Daily bump.
[official-gcc.git] / gcc / ada / checks.adb
blob6162a0e38c0462b5b9632f5b73f8382ddcecaf81
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Casing; use Casing;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Eval_Fat; use Eval_Fat;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Ch2; use Exp_Ch2;
34 with Exp_Ch4; use Exp_Ch4;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Expander; use Expander;
38 with Freeze; use Freeze;
39 with Lib; use Lib;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Output; use Output;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Eval; use Sem_Eval;
53 with Sem_Res; use Sem_Res;
54 with Sem_Util; use Sem_Util;
55 with Sem_Warn; use Sem_Warn;
56 with Sinfo; use Sinfo;
57 with Sinput; use Sinput;
58 with Snames; use Snames;
59 with Sprint; use Sprint;
60 with Stand; use Stand;
61 with Stringt; use Stringt;
62 with Targparm; use Targparm;
63 with Tbuild; use Tbuild;
64 with Ttypes; use Ttypes;
65 with Validsw; use Validsw;
67 package body Checks is
69 -- General note: many of these routines are concerned with generating
70 -- checking code to make sure that constraint error is raised at runtime.
71 -- Clearly this code is only needed if the expander is active, since
72 -- otherwise we will not be generating code or going into the runtime
73 -- execution anyway.
75 -- We therefore disconnect most of these checks if the expander is
76 -- inactive. This has the additional benefit that we do not need to
77 -- worry about the tree being messed up by previous errors (since errors
78 -- turn off expansion anyway).
80 -- There are a few exceptions to the above rule. For instance routines
81 -- such as Apply_Scalar_Range_Check that do not insert any code can be
82 -- safely called even when the Expander is inactive (but Errors_Detected
83 -- is 0). The benefit of executing this code when expansion is off, is
84 -- the ability to emit constraint error warning for static expressions
85 -- even when we are not generating code.
87 -- The above is modified in gnatprove mode to ensure that proper check
88 -- flags are always placed, even if expansion is off.
90 -------------------------------------
91 -- Suppression of Redundant Checks --
92 -------------------------------------
94 -- This unit implements a limited circuit for removal of redundant
95 -- checks. The processing is based on a tracing of simple sequential
96 -- flow. For any sequence of statements, we save expressions that are
97 -- marked to be checked, and then if the same expression appears later
98 -- with the same check, then under certain circumstances, the second
99 -- check can be suppressed.
101 -- Basically, we can suppress the check if we know for certain that
102 -- the previous expression has been elaborated (together with its
103 -- check), and we know that the exception frame is the same, and that
104 -- nothing has happened to change the result of the exception.
106 -- Let us examine each of these three conditions in turn to describe
107 -- how we ensure that this condition is met.
109 -- First, we need to know for certain that the previous expression has
110 -- been executed. This is done principally by the mechanism of calling
111 -- Conditional_Statements_Begin at the start of any statement sequence
112 -- and Conditional_Statements_End at the end. The End call causes all
113 -- checks remembered since the Begin call to be discarded. This does
114 -- miss a few cases, notably the case of a nested BEGIN-END block with
115 -- no exception handlers. But the important thing is to be conservative.
116 -- The other protection is that all checks are discarded if a label
117 -- is encountered, since then the assumption of sequential execution
118 -- is violated, and we don't know enough about the flow.
120 -- Second, we need to know that the exception frame is the same. We
121 -- do this by killing all remembered checks when we enter a new frame.
122 -- Again, that's over-conservative, but generally the cases we can help
123 -- with are pretty local anyway (like the body of a loop for example).
125 -- Third, we must be sure to forget any checks which are no longer valid.
126 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
127 -- used to note any changes to local variables. We only attempt to deal
128 -- with checks involving local variables, so we do not need to worry
129 -- about global variables. Second, a call to any non-global procedure
130 -- causes us to abandon all stored checks, since such a all may affect
131 -- the values of any local variables.
133 -- The following define the data structures used to deal with remembering
134 -- checks so that redundant checks can be eliminated as described above.
136 -- Right now, the only expressions that we deal with are of the form of
137 -- simple local objects (either declared locally, or IN parameters) or
138 -- such objects plus/minus a compile time known constant. We can do
139 -- more later on if it seems worthwhile, but this catches many simple
140 -- cases in practice.
142 -- The following record type reflects a single saved check. An entry
143 -- is made in the stack of saved checks if and only if the expression
144 -- has been elaborated with the indicated checks.
146 type Saved_Check is record
147 Killed : Boolean;
148 -- Set True if entry is killed by Kill_Checks
150 Entity : Entity_Id;
151 -- The entity involved in the expression that is checked
153 Offset : Uint;
154 -- A compile time value indicating the result of adding or
155 -- subtracting a compile time value. This value is to be
156 -- added to the value of the Entity. A value of zero is
157 -- used for the case of a simple entity reference.
159 Check_Type : Character;
160 -- This is set to 'R' for a range check (in which case Target_Type
161 -- is set to the target type for the range check) or to 'O' for an
162 -- overflow check (in which case Target_Type is set to Empty).
164 Target_Type : Entity_Id;
165 -- Used only if Do_Range_Check is set. Records the target type for
166 -- the check. We need this, because a check is a duplicate only if
167 -- it has the same target type (or more accurately one with a
168 -- range that is smaller or equal to the stored target type of a
169 -- saved check).
170 end record;
172 -- The following table keeps track of saved checks. Rather than use an
173 -- extensible table, we just use a table of fixed size, and we discard
174 -- any saved checks that do not fit. That's very unlikely to happen and
175 -- this is only an optimization in any case.
177 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
178 -- Array of saved checks
180 Num_Saved_Checks : Nat := 0;
181 -- Number of saved checks
183 -- The following stack keeps track of statement ranges. It is treated
184 -- as a stack. When Conditional_Statements_Begin is called, an entry
185 -- is pushed onto this stack containing the value of Num_Saved_Checks
186 -- at the time of the call. Then when Conditional_Statements_End is
187 -- called, this value is popped off and used to reset Num_Saved_Checks.
189 -- Note: again, this is a fixed length stack with a size that should
190 -- always be fine. If the value of the stack pointer goes above the
191 -- limit, then we just forget all saved checks.
193 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
194 Saved_Checks_TOS : Nat := 0;
196 -----------------------
197 -- Local Subprograms --
198 -----------------------
200 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
201 -- Used to apply arithmetic overflow checks for all cases except operators
202 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
203 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
204 -- signed integer arithmetic operator (but not an if or case expression).
205 -- It is also called for types other than signed integers.
207 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
208 -- Used to apply arithmetic overflow checks for the case where the overflow
209 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
210 -- arithmetic op (which includes the case of if and case expressions). Note
211 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
212 -- we have work to do even if overflow checking is suppressed.
214 procedure Apply_Division_Check
215 (N : Node_Id;
216 Rlo : Uint;
217 Rhi : Uint;
218 ROK : Boolean);
219 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
220 -- division checks as required if the Do_Division_Check flag is set.
221 -- Rlo and Rhi give the possible range of the right operand, these values
222 -- can be referenced and trusted only if ROK is set True.
224 procedure Apply_Float_Conversion_Check
225 (Ck_Node : Node_Id;
226 Target_Typ : Entity_Id);
227 -- The checks on a conversion from a floating-point type to an integer
228 -- type are delicate. They have to be performed before conversion, they
229 -- have to raise an exception when the operand is a NaN, and rounding must
230 -- be taken into account to determine the safe bounds of the operand.
232 procedure Apply_Selected_Length_Checks
233 (Ck_Node : Node_Id;
234 Target_Typ : Entity_Id;
235 Source_Typ : Entity_Id;
236 Do_Static : Boolean);
237 -- This is the subprogram that does all the work for Apply_Length_Check
238 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
239 -- described for the above routines. The Do_Static flag indicates that
240 -- only a static check is to be done.
242 procedure Apply_Selected_Range_Checks
243 (Ck_Node : Node_Id;
244 Target_Typ : Entity_Id;
245 Source_Typ : Entity_Id;
246 Do_Static : Boolean);
247 -- This is the subprogram that does all the work for Apply_Range_Check.
248 -- Expr, Target_Typ and Source_Typ are as described for the above
249 -- routine. The Do_Static flag indicates that only a static check is
250 -- to be done.
252 type Check_Type is new Check_Id range Access_Check .. Division_Check;
253 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
254 -- This function is used to see if an access or division by zero check is
255 -- needed. The check is to be applied to a single variable appearing in the
256 -- source, and N is the node for the reference. If N is not of this form,
257 -- True is returned with no further processing. If N is of the right form,
258 -- then further processing determines if the given Check is needed.
260 -- The particular circuit is to see if we have the case of a check that is
261 -- not needed because it appears in the right operand of a short circuited
262 -- conditional where the left operand guards the check. For example:
264 -- if Var = 0 or else Q / Var > 12 then
265 -- ...
266 -- end if;
268 -- In this example, the division check is not required. At the same time
269 -- we can issue warnings for suspicious use of non-short-circuited forms,
270 -- such as:
272 -- if Var = 0 or Q / Var > 12 then
273 -- ...
274 -- end if;
276 procedure Find_Check
277 (Expr : Node_Id;
278 Check_Type : Character;
279 Target_Type : Entity_Id;
280 Entry_OK : out Boolean;
281 Check_Num : out Nat;
282 Ent : out Entity_Id;
283 Ofs : out Uint);
284 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
285 -- to see if a check is of the form for optimization, and if so, to see
286 -- if it has already been performed. Expr is the expression to check,
287 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
288 -- Target_Type is the target type for a range check, and Empty for an
289 -- overflow check. If the entry is not of the form for optimization,
290 -- then Entry_OK is set to False, and the remaining out parameters
291 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
292 -- entity and offset from the expression. Check_Num is the number of
293 -- a matching saved entry in Saved_Checks, or zero if no such entry
294 -- is located.
296 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
297 -- If a discriminal is used in constraining a prival, Return reference
298 -- to the discriminal of the protected body (which renames the parameter
299 -- of the enclosing protected operation). This clumsy transformation is
300 -- needed because privals are created too late and their actual subtypes
301 -- are not available when analysing the bodies of the protected operations.
302 -- This function is called whenever the bound is an entity and the scope
303 -- indicates a protected operation. If the bound is an in-parameter of
304 -- a protected operation that is not a prival, the function returns the
305 -- bound itself.
306 -- To be cleaned up???
308 function Guard_Access
309 (Cond : Node_Id;
310 Loc : Source_Ptr;
311 Ck_Node : Node_Id) return Node_Id;
312 -- In the access type case, guard the test with a test to ensure
313 -- that the access value is non-null, since the checks do not
314 -- not apply to null access values.
316 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
317 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
318 -- Constraint_Error node.
320 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
321 -- Returns True if node N is for an arithmetic operation with signed
322 -- integer operands. This includes unary and binary operators, and also
323 -- if and case expression nodes where the dependent expressions are of
324 -- a signed integer type. These are the kinds of nodes for which special
325 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
327 function Range_Or_Validity_Checks_Suppressed
328 (Expr : Node_Id) return Boolean;
329 -- Returns True if either range or validity checks or both are suppressed
330 -- for the type of the given expression, or, if the expression is the name
331 -- of an entity, if these checks are suppressed for the entity.
333 function Selected_Length_Checks
334 (Ck_Node : Node_Id;
335 Target_Typ : Entity_Id;
336 Source_Typ : Entity_Id;
337 Warn_Node : Node_Id) return Check_Result;
338 -- Like Apply_Selected_Length_Checks, except it doesn't modify
339 -- anything, just returns a list of nodes as described in the spec of
340 -- this package for the Range_Check function.
341 -- ??? In fact it does construct the test and insert it into the tree,
342 -- and insert actions in various ways (calling Insert_Action directly
343 -- in particular) so we do not call it in GNATprove mode, contrary to
344 -- Selected_Range_Checks.
346 function Selected_Range_Checks
347 (Ck_Node : Node_Id;
348 Target_Typ : Entity_Id;
349 Source_Typ : Entity_Id;
350 Warn_Node : Node_Id) return Check_Result;
351 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
352 -- just returns a list of nodes as described in the spec of this package
353 -- for the Range_Check function.
355 ------------------------------
356 -- Access_Checks_Suppressed --
357 ------------------------------
359 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
360 begin
361 if Present (E) and then Checks_May_Be_Suppressed (E) then
362 return Is_Check_Suppressed (E, Access_Check);
363 else
364 return Scope_Suppress.Suppress (Access_Check);
365 end if;
366 end Access_Checks_Suppressed;
368 -------------------------------------
369 -- Accessibility_Checks_Suppressed --
370 -------------------------------------
372 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
373 begin
374 if Present (E) and then Checks_May_Be_Suppressed (E) then
375 return Is_Check_Suppressed (E, Accessibility_Check);
376 else
377 return Scope_Suppress.Suppress (Accessibility_Check);
378 end if;
379 end Accessibility_Checks_Suppressed;
381 -----------------------------
382 -- Activate_Division_Check --
383 -----------------------------
385 procedure Activate_Division_Check (N : Node_Id) is
386 begin
387 Set_Do_Division_Check (N, True);
388 Possible_Local_Raise (N, Standard_Constraint_Error);
389 end Activate_Division_Check;
391 -----------------------------
392 -- Activate_Overflow_Check --
393 -----------------------------
395 procedure Activate_Overflow_Check (N : Node_Id) is
396 Typ : constant Entity_Id := Etype (N);
398 begin
399 -- Floating-point case. If Etype is not set (this can happen when we
400 -- activate a check on a node that has not yet been analyzed), then
401 -- we assume we do not have a floating-point type (as per our spec).
403 if Present (Typ) and then Is_Floating_Point_Type (Typ) then
405 -- Ignore call if we have no automatic overflow checks on the target
406 -- and Check_Float_Overflow mode is not set. These are the cases in
407 -- which we expect to generate infinities and NaN's with no check.
409 if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
410 return;
412 -- Ignore for unary operations ("+", "-", abs) since these can never
413 -- result in overflow for floating-point cases.
415 elsif Nkind (N) in N_Unary_Op then
416 return;
418 -- Otherwise we will set the flag
420 else
421 null;
422 end if;
424 -- Discrete case
426 else
427 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
428 -- for zero-divide is a divide check, not an overflow check).
430 if Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
431 return;
432 end if;
433 end if;
435 -- Fall through for cases where we do set the flag
437 Set_Do_Overflow_Check (N, True);
438 Possible_Local_Raise (N, Standard_Constraint_Error);
439 end Activate_Overflow_Check;
441 --------------------------
442 -- Activate_Range_Check --
443 --------------------------
445 procedure Activate_Range_Check (N : Node_Id) is
446 begin
447 Set_Do_Range_Check (N, True);
448 Possible_Local_Raise (N, Standard_Constraint_Error);
449 end Activate_Range_Check;
451 ---------------------------------
452 -- Alignment_Checks_Suppressed --
453 ---------------------------------
455 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
456 begin
457 if Present (E) and then Checks_May_Be_Suppressed (E) then
458 return Is_Check_Suppressed (E, Alignment_Check);
459 else
460 return Scope_Suppress.Suppress (Alignment_Check);
461 end if;
462 end Alignment_Checks_Suppressed;
464 ----------------------------------
465 -- Allocation_Checks_Suppressed --
466 ----------------------------------
468 -- Note: at the current time there are no calls to this function, because
469 -- the relevant check is in the run-time, so it is not a check that the
470 -- compiler can suppress anyway, but we still have to recognize the check
471 -- name Allocation_Check since it is part of the standard.
473 function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
474 begin
475 if Present (E) and then Checks_May_Be_Suppressed (E) then
476 return Is_Check_Suppressed (E, Allocation_Check);
477 else
478 return Scope_Suppress.Suppress (Allocation_Check);
479 end if;
480 end Allocation_Checks_Suppressed;
482 -------------------------
483 -- Append_Range_Checks --
484 -------------------------
486 procedure Append_Range_Checks
487 (Checks : Check_Result;
488 Stmts : List_Id;
489 Suppress_Typ : Entity_Id;
490 Static_Sloc : Source_Ptr;
491 Flag_Node : Node_Id)
493 Checks_On : constant Boolean :=
494 not Index_Checks_Suppressed (Suppress_Typ)
495 or else
496 not Range_Checks_Suppressed (Suppress_Typ);
498 Internal_Flag_Node : constant Node_Id := Flag_Node;
499 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
501 begin
502 -- For now we just return if Checks_On is false, however this should be
503 -- enhanced to check for an always True value in the condition and to
504 -- generate a compilation warning???
506 if not Checks_On then
507 return;
508 end if;
510 for J in 1 .. 2 loop
511 exit when No (Checks (J));
513 if Nkind (Checks (J)) = N_Raise_Constraint_Error
514 and then Present (Condition (Checks (J)))
515 then
516 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
517 Append_To (Stmts, Checks (J));
518 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
519 end if;
521 else
522 Append_To
523 (Stmts,
524 Make_Raise_Constraint_Error (Internal_Static_Sloc,
525 Reason => CE_Range_Check_Failed));
526 end if;
527 end loop;
528 end Append_Range_Checks;
530 ------------------------
531 -- Apply_Access_Check --
532 ------------------------
534 procedure Apply_Access_Check (N : Node_Id) is
535 P : constant Node_Id := Prefix (N);
537 begin
538 -- We do not need checks if we are not generating code (i.e. the
539 -- expander is not active). This is not just an optimization, there
540 -- are cases (e.g. with pragma Debug) where generating the checks
541 -- can cause real trouble).
543 if not Expander_Active then
544 return;
545 end if;
547 -- No check if short circuiting makes check unnecessary
549 if not Check_Needed (P, Access_Check) then
550 return;
551 end if;
553 -- No check if accessing the Offset_To_Top component of a dispatch
554 -- table. They are safe by construction.
556 if Tagged_Type_Expansion
557 and then Present (Etype (P))
558 and then RTU_Loaded (Ada_Tags)
559 and then RTE_Available (RE_Offset_To_Top_Ptr)
560 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
561 then
562 return;
563 end if;
565 -- Otherwise go ahead and install the check
567 Install_Null_Excluding_Check (P);
568 end Apply_Access_Check;
570 -------------------------------
571 -- Apply_Accessibility_Check --
572 -------------------------------
574 procedure Apply_Accessibility_Check
575 (N : Node_Id;
576 Typ : Entity_Id;
577 Insert_Node : Node_Id)
579 Loc : constant Source_Ptr := Sloc (N);
580 Param_Ent : Entity_Id := Param_Entity (N);
581 Param_Level : Node_Id;
582 Type_Level : Node_Id;
584 begin
585 if Ada_Version >= Ada_2012
586 and then not Present (Param_Ent)
587 and then Is_Entity_Name (N)
588 and then Ekind_In (Entity (N), E_Constant, E_Variable)
589 and then Present (Effective_Extra_Accessibility (Entity (N)))
590 then
591 Param_Ent := Entity (N);
592 while Present (Renamed_Object (Param_Ent)) loop
594 -- Renamed_Object must return an Entity_Name here
595 -- because of preceding "Present (E_E_A (...))" test.
597 Param_Ent := Entity (Renamed_Object (Param_Ent));
598 end loop;
599 end if;
601 if Inside_A_Generic then
602 return;
604 -- Only apply the run-time check if the access parameter has an
605 -- associated extra access level parameter and when the level of the
606 -- type is less deep than the level of the access parameter, and
607 -- accessibility checks are not suppressed.
609 elsif Present (Param_Ent)
610 and then Present (Extra_Accessibility (Param_Ent))
611 and then UI_Gt (Object_Access_Level (N),
612 Deepest_Type_Access_Level (Typ))
613 and then not Accessibility_Checks_Suppressed (Param_Ent)
614 and then not Accessibility_Checks_Suppressed (Typ)
615 then
616 Param_Level :=
617 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
619 Type_Level :=
620 Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
622 -- Raise Program_Error if the accessibility level of the access
623 -- parameter is deeper than the level of the target access type.
625 Insert_Action (Insert_Node,
626 Make_Raise_Program_Error (Loc,
627 Condition =>
628 Make_Op_Gt (Loc,
629 Left_Opnd => Param_Level,
630 Right_Opnd => Type_Level),
631 Reason => PE_Accessibility_Check_Failed));
633 Analyze_And_Resolve (N);
634 end if;
635 end Apply_Accessibility_Check;
637 --------------------------------
638 -- Apply_Address_Clause_Check --
639 --------------------------------
641 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
642 pragma Assert (Nkind (N) = N_Freeze_Entity);
644 AC : constant Node_Id := Address_Clause (E);
645 Loc : constant Source_Ptr := Sloc (AC);
646 Typ : constant Entity_Id := Etype (E);
648 Expr : Node_Id;
649 -- Address expression (not necessarily the same as Aexp, for example
650 -- when Aexp is a reference to a constant, in which case Expr gets
651 -- reset to reference the value expression of the constant).
653 begin
654 -- See if alignment check needed. Note that we never need a check if the
655 -- maximum alignment is one, since the check will always succeed.
657 -- Note: we do not check for checks suppressed here, since that check
658 -- was done in Sem_Ch13 when the address clause was processed. We are
659 -- only called if checks were not suppressed. The reason for this is
660 -- that we have to delay the call to Apply_Alignment_Check till freeze
661 -- time (so that all types etc are elaborated), but we have to check
662 -- the status of check suppressing at the point of the address clause.
664 if No (AC)
665 or else not Check_Address_Alignment (AC)
666 or else Maximum_Alignment = 1
667 then
668 return;
669 end if;
671 -- Obtain expression from address clause
673 Expr := Address_Value (Expression (AC));
675 -- See if we know that Expr has an acceptable value at compile time. If
676 -- it hasn't or we don't know, we defer issuing the warning until the
677 -- end of the compilation to take into account back end annotations.
679 if Compile_Time_Known_Value (Expr)
680 and then (Known_Alignment (E) or else Known_Alignment (Typ))
681 then
682 declare
683 AL : Uint := Alignment (Typ);
685 begin
686 -- The object alignment might be more restrictive than the type
687 -- alignment.
689 if Known_Alignment (E) then
690 AL := Alignment (E);
691 end if;
693 if Expr_Value (Expr) mod AL = 0 then
694 return;
695 end if;
696 end;
698 -- If the expression has the form X'Address, then we can find out if the
699 -- object X has an alignment that is compatible with the object E. If it
700 -- hasn't or we don't know, we defer issuing the warning until the end
701 -- of the compilation to take into account back end annotations.
703 elsif Nkind (Expr) = N_Attribute_Reference
704 and then Attribute_Name (Expr) = Name_Address
705 and then
706 Has_Compatible_Alignment (E, Prefix (Expr), False) = Known_Compatible
707 then
708 return;
709 end if;
711 -- Here we do not know if the value is acceptable. Strictly we don't
712 -- have to do anything, since if the alignment is bad, we have an
713 -- erroneous program. However we are allowed to check for erroneous
714 -- conditions and we decide to do this by default if the check is not
715 -- suppressed.
717 -- However, don't do the check if elaboration code is unwanted
719 if Restriction_Active (No_Elaboration_Code) then
720 return;
722 -- Generate a check to raise PE if alignment may be inappropriate
724 else
725 -- If the original expression is a non-static constant, use the name
726 -- of the constant itself rather than duplicating its initialization
727 -- expression, which was extracted above.
729 -- Note: Expr is empty if the address-clause is applied to in-mode
730 -- actuals (allowed by 13.1(22)).
732 if not Present (Expr)
733 or else
734 (Is_Entity_Name (Expression (AC))
735 and then Ekind (Entity (Expression (AC))) = E_Constant
736 and then Nkind (Parent (Entity (Expression (AC)))) =
737 N_Object_Declaration)
738 then
739 Expr := New_Copy_Tree (Expression (AC));
740 else
741 Remove_Side_Effects (Expr);
742 end if;
744 if No (Actions (N)) then
745 Set_Actions (N, New_List);
746 end if;
748 Prepend_To (Actions (N),
749 Make_Raise_Program_Error (Loc,
750 Condition =>
751 Make_Op_Ne (Loc,
752 Left_Opnd =>
753 Make_Op_Mod (Loc,
754 Left_Opnd =>
755 Unchecked_Convert_To
756 (RTE (RE_Integer_Address), Expr),
757 Right_Opnd =>
758 Make_Attribute_Reference (Loc,
759 Prefix => New_Occurrence_Of (E, Loc),
760 Attribute_Name => Name_Alignment)),
761 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
762 Reason => PE_Misaligned_Address_Value));
764 Warning_Msg := No_Error_Msg;
765 Analyze (First (Actions (N)), Suppress => All_Checks);
767 -- If the above raise action generated a warning message (for example
768 -- from Warn_On_Non_Local_Exception mode with the active restriction
769 -- No_Exception_Propagation).
771 if Warning_Msg /= No_Error_Msg then
773 -- If the expression has a known at compile time value, then
774 -- once we know the alignment of the type, we can check if the
775 -- exception will be raised or not, and if not, we don't need
776 -- the warning so we will kill the warning later on.
778 if Compile_Time_Known_Value (Expr) then
779 Alignment_Warnings.Append
780 ((E => E, A => Expr_Value (Expr), W => Warning_Msg));
782 -- Add explanation of the warning generated by the check
784 else
785 Error_Msg_N
786 ("\address value may be incompatible with alignment of "
787 & "object?X?", AC);
788 end if;
789 end if;
791 return;
792 end if;
794 exception
796 -- If we have some missing run time component in configurable run time
797 -- mode then just skip the check (it is not required in any case).
799 when RE_Not_Available =>
800 return;
801 end Apply_Address_Clause_Check;
803 -------------------------------------
804 -- Apply_Arithmetic_Overflow_Check --
805 -------------------------------------
807 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
808 begin
809 -- Use old routine in almost all cases (the only case we are treating
810 -- specially is the case of a signed integer arithmetic op with the
811 -- overflow checking mode set to MINIMIZED or ELIMINATED).
813 if Overflow_Check_Mode = Strict
814 or else not Is_Signed_Integer_Arithmetic_Op (N)
815 then
816 Apply_Arithmetic_Overflow_Strict (N);
818 -- Otherwise use the new routine for the case of a signed integer
819 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
820 -- mode is MINIMIZED or ELIMINATED.
822 else
823 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
824 end if;
825 end Apply_Arithmetic_Overflow_Check;
827 --------------------------------------
828 -- Apply_Arithmetic_Overflow_Strict --
829 --------------------------------------
831 -- This routine is called only if the type is an integer type and an
832 -- arithmetic overflow check may be needed for op (add, subtract, or
833 -- multiply). This check is performed if Backend_Overflow_Checks_On_Target
834 -- is not enabled and Do_Overflow_Check is set. In this case we expand the
835 -- operation into a more complex sequence of tests that ensures that
836 -- overflow is properly caught.
838 -- This is used in CHECKED modes. It is identical to the code for this
839 -- cases before the big overflow earthquake, thus ensuring that in this
840 -- modes we have compatible behavior (and reliability) to what was there
841 -- before. It is also called for types other than signed integers, and if
842 -- the Do_Overflow_Check flag is off.
844 -- Note: we also call this routine if we decide in the MINIMIZED case
845 -- to give up and just generate an overflow check without any fuss.
847 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
848 Loc : constant Source_Ptr := Sloc (N);
849 Typ : constant Entity_Id := Etype (N);
850 Rtyp : constant Entity_Id := Root_Type (Typ);
852 begin
853 -- Nothing to do if Do_Overflow_Check not set or overflow checks
854 -- suppressed.
856 if not Do_Overflow_Check (N) then
857 return;
858 end if;
860 -- An interesting special case. If the arithmetic operation appears as
861 -- the operand of a type conversion:
863 -- type1 (x op y)
865 -- and all the following conditions apply:
867 -- arithmetic operation is for a signed integer type
868 -- target type type1 is a static integer subtype
869 -- range of x and y are both included in the range of type1
870 -- range of x op y is included in the range of type1
871 -- size of type1 is at least twice the result size of op
873 -- then we don't do an overflow check in any case. Instead, we transform
874 -- the operation so that we end up with:
876 -- type1 (type1 (x) op type1 (y))
878 -- This avoids intermediate overflow before the conversion. It is
879 -- explicitly permitted by RM 3.5.4(24):
881 -- For the execution of a predefined operation of a signed integer
882 -- type, the implementation need not raise Constraint_Error if the
883 -- result is outside the base range of the type, so long as the
884 -- correct result is produced.
886 -- It's hard to imagine that any programmer counts on the exception
887 -- being raised in this case, and in any case it's wrong coding to
888 -- have this expectation, given the RM permission. Furthermore, other
889 -- Ada compilers do allow such out of range results.
891 -- Note that we do this transformation even if overflow checking is
892 -- off, since this is precisely about giving the "right" result and
893 -- avoiding the need for an overflow check.
895 -- Note: this circuit is partially redundant with respect to the similar
896 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
897 -- with cases that do not come through here. We still need the following
898 -- processing even with the Exp_Ch4 code in place, since we want to be
899 -- sure not to generate the arithmetic overflow check in these cases
900 -- (Exp_Ch4 would have a hard time removing them once generated).
902 if Is_Signed_Integer_Type (Typ)
903 and then Nkind (Parent (N)) = N_Type_Conversion
904 then
905 Conversion_Optimization : declare
906 Target_Type : constant Entity_Id :=
907 Base_Type (Entity (Subtype_Mark (Parent (N))));
909 Llo, Lhi : Uint;
910 Rlo, Rhi : Uint;
911 LOK, ROK : Boolean;
913 Vlo : Uint;
914 Vhi : Uint;
915 VOK : Boolean;
917 Tlo : Uint;
918 Thi : Uint;
920 begin
921 if Is_Integer_Type (Target_Type)
922 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
923 then
924 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
925 Thi := Expr_Value (Type_High_Bound (Target_Type));
927 Determine_Range
928 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
929 Determine_Range
930 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
932 if (LOK and ROK)
933 and then Tlo <= Llo and then Lhi <= Thi
934 and then Tlo <= Rlo and then Rhi <= Thi
935 then
936 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
938 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
939 Rewrite (Left_Opnd (N),
940 Make_Type_Conversion (Loc,
941 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
942 Expression => Relocate_Node (Left_Opnd (N))));
944 Rewrite (Right_Opnd (N),
945 Make_Type_Conversion (Loc,
946 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
947 Expression => Relocate_Node (Right_Opnd (N))));
949 -- Rewrite the conversion operand so that the original
950 -- node is retained, in order to avoid the warning for
951 -- redundant conversions in Resolve_Type_Conversion.
953 Rewrite (N, Relocate_Node (N));
955 Set_Etype (N, Target_Type);
957 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
958 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
960 -- Given that the target type is twice the size of the
961 -- source type, overflow is now impossible, so we can
962 -- safely kill the overflow check and return.
964 Set_Do_Overflow_Check (N, False);
965 return;
966 end if;
967 end if;
968 end if;
969 end Conversion_Optimization;
970 end if;
972 -- Now see if an overflow check is required
974 declare
975 Siz : constant Int := UI_To_Int (Esize (Rtyp));
976 Dsiz : constant Int := Siz * 2;
977 Opnod : Node_Id;
978 Ctyp : Entity_Id;
979 Opnd : Node_Id;
980 Cent : RE_Id;
982 begin
983 -- Skip check if back end does overflow checks, or the overflow flag
984 -- is not set anyway, or we are not doing code expansion, or the
985 -- parent node is a type conversion whose operand is an arithmetic
986 -- operation on signed integers on which the expander can promote
987 -- later the operands to type Integer (see Expand_N_Type_Conversion).
989 if Backend_Overflow_Checks_On_Target
990 or else not Do_Overflow_Check (N)
991 or else not Expander_Active
992 or else (Present (Parent (N))
993 and then Nkind (Parent (N)) = N_Type_Conversion
994 and then Integer_Promotion_Possible (Parent (N)))
995 then
996 return;
997 end if;
999 -- Otherwise, generate the full general code for front end overflow
1000 -- detection, which works by doing arithmetic in a larger type:
1002 -- x op y
1004 -- is expanded into
1006 -- Typ (Checktyp (x) op Checktyp (y));
1008 -- where Typ is the type of the original expression, and Checktyp is
1009 -- an integer type of sufficient length to hold the largest possible
1010 -- result.
1012 -- If the size of check type exceeds the size of Long_Long_Integer,
1013 -- we use a different approach, expanding to:
1015 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
1017 -- where xxx is Add, Multiply or Subtract as appropriate
1019 -- Find check type if one exists
1021 if Dsiz <= Standard_Integer_Size then
1022 Ctyp := Standard_Integer;
1024 elsif Dsiz <= Standard_Long_Long_Integer_Size then
1025 Ctyp := Standard_Long_Long_Integer;
1027 -- No check type exists, use runtime call
1029 else
1030 if Nkind (N) = N_Op_Add then
1031 Cent := RE_Add_With_Ovflo_Check;
1033 elsif Nkind (N) = N_Op_Multiply then
1034 Cent := RE_Multiply_With_Ovflo_Check;
1036 else
1037 pragma Assert (Nkind (N) = N_Op_Subtract);
1038 Cent := RE_Subtract_With_Ovflo_Check;
1039 end if;
1041 Rewrite (N,
1042 OK_Convert_To (Typ,
1043 Make_Function_Call (Loc,
1044 Name => New_Occurrence_Of (RTE (Cent), Loc),
1045 Parameter_Associations => New_List (
1046 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
1047 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
1049 Analyze_And_Resolve (N, Typ);
1050 return;
1051 end if;
1053 -- If we fall through, we have the case where we do the arithmetic
1054 -- in the next higher type and get the check by conversion. In these
1055 -- cases Ctyp is set to the type to be used as the check type.
1057 Opnod := Relocate_Node (N);
1059 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
1061 Analyze (Opnd);
1062 Set_Etype (Opnd, Ctyp);
1063 Set_Analyzed (Opnd, True);
1064 Set_Left_Opnd (Opnod, Opnd);
1066 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
1068 Analyze (Opnd);
1069 Set_Etype (Opnd, Ctyp);
1070 Set_Analyzed (Opnd, True);
1071 Set_Right_Opnd (Opnod, Opnd);
1073 -- The type of the operation changes to the base type of the check
1074 -- type, and we reset the overflow check indication, since clearly no
1075 -- overflow is possible now that we are using a double length type.
1076 -- We also set the Analyzed flag to avoid a recursive attempt to
1077 -- expand the node.
1079 Set_Etype (Opnod, Base_Type (Ctyp));
1080 Set_Do_Overflow_Check (Opnod, False);
1081 Set_Analyzed (Opnod, True);
1083 -- Now build the outer conversion
1085 Opnd := OK_Convert_To (Typ, Opnod);
1086 Analyze (Opnd);
1087 Set_Etype (Opnd, Typ);
1089 -- In the discrete type case, we directly generate the range check
1090 -- for the outer operand. This range check will implement the
1091 -- required overflow check.
1093 if Is_Discrete_Type (Typ) then
1094 Rewrite (N, Opnd);
1095 Generate_Range_Check
1096 (Expression (N), Typ, CE_Overflow_Check_Failed);
1098 -- For other types, we enable overflow checking on the conversion,
1099 -- after setting the node as analyzed to prevent recursive attempts
1100 -- to expand the conversion node.
1102 else
1103 Set_Analyzed (Opnd, True);
1104 Enable_Overflow_Check (Opnd);
1105 Rewrite (N, Opnd);
1106 end if;
1108 exception
1109 when RE_Not_Available =>
1110 return;
1111 end;
1112 end Apply_Arithmetic_Overflow_Strict;
1114 ----------------------------------------------------
1115 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1116 ----------------------------------------------------
1118 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1119 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
1121 Loc : constant Source_Ptr := Sloc (Op);
1122 P : constant Node_Id := Parent (Op);
1124 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1125 -- Operands and results are of this type when we convert
1127 Result_Type : constant Entity_Id := Etype (Op);
1128 -- Original result type
1130 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1131 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1133 Lo, Hi : Uint;
1134 -- Ranges of values for result
1136 begin
1137 -- Nothing to do if our parent is one of the following:
1139 -- Another signed integer arithmetic op
1140 -- A membership operation
1141 -- A comparison operation
1143 -- In all these cases, we will process at the higher level (and then
1144 -- this node will be processed during the downwards recursion that
1145 -- is part of the processing in Minimize_Eliminate_Overflows).
1147 if Is_Signed_Integer_Arithmetic_Op (P)
1148 or else Nkind (P) in N_Membership_Test
1149 or else Nkind (P) in N_Op_Compare
1151 -- This is also true for an alternative in a case expression
1153 or else Nkind (P) = N_Case_Expression_Alternative
1155 -- This is also true for a range operand in a membership test
1157 or else (Nkind (P) = N_Range
1158 and then Nkind (Parent (P)) in N_Membership_Test)
1159 then
1160 -- If_Expressions and Case_Expressions are treated as arithmetic
1161 -- ops, but if they appear in an assignment or similar contexts
1162 -- there is no overflow check that starts from that parent node,
1163 -- so apply check now.
1165 if Nkind_In (P, N_If_Expression, N_Case_Expression)
1166 and then not Is_Signed_Integer_Arithmetic_Op (Parent (P))
1167 then
1168 null;
1169 else
1170 return;
1171 end if;
1172 end if;
1174 -- Otherwise, we have a top level arithmetic operation node, and this
1175 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1176 -- modes. This is the case where we tell the machinery not to move into
1177 -- Bignum mode at this top level (of course the top level operation
1178 -- will still be in Bignum mode if either of its operands are of type
1179 -- Bignum).
1181 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
1183 -- That call may but does not necessarily change the result type of Op.
1184 -- It is the job of this routine to undo such changes, so that at the
1185 -- top level, we have the proper type. This "undoing" is a point at
1186 -- which a final overflow check may be applied.
1188 -- If the result type was not fiddled we are all set. We go to base
1189 -- types here because things may have been rewritten to generate the
1190 -- base type of the operand types.
1192 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
1193 return;
1195 -- Bignum case
1197 elsif Is_RTE (Etype (Op), RE_Bignum) then
1199 -- We need a sequence that looks like:
1201 -- Rnn : Result_Type;
1203 -- declare
1204 -- M : Mark_Id := SS_Mark;
1205 -- begin
1206 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1207 -- SS_Release (M);
1208 -- end;
1210 -- This block is inserted (using Insert_Actions), and then the node
1211 -- is replaced with a reference to Rnn.
1213 -- If our parent is a conversion node then there is no point in
1214 -- generating a conversion to Result_Type. Instead, we let the parent
1215 -- handle this. Note that this special case is not just about
1216 -- optimization. Consider
1218 -- A,B,C : Integer;
1219 -- ...
1220 -- X := Long_Long_Integer'Base (A * (B ** C));
1222 -- Now the product may fit in Long_Long_Integer but not in Integer.
1223 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1224 -- overflow exception for this intermediate value.
1226 declare
1227 Blk : constant Node_Id := Make_Bignum_Block (Loc);
1228 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1229 RHS : Node_Id;
1231 Rtype : Entity_Id;
1233 begin
1234 RHS := Convert_From_Bignum (Op);
1236 if Nkind (P) /= N_Type_Conversion then
1237 Convert_To_And_Rewrite (Result_Type, RHS);
1238 Rtype := Result_Type;
1240 -- Interesting question, do we need a check on that conversion
1241 -- operation. Answer, not if we know the result is in range.
1242 -- At the moment we are not taking advantage of this. To be
1243 -- looked at later ???
1245 else
1246 Rtype := LLIB;
1247 end if;
1249 Insert_Before
1250 (First (Statements (Handled_Statement_Sequence (Blk))),
1251 Make_Assignment_Statement (Loc,
1252 Name => New_Occurrence_Of (Rnn, Loc),
1253 Expression => RHS));
1255 Insert_Actions (Op, New_List (
1256 Make_Object_Declaration (Loc,
1257 Defining_Identifier => Rnn,
1258 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1259 Blk));
1261 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1262 Analyze_And_Resolve (Op);
1263 end;
1265 -- Here we know the result is Long_Long_Integer'Base, or that it has
1266 -- been rewritten because the parent operation is a conversion. See
1267 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1269 else
1270 pragma Assert
1271 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
1273 -- All we need to do here is to convert the result to the proper
1274 -- result type. As explained above for the Bignum case, we can
1275 -- omit this if our parent is a type conversion.
1277 if Nkind (P) /= N_Type_Conversion then
1278 Convert_To_And_Rewrite (Result_Type, Op);
1279 end if;
1281 Analyze_And_Resolve (Op);
1282 end if;
1283 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
1285 ----------------------------
1286 -- Apply_Constraint_Check --
1287 ----------------------------
1289 procedure Apply_Constraint_Check
1290 (N : Node_Id;
1291 Typ : Entity_Id;
1292 No_Sliding : Boolean := False)
1294 Desig_Typ : Entity_Id;
1296 begin
1297 -- No checks inside a generic (check the instantiations)
1299 if Inside_A_Generic then
1300 return;
1301 end if;
1303 -- Apply required constraint checks
1305 if Is_Scalar_Type (Typ) then
1306 Apply_Scalar_Range_Check (N, Typ);
1308 elsif Is_Array_Type (Typ) then
1310 -- A useful optimization: an aggregate with only an others clause
1311 -- always has the right bounds.
1313 if Nkind (N) = N_Aggregate
1314 and then No (Expressions (N))
1315 and then Nkind
1316 (First (Choices (First (Component_Associations (N)))))
1317 = N_Others_Choice
1318 then
1319 return;
1320 end if;
1322 if Is_Constrained (Typ) then
1323 Apply_Length_Check (N, Typ);
1325 if No_Sliding then
1326 Apply_Range_Check (N, Typ);
1327 end if;
1328 else
1329 Apply_Range_Check (N, Typ);
1330 end if;
1332 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
1333 and then Has_Discriminants (Base_Type (Typ))
1334 and then Is_Constrained (Typ)
1335 then
1336 Apply_Discriminant_Check (N, Typ);
1338 elsif Is_Access_Type (Typ) then
1340 Desig_Typ := Designated_Type (Typ);
1342 -- No checks necessary if expression statically null
1344 if Known_Null (N) then
1345 if Can_Never_Be_Null (Typ) then
1346 Install_Null_Excluding_Check (N);
1347 end if;
1349 -- No sliding possible on access to arrays
1351 elsif Is_Array_Type (Desig_Typ) then
1352 if Is_Constrained (Desig_Typ) then
1353 Apply_Length_Check (N, Typ);
1354 end if;
1356 Apply_Range_Check (N, Typ);
1358 -- Do not install a discriminant check for a constrained subtype
1359 -- created for an unconstrained nominal type because the subtype
1360 -- has the correct constraints by construction.
1362 elsif Has_Discriminants (Base_Type (Desig_Typ))
1363 and then Is_Constrained (Desig_Typ)
1364 and then not Is_Constr_Subt_For_U_Nominal (Desig_Typ)
1365 then
1366 Apply_Discriminant_Check (N, Typ);
1367 end if;
1369 -- Apply the 2005 Null_Excluding check. Note that we do not apply
1370 -- this check if the constraint node is illegal, as shown by having
1371 -- an error posted. This additional guard prevents cascaded errors
1372 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1374 if Can_Never_Be_Null (Typ)
1375 and then not Can_Never_Be_Null (Etype (N))
1376 and then not Error_Posted (N)
1377 then
1378 Install_Null_Excluding_Check (N);
1379 end if;
1380 end if;
1381 end Apply_Constraint_Check;
1383 ------------------------------
1384 -- Apply_Discriminant_Check --
1385 ------------------------------
1387 procedure Apply_Discriminant_Check
1388 (N : Node_Id;
1389 Typ : Entity_Id;
1390 Lhs : Node_Id := Empty)
1392 Loc : constant Source_Ptr := Sloc (N);
1393 Do_Access : constant Boolean := Is_Access_Type (Typ);
1394 S_Typ : Entity_Id := Etype (N);
1395 Cond : Node_Id;
1396 T_Typ : Entity_Id;
1398 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1399 -- A heap object with an indefinite subtype is constrained by its
1400 -- initial value, and assigning to it requires a constraint_check.
1401 -- The target may be an explicit dereference, or a renaming of one.
1403 function Is_Aliased_Unconstrained_Component return Boolean;
1404 -- It is possible for an aliased component to have a nominal
1405 -- unconstrained subtype (through instantiation). If this is a
1406 -- discriminated component assigned in the expansion of an aggregate
1407 -- in an initialization, the check must be suppressed. This unusual
1408 -- situation requires a predicate of its own.
1410 ----------------------------------
1411 -- Denotes_Explicit_Dereference --
1412 ----------------------------------
1414 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1415 begin
1416 return
1417 Nkind (Obj) = N_Explicit_Dereference
1418 or else
1419 (Is_Entity_Name (Obj)
1420 and then Present (Renamed_Object (Entity (Obj)))
1421 and then Nkind (Renamed_Object (Entity (Obj))) =
1422 N_Explicit_Dereference);
1423 end Denotes_Explicit_Dereference;
1425 ----------------------------------------
1426 -- Is_Aliased_Unconstrained_Component --
1427 ----------------------------------------
1429 function Is_Aliased_Unconstrained_Component return Boolean is
1430 Comp : Entity_Id;
1431 Pref : Node_Id;
1433 begin
1434 if Nkind (Lhs) /= N_Selected_Component then
1435 return False;
1436 else
1437 Comp := Entity (Selector_Name (Lhs));
1438 Pref := Prefix (Lhs);
1439 end if;
1441 if Ekind (Comp) /= E_Component
1442 or else not Is_Aliased (Comp)
1443 then
1444 return False;
1445 end if;
1447 return not Comes_From_Source (Pref)
1448 and then In_Instance
1449 and then not Is_Constrained (Etype (Comp));
1450 end Is_Aliased_Unconstrained_Component;
1452 -- Start of processing for Apply_Discriminant_Check
1454 begin
1455 if Do_Access then
1456 T_Typ := Designated_Type (Typ);
1457 else
1458 T_Typ := Typ;
1459 end if;
1461 -- Only apply checks when generating code and discriminant checks are
1462 -- not suppressed. In GNATprove mode, we do not apply the checks, but we
1463 -- still analyze the expression to possibly issue errors on SPARK code
1464 -- when a run-time error can be detected at compile time.
1466 if not GNATprove_Mode then
1467 if not Expander_Active
1468 or else Discriminant_Checks_Suppressed (T_Typ)
1469 then
1470 return;
1471 end if;
1472 end if;
1474 -- No discriminant checks necessary for an access when expression is
1475 -- statically Null. This is not only an optimization, it is fundamental
1476 -- because otherwise discriminant checks may be generated in init procs
1477 -- for types containing an access to a not-yet-frozen record, causing a
1478 -- deadly forward reference.
1480 -- Also, if the expression is of an access type whose designated type is
1481 -- incomplete, then the access value must be null and we suppress the
1482 -- check.
1484 if Known_Null (N) then
1485 return;
1487 elsif Is_Access_Type (S_Typ) then
1488 S_Typ := Designated_Type (S_Typ);
1490 if Ekind (S_Typ) = E_Incomplete_Type then
1491 return;
1492 end if;
1493 end if;
1495 -- If an assignment target is present, then we need to generate the
1496 -- actual subtype if the target is a parameter or aliased object with
1497 -- an unconstrained nominal subtype.
1499 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1500 -- subtype to the parameter and dereference cases, since other aliased
1501 -- objects are unconstrained (unless the nominal subtype is explicitly
1502 -- constrained).
1504 if Present (Lhs)
1505 and then (Present (Param_Entity (Lhs))
1506 or else (Ada_Version < Ada_2005
1507 and then not Is_Constrained (T_Typ)
1508 and then Is_Aliased_View (Lhs)
1509 and then not Is_Aliased_Unconstrained_Component)
1510 or else (Ada_Version >= Ada_2005
1511 and then not Is_Constrained (T_Typ)
1512 and then Denotes_Explicit_Dereference (Lhs)
1513 and then Nkind (Original_Node (Lhs)) /=
1514 N_Function_Call))
1515 then
1516 T_Typ := Get_Actual_Subtype (Lhs);
1517 end if;
1519 -- Nothing to do if the type is unconstrained (this is the case where
1520 -- the actual subtype in the RM sense of N is unconstrained and no check
1521 -- is required).
1523 if not Is_Constrained (T_Typ) then
1524 return;
1526 -- Ada 2005: nothing to do if the type is one for which there is a
1527 -- partial view that is constrained.
1529 elsif Ada_Version >= Ada_2005
1530 and then Object_Type_Has_Constrained_Partial_View
1531 (Typ => Base_Type (T_Typ),
1532 Scop => Current_Scope)
1533 then
1534 return;
1535 end if;
1537 -- Nothing to do if the type is an Unchecked_Union
1539 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1540 return;
1541 end if;
1543 -- Suppress checks if the subtypes are the same. The check must be
1544 -- preserved in an assignment to a formal, because the constraint is
1545 -- given by the actual.
1547 if Nkind (Original_Node (N)) /= N_Allocator
1548 and then (No (Lhs)
1549 or else not Is_Entity_Name (Lhs)
1550 or else No (Param_Entity (Lhs)))
1551 then
1552 if (Etype (N) = Typ
1553 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1554 and then not Is_Aliased_View (Lhs)
1555 then
1556 return;
1557 end if;
1559 -- We can also eliminate checks on allocators with a subtype mark that
1560 -- coincides with the context type. The context type may be a subtype
1561 -- without a constraint (common case, a generic actual).
1563 elsif Nkind (Original_Node (N)) = N_Allocator
1564 and then Is_Entity_Name (Expression (Original_Node (N)))
1565 then
1566 declare
1567 Alloc_Typ : constant Entity_Id :=
1568 Entity (Expression (Original_Node (N)));
1570 begin
1571 if Alloc_Typ = T_Typ
1572 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1573 and then Is_Entity_Name (
1574 Subtype_Indication (Parent (T_Typ)))
1575 and then Alloc_Typ = Base_Type (T_Typ))
1577 then
1578 return;
1579 end if;
1580 end;
1581 end if;
1583 -- See if we have a case where the types are both constrained, and all
1584 -- the constraints are constants. In this case, we can do the check
1585 -- successfully at compile time.
1587 -- We skip this check for the case where the node is rewritten as
1588 -- an allocator, because it already carries the context subtype,
1589 -- and extracting the discriminants from the aggregate is messy.
1591 if Is_Constrained (S_Typ)
1592 and then Nkind (Original_Node (N)) /= N_Allocator
1593 then
1594 declare
1595 DconT : Elmt_Id;
1596 Discr : Entity_Id;
1597 DconS : Elmt_Id;
1598 ItemS : Node_Id;
1599 ItemT : Node_Id;
1601 begin
1602 -- S_Typ may not have discriminants in the case where it is a
1603 -- private type completed by a default discriminated type. In that
1604 -- case, we need to get the constraints from the underlying type.
1605 -- If the underlying type is unconstrained (i.e. has no default
1606 -- discriminants) no check is needed.
1608 if Has_Discriminants (S_Typ) then
1609 Discr := First_Discriminant (S_Typ);
1610 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1612 else
1613 Discr := First_Discriminant (Underlying_Type (S_Typ));
1614 DconS :=
1615 First_Elmt
1616 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1618 if No (DconS) then
1619 return;
1620 end if;
1622 -- A further optimization: if T_Typ is derived from S_Typ
1623 -- without imposing a constraint, no check is needed.
1625 if Nkind (Original_Node (Parent (T_Typ))) =
1626 N_Full_Type_Declaration
1627 then
1628 declare
1629 Type_Def : constant Node_Id :=
1630 Type_Definition (Original_Node (Parent (T_Typ)));
1631 begin
1632 if Nkind (Type_Def) = N_Derived_Type_Definition
1633 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1634 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1635 then
1636 return;
1637 end if;
1638 end;
1639 end if;
1640 end if;
1642 -- Constraint may appear in full view of type
1644 if Ekind (T_Typ) = E_Private_Subtype
1645 and then Present (Full_View (T_Typ))
1646 then
1647 DconT :=
1648 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
1649 else
1650 DconT :=
1651 First_Elmt (Discriminant_Constraint (T_Typ));
1652 end if;
1654 while Present (Discr) loop
1655 ItemS := Node (DconS);
1656 ItemT := Node (DconT);
1658 -- For a discriminated component type constrained by the
1659 -- current instance of an enclosing type, there is no
1660 -- applicable discriminant check.
1662 if Nkind (ItemT) = N_Attribute_Reference
1663 and then Is_Access_Type (Etype (ItemT))
1664 and then Is_Entity_Name (Prefix (ItemT))
1665 and then Is_Type (Entity (Prefix (ItemT)))
1666 then
1667 return;
1668 end if;
1670 -- If the expressions for the discriminants are identical
1671 -- and it is side-effect free (for now just an entity),
1672 -- this may be a shared constraint, e.g. from a subtype
1673 -- without a constraint introduced as a generic actual.
1674 -- Examine other discriminants if any.
1676 if ItemS = ItemT
1677 and then Is_Entity_Name (ItemS)
1678 then
1679 null;
1681 elsif not Is_OK_Static_Expression (ItemS)
1682 or else not Is_OK_Static_Expression (ItemT)
1683 then
1684 exit;
1686 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
1687 if Do_Access then -- needs run-time check.
1688 exit;
1689 else
1690 Apply_Compile_Time_Constraint_Error
1691 (N, "incorrect value for discriminant&??",
1692 CE_Discriminant_Check_Failed, Ent => Discr);
1693 return;
1694 end if;
1695 end if;
1697 Next_Elmt (DconS);
1698 Next_Elmt (DconT);
1699 Next_Discriminant (Discr);
1700 end loop;
1702 if No (Discr) then
1703 return;
1704 end if;
1705 end;
1706 end if;
1708 -- In GNATprove mode, we do not apply the checks
1710 if GNATprove_Mode then
1711 return;
1712 end if;
1714 -- Here we need a discriminant check. First build the expression
1715 -- for the comparisons of the discriminants:
1717 -- (n.disc1 /= typ.disc1) or else
1718 -- (n.disc2 /= typ.disc2) or else
1719 -- ...
1720 -- (n.discn /= typ.discn)
1722 Cond := Build_Discriminant_Checks (N, T_Typ);
1724 -- If Lhs is set and is a parameter, then the condition is guarded by:
1725 -- lhs'constrained and then (condition built above)
1727 if Present (Param_Entity (Lhs)) then
1728 Cond :=
1729 Make_And_Then (Loc,
1730 Left_Opnd =>
1731 Make_Attribute_Reference (Loc,
1732 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1733 Attribute_Name => Name_Constrained),
1734 Right_Opnd => Cond);
1735 end if;
1737 if Do_Access then
1738 Cond := Guard_Access (Cond, Loc, N);
1739 end if;
1741 Insert_Action (N,
1742 Make_Raise_Constraint_Error (Loc,
1743 Condition => Cond,
1744 Reason => CE_Discriminant_Check_Failed));
1745 end Apply_Discriminant_Check;
1747 -------------------------
1748 -- Apply_Divide_Checks --
1749 -------------------------
1751 procedure Apply_Divide_Checks (N : Node_Id) is
1752 Loc : constant Source_Ptr := Sloc (N);
1753 Typ : constant Entity_Id := Etype (N);
1754 Left : constant Node_Id := Left_Opnd (N);
1755 Right : constant Node_Id := Right_Opnd (N);
1757 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1758 -- Current overflow checking mode
1760 LLB : Uint;
1761 Llo : Uint;
1762 Lhi : Uint;
1763 LOK : Boolean;
1764 Rlo : Uint;
1765 Rhi : Uint;
1766 ROK : Boolean;
1768 pragma Warnings (Off, Lhi);
1769 -- Don't actually use this value
1771 begin
1772 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1773 -- operating on signed integer types, then the only thing this routine
1774 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1775 -- procedure will (possibly later on during recursive downward calls),
1776 -- ensure that any needed overflow/division checks are properly applied.
1778 if Mode in Minimized_Or_Eliminated
1779 and then Is_Signed_Integer_Type (Typ)
1780 then
1781 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1782 return;
1783 end if;
1785 -- Proceed here in SUPPRESSED or CHECKED modes
1787 if Expander_Active
1788 and then not Backend_Divide_Checks_On_Target
1789 and then Check_Needed (Right, Division_Check)
1790 then
1791 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
1793 -- Deal with division check
1795 if Do_Division_Check (N)
1796 and then not Division_Checks_Suppressed (Typ)
1797 then
1798 Apply_Division_Check (N, Rlo, Rhi, ROK);
1799 end if;
1801 -- Deal with overflow check
1803 if Do_Overflow_Check (N)
1804 and then not Overflow_Checks_Suppressed (Etype (N))
1805 then
1806 Set_Do_Overflow_Check (N, False);
1808 -- Test for extremely annoying case of xxx'First divided by -1
1809 -- for division of signed integer types (only overflow case).
1811 if Nkind (N) = N_Op_Divide
1812 and then Is_Signed_Integer_Type (Typ)
1813 then
1814 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
1815 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1817 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1818 and then
1819 ((not LOK) or else (Llo = LLB))
1820 then
1821 Insert_Action (N,
1822 Make_Raise_Constraint_Error (Loc,
1823 Condition =>
1824 Make_And_Then (Loc,
1825 Left_Opnd =>
1826 Make_Op_Eq (Loc,
1827 Left_Opnd =>
1828 Duplicate_Subexpr_Move_Checks (Left),
1829 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1831 Right_Opnd =>
1832 Make_Op_Eq (Loc,
1833 Left_Opnd => Duplicate_Subexpr (Right),
1834 Right_Opnd => Make_Integer_Literal (Loc, -1))),
1836 Reason => CE_Overflow_Check_Failed));
1837 end if;
1838 end if;
1839 end if;
1840 end if;
1841 end Apply_Divide_Checks;
1843 --------------------------
1844 -- Apply_Division_Check --
1845 --------------------------
1847 procedure Apply_Division_Check
1848 (N : Node_Id;
1849 Rlo : Uint;
1850 Rhi : Uint;
1851 ROK : Boolean)
1853 pragma Assert (Do_Division_Check (N));
1855 Loc : constant Source_Ptr := Sloc (N);
1856 Right : constant Node_Id := Right_Opnd (N);
1858 begin
1859 if Expander_Active
1860 and then not Backend_Divide_Checks_On_Target
1861 and then Check_Needed (Right, Division_Check)
1862 then
1863 -- See if division by zero possible, and if so generate test. This
1864 -- part of the test is not controlled by the -gnato switch, since
1865 -- it is a Division_Check and not an Overflow_Check.
1867 if Do_Division_Check (N) then
1868 Set_Do_Division_Check (N, False);
1870 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1871 Insert_Action (N,
1872 Make_Raise_Constraint_Error (Loc,
1873 Condition =>
1874 Make_Op_Eq (Loc,
1875 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1876 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1877 Reason => CE_Divide_By_Zero));
1878 end if;
1879 end if;
1880 end if;
1881 end Apply_Division_Check;
1883 ----------------------------------
1884 -- Apply_Float_Conversion_Check --
1885 ----------------------------------
1887 -- Let F and I be the source and target types of the conversion. The RM
1888 -- specifies that a floating-point value X is rounded to the nearest
1889 -- integer, with halfway cases being rounded away from zero. The rounded
1890 -- value of X is checked against I'Range.
1892 -- The catch in the above paragraph is that there is no good way to know
1893 -- whether the round-to-integer operation resulted in overflow. A remedy is
1894 -- to perform a range check in the floating-point domain instead, however:
1896 -- (1) The bounds may not be known at compile time
1897 -- (2) The check must take into account rounding or truncation.
1898 -- (3) The range of type I may not be exactly representable in F.
1899 -- (4) For the rounding case, The end-points I'First - 0.5 and
1900 -- I'Last + 0.5 may or may not be in range, depending on the
1901 -- sign of I'First and I'Last.
1902 -- (5) X may be a NaN, which will fail any comparison
1904 -- The following steps correctly convert X with rounding:
1906 -- (1) If either I'First or I'Last is not known at compile time, use
1907 -- I'Base instead of I in the next three steps and perform a
1908 -- regular range check against I'Range after conversion.
1909 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1910 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1911 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1912 -- In other words, take one of the closest floating-point numbers
1913 -- (which is an integer value) to I'First, and see if it is in
1914 -- range or not.
1915 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1916 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1917 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1918 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1919 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1921 -- For the truncating case, replace steps (2) and (3) as follows:
1922 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1923 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1924 -- Lo_OK be True.
1925 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1926 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1927 -- Hi_OK be True.
1929 procedure Apply_Float_Conversion_Check
1930 (Ck_Node : Node_Id;
1931 Target_Typ : Entity_Id)
1933 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1934 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1935 Loc : constant Source_Ptr := Sloc (Ck_Node);
1936 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
1937 Target_Base : constant Entity_Id :=
1938 Implementation_Base_Type (Target_Typ);
1940 Par : constant Node_Id := Parent (Ck_Node);
1941 pragma Assert (Nkind (Par) = N_Type_Conversion);
1942 -- Parent of check node, must be a type conversion
1944 Truncate : constant Boolean := Float_Truncate (Par);
1945 Max_Bound : constant Uint :=
1946 UI_Expon
1947 (Machine_Radix_Value (Expr_Type),
1948 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
1950 -- Largest bound, so bound plus or minus half is a machine number of F
1952 Ifirst, Ilast : Uint;
1953 -- Bounds of integer type
1955 Lo, Hi : Ureal;
1956 -- Bounds to check in floating-point domain
1958 Lo_OK, Hi_OK : Boolean;
1959 -- True iff Lo resp. Hi belongs to I'Range
1961 Lo_Chk, Hi_Chk : Node_Id;
1962 -- Expressions that are False iff check fails
1964 Reason : RT_Exception_Code;
1966 begin
1967 -- We do not need checks if we are not generating code (i.e. the full
1968 -- expander is not active). In SPARK mode, we specifically don't want
1969 -- the frontend to expand these checks, which are dealt with directly
1970 -- in the formal verification backend.
1972 if not Expander_Active then
1973 return;
1974 end if;
1976 if not Compile_Time_Known_Value (LB)
1977 or not Compile_Time_Known_Value (HB)
1978 then
1979 declare
1980 -- First check that the value falls in the range of the base type,
1981 -- to prevent overflow during conversion and then perform a
1982 -- regular range check against the (dynamic) bounds.
1984 pragma Assert (Target_Base /= Target_Typ);
1986 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
1988 begin
1989 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1990 Set_Etype (Temp, Target_Base);
1992 Insert_Action (Parent (Par),
1993 Make_Object_Declaration (Loc,
1994 Defining_Identifier => Temp,
1995 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
1996 Expression => New_Copy_Tree (Par)),
1997 Suppress => All_Checks);
1999 Insert_Action (Par,
2000 Make_Raise_Constraint_Error (Loc,
2001 Condition =>
2002 Make_Not_In (Loc,
2003 Left_Opnd => New_Occurrence_Of (Temp, Loc),
2004 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
2005 Reason => CE_Range_Check_Failed));
2006 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
2008 return;
2009 end;
2010 end if;
2012 -- Get the (static) bounds of the target type
2014 Ifirst := Expr_Value (LB);
2015 Ilast := Expr_Value (HB);
2017 -- A simple optimization: if the expression is a universal literal,
2018 -- we can do the comparison with the bounds and the conversion to
2019 -- an integer type statically. The range checks are unchanged.
2021 if Nkind (Ck_Node) = N_Real_Literal
2022 and then Etype (Ck_Node) = Universal_Real
2023 and then Is_Integer_Type (Target_Typ)
2024 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
2025 then
2026 declare
2027 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
2029 begin
2030 if Int_Val <= Ilast and then Int_Val >= Ifirst then
2032 -- Conversion is safe
2034 Rewrite (Parent (Ck_Node),
2035 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
2036 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
2037 return;
2038 end if;
2039 end;
2040 end if;
2042 -- Check against lower bound
2044 if Truncate and then Ifirst > 0 then
2045 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2046 Lo_OK := False;
2048 elsif Truncate then
2049 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2050 Lo_OK := True;
2052 elsif abs (Ifirst) < Max_Bound then
2053 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2054 Lo_OK := (Ifirst > 0);
2056 else
2057 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
2058 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2059 end if;
2061 if Lo_OK then
2063 -- Lo_Chk := (X >= Lo)
2065 Lo_Chk := Make_Op_Ge (Loc,
2066 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2067 Right_Opnd => Make_Real_Literal (Loc, Lo));
2069 else
2070 -- Lo_Chk := (X > Lo)
2072 Lo_Chk := Make_Op_Gt (Loc,
2073 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2074 Right_Opnd => Make_Real_Literal (Loc, Lo));
2075 end if;
2077 -- Check against higher bound
2079 if Truncate and then Ilast < 0 then
2080 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
2081 Hi_OK := False;
2083 elsif Truncate then
2084 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2085 Hi_OK := True;
2087 elsif abs (Ilast) < Max_Bound then
2088 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2089 Hi_OK := (Ilast < 0);
2090 else
2091 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2092 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2093 end if;
2095 if Hi_OK then
2097 -- Hi_Chk := (X <= Hi)
2099 Hi_Chk := Make_Op_Le (Loc,
2100 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2101 Right_Opnd => Make_Real_Literal (Loc, Hi));
2103 else
2104 -- Hi_Chk := (X < Hi)
2106 Hi_Chk := Make_Op_Lt (Loc,
2107 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2108 Right_Opnd => Make_Real_Literal (Loc, Hi));
2109 end if;
2111 -- If the bounds of the target type are the same as those of the base
2112 -- type, the check is an overflow check as a range check is not
2113 -- performed in these cases.
2115 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2116 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2117 then
2118 Reason := CE_Overflow_Check_Failed;
2119 else
2120 Reason := CE_Range_Check_Failed;
2121 end if;
2123 -- Raise CE if either conditions does not hold
2125 Insert_Action (Ck_Node,
2126 Make_Raise_Constraint_Error (Loc,
2127 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
2128 Reason => Reason));
2129 end Apply_Float_Conversion_Check;
2131 ------------------------
2132 -- Apply_Length_Check --
2133 ------------------------
2135 procedure Apply_Length_Check
2136 (Ck_Node : Node_Id;
2137 Target_Typ : Entity_Id;
2138 Source_Typ : Entity_Id := Empty)
2140 begin
2141 Apply_Selected_Length_Checks
2142 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2143 end Apply_Length_Check;
2145 -------------------------------------
2146 -- Apply_Parameter_Aliasing_Checks --
2147 -------------------------------------
2149 procedure Apply_Parameter_Aliasing_Checks
2150 (Call : Node_Id;
2151 Subp : Entity_Id)
2153 Loc : constant Source_Ptr := Sloc (Call);
2155 function May_Cause_Aliasing
2156 (Formal_1 : Entity_Id;
2157 Formal_2 : Entity_Id) return Boolean;
2158 -- Determine whether two formal parameters can alias each other
2159 -- depending on their modes.
2161 function Original_Actual (N : Node_Id) return Node_Id;
2162 -- The expander may replace an actual with a temporary for the sake of
2163 -- side effect removal. The temporary may hide a potential aliasing as
2164 -- it does not share the address of the actual. This routine attempts
2165 -- to retrieve the original actual.
2167 procedure Overlap_Check
2168 (Actual_1 : Node_Id;
2169 Actual_2 : Node_Id;
2170 Formal_1 : Entity_Id;
2171 Formal_2 : Entity_Id;
2172 Check : in out Node_Id);
2173 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2174 -- If detailed exception messages are enabled, the check is augmented to
2175 -- provide information about the names of the corresponding formals. See
2176 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2177 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2178 -- Check contains all and-ed simple tests generated so far or remains
2179 -- unchanged in the case of detailed exception messaged.
2181 ------------------------
2182 -- May_Cause_Aliasing --
2183 ------------------------
2185 function May_Cause_Aliasing
2186 (Formal_1 : Entity_Id;
2187 Formal_2 : Entity_Id) return Boolean
2189 begin
2190 -- The following combination cannot lead to aliasing
2192 -- Formal 1 Formal 2
2193 -- IN IN
2195 if Ekind (Formal_1) = E_In_Parameter
2196 and then
2197 Ekind (Formal_2) = E_In_Parameter
2198 then
2199 return False;
2201 -- The following combinations may lead to aliasing
2203 -- Formal 1 Formal 2
2204 -- IN OUT
2205 -- IN IN OUT
2206 -- OUT IN
2207 -- OUT IN OUT
2208 -- OUT OUT
2210 else
2211 return True;
2212 end if;
2213 end May_Cause_Aliasing;
2215 ---------------------
2216 -- Original_Actual --
2217 ---------------------
2219 function Original_Actual (N : Node_Id) return Node_Id is
2220 begin
2221 if Nkind (N) = N_Type_Conversion then
2222 return Expression (N);
2224 -- The expander created a temporary to capture the result of a type
2225 -- conversion where the expression is the real actual.
2227 elsif Nkind (N) = N_Identifier
2228 and then Present (Original_Node (N))
2229 and then Nkind (Original_Node (N)) = N_Type_Conversion
2230 then
2231 return Expression (Original_Node (N));
2232 end if;
2234 return N;
2235 end Original_Actual;
2237 -------------------
2238 -- Overlap_Check --
2239 -------------------
2241 procedure Overlap_Check
2242 (Actual_1 : Node_Id;
2243 Actual_2 : Node_Id;
2244 Formal_1 : Entity_Id;
2245 Formal_2 : Entity_Id;
2246 Check : in out Node_Id)
2248 Cond : Node_Id;
2249 ID_Casing : constant Casing_Type :=
2250 Identifier_Casing (Source_Index (Current_Sem_Unit));
2252 begin
2253 -- Generate:
2254 -- Actual_1'Overlaps_Storage (Actual_2)
2256 Cond :=
2257 Make_Attribute_Reference (Loc,
2258 Prefix => New_Copy_Tree (Original_Actual (Actual_1)),
2259 Attribute_Name => Name_Overlaps_Storage,
2260 Expressions =>
2261 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2263 -- Generate the following check when detailed exception messages are
2264 -- enabled:
2266 -- if Actual_1'Overlaps_Storage (Actual_2) then
2267 -- raise Program_Error with <detailed message>;
2268 -- end if;
2270 if Exception_Extra_Info then
2271 Start_String;
2273 -- Do not generate location information for internal calls
2275 if Comes_From_Source (Call) then
2276 Store_String_Chars (Build_Location_String (Loc));
2277 Store_String_Char (' ');
2278 end if;
2280 Store_String_Chars ("aliased parameters, actuals for """);
2282 Get_Name_String (Chars (Formal_1));
2283 Set_Casing (ID_Casing);
2284 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2286 Store_String_Chars (""" and """);
2288 Get_Name_String (Chars (Formal_2));
2289 Set_Casing (ID_Casing);
2290 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2292 Store_String_Chars (""" overlap");
2294 Insert_Action (Call,
2295 Make_If_Statement (Loc,
2296 Condition => Cond,
2297 Then_Statements => New_List (
2298 Make_Raise_Statement (Loc,
2299 Name =>
2300 New_Occurrence_Of (Standard_Program_Error, Loc),
2301 Expression => Make_String_Literal (Loc, End_String)))));
2303 -- Create a sequence of overlapping checks by and-ing them all
2304 -- together.
2306 else
2307 if No (Check) then
2308 Check := Cond;
2309 else
2310 Check :=
2311 Make_And_Then (Loc,
2312 Left_Opnd => Check,
2313 Right_Opnd => Cond);
2314 end if;
2315 end if;
2316 end Overlap_Check;
2318 -- Local variables
2320 Actual_1 : Node_Id;
2321 Actual_2 : Node_Id;
2322 Check : Node_Id;
2323 Formal_1 : Entity_Id;
2324 Formal_2 : Entity_Id;
2325 Orig_Act_1 : Node_Id;
2326 Orig_Act_2 : Node_Id;
2328 -- Start of processing for Apply_Parameter_Aliasing_Checks
2330 begin
2331 Check := Empty;
2333 Actual_1 := First_Actual (Call);
2334 Formal_1 := First_Formal (Subp);
2335 while Present (Actual_1) and then Present (Formal_1) loop
2336 Orig_Act_1 := Original_Actual (Actual_1);
2338 -- Ensure that the actual is an object that is not passed by value.
2339 -- Elementary types are always passed by value, therefore actuals of
2340 -- such types cannot lead to aliasing. An aggregate is an object in
2341 -- Ada 2012, but an actual that is an aggregate cannot overlap with
2342 -- another actual. A type that is By_Reference (such as an array of
2343 -- controlled types) is not subject to the check because any update
2344 -- will be done in place and a subsequent read will always see the
2345 -- correct value, see RM 6.2 (12/3).
2347 if Nkind (Orig_Act_1) = N_Aggregate
2348 or else (Nkind (Orig_Act_1) = N_Qualified_Expression
2349 and then Nkind (Expression (Orig_Act_1)) = N_Aggregate)
2350 then
2351 null;
2353 elsif Is_Object_Reference (Orig_Act_1)
2354 and then not Is_Elementary_Type (Etype (Orig_Act_1))
2355 and then not Is_By_Reference_Type (Etype (Orig_Act_1))
2356 then
2357 Actual_2 := Next_Actual (Actual_1);
2358 Formal_2 := Next_Formal (Formal_1);
2359 while Present (Actual_2) and then Present (Formal_2) loop
2360 Orig_Act_2 := Original_Actual (Actual_2);
2362 -- The other actual we are testing against must also denote
2363 -- a non pass-by-value object. Generate the check only when
2364 -- the mode of the two formals may lead to aliasing.
2366 if Is_Object_Reference (Orig_Act_2)
2367 and then not Is_Elementary_Type (Etype (Orig_Act_2))
2368 and then May_Cause_Aliasing (Formal_1, Formal_2)
2369 then
2370 Remove_Side_Effects (Actual_1);
2371 Remove_Side_Effects (Actual_2);
2373 Overlap_Check
2374 (Actual_1 => Actual_1,
2375 Actual_2 => Actual_2,
2376 Formal_1 => Formal_1,
2377 Formal_2 => Formal_2,
2378 Check => Check);
2379 end if;
2381 Next_Actual (Actual_2);
2382 Next_Formal (Formal_2);
2383 end loop;
2384 end if;
2386 Next_Actual (Actual_1);
2387 Next_Formal (Formal_1);
2388 end loop;
2390 -- Place a simple check right before the call
2392 if Present (Check) and then not Exception_Extra_Info then
2393 Insert_Action (Call,
2394 Make_Raise_Program_Error (Loc,
2395 Condition => Check,
2396 Reason => PE_Aliased_Parameters));
2397 end if;
2398 end Apply_Parameter_Aliasing_Checks;
2400 -------------------------------------
2401 -- Apply_Parameter_Validity_Checks --
2402 -------------------------------------
2404 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2405 Subp_Decl : Node_Id;
2407 procedure Add_Validity_Check
2408 (Formal : Entity_Id;
2409 Prag_Nam : Name_Id;
2410 For_Result : Boolean := False);
2411 -- Add a single 'Valid[_Scalar] check which verifies the initialization
2412 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
2413 -- Set flag For_Result when to verify the result of a function.
2415 ------------------------
2416 -- Add_Validity_Check --
2417 ------------------------
2419 procedure Add_Validity_Check
2420 (Formal : Entity_Id;
2421 Prag_Nam : Name_Id;
2422 For_Result : Boolean := False)
2424 procedure Build_Pre_Post_Condition (Expr : Node_Id);
2425 -- Create a pre/postcondition pragma that tests expression Expr
2427 ------------------------------
2428 -- Build_Pre_Post_Condition --
2429 ------------------------------
2431 procedure Build_Pre_Post_Condition (Expr : Node_Id) is
2432 Loc : constant Source_Ptr := Sloc (Subp);
2433 Decls : List_Id;
2434 Prag : Node_Id;
2436 begin
2437 Prag :=
2438 Make_Pragma (Loc,
2439 Chars => Prag_Nam,
2440 Pragma_Argument_Associations => New_List (
2441 Make_Pragma_Argument_Association (Loc,
2442 Chars => Name_Check,
2443 Expression => Expr)));
2445 -- Add a message unless exception messages are suppressed
2447 if not Exception_Locations_Suppressed then
2448 Append_To (Pragma_Argument_Associations (Prag),
2449 Make_Pragma_Argument_Association (Loc,
2450 Chars => Name_Message,
2451 Expression =>
2452 Make_String_Literal (Loc,
2453 Strval => "failed "
2454 & Get_Name_String (Prag_Nam)
2455 & " from "
2456 & Build_Location_String (Loc))));
2457 end if;
2459 -- Insert the pragma in the tree
2461 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2462 Add_Global_Declaration (Prag);
2463 Analyze (Prag);
2465 -- PPC pragmas associated with subprogram bodies must be inserted
2466 -- in the declarative part of the body.
2468 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2469 Decls := Declarations (Subp_Decl);
2471 if No (Decls) then
2472 Decls := New_List;
2473 Set_Declarations (Subp_Decl, Decls);
2474 end if;
2476 Prepend_To (Decls, Prag);
2477 Analyze (Prag);
2479 -- For subprogram declarations insert the PPC pragma right after
2480 -- the declarative node.
2482 else
2483 Insert_After_And_Analyze (Subp_Decl, Prag);
2484 end if;
2485 end Build_Pre_Post_Condition;
2487 -- Local variables
2489 Loc : constant Source_Ptr := Sloc (Subp);
2490 Typ : constant Entity_Id := Etype (Formal);
2491 Check : Node_Id;
2492 Nam : Name_Id;
2494 -- Start of processing for Add_Validity_Check
2496 begin
2497 -- For scalars, generate 'Valid test
2499 if Is_Scalar_Type (Typ) then
2500 Nam := Name_Valid;
2502 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2504 elsif Scalar_Part_Present (Typ) then
2505 Nam := Name_Valid_Scalars;
2507 -- No test needed for other cases (no scalars to test)
2509 else
2510 return;
2511 end if;
2513 -- Step 1: Create the expression to verify the validity of the
2514 -- context.
2516 Check := New_Occurrence_Of (Formal, Loc);
2518 -- When processing a function result, use 'Result. Generate
2519 -- Context'Result
2521 if For_Result then
2522 Check :=
2523 Make_Attribute_Reference (Loc,
2524 Prefix => Check,
2525 Attribute_Name => Name_Result);
2526 end if;
2528 -- Generate:
2529 -- Context['Result]'Valid[_Scalars]
2531 Check :=
2532 Make_Attribute_Reference (Loc,
2533 Prefix => Check,
2534 Attribute_Name => Nam);
2536 -- Step 2: Create a pre or post condition pragma
2538 Build_Pre_Post_Condition (Check);
2539 end Add_Validity_Check;
2541 -- Local variables
2543 Formal : Entity_Id;
2544 Subp_Spec : Node_Id;
2546 -- Start of processing for Apply_Parameter_Validity_Checks
2548 begin
2549 -- Extract the subprogram specification and declaration nodes
2551 Subp_Spec := Parent (Subp);
2553 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2554 Subp_Spec := Parent (Subp_Spec);
2555 end if;
2557 Subp_Decl := Parent (Subp_Spec);
2559 if not Comes_From_Source (Subp)
2561 -- Do not process formal subprograms because the corresponding actual
2562 -- will receive the proper checks when the instance is analyzed.
2564 or else Is_Formal_Subprogram (Subp)
2566 -- Do not process imported subprograms since pre and postconditions
2567 -- are never verified on routines coming from a different language.
2569 or else Is_Imported (Subp)
2570 or else Is_Intrinsic_Subprogram (Subp)
2572 -- The PPC pragmas generated by this routine do not correspond to
2573 -- source aspects, therefore they cannot be applied to abstract
2574 -- subprograms.
2576 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
2578 -- Do not consider subprogram renaminds because the renamed entity
2579 -- already has the proper PPC pragmas.
2581 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2583 -- Do not process null procedures because there is no benefit of
2584 -- adding the checks to a no action routine.
2586 or else (Nkind (Subp_Spec) = N_Procedure_Specification
2587 and then Null_Present (Subp_Spec))
2588 then
2589 return;
2590 end if;
2592 -- Inspect all the formals applying aliasing and scalar initialization
2593 -- checks where applicable.
2595 Formal := First_Formal (Subp);
2596 while Present (Formal) loop
2598 -- Generate the following scalar initialization checks for each
2599 -- formal parameter:
2601 -- mode IN - Pre => Formal'Valid[_Scalars]
2602 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2603 -- mode OUT - Post => Formal'Valid[_Scalars]
2605 if Check_Validity_Of_Parameters then
2606 if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2607 Add_Validity_Check (Formal, Name_Precondition, False);
2608 end if;
2610 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2611 Add_Validity_Check (Formal, Name_Postcondition, False);
2612 end if;
2613 end if;
2615 Next_Formal (Formal);
2616 end loop;
2618 -- Generate following scalar initialization check for function result:
2620 -- Post => Subp'Result'Valid[_Scalars]
2622 if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
2623 Add_Validity_Check (Subp, Name_Postcondition, True);
2624 end if;
2625 end Apply_Parameter_Validity_Checks;
2627 ---------------------------
2628 -- Apply_Predicate_Check --
2629 ---------------------------
2631 procedure Apply_Predicate_Check
2632 (N : Node_Id;
2633 Typ : Entity_Id;
2634 Fun : Entity_Id := Empty)
2636 S : Entity_Id;
2638 begin
2639 if Predicate_Checks_Suppressed (Empty) then
2640 return;
2642 elsif Predicates_Ignored (Typ) then
2643 return;
2645 elsif Present (Predicate_Function (Typ)) then
2646 S := Current_Scope;
2647 while Present (S) and then not Is_Subprogram (S) loop
2648 S := Scope (S);
2649 end loop;
2651 -- A predicate check does not apply within internally generated
2652 -- subprograms, such as TSS functions.
2654 if Within_Internal_Subprogram then
2655 return;
2657 -- If the check appears within the predicate function itself, it
2658 -- means that the user specified a check whose formal is the
2659 -- predicated subtype itself, rather than some covering type. This
2660 -- is likely to be a common error, and thus deserves a warning.
2662 elsif Present (S) and then S = Predicate_Function (Typ) then
2663 Error_Msg_NE
2664 ("predicate check includes a call to& that requires a "
2665 & "predicate check??", Parent (N), Fun);
2666 Error_Msg_N
2667 ("\this will result in infinite recursion??", Parent (N));
2669 if Is_First_Subtype (Typ) then
2670 Error_Msg_NE
2671 ("\use an explicit subtype of& to carry the predicate",
2672 Parent (N), Typ);
2673 end if;
2675 Insert_Action (N,
2676 Make_Raise_Storage_Error (Sloc (N),
2677 Reason => SE_Infinite_Recursion));
2679 -- Here for normal case of predicate active
2681 else
2682 -- If the type has a static predicate and the expression is known
2683 -- at compile time, see if the expression satisfies the predicate.
2685 Check_Expression_Against_Static_Predicate (N, Typ);
2687 if not Expander_Active then
2688 return;
2689 end if;
2691 -- For an entity of the type, generate a call to the predicate
2692 -- function, unless its type is an actual subtype, which is not
2693 -- visible outside of the enclosing subprogram.
2695 if Is_Entity_Name (N)
2696 and then not Is_Actual_Subtype (Typ)
2697 then
2698 Insert_Action (N,
2699 Make_Predicate_Check
2700 (Typ, New_Occurrence_Of (Entity (N), Sloc (N))));
2702 -- If the expression is not an entity it may have side effects,
2703 -- and the following call will create an object declaration for
2704 -- it. We disable checks during its analysis, to prevent an
2705 -- infinite recursion.
2707 else
2708 Insert_Action (N,
2709 Make_Predicate_Check
2710 (Typ, Duplicate_Subexpr (N)), Suppress => All_Checks);
2711 end if;
2712 end if;
2713 end if;
2714 end Apply_Predicate_Check;
2716 -----------------------
2717 -- Apply_Range_Check --
2718 -----------------------
2720 procedure Apply_Range_Check
2721 (Ck_Node : Node_Id;
2722 Target_Typ : Entity_Id;
2723 Source_Typ : Entity_Id := Empty)
2725 begin
2726 Apply_Selected_Range_Checks
2727 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2728 end Apply_Range_Check;
2730 ------------------------------
2731 -- Apply_Scalar_Range_Check --
2732 ------------------------------
2734 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2735 -- off if it is already set on.
2737 procedure Apply_Scalar_Range_Check
2738 (Expr : Node_Id;
2739 Target_Typ : Entity_Id;
2740 Source_Typ : Entity_Id := Empty;
2741 Fixed_Int : Boolean := False)
2743 Parnt : constant Node_Id := Parent (Expr);
2744 S_Typ : Entity_Id;
2745 Arr : Node_Id := Empty; -- initialize to prevent warning
2746 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
2747 OK : Boolean := False; -- initialize to prevent warning
2749 Is_Subscr_Ref : Boolean;
2750 -- Set true if Expr is a subscript
2752 Is_Unconstrained_Subscr_Ref : Boolean;
2753 -- Set true if Expr is a subscript of an unconstrained array. In this
2754 -- case we do not attempt to do an analysis of the value against the
2755 -- range of the subscript, since we don't know the actual subtype.
2757 Int_Real : Boolean;
2758 -- Set to True if Expr should be regarded as a real value even though
2759 -- the type of Expr might be discrete.
2761 procedure Bad_Value (Warn : Boolean := False);
2762 -- Procedure called if value is determined to be out of range. Warn is
2763 -- True to force a warning instead of an error, even when SPARK_Mode is
2764 -- On.
2766 ---------------
2767 -- Bad_Value --
2768 ---------------
2770 procedure Bad_Value (Warn : Boolean := False) is
2771 begin
2772 Apply_Compile_Time_Constraint_Error
2773 (Expr, "value not in range of}??", CE_Range_Check_Failed,
2774 Ent => Target_Typ,
2775 Typ => Target_Typ,
2776 Warn => Warn);
2777 end Bad_Value;
2779 -- Start of processing for Apply_Scalar_Range_Check
2781 begin
2782 -- Return if check obviously not needed
2785 -- Not needed inside generic
2787 Inside_A_Generic
2789 -- Not needed if previous error
2791 or else Target_Typ = Any_Type
2792 or else Nkind (Expr) = N_Error
2794 -- Not needed for non-scalar type
2796 or else not Is_Scalar_Type (Target_Typ)
2798 -- Not needed if we know node raises CE already
2800 or else Raises_Constraint_Error (Expr)
2801 then
2802 return;
2803 end if;
2805 -- Now, see if checks are suppressed
2807 Is_Subscr_Ref :=
2808 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2810 if Is_Subscr_Ref then
2811 Arr := Prefix (Parnt);
2812 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
2814 if Is_Access_Type (Arr_Typ) then
2815 Arr_Typ := Designated_Type (Arr_Typ);
2816 end if;
2817 end if;
2819 if not Do_Range_Check (Expr) then
2821 -- Subscript reference. Check for Index_Checks suppressed
2823 if Is_Subscr_Ref then
2825 -- Check array type and its base type
2827 if Index_Checks_Suppressed (Arr_Typ)
2828 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
2829 then
2830 return;
2832 -- Check array itself if it is an entity name
2834 elsif Is_Entity_Name (Arr)
2835 and then Index_Checks_Suppressed (Entity (Arr))
2836 then
2837 return;
2839 -- Check expression itself if it is an entity name
2841 elsif Is_Entity_Name (Expr)
2842 and then Index_Checks_Suppressed (Entity (Expr))
2843 then
2844 return;
2845 end if;
2847 -- All other cases, check for Range_Checks suppressed
2849 else
2850 -- Check target type and its base type
2852 if Range_Checks_Suppressed (Target_Typ)
2853 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
2854 then
2855 return;
2857 -- Check expression itself if it is an entity name
2859 elsif Is_Entity_Name (Expr)
2860 and then Range_Checks_Suppressed (Entity (Expr))
2861 then
2862 return;
2864 -- If Expr is part of an assignment statement, then check left
2865 -- side of assignment if it is an entity name.
2867 elsif Nkind (Parnt) = N_Assignment_Statement
2868 and then Is_Entity_Name (Name (Parnt))
2869 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
2870 then
2871 return;
2872 end if;
2873 end if;
2874 end if;
2876 -- Do not set range checks if they are killed
2878 if Nkind (Expr) = N_Unchecked_Type_Conversion
2879 and then Kill_Range_Check (Expr)
2880 then
2881 return;
2882 end if;
2884 -- Do not set range checks for any values from System.Scalar_Values
2885 -- since the whole idea of such values is to avoid checking them.
2887 if Is_Entity_Name (Expr)
2888 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
2889 then
2890 return;
2891 end if;
2893 -- Now see if we need a check
2895 if No (Source_Typ) then
2896 S_Typ := Etype (Expr);
2897 else
2898 S_Typ := Source_Typ;
2899 end if;
2901 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
2902 return;
2903 end if;
2905 Is_Unconstrained_Subscr_Ref :=
2906 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
2908 -- Special checks for floating-point type
2910 if Is_Floating_Point_Type (S_Typ) then
2912 -- Always do a range check if the source type includes infinities and
2913 -- the target type does not include infinities. We do not do this if
2914 -- range checks are killed.
2915 -- If the expression is a literal and the bounds of the type are
2916 -- static constants it may be possible to optimize the check.
2918 if Has_Infinities (S_Typ)
2919 and then not Has_Infinities (Target_Typ)
2920 then
2921 -- If the expression is a literal and the bounds of the type are
2922 -- static constants it may be possible to optimize the check.
2924 if Nkind (Expr) = N_Real_Literal then
2925 declare
2926 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2927 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2929 begin
2930 if Compile_Time_Known_Value (Tlo)
2931 and then Compile_Time_Known_Value (Thi)
2932 and then Expr_Value_R (Expr) >= Expr_Value_R (Tlo)
2933 and then Expr_Value_R (Expr) <= Expr_Value_R (Thi)
2934 then
2935 return;
2936 else
2937 Enable_Range_Check (Expr);
2938 end if;
2939 end;
2941 else
2942 Enable_Range_Check (Expr);
2943 end if;
2944 end if;
2945 end if;
2947 -- Return if we know expression is definitely in the range of the target
2948 -- type as determined by Determine_Range. Right now we only do this for
2949 -- discrete types, and not fixed-point or floating-point types.
2951 -- The additional less-precise tests below catch these cases
2953 -- In GNATprove_Mode, also deal with the case of a conversion from
2954 -- floating-point to integer. It is only possible because analysis
2955 -- in GNATprove rules out the possibility of a NaN or infinite value.
2957 -- Note: skip this if we are given a source_typ, since the point of
2958 -- supplying a Source_Typ is to stop us looking at the expression.
2959 -- We could sharpen this test to be out parameters only ???
2961 if Is_Discrete_Type (Target_Typ)
2962 and then (Is_Discrete_Type (Etype (Expr))
2963 or else (GNATprove_Mode
2964 and then Is_Floating_Point_Type (Etype (Expr))))
2965 and then not Is_Unconstrained_Subscr_Ref
2966 and then No (Source_Typ)
2967 then
2968 declare
2969 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2970 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2972 begin
2973 if Compile_Time_Known_Value (Tlo)
2974 and then Compile_Time_Known_Value (Thi)
2975 then
2976 declare
2977 Hiv : constant Uint := Expr_Value (Thi);
2978 Lov : constant Uint := Expr_Value (Tlo);
2979 Hi : Uint;
2980 Lo : Uint;
2982 begin
2983 -- If range is null, we for sure have a constraint error (we
2984 -- don't even need to look at the value involved, since all
2985 -- possible values will raise CE).
2987 if Lov > Hiv then
2989 -- When SPARK_Mode is On, force a warning instead of
2990 -- an error in that case, as this likely corresponds
2991 -- to deactivated code.
2993 Bad_Value (Warn => SPARK_Mode = On);
2995 -- In GNATprove mode, we enable the range check so that
2996 -- GNATprove will issue a message if it cannot be proved.
2998 if GNATprove_Mode then
2999 Enable_Range_Check (Expr);
3000 end if;
3002 return;
3003 end if;
3005 -- Otherwise determine range of value
3007 if Is_Discrete_Type (Etype (Expr)) then
3008 Determine_Range
3009 (Expr, OK, Lo, Hi, Assume_Valid => True);
3011 -- When converting a float to an integer type, determine the
3012 -- range in real first, and then convert the bounds using
3013 -- UR_To_Uint which correctly rounds away from zero when
3014 -- half way between two integers, as required by normal
3015 -- Ada 95 rounding semantics. It is only possible because
3016 -- analysis in GNATprove rules out the possibility of a NaN
3017 -- or infinite value.
3019 elsif GNATprove_Mode
3020 and then Is_Floating_Point_Type (Etype (Expr))
3021 then
3022 declare
3023 Hir : Ureal;
3024 Lor : Ureal;
3026 begin
3027 Determine_Range_R
3028 (Expr, OK, Lor, Hir, Assume_Valid => True);
3030 if OK then
3031 Lo := UR_To_Uint (Lor);
3032 Hi := UR_To_Uint (Hir);
3033 end if;
3034 end;
3035 end if;
3037 if OK then
3039 -- If definitely in range, all OK
3041 if Lo >= Lov and then Hi <= Hiv then
3042 return;
3044 -- If definitely not in range, warn
3046 elsif Lov > Hi or else Hiv < Lo then
3047 Bad_Value;
3048 return;
3050 -- Otherwise we don't know
3052 else
3053 null;
3054 end if;
3055 end if;
3056 end;
3057 end if;
3058 end;
3059 end if;
3061 Int_Real :=
3062 Is_Floating_Point_Type (S_Typ)
3063 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
3065 -- Check if we can determine at compile time whether Expr is in the
3066 -- range of the target type. Note that if S_Typ is within the bounds
3067 -- of Target_Typ then this must be the case. This check is meaningful
3068 -- only if this is not a conversion between integer and real types.
3070 if not Is_Unconstrained_Subscr_Ref
3071 and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
3072 and then
3073 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
3075 -- Also check if the expression itself is in the range of the
3076 -- target type if it is a known at compile time value. We skip
3077 -- this test if S_Typ is set since for OUT and IN OUT parameters
3078 -- the Expr itself is not relevant to the checking.
3080 or else
3081 (No (Source_Typ)
3082 and then Is_In_Range (Expr, Target_Typ,
3083 Assume_Valid => True,
3084 Fixed_Int => Fixed_Int,
3085 Int_Real => Int_Real)))
3086 then
3087 return;
3089 elsif Is_Out_Of_Range (Expr, Target_Typ,
3090 Assume_Valid => True,
3091 Fixed_Int => Fixed_Int,
3092 Int_Real => Int_Real)
3093 then
3094 Bad_Value;
3095 return;
3097 -- Floating-point case
3098 -- In the floating-point case, we only do range checks if the type is
3099 -- constrained. We definitely do NOT want range checks for unconstrained
3100 -- types, since we want to have infinities, except when
3101 -- Check_Float_Overflow is set.
3103 elsif Is_Floating_Point_Type (S_Typ) then
3104 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
3105 Enable_Range_Check (Expr);
3106 end if;
3108 -- For all other cases we enable a range check unconditionally
3110 else
3111 Enable_Range_Check (Expr);
3112 return;
3113 end if;
3114 end Apply_Scalar_Range_Check;
3116 ----------------------------------
3117 -- Apply_Selected_Length_Checks --
3118 ----------------------------------
3120 procedure Apply_Selected_Length_Checks
3121 (Ck_Node : Node_Id;
3122 Target_Typ : Entity_Id;
3123 Source_Typ : Entity_Id;
3124 Do_Static : Boolean)
3126 Checks_On : constant Boolean :=
3127 not Index_Checks_Suppressed (Target_Typ)
3128 or else
3129 not Length_Checks_Suppressed (Target_Typ);
3131 Loc : constant Source_Ptr := Sloc (Ck_Node);
3133 Cond : Node_Id;
3134 R_Cno : Node_Id;
3135 R_Result : Check_Result;
3137 begin
3138 -- Only apply checks when generating code
3140 -- Note: this means that we lose some useful warnings if the expander
3141 -- is not active.
3143 if not Expander_Active then
3144 return;
3145 end if;
3147 R_Result :=
3148 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3150 for J in 1 .. 2 loop
3151 R_Cno := R_Result (J);
3152 exit when No (R_Cno);
3154 -- A length check may mention an Itype which is attached to a
3155 -- subsequent node. At the top level in a package this can cause
3156 -- an order-of-elaboration problem, so we make sure that the itype
3157 -- is referenced now.
3159 if Ekind (Current_Scope) = E_Package
3160 and then Is_Compilation_Unit (Current_Scope)
3161 then
3162 Ensure_Defined (Target_Typ, Ck_Node);
3164 if Present (Source_Typ) then
3165 Ensure_Defined (Source_Typ, Ck_Node);
3167 elsif Is_Itype (Etype (Ck_Node)) then
3168 Ensure_Defined (Etype (Ck_Node), Ck_Node);
3169 end if;
3170 end if;
3172 -- If the item is a conditional raise of constraint error, then have
3173 -- a look at what check is being performed and ???
3175 if Nkind (R_Cno) = N_Raise_Constraint_Error
3176 and then Present (Condition (R_Cno))
3177 then
3178 Cond := Condition (R_Cno);
3180 -- Case where node does not now have a dynamic check
3182 if not Has_Dynamic_Length_Check (Ck_Node) then
3184 -- If checks are on, just insert the check
3186 if Checks_On then
3187 Insert_Action (Ck_Node, R_Cno);
3189 if not Do_Static then
3190 Set_Has_Dynamic_Length_Check (Ck_Node);
3191 end if;
3193 -- If checks are off, then analyze the length check after
3194 -- temporarily attaching it to the tree in case the relevant
3195 -- condition can be evaluated at compile time. We still want a
3196 -- compile time warning in this case.
3198 else
3199 Set_Parent (R_Cno, Ck_Node);
3200 Analyze (R_Cno);
3201 end if;
3202 end if;
3204 -- Output a warning if the condition is known to be True
3206 if Is_Entity_Name (Cond)
3207 and then Entity (Cond) = Standard_True
3208 then
3209 Apply_Compile_Time_Constraint_Error
3210 (Ck_Node, "wrong length for array of}??",
3211 CE_Length_Check_Failed,
3212 Ent => Target_Typ,
3213 Typ => Target_Typ);
3215 -- If we were only doing a static check, or if checks are not
3216 -- on, then we want to delete the check, since it is not needed.
3217 -- We do this by replacing the if statement by a null statement
3219 elsif Do_Static or else not Checks_On then
3220 Remove_Warning_Messages (R_Cno);
3221 Rewrite (R_Cno, Make_Null_Statement (Loc));
3222 end if;
3224 else
3225 Install_Static_Check (R_Cno, Loc);
3226 end if;
3227 end loop;
3228 end Apply_Selected_Length_Checks;
3230 ---------------------------------
3231 -- Apply_Selected_Range_Checks --
3232 ---------------------------------
3234 procedure Apply_Selected_Range_Checks
3235 (Ck_Node : Node_Id;
3236 Target_Typ : Entity_Id;
3237 Source_Typ : Entity_Id;
3238 Do_Static : Boolean)
3240 Checks_On : constant Boolean :=
3241 not Index_Checks_Suppressed (Target_Typ)
3242 or else
3243 not Range_Checks_Suppressed (Target_Typ);
3245 Loc : constant Source_Ptr := Sloc (Ck_Node);
3247 Cond : Node_Id;
3248 R_Cno : Node_Id;
3249 R_Result : Check_Result;
3251 begin
3252 -- Only apply checks when generating code. In GNATprove mode, we do not
3253 -- apply the checks, but we still call Selected_Range_Checks to possibly
3254 -- issue errors on SPARK code when a run-time error can be detected at
3255 -- compile time.
3257 if not GNATprove_Mode then
3258 if not Expander_Active or not Checks_On then
3259 return;
3260 end if;
3261 end if;
3263 R_Result :=
3264 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3266 if GNATprove_Mode then
3267 return;
3268 end if;
3270 for J in 1 .. 2 loop
3271 R_Cno := R_Result (J);
3272 exit when No (R_Cno);
3274 -- The range check requires runtime evaluation. Depending on what its
3275 -- triggering condition is, the check may be converted into a compile
3276 -- time constraint check.
3278 if Nkind (R_Cno) = N_Raise_Constraint_Error
3279 and then Present (Condition (R_Cno))
3280 then
3281 Cond := Condition (R_Cno);
3283 -- Insert the range check before the related context. Note that
3284 -- this action analyses the triggering condition.
3286 Insert_Action (Ck_Node, R_Cno);
3288 -- This old code doesn't make sense, why is the context flagged as
3289 -- requiring dynamic range checks now in the middle of generating
3290 -- them ???
3292 if not Do_Static then
3293 Set_Has_Dynamic_Range_Check (Ck_Node);
3294 end if;
3296 -- The triggering condition evaluates to True, the range check
3297 -- can be converted into a compile time constraint check.
3299 if Is_Entity_Name (Cond)
3300 and then Entity (Cond) = Standard_True
3301 then
3302 -- Since an N_Range is technically not an expression, we have
3303 -- to set one of the bounds to C_E and then just flag the
3304 -- N_Range. The warning message will point to the lower bound
3305 -- and complain about a range, which seems OK.
3307 if Nkind (Ck_Node) = N_Range then
3308 Apply_Compile_Time_Constraint_Error
3309 (Low_Bound (Ck_Node),
3310 "static range out of bounds of}??",
3311 CE_Range_Check_Failed,
3312 Ent => Target_Typ,
3313 Typ => Target_Typ);
3315 Set_Raises_Constraint_Error (Ck_Node);
3317 else
3318 Apply_Compile_Time_Constraint_Error
3319 (Ck_Node,
3320 "static value out of range of}??",
3321 CE_Range_Check_Failed,
3322 Ent => Target_Typ,
3323 Typ => Target_Typ);
3324 end if;
3326 -- If we were only doing a static check, or if checks are not
3327 -- on, then we want to delete the check, since it is not needed.
3328 -- We do this by replacing the if statement by a null statement
3330 elsif Do_Static then
3331 Remove_Warning_Messages (R_Cno);
3332 Rewrite (R_Cno, Make_Null_Statement (Loc));
3333 end if;
3335 -- The range check raises Constraint_Error explicitly
3337 else
3338 Install_Static_Check (R_Cno, Loc);
3339 end if;
3340 end loop;
3341 end Apply_Selected_Range_Checks;
3343 -------------------------------
3344 -- Apply_Static_Length_Check --
3345 -------------------------------
3347 procedure Apply_Static_Length_Check
3348 (Expr : Node_Id;
3349 Target_Typ : Entity_Id;
3350 Source_Typ : Entity_Id := Empty)
3352 begin
3353 Apply_Selected_Length_Checks
3354 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3355 end Apply_Static_Length_Check;
3357 -------------------------------------
3358 -- Apply_Subscript_Validity_Checks --
3359 -------------------------------------
3361 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3362 Sub : Node_Id;
3364 begin
3365 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3367 -- Loop through subscripts
3369 Sub := First (Expressions (Expr));
3370 while Present (Sub) loop
3372 -- Check one subscript. Note that we do not worry about enumeration
3373 -- type with holes, since we will convert the value to a Pos value
3374 -- for the subscript, and that convert will do the necessary validity
3375 -- check.
3377 Ensure_Valid (Sub, Holes_OK => True);
3379 -- Move to next subscript
3381 Sub := Next (Sub);
3382 end loop;
3383 end Apply_Subscript_Validity_Checks;
3385 ----------------------------------
3386 -- Apply_Type_Conversion_Checks --
3387 ----------------------------------
3389 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3390 Target_Type : constant Entity_Id := Etype (N);
3391 Target_Base : constant Entity_Id := Base_Type (Target_Type);
3392 Expr : constant Node_Id := Expression (N);
3394 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
3395 -- Note: if Etype (Expr) is a private type without discriminants, its
3396 -- full view might have discriminants with defaults, so we need the
3397 -- full view here to retrieve the constraints.
3399 begin
3400 if Inside_A_Generic then
3401 return;
3403 -- Skip these checks if serious errors detected, there are some nasty
3404 -- situations of incomplete trees that blow things up.
3406 elsif Serious_Errors_Detected > 0 then
3407 return;
3409 -- Never generate discriminant checks for Unchecked_Union types
3411 elsif Present (Expr_Type)
3412 and then Is_Unchecked_Union (Expr_Type)
3413 then
3414 return;
3416 -- Scalar type conversions of the form Target_Type (Expr) require a
3417 -- range check if we cannot be sure that Expr is in the base type of
3418 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3419 -- are not quite the same condition from an implementation point of
3420 -- view, but clearly the second includes the first.
3422 elsif Is_Scalar_Type (Target_Type) then
3423 declare
3424 Conv_OK : constant Boolean := Conversion_OK (N);
3425 -- If the Conversion_OK flag on the type conversion is set and no
3426 -- floating-point type is involved in the type conversion then
3427 -- fixed-point values must be read as integral values.
3429 Float_To_Int : constant Boolean :=
3430 Is_Floating_Point_Type (Expr_Type)
3431 and then Is_Integer_Type (Target_Type);
3433 begin
3434 if not Overflow_Checks_Suppressed (Target_Base)
3435 and then not Overflow_Checks_Suppressed (Target_Type)
3436 and then not
3437 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
3438 and then not Float_To_Int
3439 then
3440 -- A small optimization: the attribute 'Pos applied to an
3441 -- enumeration type has a known range, even though its type is
3442 -- Universal_Integer. So in numeric conversions it is usually
3443 -- within range of the target integer type. Use the static
3444 -- bounds of the base types to check. Disable this optimization
3445 -- in case of a generic formal discrete type, because we don't
3446 -- necessarily know the upper bound yet.
3448 if Nkind (Expr) = N_Attribute_Reference
3449 and then Attribute_Name (Expr) = Name_Pos
3450 and then Is_Enumeration_Type (Etype (Prefix (Expr)))
3451 and then not Is_Generic_Type (Etype (Prefix (Expr)))
3452 and then Is_Integer_Type (Target_Type)
3453 then
3454 declare
3455 Enum_T : constant Entity_Id :=
3456 Root_Type (Etype (Prefix (Expr)));
3457 Int_T : constant Entity_Id := Base_Type (Target_Type);
3458 Last_I : constant Uint :=
3459 Intval (High_Bound (Scalar_Range (Int_T)));
3460 Last_E : Uint;
3462 begin
3463 -- Character types have no explicit literals, so we use
3464 -- the known number of characters in the type.
3466 if Root_Type (Enum_T) = Standard_Character then
3467 Last_E := UI_From_Int (255);
3469 elsif Enum_T = Standard_Wide_Character
3470 or else Enum_T = Standard_Wide_Wide_Character
3471 then
3472 Last_E := UI_From_Int (65535);
3474 else
3475 Last_E :=
3476 Enumeration_Pos
3477 (Entity (High_Bound (Scalar_Range (Enum_T))));
3478 end if;
3480 if Last_E <= Last_I then
3481 null;
3483 else
3484 Activate_Overflow_Check (N);
3485 end if;
3486 end;
3488 else
3489 Activate_Overflow_Check (N);
3490 end if;
3491 end if;
3493 if not Range_Checks_Suppressed (Target_Type)
3494 and then not Range_Checks_Suppressed (Expr_Type)
3495 then
3496 if Float_To_Int
3497 and then not GNATprove_Mode
3498 then
3499 Apply_Float_Conversion_Check (Expr, Target_Type);
3500 else
3501 Apply_Scalar_Range_Check
3502 (Expr, Target_Type, Fixed_Int => Conv_OK);
3504 -- If the target type has predicates, we need to indicate
3505 -- the need for a check, even if Determine_Range finds that
3506 -- the value is within bounds. This may be the case e.g for
3507 -- a division with a constant denominator.
3509 if Has_Predicates (Target_Type) then
3510 Enable_Range_Check (Expr);
3511 end if;
3512 end if;
3513 end if;
3514 end;
3516 elsif Comes_From_Source (N)
3517 and then not Discriminant_Checks_Suppressed (Target_Type)
3518 and then Is_Record_Type (Target_Type)
3519 and then Is_Derived_Type (Target_Type)
3520 and then not Is_Tagged_Type (Target_Type)
3521 and then not Is_Constrained (Target_Type)
3522 and then Present (Stored_Constraint (Target_Type))
3523 then
3524 -- An unconstrained derived type may have inherited discriminant.
3525 -- Build an actual discriminant constraint list using the stored
3526 -- constraint, to verify that the expression of the parent type
3527 -- satisfies the constraints imposed by the (unconstrained) derived
3528 -- type. This applies to value conversions, not to view conversions
3529 -- of tagged types.
3531 declare
3532 Loc : constant Source_Ptr := Sloc (N);
3533 Cond : Node_Id;
3534 Constraint : Elmt_Id;
3535 Discr_Value : Node_Id;
3536 Discr : Entity_Id;
3538 New_Constraints : constant Elist_Id := New_Elmt_List;
3539 Old_Constraints : constant Elist_Id :=
3540 Discriminant_Constraint (Expr_Type);
3542 begin
3543 Constraint := First_Elmt (Stored_Constraint (Target_Type));
3544 while Present (Constraint) loop
3545 Discr_Value := Node (Constraint);
3547 if Is_Entity_Name (Discr_Value)
3548 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3549 then
3550 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3552 if Present (Discr)
3553 and then Scope (Discr) = Base_Type (Expr_Type)
3554 then
3555 -- Parent is constrained by new discriminant. Obtain
3556 -- Value of original discriminant in expression. If the
3557 -- new discriminant has been used to constrain more than
3558 -- one of the stored discriminants, this will provide the
3559 -- required consistency check.
3561 Append_Elmt
3562 (Make_Selected_Component (Loc,
3563 Prefix =>
3564 Duplicate_Subexpr_No_Checks
3565 (Expr, Name_Req => True),
3566 Selector_Name =>
3567 Make_Identifier (Loc, Chars (Discr))),
3568 New_Constraints);
3570 else
3571 -- Discriminant of more remote ancestor ???
3573 return;
3574 end if;
3576 -- Derived type definition has an explicit value for this
3577 -- stored discriminant.
3579 else
3580 Append_Elmt
3581 (Duplicate_Subexpr_No_Checks (Discr_Value),
3582 New_Constraints);
3583 end if;
3585 Next_Elmt (Constraint);
3586 end loop;
3588 -- Use the unconstrained expression type to retrieve the
3589 -- discriminants of the parent, and apply momentarily the
3590 -- discriminant constraint synthesized above.
3592 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3593 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3594 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3596 Insert_Action (N,
3597 Make_Raise_Constraint_Error (Loc,
3598 Condition => Cond,
3599 Reason => CE_Discriminant_Check_Failed));
3600 end;
3602 -- For arrays, checks are set now, but conversions are applied during
3603 -- expansion, to take into accounts changes of representation. The
3604 -- checks become range checks on the base type or length checks on the
3605 -- subtype, depending on whether the target type is unconstrained or
3606 -- constrained. Note that the range check is put on the expression of a
3607 -- type conversion, while the length check is put on the type conversion
3608 -- itself.
3610 elsif Is_Array_Type (Target_Type) then
3611 if Is_Constrained (Target_Type) then
3612 Set_Do_Length_Check (N);
3613 else
3614 Set_Do_Range_Check (Expr);
3615 end if;
3616 end if;
3617 end Apply_Type_Conversion_Checks;
3619 ----------------------------------------------
3620 -- Apply_Universal_Integer_Attribute_Checks --
3621 ----------------------------------------------
3623 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3624 Loc : constant Source_Ptr := Sloc (N);
3625 Typ : constant Entity_Id := Etype (N);
3627 begin
3628 if Inside_A_Generic then
3629 return;
3631 -- Nothing to do if checks are suppressed
3633 elsif Range_Checks_Suppressed (Typ)
3634 and then Overflow_Checks_Suppressed (Typ)
3635 then
3636 return;
3638 -- Nothing to do if the attribute does not come from source. The
3639 -- internal attributes we generate of this type do not need checks,
3640 -- and furthermore the attempt to check them causes some circular
3641 -- elaboration orders when dealing with packed types.
3643 elsif not Comes_From_Source (N) then
3644 return;
3646 -- If the prefix is a selected component that depends on a discriminant
3647 -- the check may improperly expose a discriminant instead of using
3648 -- the bounds of the object itself. Set the type of the attribute to
3649 -- the base type of the context, so that a check will be imposed when
3650 -- needed (e.g. if the node appears as an index).
3652 elsif Nkind (Prefix (N)) = N_Selected_Component
3653 and then Ekind (Typ) = E_Signed_Integer_Subtype
3654 and then Depends_On_Discriminant (Scalar_Range (Typ))
3655 then
3656 Set_Etype (N, Base_Type (Typ));
3658 -- Otherwise, replace the attribute node with a type conversion node
3659 -- whose expression is the attribute, retyped to universal integer, and
3660 -- whose subtype mark is the target type. The call to analyze this
3661 -- conversion will set range and overflow checks as required for proper
3662 -- detection of an out of range value.
3664 else
3665 Set_Etype (N, Universal_Integer);
3666 Set_Analyzed (N, True);
3668 Rewrite (N,
3669 Make_Type_Conversion (Loc,
3670 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3671 Expression => Relocate_Node (N)));
3673 Analyze_And_Resolve (N, Typ);
3674 return;
3675 end if;
3676 end Apply_Universal_Integer_Attribute_Checks;
3678 -------------------------------------
3679 -- Atomic_Synchronization_Disabled --
3680 -------------------------------------
3682 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3683 -- using a bogus check called Atomic_Synchronization. This is to make it
3684 -- more convenient to get exactly the same semantics as [Un]Suppress.
3686 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3687 begin
3688 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3689 -- looks enabled, since it is never disabled.
3691 if Debug_Flag_Dot_E then
3692 return False;
3694 -- If debug flag d.d is set then always return True, i.e. all atomic
3695 -- sync looks disabled, since it always tests True.
3697 elsif Debug_Flag_Dot_D then
3698 return True;
3700 -- If entity present, then check result for that entity
3702 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
3703 return Is_Check_Suppressed (E, Atomic_Synchronization);
3705 -- Otherwise result depends on current scope setting
3707 else
3708 return Scope_Suppress.Suppress (Atomic_Synchronization);
3709 end if;
3710 end Atomic_Synchronization_Disabled;
3712 -------------------------------
3713 -- Build_Discriminant_Checks --
3714 -------------------------------
3716 function Build_Discriminant_Checks
3717 (N : Node_Id;
3718 T_Typ : Entity_Id) return Node_Id
3720 Loc : constant Source_Ptr := Sloc (N);
3721 Cond : Node_Id;
3722 Disc : Elmt_Id;
3723 Disc_Ent : Entity_Id;
3724 Dref : Node_Id;
3725 Dval : Node_Id;
3727 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3729 ----------------------------------
3730 -- Aggregate_Discriminant_Value --
3731 ----------------------------------
3733 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3734 Assoc : Node_Id;
3736 begin
3737 -- The aggregate has been normalized with named associations. We use
3738 -- the Chars field to locate the discriminant to take into account
3739 -- discriminants in derived types, which carry the same name as those
3740 -- in the parent.
3742 Assoc := First (Component_Associations (N));
3743 while Present (Assoc) loop
3744 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3745 return Expression (Assoc);
3746 else
3747 Next (Assoc);
3748 end if;
3749 end loop;
3751 -- Discriminant must have been found in the loop above
3753 raise Program_Error;
3754 end Aggregate_Discriminant_Val;
3756 -- Start of processing for Build_Discriminant_Checks
3758 begin
3759 -- Loop through discriminants evolving the condition
3761 Cond := Empty;
3762 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3764 -- For a fully private type, use the discriminants of the parent type
3766 if Is_Private_Type (T_Typ)
3767 and then No (Full_View (T_Typ))
3768 then
3769 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3770 else
3771 Disc_Ent := First_Discriminant (T_Typ);
3772 end if;
3774 while Present (Disc) loop
3775 Dval := Node (Disc);
3777 if Nkind (Dval) = N_Identifier
3778 and then Ekind (Entity (Dval)) = E_Discriminant
3779 then
3780 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3781 else
3782 Dval := Duplicate_Subexpr_No_Checks (Dval);
3783 end if;
3785 -- If we have an Unchecked_Union node, we can infer the discriminants
3786 -- of the node.
3788 if Is_Unchecked_Union (Base_Type (T_Typ)) then
3789 Dref := New_Copy (
3790 Get_Discriminant_Value (
3791 First_Discriminant (T_Typ),
3792 T_Typ,
3793 Stored_Constraint (T_Typ)));
3795 elsif Nkind (N) = N_Aggregate then
3796 Dref :=
3797 Duplicate_Subexpr_No_Checks
3798 (Aggregate_Discriminant_Val (Disc_Ent));
3800 else
3801 Dref :=
3802 Make_Selected_Component (Loc,
3803 Prefix =>
3804 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
3805 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
3807 Set_Is_In_Discriminant_Check (Dref);
3808 end if;
3810 Evolve_Or_Else (Cond,
3811 Make_Op_Ne (Loc,
3812 Left_Opnd => Dref,
3813 Right_Opnd => Dval));
3815 Next_Elmt (Disc);
3816 Next_Discriminant (Disc_Ent);
3817 end loop;
3819 return Cond;
3820 end Build_Discriminant_Checks;
3822 ------------------
3823 -- Check_Needed --
3824 ------------------
3826 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3827 N : Node_Id;
3828 P : Node_Id;
3829 K : Node_Kind;
3830 L : Node_Id;
3831 R : Node_Id;
3833 function Left_Expression (Op : Node_Id) return Node_Id;
3834 -- Return the relevant expression from the left operand of the given
3835 -- short circuit form: this is LO itself, except if LO is a qualified
3836 -- expression, a type conversion, or an expression with actions, in
3837 -- which case this is Left_Expression (Expression (LO)).
3839 ---------------------
3840 -- Left_Expression --
3841 ---------------------
3843 function Left_Expression (Op : Node_Id) return Node_Id is
3844 LE : Node_Id := Left_Opnd (Op);
3845 begin
3846 while Nkind_In (LE, N_Qualified_Expression,
3847 N_Type_Conversion,
3848 N_Expression_With_Actions)
3849 loop
3850 LE := Expression (LE);
3851 end loop;
3853 return LE;
3854 end Left_Expression;
3856 -- Start of processing for Check_Needed
3858 begin
3859 -- Always check if not simple entity
3861 if Nkind (Nod) not in N_Has_Entity
3862 or else not Comes_From_Source (Nod)
3863 then
3864 return True;
3865 end if;
3867 -- Look up tree for short circuit
3869 N := Nod;
3870 loop
3871 P := Parent (N);
3872 K := Nkind (P);
3874 -- Done if out of subexpression (note that we allow generated stuff
3875 -- such as itype declarations in this context, to keep the loop going
3876 -- since we may well have generated such stuff in complex situations.
3877 -- Also done if no parent (probably an error condition, but no point
3878 -- in behaving nasty if we find it).
3880 if No (P)
3881 or else (K not in N_Subexpr and then Comes_From_Source (P))
3882 then
3883 return True;
3885 -- Or/Or Else case, where test is part of the right operand, or is
3886 -- part of one of the actions associated with the right operand, and
3887 -- the left operand is an equality test.
3889 elsif K = N_Op_Or then
3890 exit when N = Right_Opnd (P)
3891 and then Nkind (Left_Expression (P)) = N_Op_Eq;
3893 elsif K = N_Or_Else then
3894 exit when (N = Right_Opnd (P)
3895 or else
3896 (Is_List_Member (N)
3897 and then List_Containing (N) = Actions (P)))
3898 and then Nkind (Left_Expression (P)) = N_Op_Eq;
3900 -- Similar test for the And/And then case, where the left operand
3901 -- is an inequality test.
3903 elsif K = N_Op_And then
3904 exit when N = Right_Opnd (P)
3905 and then Nkind (Left_Expression (P)) = N_Op_Ne;
3907 elsif K = N_And_Then then
3908 exit when (N = Right_Opnd (P)
3909 or else
3910 (Is_List_Member (N)
3911 and then List_Containing (N) = Actions (P)))
3912 and then Nkind (Left_Expression (P)) = N_Op_Ne;
3913 end if;
3915 N := P;
3916 end loop;
3918 -- If we fall through the loop, then we have a conditional with an
3919 -- appropriate test as its left operand, so look further.
3921 L := Left_Expression (P);
3923 -- L is an "=" or "/=" operator: extract its operands
3925 R := Right_Opnd (L);
3926 L := Left_Opnd (L);
3928 -- Left operand of test must match original variable
3930 if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
3931 return True;
3932 end if;
3934 -- Right operand of test must be key value (zero or null)
3936 case Check is
3937 when Access_Check =>
3938 if not Known_Null (R) then
3939 return True;
3940 end if;
3942 when Division_Check =>
3943 if not Compile_Time_Known_Value (R)
3944 or else Expr_Value (R) /= Uint_0
3945 then
3946 return True;
3947 end if;
3949 when others =>
3950 raise Program_Error;
3951 end case;
3953 -- Here we have the optimizable case, warn if not short-circuited
3955 if K = N_Op_And or else K = N_Op_Or then
3956 Error_Msg_Warn := SPARK_Mode /= On;
3958 case Check is
3959 when Access_Check =>
3960 if GNATprove_Mode then
3961 Error_Msg_N
3962 ("Constraint_Error might have been raised (access check)",
3963 Parent (Nod));
3964 else
3965 Error_Msg_N
3966 ("Constraint_Error may be raised (access check)??",
3967 Parent (Nod));
3968 end if;
3970 when Division_Check =>
3971 if GNATprove_Mode then
3972 Error_Msg_N
3973 ("Constraint_Error might have been raised (zero divide)",
3974 Parent (Nod));
3975 else
3976 Error_Msg_N
3977 ("Constraint_Error may be raised (zero divide)??",
3978 Parent (Nod));
3979 end if;
3981 when others =>
3982 raise Program_Error;
3983 end case;
3985 if K = N_Op_And then
3986 Error_Msg_N -- CODEFIX
3987 ("use `AND THEN` instead of AND??", P);
3988 else
3989 Error_Msg_N -- CODEFIX
3990 ("use `OR ELSE` instead of OR??", P);
3991 end if;
3993 -- If not short-circuited, we need the check
3995 return True;
3997 -- If short-circuited, we can omit the check
3999 else
4000 return False;
4001 end if;
4002 end Check_Needed;
4004 -----------------------------------
4005 -- Check_Valid_Lvalue_Subscripts --
4006 -----------------------------------
4008 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
4009 begin
4010 -- Skip this if range checks are suppressed
4012 if Range_Checks_Suppressed (Etype (Expr)) then
4013 return;
4015 -- Only do this check for expressions that come from source. We assume
4016 -- that expander generated assignments explicitly include any necessary
4017 -- checks. Note that this is not just an optimization, it avoids
4018 -- infinite recursions.
4020 elsif not Comes_From_Source (Expr) then
4021 return;
4023 -- For a selected component, check the prefix
4025 elsif Nkind (Expr) = N_Selected_Component then
4026 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4027 return;
4029 -- Case of indexed component
4031 elsif Nkind (Expr) = N_Indexed_Component then
4032 Apply_Subscript_Validity_Checks (Expr);
4034 -- Prefix may itself be or contain an indexed component, and these
4035 -- subscripts need checking as well.
4037 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4038 end if;
4039 end Check_Valid_Lvalue_Subscripts;
4041 ----------------------------------
4042 -- Null_Exclusion_Static_Checks --
4043 ----------------------------------
4045 procedure Null_Exclusion_Static_Checks
4046 (N : Node_Id;
4047 Comp : Node_Id := Empty;
4048 Array_Comp : Boolean := False)
4050 Has_Null : constant Boolean := Has_Null_Exclusion (N);
4051 Kind : constant Node_Kind := Nkind (N);
4052 Error_Nod : Node_Id;
4053 Expr : Node_Id;
4054 Typ : Entity_Id;
4056 begin
4057 pragma Assert
4058 (Nkind_In (Kind, N_Component_Declaration,
4059 N_Discriminant_Specification,
4060 N_Function_Specification,
4061 N_Object_Declaration,
4062 N_Parameter_Specification));
4064 if Kind = N_Function_Specification then
4065 Typ := Etype (Defining_Entity (N));
4066 else
4067 Typ := Etype (Defining_Identifier (N));
4068 end if;
4070 case Kind is
4071 when N_Component_Declaration =>
4072 if Present (Access_Definition (Component_Definition (N))) then
4073 Error_Nod := Component_Definition (N);
4074 else
4075 Error_Nod := Subtype_Indication (Component_Definition (N));
4076 end if;
4078 when N_Discriminant_Specification =>
4079 Error_Nod := Discriminant_Type (N);
4081 when N_Function_Specification =>
4082 Error_Nod := Result_Definition (N);
4084 when N_Object_Declaration =>
4085 Error_Nod := Object_Definition (N);
4087 when N_Parameter_Specification =>
4088 Error_Nod := Parameter_Type (N);
4090 when others =>
4091 raise Program_Error;
4092 end case;
4094 if Has_Null then
4096 -- Enforce legality rule 3.10 (13): A null exclusion can only be
4097 -- applied to an access [sub]type.
4099 if not Is_Access_Type (Typ) then
4100 Error_Msg_N
4101 ("`NOT NULL` allowed only for an access type", Error_Nod);
4103 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
4104 -- be applied to a [sub]type that does not exclude null already.
4106 elsif Can_Never_Be_Null (Typ) and then Comes_From_Source (Typ) then
4107 Error_Msg_NE
4108 ("`NOT NULL` not allowed (& already excludes null)",
4109 Error_Nod, Typ);
4110 end if;
4111 end if;
4113 -- Check that null-excluding objects are always initialized, except for
4114 -- deferred constants, for which the expression will appear in the full
4115 -- declaration.
4117 if Kind = N_Object_Declaration
4118 and then No (Expression (N))
4119 and then not Constant_Present (N)
4120 and then not No_Initialization (N)
4121 then
4122 if Present (Comp) then
4124 -- Specialize the warning message to indicate that we are dealing
4125 -- with an uninitialized composite object that has a defaulted
4126 -- null-excluding component.
4128 Error_Msg_Name_1 := Chars (Defining_Identifier (Comp));
4129 Error_Msg_Name_2 := Chars (Defining_Identifier (N));
4131 Discard_Node
4132 (Compile_Time_Constraint_Error
4133 (N => N,
4134 Msg =>
4135 "(Ada 2005) null-excluding component % of object % must "
4136 & "be initialized??",
4137 Ent => Defining_Identifier (Comp)));
4139 -- This is a case of an array with null-excluding components, so
4140 -- indicate that in the warning.
4142 elsif Array_Comp then
4143 Discard_Node
4144 (Compile_Time_Constraint_Error
4145 (N => N,
4146 Msg =>
4147 "(Ada 2005) null-excluding array components must "
4148 & "be initialized??",
4149 Ent => Defining_Identifier (N)));
4151 -- Normal case of object of a null-excluding access type
4153 else
4154 -- Add an expression that assigns null. This node is needed by
4155 -- Apply_Compile_Time_Constraint_Error, which will replace this
4156 -- with a Constraint_Error node.
4158 Set_Expression (N, Make_Null (Sloc (N)));
4159 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
4161 Apply_Compile_Time_Constraint_Error
4162 (N => Expression (N),
4163 Msg =>
4164 "(Ada 2005) null-excluding objects must be initialized??",
4165 Reason => CE_Null_Not_Allowed);
4166 end if;
4167 end if;
4169 -- Check that a null-excluding component, formal or object is not being
4170 -- assigned a null value. Otherwise generate a warning message and
4171 -- replace Expression (N) by an N_Constraint_Error node.
4173 if Kind /= N_Function_Specification then
4174 Expr := Expression (N);
4176 if Present (Expr) and then Known_Null (Expr) then
4177 case Kind is
4178 when N_Component_Declaration
4179 | N_Discriminant_Specification
4181 Apply_Compile_Time_Constraint_Error
4182 (N => Expr,
4183 Msg =>
4184 "(Ada 2005) null not allowed in null-excluding "
4185 & "components??",
4186 Reason => CE_Null_Not_Allowed);
4188 when N_Object_Declaration =>
4189 Apply_Compile_Time_Constraint_Error
4190 (N => Expr,
4191 Msg =>
4192 "(Ada 2005) null not allowed in null-excluding "
4193 & "objects??",
4194 Reason => CE_Null_Not_Allowed);
4196 when N_Parameter_Specification =>
4197 Apply_Compile_Time_Constraint_Error
4198 (N => Expr,
4199 Msg =>
4200 "(Ada 2005) null not allowed in null-excluding "
4201 & "formals??",
4202 Reason => CE_Null_Not_Allowed);
4204 when others =>
4205 null;
4206 end case;
4207 end if;
4208 end if;
4209 end Null_Exclusion_Static_Checks;
4211 ----------------------------------
4212 -- Conditional_Statements_Begin --
4213 ----------------------------------
4215 procedure Conditional_Statements_Begin is
4216 begin
4217 Saved_Checks_TOS := Saved_Checks_TOS + 1;
4219 -- If stack overflows, kill all checks, that way we know to simply reset
4220 -- the number of saved checks to zero on return. This should never occur
4221 -- in practice.
4223 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4224 Kill_All_Checks;
4226 -- In the normal case, we just make a new stack entry saving the current
4227 -- number of saved checks for a later restore.
4229 else
4230 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4232 if Debug_Flag_CC then
4233 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4234 Num_Saved_Checks);
4235 end if;
4236 end if;
4237 end Conditional_Statements_Begin;
4239 --------------------------------
4240 -- Conditional_Statements_End --
4241 --------------------------------
4243 procedure Conditional_Statements_End is
4244 begin
4245 pragma Assert (Saved_Checks_TOS > 0);
4247 -- If the saved checks stack overflowed, then we killed all checks, so
4248 -- setting the number of saved checks back to zero is correct. This
4249 -- should never occur in practice.
4251 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4252 Num_Saved_Checks := 0;
4254 -- In the normal case, restore the number of saved checks from the top
4255 -- stack entry.
4257 else
4258 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
4260 if Debug_Flag_CC then
4261 w ("Conditional_Statements_End: Num_Saved_Checks = ",
4262 Num_Saved_Checks);
4263 end if;
4264 end if;
4266 Saved_Checks_TOS := Saved_Checks_TOS - 1;
4267 end Conditional_Statements_End;
4269 -------------------------
4270 -- Convert_From_Bignum --
4271 -------------------------
4273 function Convert_From_Bignum (N : Node_Id) return Node_Id is
4274 Loc : constant Source_Ptr := Sloc (N);
4276 begin
4277 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4279 -- Construct call From Bignum
4281 return
4282 Make_Function_Call (Loc,
4283 Name =>
4284 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4285 Parameter_Associations => New_List (Relocate_Node (N)));
4286 end Convert_From_Bignum;
4288 -----------------------
4289 -- Convert_To_Bignum --
4290 -----------------------
4292 function Convert_To_Bignum (N : Node_Id) return Node_Id is
4293 Loc : constant Source_Ptr := Sloc (N);
4295 begin
4296 -- Nothing to do if Bignum already except call Relocate_Node
4298 if Is_RTE (Etype (N), RE_Bignum) then
4299 return Relocate_Node (N);
4301 -- Otherwise construct call to To_Bignum, converting the operand to the
4302 -- required Long_Long_Integer form.
4304 else
4305 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4306 return
4307 Make_Function_Call (Loc,
4308 Name =>
4309 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4310 Parameter_Associations => New_List (
4311 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4312 end if;
4313 end Convert_To_Bignum;
4315 ---------------------
4316 -- Determine_Range --
4317 ---------------------
4319 Cache_Size : constant := 2 ** 10;
4320 type Cache_Index is range 0 .. Cache_Size - 1;
4321 -- Determine size of below cache (power of 2 is more efficient)
4323 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
4324 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
4325 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
4326 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
4327 Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4328 Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
4329 -- The above arrays are used to implement a small direct cache for
4330 -- Determine_Range and Determine_Range_R calls. Because of the way these
4331 -- subprograms recursively traces subexpressions, and because overflow
4332 -- checking calls the routine on the way up the tree, a quadratic behavior
4333 -- can otherwise be encountered in large expressions. The cache entry for
4334 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4335 -- by checking the actual node value stored there. The Range_Cache_V array
4336 -- records the setting of Assume_Valid for the cache entry.
4338 procedure Determine_Range
4339 (N : Node_Id;
4340 OK : out Boolean;
4341 Lo : out Uint;
4342 Hi : out Uint;
4343 Assume_Valid : Boolean := False)
4345 Typ : Entity_Id := Etype (N);
4346 -- Type to use, may get reset to base type for possibly invalid entity
4348 Lo_Left : Uint;
4349 Hi_Left : Uint;
4350 -- Lo and Hi bounds of left operand
4352 Lo_Right : Uint;
4353 Hi_Right : Uint;
4354 -- Lo and Hi bounds of right (or only) operand
4356 Bound : Node_Id;
4357 -- Temp variable used to hold a bound node
4359 Hbound : Uint;
4360 -- High bound of base type of expression
4362 Lor : Uint;
4363 Hir : Uint;
4364 -- Refined values for low and high bounds, after tightening
4366 OK1 : Boolean;
4367 -- Used in lower level calls to indicate if call succeeded
4369 Cindex : Cache_Index;
4370 -- Used to search cache
4372 Btyp : Entity_Id;
4373 -- Base type
4375 function OK_Operands return Boolean;
4376 -- Used for binary operators. Determines the ranges of the left and
4377 -- right operands, and if they are both OK, returns True, and puts
4378 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4380 -----------------
4381 -- OK_Operands --
4382 -----------------
4384 function OK_Operands return Boolean is
4385 begin
4386 Determine_Range
4387 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4389 if not OK1 then
4390 return False;
4391 end if;
4393 Determine_Range
4394 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4395 return OK1;
4396 end OK_Operands;
4398 -- Start of processing for Determine_Range
4400 begin
4401 -- Prevent junk warnings by initializing range variables
4403 Lo := No_Uint;
4404 Hi := No_Uint;
4405 Lor := No_Uint;
4406 Hir := No_Uint;
4408 -- For temporary constants internally generated to remove side effects
4409 -- we must use the corresponding expression to determine the range of
4410 -- the expression. But note that the expander can also generate
4411 -- constants in other cases, including deferred constants.
4413 if Is_Entity_Name (N)
4414 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4415 and then Ekind (Entity (N)) = E_Constant
4416 and then Is_Internal_Name (Chars (Entity (N)))
4417 then
4418 if Present (Expression (Parent (Entity (N)))) then
4419 Determine_Range
4420 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4422 elsif Present (Full_View (Entity (N))) then
4423 Determine_Range
4424 (Expression (Parent (Full_View (Entity (N)))),
4425 OK, Lo, Hi, Assume_Valid);
4427 else
4428 OK := False;
4429 end if;
4430 return;
4431 end if;
4433 -- If type is not defined, we can't determine its range
4435 if No (Typ)
4437 -- We don't deal with anything except discrete types
4439 or else not Is_Discrete_Type (Typ)
4441 -- Ignore type for which an error has been posted, since range in
4442 -- this case may well be a bogosity deriving from the error. Also
4443 -- ignore if error posted on the reference node.
4445 or else Error_Posted (N) or else Error_Posted (Typ)
4446 then
4447 OK := False;
4448 return;
4449 end if;
4451 -- For all other cases, we can determine the range
4453 OK := True;
4455 -- If value is compile time known, then the possible range is the one
4456 -- value that we know this expression definitely has.
4458 if Compile_Time_Known_Value (N) then
4459 Lo := Expr_Value (N);
4460 Hi := Lo;
4461 return;
4462 end if;
4464 -- Return if already in the cache
4466 Cindex := Cache_Index (N mod Cache_Size);
4468 if Determine_Range_Cache_N (Cindex) = N
4469 and then
4470 Determine_Range_Cache_V (Cindex) = Assume_Valid
4471 then
4472 Lo := Determine_Range_Cache_Lo (Cindex);
4473 Hi := Determine_Range_Cache_Hi (Cindex);
4474 return;
4475 end if;
4477 -- Otherwise, start by finding the bounds of the type of the expression,
4478 -- the value cannot be outside this range (if it is, then we have an
4479 -- overflow situation, which is a separate check, we are talking here
4480 -- only about the expression value).
4482 -- First a check, never try to find the bounds of a generic type, since
4483 -- these bounds are always junk values, and it is only valid to look at
4484 -- the bounds in an instance.
4486 if Is_Generic_Type (Typ) then
4487 OK := False;
4488 return;
4489 end if;
4491 -- First step, change to use base type unless we know the value is valid
4493 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4494 or else Assume_No_Invalid_Values
4495 or else Assume_Valid
4496 then
4497 null;
4498 else
4499 Typ := Underlying_Type (Base_Type (Typ));
4500 end if;
4502 -- Retrieve the base type. Handle the case where the base type is a
4503 -- private enumeration type.
4505 Btyp := Base_Type (Typ);
4507 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4508 Btyp := Full_View (Btyp);
4509 end if;
4511 -- We use the actual bound unless it is dynamic, in which case use the
4512 -- corresponding base type bound if possible. If we can't get a bound
4513 -- then we figure we can't determine the range (a peculiar case, that
4514 -- perhaps cannot happen, but there is no point in bombing in this
4515 -- optimization circuit.
4517 -- First the low bound
4519 Bound := Type_Low_Bound (Typ);
4521 if Compile_Time_Known_Value (Bound) then
4522 Lo := Expr_Value (Bound);
4524 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4525 Lo := Expr_Value (Type_Low_Bound (Btyp));
4527 else
4528 OK := False;
4529 return;
4530 end if;
4532 -- Now the high bound
4534 Bound := Type_High_Bound (Typ);
4536 -- We need the high bound of the base type later on, and this should
4537 -- always be compile time known. Again, it is not clear that this
4538 -- can ever be false, but no point in bombing.
4540 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4541 Hbound := Expr_Value (Type_High_Bound (Btyp));
4542 Hi := Hbound;
4544 else
4545 OK := False;
4546 return;
4547 end if;
4549 -- If we have a static subtype, then that may have a tighter bound so
4550 -- use the upper bound of the subtype instead in this case.
4552 if Compile_Time_Known_Value (Bound) then
4553 Hi := Expr_Value (Bound);
4554 end if;
4556 -- We may be able to refine this value in certain situations. If any
4557 -- refinement is possible, then Lor and Hir are set to possibly tighter
4558 -- bounds, and OK1 is set to True.
4560 case Nkind (N) is
4562 -- For unary plus, result is limited by range of operand
4564 when N_Op_Plus =>
4565 Determine_Range
4566 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
4568 -- For unary minus, determine range of operand, and negate it
4570 when N_Op_Minus =>
4571 Determine_Range
4572 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4574 if OK1 then
4575 Lor := -Hi_Right;
4576 Hir := -Lo_Right;
4577 end if;
4579 -- For binary addition, get range of each operand and do the
4580 -- addition to get the result range.
4582 when N_Op_Add =>
4583 if OK_Operands then
4584 Lor := Lo_Left + Lo_Right;
4585 Hir := Hi_Left + Hi_Right;
4586 end if;
4588 -- Division is tricky. The only case we consider is where the right
4589 -- operand is a positive constant, and in this case we simply divide
4590 -- the bounds of the left operand
4592 when N_Op_Divide =>
4593 if OK_Operands then
4594 if Lo_Right = Hi_Right
4595 and then Lo_Right > 0
4596 then
4597 Lor := Lo_Left / Lo_Right;
4598 Hir := Hi_Left / Lo_Right;
4599 else
4600 OK1 := False;
4601 end if;
4602 end if;
4604 -- For binary subtraction, get range of each operand and do the worst
4605 -- case subtraction to get the result range.
4607 when N_Op_Subtract =>
4608 if OK_Operands then
4609 Lor := Lo_Left - Hi_Right;
4610 Hir := Hi_Left - Lo_Right;
4611 end if;
4613 -- For MOD, if right operand is a positive constant, then result must
4614 -- be in the allowable range of mod results.
4616 when N_Op_Mod =>
4617 if OK_Operands then
4618 if Lo_Right = Hi_Right
4619 and then Lo_Right /= 0
4620 then
4621 if Lo_Right > 0 then
4622 Lor := Uint_0;
4623 Hir := Lo_Right - 1;
4625 else -- Lo_Right < 0
4626 Lor := Lo_Right + 1;
4627 Hir := Uint_0;
4628 end if;
4630 else
4631 OK1 := False;
4632 end if;
4633 end if;
4635 -- For REM, if right operand is a positive constant, then result must
4636 -- be in the allowable range of mod results.
4638 when N_Op_Rem =>
4639 if OK_Operands then
4640 if Lo_Right = Hi_Right and then Lo_Right /= 0 then
4641 declare
4642 Dval : constant Uint := (abs Lo_Right) - 1;
4644 begin
4645 -- The sign of the result depends on the sign of the
4646 -- dividend (but not on the sign of the divisor, hence
4647 -- the abs operation above).
4649 if Lo_Left < 0 then
4650 Lor := -Dval;
4651 else
4652 Lor := Uint_0;
4653 end if;
4655 if Hi_Left < 0 then
4656 Hir := Uint_0;
4657 else
4658 Hir := Dval;
4659 end if;
4660 end;
4662 else
4663 OK1 := False;
4664 end if;
4665 end if;
4667 -- Attribute reference cases
4669 when N_Attribute_Reference =>
4670 case Attribute_Name (N) is
4672 -- For Pos/Val attributes, we can refine the range using the
4673 -- possible range of values of the attribute expression.
4675 when Name_Pos
4676 | Name_Val
4678 Determine_Range
4679 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
4681 -- For Length attribute, use the bounds of the corresponding
4682 -- index type to refine the range.
4684 when Name_Length =>
4685 declare
4686 Atyp : Entity_Id := Etype (Prefix (N));
4687 Inum : Nat;
4688 Indx : Node_Id;
4690 LL, LU : Uint;
4691 UL, UU : Uint;
4693 begin
4694 if Is_Access_Type (Atyp) then
4695 Atyp := Designated_Type (Atyp);
4696 end if;
4698 -- For string literal, we know exact value
4700 if Ekind (Atyp) = E_String_Literal_Subtype then
4701 OK := True;
4702 Lo := String_Literal_Length (Atyp);
4703 Hi := String_Literal_Length (Atyp);
4704 return;
4705 end if;
4707 -- Otherwise check for expression given
4709 if No (Expressions (N)) then
4710 Inum := 1;
4711 else
4712 Inum :=
4713 UI_To_Int (Expr_Value (First (Expressions (N))));
4714 end if;
4716 Indx := First_Index (Atyp);
4717 for J in 2 .. Inum loop
4718 Indx := Next_Index (Indx);
4719 end loop;
4721 -- If the index type is a formal type or derived from
4722 -- one, the bounds are not static.
4724 if Is_Generic_Type (Root_Type (Etype (Indx))) then
4725 OK := False;
4726 return;
4727 end if;
4729 Determine_Range
4730 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4731 Assume_Valid);
4733 if OK1 then
4734 Determine_Range
4735 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4736 Assume_Valid);
4738 if OK1 then
4740 -- The maximum value for Length is the biggest
4741 -- possible gap between the values of the bounds.
4742 -- But of course, this value cannot be negative.
4744 Hir := UI_Max (Uint_0, UU - LL + 1);
4746 -- For constrained arrays, the minimum value for
4747 -- Length is taken from the actual value of the
4748 -- bounds, since the index will be exactly of this
4749 -- subtype.
4751 if Is_Constrained (Atyp) then
4752 Lor := UI_Max (Uint_0, UL - LU + 1);
4754 -- For an unconstrained array, the minimum value
4755 -- for length is always zero.
4757 else
4758 Lor := Uint_0;
4759 end if;
4760 end if;
4761 end if;
4762 end;
4764 -- No special handling for other attributes
4765 -- Probably more opportunities exist here???
4767 when others =>
4768 OK1 := False;
4770 end case;
4772 when N_Type_Conversion =>
4774 -- For type conversion from one discrete type to another, we can
4775 -- refine the range using the converted value.
4777 if Is_Discrete_Type (Etype (Expression (N))) then
4778 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
4780 -- When converting a float to an integer type, determine the range
4781 -- in real first, and then convert the bounds using UR_To_Uint
4782 -- which correctly rounds away from zero when half way between two
4783 -- integers, as required by normal Ada 95 rounding semantics. It
4784 -- is only possible because analysis in GNATprove rules out the
4785 -- possibility of a NaN or infinite value.
4787 elsif GNATprove_Mode
4788 and then Is_Floating_Point_Type (Etype (Expression (N)))
4789 then
4790 declare
4791 Lor_Real, Hir_Real : Ureal;
4792 begin
4793 Determine_Range_R (Expression (N), OK1, Lor_Real, Hir_Real,
4794 Assume_Valid);
4796 if OK1 then
4797 Lor := UR_To_Uint (Lor_Real);
4798 Hir := UR_To_Uint (Hir_Real);
4799 end if;
4800 end;
4802 else
4803 OK1 := False;
4804 end if;
4806 -- Nothing special to do for all other expression kinds
4808 when others =>
4809 OK1 := False;
4810 Lor := No_Uint;
4811 Hir := No_Uint;
4812 end case;
4814 -- At this stage, if OK1 is true, then we know that the actual result of
4815 -- the computed expression is in the range Lor .. Hir. We can use this
4816 -- to restrict the possible range of results.
4818 if OK1 then
4820 -- If the refined value of the low bound is greater than the type
4821 -- low bound, then reset it to the more restrictive value. However,
4822 -- we do NOT do this for the case of a modular type where the
4823 -- possible upper bound on the value is above the base type high
4824 -- bound, because that means the result could wrap.
4826 if Lor > Lo
4827 and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
4828 then
4829 Lo := Lor;
4830 end if;
4832 -- Similarly, if the refined value of the high bound is less than the
4833 -- value so far, then reset it to the more restrictive value. Again,
4834 -- we do not do this if the refined low bound is negative for a
4835 -- modular type, since this would wrap.
4837 if Hir < Hi
4838 and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
4839 then
4840 Hi := Hir;
4841 end if;
4842 end if;
4844 -- Set cache entry for future call and we are all done
4846 Determine_Range_Cache_N (Cindex) := N;
4847 Determine_Range_Cache_V (Cindex) := Assume_Valid;
4848 Determine_Range_Cache_Lo (Cindex) := Lo;
4849 Determine_Range_Cache_Hi (Cindex) := Hi;
4850 return;
4852 -- If any exception occurs, it means that we have some bug in the compiler,
4853 -- possibly triggered by a previous error, or by some unforeseen peculiar
4854 -- occurrence. However, this is only an optimization attempt, so there is
4855 -- really no point in crashing the compiler. Instead we just decide, too
4856 -- bad, we can't figure out a range in this case after all.
4858 exception
4859 when others =>
4861 -- Debug flag K disables this behavior (useful for debugging)
4863 if Debug_Flag_K then
4864 raise;
4865 else
4866 OK := False;
4867 Lo := No_Uint;
4868 Hi := No_Uint;
4869 return;
4870 end if;
4871 end Determine_Range;
4873 -----------------------
4874 -- Determine_Range_R --
4875 -----------------------
4877 procedure Determine_Range_R
4878 (N : Node_Id;
4879 OK : out Boolean;
4880 Lo : out Ureal;
4881 Hi : out Ureal;
4882 Assume_Valid : Boolean := False)
4884 Typ : Entity_Id := Etype (N);
4885 -- Type to use, may get reset to base type for possibly invalid entity
4887 Lo_Left : Ureal;
4888 Hi_Left : Ureal;
4889 -- Lo and Hi bounds of left operand
4891 Lo_Right : Ureal;
4892 Hi_Right : Ureal;
4893 -- Lo and Hi bounds of right (or only) operand
4895 Bound : Node_Id;
4896 -- Temp variable used to hold a bound node
4898 Hbound : Ureal;
4899 -- High bound of base type of expression
4901 Lor : Ureal;
4902 Hir : Ureal;
4903 -- Refined values for low and high bounds, after tightening
4905 OK1 : Boolean;
4906 -- Used in lower level calls to indicate if call succeeded
4908 Cindex : Cache_Index;
4909 -- Used to search cache
4911 Btyp : Entity_Id;
4912 -- Base type
4914 function OK_Operands return Boolean;
4915 -- Used for binary operators. Determines the ranges of the left and
4916 -- right operands, and if they are both OK, returns True, and puts
4917 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4919 function Round_Machine (B : Ureal) return Ureal;
4920 -- B is a real bound. Round it using mode Round_Even.
4922 -----------------
4923 -- OK_Operands --
4924 -----------------
4926 function OK_Operands return Boolean is
4927 begin
4928 Determine_Range_R
4929 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4931 if not OK1 then
4932 return False;
4933 end if;
4935 Determine_Range_R
4936 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4937 return OK1;
4938 end OK_Operands;
4940 -------------------
4941 -- Round_Machine --
4942 -------------------
4944 function Round_Machine (B : Ureal) return Ureal is
4945 begin
4946 return Machine (Typ, B, Round_Even, N);
4947 end Round_Machine;
4949 -- Start of processing for Determine_Range_R
4951 begin
4952 -- Prevent junk warnings by initializing range variables
4954 Lo := No_Ureal;
4955 Hi := No_Ureal;
4956 Lor := No_Ureal;
4957 Hir := No_Ureal;
4959 -- For temporary constants internally generated to remove side effects
4960 -- we must use the corresponding expression to determine the range of
4961 -- the expression. But note that the expander can also generate
4962 -- constants in other cases, including deferred constants.
4964 if Is_Entity_Name (N)
4965 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4966 and then Ekind (Entity (N)) = E_Constant
4967 and then Is_Internal_Name (Chars (Entity (N)))
4968 then
4969 if Present (Expression (Parent (Entity (N)))) then
4970 Determine_Range_R
4971 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4973 elsif Present (Full_View (Entity (N))) then
4974 Determine_Range_R
4975 (Expression (Parent (Full_View (Entity (N)))),
4976 OK, Lo, Hi, Assume_Valid);
4978 else
4979 OK := False;
4980 end if;
4982 return;
4983 end if;
4985 -- If type is not defined, we can't determine its range
4987 if No (Typ)
4989 -- We don't deal with anything except IEEE floating-point types
4991 or else not Is_Floating_Point_Type (Typ)
4992 or else Float_Rep (Typ) /= IEEE_Binary
4994 -- Ignore type for which an error has been posted, since range in
4995 -- this case may well be a bogosity deriving from the error. Also
4996 -- ignore if error posted on the reference node.
4998 or else Error_Posted (N) or else Error_Posted (Typ)
4999 then
5000 OK := False;
5001 return;
5002 end if;
5004 -- For all other cases, we can determine the range
5006 OK := True;
5008 -- If value is compile time known, then the possible range is the one
5009 -- value that we know this expression definitely has.
5011 if Compile_Time_Known_Value (N) then
5012 Lo := Expr_Value_R (N);
5013 Hi := Lo;
5014 return;
5015 end if;
5017 -- Return if already in the cache
5019 Cindex := Cache_Index (N mod Cache_Size);
5021 if Determine_Range_Cache_N (Cindex) = N
5022 and then
5023 Determine_Range_Cache_V (Cindex) = Assume_Valid
5024 then
5025 Lo := Determine_Range_Cache_Lo_R (Cindex);
5026 Hi := Determine_Range_Cache_Hi_R (Cindex);
5027 return;
5028 end if;
5030 -- Otherwise, start by finding the bounds of the type of the expression,
5031 -- the value cannot be outside this range (if it is, then we have an
5032 -- overflow situation, which is a separate check, we are talking here
5033 -- only about the expression value).
5035 -- First a check, never try to find the bounds of a generic type, since
5036 -- these bounds are always junk values, and it is only valid to look at
5037 -- the bounds in an instance.
5039 if Is_Generic_Type (Typ) then
5040 OK := False;
5041 return;
5042 end if;
5044 -- First step, change to use base type unless we know the value is valid
5046 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5047 or else Assume_No_Invalid_Values
5048 or else Assume_Valid
5049 then
5050 null;
5051 else
5052 Typ := Underlying_Type (Base_Type (Typ));
5053 end if;
5055 -- Retrieve the base type. Handle the case where the base type is a
5056 -- private type.
5058 Btyp := Base_Type (Typ);
5060 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5061 Btyp := Full_View (Btyp);
5062 end if;
5064 -- We use the actual bound unless it is dynamic, in which case use the
5065 -- corresponding base type bound if possible. If we can't get a bound
5066 -- then we figure we can't determine the range (a peculiar case, that
5067 -- perhaps cannot happen, but there is no point in bombing in this
5068 -- optimization circuit).
5070 -- First the low bound
5072 Bound := Type_Low_Bound (Typ);
5074 if Compile_Time_Known_Value (Bound) then
5075 Lo := Expr_Value_R (Bound);
5077 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5078 Lo := Expr_Value_R (Type_Low_Bound (Btyp));
5080 else
5081 OK := False;
5082 return;
5083 end if;
5085 -- Now the high bound
5087 Bound := Type_High_Bound (Typ);
5089 -- We need the high bound of the base type later on, and this should
5090 -- always be compile time known. Again, it is not clear that this
5091 -- can ever be false, but no point in bombing.
5093 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5094 Hbound := Expr_Value_R (Type_High_Bound (Btyp));
5095 Hi := Hbound;
5097 else
5098 OK := False;
5099 return;
5100 end if;
5102 -- If we have a static subtype, then that may have a tighter bound so
5103 -- use the upper bound of the subtype instead in this case.
5105 if Compile_Time_Known_Value (Bound) then
5106 Hi := Expr_Value_R (Bound);
5107 end if;
5109 -- We may be able to refine this value in certain situations. If any
5110 -- refinement is possible, then Lor and Hir are set to possibly tighter
5111 -- bounds, and OK1 is set to True.
5113 case Nkind (N) is
5115 -- For unary plus, result is limited by range of operand
5117 when N_Op_Plus =>
5118 Determine_Range_R
5119 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
5121 -- For unary minus, determine range of operand, and negate it
5123 when N_Op_Minus =>
5124 Determine_Range_R
5125 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5127 if OK1 then
5128 Lor := -Hi_Right;
5129 Hir := -Lo_Right;
5130 end if;
5132 -- For binary addition, get range of each operand and do the
5133 -- addition to get the result range.
5135 when N_Op_Add =>
5136 if OK_Operands then
5137 Lor := Round_Machine (Lo_Left + Lo_Right);
5138 Hir := Round_Machine (Hi_Left + Hi_Right);
5139 end if;
5141 -- For binary subtraction, get range of each operand and do the worst
5142 -- case subtraction to get the result range.
5144 when N_Op_Subtract =>
5145 if OK_Operands then
5146 Lor := Round_Machine (Lo_Left - Hi_Right);
5147 Hir := Round_Machine (Hi_Left - Lo_Right);
5148 end if;
5150 -- For multiplication, get range of each operand and do the
5151 -- four multiplications to get the result range.
5153 when N_Op_Multiply =>
5154 if OK_Operands then
5155 declare
5156 M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
5157 M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
5158 M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
5159 M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
5161 begin
5162 Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
5163 Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
5164 end;
5165 end if;
5167 -- For division, consider separately the cases where the right
5168 -- operand is positive or negative. Otherwise, the right operand
5169 -- can be arbitrarily close to zero, so the result is likely to
5170 -- be unbounded in one direction, do not attempt to compute it.
5172 when N_Op_Divide =>
5173 if OK_Operands then
5175 -- Right operand is positive
5177 if Lo_Right > Ureal_0 then
5179 -- If the low bound of the left operand is negative, obtain
5180 -- the overall low bound by dividing it by the smallest
5181 -- value of the right operand, and otherwise by the largest
5182 -- value of the right operand.
5184 if Lo_Left < Ureal_0 then
5185 Lor := Round_Machine (Lo_Left / Lo_Right);
5186 else
5187 Lor := Round_Machine (Lo_Left / Hi_Right);
5188 end if;
5190 -- If the high bound of the left operand is negative, obtain
5191 -- the overall high bound by dividing it by the largest
5192 -- value of the right operand, and otherwise by the
5193 -- smallest value of the right operand.
5195 if Hi_Left < Ureal_0 then
5196 Hir := Round_Machine (Hi_Left / Hi_Right);
5197 else
5198 Hir := Round_Machine (Hi_Left / Lo_Right);
5199 end if;
5201 -- Right operand is negative
5203 elsif Hi_Right < Ureal_0 then
5205 -- If the low bound of the left operand is negative, obtain
5206 -- the overall low bound by dividing it by the largest
5207 -- value of the right operand, and otherwise by the smallest
5208 -- value of the right operand.
5210 if Lo_Left < Ureal_0 then
5211 Lor := Round_Machine (Lo_Left / Hi_Right);
5212 else
5213 Lor := Round_Machine (Lo_Left / Lo_Right);
5214 end if;
5216 -- If the high bound of the left operand is negative, obtain
5217 -- the overall high bound by dividing it by the smallest
5218 -- value of the right operand, and otherwise by the
5219 -- largest value of the right operand.
5221 if Hi_Left < Ureal_0 then
5222 Hir := Round_Machine (Hi_Left / Lo_Right);
5223 else
5224 Hir := Round_Machine (Hi_Left / Hi_Right);
5225 end if;
5227 else
5228 OK1 := False;
5229 end if;
5230 end if;
5232 when N_Type_Conversion =>
5234 -- For type conversion from one floating-point type to another, we
5235 -- can refine the range using the converted value.
5237 if Is_Floating_Point_Type (Etype (Expression (N))) then
5238 Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
5240 -- When converting an integer to a floating-point type, determine
5241 -- the range in integer first, and then convert the bounds.
5243 elsif Is_Discrete_Type (Etype (Expression (N))) then
5244 declare
5245 Hir_Int : Uint;
5246 Lor_Int : Uint;
5248 begin
5249 Determine_Range
5250 (Expression (N), OK1, Lor_Int, Hir_Int, Assume_Valid);
5252 if OK1 then
5253 Lor := Round_Machine (UR_From_Uint (Lor_Int));
5254 Hir := Round_Machine (UR_From_Uint (Hir_Int));
5255 end if;
5256 end;
5258 else
5259 OK1 := False;
5260 end if;
5262 -- Nothing special to do for all other expression kinds
5264 when others =>
5265 OK1 := False;
5266 Lor := No_Ureal;
5267 Hir := No_Ureal;
5268 end case;
5270 -- At this stage, if OK1 is true, then we know that the actual result of
5271 -- the computed expression is in the range Lor .. Hir. We can use this
5272 -- to restrict the possible range of results.
5274 if OK1 then
5276 -- If the refined value of the low bound is greater than the type
5277 -- low bound, then reset it to the more restrictive value.
5279 if Lor > Lo then
5280 Lo := Lor;
5281 end if;
5283 -- Similarly, if the refined value of the high bound is less than the
5284 -- value so far, then reset it to the more restrictive value.
5286 if Hir < Hi then
5287 Hi := Hir;
5288 end if;
5289 end if;
5291 -- Set cache entry for future call and we are all done
5293 Determine_Range_Cache_N (Cindex) := N;
5294 Determine_Range_Cache_V (Cindex) := Assume_Valid;
5295 Determine_Range_Cache_Lo_R (Cindex) := Lo;
5296 Determine_Range_Cache_Hi_R (Cindex) := Hi;
5297 return;
5299 -- If any exception occurs, it means that we have some bug in the compiler,
5300 -- possibly triggered by a previous error, or by some unforeseen peculiar
5301 -- occurrence. However, this is only an optimization attempt, so there is
5302 -- really no point in crashing the compiler. Instead we just decide, too
5303 -- bad, we can't figure out a range in this case after all.
5305 exception
5306 when others =>
5308 -- Debug flag K disables this behavior (useful for debugging)
5310 if Debug_Flag_K then
5311 raise;
5312 else
5313 OK := False;
5314 Lo := No_Ureal;
5315 Hi := No_Ureal;
5316 return;
5317 end if;
5318 end Determine_Range_R;
5320 ------------------------------------
5321 -- Discriminant_Checks_Suppressed --
5322 ------------------------------------
5324 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
5325 begin
5326 if Present (E) then
5327 if Is_Unchecked_Union (E) then
5328 return True;
5329 elsif Checks_May_Be_Suppressed (E) then
5330 return Is_Check_Suppressed (E, Discriminant_Check);
5331 end if;
5332 end if;
5334 return Scope_Suppress.Suppress (Discriminant_Check);
5335 end Discriminant_Checks_Suppressed;
5337 --------------------------------
5338 -- Division_Checks_Suppressed --
5339 --------------------------------
5341 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
5342 begin
5343 if Present (E) and then Checks_May_Be_Suppressed (E) then
5344 return Is_Check_Suppressed (E, Division_Check);
5345 else
5346 return Scope_Suppress.Suppress (Division_Check);
5347 end if;
5348 end Division_Checks_Suppressed;
5350 --------------------------------------
5351 -- Duplicated_Tag_Checks_Suppressed --
5352 --------------------------------------
5354 function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
5355 begin
5356 if Present (E) and then Checks_May_Be_Suppressed (E) then
5357 return Is_Check_Suppressed (E, Duplicated_Tag_Check);
5358 else
5359 return Scope_Suppress.Suppress (Duplicated_Tag_Check);
5360 end if;
5361 end Duplicated_Tag_Checks_Suppressed;
5363 -----------------------------------
5364 -- Elaboration_Checks_Suppressed --
5365 -----------------------------------
5367 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
5368 begin
5369 -- The complication in this routine is that if we are in the dynamic
5370 -- model of elaboration, we also check All_Checks, since All_Checks
5371 -- does not set Elaboration_Check explicitly.
5373 if Present (E) then
5374 if Kill_Elaboration_Checks (E) then
5375 return True;
5377 elsif Checks_May_Be_Suppressed (E) then
5378 if Is_Check_Suppressed (E, Elaboration_Check) then
5379 return True;
5380 elsif Dynamic_Elaboration_Checks then
5381 return Is_Check_Suppressed (E, All_Checks);
5382 else
5383 return False;
5384 end if;
5385 end if;
5386 end if;
5388 if Scope_Suppress.Suppress (Elaboration_Check) then
5389 return True;
5390 elsif Dynamic_Elaboration_Checks then
5391 return Scope_Suppress.Suppress (All_Checks);
5392 else
5393 return False;
5394 end if;
5395 end Elaboration_Checks_Suppressed;
5397 ---------------------------
5398 -- Enable_Overflow_Check --
5399 ---------------------------
5401 procedure Enable_Overflow_Check (N : Node_Id) is
5402 Typ : constant Entity_Id := Base_Type (Etype (N));
5403 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
5404 Chk : Nat;
5405 OK : Boolean;
5406 Ent : Entity_Id;
5407 Ofs : Uint;
5408 Lo : Uint;
5409 Hi : Uint;
5411 Do_Ovflow_Check : Boolean;
5413 begin
5414 if Debug_Flag_CC then
5415 w ("Enable_Overflow_Check for node ", Int (N));
5416 Write_Str (" Source location = ");
5417 wl (Sloc (N));
5418 pg (Union_Id (N));
5419 end if;
5421 -- No check if overflow checks suppressed for type of node
5423 if Overflow_Checks_Suppressed (Etype (N)) then
5424 return;
5426 -- Nothing to do for unsigned integer types, which do not overflow
5428 elsif Is_Modular_Integer_Type (Typ) then
5429 return;
5430 end if;
5432 -- This is the point at which processing for STRICT mode diverges
5433 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
5434 -- probably more extreme that it needs to be, but what is going on here
5435 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
5436 -- to leave the processing for STRICT mode untouched. There were
5437 -- two reasons for this. First it avoided any incompatible change of
5438 -- behavior. Second, it guaranteed that STRICT mode continued to be
5439 -- legacy reliable.
5441 -- The big difference is that in STRICT mode there is a fair amount of
5442 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
5443 -- know that no check is needed. We skip all that in the two new modes,
5444 -- since really overflow checking happens over a whole subtree, and we
5445 -- do the corresponding optimizations later on when applying the checks.
5447 if Mode in Minimized_Or_Eliminated then
5448 if not (Overflow_Checks_Suppressed (Etype (N)))
5449 and then not (Is_Entity_Name (N)
5450 and then Overflow_Checks_Suppressed (Entity (N)))
5451 then
5452 Activate_Overflow_Check (N);
5453 end if;
5455 if Debug_Flag_CC then
5456 w ("Minimized/Eliminated mode");
5457 end if;
5459 return;
5460 end if;
5462 -- Remainder of processing is for STRICT case, and is unchanged from
5463 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
5465 -- Nothing to do if the range of the result is known OK. We skip this
5466 -- for conversions, since the caller already did the check, and in any
5467 -- case the condition for deleting the check for a type conversion is
5468 -- different.
5470 if Nkind (N) /= N_Type_Conversion then
5471 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
5473 -- Note in the test below that we assume that the range is not OK
5474 -- if a bound of the range is equal to that of the type. That's not
5475 -- quite accurate but we do this for the following reasons:
5477 -- a) The way that Determine_Range works, it will typically report
5478 -- the bounds of the value as being equal to the bounds of the
5479 -- type, because it either can't tell anything more precise, or
5480 -- does not think it is worth the effort to be more precise.
5482 -- b) It is very unusual to have a situation in which this would
5483 -- generate an unnecessary overflow check (an example would be
5484 -- a subtype with a range 0 .. Integer'Last - 1 to which the
5485 -- literal value one is added).
5487 -- c) The alternative is a lot of special casing in this routine
5488 -- which would partially duplicate Determine_Range processing.
5490 if OK then
5491 Do_Ovflow_Check := True;
5493 -- Note that the following checks are quite deliberately > and <
5494 -- rather than >= and <= as explained above.
5496 if Lo > Expr_Value (Type_Low_Bound (Typ))
5497 and then
5498 Hi < Expr_Value (Type_High_Bound (Typ))
5499 then
5500 Do_Ovflow_Check := False;
5502 -- Despite the comments above, it is worth dealing specially with
5503 -- division specially. The only case where integer division can
5504 -- overflow is (largest negative number) / (-1). So we will do
5505 -- an extra range analysis to see if this is possible.
5507 elsif Nkind (N) = N_Op_Divide then
5508 Determine_Range
5509 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5511 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
5512 Do_Ovflow_Check := False;
5514 else
5515 Determine_Range
5516 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5518 if OK and then (Lo > Uint_Minus_1
5519 or else
5520 Hi < Uint_Minus_1)
5521 then
5522 Do_Ovflow_Check := False;
5523 end if;
5524 end if;
5525 end if;
5527 -- If no overflow check required, we are done
5529 if not Do_Ovflow_Check then
5530 if Debug_Flag_CC then
5531 w ("No overflow check required");
5532 end if;
5534 return;
5535 end if;
5536 end if;
5537 end if;
5539 -- If not in optimizing mode, set flag and we are done. We are also done
5540 -- (and just set the flag) if the type is not a discrete type, since it
5541 -- is not worth the effort to eliminate checks for other than discrete
5542 -- types. In addition, we take this same path if we have stored the
5543 -- maximum number of checks possible already (a very unlikely situation,
5544 -- but we do not want to blow up).
5546 if Optimization_Level = 0
5547 or else not Is_Discrete_Type (Etype (N))
5548 or else Num_Saved_Checks = Saved_Checks'Last
5549 then
5550 Activate_Overflow_Check (N);
5552 if Debug_Flag_CC then
5553 w ("Optimization off");
5554 end if;
5556 return;
5557 end if;
5559 -- Otherwise evaluate and check the expression
5561 Find_Check
5562 (Expr => N,
5563 Check_Type => 'O',
5564 Target_Type => Empty,
5565 Entry_OK => OK,
5566 Check_Num => Chk,
5567 Ent => Ent,
5568 Ofs => Ofs);
5570 if Debug_Flag_CC then
5571 w ("Called Find_Check");
5572 w (" OK = ", OK);
5574 if OK then
5575 w (" Check_Num = ", Chk);
5576 w (" Ent = ", Int (Ent));
5577 Write_Str (" Ofs = ");
5578 pid (Ofs);
5579 end if;
5580 end if;
5582 -- If check is not of form to optimize, then set flag and we are done
5584 if not OK then
5585 Activate_Overflow_Check (N);
5586 return;
5587 end if;
5589 -- If check is already performed, then return without setting flag
5591 if Chk /= 0 then
5592 if Debug_Flag_CC then
5593 w ("Check suppressed!");
5594 end if;
5596 return;
5597 end if;
5599 -- Here we will make a new entry for the new check
5601 Activate_Overflow_Check (N);
5602 Num_Saved_Checks := Num_Saved_Checks + 1;
5603 Saved_Checks (Num_Saved_Checks) :=
5604 (Killed => False,
5605 Entity => Ent,
5606 Offset => Ofs,
5607 Check_Type => 'O',
5608 Target_Type => Empty);
5610 if Debug_Flag_CC then
5611 w ("Make new entry, check number = ", Num_Saved_Checks);
5612 w (" Entity = ", Int (Ent));
5613 Write_Str (" Offset = ");
5614 pid (Ofs);
5615 w (" Check_Type = O");
5616 w (" Target_Type = Empty");
5617 end if;
5619 -- If we get an exception, then something went wrong, probably because of
5620 -- an error in the structure of the tree due to an incorrect program. Or
5621 -- it may be a bug in the optimization circuit. In either case the safest
5622 -- thing is simply to set the check flag unconditionally.
5624 exception
5625 when others =>
5626 Activate_Overflow_Check (N);
5628 if Debug_Flag_CC then
5629 w (" exception occurred, overflow flag set");
5630 end if;
5632 return;
5633 end Enable_Overflow_Check;
5635 ------------------------
5636 -- Enable_Range_Check --
5637 ------------------------
5639 procedure Enable_Range_Check (N : Node_Id) is
5640 Chk : Nat;
5641 OK : Boolean;
5642 Ent : Entity_Id;
5643 Ofs : Uint;
5644 Ttyp : Entity_Id;
5645 P : Node_Id;
5647 begin
5648 -- Return if unchecked type conversion with range check killed. In this
5649 -- case we never set the flag (that's what Kill_Range_Check is about).
5651 if Nkind (N) = N_Unchecked_Type_Conversion
5652 and then Kill_Range_Check (N)
5653 then
5654 return;
5655 end if;
5657 -- Do not set range check flag if parent is assignment statement or
5658 -- object declaration with Suppress_Assignment_Checks flag set
5660 if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
5661 and then Suppress_Assignment_Checks (Parent (N))
5662 then
5663 return;
5664 end if;
5666 -- Check for various cases where we should suppress the range check
5668 -- No check if range checks suppressed for type of node
5670 if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
5671 return;
5673 -- No check if node is an entity name, and range checks are suppressed
5674 -- for this entity, or for the type of this entity.
5676 elsif Is_Entity_Name (N)
5677 and then (Range_Checks_Suppressed (Entity (N))
5678 or else Range_Checks_Suppressed (Etype (Entity (N))))
5679 then
5680 return;
5682 -- No checks if index of array, and index checks are suppressed for
5683 -- the array object or the type of the array.
5685 elsif Nkind (Parent (N)) = N_Indexed_Component then
5686 declare
5687 Pref : constant Node_Id := Prefix (Parent (N));
5688 begin
5689 if Is_Entity_Name (Pref)
5690 and then Index_Checks_Suppressed (Entity (Pref))
5691 then
5692 return;
5693 elsif Index_Checks_Suppressed (Etype (Pref)) then
5694 return;
5695 end if;
5696 end;
5697 end if;
5699 -- Debug trace output
5701 if Debug_Flag_CC then
5702 w ("Enable_Range_Check for node ", Int (N));
5703 Write_Str (" Source location = ");
5704 wl (Sloc (N));
5705 pg (Union_Id (N));
5706 end if;
5708 -- If not in optimizing mode, set flag and we are done. We are also done
5709 -- (and just set the flag) if the type is not a discrete type, since it
5710 -- is not worth the effort to eliminate checks for other than discrete
5711 -- types. In addition, we take this same path if we have stored the
5712 -- maximum number of checks possible already (a very unlikely situation,
5713 -- but we do not want to blow up).
5715 if Optimization_Level = 0
5716 or else No (Etype (N))
5717 or else not Is_Discrete_Type (Etype (N))
5718 or else Num_Saved_Checks = Saved_Checks'Last
5719 then
5720 Activate_Range_Check (N);
5722 if Debug_Flag_CC then
5723 w ("Optimization off");
5724 end if;
5726 return;
5727 end if;
5729 -- Otherwise find out the target type
5731 P := Parent (N);
5733 -- For assignment, use left side subtype
5735 if Nkind (P) = N_Assignment_Statement
5736 and then Expression (P) = N
5737 then
5738 Ttyp := Etype (Name (P));
5740 -- For indexed component, use subscript subtype
5742 elsif Nkind (P) = N_Indexed_Component then
5743 declare
5744 Atyp : Entity_Id;
5745 Indx : Node_Id;
5746 Subs : Node_Id;
5748 begin
5749 Atyp := Etype (Prefix (P));
5751 if Is_Access_Type (Atyp) then
5752 Atyp := Designated_Type (Atyp);
5754 -- If the prefix is an access to an unconstrained array,
5755 -- perform check unconditionally: it depends on the bounds of
5756 -- an object and we cannot currently recognize whether the test
5757 -- may be redundant.
5759 if not Is_Constrained (Atyp) then
5760 Activate_Range_Check (N);
5761 return;
5762 end if;
5764 -- Ditto if prefix is simply an unconstrained array. We used
5765 -- to think this case was OK, if the prefix was not an explicit
5766 -- dereference, but we have now seen a case where this is not
5767 -- true, so it is safer to just suppress the optimization in this
5768 -- case. The back end is getting better at eliminating redundant
5769 -- checks in any case, so the loss won't be important.
5771 elsif Is_Array_Type (Atyp)
5772 and then not Is_Constrained (Atyp)
5773 then
5774 Activate_Range_Check (N);
5775 return;
5776 end if;
5778 Indx := First_Index (Atyp);
5779 Subs := First (Expressions (P));
5780 loop
5781 if Subs = N then
5782 Ttyp := Etype (Indx);
5783 exit;
5784 end if;
5786 Next_Index (Indx);
5787 Next (Subs);
5788 end loop;
5789 end;
5791 -- For now, ignore all other cases, they are not so interesting
5793 else
5794 if Debug_Flag_CC then
5795 w (" target type not found, flag set");
5796 end if;
5798 Activate_Range_Check (N);
5799 return;
5800 end if;
5802 -- Evaluate and check the expression
5804 Find_Check
5805 (Expr => N,
5806 Check_Type => 'R',
5807 Target_Type => Ttyp,
5808 Entry_OK => OK,
5809 Check_Num => Chk,
5810 Ent => Ent,
5811 Ofs => Ofs);
5813 if Debug_Flag_CC then
5814 w ("Called Find_Check");
5815 w ("Target_Typ = ", Int (Ttyp));
5816 w (" OK = ", OK);
5818 if OK then
5819 w (" Check_Num = ", Chk);
5820 w (" Ent = ", Int (Ent));
5821 Write_Str (" Ofs = ");
5822 pid (Ofs);
5823 end if;
5824 end if;
5826 -- If check is not of form to optimize, then set flag and we are done
5828 if not OK then
5829 if Debug_Flag_CC then
5830 w (" expression not of optimizable type, flag set");
5831 end if;
5833 Activate_Range_Check (N);
5834 return;
5835 end if;
5837 -- If check is already performed, then return without setting flag
5839 if Chk /= 0 then
5840 if Debug_Flag_CC then
5841 w ("Check suppressed!");
5842 end if;
5844 return;
5845 end if;
5847 -- Here we will make a new entry for the new check
5849 Activate_Range_Check (N);
5850 Num_Saved_Checks := Num_Saved_Checks + 1;
5851 Saved_Checks (Num_Saved_Checks) :=
5852 (Killed => False,
5853 Entity => Ent,
5854 Offset => Ofs,
5855 Check_Type => 'R',
5856 Target_Type => Ttyp);
5858 if Debug_Flag_CC then
5859 w ("Make new entry, check number = ", Num_Saved_Checks);
5860 w (" Entity = ", Int (Ent));
5861 Write_Str (" Offset = ");
5862 pid (Ofs);
5863 w (" Check_Type = R");
5864 w (" Target_Type = ", Int (Ttyp));
5865 pg (Union_Id (Ttyp));
5866 end if;
5868 -- If we get an exception, then something went wrong, probably because of
5869 -- an error in the structure of the tree due to an incorrect program. Or
5870 -- it may be a bug in the optimization circuit. In either case the safest
5871 -- thing is simply to set the check flag unconditionally.
5873 exception
5874 when others =>
5875 Activate_Range_Check (N);
5877 if Debug_Flag_CC then
5878 w (" exception occurred, range flag set");
5879 end if;
5881 return;
5882 end Enable_Range_Check;
5884 ------------------
5885 -- Ensure_Valid --
5886 ------------------
5888 procedure Ensure_Valid
5889 (Expr : Node_Id;
5890 Holes_OK : Boolean := False;
5891 Related_Id : Entity_Id := Empty;
5892 Is_Low_Bound : Boolean := False;
5893 Is_High_Bound : Boolean := False)
5895 Typ : constant Entity_Id := Etype (Expr);
5897 begin
5898 -- Ignore call if we are not doing any validity checking
5900 if not Validity_Checks_On then
5901 return;
5903 -- Ignore call if range or validity checks suppressed on entity or type
5905 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
5906 return;
5908 -- No check required if expression is from the expander, we assume the
5909 -- expander will generate whatever checks are needed. Note that this is
5910 -- not just an optimization, it avoids infinite recursions.
5912 -- Unchecked conversions must be checked, unless they are initialized
5913 -- scalar values, as in a component assignment in an init proc.
5915 -- In addition, we force a check if Force_Validity_Checks is set
5917 elsif not Comes_From_Source (Expr)
5918 and then not Force_Validity_Checks
5919 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
5920 or else Kill_Range_Check (Expr))
5921 then
5922 return;
5924 -- No check required if expression is known to have valid value
5926 elsif Expr_Known_Valid (Expr) then
5927 return;
5929 -- No check needed within a generated predicate function. Validity
5930 -- of input value will have been checked earlier.
5932 elsif Ekind (Current_Scope) = E_Function
5933 and then Is_Predicate_Function (Current_Scope)
5934 then
5935 return;
5937 -- Ignore case of enumeration with holes where the flag is set not to
5938 -- worry about holes, since no special validity check is needed
5940 elsif Is_Enumeration_Type (Typ)
5941 and then Has_Non_Standard_Rep (Typ)
5942 and then Holes_OK
5943 then
5944 return;
5946 -- No check required on the left-hand side of an assignment
5948 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
5949 and then Expr = Name (Parent (Expr))
5950 then
5951 return;
5953 -- No check on a universal real constant. The context will eventually
5954 -- convert it to a machine number for some target type, or report an
5955 -- illegality.
5957 elsif Nkind (Expr) = N_Real_Literal
5958 and then Etype (Expr) = Universal_Real
5959 then
5960 return;
5962 -- If the expression denotes a component of a packed boolean array,
5963 -- no possible check applies. We ignore the old ACATS chestnuts that
5964 -- involve Boolean range True..True.
5966 -- Note: validity checks are generated for expressions that yield a
5967 -- scalar type, when it is possible to create a value that is outside of
5968 -- the type. If this is a one-bit boolean no such value exists. This is
5969 -- an optimization, and it also prevents compiler blowing up during the
5970 -- elaboration of improperly expanded packed array references.
5972 elsif Nkind (Expr) = N_Indexed_Component
5973 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
5974 and then Root_Type (Etype (Expr)) = Standard_Boolean
5975 then
5976 return;
5978 -- For an expression with actions, we want to insert the validity check
5979 -- on the final Expression.
5981 elsif Nkind (Expr) = N_Expression_With_Actions then
5982 Ensure_Valid (Expression (Expr));
5983 return;
5985 -- An annoying special case. If this is an out parameter of a scalar
5986 -- type, then the value is not going to be accessed, therefore it is
5987 -- inappropriate to do any validity check at the call site.
5989 else
5990 -- Only need to worry about scalar types
5992 if Is_Scalar_Type (Typ) then
5993 declare
5994 P : Node_Id;
5995 N : Node_Id;
5996 E : Entity_Id;
5997 F : Entity_Id;
5998 A : Node_Id;
5999 L : List_Id;
6001 begin
6002 -- Find actual argument (which may be a parameter association)
6003 -- and the parent of the actual argument (the call statement)
6005 N := Expr;
6006 P := Parent (Expr);
6008 if Nkind (P) = N_Parameter_Association then
6009 N := P;
6010 P := Parent (N);
6011 end if;
6013 -- Only need to worry if we are argument of a procedure call
6014 -- since functions don't have out parameters. If this is an
6015 -- indirect or dispatching call, get signature from the
6016 -- subprogram type.
6018 if Nkind (P) = N_Procedure_Call_Statement then
6019 L := Parameter_Associations (P);
6021 if Is_Entity_Name (Name (P)) then
6022 E := Entity (Name (P));
6023 else
6024 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
6025 E := Etype (Name (P));
6026 end if;
6028 -- Only need to worry if there are indeed actuals, and if
6029 -- this could be a procedure call, otherwise we cannot get a
6030 -- match (either we are not an argument, or the mode of the
6031 -- formal is not OUT). This test also filters out the
6032 -- generic case.
6034 if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
6036 -- This is the loop through parameters, looking for an
6037 -- OUT parameter for which we are the argument.
6039 F := First_Formal (E);
6040 A := First (L);
6041 while Present (F) loop
6042 if Ekind (F) = E_Out_Parameter and then A = N then
6043 return;
6044 end if;
6046 Next_Formal (F);
6047 Next (A);
6048 end loop;
6049 end if;
6050 end if;
6051 end;
6052 end if;
6053 end if;
6055 -- If this is a boolean expression, only its elementary operands need
6056 -- checking: if they are valid, a boolean or short-circuit operation
6057 -- with them will be valid as well.
6059 if Base_Type (Typ) = Standard_Boolean
6060 and then
6061 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
6062 then
6063 return;
6064 end if;
6066 -- If we fall through, a validity check is required
6068 Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);
6070 if Is_Entity_Name (Expr)
6071 and then Safe_To_Capture_Value (Expr, Entity (Expr))
6072 then
6073 Set_Is_Known_Valid (Entity (Expr));
6074 end if;
6075 end Ensure_Valid;
6077 ----------------------
6078 -- Expr_Known_Valid --
6079 ----------------------
6081 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
6082 Typ : constant Entity_Id := Etype (Expr);
6084 begin
6085 -- Non-scalar types are always considered valid, since they never give
6086 -- rise to the issues of erroneous or bounded error behavior that are
6087 -- the concern. In formal reference manual terms the notion of validity
6088 -- only applies to scalar types. Note that even when packed arrays are
6089 -- represented using modular types, they are still arrays semantically,
6090 -- so they are also always valid (in particular, the unused bits can be
6091 -- random rubbish without affecting the validity of the array value).
6093 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
6094 return True;
6096 -- If no validity checking, then everything is considered valid
6098 elsif not Validity_Checks_On then
6099 return True;
6101 -- Floating-point types are considered valid unless floating-point
6102 -- validity checks have been specifically turned on.
6104 elsif Is_Floating_Point_Type (Typ)
6105 and then not Validity_Check_Floating_Point
6106 then
6107 return True;
6109 -- If the expression is the value of an object that is known to be
6110 -- valid, then clearly the expression value itself is valid.
6112 elsif Is_Entity_Name (Expr)
6113 and then Is_Known_Valid (Entity (Expr))
6115 -- Exclude volatile variables
6117 and then not Treat_As_Volatile (Entity (Expr))
6118 then
6119 return True;
6121 -- References to discriminants are always considered valid. The value
6122 -- of a discriminant gets checked when the object is built. Within the
6123 -- record, we consider it valid, and it is important to do so, since
6124 -- otherwise we can try to generate bogus validity checks which
6125 -- reference discriminants out of scope. Discriminants of concurrent
6126 -- types are excluded for the same reason.
6128 elsif Is_Entity_Name (Expr)
6129 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
6130 then
6131 return True;
6133 -- If the type is one for which all values are known valid, then we are
6134 -- sure that the value is valid except in the slightly odd case where
6135 -- the expression is a reference to a variable whose size has been
6136 -- explicitly set to a value greater than the object size.
6138 elsif Is_Known_Valid (Typ) then
6139 if Is_Entity_Name (Expr)
6140 and then Ekind (Entity (Expr)) = E_Variable
6141 and then Esize (Entity (Expr)) > Esize (Typ)
6142 then
6143 return False;
6144 else
6145 return True;
6146 end if;
6148 -- Integer and character literals always have valid values, where
6149 -- appropriate these will be range checked in any case.
6151 elsif Nkind_In (Expr, N_Integer_Literal, N_Character_Literal) then
6152 return True;
6154 -- If we have a type conversion or a qualification of a known valid
6155 -- value, then the result will always be valid.
6157 elsif Nkind_In (Expr, N_Type_Conversion, N_Qualified_Expression) then
6158 return Expr_Known_Valid (Expression (Expr));
6160 -- Case of expression is a non-floating-point operator. In this case we
6161 -- can assume the result is valid the generated code for the operator
6162 -- will include whatever checks are needed (e.g. range checks) to ensure
6163 -- validity. This assumption does not hold for the floating-point case,
6164 -- since floating-point operators can generate Infinite or NaN results
6165 -- which are considered invalid.
6167 -- Historical note: in older versions, the exemption of floating-point
6168 -- types from this assumption was done only in cases where the parent
6169 -- was an assignment, function call or parameter association. Presumably
6170 -- the idea was that in other contexts, the result would be checked
6171 -- elsewhere, but this list of cases was missing tests (at least the
6172 -- N_Object_Declaration case, as shown by a reported missing validity
6173 -- check), and it is not clear why function calls but not procedure
6174 -- calls were tested for. It really seems more accurate and much
6175 -- safer to recognize that expressions which are the result of a
6176 -- floating-point operator can never be assumed to be valid.
6178 elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
6179 return True;
6181 -- The result of a membership test is always valid, since it is true or
6182 -- false, there are no other possibilities.
6184 elsif Nkind (Expr) in N_Membership_Test then
6185 return True;
6187 -- For all other cases, we do not know the expression is valid
6189 else
6190 return False;
6191 end if;
6192 end Expr_Known_Valid;
6194 ----------------
6195 -- Find_Check --
6196 ----------------
6198 procedure Find_Check
6199 (Expr : Node_Id;
6200 Check_Type : Character;
6201 Target_Type : Entity_Id;
6202 Entry_OK : out Boolean;
6203 Check_Num : out Nat;
6204 Ent : out Entity_Id;
6205 Ofs : out Uint)
6207 function Within_Range_Of
6208 (Target_Type : Entity_Id;
6209 Check_Type : Entity_Id) return Boolean;
6210 -- Given a requirement for checking a range against Target_Type, and
6211 -- and a range Check_Type against which a check has already been made,
6212 -- determines if the check against check type is sufficient to ensure
6213 -- that no check against Target_Type is required.
6215 ---------------------
6216 -- Within_Range_Of --
6217 ---------------------
6219 function Within_Range_Of
6220 (Target_Type : Entity_Id;
6221 Check_Type : Entity_Id) return Boolean
6223 begin
6224 if Target_Type = Check_Type then
6225 return True;
6227 else
6228 declare
6229 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
6230 Thi : constant Node_Id := Type_High_Bound (Target_Type);
6231 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
6232 Chi : constant Node_Id := Type_High_Bound (Check_Type);
6234 begin
6235 if (Tlo = Clo
6236 or else (Compile_Time_Known_Value (Tlo)
6237 and then
6238 Compile_Time_Known_Value (Clo)
6239 and then
6240 Expr_Value (Clo) >= Expr_Value (Tlo)))
6241 and then
6242 (Thi = Chi
6243 or else (Compile_Time_Known_Value (Thi)
6244 and then
6245 Compile_Time_Known_Value (Chi)
6246 and then
6247 Expr_Value (Chi) <= Expr_Value (Clo)))
6248 then
6249 return True;
6250 else
6251 return False;
6252 end if;
6253 end;
6254 end if;
6255 end Within_Range_Of;
6257 -- Start of processing for Find_Check
6259 begin
6260 -- Establish default, in case no entry is found
6262 Check_Num := 0;
6264 -- Case of expression is simple entity reference
6266 if Is_Entity_Name (Expr) then
6267 Ent := Entity (Expr);
6268 Ofs := Uint_0;
6270 -- Case of expression is entity + known constant
6272 elsif Nkind (Expr) = N_Op_Add
6273 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6274 and then Is_Entity_Name (Left_Opnd (Expr))
6275 then
6276 Ent := Entity (Left_Opnd (Expr));
6277 Ofs := Expr_Value (Right_Opnd (Expr));
6279 -- Case of expression is entity - known constant
6281 elsif Nkind (Expr) = N_Op_Subtract
6282 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6283 and then Is_Entity_Name (Left_Opnd (Expr))
6284 then
6285 Ent := Entity (Left_Opnd (Expr));
6286 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
6288 -- Any other expression is not of the right form
6290 else
6291 Ent := Empty;
6292 Ofs := Uint_0;
6293 Entry_OK := False;
6294 return;
6295 end if;
6297 -- Come here with expression of appropriate form, check if entity is an
6298 -- appropriate one for our purposes.
6300 if (Ekind (Ent) = E_Variable
6301 or else Is_Constant_Object (Ent))
6302 and then not Is_Library_Level_Entity (Ent)
6303 then
6304 Entry_OK := True;
6305 else
6306 Entry_OK := False;
6307 return;
6308 end if;
6310 -- See if there is matching check already
6312 for J in reverse 1 .. Num_Saved_Checks loop
6313 declare
6314 SC : Saved_Check renames Saved_Checks (J);
6315 begin
6316 if SC.Killed = False
6317 and then SC.Entity = Ent
6318 and then SC.Offset = Ofs
6319 and then SC.Check_Type = Check_Type
6320 and then Within_Range_Of (Target_Type, SC.Target_Type)
6321 then
6322 Check_Num := J;
6323 return;
6324 end if;
6325 end;
6326 end loop;
6328 -- If we fall through entry was not found
6330 return;
6331 end Find_Check;
6333 ---------------------------------
6334 -- Generate_Discriminant_Check --
6335 ---------------------------------
6337 -- Note: the code for this procedure is derived from the
6338 -- Emit_Discriminant_Check Routine in trans.c.
6340 procedure Generate_Discriminant_Check (N : Node_Id) is
6341 Loc : constant Source_Ptr := Sloc (N);
6342 Pref : constant Node_Id := Prefix (N);
6343 Sel : constant Node_Id := Selector_Name (N);
6345 Orig_Comp : constant Entity_Id :=
6346 Original_Record_Component (Entity (Sel));
6347 -- The original component to be checked
6349 Discr_Fct : constant Entity_Id :=
6350 Discriminant_Checking_Func (Orig_Comp);
6351 -- The discriminant checking function
6353 Discr : Entity_Id;
6354 -- One discriminant to be checked in the type
6356 Real_Discr : Entity_Id;
6357 -- Actual discriminant in the call
6359 Pref_Type : Entity_Id;
6360 -- Type of relevant prefix (ignoring private/access stuff)
6362 Args : List_Id;
6363 -- List of arguments for function call
6365 Formal : Entity_Id;
6366 -- Keep track of the formal corresponding to the actual we build for
6367 -- each discriminant, in order to be able to perform the necessary type
6368 -- conversions.
6370 Scomp : Node_Id;
6371 -- Selected component reference for checking function argument
6373 begin
6374 Pref_Type := Etype (Pref);
6376 -- Force evaluation of the prefix, so that it does not get evaluated
6377 -- twice (once for the check, once for the actual reference). Such a
6378 -- double evaluation is always a potential source of inefficiency, and
6379 -- is functionally incorrect in the volatile case, or when the prefix
6380 -- may have side effects. A nonvolatile entity or a component of a
6381 -- nonvolatile entity requires no evaluation.
6383 if Is_Entity_Name (Pref) then
6384 if Treat_As_Volatile (Entity (Pref)) then
6385 Force_Evaluation (Pref, Name_Req => True);
6386 end if;
6388 elsif Treat_As_Volatile (Etype (Pref)) then
6389 Force_Evaluation (Pref, Name_Req => True);
6391 elsif Nkind (Pref) = N_Selected_Component
6392 and then Is_Entity_Name (Prefix (Pref))
6393 then
6394 null;
6396 else
6397 Force_Evaluation (Pref, Name_Req => True);
6398 end if;
6400 -- For a tagged type, use the scope of the original component to
6401 -- obtain the type, because ???
6403 if Is_Tagged_Type (Scope (Orig_Comp)) then
6404 Pref_Type := Scope (Orig_Comp);
6406 -- For an untagged derived type, use the discriminants of the parent
6407 -- which have been renamed in the derivation, possibly by a one-to-many
6408 -- discriminant constraint. For untagged type, initially get the Etype
6409 -- of the prefix
6411 else
6412 if Is_Derived_Type (Pref_Type)
6413 and then Number_Discriminants (Pref_Type) /=
6414 Number_Discriminants (Etype (Base_Type (Pref_Type)))
6415 then
6416 Pref_Type := Etype (Base_Type (Pref_Type));
6417 end if;
6418 end if;
6420 -- We definitely should have a checking function, This routine should
6421 -- not be called if no discriminant checking function is present.
6423 pragma Assert (Present (Discr_Fct));
6425 -- Create the list of the actual parameters for the call. This list
6426 -- is the list of the discriminant fields of the record expression to
6427 -- be discriminant checked.
6429 Args := New_List;
6430 Formal := First_Formal (Discr_Fct);
6431 Discr := First_Discriminant (Pref_Type);
6432 while Present (Discr) loop
6434 -- If we have a corresponding discriminant field, and a parent
6435 -- subtype is present, then we want to use the corresponding
6436 -- discriminant since this is the one with the useful value.
6438 if Present (Corresponding_Discriminant (Discr))
6439 and then Ekind (Pref_Type) = E_Record_Type
6440 and then Present (Parent_Subtype (Pref_Type))
6441 then
6442 Real_Discr := Corresponding_Discriminant (Discr);
6443 else
6444 Real_Discr := Discr;
6445 end if;
6447 -- Construct the reference to the discriminant
6449 Scomp :=
6450 Make_Selected_Component (Loc,
6451 Prefix =>
6452 Unchecked_Convert_To (Pref_Type,
6453 Duplicate_Subexpr (Pref)),
6454 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
6456 -- Manually analyze and resolve this selected component. We really
6457 -- want it just as it appears above, and do not want the expander
6458 -- playing discriminal games etc with this reference. Then we append
6459 -- the argument to the list we are gathering.
6461 Set_Etype (Scomp, Etype (Real_Discr));
6462 Set_Analyzed (Scomp, True);
6463 Append_To (Args, Convert_To (Etype (Formal), Scomp));
6465 Next_Formal_With_Extras (Formal);
6466 Next_Discriminant (Discr);
6467 end loop;
6469 -- Now build and insert the call
6471 Insert_Action (N,
6472 Make_Raise_Constraint_Error (Loc,
6473 Condition =>
6474 Make_Function_Call (Loc,
6475 Name => New_Occurrence_Of (Discr_Fct, Loc),
6476 Parameter_Associations => Args),
6477 Reason => CE_Discriminant_Check_Failed));
6478 end Generate_Discriminant_Check;
6480 ---------------------------
6481 -- Generate_Index_Checks --
6482 ---------------------------
6484 procedure Generate_Index_Checks (N : Node_Id) is
6486 function Entity_Of_Prefix return Entity_Id;
6487 -- Returns the entity of the prefix of N (or Empty if not found)
6489 ----------------------
6490 -- Entity_Of_Prefix --
6491 ----------------------
6493 function Entity_Of_Prefix return Entity_Id is
6494 P : Node_Id;
6496 begin
6497 P := Prefix (N);
6498 while not Is_Entity_Name (P) loop
6499 if not Nkind_In (P, N_Selected_Component,
6500 N_Indexed_Component)
6501 then
6502 return Empty;
6503 end if;
6505 P := Prefix (P);
6506 end loop;
6508 return Entity (P);
6509 end Entity_Of_Prefix;
6511 -- Local variables
6513 Loc : constant Source_Ptr := Sloc (N);
6514 A : constant Node_Id := Prefix (N);
6515 A_Ent : constant Entity_Id := Entity_Of_Prefix;
6516 Sub : Node_Id;
6518 -- Start of processing for Generate_Index_Checks
6520 begin
6521 -- Ignore call if the prefix is not an array since we have a serious
6522 -- error in the sources. Ignore it also if index checks are suppressed
6523 -- for array object or type.
6525 if not Is_Array_Type (Etype (A))
6526 or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
6527 or else Index_Checks_Suppressed (Etype (A))
6528 then
6529 return;
6531 -- The indexed component we are dealing with contains 'Loop_Entry in its
6532 -- prefix. This case arises when analysis has determined that constructs
6533 -- such as
6535 -- Prefix'Loop_Entry (Expr)
6536 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6538 -- require rewriting for error detection purposes. A side effect of this
6539 -- action is the generation of index checks that mention 'Loop_Entry.
6540 -- Delay the generation of the check until 'Loop_Entry has been properly
6541 -- expanded. This is done in Expand_Loop_Entry_Attributes.
6543 elsif Nkind (Prefix (N)) = N_Attribute_Reference
6544 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
6545 then
6546 return;
6547 end if;
6549 -- Generate a raise of constraint error with the appropriate reason and
6550 -- a condition of the form:
6552 -- Base_Type (Sub) not in Array'Range (Subscript)
6554 -- Note that the reason we generate the conversion to the base type here
6555 -- is that we definitely want the range check to take place, even if it
6556 -- looks like the subtype is OK. Optimization considerations that allow
6557 -- us to omit the check have already been taken into account in the
6558 -- setting of the Do_Range_Check flag earlier on.
6560 Sub := First (Expressions (N));
6562 -- Handle string literals
6564 if Ekind (Etype (A)) = E_String_Literal_Subtype then
6565 if Do_Range_Check (Sub) then
6566 Set_Do_Range_Check (Sub, False);
6568 -- For string literals we obtain the bounds of the string from the
6569 -- associated subtype.
6571 Insert_Action (N,
6572 Make_Raise_Constraint_Error (Loc,
6573 Condition =>
6574 Make_Not_In (Loc,
6575 Left_Opnd =>
6576 Convert_To (Base_Type (Etype (Sub)),
6577 Duplicate_Subexpr_Move_Checks (Sub)),
6578 Right_Opnd =>
6579 Make_Attribute_Reference (Loc,
6580 Prefix => New_Occurrence_Of (Etype (A), Loc),
6581 Attribute_Name => Name_Range)),
6582 Reason => CE_Index_Check_Failed));
6583 end if;
6585 -- General case
6587 else
6588 declare
6589 A_Idx : Node_Id := Empty;
6590 A_Range : Node_Id;
6591 Ind : Nat;
6592 Num : List_Id;
6593 Range_N : Node_Id;
6595 begin
6596 A_Idx := First_Index (Etype (A));
6597 Ind := 1;
6598 while Present (Sub) loop
6599 if Do_Range_Check (Sub) then
6600 Set_Do_Range_Check (Sub, False);
6602 -- Force evaluation except for the case of a simple name of
6603 -- a nonvolatile entity.
6605 if not Is_Entity_Name (Sub)
6606 or else Treat_As_Volatile (Entity (Sub))
6607 then
6608 Force_Evaluation (Sub);
6609 end if;
6611 if Nkind (A_Idx) = N_Range then
6612 A_Range := A_Idx;
6614 elsif Nkind (A_Idx) = N_Identifier
6615 or else Nkind (A_Idx) = N_Expanded_Name
6616 then
6617 A_Range := Scalar_Range (Entity (A_Idx));
6619 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
6620 A_Range := Range_Expression (Constraint (A_Idx));
6621 end if;
6623 -- For array objects with constant bounds we can generate
6624 -- the index check using the bounds of the type of the index
6626 if Present (A_Ent)
6627 and then Ekind (A_Ent) = E_Variable
6628 and then Is_Constant_Bound (Low_Bound (A_Range))
6629 and then Is_Constant_Bound (High_Bound (A_Range))
6630 then
6631 Range_N :=
6632 Make_Attribute_Reference (Loc,
6633 Prefix =>
6634 New_Occurrence_Of (Etype (A_Idx), Loc),
6635 Attribute_Name => Name_Range);
6637 -- For arrays with non-constant bounds we cannot generate
6638 -- the index check using the bounds of the type of the index
6639 -- since it may reference discriminants of some enclosing
6640 -- type. We obtain the bounds directly from the prefix
6641 -- object.
6643 else
6644 if Ind = 1 then
6645 Num := No_List;
6646 else
6647 Num := New_List (Make_Integer_Literal (Loc, Ind));
6648 end if;
6650 Range_N :=
6651 Make_Attribute_Reference (Loc,
6652 Prefix =>
6653 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
6654 Attribute_Name => Name_Range,
6655 Expressions => Num);
6656 end if;
6658 Insert_Action (N,
6659 Make_Raise_Constraint_Error (Loc,
6660 Condition =>
6661 Make_Not_In (Loc,
6662 Left_Opnd =>
6663 Convert_To (Base_Type (Etype (Sub)),
6664 Duplicate_Subexpr_Move_Checks (Sub)),
6665 Right_Opnd => Range_N),
6666 Reason => CE_Index_Check_Failed));
6667 end if;
6669 A_Idx := Next_Index (A_Idx);
6670 Ind := Ind + 1;
6671 Next (Sub);
6672 end loop;
6673 end;
6674 end if;
6675 end Generate_Index_Checks;
6677 --------------------------
6678 -- Generate_Range_Check --
6679 --------------------------
6681 procedure Generate_Range_Check
6682 (N : Node_Id;
6683 Target_Type : Entity_Id;
6684 Reason : RT_Exception_Code)
6686 Loc : constant Source_Ptr := Sloc (N);
6687 Source_Type : constant Entity_Id := Etype (N);
6688 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
6689 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
6691 procedure Convert_And_Check_Range;
6692 -- Convert the conversion operand to the target base type and save in
6693 -- a temporary. Then check the converted value against the range of the
6694 -- target subtype.
6696 -----------------------------
6697 -- Convert_And_Check_Range --
6698 -----------------------------
6700 procedure Convert_And_Check_Range is
6701 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
6703 begin
6704 -- We make a temporary to hold the value of the converted value
6705 -- (converted to the base type), and then do the test against this
6706 -- temporary. The conversion itself is replaced by an occurrence of
6707 -- Tnn and followed by the explicit range check. Note that checks
6708 -- are suppressed for this code, since we don't want a recursive
6709 -- range check popping up.
6711 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
6712 -- [constraint_error when Tnn not in Target_Type]
6714 Insert_Actions (N, New_List (
6715 Make_Object_Declaration (Loc,
6716 Defining_Identifier => Tnn,
6717 Object_Definition => New_Occurrence_Of (Target_Base_Type, Loc),
6718 Constant_Present => True,
6719 Expression =>
6720 Make_Type_Conversion (Loc,
6721 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
6722 Expression => Duplicate_Subexpr (N))),
6724 Make_Raise_Constraint_Error (Loc,
6725 Condition =>
6726 Make_Not_In (Loc,
6727 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6728 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6729 Reason => Reason)),
6730 Suppress => All_Checks);
6732 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6734 -- Set the type of N, because the declaration for Tnn might not
6735 -- be analyzed yet, as is the case if N appears within a record
6736 -- declaration, as a discriminant constraint or expression.
6738 Set_Etype (N, Target_Base_Type);
6739 end Convert_And_Check_Range;
6741 -- Start of processing for Generate_Range_Check
6743 begin
6744 -- First special case, if the source type is already within the range
6745 -- of the target type, then no check is needed (probably we should have
6746 -- stopped Do_Range_Check from being set in the first place, but better
6747 -- late than never in preventing junk code and junk flag settings.
6749 if In_Subrange_Of (Source_Type, Target_Type)
6751 -- We do NOT apply this if the source node is a literal, since in this
6752 -- case the literal has already been labeled as having the subtype of
6753 -- the target.
6755 and then not
6756 (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
6757 or else
6758 (Is_Entity_Name (N)
6759 and then Ekind (Entity (N)) = E_Enumeration_Literal))
6760 then
6761 Set_Do_Range_Check (N, False);
6762 return;
6763 end if;
6765 -- Here a check is needed. If the expander is not active, or if we are
6766 -- in GNATProve mode, then simply set the Do_Range_Check flag and we
6767 -- are done. In both these cases, we just want to see the range check
6768 -- flag set, we do not want to generate the explicit range check code.
6770 if GNATprove_Mode or else not Expander_Active then
6771 Set_Do_Range_Check (N, True);
6772 return;
6773 end if;
6775 -- Here we will generate an explicit range check, so we don't want to
6776 -- set the Do_Range check flag, since the range check is taken care of
6777 -- by the code we will generate.
6779 Set_Do_Range_Check (N, False);
6781 -- Force evaluation of the node, so that it does not get evaluated twice
6782 -- (once for the check, once for the actual reference). Such a double
6783 -- evaluation is always a potential source of inefficiency, and is
6784 -- functionally incorrect in the volatile case.
6786 if not Is_Entity_Name (N) or else Treat_As_Volatile (Entity (N)) then
6787 Force_Evaluation (N);
6788 end if;
6790 -- The easiest case is when Source_Base_Type and Target_Base_Type are
6791 -- the same since in this case we can simply do a direct check of the
6792 -- value of N against the bounds of Target_Type.
6794 -- [constraint_error when N not in Target_Type]
6796 -- Note: this is by far the most common case, for example all cases of
6797 -- checks on the RHS of assignments are in this category, but not all
6798 -- cases are like this. Notably conversions can involve two types.
6800 if Source_Base_Type = Target_Base_Type then
6802 -- Insert the explicit range check. Note that we suppress checks for
6803 -- this code, since we don't want a recursive range check popping up.
6805 Insert_Action (N,
6806 Make_Raise_Constraint_Error (Loc,
6807 Condition =>
6808 Make_Not_In (Loc,
6809 Left_Opnd => Duplicate_Subexpr (N),
6810 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6811 Reason => Reason),
6812 Suppress => All_Checks);
6814 -- Next test for the case where the target type is within the bounds
6815 -- of the base type of the source type, since in this case we can
6816 -- simply convert these bounds to the base type of T to do the test.
6818 -- [constraint_error when N not in
6819 -- Source_Base_Type (Target_Type'First)
6820 -- ..
6821 -- Source_Base_Type(Target_Type'Last))]
6823 -- The conversions will always work and need no check
6825 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
6826 -- of converting from an enumeration value to an integer type, such as
6827 -- occurs for the case of generating a range check on Enum'Val(Exp)
6828 -- (which used to be handled by gigi). This is OK, since the conversion
6829 -- itself does not require a check.
6831 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
6833 -- Insert the explicit range check. Note that we suppress checks for
6834 -- this code, since we don't want a recursive range check popping up.
6836 if Is_Discrete_Type (Source_Base_Type)
6837 and then
6838 Is_Discrete_Type (Target_Base_Type)
6839 then
6840 Insert_Action (N,
6841 Make_Raise_Constraint_Error (Loc,
6842 Condition =>
6843 Make_Not_In (Loc,
6844 Left_Opnd => Duplicate_Subexpr (N),
6846 Right_Opnd =>
6847 Make_Range (Loc,
6848 Low_Bound =>
6849 Unchecked_Convert_To (Source_Base_Type,
6850 Make_Attribute_Reference (Loc,
6851 Prefix =>
6852 New_Occurrence_Of (Target_Type, Loc),
6853 Attribute_Name => Name_First)),
6855 High_Bound =>
6856 Unchecked_Convert_To (Source_Base_Type,
6857 Make_Attribute_Reference (Loc,
6858 Prefix =>
6859 New_Occurrence_Of (Target_Type, Loc),
6860 Attribute_Name => Name_Last)))),
6861 Reason => Reason),
6862 Suppress => All_Checks);
6864 -- For conversions involving at least one type that is not discrete,
6865 -- first convert to target type and then generate the range check.
6866 -- This avoids problems with values that are close to a bound of the
6867 -- target type that would fail a range check when done in a larger
6868 -- source type before converting but would pass if converted with
6869 -- rounding and then checked (such as in float-to-float conversions).
6871 else
6872 Convert_And_Check_Range;
6873 end if;
6875 -- Note that at this stage we now that the Target_Base_Type is not in
6876 -- the range of the Source_Base_Type (since even the Target_Type itself
6877 -- is not in this range). It could still be the case that Source_Type is
6878 -- in range of the target base type since we have not checked that case.
6880 -- If that is the case, we can freely convert the source to the target,
6881 -- and then test the target result against the bounds.
6883 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
6884 Convert_And_Check_Range;
6886 -- At this stage, we know that we have two scalar types, which are
6887 -- directly convertible, and where neither scalar type has a base
6888 -- range that is in the range of the other scalar type.
6890 -- The only way this can happen is with a signed and unsigned type.
6891 -- So test for these two cases:
6893 else
6894 -- Case of the source is unsigned and the target is signed
6896 if Is_Unsigned_Type (Source_Base_Type)
6897 and then not Is_Unsigned_Type (Target_Base_Type)
6898 then
6899 -- If the source is unsigned and the target is signed, then we
6900 -- know that the source is not shorter than the target (otherwise
6901 -- the source base type would be in the target base type range).
6903 -- In other words, the unsigned type is either the same size as
6904 -- the target, or it is larger. It cannot be smaller.
6906 pragma Assert
6907 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
6909 -- We only need to check the low bound if the low bound of the
6910 -- target type is non-negative. If the low bound of the target
6911 -- type is negative, then we know that we will fit fine.
6913 -- If the high bound of the target type is negative, then we
6914 -- know we have a constraint error, since we can't possibly
6915 -- have a negative source.
6917 -- With these two checks out of the way, we can do the check
6918 -- using the source type safely
6920 -- This is definitely the most annoying case.
6922 -- [constraint_error
6923 -- when (Target_Type'First >= 0
6924 -- and then
6925 -- N < Source_Base_Type (Target_Type'First))
6926 -- or else Target_Type'Last < 0
6927 -- or else N > Source_Base_Type (Target_Type'Last)];
6929 -- We turn off all checks since we know that the conversions
6930 -- will work fine, given the guards for negative values.
6932 Insert_Action (N,
6933 Make_Raise_Constraint_Error (Loc,
6934 Condition =>
6935 Make_Or_Else (Loc,
6936 Make_Or_Else (Loc,
6937 Left_Opnd =>
6938 Make_And_Then (Loc,
6939 Left_Opnd => Make_Op_Ge (Loc,
6940 Left_Opnd =>
6941 Make_Attribute_Reference (Loc,
6942 Prefix =>
6943 New_Occurrence_Of (Target_Type, Loc),
6944 Attribute_Name => Name_First),
6945 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
6947 Right_Opnd =>
6948 Make_Op_Lt (Loc,
6949 Left_Opnd => Duplicate_Subexpr (N),
6950 Right_Opnd =>
6951 Convert_To (Source_Base_Type,
6952 Make_Attribute_Reference (Loc,
6953 Prefix =>
6954 New_Occurrence_Of (Target_Type, Loc),
6955 Attribute_Name => Name_First)))),
6957 Right_Opnd =>
6958 Make_Op_Lt (Loc,
6959 Left_Opnd =>
6960 Make_Attribute_Reference (Loc,
6961 Prefix => New_Occurrence_Of (Target_Type, Loc),
6962 Attribute_Name => Name_Last),
6963 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
6965 Right_Opnd =>
6966 Make_Op_Gt (Loc,
6967 Left_Opnd => Duplicate_Subexpr (N),
6968 Right_Opnd =>
6969 Convert_To (Source_Base_Type,
6970 Make_Attribute_Reference (Loc,
6971 Prefix => New_Occurrence_Of (Target_Type, Loc),
6972 Attribute_Name => Name_Last)))),
6974 Reason => Reason),
6975 Suppress => All_Checks);
6977 -- Only remaining possibility is that the source is signed and
6978 -- the target is unsigned.
6980 else
6981 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
6982 and then Is_Unsigned_Type (Target_Base_Type));
6984 -- If the source is signed and the target is unsigned, then we
6985 -- know that the target is not shorter than the source (otherwise
6986 -- the target base type would be in the source base type range).
6988 -- In other words, the unsigned type is either the same size as
6989 -- the target, or it is larger. It cannot be smaller.
6991 -- Clearly we have an error if the source value is negative since
6992 -- no unsigned type can have negative values. If the source type
6993 -- is non-negative, then the check can be done using the target
6994 -- type.
6996 -- Tnn : constant Target_Base_Type (N) := Target_Type;
6998 -- [constraint_error
6999 -- when N < 0 or else Tnn not in Target_Type];
7001 -- We turn off all checks for the conversion of N to the target
7002 -- base type, since we generate the explicit check to ensure that
7003 -- the value is non-negative
7005 declare
7006 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
7008 begin
7009 Insert_Actions (N, New_List (
7010 Make_Object_Declaration (Loc,
7011 Defining_Identifier => Tnn,
7012 Object_Definition =>
7013 New_Occurrence_Of (Target_Base_Type, Loc),
7014 Constant_Present => True,
7015 Expression =>
7016 Make_Unchecked_Type_Conversion (Loc,
7017 Subtype_Mark =>
7018 New_Occurrence_Of (Target_Base_Type, Loc),
7019 Expression => Duplicate_Subexpr (N))),
7021 Make_Raise_Constraint_Error (Loc,
7022 Condition =>
7023 Make_Or_Else (Loc,
7024 Left_Opnd =>
7025 Make_Op_Lt (Loc,
7026 Left_Opnd => Duplicate_Subexpr (N),
7027 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7029 Right_Opnd =>
7030 Make_Not_In (Loc,
7031 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
7032 Right_Opnd =>
7033 New_Occurrence_Of (Target_Type, Loc))),
7035 Reason => Reason)),
7036 Suppress => All_Checks);
7038 -- Set the Etype explicitly, because Insert_Actions may have
7039 -- placed the declaration in the freeze list for an enclosing
7040 -- construct, and thus it is not analyzed yet.
7042 Set_Etype (Tnn, Target_Base_Type);
7043 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7044 end;
7045 end if;
7046 end if;
7047 end Generate_Range_Check;
7049 ------------------
7050 -- Get_Check_Id --
7051 ------------------
7053 function Get_Check_Id (N : Name_Id) return Check_Id is
7054 begin
7055 -- For standard check name, we can do a direct computation
7057 if N in First_Check_Name .. Last_Check_Name then
7058 return Check_Id (N - (First_Check_Name - 1));
7060 -- For non-standard names added by pragma Check_Name, search table
7062 else
7063 for J in All_Checks + 1 .. Check_Names.Last loop
7064 if Check_Names.Table (J) = N then
7065 return J;
7066 end if;
7067 end loop;
7068 end if;
7070 -- No matching name found
7072 return No_Check_Id;
7073 end Get_Check_Id;
7075 ---------------------
7076 -- Get_Discriminal --
7077 ---------------------
7079 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
7080 Loc : constant Source_Ptr := Sloc (E);
7081 D : Entity_Id;
7082 Sc : Entity_Id;
7084 begin
7085 -- The bound can be a bona fide parameter of a protected operation,
7086 -- rather than a prival encoded as an in-parameter.
7088 if No (Discriminal_Link (Entity (Bound))) then
7089 return Bound;
7090 end if;
7092 -- Climb the scope stack looking for an enclosing protected type. If
7093 -- we run out of scopes, return the bound itself.
7095 Sc := Scope (E);
7096 while Present (Sc) loop
7097 if Sc = Standard_Standard then
7098 return Bound;
7099 elsif Ekind (Sc) = E_Protected_Type then
7100 exit;
7101 end if;
7103 Sc := Scope (Sc);
7104 end loop;
7106 D := First_Discriminant (Sc);
7107 while Present (D) loop
7108 if Chars (D) = Chars (Bound) then
7109 return New_Occurrence_Of (Discriminal (D), Loc);
7110 end if;
7112 Next_Discriminant (D);
7113 end loop;
7115 return Bound;
7116 end Get_Discriminal;
7118 ----------------------
7119 -- Get_Range_Checks --
7120 ----------------------
7122 function Get_Range_Checks
7123 (Ck_Node : Node_Id;
7124 Target_Typ : Entity_Id;
7125 Source_Typ : Entity_Id := Empty;
7126 Warn_Node : Node_Id := Empty) return Check_Result
7128 begin
7129 return
7130 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
7131 end Get_Range_Checks;
7133 ------------------
7134 -- Guard_Access --
7135 ------------------
7137 function Guard_Access
7138 (Cond : Node_Id;
7139 Loc : Source_Ptr;
7140 Ck_Node : Node_Id) return Node_Id
7142 begin
7143 if Nkind (Cond) = N_Or_Else then
7144 Set_Paren_Count (Cond, 1);
7145 end if;
7147 if Nkind (Ck_Node) = N_Allocator then
7148 return Cond;
7150 else
7151 return
7152 Make_And_Then (Loc,
7153 Left_Opnd =>
7154 Make_Op_Ne (Loc,
7155 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
7156 Right_Opnd => Make_Null (Loc)),
7157 Right_Opnd => Cond);
7158 end if;
7159 end Guard_Access;
7161 -----------------------------
7162 -- Index_Checks_Suppressed --
7163 -----------------------------
7165 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
7166 begin
7167 if Present (E) and then Checks_May_Be_Suppressed (E) then
7168 return Is_Check_Suppressed (E, Index_Check);
7169 else
7170 return Scope_Suppress.Suppress (Index_Check);
7171 end if;
7172 end Index_Checks_Suppressed;
7174 ----------------
7175 -- Initialize --
7176 ----------------
7178 procedure Initialize is
7179 begin
7180 for J in Determine_Range_Cache_N'Range loop
7181 Determine_Range_Cache_N (J) := Empty;
7182 end loop;
7184 Check_Names.Init;
7186 for J in Int range 1 .. All_Checks loop
7187 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
7188 end loop;
7189 end Initialize;
7191 -------------------------
7192 -- Insert_Range_Checks --
7193 -------------------------
7195 procedure Insert_Range_Checks
7196 (Checks : Check_Result;
7197 Node : Node_Id;
7198 Suppress_Typ : Entity_Id;
7199 Static_Sloc : Source_Ptr := No_Location;
7200 Flag_Node : Node_Id := Empty;
7201 Do_Before : Boolean := False)
7203 Checks_On : constant Boolean :=
7204 not Index_Checks_Suppressed (Suppress_Typ)
7205 or else
7206 not Range_Checks_Suppressed (Suppress_Typ);
7208 Check_Node : Node_Id;
7209 Internal_Flag_Node : Node_Id := Flag_Node;
7210 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
7212 begin
7213 -- For now we just return if Checks_On is false, however this should be
7214 -- enhanced to check for an always True value in the condition and to
7215 -- generate a compilation warning???
7217 if not Expander_Active or not Checks_On then
7218 return;
7219 end if;
7221 if Static_Sloc = No_Location then
7222 Internal_Static_Sloc := Sloc (Node);
7223 end if;
7225 if No (Flag_Node) then
7226 Internal_Flag_Node := Node;
7227 end if;
7229 for J in 1 .. 2 loop
7230 exit when No (Checks (J));
7232 if Nkind (Checks (J)) = N_Raise_Constraint_Error
7233 and then Present (Condition (Checks (J)))
7234 then
7235 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
7236 Check_Node := Checks (J);
7237 Mark_Rewrite_Insertion (Check_Node);
7239 if Do_Before then
7240 Insert_Before_And_Analyze (Node, Check_Node);
7241 else
7242 Insert_After_And_Analyze (Node, Check_Node);
7243 end if;
7245 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
7246 end if;
7248 else
7249 Check_Node :=
7250 Make_Raise_Constraint_Error (Internal_Static_Sloc,
7251 Reason => CE_Range_Check_Failed);
7252 Mark_Rewrite_Insertion (Check_Node);
7254 if Do_Before then
7255 Insert_Before_And_Analyze (Node, Check_Node);
7256 else
7257 Insert_After_And_Analyze (Node, Check_Node);
7258 end if;
7259 end if;
7260 end loop;
7261 end Insert_Range_Checks;
7263 ------------------------
7264 -- Insert_Valid_Check --
7265 ------------------------
7267 procedure Insert_Valid_Check
7268 (Expr : Node_Id;
7269 Related_Id : Entity_Id := Empty;
7270 Is_Low_Bound : Boolean := False;
7271 Is_High_Bound : Boolean := False)
7273 Loc : constant Source_Ptr := Sloc (Expr);
7274 Typ : constant Entity_Id := Etype (Expr);
7275 Exp : Node_Id;
7277 begin
7278 -- Do not insert if checks off, or if not checking validity or if
7279 -- expression is known to be valid.
7281 if not Validity_Checks_On
7282 or else Range_Or_Validity_Checks_Suppressed (Expr)
7283 or else Expr_Known_Valid (Expr)
7284 then
7285 return;
7287 -- Do not insert checks within a predicate function. This will arise
7288 -- if the current unit and the predicate function are being compiled
7289 -- with validity checks enabled.
7291 elsif Present (Predicate_Function (Typ))
7292 and then Current_Scope = Predicate_Function (Typ)
7293 then
7294 return;
7296 -- If the expression is a packed component of a modular type of the
7297 -- right size, the data is always valid.
7299 elsif Nkind (Expr) = N_Selected_Component
7300 and then Present (Component_Clause (Entity (Selector_Name (Expr))))
7301 and then Is_Modular_Integer_Type (Typ)
7302 and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
7303 then
7304 return;
7306 -- Do not generate a validity check when inside a generic unit as this
7307 -- is an expansion activity.
7309 elsif Inside_A_Generic then
7310 return;
7311 end if;
7313 -- If we have a checked conversion, then validity check applies to
7314 -- the expression inside the conversion, not the result, since if
7315 -- the expression inside is valid, then so is the conversion result.
7317 Exp := Expr;
7318 while Nkind (Exp) = N_Type_Conversion loop
7319 Exp := Expression (Exp);
7320 end loop;
7322 -- Do not generate a check for a variable which already validates the
7323 -- value of an assignable object.
7325 if Is_Validation_Variable_Reference (Exp) then
7326 return;
7327 end if;
7329 -- We are about to insert the validity check for Exp. We save and
7330 -- reset the Do_Range_Check flag over this validity check, and then
7331 -- put it back for the final original reference (Exp may be rewritten).
7333 declare
7334 DRC : constant Boolean := Do_Range_Check (Exp);
7336 CE : Node_Id;
7337 Obj : Node_Id;
7338 PV : Node_Id;
7339 Var_Id : Entity_Id;
7341 begin
7342 Set_Do_Range_Check (Exp, False);
7344 -- If the expression denotes an assignable object, capture its value
7345 -- in a variable and replace the original expression by the variable.
7346 -- This approach has several effects:
7348 -- 1) The evaluation of the object results in only one read in the
7349 -- case where the object is atomic or volatile.
7351 -- Var ... := Object; -- read
7353 -- 2) The captured value is the one verified by attribute 'Valid.
7354 -- As a result the object is not evaluated again, which would
7355 -- result in an unwanted read in the case where the object is
7356 -- atomic or volatile.
7358 -- if not Var'Valid then -- OK, no read of Object
7360 -- if not Object'Valid then -- Wrong, extra read of Object
7362 -- 3) The captured value replaces the original object reference.
7363 -- As a result the object is not evaluated again, in the same
7364 -- vein as 2).
7366 -- ... Var ... -- OK, no read of Object
7368 -- ... Object ... -- Wrong, extra read of Object
7370 -- 4) The use of a variable to capture the value of the object
7371 -- allows the propagation of any changes back to the original
7372 -- object.
7374 -- procedure Call (Val : in out ...);
7376 -- Var : ... := Object; -- read Object
7377 -- if not Var'Valid then -- validity check
7378 -- Call (Var); -- modify Var
7379 -- Object := Var; -- update Object
7381 if Is_Variable (Exp) then
7382 Obj := New_Copy_Tree (Exp);
7383 Var_Id := Make_Temporary (Loc, 'T', Exp);
7385 Insert_Action (Exp,
7386 Make_Object_Declaration (Loc,
7387 Defining_Identifier => Var_Id,
7388 Object_Definition => New_Occurrence_Of (Typ, Loc),
7389 Expression => Relocate_Node (Exp)));
7390 Set_Validated_Object (Var_Id, Obj);
7392 Rewrite (Exp, New_Occurrence_Of (Var_Id, Loc));
7393 PV := New_Occurrence_Of (Var_Id, Loc);
7395 -- Otherwise the expression does not denote a variable. Force its
7396 -- evaluation by capturing its value in a constant. Generate:
7398 -- Temp : constant ... := Exp;
7400 else
7401 Force_Evaluation
7402 (Exp => Exp,
7403 Related_Id => Related_Id,
7404 Is_Low_Bound => Is_Low_Bound,
7405 Is_High_Bound => Is_High_Bound);
7407 PV := New_Copy_Tree (Exp);
7408 end if;
7410 -- A rather specialized test. If PV is an analyzed expression which
7411 -- is an indexed component of a packed array that has not been
7412 -- properly expanded, turn off its Analyzed flag to make sure it
7413 -- gets properly reexpanded. If the prefix is an access value,
7414 -- the dereference will be added later.
7416 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
7417 -- an analyze with the old parent pointer. This may point e.g. to
7418 -- a subprogram call, which deactivates this expansion.
7420 if Analyzed (PV)
7421 and then Nkind (PV) = N_Indexed_Component
7422 and then Is_Array_Type (Etype (Prefix (PV)))
7423 and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
7424 then
7425 Set_Analyzed (PV, False);
7426 end if;
7428 -- Build the raise CE node to check for validity. We build a type
7429 -- qualification for the prefix, since it may not be of the form of
7430 -- a name, and we don't care in this context!
7432 CE :=
7433 Make_Raise_Constraint_Error (Loc,
7434 Condition =>
7435 Make_Op_Not (Loc,
7436 Right_Opnd =>
7437 Make_Attribute_Reference (Loc,
7438 Prefix => PV,
7439 Attribute_Name => Name_Valid)),
7440 Reason => CE_Invalid_Data);
7442 -- Insert the validity check. Note that we do this with validity
7443 -- checks turned off, to avoid recursion, we do not want validity
7444 -- checks on the validity checking code itself.
7446 Insert_Action (Expr, CE, Suppress => Validity_Check);
7448 -- If the expression is a reference to an element of a bit-packed
7449 -- array, then it is rewritten as a renaming declaration. If the
7450 -- expression is an actual in a call, it has not been expanded,
7451 -- waiting for the proper point at which to do it. The same happens
7452 -- with renamings, so that we have to force the expansion now. This
7453 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7454 -- and exp_ch6.adb.
7456 if Is_Entity_Name (Exp)
7457 and then Nkind (Parent (Entity (Exp))) =
7458 N_Object_Renaming_Declaration
7459 then
7460 declare
7461 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
7462 begin
7463 if Nkind (Old_Exp) = N_Indexed_Component
7464 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
7465 then
7466 Expand_Packed_Element_Reference (Old_Exp);
7467 end if;
7468 end;
7469 end if;
7471 -- Put back the Do_Range_Check flag on the resulting (possibly
7472 -- rewritten) expression.
7474 -- Note: it might be thought that a validity check is not required
7475 -- when a range check is present, but that's not the case, because
7476 -- the back end is allowed to assume for the range check that the
7477 -- operand is within its declared range (an assumption that validity
7478 -- checking is all about NOT assuming).
7480 -- Note: no need to worry about Possible_Local_Raise here, it will
7481 -- already have been called if original node has Do_Range_Check set.
7483 Set_Do_Range_Check (Exp, DRC);
7484 end;
7485 end Insert_Valid_Check;
7487 -------------------------------------
7488 -- Is_Signed_Integer_Arithmetic_Op --
7489 -------------------------------------
7491 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
7492 begin
7493 case Nkind (N) is
7494 when N_Op_Abs
7495 | N_Op_Add
7496 | N_Op_Divide
7497 | N_Op_Expon
7498 | N_Op_Minus
7499 | N_Op_Mod
7500 | N_Op_Multiply
7501 | N_Op_Plus
7502 | N_Op_Rem
7503 | N_Op_Subtract
7505 return Is_Signed_Integer_Type (Etype (N));
7507 when N_Case_Expression
7508 | N_If_Expression
7510 return Is_Signed_Integer_Type (Etype (N));
7512 when others =>
7513 return False;
7514 end case;
7515 end Is_Signed_Integer_Arithmetic_Op;
7517 ----------------------------------
7518 -- Install_Null_Excluding_Check --
7519 ----------------------------------
7521 procedure Install_Null_Excluding_Check (N : Node_Id) is
7522 Loc : constant Source_Ptr := Sloc (Parent (N));
7523 Typ : constant Entity_Id := Etype (N);
7525 function Safe_To_Capture_In_Parameter_Value return Boolean;
7526 -- Determines if it is safe to capture Known_Non_Null status for an
7527 -- the entity referenced by node N. The caller ensures that N is indeed
7528 -- an entity name. It is safe to capture the non-null status for an IN
7529 -- parameter when the reference occurs within a declaration that is sure
7530 -- to be executed as part of the declarative region.
7532 procedure Mark_Non_Null;
7533 -- After installation of check, if the node in question is an entity
7534 -- name, then mark this entity as non-null if possible.
7536 function Safe_To_Capture_In_Parameter_Value return Boolean is
7537 E : constant Entity_Id := Entity (N);
7538 S : constant Entity_Id := Current_Scope;
7539 S_Par : Node_Id;
7541 begin
7542 if Ekind (E) /= E_In_Parameter then
7543 return False;
7544 end if;
7546 -- Two initial context checks. We must be inside a subprogram body
7547 -- with declarations and reference must not appear in nested scopes.
7549 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
7550 or else Scope (E) /= S
7551 then
7552 return False;
7553 end if;
7555 S_Par := Parent (Parent (S));
7557 if Nkind (S_Par) /= N_Subprogram_Body
7558 or else No (Declarations (S_Par))
7559 then
7560 return False;
7561 end if;
7563 declare
7564 N_Decl : Node_Id;
7565 P : Node_Id;
7567 begin
7568 -- Retrieve the declaration node of N (if any). Note that N
7569 -- may be a part of a complex initialization expression.
7571 P := Parent (N);
7572 N_Decl := Empty;
7573 while Present (P) loop
7575 -- If we have a short circuit form, and we are within the right
7576 -- hand expression, we return false, since the right hand side
7577 -- is not guaranteed to be elaborated.
7579 if Nkind (P) in N_Short_Circuit
7580 and then N = Right_Opnd (P)
7581 then
7582 return False;
7583 end if;
7585 -- Similarly, if we are in an if expression and not part of the
7586 -- condition, then we return False, since neither the THEN or
7587 -- ELSE dependent expressions will always be elaborated.
7589 if Nkind (P) = N_If_Expression
7590 and then N /= First (Expressions (P))
7591 then
7592 return False;
7593 end if;
7595 -- If within a case expression, and not part of the expression,
7596 -- then return False, since a particular dependent expression
7597 -- may not always be elaborated
7599 if Nkind (P) = N_Case_Expression
7600 and then N /= Expression (P)
7601 then
7602 return False;
7603 end if;
7605 -- While traversing the parent chain, if node N belongs to a
7606 -- statement, then it may never appear in a declarative region.
7608 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
7609 or else Nkind (P) = N_Procedure_Call_Statement
7610 then
7611 return False;
7612 end if;
7614 -- If we are at a declaration, record it and exit
7616 if Nkind (P) in N_Declaration
7617 and then Nkind (P) not in N_Subprogram_Specification
7618 then
7619 N_Decl := P;
7620 exit;
7621 end if;
7623 P := Parent (P);
7624 end loop;
7626 if No (N_Decl) then
7627 return False;
7628 end if;
7630 return List_Containing (N_Decl) = Declarations (S_Par);
7631 end;
7632 end Safe_To_Capture_In_Parameter_Value;
7634 -------------------
7635 -- Mark_Non_Null --
7636 -------------------
7638 procedure Mark_Non_Null is
7639 begin
7640 -- Only case of interest is if node N is an entity name
7642 if Is_Entity_Name (N) then
7644 -- For sure, we want to clear an indication that this is known to
7645 -- be null, since if we get past this check, it definitely is not.
7647 Set_Is_Known_Null (Entity (N), False);
7649 -- We can mark the entity as known to be non-null if either it is
7650 -- safe to capture the value, or in the case of an IN parameter,
7651 -- which is a constant, if the check we just installed is in the
7652 -- declarative region of the subprogram body. In this latter case,
7653 -- a check is decisive for the rest of the body if the expression
7654 -- is sure to be elaborated, since we know we have to elaborate
7655 -- all declarations before executing the body.
7657 -- Couldn't this always be part of Safe_To_Capture_Value ???
7659 if Safe_To_Capture_Value (N, Entity (N))
7660 or else Safe_To_Capture_In_Parameter_Value
7661 then
7662 Set_Is_Known_Non_Null (Entity (N));
7663 end if;
7664 end if;
7665 end Mark_Non_Null;
7667 -- Start of processing for Install_Null_Excluding_Check
7669 begin
7670 pragma Assert (Is_Access_Type (Typ));
7672 -- No check inside a generic, check will be emitted in instance
7674 if Inside_A_Generic then
7675 return;
7676 end if;
7678 -- No check needed if known to be non-null
7680 if Known_Non_Null (N) then
7681 return;
7682 end if;
7684 -- If known to be null, here is where we generate a compile time check
7686 if Known_Null (N) then
7688 -- Avoid generating warning message inside init procs. In SPARK mode
7689 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
7690 -- since it will be turned into an error in any case.
7692 if (not Inside_Init_Proc or else SPARK_Mode = On)
7694 -- Do not emit the warning within a conditional expression,
7695 -- where the expression might not be evaluated, and the warning
7696 -- appear as extraneous noise.
7698 and then not Within_Case_Or_If_Expression (N)
7699 then
7700 Apply_Compile_Time_Constraint_Error
7701 (N, "null value not allowed here??", CE_Access_Check_Failed);
7703 -- Remaining cases, where we silently insert the raise
7705 else
7706 Insert_Action (N,
7707 Make_Raise_Constraint_Error (Loc,
7708 Reason => CE_Access_Check_Failed));
7709 end if;
7711 Mark_Non_Null;
7712 return;
7713 end if;
7715 -- If entity is never assigned, for sure a warning is appropriate
7717 if Is_Entity_Name (N) then
7718 Check_Unset_Reference (N);
7719 end if;
7721 -- No check needed if checks are suppressed on the range. Note that we
7722 -- don't set Is_Known_Non_Null in this case (we could legitimately do
7723 -- so, since the program is erroneous, but we don't like to casually
7724 -- propagate such conclusions from erroneosity).
7726 if Access_Checks_Suppressed (Typ) then
7727 return;
7728 end if;
7730 -- No check needed for access to concurrent record types generated by
7731 -- the expander. This is not just an optimization (though it does indeed
7732 -- remove junk checks). It also avoids generation of junk warnings.
7734 if Nkind (N) in N_Has_Chars
7735 and then Chars (N) = Name_uObject
7736 and then Is_Concurrent_Record_Type
7737 (Directly_Designated_Type (Etype (N)))
7738 then
7739 return;
7740 end if;
7742 -- No check needed in interface thunks since the runtime check is
7743 -- already performed at the caller side.
7745 if Is_Thunk (Current_Scope) then
7746 return;
7747 end if;
7749 -- No check needed for the Get_Current_Excep.all.all idiom generated by
7750 -- the expander within exception handlers, since we know that the value
7751 -- can never be null.
7753 -- Is this really the right way to do this? Normally we generate such
7754 -- code in the expander with checks off, and that's how we suppress this
7755 -- kind of junk check ???
7757 if Nkind (N) = N_Function_Call
7758 and then Nkind (Name (N)) = N_Explicit_Dereference
7759 and then Nkind (Prefix (Name (N))) = N_Identifier
7760 and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
7761 then
7762 return;
7763 end if;
7765 -- Otherwise install access check
7767 Insert_Action (N,
7768 Make_Raise_Constraint_Error (Loc,
7769 Condition =>
7770 Make_Op_Eq (Loc,
7771 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
7772 Right_Opnd => Make_Null (Loc)),
7773 Reason => CE_Access_Check_Failed));
7775 Mark_Non_Null;
7776 end Install_Null_Excluding_Check;
7778 -----------------------------------------
7779 -- Install_Primitive_Elaboration_Check --
7780 -----------------------------------------
7782 procedure Install_Primitive_Elaboration_Check (Subp_Body : Node_Id) is
7783 function Within_Compilation_Unit_Instance
7784 (Subp_Id : Entity_Id) return Boolean;
7785 -- Determine whether subprogram Subp_Id appears within an instance which
7786 -- acts as a compilation unit.
7788 --------------------------------------
7789 -- Within_Compilation_Unit_Instance --
7790 --------------------------------------
7792 function Within_Compilation_Unit_Instance
7793 (Subp_Id : Entity_Id) return Boolean
7795 Pack : Entity_Id;
7797 begin
7798 -- Examine the scope chain looking for a compilation-unit-level
7799 -- instance.
7801 Pack := Scope (Subp_Id);
7802 while Present (Pack) and then Pack /= Standard_Standard loop
7803 if Ekind (Pack) = E_Package
7804 and then Is_Generic_Instance (Pack)
7805 and then Nkind (Parent (Unit_Declaration_Node (Pack))) =
7806 N_Compilation_Unit
7807 then
7808 return True;
7809 end if;
7811 Pack := Scope (Pack);
7812 end loop;
7814 return False;
7815 end Within_Compilation_Unit_Instance;
7817 -- Local declarations
7819 Context : constant Node_Id := Parent (Subp_Body);
7820 Loc : constant Source_Ptr := Sloc (Subp_Body);
7821 Subp_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Body);
7822 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
7824 Decls : List_Id;
7825 Flag_Id : Entity_Id;
7826 Set_Ins : Node_Id;
7827 Tag_Typ : Entity_Id;
7829 -- Start of processing for Install_Primitive_Elaboration_Check
7831 begin
7832 -- Do not generate an elaboration check in compilation modes where
7833 -- expansion is not desirable.
7835 if ASIS_Mode or GNATprove_Mode then
7836 return;
7838 -- Do not generate an elaboration check if all checks have been
7839 -- suppressed.
7841 elsif Suppress_Checks then
7842 return;
7844 -- Do not generate an elaboration check if the related subprogram is
7845 -- not subjected to accessibility checks.
7847 elsif Elaboration_Checks_Suppressed (Subp_Id) then
7848 return;
7850 -- Do not generate an elaboration check if such code is not desirable
7852 elsif Restriction_Active (No_Elaboration_Code) then
7853 return;
7855 -- Do not consider subprograms which act as compilation units, because
7856 -- they cannot be the target of a dispatching call.
7858 elsif Nkind (Context) = N_Compilation_Unit then
7859 return;
7861 -- Only nonabstract library-level source primitives are considered for
7862 -- this check.
7864 elsif not
7865 (Comes_From_Source (Subp_Id)
7866 and then Is_Library_Level_Entity (Subp_Id)
7867 and then Is_Primitive (Subp_Id)
7868 and then not Is_Abstract_Subprogram (Subp_Id))
7869 then
7870 return;
7872 -- Do not consider inlined primitives, because once the body is inlined
7873 -- the reference to the elaboration flag will be out of place and will
7874 -- result in an undefined symbol.
7876 elsif Is_Inlined (Subp_Id) or else Has_Pragma_Inline (Subp_Id) then
7877 return;
7879 -- Do not generate a duplicate elaboration check. This happens only in
7880 -- the case of primitives completed by an expression function, as the
7881 -- corresponding body is apparently analyzed and expanded twice.
7883 elsif Analyzed (Subp_Body) then
7884 return;
7886 -- Do not consider primitives which occur within an instance that acts
7887 -- as a compilation unit. Such an instance defines its spec and body out
7888 -- of order (body is first) within the tree, which causes the reference
7889 -- to the elaboration flag to appear as an undefined symbol.
7891 elsif Within_Compilation_Unit_Instance (Subp_Id) then
7892 return;
7893 end if;
7895 Tag_Typ := Find_Dispatching_Type (Subp_Id);
7897 -- Only tagged primitives may be the target of a dispatching call
7899 if No (Tag_Typ) then
7900 return;
7902 -- Do not consider finalization-related primitives, because they may
7903 -- need to be called while elaboration is taking place.
7905 elsif Is_Controlled (Tag_Typ)
7906 and then Nam_In (Chars (Subp_Id), Name_Adjust,
7907 Name_Finalize,
7908 Name_Initialize)
7909 then
7910 return;
7911 end if;
7913 -- Create the declaration of the elaboration flag. The name carries a
7914 -- unique counter in case of name overloading.
7916 Flag_Id :=
7917 Make_Defining_Identifier (Loc,
7918 Chars => New_External_Name (Chars (Subp_Id), 'F', -1));
7919 Set_Is_Frozen (Flag_Id);
7921 -- Insert the declaration of the elaboration flag in front of the
7922 -- primitive spec and analyze it in the proper context.
7924 Push_Scope (Scope (Subp_Id));
7926 -- Generate:
7927 -- F : Boolean := False;
7929 Insert_Action (Subp_Decl,
7930 Make_Object_Declaration (Loc,
7931 Defining_Identifier => Flag_Id,
7932 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
7933 Expression => New_Occurrence_Of (Standard_False, Loc)));
7934 Pop_Scope;
7936 -- Prevent the compiler from optimizing the elaboration check by killing
7937 -- the current value of the flag and the associated assignment.
7939 Set_Current_Value (Flag_Id, Empty);
7940 Set_Last_Assignment (Flag_Id, Empty);
7942 -- Add a check at the top of the body declarations to ensure that the
7943 -- elaboration flag has been set.
7945 Decls := Declarations (Subp_Body);
7947 if No (Decls) then
7948 Decls := New_List;
7949 Set_Declarations (Subp_Body, Decls);
7950 end if;
7952 -- Generate:
7953 -- if not F then
7954 -- raise Program_Error with "access before elaboration";
7955 -- end if;
7957 Prepend_To (Decls,
7958 Make_Raise_Program_Error (Loc,
7959 Condition =>
7960 Make_Op_Not (Loc,
7961 Right_Opnd => New_Occurrence_Of (Flag_Id, Loc)),
7962 Reason => PE_Access_Before_Elaboration));
7964 Analyze (First (Decls));
7966 -- Set the elaboration flag once the body has been elaborated. Insert
7967 -- the statement after the subprogram stub when the primitive body is
7968 -- a subunit.
7970 if Nkind (Context) = N_Subunit then
7971 Set_Ins := Corresponding_Stub (Context);
7972 else
7973 Set_Ins := Subp_Body;
7974 end if;
7976 -- Generate:
7977 -- F := True;
7979 Insert_After_And_Analyze (Set_Ins,
7980 Make_Assignment_Statement (Loc,
7981 Name => New_Occurrence_Of (Flag_Id, Loc),
7982 Expression => New_Occurrence_Of (Standard_True, Loc)));
7983 end Install_Primitive_Elaboration_Check;
7985 --------------------------
7986 -- Install_Static_Check --
7987 --------------------------
7989 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
7990 Stat : constant Boolean := Is_OK_Static_Expression (R_Cno);
7991 Typ : constant Entity_Id := Etype (R_Cno);
7993 begin
7994 Rewrite (R_Cno,
7995 Make_Raise_Constraint_Error (Loc,
7996 Reason => CE_Range_Check_Failed));
7997 Set_Analyzed (R_Cno);
7998 Set_Etype (R_Cno, Typ);
7999 Set_Raises_Constraint_Error (R_Cno);
8000 Set_Is_Static_Expression (R_Cno, Stat);
8002 -- Now deal with possible local raise handling
8004 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
8005 end Install_Static_Check;
8007 -------------------------
8008 -- Is_Check_Suppressed --
8009 -------------------------
8011 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
8012 Ptr : Suppress_Stack_Entry_Ptr;
8014 begin
8015 -- First search the local entity suppress stack. We search this from the
8016 -- top of the stack down so that we get the innermost entry that applies
8017 -- to this case if there are nested entries.
8019 Ptr := Local_Suppress_Stack_Top;
8020 while Ptr /= null loop
8021 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8022 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8023 then
8024 return Ptr.Suppress;
8025 end if;
8027 Ptr := Ptr.Prev;
8028 end loop;
8030 -- Now search the global entity suppress table for a matching entry.
8031 -- We also search this from the top down so that if there are multiple
8032 -- pragmas for the same entity, the last one applies (not clear what
8033 -- or whether the RM specifies this handling, but it seems reasonable).
8035 Ptr := Global_Suppress_Stack_Top;
8036 while Ptr /= null loop
8037 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8038 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8039 then
8040 return Ptr.Suppress;
8041 end if;
8043 Ptr := Ptr.Prev;
8044 end loop;
8046 -- If we did not find a matching entry, then use the normal scope
8047 -- suppress value after all (actually this will be the global setting
8048 -- since it clearly was not overridden at any point). For a predefined
8049 -- check, we test the specific flag. For a user defined check, we check
8050 -- the All_Checks flag. The Overflow flag requires special handling to
8051 -- deal with the General vs Assertion case
8053 if C = Overflow_Check then
8054 return Overflow_Checks_Suppressed (Empty);
8055 elsif C in Predefined_Check_Id then
8056 return Scope_Suppress.Suppress (C);
8057 else
8058 return Scope_Suppress.Suppress (All_Checks);
8059 end if;
8060 end Is_Check_Suppressed;
8062 ---------------------
8063 -- Kill_All_Checks --
8064 ---------------------
8066 procedure Kill_All_Checks is
8067 begin
8068 if Debug_Flag_CC then
8069 w ("Kill_All_Checks");
8070 end if;
8072 -- We reset the number of saved checks to zero, and also modify all
8073 -- stack entries for statement ranges to indicate that the number of
8074 -- checks at each level is now zero.
8076 Num_Saved_Checks := 0;
8078 -- Note: the Int'Min here avoids any possibility of J being out of
8079 -- range when called from e.g. Conditional_Statements_Begin.
8081 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
8082 Saved_Checks_Stack (J) := 0;
8083 end loop;
8084 end Kill_All_Checks;
8086 -----------------
8087 -- Kill_Checks --
8088 -----------------
8090 procedure Kill_Checks (V : Entity_Id) is
8091 begin
8092 if Debug_Flag_CC then
8093 w ("Kill_Checks for entity", Int (V));
8094 end if;
8096 for J in 1 .. Num_Saved_Checks loop
8097 if Saved_Checks (J).Entity = V then
8098 if Debug_Flag_CC then
8099 w (" Checks killed for saved check ", J);
8100 end if;
8102 Saved_Checks (J).Killed := True;
8103 end if;
8104 end loop;
8105 end Kill_Checks;
8107 ------------------------------
8108 -- Length_Checks_Suppressed --
8109 ------------------------------
8111 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
8112 begin
8113 if Present (E) and then Checks_May_Be_Suppressed (E) then
8114 return Is_Check_Suppressed (E, Length_Check);
8115 else
8116 return Scope_Suppress.Suppress (Length_Check);
8117 end if;
8118 end Length_Checks_Suppressed;
8120 -----------------------
8121 -- Make_Bignum_Block --
8122 -----------------------
8124 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
8125 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
8126 begin
8127 return
8128 Make_Block_Statement (Loc,
8129 Declarations =>
8130 New_List (Build_SS_Mark_Call (Loc, M)),
8131 Handled_Statement_Sequence =>
8132 Make_Handled_Sequence_Of_Statements (Loc,
8133 Statements => New_List (Build_SS_Release_Call (Loc, M))));
8134 end Make_Bignum_Block;
8136 ----------------------------------
8137 -- Minimize_Eliminate_Overflows --
8138 ----------------------------------
8140 -- This is a recursive routine that is called at the top of an expression
8141 -- tree to properly process overflow checking for a whole subtree by making
8142 -- recursive calls to process operands. This processing may involve the use
8143 -- of bignum or long long integer arithmetic, which will change the types
8144 -- of operands and results. That's why we can't do this bottom up (since
8145 -- it would interfere with semantic analysis).
8147 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
8148 -- the operator expansion routines, as well as the expansion routines for
8149 -- if/case expression, do nothing (for the moment) except call the routine
8150 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
8151 -- routine does nothing for non top-level nodes, so at the point where the
8152 -- call is made for the top level node, the entire expression subtree has
8153 -- not been expanded, or processed for overflow. All that has to happen as
8154 -- a result of the top level call to this routine.
8156 -- As noted above, the overflow processing works by making recursive calls
8157 -- for the operands, and figuring out what to do, based on the processing
8158 -- of these operands (e.g. if a bignum operand appears, the parent op has
8159 -- to be done in bignum mode), and the determined ranges of the operands.
8161 -- After possible rewriting of a constituent subexpression node, a call is
8162 -- made to either reexpand the node (if nothing has changed) or reanalyze
8163 -- the node (if it has been modified by the overflow check processing). The
8164 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
8165 -- a recursive call into the whole overflow apparatus, an important rule
8166 -- for this call is that the overflow handling mode must be temporarily set
8167 -- to STRICT.
8169 procedure Minimize_Eliminate_Overflows
8170 (N : Node_Id;
8171 Lo : out Uint;
8172 Hi : out Uint;
8173 Top_Level : Boolean)
8175 Rtyp : constant Entity_Id := Etype (N);
8176 pragma Assert (Is_Signed_Integer_Type (Rtyp));
8177 -- Result type, must be a signed integer type
8179 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
8180 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
8182 Loc : constant Source_Ptr := Sloc (N);
8184 Rlo, Rhi : Uint;
8185 -- Ranges of values for right operand (operator case)
8187 Llo : Uint := No_Uint; -- initialize to prevent warning
8188 Lhi : Uint := No_Uint; -- initialize to prevent warning
8189 -- Ranges of values for left operand (operator case)
8191 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
8192 -- Operands and results are of this type when we convert
8194 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
8195 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
8196 -- Bounds of Long_Long_Integer
8198 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
8199 -- Indicates binary operator case
8201 OK : Boolean;
8202 -- Used in call to Determine_Range
8204 Bignum_Operands : Boolean;
8205 -- Set True if one or more operands is already of type Bignum, meaning
8206 -- that for sure (regardless of Top_Level setting) we are committed to
8207 -- doing the operation in Bignum mode (or in the case of a case or if
8208 -- expression, converting all the dependent expressions to Bignum).
8210 Long_Long_Integer_Operands : Boolean;
8211 -- Set True if one or more operands is already of type Long_Long_Integer
8212 -- which means that if the result is known to be in the result type
8213 -- range, then we must convert such operands back to the result type.
8215 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
8216 -- This is called when we have modified the node and we therefore need
8217 -- to reanalyze it. It is important that we reset the mode to STRICT for
8218 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
8219 -- we would reenter this routine recursively which would not be good.
8220 -- The argument Suppress is set True if we also want to suppress
8221 -- overflow checking for the reexpansion (this is set when we know
8222 -- overflow is not possible). Typ is the type for the reanalysis.
8224 procedure Reexpand (Suppress : Boolean := False);
8225 -- This is like Reanalyze, but does not do the Analyze step, it only
8226 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
8227 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
8228 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
8229 -- Note that skipping reanalysis is not just an optimization, testing
8230 -- has showed up several complex cases in which reanalyzing an already
8231 -- analyzed node causes incorrect behavior.
8233 function In_Result_Range return Boolean;
8234 -- Returns True iff Lo .. Hi are within range of the result type
8236 procedure Max (A : in out Uint; B : Uint);
8237 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
8239 procedure Min (A : in out Uint; B : Uint);
8240 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
8242 ---------------------
8243 -- In_Result_Range --
8244 ---------------------
8246 function In_Result_Range return Boolean is
8247 begin
8248 if Lo = No_Uint or else Hi = No_Uint then
8249 return False;
8251 elsif Is_OK_Static_Subtype (Etype (N)) then
8252 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
8253 and then
8254 Hi <= Expr_Value (Type_High_Bound (Rtyp));
8256 else
8257 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
8258 and then
8259 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
8260 end if;
8261 end In_Result_Range;
8263 ---------
8264 -- Max --
8265 ---------
8267 procedure Max (A : in out Uint; B : Uint) is
8268 begin
8269 if A = No_Uint or else B > A then
8270 A := B;
8271 end if;
8272 end Max;
8274 ---------
8275 -- Min --
8276 ---------
8278 procedure Min (A : in out Uint; B : Uint) is
8279 begin
8280 if A = No_Uint or else B < A then
8281 A := B;
8282 end if;
8283 end Min;
8285 ---------------
8286 -- Reanalyze --
8287 ---------------
8289 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
8290 Svg : constant Overflow_Mode_Type :=
8291 Scope_Suppress.Overflow_Mode_General;
8292 Sva : constant Overflow_Mode_Type :=
8293 Scope_Suppress.Overflow_Mode_Assertions;
8294 Svo : constant Boolean :=
8295 Scope_Suppress.Suppress (Overflow_Check);
8297 begin
8298 Scope_Suppress.Overflow_Mode_General := Strict;
8299 Scope_Suppress.Overflow_Mode_Assertions := Strict;
8301 if Suppress then
8302 Scope_Suppress.Suppress (Overflow_Check) := True;
8303 end if;
8305 Analyze_And_Resolve (N, Typ);
8307 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8308 Scope_Suppress.Overflow_Mode_General := Svg;
8309 Scope_Suppress.Overflow_Mode_Assertions := Sva;
8310 end Reanalyze;
8312 --------------
8313 -- Reexpand --
8314 --------------
8316 procedure Reexpand (Suppress : Boolean := False) is
8317 Svg : constant Overflow_Mode_Type :=
8318 Scope_Suppress.Overflow_Mode_General;
8319 Sva : constant Overflow_Mode_Type :=
8320 Scope_Suppress.Overflow_Mode_Assertions;
8321 Svo : constant Boolean :=
8322 Scope_Suppress.Suppress (Overflow_Check);
8324 begin
8325 Scope_Suppress.Overflow_Mode_General := Strict;
8326 Scope_Suppress.Overflow_Mode_Assertions := Strict;
8327 Set_Analyzed (N, False);
8329 if Suppress then
8330 Scope_Suppress.Suppress (Overflow_Check) := True;
8331 end if;
8333 Expand (N);
8335 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8336 Scope_Suppress.Overflow_Mode_General := Svg;
8337 Scope_Suppress.Overflow_Mode_Assertions := Sva;
8338 end Reexpand;
8340 -- Start of processing for Minimize_Eliminate_Overflows
8342 begin
8343 -- Case where we do not have a signed integer arithmetic operation
8345 if not Is_Signed_Integer_Arithmetic_Op (N) then
8347 -- Use the normal Determine_Range routine to get the range. We
8348 -- don't require operands to be valid, invalid values may result in
8349 -- rubbish results where the result has not been properly checked for
8350 -- overflow, that's fine.
8352 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
8354 -- If Determine_Range did not work (can this in fact happen? Not
8355 -- clear but might as well protect), use type bounds.
8357 if not OK then
8358 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
8359 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
8360 end if;
8362 -- If we don't have a binary operator, all we have to do is to set
8363 -- the Hi/Lo range, so we are done.
8365 return;
8367 -- Processing for if expression
8369 elsif Nkind (N) = N_If_Expression then
8370 declare
8371 Then_DE : constant Node_Id := Next (First (Expressions (N)));
8372 Else_DE : constant Node_Id := Next (Then_DE);
8374 begin
8375 Bignum_Operands := False;
8377 Minimize_Eliminate_Overflows
8378 (Then_DE, Lo, Hi, Top_Level => False);
8380 if Lo = No_Uint then
8381 Bignum_Operands := True;
8382 end if;
8384 Minimize_Eliminate_Overflows
8385 (Else_DE, Rlo, Rhi, Top_Level => False);
8387 if Rlo = No_Uint then
8388 Bignum_Operands := True;
8389 else
8390 Long_Long_Integer_Operands :=
8391 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
8393 Min (Lo, Rlo);
8394 Max (Hi, Rhi);
8395 end if;
8397 -- If at least one of our operands is now Bignum, we must rebuild
8398 -- the if expression to use Bignum operands. We will analyze the
8399 -- rebuilt if expression with overflow checks off, since once we
8400 -- are in bignum mode, we are all done with overflow checks.
8402 if Bignum_Operands then
8403 Rewrite (N,
8404 Make_If_Expression (Loc,
8405 Expressions => New_List (
8406 Remove_Head (Expressions (N)),
8407 Convert_To_Bignum (Then_DE),
8408 Convert_To_Bignum (Else_DE)),
8409 Is_Elsif => Is_Elsif (N)));
8411 Reanalyze (RTE (RE_Bignum), Suppress => True);
8413 -- If we have no Long_Long_Integer operands, then we are in result
8414 -- range, since it means that none of our operands felt the need
8415 -- to worry about overflow (otherwise it would have already been
8416 -- converted to long long integer or bignum). We reexpand to
8417 -- complete the expansion of the if expression (but we do not
8418 -- need to reanalyze).
8420 elsif not Long_Long_Integer_Operands then
8421 Set_Do_Overflow_Check (N, False);
8422 Reexpand;
8424 -- Otherwise convert us to long long integer mode. Note that we
8425 -- don't need any further overflow checking at this level.
8427 else
8428 Convert_To_And_Rewrite (LLIB, Then_DE);
8429 Convert_To_And_Rewrite (LLIB, Else_DE);
8430 Set_Etype (N, LLIB);
8432 -- Now reanalyze with overflow checks off
8434 Set_Do_Overflow_Check (N, False);
8435 Reanalyze (LLIB, Suppress => True);
8436 end if;
8437 end;
8439 return;
8441 -- Here for case expression
8443 elsif Nkind (N) = N_Case_Expression then
8444 Bignum_Operands := False;
8445 Long_Long_Integer_Operands := False;
8447 declare
8448 Alt : Node_Id;
8450 begin
8451 -- Loop through expressions applying recursive call
8453 Alt := First (Alternatives (N));
8454 while Present (Alt) loop
8455 declare
8456 Aexp : constant Node_Id := Expression (Alt);
8458 begin
8459 Minimize_Eliminate_Overflows
8460 (Aexp, Lo, Hi, Top_Level => False);
8462 if Lo = No_Uint then
8463 Bignum_Operands := True;
8464 elsif Etype (Aexp) = LLIB then
8465 Long_Long_Integer_Operands := True;
8466 end if;
8467 end;
8469 Next (Alt);
8470 end loop;
8472 -- If we have no bignum or long long integer operands, it means
8473 -- that none of our dependent expressions could raise overflow.
8474 -- In this case, we simply return with no changes except for
8475 -- resetting the overflow flag, since we are done with overflow
8476 -- checks for this node. We will reexpand to get the needed
8477 -- expansion for the case expression, but we do not need to
8478 -- reanalyze, since nothing has changed.
8480 if not (Bignum_Operands or Long_Long_Integer_Operands) then
8481 Set_Do_Overflow_Check (N, False);
8482 Reexpand (Suppress => True);
8484 -- Otherwise we are going to rebuild the case expression using
8485 -- either bignum or long long integer operands throughout.
8487 else
8488 declare
8489 Rtype : Entity_Id;
8490 pragma Warnings (Off, Rtype);
8491 New_Alts : List_Id;
8492 New_Exp : Node_Id;
8494 begin
8495 New_Alts := New_List;
8496 Alt := First (Alternatives (N));
8497 while Present (Alt) loop
8498 if Bignum_Operands then
8499 New_Exp := Convert_To_Bignum (Expression (Alt));
8500 Rtype := RTE (RE_Bignum);
8501 else
8502 New_Exp := Convert_To (LLIB, Expression (Alt));
8503 Rtype := LLIB;
8504 end if;
8506 Append_To (New_Alts,
8507 Make_Case_Expression_Alternative (Sloc (Alt),
8508 Actions => No_List,
8509 Discrete_Choices => Discrete_Choices (Alt),
8510 Expression => New_Exp));
8512 Next (Alt);
8513 end loop;
8515 Rewrite (N,
8516 Make_Case_Expression (Loc,
8517 Expression => Expression (N),
8518 Alternatives => New_Alts));
8520 Reanalyze (Rtype, Suppress => True);
8521 end;
8522 end if;
8523 end;
8525 return;
8526 end if;
8528 -- If we have an arithmetic operator we make recursive calls on the
8529 -- operands to get the ranges (and to properly process the subtree
8530 -- that lies below us).
8532 Minimize_Eliminate_Overflows
8533 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
8535 if Binary then
8536 Minimize_Eliminate_Overflows
8537 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
8538 end if;
8540 -- Record if we have Long_Long_Integer operands
8542 Long_Long_Integer_Operands :=
8543 Etype (Right_Opnd (N)) = LLIB
8544 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
8546 -- If either operand is a bignum, then result will be a bignum and we
8547 -- don't need to do any range analysis. As previously discussed we could
8548 -- do range analysis in such cases, but it could mean working with giant
8549 -- numbers at compile time for very little gain (the number of cases
8550 -- in which we could slip back from bignum mode is small).
8552 if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
8553 Lo := No_Uint;
8554 Hi := No_Uint;
8555 Bignum_Operands := True;
8557 -- Otherwise compute result range
8559 else
8560 Bignum_Operands := False;
8562 case Nkind (N) is
8564 -- Absolute value
8566 when N_Op_Abs =>
8567 Lo := Uint_0;
8568 Hi := UI_Max (abs Rlo, abs Rhi);
8570 -- Addition
8572 when N_Op_Add =>
8573 Lo := Llo + Rlo;
8574 Hi := Lhi + Rhi;
8576 -- Division
8578 when N_Op_Divide =>
8580 -- If the right operand can only be zero, set 0..0
8582 if Rlo = 0 and then Rhi = 0 then
8583 Lo := Uint_0;
8584 Hi := Uint_0;
8586 -- Possible bounds of division must come from dividing end
8587 -- values of the input ranges (four possibilities), provided
8588 -- zero is not included in the possible values of the right
8589 -- operand.
8591 -- Otherwise, we just consider two intervals of values for
8592 -- the right operand: the interval of negative values (up to
8593 -- -1) and the interval of positive values (starting at 1).
8594 -- Since division by 1 is the identity, and division by -1
8595 -- is negation, we get all possible bounds of division in that
8596 -- case by considering:
8597 -- - all values from the division of end values of input
8598 -- ranges;
8599 -- - the end values of the left operand;
8600 -- - the negation of the end values of the left operand.
8602 else
8603 declare
8604 Mrk : constant Uintp.Save_Mark := Mark;
8605 -- Mark so we can release the RR and Ev values
8607 Ev1 : Uint;
8608 Ev2 : Uint;
8609 Ev3 : Uint;
8610 Ev4 : Uint;
8612 begin
8613 -- Discard extreme values of zero for the divisor, since
8614 -- they will simply result in an exception in any case.
8616 if Rlo = 0 then
8617 Rlo := Uint_1;
8618 elsif Rhi = 0 then
8619 Rhi := -Uint_1;
8620 end if;
8622 -- Compute possible bounds coming from dividing end
8623 -- values of the input ranges.
8625 Ev1 := Llo / Rlo;
8626 Ev2 := Llo / Rhi;
8627 Ev3 := Lhi / Rlo;
8628 Ev4 := Lhi / Rhi;
8630 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8631 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8633 -- If the right operand can be both negative or positive,
8634 -- include the end values of the left operand in the
8635 -- extreme values, as well as their negation.
8637 if Rlo < 0 and then Rhi > 0 then
8638 Ev1 := Llo;
8639 Ev2 := -Llo;
8640 Ev3 := Lhi;
8641 Ev4 := -Lhi;
8643 Min (Lo,
8644 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
8645 Max (Hi,
8646 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
8647 end if;
8649 -- Release the RR and Ev values
8651 Release_And_Save (Mrk, Lo, Hi);
8652 end;
8653 end if;
8655 -- Exponentiation
8657 when N_Op_Expon =>
8659 -- Discard negative values for the exponent, since they will
8660 -- simply result in an exception in any case.
8662 if Rhi < 0 then
8663 Rhi := Uint_0;
8664 elsif Rlo < 0 then
8665 Rlo := Uint_0;
8666 end if;
8668 -- Estimate number of bits in result before we go computing
8669 -- giant useless bounds. Basically the number of bits in the
8670 -- result is the number of bits in the base multiplied by the
8671 -- value of the exponent. If this is big enough that the result
8672 -- definitely won't fit in Long_Long_Integer, switch to bignum
8673 -- mode immediately, and avoid computing giant bounds.
8675 -- The comparison here is approximate, but conservative, it
8676 -- only clicks on cases that are sure to exceed the bounds.
8678 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
8679 Lo := No_Uint;
8680 Hi := No_Uint;
8682 -- If right operand is zero then result is 1
8684 elsif Rhi = 0 then
8685 Lo := Uint_1;
8686 Hi := Uint_1;
8688 else
8689 -- High bound comes either from exponentiation of largest
8690 -- positive value to largest exponent value, or from
8691 -- the exponentiation of most negative value to an
8692 -- even exponent.
8694 declare
8695 Hi1, Hi2 : Uint;
8697 begin
8698 if Lhi > 0 then
8699 Hi1 := Lhi ** Rhi;
8700 else
8701 Hi1 := Uint_0;
8702 end if;
8704 if Llo < 0 then
8705 if Rhi mod 2 = 0 then
8706 Hi2 := Llo ** Rhi;
8707 else
8708 Hi2 := Llo ** (Rhi - 1);
8709 end if;
8710 else
8711 Hi2 := Uint_0;
8712 end if;
8714 Hi := UI_Max (Hi1, Hi2);
8715 end;
8717 -- Result can only be negative if base can be negative
8719 if Llo < 0 then
8720 if Rhi mod 2 = 0 then
8721 Lo := Llo ** (Rhi - 1);
8722 else
8723 Lo := Llo ** Rhi;
8724 end if;
8726 -- Otherwise low bound is minimum ** minimum
8728 else
8729 Lo := Llo ** Rlo;
8730 end if;
8731 end if;
8733 -- Negation
8735 when N_Op_Minus =>
8736 Lo := -Rhi;
8737 Hi := -Rlo;
8739 -- Mod
8741 when N_Op_Mod =>
8742 declare
8743 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8744 -- This is the maximum absolute value of the result
8746 begin
8747 Lo := Uint_0;
8748 Hi := Uint_0;
8750 -- The result depends only on the sign and magnitude of
8751 -- the right operand, it does not depend on the sign or
8752 -- magnitude of the left operand.
8754 if Rlo < 0 then
8755 Lo := -Maxabs;
8756 end if;
8758 if Rhi > 0 then
8759 Hi := Maxabs;
8760 end if;
8761 end;
8763 -- Multiplication
8765 when N_Op_Multiply =>
8767 -- Possible bounds of multiplication must come from multiplying
8768 -- end values of the input ranges (four possibilities).
8770 declare
8771 Mrk : constant Uintp.Save_Mark := Mark;
8772 -- Mark so we can release the Ev values
8774 Ev1 : constant Uint := Llo * Rlo;
8775 Ev2 : constant Uint := Llo * Rhi;
8776 Ev3 : constant Uint := Lhi * Rlo;
8777 Ev4 : constant Uint := Lhi * Rhi;
8779 begin
8780 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8781 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8783 -- Release the Ev values
8785 Release_And_Save (Mrk, Lo, Hi);
8786 end;
8788 -- Plus operator (affirmation)
8790 when N_Op_Plus =>
8791 Lo := Rlo;
8792 Hi := Rhi;
8794 -- Remainder
8796 when N_Op_Rem =>
8797 declare
8798 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8799 -- This is the maximum absolute value of the result. Note
8800 -- that the result range does not depend on the sign of the
8801 -- right operand.
8803 begin
8804 Lo := Uint_0;
8805 Hi := Uint_0;
8807 -- Case of left operand negative, which results in a range
8808 -- of -Maxabs .. 0 for those negative values. If there are
8809 -- no negative values then Lo value of result is always 0.
8811 if Llo < 0 then
8812 Lo := -Maxabs;
8813 end if;
8815 -- Case of left operand positive
8817 if Lhi > 0 then
8818 Hi := Maxabs;
8819 end if;
8820 end;
8822 -- Subtract
8824 when N_Op_Subtract =>
8825 Lo := Llo - Rhi;
8826 Hi := Lhi - Rlo;
8828 -- Nothing else should be possible
8830 when others =>
8831 raise Program_Error;
8832 end case;
8833 end if;
8835 -- Here for the case where we have not rewritten anything (no bignum
8836 -- operands or long long integer operands), and we know the result.
8837 -- If we know we are in the result range, and we do not have Bignum
8838 -- operands or Long_Long_Integer operands, we can just reexpand with
8839 -- overflow checks turned off (since we know we cannot have overflow).
8840 -- As always the reexpansion is required to complete expansion of the
8841 -- operator, but we do not need to reanalyze, and we prevent recursion
8842 -- by suppressing the check.
8844 if not (Bignum_Operands or Long_Long_Integer_Operands)
8845 and then In_Result_Range
8846 then
8847 Set_Do_Overflow_Check (N, False);
8848 Reexpand (Suppress => True);
8849 return;
8851 -- Here we know that we are not in the result range, and in the general
8852 -- case we will move into either the Bignum or Long_Long_Integer domain
8853 -- to compute the result. However, there is one exception. If we are
8854 -- at the top level, and we do not have Bignum or Long_Long_Integer
8855 -- operands, we will have to immediately convert the result back to
8856 -- the result type, so there is no point in Bignum/Long_Long_Integer
8857 -- fiddling.
8859 elsif Top_Level
8860 and then not (Bignum_Operands or Long_Long_Integer_Operands)
8862 -- One further refinement. If we are at the top level, but our parent
8863 -- is a type conversion, then go into bignum or long long integer node
8864 -- since the result will be converted to that type directly without
8865 -- going through the result type, and we may avoid an overflow. This
8866 -- is the case for example of Long_Long_Integer (A ** 4), where A is
8867 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
8868 -- but does not fit in Integer.
8870 and then Nkind (Parent (N)) /= N_Type_Conversion
8871 then
8872 -- Here keep original types, but we need to complete analysis
8874 -- One subtlety. We can't just go ahead and do an analyze operation
8875 -- here because it will cause recursion into the whole MINIMIZED/
8876 -- ELIMINATED overflow processing which is not what we want. Here
8877 -- we are at the top level, and we need a check against the result
8878 -- mode (i.e. we want to use STRICT mode). So do exactly that.
8879 -- Also, we have not modified the node, so this is a case where
8880 -- we need to reexpand, but not reanalyze.
8882 Reexpand;
8883 return;
8885 -- Cases where we do the operation in Bignum mode. This happens either
8886 -- because one of our operands is in Bignum mode already, or because
8887 -- the computed bounds are outside the bounds of Long_Long_Integer,
8888 -- which in some cases can be indicated by Hi and Lo being No_Uint.
8890 -- Note: we could do better here and in some cases switch back from
8891 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
8892 -- 0 .. 1, but the cases are rare and it is not worth the effort.
8893 -- Failing to do this switching back is only an efficiency issue.
8895 elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
8897 -- OK, we are definitely outside the range of Long_Long_Integer. The
8898 -- question is whether to move to Bignum mode, or stay in the domain
8899 -- of Long_Long_Integer, signalling that an overflow check is needed.
8901 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
8902 -- the Bignum business. In ELIMINATED mode, we will normally move
8903 -- into Bignum mode, but there is an exception if neither of our
8904 -- operands is Bignum now, and we are at the top level (Top_Level
8905 -- set True). In this case, there is no point in moving into Bignum
8906 -- mode to prevent overflow if the caller will immediately convert
8907 -- the Bignum value back to LLI with an overflow check. It's more
8908 -- efficient to stay in LLI mode with an overflow check (if needed)
8910 if Check_Mode = Minimized
8911 or else (Top_Level and not Bignum_Operands)
8912 then
8913 if Do_Overflow_Check (N) then
8914 Enable_Overflow_Check (N);
8915 end if;
8917 -- The result now has to be in Long_Long_Integer mode, so adjust
8918 -- the possible range to reflect this. Note these calls also
8919 -- change No_Uint values from the top level case to LLI bounds.
8921 Max (Lo, LLLo);
8922 Min (Hi, LLHi);
8924 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
8926 else
8927 pragma Assert (Check_Mode = Eliminated);
8929 declare
8930 Fent : Entity_Id;
8931 Args : List_Id;
8933 begin
8934 case Nkind (N) is
8935 when N_Op_Abs =>
8936 Fent := RTE (RE_Big_Abs);
8938 when N_Op_Add =>
8939 Fent := RTE (RE_Big_Add);
8941 when N_Op_Divide =>
8942 Fent := RTE (RE_Big_Div);
8944 when N_Op_Expon =>
8945 Fent := RTE (RE_Big_Exp);
8947 when N_Op_Minus =>
8948 Fent := RTE (RE_Big_Neg);
8950 when N_Op_Mod =>
8951 Fent := RTE (RE_Big_Mod);
8953 when N_Op_Multiply =>
8954 Fent := RTE (RE_Big_Mul);
8956 when N_Op_Rem =>
8957 Fent := RTE (RE_Big_Rem);
8959 when N_Op_Subtract =>
8960 Fent := RTE (RE_Big_Sub);
8962 -- Anything else is an internal error, this includes the
8963 -- N_Op_Plus case, since how can plus cause the result
8964 -- to be out of range if the operand is in range?
8966 when others =>
8967 raise Program_Error;
8968 end case;
8970 -- Construct argument list for Bignum call, converting our
8971 -- operands to Bignum form if they are not already there.
8973 Args := New_List;
8975 if Binary then
8976 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
8977 end if;
8979 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
8981 -- Now rewrite the arithmetic operator with a call to the
8982 -- corresponding bignum function.
8984 Rewrite (N,
8985 Make_Function_Call (Loc,
8986 Name => New_Occurrence_Of (Fent, Loc),
8987 Parameter_Associations => Args));
8988 Reanalyze (RTE (RE_Bignum), Suppress => True);
8990 -- Indicate result is Bignum mode
8992 Lo := No_Uint;
8993 Hi := No_Uint;
8994 return;
8995 end;
8996 end if;
8998 -- Otherwise we are in range of Long_Long_Integer, so no overflow
8999 -- check is required, at least not yet.
9001 else
9002 Set_Do_Overflow_Check (N, False);
9003 end if;
9005 -- Here we are not in Bignum territory, but we may have long long
9006 -- integer operands that need special handling. First a special check:
9007 -- If an exponentiation operator exponent is of type Long_Long_Integer,
9008 -- it means we converted it to prevent overflow, but exponentiation
9009 -- requires a Natural right operand, so convert it back to Natural.
9010 -- This conversion may raise an exception which is fine.
9012 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
9013 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
9014 end if;
9016 -- Here we will do the operation in Long_Long_Integer. We do this even
9017 -- if we know an overflow check is required, better to do this in long
9018 -- long integer mode, since we are less likely to overflow.
9020 -- Convert right or only operand to Long_Long_Integer, except that
9021 -- we do not touch the exponentiation right operand.
9023 if Nkind (N) /= N_Op_Expon then
9024 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
9025 end if;
9027 -- Convert left operand to Long_Long_Integer for binary case
9029 if Binary then
9030 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
9031 end if;
9033 -- Reset node to unanalyzed
9035 Set_Analyzed (N, False);
9036 Set_Etype (N, Empty);
9037 Set_Entity (N, Empty);
9039 -- Now analyze this new node. This reanalysis will complete processing
9040 -- for the node. In particular we will complete the expansion of an
9041 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
9042 -- we will complete any division checks (since we have not changed the
9043 -- setting of the Do_Division_Check flag).
9045 -- We do this reanalysis in STRICT mode to avoid recursion into the
9046 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
9048 declare
9049 SG : constant Overflow_Mode_Type :=
9050 Scope_Suppress.Overflow_Mode_General;
9051 SA : constant Overflow_Mode_Type :=
9052 Scope_Suppress.Overflow_Mode_Assertions;
9054 begin
9055 Scope_Suppress.Overflow_Mode_General := Strict;
9056 Scope_Suppress.Overflow_Mode_Assertions := Strict;
9058 if not Do_Overflow_Check (N) then
9059 Reanalyze (LLIB, Suppress => True);
9060 else
9061 Reanalyze (LLIB);
9062 end if;
9064 Scope_Suppress.Overflow_Mode_General := SG;
9065 Scope_Suppress.Overflow_Mode_Assertions := SA;
9066 end;
9067 end Minimize_Eliminate_Overflows;
9069 -------------------------
9070 -- Overflow_Check_Mode --
9071 -------------------------
9073 function Overflow_Check_Mode return Overflow_Mode_Type is
9074 begin
9075 if In_Assertion_Expr = 0 then
9076 return Scope_Suppress.Overflow_Mode_General;
9077 else
9078 return Scope_Suppress.Overflow_Mode_Assertions;
9079 end if;
9080 end Overflow_Check_Mode;
9082 --------------------------------
9083 -- Overflow_Checks_Suppressed --
9084 --------------------------------
9086 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
9087 begin
9088 if Present (E) and then Checks_May_Be_Suppressed (E) then
9089 return Is_Check_Suppressed (E, Overflow_Check);
9090 else
9091 return Scope_Suppress.Suppress (Overflow_Check);
9092 end if;
9093 end Overflow_Checks_Suppressed;
9095 ---------------------------------
9096 -- Predicate_Checks_Suppressed --
9097 ---------------------------------
9099 function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
9100 begin
9101 if Present (E) and then Checks_May_Be_Suppressed (E) then
9102 return Is_Check_Suppressed (E, Predicate_Check);
9103 else
9104 return Scope_Suppress.Suppress (Predicate_Check);
9105 end if;
9106 end Predicate_Checks_Suppressed;
9108 -----------------------------
9109 -- Range_Checks_Suppressed --
9110 -----------------------------
9112 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
9113 begin
9114 if Present (E) then
9115 if Kill_Range_Checks (E) then
9116 return True;
9118 elsif Checks_May_Be_Suppressed (E) then
9119 return Is_Check_Suppressed (E, Range_Check);
9120 end if;
9121 end if;
9123 return Scope_Suppress.Suppress (Range_Check);
9124 end Range_Checks_Suppressed;
9126 -----------------------------------------
9127 -- Range_Or_Validity_Checks_Suppressed --
9128 -----------------------------------------
9130 -- Note: the coding would be simpler here if we simply made appropriate
9131 -- calls to Range/Validity_Checks_Suppressed, but that would result in
9132 -- duplicated checks which we prefer to avoid.
9134 function Range_Or_Validity_Checks_Suppressed
9135 (Expr : Node_Id) return Boolean
9137 begin
9138 -- Immediate return if scope checks suppressed for either check
9140 if Scope_Suppress.Suppress (Range_Check)
9142 Scope_Suppress.Suppress (Validity_Check)
9143 then
9144 return True;
9145 end if;
9147 -- If no expression, that's odd, decide that checks are suppressed,
9148 -- since we don't want anyone trying to do checks in this case, which
9149 -- is most likely the result of some other error.
9151 if No (Expr) then
9152 return True;
9153 end if;
9155 -- Expression is present, so perform suppress checks on type
9157 declare
9158 Typ : constant Entity_Id := Etype (Expr);
9159 begin
9160 if Checks_May_Be_Suppressed (Typ)
9161 and then (Is_Check_Suppressed (Typ, Range_Check)
9162 or else
9163 Is_Check_Suppressed (Typ, Validity_Check))
9164 then
9165 return True;
9166 end if;
9167 end;
9169 -- If expression is an entity name, perform checks on this entity
9171 if Is_Entity_Name (Expr) then
9172 declare
9173 Ent : constant Entity_Id := Entity (Expr);
9174 begin
9175 if Checks_May_Be_Suppressed (Ent) then
9176 return Is_Check_Suppressed (Ent, Range_Check)
9177 or else Is_Check_Suppressed (Ent, Validity_Check);
9178 end if;
9179 end;
9180 end if;
9182 -- If we fall through, no checks suppressed
9184 return False;
9185 end Range_Or_Validity_Checks_Suppressed;
9187 -------------------
9188 -- Remove_Checks --
9189 -------------------
9191 procedure Remove_Checks (Expr : Node_Id) is
9192 function Process (N : Node_Id) return Traverse_Result;
9193 -- Process a single node during the traversal
9195 procedure Traverse is new Traverse_Proc (Process);
9196 -- The traversal procedure itself
9198 -------------
9199 -- Process --
9200 -------------
9202 function Process (N : Node_Id) return Traverse_Result is
9203 begin
9204 if Nkind (N) not in N_Subexpr then
9205 return Skip;
9206 end if;
9208 Set_Do_Range_Check (N, False);
9210 case Nkind (N) is
9211 when N_And_Then =>
9212 Traverse (Left_Opnd (N));
9213 return Skip;
9215 when N_Attribute_Reference =>
9216 Set_Do_Overflow_Check (N, False);
9218 when N_Function_Call =>
9219 Set_Do_Tag_Check (N, False);
9221 when N_Op =>
9222 Set_Do_Overflow_Check (N, False);
9224 case Nkind (N) is
9225 when N_Op_Divide =>
9226 Set_Do_Division_Check (N, False);
9228 when N_Op_And =>
9229 Set_Do_Length_Check (N, False);
9231 when N_Op_Mod =>
9232 Set_Do_Division_Check (N, False);
9234 when N_Op_Or =>
9235 Set_Do_Length_Check (N, False);
9237 when N_Op_Rem =>
9238 Set_Do_Division_Check (N, False);
9240 when N_Op_Xor =>
9241 Set_Do_Length_Check (N, False);
9243 when others =>
9244 null;
9245 end case;
9247 when N_Or_Else =>
9248 Traverse (Left_Opnd (N));
9249 return Skip;
9251 when N_Selected_Component =>
9252 Set_Do_Discriminant_Check (N, False);
9254 when N_Type_Conversion =>
9255 Set_Do_Length_Check (N, False);
9256 Set_Do_Tag_Check (N, False);
9257 Set_Do_Overflow_Check (N, False);
9259 when others =>
9260 null;
9261 end case;
9263 return OK;
9264 end Process;
9266 -- Start of processing for Remove_Checks
9268 begin
9269 Traverse (Expr);
9270 end Remove_Checks;
9272 ----------------------------
9273 -- Selected_Length_Checks --
9274 ----------------------------
9276 function Selected_Length_Checks
9277 (Ck_Node : Node_Id;
9278 Target_Typ : Entity_Id;
9279 Source_Typ : Entity_Id;
9280 Warn_Node : Node_Id) return Check_Result
9282 Loc : constant Source_Ptr := Sloc (Ck_Node);
9283 S_Typ : Entity_Id;
9284 T_Typ : Entity_Id;
9285 Expr_Actual : Node_Id;
9286 Exptyp : Entity_Id;
9287 Cond : Node_Id := Empty;
9288 Do_Access : Boolean := False;
9289 Wnode : Node_Id := Warn_Node;
9290 Ret_Result : Check_Result := (Empty, Empty);
9291 Num_Checks : Natural := 0;
9293 procedure Add_Check (N : Node_Id);
9294 -- Adds the action given to Ret_Result if N is non-Empty
9296 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
9297 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
9298 -- Comments required ???
9300 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
9301 -- True for equal literals and for nodes that denote the same constant
9302 -- entity, even if its value is not a static constant. This includes the
9303 -- case of a discriminal reference within an init proc. Removes some
9304 -- obviously superfluous checks.
9306 function Length_E_Cond
9307 (Exptyp : Entity_Id;
9308 Typ : Entity_Id;
9309 Indx : Nat) return Node_Id;
9310 -- Returns expression to compute:
9311 -- Typ'Length /= Exptyp'Length
9313 function Length_N_Cond
9314 (Expr : Node_Id;
9315 Typ : Entity_Id;
9316 Indx : Nat) return Node_Id;
9317 -- Returns expression to compute:
9318 -- Typ'Length /= Expr'Length
9320 ---------------
9321 -- Add_Check --
9322 ---------------
9324 procedure Add_Check (N : Node_Id) is
9325 begin
9326 if Present (N) then
9328 -- For now, ignore attempt to place more than two checks ???
9329 -- This is really worrisome, are we really discarding checks ???
9331 if Num_Checks = 2 then
9332 return;
9333 end if;
9335 pragma Assert (Num_Checks <= 1);
9336 Num_Checks := Num_Checks + 1;
9337 Ret_Result (Num_Checks) := N;
9338 end if;
9339 end Add_Check;
9341 ------------------
9342 -- Get_E_Length --
9343 ------------------
9345 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
9346 SE : constant Entity_Id := Scope (E);
9347 N : Node_Id;
9348 E1 : Entity_Id := E;
9350 begin
9351 if Ekind (Scope (E)) = E_Record_Type
9352 and then Has_Discriminants (Scope (E))
9353 then
9354 N := Build_Discriminal_Subtype_Of_Component (E);
9356 if Present (N) then
9357 Insert_Action (Ck_Node, N);
9358 E1 := Defining_Identifier (N);
9359 end if;
9360 end if;
9362 if Ekind (E1) = E_String_Literal_Subtype then
9363 return
9364 Make_Integer_Literal (Loc,
9365 Intval => String_Literal_Length (E1));
9367 elsif SE /= Standard_Standard
9368 and then Ekind (Scope (SE)) = E_Protected_Type
9369 and then Has_Discriminants (Scope (SE))
9370 and then Has_Completion (Scope (SE))
9371 and then not Inside_Init_Proc
9372 then
9373 -- If the type whose length is needed is a private component
9374 -- constrained by a discriminant, we must expand the 'Length
9375 -- attribute into an explicit computation, using the discriminal
9376 -- of the current protected operation. This is because the actual
9377 -- type of the prival is constructed after the protected opera-
9378 -- tion has been fully expanded.
9380 declare
9381 Indx_Type : Node_Id;
9382 Lo : Node_Id;
9383 Hi : Node_Id;
9384 Do_Expand : Boolean := False;
9386 begin
9387 Indx_Type := First_Index (E);
9389 for J in 1 .. Indx - 1 loop
9390 Next_Index (Indx_Type);
9391 end loop;
9393 Get_Index_Bounds (Indx_Type, Lo, Hi);
9395 if Nkind (Lo) = N_Identifier
9396 and then Ekind (Entity (Lo)) = E_In_Parameter
9397 then
9398 Lo := Get_Discriminal (E, Lo);
9399 Do_Expand := True;
9400 end if;
9402 if Nkind (Hi) = N_Identifier
9403 and then Ekind (Entity (Hi)) = E_In_Parameter
9404 then
9405 Hi := Get_Discriminal (E, Hi);
9406 Do_Expand := True;
9407 end if;
9409 if Do_Expand then
9410 if not Is_Entity_Name (Lo) then
9411 Lo := Duplicate_Subexpr_No_Checks (Lo);
9412 end if;
9414 if not Is_Entity_Name (Hi) then
9415 Lo := Duplicate_Subexpr_No_Checks (Hi);
9416 end if;
9418 N :=
9419 Make_Op_Add (Loc,
9420 Left_Opnd =>
9421 Make_Op_Subtract (Loc,
9422 Left_Opnd => Hi,
9423 Right_Opnd => Lo),
9425 Right_Opnd => Make_Integer_Literal (Loc, 1));
9426 return N;
9428 else
9429 N :=
9430 Make_Attribute_Reference (Loc,
9431 Attribute_Name => Name_Length,
9432 Prefix =>
9433 New_Occurrence_Of (E1, Loc));
9435 if Indx > 1 then
9436 Set_Expressions (N, New_List (
9437 Make_Integer_Literal (Loc, Indx)));
9438 end if;
9440 return N;
9441 end if;
9442 end;
9444 else
9445 N :=
9446 Make_Attribute_Reference (Loc,
9447 Attribute_Name => Name_Length,
9448 Prefix =>
9449 New_Occurrence_Of (E1, Loc));
9451 if Indx > 1 then
9452 Set_Expressions (N, New_List (
9453 Make_Integer_Literal (Loc, Indx)));
9454 end if;
9456 return N;
9457 end if;
9458 end Get_E_Length;
9460 ------------------
9461 -- Get_N_Length --
9462 ------------------
9464 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
9465 begin
9466 return
9467 Make_Attribute_Reference (Loc,
9468 Attribute_Name => Name_Length,
9469 Prefix =>
9470 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
9471 Expressions => New_List (
9472 Make_Integer_Literal (Loc, Indx)));
9473 end Get_N_Length;
9475 -------------------
9476 -- Length_E_Cond --
9477 -------------------
9479 function Length_E_Cond
9480 (Exptyp : Entity_Id;
9481 Typ : Entity_Id;
9482 Indx : Nat) return Node_Id
9484 begin
9485 return
9486 Make_Op_Ne (Loc,
9487 Left_Opnd => Get_E_Length (Typ, Indx),
9488 Right_Opnd => Get_E_Length (Exptyp, Indx));
9489 end Length_E_Cond;
9491 -------------------
9492 -- Length_N_Cond --
9493 -------------------
9495 function Length_N_Cond
9496 (Expr : Node_Id;
9497 Typ : Entity_Id;
9498 Indx : Nat) return Node_Id
9500 begin
9501 return
9502 Make_Op_Ne (Loc,
9503 Left_Opnd => Get_E_Length (Typ, Indx),
9504 Right_Opnd => Get_N_Length (Expr, Indx));
9505 end Length_N_Cond;
9507 -----------------
9508 -- Same_Bounds --
9509 -----------------
9511 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
9512 begin
9513 return
9514 (Nkind (L) = N_Integer_Literal
9515 and then Nkind (R) = N_Integer_Literal
9516 and then Intval (L) = Intval (R))
9518 or else
9519 (Is_Entity_Name (L)
9520 and then Ekind (Entity (L)) = E_Constant
9521 and then ((Is_Entity_Name (R)
9522 and then Entity (L) = Entity (R))
9523 or else
9524 (Nkind (R) = N_Type_Conversion
9525 and then Is_Entity_Name (Expression (R))
9526 and then Entity (L) = Entity (Expression (R)))))
9528 or else
9529 (Is_Entity_Name (R)
9530 and then Ekind (Entity (R)) = E_Constant
9531 and then Nkind (L) = N_Type_Conversion
9532 and then Is_Entity_Name (Expression (L))
9533 and then Entity (R) = Entity (Expression (L)))
9535 or else
9536 (Is_Entity_Name (L)
9537 and then Is_Entity_Name (R)
9538 and then Entity (L) = Entity (R)
9539 and then Ekind (Entity (L)) = E_In_Parameter
9540 and then Inside_Init_Proc);
9541 end Same_Bounds;
9543 -- Start of processing for Selected_Length_Checks
9545 begin
9546 -- Checks will be applied only when generating code
9548 if not Expander_Active then
9549 return Ret_Result;
9550 end if;
9552 if Target_Typ = Any_Type
9553 or else Target_Typ = Any_Composite
9554 or else Raises_Constraint_Error (Ck_Node)
9555 then
9556 return Ret_Result;
9557 end if;
9559 if No (Wnode) then
9560 Wnode := Ck_Node;
9561 end if;
9563 T_Typ := Target_Typ;
9565 if No (Source_Typ) then
9566 S_Typ := Etype (Ck_Node);
9567 else
9568 S_Typ := Source_Typ;
9569 end if;
9571 if S_Typ = Any_Type or else S_Typ = Any_Composite then
9572 return Ret_Result;
9573 end if;
9575 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
9576 S_Typ := Designated_Type (S_Typ);
9577 T_Typ := Designated_Type (T_Typ);
9578 Do_Access := True;
9580 -- A simple optimization for the null case
9582 if Known_Null (Ck_Node) then
9583 return Ret_Result;
9584 end if;
9585 end if;
9587 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9588 if Is_Constrained (T_Typ) then
9590 -- The checking code to be generated will freeze the corresponding
9591 -- array type. However, we must freeze the type now, so that the
9592 -- freeze node does not appear within the generated if expression,
9593 -- but ahead of it.
9595 Freeze_Before (Ck_Node, T_Typ);
9597 Expr_Actual := Get_Referenced_Object (Ck_Node);
9598 Exptyp := Get_Actual_Subtype (Ck_Node);
9600 if Is_Access_Type (Exptyp) then
9601 Exptyp := Designated_Type (Exptyp);
9602 end if;
9604 -- String_Literal case. This needs to be handled specially be-
9605 -- cause no index types are available for string literals. The
9606 -- condition is simply:
9608 -- T_Typ'Length = string-literal-length
9610 if Nkind (Expr_Actual) = N_String_Literal
9611 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
9612 then
9613 Cond :=
9614 Make_Op_Ne (Loc,
9615 Left_Opnd => Get_E_Length (T_Typ, 1),
9616 Right_Opnd =>
9617 Make_Integer_Literal (Loc,
9618 Intval =>
9619 String_Literal_Length (Etype (Expr_Actual))));
9621 -- General array case. Here we have a usable actual subtype for
9622 -- the expression, and the condition is built from the two types
9623 -- (Do_Length):
9625 -- T_Typ'Length /= Exptyp'Length or else
9626 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
9627 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
9628 -- ...
9630 elsif Is_Constrained (Exptyp) then
9631 declare
9632 Ndims : constant Nat := Number_Dimensions (T_Typ);
9634 L_Index : Node_Id;
9635 R_Index : Node_Id;
9636 L_Low : Node_Id;
9637 L_High : Node_Id;
9638 R_Low : Node_Id;
9639 R_High : Node_Id;
9640 L_Length : Uint;
9641 R_Length : Uint;
9642 Ref_Node : Node_Id;
9644 begin
9645 -- At the library level, we need to ensure that the type of
9646 -- the object is elaborated before the check itself is
9647 -- emitted. This is only done if the object is in the
9648 -- current compilation unit, otherwise the type is frozen
9649 -- and elaborated in its unit.
9651 if Is_Itype (Exptyp)
9652 and then
9653 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
9654 and then
9655 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
9656 and then In_Open_Scopes (Scope (Exptyp))
9657 then
9658 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
9659 Set_Itype (Ref_Node, Exptyp);
9660 Insert_Action (Ck_Node, Ref_Node);
9661 end if;
9663 L_Index := First_Index (T_Typ);
9664 R_Index := First_Index (Exptyp);
9666 for Indx in 1 .. Ndims loop
9667 if not (Nkind (L_Index) = N_Raise_Constraint_Error
9668 or else
9669 Nkind (R_Index) = N_Raise_Constraint_Error)
9670 then
9671 Get_Index_Bounds (L_Index, L_Low, L_High);
9672 Get_Index_Bounds (R_Index, R_Low, R_High);
9674 -- Deal with compile time length check. Note that we
9675 -- skip this in the access case, because the access
9676 -- value may be null, so we cannot know statically.
9678 if not Do_Access
9679 and then Compile_Time_Known_Value (L_Low)
9680 and then Compile_Time_Known_Value (L_High)
9681 and then Compile_Time_Known_Value (R_Low)
9682 and then Compile_Time_Known_Value (R_High)
9683 then
9684 if Expr_Value (L_High) >= Expr_Value (L_Low) then
9685 L_Length := Expr_Value (L_High) -
9686 Expr_Value (L_Low) + 1;
9687 else
9688 L_Length := UI_From_Int (0);
9689 end if;
9691 if Expr_Value (R_High) >= Expr_Value (R_Low) then
9692 R_Length := Expr_Value (R_High) -
9693 Expr_Value (R_Low) + 1;
9694 else
9695 R_Length := UI_From_Int (0);
9696 end if;
9698 if L_Length > R_Length then
9699 Add_Check
9700 (Compile_Time_Constraint_Error
9701 (Wnode, "too few elements for}??", T_Typ));
9703 elsif L_Length < R_Length then
9704 Add_Check
9705 (Compile_Time_Constraint_Error
9706 (Wnode, "too many elements for}??", T_Typ));
9707 end if;
9709 -- The comparison for an individual index subtype
9710 -- is omitted if the corresponding index subtypes
9711 -- statically match, since the result is known to
9712 -- be true. Note that this test is worth while even
9713 -- though we do static evaluation, because non-static
9714 -- subtypes can statically match.
9716 elsif not
9717 Subtypes_Statically_Match
9718 (Etype (L_Index), Etype (R_Index))
9720 and then not
9721 (Same_Bounds (L_Low, R_Low)
9722 and then Same_Bounds (L_High, R_High))
9723 then
9724 Evolve_Or_Else
9725 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
9726 end if;
9728 Next (L_Index);
9729 Next (R_Index);
9730 end if;
9731 end loop;
9732 end;
9734 -- Handle cases where we do not get a usable actual subtype that
9735 -- is constrained. This happens for example in the function call
9736 -- and explicit dereference cases. In these cases, we have to get
9737 -- the length or range from the expression itself, making sure we
9738 -- do not evaluate it more than once.
9740 -- Here Ck_Node is the original expression, or more properly the
9741 -- result of applying Duplicate_Expr to the original tree, forcing
9742 -- the result to be a name.
9744 else
9745 declare
9746 Ndims : constant Nat := Number_Dimensions (T_Typ);
9748 begin
9749 -- Build the condition for the explicit dereference case
9751 for Indx in 1 .. Ndims loop
9752 Evolve_Or_Else
9753 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
9754 end loop;
9755 end;
9756 end if;
9757 end if;
9758 end if;
9760 -- Construct the test and insert into the tree
9762 if Present (Cond) then
9763 if Do_Access then
9764 Cond := Guard_Access (Cond, Loc, Ck_Node);
9765 end if;
9767 Add_Check
9768 (Make_Raise_Constraint_Error (Loc,
9769 Condition => Cond,
9770 Reason => CE_Length_Check_Failed));
9771 end if;
9773 return Ret_Result;
9774 end Selected_Length_Checks;
9776 ---------------------------
9777 -- Selected_Range_Checks --
9778 ---------------------------
9780 function Selected_Range_Checks
9781 (Ck_Node : Node_Id;
9782 Target_Typ : Entity_Id;
9783 Source_Typ : Entity_Id;
9784 Warn_Node : Node_Id) return Check_Result
9786 Loc : constant Source_Ptr := Sloc (Ck_Node);
9787 S_Typ : Entity_Id;
9788 T_Typ : Entity_Id;
9789 Expr_Actual : Node_Id;
9790 Exptyp : Entity_Id;
9791 Cond : Node_Id := Empty;
9792 Do_Access : Boolean := False;
9793 Wnode : Node_Id := Warn_Node;
9794 Ret_Result : Check_Result := (Empty, Empty);
9795 Num_Checks : Integer := 0;
9797 procedure Add_Check (N : Node_Id);
9798 -- Adds the action given to Ret_Result if N is non-Empty
9800 function Discrete_Range_Cond
9801 (Expr : Node_Id;
9802 Typ : Entity_Id) return Node_Id;
9803 -- Returns expression to compute:
9804 -- Low_Bound (Expr) < Typ'First
9805 -- or else
9806 -- High_Bound (Expr) > Typ'Last
9808 function Discrete_Expr_Cond
9809 (Expr : Node_Id;
9810 Typ : Entity_Id) return Node_Id;
9811 -- Returns expression to compute:
9812 -- Expr < Typ'First
9813 -- or else
9814 -- Expr > Typ'Last
9816 function Get_E_First_Or_Last
9817 (Loc : Source_Ptr;
9818 E : Entity_Id;
9819 Indx : Nat;
9820 Nam : Name_Id) return Node_Id;
9821 -- Returns an attribute reference
9822 -- E'First or E'Last
9823 -- with a source location of Loc.
9825 -- Nam is Name_First or Name_Last, according to which attribute is
9826 -- desired. If Indx is non-zero, it is passed as a literal in the
9827 -- Expressions of the attribute reference (identifying the desired
9828 -- array dimension).
9830 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
9831 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
9832 -- Returns expression to compute:
9833 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
9835 function Range_E_Cond
9836 (Exptyp : Entity_Id;
9837 Typ : Entity_Id;
9838 Indx : Nat)
9839 return Node_Id;
9840 -- Returns expression to compute:
9841 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
9843 function Range_Equal_E_Cond
9844 (Exptyp : Entity_Id;
9845 Typ : Entity_Id;
9846 Indx : Nat) return Node_Id;
9847 -- Returns expression to compute:
9848 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
9850 function Range_N_Cond
9851 (Expr : Node_Id;
9852 Typ : Entity_Id;
9853 Indx : Nat) return Node_Id;
9854 -- Return expression to compute:
9855 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
9857 ---------------
9858 -- Add_Check --
9859 ---------------
9861 procedure Add_Check (N : Node_Id) is
9862 begin
9863 if Present (N) then
9865 -- For now, ignore attempt to place more than 2 checks ???
9867 if Num_Checks = 2 then
9868 return;
9869 end if;
9871 pragma Assert (Num_Checks <= 1);
9872 Num_Checks := Num_Checks + 1;
9873 Ret_Result (Num_Checks) := N;
9874 end if;
9875 end Add_Check;
9877 -------------------------
9878 -- Discrete_Expr_Cond --
9879 -------------------------
9881 function Discrete_Expr_Cond
9882 (Expr : Node_Id;
9883 Typ : Entity_Id) return Node_Id
9885 begin
9886 return
9887 Make_Or_Else (Loc,
9888 Left_Opnd =>
9889 Make_Op_Lt (Loc,
9890 Left_Opnd =>
9891 Convert_To (Base_Type (Typ),
9892 Duplicate_Subexpr_No_Checks (Expr)),
9893 Right_Opnd =>
9894 Convert_To (Base_Type (Typ),
9895 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
9897 Right_Opnd =>
9898 Make_Op_Gt (Loc,
9899 Left_Opnd =>
9900 Convert_To (Base_Type (Typ),
9901 Duplicate_Subexpr_No_Checks (Expr)),
9902 Right_Opnd =>
9903 Convert_To
9904 (Base_Type (Typ),
9905 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
9906 end Discrete_Expr_Cond;
9908 -------------------------
9909 -- Discrete_Range_Cond --
9910 -------------------------
9912 function Discrete_Range_Cond
9913 (Expr : Node_Id;
9914 Typ : Entity_Id) return Node_Id
9916 LB : Node_Id := Low_Bound (Expr);
9917 HB : Node_Id := High_Bound (Expr);
9919 Left_Opnd : Node_Id;
9920 Right_Opnd : Node_Id;
9922 begin
9923 if Nkind (LB) = N_Identifier
9924 and then Ekind (Entity (LB)) = E_Discriminant
9925 then
9926 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
9927 end if;
9929 Left_Opnd :=
9930 Make_Op_Lt (Loc,
9931 Left_Opnd =>
9932 Convert_To
9933 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
9935 Right_Opnd =>
9936 Convert_To
9937 (Base_Type (Typ),
9938 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
9940 if Nkind (HB) = N_Identifier
9941 and then Ekind (Entity (HB)) = E_Discriminant
9942 then
9943 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
9944 end if;
9946 Right_Opnd :=
9947 Make_Op_Gt (Loc,
9948 Left_Opnd =>
9949 Convert_To
9950 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
9952 Right_Opnd =>
9953 Convert_To
9954 (Base_Type (Typ),
9955 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
9957 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
9958 end Discrete_Range_Cond;
9960 -------------------------
9961 -- Get_E_First_Or_Last --
9962 -------------------------
9964 function Get_E_First_Or_Last
9965 (Loc : Source_Ptr;
9966 E : Entity_Id;
9967 Indx : Nat;
9968 Nam : Name_Id) return Node_Id
9970 Exprs : List_Id;
9971 begin
9972 if Indx > 0 then
9973 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
9974 else
9975 Exprs := No_List;
9976 end if;
9978 return Make_Attribute_Reference (Loc,
9979 Prefix => New_Occurrence_Of (E, Loc),
9980 Attribute_Name => Nam,
9981 Expressions => Exprs);
9982 end Get_E_First_Or_Last;
9984 -----------------
9985 -- Get_N_First --
9986 -----------------
9988 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
9989 begin
9990 return
9991 Make_Attribute_Reference (Loc,
9992 Attribute_Name => Name_First,
9993 Prefix =>
9994 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
9995 Expressions => New_List (
9996 Make_Integer_Literal (Loc, Indx)));
9997 end Get_N_First;
9999 ----------------
10000 -- Get_N_Last --
10001 ----------------
10003 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
10004 begin
10005 return
10006 Make_Attribute_Reference (Loc,
10007 Attribute_Name => Name_Last,
10008 Prefix =>
10009 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10010 Expressions => New_List (
10011 Make_Integer_Literal (Loc, Indx)));
10012 end Get_N_Last;
10014 ------------------
10015 -- Range_E_Cond --
10016 ------------------
10018 function Range_E_Cond
10019 (Exptyp : Entity_Id;
10020 Typ : Entity_Id;
10021 Indx : Nat) return Node_Id
10023 begin
10024 return
10025 Make_Or_Else (Loc,
10026 Left_Opnd =>
10027 Make_Op_Lt (Loc,
10028 Left_Opnd =>
10029 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10030 Right_Opnd =>
10031 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10033 Right_Opnd =>
10034 Make_Op_Gt (Loc,
10035 Left_Opnd =>
10036 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10037 Right_Opnd =>
10038 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10039 end Range_E_Cond;
10041 ------------------------
10042 -- Range_Equal_E_Cond --
10043 ------------------------
10045 function Range_Equal_E_Cond
10046 (Exptyp : Entity_Id;
10047 Typ : Entity_Id;
10048 Indx : Nat) return Node_Id
10050 begin
10051 return
10052 Make_Or_Else (Loc,
10053 Left_Opnd =>
10054 Make_Op_Ne (Loc,
10055 Left_Opnd =>
10056 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10057 Right_Opnd =>
10058 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10060 Right_Opnd =>
10061 Make_Op_Ne (Loc,
10062 Left_Opnd =>
10063 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10064 Right_Opnd =>
10065 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10066 end Range_Equal_E_Cond;
10068 ------------------
10069 -- Range_N_Cond --
10070 ------------------
10072 function Range_N_Cond
10073 (Expr : Node_Id;
10074 Typ : Entity_Id;
10075 Indx : Nat) return Node_Id
10077 begin
10078 return
10079 Make_Or_Else (Loc,
10080 Left_Opnd =>
10081 Make_Op_Lt (Loc,
10082 Left_Opnd =>
10083 Get_N_First (Expr, Indx),
10084 Right_Opnd =>
10085 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10087 Right_Opnd =>
10088 Make_Op_Gt (Loc,
10089 Left_Opnd =>
10090 Get_N_Last (Expr, Indx),
10091 Right_Opnd =>
10092 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10093 end Range_N_Cond;
10095 -- Start of processing for Selected_Range_Checks
10097 begin
10098 -- Checks will be applied only when generating code. In GNATprove mode,
10099 -- we do not apply the checks, but we still call Selected_Range_Checks
10100 -- to possibly issue errors on SPARK code when a run-time error can be
10101 -- detected at compile time.
10103 if not Expander_Active and not GNATprove_Mode then
10104 return Ret_Result;
10105 end if;
10107 if Target_Typ = Any_Type
10108 or else Target_Typ = Any_Composite
10109 or else Raises_Constraint_Error (Ck_Node)
10110 then
10111 return Ret_Result;
10112 end if;
10114 if No (Wnode) then
10115 Wnode := Ck_Node;
10116 end if;
10118 T_Typ := Target_Typ;
10120 if No (Source_Typ) then
10121 S_Typ := Etype (Ck_Node);
10122 else
10123 S_Typ := Source_Typ;
10124 end if;
10126 if S_Typ = Any_Type or else S_Typ = Any_Composite then
10127 return Ret_Result;
10128 end if;
10130 -- The order of evaluating T_Typ before S_Typ seems to be critical
10131 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
10132 -- in, and since Node can be an N_Range node, it might be invalid.
10133 -- Should there be an assert check somewhere for taking the Etype of
10134 -- an N_Range node ???
10136 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10137 S_Typ := Designated_Type (S_Typ);
10138 T_Typ := Designated_Type (T_Typ);
10139 Do_Access := True;
10141 -- A simple optimization for the null case
10143 if Known_Null (Ck_Node) then
10144 return Ret_Result;
10145 end if;
10146 end if;
10148 -- For an N_Range Node, check for a null range and then if not
10149 -- null generate a range check action.
10151 if Nkind (Ck_Node) = N_Range then
10153 -- There's no point in checking a range against itself
10155 if Ck_Node = Scalar_Range (T_Typ) then
10156 return Ret_Result;
10157 end if;
10159 declare
10160 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
10161 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
10162 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
10163 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
10165 LB : Node_Id := Low_Bound (Ck_Node);
10166 HB : Node_Id := High_Bound (Ck_Node);
10167 Known_LB : Boolean := False;
10168 Known_HB : Boolean := False;
10170 Null_Range : Boolean;
10171 Out_Of_Range_L : Boolean;
10172 Out_Of_Range_H : Boolean;
10174 begin
10175 -- Compute what is known at compile time
10177 if Known_T_LB and Known_T_HB then
10178 if Compile_Time_Known_Value (LB) then
10179 Known_LB := True;
10181 -- There's no point in checking that a bound is within its
10182 -- own range so pretend that it is known in this case. First
10183 -- deal with low bound.
10185 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
10186 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
10187 then
10188 LB := T_LB;
10189 Known_LB := True;
10190 end if;
10192 -- Likewise for the high bound
10194 if Compile_Time_Known_Value (HB) then
10195 Known_HB := True;
10197 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
10198 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
10199 then
10200 HB := T_HB;
10201 Known_HB := True;
10202 end if;
10203 end if;
10205 -- Check for case where everything is static and we can do the
10206 -- check at compile time. This is skipped if we have an access
10207 -- type, since the access value may be null.
10209 -- ??? This code can be improved since you only need to know that
10210 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
10211 -- compile time to emit pertinent messages.
10213 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
10214 and not Do_Access
10215 then
10216 -- Floating-point case
10218 if Is_Floating_Point_Type (S_Typ) then
10219 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
10220 Out_Of_Range_L :=
10221 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
10222 or else
10223 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
10225 Out_Of_Range_H :=
10226 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
10227 or else
10228 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
10230 -- Fixed or discrete type case
10232 else
10233 Null_Range := Expr_Value (HB) < Expr_Value (LB);
10234 Out_Of_Range_L :=
10235 (Expr_Value (LB) < Expr_Value (T_LB))
10236 or else
10237 (Expr_Value (LB) > Expr_Value (T_HB));
10239 Out_Of_Range_H :=
10240 (Expr_Value (HB) > Expr_Value (T_HB))
10241 or else
10242 (Expr_Value (HB) < Expr_Value (T_LB));
10243 end if;
10245 if not Null_Range then
10246 if Out_Of_Range_L then
10247 if No (Warn_Node) then
10248 Add_Check
10249 (Compile_Time_Constraint_Error
10250 (Low_Bound (Ck_Node),
10251 "static value out of range of}??", T_Typ));
10253 else
10254 Add_Check
10255 (Compile_Time_Constraint_Error
10256 (Wnode,
10257 "static range out of bounds of}??", T_Typ));
10258 end if;
10259 end if;
10261 if Out_Of_Range_H then
10262 if No (Warn_Node) then
10263 Add_Check
10264 (Compile_Time_Constraint_Error
10265 (High_Bound (Ck_Node),
10266 "static value out of range of}??", T_Typ));
10268 else
10269 Add_Check
10270 (Compile_Time_Constraint_Error
10271 (Wnode,
10272 "static range out of bounds of}??", T_Typ));
10273 end if;
10274 end if;
10275 end if;
10277 else
10278 declare
10279 LB : Node_Id := Low_Bound (Ck_Node);
10280 HB : Node_Id := High_Bound (Ck_Node);
10282 begin
10283 -- If either bound is a discriminant and we are within the
10284 -- record declaration, it is a use of the discriminant in a
10285 -- constraint of a component, and nothing can be checked
10286 -- here. The check will be emitted within the init proc.
10287 -- Before then, the discriminal has no real meaning.
10288 -- Similarly, if the entity is a discriminal, there is no
10289 -- check to perform yet.
10291 -- The same holds within a discriminated synchronized type,
10292 -- where the discriminant may constrain a component or an
10293 -- entry family.
10295 if Nkind (LB) = N_Identifier
10296 and then Denotes_Discriminant (LB, True)
10297 then
10298 if Current_Scope = Scope (Entity (LB))
10299 or else Is_Concurrent_Type (Current_Scope)
10300 or else Ekind (Entity (LB)) /= E_Discriminant
10301 then
10302 return Ret_Result;
10303 else
10304 LB :=
10305 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10306 end if;
10307 end if;
10309 if Nkind (HB) = N_Identifier
10310 and then Denotes_Discriminant (HB, True)
10311 then
10312 if Current_Scope = Scope (Entity (HB))
10313 or else Is_Concurrent_Type (Current_Scope)
10314 or else Ekind (Entity (HB)) /= E_Discriminant
10315 then
10316 return Ret_Result;
10317 else
10318 HB :=
10319 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10320 end if;
10321 end if;
10323 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
10324 Set_Paren_Count (Cond, 1);
10326 Cond :=
10327 Make_And_Then (Loc,
10328 Left_Opnd =>
10329 Make_Op_Ge (Loc,
10330 Left_Opnd =>
10331 Convert_To (Base_Type (Etype (HB)),
10332 Duplicate_Subexpr_No_Checks (HB)),
10333 Right_Opnd =>
10334 Convert_To (Base_Type (Etype (LB)),
10335 Duplicate_Subexpr_No_Checks (LB))),
10336 Right_Opnd => Cond);
10337 end;
10338 end if;
10339 end;
10341 elsif Is_Scalar_Type (S_Typ) then
10343 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
10344 -- except the above simply sets a flag in the node and lets
10345 -- gigi generate the check base on the Etype of the expression.
10346 -- Sometimes, however we want to do a dynamic check against an
10347 -- arbitrary target type, so we do that here.
10349 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
10350 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10352 -- For literals, we can tell if the constraint error will be
10353 -- raised at compile time, so we never need a dynamic check, but
10354 -- if the exception will be raised, then post the usual warning,
10355 -- and replace the literal with a raise constraint error
10356 -- expression. As usual, skip this for access types
10358 elsif Compile_Time_Known_Value (Ck_Node) and then not Do_Access then
10359 declare
10360 LB : constant Node_Id := Type_Low_Bound (T_Typ);
10361 UB : constant Node_Id := Type_High_Bound (T_Typ);
10363 Out_Of_Range : Boolean;
10364 Static_Bounds : constant Boolean :=
10365 Compile_Time_Known_Value (LB)
10366 and Compile_Time_Known_Value (UB);
10368 begin
10369 -- Following range tests should use Sem_Eval routine ???
10371 if Static_Bounds then
10372 if Is_Floating_Point_Type (S_Typ) then
10373 Out_Of_Range :=
10374 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
10375 or else
10376 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
10378 -- Fixed or discrete type
10380 else
10381 Out_Of_Range :=
10382 Expr_Value (Ck_Node) < Expr_Value (LB)
10383 or else
10384 Expr_Value (Ck_Node) > Expr_Value (UB);
10385 end if;
10387 -- Bounds of the type are static and the literal is out of
10388 -- range so output a warning message.
10390 if Out_Of_Range then
10391 if No (Warn_Node) then
10392 Add_Check
10393 (Compile_Time_Constraint_Error
10394 (Ck_Node,
10395 "static value out of range of}??", T_Typ));
10397 else
10398 Add_Check
10399 (Compile_Time_Constraint_Error
10400 (Wnode,
10401 "static value out of range of}??", T_Typ));
10402 end if;
10403 end if;
10405 else
10406 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10407 end if;
10408 end;
10410 -- Here for the case of a non-static expression, we need a runtime
10411 -- check unless the source type range is guaranteed to be in the
10412 -- range of the target type.
10414 else
10415 if not In_Subrange_Of (S_Typ, T_Typ) then
10416 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10417 end if;
10418 end if;
10419 end if;
10421 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
10422 if Is_Constrained (T_Typ) then
10424 Expr_Actual := Get_Referenced_Object (Ck_Node);
10425 Exptyp := Get_Actual_Subtype (Expr_Actual);
10427 if Is_Access_Type (Exptyp) then
10428 Exptyp := Designated_Type (Exptyp);
10429 end if;
10431 -- String_Literal case. This needs to be handled specially be-
10432 -- cause no index types are available for string literals. The
10433 -- condition is simply:
10435 -- T_Typ'Length = string-literal-length
10437 if Nkind (Expr_Actual) = N_String_Literal then
10438 null;
10440 -- General array case. Here we have a usable actual subtype for
10441 -- the expression, and the condition is built from the two types
10443 -- T_Typ'First < Exptyp'First or else
10444 -- T_Typ'Last > Exptyp'Last or else
10445 -- T_Typ'First(1) < Exptyp'First(1) or else
10446 -- T_Typ'Last(1) > Exptyp'Last(1) or else
10447 -- ...
10449 elsif Is_Constrained (Exptyp) then
10450 declare
10451 Ndims : constant Nat := Number_Dimensions (T_Typ);
10453 L_Index : Node_Id;
10454 R_Index : Node_Id;
10456 begin
10457 L_Index := First_Index (T_Typ);
10458 R_Index := First_Index (Exptyp);
10460 for Indx in 1 .. Ndims loop
10461 if not (Nkind (L_Index) = N_Raise_Constraint_Error
10462 or else
10463 Nkind (R_Index) = N_Raise_Constraint_Error)
10464 then
10465 -- Deal with compile time length check. Note that we
10466 -- skip this in the access case, because the access
10467 -- value may be null, so we cannot know statically.
10469 if not
10470 Subtypes_Statically_Match
10471 (Etype (L_Index), Etype (R_Index))
10472 then
10473 -- If the target type is constrained then we
10474 -- have to check for exact equality of bounds
10475 -- (required for qualified expressions).
10477 if Is_Constrained (T_Typ) then
10478 Evolve_Or_Else
10479 (Cond,
10480 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
10481 else
10482 Evolve_Or_Else
10483 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
10484 end if;
10485 end if;
10487 Next (L_Index);
10488 Next (R_Index);
10489 end if;
10490 end loop;
10491 end;
10493 -- Handle cases where we do not get a usable actual subtype that
10494 -- is constrained. This happens for example in the function call
10495 -- and explicit dereference cases. In these cases, we have to get
10496 -- the length or range from the expression itself, making sure we
10497 -- do not evaluate it more than once.
10499 -- Here Ck_Node is the original expression, or more properly the
10500 -- result of applying Duplicate_Expr to the original tree,
10501 -- forcing the result to be a name.
10503 else
10504 declare
10505 Ndims : constant Nat := Number_Dimensions (T_Typ);
10507 begin
10508 -- Build the condition for the explicit dereference case
10510 for Indx in 1 .. Ndims loop
10511 Evolve_Or_Else
10512 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
10513 end loop;
10514 end;
10515 end if;
10517 else
10518 -- For a conversion to an unconstrained array type, generate an
10519 -- Action to check that the bounds of the source value are within
10520 -- the constraints imposed by the target type (RM 4.6(38)). No
10521 -- check is needed for a conversion to an access to unconstrained
10522 -- array type, as 4.6(24.15/2) requires the designated subtypes
10523 -- of the two access types to statically match.
10525 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
10526 and then not Do_Access
10527 then
10528 declare
10529 Opnd_Index : Node_Id;
10530 Targ_Index : Node_Id;
10531 Opnd_Range : Node_Id;
10533 begin
10534 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
10535 Targ_Index := First_Index (T_Typ);
10536 while Present (Opnd_Index) loop
10538 -- If the index is a range, use its bounds. If it is an
10539 -- entity (as will be the case if it is a named subtype
10540 -- or an itype created for a slice) retrieve its range.
10542 if Is_Entity_Name (Opnd_Index)
10543 and then Is_Type (Entity (Opnd_Index))
10544 then
10545 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
10546 else
10547 Opnd_Range := Opnd_Index;
10548 end if;
10550 if Nkind (Opnd_Range) = N_Range then
10551 if Is_In_Range
10552 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10553 Assume_Valid => True)
10554 and then
10555 Is_In_Range
10556 (High_Bound (Opnd_Range), Etype (Targ_Index),
10557 Assume_Valid => True)
10558 then
10559 null;
10561 -- If null range, no check needed
10563 elsif
10564 Compile_Time_Known_Value (High_Bound (Opnd_Range))
10565 and then
10566 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
10567 and then
10568 Expr_Value (High_Bound (Opnd_Range)) <
10569 Expr_Value (Low_Bound (Opnd_Range))
10570 then
10571 null;
10573 elsif Is_Out_Of_Range
10574 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10575 Assume_Valid => True)
10576 or else
10577 Is_Out_Of_Range
10578 (High_Bound (Opnd_Range), Etype (Targ_Index),
10579 Assume_Valid => True)
10580 then
10581 Add_Check
10582 (Compile_Time_Constraint_Error
10583 (Wnode, "value out of range of}??", T_Typ));
10585 else
10586 Evolve_Or_Else
10587 (Cond,
10588 Discrete_Range_Cond
10589 (Opnd_Range, Etype (Targ_Index)));
10590 end if;
10591 end if;
10593 Next_Index (Opnd_Index);
10594 Next_Index (Targ_Index);
10595 end loop;
10596 end;
10597 end if;
10598 end if;
10599 end if;
10601 -- Construct the test and insert into the tree
10603 if Present (Cond) then
10604 if Do_Access then
10605 Cond := Guard_Access (Cond, Loc, Ck_Node);
10606 end if;
10608 Add_Check
10609 (Make_Raise_Constraint_Error (Loc,
10610 Condition => Cond,
10611 Reason => CE_Range_Check_Failed));
10612 end if;
10614 return Ret_Result;
10615 end Selected_Range_Checks;
10617 -------------------------------
10618 -- Storage_Checks_Suppressed --
10619 -------------------------------
10621 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
10622 begin
10623 if Present (E) and then Checks_May_Be_Suppressed (E) then
10624 return Is_Check_Suppressed (E, Storage_Check);
10625 else
10626 return Scope_Suppress.Suppress (Storage_Check);
10627 end if;
10628 end Storage_Checks_Suppressed;
10630 ---------------------------
10631 -- Tag_Checks_Suppressed --
10632 ---------------------------
10634 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
10635 begin
10636 if Present (E)
10637 and then Checks_May_Be_Suppressed (E)
10638 then
10639 return Is_Check_Suppressed (E, Tag_Check);
10640 else
10641 return Scope_Suppress.Suppress (Tag_Check);
10642 end if;
10643 end Tag_Checks_Suppressed;
10645 ---------------------------------------
10646 -- Validate_Alignment_Check_Warnings --
10647 ---------------------------------------
10649 procedure Validate_Alignment_Check_Warnings is
10650 begin
10651 for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
10652 declare
10653 AWR : Alignment_Warnings_Record
10654 renames Alignment_Warnings.Table (J);
10655 begin
10656 if Known_Alignment (AWR.E)
10657 and then AWR.A mod Alignment (AWR.E) = 0
10658 then
10659 Delete_Warning_And_Continuations (AWR.W);
10660 end if;
10661 end;
10662 end loop;
10663 end Validate_Alignment_Check_Warnings;
10665 --------------------------
10666 -- Validity_Check_Range --
10667 --------------------------
10669 procedure Validity_Check_Range
10670 (N : Node_Id;
10671 Related_Id : Entity_Id := Empty)
10673 begin
10674 if Validity_Checks_On and Validity_Check_Operands then
10675 if Nkind (N) = N_Range then
10676 Ensure_Valid
10677 (Expr => Low_Bound (N),
10678 Related_Id => Related_Id,
10679 Is_Low_Bound => True);
10681 Ensure_Valid
10682 (Expr => High_Bound (N),
10683 Related_Id => Related_Id,
10684 Is_High_Bound => True);
10685 end if;
10686 end if;
10687 end Validity_Check_Range;
10689 --------------------------------
10690 -- Validity_Checks_Suppressed --
10691 --------------------------------
10693 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
10694 begin
10695 if Present (E) and then Checks_May_Be_Suppressed (E) then
10696 return Is_Check_Suppressed (E, Validity_Check);
10697 else
10698 return Scope_Suppress.Suppress (Validity_Check);
10699 end if;
10700 end Validity_Checks_Suppressed;
10702 end Checks;