure Check_No_Hidden_State (Id : Entity_Id);
438 -- Determine whether object or state Id introduces a hidden state. If this
439 -- is the case, emit an error.
441 procedure Check_Inherited_Nonoverridable_Aspects
442 (Inheritor : Entity_Id;
443 Interface_List : List_Id;
444 Parent_Type : Entity_Id);
445 -- Verify consistency of inherited nonoverridable aspects
446 -- when aspects are inherited from more than one source.
447 -- Parent_Type may be void (e.g., for a tagged task/protected type
448 -- whose declaration includes a non-empty interface list).
449 -- In the error case, error message is associate with Inheritor;
450 -- Inheritor parameter is otherwise unused.
452 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
453 -- Verify that the profile of nonvolatile function Func_Id does not contain
454 -- effectively volatile parameters or return type for reading.
456 function Check_Parents (N : Node_Id; List : Elist_Id) return Boolean;
457 -- Return True if all the occurrences of subtree N referencing entities in
458 -- the given List have the right value in their Parent field.
460 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
461 -- Verify the legality of reference Ref to variable Var_Id when the
462 -- variable is a constituent of a single protected/task type.
464 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
465 -- N is one of the statement forms that is a potentially blocking
466 -- operation. If it appears within a protected action, emit warning.
468 procedure Check_Previous_Null_Procedure
469 (Decl : Node_Id;
470 Prev : Entity_Id);
471 -- A null procedure or a subprogram renaming can complete a previous
472 -- declaration, unless that previous declaration is itself a null
473 -- procedure. This must be treated specially because the analysis of
474 -- the null procedure leaves the corresponding entity as having no
475 -- completion, because its completion is provided by a generated body
476 -- inserted after all other declarations.
478 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
479 -- Determine whether the contract of subprogram Subp_Id mentions attribute
480 -- 'Result and it contains an expression that evaluates differently in pre-
481 -- and post-state.
483 procedure Check_State_Refinements
484 (Context : Node_Id;
485 Is_Main_Unit : Boolean := False);
486 -- Verify that all abstract states declared in a block statement, entry
487 -- body, package body, protected body, subprogram body, task body, or a
488 -- package declaration denoted by Context have proper refinement. Emit an
489 -- error if this is not the case. Flag Is_Main_Unit should be set when
490 -- Context denotes the main compilation unit.
492 procedure Check_Unused_Body_States (Body_Id : Entity_Id);
493 -- Verify that all abstract states and objects declared in the state space
494 -- of package body Body_Id are used as constituents. Emit an error if this
495 -- is not the case.
497 procedure Check_Unprotected_Access
498 (Context : Node_Id;
499 Expr : Node_Id);
500 -- Check whether the expression is a pointer to a protected component,
501 -- and the context is external to the protected operation, to warn against
502 -- a possible unlocked access to data.
504 procedure Check_Volatility_Compatibility
505 (Id1, Id2 : Entity_Id;
506 Description_1, Description_2 : String;
507 Srcpos_Bearer : Node_Id);
508 -- Id1 and Id2 should each be the entity of a state abstraction, a
509 -- variable, or a type (i.e., something suitable for passing to
510 -- Async_Readers_Enabled and similar functions).
511 -- Does nothing if SPARK_Mode /= On. Otherwise, flags a legality violation
512 -- if one or more of the four volatility-related aspects is False for Id1
513 -- and True for Id2. The two descriptions are included in the error message
514 -- text; the source position for the generated message is determined by
515 -- Srcpos_Bearer.
517 function Choice_List (N : Node_Id) return List_Id;
518 -- Utility to retrieve the choices of a Component_Association or the
519 -- Discrete_Choices of an Iterated_Component_Association. For various
520 -- reasons these nodes have a different structure even though they play
521 -- similar roles in array aggregates.
523 type Condition_Kind is
524 (Ignored_Class_Precondition,
525 Ignored_Class_Postcondition,
526 Class_Precondition,
527 Class_Postcondition);
528 -- Kind of class-wide conditions
530 function Class_Condition
531 (Kind : Condition_Kind;
532 Subp : Entity_Id) return Node_Id;
533 -- Class-wide Kind condition of Subp
535 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
536 -- Gather the entities of all abstract states and objects declared in the
537 -- body state space of package body Body_Id.
539 procedure Collect_Interfaces
540 (T : Entity_Id;
541 Ifaces_List : out Elist_Id;
542 Exclude_Parents : Boolean := False;
543 Use_Full_View : Boolean := True);
544 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
545 -- directly or indirectly implemented by T. Exclude_Parents is used to
546 -- avoid the addition of inherited interfaces to the generated list.
547 -- Use_Full_View is used to collect the interfaces using the full-view
548 -- (if available).
550 procedure Collect_Interface_Components
551 (Tagged_Type : Entity_Id;
552 Components_List : out Elist_Id);
553 -- Ada 2005 (AI-251): Collect all the tag components associated with the
554 -- secondary dispatch tables of a tagged type.
556 procedure Collect_Interfaces_Info
557 (T : Entity_Id;
558 Ifaces_List : out Elist_Id;
559 Components_List : out Elist_Id;
560 Tags_List : out Elist_Id);
561 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
562 -- the record component and tag associated with each of these interfaces.
563 -- On exit Ifaces_List, Components_List and Tags_List have the same number
564 -- of elements, and elements at the same position on these tables provide
565 -- information on the same interface type.
567 procedure Collect_Parents
568 (T : Entity_Id;
569 List : out Elist_Id;
570 Use_Full_View : Boolean := True);
571 -- Collect all the parents of Typ. Use_Full_View is used to collect them
572 -- using the full-view of private parents (if available).
574 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
575 -- Called upon type derivation and extension. We scan the declarative part
576 -- in which the type appears, and collect subprograms that have one
577 -- subsidiary subtype of the type. These subprograms can only appear after
578 -- the type itself.
580 function Compile_Time_Constraint_Error
581 (N : Node_Id;
582 Msg : String;
583 Ent : Entity_Id := Empty;
584 Loc : Source_Ptr := No_Location;
585 Warn : Boolean := False;
586 Extra_Msg : String := "") return Node_Id;
587 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
588 -- generates a warning (or error) message in the same manner, but it does
589 -- not replace any nodes. For convenience, the function always returns its
590 -- first argument. The message is a warning if the message ends with ?, or
591 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
592 -- If Extra_Msg is not a null string, then it's associated with N and
593 -- emitted immediately after the main message (and before output of any
594 -- message indicating that Constraint_Error will be raised).
596 procedure Compute_Returns_By_Ref (Func : Entity_Id);
597 -- Set the Returns_By_Ref flag on Func if appropriate
599 generic
600 with function Predicate (Typ : Entity_Id) return Boolean;
601 function Collect_Types_In_Hierarchy
602 (Typ : Entity_Id;
603 Examine_Components : Boolean := False) return Elist_Id;
604 -- Inspect the ancestor and progenitor types of Typ and Typ itself -
605 -- collecting those for which function Predicate is True. The resulting
606 -- list is ordered in a type-to-ultimate-ancestor fashion.
608 -- When Examine_Components is True, components types in the hierarchy also
609 -- get collected.
611 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
612 -- Sets the Has_Delayed_Freeze flag of New_Ent if the Delayed_Freeze flag
613 -- of Old_Ent is set and Old_Ent has not yet been Frozen (i.e. Is_Frozen is
614 -- False).
616 function Copy_Component_List
617 (R_Typ : Entity_Id;
618 Loc : Source_Ptr) return List_Id;
619 -- Copy components from record type R_Typ that come from source. Used to
620 -- create a new compatible record type. Loc is the source location assigned
621 -- to the created nodes.
623 procedure Copy_Ghost_Aspect (From : Node_Id; To : Node_Id);
624 -- Copy the Ghost aspect if present in the aspect specifications of node
625 -- From to node To. On entry it is assumed that To does not have aspect
626 -- specifications. If From has no aspects, the routine has no effect.
628 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
629 -- Utility to create a parameter profile for a new subprogram spec, when
630 -- the subprogram has a body that acts as spec. This is done for some cases
631 -- of inlining, and for private protected ops. Also used to create bodies
632 -- for stubbed subprograms.
634 procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id);
635 -- Copy the SPARK_Mode aspect if present in the aspect specifications
636 -- of node From to node To. On entry it is assumed that To does not have
637 -- aspect specifications. If From has no aspects, the routine has no
638 -- effect.
640 function Copy_Subprogram_Spec
641 (Spec : Node_Id;
642 New_Sloc : Source_Ptr := No_Location) return Node_Id;
643 -- Replicate a function or a procedure specification denoted by Spec. The
644 -- resulting tree is an exact duplicate of the original tree. New entities
645 -- are created for the unit name and the formal parameters. For definition
646 -- of New_Sloc, see the comment for New_Copy_Tree.
648 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
649 -- If a type is a generic actual type, return the corresponding formal in
650 -- the generic parent unit. There is no direct link in the tree for this
651 -- attribute, except in the case of formal private and derived types.
652 -- Possible optimization???
654 function Corresponding_Primitive_Op
655 (Ancestor_Op : Entity_Id;
656 Descendant_Type : Entity_Id) return Entity_Id;
657 -- Given a primitive subprogram of a tagged type and a (distinct)
658 -- descendant type of that type, find the corresponding primitive
659 -- subprogram of the descendant type.
661 function Current_Entity (N : Node_Id) return Entity_Id;
662 pragma Inline (Current_Entity);
663 -- Find the currently visible definition for a given identifier, that is to
664 -- say the first entry in the visibility chain for the Chars of N.
666 function Current_Entity_In_Scope (N : Name_Id) return Entity_Id;
667 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
668 -- Find whether there is a previous definition for name or identifier N in
669 -- the current scope. Because declarations for a scope are not necessarily
670 -- contiguous (e.g. for packages) the first entry on the visibility chain
671 -- for N is not necessarily in the current scope.
673 function Current_Scope return Entity_Id;
674 -- Get entity representing current scope
676 procedure Add_Block_Identifier
677 (N : Node_Id;
678 Id : out Entity_Id;
679 Scope : Entity_Id := Current_Scope);
680 -- Given a block statement N, generate an internal E_Block label and make
681 -- it the identifier of the block. Scope denotes the scope in which the
682 -- generated entity Id is created and defaults to the current scope. If the
683 -- block already has an identifier, Id returns the entity of its label.
685 function Current_Scope_No_Loops return Entity_Id;
686 -- Return the current scope ignoring internally generated loops
688 function Current_Subprogram return Entity_Id;
689 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
690 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
691 -- Current_Scope is returned. The returned value is Empty if this is called
692 -- from a library package which is not within any subprogram.
694 function CW_Or_Needs_Finalization (Typ : Entity_Id) return Boolean;
695 -- True if Typ is a class-wide type or requires finalization actions. Same
696 -- as Needs_Finalization except with pragma Restrictions (No_Finalization),
697 -- in which case we know that class-wide objects do not need finalization.
699 function Deepest_Type_Access_Level
700 (Typ : Entity_Id;
701 Allow_Alt_Model : Boolean := True) return Uint;
703 -- Same as Type_Access_Level, except that if the type is the type of an Ada
704 -- 2012 stand-alone object of an anonymous access type, then return the
705 -- static accessibility level of the object. In that case, the dynamic
706 -- accessibility level of the object may take on values in a range. The low
707 -- bound of that range is returned by Type_Access_Level; this function
708 -- yields the high bound of that range. Also differs from Type_Access_Level
709 -- in the case of a descendant of a generic formal type (returns Int'Last
710 -- instead of 0).
712 -- The Allow_Alt_Model parameter allows the alternative level calculation
713 -- under the restriction No_Dynamic_Accessibility_Checks to be performed.
715 function Defining_Entity (N : Node_Id) return Entity_Id;
716 -- Given a declaration N, returns the associated defining entity. If the
717 -- declaration has a specification, the entity is obtained from the
718 -- specification. If the declaration has a defining unit name, then the
719 -- defining entity is obtained from the defining unit name ignoring any
720 -- child unit prefixes.
722 -- Iterator loops also have a defining entity, which holds the list of
723 -- local entities declared during loop expansion. These entities need
724 -- debugging information, generated through Qualify_Entity_Names, and
725 -- the loop declaration must be placed in the table Name_Qualify_Units.
727 -- WARNING: There is a matching C declaration of this subprogram in fe.h
729 function Defining_Entity_Or_Empty (N : Node_Id) return Entity_Id;
730 -- This is equivalent to Defining_Entity but it returns Empty for nodes
731 -- without an entity instead of raising Program_Error.
733 function Denotes_Discriminant
734 (N : Node_Id;
735 Check_Concurrent : Boolean := False) return Boolean;
736 -- Returns True if node N is an Entity_Name node for a discriminant. If the
737 -- flag Check_Concurrent is true, function also returns true when N denotes
738 -- the discriminal of the discriminant of a concurrent type. This is needed
739 -- to disable some optimizations on private components of protected types,
740 -- and constraint checks on entry families constrained by discriminants.
742 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
743 -- Detect suspicious overlapping between actuals in a call, when both are
744 -- writable (RM 2012 6.4.1(6.4/3)).
746 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
747 -- Functions to detect suspicious overlapping between actuals in a call,
748 -- when one of them is writable. The predicates are those proposed in
749 -- AI05-0144, to detect dangerous order dependence in complex calls.
750 -- I would add a parameter Warn which enables more extensive testing of
751 -- cases as we find appropriate when we are only warning ??? Or perhaps
752 -- return an indication of (Error, Warn, OK) ???
754 function Denotes_Variable (N : Node_Id) return Boolean;
755 -- Returns True if node N denotes a single variable without parentheses
757 function Depends_On_Discriminant (N : Node_Id) return Boolean;
758 -- Returns True if N denotes a discriminant or if N is a range, a subtype
759 -- indication or a scalar subtype where one of the bounds is a
760 -- discriminant.
762 function Derivation_Too_Early_To_Inherit
763 (Typ : Entity_Id; Streaming_Op : TSS_Name_Type) return Boolean;
764 -- Returns True if Typ is a derived type, the given Streaming_Op
765 -- (one of Read, Write, Input, or Output) is explicitly specified
766 -- for Typ's parent type, and that attribute specification is *not*
767 -- inherited by Typ because the declaration of Typ precedes that
768 -- of the attribute specification.
770 function Designate_Same_Unit
771 (Name1 : Node_Id;
772 Name2 : Node_Id) return Boolean;
773 -- Returns True if Name1 and Name2 designate the same unit name; each of
774 -- these names is supposed to be a selected component name, an expanded
775 -- name, a defining program unit name or an identifier.
777 procedure Diagnose_Iterated_Component_Association (N : Node_Id);
778 -- Emit an error if iterated component association N is actually an illegal
779 -- quantified expression lacking a quantifier.
781 function Discriminated_Size (Comp : Entity_Id) return Boolean;
782 -- If a component size is not static then a warning will be emitted
783 -- in Ravenscar or other restricted contexts. When a component is non-
784 -- static because of a discriminant constraint we can specialize the
785 -- warning by mentioning discriminants explicitly. This was created for
786 -- private components of protected objects, but is generally useful when
787 -- restriction No_Implicit_Heap_Allocation is active.
789 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
790 -- Same as Einfo.Extra_Accessibility except thtat object renames
791 -- are looked through.
793 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
794 -- Id should be the entity of a state abstraction, an object, or a type.
795 -- Returns True iff Id is subject to external property Effective_Reads.
797 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
798 -- Id should be the entity of a state abstraction, an object, or a type.
799 -- Returns True iff Id is subject to external property Effective_Writes.
801 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
802 -- Returns the enclosing N_Compilation_Unit node that is the root of a
803 -- subtree containing N.
805 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
806 -- Returns the closest ancestor of Typ that is a CPP type.
808 function Enclosing_Declaration (N : Node_Id) return Node_Id;
809 -- Returns the declaration node enclosing N (including possibly N itself),
810 -- if any, or Empty otherwise.
812 function Enclosing_Declaration_Or_Statement (N : Node_Id) return Node_Id;
813 -- Return the nearest enclosing declaration or statement that houses
814 -- arbitrary node N.
816 function Enclosing_Generic_Body (N : Node_Id) return Node_Id;
817 -- Returns the Node_Id associated with the innermost enclosing generic
818 -- body, if any. If none, then returns Empty.
820 function Enclosing_Generic_Unit (N : Node_Id) return Node_Id;
821 -- Returns the Node_Id associated with the innermost enclosing generic
822 -- unit, if any. If none, then returns Empty.
824 function Enclosing_HSS (Stmt : Node_Id) return Node_Id;
825 -- Returns the nearest handled sequence of statements that encloses a given
826 -- statement, or Empty.
828 function Enclosing_Lib_Unit_Entity
829 (E : Entity_Id := Current_Scope) return Entity_Id;
830 -- Returns the entity of enclosing library unit node which is the root of
831 -- the current scope (which must not be Standard_Standard, and the caller
832 -- is responsible for ensuring this condition) or other specified entity.
834 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
835 -- Returns the N_Compilation_Unit node of the library unit that is directly
836 -- or indirectly (through a subunit) at the root of a subtree containing
837 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if
838 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
839 -- library unit. If no such item is found, returns Empty.
841 function Enclosing_Package (N : Node_Or_Entity_Id) return Entity_Id;
842 -- Utility function to return the Ada entity of the package enclosing
843 -- the entity or node N, if any. Returns Empty if no enclosing package.
845 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
846 -- Returns the entity of the package or subprogram enclosing E, if any.
847 -- Returns Empty if no enclosing package or subprogram.
849 function Enclosing_Subprogram (N : Node_Or_Entity_Id) return Entity_Id;
850 -- Utility function to return the Ada entity of the subprogram enclosing
851 -- N, if any. Returns Empty if no enclosing subprogram.
853 function End_Keyword_Location (N : Node_Id) return Source_Ptr;
854 -- Given block statement, entry body, package body, package declaration,
855 -- protected body, [single] protected type declaration, subprogram body,
856 -- task body, or [single] task type declaration N, return the closest
857 -- source location of the "end" keyword.
859 procedure Ensure_Freeze_Node (E : Entity_Id);
860 -- Make sure a freeze node is allocated for entity E. If necessary, build
861 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
863 procedure Enter_Name (Def_Id : Entity_Id);
864 -- Insert new name in symbol table of current scope with check for
865 -- duplications (error message is issued if a conflict is found).
866 -- Note: Enter_Name is not used for overloadable entities, instead these
867 -- are entered using Sem_Ch6.Enter_Overloaded_Entity.
869 function Entity_Of (N : Node_Id) return Entity_Id;
870 -- Obtain the entity of arbitrary node N. If N is a renaming, return the
871 -- entity of the earliest renamed source abstract state or whole object.
872 -- If no suitable entity is available, return Empty. This routine carries
873 -- out actions that are tied to SPARK semantics.
875 function Exceptions_OK return Boolean;
876 -- Determine whether exceptions are allowed to be caught, propagated, or
877 -- raised.
879 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
880 -- This procedure is called after issuing a message complaining about an
881 -- inappropriate use of limited type T. If useful, it adds additional
882 -- continuation lines to the message explaining why type T is limited.
883 -- Messages are placed at node N.
885 function Expression_Of_Expression_Function
886 (Subp : Entity_Id) return Node_Id;
887 -- Return the expression of expression function Subp
889 type Extensions_Visible_Mode is
890 (Extensions_Visible_None,
891 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
892 -- value acts as a default in a non-SPARK compilation.
894 Extensions_Visible_False,
895 -- A value of "False" signifies that Extensions_Visible is either
896 -- missing or the pragma is present and the value of its Boolean
897 -- expression is False.
899 Extensions_Visible_True);
900 -- A value of "True" signifies that Extensions_Visible is present and
901 -- the value of its Boolean expression is True.
903 function Extensions_Visible_Status
904 (Id : Entity_Id) return Extensions_Visible_Mode;
905 -- Given the entity of a subprogram or formal parameter subject to pragma
906 -- Extensions_Visible, return the Boolean value denoted by the expression
907 -- of the pragma.
909 procedure Find_Actual
910 (N : Node_Id;
911 Formal : out Entity_Id;
912 Call : out Node_Id);
913 -- Determines if the node N is an actual parameter of a function or a
914 -- procedure call. If so, then Formal points to the entity for the formal
915 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
916 -- Call is set to the node for the corresponding call. If the node N is not
917 -- an actual parameter then Formal and Call are set to Empty.
919 function Find_Body_Discriminal
920 (Spec_Discriminant : Entity_Id) return Entity_Id;
921 -- Given a discriminant of the record type that implements a task or
922 -- protected type, return the discriminal of the corresponding discriminant
923 -- of the actual concurrent type.
925 function Find_Corresponding_Discriminant
926 (Id : Node_Id;
927 Typ : Entity_Id) return Entity_Id;
928 -- Because discriminants may have different names in a generic unit and in
929 -- an instance, they are resolved positionally when possible. A reference
930 -- to a discriminant carries the discriminant that it denotes when it is
931 -- analyzed. Subsequent uses of this id on a different type denotes the
932 -- discriminant at the same position in this new type.
934 function Find_DIC_Type (Typ : Entity_Id) return Entity_Id;
935 -- Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which
936 -- defines the Default_Initial_Condition pragma of type Typ. This is either
937 -- Typ itself or a parent type when the pragma is inherited.
939 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
940 -- Find the nearest iterator loop which encloses arbitrary entity Id. If
941 -- such a loop exists, return the entity of its identifier (E_Loop scope),
942 -- otherwise return Empty.
944 function Find_Enclosing_Scope (N : Node_Id) return Entity_Id;
945 -- Find the nearest scope which encloses arbitrary node N
947 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
948 -- Find the nested loop statement in a conditional block. Loops subject to
949 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
950 -- loop are nested within the block.
952 procedure Find_Overlaid_Entity
953 (N : Node_Id;
954 Ent : out Entity_Id;
955 Off : out Boolean);
956 -- The node N should be an address representation clause. Determines if the
957 -- target expression is the address of an entity with an optional offset.
958 -- If so, set Ent to the entity and, if there is an offset, set Off to
959 -- True, otherwise to False. If it is not possible to determine that the
960 -- address is of this form, then set Ent to Empty.
962 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
963 -- Return the type of formal parameter Param as determined by its
964 -- specification.
966 -- The following type describes the placement of an arbitrary entity with
967 -- respect to SPARK visible / hidden state space.
969 type State_Space_Kind is
970 (Not_In_Package,
971 -- An entity is not in the visible, private or body state space when
972 -- the immediate enclosing construct is not a package.
974 Visible_State_Space,
975 -- An entity is in the visible state space when it appears immediately
976 -- within the visible declarations of a package or when it appears in
977 -- the visible state space of a nested package which in turn is declared
978 -- in the visible declarations of an enclosing package:
980 -- package Pack is
981 -- Visible_Variable : ...
982 -- package Nested
983 -- with Abstract_State => Visible_State
984 -- is
985 -- Visible_Nested_Variable : ...
986 -- end Nested;
987 -- end Pack;
989 -- Entities associated with a package instantiation inherit the state
990 -- space from the instance placement:
992 -- generic
993 -- package Gen is
994 -- Generic_Variable : ...
995 -- end Gen;
997 -- with Gen;
998 -- package Pack is
999 -- package Inst is new Gen;
1000 -- -- Generic_Variable is in the visible state space of Pack
1001 -- end Pack;
1003 Private_State_Space,
1004 -- An entity is in the private state space when it appears immediately
1005 -- within the private declarations of a package or when it appears in
1006 -- the visible state space of a nested package which in turn is declared
1007 -- in the private declarations of an enclosing package:
1009 -- package Pack is
1010 -- private
1011 -- Private_Variable : ...
1012 -- package Nested
1013 -- with Abstract_State => Private_State
1014 -- is
1015 -- Private_Nested_Variable : ...
1016 -- end Nested;
1017 -- end Pack;
1019 -- The same placement principle applies to package instantiations
1021 Body_State_Space);
1022 -- An entity is in the body state space when it appears immediately
1023 -- within the declarations of a package body or when it appears in the
1024 -- visible state space of a nested package which in turn is declared in
1025 -- the declarations of an enclosing package body:
1027 -- package body Pack is
1028 -- Body_Variable : ...
1029 -- package Nested
1030 -- with Abstract_State => Body_State
1031 -- is
1032 -- Body_Nested_Variable : ...
1033 -- end Nested;
1034 -- end Pack;
1036 -- The same placement principle applies to package instantiations
1038 procedure Find_Placement_In_State_Space
1039 (Item_Id : Entity_Id;
1040 Placement : out State_Space_Kind;
1041 Pack_Id : out Entity_Id);
1042 -- Determine the state space placement of an item. Item_Id denotes the
1043 -- entity of an abstract state, object, or package instantiation. Placement
1044 -- captures the precise placement of the item in the enclosing state space.
1045 -- If the state space is that of a package, Pack_Id denotes its entity,
1046 -- otherwise Pack_Id is Empty.
1048 function Find_Primitive_Eq (Typ : Entity_Id) return Entity_Id;
1049 -- Locate primitive equality for type if it exists. Return Empty if it is
1050 -- not available.
1052 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
1053 -- Find specific type of a class-wide type, and handle the case of an
1054 -- incomplete type coming either from a limited_with clause or from an
1055 -- incomplete type declaration. If resulting type is private return its
1056 -- full view.
1058 function Find_Static_Alternative (N : Node_Id) return Node_Id;
1059 -- N is a case statement whose expression is a compile-time value.
1060 -- Determine the alternative chosen, so that the code of non-selected
1061 -- alternatives, and the warnings that may apply to them, are removed.
1063 function First_Actual (Node : Node_Id) return Node_Id;
1064 -- Node is an N_Function_Call, N_Procedure_Call_Statement or
1065 -- N_Entry_Call_Statement node. The result returned is the first actual
1066 -- parameter in declaration order (not the order of parameters as they
1067 -- appeared in the source, which can be quite different as a result of the
1068 -- use of named parameters). Empty is returned for a call with no
1069 -- parameters. The procedure for iterating through the actuals in
1070 -- declaration order is to use this function to find the first actual, and
1071 -- then use Next_Actual to obtain the next actual in declaration order.
1072 -- Note that the value returned is always the expression (not the
1073 -- N_Parameter_Association nodes, even if named association is used).
1075 -- WARNING: There is a matching C declaration of this subprogram in fe.h
1077 function First_Global
1078 (Subp : Entity_Id;
1079 Global_Mode : Name_Id;
1080 Refined : Boolean := False) return Node_Id;
1081 -- Returns the first global item of mode Global_Mode (which can be
1082 -- Name_Input, Name_Output, Name_In_Out or Name_Proof_In) associated to
1083 -- subprogram Subp, or Empty otherwise. If Refined is True, the global item
1084 -- is retrieved from the Refined_Global aspect/pragma associated to the
1085 -- body of Subp if present. Next_Global can be used to get the next global
1086 -- item with the same mode.
1088 function Fix_Msg (Id : Entity_Id; Msg : String) return String;
1089 -- Replace all occurrences of a particular word in string Msg depending on
1090 -- the Ekind of Id as follows:
1091 -- * Replace "subprogram" with
1092 -- - "entry" when Id is an entry [family]
1093 -- - "task type" when Id is a single task object, task type or task
1094 -- body.
1095 -- * Replace "protected" with
1096 -- - "task" when Id is a single task object, task type or task body
1097 -- All other non-matching words remain as is
1099 function From_Nested_Package (T : Entity_Id) return Boolean;
1100 -- A type declared in a nested package may be frozen by a declaration
1101 -- appearing after the package but before the package is frozen. If the
1102 -- type has aspects that generate subprograms, these may contain references
1103 -- to entities local to the nested package. In that case the package must
1104 -- be installed on the scope stack to prevent spurious visibility errors.
1106 procedure Gather_Components
1107 (Typ : Entity_Id;
1108 Comp_List : Node_Id;
1109 Governed_By : List_Id;
1110 Into : Elist_Id;
1111 Report_Errors : out Boolean;
1112 Allow_Compile_Time : Boolean := False;
1113 Include_Interface_Tag : Boolean := False);
1114 -- The purpose of this procedure is to gather the valid components in a
1115 -- record type according to the values of its discriminants, in order to
1116 -- validate the components of a record aggregate.
1118 -- Typ is the type of the aggregate when its constrained discriminants
1119 -- need to be collected, otherwise it is Empty.
1121 -- Comp_List is an N_Component_List node.
1123 -- Governed_By is a list of N_Component_Association nodes, where each
1124 -- choice list contains the name of a discriminant and the expression
1125 -- field gives its value. The values of the discriminants governing
1126 -- the (possibly nested) variant parts in Comp_List are found in this
1127 -- Component_Association List.
1129 -- Into is the list where the valid components are appended. Note that
1130 -- Into need not be an Empty list. If it's not, components are attached
1131 -- to its tail.
1133 -- Report_Errors is set to True if the values of the discriminants are
1134 -- insufficiently static (see body for details of what that means).
1137 -- Allow_Compile_Time if set to True, allows compile time known values in
1138 -- Governed_By expressions in addition to static expressions.
1140 -- Include_Interface_Tag if set to True, gather any interface tag
1141 -- component, otherwise exclude them.
1143 -- This procedure is also used when building a record subtype. If the
1144 -- discriminant constraint of the subtype is static, the components of the
1145 -- subtype are only those of the variants selected by the values of the
1146 -- discriminants. Otherwise all components of the parent must be included
1147 -- in the subtype for semantic analysis.
1149 function Get_Dynamic_Accessibility (E : Entity_Id) return Entity_Id;
1150 -- Obtain the accessibility level for a given entity formal taking into
1151 -- account both extra and minimum accessibility.
1153 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
1154 -- Given a node for an expression, obtain the actual subtype of the
1155 -- expression. In the case of a parameter where the formal is an
1156 -- unconstrained array or discriminated type, this will be the previously
1157 -- constructed subtype of the actual. Note that this is not quite the
1158 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
1159 -- it is the subtype of the value of the actual. The actual subtype is also
1160 -- returned in other cases where it has already been constructed for an
1161 -- object. Otherwise the expression type is returned unchanged, except for
1162 -- the case of an unconstrained array type, where an actual subtype is
1163 -- created, using Insert_Actions if necessary to insert any associated
1164 -- actions.
1166 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
1167 -- This is like Get_Actual_Subtype, except that it never constructs an
1168 -- actual subtype. If an actual subtype is already available, i.e. the
1169 -- Actual_Subtype field of the corresponding entity is set, then it is
1170 -- returned. Otherwise the Etype of the node is returned.
1172 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
1173 -- Return the body node for a stub
1175 function Get_Cursor_Type
1176 (Aspect : Node_Id;
1177 Typ : Entity_Id) return Entity_Id;
1178 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1179 -- primitive operation First. For use in resolving the other primitive
1180 -- operations of an Iterable type and expanding loops and quantified
1181 -- expressions over formal containers.
1183 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1184 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1185 -- primitive operation First. For use after resolving the primitive
1186 -- operations of an Iterable type.
1188 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
1189 -- This is used to construct the string literal node representing a
1190 -- default external name, i.e. one that is constructed from the name of an
1191 -- entity, or (in the case of extended DEC import/export pragmas) an
1192 -- identifier provided as the external name. Letters in the name are
1193 -- according to the setting of Opt.External_Name_Default_Casing.
1195 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
1196 -- If expression N references a part of an object, return this object.
1197 -- Otherwise return Empty. Expression N should have been resolved already.
1199 function Get_Enclosing_Deep_Object (N : Node_Id) return Entity_Id;
1200 -- If expression N references a reachable part of an object (as defined in
1201 -- SPARK RM 6.9), return this object. Otherwise return Empty. It is similar
1202 -- to Get_Enclosing_Object, but treats pointer dereference like component
1203 -- selection. Expression N should have been resolved already.
1205 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
1206 -- Returns the true generic entity in an instantiation. If the name in the
1207 -- instantiation is a renaming, the function returns the renamed generic.
1209 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
1210 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
1211 -- in a child unit a derived type is within the derivation class of an
1212 -- ancestor declared in a parent unit, even if there is an intermediate
1213 -- derivation that does not see the full view of that ancestor.
1215 procedure Get_Index_Bounds
1216 (N : Node_Id;
1217 L : out Node_Id;
1218 H : out Node_Id;
1219 Use_Full_View : Boolean := False);
1220 -- This procedure assigns to L and H respectively the values of the low and
1221 -- high bounds of node N, which must be a range, subtype indication, or the
1222 -- name of a scalar subtype. The result in L, H may be set to Error if
1223 -- there was an earlier error in the range.
1224 -- Use_Full_View is intended for use by clients other than the compiler
1225 -- (specifically, gnat2scil) to indicate that we want the full view if
1226 -- the index type turns out to be a partial view; this case should not
1227 -- arise during normal compilation of semantically correct programs.
1229 type Range_Nodes is record
1230 First, Last : Node_Id; -- First and Last nodes of a discrete_range
1231 end record;
1233 type Range_Values is record
1234 First, Last : Uint; -- First and Last values of a discrete_range
1235 end record;
1237 function Get_Index_Bounds
1238 (N : Node_Id;
1239 Use_Full_View : Boolean := False) return Range_Nodes;
1240 -- Same as the above procedure, but returns the result as a record.
1241 -- ???This should probably replace the procedure.
1243 function Get_Index_Bounds
1244 (N : Node_Id;
1245 Use_Full_View : Boolean := False) return Range_Values;
1246 -- Same as the above function, but returns the values, which must be known
1247 -- at compile time.
1249 procedure Get_Interfacing_Aspects
1250 (Iface_Asp : Node_Id;
1251 Conv_Asp : out Node_Id;
1252 EN_Asp : out Node_Id;
1253 Expo_Asp : out Node_Id;
1254 Imp_Asp : out Node_Id;
1255 LN_Asp : out Node_Id;
1256 Do_Checks : Boolean := False);
1257 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
1258 -- aspects that apply to the same related entity. The aspects considered by
1259 -- this routine are as follows:
1261 -- Conv_Asp - aspect Convention
1262 -- EN_Asp - aspect External_Name
1263 -- Expo_Asp - aspect Export
1264 -- Imp_Asp - aspect Import
1265 -- LN_Asp - aspect Link_Name
1267 -- When flag Do_Checks is set, this routine will flag duplicate uses of
1268 -- aspects.
1270 function Get_Enum_Lit_From_Pos
1271 (T : Entity_Id;
1272 Pos : Uint;
1273 Loc : Source_Ptr) return Node_Id;
1274 -- This function returns an identifier denoting the E_Enumeration_Literal
1275 -- entity for the specified value from the enumeration type or subtype T.
1276 -- The second argument is the Pos value. Constraint_Error is raised if
1277 -- argument Pos is not in range. The third argument supplies a source
1278 -- location for constructed nodes returned by this function. If No_Location
1279 -- is supplied as source location, the location of the returned node is
1280 -- copied from the original source location for the enumeration literal,
1281 -- when available.
1283 function Get_Iterable_Type_Primitive
1284 (Typ : Entity_Id;
1285 Nam : Name_Id) return Entity_Id;
1286 -- Retrieve one of the primitives First, Last, Next, Previous, Has_Element,
1287 -- Element from the value of the Iterable aspect of a type.
1289 function Get_Library_Unit_Name (Decl_Node : Node_Id) return String_Id;
1290 -- Return the full expanded name of the library unit declared by Decl_Node
1292 function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
1293 -- Return the argument of pragma Max_Queue_Length or zero if the annotation
1294 -- is not present. It is assumed that Id denotes an entry.
1296 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
1297 pragma Inline (Get_Name_Entity_Id);
1298 -- An entity value is associated with each name in the name table. The
1299 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
1300 -- is the innermost visible entity with the given name. See the body of
1301 -- Sem_Ch8 for further details on handling of entity visibility.
1303 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
1304 -- Return the Name component of Test_Case pragma N
1305 -- Bad name now that this no longer applies to Contract_Case ???
1307 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
1308 -- Get defining entity of parent unit of a child unit. In most cases this
1309 -- is the defining entity of the unit, but for a child instance whose
1310 -- parent needs a body for inlining, the instantiation node of the parent
1311 -- has not yet been rewritten as a package declaration, and the entity has
1312 -- to be retrieved from the Instance_Spec of the unit.
1314 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
1315 pragma Inline (Get_Pragma_Id);
1316 -- Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
1318 function Get_Qualified_Name
1319 (Id : Entity_Id;
1320 Suffix : Entity_Id := Empty) return Name_Id;
1321 -- Obtain the fully qualified form of entity Id. The format is:
1322 -- scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
1324 function Get_Qualified_Name
1325 (Nam : Name_Id;
1326 Suffix : Name_Id := No_Name;
1327 Scop : Entity_Id := Current_Scope) return Name_Id;
1328 -- Obtain the fully qualified form of name Nam assuming it appears in scope
1329 -- Scop. The format is:
1330 -- scop-1__scop__nam__suffix
1332 procedure Get_Reason_String (N : Node_Id);
1333 -- Recursive routine to analyze reason argument for pragma Warnings. The
1334 -- value of the reason argument is appended to the current string using
1335 -- Store_String_Chars. The reason argument is expected to be a string
1336 -- literal or concatenation of string literals. An error is given for
1337 -- any other form.
1339 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
1340 -- If Typ has Implicit_Dereference, return discriminant specified in the
1341 -- corresponding aspect.
1343 function Get_Referenced_Object (N : Node_Id) return Node_Id;
1344 -- Given an arbitrary node, return the renamed object if the node
1345 -- represents a renamed object; otherwise return the node unchanged.
1346 -- The node can represent an arbitrary expression or any other kind of
1347 -- node (such as the name of a type).
1349 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
1350 -- Given an entity for an exception, package, subprogram or generic unit,
1351 -- returns the ultimately renamed entity if this is a renaming. If this is
1352 -- not a renamed entity, returns its argument. It is an error to call this
1353 -- with any other kind of entity.
1355 function Get_Return_Object (N : Node_Id) return Entity_Id;
1356 -- Given an extended return statement, return the corresponding return
1357 -- object, identified as the one for which Is_Return_Object = True.
1359 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
1360 -- Nod is either a procedure call statement, or a function call, or an
1361 -- accept statement node. This procedure finds the Entity_Id of the related
1362 -- subprogram or entry and returns it, or if no subprogram can be found,
1363 -- returns Empty.
1365 function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id;
1366 -- Given an entity for a task type or subtype, retrieves the
1367 -- Task_Body_Procedure field from the corresponding task type declaration.
1369 function Get_User_Defined_Equality (E : Entity_Id) return Entity_Id;
1370 -- For a type entity, return the entity of the primitive equality function
1371 -- for the type if it exists, otherwise return Empty.
1373 procedure Get_Views
1374 (Typ : Entity_Id;
1375 Priv_Typ : out Entity_Id;
1376 Full_Typ : out Entity_Id;
1377 UFull_Typ : out Entity_Id;
1378 CRec_Typ : out Entity_Id);
1379 -- Obtain the partial and full views of type Typ and in addition any extra
1380 -- types the full views may have. The return entities are as follows:
1382 -- Priv_Typ - the partial view (a private type)
1383 -- Full_Typ - the full view
1384 -- UFull_Typ - the underlying full view, if the full view is private
1385 -- CRec_Typ - the corresponding record type of the full views
1387 function Get_Fullest_View
1388 (E : Entity_Id;
1389 Include_PAT : Boolean := True;
1390 Recurse : Boolean := True) return Entity_Id;
1391 -- Get the fullest possible view of E, looking through private, limited,
1392 -- packed array and other implementation types. If Include_PAT is False,
1393 -- don't look inside packed array types. If Recurse is False, just
1394 -- go down one level (so it's no longer the "fullest" view).
1396 function Has_Access_Values (T : Entity_Id) return Boolean;
1397 -- Returns true if the underlying type of T is an access type, or has a
1398 -- component (at any recursive level) that is an access type. This is a
1399 -- conservative predicate, if it is not known whether or not T contains
1400 -- access values (happens for generic formals in some cases), then False is
1401 -- returned. Note that tagged types return False. Even though the tag is
1402 -- implemented as an access type internally, this function tests only for
1403 -- access types known to the programmer. See also Has_Tagged_Component.
1405 function Has_Anonymous_Access_Discriminant (Typ : Entity_Id) return Boolean;
1406 -- Returns True if Typ has one or more anonymous access discriminants
1408 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1409 -- Result of Has_Compatible_Alignment test, description found below. Note
1410 -- that the values are arranged in increasing order of problematicness.
1412 function Has_Compatible_Alignment
1413 (Obj : Entity_Id;
1414 Expr : Node_Id;
1415 Layout_Done : Boolean) return Alignment_Result;
1416 -- Obj is an object entity, and expr is a node for an object reference. If
1417 -- the alignment of the object referenced by Expr is known to be compatible
1418 -- with the alignment of Obj (i.e. is larger or the same), then the result
1419 -- is Known_Compatible. If the alignment of the object referenced by Expr
1420 -- is known to be less than the alignment of Obj, then Known_Incompatible
1421 -- is returned. If neither condition can be reliably established at compile
1422 -- time, then Unknown is returned. If Layout_Done is True, the function can
1423 -- assume that the information on size and alignment of types and objects
1424 -- is present in the tree. This is used to determine if alignment checks
1425 -- are required for address clauses (Layout_Done is False in this case) as
1426 -- well as to issue appropriate warnings for them in the post compilation
1427 -- phase (Layout_Done is True in this case).
1429 -- Note: Known_Incompatible does not mean that at run time the alignment
1430 -- of Expr is known to be wrong for Obj, just that it can be determined
1431 -- that alignments have been explicitly or implicitly specified which are
1432 -- incompatible (whereas Unknown means that even this is not known). The
1433 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
1434 -- Unknown, but issue a warning that there may be an alignment error.
1436 function Has_Declarations (N : Node_Id) return Boolean;
1437 -- Determines if the node can have declarations
1439 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1440 -- Simple predicate to test for defaulted discriminants
1442 function Has_Denormals (E : Entity_Id) return Boolean;
1443 -- Determines if the floating-point type E supports denormal numbers.
1444 -- Returns False if E is not a floating-point type.
1446 function Has_Discriminant_Dependent_Constraint
1447 (Comp : Entity_Id) return Boolean;
1448 -- Returns True if and only if Comp has a constrained subtype that depends
1449 -- on a discriminant.
1451 function Has_Effectively_Volatile_Profile
1452 (Subp_Id : Entity_Id) return Boolean;
1453 -- Determine whether subprogram Subp_Id has an effectively volatile formal
1454 -- parameter for reading or returns an effectively volatile value for
1455 -- reading.
1457 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1458 -- Determine whether type Typ defines "full default initialization" as
1459 -- specified by SPARK RM 3.1. To qualify as such, the type must be
1460 -- * A scalar type with specified Default_Value
1461 -- * An array-of-scalar type with specified Default_Component_Value
1462 -- * An array type whose element type defines full default initialization
1463 -- * A protected type, record type or type extension whose components
1464 -- either include a default expression or have a type which defines
1465 -- full default initialization. In the case of type extensions, the
1466 -- parent type defines full default initialization.
1467 -- * A task type
1468 -- * A private type with pragma Default_Initial_Condition that provides
1469 -- full default initialization.
1470 -- This function is not used in GNATprove anymore, but is used in CodePeer.
1472 function Has_Fully_Default_Initializing_DIC_Pragma
1473 (Typ : Entity_Id) return Boolean;
1474 -- Determine whether type Typ has a suitable Default_Initial_Condition
1475 -- pragma which provides the full default initialization of the type.
1477 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
1478 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
1479 -- discriminants if it has a constrained nominal type, unless the object
1480 -- is a component of an enclosing Unchecked_Union object that is subject
1481 -- to a per-object constraint and the enclosing object lacks inferable
1482 -- discriminants.
1484 -- An expression of an Unchecked_Union type has inferable discriminants
1485 -- if it is either a name of an object with inferable discriminants or a
1486 -- qualified expression whose subtype mark denotes a constrained subtype.
1488 function Has_Infinities (E : Entity_Id) return Boolean;
1489 -- Determines if the range of the floating-point type E includes
1490 -- infinities. Returns False if E is not a floating-point type.
1492 function Has_Interfaces
1493 (T : Entity_Id;
1494 Use_Full_View : Boolean := True) return Boolean;
1495 -- Where T is a concurrent type or a record type, returns true if T covers
1496 -- any abstract interface types. In case of private types the argument
1497 -- Use_Full_View controls if the check is done using its full view (if
1498 -- available).
1500 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1501 -- Determine whether Id is subject to pragma Max_Queue_Length. It is
1502 -- assumed that Id denotes an entry.
1504 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1505 -- This is a simple minded function for determining whether an expression
1506 -- has no obvious side effects. It is used only for determining whether
1507 -- warnings are needed in certain situations, and is not guaranteed to
1508 -- be accurate in either direction. Exceptions may mean an expression
1509 -- does in fact have side effects, but this may be ignored and True is
1510 -- returned, or a complex expression may in fact be side effect free
1511 -- but we don't recognize it here and return False. The Side_Effect_Free
1512 -- routine in Remove_Side_Effects is much more extensive and perhaps could
1513 -- be shared, so that this routine would be more accurate.
1515 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1516 -- Determine whether abstract state Id has at least one nonnull constituent
1517 -- as expressed in pragma Refined_State. This function does not take into
1518 -- account the visible refinement region of abstract state Id.
1520 function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean;
1521 -- Determine whether subprogram Subp has a class-wide precondition that is
1522 -- not statically True.
1524 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1525 -- Determine whether the body of procedure Proc_Id contains a sole null
1526 -- statement, possibly followed by an optional return. Used to optimize
1527 -- useless calls to assertion checks.
1529 function Has_Null_Exclusion (N : Node_Id) return Boolean;
1530 -- Determine whether node N has a null exclusion
1532 function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1533 -- Determine whether abstract state Id has a null refinement as expressed
1534 -- in pragma Refined_State. This function does not take into account the
1535 -- visible refinement region of abstract state Id.
1537 function Has_Non_Null_Statements (L : List_Id) return Boolean;
1538 -- Return True if L has non-null statements
1540 function Side_Effect_Free_Statements (L : List_Id) return Boolean;
1541 -- Return True if L has no statements with side effects
1543 function Side_Effect_Free_Loop (N : Node_Id) return Boolean;
1544 -- Return True if the loop has no side effect and can therefore be
1545 -- marked for removal. Return False if N is not a N_Loop_Statement.
1547 subtype Static_Accessibility_Level_Kind
1548 is Accessibility_Level_Kind range Object_Decl_Level
1549 .. Zero_On_Dynamic_Level;
1550 -- Restrict the reange of Accessibility_Level_Kind to be non-dynamic for
1551 -- use in the static version of Accessibility_Level below.
1553 function Static_Accessibility_Level
1554 (Expr : Node_Id;
1555 Level : Static_Accessibility_Level_Kind;
1556 In_Return_Context : Boolean := False) return Uint;
1557 -- Overloaded version of Accessibility_Level which returns a universal
1558 -- integer for use in compile-time checking. Note: Level is restricted to
1559 -- be non-dynamic.
1561 function Is_Newly_Constructed
1562 (Exp : Node_Id; Context_Requires_NC : Boolean) return Boolean;
1563 -- Indicates whether a given expression is "newly constructed" (RM 4.4).
1564 -- Context_Requires_NC determines the result returned for cases like a
1565 -- raise expression or a conditional expression where some-but-not-all
1566 -- operative constituents are newly constructed. Thus, this is a
1567 -- somewhat unusual predicate in that the result required in order to
1568 -- satisfy whatever legality rule is being checked can influence the
1569 -- result of the predicate. Context_Requires_NC might be True for
1570 -- something like the "newly constructed" rule for a limited expression
1571 -- of a return statement, and False for something like the
1572 -- "newly constructed" rule pertaining to a limited object renaming in a
1573 -- declare expression. Eventually, the code to implement every
1574 -- RM legality rule requiring/prohibiting a "newly constructed" expression
1575 -- should be implemented by calling this function; that's not done yet.
1576 -- The function name doesn't quite match the RM definition of the term if
1577 -- Context_Requires_NC = False; in that case, "Might_Be_Newly_Constructed"
1578 -- might be a more accurate name.
1580 function Is_Prim_Of_Abst_Type_With_Nonstatic_CW_Pre_Post
1581 (Subp : Entity_Id) return Boolean;
1582 -- Return True if Subp is a primitive of an abstract type, where the
1583 -- primitive has a class-wide pre- or postcondition whose expression
1584 -- is nonstatic.
1586 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1587 -- Predicate to determine whether a controlled type has a user-defined
1588 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1589 -- non-null), which causes the type to not have preelaborable
1590 -- initialization.
1592 function Has_Preelaborable_Initialization
1593 (E : Entity_Id;
1594 Preelab_Init_Expr : Node_Id := Empty) return Boolean;
1595 -- Return True iff type E has preelaborable initialization as defined in
1596 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1597 -- If Preelab_Init_Expr is present, indicates that the function should
1598 -- presume that for any subcomponent of E that is of a formal private or
1599 -- derived type that is referenced by a Preelaborable_Initialization
1600 -- attribute within the expression Preelab_Init_Expr, the formal type has
1601 -- preelaborable initialization (RM 10.2.1(11.8/5) and AI12-0409).
1603 function Has_Prefix (N : Node_Id) return Boolean;
1604 -- Return True if N has attribute Prefix
1606 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1607 -- Check if a type has a (sub)component of a private type that has not
1608 -- yet received a full declaration.
1610 function Has_Relaxed_Initialization (E : Entity_Id) return Boolean;
1611 -- Returns True iff entity E is subject to the Relaxed_Initialization
1612 -- aspect. Entity E can be either type, variable, constant, subprogram,
1613 -- entry or an abstract state. For private types and deferred constants
1614 -- E should be the private view, because aspect can only be attached there.
1616 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1617 -- Determines if the floating-point type E supports signed zeros.
1618 -- Returns False if E is not a floating-point type.
1620 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1621 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1622 -- All subprograms have a N_Contract node, but this does not mean that the
1623 -- contract is useful.
1625 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1626 -- Return whether an array type has static bounds
1628 function Has_Static_Non_Empty_Array_Bounds (Typ : Node_Id) return Boolean;
1629 -- Determine whether array type Typ has static non-empty bounds
1631 function Has_Stream (T : Entity_Id) return Boolean;
1632 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1633 -- case of a composite type, has a component for which this predicate is
1634 -- True, and if so returns True. Otherwise a result of False means that
1635 -- there is no Stream type in sight. For a private type, the test is
1636 -- applied to the underlying type (or returns False if there is no
1637 -- underlying type).
1639 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1640 -- Returns true if the last character of E is Suffix. Used in Assertions.
1642 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1643 -- Returns True if Typ is a composite type (array or record) that is either
1644 -- a tagged type or has a subcomponent that is tagged. Returns False for a
1645 -- noncomposite type, or if no tagged subcomponents are present.
1647 function Has_Unconstrained_Access_Discriminants
1648 (Subtyp : Entity_Id) return Boolean;
1649 -- Returns True if the given subtype is unconstrained and has one or more
1650 -- access discriminants.
1652 function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1653 -- Given arbitrary expression Expr, determine whether it contains at
1654 -- least one name whose entity is Any_Id.
1656 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1657 -- Given arbitrary type Typ, determine whether it contains at least one
1658 -- volatile component.
1660 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1661 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1662 -- implementation requirement which the pragma imposes. The return value is
1663 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1665 function Implements_Interface
1666 (Typ_Ent : Entity_Id;
1667 Iface_Ent : Entity_Id;
1668 Exclude_Parents : Boolean := False) return Boolean;
1669 -- Returns true if the Typ_Ent implements interface Iface_Ent
1671 function Implicitly_Designated_Type (Typ : Entity_Id) return Entity_Id;
1672 -- Called when Typ is the type of the prefix of an implicit dereference.
1673 -- Return the designated type of Typ, taking into account that this type
1674 -- may be a limited view, when the nonlimited view is visible.
1676 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1677 -- Returns True if node N appears within a pragma that acts as an assertion
1678 -- expression. See Sem_Prag for the list of qualifying pragmas.
1680 function In_Check_Node (N : Node_Id) return Boolean;
1681 -- Return True if N is part of a N_Raise_xxx_Error node
1683 function In_Generic_Formal_Package (E : Entity_Id) return Boolean;
1684 -- Returns True if entity E is inside a generic formal package
1686 function In_Generic_Scope (E : Entity_Id) return Boolean;
1687 -- Returns True if entity E is inside a generic scope
1689 function In_Instance return Boolean;
1690 -- Returns True if the current scope is within a generic instance
1692 function In_Instance_Body return Boolean;
1693 -- Returns True if current scope is within the body of an instance, where
1694 -- several semantic checks (e.g. accessibility checks) are relaxed.
1696 function In_Instance_Not_Visible return Boolean;
1697 -- Returns True if current scope is with the private part or the body of
1698 -- an instance. Other semantic checks are suppressed in this context.
1700 function In_Instance_Visible_Part
1701 (Id : Entity_Id := Current_Scope) return Boolean;
1702 -- Returns True if arbitrary entity Id is within the visible part of a
1703 -- package instance, where several additional semantic checks apply.
1705 function In_Package_Body return Boolean;
1706 -- Returns True if current scope is within a package body
1708 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1709 -- Returns true if the expression N occurs within a pragma with name Nam
1711 function In_Pre_Post_Condition
1712 (N : Node_Id; Class_Wide_Only : Boolean := False) return Boolean;
1713 -- Returns True if node N appears within a pre/postcondition pragma. Note
1714 -- the pragma Check equivalents are NOT considered. If Class_Wide_Only is
1715 -- True, then tests for N appearing within a class-wide pre/postcondition.
1717 function In_Quantified_Expression (N : Node_Id) return Boolean;
1718 -- Returns true if the expression N occurs within a quantified expression
1720 function In_Return_Value (Expr : Node_Id) return Boolean;
1721 -- Returns true if the expression Expr occurs within a simple return
1722 -- statement or is part of an assignment to the return object in an
1723 -- extended return statement.
1725 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1726 -- Returns True if N denotes a component or subcomponent in a record or
1727 -- array that has Reverse_Storage_Order.
1729 function In_Same_Declarative_Part
1730 (Context : Node_Id;
1731 N : Node_Id) return Boolean;
1732 -- True if the node N appears within the same declarative part denoted by
1733 -- the node Context.
1735 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1736 -- Determines if the current scope is within a subprogram compilation unit
1737 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1738 -- declaration) or within a task or protected body. The test is for
1739 -- appearing anywhere within such a construct (that is it does not need
1740 -- to be directly within).
1742 function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean;
1743 -- Determine whether node N is within the subtree rooted at Root
1745 function In_Subtree
1746 (N : Node_Id;
1747 Root1 : Node_Id;
1748 Root2 : Node_Id) return Boolean;
1749 -- Determine whether node N is within the subtree rooted at Root1 or Root2.
1750 -- This version is more efficient than calling the single root version of
1751 -- Is_Subtree twice.
1753 function In_Statement_Condition_With_Actions (N : Node_Id) return Boolean;
1754 -- Returns true if the expression N occurs within the condition of a
1755 -- statement node with actions. Subsidiary to inlining for GNATprove, where
1756 -- inlining of function calls in such expressions would expand the called
1757 -- body into actions list of the condition node. GNATprove cannot yet cope
1758 -- with such a complex AST.
1760 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1761 -- Determine whether a declaration occurs within the visible part of a
1762 -- package specification. The package must be on the scope stack, and the
1763 -- corresponding private part must not.
1765 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1766 -- Given the entity of a constant or a type, retrieve the incomplete or
1767 -- partial view of the same entity. Note that Id may not have a partial
1768 -- view in which case the function returns Empty.
1770 function Incomplete_View_From_Limited_With
1771 (Typ : Entity_Id) return Entity_Id;
1772 -- Typ is a type entity. This normally returns Typ. However, if there is
1773 -- an incomplete view of this entity that comes from a limited-with'ed
1774 -- package, then this returns that incomplete view.
1776 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1777 -- Given an N_Indexed_Component node, return the first bit position of the
1778 -- component if it is known at compile time. A value of No_Uint means that
1779 -- either the value is not yet known before back-end processing or it is
1780 -- not known at compile time after back-end processing.
1782 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
1783 -- Propagate static and dynamic predicate flags from a parent to the
1784 -- subtype in a subtype declaration with and without constraints.
1786 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1787 -- Inherit the rep item chain of type From_Typ without clobbering any
1788 -- existing rep items on Typ's chain. Typ is the destination type.
1790 function Inherits_From_Tagged_Full_View (Typ : Entity_Id) return Boolean;
1791 pragma Inline (Inherits_From_Tagged_Full_View);
1792 -- Return True if Typ is an untagged private type completed with a
1793 -- derivation of an untagged private type declaration whose full view
1794 -- is a tagged type.
1796 procedure Insert_Explicit_Dereference (N : Node_Id);
1797 -- In a context that requires a composite or subprogram type and where a
1798 -- prefix is an access type, rewrite the access type node N (which is the
1799 -- prefix, e.g. of an indexed component) as an explicit dereference.
1801 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1802 -- Examine all deferred constants in the declaration list Decls and check
1803 -- whether they have been completed by a full constant declaration or an
1804 -- Import pragma. Emit the error message if that is not the case.
1806 procedure Install_Elaboration_Model (Unit_Id : Entity_Id);
1807 -- Install the elaboration model specified by pragma Elaboration_Checks
1808 -- associated with compilation unit Unit_Id. No action is taken when the
1809 -- unit lacks such pragma.
1811 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1812 -- Install both the generic formal parameters and the formal parameters of
1813 -- generic subprogram Subp_Id into visibility.
1815 procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
1816 -- Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect
1818 function Invalid_Scalar_Value
1819 (Loc : Source_Ptr;
1820 Scal_Typ : Scalar_Id) return Node_Id;
1821 -- Obtain the invalid value for scalar type Scal_Typ as either specified by
1822 -- pragma Initialize_Scalars or by the binder. Return an expression created
1823 -- at source location Loc, which denotes the invalid value.
1825 function Is_Anonymous_Access_Actual (N : Node_Id) return Boolean;
1826 -- Determine if N is used as an actual for a call whose corresponding
1827 -- formal is of an anonymous access type.
1829 function Is_Access_Subprogram_Wrapper (E : Entity_Id) return Boolean;
1830 -- True if E is the constructed wrapper for an access_to_subprogram
1831 -- type with Pre/Postconditions.
1833 function Is_Access_Variable (E : Entity_Id) return Boolean;
1834 -- Determines if type E is an access-to-variable
1836 function Is_Actual_In_Out_Parameter (N : Node_Id) return Boolean;
1837 -- Determines if N is an actual parameter of in-out mode in a subprogram
1838 -- call.
1840 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1841 -- Determines if N is an actual parameter of out mode in a subprogram call
1843 function Is_Actual_Out_Or_In_Out_Parameter (N : Node_Id) return Boolean;
1844 -- Determines if N is an actual parameter of out or in out mode in a
1845 -- subprogram call.
1847 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1848 -- Determines if N is an actual parameter in a subprogram or entry call
1850 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1851 -- Determines if N is an actual parameter of a formal of tagged type in a
1852 -- subprogram call.
1854 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1855 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1856 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1857 -- rules of the language, it does not take into account the restriction
1858 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1859 -- and Obj violates the restriction. The caller is responsible for calling
1860 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1861 -- requirement for obeying the restriction in the call context.
1863 function Is_Ancestor_Package
1864 (E1 : Entity_Id;
1865 E2 : Entity_Id) return Boolean;
1866 -- Determine whether package E1 is an ancestor of E2
1868 function Is_Atomic_Object (N : Node_Id) return Boolean;
1869 -- Determine whether arbitrary node N denotes a reference to an atomic
1870 -- object as per RM C.6(7) and the crucial remark in RM C.6(8).
1872 function Is_Attribute_Loop_Entry (N : Node_Id) return Boolean;
1873 -- Determine whether node N denotes attribute 'Loop_Entry
1875 function Is_Attribute_Old (N : Node_Id) return Boolean;
1876 -- Determine whether node N denotes attribute 'Old
1878 function Is_Attribute_Result (N : Node_Id) return Boolean;
1879 -- Determine whether node N denotes attribute 'Result
1881 function Is_Attribute_Update (N : Node_Id) return Boolean;
1882 -- Determine whether node N denotes attribute 'Update
1884 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean
1885 with Inline;
1886 -- Determine whether node N denotes a body or a package declaration
1888 function Is_Bounded_String (T : Entity_Id) return Boolean;
1889 -- True if T is a bounded string type. Used to make sure "=" composes
1890 -- properly for bounded string types.
1892 function Is_By_Protected_Procedure (Id : Entity_Id) return Boolean;
1893 -- Determine whether entity Id denotes a procedure with synchronization
1894 -- kind By_Protected_Procedure.
1896 function Is_Confirming (Aspect : Nonoverridable_Aspect_Id;
1897 Aspect_Spec_1, Aspect_Spec_2 : Node_Id)
1898 return Boolean;
1899 -- Returns true if the two specifications of the given
1900 -- nonoverridable aspect are compatible.
1902 function Is_Conjunction_Of_Formal_Preelab_Init_Attributes
1903 (Expr : Node_Id) return Boolean;
1904 -- Returns True if Expr is a Preelaborable_Initialization attribute applied
1905 -- to a formal type, or a sequence of two or more such attributes connected
1906 -- by "and" operators, or if the Original_Node of Expr or its constituents
1907 -- is such an attribute.
1909 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1910 -- Exp is the expression for an array bound. Determines whether the
1911 -- bound is a compile-time known value, or a constant entity, or an
1912 -- enumeration literal, or an expression composed of constant-bound
1913 -- subexpressions which are evaluated by means of standard operators.
1915 function Is_Container_Element (Exp : Node_Id) return Boolean;
1916 -- This routine recognizes expressions that denote an element of one of
1917 -- the predefined containers, when the source only contains an indexing
1918 -- operation and an implicit dereference is inserted by the compiler.
1919 -- In the absence of this optimization, the indexing creates a temporary
1920 -- controlled cursor that sets the tampering bit of the container, and
1921 -- restricts the use of the convenient notation C (X) to contexts that
1922 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1923 -- explicit dereference. The transformation applies when it has the form
1924 -- F (X).Discr.all.
1926 function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1927 -- Determine whether aspect specification or pragma Item is a contract
1928 -- annotation.
1930 function Is_Controlling_Limited_Procedure
1931 (Proc_Nam : Entity_Id) return Boolean;
1932 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1933 -- of a limited interface with a controlling first parameter.
1935 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1936 -- Returns True if N is a call to a CPP constructor
1938 function Is_CCT_Instance
1939 (Ref_Id : Entity_Id;
1940 Context_Id : Entity_Id) return Boolean;
1941 -- Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_]
1942 -- Global; also used when analyzing default expressions of protected and
1943 -- record components. Determine whether entity Ref_Id (which must represent
1944 -- either a protected type or a task type) denotes the current instance of
1945 -- a concurrent type. Context_Id denotes the associated context where the
1946 -- pragma appears.
1948 function Is_Child_Or_Sibling
1949 (Pack_1 : Entity_Id;
1950 Pack_2 : Entity_Id) return Boolean;
1951 -- Determine the following relations between two arbitrary packages:
1952 -- 1) One package is the parent of a child package
1953 -- 2) Both packages are siblings and share a common parent
1955 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1956 -- First determine whether type T is an interface and then check whether
1957 -- it is of protected, synchronized or task kind.
1959 function Is_Current_Instance (N : Node_Id) return Boolean;
1960 -- Predicate is true if N legally denotes a type name within its own
1961 -- declaration. Prior to Ada 2012 this covered only synchronized type
1962 -- declarations. In Ada 2012 it also covers type and subtype declarations
1963 -- with aspects: Invariant, Predicate, and Default_Initial_Condition.
1965 function Is_Current_Instance_Reference_In_Type_Aspect
1966 (N : Node_Id) return Boolean;
1967 -- True if N is a reference to a current instance object that occurs within
1968 -- an aspect_specification for a type or subtype. In this case N will be
1969 -- a formal parameter of a subprogram created for a predicate, invariant,
1970 -- or Default_Initial_Condition aspect.
1972 function Is_Declaration
1973 (N : Node_Id;
1974 Body_OK : Boolean := True;
1975 Concurrent_OK : Boolean := True;
1976 Formal_OK : Boolean := True;
1977 Generic_OK : Boolean := True;
1978 Instantiation_OK : Boolean := True;
1979 Renaming_OK : Boolean := True;
1980 Stub_OK : Boolean := True;
1981 Subprogram_OK : Boolean := True;
1982 Type_OK : Boolean := True) return Boolean;
1983 -- Determine whether arbitrary node N denotes a declaration depending
1984 -- on the allowed subsets of declarations. Set the following flags to
1985 -- consider specific subsets of declarations:
1987 -- * Body_OK - body declarations
1989 -- * Concurrent_OK - concurrent type declarations
1991 -- * Formal_OK - formal declarations
1993 -- * Generic_OK - generic declarations, including generic renamings
1995 -- * Instantiation_OK - generic instantiations
1997 -- * Renaming_OK - renaming declarations, including generic renamings
1999 -- * Stub_OK - stub declarations
2001 -- * Subprogram_OK - entry, expression function, and subprogram
2002 -- declarations.
2004 -- * Type_OK - type declarations, including concurrent types
2006 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
2007 -- Returns True iff component Comp is declared within a variant part
2009 function Is_Dependent_Component_Of_Mutable_Object
2010 (Object : Node_Id) return Boolean;
2011 -- Returns True if Object is the name of a subcomponent that depends on
2012 -- discriminants of a variable whose nominal subtype is unconstrained and
2013 -- not indefinite, and the variable is not aliased. Otherwise returns
2014 -- False. The nodes passed to this function are assumed to denote objects.
2016 function Is_Dereferenced (N : Node_Id) return Boolean;
2017 -- N is a subexpression node of an access type. This function returns true
2018 -- if N appears as the prefix of a node that does a dereference of the
2019 -- access value (selected/indexed component, explicit dereference or a
2020 -- slice), and false otherwise.
2022 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
2023 -- Returns True if type T1 is a descendant of type T2, and false otherwise.
2024 -- This is the RM definition, a type is a descendant of another type if it
2025 -- is the same type or is derived from a descendant of the other type.
2027 function Is_Descendant_Of_Suspension_Object
2028 (Typ : Entity_Id) return Boolean;
2029 -- Determine whether type Typ is a descendant of type Suspension_Object
2030 -- defined in Ada.Synchronous_Task_Control. This version is different from
2031 -- Is_Descendant_Of as the detection of Suspension_Object does not involve
2032 -- an entity and by extension a call to RTSfind.
2034 function Is_Double_Precision_Floating_Point_Type
2035 (E : Entity_Id) return Boolean;
2036 -- Return whether E is a double precision floating point type,
2037 -- characterized by:
2038 -- . machine_radix = 2
2039 -- . machine_mantissa = 53
2040 -- . machine_emax = 2**10
2041 -- . machine_emin = 3 - machine_emax
2043 function Is_Effectively_Volatile
2044 (Id : Entity_Id;
2045 Ignore_Protected : Boolean := False) return Boolean;
2046 -- Determine whether a type or object denoted by entity Id is effectively
2047 -- volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
2048 -- * Volatile without No_Caching
2049 -- * An array type subject to aspect Volatile_Components
2050 -- * An array type whose component type is effectively volatile
2051 -- * A protected type
2052 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2054 -- If Ignore_Protected is True, then a protected object/type is treated
2055 -- like a non-protected record object/type for computing the result of
2056 -- this query.
2058 function Is_Effectively_Volatile_For_Reading
2059 (Id : Entity_Id;
2060 Ignore_Protected : Boolean := False) return Boolean;
2061 -- Determine whether a type or object denoted by entity Id is effectively
2062 -- volatile for reading (SPARK RM 7.1.2). To qualify as such, the entity
2063 -- must be either
2064 -- * Volatile without No_Caching and have Async_Writers or
2065 -- Effective_Reads set to True
2066 -- * An array type subject to aspect Volatile_Components, unless it has
2067 -- Async_Writers and Effective_Reads set to False
2068 -- * An array type whose component type is effectively volatile for
2069 -- reading
2070 -- * A protected type
2071 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2073 -- If Ignore_Protected is True, then a protected object/type is treated
2074 -- like a non-protected record object/type for computing the result of
2075 -- this query.
2077 function Is_Effectively_Volatile_Object
2078 (N : Node_Id) return Boolean;
2079 -- Determine whether an arbitrary node denotes an effectively volatile
2080 -- object (SPARK RM 7.1.2).
2082 function Is_Effectively_Volatile_Object_For_Reading
2083 (N : Node_Id) return Boolean;
2084 -- Determine whether an arbitrary node denotes an effectively volatile
2085 -- object for reading (SPARK RM 7.1.2).
2087 function Is_Entity_Of_Quantified_Expression (Id : Entity_Id) return Boolean;
2088 -- Determine whether entity Id is the entity of a quantified expression
2090 function Is_Entry_Body (Id : Entity_Id) return Boolean;
2091 -- Determine whether entity Id is the body entity of an entry [family]
2093 function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
2094 -- Determine whether entity Id is the spec entity of an entry [family]
2096 function Is_Explicitly_Aliased (N : Node_Id) return Boolean;
2097 -- Determine if a given node N is an explicitly aliased formal parameter.
2099 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
2100 -- Check whether a function in a call is an expanded priority attribute,
2101 -- which is transformed into an Rtsfind call to Get_Ceiling. This expansion
2102 -- does not take place in a configurable runtime.
2104 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
2105 -- Determine whether subprogram [body] Subp denotes an expression function
2107 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2109 function Is_Expression_Function_Or_Completion
2110 (Subp : Entity_Id) return Boolean;
2111 -- Determine whether subprogram [body] Subp denotes an expression function
2112 -- or is completed by an expression function body.
2114 function Is_Extended_Precision_Floating_Point_Type
2115 (E : Entity_Id) return Boolean;
2116 -- Return whether E is an extended precision floating point type,
2117 -- characterized by:
2118 -- . machine_radix = 2
2119 -- . machine_mantissa = 64
2120 -- . machine_emax = 2**14
2121 -- . machine_emin = 3 - machine_emax
2123 function Is_EVF_Expression (N : Node_Id) return Boolean;
2124 -- Determine whether node N denotes a reference to a formal parameter of
2125 -- a specific tagged type whose related subprogram is subject to pragma
2126 -- Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
2127 -- constructs fall under this category:
2128 -- 1) A qualified expression whose operand is EVF
2129 -- 2) A type conversion whose operand is EVF
2130 -- 3) An if expression with at least one EVF dependent_expression
2131 -- 4) A case expression with at least one EVF dependent_expression
2133 function Is_False (U : Opt_Ubool) return Boolean;
2134 pragma Inline (Is_False);
2135 -- True if U is Boolean'Pos (False) (i.e. Uint_0)
2137 function Is_True (U : Opt_Ubool) return Boolean;
2138 pragma Inline (Is_True);
2139 -- True if U is Boolean'Pos (True) (i.e. Uint_1). Also True if U is
2140 -- No_Uint; we allow No_Uint because Static_Boolean returns that in
2141 -- case of error. It doesn't really matter whether the error case is
2142 -- considered True or False, but we don't want this to blow up in that
2143 -- case.
2145 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
2146 -- Returns True iff the number U is a model number of the fixed-point type
2147 -- T, i.e. if it is an exact multiple of Small.
2149 function Is_Full_Access_Object (N : Node_Id) return Boolean;
2150 -- Determine whether arbitrary node N denotes a reference to a full access
2151 -- object as per Ada 2022 RM C.6(8.2).
2153 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
2154 -- Typ is a type entity. This function returns true if this type is fully
2155 -- initialized, meaning that an object of the type is fully initialized.
2156 -- Note that initialization resulting from use of pragma Normalize_Scalars
2157 -- does not count. Note that this is only used for the purpose of issuing
2158 -- warnings for objects that are potentially referenced uninitialized. This
2159 -- means that the result returned is not crucial, but should err on the
2160 -- side of thinking things are fully initialized if it does not know.
2162 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
2163 -- Determine whether arbitrary declaration Decl denotes a generic package,
2164 -- a generic subprogram or a generic body.
2166 function Is_Independent_Object (N : Node_Id) return Boolean;
2167 -- Determine whether arbitrary node N denotes a reference to an independent
2168 -- object as per RM C.6(8).
2170 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
2171 -- E is a subprogram. Return True is E is an implicit operation inherited
2172 -- by a derived type declaration.
2174 function Is_Inherited_Operation_For_Type
2175 (E : Entity_Id;
2176 Typ : Entity_Id) return Boolean;
2177 -- E is a subprogram. Return True is E is an implicit operation inherited
2178 -- by the derived type declaration for type Typ.
2180 function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean;
2181 -- Return True if Subp is an expression function that fulfills all the
2182 -- following requirements for inlining:
2183 -- 1. pragma/aspect Inline_Always
2184 -- 2. No formals
2185 -- 3. No contracts
2186 -- 4. No dispatching primitive
2187 -- 5. Result subtype controlled (or with controlled components)
2188 -- 6. Result subtype not subject to type-invariant checks
2189 -- 7. Result subtype not a class-wide type
2190 -- 8. Return expression naming an object global to the function
2191 -- 9. Nominal subtype of the returned object statically compatible
2192 -- with the result subtype of the expression function.
2194 function Is_Iterator (Typ : Entity_Id) return Boolean;
2195 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
2196 -- Ada.Iterator_Interfaces, or it is derived from one.
2198 function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
2199 -- N is an iterator specification. Returns True iff N is an iterator over
2200 -- an array, either inside a loop of the form 'for X of A' or a quantified
2201 -- expression of the form 'for all/some X of A' where A is of array type.
2203 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
2204 -- A library-level declaration is one that is accessible from Standard,
2205 -- i.e. a library unit or an entity declared in a library package.
2207 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
2208 -- Determine whether a given type is a limited class-wide type, in which
2209 -- case it needs a Master_Id, because extensions of its designated type
2210 -- may include task components. A class-wide type that comes from a
2211 -- limited view must be treated in the same way.
2213 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
2214 -- Determines whether Expr is a reference to a variable or formal parameter
2215 -- of mode OUT or IN OUT of the current enclosing subprogram.
2217 function Is_Master (N : Node_Id) return Boolean;
2218 -- Determine if the given node N constitutes a finalization master
2220 function Is_Name_Reference (N : Node_Id) return Boolean;
2221 -- Determine whether arbitrary node N is a reference to a name. This is
2222 -- similar to Is_Object_Reference but returns True only if N can be renamed
2223 -- without the need for a temporary, the typical example of an object not
2224 -- in this category being a function call.
2226 function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean;
2227 -- Determine whether arbitrary construct N violates preelaborability as
2228 -- defined in ARM 10.2.1 5-9/3. This routine takes into account both the
2229 -- syntactic and semantic properties of the construct.
2231 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
2232 -- Determine whether entity Id denotes the procedure that verifies the
2233 -- assertion expression of pragma Default_Initial_Condition and if it does,
2234 -- the encapsulated expression is nontrivial.
2236 function Is_Null_Extension
2237 (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean;
2238 -- Given a tagged type, returns True if argument is a type extension
2239 -- that introduces no new components (discriminant or nondiscriminant).
2240 -- Ignore_Privacy should be True for use in implementing dynamic semantics.
2241 -- Cannot be called with class-wide types.
2243 function Is_Null_Extension_Of
2244 (Descendant, Ancestor : Entity_Id) return Boolean;
2245 -- Given two tagged types, the first a descendant of the second,
2246 -- returns True if every component of Descendant is inherited
2247 -- (directly or indirectly) from Ancestor. Privacy is ignored.
2248 -- Cannot be called with class-wide types.
2250 function Is_Null_Record_Definition (Record_Def : Node_Id) return Boolean;
2251 -- Returns True for an N_Record_Definition node that has no user-defined
2252 -- components (and no variant part).
2254 function Is_Null_Record_Type
2255 (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean;
2256 -- Determine whether T is declared with a null record definition, a
2257 -- null component list, or as a type derived from a null record type
2258 -- (with a null extension if tagged). Returns True for interface types,
2259 -- False for discriminated types.
2261 function Is_Object_Image (Prefix : Node_Id) return Boolean;
2262 -- Returns True if an 'Img, 'Image, 'Wide_Image, or 'Wide_Wide_Image
2263 -- attribute is applied to an object.
2265 function Is_Object_Reference (N : Node_Id) return Boolean;
2266 -- Determines if the tree referenced by N represents an object. Both
2267 -- variable and constant objects return True (compare Is_Variable).
2269 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
2270 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
2271 -- Note that the Is_Variable function is not quite the right test because
2272 -- this is a case in which conversions whose expression is a variable (in
2273 -- the Is_Variable sense) with an untagged type target are considered view
2274 -- conversions and hence variables.
2276 function Is_OK_Volatile_Context
2277 (Context : Node_Id;
2278 Obj_Ref : Node_Id;
2279 Check_Actuals : Boolean) return Boolean;
2280 -- Determine whether node Context denotes a "non-interfering context" (as
2281 -- defined in SPARK RM 7.1.3(10)) where volatile reference Obj_Ref can
2282 -- safely reside. When examining references that might be located within
2283 -- actual parameters of a subprogram call that has not been resolved yet,
2284 -- Check_Actuals should be False; such references will be assumed to be
2285 -- legal. They will need to be checked again after subprogram call has
2286 -- been resolved.
2288 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
2289 -- Determine whether aspect specification or pragma Item is one of the
2290 -- following package contract annotations:
2291 -- Abstract_State
2292 -- Initial_Condition
2293 -- Initializes
2294 -- Refined_State
2296 function Is_Partially_Initialized_Type
2297 (Typ : Entity_Id;
2298 Include_Implicit : Boolean := True) return Boolean;
2299 -- Typ is a type entity. This function returns true if this type is partly
2300 -- initialized, meaning that an object of the type is at least partly
2301 -- initialized (in particular in the record case, that at least one
2302 -- component has an initialization expression, including via Default_Value
2303 -- and Default_Component_Value aspects). Note that initialization
2304 -- resulting from the use of pragma Normalize_Scalars does not count.
2305 -- Include_Implicit controls whether implicit initialization of access
2306 -- values to null, and of discriminant values, is counted as making the
2307 -- type be partially initialized. For the default setting of True, these
2308 -- implicit cases do count, and discriminated types or types containing
2309 -- access values not explicitly initialized will return True. Otherwise
2310 -- if Include_Implicit is False, these cases do not count as making the
2311 -- type be partially initialized.
2313 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
2314 -- Predicate to implement definition given in RM 6.1.1 (20/3)
2316 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
2317 -- Determines if type T is a potentially persistent type. A potentially
2318 -- persistent type is defined (recursively) as a scalar type, an untagged
2319 -- record whose components are all of a potentially persistent type, or an
2320 -- array with all static constraints whose component type is potentially
2321 -- persistent. A private type is potentially persistent if the full type
2322 -- is potentially persistent.
2324 function Is_Predefined_Dispatching_Operation (E : Entity_Id) return Boolean;
2325 -- Ada 2005 (AI-251): Determines if E is a predefined primitive operation
2327 function Is_Predefined_Interface_Primitive (E : Entity_Id) return Boolean;
2328 -- Ada 2005 (AI-345): Returns True if E is one of the predefined primitives
2329 -- required to implement interfaces.
2331 function Is_Predefined_Internal_Operation (E : Entity_Id) return Boolean;
2332 -- Similar to the previous one, but excludes stream operations, because
2333 -- these may be overridden, and need extra formals, like user-defined
2334 -- operations.
2336 function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean;
2337 -- Determine whether aggregate Aggr violates the restrictions of
2338 -- preelaborable constructs as defined in ARM 10.2.1(5-9).
2340 function Is_Preelaborable_Construct (N : Node_Id) return Boolean;
2341 -- Determine whether arbitrary node N violates the restrictions of
2342 -- preelaborable constructs as defined in ARM 10.2.1(5-9). Routine
2343 -- Is_Non_Preelaborable_Construct takes into account the syntactic
2344 -- and semantic properties of N for a more accurate diagnostic.
2346 function Is_Private_Library_Unit (Unit : Entity_Id) return Boolean;
2347 -- Returns True if and only if the library unit is declared with an
2348 -- explicit designation of private.
2350 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
2351 -- Return True if node N denotes a protected type name which represents
2352 -- the current instance of a protected object according to RM 9.4(21/2).
2354 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
2355 -- Return True if a compilation unit is the specification or the
2356 -- body of a remote call interface package.
2358 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
2359 -- Return True if E is a remote access-to-class-wide type
2361 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
2362 -- Return True if E is a remote access to subprogram type
2364 function Is_Remote_Call (N : Node_Id) return Boolean;
2365 -- Return True if N denotes a potentially remote call
2367 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
2368 -- Return True if Proc_Nam is a procedure renaming of an entry
2370 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
2371 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
2372 -- Ada.Iterator_Interfaces.Reversible_Iterator.
2374 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
2375 -- Determine whether arbitrary entity Id denotes the anonymous object
2376 -- created for a single protected or single task type.
2378 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
2379 -- Determine whether arbitrary entity Id denotes a single protected or
2380 -- single task type.
2382 function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
2383 -- Determine whether arbitrary node N denotes the declaration of a single
2384 -- protected type or single task type.
2386 function Is_Single_Precision_Floating_Point_Type
2387 (E : Entity_Id) return Boolean;
2388 -- Return whether E is a single precision floating point type,
2389 -- characterized by:
2390 -- . machine_radix = 2
2391 -- . machine_mantissa = 24
2392 -- . machine_emax = 2**7
2393 -- . machine_emin = 3 - machine_emax
2395 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
2396 -- Determine whether arbitrary entity Id denotes the anonymous object
2397 -- created for a single protected type.
2399 function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
2400 -- Determine whether arbitrary entity Id denotes the anonymous object
2401 -- created for a single task type.
2403 function Is_Special_Aliased_Formal_Access
2404 (Exp : Node_Id;
2405 In_Return_Context : Boolean := False) return Boolean;
2406 -- Determines whether a dynamic check must be generated for explicitly
2407 -- aliased formals within a function Scop for the expression Exp.
2409 -- In_Return_Context forces Is_Special_Aliased_Formal_Access to assume
2410 -- that Exp is within a return value which is useful for checking
2411 -- expressions within discriminant associations of return objects.
2413 -- More specially, Is_Special_Aliased_Formal_Access checks that Exp is a
2414 -- 'Access attribute reference within a return statement where the ultimate
2415 -- prefix is an aliased formal of Scop and that Scop returns an anonymous
2416 -- access type. See RM 3.10.2 for more details.
2418 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
2419 -- Determine whether an arbitrary [private] type is specifically tagged
2421 function Is_Statement (N : Node_Id) return Boolean;
2422 pragma Inline (Is_Statement);
2423 -- Check if the node N is a statement node. Note that this includes
2424 -- the case of procedure call statements (unlike the direct use of
2425 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
2426 -- Note that a label is *not* a statement, and will return False.
2428 function Is_Static_Discriminant_Component (N : Node_Id) return Boolean;
2429 -- Return True if N is guaranteed to a selected component containing a
2430 -- statically known discriminant.
2431 -- Note that this routine takes a conservative view and may return False
2432 -- in some cases where N would match the criteria. In other words this
2433 -- routine should be used to simplify or optimize the expanded code.
2435 function Is_Static_Function (Subp : Entity_Id) return Boolean;
2436 -- Determine whether subprogram Subp denotes a static function,
2437 -- which is a function with the aspect Static with value True.
2439 function Is_Static_Function_Call (Call : Node_Id) return Boolean;
2440 -- Determine whether Call is a static call to a static function,
2441 -- meaning that the name of the call denotes a static function
2442 -- and all of the call's actual parameters are given by static expressions.
2444 function Is_Subcomponent_Of_Full_Access_Object (N : Node_Id) return Boolean;
2445 -- Determine whether arbitrary node N denotes a reference to a subcomponent
2446 -- of a full access object as per RM C.6(7).
2448 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
2449 -- Determine whether aspect specification or pragma Item is one of the
2450 -- following subprogram contract annotations:
2451 -- Contract_Cases
2452 -- Depends
2453 -- Extensions_Visible
2454 -- Global
2455 -- Post
2456 -- Post_Class
2457 -- Postcondition
2458 -- Pre
2459 -- Pre_Class
2460 -- Precondition
2461 -- Refined_Depends
2462 -- Refined_Global
2463 -- Refined_Post
2464 -- Subprogram_Variant
2465 -- Test_Case
2467 function Is_Subprogram_Stub_Without_Prior_Declaration
2468 (N : Node_Id) return Boolean;
2469 -- Given an N_Subprogram_Body_Stub node N, return True if N is a subprogram
2470 -- stub with no prior subprogram declaration.
2472 function Is_Suitable_Primitive (Subp_Id : Entity_Id) return Boolean;
2473 -- Determine whether arbitrary subprogram Subp_Id may act as a primitive of
2474 -- an arbitrary tagged type.
2476 function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
2477 -- Determine whether entity Id denotes an object and if it does, whether
2478 -- this object is synchronized as specified in SPARK RM 9.1. To qualify as
2479 -- such, the object must be
2480 -- * Of a type that yields a synchronized object
2481 -- * An atomic object with enabled Async_Writers
2482 -- * A constant not of access-to-variable type
2483 -- * A variable subject to pragma Constant_After_Elaboration
2485 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
2486 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
2488 function Is_Transfer (N : Node_Id) return Boolean;
2489 -- Returns True if the node N is a statement which is known to cause an
2490 -- unconditional transfer of control at run time, i.e. the following
2491 -- statement definitely will not be executed.
2493 function Is_Trivial_Boolean (N : Node_Id) return Boolean;
2494 -- Determine whether source node N denotes "True" or "False". Note that
2495 -- this is not true for expressions that got folded to True or False.
2497 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
2498 -- Determine whether an arbitrary entity denotes an instance of function
2499 -- Ada.Unchecked_Conversion.
2501 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
2502 pragma Inline (Is_Universal_Numeric_Type);
2503 -- True if T is Universal_Integer or Universal_Real
2505 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
2506 -- Determine whether an entity denotes a user-defined equality
2508 function Is_User_Defined_Literal
2509 (N : Node_Id;
2510 Typ : Entity_Id) return Boolean;
2511 pragma Inline (Is_User_Defined_Literal);
2512 -- Determine whether N is a user-defined literal for Typ, including
2513 -- the case where N denotes a named number of the appropriate kind
2514 -- when Typ has an Integer_Literal or Real_Literal aspect.
2516 function Is_Validation_Variable_Reference (N : Node_Id) return Boolean;
2517 -- Determine whether N denotes a reference to a variable which captures the
2518 -- value of an object for validation purposes.
2520 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
2521 -- Returns true if E has variable size components
2523 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
2524 -- Returns true if E has variable size components
2526 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2528 function Is_Variable
2529 (N : Node_Id;
2530 Use_Original_Node : Boolean := True) return Boolean;
2531 -- Determines if the tree referenced by N represents a variable, i.e. can
2532 -- appear on the left side of an assignment. There is one situation (formal
2533 -- parameters) in which untagged type conversions are also considered
2534 -- variables, but Is_Variable returns False for such cases, since it has
2535 -- no knowledge of the context. Note that this is the point at which
2536 -- Assignment_OK is checked, and True is returned for any tree thus marked.
2537 -- Use_Original_Node is used to perform the test on Original_Node (N). By
2538 -- default is True since this routine is commonly invoked as part of the
2539 -- semantic analysis and it must not be disturbed by the rewriten nodes.
2541 function Is_View_Conversion (N : Node_Id) return Boolean;
2542 -- Returns True if N is a type_conversion whose operand is the name of an
2543 -- object and both its target type and operand type are tagged, or it
2544 -- appears in a call as an actual parameter of mode out or in out
2545 -- (RM 4.6(5/2)).
2547 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
2548 -- Check whether T is derived from a visibly controlled type. This is true
2549 -- if the root type is declared in Ada.Finalization. If T is derived
2550 -- instead from a private type whose full view is controlled, an explicit
2551 -- Initialize/Adjust/Finalize subprogram does not override the inherited
2552 -- one.
2554 function Is_Volatile_Full_Access_Object_Ref (N : Node_Id) return Boolean;
2555 -- Determine whether arbitrary node N denotes a reference to an object
2556 -- which is Volatile_Full_Access.
2558 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
2559 -- Determine whether [generic] function Func_Id is subject to enabled
2560 -- pragma Volatile_Function. Protected functions are treated as volatile
2561 -- (SPARK RM 7.1.2).
2563 function Is_Volatile_Object_Ref (N : Node_Id) return Boolean;
2564 -- Determine whether arbitrary node N denotes a reference to a volatile
2565 -- object as per RM C.6(8). Note that the test here is for something that
2566 -- is actually declared as volatile, not for an object that gets treated
2567 -- as volatile (see Einfo.Treat_As_Volatile).
2569 generic
2570 with procedure Handle_Parameter (Formal : Entity_Id; Actual : Node_Id);
2571 procedure Iterate_Call_Parameters (Call : Node_Id);
2572 -- Calls Handle_Parameter for each pair of formal and actual parameters of
2573 -- a function, procedure, or entry call.
2575 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
2576 -- This procedure is called to clear all constant indications from all
2577 -- entities in the current scope and in any parent scopes if the current
2578 -- scope is a block or a package (and that recursion continues to the top
2579 -- scope that is not a block or a package). This is used when the
2580 -- sequential flow-of-control assumption is violated (occurrence of a
2581 -- label, head of a loop, or start of an exception handler). The effect of
2582 -- the call is to clear the Current_Value field (but we do not need to
2583 -- clear the Is_True_Constant flag, since that only gets reset if there
2584 -- really is an assignment somewhere in the entity scope). This procedure
2585 -- also calls Kill_All_Checks, since this is a special case of needing to
2586 -- forget saved values. This procedure also clears the Is_Known_Null and
2587 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
2588 -- parameters since these are also not known to be trustable any more.
2590 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
2591 -- fields and leave other fields unchanged. This is used when we encounter
2592 -- an unconditional flow of control change (return, goto, raise). In such
2593 -- cases we don't need to clear the current values, since it may be that
2594 -- the flow of control change occurs in a conditional context, and if it
2595 -- is not taken, then it is just fine to keep the current values. But the
2596 -- Last_Assignment field is different, if we have a sequence assign-to-v,
2597 -- conditional-return, assign-to-v, we do not want to complain that the
2598 -- second assignment clobbers the first.
2600 procedure Kill_Current_Values
2601 (Ent : Entity_Id;
2602 Last_Assignment_Only : Boolean := False);
2603 -- This performs the same processing as described above for the form with
2604 -- no argument, but for the specific entity given. The call has no effect
2605 -- if the entity Ent is not for an object. Last_Assignment_Only has the
2606 -- same meaning as for the call with no Ent.
2608 procedure Kill_Size_Check_Code (E : Entity_Id);
2609 -- Called when an address clause or pragma Import is applied to an entity.
2610 -- If the entity is a variable or a constant, and size check code is
2611 -- present, this size check code is killed, since the object will not be
2612 -- allocated by the program.
2614 function Known_Non_Null (N : Node_Id) return Boolean;
2615 -- Given a node N for a subexpression of an access type, determines if
2616 -- this subexpression yields a value that is known at compile time to
2617 -- be non-null and returns True if so. Returns False otherwise. It is
2618 -- an error to call this function if N is not of an access type.
2620 function Known_Null (N : Node_Id) return Boolean;
2621 -- Given a node N for a subexpression of an access type, determines if this
2622 -- subexpression yields a value that is known at compile time to be null
2623 -- and returns True if so. Returns False otherwise. It is an error to call
2624 -- this function if N is not of an access type.
2626 function Known_To_Be_Assigned
2627 (N : Node_Id;
2628 Only_LHS : Boolean := False) return Boolean;
2629 -- The node N is an entity reference. This function determines whether the
2630 -- reference is for sure an assignment of the entity, returning True if
2631 -- so. Only_LHS will modify this behavior such that actuals for out or
2632 -- in out parameters will not be considered assigned.
2634 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
2635 -- HSS is a handled statement sequence. This function returns the last
2636 -- statement in Statements (HSS) that has Comes_From_Source set. If no
2637 -- such statement exists, Empty is returned.
2639 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
2640 -- Given a node which designates the context of analysis and an origin in
2641 -- the tree, traverse from Root_Nod and mark all allocators as either
2642 -- dynamic or static depending on Context_Nod. Any incorrect marking is
2643 -- cleaned up during resolution.
2645 procedure Mark_Elaboration_Attributes
2646 (N_Id : Node_Or_Entity_Id;
2647 Checks : Boolean := False;
2648 Level : Boolean := False;
2649 Modes : Boolean := False;
2650 Warnings : Boolean := False);
2651 -- Preserve relevant elaboration-related properties of the context in
2652 -- arbitrary entity or node N_Id. The flags control the properties as
2653 -- follows:
2655 -- Checks - Save the status of Elaboration_Check
2656 -- Level - Save the declaration level of N_Id (if applicable)
2657 -- Modes - Save the Ghost and SPARK modes in effect (if applicable)
2658 -- Warnings - Save the status of Elab_Warnings
2660 procedure Mark_Save_Invocation_Graph_Of_Body;
2661 -- Notify the body of the main unit that the invocation constructs and
2662 -- relations expressed within it must be recorded by the ABE mechanism.
2664 function Matching_Static_Array_Bounds
2665 (L_Typ : Node_Id;
2666 R_Typ : Node_Id) return Boolean;
2667 -- L_Typ and R_Typ are two array types. Returns True when they have the
2668 -- same number of dimensions, and the same static bounds for each index
2669 -- position.
2671 function Might_Raise (N : Node_Id) return Boolean;
2672 -- True if evaluation of N might raise an exception. This is conservative;
2673 -- if we're not sure, we return True. If N is a subprogram body, this is
2674 -- about whether execution of that body can raise.
2676 function Nearest_Class_Condition_Subprogram
2677 (Kind : Condition_Kind;
2678 Spec_Id : Entity_Id) return Entity_Id;
2679 -- Return the nearest ancestor containing the merged class-wide conditions
2680 -- that statically apply to Spec_Id; return Empty otherwise.
2682 function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id;
2683 -- Return the entity of the nearest enclosing instance which encapsulates
2684 -- entity E. If no such instance exits, return Empty.
2686 function Needs_Finalization (Typ : Entity_Id) return Boolean;
2687 -- True if Typ requires finalization actions
2689 function Needs_One_Actual (E : Entity_Id) return Boolean;
2690 -- Returns True if a function has defaults for all but its first formal,
2691 -- which is a controlling formal. Used in Ada 2005 mode to solve the
2692 -- syntactic ambiguity that results from an indexing of a function call
2693 -- that returns an array, so that Obj.F (X, Y) may mean F (Ob) (X, Y).
2695 function Needs_Result_Accessibility_Level
2696 (Func_Id : Entity_Id) return Boolean;
2697 -- Ada 2012 (AI05-0234): Return True if the function needs an implicit
2698 -- parameter to identify the accessibility level of the function result
2699 -- "determined by the point of call".
2701 function Needs_Secondary_Stack (Id : Entity_Id) return Boolean;
2702 -- Return true if functions whose result type is Id must return on the
2703 -- secondary stack, i.e. allocate the return object on this stack.
2705 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2707 function Needs_Simple_Initialization
2708 (Typ : Entity_Id;
2709 Consider_IS : Boolean := True) return Boolean;
2710 -- Certain types need initialization even though there is no specific
2711 -- initialization routine:
2712 -- Access types (which need initializing to null)
2713 -- All scalar types if Normalize_Scalars mode set
2714 -- Descendants of standard string types if Normalize_Scalars mode set
2715 -- Scalar types having a Default_Value attribute
2716 -- Regarding Initialize_Scalars mode, this is ignored if Consider_IS is
2717 -- set to False, but if Consider_IS is set to True, then the cases above
2718 -- mentioning Normalize_Scalars also apply for Initialize_Scalars mode.
2720 function Needs_Variable_Reference_Marker
2721 (N : Node_Id;
2722 Calls_OK : Boolean) return Boolean;
2723 -- Determine whether arbitrary node N denotes a reference to a variable
2724 -- which is suitable for SPARK elaboration checks. Flag Calls_OK should
2725 -- be set when the reference is allowed to appear within calls.
2727 function New_Copy_List_Tree (List : List_Id) return List_Id;
2728 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
2729 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
2730 -- nodes (entities) either directly or indirectly using this function.
2732 function New_Copy_Separate_List (List : List_Id) return List_Id;
2733 -- Copy recursively a list of nodes using New_Copy_Separate_Tree
2735 function New_Copy_Separate_Tree (Source : Node_Id) return Node_Id;
2736 -- Perform a deep copy of the subtree rooted at Source using New_Copy_Tree
2737 -- replacing entities of local declarations by new entities. This behavior
2738 -- is required by the backend to ensure entities uniqueness when a copy of
2739 -- a subtree is attached to the tree. The new entities keep their original
2740 -- names to facilitate debugging the tree copy.
2742 function New_Copy_Tree
2743 (Source : Node_Id;
2744 Map : Elist_Id := No_Elist;
2745 New_Sloc : Source_Ptr := No_Location;
2746 New_Scope : Entity_Id := Empty;
2747 Scopes_In_EWA_OK : Boolean := False) return Node_Id;
2748 -- Perform a deep copy of the subtree rooted at Source. Entities, itypes,
2749 -- and nodes are handled separately as follows:
2751 -- * A node is replicated by first creating a shallow copy, then copying
2752 -- its syntactic fields, where all Parent pointers of the fields are
2753 -- updated to refer to the copy. In addition, the following semantic
2754 -- fields are recreated after the replication takes place.
2756 -- First_Named_Actual
2757 -- Next_Named_Actual
2759 -- If applicable, the Etype field (if any) is updated to refer to a
2760 -- local itype or type (see below).
2762 -- * An entity defined within an N_Expression_With_Actions node in the
2763 -- subtree is given a new entity, and all references to the original
2764 -- entity are updated to refer to the new entity. In addition, the
2765 -- following semantic fields are replicated and/or updated to refer
2766 -- to a local entity or itype.
2768 -- Discriminant_Constraint
2769 -- Etype
2770 -- First_Index
2771 -- Next_Entity
2772 -- Packed_Array_Impl_Type
2773 -- Scalar_Range
2774 -- Scope
2776 -- Note that currently no other expression can define entities.
2778 -- * An itype whose Associated_Node_For_Itype node is in the subtree
2779 -- is given a new entity, and all references to the original itype
2780 -- are updated to refer to the new itype. In addition, the following
2781 -- semantic fields are replicated and/or updated to refer to a local
2782 -- entity or itype.
2784 -- Discriminant_Constraint
2785 -- Etype
2786 -- First_Index
2787 -- Next_Entity
2788 -- Packed_Array_Impl_Type
2789 -- Scalar_Range
2790 -- Scope
2792 -- The Associated_Node_For_Itype is updated to refer to a replicated
2793 -- node.
2795 -- The routine can replicate both analyzed and unanalyzed trees. Copying an
2796 -- Empty or Error node yields the same node.
2798 -- Parameter Map may be used to specify a set of mappings between entities.
2799 -- These mappings are then taken into account when replicating entities.
2800 -- The format of Map must be as follows:
2802 -- old entity 1
2803 -- new entity to replace references to entity 1
2804 -- old entity 2
2805 -- new entity to replace references to entity 2
2806 -- ...
2808 -- Map and its contents are left unchanged.
2810 -- Parameter New_Sloc may be used to specify a new source location for all
2811 -- replicated entities, itypes, and nodes. The Comes_From_Source indicator
2812 -- is defaulted if a new source location is provided.
2814 -- Parameter New_Scope may be used to specify a new scope for all copied
2815 -- entities and itypes.
2817 -- Parameter Scopes_In_EWA_OK may be used to force the replication of both
2818 -- scoping entities and non-scoping entities found within expression with
2819 -- actions nodes.
2821 function New_External_Entity
2822 (Kind : Entity_Kind;
2823 Scope_Id : Entity_Id;
2824 Sloc_Value : Source_Ptr;
2825 Related_Id : Entity_Id;
2826 Suffix : Character;
2827 Suffix_Index : Int := 0;
2828 Prefix : Character := ' ') return Entity_Id;
2829 -- This function creates an N_Defining_Identifier node for an internal
2830 -- created entity, such as an implicit type or subtype, or a record
2831 -- initialization procedure. The entity name is constructed with a call
2832 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
2833 -- that the generated name may be referenced as a public entry, and the
2834 -- Is_Public flag is set if needed (using Set_Public_Status). If the
2835 -- entity is for a type or subtype, the size/align fields are initialized
2836 -- to unknown (Uint_0).
2838 function New_Internal_Entity
2839 (Kind : Entity_Kind;
2840 Scope_Id : Entity_Id;
2841 Sloc_Value : Source_Ptr;
2842 Id_Char : Character) return Entity_Id;
2843 -- This function is similar to New_External_Entity, except that the
2844 -- name is constructed by New_Internal_Name (Id_Char). This is used
2845 -- when the resulting entity does not have to be referenced as a
2846 -- public entity (and in this case Is_Public is not set).
2848 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
2849 -- Find next actual parameter in declaration order. As described for
2850 -- First_Actual, this is the next actual in the declaration order, not
2851 -- the call order, so this does not correspond to simply taking the
2852 -- next entry of the Parameter_Associations list. The argument is an
2853 -- actual previously returned by a call to First_Actual or Next_Actual.
2854 -- Note that the result produced is always an expression, not a parameter
2855 -- association node, even if named notation was used.
2857 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2859 procedure Next_Actual (Actual_Id : in out Node_Id);
2860 pragma Inline (Next_Actual);
2861 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
2862 -- inline this procedural form, but not the functional form above.
2864 function Next_Global (Node : Node_Id) return Node_Id;
2865 -- Node is a global item from a list, obtained through calling First_Global
2866 -- and possibly Next_Global a number of times. Returns the next global item
2867 -- with the same mode.
2869 procedure Next_Global (Node : in out Node_Id);
2870 pragma Inline (Next_Global);
2871 -- Next_Global (N) is equivalent to N := Next_Global (N). Note that we
2872 -- inline this procedural form, but not the functional form above.
2874 function No_Caching_Enabled (Id : Entity_Id) return Boolean;
2875 -- Given the entity of a variable, determine whether Id is subject to
2876 -- volatility property No_Caching and if it is, the related expression
2877 -- evaluates to True.
2879 function No_Heap_Finalization (Typ : Entity_Id) return Boolean;
2880 -- Determine whether type Typ is subject to pragma No_Heap_Finalization
2882 procedure Normalize_Actuals
2883 (N : Node_Id;
2884 S : Entity_Id;
2885 Report : Boolean;
2886 Success : out Boolean);
2887 -- Reorders lists of actuals according to names of formals, value returned
2888 -- in Success indicates success of reordering. For more details, see body.
2889 -- Errors are reported only if Report is set to True.
2891 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
2892 -- This routine is called if the sub-expression N maybe the target of
2893 -- an assignment (e.g. it is the left side of an assignment, used as
2894 -- an out parameters, or used as prefixes of access attributes). It
2895 -- sets Never_Set_In_Source in the associated entity if there is one,
2896 -- taking into account the rule that in the case of renamed objects,
2897 -- it is the flag in the renamed object that must be set.
2899 -- The parameter Sure is set True if the modification is sure to occur
2900 -- (e.g. target of assignment, or out parameter), and to False if the
2901 -- modification is only potential (e.g. address of entity taken).
2903 function Null_To_Null_Address_Convert_OK
2904 (N : Node_Id;
2905 Typ : Entity_Id := Empty) return Boolean;
2906 -- Return True if we are compiling in relaxed RM semantics mode and:
2907 -- 1) N is a N_Null node and Typ is a descendant of System.Address, or
2908 -- 2) N is a comparison operator, one of the operands is null, and the
2909 -- type of the other operand is a descendant of System.Address.
2911 function Number_Of_Elements_In_Array (T : Entity_Id) return Int;
2912 -- Returns the number of elements in the array T if the index bounds of T
2913 -- is known at compile time. If the bounds are not known at compile time,
2914 -- the function returns the value zero.
2916 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
2917 -- Retrieve the name of aspect or pragma N, taking into account a possible
2918 -- rewrite and whether the pragma is generated from an aspect as the names
2919 -- may be different. The routine also deals with 'Class in which case it
2920 -- returns the following values:
2922 -- Invariant -> Name_uInvariant
2923 -- Post'Class -> Name_uPost
2924 -- Pre'Class -> Name_uPre
2925 -- Type_Invariant -> Name_uType_Invariant
2926 -- Type_Invariant'Class -> Name_uType_Invariant
2928 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
2929 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
2930 -- or overrides an inherited dispatching primitive S2, the original
2931 -- corresponding operation of S is the original corresponding operation of
2932 -- S2. Otherwise, it is S itself.
2934 function Original_View_In_Visible_Part (Typ : Entity_Id) return Boolean;
2935 -- Returns True if the type Typ has a private view or if the public view
2936 -- appears in the visible part of a package spec.
2938 procedure Output_Entity (Id : Entity_Id);
2939 -- Print entity Id to standard output. The name of the entity appears in
2940 -- fully qualified form.
2942 -- WARNING: this routine should be used in debugging scenarios such as
2943 -- tracking down undefined symbols as it is fairly low level.
2945 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
2946 -- Print name Nam to standard output. The name appears in fully qualified
2947 -- form assuming it appears in scope Scop. Note that this may not reflect
2948 -- the final qualification as the entity which carries the name may be
2949 -- relocated to a different scope.
2951 -- WARNING: this routine should be used in debugging scenarios such as
2952 -- tracking down undefined symbols as it is fairly low level.
2954 function Param_Entity (N : Node_Id) return Entity_Id;
2955 -- Given an expression N, determines if the expression is a reference
2956 -- to a formal (of a subprogram or entry), and if so returns the Id
2957 -- of the corresponding formal entity, otherwise returns Empty. Also
2958 -- handles the case of references to renamings of formals.
2960 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2961 -- Given a policy, return the policy identifier associated with it. If no
2962 -- such policy is in effect, the value returned is No_Name.
2964 function Predicate_Enabled (Typ : Entity_Id) return Boolean;
2965 -- Return True if a predicate check should be emitted for the given type
2966 -- Typ, taking into account Predicates_Ignored and
2967 -- Predicate_Checks_Suppressed.
2969 function Predicate_Failure_Expression
2970 (Typ : Entity_Id; Inherited_OK : Boolean) return Node_Id;
2971 -- If the given type or subtype is subject to a Predicate_Failure
2972 -- aspect specification, then returns the specified expression.
2973 -- Otherwise, if Inherited_OK is False then returns Empty.
2974 -- Otherwise, if Typ denotes a subtype or a derived type then
2975 -- returns the result of recursing on the ancestor subtype.
2976 -- Otherwise, returns Empty.
2978 function Predicate_Function_Needs_Membership_Parameter (Typ : Entity_Id)
2979 return Boolean is
2980 (Present (Predicate_Failure_Expression (Typ, Inherited_OK => True)));
2981 -- The predicate function for some, but not all, subtypes needs to
2982 -- know whether the predicate is being evaluated as part of a membership
2983 -- test. The predicate function for such a subtype takes an additional
2984 -- boolean to convey this information. This function returns True if this
2985 -- additional parameter is needed. More specifically, this function
2986 -- returns true if the Predicate_Failure aspect is specified for the
2987 -- given subtype or for any of its "ancestor" subtypes.
2989 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2990 -- Subp is the entity for a subprogram call. This function returns True if
2991 -- predicate tests are required for the arguments in this call (this is the
2992 -- normal case). It returns False for special cases where these predicate
2993 -- tests should be skipped (see body for details).
2995 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2996 -- Returns True if the names of both entities correspond with matching
2997 -- primitives. This routine includes support for the case in which one
2998 -- or both entities correspond with entities built by Derive_Subprogram
2999 -- with a special name to avoid being overridden (i.e. return true in case
3000 -- of entities with names "nameP" and "name" or vice versa).
3002 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
3003 -- Returns some private component (if any) of the given Type_Id.
3004 -- Used to enforce the rules on visibility of operations on composite
3005 -- types, that depend on the full view of the component type. For a
3006 -- record type there may be several such components, we just return
3007 -- the first one.
3009 procedure Process_End_Label
3010 (N : Node_Id;
3011 Typ : Character;
3012 Ent : Entity_Id);
3013 -- N is a node whose End_Label is to be processed, generating all
3014 -- appropriate cross-reference entries, and performing style checks
3015 -- for any identifier references in the end label. Typ is either
3016 -- 'e' or 't indicating the type of the cross-reference entity
3017 -- (e for spec, t for body, see Lib.Xref spec for details). The
3018 -- parameter Ent gives the entity to which the End_Label refers,
3019 -- and to which cross-references are to be generated.
3021 procedure Propagate_Concurrent_Flags
3022 (Typ : Entity_Id;
3023 Comp_Typ : Entity_Id);
3024 -- Set Has_Task, Has_Protected, and Has_Timing_Event on Typ when the flags
3025 -- are set on Comp_Typ. This follows the definition of these flags, which
3026 -- are set (recursively) on any composite type that has a component marked
3027 -- by one of these flags. This procedure can only set flags for Typ, and
3028 -- never clear them. Comp_Typ is the type of a component or a parent.
3030 procedure Propagate_DIC_Attributes
3031 (Typ : Entity_Id;
3032 From_Typ : Entity_Id);
3033 -- Inherit all Default_Initial_Condition-related attributes from type
3034 -- From_Typ. Typ is the destination type.
3036 procedure Propagate_Invariant_Attributes
3037 (Typ : Entity_Id;
3038 From_Typ : Entity_Id);
3039 -- Inherit all invariant-related attributes from type From_Typ. Typ is the
3040 -- destination type.
3042 procedure Propagate_Predicate_Attributes
3043 (Typ : Entity_Id;
3044 From_Typ : Entity_Id);
3045 -- Inherit predicate functions and Has_Predicates flag from type From_Typ.
3046 -- Typ is the destination type.
3048 procedure Record_Possible_Part_Of_Reference
3049 (Var_Id : Entity_Id;
3050 Ref : Node_Id);
3051 -- Save reference Ref to variable Var_Id when the variable is subject to
3052 -- pragma Part_Of. If the variable is known to be a constituent of a single
3053 -- protected/task type, the legality of the reference is verified and the
3054 -- save does not take place.
3056 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
3057 -- Determine whether entity Id is referenced within expression Expr
3059 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
3060 -- Returns True if the expression Expr contains any references to a generic
3061 -- type. This can only happen within a generic template.
3063 procedure Remove_Entity_And_Homonym (Id : Entity_Id);
3064 -- Remove arbitrary entity Id from both the homonym and scope chains. Use
3065 -- Remove_Overloaded_Entity for overloadable entities. Note: the removal
3066 -- performed by this routine does not affect the visibility of existing
3067 -- homonyms.
3069 procedure Remove_Homonym (Id : Entity_Id);
3070 -- Removes entity Id from the homonym chain
3072 procedure Remove_Overloaded_Entity (Id : Entity_Id);
3073 -- Remove arbitrary entity Id from the homonym chain, the scope chain and
3074 -- the primitive operations list of the associated controlling type. Use
3075 -- Remove_Entity for non-overloadable entities. Note: the removal performed
3076 -- by this routine does not affect the visibility of existing homonyms.
3078 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
3079 -- Returns the name of E without Suffix
3081 procedure Replace_Null_By_Null_Address (N : Node_Id);
3082 -- N is N_Null or a binary comparison operator, we are compiling in relaxed
3083 -- RM semantics mode, and one of the operands is null. Replace null with
3084 -- System.Null_Address.
3086 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
3087 -- This is used to construct the second argument in a call to Rep_To_Pos
3088 -- which is Standard_True if range checks are enabled (E is an entity to
3089 -- which the Range_Checks_Suppressed test is applied), and Standard_False
3090 -- if range checks are suppressed. Loc is the location for the node that
3091 -- is returned (which is a New_Occurrence of the appropriate entity).
3093 -- Note: one might think that it would be fine to always use True and
3094 -- to ignore the suppress in this case, but it is generally better to
3095 -- believe a request to suppress exceptions if possible, and further
3096 -- more there is at least one case in the generated code (the code for
3097 -- array assignment in a loop) that depends on this suppression.
3099 procedure Require_Entity (N : Node_Id);
3100 -- N is a node which should have an entity value if it is an entity name.
3101 -- If not, then check if there were previous errors. If so, just fill
3102 -- in with Any_Id and ignore. Otherwise signal a program error exception.
3103 -- This is used as a defense mechanism against ill-formed trees caused by
3104 -- previous errors (particularly in -gnatq mode).
3106 function Requires_Transient_Scope (Typ : Entity_Id) return Boolean;
3107 pragma Inline (Requires_Transient_Scope);
3108 -- Return true if temporaries of Typ need to be wrapped in a transient
3109 -- scope, either because they are allocated on the secondary stack or
3110 -- finalization actions must be generated before the next instruction.
3111 -- Examples of types requiring such wrapping are variable-sized types,
3112 -- including unconstrained arrays, and controlled types.
3114 procedure Reset_Analyzed_Flags (N : Node_Id);
3115 -- Reset the Analyzed flags in all nodes of the tree whose root is N
3117 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
3118 -- Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This
3119 -- routine must be used in tandem with Set_SPARK_Mode.
3121 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
3122 -- Return true if Subp is a function that returns an unconstrained type
3124 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
3125 -- Similar to attribute Root_Type, but this version always follows the
3126 -- Full_View of a private type (if available) while searching for the
3127 -- ultimate derivation ancestor.
3129 function Safe_To_Capture_Value
3130 (N : Node_Id;
3131 Ent : Entity_Id;
3132 Cond : Boolean := False) return Boolean;
3133 -- The caller is interested in capturing a value (either the current
3134 -- value, an indication that the value is [non-]null or an indication that
3135 -- the value is valid) for the given entity Ent. This value can only be
3136 -- captured if sequential execution semantics can be properly guaranteed so
3137 -- that a subsequent reference will indeed be sure that this current value
3138 -- indication is correct. The node N is the construct that resulted in the
3139 -- possible capture of the value (this is used to check if we are in a
3140 -- conditional).
3142 -- Cond is used to skip the test for being inside a conditional. It is used
3143 -- in the case of capturing values from if/while tests, which already do a
3144 -- proper job of handling scoping issues without this help.
3146 -- The only entities whose values can be captured are OUT and IN OUT formal
3147 -- parameters, and variables unless Cond is True, in which case we also
3148 -- allow IN formals, loop parameters and constants, where we cannot ever
3149 -- capture actual value information, but we can capture conditional tests.
3151 function Same_Name (N1, N2 : Node_Id) return Boolean;
3152 -- Determine if two (possibly expanded) names are the same name. This is
3153 -- a purely syntactic test, and N1 and N2 need not be analyzed.
3155 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
3156 -- Determine if Node1 and Node2 are known to designate the same object.
3157 -- This is a semantic test and both nodes must be fully analyzed. A result
3158 -- of True is decisively correct. A result of False does not necessarily
3159 -- mean that different objects are designated, just that this could not
3160 -- be reliably determined at compile time.
3162 function Same_Or_Aliased_Subprograms
3163 (S : Entity_Id;
3164 E : Entity_Id) return Boolean;
3165 -- Returns True if the subprogram entity S is the same as E or else S is an
3166 -- alias of E.
3168 function Same_Type (T1, T2 : Entity_Id) return Boolean;
3169 -- Determines if T1 and T2 represent exactly the same type. Two types
3170 -- are the same if they are identical, or if one is an unconstrained
3171 -- subtype of the other, or they are both common subtypes of the same
3172 -- type with identical constraints. The result returned is conservative.
3173 -- It is True if the types are known to be the same, but a result of
3174 -- False is indecisive (e.g. the compiler may not be able to tell that
3175 -- two constraints are identical).
3177 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
3178 -- Determines if Node1 and Node2 are known to be the same value, which is
3179 -- true if they are both compile time known values and have the same value,
3180 -- or if they are the same object (in the sense of function Same_Object).
3181 -- A result of False does not necessarily mean they have different values,
3182 -- just that it is not possible to determine they have the same value.
3184 function Scalar_Part_Present (Typ : Entity_Id) return Boolean;
3185 -- Determine whether arbitrary type Typ is a scalar type, or contains at
3186 -- least one scalar subcomponent.
3188 function Scope_Within
3189 (Inner : Entity_Id;
3190 Outer : Entity_Id) return Boolean;
3191 -- Determine whether scope Inner appears within scope Outer. Note that
3192 -- scopes are partially ordered, so Scope_Within (A, B) and Scope_Within
3193 -- (B, A) may both return False.
3195 function Scope_Within_Or_Same
3196 (Inner : Entity_Id;
3197 Outer : Entity_Id) return Boolean;
3198 -- Determine whether scope Inner appears within scope Outer or both denote
3199 -- the same scope. Note that scopes are partially ordered, so Scope_Within
3200 -- (A, B) and Scope_Within (B, A) may both return False.
3202 procedure Set_Current_Entity (E : Entity_Id);
3203 pragma Inline (Set_Current_Entity);
3204 -- Establish the entity E as the currently visible definition of its
3205 -- associated name (i.e. the Node_Id associated with its name).
3207 procedure Set_Debug_Info_Defining_Id (N : Node_Id);
3208 -- Call Set_Debug_Info_Needed on Defining_Identifier (N) if it comes
3209 -- from source.
3211 procedure Set_Debug_Info_Needed (T : Entity_Id);
3212 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
3213 -- that are needed by T (for an object, the type of the object is needed,
3214 -- and for a type, various subsidiary types are needed -- see body for
3215 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
3216 -- This routine should always be used instead of Set_Needs_Debug_Info to
3217 -- ensure that subsidiary entities are properly handled.
3219 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
3220 -- This procedure has the same calling sequence as Set_Entity, but it
3221 -- performs additional checks as follows:
3223 -- If Style_Check is set, then it calls a style checking routine that
3224 -- can check identifier spelling style.
3226 -- If restriction No_Abort_Statements is set, then it checks that the
3227 -- entity is not Ada.Task_Identification.Abort_Task.
3229 -- If restriction No_Dynamic_Attachment is set, then it checks that the
3230 -- entity is not one of the restricted names for this restriction.
3232 -- If restriction No_Long_Long_Integers is set, then it checks that the
3233 -- entity is not Standard.Long_Long_Integer.
3235 -- If restriction No_Implementation_Identifiers is set, then it checks
3236 -- that the entity is not implementation defined.
3238 procedure Set_Invalid_Scalar_Value
3239 (Scal_Typ : Float_Scalar_Id;
3240 Value : Ureal);
3241 -- Associate invalid value Value with scalar type Scal_Typ as specified by
3242 -- pragma Initialize_Scalars.
3244 procedure Set_Invalid_Scalar_Value
3245 (Scal_Typ : Integer_Scalar_Id;
3246 Value : Uint);
3247 -- Associate invalid value Value with scalar type Scal_Typ as specified by
3248 -- pragma Initialize_Scalars.
3250 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
3251 pragma Inline (Set_Name_Entity_Id);
3252 -- Sets the Entity_Id value associated with the given name, which is the
3253 -- Id of the innermost visible entity with the given name. See the body
3254 -- of package Sem_Ch8 for further details on the handling of visibility.
3256 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
3257 -- The arguments may be parameter associations, whose descendants
3258 -- are the optional formal name and the actual parameter. Positional
3259 -- parameters are already members of a list, and do not need to be
3260 -- chained separately. See also First_Actual and Next_Actual.
3262 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
3263 pragma Inline (Set_Optimize_Alignment_Flags);
3264 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
3266 procedure Set_Public_Status (Id : Entity_Id);
3267 -- If an entity (visible or otherwise) is defined in a library
3268 -- package, or a package that is itself public, then this subprogram
3269 -- labels the entity public as well.
3271 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
3272 -- N is the node for either a left hand side (Out_Param set to False),
3273 -- or an Out or In_Out parameter (Out_Param set to True). If there is
3274 -- an assignable entity being referenced, then the appropriate flag
3275 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
3276 -- if Out_Param is True) is set True, and the other flag set False.
3278 procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id);
3279 pragma Inline (Set_Rep_Info);
3280 -- Copies the Is_Atomic, Is_Independent and Is_Volatile_Full_Access flags
3281 -- from sub(type) entity T2 to (sub)type entity T1, as well as Is_Volatile
3282 -- if T1 is a base type.
3284 procedure Set_Scope_Is_Transient (V : Boolean := True);
3285 -- Set the flag Is_Transient of the current scope
3287 procedure Set_Size_Info (T1, T2 : Entity_Id);
3288 pragma Inline (Set_Size_Info);
3289 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
3290 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
3291 -- in the fixed-point and discrete cases, and also copies the alignment
3292 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
3293 -- separately set if this is required to be copied also.
3295 procedure Set_SPARK_Mode (Context : Entity_Id);
3296 -- Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or
3297 -- a subprogram denoted by Context. This routine must be used in tandem
3298 -- with Restore_SPARK_Mode.
3300 function Scope_Is_Transient return Boolean;
3301 -- True if the current scope is transient
3303 function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean;
3304 function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean;
3305 -- True if we should ignore pragmas with the specified name. In particular,
3306 -- this returns True if pragma Ignore_Pragma applies, and we are not in a
3307 -- predefined unit. The _Par version should be called only from the parser;
3308 -- the _Sem version should be called only during semantic analysis.
3310 function Static_Boolean (N : Node_Id) return Opt_Ubool;
3311 -- This function analyzes the given expression node and then resolves it
3312 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
3313 -- returned corresponding to the value, otherwise an error message is
3314 -- output and No_Uint is returned.
3316 function Static_Integer (N : Node_Id) return Uint;
3317 -- This function analyzes the given expression node and then resolves it
3318 -- as any integer type. If the result is static, then the value of the
3319 -- universal expression is returned, otherwise an error message is output
3320 -- and a value of No_Uint is returned.
3322 function Statically_Denotes_Entity (N : Node_Id) return Boolean;
3323 -- Return True iff N is a name that "statically denotes" an entity.
3325 function Statically_Denotes_Object (N : Node_Id) return Boolean;
3326 -- Return True iff N is a name that "statically denotes" an object.
3328 function Statically_Different (E1, E2 : Node_Id) return Boolean;
3329 -- Return True if it can be statically determined that the Expressions
3330 -- E1 and E2 refer to different objects
3332 function Statically_Names_Object (N : Node_Id) return Boolean;
3333 -- Return True iff N is a name that "statically names" an object.
3335 function String_From_Numeric_Literal (N : Node_Id) return String_Id;
3336 -- Return the string that corresponds to the numeric literal N as it
3337 -- appears in the source.
3339 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
3340 -- Determine whether node N is a loop statement subject to at least one
3341 -- 'Loop_Entry attribute.
3343 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
3344 -- Return the accessibility level of the view denoted by Subp
3346 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
3347 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
3348 -- Typ is properly sized and aligned).
3350 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
3351 -- Print debugging information on entry to each unit being analyzed
3353 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
3354 -- Move a list of entities from one scope to another, and recompute
3355 -- Is_Public based upon the new scope.
3357 generic
3358 with function Process (N : Node_Id) return Traverse_Result is <>;
3359 Process_Itypes : Boolean := False;
3360 function Traverse_More_Func (Node : Node_Id) return Traverse_Final_Result;
3361 -- This is a version of Atree.Traverse_Func that not only traverses
3362 -- syntactic children of nodes, but also semantic children which are
3363 -- logically children of the node. This concerns currently lists of
3364 -- action nodes and ranges under Itypes, both inserted by the compiler.
3365 -- Itypes are only traversed when Process_Itypes is True.
3367 generic
3368 with function Process (N : Node_Id) return Traverse_Result is <>;
3369 Process_Itypes : Boolean := False;
3370 procedure Traverse_More_Proc (Node : Node_Id);
3371 pragma Inline (Traverse_More_Proc);
3372 -- This is the same as Traverse_More_Func except that no result is
3373 -- returned, i.e. Traverse_More_Func is called and the result is simply
3374 -- discarded.
3376 function Type_Access_Level
3377 (Typ : Entity_Id;
3378 Allow_Alt_Model : Boolean := True;
3379 Assoc_Ent : Entity_Id := Empty) return Uint;
3380 -- Return the accessibility level of Typ
3382 -- The Allow_Alt_Model parameter allows the alternative level calculation
3383 -- under the restriction No_Dynamic_Accessibility_Checks to be performed.
3385 -- Assoc_Ent allows for the optional specification of the entity associated
3386 -- with Typ. This gets utilized mostly for anonymous access type
3387 -- processing, where context matters in interpreting Typ's level.
3389 function Type_Without_Stream_Operation
3390 (T : Entity_Id;
3391 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
3392 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
3393 -- is active then we cannot generate stream subprograms for composite types
3394 -- with elementary subcomponents that lack user-defined stream subprograms.
3395 -- This predicate determines whether a type has such an elementary
3396 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
3397 -- prevents the construction of a composite stream operation. If Op is
3398 -- specified we check only for the given stream operation.
3400 function Ultimate_Overlaid_Entity (E : Entity_Id) return Entity_Id;
3401 -- If entity E is overlaying some other entity via an Address clause (which
3402 -- possibly overlays yet another entity via its own Address clause), then
3403 -- return the ultimate overlaid entity. If entity E is not overlaying any
3404 -- other entity (or the overlaid entity cannot be determined statically),
3405 -- then return Empty.
3407 -- Subsidiary to the analysis of object overlays in SPARK.
3409 function Ultimate_Prefix (N : Node_Id) return Node_Id;
3410 -- Obtain the "outermost" prefix of arbitrary node N. Return N if no such
3411 -- prefix exists.
3413 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
3414 -- Return the entity that represents declaration N, so that different
3415 -- views of the same entity have the same unique defining entity:
3416 -- * private view and full view of a deferred constant
3417 -- --> full view
3418 -- * entry spec and entry body
3419 -- --> entry spec
3420 -- * formal parameter on spec and body
3421 -- --> formal parameter on spec
3422 -- * package spec, body, and body stub
3423 -- --> package spec
3424 -- * protected type, protected body, and protected body stub
3425 -- --> protected type (full view if private)
3426 -- * subprogram spec, body, and body stub
3427 -- --> subprogram spec
3428 -- * task type, task body, and task body stub
3429 -- --> task type (full view if private)
3430 -- * private or incomplete view and full view of a type
3431 -- --> full view
3432 -- In other cases, return the defining entity for N.
3434 function Unique_Entity (E : Entity_Id) return Entity_Id;
3435 -- Return the unique entity for entity E, which would be returned by
3436 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
3438 function Unique_Name (E : Entity_Id) return String;
3439 -- Return a unique name for entity E, which could be used to identify E
3440 -- across compilation units.
3442 Child_Prefix : constant String := "ada___";
3443 -- Prefix for child packages when building a unique name for an entity. It
3444 -- is included here to share between Unique_Name and gnatprove.
3446 function Unit_Is_Visible (U : Entity_Id) return Boolean;
3447 -- Determine whether a compilation unit is visible in the current context,
3448 -- because there is a with_clause that makes the unit available. Used to
3449 -- provide better messages on common visiblity errors on operators.
3451 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
3452 -- Yields Universal_Integer or Universal_Real if this is a candidate
3454 function Unqualify (Expr : Node_Id) return Node_Id;
3455 pragma Inline (Unqualify);
3456 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
3457 -- returns X. If Expr is not a qualified expression, returns Expr.
3459 function Unqual_Conv (Expr : Node_Id) return Node_Id;
3460 pragma Inline (Unqual_Conv);
3461 -- Similar to Unqualify, but removes qualified expressions, type
3462 -- conversions, and unchecked conversions.
3464 function Validated_View (Typ : Entity_Id) return Entity_Id;
3465 -- Obtain the "validated view" of arbitrary type Typ which is suitable for
3466 -- verification by attribute 'Valid_Scalars. This view is the type itself
3467 -- or its full view while stripping away concurrency, derivations, and
3468 -- privacy.
3470 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
3471 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
3472 -- of a type extension or private extension declaration. If the full-view
3473 -- of private parents and progenitors is available then it is used to
3474 -- generate the list of visible ancestors; otherwise their partial
3475 -- view is added to the resulting list.
3477 function Within_Init_Proc return Boolean;
3478 -- Determines if Current_Scope is within an init proc
3480 function Within_Protected_Type (E : Entity_Id) return Boolean;
3481 -- Returns True if entity E is declared within a protected type
3483 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
3484 -- Returns True if entity E is declared within scope S
3486 procedure Warn_On_Hiding_Entity
3487 (N : Node_Id;
3488 Hidden, Visible : Entity_Id;
3489 On_Use_Clause : Boolean);
3490 -- Warn on hiding of an entity, either because a new declaration hides
3491 -- an entity directly visible or potentially visible through a use_clause
3492 -- (On_Use_Clause = False), or because the entity would be potentially
3493 -- visible through a use_clause if it was now hidden by a visible
3494 -- declaration (On_Use_Clause = True). N is the node on which the warning
3495 -- is potentially issued: it is the visible entity in the former case, and
3496 -- the use_clause in the latter case.
3498 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
3499 -- Output error message for incorrectly typed expression. Expr is the node
3500 -- for the incorrectly typed construct (Etype (Expr) is the type found),
3501 -- and Expected_Type is the entity for the expected type. Note that Expr
3502 -- does not have to be a subexpression, anything with an Etype field may
3503 -- be used.
3505 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
3506 -- Determine whether type Typ "yields synchronized object" as specified by
3507 -- SPARK RM 9.1. To qualify as such, a type must be
3508 -- * An array type whose element type yields a synchronized object
3509 -- * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
3510 -- * A protected type
3511 -- * A record type or type extension without defaulted discriminants
3512 -- whose components are of a type that yields a synchronized object.
3513 -- * A synchronized interface type
3514 -- * A task type
3516 function Yields_Universal_Type (N : Node_Id) return Boolean;
3517 -- Determine whether unanalyzed node N yields a universal type
3519 procedure Preanalyze_Without_Errors (N : Node_Id);
3520 -- Preanalyze N without reporting errors
3522 package Interval_Lists is
3523 type Discrete_Interval is
3524 record
3525 Low, High : Uint;
3526 end record;
3528 type Discrete_Interval_List is
3529 array (Pos range <>) of Discrete_Interval;
3530 -- A sorted (in ascending order) list of non-empty pairwise-disjoint
3531 -- intervals, always with a gap of at least one value between
3532 -- successive intervals (i.e., mergeable intervals are merged).
3533 -- Low bound is one; high bound is nonnegative.
3535 function Aggregate_Intervals (N : Node_Id) return Discrete_Interval_List;
3536 -- Given an array aggregate N, returns the (unique) interval list
3537 -- representing the values of the aggregate choices; if all the array
3538 -- components are covered by the others choice then the length of the
3539 -- result is zero.
3541 function Choice_List_Intervals
3542 (Discrete_Choices : List_Id) return Discrete_Interval_List;
3543 -- Given a discrete choice list, returns the (unique) interval
3544 -- list representing the chosen values.
3546 function Type_Intervals (Typ : Entity_Id) return Discrete_Interval_List;
3547 -- Given a static discrete type or subtype, returns the (unique)
3548 -- interval list representing the values of the type/subtype.
3549 -- If no static predicates are involved, the length of the result
3550 -- will be at most one.
3552 function Is_Subset (Subset, Of_Set : Discrete_Interval_List)
3553 return Boolean;
3554 -- Returns True iff every value belonging to some interval of
3555 -- Subset also belongs to some interval of Of_Set.
3557 -- When we get around to implementing "is statically compatible"
3558 -- correctly for real types with static predicates, we may need
3559 -- an analogous Real_Interval_List type. Most of the language
3560 -- rules that reference "is statically compatible" pertain to
3561 -- discriminants and therefore do not require support for real types;
3562 -- the exception is 12.5.1(8).
3564 Intervals_Error : exception;
3565 -- Raised when the list of non-empty pair-wise disjoint intervals cannot
3566 -- be built.
3567 end Interval_Lists;
3569 package Old_Attr_Util is
3570 -- Operations related to 'Old attribute evaluation. This
3571 -- includes cases where a level of indirection is needed due to
3572 -- conditional evaluation as well as support for the
3573 -- "known on entry" rules.
3575 package Conditional_Evaluation is
3576 function Eligible_For_Conditional_Evaluation
3577 (Expr : Node_Id) return Boolean;
3578 -- Given a subexpression of a Postcondition expression
3579 -- (typically a 'Old attribute reference), returns True if
3580 -- - the expression is conditionally evaluated; and
3581 -- - its determining expressions are all known on entry; and
3582 -- - Ada_Version >= Ada_2022.
3583 -- See RM 6.1.1 for definitions of these terms.
3585 -- Also returns True if Expr is of an anonymous access type;
3586 -- this is just because we want the code that knows how to build
3587 -- 'Old temps in that case to reside in only one place.
3589 function Conditional_Evaluation_Condition
3590 (Expr : Node_Id) return Node_Id;
3591 -- Given an expression which is eligible for conditional evaluation,
3592 -- build a Boolean expression whose value indicates whether the
3593 -- expression should be evaluated.
3594 end Conditional_Evaluation;
3596 package Indirect_Temps is
3597 generic
3598 with procedure Append_Item (N : Node_Id; Is_Eval_Stmt : Boolean);
3599 -- If Is_Eval_Stmt is True, then N is a statement that should
3600 -- only be executed in the case where the 'Old prefix is to be
3601 -- evaluated. If Is_Eval_Stmt is False, then N is a declaration
3602 -- which should be elaborated unconditionally.
3603 -- Client is responsible for ensuring that any appended
3604 -- Eval_Stmt nodes are eventually analyzed.
3606 Append_Decls_In_Reverse_Order : Boolean := False;
3607 -- This parameter is for the convenience of exp_prag.adb, where we
3608 -- want to Prepend rather than Append so it is better to get the
3609 -- Append calls in reverse order.
3611 procedure Declare_Indirect_Temp
3612 (Attr_Prefix : Node_Id; -- prefix of 'Old attribute (or similar?)
3613 Indirect_Temp : out Entity_Id);
3614 -- Indirect_Temp is of an access type; it is unconditionally
3615 -- declared but only conditionally initialized to reference the
3616 -- saved value of Attr_Prefix.
3618 function Indirect_Temp_Needed (Typ : Entity_Id) return Boolean;
3619 -- Returns True for a specific tagged type because the temp must
3620 -- be of the class-wide type in order to preserve the underlying tag.
3622 -- Also returns True in the case of an anonymous access type
3623 -- because we want the code that knows how to deal with
3624 -- this case to reside in only one place.
3626 -- For an unconstrained-but-definite discriminated subtype, returns
3627 -- True if the potential difference in size between an
3628 -- unconstrained object and a constrained object is large.
3629 -- [This part is not implemented yet.]
3631 -- Otherwise, returns False if a declaration of the form
3632 -- Temp : Typ;
3633 -- is legal and side-effect-free (assuming that default
3634 -- initialization is suppressed). For example, returns True if Typ is
3635 -- indefinite, or if Typ has a controlled part.
3638 function Indirect_Temp_Value
3639 (Temp : Entity_Id;
3640 Typ : Entity_Id;
3641 Loc : Source_Ptr) return Node_Id;
3642 -- Evaluate a temp declared by Declare_Indirect_Temp.
3644 function Is_Access_Type_For_Indirect_Temp
3645 (T : Entity_Id) return Boolean;
3646 -- True for an access type that was declared via a call
3647 -- to Declare_Indirect_Temp.
3648 -- Indicates that the given access type should be treated
3649 -- the same with respect to finalization as a
3650 -- user-defined "comes from source" access type.
3652 end Indirect_Temps;
3653 end Old_Attr_Util;
3655 package Storage_Model_Support is
3657 -- This package provides a set of utility functions related to support
3658 -- for the Storage_Model feature. These functions provide an interface
3659 -- that the compiler (in particular back-end phases such as gigi and
3660 -- GNAT-LLVM) can use to easily obtain entities and operations that
3661 -- are specified for types that have aspects Storage_Model_Type or
3662 -- Designated_Storage_Model.
3664 function Has_Storage_Model_Type_Aspect (Typ : Entity_Id) return Boolean;
3665 -- Returns True iff Typ specifies aspect Storage_Model_Type
3667 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3669 function Has_Designated_Storage_Model_Aspect
3670 (Typ : Entity_Id) return Boolean;
3671 -- Returns True iff Typ specifies aspect Designated_Storage_Model
3673 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3675 function Storage_Model_Object (Typ : Entity_Id) return Entity_Id;
3676 -- Given an access type Typ with aspect Designated_Storage_Model,
3677 -- returns the storage-model object associated with that type.
3678 -- The object Entity_Ids returned by this function can be passed
3679 -- other functions declared in this interface to retrieve operations
3680 -- associated with Storage_Model_Type aspect of the object's type.
3682 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3684 function Storage_Model_Type (Obj : Entity_Id) return Entity_Id;
3685 -- Given an object Obj of a type specifying aspect Storage_Model_Type,
3686 -- returns that type.
3688 function Get_Storage_Model_Type_Entity
3689 (SM_Obj_Or_Type : Entity_Id;
3690 Nam : Name_Id) return Entity_Id;
3691 -- Given a type with aspect Storage_Model_Type or an object of such a
3692 -- type, and Nam denoting the name of one of the argument kinds allowed
3693 -- for that aspect, returns the Entity_Id corresponding to the entity
3694 -- associated with Nam in the aspect. If an entity was not explicitly
3695 -- specified for Nam, then returns Empty, except that in the defaulted
3696 -- Address_Type case, System.Address will be returned, and in the
3697 -- defaulted Null_Address case, System.Null_Address will be returned.
3698 -- (Note: This function is modeled on Get_Iterable_Type_Primitive.)
3700 function Storage_Model_Address_Type
3701 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3702 -- Given a type with aspect Storage_Model_Type or an object of such a
3703 -- type, returns the type specified for the Address_Type choice in that
3704 -- aspect; returns type System.Address if the address type was not
3705 -- explicitly specified (indicating use of the native memory model).
3707 function Storage_Model_Null_Address
3708 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3709 -- Given a type with aspect Storage_Model_Type or an object of such a
3710 -- type, returns the constant specified for the Null_Address choice in
3711 -- that aspect; returns Empty if the constant object isn't specified,
3712 -- unless the native memory model is in use (System.Address), in which
3713 -- case it returns System.Null_Address.
3715 function Storage_Model_Allocate
3716 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3717 -- Given a type with aspect Storage_Model_Type or an object of such a
3718 -- type, returns the procedure specified for the Allocate choice in that
3719 -- aspect; returns Empty if the procedure isn't specified.
3721 function Storage_Model_Deallocate
3722 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3723 -- Given a type with aspect Storage_Model_Type or an object of such a
3724 -- type, returns the procedure specified for the Deallocate choice in
3725 -- that aspect; returns Empty if the procedure isn't specified.
3727 function Storage_Model_Copy_From
3728 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3729 -- Given a type with aspect Storage_Model_Type or an object of such a
3730 -- type, returns the procedure specified for the Copy_From choice in
3731 -- that aspect; returns Empty if the procedure isn't specified.
3733 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3735 function Storage_Model_Copy_To
3736 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3737 -- Given a type with aspect Storage_Model_Type or an object of such a
3738 -- type, returns the procedure specified for the Copy_To choice in that
3739 -- aspect; returns Empty if the procedure isn't specified.
3741 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3743 function Storage_Model_Storage_Size
3744 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3745 -- Given a type with aspect Storage_Model_Type or an object of such a
3746 -- type, returns the function specified for the Storage_Size choice in
3747 -- that aspect; returns Empty if the procedure isn't specified.
3749 end Storage_Model_Support;
3751 end Sem_Util;