* config/rs6000/rs6000.c (rs6000_expand_builtin_saveregs):
[official-gcc.git] / gcc / config / rs6000 / rs6000.h
blob3a3a88041f61bbbfbc237db18442353bc50fa7c8
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 93-8, 1999 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
27 /* Names to predefine in the preprocessor for this target machine. */
29 #define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 -D_LONG_LONG \
30 -Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
32 /* Print subsidiary information on the compiler version in use. */
33 #define TARGET_VERSION ;
35 /* Default string to use for cpu if not specified. */
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT ((char *)0)
38 #endif
40 /* Tell the assembler to assume that all undefined names are external.
42 Don't do this until the fixed IBM assembler is more generally available.
43 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
44 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
45 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
46 will no longer be needed. */
48 /* #define ASM_SPEC "-u %(asm_cpu)" */
50 /* Define appropriate architecture macros for preprocessor depending on
51 target switches. */
53 #define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
55 /* Common CPP definitions used by CPP_SPEC among the various targets
56 for handling -mcpu=xxx switches. */
57 #define CPP_CPU_SPEC \
58 "%{!mcpu*: \
59 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
60 %{mpower2: -D_ARCH_PWR2} \
61 %{mpowerpc*: -D_ARCH_PPC} \
62 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
63 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
64 %{mcpu=common: -D_ARCH_COM} \
65 %{mcpu=power: -D_ARCH_PWR} \
66 %{mcpu=power2: -D_ARCH_PWR2} \
67 %{mcpu=powerpc: -D_ARCH_PPC} \
68 %{mcpu=rios: -D_ARCH_PWR} \
69 %{mcpu=rios1: -D_ARCH_PWR} \
70 %{mcpu=rios2: -D_ARCH_PWR2} \
71 %{mcpu=rsc: -D_ARCH_PWR} \
72 %{mcpu=rsc1: -D_ARCH_PWR} \
73 %{mcpu=401: -D_ARCH_PPC} \
74 %{mcpu=403: -D_ARCH_PPC} \
75 %{mcpu=505: -D_ARCH_PPC} \
76 %{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
77 %{mcpu=602: -D_ARCH_PPC} \
78 %{mcpu=603: -D_ARCH_PPC} \
79 %{mcpu=603e: -D_ARCH_PPC} \
80 %{mcpu=ec603e: -D_ARCH_PPC} \
81 %{mcpu=604: -D_ARCH_PPC} \
82 %{mcpu=604e: -D_ARCH_PPC} \
83 %{mcpu=620: -D_ARCH_PPC} \
84 %{mcpu=740: -D_ARCH_PPC} \
85 %{mcpu=750: -D_ARCH_PPC} \
86 %{mcpu=801: -D_ARCH_PPC} \
87 %{mcpu=821: -D_ARCH_PPC} \
88 %{mcpu=823: -D_ARCH_PPC} \
89 %{mcpu=860: -D_ARCH_PPC}"
91 #ifndef CPP_DEFAULT_SPEC
92 #define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
93 #endif
95 #ifndef CPP_SYSV_SPEC
96 #define CPP_SYSV_SPEC ""
97 #endif
99 #ifndef CPP_ENDIAN_SPEC
100 #define CPP_ENDIAN_SPEC ""
101 #endif
103 #ifndef CPP_ENDIAN_DEFAULT_SPEC
104 #define CPP_ENDIAN_DEFAULT_SPEC ""
105 #endif
107 #ifndef CPP_SYSV_DEFAULT_SPEC
108 #define CPP_SYSV_DEFAULT_SPEC ""
109 #endif
111 /* Common ASM definitions used by ASM_SPEC among the various targets
112 for handling -mcpu=xxx switches. */
113 #define ASM_CPU_SPEC \
114 "%{!mcpu*: \
115 %{mpower: %{!mpower2: -mpwr}} \
116 %{mpower2: -mpwrx} \
117 %{mpowerpc*: -mppc} \
118 %{mno-power: %{!mpowerpc*: -mcom}} \
119 %{!mno-power: %{!mpower2: %(asm_default)}}} \
120 %{mcpu=common: -mcom} \
121 %{mcpu=power: -mpwr} \
122 %{mcpu=power2: -mpwrx} \
123 %{mcpu=powerpc: -mppc} \
124 %{mcpu=rios: -mpwr} \
125 %{mcpu=rios1: -mpwr} \
126 %{mcpu=rios2: -mpwrx} \
127 %{mcpu=rsc: -mpwr} \
128 %{mcpu=rsc1: -mpwr} \
129 %{mcpu=401: -mppc} \
130 %{mcpu=403: -mppc} \
131 %{mcpu=505: -mppc} \
132 %{mcpu=601: -m601} \
133 %{mcpu=602: -mppc} \
134 %{mcpu=603: -mppc} \
135 %{mcpu=603e: -mppc} \
136 %{mcpu=ec603e: -mppc} \
137 %{mcpu=604: -mppc} \
138 %{mcpu=604e: -mppc} \
139 %{mcpu=620: -mppc} \
140 %{mcpu=740: -mppc} \
141 %{mcpu=750: -mppc} \
142 %{mcpu=801: -mppc} \
143 %{mcpu=821: -mppc} \
144 %{mcpu=823: -mppc} \
145 %{mcpu=860: -mppc}"
147 #ifndef ASM_DEFAULT_SPEC
148 #define ASM_DEFAULT_SPEC ""
149 #endif
151 /* This macro defines names of additional specifications to put in the specs
152 that can be used in various specifications like CC1_SPEC. Its definition
153 is an initializer with a subgrouping for each command option.
155 Each subgrouping contains a string constant, that defines the
156 specification name, and a string constant that used by the GNU CC driver
157 program.
159 Do not define this macro if it does not need to do anything. */
161 #ifndef SUBTARGET_EXTRA_SPECS
162 #define SUBTARGET_EXTRA_SPECS
163 #endif
165 #define EXTRA_SPECS \
166 { "cpp_cpu", CPP_CPU_SPEC }, \
167 { "cpp_default", CPP_DEFAULT_SPEC }, \
168 { "cpp_sysv", CPP_SYSV_SPEC }, \
169 { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
170 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
171 { "cpp_endian", CPP_ENDIAN_SPEC }, \
172 { "asm_cpu", ASM_CPU_SPEC }, \
173 { "asm_default", ASM_DEFAULT_SPEC }, \
174 { "link_syscalls", LINK_SYSCALLS_SPEC }, \
175 { "link_libg", LINK_LIBG_SPEC }, \
176 SUBTARGET_EXTRA_SPECS
178 /* Default location of syscalls.exp under AIX */
179 #ifndef CROSS_COMPILE
180 #define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
181 #else
182 #define LINK_SYSCALLS_SPEC ""
183 #endif
185 /* Default location of libg.exp under AIX */
186 #ifndef CROSS_COMPILE
187 #define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
188 #else
189 #define LINK_LIBG_SPEC ""
190 #endif
192 /* Define the options for the binder: Start text at 512, align all segments
193 to 512 bytes, and warn if there is text relocation.
195 The -bhalt:4 option supposedly changes the level at which ld will abort,
196 but it also suppresses warnings about multiply defined symbols and is
197 used by the AIX cc command. So we use it here.
199 -bnodelcsect undoes a poor choice of default relating to multiply-defined
200 csects. See AIX documentation for more information about this.
202 -bM:SRE tells the linker that the output file is Shared REusable. Note
203 that to actually build a shared library you will also need to specify an
204 export list with the -Wl,-bE option. */
206 #define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
207 %{static:-bnso %(link_syscalls) } \
208 %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
210 /* Profiled library versions are used by linking with special directories. */
211 #define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
212 %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
214 /* gcc must do the search itself to find libgcc.a, not use -l. */
215 #define LIBGCC_SPEC "libgcc.a%s"
217 /* Don't turn -B into -L if the argument specifies a relative file name. */
218 #define RELATIVE_PREFIX_NOT_LINKDIR
220 /* Architecture type. */
222 extern int target_flags;
224 /* Use POWER architecture instructions and MQ register. */
225 #define MASK_POWER 0x00000001
227 /* Use POWER2 extensions to POWER architecture. */
228 #define MASK_POWER2 0x00000002
230 /* Use PowerPC architecture instructions. */
231 #define MASK_POWERPC 0x00000004
233 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
234 #define MASK_PPC_GPOPT 0x00000008
236 /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
237 #define MASK_PPC_GFXOPT 0x00000010
239 /* Use PowerPC-64 architecture instructions. */
240 #define MASK_POWERPC64 0x00000020
242 /* Use revised mnemonic names defined for PowerPC architecture. */
243 #define MASK_NEW_MNEMONICS 0x00000040
245 /* Disable placing fp constants in the TOC; can be turned on when the
246 TOC overflows. */
247 #define MASK_NO_FP_IN_TOC 0x00000080
249 /* Disable placing symbol+offset constants in the TOC; can be turned on when
250 the TOC overflows. */
251 #define MASK_NO_SUM_IN_TOC 0x00000100
253 /* Output only one TOC entry per module. Normally linking fails if
254 there are more than 16K unique variables/constants in an executable. With
255 this option, linking fails only if there are more than 16K modules, or
256 if there are more than 16K unique variables/constant in a single module.
258 This is at the cost of having 2 extra loads and one extra store per
259 function, and one less allocable register. */
260 #define MASK_MINIMAL_TOC 0x00000200
262 /* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
263 #define MASK_64BIT 0x00000400
265 /* Disable use of FPRs. */
266 #define MASK_SOFT_FLOAT 0x00000800
268 /* Enable load/store multiple, even on powerpc */
269 #define MASK_MULTIPLE 0x00001000
270 #define MASK_MULTIPLE_SET 0x00002000
272 /* Use string instructions for block moves */
273 #define MASK_STRING 0x00004000
274 #define MASK_STRING_SET 0x00008000
276 /* Disable update form of load/store */
277 #define MASK_NO_UPDATE 0x00010000
279 /* Disable fused multiply/add operations */
280 #define MASK_NO_FUSED_MADD 0x00020000
282 #define TARGET_POWER (target_flags & MASK_POWER)
283 #define TARGET_POWER2 (target_flags & MASK_POWER2)
284 #define TARGET_POWERPC (target_flags & MASK_POWERPC)
285 #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
286 #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
287 #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
288 #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
289 #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
290 #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
291 #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
292 #define TARGET_64BIT (target_flags & MASK_64BIT)
293 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
294 #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
295 #define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
296 #define TARGET_STRING (target_flags & MASK_STRING)
297 #define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
298 #define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
299 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
301 #define TARGET_32BIT (! TARGET_64BIT)
302 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
303 #define TARGET_UPDATE (! TARGET_NO_UPDATE)
304 #define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
306 /* Pseudo target to indicate whether the object format is ELF
307 (to get around not having conditional compilation in the md file) */
308 #ifndef TARGET_ELF
309 #define TARGET_ELF 0
310 #endif
312 /* If this isn't V.4, don't support -mno-toc. */
313 #ifndef TARGET_NO_TOC
314 #define TARGET_NO_TOC 0
315 #define TARGET_TOC 1
316 #endif
318 /* Pseudo target to say whether this is Windows NT */
319 #ifndef TARGET_WINDOWS_NT
320 #define TARGET_WINDOWS_NT 0
321 #endif
323 /* Pseudo target to say whether this is MAC */
324 #ifndef TARGET_MACOS
325 #define TARGET_MACOS 0
326 #endif
328 /* Pseudo target to say whether this is AIX */
329 #ifndef TARGET_AIX
330 #if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
331 #define TARGET_AIX 0
332 #else
333 #define TARGET_AIX 1
334 #endif
335 #endif
337 #ifndef TARGET_XL_CALL
338 #define TARGET_XL_CALL 0
339 #endif
341 /* Run-time compilation parameters selecting different hardware subsets.
343 Macro to define tables used to set the flags.
344 This is a list in braces of pairs in braces,
345 each pair being { "NAME", VALUE }
346 where VALUE is the bits to set or minus the bits to clear.
347 An empty string NAME is used to identify the default VALUE. */
349 /* This is meant to be redefined in the host dependent files */
350 #ifndef SUBTARGET_SWITCHES
351 #define SUBTARGET_SWITCHES
352 #endif
354 #define TARGET_SWITCHES \
355 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
356 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
357 | MASK_POWER2)}, \
358 {"no-power2", - MASK_POWER2}, \
359 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
360 | MASK_STRING)}, \
361 {"powerpc", MASK_POWERPC}, \
362 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
363 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
364 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
365 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
366 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
367 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
368 {"powerpc64", MASK_POWERPC64}, \
369 {"no-powerpc64", - MASK_POWERPC64}, \
370 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
371 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
372 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
373 | MASK_MINIMAL_TOC)}, \
374 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
375 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
376 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
377 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
378 {"minimal-toc", MASK_MINIMAL_TOC}, \
379 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
380 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
381 {"hard-float", - MASK_SOFT_FLOAT}, \
382 {"soft-float", MASK_SOFT_FLOAT}, \
383 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
384 {"no-multiple", - MASK_MULTIPLE}, \
385 {"no-multiple", MASK_MULTIPLE_SET}, \
386 {"string", MASK_STRING | MASK_STRING_SET}, \
387 {"no-string", - MASK_STRING}, \
388 {"no-string", MASK_STRING_SET}, \
389 {"update", - MASK_NO_UPDATE}, \
390 {"no-update", MASK_NO_UPDATE}, \
391 {"fused-madd", - MASK_NO_FUSED_MADD}, \
392 {"no-fused-madd", MASK_NO_FUSED_MADD}, \
393 SUBTARGET_SWITCHES \
394 {"", TARGET_DEFAULT}}
396 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
398 /* Processor type. Order must match cpu attribute in MD file. */
399 enum processor_type
401 PROCESSOR_RIOS1,
402 PROCESSOR_RIOS2,
403 PROCESSOR_MPCCORE,
404 PROCESSOR_PPC403,
405 PROCESSOR_PPC601,
406 PROCESSOR_PPC603,
407 PROCESSOR_PPC604,
408 PROCESSOR_PPC604e,
409 PROCESSOR_PPC620,
410 PROCESSOR_PPC750
413 extern enum processor_type rs6000_cpu;
415 /* Recast the processor type to the cpu attribute. */
416 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
418 /* Define generic processor types based upon current deployment. */
419 #define PROCESSOR_COMMON PROCESSOR_PPC601
420 #define PROCESSOR_POWER PROCESSOR_RIOS1
421 #define PROCESSOR_POWERPC PROCESSOR_PPC604
423 /* Define the default processor. This is overridden by other tm.h files. */
424 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
426 /* Specify the dialect of assembler to use. New mnemonics is dialect one
427 and the old mnemonics are dialect zero. */
428 #define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
430 /* This macro is similar to `TARGET_SWITCHES' but defines names of
431 command options that have values. Its definition is an
432 initializer with a subgrouping for each command option.
434 Each subgrouping contains a string constant, that defines the
435 fixed part of the option name, and the address of a variable.
436 The variable, type `char *', is set to the variable part of the
437 given option if the fixed part matches. The actual option name
438 is made by appending `-m' to the specified name.
440 Here is an example which defines `-mshort-data-NUMBER'. If the
441 given option is `-mshort-data-512', the variable `m88k_short_data'
442 will be set to the string `"512"'.
444 extern char *m88k_short_data;
445 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
447 /* This is meant to be overridden in target specific files. */
448 #ifndef SUBTARGET_OPTIONS
449 #define SUBTARGET_OPTIONS
450 #endif
452 #define TARGET_OPTIONS \
454 {"cpu=", &rs6000_select[1].string}, \
455 {"tune=", &rs6000_select[2].string}, \
456 {"debug-", &rs6000_debug_name}, \
457 {"debug=", &rs6000_debug_name}, \
458 SUBTARGET_OPTIONS \
461 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
462 struct rs6000_cpu_select
464 const char *string;
465 const char *name;
466 int set_tune_p;
467 int set_arch_p;
470 extern struct rs6000_cpu_select rs6000_select[];
472 /* Debug support */
473 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
474 extern int rs6000_debug_stack; /* debug stack applications */
475 extern int rs6000_debug_arg; /* debug argument handling */
477 #define TARGET_DEBUG_STACK rs6000_debug_stack
478 #define TARGET_DEBUG_ARG rs6000_debug_arg
480 /* Sometimes certain combinations of command options do not make sense
481 on a particular target machine. You can define a macro
482 `OVERRIDE_OPTIONS' to take account of this. This macro, if
483 defined, is executed once just after all the command options have
484 been parsed.
486 Don't use this macro to turn on various extra optimizations for
487 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
489 On the RS/6000 this is used to define the target cpu type. */
491 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
493 /* Define this to change the optimizations performed by default. */
494 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
497 /* Show we can debug even without a frame pointer. */
498 #define CAN_DEBUG_WITHOUT_FP
500 /* target machine storage layout */
502 /* Define to support cross compilation to an RS6000 target. */
503 #define REAL_ARITHMETIC
505 /* Define this macro if it is advisable to hold scalars in registers
506 in a wider mode than that declared by the program. In such cases,
507 the value is constrained to be within the bounds of the declared
508 type, but kept valid in the wider mode. The signedness of the
509 extension may differ from that of the type. */
511 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
512 if (GET_MODE_CLASS (MODE) == MODE_INT \
513 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
514 (MODE) = (! TARGET_POWERPC64 ? SImode : DImode);
516 /* Define this if function arguments should also be promoted using the above
517 procedure. */
519 #define PROMOTE_FUNCTION_ARGS
521 /* Likewise, if the function return value is promoted. */
523 #define PROMOTE_FUNCTION_RETURN
525 /* Define this if most significant bit is lowest numbered
526 in instructions that operate on numbered bit-fields. */
527 /* That is true on RS/6000. */
528 #define BITS_BIG_ENDIAN 1
530 /* Define this if most significant byte of a word is the lowest numbered. */
531 /* That is true on RS/6000. */
532 #define BYTES_BIG_ENDIAN 1
534 /* Define this if most significant word of a multiword number is lowest
535 numbered.
537 For RS/6000 we can decide arbitrarily since there are no machine
538 instructions for them. Might as well be consistent with bits and bytes. */
539 #define WORDS_BIG_ENDIAN 1
541 /* number of bits in an addressable storage unit */
542 #define BITS_PER_UNIT 8
544 /* Width in bits of a "word", which is the contents of a machine register.
545 Note that this is not necessarily the width of data type `int';
546 if using 16-bit ints on a 68000, this would still be 32.
547 But on a machine with 16-bit registers, this would be 16. */
548 #define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
549 #define MAX_BITS_PER_WORD 64
551 /* Width of a word, in units (bytes). */
552 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
553 #define MIN_UNITS_PER_WORD 4
554 #define UNITS_PER_FP_WORD 8
556 /* Type used for ptrdiff_t, as a string used in a declaration. */
557 #define PTRDIFF_TYPE "int"
559 /* Type used for wchar_t, as a string used in a declaration. */
560 #define WCHAR_TYPE "short unsigned int"
562 /* Width of wchar_t in bits. */
563 #define WCHAR_TYPE_SIZE 16
565 /* A C expression for the size in bits of the type `short' on the
566 target machine. If you don't define this, the default is half a
567 word. (If this would be less than one storage unit, it is
568 rounded up to one unit.) */
569 #define SHORT_TYPE_SIZE 16
571 /* A C expression for the size in bits of the type `int' on the
572 target machine. If you don't define this, the default is one
573 word. */
574 #define INT_TYPE_SIZE 32
576 /* A C expression for the size in bits of the type `long' on the
577 target machine. If you don't define this, the default is one
578 word. */
579 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
580 #define MAX_LONG_TYPE_SIZE 64
582 /* A C expression for the size in bits of the type `long long' on the
583 target machine. If you don't define this, the default is two
584 words. */
585 #define LONG_LONG_TYPE_SIZE 64
587 /* A C expression for the size in bits of the type `char' on the
588 target machine. If you don't define this, the default is one
589 quarter of a word. (If this would be less than one storage unit,
590 it is rounded up to one unit.) */
591 #define CHAR_TYPE_SIZE BITS_PER_UNIT
593 /* A C expression for the size in bits of the type `float' on the
594 target machine. If you don't define this, the default is one
595 word. */
596 #define FLOAT_TYPE_SIZE 32
598 /* A C expression for the size in bits of the type `double' on the
599 target machine. If you don't define this, the default is two
600 words. */
601 #define DOUBLE_TYPE_SIZE 64
603 /* A C expression for the size in bits of the type `long double' on
604 the target machine. If you don't define this, the default is two
605 words. */
606 #define LONG_DOUBLE_TYPE_SIZE 64
608 /* Width in bits of a pointer.
609 See also the macro `Pmode' defined below. */
610 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
612 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
613 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
615 /* Boundary (in *bits*) on which stack pointer should be aligned. */
616 #define STACK_BOUNDARY (TARGET_32BIT ? 64 : 128)
618 /* Allocation boundary (in *bits*) for the code of a function. */
619 #define FUNCTION_BOUNDARY 32
621 /* No data type wants to be aligned rounder than this. */
622 #define BIGGEST_ALIGNMENT 64
624 /* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
625 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
626 (TYPE_MODE (TREE_CODE (TREE_TYPE (FIELD)) == ARRAY_TYPE \
627 ? get_inner_array_type (FIELD) \
628 : TREE_TYPE (FIELD)) == DFmode \
629 ? MIN ((COMPUTED), 32) : (COMPUTED))
631 /* Alignment of field after `int : 0' in a structure. */
632 #define EMPTY_FIELD_BOUNDARY 32
634 /* Every structure's size must be a multiple of this. */
635 #define STRUCTURE_SIZE_BOUNDARY 8
637 /* A bitfield declared as `int' forces `int' alignment for the struct. */
638 #define PCC_BITFIELD_TYPE_MATTERS 1
640 /* AIX increases natural record alignment to doubleword if the first
641 field is an FP double while the FP fields remain word aligned. */
642 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
643 ((TREE_CODE (STRUCT) == RECORD_TYPE \
644 || TREE_CODE (STRUCT) == UNION_TYPE \
645 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
646 && TYPE_FIELDS (STRUCT) != 0 \
647 && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
648 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
649 : MAX ((COMPUTED), (SPECIFIED)))
651 /* Make strings word-aligned so strcpy from constants will be faster. */
652 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
653 (TREE_CODE (EXP) == STRING_CST \
654 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
656 /* Make arrays of chars word-aligned for the same reasons. */
657 #define DATA_ALIGNMENT(TYPE, ALIGN) \
658 (TREE_CODE (TYPE) == ARRAY_TYPE \
659 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
660 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
662 /* Non-zero if move instructions will actually fail to work
663 when given unaligned data. */
664 #define STRICT_ALIGNMENT 0
666 /* Standard register usage. */
668 /* Number of actual hardware registers.
669 The hardware registers are assigned numbers for the compiler
670 from 0 to just below FIRST_PSEUDO_REGISTER.
671 All registers that the compiler knows about must be given numbers,
672 even those that are not normally considered general registers.
674 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
675 an MQ register, a count register, a link register, and 8 condition
676 register fields, which we view here as separate registers.
678 In addition, the difference between the frame and argument pointers is
679 a function of the number of registers saved, so we need to have a
680 register for AP that will later be eliminated in favor of SP or FP.
681 This is a normal register, but it is fixed.
683 We also create a pseudo register for float/int conversions, that will
684 really represent the memory location used. It is represented here as
685 a register, in order to work around problems in allocating stack storage
686 in inline functions. */
688 #define FIRST_PSEUDO_REGISTER 77
690 /* 1 for registers that have pervasive standard uses
691 and are not available for the register allocator.
693 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
695 cr5 is not supposed to be used.
697 On System V implementations, r13 is fixed and not available for use. */
699 #ifndef FIXED_R13
700 #define FIXED_R13 0
701 #endif
703 #define FIXED_REGISTERS \
704 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
705 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
706 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
707 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
708 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
710 /* 1 for registers not available across function calls.
711 These must include the FIXED_REGISTERS and also any
712 registers that can be used without being saved.
713 The latter must include the registers where values are returned
714 and the register where structure-value addresses are passed.
715 Aside from that, you can include as many other registers as you like. */
717 #define CALL_USED_REGISTERS \
718 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
719 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
720 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
721 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
722 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
724 /* List the order in which to allocate registers. Each register must be
725 listed once, even those in FIXED_REGISTERS.
727 We allocate in the following order:
728 fp0 (not saved or used for anything)
729 fp13 - fp2 (not saved; incoming fp arg registers)
730 fp1 (not saved; return value)
731 fp31 - fp14 (saved; order given to save least number)
732 cr7, cr6 (not saved or special)
733 cr1 (not saved, but used for FP operations)
734 cr0 (not saved, but used for arithmetic operations)
735 cr4, cr3, cr2 (saved)
736 r0 (not saved; cannot be base reg)
737 r9 (not saved; best for TImode)
738 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
739 r3 (not saved; return value register)
740 r31 - r13 (saved; order given to save least number)
741 r12 (not saved; if used for DImode or DFmode would use r13)
742 mq (not saved; best to use it if we can)
743 ctr (not saved; when we have the choice ctr is better)
744 lr (saved)
745 cr5, r1, r2, ap, fpmem (fixed) */
747 #define REG_ALLOC_ORDER \
748 {32, \
749 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
750 33, \
751 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
752 50, 49, 48, 47, 46, \
753 75, 74, 69, 68, 72, 71, 70, \
754 0, \
755 9, 11, 10, 8, 7, 6, 5, 4, \
756 3, \
757 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
758 18, 17, 16, 15, 14, 13, 12, \
759 64, 66, 65, \
760 73, 1, 2, 67, 76}
762 /* True if register is floating-point. */
763 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
765 /* True if register is a condition register. */
766 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
768 /* True if register is condition register 0. */
769 #define CR0_REGNO_P(N) ((N) == 68)
771 /* True if register is a condition register, but not cr0. */
772 #define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
774 /* True if register is an integer register. */
775 #define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
777 /* True if register is the temporary memory location used for int/float
778 conversion. */
779 #define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
781 /* Return number of consecutive hard regs needed starting at reg REGNO
782 to hold something of mode MODE.
783 This is ordinarily the length in words of a value of mode MODE
784 but can be less for certain modes in special long registers.
786 POWER and PowerPC GPRs hold 32 bits worth;
787 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
789 #define HARD_REGNO_NREGS(REGNO, MODE) \
790 (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
791 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
792 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
794 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
795 For POWER and PowerPC, the GPRs can hold any mode, but the float
796 registers only can hold floating modes and DImode, and CR register only
797 can hold CC modes. We cannot put TImode anywhere except general
798 register and it must be able to fit within the register set. */
800 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
801 (FP_REGNO_P (REGNO) ? \
802 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
803 || (GET_MODE_CLASS (MODE) == MODE_INT \
804 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
805 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
806 : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
807 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
808 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
809 : 1)
811 /* Value is 1 if it is a good idea to tie two pseudo registers
812 when one has mode MODE1 and one has mode MODE2.
813 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
814 for any hard reg, then this must be 0 for correct output. */
815 #define MODES_TIEABLE_P(MODE1, MODE2) \
816 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
817 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
818 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
819 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
820 : GET_MODE_CLASS (MODE1) == MODE_CC \
821 ? GET_MODE_CLASS (MODE2) == MODE_CC \
822 : GET_MODE_CLASS (MODE2) == MODE_CC \
823 ? GET_MODE_CLASS (MODE1) == MODE_CC \
824 : 1)
826 /* A C expression returning the cost of moving data from a register of class
827 CLASS1 to one of CLASS2.
829 On the RS/6000, copying between floating-point and fixed-point
830 registers is expensive. */
832 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
833 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
834 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
835 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
836 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
837 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
838 || (CLASS1) == LINK_OR_CTR_REGS) \
839 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
840 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
841 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
842 : 2)
844 /* A C expressions returning the cost of moving data of MODE from a register to
845 or from memory.
847 On the RS/6000, bump this up a bit. */
849 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
850 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
851 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
852 ? 3 : 2) \
853 + 4)
855 /* Specify the cost of a branch insn; roughly the number of extra insns that
856 should be added to avoid a branch.
858 Set this to 3 on the RS/6000 since that is roughly the average cost of an
859 unscheduled conditional branch. */
861 #define BRANCH_COST 3
863 /* A C statement (sans semicolon) to update the integer variable COST
864 based on the relationship between INSN that is dependent on
865 DEP_INSN through the dependence LINK. The default is to make no
866 adjustment to COST. On the RS/6000, ignore the cost of anti- and
867 output-dependencies. In fact, output dependencies on the CR do have
868 a cost, but it is probably not worthwhile to track it. */
870 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
871 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
873 /* A C statement (sans semicolon) to update the integer scheduling priority
874 INSN_PRIORITY (INSN). Reduce the priority to execute the INSN earlier,
875 increase the priority to execute INSN later. Do not define this macro if
876 you do not need to adjust the scheduling priorities of insns. */
878 #define ADJUST_PRIORITY(INSN) \
879 INSN_PRIORITY (INSN) = rs6000_adjust_priority (INSN, INSN_PRIORITY (INSN))
881 /* Define this macro to change register usage conditional on target flags.
882 Set MQ register fixed (already call_used) if not POWER architecture
883 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
884 64-bit AIX reserves GPR13 for thread-private data.
885 Conditionally disable FPRs. */
887 #define CONDITIONAL_REGISTER_USAGE \
889 if (! TARGET_POWER) \
890 fixed_regs[64] = 1; \
891 if (TARGET_64BIT) \
892 fixed_regs[13] = call_used_regs[13] = 1; \
893 if (TARGET_SOFT_FLOAT) \
894 for (i = 32; i < 64; i++) \
895 fixed_regs[i] = call_used_regs[i] = 1; \
896 if ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
897 && flag_pic == 1) \
898 fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
899 = call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
902 /* Specify the registers used for certain standard purposes.
903 The values of these macros are register numbers. */
905 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
906 /* #define PC_REGNUM */
908 /* Register to use for pushing function arguments. */
909 #define STACK_POINTER_REGNUM 1
911 /* Base register for access to local variables of the function. */
912 #define FRAME_POINTER_REGNUM 31
914 /* Value should be nonzero if functions must have frame pointers.
915 Zero means the frame pointer need not be set up (and parms
916 may be accessed via the stack pointer) in functions that seem suitable.
917 This is computed in `reload', in reload1.c. */
918 #define FRAME_POINTER_REQUIRED 0
920 /* Base register for access to arguments of the function. */
921 #define ARG_POINTER_REGNUM 67
923 /* Place to put static chain when calling a function that requires it. */
924 #define STATIC_CHAIN_REGNUM 11
926 /* count register number for special purposes */
927 #define COUNT_REGISTER_REGNUM 66
929 /* Special register that represents memory, used for float/int conversions. */
930 #define FPMEM_REGNUM 76
932 /* Place that structure value return address is placed.
934 On the RS/6000, it is passed as an extra parameter. */
935 #define STRUCT_VALUE 0
937 /* Define the classes of registers for register constraints in the
938 machine description. Also define ranges of constants.
940 One of the classes must always be named ALL_REGS and include all hard regs.
941 If there is more than one class, another class must be named NO_REGS
942 and contain no registers.
944 The name GENERAL_REGS must be the name of a class (or an alias for
945 another name such as ALL_REGS). This is the class of registers
946 that is allowed by "g" or "r" in a register constraint.
947 Also, registers outside this class are allocated only when
948 instructions express preferences for them.
950 The classes must be numbered in nondecreasing order; that is,
951 a larger-numbered class must never be contained completely
952 in a smaller-numbered class.
954 For any two classes, it is very desirable that there be another
955 class that represents their union. */
957 /* The RS/6000 has three types of registers, fixed-point, floating-point,
958 and condition registers, plus three special registers, MQ, CTR, and the
959 link register.
961 However, r0 is special in that it cannot be used as a base register.
962 So make a class for registers valid as base registers.
964 Also, cr0 is the only condition code register that can be used in
965 arithmetic insns, so make a separate class for it.
967 There is a special 'register' (76), which is not a register, but a
968 placeholder for memory allocated to convert between floating point and
969 integral types. This works around a problem where if we allocate memory
970 with allocate_stack_{local,temp} and the function is an inline function, the
971 memory allocated will clobber memory in the caller. So we use a special
972 register, and if that is used, we allocate stack space for it. */
974 enum reg_class
976 NO_REGS,
977 BASE_REGS,
978 GENERAL_REGS,
979 FLOAT_REGS,
980 NON_SPECIAL_REGS,
981 MQ_REGS,
982 LINK_REGS,
983 CTR_REGS,
984 LINK_OR_CTR_REGS,
985 SPECIAL_REGS,
986 SPEC_OR_GEN_REGS,
987 CR0_REGS,
988 CR_REGS,
989 NON_FLOAT_REGS,
990 FPMEM_REGS,
991 FLOAT_OR_FPMEM_REGS,
992 ALL_REGS,
993 LIM_REG_CLASSES
996 #define N_REG_CLASSES (int) LIM_REG_CLASSES
998 /* Give names of register classes as strings for dump file. */
1000 #define REG_CLASS_NAMES \
1002 "NO_REGS", \
1003 "BASE_REGS", \
1004 "GENERAL_REGS", \
1005 "FLOAT_REGS", \
1006 "NON_SPECIAL_REGS", \
1007 "MQ_REGS", \
1008 "LINK_REGS", \
1009 "CTR_REGS", \
1010 "LINK_OR_CTR_REGS", \
1011 "SPECIAL_REGS", \
1012 "SPEC_OR_GEN_REGS", \
1013 "CR0_REGS", \
1014 "CR_REGS", \
1015 "NON_FLOAT_REGS", \
1016 "FPMEM_REGS", \
1017 "FLOAT_OR_FPMEM_REGS", \
1018 "ALL_REGS" \
1021 /* Define which registers fit in which classes.
1022 This is an initializer for a vector of HARD_REG_SET
1023 of length N_REG_CLASSES. */
1025 #define REG_CLASS_CONTENTS \
1027 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1028 { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
1029 { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
1030 { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
1031 { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
1032 { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
1033 { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
1034 { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
1035 { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
1036 { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
1037 { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
1038 { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
1039 { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
1040 { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
1041 { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
1042 { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
1043 { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
1046 /* The same information, inverted:
1047 Return the class number of the smallest class containing
1048 reg number REGNO. This could be a conditional expression
1049 or could index an array. */
1051 #define REGNO_REG_CLASS(REGNO) \
1052 ((REGNO) == 0 ? GENERAL_REGS \
1053 : (REGNO) < 32 ? BASE_REGS \
1054 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1055 : (REGNO) == 68 ? CR0_REGS \
1056 : CR_REGNO_P (REGNO) ? CR_REGS \
1057 : (REGNO) == 64 ? MQ_REGS \
1058 : (REGNO) == 65 ? LINK_REGS \
1059 : (REGNO) == 66 ? CTR_REGS \
1060 : (REGNO) == 67 ? BASE_REGS \
1061 : (REGNO) == 76 ? FPMEM_REGS \
1062 : NO_REGS)
1064 /* The class value for index registers, and the one for base regs. */
1065 #define INDEX_REG_CLASS GENERAL_REGS
1066 #define BASE_REG_CLASS BASE_REGS
1068 /* Get reg_class from a letter such as appears in the machine description. */
1070 #define REG_CLASS_FROM_LETTER(C) \
1071 ((C) == 'f' ? FLOAT_REGS \
1072 : (C) == 'b' ? BASE_REGS \
1073 : (C) == 'h' ? SPECIAL_REGS \
1074 : (C) == 'q' ? MQ_REGS \
1075 : (C) == 'c' ? CTR_REGS \
1076 : (C) == 'l' ? LINK_REGS \
1077 : (C) == 'x' ? CR0_REGS \
1078 : (C) == 'y' ? CR_REGS \
1079 : (C) == 'z' ? FPMEM_REGS \
1080 : NO_REGS)
1082 /* The letters I, J, K, L, M, N, and P in a register constraint string
1083 can be used to stand for particular ranges of immediate operands.
1084 This macro defines what the ranges are.
1085 C is the letter, and VALUE is a constant value.
1086 Return 1 if VALUE is in the range specified by C.
1088 `I' is a signed 16-bit constant
1089 `J' is a constant with only the high-order 16 bits non-zero
1090 `K' is a constant with only the low-order 16 bits non-zero
1091 `L' is a signed 16-bit constant shifted left 16 bits
1092 `M' is a constant that is greater than 31
1093 `N' is a constant that is an exact power of two
1094 `O' is the constant zero
1095 `P' is a constant whose negation is a signed 16-bit constant */
1097 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1098 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1099 : (C) == 'J' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff0000)) == 0 \
1100 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
1101 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1102 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1103 : (C) == 'M' ? (VALUE) > 31 \
1104 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
1105 : (C) == 'O' ? (VALUE) == 0 \
1106 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1107 : 0)
1109 /* Similar, but for floating constants, and defining letters G and H.
1110 Here VALUE is the CONST_DOUBLE rtx itself.
1112 We flag for special constants when we can copy the constant into
1113 a general register in two insns for DF/DI and one insn for SF.
1115 'H' is used for DI/DF constants that take 3 insns. */
1117 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1118 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1119 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1120 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1121 : 0)
1123 /* Optional extra constraints for this machine.
1125 'Q' means that is a memory operand that is just an offset from a reg.
1126 'R' is for AIX TOC entries.
1127 'S' is a constant that can be placed into a 64-bit mask operand
1128 'T' is a consatnt that can be placed into a 32-bit mask operand
1129 'U' is for V.4 small data references. */
1131 #define EXTRA_CONSTRAINT(OP, C) \
1132 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
1133 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
1134 : (C) == 'S' ? mask64_operand (OP, VOIDmode) \
1135 : (C) == 'T' ? mask_operand (OP, VOIDmode) \
1136 : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1137 && small_data_operand (OP, GET_MODE (OP))) \
1138 : 0)
1140 /* Given an rtx X being reloaded into a reg required to be
1141 in class CLASS, return the class of reg to actually use.
1142 In general this is just CLASS; but on some machines
1143 in some cases it is preferable to use a more restrictive class.
1145 On the RS/6000, we have to return NO_REGS when we want to reload a
1146 floating-point CONST_DOUBLE to force it to be copied to memory. */
1148 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1149 ((GET_CODE (X) == CONST_DOUBLE \
1150 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1151 ? NO_REGS : (CLASS))
1153 /* Return the register class of a scratch register needed to copy IN into
1154 or out of a register in CLASS in MODE. If it can be done directly,
1155 NO_REGS is returned. */
1157 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1158 secondary_reload_class (CLASS, MODE, IN)
1160 /* If we are copying between FP registers and anything else, we need a memory
1161 location. */
1163 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1164 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
1166 /* Return the maximum number of consecutive registers
1167 needed to represent mode MODE in a register of class CLASS.
1169 On RS/6000, this is the size of MODE in words,
1170 except in the FP regs, where a single reg is enough for two words. */
1171 #define CLASS_MAX_NREGS(CLASS, MODE) \
1172 (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
1173 || (CLASS) == FLOAT_OR_FPMEM_REGS) \
1174 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1175 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1177 /* If defined, gives a class of registers that cannot be used as the
1178 operand of a SUBREG that changes the size of the object. */
1180 #define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
1182 /* Stack layout; function entry, exit and calling. */
1184 /* Enumeration to give which calling sequence to use. */
1185 enum rs6000_abi {
1186 ABI_NONE,
1187 ABI_AIX, /* IBM's AIX */
1188 ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
1189 ABI_V4, /* System V.4/eabi */
1190 ABI_NT, /* Windows/NT */
1191 ABI_SOLARIS /* Solaris */
1194 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1196 /* Default ABI to compile code for */
1197 #ifndef DEFAULT_ABI
1198 #define DEFAULT_ABI ABI_AIX
1199 /* The prefix to add to user-visible assembler symbols. */
1200 #define USER_LABEL_PREFIX "."
1201 #endif
1203 /* Structure used to define the rs6000 stack */
1204 typedef struct rs6000_stack {
1205 int first_gp_reg_save; /* first callee saved GP register used */
1206 int first_fp_reg_save; /* first callee saved FP register used */
1207 int lr_save_p; /* true if the link reg needs to be saved */
1208 int cr_save_p; /* true if the CR reg needs to be saved */
1209 int toc_save_p; /* true if the TOC needs to be saved */
1210 int push_p; /* true if we need to allocate stack space */
1211 int calls_p; /* true if the function makes any calls */
1212 int main_p; /* true if this is main */
1213 int main_save_p; /* true if this is main and we need to save args */
1214 int fpmem_p; /* true if float/int conversion temp needed */
1215 enum rs6000_abi abi; /* which ABI to use */
1216 int gp_save_offset; /* offset to save GP regs from initial SP */
1217 int fp_save_offset; /* offset to save FP regs from initial SP */
1218 int lr_save_offset; /* offset to save LR from initial SP */
1219 int cr_save_offset; /* offset to save CR from initial SP */
1220 int toc_save_offset; /* offset to save the TOC pointer */
1221 int varargs_save_offset; /* offset to save the varargs registers */
1222 int main_save_offset; /* offset to save main's args */
1223 int fpmem_offset; /* offset for float/int conversion temp */
1224 int reg_size; /* register size (4 or 8) */
1225 int varargs_size; /* size to hold V.4 args passed in regs */
1226 int vars_size; /* variable save area size */
1227 int parm_size; /* outgoing parameter size */
1228 int main_size; /* size to hold saving main's args */
1229 int save_size; /* save area size */
1230 int fixed_size; /* fixed size of stack frame */
1231 int gp_size; /* size of saved GP registers */
1232 int fp_size; /* size of saved FP registers */
1233 int cr_size; /* size to hold CR if not in save_size */
1234 int lr_size; /* size to hold LR if not in save_size */
1235 int fpmem_size; /* size to hold float/int conversion */
1236 int toc_size; /* size to hold TOC if not in save_size */
1237 int total_size; /* total bytes allocated for stack */
1238 } rs6000_stack_t;
1240 /* Define this if pushing a word on the stack
1241 makes the stack pointer a smaller address. */
1242 #define STACK_GROWS_DOWNWARD
1244 /* Define this if the nominal address of the stack frame
1245 is at the high-address end of the local variables;
1246 that is, each additional local variable allocated
1247 goes at a more negative offset in the frame.
1249 On the RS/6000, we grow upwards, from the area after the outgoing
1250 arguments. */
1251 /* #define FRAME_GROWS_DOWNWARD */
1253 /* Size of the outgoing register save area */
1254 #define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
1256 /* Size of the fixed area on the stack */
1257 #define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
1259 /* MEM representing address to save the TOC register */
1260 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1261 plus_constant (stack_pointer_rtx, \
1262 (TARGET_32BIT ? 20 : 40)))
1264 /* Offset & size for fpmem stack locations used for converting between
1265 float and integral types. */
1266 extern int rs6000_fpmem_offset;
1267 extern int rs6000_fpmem_size;
1269 /* Size of the V.4 varargs area if needed */
1270 #define RS6000_VARARGS_AREA 0
1272 /* Whether a V.4 varargs area is needed */
1273 extern int rs6000_sysv_varargs_p;
1275 /* Align an address */
1276 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1278 /* Initialize data used by insn expanders. This is called from
1279 init_emit, once for each function, before code is generated. */
1280 #define INIT_EXPANDERS rs6000_init_expanders ()
1282 /* Size of V.4 varargs area in bytes */
1283 #define RS6000_VARARGS_SIZE \
1284 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1286 /* Offset within stack frame to start allocating local variables at.
1287 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1288 first local allocated. Otherwise, it is the offset to the BEGINNING
1289 of the first local allocated.
1291 On the RS/6000, the frame pointer is the same as the stack pointer,
1292 except for dynamic allocations. So we start after the fixed area and
1293 outgoing parameter area. */
1295 #define STARTING_FRAME_OFFSET \
1296 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
1297 + RS6000_VARARGS_AREA \
1298 + RS6000_SAVE_AREA)
1300 /* Offset from the stack pointer register to an item dynamically
1301 allocated on the stack, e.g., by `alloca'.
1303 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1304 length of the outgoing arguments. The default is correct for most
1305 machines. See `function.c' for details. */
1306 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1307 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
1308 + (STACK_POINTER_OFFSET))
1310 /* If we generate an insn to push BYTES bytes,
1311 this says how many the stack pointer really advances by.
1312 On RS/6000, don't define this because there are no push insns. */
1313 /* #define PUSH_ROUNDING(BYTES) */
1315 /* Offset of first parameter from the argument pointer register value.
1316 On the RS/6000, we define the argument pointer to the start of the fixed
1317 area. */
1318 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1320 /* Define this if stack space is still allocated for a parameter passed
1321 in a register. The value is the number of bytes allocated to this
1322 area. */
1323 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1325 /* Define this if the above stack space is to be considered part of the
1326 space allocated by the caller. */
1327 #define OUTGOING_REG_PARM_STACK_SPACE
1329 /* This is the difference between the logical top of stack and the actual sp.
1331 For the RS/6000, sp points past the fixed area. */
1332 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1334 /* Define this if the maximum size of all the outgoing args is to be
1335 accumulated and pushed during the prologue. The amount can be
1336 found in the variable current_function_outgoing_args_size. */
1337 #define ACCUMULATE_OUTGOING_ARGS
1339 /* Value is the number of bytes of arguments automatically
1340 popped when returning from a subroutine call.
1341 FUNDECL is the declaration node of the function (as a tree),
1342 FUNTYPE is the data type of the function (as a tree),
1343 or for a library call it is an identifier node for the subroutine name.
1344 SIZE is the number of bytes of arguments passed on the stack. */
1346 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1348 /* Define how to find the value returned by a function.
1349 VALTYPE is the data type of the value (as a tree).
1350 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1351 otherwise, FUNC is 0.
1353 On RS/6000 an integer value is in r3 and a floating-point value is in
1354 fp1, unless -msoft-float. */
1356 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1357 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1358 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1359 || POINTER_TYPE_P (VALTYPE) \
1360 ? word_mode : TYPE_MODE (VALTYPE), \
1361 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
1363 /* Define how to find the value returned by a library function
1364 assuming the value has mode MODE. */
1366 #define LIBCALL_VALUE(MODE) \
1367 gen_rtx_REG (MODE, \
1368 GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3)
1370 /* The definition of this macro implies that there are cases where
1371 a scalar value cannot be returned in registers.
1373 For the RS/6000, any structure or union type is returned in memory, except for
1374 Solaris, which returns structures <= 8 bytes in registers. */
1376 #define RETURN_IN_MEMORY(TYPE) \
1377 (TYPE_MODE (TYPE) == BLKmode \
1378 && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
1380 /* Mode of stack savearea.
1381 FUNCTION is VOIDmode because calling convention maintains SP.
1382 BLOCK needs Pmode for SP.
1383 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1384 #define STACK_SAVEAREA_MODE(LEVEL) \
1385 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1386 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1388 /* Minimum and maximum general purpose registers used to hold arguments. */
1389 #define GP_ARG_MIN_REG 3
1390 #define GP_ARG_MAX_REG 10
1391 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1393 /* Minimum and maximum floating point registers used to hold arguments. */
1394 #define FP_ARG_MIN_REG 33
1395 #define FP_ARG_AIX_MAX_REG 45
1396 #define FP_ARG_V4_MAX_REG 40
1397 #define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
1398 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1400 /* Return registers */
1401 #define GP_ARG_RETURN GP_ARG_MIN_REG
1402 #define FP_ARG_RETURN FP_ARG_MIN_REG
1404 /* Flags for the call/call_value rtl operations set up by function_arg */
1405 #define CALL_NORMAL 0x00000000 /* no special processing */
1406 #define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
1407 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1408 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1409 #define CALL_LONG 0x00000008 /* always call indirect */
1411 /* Define cutoff for using external functions to save floating point */
1412 #define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
1414 /* 1 if N is a possible register number for a function value
1415 as seen by the caller.
1417 On RS/6000, this is r3 and fp1. */
1418 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
1420 /* 1 if N is a possible register number for function argument passing.
1421 On RS/6000, these are r3-r10 and fp1-fp13. */
1422 #define FUNCTION_ARG_REGNO_P(N) \
1423 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1424 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
1427 /* Define a data type for recording info about an argument list
1428 during the scan of that argument list. This data type should
1429 hold all necessary information about the function itself
1430 and about the args processed so far, enough to enable macros
1431 such as FUNCTION_ARG to determine where the next arg should go.
1433 On the RS/6000, this is a structure. The first element is the number of
1434 total argument words, the second is used to store the next
1435 floating-point register number, and the third says how many more args we
1436 have prototype types for.
1438 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1439 the next availible GP register, `fregno' is the next available FP
1440 register, and `words' is the number of words used on the stack.
1442 The varargs/stdarg support requires that this structure's size
1443 be a multiple of sizeof(int). */
1445 typedef struct rs6000_args
1447 int words; /* # words used for passing GP registers */
1448 int fregno; /* next available FP register */
1449 int nargs_prototype; /* # args left in the current prototype */
1450 int orig_nargs; /* Original value of nargs_prototype */
1451 int prototype; /* Whether a prototype was defined */
1452 int call_cookie; /* Do special things for this call */
1453 int sysv_gregno; /* next available GP register */
1454 } CUMULATIVE_ARGS;
1456 /* Define intermediate macro to compute the size (in registers) of an argument
1457 for the RS/6000. */
1459 #define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
1460 (! (NAMED) ? 0 \
1461 : (MODE) != BLKmode \
1462 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1463 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1465 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1466 for a call to a function whose data type is FNTYPE.
1467 For a library call, FNTYPE is 0. */
1469 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1470 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
1472 /* Similar, but when scanning the definition of a procedure. We always
1473 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1475 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1476 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
1478 /* Update the data in CUM to advance over an argument
1479 of mode MODE and data type TYPE.
1480 (TYPE is null for libcalls where that information may not be available.) */
1482 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1483 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1485 /* Non-zero if we can use a floating-point register to pass this arg. */
1486 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1487 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1488 && (CUM).fregno <= FP_ARG_MAX_REG \
1489 && TARGET_HARD_FLOAT)
1491 /* Determine where to put an argument to a function.
1492 Value is zero to push the argument on the stack,
1493 or a hard register in which to store the argument.
1495 MODE is the argument's machine mode.
1496 TYPE is the data type of the argument (as a tree).
1497 This is null for libcalls where that information may
1498 not be available.
1499 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1500 the preceding args and about the function being called.
1501 NAMED is nonzero if this argument is a named parameter
1502 (otherwise it is an extra parameter matching an ellipsis).
1504 On RS/6000 the first eight words of non-FP are normally in registers
1505 and the rest are pushed. The first 13 FP args are in registers.
1507 If this is floating-point and no prototype is specified, we use
1508 both an FP and integer register (or possibly FP reg and stack). Library
1509 functions (when TYPE is zero) always have the proper types for args,
1510 so we can pass the FP value just in one register. emit_library_function
1511 doesn't support EXPR_LIST anyway. */
1513 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1514 function_arg (&CUM, MODE, TYPE, NAMED)
1516 /* For an arg passed partly in registers and partly in memory,
1517 this is the number of registers used.
1518 For args passed entirely in registers or entirely in memory, zero. */
1520 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1521 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1523 /* A C expression that indicates when an argument must be passed by
1524 reference. If nonzero for an argument, a copy of that argument is
1525 made in memory and a pointer to the argument is passed instead of
1526 the argument itself. The pointer is passed in whatever way is
1527 appropriate for passing a pointer to that type. */
1529 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1530 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1532 /* If defined, a C expression which determines whether, and in which
1533 direction, to pad out an argument with extra space. The value
1534 should be of type `enum direction': either `upward' to pad above
1535 the argument, `downward' to pad below, or `none' to inhibit
1536 padding. */
1538 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1539 (enum direction) function_arg_padding (MODE, TYPE)
1541 /* If defined, a C expression that gives the alignment boundary, in bits,
1542 of an argument with the specified mode and type. If it is not defined,
1543 PARM_BOUNDARY is used for all arguments. */
1545 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1546 function_arg_boundary (MODE, TYPE)
1548 /* Perform any needed actions needed for a function that is receiving a
1549 variable number of arguments.
1551 CUM is as above.
1553 MODE and TYPE are the mode and type of the current parameter.
1555 PRETEND_SIZE is a variable that should be set to the amount of stack
1556 that must be pushed by the prolog to pretend that our caller pushed
1559 Normally, this macro will push all remaining incoming registers on the
1560 stack and set PRETEND_SIZE to the length of the registers pushed. */
1562 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1563 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1565 /* If defined, is a C expression that produces the machine-specific
1566 code for a call to `__builtin_saveregs'. This code will be moved
1567 to the very beginning of the function, before any parameter access
1568 are made. The return value of this function should be an RTX that
1569 contains the value to use as the return of `__builtin_saveregs'. */
1571 #define EXPAND_BUILTIN_SAVEREGS() \
1572 rs6000_expand_builtin_saveregs ()
1574 /* This macro generates the assembly code for function entry.
1575 FILE is a stdio stream to output the code to.
1576 SIZE is an int: how many units of temporary storage to allocate.
1577 Refer to the array `regs_ever_live' to determine which registers
1578 to save; `regs_ever_live[I]' is nonzero if register number I
1579 is ever used in the function. This macro is responsible for
1580 knowing which registers should not be saved even if used. */
1582 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1584 /* Output assembler code to FILE to increment profiler label # LABELNO
1585 for profiling a function entry. */
1587 #define FUNCTION_PROFILER(FILE, LABELNO) \
1588 output_function_profiler ((FILE), (LABELNO));
1590 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1591 the stack pointer does not matter. No definition is equivalent to
1592 always zero.
1594 On the RS/6000, this is non-zero because we can restore the stack from
1595 its backpointer, which we maintain. */
1596 #define EXIT_IGNORE_STACK 1
1598 /* This macro generates the assembly code for function exit,
1599 on machines that need it. If FUNCTION_EPILOGUE is not defined
1600 then individual return instructions are generated for each
1601 return statement. Args are same as for FUNCTION_PROLOGUE.
1603 The function epilogue should not depend on the current stack pointer!
1604 It should use the frame pointer only. This is mandatory because
1605 of alloca; we also take advantage of it to omit stack adjustments
1606 before returning. */
1608 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1610 /* A C compound statement that outputs the assembler code for a thunk function,
1611 used to implement C++ virtual function calls with multiple inheritance. The
1612 thunk acts as a wrapper around a virtual function, adjusting the implicit
1613 object parameter before handing control off to the real function.
1615 First, emit code to add the integer DELTA to the location that contains the
1616 incoming first argument. Assume that this argument contains a pointer, and
1617 is the one used to pass the `this' pointer in C++. This is the incoming
1618 argument *before* the function prologue, e.g. `%o0' on a sparc. The
1619 addition must preserve the values of all other incoming arguments.
1621 After the addition, emit code to jump to FUNCTION, which is a
1622 `FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch
1623 the return address. Hence returning from FUNCTION will return to whoever
1624 called the current `thunk'.
1626 The effect must be as if FUNCTION had been called directly with the adjusted
1627 first argument. This macro is responsible for emitting all of the code for
1628 a thunk function; `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE' are not
1629 invoked.
1631 The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been
1632 extracted from it.) It might possibly be useful on some targets, but
1633 probably not.
1635 If you do not define this macro, the target-independent code in the C++
1636 frontend will generate a less efficient heavyweight thunk that calls
1637 FUNCTION instead of jumping to it. The generic approach does not support
1638 varargs. */
1639 #if TARGET_ELF
1640 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1641 output_mi_thunk (FILE, THUNK_FNDECL, DELTA, FUNCTION)
1642 #endif
1644 /* TRAMPOLINE_TEMPLATE deleted */
1646 /* Length in units of the trampoline for entering a nested function. */
1648 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1650 /* Emit RTL insns to initialize the variable parts of a trampoline.
1651 FNADDR is an RTX for the address of the function's pure code.
1652 CXT is an RTX for the static chain value for the function. */
1654 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1655 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1657 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1658 with arguments ARGS is a valid machine specific attribute for DECL.
1659 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1661 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1662 (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1664 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1665 with arguments ARGS is a valid machine specific attribute for TYPE.
1666 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1668 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1669 (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1671 /* If defined, a C expression whose value is zero if the attributes on
1672 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1673 two if they are nearly compatible (which causes a warning to be
1674 generated). */
1676 #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1677 (rs6000_comp_type_attributes (TYPE1, TYPE2))
1679 /* If defined, a C statement that assigns default attributes to newly
1680 defined TYPE. */
1682 #define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1683 (rs6000_set_default_type_attributes (TYPE))
1686 /* Definitions for __builtin_return_address and __builtin_frame_address.
1687 __builtin_return_address (0) should give link register (65), enable
1688 this. */
1689 /* This should be uncommented, so that the link register is used, but
1690 currently this would result in unmatched insns and spilling fixed
1691 registers so we'll leave it for another day. When these problems are
1692 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1693 (mrs) */
1694 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1696 /* Number of bytes into the frame return addresses can be found. See
1697 rs6000_stack_info in rs6000.c for more information on how the different
1698 abi's store the return address. */
1699 #define RETURN_ADDRESS_OFFSET \
1700 ((DEFAULT_ABI == ABI_AIX \
1701 || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
1702 (DEFAULT_ABI == ABI_V4 \
1703 || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
1704 (DEFAULT_ABI == ABI_NT) ? -4 : \
1705 (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
1707 /* The current return address is in link register (65). The return address
1708 of anything farther back is accessed normally at an offset of 8 from the
1709 frame pointer. */
1710 #define RETURN_ADDR_RTX(count, frame) \
1711 ((count == -1) \
1712 ? gen_rtx_REG (Pmode, 65) \
1713 : gen_rtx_MEM (Pmode, \
1714 memory_address (Pmode, \
1715 plus_constant (copy_to_reg (gen_rtx_MEM (Pmode, \
1716 memory_address (Pmode, frame))), \
1717 RETURN_ADDRESS_OFFSET))))
1719 /* Definitions for register eliminations.
1721 We have two registers that can be eliminated on the RS/6000. First, the
1722 frame pointer register can often be eliminated in favor of the stack
1723 pointer register. Secondly, the argument pointer register can always be
1724 eliminated; it is replaced with either the stack or frame pointer.
1726 In addition, we use the elimination mechanism to see if r30 is needed
1727 Initially we assume that it isn't. If it is, we spill it. This is done
1728 by making it an eliminable register. We replace it with itself so that
1729 if it isn't needed, then existing uses won't be modified. */
1731 /* This is an array of structures. Each structure initializes one pair
1732 of eliminable registers. The "from" register number is given first,
1733 followed by "to". Eliminations of the same "from" register are listed
1734 in order of preference. */
1735 #define ELIMINABLE_REGS \
1736 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1737 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1738 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1739 { 30, 30} }
1741 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1742 Frame pointer elimination is automatically handled.
1744 For the RS/6000, if frame pointer elimination is being done, we would like
1745 to convert ap into fp, not sp.
1747 We need r30 if -mminimal-toc was specified, and there are constant pool
1748 references. */
1750 #define CAN_ELIMINATE(FROM, TO) \
1751 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1752 ? ! frame_pointer_needed \
1753 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1754 : 1)
1756 /* Define the offset between two registers, one to be eliminated, and the other
1757 its replacement, at the start of a routine. */
1758 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1760 rs6000_stack_t *info = rs6000_stack_info (); \
1762 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1763 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1764 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1765 (OFFSET) = info->total_size; \
1766 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1767 (OFFSET) = (info->push_p) ? info->total_size : 0; \
1768 else if ((FROM) == 30) \
1769 (OFFSET) = 0; \
1770 else \
1771 abort (); \
1774 /* Addressing modes, and classification of registers for them. */
1776 /* #define HAVE_POST_INCREMENT 0 */
1777 /* #define HAVE_POST_DECREMENT 0 */
1779 #define HAVE_PRE_DECREMENT 1
1780 #define HAVE_PRE_INCREMENT 1
1782 /* Macros to check register numbers against specific register classes. */
1784 /* These assume that REGNO is a hard or pseudo reg number.
1785 They give nonzero only if REGNO is a hard reg of the suitable class
1786 or a pseudo reg currently allocated to a suitable hard reg.
1787 Since they use reg_renumber, they are safe only once reg_renumber
1788 has been allocated, which happens in local-alloc.c. */
1790 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1791 ((REGNO) < FIRST_PSEUDO_REGISTER \
1792 ? (REGNO) <= 31 || (REGNO) == 67 \
1793 : (reg_renumber[REGNO] >= 0 \
1794 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1796 #define REGNO_OK_FOR_BASE_P(REGNO) \
1797 ((REGNO) < FIRST_PSEUDO_REGISTER \
1798 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1799 : (reg_renumber[REGNO] > 0 \
1800 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1802 /* Maximum number of registers that can appear in a valid memory address. */
1804 #define MAX_REGS_PER_ADDRESS 2
1806 /* Recognize any constant value that is a valid address. */
1808 #define CONSTANT_ADDRESS_P(X) \
1809 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1810 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1811 || GET_CODE (X) == HIGH)
1813 /* Nonzero if the constant value X is a legitimate general operand.
1814 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1816 On the RS/6000, all integer constants are acceptable, most won't be valid
1817 for particular insns, though. Only easy FP constants are
1818 acceptable. */
1820 #define LEGITIMATE_CONSTANT_P(X) \
1821 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1822 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1823 || easy_fp_constant (X, GET_MODE (X)))
1825 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1826 and check its validity for a certain class.
1827 We have two alternate definitions for each of them.
1828 The usual definition accepts all pseudo regs; the other rejects
1829 them unless they have been allocated suitable hard regs.
1830 The symbol REG_OK_STRICT causes the latter definition to be used.
1832 Most source files want to accept pseudo regs in the hope that
1833 they will get allocated to the class that the insn wants them to be in.
1834 Source files for reload pass need to be strict.
1835 After reload, it makes no difference, since pseudo regs have
1836 been eliminated by then. */
1838 #ifndef REG_OK_STRICT
1840 /* Nonzero if X is a hard reg that can be used as an index
1841 or if it is a pseudo reg. */
1842 #define REG_OK_FOR_INDEX_P(X) \
1843 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1845 /* Nonzero if X is a hard reg that can be used as a base reg
1846 or if it is a pseudo reg. */
1847 #define REG_OK_FOR_BASE_P(X) \
1848 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1850 #else
1852 /* Nonzero if X is a hard reg that can be used as an index. */
1853 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1854 /* Nonzero if X is a hard reg that can be used as a base reg. */
1855 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1857 #endif
1859 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1860 that is a valid memory address for an instruction.
1861 The MODE argument is the machine mode for the MEM expression
1862 that wants to use this address.
1864 On the RS/6000, there are four valid address: a SYMBOL_REF that
1865 refers to a constant pool entry of an address (or the sum of it
1866 plus a constant), a short (16-bit signed) constant plus a register,
1867 the sum of two registers, or a register indirect, possibly with an
1868 auto-increment. For DFmode and DImode with an constant plus register,
1869 we must ensure that both words are addressable or PowerPC64 with offset
1870 word aligned.
1872 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1873 32-bit DImode, TImode), indexed addressing cannot be used because
1874 adjacent memory cells are accessed by adding word-sized offsets
1875 during assembly output. */
1877 #define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
1878 (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
1879 && CONSTANT_POOL_ADDRESS_P (X) \
1880 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1882 /* AIX64 guaranteed to have 64 bit TOC alignment. */
1883 #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1884 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
1885 || (TARGET_TOC \
1886 && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1887 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1888 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1890 #define LEGITIMATE_SMALL_DATA_P(MODE, X) \
1891 ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1892 && !flag_pic && !TARGET_TOC \
1893 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1894 && small_data_operand (X, MODE))
1896 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1897 (GET_CODE (X) == CONST_INT \
1898 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
1900 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1901 (GET_CODE (X) == PLUS \
1902 && GET_CODE (XEXP (X, 0)) == REG \
1903 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1904 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1905 && (((MODE) != DFmode && (MODE) != DImode) \
1906 || (TARGET_32BIT \
1907 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1908 : ! (INTVAL (XEXP (X, 1)) & 3))) \
1909 && ((MODE) != TImode \
1910 || (TARGET_32BIT \
1911 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1912 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1913 && ! (INTVAL (XEXP (X, 1)) & 3)))))
1915 #define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1916 (GET_CODE (X) == PLUS \
1917 && GET_CODE (XEXP (X, 0)) == REG \
1918 && GET_CODE (XEXP (X, 1)) == REG \
1919 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1920 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1921 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1922 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1924 #define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1925 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1927 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1928 (TARGET_ELF \
1929 && !flag_pic && !TARGET_TOC \
1930 && (MODE) != DImode \
1931 && (MODE) != TImode \
1932 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1933 && GET_CODE (X) == LO_SUM \
1934 && GET_CODE (XEXP (X, 0)) == REG \
1935 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1936 && CONSTANT_P (XEXP (X, 1)))
1938 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1939 { if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1940 goto ADDR; \
1941 if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
1942 && TARGET_UPDATE \
1943 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1944 goto ADDR; \
1945 if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
1946 goto ADDR; \
1947 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1948 goto ADDR; \
1949 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1950 goto ADDR; \
1951 if ((MODE) != TImode \
1952 && (TARGET_HARD_FLOAT || TARGET_POWERPC64 || (MODE) != DFmode) \
1953 && (TARGET_POWERPC64 || (MODE) != DImode) \
1954 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1955 goto ADDR; \
1956 if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
1957 goto ADDR; \
1960 /* Try machine-dependent ways of modifying an illegitimate address
1961 to be legitimate. If we find one, return the new, valid address.
1962 This macro is used in only one place: `memory_address' in explow.c.
1964 OLDX is the address as it was before break_out_memory_refs was called.
1965 In some cases it is useful to look at this to decide what needs to be done.
1967 MODE and WIN are passed so that this macro can use
1968 GO_IF_LEGITIMATE_ADDRESS.
1970 It is always safe for this macro to do nothing. It exists to recognize
1971 opportunities to optimize the output.
1973 On RS/6000, first check for the sum of a register with a constant
1974 integer that is out of range. If so, generate code to add the
1975 constant with the low-order 16 bits masked to the register and force
1976 this result into another register (this can be done with `cau').
1977 Then generate an address of REG+(CONST&0xffff), allowing for the
1978 possibility of bit 16 being a one.
1980 Then check for the sum of a register and something not constant, try to
1981 load the other things into a register and return the sum. */
1983 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1984 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1985 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1986 && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1987 { HOST_WIDE_INT high_int, low_int; \
1988 rtx sum; \
1989 high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
1990 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1991 if (low_int & 0x8000) \
1992 high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
1993 sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (X, 0), \
1994 GEN_INT (high_int)), 0); \
1995 (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (low_int)); \
1996 goto WIN; \
1998 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1999 && GET_CODE (XEXP (X, 1)) != CONST_INT \
2000 && (TARGET_HARD_FLOAT || TARGET_POWERPC64 || (MODE) != DFmode) \
2001 && (TARGET_POWERPC64 || (MODE) != DImode) \
2002 && (MODE) != TImode) \
2004 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2005 force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
2006 goto WIN; \
2008 else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
2009 && !flag_pic \
2010 && GET_CODE (X) != CONST_INT \
2011 && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
2012 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
2013 && (MODE) != DImode && (MODE) != TImode) \
2015 rtx reg = gen_reg_rtx (Pmode); \
2016 emit_insn (gen_elf_high (reg, (X))); \
2017 (X) = gen_rtx_LO_SUM (Pmode, reg, (X)); \
2018 goto WIN; \
2022 /* Try a machine-dependent way of reloading an illegitimate address
2023 operand. If we find one, push the reload and jump to WIN. This
2024 macro is used in only one place: `find_reloads_address' in reload.c.
2026 For RS/6000, we wish to handle large displacements off a base
2027 register by splitting the addend across an addiu/addis and the mem insn.
2028 This cuts number of extra insns needed from 3 to 1. */
2030 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2031 do { \
2032 /* We must recognize output that we have already generated ourselves. */ \
2033 if (GET_CODE (X) == PLUS \
2034 && GET_CODE (XEXP (X, 0)) == PLUS \
2035 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
2036 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
2037 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
2039 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
2040 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2041 OPNUM, TYPE); \
2042 goto WIN; \
2044 if (GET_CODE (X) == PLUS \
2045 && GET_CODE (XEXP (X, 0)) == REG \
2046 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
2047 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
2048 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
2050 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
2051 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
2052 HOST_WIDE_INT high \
2053 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
2055 /* Check for 32-bit overflow. */ \
2056 if (high + low != val) \
2057 break; \
2059 /* Reload the high part into a base reg; leave the low part \
2060 in the mem directly. */ \
2062 X = gen_rtx_PLUS (GET_MODE (X), \
2063 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
2064 GEN_INT (high)), \
2065 GEN_INT (low)); \
2067 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
2068 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2069 OPNUM, TYPE); \
2070 goto WIN; \
2072 } while (0)
2074 /* Go to LABEL if ADDR (a legitimate address expression)
2075 has an effect that depends on the machine mode it is used for.
2077 On the RS/6000 this is true if the address is valid with a zero offset
2078 but not with an offset of four (this means it cannot be used as an
2079 address for DImode or DFmode) or is a pre-increment or decrement. Since
2080 we know it is valid, we just check for an address that is not valid with
2081 an offset of four. */
2083 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2084 { if (GET_CODE (ADDR) == PLUS \
2085 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2086 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2087 (TARGET_32BIT ? 4 : 8))) \
2088 goto LABEL; \
2089 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
2090 goto LABEL; \
2091 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
2092 goto LABEL; \
2093 if (GET_CODE (ADDR) == LO_SUM) \
2094 goto LABEL; \
2097 /* The register number of the register used to address a table of
2098 static data addresses in memory. In some cases this register is
2099 defined by a processor's "application binary interface" (ABI).
2100 When this macro is defined, RTL is generated for this register
2101 once, as with the stack pointer and frame pointer registers. If
2102 this macro is not defined, it is up to the machine-dependent files
2103 to allocate such a register (if necessary). */
2105 #define PIC_OFFSET_TABLE_REGNUM 30
2107 /* Define this macro if the register defined by
2108 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2109 this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
2111 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2113 /* By generating position-independent code, when two different
2114 programs (A and B) share a common library (libC.a), the text of
2115 the library can be shared whether or not the library is linked at
2116 the same address for both programs. In some of these
2117 environments, position-independent code requires not only the use
2118 of different addressing modes, but also special code to enable the
2119 use of these addressing modes.
2121 The `FINALIZE_PIC' macro serves as a hook to emit these special
2122 codes once the function is being compiled into assembly code, but
2123 not before. (It is not done before, because in the case of
2124 compiling an inline function, it would lead to multiple PIC
2125 prologues being included in functions which used inline functions
2126 and were compiled to assembly language.) */
2128 /* #define FINALIZE_PIC */
2130 /* A C expression that is nonzero if X is a legitimate immediate
2131 operand on the target machine when generating position independent
2132 code. You can assume that X satisfies `CONSTANT_P', so you need
2133 not check this. You can also assume FLAG_PIC is true, so you need
2134 not check it either. You need not define this macro if all
2135 constants (including `SYMBOL_REF') can be immediate operands when
2136 generating position independent code. */
2138 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2140 /* In rare cases, correct code generation requires extra machine
2141 dependent processing between the second jump optimization pass and
2142 delayed branch scheduling. On those machines, define this macro
2143 as a C statement to act on the code starting at INSN.
2145 On the RS/6000, we use it to make sure the GOT_TOC register marker
2146 that FINALIZE_PIC is supposed to remove actually got removed. */
2148 #define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN)
2151 /* Define this if some processing needs to be done immediately before
2152 emitting code for an insn. */
2154 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
2156 /* Specify the machine mode that this machine uses
2157 for the index in the tablejump instruction. */
2158 #define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
2160 /* Define as C expression which evaluates to nonzero if the tablejump
2161 instruction expects the table to contain offsets from the address of the
2162 table.
2163 Do not define this if the table should contain absolute addresses. */
2164 #define CASE_VECTOR_PC_RELATIVE 1
2166 /* Specify the tree operation to be used to convert reals to integers. */
2167 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2169 /* This is the kind of divide that is easiest to do in the general case. */
2170 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2172 /* Define this as 1 if `char' should by default be signed; else as 0. */
2173 #define DEFAULT_SIGNED_CHAR 0
2175 /* This flag, if defined, says the same insns that convert to a signed fixnum
2176 also convert validly to an unsigned one. */
2178 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2180 /* Max number of bytes we can move from memory to memory
2181 in one reasonably fast instruction. */
2182 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2183 #define MAX_MOVE_MAX 8
2185 /* Nonzero if access to memory by bytes is no faster than for words.
2186 Also non-zero if doing byte operations (specifically shifts) in registers
2187 is undesirable. */
2188 #define SLOW_BYTE_ACCESS 1
2190 /* Define if operations between registers always perform the operation
2191 on the full register even if a narrower mode is specified. */
2192 #define WORD_REGISTER_OPERATIONS
2194 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2195 will either zero-extend or sign-extend. The value of this macro should
2196 be the code that says which one of the two operations is implicitly
2197 done, NIL if none. */
2198 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2200 /* Define if loading short immediate values into registers sign extends. */
2201 #define SHORT_IMMEDIATES_SIGN_EXTEND
2203 /* The RS/6000 uses the XCOFF format. */
2205 #define XCOFF_DEBUGGING_INFO
2207 /* Define if the object format being used is COFF or a superset. */
2208 #define OBJECT_FORMAT_COFF
2210 /* Define the magic numbers that we recognize as COFF.
2212 AIX 4.3 adds U803XTOCMAGIC (0757) for 64-bit objects, but collect2.c
2213 does not include files in the correct order to conditionally define
2214 the symbolic name in this macro.
2216 The AIX linker accepts import/export files as object files,
2217 so accept "#!" (0x2321) magic number. */
2218 #define MY_ISCOFF(magic) \
2219 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC \
2220 || (magic) == U802TOCMAGIC || (magic) == 0757 || (magic) == 0x2321)
2222 /* This is the only version of nm that collect2 can work with. */
2223 #define REAL_NM_FILE_NAME "/usr/ucb/nm"
2225 /* We don't have GAS for the RS/6000 yet, so don't write out special
2226 .stabs in cc1plus. */
2228 #define FASCIST_ASSEMBLER
2230 /* AIX does not have any init/fini or ctor/dtor sections, so create
2231 static constructors and destructors as normal functions. */
2232 /* #define ASM_OUTPUT_CONSTRUCTOR(file, name) */
2233 /* #define ASM_OUTPUT_DESTRUCTOR(file, name) */
2235 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2236 is done just by pretending it is already truncated. */
2237 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2239 /* Specify the machine mode that pointers have.
2240 After generation of rtl, the compiler makes no further distinction
2241 between pointers and any other objects of this machine mode. */
2242 #define Pmode (TARGET_32BIT ? SImode : DImode)
2244 /* Mode of a function address in a call instruction (for indexing purposes).
2245 Doesn't matter on RS/6000. */
2246 #define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
2248 /* Define this if addresses of constant functions
2249 shouldn't be put through pseudo regs where they can be cse'd.
2250 Desirable on machines where ordinary constants are expensive
2251 but a CALL with constant address is cheap. */
2252 #define NO_FUNCTION_CSE
2254 /* Define this to be nonzero if shift instructions ignore all but the low-order
2255 few bits.
2257 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2258 have been dropped from the PowerPC architecture. */
2260 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2262 /* Use atexit for static constructors/destructors, instead of defining
2263 our own exit function. */
2264 #define HAVE_ATEXIT
2266 /* Compute the cost of computing a constant rtl expression RTX
2267 whose rtx-code is CODE. The body of this macro is a portion
2268 of a switch statement. If the code is computed here,
2269 return it with a return statement. Otherwise, break from the switch.
2271 On the RS/6000, if it is valid in the insn, it is free. So this
2272 always returns 0. */
2274 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2275 case CONST_INT: \
2276 case CONST: \
2277 case LABEL_REF: \
2278 case SYMBOL_REF: \
2279 case CONST_DOUBLE: \
2280 case HIGH: \
2281 return 0;
2283 /* Provide the costs of a rtl expression. This is in the body of a
2284 switch on CODE. */
2286 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2287 case PLUS: \
2288 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2289 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2290 + 0x8000) >= 0x10000) \
2291 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
2292 ? COSTS_N_INSNS (2) \
2293 : COSTS_N_INSNS (1)); \
2294 case AND: \
2295 case IOR: \
2296 case XOR: \
2297 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2298 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
2299 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
2300 ? COSTS_N_INSNS (2) \
2301 : COSTS_N_INSNS (1)); \
2302 case MULT: \
2303 switch (rs6000_cpu) \
2305 case PROCESSOR_RIOS1: \
2306 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2307 ? COSTS_N_INSNS (5) \
2308 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2309 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2310 case PROCESSOR_RIOS2: \
2311 case PROCESSOR_MPCCORE: \
2312 case PROCESSOR_PPC604e: \
2313 return COSTS_N_INSNS (2); \
2314 case PROCESSOR_PPC601: \
2315 return COSTS_N_INSNS (5); \
2316 case PROCESSOR_PPC603: \
2317 case PROCESSOR_PPC750: \
2318 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2319 ? COSTS_N_INSNS (5) \
2320 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2321 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
2322 case PROCESSOR_PPC403: \
2323 case PROCESSOR_PPC604: \
2324 case PROCESSOR_PPC620: \
2325 return COSTS_N_INSNS (4); \
2327 case DIV: \
2328 case MOD: \
2329 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2330 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2331 return COSTS_N_INSNS (2); \
2332 /* otherwise fall through to normal divide. */ \
2333 case UDIV: \
2334 case UMOD: \
2335 switch (rs6000_cpu) \
2337 case PROCESSOR_RIOS1: \
2338 return COSTS_N_INSNS (19); \
2339 case PROCESSOR_RIOS2: \
2340 return COSTS_N_INSNS (13); \
2341 case PROCESSOR_MPCCORE: \
2342 return COSTS_N_INSNS (6); \
2343 case PROCESSOR_PPC403: \
2344 return COSTS_N_INSNS (33); \
2345 case PROCESSOR_PPC601: \
2346 return COSTS_N_INSNS (36); \
2347 case PROCESSOR_PPC603: \
2348 return COSTS_N_INSNS (37); \
2349 case PROCESSOR_PPC604: \
2350 case PROCESSOR_PPC604e: \
2351 case PROCESSOR_PPC620: \
2352 return COSTS_N_INSNS (20); \
2353 case PROCESSOR_PPC750: \
2354 return COSTS_N_INSNS (19); \
2356 case FFS: \
2357 return COSTS_N_INSNS (4); \
2358 case MEM: \
2359 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2360 return 5;
2362 /* Compute the cost of an address. This is meant to approximate the size
2363 and/or execution delay of an insn using that address. If the cost is
2364 approximated by the RTL complexity, including CONST_COSTS above, as
2365 is usually the case for CISC machines, this macro should not be defined.
2366 For aggressively RISCy machines, only one insn format is allowed, so
2367 this macro should be a constant. The value of this macro only matters
2368 for valid addresses.
2370 For the RS/6000, everything is cost 0. */
2372 #define ADDRESS_COST(RTX) 0
2374 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2375 should be adjusted to reflect any required changes. This macro is used when
2376 there is some systematic length adjustment required that would be difficult
2377 to express in the length attribute. */
2379 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2381 /* Add any extra modes needed to represent the condition code.
2383 For the RS/6000, we need separate modes when unsigned (logical) comparisons
2384 are being done and we need a separate mode for floating-point. We also
2385 use a mode for the case when we are comparing the results of two
2386 comparisons. */
2388 #define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
2390 /* Define the names for the modes specified above. */
2391 #define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
2393 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2394 return the mode to be used for the comparison. For floating-point, CCFPmode
2395 should be used. CCUNSmode should be used for unsigned comparisons.
2396 CCEQmode should be used when we are doing an inequality comparison on
2397 the result of a comparison. CCmode should be used in all other cases. */
2399 #define SELECT_CC_MODE(OP,X,Y) \
2400 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
2401 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2402 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2403 ? CCEQmode : CCmode))
2405 /* Define the information needed to generate branch and scc insns. This is
2406 stored from the compare operation. Note that we can't use "rtx" here
2407 since it hasn't been defined! */
2409 extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2410 extern int rs6000_compare_fp_p;
2412 /* Set to non-zero by "fix" operation to indicate that itrunc and
2413 uitrunc must be defined. */
2415 extern int rs6000_trunc_used;
2417 /* Function names to call to do floating point truncation. */
2419 #define RS6000_ITRUNC "__itrunc"
2420 #define RS6000_UITRUNC "__uitrunc"
2422 /* Prefix and suffix to use to saving floating point */
2423 #ifndef SAVE_FP_PREFIX
2424 #define SAVE_FP_PREFIX "._savef"
2425 #define SAVE_FP_SUFFIX ""
2426 #endif
2428 /* Prefix and suffix to use to restoring floating point */
2429 #ifndef RESTORE_FP_PREFIX
2430 #define RESTORE_FP_PREFIX "._restf"
2431 #define RESTORE_FP_SUFFIX ""
2432 #endif
2434 /* Function name to call to do profiling. */
2435 #define RS6000_MCOUNT ".__mcount"
2438 /* Control the assembler format that we output. */
2440 /* A C string constant describing how to begin a comment in the target
2441 assembler language. The compiler assumes that the comment will end at
2442 the end of the line. */
2443 #define ASM_COMMENT_START " #"
2445 /* Output at beginning of assembler file.
2447 Initialize the section names for the RS/6000 at this point.
2449 Specify filename to assembler.
2451 We want to go into the TOC section so at least one .toc will be emitted.
2452 Also, in order to output proper .bs/.es pairs, we need at least one static
2453 [RW] section emitted.
2455 We then switch back to text to force the gcc2_compiled. label and the space
2456 allocated after it (when profiling) into the text section.
2458 Finally, declare mcount when profiling to make the assembler happy. */
2460 #define ASM_FILE_START(FILE) \
2462 rs6000_gen_section_name (&xcoff_bss_section_name, \
2463 main_input_filename, ".bss_"); \
2464 rs6000_gen_section_name (&xcoff_private_data_section_name, \
2465 main_input_filename, ".rw_"); \
2466 rs6000_gen_section_name (&xcoff_read_only_section_name, \
2467 main_input_filename, ".ro_"); \
2469 output_file_directive (FILE, main_input_filename); \
2470 if (TARGET_64BIT) \
2471 fputs ("\t.machine\t\"ppc64\"\n", FILE); \
2472 toc_section (); \
2473 if (write_symbols != NO_DEBUG) \
2474 private_data_section (); \
2475 text_section (); \
2476 if (profile_flag) \
2477 fprintf (FILE, "\t.extern %s\n", RS6000_MCOUNT); \
2478 rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
2481 /* Output at end of assembler file.
2483 On the RS/6000, referencing data should automatically pull in text. */
2485 #define ASM_FILE_END(FILE) \
2487 text_section (); \
2488 fputs ("_section_.text:\n", FILE); \
2489 data_section (); \
2490 fputs ("\t.long _section_.text\n", FILE); \
2493 /* We define this to prevent the name mangler from putting dollar signs into
2494 function names. */
2496 #define NO_DOLLAR_IN_LABEL
2498 /* We define this to 0 so that gcc will never accept a dollar sign in a
2499 variable name. This is needed because the AIX assembler will not accept
2500 dollar signs. */
2502 #define DOLLARS_IN_IDENTIFIERS 0
2504 /* Implicit library calls should use memcpy, not bcopy, etc. */
2506 #define TARGET_MEM_FUNCTIONS
2508 /* Define the extra sections we need. We define three: one is the read-only
2509 data section which is used for constants. This is a csect whose name is
2510 derived from the name of the input file. The second is for initialized
2511 global variables. This is a csect whose name is that of the variable.
2512 The third is the TOC. */
2514 #define EXTRA_SECTIONS \
2515 read_only_data, private_data, read_only_private_data, toc, bss
2517 /* Define the name of our readonly data section. */
2519 #define READONLY_DATA_SECTION read_only_data_section
2522 /* Define the name of the section to use for the exception tables.
2523 TODO: test and see if we can use read_only_data_section, if so,
2524 remove this. */
2526 #define EXCEPTION_SECTION data_section
2528 /* If we are referencing a function that is static or is known to be
2529 in this file, make the SYMBOL_REF special. We can use this to indicate
2530 that we can branch to this function without emitting a no-op after the
2531 call. */
2533 #define ENCODE_SECTION_INFO(DECL) \
2534 if (TREE_CODE (DECL) == FUNCTION_DECL \
2535 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
2536 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
2538 /* Indicate that jump tables go in the text section. */
2540 #define JUMP_TABLES_IN_TEXT_SECTION 1
2542 /* Define the routines to implement these extra sections.
2543 BIGGEST_ALIGNMENT is 64, so align the sections that much. */
2545 #define EXTRA_SECTION_FUNCTIONS \
2547 void \
2548 read_only_data_section () \
2550 if (in_section != read_only_data) \
2552 fprintf (asm_out_file, ".csect %s[RO],3\n", \
2553 xcoff_read_only_section_name); \
2554 in_section = read_only_data; \
2558 void \
2559 private_data_section () \
2561 if (in_section != private_data) \
2563 fprintf (asm_out_file, ".csect %s[RW],3\n", \
2564 xcoff_private_data_section_name); \
2565 in_section = private_data; \
2569 void \
2570 read_only_private_data_section () \
2572 if (in_section != read_only_private_data) \
2574 fprintf (asm_out_file, ".csect %s[RO],3\n", \
2575 xcoff_private_data_section_name); \
2576 in_section = read_only_private_data; \
2580 void \
2581 toc_section () \
2583 if (TARGET_MINIMAL_TOC) \
2585 /* toc_section is always called at least once from ASM_FILE_START, \
2586 so this is guaranteed to always be defined once and only once \
2587 in each file. */ \
2588 if (! toc_initialized) \
2590 fputs (".toc\nLCTOC..0:\n", asm_out_file); \
2591 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
2592 toc_initialized = 1; \
2595 if (in_section != toc) \
2596 fprintf (asm_out_file, ".csect toc_table[RW]%s\n", \
2597 (TARGET_32BIT ? "" : ",3")); \
2599 else \
2601 if (in_section != toc) \
2602 fputs (".toc\n", asm_out_file); \
2604 in_section = toc; \
2607 /* Flag to say the TOC is initialized */
2608 extern int toc_initialized;
2610 /* This macro produces the initial definition of a function name.
2611 On the RS/6000, we need to place an extra '.' in the function name and
2612 output the function descriptor.
2614 The csect for the function will have already been created by the
2615 `text_section' call previously done. We do have to go back to that
2616 csect, however. */
2618 /* ??? What do the 16 and 044 in the .function line really mean? */
2620 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
2621 { if (TREE_PUBLIC (DECL)) \
2623 fputs ("\t.globl .", FILE); \
2624 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2625 putc ('\n', FILE); \
2627 else \
2629 fputs ("\t.lglobl .", FILE); \
2630 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2631 putc ('\n', FILE); \
2633 fputs (".csect ", FILE); \
2634 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2635 fputs (TARGET_32BIT ? "[DS]\n" : "[DS],3\n", FILE); \
2636 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2637 fputs (":\n", FILE); \
2638 fputs (TARGET_32BIT ? "\t.long ." : "\t.llong .", FILE); \
2639 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2640 fputs (", TOC[tc0], 0\n", FILE); \
2641 fputs (".csect .text[PR]\n.", FILE); \
2642 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2643 fputs (":\n", FILE); \
2644 if (write_symbols == XCOFF_DEBUG) \
2645 xcoffout_declare_function (FILE, DECL, NAME); \
2648 /* Return non-zero if this entry is to be written into the constant pool
2649 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
2650 containing one of them. If -mfp-in-toc (the default), we also do
2651 this for floating-point constants. We actually can only do this
2652 if the FP formats of the target and host machines are the same, but
2653 we can't check that since not every file that uses
2654 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
2656 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
2657 (TARGET_TOC \
2658 && (GET_CODE (X) == SYMBOL_REF \
2659 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
2660 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
2661 || GET_CODE (X) == LABEL_REF \
2662 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
2663 && GET_CODE (X) == CONST_DOUBLE \
2664 && (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2665 || (TARGET_POWERPC64 && GET_MODE (X) == DImode)))))
2666 #if 0
2667 && BITS_PER_WORD == HOST_BITS_PER_INT)))
2668 #endif
2670 /* Select section for constant in constant pool.
2672 On RS/6000, all constants are in the private read-only data area.
2673 However, if this is being placed in the TOC it must be output as a
2674 toc entry. */
2676 #define SELECT_RTX_SECTION(MODE, X) \
2677 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2678 toc_section (); \
2679 else \
2680 read_only_private_data_section (); \
2683 /* Macro to output a special constant pool entry. Go to WIN if we output
2684 it. Otherwise, it is written the usual way.
2686 On the RS/6000, toc entries are handled this way. */
2688 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2689 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2691 output_toc (FILE, X, LABELNO); \
2692 goto WIN; \
2696 /* Select the section for an initialized data object.
2698 On the RS/6000, we have a special section for all variables except those
2699 that are static. */
2701 #define SELECT_SECTION(EXP,RELOC) \
2703 if ((TREE_CODE (EXP) == STRING_CST \
2704 && ! flag_writable_strings) \
2705 || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
2706 && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
2707 && DECL_INITIAL (EXP) \
2708 && (DECL_INITIAL (EXP) == error_mark_node \
2709 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
2710 && ! (RELOC))) \
2712 if (TREE_PUBLIC (EXP)) \
2713 read_only_data_section (); \
2714 else \
2715 read_only_private_data_section (); \
2717 else \
2719 if (TREE_PUBLIC (EXP)) \
2720 data_section (); \
2721 else \
2722 private_data_section (); \
2726 /* This outputs NAME to FILE up to the first null or '['. */
2728 #define RS6000_OUTPUT_BASENAME(FILE, NAME) \
2730 char *_p; \
2732 STRIP_NAME_ENCODING (_p, (NAME)); \
2733 assemble_name ((FILE), _p); \
2736 /* Remove any trailing [DS] or the like from the symbol name. */
2738 #define STRIP_NAME_ENCODING(VAR,NAME) \
2739 do \
2741 char *_name = (NAME); \
2742 int _len; \
2743 if (_name[0] == '*') \
2744 _name++; \
2745 _len = strlen (_name); \
2746 if (_name[_len - 1] != ']') \
2747 (VAR) = _name; \
2748 else \
2750 (VAR) = (char *) alloca (_len + 1); \
2751 strcpy ((VAR), _name); \
2752 (VAR)[_len - 4] = '\0'; \
2755 while (0)
2757 /* Output something to declare an external symbol to the assembler. Most
2758 assemblers don't need this.
2760 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
2761 name. Normally we write this out along with the name. In the few cases
2762 where we can't, it gets stripped off. */
2764 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2765 { rtx _symref = XEXP (DECL_RTL (DECL), 0); \
2766 if ((TREE_CODE (DECL) == VAR_DECL \
2767 || TREE_CODE (DECL) == FUNCTION_DECL) \
2768 && (NAME)[strlen (NAME) - 1] != ']') \
2770 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
2771 strcpy (_name, XSTR (_symref, 0)); \
2772 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
2773 XSTR (_symref, 0) = _name; \
2775 fputs ("\t.extern ", FILE); \
2776 assemble_name (FILE, XSTR (_symref, 0)); \
2777 if (TREE_CODE (DECL) == FUNCTION_DECL) \
2779 fputs ("\n\t.extern .", FILE); \
2780 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
2782 putc ('\n', FILE); \
2785 /* Similar, but for libcall. We only have to worry about the function name,
2786 not that of the descriptor. */
2788 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
2789 { fputs ("\t.extern .", FILE); \
2790 assemble_name (FILE, XSTR (FUN, 0)); \
2791 putc ('\n', FILE); \
2794 /* Output to assembler file text saying following lines
2795 may contain character constants, extra white space, comments, etc. */
2797 #define ASM_APP_ON ""
2799 /* Output to assembler file text saying following lines
2800 no longer contain unusual constructs. */
2802 #define ASM_APP_OFF ""
2804 /* Output before instructions.
2805 Text section for 64-bit target may contain 64-bit address jump table. */
2807 #define TEXT_SECTION_ASM_OP (TARGET_32BIT \
2808 ? ".csect .text[PR]" : ".csect .text[PR],3")
2810 /* Output before writable data.
2811 Align entire section to BIGGEST_ALIGNMENT. */
2813 #define DATA_SECTION_ASM_OP ".csect .data[RW],3"
2815 /* How to refer to registers in assembler output.
2816 This sequence is indexed by compiler's hard-register-number (see above). */
2818 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2820 #define REGISTER_NAMES \
2822 &rs6000_reg_names[ 0][0], /* r0 */ \
2823 &rs6000_reg_names[ 1][0], /* r1 */ \
2824 &rs6000_reg_names[ 2][0], /* r2 */ \
2825 &rs6000_reg_names[ 3][0], /* r3 */ \
2826 &rs6000_reg_names[ 4][0], /* r4 */ \
2827 &rs6000_reg_names[ 5][0], /* r5 */ \
2828 &rs6000_reg_names[ 6][0], /* r6 */ \
2829 &rs6000_reg_names[ 7][0], /* r7 */ \
2830 &rs6000_reg_names[ 8][0], /* r8 */ \
2831 &rs6000_reg_names[ 9][0], /* r9 */ \
2832 &rs6000_reg_names[10][0], /* r10 */ \
2833 &rs6000_reg_names[11][0], /* r11 */ \
2834 &rs6000_reg_names[12][0], /* r12 */ \
2835 &rs6000_reg_names[13][0], /* r13 */ \
2836 &rs6000_reg_names[14][0], /* r14 */ \
2837 &rs6000_reg_names[15][0], /* r15 */ \
2838 &rs6000_reg_names[16][0], /* r16 */ \
2839 &rs6000_reg_names[17][0], /* r17 */ \
2840 &rs6000_reg_names[18][0], /* r18 */ \
2841 &rs6000_reg_names[19][0], /* r19 */ \
2842 &rs6000_reg_names[20][0], /* r20 */ \
2843 &rs6000_reg_names[21][0], /* r21 */ \
2844 &rs6000_reg_names[22][0], /* r22 */ \
2845 &rs6000_reg_names[23][0], /* r23 */ \
2846 &rs6000_reg_names[24][0], /* r24 */ \
2847 &rs6000_reg_names[25][0], /* r25 */ \
2848 &rs6000_reg_names[26][0], /* r26 */ \
2849 &rs6000_reg_names[27][0], /* r27 */ \
2850 &rs6000_reg_names[28][0], /* r28 */ \
2851 &rs6000_reg_names[29][0], /* r29 */ \
2852 &rs6000_reg_names[30][0], /* r30 */ \
2853 &rs6000_reg_names[31][0], /* r31 */ \
2855 &rs6000_reg_names[32][0], /* fr0 */ \
2856 &rs6000_reg_names[33][0], /* fr1 */ \
2857 &rs6000_reg_names[34][0], /* fr2 */ \
2858 &rs6000_reg_names[35][0], /* fr3 */ \
2859 &rs6000_reg_names[36][0], /* fr4 */ \
2860 &rs6000_reg_names[37][0], /* fr5 */ \
2861 &rs6000_reg_names[38][0], /* fr6 */ \
2862 &rs6000_reg_names[39][0], /* fr7 */ \
2863 &rs6000_reg_names[40][0], /* fr8 */ \
2864 &rs6000_reg_names[41][0], /* fr9 */ \
2865 &rs6000_reg_names[42][0], /* fr10 */ \
2866 &rs6000_reg_names[43][0], /* fr11 */ \
2867 &rs6000_reg_names[44][0], /* fr12 */ \
2868 &rs6000_reg_names[45][0], /* fr13 */ \
2869 &rs6000_reg_names[46][0], /* fr14 */ \
2870 &rs6000_reg_names[47][0], /* fr15 */ \
2871 &rs6000_reg_names[48][0], /* fr16 */ \
2872 &rs6000_reg_names[49][0], /* fr17 */ \
2873 &rs6000_reg_names[50][0], /* fr18 */ \
2874 &rs6000_reg_names[51][0], /* fr19 */ \
2875 &rs6000_reg_names[52][0], /* fr20 */ \
2876 &rs6000_reg_names[53][0], /* fr21 */ \
2877 &rs6000_reg_names[54][0], /* fr22 */ \
2878 &rs6000_reg_names[55][0], /* fr23 */ \
2879 &rs6000_reg_names[56][0], /* fr24 */ \
2880 &rs6000_reg_names[57][0], /* fr25 */ \
2881 &rs6000_reg_names[58][0], /* fr26 */ \
2882 &rs6000_reg_names[59][0], /* fr27 */ \
2883 &rs6000_reg_names[60][0], /* fr28 */ \
2884 &rs6000_reg_names[61][0], /* fr29 */ \
2885 &rs6000_reg_names[62][0], /* fr30 */ \
2886 &rs6000_reg_names[63][0], /* fr31 */ \
2888 &rs6000_reg_names[64][0], /* mq */ \
2889 &rs6000_reg_names[65][0], /* lr */ \
2890 &rs6000_reg_names[66][0], /* ctr */ \
2891 &rs6000_reg_names[67][0], /* ap */ \
2893 &rs6000_reg_names[68][0], /* cr0 */ \
2894 &rs6000_reg_names[69][0], /* cr1 */ \
2895 &rs6000_reg_names[70][0], /* cr2 */ \
2896 &rs6000_reg_names[71][0], /* cr3 */ \
2897 &rs6000_reg_names[72][0], /* cr4 */ \
2898 &rs6000_reg_names[73][0], /* cr5 */ \
2899 &rs6000_reg_names[74][0], /* cr6 */ \
2900 &rs6000_reg_names[75][0], /* cr7 */ \
2902 &rs6000_reg_names[76][0], /* fpmem */ \
2905 /* print-rtl can't handle the above REGISTER_NAMES, so define the
2906 following for it. Switch to use the alternate names since
2907 they are more mnemonic. */
2909 #define DEBUG_REGISTER_NAMES \
2911 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2912 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2913 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2914 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2915 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2916 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2917 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2918 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2919 "mq", "lr", "ctr", "ap", \
2920 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2921 "fpmem" \
2924 /* Table of additional register names to use in user input. */
2926 #define ADDITIONAL_REGISTER_NAMES \
2927 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2928 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2929 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2930 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2931 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2932 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2933 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2934 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2935 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2936 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2937 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2938 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2939 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2940 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2941 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2942 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2943 /* no additional names for: mq, lr, ctr, ap */ \
2944 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2945 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2946 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2948 /* How to renumber registers for dbx and gdb. */
2950 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2952 /* Text to write out after a CALL that may be replaced by glue code by
2953 the loader. This depends on the AIX version. */
2954 #define RS6000_CALL_GLUE "cror 31,31,31"
2956 /* This is how to output the definition of a user-level label named NAME,
2957 such as the label on a static function or variable NAME. */
2959 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2960 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2962 /* This is how to output a command to make the user-level label named NAME
2963 defined for reference from other files. */
2965 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2966 do { fputs ("\t.globl ", FILE); \
2967 RS6000_OUTPUT_BASENAME (FILE, NAME); putc ('\n', FILE);} while (0)
2969 /* This is how to output a reference to a user-level label named NAME.
2970 `assemble_name' uses this. */
2972 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2973 fputs (NAME, FILE)
2975 /* This is how to output an internal numbered label where
2976 PREFIX is the class of label and NUM is the number within the class. */
2978 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2979 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
2981 /* This is how to output an internal label prefix. rs6000.c uses this
2982 when generating traceback tables. */
2984 #define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
2985 fprintf (FILE, "%s..", PREFIX)
2987 /* This is how to output a label for a jump table. Arguments are the same as
2988 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2989 passed. */
2991 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2992 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2994 /* This is how to store into the string LABEL
2995 the symbol_ref name of an internal numbered label where
2996 PREFIX is the class of label and NUM is the number within the class.
2997 This is suitable for output with `assemble_name'. */
2999 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3000 sprintf (LABEL, "*%s..%d", PREFIX, NUM)
3002 /* This is how to output an assembler line defining a `double' constant. */
3004 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
3006 long t[2]; \
3007 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
3008 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
3009 t[0] & 0xffffffff, t[1] & 0xffffffff); \
3012 /* This is how to output an assembler line defining a `float' constant. */
3014 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
3016 long t; \
3017 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
3018 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
3021 /* This is how to output an assembler line defining an `int' constant. */
3023 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
3024 do { \
3025 if (TARGET_32BIT) \
3027 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
3028 UNITS_PER_WORD, 1); \
3029 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
3030 UNITS_PER_WORD, 1); \
3032 else \
3034 fputs ("\t.llong ", FILE); \
3035 output_addr_const (FILE, (VALUE)); \
3036 putc ('\n', FILE); \
3038 } while (0)
3040 #define ASM_OUTPUT_INT(FILE,VALUE) \
3041 ( fputs ("\t.long ", FILE), \
3042 output_addr_const (FILE, (VALUE)), \
3043 putc ('\n', FILE))
3045 /* Likewise for `char' and `short' constants. */
3047 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
3048 ( fputs ("\t.short ", FILE), \
3049 output_addr_const (FILE, (VALUE)), \
3050 putc ('\n', FILE))
3052 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
3053 ( fputs ("\t.byte ", FILE), \
3054 output_addr_const (FILE, (VALUE)), \
3055 putc ('\n', FILE))
3057 /* This is how to output an assembler line for a numeric constant byte. */
3059 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
3060 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
3062 /* This is how to output an assembler line to define N characters starting
3063 at P to FILE. */
3065 #define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
3067 /* This is how to output an element of a case-vector that is absolute.
3068 (RS/6000 does not use such vectors, but we must define this macro
3069 anyway.) */
3071 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
3072 do { char buf[100]; \
3073 fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", FILE); \
3074 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
3075 assemble_name (FILE, buf); \
3076 putc ('\n', FILE); \
3077 } while (0)
3079 /* This is how to output an element of a case-vector that is relative. */
3081 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)\
3082 do { char buf[100]; \
3083 fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", FILE); \
3084 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
3085 assemble_name (FILE, buf); \
3086 putc ('-', FILE); \
3087 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
3088 assemble_name (FILE, buf); \
3089 putc ('\n', FILE); \
3090 } while (0)
3092 /* This is how to output an assembler line
3093 that says to advance the location counter
3094 to a multiple of 2**LOG bytes. */
3096 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
3097 if ((LOG) != 0) \
3098 fprintf (FILE, "\t.align %d\n", (LOG))
3100 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
3101 fprintf (FILE, "\t.space %d\n", (SIZE))
3103 /* This says how to output an assembler line
3104 to define a global common symbol. */
3106 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
3107 do { fputs (".comm ", (FILE)); \
3108 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
3109 if ( (SIZE) > 4) \
3110 fprintf ((FILE), ",%d,3\n", (SIZE)); \
3111 else \
3112 fprintf( (FILE), ",%d\n", (SIZE)); \
3113 } while (0)
3115 /* This says how to output an assembler line
3116 to define a local common symbol.
3117 Alignment cannot be specified, but we can try to maintain
3118 alignment after preceding TOC section if it was aligned
3119 for 64-bit mode. */
3121 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
3122 do { fputs (".lcomm ", (FILE)); \
3123 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
3124 fprintf ((FILE), ",%d,%s\n", (TARGET_32BIT ? (SIZE) : (ROUNDED)), \
3125 xcoff_bss_section_name); \
3126 } while (0)
3128 /* Store in OUTPUT a string (made with alloca) containing
3129 an assembler-name for a local static variable named NAME.
3130 LABELNO is an integer which is different for each call. */
3132 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3133 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3134 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3136 /* Define the parentheses used to group arithmetic operations
3137 in assembler code. */
3139 #define ASM_OPEN_PAREN "("
3140 #define ASM_CLOSE_PAREN ")"
3142 /* Define results of standard character escape sequences. */
3143 #define TARGET_BELL 007
3144 #define TARGET_BS 010
3145 #define TARGET_TAB 011
3146 #define TARGET_NEWLINE 012
3147 #define TARGET_VT 013
3148 #define TARGET_FF 014
3149 #define TARGET_CR 015
3151 /* Print operand X (an rtx) in assembler syntax to file FILE.
3152 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3153 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3155 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3157 /* Define which CODE values are valid. */
3159 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
3160 ((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
3162 /* Print a memory address as an operand to reference that memory location. */
3164 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3166 /* Define the codes that are matched by predicates in rs6000.c. */
3168 #define PREDICATE_CODES \
3169 {"short_cint_operand", {CONST_INT}}, \
3170 {"u_short_cint_operand", {CONST_INT}}, \
3171 {"non_short_cint_operand", {CONST_INT}}, \
3172 {"gpc_reg_operand", {SUBREG, REG}}, \
3173 {"cc_reg_operand", {SUBREG, REG}}, \
3174 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
3175 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
3176 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
3177 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
3178 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
3179 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
3180 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
3181 {"easy_fp_constant", {CONST_DOUBLE}}, \
3182 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
3183 {"lwa_operand", {SUBREG, MEM, REG}}, \
3184 {"volatile_mem_operand", {MEM}}, \
3185 {"offsettable_mem_operand", {MEM}}, \
3186 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
3187 {"add_operand", {SUBREG, REG, CONST_INT}}, \
3188 {"non_add_cint_operand", {CONST_INT}}, \
3189 {"and_operand", {SUBREG, REG, CONST_INT}}, \
3190 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3191 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
3192 {"non_logical_cint_operand", {CONST_INT}}, \
3193 {"mask_operand", {CONST_INT}}, \
3194 {"mask64_operand", {CONST_INT, CONST_DOUBLE}}, \
3195 {"count_register_operand", {REG}}, \
3196 {"fpmem_operand", {REG}}, \
3197 {"call_operand", {SYMBOL_REF, REG}}, \
3198 {"current_file_function_operand", {SYMBOL_REF}}, \
3199 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
3200 CONST_DOUBLE, SYMBOL_REF}}, \
3201 {"load_multiple_operation", {PARALLEL}}, \
3202 {"store_multiple_operation", {PARALLEL}}, \
3203 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
3204 GT, LEU, LTU, GEU, GTU}}, \
3205 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
3206 GT, LEU, LTU, GEU, GTU}}, \
3207 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
3208 GT, LEU, LTU, GEU, GTU}},
3210 /* uncomment for disabling the corresponding default options */
3211 /* #define MACHINE_no_sched_interblock */
3212 /* #define MACHINE_no_sched_speculative */
3213 /* #define MACHINE_no_sched_speculative_load */
3215 /* indicate that issue rate is defined for this machine
3216 (no need to use the default) */
3217 #define ISSUE_RATE get_issue_rate ()
3219 /* General flags. */
3220 extern int flag_pic;
3221 extern int optimize;
3222 extern int flag_expensive_optimizations;
3223 extern int frame_pointer_needed;
3225 /* Declare functions in rs6000.c */
3226 extern void optimization_options ();
3227 extern void output_options ();
3228 extern void rs6000_override_options ();
3229 extern void rs6000_file_start ();
3230 extern struct rtx_def *rs6000_float_const ();
3231 extern struct rtx_def *rs6000_got_register ();
3232 extern struct rtx_def *find_addr_reg();
3233 extern int direct_return ();
3234 extern int get_issue_rate ();
3235 extern int any_operand ();
3236 extern int short_cint_operand ();
3237 extern int u_short_cint_operand ();
3238 extern int non_short_cint_operand ();
3239 extern int gpc_reg_operand ();
3240 extern int cc_reg_operand ();
3241 extern int cc_reg_not_cr0_operand ();
3242 extern int reg_or_short_operand ();
3243 extern int reg_or_neg_short_operand ();
3244 extern int reg_or_u_short_operand ();
3245 extern int reg_or_cint_operand ();
3246 extern int got_operand ();
3247 extern int got_no_const_operand ();
3248 extern int num_insns_constant ();
3249 extern int easy_fp_constant ();
3250 extern int volatile_mem_operand ();
3251 extern int offsettable_mem_operand ();
3252 extern int mem_or_easy_const_operand ();
3253 extern int add_operand ();
3254 extern int non_add_cint_operand ();
3255 extern int non_logical_cint_operand ();
3256 extern int logical_operand ();
3257 extern int mask_operand ();
3258 extern int mask64_operand ();
3259 extern int and64_operand ();
3260 extern int and_operand ();
3261 extern int count_register_operand ();
3262 extern int fpmem_operand ();
3263 extern int reg_or_mem_operand ();
3264 extern int lwa_operand ();
3265 extern int call_operand ();
3266 extern int current_file_function_operand ();
3267 extern int input_operand ();
3268 extern int small_data_operand ();
3269 extern void init_cumulative_args ();
3270 extern void function_arg_advance ();
3271 extern int function_arg_boundary ();
3272 extern struct rtx_def *function_arg ();
3273 extern int function_arg_partial_nregs ();
3274 extern int function_arg_pass_by_reference ();
3275 extern void setup_incoming_varargs ();
3276 extern struct rtx_def *rs6000_expand_builtin_saveregs ();
3277 extern struct rtx_def *rs6000_stack_temp ();
3278 extern int expand_block_move ();
3279 extern int load_multiple_operation ();
3280 extern int store_multiple_operation ();
3281 extern int branch_comparison_operator ();
3282 extern int scc_comparison_operator ();
3283 extern int trap_comparison_operator ();
3284 extern int includes_lshift_p ();
3285 extern int includes_rshift_p ();
3286 extern int registers_ok_for_quad_peep ();
3287 extern int addrs_ok_for_quad_peep ();
3288 extern enum reg_class secondary_reload_class ();
3289 extern int ccr_bit ();
3290 extern void rs6000_finalize_pic ();
3291 extern void rs6000_reorg ();
3292 extern void rs6000_save_machine_status ();
3293 extern void rs6000_restore_machine_status ();
3294 extern void rs6000_init_expanders ();
3295 extern void print_operand ();
3296 extern void print_operand_address ();
3297 extern int first_reg_to_save ();
3298 extern int first_fp_reg_to_save ();
3299 extern int rs6000_makes_calls ();
3300 extern rs6000_stack_t *rs6000_stack_info ();
3301 extern void output_prolog ();
3302 extern void output_epilog ();
3303 extern void output_mi_thunk ();
3304 extern void output_toc ();
3305 extern void output_ascii ();
3306 extern void rs6000_gen_section_name ();
3307 extern void output_function_profiler ();
3308 extern int rs6000_adjust_cost ();
3309 extern int rs6000_adjust_priority ();
3310 extern void rs6000_trampoline_template ();
3311 extern int rs6000_trampoline_size ();
3312 extern void rs6000_initialize_trampoline ();
3313 extern void rs6000_output_load_toc_table ();
3314 extern int rs6000_comp_type_attributes ();
3315 extern int rs6000_valid_decl_attribute_p ();
3316 extern int rs6000_valid_type_attribute_p ();
3317 extern void rs6000_set_default_type_attributes ();
3318 extern struct rtx_def *rs6000_dll_import_ref ();
3319 extern struct rtx_def *rs6000_longcall_ref ();
3320 extern int function_arg_padding ();
3321 extern void toc_section ();
3322 extern void private_data_section ();
3323 extern void rs6000_fatal_bad_address ();
3325 /* See nonlocal_goto_receiver for when this must be set. */
3327 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_TOC && TARGET_MINIMAL_TOC)