1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Contracts
; use Contracts
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Elists
; use Elists
;
33 with Expander
; use Expander
;
34 with Exp_Aggr
; use Exp_Aggr
;
35 with Exp_Atag
; use Exp_Atag
;
36 with Exp_Ch2
; use Exp_Ch2
;
37 with Exp_Ch3
; use Exp_Ch3
;
38 with Exp_Ch7
; use Exp_Ch7
;
39 with Exp_Ch9
; use Exp_Ch9
;
40 with Exp_Dbug
; use Exp_Dbug
;
41 with Exp_Disp
; use Exp_Disp
;
42 with Exp_Dist
; use Exp_Dist
;
43 with Exp_Intr
; use Exp_Intr
;
44 with Exp_Pakd
; use Exp_Pakd
;
45 with Exp_Tss
; use Exp_Tss
;
46 with Exp_Util
; use Exp_Util
;
47 with Freeze
; use Freeze
;
48 with Inline
; use Inline
;
49 with Itypes
; use Itypes
;
51 with Namet
; use Namet
;
52 with Nlists
; use Nlists
;
53 with Nmake
; use Nmake
;
55 with Restrict
; use Restrict
;
56 with Rident
; use Rident
;
57 with Rtsfind
; use Rtsfind
;
59 with Sem_Aux
; use Sem_Aux
;
60 with Sem_Ch6
; use Sem_Ch6
;
61 with Sem_Ch8
; use Sem_Ch8
;
62 with Sem_Ch12
; use Sem_Ch12
;
63 with Sem_Ch13
; use Sem_Ch13
;
64 with Sem_Dim
; use Sem_Dim
;
65 with Sem_Disp
; use Sem_Disp
;
66 with Sem_Dist
; use Sem_Dist
;
67 with Sem_Eval
; use Sem_Eval
;
68 with Sem_Mech
; use Sem_Mech
;
69 with Sem_Res
; use Sem_Res
;
70 with Sem_SCIL
; use Sem_SCIL
;
71 with Sem_Util
; use Sem_Util
;
72 with Sinfo
; use Sinfo
;
73 with Snames
; use Snames
;
74 with Stand
; use Stand
;
75 with Tbuild
; use Tbuild
;
76 with Uintp
; use Uintp
;
77 with Validsw
; use Validsw
;
79 package body Exp_Ch6
is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Add_Access_Actual_To_Build_In_Place_Call
86 (Function_Call
: Node_Id
;
87 Function_Id
: Entity_Id
;
88 Return_Object
: Node_Id
;
89 Is_Access
: Boolean := False);
90 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
91 -- object name given by Return_Object and add the attribute to the end of
92 -- the actual parameter list associated with the build-in-place function
93 -- call denoted by Function_Call. However, if Is_Access is True, then
94 -- Return_Object is already an access expression, in which case it's passed
95 -- along directly to the build-in-place function. Finally, if Return_Object
96 -- is empty, then pass a null literal as the actual.
98 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
99 (Function_Call
: Node_Id
;
100 Function_Id
: Entity_Id
;
101 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
102 Alloc_Form_Exp
: Node_Id
:= Empty
;
103 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
));
104 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
105 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
106 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
107 -- otherwise pass a literal corresponding to the Alloc_Form parameter
108 -- (which must not be Unspecified in that case). Pool_Actual is the
109 -- parameter to pass to BIP_Storage_Pool.
111 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
112 (Func_Call
: Node_Id
;
114 Ptr_Typ
: Entity_Id
:= Empty
;
115 Master_Exp
: Node_Id
:= Empty
);
116 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
117 -- finalization actions, add an actual parameter which is a pointer to the
118 -- finalization master of the caller. If Master_Exp is not Empty, then that
119 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
120 -- will result in an automatic "null" value for the actual.
122 procedure Add_Task_Actuals_To_Build_In_Place_Call
123 (Function_Call
: Node_Id
;
124 Function_Id
: Entity_Id
;
125 Master_Actual
: Node_Id
;
126 Chain
: Node_Id
:= Empty
);
127 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
128 -- contains tasks, add two actual parameters: the master, and a pointer to
129 -- the caller's activation chain. Master_Actual is the actual parameter
130 -- expression to pass for the master. In most cases, this is the current
131 -- master (_master). The two exceptions are: If the function call is the
132 -- initialization expression for an allocator, we pass the master of the
133 -- access type. If the function call is the initialization expression for a
134 -- return object, we pass along the master passed in by the caller. In most
135 -- contexts, the activation chain to pass is the local one, which is
136 -- indicated by No (Chain). However, in an allocator, the caller passes in
137 -- the activation Chain. Note: Master_Actual can be Empty, but only if
138 -- there are no tasks.
140 function Caller_Known_Size
141 (Func_Call
: Node_Id
;
142 Result_Subt
: Entity_Id
) return Boolean;
143 -- True if result subtype is definite, or has a size that does not require
144 -- secondary stack usage (i.e. no variant part or components whose type
145 -- depends on discriminants). In particular, untagged types with only
146 -- access discriminants do not require secondary stack use. Note we must
147 -- always use the secondary stack for dispatching-on-result calls.
149 procedure Check_Overriding_Operation
(Subp
: Entity_Id
);
150 -- Subp is a dispatching operation. Check whether it may override an
151 -- inherited private operation, in which case its DT entry is that of
152 -- the hidden operation, not the one it may have received earlier.
153 -- This must be done before emitting the code to set the corresponding
154 -- DT to the address of the subprogram. The actual placement of Subp in
155 -- the proper place in the list of primitive operations is done in
156 -- Declare_Inherited_Private_Subprograms, which also has to deal with
157 -- implicit operations. This duplication is unavoidable for now???
159 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
);
160 -- This procedure is called only if the subprogram body N, whose spec
161 -- has the given entity Spec, contains a parameterless recursive call.
162 -- It attempts to generate runtime code to detect if this a case of
163 -- infinite recursion.
165 -- The body is scanned to determine dependencies. If the only external
166 -- dependencies are on a small set of scalar variables, then the values
167 -- of these variables are captured on entry to the subprogram, and if
168 -- the values are not changed for the call, we know immediately that
169 -- we have an infinite recursion.
171 procedure Expand_Actuals
174 Post_Call
: out List_Id
);
175 -- Return a list of actions to take place after the call in Post_Call. The
176 -- call will later be rewritten as an Expression_With_Actions, with the
177 -- Post_Call actions inserted, and the call inside.
179 -- For each actual of an in-out or out parameter which is a numeric (view)
180 -- conversion of the form T (A), where A denotes a variable, we insert the
183 -- Temp : T[ := T (A)];
185 -- prior to the call. Then we replace the actual with a reference to Temp,
186 -- and append the assignment:
188 -- A := TypeA (Temp);
190 -- after the call. Here TypeA is the actual type of variable A. For out
191 -- parameters, the initial declaration has no expression. If A is not an
192 -- entity name, we generate instead:
194 -- Var : TypeA renames A;
195 -- Temp : T := Var; -- omitting expression for out parameter.
197 -- Var := TypeA (Temp);
199 -- For other in-out parameters, we emit the required constraint checks
200 -- before and/or after the call.
202 -- For all parameter modes, actuals that denote components and slices of
203 -- packed arrays are expanded into suitable temporaries.
205 -- For non-scalar objects that are possibly unaligned, add call by copy
206 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
208 -- For OUT and IN OUT parameters, add predicate checks after the call
209 -- based on the predicates of the actual type.
211 procedure Expand_Call_Helper
(N
: Node_Id
; Post_Call
: out List_Id
);
212 -- Does the main work of Expand_Call. Post_Call is as for Expand_Actuals.
214 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
);
215 -- N is a function call which returns a controlled object. Transform the
216 -- call into a temporary which retrieves the returned object from the
217 -- secondary stack using 'reference.
219 procedure Expand_Non_Function_Return
(N
: Node_Id
);
220 -- Expand a simple return statement found in a procedure body, entry body,
221 -- accept statement, or an extended return statement. Note that all non-
222 -- function returns are simple return statements.
224 function Expand_Protected_Object_Reference
226 Scop
: Entity_Id
) return Node_Id
;
228 procedure Expand_Protected_Subprogram_Call
232 -- A call to a protected subprogram within the protected object may appear
233 -- as a regular call. The list of actuals must be expanded to contain a
234 -- reference to the object itself, and the call becomes a call to the
235 -- corresponding protected subprogram.
237 procedure Expand_Simple_Function_Return
(N
: Node_Id
);
238 -- Expand simple return from function. In the case where we are returning
239 -- from a function body this is called by Expand_N_Simple_Return_Statement.
241 function Has_Unconstrained_Access_Discriminants
242 (Subtyp
: Entity_Id
) return Boolean;
243 -- Returns True if the given subtype is unconstrained and has one or more
244 -- access discriminants.
246 procedure Insert_Post_Call_Actions
(N
: Node_Id
; Post_Call
: List_Id
);
247 -- Insert the Post_Call list previously produced by routine Expand_Actuals
248 -- or Expand_Call_Helper into the tree.
250 procedure Replace_Renaming_Declaration_Id
252 Orig_Decl
: Node_Id
);
253 -- Replace the internal identifier of the new renaming declaration New_Decl
254 -- with the identifier of its original declaration Orig_Decl exchanging the
255 -- entities containing their defining identifiers to ensure the correct
256 -- replacement of the object declaration by the object renaming declaration
257 -- to avoid homograph conflicts (since the object declaration's defining
258 -- identifier was already entered in the current scope). The Next_Entity
259 -- links of the two entities are also swapped since the entities are part
260 -- of the return scope's entity list and the list structure would otherwise
261 -- be corrupted. The homonym chain is preserved as well.
263 procedure Rewrite_Function_Call_For_C
(N
: Node_Id
);
264 -- When generating C code, replace a call to a function that returns an
265 -- array into the generated procedure with an additional out parameter.
267 procedure Set_Enclosing_Sec_Stack_Return
(N
: Node_Id
);
268 -- N is a return statement for a function that returns its result on the
269 -- secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
270 -- function and all blocks and loops that the return statement is jumping
271 -- out of. This ensures that the secondary stack is not released; otherwise
272 -- the function result would be reclaimed before returning to the caller.
274 ----------------------------------------------
275 -- Add_Access_Actual_To_Build_In_Place_Call --
276 ----------------------------------------------
278 procedure Add_Access_Actual_To_Build_In_Place_Call
279 (Function_Call
: Node_Id
;
280 Function_Id
: Entity_Id
;
281 Return_Object
: Node_Id
;
282 Is_Access
: Boolean := False)
284 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
285 Obj_Address
: Node_Id
;
286 Obj_Acc_Formal
: Entity_Id
;
289 -- Locate the implicit access parameter in the called function
291 Obj_Acc_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Object_Access
);
293 -- If no return object is provided, then pass null
295 if not Present
(Return_Object
) then
296 Obj_Address
:= Make_Null
(Loc
);
297 Set_Parent
(Obj_Address
, Function_Call
);
299 -- If Return_Object is already an expression of an access type, then use
300 -- it directly, since it must be an access value denoting the return
301 -- object, and couldn't possibly be the return object itself.
304 Obj_Address
:= Return_Object
;
305 Set_Parent
(Obj_Address
, Function_Call
);
307 -- Apply Unrestricted_Access to caller's return object
311 Make_Attribute_Reference
(Loc
,
312 Prefix
=> Return_Object
,
313 Attribute_Name
=> Name_Unrestricted_Access
);
315 Set_Parent
(Return_Object
, Obj_Address
);
316 Set_Parent
(Obj_Address
, Function_Call
);
319 Analyze_And_Resolve
(Obj_Address
, Etype
(Obj_Acc_Formal
));
321 -- Build the parameter association for the new actual and add it to the
322 -- end of the function's actuals.
324 Add_Extra_Actual_To_Call
(Function_Call
, Obj_Acc_Formal
, Obj_Address
);
325 end Add_Access_Actual_To_Build_In_Place_Call
;
327 ------------------------------------------------------
328 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
329 ------------------------------------------------------
331 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
332 (Function_Call
: Node_Id
;
333 Function_Id
: Entity_Id
;
334 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
335 Alloc_Form_Exp
: Node_Id
:= Empty
;
336 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
))
338 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
339 Alloc_Form_Actual
: Node_Id
;
340 Alloc_Form_Formal
: Node_Id
;
341 Pool_Formal
: Node_Id
;
344 -- The allocation form generally doesn't need to be passed in the case
345 -- of a constrained result subtype, since normally the caller performs
346 -- the allocation in that case. However this formal is still needed in
347 -- the case where the function has a tagged result, because generally
348 -- such functions can be called in a dispatching context and such calls
349 -- must be handled like calls to class-wide functions.
351 if Is_Constrained
(Underlying_Type
(Etype
(Function_Id
)))
352 and then not Is_Tagged_Type
(Underlying_Type
(Etype
(Function_Id
)))
357 -- Locate the implicit allocation form parameter in the called function.
358 -- Maybe it would be better for each implicit formal of a build-in-place
359 -- function to have a flag or a Uint attribute to identify it. ???
361 Alloc_Form_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Alloc_Form
);
363 if Present
(Alloc_Form_Exp
) then
364 pragma Assert
(Alloc_Form
= Unspecified
);
366 Alloc_Form_Actual
:= Alloc_Form_Exp
;
369 pragma Assert
(Alloc_Form
/= Unspecified
);
372 Make_Integer_Literal
(Loc
,
373 Intval
=> UI_From_Int
(BIP_Allocation_Form
'Pos (Alloc_Form
)));
376 Analyze_And_Resolve
(Alloc_Form_Actual
, Etype
(Alloc_Form_Formal
));
378 -- Build the parameter association for the new actual and add it to the
379 -- end of the function's actuals.
381 Add_Extra_Actual_To_Call
382 (Function_Call
, Alloc_Form_Formal
, Alloc_Form_Actual
);
384 -- Pass the Storage_Pool parameter. This parameter is omitted on
385 -- ZFP as those targets do not support pools.
387 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
388 Pool_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Storage_Pool
);
389 Analyze_And_Resolve
(Pool_Actual
, Etype
(Pool_Formal
));
390 Add_Extra_Actual_To_Call
391 (Function_Call
, Pool_Formal
, Pool_Actual
);
393 end Add_Unconstrained_Actuals_To_Build_In_Place_Call
;
395 -----------------------------------------------------------
396 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
397 -----------------------------------------------------------
399 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
400 (Func_Call
: Node_Id
;
402 Ptr_Typ
: Entity_Id
:= Empty
;
403 Master_Exp
: Node_Id
:= Empty
)
406 if not Needs_BIP_Finalization_Master
(Func_Id
) then
411 Formal
: constant Entity_Id
:=
412 Build_In_Place_Formal
(Func_Id
, BIP_Finalization_Master
);
413 Loc
: constant Source_Ptr
:= Sloc
(Func_Call
);
416 Desig_Typ
: Entity_Id
;
419 -- If there is a finalization master actual, such as the implicit
420 -- finalization master of an enclosing build-in-place function,
421 -- then this must be added as an extra actual of the call.
423 if Present
(Master_Exp
) then
424 Actual
:= Master_Exp
;
426 -- Case where the context does not require an actual master
428 elsif No
(Ptr_Typ
) then
429 Actual
:= Make_Null
(Loc
);
432 Desig_Typ
:= Directly_Designated_Type
(Ptr_Typ
);
434 -- Check for a library-level access type whose designated type has
435 -- suppressed finalization or the access type is subject to pragma
436 -- No_Heap_Finalization. Such an access type lacks a master. Pass
437 -- a null actual to callee in order to signal a missing master.
439 if Is_Library_Level_Entity
(Ptr_Typ
)
440 and then (Finalize_Storage_Only
(Desig_Typ
)
441 or else No_Heap_Finalization
(Ptr_Typ
))
443 Actual
:= Make_Null
(Loc
);
445 -- Types in need of finalization actions
447 elsif Needs_Finalization
(Desig_Typ
) then
449 -- The general mechanism of creating finalization masters for
450 -- anonymous access types is disabled by default, otherwise
451 -- finalization masters will pop all over the place. Such types
452 -- use context-specific masters.
454 if Ekind
(Ptr_Typ
) = E_Anonymous_Access_Type
455 and then No
(Finalization_Master
(Ptr_Typ
))
457 Build_Anonymous_Master
(Ptr_Typ
);
460 -- Access-to-controlled types should always have a master
462 pragma Assert
(Present
(Finalization_Master
(Ptr_Typ
)));
465 Make_Attribute_Reference
(Loc
,
467 New_Occurrence_Of
(Finalization_Master
(Ptr_Typ
), Loc
),
468 Attribute_Name
=> Name_Unrestricted_Access
);
473 Actual
:= Make_Null
(Loc
);
477 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
479 -- Build the parameter association for the new actual and add it to
480 -- the end of the function's actuals.
482 Add_Extra_Actual_To_Call
(Func_Call
, Formal
, Actual
);
484 end Add_Finalization_Master_Actual_To_Build_In_Place_Call
;
486 ------------------------------
487 -- Add_Extra_Actual_To_Call --
488 ------------------------------
490 procedure Add_Extra_Actual_To_Call
491 (Subprogram_Call
: Node_Id
;
492 Extra_Formal
: Entity_Id
;
493 Extra_Actual
: Node_Id
)
495 Loc
: constant Source_Ptr
:= Sloc
(Subprogram_Call
);
496 Param_Assoc
: Node_Id
;
500 Make_Parameter_Association
(Loc
,
501 Selector_Name
=> New_Occurrence_Of
(Extra_Formal
, Loc
),
502 Explicit_Actual_Parameter
=> Extra_Actual
);
504 Set_Parent
(Param_Assoc
, Subprogram_Call
);
505 Set_Parent
(Extra_Actual
, Param_Assoc
);
507 if Present
(Parameter_Associations
(Subprogram_Call
)) then
508 if Nkind
(Last
(Parameter_Associations
(Subprogram_Call
))) =
509 N_Parameter_Association
512 -- Find last named actual, and append
517 L
:= First_Actual
(Subprogram_Call
);
518 while Present
(L
) loop
519 if No
(Next_Actual
(L
)) then
520 Set_Next_Named_Actual
(Parent
(L
), Extra_Actual
);
528 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
531 Append
(Param_Assoc
, To
=> Parameter_Associations
(Subprogram_Call
));
534 Set_Parameter_Associations
(Subprogram_Call
, New_List
(Param_Assoc
));
535 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
537 end Add_Extra_Actual_To_Call
;
539 ---------------------------------------------
540 -- Add_Task_Actuals_To_Build_In_Place_Call --
541 ---------------------------------------------
543 procedure Add_Task_Actuals_To_Build_In_Place_Call
544 (Function_Call
: Node_Id
;
545 Function_Id
: Entity_Id
;
546 Master_Actual
: Node_Id
;
547 Chain
: Node_Id
:= Empty
)
549 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
550 Result_Subt
: constant Entity_Id
:=
551 Available_View
(Etype
(Function_Id
));
553 Chain_Actual
: Node_Id
;
554 Chain_Formal
: Node_Id
;
555 Master_Formal
: Node_Id
;
558 -- No such extra parameters are needed if there are no tasks
560 if not Has_Task
(Result_Subt
) then
564 Actual
:= Master_Actual
;
566 -- Use a dummy _master actual in case of No_Task_Hierarchy
568 if Restriction_Active
(No_Task_Hierarchy
) then
569 Actual
:= New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
);
571 -- In the case where we use the master associated with an access type,
572 -- the actual is an entity and requires an explicit reference.
574 elsif Nkind
(Actual
) = N_Defining_Identifier
then
575 Actual
:= New_Occurrence_Of
(Actual
, Loc
);
578 -- Locate the implicit master parameter in the called function
580 Master_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Task_Master
);
581 Analyze_And_Resolve
(Actual
, Etype
(Master_Formal
));
583 -- Build the parameter association for the new actual and add it to the
584 -- end of the function's actuals.
586 Add_Extra_Actual_To_Call
(Function_Call
, Master_Formal
, Actual
);
588 -- Locate the implicit activation chain parameter in the called function
591 Build_In_Place_Formal
(Function_Id
, BIP_Activation_Chain
);
593 -- Create the actual which is a pointer to the current activation chain
597 Make_Attribute_Reference
(Loc
,
598 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
599 Attribute_Name
=> Name_Unrestricted_Access
);
601 -- Allocator case; make a reference to the Chain passed in by the caller
605 Make_Attribute_Reference
(Loc
,
606 Prefix
=> New_Occurrence_Of
(Chain
, Loc
),
607 Attribute_Name
=> Name_Unrestricted_Access
);
610 Analyze_And_Resolve
(Chain_Actual
, Etype
(Chain_Formal
));
612 -- Build the parameter association for the new actual and add it to the
613 -- end of the function's actuals.
615 Add_Extra_Actual_To_Call
(Function_Call
, Chain_Formal
, Chain_Actual
);
616 end Add_Task_Actuals_To_Build_In_Place_Call
;
618 -----------------------
619 -- BIP_Formal_Suffix --
620 -----------------------
622 function BIP_Formal_Suffix
(Kind
: BIP_Formal_Kind
) return String is
625 when BIP_Alloc_Form
=>
628 when BIP_Storage_Pool
=>
629 return "BIPstoragepool";
631 when BIP_Finalization_Master
=>
632 return "BIPfinalizationmaster";
634 when BIP_Task_Master
=>
635 return "BIPtaskmaster";
637 when BIP_Activation_Chain
=>
638 return "BIPactivationchain";
640 when BIP_Object_Access
=>
643 end BIP_Formal_Suffix
;
645 ---------------------------
646 -- Build_In_Place_Formal --
647 ---------------------------
649 function Build_In_Place_Formal
651 Kind
: BIP_Formal_Kind
) return Entity_Id
653 Formal_Name
: constant Name_Id
:=
655 (Chars
(Func
), BIP_Formal_Suffix
(Kind
));
656 Extra_Formal
: Entity_Id
:= Extra_Formals
(Func
);
659 -- Maybe it would be better for each implicit formal of a build-in-place
660 -- function to have a flag or a Uint attribute to identify it. ???
662 -- The return type in the function declaration may have been a limited
663 -- view, and the extra formals for the function were not generated at
664 -- that point. At the point of call the full view must be available and
665 -- the extra formals can be created.
667 if No
(Extra_Formal
) then
668 Create_Extra_Formals
(Func
);
669 Extra_Formal
:= Extra_Formals
(Func
);
673 pragma Assert
(Present
(Extra_Formal
));
674 exit when Chars
(Extra_Formal
) = Formal_Name
;
676 Next_Formal_With_Extras
(Extra_Formal
);
680 end Build_In_Place_Formal
;
682 -------------------------------
683 -- Build_Procedure_Body_Form --
684 -------------------------------
686 function Build_Procedure_Body_Form
687 (Func_Id
: Entity_Id
;
688 Func_Body
: Node_Id
) return Node_Id
690 Loc
: constant Source_Ptr
:= Sloc
(Func_Body
);
692 Proc_Decl
: constant Node_Id
:=
693 Next
(Unit_Declaration_Node
(Func_Id
));
694 -- It is assumed that the next node following the declaration of the
695 -- corresponding subprogram spec is the declaration of the procedure
698 Proc_Id
: constant Entity_Id
:= Defining_Entity
(Proc_Decl
);
700 procedure Replace_Returns
(Param_Id
: Entity_Id
; Stmts
: List_Id
);
701 -- Replace each return statement found in the list Stmts with an
702 -- assignment of the return expression to parameter Param_Id.
704 ---------------------
705 -- Replace_Returns --
706 ---------------------
708 procedure Replace_Returns
(Param_Id
: Entity_Id
; Stmts
: List_Id
) is
712 Stmt
:= First
(Stmts
);
713 while Present
(Stmt
) loop
714 if Nkind
(Stmt
) = N_Block_Statement
then
715 Replace_Returns
(Param_Id
,
716 Statements
(Handled_Statement_Sequence
(Stmt
)));
718 elsif Nkind
(Stmt
) = N_Case_Statement
then
722 Alt
:= First
(Alternatives
(Stmt
));
723 while Present
(Alt
) loop
724 Replace_Returns
(Param_Id
, Statements
(Alt
));
729 elsif Nkind
(Stmt
) = N_Extended_Return_Statement
then
731 Ret_Obj
: constant Entity_Id
:=
733 (First
(Return_Object_Declarations
(Stmt
)));
734 Assign
: constant Node_Id
:=
735 Make_Assignment_Statement
(Sloc
(Stmt
),
737 New_Occurrence_Of
(Param_Id
, Loc
),
739 New_Occurrence_Of
(Ret_Obj
, Sloc
(Stmt
)));
743 -- The extended return may just contain the declaration
745 if Present
(Handled_Statement_Sequence
(Stmt
)) then
746 Stmts
:= Statements
(Handled_Statement_Sequence
(Stmt
));
751 Set_Assignment_OK
(Name
(Assign
));
754 Make_Block_Statement
(Sloc
(Stmt
),
756 Return_Object_Declarations
(Stmt
),
757 Handled_Statement_Sequence
=>
758 Make_Handled_Sequence_Of_Statements
(Loc
,
759 Statements
=> Stmts
)));
761 Replace_Returns
(Param_Id
, Stmts
);
763 Append_To
(Stmts
, Assign
);
764 Append_To
(Stmts
, Make_Simple_Return_Statement
(Loc
));
767 elsif Nkind
(Stmt
) = N_If_Statement
then
768 Replace_Returns
(Param_Id
, Then_Statements
(Stmt
));
769 Replace_Returns
(Param_Id
, Else_Statements
(Stmt
));
774 Part
:= First
(Elsif_Parts
(Stmt
));
775 while Present
(Part
) loop
776 Replace_Returns
(Param_Id
, Then_Statements
(Part
));
781 elsif Nkind
(Stmt
) = N_Loop_Statement
then
782 Replace_Returns
(Param_Id
, Statements
(Stmt
));
784 elsif Nkind
(Stmt
) = N_Simple_Return_Statement
then
791 Make_Assignment_Statement
(Sloc
(Stmt
),
792 Name
=> New_Occurrence_Of
(Param_Id
, Loc
),
793 Expression
=> Relocate_Node
(Expression
(Stmt
))));
795 Insert_After
(Stmt
, Make_Simple_Return_Statement
(Loc
));
797 -- Skip the added return
811 -- Start of processing for Build_Procedure_Body_Form
814 -- This routine replaces the original function body:
816 -- function F (...) return Array_Typ is
822 -- with the following:
824 -- procedure P (..., Result : out Array_Typ) is
827 -- Result := Something;
831 Statements
(Handled_Statement_Sequence
(Func_Body
));
832 Replace_Returns
(Last_Entity
(Proc_Id
), Stmts
);
835 Make_Subprogram_Body
(Loc
,
837 Copy_Subprogram_Spec
(Specification
(Proc_Decl
)),
838 Declarations
=> Declarations
(Func_Body
),
839 Handled_Statement_Sequence
=>
840 Make_Handled_Sequence_Of_Statements
(Loc
,
841 Statements
=> Stmts
));
843 -- If the function is a generic instance, so is the new procedure.
844 -- Set flag accordingly so that the proper renaming declarations are
847 Set_Is_Generic_Instance
(Proc_Id
, Is_Generic_Instance
(Func_Id
));
849 end Build_Procedure_Body_Form
;
851 -----------------------
852 -- Caller_Known_Size --
853 -----------------------
855 function Caller_Known_Size
856 (Func_Call
: Node_Id
;
857 Result_Subt
: Entity_Id
) return Boolean
861 (Is_Definite_Subtype
(Underlying_Type
(Result_Subt
))
862 and then No
(Controlling_Argument
(Func_Call
)))
863 or else not Requires_Transient_Scope
(Underlying_Type
(Result_Subt
));
864 end Caller_Known_Size
;
866 --------------------------------
867 -- Check_Overriding_Operation --
868 --------------------------------
870 procedure Check_Overriding_Operation
(Subp
: Entity_Id
) is
871 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
872 Op_List
: constant Elist_Id
:= Primitive_Operations
(Typ
);
878 if Is_Derived_Type
(Typ
)
879 and then not Is_Private_Type
(Typ
)
880 and then In_Open_Scopes
(Scope
(Etype
(Typ
)))
881 and then Is_Base_Type
(Typ
)
883 -- Subp overrides an inherited private operation if there is an
884 -- inherited operation with a different name than Subp (see
885 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
886 -- same name as Subp.
888 Op_Elmt
:= First_Elmt
(Op_List
);
889 while Present
(Op_Elmt
) loop
890 Prim_Op
:= Node
(Op_Elmt
);
891 Par_Op
:= Alias
(Prim_Op
);
894 and then not Comes_From_Source
(Prim_Op
)
895 and then Chars
(Prim_Op
) /= Chars
(Par_Op
)
896 and then Chars
(Par_Op
) = Chars
(Subp
)
897 and then Is_Hidden
(Par_Op
)
898 and then Type_Conformant
(Prim_Op
, Subp
)
900 Set_DT_Position_Value
(Subp
, DT_Position
(Prim_Op
));
906 end Check_Overriding_Operation
;
908 -------------------------------
909 -- Detect_Infinite_Recursion --
910 -------------------------------
912 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
) is
913 Loc
: constant Source_Ptr
:= Sloc
(N
);
915 Var_List
: constant Elist_Id
:= New_Elmt_List
;
916 -- List of globals referenced by body of procedure
918 Call_List
: constant Elist_Id
:= New_Elmt_List
;
919 -- List of recursive calls in body of procedure
921 Shad_List
: constant Elist_Id
:= New_Elmt_List
;
922 -- List of entity id's for entities created to capture the value of
923 -- referenced globals on entry to the procedure.
925 Scop
: constant Uint
:= Scope_Depth
(Spec
);
926 -- This is used to record the scope depth of the current procedure, so
927 -- that we can identify global references.
929 Max_Vars
: constant := 4;
930 -- Do not test more than four global variables
932 Count_Vars
: Natural := 0;
933 -- Count variables found so far
945 function Process
(Nod
: Node_Id
) return Traverse_Result
;
946 -- Function to traverse the subprogram body (using Traverse_Func)
952 function Process
(Nod
: Node_Id
) return Traverse_Result
is
956 if Nkind
(Nod
) = N_Procedure_Call_Statement
then
958 -- Case of one of the detected recursive calls
960 if Is_Entity_Name
(Name
(Nod
))
961 and then Has_Recursive_Call
(Entity
(Name
(Nod
)))
962 and then Entity
(Name
(Nod
)) = Spec
964 Append_Elmt
(Nod
, Call_List
);
967 -- Any other procedure call may have side effects
973 -- A call to a pure function can always be ignored
975 elsif Nkind
(Nod
) = N_Function_Call
976 and then Is_Entity_Name
(Name
(Nod
))
977 and then Is_Pure
(Entity
(Name
(Nod
)))
981 -- Case of an identifier reference
983 elsif Nkind
(Nod
) = N_Identifier
then
986 -- If no entity, then ignore the reference
988 -- Not clear why this can happen. To investigate, remove this
989 -- test and look at the crash that occurs here in 3401-004 ???
994 -- Ignore entities with no Scope, again not clear how this
995 -- can happen, to investigate, look at 4108-008 ???
997 elsif No
(Scope
(Ent
)) then
1000 -- Ignore the reference if not to a more global object
1002 elsif Scope_Depth
(Scope
(Ent
)) >= Scop
then
1005 -- References to types, exceptions and constants are always OK
1008 or else Ekind
(Ent
) = E_Exception
1009 or else Ekind
(Ent
) = E_Constant
1013 -- If other than a non-volatile scalar variable, we have some
1014 -- kind of global reference (e.g. to a function) that we cannot
1015 -- deal with so we forget the attempt.
1017 elsif Ekind
(Ent
) /= E_Variable
1018 or else not Is_Scalar_Type
(Etype
(Ent
))
1019 or else Treat_As_Volatile
(Ent
)
1023 -- Otherwise we have a reference to a global scalar
1026 -- Loop through global entities already detected
1028 Elm
:= First_Elmt
(Var_List
);
1030 -- If not detected before, record this new global reference
1033 Count_Vars
:= Count_Vars
+ 1;
1035 if Count_Vars
<= Max_Vars
then
1036 Append_Elmt
(Entity
(Nod
), Var_List
);
1043 -- If recorded before, ignore
1045 elsif Node
(Elm
) = Entity
(Nod
) then
1048 -- Otherwise keep looking
1058 -- For all other node kinds, recursively visit syntactic children
1065 function Traverse_Body
is new Traverse_Func
(Process
);
1067 -- Start of processing for Detect_Infinite_Recursion
1070 -- Do not attempt detection in No_Implicit_Conditional mode, since we
1071 -- won't be able to generate the code to handle the recursion in any
1074 if Restriction_Active
(No_Implicit_Conditionals
) then
1078 -- Otherwise do traversal and quit if we get abandon signal
1080 if Traverse_Body
(N
) = Abandon
then
1083 -- We must have a call, since Has_Recursive_Call was set. If not just
1084 -- ignore (this is only an error check, so if we have a funny situation,
1085 -- due to bugs or errors, we do not want to bomb).
1087 elsif Is_Empty_Elmt_List
(Call_List
) then
1091 -- Here is the case where we detect recursion at compile time
1093 -- Push our current scope for analyzing the declarations and code that
1094 -- we will insert for the checking.
1098 -- This loop builds temporary variables for each of the referenced
1099 -- globals, so that at the end of the loop the list Shad_List contains
1100 -- these temporaries in one-to-one correspondence with the elements in
1104 Elm
:= First_Elmt
(Var_List
);
1105 while Present
(Elm
) loop
1107 Ent
:= Make_Temporary
(Loc
, 'S');
1108 Append_Elmt
(Ent
, Shad_List
);
1110 -- Insert a declaration for this temporary at the start of the
1111 -- declarations for the procedure. The temporaries are declared as
1112 -- constant objects initialized to the current values of the
1113 -- corresponding temporaries.
1116 Make_Object_Declaration
(Loc
,
1117 Defining_Identifier
=> Ent
,
1118 Object_Definition
=> New_Occurrence_Of
(Etype
(Var
), Loc
),
1119 Constant_Present
=> True,
1120 Expression
=> New_Occurrence_Of
(Var
, Loc
));
1123 Prepend
(Decl
, Declarations
(N
));
1125 Insert_After
(Last
, Decl
);
1133 -- Loop through calls
1135 Call
:= First_Elmt
(Call_List
);
1136 while Present
(Call
) loop
1138 -- Build a predicate expression of the form
1141 -- and then global1 = temp1
1142 -- and then global2 = temp2
1145 -- This predicate determines if any of the global values
1146 -- referenced by the procedure have changed since the
1147 -- current call, if not an infinite recursion is assured.
1149 Test
:= New_Occurrence_Of
(Standard_True
, Loc
);
1151 Elm1
:= First_Elmt
(Var_List
);
1152 Elm2
:= First_Elmt
(Shad_List
);
1153 while Present
(Elm1
) loop
1159 Left_Opnd
=> New_Occurrence_Of
(Node
(Elm1
), Loc
),
1160 Right_Opnd
=> New_Occurrence_Of
(Node
(Elm2
), Loc
)));
1166 -- Now we replace the call with the sequence
1168 -- if no-changes (see above) then
1169 -- raise Storage_Error;
1174 Rewrite
(Node
(Call
),
1175 Make_If_Statement
(Loc
,
1177 Then_Statements
=> New_List
(
1178 Make_Raise_Storage_Error
(Loc
,
1179 Reason
=> SE_Infinite_Recursion
)),
1181 Else_Statements
=> New_List
(
1182 Relocate_Node
(Node
(Call
)))));
1184 Analyze
(Node
(Call
));
1189 -- Remove temporary scope stack entry used for analysis
1192 end Detect_Infinite_Recursion
;
1194 --------------------
1195 -- Expand_Actuals --
1196 --------------------
1198 procedure Expand_Actuals
1201 Post_Call
: out List_Id
)
1203 Loc
: constant Source_Ptr
:= Sloc
(N
);
1207 E_Actual
: Entity_Id
;
1208 E_Formal
: Entity_Id
;
1210 procedure Add_Call_By_Copy_Code
;
1211 -- For cases where the parameter must be passed by copy, this routine
1212 -- generates a temporary variable into which the actual is copied and
1213 -- then passes this as the parameter. For an OUT or IN OUT parameter,
1214 -- an assignment is also generated to copy the result back. The call
1215 -- also takes care of any constraint checks required for the type
1216 -- conversion case (on both the way in and the way out).
1218 procedure Add_Simple_Call_By_Copy_Code
;
1219 -- This is similar to the above, but is used in cases where we know
1220 -- that all that is needed is to simply create a temporary and copy
1221 -- the value in and out of the temporary.
1223 procedure Add_Validation_Call_By_Copy_Code
(Act
: Node_Id
);
1224 -- Perform copy-back for actual parameter Act which denotes a validation
1227 procedure Check_Fortran_Logical
;
1228 -- A value of type Logical that is passed through a formal parameter
1229 -- must be normalized because .TRUE. usually does not have the same
1230 -- representation as True. We assume that .FALSE. = False = 0.
1231 -- What about functions that return a logical type ???
1233 function Is_Legal_Copy
return Boolean;
1234 -- Check that an actual can be copied before generating the temporary
1235 -- to be used in the call. If the actual is of a by_reference type then
1236 -- the program is illegal (this can only happen in the presence of
1237 -- rep. clauses that force an incorrect alignment). If the formal is
1238 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1239 -- the effect that this might lead to unaligned arguments.
1241 function Make_Var
(Actual
: Node_Id
) return Entity_Id
;
1242 -- Returns an entity that refers to the given actual parameter, Actual
1243 -- (not including any type conversion). If Actual is an entity name,
1244 -- then this entity is returned unchanged, otherwise a renaming is
1245 -- created to provide an entity for the actual.
1247 procedure Reset_Packed_Prefix
;
1248 -- The expansion of a packed array component reference is delayed in
1249 -- the context of a call. Now we need to complete the expansion, so we
1250 -- unmark the analyzed bits in all prefixes.
1252 ---------------------------
1253 -- Add_Call_By_Copy_Code --
1254 ---------------------------
1256 procedure Add_Call_By_Copy_Code
is
1259 F_Typ
: Entity_Id
:= Etype
(Formal
);
1267 if not Is_Legal_Copy
then
1271 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1273 -- Handle formals whose type comes from the limited view
1275 if From_Limited_With
(F_Typ
)
1276 and then Has_Non_Limited_View
(F_Typ
)
1278 F_Typ
:= Non_Limited_View
(F_Typ
);
1281 -- Use formal type for temp, unless formal type is an unconstrained
1282 -- array, in which case we don't have to worry about bounds checks,
1283 -- and we use the actual type, since that has appropriate bounds.
1285 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1286 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1288 Indic
:= New_Occurrence_Of
(F_Typ
, Loc
);
1291 if Nkind
(Actual
) = N_Type_Conversion
then
1292 V_Typ
:= Etype
(Expression
(Actual
));
1294 -- If the formal is an (in-)out parameter, capture the name
1295 -- of the variable in order to build the post-call assignment.
1297 Var
:= Make_Var
(Expression
(Actual
));
1299 Crep
:= not Same_Representation
1300 (F_Typ
, Etype
(Expression
(Actual
)));
1303 V_Typ
:= Etype
(Actual
);
1304 Var
:= Make_Var
(Actual
);
1308 -- Setup initialization for case of in out parameter, or an out
1309 -- parameter where the formal is an unconstrained array (in the
1310 -- latter case, we have to pass in an object with bounds).
1312 -- If this is an out parameter, the initial copy is wasteful, so as
1313 -- an optimization for the one-dimensional case we extract the
1314 -- bounds of the actual and build an uninitialized temporary of the
1317 if Ekind
(Formal
) = E_In_Out_Parameter
1318 or else (Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
))
1320 if Nkind
(Actual
) = N_Type_Conversion
then
1321 if Conversion_OK
(Actual
) then
1322 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1324 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1327 elsif Ekind
(Formal
) = E_Out_Parameter
1328 and then Is_Array_Type
(F_Typ
)
1329 and then Number_Dimensions
(F_Typ
) = 1
1330 and then not Has_Non_Null_Base_Init_Proc
(F_Typ
)
1332 -- Actual is a one-dimensional array or slice, and the type
1333 -- requires no initialization. Create a temporary of the
1334 -- right size, but do not copy actual into it (optimization).
1338 Make_Subtype_Indication
(Loc
,
1339 Subtype_Mark
=> New_Occurrence_Of
(F_Typ
, Loc
),
1341 Make_Index_Or_Discriminant_Constraint
(Loc
,
1342 Constraints
=> New_List
(
1345 Make_Attribute_Reference
(Loc
,
1346 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1347 Attribute_Name
=> Name_First
),
1349 Make_Attribute_Reference
(Loc
,
1350 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1351 Attribute_Name
=> Name_Last
)))));
1354 Init
:= New_Occurrence_Of
(Var
, Loc
);
1357 -- An initialization is created for packed conversions as
1358 -- actuals for out parameters to enable Make_Object_Declaration
1359 -- to determine the proper subtype for N_Node. Note that this
1360 -- is wasteful because the extra copying on the call side is
1361 -- not required for such out parameters. ???
1363 elsif Ekind
(Formal
) = E_Out_Parameter
1364 and then Nkind
(Actual
) = N_Type_Conversion
1365 and then (Is_Bit_Packed_Array
(F_Typ
)
1367 Is_Bit_Packed_Array
(Etype
(Expression
(Actual
))))
1369 if Conversion_OK
(Actual
) then
1370 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1372 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1375 elsif Ekind
(Formal
) = E_In_Parameter
then
1377 -- Handle the case in which the actual is a type conversion
1379 if Nkind
(Actual
) = N_Type_Conversion
then
1380 if Conversion_OK
(Actual
) then
1381 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1383 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1386 Init
:= New_Occurrence_Of
(Var
, Loc
);
1394 Make_Object_Declaration
(Loc
,
1395 Defining_Identifier
=> Temp
,
1396 Object_Definition
=> Indic
,
1397 Expression
=> Init
);
1398 Set_Assignment_OK
(N_Node
);
1399 Insert_Action
(N
, N_Node
);
1401 -- Now, normally the deal here is that we use the defining
1402 -- identifier created by that object declaration. There is
1403 -- one exception to this. In the change of representation case
1404 -- the above declaration will end up looking like:
1406 -- temp : type := identifier;
1408 -- And in this case we might as well use the identifier directly
1409 -- and eliminate the temporary. Note that the analysis of the
1410 -- declaration was not a waste of time in that case, since it is
1411 -- what generated the necessary change of representation code. If
1412 -- the change of representation introduced additional code, as in
1413 -- a fixed-integer conversion, the expression is not an identifier
1414 -- and must be kept.
1417 and then Present
(Expression
(N_Node
))
1418 and then Is_Entity_Name
(Expression
(N_Node
))
1420 Temp
:= Entity
(Expression
(N_Node
));
1421 Rewrite
(N_Node
, Make_Null_Statement
(Loc
));
1424 -- For IN parameter, all we do is to replace the actual
1426 if Ekind
(Formal
) = E_In_Parameter
then
1427 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1430 -- Processing for OUT or IN OUT parameter
1433 -- Kill current value indications for the temporary variable we
1434 -- created, since we just passed it as an OUT parameter.
1436 Kill_Current_Values
(Temp
);
1437 Set_Is_Known_Valid
(Temp
, False);
1439 -- If type conversion, use reverse conversion on exit
1441 if Nkind
(Actual
) = N_Type_Conversion
then
1442 if Conversion_OK
(Actual
) then
1443 Expr
:= OK_Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1445 Expr
:= Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1448 Expr
:= New_Occurrence_Of
(Temp
, Loc
);
1451 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1454 -- If the actual is a conversion of a packed reference, it may
1455 -- already have been expanded by Remove_Side_Effects, and the
1456 -- resulting variable is a temporary which does not designate
1457 -- the proper out-parameter, which may not be addressable. In
1458 -- that case, generate an assignment to the original expression
1459 -- (before expansion of the packed reference) so that the proper
1460 -- expansion of assignment to a packed component can take place.
1467 if Is_Renaming_Of_Object
(Var
)
1468 and then Nkind
(Renamed_Object
(Var
)) = N_Selected_Component
1469 and then Nkind
(Original_Node
(Prefix
(Renamed_Object
(Var
))))
1470 = N_Indexed_Component
1472 Has_Non_Standard_Rep
(Etype
(Prefix
(Renamed_Object
(Var
))))
1474 Obj
:= Renamed_Object
(Var
);
1476 Make_Selected_Component
(Loc
,
1478 New_Copy_Tree
(Original_Node
(Prefix
(Obj
))),
1479 Selector_Name
=> New_Copy
(Selector_Name
(Obj
)));
1480 Reset_Analyzed_Flags
(Lhs
);
1483 Lhs
:= New_Occurrence_Of
(Var
, Loc
);
1486 Set_Assignment_OK
(Lhs
);
1488 if Is_Access_Type
(E_Formal
)
1489 and then Is_Entity_Name
(Lhs
)
1491 Present
(Effective_Extra_Accessibility
(Entity
(Lhs
)))
1493 -- Copyback target is an Ada 2012 stand-alone object of an
1494 -- anonymous access type.
1496 pragma Assert
(Ada_Version
>= Ada_2012
);
1498 if Type_Access_Level
(E_Formal
) >
1499 Object_Access_Level
(Lhs
)
1501 Append_To
(Post_Call
,
1502 Make_Raise_Program_Error
(Loc
,
1503 Reason
=> PE_Accessibility_Check_Failed
));
1506 Append_To
(Post_Call
,
1507 Make_Assignment_Statement
(Loc
,
1509 Expression
=> Expr
));
1511 -- We would like to somehow suppress generation of the
1512 -- extra_accessibility assignment generated by the expansion
1513 -- of the above assignment statement. It's not a correctness
1514 -- issue because the following assignment renders it dead,
1515 -- but generating back-to-back assignments to the same
1516 -- target is undesirable. ???
1518 Append_To
(Post_Call
,
1519 Make_Assignment_Statement
(Loc
,
1520 Name
=> New_Occurrence_Of
(
1521 Effective_Extra_Accessibility
(Entity
(Lhs
)), Loc
),
1522 Expression
=> Make_Integer_Literal
(Loc
,
1523 Type_Access_Level
(E_Formal
))));
1526 Append_To
(Post_Call
,
1527 Make_Assignment_Statement
(Loc
,
1529 Expression
=> Expr
));
1533 end Add_Call_By_Copy_Code
;
1535 ----------------------------------
1536 -- Add_Simple_Call_By_Copy_Code --
1537 ----------------------------------
1539 procedure Add_Simple_Call_By_Copy_Code
is
1541 F_Typ
: Entity_Id
:= Etype
(Formal
);
1550 if not Is_Legal_Copy
then
1554 -- Handle formals whose type comes from the limited view
1556 if From_Limited_With
(F_Typ
)
1557 and then Has_Non_Limited_View
(F_Typ
)
1559 F_Typ
:= Non_Limited_View
(F_Typ
);
1562 -- Use formal type for temp, unless formal type is an unconstrained
1563 -- array, in which case we don't have to worry about bounds checks,
1564 -- and we use the actual type, since that has appropriate bounds.
1566 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1567 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1569 Indic
:= New_Occurrence_Of
(F_Typ
, Loc
);
1572 -- Prepare to generate code
1574 Reset_Packed_Prefix
;
1576 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1577 Incod
:= Relocate_Node
(Actual
);
1578 Outcod
:= New_Copy_Tree
(Incod
);
1580 -- Generate declaration of temporary variable, initializing it
1581 -- with the input parameter unless we have an OUT formal or
1582 -- this is an initialization call.
1584 -- If the formal is an out parameter with discriminants, the
1585 -- discriminants must be captured even if the rest of the object
1586 -- is in principle uninitialized, because the discriminants may
1587 -- be read by the called subprogram.
1589 if Ekind
(Formal
) = E_Out_Parameter
then
1592 if Has_Discriminants
(F_Typ
) then
1593 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1596 elsif Inside_Init_Proc
then
1598 -- Could use a comment here to match comment below ???
1600 if Nkind
(Actual
) /= N_Selected_Component
1602 not Has_Discriminant_Dependent_Constraint
1603 (Entity
(Selector_Name
(Actual
)))
1607 -- Otherwise, keep the component in order to generate the proper
1608 -- actual subtype, that depends on enclosing discriminants.
1616 Make_Object_Declaration
(Loc
,
1617 Defining_Identifier
=> Temp
,
1618 Object_Definition
=> Indic
,
1619 Expression
=> Incod
);
1624 -- If the call is to initialize a component of a composite type,
1625 -- and the component does not depend on discriminants, use the
1626 -- actual type of the component. This is required in case the
1627 -- component is constrained, because in general the formal of the
1628 -- initialization procedure will be unconstrained. Note that if
1629 -- the component being initialized is constrained by an enclosing
1630 -- discriminant, the presence of the initialization in the
1631 -- declaration will generate an expression for the actual subtype.
1633 Set_No_Initialization
(Decl
);
1634 Set_Object_Definition
(Decl
,
1635 New_Occurrence_Of
(Etype
(Actual
), Loc
));
1638 Insert_Action
(N
, Decl
);
1640 -- The actual is simply a reference to the temporary
1642 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1644 -- Generate copy out if OUT or IN OUT parameter
1646 if Ekind
(Formal
) /= E_In_Parameter
then
1648 Rhs
:= New_Occurrence_Of
(Temp
, Loc
);
1650 -- Deal with conversion
1652 if Nkind
(Lhs
) = N_Type_Conversion
then
1653 Lhs
:= Expression
(Lhs
);
1654 Rhs
:= Convert_To
(Etype
(Actual
), Rhs
);
1657 Append_To
(Post_Call
,
1658 Make_Assignment_Statement
(Loc
,
1660 Expression
=> Rhs
));
1661 Set_Assignment_OK
(Name
(Last
(Post_Call
)));
1663 end Add_Simple_Call_By_Copy_Code
;
1665 --------------------------------------
1666 -- Add_Validation_Call_By_Copy_Code --
1667 --------------------------------------
1669 procedure Add_Validation_Call_By_Copy_Code
(Act
: Node_Id
) is
1672 Obj_Typ
: Entity_Id
;
1673 Var
: constant Node_Id
:= Unqual_Conv
(Act
);
1677 -- Copy the value of the validation variable back into the object
1680 if Is_Entity_Name
(Var
) then
1681 Var_Id
:= Entity
(Var
);
1682 Obj
:= Validated_Object
(Var_Id
);
1683 Obj_Typ
:= Etype
(Obj
);
1685 Expr
:= New_Occurrence_Of
(Var_Id
, Loc
);
1687 -- A type conversion is needed when the validation variable and
1688 -- the validated object carry different types. This case occurs
1689 -- when the actual is qualified in some fashion.
1692 -- subtype Int is Integer range ...;
1693 -- procedure Call (Val : in out Integer);
1697 -- Call (Integer (Object));
1701 -- Var : Integer := Object; -- conversion to base type
1702 -- if not Var'Valid then -- validity check
1703 -- Call (Var); -- modify Var
1704 -- Object := Int (Var); -- conversion to subtype
1706 if Etype
(Var_Id
) /= Obj_Typ
then
1708 Make_Type_Conversion
(Loc
,
1709 Subtype_Mark
=> New_Occurrence_Of
(Obj_Typ
, Loc
),
1710 Expression
=> Expr
);
1716 -- Object := Object_Type (Var);
1718 Append_To
(Post_Call
,
1719 Make_Assignment_Statement
(Loc
,
1721 Expression
=> Expr
));
1723 -- If the flow reaches this point, then this routine was invoked with
1724 -- an actual which does not denote a validation variable.
1727 pragma Assert
(False);
1730 end Add_Validation_Call_By_Copy_Code
;
1732 ---------------------------
1733 -- Check_Fortran_Logical --
1734 ---------------------------
1736 procedure Check_Fortran_Logical
is
1737 Logical
: constant Entity_Id
:= Etype
(Formal
);
1740 -- Note: this is very incomplete, e.g. it does not handle arrays
1741 -- of logical values. This is really not the right approach at all???)
1744 if Convention
(Subp
) = Convention_Fortran
1745 and then Root_Type
(Etype
(Formal
)) = Standard_Boolean
1746 and then Ekind
(Formal
) /= E_In_Parameter
1748 Var
:= Make_Var
(Actual
);
1749 Append_To
(Post_Call
,
1750 Make_Assignment_Statement
(Loc
,
1751 Name
=> New_Occurrence_Of
(Var
, Loc
),
1753 Unchecked_Convert_To
(
1756 Left_Opnd
=> New_Occurrence_Of
(Var
, Loc
),
1758 Unchecked_Convert_To
(
1760 New_Occurrence_Of
(Standard_False
, Loc
))))));
1762 end Check_Fortran_Logical
;
1768 function Is_Legal_Copy
return Boolean is
1770 -- An attempt to copy a value of such a type can only occur if
1771 -- representation clauses give the actual a misaligned address.
1773 if Is_By_Reference_Type
(Etype
(Formal
)) then
1775 -- The actual may in fact be properly aligned but there is not
1776 -- enough front-end information to determine this. In that case
1777 -- gigi will emit an error if a copy is not legal, or generate
1782 -- For users of Starlet, we assume that the specification of by-
1783 -- reference mechanism is mandatory. This may lead to unaligned
1784 -- objects but at least for DEC legacy code it is known to work.
1785 -- The warning will alert users of this code that a problem may
1788 elsif Mechanism
(Formal
) = By_Reference
1789 and then Is_Valued_Procedure
(Scope
(Formal
))
1792 ("by_reference actual may be misaligned??", Actual
);
1804 function Make_Var
(Actual
: Node_Id
) return Entity_Id
is
1808 if Is_Entity_Name
(Actual
) then
1809 return Entity
(Actual
);
1812 Var
:= Make_Temporary
(Loc
, 'T', Actual
);
1815 Make_Object_Renaming_Declaration
(Loc
,
1816 Defining_Identifier
=> Var
,
1818 New_Occurrence_Of
(Etype
(Actual
), Loc
),
1819 Name
=> Relocate_Node
(Actual
));
1821 Insert_Action
(N
, N_Node
);
1826 -------------------------
1827 -- Reset_Packed_Prefix --
1828 -------------------------
1830 procedure Reset_Packed_Prefix
is
1831 Pfx
: Node_Id
:= Actual
;
1834 Set_Analyzed
(Pfx
, False);
1836 not Nkind_In
(Pfx
, N_Selected_Component
, N_Indexed_Component
);
1837 Pfx
:= Prefix
(Pfx
);
1839 end Reset_Packed_Prefix
;
1841 -- Start of processing for Expand_Actuals
1844 Post_Call
:= New_List
;
1846 Formal
:= First_Formal
(Subp
);
1847 Actual
:= First_Actual
(N
);
1848 while Present
(Formal
) loop
1849 E_Formal
:= Etype
(Formal
);
1850 E_Actual
:= Etype
(Actual
);
1852 -- Handle formals whose type comes from the limited view
1854 if From_Limited_With
(E_Formal
)
1855 and then Has_Non_Limited_View
(E_Formal
)
1857 E_Formal
:= Non_Limited_View
(E_Formal
);
1860 if Is_Scalar_Type
(E_Formal
)
1861 or else Nkind
(Actual
) = N_Slice
1863 Check_Fortran_Logical
;
1867 elsif Ekind
(Formal
) /= E_Out_Parameter
then
1869 -- The unusual case of the current instance of a protected type
1870 -- requires special handling. This can only occur in the context
1871 -- of a call within the body of a protected operation.
1873 if Is_Entity_Name
(Actual
)
1874 and then Ekind
(Entity
(Actual
)) = E_Protected_Type
1875 and then In_Open_Scopes
(Entity
(Actual
))
1877 if Scope
(Subp
) /= Entity
(Actual
) then
1879 ("operation outside protected type may not "
1880 & "call back its protected operations??", Actual
);
1884 Expand_Protected_Object_Reference
(N
, Entity
(Actual
)));
1887 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1888 -- build-in-place function, then a temporary return object needs
1889 -- to be created and access to it must be passed to the function.
1890 -- Currently we limit such functions to those with inherently
1891 -- limited result subtypes, but eventually we plan to expand the
1892 -- functions that are treated as build-in-place to include other
1893 -- composite result types.
1895 if Is_Build_In_Place_Function_Call
(Actual
) then
1896 Make_Build_In_Place_Call_In_Anonymous_Context
(Actual
);
1898 -- Ada 2005 (AI-318-02): Specialization of the previous case for
1899 -- actuals containing build-in-place function calls whose returned
1900 -- object covers interface types.
1902 elsif Present
(Unqual_BIP_Iface_Function_Call
(Actual
)) then
1903 Make_Build_In_Place_Iface_Call_In_Anonymous_Context
(Actual
);
1906 Apply_Constraint_Check
(Actual
, E_Formal
);
1908 -- Out parameter case. No constraint checks on access type
1911 elsif Is_Access_Type
(E_Formal
) then
1916 elsif Has_Discriminants
(Base_Type
(E_Formal
))
1917 or else Has_Non_Null_Base_Init_Proc
(E_Formal
)
1919 Apply_Constraint_Check
(Actual
, E_Formal
);
1924 Apply_Constraint_Check
(Actual
, Base_Type
(E_Formal
));
1927 -- Processing for IN-OUT and OUT parameters
1929 if Ekind
(Formal
) /= E_In_Parameter
then
1931 -- For type conversions of arrays, apply length/range checks
1933 if Is_Array_Type
(E_Formal
)
1934 and then Nkind
(Actual
) = N_Type_Conversion
1936 if Is_Constrained
(E_Formal
) then
1937 Apply_Length_Check
(Expression
(Actual
), E_Formal
);
1939 Apply_Range_Check
(Expression
(Actual
), E_Formal
);
1943 -- The actual denotes a variable which captures the value of an
1944 -- object for validation purposes. Add a copy-back to reflect any
1945 -- potential changes in value back into the original object.
1947 -- Var : ... := Object;
1948 -- if not Var'Valid then -- validity check
1949 -- Call (Var); -- modify var
1950 -- Object := Var; -- update Object
1952 -- This case is given higher priority because the subsequent check
1953 -- for type conversion may add an extra copy of the variable and
1954 -- prevent proper value propagation back in the original object.
1956 if Is_Validation_Variable_Reference
(Actual
) then
1957 Add_Validation_Call_By_Copy_Code
(Actual
);
1959 -- If argument is a type conversion for a type that is passed by
1960 -- copy, then we must pass the parameter by copy.
1962 elsif Nkind
(Actual
) = N_Type_Conversion
1964 (Is_Numeric_Type
(E_Formal
)
1965 or else Is_Access_Type
(E_Formal
)
1966 or else Is_Enumeration_Type
(E_Formal
)
1967 or else Is_Bit_Packed_Array
(Etype
(Formal
))
1968 or else Is_Bit_Packed_Array
(Etype
(Expression
(Actual
)))
1970 -- Also pass by copy if change of representation
1972 or else not Same_Representation
1974 Etype
(Expression
(Actual
))))
1976 Add_Call_By_Copy_Code
;
1978 -- References to components of bit-packed arrays are expanded
1979 -- at this point, rather than at the point of analysis of the
1980 -- actuals, to handle the expansion of the assignment to
1981 -- [in] out parameters.
1983 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
1984 Add_Simple_Call_By_Copy_Code
;
1986 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1987 -- because the back-end cannot cope with such objects. In other
1988 -- cases where alignment forces a copy, the back-end generates
1989 -- it properly. It should not be generated unconditionally in the
1990 -- front-end because it does not know precisely the alignment
1991 -- requirements of the target, and makes too conservative an
1992 -- estimate, leading to superfluous copies or spurious errors
1993 -- on by-reference parameters.
1995 elsif Nkind
(Actual
) = N_Selected_Component
1997 Component_May_Be_Bit_Aligned
(Entity
(Selector_Name
(Actual
)))
1998 and then not Represented_As_Scalar
(Etype
(Formal
))
2000 Add_Simple_Call_By_Copy_Code
;
2002 -- References to slices of bit-packed arrays are expanded
2004 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
2005 Add_Call_By_Copy_Code
;
2007 -- References to possibly unaligned slices of arrays are expanded
2009 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
2010 Add_Call_By_Copy_Code
;
2012 -- Deal with access types where the actual subtype and the
2013 -- formal subtype are not the same, requiring a check.
2015 -- It is necessary to exclude tagged types because of "downward
2016 -- conversion" errors.
2018 elsif Is_Access_Type
(E_Formal
)
2019 and then not Same_Type
(E_Formal
, E_Actual
)
2020 and then not Is_Tagged_Type
(Designated_Type
(E_Formal
))
2022 Add_Call_By_Copy_Code
;
2024 -- If the actual is not a scalar and is marked for volatile
2025 -- treatment, whereas the formal is not volatile, then pass
2026 -- by copy unless it is a by-reference type.
2028 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
2029 -- because this is the enforcement of a language rule that applies
2030 -- only to "real" volatile variables, not e.g. to the address
2031 -- clause overlay case.
2033 elsif Is_Entity_Name
(Actual
)
2034 and then Is_Volatile
(Entity
(Actual
))
2035 and then not Is_By_Reference_Type
(E_Actual
)
2036 and then not Is_Scalar_Type
(Etype
(Entity
(Actual
)))
2037 and then not Is_Volatile
(E_Formal
)
2039 Add_Call_By_Copy_Code
;
2041 elsif Nkind
(Actual
) = N_Indexed_Component
2042 and then Is_Entity_Name
(Prefix
(Actual
))
2043 and then Has_Volatile_Components
(Entity
(Prefix
(Actual
)))
2045 Add_Call_By_Copy_Code
;
2047 -- Add call-by-copy code for the case of scalar out parameters
2048 -- when it is not known at compile time that the subtype of the
2049 -- formal is a subrange of the subtype of the actual (or vice
2050 -- versa for in out parameters), in order to get range checks
2051 -- on such actuals. (Maybe this case should be handled earlier
2052 -- in the if statement???)
2054 elsif Is_Scalar_Type
(E_Formal
)
2056 (not In_Subrange_Of
(E_Formal
, E_Actual
)
2058 (Ekind
(Formal
) = E_In_Out_Parameter
2059 and then not In_Subrange_Of
(E_Actual
, E_Formal
)))
2061 -- Perhaps the setting back to False should be done within
2062 -- Add_Call_By_Copy_Code, since it could get set on other
2063 -- cases occurring above???
2065 if Do_Range_Check
(Actual
) then
2066 Set_Do_Range_Check
(Actual
, False);
2069 Add_Call_By_Copy_Code
;
2072 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
2073 -- by-reference parameters on exit from the call. If the actual
2074 -- is a derived type and the operation is inherited, the body
2075 -- of the operation will not contain a call to the predicate
2076 -- function, so it must be done explicitly after the call. Ditto
2077 -- if the actual is an entity of a predicated subtype.
2079 -- The rule refers to by-reference types, but a check is needed
2080 -- for by-copy types as well. That check is subsumed by the rule
2081 -- for subtype conversion on assignment, but we can generate the
2082 -- required check now.
2084 -- Note also that Subp may be either a subprogram entity for
2085 -- direct calls, or a type entity for indirect calls, which must
2086 -- be handled separately because the name does not denote an
2087 -- overloadable entity.
2089 By_Ref_Predicate_Check
: declare
2090 Aund
: constant Entity_Id
:= Underlying_Type
(E_Actual
);
2093 function Is_Public_Subp
return Boolean;
2094 -- Check whether the subprogram being called is a visible
2095 -- operation of the type of the actual. Used to determine
2096 -- whether an invariant check must be generated on the
2099 ---------------------
2100 -- Is_Public_Subp --
2101 ---------------------
2103 function Is_Public_Subp
return Boolean is
2104 Pack
: constant Entity_Id
:= Scope
(Subp
);
2105 Subp_Decl
: Node_Id
;
2108 if not Is_Subprogram
(Subp
) then
2111 -- The operation may be inherited, or a primitive of the
2115 Nkind_In
(Parent
(Subp
), N_Private_Extension_Declaration
,
2116 N_Full_Type_Declaration
)
2118 Subp_Decl
:= Parent
(Subp
);
2121 Subp_Decl
:= Unit_Declaration_Node
(Subp
);
2124 return Ekind
(Pack
) = E_Package
2126 List_Containing
(Subp_Decl
) =
2127 Visible_Declarations
2128 (Specification
(Unit_Declaration_Node
(Pack
)));
2131 -- Start of processing for By_Ref_Predicate_Check
2140 if Has_Predicates
(Atyp
)
2141 and then Present
(Predicate_Function
(Atyp
))
2143 -- Skip predicate checks for special cases
2145 and then Predicate_Tests_On_Arguments
(Subp
)
2147 Append_To
(Post_Call
,
2148 Make_Predicate_Check
(Atyp
, Actual
));
2151 -- We generated caller-side invariant checks in two cases:
2153 -- a) when calling an inherited operation, where there is an
2154 -- implicit view conversion of the actual to the parent type.
2156 -- b) When the conversion is explicit
2158 -- We treat these cases separately because the required
2159 -- conversion for a) is added later when expanding the call.
2161 if Has_Invariants
(Etype
(Actual
))
2163 Nkind
(Parent
(Subp
)) = N_Private_Extension_Declaration
2165 if Comes_From_Source
(N
) and then Is_Public_Subp
then
2166 Append_To
(Post_Call
, Make_Invariant_Call
(Actual
));
2169 elsif Nkind
(Actual
) = N_Type_Conversion
2170 and then Has_Invariants
(Etype
(Expression
(Actual
)))
2172 if Comes_From_Source
(N
) and then Is_Public_Subp
then
2173 Append_To
(Post_Call
,
2174 Make_Invariant_Call
(Expression
(Actual
)));
2177 end By_Ref_Predicate_Check
;
2179 -- Processing for IN parameters
2182 -- For IN parameters in the bit-packed array case, we expand an
2183 -- indexed component (the circuit in Exp_Ch4 deliberately left
2184 -- indexed components appearing as actuals untouched, so that
2185 -- the special processing above for the OUT and IN OUT cases
2186 -- could be performed. We could make the test in Exp_Ch4 more
2187 -- complex and have it detect the parameter mode, but it is
2188 -- easier simply to handle all cases here.)
2190 if Nkind
(Actual
) = N_Indexed_Component
2191 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Actual
)))
2193 Reset_Packed_Prefix
;
2194 Expand_Packed_Element_Reference
(Actual
);
2196 -- If we have a reference to a bit-packed array, we copy it, since
2197 -- the actual must be byte aligned.
2199 -- Is this really necessary in all cases???
2201 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
2202 Add_Simple_Call_By_Copy_Code
;
2204 -- If a non-scalar actual is possibly unaligned, we need a copy
2206 elsif Is_Possibly_Unaligned_Object
(Actual
)
2207 and then not Represented_As_Scalar
(Etype
(Formal
))
2209 Add_Simple_Call_By_Copy_Code
;
2211 -- Similarly, we have to expand slices of packed arrays here
2212 -- because the result must be byte aligned.
2214 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
2215 Add_Call_By_Copy_Code
;
2217 -- Only processing remaining is to pass by copy if this is a
2218 -- reference to a possibly unaligned slice, since the caller
2219 -- expects an appropriately aligned argument.
2221 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
2222 Add_Call_By_Copy_Code
;
2224 -- An unusual case: a current instance of an enclosing task can be
2225 -- an actual, and must be replaced by a reference to self.
2227 elsif Is_Entity_Name
(Actual
)
2228 and then Is_Task_Type
(Entity
(Actual
))
2230 if In_Open_Scopes
(Entity
(Actual
)) then
2232 (Make_Function_Call
(Loc
,
2233 Name
=> New_Occurrence_Of
(RTE
(RE_Self
), Loc
))));
2236 -- A task type cannot otherwise appear as an actual
2239 raise Program_Error
;
2244 Next_Formal
(Formal
);
2245 Next_Actual
(Actual
);
2253 procedure Expand_Call
(N
: Node_Id
) is
2254 Post_Call
: List_Id
;
2257 pragma Assert
(Nkind_In
(N
, N_Entry_Call_Statement
,
2259 N_Procedure_Call_Statement
));
2261 Expand_Call_Helper
(N
, Post_Call
);
2262 Insert_Post_Call_Actions
(N
, Post_Call
);
2265 ------------------------
2266 -- Expand_Call_Helper --
2267 ------------------------
2269 -- This procedure handles expansion of function calls and procedure call
2270 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
2271 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
2273 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
2274 -- Provide values of actuals for all formals in Extra_Formals list
2275 -- Replace "call" to enumeration literal function by literal itself
2276 -- Rewrite call to predefined operator as operator
2277 -- Replace actuals to in-out parameters that are numeric conversions,
2278 -- with explicit assignment to temporaries before and after the call.
2280 -- Note that the list of actuals has been filled with default expressions
2281 -- during semantic analysis of the call. Only the extra actuals required
2282 -- for the 'Constrained attribute and for accessibility checks are added
2285 procedure Expand_Call_Helper
(N
: Node_Id
; Post_Call
: out List_Id
) is
2286 Loc
: constant Source_Ptr
:= Sloc
(N
);
2287 Call_Node
: Node_Id
:= N
;
2288 Extra_Actuals
: List_Id
:= No_List
;
2289 Prev
: Node_Id
:= Empty
;
2291 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
);
2292 -- Adds one entry to the end of the actual parameter list. Used for
2293 -- default parameters and for extra actuals (for Extra_Formals). The
2294 -- argument is an N_Parameter_Association node.
2296 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
);
2297 -- Adds an extra actual to the list of extra actuals. Expr is the
2298 -- expression for the value of the actual, EF is the entity for the
2301 procedure Add_View_Conversion_Invariants
2302 (Formal
: Entity_Id
;
2304 -- Adds invariant checks for every intermediate type between the range
2305 -- of a view converted argument to its ancestor (from parent to child).
2307 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
;
2308 -- Within an instance, a type derived from an untagged formal derived
2309 -- type inherits from the original parent, not from the actual. The
2310 -- current derivation mechanism has the derived type inherit from the
2311 -- actual, which is only correct outside of the instance. If the
2312 -- subprogram is inherited, we test for this particular case through a
2313 -- convoluted tree traversal before setting the proper subprogram to be
2316 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean;
2317 -- Return true if E comes from an instance that is not yet frozen
2319 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean;
2320 -- Determine if Subp denotes a non-dispatching call to a Deep routine
2322 function New_Value
(From
: Node_Id
) return Node_Id
;
2323 -- From is the original Expression. New_Value is equivalent to a call
2324 -- to Duplicate_Subexpr with an explicit dereference when From is an
2325 -- access parameter.
2327 --------------------------
2328 -- Add_Actual_Parameter --
2329 --------------------------
2331 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
) is
2332 Actual_Expr
: constant Node_Id
:=
2333 Explicit_Actual_Parameter
(Insert_Param
);
2336 -- Case of insertion is first named actual
2338 if No
(Prev
) or else
2339 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
2341 Set_Next_Named_Actual
2342 (Insert_Param
, First_Named_Actual
(Call_Node
));
2343 Set_First_Named_Actual
(Call_Node
, Actual_Expr
);
2346 if No
(Parameter_Associations
(Call_Node
)) then
2347 Set_Parameter_Associations
(Call_Node
, New_List
);
2350 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2353 Insert_After
(Prev
, Insert_Param
);
2356 -- Case of insertion is not first named actual
2359 Set_Next_Named_Actual
2360 (Insert_Param
, Next_Named_Actual
(Parent
(Prev
)));
2361 Set_Next_Named_Actual
(Parent
(Prev
), Actual_Expr
);
2362 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2365 Prev
:= Actual_Expr
;
2366 end Add_Actual_Parameter
;
2368 ----------------------
2369 -- Add_Extra_Actual --
2370 ----------------------
2372 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
) is
2373 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
2376 if Extra_Actuals
= No_List
then
2377 Extra_Actuals
:= New_List
;
2378 Set_Parent
(Extra_Actuals
, Call_Node
);
2381 Append_To
(Extra_Actuals
,
2382 Make_Parameter_Association
(Loc
,
2383 Selector_Name
=> New_Occurrence_Of
(EF
, Loc
),
2384 Explicit_Actual_Parameter
=> Expr
));
2386 Analyze_And_Resolve
(Expr
, Etype
(EF
));
2388 if Nkind
(Call_Node
) = N_Function_Call
then
2389 Set_Is_Accessibility_Actual
(Parent
(Expr
));
2391 end Add_Extra_Actual
;
2393 ------------------------------------
2394 -- Add_View_Conversion_Invariants --
2395 ------------------------------------
2397 procedure Add_View_Conversion_Invariants
2398 (Formal
: Entity_Id
;
2402 Curr_Typ
: Entity_Id
;
2403 Inv_Checks
: List_Id
;
2404 Par_Typ
: Entity_Id
;
2407 Inv_Checks
:= No_List
;
2409 -- Extract the argument from a potentially nested set of view
2413 while Nkind
(Arg
) = N_Type_Conversion
loop
2414 Arg
:= Expression
(Arg
);
2417 -- Move up the derivation chain starting with the type of the formal
2418 -- parameter down to the type of the actual object.
2421 Par_Typ
:= Etype
(Arg
);
2422 while Par_Typ
/= Etype
(Formal
) and Par_Typ
/= Curr_Typ
loop
2423 Curr_Typ
:= Par_Typ
;
2425 if Has_Invariants
(Curr_Typ
)
2426 and then Present
(Invariant_Procedure
(Curr_Typ
))
2428 -- Verify the invariate of the current type. Generate:
2430 -- <Curr_Typ>Invariant (Curr_Typ (Arg));
2432 Prepend_New_To
(Inv_Checks
,
2433 Make_Procedure_Call_Statement
(Loc
,
2436 (Invariant_Procedure
(Curr_Typ
), Loc
),
2437 Parameter_Associations
=> New_List
(
2438 Make_Type_Conversion
(Loc
,
2439 Subtype_Mark
=> New_Occurrence_Of
(Curr_Typ
, Loc
),
2440 Expression
=> New_Copy_Tree
(Arg
)))));
2443 Par_Typ
:= Base_Type
(Etype
(Curr_Typ
));
2446 if not Is_Empty_List
(Inv_Checks
) then
2447 Insert_Actions_After
(N
, Inv_Checks
);
2449 end Add_View_Conversion_Invariants
;
2451 ---------------------------
2452 -- Inherited_From_Formal --
2453 ---------------------------
2455 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
is
2457 Gen_Par
: Entity_Id
;
2458 Gen_Prim
: Elist_Id
;
2463 -- If the operation is inherited, it is attached to the corresponding
2464 -- type derivation. If the parent in the derivation is a generic
2465 -- actual, it is a subtype of the actual, and we have to recover the
2466 -- original derived type declaration to find the proper parent.
2468 if Nkind
(Parent
(S
)) /= N_Full_Type_Declaration
2469 or else not Is_Derived_Type
(Defining_Identifier
(Parent
(S
)))
2470 or else Nkind
(Type_Definition
(Original_Node
(Parent
(S
)))) /=
2471 N_Derived_Type_Definition
2472 or else not In_Instance
2479 (Type_Definition
(Original_Node
(Parent
(S
))));
2481 if Nkind
(Indic
) = N_Subtype_Indication
then
2482 Par
:= Entity
(Subtype_Mark
(Indic
));
2484 Par
:= Entity
(Indic
);
2488 if not Is_Generic_Actual_Type
(Par
)
2489 or else Is_Tagged_Type
(Par
)
2490 or else Nkind
(Parent
(Par
)) /= N_Subtype_Declaration
2491 or else not In_Open_Scopes
(Scope
(Par
))
2495 Gen_Par
:= Generic_Parent_Type
(Parent
(Par
));
2498 -- If the actual has no generic parent type, the formal is not
2499 -- a formal derived type, so nothing to inherit.
2501 if No
(Gen_Par
) then
2505 -- If the generic parent type is still the generic type, this is a
2506 -- private formal, not a derived formal, and there are no operations
2507 -- inherited from the formal.
2509 if Nkind
(Parent
(Gen_Par
)) = N_Formal_Type_Declaration
then
2513 Gen_Prim
:= Collect_Primitive_Operations
(Gen_Par
);
2515 Elmt
:= First_Elmt
(Gen_Prim
);
2516 while Present
(Elmt
) loop
2517 if Chars
(Node
(Elmt
)) = Chars
(S
) then
2523 F1
:= First_Formal
(S
);
2524 F2
:= First_Formal
(Node
(Elmt
));
2526 and then Present
(F2
)
2528 if Etype
(F1
) = Etype
(F2
)
2529 or else Etype
(F2
) = Gen_Par
2535 exit; -- not the right subprogram
2547 raise Program_Error
;
2548 end Inherited_From_Formal
;
2550 --------------------------
2551 -- In_Unfrozen_Instance --
2552 --------------------------
2554 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean is
2559 while Present
(S
) and then S
/= Standard_Standard
loop
2560 if Is_Generic_Instance
(S
)
2561 and then Present
(Freeze_Node
(S
))
2562 and then not Analyzed
(Freeze_Node
(S
))
2571 end In_Unfrozen_Instance
;
2573 -------------------------
2574 -- Is_Direct_Deep_Call --
2575 -------------------------
2577 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean is
2579 if Is_TSS
(Subp
, TSS_Deep_Adjust
)
2580 or else Is_TSS
(Subp
, TSS_Deep_Finalize
)
2581 or else Is_TSS
(Subp
, TSS_Deep_Initialize
)
2588 Actual
:= First
(Parameter_Associations
(N
));
2589 Formal
:= First_Formal
(Subp
);
2590 while Present
(Actual
)
2591 and then Present
(Formal
)
2593 if Nkind
(Actual
) = N_Identifier
2594 and then Is_Controlling_Actual
(Actual
)
2595 and then Etype
(Actual
) = Etype
(Formal
)
2601 Next_Formal
(Formal
);
2607 end Is_Direct_Deep_Call
;
2613 function New_Value
(From
: Node_Id
) return Node_Id
is
2614 Res
: constant Node_Id
:= Duplicate_Subexpr
(From
);
2616 if Is_Access_Type
(Etype
(From
)) then
2617 return Make_Explicit_Dereference
(Sloc
(From
), Prefix
=> Res
);
2625 Remote
: constant Boolean := Is_Remote_Call
(Call_Node
);
2628 Orig_Subp
: Entity_Id
:= Empty
;
2629 Param_Count
: Natural := 0;
2630 Parent_Formal
: Entity_Id
;
2631 Parent_Subp
: Entity_Id
;
2632 Pref_Entity
: Entity_Id
;
2636 Prev_Orig
: Node_Id
;
2637 -- Original node for an actual, which may have been rewritten. If the
2638 -- actual is a function call that has been transformed from a selected
2639 -- component, the original node is unanalyzed. Otherwise, it carries
2640 -- semantic information used to generate additional actuals.
2642 CW_Interface_Formals_Present
: Boolean := False;
2644 -- Start of processing for Expand_Call_Helper
2647 Post_Call
:= New_List
;
2649 -- Expand the function or procedure call if the first actual has a
2650 -- declared dimension aspect, and the subprogram is declared in one
2651 -- of the dimension I/O packages.
2653 if Ada_Version
>= Ada_2012
2655 Nkind_In
(Call_Node
, N_Procedure_Call_Statement
, N_Function_Call
)
2656 and then Present
(Parameter_Associations
(Call_Node
))
2658 Expand_Put_Call_With_Symbol
(Call_Node
);
2661 -- Ignore if previous error
2663 if Nkind
(Call_Node
) in N_Has_Etype
2664 and then Etype
(Call_Node
) = Any_Type
2669 -- Call using access to subprogram with explicit dereference
2671 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
2672 Subp
:= Etype
(Name
(Call_Node
));
2673 Parent_Subp
:= Empty
;
2675 -- Case of call to simple entry, where the Name is a selected component
2676 -- whose prefix is the task, and whose selector name is the entry name
2678 elsif Nkind
(Name
(Call_Node
)) = N_Selected_Component
then
2679 Subp
:= Entity
(Selector_Name
(Name
(Call_Node
)));
2680 Parent_Subp
:= Empty
;
2682 -- Case of call to member of entry family, where Name is an indexed
2683 -- component, with the prefix being a selected component giving the
2684 -- task and entry family name, and the index being the entry index.
2686 elsif Nkind
(Name
(Call_Node
)) = N_Indexed_Component
then
2687 Subp
:= Entity
(Selector_Name
(Prefix
(Name
(Call_Node
))));
2688 Parent_Subp
:= Empty
;
2693 Subp
:= Entity
(Name
(Call_Node
));
2694 Parent_Subp
:= Alias
(Subp
);
2696 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2697 -- if we can tell that the first parameter cannot possibly be null.
2698 -- This improves efficiency by avoiding a run-time test.
2700 -- We do not do this if Raise_Exception_Always does not exist, which
2701 -- can happen in configurable run time profiles which provide only a
2704 if Is_RTE
(Subp
, RE_Raise_Exception
)
2705 and then RTE_Available
(RE_Raise_Exception_Always
)
2708 FA
: constant Node_Id
:=
2709 Original_Node
(First_Actual
(Call_Node
));
2712 -- The case we catch is where the first argument is obtained
2713 -- using the Identity attribute (which must always be
2716 if Nkind
(FA
) = N_Attribute_Reference
2717 and then Attribute_Name
(FA
) = Name_Identity
2719 Subp
:= RTE
(RE_Raise_Exception_Always
);
2720 Set_Name
(Call_Node
, New_Occurrence_Of
(Subp
, Loc
));
2725 if Ekind
(Subp
) = E_Entry
then
2726 Parent_Subp
:= Empty
;
2730 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2731 -- alternative in an asynchronous select or as an entry call in
2732 -- a conditional or timed select. Check whether the procedure call
2733 -- is a renaming of an entry and rewrite it as an entry call.
2735 if Ada_Version
>= Ada_2005
2736 and then Nkind
(Call_Node
) = N_Procedure_Call_Statement
2738 ((Nkind
(Parent
(Call_Node
)) = N_Triggering_Alternative
2739 and then Triggering_Statement
(Parent
(Call_Node
)) = Call_Node
)
2741 (Nkind
(Parent
(Call_Node
)) = N_Entry_Call_Alternative
2742 and then Entry_Call_Statement
(Parent
(Call_Node
)) = Call_Node
))
2746 Ren_Root
: Entity_Id
:= Subp
;
2749 -- This may be a chain of renamings, find the root
2751 if Present
(Alias
(Ren_Root
)) then
2752 Ren_Root
:= Alias
(Ren_Root
);
2755 if Present
(Original_Node
(Parent
(Parent
(Ren_Root
)))) then
2756 Ren_Decl
:= Original_Node
(Parent
(Parent
(Ren_Root
)));
2758 if Nkind
(Ren_Decl
) = N_Subprogram_Renaming_Declaration
then
2760 Make_Entry_Call_Statement
(Loc
,
2762 New_Copy_Tree
(Name
(Ren_Decl
)),
2763 Parameter_Associations
=>
2765 (Parameter_Associations
(Call_Node
))));
2773 if Modify_Tree_For_C
2774 and then Nkind
(Call_Node
) = N_Function_Call
2775 and then Is_Entity_Name
(Name
(Call_Node
))
2778 Func_Id
: constant Entity_Id
:=
2779 Ultimate_Alias
(Entity
(Name
(Call_Node
)));
2781 -- When generating C code, transform a function call that returns
2782 -- a constrained array type into procedure form.
2784 if Rewritten_For_C
(Func_Id
) then
2786 -- For internally generated calls ensure that they reference
2787 -- the entity of the spec of the called function (needed since
2788 -- the expander may generate calls using the entity of their
2789 -- body). See for example Expand_Boolean_Operator().
2791 if not (Comes_From_Source
(Call_Node
))
2792 and then Nkind
(Unit_Declaration_Node
(Func_Id
)) =
2795 Set_Entity
(Name
(Call_Node
),
2796 Corresponding_Function
2797 (Corresponding_Procedure
(Func_Id
)));
2800 Rewrite_Function_Call_For_C
(Call_Node
);
2803 -- Also introduce a temporary for functions that return a record
2804 -- called within another procedure or function call, since records
2805 -- are passed by pointer in the generated C code, and we cannot
2806 -- take a pointer from a subprogram call.
2808 elsif Nkind
(Parent
(Call_Node
)) in N_Subprogram_Call
2809 and then Is_Record_Type
(Etype
(Func_Id
))
2812 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
2817 -- Temp : ... := Func_Call (...);
2820 Make_Object_Declaration
(Loc
,
2821 Defining_Identifier
=> Temp_Id
,
2822 Object_Definition
=>
2823 New_Occurrence_Of
(Etype
(Func_Id
), Loc
),
2825 Make_Function_Call
(Loc
,
2827 New_Occurrence_Of
(Func_Id
, Loc
),
2828 Parameter_Associations
=>
2829 Parameter_Associations
(Call_Node
)));
2831 Insert_Action
(Parent
(Call_Node
), Decl
);
2832 Rewrite
(Call_Node
, New_Occurrence_Of
(Temp_Id
, Loc
));
2839 -- First step, compute extra actuals, corresponding to any Extra_Formals
2840 -- present. Note that we do not access Extra_Formals directly, instead
2841 -- we simply note the presence of the extra formals as we process the
2842 -- regular formals collecting corresponding actuals in Extra_Actuals.
2844 -- We also generate any required range checks for actuals for in formals
2845 -- as we go through the loop, since this is a convenient place to do it.
2846 -- (Though it seems that this would be better done in Expand_Actuals???)
2848 -- Special case: Thunks must not compute the extra actuals; they must
2849 -- just propagate to the target primitive their extra actuals.
2851 if Is_Thunk
(Current_Scope
)
2852 and then Thunk_Entity
(Current_Scope
) = Subp
2853 and then Present
(Extra_Formals
(Subp
))
2855 pragma Assert
(Present
(Extra_Formals
(Current_Scope
)));
2858 Target_Formal
: Entity_Id
;
2859 Thunk_Formal
: Entity_Id
;
2862 Target_Formal
:= Extra_Formals
(Subp
);
2863 Thunk_Formal
:= Extra_Formals
(Current_Scope
);
2864 while Present
(Target_Formal
) loop
2866 (Expr
=> New_Occurrence_Of
(Thunk_Formal
, Loc
),
2867 EF
=> Thunk_Formal
);
2869 Target_Formal
:= Extra_Formal
(Target_Formal
);
2870 Thunk_Formal
:= Extra_Formal
(Thunk_Formal
);
2873 while Is_Non_Empty_List
(Extra_Actuals
) loop
2874 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
2877 Expand_Actuals
(Call_Node
, Subp
, Post_Call
);
2878 pragma Assert
(Is_Empty_List
(Post_Call
));
2883 Formal
:= First_Formal
(Subp
);
2884 Actual
:= First_Actual
(Call_Node
);
2886 while Present
(Formal
) loop
2888 -- Generate range check if required
2890 if Do_Range_Check
(Actual
)
2891 and then Ekind
(Formal
) = E_In_Parameter
2893 Generate_Range_Check
2894 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
2897 -- Prepare to examine current entry
2900 Prev_Orig
:= Original_Node
(Prev
);
2902 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2903 -- to expand it in a further round.
2905 CW_Interface_Formals_Present
:=
2906 CW_Interface_Formals_Present
2908 (Is_Class_Wide_Type
(Etype
(Formal
))
2909 and then Is_Interface
(Etype
(Etype
(Formal
))))
2911 (Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
2912 and then Is_Class_Wide_Type
(Directly_Designated_Type
2913 (Etype
(Etype
(Formal
))))
2914 and then Is_Interface
(Directly_Designated_Type
2915 (Etype
(Etype
(Formal
)))));
2917 -- Create possible extra actual for constrained case. Usually, the
2918 -- extra actual is of the form actual'constrained, but since this
2919 -- attribute is only available for unconstrained records, TRUE is
2920 -- expanded if the type of the formal happens to be constrained (for
2921 -- instance when this procedure is inherited from an unconstrained
2922 -- record to a constrained one) or if the actual has no discriminant
2923 -- (its type is constrained). An exception to this is the case of a
2924 -- private type without discriminants. In this case we pass FALSE
2925 -- because the object has underlying discriminants with defaults.
2927 if Present
(Extra_Constrained
(Formal
)) then
2928 if Ekind
(Etype
(Prev
)) in Private_Kind
2929 and then not Has_Discriminants
(Base_Type
(Etype
(Prev
)))
2932 (Expr
=> New_Occurrence_Of
(Standard_False
, Loc
),
2933 EF
=> Extra_Constrained
(Formal
));
2935 elsif Is_Constrained
(Etype
(Formal
))
2936 or else not Has_Discriminants
(Etype
(Prev
))
2939 (Expr
=> New_Occurrence_Of
(Standard_True
, Loc
),
2940 EF
=> Extra_Constrained
(Formal
));
2942 -- Do not produce extra actuals for Unchecked_Union parameters.
2943 -- Jump directly to the end of the loop.
2945 elsif Is_Unchecked_Union
(Base_Type
(Etype
(Actual
))) then
2946 goto Skip_Extra_Actual_Generation
;
2949 -- If the actual is a type conversion, then the constrained
2950 -- test applies to the actual, not the target type.
2956 -- Test for unchecked conversions as well, which can occur
2957 -- as out parameter actuals on calls to stream procedures.
2960 while Nkind_In
(Act_Prev
, N_Type_Conversion
,
2961 N_Unchecked_Type_Conversion
)
2963 Act_Prev
:= Expression
(Act_Prev
);
2966 -- If the expression is a conversion of a dereference, this
2967 -- is internally generated code that manipulates addresses,
2968 -- e.g. when building interface tables. No check should
2969 -- occur in this case, and the discriminated object is not
2972 if not Comes_From_Source
(Actual
)
2973 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
2974 and then Nkind
(Act_Prev
) = N_Explicit_Dereference
2977 (Expr
=> New_Occurrence_Of
(Standard_False
, Loc
),
2978 EF
=> Extra_Constrained
(Formal
));
2983 Make_Attribute_Reference
(Sloc
(Prev
),
2985 Duplicate_Subexpr_No_Checks
2986 (Act_Prev
, Name_Req
=> True),
2987 Attribute_Name
=> Name_Constrained
),
2988 EF
=> Extra_Constrained
(Formal
));
2994 -- Create possible extra actual for accessibility level
2996 if Present
(Extra_Accessibility
(Formal
)) then
2998 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2999 -- attribute, then the original actual may be an aliased object
3000 -- occurring as the prefix in a call using "Object.Operation"
3001 -- notation. In that case we must pass the level of the object,
3002 -- so Prev_Orig is reset to Prev and the attribute will be
3003 -- processed by the code for Access attributes further below.
3005 if Prev_Orig
/= Prev
3006 and then Nkind
(Prev
) = N_Attribute_Reference
3007 and then Get_Attribute_Id
(Attribute_Name
(Prev
)) =
3009 and then Is_Aliased_View
(Prev_Orig
)
3013 -- A class-wide precondition generates a test in which formals of
3014 -- the subprogram are replaced by actuals that came from source.
3015 -- In that case as well, the accessiblity comes from the actual.
3016 -- This is the one case in which there are references to formals
3017 -- outside of their subprogram.
3019 elsif Prev_Orig
/= Prev
3020 and then Is_Entity_Name
(Prev_Orig
)
3021 and then Present
(Entity
(Prev_Orig
))
3022 and then Is_Formal
(Entity
(Prev_Orig
))
3023 and then not In_Open_Scopes
(Scope
(Entity
(Prev_Orig
)))
3027 -- If the actual is a formal of an enclosing subprogram it is
3028 -- the right entity, even if it is a rewriting. This happens
3029 -- when the call is within an inherited condition or predicate.
3031 elsif Is_Entity_Name
(Actual
)
3032 and then Is_Formal
(Entity
(Actual
))
3033 and then In_Open_Scopes
(Scope
(Entity
(Actual
)))
3037 elsif Nkind
(Prev_Orig
) = N_Type_Conversion
then
3038 Prev_Orig
:= Expression
(Prev_Orig
);
3041 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
3042 -- accessibility levels.
3044 if Is_Thunk
(Current_Scope
) then
3046 Parm_Ent
: Entity_Id
;
3049 if Is_Controlling_Actual
(Actual
) then
3051 -- Find the corresponding actual of the thunk
3053 Parm_Ent
:= First_Entity
(Current_Scope
);
3054 for J
in 2 .. Param_Count
loop
3055 Next_Entity
(Parm_Ent
);
3058 -- Handle unchecked conversion of access types generated
3059 -- in thunks (cf. Expand_Interface_Thunk).
3061 elsif Is_Access_Type
(Etype
(Actual
))
3062 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
3064 Parm_Ent
:= Entity
(Expression
(Actual
));
3066 else pragma Assert
(Is_Entity_Name
(Actual
));
3067 Parm_Ent
:= Entity
(Actual
);
3072 New_Occurrence_Of
(Extra_Accessibility
(Parm_Ent
), Loc
),
3073 EF
=> Extra_Accessibility
(Formal
));
3076 elsif Is_Entity_Name
(Prev_Orig
) then
3078 -- When passing an access parameter, or a renaming of an access
3079 -- parameter, as the actual to another access parameter we need
3080 -- to pass along the actual's own access level parameter. This
3081 -- is done if we are within the scope of the formal access
3082 -- parameter (if this is an inlined body the extra formal is
3085 if (Is_Formal
(Entity
(Prev_Orig
))
3087 (Present
(Renamed_Object
(Entity
(Prev_Orig
)))
3089 Is_Entity_Name
(Renamed_Object
(Entity
(Prev_Orig
)))
3092 (Entity
(Renamed_Object
(Entity
(Prev_Orig
))))))
3093 and then Ekind
(Etype
(Prev_Orig
)) = E_Anonymous_Access_Type
3094 and then In_Open_Scopes
(Scope
(Entity
(Prev_Orig
)))
3097 Parm_Ent
: constant Entity_Id
:= Param_Entity
(Prev_Orig
);
3100 pragma Assert
(Present
(Parm_Ent
));
3102 if Present
(Extra_Accessibility
(Parm_Ent
)) then
3106 (Extra_Accessibility
(Parm_Ent
), Loc
),
3107 EF
=> Extra_Accessibility
(Formal
));
3109 -- If the actual access parameter does not have an
3110 -- associated extra formal providing its scope level,
3111 -- then treat the actual as having library-level
3117 Make_Integer_Literal
(Loc
,
3118 Intval
=> Scope_Depth
(Standard_Standard
)),
3119 EF
=> Extra_Accessibility
(Formal
));
3123 -- The actual is a normal access value, so just pass the level
3124 -- of the actual's access type.
3128 (Expr
=> Dynamic_Accessibility_Level
(Prev_Orig
),
3129 EF
=> Extra_Accessibility
(Formal
));
3132 -- If the actual is an access discriminant, then pass the level
3133 -- of the enclosing object (RM05-3.10.2(12.4/2)).
3135 elsif Nkind
(Prev_Orig
) = N_Selected_Component
3136 and then Ekind
(Entity
(Selector_Name
(Prev_Orig
))) =
3138 and then Ekind
(Etype
(Entity
(Selector_Name
(Prev_Orig
)))) =
3139 E_Anonymous_Access_Type
3143 Make_Integer_Literal
(Loc
,
3144 Intval
=> Object_Access_Level
(Prefix
(Prev_Orig
))),
3145 EF
=> Extra_Accessibility
(Formal
));
3150 case Nkind
(Prev_Orig
) is
3151 when N_Attribute_Reference
=>
3152 case Get_Attribute_Id
(Attribute_Name
(Prev_Orig
)) is
3154 -- For X'Access, pass on the level of the prefix X
3156 when Attribute_Access
=>
3158 -- Accessibility level of S'Access is that of A
3160 Prev_Orig
:= Prefix
(Prev_Orig
);
3162 -- If the expression is a view conversion, the
3163 -- accessibility level is that of the expression.
3165 if Nkind
(Original_Node
(Prev_Orig
)) =
3168 Nkind
(Expression
(Original_Node
(Prev_Orig
))) =
3169 N_Explicit_Dereference
3172 Expression
(Original_Node
(Prev_Orig
));
3175 -- If this is an Access attribute applied to the
3176 -- the current instance object passed to a type
3177 -- initialization procedure, then use the level
3178 -- of the type itself. This is not really correct,
3179 -- as there should be an extra level parameter
3180 -- passed in with _init formals (only in the case
3181 -- where the type is immutably limited), but we
3182 -- don't have an easy way currently to create such
3183 -- an extra formal (init procs aren't ever frozen).
3184 -- For now we just use the level of the type,
3185 -- which may be too shallow, but that works better
3186 -- than passing Object_Access_Level of the type,
3187 -- which can be one level too deep in some cases.
3190 -- A further case that requires special handling
3191 -- is the common idiom E.all'access. If E is a
3192 -- formal of the enclosing subprogram, the
3193 -- accessibility of the expression is that of E.
3195 if Is_Entity_Name
(Prev_Orig
) then
3196 Pref_Entity
:= Entity
(Prev_Orig
);
3198 elsif Nkind
(Prev_Orig
) = N_Explicit_Dereference
3199 and then Is_Entity_Name
(Prefix
(Prev_Orig
))
3201 Pref_Entity
:= Entity
(Prefix
((Prev_Orig
)));
3204 Pref_Entity
:= Empty
;
3207 if Is_Entity_Name
(Prev_Orig
)
3208 and then Is_Type
(Entity
(Prev_Orig
))
3212 Make_Integer_Literal
(Loc
,
3214 Type_Access_Level
(Pref_Entity
)),
3215 EF
=> Extra_Accessibility
(Formal
));
3217 elsif Nkind
(Prev_Orig
) = N_Explicit_Dereference
3218 and then Present
(Pref_Entity
)
3219 and then Is_Formal
(Pref_Entity
)
3221 (Extra_Accessibility
(Pref_Entity
))
3226 (Extra_Accessibility
(Pref_Entity
), Loc
),
3227 EF
=> Extra_Accessibility
(Formal
));
3232 Make_Integer_Literal
(Loc
,
3234 Object_Access_Level
(Prev_Orig
)),
3235 EF
=> Extra_Accessibility
(Formal
));
3238 -- Treat the unchecked attributes as library-level
3240 when Attribute_Unchecked_Access
3241 | Attribute_Unrestricted_Access
3245 Make_Integer_Literal
(Loc
,
3246 Intval
=> Scope_Depth
(Standard_Standard
)),
3247 EF
=> Extra_Accessibility
(Formal
));
3249 -- No other cases of attributes returning access
3250 -- values that can be passed to access parameters.
3253 raise Program_Error
;
3257 -- For allocators we pass the level of the execution of the
3258 -- called subprogram, which is one greater than the current
3264 Make_Integer_Literal
(Loc
,
3265 Intval
=> Scope_Depth
(Current_Scope
) + 1),
3266 EF
=> Extra_Accessibility
(Formal
));
3268 -- For most other cases we simply pass the level of the
3269 -- actual's access type. The type is retrieved from
3270 -- Prev rather than Prev_Orig, because in some cases
3271 -- Prev_Orig denotes an original expression that has
3272 -- not been analyzed.
3276 (Expr
=> Dynamic_Accessibility_Level
(Prev
),
3277 EF
=> Extra_Accessibility
(Formal
));
3282 -- Perform the check of 4.6(49) that prevents a null value from being
3283 -- passed as an actual to an access parameter. Note that the check
3284 -- is elided in the common cases of passing an access attribute or
3285 -- access parameter as an actual. Also, we currently don't enforce
3286 -- this check for expander-generated actuals and when -gnatdj is set.
3288 if Ada_Version
>= Ada_2005
then
3290 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
3291 -- the intent of 6.4.1(13) is that null-exclusion checks should
3292 -- not be done for 'out' parameters, even though it refers only
3293 -- to constraint checks, and a null_exclusion is not a constraint.
3294 -- Note that AI05-0196-1 corrects this mistake in the RM.
3296 if Is_Access_Type
(Etype
(Formal
))
3297 and then Can_Never_Be_Null
(Etype
(Formal
))
3298 and then Ekind
(Formal
) /= E_Out_Parameter
3299 and then Nkind
(Prev
) /= N_Raise_Constraint_Error
3300 and then (Known_Null
(Prev
)
3301 or else not Can_Never_Be_Null
(Etype
(Prev
)))
3303 Install_Null_Excluding_Check
(Prev
);
3306 -- Ada_Version < Ada_2005
3309 if Ekind
(Etype
(Formal
)) /= E_Anonymous_Access_Type
3310 or else Access_Checks_Suppressed
(Subp
)
3314 elsif Debug_Flag_J
then
3317 elsif not Comes_From_Source
(Prev
) then
3320 elsif Is_Entity_Name
(Prev
)
3321 and then Ekind
(Etype
(Prev
)) = E_Anonymous_Access_Type
3325 elsif Nkind_In
(Prev
, N_Allocator
, N_Attribute_Reference
) then
3329 Install_Null_Excluding_Check
(Prev
);
3333 -- Perform appropriate validity checks on parameters that
3336 if Validity_Checks_On
then
3337 if (Ekind
(Formal
) = E_In_Parameter
3338 and then Validity_Check_In_Params
)
3340 (Ekind
(Formal
) = E_In_Out_Parameter
3341 and then Validity_Check_In_Out_Params
)
3343 -- If the actual is an indexed component of a packed type (or
3344 -- is an indexed or selected component whose prefix recursively
3345 -- meets this condition), it has not been expanded yet. It will
3346 -- be copied in the validity code that follows, and has to be
3347 -- expanded appropriately, so reanalyze it.
3349 -- What we do is just to unset analyzed bits on prefixes till
3350 -- we reach something that does not have a prefix.
3357 while Nkind_In
(Nod
, N_Indexed_Component
,
3358 N_Selected_Component
)
3360 Set_Analyzed
(Nod
, False);
3361 Nod
:= Prefix
(Nod
);
3365 Ensure_Valid
(Actual
);
3369 -- For IN OUT and OUT parameters, ensure that subscripts are valid
3370 -- since this is a left side reference. We only do this for calls
3371 -- from the source program since we assume that compiler generated
3372 -- calls explicitly generate any required checks. We also need it
3373 -- only if we are doing standard validity checks, since clearly it is
3374 -- not needed if validity checks are off, and in subscript validity
3375 -- checking mode, all indexed components are checked with a call
3376 -- directly from Expand_N_Indexed_Component.
3378 if Comes_From_Source
(Call_Node
)
3379 and then Ekind
(Formal
) /= E_In_Parameter
3380 and then Validity_Checks_On
3381 and then Validity_Check_Default
3382 and then not Validity_Check_Subscripts
3384 Check_Valid_Lvalue_Subscripts
(Actual
);
3387 -- Mark any scalar OUT parameter that is a simple variable as no
3388 -- longer known to be valid (unless the type is always valid). This
3389 -- reflects the fact that if an OUT parameter is never set in a
3390 -- procedure, then it can become invalid on the procedure return.
3392 if Ekind
(Formal
) = E_Out_Parameter
3393 and then Is_Entity_Name
(Actual
)
3394 and then Ekind
(Entity
(Actual
)) = E_Variable
3395 and then not Is_Known_Valid
(Etype
(Actual
))
3397 Set_Is_Known_Valid
(Entity
(Actual
), False);
3400 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3401 -- clear current values, since they can be clobbered. We are probably
3402 -- doing this in more places than we need to, but better safe than
3403 -- sorry when it comes to retaining bad current values.
3405 if Ekind
(Formal
) /= E_In_Parameter
3406 and then Is_Entity_Name
(Actual
)
3407 and then Present
(Entity
(Actual
))
3410 Ent
: constant Entity_Id
:= Entity
(Actual
);
3414 -- For an OUT or IN OUT parameter that is an assignable entity,
3415 -- we do not want to clobber the Last_Assignment field, since
3416 -- if it is set, it was precisely because it is indeed an OUT
3417 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
3418 -- since the subprogram could have returned in invalid value.
3420 if Ekind_In
(Formal
, E_Out_Parameter
, E_In_Out_Parameter
)
3421 and then Is_Assignable
(Ent
)
3423 Sav
:= Last_Assignment
(Ent
);
3424 Kill_Current_Values
(Ent
);
3425 Set_Last_Assignment
(Ent
, Sav
);
3426 Set_Is_Known_Valid
(Ent
, False);
3428 -- For all other cases, just kill the current values
3431 Kill_Current_Values
(Ent
);
3436 -- If the formal is class wide and the actual is an aggregate, force
3437 -- evaluation so that the back end who does not know about class-wide
3438 -- type, does not generate a temporary of the wrong size.
3440 if not Is_Class_Wide_Type
(Etype
(Formal
)) then
3443 elsif Nkind
(Actual
) = N_Aggregate
3444 or else (Nkind
(Actual
) = N_Qualified_Expression
3445 and then Nkind
(Expression
(Actual
)) = N_Aggregate
)
3447 Force_Evaluation
(Actual
);
3450 -- In a remote call, if the formal is of a class-wide type, check
3451 -- that the actual meets the requirements described in E.4(18).
3453 if Remote
and then Is_Class_Wide_Type
(Etype
(Formal
)) then
3454 Insert_Action
(Actual
,
3455 Make_Transportable_Check
(Loc
,
3456 Duplicate_Subexpr_Move_Checks
(Actual
)));
3459 -- Perform invariant checks for all intermediate types in a view
3460 -- conversion after successful return from a call that passes the
3461 -- view conversion as an IN OUT or OUT parameter (RM 7.3.2 (12/3,
3462 -- 13/3, 14/3)). Consider only source conversion in order to avoid
3463 -- generating spurious checks on complex expansion such as object
3464 -- initialization through an extension aggregate.
3466 if Comes_From_Source
(N
)
3467 and then Ekind
(Formal
) /= E_In_Parameter
3468 and then Nkind
(Actual
) = N_Type_Conversion
3470 Add_View_Conversion_Invariants
(Formal
, Actual
);
3473 -- Generating C the initialization of an allocator is performed by
3474 -- means of individual statements, and hence it must be done before
3477 if Modify_Tree_For_C
3478 and then Nkind
(Actual
) = N_Allocator
3479 and then Nkind
(Expression
(Actual
)) = N_Qualified_Expression
3481 Remove_Side_Effects
(Actual
);
3484 -- This label is required when skipping extra actual generation for
3485 -- Unchecked_Union parameters.
3487 <<Skip_Extra_Actual_Generation
>>
3489 Param_Count
:= Param_Count
+ 1;
3490 Next_Actual
(Actual
);
3491 Next_Formal
(Formal
);
3494 -- If we are calling an Ada 2012 function which needs to have the
3495 -- "accessibility level determined by the point of call" (AI05-0234)
3496 -- passed in to it, then pass it in.
3498 if Ekind_In
(Subp
, E_Function
, E_Operator
, E_Subprogram_Type
)
3500 Present
(Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)))
3503 Ancestor
: Node_Id
:= Parent
(Call_Node
);
3504 Level
: Node_Id
:= Empty
;
3505 Defer
: Boolean := False;
3508 -- Unimplemented: if Subp returns an anonymous access type, then
3510 -- a) if the call is the operand of an explict conversion, then
3511 -- the target type of the conversion (a named access type)
3512 -- determines the accessibility level pass in;
3514 -- b) if the call defines an access discriminant of an object
3515 -- (e.g., the discriminant of an object being created by an
3516 -- allocator, or the discriminant of a function result),
3517 -- then the accessibility level to pass in is that of the
3518 -- discriminated object being initialized).
3522 while Nkind
(Ancestor
) = N_Qualified_Expression
3524 Ancestor
:= Parent
(Ancestor
);
3527 case Nkind
(Ancestor
) is
3530 -- At this point, we'd like to assign
3532 -- Level := Dynamic_Accessibility_Level (Ancestor);
3534 -- but Etype of Ancestor may not have been set yet,
3535 -- so that doesn't work.
3537 -- Handle this later in Expand_Allocator_Expression.
3541 when N_Object_Declaration
3542 | N_Object_Renaming_Declaration
3545 Def_Id
: constant Entity_Id
:=
3546 Defining_Identifier
(Ancestor
);
3549 if Is_Return_Object
(Def_Id
) then
3550 if Present
(Extra_Accessibility_Of_Result
3551 (Return_Applies_To
(Scope
(Def_Id
))))
3553 -- Pass along value that was passed in if the
3554 -- routine we are returning from also has an
3555 -- Accessibility_Of_Result formal.
3559 (Extra_Accessibility_Of_Result
3560 (Return_Applies_To
(Scope
(Def_Id
))), Loc
);
3564 Make_Integer_Literal
(Loc
,
3565 Intval
=> Object_Access_Level
(Def_Id
));
3569 when N_Simple_Return_Statement
=>
3570 if Present
(Extra_Accessibility_Of_Result
3572 (Return_Statement_Entity
(Ancestor
))))
3574 -- Pass along value that was passed in if the returned
3575 -- routine also has an Accessibility_Of_Result formal.
3579 (Extra_Accessibility_Of_Result
3581 (Return_Statement_Entity
(Ancestor
))), Loc
);
3589 if not Present
(Level
) then
3591 -- The "innermost master that evaluates the function call".
3593 -- ??? - Should we use Integer'Last here instead in order
3594 -- to deal with (some of) the problems associated with
3595 -- calls to subps whose enclosing scope is unknown (e.g.,
3596 -- Anon_Access_To_Subp_Param.all)?
3599 Make_Integer_Literal
(Loc
,
3600 Intval
=> Scope_Depth
(Current_Scope
) + 1);
3606 Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)));
3611 -- If we are expanding the RHS of an assignment we need to check if tag
3612 -- propagation is needed. You might expect this processing to be in
3613 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3614 -- assignment might be transformed to a declaration for an unconstrained
3615 -- value if the expression is classwide.
3617 if Nkind
(Call_Node
) = N_Function_Call
3618 and then Is_Tag_Indeterminate
(Call_Node
)
3619 and then Is_Entity_Name
(Name
(Call_Node
))
3622 Ass
: Node_Id
:= Empty
;
3625 if Nkind
(Parent
(Call_Node
)) = N_Assignment_Statement
then
3626 Ass
:= Parent
(Call_Node
);
3628 elsif Nkind
(Parent
(Call_Node
)) = N_Qualified_Expression
3629 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3630 N_Assignment_Statement
3632 Ass
:= Parent
(Parent
(Call_Node
));
3634 elsif Nkind
(Parent
(Call_Node
)) = N_Explicit_Dereference
3635 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3636 N_Assignment_Statement
3638 Ass
:= Parent
(Parent
(Call_Node
));
3642 and then Is_Class_Wide_Type
(Etype
(Name
(Ass
)))
3644 if Is_Access_Type
(Etype
(Call_Node
)) then
3645 if Designated_Type
(Etype
(Call_Node
)) /=
3646 Root_Type
(Etype
(Name
(Ass
)))
3649 ("tag-indeterminate expression must have designated "
3650 & "type& (RM 5.2 (6))",
3651 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3653 Propagate_Tag
(Name
(Ass
), Call_Node
);
3656 elsif Etype
(Call_Node
) /= Root_Type
(Etype
(Name
(Ass
))) then
3658 ("tag-indeterminate expression must have type & "
3660 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3663 Propagate_Tag
(Name
(Ass
), Call_Node
);
3666 -- The call will be rewritten as a dispatching call, and
3667 -- expanded as such.
3674 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3675 -- it to point to the correct secondary virtual table
3677 if Nkind
(Call_Node
) in N_Subprogram_Call
3678 and then CW_Interface_Formals_Present
3680 Expand_Interface_Actuals
(Call_Node
);
3683 -- Deals with Dispatch_Call if we still have a call, before expanding
3684 -- extra actuals since this will be done on the re-analysis of the
3685 -- dispatching call. Note that we do not try to shorten the actual list
3686 -- for a dispatching call, it would not make sense to do so. Expansion
3687 -- of dispatching calls is suppressed for VM targets, because the VM
3688 -- back-ends directly handle the generation of dispatching calls and
3689 -- would have to undo any expansion to an indirect call.
3691 if Nkind
(Call_Node
) in N_Subprogram_Call
3692 and then Present
(Controlling_Argument
(Call_Node
))
3695 Call_Typ
: constant Entity_Id
:= Etype
(Call_Node
);
3696 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
3697 Eq_Prim_Op
: Entity_Id
:= Empty
;
3700 Prev_Call
: Node_Id
;
3703 if not Is_Limited_Type
(Typ
) then
3704 Eq_Prim_Op
:= Find_Prim_Op
(Typ
, Name_Op_Eq
);
3707 if Tagged_Type_Expansion
then
3708 Expand_Dispatching_Call
(Call_Node
);
3710 -- The following return is worrisome. Is it really OK to skip
3711 -- all remaining processing in this procedure ???
3718 Apply_Tag_Checks
(Call_Node
);
3720 -- If this is a dispatching "=", we must first compare the
3721 -- tags so we generate: x.tag = y.tag and then x = y
3723 if Subp
= Eq_Prim_Op
then
3725 -- Mark the node as analyzed to avoid reanalyzing this
3726 -- dispatching call (which would cause a never-ending loop)
3728 Prev_Call
:= Relocate_Node
(Call_Node
);
3729 Set_Analyzed
(Prev_Call
);
3731 Param
:= First_Actual
(Call_Node
);
3737 Make_Selected_Component
(Loc
,
3738 Prefix
=> New_Value
(Param
),
3741 (First_Tag_Component
(Typ
), Loc
)),
3744 Make_Selected_Component
(Loc
,
3746 Unchecked_Convert_To
(Typ
,
3747 New_Value
(Next_Actual
(Param
))),
3750 (First_Tag_Component
(Typ
), Loc
))),
3751 Right_Opnd
=> Prev_Call
);
3753 Rewrite
(Call_Node
, New_Call
);
3756 (Call_Node
, Call_Typ
, Suppress
=> All_Checks
);
3759 -- Expansion of a dispatching call results in an indirect call,
3760 -- which in turn causes current values to be killed (see
3761 -- Resolve_Call), so on VM targets we do the call here to
3762 -- ensure consistent warnings between VM and non-VM targets.
3764 Kill_Current_Values
;
3767 -- If this is a dispatching "=" then we must update the reference
3768 -- to the call node because we generated:
3769 -- x.tag = y.tag and then x = y
3771 if Subp
= Eq_Prim_Op
then
3772 Call_Node
:= Right_Opnd
(Call_Node
);
3777 -- Similarly, expand calls to RCI subprograms on which pragma
3778 -- All_Calls_Remote applies. The rewriting will be reanalyzed
3779 -- later. Do this only when the call comes from source since we
3780 -- do not want such a rewriting to occur in expanded code.
3782 if Is_All_Remote_Call
(Call_Node
) then
3783 Expand_All_Calls_Remote_Subprogram_Call
(Call_Node
);
3785 -- Similarly, do not add extra actuals for an entry call whose entity
3786 -- is a protected procedure, or for an internal protected subprogram
3787 -- call, because it will be rewritten as a protected subprogram call
3788 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3790 elsif Is_Protected_Type
(Scope
(Subp
))
3791 and then (Ekind
(Subp
) = E_Procedure
3792 or else Ekind
(Subp
) = E_Function
)
3796 -- During that loop we gathered the extra actuals (the ones that
3797 -- correspond to Extra_Formals), so now they can be appended.
3800 while Is_Non_Empty_List
(Extra_Actuals
) loop
3801 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
3805 -- At this point we have all the actuals, so this is the point at which
3806 -- the various expansion activities for actuals is carried out.
3808 Expand_Actuals
(Call_Node
, Subp
, Post_Call
);
3810 -- Verify that the actuals do not share storage. This check must be done
3811 -- on the caller side rather that inside the subprogram to avoid issues
3812 -- of parameter passing.
3814 if Check_Aliasing_Of_Parameters
then
3815 Apply_Parameter_Aliasing_Checks
(Call_Node
, Subp
);
3818 -- If the subprogram is a renaming, or if it is inherited, replace it in
3819 -- the call with the name of the actual subprogram being called. If this
3820 -- is a dispatching call, the run-time decides what to call. The Alias
3821 -- attribute does not apply to entries.
3823 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
3824 and then No
(Controlling_Argument
(Call_Node
))
3825 and then Present
(Parent_Subp
)
3826 and then not Is_Direct_Deep_Call
(Subp
)
3828 if Present
(Inherited_From_Formal
(Subp
)) then
3829 Parent_Subp
:= Inherited_From_Formal
(Subp
);
3831 Parent_Subp
:= Ultimate_Alias
(Parent_Subp
);
3834 -- The below setting of Entity is suspect, see F109-018 discussion???
3836 Set_Entity
(Name
(Call_Node
), Parent_Subp
);
3838 if Is_Abstract_Subprogram
(Parent_Subp
)
3839 and then not In_Instance
3842 ("cannot call abstract subprogram &!",
3843 Name
(Call_Node
), Parent_Subp
);
3846 -- Inspect all formals of derived subprogram Subp. Compare parameter
3847 -- types with the parent subprogram and check whether an actual may
3848 -- need a type conversion to the corresponding formal of the parent
3851 -- Not clear whether intrinsic subprograms need such conversions. ???
3853 if not Is_Intrinsic_Subprogram
(Parent_Subp
)
3854 or else Is_Generic_Instance
(Parent_Subp
)
3857 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
);
3858 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3859 -- and resolve the newly generated construct.
3865 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
) is
3867 Rewrite
(Act
, OK_Convert_To
(Typ
, Relocate_Node
(Act
)));
3874 Actual_Typ
: Entity_Id
;
3875 Formal_Typ
: Entity_Id
;
3876 Parent_Typ
: Entity_Id
;
3879 Actual
:= First_Actual
(Call_Node
);
3880 Formal
:= First_Formal
(Subp
);
3881 Parent_Formal
:= First_Formal
(Parent_Subp
);
3882 while Present
(Formal
) loop
3883 Actual_Typ
:= Etype
(Actual
);
3884 Formal_Typ
:= Etype
(Formal
);
3885 Parent_Typ
:= Etype
(Parent_Formal
);
3887 -- For an IN parameter of a scalar type, the parent formal
3888 -- type and derived formal type differ or the parent formal
3889 -- type and actual type do not match statically.
3891 if Is_Scalar_Type
(Formal_Typ
)
3892 and then Ekind
(Formal
) = E_In_Parameter
3893 and then Formal_Typ
/= Parent_Typ
3895 not Subtypes_Statically_Match
(Parent_Typ
, Actual_Typ
)
3896 and then not Raises_Constraint_Error
(Actual
)
3898 Convert
(Actual
, Parent_Typ
);
3899 Enable_Range_Check
(Actual
);
3901 -- If the actual has been marked as requiring a range
3902 -- check, then generate it here.
3904 if Do_Range_Check
(Actual
) then
3905 Generate_Range_Check
3906 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
3909 -- For access types, the parent formal type and actual type
3912 elsif Is_Access_Type
(Formal_Typ
)
3913 and then Base_Type
(Parent_Typ
) /= Base_Type
(Actual_Typ
)
3915 if Ekind
(Formal
) /= E_In_Parameter
then
3916 Convert
(Actual
, Parent_Typ
);
3918 elsif Ekind
(Parent_Typ
) = E_Anonymous_Access_Type
3919 and then Designated_Type
(Parent_Typ
) /=
3920 Designated_Type
(Actual_Typ
)
3921 and then not Is_Controlling_Formal
(Formal
)
3923 -- This unchecked conversion is not necessary unless
3924 -- inlining is enabled, because in that case the type
3925 -- mismatch may become visible in the body about to be
3929 Unchecked_Convert_To
(Parent_Typ
,
3930 Relocate_Node
(Actual
)));
3932 Resolve
(Actual
, Parent_Typ
);
3935 -- If there is a change of representation, then generate a
3936 -- warning, and do the change of representation.
3938 elsif not Same_Representation
(Formal_Typ
, Parent_Typ
) then
3940 ("??change of representation required", Actual
);
3941 Convert
(Actual
, Parent_Typ
);
3943 -- For array and record types, the parent formal type and
3944 -- derived formal type have different sizes or pragma Pack
3947 elsif ((Is_Array_Type
(Formal_Typ
)
3948 and then Is_Array_Type
(Parent_Typ
))
3950 (Is_Record_Type
(Formal_Typ
)
3951 and then Is_Record_Type
(Parent_Typ
)))
3953 (Esize
(Formal_Typ
) /= Esize
(Parent_Typ
)
3954 or else Has_Pragma_Pack
(Formal_Typ
) /=
3955 Has_Pragma_Pack
(Parent_Typ
))
3957 Convert
(Actual
, Parent_Typ
);
3960 Next_Actual
(Actual
);
3961 Next_Formal
(Formal
);
3962 Next_Formal
(Parent_Formal
);
3968 Subp
:= Parent_Subp
;
3971 -- Deal with case where call is an explicit dereference
3973 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
3975 -- Handle case of access to protected subprogram type
3977 if Is_Access_Protected_Subprogram_Type
3978 (Base_Type
(Etype
(Prefix
(Name
(Call_Node
)))))
3980 -- If this is a call through an access to protected operation, the
3981 -- prefix has the form (object'address, operation'access). Rewrite
3982 -- as a for other protected calls: the object is the 1st parameter
3983 -- of the list of actuals.
3990 Ptr
: constant Node_Id
:= Prefix
(Name
(Call_Node
));
3992 T
: constant Entity_Id
:=
3993 Equivalent_Type
(Base_Type
(Etype
(Ptr
)));
3995 D_T
: constant Entity_Id
:=
3996 Designated_Type
(Base_Type
(Etype
(Ptr
)));
4000 Make_Selected_Component
(Loc
,
4001 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
4003 New_Occurrence_Of
(First_Entity
(T
), Loc
));
4006 Make_Selected_Component
(Loc
,
4007 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
4009 New_Occurrence_Of
(Next_Entity
(First_Entity
(T
)), Loc
));
4012 Make_Explicit_Dereference
(Loc
,
4015 if Present
(Parameter_Associations
(Call_Node
)) then
4016 Parm
:= Parameter_Associations
(Call_Node
);
4021 Prepend
(Obj
, Parm
);
4023 if Etype
(D_T
) = Standard_Void_Type
then
4025 Make_Procedure_Call_Statement
(Loc
,
4027 Parameter_Associations
=> Parm
);
4030 Make_Function_Call
(Loc
,
4032 Parameter_Associations
=> Parm
);
4035 Set_First_Named_Actual
(Call
, First_Named_Actual
(Call_Node
));
4036 Set_Etype
(Call
, Etype
(D_T
));
4038 -- We do not re-analyze the call to avoid infinite recursion.
4039 -- We analyze separately the prefix and the object, and set
4040 -- the checks on the prefix that would otherwise be emitted
4041 -- when resolving a call.
4043 Rewrite
(Call_Node
, Call
);
4045 Apply_Access_Check
(Nam
);
4052 -- If this is a call to an intrinsic subprogram, then perform the
4053 -- appropriate expansion to the corresponding tree node and we
4054 -- are all done (since after that the call is gone).
4056 -- In the case where the intrinsic is to be processed by the back end,
4057 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
4058 -- since the idea in this case is to pass the call unchanged. If the
4059 -- intrinsic is an inherited unchecked conversion, and the derived type
4060 -- is the target type of the conversion, we must retain it as the return
4061 -- type of the expression. Otherwise the expansion below, which uses the
4062 -- parent operation, will yield the wrong type.
4064 if Is_Intrinsic_Subprogram
(Subp
) then
4065 Expand_Intrinsic_Call
(Call_Node
, Subp
);
4067 if Nkind
(Call_Node
) = N_Unchecked_Type_Conversion
4068 and then Parent_Subp
/= Orig_Subp
4069 and then Etype
(Parent_Subp
) /= Etype
(Orig_Subp
)
4071 Set_Etype
(Call_Node
, Etype
(Orig_Subp
));
4077 if Ekind_In
(Subp
, E_Function
, E_Procedure
) then
4079 -- We perform a simple optimization on calls for To_Address by
4080 -- replacing them with an unchecked conversion. Not only is this
4081 -- efficient, but it also avoids order of elaboration problems when
4082 -- address clauses are inlined (address expression elaborated at the
4085 -- We perform this optimization regardless of whether we are in the
4086 -- main unit or in a unit in the context of the main unit, to ensure
4087 -- that the generated tree is the same in both cases, for CodePeer
4090 if Is_RTE
(Subp
, RE_To_Address
) then
4092 Unchecked_Convert_To
4093 (RTE
(RE_Address
), Relocate_Node
(First_Actual
(Call_Node
))));
4096 -- A call to a null procedure is replaced by a null statement, but we
4097 -- are not allowed to ignore possible side effects of the call, so we
4098 -- make sure that actuals are evaluated.
4099 -- We also suppress this optimization for GNATCoverage.
4101 elsif Is_Null_Procedure
(Subp
)
4102 and then not Opt
.Suppress_Control_Flow_Optimizations
4104 Actual
:= First_Actual
(Call_Node
);
4105 while Present
(Actual
) loop
4106 Remove_Side_Effects
(Actual
);
4107 Next_Actual
(Actual
);
4110 Rewrite
(Call_Node
, Make_Null_Statement
(Loc
));
4114 -- Handle inlining. No action needed if the subprogram is not inlined
4116 if not Is_Inlined
(Subp
) then
4119 -- Frontend inlining of expression functions (performed also when
4120 -- backend inlining is enabled).
4122 elsif Is_Inlinable_Expression_Function
(Subp
) then
4123 Rewrite
(N
, New_Copy
(Expression_Of_Expression_Function
(Subp
)));
4127 -- Handle frontend inlining
4129 elsif not Back_End_Inlining
then
4130 Inlined_Subprogram
: declare
4132 Must_Inline
: Boolean := False;
4133 Spec
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
4136 -- Verify that the body to inline has already been seen, and
4137 -- that if the body is in the current unit the inlining does
4138 -- not occur earlier. This avoids order-of-elaboration problems
4141 -- This should be documented in sinfo/einfo ???
4144 or else Nkind
(Spec
) /= N_Subprogram_Declaration
4145 or else No
(Body_To_Inline
(Spec
))
4147 Must_Inline
:= False;
4149 -- If this an inherited function that returns a private type,
4150 -- do not inline if the full view is an unconstrained array,
4151 -- because such calls cannot be inlined.
4153 elsif Present
(Orig_Subp
)
4154 and then Is_Array_Type
(Etype
(Orig_Subp
))
4155 and then not Is_Constrained
(Etype
(Orig_Subp
))
4157 Must_Inline
:= False;
4159 elsif In_Unfrozen_Instance
(Scope
(Subp
)) then
4160 Must_Inline
:= False;
4163 Bod
:= Body_To_Inline
(Spec
);
4165 if (In_Extended_Main_Code_Unit
(Call_Node
)
4166 or else In_Extended_Main_Code_Unit
(Parent
(Call_Node
))
4167 or else Has_Pragma_Inline_Always
(Subp
))
4168 and then (not In_Same_Extended_Unit
(Sloc
(Bod
), Loc
)
4170 Earlier_In_Extended_Unit
(Sloc
(Bod
), Loc
))
4172 Must_Inline
:= True;
4174 -- If we are compiling a package body that is not the main
4175 -- unit, it must be for inlining/instantiation purposes,
4176 -- in which case we inline the call to insure that the same
4177 -- temporaries are generated when compiling the body by
4178 -- itself. Otherwise link errors can occur.
4180 -- If the function being called is itself in the main unit,
4181 -- we cannot inline, because there is a risk of double
4182 -- elaboration and/or circularity: the inlining can make
4183 -- visible a private entity in the body of the main unit,
4184 -- that gigi will see before its sees its proper definition.
4186 elsif not (In_Extended_Main_Code_Unit
(Call_Node
))
4187 and then In_Package_Body
4189 Must_Inline
:= not In_Extended_Main_Source_Unit
(Subp
);
4191 -- Inline calls to _postconditions when generating C code
4193 elsif Modify_Tree_For_C
4194 and then In_Same_Extended_Unit
(Sloc
(Bod
), Loc
)
4195 and then Chars
(Name
(N
)) = Name_uPostconditions
4197 Must_Inline
:= True;
4202 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
4205 -- Let the back end handle it
4207 Add_Inlined_Body
(Subp
, Call_Node
);
4209 if Front_End_Inlining
4210 and then Nkind
(Spec
) = N_Subprogram_Declaration
4211 and then (In_Extended_Main_Code_Unit
(Call_Node
))
4212 and then No
(Body_To_Inline
(Spec
))
4213 and then not Has_Completion
(Subp
)
4214 and then In_Same_Extended_Unit
(Sloc
(Spec
), Loc
)
4217 ("cannot inline& (body not seen yet)?",
4221 end Inlined_Subprogram
;
4223 -- Back end inlining: let the back end handle it
4225 elsif No
(Unit_Declaration_Node
(Subp
))
4226 or else Nkind
(Unit_Declaration_Node
(Subp
)) /=
4227 N_Subprogram_Declaration
4228 or else No
(Body_To_Inline
(Unit_Declaration_Node
(Subp
)))
4229 or else Nkind
(Body_To_Inline
(Unit_Declaration_Node
(Subp
))) in
4232 Add_Inlined_Body
(Subp
, Call_Node
);
4234 -- If the inlined call appears within an instantiation and some
4235 -- level of optimization is required, ensure that the enclosing
4236 -- instance body is available so that the back-end can actually
4237 -- perform the inlining.
4240 and then Comes_From_Source
(Subp
)
4241 and then Optimization_Level
> 0
4246 Inst_Node
: Node_Id
;
4249 Inst
:= Scope
(Subp
);
4251 -- Find enclosing instance
4253 while Present
(Inst
) and then Inst
/= Standard_Standard
loop
4254 exit when Is_Generic_Instance
(Inst
);
4255 Inst
:= Scope
(Inst
);
4259 and then Is_Generic_Instance
(Inst
)
4260 and then not Is_Inlined
(Inst
)
4262 Set_Is_Inlined
(Inst
);
4263 Decl
:= Unit_Declaration_Node
(Inst
);
4265 -- Do not add a pending instantiation if the body exits
4266 -- already, or if the instance is a compilation unit, or
4267 -- the instance node is missing.
4269 if Present
(Corresponding_Body
(Decl
))
4270 or else Nkind
(Parent
(Decl
)) = N_Compilation_Unit
4271 or else No
(Next
(Decl
))
4276 -- The instantiation node usually follows the package
4277 -- declaration for the instance. If the generic unit
4278 -- has aspect specifications, they are transformed
4279 -- into pragmas in the instance, and the instance node
4280 -- appears after them.
4282 Inst_Node
:= Next
(Decl
);
4284 while Nkind
(Inst_Node
) /= N_Package_Instantiation
loop
4285 Inst_Node
:= Next
(Inst_Node
);
4288 Add_Pending_Instantiation
(Inst_Node
, Decl
);
4294 -- Front end expansion of simple functions returning unconstrained
4295 -- types (see Check_And_Split_Unconstrained_Function). Note that the
4296 -- case of a simple renaming (Body_To_Inline in N_Entity above, see
4297 -- also Build_Renamed_Body) cannot be expanded here because this may
4298 -- give rise to order-of-elaboration issues for the types of the
4299 -- parameters of the subprogram, if any.
4302 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
4306 -- Check for protected subprogram. This is either an intra-object call,
4307 -- or a protected function call. Protected procedure calls are rewritten
4308 -- as entry calls and handled accordingly.
4310 -- In Ada 2005, this may be an indirect call to an access parameter that
4311 -- is an access_to_subprogram. In that case the anonymous type has a
4312 -- scope that is a protected operation, but the call is a regular one.
4313 -- In either case do not expand call if subprogram is eliminated.
4315 Scop
:= Scope
(Subp
);
4317 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
4318 and then Is_Protected_Type
(Scop
)
4319 and then Ekind
(Subp
) /= E_Subprogram_Type
4320 and then not Is_Eliminated
(Subp
)
4322 -- If the call is an internal one, it is rewritten as a call to the
4323 -- corresponding unprotected subprogram.
4325 Expand_Protected_Subprogram_Call
(Call_Node
, Subp
, Scop
);
4328 -- Functions returning controlled objects need special attention. If
4329 -- the return type is limited, then the context is initialization and
4330 -- different processing applies. If the call is to a protected function,
4331 -- the expansion above will call Expand_Call recursively. Otherwise the
4332 -- function call is transformed into a temporary which obtains the
4333 -- result from the secondary stack.
4335 if Needs_Finalization
(Etype
(Subp
)) then
4336 if not Is_Build_In_Place_Function_Call
(Call_Node
)
4338 (No
(First_Formal
(Subp
))
4340 not Is_Concurrent_Record_Type
(Etype
(First_Formal
(Subp
))))
4342 Expand_Ctrl_Function_Call
(Call_Node
);
4344 -- Build-in-place function calls which appear in anonymous contexts
4345 -- need a transient scope to ensure the proper finalization of the
4346 -- intermediate result after its use.
4348 elsif Is_Build_In_Place_Function_Call
(Call_Node
)
4349 and then Nkind_In
(Parent
(Unqual_Conv
(Call_Node
)),
4350 N_Attribute_Reference
,
4352 N_Indexed_Component
,
4353 N_Object_Renaming_Declaration
,
4354 N_Procedure_Call_Statement
,
4355 N_Selected_Component
,
4358 Establish_Transient_Scope
(Call_Node
, Sec_Stack
=> True);
4361 end Expand_Call_Helper
;
4363 -------------------------------
4364 -- Expand_Ctrl_Function_Call --
4365 -------------------------------
4367 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
) is
4368 function Is_Element_Reference
(N
: Node_Id
) return Boolean;
4369 -- Determine whether node N denotes a reference to an Ada 2012 container
4372 --------------------------
4373 -- Is_Element_Reference --
4374 --------------------------
4376 function Is_Element_Reference
(N
: Node_Id
) return Boolean is
4377 Ref
: constant Node_Id
:= Original_Node
(N
);
4380 -- Analysis marks an element reference by setting the generalized
4381 -- indexing attribute of an indexed component before the component
4382 -- is rewritten into a function call.
4385 Nkind
(Ref
) = N_Indexed_Component
4386 and then Present
(Generalized_Indexing
(Ref
));
4387 end Is_Element_Reference
;
4389 -- Start of processing for Expand_Ctrl_Function_Call
4392 -- Optimization, if the returned value (which is on the sec-stack) is
4393 -- returned again, no need to copy/readjust/finalize, we can just pass
4394 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
4395 -- attachment is needed
4397 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
then
4401 -- Resolution is now finished, make sure we don't start analysis again
4402 -- because of the duplication.
4406 -- A function which returns a controlled object uses the secondary
4407 -- stack. Rewrite the call into a temporary which obtains the result of
4408 -- the function using 'reference.
4410 Remove_Side_Effects
(N
);
4412 -- The side effect removal of the function call produced a temporary.
4413 -- When the context is a case expression, if expression, or expression
4414 -- with actions, the lifetime of the temporary must be extended to match
4415 -- that of the context. Otherwise the function result will be finalized
4416 -- too early and affect the result of the expression. To prevent this
4417 -- unwanted effect, the temporary should not be considered for clean up
4418 -- actions by the general finalization machinery.
4420 -- Exception to this rule are references to Ada 2012 container elements.
4421 -- Such references must be finalized at the end of each iteration of the
4422 -- related quantified expression, otherwise the container will remain
4425 if Nkind
(N
) = N_Explicit_Dereference
4426 and then Within_Case_Or_If_Expression
(N
)
4427 and then not Is_Element_Reference
(N
)
4429 Set_Is_Ignored_Transient
(Entity
(Prefix
(N
)));
4431 end Expand_Ctrl_Function_Call
;
4433 ----------------------------------------
4434 -- Expand_N_Extended_Return_Statement --
4435 ----------------------------------------
4437 -- If there is a Handled_Statement_Sequence, we rewrite this:
4439 -- return Result : T := <expression> do
4440 -- <handled_seq_of_stms>
4446 -- Result : T := <expression>;
4448 -- <handled_seq_of_stms>
4452 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
4454 -- return Result : T := <expression>;
4458 -- return <expression>;
4460 -- unless it's build-in-place or there's no <expression>, in which case
4464 -- Result : T := <expression>;
4469 -- Note that this case could have been written by the user as an extended
4470 -- return statement, or could have been transformed to this from a simple
4471 -- return statement.
4473 -- That is, we need to have a reified return object if there are statements
4474 -- (which might refer to it) or if we're doing build-in-place (so we can
4475 -- set its address to the final resting place or if there is no expression
4476 -- (in which case default initial values might need to be set).
4478 procedure Expand_N_Extended_Return_Statement
(N
: Node_Id
) is
4479 Loc
: constant Source_Ptr
:= Sloc
(N
);
4481 function Build_Heap_Allocator
4482 (Temp_Id
: Entity_Id
;
4483 Temp_Typ
: Entity_Id
;
4484 Func_Id
: Entity_Id
;
4485 Ret_Typ
: Entity_Id
;
4486 Alloc_Expr
: Node_Id
) return Node_Id
;
4487 -- Create the statements necessary to allocate a return object on the
4488 -- caller's master. The master is available through implicit parameter
4489 -- BIPfinalizationmaster.
4491 -- if BIPfinalizationmaster /= null then
4493 -- type Ptr_Typ is access Ret_Typ;
4494 -- for Ptr_Typ'Storage_Pool use
4495 -- Base_Pool (BIPfinalizationmaster.all).all;
4499 -- procedure Allocate (...) is
4501 -- System.Storage_Pools.Subpools.Allocate_Any (...);
4504 -- Local := <Alloc_Expr>;
4505 -- Temp_Id := Temp_Typ (Local);
4509 -- Temp_Id is the temporary which is used to reference the internally
4510 -- created object in all allocation forms. Temp_Typ is the type of the
4511 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4512 -- type of Func_Id. Alloc_Expr is the actual allocator.
4514 function Move_Activation_Chain
(Func_Id
: Entity_Id
) return Node_Id
;
4515 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4517 -- From current activation chain
4518 -- To activation chain passed in by the caller
4519 -- New_Master master passed in by the caller
4521 -- Func_Id is the entity of the function where the extended return
4522 -- statement appears.
4524 --------------------------
4525 -- Build_Heap_Allocator --
4526 --------------------------
4528 function Build_Heap_Allocator
4529 (Temp_Id
: Entity_Id
;
4530 Temp_Typ
: Entity_Id
;
4531 Func_Id
: Entity_Id
;
4532 Ret_Typ
: Entity_Id
;
4533 Alloc_Expr
: Node_Id
) return Node_Id
4536 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
4538 -- Processing for build-in-place object allocation.
4540 if Needs_Finalization
(Ret_Typ
) then
4542 Decls
: constant List_Id
:= New_List
;
4543 Fin_Mas_Id
: constant Entity_Id
:=
4544 Build_In_Place_Formal
4545 (Func_Id
, BIP_Finalization_Master
);
4546 Stmts
: constant List_Id
:= New_List
;
4547 Desig_Typ
: Entity_Id
;
4548 Local_Id
: Entity_Id
;
4549 Pool_Id
: Entity_Id
;
4550 Ptr_Typ
: Entity_Id
;
4554 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4556 Pool_Id
:= Make_Temporary
(Loc
, 'P');
4559 Make_Object_Renaming_Declaration
(Loc
,
4560 Defining_Identifier
=> Pool_Id
,
4562 New_Occurrence_Of
(RTE
(RE_Root_Storage_Pool
), Loc
),
4564 Make_Explicit_Dereference
(Loc
,
4566 Make_Function_Call
(Loc
,
4568 New_Occurrence_Of
(RTE
(RE_Base_Pool
), Loc
),
4569 Parameter_Associations
=> New_List
(
4570 Make_Explicit_Dereference
(Loc
,
4572 New_Occurrence_Of
(Fin_Mas_Id
, Loc
)))))));
4574 -- Create an access type which uses the storage pool of the
4575 -- caller's master. This additional type is necessary because
4576 -- the finalization master cannot be associated with the type
4577 -- of the temporary. Otherwise the secondary stack allocation
4580 Desig_Typ
:= Ret_Typ
;
4582 -- Ensure that the build-in-place machinery uses a fat pointer
4583 -- when allocating an unconstrained array on the heap. In this
4584 -- case the result object type is a constrained array type even
4585 -- though the function type is unconstrained.
4587 if Ekind
(Desig_Typ
) = E_Array_Subtype
then
4588 Desig_Typ
:= Base_Type
(Desig_Typ
);
4592 -- type Ptr_Typ is access Desig_Typ;
4594 Ptr_Typ
:= Make_Temporary
(Loc
, 'P');
4597 Make_Full_Type_Declaration
(Loc
,
4598 Defining_Identifier
=> Ptr_Typ
,
4600 Make_Access_To_Object_Definition
(Loc
,
4601 Subtype_Indication
=>
4602 New_Occurrence_Of
(Desig_Typ
, Loc
))));
4604 -- Perform minor decoration in order to set the master and the
4605 -- storage pool attributes.
4607 Set_Ekind
(Ptr_Typ
, E_Access_Type
);
4608 Set_Finalization_Master
(Ptr_Typ
, Fin_Mas_Id
);
4609 Set_Associated_Storage_Pool
(Ptr_Typ
, Pool_Id
);
4611 -- Create the temporary, generate:
4612 -- Local_Id : Ptr_Typ;
4614 Local_Id
:= Make_Temporary
(Loc
, 'T');
4617 Make_Object_Declaration
(Loc
,
4618 Defining_Identifier
=> Local_Id
,
4619 Object_Definition
=>
4620 New_Occurrence_Of
(Ptr_Typ
, Loc
)));
4622 -- Allocate the object, generate:
4623 -- Local_Id := <Alloc_Expr>;
4626 Make_Assignment_Statement
(Loc
,
4627 Name
=> New_Occurrence_Of
(Local_Id
, Loc
),
4628 Expression
=> Alloc_Expr
));
4631 -- Temp_Id := Temp_Typ (Local_Id);
4634 Make_Assignment_Statement
(Loc
,
4635 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4637 Unchecked_Convert_To
(Temp_Typ
,
4638 New_Occurrence_Of
(Local_Id
, Loc
))));
4640 -- Wrap the allocation in a block. This is further conditioned
4641 -- by checking the caller finalization master at runtime. A
4642 -- null value indicates a non-existent master, most likely due
4643 -- to a Finalize_Storage_Only allocation.
4646 -- if BIPfinalizationmaster /= null then
4655 Make_If_Statement
(Loc
,
4658 Left_Opnd
=> New_Occurrence_Of
(Fin_Mas_Id
, Loc
),
4659 Right_Opnd
=> Make_Null
(Loc
)),
4661 Then_Statements
=> New_List
(
4662 Make_Block_Statement
(Loc
,
4663 Declarations
=> Decls
,
4664 Handled_Statement_Sequence
=>
4665 Make_Handled_Sequence_Of_Statements
(Loc
,
4666 Statements
=> Stmts
))));
4669 -- For all other cases, generate:
4670 -- Temp_Id := <Alloc_Expr>;
4674 Make_Assignment_Statement
(Loc
,
4675 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4676 Expression
=> Alloc_Expr
);
4678 end Build_Heap_Allocator
;
4680 ---------------------------
4681 -- Move_Activation_Chain --
4682 ---------------------------
4684 function Move_Activation_Chain
(Func_Id
: Entity_Id
) return Node_Id
is
4687 Make_Procedure_Call_Statement
(Loc
,
4689 New_Occurrence_Of
(RTE
(RE_Move_Activation_Chain
), Loc
),
4691 Parameter_Associations
=> New_List
(
4695 Make_Attribute_Reference
(Loc
,
4696 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
4697 Attribute_Name
=> Name_Unrestricted_Access
),
4699 -- Destination chain
4702 (Build_In_Place_Formal
(Func_Id
, BIP_Activation_Chain
), Loc
),
4707 (Build_In_Place_Formal
(Func_Id
, BIP_Task_Master
), Loc
)));
4708 end Move_Activation_Chain
;
4712 Func_Id
: constant Entity_Id
:=
4713 Return_Applies_To
(Return_Statement_Entity
(N
));
4714 Is_BIP_Func
: constant Boolean :=
4715 Is_Build_In_Place_Function
(Func_Id
);
4716 Ret_Obj_Id
: constant Entity_Id
:=
4717 First_Entity
(Return_Statement_Entity
(N
));
4718 Ret_Obj_Decl
: constant Node_Id
:= Parent
(Ret_Obj_Id
);
4719 Ret_Typ
: constant Entity_Id
:= Etype
(Func_Id
);
4724 Return_Stmt
: Node_Id
;
4727 -- Start of processing for Expand_N_Extended_Return_Statement
4730 -- Given that functionality of interface thunks is simple (just displace
4731 -- the pointer to the object) they are always handled by means of
4732 -- simple return statements.
4734 pragma Assert
(not Is_Thunk
(Current_Scope
));
4736 if Nkind
(Ret_Obj_Decl
) = N_Object_Declaration
then
4737 Exp
:= Expression
(Ret_Obj_Decl
);
4742 HSS
:= Handled_Statement_Sequence
(N
);
4744 -- If the returned object needs finalization actions, the function must
4745 -- perform the appropriate cleanup should it fail to return. The state
4746 -- of the function itself is tracked through a flag which is coupled
4747 -- with the scope finalizer. There is one flag per each return object
4748 -- in case of multiple returns.
4750 if Is_BIP_Func
and then Needs_Finalization
(Etype
(Ret_Obj_Id
)) then
4752 Flag_Decl
: Node_Id
;
4753 Flag_Id
: Entity_Id
;
4757 -- Recover the function body
4759 Func_Bod
:= Unit_Declaration_Node
(Func_Id
);
4761 if Nkind
(Func_Bod
) = N_Subprogram_Declaration
then
4762 Func_Bod
:= Parent
(Parent
(Corresponding_Body
(Func_Bod
)));
4765 if Nkind
(Func_Bod
) = N_Function_Specification
then
4766 Func_Bod
:= Parent
(Func_Bod
); -- one more level for child units
4769 pragma Assert
(Nkind
(Func_Bod
) = N_Subprogram_Body
);
4771 -- Create a flag to track the function state
4773 Flag_Id
:= Make_Temporary
(Loc
, 'F');
4774 Set_Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
, Flag_Id
);
4776 -- Insert the flag at the beginning of the function declarations,
4778 -- Fnn : Boolean := False;
4781 Make_Object_Declaration
(Loc
,
4782 Defining_Identifier
=> Flag_Id
,
4783 Object_Definition
=>
4784 New_Occurrence_Of
(Standard_Boolean
, Loc
),
4786 New_Occurrence_Of
(Standard_False
, Loc
));
4788 Prepend_To
(Declarations
(Func_Bod
), Flag_Decl
);
4789 Analyze
(Flag_Decl
);
4793 -- Build a simple_return_statement that returns the return object when
4794 -- there is a statement sequence, or no expression, or the result will
4795 -- be built in place. Note however that we currently do this for all
4796 -- composite cases, even though not all are built in place.
4799 or else Is_Composite_Type
(Ret_Typ
)
4805 -- If the extended return has a handled statement sequence, then wrap
4806 -- it in a block and use the block as the first statement.
4810 Make_Block_Statement
(Loc
,
4811 Declarations
=> New_List
,
4812 Handled_Statement_Sequence
=> HSS
));
4815 -- If the result type contains tasks, we call Move_Activation_Chain.
4816 -- Later, the cleanup code will call Complete_Master, which will
4817 -- terminate any unactivated tasks belonging to the return statement
4818 -- master. But Move_Activation_Chain updates their master to be that
4819 -- of the caller, so they will not be terminated unless the return
4820 -- statement completes unsuccessfully due to exception, abort, goto,
4821 -- or exit. As a formality, we test whether the function requires the
4822 -- result to be built in place, though that's necessarily true for
4823 -- the case of result types with task parts.
4825 if Is_BIP_Func
and then Has_Task
(Ret_Typ
) then
4827 -- The return expression is an aggregate for a complex type which
4828 -- contains tasks. This particular case is left unexpanded since
4829 -- the regular expansion would insert all temporaries and
4830 -- initialization code in the wrong block.
4832 if Nkind
(Exp
) = N_Aggregate
then
4833 Expand_N_Aggregate
(Exp
);
4836 -- Do not move the activation chain if the return object does not
4839 if Has_Task
(Etype
(Ret_Obj_Id
)) then
4840 Append_To
(Stmts
, Move_Activation_Chain
(Func_Id
));
4844 -- Update the state of the function right before the object is
4847 if Is_BIP_Func
and then Needs_Finalization
(Etype
(Ret_Obj_Id
)) then
4849 Flag_Id
: constant Entity_Id
:=
4850 Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
);
4857 Make_Assignment_Statement
(Loc
,
4858 Name
=> New_Occurrence_Of
(Flag_Id
, Loc
),
4859 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
4863 -- Build a simple_return_statement that returns the return object
4866 Make_Simple_Return_Statement
(Loc
,
4867 Expression
=> New_Occurrence_Of
(Ret_Obj_Id
, Loc
));
4868 Append_To
(Stmts
, Return_Stmt
);
4870 HSS
:= Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
);
4873 -- Case where we build a return statement block
4875 if Present
(HSS
) then
4877 Make_Block_Statement
(Loc
,
4878 Declarations
=> Return_Object_Declarations
(N
),
4879 Handled_Statement_Sequence
=> HSS
);
4881 -- We set the entity of the new block statement to be that of the
4882 -- return statement. This is necessary so that various fields, such
4883 -- as Finalization_Chain_Entity carry over from the return statement
4884 -- to the block. Note that this block is unusual, in that its entity
4885 -- is an E_Return_Statement rather than an E_Block.
4888 (Result
, New_Occurrence_Of
(Return_Statement_Entity
(N
), Loc
));
4890 -- If the object decl was already rewritten as a renaming, then we
4891 -- don't want to do the object allocation and transformation of
4892 -- the return object declaration to a renaming. This case occurs
4893 -- when the return object is initialized by a call to another
4894 -- build-in-place function, and that function is responsible for
4895 -- the allocation of the return object.
4898 and then Nkind
(Ret_Obj_Decl
) = N_Object_Renaming_Declaration
4901 (Nkind
(Original_Node
(Ret_Obj_Decl
)) = N_Object_Declaration
4904 -- It is a regular BIP object declaration
4906 (Is_Build_In_Place_Function_Call
4907 (Expression
(Original_Node
(Ret_Obj_Decl
)))
4909 -- It is a BIP object declaration that displaces the pointer
4910 -- to the object to reference a convered interface type.
4913 Present
(Unqual_BIP_Iface_Function_Call
4914 (Expression
(Original_Node
(Ret_Obj_Decl
))))));
4916 -- Return the build-in-place result by reference
4918 Set_By_Ref
(Return_Stmt
);
4920 elsif Is_BIP_Func
then
4922 -- Locate the implicit access parameter associated with the
4923 -- caller-supplied return object and convert the return
4924 -- statement's return object declaration to a renaming of a
4925 -- dereference of the access parameter. If the return object's
4926 -- declaration includes an expression that has not already been
4927 -- expanded as separate assignments, then add an assignment
4928 -- statement to ensure the return object gets initialized.
4931 -- Result : T [:= <expression>];
4938 -- Result : T renames FuncRA.all;
4939 -- [Result := <expression;]
4944 Ret_Obj_Expr
: constant Node_Id
:= Expression
(Ret_Obj_Decl
);
4945 Ret_Obj_Typ
: constant Entity_Id
:= Etype
(Ret_Obj_Id
);
4947 Init_Assignment
: Node_Id
:= Empty
;
4948 Obj_Acc_Formal
: Entity_Id
;
4949 Obj_Acc_Deref
: Node_Id
;
4950 Obj_Alloc_Formal
: Entity_Id
;
4953 -- Build-in-place results must be returned by reference
4955 Set_By_Ref
(Return_Stmt
);
4957 -- Retrieve the implicit access parameter passed by the caller
4960 Build_In_Place_Formal
(Func_Id
, BIP_Object_Access
);
4962 -- If the return object's declaration includes an expression
4963 -- and the declaration isn't marked as No_Initialization, then
4964 -- we need to generate an assignment to the object and insert
4965 -- it after the declaration before rewriting it as a renaming
4966 -- (otherwise we'll lose the initialization). The case where
4967 -- the result type is an interface (or class-wide interface)
4968 -- is also excluded because the context of the function call
4969 -- must be unconstrained, so the initialization will always
4970 -- be done as part of an allocator evaluation (storage pool
4971 -- or secondary stack), never to a constrained target object
4972 -- passed in by the caller. Besides the assignment being
4973 -- unneeded in this case, it avoids problems with trying to
4974 -- generate a dispatching assignment when the return expression
4975 -- is a nonlimited descendant of a limited interface (the
4976 -- interface has no assignment operation).
4978 if Present
(Ret_Obj_Expr
)
4979 and then not No_Initialization
(Ret_Obj_Decl
)
4980 and then not Is_Interface
(Ret_Obj_Typ
)
4983 Make_Assignment_Statement
(Loc
,
4984 Name
=> New_Occurrence_Of
(Ret_Obj_Id
, Loc
),
4985 Expression
=> New_Copy_Tree
(Ret_Obj_Expr
));
4987 Set_Etype
(Name
(Init_Assignment
), Etype
(Ret_Obj_Id
));
4988 Set_Assignment_OK
(Name
(Init_Assignment
));
4989 Set_No_Ctrl_Actions
(Init_Assignment
);
4991 Set_Parent
(Name
(Init_Assignment
), Init_Assignment
);
4992 Set_Parent
(Expression
(Init_Assignment
), Init_Assignment
);
4994 Set_Expression
(Ret_Obj_Decl
, Empty
);
4996 if Is_Class_Wide_Type
(Etype
(Ret_Obj_Id
))
4997 and then not Is_Class_Wide_Type
4998 (Etype
(Expression
(Init_Assignment
)))
5000 Rewrite
(Expression
(Init_Assignment
),
5001 Make_Type_Conversion
(Loc
,
5003 New_Occurrence_Of
(Etype
(Ret_Obj_Id
), Loc
),
5005 Relocate_Node
(Expression
(Init_Assignment
))));
5008 -- In the case of functions where the calling context can
5009 -- determine the form of allocation needed, initialization
5010 -- is done with each part of the if statement that handles
5011 -- the different forms of allocation (this is true for
5012 -- unconstrained and tagged result subtypes).
5014 if Is_Constrained
(Ret_Typ
)
5015 and then not Is_Tagged_Type
(Underlying_Type
(Ret_Typ
))
5017 Insert_After
(Ret_Obj_Decl
, Init_Assignment
);
5021 -- When the function's subtype is unconstrained, a run-time
5022 -- test is needed to determine the form of allocation to use
5023 -- for the return object. The function has an implicit formal
5024 -- parameter indicating this. If the BIP_Alloc_Form formal has
5025 -- the value one, then the caller has passed access to an
5026 -- existing object for use as the return object. If the value
5027 -- is two, then the return object must be allocated on the
5028 -- secondary stack. Otherwise, the object must be allocated in
5029 -- a storage pool. We generate an if statement to test the
5030 -- implicit allocation formal and initialize a local access
5031 -- value appropriately, creating allocators in the secondary
5032 -- stack and global heap cases. The special formal also exists
5033 -- and must be tested when the function has a tagged result,
5034 -- even when the result subtype is constrained, because in
5035 -- general such functions can be called in dispatching contexts
5036 -- and must be handled similarly to functions with a class-wide
5039 if not Is_Constrained
(Ret_Typ
)
5040 or else Is_Tagged_Type
(Underlying_Type
(Ret_Typ
))
5043 Build_In_Place_Formal
(Func_Id
, BIP_Alloc_Form
);
5046 Pool_Id
: constant Entity_Id
:=
5047 Make_Temporary
(Loc
, 'P');
5048 Alloc_Obj_Id
: Entity_Id
;
5049 Alloc_Obj_Decl
: Node_Id
;
5050 Alloc_If_Stmt
: Node_Id
;
5051 Heap_Allocator
: Node_Id
;
5052 Pool_Decl
: Node_Id
;
5053 Pool_Allocator
: Node_Id
;
5054 Ptr_Type_Decl
: Node_Id
;
5055 Ref_Type
: Entity_Id
;
5056 SS_Allocator
: Node_Id
;
5059 -- Reuse the itype created for the function's implicit
5060 -- access formal. This avoids the need to create a new
5061 -- access type here, plus it allows assigning the access
5062 -- formal directly without applying a conversion.
5064 -- Ref_Type := Etype (Object_Access);
5066 -- Create an access type designating the function's
5069 Ref_Type
:= Make_Temporary
(Loc
, 'A');
5072 Make_Full_Type_Declaration
(Loc
,
5073 Defining_Identifier
=> Ref_Type
,
5075 Make_Access_To_Object_Definition
(Loc
,
5076 All_Present
=> True,
5077 Subtype_Indication
=>
5078 New_Occurrence_Of
(Ret_Obj_Typ
, Loc
)));
5080 Insert_Before
(Ret_Obj_Decl
, Ptr_Type_Decl
);
5082 -- Create an access object that will be initialized to an
5083 -- access value denoting the return object, either coming
5084 -- from an implicit access value passed in by the caller
5085 -- or from the result of an allocator.
5087 Alloc_Obj_Id
:= Make_Temporary
(Loc
, 'R');
5088 Set_Etype
(Alloc_Obj_Id
, Ref_Type
);
5091 Make_Object_Declaration
(Loc
,
5092 Defining_Identifier
=> Alloc_Obj_Id
,
5093 Object_Definition
=>
5094 New_Occurrence_Of
(Ref_Type
, Loc
));
5096 Insert_Before
(Ret_Obj_Decl
, Alloc_Obj_Decl
);
5098 -- Create allocators for both the secondary stack and
5099 -- global heap. If there's an initialization expression,
5100 -- then create these as initialized allocators.
5102 if Present
(Ret_Obj_Expr
)
5103 and then not No_Initialization
(Ret_Obj_Decl
)
5105 -- Always use the type of the expression for the
5106 -- qualified expression, rather than the result type.
5107 -- In general we cannot always use the result type
5108 -- for the allocator, because the expression might be
5109 -- of a specific type, such as in the case of an
5110 -- aggregate or even a nonlimited object when the
5111 -- result type is a limited class-wide interface type.
5114 Make_Allocator
(Loc
,
5116 Make_Qualified_Expression
(Loc
,
5119 (Etype
(Ret_Obj_Expr
), Loc
),
5120 Expression
=> New_Copy_Tree
(Ret_Obj_Expr
)));
5123 -- If the function returns a class-wide type we cannot
5124 -- use the return type for the allocator. Instead we
5125 -- use the type of the expression, which must be an
5126 -- aggregate of a definite type.
5128 if Is_Class_Wide_Type
(Ret_Obj_Typ
) then
5130 Make_Allocator
(Loc
,
5133 (Etype
(Ret_Obj_Expr
), Loc
));
5136 Make_Allocator
(Loc
,
5138 New_Occurrence_Of
(Ret_Obj_Typ
, Loc
));
5141 -- If the object requires default initialization then
5142 -- that will happen later following the elaboration of
5143 -- the object renaming. If we don't turn it off here
5144 -- then the object will be default initialized twice.
5146 Set_No_Initialization
(Heap_Allocator
);
5149 -- Set the flag indicating that the allocator came from
5150 -- a build-in-place return statement, so we can avoid
5151 -- adjusting the allocated object. Note that this flag
5152 -- will be inherited by the copies made below.
5154 Set_Alloc_For_BIP_Return
(Heap_Allocator
);
5156 -- The Pool_Allocator is just like the Heap_Allocator,
5157 -- except we set Storage_Pool and Procedure_To_Call so
5158 -- it will use the user-defined storage pool.
5160 Pool_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
5161 pragma Assert
(Alloc_For_BIP_Return
(Pool_Allocator
));
5163 -- Do not generate the renaming of the build-in-place
5164 -- pool parameter on ZFP because the parameter is not
5165 -- created in the first place.
5167 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
5169 Make_Object_Renaming_Declaration
(Loc
,
5170 Defining_Identifier
=> Pool_Id
,
5173 (RTE
(RE_Root_Storage_Pool
), Loc
),
5175 Make_Explicit_Dereference
(Loc
,
5177 (Build_In_Place_Formal
5178 (Func_Id
, BIP_Storage_Pool
), Loc
)));
5179 Set_Storage_Pool
(Pool_Allocator
, Pool_Id
);
5180 Set_Procedure_To_Call
5181 (Pool_Allocator
, RTE
(RE_Allocate_Any
));
5183 Pool_Decl
:= Make_Null_Statement
(Loc
);
5186 -- If the No_Allocators restriction is active, then only
5187 -- an allocator for secondary stack allocation is needed.
5188 -- It's OK for such allocators to have Comes_From_Source
5189 -- set to False, because gigi knows not to flag them as
5190 -- being a violation of No_Implicit_Heap_Allocations.
5192 if Restriction_Active
(No_Allocators
) then
5193 SS_Allocator
:= Heap_Allocator
;
5194 Heap_Allocator
:= Make_Null
(Loc
);
5195 Pool_Allocator
:= Make_Null
(Loc
);
5197 -- Otherwise the heap and pool allocators may be needed,
5198 -- so we make another allocator for secondary stack
5202 SS_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
5203 pragma Assert
(Alloc_For_BIP_Return
(SS_Allocator
));
5205 -- The heap and pool allocators are marked as
5206 -- Comes_From_Source since they correspond to an
5207 -- explicit user-written allocator (that is, it will
5208 -- only be executed on behalf of callers that call the
5209 -- function as initialization for such an allocator).
5210 -- Prevents errors when No_Implicit_Heap_Allocations
5213 Set_Comes_From_Source
(Heap_Allocator
, True);
5214 Set_Comes_From_Source
(Pool_Allocator
, True);
5217 -- The allocator is returned on the secondary stack.
5219 Set_Storage_Pool
(SS_Allocator
, RTE
(RE_SS_Pool
));
5220 Set_Procedure_To_Call
5221 (SS_Allocator
, RTE
(RE_SS_Allocate
));
5223 -- The allocator is returned on the secondary stack,
5224 -- so indicate that the function return, as well as
5225 -- all blocks that encloses the allocator, must not
5226 -- release it. The flags must be set now because
5227 -- the decision to use the secondary stack is done
5228 -- very late in the course of expanding the return
5229 -- statement, past the point where these flags are
5232 Set_Uses_Sec_Stack
(Func_Id
);
5233 Set_Uses_Sec_Stack
(Return_Statement_Entity
(N
));
5234 Set_Sec_Stack_Needed_For_Return
5235 (Return_Statement_Entity
(N
));
5236 Set_Enclosing_Sec_Stack_Return
(N
);
5238 -- Create an if statement to test the BIP_Alloc_Form
5239 -- formal and initialize the access object to either the
5240 -- BIP_Object_Access formal (BIP_Alloc_Form =
5241 -- Caller_Allocation), the result of allocating the
5242 -- object in the secondary stack (BIP_Alloc_Form =
5243 -- Secondary_Stack), or else an allocator to create the
5244 -- return object in the heap or user-defined pool
5245 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
5247 -- ??? An unchecked type conversion must be made in the
5248 -- case of assigning the access object formal to the
5249 -- local access object, because a normal conversion would
5250 -- be illegal in some cases (such as converting access-
5251 -- to-unconstrained to access-to-constrained), but the
5252 -- the unchecked conversion will presumably fail to work
5253 -- right in just such cases. It's not clear at all how to
5257 Make_If_Statement
(Loc
,
5261 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5263 Make_Integer_Literal
(Loc
,
5264 UI_From_Int
(BIP_Allocation_Form
'Pos
5265 (Caller_Allocation
)))),
5267 Then_Statements
=> New_List
(
5268 Make_Assignment_Statement
(Loc
,
5270 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
5272 Make_Unchecked_Type_Conversion
(Loc
,
5274 New_Occurrence_Of
(Ref_Type
, Loc
),
5276 New_Occurrence_Of
(Obj_Acc_Formal
, Loc
)))),
5278 Elsif_Parts
=> New_List
(
5279 Make_Elsif_Part
(Loc
,
5283 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5285 Make_Integer_Literal
(Loc
,
5286 UI_From_Int
(BIP_Allocation_Form
'Pos
5287 (Secondary_Stack
)))),
5289 Then_Statements
=> New_List
(
5290 Make_Assignment_Statement
(Loc
,
5292 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
5293 Expression
=> SS_Allocator
))),
5295 Make_Elsif_Part
(Loc
,
5299 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5301 Make_Integer_Literal
(Loc
,
5302 UI_From_Int
(BIP_Allocation_Form
'Pos
5305 Then_Statements
=> New_List
(
5306 Build_Heap_Allocator
5307 (Temp_Id
=> Alloc_Obj_Id
,
5308 Temp_Typ
=> Ref_Type
,
5310 Ret_Typ
=> Ret_Obj_Typ
,
5311 Alloc_Expr
=> Heap_Allocator
))),
5313 -- ???If all is well, we can put the following
5314 -- 'elsif' in the 'else', but this is a useful
5315 -- self-check in case caller and callee don't agree
5316 -- on whether BIPAlloc and so on should be passed.
5318 Make_Elsif_Part
(Loc
,
5322 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
5324 Make_Integer_Literal
(Loc
,
5325 UI_From_Int
(BIP_Allocation_Form
'Pos
5326 (User_Storage_Pool
)))),
5328 Then_Statements
=> New_List
(
5330 Build_Heap_Allocator
5331 (Temp_Id
=> Alloc_Obj_Id
,
5332 Temp_Typ
=> Ref_Type
,
5334 Ret_Typ
=> Ret_Obj_Typ
,
5335 Alloc_Expr
=> Pool_Allocator
)))),
5337 -- Raise Program_Error if it's none of the above;
5338 -- this is a compiler bug. ???PE_All_Guards_Closed
5339 -- is bogus; we should have a new code.
5341 Else_Statements
=> New_List
(
5342 Make_Raise_Program_Error
(Loc
,
5343 Reason
=> PE_All_Guards_Closed
)));
5345 -- If a separate initialization assignment was created
5346 -- earlier, append that following the assignment of the
5347 -- implicit access formal to the access object, to ensure
5348 -- that the return object is initialized in that case. In
5349 -- this situation, the target of the assignment must be
5350 -- rewritten to denote a dereference of the access to the
5351 -- return object passed in by the caller.
5353 if Present
(Init_Assignment
) then
5354 Rewrite
(Name
(Init_Assignment
),
5355 Make_Explicit_Dereference
(Loc
,
5356 Prefix
=> New_Occurrence_Of
(Alloc_Obj_Id
, Loc
)));
5358 Set_Etype
(Name
(Init_Assignment
), Etype
(Ret_Obj_Id
));
5361 (Then_Statements
(Alloc_If_Stmt
), Init_Assignment
);
5364 Insert_Before
(Ret_Obj_Decl
, Alloc_If_Stmt
);
5366 -- Remember the local access object for use in the
5367 -- dereference of the renaming created below.
5369 Obj_Acc_Formal
:= Alloc_Obj_Id
;
5373 -- Replace the return object declaration with a renaming of a
5374 -- dereference of the access value designating the return
5378 Make_Explicit_Dereference
(Loc
,
5379 Prefix
=> New_Occurrence_Of
(Obj_Acc_Formal
, Loc
));
5381 Rewrite
(Ret_Obj_Decl
,
5382 Make_Object_Renaming_Declaration
(Loc
,
5383 Defining_Identifier
=> Ret_Obj_Id
,
5384 Access_Definition
=> Empty
,
5385 Subtype_Mark
=> New_Occurrence_Of
(Ret_Obj_Typ
, Loc
),
5386 Name
=> Obj_Acc_Deref
));
5388 Set_Renamed_Object
(Ret_Obj_Id
, Obj_Acc_Deref
);
5392 -- Case where we do not build a block
5395 -- We're about to drop Return_Object_Declarations on the floor, so
5396 -- we need to insert it, in case it got expanded into useful code.
5397 -- Remove side effects from expression, which may be duplicated in
5398 -- subsequent checks (see Expand_Simple_Function_Return).
5400 Insert_List_Before
(N
, Return_Object_Declarations
(N
));
5401 Remove_Side_Effects
(Exp
);
5403 -- Build simple_return_statement that returns the expression directly
5405 Return_Stmt
:= Make_Simple_Return_Statement
(Loc
, Expression
=> Exp
);
5406 Result
:= Return_Stmt
;
5409 -- Set the flag to prevent infinite recursion
5411 Set_Comes_From_Extended_Return_Statement
(Return_Stmt
);
5413 Rewrite
(N
, Result
);
5415 end Expand_N_Extended_Return_Statement
;
5417 ----------------------------
5418 -- Expand_N_Function_Call --
5419 ----------------------------
5421 procedure Expand_N_Function_Call
(N
: Node_Id
) is
5424 end Expand_N_Function_Call
;
5426 ---------------------------------------
5427 -- Expand_N_Procedure_Call_Statement --
5428 ---------------------------------------
5430 procedure Expand_N_Procedure_Call_Statement
(N
: Node_Id
) is
5433 end Expand_N_Procedure_Call_Statement
;
5435 --------------------------------------
5436 -- Expand_N_Simple_Return_Statement --
5437 --------------------------------------
5439 procedure Expand_N_Simple_Return_Statement
(N
: Node_Id
) is
5441 -- Defend against previous errors (i.e. the return statement calls a
5442 -- function that is not available in configurable runtime).
5444 if Present
(Expression
(N
))
5445 and then Nkind
(Expression
(N
)) = N_Empty
5447 Check_Error_Detected
;
5451 -- Distinguish the function and non-function cases:
5453 case Ekind
(Return_Applies_To
(Return_Statement_Entity
(N
))) is
5455 | E_Generic_Function
5457 Expand_Simple_Function_Return
(N
);
5461 | E_Generic_Procedure
5463 | E_Return_Statement
5465 Expand_Non_Function_Return
(N
);
5468 raise Program_Error
;
5472 when RE_Not_Available
=>
5474 end Expand_N_Simple_Return_Statement
;
5476 ------------------------------
5477 -- Expand_N_Subprogram_Body --
5478 ------------------------------
5480 -- Add poll call if ATC polling is enabled, unless the body will be inlined
5483 -- Add dummy push/pop label nodes at start and end to clear any local
5484 -- exception indications if local-exception-to-goto optimization is active.
5486 -- Add return statement if last statement in body is not a return statement
5487 -- (this makes things easier on Gigi which does not want to have to handle
5488 -- a missing return).
5490 -- Add call to Activate_Tasks if body is a task activator
5492 -- Deal with possible detection of infinite recursion
5494 -- Eliminate body completely if convention stubbed
5496 -- Encode entity names within body, since we will not need to reference
5497 -- these entities any longer in the front end.
5499 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5501 -- Reset Pure indication if any parameter has root type System.Address
5502 -- or has any parameters of limited types, where limited means that the
5503 -- run-time view is limited (i.e. the full type is limited).
5507 procedure Expand_N_Subprogram_Body
(N
: Node_Id
) is
5508 Body_Id
: constant Entity_Id
:= Defining_Entity
(N
);
5509 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
5510 Loc
: constant Source_Ptr
:= Sloc
(N
);
5512 procedure Add_Return
(Spec_Id
: Entity_Id
; Stmts
: List_Id
);
5513 -- Append a return statement to the statement sequence Stmts if the last
5514 -- statement is not already a return or a goto statement. Note that the
5515 -- latter test is not critical, it does not matter if we add a few extra
5516 -- returns, since they get eliminated anyway later on. Spec_Id denotes
5517 -- the corresponding spec of the subprogram body.
5523 procedure Add_Return
(Spec_Id
: Entity_Id
; Stmts
: List_Id
) is
5524 Last_Stmt
: Node_Id
;
5529 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5530 -- not relevant in this context since they are not executable.
5532 Last_Stmt
:= Last
(Stmts
);
5533 while Nkind
(Last_Stmt
) in N_Pop_xxx_Label
loop
5537 -- Now insert return unless last statement is a transfer
5539 if not Is_Transfer
(Last_Stmt
) then
5541 -- The source location for the return is the end label of the
5542 -- procedure if present. Otherwise use the sloc of the last
5543 -- statement in the list. If the list comes from a generated
5544 -- exception handler and we are not debugging generated code,
5545 -- all the statements within the handler are made invisible
5548 if Nkind
(Parent
(Stmts
)) = N_Exception_Handler
5549 and then not Comes_From_Source
(Parent
(Stmts
))
5551 Loc
:= Sloc
(Last_Stmt
);
5552 elsif Present
(End_Label
(HSS
)) then
5553 Loc
:= Sloc
(End_Label
(HSS
));
5555 Loc
:= Sloc
(Last_Stmt
);
5558 -- Append return statement, and set analyzed manually. We can't
5559 -- call Analyze on this return since the scope is wrong.
5561 -- Note: it almost works to push the scope and then do the Analyze
5562 -- call, but something goes wrong in some weird cases and it is
5563 -- not worth worrying about ???
5565 Stmt
:= Make_Simple_Return_Statement
(Loc
);
5567 -- The return statement is handled properly, and the call to the
5568 -- postcondition, inserted below, does not require information
5569 -- from the body either. However, that call is analyzed in the
5570 -- enclosing scope, and an elaboration check might improperly be
5571 -- added to it. A guard in Sem_Elab is needed to prevent that
5572 -- spurious check, see Check_Elab_Call.
5574 Append_To
(Stmts
, Stmt
);
5575 Set_Analyzed
(Stmt
);
5577 -- Call the _Postconditions procedure if the related subprogram
5578 -- has contract assertions that need to be verified on exit.
5580 if Ekind
(Spec_Id
) = E_Procedure
5581 and then Present
(Postconditions_Proc
(Spec_Id
))
5583 Insert_Action
(Stmt
,
5584 Make_Procedure_Call_Statement
(Loc
,
5586 New_Occurrence_Of
(Postconditions_Proc
(Spec_Id
), Loc
)));
5595 Spec_Id
: Entity_Id
;
5597 -- Start of processing for Expand_N_Subprogram_Body
5600 if Present
(Corresponding_Spec
(N
)) then
5601 Spec_Id
:= Corresponding_Spec
(N
);
5606 -- If this is a Pure function which has any parameters whose root type
5607 -- is System.Address, reset the Pure indication.
5608 -- This check is also performed when the subprogram is frozen, but we
5609 -- repeat it on the body so that the indication is consistent, and so
5610 -- it applies as well to bodies without separate specifications.
5612 if Is_Pure
(Spec_Id
)
5613 and then Is_Subprogram
(Spec_Id
)
5614 and then not Has_Pragma_Pure_Function
(Spec_Id
)
5616 Check_Function_With_Address_Parameter
(Spec_Id
);
5618 if Spec_Id
/= Body_Id
then
5619 Set_Is_Pure
(Body_Id
, Is_Pure
(Spec_Id
));
5623 -- Set L to either the list of declarations if present, or to the list
5624 -- of statements if no declarations are present. This is used to insert
5625 -- new stuff at the start.
5627 if Is_Non_Empty_List
(Declarations
(N
)) then
5628 L
:= Declarations
(N
);
5630 L
:= Statements
(HSS
);
5633 -- If local-exception-to-goto optimization active, insert dummy push
5634 -- statements at start, and dummy pop statements at end, but inhibit
5635 -- this if we have No_Exception_Handlers, since they are useless and
5636 -- intefere with analysis, e.g. by codepeer.
5638 if (Debug_Flag_Dot_G
5639 or else Restriction_Active
(No_Exception_Propagation
))
5640 and then not Restriction_Active
(No_Exception_Handlers
)
5641 and then not CodePeer_Mode
5642 and then Is_Non_Empty_List
(L
)
5645 FS
: constant Node_Id
:= First
(L
);
5646 FL
: constant Source_Ptr
:= Sloc
(FS
);
5651 -- LS points to either last statement, if statements are present
5652 -- or to the last declaration if there are no statements present.
5653 -- It is the node after which the pop's are generated.
5655 if Is_Non_Empty_List
(Statements
(HSS
)) then
5656 LS
:= Last
(Statements
(HSS
));
5663 Insert_List_Before_And_Analyze
(FS
, New_List
(
5664 Make_Push_Constraint_Error_Label
(FL
),
5665 Make_Push_Program_Error_Label
(FL
),
5666 Make_Push_Storage_Error_Label
(FL
)));
5668 Insert_List_After_And_Analyze
(LS
, New_List
(
5669 Make_Pop_Constraint_Error_Label
(LL
),
5670 Make_Pop_Program_Error_Label
(LL
),
5671 Make_Pop_Storage_Error_Label
(LL
)));
5675 -- Need poll on entry to subprogram if polling enabled. We only do this
5676 -- for non-empty subprograms, since it does not seem necessary to poll
5677 -- for a dummy null subprogram.
5679 if Is_Non_Empty_List
(L
) then
5681 -- Do not add a polling call if the subprogram is to be inlined by
5682 -- the back-end, to avoid repeated calls with multiple inlinings.
5684 if Is_Inlined
(Spec_Id
)
5685 and then Front_End_Inlining
5686 and then Optimization_Level
> 1
5690 Generate_Poll_Call
(First
(L
));
5694 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5696 if Init_Or_Norm_Scalars
and then Is_Subprogram
(Spec_Id
) then
5702 -- Loop through formals
5704 F
:= First_Formal
(Spec_Id
);
5705 while Present
(F
) loop
5706 if Is_Scalar_Type
(Etype
(F
))
5707 and then Ekind
(F
) = E_Out_Parameter
5709 Check_Restriction
(No_Default_Initialization
, F
);
5711 -- Insert the initialization. We turn off validity checks
5712 -- for this assignment, since we do not want any check on
5713 -- the initial value itself (which may well be invalid).
5714 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5717 Make_Assignment_Statement
(Loc
,
5718 Name
=> New_Occurrence_Of
(F
, Loc
),
5719 Expression
=> Get_Simple_Init_Val
(Etype
(F
), N
));
5720 Set_Suppress_Assignment_Checks
(A
);
5722 Insert_Before_And_Analyze
(First
(L
),
5723 A
, Suppress
=> Validity_Check
);
5731 -- Clear out statement list for stubbed procedure
5733 if Present
(Corresponding_Spec
(N
)) then
5734 Set_Elaboration_Flag
(N
, Spec_Id
);
5736 if Convention
(Spec_Id
) = Convention_Stubbed
5737 or else Is_Eliminated
(Spec_Id
)
5739 Set_Declarations
(N
, Empty_List
);
5740 Set_Handled_Statement_Sequence
(N
,
5741 Make_Handled_Sequence_Of_Statements
(Loc
,
5742 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
5748 -- Create a set of discriminals for the next protected subprogram body
5750 if Is_List_Member
(N
)
5751 and then Present
(Parent
(List_Containing
(N
)))
5752 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5753 and then Present
(Next_Protected_Operation
(N
))
5755 Set_Discriminals
(Parent
(Base_Type
(Scope
(Spec_Id
))));
5758 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5759 -- subprograms with no specs are not frozen.
5762 Typ
: constant Entity_Id
:= Etype
(Spec_Id
);
5763 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
5766 if Is_Limited_View
(Typ
) then
5767 Set_Returns_By_Ref
(Spec_Id
);
5769 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
5770 Set_Returns_By_Ref
(Spec_Id
);
5774 -- For a procedure, we add a return for all possible syntactic ends of
5777 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
) then
5778 Add_Return
(Spec_Id
, Statements
(HSS
));
5780 if Present
(Exception_Handlers
(HSS
)) then
5781 Except_H
:= First_Non_Pragma
(Exception_Handlers
(HSS
));
5782 while Present
(Except_H
) loop
5783 Add_Return
(Spec_Id
, Statements
(Except_H
));
5784 Next_Non_Pragma
(Except_H
);
5788 -- For a function, we must deal with the case where there is at least
5789 -- one missing return. What we do is to wrap the entire body of the
5790 -- function in a block:
5803 -- raise Program_Error;
5806 -- This approach is necessary because the raise must be signalled to the
5807 -- caller, not handled by any local handler (RM 6.4(11)).
5809 -- Note: we do not need to analyze the constructed sequence here, since
5810 -- it has no handler, and an attempt to analyze the handled statement
5811 -- sequence twice is risky in various ways (e.g. the issue of expanding
5812 -- cleanup actions twice).
5814 elsif Has_Missing_Return
(Spec_Id
) then
5816 Hloc
: constant Source_Ptr
:= Sloc
(HSS
);
5817 Blok
: constant Node_Id
:=
5818 Make_Block_Statement
(Hloc
,
5819 Handled_Statement_Sequence
=> HSS
);
5820 Rais
: constant Node_Id
:=
5821 Make_Raise_Program_Error
(Hloc
,
5822 Reason
=> PE_Missing_Return
);
5825 Set_Handled_Statement_Sequence
(N
,
5826 Make_Handled_Sequence_Of_Statements
(Hloc
,
5827 Statements
=> New_List
(Blok
, Rais
)));
5829 Push_Scope
(Spec_Id
);
5836 -- If subprogram contains a parameterless recursive call, then we may
5837 -- have an infinite recursion, so see if we can generate code to check
5838 -- for this possibility if storage checks are not suppressed.
5840 if Ekind
(Spec_Id
) = E_Procedure
5841 and then Has_Recursive_Call
(Spec_Id
)
5842 and then not Storage_Checks_Suppressed
(Spec_Id
)
5844 Detect_Infinite_Recursion
(N
, Spec_Id
);
5847 -- Set to encode entity names in package body before gigi is called
5849 Qualify_Entity_Names
(N
);
5851 -- If the body belongs to a nonabstract library-level source primitive
5852 -- of a tagged type, install an elaboration check which ensures that a
5853 -- dispatching call targeting the primitive will not execute the body
5854 -- without it being previously elaborated.
5856 Install_Primitive_Elaboration_Check
(N
);
5857 end Expand_N_Subprogram_Body
;
5859 -----------------------------------
5860 -- Expand_N_Subprogram_Body_Stub --
5861 -----------------------------------
5863 procedure Expand_N_Subprogram_Body_Stub
(N
: Node_Id
) is
5867 if Present
(Corresponding_Body
(N
)) then
5868 Bod
:= Unit_Declaration_Node
(Corresponding_Body
(N
));
5870 -- The body may have been expanded already when it is analyzed
5871 -- through the subunit node. Do no expand again: it interferes
5872 -- with the construction of unnesting tables when generating C.
5874 if not Analyzed
(Bod
) then
5875 Expand_N_Subprogram_Body
(Bod
);
5878 -- Add full qualification to entities that may be created late
5879 -- during unnesting.
5881 Qualify_Entity_Names
(N
);
5883 end Expand_N_Subprogram_Body_Stub
;
5885 -------------------------------------
5886 -- Expand_N_Subprogram_Declaration --
5887 -------------------------------------
5889 -- If the declaration appears within a protected body, it is a private
5890 -- operation of the protected type. We must create the corresponding
5891 -- protected subprogram an associated formals. For a normal protected
5892 -- operation, this is done when expanding the protected type declaration.
5894 -- If the declaration is for a null procedure, emit null body
5896 procedure Expand_N_Subprogram_Declaration
(N
: Node_Id
) is
5897 Loc
: constant Source_Ptr
:= Sloc
(N
);
5898 Subp
: constant Entity_Id
:= Defining_Entity
(N
);
5902 Scop
: constant Entity_Id
:= Scope
(Subp
);
5904 Prot_Decl
: Node_Id
;
5905 Prot_Id
: Entity_Id
;
5907 -- Start of processing for Expand_N_Subprogram_Declaration
5910 -- In SPARK, subprogram declarations are only allowed in package
5913 if Nkind
(Parent
(N
)) /= N_Package_Specification
then
5914 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5915 Check_SPARK_05_Restriction
5916 ("subprogram declaration is not a library item", N
);
5918 elsif Present
(Next
(N
))
5919 and then Nkind
(Next
(N
)) = N_Pragma
5920 and then Get_Pragma_Id
(Next
(N
)) = Pragma_Import
5922 -- In SPARK, subprogram declarations are also permitted in
5923 -- declarative parts when immediately followed by a corresponding
5924 -- pragma Import. We only check here that there is some pragma
5929 Check_SPARK_05_Restriction
5930 ("subprogram declaration is not allowed here", N
);
5934 -- Deal with case of protected subprogram. Do not generate protected
5935 -- operation if operation is flagged as eliminated.
5937 if Is_List_Member
(N
)
5938 and then Present
(Parent
(List_Containing
(N
)))
5939 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5940 and then Is_Protected_Type
(Scop
)
5942 if No
(Protected_Body_Subprogram
(Subp
))
5943 and then not Is_Eliminated
(Subp
)
5946 Make_Subprogram_Declaration
(Loc
,
5948 Build_Protected_Sub_Specification
5949 (N
, Scop
, Unprotected_Mode
));
5951 -- The protected subprogram is declared outside of the protected
5952 -- body. Given that the body has frozen all entities so far, we
5953 -- analyze the subprogram and perform freezing actions explicitly.
5954 -- including the generation of an explicit freeze node, to ensure
5955 -- that gigi has the proper order of elaboration.
5956 -- If the body is a subunit, the insertion point is before the
5957 -- stub in the parent.
5959 Prot_Bod
:= Parent
(List_Containing
(N
));
5961 if Nkind
(Parent
(Prot_Bod
)) = N_Subunit
then
5962 Prot_Bod
:= Corresponding_Stub
(Parent
(Prot_Bod
));
5965 Insert_Before
(Prot_Bod
, Prot_Decl
);
5966 Prot_Id
:= Defining_Unit_Name
(Specification
(Prot_Decl
));
5967 Set_Has_Delayed_Freeze
(Prot_Id
);
5969 Push_Scope
(Scope
(Scop
));
5970 Analyze
(Prot_Decl
);
5971 Freeze_Before
(N
, Prot_Id
);
5972 Set_Protected_Body_Subprogram
(Subp
, Prot_Id
);
5974 -- Create protected operation as well. Even though the operation
5975 -- is only accessible within the body, it is possible to make it
5976 -- available outside of the protected object by using 'Access to
5977 -- provide a callback, so build protected version in all cases.
5980 Make_Subprogram_Declaration
(Loc
,
5982 Build_Protected_Sub_Specification
(N
, Scop
, Protected_Mode
));
5983 Insert_Before
(Prot_Bod
, Prot_Decl
);
5984 Analyze
(Prot_Decl
);
5989 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
5990 -- cases this is superfluous because calls to it will be automatically
5991 -- inlined, but we definitely need the body if preconditions for the
5992 -- procedure are present, or if performing coverage analysis.
5994 elsif Nkind
(Specification
(N
)) = N_Procedure_Specification
5995 and then Null_Present
(Specification
(N
))
5998 Bod
: constant Node_Id
:= Body_To_Inline
(N
);
6001 Set_Has_Completion
(Subp
, False);
6002 Append_Freeze_Action
(Subp
, Bod
);
6004 -- The body now contains raise statements, so calls to it will
6007 Set_Is_Inlined
(Subp
, False);
6011 -- When generating C code, transform a function that returns a
6012 -- constrained array type into a procedure with an out parameter
6013 -- that carries the return value.
6015 -- We skip this transformation for unchecked conversions, since they
6016 -- are not needed by the C generator (and this also produces cleaner
6019 if Modify_Tree_For_C
6020 and then Nkind
(Specification
(N
)) = N_Function_Specification
6021 and then Is_Array_Type
(Etype
(Subp
))
6022 and then Is_Constrained
(Etype
(Subp
))
6023 and then not Is_Unchecked_Conversion_Instance
(Subp
)
6025 Build_Procedure_Form
(N
);
6027 end Expand_N_Subprogram_Declaration
;
6029 --------------------------------
6030 -- Expand_Non_Function_Return --
6031 --------------------------------
6033 procedure Expand_Non_Function_Return
(N
: Node_Id
) is
6034 pragma Assert
(No
(Expression
(N
)));
6036 Loc
: constant Source_Ptr
:= Sloc
(N
);
6037 Scope_Id
: Entity_Id
:= Return_Applies_To
(Return_Statement_Entity
(N
));
6038 Kind
: constant Entity_Kind
:= Ekind
(Scope_Id
);
6041 Goto_Stat
: Node_Id
;
6045 -- Call the _Postconditions procedure if the related subprogram has
6046 -- contract assertions that need to be verified on exit.
6048 if Ekind_In
(Scope_Id
, E_Entry
, E_Entry_Family
, E_Procedure
)
6049 and then Present
(Postconditions_Proc
(Scope_Id
))
6052 Make_Procedure_Call_Statement
(Loc
,
6053 Name
=> New_Occurrence_Of
(Postconditions_Proc
(Scope_Id
), Loc
)));
6056 -- If it is a return from a procedure do no extra steps
6058 if Kind
= E_Procedure
or else Kind
= E_Generic_Procedure
then
6061 -- If it is a nested return within an extended one, replace it with a
6062 -- return of the previously declared return object.
6064 elsif Kind
= E_Return_Statement
then
6066 Make_Simple_Return_Statement
(Loc
,
6068 New_Occurrence_Of
(First_Entity
(Scope_Id
), Loc
)));
6069 Set_Comes_From_Extended_Return_Statement
(N
);
6070 Set_Return_Statement_Entity
(N
, Scope_Id
);
6071 Expand_Simple_Function_Return
(N
);
6075 pragma Assert
(Is_Entry
(Scope_Id
));
6077 -- Look at the enclosing block to see whether the return is from an
6078 -- accept statement or an entry body.
6080 for J
in reverse 0 .. Scope_Stack
.Last
loop
6081 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
6082 exit when Is_Concurrent_Type
(Scope_Id
);
6085 -- If it is a return from accept statement it is expanded as call to
6086 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
6088 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
6089 -- Expand_N_Accept_Alternative in exp_ch9.adb)
6091 if Is_Task_Type
(Scope_Id
) then
6094 Make_Procedure_Call_Statement
(Loc
,
6095 Name
=> New_Occurrence_Of
(RTE
(RE_Complete_Rendezvous
), Loc
));
6096 Insert_Before
(N
, Call
);
6097 -- why not insert actions here???
6100 Acc_Stat
:= Parent
(N
);
6101 while Nkind
(Acc_Stat
) /= N_Accept_Statement
loop
6102 Acc_Stat
:= Parent
(Acc_Stat
);
6105 Lab_Node
:= Last
(Statements
6106 (Handled_Statement_Sequence
(Acc_Stat
)));
6108 Goto_Stat
:= Make_Goto_Statement
(Loc
,
6109 Name
=> New_Occurrence_Of
6110 (Entity
(Identifier
(Lab_Node
)), Loc
));
6112 Set_Analyzed
(Goto_Stat
);
6114 Rewrite
(N
, Goto_Stat
);
6117 -- If it is a return from an entry body, put a Complete_Entry_Body call
6118 -- in front of the return.
6120 elsif Is_Protected_Type
(Scope_Id
) then
6122 Make_Procedure_Call_Statement
(Loc
,
6124 New_Occurrence_Of
(RTE
(RE_Complete_Entry_Body
), Loc
),
6125 Parameter_Associations
=> New_List
(
6126 Make_Attribute_Reference
(Loc
,
6129 (Find_Protection_Object
(Current_Scope
), Loc
),
6130 Attribute_Name
=> Name_Unchecked_Access
)));
6132 Insert_Before
(N
, Call
);
6135 end Expand_Non_Function_Return
;
6137 ---------------------------------------
6138 -- Expand_Protected_Object_Reference --
6139 ---------------------------------------
6141 function Expand_Protected_Object_Reference
6143 Scop
: Entity_Id
) return Node_Id
6145 Loc
: constant Source_Ptr
:= Sloc
(N
);
6152 Rec
:= Make_Identifier
(Loc
, Name_uObject
);
6153 Set_Etype
(Rec
, Corresponding_Record_Type
(Scop
));
6155 -- Find enclosing protected operation, and retrieve its first parameter,
6156 -- which denotes the enclosing protected object. If the enclosing
6157 -- operation is an entry, we are immediately within the protected body,
6158 -- and we can retrieve the object from the service entries procedure. A
6159 -- barrier function has the same signature as an entry. A barrier
6160 -- function is compiled within the protected object, but unlike
6161 -- protected operations its never needs locks, so that its protected
6162 -- body subprogram points to itself.
6164 Proc
:= Current_Scope
;
6165 while Present
(Proc
)
6166 and then Scope
(Proc
) /= Scop
6168 Proc
:= Scope
(Proc
);
6171 Corr
:= Protected_Body_Subprogram
(Proc
);
6175 -- Previous error left expansion incomplete.
6176 -- Nothing to do on this call.
6183 (First
(Parameter_Specifications
(Parent
(Corr
))));
6185 if Is_Subprogram
(Proc
) and then Proc
/= Corr
then
6187 -- Protected function or procedure
6189 Set_Entity
(Rec
, Param
);
6191 -- Rec is a reference to an entity which will not be in scope when
6192 -- the call is reanalyzed, and needs no further analysis.
6197 -- Entry or barrier function for entry body. The first parameter of
6198 -- the entry body procedure is pointer to the object. We create a
6199 -- local variable of the proper type, duplicating what is done to
6200 -- define _object later on.
6204 Obj_Ptr
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
6208 Make_Full_Type_Declaration
(Loc
,
6209 Defining_Identifier
=> Obj_Ptr
,
6211 Make_Access_To_Object_Definition
(Loc
,
6212 Subtype_Indication
=>
6214 (Corresponding_Record_Type
(Scop
), Loc
))));
6216 Insert_Actions
(N
, Decls
);
6217 Freeze_Before
(N
, Obj_Ptr
);
6220 Make_Explicit_Dereference
(Loc
,
6222 Unchecked_Convert_To
(Obj_Ptr
,
6223 New_Occurrence_Of
(Param
, Loc
)));
6225 -- Analyze new actual. Other actuals in calls are already analyzed
6226 -- and the list of actuals is not reanalyzed after rewriting.
6228 Set_Parent
(Rec
, N
);
6234 end Expand_Protected_Object_Reference
;
6236 --------------------------------------
6237 -- Expand_Protected_Subprogram_Call --
6238 --------------------------------------
6240 procedure Expand_Protected_Subprogram_Call
6247 procedure Expand_Internal_Init_Call
;
6248 -- A call to an operation of the type may occur in the initialization
6249 -- of a private component. In that case the prefix of the call is an
6250 -- entity name and the call is treated as internal even though it
6251 -- appears in code outside of the protected type.
6253 procedure Freeze_Called_Function
;
6254 -- If it is a function call it can appear in elaboration code and
6255 -- the called entity must be frozen before the call. This must be
6256 -- done before the call is expanded, as the expansion may rewrite it
6257 -- to something other than a call (e.g. a temporary initialized in a
6258 -- transient block).
6260 -------------------------------
6261 -- Expand_Internal_Init_Call --
6262 -------------------------------
6264 procedure Expand_Internal_Init_Call
is
6266 -- If the context is a protected object (rather than a protected
6267 -- type) the call itself is bound to raise program_error because
6268 -- the protected body will not have been elaborated yet. This is
6269 -- diagnosed subsequently in Sem_Elab.
6271 Freeze_Called_Function
;
6273 -- The target of the internal call is the first formal of the
6274 -- enclosing initialization procedure.
6276 Rec
:= New_Occurrence_Of
(First_Formal
(Current_Scope
), Sloc
(N
));
6277 Build_Protected_Subprogram_Call
(N
,
6282 Resolve
(N
, Etype
(Subp
));
6283 end Expand_Internal_Init_Call
;
6285 ----------------------------
6286 -- Freeze_Called_Function --
6287 ----------------------------
6289 procedure Freeze_Called_Function
is
6291 if Ekind
(Subp
) = E_Function
then
6292 Freeze_Expression
(Name
(N
));
6294 end Freeze_Called_Function
;
6296 -- Start of processing for Expand_Protected_Subprogram_Call
6299 -- If the protected object is not an enclosing scope, this is an inter-
6300 -- object function call. Inter-object procedure calls are expanded by
6301 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
6302 -- subprogram being called is in the protected body being compiled, and
6303 -- if the protected object in the call is statically the enclosing type.
6304 -- The object may be a component of some other data structure, in which
6305 -- case this must be handled as an inter-object call.
6307 if not In_Open_Scopes
(Scop
)
6308 or else Is_Entry_Wrapper
(Current_Scope
)
6309 or else not Is_Entity_Name
(Name
(N
))
6311 if Nkind
(Name
(N
)) = N_Selected_Component
then
6312 Rec
:= Prefix
(Name
(N
));
6314 elsif Nkind
(Name
(N
)) = N_Indexed_Component
then
6315 Rec
:= Prefix
(Prefix
(Name
(N
)));
6317 -- If this is a call within an entry wrapper, it appears within a
6318 -- precondition that calls another primitive of the synchronized
6319 -- type. The target object of the call is the first actual on the
6320 -- wrapper. Note that this is an external call, because the wrapper
6321 -- is called outside of the synchronized object. This means that
6322 -- an entry call to an entry with preconditions involves two
6323 -- synchronized operations.
6325 elsif Ekind
(Current_Scope
) = E_Procedure
6326 and then Is_Entry_Wrapper
(Current_Scope
)
6328 Rec
:= New_Occurrence_Of
(First_Entity
(Current_Scope
), Sloc
(N
));
6331 -- If the context is the initialization procedure for a protected
6332 -- type, the call is legal because the called entity must be a
6333 -- function of that enclosing type, and this is treated as an
6337 (Is_Entity_Name
(Name
(N
)) and then Inside_Init_Proc
);
6339 Expand_Internal_Init_Call
;
6343 Freeze_Called_Function
;
6344 Build_Protected_Subprogram_Call
(N
,
6345 Name
=> New_Occurrence_Of
(Subp
, Sloc
(N
)),
6346 Rec
=> Convert_Concurrent
(Rec
, Etype
(Rec
)),
6350 Rec
:= Expand_Protected_Object_Reference
(N
, Scop
);
6356 Freeze_Called_Function
;
6357 Build_Protected_Subprogram_Call
(N
,
6363 -- Analyze and resolve the new call. The actuals have already been
6364 -- resolved, but expansion of a function call will add extra actuals
6365 -- if needed. Analysis of a procedure call already includes resolution.
6369 if Ekind
(Subp
) = E_Function
then
6370 Resolve
(N
, Etype
(Subp
));
6372 end Expand_Protected_Subprogram_Call
;
6374 -----------------------------------
6375 -- Expand_Simple_Function_Return --
6376 -----------------------------------
6378 -- The "simple" comes from the syntax rule simple_return_statement. The
6379 -- semantics are not at all simple.
6381 procedure Expand_Simple_Function_Return
(N
: Node_Id
) is
6382 Loc
: constant Source_Ptr
:= Sloc
(N
);
6384 Scope_Id
: constant Entity_Id
:=
6385 Return_Applies_To
(Return_Statement_Entity
(N
));
6386 -- The function we are returning from
6388 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
6389 -- The result type of the function
6391 Utyp
: constant Entity_Id
:= Underlying_Type
(R_Type
);
6393 Exp
: Node_Id
:= Expression
(N
);
6394 pragma Assert
(Present
(Exp
));
6396 Exptyp
: constant Entity_Id
:= Etype
(Exp
);
6397 -- The type of the expression (not necessarily the same as R_Type)
6399 Subtype_Ind
: Node_Id
;
6400 -- If the result type of the function is class-wide and the expression
6401 -- has a specific type, then we use the expression's type as the type of
6402 -- the return object. In cases where the expression is an aggregate that
6403 -- is built in place, this avoids the need for an expensive conversion
6404 -- of the return object to the specific type on assignments to the
6405 -- individual components.
6408 if Is_Class_Wide_Type
(R_Type
)
6409 and then not Is_Class_Wide_Type
(Exptyp
)
6410 and then Nkind
(Exp
) /= N_Type_Conversion
6412 Subtype_Ind
:= New_Occurrence_Of
(Exptyp
, Loc
);
6414 Subtype_Ind
:= New_Occurrence_Of
(R_Type
, Loc
);
6416 -- If the result type is class-wide and the expression is a view
6417 -- conversion, the conversion plays no role in the expansion because
6418 -- it does not modify the tag of the object. Remove the conversion
6419 -- altogether to prevent tag overwriting.
6421 if Is_Class_Wide_Type
(R_Type
)
6422 and then not Is_Class_Wide_Type
(Exptyp
)
6423 and then Nkind
(Exp
) = N_Type_Conversion
6425 Exp
:= Expression
(Exp
);
6429 -- For the case of a simple return that does not come from an
6430 -- extended return, in the case of build-in-place, we rewrite
6431 -- "return <expression>;" to be:
6433 -- return _anon_ : <return_subtype> := <expression>
6435 -- The expansion produced by Expand_N_Extended_Return_Statement will
6436 -- contain simple return statements (for example, a block containing
6437 -- simple return of the return object), which brings us back here with
6438 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6439 -- checking for a simple return that does not come from an extended
6440 -- return is to avoid this infinite recursion.
6442 -- The reason for this design is that for Ada 2005 limited returns, we
6443 -- need to reify the return object, so we can build it "in place", and
6444 -- we need a block statement to hang finalization and tasking stuff.
6446 -- ??? In order to avoid disruption, we avoid translating to extended
6447 -- return except in the cases where we really need to (Ada 2005 for
6448 -- inherently limited). We might prefer to do this translation in all
6449 -- cases (except perhaps for the case of Ada 95 inherently limited),
6450 -- in order to fully exercise the Expand_N_Extended_Return_Statement
6451 -- code. This would also allow us to do the build-in-place optimization
6452 -- for efficiency even in cases where it is semantically not required.
6454 -- As before, we check the type of the return expression rather than the
6455 -- return type of the function, because the latter may be a limited
6456 -- class-wide interface type, which is not a limited type, even though
6457 -- the type of the expression may be.
6460 (Comes_From_Extended_Return_Statement
(N
)
6461 or else not Is_Build_In_Place_Function_Call
(Exp
)
6462 or else Is_Build_In_Place_Function
(Scope_Id
));
6464 if not Comes_From_Extended_Return_Statement
(N
)
6465 and then Is_Build_In_Place_Function
(Scope_Id
)
6466 and then not Debug_Flag_Dot_L
6468 -- The functionality of interface thunks is simple and it is always
6469 -- handled by means of simple return statements. This leaves their
6470 -- expansion simple and clean.
6472 and then not Is_Thunk
(Current_Scope
)
6475 Return_Object_Entity
: constant Entity_Id
:=
6476 Make_Temporary
(Loc
, 'R', Exp
);
6478 Obj_Decl
: constant Node_Id
:=
6479 Make_Object_Declaration
(Loc
,
6480 Defining_Identifier
=> Return_Object_Entity
,
6481 Object_Definition
=> Subtype_Ind
,
6484 Ext
: constant Node_Id
:=
6485 Make_Extended_Return_Statement
(Loc
,
6486 Return_Object_Declarations
=> New_List
(Obj_Decl
));
6487 -- Do not perform this high-level optimization if the result type
6488 -- is an interface because the "this" pointer must be displaced.
6497 -- Here we have a simple return statement that is part of the expansion
6498 -- of an extended return statement (either written by the user, or
6499 -- generated by the above code).
6501 -- Always normalize C/Fortran boolean result. This is not always needed,
6502 -- but it seems a good idea to minimize the passing around of non-
6503 -- normalized values, and in any case this handles the processing of
6504 -- barrier functions for protected types, which turn the condition into
6505 -- a return statement.
6507 if Is_Boolean_Type
(Exptyp
)
6508 and then Nonzero_Is_True
(Exptyp
)
6510 Adjust_Condition
(Exp
);
6511 Adjust_Result_Type
(Exp
, Exptyp
);
6514 -- Do validity check if enabled for returns
6516 if Validity_Checks_On
6517 and then Validity_Check_Returns
6522 -- Check the result expression of a scalar function against the subtype
6523 -- of the function by inserting a conversion. This conversion must
6524 -- eventually be performed for other classes of types, but for now it's
6525 -- only done for scalars.
6528 if Is_Scalar_Type
(Exptyp
) then
6529 Rewrite
(Exp
, Convert_To
(R_Type
, Exp
));
6531 -- The expression is resolved to ensure that the conversion gets
6532 -- expanded to generate a possible constraint check.
6534 Analyze_And_Resolve
(Exp
, R_Type
);
6537 -- Deal with returning variable length objects and controlled types
6539 -- Nothing to do if we are returning by reference, or this is not a
6540 -- type that requires special processing (indicated by the fact that
6541 -- it requires a cleanup scope for the secondary stack case).
6543 if Is_Build_In_Place_Function
(Scope_Id
)
6544 or else Is_Limited_Interface
(Exptyp
)
6548 -- No copy needed for thunks returning interface type objects since
6549 -- the object is returned by reference and the maximum functionality
6550 -- required is just to displace the pointer.
6552 elsif Is_Thunk
(Current_Scope
) and then Is_Interface
(Exptyp
) then
6555 -- If the call is within a thunk and the type is a limited view, the
6556 -- backend will eventually see the non-limited view of the type.
6558 elsif Is_Thunk
(Current_Scope
) and then Is_Incomplete_Type
(Exptyp
) then
6561 elsif not Requires_Transient_Scope
(R_Type
) then
6563 -- Mutable records with variable-length components are not returned
6564 -- on the sec-stack, so we need to make sure that the back end will
6565 -- only copy back the size of the actual value, and not the maximum
6566 -- size. We create an actual subtype for this purpose. However we
6567 -- need not do it if the expression is a function call since this
6568 -- will be done in the called function and doing it here too would
6569 -- cause a temporary with maximum size to be created.
6572 Ubt
: constant Entity_Id
:= Underlying_Type
(Base_Type
(Exptyp
));
6576 if Nkind
(Exp
) /= N_Function_Call
6577 and then Has_Discriminants
(Ubt
)
6578 and then not Is_Constrained
(Ubt
)
6579 and then not Has_Unchecked_Union
(Ubt
)
6581 Decl
:= Build_Actual_Subtype
(Ubt
, Exp
);
6582 Ent
:= Defining_Identifier
(Decl
);
6583 Insert_Action
(Exp
, Decl
);
6584 Rewrite
(Exp
, Unchecked_Convert_To
(Ent
, Exp
));
6585 Analyze_And_Resolve
(Exp
);
6589 -- Here if secondary stack is used
6592 -- Prevent the reclamation of the secondary stack by all enclosing
6593 -- blocks and loops as well as the related function; otherwise the
6594 -- result would be reclaimed too early.
6596 Set_Enclosing_Sec_Stack_Return
(N
);
6598 -- Optimize the case where the result is a function call. In this
6599 -- case either the result is already on the secondary stack, or is
6600 -- already being returned with the stack pointer depressed and no
6601 -- further processing is required except to set the By_Ref flag
6602 -- to ensure that gigi does not attempt an extra unnecessary copy.
6603 -- (actually not just unnecessary but harmfully wrong in the case
6604 -- of a controlled type, where gigi does not know how to do a copy).
6605 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6606 -- for array types if the constrained status of the target type is
6607 -- different from that of the expression.
6609 if Requires_Transient_Scope
(Exptyp
)
6611 (not Is_Array_Type
(Exptyp
)
6612 or else Is_Constrained
(Exptyp
) = Is_Constrained
(R_Type
)
6613 or else CW_Or_Has_Controlled_Part
(Utyp
))
6614 and then Nkind
(Exp
) = N_Function_Call
6618 -- Remove side effects from the expression now so that other parts
6619 -- of the expander do not have to reanalyze this node without this
6622 Rewrite
(Exp
, Duplicate_Subexpr_No_Checks
(Exp
));
6624 -- Ada 2005 (AI-251): If the type of the returned object is
6625 -- an interface then add an implicit type conversion to force
6626 -- displacement of the "this" pointer.
6628 if Is_Interface
(R_Type
) then
6629 Rewrite
(Exp
, Convert_To
(R_Type
, Relocate_Node
(Exp
)));
6632 Analyze_And_Resolve
(Exp
, R_Type
);
6634 -- For controlled types, do the allocation on the secondary stack
6635 -- manually in order to call adjust at the right time:
6637 -- type Anon1 is access R_Type;
6638 -- for Anon1'Storage_pool use ss_pool;
6639 -- Anon2 : anon1 := new R_Type'(expr);
6640 -- return Anon2.all;
6642 -- We do the same for classwide types that are not potentially
6643 -- controlled (by the virtue of restriction No_Finalization) because
6644 -- gigi is not able to properly allocate class-wide types.
6646 elsif CW_Or_Has_Controlled_Part
(Utyp
) then
6648 Loc
: constant Source_Ptr
:= Sloc
(N
);
6649 Acc_Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
6650 Alloc_Node
: Node_Id
;
6654 Set_Ekind
(Acc_Typ
, E_Access_Type
);
6656 Set_Associated_Storage_Pool
(Acc_Typ
, RTE
(RE_SS_Pool
));
6658 -- This is an allocator for the secondary stack, and it's fine
6659 -- to have Comes_From_Source set False on it, as gigi knows not
6660 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6663 Make_Allocator
(Loc
,
6665 Make_Qualified_Expression
(Loc
,
6666 Subtype_Mark
=> New_Occurrence_Of
(Etype
(Exp
), Loc
),
6667 Expression
=> Relocate_Node
(Exp
)));
6669 -- We do not want discriminant checks on the declaration,
6670 -- given that it gets its value from the allocator.
6672 Set_No_Initialization
(Alloc_Node
);
6674 Temp
:= Make_Temporary
(Loc
, 'R', Alloc_Node
);
6676 Insert_List_Before_And_Analyze
(N
, New_List
(
6677 Make_Full_Type_Declaration
(Loc
,
6678 Defining_Identifier
=> Acc_Typ
,
6680 Make_Access_To_Object_Definition
(Loc
,
6681 Subtype_Indication
=> Subtype_Ind
)),
6683 Make_Object_Declaration
(Loc
,
6684 Defining_Identifier
=> Temp
,
6685 Object_Definition
=> New_Occurrence_Of
(Acc_Typ
, Loc
),
6686 Expression
=> Alloc_Node
)));
6689 Make_Explicit_Dereference
(Loc
,
6690 Prefix
=> New_Occurrence_Of
(Temp
, Loc
)));
6692 -- Ada 2005 (AI-251): If the type of the returned object is
6693 -- an interface then add an implicit type conversion to force
6694 -- displacement of the "this" pointer.
6696 if Is_Interface
(R_Type
) then
6697 Rewrite
(Exp
, Convert_To
(R_Type
, Relocate_Node
(Exp
)));
6700 Analyze_And_Resolve
(Exp
, R_Type
);
6703 -- Otherwise use the gigi mechanism to allocate result on the
6707 Check_Restriction
(No_Secondary_Stack
, N
);
6708 Set_Storage_Pool
(N
, RTE
(RE_SS_Pool
));
6709 Set_Procedure_To_Call
(N
, RTE
(RE_SS_Allocate
));
6713 -- Implement the rules of 6.5(8-10), which require a tag check in
6714 -- the case of a limited tagged return type, and tag reassignment for
6715 -- nonlimited tagged results. These actions are needed when the return
6716 -- type is a specific tagged type and the result expression is a
6717 -- conversion or a formal parameter, because in that case the tag of
6718 -- the expression might differ from the tag of the specific result type.
6720 if Is_Tagged_Type
(Utyp
)
6721 and then not Is_Class_Wide_Type
(Utyp
)
6722 and then (Nkind_In
(Exp
, N_Type_Conversion
,
6723 N_Unchecked_Type_Conversion
)
6724 or else (Is_Entity_Name
(Exp
)
6725 and then Ekind
(Entity
(Exp
)) in Formal_Kind
))
6727 -- When the return type is limited, perform a check that the tag of
6728 -- the result is the same as the tag of the return type.
6730 if Is_Limited_Type
(R_Type
) then
6732 Make_Raise_Constraint_Error
(Loc
,
6736 Make_Selected_Component
(Loc
,
6737 Prefix
=> Duplicate_Subexpr
(Exp
),
6738 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6740 Make_Attribute_Reference
(Loc
,
6742 New_Occurrence_Of
(Base_Type
(Utyp
), Loc
),
6743 Attribute_Name
=> Name_Tag
)),
6744 Reason
=> CE_Tag_Check_Failed
));
6746 -- If the result type is a specific nonlimited tagged type, then we
6747 -- have to ensure that the tag of the result is that of the result
6748 -- type. This is handled by making a copy of the expression in
6749 -- the case where it might have a different tag, namely when the
6750 -- expression is a conversion or a formal parameter. We create a new
6751 -- object of the result type and initialize it from the expression,
6752 -- which will implicitly force the tag to be set appropriately.
6756 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
6757 Result_Id
: constant Entity_Id
:=
6758 Make_Temporary
(Loc
, 'R', ExpR
);
6759 Result_Exp
: constant Node_Id
:=
6760 New_Occurrence_Of
(Result_Id
, Loc
);
6761 Result_Obj
: constant Node_Id
:=
6762 Make_Object_Declaration
(Loc
,
6763 Defining_Identifier
=> Result_Id
,
6764 Object_Definition
=>
6765 New_Occurrence_Of
(R_Type
, Loc
),
6766 Constant_Present
=> True,
6767 Expression
=> ExpR
);
6770 Set_Assignment_OK
(Result_Obj
);
6771 Insert_Action
(Exp
, Result_Obj
);
6773 Rewrite
(Exp
, Result_Exp
);
6774 Analyze_And_Resolve
(Exp
, R_Type
);
6778 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6779 -- a check that the level of the return expression's underlying type
6780 -- is not deeper than the level of the master enclosing the function.
6781 -- Always generate the check when the type of the return expression
6782 -- is class-wide, when it's a type conversion, or when it's a formal
6783 -- parameter. Otherwise, suppress the check in the case where the
6784 -- return expression has a specific type whose level is known not to
6785 -- be statically deeper than the function's result type.
6787 -- No runtime check needed in interface thunks since it is performed
6788 -- by the target primitive associated with the thunk.
6790 -- Note: accessibility check is skipped in the VM case, since there
6791 -- does not seem to be any practical way to implement this check.
6793 elsif Ada_Version
>= Ada_2005
6794 and then Tagged_Type_Expansion
6795 and then Is_Class_Wide_Type
(R_Type
)
6796 and then not Is_Thunk
(Current_Scope
)
6797 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
6799 (Is_Class_Wide_Type
(Etype
(Exp
))
6800 or else Nkind_In
(Exp
, N_Type_Conversion
,
6801 N_Unchecked_Type_Conversion
)
6802 or else (Is_Entity_Name
(Exp
)
6803 and then Ekind
(Entity
(Exp
)) in Formal_Kind
)
6804 or else Scope_Depth
(Enclosing_Dynamic_Scope
(Etype
(Exp
))) >
6805 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))
6811 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6812 -- "this" to reference the base of the object. This is required to
6813 -- get access to the TSD of the object.
6815 if Is_Class_Wide_Type
(Etype
(Exp
))
6816 and then Is_Interface
(Etype
(Exp
))
6818 -- If the expression is an explicit dereference then we can
6819 -- directly displace the pointer to reference the base of
6822 if Nkind
(Exp
) = N_Explicit_Dereference
then
6824 Make_Explicit_Dereference
(Loc
,
6826 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6827 Make_Function_Call
(Loc
,
6829 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6830 Parameter_Associations
=> New_List
(
6831 Unchecked_Convert_To
(RTE
(RE_Address
),
6832 Duplicate_Subexpr
(Prefix
(Exp
)))))));
6834 -- Similar case to the previous one but the expression is a
6835 -- renaming of an explicit dereference.
6837 elsif Nkind
(Exp
) = N_Identifier
6838 and then Present
(Renamed_Object
(Entity
(Exp
)))
6839 and then Nkind
(Renamed_Object
(Entity
(Exp
)))
6840 = N_Explicit_Dereference
6843 Make_Explicit_Dereference
(Loc
,
6845 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6846 Make_Function_Call
(Loc
,
6848 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6849 Parameter_Associations
=> New_List
(
6850 Unchecked_Convert_To
(RTE
(RE_Address
),
6853 (Renamed_Object
(Entity
(Exp
)))))))));
6855 -- Common case: obtain the address of the actual object and
6856 -- displace the pointer to reference the base of the object.
6860 Make_Explicit_Dereference
(Loc
,
6862 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6863 Make_Function_Call
(Loc
,
6865 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6866 Parameter_Associations
=> New_List
(
6867 Make_Attribute_Reference
(Loc
,
6868 Prefix
=> Duplicate_Subexpr
(Exp
),
6869 Attribute_Name
=> Name_Address
)))));
6873 Make_Attribute_Reference
(Loc
,
6874 Prefix
=> Duplicate_Subexpr
(Exp
),
6875 Attribute_Name
=> Name_Tag
);
6878 -- CodePeer does not do anything useful with
6879 -- Ada.Tags.Type_Specific_Data components.
6881 if not CodePeer_Mode
then
6883 Make_Raise_Program_Error
(Loc
,
6886 Left_Opnd
=> Build_Get_Access_Level
(Loc
, Tag_Node
),
6888 Make_Integer_Literal
(Loc
,
6889 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))),
6890 Reason
=> PE_Accessibility_Check_Failed
));
6894 -- AI05-0073: If function has a controlling access result, check that
6895 -- the tag of the return value, if it is not null, matches designated
6896 -- type of return type.
6898 -- The return expression is referenced twice in the code below, so it
6899 -- must be made free of side effects. Given that different compilers
6900 -- may evaluate these parameters in different order, both occurrences
6903 elsif Ekind
(R_Type
) = E_Anonymous_Access_Type
6904 and then Has_Controlling_Result
(Scope_Id
)
6907 Make_Raise_Constraint_Error
(Loc
,
6912 Left_Opnd
=> Duplicate_Subexpr
(Exp
),
6913 Right_Opnd
=> Make_Null
(Loc
)),
6915 Right_Opnd
=> Make_Op_Ne
(Loc
,
6917 Make_Selected_Component
(Loc
,
6918 Prefix
=> Duplicate_Subexpr
(Exp
),
6919 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6922 Make_Attribute_Reference
(Loc
,
6924 New_Occurrence_Of
(Designated_Type
(R_Type
), Loc
),
6925 Attribute_Name
=> Name_Tag
))),
6927 Reason
=> CE_Tag_Check_Failed
),
6928 Suppress
=> All_Checks
);
6931 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6932 -- ensure that the function result does not outlive an
6933 -- object designated by one of it discriminants.
6935 if Present
(Extra_Accessibility_Of_Result
(Scope_Id
))
6936 and then Has_Unconstrained_Access_Discriminants
(R_Type
)
6939 Discrim_Source
: Node_Id
;
6941 procedure Check_Against_Result_Level
(Level
: Node_Id
);
6942 -- Check the given accessibility level against the level
6943 -- determined by the point of call. (AI05-0234).
6945 --------------------------------
6946 -- Check_Against_Result_Level --
6947 --------------------------------
6949 procedure Check_Against_Result_Level
(Level
: Node_Id
) is
6952 Make_Raise_Program_Error
(Loc
,
6958 (Extra_Accessibility_Of_Result
(Scope_Id
), Loc
)),
6959 Reason
=> PE_Accessibility_Check_Failed
));
6960 end Check_Against_Result_Level
;
6963 Discrim_Source
:= Exp
;
6964 while Nkind
(Discrim_Source
) = N_Qualified_Expression
loop
6965 Discrim_Source
:= Expression
(Discrim_Source
);
6968 if Nkind
(Discrim_Source
) = N_Identifier
6969 and then Is_Return_Object
(Entity
(Discrim_Source
))
6971 Discrim_Source
:= Entity
(Discrim_Source
);
6973 if Is_Constrained
(Etype
(Discrim_Source
)) then
6974 Discrim_Source
:= Etype
(Discrim_Source
);
6976 Discrim_Source
:= Expression
(Parent
(Discrim_Source
));
6979 elsif Nkind
(Discrim_Source
) = N_Identifier
6980 and then Nkind_In
(Original_Node
(Discrim_Source
),
6981 N_Aggregate
, N_Extension_Aggregate
)
6983 Discrim_Source
:= Original_Node
(Discrim_Source
);
6985 elsif Nkind
(Discrim_Source
) = N_Explicit_Dereference
and then
6986 Nkind
(Original_Node
(Discrim_Source
)) = N_Function_Call
6988 Discrim_Source
:= Original_Node
(Discrim_Source
);
6991 Discrim_Source
:= Unqual_Conv
(Discrim_Source
);
6993 case Nkind
(Discrim_Source
) is
6994 when N_Defining_Identifier
=>
6995 pragma Assert
(Is_Composite_Type
(Discrim_Source
)
6996 and then Has_Discriminants
(Discrim_Source
)
6997 and then Is_Constrained
(Discrim_Source
));
7000 Discrim
: Entity_Id
:=
7001 First_Discriminant
(Base_Type
(R_Type
));
7002 Disc_Elmt
: Elmt_Id
:=
7003 First_Elmt
(Discriminant_Constraint
7007 if Ekind
(Etype
(Discrim
)) =
7008 E_Anonymous_Access_Type
7010 Check_Against_Result_Level
7011 (Dynamic_Accessibility_Level
(Node
(Disc_Elmt
)));
7014 Next_Elmt
(Disc_Elmt
);
7015 Next_Discriminant
(Discrim
);
7016 exit when not Present
(Discrim
);
7021 | N_Extension_Aggregate
7023 -- Unimplemented: extension aggregate case where discrims
7024 -- come from ancestor part, not extension part.
7027 Discrim
: Entity_Id
:=
7028 First_Discriminant
(Base_Type
(R_Type
));
7030 Disc_Exp
: Node_Id
:= Empty
;
7032 Positionals_Exhausted
7033 : Boolean := not Present
(Expressions
7036 function Associated_Expr
7037 (Comp_Id
: Entity_Id
;
7038 Associations
: List_Id
) return Node_Id
;
7040 -- Given a component and a component associations list,
7041 -- locate the expression for that component; returns
7042 -- Empty if no such expression is found.
7044 ---------------------
7045 -- Associated_Expr --
7046 ---------------------
7048 function Associated_Expr
7049 (Comp_Id
: Entity_Id
;
7050 Associations
: List_Id
) return Node_Id
7056 -- Simple linear search seems ok here
7058 Assoc
:= First
(Associations
);
7059 while Present
(Assoc
) loop
7060 Choice
:= First
(Choices
(Assoc
));
7061 while Present
(Choice
) loop
7062 if (Nkind
(Choice
) = N_Identifier
7063 and then Chars
(Choice
) = Chars
(Comp_Id
))
7064 or else (Nkind
(Choice
) = N_Others_Choice
)
7066 return Expression
(Assoc
);
7076 end Associated_Expr
;
7078 -- Start of processing for Expand_Simple_Function_Return
7081 if not Positionals_Exhausted
then
7082 Disc_Exp
:= First
(Expressions
(Discrim_Source
));
7086 if Positionals_Exhausted
then
7090 Component_Associations
(Discrim_Source
));
7093 if Ekind
(Etype
(Discrim
)) =
7094 E_Anonymous_Access_Type
7096 Check_Against_Result_Level
7097 (Dynamic_Accessibility_Level
(Disc_Exp
));
7100 Next_Discriminant
(Discrim
);
7101 exit when not Present
(Discrim
);
7103 if not Positionals_Exhausted
then
7105 Positionals_Exhausted
:= not Present
(Disc_Exp
);
7110 when N_Function_Call
=>
7112 -- No check needed (check performed by callee)
7118 Level
: constant Node_Id
:=
7119 Make_Integer_Literal
(Loc
,
7120 Object_Access_Level
(Discrim_Source
));
7123 -- Unimplemented: check for name prefix that includes
7124 -- a dereference of an access value with a dynamic
7125 -- accessibility level (e.g., an access param or a
7126 -- saooaaat) and use dynamic level in that case. For
7128 -- return Access_Param.all(Some_Index).Some_Component;
7131 Set_Etype
(Level
, Standard_Natural
);
7132 Check_Against_Result_Level
(Level
);
7138 -- If we are returning an object that may not be bit-aligned, then copy
7139 -- the value into a temporary first. This copy may need to expand to a
7140 -- loop of component operations.
7142 if Is_Possibly_Unaligned_Slice
(Exp
)
7143 or else Is_Possibly_Unaligned_Object
(Exp
)
7146 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
7147 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', ExpR
);
7150 Make_Object_Declaration
(Loc
,
7151 Defining_Identifier
=> Tnn
,
7152 Constant_Present
=> True,
7153 Object_Definition
=> New_Occurrence_Of
(R_Type
, Loc
),
7154 Expression
=> ExpR
),
7155 Suppress
=> All_Checks
);
7156 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
7160 -- Call the _Postconditions procedure if the related function has
7161 -- contract assertions that need to be verified on exit.
7163 if Ekind
(Scope_Id
) = E_Function
7164 and then Present
(Postconditions_Proc
(Scope_Id
))
7166 -- In the case of discriminated objects, we have created a
7167 -- constrained subtype above, and used the underlying type. This
7168 -- transformation is post-analysis and harmless, except that now the
7169 -- call to the post-condition will be analyzed and the type kinds
7172 if Nkind
(Exp
) = N_Unchecked_Type_Conversion
7173 and then Is_Private_Type
(R_Type
) /= Is_Private_Type
(Etype
(Exp
))
7175 Rewrite
(Exp
, Expression
(Relocate_Node
(Exp
)));
7178 -- We are going to reference the returned value twice in this case,
7179 -- once in the call to _Postconditions, and once in the actual return
7180 -- statement, but we can't have side effects happening twice.
7182 Force_Evaluation
(Exp
, Mode
=> Strict
);
7184 -- Generate call to _Postconditions
7187 Make_Procedure_Call_Statement
(Loc
,
7189 New_Occurrence_Of
(Postconditions_Proc
(Scope_Id
), Loc
),
7190 Parameter_Associations
=> New_List
(New_Copy_Tree
(Exp
))));
7193 -- Ada 2005 (AI-251): If this return statement corresponds with an
7194 -- simple return statement associated with an extended return statement
7195 -- and the type of the returned object is an interface then generate an
7196 -- implicit conversion to force displacement of the "this" pointer.
7198 if Ada_Version
>= Ada_2005
7199 and then Comes_From_Extended_Return_Statement
(N
)
7200 and then Nkind
(Expression
(N
)) = N_Identifier
7201 and then Is_Interface
(Utyp
)
7202 and then Utyp
/= Underlying_Type
(Exptyp
)
7204 Rewrite
(Exp
, Convert_To
(Utyp
, Relocate_Node
(Exp
)));
7205 Analyze_And_Resolve
(Exp
);
7207 end Expand_Simple_Function_Return
;
7209 --------------------------------------------
7210 -- Has_Unconstrained_Access_Discriminants --
7211 --------------------------------------------
7213 function Has_Unconstrained_Access_Discriminants
7214 (Subtyp
: Entity_Id
) return Boolean
7219 if Has_Discriminants
(Subtyp
)
7220 and then not Is_Constrained
(Subtyp
)
7222 Discr
:= First_Discriminant
(Subtyp
);
7223 while Present
(Discr
) loop
7224 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
then
7228 Next_Discriminant
(Discr
);
7233 end Has_Unconstrained_Access_Discriminants
;
7235 -----------------------------------
7236 -- Is_Build_In_Place_Result_Type --
7237 -----------------------------------
7239 function Is_Build_In_Place_Result_Type
(Typ
: Entity_Id
) return Boolean is
7241 if not Expander_Active
then
7245 -- In Ada 2005 all functions with an inherently limited return type
7246 -- must be handled using a build-in-place profile, including the case
7247 -- of a function with a limited interface result, where the function
7248 -- may return objects of nonlimited descendants.
7250 if Is_Limited_View
(Typ
) then
7251 return Ada_Version
>= Ada_2005
and then not Debug_Flag_Dot_L
;
7254 if Debug_Flag_Dot_9
then
7258 if Has_Interfaces
(Typ
) then
7263 T
: Entity_Id
:= Typ
;
7265 -- For T'Class, return True if it's True for T. This is necessary
7266 -- because a class-wide function might say "return F (...)", where
7267 -- F returns the corresponding specific type. We need a loop in
7268 -- case T is a subtype of a class-wide type.
7270 while Is_Class_Wide_Type
(T
) loop
7274 -- If this is a generic formal type in an instance, return True if
7275 -- it's True for the generic actual type.
7277 if Nkind
(Parent
(T
)) = N_Subtype_Declaration
7278 and then Present
(Generic_Parent_Type
(Parent
(T
)))
7280 T
:= Entity
(Subtype_Indication
(Parent
(T
)));
7282 if Present
(Full_View
(T
)) then
7287 if Present
(Underlying_Type
(T
)) then
7288 T
:= Underlying_Type
(T
);
7293 -- So we can stop here in the debugger
7295 -- ???For now, enable build-in-place for a very narrow set of
7296 -- controlled types. Change "if True" to "if False" to
7297 -- experiment more controlled types. Eventually, we would
7298 -- like to enable build-in-place for all tagged types, all
7299 -- types that need finalization, and all caller-unknown-size
7303 Result
:= Is_Controlled
(T
)
7304 and then Present
(Enclosing_Subprogram
(T
))
7305 and then not Is_Compilation_Unit
(Enclosing_Subprogram
(T
))
7306 and then Ekind
(Enclosing_Subprogram
(T
)) = E_Procedure
;
7308 Result
:= Is_Controlled
(T
);
7315 end Is_Build_In_Place_Result_Type
;
7317 --------------------------------
7318 -- Is_Build_In_Place_Function --
7319 --------------------------------
7321 function Is_Build_In_Place_Function
(E
: Entity_Id
) return Boolean is
7323 -- This function is called from Expand_Subtype_From_Expr during
7324 -- semantic analysis, even when expansion is off. In those cases
7325 -- the build_in_place expansion will not take place.
7327 if not Expander_Active
then
7331 -- For now we test whether E denotes a function or access-to-function
7332 -- type whose result subtype is inherently limited. Later this test
7333 -- may be revised to allow composite nonlimited types. Functions with
7334 -- a foreign convention or whose result type has a foreign convention
7337 if Ekind_In
(E
, E_Function
, E_Generic_Function
)
7338 or else (Ekind
(E
) = E_Subprogram_Type
7339 and then Etype
(E
) /= Standard_Void_Type
)
7341 -- Note: If the function has a foreign convention, it cannot build
7342 -- its result in place, so you're on your own. On the other hand,
7343 -- if only the return type has a foreign convention, its layout is
7344 -- intended to be compatible with the other language, but the build-
7345 -- in place machinery can ensure that the object is not copied.
7347 return Is_Build_In_Place_Result_Type
(Etype
(E
))
7348 and then not Has_Foreign_Convention
(E
)
7349 and then not Debug_Flag_Dot_L
;
7354 end Is_Build_In_Place_Function
;
7356 -------------------------------------
7357 -- Is_Build_In_Place_Function_Call --
7358 -------------------------------------
7360 function Is_Build_In_Place_Function_Call
(N
: Node_Id
) return Boolean is
7361 Exp_Node
: constant Node_Id
:= Unqual_Conv
(N
);
7362 Function_Id
: Entity_Id
;
7365 -- Return False if the expander is currently inactive, since awareness
7366 -- of build-in-place treatment is only relevant during expansion. Note
7367 -- that Is_Build_In_Place_Function, which is called as part of this
7368 -- function, is also conditioned this way, but we need to check here as
7369 -- well to avoid blowing up on processing protected calls when expansion
7370 -- is disabled (such as with -gnatc) since those would trip over the
7371 -- raise of Program_Error below.
7373 -- In SPARK mode, build-in-place calls are not expanded, so that we
7374 -- may end up with a call that is neither resolved to an entity, nor
7375 -- an indirect call.
7377 if not Expander_Active
or else Nkind
(Exp_Node
) /= N_Function_Call
then
7381 if Is_Entity_Name
(Name
(Exp_Node
)) then
7382 Function_Id
:= Entity
(Name
(Exp_Node
));
7384 -- In the case of an explicitly dereferenced call, use the subprogram
7385 -- type generated for the dereference.
7387 elsif Nkind
(Name
(Exp_Node
)) = N_Explicit_Dereference
then
7388 Function_Id
:= Etype
(Name
(Exp_Node
));
7390 -- This may be a call to a protected function.
7392 elsif Nkind
(Name
(Exp_Node
)) = N_Selected_Component
then
7393 Function_Id
:= Etype
(Entity
(Selector_Name
(Name
(Exp_Node
))));
7396 raise Program_Error
;
7400 Result
: constant Boolean := Is_Build_In_Place_Function
(Function_Id
);
7401 -- So we can stop here in the debugger
7405 end Is_Build_In_Place_Function_Call
;
7407 -----------------------
7408 -- Freeze_Subprogram --
7409 -----------------------
7411 procedure Freeze_Subprogram
(N
: Node_Id
) is
7412 Loc
: constant Source_Ptr
:= Sloc
(N
);
7414 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
);
7415 -- (Ada 2005): Register a predefined primitive in all the secondary
7416 -- dispatch tables of its primitive type.
7418 ----------------------------------
7419 -- Register_Predefined_DT_Entry --
7420 ----------------------------------
7422 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
) is
7423 Iface_DT_Ptr
: Elmt_Id
;
7424 Tagged_Typ
: Entity_Id
;
7425 Thunk_Id
: Entity_Id
;
7426 Thunk_Code
: Node_Id
;
7429 Tagged_Typ
:= Find_Dispatching_Type
(Prim
);
7431 if No
(Access_Disp_Table
(Tagged_Typ
))
7432 or else not Has_Interfaces
(Tagged_Typ
)
7433 or else not RTE_Available
(RE_Interface_Tag
)
7434 or else Restriction_Active
(No_Dispatching_Calls
)
7439 -- Skip the first two access-to-dispatch-table pointers since they
7440 -- leads to the primary dispatch table (predefined DT and user
7441 -- defined DT). We are only concerned with the secondary dispatch
7442 -- table pointers. Note that the access-to- dispatch-table pointer
7443 -- corresponds to the first implemented interface retrieved below.
7446 Next_Elmt
(Next_Elmt
(First_Elmt
(Access_Disp_Table
(Tagged_Typ
))));
7448 while Present
(Iface_DT_Ptr
)
7449 and then Ekind
(Node
(Iface_DT_Ptr
)) = E_Constant
7451 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
7452 Expand_Interface_Thunk
(Prim
, Thunk_Id
, Thunk_Code
);
7454 if Present
(Thunk_Code
) then
7455 Insert_Actions_After
(N
, New_List
(
7458 Build_Set_Predefined_Prim_Op_Address
(Loc
,
7460 New_Occurrence_Of
(Node
(Next_Elmt
(Iface_DT_Ptr
)), Loc
),
7461 Position
=> DT_Position
(Prim
),
7463 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
7464 Make_Attribute_Reference
(Loc
,
7465 Prefix
=> New_Occurrence_Of
(Thunk_Id
, Loc
),
7466 Attribute_Name
=> Name_Unrestricted_Access
))),
7468 Build_Set_Predefined_Prim_Op_Address
(Loc
,
7471 (Node
(Next_Elmt
(Next_Elmt
(Next_Elmt
(Iface_DT_Ptr
)))),
7473 Position
=> DT_Position
(Prim
),
7475 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
7476 Make_Attribute_Reference
(Loc
,
7477 Prefix
=> New_Occurrence_Of
(Prim
, Loc
),
7478 Attribute_Name
=> Name_Unrestricted_Access
)))));
7481 -- Skip the tag of the predefined primitives dispatch table
7483 Next_Elmt
(Iface_DT_Ptr
);
7484 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
7486 -- Skip tag of the no-thunks dispatch table
7488 Next_Elmt
(Iface_DT_Ptr
);
7489 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
7491 -- Skip tag of predefined primitives no-thunks dispatch table
7493 Next_Elmt
(Iface_DT_Ptr
);
7494 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
7496 Next_Elmt
(Iface_DT_Ptr
);
7498 end Register_Predefined_DT_Entry
;
7502 Subp
: constant Entity_Id
:= Entity
(N
);
7504 -- Start of processing for Freeze_Subprogram
7507 -- We suppress the initialization of the dispatch table entry when
7508 -- not Tagged_Type_Expansion because the dispatching mechanism is
7509 -- handled internally by the target.
7511 if Is_Dispatching_Operation
(Subp
)
7512 and then not Is_Abstract_Subprogram
(Subp
)
7513 and then Present
(DTC_Entity
(Subp
))
7514 and then Present
(Scope
(DTC_Entity
(Subp
)))
7515 and then Tagged_Type_Expansion
7516 and then not Restriction_Active
(No_Dispatching_Calls
)
7517 and then RTE_Available
(RE_Tag
)
7520 Typ
: constant Entity_Id
:= Scope
(DTC_Entity
(Subp
));
7523 -- Handle private overridden primitives
7525 if not Is_CPP_Class
(Typ
) then
7526 Check_Overriding_Operation
(Subp
);
7529 -- We assume that imported CPP primitives correspond with objects
7530 -- whose constructor is in the CPP side; therefore we don't need
7531 -- to generate code to register them in the dispatch table.
7533 if Is_CPP_Class
(Typ
) then
7536 -- Handle CPP primitives found in derivations of CPP_Class types.
7537 -- These primitives must have been inherited from some parent, and
7538 -- there is no need to register them in the dispatch table because
7539 -- Build_Inherit_Prims takes care of initializing these slots.
7541 elsif Is_Imported
(Subp
)
7542 and then (Convention
(Subp
) = Convention_CPP
7543 or else Convention
(Subp
) = Convention_C
)
7547 -- Generate code to register the primitive in non statically
7548 -- allocated dispatch tables
7550 elsif not Building_Static_DT
(Scope
(DTC_Entity
(Subp
))) then
7552 -- When a primitive is frozen, enter its name in its dispatch
7555 if not Is_Interface
(Typ
)
7556 or else Present
(Interface_Alias
(Subp
))
7558 if Is_Predefined_Dispatching_Operation
(Subp
) then
7559 Register_Predefined_DT_Entry
(Subp
);
7562 Insert_Actions_After
(N
,
7563 Register_Primitive
(Loc
, Prim
=> Subp
));
7569 -- Mark functions that return by reference. Note that it cannot be part
7570 -- of the normal semantic analysis of the spec since the underlying
7571 -- returned type may not be known yet (for private types).
7574 Typ
: constant Entity_Id
:= Etype
(Subp
);
7575 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
7578 if Is_Limited_View
(Typ
) then
7579 Set_Returns_By_Ref
(Subp
);
7581 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
7582 Set_Returns_By_Ref
(Subp
);
7586 -- Wnen freezing a null procedure, analyze its delayed aspects now
7587 -- because we may not have reached the end of the declarative list when
7588 -- delayed aspects are normally analyzed. This ensures that dispatching
7589 -- calls are properly rewritten when the generated _Postcondition
7590 -- procedure is analyzed in the null procedure body.
7592 if Nkind
(Parent
(Subp
)) = N_Procedure_Specification
7593 and then Null_Present
(Parent
(Subp
))
7595 Analyze_Entry_Or_Subprogram_Contract
(Subp
);
7597 end Freeze_Subprogram
;
7599 ------------------------------
7600 -- Insert_Post_Call_Actions --
7601 ------------------------------
7603 procedure Insert_Post_Call_Actions
(N
: Node_Id
; Post_Call
: List_Id
) is
7604 Context
: constant Node_Id
:= Parent
(N
);
7607 if Is_Empty_List
(Post_Call
) then
7611 -- Cases where the call is not a member of a statement list. This
7612 -- includes the case where the call is an actual in another function
7613 -- call or indexing, i.e. an expression context as well.
7615 if not Is_List_Member
(N
)
7616 or else Nkind_In
(Context
, N_Function_Call
, N_Indexed_Component
)
7618 -- In Ada 2012 the call may be a function call in an expression
7619 -- (since OUT and IN OUT parameters are now allowed for such calls).
7620 -- The write-back of (in)-out parameters is handled by the back-end,
7621 -- but the constraint checks generated when subtypes of formal and
7622 -- actual don't match must be inserted in the form of assignments.
7624 if Nkind
(Original_Node
(N
)) = N_Function_Call
then
7625 pragma Assert
(Ada_Version
>= Ada_2012
);
7626 -- Functions with '[in] out' parameters are only allowed in Ada
7629 -- We used to handle this by climbing up parents to a
7630 -- non-statement/declaration and then simply making a call to
7631 -- Insert_Actions_After (P, Post_Call), but that doesn't work
7632 -- for Ada 2012. If we are in the middle of an expression, e.g.
7633 -- the condition of an IF, this call would insert after the IF
7634 -- statement, which is much too late to be doing the write back.
7637 -- if Clobber (X) then
7638 -- Put_Line (X'Img);
7643 -- Now assume Clobber changes X, if we put the write back after
7644 -- the IF, the Put_Line gets the wrong value and the goto causes
7645 -- the write back to be skipped completely.
7647 -- To deal with this, we replace the call by
7650 -- Tnnn : constant function-result-type := function-call;
7651 -- Post_Call actions
7657 Loc
: constant Source_Ptr
:= Sloc
(N
);
7658 Tnnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
7659 FRTyp
: constant Entity_Id
:= Etype
(N
);
7660 Name
: constant Node_Id
:= Relocate_Node
(N
);
7663 Prepend_To
(Post_Call
,
7664 Make_Object_Declaration
(Loc
,
7665 Defining_Identifier
=> Tnnn
,
7666 Object_Definition
=> New_Occurrence_Of
(FRTyp
, Loc
),
7667 Constant_Present
=> True,
7668 Expression
=> Name
));
7671 Make_Expression_With_Actions
(Loc
,
7672 Actions
=> Post_Call
,
7673 Expression
=> New_Occurrence_Of
(Tnnn
, Loc
)));
7675 -- We don't want to just blindly call Analyze_And_Resolve
7676 -- because that would cause unwanted recursion on the call.
7677 -- So for a moment set the call as analyzed to prevent that
7678 -- recursion, and get the rest analyzed properly, then reset
7679 -- the analyzed flag, so our caller can continue.
7681 Set_Analyzed
(Name
, True);
7682 Analyze_And_Resolve
(N
, FRTyp
);
7683 Set_Analyzed
(Name
, False);
7686 -- If not the special Ada 2012 case of a function call, then we must
7687 -- have the triggering statement of a triggering alternative or an
7688 -- entry call alternative, and we can add the post call stuff to the
7689 -- corresponding statement list.
7692 pragma Assert
(Nkind_In
(Context
, N_Entry_Call_Alternative
,
7693 N_Triggering_Alternative
));
7695 if Is_Non_Empty_List
(Statements
(Context
)) then
7696 Insert_List_Before_And_Analyze
7697 (First
(Statements
(Context
)), Post_Call
);
7699 Set_Statements
(Context
, Post_Call
);
7703 -- A procedure call is always part of a declarative or statement list,
7704 -- however a function call may appear nested within a construct. Most
7705 -- cases of function call nesting are handled in the special case above.
7706 -- The only exception is when the function call acts as an actual in a
7707 -- procedure call. In this case the function call is in a list, but the
7708 -- post-call actions must be inserted after the procedure call.
7710 elsif Nkind
(Context
) = N_Procedure_Call_Statement
then
7711 Insert_Actions_After
(Context
, Post_Call
);
7713 -- Otherwise, normal case where N is in a statement sequence, just put
7714 -- the post-call stuff after the call statement.
7717 Insert_Actions_After
(N
, Post_Call
);
7719 end Insert_Post_Call_Actions
;
7721 -----------------------
7722 -- Is_Null_Procedure --
7723 -----------------------
7725 function Is_Null_Procedure
(Subp
: Entity_Id
) return Boolean is
7726 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
7729 if Ekind
(Subp
) /= E_Procedure
then
7732 -- Check if this is a declared null procedure
7734 elsif Nkind
(Decl
) = N_Subprogram_Declaration
then
7735 if not Null_Present
(Specification
(Decl
)) then
7738 elsif No
(Body_To_Inline
(Decl
)) then
7741 -- Check if the body contains only a null statement, followed by
7742 -- the return statement added during expansion.
7746 Orig_Bod
: constant Node_Id
:= Body_To_Inline
(Decl
);
7752 if Nkind
(Orig_Bod
) /= N_Subprogram_Body
then
7755 -- We must skip SCIL nodes because they are currently
7756 -- implemented as special N_Null_Statement nodes.
7760 (Statements
(Handled_Statement_Sequence
(Orig_Bod
)));
7761 Stat2
:= Next_Non_SCIL_Node
(Stat
);
7764 Is_Empty_List
(Declarations
(Orig_Bod
))
7765 and then Nkind
(Stat
) = N_Null_Statement
7769 (Nkind
(Stat2
) = N_Simple_Return_Statement
7770 and then No
(Next
(Stat2
))));
7778 end Is_Null_Procedure
;
7780 -------------------------------------------
7781 -- Make_Build_In_Place_Call_In_Allocator --
7782 -------------------------------------------
7784 procedure Make_Build_In_Place_Call_In_Allocator
7785 (Allocator
: Node_Id
;
7786 Function_Call
: Node_Id
)
7788 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
7789 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
7790 Func_Call
: Node_Id
:= Function_Call
;
7791 Ref_Func_Call
: Node_Id
;
7792 Function_Id
: Entity_Id
;
7793 Result_Subt
: Entity_Id
;
7794 New_Allocator
: Node_Id
;
7795 Return_Obj_Access
: Entity_Id
; -- temp for function result
7796 Temp_Init
: Node_Id
; -- initial value of Return_Obj_Access
7797 Alloc_Form
: BIP_Allocation_Form
;
7798 Pool
: Node_Id
; -- nonnull if Alloc_Form = User_Storage_Pool
7799 Return_Obj_Actual
: Node_Id
; -- the temp.all, in caller-allocates case
7800 Chain
: Entity_Id
; -- activation chain, in case of tasks
7803 -- Step past qualification or unchecked conversion (the latter can occur
7804 -- in cases of calls to 'Input).
7806 if Nkind_In
(Func_Call
,
7807 N_Qualified_Expression
,
7809 N_Unchecked_Type_Conversion
)
7811 Func_Call
:= Expression
(Func_Call
);
7814 -- Mark the call as processed as a build-in-place call
7816 pragma Assert
(not Is_Expanded_Build_In_Place_Call
(Func_Call
));
7817 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
7819 if Is_Entity_Name
(Name
(Func_Call
)) then
7820 Function_Id
:= Entity
(Name
(Func_Call
));
7822 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
7823 Function_Id
:= Etype
(Name
(Func_Call
));
7826 raise Program_Error
;
7829 Result_Subt
:= Available_View
(Etype
(Function_Id
));
7831 -- Create a temp for the function result. In the caller-allocates case,
7832 -- this will be initialized to the result of a new uninitialized
7833 -- allocator. Note: we do not use Allocator as the Related_Node of
7834 -- Return_Obj_Access in call to Make_Temporary below as this would
7835 -- create a sort of infinite "recursion".
7837 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
7838 Set_Etype
(Return_Obj_Access
, Acc_Type
);
7839 Set_Can_Never_Be_Null
(Acc_Type
, False);
7840 -- It gets initialized to null, so we can't have that
7842 -- When the result subtype is constrained, the return object is
7843 -- allocated on the caller side, and access to it is passed to the
7846 -- Here and in related routines, we must examine the full view of the
7847 -- type, because the view at the point of call may differ from that
7848 -- that in the function body, and the expansion mechanism depends on
7849 -- the characteristics of the full view.
7851 if Is_Constrained
(Underlying_Type
(Result_Subt
)) then
7852 -- Replace the initialized allocator of form "new T'(Func (...))"
7853 -- with an uninitialized allocator of form "new T", where T is the
7854 -- result subtype of the called function. The call to the function
7855 -- is handled separately further below.
7858 Make_Allocator
(Loc
,
7859 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
7860 Set_No_Initialization
(New_Allocator
);
7862 -- Copy attributes to new allocator. Note that the new allocator
7863 -- logically comes from source if the original one did, so copy the
7864 -- relevant flag. This ensures proper treatment of the restriction
7865 -- No_Implicit_Heap_Allocations in this case.
7867 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
7868 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
7869 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
7871 Rewrite
(Allocator
, New_Allocator
);
7873 -- Initial value of the temp is the result of the uninitialized
7874 -- allocator. Unchecked_Convert is needed for T'Input where T is
7875 -- derived from a controlled type.
7877 Temp_Init
:= Relocate_Node
(Allocator
);
7880 (Function_Call
, N_Type_Conversion
, N_Unchecked_Type_Conversion
)
7882 Temp_Init
:= Unchecked_Convert_To
(Acc_Type
, Temp_Init
);
7885 -- Indicate that caller allocates, and pass in the return object
7887 Alloc_Form
:= Caller_Allocation
;
7888 Pool
:= Make_Null
(No_Location
);
7889 Return_Obj_Actual
:=
7890 Make_Unchecked_Type_Conversion
(Loc
,
7891 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
7893 Make_Explicit_Dereference
(Loc
,
7894 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)));
7896 -- When the result subtype is unconstrained, the function itself must
7897 -- perform the allocation of the return object, so we pass parameters
7903 -- Case of a user-defined storage pool. Pass an allocation parameter
7904 -- indicating that the function should allocate its result in the
7905 -- pool, and pass the pool. Use 'Unrestricted_Access because the
7906 -- pool may not be aliased.
7908 if Present
(Associated_Storage_Pool
(Acc_Type
)) then
7909 Alloc_Form
:= User_Storage_Pool
;
7911 Make_Attribute_Reference
(Loc
,
7914 (Associated_Storage_Pool
(Acc_Type
), Loc
),
7915 Attribute_Name
=> Name_Unrestricted_Access
);
7917 -- No user-defined pool; pass an allocation parameter indicating that
7918 -- the function should allocate its result on the heap.
7921 Alloc_Form
:= Global_Heap
;
7922 Pool
:= Make_Null
(No_Location
);
7925 -- The caller does not provide the return object in this case, so we
7926 -- have to pass null for the object access actual.
7928 Return_Obj_Actual
:= Empty
;
7931 -- Declare the temp object
7933 Insert_Action
(Allocator
,
7934 Make_Object_Declaration
(Loc
,
7935 Defining_Identifier
=> Return_Obj_Access
,
7936 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
7937 Expression
=> Temp_Init
));
7939 Ref_Func_Call
:= Make_Reference
(Loc
, Func_Call
);
7941 -- Ada 2005 (AI-251): If the type of the allocator is an interface
7942 -- then generate an implicit conversion to force displacement of the
7945 if Is_Interface
(Designated_Type
(Acc_Type
)) then
7948 OK_Convert_To
(Acc_Type
, Ref_Func_Call
));
7950 -- If the types are incompatible, we need an unchecked conversion. Note
7951 -- that the full types will be compatible, but the types not visibly
7955 (Function_Call
, N_Type_Conversion
, N_Unchecked_Type_Conversion
)
7957 Ref_Func_Call
:= Unchecked_Convert_To
(Acc_Type
, Ref_Func_Call
);
7961 Assign
: constant Node_Id
:=
7962 Make_Assignment_Statement
(Loc
,
7963 Name
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
),
7964 Expression
=> Ref_Func_Call
);
7965 -- Assign the result of the function call into the temp. In the
7966 -- caller-allocates case, this is overwriting the temp with its
7967 -- initial value, which has no effect. In the callee-allocates case,
7968 -- this is setting the temp to point to the object allocated by the
7969 -- callee. Unchecked_Convert is needed for T'Input where T is derived
7970 -- from a controlled type.
7973 -- Actions to be inserted. If there are no tasks, this is just the
7974 -- assignment statement. If the allocated object has tasks, we need
7975 -- to wrap the assignment in a block that activates them. The
7976 -- activation chain of that block must be passed to the function,
7977 -- rather than some outer chain.
7979 if Has_Task
(Result_Subt
) then
7980 Actions
:= New_List
;
7981 Build_Task_Allocate_Block_With_Init_Stmts
7982 (Actions
, Allocator
, Init_Stmts
=> New_List
(Assign
));
7983 Chain
:= Activation_Chain_Entity
(Last
(Actions
));
7985 Actions
:= New_List
(Assign
);
7989 Insert_Actions
(Allocator
, Actions
);
7992 -- When the function has a controlling result, an allocation-form
7993 -- parameter must be passed indicating that the caller is allocating
7994 -- the result object. This is needed because such a function can be
7995 -- called as a dispatching operation and must be treated similarly
7996 -- to functions with unconstrained result subtypes.
7998 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7999 (Func_Call
, Function_Id
, Alloc_Form
, Pool_Actual
=> Pool
);
8001 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8002 (Func_Call
, Function_Id
, Acc_Type
);
8004 Add_Task_Actuals_To_Build_In_Place_Call
8005 (Func_Call
, Function_Id
, Master_Actual
=> Master_Id
(Acc_Type
),
8008 -- Add an implicit actual to the function call that provides access
8009 -- to the allocated object. An unchecked conversion to the (specific)
8010 -- result subtype of the function is inserted to handle cases where
8011 -- the access type of the allocator has a class-wide designated type.
8013 Add_Access_Actual_To_Build_In_Place_Call
8014 (Func_Call
, Function_Id
, Return_Obj_Actual
);
8016 -- Finally, replace the allocator node with a reference to the temp
8018 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
8020 Analyze_And_Resolve
(Allocator
, Acc_Type
);
8021 end Make_Build_In_Place_Call_In_Allocator
;
8023 ---------------------------------------------------
8024 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8025 ---------------------------------------------------
8027 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8028 (Function_Call
: Node_Id
)
8030 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8031 Func_Call
: constant Node_Id
:= Unqual_Conv
(Function_Call
);
8032 Function_Id
: Entity_Id
;
8033 Result_Subt
: Entity_Id
;
8034 Return_Obj_Id
: Entity_Id
;
8035 Return_Obj_Decl
: Entity_Id
;
8038 -- If the call has already been processed to add build-in-place actuals
8039 -- then return. One place this can occur is for calls to build-in-place
8040 -- functions that occur within a call to a protected operation, where
8041 -- due to rewriting and expansion of the protected call there can be
8042 -- more than one call to Expand_Actuals for the same set of actuals.
8044 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8048 -- Mark the call as processed as a build-in-place call
8050 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8052 if Is_Entity_Name
(Name
(Func_Call
)) then
8053 Function_Id
:= Entity
(Name
(Func_Call
));
8055 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8056 Function_Id
:= Etype
(Name
(Func_Call
));
8059 raise Program_Error
;
8062 Result_Subt
:= Etype
(Function_Id
);
8064 -- If the build-in-place function returns a controlled object, then the
8065 -- object needs to be finalized immediately after the context. Since
8066 -- this case produces a transient scope, the servicing finalizer needs
8067 -- to name the returned object. Create a temporary which is initialized
8068 -- with the function call:
8070 -- Temp_Id : Func_Type := BIP_Func_Call;
8072 -- The initialization expression of the temporary will be rewritten by
8073 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8074 -- Call_In_Object_Declaration.
8076 if Needs_Finalization
(Result_Subt
) then
8078 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
8079 Temp_Decl
: Node_Id
;
8082 -- Reset the guard on the function call since the following does
8083 -- not perform actual call expansion.
8085 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
, False);
8088 Make_Object_Declaration
(Loc
,
8089 Defining_Identifier
=> Temp_Id
,
8090 Object_Definition
=>
8091 New_Occurrence_Of
(Result_Subt
, Loc
),
8093 New_Copy_Tree
(Function_Call
));
8095 Insert_Action
(Function_Call
, Temp_Decl
);
8097 Rewrite
(Function_Call
, New_Occurrence_Of
(Temp_Id
, Loc
));
8098 Analyze
(Function_Call
);
8101 -- When the result subtype is definite, an object of the subtype is
8102 -- declared and an access value designating it is passed as an actual.
8104 elsif Caller_Known_Size
(Func_Call
, Result_Subt
) then
8106 -- Create a temporary object to hold the function result
8108 Return_Obj_Id
:= Make_Temporary
(Loc
, 'R');
8109 Set_Etype
(Return_Obj_Id
, Result_Subt
);
8112 Make_Object_Declaration
(Loc
,
8113 Defining_Identifier
=> Return_Obj_Id
,
8114 Aliased_Present
=> True,
8115 Object_Definition
=> New_Occurrence_Of
(Result_Subt
, Loc
));
8117 Set_No_Initialization
(Return_Obj_Decl
);
8119 Insert_Action
(Func_Call
, Return_Obj_Decl
);
8121 -- When the function has a controlling result, an allocation-form
8122 -- parameter must be passed indicating that the caller is allocating
8123 -- the result object. This is needed because such a function can be
8124 -- called as a dispatching operation and must be treated similarly
8125 -- to functions with unconstrained result subtypes.
8127 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8128 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8130 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8131 (Func_Call
, Function_Id
);
8133 Add_Task_Actuals_To_Build_In_Place_Call
8134 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8136 -- Add an implicit actual to the function call that provides access
8137 -- to the caller's return object.
8139 Add_Access_Actual_To_Build_In_Place_Call
8140 (Func_Call
, Function_Id
, New_Occurrence_Of
(Return_Obj_Id
, Loc
));
8142 -- When the result subtype is unconstrained, the function must allocate
8143 -- the return object in the secondary stack, so appropriate implicit
8144 -- parameters are added to the call to indicate that. A transient
8145 -- scope is established to ensure eventual cleanup of the result.
8148 -- Pass an allocation parameter indicating that the function should
8149 -- allocate its result on the secondary stack.
8151 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8152 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
8154 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8155 (Func_Call
, Function_Id
);
8157 Add_Task_Actuals_To_Build_In_Place_Call
8158 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8160 -- Pass a null value to the function since no return object is
8161 -- available on the caller side.
8163 Add_Access_Actual_To_Build_In_Place_Call
8164 (Func_Call
, Function_Id
, Empty
);
8166 end Make_Build_In_Place_Call_In_Anonymous_Context
;
8168 --------------------------------------------
8169 -- Make_Build_In_Place_Call_In_Assignment --
8170 --------------------------------------------
8172 procedure Make_Build_In_Place_Call_In_Assignment
8174 Function_Call
: Node_Id
)
8176 Func_Call
: constant Node_Id
:= Unqual_Conv
(Function_Call
);
8177 Lhs
: constant Node_Id
:= Name
(Assign
);
8178 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8179 Func_Id
: Entity_Id
;
8182 Ptr_Typ
: Entity_Id
;
8183 Ptr_Typ_Decl
: Node_Id
;
8185 Result_Subt
: Entity_Id
;
8188 -- Mark the call as processed as a build-in-place call
8190 pragma Assert
(not Is_Expanded_Build_In_Place_Call
(Func_Call
));
8191 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8193 if Is_Entity_Name
(Name
(Func_Call
)) then
8194 Func_Id
:= Entity
(Name
(Func_Call
));
8196 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8197 Func_Id
:= Etype
(Name
(Func_Call
));
8200 raise Program_Error
;
8203 Result_Subt
:= Etype
(Func_Id
);
8205 -- When the result subtype is unconstrained, an additional actual must
8206 -- be passed to indicate that the caller is providing the return object.
8207 -- This parameter must also be passed when the called function has a
8208 -- controlling result, because dispatching calls to the function needs
8209 -- to be treated effectively the same as calls to class-wide functions.
8211 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8212 (Func_Call
, Func_Id
, Alloc_Form
=> Caller_Allocation
);
8214 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8215 (Func_Call
, Func_Id
);
8217 Add_Task_Actuals_To_Build_In_Place_Call
8218 (Func_Call
, Func_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8220 -- Add an implicit actual to the function call that provides access to
8221 -- the caller's return object.
8223 Add_Access_Actual_To_Build_In_Place_Call
8226 Make_Unchecked_Type_Conversion
(Loc
,
8227 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
8228 Expression
=> Relocate_Node
(Lhs
)));
8230 -- Create an access type designating the function's result subtype
8232 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
8235 Make_Full_Type_Declaration
(Loc
,
8236 Defining_Identifier
=> Ptr_Typ
,
8238 Make_Access_To_Object_Definition
(Loc
,
8239 All_Present
=> True,
8240 Subtype_Indication
=>
8241 New_Occurrence_Of
(Result_Subt
, Loc
)));
8242 Insert_After_And_Analyze
(Assign
, Ptr_Typ_Decl
);
8244 -- Finally, create an access object initialized to a reference to the
8245 -- function call. We know this access value is non-null, so mark the
8246 -- entity accordingly to suppress junk access checks.
8248 New_Expr
:= Make_Reference
(Loc
, Relocate_Node
(Func_Call
));
8250 -- Add a conversion if it's the wrong type
8252 if Etype
(New_Expr
) /= Ptr_Typ
then
8254 Make_Unchecked_Type_Conversion
(Loc
,
8255 New_Occurrence_Of
(Ptr_Typ
, Loc
), New_Expr
);
8258 Obj_Id
:= Make_Temporary
(Loc
, 'R', New_Expr
);
8259 Set_Etype
(Obj_Id
, Ptr_Typ
);
8260 Set_Is_Known_Non_Null
(Obj_Id
);
8263 Make_Object_Declaration
(Loc
,
8264 Defining_Identifier
=> Obj_Id
,
8265 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
8266 Expression
=> New_Expr
);
8267 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Obj_Decl
);
8269 Rewrite
(Assign
, Make_Null_Statement
(Loc
));
8270 end Make_Build_In_Place_Call_In_Assignment
;
8272 ----------------------------------------------------
8273 -- Make_Build_In_Place_Call_In_Object_Declaration --
8274 ----------------------------------------------------
8276 procedure Make_Build_In_Place_Call_In_Object_Declaration
8277 (Obj_Decl
: Node_Id
;
8278 Function_Call
: Node_Id
)
8280 function Get_Function_Id
(Func_Call
: Node_Id
) return Entity_Id
;
8281 -- Get the value of Function_Id, below
8283 ---------------------
8284 -- Get_Function_Id --
8285 ---------------------
8287 function Get_Function_Id
(Func_Call
: Node_Id
) return Entity_Id
is
8289 if Is_Entity_Name
(Name
(Func_Call
)) then
8290 return Entity
(Name
(Func_Call
));
8292 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8293 return Etype
(Name
(Func_Call
));
8296 raise Program_Error
;
8298 end Get_Function_Id
;
8302 Func_Call
: constant Node_Id
:= Unqual_Conv
(Function_Call
);
8303 Function_Id
: constant Entity_Id
:= Get_Function_Id
(Func_Call
);
8304 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8305 Obj_Loc
: constant Source_Ptr
:= Sloc
(Obj_Decl
);
8306 Obj_Def_Id
: constant Entity_Id
:= Defining_Identifier
(Obj_Decl
);
8307 Obj_Typ
: constant Entity_Id
:= Etype
(Obj_Def_Id
);
8308 Encl_Func
: constant Entity_Id
:= Enclosing_Subprogram
(Obj_Def_Id
);
8309 Result_Subt
: constant Entity_Id
:= Etype
(Function_Id
);
8311 Call_Deref
: Node_Id
;
8312 Caller_Object
: Node_Id
;
8314 Designated_Type
: Entity_Id
;
8315 Fmaster_Actual
: Node_Id
:= Empty
;
8316 Pool_Actual
: Node_Id
;
8317 Ptr_Typ
: Entity_Id
;
8318 Ptr_Typ_Decl
: Node_Id
;
8319 Pass_Caller_Acc
: Boolean := False;
8322 Definite
: constant Boolean :=
8323 Caller_Known_Size
(Func_Call
, Result_Subt
)
8324 and then not Is_Class_Wide_Type
(Obj_Typ
);
8325 -- In the case of "X : T'Class := F(...);", where F returns a
8326 -- Caller_Known_Size (specific) tagged type, we treat it as
8327 -- indefinite, because the code for the Definite case below sets the
8328 -- initialization expression of the object to Empty, which would be
8329 -- illegal Ada, and would cause gigi to misallocate X.
8331 -- Start of processing for Make_Build_In_Place_Call_In_Object_Declaration
8334 -- If the call has already been processed to add build-in-place actuals
8337 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8341 -- Mark the call as processed as a build-in-place call
8343 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8345 -- Create an access type designating the function's result subtype.
8346 -- We use the type of the original call because it may be a call to an
8347 -- inherited operation, which the expansion has replaced with the parent
8348 -- operation that yields the parent type. Note that this access type
8349 -- must be declared before we establish a transient scope, so that it
8350 -- receives the proper accessibility level.
8352 if Is_Class_Wide_Type
(Obj_Typ
)
8353 and then not Is_Interface
(Obj_Typ
)
8354 and then not Is_Class_Wide_Type
(Etype
(Function_Call
))
8356 Designated_Type
:= Obj_Typ
;
8358 Designated_Type
:= Etype
(Function_Call
);
8361 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
8363 Make_Full_Type_Declaration
(Loc
,
8364 Defining_Identifier
=> Ptr_Typ
,
8366 Make_Access_To_Object_Definition
(Loc
,
8367 All_Present
=> True,
8368 Subtype_Indication
=>
8369 New_Occurrence_Of
(Designated_Type
, Loc
)));
8371 -- The access type and its accompanying object must be inserted after
8372 -- the object declaration in the constrained case, so that the function
8373 -- call can be passed access to the object. In the indefinite case, or
8374 -- if the object declaration is for a return object, the access type and
8375 -- object must be inserted before the object, since the object
8376 -- declaration is rewritten to be a renaming of a dereference of the
8377 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8378 -- the result object is in a different (transient) scope, so won't cause
8381 if Definite
and then not Is_Return_Object
(Obj_Def_Id
) then
8382 Insert_After_And_Analyze
(Obj_Decl
, Ptr_Typ_Decl
);
8384 Insert_Action
(Obj_Decl
, Ptr_Typ_Decl
);
8387 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8388 -- elaborated in an inner (transient) scope and thus won't cause
8389 -- freezing by itself. It's not an itype, but it needs to be frozen
8390 -- inside the current subprogram (see Freeze_Outside in freeze.adb).
8392 Freeze_Itype
(Ptr_Typ
, Ptr_Typ_Decl
);
8394 -- If the object is a return object of an enclosing build-in-place
8395 -- function, then the implicit build-in-place parameters of the
8396 -- enclosing function are simply passed along to the called function.
8397 -- (Unfortunately, this won't cover the case of extension aggregates
8398 -- where the ancestor part is a build-in-place indefinite function
8399 -- call that should be passed along the caller's parameters.
8400 -- Currently those get mishandled by reassigning the result of the
8401 -- call to the aggregate return object, when the call result should
8402 -- really be directly built in place in the aggregate and not in a
8405 if Is_Return_Object
(Obj_Def_Id
) then
8406 Pass_Caller_Acc
:= True;
8408 -- When the enclosing function has a BIP_Alloc_Form formal then we
8409 -- pass it along to the callee (such as when the enclosing function
8410 -- has an unconstrained or tagged result type).
8412 if Needs_BIP_Alloc_Form
(Encl_Func
) then
8413 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
8416 (Build_In_Place_Formal
8417 (Encl_Func
, BIP_Storage_Pool
), Loc
);
8419 -- The build-in-place pool formal is not built on e.g. ZFP
8422 Pool_Actual
:= Empty
;
8425 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8426 (Function_Call
=> Func_Call
,
8427 Function_Id
=> Function_Id
,
8430 (Build_In_Place_Formal
(Encl_Func
, BIP_Alloc_Form
), Loc
),
8431 Pool_Actual
=> Pool_Actual
);
8433 -- Otherwise, if enclosing function has a definite result subtype,
8434 -- then caller allocation will be used.
8437 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8438 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8441 if Needs_BIP_Finalization_Master
(Encl_Func
) then
8444 (Build_In_Place_Formal
8445 (Encl_Func
, BIP_Finalization_Master
), Loc
);
8448 -- Retrieve the BIPacc formal from the enclosing function and convert
8449 -- it to the access type of the callee's BIP_Object_Access formal.
8452 Make_Unchecked_Type_Conversion
(Loc
,
8455 (Etype
(Build_In_Place_Formal
8456 (Function_Id
, BIP_Object_Access
)),
8460 (Build_In_Place_Formal
(Encl_Func
, BIP_Object_Access
),
8463 -- In the definite case, add an implicit actual to the function call
8464 -- that provides access to the declared object. An unchecked conversion
8465 -- to the (specific) result type of the function is inserted to handle
8466 -- the case where the object is declared with a class-wide type.
8470 Make_Unchecked_Type_Conversion
(Loc
,
8471 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
8472 Expression
=> New_Occurrence_Of
(Obj_Def_Id
, Loc
));
8474 -- When the function has a controlling result, an allocation-form
8475 -- parameter must be passed indicating that the caller is allocating
8476 -- the result object. This is needed because such a function can be
8477 -- called as a dispatching operation and must be treated similarly to
8478 -- functions with indefinite result subtypes.
8480 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8481 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8483 -- The allocation for indefinite library-level objects occurs on the
8484 -- heap as opposed to the secondary stack. This accommodates DLLs where
8485 -- the secondary stack is destroyed after each library unload. This is a
8486 -- hybrid mechanism where a stack-allocated object lives on the heap.
8488 elsif Is_Library_Level_Entity
(Obj_Def_Id
)
8489 and then not Restriction_Active
(No_Implicit_Heap_Allocations
)
8491 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8492 (Func_Call
, Function_Id
, Alloc_Form
=> Global_Heap
);
8493 Caller_Object
:= Empty
;
8495 -- Create a finalization master for the access result type to ensure
8496 -- that the heap allocation can properly chain the object and later
8497 -- finalize it when the library unit goes out of scope.
8499 if Needs_Finalization
(Etype
(Func_Call
)) then
8500 Build_Finalization_Master
8502 For_Lib_Level
=> True,
8503 Insertion_Node
=> Ptr_Typ_Decl
);
8506 Make_Attribute_Reference
(Loc
,
8508 New_Occurrence_Of
(Finalization_Master
(Ptr_Typ
), Loc
),
8509 Attribute_Name
=> Name_Unrestricted_Access
);
8512 -- In other indefinite cases, pass an indication to do the allocation on
8513 -- the secondary stack and set Caller_Object to Empty so that a null
8514 -- value will be passed for the caller's object address. A transient
8515 -- scope is established to ensure eventual cleanup of the result.
8518 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8519 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
8520 Caller_Object
:= Empty
;
8522 Establish_Transient_Scope
(Obj_Decl
, Sec_Stack
=> True);
8525 -- Pass along any finalization master actual, which is needed in the
8526 -- case where the called function initializes a return object of an
8527 -- enclosing build-in-place function.
8529 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8530 (Func_Call
=> Func_Call
,
8531 Func_Id
=> Function_Id
,
8532 Master_Exp
=> Fmaster_Actual
);
8534 if Nkind
(Parent
(Obj_Decl
)) = N_Extended_Return_Statement
8535 and then Has_Task
(Result_Subt
)
8537 -- Here we're passing along the master that was passed in to this
8540 Add_Task_Actuals_To_Build_In_Place_Call
8541 (Func_Call
, Function_Id
,
8544 (Build_In_Place_Formal
(Encl_Func
, BIP_Task_Master
), Loc
));
8547 Add_Task_Actuals_To_Build_In_Place_Call
8548 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8551 Add_Access_Actual_To_Build_In_Place_Call
8555 Is_Access
=> Pass_Caller_Acc
);
8557 -- Finally, create an access object initialized to a reference to the
8558 -- function call. We know this access value cannot be null, so mark the
8559 -- entity accordingly to suppress the access check.
8561 Def_Id
:= Make_Temporary
(Loc
, 'R', Func_Call
);
8562 Set_Etype
(Def_Id
, Ptr_Typ
);
8563 Set_Is_Known_Non_Null
(Def_Id
);
8565 if Nkind_In
(Function_Call
, N_Type_Conversion
,
8566 N_Unchecked_Type_Conversion
)
8569 Make_Object_Declaration
(Loc
,
8570 Defining_Identifier
=> Def_Id
,
8571 Constant_Present
=> True,
8572 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
8574 Make_Unchecked_Type_Conversion
(Loc
,
8575 New_Occurrence_Of
(Ptr_Typ
, Loc
),
8576 Make_Reference
(Loc
, Relocate_Node
(Func_Call
))));
8579 Make_Object_Declaration
(Loc
,
8580 Defining_Identifier
=> Def_Id
,
8581 Constant_Present
=> True,
8582 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
8584 Make_Reference
(Loc
, Relocate_Node
(Func_Call
)));
8587 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Res_Decl
);
8589 -- If the result subtype of the called function is definite and is not
8590 -- itself the return expression of an enclosing BIP function, then mark
8591 -- the object as having no initialization.
8593 if Definite
and then not Is_Return_Object
(Obj_Def_Id
) then
8595 -- The related object declaration is encased in a transient block
8596 -- because the build-in-place function call contains at least one
8597 -- nested function call that produces a controlled transient
8600 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
8602 -- Since the build-in-place expansion decouples the call from the
8603 -- object declaration, the finalization machinery lacks the context
8604 -- which prompted the generation of the transient block. To resolve
8605 -- this scenario, store the build-in-place call.
8607 if Scope_Is_Transient
and then Node_To_Be_Wrapped
= Obj_Decl
then
8608 Set_BIP_Initialization_Call
(Obj_Def_Id
, Res_Decl
);
8611 Set_Expression
(Obj_Decl
, Empty
);
8612 Set_No_Initialization
(Obj_Decl
);
8614 -- In case of an indefinite result subtype, or if the call is the
8615 -- return expression of an enclosing BIP function, rewrite the object
8616 -- declaration as an object renaming where the renamed object is a
8617 -- dereference of <function_Call>'reference:
8619 -- Obj : Subt renames <function_call>'Ref.all;
8623 Make_Explicit_Dereference
(Obj_Loc
,
8624 Prefix
=> New_Occurrence_Of
(Def_Id
, Obj_Loc
));
8627 Make_Object_Renaming_Declaration
(Obj_Loc
,
8628 Defining_Identifier
=> Make_Temporary
(Obj_Loc
, 'D'),
8630 New_Occurrence_Of
(Designated_Type
, Obj_Loc
),
8631 Name
=> Call_Deref
));
8633 -- At this point, Defining_Identifier (Obj_Decl) is no longer equal
8636 Set_Renamed_Object
(Defining_Identifier
(Obj_Decl
), Call_Deref
);
8638 -- If the original entity comes from source, then mark the new
8639 -- entity as needing debug information, even though it's defined
8640 -- by a generated renaming that does not come from source, so that
8641 -- the Materialize_Entity flag will be set on the entity when
8642 -- Debug_Renaming_Declaration is called during analysis.
8644 if Comes_From_Source
(Obj_Def_Id
) then
8645 Set_Debug_Info_Needed
(Defining_Identifier
(Obj_Decl
));
8649 Replace_Renaming_Declaration_Id
8650 (Obj_Decl
, Original_Node
(Obj_Decl
));
8652 end Make_Build_In_Place_Call_In_Object_Declaration
;
8654 -------------------------------------------------
8655 -- Make_Build_In_Place_Iface_Call_In_Allocator --
8656 -------------------------------------------------
8658 procedure Make_Build_In_Place_Iface_Call_In_Allocator
8659 (Allocator
: Node_Id
;
8660 Function_Call
: Node_Id
)
8662 BIP_Func_Call
: constant Node_Id
:=
8663 Unqual_BIP_Iface_Function_Call
(Function_Call
);
8664 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8666 Anon_Type
: Entity_Id
;
8671 -- No action of the call has already been processed
8673 if Is_Expanded_Build_In_Place_Call
(BIP_Func_Call
) then
8677 Tmp_Id
:= Make_Temporary
(Loc
, 'D');
8679 -- Insert a temporary before N initialized with the BIP function call
8680 -- without its enclosing type conversions and analyze it without its
8681 -- expansion. This temporary facilitates us reusing the BIP machinery,
8682 -- which takes care of adding the extra build-in-place actuals and
8683 -- transforms this object declaration into an object renaming
8686 Anon_Type
:= Create_Itype
(E_Anonymous_Access_Type
, Function_Call
);
8687 Set_Directly_Designated_Type
(Anon_Type
, Etype
(BIP_Func_Call
));
8688 Set_Etype
(Anon_Type
, Anon_Type
);
8691 Make_Object_Declaration
(Loc
,
8692 Defining_Identifier
=> Tmp_Id
,
8693 Object_Definition
=> New_Occurrence_Of
(Anon_Type
, Loc
),
8695 Make_Allocator
(Loc
,
8697 Make_Qualified_Expression
(Loc
,
8699 New_Occurrence_Of
(Etype
(BIP_Func_Call
), Loc
),
8700 Expression
=> New_Copy_Tree
(BIP_Func_Call
))));
8702 Expander_Mode_Save_And_Set
(False);
8703 Insert_Action
(Allocator
, Tmp_Decl
);
8704 Expander_Mode_Restore
;
8706 Make_Build_In_Place_Call_In_Allocator
8707 (Allocator
=> Expression
(Tmp_Decl
),
8708 Function_Call
=> Expression
(Expression
(Tmp_Decl
)));
8710 Rewrite
(Allocator
, New_Occurrence_Of
(Tmp_Id
, Loc
));
8711 end Make_Build_In_Place_Iface_Call_In_Allocator
;
8713 ---------------------------------------------------------
8714 -- Make_Build_In_Place_Iface_Call_In_Anonymous_Context --
8715 ---------------------------------------------------------
8717 procedure Make_Build_In_Place_Iface_Call_In_Anonymous_Context
8718 (Function_Call
: Node_Id
)
8720 BIP_Func_Call
: constant Node_Id
:=
8721 Unqual_BIP_Iface_Function_Call
(Function_Call
);
8722 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8728 -- No action of the call has already been processed
8730 if Is_Expanded_Build_In_Place_Call
(BIP_Func_Call
) then
8734 pragma Assert
(Needs_Finalization
(Etype
(BIP_Func_Call
)));
8736 -- Insert a temporary before the call initialized with function call to
8737 -- reuse the BIP machinery which takes care of adding the extra build-in
8738 -- place actuals and transforms this object declaration into an object
8739 -- renaming declaration.
8741 Tmp_Id
:= Make_Temporary
(Loc
, 'D');
8744 Make_Object_Declaration
(Loc
,
8745 Defining_Identifier
=> Tmp_Id
,
8746 Object_Definition
=>
8747 New_Occurrence_Of
(Etype
(Function_Call
), Loc
),
8748 Expression
=> Relocate_Node
(Function_Call
));
8750 Expander_Mode_Save_And_Set
(False);
8751 Insert_Action
(Function_Call
, Tmp_Decl
);
8752 Expander_Mode_Restore
;
8754 Make_Build_In_Place_Iface_Call_In_Object_Declaration
8755 (Obj_Decl
=> Tmp_Decl
,
8756 Function_Call
=> Expression
(Tmp_Decl
));
8757 end Make_Build_In_Place_Iface_Call_In_Anonymous_Context
;
8759 ----------------------------------------------------------
8760 -- Make_Build_In_Place_Iface_Call_In_Object_Declaration --
8761 ----------------------------------------------------------
8763 procedure Make_Build_In_Place_Iface_Call_In_Object_Declaration
8764 (Obj_Decl
: Node_Id
;
8765 Function_Call
: Node_Id
)
8767 BIP_Func_Call
: constant Node_Id
:=
8768 Unqual_BIP_Iface_Function_Call
(Function_Call
);
8769 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8770 Obj_Id
: constant Entity_Id
:= Defining_Entity
(Obj_Decl
);
8776 -- No action of the call has already been processed
8778 if Is_Expanded_Build_In_Place_Call
(BIP_Func_Call
) then
8782 Tmp_Id
:= Make_Temporary
(Loc
, 'D');
8784 -- Insert a temporary before N initialized with the BIP function call
8785 -- without its enclosing type conversions and analyze it without its
8786 -- expansion. This temporary facilitates us reusing the BIP machinery,
8787 -- which takes care of adding the extra build-in-place actuals and
8788 -- transforms this object declaration into an object renaming
8792 Make_Object_Declaration
(Loc
,
8793 Defining_Identifier
=> Tmp_Id
,
8794 Object_Definition
=>
8795 New_Occurrence_Of
(Etype
(BIP_Func_Call
), Loc
),
8796 Expression
=> New_Copy_Tree
(BIP_Func_Call
));
8798 Expander_Mode_Save_And_Set
(False);
8799 Insert_Action
(Obj_Decl
, Tmp_Decl
);
8800 Expander_Mode_Restore
;
8802 Make_Build_In_Place_Call_In_Object_Declaration
8803 (Obj_Decl
=> Tmp_Decl
,
8804 Function_Call
=> Expression
(Tmp_Decl
));
8806 pragma Assert
(Nkind
(Tmp_Decl
) = N_Object_Renaming_Declaration
);
8808 -- Replace the original build-in-place function call by a reference to
8809 -- the resulting temporary object renaming declaration. In this way,
8810 -- all the interface conversions performed in the original Function_Call
8811 -- on the build-in-place object are preserved.
8813 Rewrite
(BIP_Func_Call
, New_Occurrence_Of
(Tmp_Id
, Loc
));
8815 -- Replace the original object declaration by an internal object
8816 -- renaming declaration. This leaves the generated code more clean (the
8817 -- build-in-place function call in an object renaming declaration and
8818 -- displacements of the pointer to the build-in-place object in another
8819 -- renaming declaration) and allows us to invoke the routine that takes
8820 -- care of replacing the identifier of the renaming declaration (routine
8821 -- originally developed for the regular build-in-place management).
8824 Make_Object_Renaming_Declaration
(Loc
,
8825 Defining_Identifier
=> Make_Temporary
(Loc
, 'D'),
8826 Subtype_Mark
=> New_Occurrence_Of
(Etype
(Obj_Id
), Loc
),
8827 Name
=> Function_Call
));
8830 Replace_Renaming_Declaration_Id
(Obj_Decl
, Original_Node
(Obj_Decl
));
8831 end Make_Build_In_Place_Iface_Call_In_Object_Declaration
;
8833 --------------------------------------------
8834 -- Make_CPP_Constructor_Call_In_Allocator --
8835 --------------------------------------------
8837 procedure Make_CPP_Constructor_Call_In_Allocator
8838 (Allocator
: Node_Id
;
8839 Function_Call
: Node_Id
)
8841 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
8842 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
8843 Function_Id
: constant Entity_Id
:= Entity
(Name
(Function_Call
));
8844 Result_Subt
: constant Entity_Id
:= Available_View
(Etype
(Function_Id
));
8846 New_Allocator
: Node_Id
;
8847 Return_Obj_Access
: Entity_Id
;
8851 pragma Assert
(Nkind
(Allocator
) = N_Allocator
8852 and then Nkind
(Function_Call
) = N_Function_Call
);
8853 pragma Assert
(Convention
(Function_Id
) = Convention_CPP
8854 and then Is_Constructor
(Function_Id
));
8855 pragma Assert
(Is_Constrained
(Underlying_Type
(Result_Subt
)));
8857 -- Replace the initialized allocator of form "new T'(Func (...))" with
8858 -- an uninitialized allocator of form "new T", where T is the result
8859 -- subtype of the called function. The call to the function is handled
8860 -- separately further below.
8863 Make_Allocator
(Loc
,
8864 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
8865 Set_No_Initialization
(New_Allocator
);
8867 -- Copy attributes to new allocator. Note that the new allocator
8868 -- logically comes from source if the original one did, so copy the
8869 -- relevant flag. This ensures proper treatment of the restriction
8870 -- No_Implicit_Heap_Allocations in this case.
8872 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
8873 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
8874 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
8876 Rewrite
(Allocator
, New_Allocator
);
8878 -- Create a new access object and initialize it to the result of the
8879 -- new uninitialized allocator. Note: we do not use Allocator as the
8880 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
8881 -- as this would create a sort of infinite "recursion".
8883 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
8884 Set_Etype
(Return_Obj_Access
, Acc_Type
);
8887 -- Rnnn : constant ptr_T := new (T);
8888 -- Init (Rnn.all,...);
8891 Make_Object_Declaration
(Loc
,
8892 Defining_Identifier
=> Return_Obj_Access
,
8893 Constant_Present
=> True,
8894 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
8895 Expression
=> Relocate_Node
(Allocator
));
8896 Insert_Action
(Allocator
, Tmp_Obj
);
8898 Insert_List_After_And_Analyze
(Tmp_Obj
,
8899 Build_Initialization_Call
(Loc
,
8901 Make_Explicit_Dereference
(Loc
,
8902 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)),
8903 Typ
=> Etype
(Function_Id
),
8904 Constructor_Ref
=> Function_Call
));
8906 -- Finally, replace the allocator node with a reference to the result of
8907 -- the function call itself (which will effectively be an access to the
8908 -- object created by the allocator).
8910 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
8912 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
8913 -- generate an implicit conversion to force displacement of the "this"
8916 if Is_Interface
(Designated_Type
(Acc_Type
)) then
8917 Rewrite
(Allocator
, Convert_To
(Acc_Type
, Relocate_Node
(Allocator
)));
8920 Analyze_And_Resolve
(Allocator
, Acc_Type
);
8921 end Make_CPP_Constructor_Call_In_Allocator
;
8923 -----------------------------------
8924 -- Needs_BIP_Finalization_Master --
8925 -----------------------------------
8927 function Needs_BIP_Finalization_Master
8928 (Func_Id
: Entity_Id
) return Boolean
8930 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
8931 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
8933 -- A formal giving the finalization master is needed for build-in-place
8934 -- functions whose result type needs finalization or is a tagged type.
8935 -- Tagged primitive build-in-place functions need such a formal because
8936 -- they can be called by a dispatching call, and extensions may require
8937 -- finalization even if the root type doesn't. This means they're also
8938 -- needed for tagged nonprimitive build-in-place functions with tagged
8939 -- results, since such functions can be called via access-to-function
8940 -- types, and those can be used to call primitives, so masters have to
8941 -- be passed to all such build-in-place functions, primitive or not.
8944 not Restriction_Active
(No_Finalization
)
8945 and then (Needs_Finalization
(Func_Typ
)
8946 or else Is_Tagged_Type
(Func_Typ
));
8947 end Needs_BIP_Finalization_Master
;
8949 --------------------------
8950 -- Needs_BIP_Alloc_Form --
8951 --------------------------
8953 function Needs_BIP_Alloc_Form
(Func_Id
: Entity_Id
) return Boolean is
8954 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
8955 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
8957 return not Is_Constrained
(Func_Typ
) or else Is_Tagged_Type
(Func_Typ
);
8958 end Needs_BIP_Alloc_Form
;
8960 --------------------------------------
8961 -- Needs_Result_Accessibility_Level --
8962 --------------------------------------
8964 function Needs_Result_Accessibility_Level
8965 (Func_Id
: Entity_Id
) return Boolean
8967 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
8969 function Has_Unconstrained_Access_Discriminant_Component
8970 (Comp_Typ
: Entity_Id
) return Boolean;
8971 -- Returns True if any component of the type has an unconstrained access
8974 -----------------------------------------------------
8975 -- Has_Unconstrained_Access_Discriminant_Component --
8976 -----------------------------------------------------
8978 function Has_Unconstrained_Access_Discriminant_Component
8979 (Comp_Typ
: Entity_Id
) return Boolean
8982 if not Is_Limited_Type
(Comp_Typ
) then
8985 -- Only limited types can have access discriminants with
8988 elsif Has_Unconstrained_Access_Discriminants
(Comp_Typ
) then
8991 elsif Is_Array_Type
(Comp_Typ
) then
8992 return Has_Unconstrained_Access_Discriminant_Component
8993 (Underlying_Type
(Component_Type
(Comp_Typ
)));
8995 elsif Is_Record_Type
(Comp_Typ
) then
9000 Comp
:= First_Component
(Comp_Typ
);
9001 while Present
(Comp
) loop
9002 if Has_Unconstrained_Access_Discriminant_Component
9003 (Underlying_Type
(Etype
(Comp
)))
9008 Next_Component
(Comp
);
9014 end Has_Unconstrained_Access_Discriminant_Component
;
9016 Feature_Disabled
: constant Boolean := True;
9019 -- Start of processing for Needs_Result_Accessibility_Level
9022 -- False if completion unavailable (how does this happen???)
9024 if not Present
(Func_Typ
) then
9027 elsif Feature_Disabled
then
9030 -- False if not a function, also handle enum-lit renames case
9032 elsif Func_Typ
= Standard_Void_Type
9033 or else Is_Scalar_Type
(Func_Typ
)
9037 -- Handle a corner case, a cross-dialect subp renaming. For example,
9038 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9039 -- an Ada 2005 (or earlier) unit references predefined run-time units.
9041 elsif Present
(Alias
(Func_Id
)) then
9043 -- Unimplemented: a cross-dialect subp renaming which does not set
9044 -- the Alias attribute (e.g., a rename of a dereference of an access
9045 -- to subprogram value). ???
9047 return Present
(Extra_Accessibility_Of_Result
(Alias
(Func_Id
)));
9049 -- Remaining cases require Ada 2012 mode
9051 elsif Ada_Version
< Ada_2012
then
9054 elsif Ekind
(Func_Typ
) = E_Anonymous_Access_Type
9055 or else Is_Tagged_Type
(Func_Typ
)
9057 -- In the case of, say, a null tagged record result type, the need
9058 -- for this extra parameter might not be obvious. This function
9059 -- returns True for all tagged types for compatibility reasons.
9060 -- A function with, say, a tagged null controlling result type might
9061 -- be overridden by a primitive of an extension having an access
9062 -- discriminant and the overrider and overridden must have compatible
9063 -- calling conventions (including implicitly declared parameters).
9064 -- Similarly, values of one access-to-subprogram type might designate
9065 -- both a primitive subprogram of a given type and a function
9066 -- which is, for example, not a primitive subprogram of any type.
9067 -- Again, this requires calling convention compatibility.
9068 -- It might be possible to solve these issues by introducing
9069 -- wrappers, but that is not the approach that was chosen.
9073 elsif Has_Unconstrained_Access_Discriminants
(Func_Typ
) then
9076 elsif Has_Unconstrained_Access_Discriminant_Component
(Func_Typ
) then
9079 -- False for all other cases
9084 end Needs_Result_Accessibility_Level
;
9086 -------------------------------------
9087 -- Replace_Renaming_Declaration_Id --
9088 -------------------------------------
9090 procedure Replace_Renaming_Declaration_Id
9091 (New_Decl
: Node_Id
;
9092 Orig_Decl
: Node_Id
)
9094 New_Id
: constant Entity_Id
:= Defining_Entity
(New_Decl
);
9095 Orig_Id
: constant Entity_Id
:= Defining_Entity
(Orig_Decl
);
9098 Set_Chars
(New_Id
, Chars
(Orig_Id
));
9100 -- Swap next entity links in preparation for exchanging entities
9103 Next_Id
: constant Entity_Id
:= Next_Entity
(New_Id
);
9105 Set_Next_Entity
(New_Id
, Next_Entity
(Orig_Id
));
9106 Set_Next_Entity
(Orig_Id
, Next_Id
);
9109 Set_Homonym
(New_Id
, Homonym
(Orig_Id
));
9110 Exchange_Entities
(New_Id
, Orig_Id
);
9112 -- Preserve source indication of original declaration, so that xref
9113 -- information is properly generated for the right entity.
9115 Preserve_Comes_From_Source
(New_Decl
, Orig_Decl
);
9116 Preserve_Comes_From_Source
(Orig_Id
, Orig_Decl
);
9118 Set_Comes_From_Source
(New_Id
, False);
9119 end Replace_Renaming_Declaration_Id
;
9121 ---------------------------------
9122 -- Rewrite_Function_Call_For_C --
9123 ---------------------------------
9125 procedure Rewrite_Function_Call_For_C
(N
: Node_Id
) is
9126 Orig_Func
: constant Entity_Id
:= Entity
(Name
(N
));
9127 Func_Id
: constant Entity_Id
:= Ultimate_Alias
(Orig_Func
);
9128 Par
: constant Node_Id
:= Parent
(N
);
9129 Proc_Id
: constant Entity_Id
:= Corresponding_Procedure
(Func_Id
);
9130 Loc
: constant Source_Ptr
:= Sloc
(Par
);
9132 Last_Actual
: Node_Id
;
9133 Last_Formal
: Entity_Id
;
9135 -- Start of processing for Rewrite_Function_Call_For_C
9138 -- The actuals may be given by named associations, so the added actual
9139 -- that is the target of the return value of the call must be a named
9140 -- association as well, so we retrieve the name of the generated
9143 Last_Formal
:= First_Formal
(Proc_Id
);
9144 while Present
(Next_Formal
(Last_Formal
)) loop
9145 Last_Formal
:= Next_Formal
(Last_Formal
);
9148 Actuals
:= Parameter_Associations
(N
);
9150 -- The original function may lack parameters
9152 if No
(Actuals
) then
9153 Actuals
:= New_List
;
9156 -- If the function call is the expression of an assignment statement,
9157 -- transform the assignment into a procedure call. Generate:
9159 -- LHS := Func_Call (...);
9161 -- Proc_Call (..., LHS);
9163 -- If function is inherited, a conversion may be necessary.
9165 if Nkind
(Par
) = N_Assignment_Statement
then
9166 Last_Actual
:= Name
(Par
);
9168 if not Comes_From_Source
(Orig_Func
)
9169 and then Etype
(Orig_Func
) /= Etype
(Func_Id
)
9172 Make_Type_Conversion
(Loc
,
9173 New_Occurrence_Of
(Etype
(Func_Id
), Loc
),
9178 Make_Parameter_Association
(Loc
,
9180 Make_Identifier
(Loc
, Chars
(Last_Formal
)),
9181 Explicit_Actual_Parameter
=> Last_Actual
));
9184 Make_Procedure_Call_Statement
(Loc
,
9185 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
9186 Parameter_Associations
=> Actuals
));
9189 -- Otherwise the context is an expression. Generate a temporary and a
9190 -- procedure call to obtain the function result. Generate:
9192 -- ... Func_Call (...) ...
9195 -- Proc_Call (..., Temp);
9200 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
9209 Make_Object_Declaration
(Loc
,
9210 Defining_Identifier
=> Temp_Id
,
9211 Object_Definition
=>
9212 New_Occurrence_Of
(Etype
(Func_Id
), Loc
));
9215 -- Proc_Call (..., Temp);
9218 Make_Parameter_Association
(Loc
,
9220 Make_Identifier
(Loc
, Chars
(Last_Formal
)),
9221 Explicit_Actual_Parameter
=>
9222 New_Occurrence_Of
(Temp_Id
, Loc
)));
9225 Make_Procedure_Call_Statement
(Loc
,
9226 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
9227 Parameter_Associations
=> Actuals
);
9229 Insert_Actions
(Par
, New_List
(Decl
, Call
));
9230 Rewrite
(N
, New_Occurrence_Of
(Temp_Id
, Loc
));
9233 end Rewrite_Function_Call_For_C
;
9235 ------------------------------------
9236 -- Set_Enclosing_Sec_Stack_Return --
9237 ------------------------------------
9239 procedure Set_Enclosing_Sec_Stack_Return
(N
: Node_Id
) is
9243 -- Due to a possible mix of internally generated blocks, source blocks
9244 -- and loops, the scope stack may not be contiguous as all labels are
9245 -- inserted at the top level within the related function. Instead,
9246 -- perform a parent-based traversal and mark all appropriate constructs.
9248 while Present
(P
) loop
9250 -- Mark the label of a source or internally generated block or
9253 if Nkind_In
(P
, N_Block_Statement
, N_Loop_Statement
) then
9254 Set_Sec_Stack_Needed_For_Return
(Entity
(Identifier
(P
)));
9256 -- Mark the enclosing function
9258 elsif Nkind
(P
) = N_Subprogram_Body
then
9259 if Present
(Corresponding_Spec
(P
)) then
9260 Set_Sec_Stack_Needed_For_Return
(Corresponding_Spec
(P
));
9262 Set_Sec_Stack_Needed_For_Return
(Defining_Entity
(P
));
9265 -- Do not go beyond the enclosing function
9272 end Set_Enclosing_Sec_Stack_Return
;
9274 ------------------------------------
9275 -- Unqual_BIP_Iface_Function_Call --
9276 ------------------------------------
9278 function Unqual_BIP_Iface_Function_Call
(Expr
: Node_Id
) return Node_Id
is
9279 Has_Pointer_Displacement
: Boolean := False;
9280 On_Object_Declaration
: Boolean := False;
9281 -- Remember if processing the renaming expressions on recursion we have
9282 -- traversed an object declaration, since we can traverse many object
9283 -- declaration renamings but just one regular object declaration.
9285 function Unqual_BIP_Function_Call
(Expr
: Node_Id
) return Node_Id
;
9286 -- Search for a build-in-place function call skipping any qualification
9287 -- including qualified expressions, type conversions, references, calls
9288 -- to displace the pointer to the object, and renamings. Return Empty if
9289 -- no build-in-place function call is found.
9291 ------------------------------
9292 -- Unqual_BIP_Function_Call --
9293 ------------------------------
9295 function Unqual_BIP_Function_Call
(Expr
: Node_Id
) return Node_Id
is
9297 -- Recurse to handle case of multiple levels of qualification and/or
9300 if Nkind_In
(Expr
, N_Qualified_Expression
,
9302 N_Unchecked_Type_Conversion
)
9304 return Unqual_BIP_Function_Call
(Expression
(Expr
));
9306 -- Recurse to handle case of multiple levels of references and
9307 -- explicit dereferences.
9309 elsif Nkind_In
(Expr
, N_Attribute_Reference
,
9310 N_Explicit_Dereference
,
9313 return Unqual_BIP_Function_Call
(Prefix
(Expr
));
9315 -- Recurse on object renamings
9317 elsif Nkind
(Expr
) = N_Identifier
9318 and then Present
(Entity
(Expr
))
9319 and then Ekind_In
(Entity
(Expr
), E_Constant
, E_Variable
)
9320 and then Nkind
(Parent
(Entity
(Expr
))) =
9321 N_Object_Renaming_Declaration
9322 and then Present
(Renamed_Object
(Entity
(Expr
)))
9324 return Unqual_BIP_Function_Call
(Renamed_Object
(Entity
(Expr
)));
9326 -- Recurse on the initializing expression of the first reference of
9327 -- an object declaration.
9329 elsif not On_Object_Declaration
9330 and then Nkind
(Expr
) = N_Identifier
9331 and then Present
(Entity
(Expr
))
9332 and then Ekind_In
(Entity
(Expr
), E_Constant
, E_Variable
)
9333 and then Nkind
(Parent
(Entity
(Expr
))) = N_Object_Declaration
9334 and then Present
(Expression
(Parent
(Entity
(Expr
))))
9336 On_Object_Declaration
:= True;
9338 Unqual_BIP_Function_Call
(Expression
(Parent
(Entity
(Expr
))));
9340 -- Recurse to handle calls to displace the pointer to the object to
9341 -- reference a secondary dispatch table.
9343 elsif Nkind
(Expr
) = N_Function_Call
9344 and then Nkind
(Name
(Expr
)) in N_Has_Entity
9345 and then Present
(Entity
(Name
(Expr
)))
9346 and then RTU_Loaded
(Ada_Tags
)
9347 and then RTE_Available
(RE_Displace
)
9348 and then Is_RTE
(Entity
(Name
(Expr
)), RE_Displace
)
9350 Has_Pointer_Displacement
:= True;
9352 Unqual_BIP_Function_Call
(First
(Parameter_Associations
(Expr
)));
9354 -- Normal case: check if the inner expression is a BIP function call
9355 -- and the pointer to the object is displaced.
9357 elsif Has_Pointer_Displacement
9358 and then Is_Build_In_Place_Function_Call
(Expr
)
9365 end Unqual_BIP_Function_Call
;
9367 -- Start of processing for Unqual_BIP_Iface_Function_Call
9370 if Nkind
(Expr
) = N_Identifier
and then No
(Entity
(Expr
)) then
9372 -- Can happen for X'Elab_Spec in the binder-generated file
9377 return Unqual_BIP_Function_Call
(Expr
);
9378 end Unqual_BIP_Iface_Function_Call
;