Improve max_insns_skipped logic
[official-gcc.git] / gcc / ada / par_sco.adb
blobb3abb6dfbc6257dc0e99beee90d483200c9e8494
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- P A R _ S C O --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2009-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Errout; use Errout;
30 with Lib; use Lib;
31 with Lib.Util; use Lib.Util;
32 with Namet; use Namet;
33 with Nlists; use Nlists;
34 with Opt; use Opt;
35 with Output; use Output;
36 with Put_SCOs;
37 with SCOs; use SCOs;
38 with Sem; use Sem;
39 with Sem_Util; use Sem_Util;
40 with Sinfo; use Sinfo;
41 with Sinput; use Sinput;
42 with Snames; use Snames;
43 with Table;
45 with GNAT.HTable; use GNAT.HTable;
46 with GNAT.Heap_Sort_G;
47 with GNAT.Table;
49 package body Par_SCO is
51 --------------------------
52 -- First-pass SCO table --
53 --------------------------
55 -- The Short_Circuit_And_Or pragma enables one to use AND and OR operators
56 -- in source code while the ones used with booleans will be interpreted as
57 -- their short circuit alternatives (AND THEN and OR ELSE). Thus, the true
58 -- meaning of these operators is known only after the semantic analysis.
60 -- However, decision SCOs include short circuit operators only. The SCO
61 -- information generation pass must be done before expansion, hence before
62 -- the semantic analysis. Because of this, the SCO information generation
63 -- is done in two passes.
65 -- The first one (SCO_Record_Raw, before semantic analysis) completes the
66 -- SCO_Raw_Table assuming all AND/OR operators are short circuit ones.
67 -- Then, the semantic analysis determines which operators are promoted to
68 -- short circuit ones. Finally, the second pass (SCO_Record_Filtered)
69 -- translates the SCO_Raw_Table to SCO_Table, taking care of removing the
70 -- remaining AND/OR operators and of adjusting decisions accordingly
71 -- (splitting decisions, removing empty ones, etc.).
73 type SCO_Generation_State_Type is (None, Raw, Filtered);
74 SCO_Generation_State : SCO_Generation_State_Type := None;
75 -- Keep track of the SCO generation state: this will prevent us from
76 -- running some steps multiple times (the second pass has to be started
77 -- from multiple places).
79 package SCO_Raw_Table is new GNAT.Table
80 (Table_Component_Type => SCO_Table_Entry,
81 Table_Index_Type => Nat,
82 Table_Low_Bound => 1,
83 Table_Initial => 500,
84 Table_Increment => 300);
86 -----------------------
87 -- Unit Number Table --
88 -----------------------
90 -- This table parallels the SCO_Unit_Table, keeping track of the unit
91 -- numbers corresponding to the entries made in this table, so that before
92 -- writing out the SCO information to the ALI file, we can fill in the
93 -- proper dependency numbers and file names.
95 -- Note that the zero'th entry is here for convenience in sorting the
96 -- table, the real lower bound is 1.
98 package SCO_Unit_Number_Table is new Table.Table
99 (Table_Component_Type => Unit_Number_Type,
100 Table_Index_Type => SCO_Unit_Index,
101 Table_Low_Bound => 0, -- see note above on sort
102 Table_Initial => 20,
103 Table_Increment => 200,
104 Table_Name => "SCO_Unit_Number_Entry");
106 ------------------------------------------
107 -- Condition/Operator/Pragma Hash Table --
108 ------------------------------------------
110 -- We need to be able to get to conditions quickly for handling the calls
111 -- to Set_SCO_Condition efficiently, and similarly to get to pragmas to
112 -- handle calls to Set_SCO_Pragma_Enabled (the same holds for operators and
113 -- Set_SCO_Logical_Operator). For this purpose we identify the conditions,
114 -- operators and pragmas in the table by their starting sloc, and use this
115 -- hash table to map from these sloc values to SCO_Table indexes.
117 type Header_Num is new Integer range 0 .. 996;
118 -- Type for hash table headers
120 function Hash (F : Source_Ptr) return Header_Num;
121 -- Function to Hash source pointer value
123 function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean;
124 -- Function to test two keys for equality
126 function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean;
127 -- Function to test for source locations order
129 package SCO_Raw_Hash_Table is new Simple_HTable
130 (Header_Num, Int, 0, Source_Ptr, Hash, Equal);
131 -- The actual hash table
133 --------------------------
134 -- Internal Subprograms --
135 --------------------------
137 function Has_Decision (N : Node_Id) return Boolean;
138 -- N is the node for a subexpression. Returns True if the subexpression
139 -- contains a nested decision (i.e. either is a logical operator, or
140 -- contains a logical operator in its subtree).
142 -- This must be used in the first pass (SCO_Record_Raw) only: here AND/OR
143 -- operators are considered as short circuit, just in case the
144 -- Short_Circuit_And_Or pragma is used: only real short circuit operations
145 -- will be kept in the secord pass.
147 type Tristate is (False, True, Unknown);
149 function Is_Logical_Operator (N : Node_Id) return Tristate;
150 -- N is the node for a subexpression. This procedure determines whether N
151 -- is a logical operator: True for short circuit conditions, Unknown for OR
152 -- and AND (the Short_Circuit_And_Or pragma may be used) and False
153 -- otherwise. Note that in cases where True is returned, callers assume
154 -- Nkind (N) in N_Op.
156 function To_Source_Location (S : Source_Ptr) return Source_Location;
157 -- Converts Source_Ptr value to Source_Location (line/col) format
159 procedure Process_Decisions
160 (N : Node_Id;
161 T : Character;
162 Pragma_Sloc : Source_Ptr);
163 -- If N is Empty, has no effect. Otherwise scans the tree for the node N,
164 -- to output any decisions it contains. T is one of IEGPWX (for context of
165 -- expression: if/exit when/entry guard/pragma/while/expression). If T is
166 -- other than X, the node N is the if expression involved, and a decision
167 -- is always present (at the very least a simple decision is present at the
168 -- top level).
170 procedure Process_Decisions
171 (L : List_Id;
172 T : Character;
173 Pragma_Sloc : Source_Ptr);
174 -- Calls above procedure for each element of the list L
176 procedure Set_Raw_Table_Entry
177 (C1 : Character;
178 C2 : Character;
179 From : Source_Ptr;
180 To : Source_Ptr;
181 Last : Boolean;
182 Pragma_Sloc : Source_Ptr := No_Location;
183 Pragma_Aspect_Name : Name_Id := No_Name);
184 -- Append an entry to SCO_Raw_Table with fields set as per arguments
186 type Dominant_Info is record
187 K : Character;
188 -- F/T/S/E for a valid dominance marker, or ' ' for no dominant
190 N : Node_Id;
191 -- Node providing the Sloc(s) for the dominance marker
192 end record;
193 No_Dominant : constant Dominant_Info := (' ', Empty);
195 procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr);
196 -- Add one entry from the instance table to the corresponding SCO table
198 procedure Traverse_Declarations_Or_Statements
199 (L : List_Id;
200 D : Dominant_Info := No_Dominant;
201 P : Node_Id := Empty);
202 -- Process L, a list of statements or declarations dominated by D. If P is
203 -- present, it is processed as though it had been prepended to L.
205 function Traverse_Declarations_Or_Statements
206 (L : List_Id;
207 D : Dominant_Info := No_Dominant;
208 P : Node_Id := Empty) return Dominant_Info;
209 -- Same as above, and returns dominant information corresponding to the
210 -- last node with SCO in L.
212 -- The following Traverse_* routines perform appropriate calls to
213 -- Traverse_Declarations_Or_Statements to traverse specific node kinds.
214 -- Parameter D, when present, indicates the dominant of the first
215 -- declaration or statement within N.
217 -- Why is Traverse_Sync_Definition commented specificaly and
218 -- the others are not???
220 procedure Traverse_Generic_Package_Declaration (N : Node_Id);
222 procedure Traverse_Handled_Statement_Sequence
223 (N : Node_Id;
224 D : Dominant_Info := No_Dominant);
226 procedure Traverse_Package_Body (N : Node_Id);
228 procedure Traverse_Package_Declaration
229 (N : Node_Id;
230 D : Dominant_Info := No_Dominant);
232 procedure Traverse_Subprogram_Or_Task_Body
233 (N : Node_Id;
234 D : Dominant_Info := No_Dominant);
236 procedure Traverse_Sync_Definition (N : Node_Id);
237 -- Traverse a protected definition or task definition
239 -- Note regarding traversals: In a few cases where an Alternatives list is
240 -- involved, pragmas such as "pragma Page" may show up before the first
241 -- alternative. We skip them because we're out of statement or declaration
242 -- context, so these can't be pragmas of interest for SCO purposes, and
243 -- the regular alternative processing typically involves attribute queries
244 -- which aren't valid for a pragma.
246 procedure Write_SCOs_To_ALI_File is new Put_SCOs;
247 -- Write SCO information to the ALI file using routines in Lib.Util
249 ----------
250 -- dsco --
251 ----------
253 procedure dsco is
254 procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry);
255 -- Dump a SCO table entry
257 ----------------
258 -- Dump_Entry --
259 ----------------
261 procedure Dump_Entry (Index : Nat; T : SCO_Table_Entry) is
262 begin
263 Write_Str (" ");
264 Write_Int (Index);
265 Write_Char ('.');
267 if T.C1 /= ' ' then
268 Write_Str (" C1 = '");
269 Write_Char (T.C1);
270 Write_Char (''');
271 end if;
273 if T.C2 /= ' ' then
274 Write_Str (" C2 = '");
275 Write_Char (T.C2);
276 Write_Char (''');
277 end if;
279 if T.From /= No_Source_Location then
280 Write_Str (" From = ");
281 Write_Int (Int (T.From.Line));
282 Write_Char (':');
283 Write_Int (Int (T.From.Col));
284 end if;
286 if T.To /= No_Source_Location then
287 Write_Str (" To = ");
288 Write_Int (Int (T.To.Line));
289 Write_Char (':');
290 Write_Int (Int (T.To.Col));
291 end if;
293 if T.Last then
294 Write_Str (" True");
295 else
296 Write_Str (" False");
297 end if;
299 Write_Eol;
300 end Dump_Entry;
302 -- Start of processing for dsco
304 begin
305 -- Dump SCO unit table
307 Write_Line ("SCO Unit Table");
308 Write_Line ("--------------");
310 for Index in 1 .. SCO_Unit_Table.Last loop
311 declare
312 UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (Index);
314 begin
315 Write_Str (" ");
316 Write_Int (Int (Index));
317 Write_Str (" Dep_Num = ");
318 Write_Int (Int (UTE.Dep_Num));
319 Write_Str (" From = ");
320 Write_Int (Int (UTE.From));
321 Write_Str (" To = ");
322 Write_Int (Int (UTE.To));
324 Write_Str (" File_Name = """);
326 if UTE.File_Name /= null then
327 Write_Str (UTE.File_Name.all);
328 end if;
330 Write_Char ('"');
331 Write_Eol;
332 end;
333 end loop;
335 -- Dump SCO Unit number table if it contains any entries
337 if SCO_Unit_Number_Table.Last >= 1 then
338 Write_Eol;
339 Write_Line ("SCO Unit Number Table");
340 Write_Line ("---------------------");
342 for Index in 1 .. SCO_Unit_Number_Table.Last loop
343 Write_Str (" ");
344 Write_Int (Int (Index));
345 Write_Str (". Unit_Number = ");
346 Write_Int (Int (SCO_Unit_Number_Table.Table (Index)));
347 Write_Eol;
348 end loop;
349 end if;
351 -- Dump SCO raw-table
353 Write_Eol;
354 Write_Line ("SCO Raw Table");
355 Write_Line ("---------");
357 if SCO_Generation_State = Filtered then
358 Write_Line ("Empty (free'd after second pass)");
359 else
360 for Index in 1 .. SCO_Raw_Table.Last loop
361 Dump_Entry (Index, SCO_Raw_Table.Table (Index));
362 end loop;
363 end if;
365 -- Dump SCO table itself
367 Write_Eol;
368 Write_Line ("SCO Filtered Table");
369 Write_Line ("---------");
371 for Index in 1 .. SCO_Table.Last loop
372 Dump_Entry (Index, SCO_Table.Table (Index));
373 end loop;
374 end dsco;
376 -----------
377 -- Equal --
378 -----------
380 function Equal (F1 : Source_Ptr; F2 : Source_Ptr) return Boolean is
381 begin
382 return F1 = F2;
383 end Equal;
385 -------
386 -- < --
387 -------
389 function "<" (S1 : Source_Location; S2 : Source_Location) return Boolean is
390 begin
391 return S1.Line < S2.Line
392 or else (S1.Line = S2.Line and then S1.Col < S2.Col);
393 end "<";
395 ------------------
396 -- Has_Decision --
397 ------------------
399 function Has_Decision (N : Node_Id) return Boolean is
400 function Check_Node (N : Node_Id) return Traverse_Result;
401 -- Determine if Nkind (N) indicates the presence of a decision (i.e. N
402 -- is a logical operator, which is a decision in itself, or an
403 -- IF-expression whose Condition attribute is a decision).
405 ----------------
406 -- Check_Node --
407 ----------------
409 function Check_Node (N : Node_Id) return Traverse_Result is
410 begin
411 -- If we are not sure this is a logical operator (AND and OR may be
412 -- turned into logical operators with the Short_Circuit_And_Or
413 -- pragma), assume it is. Putative decisions will be discarded if
414 -- needed in the secord pass.
416 if Is_Logical_Operator (N) /= False
417 or else Nkind (N) = N_If_Expression
418 then
419 return Abandon;
420 else
421 return OK;
422 end if;
423 end Check_Node;
425 function Traverse is new Traverse_Func (Check_Node);
427 -- Start of processing for Has_Decision
429 begin
430 return Traverse (N) = Abandon;
431 end Has_Decision;
433 ----------
434 -- Hash --
435 ----------
437 function Hash (F : Source_Ptr) return Header_Num is
438 begin
439 return Header_Num (Nat (F) mod 997);
440 end Hash;
442 ----------------
443 -- Initialize --
444 ----------------
446 procedure Initialize is
447 begin
448 SCO_Unit_Number_Table.Init;
450 -- The SCO_Unit_Number_Table entry with index 0 is intentionally set
451 -- aside to be used as temporary for sorting.
453 SCO_Unit_Number_Table.Increment_Last;
454 end Initialize;
456 -------------------------
457 -- Is_Logical_Operator --
458 -------------------------
460 function Is_Logical_Operator (N : Node_Id) return Tristate is
461 begin
462 if Nkind_In (N, N_And_Then, N_Op_Not, N_Or_Else) then
463 return True;
464 elsif Nkind_In (N, N_Op_And, N_Op_Or) then
465 return Unknown;
466 else
467 return False;
468 end if;
469 end Is_Logical_Operator;
471 -----------------------
472 -- Process_Decisions --
473 -----------------------
475 -- Version taking a list
477 procedure Process_Decisions
478 (L : List_Id;
479 T : Character;
480 Pragma_Sloc : Source_Ptr)
482 N : Node_Id;
484 begin
485 if L /= No_List then
486 N := First (L);
487 while Present (N) loop
488 Process_Decisions (N, T, Pragma_Sloc);
489 Next (N);
490 end loop;
491 end if;
492 end Process_Decisions;
494 -- Version taking a node
496 Current_Pragma_Sloc : Source_Ptr := No_Location;
497 -- While processing a pragma, this is set to the sloc of the N_Pragma node
499 procedure Process_Decisions
500 (N : Node_Id;
501 T : Character;
502 Pragma_Sloc : Source_Ptr)
504 Mark : Nat;
505 -- This is used to mark the location of a decision sequence in the SCO
506 -- table. We use it for backing out a simple decision in an expression
507 -- context that contains only NOT operators.
509 Mark_Hash : Nat;
510 -- Likewise for the putative SCO_Raw_Hash_Table entries: see below
512 type Hash_Entry is record
513 Sloc : Source_Ptr;
514 SCO_Index : Nat;
515 end record;
516 -- We must register all conditions/pragmas in SCO_Raw_Hash_Table.
517 -- However we cannot register them in the same time we are adding the
518 -- corresponding SCO entries to the raw table since we may discard them
519 -- later on. So instead we put all putative conditions into Hash_Entries
520 -- (see below) and register them once we are sure we keep them.
522 -- This data structure holds the conditions/pragmas to register in
523 -- SCO_Raw_Hash_Table.
525 package Hash_Entries is new Table.Table
526 (Table_Component_Type => Hash_Entry,
527 Table_Index_Type => Nat,
528 Table_Low_Bound => 1,
529 Table_Initial => 10,
530 Table_Increment => 10,
531 Table_Name => "Hash_Entries");
532 -- Hold temporarily (i.e. free'd before returning) the Hash_Entry before
533 -- they are registered in SCO_Raw_Hash_Table.
535 X_Not_Decision : Boolean;
536 -- This flag keeps track of whether a decision sequence in the SCO table
537 -- contains only NOT operators, and is for an expression context (T=X).
538 -- The flag will be set False if T is other than X, or if an operator
539 -- other than NOT is in the sequence.
541 procedure Output_Decision_Operand (N : Node_Id);
542 -- The node N is the top level logical operator of a decision, or it is
543 -- one of the operands of a logical operator belonging to a single
544 -- complex decision. This routine outputs the sequence of table entries
545 -- corresponding to the node. Note that we do not process the sub-
546 -- operands to look for further decisions, that processing is done in
547 -- Process_Decision_Operand, because we can't get decisions mixed up in
548 -- the global table. Call has no effect if N is Empty.
550 procedure Output_Element (N : Node_Id);
551 -- Node N is an operand of a logical operator that is not itself a
552 -- logical operator, or it is a simple decision. This routine outputs
553 -- the table entry for the element, with C1 set to ' '. Last is set
554 -- False, and an entry is made in the condition hash table.
556 procedure Output_Header (T : Character);
557 -- Outputs a decision header node. T is I/W/E/P for IF/WHILE/EXIT WHEN/
558 -- PRAGMA, and 'X' for the expression case.
560 procedure Process_Decision_Operand (N : Node_Id);
561 -- This is called on node N, the top level node of a decision, or on one
562 -- of its operands or suboperands after generating the full output for
563 -- the complex decision. It process the suboperands of the decision
564 -- looking for nested decisions.
566 function Process_Node (N : Node_Id) return Traverse_Result;
567 -- Processes one node in the traversal, looking for logical operators,
568 -- and if one is found, outputs the appropriate table entries.
570 -----------------------------
571 -- Output_Decision_Operand --
572 -----------------------------
574 procedure Output_Decision_Operand (N : Node_Id) is
575 C1 : Character;
576 C2 : Character;
577 -- C1 holds a character that identifies the operation while C2
578 -- indicates whether we are sure (' ') or not ('?') this operation
579 -- belongs to the decision. '?' entries will be filtered out in the
580 -- second (SCO_Record_Filtered) pass.
582 L : Node_Id;
583 T : Tristate;
585 begin
586 if No (N) then
587 return;
588 end if;
590 T := Is_Logical_Operator (N);
592 -- Logical operator
594 if T /= False then
595 if Nkind (N) = N_Op_Not then
596 C1 := '!';
597 L := Empty;
599 else
600 L := Left_Opnd (N);
602 if Nkind_In (N, N_Op_Or, N_Or_Else) then
603 C1 := '|';
604 else pragma Assert (Nkind_In (N, N_Op_And, N_And_Then));
605 C1 := '&';
606 end if;
607 end if;
609 if T = True then
610 C2 := ' ';
611 else
612 C2 := '?';
613 end if;
615 Set_Raw_Table_Entry
616 (C1 => C1,
617 C2 => C2,
618 From => Sloc (N),
619 To => No_Location,
620 Last => False);
622 Hash_Entries.Append ((Sloc (N), SCO_Raw_Table.Last));
624 Output_Decision_Operand (L);
625 Output_Decision_Operand (Right_Opnd (N));
627 -- Not a logical operator
629 else
630 Output_Element (N);
631 end if;
632 end Output_Decision_Operand;
634 --------------------
635 -- Output_Element --
636 --------------------
638 procedure Output_Element (N : Node_Id) is
639 FSloc : Source_Ptr;
640 LSloc : Source_Ptr;
641 begin
642 Sloc_Range (N, FSloc, LSloc);
643 Set_Raw_Table_Entry
644 (C1 => ' ',
645 C2 => 'c',
646 From => FSloc,
647 To => LSloc,
648 Last => False);
649 Hash_Entries.Append ((FSloc, SCO_Raw_Table.Last));
650 end Output_Element;
652 -------------------
653 -- Output_Header --
654 -------------------
656 procedure Output_Header (T : Character) is
657 Loc : Source_Ptr := No_Location;
658 -- Node whose Sloc is used for the decision
660 Nam : Name_Id := No_Name;
661 -- For the case of an aspect, aspect name
663 begin
664 case T is
665 when 'I' | 'E' | 'W' | 'a' | 'A' =>
667 -- For IF, EXIT, WHILE, or aspects, the token SLOC is that of
668 -- the parent of the expression.
670 Loc := Sloc (Parent (N));
672 if T = 'a' or else T = 'A' then
673 Nam := Chars (Identifier (Parent (N)));
674 end if;
676 when 'G' | 'P' =>
678 -- For entry guard, the token sloc is from the N_Entry_Body.
679 -- For PRAGMA, we must get the location from the pragma node.
680 -- Argument N is the pragma argument, and we have to go up
681 -- two levels (through the pragma argument association) to
682 -- get to the pragma node itself. For the guard on a select
683 -- alternative, we do not have access to the token location for
684 -- the WHEN, so we use the first sloc of the condition itself
685 -- (note: we use First_Sloc, not Sloc, because this is what is
686 -- referenced by dominance markers).
688 -- Doesn't this requirement of using First_Sloc need to be
689 -- documented in the spec ???
691 if Nkind_In (Parent (N), N_Accept_Alternative,
692 N_Delay_Alternative,
693 N_Terminate_Alternative)
694 then
695 Loc := First_Sloc (N);
696 else
697 Loc := Sloc (Parent (Parent (N)));
698 end if;
700 when 'X' =>
702 -- For an expression, no Sloc
704 null;
706 -- No other possibilities
708 when others =>
709 raise Program_Error;
710 end case;
712 Set_Raw_Table_Entry
713 (C1 => T,
714 C2 => ' ',
715 From => Loc,
716 To => No_Location,
717 Last => False,
718 Pragma_Sloc => Pragma_Sloc,
719 Pragma_Aspect_Name => Nam);
721 -- For an aspect specification, which will be rewritten into a
722 -- pragma, enter a hash table entry now.
724 if T = 'a' then
725 Hash_Entries.Append ((Loc, SCO_Raw_Table.Last));
726 end if;
727 end Output_Header;
729 ------------------------------
730 -- Process_Decision_Operand --
731 ------------------------------
733 procedure Process_Decision_Operand (N : Node_Id) is
734 begin
735 if Is_Logical_Operator (N) /= False then
736 if Nkind (N) /= N_Op_Not then
737 Process_Decision_Operand (Left_Opnd (N));
738 X_Not_Decision := False;
739 end if;
741 Process_Decision_Operand (Right_Opnd (N));
743 else
744 Process_Decisions (N, 'X', Pragma_Sloc);
745 end if;
746 end Process_Decision_Operand;
748 ------------------
749 -- Process_Node --
750 ------------------
752 function Process_Node (N : Node_Id) return Traverse_Result is
753 begin
754 case Nkind (N) is
756 -- Logical operators, output table entries and then process
757 -- operands recursively to deal with nested conditions.
759 when N_And_Then
760 | N_Op_And
761 | N_Op_Not
762 | N_Op_Or
763 | N_Or_Else
765 declare
766 T : Character;
768 begin
769 -- If outer level, then type comes from call, otherwise it
770 -- is more deeply nested and counts as X for expression.
772 if N = Process_Decisions.N then
773 T := Process_Decisions.T;
774 else
775 T := 'X';
776 end if;
778 -- Output header for sequence
780 X_Not_Decision := T = 'X' and then Nkind (N) = N_Op_Not;
781 Mark := SCO_Raw_Table.Last;
782 Mark_Hash := Hash_Entries.Last;
783 Output_Header (T);
785 -- Output the decision
787 Output_Decision_Operand (N);
789 -- If the decision was in an expression context (T = 'X')
790 -- and contained only NOT operators, then we don't output
791 -- it, so delete it.
793 if X_Not_Decision then
794 SCO_Raw_Table.Set_Last (Mark);
795 Hash_Entries.Set_Last (Mark_Hash);
797 -- Otherwise, set Last in last table entry to mark end
799 else
800 SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True;
801 end if;
803 -- Process any embedded decisions
805 Process_Decision_Operand (N);
806 return Skip;
807 end;
809 -- Case expression
811 -- Really hard to believe this is correct given the special
812 -- handling for if expressions below ???
814 when N_Case_Expression =>
815 return OK; -- ???
817 -- If expression, processed like an if statement
819 when N_If_Expression =>
820 declare
821 Cond : constant Node_Id := First (Expressions (N));
822 Thnx : constant Node_Id := Next (Cond);
823 Elsx : constant Node_Id := Next (Thnx);
825 begin
826 Process_Decisions (Cond, 'I', Pragma_Sloc);
827 Process_Decisions (Thnx, 'X', Pragma_Sloc);
828 Process_Decisions (Elsx, 'X', Pragma_Sloc);
829 return Skip;
830 end;
832 -- All other cases, continue scan
834 when others =>
835 return OK;
836 end case;
837 end Process_Node;
839 procedure Traverse is new Traverse_Proc (Process_Node);
841 -- Start of processing for Process_Decisions
843 begin
844 if No (N) then
845 return;
846 end if;
848 Hash_Entries.Init;
850 -- See if we have simple decision at outer level and if so then
851 -- generate the decision entry for this simple decision. A simple
852 -- decision is a boolean expression (which is not a logical operator
853 -- or short circuit form) appearing as the operand of an IF, WHILE,
854 -- EXIT WHEN, or special PRAGMA construct.
856 if T /= 'X' and then Is_Logical_Operator (N) = False then
857 Output_Header (T);
858 Output_Element (N);
860 -- Change Last in last table entry to True to mark end of
861 -- sequence, which is this case is only one element long.
863 SCO_Raw_Table.Table (SCO_Raw_Table.Last).Last := True;
864 end if;
866 Traverse (N);
868 -- Now we have the definitive set of SCO entries, register them in the
869 -- corresponding hash table.
871 for J in 1 .. Hash_Entries.Last loop
872 SCO_Raw_Hash_Table.Set
873 (Hash_Entries.Table (J).Sloc,
874 Hash_Entries.Table (J).SCO_Index);
875 end loop;
877 Hash_Entries.Free;
878 end Process_Decisions;
880 -----------
881 -- pscos --
882 -----------
884 procedure pscos is
885 procedure Write_Info_Char (C : Character) renames Write_Char;
886 -- Write one character;
888 procedure Write_Info_Initiate (Key : Character) renames Write_Char;
889 -- Start new one and write one character;
891 procedure Write_Info_Nat (N : Nat);
892 -- Write value of N
894 procedure Write_Info_Terminate renames Write_Eol;
895 -- Terminate current line
897 --------------------
898 -- Write_Info_Nat --
899 --------------------
901 procedure Write_Info_Nat (N : Nat) is
902 begin
903 Write_Int (N);
904 end Write_Info_Nat;
906 procedure Debug_Put_SCOs is new Put_SCOs;
908 -- Start of processing for pscos
910 begin
911 Debug_Put_SCOs;
912 end pscos;
914 ---------------------
915 -- Record_Instance --
916 ---------------------
918 procedure Record_Instance (Id : Instance_Id; Inst_Sloc : Source_Ptr) is
919 Inst_Src : constant Source_File_Index :=
920 Get_Source_File_Index (Inst_Sloc);
921 begin
922 SCO_Instance_Table.Append
923 ((Inst_Dep_Num => Dependency_Num (Unit (Inst_Src)),
924 Inst_Loc => To_Source_Location (Inst_Sloc),
925 Enclosing_Instance => SCO_Instance_Index (Instance (Inst_Src))));
927 pragma Assert
928 (SCO_Instance_Table.Last = SCO_Instance_Index (Id));
929 end Record_Instance;
931 ----------------
932 -- SCO_Output --
933 ----------------
935 procedure SCO_Output is
936 procedure Populate_SCO_Instance_Table is
937 new Sinput.Iterate_On_Instances (Record_Instance);
939 begin
940 pragma Assert (SCO_Generation_State = Filtered);
942 if Debug_Flag_Dot_OO then
943 dsco;
944 end if;
946 Populate_SCO_Instance_Table;
948 -- Sort the unit tables based on dependency numbers
950 Unit_Table_Sort : declare
951 function Lt (Op1 : Natural; Op2 : Natural) return Boolean;
952 -- Comparison routine for sort call
954 procedure Move (From : Natural; To : Natural);
955 -- Move routine for sort call
957 --------
958 -- Lt --
959 --------
961 function Lt (Op1 : Natural; Op2 : Natural) return Boolean is
962 begin
963 return
964 Dependency_Num
965 (SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op1)))
967 Dependency_Num
968 (SCO_Unit_Number_Table.Table (SCO_Unit_Index (Op2)));
969 end Lt;
971 ----------
972 -- Move --
973 ----------
975 procedure Move (From : Natural; To : Natural) is
976 begin
977 SCO_Unit_Table.Table (SCO_Unit_Index (To)) :=
978 SCO_Unit_Table.Table (SCO_Unit_Index (From));
979 SCO_Unit_Number_Table.Table (SCO_Unit_Index (To)) :=
980 SCO_Unit_Number_Table.Table (SCO_Unit_Index (From));
981 end Move;
983 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
985 -- Start of processing for Unit_Table_Sort
987 begin
988 Sorting.Sort (Integer (SCO_Unit_Table.Last));
989 end Unit_Table_Sort;
991 -- Loop through entries in the unit table to set file name and
992 -- dependency number entries.
994 for J in 1 .. SCO_Unit_Table.Last loop
995 declare
996 U : constant Unit_Number_Type := SCO_Unit_Number_Table.Table (J);
997 UTE : SCO_Unit_Table_Entry renames SCO_Unit_Table.Table (J);
999 begin
1000 Get_Name_String (Reference_Name (Source_Index (U)));
1001 UTE.File_Name := new String'(Name_Buffer (1 .. Name_Len));
1002 UTE.Dep_Num := Dependency_Num (U);
1003 end;
1004 end loop;
1006 -- Now the tables are all setup for output to the ALI file
1008 Write_SCOs_To_ALI_File;
1009 end SCO_Output;
1011 -------------------------
1012 -- SCO_Pragma_Disabled --
1013 -------------------------
1015 function SCO_Pragma_Disabled (Loc : Source_Ptr) return Boolean is
1016 Index : Nat;
1018 begin
1019 if Loc = No_Location then
1020 return False;
1021 end if;
1023 Index := SCO_Raw_Hash_Table.Get (Loc);
1025 -- The test here for zero is to deal with possible previous errors, and
1026 -- for the case of pragma statement SCOs, for which we always set the
1027 -- Pragma_Sloc even if the particular pragma cannot be specifically
1028 -- disabled.
1030 if Index /= 0 then
1031 declare
1032 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
1034 begin
1035 case T.C1 is
1036 when 'S' =>
1037 -- Pragma statement
1039 return T.C2 = 'p';
1041 when 'A' =>
1042 -- Aspect decision (enabled)
1044 return False;
1046 when 'a' =>
1047 -- Aspect decision (not enabled)
1049 return True;
1051 when ASCII.NUL =>
1052 -- Nullified disabled SCO
1054 return True;
1056 when others =>
1057 raise Program_Error;
1058 end case;
1059 end;
1061 else
1062 return False;
1063 end if;
1064 end SCO_Pragma_Disabled;
1066 --------------------
1067 -- SCO_Record_Raw --
1068 --------------------
1070 procedure SCO_Record_Raw (U : Unit_Number_Type) is
1071 procedure Traverse_Aux_Decls (N : Node_Id);
1072 -- Traverse the Aux_Decls_Node of compilation unit N
1074 ------------------------
1075 -- Traverse_Aux_Decls --
1076 ------------------------
1078 procedure Traverse_Aux_Decls (N : Node_Id) is
1079 ADN : constant Node_Id := Aux_Decls_Node (N);
1081 begin
1082 Traverse_Declarations_Or_Statements (Config_Pragmas (ADN));
1083 Traverse_Declarations_Or_Statements (Pragmas_After (ADN));
1085 -- Declarations and Actions do not correspond to source constructs,
1086 -- they contain only nodes from expansion, so at this point they
1087 -- should still be empty:
1089 pragma Assert (No (Declarations (ADN)));
1090 pragma Assert (No (Actions (ADN)));
1091 end Traverse_Aux_Decls;
1093 -- Local variables
1095 From : Nat;
1096 Lu : Node_Id;
1098 -- Start of processing for SCO_Record_Raw
1100 begin
1101 -- It is legitimate to run this pass multiple times (once per unit) so
1102 -- run it even if it was already run before.
1104 pragma Assert (SCO_Generation_State in None .. Raw);
1105 SCO_Generation_State := Raw;
1107 -- Ignore call if not generating code and generating SCO's
1109 if not (Generate_SCO and then Operating_Mode = Generate_Code) then
1110 return;
1111 end if;
1113 -- Ignore call if this unit already recorded
1115 for J in 1 .. SCO_Unit_Number_Table.Last loop
1116 if U = SCO_Unit_Number_Table.Table (J) then
1117 return;
1118 end if;
1119 end loop;
1121 -- Otherwise record starting entry
1123 From := SCO_Raw_Table.Last + 1;
1125 -- Get Unit (checking case of subunit)
1127 Lu := Unit (Cunit (U));
1129 if Nkind (Lu) = N_Subunit then
1130 Lu := Proper_Body (Lu);
1131 end if;
1133 -- Traverse the unit
1135 Traverse_Aux_Decls (Cunit (U));
1137 case Nkind (Lu) is
1138 when N_Generic_Instantiation
1139 | N_Generic_Package_Declaration
1140 | N_Package_Body
1141 | N_Package_Declaration
1142 | N_Protected_Body
1143 | N_Subprogram_Body
1144 | N_Subprogram_Declaration
1145 | N_Task_Body
1147 Traverse_Declarations_Or_Statements (L => No_List, P => Lu);
1149 -- All other cases of compilation units (e.g. renamings), generate no
1150 -- SCO information.
1152 when others =>
1153 null;
1154 end case;
1156 -- Make entry for new unit in unit tables, we will fill in the file
1157 -- name and dependency numbers later.
1159 SCO_Unit_Table.Append (
1160 (Dep_Num => 0,
1161 File_Name => null,
1162 File_Index => Get_Source_File_Index (Sloc (Lu)),
1163 From => From,
1164 To => SCO_Raw_Table.Last));
1166 SCO_Unit_Number_Table.Append (U);
1167 end SCO_Record_Raw;
1169 -----------------------
1170 -- Set_SCO_Condition --
1171 -----------------------
1173 procedure Set_SCO_Condition (Cond : Node_Id; Val : Boolean) is
1175 -- SCO annotations are not processed after the filtering pass
1177 pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
1179 Constant_Condition_Code : constant array (Boolean) of Character :=
1180 (False => 'f', True => 't');
1182 Orig : constant Node_Id := Original_Node (Cond);
1183 Dummy : Source_Ptr;
1184 Index : Nat;
1185 Start : Source_Ptr;
1187 begin
1188 Sloc_Range (Orig, Start, Dummy);
1189 Index := SCO_Raw_Hash_Table.Get (Start);
1191 -- Index can be zero for boolean expressions that do not have SCOs
1192 -- (simple decisions outside of a control flow structure), or in case
1193 -- of a previous error.
1195 if Index = 0 then
1196 return;
1198 else
1199 pragma Assert (SCO_Raw_Table.Table (Index).C1 = ' ');
1200 SCO_Raw_Table.Table (Index).C2 := Constant_Condition_Code (Val);
1201 end if;
1202 end Set_SCO_Condition;
1204 ------------------------------
1205 -- Set_SCO_Logical_Operator --
1206 ------------------------------
1208 procedure Set_SCO_Logical_Operator (Op : Node_Id) is
1210 -- SCO annotations are not processed after the filtering pass
1212 pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
1214 Orig : constant Node_Id := Original_Node (Op);
1215 Orig_Sloc : constant Source_Ptr := Sloc (Orig);
1216 Index : constant Nat := SCO_Raw_Hash_Table.Get (Orig_Sloc);
1218 begin
1219 -- All (putative) logical operators are supposed to have their own entry
1220 -- in the SCOs table. However, the semantic analysis may invoke this
1221 -- subprogram with nodes that are out of the SCO generation scope.
1223 if Index /= 0 then
1224 SCO_Raw_Table.Table (Index).C2 := ' ';
1225 end if;
1226 end Set_SCO_Logical_Operator;
1228 ----------------------------
1229 -- Set_SCO_Pragma_Enabled --
1230 ----------------------------
1232 procedure Set_SCO_Pragma_Enabled (Loc : Source_Ptr) is
1234 -- SCO annotations are not processed after the filtering pass
1236 pragma Assert (not Generate_SCO or else SCO_Generation_State = Raw);
1238 Index : Nat;
1240 begin
1241 -- Nothing to do if not generating SCO, or if we're not processing the
1242 -- original source occurrence of the pragma.
1244 if not (Generate_SCO
1245 and then In_Extended_Main_Source_Unit (Loc)
1246 and then not (In_Instance or In_Inlined_Body))
1247 then
1248 return;
1249 end if;
1251 -- Note: the reason we use the Sloc value as the key is that in the
1252 -- generic case, the call to this procedure is made on a copy of the
1253 -- original node, so we can't use the Node_Id value.
1255 Index := SCO_Raw_Hash_Table.Get (Loc);
1257 -- A zero index here indicates that semantic analysis found an
1258 -- activated pragma at Loc which does not have a corresponding pragma
1259 -- or aspect at the syntax level. This may occur in legitimate cases
1260 -- because of expanded code (such are Pre/Post conditions generated for
1261 -- formal parameter validity checks), or as a consequence of a previous
1262 -- error.
1264 if Index = 0 then
1265 return;
1267 else
1268 declare
1269 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
1271 begin
1272 -- Note: may be called multiple times for the same sloc, so
1273 -- account for the fact that the entry may already have been
1274 -- marked enabled.
1276 case T.C1 is
1277 -- Aspect (decision SCO)
1279 when 'a' =>
1280 T.C1 := 'A';
1282 when 'A' =>
1283 null;
1285 -- Pragma (statement SCO)
1287 when 'S' =>
1288 pragma Assert (T.C2 = 'p' or else T.C2 = 'P');
1289 T.C2 := 'P';
1291 when others =>
1292 raise Program_Error;
1293 end case;
1294 end;
1295 end if;
1296 end Set_SCO_Pragma_Enabled;
1298 -------------------------
1299 -- Set_Raw_Table_Entry --
1300 -------------------------
1302 procedure Set_Raw_Table_Entry
1303 (C1 : Character;
1304 C2 : Character;
1305 From : Source_Ptr;
1306 To : Source_Ptr;
1307 Last : Boolean;
1308 Pragma_Sloc : Source_Ptr := No_Location;
1309 Pragma_Aspect_Name : Name_Id := No_Name)
1311 pragma Assert (SCO_Generation_State = Raw);
1312 begin
1313 SCO_Raw_Table.Append
1314 ((C1 => C1,
1315 C2 => C2,
1316 From => To_Source_Location (From),
1317 To => To_Source_Location (To),
1318 Last => Last,
1319 Pragma_Sloc => Pragma_Sloc,
1320 Pragma_Aspect_Name => Pragma_Aspect_Name));
1321 end Set_Raw_Table_Entry;
1323 ------------------------
1324 -- To_Source_Location --
1325 ------------------------
1327 function To_Source_Location (S : Source_Ptr) return Source_Location is
1328 begin
1329 if S = No_Location then
1330 return No_Source_Location;
1331 else
1332 return
1333 (Line => Get_Logical_Line_Number (S),
1334 Col => Get_Column_Number (S));
1335 end if;
1336 end To_Source_Location;
1338 -----------------------------------------
1339 -- Traverse_Declarations_Or_Statements --
1340 -----------------------------------------
1342 -- Tables used by Traverse_Declarations_Or_Statements for temporarily
1343 -- holding statement and decision entries. These are declared globally
1344 -- since they are shared by recursive calls to this procedure.
1346 type SC_Entry is record
1347 N : Node_Id;
1348 From : Source_Ptr;
1349 To : Source_Ptr;
1350 Typ : Character;
1351 end record;
1352 -- Used to store a single entry in the following table, From:To represents
1353 -- the range of entries in the CS line entry, and typ is the type, with
1354 -- space meaning that no type letter will accompany the entry.
1356 package SC is new Table.Table
1357 (Table_Component_Type => SC_Entry,
1358 Table_Index_Type => Nat,
1359 Table_Low_Bound => 1,
1360 Table_Initial => 1000,
1361 Table_Increment => 200,
1362 Table_Name => "SCO_SC");
1363 -- Used to store statement components for a CS entry to be output as a
1364 -- result of the call to this procedure. SC.Last is the last entry stored,
1365 -- so the current statement sequence is represented by SC_Array (SC_First
1366 -- .. SC.Last), where SC_First is saved on entry to each recursive call to
1367 -- the routine.
1369 -- Extend_Statement_Sequence adds an entry to this array, and then
1370 -- Set_Statement_Entry clears the entries starting with SC_First, copying
1371 -- these entries to the main SCO output table. The reason that we do the
1372 -- temporary caching of results in this array is that we want the SCO table
1373 -- entries for a given CS line to be contiguous, and the processing may
1374 -- output intermediate entries such as decision entries.
1376 type SD_Entry is record
1377 Nod : Node_Id;
1378 Lst : List_Id;
1379 Typ : Character;
1380 Plo : Source_Ptr;
1381 end record;
1382 -- Used to store a single entry in the following table. Nod is the node to
1383 -- be searched for decisions for the case of Process_Decisions_Defer with a
1384 -- node argument (with Lst set to No_List. Lst is the list to be searched
1385 -- for decisions for the case of Process_Decisions_Defer with a List
1386 -- argument (in which case Nod is set to Empty). Plo is the sloc of the
1387 -- enclosing pragma, if any.
1389 package SD is new Table.Table
1390 (Table_Component_Type => SD_Entry,
1391 Table_Index_Type => Nat,
1392 Table_Low_Bound => 1,
1393 Table_Initial => 1000,
1394 Table_Increment => 200,
1395 Table_Name => "SCO_SD");
1396 -- Used to store possible decision information. Instead of calling the
1397 -- Process_Decisions procedures directly, we call Process_Decisions_Defer,
1398 -- which simply stores the arguments in this table. Then when we clear
1399 -- out a statement sequence using Set_Statement_Entry, after generating
1400 -- the CS lines for the statements, the entries in this table result in
1401 -- calls to Process_Decision. The reason for doing things this way is to
1402 -- ensure that decisions are output after the CS line for the statements
1403 -- in which the decisions occur.
1405 procedure Traverse_Declarations_Or_Statements
1406 (L : List_Id;
1407 D : Dominant_Info := No_Dominant;
1408 P : Node_Id := Empty)
1410 Discard_Dom : Dominant_Info;
1411 pragma Warnings (Off, Discard_Dom);
1412 begin
1413 Discard_Dom := Traverse_Declarations_Or_Statements (L, D, P);
1414 end Traverse_Declarations_Or_Statements;
1416 function Traverse_Declarations_Or_Statements
1417 (L : List_Id;
1418 D : Dominant_Info := No_Dominant;
1419 P : Node_Id := Empty) return Dominant_Info
1421 Current_Dominant : Dominant_Info := D;
1422 -- Dominance information for the current basic block
1424 Current_Test : Node_Id;
1425 -- Conditional node (N_If_Statement or N_Elsiif being processed
1427 N : Node_Id;
1429 SC_First : constant Nat := SC.Last + 1;
1430 SD_First : constant Nat := SD.Last + 1;
1431 -- Record first entries used in SC/SD at this recursive level
1433 procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character);
1434 -- Extend the current statement sequence to encompass the node N. Typ is
1435 -- the letter that identifies the type of statement/declaration that is
1436 -- being added to the sequence.
1438 procedure Process_Decisions_Defer (N : Node_Id; T : Character);
1439 pragma Inline (Process_Decisions_Defer);
1440 -- This routine is logically the same as Process_Decisions, except that
1441 -- the arguments are saved in the SD table for later processing when
1442 -- Set_Statement_Entry is called, which goes through the saved entries
1443 -- making the corresponding calls to Process_Decision. Note: the
1444 -- enclosing statement must have already been added to the current
1445 -- statement sequence, so that nested decisions are properly
1446 -- identified as such.
1448 procedure Process_Decisions_Defer (L : List_Id; T : Character);
1449 pragma Inline (Process_Decisions_Defer);
1450 -- Same case for list arguments, deferred call to Process_Decisions
1452 procedure Set_Statement_Entry;
1453 -- Output CS entries for all statements saved in table SC, and end the
1454 -- current CS sequence. Then output entries for all decisions nested in
1455 -- these statements, which have been deferred so far.
1457 procedure Traverse_One (N : Node_Id);
1458 -- Traverse one declaration or statement
1460 procedure Traverse_Aspects (N : Node_Id);
1461 -- Helper for Traverse_One: traverse N's aspect specifications
1463 procedure Traverse_Degenerate_Subprogram (N : Node_Id);
1464 -- Common code to handle null procedures and expression functions. Emit
1465 -- a SCO of the given Kind and N outside of the dominance flow.
1467 -------------------------------
1468 -- Extend_Statement_Sequence --
1469 -------------------------------
1471 procedure Extend_Statement_Sequence (N : Node_Id; Typ : Character) is
1472 Dummy : Source_Ptr;
1473 F : Source_Ptr;
1474 T : Source_Ptr;
1475 To_Node : Node_Id := Empty;
1477 begin
1478 Sloc_Range (N, F, T);
1480 case Nkind (N) is
1481 when N_Accept_Statement =>
1482 if Present (Parameter_Specifications (N)) then
1483 To_Node := Last (Parameter_Specifications (N));
1484 elsif Present (Entry_Index (N)) then
1485 To_Node := Entry_Index (N);
1486 end if;
1488 when N_Case_Statement =>
1489 To_Node := Expression (N);
1491 when N_Elsif_Part
1492 | N_If_Statement
1494 To_Node := Condition (N);
1496 when N_Extended_Return_Statement =>
1497 To_Node := Last (Return_Object_Declarations (N));
1499 when N_Loop_Statement =>
1500 To_Node := Iteration_Scheme (N);
1502 when N_Asynchronous_Select
1503 | N_Conditional_Entry_Call
1504 | N_Selective_Accept
1505 | N_Single_Protected_Declaration
1506 | N_Single_Task_Declaration
1507 | N_Timed_Entry_Call
1509 T := F;
1511 when N_Protected_Type_Declaration
1512 | N_Task_Type_Declaration
1514 if Has_Aspects (N) then
1515 To_Node := Last (Aspect_Specifications (N));
1517 elsif Present (Discriminant_Specifications (N)) then
1518 To_Node := Last (Discriminant_Specifications (N));
1520 else
1521 To_Node := Defining_Identifier (N);
1522 end if;
1524 when N_Subexpr =>
1525 To_Node := N;
1527 when others =>
1528 null;
1529 end case;
1531 if Present (To_Node) then
1532 Sloc_Range (To_Node, Dummy, T);
1533 end if;
1535 SC.Append ((N, F, T, Typ));
1536 end Extend_Statement_Sequence;
1538 -----------------------------
1539 -- Process_Decisions_Defer --
1540 -----------------------------
1542 procedure Process_Decisions_Defer (N : Node_Id; T : Character) is
1543 begin
1544 SD.Append ((N, No_List, T, Current_Pragma_Sloc));
1545 end Process_Decisions_Defer;
1547 procedure Process_Decisions_Defer (L : List_Id; T : Character) is
1548 begin
1549 SD.Append ((Empty, L, T, Current_Pragma_Sloc));
1550 end Process_Decisions_Defer;
1552 -------------------------
1553 -- Set_Statement_Entry --
1554 -------------------------
1556 procedure Set_Statement_Entry is
1557 SC_Last : constant Int := SC.Last;
1558 SD_Last : constant Int := SD.Last;
1560 begin
1561 -- Output statement entries from saved entries in SC table
1563 for J in SC_First .. SC_Last loop
1564 if J = SC_First then
1566 if Current_Dominant /= No_Dominant then
1567 declare
1568 From : Source_Ptr;
1569 To : Source_Ptr;
1571 begin
1572 Sloc_Range (Current_Dominant.N, From, To);
1574 if Current_Dominant.K /= 'E' then
1575 To := No_Location;
1576 end if;
1578 Set_Raw_Table_Entry
1579 (C1 => '>',
1580 C2 => Current_Dominant.K,
1581 From => From,
1582 To => To,
1583 Last => False,
1584 Pragma_Sloc => No_Location,
1585 Pragma_Aspect_Name => No_Name);
1586 end;
1587 end if;
1588 end if;
1590 declare
1591 SCE : SC_Entry renames SC.Table (J);
1592 Pragma_Sloc : Source_Ptr := No_Location;
1593 Pragma_Aspect_Name : Name_Id := No_Name;
1595 begin
1596 -- For the case of a statement SCO for a pragma controlled by
1597 -- Set_SCO_Pragma_Enabled, set Pragma_Sloc so that the SCO (and
1598 -- those of any nested decision) is emitted only if the pragma
1599 -- is enabled.
1601 if SCE.Typ = 'p' then
1602 Pragma_Sloc := SCE.From;
1603 SCO_Raw_Hash_Table.Set
1604 (Pragma_Sloc, SCO_Raw_Table.Last + 1);
1605 Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N);
1606 pragma Assert (Pragma_Aspect_Name /= No_Name);
1608 elsif SCE.Typ = 'P' then
1609 Pragma_Aspect_Name := Pragma_Name_Unmapped (SCE.N);
1610 pragma Assert (Pragma_Aspect_Name /= No_Name);
1611 end if;
1613 Set_Raw_Table_Entry
1614 (C1 => 'S',
1615 C2 => SCE.Typ,
1616 From => SCE.From,
1617 To => SCE.To,
1618 Last => (J = SC_Last),
1619 Pragma_Sloc => Pragma_Sloc,
1620 Pragma_Aspect_Name => Pragma_Aspect_Name);
1621 end;
1622 end loop;
1624 -- Last statement of basic block, if present, becomes new current
1625 -- dominant.
1627 if SC_Last >= SC_First then
1628 Current_Dominant := ('S', SC.Table (SC_Last).N);
1629 end if;
1631 -- Clear out used section of SC table
1633 SC.Set_Last (SC_First - 1);
1635 -- Output any embedded decisions
1637 for J in SD_First .. SD_Last loop
1638 declare
1639 SDE : SD_Entry renames SD.Table (J);
1641 begin
1642 if Present (SDE.Nod) then
1643 Process_Decisions (SDE.Nod, SDE.Typ, SDE.Plo);
1644 else
1645 Process_Decisions (SDE.Lst, SDE.Typ, SDE.Plo);
1646 end if;
1647 end;
1648 end loop;
1650 -- Clear out used section of SD table
1652 SD.Set_Last (SD_First - 1);
1653 end Set_Statement_Entry;
1655 ----------------------
1656 -- Traverse_Aspects --
1657 ----------------------
1659 procedure Traverse_Aspects (N : Node_Id) is
1660 AE : Node_Id;
1661 AN : Node_Id;
1662 C1 : Character;
1664 begin
1665 AN := First (Aspect_Specifications (N));
1666 while Present (AN) loop
1667 AE := Expression (AN);
1669 -- SCOs are generated before semantic analysis/expansion:
1670 -- PPCs are not split yet.
1672 pragma Assert (not Split_PPC (AN));
1674 C1 := ASCII.NUL;
1676 case Get_Aspect_Id (AN) is
1678 -- Aspects rewritten into pragmas controlled by a Check_Policy:
1679 -- Current_Pragma_Sloc must be set to the sloc of the aspect
1680 -- specification. The corresponding pragma will have the same
1681 -- sloc. Note that Invariant, Pre, and Post will be enabled if
1682 -- the policy is Check; on the other hand, predicate aspects
1683 -- will be enabled for Check and Ignore (when Add_Predicate
1684 -- is called) because the actual checks occur in client units.
1685 -- When the assertion policy for Predicate is Disable, the
1686 -- SCO remains disabled, because Add_Predicate is never called.
1688 -- Pre/post can have checks in client units too because of
1689 -- inheritance, so should they receive the same treatment???
1691 when Aspect_Dynamic_Predicate
1692 | Aspect_Invariant
1693 | Aspect_Post
1694 | Aspect_Postcondition
1695 | Aspect_Pre
1696 | Aspect_Precondition
1697 | Aspect_Predicate
1698 | Aspect_Static_Predicate
1699 | Aspect_Type_Invariant
1701 C1 := 'a';
1703 -- Other aspects: just process any decision nested in the
1704 -- aspect expression.
1706 when others =>
1707 if Has_Decision (AE) then
1708 C1 := 'X';
1709 end if;
1710 end case;
1712 if C1 /= ASCII.NUL then
1713 pragma Assert (Current_Pragma_Sloc = No_Location);
1715 if C1 = 'a' or else C1 = 'A' then
1716 Current_Pragma_Sloc := Sloc (AN);
1717 end if;
1719 Process_Decisions_Defer (AE, C1);
1721 Current_Pragma_Sloc := No_Location;
1722 end if;
1724 Next (AN);
1725 end loop;
1726 end Traverse_Aspects;
1728 ------------------------------------
1729 -- Traverse_Degenerate_Subprogram --
1730 ------------------------------------
1732 procedure Traverse_Degenerate_Subprogram (N : Node_Id) is
1733 begin
1734 -- Complete current sequence of statements
1736 Set_Statement_Entry;
1738 declare
1739 Saved_Dominant : constant Dominant_Info := Current_Dominant;
1740 -- Save last statement in current sequence as dominant
1742 begin
1743 -- Output statement SCO for degenerate subprogram body (null
1744 -- statement or freestanding expression) outside of the dominance
1745 -- chain.
1747 Current_Dominant := No_Dominant;
1748 Extend_Statement_Sequence (N, Typ => ' ');
1750 -- For the case of an expression-function, collect decisions
1751 -- embedded in the expression now.
1753 if Nkind (N) in N_Subexpr then
1754 Process_Decisions_Defer (N, 'X');
1755 end if;
1757 Set_Statement_Entry;
1759 -- Restore current dominant information designating last statement
1760 -- in previous sequence (i.e. make the dominance chain skip over
1761 -- the degenerate body).
1763 Current_Dominant := Saved_Dominant;
1764 end;
1765 end Traverse_Degenerate_Subprogram;
1767 ------------------
1768 -- Traverse_One --
1769 ------------------
1771 procedure Traverse_One (N : Node_Id) is
1772 begin
1773 -- Initialize or extend current statement sequence. Note that for
1774 -- special cases such as IF and Case statements we will modify
1775 -- the range to exclude internal statements that should not be
1776 -- counted as part of the current statement sequence.
1778 case Nkind (N) is
1780 -- Package declaration
1782 when N_Package_Declaration =>
1783 Set_Statement_Entry;
1784 Traverse_Package_Declaration (N, Current_Dominant);
1786 -- Generic package declaration
1788 when N_Generic_Package_Declaration =>
1789 Set_Statement_Entry;
1790 Traverse_Generic_Package_Declaration (N);
1792 -- Package body
1794 when N_Package_Body =>
1795 Set_Statement_Entry;
1796 Traverse_Package_Body (N);
1798 -- Subprogram declaration or subprogram body stub
1800 when N_Expression_Function
1801 | N_Subprogram_Body_Stub
1802 | N_Subprogram_Declaration
1804 declare
1805 Spec : constant Node_Id := Specification (N);
1806 begin
1807 Process_Decisions_Defer
1808 (Parameter_Specifications (Spec), 'X');
1810 -- Case of a null procedure: generate SCO for fictitious
1811 -- NULL statement located at the NULL keyword in the
1812 -- procedure specification.
1814 if Nkind (N) = N_Subprogram_Declaration
1815 and then Nkind (Spec) = N_Procedure_Specification
1816 and then Null_Present (Spec)
1817 then
1818 Traverse_Degenerate_Subprogram (Null_Statement (Spec));
1820 -- Case of an expression function: generate a statement SCO
1821 -- for the expression (and then decision SCOs for any nested
1822 -- decisions).
1824 elsif Nkind (N) = N_Expression_Function then
1825 Traverse_Degenerate_Subprogram (Expression (N));
1826 end if;
1827 end;
1829 -- Entry declaration
1831 when N_Entry_Declaration =>
1832 Process_Decisions_Defer (Parameter_Specifications (N), 'X');
1834 -- Generic subprogram declaration
1836 when N_Generic_Subprogram_Declaration =>
1837 Process_Decisions_Defer
1838 (Generic_Formal_Declarations (N), 'X');
1839 Process_Decisions_Defer
1840 (Parameter_Specifications (Specification (N)), 'X');
1842 -- Task or subprogram body
1844 when N_Subprogram_Body
1845 | N_Task_Body
1847 Set_Statement_Entry;
1848 Traverse_Subprogram_Or_Task_Body (N);
1850 -- Entry body
1852 when N_Entry_Body =>
1853 declare
1854 Cond : constant Node_Id :=
1855 Condition (Entry_Body_Formal_Part (N));
1857 Inner_Dominant : Dominant_Info := No_Dominant;
1859 begin
1860 Set_Statement_Entry;
1862 if Present (Cond) then
1863 Process_Decisions_Defer (Cond, 'G');
1865 -- For an entry body with a barrier, the entry body
1866 -- is dominanted by a True evaluation of the barrier.
1868 Inner_Dominant := ('T', N);
1869 end if;
1871 Traverse_Subprogram_Or_Task_Body (N, Inner_Dominant);
1872 end;
1874 -- Protected body
1876 when N_Protected_Body =>
1877 Set_Statement_Entry;
1878 Traverse_Declarations_Or_Statements (Declarations (N));
1880 -- Exit statement, which is an exit statement in the SCO sense,
1881 -- so it is included in the current statement sequence, but
1882 -- then it terminates this sequence. We also have to process
1883 -- any decisions in the exit statement expression.
1885 when N_Exit_Statement =>
1886 Extend_Statement_Sequence (N, 'E');
1887 Process_Decisions_Defer (Condition (N), 'E');
1888 Set_Statement_Entry;
1890 -- If condition is present, then following statement is
1891 -- only executed if the condition evaluates to False.
1893 if Present (Condition (N)) then
1894 Current_Dominant := ('F', N);
1895 else
1896 Current_Dominant := No_Dominant;
1897 end if;
1899 -- Label, which breaks the current statement sequence, but the
1900 -- label itself is not included in the next statement sequence,
1901 -- since it generates no code.
1903 when N_Label =>
1904 Set_Statement_Entry;
1905 Current_Dominant := No_Dominant;
1907 -- Block statement, which breaks the current statement sequence
1909 when N_Block_Statement =>
1910 Set_Statement_Entry;
1912 -- The first statement in the handled sequence of statements
1913 -- is dominated by the elaboration of the last declaration.
1915 Current_Dominant := Traverse_Declarations_Or_Statements
1916 (L => Declarations (N),
1917 D => Current_Dominant);
1919 Traverse_Handled_Statement_Sequence
1920 (N => Handled_Statement_Sequence (N),
1921 D => Current_Dominant);
1923 -- If statement, which breaks the current statement sequence,
1924 -- but we include the condition in the current sequence.
1926 when N_If_Statement =>
1927 Current_Test := N;
1928 Extend_Statement_Sequence (N, 'I');
1929 Process_Decisions_Defer (Condition (N), 'I');
1930 Set_Statement_Entry;
1932 -- Now we traverse the statements in the THEN part
1934 Traverse_Declarations_Or_Statements
1935 (L => Then_Statements (N),
1936 D => ('T', N));
1938 -- Loop through ELSIF parts if present
1940 if Present (Elsif_Parts (N)) then
1941 declare
1942 Saved_Dominant : constant Dominant_Info :=
1943 Current_Dominant;
1945 Elif : Node_Id := First (Elsif_Parts (N));
1947 begin
1948 while Present (Elif) loop
1950 -- An Elsif is executed only if the previous test
1951 -- got a FALSE outcome.
1953 Current_Dominant := ('F', Current_Test);
1955 -- Now update current test information
1957 Current_Test := Elif;
1959 -- We generate a statement sequence for the
1960 -- construct "ELSIF condition", so that we have
1961 -- a statement for the resulting decisions.
1963 Extend_Statement_Sequence (Elif, 'I');
1964 Process_Decisions_Defer (Condition (Elif), 'I');
1965 Set_Statement_Entry;
1967 -- An ELSIF part is never guaranteed to have
1968 -- been executed, following statements are only
1969 -- dominated by the initial IF statement.
1971 Current_Dominant := Saved_Dominant;
1973 -- Traverse the statements in the ELSIF
1975 Traverse_Declarations_Or_Statements
1976 (L => Then_Statements (Elif),
1977 D => ('T', Elif));
1978 Next (Elif);
1979 end loop;
1980 end;
1981 end if;
1983 -- Finally traverse the ELSE statements if present
1985 Traverse_Declarations_Or_Statements
1986 (L => Else_Statements (N),
1987 D => ('F', Current_Test));
1989 -- CASE statement, which breaks the current statement sequence,
1990 -- but we include the expression in the current sequence.
1992 when N_Case_Statement =>
1993 Extend_Statement_Sequence (N, 'C');
1994 Process_Decisions_Defer (Expression (N), 'X');
1995 Set_Statement_Entry;
1997 -- Process case branches, all of which are dominated by the
1998 -- CASE statement.
2000 declare
2001 Alt : Node_Id;
2002 begin
2003 Alt := First_Non_Pragma (Alternatives (N));
2004 while Present (Alt) loop
2005 Traverse_Declarations_Or_Statements
2006 (L => Statements (Alt),
2007 D => Current_Dominant);
2008 Next (Alt);
2009 end loop;
2010 end;
2012 -- ACCEPT statement
2014 when N_Accept_Statement =>
2015 Extend_Statement_Sequence (N, 'A');
2016 Set_Statement_Entry;
2018 -- Process sequence of statements, dominant is the ACCEPT
2019 -- statement.
2021 Traverse_Handled_Statement_Sequence
2022 (N => Handled_Statement_Sequence (N),
2023 D => Current_Dominant);
2025 -- SELECT
2027 when N_Selective_Accept =>
2028 Extend_Statement_Sequence (N, 'S');
2029 Set_Statement_Entry;
2031 -- Process alternatives
2033 declare
2034 Alt : Node_Id;
2035 Guard : Node_Id;
2036 S_Dom : Dominant_Info;
2038 begin
2039 Alt := First (Select_Alternatives (N));
2040 while Present (Alt) loop
2041 S_Dom := Current_Dominant;
2042 Guard := Condition (Alt);
2044 if Present (Guard) then
2045 Process_Decisions
2046 (Guard,
2047 'G',
2048 Pragma_Sloc => No_Location);
2049 Current_Dominant := ('T', Guard);
2050 end if;
2052 Traverse_One (Alt);
2054 Current_Dominant := S_Dom;
2055 Next (Alt);
2056 end loop;
2057 end;
2059 Traverse_Declarations_Or_Statements
2060 (L => Else_Statements (N),
2061 D => Current_Dominant);
2063 when N_Conditional_Entry_Call
2064 | N_Timed_Entry_Call
2066 Extend_Statement_Sequence (N, 'S');
2067 Set_Statement_Entry;
2069 -- Process alternatives
2071 Traverse_One (Entry_Call_Alternative (N));
2073 if Nkind (N) = N_Timed_Entry_Call then
2074 Traverse_One (Delay_Alternative (N));
2075 else
2076 Traverse_Declarations_Or_Statements
2077 (L => Else_Statements (N),
2078 D => Current_Dominant);
2079 end if;
2081 when N_Asynchronous_Select =>
2082 Extend_Statement_Sequence (N, 'S');
2083 Set_Statement_Entry;
2085 Traverse_One (Triggering_Alternative (N));
2086 Traverse_Declarations_Or_Statements
2087 (L => Statements (Abortable_Part (N)),
2088 D => Current_Dominant);
2090 when N_Accept_Alternative =>
2091 Traverse_Declarations_Or_Statements
2092 (L => Statements (N),
2093 D => Current_Dominant,
2094 P => Accept_Statement (N));
2096 when N_Entry_Call_Alternative =>
2097 Traverse_Declarations_Or_Statements
2098 (L => Statements (N),
2099 D => Current_Dominant,
2100 P => Entry_Call_Statement (N));
2102 when N_Delay_Alternative =>
2103 Traverse_Declarations_Or_Statements
2104 (L => Statements (N),
2105 D => Current_Dominant,
2106 P => Delay_Statement (N));
2108 when N_Triggering_Alternative =>
2109 Traverse_Declarations_Or_Statements
2110 (L => Statements (N),
2111 D => Current_Dominant,
2112 P => Triggering_Statement (N));
2114 when N_Terminate_Alternative =>
2116 -- It is dubious to emit a statement SCO for a TERMINATE
2117 -- alternative, since no code is actually executed if the
2118 -- alternative is selected -- the tasking runtime call just
2119 -- never returns???
2121 Extend_Statement_Sequence (N, ' ');
2122 Set_Statement_Entry;
2124 -- Unconditional exit points, which are included in the current
2125 -- statement sequence, but then terminate it
2127 when N_Goto_Statement
2128 | N_Raise_Statement
2129 | N_Requeue_Statement
2131 Extend_Statement_Sequence (N, ' ');
2132 Set_Statement_Entry;
2133 Current_Dominant := No_Dominant;
2135 -- Simple return statement. which is an exit point, but we
2136 -- have to process the return expression for decisions.
2138 when N_Simple_Return_Statement =>
2139 Extend_Statement_Sequence (N, ' ');
2140 Process_Decisions_Defer (Expression (N), 'X');
2141 Set_Statement_Entry;
2142 Current_Dominant := No_Dominant;
2144 -- Extended return statement
2146 when N_Extended_Return_Statement =>
2147 Extend_Statement_Sequence (N, 'R');
2148 Process_Decisions_Defer (Return_Object_Declarations (N), 'X');
2149 Set_Statement_Entry;
2151 Traverse_Handled_Statement_Sequence
2152 (N => Handled_Statement_Sequence (N),
2153 D => Current_Dominant);
2155 Current_Dominant := No_Dominant;
2157 -- Loop ends the current statement sequence, but we include
2158 -- the iteration scheme if present in the current sequence.
2159 -- But the body of the loop starts a new sequence, since it
2160 -- may not be executed as part of the current sequence.
2162 when N_Loop_Statement =>
2163 declare
2164 ISC : constant Node_Id := Iteration_Scheme (N);
2165 Inner_Dominant : Dominant_Info := No_Dominant;
2167 begin
2168 if Present (ISC) then
2170 -- If iteration scheme present, extend the current
2171 -- statement sequence to include the iteration scheme
2172 -- and process any decisions it contains.
2174 -- While loop
2176 if Present (Condition (ISC)) then
2177 Extend_Statement_Sequence (N, 'W');
2178 Process_Decisions_Defer (Condition (ISC), 'W');
2180 -- Set more specific dominant for inner statements
2181 -- (the control sloc for the decision is that of
2182 -- the WHILE token).
2184 Inner_Dominant := ('T', ISC);
2186 -- For loop
2188 else
2189 Extend_Statement_Sequence (N, 'F');
2190 Process_Decisions_Defer
2191 (Loop_Parameter_Specification (ISC), 'X');
2192 end if;
2193 end if;
2195 Set_Statement_Entry;
2197 if Inner_Dominant = No_Dominant then
2198 Inner_Dominant := Current_Dominant;
2199 end if;
2201 Traverse_Declarations_Or_Statements
2202 (L => Statements (N),
2203 D => Inner_Dominant);
2204 end;
2206 -- Pragma
2208 when N_Pragma =>
2210 -- Record sloc of pragma (pragmas don't nest)
2212 pragma Assert (Current_Pragma_Sloc = No_Location);
2213 Current_Pragma_Sloc := Sloc (N);
2215 -- Processing depends on the kind of pragma
2217 declare
2218 Nam : constant Name_Id := Pragma_Name_Unmapped (N);
2219 Arg : Node_Id :=
2220 First (Pragma_Argument_Associations (N));
2221 Typ : Character;
2223 begin
2224 case Nam is
2225 when Name_Assert
2226 | Name_Assert_And_Cut
2227 | Name_Assume
2228 | Name_Check
2229 | Name_Loop_Invariant
2230 | Name_Postcondition
2231 | Name_Precondition
2233 -- For Assert/Check/Precondition/Postcondition, we
2234 -- must generate a P entry for the decision. Note
2235 -- that this is done unconditionally at this stage.
2236 -- Output for disabled pragmas is suppressed later
2237 -- on when we output the decision line in Put_SCOs,
2238 -- depending on setting by Set_SCO_Pragma_Enabled.
2240 if Nam = Name_Check then
2241 Next (Arg);
2242 end if;
2244 Process_Decisions_Defer (Expression (Arg), 'P');
2245 Typ := 'p';
2247 -- Pre/postconditions can be inherited so SCO should
2248 -- never be deactivated???
2250 when Name_Debug =>
2251 if Present (Arg) and then Present (Next (Arg)) then
2253 -- Case of a dyadic pragma Debug: first argument
2254 -- is a P decision, any nested decision in the
2255 -- second argument is an X decision.
2257 Process_Decisions_Defer (Expression (Arg), 'P');
2258 Next (Arg);
2259 end if;
2261 Process_Decisions_Defer (Expression (Arg), 'X');
2262 Typ := 'p';
2264 -- For all other pragmas, we generate decision entries
2265 -- for any embedded expressions, and the pragma is
2266 -- never disabled.
2268 -- Should generate P decisions (not X) for assertion
2269 -- related pragmas: [Type_]Invariant,
2270 -- [{Static,Dynamic}_]Predicate???
2272 when others =>
2273 Process_Decisions_Defer (N, 'X');
2274 Typ := 'P';
2275 end case;
2277 -- Add statement SCO
2279 Extend_Statement_Sequence (N, Typ);
2281 Current_Pragma_Sloc := No_Location;
2282 end;
2284 -- Object declaration. Ignored if Prev_Ids is set, since the
2285 -- parser generates multiple instances of the whole declaration
2286 -- if there is more than one identifier declared, and we only
2287 -- want one entry in the SCOs, so we take the first, for which
2288 -- Prev_Ids is False.
2290 when N_Number_Declaration
2291 | N_Object_Declaration
2293 if not Prev_Ids (N) then
2294 Extend_Statement_Sequence (N, 'o');
2296 if Has_Decision (N) then
2297 Process_Decisions_Defer (N, 'X');
2298 end if;
2299 end if;
2301 -- All other cases, which extend the current statement sequence
2302 -- but do not terminate it, even if they have nested decisions.
2304 when N_Protected_Type_Declaration
2305 | N_Task_Type_Declaration
2307 Extend_Statement_Sequence (N, 't');
2308 Process_Decisions_Defer (Discriminant_Specifications (N), 'X');
2309 Set_Statement_Entry;
2311 Traverse_Sync_Definition (N);
2313 when N_Single_Protected_Declaration
2314 | N_Single_Task_Declaration
2316 Extend_Statement_Sequence (N, 'o');
2317 Set_Statement_Entry;
2319 Traverse_Sync_Definition (N);
2321 when others =>
2323 -- Determine required type character code, or ASCII.NUL if
2324 -- no SCO should be generated for this node.
2326 declare
2327 NK : constant Node_Kind := Nkind (N);
2328 Typ : Character;
2330 begin
2331 case NK is
2332 when N_Full_Type_Declaration
2333 | N_Incomplete_Type_Declaration
2334 | N_Private_Extension_Declaration
2335 | N_Private_Type_Declaration
2337 Typ := 't';
2339 when N_Subtype_Declaration =>
2340 Typ := 's';
2342 when N_Renaming_Declaration =>
2343 Typ := 'r';
2345 when N_Generic_Instantiation =>
2346 Typ := 'i';
2348 when N_Package_Body_Stub
2349 | N_Protected_Body_Stub
2350 | N_Representation_Clause
2351 | N_Task_Body_Stub
2352 | N_Use_Package_Clause
2353 | N_Use_Type_Clause
2355 Typ := ASCII.NUL;
2357 when N_Procedure_Call_Statement =>
2358 Typ := ' ';
2360 when others =>
2361 if NK in N_Statement_Other_Than_Procedure_Call then
2362 Typ := ' ';
2363 else
2364 Typ := 'd';
2365 end if;
2366 end case;
2368 if Typ /= ASCII.NUL then
2369 Extend_Statement_Sequence (N, Typ);
2370 end if;
2371 end;
2373 -- Process any embedded decisions
2375 if Has_Decision (N) then
2376 Process_Decisions_Defer (N, 'X');
2377 end if;
2378 end case;
2380 -- Process aspects if present
2382 Traverse_Aspects (N);
2383 end Traverse_One;
2385 -- Start of processing for Traverse_Declarations_Or_Statements
2387 begin
2388 -- Process single prefixed node
2390 if Present (P) then
2391 Traverse_One (P);
2392 end if;
2394 -- Loop through statements or declarations
2396 if Is_Non_Empty_List (L) then
2397 N := First (L);
2398 while Present (N) loop
2400 -- Note: For separate bodies, we see the tree after Par.Labl has
2401 -- introduced implicit labels, so we need to ignore those nodes.
2403 if Nkind (N) /= N_Implicit_Label_Declaration then
2404 Traverse_One (N);
2405 end if;
2407 Next (N);
2408 end loop;
2410 end if;
2412 -- End sequence of statements and flush deferred decisions
2414 if Present (P) or else Is_Non_Empty_List (L) then
2415 Set_Statement_Entry;
2416 end if;
2418 return Current_Dominant;
2419 end Traverse_Declarations_Or_Statements;
2421 ------------------------------------------
2422 -- Traverse_Generic_Package_Declaration --
2423 ------------------------------------------
2425 procedure Traverse_Generic_Package_Declaration (N : Node_Id) is
2426 begin
2427 Process_Decisions (Generic_Formal_Declarations (N), 'X', No_Location);
2428 Traverse_Package_Declaration (N);
2429 end Traverse_Generic_Package_Declaration;
2431 -----------------------------------------
2432 -- Traverse_Handled_Statement_Sequence --
2433 -----------------------------------------
2435 procedure Traverse_Handled_Statement_Sequence
2436 (N : Node_Id;
2437 D : Dominant_Info := No_Dominant)
2439 Handler : Node_Id;
2441 begin
2442 -- For package bodies without a statement part, the parser adds an empty
2443 -- one, to normalize the representation. The null statement therein,
2444 -- which does not come from source, does not get a SCO.
2446 if Present (N) and then Comes_From_Source (N) then
2447 Traverse_Declarations_Or_Statements (Statements (N), D);
2449 if Present (Exception_Handlers (N)) then
2450 Handler := First_Non_Pragma (Exception_Handlers (N));
2451 while Present (Handler) loop
2452 Traverse_Declarations_Or_Statements
2453 (L => Statements (Handler),
2454 D => ('E', Handler));
2455 Next (Handler);
2456 end loop;
2457 end if;
2458 end if;
2459 end Traverse_Handled_Statement_Sequence;
2461 ---------------------------
2462 -- Traverse_Package_Body --
2463 ---------------------------
2465 procedure Traverse_Package_Body (N : Node_Id) is
2466 Dom : Dominant_Info;
2467 begin
2468 -- The first statement in the handled sequence of statements is
2469 -- dominated by the elaboration of the last declaration.
2471 Dom := Traverse_Declarations_Or_Statements (Declarations (N));
2473 Traverse_Handled_Statement_Sequence
2474 (Handled_Statement_Sequence (N), Dom);
2475 end Traverse_Package_Body;
2477 ----------------------------------
2478 -- Traverse_Package_Declaration --
2479 ----------------------------------
2481 procedure Traverse_Package_Declaration
2482 (N : Node_Id;
2483 D : Dominant_Info := No_Dominant)
2485 Spec : constant Node_Id := Specification (N);
2486 Dom : Dominant_Info;
2488 begin
2489 Dom :=
2490 Traverse_Declarations_Or_Statements (Visible_Declarations (Spec), D);
2492 -- First private declaration is dominated by last visible declaration
2494 Traverse_Declarations_Or_Statements (Private_Declarations (Spec), Dom);
2495 end Traverse_Package_Declaration;
2497 ------------------------------
2498 -- Traverse_Sync_Definition --
2499 ------------------------------
2501 procedure Traverse_Sync_Definition (N : Node_Id) is
2502 Dom_Info : Dominant_Info := ('S', N);
2503 -- The first declaration is dominated by the protected or task [type]
2504 -- declaration.
2506 Sync_Def : Node_Id;
2507 -- N's protected or task definition
2509 Priv_Decl : List_Id;
2510 Vis_Decl : List_Id;
2511 -- Sync_Def's Visible_Declarations and Private_Declarations
2513 begin
2514 case Nkind (N) is
2515 when N_Protected_Type_Declaration
2516 | N_Single_Protected_Declaration
2518 Sync_Def := Protected_Definition (N);
2520 when N_Single_Task_Declaration
2521 | N_Task_Type_Declaration
2523 Sync_Def := Task_Definition (N);
2525 when others =>
2526 raise Program_Error;
2527 end case;
2529 -- Sync_Def may be Empty at least for empty Task_Type_Declarations.
2530 -- Querying Visible or Private_Declarations is invalid in this case.
2532 if Present (Sync_Def) then
2533 Vis_Decl := Visible_Declarations (Sync_Def);
2534 Priv_Decl := Private_Declarations (Sync_Def);
2535 else
2536 Vis_Decl := No_List;
2537 Priv_Decl := No_List;
2538 end if;
2540 Dom_Info := Traverse_Declarations_Or_Statements
2541 (L => Vis_Decl,
2542 D => Dom_Info);
2544 -- If visible declarations are present, the first private declaration
2545 -- is dominated by the last visible declaration.
2547 Traverse_Declarations_Or_Statements
2548 (L => Priv_Decl,
2549 D => Dom_Info);
2550 end Traverse_Sync_Definition;
2552 --------------------------------------
2553 -- Traverse_Subprogram_Or_Task_Body --
2554 --------------------------------------
2556 procedure Traverse_Subprogram_Or_Task_Body
2557 (N : Node_Id;
2558 D : Dominant_Info := No_Dominant)
2560 Decls : constant List_Id := Declarations (N);
2561 Dom_Info : Dominant_Info := D;
2563 begin
2564 -- If declarations are present, the first statement is dominated by the
2565 -- last declaration.
2567 Dom_Info := Traverse_Declarations_Or_Statements
2568 (L => Decls, D => Dom_Info);
2570 Traverse_Handled_Statement_Sequence
2571 (N => Handled_Statement_Sequence (N),
2572 D => Dom_Info);
2573 end Traverse_Subprogram_Or_Task_Body;
2575 -------------------------
2576 -- SCO_Record_Filtered --
2577 -------------------------
2579 procedure SCO_Record_Filtered is
2580 type Decision is record
2581 Kind : Character;
2582 -- Type of the SCO decision (see comments for SCO_Table_Entry.C1)
2584 Sloc : Source_Location;
2586 Top : Nat;
2587 -- Index in the SCO_Raw_Table for the root operator/condition for the
2588 -- expression that controls the decision.
2589 end record;
2590 -- Decision descriptor: used to gather information about a candidate
2591 -- SCO decision.
2593 package Pending_Decisions is new Table.Table
2594 (Table_Component_Type => Decision,
2595 Table_Index_Type => Nat,
2596 Table_Low_Bound => 1,
2597 Table_Initial => 1000,
2598 Table_Increment => 200,
2599 Table_Name => "Filter_Pending_Decisions");
2600 -- Table used to hold decisions to process during the collection pass
2602 procedure Add_Expression_Tree (Idx : in out Nat);
2603 -- Add SCO raw table entries for the decision controlling expression
2604 -- tree starting at Idx to the filtered SCO table.
2606 procedure Collect_Decisions
2607 (D : Decision;
2608 Next : out Nat);
2609 -- Collect decisions to add to the filtered SCO table starting at the
2610 -- D decision (including it and its nested operators/conditions). Set
2611 -- Next to the first node index passed the whole decision.
2613 procedure Compute_Range
2614 (Idx : in out Nat;
2615 From : out Source_Location;
2616 To : out Source_Location);
2617 -- Compute the source location range for the expression tree starting at
2618 -- Idx in the SCO raw table. Store its bounds in From and To.
2620 function Is_Decision (Idx : Nat) return Boolean;
2621 -- Return if the expression tree starting at Idx has adjacent nested
2622 -- nodes that make a decision.
2624 procedure Process_Pending_Decisions
2625 (Original_Decision : SCO_Table_Entry);
2626 -- Complete the filtered SCO table using collected decisions. Output
2627 -- decisions inherit the pragma information from the original decision.
2629 procedure Search_Nested_Decisions (Idx : in out Nat);
2630 -- Collect decisions to add to the filtered SCO table starting at the
2631 -- node at Idx in the SCO raw table. This node must not be part of an
2632 -- already-processed decision. Set Idx to the first node index passed
2633 -- the whole expression tree.
2635 procedure Skip_Decision
2636 (Idx : in out Nat;
2637 Process_Nested_Decisions : Boolean);
2638 -- Skip all the nodes that belong to the decision starting at Idx. If
2639 -- Process_Nested_Decision, call Search_Nested_Decisions on the first
2640 -- nested nodes that do not belong to the decision. Set Idx to the first
2641 -- node index passed the whole expression tree.
2643 -------------------------
2644 -- Add_Expression_Tree --
2645 -------------------------
2647 procedure Add_Expression_Tree (Idx : in out Nat) is
2648 Node_Idx : constant Nat := Idx;
2649 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Node_Idx);
2650 From : Source_Location;
2651 To : Source_Location;
2653 begin
2654 case T.C1 is
2655 when ' ' =>
2657 -- This is a single condition. Add an entry for it and move on
2659 SCO_Table.Append (T);
2660 Idx := Idx + 1;
2662 when '!' =>
2664 -- This is a NOT operator: add an entry for it and browse its
2665 -- only child.
2667 SCO_Table.Append (T);
2668 Idx := Idx + 1;
2669 Add_Expression_Tree (Idx);
2671 when others =>
2673 -- This must be an AND/OR/AND THEN/OR ELSE operator
2675 if T.C2 = '?' then
2677 -- This is not a short circuit operator: consider this one
2678 -- and all its children as a single condition.
2680 Compute_Range (Idx, From, To);
2681 SCO_Table.Append
2682 ((From => From,
2683 To => To,
2684 C1 => ' ',
2685 C2 => 'c',
2686 Last => False,
2687 Pragma_Sloc => No_Location,
2688 Pragma_Aspect_Name => No_Name));
2690 else
2691 -- This is a real short circuit operator: add an entry for
2692 -- it and browse its children.
2694 SCO_Table.Append (T);
2695 Idx := Idx + 1;
2696 Add_Expression_Tree (Idx);
2697 Add_Expression_Tree (Idx);
2698 end if;
2699 end case;
2700 end Add_Expression_Tree;
2702 -----------------------
2703 -- Collect_Decisions --
2704 -----------------------
2706 procedure Collect_Decisions
2707 (D : Decision;
2708 Next : out Nat)
2710 Idx : Nat := D.Top;
2712 begin
2713 if D.Kind /= 'X' or else Is_Decision (D.Top) then
2714 Pending_Decisions.Append (D);
2715 end if;
2717 Skip_Decision (Idx, True);
2718 Next := Idx;
2719 end Collect_Decisions;
2721 -------------------
2722 -- Compute_Range --
2723 -------------------
2725 procedure Compute_Range
2726 (Idx : in out Nat;
2727 From : out Source_Location;
2728 To : out Source_Location)
2730 Sloc_F : Source_Location := No_Source_Location;
2731 Sloc_T : Source_Location := No_Source_Location;
2733 procedure Process_One;
2734 -- Process one node of the tree, and recurse over children. Update
2735 -- Idx during the traversal.
2737 -----------------
2738 -- Process_One --
2739 -----------------
2741 procedure Process_One is
2742 begin
2743 if Sloc_F = No_Source_Location
2744 or else
2745 SCO_Raw_Table.Table (Idx).From < Sloc_F
2746 then
2747 Sloc_F := SCO_Raw_Table.Table (Idx).From;
2748 end if;
2750 if Sloc_T = No_Source_Location
2751 or else
2752 Sloc_T < SCO_Raw_Table.Table (Idx).To
2753 then
2754 Sloc_T := SCO_Raw_Table.Table (Idx).To;
2755 end if;
2757 if SCO_Raw_Table.Table (Idx).C1 = ' ' then
2759 -- This is a condition: nothing special to do
2761 Idx := Idx + 1;
2763 elsif SCO_Raw_Table.Table (Idx).C1 = '!' then
2765 -- The "not" operator has only one operand
2767 Idx := Idx + 1;
2768 Process_One;
2770 else
2771 -- This is an AND THEN or OR ELSE logical operator: follow the
2772 -- left, then the right operands.
2774 Idx := Idx + 1;
2776 Process_One;
2777 Process_One;
2778 end if;
2779 end Process_One;
2781 -- Start of processing for Compute_Range
2783 begin
2784 Process_One;
2785 From := Sloc_F;
2786 To := Sloc_T;
2787 end Compute_Range;
2789 -----------------
2790 -- Is_Decision --
2791 -----------------
2793 function Is_Decision (Idx : Nat) return Boolean is
2794 Index : Nat := Idx;
2796 begin
2797 loop
2798 declare
2799 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Index);
2801 begin
2802 case T.C1 is
2803 when ' ' =>
2804 return False;
2806 when '!' =>
2808 -- This is a decision iff the only operand of the NOT
2809 -- operator could be a standalone decision.
2811 Index := Idx + 1;
2813 when others =>
2815 -- This node is a logical operator (and thus could be a
2816 -- standalone decision) iff it is a short circuit
2817 -- operator.
2819 return T.C2 /= '?';
2820 end case;
2821 end;
2822 end loop;
2823 end Is_Decision;
2825 -------------------------------
2826 -- Process_Pending_Decisions --
2827 -------------------------------
2829 procedure Process_Pending_Decisions
2830 (Original_Decision : SCO_Table_Entry)
2832 begin
2833 for Index in 1 .. Pending_Decisions.Last loop
2834 declare
2835 D : Decision renames Pending_Decisions.Table (Index);
2836 Idx : Nat := D.Top;
2838 begin
2839 -- Add a SCO table entry for the decision itself
2841 pragma Assert (D.Kind /= ' ');
2843 SCO_Table.Append
2844 ((To => No_Source_Location,
2845 From => D.Sloc,
2846 C1 => D.Kind,
2847 C2 => ' ',
2848 Last => False,
2849 Pragma_Sloc => Original_Decision.Pragma_Sloc,
2850 Pragma_Aspect_Name =>
2851 Original_Decision.Pragma_Aspect_Name));
2853 -- Then add ones for its nested operators/operands. Do not
2854 -- forget to tag its *last* entry as such.
2856 Add_Expression_Tree (Idx);
2857 SCO_Table.Table (SCO_Table.Last).Last := True;
2858 end;
2859 end loop;
2861 -- Clear the pending decisions list
2862 Pending_Decisions.Set_Last (0);
2863 end Process_Pending_Decisions;
2865 -----------------------------
2866 -- Search_Nested_Decisions --
2867 -----------------------------
2869 procedure Search_Nested_Decisions (Idx : in out Nat) is
2870 begin
2871 loop
2872 declare
2873 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
2875 begin
2876 case T.C1 is
2877 when ' ' =>
2878 Idx := Idx + 1;
2879 exit;
2881 when '!' =>
2882 Collect_Decisions
2883 ((Kind => 'X',
2884 Sloc => T.From,
2885 Top => Idx),
2886 Idx);
2887 exit;
2889 when others =>
2890 if T.C2 = '?' then
2892 -- This is not a logical operator: start looking for
2893 -- nested decisions from here. Recurse over the left
2894 -- child and let the loop take care of the right one.
2896 Idx := Idx + 1;
2897 Search_Nested_Decisions (Idx);
2899 else
2900 -- We found a nested decision
2902 Collect_Decisions
2903 ((Kind => 'X',
2904 Sloc => T.From,
2905 Top => Idx),
2906 Idx);
2907 exit;
2908 end if;
2909 end case;
2910 end;
2911 end loop;
2912 end Search_Nested_Decisions;
2914 -------------------
2915 -- Skip_Decision --
2916 -------------------
2918 procedure Skip_Decision
2919 (Idx : in out Nat;
2920 Process_Nested_Decisions : Boolean)
2922 begin
2923 loop
2924 declare
2925 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
2927 begin
2928 Idx := Idx + 1;
2930 case T.C1 is
2931 when ' ' =>
2932 exit;
2934 when '!' =>
2936 -- This NOT operator belongs to the outside decision:
2937 -- just skip it.
2939 null;
2941 when others =>
2942 if T.C2 = '?' and then Process_Nested_Decisions then
2944 -- This is not a logical operator: start looking for
2945 -- nested decisions from here. Recurse over the left
2946 -- child and let the loop take care of the right one.
2948 Search_Nested_Decisions (Idx);
2950 else
2951 -- This is a logical operator, so it belongs to the
2952 -- outside decision: skip its left child, then let the
2953 -- loop take care of the right one.
2955 Skip_Decision (Idx, Process_Nested_Decisions);
2956 end if;
2957 end case;
2958 end;
2959 end loop;
2960 end Skip_Decision;
2962 -- Start of processing for SCO_Record_Filtered
2964 begin
2965 -- Filtering must happen only once: do nothing if it this pass was
2966 -- already run.
2968 if SCO_Generation_State = Filtered then
2969 return;
2970 else
2971 pragma Assert (SCO_Generation_State = Raw);
2972 SCO_Generation_State := Filtered;
2973 end if;
2975 -- Loop through all SCO entries under SCO units
2977 for Unit_Idx in 1 .. SCO_Unit_Table.Last loop
2978 declare
2979 Unit : SCO_Unit_Table_Entry
2980 renames SCO_Unit_Table.Table (Unit_Idx);
2982 Idx : Nat := Unit.From;
2983 -- Index of the current SCO raw table entry
2985 New_From : constant Nat := SCO_Table.Last + 1;
2986 -- After copying SCO enties of interest to the final table, we
2987 -- will have to change the From/To indexes this unit targets.
2988 -- This constant keeps track of the new From index.
2990 begin
2991 while Idx <= Unit.To loop
2992 declare
2993 T : SCO_Table_Entry renames SCO_Raw_Table.Table (Idx);
2995 begin
2996 case T.C1 is
2998 -- Decision (of any kind, including pragmas and aspects)
3000 when 'E' | 'G' | 'I' | 'W' | 'X' | 'P' | 'a' | 'A' =>
3001 if SCO_Pragma_Disabled (T.Pragma_Sloc) then
3003 -- Skip SCO entries for decisions in disabled
3004 -- constructs (pragmas or aspects).
3006 Idx := Idx + 1;
3007 Skip_Decision (Idx, False);
3009 else
3010 Collect_Decisions
3011 ((Kind => T.C1,
3012 Sloc => T.From,
3013 Top => Idx + 1),
3014 Idx);
3015 Process_Pending_Decisions (T);
3016 end if;
3018 -- There is no translation/filtering to do for other kind
3019 -- of SCO items (statements, dominance markers, etc.).
3021 when '|' | '&' | '!' | ' ' =>
3023 -- SCO logical operators and conditions cannot exist
3024 -- on their own: they must be inside a decision (such
3025 -- entries must have been skipped by
3026 -- Collect_Decisions).
3028 raise Program_Error;
3030 when others =>
3031 SCO_Table.Append (T);
3032 Idx := Idx + 1;
3033 end case;
3034 end;
3035 end loop;
3037 -- Now, update the SCO entry indexes in the unit entry
3039 Unit.From := New_From;
3040 Unit.To := SCO_Table.Last;
3041 end;
3042 end loop;
3044 -- Then clear the raw table to free bytes
3046 SCO_Raw_Table.Free;
3047 end SCO_Record_Filtered;
3049 end Par_SCO;