Fix build on sparc64-linux-gnu.
[official-gcc.git] / gcc / ada / exp_intr.adb
blob4f4584bad6a6b840f314bbd84135201a66c84af0
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ I N T R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Expander; use Expander;
31 with Exp_Atag; use Exp_Atag;
32 with Exp_Ch4; use Exp_Ch4;
33 with Exp_Ch7; use Exp_Ch7;
34 with Exp_Ch11; use Exp_Ch11;
35 with Exp_Code; use Exp_Code;
36 with Exp_Fixd; use Exp_Fixd;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Inline; use Inline;
40 with Nmake; use Nmake;
41 with Nlists; use Nlists;
42 with Opt; use Opt;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Rtsfind; use Rtsfind;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Eval; use Sem_Eval;
49 with Sem_Res; use Sem_Res;
50 with Sem_Type; use Sem_Type;
51 with Sem_Util; use Sem_Util;
52 with Sinfo; use Sinfo;
53 with Sinput; use Sinput;
54 with Snames; use Snames;
55 with Stand; use Stand;
56 with Tbuild; use Tbuild;
57 with Uintp; use Uintp;
58 with Urealp; use Urealp;
60 package body Exp_Intr is
62 -----------------------
63 -- Local Subprograms --
64 -----------------------
66 procedure Expand_Binary_Operator_Call (N : Node_Id);
67 -- Expand a call to an intrinsic arithmetic operator when the operand
68 -- types or sizes are not identical.
70 procedure Expand_Is_Negative (N : Node_Id);
71 -- Expand a call to the intrinsic Is_Negative function
73 procedure Expand_Dispatching_Constructor_Call (N : Node_Id);
74 -- Expand a call to an instantiation of Generic_Dispatching_Constructor
75 -- into a dispatching call to the actual subprogram associated with the
76 -- Constructor formal subprogram, passing it the Parameters actual of
77 -- the call to the instantiation and dispatching based on call's Tag
78 -- parameter.
80 procedure Expand_Exception_Call (N : Node_Id; Ent : RE_Id);
81 -- Expand a call to Exception_Information/Message/Name. The first
82 -- parameter, N, is the node for the function call, and Ent is the
83 -- entity for the corresponding routine in the Ada.Exceptions package.
85 procedure Expand_Import_Call (N : Node_Id);
86 -- Expand a call to Import_Address/Longest_Integer/Value. The parameter
87 -- N is the node for the function call.
89 procedure Expand_Shift (N : Node_Id; E : Entity_Id; K : Node_Kind);
90 -- Expand an intrinsic shift operation, N and E are from the call to
91 -- Expand_Intrinsic_Call (call node and subprogram spec entity) and
92 -- K is the kind for the shift node
94 procedure Expand_Unc_Conversion (N : Node_Id; E : Entity_Id);
95 -- Expand a call to an instantiation of Unchecked_Conversion into a node
96 -- N_Unchecked_Type_Conversion.
98 procedure Expand_Unc_Deallocation (N : Node_Id);
99 -- Expand a call to an instantiation of Unchecked_Deallocation into a node
100 -- N_Free_Statement and appropriate context.
102 procedure Expand_To_Address (N : Node_Id);
103 procedure Expand_To_Pointer (N : Node_Id);
104 -- Expand a call to corresponding function, declared in an instance of
105 -- System.Address_To_Access_Conversions.
107 procedure Expand_Source_Info (N : Node_Id; Nam : Name_Id);
108 -- Rewrite the node as the appropriate string literal or positive
109 -- constant. Nam is the name of one of the intrinsics declared in
110 -- GNAT.Source_Info; see g-souinf.ads for documentation of these
111 -- intrinsics.
113 ---------------------
114 -- Add_Source_Info --
115 ---------------------
117 procedure Add_Source_Info
118 (Buf : in out Bounded_String;
119 Loc : Source_Ptr;
120 Nam : Name_Id)
122 begin
123 case Nam is
124 when Name_Line =>
125 Append (Buf, Nat (Get_Logical_Line_Number (Loc)));
127 when Name_File =>
128 Append (Buf, Reference_Name (Get_Source_File_Index (Loc)));
130 when Name_Source_Location =>
131 Build_Location_String (Buf, Loc);
133 when Name_Enclosing_Entity =>
135 -- Skip enclosing blocks to reach enclosing unit
137 declare
138 Ent : Entity_Id := Current_Scope;
139 begin
140 while Present (Ent) loop
141 exit when not Ekind_In (Ent, E_Block, E_Loop);
142 Ent := Scope (Ent);
143 end loop;
145 -- Ent now points to the relevant defining entity
147 Append_Entity_Name (Buf, Ent);
148 end;
150 when Name_Compilation_ISO_Date =>
151 Append (Buf, Opt.Compilation_Time (1 .. 10));
153 when Name_Compilation_Date =>
154 declare
155 subtype S13 is String (1 .. 3);
156 Months : constant array (1 .. 12) of S13 :=
157 ("Jan", "Feb", "Mar", "Apr", "May", "Jun",
158 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec");
160 M1 : constant Character := Opt.Compilation_Time (6);
161 M2 : constant Character := Opt.Compilation_Time (7);
163 MM : constant Natural range 1 .. 12 :=
164 (Character'Pos (M1) - Character'Pos ('0')) * 10 +
165 (Character'Pos (M2) - Character'Pos ('0'));
167 begin
168 -- Reformat ISO date into MMM DD YYYY (__DATE__) format
170 Append (Buf, Months (MM));
171 Append (Buf, ' ');
172 Append (Buf, Opt.Compilation_Time (9 .. 10));
173 Append (Buf, ' ');
174 Append (Buf, Opt.Compilation_Time (1 .. 4));
175 end;
177 when Name_Compilation_Time =>
178 Append (Buf, Opt.Compilation_Time (12 .. 19));
180 when others =>
181 raise Program_Error;
182 end case;
183 end Add_Source_Info;
185 ---------------------------------
186 -- Expand_Binary_Operator_Call --
187 ---------------------------------
189 procedure Expand_Binary_Operator_Call (N : Node_Id) is
190 T1 : constant Entity_Id := Underlying_Type (Etype (Left_Opnd (N)));
191 T2 : constant Entity_Id := Underlying_Type (Etype (Right_Opnd (N)));
192 TR : constant Entity_Id := Etype (N);
193 T3 : Entity_Id;
194 Res : Node_Id;
196 Siz : constant Uint := UI_Max (RM_Size (T1), RM_Size (T2));
197 -- Maximum of operand sizes
199 begin
200 -- Nothing to do if the operands have the same modular type
202 if Base_Type (T1) = Base_Type (T2)
203 and then Is_Modular_Integer_Type (T1)
204 then
205 return;
206 end if;
208 -- Use Unsigned_32 for sizes of 32 or below, else Unsigned_64
210 if Siz > 32 then
211 T3 := RTE (RE_Unsigned_64);
212 else
213 T3 := RTE (RE_Unsigned_32);
214 end if;
216 -- Copy operator node, and reset type and entity fields, for
217 -- subsequent reanalysis.
219 Res := New_Copy (N);
220 Set_Etype (Res, T3);
222 case Nkind (N) is
223 when N_Op_And => Set_Entity (Res, Standard_Op_And);
224 when N_Op_Or => Set_Entity (Res, Standard_Op_Or);
225 when N_Op_Xor => Set_Entity (Res, Standard_Op_Xor);
226 when others => raise Program_Error;
227 end case;
229 -- Convert operands to large enough intermediate type
231 Set_Left_Opnd (Res,
232 Unchecked_Convert_To (T3, Relocate_Node (Left_Opnd (N))));
233 Set_Right_Opnd (Res,
234 Unchecked_Convert_To (T3, Relocate_Node (Right_Opnd (N))));
236 -- Analyze and resolve result formed by conversion to target type
238 Rewrite (N, Unchecked_Convert_To (TR, Res));
239 Analyze_And_Resolve (N, TR);
240 end Expand_Binary_Operator_Call;
242 -----------------------------------------
243 -- Expand_Dispatching_Constructor_Call --
244 -----------------------------------------
246 -- Transform a call to an instantiation of Generic_Dispatching_Constructor
247 -- of the form:
249 -- GDC_Instance (The_Tag, Parameters'Access)
251 -- to a class-wide conversion of a dispatching call to the actual
252 -- associated with the formal subprogram Construct, designating The_Tag
253 -- as the controlling tag of the call:
255 -- T'Class (Construct'Actual (Params)) -- Controlling tag is The_Tag
257 -- which will eventually be expanded to the following:
259 -- T'Class (The_Tag.all (Construct'Actual'Index).all (Params))
261 -- A class-wide membership test is also generated, preceding the call, to
262 -- ensure that the controlling tag denotes a type in T'Class.
264 procedure Expand_Dispatching_Constructor_Call (N : Node_Id) is
265 Loc : constant Source_Ptr := Sloc (N);
266 Tag_Arg : constant Node_Id := First_Actual (N);
267 Param_Arg : constant Node_Id := Next_Actual (Tag_Arg);
268 Subp_Decl : constant Node_Id := Parent (Parent (Entity (Name (N))));
269 Inst_Pkg : constant Node_Id := Parent (Subp_Decl);
270 Act_Rename : Node_Id;
271 Act_Constr : Entity_Id;
272 Iface_Tag : Node_Id := Empty;
273 Cnstr_Call : Node_Id;
274 Result_Typ : Entity_Id;
276 begin
277 -- Remove side effects from tag argument early, before rewriting
278 -- the dispatching constructor call, as Remove_Side_Effects relies
279 -- on Tag_Arg's Parent link properly attached to the tree (once the
280 -- call is rewritten, the Parent is inconsistent as it points to the
281 -- rewritten node, which is not the syntactic parent of the Tag_Arg
282 -- anymore).
284 Remove_Side_Effects (Tag_Arg);
286 -- Check that we have a proper tag
288 Insert_Action (N,
289 Make_Implicit_If_Statement (N,
290 Condition => Make_Op_Eq (Loc,
291 Left_Opnd => New_Copy_Tree (Tag_Arg),
292 Right_Opnd => New_Occurrence_Of (RTE (RE_No_Tag), Loc)),
294 Then_Statements => New_List (
295 Make_Raise_Statement (Loc,
296 New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
298 -- Check that it is not the tag of an abstract type
300 Insert_Action (N,
301 Make_Implicit_If_Statement (N,
302 Condition => Make_Function_Call (Loc,
303 Name =>
304 New_Occurrence_Of (RTE (RE_Is_Abstract), Loc),
305 Parameter_Associations => New_List (New_Copy_Tree (Tag_Arg))),
307 Then_Statements => New_List (
308 Make_Raise_Statement (Loc,
309 New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
311 -- The subprogram is the third actual in the instantiation, and is
312 -- retrieved from the corresponding renaming declaration. However,
313 -- freeze nodes may appear before, so we retrieve the declaration
314 -- with an explicit loop.
316 Act_Rename := First (Visible_Declarations (Inst_Pkg));
317 while Nkind (Act_Rename) /= N_Subprogram_Renaming_Declaration loop
318 Next (Act_Rename);
319 end loop;
321 Act_Constr := Entity (Name (Act_Rename));
322 Result_Typ := Class_Wide_Type (Etype (Act_Constr));
324 -- Check that the accessibility level of the tag is no deeper than that
325 -- of the constructor function (unless CodePeer_Mode)
327 if not CodePeer_Mode then
328 Insert_Action (N,
329 Make_Implicit_If_Statement (N,
330 Condition =>
331 Make_Op_Gt (Loc,
332 Left_Opnd =>
333 Build_Get_Access_Level (Loc, New_Copy_Tree (Tag_Arg)),
334 Right_Opnd =>
335 Make_Integer_Literal (Loc, Scope_Depth (Act_Constr))),
337 Then_Statements => New_List (
338 Make_Raise_Statement (Loc,
339 New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
340 end if;
342 if Is_Interface (Etype (Act_Constr)) then
344 -- If the result type is not known to be a parent of Tag_Arg then we
345 -- need to locate the tag of the secondary dispatch table.
347 if not Is_Ancestor (Etype (Result_Typ), Etype (Tag_Arg),
348 Use_Full_View => True)
349 and then Tagged_Type_Expansion
350 then
351 -- Obtain the reference to the Ada.Tags service before generating
352 -- the Object_Declaration node to ensure that if this service is
353 -- not available in the runtime then we generate a clear error.
355 declare
356 Fname : constant Node_Id :=
357 New_Occurrence_Of (RTE (RE_Secondary_Tag), Loc);
359 begin
360 pragma Assert (not Is_Interface (Etype (Tag_Arg)));
362 -- The tag is the first entry in the dispatch table of the
363 -- return type of the constructor.
365 Iface_Tag :=
366 Make_Object_Declaration (Loc,
367 Defining_Identifier => Make_Temporary (Loc, 'V'),
368 Object_Definition =>
369 New_Occurrence_Of (RTE (RE_Tag), Loc),
370 Expression =>
371 Make_Function_Call (Loc,
372 Name => Fname,
373 Parameter_Associations => New_List (
374 Relocate_Node (Tag_Arg),
375 New_Occurrence_Of
376 (Node (First_Elmt
377 (Access_Disp_Table (Etype (Act_Constr)))),
378 Loc))));
379 Insert_Action (N, Iface_Tag);
380 end;
381 end if;
382 end if;
384 -- Create the call to the actual Constructor function
386 Cnstr_Call :=
387 Make_Function_Call (Loc,
388 Name => New_Occurrence_Of (Act_Constr, Loc),
389 Parameter_Associations => New_List (Relocate_Node (Param_Arg)));
391 -- Establish its controlling tag from the tag passed to the instance
392 -- The tag may be given by a function call, in which case a temporary
393 -- should be generated now, to prevent out-of-order insertions during
394 -- the expansion of that call when stack-checking is enabled.
396 if Present (Iface_Tag) then
397 Set_Controlling_Argument (Cnstr_Call,
398 New_Occurrence_Of (Defining_Identifier (Iface_Tag), Loc));
399 else
400 Set_Controlling_Argument (Cnstr_Call,
401 Relocate_Node (Tag_Arg));
402 end if;
404 -- Rewrite and analyze the call to the instance as a class-wide
405 -- conversion of the call to the actual constructor. When the result
406 -- type is a class-wide interface type this conversion is required to
407 -- force the displacement of the pointer to the object to reference the
408 -- corresponding dispatch table.
410 Rewrite (N, Convert_To (Result_Typ, Cnstr_Call));
412 -- Do not generate a run-time check on the built object if tag
413 -- checks are suppressed for the result type or tagged type expansion
414 -- is disabled or if CodePeer_Mode.
416 if Tag_Checks_Suppressed (Etype (Result_Typ))
417 or else not Tagged_Type_Expansion
418 or else CodePeer_Mode
419 then
420 null;
422 -- Generate a class-wide membership test to ensure that the call's tag
423 -- argument denotes a type within the class. We must keep separate the
424 -- case in which the Result_Type of the constructor function is a tagged
425 -- type from the case in which it is an abstract interface because the
426 -- run-time subprogram required to check these cases differ (and have
427 -- one difference in their parameters profile).
429 -- Call CW_Membership if the Result_Type is a tagged type to look for
430 -- the tag in the table of ancestor tags.
432 elsif not Is_Interface (Result_Typ) then
433 declare
434 Obj_Tag_Node : Node_Id := New_Copy_Tree (Tag_Arg);
435 CW_Test_Node : Node_Id;
437 begin
438 Build_CW_Membership (Loc,
439 Obj_Tag_Node => Obj_Tag_Node,
440 Typ_Tag_Node =>
441 New_Occurrence_Of (
442 Node (First_Elmt (Access_Disp_Table (
443 Root_Type (Result_Typ)))), Loc),
444 Related_Nod => N,
445 New_Node => CW_Test_Node);
447 Insert_Action (N,
448 Make_Implicit_If_Statement (N,
449 Condition =>
450 Make_Op_Not (Loc, CW_Test_Node),
451 Then_Statements =>
452 New_List (Make_Raise_Statement (Loc,
453 New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
454 end;
456 -- Call IW_Membership test if the Result_Type is an abstract interface
457 -- to look for the tag in the table of interface tags.
459 else
460 Insert_Action (N,
461 Make_Implicit_If_Statement (N,
462 Condition =>
463 Make_Op_Not (Loc,
464 Make_Function_Call (Loc,
465 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
466 Parameter_Associations => New_List (
467 Make_Attribute_Reference (Loc,
468 Prefix => New_Copy_Tree (Tag_Arg),
469 Attribute_Name => Name_Address),
471 New_Occurrence_Of (
472 Node (First_Elmt (Access_Disp_Table (
473 Root_Type (Result_Typ)))), Loc)))),
474 Then_Statements =>
475 New_List (
476 Make_Raise_Statement (Loc,
477 Name => New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
478 end if;
480 Analyze_And_Resolve (N, Etype (Act_Constr));
481 end Expand_Dispatching_Constructor_Call;
483 ---------------------------
484 -- Expand_Exception_Call --
485 ---------------------------
487 -- If the function call is not within an exception handler, then the call
488 -- is replaced by a null string. Otherwise the appropriate routine in
489 -- Ada.Exceptions is called passing the choice parameter specification
490 -- from the enclosing handler. If the enclosing handler lacks a choice
491 -- parameter, then one is supplied.
493 procedure Expand_Exception_Call (N : Node_Id; Ent : RE_Id) is
494 Loc : constant Source_Ptr := Sloc (N);
495 P : Node_Id;
496 E : Entity_Id;
498 begin
499 -- Climb up parents to see if we are in exception handler
501 P := Parent (N);
502 loop
503 -- Case of not in exception handler, replace by null string
505 if No (P) then
506 Rewrite (N,
507 Make_String_Literal (Loc,
508 Strval => ""));
509 exit;
511 -- Case of in exception handler
513 elsif Nkind (P) = N_Exception_Handler then
515 -- Handler cannot be used for a local raise, and furthermore, this
516 -- is a violation of the No_Exception_Propagation restriction.
518 Set_Local_Raise_Not_OK (P);
519 Check_Restriction (No_Exception_Propagation, N);
521 -- If no choice parameter present, then put one there. Note that
522 -- we do not need to put it on the entity chain, since no one will
523 -- be referencing it by normal visibility methods.
525 if No (Choice_Parameter (P)) then
526 E := Make_Temporary (Loc, 'E');
527 Set_Choice_Parameter (P, E);
528 Set_Ekind (E, E_Variable);
529 Set_Etype (E, RTE (RE_Exception_Occurrence));
530 Set_Scope (E, Current_Scope);
531 end if;
533 Rewrite (N,
534 Make_Function_Call (Loc,
535 Name => New_Occurrence_Of (RTE (Ent), Loc),
536 Parameter_Associations => New_List (
537 New_Occurrence_Of (Choice_Parameter (P), Loc))));
538 exit;
540 -- Keep climbing
542 else
543 P := Parent (P);
544 end if;
545 end loop;
547 Analyze_And_Resolve (N, Standard_String);
548 end Expand_Exception_Call;
550 ------------------------
551 -- Expand_Import_Call --
552 ------------------------
554 -- The function call must have a static string as its argument. We create
555 -- a dummy variable which uses this string as the external name in an
556 -- Import pragma. The result is then obtained as the address of this
557 -- dummy variable, converted to the appropriate target type.
559 procedure Expand_Import_Call (N : Node_Id) is
560 Loc : constant Source_Ptr := Sloc (N);
561 Ent : constant Entity_Id := Entity (Name (N));
562 Str : constant Node_Id := First_Actual (N);
563 Dum : constant Entity_Id := Make_Temporary (Loc, 'D');
565 begin
566 Insert_Actions (N, New_List (
567 Make_Object_Declaration (Loc,
568 Defining_Identifier => Dum,
569 Object_Definition =>
570 New_Occurrence_Of (Standard_Character, Loc)),
572 Make_Pragma (Loc,
573 Chars => Name_Import,
574 Pragma_Argument_Associations => New_List (
575 Make_Pragma_Argument_Association (Loc,
576 Expression => Make_Identifier (Loc, Name_Ada)),
578 Make_Pragma_Argument_Association (Loc,
579 Expression => Make_Identifier (Loc, Chars (Dum))),
581 Make_Pragma_Argument_Association (Loc,
582 Chars => Name_Link_Name,
583 Expression => Relocate_Node (Str))))));
585 Rewrite (N,
586 Unchecked_Convert_To (Etype (Ent),
587 Make_Attribute_Reference (Loc,
588 Prefix => Make_Identifier (Loc, Chars (Dum)),
589 Attribute_Name => Name_Address)));
591 Analyze_And_Resolve (N, Etype (Ent));
592 end Expand_Import_Call;
594 ---------------------------
595 -- Expand_Intrinsic_Call --
596 ---------------------------
598 procedure Expand_Intrinsic_Call (N : Node_Id; E : Entity_Id) is
599 Nam : Name_Id;
601 begin
602 -- If an external name is specified for the intrinsic, it is handled
603 -- by the back-end: leave the call node unchanged for now.
605 if Present (Interface_Name (E)) then
606 return;
607 end if;
609 -- If the intrinsic subprogram is generic, gets its original name
611 if Present (Parent (E))
612 and then Present (Generic_Parent (Parent (E)))
613 then
614 Nam := Chars (Generic_Parent (Parent (E)));
615 else
616 Nam := Chars (E);
617 end if;
619 if Nam = Name_Asm then
620 Expand_Asm_Call (N);
622 elsif Nam = Name_Divide then
623 Expand_Decimal_Divide_Call (N);
625 elsif Nam = Name_Exception_Information then
626 Expand_Exception_Call (N, RE_Exception_Information);
628 elsif Nam = Name_Exception_Message then
629 Expand_Exception_Call (N, RE_Exception_Message);
631 elsif Nam = Name_Exception_Name then
632 Expand_Exception_Call (N, RE_Exception_Name_Simple);
634 elsif Nam = Name_Generic_Dispatching_Constructor then
635 Expand_Dispatching_Constructor_Call (N);
637 elsif Nam_In (Nam, Name_Import_Address,
638 Name_Import_Largest_Value,
639 Name_Import_Value)
640 then
641 Expand_Import_Call (N);
643 elsif Nam = Name_Is_Negative then
644 Expand_Is_Negative (N);
646 elsif Nam = Name_Rotate_Left then
647 Expand_Shift (N, E, N_Op_Rotate_Left);
649 elsif Nam = Name_Rotate_Right then
650 Expand_Shift (N, E, N_Op_Rotate_Right);
652 elsif Nam = Name_Shift_Left then
653 Expand_Shift (N, E, N_Op_Shift_Left);
655 elsif Nam = Name_Shift_Right then
656 Expand_Shift (N, E, N_Op_Shift_Right);
658 elsif Nam = Name_Shift_Right_Arithmetic then
659 Expand_Shift (N, E, N_Op_Shift_Right_Arithmetic);
661 elsif Nam = Name_Unchecked_Conversion then
662 Expand_Unc_Conversion (N, E);
664 elsif Nam = Name_Unchecked_Deallocation then
665 Expand_Unc_Deallocation (N);
667 elsif Nam = Name_To_Address then
668 Expand_To_Address (N);
670 elsif Nam = Name_To_Pointer then
671 Expand_To_Pointer (N);
673 elsif Nam_In (Nam, Name_File,
674 Name_Line,
675 Name_Source_Location,
676 Name_Enclosing_Entity,
677 Name_Compilation_ISO_Date,
678 Name_Compilation_Date,
679 Name_Compilation_Time)
680 then
681 Expand_Source_Info (N, Nam);
683 -- If we have a renaming, expand the call to the original operation,
684 -- which must itself be intrinsic, since renaming requires matching
685 -- conventions and this has already been checked.
687 elsif Present (Alias (E)) then
688 Expand_Intrinsic_Call (N, Alias (E));
690 elsif Nkind (N) in N_Binary_Op then
691 Expand_Binary_Operator_Call (N);
693 -- The only other case is where an external name was specified, since
694 -- this is the only way that an otherwise unrecognized name could
695 -- escape the checking in Sem_Prag. Nothing needs to be done in such
696 -- a case, since we pass such a call to the back end unchanged.
698 else
699 null;
700 end if;
701 end Expand_Intrinsic_Call;
703 ------------------------
704 -- Expand_Is_Negative --
705 ------------------------
707 procedure Expand_Is_Negative (N : Node_Id) is
708 Loc : constant Source_Ptr := Sloc (N);
709 Opnd : constant Node_Id := Relocate_Node (First_Actual (N));
711 begin
713 -- We replace the function call by the following expression
715 -- if Opnd < 0.0 then
716 -- True
717 -- else
718 -- if Opnd > 0.0 then
719 -- False;
720 -- else
721 -- Float_Unsigned!(Float (Opnd)) /= 0
722 -- end if;
723 -- end if;
725 Rewrite (N,
726 Make_If_Expression (Loc,
727 Expressions => New_List (
728 Make_Op_Lt (Loc,
729 Left_Opnd => Duplicate_Subexpr (Opnd),
730 Right_Opnd => Make_Real_Literal (Loc, Ureal_0)),
732 New_Occurrence_Of (Standard_True, Loc),
734 Make_If_Expression (Loc,
735 Expressions => New_List (
736 Make_Op_Gt (Loc,
737 Left_Opnd => Duplicate_Subexpr_No_Checks (Opnd),
738 Right_Opnd => Make_Real_Literal (Loc, Ureal_0)),
740 New_Occurrence_Of (Standard_False, Loc),
742 Make_Op_Ne (Loc,
743 Left_Opnd =>
744 Unchecked_Convert_To
745 (RTE (RE_Float_Unsigned),
746 Convert_To
747 (Standard_Float,
748 Duplicate_Subexpr_No_Checks (Opnd))),
749 Right_Opnd =>
750 Make_Integer_Literal (Loc, 0)))))));
752 Analyze_And_Resolve (N, Standard_Boolean);
753 end Expand_Is_Negative;
755 ------------------
756 -- Expand_Shift --
757 ------------------
759 -- This procedure is used to convert a call to a shift function to the
760 -- corresponding operator node. This conversion is not done by the usual
761 -- circuit for converting calls to operator functions (e.g. "+"(1,2)) to
762 -- operator nodes, because shifts are not predefined operators.
764 -- As a result, whenever a shift is used in the source program, it will
765 -- remain as a call until converted by this routine to the operator node
766 -- form which the back end is expecting to see.
768 -- Note: it is possible for the expander to generate shift operator nodes
769 -- directly, which will be analyzed in the normal manner by calling Analyze
770 -- and Resolve. Such shift operator nodes will not be seen by Expand_Shift.
772 procedure Expand_Shift (N : Node_Id; E : Entity_Id; K : Node_Kind) is
773 Entyp : constant Entity_Id := Etype (E);
774 Left : constant Node_Id := First_Actual (N);
775 Loc : constant Source_Ptr := Sloc (N);
776 Right : constant Node_Id := Next_Actual (Left);
777 Ltyp : constant Node_Id := Etype (Left);
778 Rtyp : constant Node_Id := Etype (Right);
779 Typ : constant Entity_Id := Etype (N);
780 Snode : Node_Id;
782 begin
783 Snode := New_Node (K, Loc);
784 Set_Right_Opnd (Snode, Relocate_Node (Right));
785 Set_Chars (Snode, Chars (E));
786 Set_Etype (Snode, Base_Type (Entyp));
787 Set_Entity (Snode, E);
789 if Compile_Time_Known_Value (Type_High_Bound (Rtyp))
790 and then Expr_Value (Type_High_Bound (Rtyp)) < Esize (Ltyp)
791 then
792 Set_Shift_Count_OK (Snode, True);
793 end if;
795 if Typ = Entyp then
797 -- Note that we don't call Analyze and Resolve on this node, because
798 -- it already got analyzed and resolved when it was a function call.
800 Set_Left_Opnd (Snode, Relocate_Node (Left));
801 Rewrite (N, Snode);
802 Set_Analyzed (N);
804 -- However, we do call the expander, so that the expansion for
805 -- rotates and shift_right_arithmetic happens if Modify_Tree_For_C
806 -- is set.
808 if Expander_Active then
809 Expand (N);
810 end if;
812 else
813 -- If the context type is not the type of the operator, it is an
814 -- inherited operator for a derived type. Wrap the node in a
815 -- conversion so that it is type-consistent for possible further
816 -- expansion (e.g. within a lock-free protected type).
818 Set_Left_Opnd (Snode,
819 Unchecked_Convert_To (Base_Type (Entyp), Relocate_Node (Left)));
820 Rewrite (N, Unchecked_Convert_To (Typ, Snode));
822 -- Analyze and resolve result formed by conversion to target type
824 Analyze_And_Resolve (N, Typ);
825 end if;
826 end Expand_Shift;
828 ------------------------
829 -- Expand_Source_Info --
830 ------------------------
832 procedure Expand_Source_Info (N : Node_Id; Nam : Name_Id) is
833 Loc : constant Source_Ptr := Sloc (N);
834 begin
835 -- Integer cases
837 if Nam = Name_Line then
838 Rewrite (N,
839 Make_Integer_Literal (Loc,
840 Intval => UI_From_Int (Int (Get_Logical_Line_Number (Loc)))));
841 Analyze_And_Resolve (N, Standard_Positive);
843 -- String cases
845 else
846 declare
847 Buf : Bounded_String;
848 begin
849 Add_Source_Info (Buf, Loc, Nam);
850 Rewrite (N, Make_String_Literal (Loc, Strval => +Buf));
851 Analyze_And_Resolve (N, Standard_String);
852 end;
853 end if;
855 Set_Is_Static_Expression (N);
856 end Expand_Source_Info;
858 ---------------------------
859 -- Expand_Unc_Conversion --
860 ---------------------------
862 procedure Expand_Unc_Conversion (N : Node_Id; E : Entity_Id) is
863 Func : constant Entity_Id := Entity (Name (N));
864 Conv : Node_Id;
865 Ftyp : Entity_Id;
866 Ttyp : Entity_Id;
868 begin
869 -- Rewrite as unchecked conversion node. Note that we must convert
870 -- the operand to the formal type of the input parameter of the
871 -- function, so that the resulting N_Unchecked_Type_Conversion
872 -- call indicates the correct types for Gigi.
874 -- Right now, we only do this if a scalar type is involved. It is
875 -- not clear if it is needed in other cases. If we do attempt to
876 -- do the conversion unconditionally, it crashes 3411-018. To be
877 -- investigated further ???
879 Conv := Relocate_Node (First_Actual (N));
880 Ftyp := Etype (First_Formal (Func));
882 if Is_Scalar_Type (Ftyp) then
883 Conv := Convert_To (Ftyp, Conv);
884 Set_Parent (Conv, N);
885 Analyze_And_Resolve (Conv);
886 end if;
888 -- The instantiation of Unchecked_Conversion creates a wrapper package,
889 -- and the target type is declared as a subtype of the actual. Recover
890 -- the actual, which is the subtype indic. in the subtype declaration
891 -- for the target type. This is semantically correct, and avoids
892 -- anomalies with access subtypes. For entities, leave type as is.
894 -- We do the analysis here, because we do not want the compiler
895 -- to try to optimize or otherwise reorganize the unchecked
896 -- conversion node.
898 Ttyp := Etype (E);
900 if Is_Entity_Name (Conv) then
901 null;
903 elsif Nkind (Parent (Ttyp)) = N_Subtype_Declaration then
904 Ttyp := Entity (Subtype_Indication (Parent (Etype (E))));
906 elsif Is_Itype (Ttyp) then
907 Ttyp :=
908 Entity (Subtype_Indication (Associated_Node_For_Itype (Ttyp)));
909 else
910 raise Program_Error;
911 end if;
913 Rewrite (N, Unchecked_Convert_To (Ttyp, Conv));
914 Set_Etype (N, Ttyp);
915 Set_Analyzed (N);
917 if Nkind (N) = N_Unchecked_Type_Conversion then
918 Expand_N_Unchecked_Type_Conversion (N);
919 end if;
920 end Expand_Unc_Conversion;
922 -----------------------------
923 -- Expand_Unc_Deallocation --
924 -----------------------------
926 procedure Expand_Unc_Deallocation (N : Node_Id) is
927 Arg : constant Node_Id := First_Actual (N);
928 Loc : constant Source_Ptr := Sloc (N);
929 Typ : constant Entity_Id := Etype (Arg);
930 Desig_Typ : constant Entity_Id :=
931 Available_View (Designated_Type (Typ));
932 Needs_Fin : constant Boolean := Needs_Finalization (Desig_Typ);
933 Root_Typ : constant Entity_Id := Underlying_Type (Root_Type (Typ));
934 Pool : constant Entity_Id := Associated_Storage_Pool (Root_Typ);
935 Stmts : constant List_Id := New_List;
937 Arg_Known_Non_Null : constant Boolean := Known_Non_Null (N);
938 -- This captures whether we know the argument to be non-null so that
939 -- we can avoid the test. The reason that we need to capture this is
940 -- that we analyze some generated statements before properly attaching
941 -- them to the tree, and that can disturb current value settings.
943 Exceptions_OK : constant Boolean :=
944 not Restriction_Active (No_Exception_Propagation);
946 Abrt_Blk : Node_Id := Empty;
947 Abrt_Blk_Id : Entity_Id;
948 Abrt_HSS : Node_Id;
949 AUD : Entity_Id;
950 Fin_Blk : Node_Id;
951 Fin_Call : Node_Id;
952 Fin_Data : Finalization_Exception_Data;
953 Free_Arg : Node_Id;
954 Free_Nod : Node_Id;
955 Gen_Code : Node_Id;
956 Obj_Ref : Node_Id;
958 begin
959 -- Nothing to do if we know the argument is null
961 if Known_Null (N) then
962 return;
963 end if;
965 -- Processing for pointer to controlled types. Generate:
967 -- Abrt : constant Boolean := ...;
968 -- Ex : Exception_Occurrence;
969 -- Raised : Boolean := False;
971 -- begin
972 -- Abort_Defer;
974 -- begin
975 -- [Deep_]Finalize (Obj_Ref);
977 -- exception
978 -- when others =>
979 -- if not Raised then
980 -- Raised := True;
981 -- Save_Occurrence (Ex, Get_Current_Excep.all.all);
982 -- end;
983 -- at end
984 -- Abort_Undefer_Direct;
985 -- end;
987 -- Depending on whether exception propagation is enabled and/or aborts
988 -- are allowed, the generated code may lack block statements.
990 if Needs_Fin then
991 Obj_Ref :=
992 Make_Explicit_Dereference (Loc,
993 Prefix => Duplicate_Subexpr_No_Checks (Arg));
995 -- If the designated type is tagged, the finalization call must
996 -- dispatch because the designated type may not be the actual type
997 -- of the object. If the type is synchronized, the deallocation
998 -- applies to the corresponding record type.
1000 if Is_Tagged_Type (Desig_Typ) then
1001 if Is_Concurrent_Type (Desig_Typ) then
1002 Obj_Ref :=
1003 Unchecked_Convert_To
1004 (Class_Wide_Type (Corresponding_Record_Type (Desig_Typ)),
1005 Obj_Ref);
1007 elsif not Is_Class_Wide_Type (Desig_Typ) then
1008 Obj_Ref :=
1009 Unchecked_Convert_To (Class_Wide_Type (Desig_Typ), Obj_Ref);
1010 end if;
1012 -- Otherwise the designated type is untagged. Set the type of the
1013 -- dereference explicitly to force a conversion when needed given
1014 -- that [Deep_]Finalize may be inherited from a parent type.
1016 else
1017 Set_Etype (Obj_Ref, Desig_Typ);
1018 end if;
1020 -- Generate:
1021 -- [Deep_]Finalize (Obj_Ref);
1023 Fin_Call := Make_Final_Call (Obj_Ref => Obj_Ref, Typ => Desig_Typ);
1025 -- Generate:
1026 -- Abrt : constant Boolean := ...;
1027 -- Ex : Exception_Occurrence;
1028 -- Raised : Boolean := False;
1030 -- begin
1031 -- <Fin_Call>
1033 -- exception
1034 -- when others =>
1035 -- if not Raised then
1036 -- Raised := True;
1037 -- Save_Occurrence (Ex, Get_Current_Excep.all.all);
1038 -- end;
1040 if Exceptions_OK then
1041 Build_Object_Declarations (Fin_Data, Stmts, Loc);
1043 Fin_Blk :=
1044 Make_Block_Statement (Loc,
1045 Handled_Statement_Sequence =>
1046 Make_Handled_Sequence_Of_Statements (Loc,
1047 Statements => New_List (Fin_Call),
1048 Exception_Handlers => New_List (
1049 Build_Exception_Handler (Fin_Data))));
1051 -- Otherwise exception propagation is not allowed
1053 else
1054 Fin_Blk := Fin_Call;
1055 end if;
1057 -- The finalization action must be protected by an abort defer and
1058 -- undefer pair when aborts are allowed. Generate:
1060 -- begin
1061 -- Abort_Defer;
1062 -- <Fin_Blk>
1063 -- at end
1064 -- Abort_Undefer_Direct;
1065 -- end;
1067 if Abort_Allowed then
1068 AUD := RTE (RE_Abort_Undefer_Direct);
1070 Abrt_HSS :=
1071 Make_Handled_Sequence_Of_Statements (Loc,
1072 Statements => New_List (
1073 Build_Runtime_Call (Loc, RE_Abort_Defer),
1074 Fin_Blk),
1075 At_End_Proc => New_Occurrence_Of (AUD, Loc));
1077 Abrt_Blk :=
1078 Make_Block_Statement (Loc,
1079 Handled_Statement_Sequence => Abrt_HSS);
1081 Add_Block_Identifier (Abrt_Blk, Abrt_Blk_Id);
1082 Expand_At_End_Handler (Abrt_HSS, Abrt_Blk_Id);
1084 -- Present the Abort_Undefer_Direct function to the backend so
1085 -- that it can inline the call to the function.
1087 Add_Inlined_Body (AUD, N);
1089 -- Otherwise aborts are not allowed
1091 else
1092 Abrt_Blk := Fin_Blk;
1093 end if;
1095 Append_To (Stmts, Abrt_Blk);
1096 end if;
1098 -- For a task type, call Free_Task before freeing the ATCB. We used to
1099 -- detect the case of Abort followed by a Free here, because the Free
1100 -- wouldn't actually free if it happens before the aborted task actually
1101 -- terminates. The warning was removed, because Free now works properly
1102 -- (the task will be freed once it terminates).
1104 if Is_Task_Type (Desig_Typ) then
1105 Append_To (Stmts,
1106 Cleanup_Task (N, Duplicate_Subexpr_No_Checks (Arg)));
1108 -- For composite types that contain tasks, recurse over the structure
1109 -- to build the selectors for the task subcomponents.
1111 elsif Has_Task (Desig_Typ) then
1112 if Is_Array_Type (Desig_Typ) then
1113 Append_List_To (Stmts, Cleanup_Array (N, Arg, Desig_Typ));
1115 elsif Is_Record_Type (Desig_Typ) then
1116 Append_List_To (Stmts, Cleanup_Record (N, Arg, Desig_Typ));
1117 end if;
1118 end if;
1120 -- Same for simple protected types. Eventually call Finalize_Protection
1121 -- before freeing the PO for each protected component.
1123 if Is_Simple_Protected_Type (Desig_Typ) then
1124 Append_To (Stmts,
1125 Cleanup_Protected_Object (N, Duplicate_Subexpr_No_Checks (Arg)));
1127 elsif Has_Simple_Protected_Object (Desig_Typ) then
1128 if Is_Array_Type (Desig_Typ) then
1129 Append_List_To (Stmts, Cleanup_Array (N, Arg, Desig_Typ));
1131 elsif Is_Record_Type (Desig_Typ) then
1132 Append_List_To (Stmts, Cleanup_Record (N, Arg, Desig_Typ));
1133 end if;
1134 end if;
1136 -- Normal processing for non-controlled types. The argument to free is
1137 -- a renaming rather than a constant to ensure that the original context
1138 -- is always set to null after the deallocation takes place.
1140 Free_Arg := Duplicate_Subexpr_No_Checks (Arg, Renaming_Req => True);
1141 Free_Nod := Make_Free_Statement (Loc, Empty);
1142 Append_To (Stmts, Free_Nod);
1143 Set_Storage_Pool (Free_Nod, Pool);
1145 -- Attach to tree before analysis of generated subtypes below
1147 Set_Parent (Stmts, Parent (N));
1149 -- Deal with storage pool
1151 if Present (Pool) then
1153 -- Freeing the secondary stack is meaningless
1155 if Is_RTE (Pool, RE_SS_Pool) then
1156 null;
1158 -- If the pool object is of a simple storage pool type, then attempt
1159 -- to locate the type's Deallocate procedure, if any, and set the
1160 -- free operation's procedure to call. If the type doesn't have a
1161 -- Deallocate (which is allowed), then the actual will simply be set
1162 -- to null.
1164 elsif Present
1165 (Get_Rep_Pragma (Etype (Pool), Name_Simple_Storage_Pool_Type))
1166 then
1167 declare
1168 Pool_Typ : constant Entity_Id := Base_Type (Etype (Pool));
1169 Dealloc : Entity_Id;
1171 begin
1172 Dealloc := Get_Name_Entity_Id (Name_Deallocate);
1173 while Present (Dealloc) loop
1174 if Scope (Dealloc) = Scope (Pool_Typ)
1175 and then Present (First_Formal (Dealloc))
1176 and then Etype (First_Formal (Dealloc)) = Pool_Typ
1177 then
1178 Set_Procedure_To_Call (Free_Nod, Dealloc);
1179 exit;
1180 else
1181 Dealloc := Homonym (Dealloc);
1182 end if;
1183 end loop;
1184 end;
1186 -- Case of a class-wide pool type: make a dispatching call to
1187 -- Deallocate through the class-wide Deallocate_Any.
1189 elsif Is_Class_Wide_Type (Etype (Pool)) then
1190 Set_Procedure_To_Call (Free_Nod, RTE (RE_Deallocate_Any));
1192 -- Case of a specific pool type: make a statically bound call
1194 else
1195 Set_Procedure_To_Call
1196 (Free_Nod, Find_Prim_Op (Etype (Pool), Name_Deallocate));
1197 end if;
1198 end if;
1200 if Present (Procedure_To_Call (Free_Nod)) then
1202 -- For all cases of a Deallocate call, the back-end needs to be able
1203 -- to compute the size of the object being freed. This may require
1204 -- some adjustments for objects of dynamic size.
1206 -- If the type is class wide, we generate an implicit type with the
1207 -- right dynamic size, so that the deallocate call gets the right
1208 -- size parameter computed by GIGI. Same for an access to
1209 -- unconstrained packed array.
1211 if Is_Class_Wide_Type (Desig_Typ)
1212 or else
1213 (Is_Array_Type (Desig_Typ)
1214 and then not Is_Constrained (Desig_Typ)
1215 and then Is_Packed (Desig_Typ))
1216 then
1217 declare
1218 Deref : constant Node_Id :=
1219 Make_Explicit_Dereference (Loc,
1220 Duplicate_Subexpr_No_Checks (Arg));
1221 D_Subtyp : Node_Id;
1222 D_Type : Entity_Id;
1224 begin
1225 -- Perform minor decoration as it is needed by the side effect
1226 -- removal mechanism.
1228 Set_Etype (Deref, Desig_Typ);
1229 Set_Parent (Deref, Free_Nod);
1230 D_Subtyp := Make_Subtype_From_Expr (Deref, Desig_Typ);
1232 if Nkind (D_Subtyp) in N_Has_Entity then
1233 D_Type := Entity (D_Subtyp);
1235 else
1236 D_Type := Make_Temporary (Loc, 'A');
1237 Insert_Action (Deref,
1238 Make_Subtype_Declaration (Loc,
1239 Defining_Identifier => D_Type,
1240 Subtype_Indication => D_Subtyp));
1241 end if;
1243 -- Force freezing at the point of the dereference. For the
1244 -- class wide case, this avoids having the subtype frozen
1245 -- before the equivalent type.
1247 Freeze_Itype (D_Type, Deref);
1249 Set_Actual_Designated_Subtype (Free_Nod, D_Type);
1250 end;
1251 end if;
1252 end if;
1254 -- Ada 2005 (AI-251): In case of abstract interface type we must
1255 -- displace the pointer to reference the base of the object to
1256 -- deallocate its memory, unless we're targetting a VM, in which case
1257 -- no special processing is required.
1259 -- Generate:
1260 -- free (Base_Address (Obj_Ptr))
1262 if Is_Interface (Directly_Designated_Type (Typ))
1263 and then Tagged_Type_Expansion
1264 then
1265 Set_Expression (Free_Nod,
1266 Unchecked_Convert_To (Typ,
1267 Make_Function_Call (Loc,
1268 Name =>
1269 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
1270 Parameter_Associations => New_List (
1271 Unchecked_Convert_To (RTE (RE_Address), Free_Arg)))));
1273 -- Generate:
1274 -- free (Obj_Ptr)
1276 else
1277 Set_Expression (Free_Nod, Free_Arg);
1278 end if;
1280 -- Only remaining step is to set result to null, or generate a raise of
1281 -- Constraint_Error if the target object is "not null".
1283 if Can_Never_Be_Null (Etype (Arg)) then
1284 Append_To (Stmts,
1285 Make_Raise_Constraint_Error (Loc,
1286 Reason => CE_Access_Check_Failed));
1288 else
1289 declare
1290 Lhs : constant Node_Id := Duplicate_Subexpr_No_Checks (Arg);
1291 begin
1292 Set_Assignment_OK (Lhs);
1293 Append_To (Stmts,
1294 Make_Assignment_Statement (Loc,
1295 Name => Lhs,
1296 Expression => Make_Null (Loc)));
1297 end;
1298 end if;
1300 -- Generate a test of whether any earlier finalization raised an
1301 -- exception, and in that case raise Program_Error with the previous
1302 -- exception occurrence.
1304 -- Generate:
1305 -- if Raised and then not Abrt then
1306 -- raise Program_Error; -- for restricted RTS
1307 -- <or>
1308 -- Raise_From_Controlled_Operation (E); -- all other cases
1309 -- end if;
1311 if Needs_Fin and then Exceptions_OK then
1312 Append_To (Stmts, Build_Raise_Statement (Fin_Data));
1313 end if;
1315 -- If we know the argument is non-null, then make a block statement
1316 -- that contains the required statements, no need for a test.
1318 if Arg_Known_Non_Null then
1319 Gen_Code :=
1320 Make_Block_Statement (Loc,
1321 Handled_Statement_Sequence =>
1322 Make_Handled_Sequence_Of_Statements (Loc,
1323 Statements => Stmts));
1325 -- If the argument may be null, wrap the statements inside an IF that
1326 -- does an explicit test to exclude the null case.
1328 else
1329 Gen_Code :=
1330 Make_Implicit_If_Statement (N,
1331 Condition =>
1332 Make_Op_Ne (Loc,
1333 Left_Opnd => Duplicate_Subexpr (Arg),
1334 Right_Opnd => Make_Null (Loc)),
1335 Then_Statements => Stmts);
1336 end if;
1338 -- Rewrite the call
1340 Rewrite (N, Gen_Code);
1341 Analyze (N);
1342 end Expand_Unc_Deallocation;
1344 -----------------------
1345 -- Expand_To_Address --
1346 -----------------------
1348 procedure Expand_To_Address (N : Node_Id) is
1349 Loc : constant Source_Ptr := Sloc (N);
1350 Arg : constant Node_Id := First_Actual (N);
1351 Obj : Node_Id;
1353 begin
1354 Remove_Side_Effects (Arg);
1356 Obj := Make_Explicit_Dereference (Loc, Relocate_Node (Arg));
1358 Rewrite (N,
1359 Make_If_Expression (Loc,
1360 Expressions => New_List (
1361 Make_Op_Eq (Loc,
1362 Left_Opnd => New_Copy_Tree (Arg),
1363 Right_Opnd => Make_Null (Loc)),
1364 New_Occurrence_Of (RTE (RE_Null_Address), Loc),
1365 Make_Attribute_Reference (Loc,
1366 Prefix => Obj,
1367 Attribute_Name => Name_Address))));
1369 Analyze_And_Resolve (N, RTE (RE_Address));
1370 end Expand_To_Address;
1372 -----------------------
1373 -- Expand_To_Pointer --
1374 -----------------------
1376 procedure Expand_To_Pointer (N : Node_Id) is
1377 Arg : constant Node_Id := First_Actual (N);
1379 begin
1380 Rewrite (N, Unchecked_Convert_To (Etype (N), Arg));
1381 Analyze (N);
1382 end Expand_To_Pointer;
1384 end Exp_Intr;