fortran: Add -finline-intrinsics flag for MINLOC/MAXLOC [PR90608]
[official-gcc.git] / gcc / ada / exp_intr.adb
blob0db0a66ab1c938d0d2b072763a74039f61337a3f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ I N T R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Einfo.Entities; use Einfo.Entities;
30 with Einfo.Utils; use Einfo.Utils;
31 with Elists; use Elists;
32 with Expander; use Expander;
33 with Exp_Atag; use Exp_Atag;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Ch11; use Exp_Ch11;
36 with Exp_Code; use Exp_Code;
37 with Exp_Fixd; use Exp_Fixd;
38 with Exp_Util; use Exp_Util;
39 with Freeze; use Freeze;
40 with Inline; use Inline;
41 with Nmake; use Nmake;
42 with Nlists; use Nlists;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Eval; use Sem_Eval;
50 with Sem_Res; use Sem_Res;
51 with Sem_Type; use Sem_Type;
52 with Sem_Util; use Sem_Util;
53 with Sinfo; use Sinfo;
54 with Sinfo.Nodes; use Sinfo.Nodes;
55 with Sinfo.Utils; use Sinfo.Utils;
56 with Sinput; use Sinput;
57 with Snames; use Snames;
58 with Stand; use Stand;
59 with Tbuild; use Tbuild;
60 with Uintp; use Uintp;
62 package body Exp_Intr is
64 -----------------------
65 -- Local Subprograms --
66 -----------------------
68 procedure Expand_Binary_Operator_Call (N : Node_Id);
69 -- Expand a call to an intrinsic arithmetic operator when the operand
70 -- types or sizes are not identical.
72 procedure Expand_Dispatching_Constructor_Call (N : Node_Id);
73 -- Expand a call to an instantiation of Generic_Dispatching_Constructor
74 -- into a dispatching call to the actual subprogram associated with the
75 -- Constructor formal subprogram, passing it the Parameters actual of
76 -- the call to the instantiation and dispatching based on call's Tag
77 -- parameter.
79 procedure Expand_Exception_Call (N : Node_Id; Ent : RE_Id);
80 -- Expand a call to Exception_Information/Message/Name. The first
81 -- parameter, N, is the node for the function call, and Ent is the
82 -- entity for the corresponding routine in the Ada.Exceptions package.
84 procedure Expand_Import_Call (N : Node_Id);
85 -- Expand a call to Import_Address/Longest_Integer/Value. The parameter
86 -- N is the node for the function call.
88 procedure Expand_Shift (N : Node_Id; E : Entity_Id; K : Node_Kind);
89 -- Expand an intrinsic shift operation, N and E are from the call to
90 -- Expand_Intrinsic_Call (call node and subprogram spec entity) and
91 -- K is the kind for the shift node
93 procedure Expand_Unc_Conversion (N : Node_Id; E : Entity_Id);
94 -- Expand a call to an instantiation of Unchecked_Conversion into a node
95 -- N_Unchecked_Type_Conversion.
97 procedure Expand_Unc_Deallocation (N : Node_Id);
98 -- Expand a call to an instantiation of Unchecked_Deallocation into a node
99 -- N_Free_Statement and appropriate context.
101 procedure Expand_To_Address (N : Node_Id);
102 -- Expand a call to corresponding function from System.Storage_Elements or
103 -- declared in an instance of System.Address_To_Access_Conversions.
105 procedure Expand_To_Integer (N : Node_Id);
106 -- Expand a call to corresponding function from System.Storage_Elements
108 procedure Expand_To_Pointer (N : Node_Id);
109 -- Expand a call to corresponding function, declared in an instance of
110 -- System.Address_To_Access_Conversions.
112 ---------------------
113 -- Add_Source_Info --
114 ---------------------
116 procedure Add_Source_Info
117 (Buf : in out Bounded_String;
118 Loc : Source_Ptr;
119 Nam : Name_Id)
121 begin
122 case Nam is
123 when Name_Line =>
124 Append (Buf, Nat (Get_Logical_Line_Number (Loc)));
126 when Name_File =>
127 Append (Buf, Reference_Name (Get_Source_File_Index (Loc)));
129 when Name_Source_Location =>
130 Build_Location_String (Buf, Loc);
132 when Name_Enclosing_Entity =>
134 -- Skip enclosing blocks to reach enclosing unit
136 declare
137 Ent : Entity_Id := Current_Scope;
138 begin
139 while Present (Ent) loop
140 exit when Ekind (Ent) not in E_Block | E_Loop;
141 Ent := Scope (Ent);
142 end loop;
144 -- Ent now points to the relevant defining entity
146 Append_Entity_Name (Buf, Ent);
147 end;
149 when Name_Compilation_ISO_Date =>
150 Append (Buf, Opt.Compilation_Time (1 .. 10));
152 when Name_Compilation_Date =>
153 declare
154 subtype S13 is String (1 .. 3);
155 Months : constant array (1 .. 12) of S13 :=
156 ("Jan", "Feb", "Mar", "Apr", "May", "Jun",
157 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec");
159 M1 : constant Character := Opt.Compilation_Time (6);
160 M2 : constant Character := Opt.Compilation_Time (7);
162 MM : constant Natural range 1 .. 12 :=
163 (Character'Pos (M1) - Character'Pos ('0')) * 10 +
164 (Character'Pos (M2) - Character'Pos ('0'));
166 begin
167 -- Reformat ISO date into MMM DD YYYY (__DATE__) format
169 Append (Buf, Months (MM));
170 Append (Buf, ' ');
171 Append (Buf, Opt.Compilation_Time (9 .. 10));
172 Append (Buf, ' ');
173 Append (Buf, Opt.Compilation_Time (1 .. 4));
174 end;
176 when Name_Compilation_Time =>
177 Append (Buf, Opt.Compilation_Time (12 .. 19));
179 when others =>
180 raise Program_Error;
181 end case;
182 end Add_Source_Info;
184 ---------------------------------
185 -- Expand_Binary_Operator_Call --
186 ---------------------------------
188 procedure Expand_Binary_Operator_Call (N : Node_Id) is
189 T1 : constant Entity_Id := Underlying_Type (Etype (Left_Opnd (N)));
190 T2 : constant Entity_Id := Underlying_Type (Etype (Right_Opnd (N)));
191 TR : constant Entity_Id := Etype (N);
192 T3 : Entity_Id;
193 Res : Node_Id;
195 Siz : constant Uint := UI_Max (RM_Size (T1), RM_Size (T2));
196 -- Maximum of operand sizes
198 begin
199 -- Nothing to do if the operands have the same modular type
201 if Base_Type (T1) = Base_Type (T2)
202 and then Is_Modular_Integer_Type (T1)
203 then
204 return;
205 end if;
207 -- Use the appropriate type for the size
209 if Siz <= 32 then
210 T3 := RTE (RE_Unsigned_32);
212 elsif Siz <= 64 then
213 T3 := RTE (RE_Unsigned_64);
215 else pragma Assert (Siz <= 128);
216 T3 := RTE (RE_Unsigned_128);
217 end if;
219 -- Copy operator node, and reset type and entity fields, for
220 -- subsequent reanalysis.
222 Res := New_Copy (N);
223 Set_Etype (Res, T3);
225 case Nkind (N) is
226 when N_Op_And => Set_Entity (Res, Standard_Op_And);
227 when N_Op_Or => Set_Entity (Res, Standard_Op_Or);
228 when N_Op_Xor => Set_Entity (Res, Standard_Op_Xor);
229 when others => raise Program_Error;
230 end case;
232 -- Convert operands to large enough intermediate type
234 Set_Left_Opnd (Res,
235 Unchecked_Convert_To (T3, Relocate_Node (Left_Opnd (N))));
236 Set_Right_Opnd (Res,
237 Unchecked_Convert_To (T3, Relocate_Node (Right_Opnd (N))));
239 -- Analyze and resolve result formed by conversion to target type
241 Rewrite (N, Unchecked_Convert_To (TR, Res));
242 Analyze_And_Resolve (N, TR);
243 end Expand_Binary_Operator_Call;
245 -----------------------------------------
246 -- Expand_Dispatching_Constructor_Call --
247 -----------------------------------------
249 -- Transform a call to an instantiation of Generic_Dispatching_Constructor
250 -- of the form:
252 -- GDC_Instance (The_Tag, Parameters'Access)
254 -- to a class-wide conversion of a dispatching call to the actual
255 -- associated with the formal subprogram Construct, designating The_Tag
256 -- as the controlling tag of the call:
258 -- T'Class (Construct'Actual (Params)) -- Controlling tag is The_Tag
260 -- which will eventually be expanded to the following:
262 -- T'Class (The_Tag.all (Construct'Actual'Index).all (Params))
264 -- A class-wide membership test is also generated, preceding the call, to
265 -- ensure that the controlling tag denotes a type in T'Class.
267 procedure Expand_Dispatching_Constructor_Call (N : Node_Id) is
268 Loc : constant Source_Ptr := Sloc (N);
269 Tag_Arg : constant Node_Id := First_Actual (N);
270 Param_Arg : constant Node_Id := Next_Actual (Tag_Arg);
271 Subp_Decl : constant Node_Id := Parent (Parent (Entity (Name (N))));
272 Inst_Pkg : constant Node_Id := Parent (Subp_Decl);
273 Act_Rename : Node_Id;
274 Act_Constr : Entity_Id;
275 Iface_Tag : Node_Id := Empty;
276 Cnstr_Call : Node_Id;
277 Result_Typ : Entity_Id;
279 begin
280 pragma Assert (Is_Class_Wide_Type (Etype (Entity (Name (N)))));
282 -- Remove side effects from tag argument early, before rewriting
283 -- the dispatching constructor call, as Remove_Side_Effects relies
284 -- on Tag_Arg's Parent link properly attached to the tree (once the
285 -- call is rewritten, the Parent is inconsistent as it points to the
286 -- rewritten node, which is not the syntactic parent of the Tag_Arg
287 -- anymore).
289 Remove_Side_Effects (Tag_Arg);
291 -- Check that we have a proper tag
293 Insert_Action (N,
294 Make_Implicit_If_Statement (N,
295 Condition => Make_Op_Eq (Loc,
296 Left_Opnd => New_Copy_Tree (Tag_Arg),
297 Right_Opnd => New_Occurrence_Of (RTE (RE_No_Tag), Loc)),
299 Then_Statements => New_List (
300 Make_Raise_Statement (Loc,
301 New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
303 -- Check that it is not the tag of an abstract type
305 Insert_Action (N,
306 Make_Implicit_If_Statement (N,
307 Condition => Make_Function_Call (Loc,
308 Name =>
309 New_Occurrence_Of (RTE (RE_Is_Abstract), Loc),
310 Parameter_Associations => New_List (New_Copy_Tree (Tag_Arg))),
312 Then_Statements => New_List (
313 Make_Raise_Statement (Loc,
314 New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
316 -- The subprogram is the third actual in the instantiation, and is
317 -- retrieved from the corresponding renaming declaration. However,
318 -- freeze nodes may appear before, so we retrieve the declaration
319 -- with an explicit loop.
321 Act_Rename := First (Visible_Declarations (Inst_Pkg));
322 while Nkind (Act_Rename) /= N_Subprogram_Renaming_Declaration loop
323 Next (Act_Rename);
324 end loop;
326 Act_Constr := Entity (Name (Act_Rename));
327 Result_Typ := Class_Wide_Type (Etype (Act_Constr));
329 -- Check that the accessibility level of the tag is no deeper than that
330 -- of the constructor function (unless CodePeer_Mode).
332 if not CodePeer_Mode then
333 Insert_Action (N,
334 Make_Implicit_If_Statement (N,
335 Condition =>
336 Make_Op_Gt (Loc,
337 Left_Opnd =>
338 Build_Get_Access_Level (Loc, New_Copy_Tree (Tag_Arg)),
339 Right_Opnd =>
340 Make_Integer_Literal
341 (Loc, Scope_Depth_Default_0 (Act_Constr))),
343 Then_Statements => New_List (
344 Make_Raise_Statement (Loc,
345 New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
346 end if;
348 if Is_Interface (Etype (Act_Constr)) then
350 -- If the result type is not known to be a parent of Tag_Arg then we
351 -- need to locate the tag of the secondary dispatch table.
353 if not Is_Ancestor (Etype (Result_Typ), Etype (Tag_Arg),
354 Use_Full_View => True)
355 and then Tagged_Type_Expansion
356 then
357 -- Obtain the reference to the Ada.Tags service before generating
358 -- the Object_Declaration node to ensure that if this service is
359 -- not available in the runtime then we generate a clear error.
361 declare
362 Fname : constant Node_Id :=
363 New_Occurrence_Of (RTE (RE_Secondary_Tag), Loc);
365 begin
366 pragma Assert (not Is_Interface (Etype (Tag_Arg)));
368 -- The tag is the first entry in the dispatch table of the
369 -- return type of the constructor.
371 Iface_Tag :=
372 Make_Object_Declaration (Loc,
373 Defining_Identifier => Make_Temporary (Loc, 'V'),
374 Object_Definition =>
375 New_Occurrence_Of (RTE (RE_Tag), Loc),
376 Expression =>
377 Make_Function_Call (Loc,
378 Name => Fname,
379 Parameter_Associations => New_List (
380 Relocate_Node (Tag_Arg),
381 New_Occurrence_Of
382 (Node (First_Elmt
383 (Access_Disp_Table (Etype (Act_Constr)))),
384 Loc))));
385 Insert_Action (N, Iface_Tag);
386 end;
387 end if;
388 end if;
390 -- Create the call to the actual Constructor function
392 Cnstr_Call :=
393 Make_Function_Call (Loc,
394 Name => New_Occurrence_Of (Act_Constr, Loc),
395 Parameter_Associations => New_List (Relocate_Node (Param_Arg)));
397 -- Establish its controlling tag from the tag passed to the instance
398 -- The tag may be given by a function call, in which case a temporary
399 -- should be generated now, to prevent out-of-order insertions during
400 -- the expansion of that call when stack-checking is enabled.
402 if Present (Iface_Tag) then
403 Set_Controlling_Argument (Cnstr_Call,
404 New_Occurrence_Of (Defining_Identifier (Iface_Tag), Loc));
405 else
406 Set_Controlling_Argument (Cnstr_Call,
407 Relocate_Node (Tag_Arg));
408 end if;
410 -- Rewrite and analyze the call to the instance as a class-wide
411 -- conversion of the call to the actual constructor. When the result
412 -- type is a class-wide interface type this conversion is required to
413 -- force the displacement of the pointer to the object to reference the
414 -- corresponding dispatch table.
416 Rewrite (N, Convert_To (Result_Typ, Cnstr_Call));
418 -- Do not generate a run-time check on the built object if tag
419 -- checks are suppressed for the result type or tagged type expansion
420 -- is disabled or if CodePeer_Mode.
422 if Tag_Checks_Suppressed (Etype (Result_Typ))
423 or else not Tagged_Type_Expansion
424 or else CodePeer_Mode
425 then
426 null;
428 -- Generate a class-wide membership test to ensure that the call's tag
429 -- argument denotes a type within the class. We must keep separate the
430 -- case in which the Result_Type of the constructor function is a tagged
431 -- type from the case in which it is an abstract interface because the
432 -- run-time subprogram required to check these cases differ (and have
433 -- one difference in their parameters profile).
435 -- Call CW_Membership if the Result_Type is a tagged type to look for
436 -- the tag in the table of ancestor tags.
438 elsif not Is_Interface (Result_Typ) then
439 Insert_Action (N,
440 Make_Implicit_If_Statement (N,
441 Condition =>
442 Make_Op_Not (Loc,
443 Make_Function_Call (Loc,
444 Name => New_Occurrence_Of (RTE (RE_CW_Membership), Loc),
445 Parameter_Associations => New_List (
446 New_Copy_Tree (Tag_Arg),
447 New_Occurrence_Of (
448 Node (First_Elmt (Access_Disp_Table (
449 Root_Type (Result_Typ)))), Loc)))),
450 Then_Statements =>
451 New_List (
452 Make_Raise_Statement (Loc,
453 Name => New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
455 -- Call IW_Membership test if the Result_Type is an abstract interface
456 -- to look for the tag in the table of interface tags.
458 else
459 Insert_Action (N,
460 Make_Implicit_If_Statement (N,
461 Condition =>
462 Make_Op_Not (Loc,
463 Make_Function_Call (Loc,
464 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
465 Parameter_Associations => New_List (
466 Make_Attribute_Reference (Loc,
467 Prefix => New_Copy_Tree (Tag_Arg),
468 Attribute_Name => Name_Address),
470 New_Occurrence_Of (
471 Node (First_Elmt (Access_Disp_Table (
472 Root_Type (Result_Typ)))), Loc)))),
473 Then_Statements =>
474 New_List (
475 Make_Raise_Statement (Loc,
476 Name => New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
477 end if;
479 Analyze_And_Resolve (N, Etype (Act_Constr));
480 end Expand_Dispatching_Constructor_Call;
482 ---------------------------
483 -- Expand_Exception_Call --
484 ---------------------------
486 -- If the function call is not within an exception handler, then the call
487 -- is replaced by a null string. Otherwise the appropriate routine in
488 -- Ada.Exceptions is called passing the choice parameter specification
489 -- from the enclosing handler. If the enclosing handler lacks a choice
490 -- parameter, then one is supplied.
492 procedure Expand_Exception_Call (N : Node_Id; Ent : RE_Id) is
493 Loc : constant Source_Ptr := Sloc (N);
494 P : Node_Id;
495 E : Entity_Id;
497 begin
498 -- Climb up parents to see if we are in exception handler
500 P := Parent (N);
501 loop
502 -- Case of not in exception handler, replace by null string
504 if No (P) then
505 Rewrite (N,
506 Make_String_Literal (Loc,
507 Strval => ""));
508 exit;
510 -- Case of in exception handler
512 elsif Nkind (P) = N_Exception_Handler then
514 -- Handler cannot be used for a local raise, and furthermore, this
515 -- is a violation of the No_Exception_Propagation restriction.
517 Set_Local_Raise_Not_OK (P);
518 Check_Restriction (No_Exception_Propagation, N);
520 -- If no choice parameter present, then put one there. Note that
521 -- we do not need to put it on the entity chain, since no one will
522 -- be referencing it by normal visibility methods.
524 if No (Choice_Parameter (P)) then
525 E := Make_Temporary (Loc, 'E');
526 Set_Choice_Parameter (P, E);
527 Mutate_Ekind (E, E_Variable);
528 Set_Etype (E, RTE (RE_Exception_Occurrence));
529 Set_Scope (E, Current_Scope);
530 end if;
532 Rewrite (N,
533 Make_Function_Call (Loc,
534 Name => New_Occurrence_Of (RTE (Ent), Loc),
535 Parameter_Associations => New_List (
536 New_Occurrence_Of (Choice_Parameter (P), Loc))));
537 exit;
539 -- Keep climbing
541 else
542 P := Parent (P);
543 end if;
544 end loop;
546 Analyze_And_Resolve (N, Standard_String);
547 end Expand_Exception_Call;
549 ------------------------
550 -- Expand_Import_Call --
551 ------------------------
553 -- The function call must have a static string as its argument. We create
554 -- a dummy variable which uses this string as the external name in an
555 -- Import pragma. The result is then obtained as the address of this
556 -- dummy variable, converted to the appropriate target type.
558 procedure Expand_Import_Call (N : Node_Id) is
559 Loc : constant Source_Ptr := Sloc (N);
560 Ent : constant Entity_Id := Entity (Name (N));
561 Str : constant Node_Id := First_Actual (N);
562 Dum : constant Entity_Id := Make_Temporary (Loc, 'D');
564 begin
565 Insert_Actions (N, New_List (
566 Make_Object_Declaration (Loc,
567 Defining_Identifier => Dum,
568 Object_Definition =>
569 New_Occurrence_Of (Standard_Character, Loc)),
571 Make_Pragma (Loc,
572 Chars => Name_Import,
573 Pragma_Argument_Associations => New_List (
574 Make_Pragma_Argument_Association (Loc,
575 Expression => Make_Identifier (Loc, Name_Ada)),
577 Make_Pragma_Argument_Association (Loc,
578 Expression => Make_Identifier (Loc, Chars (Dum))),
580 Make_Pragma_Argument_Association (Loc,
581 Chars => Name_Link_Name,
582 Expression => Relocate_Node (Str))))));
584 Rewrite (N,
585 Unchecked_Convert_To (Etype (Ent),
586 Make_Attribute_Reference (Loc,
587 Prefix => Make_Identifier (Loc, Chars (Dum)),
588 Attribute_Name => Name_Address)));
590 Analyze_And_Resolve (N, Etype (Ent));
591 end Expand_Import_Call;
593 ---------------------------
594 -- Expand_Intrinsic_Call --
595 ---------------------------
597 procedure Expand_Intrinsic_Call (N : Node_Id; E : Entity_Id) is
598 Nam : Name_Id;
600 begin
601 -- If an external name is specified for the intrinsic, it is handled
602 -- by the back-end: leave the call node unchanged for now.
604 if Present (Interface_Name (E)) then
605 return;
606 end if;
608 -- If the intrinsic subprogram is generic, gets its original name
610 if Present (Parent (E))
611 and then Present (Generic_Parent (Parent (E)))
612 then
613 Nam := Chars (Generic_Parent (Parent (E)));
614 else
615 Nam := Chars (E);
616 end if;
618 if Nam = Name_Asm then
619 Expand_Asm_Call (N);
621 elsif Nam = Name_Divide then
622 Expand_Decimal_Divide_Call (N);
624 elsif Nam = Name_Exception_Information then
625 Expand_Exception_Call (N, RE_Exception_Information);
627 elsif Nam = Name_Exception_Message then
628 Expand_Exception_Call (N, RE_Exception_Message);
630 elsif Nam = Name_Exception_Name then
631 Expand_Exception_Call (N, RE_Exception_Name_Simple);
633 elsif Nam = Name_Generic_Dispatching_Constructor then
634 Expand_Dispatching_Constructor_Call (N);
636 elsif Nam in Name_Import_Address
637 | Name_Import_Largest_Value
638 | Name_Import_Value
639 then
640 Expand_Import_Call (N);
642 elsif Nam = Name_Rotate_Left then
643 Expand_Shift (N, E, N_Op_Rotate_Left);
645 elsif Nam = Name_Rotate_Right then
646 Expand_Shift (N, E, N_Op_Rotate_Right);
648 elsif Nam = Name_Shift_Left then
649 Expand_Shift (N, E, N_Op_Shift_Left);
651 elsif Nam = Name_Shift_Right then
652 Expand_Shift (N, E, N_Op_Shift_Right);
654 elsif Nam = Name_Shift_Right_Arithmetic then
655 Expand_Shift (N, E, N_Op_Shift_Right_Arithmetic);
657 elsif Nam = Name_Unchecked_Conversion then
658 Expand_Unc_Conversion (N, E);
660 elsif Nam = Name_Unchecked_Deallocation then
661 Expand_Unc_Deallocation (N);
663 elsif Nam = Name_To_Address then
664 Expand_To_Address (N);
666 elsif Nam = Name_To_Integer then
667 Expand_To_Integer (N);
669 elsif Nam = Name_To_Pointer then
670 Expand_To_Pointer (N);
672 elsif Nam in Name_File
673 | Name_Line
674 | Name_Source_Location
675 | Name_Enclosing_Entity
676 | Name_Compilation_ISO_Date
677 | Name_Compilation_Date
678 | Name_Compilation_Time
679 then
680 Expand_Source_Info (N, Nam);
682 -- If we have a renaming, expand the call to the original operation,
683 -- which must itself be intrinsic, since renaming requires matching
684 -- conventions and this has already been checked.
686 elsif Present (Alias (E)) then
687 Expand_Intrinsic_Call (N, Alias (E));
689 elsif Nkind (N) in N_Binary_Op then
690 Expand_Binary_Operator_Call (N);
692 -- The only other case is where an external name was specified, since
693 -- this is the only way that an otherwise unrecognized name could
694 -- escape the checking in Sem_Prag. Nothing needs to be done in such
695 -- a case, since we pass such a call to the back end unchanged.
697 else
698 null;
699 end if;
700 end Expand_Intrinsic_Call;
702 ------------------
703 -- Expand_Shift --
704 ------------------
706 -- This procedure is used to convert a call to a shift function to the
707 -- corresponding operator node. This conversion is not done by the usual
708 -- circuit for converting calls to operator functions (e.g. "+"(1,2)) to
709 -- operator nodes, because shifts are not predefined operators.
711 -- As a result, whenever a shift is used in the source program, it will
712 -- remain as a call until converted by this routine to the operator node
713 -- form which the back end is expecting to see.
715 -- Note: it is possible for the expander to generate shift operator nodes
716 -- directly, which will be analyzed in the normal manner by calling Analyze
717 -- and Resolve. Such shift operator nodes will not be seen by Expand_Shift.
719 procedure Expand_Shift (N : Node_Id; E : Entity_Id; K : Node_Kind) is
720 Entyp : constant Entity_Id := Etype (E);
721 Left : constant Node_Id := First_Actual (N);
722 Loc : constant Source_Ptr := Sloc (N);
723 Right : constant Node_Id := Next_Actual (Left);
724 Ltyp : constant Node_Id := Etype (Left);
725 Rtyp : constant Node_Id := Etype (Right);
726 Typ : constant Entity_Id := Etype (N);
727 Snode : Node_Id;
729 begin
730 Snode := New_Node (K, Loc);
731 Set_Right_Opnd (Snode, Relocate_Node (Right));
732 Set_Chars (Snode, Chars (E));
733 Set_Etype (Snode, Base_Type (Entyp));
734 Set_Entity (Snode, E);
736 if Compile_Time_Known_Value (Type_High_Bound (Rtyp))
737 and then Expr_Value (Type_High_Bound (Rtyp)) < Esize (Ltyp)
738 then
739 Set_Shift_Count_OK (Snode, True);
740 end if;
742 if Typ = Entyp then
744 -- Note that we don't call Analyze and Resolve on this node, because
745 -- it already got analyzed and resolved when it was a function call.
747 Set_Left_Opnd (Snode, Relocate_Node (Left));
748 Rewrite (N, Snode);
749 Set_Analyzed (N);
751 if Expander_Active then
752 Expand (N);
753 end if;
754 else
755 -- If the context type is not the type of the operator, it is an
756 -- inherited operator for a derived type. Wrap the node in a
757 -- conversion so that it is type-consistent for possible further
758 -- expansion (e.g. within a lock-free protected type).
760 Set_Left_Opnd (Snode,
761 Unchecked_Convert_To (Base_Type (Entyp), Relocate_Node (Left)));
762 Rewrite (N, Unchecked_Convert_To (Typ, Snode));
764 -- Analyze and resolve result formed by conversion to target type
766 Analyze_And_Resolve (N, Typ);
767 end if;
768 end Expand_Shift;
770 ------------------------
771 -- Expand_Source_Info --
772 ------------------------
774 procedure Expand_Source_Info (N : Node_Id; Nam : Name_Id) is
775 Loc : constant Source_Ptr := Sloc (N);
776 begin
777 -- Integer cases
779 if Nam = Name_Line then
780 Rewrite (N,
781 Make_Integer_Literal (Loc,
782 Intval => UI_From_Int (Int (Get_Logical_Line_Number (Loc)))));
783 Analyze_And_Resolve (N, Standard_Positive);
785 -- String cases
787 else
788 declare
789 Buf : Bounded_String;
790 begin
791 Add_Source_Info (Buf, Loc, Nam);
792 Rewrite (N, Make_String_Literal (Loc, Strval => +Buf));
793 Analyze_And_Resolve (N, Standard_String);
794 end;
795 end if;
797 Set_Is_Static_Expression (N);
798 end Expand_Source_Info;
800 ---------------------------
801 -- Expand_Unc_Conversion --
802 ---------------------------
804 procedure Expand_Unc_Conversion (N : Node_Id; E : Entity_Id) is
805 Func : constant Entity_Id := Entity (Name (N));
806 Conv : Node_Id;
807 Ftyp : Entity_Id;
808 Ttyp : Entity_Id;
810 begin
811 -- Rewrite as unchecked conversion node. Note that we must convert
812 -- the operand to the formal type of the input parameter of the
813 -- function, so that the resulting N_Unchecked_Type_Conversion
814 -- call indicates the correct types for Gigi.
816 -- Right now, we only do this if a scalar type is involved. It is
817 -- not clear if it is needed in other cases. If we do attempt to
818 -- do the conversion unconditionally, it crashes 3411-018. To be
819 -- investigated further ???
821 Conv := Relocate_Node (First_Actual (N));
822 Ftyp := Etype (First_Formal (Func));
824 if Is_Scalar_Type (Ftyp) then
825 Conv := Convert_To (Ftyp, Conv);
826 Set_Parent (Conv, N);
827 Analyze_And_Resolve (Conv);
828 end if;
830 -- The instantiation of Unchecked_Conversion creates a wrapper package,
831 -- and the target type is declared as a subtype of the actual. Recover
832 -- the actual, which is the subtype indic. in the subtype declaration
833 -- for the target type. This is semantically correct, and avoids
834 -- anomalies with access subtypes. For entities, leave type as is.
836 -- We do the analysis here, because we do not want the compiler
837 -- to try to optimize or otherwise reorganize the unchecked
838 -- conversion node.
840 Ttyp := Etype (E);
842 if Is_Entity_Name (Conv) then
843 null;
845 elsif Nkind (Parent (Ttyp)) = N_Subtype_Declaration then
846 Ttyp := Entity (Subtype_Indication (Parent (Etype (E))));
848 elsif Is_Itype (Ttyp) then
849 Ttyp :=
850 Entity (Subtype_Indication (Associated_Node_For_Itype (Ttyp)));
851 else
852 raise Program_Error;
853 end if;
855 Rewrite (N, Unchecked_Convert_To (Ttyp, Conv));
856 Analyze_And_Resolve (N, Ttyp);
857 end Expand_Unc_Conversion;
859 -----------------------------
860 -- Expand_Unc_Deallocation --
861 -----------------------------
863 procedure Expand_Unc_Deallocation (N : Node_Id) is
864 Arg : constant Node_Id := First_Actual (N);
865 Loc : constant Source_Ptr := Sloc (N);
866 Typ : constant Entity_Id := Etype (Arg);
867 Desig_Typ : constant Entity_Id :=
868 Available_View (Designated_Type (Typ));
869 Needs_Fin : constant Boolean := Needs_Finalization (Desig_Typ);
870 Root_Typ : constant Entity_Id := Underlying_Type (Root_Type (Typ));
871 Pool : constant Entity_Id := Associated_Storage_Pool (Root_Typ);
872 Stmts : constant List_Id := New_List;
874 Arg_Known_Non_Null : constant Boolean := Known_Non_Null (N);
875 -- This captures whether we know the argument to be non-null so that
876 -- we can avoid the test. The reason that we need to capture this is
877 -- that we analyze some generated statements before properly attaching
878 -- them to the tree, and that can disturb current value settings.
880 Exceptions_OK : constant Boolean :=
881 not Restriction_Active (No_Exception_Propagation);
883 Abrt_Blk : Node_Id := Empty;
884 Abrt_Blk_Id : Entity_Id;
885 Abrt_HSS : Node_Id;
886 AUD : Entity_Id;
887 Fin_Blk : Node_Id;
888 Fin_Call : Node_Id;
889 Fin_Data : Finalization_Exception_Data;
890 Free_Arg : Node_Id;
891 Free_Nod : Node_Id;
892 Gen_Code : Node_Id;
893 Obj_Ref : Node_Id;
895 begin
896 -- Nothing to do if we know the argument is null
898 if Known_Null (N) then
899 return;
900 end if;
902 -- Processing for pointer to controlled types. Generate:
904 -- Abrt : constant Boolean := ...;
905 -- Ex : Exception_Occurrence;
906 -- Raised : Boolean := False;
908 -- begin
909 -- Abort_Defer;
911 -- begin
912 -- [Deep_]Finalize (Obj_Ref);
914 -- exception
915 -- when others =>
916 -- if not Raised then
917 -- Raised := True;
918 -- Save_Occurrence (Ex, Get_Current_Excep.all.all);
919 -- end;
920 -- at end
921 -- Abort_Undefer_Direct;
922 -- end;
924 -- Depending on whether exception propagation is enabled and/or aborts
925 -- are allowed, the generated code may lack block statements.
927 if Needs_Fin then
929 -- Ada 2005 (AI-251): In case of abstract interface type we displace
930 -- the pointer to reference the base of the object to deallocate its
931 -- memory, unless we're targetting a VM, in which case no special
932 -- processing is required.
934 if Is_Interface (Directly_Designated_Type (Typ))
935 and then Tagged_Type_Expansion
936 then
937 Obj_Ref :=
938 Make_Explicit_Dereference (Loc,
939 Prefix =>
940 Unchecked_Convert_To (Typ,
941 Make_Function_Call (Loc,
942 Name =>
943 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
944 Parameter_Associations => New_List (
945 Unchecked_Convert_To (RTE (RE_Address),
946 Duplicate_Subexpr_No_Checks (Arg))))));
948 else
949 Obj_Ref :=
950 Make_Explicit_Dereference (Loc,
951 Prefix => Duplicate_Subexpr_No_Checks (Arg));
952 end if;
954 -- If the designated type is tagged, the finalization call must
955 -- dispatch because the designated type may not be the actual type
956 -- of the object. If the type is synchronized, the deallocation
957 -- applies to the corresponding record type.
959 if Is_Tagged_Type (Desig_Typ) then
960 if Is_Concurrent_Type (Desig_Typ) then
961 Obj_Ref :=
962 Unchecked_Convert_To
963 (Class_Wide_Type (Corresponding_Record_Type (Desig_Typ)),
964 Obj_Ref);
966 elsif not Is_Class_Wide_Type (Desig_Typ) then
967 Obj_Ref :=
968 Unchecked_Convert_To (Class_Wide_Type (Desig_Typ), Obj_Ref);
969 end if;
971 -- Otherwise the designated type is untagged. Set the type of the
972 -- dereference explicitly to force a conversion when needed given
973 -- that [Deep_]Finalize may be inherited from a parent type.
975 else
976 Set_Etype (Obj_Ref, Desig_Typ);
977 end if;
979 -- Generate:
980 -- [Deep_]Finalize (Obj_Ref);
982 Fin_Call := Make_Final_Call (Obj_Ref => Obj_Ref, Typ => Desig_Typ);
984 -- Generate:
985 -- Abrt : constant Boolean := ...;
986 -- Ex : Exception_Occurrence;
987 -- Raised : Boolean := False;
989 -- begin
990 -- <Fin_Call>
992 -- exception
993 -- when others =>
994 -- if not Raised then
995 -- Raised := True;
996 -- Save_Occurrence (Ex, Get_Current_Excep.all.all);
997 -- end;
999 if Exceptions_OK then
1000 Build_Object_Declarations (Fin_Data, Stmts, Loc);
1002 Fin_Blk :=
1003 Make_Block_Statement (Loc,
1004 Handled_Statement_Sequence =>
1005 Make_Handled_Sequence_Of_Statements (Loc,
1006 Statements => New_List (Fin_Call),
1007 Exception_Handlers => New_List (
1008 Build_Exception_Handler (Fin_Data))));
1010 -- Otherwise exception propagation is not allowed
1012 else
1013 Fin_Blk := Fin_Call;
1014 end if;
1016 -- The finalization action must be protected by an abort defer and
1017 -- undefer pair when aborts are allowed. Generate:
1019 -- begin
1020 -- Abort_Defer;
1021 -- <Fin_Blk>
1022 -- at end
1023 -- Abort_Undefer_Direct;
1024 -- end;
1026 if Abort_Allowed then
1027 AUD := RTE (RE_Abort_Undefer_Direct);
1029 Abrt_HSS :=
1030 Make_Handled_Sequence_Of_Statements (Loc,
1031 Statements => New_List (
1032 Build_Runtime_Call (Loc, RE_Abort_Defer),
1033 Fin_Blk),
1034 At_End_Proc => New_Occurrence_Of (AUD, Loc));
1036 Abrt_Blk :=
1037 Make_Block_Statement (Loc,
1038 Handled_Statement_Sequence => Abrt_HSS);
1040 Add_Block_Identifier (Abrt_Blk, Abrt_Blk_Id);
1041 Expand_At_End_Handler (Abrt_HSS, Abrt_Blk_Id);
1043 -- Present the Abort_Undefer_Direct function to the backend so
1044 -- that it can inline the call to the function.
1046 Add_Inlined_Body (AUD, N);
1048 -- Otherwise aborts are not allowed
1050 else
1051 Abrt_Blk := Fin_Blk;
1052 end if;
1054 Append_To (Stmts, Abrt_Blk);
1055 end if;
1057 -- For a task type, call Free_Task before freeing the ATCB. We used to
1058 -- detect the case of Abort followed by a Free here, because the Free
1059 -- wouldn't actually free if it happens before the aborted task actually
1060 -- terminates. The warning was removed, because Free now works properly
1061 -- (the task will be freed once it terminates).
1063 if Is_Task_Type (Desig_Typ) then
1064 Append_To (Stmts,
1065 Cleanup_Task (N, Duplicate_Subexpr_No_Checks (Arg)));
1067 -- For composite types that contain tasks, recurse over the structure
1068 -- to build the selectors for the task subcomponents.
1070 elsif Has_Task (Desig_Typ) then
1071 if Is_Array_Type (Desig_Typ) then
1072 Append_List_To (Stmts, Cleanup_Array (N, Arg, Desig_Typ));
1074 elsif Is_Record_Type (Desig_Typ) then
1075 Append_List_To (Stmts, Cleanup_Record (N, Arg, Desig_Typ));
1076 end if;
1077 end if;
1079 -- Same for simple protected types. Eventually call Finalize_Protection
1080 -- before freeing the PO for each protected component.
1082 if Is_Simple_Protected_Type (Desig_Typ) then
1083 Append_To (Stmts,
1084 Cleanup_Protected_Object (N, Duplicate_Subexpr_No_Checks (Arg)));
1086 elsif Has_Simple_Protected_Object (Desig_Typ) then
1087 if Is_Array_Type (Desig_Typ) then
1088 Append_List_To (Stmts, Cleanup_Array (N, Arg, Desig_Typ));
1090 elsif Is_Record_Type (Desig_Typ) then
1091 Append_List_To (Stmts, Cleanup_Record (N, Arg, Desig_Typ));
1092 end if;
1093 end if;
1095 -- Normal processing for non-controlled types. The argument to free is
1096 -- a renaming rather than a constant to ensure that the original context
1097 -- is always set to null after the deallocation takes place.
1099 Free_Arg := Duplicate_Subexpr_No_Checks (Arg, Renaming_Req => True);
1100 Free_Nod := Make_Free_Statement (Loc, Empty);
1101 Append_To (Stmts, Free_Nod);
1102 Set_Storage_Pool (Free_Nod, Pool);
1104 -- Attach to tree before analysis of generated subtypes below
1106 Set_Parent (Stmts, Parent (N));
1108 -- Deal with storage pool
1110 if Present (Pool) then
1112 -- Freeing the secondary stack is meaningless
1114 if Is_RTE (Pool, RE_SS_Pool) then
1115 null;
1117 -- If the pool object is of a simple storage pool type, then attempt
1118 -- to locate the type's Deallocate procedure, if any, and set the
1119 -- free operation's procedure to call. If the type doesn't have a
1120 -- Deallocate (which is allowed), then the actual will simply be set
1121 -- to null.
1123 elsif Present
1124 (Get_Rep_Pragma (Etype (Pool), Name_Simple_Storage_Pool_Type))
1125 then
1126 declare
1127 Pool_Typ : constant Entity_Id := Base_Type (Etype (Pool));
1128 Dealloc : Entity_Id;
1130 begin
1131 Dealloc := Get_Name_Entity_Id (Name_Deallocate);
1132 while Present (Dealloc) loop
1133 if Scope (Dealloc) = Scope (Pool_Typ)
1134 and then Present (First_Formal (Dealloc))
1135 and then Etype (First_Formal (Dealloc)) = Pool_Typ
1136 then
1137 Set_Procedure_To_Call (Free_Nod, Dealloc);
1138 exit;
1139 else
1140 Dealloc := Homonym (Dealloc);
1141 end if;
1142 end loop;
1143 end;
1145 -- Case of a class-wide pool type: make a dispatching call to
1146 -- Deallocate through the class-wide Deallocate_Any.
1148 elsif Is_Class_Wide_Type (Etype (Pool)) then
1149 Set_Procedure_To_Call (Free_Nod, RTE (RE_Deallocate_Any));
1151 -- Case of a specific pool type: make a statically bound call
1153 else
1154 Set_Procedure_To_Call
1155 (Free_Nod, Find_Storage_Op (Etype (Pool), Name_Deallocate));
1156 end if;
1157 end if;
1159 if Present (Procedure_To_Call (Free_Nod)) then
1161 -- For all cases of a Deallocate call, the back-end needs to be able
1162 -- to compute the size of the object being freed. This may require
1163 -- some adjustments for objects of dynamic size.
1165 -- If the type is class wide, we generate an implicit type with the
1166 -- right dynamic size, so that the deallocate call gets the right
1167 -- size parameter computed by GIGI. Same for an access to
1168 -- unconstrained packed array.
1170 if Is_Class_Wide_Type (Desig_Typ)
1171 or else
1172 (Is_Packed_Array (Desig_Typ)
1173 and then not Is_Constrained (Desig_Typ))
1174 then
1175 declare
1176 Deref : constant Node_Id :=
1177 Make_Explicit_Dereference (Loc,
1178 Duplicate_Subexpr_No_Checks (Arg));
1179 D_Subtyp : Node_Id;
1180 D_Type : Entity_Id;
1182 begin
1183 -- Perform minor decoration as it is needed by the side effect
1184 -- removal mechanism.
1186 Set_Etype (Deref, Desig_Typ);
1187 Set_Parent (Deref, Free_Nod);
1188 D_Subtyp := Make_Subtype_From_Expr (Deref, Desig_Typ);
1190 if Nkind (D_Subtyp) in N_Has_Entity then
1191 D_Type := Entity (D_Subtyp);
1193 else
1194 D_Type := Make_Temporary (Loc, 'A');
1195 Insert_Action (Deref,
1196 Make_Subtype_Declaration (Loc,
1197 Defining_Identifier => D_Type,
1198 Subtype_Indication => D_Subtyp));
1199 end if;
1201 -- Force freezing at the point of the dereference. For the
1202 -- class wide case, this avoids having the subtype frozen
1203 -- before the equivalent type.
1205 Freeze_Itype (D_Type, Deref);
1207 Set_Actual_Designated_Subtype (Free_Nod, D_Type);
1208 end;
1209 end if;
1210 end if;
1212 -- Ada 2005 (AI-251): In case of abstract interface type we must
1213 -- displace the pointer to reference the base of the object to
1214 -- deallocate its memory, unless we're targetting a VM, in which case
1215 -- no special processing is required.
1217 -- Generate:
1218 -- free (Base_Address (Obj_Ptr))
1220 if Is_Interface (Directly_Designated_Type (Typ))
1221 and then Tagged_Type_Expansion
1222 then
1223 Set_Expression (Free_Nod,
1224 Unchecked_Convert_To (Typ,
1225 Make_Function_Call (Loc,
1226 Name =>
1227 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
1228 Parameter_Associations => New_List (
1229 Unchecked_Convert_To (RTE (RE_Address), Free_Arg)))));
1231 -- Generate:
1232 -- free (Obj_Ptr)
1234 else
1235 Set_Expression (Free_Nod, Free_Arg);
1236 end if;
1238 -- Only remaining step is to set result to null, or generate a raise of
1239 -- Constraint_Error if the target object is "not null".
1241 if Can_Never_Be_Null (Etype (Arg)) then
1242 Append_To (Stmts,
1243 Make_Raise_Constraint_Error (Loc,
1244 Reason => CE_Access_Check_Failed));
1246 else
1247 declare
1248 Lhs : constant Node_Id := Duplicate_Subexpr_No_Checks (Arg);
1249 begin
1250 Set_Assignment_OK (Lhs);
1251 Append_To (Stmts,
1252 Make_Assignment_Statement (Loc,
1253 Name => Lhs,
1254 Expression => Make_Null (Loc)));
1255 end;
1256 end if;
1258 -- Generate a test of whether any earlier finalization raised an
1259 -- exception, and in that case raise Program_Error with the previous
1260 -- exception occurrence.
1262 -- Generate:
1263 -- if Raised and then not Abrt then
1264 -- raise Program_Error; -- for restricted RTS
1265 -- <or>
1266 -- Raise_From_Controlled_Operation (E); -- all other cases
1267 -- end if;
1269 if Needs_Fin and then Exceptions_OK then
1270 Append_To (Stmts, Build_Raise_Statement (Fin_Data));
1271 end if;
1273 -- If we know the argument is non-null, then make a block statement
1274 -- that contains the required statements, no need for a test.
1276 if Arg_Known_Non_Null then
1277 Gen_Code :=
1278 Make_Block_Statement (Loc,
1279 Handled_Statement_Sequence =>
1280 Make_Handled_Sequence_Of_Statements (Loc,
1281 Statements => Stmts));
1283 -- If the argument may be null, wrap the statements inside an IF that
1284 -- does an explicit test to exclude the null case.
1286 else
1287 Gen_Code :=
1288 Make_Implicit_If_Statement (N,
1289 Condition =>
1290 Make_Op_Ne (Loc,
1291 Left_Opnd => Duplicate_Subexpr (Arg),
1292 Right_Opnd => Make_Null (Loc)),
1293 Then_Statements => Stmts);
1294 end if;
1296 -- Rewrite the call
1298 Rewrite (N, Gen_Code);
1299 Analyze (N);
1300 end Expand_Unc_Deallocation;
1302 -----------------------
1303 -- Expand_To_Address --
1304 -----------------------
1306 procedure Expand_To_Address (N : Node_Id) is
1307 Loc : constant Source_Ptr := Sloc (N);
1308 Arg : constant Node_Id := First_Actual (N);
1309 Obj : Node_Id;
1311 begin
1312 if Is_Modular_Integer_Type (Etype (Arg)) then
1313 Rewrite (N, Unchecked_Convert_To (Etype (N), Arg));
1314 Analyze (N);
1315 return;
1316 end if;
1318 Remove_Side_Effects (Arg);
1320 Obj := Make_Explicit_Dereference (Loc, Relocate_Node (Arg));
1322 Rewrite (N,
1323 Make_If_Expression (Loc,
1324 Expressions => New_List (
1325 Make_Op_Eq (Loc,
1326 Left_Opnd => New_Copy_Tree (Arg),
1327 Right_Opnd => Make_Null (Loc)),
1328 New_Occurrence_Of (RTE (RE_Null_Address), Loc),
1329 Make_Attribute_Reference (Loc,
1330 Prefix => Obj,
1331 Attribute_Name => Name_Address))));
1333 Analyze_And_Resolve (N, RTE (RE_Address));
1334 end Expand_To_Address;
1336 -----------------------
1337 -- Expand_To_Integer --
1338 -----------------------
1340 procedure Expand_To_Integer (N : Node_Id) is
1341 Arg : constant Node_Id := First_Actual (N);
1343 begin
1344 Rewrite (N, Unchecked_Convert_To (Etype (N), Arg));
1345 Analyze (N);
1346 end Expand_To_Integer;
1348 -----------------------
1349 -- Expand_To_Pointer --
1350 -----------------------
1352 procedure Expand_To_Pointer (N : Node_Id) is
1353 Arg : constant Node_Id := First_Actual (N);
1355 begin
1356 Rewrite (N, Unchecked_Convert_To (Etype (N), Arg));
1357 Analyze (N);
1358 end Expand_To_Pointer;
1360 end Exp_Intr;