1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Elists
; use Elists
;
32 with Exp_Aggr
; use Exp_Aggr
;
33 with Exp_Atag
; use Exp_Atag
;
34 with Exp_Ch2
; use Exp_Ch2
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Ch7
; use Exp_Ch7
;
37 with Exp_Ch9
; use Exp_Ch9
;
38 with Exp_Dbug
; use Exp_Dbug
;
39 with Exp_Disp
; use Exp_Disp
;
40 with Exp_Dist
; use Exp_Dist
;
41 with Exp_Intr
; use Exp_Intr
;
42 with Exp_Pakd
; use Exp_Pakd
;
43 with Exp_Prag
; use Exp_Prag
;
44 with Exp_Tss
; use Exp_Tss
;
45 with Exp_Unst
; use Exp_Unst
;
46 with Exp_Util
; use Exp_Util
;
47 with Freeze
; use Freeze
;
48 with Inline
; use Inline
;
50 with Namet
; use Namet
;
51 with Nlists
; use Nlists
;
52 with Nmake
; use Nmake
;
54 with Restrict
; use Restrict
;
55 with Rident
; use Rident
;
56 with Rtsfind
; use Rtsfind
;
58 with Sem_Aux
; use Sem_Aux
;
59 with Sem_Ch6
; use Sem_Ch6
;
60 with Sem_Ch8
; use Sem_Ch8
;
61 with Sem_Ch13
; use Sem_Ch13
;
62 with Sem_Dim
; use Sem_Dim
;
63 with Sem_Disp
; use Sem_Disp
;
64 with Sem_Dist
; use Sem_Dist
;
65 with Sem_Eval
; use Sem_Eval
;
66 with Sem_Mech
; use Sem_Mech
;
67 with Sem_Res
; use Sem_Res
;
68 with Sem_SCIL
; use Sem_SCIL
;
69 with Sem_Util
; use Sem_Util
;
70 with Sinfo
; use Sinfo
;
71 with Snames
; use Snames
;
72 with Stand
; use Stand
;
73 with Stringt
; use Stringt
;
74 with Targparm
; use Targparm
;
75 with Tbuild
; use Tbuild
;
76 with Uintp
; use Uintp
;
77 with Validsw
; use Validsw
;
79 package body Exp_Ch6
is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Add_Access_Actual_To_Build_In_Place_Call
86 (Function_Call
: Node_Id
;
87 Function_Id
: Entity_Id
;
88 Return_Object
: Node_Id
;
89 Is_Access
: Boolean := False);
90 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
91 -- object name given by Return_Object and add the attribute to the end of
92 -- the actual parameter list associated with the build-in-place function
93 -- call denoted by Function_Call. However, if Is_Access is True, then
94 -- Return_Object is already an access expression, in which case it's passed
95 -- along directly to the build-in-place function. Finally, if Return_Object
96 -- is empty, then pass a null literal as the actual.
98 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
99 (Function_Call
: Node_Id
;
100 Function_Id
: Entity_Id
;
101 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
102 Alloc_Form_Exp
: Node_Id
:= Empty
;
103 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
));
104 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
105 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
106 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
107 -- otherwise pass a literal corresponding to the Alloc_Form parameter
108 -- (which must not be Unspecified in that case). Pool_Actual is the
109 -- parameter to pass to BIP_Storage_Pool.
111 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
112 (Func_Call
: Node_Id
;
114 Ptr_Typ
: Entity_Id
:= Empty
;
115 Master_Exp
: Node_Id
:= Empty
);
116 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
117 -- finalization actions, add an actual parameter which is a pointer to the
118 -- finalization master of the caller. If Master_Exp is not Empty, then that
119 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
120 -- will result in an automatic "null" value for the actual.
122 procedure Add_Task_Actuals_To_Build_In_Place_Call
123 (Function_Call
: Node_Id
;
124 Function_Id
: Entity_Id
;
125 Master_Actual
: Node_Id
;
126 Chain
: Node_Id
:= Empty
);
127 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
128 -- contains tasks, add two actual parameters: the master, and a pointer to
129 -- the caller's activation chain. Master_Actual is the actual parameter
130 -- expression to pass for the master. In most cases, this is the current
131 -- master (_master). The two exceptions are: If the function call is the
132 -- initialization expression for an allocator, we pass the master of the
133 -- access type. If the function call is the initialization expression for a
134 -- return object, we pass along the master passed in by the caller. In most
135 -- contexts, the activation chain to pass is the local one, which is
136 -- indicated by No (Chain). However, in an allocator, the caller passes in
137 -- the activation Chain. Note: Master_Actual can be Empty, but only if
138 -- there are no tasks.
140 procedure Check_Overriding_Operation
(Subp
: Entity_Id
);
141 -- Subp is a dispatching operation. Check whether it may override an
142 -- inherited private operation, in which case its DT entry is that of
143 -- the hidden operation, not the one it may have received earlier.
144 -- This must be done before emitting the code to set the corresponding
145 -- DT to the address of the subprogram. The actual placement of Subp in
146 -- the proper place in the list of primitive operations is done in
147 -- Declare_Inherited_Private_Subprograms, which also has to deal with
148 -- implicit operations. This duplication is unavoidable for now???
150 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
);
151 -- This procedure is called only if the subprogram body N, whose spec
152 -- has the given entity Spec, contains a parameterless recursive call.
153 -- It attempts to generate runtime code to detect if this a case of
154 -- infinite recursion.
156 -- The body is scanned to determine dependencies. If the only external
157 -- dependencies are on a small set of scalar variables, then the values
158 -- of these variables are captured on entry to the subprogram, and if
159 -- the values are not changed for the call, we know immediately that
160 -- we have an infinite recursion.
162 procedure Expand_Actuals
(N
: in out Node_Id
; Subp
: Entity_Id
);
163 -- For each actual of an in-out or out parameter which is a numeric
164 -- (view) conversion of the form T (A), where A denotes a variable,
165 -- we insert the declaration:
167 -- Temp : T[ := T (A)];
169 -- prior to the call. Then we replace the actual with a reference to Temp,
170 -- and append the assignment:
172 -- A := TypeA (Temp);
174 -- after the call. Here TypeA is the actual type of variable A. For out
175 -- parameters, the initial declaration has no expression. If A is not an
176 -- entity name, we generate instead:
178 -- Var : TypeA renames A;
179 -- Temp : T := Var; -- omitting expression for out parameter.
181 -- Var := TypeA (Temp);
183 -- For other in-out parameters, we emit the required constraint checks
184 -- before and/or after the call.
186 -- For all parameter modes, actuals that denote components and slices of
187 -- packed arrays are expanded into suitable temporaries.
189 -- For non-scalar objects that are possibly unaligned, add call by copy
190 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
192 -- For OUT and IN OUT parameters, add predicate checks after the call
193 -- based on the predicates of the actual type.
195 -- The parameter N is IN OUT because in some cases, the expansion code
196 -- rewrites the call as an expression actions with the call inside. In
197 -- this case N is reset to point to the inside call so that the caller
198 -- can continue processing of this call.
200 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
);
201 -- N is a function call which returns a controlled object. Transform the
202 -- call into a temporary which retrieves the returned object from the
203 -- secondary stack using 'reference.
205 procedure Expand_Non_Function_Return
(N
: Node_Id
);
206 -- Expand a simple return statement found in a procedure body, entry body,
207 -- accept statement, or an extended return statement. Note that all non-
208 -- function returns are simple return statements.
210 function Expand_Protected_Object_Reference
212 Scop
: Entity_Id
) return Node_Id
;
214 procedure Expand_Protected_Subprogram_Call
218 -- A call to a protected subprogram within the protected object may appear
219 -- as a regular call. The list of actuals must be expanded to contain a
220 -- reference to the object itself, and the call becomes a call to the
221 -- corresponding protected subprogram.
223 function Has_Unconstrained_Access_Discriminants
224 (Subtyp
: Entity_Id
) return Boolean;
225 -- Returns True if the given subtype is unconstrained and has one
226 -- or more access discriminants.
228 procedure Expand_Simple_Function_Return
(N
: Node_Id
);
229 -- Expand simple return from function. In the case where we are returning
230 -- from a function body this is called by Expand_N_Simple_Return_Statement.
232 ----------------------------------------------
233 -- Add_Access_Actual_To_Build_In_Place_Call --
234 ----------------------------------------------
236 procedure Add_Access_Actual_To_Build_In_Place_Call
237 (Function_Call
: Node_Id
;
238 Function_Id
: Entity_Id
;
239 Return_Object
: Node_Id
;
240 Is_Access
: Boolean := False)
242 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
243 Obj_Address
: Node_Id
;
244 Obj_Acc_Formal
: Entity_Id
;
247 -- Locate the implicit access parameter in the called function
249 Obj_Acc_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Object_Access
);
251 -- If no return object is provided, then pass null
253 if not Present
(Return_Object
) then
254 Obj_Address
:= Make_Null
(Loc
);
255 Set_Parent
(Obj_Address
, Function_Call
);
257 -- If Return_Object is already an expression of an access type, then use
258 -- it directly, since it must be an access value denoting the return
259 -- object, and couldn't possibly be the return object itself.
262 Obj_Address
:= Return_Object
;
263 Set_Parent
(Obj_Address
, Function_Call
);
265 -- Apply Unrestricted_Access to caller's return object
269 Make_Attribute_Reference
(Loc
,
270 Prefix
=> Return_Object
,
271 Attribute_Name
=> Name_Unrestricted_Access
);
273 Set_Parent
(Return_Object
, Obj_Address
);
274 Set_Parent
(Obj_Address
, Function_Call
);
277 Analyze_And_Resolve
(Obj_Address
, Etype
(Obj_Acc_Formal
));
279 -- Build the parameter association for the new actual and add it to the
280 -- end of the function's actuals.
282 Add_Extra_Actual_To_Call
(Function_Call
, Obj_Acc_Formal
, Obj_Address
);
283 end Add_Access_Actual_To_Build_In_Place_Call
;
285 ------------------------------------------------------
286 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
287 ------------------------------------------------------
289 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
290 (Function_Call
: Node_Id
;
291 Function_Id
: Entity_Id
;
292 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
293 Alloc_Form_Exp
: Node_Id
:= Empty
;
294 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
))
296 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
297 Alloc_Form_Actual
: Node_Id
;
298 Alloc_Form_Formal
: Node_Id
;
299 Pool_Formal
: Node_Id
;
302 -- The allocation form generally doesn't need to be passed in the case
303 -- of a constrained result subtype, since normally the caller performs
304 -- the allocation in that case. However this formal is still needed in
305 -- the case where the function has a tagged result, because generally
306 -- such functions can be called in a dispatching context and such calls
307 -- must be handled like calls to class-wide functions.
309 if Is_Constrained
(Underlying_Type
(Etype
(Function_Id
)))
310 and then not Is_Tagged_Type
(Underlying_Type
(Etype
(Function_Id
)))
315 -- Locate the implicit allocation form parameter in the called function.
316 -- Maybe it would be better for each implicit formal of a build-in-place
317 -- function to have a flag or a Uint attribute to identify it. ???
319 Alloc_Form_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Alloc_Form
);
321 if Present
(Alloc_Form_Exp
) then
322 pragma Assert
(Alloc_Form
= Unspecified
);
324 Alloc_Form_Actual
:= Alloc_Form_Exp
;
327 pragma Assert
(Alloc_Form
/= Unspecified
);
330 Make_Integer_Literal
(Loc
,
331 Intval
=> UI_From_Int
(BIP_Allocation_Form
'Pos (Alloc_Form
)));
334 Analyze_And_Resolve
(Alloc_Form_Actual
, Etype
(Alloc_Form_Formal
));
336 -- Build the parameter association for the new actual and add it to the
337 -- end of the function's actuals.
339 Add_Extra_Actual_To_Call
340 (Function_Call
, Alloc_Form_Formal
, Alloc_Form_Actual
);
342 -- Pass the Storage_Pool parameter. This parameter is omitted on
343 -- .NET/JVM/ZFP as those targets do not support pools.
346 and then RTE_Available
(RE_Root_Storage_Pool_Ptr
)
348 Pool_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Storage_Pool
);
349 Analyze_And_Resolve
(Pool_Actual
, Etype
(Pool_Formal
));
350 Add_Extra_Actual_To_Call
351 (Function_Call
, Pool_Formal
, Pool_Actual
);
353 end Add_Unconstrained_Actuals_To_Build_In_Place_Call
;
355 -----------------------------------------------------------
356 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
357 -----------------------------------------------------------
359 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
360 (Func_Call
: Node_Id
;
362 Ptr_Typ
: Entity_Id
:= Empty
;
363 Master_Exp
: Node_Id
:= Empty
)
366 if not Needs_BIP_Finalization_Master
(Func_Id
) then
371 Formal
: constant Entity_Id
:=
372 Build_In_Place_Formal
(Func_Id
, BIP_Finalization_Master
);
373 Loc
: constant Source_Ptr
:= Sloc
(Func_Call
);
376 Desig_Typ
: Entity_Id
;
379 -- If there is a finalization master actual, such as the implicit
380 -- finalization master of an enclosing build-in-place function,
381 -- then this must be added as an extra actual of the call.
383 if Present
(Master_Exp
) then
384 Actual
:= Master_Exp
;
386 -- Case where the context does not require an actual master
388 elsif No
(Ptr_Typ
) then
389 Actual
:= Make_Null
(Loc
);
392 Desig_Typ
:= Directly_Designated_Type
(Ptr_Typ
);
394 -- Check for a library-level access type whose designated type has
395 -- supressed finalization. Such an access types lack a master.
396 -- Pass a null actual to the callee in order to signal a missing
399 if Is_Library_Level_Entity
(Ptr_Typ
)
400 and then Finalize_Storage_Only
(Desig_Typ
)
402 Actual
:= Make_Null
(Loc
);
404 -- Types in need of finalization actions
406 elsif Needs_Finalization
(Desig_Typ
) then
408 -- The general mechanism of creating finalization masters for
409 -- anonymous access types is disabled by default, otherwise
410 -- finalization masters will pop all over the place. Such types
411 -- use context-specific masters.
413 if Ekind
(Ptr_Typ
) = E_Anonymous_Access_Type
414 and then No
(Finalization_Master
(Ptr_Typ
))
416 Build_Finalization_Master
418 For_Anonymous
=> True,
419 Context_Scope
=> Scope
(Ptr_Typ
),
420 Insertion_Node
=> Associated_Node_For_Itype
(Ptr_Typ
));
423 -- Access-to-controlled types should always have a master
425 pragma Assert
(Present
(Finalization_Master
(Ptr_Typ
)));
428 Make_Attribute_Reference
(Loc
,
430 New_Occurrence_Of
(Finalization_Master
(Ptr_Typ
), Loc
),
431 Attribute_Name
=> Name_Unrestricted_Access
);
436 Actual
:= Make_Null
(Loc
);
440 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
442 -- Build the parameter association for the new actual and add it to
443 -- the end of the function's actuals.
445 Add_Extra_Actual_To_Call
(Func_Call
, Formal
, Actual
);
447 end Add_Finalization_Master_Actual_To_Build_In_Place_Call
;
449 ------------------------------
450 -- Add_Extra_Actual_To_Call --
451 ------------------------------
453 procedure Add_Extra_Actual_To_Call
454 (Subprogram_Call
: Node_Id
;
455 Extra_Formal
: Entity_Id
;
456 Extra_Actual
: Node_Id
)
458 Loc
: constant Source_Ptr
:= Sloc
(Subprogram_Call
);
459 Param_Assoc
: Node_Id
;
463 Make_Parameter_Association
(Loc
,
464 Selector_Name
=> New_Occurrence_Of
(Extra_Formal
, Loc
),
465 Explicit_Actual_Parameter
=> Extra_Actual
);
467 Set_Parent
(Param_Assoc
, Subprogram_Call
);
468 Set_Parent
(Extra_Actual
, Param_Assoc
);
470 if Present
(Parameter_Associations
(Subprogram_Call
)) then
471 if Nkind
(Last
(Parameter_Associations
(Subprogram_Call
))) =
472 N_Parameter_Association
475 -- Find last named actual, and append
480 L
:= First_Actual
(Subprogram_Call
);
481 while Present
(L
) loop
482 if No
(Next_Actual
(L
)) then
483 Set_Next_Named_Actual
(Parent
(L
), Extra_Actual
);
491 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
494 Append
(Param_Assoc
, To
=> Parameter_Associations
(Subprogram_Call
));
497 Set_Parameter_Associations
(Subprogram_Call
, New_List
(Param_Assoc
));
498 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
500 end Add_Extra_Actual_To_Call
;
502 ---------------------------------------------
503 -- Add_Task_Actuals_To_Build_In_Place_Call --
504 ---------------------------------------------
506 procedure Add_Task_Actuals_To_Build_In_Place_Call
507 (Function_Call
: Node_Id
;
508 Function_Id
: Entity_Id
;
509 Master_Actual
: Node_Id
;
510 Chain
: Node_Id
:= Empty
)
512 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
513 Result_Subt
: constant Entity_Id
:=
514 Available_View
(Etype
(Function_Id
));
516 Chain_Actual
: Node_Id
;
517 Chain_Formal
: Node_Id
;
518 Master_Formal
: Node_Id
;
521 -- No such extra parameters are needed if there are no tasks
523 if not Has_Task
(Result_Subt
) then
527 Actual
:= Master_Actual
;
529 -- Use a dummy _master actual in case of No_Task_Hierarchy
531 if Restriction_Active
(No_Task_Hierarchy
) then
532 Actual
:= New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
);
534 -- In the case where we use the master associated with an access type,
535 -- the actual is an entity and requires an explicit reference.
537 elsif Nkind
(Actual
) = N_Defining_Identifier
then
538 Actual
:= New_Occurrence_Of
(Actual
, Loc
);
541 -- Locate the implicit master parameter in the called function
543 Master_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Task_Master
);
544 Analyze_And_Resolve
(Actual
, Etype
(Master_Formal
));
546 -- Build the parameter association for the new actual and add it to the
547 -- end of the function's actuals.
549 Add_Extra_Actual_To_Call
(Function_Call
, Master_Formal
, Actual
);
551 -- Locate the implicit activation chain parameter in the called function
554 Build_In_Place_Formal
(Function_Id
, BIP_Activation_Chain
);
556 -- Create the actual which is a pointer to the current activation chain
560 Make_Attribute_Reference
(Loc
,
561 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
562 Attribute_Name
=> Name_Unrestricted_Access
);
564 -- Allocator case; make a reference to the Chain passed in by the caller
568 Make_Attribute_Reference
(Loc
,
569 Prefix
=> New_Occurrence_Of
(Chain
, Loc
),
570 Attribute_Name
=> Name_Unrestricted_Access
);
573 Analyze_And_Resolve
(Chain_Actual
, Etype
(Chain_Formal
));
575 -- Build the parameter association for the new actual and add it to the
576 -- end of the function's actuals.
578 Add_Extra_Actual_To_Call
(Function_Call
, Chain_Formal
, Chain_Actual
);
579 end Add_Task_Actuals_To_Build_In_Place_Call
;
581 -----------------------
582 -- BIP_Formal_Suffix --
583 -----------------------
585 function BIP_Formal_Suffix
(Kind
: BIP_Formal_Kind
) return String is
588 when BIP_Alloc_Form
=>
590 when BIP_Storage_Pool
=>
591 return "BIPstoragepool";
592 when BIP_Finalization_Master
=>
593 return "BIPfinalizationmaster";
594 when BIP_Task_Master
=>
595 return "BIPtaskmaster";
596 when BIP_Activation_Chain
=>
597 return "BIPactivationchain";
598 when BIP_Object_Access
=>
601 end BIP_Formal_Suffix
;
603 ---------------------------
604 -- Build_In_Place_Formal --
605 ---------------------------
607 function Build_In_Place_Formal
609 Kind
: BIP_Formal_Kind
) return Entity_Id
611 Formal_Name
: constant Name_Id
:=
613 (Chars
(Func
), BIP_Formal_Suffix
(Kind
));
614 Extra_Formal
: Entity_Id
:= Extra_Formals
(Func
);
617 -- Maybe it would be better for each implicit formal of a build-in-place
618 -- function to have a flag or a Uint attribute to identify it. ???
620 -- The return type in the function declaration may have been a limited
621 -- view, and the extra formals for the function were not generated at
622 -- that point. At the point of call the full view must be available and
623 -- the extra formals can be created.
625 if No
(Extra_Formal
) then
626 Create_Extra_Formals
(Func
);
627 Extra_Formal
:= Extra_Formals
(Func
);
631 pragma Assert
(Present
(Extra_Formal
));
632 exit when Chars
(Extra_Formal
) = Formal_Name
;
634 Next_Formal_With_Extras
(Extra_Formal
);
638 end Build_In_Place_Formal
;
640 --------------------------------
641 -- Check_Overriding_Operation --
642 --------------------------------
644 procedure Check_Overriding_Operation
(Subp
: Entity_Id
) is
645 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
646 Op_List
: constant Elist_Id
:= Primitive_Operations
(Typ
);
652 if Is_Derived_Type
(Typ
)
653 and then not Is_Private_Type
(Typ
)
654 and then In_Open_Scopes
(Scope
(Etype
(Typ
)))
655 and then Is_Base_Type
(Typ
)
657 -- Subp overrides an inherited private operation if there is an
658 -- inherited operation with a different name than Subp (see
659 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
660 -- same name as Subp.
662 Op_Elmt
:= First_Elmt
(Op_List
);
663 while Present
(Op_Elmt
) loop
664 Prim_Op
:= Node
(Op_Elmt
);
665 Par_Op
:= Alias
(Prim_Op
);
668 and then not Comes_From_Source
(Prim_Op
)
669 and then Chars
(Prim_Op
) /= Chars
(Par_Op
)
670 and then Chars
(Par_Op
) = Chars
(Subp
)
671 and then Is_Hidden
(Par_Op
)
672 and then Type_Conformant
(Prim_Op
, Subp
)
674 Set_DT_Position_Value
(Subp
, DT_Position
(Prim_Op
));
680 end Check_Overriding_Operation
;
682 -------------------------------
683 -- Detect_Infinite_Recursion --
684 -------------------------------
686 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
) is
687 Loc
: constant Source_Ptr
:= Sloc
(N
);
689 Var_List
: constant Elist_Id
:= New_Elmt_List
;
690 -- List of globals referenced by body of procedure
692 Call_List
: constant Elist_Id
:= New_Elmt_List
;
693 -- List of recursive calls in body of procedure
695 Shad_List
: constant Elist_Id
:= New_Elmt_List
;
696 -- List of entity id's for entities created to capture the value of
697 -- referenced globals on entry to the procedure.
699 Scop
: constant Uint
:= Scope_Depth
(Spec
);
700 -- This is used to record the scope depth of the current procedure, so
701 -- that we can identify global references.
703 Max_Vars
: constant := 4;
704 -- Do not test more than four global variables
706 Count_Vars
: Natural := 0;
707 -- Count variables found so far
719 function Process
(Nod
: Node_Id
) return Traverse_Result
;
720 -- Function to traverse the subprogram body (using Traverse_Func)
726 function Process
(Nod
: Node_Id
) return Traverse_Result
is
730 if Nkind
(Nod
) = N_Procedure_Call_Statement
then
732 -- Case of one of the detected recursive calls
734 if Is_Entity_Name
(Name
(Nod
))
735 and then Has_Recursive_Call
(Entity
(Name
(Nod
)))
736 and then Entity
(Name
(Nod
)) = Spec
738 Append_Elmt
(Nod
, Call_List
);
741 -- Any other procedure call may have side effects
747 -- A call to a pure function can always be ignored
749 elsif Nkind
(Nod
) = N_Function_Call
750 and then Is_Entity_Name
(Name
(Nod
))
751 and then Is_Pure
(Entity
(Name
(Nod
)))
755 -- Case of an identifier reference
757 elsif Nkind
(Nod
) = N_Identifier
then
760 -- If no entity, then ignore the reference
762 -- Not clear why this can happen. To investigate, remove this
763 -- test and look at the crash that occurs here in 3401-004 ???
768 -- Ignore entities with no Scope, again not clear how this
769 -- can happen, to investigate, look at 4108-008 ???
771 elsif No
(Scope
(Ent
)) then
774 -- Ignore the reference if not to a more global object
776 elsif Scope_Depth
(Scope
(Ent
)) >= Scop
then
779 -- References to types, exceptions and constants are always OK
782 or else Ekind
(Ent
) = E_Exception
783 or else Ekind
(Ent
) = E_Constant
787 -- If other than a non-volatile scalar variable, we have some
788 -- kind of global reference (e.g. to a function) that we cannot
789 -- deal with so we forget the attempt.
791 elsif Ekind
(Ent
) /= E_Variable
792 or else not Is_Scalar_Type
(Etype
(Ent
))
793 or else Treat_As_Volatile
(Ent
)
797 -- Otherwise we have a reference to a global scalar
800 -- Loop through global entities already detected
802 Elm
:= First_Elmt
(Var_List
);
804 -- If not detected before, record this new global reference
807 Count_Vars
:= Count_Vars
+ 1;
809 if Count_Vars
<= Max_Vars
then
810 Append_Elmt
(Entity
(Nod
), Var_List
);
817 -- If recorded before, ignore
819 elsif Node
(Elm
) = Entity
(Nod
) then
822 -- Otherwise keep looking
832 -- For all other node kinds, recursively visit syntactic children
839 function Traverse_Body
is new Traverse_Func
(Process
);
841 -- Start of processing for Detect_Infinite_Recursion
844 -- Do not attempt detection in No_Implicit_Conditional mode, since we
845 -- won't be able to generate the code to handle the recursion in any
848 if Restriction_Active
(No_Implicit_Conditionals
) then
852 -- Otherwise do traversal and quit if we get abandon signal
854 if Traverse_Body
(N
) = Abandon
then
857 -- We must have a call, since Has_Recursive_Call was set. If not just
858 -- ignore (this is only an error check, so if we have a funny situation,
859 -- due to bugs or errors, we do not want to bomb).
861 elsif Is_Empty_Elmt_List
(Call_List
) then
865 -- Here is the case where we detect recursion at compile time
867 -- Push our current scope for analyzing the declarations and code that
868 -- we will insert for the checking.
872 -- This loop builds temporary variables for each of the referenced
873 -- globals, so that at the end of the loop the list Shad_List contains
874 -- these temporaries in one-to-one correspondence with the elements in
878 Elm
:= First_Elmt
(Var_List
);
879 while Present
(Elm
) loop
881 Ent
:= Make_Temporary
(Loc
, 'S');
882 Append_Elmt
(Ent
, Shad_List
);
884 -- Insert a declaration for this temporary at the start of the
885 -- declarations for the procedure. The temporaries are declared as
886 -- constant objects initialized to the current values of the
887 -- corresponding temporaries.
890 Make_Object_Declaration
(Loc
,
891 Defining_Identifier
=> Ent
,
892 Object_Definition
=> New_Occurrence_Of
(Etype
(Var
), Loc
),
893 Constant_Present
=> True,
894 Expression
=> New_Occurrence_Of
(Var
, Loc
));
897 Prepend
(Decl
, Declarations
(N
));
899 Insert_After
(Last
, Decl
);
907 -- Loop through calls
909 Call
:= First_Elmt
(Call_List
);
910 while Present
(Call
) loop
912 -- Build a predicate expression of the form
915 -- and then global1 = temp1
916 -- and then global2 = temp2
919 -- This predicate determines if any of the global values
920 -- referenced by the procedure have changed since the
921 -- current call, if not an infinite recursion is assured.
923 Test
:= New_Occurrence_Of
(Standard_True
, Loc
);
925 Elm1
:= First_Elmt
(Var_List
);
926 Elm2
:= First_Elmt
(Shad_List
);
927 while Present
(Elm1
) loop
933 Left_Opnd
=> New_Occurrence_Of
(Node
(Elm1
), Loc
),
934 Right_Opnd
=> New_Occurrence_Of
(Node
(Elm2
), Loc
)));
940 -- Now we replace the call with the sequence
942 -- if no-changes (see above) then
943 -- raise Storage_Error;
948 Rewrite
(Node
(Call
),
949 Make_If_Statement
(Loc
,
951 Then_Statements
=> New_List
(
952 Make_Raise_Storage_Error
(Loc
,
953 Reason
=> SE_Infinite_Recursion
)),
955 Else_Statements
=> New_List
(
956 Relocate_Node
(Node
(Call
)))));
958 Analyze
(Node
(Call
));
963 -- Remove temporary scope stack entry used for analysis
966 end Detect_Infinite_Recursion
;
976 procedure Expand_Actuals
(N
: in out Node_Id
; Subp
: Entity_Id
) is
977 Loc
: constant Source_Ptr
:= Sloc
(N
);
982 E_Actual
: Entity_Id
;
983 E_Formal
: Entity_Id
;
985 procedure Add_Call_By_Copy_Code
;
986 -- For cases where the parameter must be passed by copy, this routine
987 -- generates a temporary variable into which the actual is copied and
988 -- then passes this as the parameter. For an OUT or IN OUT parameter,
989 -- an assignment is also generated to copy the result back. The call
990 -- also takes care of any constraint checks required for the type
991 -- conversion case (on both the way in and the way out).
993 procedure Add_Simple_Call_By_Copy_Code
;
994 -- This is similar to the above, but is used in cases where we know
995 -- that all that is needed is to simply create a temporary and copy
996 -- the value in and out of the temporary.
998 procedure Check_Fortran_Logical
;
999 -- A value of type Logical that is passed through a formal parameter
1000 -- must be normalized because .TRUE. usually does not have the same
1001 -- representation as True. We assume that .FALSE. = False = 0.
1002 -- What about functions that return a logical type ???
1004 function Is_Legal_Copy
return Boolean;
1005 -- Check that an actual can be copied before generating the temporary
1006 -- to be used in the call. If the actual is of a by_reference type then
1007 -- the program is illegal (this can only happen in the presence of
1008 -- rep. clauses that force an incorrect alignment). If the formal is
1009 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1010 -- the effect that this might lead to unaligned arguments.
1012 function Make_Var
(Actual
: Node_Id
) return Entity_Id
;
1013 -- Returns an entity that refers to the given actual parameter, Actual
1014 -- (not including any type conversion). If Actual is an entity name,
1015 -- then this entity is returned unchanged, otherwise a renaming is
1016 -- created to provide an entity for the actual.
1018 procedure Reset_Packed_Prefix
;
1019 -- The expansion of a packed array component reference is delayed in
1020 -- the context of a call. Now we need to complete the expansion, so we
1021 -- unmark the analyzed bits in all prefixes.
1023 ---------------------------
1024 -- Add_Call_By_Copy_Code --
1025 ---------------------------
1027 procedure Add_Call_By_Copy_Code
is
1033 F_Typ
: constant Entity_Id
:= Etype
(Formal
);
1038 if not Is_Legal_Copy
then
1042 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1044 -- Use formal type for temp, unless formal type is an unconstrained
1045 -- array, in which case we don't have to worry about bounds checks,
1046 -- and we use the actual type, since that has appropriate bounds.
1048 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1049 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1051 Indic
:= New_Occurrence_Of
(Etype
(Formal
), Loc
);
1054 if Nkind
(Actual
) = N_Type_Conversion
then
1055 V_Typ
:= Etype
(Expression
(Actual
));
1057 -- If the formal is an (in-)out parameter, capture the name
1058 -- of the variable in order to build the post-call assignment.
1060 Var
:= Make_Var
(Expression
(Actual
));
1062 Crep
:= not Same_Representation
1063 (F_Typ
, Etype
(Expression
(Actual
)));
1066 V_Typ
:= Etype
(Actual
);
1067 Var
:= Make_Var
(Actual
);
1071 -- Setup initialization for case of in out parameter, or an out
1072 -- parameter where the formal is an unconstrained array (in the
1073 -- latter case, we have to pass in an object with bounds).
1075 -- If this is an out parameter, the initial copy is wasteful, so as
1076 -- an optimization for the one-dimensional case we extract the
1077 -- bounds of the actual and build an uninitialized temporary of the
1080 if Ekind
(Formal
) = E_In_Out_Parameter
1081 or else (Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
))
1083 if Nkind
(Actual
) = N_Type_Conversion
then
1084 if Conversion_OK
(Actual
) then
1085 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1087 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1090 elsif Ekind
(Formal
) = E_Out_Parameter
1091 and then Is_Array_Type
(F_Typ
)
1092 and then Number_Dimensions
(F_Typ
) = 1
1093 and then not Has_Non_Null_Base_Init_Proc
(F_Typ
)
1095 -- Actual is a one-dimensional array or slice, and the type
1096 -- requires no initialization. Create a temporary of the
1097 -- right size, but do not copy actual into it (optimization).
1101 Make_Subtype_Indication
(Loc
,
1102 Subtype_Mark
=> New_Occurrence_Of
(F_Typ
, Loc
),
1104 Make_Index_Or_Discriminant_Constraint
(Loc
,
1105 Constraints
=> New_List
(
1108 Make_Attribute_Reference
(Loc
,
1109 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1110 Attribute_Name
=> Name_First
),
1112 Make_Attribute_Reference
(Loc
,
1113 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1114 Attribute_Name
=> Name_Last
)))));
1117 Init
:= New_Occurrence_Of
(Var
, Loc
);
1120 -- An initialization is created for packed conversions as
1121 -- actuals for out parameters to enable Make_Object_Declaration
1122 -- to determine the proper subtype for N_Node. Note that this
1123 -- is wasteful because the extra copying on the call side is
1124 -- not required for such out parameters. ???
1126 elsif Ekind
(Formal
) = E_Out_Parameter
1127 and then Nkind
(Actual
) = N_Type_Conversion
1128 and then (Is_Bit_Packed_Array
(F_Typ
)
1130 Is_Bit_Packed_Array
(Etype
(Expression
(Actual
))))
1132 if Conversion_OK
(Actual
) then
1133 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1135 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1138 elsif Ekind
(Formal
) = E_In_Parameter
then
1140 -- Handle the case in which the actual is a type conversion
1142 if Nkind
(Actual
) = N_Type_Conversion
then
1143 if Conversion_OK
(Actual
) then
1144 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1146 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1149 Init
:= New_Occurrence_Of
(Var
, Loc
);
1157 Make_Object_Declaration
(Loc
,
1158 Defining_Identifier
=> Temp
,
1159 Object_Definition
=> Indic
,
1160 Expression
=> Init
);
1161 Set_Assignment_OK
(N_Node
);
1162 Insert_Action
(N
, N_Node
);
1164 -- Now, normally the deal here is that we use the defining
1165 -- identifier created by that object declaration. There is
1166 -- one exception to this. In the change of representation case
1167 -- the above declaration will end up looking like:
1169 -- temp : type := identifier;
1171 -- And in this case we might as well use the identifier directly
1172 -- and eliminate the temporary. Note that the analysis of the
1173 -- declaration was not a waste of time in that case, since it is
1174 -- what generated the necessary change of representation code. If
1175 -- the change of representation introduced additional code, as in
1176 -- a fixed-integer conversion, the expression is not an identifier
1177 -- and must be kept.
1180 and then Present
(Expression
(N_Node
))
1181 and then Is_Entity_Name
(Expression
(N_Node
))
1183 Temp
:= Entity
(Expression
(N_Node
));
1184 Rewrite
(N_Node
, Make_Null_Statement
(Loc
));
1187 -- For IN parameter, all we do is to replace the actual
1189 if Ekind
(Formal
) = E_In_Parameter
then
1190 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1193 -- Processing for OUT or IN OUT parameter
1196 -- Kill current value indications for the temporary variable we
1197 -- created, since we just passed it as an OUT parameter.
1199 Kill_Current_Values
(Temp
);
1200 Set_Is_Known_Valid
(Temp
, False);
1202 -- If type conversion, use reverse conversion on exit
1204 if Nkind
(Actual
) = N_Type_Conversion
then
1205 if Conversion_OK
(Actual
) then
1206 Expr
:= OK_Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1208 Expr
:= Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1211 Expr
:= New_Occurrence_Of
(Temp
, Loc
);
1214 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1217 -- If the actual is a conversion of a packed reference, it may
1218 -- already have been expanded by Remove_Side_Effects, and the
1219 -- resulting variable is a temporary which does not designate
1220 -- the proper out-parameter, which may not be addressable. In
1221 -- that case, generate an assignment to the original expression
1222 -- (before expansion of the packed reference) so that the proper
1223 -- expansion of assignment to a packed component can take place.
1230 if Is_Renaming_Of_Object
(Var
)
1231 and then Nkind
(Renamed_Object
(Var
)) = N_Selected_Component
1232 and then Is_Entity_Name
(Prefix
(Renamed_Object
(Var
)))
1233 and then Nkind
(Original_Node
(Prefix
(Renamed_Object
(Var
))))
1234 = N_Indexed_Component
1236 Has_Non_Standard_Rep
(Etype
(Prefix
(Renamed_Object
(Var
))))
1238 Obj
:= Renamed_Object
(Var
);
1240 Make_Selected_Component
(Loc
,
1242 New_Copy_Tree
(Original_Node
(Prefix
(Obj
))),
1243 Selector_Name
=> New_Copy
(Selector_Name
(Obj
)));
1244 Reset_Analyzed_Flags
(Lhs
);
1247 Lhs
:= New_Occurrence_Of
(Var
, Loc
);
1250 Set_Assignment_OK
(Lhs
);
1252 if Is_Access_Type
(E_Formal
)
1253 and then Is_Entity_Name
(Lhs
)
1255 Present
(Effective_Extra_Accessibility
(Entity
(Lhs
)))
1257 -- Copyback target is an Ada 2012 stand-alone object of an
1258 -- anonymous access type.
1260 pragma Assert
(Ada_Version
>= Ada_2012
);
1262 if Type_Access_Level
(E_Formal
) >
1263 Object_Access_Level
(Lhs
)
1265 Append_To
(Post_Call
,
1266 Make_Raise_Program_Error
(Loc
,
1267 Reason
=> PE_Accessibility_Check_Failed
));
1270 Append_To
(Post_Call
,
1271 Make_Assignment_Statement
(Loc
,
1273 Expression
=> Expr
));
1275 -- We would like to somehow suppress generation of the
1276 -- extra_accessibility assignment generated by the expansion
1277 -- of the above assignment statement. It's not a correctness
1278 -- issue because the following assignment renders it dead,
1279 -- but generating back-to-back assignments to the same
1280 -- target is undesirable. ???
1282 Append_To
(Post_Call
,
1283 Make_Assignment_Statement
(Loc
,
1284 Name
=> New_Occurrence_Of
(
1285 Effective_Extra_Accessibility
(Entity
(Lhs
)), Loc
),
1286 Expression
=> Make_Integer_Literal
(Loc
,
1287 Type_Access_Level
(E_Formal
))));
1290 Append_To
(Post_Call
,
1291 Make_Assignment_Statement
(Loc
,
1293 Expression
=> Expr
));
1297 end Add_Call_By_Copy_Code
;
1299 ----------------------------------
1300 -- Add_Simple_Call_By_Copy_Code --
1301 ----------------------------------
1303 procedure Add_Simple_Call_By_Copy_Code
is
1311 F_Typ
: constant Entity_Id
:= Etype
(Formal
);
1314 if not Is_Legal_Copy
then
1318 -- Use formal type for temp, unless formal type is an unconstrained
1319 -- array, in which case we don't have to worry about bounds checks,
1320 -- and we use the actual type, since that has appropriate bounds.
1322 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1323 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1325 Indic
:= New_Occurrence_Of
(Etype
(Formal
), Loc
);
1328 -- Prepare to generate code
1330 Reset_Packed_Prefix
;
1332 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1333 Incod
:= Relocate_Node
(Actual
);
1334 Outcod
:= New_Copy_Tree
(Incod
);
1336 -- Generate declaration of temporary variable, initializing it
1337 -- with the input parameter unless we have an OUT formal or
1338 -- this is an initialization call.
1340 -- If the formal is an out parameter with discriminants, the
1341 -- discriminants must be captured even if the rest of the object
1342 -- is in principle uninitialized, because the discriminants may
1343 -- be read by the called subprogram.
1345 if Ekind
(Formal
) = E_Out_Parameter
then
1348 if Has_Discriminants
(Etype
(Formal
)) then
1349 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1352 elsif Inside_Init_Proc
then
1354 -- Could use a comment here to match comment below ???
1356 if Nkind
(Actual
) /= N_Selected_Component
1358 not Has_Discriminant_Dependent_Constraint
1359 (Entity
(Selector_Name
(Actual
)))
1363 -- Otherwise, keep the component in order to generate the proper
1364 -- actual subtype, that depends on enclosing discriminants.
1372 Make_Object_Declaration
(Loc
,
1373 Defining_Identifier
=> Temp
,
1374 Object_Definition
=> Indic
,
1375 Expression
=> Incod
);
1380 -- If the call is to initialize a component of a composite type,
1381 -- and the component does not depend on discriminants, use the
1382 -- actual type of the component. This is required in case the
1383 -- component is constrained, because in general the formal of the
1384 -- initialization procedure will be unconstrained. Note that if
1385 -- the component being initialized is constrained by an enclosing
1386 -- discriminant, the presence of the initialization in the
1387 -- declaration will generate an expression for the actual subtype.
1389 Set_No_Initialization
(Decl
);
1390 Set_Object_Definition
(Decl
,
1391 New_Occurrence_Of
(Etype
(Actual
), Loc
));
1394 Insert_Action
(N
, Decl
);
1396 -- The actual is simply a reference to the temporary
1398 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1400 -- Generate copy out if OUT or IN OUT parameter
1402 if Ekind
(Formal
) /= E_In_Parameter
then
1404 Rhs
:= New_Occurrence_Of
(Temp
, Loc
);
1406 -- Deal with conversion
1408 if Nkind
(Lhs
) = N_Type_Conversion
then
1409 Lhs
:= Expression
(Lhs
);
1410 Rhs
:= Convert_To
(Etype
(Actual
), Rhs
);
1413 Append_To
(Post_Call
,
1414 Make_Assignment_Statement
(Loc
,
1416 Expression
=> Rhs
));
1417 Set_Assignment_OK
(Name
(Last
(Post_Call
)));
1419 end Add_Simple_Call_By_Copy_Code
;
1421 ---------------------------
1422 -- Check_Fortran_Logical --
1423 ---------------------------
1425 procedure Check_Fortran_Logical
is
1426 Logical
: constant Entity_Id
:= Etype
(Formal
);
1429 -- Note: this is very incomplete, e.g. it does not handle arrays
1430 -- of logical values. This is really not the right approach at all???)
1433 if Convention
(Subp
) = Convention_Fortran
1434 and then Root_Type
(Etype
(Formal
)) = Standard_Boolean
1435 and then Ekind
(Formal
) /= E_In_Parameter
1437 Var
:= Make_Var
(Actual
);
1438 Append_To
(Post_Call
,
1439 Make_Assignment_Statement
(Loc
,
1440 Name
=> New_Occurrence_Of
(Var
, Loc
),
1442 Unchecked_Convert_To
(
1445 Left_Opnd
=> New_Occurrence_Of
(Var
, Loc
),
1447 Unchecked_Convert_To
(
1449 New_Occurrence_Of
(Standard_False
, Loc
))))));
1451 end Check_Fortran_Logical
;
1457 function Is_Legal_Copy
return Boolean is
1459 -- An attempt to copy a value of such a type can only occur if
1460 -- representation clauses give the actual a misaligned address.
1462 if Is_By_Reference_Type
(Etype
(Formal
)) then
1464 -- If the front-end does not perform full type layout, the actual
1465 -- may in fact be properly aligned but there is not enough front-
1466 -- end information to determine this. In that case gigi will emit
1467 -- an error if a copy is not legal, or generate the proper code.
1468 -- For other backends we report the error now.
1470 -- Seems wrong to be issuing an error in the expander, since it
1471 -- will be missed in -gnatc mode ???
1473 if Frontend_Layout_On_Target
then
1475 ("misaligned actual cannot be passed by reference", Actual
);
1480 -- For users of Starlet, we assume that the specification of by-
1481 -- reference mechanism is mandatory. This may lead to unaligned
1482 -- objects but at least for DEC legacy code it is known to work.
1483 -- The warning will alert users of this code that a problem may
1486 elsif Mechanism
(Formal
) = By_Reference
1487 and then Is_Valued_Procedure
(Scope
(Formal
))
1490 ("by_reference actual may be misaligned??", Actual
);
1502 function Make_Var
(Actual
: Node_Id
) return Entity_Id
is
1506 if Is_Entity_Name
(Actual
) then
1507 return Entity
(Actual
);
1510 Var
:= Make_Temporary
(Loc
, 'T', Actual
);
1513 Make_Object_Renaming_Declaration
(Loc
,
1514 Defining_Identifier
=> Var
,
1516 New_Occurrence_Of
(Etype
(Actual
), Loc
),
1517 Name
=> Relocate_Node
(Actual
));
1519 Insert_Action
(N
, N_Node
);
1524 -------------------------
1525 -- Reset_Packed_Prefix --
1526 -------------------------
1528 procedure Reset_Packed_Prefix
is
1529 Pfx
: Node_Id
:= Actual
;
1532 Set_Analyzed
(Pfx
, False);
1534 not Nkind_In
(Pfx
, N_Selected_Component
, N_Indexed_Component
);
1535 Pfx
:= Prefix
(Pfx
);
1537 end Reset_Packed_Prefix
;
1539 -- Start of processing for Expand_Actuals
1542 Post_Call
:= New_List
;
1544 Formal
:= First_Formal
(Subp
);
1545 Actual
:= First_Actual
(N
);
1546 while Present
(Formal
) loop
1547 E_Formal
:= Etype
(Formal
);
1548 E_Actual
:= Etype
(Actual
);
1550 if Is_Scalar_Type
(E_Formal
)
1551 or else Nkind
(Actual
) = N_Slice
1553 Check_Fortran_Logical
;
1557 elsif Ekind
(Formal
) /= E_Out_Parameter
then
1559 -- The unusual case of the current instance of a protected type
1560 -- requires special handling. This can only occur in the context
1561 -- of a call within the body of a protected operation.
1563 if Is_Entity_Name
(Actual
)
1564 and then Ekind
(Entity
(Actual
)) = E_Protected_Type
1565 and then In_Open_Scopes
(Entity
(Actual
))
1567 if Scope
(Subp
) /= Entity
(Actual
) then
1569 ("operation outside protected type may not "
1570 & "call back its protected operations??", Actual
);
1574 Expand_Protected_Object_Reference
(N
, Entity
(Actual
)));
1577 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1578 -- build-in-place function, then a temporary return object needs
1579 -- to be created and access to it must be passed to the function.
1580 -- Currently we limit such functions to those with inherently
1581 -- limited result subtypes, but eventually we plan to expand the
1582 -- functions that are treated as build-in-place to include other
1583 -- composite result types.
1585 if Is_Build_In_Place_Function_Call
(Actual
) then
1586 Make_Build_In_Place_Call_In_Anonymous_Context
(Actual
);
1589 Apply_Constraint_Check
(Actual
, E_Formal
);
1591 -- Out parameter case. No constraint checks on access type
1594 elsif Is_Access_Type
(E_Formal
) then
1599 elsif Has_Discriminants
(Base_Type
(E_Formal
))
1600 or else Has_Non_Null_Base_Init_Proc
(E_Formal
)
1602 Apply_Constraint_Check
(Actual
, E_Formal
);
1607 Apply_Constraint_Check
(Actual
, Base_Type
(E_Formal
));
1610 -- Processing for IN-OUT and OUT parameters
1612 if Ekind
(Formal
) /= E_In_Parameter
then
1614 -- For type conversions of arrays, apply length/range checks
1616 if Is_Array_Type
(E_Formal
)
1617 and then Nkind
(Actual
) = N_Type_Conversion
1619 if Is_Constrained
(E_Formal
) then
1620 Apply_Length_Check
(Expression
(Actual
), E_Formal
);
1622 Apply_Range_Check
(Expression
(Actual
), E_Formal
);
1626 -- If argument is a type conversion for a type that is passed
1627 -- by copy, then we must pass the parameter by copy.
1629 if Nkind
(Actual
) = N_Type_Conversion
1631 (Is_Numeric_Type
(E_Formal
)
1632 or else Is_Access_Type
(E_Formal
)
1633 or else Is_Enumeration_Type
(E_Formal
)
1634 or else Is_Bit_Packed_Array
(Etype
(Formal
))
1635 or else Is_Bit_Packed_Array
(Etype
(Expression
(Actual
)))
1637 -- Also pass by copy if change of representation
1639 or else not Same_Representation
1641 Etype
(Expression
(Actual
))))
1643 Add_Call_By_Copy_Code
;
1645 -- References to components of bit packed arrays are expanded
1646 -- at this point, rather than at the point of analysis of the
1647 -- actuals, to handle the expansion of the assignment to
1648 -- [in] out parameters.
1650 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
1651 Add_Simple_Call_By_Copy_Code
;
1653 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1654 -- because the back-end cannot cope with such objects. In other
1655 -- cases where alignment forces a copy, the back-end generates
1656 -- it properly. It should not be generated unconditionally in the
1657 -- front-end because it does not know precisely the alignment
1658 -- requirements of the target, and makes too conservative an
1659 -- estimate, leading to superfluous copies or spurious errors
1660 -- on by-reference parameters.
1662 elsif Nkind
(Actual
) = N_Selected_Component
1664 Component_May_Be_Bit_Aligned
(Entity
(Selector_Name
(Actual
)))
1665 and then not Represented_As_Scalar
(Etype
(Formal
))
1667 Add_Simple_Call_By_Copy_Code
;
1669 -- References to slices of bit packed arrays are expanded
1671 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
1672 Add_Call_By_Copy_Code
;
1674 -- References to possibly unaligned slices of arrays are expanded
1676 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
1677 Add_Call_By_Copy_Code
;
1679 -- Deal with access types where the actual subtype and the
1680 -- formal subtype are not the same, requiring a check.
1682 -- It is necessary to exclude tagged types because of "downward
1683 -- conversion" errors.
1685 elsif Is_Access_Type
(E_Formal
)
1686 and then not Same_Type
(E_Formal
, E_Actual
)
1687 and then not Is_Tagged_Type
(Designated_Type
(E_Formal
))
1689 Add_Call_By_Copy_Code
;
1691 -- If the actual is not a scalar and is marked for volatile
1692 -- treatment, whereas the formal is not volatile, then pass
1693 -- by copy unless it is a by-reference type.
1695 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
1696 -- because this is the enforcement of a language rule that applies
1697 -- only to "real" volatile variables, not e.g. to the address
1698 -- clause overlay case.
1700 elsif Is_Entity_Name
(Actual
)
1701 and then Is_Volatile
(Entity
(Actual
))
1702 and then not Is_By_Reference_Type
(E_Actual
)
1703 and then not Is_Scalar_Type
(Etype
(Entity
(Actual
)))
1704 and then not Is_Volatile
(E_Formal
)
1706 Add_Call_By_Copy_Code
;
1708 elsif Nkind
(Actual
) = N_Indexed_Component
1709 and then Is_Entity_Name
(Prefix
(Actual
))
1710 and then Has_Volatile_Components
(Entity
(Prefix
(Actual
)))
1712 Add_Call_By_Copy_Code
;
1714 -- Add call-by-copy code for the case of scalar out parameters
1715 -- when it is not known at compile time that the subtype of the
1716 -- formal is a subrange of the subtype of the actual (or vice
1717 -- versa for in out parameters), in order to get range checks
1718 -- on such actuals. (Maybe this case should be handled earlier
1719 -- in the if statement???)
1721 elsif Is_Scalar_Type
(E_Formal
)
1723 (not In_Subrange_Of
(E_Formal
, E_Actual
)
1725 (Ekind
(Formal
) = E_In_Out_Parameter
1726 and then not In_Subrange_Of
(E_Actual
, E_Formal
)))
1728 -- Perhaps the setting back to False should be done within
1729 -- Add_Call_By_Copy_Code, since it could get set on other
1730 -- cases occurring above???
1732 if Do_Range_Check
(Actual
) then
1733 Set_Do_Range_Check
(Actual
, False);
1736 Add_Call_By_Copy_Code
;
1739 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
1740 -- by-reference parameters on exit from the call. If the actual
1741 -- is a derived type and the operation is inherited, the body
1742 -- of the operation will not contain a call to the predicate
1743 -- function, so it must be done explicitly after the call. Ditto
1744 -- if the actual is an entity of a predicated subtype.
1746 -- The rule refers to by-reference types, but a check is needed
1747 -- for by-copy types as well. That check is subsumed by the rule
1748 -- for subtype conversion on assignment, but we can generate the
1749 -- required check now.
1751 -- Note also that Subp may be either a subprogram entity for
1752 -- direct calls, or a type entity for indirect calls, which must
1753 -- be handled separately because the name does not denote an
1754 -- overloadable entity.
1756 By_Ref_Predicate_Check
: declare
1757 Aund
: constant Entity_Id
:= Underlying_Type
(E_Actual
);
1760 function Is_Public_Subp
return Boolean;
1761 -- Check whether the subprogram being called is a visible
1762 -- operation of the type of the actual. Used to determine
1763 -- whether an invariant check must be generated on the
1766 ---------------------
1767 -- Is_Public_Subp --
1768 ---------------------
1770 function Is_Public_Subp
return Boolean is
1771 Pack
: constant Entity_Id
:= Scope
(Subp
);
1772 Subp_Decl
: Node_Id
;
1775 if not Is_Subprogram
(Subp
) then
1778 -- The operation may be inherited, or a primitive of the
1782 Nkind_In
(Parent
(Subp
), N_Private_Extension_Declaration
,
1783 N_Full_Type_Declaration
)
1785 Subp_Decl
:= Parent
(Subp
);
1788 Subp_Decl
:= Unit_Declaration_Node
(Subp
);
1791 return Ekind
(Pack
) = E_Package
1793 List_Containing
(Subp_Decl
) =
1794 Visible_Declarations
1795 (Specification
(Unit_Declaration_Node
(Pack
)));
1798 -- Start of processing for By_Ref_Predicate_Check
1807 if Has_Predicates
(Atyp
)
1808 and then Present
(Predicate_Function
(Atyp
))
1810 -- Skip predicate checks for special cases
1812 and then Predicate_Tests_On_Arguments
(Subp
)
1814 Append_To
(Post_Call
,
1815 Make_Predicate_Check
(Atyp
, Actual
));
1818 -- We generated caller-side invariant checks in two cases:
1820 -- a) when calling an inherited operation, where there is an
1821 -- implicit view conversion of the actual to the parent type.
1823 -- b) When the conversion is explicit
1825 -- We treat these cases separately because the required
1826 -- conversion for a) is added later when expanding the call.
1828 if Has_Invariants
(Etype
(Actual
))
1830 Nkind
(Parent
(Subp
)) = N_Private_Extension_Declaration
1832 if Comes_From_Source
(N
) and then Is_Public_Subp
then
1833 Append_To
(Post_Call
, Make_Invariant_Call
(Actual
));
1836 elsif Nkind
(Actual
) = N_Type_Conversion
1837 and then Has_Invariants
(Etype
(Expression
(Actual
)))
1839 if Comes_From_Source
(N
) and then Is_Public_Subp
then
1840 Append_To
(Post_Call
,
1841 Make_Invariant_Call
(Expression
(Actual
)));
1844 end By_Ref_Predicate_Check
;
1846 -- Processing for IN parameters
1849 -- For IN parameters is in the packed array case, we expand an
1850 -- indexed component (the circuit in Exp_Ch4 deliberately left
1851 -- indexed components appearing as actuals untouched, so that
1852 -- the special processing above for the OUT and IN OUT cases
1853 -- could be performed. We could make the test in Exp_Ch4 more
1854 -- complex and have it detect the parameter mode, but it is
1855 -- easier simply to handle all cases here.)
1857 if Nkind
(Actual
) = N_Indexed_Component
1858 and then Is_Packed
(Etype
(Prefix
(Actual
)))
1860 Reset_Packed_Prefix
;
1861 Expand_Packed_Element_Reference
(Actual
);
1863 -- If we have a reference to a bit packed array, we copy it, since
1864 -- the actual must be byte aligned.
1866 -- Is this really necessary in all cases???
1868 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
1869 Add_Simple_Call_By_Copy_Code
;
1871 -- If a non-scalar actual is possibly unaligned, we need a copy
1873 elsif Is_Possibly_Unaligned_Object
(Actual
)
1874 and then not Represented_As_Scalar
(Etype
(Formal
))
1876 Add_Simple_Call_By_Copy_Code
;
1878 -- Similarly, we have to expand slices of packed arrays here
1879 -- because the result must be byte aligned.
1881 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
1882 Add_Call_By_Copy_Code
;
1884 -- Only processing remaining is to pass by copy if this is a
1885 -- reference to a possibly unaligned slice, since the caller
1886 -- expects an appropriately aligned argument.
1888 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
1889 Add_Call_By_Copy_Code
;
1891 -- An unusual case: a current instance of an enclosing task can be
1892 -- an actual, and must be replaced by a reference to self.
1894 elsif Is_Entity_Name
(Actual
)
1895 and then Is_Task_Type
(Entity
(Actual
))
1897 if In_Open_Scopes
(Entity
(Actual
)) then
1899 (Make_Function_Call
(Loc
,
1900 Name
=> New_Occurrence_Of
(RTE
(RE_Self
), Loc
))));
1903 -- A task type cannot otherwise appear as an actual
1906 raise Program_Error
;
1911 Next_Formal
(Formal
);
1912 Next_Actual
(Actual
);
1915 -- Find right place to put post call stuff if it is present
1917 if not Is_Empty_List
(Post_Call
) then
1919 -- Cases where the call is not a member of a statement list
1921 if not Is_List_Member
(N
) then
1923 -- In Ada 2012 the call may be a function call in an expression
1924 -- (since OUT and IN OUT parameters are now allowed for such
1925 -- calls). The write-back of (in)-out parameters is handled
1926 -- by the back-end, but the constraint checks generated when
1927 -- subtypes of formal and actual don't match must be inserted
1928 -- in the form of assignments.
1930 if Ada_Version
>= Ada_2012
1931 and then Nkind
(N
) = N_Function_Call
1933 -- We used to just do handle this by climbing up parents to
1934 -- a non-statement/declaration and then simply making a call
1935 -- to Insert_Actions_After (P, Post_Call), but that doesn't
1936 -- work. If we are in the middle of an expression, e.g. the
1937 -- condition of an IF, this call would insert after the IF
1938 -- statement, which is much too late to be doing the write
1939 -- back. For example:
1941 -- if Clobber (X) then
1942 -- Put_Line (X'Img);
1947 -- Now assume Clobber changes X, if we put the write back
1948 -- after the IF, the Put_Line gets the wrong value and the
1949 -- goto causes the write back to be skipped completely.
1951 -- To deal with this, we replace the call by
1954 -- Tnnn : function-result-type renames function-call;
1955 -- Post_Call actions
1960 -- Note: this won't do in Modify_Tree_For_C mode, but we
1961 -- will deal with that later (it will require creating a
1962 -- declaration for Temp, using Insert_Declaration) ???
1965 Tnnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
1966 FRTyp
: constant Entity_Id
:= Etype
(N
);
1967 Name
: constant Node_Id
:= Relocate_Node
(N
);
1970 Prepend_To
(Post_Call
,
1971 Make_Object_Renaming_Declaration
(Loc
,
1972 Defining_Identifier
=> Tnnn
,
1973 Subtype_Mark
=> New_Occurrence_Of
(FRTyp
, Loc
),
1977 Make_Expression_With_Actions
(Loc
,
1978 Actions
=> Post_Call
,
1979 Expression
=> New_Occurrence_Of
(Tnnn
, Loc
)));
1981 -- We don't want to just blindly call Analyze_And_Resolve
1982 -- because that would cause unwanted recursion on the call.
1983 -- So for a moment set the call as analyzed to prevent that
1984 -- recursion, and get the rest analyzed properly, then reset
1985 -- the analyzed flag, so our caller can continue.
1987 Set_Analyzed
(Name
, True);
1988 Analyze_And_Resolve
(N
, FRTyp
);
1989 Set_Analyzed
(Name
, False);
1991 -- Reset calling argument to point to function call inside
1992 -- the expression with actions so the caller can continue
1993 -- to process the call.
1998 -- If not the special Ada 2012 case of a function call, then
1999 -- we must have the triggering statement of a triggering
2000 -- alternative or an entry call alternative, and we can add
2001 -- the post call stuff to the corresponding statement list.
2009 pragma Assert
(Nkind_In
(P
, N_Triggering_Alternative
,
2010 N_Entry_Call_Alternative
));
2012 if Is_Non_Empty_List
(Statements
(P
)) then
2013 Insert_List_Before_And_Analyze
2014 (First
(Statements
(P
)), Post_Call
);
2016 Set_Statements
(P
, Post_Call
);
2023 -- Otherwise, normal case where N is in a statement sequence,
2024 -- just put the post-call stuff after the call statement.
2027 Insert_Actions_After
(N
, Post_Call
);
2032 -- The call node itself is re-analyzed in Expand_Call
2040 -- This procedure handles expansion of function calls and procedure call
2041 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
2042 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
2044 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
2045 -- Provide values of actuals for all formals in Extra_Formals list
2046 -- Replace "call" to enumeration literal function by literal itself
2047 -- Rewrite call to predefined operator as operator
2048 -- Replace actuals to in-out parameters that are numeric conversions,
2049 -- with explicit assignment to temporaries before and after the call.
2051 -- Note that the list of actuals has been filled with default expressions
2052 -- during semantic analysis of the call. Only the extra actuals required
2053 -- for the 'Constrained attribute and for accessibility checks are added
2056 procedure Expand_Call
(N
: Node_Id
) is
2057 Loc
: constant Source_Ptr
:= Sloc
(N
);
2058 Call_Node
: Node_Id
:= N
;
2059 Extra_Actuals
: List_Id
:= No_List
;
2060 Prev
: Node_Id
:= Empty
;
2062 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
);
2063 -- Adds one entry to the end of the actual parameter list. Used for
2064 -- default parameters and for extra actuals (for Extra_Formals). The
2065 -- argument is an N_Parameter_Association node.
2067 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
);
2068 -- Adds an extra actual to the list of extra actuals. Expr is the
2069 -- expression for the value of the actual, EF is the entity for the
2072 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
;
2073 -- Within an instance, a type derived from an untagged formal derived
2074 -- type inherits from the original parent, not from the actual. The
2075 -- current derivation mechanism has the derived type inherit from the
2076 -- actual, which is only correct outside of the instance. If the
2077 -- subprogram is inherited, we test for this particular case through a
2078 -- convoluted tree traversal before setting the proper subprogram to be
2081 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean;
2082 -- Return true if E comes from an instance that is not yet frozen
2084 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean;
2085 -- Determine if Subp denotes a non-dispatching call to a Deep routine
2087 function New_Value
(From
: Node_Id
) return Node_Id
;
2088 -- From is the original Expression. New_Value is equivalent to a call
2089 -- to Duplicate_Subexpr with an explicit dereference when From is an
2090 -- access parameter.
2092 --------------------------
2093 -- Add_Actual_Parameter --
2094 --------------------------
2096 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
) is
2097 Actual_Expr
: constant Node_Id
:=
2098 Explicit_Actual_Parameter
(Insert_Param
);
2101 -- Case of insertion is first named actual
2103 if No
(Prev
) or else
2104 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
2106 Set_Next_Named_Actual
2107 (Insert_Param
, First_Named_Actual
(Call_Node
));
2108 Set_First_Named_Actual
(Call_Node
, Actual_Expr
);
2111 if No
(Parameter_Associations
(Call_Node
)) then
2112 Set_Parameter_Associations
(Call_Node
, New_List
);
2115 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2118 Insert_After
(Prev
, Insert_Param
);
2121 -- Case of insertion is not first named actual
2124 Set_Next_Named_Actual
2125 (Insert_Param
, Next_Named_Actual
(Parent
(Prev
)));
2126 Set_Next_Named_Actual
(Parent
(Prev
), Actual_Expr
);
2127 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2130 Prev
:= Actual_Expr
;
2131 end Add_Actual_Parameter
;
2133 ----------------------
2134 -- Add_Extra_Actual --
2135 ----------------------
2137 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
) is
2138 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
2141 if Extra_Actuals
= No_List
then
2142 Extra_Actuals
:= New_List
;
2143 Set_Parent
(Extra_Actuals
, Call_Node
);
2146 Append_To
(Extra_Actuals
,
2147 Make_Parameter_Association
(Loc
,
2148 Selector_Name
=> New_Occurrence_Of
(EF
, Loc
),
2149 Explicit_Actual_Parameter
=> Expr
));
2151 Analyze_And_Resolve
(Expr
, Etype
(EF
));
2153 if Nkind
(Call_Node
) = N_Function_Call
then
2154 Set_Is_Accessibility_Actual
(Parent
(Expr
));
2156 end Add_Extra_Actual
;
2158 ---------------------------
2159 -- Inherited_From_Formal --
2160 ---------------------------
2162 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
is
2164 Gen_Par
: Entity_Id
;
2165 Gen_Prim
: Elist_Id
;
2170 -- If the operation is inherited, it is attached to the corresponding
2171 -- type derivation. If the parent in the derivation is a generic
2172 -- actual, it is a subtype of the actual, and we have to recover the
2173 -- original derived type declaration to find the proper parent.
2175 if Nkind
(Parent
(S
)) /= N_Full_Type_Declaration
2176 or else not Is_Derived_Type
(Defining_Identifier
(Parent
(S
)))
2177 or else Nkind
(Type_Definition
(Original_Node
(Parent
(S
)))) /=
2178 N_Derived_Type_Definition
2179 or else not In_Instance
2186 (Type_Definition
(Original_Node
(Parent
(S
))));
2188 if Nkind
(Indic
) = N_Subtype_Indication
then
2189 Par
:= Entity
(Subtype_Mark
(Indic
));
2191 Par
:= Entity
(Indic
);
2195 if not Is_Generic_Actual_Type
(Par
)
2196 or else Is_Tagged_Type
(Par
)
2197 or else Nkind
(Parent
(Par
)) /= N_Subtype_Declaration
2198 or else not In_Open_Scopes
(Scope
(Par
))
2202 Gen_Par
:= Generic_Parent_Type
(Parent
(Par
));
2205 -- If the actual has no generic parent type, the formal is not
2206 -- a formal derived type, so nothing to inherit.
2208 if No
(Gen_Par
) then
2212 -- If the generic parent type is still the generic type, this is a
2213 -- private formal, not a derived formal, and there are no operations
2214 -- inherited from the formal.
2216 if Nkind
(Parent
(Gen_Par
)) = N_Formal_Type_Declaration
then
2220 Gen_Prim
:= Collect_Primitive_Operations
(Gen_Par
);
2222 Elmt
:= First_Elmt
(Gen_Prim
);
2223 while Present
(Elmt
) loop
2224 if Chars
(Node
(Elmt
)) = Chars
(S
) then
2230 F1
:= First_Formal
(S
);
2231 F2
:= First_Formal
(Node
(Elmt
));
2233 and then Present
(F2
)
2235 if Etype
(F1
) = Etype
(F2
)
2236 or else Etype
(F2
) = Gen_Par
2242 exit; -- not the right subprogram
2254 raise Program_Error
;
2255 end Inherited_From_Formal
;
2257 --------------------------
2258 -- In_Unfrozen_Instance --
2259 --------------------------
2261 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean is
2266 while Present
(S
) and then S
/= Standard_Standard
loop
2267 if Is_Generic_Instance
(S
)
2268 and then Present
(Freeze_Node
(S
))
2269 and then not Analyzed
(Freeze_Node
(S
))
2278 end In_Unfrozen_Instance
;
2280 -------------------------
2281 -- Is_Direct_Deep_Call --
2282 -------------------------
2284 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean is
2286 if Is_TSS
(Subp
, TSS_Deep_Adjust
)
2287 or else Is_TSS
(Subp
, TSS_Deep_Finalize
)
2288 or else Is_TSS
(Subp
, TSS_Deep_Initialize
)
2295 Actual
:= First
(Parameter_Associations
(N
));
2296 Formal
:= First_Formal
(Subp
);
2297 while Present
(Actual
)
2298 and then Present
(Formal
)
2300 if Nkind
(Actual
) = N_Identifier
2301 and then Is_Controlling_Actual
(Actual
)
2302 and then Etype
(Actual
) = Etype
(Formal
)
2308 Next_Formal
(Formal
);
2314 end Is_Direct_Deep_Call
;
2320 function New_Value
(From
: Node_Id
) return Node_Id
is
2321 Res
: constant Node_Id
:= Duplicate_Subexpr
(From
);
2323 if Is_Access_Type
(Etype
(From
)) then
2324 return Make_Explicit_Dereference
(Sloc
(From
), Prefix
=> Res
);
2332 Curr_S
: constant Entity_Id
:= Current_Scope
;
2333 Remote
: constant Boolean := Is_Remote_Call
(Call_Node
);
2336 Orig_Subp
: Entity_Id
:= Empty
;
2337 Param_Count
: Natural := 0;
2338 Parent_Formal
: Entity_Id
;
2339 Parent_Subp
: Entity_Id
;
2343 Prev_Orig
: Node_Id
;
2344 -- Original node for an actual, which may have been rewritten. If the
2345 -- actual is a function call that has been transformed from a selected
2346 -- component, the original node is unanalyzed. Otherwise, it carries
2347 -- semantic information used to generate additional actuals.
2349 CW_Interface_Formals_Present
: Boolean := False;
2351 -- Start of processing for Expand_Call
2354 -- Expand the procedure call if the first actual has a dimension and if
2355 -- the procedure is Put (Ada 2012).
2357 if Ada_Version
>= Ada_2012
2358 and then Nkind
(Call_Node
) = N_Procedure_Call_Statement
2359 and then Present
(Parameter_Associations
(Call_Node
))
2361 Expand_Put_Call_With_Symbol
(Call_Node
);
2364 -- Ignore if previous error
2366 if Nkind
(Call_Node
) in N_Has_Etype
2367 and then Etype
(Call_Node
) = Any_Type
2372 -- Call using access to subprogram with explicit dereference
2374 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
2375 Subp
:= Etype
(Name
(Call_Node
));
2376 Parent_Subp
:= Empty
;
2378 -- Case of call to simple entry, where the Name is a selected component
2379 -- whose prefix is the task, and whose selector name is the entry name
2381 elsif Nkind
(Name
(Call_Node
)) = N_Selected_Component
then
2382 Subp
:= Entity
(Selector_Name
(Name
(Call_Node
)));
2383 Parent_Subp
:= Empty
;
2385 -- Case of call to member of entry family, where Name is an indexed
2386 -- component, with the prefix being a selected component giving the
2387 -- task and entry family name, and the index being the entry index.
2389 elsif Nkind
(Name
(Call_Node
)) = N_Indexed_Component
then
2390 Subp
:= Entity
(Selector_Name
(Prefix
(Name
(Call_Node
))));
2391 Parent_Subp
:= Empty
;
2396 Subp
:= Entity
(Name
(Call_Node
));
2397 Parent_Subp
:= Alias
(Subp
);
2399 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2400 -- if we can tell that the first parameter cannot possibly be null.
2401 -- This improves efficiency by avoiding a run-time test.
2403 -- We do not do this if Raise_Exception_Always does not exist, which
2404 -- can happen in configurable run time profiles which provide only a
2407 if Is_RTE
(Subp
, RE_Raise_Exception
)
2408 and then RTE_Available
(RE_Raise_Exception_Always
)
2411 FA
: constant Node_Id
:=
2412 Original_Node
(First_Actual
(Call_Node
));
2415 -- The case we catch is where the first argument is obtained
2416 -- using the Identity attribute (which must always be
2419 if Nkind
(FA
) = N_Attribute_Reference
2420 and then Attribute_Name
(FA
) = Name_Identity
2422 Subp
:= RTE
(RE_Raise_Exception_Always
);
2423 Set_Name
(Call_Node
, New_Occurrence_Of
(Subp
, Loc
));
2428 if Ekind
(Subp
) = E_Entry
then
2429 Parent_Subp
:= Empty
;
2433 -- Detect the following code in System.Finalization_Masters only on
2434 -- .NET/JVM targets:
2436 -- procedure Finalize (Master : in out Finalization_Master) is
2440 -- Finalize (Curr_Ptr.all);
2442 -- Since .NET/JVM compilers lack address arithmetic and Deep_Finalize
2443 -- cannot be named in library or user code, the compiler has to deal
2444 -- with this by transforming the call to Finalize into Deep_Finalize.
2446 if VM_Target
/= No_VM
2447 and then Chars
(Subp
) = Name_Finalize
2448 and then Ekind
(Curr_S
) = E_Block
2449 and then Ekind
(Scope
(Curr_S
)) = E_Procedure
2450 and then Chars
(Scope
(Curr_S
)) = Name_Finalize
2451 and then Etype
(First_Formal
(Scope
(Curr_S
))) =
2452 RTE
(RE_Finalization_Master
)
2455 Deep_Fin
: constant Entity_Id
:=
2456 Find_Prim_Op
(RTE
(RE_Root_Controlled
),
2459 -- Since Root_Controlled is a tagged type, the compiler should
2460 -- always generate Deep_Finalize for it.
2462 pragma Assert
(Present
(Deep_Fin
));
2465 -- Deep_Finalize (Curr_Ptr.all);
2468 Make_Procedure_Call_Statement
(Loc
,
2470 New_Occurrence_Of
(Deep_Fin
, Loc
),
2471 Parameter_Associations
=>
2472 New_Copy_List_Tree
(Parameter_Associations
(N
))));
2479 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2480 -- alternative in an asynchronous select or as an entry call in
2481 -- a conditional or timed select. Check whether the procedure call
2482 -- is a renaming of an entry and rewrite it as an entry call.
2484 if Ada_Version
>= Ada_2005
2485 and then Nkind
(Call_Node
) = N_Procedure_Call_Statement
2487 ((Nkind
(Parent
(Call_Node
)) = N_Triggering_Alternative
2488 and then Triggering_Statement
(Parent
(Call_Node
)) = Call_Node
)
2490 (Nkind
(Parent
(Call_Node
)) = N_Entry_Call_Alternative
2491 and then Entry_Call_Statement
(Parent
(Call_Node
)) = Call_Node
))
2495 Ren_Root
: Entity_Id
:= Subp
;
2498 -- This may be a chain of renamings, find the root
2500 if Present
(Alias
(Ren_Root
)) then
2501 Ren_Root
:= Alias
(Ren_Root
);
2504 if Present
(Original_Node
(Parent
(Parent
(Ren_Root
)))) then
2505 Ren_Decl
:= Original_Node
(Parent
(Parent
(Ren_Root
)));
2507 if Nkind
(Ren_Decl
) = N_Subprogram_Renaming_Declaration
then
2509 Make_Entry_Call_Statement
(Loc
,
2511 New_Copy_Tree
(Name
(Ren_Decl
)),
2512 Parameter_Associations
=>
2514 (Parameter_Associations
(Call_Node
))));
2522 -- First step, compute extra actuals, corresponding to any Extra_Formals
2523 -- present. Note that we do not access Extra_Formals directly, instead
2524 -- we simply note the presence of the extra formals as we process the
2525 -- regular formals collecting corresponding actuals in Extra_Actuals.
2527 -- We also generate any required range checks for actuals for in formals
2528 -- as we go through the loop, since this is a convenient place to do it.
2529 -- (Though it seems that this would be better done in Expand_Actuals???)
2531 -- Special case: Thunks must not compute the extra actuals; they must
2532 -- just propagate to the target primitive their extra actuals.
2534 if Is_Thunk
(Current_Scope
)
2535 and then Thunk_Entity
(Current_Scope
) = Subp
2536 and then Present
(Extra_Formals
(Subp
))
2538 pragma Assert
(Present
(Extra_Formals
(Current_Scope
)));
2541 Target_Formal
: Entity_Id
;
2542 Thunk_Formal
: Entity_Id
;
2545 Target_Formal
:= Extra_Formals
(Subp
);
2546 Thunk_Formal
:= Extra_Formals
(Current_Scope
);
2547 while Present
(Target_Formal
) loop
2549 (New_Occurrence_Of
(Thunk_Formal
, Loc
), Thunk_Formal
);
2551 Target_Formal
:= Extra_Formal
(Target_Formal
);
2552 Thunk_Formal
:= Extra_Formal
(Thunk_Formal
);
2555 while Is_Non_Empty_List
(Extra_Actuals
) loop
2556 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
2559 Expand_Actuals
(Call_Node
, Subp
);
2564 Formal
:= First_Formal
(Subp
);
2565 Actual
:= First_Actual
(Call_Node
);
2567 while Present
(Formal
) loop
2569 -- Generate range check if required
2571 if Do_Range_Check
(Actual
)
2572 and then Ekind
(Formal
) = E_In_Parameter
2574 Generate_Range_Check
2575 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
2578 -- Prepare to examine current entry
2581 Prev_Orig
:= Original_Node
(Prev
);
2583 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2584 -- to expand it in a further round.
2586 CW_Interface_Formals_Present
:=
2587 CW_Interface_Formals_Present
2589 (Ekind
(Etype
(Formal
)) = E_Class_Wide_Type
2590 and then Is_Interface
(Etype
(Etype
(Formal
))))
2592 (Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
2593 and then Is_Interface
(Directly_Designated_Type
2594 (Etype
(Etype
(Formal
)))));
2596 -- Create possible extra actual for constrained case. Usually, the
2597 -- extra actual is of the form actual'constrained, but since this
2598 -- attribute is only available for unconstrained records, TRUE is
2599 -- expanded if the type of the formal happens to be constrained (for
2600 -- instance when this procedure is inherited from an unconstrained
2601 -- record to a constrained one) or if the actual has no discriminant
2602 -- (its type is constrained). An exception to this is the case of a
2603 -- private type without discriminants. In this case we pass FALSE
2604 -- because the object has underlying discriminants with defaults.
2606 if Present
(Extra_Constrained
(Formal
)) then
2607 if Ekind
(Etype
(Prev
)) in Private_Kind
2608 and then not Has_Discriminants
(Base_Type
(Etype
(Prev
)))
2611 (New_Occurrence_Of
(Standard_False
, Loc
),
2612 Extra_Constrained
(Formal
));
2614 elsif Is_Constrained
(Etype
(Formal
))
2615 or else not Has_Discriminants
(Etype
(Prev
))
2618 (New_Occurrence_Of
(Standard_True
, Loc
),
2619 Extra_Constrained
(Formal
));
2621 -- Do not produce extra actuals for Unchecked_Union parameters.
2622 -- Jump directly to the end of the loop.
2624 elsif Is_Unchecked_Union
(Base_Type
(Etype
(Actual
))) then
2625 goto Skip_Extra_Actual_Generation
;
2628 -- If the actual is a type conversion, then the constrained
2629 -- test applies to the actual, not the target type.
2635 -- Test for unchecked conversions as well, which can occur
2636 -- as out parameter actuals on calls to stream procedures.
2639 while Nkind_In
(Act_Prev
, N_Type_Conversion
,
2640 N_Unchecked_Type_Conversion
)
2642 Act_Prev
:= Expression
(Act_Prev
);
2645 -- If the expression is a conversion of a dereference, this
2646 -- is internally generated code that manipulates addresses,
2647 -- e.g. when building interface tables. No check should
2648 -- occur in this case, and the discriminated object is not
2651 if not Comes_From_Source
(Actual
)
2652 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
2653 and then Nkind
(Act_Prev
) = N_Explicit_Dereference
2656 (New_Occurrence_Of
(Standard_False
, Loc
),
2657 Extra_Constrained
(Formal
));
2661 (Make_Attribute_Reference
(Sloc
(Prev
),
2663 Duplicate_Subexpr_No_Checks
2664 (Act_Prev
, Name_Req
=> True),
2665 Attribute_Name
=> Name_Constrained
),
2666 Extra_Constrained
(Formal
));
2672 -- Create possible extra actual for accessibility level
2674 if Present
(Extra_Accessibility
(Formal
)) then
2676 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2677 -- attribute, then the original actual may be an aliased object
2678 -- occurring as the prefix in a call using "Object.Operation"
2679 -- notation. In that case we must pass the level of the object,
2680 -- so Prev_Orig is reset to Prev and the attribute will be
2681 -- processed by the code for Access attributes further below.
2683 if Prev_Orig
/= Prev
2684 and then Nkind
(Prev
) = N_Attribute_Reference
2686 Get_Attribute_Id
(Attribute_Name
(Prev
)) = Attribute_Access
2687 and then Is_Aliased_View
(Prev_Orig
)
2692 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
2693 -- accessibility levels.
2695 if Is_Thunk
(Current_Scope
) then
2697 Parm_Ent
: Entity_Id
;
2700 if Is_Controlling_Actual
(Actual
) then
2702 -- Find the corresponding actual of the thunk
2704 Parm_Ent
:= First_Entity
(Current_Scope
);
2705 for J
in 2 .. Param_Count
loop
2706 Next_Entity
(Parm_Ent
);
2709 -- Handle unchecked conversion of access types generated
2710 -- in thunks (cf. Expand_Interface_Thunk).
2712 elsif Is_Access_Type
(Etype
(Actual
))
2713 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
2715 Parm_Ent
:= Entity
(Expression
(Actual
));
2717 else pragma Assert
(Is_Entity_Name
(Actual
));
2718 Parm_Ent
:= Entity
(Actual
);
2722 (New_Occurrence_Of
(Extra_Accessibility
(Parm_Ent
), Loc
),
2723 Extra_Accessibility
(Formal
));
2726 elsif Is_Entity_Name
(Prev_Orig
) then
2728 -- When passing an access parameter, or a renaming of an access
2729 -- parameter, as the actual to another access parameter we need
2730 -- to pass along the actual's own access level parameter. This
2731 -- is done if we are within the scope of the formal access
2732 -- parameter (if this is an inlined body the extra formal is
2735 if (Is_Formal
(Entity
(Prev_Orig
))
2737 (Present
(Renamed_Object
(Entity
(Prev_Orig
)))
2739 Is_Entity_Name
(Renamed_Object
(Entity
(Prev_Orig
)))
2742 (Entity
(Renamed_Object
(Entity
(Prev_Orig
))))))
2743 and then Ekind
(Etype
(Prev_Orig
)) = E_Anonymous_Access_Type
2744 and then In_Open_Scopes
(Scope
(Entity
(Prev_Orig
)))
2747 Parm_Ent
: constant Entity_Id
:= Param_Entity
(Prev_Orig
);
2750 pragma Assert
(Present
(Parm_Ent
));
2752 if Present
(Extra_Accessibility
(Parm_Ent
)) then
2755 (Extra_Accessibility
(Parm_Ent
), Loc
),
2756 Extra_Accessibility
(Formal
));
2758 -- If the actual access parameter does not have an
2759 -- associated extra formal providing its scope level,
2760 -- then treat the actual as having library-level
2765 (Make_Integer_Literal
(Loc
,
2766 Intval
=> Scope_Depth
(Standard_Standard
)),
2767 Extra_Accessibility
(Formal
));
2771 -- The actual is a normal access value, so just pass the level
2772 -- of the actual's access type.
2776 (Dynamic_Accessibility_Level
(Prev_Orig
),
2777 Extra_Accessibility
(Formal
));
2780 -- If the actual is an access discriminant, then pass the level
2781 -- of the enclosing object (RM05-3.10.2(12.4/2)).
2783 elsif Nkind
(Prev_Orig
) = N_Selected_Component
2784 and then Ekind
(Entity
(Selector_Name
(Prev_Orig
))) =
2786 and then Ekind
(Etype
(Entity
(Selector_Name
(Prev_Orig
)))) =
2787 E_Anonymous_Access_Type
2790 (Make_Integer_Literal
(Loc
,
2791 Intval
=> Object_Access_Level
(Prefix
(Prev_Orig
))),
2792 Extra_Accessibility
(Formal
));
2797 case Nkind
(Prev_Orig
) is
2799 when N_Attribute_Reference
=>
2800 case Get_Attribute_Id
(Attribute_Name
(Prev_Orig
)) is
2802 -- For X'Access, pass on the level of the prefix X
2804 when Attribute_Access
=>
2806 -- If this is an Access attribute applied to the
2807 -- the current instance object passed to a type
2808 -- initialization procedure, then use the level
2809 -- of the type itself. This is not really correct,
2810 -- as there should be an extra level parameter
2811 -- passed in with _init formals (only in the case
2812 -- where the type is immutably limited), but we
2813 -- don't have an easy way currently to create such
2814 -- an extra formal (init procs aren't ever frozen).
2815 -- For now we just use the level of the type,
2816 -- which may be too shallow, but that works better
2817 -- than passing Object_Access_Level of the type,
2818 -- which can be one level too deep in some cases.
2821 if Is_Entity_Name
(Prefix
(Prev_Orig
))
2822 and then Is_Type
(Entity
(Prefix
(Prev_Orig
)))
2825 (Make_Integer_Literal
(Loc
,
2828 (Entity
(Prefix
(Prev_Orig
)))),
2829 Extra_Accessibility
(Formal
));
2833 (Make_Integer_Literal
(Loc
,
2836 (Prefix
(Prev_Orig
))),
2837 Extra_Accessibility
(Formal
));
2840 -- Treat the unchecked attributes as library-level
2842 when Attribute_Unchecked_Access |
2843 Attribute_Unrestricted_Access
=>
2845 (Make_Integer_Literal
(Loc
,
2846 Intval
=> Scope_Depth
(Standard_Standard
)),
2847 Extra_Accessibility
(Formal
));
2849 -- No other cases of attributes returning access
2850 -- values that can be passed to access parameters.
2853 raise Program_Error
;
2857 -- For allocators we pass the level of the execution of the
2858 -- called subprogram, which is one greater than the current
2863 (Make_Integer_Literal
(Loc
,
2864 Intval
=> Scope_Depth
(Current_Scope
) + 1),
2865 Extra_Accessibility
(Formal
));
2867 -- For most other cases we simply pass the level of the
2868 -- actual's access type. The type is retrieved from
2869 -- Prev rather than Prev_Orig, because in some cases
2870 -- Prev_Orig denotes an original expression that has
2871 -- not been analyzed.
2875 (Dynamic_Accessibility_Level
(Prev
),
2876 Extra_Accessibility
(Formal
));
2881 -- Perform the check of 4.6(49) that prevents a null value from being
2882 -- passed as an actual to an access parameter. Note that the check
2883 -- is elided in the common cases of passing an access attribute or
2884 -- access parameter as an actual. Also, we currently don't enforce
2885 -- this check for expander-generated actuals and when -gnatdj is set.
2887 if Ada_Version
>= Ada_2005
then
2889 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
2890 -- the intent of 6.4.1(13) is that null-exclusion checks should
2891 -- not be done for 'out' parameters, even though it refers only
2892 -- to constraint checks, and a null_exclusion is not a constraint.
2893 -- Note that AI05-0196-1 corrects this mistake in the RM.
2895 if Is_Access_Type
(Etype
(Formal
))
2896 and then Can_Never_Be_Null
(Etype
(Formal
))
2897 and then Ekind
(Formal
) /= E_Out_Parameter
2898 and then Nkind
(Prev
) /= N_Raise_Constraint_Error
2899 and then (Known_Null
(Prev
)
2900 or else not Can_Never_Be_Null
(Etype
(Prev
)))
2902 Install_Null_Excluding_Check
(Prev
);
2905 -- Ada_Version < Ada_2005
2908 if Ekind
(Etype
(Formal
)) /= E_Anonymous_Access_Type
2909 or else Access_Checks_Suppressed
(Subp
)
2913 elsif Debug_Flag_J
then
2916 elsif not Comes_From_Source
(Prev
) then
2919 elsif Is_Entity_Name
(Prev
)
2920 and then Ekind
(Etype
(Prev
)) = E_Anonymous_Access_Type
2924 elsif Nkind_In
(Prev
, N_Allocator
, N_Attribute_Reference
) then
2927 -- Suppress null checks when passing to access parameters of Java
2928 -- and CIL subprograms. (Should this be done for other foreign
2929 -- conventions as well ???)
2931 elsif Convention
(Subp
) = Convention_Java
2932 or else Convention
(Subp
) = Convention_CIL
2937 Install_Null_Excluding_Check
(Prev
);
2941 -- Perform appropriate validity checks on parameters that
2944 if Validity_Checks_On
then
2945 if (Ekind
(Formal
) = E_In_Parameter
2946 and then Validity_Check_In_Params
)
2948 (Ekind
(Formal
) = E_In_Out_Parameter
2949 and then Validity_Check_In_Out_Params
)
2951 -- If the actual is an indexed component of a packed type (or
2952 -- is an indexed or selected component whose prefix recursively
2953 -- meets this condition), it has not been expanded yet. It will
2954 -- be copied in the validity code that follows, and has to be
2955 -- expanded appropriately, so reanalyze it.
2957 -- What we do is just to unset analyzed bits on prefixes till
2958 -- we reach something that does not have a prefix.
2965 while Nkind_In
(Nod
, N_Indexed_Component
,
2966 N_Selected_Component
)
2968 Set_Analyzed
(Nod
, False);
2969 Nod
:= Prefix
(Nod
);
2973 Ensure_Valid
(Actual
);
2977 -- For IN OUT and OUT parameters, ensure that subscripts are valid
2978 -- since this is a left side reference. We only do this for calls
2979 -- from the source program since we assume that compiler generated
2980 -- calls explicitly generate any required checks. We also need it
2981 -- only if we are doing standard validity checks, since clearly it is
2982 -- not needed if validity checks are off, and in subscript validity
2983 -- checking mode, all indexed components are checked with a call
2984 -- directly from Expand_N_Indexed_Component.
2986 if Comes_From_Source
(Call_Node
)
2987 and then Ekind
(Formal
) /= E_In_Parameter
2988 and then Validity_Checks_On
2989 and then Validity_Check_Default
2990 and then not Validity_Check_Subscripts
2992 Check_Valid_Lvalue_Subscripts
(Actual
);
2995 -- Mark any scalar OUT parameter that is a simple variable as no
2996 -- longer known to be valid (unless the type is always valid). This
2997 -- reflects the fact that if an OUT parameter is never set in a
2998 -- procedure, then it can become invalid on the procedure return.
3000 if Ekind
(Formal
) = E_Out_Parameter
3001 and then Is_Entity_Name
(Actual
)
3002 and then Ekind
(Entity
(Actual
)) = E_Variable
3003 and then not Is_Known_Valid
(Etype
(Actual
))
3005 Set_Is_Known_Valid
(Entity
(Actual
), False);
3008 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3009 -- clear current values, since they can be clobbered. We are probably
3010 -- doing this in more places than we need to, but better safe than
3011 -- sorry when it comes to retaining bad current values.
3013 if Ekind
(Formal
) /= E_In_Parameter
3014 and then Is_Entity_Name
(Actual
)
3015 and then Present
(Entity
(Actual
))
3018 Ent
: constant Entity_Id
:= Entity
(Actual
);
3022 -- For an OUT or IN OUT parameter that is an assignable entity,
3023 -- we do not want to clobber the Last_Assignment field, since
3024 -- if it is set, it was precisely because it is indeed an OUT
3025 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
3026 -- since the subprogram could have returned in invalid value.
3028 if Ekind_In
(Formal
, E_Out_Parameter
, E_In_Out_Parameter
)
3029 and then Is_Assignable
(Ent
)
3031 Sav
:= Last_Assignment
(Ent
);
3032 Kill_Current_Values
(Ent
);
3033 Set_Last_Assignment
(Ent
, Sav
);
3034 Set_Is_Known_Valid
(Ent
, False);
3036 -- For all other cases, just kill the current values
3039 Kill_Current_Values
(Ent
);
3044 -- If the formal is class wide and the actual is an aggregate, force
3045 -- evaluation so that the back end who does not know about class-wide
3046 -- type, does not generate a temporary of the wrong size.
3048 if not Is_Class_Wide_Type
(Etype
(Formal
)) then
3051 elsif Nkind
(Actual
) = N_Aggregate
3052 or else (Nkind
(Actual
) = N_Qualified_Expression
3053 and then Nkind
(Expression
(Actual
)) = N_Aggregate
)
3055 Force_Evaluation
(Actual
);
3058 -- In a remote call, if the formal is of a class-wide type, check
3059 -- that the actual meets the requirements described in E.4(18).
3061 if Remote
and then Is_Class_Wide_Type
(Etype
(Formal
)) then
3062 Insert_Action
(Actual
,
3063 Make_Transportable_Check
(Loc
,
3064 Duplicate_Subexpr_Move_Checks
(Actual
)));
3067 -- This label is required when skipping extra actual generation for
3068 -- Unchecked_Union parameters.
3070 <<Skip_Extra_Actual_Generation
>>
3072 Param_Count
:= Param_Count
+ 1;
3073 Next_Actual
(Actual
);
3074 Next_Formal
(Formal
);
3077 -- If we are calling an Ada 2012 function which needs to have the
3078 -- "accessibility level determined by the point of call" (AI05-0234)
3079 -- passed in to it, then pass it in.
3081 if Ekind_In
(Subp
, E_Function
, E_Operator
, E_Subprogram_Type
)
3083 Present
(Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)))
3086 Ancestor
: Node_Id
:= Parent
(Call_Node
);
3087 Level
: Node_Id
:= Empty
;
3088 Defer
: Boolean := False;
3091 -- Unimplemented: if Subp returns an anonymous access type, then
3093 -- a) if the call is the operand of an explict conversion, then
3094 -- the target type of the conversion (a named access type)
3095 -- determines the accessibility level pass in;
3097 -- b) if the call defines an access discriminant of an object
3098 -- (e.g., the discriminant of an object being created by an
3099 -- allocator, or the discriminant of a function result),
3100 -- then the accessibility level to pass in is that of the
3101 -- discriminated object being initialized).
3105 while Nkind
(Ancestor
) = N_Qualified_Expression
3107 Ancestor
:= Parent
(Ancestor
);
3110 case Nkind
(Ancestor
) is
3113 -- At this point, we'd like to assign
3115 -- Level := Dynamic_Accessibility_Level (Ancestor);
3117 -- but Etype of Ancestor may not have been set yet,
3118 -- so that doesn't work.
3120 -- Handle this later in Expand_Allocator_Expression.
3124 when N_Object_Declaration | N_Object_Renaming_Declaration
=>
3126 Def_Id
: constant Entity_Id
:=
3127 Defining_Identifier
(Ancestor
);
3130 if Is_Return_Object
(Def_Id
) then
3131 if Present
(Extra_Accessibility_Of_Result
3132 (Return_Applies_To
(Scope
(Def_Id
))))
3134 -- Pass along value that was passed in if the
3135 -- routine we are returning from also has an
3136 -- Accessibility_Of_Result formal.
3140 (Extra_Accessibility_Of_Result
3141 (Return_Applies_To
(Scope
(Def_Id
))), Loc
);
3145 Make_Integer_Literal
(Loc
,
3146 Intval
=> Object_Access_Level
(Def_Id
));
3150 when N_Simple_Return_Statement
=>
3151 if Present
(Extra_Accessibility_Of_Result
3153 (Return_Statement_Entity
(Ancestor
))))
3155 -- Pass along value that was passed in if the returned
3156 -- routine also has an Accessibility_Of_Result formal.
3160 (Extra_Accessibility_Of_Result
3162 (Return_Statement_Entity
(Ancestor
))), Loc
);
3170 if not Present
(Level
) then
3172 -- The "innermost master that evaluates the function call".
3174 -- ??? - Should we use Integer'Last here instead in order
3175 -- to deal with (some of) the problems associated with
3176 -- calls to subps whose enclosing scope is unknown (e.g.,
3177 -- Anon_Access_To_Subp_Param.all)?
3179 Level
:= Make_Integer_Literal
(Loc
,
3180 Scope_Depth
(Current_Scope
) + 1);
3185 Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)));
3190 -- If we are expanding the RHS of an assignment we need to check if tag
3191 -- propagation is needed. You might expect this processing to be in
3192 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3193 -- assignment might be transformed to a declaration for an unconstrained
3194 -- value if the expression is classwide.
3196 if Nkind
(Call_Node
) = N_Function_Call
3197 and then Is_Tag_Indeterminate
(Call_Node
)
3198 and then Is_Entity_Name
(Name
(Call_Node
))
3201 Ass
: Node_Id
:= Empty
;
3204 if Nkind
(Parent
(Call_Node
)) = N_Assignment_Statement
then
3205 Ass
:= Parent
(Call_Node
);
3207 elsif Nkind
(Parent
(Call_Node
)) = N_Qualified_Expression
3208 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3209 N_Assignment_Statement
3211 Ass
:= Parent
(Parent
(Call_Node
));
3213 elsif Nkind
(Parent
(Call_Node
)) = N_Explicit_Dereference
3214 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3215 N_Assignment_Statement
3217 Ass
:= Parent
(Parent
(Call_Node
));
3221 and then Is_Class_Wide_Type
(Etype
(Name
(Ass
)))
3223 if Is_Access_Type
(Etype
(Call_Node
)) then
3224 if Designated_Type
(Etype
(Call_Node
)) /=
3225 Root_Type
(Etype
(Name
(Ass
)))
3228 ("tag-indeterminate expression "
3229 & " must have designated type& (RM 5.2 (6))",
3230 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3232 Propagate_Tag
(Name
(Ass
), Call_Node
);
3235 elsif Etype
(Call_Node
) /= Root_Type
(Etype
(Name
(Ass
))) then
3237 ("tag-indeterminate expression must have type&"
3239 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3242 Propagate_Tag
(Name
(Ass
), Call_Node
);
3245 -- The call will be rewritten as a dispatching call, and
3246 -- expanded as such.
3253 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3254 -- it to point to the correct secondary virtual table
3256 if Nkind
(Call_Node
) in N_Subprogram_Call
3257 and then CW_Interface_Formals_Present
3259 Expand_Interface_Actuals
(Call_Node
);
3262 -- Deals with Dispatch_Call if we still have a call, before expanding
3263 -- extra actuals since this will be done on the re-analysis of the
3264 -- dispatching call. Note that we do not try to shorten the actual list
3265 -- for a dispatching call, it would not make sense to do so. Expansion
3266 -- of dispatching calls is suppressed when VM_Target, because the VM
3267 -- back-ends directly handle the generation of dispatching calls and
3268 -- would have to undo any expansion to an indirect call.
3270 if Nkind
(Call_Node
) in N_Subprogram_Call
3271 and then Present
(Controlling_Argument
(Call_Node
))
3274 Call_Typ
: constant Entity_Id
:= Etype
(Call_Node
);
3275 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
3276 Eq_Prim_Op
: Entity_Id
:= Empty
;
3279 Prev_Call
: Node_Id
;
3282 if not Is_Limited_Type
(Typ
) then
3283 Eq_Prim_Op
:= Find_Prim_Op
(Typ
, Name_Op_Eq
);
3286 if Tagged_Type_Expansion
then
3287 Expand_Dispatching_Call
(Call_Node
);
3289 -- The following return is worrisome. Is it really OK to skip
3290 -- all remaining processing in this procedure ???
3297 Apply_Tag_Checks
(Call_Node
);
3299 -- If this is a dispatching "=", we must first compare the
3300 -- tags so we generate: x.tag = y.tag and then x = y
3302 if Subp
= Eq_Prim_Op
then
3304 -- Mark the node as analyzed to avoid reanalizing this
3305 -- dispatching call (which would cause a never-ending loop)
3307 Prev_Call
:= Relocate_Node
(Call_Node
);
3308 Set_Analyzed
(Prev_Call
);
3310 Param
:= First_Actual
(Call_Node
);
3316 Make_Selected_Component
(Loc
,
3317 Prefix
=> New_Value
(Param
),
3320 (First_Tag_Component
(Typ
), Loc
)),
3323 Make_Selected_Component
(Loc
,
3325 Unchecked_Convert_To
(Typ
,
3326 New_Value
(Next_Actual
(Param
))),
3329 (First_Tag_Component
(Typ
), Loc
))),
3330 Right_Opnd
=> Prev_Call
);
3332 Rewrite
(Call_Node
, New_Call
);
3335 (Call_Node
, Call_Typ
, Suppress
=> All_Checks
);
3338 -- Expansion of a dispatching call results in an indirect call,
3339 -- which in turn causes current values to be killed (see
3340 -- Resolve_Call), so on VM targets we do the call here to
3341 -- ensure consistent warnings between VM and non-VM targets.
3343 Kill_Current_Values
;
3346 -- If this is a dispatching "=" then we must update the reference
3347 -- to the call node because we generated:
3348 -- x.tag = y.tag and then x = y
3350 if Subp
= Eq_Prim_Op
then
3351 Call_Node
:= Right_Opnd
(Call_Node
);
3356 -- Similarly, expand calls to RCI subprograms on which pragma
3357 -- All_Calls_Remote applies. The rewriting will be reanalyzed
3358 -- later. Do this only when the call comes from source since we
3359 -- do not want such a rewriting to occur in expanded code.
3361 if Is_All_Remote_Call
(Call_Node
) then
3362 Expand_All_Calls_Remote_Subprogram_Call
(Call_Node
);
3364 -- Similarly, do not add extra actuals for an entry call whose entity
3365 -- is a protected procedure, or for an internal protected subprogram
3366 -- call, because it will be rewritten as a protected subprogram call
3367 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3369 elsif Is_Protected_Type
(Scope
(Subp
))
3370 and then (Ekind
(Subp
) = E_Procedure
3371 or else Ekind
(Subp
) = E_Function
)
3375 -- During that loop we gathered the extra actuals (the ones that
3376 -- correspond to Extra_Formals), so now they can be appended.
3379 while Is_Non_Empty_List
(Extra_Actuals
) loop
3380 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
3384 -- At this point we have all the actuals, so this is the point at which
3385 -- the various expansion activities for actuals is carried out.
3387 Expand_Actuals
(Call_Node
, Subp
);
3389 -- Verify that the actuals do not share storage. This check must be done
3390 -- on the caller side rather that inside the subprogram to avoid issues
3391 -- of parameter passing.
3393 if Check_Aliasing_Of_Parameters
then
3394 Apply_Parameter_Aliasing_Checks
(Call_Node
, Subp
);
3397 -- If the subprogram is a renaming, or if it is inherited, replace it in
3398 -- the call with the name of the actual subprogram being called. If this
3399 -- is a dispatching call, the run-time decides what to call. The Alias
3400 -- attribute does not apply to entries.
3402 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
3403 and then No
(Controlling_Argument
(Call_Node
))
3404 and then Present
(Parent_Subp
)
3405 and then not Is_Direct_Deep_Call
(Subp
)
3407 if Present
(Inherited_From_Formal
(Subp
)) then
3408 Parent_Subp
:= Inherited_From_Formal
(Subp
);
3410 Parent_Subp
:= Ultimate_Alias
(Parent_Subp
);
3413 -- The below setting of Entity is suspect, see F109-018 discussion???
3415 Set_Entity
(Name
(Call_Node
), Parent_Subp
);
3417 if Is_Abstract_Subprogram
(Parent_Subp
)
3418 and then not In_Instance
3421 ("cannot call abstract subprogram &!",
3422 Name
(Call_Node
), Parent_Subp
);
3425 -- Inspect all formals of derived subprogram Subp. Compare parameter
3426 -- types with the parent subprogram and check whether an actual may
3427 -- need a type conversion to the corresponding formal of the parent
3430 -- Not clear whether intrinsic subprograms need such conversions. ???
3432 if not Is_Intrinsic_Subprogram
(Parent_Subp
)
3433 or else Is_Generic_Instance
(Parent_Subp
)
3436 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
);
3437 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3438 -- and resolve the newly generated construct.
3444 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
) is
3446 Rewrite
(Act
, OK_Convert_To
(Typ
, Relocate_Node
(Act
)));
3453 Actual_Typ
: Entity_Id
;
3454 Formal_Typ
: Entity_Id
;
3455 Parent_Typ
: Entity_Id
;
3458 Actual
:= First_Actual
(Call_Node
);
3459 Formal
:= First_Formal
(Subp
);
3460 Parent_Formal
:= First_Formal
(Parent_Subp
);
3461 while Present
(Formal
) loop
3462 Actual_Typ
:= Etype
(Actual
);
3463 Formal_Typ
:= Etype
(Formal
);
3464 Parent_Typ
:= Etype
(Parent_Formal
);
3466 -- For an IN parameter of a scalar type, the parent formal
3467 -- type and derived formal type differ or the parent formal
3468 -- type and actual type do not match statically.
3470 if Is_Scalar_Type
(Formal_Typ
)
3471 and then Ekind
(Formal
) = E_In_Parameter
3472 and then Formal_Typ
/= Parent_Typ
3474 not Subtypes_Statically_Match
(Parent_Typ
, Actual_Typ
)
3475 and then not Raises_Constraint_Error
(Actual
)
3477 Convert
(Actual
, Parent_Typ
);
3478 Enable_Range_Check
(Actual
);
3480 -- If the actual has been marked as requiring a range
3481 -- check, then generate it here.
3483 if Do_Range_Check
(Actual
) then
3484 Generate_Range_Check
3485 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
3488 -- For access types, the parent formal type and actual type
3491 elsif Is_Access_Type
(Formal_Typ
)
3492 and then Base_Type
(Parent_Typ
) /= Base_Type
(Actual_Typ
)
3494 if Ekind
(Formal
) /= E_In_Parameter
then
3495 Convert
(Actual
, Parent_Typ
);
3497 elsif Ekind
(Parent_Typ
) = E_Anonymous_Access_Type
3498 and then Designated_Type
(Parent_Typ
) /=
3499 Designated_Type
(Actual_Typ
)
3500 and then not Is_Controlling_Formal
(Formal
)
3502 -- This unchecked conversion is not necessary unless
3503 -- inlining is enabled, because in that case the type
3504 -- mismatch may become visible in the body about to be
3508 Unchecked_Convert_To
(Parent_Typ
,
3509 Relocate_Node
(Actual
)));
3511 Resolve
(Actual
, Parent_Typ
);
3514 -- If there is a change of representation, then generate a
3515 -- warning, and do the change of representation.
3517 elsif not Same_Representation
(Formal_Typ
, Parent_Typ
) then
3519 ("??change of representation required", Actual
);
3520 Convert
(Actual
, Parent_Typ
);
3522 -- For array and record types, the parent formal type and
3523 -- derived formal type have different sizes or pragma Pack
3526 elsif ((Is_Array_Type
(Formal_Typ
)
3527 and then Is_Array_Type
(Parent_Typ
))
3529 (Is_Record_Type
(Formal_Typ
)
3530 and then Is_Record_Type
(Parent_Typ
)))
3532 (Esize
(Formal_Typ
) /= Esize
(Parent_Typ
)
3533 or else Has_Pragma_Pack
(Formal_Typ
) /=
3534 Has_Pragma_Pack
(Parent_Typ
))
3536 Convert
(Actual
, Parent_Typ
);
3539 Next_Actual
(Actual
);
3540 Next_Formal
(Formal
);
3541 Next_Formal
(Parent_Formal
);
3547 Subp
:= Parent_Subp
;
3550 -- Deal with case where call is an explicit dereference
3552 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
3554 -- Handle case of access to protected subprogram type
3556 if Is_Access_Protected_Subprogram_Type
3557 (Base_Type
(Etype
(Prefix
(Name
(Call_Node
)))))
3559 -- If this is a call through an access to protected operation, the
3560 -- prefix has the form (object'address, operation'access). Rewrite
3561 -- as a for other protected calls: the object is the 1st parameter
3562 -- of the list of actuals.
3569 Ptr
: constant Node_Id
:= Prefix
(Name
(Call_Node
));
3571 T
: constant Entity_Id
:=
3572 Equivalent_Type
(Base_Type
(Etype
(Ptr
)));
3574 D_T
: constant Entity_Id
:=
3575 Designated_Type
(Base_Type
(Etype
(Ptr
)));
3579 Make_Selected_Component
(Loc
,
3580 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
3582 New_Occurrence_Of
(First_Entity
(T
), Loc
));
3585 Make_Selected_Component
(Loc
,
3586 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
3588 New_Occurrence_Of
(Next_Entity
(First_Entity
(T
)), Loc
));
3591 Make_Explicit_Dereference
(Loc
,
3594 if Present
(Parameter_Associations
(Call_Node
)) then
3595 Parm
:= Parameter_Associations
(Call_Node
);
3600 Prepend
(Obj
, Parm
);
3602 if Etype
(D_T
) = Standard_Void_Type
then
3604 Make_Procedure_Call_Statement
(Loc
,
3606 Parameter_Associations
=> Parm
);
3609 Make_Function_Call
(Loc
,
3611 Parameter_Associations
=> Parm
);
3614 Set_First_Named_Actual
(Call
, First_Named_Actual
(Call_Node
));
3615 Set_Etype
(Call
, Etype
(D_T
));
3617 -- We do not re-analyze the call to avoid infinite recursion.
3618 -- We analyze separately the prefix and the object, and set
3619 -- the checks on the prefix that would otherwise be emitted
3620 -- when resolving a call.
3622 Rewrite
(Call_Node
, Call
);
3624 Apply_Access_Check
(Nam
);
3631 -- If this is a call to an intrinsic subprogram, then perform the
3632 -- appropriate expansion to the corresponding tree node and we
3633 -- are all done (since after that the call is gone).
3635 -- In the case where the intrinsic is to be processed by the back end,
3636 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
3637 -- since the idea in this case is to pass the call unchanged. If the
3638 -- intrinsic is an inherited unchecked conversion, and the derived type
3639 -- is the target type of the conversion, we must retain it as the return
3640 -- type of the expression. Otherwise the expansion below, which uses the
3641 -- parent operation, will yield the wrong type.
3643 if Is_Intrinsic_Subprogram
(Subp
) then
3644 Expand_Intrinsic_Call
(Call_Node
, Subp
);
3646 if Nkind
(Call_Node
) = N_Unchecked_Type_Conversion
3647 and then Parent_Subp
/= Orig_Subp
3648 and then Etype
(Parent_Subp
) /= Etype
(Orig_Subp
)
3650 Set_Etype
(Call_Node
, Etype
(Orig_Subp
));
3656 if Ekind_In
(Subp
, E_Function
, E_Procedure
) then
3658 -- We perform two simple optimization on calls:
3660 -- a) replace calls to null procedures unconditionally;
3662 -- b) for To_Address, just do an unchecked conversion. Not only is
3663 -- this efficient, but it also avoids order of elaboration problems
3664 -- when address clauses are inlined (address expression elaborated
3665 -- at the wrong point).
3667 -- We perform these optimization regardless of whether we are in the
3668 -- main unit or in a unit in the context of the main unit, to ensure
3669 -- that tree generated is the same in both cases, for CodePeer use.
3671 if Is_RTE
(Subp
, RE_To_Address
) then
3673 Unchecked_Convert_To
3674 (RTE
(RE_Address
), Relocate_Node
(First_Actual
(Call_Node
))));
3677 elsif Is_Null_Procedure
(Subp
) then
3678 Rewrite
(Call_Node
, Make_Null_Statement
(Loc
));
3682 -- Handle inlining. No action needed if the subprogram is not inlined
3684 if not Is_Inlined
(Subp
) then
3687 -- Handle frontend inlining
3689 elsif not Back_End_Inlining
then
3690 Inlined_Subprogram
: declare
3692 Must_Inline
: Boolean := False;
3693 Spec
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
3696 -- Verify that the body to inline has already been seen, and
3697 -- that if the body is in the current unit the inlining does
3698 -- not occur earlier. This avoids order-of-elaboration problems
3701 -- This should be documented in sinfo/einfo ???
3704 or else Nkind
(Spec
) /= N_Subprogram_Declaration
3705 or else No
(Body_To_Inline
(Spec
))
3707 Must_Inline
:= False;
3709 -- If this an inherited function that returns a private type,
3710 -- do not inline if the full view is an unconstrained array,
3711 -- because such calls cannot be inlined.
3713 elsif Present
(Orig_Subp
)
3714 and then Is_Array_Type
(Etype
(Orig_Subp
))
3715 and then not Is_Constrained
(Etype
(Orig_Subp
))
3717 Must_Inline
:= False;
3719 elsif In_Unfrozen_Instance
(Scope
(Subp
)) then
3720 Must_Inline
:= False;
3723 Bod
:= Body_To_Inline
(Spec
);
3725 if (In_Extended_Main_Code_Unit
(Call_Node
)
3726 or else In_Extended_Main_Code_Unit
(Parent
(Call_Node
))
3727 or else Has_Pragma_Inline_Always
(Subp
))
3728 and then (not In_Same_Extended_Unit
(Sloc
(Bod
), Loc
)
3730 Earlier_In_Extended_Unit
(Sloc
(Bod
), Loc
))
3732 Must_Inline
:= True;
3734 -- If we are compiling a package body that is not the main
3735 -- unit, it must be for inlining/instantiation purposes,
3736 -- in which case we inline the call to insure that the same
3737 -- temporaries are generated when compiling the body by
3738 -- itself. Otherwise link errors can occur.
3740 -- If the function being called is itself in the main unit,
3741 -- we cannot inline, because there is a risk of double
3742 -- elaboration and/or circularity: the inlining can make
3743 -- visible a private entity in the body of the main unit,
3744 -- that gigi will see before its sees its proper definition.
3746 elsif not (In_Extended_Main_Code_Unit
(Call_Node
))
3747 and then In_Package_Body
3749 Must_Inline
:= not In_Extended_Main_Source_Unit
(Subp
);
3754 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
3757 -- Let the back end handle it
3759 Add_Inlined_Body
(Subp
, Call_Node
);
3761 if Front_End_Inlining
3762 and then Nkind
(Spec
) = N_Subprogram_Declaration
3763 and then (In_Extended_Main_Code_Unit
(Call_Node
))
3764 and then No
(Body_To_Inline
(Spec
))
3765 and then not Has_Completion
(Subp
)
3766 and then In_Same_Extended_Unit
(Sloc
(Spec
), Loc
)
3769 ("cannot inline& (body not seen yet)?",
3773 end Inlined_Subprogram
;
3775 -- Back end inlining: let the back end handle it
3777 elsif No
(Unit_Declaration_Node
(Subp
))
3778 or else Nkind
(Unit_Declaration_Node
(Subp
)) /=
3779 N_Subprogram_Declaration
3780 or else No
(Body_To_Inline
(Unit_Declaration_Node
(Subp
)))
3781 or else Nkind
(Body_To_Inline
(Unit_Declaration_Node
(Subp
))) in
3784 Add_Inlined_Body
(Subp
, Call_Node
);
3786 -- Front end expansion of simple functions returning unconstrained
3787 -- types (see Check_And_Split_Unconstrained_Function). Note that the
3788 -- case of a simple renaming (Body_To_Inline in N_Entity above, see
3789 -- also Build_Renamed_Body) cannot be expanded here because this may
3790 -- give rise to order-of-elaboration issues for the types of the
3791 -- parameters of the subprogram, if any.
3794 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
3798 -- Check for protected subprogram. This is either an intra-object call,
3799 -- or a protected function call. Protected procedure calls are rewritten
3800 -- as entry calls and handled accordingly.
3802 -- In Ada 2005, this may be an indirect call to an access parameter that
3803 -- is an access_to_subprogram. In that case the anonymous type has a
3804 -- scope that is a protected operation, but the call is a regular one.
3805 -- In either case do not expand call if subprogram is eliminated.
3807 Scop
:= Scope
(Subp
);
3809 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
3810 and then Is_Protected_Type
(Scop
)
3811 and then Ekind
(Subp
) /= E_Subprogram_Type
3812 and then not Is_Eliminated
(Subp
)
3814 -- If the call is an internal one, it is rewritten as a call to the
3815 -- corresponding unprotected subprogram.
3817 Expand_Protected_Subprogram_Call
(Call_Node
, Subp
, Scop
);
3820 -- Functions returning controlled objects need special attention. If
3821 -- the return type is limited, then the context is initialization and
3822 -- different processing applies. If the call is to a protected function,
3823 -- the expansion above will call Expand_Call recursively. Otherwise the
3824 -- function call is transformed into a temporary which obtains the
3825 -- result from the secondary stack.
3827 if Needs_Finalization
(Etype
(Subp
)) then
3828 if not Is_Limited_View
(Etype
(Subp
))
3830 (No
(First_Formal
(Subp
))
3832 not Is_Concurrent_Record_Type
(Etype
(First_Formal
(Subp
))))
3834 Expand_Ctrl_Function_Call
(Call_Node
);
3836 -- Build-in-place function calls which appear in anonymous contexts
3837 -- need a transient scope to ensure the proper finalization of the
3838 -- intermediate result after its use.
3840 elsif Is_Build_In_Place_Function_Call
(Call_Node
)
3842 Nkind_In
(Parent
(Call_Node
), N_Attribute_Reference
,
3844 N_Indexed_Component
,
3845 N_Object_Renaming_Declaration
,
3846 N_Procedure_Call_Statement
,
3847 N_Selected_Component
,
3850 Establish_Transient_Scope
(Call_Node
, Sec_Stack
=> True);
3855 -------------------------------
3856 -- Expand_Ctrl_Function_Call --
3857 -------------------------------
3859 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
) is
3860 function Is_Element_Reference
(N
: Node_Id
) return Boolean;
3861 -- Determine whether node N denotes a reference to an Ada 2012 container
3864 --------------------------
3865 -- Is_Element_Reference --
3866 --------------------------
3868 function Is_Element_Reference
(N
: Node_Id
) return Boolean is
3869 Ref
: constant Node_Id
:= Original_Node
(N
);
3872 -- Analysis marks an element reference by setting the generalized
3873 -- indexing attribute of an indexed component before the component
3874 -- is rewritten into a function call.
3877 Nkind
(Ref
) = N_Indexed_Component
3878 and then Present
(Generalized_Indexing
(Ref
));
3879 end Is_Element_Reference
;
3883 Is_Elem_Ref
: constant Boolean := Is_Element_Reference
(N
);
3885 -- Start of processing for Expand_Ctrl_Function_Call
3888 -- Optimization, if the returned value (which is on the sec-stack) is
3889 -- returned again, no need to copy/readjust/finalize, we can just pass
3890 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
3891 -- attachment is needed
3893 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
then
3897 -- Resolution is now finished, make sure we don't start analysis again
3898 -- because of the duplication.
3902 -- A function which returns a controlled object uses the secondary
3903 -- stack. Rewrite the call into a temporary which obtains the result of
3904 -- the function using 'reference.
3906 Remove_Side_Effects
(N
);
3908 -- When the temporary function result appears inside a case expression
3909 -- or an if expression, its lifetime must be extended to match that of
3910 -- the context. If not, the function result will be finalized too early
3911 -- and the evaluation of the expression could yield incorrect result. An
3912 -- exception to this rule are references to Ada 2012 container elements.
3913 -- Such references must be finalized at the end of each iteration of the
3914 -- related quantified expression, otherwise the container will remain
3918 and then Within_Case_Or_If_Expression
(N
)
3919 and then Nkind
(N
) = N_Explicit_Dereference
3921 Set_Is_Processed_Transient
(Entity
(Prefix
(N
)));
3923 end Expand_Ctrl_Function_Call
;
3925 ----------------------------------------
3926 -- Expand_N_Extended_Return_Statement --
3927 ----------------------------------------
3929 -- If there is a Handled_Statement_Sequence, we rewrite this:
3931 -- return Result : T := <expression> do
3932 -- <handled_seq_of_stms>
3938 -- Result : T := <expression>;
3940 -- <handled_seq_of_stms>
3944 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
3946 -- return Result : T := <expression>;
3950 -- return <expression>;
3952 -- unless it's build-in-place or there's no <expression>, in which case
3956 -- Result : T := <expression>;
3961 -- Note that this case could have been written by the user as an extended
3962 -- return statement, or could have been transformed to this from a simple
3963 -- return statement.
3965 -- That is, we need to have a reified return object if there are statements
3966 -- (which might refer to it) or if we're doing build-in-place (so we can
3967 -- set its address to the final resting place or if there is no expression
3968 -- (in which case default initial values might need to be set).
3970 procedure Expand_N_Extended_Return_Statement
(N
: Node_Id
) is
3971 Loc
: constant Source_Ptr
:= Sloc
(N
);
3973 Par_Func
: constant Entity_Id
:=
3974 Return_Applies_To
(Return_Statement_Entity
(N
));
3975 Result_Subt
: constant Entity_Id
:= Etype
(Par_Func
);
3976 Ret_Obj_Id
: constant Entity_Id
:=
3977 First_Entity
(Return_Statement_Entity
(N
));
3978 Ret_Obj_Decl
: constant Node_Id
:= Parent
(Ret_Obj_Id
);
3980 Is_Build_In_Place
: constant Boolean :=
3981 Is_Build_In_Place_Function
(Par_Func
);
3986 Return_Stmt
: Node_Id
;
3989 function Build_Heap_Allocator
3990 (Temp_Id
: Entity_Id
;
3991 Temp_Typ
: Entity_Id
;
3992 Func_Id
: Entity_Id
;
3993 Ret_Typ
: Entity_Id
;
3994 Alloc_Expr
: Node_Id
) return Node_Id
;
3995 -- Create the statements necessary to allocate a return object on the
3996 -- caller's master. The master is available through implicit parameter
3997 -- BIPfinalizationmaster.
3999 -- if BIPfinalizationmaster /= null then
4001 -- type Ptr_Typ is access Ret_Typ;
4002 -- for Ptr_Typ'Storage_Pool use
4003 -- Base_Pool (BIPfinalizationmaster.all).all;
4007 -- procedure Allocate (...) is
4009 -- System.Storage_Pools.Subpools.Allocate_Any (...);
4012 -- Local := <Alloc_Expr>;
4013 -- Temp_Id := Temp_Typ (Local);
4017 -- Temp_Id is the temporary which is used to reference the internally
4018 -- created object in all allocation forms. Temp_Typ is the type of the
4019 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4020 -- type of Func_Id. Alloc_Expr is the actual allocator.
4022 function Move_Activation_Chain
return Node_Id
;
4023 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4025 -- From current activation chain
4026 -- To activation chain passed in by the caller
4027 -- New_Master master passed in by the caller
4029 --------------------------
4030 -- Build_Heap_Allocator --
4031 --------------------------
4033 function Build_Heap_Allocator
4034 (Temp_Id
: Entity_Id
;
4035 Temp_Typ
: Entity_Id
;
4036 Func_Id
: Entity_Id
;
4037 Ret_Typ
: Entity_Id
;
4038 Alloc_Expr
: Node_Id
) return Node_Id
4041 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
4043 -- Processing for build-in-place object allocation. This is disabled
4044 -- on .NET/JVM because the targets do not support pools.
4046 if VM_Target
= No_VM
4047 and then Needs_Finalization
(Ret_Typ
)
4050 Decls
: constant List_Id
:= New_List
;
4051 Fin_Mas_Id
: constant Entity_Id
:=
4052 Build_In_Place_Formal
4053 (Func_Id
, BIP_Finalization_Master
);
4054 Stmts
: constant List_Id
:= New_List
;
4055 Desig_Typ
: Entity_Id
;
4056 Local_Id
: Entity_Id
;
4057 Pool_Id
: Entity_Id
;
4058 Ptr_Typ
: Entity_Id
;
4062 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4064 Pool_Id
:= Make_Temporary
(Loc
, 'P');
4067 Make_Object_Renaming_Declaration
(Loc
,
4068 Defining_Identifier
=> Pool_Id
,
4070 New_Occurrence_Of
(RTE
(RE_Root_Storage_Pool
), Loc
),
4072 Make_Explicit_Dereference
(Loc
,
4074 Make_Function_Call
(Loc
,
4076 New_Occurrence_Of
(RTE
(RE_Base_Pool
), Loc
),
4077 Parameter_Associations
=> New_List
(
4078 Make_Explicit_Dereference
(Loc
,
4080 New_Occurrence_Of
(Fin_Mas_Id
, Loc
)))))));
4082 -- Create an access type which uses the storage pool of the
4083 -- caller's master. This additional type is necessary because
4084 -- the finalization master cannot be associated with the type
4085 -- of the temporary. Otherwise the secondary stack allocation
4088 Desig_Typ
:= Ret_Typ
;
4090 -- Ensure that the build-in-place machinery uses a fat pointer
4091 -- when allocating an unconstrained array on the heap. In this
4092 -- case the result object type is a constrained array type even
4093 -- though the function type is unconstrained.
4095 if Ekind
(Desig_Typ
) = E_Array_Subtype
then
4096 Desig_Typ
:= Base_Type
(Desig_Typ
);
4100 -- type Ptr_Typ is access Desig_Typ;
4102 Ptr_Typ
:= Make_Temporary
(Loc
, 'P');
4105 Make_Full_Type_Declaration
(Loc
,
4106 Defining_Identifier
=> Ptr_Typ
,
4108 Make_Access_To_Object_Definition
(Loc
,
4109 Subtype_Indication
=>
4110 New_Occurrence_Of
(Desig_Typ
, Loc
))));
4112 -- Perform minor decoration in order to set the master and the
4113 -- storage pool attributes.
4115 Set_Ekind
(Ptr_Typ
, E_Access_Type
);
4116 Set_Finalization_Master
(Ptr_Typ
, Fin_Mas_Id
);
4117 Set_Associated_Storage_Pool
(Ptr_Typ
, Pool_Id
);
4119 -- Create the temporary, generate:
4120 -- Local_Id : Ptr_Typ;
4122 Local_Id
:= Make_Temporary
(Loc
, 'T');
4125 Make_Object_Declaration
(Loc
,
4126 Defining_Identifier
=> Local_Id
,
4127 Object_Definition
=>
4128 New_Occurrence_Of
(Ptr_Typ
, Loc
)));
4130 -- Allocate the object, generate:
4131 -- Local_Id := <Alloc_Expr>;
4134 Make_Assignment_Statement
(Loc
,
4135 Name
=> New_Occurrence_Of
(Local_Id
, Loc
),
4136 Expression
=> Alloc_Expr
));
4139 -- Temp_Id := Temp_Typ (Local_Id);
4142 Make_Assignment_Statement
(Loc
,
4143 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4145 Unchecked_Convert_To
(Temp_Typ
,
4146 New_Occurrence_Of
(Local_Id
, Loc
))));
4148 -- Wrap the allocation in a block. This is further conditioned
4149 -- by checking the caller finalization master at runtime. A
4150 -- null value indicates a non-existent master, most likely due
4151 -- to a Finalize_Storage_Only allocation.
4154 -- if BIPfinalizationmaster /= null then
4163 Make_If_Statement
(Loc
,
4166 Left_Opnd
=> New_Occurrence_Of
(Fin_Mas_Id
, Loc
),
4167 Right_Opnd
=> Make_Null
(Loc
)),
4169 Then_Statements
=> New_List
(
4170 Make_Block_Statement
(Loc
,
4171 Declarations
=> Decls
,
4172 Handled_Statement_Sequence
=>
4173 Make_Handled_Sequence_Of_Statements
(Loc
,
4174 Statements
=> Stmts
))));
4177 -- For all other cases, generate:
4178 -- Temp_Id := <Alloc_Expr>;
4182 Make_Assignment_Statement
(Loc
,
4183 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4184 Expression
=> Alloc_Expr
);
4186 end Build_Heap_Allocator
;
4188 ---------------------------
4189 -- Move_Activation_Chain --
4190 ---------------------------
4192 function Move_Activation_Chain
return Node_Id
is
4195 Make_Procedure_Call_Statement
(Loc
,
4197 New_Occurrence_Of
(RTE
(RE_Move_Activation_Chain
), Loc
),
4199 Parameter_Associations
=> New_List
(
4203 Make_Attribute_Reference
(Loc
,
4204 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
4205 Attribute_Name
=> Name_Unrestricted_Access
),
4207 -- Destination chain
4210 (Build_In_Place_Formal
(Par_Func
, BIP_Activation_Chain
), Loc
),
4215 (Build_In_Place_Formal
(Par_Func
, BIP_Task_Master
), Loc
)));
4216 end Move_Activation_Chain
;
4218 -- Start of processing for Expand_N_Extended_Return_Statement
4221 -- Given that functionality of interface thunks is simple (just displace
4222 -- the pointer to the object) they are always handled by means of
4223 -- simple return statements.
4225 pragma Assert
(not Is_Thunk
(Current_Scope
));
4227 if Nkind
(Ret_Obj_Decl
) = N_Object_Declaration
then
4228 Exp
:= Expression
(Ret_Obj_Decl
);
4233 HSS
:= Handled_Statement_Sequence
(N
);
4235 -- If the returned object needs finalization actions, the function must
4236 -- perform the appropriate cleanup should it fail to return. The state
4237 -- of the function itself is tracked through a flag which is coupled
4238 -- with the scope finalizer. There is one flag per each return object
4239 -- in case of multiple returns.
4241 if Is_Build_In_Place
4242 and then Needs_Finalization
(Etype
(Ret_Obj_Id
))
4245 Flag_Decl
: Node_Id
;
4246 Flag_Id
: Entity_Id
;
4250 -- Recover the function body
4252 Func_Bod
:= Unit_Declaration_Node
(Par_Func
);
4254 if Nkind
(Func_Bod
) = N_Subprogram_Declaration
then
4255 Func_Bod
:= Parent
(Parent
(Corresponding_Body
(Func_Bod
)));
4258 -- Create a flag to track the function state
4260 Flag_Id
:= Make_Temporary
(Loc
, 'F');
4261 Set_Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
, Flag_Id
);
4263 -- Insert the flag at the beginning of the function declarations,
4265 -- Fnn : Boolean := False;
4268 Make_Object_Declaration
(Loc
,
4269 Defining_Identifier
=> Flag_Id
,
4270 Object_Definition
=>
4271 New_Occurrence_Of
(Standard_Boolean
, Loc
),
4273 New_Occurrence_Of
(Standard_False
, Loc
));
4275 Prepend_To
(Declarations
(Func_Bod
), Flag_Decl
);
4276 Analyze
(Flag_Decl
);
4280 -- Build a simple_return_statement that returns the return object when
4281 -- there is a statement sequence, or no expression, or the result will
4282 -- be built in place. Note however that we currently do this for all
4283 -- composite cases, even though nonlimited composite results are not yet
4284 -- built in place (though we plan to do so eventually).
4287 or else Is_Composite_Type
(Result_Subt
)
4293 -- If the extended return has a handled statement sequence, then wrap
4294 -- it in a block and use the block as the first statement.
4298 Make_Block_Statement
(Loc
,
4299 Declarations
=> New_List
,
4300 Handled_Statement_Sequence
=> HSS
));
4303 -- If the result type contains tasks, we call Move_Activation_Chain.
4304 -- Later, the cleanup code will call Complete_Master, which will
4305 -- terminate any unactivated tasks belonging to the return statement
4306 -- master. But Move_Activation_Chain updates their master to be that
4307 -- of the caller, so they will not be terminated unless the return
4308 -- statement completes unsuccessfully due to exception, abort, goto,
4309 -- or exit. As a formality, we test whether the function requires the
4310 -- result to be built in place, though that's necessarily true for
4311 -- the case of result types with task parts.
4313 if Is_Build_In_Place
4314 and then Has_Task
(Result_Subt
)
4316 -- The return expression is an aggregate for a complex type which
4317 -- contains tasks. This particular case is left unexpanded since
4318 -- the regular expansion would insert all temporaries and
4319 -- initialization code in the wrong block.
4321 if Nkind
(Exp
) = N_Aggregate
then
4322 Expand_N_Aggregate
(Exp
);
4325 -- Do not move the activation chain if the return object does not
4328 if Has_Task
(Etype
(Ret_Obj_Id
)) then
4329 Append_To
(Stmts
, Move_Activation_Chain
);
4333 -- Update the state of the function right before the object is
4336 if Is_Build_In_Place
4337 and then Needs_Finalization
(Etype
(Ret_Obj_Id
))
4340 Flag_Id
: constant Entity_Id
:=
4341 Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
);
4348 Make_Assignment_Statement
(Loc
,
4349 Name
=> New_Occurrence_Of
(Flag_Id
, Loc
),
4350 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
4354 -- Build a simple_return_statement that returns the return object
4357 Make_Simple_Return_Statement
(Loc
,
4358 Expression
=> New_Occurrence_Of
(Ret_Obj_Id
, Loc
));
4359 Append_To
(Stmts
, Return_Stmt
);
4361 HSS
:= Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
);
4364 -- Case where we build a return statement block
4366 if Present
(HSS
) then
4368 Make_Block_Statement
(Loc
,
4369 Declarations
=> Return_Object_Declarations
(N
),
4370 Handled_Statement_Sequence
=> HSS
);
4372 -- We set the entity of the new block statement to be that of the
4373 -- return statement. This is necessary so that various fields, such
4374 -- as Finalization_Chain_Entity carry over from the return statement
4375 -- to the block. Note that this block is unusual, in that its entity
4376 -- is an E_Return_Statement rather than an E_Block.
4379 (Result
, New_Occurrence_Of
(Return_Statement_Entity
(N
), Loc
));
4381 -- If the object decl was already rewritten as a renaming, then we
4382 -- don't want to do the object allocation and transformation of
4383 -- the return object declaration to a renaming. This case occurs
4384 -- when the return object is initialized by a call to another
4385 -- build-in-place function, and that function is responsible for
4386 -- the allocation of the return object.
4388 if Is_Build_In_Place
4389 and then Nkind
(Ret_Obj_Decl
) = N_Object_Renaming_Declaration
4392 (Nkind
(Original_Node
(Ret_Obj_Decl
)) = N_Object_Declaration
4393 and then Is_Build_In_Place_Function_Call
4394 (Expression
(Original_Node
(Ret_Obj_Decl
))));
4396 -- Return the build-in-place result by reference
4398 Set_By_Ref
(Return_Stmt
);
4400 elsif Is_Build_In_Place
then
4402 -- Locate the implicit access parameter associated with the
4403 -- caller-supplied return object and convert the return
4404 -- statement's return object declaration to a renaming of a
4405 -- dereference of the access parameter. If the return object's
4406 -- declaration includes an expression that has not already been
4407 -- expanded as separate assignments, then add an assignment
4408 -- statement to ensure the return object gets initialized.
4411 -- Result : T [:= <expression>];
4418 -- Result : T renames FuncRA.all;
4419 -- [Result := <expression;]
4424 Return_Obj_Id
: constant Entity_Id
:=
4425 Defining_Identifier
(Ret_Obj_Decl
);
4426 Return_Obj_Typ
: constant Entity_Id
:= Etype
(Return_Obj_Id
);
4427 Return_Obj_Expr
: constant Node_Id
:=
4428 Expression
(Ret_Obj_Decl
);
4429 Constr_Result
: constant Boolean :=
4430 Is_Constrained
(Result_Subt
);
4431 Obj_Alloc_Formal
: Entity_Id
;
4432 Object_Access
: Entity_Id
;
4433 Obj_Acc_Deref
: Node_Id
;
4434 Init_Assignment
: Node_Id
:= Empty
;
4437 -- Build-in-place results must be returned by reference
4439 Set_By_Ref
(Return_Stmt
);
4441 -- Retrieve the implicit access parameter passed by the caller
4444 Build_In_Place_Formal
(Par_Func
, BIP_Object_Access
);
4446 -- If the return object's declaration includes an expression
4447 -- and the declaration isn't marked as No_Initialization, then
4448 -- we need to generate an assignment to the object and insert
4449 -- it after the declaration before rewriting it as a renaming
4450 -- (otherwise we'll lose the initialization). The case where
4451 -- the result type is an interface (or class-wide interface)
4452 -- is also excluded because the context of the function call
4453 -- must be unconstrained, so the initialization will always
4454 -- be done as part of an allocator evaluation (storage pool
4455 -- or secondary stack), never to a constrained target object
4456 -- passed in by the caller. Besides the assignment being
4457 -- unneeded in this case, it avoids problems with trying to
4458 -- generate a dispatching assignment when the return expression
4459 -- is a nonlimited descendant of a limited interface (the
4460 -- interface has no assignment operation).
4462 if Present
(Return_Obj_Expr
)
4463 and then not No_Initialization
(Ret_Obj_Decl
)
4464 and then not Is_Interface
(Return_Obj_Typ
)
4467 Make_Assignment_Statement
(Loc
,
4468 Name
=> New_Occurrence_Of
(Return_Obj_Id
, Loc
),
4469 Expression
=> Relocate_Node
(Return_Obj_Expr
));
4471 Set_Etype
(Name
(Init_Assignment
), Etype
(Return_Obj_Id
));
4472 Set_Assignment_OK
(Name
(Init_Assignment
));
4473 Set_No_Ctrl_Actions
(Init_Assignment
);
4475 Set_Parent
(Name
(Init_Assignment
), Init_Assignment
);
4476 Set_Parent
(Expression
(Init_Assignment
), Init_Assignment
);
4478 Set_Expression
(Ret_Obj_Decl
, Empty
);
4480 if Is_Class_Wide_Type
(Etype
(Return_Obj_Id
))
4481 and then not Is_Class_Wide_Type
4482 (Etype
(Expression
(Init_Assignment
)))
4484 Rewrite
(Expression
(Init_Assignment
),
4485 Make_Type_Conversion
(Loc
,
4487 New_Occurrence_Of
(Etype
(Return_Obj_Id
), Loc
),
4489 Relocate_Node
(Expression
(Init_Assignment
))));
4492 -- In the case of functions where the calling context can
4493 -- determine the form of allocation needed, initialization
4494 -- is done with each part of the if statement that handles
4495 -- the different forms of allocation (this is true for
4496 -- unconstrained and tagged result subtypes).
4499 and then not Is_Tagged_Type
(Underlying_Type
(Result_Subt
))
4501 Insert_After
(Ret_Obj_Decl
, Init_Assignment
);
4505 -- When the function's subtype is unconstrained, a run-time
4506 -- test is needed to determine the form of allocation to use
4507 -- for the return object. The function has an implicit formal
4508 -- parameter indicating this. If the BIP_Alloc_Form formal has
4509 -- the value one, then the caller has passed access to an
4510 -- existing object for use as the return object. If the value
4511 -- is two, then the return object must be allocated on the
4512 -- secondary stack. Otherwise, the object must be allocated in
4513 -- a storage pool (currently only supported for the global
4514 -- heap, user-defined storage pools TBD ???). We generate an
4515 -- if statement to test the implicit allocation formal and
4516 -- initialize a local access value appropriately, creating
4517 -- allocators in the secondary stack and global heap cases.
4518 -- The special formal also exists and must be tested when the
4519 -- function has a tagged result, even when the result subtype
4520 -- is constrained, because in general such functions can be
4521 -- called in dispatching contexts and must be handled similarly
4522 -- to functions with a class-wide result.
4524 if not Constr_Result
4525 or else Is_Tagged_Type
(Underlying_Type
(Result_Subt
))
4528 Build_In_Place_Formal
(Par_Func
, BIP_Alloc_Form
);
4531 Pool_Id
: constant Entity_Id
:=
4532 Make_Temporary
(Loc
, 'P');
4533 Alloc_Obj_Id
: Entity_Id
;
4534 Alloc_Obj_Decl
: Node_Id
;
4535 Alloc_If_Stmt
: Node_Id
;
4536 Heap_Allocator
: Node_Id
;
4537 Pool_Decl
: Node_Id
;
4538 Pool_Allocator
: Node_Id
;
4539 Ptr_Type_Decl
: Node_Id
;
4540 Ref_Type
: Entity_Id
;
4541 SS_Allocator
: Node_Id
;
4544 -- Reuse the itype created for the function's implicit
4545 -- access formal. This avoids the need to create a new
4546 -- access type here, plus it allows assigning the access
4547 -- formal directly without applying a conversion.
4549 -- Ref_Type := Etype (Object_Access);
4551 -- Create an access type designating the function's
4554 Ref_Type
:= Make_Temporary
(Loc
, 'A');
4557 Make_Full_Type_Declaration
(Loc
,
4558 Defining_Identifier
=> Ref_Type
,
4560 Make_Access_To_Object_Definition
(Loc
,
4561 All_Present
=> True,
4562 Subtype_Indication
=>
4563 New_Occurrence_Of
(Return_Obj_Typ
, Loc
)));
4565 Insert_Before
(Ret_Obj_Decl
, Ptr_Type_Decl
);
4567 -- Create an access object that will be initialized to an
4568 -- access value denoting the return object, either coming
4569 -- from an implicit access value passed in by the caller
4570 -- or from the result of an allocator.
4572 Alloc_Obj_Id
:= Make_Temporary
(Loc
, 'R');
4573 Set_Etype
(Alloc_Obj_Id
, Ref_Type
);
4576 Make_Object_Declaration
(Loc
,
4577 Defining_Identifier
=> Alloc_Obj_Id
,
4578 Object_Definition
=>
4579 New_Occurrence_Of
(Ref_Type
, Loc
));
4581 Insert_Before
(Ret_Obj_Decl
, Alloc_Obj_Decl
);
4583 -- Create allocators for both the secondary stack and
4584 -- global heap. If there's an initialization expression,
4585 -- then create these as initialized allocators.
4587 if Present
(Return_Obj_Expr
)
4588 and then not No_Initialization
(Ret_Obj_Decl
)
4590 -- Always use the type of the expression for the
4591 -- qualified expression, rather than the result type.
4592 -- In general we cannot always use the result type
4593 -- for the allocator, because the expression might be
4594 -- of a specific type, such as in the case of an
4595 -- aggregate or even a nonlimited object when the
4596 -- result type is a limited class-wide interface type.
4599 Make_Allocator
(Loc
,
4601 Make_Qualified_Expression
(Loc
,
4604 (Etype
(Return_Obj_Expr
), Loc
),
4606 New_Copy_Tree
(Return_Obj_Expr
)));
4609 -- If the function returns a class-wide type we cannot
4610 -- use the return type for the allocator. Instead we
4611 -- use the type of the expression, which must be an
4612 -- aggregate of a definite type.
4614 if Is_Class_Wide_Type
(Return_Obj_Typ
) then
4616 Make_Allocator
(Loc
,
4619 (Etype
(Return_Obj_Expr
), Loc
));
4622 Make_Allocator
(Loc
,
4624 New_Occurrence_Of
(Return_Obj_Typ
, Loc
));
4627 -- If the object requires default initialization then
4628 -- that will happen later following the elaboration of
4629 -- the object renaming. If we don't turn it off here
4630 -- then the object will be default initialized twice.
4632 Set_No_Initialization
(Heap_Allocator
);
4635 -- The Pool_Allocator is just like the Heap_Allocator,
4636 -- except we set Storage_Pool and Procedure_To_Call so
4637 -- it will use the user-defined storage pool.
4639 Pool_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
4641 -- Do not generate the renaming of the build-in-place
4642 -- pool parameter on .NET/JVM/ZFP because the parameter
4643 -- is not created in the first place.
4645 if VM_Target
= No_VM
4646 and then RTE_Available
(RE_Root_Storage_Pool_Ptr
)
4649 Make_Object_Renaming_Declaration
(Loc
,
4650 Defining_Identifier
=> Pool_Id
,
4653 (RTE
(RE_Root_Storage_Pool
), Loc
),
4655 Make_Explicit_Dereference
(Loc
,
4657 (Build_In_Place_Formal
4658 (Par_Func
, BIP_Storage_Pool
), Loc
)));
4659 Set_Storage_Pool
(Pool_Allocator
, Pool_Id
);
4660 Set_Procedure_To_Call
4661 (Pool_Allocator
, RTE
(RE_Allocate_Any
));
4663 Pool_Decl
:= Make_Null_Statement
(Loc
);
4666 -- If the No_Allocators restriction is active, then only
4667 -- an allocator for secondary stack allocation is needed.
4668 -- It's OK for such allocators to have Comes_From_Source
4669 -- set to False, because gigi knows not to flag them as
4670 -- being a violation of No_Implicit_Heap_Allocations.
4672 if Restriction_Active
(No_Allocators
) then
4673 SS_Allocator
:= Heap_Allocator
;
4674 Heap_Allocator
:= Make_Null
(Loc
);
4675 Pool_Allocator
:= Make_Null
(Loc
);
4677 -- Otherwise the heap and pool allocators may be needed,
4678 -- so we make another allocator for secondary stack
4682 SS_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
4684 -- The heap and pool allocators are marked as
4685 -- Comes_From_Source since they correspond to an
4686 -- explicit user-written allocator (that is, it will
4687 -- only be executed on behalf of callers that call the
4688 -- function as initialization for such an allocator).
4689 -- Prevents errors when No_Implicit_Heap_Allocations
4692 Set_Comes_From_Source
(Heap_Allocator
, True);
4693 Set_Comes_From_Source
(Pool_Allocator
, True);
4696 -- The allocator is returned on the secondary stack. We
4697 -- don't do this on VM targets, since the SS is not used.
4699 if VM_Target
= No_VM
then
4700 Set_Storage_Pool
(SS_Allocator
, RTE
(RE_SS_Pool
));
4701 Set_Procedure_To_Call
4702 (SS_Allocator
, RTE
(RE_SS_Allocate
));
4704 -- The allocator is returned on the secondary stack,
4705 -- so indicate that the function return, as well as
4706 -- the block that encloses the allocator, must not
4707 -- release it. The flags must be set now because
4708 -- the decision to use the secondary stack is done
4709 -- very late in the course of expanding the return
4710 -- statement, past the point where these flags are
4713 Set_Sec_Stack_Needed_For_Return
(Par_Func
);
4714 Set_Sec_Stack_Needed_For_Return
4715 (Return_Statement_Entity
(N
));
4716 Set_Uses_Sec_Stack
(Par_Func
);
4717 Set_Uses_Sec_Stack
(Return_Statement_Entity
(N
));
4720 -- Create an if statement to test the BIP_Alloc_Form
4721 -- formal and initialize the access object to either the
4722 -- BIP_Object_Access formal (BIP_Alloc_Form =
4723 -- Caller_Allocation), the result of allocating the
4724 -- object in the secondary stack (BIP_Alloc_Form =
4725 -- Secondary_Stack), or else an allocator to create the
4726 -- return object in the heap or user-defined pool
4727 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
4729 -- ??? An unchecked type conversion must be made in the
4730 -- case of assigning the access object formal to the
4731 -- local access object, because a normal conversion would
4732 -- be illegal in some cases (such as converting access-
4733 -- to-unconstrained to access-to-constrained), but the
4734 -- the unchecked conversion will presumably fail to work
4735 -- right in just such cases. It's not clear at all how to
4739 Make_If_Statement
(Loc
,
4743 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
4745 Make_Integer_Literal
(Loc
,
4746 UI_From_Int
(BIP_Allocation_Form
'Pos
4747 (Caller_Allocation
)))),
4749 Then_Statements
=> New_List
(
4750 Make_Assignment_Statement
(Loc
,
4752 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
4754 Make_Unchecked_Type_Conversion
(Loc
,
4756 New_Occurrence_Of
(Ref_Type
, Loc
),
4758 New_Occurrence_Of
(Object_Access
, Loc
)))),
4760 Elsif_Parts
=> New_List
(
4761 Make_Elsif_Part
(Loc
,
4765 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
4767 Make_Integer_Literal
(Loc
,
4768 UI_From_Int
(BIP_Allocation_Form
'Pos
4769 (Secondary_Stack
)))),
4771 Then_Statements
=> New_List
(
4772 Make_Assignment_Statement
(Loc
,
4774 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
4775 Expression
=> SS_Allocator
))),
4777 Make_Elsif_Part
(Loc
,
4781 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
4783 Make_Integer_Literal
(Loc
,
4784 UI_From_Int
(BIP_Allocation_Form
'Pos
4787 Then_Statements
=> New_List
(
4788 Build_Heap_Allocator
4789 (Temp_Id
=> Alloc_Obj_Id
,
4790 Temp_Typ
=> Ref_Type
,
4791 Func_Id
=> Par_Func
,
4792 Ret_Typ
=> Return_Obj_Typ
,
4793 Alloc_Expr
=> Heap_Allocator
)))),
4795 Else_Statements
=> New_List
(
4797 Build_Heap_Allocator
4798 (Temp_Id
=> Alloc_Obj_Id
,
4799 Temp_Typ
=> Ref_Type
,
4800 Func_Id
=> Par_Func
,
4801 Ret_Typ
=> Return_Obj_Typ
,
4802 Alloc_Expr
=> Pool_Allocator
)));
4804 -- If a separate initialization assignment was created
4805 -- earlier, append that following the assignment of the
4806 -- implicit access formal to the access object, to ensure
4807 -- that the return object is initialized in that case. In
4808 -- this situation, the target of the assignment must be
4809 -- rewritten to denote a dereference of the access to the
4810 -- return object passed in by the caller.
4812 if Present
(Init_Assignment
) then
4813 Rewrite
(Name
(Init_Assignment
),
4814 Make_Explicit_Dereference
(Loc
,
4815 Prefix
=> New_Occurrence_Of
(Alloc_Obj_Id
, Loc
)));
4818 (Name
(Init_Assignment
), Etype
(Return_Obj_Id
));
4821 (Then_Statements
(Alloc_If_Stmt
), Init_Assignment
);
4824 Insert_Before
(Ret_Obj_Decl
, Alloc_If_Stmt
);
4826 -- Remember the local access object for use in the
4827 -- dereference of the renaming created below.
4829 Object_Access
:= Alloc_Obj_Id
;
4833 -- Replace the return object declaration with a renaming of a
4834 -- dereference of the access value designating the return
4838 Make_Explicit_Dereference
(Loc
,
4839 Prefix
=> New_Occurrence_Of
(Object_Access
, Loc
));
4841 Rewrite
(Ret_Obj_Decl
,
4842 Make_Object_Renaming_Declaration
(Loc
,
4843 Defining_Identifier
=> Return_Obj_Id
,
4844 Access_Definition
=> Empty
,
4846 New_Occurrence_Of
(Return_Obj_Typ
, Loc
),
4847 Name
=> Obj_Acc_Deref
));
4849 Set_Renamed_Object
(Return_Obj_Id
, Obj_Acc_Deref
);
4853 -- Case where we do not build a block
4856 -- We're about to drop Return_Object_Declarations on the floor, so
4857 -- we need to insert it, in case it got expanded into useful code.
4858 -- Remove side effects from expression, which may be duplicated in
4859 -- subsequent checks (see Expand_Simple_Function_Return).
4861 Insert_List_Before
(N
, Return_Object_Declarations
(N
));
4862 Remove_Side_Effects
(Exp
);
4864 -- Build simple_return_statement that returns the expression directly
4866 Return_Stmt
:= Make_Simple_Return_Statement
(Loc
, Expression
=> Exp
);
4867 Result
:= Return_Stmt
;
4870 -- Set the flag to prevent infinite recursion
4872 Set_Comes_From_Extended_Return_Statement
(Return_Stmt
);
4874 Rewrite
(N
, Result
);
4876 end Expand_N_Extended_Return_Statement
;
4878 ----------------------------
4879 -- Expand_N_Function_Call --
4880 ----------------------------
4882 procedure Expand_N_Function_Call
(N
: Node_Id
) is
4885 end Expand_N_Function_Call
;
4887 ---------------------------------------
4888 -- Expand_N_Procedure_Call_Statement --
4889 ---------------------------------------
4891 procedure Expand_N_Procedure_Call_Statement
(N
: Node_Id
) is
4894 end Expand_N_Procedure_Call_Statement
;
4896 --------------------------------------
4897 -- Expand_N_Simple_Return_Statement --
4898 --------------------------------------
4900 procedure Expand_N_Simple_Return_Statement
(N
: Node_Id
) is
4902 -- Defend against previous errors (i.e. the return statement calls a
4903 -- function that is not available in configurable runtime).
4905 if Present
(Expression
(N
))
4906 and then Nkind
(Expression
(N
)) = N_Empty
4908 Check_Error_Detected
;
4912 -- Distinguish the function and non-function cases:
4914 case Ekind
(Return_Applies_To
(Return_Statement_Entity
(N
))) is
4917 E_Generic_Function
=>
4918 Expand_Simple_Function_Return
(N
);
4921 E_Generic_Procedure |
4924 E_Return_Statement
=>
4925 Expand_Non_Function_Return
(N
);
4928 raise Program_Error
;
4932 when RE_Not_Available
=>
4934 end Expand_N_Simple_Return_Statement
;
4936 ------------------------------
4937 -- Expand_N_Subprogram_Body --
4938 ------------------------------
4940 -- Add poll call if ATC polling is enabled, unless the body will be inlined
4943 -- Add dummy push/pop label nodes at start and end to clear any local
4944 -- exception indications if local-exception-to-goto optimization is active.
4946 -- Add return statement if last statement in body is not a return statement
4947 -- (this makes things easier on Gigi which does not want to have to handle
4948 -- a missing return).
4950 -- Add call to Activate_Tasks if body is a task activator
4952 -- Deal with possible detection of infinite recursion
4954 -- Eliminate body completely if convention stubbed
4956 -- Encode entity names within body, since we will not need to reference
4957 -- these entities any longer in the front end.
4959 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
4961 -- Reset Pure indication if any parameter has root type System.Address
4962 -- or has any parameters of limited types, where limited means that the
4963 -- run-time view is limited (i.e. the full type is limited).
4967 procedure Expand_N_Subprogram_Body
(N
: Node_Id
) is
4968 Loc
: constant Source_Ptr
:= Sloc
(N
);
4969 H
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
4970 Body_Id
: Entity_Id
;
4973 Spec_Id
: Entity_Id
;
4975 procedure Add_Return
(S
: List_Id
);
4976 -- Append a return statement to the statement sequence S if the last
4977 -- statement is not already a return or a goto statement. Note that
4978 -- the latter test is not critical, it does not matter if we add a few
4979 -- extra returns, since they get eliminated anyway later on.
4985 procedure Add_Return
(S
: List_Id
) is
4986 Last_Stmt
: Node_Id
;
4991 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
4992 -- not relevant in this context since they are not executable.
4994 Last_Stmt
:= Last
(S
);
4995 while Nkind
(Last_Stmt
) in N_Pop_xxx_Label
loop
4999 -- Now insert return unless last statement is a transfer
5001 if not Is_Transfer
(Last_Stmt
) then
5003 -- The source location for the return is the end label of the
5004 -- procedure if present. Otherwise use the sloc of the last
5005 -- statement in the list. If the list comes from a generated
5006 -- exception handler and we are not debugging generated code,
5007 -- all the statements within the handler are made invisible
5010 if Nkind
(Parent
(S
)) = N_Exception_Handler
5011 and then not Comes_From_Source
(Parent
(S
))
5013 Loc
:= Sloc
(Last_Stmt
);
5014 elsif Present
(End_Label
(H
)) then
5015 Loc
:= Sloc
(End_Label
(H
));
5017 Loc
:= Sloc
(Last_Stmt
);
5020 -- Append return statement, and set analyzed manually. We can't
5021 -- call Analyze on this return since the scope is wrong.
5023 -- Note: it almost works to push the scope and then do the Analyze
5024 -- call, but something goes wrong in some weird cases and it is
5025 -- not worth worrying about ???
5027 Stmt
:= Make_Simple_Return_Statement
(Loc
);
5029 -- The return statement is handled properly, and the call to the
5030 -- postcondition, inserted below, does not require information
5031 -- from the body either. However, that call is analyzed in the
5032 -- enclosing scope, and an elaboration check might improperly be
5033 -- added to it. A guard in Sem_Elab is needed to prevent that
5034 -- spurious check, see Check_Elab_Call.
5036 Append_To
(S
, Stmt
);
5037 Set_Analyzed
(Stmt
);
5039 -- Call the _Postconditions procedure if the related subprogram
5040 -- has contract assertions that need to be verified on exit.
5042 if Ekind
(Spec_Id
) = E_Procedure
5043 and then Present
(Postconditions_Proc
(Spec_Id
))
5045 Insert_Action
(Stmt
,
5046 Make_Procedure_Call_Statement
(Loc
,
5048 New_Occurrence_Of
(Postconditions_Proc
(Spec_Id
), Loc
)));
5053 -- Start of processing for Expand_N_Subprogram_Body
5056 -- Set L to either the list of declarations if present, or to the list
5057 -- of statements if no declarations are present. This is used to insert
5058 -- new stuff at the start.
5060 if Is_Non_Empty_List
(Declarations
(N
)) then
5061 L
:= Declarations
(N
);
5063 L
:= Statements
(H
);
5066 -- If local-exception-to-goto optimization active, insert dummy push
5067 -- statements at start, and dummy pop statements at end, but inhibit
5068 -- this if we have No_Exception_Handlers, since they are useless and
5069 -- intefere with analysis, e.g. by codepeer.
5071 if (Debug_Flag_Dot_G
5072 or else Restriction_Active
(No_Exception_Propagation
))
5073 and then not Restriction_Active
(No_Exception_Handlers
)
5074 and then not CodePeer_Mode
5075 and then Is_Non_Empty_List
(L
)
5078 FS
: constant Node_Id
:= First
(L
);
5079 FL
: constant Source_Ptr
:= Sloc
(FS
);
5084 -- LS points to either last statement, if statements are present
5085 -- or to the last declaration if there are no statements present.
5086 -- It is the node after which the pop's are generated.
5088 if Is_Non_Empty_List
(Statements
(H
)) then
5089 LS
:= Last
(Statements
(H
));
5096 Insert_List_Before_And_Analyze
(FS
, New_List
(
5097 Make_Push_Constraint_Error_Label
(FL
),
5098 Make_Push_Program_Error_Label
(FL
),
5099 Make_Push_Storage_Error_Label
(FL
)));
5101 Insert_List_After_And_Analyze
(LS
, New_List
(
5102 Make_Pop_Constraint_Error_Label
(LL
),
5103 Make_Pop_Program_Error_Label
(LL
),
5104 Make_Pop_Storage_Error_Label
(LL
)));
5108 -- Find entity for subprogram
5110 Body_Id
:= Defining_Entity
(N
);
5112 if Present
(Corresponding_Spec
(N
)) then
5113 Spec_Id
:= Corresponding_Spec
(N
);
5118 -- Need poll on entry to subprogram if polling enabled. We only do this
5119 -- for non-empty subprograms, since it does not seem necessary to poll
5120 -- for a dummy null subprogram.
5122 if Is_Non_Empty_List
(L
) then
5124 -- Do not add a polling call if the subprogram is to be inlined by
5125 -- the back-end, to avoid repeated calls with multiple inlinings.
5127 if Is_Inlined
(Spec_Id
)
5128 and then Front_End_Inlining
5129 and then Optimization_Level
> 1
5133 Generate_Poll_Call
(First
(L
));
5137 -- If this is a Pure function which has any parameters whose root type
5138 -- is System.Address, reset the Pure indication, since it will likely
5139 -- cause incorrect code to be generated as the parameter is probably
5140 -- a pointer, and the fact that the same pointer is passed does not mean
5141 -- that the same value is being referenced.
5143 -- Note that if the programmer gave an explicit Pure_Function pragma,
5144 -- then we believe the programmer, and leave the subprogram Pure.
5146 -- This code should probably be at the freeze point, so that it happens
5147 -- even on a -gnatc (or more importantly -gnatt) compile, so that the
5148 -- semantic tree has Is_Pure set properly ???
5150 if Is_Pure
(Spec_Id
)
5151 and then Is_Subprogram
(Spec_Id
)
5152 and then not Has_Pragma_Pure_Function
(Spec_Id
)
5158 F
:= First_Formal
(Spec_Id
);
5159 while Present
(F
) loop
5160 if Is_Descendent_Of_Address
(Etype
(F
))
5162 -- Note that this test is being made in the body of the
5163 -- subprogram, not the spec, so we are testing the full
5164 -- type for being limited here, as required.
5166 or else Is_Limited_Type
(Etype
(F
))
5168 Set_Is_Pure
(Spec_Id
, False);
5170 if Spec_Id
/= Body_Id
then
5171 Set_Is_Pure
(Body_Id
, False);
5182 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5184 if Init_Or_Norm_Scalars
and then Is_Subprogram
(Spec_Id
) then
5190 -- Loop through formals
5192 F
:= First_Formal
(Spec_Id
);
5193 while Present
(F
) loop
5194 if Is_Scalar_Type
(Etype
(F
))
5195 and then Ekind
(F
) = E_Out_Parameter
5197 Check_Restriction
(No_Default_Initialization
, F
);
5199 -- Insert the initialization. We turn off validity checks
5200 -- for this assignment, since we do not want any check on
5201 -- the initial value itself (which may well be invalid).
5202 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5205 Make_Assignment_Statement
(Loc
,
5206 Name
=> New_Occurrence_Of
(F
, Loc
),
5207 Expression
=> Get_Simple_Init_Val
(Etype
(F
), N
));
5208 Set_Suppress_Assignment_Checks
(A
);
5210 Insert_Before_And_Analyze
(First
(L
),
5211 A
, Suppress
=> Validity_Check
);
5219 -- Clear out statement list for stubbed procedure
5221 if Present
(Corresponding_Spec
(N
)) then
5222 Set_Elaboration_Flag
(N
, Spec_Id
);
5224 if Convention
(Spec_Id
) = Convention_Stubbed
5225 or else Is_Eliminated
(Spec_Id
)
5227 Set_Declarations
(N
, Empty_List
);
5228 Set_Handled_Statement_Sequence
(N
,
5229 Make_Handled_Sequence_Of_Statements
(Loc
,
5230 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
5235 -- Create a set of discriminals for the next protected subprogram body
5237 if Is_List_Member
(N
)
5238 and then Present
(Parent
(List_Containing
(N
)))
5239 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5240 and then Present
(Next_Protected_Operation
(N
))
5242 Set_Discriminals
(Parent
(Base_Type
(Scope
(Spec_Id
))));
5245 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5246 -- subprograms with no specs are not frozen.
5249 Typ
: constant Entity_Id
:= Etype
(Spec_Id
);
5250 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
5253 if not Acts_As_Spec
(N
)
5254 and then Nkind
(Parent
(Parent
(Spec_Id
))) /=
5255 N_Subprogram_Body_Stub
5259 elsif Is_Limited_View
(Typ
) then
5260 Set_Returns_By_Ref
(Spec_Id
);
5262 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
5263 Set_Returns_By_Ref
(Spec_Id
);
5267 -- For a procedure, we add a return for all possible syntactic ends of
5270 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
) then
5271 Add_Return
(Statements
(H
));
5273 if Present
(Exception_Handlers
(H
)) then
5274 Except_H
:= First_Non_Pragma
(Exception_Handlers
(H
));
5275 while Present
(Except_H
) loop
5276 Add_Return
(Statements
(Except_H
));
5277 Next_Non_Pragma
(Except_H
);
5281 -- For a function, we must deal with the case where there is at least
5282 -- one missing return. What we do is to wrap the entire body of the
5283 -- function in a block:
5296 -- raise Program_Error;
5299 -- This approach is necessary because the raise must be signalled to the
5300 -- caller, not handled by any local handler (RM 6.4(11)).
5302 -- Note: we do not need to analyze the constructed sequence here, since
5303 -- it has no handler, and an attempt to analyze the handled statement
5304 -- sequence twice is risky in various ways (e.g. the issue of expanding
5305 -- cleanup actions twice).
5307 elsif Has_Missing_Return
(Spec_Id
) then
5309 Hloc
: constant Source_Ptr
:= Sloc
(H
);
5310 Blok
: constant Node_Id
:=
5311 Make_Block_Statement
(Hloc
,
5312 Handled_Statement_Sequence
=> H
);
5313 Rais
: constant Node_Id
:=
5314 Make_Raise_Program_Error
(Hloc
,
5315 Reason
=> PE_Missing_Return
);
5318 Set_Handled_Statement_Sequence
(N
,
5319 Make_Handled_Sequence_Of_Statements
(Hloc
,
5320 Statements
=> New_List
(Blok
, Rais
)));
5322 Push_Scope
(Spec_Id
);
5329 -- If subprogram contains a parameterless recursive call, then we may
5330 -- have an infinite recursion, so see if we can generate code to check
5331 -- for this possibility if storage checks are not suppressed.
5333 if Ekind
(Spec_Id
) = E_Procedure
5334 and then Has_Recursive_Call
(Spec_Id
)
5335 and then not Storage_Checks_Suppressed
(Spec_Id
)
5337 Detect_Infinite_Recursion
(N
, Spec_Id
);
5340 -- Set to encode entity names in package body before gigi is called
5342 Qualify_Entity_Names
(N
);
5344 -- If we are unnesting procedures, and this is an outer level procedure
5345 -- with nested subprograms, do the unnesting operation now.
5347 if Opt
.Unnest_Subprogram_Mode
5349 -- We are only interested in subprograms (not generic subprograms)
5351 and then Is_Subprogram
(Spec_Id
)
5353 -- Only deal with outer level subprograms. Nested subprograms are
5354 -- handled as part of dealing with the outer level subprogram in
5355 -- which they are nested.
5357 and then Enclosing_Subprogram
(Spec_Id
) = Empty
5359 -- We are only interested in subprograms that have nested subprograms
5361 and then Has_Nested_Subprogram
(Spec_Id
)
5363 Unnest_Subprogram
(Spec_Id
, N
);
5365 end Expand_N_Subprogram_Body
;
5367 -----------------------------------
5368 -- Expand_N_Subprogram_Body_Stub --
5369 -----------------------------------
5371 procedure Expand_N_Subprogram_Body_Stub
(N
: Node_Id
) is
5373 if Present
(Corresponding_Body
(N
)) then
5374 Expand_N_Subprogram_Body
(
5375 Unit_Declaration_Node
(Corresponding_Body
(N
)));
5377 end Expand_N_Subprogram_Body_Stub
;
5379 -------------------------------------
5380 -- Expand_N_Subprogram_Declaration --
5381 -------------------------------------
5383 -- If the declaration appears within a protected body, it is a private
5384 -- operation of the protected type. We must create the corresponding
5385 -- protected subprogram an associated formals. For a normal protected
5386 -- operation, this is done when expanding the protected type declaration.
5388 -- If the declaration is for a null procedure, emit null body
5390 procedure Expand_N_Subprogram_Declaration
(N
: Node_Id
) is
5391 Loc
: constant Source_Ptr
:= Sloc
(N
);
5392 Subp
: constant Entity_Id
:= Defining_Entity
(N
);
5393 Scop
: constant Entity_Id
:= Scope
(Subp
);
5394 Prot_Decl
: Node_Id
;
5396 Prot_Id
: Entity_Id
;
5399 -- In SPARK, subprogram declarations are only allowed in package
5402 if Nkind
(Parent
(N
)) /= N_Package_Specification
then
5403 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5404 Check_SPARK_05_Restriction
5405 ("subprogram declaration is not a library item", N
);
5407 elsif Present
(Next
(N
))
5408 and then Nkind
(Next
(N
)) = N_Pragma
5409 and then Get_Pragma_Id
(Pragma_Name
(Next
(N
))) = Pragma_Import
5411 -- In SPARK, subprogram declarations are also permitted in
5412 -- declarative parts when immediately followed by a corresponding
5413 -- pragma Import. We only check here that there is some pragma
5418 Check_SPARK_05_Restriction
5419 ("subprogram declaration is not allowed here", N
);
5423 -- Deal with case of protected subprogram. Do not generate protected
5424 -- operation if operation is flagged as eliminated.
5426 if Is_List_Member
(N
)
5427 and then Present
(Parent
(List_Containing
(N
)))
5428 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5429 and then Is_Protected_Type
(Scop
)
5431 if No
(Protected_Body_Subprogram
(Subp
))
5432 and then not Is_Eliminated
(Subp
)
5435 Make_Subprogram_Declaration
(Loc
,
5437 Build_Protected_Sub_Specification
5438 (N
, Scop
, Unprotected_Mode
));
5440 -- The protected subprogram is declared outside of the protected
5441 -- body. Given that the body has frozen all entities so far, we
5442 -- analyze the subprogram and perform freezing actions explicitly.
5443 -- including the generation of an explicit freeze node, to ensure
5444 -- that gigi has the proper order of elaboration.
5445 -- If the body is a subunit, the insertion point is before the
5446 -- stub in the parent.
5448 Prot_Bod
:= Parent
(List_Containing
(N
));
5450 if Nkind
(Parent
(Prot_Bod
)) = N_Subunit
then
5451 Prot_Bod
:= Corresponding_Stub
(Parent
(Prot_Bod
));
5454 Insert_Before
(Prot_Bod
, Prot_Decl
);
5455 Prot_Id
:= Defining_Unit_Name
(Specification
(Prot_Decl
));
5456 Set_Has_Delayed_Freeze
(Prot_Id
);
5458 Push_Scope
(Scope
(Scop
));
5459 Analyze
(Prot_Decl
);
5460 Freeze_Before
(N
, Prot_Id
);
5461 Set_Protected_Body_Subprogram
(Subp
, Prot_Id
);
5463 -- Create protected operation as well. Even though the operation
5464 -- is only accessible within the body, it is possible to make it
5465 -- available outside of the protected object by using 'Access to
5466 -- provide a callback, so build protected version in all cases.
5469 Make_Subprogram_Declaration
(Loc
,
5471 Build_Protected_Sub_Specification
(N
, Scop
, Protected_Mode
));
5472 Insert_Before
(Prot_Bod
, Prot_Decl
);
5473 Analyze
(Prot_Decl
);
5478 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
5479 -- cases this is superfluous because calls to it will be automatically
5480 -- inlined, but we definitely need the body if preconditions for the
5481 -- procedure are present.
5483 elsif Nkind
(Specification
(N
)) = N_Procedure_Specification
5484 and then Null_Present
(Specification
(N
))
5487 Bod
: constant Node_Id
:= Body_To_Inline
(N
);
5490 Set_Has_Completion
(Subp
, False);
5491 Append_Freeze_Action
(Subp
, Bod
);
5493 -- The body now contains raise statements, so calls to it will
5496 Set_Is_Inlined
(Subp
, False);
5499 end Expand_N_Subprogram_Declaration
;
5501 --------------------------------
5502 -- Expand_Non_Function_Return --
5503 --------------------------------
5505 procedure Expand_Non_Function_Return
(N
: Node_Id
) is
5506 pragma Assert
(No
(Expression
(N
)));
5508 Loc
: constant Source_Ptr
:= Sloc
(N
);
5509 Scope_Id
: Entity_Id
:= Return_Applies_To
(Return_Statement_Entity
(N
));
5510 Kind
: constant Entity_Kind
:= Ekind
(Scope_Id
);
5513 Goto_Stat
: Node_Id
;
5517 -- Call the _Postconditions procedure if the related subprogram has
5518 -- contract assertions that need to be verified on exit.
5520 if Ekind_In
(Scope_Id
, E_Entry
, E_Entry_Family
, E_Procedure
)
5521 and then Present
(Postconditions_Proc
(Scope_Id
))
5524 Make_Procedure_Call_Statement
(Loc
,
5525 Name
=> New_Occurrence_Of
(Postconditions_Proc
(Scope_Id
), Loc
)));
5528 -- If it is a return from a procedure do no extra steps
5530 if Kind
= E_Procedure
or else Kind
= E_Generic_Procedure
then
5533 -- If it is a nested return within an extended one, replace it with a
5534 -- return of the previously declared return object.
5536 elsif Kind
= E_Return_Statement
then
5538 Make_Simple_Return_Statement
(Loc
,
5540 New_Occurrence_Of
(First_Entity
(Scope_Id
), Loc
)));
5541 Set_Comes_From_Extended_Return_Statement
(N
);
5542 Set_Return_Statement_Entity
(N
, Scope_Id
);
5543 Expand_Simple_Function_Return
(N
);
5547 pragma Assert
(Is_Entry
(Scope_Id
));
5549 -- Look at the enclosing block to see whether the return is from an
5550 -- accept statement or an entry body.
5552 for J
in reverse 0 .. Scope_Stack
.Last
loop
5553 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
5554 exit when Is_Concurrent_Type
(Scope_Id
);
5557 -- If it is a return from accept statement it is expanded as call to
5558 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
5560 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
5561 -- Expand_N_Accept_Alternative in exp_ch9.adb)
5563 if Is_Task_Type
(Scope_Id
) then
5566 Make_Procedure_Call_Statement
(Loc
,
5567 Name
=> New_Occurrence_Of
(RTE
(RE_Complete_Rendezvous
), Loc
));
5568 Insert_Before
(N
, Call
);
5569 -- why not insert actions here???
5572 Acc_Stat
:= Parent
(N
);
5573 while Nkind
(Acc_Stat
) /= N_Accept_Statement
loop
5574 Acc_Stat
:= Parent
(Acc_Stat
);
5577 Lab_Node
:= Last
(Statements
5578 (Handled_Statement_Sequence
(Acc_Stat
)));
5580 Goto_Stat
:= Make_Goto_Statement
(Loc
,
5581 Name
=> New_Occurrence_Of
5582 (Entity
(Identifier
(Lab_Node
)), Loc
));
5584 Set_Analyzed
(Goto_Stat
);
5586 Rewrite
(N
, Goto_Stat
);
5589 -- If it is a return from an entry body, put a Complete_Entry_Body call
5590 -- in front of the return.
5592 elsif Is_Protected_Type
(Scope_Id
) then
5594 Make_Procedure_Call_Statement
(Loc
,
5596 New_Occurrence_Of
(RTE
(RE_Complete_Entry_Body
), Loc
),
5597 Parameter_Associations
=> New_List
(
5598 Make_Attribute_Reference
(Loc
,
5601 (Find_Protection_Object
(Current_Scope
), Loc
),
5602 Attribute_Name
=> Name_Unchecked_Access
)));
5604 Insert_Before
(N
, Call
);
5607 end Expand_Non_Function_Return
;
5609 ---------------------------------------
5610 -- Expand_Protected_Object_Reference --
5611 ---------------------------------------
5613 function Expand_Protected_Object_Reference
5615 Scop
: Entity_Id
) return Node_Id
5617 Loc
: constant Source_Ptr
:= Sloc
(N
);
5624 Rec
:= Make_Identifier
(Loc
, Name_uObject
);
5625 Set_Etype
(Rec
, Corresponding_Record_Type
(Scop
));
5627 -- Find enclosing protected operation, and retrieve its first parameter,
5628 -- which denotes the enclosing protected object. If the enclosing
5629 -- operation is an entry, we are immediately within the protected body,
5630 -- and we can retrieve the object from the service entries procedure. A
5631 -- barrier function has the same signature as an entry. A barrier
5632 -- function is compiled within the protected object, but unlike
5633 -- protected operations its never needs locks, so that its protected
5634 -- body subprogram points to itself.
5636 Proc
:= Current_Scope
;
5637 while Present
(Proc
)
5638 and then Scope
(Proc
) /= Scop
5640 Proc
:= Scope
(Proc
);
5643 Corr
:= Protected_Body_Subprogram
(Proc
);
5647 -- Previous error left expansion incomplete.
5648 -- Nothing to do on this call.
5655 (First
(Parameter_Specifications
(Parent
(Corr
))));
5657 if Is_Subprogram
(Proc
) and then Proc
/= Corr
then
5659 -- Protected function or procedure
5661 Set_Entity
(Rec
, Param
);
5663 -- Rec is a reference to an entity which will not be in scope when
5664 -- the call is reanalyzed, and needs no further analysis.
5669 -- Entry or barrier function for entry body. The first parameter of
5670 -- the entry body procedure is pointer to the object. We create a
5671 -- local variable of the proper type, duplicating what is done to
5672 -- define _object later on.
5676 Obj_Ptr
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
5680 Make_Full_Type_Declaration
(Loc
,
5681 Defining_Identifier
=> Obj_Ptr
,
5683 Make_Access_To_Object_Definition
(Loc
,
5684 Subtype_Indication
=>
5686 (Corresponding_Record_Type
(Scop
), Loc
))));
5688 Insert_Actions
(N
, Decls
);
5689 Freeze_Before
(N
, Obj_Ptr
);
5692 Make_Explicit_Dereference
(Loc
,
5694 Unchecked_Convert_To
(Obj_Ptr
,
5695 New_Occurrence_Of
(Param
, Loc
)));
5697 -- Analyze new actual. Other actuals in calls are already analyzed
5698 -- and the list of actuals is not reanalyzed after rewriting.
5700 Set_Parent
(Rec
, N
);
5706 end Expand_Protected_Object_Reference
;
5708 --------------------------------------
5709 -- Expand_Protected_Subprogram_Call --
5710 --------------------------------------
5712 procedure Expand_Protected_Subprogram_Call
5719 procedure Freeze_Called_Function
;
5720 -- If it is a function call it can appear in elaboration code and
5721 -- the called entity must be frozen before the call. This must be
5722 -- done before the call is expanded, as the expansion may rewrite it
5723 -- to something other than a call (e.g. a temporary initialized in a
5724 -- transient block).
5726 ----------------------------
5727 -- Freeze_Called_Function --
5728 ----------------------------
5730 procedure Freeze_Called_Function
is
5732 if Ekind
(Subp
) = E_Function
then
5733 Freeze_Expression
(Name
(N
));
5735 end Freeze_Called_Function
;
5737 -- Start of processing for Expand_Protected_Subprogram_Call
5740 -- If the protected object is not an enclosing scope, this is an inter-
5741 -- object function call. Inter-object procedure calls are expanded by
5742 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
5743 -- subprogram being called is in the protected body being compiled, and
5744 -- if the protected object in the call is statically the enclosing type.
5745 -- The object may be an component of some other data structure, in which
5746 -- case this must be handled as an inter-object call.
5748 if not In_Open_Scopes
(Scop
)
5749 or else not Is_Entity_Name
(Name
(N
))
5751 if Nkind
(Name
(N
)) = N_Selected_Component
then
5752 Rec
:= Prefix
(Name
(N
));
5755 pragma Assert
(Nkind
(Name
(N
)) = N_Indexed_Component
);
5756 Rec
:= Prefix
(Prefix
(Name
(N
)));
5759 Freeze_Called_Function
;
5760 Build_Protected_Subprogram_Call
(N
,
5761 Name
=> New_Occurrence_Of
(Subp
, Sloc
(N
)),
5762 Rec
=> Convert_Concurrent
(Rec
, Etype
(Rec
)),
5766 Rec
:= Expand_Protected_Object_Reference
(N
, Scop
);
5772 Freeze_Called_Function
;
5773 Build_Protected_Subprogram_Call
(N
,
5780 -- Analyze and resolve the new call. The actuals have already been
5781 -- resolved, but expansion of a function call will add extra actuals
5782 -- if needed. Analysis of a procedure call already includes resolution.
5786 if Ekind
(Subp
) = E_Function
then
5787 Resolve
(N
, Etype
(Subp
));
5789 end Expand_Protected_Subprogram_Call
;
5791 --------------------------------------------
5792 -- Has_Unconstrained_Access_Discriminants --
5793 --------------------------------------------
5795 function Has_Unconstrained_Access_Discriminants
5796 (Subtyp
: Entity_Id
) return Boolean
5801 if Has_Discriminants
(Subtyp
)
5802 and then not Is_Constrained
(Subtyp
)
5804 Discr
:= First_Discriminant
(Subtyp
);
5805 while Present
(Discr
) loop
5806 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
then
5810 Next_Discriminant
(Discr
);
5815 end Has_Unconstrained_Access_Discriminants
;
5817 -----------------------------------
5818 -- Expand_Simple_Function_Return --
5819 -----------------------------------
5821 -- The "simple" comes from the syntax rule simple_return_statement. The
5822 -- semantics are not at all simple.
5824 procedure Expand_Simple_Function_Return
(N
: Node_Id
) is
5825 Loc
: constant Source_Ptr
:= Sloc
(N
);
5827 Scope_Id
: constant Entity_Id
:=
5828 Return_Applies_To
(Return_Statement_Entity
(N
));
5829 -- The function we are returning from
5831 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
5832 -- The result type of the function
5834 Utyp
: constant Entity_Id
:= Underlying_Type
(R_Type
);
5836 Exp
: constant Node_Id
:= Expression
(N
);
5837 pragma Assert
(Present
(Exp
));
5839 Exptyp
: constant Entity_Id
:= Etype
(Exp
);
5840 -- The type of the expression (not necessarily the same as R_Type)
5842 Subtype_Ind
: Node_Id
;
5843 -- If the result type of the function is class-wide and the expression
5844 -- has a specific type, then we use the expression's type as the type of
5845 -- the return object. In cases where the expression is an aggregate that
5846 -- is built in place, this avoids the need for an expensive conversion
5847 -- of the return object to the specific type on assignments to the
5848 -- individual components.
5851 if Is_Class_Wide_Type
(R_Type
)
5852 and then not Is_Class_Wide_Type
(Etype
(Exp
))
5854 Subtype_Ind
:= New_Occurrence_Of
(Etype
(Exp
), Loc
);
5856 Subtype_Ind
:= New_Occurrence_Of
(R_Type
, Loc
);
5859 -- For the case of a simple return that does not come from an extended
5860 -- return, in the case of Ada 2005 where we are returning a limited
5861 -- type, we rewrite "return <expression>;" to be:
5863 -- return _anon_ : <return_subtype> := <expression>
5865 -- The expansion produced by Expand_N_Extended_Return_Statement will
5866 -- contain simple return statements (for example, a block containing
5867 -- simple return of the return object), which brings us back here with
5868 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
5869 -- checking for a simple return that does not come from an extended
5870 -- return is to avoid this infinite recursion.
5872 -- The reason for this design is that for Ada 2005 limited returns, we
5873 -- need to reify the return object, so we can build it "in place", and
5874 -- we need a block statement to hang finalization and tasking stuff.
5876 -- ??? In order to avoid disruption, we avoid translating to extended
5877 -- return except in the cases where we really need to (Ada 2005 for
5878 -- inherently limited). We might prefer to do this translation in all
5879 -- cases (except perhaps for the case of Ada 95 inherently limited),
5880 -- in order to fully exercise the Expand_N_Extended_Return_Statement
5881 -- code. This would also allow us to do the build-in-place optimization
5882 -- for efficiency even in cases where it is semantically not required.
5884 -- As before, we check the type of the return expression rather than the
5885 -- return type of the function, because the latter may be a limited
5886 -- class-wide interface type, which is not a limited type, even though
5887 -- the type of the expression may be.
5889 if not Comes_From_Extended_Return_Statement
(N
)
5890 and then Is_Limited_View
(Etype
(Expression
(N
)))
5891 and then Ada_Version
>= Ada_2005
5892 and then not Debug_Flag_Dot_L
5894 -- The functionality of interface thunks is simple and it is always
5895 -- handled by means of simple return statements. This leaves their
5896 -- expansion simple and clean.
5898 and then not Is_Thunk
(Current_Scope
)
5901 Return_Object_Entity
: constant Entity_Id
:=
5902 Make_Temporary
(Loc
, 'R', Exp
);
5904 Obj_Decl
: constant Node_Id
:=
5905 Make_Object_Declaration
(Loc
,
5906 Defining_Identifier
=> Return_Object_Entity
,
5907 Object_Definition
=> Subtype_Ind
,
5910 Ext
: constant Node_Id
:=
5911 Make_Extended_Return_Statement
(Loc
,
5912 Return_Object_Declarations
=> New_List
(Obj_Decl
));
5913 -- Do not perform this high-level optimization if the result type
5914 -- is an interface because the "this" pointer must be displaced.
5923 -- Here we have a simple return statement that is part of the expansion
5924 -- of an extended return statement (either written by the user, or
5925 -- generated by the above code).
5927 -- Always normalize C/Fortran boolean result. This is not always needed,
5928 -- but it seems a good idea to minimize the passing around of non-
5929 -- normalized values, and in any case this handles the processing of
5930 -- barrier functions for protected types, which turn the condition into
5931 -- a return statement.
5933 if Is_Boolean_Type
(Exptyp
)
5934 and then Nonzero_Is_True
(Exptyp
)
5936 Adjust_Condition
(Exp
);
5937 Adjust_Result_Type
(Exp
, Exptyp
);
5940 -- Do validity check if enabled for returns
5942 if Validity_Checks_On
5943 and then Validity_Check_Returns
5948 -- Check the result expression of a scalar function against the subtype
5949 -- of the function by inserting a conversion. This conversion must
5950 -- eventually be performed for other classes of types, but for now it's
5951 -- only done for scalars.
5954 if Is_Scalar_Type
(Exptyp
) then
5955 Rewrite
(Exp
, Convert_To
(R_Type
, Exp
));
5957 -- The expression is resolved to ensure that the conversion gets
5958 -- expanded to generate a possible constraint check.
5960 Analyze_And_Resolve
(Exp
, R_Type
);
5963 -- Deal with returning variable length objects and controlled types
5965 -- Nothing to do if we are returning by reference, or this is not a
5966 -- type that requires special processing (indicated by the fact that
5967 -- it requires a cleanup scope for the secondary stack case).
5969 if Is_Limited_View
(Exptyp
)
5970 or else Is_Limited_Interface
(Exptyp
)
5974 -- No copy needed for thunks returning interface type objects since
5975 -- the object is returned by reference and the maximum functionality
5976 -- required is just to displace the pointer.
5978 elsif Is_Thunk
(Current_Scope
) and then Is_Interface
(Exptyp
) then
5981 -- If the call is within a thunk and the type is a limited view, the
5982 -- backend will eventually see the non-limited view of the type.
5984 elsif Is_Thunk
(Current_Scope
) and then Is_Incomplete_Type
(Exptyp
) then
5987 elsif not Requires_Transient_Scope
(R_Type
) then
5989 -- Mutable records with no variable length components are not
5990 -- returned on the sec-stack, so we need to make sure that the
5991 -- backend will only copy back the size of the actual value, and not
5992 -- the maximum size. We create an actual subtype for this purpose.
5995 Ubt
: constant Entity_Id
:= Underlying_Type
(Base_Type
(Exptyp
));
5999 if Has_Discriminants
(Ubt
)
6000 and then not Is_Constrained
(Ubt
)
6001 and then not Has_Unchecked_Union
(Ubt
)
6003 Decl
:= Build_Actual_Subtype
(Ubt
, Exp
);
6004 Ent
:= Defining_Identifier
(Decl
);
6005 Insert_Action
(Exp
, Decl
);
6006 Rewrite
(Exp
, Unchecked_Convert_To
(Ent
, Exp
));
6007 Analyze_And_Resolve
(Exp
);
6011 -- Here if secondary stack is used
6014 -- Prevent the reclamation of the secondary stack by all enclosing
6015 -- blocks and loops as well as the related function, otherwise the
6016 -- result will be reclaimed too early or even clobbered. Due to a
6017 -- possible mix of internally generated blocks, source blocks and
6018 -- loops, the scope stack may not be contiguous as all labels are
6019 -- inserted at the top level within the related function. Instead,
6020 -- perform a parent-based traversal and mark all appropriate
6028 while Present
(P
) loop
6030 -- Mark the label of a source or internally generated block or
6033 if Nkind_In
(P
, N_Block_Statement
, N_Loop_Statement
) then
6034 Set_Sec_Stack_Needed_For_Return
(Entity
(Identifier
(P
)));
6036 -- Mark the enclosing function
6038 elsif Nkind
(P
) = N_Subprogram_Body
then
6039 if Present
(Corresponding_Spec
(P
)) then
6040 Set_Sec_Stack_Needed_For_Return
(Corresponding_Spec
(P
));
6042 Set_Sec_Stack_Needed_For_Return
(Defining_Entity
(P
));
6045 -- Do not go beyond the enclosing function
6054 -- Optimize the case where the result is a function call. In this
6055 -- case either the result is already on the secondary stack, or is
6056 -- already being returned with the stack pointer depressed and no
6057 -- further processing is required except to set the By_Ref flag
6058 -- to ensure that gigi does not attempt an extra unnecessary copy.
6059 -- (actually not just unnecessary but harmfully wrong in the case
6060 -- of a controlled type, where gigi does not know how to do a copy).
6061 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6062 -- for array types if the constrained status of the target type is
6063 -- different from that of the expression.
6065 if Requires_Transient_Scope
(Exptyp
)
6067 (not Is_Array_Type
(Exptyp
)
6068 or else Is_Constrained
(Exptyp
) = Is_Constrained
(R_Type
)
6069 or else CW_Or_Has_Controlled_Part
(Utyp
))
6070 and then Nkind
(Exp
) = N_Function_Call
6074 -- Remove side effects from the expression now so that other parts
6075 -- of the expander do not have to reanalyze this node without this
6078 Rewrite
(Exp
, Duplicate_Subexpr_No_Checks
(Exp
));
6080 -- For controlled types, do the allocation on the secondary stack
6081 -- manually in order to call adjust at the right time:
6083 -- type Anon1 is access R_Type;
6084 -- for Anon1'Storage_pool use ss_pool;
6085 -- Anon2 : anon1 := new R_Type'(expr);
6086 -- return Anon2.all;
6088 -- We do the same for classwide types that are not potentially
6089 -- controlled (by the virtue of restriction No_Finalization) because
6090 -- gigi is not able to properly allocate class-wide types.
6092 elsif CW_Or_Has_Controlled_Part
(Utyp
) then
6094 Loc
: constant Source_Ptr
:= Sloc
(N
);
6095 Acc_Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
6096 Alloc_Node
: Node_Id
;
6100 Set_Ekind
(Acc_Typ
, E_Access_Type
);
6102 Set_Associated_Storage_Pool
(Acc_Typ
, RTE
(RE_SS_Pool
));
6104 -- This is an allocator for the secondary stack, and it's fine
6105 -- to have Comes_From_Source set False on it, as gigi knows not
6106 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6109 Make_Allocator
(Loc
,
6111 Make_Qualified_Expression
(Loc
,
6112 Subtype_Mark
=> New_Occurrence_Of
(Etype
(Exp
), Loc
),
6113 Expression
=> Relocate_Node
(Exp
)));
6115 -- We do not want discriminant checks on the declaration,
6116 -- given that it gets its value from the allocator.
6118 Set_No_Initialization
(Alloc_Node
);
6120 Temp
:= Make_Temporary
(Loc
, 'R', Alloc_Node
);
6122 Insert_List_Before_And_Analyze
(N
, New_List
(
6123 Make_Full_Type_Declaration
(Loc
,
6124 Defining_Identifier
=> Acc_Typ
,
6126 Make_Access_To_Object_Definition
(Loc
,
6127 Subtype_Indication
=> Subtype_Ind
)),
6129 Make_Object_Declaration
(Loc
,
6130 Defining_Identifier
=> Temp
,
6131 Object_Definition
=> New_Occurrence_Of
(Acc_Typ
, Loc
),
6132 Expression
=> Alloc_Node
)));
6135 Make_Explicit_Dereference
(Loc
,
6136 Prefix
=> New_Occurrence_Of
(Temp
, Loc
)));
6138 -- Ada 2005 (AI-251): If the type of the returned object is
6139 -- an interface then add an implicit type conversion to force
6140 -- displacement of the "this" pointer.
6142 if Is_Interface
(R_Type
) then
6143 Rewrite
(Exp
, Convert_To
(R_Type
, Relocate_Node
(Exp
)));
6146 Analyze_And_Resolve
(Exp
, R_Type
);
6149 -- Otherwise use the gigi mechanism to allocate result on the
6153 Check_Restriction
(No_Secondary_Stack
, N
);
6154 Set_Storage_Pool
(N
, RTE
(RE_SS_Pool
));
6156 -- If we are generating code for the VM do not use
6157 -- SS_Allocate since everything is heap-allocated anyway.
6159 if VM_Target
= No_VM
then
6160 Set_Procedure_To_Call
(N
, RTE
(RE_SS_Allocate
));
6165 -- Implement the rules of 6.5(8-10), which require a tag check in
6166 -- the case of a limited tagged return type, and tag reassignment for
6167 -- nonlimited tagged results. These actions are needed when the return
6168 -- type is a specific tagged type and the result expression is a
6169 -- conversion or a formal parameter, because in that case the tag of
6170 -- the expression might differ from the tag of the specific result type.
6172 if Is_Tagged_Type
(Utyp
)
6173 and then not Is_Class_Wide_Type
(Utyp
)
6174 and then (Nkind_In
(Exp
, N_Type_Conversion
,
6175 N_Unchecked_Type_Conversion
)
6176 or else (Is_Entity_Name
(Exp
)
6177 and then Ekind
(Entity
(Exp
)) in Formal_Kind
))
6179 -- When the return type is limited, perform a check that the tag of
6180 -- the result is the same as the tag of the return type.
6182 if Is_Limited_Type
(R_Type
) then
6184 Make_Raise_Constraint_Error
(Loc
,
6188 Make_Selected_Component
(Loc
,
6189 Prefix
=> Duplicate_Subexpr
(Exp
),
6190 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6192 Make_Attribute_Reference
(Loc
,
6194 New_Occurrence_Of
(Base_Type
(Utyp
), Loc
),
6195 Attribute_Name
=> Name_Tag
)),
6196 Reason
=> CE_Tag_Check_Failed
));
6198 -- If the result type is a specific nonlimited tagged type, then we
6199 -- have to ensure that the tag of the result is that of the result
6200 -- type. This is handled by making a copy of the expression in
6201 -- the case where it might have a different tag, namely when the
6202 -- expression is a conversion or a formal parameter. We create a new
6203 -- object of the result type and initialize it from the expression,
6204 -- which will implicitly force the tag to be set appropriately.
6208 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
6209 Result_Id
: constant Entity_Id
:=
6210 Make_Temporary
(Loc
, 'R', ExpR
);
6211 Result_Exp
: constant Node_Id
:=
6212 New_Occurrence_Of
(Result_Id
, Loc
);
6213 Result_Obj
: constant Node_Id
:=
6214 Make_Object_Declaration
(Loc
,
6215 Defining_Identifier
=> Result_Id
,
6216 Object_Definition
=>
6217 New_Occurrence_Of
(R_Type
, Loc
),
6218 Constant_Present
=> True,
6219 Expression
=> ExpR
);
6222 Set_Assignment_OK
(Result_Obj
);
6223 Insert_Action
(Exp
, Result_Obj
);
6225 Rewrite
(Exp
, Result_Exp
);
6226 Analyze_And_Resolve
(Exp
, R_Type
);
6230 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6231 -- a check that the level of the return expression's underlying type
6232 -- is not deeper than the level of the master enclosing the function.
6233 -- Always generate the check when the type of the return expression
6234 -- is class-wide, when it's a type conversion, or when it's a formal
6235 -- parameter. Otherwise, suppress the check in the case where the
6236 -- return expression has a specific type whose level is known not to
6237 -- be statically deeper than the function's result type.
6239 -- No runtime check needed in interface thunks since it is performed
6240 -- by the target primitive associated with the thunk.
6242 -- Note: accessibility check is skipped in the VM case, since there
6243 -- does not seem to be any practical way to implement this check.
6245 elsif Ada_Version
>= Ada_2005
6246 and then Tagged_Type_Expansion
6247 and then Is_Class_Wide_Type
(R_Type
)
6248 and then not Is_Thunk
(Current_Scope
)
6249 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
6251 (Is_Class_Wide_Type
(Etype
(Exp
))
6252 or else Nkind_In
(Exp
, N_Type_Conversion
,
6253 N_Unchecked_Type_Conversion
)
6254 or else (Is_Entity_Name
(Exp
)
6255 and then Ekind
(Entity
(Exp
)) in Formal_Kind
)
6256 or else Scope_Depth
(Enclosing_Dynamic_Scope
(Etype
(Exp
))) >
6257 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))
6263 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6264 -- "this" to reference the base of the object. This is required to
6265 -- get access to the TSD of the object.
6267 if Is_Class_Wide_Type
(Etype
(Exp
))
6268 and then Is_Interface
(Etype
(Exp
))
6270 -- If the expression is an explicit dereference then we can
6271 -- directly displace the pointer to reference the base of
6274 if Nkind
(Exp
) = N_Explicit_Dereference
then
6276 Make_Explicit_Dereference
(Loc
,
6278 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6279 Make_Function_Call
(Loc
,
6281 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6282 Parameter_Associations
=> New_List
(
6283 Unchecked_Convert_To
(RTE
(RE_Address
),
6284 Duplicate_Subexpr
(Prefix
(Exp
)))))));
6286 -- Similar case to the previous one but the expression is a
6287 -- renaming of an explicit dereference.
6289 elsif Nkind
(Exp
) = N_Identifier
6290 and then Present
(Renamed_Object
(Entity
(Exp
)))
6291 and then Nkind
(Renamed_Object
(Entity
(Exp
)))
6292 = N_Explicit_Dereference
6295 Make_Explicit_Dereference
(Loc
,
6297 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6298 Make_Function_Call
(Loc
,
6300 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6301 Parameter_Associations
=> New_List
(
6302 Unchecked_Convert_To
(RTE
(RE_Address
),
6305 (Renamed_Object
(Entity
(Exp
)))))))));
6307 -- Common case: obtain the address of the actual object and
6308 -- displace the pointer to reference the base of the object.
6312 Make_Explicit_Dereference
(Loc
,
6314 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6315 Make_Function_Call
(Loc
,
6317 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6318 Parameter_Associations
=> New_List
(
6319 Make_Attribute_Reference
(Loc
,
6320 Prefix
=> Duplicate_Subexpr
(Exp
),
6321 Attribute_Name
=> Name_Address
)))));
6325 Make_Attribute_Reference
(Loc
,
6326 Prefix
=> Duplicate_Subexpr
(Exp
),
6327 Attribute_Name
=> Name_Tag
);
6331 Make_Raise_Program_Error
(Loc
,
6334 Left_Opnd
=> Build_Get_Access_Level
(Loc
, Tag_Node
),
6336 Make_Integer_Literal
(Loc
,
6337 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))),
6338 Reason
=> PE_Accessibility_Check_Failed
));
6341 -- AI05-0073: If function has a controlling access result, check that
6342 -- the tag of the return value, if it is not null, matches designated
6343 -- type of return type.
6345 -- The return expression is referenced twice in the code below, so it
6346 -- must be made free of side effects. Given that different compilers
6347 -- may evaluate these parameters in different order, both occurrences
6350 elsif Ekind
(R_Type
) = E_Anonymous_Access_Type
6351 and then Has_Controlling_Result
(Scope_Id
)
6354 Make_Raise_Constraint_Error
(Loc
,
6359 Left_Opnd
=> Duplicate_Subexpr
(Exp
),
6360 Right_Opnd
=> Make_Null
(Loc
)),
6362 Right_Opnd
=> Make_Op_Ne
(Loc
,
6364 Make_Selected_Component
(Loc
,
6365 Prefix
=> Duplicate_Subexpr
(Exp
),
6366 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6369 Make_Attribute_Reference
(Loc
,
6371 New_Occurrence_Of
(Designated_Type
(R_Type
), Loc
),
6372 Attribute_Name
=> Name_Tag
))),
6374 Reason
=> CE_Tag_Check_Failed
),
6375 Suppress
=> All_Checks
);
6378 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6379 -- ensure that the function result does not outlive an
6380 -- object designated by one of it discriminants.
6382 if Present
(Extra_Accessibility_Of_Result
(Scope_Id
))
6383 and then Has_Unconstrained_Access_Discriminants
(R_Type
)
6386 Discrim_Source
: Node_Id
;
6388 procedure Check_Against_Result_Level
(Level
: Node_Id
);
6389 -- Check the given accessibility level against the level
6390 -- determined by the point of call. (AI05-0234).
6392 --------------------------------
6393 -- Check_Against_Result_Level --
6394 --------------------------------
6396 procedure Check_Against_Result_Level
(Level
: Node_Id
) is
6399 Make_Raise_Program_Error
(Loc
,
6405 (Extra_Accessibility_Of_Result
(Scope_Id
), Loc
)),
6406 Reason
=> PE_Accessibility_Check_Failed
));
6407 end Check_Against_Result_Level
;
6410 Discrim_Source
:= Exp
;
6411 while Nkind
(Discrim_Source
) = N_Qualified_Expression
loop
6412 Discrim_Source
:= Expression
(Discrim_Source
);
6415 if Nkind
(Discrim_Source
) = N_Identifier
6416 and then Is_Return_Object
(Entity
(Discrim_Source
))
6418 Discrim_Source
:= Entity
(Discrim_Source
);
6420 if Is_Constrained
(Etype
(Discrim_Source
)) then
6421 Discrim_Source
:= Etype
(Discrim_Source
);
6423 Discrim_Source
:= Expression
(Parent
(Discrim_Source
));
6426 elsif Nkind
(Discrim_Source
) = N_Identifier
6427 and then Nkind_In
(Original_Node
(Discrim_Source
),
6428 N_Aggregate
, N_Extension_Aggregate
)
6430 Discrim_Source
:= Original_Node
(Discrim_Source
);
6432 elsif Nkind
(Discrim_Source
) = N_Explicit_Dereference
and then
6433 Nkind
(Original_Node
(Discrim_Source
)) = N_Function_Call
6435 Discrim_Source
:= Original_Node
(Discrim_Source
);
6438 while Nkind_In
(Discrim_Source
, N_Qualified_Expression
,
6440 N_Unchecked_Type_Conversion
)
6442 Discrim_Source
:= Expression
(Discrim_Source
);
6445 case Nkind
(Discrim_Source
) is
6446 when N_Defining_Identifier
=>
6448 pragma Assert
(Is_Composite_Type
(Discrim_Source
)
6449 and then Has_Discriminants
(Discrim_Source
)
6450 and then Is_Constrained
(Discrim_Source
));
6453 Discrim
: Entity_Id
:=
6454 First_Discriminant
(Base_Type
(R_Type
));
6455 Disc_Elmt
: Elmt_Id
:=
6456 First_Elmt
(Discriminant_Constraint
6460 if Ekind
(Etype
(Discrim
)) =
6461 E_Anonymous_Access_Type
6463 Check_Against_Result_Level
6464 (Dynamic_Accessibility_Level
(Node
(Disc_Elmt
)));
6467 Next_Elmt
(Disc_Elmt
);
6468 Next_Discriminant
(Discrim
);
6469 exit when not Present
(Discrim
);
6473 when N_Aggregate | N_Extension_Aggregate
=>
6475 -- Unimplemented: extension aggregate case where discrims
6476 -- come from ancestor part, not extension part.
6479 Discrim
: Entity_Id
:=
6480 First_Discriminant
(Base_Type
(R_Type
));
6482 Disc_Exp
: Node_Id
:= Empty
;
6484 Positionals_Exhausted
6485 : Boolean := not Present
(Expressions
6488 function Associated_Expr
6489 (Comp_Id
: Entity_Id
;
6490 Associations
: List_Id
) return Node_Id
;
6492 -- Given a component and a component associations list,
6493 -- locate the expression for that component; returns
6494 -- Empty if no such expression is found.
6496 ---------------------
6497 -- Associated_Expr --
6498 ---------------------
6500 function Associated_Expr
6501 (Comp_Id
: Entity_Id
;
6502 Associations
: List_Id
) return Node_Id
6508 -- Simple linear search seems ok here
6510 Assoc
:= First
(Associations
);
6511 while Present
(Assoc
) loop
6512 Choice
:= First
(Choices
(Assoc
));
6513 while Present
(Choice
) loop
6514 if (Nkind
(Choice
) = N_Identifier
6515 and then Chars
(Choice
) = Chars
(Comp_Id
))
6516 or else (Nkind
(Choice
) = N_Others_Choice
)
6518 return Expression
(Assoc
);
6528 end Associated_Expr
;
6530 -- Start of processing for Expand_Simple_Function_Return
6533 if not Positionals_Exhausted
then
6534 Disc_Exp
:= First
(Expressions
(Discrim_Source
));
6538 if Positionals_Exhausted
then
6542 Component_Associations
(Discrim_Source
));
6545 if Ekind
(Etype
(Discrim
)) =
6546 E_Anonymous_Access_Type
6548 Check_Against_Result_Level
6549 (Dynamic_Accessibility_Level
(Disc_Exp
));
6552 Next_Discriminant
(Discrim
);
6553 exit when not Present
(Discrim
);
6555 if not Positionals_Exhausted
then
6557 Positionals_Exhausted
:= not Present
(Disc_Exp
);
6562 when N_Function_Call
=>
6564 -- No check needed (check performed by callee)
6571 Level
: constant Node_Id
:=
6572 Make_Integer_Literal
(Loc
,
6573 Object_Access_Level
(Discrim_Source
));
6576 -- Unimplemented: check for name prefix that includes
6577 -- a dereference of an access value with a dynamic
6578 -- accessibility level (e.g., an access param or a
6579 -- saooaaat) and use dynamic level in that case. For
6581 -- return Access_Param.all(Some_Index).Some_Component;
6584 Set_Etype
(Level
, Standard_Natural
);
6585 Check_Against_Result_Level
(Level
);
6592 -- If we are returning an object that may not be bit-aligned, then copy
6593 -- the value into a temporary first. This copy may need to expand to a
6594 -- loop of component operations.
6596 if Is_Possibly_Unaligned_Slice
(Exp
)
6597 or else Is_Possibly_Unaligned_Object
(Exp
)
6600 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
6601 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', ExpR
);
6604 Make_Object_Declaration
(Loc
,
6605 Defining_Identifier
=> Tnn
,
6606 Constant_Present
=> True,
6607 Object_Definition
=> New_Occurrence_Of
(R_Type
, Loc
),
6608 Expression
=> ExpR
),
6609 Suppress
=> All_Checks
);
6610 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
6614 -- Call the _Postconditions procedure if the related function has
6615 -- contract assertions that need to be verified on exit.
6617 if Ekind
(Scope_Id
) = E_Function
6618 and then Present
(Postconditions_Proc
(Scope_Id
))
6620 -- We are going to reference the returned value twice in this case,
6621 -- once in the call to _Postconditions, and once in the actual return
6622 -- statement, but we can't have side effects happening twice, and in
6623 -- any case for efficiency we don't want to do the computation twice.
6625 -- If the returned expression is an entity name, we don't need to
6626 -- worry since it is efficient and safe to reference it twice, that's
6627 -- also true for literals other than string literals, and for the
6628 -- case of X.all where X is an entity name.
6630 if Is_Entity_Name
(Exp
)
6631 or else Nkind_In
(Exp
, N_Character_Literal
,
6634 or else (Nkind
(Exp
) = N_Explicit_Dereference
6635 and then Is_Entity_Name
(Prefix
(Exp
)))
6639 -- Otherwise we are going to need a temporary to capture the value
6643 ExpR
: Node_Id
:= Relocate_Node
(Exp
);
6644 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', ExpR
);
6647 -- In the case of discriminated objects, we have created a
6648 -- constrained subtype above, and used the underlying type.
6649 -- This transformation is post-analysis and harmless, except
6650 -- that now the call to the post-condition will be analyzed and
6651 -- type kinds have to match.
6653 if Nkind
(ExpR
) = N_Unchecked_Type_Conversion
6655 Is_Private_Type
(R_Type
) /= Is_Private_Type
(Etype
(ExpR
))
6657 ExpR
:= Expression
(ExpR
);
6660 -- For a complex expression of an elementary type, capture
6661 -- value in the temporary and use it as the reference.
6663 if Is_Elementary_Type
(R_Type
) then
6665 Make_Object_Declaration
(Loc
,
6666 Defining_Identifier
=> Tnn
,
6667 Constant_Present
=> True,
6668 Object_Definition
=> New_Occurrence_Of
(R_Type
, Loc
),
6669 Expression
=> ExpR
),
6670 Suppress
=> All_Checks
);
6672 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
6674 -- If we have something we can rename, generate a renaming of
6675 -- the object and replace the expression with a reference
6677 elsif Is_Object_Reference
(Exp
) then
6679 Make_Object_Renaming_Declaration
(Loc
,
6680 Defining_Identifier
=> Tnn
,
6681 Subtype_Mark
=> New_Occurrence_Of
(R_Type
, Loc
),
6683 Suppress
=> All_Checks
);
6685 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
6687 -- Otherwise we have something like a string literal or an
6688 -- aggregate. We could copy the value, but that would be
6689 -- inefficient. Instead we make a reference to the value and
6690 -- capture this reference with a renaming, the expression is
6691 -- then replaced by a dereference of this renaming.
6694 -- For now, copy the value, since the code below does not
6695 -- seem to work correctly ???
6698 Make_Object_Declaration
(Loc
,
6699 Defining_Identifier
=> Tnn
,
6700 Constant_Present
=> True,
6701 Object_Definition
=> New_Occurrence_Of
(R_Type
, Loc
),
6702 Expression
=> Relocate_Node
(Exp
)),
6703 Suppress
=> All_Checks
);
6705 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
6707 -- Insert_Action (Exp,
6708 -- Make_Object_Renaming_Declaration (Loc,
6709 -- Defining_Identifier => Tnn,
6710 -- Access_Definition =>
6711 -- Make_Access_Definition (Loc,
6712 -- All_Present => True,
6713 -- Subtype_Mark => New_Occurrence_Of (R_Type, Loc)),
6715 -- Make_Reference (Loc,
6716 -- Prefix => Relocate_Node (Exp))),
6717 -- Suppress => All_Checks);
6720 -- Make_Explicit_Dereference (Loc,
6721 -- Prefix => New_Occurrence_Of (Tnn, Loc)));
6726 -- Generate call to _Postconditions
6729 Make_Procedure_Call_Statement
(Loc
,
6731 New_Occurrence_Of
(Postconditions_Proc
(Scope_Id
), Loc
),
6732 Parameter_Associations
=> New_List
(Duplicate_Subexpr
(Exp
))));
6735 -- Ada 2005 (AI-251): If this return statement corresponds with an
6736 -- simple return statement associated with an extended return statement
6737 -- and the type of the returned object is an interface then generate an
6738 -- implicit conversion to force displacement of the "this" pointer.
6740 if Ada_Version
>= Ada_2005
6741 and then Comes_From_Extended_Return_Statement
(N
)
6742 and then Nkind
(Expression
(N
)) = N_Identifier
6743 and then Is_Interface
(Utyp
)
6744 and then Utyp
/= Underlying_Type
(Exptyp
)
6746 Rewrite
(Exp
, Convert_To
(Utyp
, Relocate_Node
(Exp
)));
6747 Analyze_And_Resolve
(Exp
);
6749 end Expand_Simple_Function_Return
;
6751 --------------------------------
6752 -- Expand_Subprogram_Contract --
6753 --------------------------------
6755 procedure Expand_Subprogram_Contract
(N
: Node_Id
) is
6756 Body_Id
: constant Entity_Id
:= Defining_Entity
(N
);
6757 Spec_Id
: constant Entity_Id
:= Corresponding_Spec
(N
);
6759 procedure Add_Invariant_And_Predicate_Checks
6760 (Subp_Id
: Entity_Id
;
6761 Stmts
: in out List_Id
;
6762 Result
: out Node_Id
);
6763 -- Process the result of function Subp_Id (if applicable) and all its
6764 -- formals. Add invariant and predicate checks where applicable. The
6765 -- routine appends all the checks to list Stmts. If Subp_Id denotes a
6766 -- function, Result contains the entity of parameter _Result, to be
6767 -- used in the creation of procedure _Postconditions.
6769 procedure Append_Enabled_Item
(Item
: Node_Id
; List
: in out List_Id
);
6770 -- Append a node to a list. If there is no list, create a new one. When
6771 -- the item denotes a pragma, it is added to the list only when it is
6774 procedure Build_Postconditions_Procedure
6775 (Subp_Id
: Entity_Id
;
6777 Result
: Entity_Id
);
6778 -- Create the body of procedure _Postconditions which handles various
6779 -- assertion actions on exit from subprogram Subp_Id. Stmts is the list
6780 -- of statements to be checked on exit. Parameter Result is the entity
6781 -- of parameter _Result when Subp_Id denotes a function.
6783 function Build_Pragma_Check_Equivalent
6785 Subp_Id
: Entity_Id
:= Empty
;
6786 Inher_Id
: Entity_Id
:= Empty
) return Node_Id
;
6787 -- Transform a [refined] pre- or postcondition denoted by Prag into an
6788 -- equivalent pragma Check. When the pre- or postcondition is inherited,
6789 -- the routine corrects the references of all formals of Inher_Id to
6790 -- point to the formals of Subp_Id.
6792 procedure Process_Contract_Cases
(Stmts
: in out List_Id
);
6793 -- Process pragma Contract_Cases. This routine prepends items to the
6794 -- body declarations and appends items to list Stmts.
6796 procedure Process_Postconditions
(Stmts
: in out List_Id
);
6797 -- Collect all [inherited] spec and body postconditions and accumulate
6798 -- their pragma Check equivalents in list Stmts.
6800 procedure Process_Preconditions
;
6801 -- Collect all [inherited] spec and body preconditions and prepend their
6802 -- pragma Check equivalents to the declarations of the body.
6804 ----------------------------------------
6805 -- Add_Invariant_And_Predicate_Checks --
6806 ----------------------------------------
6808 procedure Add_Invariant_And_Predicate_Checks
6809 (Subp_Id
: Entity_Id
;
6810 Stmts
: in out List_Id
;
6811 Result
: out Node_Id
)
6813 procedure Add_Invariant_Access_Checks
(Id
: Entity_Id
);
6814 -- Id denotes the return value of a function or a formal parameter.
6815 -- Add an invariant check if the type of Id is access to a type with
6816 -- invariants. The routine appends the generated code to Stmts.
6818 function Invariant_Checks_OK
(Typ
: Entity_Id
) return Boolean;
6819 -- Determine whether type Typ can benefit from invariant checks. To
6820 -- qualify, the type must have a non-null invariant procedure and
6821 -- subprogram Subp_Id must appear visible from the point of view of
6824 ---------------------------------
6825 -- Add_Invariant_Access_Checks --
6826 ---------------------------------
6828 procedure Add_Invariant_Access_Checks
(Id
: Entity_Id
) is
6829 Loc
: constant Source_Ptr
:= Sloc
(N
);
6836 if Is_Access_Type
(Typ
) and then not Is_Access_Constant
(Typ
) then
6837 Typ
:= Designated_Type
(Typ
);
6839 if Invariant_Checks_OK
(Typ
) then
6841 Make_Explicit_Dereference
(Loc
,
6842 Prefix
=> New_Occurrence_Of
(Id
, Loc
));
6843 Set_Etype
(Ref
, Typ
);
6846 -- if <Id> /= null then
6847 -- <invariant_call (<Ref>)>
6852 Make_If_Statement
(Loc
,
6855 Left_Opnd
=> New_Occurrence_Of
(Id
, Loc
),
6856 Right_Opnd
=> Make_Null
(Loc
)),
6857 Then_Statements
=> New_List
(
6858 Make_Invariant_Call
(Ref
))),
6862 end Add_Invariant_Access_Checks
;
6864 -------------------------
6865 -- Invariant_Checks_OK --
6866 -------------------------
6868 function Invariant_Checks_OK
(Typ
: Entity_Id
) return Boolean is
6869 function Has_Null_Body
(Proc_Id
: Entity_Id
) return Boolean;
6870 -- Determine whether the body of procedure Proc_Id contains a sole
6871 -- null statement, possibly followed by an optional return.
6873 function Has_Public_Visibility_Of_Subprogram
return Boolean;
6874 -- Determine whether type Typ has public visibility of subprogram
6881 function Has_Null_Body
(Proc_Id
: Entity_Id
) return Boolean is
6882 Body_Id
: Entity_Id
;
6889 Spec
:= Parent
(Proc_Id
);
6890 Decl
:= Parent
(Spec
);
6892 -- Retrieve the entity of the invariant procedure body
6894 if Nkind
(Spec
) = N_Procedure_Specification
6895 and then Nkind
(Decl
) = N_Subprogram_Declaration
6897 Body_Id
:= Corresponding_Body
(Decl
);
6899 -- The body acts as a spec
6905 -- The body will be generated later
6907 if No
(Body_Id
) then
6911 Spec
:= Parent
(Body_Id
);
6912 Decl
:= Parent
(Spec
);
6915 (Nkind
(Spec
) = N_Procedure_Specification
6916 and then Nkind
(Decl
) = N_Subprogram_Body
);
6918 Stmt1
:= First
(Statements
(Handled_Statement_Sequence
(Decl
)));
6920 -- Look for a null statement followed by an optional return
6923 if Nkind
(Stmt1
) = N_Null_Statement
then
6924 Stmt2
:= Next
(Stmt1
);
6926 if Present
(Stmt2
) then
6927 return Nkind
(Stmt2
) = N_Simple_Return_Statement
;
6936 -----------------------------------------
6937 -- Has_Public_Visibility_Of_Subprogram --
6938 -----------------------------------------
6940 function Has_Public_Visibility_Of_Subprogram
return Boolean is
6941 Subp_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp_Id
);
6944 -- An Initialization procedure must be considered visible even
6945 -- though it is internally generated.
6947 if Is_Init_Proc
(Defining_Entity
(Subp_Decl
)) then
6950 elsif Ekind
(Scope
(Typ
)) /= E_Package
then
6953 -- Internally generated code is never publicly visible except
6954 -- for a subprogram that is the implementation of an expression
6955 -- function. In that case the visibility is determined by the
6958 elsif not Comes_From_Source
(Subp_Decl
)
6960 (Nkind
(Original_Node
(Subp_Decl
)) /= N_Expression_Function
6962 Comes_From_Source
(Defining_Entity
(Subp_Decl
)))
6966 -- Determine whether the subprogram is declared in the visible
6967 -- declarations of the package containing the type.
6970 return List_Containing
(Subp_Decl
) =
6971 Visible_Declarations
6972 (Specification
(Unit_Declaration_Node
(Scope
(Typ
))));
6974 end Has_Public_Visibility_Of_Subprogram
;
6976 -- Start of processing for Invariant_Checks_OK
6980 Has_Invariants
(Typ
)
6981 and then Present
(Invariant_Procedure
(Typ
))
6982 and then not Has_Null_Body
(Invariant_Procedure
(Typ
))
6983 and then Has_Public_Visibility_Of_Subprogram
;
6984 end Invariant_Checks_OK
;
6988 Loc
: constant Source_Ptr
:= Sloc
(N
);
6989 -- Source location of subprogram contract
6994 -- Start of processing for Add_Invariant_And_Predicate_Checks
6999 -- Process the result of a function
7001 if Ekind
(Subp_Id
) = E_Function
then
7002 Typ
:= Etype
(Subp_Id
);
7004 -- Generate _Result which is used in procedure _Postconditions to
7005 -- verify the return value.
7007 Result
:= Make_Defining_Identifier
(Loc
, Name_uResult
);
7008 Set_Etype
(Result
, Typ
);
7010 -- Add an invariant check when the return type has invariants and
7011 -- the related function is visible to the outside.
7013 if Invariant_Checks_OK
(Typ
) then
7016 Make_Invariant_Call
(New_Occurrence_Of
(Result
, Loc
)),
7020 -- Add an invariant check when the return type is an access to a
7021 -- type with invariants.
7023 Add_Invariant_Access_Checks
(Result
);
7026 -- Add invariant and predicates for all formals that qualify
7028 Formal
:= First_Formal
(Subp_Id
);
7029 while Present
(Formal
) loop
7030 Typ
:= Etype
(Formal
);
7032 if Ekind
(Formal
) /= E_In_Parameter
7033 or else Is_Access_Type
(Typ
)
7035 if Invariant_Checks_OK
(Typ
) then
7038 Make_Invariant_Call
(New_Occurrence_Of
(Formal
, Loc
)),
7042 Add_Invariant_Access_Checks
(Formal
);
7044 -- Note: we used to add predicate checks for OUT and IN OUT
7045 -- formals here, but that was misguided, since such checks are
7046 -- performed on the caller side, based on the predicate of the
7047 -- actual, rather than the predicate of the formal.
7051 Next_Formal
(Formal
);
7053 end Add_Invariant_And_Predicate_Checks
;
7055 -------------------------
7056 -- Append_Enabled_Item --
7057 -------------------------
7059 procedure Append_Enabled_Item
(Item
: Node_Id
; List
: in out List_Id
) is
7061 -- Do not chain ignored or disabled pragmas
7063 if Nkind
(Item
) = N_Pragma
7064 and then (Is_Ignored
(Item
) or else Is_Disabled
(Item
))
7068 -- Otherwise, add the item
7075 -- If the pragma is a conjunct in a composite postcondition, it
7076 -- has been processed in reverse order. In the postcondition body
7077 -- if must appear before the others.
7079 if Nkind
(Item
) = N_Pragma
7080 and then From_Aspect_Specification
(Item
)
7081 and then Split_PPC
(Item
)
7083 Prepend
(Item
, List
);
7085 Append
(Item
, List
);
7088 end Append_Enabled_Item
;
7090 ------------------------------------
7091 -- Build_Postconditions_Procedure --
7092 ------------------------------------
7094 procedure Build_Postconditions_Procedure
7095 (Subp_Id
: Entity_Id
;
7099 procedure Insert_Before_First_Source_Declaration
(Stmt
: Node_Id
);
7100 -- Insert node Stmt before the first source declaration of the
7101 -- related subprogram's body. If no such declaration exists, Stmt
7102 -- becomes the last declaration.
7104 --------------------------------------------
7105 -- Insert_Before_First_Source_Declaration --
7106 --------------------------------------------
7108 procedure Insert_Before_First_Source_Declaration
(Stmt
: Node_Id
) is
7109 Decls
: constant List_Id
:= Declarations
(N
);
7113 -- Inspect the declarations of the related subprogram body looking
7114 -- for the first source declaration.
7116 if Present
(Decls
) then
7117 Decl
:= First
(Decls
);
7118 while Present
(Decl
) loop
7119 if Comes_From_Source
(Decl
) then
7120 Insert_Before
(Decl
, Stmt
);
7127 -- If we get there, then the subprogram body lacks any source
7128 -- declarations. The body of _Postconditions now acts as the
7129 -- last declaration.
7131 Append
(Stmt
, Decls
);
7133 -- Ensure that the body has a declaration list
7136 Set_Declarations
(N
, New_List
(Stmt
));
7138 end Insert_Before_First_Source_Declaration
;
7142 Loc
: constant Source_Ptr
:= Sloc
(N
);
7143 Params
: List_Id
:= No_List
;
7145 Proc_Id
: Entity_Id
;
7147 -- Start of processing for Build_Postconditions_Procedure
7150 -- Nothing to do if there are no actions to check on exit
7156 Proc_Id
:= Make_Defining_Identifier
(Loc
, Name_uPostconditions
);
7157 Set_Debug_Info_Needed
(Proc_Id
);
7158 Set_Postconditions_Proc
(Subp_Id
, Proc_Id
);
7160 -- The related subprogram is a function, create the specification of
7161 -- parameter _Result.
7163 if Present
(Result
) then
7164 Params
:= New_List
(
7165 Make_Parameter_Specification
(Loc
,
7166 Defining_Identifier
=> Result
,
7168 New_Occurrence_Of
(Etype
(Result
), Loc
)));
7171 -- Insert _Postconditions before the first source declaration of the
7172 -- body. This ensures that the body will not cause any premature
7173 -- freezing as it may mention types:
7175 -- procedure Proc (Obj : Array_Typ) is
7176 -- procedure _postconditions is
7179 -- end _postconditions;
7181 -- subtype T is Array_Typ (Obj'First (1) .. Obj'Last (1));
7184 -- In the example above, Obj is of type T but the incorrect placement
7185 -- of _Postconditions will cause a crash in gigi due to an out of
7186 -- order reference. The body of _Postconditions must be placed after
7187 -- the declaration of Temp to preserve correct visibility.
7189 -- Set an explicit End_Lavel to override the sloc of the implicit
7190 -- RETURN statement, and prevent it from inheriting the sloc of one
7191 -- the postconditions: this would cause confusing debug into to be
7192 -- produced, interfering with coverage analysis tools.
7195 Make_Subprogram_Body
(Loc
,
7197 Make_Procedure_Specification
(Loc
,
7198 Defining_Unit_Name
=> Proc_Id
,
7199 Parameter_Specifications
=> Params
),
7201 Declarations
=> Empty_List
,
7202 Handled_Statement_Sequence
=>
7203 Make_Handled_Sequence_Of_Statements
(Loc
,
7204 Statements
=> Stmts
,
7205 End_Label
=> Make_Identifier
(Loc
, Chars
(Proc_Id
))));
7207 Insert_Before_First_Source_Declaration
(Proc_Bod
);
7209 end Build_Postconditions_Procedure
;
7211 -----------------------------------
7212 -- Build_Pragma_Check_Equivalent --
7213 -----------------------------------
7215 function Build_Pragma_Check_Equivalent
7217 Subp_Id
: Entity_Id
:= Empty
;
7218 Inher_Id
: Entity_Id
:= Empty
) return Node_Id
7220 function Suppress_Reference
(N
: Node_Id
) return Traverse_Result
;
7221 -- Detect whether node N references a formal parameter subject to
7222 -- pragma Unreferenced. If this is the case, set Comes_From_Source
7223 -- to False to suppress the generation of a reference when analyzing
7226 ------------------------
7227 -- Suppress_Reference --
7228 ------------------------
7230 function Suppress_Reference
(N
: Node_Id
) return Traverse_Result
is
7234 if Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
7235 Formal
:= Entity
(N
);
7237 -- The formal parameter is subject to pragma Unreferenced.
7238 -- Prevent the generation of a reference by resetting the
7239 -- Comes_From_Source flag.
7241 if Is_Formal
(Formal
)
7242 and then Has_Pragma_Unreferenced
(Formal
)
7244 Set_Comes_From_Source
(N
, False);
7249 end Suppress_Reference
;
7251 procedure Suppress_References
is
7252 new Traverse_Proc
(Suppress_Reference
);
7256 Loc
: constant Source_Ptr
:= Sloc
(Prag
);
7257 Prag_Nam
: constant Name_Id
:= Pragma_Name
(Prag
);
7258 Check_Prag
: Node_Id
;
7259 Formals_Map
: Elist_Id
;
7260 Inher_Formal
: Entity_Id
;
7263 Subp_Formal
: Entity_Id
;
7265 -- Start of processing for Build_Pragma_Check_Equivalent
7268 Formals_Map
:= No_Elist
;
7270 -- When the pre- or postcondition is inherited, map the formals of
7271 -- the inherited subprogram to those of the current subprogram.
7273 if Present
(Inher_Id
) then
7274 pragma Assert
(Present
(Subp_Id
));
7276 Formals_Map
:= New_Elmt_List
;
7278 -- Create a relation <inherited formal> => <subprogram formal>
7280 Inher_Formal
:= First_Formal
(Inher_Id
);
7281 Subp_Formal
:= First_Formal
(Subp_Id
);
7282 while Present
(Inher_Formal
) and then Present
(Subp_Formal
) loop
7283 Append_Elmt
(Inher_Formal
, Formals_Map
);
7284 Append_Elmt
(Subp_Formal
, Formals_Map
);
7286 Next_Formal
(Inher_Formal
);
7287 Next_Formal
(Subp_Formal
);
7291 -- Copy the original pragma while performing substitutions (if
7298 New_Scope
=> Current_Scope
);
7300 -- Mark the pragma as being internally generated and reset the
7303 Set_Analyzed
(Check_Prag
, False);
7304 Set_Comes_From_Source
(Check_Prag
, False);
7306 -- The tree of the original pragma may contain references to the
7307 -- formal parameters of the related subprogram. At the same time
7308 -- the corresponding body may mark the formals as unreferenced:
7310 -- procedure Proc (Formal : ...)
7311 -- with Pre => Formal ...;
7313 -- procedure Proc (Formal : ...) is
7314 -- pragma Unreferenced (Formal);
7317 -- This creates problems because all pragma Check equivalents are
7318 -- analyzed at the end of the body declarations. Since all source
7319 -- references have already been accounted for, reset any references
7320 -- to such formals in the generated pragma Check equivalent.
7322 Suppress_References
(Check_Prag
);
7324 if Present
(Corresponding_Aspect
(Prag
)) then
7325 Nam
:= Chars
(Identifier
(Corresponding_Aspect
(Prag
)));
7330 -- Convert the copy into pragma Check by correcting the name and
7331 -- adding a check_kind argument.
7333 Set_Pragma_Identifier
7334 (Check_Prag
, Make_Identifier
(Loc
, Name_Check
));
7336 Prepend_To
(Pragma_Argument_Associations
(Check_Prag
),
7337 Make_Pragma_Argument_Association
(Loc
,
7338 Expression
=> Make_Identifier
(Loc
, Nam
)));
7340 -- Update the error message when the pragma is inherited
7342 if Present
(Inher_Id
) then
7343 Msg_Arg
:= Last
(Pragma_Argument_Associations
(Check_Prag
));
7345 if Chars
(Msg_Arg
) = Name_Message
then
7346 String_To_Name_Buffer
(Strval
(Expression
(Msg_Arg
)));
7348 -- Insert "inherited" to improve the error message
7350 if Name_Buffer
(1 .. 8) = "failed p" then
7351 Insert_Str_In_Name_Buffer
("inherited ", 8);
7352 Set_Strval
(Expression
(Msg_Arg
), String_From_Name_Buffer
);
7358 end Build_Pragma_Check_Equivalent
;
7360 ----------------------------
7361 -- Process_Contract_Cases --
7362 ----------------------------
7364 procedure Process_Contract_Cases
(Stmts
: in out List_Id
) is
7365 procedure Process_Contract_Cases_For
(Subp_Id
: Entity_Id
);
7366 -- Process pragma Contract_Cases for subprogram Subp_Id
7368 --------------------------------
7369 -- Process_Contract_Cases_For --
7370 --------------------------------
7372 procedure Process_Contract_Cases_For
(Subp_Id
: Entity_Id
) is
7373 Items
: constant Node_Id
:= Contract
(Subp_Id
);
7377 if Present
(Items
) then
7378 Prag
:= Contract_Test_Cases
(Items
);
7379 while Present
(Prag
) loop
7380 if Pragma_Name
(Prag
) = Name_Contract_Cases
then
7381 Expand_Contract_Cases
7384 Decls
=> Declarations
(N
),
7388 Prag
:= Next_Pragma
(Prag
);
7391 end Process_Contract_Cases_For
;
7393 -- Start of processing for Process_Contract_Cases
7396 Process_Contract_Cases_For
(Body_Id
);
7398 if Present
(Spec_Id
) then
7399 Process_Contract_Cases_For
(Spec_Id
);
7401 end Process_Contract_Cases
;
7403 ----------------------------
7404 -- Process_Postconditions --
7405 ----------------------------
7407 procedure Process_Postconditions
(Stmts
: in out List_Id
) is
7408 procedure Process_Body_Postconditions
(Post_Nam
: Name_Id
);
7409 -- Collect all [refined] postconditions of a specific kind denoted
7410 -- by Post_Nam that belong to the body and generate pragma Check
7411 -- equivalents in list Stmts.
7413 procedure Process_Spec_Postconditions
;
7414 -- Collect all [inherited] postconditions of the spec and generate
7415 -- pragma Check equivalents in list Stmts.
7417 ---------------------------------
7418 -- Process_Body_Postconditions --
7419 ---------------------------------
7421 procedure Process_Body_Postconditions
(Post_Nam
: Name_Id
) is
7422 Items
: constant Node_Id
:= Contract
(Body_Id
);
7423 Unit_Decl
: constant Node_Id
:= Parent
(N
);
7428 -- Process the contract
7430 if Present
(Items
) then
7431 Prag
:= Pre_Post_Conditions
(Items
);
7432 while Present
(Prag
) loop
7433 if Pragma_Name
(Prag
) = Post_Nam
then
7435 (Item
=> Build_Pragma_Check_Equivalent
(Prag
),
7439 Prag
:= Next_Pragma
(Prag
);
7443 -- The subprogram body being processed is actually the proper body
7444 -- of a stub with a corresponding spec. The subprogram stub may
7445 -- carry a postcondition pragma in which case it must be taken
7446 -- into account. The pragma appears after the stub.
7448 if Present
(Spec_Id
) and then Nkind
(Unit_Decl
) = N_Subunit
then
7449 Decl
:= Next
(Corresponding_Stub
(Unit_Decl
));
7450 while Present
(Decl
) loop
7452 -- Note that non-matching pragmas are skipped
7454 if Nkind
(Decl
) = N_Pragma
then
7455 if Pragma_Name
(Decl
) = Post_Nam
then
7457 (Item
=> Build_Pragma_Check_Equivalent
(Decl
),
7461 -- Skip internally generated code
7463 elsif not Comes_From_Source
(Decl
) then
7466 -- Postcondition pragmas are usually grouped together. There
7467 -- is no need to inspect the whole declarative list.
7476 end Process_Body_Postconditions
;
7478 ---------------------------------
7479 -- Process_Spec_Postconditions --
7480 ---------------------------------
7482 procedure Process_Spec_Postconditions
is
7483 Subps
: constant Subprogram_List
:=
7484 Inherited_Subprograms
(Spec_Id
);
7487 Subp_Id
: Entity_Id
;
7490 -- Process the contract
7492 Items
:= Contract
(Spec_Id
);
7494 if Present
(Items
) then
7495 Prag
:= Pre_Post_Conditions
(Items
);
7496 while Present
(Prag
) loop
7497 if Pragma_Name
(Prag
) = Name_Postcondition
then
7499 (Item
=> Build_Pragma_Check_Equivalent
(Prag
),
7503 Prag
:= Next_Pragma
(Prag
);
7507 -- Process the contracts of all inherited subprograms, looking for
7508 -- class-wide postconditions.
7510 for Index
in Subps
'Range loop
7511 Subp_Id
:= Subps
(Index
);
7512 Items
:= Contract
(Subp_Id
);
7514 if Present
(Items
) then
7515 Prag
:= Pre_Post_Conditions
(Items
);
7516 while Present
(Prag
) loop
7517 if Pragma_Name
(Prag
) = Name_Postcondition
7518 and then Class_Present
(Prag
)
7522 Build_Pragma_Check_Equivalent
7525 Inher_Id
=> Subp_Id
),
7529 Prag
:= Next_Pragma
(Prag
);
7533 end Process_Spec_Postconditions
;
7535 -- Start of processing for Process_Postconditions
7538 -- The processing of postconditions is done in reverse order (body
7539 -- first) to ensure the following arrangement:
7541 -- <refined postconditions from body>
7542 -- <postconditions from body>
7543 -- <postconditions from spec>
7544 -- <inherited postconditions>
7546 Process_Body_Postconditions
(Name_Refined_Post
);
7547 Process_Body_Postconditions
(Name_Postcondition
);
7549 if Present
(Spec_Id
) then
7550 Process_Spec_Postconditions
;
7552 end Process_Postconditions
;
7554 ---------------------------
7555 -- Process_Preconditions --
7556 ---------------------------
7558 procedure Process_Preconditions
is
7559 Class_Pre
: Node_Id
:= Empty
;
7560 -- The sole [inherited] class-wide precondition pragma that applies
7561 -- to the subprogram.
7563 Insert_Node
: Node_Id
:= Empty
;
7564 -- The insertion node after which all pragma Check equivalents are
7567 procedure Merge_Preconditions
(From
: Node_Id
; Into
: Node_Id
);
7568 -- Merge two class-wide preconditions by "or else"-ing them. The
7569 -- changes are accumulated in parameter Into. Update the error
7572 procedure Prepend_To_Decls
(Item
: Node_Id
);
7573 -- Prepend a single item to the declarations of the subprogram body
7575 procedure Prepend_To_Decls_Or_Save
(Prag
: Node_Id
);
7576 -- Save a class-wide precondition into Class_Pre or prepend a normal
7577 -- precondition ot the declarations of the body and analyze it.
7579 procedure Process_Inherited_Preconditions
;
7580 -- Collect all inherited class-wide preconditions and merge them into
7581 -- one big precondition to be evaluated as pragma Check.
7583 procedure Process_Preconditions_For
(Subp_Id
: Entity_Id
);
7584 -- Collect all preconditions of subprogram Subp_Id and prepend their
7585 -- pragma Check equivalents to the declarations of the body.
7587 -------------------------
7588 -- Merge_Preconditions --
7589 -------------------------
7591 procedure Merge_Preconditions
(From
: Node_Id
; Into
: Node_Id
) is
7592 function Expression_Arg
(Prag
: Node_Id
) return Node_Id
;
7593 -- Return the boolean expression argument of a precondition while
7594 -- updating its parenteses count for the subsequent merge.
7596 function Message_Arg
(Prag
: Node_Id
) return Node_Id
;
7597 -- Return the message argument of a precondition
7599 --------------------
7600 -- Expression_Arg --
7601 --------------------
7603 function Expression_Arg
(Prag
: Node_Id
) return Node_Id
is
7604 Args
: constant List_Id
:= Pragma_Argument_Associations
(Prag
);
7605 Arg
: constant Node_Id
:= Get_Pragma_Arg
(Next
(First
(Args
)));
7608 if Paren_Count
(Arg
) = 0 then
7609 Set_Paren_Count
(Arg
, 1);
7619 function Message_Arg
(Prag
: Node_Id
) return Node_Id
is
7620 Args
: constant List_Id
:= Pragma_Argument_Associations
(Prag
);
7622 return Get_Pragma_Arg
(Last
(Args
));
7627 From_Expr
: constant Node_Id
:= Expression_Arg
(From
);
7628 From_Msg
: constant Node_Id
:= Message_Arg
(From
);
7629 Into_Expr
: constant Node_Id
:= Expression_Arg
(Into
);
7630 Into_Msg
: constant Node_Id
:= Message_Arg
(Into
);
7631 Loc
: constant Source_Ptr
:= Sloc
(Into
);
7633 -- Start of processing for Merge_Preconditions
7636 -- Merge the two preconditions by "or else"-ing them
7640 Right_Opnd
=> Relocate_Node
(Into_Expr
),
7641 Left_Opnd
=> From_Expr
));
7643 -- Merge the two error messages to produce a single message of the
7646 -- failed precondition from ...
7647 -- also failed inherited precondition from ...
7649 if not Exception_Locations_Suppressed
then
7650 Start_String
(Strval
(Into_Msg
));
7651 Store_String_Char
(ASCII
.LF
);
7652 Store_String_Chars
(" also ");
7653 Store_String_Chars
(Strval
(From_Msg
));
7655 Set_Strval
(Into_Msg
, End_String
);
7657 end Merge_Preconditions
;
7659 ----------------------
7660 -- Prepend_To_Decls --
7661 ----------------------
7663 procedure Prepend_To_Decls
(Item
: Node_Id
) is
7664 Decls
: List_Id
:= Declarations
(N
);
7667 -- Ensure that the body has a declarative list
7671 Set_Declarations
(N
, Decls
);
7674 Prepend_To
(Decls
, Item
);
7675 end Prepend_To_Decls
;
7677 ------------------------------
7678 -- Prepend_To_Decls_Or_Save --
7679 ------------------------------
7681 procedure Prepend_To_Decls_Or_Save
(Prag
: Node_Id
) is
7682 Check_Prag
: Node_Id
;
7685 Check_Prag
:= Build_Pragma_Check_Equivalent
(Prag
);
7687 -- Save the sole class-wide precondition (if any) for the next
7688 -- step where it will be merged with inherited preconditions.
7690 if Class_Present
(Prag
) then
7691 pragma Assert
(No
(Class_Pre
));
7692 Class_Pre
:= Check_Prag
;
7694 -- Accumulate the corresponding Check pragmas at the top of the
7695 -- declarations. Prepending the items ensures that they will be
7696 -- evaluated in their original order.
7699 if Present
(Insert_Node
) then
7700 Insert_After
(Insert_Node
, Check_Prag
);
7702 Prepend_To_Decls
(Check_Prag
);
7705 Analyze
(Check_Prag
);
7707 end Prepend_To_Decls_Or_Save
;
7709 -------------------------------------
7710 -- Process_Inherited_Preconditions --
7711 -------------------------------------
7713 procedure Process_Inherited_Preconditions
is
7714 Subps
: constant Subprogram_List
:=
7715 Inherited_Subprograms
(Spec_Id
);
7716 Check_Prag
: Node_Id
;
7719 Subp_Id
: Entity_Id
;
7722 -- Process the contracts of all inherited subprograms, looking for
7723 -- class-wide preconditions.
7725 for Index
in Subps
'Range loop
7726 Subp_Id
:= Subps
(Index
);
7727 Items
:= Contract
(Subp_Id
);
7729 if Present
(Items
) then
7730 Prag
:= Pre_Post_Conditions
(Items
);
7731 while Present
(Prag
) loop
7732 if Pragma_Name
(Prag
) = Name_Precondition
7733 and then Class_Present
(Prag
)
7736 Build_Pragma_Check_Equivalent
7739 Inher_Id
=> Subp_Id
);
7741 -- The spec or an inherited subprogram already yielded
7742 -- a class-wide precondition. Merge the existing
7743 -- precondition with the current one using "or else".
7745 if Present
(Class_Pre
) then
7746 Merge_Preconditions
(Check_Prag
, Class_Pre
);
7748 Class_Pre
:= Check_Prag
;
7752 Prag
:= Next_Pragma
(Prag
);
7757 -- Add the merged class-wide preconditions
7759 if Present
(Class_Pre
) then
7760 Prepend_To_Decls
(Class_Pre
);
7761 Analyze
(Class_Pre
);
7763 end Process_Inherited_Preconditions
;
7765 -------------------------------
7766 -- Process_Preconditions_For --
7767 -------------------------------
7769 procedure Process_Preconditions_For
(Subp_Id
: Entity_Id
) is
7770 Items
: constant Node_Id
:= Contract
(Subp_Id
);
7773 Subp_Decl
: Node_Id
;
7776 -- Process the contract
7778 if Present
(Items
) then
7779 Prag
:= Pre_Post_Conditions
(Items
);
7780 while Present
(Prag
) loop
7781 if Pragma_Name
(Prag
) = Name_Precondition
then
7782 Prepend_To_Decls_Or_Save
(Prag
);
7785 Prag
:= Next_Pragma
(Prag
);
7789 -- The subprogram declaration being processed is actually a body
7790 -- stub. The stub may carry a precondition pragma in which case it
7791 -- must be taken into account. The pragma appears after the stub.
7793 Subp_Decl
:= Unit_Declaration_Node
(Subp_Id
);
7795 if Nkind
(Subp_Decl
) = N_Subprogram_Body_Stub
then
7797 -- Inspect the declarations following the body stub
7799 Decl
:= Next
(Subp_Decl
);
7800 while Present
(Decl
) loop
7802 -- Note that non-matching pragmas are skipped
7804 if Nkind
(Decl
) = N_Pragma
then
7805 if Pragma_Name
(Decl
) = Name_Precondition
then
7806 Prepend_To_Decls_Or_Save
(Decl
);
7809 -- Skip internally generated code
7811 elsif not Comes_From_Source
(Decl
) then
7814 -- Preconditions are usually grouped together. There is no
7815 -- need to inspect the whole declarative list.
7824 end Process_Preconditions_For
;
7828 Decls
: constant List_Id
:= Declarations
(N
);
7831 -- Start of processing for Process_Preconditions
7834 -- Find the last internally generate declaration starting from the
7835 -- top of the body declarations. This ensures that discriminals and
7836 -- subtypes are properly visible to the pragma Check equivalents.
7838 if Present
(Decls
) then
7839 Decl
:= First
(Decls
);
7840 while Present
(Decl
) loop
7841 exit when Comes_From_Source
(Decl
);
7842 Insert_Node
:= Decl
;
7847 -- The processing of preconditions is done in reverse order (body
7848 -- first) because each pragma Check equivalent is inserted at the
7849 -- top of the declarations. This ensures that the final order is
7850 -- consistent with following diagram:
7852 -- <inherited preconditions>
7853 -- <preconditions from spec>
7854 -- <preconditions from body>
7856 Process_Preconditions_For
(Body_Id
);
7858 if Present
(Spec_Id
) then
7859 Process_Preconditions_For
(Spec_Id
);
7860 Process_Inherited_Preconditions
;
7862 end Process_Preconditions
;
7866 Restore_Scope
: Boolean := False;
7868 Stmts
: List_Id
:= No_List
;
7869 Subp_Id
: Entity_Id
;
7871 -- Start of processing for Expand_Subprogram_Contract
7874 -- Obtain the entity of the initial declaration
7876 if Present
(Spec_Id
) then
7882 -- Do not perform expansion activity when it is not needed
7884 if not Expander_Active
then
7887 -- ASIS requires an unaltered tree
7889 elsif ASIS_Mode
then
7892 -- GNATprove does not need the executable semantics of a contract
7894 elsif GNATprove_Mode
then
7897 -- The contract of a generic subprogram or one declared in a generic
7898 -- context is not expanded as the corresponding instance will provide
7899 -- the executable semantics of the contract.
7901 elsif Is_Generic_Subprogram
(Subp_Id
) or else Inside_A_Generic
then
7904 -- All subprograms carry a contract, but for some it is not significant
7905 -- and should not be processed. This is a small optimization.
7907 elsif not Has_Significant_Contract
(Subp_Id
) then
7911 -- Do not re-expand the same contract. This scenario occurs when a
7912 -- construct is rewritten into something else during its analysis
7913 -- (expression functions for instance).
7915 if Has_Expanded_Contract
(Subp_Id
) then
7918 -- Otherwise mark the subprogram
7921 Set_Has_Expanded_Contract
(Subp_Id
);
7924 -- Ensure that the formal parameters are visible when expanding all
7927 if not In_Open_Scopes
(Subp_Id
) then
7928 Restore_Scope
:= True;
7929 Push_Scope
(Subp_Id
);
7931 if Is_Generic_Subprogram
(Subp_Id
) then
7932 Install_Generic_Formals
(Subp_Id
);
7934 Install_Formals
(Subp_Id
);
7938 -- The expansion of a subprogram contract involves the creation of Check
7939 -- pragmas to verify the contract assertions of the spec and body in a
7940 -- particular order. The order is as follows:
7942 -- function Example (...) return ... is
7943 -- procedure _Postconditions (...) is
7945 -- <refined postconditions from body>
7946 -- <postconditions from body>
7947 -- <postconditions from spec>
7948 -- <inherited postconditions>
7949 -- <contract case consequences>
7950 -- <invariant check of function result>
7951 -- <invariant and predicate checks of parameters>
7952 -- end _Postconditions;
7954 -- <inherited preconditions>
7955 -- <preconditions from spec>
7956 -- <preconditions from body>
7957 -- <contract case conditions>
7959 -- <source declarations>
7961 -- <source statements>
7963 -- _Preconditions (Result);
7967 -- Routine _Postconditions holds all contract assertions that must be
7968 -- verified on exit from the related subprogram.
7970 -- Step 1: Handle all preconditions. This action must come before the
7971 -- processing of pragma Contract_Cases because the pragma prepends items
7972 -- to the body declarations.
7974 Process_Preconditions
;
7976 -- Step 2: Handle all postconditions. This action must come before the
7977 -- processing of pragma Contract_Cases because the pragma appends items
7980 Process_Postconditions
(Stmts
);
7982 -- Step 3: Handle pragma Contract_Cases. This action must come before
7983 -- the processing of invariants and predicates because those append
7984 -- items to list Smts.
7986 Process_Contract_Cases
(Stmts
);
7988 -- Step 4: Apply invariant and predicate checks on a function result and
7989 -- all formals. The resulting checks are accumulated in list Stmts.
7991 Add_Invariant_And_Predicate_Checks
(Subp_Id
, Stmts
, Result
);
7993 -- Step 5: Construct procedure _Postconditions
7995 Build_Postconditions_Procedure
(Subp_Id
, Stmts
, Result
);
7997 if Restore_Scope
then
8000 end Expand_Subprogram_Contract
;
8002 --------------------------------
8003 -- Is_Build_In_Place_Function --
8004 --------------------------------
8006 function Is_Build_In_Place_Function
(E
: Entity_Id
) return Boolean is
8008 -- This function is called from Expand_Subtype_From_Expr during
8009 -- semantic analysis, even when expansion is off. In those cases
8010 -- the build_in_place expansion will not take place.
8012 if not Expander_Active
then
8016 -- For now we test whether E denotes a function or access-to-function
8017 -- type whose result subtype is inherently limited. Later this test
8018 -- may be revised to allow composite nonlimited types. Functions with
8019 -- a foreign convention or whose result type has a foreign convention
8022 if Ekind_In
(E
, E_Function
, E_Generic_Function
)
8023 or else (Ekind
(E
) = E_Subprogram_Type
8024 and then Etype
(E
) /= Standard_Void_Type
)
8026 -- Note: If the function has a foreign convention, it cannot build
8027 -- its result in place, so you're on your own. On the other hand,
8028 -- if only the return type has a foreign convention, its layout is
8029 -- intended to be compatible with the other language, but the build-
8030 -- in place machinery can ensure that the object is not copied.
8032 if Has_Foreign_Convention
(E
) then
8035 -- In Ada 2005 all functions with an inherently limited return type
8036 -- must be handled using a build-in-place profile, including the case
8037 -- of a function with a limited interface result, where the function
8038 -- may return objects of nonlimited descendants.
8041 return Is_Limited_View
(Etype
(E
))
8042 and then Ada_Version
>= Ada_2005
8043 and then not Debug_Flag_Dot_L
;
8049 end Is_Build_In_Place_Function
;
8051 -------------------------------------
8052 -- Is_Build_In_Place_Function_Call --
8053 -------------------------------------
8055 function Is_Build_In_Place_Function_Call
(N
: Node_Id
) return Boolean is
8056 Exp_Node
: Node_Id
:= N
;
8057 Function_Id
: Entity_Id
;
8060 -- Return False if the expander is currently inactive, since awareness
8061 -- of build-in-place treatment is only relevant during expansion. Note
8062 -- that Is_Build_In_Place_Function, which is called as part of this
8063 -- function, is also conditioned this way, but we need to check here as
8064 -- well to avoid blowing up on processing protected calls when expansion
8065 -- is disabled (such as with -gnatc) since those would trip over the
8066 -- raise of Program_Error below.
8068 -- In SPARK mode, build-in-place calls are not expanded, so that we
8069 -- may end up with a call that is neither resolved to an entity, nor
8070 -- an indirect call.
8072 if not Expander_Active
then
8076 -- Step past qualification or unchecked conversion (the latter can occur
8077 -- in cases of calls to 'Input).
8079 if Nkind_In
(Exp_Node
, N_Qualified_Expression
,
8080 N_Unchecked_Type_Conversion
)
8082 Exp_Node
:= Expression
(N
);
8085 if Nkind
(Exp_Node
) /= N_Function_Call
then
8089 if Is_Entity_Name
(Name
(Exp_Node
)) then
8090 Function_Id
:= Entity
(Name
(Exp_Node
));
8092 -- In the case of an explicitly dereferenced call, use the subprogram
8093 -- type generated for the dereference.
8095 elsif Nkind
(Name
(Exp_Node
)) = N_Explicit_Dereference
then
8096 Function_Id
:= Etype
(Name
(Exp_Node
));
8098 -- This may be a call to a protected function.
8100 elsif Nkind
(Name
(Exp_Node
)) = N_Selected_Component
then
8101 Function_Id
:= Etype
(Entity
(Selector_Name
(Name
(Exp_Node
))));
8104 raise Program_Error
;
8107 return Is_Build_In_Place_Function
(Function_Id
);
8109 end Is_Build_In_Place_Function_Call
;
8111 -----------------------
8112 -- Freeze_Subprogram --
8113 -----------------------
8115 procedure Freeze_Subprogram
(N
: Node_Id
) is
8116 Loc
: constant Source_Ptr
:= Sloc
(N
);
8118 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
);
8119 -- (Ada 2005): Register a predefined primitive in all the secondary
8120 -- dispatch tables of its primitive type.
8122 ----------------------------------
8123 -- Register_Predefined_DT_Entry --
8124 ----------------------------------
8126 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
) is
8127 Iface_DT_Ptr
: Elmt_Id
;
8128 Tagged_Typ
: Entity_Id
;
8129 Thunk_Id
: Entity_Id
;
8130 Thunk_Code
: Node_Id
;
8133 Tagged_Typ
:= Find_Dispatching_Type
(Prim
);
8135 if No
(Access_Disp_Table
(Tagged_Typ
))
8136 or else not Has_Interfaces
(Tagged_Typ
)
8137 or else not RTE_Available
(RE_Interface_Tag
)
8138 or else Restriction_Active
(No_Dispatching_Calls
)
8143 -- Skip the first two access-to-dispatch-table pointers since they
8144 -- leads to the primary dispatch table (predefined DT and user
8145 -- defined DT). We are only concerned with the secondary dispatch
8146 -- table pointers. Note that the access-to- dispatch-table pointer
8147 -- corresponds to the first implemented interface retrieved below.
8150 Next_Elmt
(Next_Elmt
(First_Elmt
(Access_Disp_Table
(Tagged_Typ
))));
8152 while Present
(Iface_DT_Ptr
)
8153 and then Ekind
(Node
(Iface_DT_Ptr
)) = E_Constant
8155 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
8156 Expand_Interface_Thunk
(Prim
, Thunk_Id
, Thunk_Code
);
8158 if Present
(Thunk_Code
) then
8159 Insert_Actions_After
(N
, New_List
(
8162 Build_Set_Predefined_Prim_Op_Address
(Loc
,
8164 New_Occurrence_Of
(Node
(Next_Elmt
(Iface_DT_Ptr
)), Loc
),
8165 Position
=> DT_Position
(Prim
),
8167 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
8168 Make_Attribute_Reference
(Loc
,
8169 Prefix
=> New_Occurrence_Of
(Thunk_Id
, Loc
),
8170 Attribute_Name
=> Name_Unrestricted_Access
))),
8172 Build_Set_Predefined_Prim_Op_Address
(Loc
,
8175 (Node
(Next_Elmt
(Next_Elmt
(Next_Elmt
(Iface_DT_Ptr
)))),
8177 Position
=> DT_Position
(Prim
),
8179 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
8180 Make_Attribute_Reference
(Loc
,
8181 Prefix
=> New_Occurrence_Of
(Prim
, Loc
),
8182 Attribute_Name
=> Name_Unrestricted_Access
)))));
8185 -- Skip the tag of the predefined primitives dispatch table
8187 Next_Elmt
(Iface_DT_Ptr
);
8188 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
8190 -- Skip tag of the no-thunks dispatch table
8192 Next_Elmt
(Iface_DT_Ptr
);
8193 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
8195 -- Skip tag of predefined primitives no-thunks dispatch table
8197 Next_Elmt
(Iface_DT_Ptr
);
8198 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
8200 Next_Elmt
(Iface_DT_Ptr
);
8202 end Register_Predefined_DT_Entry
;
8206 Subp
: constant Entity_Id
:= Entity
(N
);
8208 -- Start of processing for Freeze_Subprogram
8211 -- We suppress the initialization of the dispatch table entry when
8212 -- VM_Target because the dispatching mechanism is handled internally
8215 if Is_Dispatching_Operation
(Subp
)
8216 and then not Is_Abstract_Subprogram
(Subp
)
8217 and then Present
(DTC_Entity
(Subp
))
8218 and then Present
(Scope
(DTC_Entity
(Subp
)))
8219 and then Tagged_Type_Expansion
8220 and then not Restriction_Active
(No_Dispatching_Calls
)
8221 and then RTE_Available
(RE_Tag
)
8224 Typ
: constant Entity_Id
:= Scope
(DTC_Entity
(Subp
));
8227 -- Handle private overridden primitives
8229 if not Is_CPP_Class
(Typ
) then
8230 Check_Overriding_Operation
(Subp
);
8233 -- We assume that imported CPP primitives correspond with objects
8234 -- whose constructor is in the CPP side; therefore we don't need
8235 -- to generate code to register them in the dispatch table.
8237 if Is_CPP_Class
(Typ
) then
8240 -- Handle CPP primitives found in derivations of CPP_Class types.
8241 -- These primitives must have been inherited from some parent, and
8242 -- there is no need to register them in the dispatch table because
8243 -- Build_Inherit_Prims takes care of initializing these slots.
8245 elsif Is_Imported
(Subp
)
8246 and then (Convention
(Subp
) = Convention_CPP
8247 or else Convention
(Subp
) = Convention_C
)
8251 -- Generate code to register the primitive in non statically
8252 -- allocated dispatch tables
8254 elsif not Building_Static_DT
(Scope
(DTC_Entity
(Subp
))) then
8256 -- When a primitive is frozen, enter its name in its dispatch
8259 if not Is_Interface
(Typ
)
8260 or else Present
(Interface_Alias
(Subp
))
8262 if Is_Predefined_Dispatching_Operation
(Subp
) then
8263 Register_Predefined_DT_Entry
(Subp
);
8266 Insert_Actions_After
(N
,
8267 Register_Primitive
(Loc
, Prim
=> Subp
));
8273 -- Mark functions that return by reference. Note that it cannot be part
8274 -- of the normal semantic analysis of the spec since the underlying
8275 -- returned type may not be known yet (for private types).
8278 Typ
: constant Entity_Id
:= Etype
(Subp
);
8279 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
8281 if Is_Limited_View
(Typ
) then
8282 Set_Returns_By_Ref
(Subp
);
8283 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
8284 Set_Returns_By_Ref
(Subp
);
8288 -- Wnen freezing a null procedure, analyze its delayed aspects now
8289 -- because we may not have reached the end of the declarative list when
8290 -- delayed aspects are normally analyzed. This ensures that dispatching
8291 -- calls are properly rewritten when the generated _Postcondition
8292 -- procedure is analyzed in the null procedure body.
8294 if Nkind
(Parent
(Subp
)) = N_Procedure_Specification
8295 and then Null_Present
(Parent
(Subp
))
8297 Analyze_Subprogram_Contract
(Subp
);
8299 end Freeze_Subprogram
;
8301 -----------------------
8302 -- Is_Null_Procedure --
8303 -----------------------
8305 function Is_Null_Procedure
(Subp
: Entity_Id
) return Boolean is
8306 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
8309 if Ekind
(Subp
) /= E_Procedure
then
8312 -- Check if this is a declared null procedure
8314 elsif Nkind
(Decl
) = N_Subprogram_Declaration
then
8315 if not Null_Present
(Specification
(Decl
)) then
8318 elsif No
(Body_To_Inline
(Decl
)) then
8321 -- Check if the body contains only a null statement, followed by
8322 -- the return statement added during expansion.
8326 Orig_Bod
: constant Node_Id
:= Body_To_Inline
(Decl
);
8332 if Nkind
(Orig_Bod
) /= N_Subprogram_Body
then
8335 -- We must skip SCIL nodes because they are currently
8336 -- implemented as special N_Null_Statement nodes.
8340 (Statements
(Handled_Statement_Sequence
(Orig_Bod
)));
8341 Stat2
:= Next_Non_SCIL_Node
(Stat
);
8344 Is_Empty_List
(Declarations
(Orig_Bod
))
8345 and then Nkind
(Stat
) = N_Null_Statement
8349 (Nkind
(Stat2
) = N_Simple_Return_Statement
8350 and then No
(Next
(Stat2
))));
8358 end Is_Null_Procedure
;
8360 -------------------------------------------
8361 -- Make_Build_In_Place_Call_In_Allocator --
8362 -------------------------------------------
8364 procedure Make_Build_In_Place_Call_In_Allocator
8365 (Allocator
: Node_Id
;
8366 Function_Call
: Node_Id
)
8368 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
8370 Func_Call
: Node_Id
:= Function_Call
;
8371 Ref_Func_Call
: Node_Id
;
8372 Function_Id
: Entity_Id
;
8373 Result_Subt
: Entity_Id
;
8374 New_Allocator
: Node_Id
;
8375 Return_Obj_Access
: Entity_Id
; -- temp for function result
8376 Temp_Init
: Node_Id
; -- initial value of Return_Obj_Access
8377 Alloc_Form
: BIP_Allocation_Form
;
8378 Pool
: Node_Id
; -- nonnull if Alloc_Form = User_Storage_Pool
8379 Return_Obj_Actual
: Node_Id
; -- the temp.all, in caller-allocates case
8380 Chain
: Entity_Id
; -- activation chain, in case of tasks
8383 -- Step past qualification or unchecked conversion (the latter can occur
8384 -- in cases of calls to 'Input).
8386 if Nkind_In
(Func_Call
,
8387 N_Qualified_Expression
,
8388 N_Unchecked_Type_Conversion
)
8390 Func_Call
:= Expression
(Func_Call
);
8393 -- If the call has already been processed to add build-in-place actuals
8394 -- then return. This should not normally occur in an allocator context,
8395 -- but we add the protection as a defensive measure.
8397 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8401 -- Mark the call as processed as a build-in-place call
8403 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8405 Loc
:= Sloc
(Function_Call
);
8407 if Is_Entity_Name
(Name
(Func_Call
)) then
8408 Function_Id
:= Entity
(Name
(Func_Call
));
8410 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8411 Function_Id
:= Etype
(Name
(Func_Call
));
8414 raise Program_Error
;
8417 Result_Subt
:= Available_View
(Etype
(Function_Id
));
8419 -- Create a temp for the function result. In the caller-allocates case,
8420 -- this will be initialized to the result of a new uninitialized
8421 -- allocator. Note: we do not use Allocator as the Related_Node of
8422 -- Return_Obj_Access in call to Make_Temporary below as this would
8423 -- create a sort of infinite "recursion".
8425 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
8426 Set_Etype
(Return_Obj_Access
, Acc_Type
);
8428 -- When the result subtype is constrained, the return object is
8429 -- allocated on the caller side, and access to it is passed to the
8432 -- Here and in related routines, we must examine the full view of the
8433 -- type, because the view at the point of call may differ from that
8434 -- that in the function body, and the expansion mechanism depends on
8435 -- the characteristics of the full view.
8437 if Is_Constrained
(Underlying_Type
(Result_Subt
)) then
8439 -- Replace the initialized allocator of form "new T'(Func (...))"
8440 -- with an uninitialized allocator of form "new T", where T is the
8441 -- result subtype of the called function. The call to the function
8442 -- is handled separately further below.
8445 Make_Allocator
(Loc
,
8446 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
8447 Set_No_Initialization
(New_Allocator
);
8449 -- Copy attributes to new allocator. Note that the new allocator
8450 -- logically comes from source if the original one did, so copy the
8451 -- relevant flag. This ensures proper treatment of the restriction
8452 -- No_Implicit_Heap_Allocations in this case.
8454 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
8455 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
8456 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
8458 Rewrite
(Allocator
, New_Allocator
);
8460 -- Initial value of the temp is the result of the uninitialized
8463 Temp_Init
:= Relocate_Node
(Allocator
);
8465 -- Indicate that caller allocates, and pass in the return object
8467 Alloc_Form
:= Caller_Allocation
;
8468 Pool
:= Make_Null
(No_Location
);
8469 Return_Obj_Actual
:=
8470 Make_Unchecked_Type_Conversion
(Loc
,
8471 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
8473 Make_Explicit_Dereference
(Loc
,
8474 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)));
8476 -- When the result subtype is unconstrained, the function itself must
8477 -- perform the allocation of the return object, so we pass parameters
8483 -- Case of a user-defined storage pool. Pass an allocation parameter
8484 -- indicating that the function should allocate its result in the
8485 -- pool, and pass the pool. Use 'Unrestricted_Access because the
8486 -- pool may not be aliased.
8488 if VM_Target
= No_VM
8489 and then Present
(Associated_Storage_Pool
(Acc_Type
))
8491 Alloc_Form
:= User_Storage_Pool
;
8493 Make_Attribute_Reference
(Loc
,
8496 (Associated_Storage_Pool
(Acc_Type
), Loc
),
8497 Attribute_Name
=> Name_Unrestricted_Access
);
8499 -- No user-defined pool; pass an allocation parameter indicating that
8500 -- the function should allocate its result on the heap.
8503 Alloc_Form
:= Global_Heap
;
8504 Pool
:= Make_Null
(No_Location
);
8507 -- The caller does not provide the return object in this case, so we
8508 -- have to pass null for the object access actual.
8510 Return_Obj_Actual
:= Empty
;
8513 -- Declare the temp object
8515 Insert_Action
(Allocator
,
8516 Make_Object_Declaration
(Loc
,
8517 Defining_Identifier
=> Return_Obj_Access
,
8518 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
8519 Expression
=> Temp_Init
));
8521 Ref_Func_Call
:= Make_Reference
(Loc
, Func_Call
);
8523 -- Ada 2005 (AI-251): If the type of the allocator is an interface
8524 -- then generate an implicit conversion to force displacement of the
8527 if Is_Interface
(Designated_Type
(Acc_Type
)) then
8530 OK_Convert_To
(Acc_Type
, Ref_Func_Call
));
8534 Assign
: constant Node_Id
:=
8535 Make_Assignment_Statement
(Loc
,
8536 Name
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
),
8537 Expression
=> Ref_Func_Call
);
8538 -- Assign the result of the function call into the temp. In the
8539 -- caller-allocates case, this is overwriting the temp with its
8540 -- initial value, which has no effect. In the callee-allocates case,
8541 -- this is setting the temp to point to the object allocated by the
8545 -- Actions to be inserted. If there are no tasks, this is just the
8546 -- assignment statement. If the allocated object has tasks, we need
8547 -- to wrap the assignment in a block that activates them. The
8548 -- activation chain of that block must be passed to the function,
8549 -- rather than some outer chain.
8551 if Has_Task
(Result_Subt
) then
8552 Actions
:= New_List
;
8553 Build_Task_Allocate_Block_With_Init_Stmts
8554 (Actions
, Allocator
, Init_Stmts
=> New_List
(Assign
));
8555 Chain
:= Activation_Chain_Entity
(Last
(Actions
));
8557 Actions
:= New_List
(Assign
);
8561 Insert_Actions
(Allocator
, Actions
);
8564 -- When the function has a controlling result, an allocation-form
8565 -- parameter must be passed indicating that the caller is allocating
8566 -- the result object. This is needed because such a function can be
8567 -- called as a dispatching operation and must be treated similarly
8568 -- to functions with unconstrained result subtypes.
8570 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8571 (Func_Call
, Function_Id
, Alloc_Form
, Pool_Actual
=> Pool
);
8573 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8574 (Func_Call
, Function_Id
, Acc_Type
);
8576 Add_Task_Actuals_To_Build_In_Place_Call
8577 (Func_Call
, Function_Id
, Master_Actual
=> Master_Id
(Acc_Type
),
8580 -- Add an implicit actual to the function call that provides access
8581 -- to the allocated object. An unchecked conversion to the (specific)
8582 -- result subtype of the function is inserted to handle cases where
8583 -- the access type of the allocator has a class-wide designated type.
8585 Add_Access_Actual_To_Build_In_Place_Call
8586 (Func_Call
, Function_Id
, Return_Obj_Actual
);
8588 -- Finally, replace the allocator node with a reference to the temp
8590 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
8592 Analyze_And_Resolve
(Allocator
, Acc_Type
);
8593 end Make_Build_In_Place_Call_In_Allocator
;
8595 ---------------------------------------------------
8596 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8597 ---------------------------------------------------
8599 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8600 (Function_Call
: Node_Id
)
8603 Func_Call
: Node_Id
:= Function_Call
;
8604 Function_Id
: Entity_Id
;
8605 Result_Subt
: Entity_Id
;
8606 Return_Obj_Id
: Entity_Id
;
8607 Return_Obj_Decl
: Entity_Id
;
8610 -- Step past qualification or unchecked conversion (the latter can occur
8611 -- in cases of calls to 'Input).
8613 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
8614 N_Unchecked_Type_Conversion
)
8616 Func_Call
:= Expression
(Func_Call
);
8619 -- If the call has already been processed to add build-in-place actuals
8620 -- then return. One place this can occur is for calls to build-in-place
8621 -- functions that occur within a call to a protected operation, where
8622 -- due to rewriting and expansion of the protected call there can be
8623 -- more than one call to Expand_Actuals for the same set of actuals.
8625 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8629 -- Mark the call as processed as a build-in-place call
8631 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8633 Loc
:= Sloc
(Function_Call
);
8635 if Is_Entity_Name
(Name
(Func_Call
)) then
8636 Function_Id
:= Entity
(Name
(Func_Call
));
8638 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8639 Function_Id
:= Etype
(Name
(Func_Call
));
8642 raise Program_Error
;
8645 Result_Subt
:= Etype
(Function_Id
);
8647 -- If the build-in-place function returns a controlled object, then the
8648 -- object needs to be finalized immediately after the context. Since
8649 -- this case produces a transient scope, the servicing finalizer needs
8650 -- to name the returned object. Create a temporary which is initialized
8651 -- with the function call:
8653 -- Temp_Id : Func_Type := BIP_Func_Call;
8655 -- The initialization expression of the temporary will be rewritten by
8656 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8657 -- Call_In_Object_Declaration.
8659 if Needs_Finalization
(Result_Subt
) then
8661 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
8662 Temp_Decl
: Node_Id
;
8665 -- Reset the guard on the function call since the following does
8666 -- not perform actual call expansion.
8668 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
, False);
8671 Make_Object_Declaration
(Loc
,
8672 Defining_Identifier
=> Temp_Id
,
8673 Object_Definition
=>
8674 New_Occurrence_Of
(Result_Subt
, Loc
),
8676 New_Copy_Tree
(Function_Call
));
8678 Insert_Action
(Function_Call
, Temp_Decl
);
8680 Rewrite
(Function_Call
, New_Occurrence_Of
(Temp_Id
, Loc
));
8681 Analyze
(Function_Call
);
8684 -- When the result subtype is constrained, an object of the subtype is
8685 -- declared and an access value designating it is passed as an actual.
8687 elsif Is_Constrained
(Underlying_Type
(Result_Subt
)) then
8689 -- Create a temporary object to hold the function result
8691 Return_Obj_Id
:= Make_Temporary
(Loc
, 'R');
8692 Set_Etype
(Return_Obj_Id
, Result_Subt
);
8695 Make_Object_Declaration
(Loc
,
8696 Defining_Identifier
=> Return_Obj_Id
,
8697 Aliased_Present
=> True,
8698 Object_Definition
=> New_Occurrence_Of
(Result_Subt
, Loc
));
8700 Set_No_Initialization
(Return_Obj_Decl
);
8702 Insert_Action
(Func_Call
, Return_Obj_Decl
);
8704 -- When the function has a controlling result, an allocation-form
8705 -- parameter must be passed indicating that the caller is allocating
8706 -- the result object. This is needed because such a function can be
8707 -- called as a dispatching operation and must be treated similarly
8708 -- to functions with unconstrained result subtypes.
8710 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8711 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8713 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8714 (Func_Call
, Function_Id
);
8716 Add_Task_Actuals_To_Build_In_Place_Call
8717 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8719 -- Add an implicit actual to the function call that provides access
8720 -- to the caller's return object.
8722 Add_Access_Actual_To_Build_In_Place_Call
8723 (Func_Call
, Function_Id
, New_Occurrence_Of
(Return_Obj_Id
, Loc
));
8725 -- When the result subtype is unconstrained, the function must allocate
8726 -- the return object in the secondary stack, so appropriate implicit
8727 -- parameters are added to the call to indicate that. A transient
8728 -- scope is established to ensure eventual cleanup of the result.
8731 -- Pass an allocation parameter indicating that the function should
8732 -- allocate its result on the secondary stack.
8734 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8735 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
8737 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8738 (Func_Call
, Function_Id
);
8740 Add_Task_Actuals_To_Build_In_Place_Call
8741 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8743 -- Pass a null value to the function since no return object is
8744 -- available on the caller side.
8746 Add_Access_Actual_To_Build_In_Place_Call
8747 (Func_Call
, Function_Id
, Empty
);
8749 end Make_Build_In_Place_Call_In_Anonymous_Context
;
8751 --------------------------------------------
8752 -- Make_Build_In_Place_Call_In_Assignment --
8753 --------------------------------------------
8755 procedure Make_Build_In_Place_Call_In_Assignment
8757 Function_Call
: Node_Id
)
8759 Lhs
: constant Node_Id
:= Name
(Assign
);
8760 Func_Call
: Node_Id
:= Function_Call
;
8761 Func_Id
: Entity_Id
;
8765 Ptr_Typ
: Entity_Id
;
8766 Ptr_Typ_Decl
: Node_Id
;
8768 Result_Subt
: Entity_Id
;
8772 -- Step past qualification or unchecked conversion (the latter can occur
8773 -- in cases of calls to 'Input).
8775 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
8776 N_Unchecked_Type_Conversion
)
8778 Func_Call
:= Expression
(Func_Call
);
8781 -- If the call has already been processed to add build-in-place actuals
8782 -- then return. This should not normally occur in an assignment context,
8783 -- but we add the protection as a defensive measure.
8785 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8789 -- Mark the call as processed as a build-in-place call
8791 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8793 Loc
:= Sloc
(Function_Call
);
8795 if Is_Entity_Name
(Name
(Func_Call
)) then
8796 Func_Id
:= Entity
(Name
(Func_Call
));
8798 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8799 Func_Id
:= Etype
(Name
(Func_Call
));
8802 raise Program_Error
;
8805 Result_Subt
:= Etype
(Func_Id
);
8807 -- When the result subtype is unconstrained, an additional actual must
8808 -- be passed to indicate that the caller is providing the return object.
8809 -- This parameter must also be passed when the called function has a
8810 -- controlling result, because dispatching calls to the function needs
8811 -- to be treated effectively the same as calls to class-wide functions.
8813 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8814 (Func_Call
, Func_Id
, Alloc_Form
=> Caller_Allocation
);
8816 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8817 (Func_Call
, Func_Id
);
8819 Add_Task_Actuals_To_Build_In_Place_Call
8820 (Func_Call
, Func_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8822 -- Add an implicit actual to the function call that provides access to
8823 -- the caller's return object.
8825 Add_Access_Actual_To_Build_In_Place_Call
8828 Make_Unchecked_Type_Conversion
(Loc
,
8829 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
8830 Expression
=> Relocate_Node
(Lhs
)));
8832 -- Create an access type designating the function's result subtype
8834 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
8837 Make_Full_Type_Declaration
(Loc
,
8838 Defining_Identifier
=> Ptr_Typ
,
8840 Make_Access_To_Object_Definition
(Loc
,
8841 All_Present
=> True,
8842 Subtype_Indication
=>
8843 New_Occurrence_Of
(Result_Subt
, Loc
)));
8844 Insert_After_And_Analyze
(Assign
, Ptr_Typ_Decl
);
8846 -- Finally, create an access object initialized to a reference to the
8847 -- function call. We know this access value is non-null, so mark the
8848 -- entity accordingly to suppress junk access checks.
8850 New_Expr
:= Make_Reference
(Loc
, Relocate_Node
(Func_Call
));
8852 Obj_Id
:= Make_Temporary
(Loc
, 'R', New_Expr
);
8853 Set_Etype
(Obj_Id
, Ptr_Typ
);
8854 Set_Is_Known_Non_Null
(Obj_Id
);
8857 Make_Object_Declaration
(Loc
,
8858 Defining_Identifier
=> Obj_Id
,
8859 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
8860 Expression
=> New_Expr
);
8861 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Obj_Decl
);
8863 Rewrite
(Assign
, Make_Null_Statement
(Loc
));
8865 -- Retrieve the target of the assignment
8867 if Nkind
(Lhs
) = N_Selected_Component
then
8868 Target
:= Selector_Name
(Lhs
);
8869 elsif Nkind
(Lhs
) = N_Type_Conversion
then
8870 Target
:= Expression
(Lhs
);
8875 -- If we are assigning to a return object or this is an expression of
8876 -- an extension aggregate, the target should either be an identifier
8877 -- or a simple expression. All other cases imply a different scenario.
8879 if Nkind
(Target
) in N_Has_Entity
then
8880 Target
:= Entity
(Target
);
8884 end Make_Build_In_Place_Call_In_Assignment
;
8886 ----------------------------------------------------
8887 -- Make_Build_In_Place_Call_In_Object_Declaration --
8888 ----------------------------------------------------
8890 procedure Make_Build_In_Place_Call_In_Object_Declaration
8891 (Object_Decl
: Node_Id
;
8892 Function_Call
: Node_Id
)
8895 Obj_Def_Id
: constant Entity_Id
:=
8896 Defining_Identifier
(Object_Decl
);
8897 Enclosing_Func
: constant Entity_Id
:=
8898 Enclosing_Subprogram
(Obj_Def_Id
);
8899 Call_Deref
: Node_Id
;
8900 Caller_Object
: Node_Id
;
8902 Fmaster_Actual
: Node_Id
:= Empty
;
8903 Func_Call
: Node_Id
:= Function_Call
;
8904 Function_Id
: Entity_Id
;
8905 Pool_Actual
: Node_Id
;
8906 Ptr_Typ
: Entity_Id
;
8907 Ptr_Typ_Decl
: Node_Id
;
8908 Pass_Caller_Acc
: Boolean := False;
8910 Result_Subt
: Entity_Id
;
8913 -- Step past qualification or unchecked conversion (the latter can occur
8914 -- in cases of calls to 'Input).
8916 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
8917 N_Unchecked_Type_Conversion
)
8919 Func_Call
:= Expression
(Func_Call
);
8922 -- If the call has already been processed to add build-in-place actuals
8923 -- then return. This should not normally occur in an object declaration,
8924 -- but we add the protection as a defensive measure.
8926 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8930 -- Mark the call as processed as a build-in-place call
8932 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8934 Loc
:= Sloc
(Function_Call
);
8936 if Is_Entity_Name
(Name
(Func_Call
)) then
8937 Function_Id
:= Entity
(Name
(Func_Call
));
8939 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8940 Function_Id
:= Etype
(Name
(Func_Call
));
8943 raise Program_Error
;
8946 Result_Subt
:= Etype
(Function_Id
);
8948 -- Create an access type designating the function's result subtype. We
8949 -- use the type of the original call because it may be a call to an
8950 -- inherited operation, which the expansion has replaced with the parent
8951 -- operation that yields the parent type. Note that this access type
8952 -- must be declared before we establish a transient scope, so that it
8953 -- receives the proper accessibility level.
8955 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
8957 Make_Full_Type_Declaration
(Loc
,
8958 Defining_Identifier
=> Ptr_Typ
,
8960 Make_Access_To_Object_Definition
(Loc
,
8961 All_Present
=> True,
8962 Subtype_Indication
=>
8963 New_Occurrence_Of
(Etype
(Function_Call
), Loc
)));
8965 -- The access type and its accompanying object must be inserted after
8966 -- the object declaration in the constrained case, so that the function
8967 -- call can be passed access to the object. In the unconstrained case,
8968 -- or if the object declaration is for a return object, the access type
8969 -- and object must be inserted before the object, since the object
8970 -- declaration is rewritten to be a renaming of a dereference of the
8971 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8972 -- the result object is in a different (transient) scope, so won't
8975 if Is_Constrained
(Underlying_Type
(Result_Subt
))
8976 and then not Is_Return_Object
(Defining_Identifier
(Object_Decl
))
8978 Insert_After_And_Analyze
(Object_Decl
, Ptr_Typ_Decl
);
8980 Insert_Action
(Object_Decl
, Ptr_Typ_Decl
);
8983 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8984 -- elaborated in an inner (transient) scope and thus won't cause
8985 -- freezing by itself.
8988 Ptr_Typ_Freeze_Ref
: constant Node_Id
:=
8989 New_Occurrence_Of
(Ptr_Typ
, Loc
);
8991 Set_Parent
(Ptr_Typ_Freeze_Ref
, Ptr_Typ_Decl
);
8992 Freeze_Expression
(Ptr_Typ_Freeze_Ref
);
8995 -- If the the object is a return object of an enclosing build-in-place
8996 -- function, then the implicit build-in-place parameters of the
8997 -- enclosing function are simply passed along to the called function.
8998 -- (Unfortunately, this won't cover the case of extension aggregates
8999 -- where the ancestor part is a build-in-place unconstrained function
9000 -- call that should be passed along the caller's parameters. Currently
9001 -- those get mishandled by reassigning the result of the call to the
9002 -- aggregate return object, when the call result should really be
9003 -- directly built in place in the aggregate and not in a temporary. ???)
9005 if Is_Return_Object
(Defining_Identifier
(Object_Decl
)) then
9006 Pass_Caller_Acc
:= True;
9008 -- When the enclosing function has a BIP_Alloc_Form formal then we
9009 -- pass it along to the callee (such as when the enclosing function
9010 -- has an unconstrained or tagged result type).
9012 if Needs_BIP_Alloc_Form
(Enclosing_Func
) then
9013 if VM_Target
= No_VM
and then
9014 RTE_Available
(RE_Root_Storage_Pool_Ptr
)
9017 New_Occurrence_Of
(Build_In_Place_Formal
9018 (Enclosing_Func
, BIP_Storage_Pool
), Loc
);
9020 -- The build-in-place pool formal is not built on .NET/JVM
9023 Pool_Actual
:= Empty
;
9026 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9031 (Build_In_Place_Formal
(Enclosing_Func
, BIP_Alloc_Form
),
9033 Pool_Actual
=> Pool_Actual
);
9035 -- Otherwise, if enclosing function has a constrained result subtype,
9036 -- then caller allocation will be used.
9039 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9040 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
9043 if Needs_BIP_Finalization_Master
(Enclosing_Func
) then
9046 (Build_In_Place_Formal
9047 (Enclosing_Func
, BIP_Finalization_Master
), Loc
);
9050 -- Retrieve the BIPacc formal from the enclosing function and convert
9051 -- it to the access type of the callee's BIP_Object_Access formal.
9054 Make_Unchecked_Type_Conversion
(Loc
,
9058 (Build_In_Place_Formal
(Function_Id
, BIP_Object_Access
)),
9062 (Build_In_Place_Formal
(Enclosing_Func
, BIP_Object_Access
),
9065 -- In the constrained case, add an implicit actual to the function call
9066 -- that provides access to the declared object. An unchecked conversion
9067 -- to the (specific) result type of the function is inserted to handle
9068 -- the case where the object is declared with a class-wide type.
9070 elsif Is_Constrained
(Underlying_Type
(Result_Subt
)) then
9072 Make_Unchecked_Type_Conversion
(Loc
,
9073 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
9074 Expression
=> New_Occurrence_Of
(Obj_Def_Id
, Loc
));
9076 -- When the function has a controlling result, an allocation-form
9077 -- parameter must be passed indicating that the caller is allocating
9078 -- the result object. This is needed because such a function can be
9079 -- called as a dispatching operation and must be treated similarly
9080 -- to functions with unconstrained result subtypes.
9082 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9083 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
9085 -- In other unconstrained cases, pass an indication to do the allocation
9086 -- on the secondary stack and set Caller_Object to Empty so that a null
9087 -- value will be passed for the caller's object address. A transient
9088 -- scope is established to ensure eventual cleanup of the result.
9091 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9092 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
9093 Caller_Object
:= Empty
;
9095 Establish_Transient_Scope
(Object_Decl
, Sec_Stack
=> True);
9098 -- Pass along any finalization master actual, which is needed in the
9099 -- case where the called function initializes a return object of an
9100 -- enclosing build-in-place function.
9102 Add_Finalization_Master_Actual_To_Build_In_Place_Call
9103 (Func_Call
=> Func_Call
,
9104 Func_Id
=> Function_Id
,
9105 Master_Exp
=> Fmaster_Actual
);
9107 if Nkind
(Parent
(Object_Decl
)) = N_Extended_Return_Statement
9108 and then Has_Task
(Result_Subt
)
9110 -- Here we're passing along the master that was passed in to this
9113 Add_Task_Actuals_To_Build_In_Place_Call
9114 (Func_Call
, Function_Id
,
9116 New_Occurrence_Of
(Build_In_Place_Formal
9117 (Enclosing_Func
, BIP_Task_Master
), Loc
));
9120 Add_Task_Actuals_To_Build_In_Place_Call
9121 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
9124 Add_Access_Actual_To_Build_In_Place_Call
9125 (Func_Call
, Function_Id
, Caller_Object
, Is_Access
=> Pass_Caller_Acc
);
9127 -- Finally, create an access object initialized to a reference to the
9128 -- function call. We know this access value cannot be null, so mark the
9129 -- entity accordingly to suppress the access check.
9131 Def_Id
:= Make_Temporary
(Loc
, 'R', Func_Call
);
9132 Set_Etype
(Def_Id
, Ptr_Typ
);
9133 Set_Is_Known_Non_Null
(Def_Id
);
9136 Make_Object_Declaration
(Loc
,
9137 Defining_Identifier
=> Def_Id
,
9138 Constant_Present
=> True,
9139 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
9141 Make_Reference
(Loc
, Relocate_Node
(Func_Call
)));
9143 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Res_Decl
);
9145 -- If the result subtype of the called function is constrained and
9146 -- is not itself the return expression of an enclosing BIP function,
9147 -- then mark the object as having no initialization.
9149 if Is_Constrained
(Underlying_Type
(Result_Subt
))
9150 and then not Is_Return_Object
(Defining_Identifier
(Object_Decl
))
9152 -- The related object declaration is encased in a transient block
9153 -- because the build-in-place function call contains at least one
9154 -- nested function call that produces a controlled transient
9157 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
9159 -- Since the build-in-place expansion decouples the call from the
9160 -- object declaration, the finalization machinery lacks the context
9161 -- which prompted the generation of the transient block. To resolve
9162 -- this scenario, store the build-in-place call.
9164 if Scope_Is_Transient
9165 and then Node_To_Be_Wrapped
= Object_Decl
9167 Set_BIP_Initialization_Call
(Obj_Def_Id
, Res_Decl
);
9170 Set_Expression
(Object_Decl
, Empty
);
9171 Set_No_Initialization
(Object_Decl
);
9173 -- In case of an unconstrained result subtype, or if the call is the
9174 -- return expression of an enclosing BIP function, rewrite the object
9175 -- declaration as an object renaming where the renamed object is a
9176 -- dereference of <function_Call>'reference:
9178 -- Obj : Subt renames <function_call>'Ref.all;
9182 Make_Explicit_Dereference
(Loc
,
9183 Prefix
=> New_Occurrence_Of
(Def_Id
, Loc
));
9185 Loc
:= Sloc
(Object_Decl
);
9186 Rewrite
(Object_Decl
,
9187 Make_Object_Renaming_Declaration
(Loc
,
9188 Defining_Identifier
=> Make_Temporary
(Loc
, 'D'),
9189 Access_Definition
=> Empty
,
9190 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
9191 Name
=> Call_Deref
));
9193 Set_Renamed_Object
(Defining_Identifier
(Object_Decl
), Call_Deref
);
9195 Analyze
(Object_Decl
);
9197 -- Replace the internal identifier of the renaming declaration's
9198 -- entity with identifier of the original object entity. We also have
9199 -- to exchange the entities containing their defining identifiers to
9200 -- ensure the correct replacement of the object declaration by the
9201 -- object renaming declaration to avoid homograph conflicts (since
9202 -- the object declaration's defining identifier was already entered
9203 -- in current scope). The Next_Entity links of the two entities also
9204 -- have to be swapped since the entities are part of the return
9205 -- scope's entity list and the list structure would otherwise be
9206 -- corrupted. Finally, the homonym chain must be preserved as well.
9209 Renaming_Def_Id
: constant Entity_Id
:=
9210 Defining_Identifier
(Object_Decl
);
9211 Next_Entity_Temp
: constant Entity_Id
:=
9212 Next_Entity
(Renaming_Def_Id
);
9214 Set_Chars
(Renaming_Def_Id
, Chars
(Obj_Def_Id
));
9216 -- Swap next entity links in preparation for exchanging entities
9218 Set_Next_Entity
(Renaming_Def_Id
, Next_Entity
(Obj_Def_Id
));
9219 Set_Next_Entity
(Obj_Def_Id
, Next_Entity_Temp
);
9220 Set_Homonym
(Renaming_Def_Id
, Homonym
(Obj_Def_Id
));
9222 Exchange_Entities
(Renaming_Def_Id
, Obj_Def_Id
);
9224 -- Preserve source indication of original declaration, so that
9225 -- xref information is properly generated for the right entity.
9227 Preserve_Comes_From_Source
9228 (Object_Decl
, Original_Node
(Object_Decl
));
9230 Preserve_Comes_From_Source
9231 (Obj_Def_Id
, Original_Node
(Object_Decl
));
9233 Set_Comes_From_Source
(Renaming_Def_Id
, False);
9237 -- If the object entity has a class-wide Etype, then we need to change
9238 -- it to the result subtype of the function call, because otherwise the
9239 -- object will be class-wide without an explicit initialization and
9240 -- won't be allocated properly by the back end. It seems unclean to make
9241 -- such a revision to the type at this point, and we should try to
9242 -- improve this treatment when build-in-place functions with class-wide
9243 -- results are implemented. ???
9245 if Is_Class_Wide_Type
(Etype
(Defining_Identifier
(Object_Decl
))) then
9246 Set_Etype
(Defining_Identifier
(Object_Decl
), Result_Subt
);
9248 end Make_Build_In_Place_Call_In_Object_Declaration
;
9250 --------------------------------------------
9251 -- Make_CPP_Constructor_Call_In_Allocator --
9252 --------------------------------------------
9254 procedure Make_CPP_Constructor_Call_In_Allocator
9255 (Allocator
: Node_Id
;
9256 Function_Call
: Node_Id
)
9258 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
9259 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
9260 Function_Id
: constant Entity_Id
:= Entity
(Name
(Function_Call
));
9261 Result_Subt
: constant Entity_Id
:= Available_View
(Etype
(Function_Id
));
9263 New_Allocator
: Node_Id
;
9264 Return_Obj_Access
: Entity_Id
;
9268 pragma Assert
(Nkind
(Allocator
) = N_Allocator
9269 and then Nkind
(Function_Call
) = N_Function_Call
);
9270 pragma Assert
(Convention
(Function_Id
) = Convention_CPP
9271 and then Is_Constructor
(Function_Id
));
9272 pragma Assert
(Is_Constrained
(Underlying_Type
(Result_Subt
)));
9274 -- Replace the initialized allocator of form "new T'(Func (...))" with
9275 -- an uninitialized allocator of form "new T", where T is the result
9276 -- subtype of the called function. The call to the function is handled
9277 -- separately further below.
9280 Make_Allocator
(Loc
,
9281 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
9282 Set_No_Initialization
(New_Allocator
);
9284 -- Copy attributes to new allocator. Note that the new allocator
9285 -- logically comes from source if the original one did, so copy the
9286 -- relevant flag. This ensures proper treatment of the restriction
9287 -- No_Implicit_Heap_Allocations in this case.
9289 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
9290 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
9291 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
9293 Rewrite
(Allocator
, New_Allocator
);
9295 -- Create a new access object and initialize it to the result of the
9296 -- new uninitialized allocator. Note: we do not use Allocator as the
9297 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
9298 -- as this would create a sort of infinite "recursion".
9300 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
9301 Set_Etype
(Return_Obj_Access
, Acc_Type
);
9304 -- Rnnn : constant ptr_T := new (T);
9305 -- Init (Rnn.all,...);
9308 Make_Object_Declaration
(Loc
,
9309 Defining_Identifier
=> Return_Obj_Access
,
9310 Constant_Present
=> True,
9311 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
9312 Expression
=> Relocate_Node
(Allocator
));
9313 Insert_Action
(Allocator
, Tmp_Obj
);
9315 Insert_List_After_And_Analyze
(Tmp_Obj
,
9316 Build_Initialization_Call
(Loc
,
9318 Make_Explicit_Dereference
(Loc
,
9319 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)),
9320 Typ
=> Etype
(Function_Id
),
9321 Constructor_Ref
=> Function_Call
));
9323 -- Finally, replace the allocator node with a reference to the result of
9324 -- the function call itself (which will effectively be an access to the
9325 -- object created by the allocator).
9327 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
9329 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
9330 -- generate an implicit conversion to force displacement of the "this"
9333 if Is_Interface
(Designated_Type
(Acc_Type
)) then
9334 Rewrite
(Allocator
, Convert_To
(Acc_Type
, Relocate_Node
(Allocator
)));
9337 Analyze_And_Resolve
(Allocator
, Acc_Type
);
9338 end Make_CPP_Constructor_Call_In_Allocator
;
9340 -----------------------------------
9341 -- Needs_BIP_Finalization_Master --
9342 -----------------------------------
9344 function Needs_BIP_Finalization_Master
9345 (Func_Id
: Entity_Id
) return Boolean
9347 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
9348 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
9351 not Restriction_Active
(No_Finalization
)
9352 and then Needs_Finalization
(Func_Typ
);
9353 end Needs_BIP_Finalization_Master
;
9355 --------------------------
9356 -- Needs_BIP_Alloc_Form --
9357 --------------------------
9359 function Needs_BIP_Alloc_Form
(Func_Id
: Entity_Id
) return Boolean is
9360 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
9361 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
9363 return not Is_Constrained
(Func_Typ
) or else Is_Tagged_Type
(Func_Typ
);
9364 end Needs_BIP_Alloc_Form
;
9366 --------------------------------------
9367 -- Needs_Result_Accessibility_Level --
9368 --------------------------------------
9370 function Needs_Result_Accessibility_Level
9371 (Func_Id
: Entity_Id
) return Boolean
9373 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
9375 function Has_Unconstrained_Access_Discriminant_Component
9376 (Comp_Typ
: Entity_Id
) return Boolean;
9377 -- Returns True if any component of the type has an unconstrained access
9380 -----------------------------------------------------
9381 -- Has_Unconstrained_Access_Discriminant_Component --
9382 -----------------------------------------------------
9384 function Has_Unconstrained_Access_Discriminant_Component
9385 (Comp_Typ
: Entity_Id
) return Boolean
9388 if not Is_Limited_Type
(Comp_Typ
) then
9391 -- Only limited types can have access discriminants with
9394 elsif Has_Unconstrained_Access_Discriminants
(Comp_Typ
) then
9397 elsif Is_Array_Type
(Comp_Typ
) then
9398 return Has_Unconstrained_Access_Discriminant_Component
9399 (Underlying_Type
(Component_Type
(Comp_Typ
)));
9401 elsif Is_Record_Type
(Comp_Typ
) then
9406 Comp
:= First_Component
(Comp_Typ
);
9407 while Present
(Comp
) loop
9408 if Has_Unconstrained_Access_Discriminant_Component
9409 (Underlying_Type
(Etype
(Comp
)))
9414 Next_Component
(Comp
);
9420 end Has_Unconstrained_Access_Discriminant_Component
;
9422 Feature_Disabled
: constant Boolean := True;
9425 -- Start of processing for Needs_Result_Accessibility_Level
9428 -- False if completion unavailable (how does this happen???)
9430 if not Present
(Func_Typ
) then
9433 elsif Feature_Disabled
then
9436 -- False if not a function, also handle enum-lit renames case
9438 elsif Func_Typ
= Standard_Void_Type
9439 or else Is_Scalar_Type
(Func_Typ
)
9443 -- Handle a corner case, a cross-dialect subp renaming. For example,
9444 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9445 -- an Ada 2005 (or earlier) unit references predefined run-time units.
9447 elsif Present
(Alias
(Func_Id
)) then
9449 -- Unimplemented: a cross-dialect subp renaming which does not set
9450 -- the Alias attribute (e.g., a rename of a dereference of an access
9451 -- to subprogram value). ???
9453 return Present
(Extra_Accessibility_Of_Result
(Alias
(Func_Id
)));
9455 -- Remaining cases require Ada 2012 mode
9457 elsif Ada_Version
< Ada_2012
then
9460 elsif Ekind
(Func_Typ
) = E_Anonymous_Access_Type
9461 or else Is_Tagged_Type
(Func_Typ
)
9463 -- In the case of, say, a null tagged record result type, the need
9464 -- for this extra parameter might not be obvious. This function
9465 -- returns True for all tagged types for compatibility reasons.
9466 -- A function with, say, a tagged null controlling result type might
9467 -- be overridden by a primitive of an extension having an access
9468 -- discriminant and the overrider and overridden must have compatible
9469 -- calling conventions (including implicitly declared parameters).
9470 -- Similarly, values of one access-to-subprogram type might designate
9471 -- both a primitive subprogram of a given type and a function
9472 -- which is, for example, not a primitive subprogram of any type.
9473 -- Again, this requires calling convention compatibility.
9474 -- It might be possible to solve these issues by introducing
9475 -- wrappers, but that is not the approach that was chosen.
9479 elsif Has_Unconstrained_Access_Discriminants
(Func_Typ
) then
9482 elsif Has_Unconstrained_Access_Discriminant_Component
(Func_Typ
) then
9485 -- False for all other cases
9490 end Needs_Result_Accessibility_Level
;