1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Ch7
; use Exp_Ch7
;
33 with Exp_Ch11
; use Exp_Ch11
;
34 with Exp_Pakd
; use Exp_Pakd
;
35 with Exp_Util
; use Exp_Util
;
36 with Exp_Tss
; use Exp_Tss
;
37 with Layout
; use Layout
;
38 with Lib
.Xref
; use Lib
.Xref
;
39 with Nlists
; use Nlists
;
40 with Nmake
; use Nmake
;
42 with Restrict
; use Restrict
;
43 with Rident
; use Rident
;
45 with Sem_Cat
; use Sem_Cat
;
46 with Sem_Ch6
; use Sem_Ch6
;
47 with Sem_Ch7
; use Sem_Ch7
;
48 with Sem_Ch8
; use Sem_Ch8
;
49 with Sem_Ch13
; use Sem_Ch13
;
50 with Sem_Eval
; use Sem_Eval
;
51 with Sem_Mech
; use Sem_Mech
;
52 with Sem_Prag
; use Sem_Prag
;
53 with Sem_Res
; use Sem_Res
;
54 with Sem_Util
; use Sem_Util
;
55 with Sinfo
; use Sinfo
;
56 with Snames
; use Snames
;
57 with Stand
; use Stand
;
58 with Targparm
; use Targparm
;
59 with Tbuild
; use Tbuild
;
60 with Ttypes
; use Ttypes
;
61 with Uintp
; use Uintp
;
62 with Urealp
; use Urealp
;
64 package body Freeze
is
66 -----------------------
67 -- Local Subprograms --
68 -----------------------
70 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
);
71 -- Typ is a type that is being frozen. If no size clause is given,
72 -- but a default Esize has been computed, then this default Esize is
73 -- adjusted up if necessary to be consistent with a given alignment,
74 -- but never to a value greater than Long_Long_Integer'Size. This
75 -- is used for all discrete types and for fixed-point types.
77 procedure Build_And_Analyze_Renamed_Body
80 After
: in out Node_Id
);
81 -- Build body for a renaming declaration, insert in tree and analyze.
83 procedure Check_Address_Clause
(E
: Entity_Id
);
84 -- Apply legality checks to address clauses for object declarations,
85 -- at the point the object is frozen.
87 procedure Check_Strict_Alignment
(E
: Entity_Id
);
88 -- E is a base type. If E is tagged or has a component that is aliased
89 -- or tagged or contains something this is aliased or tagged, set
92 procedure Check_Unsigned_Type
(E
: Entity_Id
);
93 pragma Inline
(Check_Unsigned_Type
);
94 -- If E is a fixed-point or discrete type, then all the necessary work
95 -- to freeze it is completed except for possible setting of the flag
96 -- Is_Unsigned_Type, which is done by this procedure. The call has no
97 -- effect if the entity E is not a discrete or fixed-point type.
99 procedure Freeze_And_Append
102 Result
: in out List_Id
);
103 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
104 -- nodes to Result, modifying Result from No_List if necessary.
106 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
);
107 -- Freeze enumeration type. The Esize field is set as processing
108 -- proceeds (i.e. set by default when the type is declared and then
109 -- adjusted by rep clauses. What this procedure does is to make sure
110 -- that if a foreign convention is specified, and no specific size
111 -- is given, then the size must be at least Integer'Size.
113 procedure Freeze_Static_Object
(E
: Entity_Id
);
114 -- If an object is frozen which has Is_Statically_Allocated set, then
115 -- all referenced types must also be marked with this flag. This routine
116 -- is in charge of meeting this requirement for the object entity E.
118 procedure Freeze_Subprogram
(E
: Entity_Id
);
119 -- Perform freezing actions for a subprogram (create extra formals,
120 -- and set proper default mechanism values). Note that this routine
121 -- is not called for internal subprograms, for which neither of these
122 -- actions is needed (or desirable, we do not want for example to have
123 -- these extra formals present in initialization procedures, where they
124 -- would serve no purpose). In this call E is either a subprogram or
125 -- a subprogram type (i.e. an access to a subprogram).
127 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean;
128 -- True if T is not private and has no private components, or has a full
129 -- view. Used to determine whether the designated type of an access type
130 -- should be frozen when the access type is frozen. This is done when an
131 -- allocator is frozen, or an expression that may involve attributes of
132 -- the designated type. Otherwise freezing the access type does not freeze
133 -- the designated type.
135 procedure Process_Default_Expressions
137 After
: in out Node_Id
);
138 -- This procedure is called for each subprogram to complete processing
139 -- of default expressions at the point where all types are known to be
140 -- frozen. The expressions must be analyzed in full, to make sure that
141 -- all error processing is done (they have only been pre-analyzed). If
142 -- the expression is not an entity or literal, its analysis may generate
143 -- code which must not be executed. In that case we build a function
144 -- body to hold that code. This wrapper function serves no other purpose
145 -- (it used to be called to evaluate the default, but now the default is
146 -- inlined at each point of call).
148 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
);
149 -- Typ is a record or array type that is being frozen. This routine
150 -- sets the default component alignment from the scope stack values
151 -- if the alignment is otherwise not specified.
153 procedure Check_Debug_Info_Needed
(T
: Entity_Id
);
154 -- As each entity is frozen, this routine is called to deal with the
155 -- setting of Debug_Info_Needed for the entity. This flag is set if
156 -- the entity comes from source, or if we are in Debug_Generated_Code
157 -- mode or if the -gnatdV debug flag is set. However, it never sets
158 -- the flag if Debug_Info_Off is set.
160 procedure Set_Debug_Info_Needed
(T
: Entity_Id
);
161 -- Sets the Debug_Info_Needed flag on entity T if not already set, and
162 -- also on any entities that are needed by T (for an object, the type
163 -- of the object is needed, and for a type, the subsidiary types are
164 -- needed -- see body for details). Never has any effect on T if the
165 -- Debug_Info_Off flag is set.
167 procedure Warn_Overlay
171 -- Expr is the expression for an address clause for entity Nam whose type
172 -- is Typ. If Typ has a default initialization, and there is no explicit
173 -- initialization in the source declaration, check whether the address
174 -- clause might cause overlaying of an entity, and emit a warning on the
175 -- side effect that the initialization will cause.
177 -------------------------------
178 -- Adjust_Esize_For_Alignment --
179 -------------------------------
181 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
) is
185 if Known_Esize
(Typ
) and then Known_Alignment
(Typ
) then
186 Align
:= Alignment_In_Bits
(Typ
);
188 if Align
> Esize
(Typ
)
189 and then Align
<= Standard_Long_Long_Integer_Size
191 Set_Esize
(Typ
, Align
);
194 end Adjust_Esize_For_Alignment
;
196 ------------------------------------
197 -- Build_And_Analyze_Renamed_Body --
198 ------------------------------------
200 procedure Build_And_Analyze_Renamed_Body
203 After
: in out Node_Id
)
205 Body_Node
: constant Node_Id
:= Build_Renamed_Body
(Decl
, New_S
);
208 Insert_After
(After
, Body_Node
);
209 Mark_Rewrite_Insertion
(Body_Node
);
212 end Build_And_Analyze_Renamed_Body
;
214 ------------------------
215 -- Build_Renamed_Body --
216 ------------------------
218 function Build_Renamed_Body
220 New_S
: Entity_Id
) return Node_Id
222 Loc
: constant Source_Ptr
:= Sloc
(New_S
);
223 -- We use for the source location of the renamed body, the location
224 -- of the spec entity. It might seem more natural to use the location
225 -- of the renaming declaration itself, but that would be wrong, since
226 -- then the body we create would look as though it was created far
227 -- too late, and this could cause problems with elaboration order
228 -- analysis, particularly in connection with instantiations.
230 N
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
231 Nam
: constant Node_Id
:= Name
(N
);
233 Spec
: constant Node_Id
:= New_Copy_Tree
(Specification
(Decl
));
234 Actuals
: List_Id
:= No_List
;
239 O_Formal
: Entity_Id
;
240 Param_Spec
: Node_Id
;
243 -- Determine the entity being renamed, which is the target of the
244 -- call statement. If the name is an explicit dereference, this is
245 -- a renaming of a subprogram type rather than a subprogram. The
246 -- name itself is fully analyzed.
248 if Nkind
(Nam
) = N_Selected_Component
then
249 Old_S
:= Entity
(Selector_Name
(Nam
));
251 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
252 Old_S
:= Etype
(Nam
);
254 elsif Nkind
(Nam
) = N_Indexed_Component
then
255 if Is_Entity_Name
(Prefix
(Nam
)) then
256 Old_S
:= Entity
(Prefix
(Nam
));
258 Old_S
:= Entity
(Selector_Name
(Prefix
(Nam
)));
261 elsif Nkind
(Nam
) = N_Character_Literal
then
262 Old_S
:= Etype
(New_S
);
265 Old_S
:= Entity
(Nam
);
268 if Is_Entity_Name
(Nam
) then
270 -- If the renamed entity is a predefined operator, retain full
271 -- name to ensure its visibility.
273 if Ekind
(Old_S
) = E_Operator
274 and then Nkind
(Nam
) = N_Expanded_Name
276 Call_Name
:= New_Copy
(Name
(N
));
278 Call_Name
:= New_Reference_To
(Old_S
, Loc
);
282 Call_Name
:= New_Copy
(Name
(N
));
284 -- The original name may have been overloaded, but
285 -- is fully resolved now.
287 Set_Is_Overloaded
(Call_Name
, False);
290 -- For simple renamings, subsequent calls can be expanded directly
291 -- as called to the renamed entity. The body must be generated in
292 -- any case for calls they may appear elsewhere.
294 if (Ekind
(Old_S
) = E_Function
295 or else Ekind
(Old_S
) = E_Procedure
)
296 and then Nkind
(Decl
) = N_Subprogram_Declaration
298 Set_Body_To_Inline
(Decl
, Old_S
);
301 -- The body generated for this renaming is an internal artifact, and
302 -- does not constitute a freeze point for the called entity.
304 Set_Must_Not_Freeze
(Call_Name
);
306 Formal
:= First_Formal
(Defining_Entity
(Decl
));
308 if Present
(Formal
) then
311 while Present
(Formal
) loop
312 Append
(New_Reference_To
(Formal
, Loc
), Actuals
);
313 Next_Formal
(Formal
);
317 -- If the renamed entity is an entry, inherit its profile. For
318 -- other renamings as bodies, both profiles must be subtype
319 -- conformant, so it is not necessary to replace the profile given
320 -- in the declaration. However, default values that are aggregates
321 -- are rewritten when partially analyzed, so we recover the original
322 -- aggregate to insure that subsequent conformity checking works.
323 -- Similarly, if the default expression was constant-folded, recover
324 -- the original expression.
326 Formal
:= First_Formal
(Defining_Entity
(Decl
));
328 if Present
(Formal
) then
329 O_Formal
:= First_Formal
(Old_S
);
330 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
332 while Present
(Formal
) loop
333 if Is_Entry
(Old_S
) then
335 if Nkind
(Parameter_Type
(Param_Spec
)) /=
338 Set_Etype
(Formal
, Etype
(O_Formal
));
339 Set_Entity
(Parameter_Type
(Param_Spec
), Etype
(O_Formal
));
342 elsif Nkind
(Default_Value
(O_Formal
)) = N_Aggregate
343 or else Nkind
(Original_Node
(Default_Value
(O_Formal
))) /=
344 Nkind
(Default_Value
(O_Formal
))
346 Set_Expression
(Param_Spec
,
347 New_Copy_Tree
(Original_Node
(Default_Value
(O_Formal
))));
350 Next_Formal
(Formal
);
351 Next_Formal
(O_Formal
);
356 -- If the renamed entity is a function, the generated body contains a
357 -- return statement. Otherwise, build a procedure call. If the entity is
358 -- an entry, subsequent analysis of the call will transform it into the
359 -- proper entry or protected operation call. If the renamed entity is
360 -- a character literal, return it directly.
362 if Ekind
(Old_S
) = E_Function
363 or else Ekind
(Old_S
) = E_Operator
364 or else (Ekind
(Old_S
) = E_Subprogram_Type
365 and then Etype
(Old_S
) /= Standard_Void_Type
)
368 Make_Return_Statement
(Loc
,
370 Make_Function_Call
(Loc
,
372 Parameter_Associations
=> Actuals
));
374 elsif Ekind
(Old_S
) = E_Enumeration_Literal
then
376 Make_Return_Statement
(Loc
,
377 Expression
=> New_Occurrence_Of
(Old_S
, Loc
));
379 elsif Nkind
(Nam
) = N_Character_Literal
then
381 Make_Return_Statement
(Loc
,
382 Expression
=> Call_Name
);
386 Make_Procedure_Call_Statement
(Loc
,
388 Parameter_Associations
=> Actuals
);
391 -- Create entities for subprogram body and formals.
393 Set_Defining_Unit_Name
(Spec
,
394 Make_Defining_Identifier
(Loc
, Chars
=> Chars
(New_S
)));
396 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
398 while Present
(Param_Spec
) loop
399 Set_Defining_Identifier
(Param_Spec
,
400 Make_Defining_Identifier
(Loc
,
401 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
406 Make_Subprogram_Body
(Loc
,
407 Specification
=> Spec
,
408 Declarations
=> New_List
,
409 Handled_Statement_Sequence
=>
410 Make_Handled_Sequence_Of_Statements
(Loc
,
411 Statements
=> New_List
(Call_Node
)));
413 if Nkind
(Decl
) /= N_Subprogram_Declaration
then
415 Make_Subprogram_Declaration
(Loc
,
416 Specification
=> Specification
(N
)));
419 -- Link the body to the entity whose declaration it completes. If
420 -- the body is analyzed when the renamed entity is frozen, it may be
421 -- necessary to restore the proper scope (see package Exp_Ch13).
423 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
424 and then Present
(Corresponding_Spec
(N
))
426 Set_Corresponding_Spec
(Body_Node
, Corresponding_Spec
(N
));
428 Set_Corresponding_Spec
(Body_Node
, New_S
);
432 end Build_Renamed_Body
;
434 --------------------------
435 -- Check_Address_Clause --
436 --------------------------
438 procedure Check_Address_Clause
(E
: Entity_Id
) is
439 Addr
: constant Node_Id
:= Address_Clause
(E
);
441 Decl
: constant Node_Id
:= Declaration_Node
(E
);
442 Typ
: constant Entity_Id
:= Etype
(E
);
445 if Present
(Addr
) then
446 Expr
:= Expression
(Addr
);
448 -- If we have no initialization of any kind, then we don't
449 -- need to place any restrictions on the address clause, because
450 -- the object will be elaborated after the address clause is
451 -- evaluated. This happens if the declaration has no initial
452 -- expression, or the type has no implicit initialization, or
453 -- the object is imported.
455 -- The same holds for all initialized scalar types and all
456 -- access types. Packed bit arrays of size up to 64 are
457 -- represented using a modular type with an initialization
458 -- (to zero) and can be processed like other initialized
461 -- If the type is controlled, code to attach the object to a
462 -- finalization chain is generated at the point of declaration,
463 -- and therefore the elaboration of the object cannot be delayed:
464 -- the address expression must be a constant.
466 if (No
(Expression
(Decl
))
467 and then not Controlled_Type
(Typ
)
469 (not Has_Non_Null_Base_Init_Proc
(Typ
)
470 or else Is_Imported
(E
)))
473 (Present
(Expression
(Decl
))
474 and then Is_Scalar_Type
(Typ
))
480 (Is_Bit_Packed_Array
(Typ
)
482 Is_Modular_Integer_Type
(Packed_Array_Type
(Typ
)))
486 -- Otherwise, we require the address clause to be constant
487 -- because the call to the initialization procedure (or the
488 -- attach code) has to happen at the point of the declaration.
491 Check_Constant_Address_Clause
(Expr
, E
);
492 Set_Has_Delayed_Freeze
(E
, False);
495 if not Error_Posted
(Expr
)
496 and then not Controlled_Type
(Typ
)
498 Warn_Overlay
(Expr
, Typ
, Name
(Addr
));
501 end Check_Address_Clause
;
503 -----------------------------
504 -- Check_Compile_Time_Size --
505 -----------------------------
507 procedure Check_Compile_Time_Size
(T
: Entity_Id
) is
509 procedure Set_Small_Size
(S
: Uint
);
510 -- Sets the compile time known size (32 bits or less) in the Esize
511 -- field, checking for a size clause that was given which attempts
512 -- to give a smaller size.
514 function Size_Known
(T
: Entity_Id
) return Boolean;
515 -- Recursive function that does all the work
517 function Static_Discriminated_Components
(T
: Entity_Id
) return Boolean;
518 -- If T is a constrained subtype, its size is not known if any of its
519 -- discriminant constraints is not static and it is not a null record.
520 -- The test is conservative and doesn't check that the components are
521 -- in fact constrained by non-static discriminant values. Could be made
528 procedure Set_Small_Size
(S
: Uint
) is
533 elsif Has_Size_Clause
(T
) then
534 if RM_Size
(T
) < S
then
535 Error_Msg_Uint_1
:= S
;
537 ("size for & is too small, minimum is ^",
540 elsif Unknown_Esize
(T
) then
544 -- Set sizes if not set already
547 if Unknown_Esize
(T
) then
551 if Unknown_RM_Size
(T
) then
561 function Size_Known
(T
: Entity_Id
) return Boolean is
569 if Size_Known_At_Compile_Time
(T
) then
572 elsif Is_Scalar_Type
(T
)
573 or else Is_Task_Type
(T
)
575 return not Is_Generic_Type
(T
);
577 elsif Is_Array_Type
(T
) then
578 if Ekind
(T
) = E_String_Literal_Subtype
then
579 Set_Small_Size
(Component_Size
(T
) * String_Literal_Length
(T
));
582 elsif not Is_Constrained
(T
) then
585 -- Don't do any recursion on type with error posted, since
586 -- we may have a malformed type that leads us into a loop
588 elsif Error_Posted
(T
) then
591 elsif not Size_Known
(Component_Type
(T
)) then
595 -- Check for all indexes static, and also compute possible
596 -- size (in case it is less than 32 and may be packable).
599 Esiz
: Uint
:= Component_Size
(T
);
603 Index
:= First_Index
(T
);
604 while Present
(Index
) loop
605 if Nkind
(Index
) = N_Range
then
606 Get_Index_Bounds
(Index
, Low
, High
);
608 elsif Error_Posted
(Scalar_Range
(Etype
(Index
))) then
612 Low
:= Type_Low_Bound
(Etype
(Index
));
613 High
:= Type_High_Bound
(Etype
(Index
));
616 if not Compile_Time_Known_Value
(Low
)
617 or else not Compile_Time_Known_Value
(High
)
618 or else Etype
(Index
) = Any_Type
623 Dim
:= Expr_Value
(High
) - Expr_Value
(Low
) + 1;
635 Set_Small_Size
(Esiz
);
639 elsif Is_Access_Type
(T
) then
642 elsif Is_Private_Type
(T
)
643 and then not Is_Generic_Type
(T
)
644 and then Present
(Underlying_Type
(T
))
646 -- Don't do any recursion on type with error posted, since
647 -- we may have a malformed type that leads us into a loop
649 if Error_Posted
(T
) then
652 return Size_Known
(Underlying_Type
(T
));
655 elsif Is_Record_Type
(T
) then
657 -- A class-wide type is never considered to have a known size
659 if Is_Class_Wide_Type
(T
) then
662 -- A subtype of a variant record must not have non-static
663 -- discriminanted components.
665 elsif T
/= Base_Type
(T
)
666 and then not Static_Discriminated_Components
(T
)
670 -- Don't do any recursion on type with error posted, since
671 -- we may have a malformed type that leads us into a loop
673 elsif Error_Posted
(T
) then
677 -- Now look at the components of the record
680 -- The following two variables are used to keep track of
681 -- the size of packed records if we can tell the size of
682 -- the packed record in the front end. Packed_Size_Known
683 -- is True if so far we can figure out the size. It is
684 -- initialized to True for a packed record, unless the
685 -- record has discriminants. The reason we eliminate the
686 -- discriminated case is that we don't know the way the
687 -- back end lays out discriminated packed records. If
688 -- Packed_Size_Known is True, then Packed_Size is the
689 -- size in bits so far.
691 Packed_Size_Known
: Boolean :=
693 and then not Has_Discriminants
(T
);
695 Packed_Size
: Uint
:= Uint_0
;
698 -- Test for variant part present
700 if Has_Discriminants
(T
)
701 and then Present
(Parent
(T
))
702 and then Nkind
(Parent
(T
)) = N_Full_Type_Declaration
703 and then Nkind
(Type_Definition
(Parent
(T
))) =
705 and then not Null_Present
(Type_Definition
(Parent
(T
)))
706 and then Present
(Variant_Part
707 (Component_List
(Type_Definition
(Parent
(T
)))))
709 -- If variant part is present, and type is unconstrained,
710 -- then we must have defaulted discriminants, or a size
711 -- clause must be present for the type, or else the size
712 -- is definitely not known at compile time.
714 if not Is_Constrained
(T
)
716 No
(Discriminant_Default_Value
717 (First_Discriminant
(T
)))
718 and then Unknown_Esize
(T
)
724 -- Loop through components
726 Comp
:= First_Entity
(T
);
727 while Present
(Comp
) loop
728 if Ekind
(Comp
) = E_Component
730 Ekind
(Comp
) = E_Discriminant
732 Ctyp
:= Etype
(Comp
);
734 -- We do not know the packed size if there is a
735 -- component clause present (we possibly could,
736 -- but this would only help in the case of a record
737 -- with partial rep clauses. That's because in the
738 -- case of full rep clauses, the size gets figured
739 -- out anyway by a different circuit).
741 if Present
(Component_Clause
(Comp
)) then
742 Packed_Size_Known
:= False;
745 -- We need to identify a component that is an array
746 -- where the index type is an enumeration type with
747 -- non-standard representation, and some bound of the
748 -- type depends on a discriminant.
750 -- This is because gigi computes the size by doing a
751 -- substituation of the appropriate discriminant value
752 -- in the size expression for the base type, and gigi
753 -- is not clever enough to evaluate the resulting
754 -- expression (which involves a call to rep_to_pos)
757 -- It would be nice if gigi would either recognize that
758 -- this expression can be computed at compile time, or
759 -- alternatively figured out the size from the subtype
760 -- directly, where all the information is at hand ???
762 if Is_Array_Type
(Etype
(Comp
))
763 and then Present
(Packed_Array_Type
(Etype
(Comp
)))
766 Ocomp
: constant Entity_Id
:=
767 Original_Record_Component
(Comp
);
768 OCtyp
: constant Entity_Id
:= Etype
(Ocomp
);
774 Ind
:= First_Index
(OCtyp
);
775 while Present
(Ind
) loop
776 Indtyp
:= Etype
(Ind
);
778 if Is_Enumeration_Type
(Indtyp
)
779 and then Has_Non_Standard_Rep
(Indtyp
)
781 Lo
:= Type_Low_Bound
(Indtyp
);
782 Hi
:= Type_High_Bound
(Indtyp
);
784 if Is_Entity_Name
(Lo
)
786 Ekind
(Entity
(Lo
)) = E_Discriminant
790 elsif Is_Entity_Name
(Hi
)
792 Ekind
(Entity
(Hi
)) = E_Discriminant
803 -- Clearly size of record is not known if the size of
804 -- one of the components is not known.
806 if not Size_Known
(Ctyp
) then
810 -- Accumulate packed size if possible
812 if Packed_Size_Known
then
814 -- We can only deal with elementary types, since for
815 -- non-elementary components, alignment enters into
816 -- the picture, and we don't know enough to handle
817 -- proper alignment in this context. Packed arrays
818 -- count as elementary if the representation is a
821 if Is_Elementary_Type
(Ctyp
)
822 or else (Is_Array_Type
(Ctyp
)
824 Present
(Packed_Array_Type
(Ctyp
))
826 Is_Modular_Integer_Type
827 (Packed_Array_Type
(Ctyp
)))
829 -- If RM_Size is known and static, then we can
830 -- keep accumulating the packed size.
832 if Known_Static_RM_Size
(Ctyp
) then
834 -- A little glitch, to be removed sometime ???
835 -- gigi does not understand zero sizes yet.
837 if RM_Size
(Ctyp
) = Uint_0
then
838 Packed_Size_Known
:= False;
840 -- Normal case where we can keep accumulating
841 -- the packed array size.
844 Packed_Size
:= Packed_Size
+ RM_Size
(Ctyp
);
847 -- If we have a field whose RM_Size is not known
848 -- then we can't figure out the packed size here.
851 Packed_Size_Known
:= False;
854 -- If we have a non-elementary type we can't figure
855 -- out the packed array size (alignment issues).
858 Packed_Size_Known
:= False;
866 if Packed_Size_Known
then
867 Set_Small_Size
(Packed_Size
);
878 -------------------------------------
879 -- Static_Discriminated_Components --
880 -------------------------------------
882 function Static_Discriminated_Components
883 (T
: Entity_Id
) return Boolean
885 Constraint
: Elmt_Id
;
888 if Has_Discriminants
(T
)
889 and then Present
(Discriminant_Constraint
(T
))
890 and then Present
(First_Component
(T
))
892 Constraint
:= First_Elmt
(Discriminant_Constraint
(T
));
893 while Present
(Constraint
) loop
894 if not Compile_Time_Known_Value
(Node
(Constraint
)) then
898 Next_Elmt
(Constraint
);
903 end Static_Discriminated_Components
;
905 -- Start of processing for Check_Compile_Time_Size
908 Set_Size_Known_At_Compile_Time
(T
, Size_Known
(T
));
909 end Check_Compile_Time_Size
;
911 -----------------------------
912 -- Check_Debug_Info_Needed --
913 -----------------------------
915 procedure Check_Debug_Info_Needed
(T
: Entity_Id
) is
917 if Needs_Debug_Info
(T
) or else Debug_Info_Off
(T
) then
920 elsif Comes_From_Source
(T
)
921 or else Debug_Generated_Code
922 or else Debug_Flag_VV
924 Set_Debug_Info_Needed
(T
);
926 end Check_Debug_Info_Needed
;
928 ----------------------------
929 -- Check_Strict_Alignment --
930 ----------------------------
932 procedure Check_Strict_Alignment
(E
: Entity_Id
) is
936 if Is_Tagged_Type
(E
) or else Is_Concurrent_Type
(E
) then
937 Set_Strict_Alignment
(E
);
939 elsif Is_Array_Type
(E
) then
940 Set_Strict_Alignment
(E
, Strict_Alignment
(Component_Type
(E
)));
942 elsif Is_Record_Type
(E
) then
943 if Is_Limited_Record
(E
) then
944 Set_Strict_Alignment
(E
);
948 Comp
:= First_Component
(E
);
950 while Present
(Comp
) loop
951 if not Is_Type
(Comp
)
952 and then (Strict_Alignment
(Etype
(Comp
))
953 or else Is_Aliased
(Comp
))
955 Set_Strict_Alignment
(E
);
959 Next_Component
(Comp
);
962 end Check_Strict_Alignment
;
964 -------------------------
965 -- Check_Unsigned_Type --
966 -------------------------
968 procedure Check_Unsigned_Type
(E
: Entity_Id
) is
969 Ancestor
: Entity_Id
;
974 if not Is_Discrete_Or_Fixed_Point_Type
(E
) then
978 -- Do not attempt to analyze case where range was in error
980 if Error_Posted
(Scalar_Range
(E
)) then
984 -- The situation that is non trivial is something like
986 -- subtype x1 is integer range -10 .. +10;
987 -- subtype x2 is x1 range 0 .. V1;
988 -- subtype x3 is x2 range V2 .. V3;
989 -- subtype x4 is x3 range V4 .. V5;
991 -- where Vn are variables. Here the base type is signed, but we still
992 -- know that x4 is unsigned because of the lower bound of x2.
994 -- The only way to deal with this is to look up the ancestor chain
998 if Ancestor
= Any_Type
or else Etype
(Ancestor
) = Any_Type
then
1002 Lo_Bound
:= Type_Low_Bound
(Ancestor
);
1004 if Compile_Time_Known_Value
(Lo_Bound
) then
1006 if Expr_Rep_Value
(Lo_Bound
) >= 0 then
1007 Set_Is_Unsigned_Type
(E
, True);
1013 Ancestor
:= Ancestor_Subtype
(Ancestor
);
1015 -- If no ancestor had a static lower bound, go to base type
1017 if No
(Ancestor
) then
1019 -- Note: the reason we still check for a compile time known
1020 -- value for the base type is that at least in the case of
1021 -- generic formals, we can have bounds that fail this test,
1022 -- and there may be other cases in error situations.
1024 Btyp
:= Base_Type
(E
);
1026 if Btyp
= Any_Type
or else Etype
(Btyp
) = Any_Type
then
1030 Lo_Bound
:= Type_Low_Bound
(Base_Type
(E
));
1032 if Compile_Time_Known_Value
(Lo_Bound
)
1033 and then Expr_Rep_Value
(Lo_Bound
) >= 0
1035 Set_Is_Unsigned_Type
(E
, True);
1042 end Check_Unsigned_Type
;
1044 -----------------------------
1045 -- Expand_Atomic_Aggregate --
1046 -----------------------------
1048 procedure Expand_Atomic_Aggregate
(E
: Entity_Id
; Typ
: Entity_Id
) is
1049 Loc
: constant Source_Ptr
:= Sloc
(E
);
1054 if (Nkind
(Parent
(E
)) = N_Object_Declaration
1055 or else Nkind
(Parent
(E
)) = N_Assignment_Statement
)
1056 and then Comes_From_Source
(Parent
(E
))
1057 and then Nkind
(E
) = N_Aggregate
1060 Make_Defining_Identifier
(Loc
,
1061 New_Internal_Name
('T'));
1064 Make_Object_Declaration
(Loc
,
1065 Defining_Identifier
=> Temp
,
1066 Object_definition
=> New_Occurrence_Of
(Typ
, Loc
),
1067 Expression
=> Relocate_Node
(E
));
1068 Insert_Before
(Parent
(E
), New_N
);
1071 Set_Expression
(Parent
(E
), New_Occurrence_Of
(Temp
, Loc
));
1073 -- To prevent the temporary from being constant-folded (which
1074 -- would lead to the same piecemeal assignment on the original
1075 -- target) indicate to the back-end that the temporary is a
1076 -- variable with real storage. See description of this flag
1077 -- in Einfo, and the notes on N_Assignment_Statement and
1078 -- N_Object_Declaration in Sinfo.
1080 Set_Is_True_Constant
(Temp
, False);
1082 end Expand_Atomic_Aggregate
;
1088 -- Note: the easy coding for this procedure would be to just build a
1089 -- single list of freeze nodes and then insert them and analyze them
1090 -- all at once. This won't work, because the analysis of earlier freeze
1091 -- nodes may recursively freeze types which would otherwise appear later
1092 -- on in the freeze list. So we must analyze and expand the freeze nodes
1093 -- as they are generated.
1095 procedure Freeze_All
(From
: Entity_Id
; After
: in out Node_Id
) is
1096 Loc
: constant Source_Ptr
:= Sloc
(After
);
1100 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
);
1101 -- This is the internal recursive routine that does freezing of
1102 -- entities (but NOT the analysis of default expressions, which
1103 -- should not be recursive, we don't want to analyze those till
1104 -- we are sure that ALL the types are frozen).
1106 --------------------
1107 -- Freeze_All_Ent --
1108 --------------------
1110 procedure Freeze_All_Ent
1112 After
: in out Node_Id
)
1118 procedure Process_Flist
;
1119 -- If freeze nodes are present, insert and analyze, and reset
1120 -- cursor for next insertion.
1126 procedure Process_Flist
is
1128 if Is_Non_Empty_List
(Flist
) then
1129 Lastn
:= Next
(After
);
1130 Insert_List_After_And_Analyze
(After
, Flist
);
1132 if Present
(Lastn
) then
1133 After
:= Prev
(Lastn
);
1135 After
:= Last
(List_Containing
(After
));
1140 -- Start or processing for Freeze_All_Ent
1144 while Present
(E
) loop
1146 -- If the entity is an inner package which is not a package
1147 -- renaming, then its entities must be frozen at this point.
1148 -- Note that such entities do NOT get frozen at the end of
1149 -- the nested package itself (only library packages freeze).
1151 -- Same is true for task declarations, where anonymous records
1152 -- created for entry parameters must be frozen.
1154 if Ekind
(E
) = E_Package
1155 and then No
(Renamed_Object
(E
))
1156 and then not Is_Child_Unit
(E
)
1157 and then not Is_Frozen
(E
)
1160 Install_Visible_Declarations
(E
);
1161 Install_Private_Declarations
(E
);
1163 Freeze_All
(First_Entity
(E
), After
);
1165 End_Package_Scope
(E
);
1167 elsif Ekind
(E
) in Task_Kind
1169 (Nkind
(Parent
(E
)) = N_Task_Type_Declaration
1171 Nkind
(Parent
(E
)) = N_Single_Task_Declaration
)
1174 Freeze_All
(First_Entity
(E
), After
);
1177 -- For a derived tagged type, we must ensure that all the
1178 -- primitive operations of the parent have been frozen, so
1179 -- that their addresses will be in the parent's dispatch table
1180 -- at the point it is inherited.
1182 elsif Ekind
(E
) = E_Record_Type
1183 and then Is_Tagged_Type
(E
)
1184 and then Is_Tagged_Type
(Etype
(E
))
1185 and then Is_Derived_Type
(E
)
1188 Prim_List
: constant Elist_Id
:=
1189 Primitive_Operations
(Etype
(E
));
1195 Prim
:= First_Elmt
(Prim_List
);
1197 while Present
(Prim
) loop
1198 Subp
:= Node
(Prim
);
1200 if Comes_From_Source
(Subp
)
1201 and then not Is_Frozen
(Subp
)
1203 Flist
:= Freeze_Entity
(Subp
, Loc
);
1212 if not Is_Frozen
(E
) then
1213 Flist
:= Freeze_Entity
(E
, Loc
);
1217 -- If an incomplete type is still not frozen, this may be
1218 -- a premature freezing because of a body declaration that
1219 -- follows. Indicate where the freezing took place.
1221 -- If the freezing is caused by the end of the current
1222 -- declarative part, it is a Taft Amendment type, and there
1225 if not Is_Frozen
(E
)
1226 and then Ekind
(E
) = E_Incomplete_Type
1229 Bod
: constant Node_Id
:= Next
(After
);
1232 if (Nkind
(Bod
) = N_Subprogram_Body
1233 or else Nkind
(Bod
) = N_Entry_Body
1234 or else Nkind
(Bod
) = N_Package_Body
1235 or else Nkind
(Bod
) = N_Protected_Body
1236 or else Nkind
(Bod
) = N_Task_Body
1237 or else Nkind
(Bod
) in N_Body_Stub
)
1239 List_Containing
(After
) = List_Containing
(Parent
(E
))
1241 Error_Msg_Sloc
:= Sloc
(Next
(After
));
1243 ("type& is frozen# before its full declaration",
1253 -- Start of processing for Freeze_All
1256 Freeze_All_Ent
(From
, After
);
1258 -- Now that all types are frozen, we can deal with default expressions
1259 -- that require us to build a default expression functions. This is the
1260 -- point at which such functions are constructed (after all types that
1261 -- might be used in such expressions have been frozen).
1263 -- We also add finalization chains to access types whose designated
1264 -- types are controlled. This is normally done when freezing the type,
1265 -- but this misses recursive type definitions where the later members
1266 -- of the recursion introduce controlled components (e.g. 5624-001).
1268 -- Loop through entities
1271 while Present
(E
) loop
1272 if Is_Subprogram
(E
) then
1274 if not Default_Expressions_Processed
(E
) then
1275 Process_Default_Expressions
(E
, After
);
1278 if not Has_Completion
(E
) then
1279 Decl
:= Unit_Declaration_Node
(E
);
1281 if Nkind
(Decl
) = N_Subprogram_Renaming_Declaration
then
1282 Build_And_Analyze_Renamed_Body
(Decl
, E
, After
);
1284 elsif Nkind
(Decl
) = N_Subprogram_Declaration
1285 and then Present
(Corresponding_Body
(Decl
))
1287 Nkind
(Unit_Declaration_Node
(Corresponding_Body
(Decl
)))
1288 = N_Subprogram_Renaming_Declaration
1290 Build_And_Analyze_Renamed_Body
1291 (Decl
, Corresponding_Body
(Decl
), After
);
1295 elsif Ekind
(E
) in Task_Kind
1297 (Nkind
(Parent
(E
)) = N_Task_Type_Declaration
1299 Nkind
(Parent
(E
)) = N_Single_Task_Declaration
)
1304 Ent
:= First_Entity
(E
);
1306 while Present
(Ent
) loop
1309 and then not Default_Expressions_Processed
(Ent
)
1311 Process_Default_Expressions
(Ent
, After
);
1318 elsif Is_Access_Type
(E
)
1319 and then Comes_From_Source
(E
)
1320 and then Ekind
(Directly_Designated_Type
(E
)) = E_Incomplete_Type
1321 and then Controlled_Type
(Designated_Type
(E
))
1322 and then No
(Associated_Final_Chain
(E
))
1324 Build_Final_List
(Parent
(E
), E
);
1331 -----------------------
1332 -- Freeze_And_Append --
1333 -----------------------
1335 procedure Freeze_And_Append
1338 Result
: in out List_Id
)
1340 L
: constant List_Id
:= Freeze_Entity
(Ent
, Loc
);
1342 if Is_Non_Empty_List
(L
) then
1343 if Result
= No_List
then
1346 Append_List
(L
, Result
);
1349 end Freeze_And_Append
;
1355 procedure Freeze_Before
(N
: Node_Id
; T
: Entity_Id
) is
1356 Freeze_Nodes
: constant List_Id
:= Freeze_Entity
(T
, Sloc
(N
));
1358 if Is_Non_Empty_List
(Freeze_Nodes
) then
1359 Insert_Actions
(N
, Freeze_Nodes
);
1367 function Freeze_Entity
(E
: Entity_Id
; Loc
: Source_Ptr
) return List_Id
is
1375 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
);
1376 -- Check that an Access or Unchecked_Access attribute with
1377 -- a prefix which is the current instance type can only be
1378 -- applied when the type is limited.
1380 function After_Last_Declaration
return Boolean;
1381 -- If Loc is a freeze_entity that appears after the last declaration
1382 -- in the scope, inhibit error messages on late completion.
1384 procedure Freeze_Record_Type
(Rec
: Entity_Id
);
1385 -- Freeze each component, handle some representation clauses, and
1386 -- freeze primitive operations if this is a tagged type.
1388 ----------------------------
1389 -- After_Last_Declaration --
1390 ----------------------------
1392 function After_Last_Declaration
return Boolean is
1393 Spec
: constant Node_Id
:= Parent
(Current_Scope
);
1396 if Nkind
(Spec
) = N_Package_Specification
then
1397 if Present
(Private_Declarations
(Spec
)) then
1398 return Loc
>= Sloc
(Last
(Private_Declarations
(Spec
)));
1400 elsif Present
(Visible_Declarations
(Spec
)) then
1401 return Loc
>= Sloc
(Last
(Visible_Declarations
(Spec
)));
1409 end After_Last_Declaration
;
1411 ----------------------------
1412 -- Check_Current_Instance --
1413 ----------------------------
1415 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
) is
1417 function Process
(N
: Node_Id
) return Traverse_Result
;
1418 -- Process routine to apply check to given node.
1424 function Process
(N
: Node_Id
) return Traverse_Result
is
1427 when N_Attribute_Reference
=>
1428 if (Attribute_Name
(N
) = Name_Access
1430 Attribute_Name
(N
) = Name_Unchecked_Access
)
1431 and then Is_Entity_Name
(Prefix
(N
))
1432 and then Is_Type
(Entity
(Prefix
(N
)))
1433 and then Entity
(Prefix
(N
)) = E
1436 ("current instance must be a limited type", Prefix
(N
));
1442 when others => return OK
;
1446 procedure Traverse
is new Traverse_Proc
(Process
);
1448 -- Start of processing for Check_Current_Instance
1451 Traverse
(Comp_Decl
);
1452 end Check_Current_Instance
;
1454 ------------------------
1455 -- Freeze_Record_Type --
1456 ------------------------
1458 procedure Freeze_Record_Type
(Rec
: Entity_Id
) is
1464 Unplaced_Component
: Boolean := False;
1465 -- Set True if we find at least one component with no component
1466 -- clause (used to warn about useless Pack pragmas).
1468 Placed_Component
: Boolean := False;
1469 -- Set True if we find at least one component with a component
1470 -- clause (used to warn about useless Bit_Order pragmas).
1472 procedure Check_Itype
(Desig
: Entity_Id
);
1473 -- If the component subtype is an access to a constrained subtype
1474 -- of an already frozen type, make the subtype frozen as well. It
1475 -- might otherwise be frozen in the wrong scope, and a freeze node
1476 -- on subtype has no effect.
1482 procedure Check_Itype
(Desig
: Entity_Id
) is
1484 if not Is_Frozen
(Desig
)
1485 and then Is_Frozen
(Base_Type
(Desig
))
1487 Set_Is_Frozen
(Desig
);
1489 -- In addition, add an Itype_Reference to ensure that the
1490 -- access subtype is elaborated early enough. This cannot
1491 -- be done if the subtype may depend on discriminants.
1493 if Ekind
(Comp
) = E_Component
1494 and then Is_Itype
(Etype
(Comp
))
1495 and then not Has_Discriminants
(Rec
)
1497 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
1498 Set_Itype
(IR
, Desig
);
1501 Result
:= New_List
(IR
);
1503 Append
(IR
, Result
);
1509 -- Start of processing for Freeze_Record_Type
1512 -- If this is a subtype of a controlled type, declared without
1513 -- a constraint, the _controller may not appear in the component
1514 -- list if the parent was not frozen at the point of subtype
1515 -- declaration. Inherit the _controller component now.
1517 if Rec
/= Base_Type
(Rec
)
1518 and then Has_Controlled_Component
(Rec
)
1520 if Nkind
(Parent
(Rec
)) = N_Subtype_Declaration
1521 and then Is_Entity_Name
(Subtype_Indication
(Parent
(Rec
)))
1523 Set_First_Entity
(Rec
, First_Entity
(Base_Type
(Rec
)));
1525 -- If this is an internal type without a declaration, as for a
1526 -- record component, the base type may not yet be frozen, and its
1527 -- controller has not been created. Add an explicit freeze node
1528 -- for the itype, so it will be frozen after the base type.
1530 elsif Is_Itype
(Rec
)
1531 and then Has_Delayed_Freeze
(Base_Type
(Rec
))
1533 Nkind
(Associated_Node_For_Itype
(Rec
)) =
1534 N_Component_Declaration
1536 Ensure_Freeze_Node
(Rec
);
1540 -- Freeze components and embedded subtypes
1542 Comp
:= First_Entity
(Rec
);
1543 while Present
(Comp
) loop
1544 if not Is_Type
(Comp
) then
1545 Freeze_And_Append
(Etype
(Comp
), Loc
, Result
);
1548 -- If the component is an access type with an allocator
1549 -- as default value, the designated type will be frozen
1550 -- by the corresponding expression in init_proc. In order
1551 -- to place the freeze node for the designated type before
1552 -- that for the current record type, freeze it now.
1554 -- Same process if the component is an array of access types,
1555 -- initialized with an aggregate. If the designated type is
1556 -- private, it cannot contain allocators, and it is premature
1557 -- to freeze the type, so we check for this as well.
1559 if Is_Access_Type
(Etype
(Comp
))
1560 and then Present
(Parent
(Comp
))
1561 and then Present
(Expression
(Parent
(Comp
)))
1562 and then Nkind
(Expression
(Parent
(Comp
))) = N_Allocator
1565 Alloc
: constant Node_Id
:= Expression
(Parent
(Comp
));
1568 -- If component is pointer to a classwide type, freeze
1569 -- the specific type in the expression being allocated.
1570 -- The expression may be a subtype indication, in which
1571 -- case freeze the subtype mark.
1573 if Is_Class_Wide_Type
(Designated_Type
(Etype
(Comp
))) then
1574 if Is_Entity_Name
(Expression
(Alloc
)) then
1576 (Entity
(Expression
(Alloc
)), Loc
, Result
);
1578 Nkind
(Expression
(Alloc
)) = N_Subtype_Indication
1581 (Entity
(Subtype_Mark
(Expression
(Alloc
))),
1585 elsif Is_Itype
(Designated_Type
(Etype
(Comp
))) then
1586 Check_Itype
(Designated_Type
(Etype
(Comp
)));
1590 (Designated_Type
(Etype
(Comp
)), Loc
, Result
);
1594 elsif Is_Access_Type
(Etype
(Comp
))
1595 and then Is_Itype
(Designated_Type
(Etype
(Comp
)))
1597 Check_Itype
(Designated_Type
(Etype
(Comp
)));
1599 elsif Is_Array_Type
(Etype
(Comp
))
1600 and then Is_Access_Type
(Component_Type
(Etype
(Comp
)))
1601 and then Present
(Parent
(Comp
))
1602 and then Nkind
(Parent
(Comp
)) = N_Component_Declaration
1603 and then Present
(Expression
(Parent
(Comp
)))
1604 and then Nkind
(Expression
(Parent
(Comp
))) = N_Aggregate
1605 and then Is_Fully_Defined
1606 (Designated_Type
(Component_Type
(Etype
(Comp
))))
1610 (Component_Type
(Etype
(Comp
))), Loc
, Result
);
1613 -- Processing for real components (exclude anonymous subtypes)
1615 if Ekind
(Comp
) = E_Component
1616 or else Ekind
(Comp
) = E_Discriminant
1619 CC
: constant Node_Id
:= Component_Clause
(Comp
);
1622 -- Check for error of component clause given for variable
1623 -- sized type. We have to delay this test till this point,
1624 -- since the component type has to be frozen for us to know
1625 -- if it is variable length. We omit this test in a generic
1626 -- context, it will be applied at instantiation time.
1628 if Present
(CC
) then
1629 Placed_Component
:= True;
1631 if Inside_A_Generic
then
1634 elsif not Size_Known_At_Compile_Time
1635 (Underlying_Type
(Etype
(Comp
)))
1638 ("component clause not allowed for variable " &
1639 "length component", CC
);
1643 Unplaced_Component
:= True;
1646 -- Case of component requires byte alignment
1648 if Must_Be_On_Byte_Boundary
(Etype
(Comp
)) then
1650 -- Set the enclosing record to also require byte align
1652 Set_Must_Be_On_Byte_Boundary
(Rec
);
1654 -- Check for component clause that is inconsistent
1655 -- with the required byte boundary alignment.
1658 and then Normalized_First_Bit
(Comp
) mod
1659 System_Storage_Unit
/= 0
1662 ("component & must be byte aligned",
1663 Component_Name
(Component_Clause
(Comp
)));
1667 -- If component clause is present, then deal with the
1668 -- non-default bit order case. We cannot do this before
1669 -- the freeze point, because there is no required order
1670 -- for the component clause and the bit_order clause.
1672 -- We only do this processing for the base type, and in
1673 -- fact that's important, since otherwise if there are
1674 -- record subtypes, we could reverse the bits once for
1675 -- each subtype, which would be incorrect.
1678 and then Reverse_Bit_Order
(Rec
)
1679 and then Ekind
(E
) = E_Record_Type
1682 CFB
: constant Uint
:= Component_Bit_Offset
(Comp
);
1683 CSZ
: constant Uint
:= Esize
(Comp
);
1684 CLC
: constant Node_Id
:= Component_Clause
(Comp
);
1685 Pos
: constant Node_Id
:= Position
(CLC
);
1686 FB
: constant Node_Id
:= First_Bit
(CLC
);
1688 Storage_Unit_Offset
: constant Uint
:=
1689 CFB
/ System_Storage_Unit
;
1691 Start_Bit
: constant Uint
:=
1692 CFB
mod System_Storage_Unit
;
1695 -- Cases where field goes over storage unit boundary
1697 if Start_Bit
+ CSZ
> System_Storage_Unit
then
1699 -- Allow multi-byte field but generate warning
1701 if Start_Bit
mod System_Storage_Unit
= 0
1702 and then CSZ
mod System_Storage_Unit
= 0
1705 ("multi-byte field specified with non-standard"
1706 & " Bit_Order?", CLC
);
1708 if Bytes_Big_Endian
then
1710 ("bytes are not reversed "
1711 & "(component is big-endian)?", CLC
);
1714 ("bytes are not reversed "
1715 & "(component is little-endian)?", CLC
);
1718 -- Do not allow non-contiguous field
1722 ("attempt to specify non-contiguous field"
1723 & " not permitted", CLC
);
1725 ("\(caused by non-standard Bit_Order "
1726 & "specified)", CLC
);
1729 -- Case where field fits in one storage unit
1732 -- Give warning if suspicious component clause
1734 if Intval
(FB
) >= System_Storage_Unit
then
1736 ("?Bit_Order clause does not affect " &
1737 "byte ordering", Pos
);
1739 Intval
(Pos
) + Intval
(FB
) /
1740 System_Storage_Unit
;
1742 ("?position normalized to ^ before bit " &
1743 "order interpreted", Pos
);
1746 -- Here is where we fix up the Component_Bit_Offset
1747 -- value to account for the reverse bit order.
1748 -- Some examples of what needs to be done are:
1750 -- First_Bit .. Last_Bit Component_Bit_Offset
1753 -- 0 .. 0 7 .. 7 0 7
1754 -- 0 .. 1 6 .. 7 0 6
1755 -- 0 .. 2 5 .. 7 0 5
1756 -- 0 .. 7 0 .. 7 0 4
1758 -- 1 .. 1 6 .. 6 1 6
1759 -- 1 .. 4 3 .. 6 1 3
1760 -- 4 .. 7 0 .. 3 4 0
1762 -- The general rule is that the first bit is
1763 -- is obtained by subtracting the old ending bit
1764 -- from storage_unit - 1.
1766 Set_Component_Bit_Offset
1768 (Storage_Unit_Offset
* System_Storage_Unit
) +
1769 (System_Storage_Unit
- 1) -
1770 (Start_Bit
+ CSZ
- 1));
1772 Set_Normalized_First_Bit
1774 Component_Bit_Offset
(Comp
) mod
1775 System_Storage_Unit
);
1785 -- Check for useless pragma Bit_Order
1787 if not Placed_Component
and then Reverse_Bit_Order
(Rec
) then
1788 ADC
:= Get_Attribute_Definition_Clause
(Rec
, Attribute_Bit_Order
);
1789 Error_Msg_N
("?Bit_Order specification has no effect", ADC
);
1790 Error_Msg_N
("\?since no component clauses were specified", ADC
);
1793 -- Check for useless pragma Pack when all components placed
1796 and then not Unplaced_Component
1797 and then Warn_On_Redundant_Constructs
1800 ("?pragma Pack has no effect, no unplaced components",
1801 Get_Rep_Pragma
(Rec
, Name_Pack
));
1802 Set_Is_Packed
(Rec
, False);
1805 -- If this is the record corresponding to a remote type,
1806 -- freeze the remote type here since that is what we are
1807 -- semantically freezing. This prevents having the freeze
1808 -- node for that type in an inner scope.
1810 -- Also, Check for controlled components and unchecked unions.
1811 -- Finally, enforce the restriction that access attributes with
1812 -- a current instance prefix can only apply to limited types.
1814 if Ekind
(Rec
) = E_Record_Type
then
1815 if Present
(Corresponding_Remote_Type
(Rec
)) then
1817 (Corresponding_Remote_Type
(Rec
), Loc
, Result
);
1820 Comp
:= First_Component
(Rec
);
1821 while Present
(Comp
) loop
1822 if Has_Controlled_Component
(Etype
(Comp
))
1823 or else (Chars
(Comp
) /= Name_uParent
1824 and then Is_Controlled
(Etype
(Comp
)))
1825 or else (Is_Protected_Type
(Etype
(Comp
))
1827 (Corresponding_Record_Type
(Etype
(Comp
)))
1828 and then Has_Controlled_Component
1829 (Corresponding_Record_Type
(Etype
(Comp
))))
1831 Set_Has_Controlled_Component
(Rec
);
1835 if Has_Unchecked_Union
(Etype
(Comp
)) then
1836 Set_Has_Unchecked_Union
(Rec
);
1839 if Has_Per_Object_Constraint
(Comp
)
1840 and then not Is_Limited_Type
(Rec
)
1842 -- Scan component declaration for likely misuses of
1843 -- current instance, either in a constraint or in a
1844 -- default expression.
1846 Check_Current_Instance
(Parent
(Comp
));
1849 Next_Component
(Comp
);
1853 Set_Component_Alignment_If_Not_Set
(Rec
);
1855 -- For first subtypes, check if there are any fixed-point
1856 -- fields with component clauses, where we must check the size.
1857 -- This is not done till the freeze point, since for fixed-point
1858 -- types, we do not know the size until the type is frozen.
1859 -- Similar processing applies to bit packed arrays.
1861 if Is_First_Subtype
(Rec
) then
1862 Comp
:= First_Component
(Rec
);
1864 while Present
(Comp
) loop
1865 if Present
(Component_Clause
(Comp
))
1866 and then (Is_Fixed_Point_Type
(Etype
(Comp
))
1868 Is_Bit_Packed_Array
(Etype
(Comp
)))
1871 (Component_Name
(Component_Clause
(Comp
)),
1877 Next_Component
(Comp
);
1880 end Freeze_Record_Type
;
1882 -- Start of processing for Freeze_Entity
1885 -- Do not freeze if already frozen since we only need one freeze node
1887 if Is_Frozen
(E
) then
1890 -- It is improper to freeze an external entity within a generic
1891 -- because its freeze node will appear in a non-valid context.
1892 -- The entity will be frozen in the proper scope after the current
1893 -- generic is analyzed.
1895 elsif Inside_A_Generic
and then External_Ref_In_Generic
(E
) then
1898 -- Do not freeze a global entity within an inner scope created during
1899 -- expansion. A call to subprogram E within some internal procedure
1900 -- (a stream attribute for example) might require freezing E, but the
1901 -- freeze node must appear in the same declarative part as E itself.
1902 -- The two-pass elaboration mechanism in gigi guarantees that E will
1903 -- be frozen before the inner call is elaborated. We exclude constants
1904 -- from this test, because deferred constants may be frozen early, and
1905 -- must be diagnosed (see e.g. 1522-005). If the enclosing subprogram
1906 -- comes from source, or is a generic instance, then the freeze point
1907 -- is the one mandated by the language. and we freze the entity.
1909 elsif In_Open_Scopes
(Scope
(E
))
1910 and then Scope
(E
) /= Current_Scope
1911 and then Ekind
(E
) /= E_Constant
1914 S
: Entity_Id
:= Current_Scope
;
1917 while Present
(S
) loop
1918 if Is_Overloadable
(S
) then
1919 if Comes_From_Source
(S
)
1920 or else Is_Generic_Instance
(S
)
1932 -- Similarly, an inlined instance body may make reference to global
1933 -- entities, but these references cannot be the proper freezing point
1934 -- for them, and the the absence of inlining freezing will take place
1935 -- in their own scope. Normally instance bodies are analyzed after
1936 -- the enclosing compilation, and everything has been frozen at the
1937 -- proper place, but with front-end inlining an instance body is
1938 -- compiled before the end of the enclosing scope, and as a result
1939 -- out-of-order freezing must be prevented.
1941 elsif Front_End_Inlining
1942 and then In_Instance_Body
1943 and then Present
(Scope
(E
))
1946 S
: Entity_Id
:= Scope
(E
);
1948 while Present
(S
) loop
1949 if Is_Generic_Instance
(S
) then
1962 -- Here to freeze the entity
1967 -- Case of entity being frozen is other than a type
1969 if not Is_Type
(E
) then
1971 -- If entity is exported or imported and does not have an external
1972 -- name, now is the time to provide the appropriate default name.
1973 -- Skip this if the entity is stubbed, since we don't need a name
1974 -- for any stubbed routine.
1976 if (Is_Imported
(E
) or else Is_Exported
(E
))
1977 and then No
(Interface_Name
(E
))
1978 and then Convention
(E
) /= Convention_Stubbed
1980 Set_Encoded_Interface_Name
1981 (E
, Get_Default_External_Name
(E
));
1983 -- Special processing for atomic objects appearing in object decls
1986 and then Nkind
(Parent
(E
)) = N_Object_Declaration
1987 and then Present
(Expression
(Parent
(E
)))
1990 Expr
: constant Node_Id
:= Expression
(Parent
(E
));
1993 -- If expression is an aggregate, assign to a temporary to
1994 -- ensure that the actual assignment is done atomically rather
1995 -- than component-wise (the assignment to the temp may be done
1996 -- component-wise, but that is harmless.
1998 if Nkind
(Expr
) = N_Aggregate
then
1999 Expand_Atomic_Aggregate
(Expr
, Etype
(E
));
2001 -- If the expression is a reference to a record or array
2002 -- object entity, then reset Is_True_Constant to False so
2003 -- that the compiler will not optimize away the intermediate
2004 -- object, which we need in this case for the same reason
2005 -- (to ensure that the actual assignment is atomic, rather
2006 -- than component-wise).
2008 elsif Is_Entity_Name
(Expr
)
2009 and then (Is_Record_Type
(Etype
(Expr
))
2011 Is_Array_Type
(Etype
(Expr
)))
2013 Set_Is_True_Constant
(Entity
(Expr
), False);
2018 -- For a subprogram, freeze all parameter types and also the return
2019 -- type (RM 13.14(14)). However skip this for internal subprograms.
2020 -- This is also the point where any extra formal parameters are
2021 -- created since we now know whether the subprogram will use
2022 -- a foreign convention.
2024 if Is_Subprogram
(E
) then
2025 if not Is_Internal
(E
) then
2028 Warn_Node
: Node_Id
;
2030 function Is_Fat_C_Ptr_Type
(T
: Entity_Id
) return Boolean;
2031 -- Determines if given type entity is a fat pointer type
2032 -- used as an argument type or return type to a subprogram
2033 -- with C or C++ convention set.
2035 --------------------------
2036 -- Is_Fat_C_Access_Type --
2037 --------------------------
2039 function Is_Fat_C_Ptr_Type
(T
: Entity_Id
) return Boolean is
2041 return (Convention
(E
) = Convention_C
2043 Convention
(E
) = Convention_CPP
)
2044 and then Is_Access_Type
(T
)
2045 and then Esize
(T
) > Ttypes
.System_Address_Size
;
2046 end Is_Fat_C_Ptr_Type
;
2049 -- Loop through formals
2051 Formal
:= First_Formal
(E
);
2052 while Present
(Formal
) loop
2053 F_Type
:= Etype
(Formal
);
2054 Freeze_And_Append
(F_Type
, Loc
, Result
);
2056 if Is_Private_Type
(F_Type
)
2057 and then Is_Private_Type
(Base_Type
(F_Type
))
2058 and then No
(Full_View
(Base_Type
(F_Type
)))
2059 and then not Is_Generic_Type
(F_Type
)
2060 and then not Is_Derived_Type
(F_Type
)
2062 -- If the type of a formal is incomplete, subprogram
2063 -- is being frozen prematurely. Within an instance
2064 -- (but not within a wrapper package) this is an
2065 -- an artifact of our need to regard the end of an
2066 -- instantiation as a freeze point. Otherwise it is
2067 -- a definite error.
2069 -- and then not Is_Wrapper_Package (Current_Scope) ???
2072 Set_Is_Frozen
(E
, False);
2075 elsif not After_Last_Declaration
then
2076 Error_Msg_Node_1
:= F_Type
;
2078 ("type& must be fully defined before this point",
2083 -- Check bad use of fat C pointer
2085 if Warn_On_Export_Import
and then
2086 Is_Fat_C_Ptr_Type
(F_Type
)
2088 Error_Msg_Qual_Level
:= 1;
2090 ("?type of & does not correspond to C pointer",
2092 Error_Msg_Qual_Level
:= 0;
2095 -- Check for unconstrained array in exported foreign
2098 if Convention
(E
) in Foreign_Convention
2099 and then not Is_Imported
(E
)
2100 and then Is_Array_Type
(F_Type
)
2101 and then not Is_Constrained
(F_Type
)
2102 and then Warn_On_Export_Import
2104 Error_Msg_Qual_Level
:= 1;
2106 -- If this is an inherited operation, place the
2107 -- warning on the derived type declaration, rather
2108 -- than on the original subprogram.
2110 if Nkind
(Original_Node
(Parent
(E
))) =
2111 N_Full_Type_Declaration
2113 Warn_Node
:= Parent
(E
);
2115 if Formal
= First_Formal
(E
) then
2117 ("?in inherited operation&!", Warn_Node
, E
);
2120 Warn_Node
:= Formal
;
2124 ("?type of argument& is unconstrained array",
2127 ("?foreign caller must pass bounds explicitly",
2129 Error_Msg_Qual_Level
:= 0;
2132 Next_Formal
(Formal
);
2135 -- Check return type
2137 if Ekind
(E
) = E_Function
then
2138 Freeze_And_Append
(Etype
(E
), Loc
, Result
);
2140 if Warn_On_Export_Import
2141 and then Is_Fat_C_Ptr_Type
(Etype
(E
))
2144 ("?return type of& does not correspond to C pointer",
2147 elsif Is_Array_Type
(Etype
(E
))
2148 and then not Is_Constrained
(Etype
(E
))
2149 and then not Is_Imported
(E
)
2150 and then Convention
(E
) in Foreign_Convention
2151 and then Warn_On_Export_Import
2154 ("?foreign convention function& should not " &
2155 "return unconstrained array", E
);
2161 -- Must freeze its parent first if it is a derived subprogram
2163 if Present
(Alias
(E
)) then
2164 Freeze_And_Append
(Alias
(E
), Loc
, Result
);
2167 -- If the return type requires a transient scope, and we are on
2168 -- a target allowing functions to return with a depressed stack
2169 -- pointer, then we mark the function as requiring this treatment.
2171 if Ekind
(E
) = E_Function
2172 and then Functions_Return_By_DSP_On_Target
2173 and then Requires_Transient_Scope
(Etype
(E
))
2175 Set_Function_Returns_With_DSP
(E
);
2178 if not Is_Internal
(E
) then
2179 Freeze_Subprogram
(E
);
2182 -- Here for other than a subprogram or type
2185 -- If entity has a type, and it is not a generic unit, then
2186 -- freeze it first (RM 13.14(10))
2188 if Present
(Etype
(E
))
2189 and then Ekind
(E
) /= E_Generic_Function
2191 Freeze_And_Append
(Etype
(E
), Loc
, Result
);
2194 -- Special processing for objects created by object declaration
2196 if Nkind
(Declaration_Node
(E
)) = N_Object_Declaration
then
2198 -- For object created by object declaration, perform required
2199 -- categorization (preelaborate and pure) checks. Defer these
2200 -- checks to freeze time since pragma Import inhibits default
2201 -- initialization and thus pragma Import affects these checks.
2203 Validate_Object_Declaration
(Declaration_Node
(E
));
2205 -- If there is an address clause, check it is valid
2207 Check_Address_Clause
(E
);
2209 -- For imported objects, set Is_Public unless there is also
2210 -- an address clause, which means that there is no external
2211 -- symbol needed for the Import (Is_Public may still be set
2212 -- for other unrelated reasons). Note that we delayed this
2213 -- processing till freeze time so that we can be sure not
2214 -- to set the flag if there is an address clause. If there
2215 -- is such a clause, then the only purpose of the import
2216 -- pragma is to suppress implicit initialization.
2219 and then not Present
(Address_Clause
(E
))
2225 -- Check that a constant which has a pragma Volatile[_Components]
2226 -- or Atomic[_Components] also has a pragma Import (RM C.6(13))
2228 -- Note: Atomic[_Components] also sets Volatile[_Components]
2230 if Ekind
(E
) = E_Constant
2231 and then (Has_Volatile_Components
(E
) or else Is_Volatile
(E
))
2232 and then not Is_Imported
(E
)
2234 -- Make sure we actually have a pragma, and have not merely
2235 -- inherited the indication from elsewhere (e.g. an address
2236 -- clause, which is not good enough in RM terms!)
2238 if Has_Rep_Pragma
(E
, Name_Atomic
)
2240 Has_Rep_Pragma
(E
, Name_Atomic_Components
)
2243 ("stand alone atomic constant must be " &
2244 "imported ('R'M 'C.6(13))", E
);
2246 elsif Has_Rep_Pragma
(E
, Name_Volatile
)
2248 Has_Rep_Pragma
(E
, Name_Volatile_Components
)
2251 ("stand alone volatile constant must be " &
2252 "imported ('R'M 'C.6(13))", E
);
2256 -- Static objects require special handling
2258 if (Ekind
(E
) = E_Constant
or else Ekind
(E
) = E_Variable
)
2259 and then Is_Statically_Allocated
(E
)
2261 Freeze_Static_Object
(E
);
2264 -- Remaining step is to layout objects
2266 if Ekind
(E
) = E_Variable
2268 Ekind
(E
) = E_Constant
2270 Ekind
(E
) = E_Loop_Parameter
2278 -- Case of a type or subtype being frozen
2281 -- The type may be defined in a generic unit. This can occur when
2282 -- freezing a generic function that returns the type (which is
2283 -- defined in a parent unit). It is clearly meaningless to freeze
2284 -- this type. However, if it is a subtype, its size may be determi-
2285 -- nable and used in subsequent checks, so might as well try to
2288 if Present
(Scope
(E
))
2289 and then Is_Generic_Unit
(Scope
(E
))
2291 Check_Compile_Time_Size
(E
);
2295 -- Deal with special cases of freezing for subtype
2297 if E
/= Base_Type
(E
) then
2299 -- If ancestor subtype present, freeze that first.
2300 -- Note that this will also get the base type frozen.
2302 Atype
:= Ancestor_Subtype
(E
);
2304 if Present
(Atype
) then
2305 Freeze_And_Append
(Atype
, Loc
, Result
);
2307 -- Otherwise freeze the base type of the entity before
2308 -- freezing the entity itself, (RM 13.14(15)).
2310 elsif E
/= Base_Type
(E
) then
2311 Freeze_And_Append
(Base_Type
(E
), Loc
, Result
);
2314 -- For a derived type, freeze its parent type first (RM 13.14(15))
2316 elsif Is_Derived_Type
(E
) then
2317 Freeze_And_Append
(Etype
(E
), Loc
, Result
);
2318 Freeze_And_Append
(First_Subtype
(Etype
(E
)), Loc
, Result
);
2321 -- For array type, freeze index types and component type first
2322 -- before freezing the array (RM 13.14(15)).
2324 if Is_Array_Type
(E
) then
2326 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
2329 Non_Standard_Enum
: Boolean := False;
2330 -- Set true if any of the index types is an enumeration
2331 -- type with a non-standard representation.
2334 Freeze_And_Append
(Ctyp
, Loc
, Result
);
2336 Indx
:= First_Index
(E
);
2337 while Present
(Indx
) loop
2338 Freeze_And_Append
(Etype
(Indx
), Loc
, Result
);
2340 if Is_Enumeration_Type
(Etype
(Indx
))
2341 and then Has_Non_Standard_Rep
(Etype
(Indx
))
2343 Non_Standard_Enum
:= True;
2349 -- Processing that is done only for base types
2351 if Ekind
(E
) = E_Array_Type
then
2353 -- Propagate flags for component type
2355 if Is_Controlled
(Component_Type
(E
))
2356 or else Has_Controlled_Component
(Ctyp
)
2358 Set_Has_Controlled_Component
(E
);
2361 if Has_Unchecked_Union
(Component_Type
(E
)) then
2362 Set_Has_Unchecked_Union
(E
);
2365 -- If packing was requested or if the component size was set
2366 -- explicitly, then see if bit packing is required. This
2367 -- processing is only done for base types, since all the
2368 -- representation aspects involved are type-related. This
2369 -- is not just an optimization, if we start processing the
2370 -- subtypes, they intefere with the settings on the base
2371 -- type (this is because Is_Packed has a slightly different
2372 -- meaning before and after freezing).
2379 if (Is_Packed
(E
) or else Has_Pragma_Pack
(E
))
2380 and then not Has_Atomic_Components
(E
)
2381 and then Known_Static_RM_Size
(Ctyp
)
2383 Csiz
:= UI_Max
(RM_Size
(Ctyp
), 1);
2385 elsif Known_Component_Size
(E
) then
2386 Csiz
:= Component_Size
(E
);
2388 elsif not Known_Static_Esize
(Ctyp
) then
2392 Esiz
:= Esize
(Ctyp
);
2394 -- We can set the component size if it is less than
2395 -- 16, rounding it up to the next storage unit size.
2399 elsif Esiz
<= 16 then
2405 -- Set component size up to match alignment if
2406 -- it would otherwise be less than the alignment.
2407 -- This deals with cases of types whose alignment
2408 -- exceeds their sizes (padded types).
2412 A
: constant Uint
:= Alignment_In_Bits
(Ctyp
);
2423 if 1 <= Csiz
and then Csiz
<= 64 then
2425 -- We set the component size for all cases 1-64
2427 Set_Component_Size
(Base_Type
(E
), Csiz
);
2429 -- Check for base type of 8,16,32 bits, where the
2430 -- subtype has a length one less than the base type
2431 -- and is unsigned (e.g. Natural subtype of Integer)
2433 -- In such cases, if a component size was not set
2434 -- explicitly, then generate a warning.
2436 if Has_Pragma_Pack
(E
)
2437 and then not Has_Component_Size_Clause
(E
)
2439 (Csiz
= 7 or else Csiz
= 15 or else Csiz
= 31)
2440 and then Esize
(Base_Type
(Ctyp
)) = Csiz
+ 1
2442 Error_Msg_Uint_1
:= Csiz
;
2444 Get_Rep_Pragma
(First_Subtype
(E
), Name_Pack
);
2446 if Present
(Pnod
) then
2448 ("pragma Pack causes component size to be ^?",
2451 ("\use Component_Size to set desired value",
2456 -- Actual packing is not needed for 8,16,32,64
2457 -- Also not needed for 24 if alignment is 1
2463 or else (Csiz
= 24 and then Alignment
(Ctyp
) = 1)
2465 -- Here the array was requested to be packed, but
2466 -- the packing request had no effect, so Is_Packed
2469 -- Note: semantically this means that we lose
2470 -- track of the fact that a derived type inherited
2471 -- a pack pragma that was non-effective, but that
2474 -- We regard a Pack pragma as a request to set a
2475 -- representation characteristic, and this request
2478 Set_Is_Packed
(Base_Type
(E
), False);
2480 -- In all other cases, packing is indeed needed
2483 Set_Has_Non_Standard_Rep
(Base_Type
(E
));
2484 Set_Is_Bit_Packed_Array
(Base_Type
(E
));
2485 Set_Is_Packed
(Base_Type
(E
));
2490 -- Processing that is done only for subtypes
2493 -- Acquire alignment from base type
2495 if Unknown_Alignment
(E
) then
2496 Set_Alignment
(E
, Alignment
(Base_Type
(E
)));
2500 -- For bit-packed arrays, check the size
2502 if Is_Bit_Packed_Array
(E
)
2503 and then Known_Esize
(E
)
2507 SizC
: constant Node_Id
:= Size_Clause
(E
);
2510 -- It is not clear if it is possible to have no size
2511 -- clause at this stage, but this is not worth worrying
2512 -- about. Post the error on the entity name in the size
2513 -- clause if present, else on the type entity itself.
2515 if Present
(SizC
) then
2516 Check_Size
(Name
(SizC
), E
, Esize
(E
), Discard
);
2518 Check_Size
(E
, E
, Esize
(E
), Discard
);
2523 -- Check one common case of a size given where the array
2524 -- needs to be packed, but was not so the size cannot be
2525 -- honored. This would of course be caught by the backend,
2526 -- and indeed we don't catch all cases. The point is that
2527 -- we can give a better error message in those cases that
2528 -- we do catch with the circuitry here.
2532 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
2535 if Present
(Size_Clause
(E
))
2536 and then Known_Static_Esize
(E
)
2537 and then not Is_Bit_Packed_Array
(E
)
2538 and then not Has_Pragma_Pack
(E
)
2539 and then Number_Dimensions
(E
) = 1
2540 and then not Has_Component_Size_Clause
(E
)
2541 and then Known_Static_Esize
(Ctyp
)
2543 Get_Index_Bounds
(First_Index
(E
), Lo
, Hi
);
2545 if Compile_Time_Known_Value
(Lo
)
2546 and then Compile_Time_Known_Value
(Hi
)
2547 and then Known_Static_RM_Size
(Ctyp
)
2548 and then RM_Size
(Ctyp
) < 64
2551 Lov
: constant Uint
:= Expr_Value
(Lo
);
2552 Hiv
: constant Uint
:= Expr_Value
(Hi
);
2553 Len
: constant Uint
:=
2554 UI_Max
(Uint_0
, Hiv
- Lov
+ 1);
2555 Rsiz
: constant Uint
:= RM_Size
(Ctyp
);
2557 -- What we are looking for here is the situation
2558 -- where the Esize given would be exactly right
2559 -- if there was a pragma Pack (resulting in the
2560 -- component size being the same as the RM_Size).
2561 -- Furthermore, the component type size must be
2562 -- an odd size (not a multiple of storage unit)
2565 if Esize
(E
) = Len
* Rsiz
2566 and then Rsiz
mod System_Storage_Unit
/= 0
2569 ("size given for& too small",
2570 Size_Clause
(E
), E
);
2572 ("\explicit pragma Pack is required",
2580 -- If any of the index types was an enumeration type with
2581 -- a non-standard rep clause, then we indicate that the
2582 -- array type is always packed (even if it is not bit packed).
2584 if Non_Standard_Enum
then
2585 Set_Has_Non_Standard_Rep
(Base_Type
(E
));
2586 Set_Is_Packed
(Base_Type
(E
));
2589 Set_Component_Alignment_If_Not_Set
(E
);
2591 -- If the array is packed, we must create the packed array
2592 -- type to be used to actually implement the type. This is
2593 -- only needed for real array types (not for string literal
2594 -- types, since they are present only for the front end).
2597 and then Ekind
(E
) /= E_String_Literal_Subtype
2599 Create_Packed_Array_Type
(E
);
2600 Freeze_And_Append
(Packed_Array_Type
(E
), Loc
, Result
);
2602 -- Size information of packed array type is copied to the
2603 -- array type, since this is really the representation.
2605 Set_Size_Info
(E
, Packed_Array_Type
(E
));
2606 Set_RM_Size
(E
, RM_Size
(Packed_Array_Type
(E
)));
2609 -- For non-packed arrays set the alignment of the array
2610 -- to the alignment of the component type if it is unknown.
2611 -- Skip this in the atomic case, since atomic arrays may
2612 -- need larger alignments.
2614 if not Is_Packed
(E
)
2615 and then Unknown_Alignment
(E
)
2616 and then Known_Alignment
(Ctyp
)
2617 and then Known_Static_Component_Size
(E
)
2618 and then Known_Static_Esize
(Ctyp
)
2619 and then Esize
(Ctyp
) = Component_Size
(E
)
2620 and then not Is_Atomic
(E
)
2622 Set_Alignment
(E
, Alignment
(Component_Type
(E
)));
2626 -- For a class-wide type, the corresponding specific type is
2627 -- frozen as well (RM 13.14(15))
2629 elsif Is_Class_Wide_Type
(E
) then
2630 Freeze_And_Append
(Root_Type
(E
), Loc
, Result
);
2632 -- If the Class_Wide_Type is an Itype (when type is the anonymous
2633 -- parent of a derived type) and it is a library-level entity,
2634 -- generate an itype reference for it. Otherwise, its first
2635 -- explicit reference may be in an inner scope, which will be
2636 -- rejected by the back-end.
2639 and then Is_Compilation_Unit
(Scope
(E
))
2642 Ref
: constant Node_Id
:= Make_Itype_Reference
(Loc
);
2647 Result
:= New_List
(Ref
);
2649 Append
(Ref
, Result
);
2654 -- The equivalent type associated with a class-wide subtype
2655 -- needs to be frozen to ensure that its layout is done.
2656 -- Class-wide subtypes are currently only frozen on targets
2657 -- requiring front-end layout (see New_Class_Wide_Subtype
2658 -- and Make_CW_Equivalent_Type in exp_util.adb).
2660 if Ekind
(E
) = E_Class_Wide_Subtype
2661 and then Present
(Equivalent_Type
(E
))
2663 Freeze_And_Append
(Equivalent_Type
(E
), Loc
, Result
);
2666 -- For a record (sub)type, freeze all the component types (RM
2667 -- 13.14(15). We test for E_Record_(sub)Type here, rather than
2668 -- using Is_Record_Type, because we don't want to attempt the
2669 -- freeze for the case of a private type with record extension
2670 -- (we will do that later when the full type is frozen).
2672 elsif Ekind
(E
) = E_Record_Type
2673 or else Ekind
(E
) = E_Record_Subtype
2675 Freeze_Record_Type
(E
);
2677 -- For a concurrent type, freeze corresponding record type. This
2678 -- does not correpond to any specific rule in the RM, but the
2679 -- record type is essentially part of the concurrent type.
2680 -- Freeze as well all local entities. This includes record types
2681 -- created for entry parameter blocks, and whatever local entities
2682 -- may appear in the private part.
2684 elsif Is_Concurrent_Type
(E
) then
2685 if Present
(Corresponding_Record_Type
(E
)) then
2687 (Corresponding_Record_Type
(E
), Loc
, Result
);
2690 Comp
:= First_Entity
(E
);
2692 while Present
(Comp
) loop
2693 if Is_Type
(Comp
) then
2694 Freeze_And_Append
(Comp
, Loc
, Result
);
2696 elsif (Ekind
(Comp
)) /= E_Function
then
2697 Freeze_And_Append
(Etype
(Comp
), Loc
, Result
);
2703 -- Private types are required to point to the same freeze node
2704 -- as their corresponding full views. The freeze node itself
2705 -- has to point to the partial view of the entity (because
2706 -- from the partial view, we can retrieve the full view, but
2707 -- not the reverse). However, in order to freeze correctly,
2708 -- we need to freeze the full view. If we are freezing at the
2709 -- end of a scope (or within the scope of the private type),
2710 -- the partial and full views will have been swapped, the
2711 -- full view appears first in the entity chain and the swapping
2712 -- mechanism ensures that the pointers are properly set (on
2715 -- If we encounter the partial view before the full view
2716 -- (e.g. when freezing from another scope), we freeze the
2717 -- full view, and then set the pointers appropriately since
2718 -- we cannot rely on swapping to fix things up (subtypes in an
2719 -- outer scope might not get swapped).
2721 elsif Is_Incomplete_Or_Private_Type
(E
)
2722 and then not Is_Generic_Type
(E
)
2724 -- Case of full view present
2726 if Present
(Full_View
(E
)) then
2728 -- If full view has already been frozen, then no
2729 -- further processing is required
2731 if Is_Frozen
(Full_View
(E
)) then
2733 Set_Has_Delayed_Freeze
(E
, False);
2734 Set_Freeze_Node
(E
, Empty
);
2735 Check_Debug_Info_Needed
(E
);
2737 -- Otherwise freeze full view and patch the pointers
2738 -- so that the freeze node will elaborate both views
2743 Full
: constant Entity_Id
:= Full_View
(E
);
2746 if Is_Private_Type
(Full
)
2747 and then Present
(Underlying_Full_View
(Full
))
2750 (Underlying_Full_View
(Full
), Loc
, Result
);
2753 Freeze_And_Append
(Full
, Loc
, Result
);
2755 if Has_Delayed_Freeze
(E
) then
2756 F_Node
:= Freeze_Node
(Full
);
2758 if Present
(F_Node
) then
2759 Set_Freeze_Node
(E
, F_Node
);
2760 Set_Entity
(F_Node
, E
);
2763 -- {Incomplete,Private}_Subtypes
2764 -- with Full_Views constrained by discriminants
2766 Set_Has_Delayed_Freeze
(E
, False);
2767 Set_Freeze_Node
(E
, Empty
);
2772 Check_Debug_Info_Needed
(E
);
2775 -- AI-117 requires that the convention of a partial view
2776 -- be the same as the convention of the full view. Note
2777 -- that this is a recognized breach of privacy, but it's
2778 -- essential for logical consistency of representation,
2779 -- and the lack of a rule in RM95 was an oversight.
2781 Set_Convention
(E
, Convention
(Full_View
(E
)));
2783 Set_Size_Known_At_Compile_Time
(E
,
2784 Size_Known_At_Compile_Time
(Full_View
(E
)));
2786 -- Size information is copied from the full view to the
2787 -- incomplete or private view for consistency
2789 -- We skip this is the full view is not a type. This is
2790 -- very strange of course, and can only happen as a result
2791 -- of certain illegalities, such as a premature attempt to
2792 -- derive from an incomplete type.
2794 if Is_Type
(Full_View
(E
)) then
2795 Set_Size_Info
(E
, Full_View
(E
));
2796 Set_RM_Size
(E
, RM_Size
(Full_View
(E
)));
2801 -- Case of no full view present. If entity is derived or subtype,
2802 -- it is safe to freeze, correctness depends on the frozen status
2803 -- of parent. Otherwise it is either premature usage, or a Taft
2804 -- amendment type, so diagnosis is at the point of use and the
2805 -- type might be frozen later.
2807 elsif E
/= Base_Type
(E
)
2808 or else Is_Derived_Type
(E
)
2813 Set_Is_Frozen
(E
, False);
2817 -- For access subprogram, freeze types of all formals, the return
2818 -- type was already frozen, since it is the Etype of the function.
2820 elsif Ekind
(E
) = E_Subprogram_Type
then
2821 Formal
:= First_Formal
(E
);
2822 while Present
(Formal
) loop
2823 Freeze_And_Append
(Etype
(Formal
), Loc
, Result
);
2824 Next_Formal
(Formal
);
2827 -- If the return type requires a transient scope, and we are on
2828 -- a target allowing functions to return with a depressed stack
2829 -- pointer, then we mark the function as requiring this treatment.
2831 if Functions_Return_By_DSP_On_Target
2832 and then Requires_Transient_Scope
(Etype
(E
))
2834 Set_Function_Returns_With_DSP
(E
);
2837 Freeze_Subprogram
(E
);
2839 -- For access to a protected subprogram, freeze the equivalent
2840 -- type (however this is not set if we are not generating code)
2841 -- or if this is an anonymous type used just for resolution).
2843 elsif Ekind
(E
) = E_Access_Protected_Subprogram_Type
2844 and then Operating_Mode
= Generate_Code
2845 and then Present
(Equivalent_Type
(E
))
2847 Freeze_And_Append
(Equivalent_Type
(E
), Loc
, Result
);
2850 -- Generic types are never seen by the back-end, and are also not
2851 -- processed by the expander (since the expander is turned off for
2852 -- generic processing), so we never need freeze nodes for them.
2854 if Is_Generic_Type
(E
) then
2858 -- Some special processing for non-generic types to complete
2859 -- representation details not known till the freeze point.
2861 if Is_Fixed_Point_Type
(E
) then
2862 Freeze_Fixed_Point_Type
(E
);
2864 -- Some error checks required for ordinary fixed-point type.
2865 -- Defer these till the freeze-point since we need the small
2866 -- and range values. We only do these checks for base types
2868 if Is_Ordinary_Fixed_Point_Type
(E
)
2869 and then E
= Base_Type
(E
)
2871 if Small_Value
(E
) < Ureal_2_M_80
then
2872 Error_Msg_Name_1
:= Name_Small
;
2874 ("`&''%` is too small, minimum is 2.0'*'*(-80)", E
);
2876 elsif Small_Value
(E
) > Ureal_2_80
then
2877 Error_Msg_Name_1
:= Name_Small
;
2879 ("`&''%` is too large, maximum is 2.0'*'*80", E
);
2882 if Expr_Value_R
(Type_Low_Bound
(E
)) < Ureal_M_10_36
then
2883 Error_Msg_Name_1
:= Name_First
;
2885 ("`&''%` is too small, minimum is -10.0'*'*36", E
);
2888 if Expr_Value_R
(Type_High_Bound
(E
)) > Ureal_10_36
then
2889 Error_Msg_Name_1
:= Name_Last
;
2891 ("`&''%` is too large, maximum is 10.0'*'*36", E
);
2895 elsif Is_Enumeration_Type
(E
) then
2896 Freeze_Enumeration_Type
(E
);
2898 elsif Is_Integer_Type
(E
) then
2899 Adjust_Esize_For_Alignment
(E
);
2901 elsif Is_Access_Type
(E
)
2902 and then No
(Associated_Storage_Pool
(E
))
2904 Check_Restriction
(No_Standard_Storage_Pools
, E
);
2907 -- If the current entity is an array or record subtype and has
2908 -- discriminants used to constrain it, it must not freeze, because
2909 -- Freeze_Entity nodes force Gigi to process the frozen type.
2911 if Is_Composite_Type
(E
) then
2913 if Is_Array_Type
(E
) then
2915 Index
: Node_Id
:= First_Index
(E
);
2920 while Present
(Index
) loop
2921 if Etype
(Index
) /= Any_Type
then
2922 Get_Index_Bounds
(Index
, Expr1
, Expr2
);
2924 for J
in 1 .. 2 loop
2925 if Nkind
(Expr1
) = N_Identifier
2926 and then Ekind
(Entity
(Expr1
)) = E_Discriminant
2928 Set_Has_Delayed_Freeze
(E
, False);
2929 Set_Freeze_Node
(E
, Empty
);
2930 Check_Debug_Info_Needed
(E
);
2942 elsif Has_Discriminants
(E
)
2943 and Is_Constrained
(E
)
2946 Constraint
: Elmt_Id
;
2950 Constraint
:= First_Elmt
(Discriminant_Constraint
(E
));
2951 while Present
(Constraint
) loop
2952 Expr
:= Node
(Constraint
);
2953 if Nkind
(Expr
) = N_Identifier
2954 and then Ekind
(Entity
(Expr
)) = E_Discriminant
2956 Set_Has_Delayed_Freeze
(E
, False);
2957 Set_Freeze_Node
(E
, Empty
);
2958 Check_Debug_Info_Needed
(E
);
2962 Next_Elmt
(Constraint
);
2967 -- AI-117 requires that all new primitives of a tagged type
2968 -- must inherit the convention of the full view of the type.
2969 -- Inherited and overriding operations are defined to inherit
2970 -- the convention of their parent or overridden subprogram
2971 -- (also specified in AI-117), and that will have occurred
2972 -- earlier (in Derive_Subprogram and New_Overloaded_Entity).
2973 -- Here we set the convention of primitives that are still
2974 -- convention Ada, which will ensure that any new primitives
2975 -- inherit the type's convention. Class-wide types can have
2976 -- a foreign convention inherited from their specific type,
2977 -- but are excluded from this since they don't have any
2978 -- associated primitives.
2980 if Is_Tagged_Type
(E
)
2981 and then not Is_Class_Wide_Type
(E
)
2982 and then Convention
(E
) /= Convention_Ada
2985 Prim_List
: constant Elist_Id
:= Primitive_Operations
(E
);
2988 Prim
:= First_Elmt
(Prim_List
);
2989 while Present
(Prim
) loop
2990 if Convention
(Node
(Prim
)) = Convention_Ada
then
2991 Set_Convention
(Node
(Prim
), Convention
(E
));
3000 -- Generate primitive operation references for a tagged type
3002 if Is_Tagged_Type
(E
)
3003 and then not Is_Class_Wide_Type
(E
)
3006 Prim_List
: constant Elist_Id
:= Primitive_Operations
(E
);
3011 Prim
:= First_Elmt
(Prim_List
);
3012 while Present
(Prim
) loop
3015 -- If the operation is derived, get the original for
3016 -- cross-reference purposes (it is the original for
3017 -- which we want the xref, and for which the comes
3018 -- from source test needs to be performed).
3020 while Present
(Alias
(Ent
)) loop
3024 Generate_Reference
(E
, Ent
, 'p', Set_Ref
=> False);
3028 -- If we get an exception, then something peculiar has happened
3029 -- probably as a result of a previous error. Since this is only
3030 -- for non-critical cross-references, ignore the error.
3033 when others => null;
3037 -- Now that all types from which E may depend are frozen, see
3038 -- if the size is known at compile time, if it must be unsigned,
3039 -- or if strict alignent is required
3041 Check_Compile_Time_Size
(E
);
3042 Check_Unsigned_Type
(E
);
3044 if Base_Type
(E
) = E
then
3045 Check_Strict_Alignment
(E
);
3048 -- Do not allow a size clause for a type which does not have a size
3049 -- that is known at compile time
3051 if Has_Size_Clause
(E
)
3052 and then not Size_Known_At_Compile_Time
(E
)
3054 -- Supress this message if errors posted on E, even if we are
3055 -- in all errors mode, since this is often a junk message
3057 if not Error_Posted
(E
) then
3059 ("size clause not allowed for variable length type",
3064 -- Remaining process is to set/verify the representation information,
3065 -- in particular the size and alignment values. This processing is
3066 -- not required for generic types, since generic types do not play
3067 -- any part in code generation, and so the size and alignment values
3068 -- for suhc types are irrelevant.
3070 if Is_Generic_Type
(E
) then
3073 -- Otherwise we call the layout procedure
3079 -- End of freeze processing for type entities
3082 -- Here is where we logically freeze the current entity. If it has a
3083 -- freeze node, then this is the point at which the freeze node is
3084 -- linked into the result list.
3086 if Has_Delayed_Freeze
(E
) then
3088 -- If a freeze node is already allocated, use it, otherwise allocate
3089 -- a new one. The preallocation happens in the case of anonymous base
3090 -- types, where we preallocate so that we can set First_Subtype_Link.
3091 -- Note that we reset the Sloc to the current freeze location.
3093 if Present
(Freeze_Node
(E
)) then
3094 F_Node
:= Freeze_Node
(E
);
3095 Set_Sloc
(F_Node
, Loc
);
3098 F_Node
:= New_Node
(N_Freeze_Entity
, Loc
);
3099 Set_Freeze_Node
(E
, F_Node
);
3100 Set_Access_Types_To_Process
(F_Node
, No_Elist
);
3101 Set_TSS_Elist
(F_Node
, No_Elist
);
3102 Set_Actions
(F_Node
, No_List
);
3105 Set_Entity
(F_Node
, E
);
3107 if Result
= No_List
then
3108 Result
:= New_List
(F_Node
);
3110 Append
(F_Node
, Result
);
3113 -- A final pass over record types with discriminants. If the type
3114 -- has an incomplete declaration, there may be constrained access
3115 -- subtypes declared elsewhere, which do not depend on the discrimi-
3116 -- nants of the type, and which are used as component types (i.e.
3117 -- the full view is a recursive type). The designated types of these
3118 -- subtypes can only be elaborated after the type itself, and they
3119 -- need an itype reference.
3121 if Ekind
(E
) = E_Record_Type
3122 and then Has_Discriminants
(E
)
3130 Comp
:= First_Component
(E
);
3132 while Present
(Comp
) loop
3133 Typ
:= Etype
(Comp
);
3135 if Ekind
(Comp
) = E_Component
3136 and then Is_Access_Type
(Typ
)
3137 and then Scope
(Typ
) /= E
3138 and then Base_Type
(Designated_Type
(Typ
)) = E
3139 and then Is_Itype
(Designated_Type
(Typ
))
3141 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
3142 Set_Itype
(IR
, Designated_Type
(Typ
));
3143 Append
(IR
, Result
);
3146 Next_Component
(Comp
);
3152 -- When a type is frozen, the first subtype of the type is frozen as
3153 -- well (RM 13.14(15)). This has to be done after freezing the type,
3154 -- since obviously the first subtype depends on its own base type.
3157 Freeze_And_Append
(First_Subtype
(E
), Loc
, Result
);
3159 -- If we just froze a tagged non-class wide record, then freeze the
3160 -- corresponding class-wide type. This must be done after the tagged
3161 -- type itself is frozen, because the class-wide type refers to the
3162 -- tagged type which generates the class.
3164 if Is_Tagged_Type
(E
)
3165 and then not Is_Class_Wide_Type
(E
)
3166 and then Present
(Class_Wide_Type
(E
))
3168 Freeze_And_Append
(Class_Wide_Type
(E
), Loc
, Result
);
3172 Check_Debug_Info_Needed
(E
);
3174 -- Special handling for subprograms
3176 if Is_Subprogram
(E
) then
3178 -- If subprogram has address clause then reset Is_Public flag, since
3179 -- we do not want the backend to generate external references.
3181 if Present
(Address_Clause
(E
))
3182 and then not Is_Library_Level_Entity
(E
)
3184 Set_Is_Public
(E
, False);
3186 -- If no address clause and not intrinsic, then for imported
3187 -- subprogram in main unit, generate descriptor if we are in
3188 -- Propagate_Exceptions mode.
3190 elsif Propagate_Exceptions
3191 and then Is_Imported
(E
)
3192 and then not Is_Intrinsic_Subprogram
(E
)
3193 and then Convention
(E
) /= Convention_Stubbed
3195 if Result
= No_List
then
3196 Result
:= Empty_List
;
3199 Generate_Subprogram_Descriptor_For_Imported_Subprogram
3207 -----------------------------
3208 -- Freeze_Enumeration_Type --
3209 -----------------------------
3211 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
) is
3213 if Has_Foreign_Convention
(Typ
)
3214 and then not Has_Size_Clause
(Typ
)
3215 and then Esize
(Typ
) < Standard_Integer_Size
3217 Init_Esize
(Typ
, Standard_Integer_Size
);
3219 Adjust_Esize_For_Alignment
(Typ
);
3221 end Freeze_Enumeration_Type
;
3223 -----------------------
3224 -- Freeze_Expression --
3225 -----------------------
3227 procedure Freeze_Expression
(N
: Node_Id
) is
3228 In_Def_Exp
: constant Boolean := In_Default_Expression
;
3231 Desig_Typ
: Entity_Id
;
3235 Freeze_Outside
: Boolean := False;
3236 -- This flag is set true if the entity must be frozen outside the
3237 -- current subprogram. This happens in the case of expander generated
3238 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3239 -- not freeze all entities like other bodies, but which nevertheless
3240 -- may reference entities that have to be frozen before the body and
3241 -- obviously cannot be frozen inside the body.
3243 function In_Exp_Body
(N
: Node_Id
) return Boolean;
3244 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
3245 -- it is the handled statement sequence of an expander generated
3246 -- subprogram (init proc, or stream subprogram). If so, it returns
3247 -- True, otherwise False.
3253 function In_Exp_Body
(N
: Node_Id
) return Boolean is
3257 if Nkind
(N
) = N_Subprogram_Body
then
3263 if Nkind
(P
) /= N_Subprogram_Body
then
3267 P
:= Defining_Unit_Name
(Specification
(P
));
3269 if Nkind
(P
) = N_Defining_Identifier
3270 and then (Is_Init_Proc
(P
) or else
3271 Is_TSS
(P
, TSS_Stream_Input
) or else
3272 Is_TSS
(P
, TSS_Stream_Output
) or else
3273 Is_TSS
(P
, TSS_Stream_Read
) or else
3274 Is_TSS
(P
, TSS_Stream_Write
))
3283 -- Start of processing for Freeze_Expression
3286 -- Immediate return if freezing is inhibited. This flag is set by
3287 -- the analyzer to stop freezing on generated expressions that would
3288 -- cause freezing if they were in the source program, but which are
3289 -- not supposed to freeze, since they are created.
3291 if Must_Not_Freeze
(N
) then
3295 -- If expression is non-static, then it does not freeze in a default
3296 -- expression, see section "Handling of Default Expressions" in the
3297 -- spec of package Sem for further details. Note that we have to
3298 -- make sure that we actually have a real expression (if we have
3299 -- a subtype indication, we can't test Is_Static_Expression!)
3302 and then Nkind
(N
) in N_Subexpr
3303 and then not Is_Static_Expression
(N
)
3308 -- Freeze type of expression if not frozen already
3312 if Nkind
(N
) in N_Has_Etype
then
3313 if not Is_Frozen
(Etype
(N
)) then
3316 -- Base type may be an derived numeric type that is frozen at
3317 -- the point of declaration, but first_subtype is still unfrozen.
3319 elsif not Is_Frozen
(First_Subtype
(Etype
(N
))) then
3320 Typ
:= First_Subtype
(Etype
(N
));
3324 -- For entity name, freeze entity if not frozen already. A special
3325 -- exception occurs for an identifier that did not come from source.
3326 -- We don't let such identifiers freeze a non-internal entity, i.e.
3327 -- an entity that did come from source, since such an identifier was
3328 -- generated by the expander, and cannot have any semantic effect on
3329 -- the freezing semantics. For example, this stops the parameter of
3330 -- an initialization procedure from freezing the variable.
3332 if Is_Entity_Name
(N
)
3333 and then not Is_Frozen
(Entity
(N
))
3334 and then (Nkind
(N
) /= N_Identifier
3335 or else Comes_From_Source
(N
)
3336 or else not Comes_From_Source
(Entity
(N
)))
3343 -- For an allocator freeze designated type if not frozen already.
3345 -- For an aggregate whose component type is an access type, freeze
3346 -- the designated type now, so that its freeze does not appear within
3347 -- the loop that might be created in the expansion of the aggregate.
3348 -- If the designated type is a private type without full view, the
3349 -- expression cannot contain an allocator, so the type is not frozen.
3355 Desig_Typ
:= Designated_Type
(Etype
(N
));
3358 if Is_Array_Type
(Etype
(N
))
3359 and then Is_Access_Type
(Component_Type
(Etype
(N
)))
3361 Desig_Typ
:= Designated_Type
(Component_Type
(Etype
(N
)));
3364 when N_Selected_Component |
3365 N_Indexed_Component |
3368 if Is_Access_Type
(Etype
(Prefix
(N
))) then
3369 Desig_Typ
:= Designated_Type
(Etype
(Prefix
(N
)));
3376 if Desig_Typ
/= Empty
3377 and then (Is_Frozen
(Desig_Typ
)
3378 or else (not Is_Fully_Defined
(Desig_Typ
)))
3383 -- All done if nothing needs freezing
3387 and then No
(Desig_Typ
)
3392 -- Loop for looking at the right place to insert the freeze nodes
3393 -- exiting from the loop when it is appropriate to insert the freeze
3394 -- node before the current node P.
3396 -- Also checks some special exceptions to the freezing rules. These
3397 -- cases result in a direct return, bypassing the freeze action.
3401 Parent_P
:= Parent
(P
);
3403 -- If we don't have a parent, then we are not in a well-formed
3404 -- tree. This is an unusual case, but there are some legitimate
3405 -- situations in which this occurs, notably when the expressions
3406 -- in the range of a type declaration are resolved. We simply
3407 -- ignore the freeze request in this case. Is this right ???
3409 if No
(Parent_P
) then
3413 -- See if we have got to an appropriate point in the tree
3415 case Nkind
(Parent_P
) is
3417 -- A special test for the exception of (RM 13.14(8)) for the
3418 -- case of per-object expressions (RM 3.8(18)) occurring in a
3419 -- component definition or a discrete subtype definition. Note
3420 -- that we test for a component declaration which includes both
3421 -- cases we are interested in, and furthermore the tree does not
3422 -- have explicit nodes for either of these two constructs.
3424 when N_Component_Declaration
=>
3426 -- The case we want to test for here is an identifier that is
3427 -- a per-object expression, this is either a discriminant that
3428 -- appears in a context other than the component declaration
3429 -- or it is a reference to the type of the enclosing construct.
3431 -- For either of these cases, we skip the freezing
3433 if not In_Default_Expression
3434 and then Nkind
(N
) = N_Identifier
3435 and then (Present
(Entity
(N
)))
3437 -- We recognize the discriminant case by just looking for
3438 -- a reference to a discriminant. It can only be one for
3439 -- the enclosing construct. Skip freezing in this case.
3441 if Ekind
(Entity
(N
)) = E_Discriminant
then
3444 -- For the case of a reference to the enclosing record,
3445 -- (or task or protected type), we look for a type that
3446 -- matches the current scope.
3448 elsif Entity
(N
) = Current_Scope
then
3453 -- If we have an enumeration literal that appears as the
3454 -- choice in the aggregate of an enumeration representation
3455 -- clause, then freezing does not occur (RM 13.14(10)).
3457 when N_Enumeration_Representation_Clause
=>
3459 -- The case we are looking for is an enumeration literal
3461 if (Nkind
(N
) = N_Identifier
or Nkind
(N
) = N_Character_Literal
)
3462 and then Is_Enumeration_Type
(Etype
(N
))
3464 -- If enumeration literal appears directly as the choice,
3465 -- do not freeze (this is the normal non-overloade case)
3467 if Nkind
(Parent
(N
)) = N_Component_Association
3468 and then First
(Choices
(Parent
(N
))) = N
3472 -- If enumeration literal appears as the name of a
3473 -- function which is the choice, then also do not freeze.
3474 -- This happens in the overloaded literal case, where the
3475 -- enumeration literal is temporarily changed to a function
3476 -- call for overloading analysis purposes.
3478 elsif Nkind
(Parent
(N
)) = N_Function_Call
3480 Nkind
(Parent
(Parent
(N
))) = N_Component_Association
3482 First
(Choices
(Parent
(Parent
(N
)))) = Parent
(N
)
3488 -- Normally if the parent is a handled sequence of statements,
3489 -- then the current node must be a statement, and that is an
3490 -- appropriate place to insert a freeze node.
3492 when N_Handled_Sequence_Of_Statements
=>
3494 -- An exception occurs when the sequence of statements is
3495 -- for an expander generated body that did not do the usual
3496 -- freeze all operation. In this case we usually want to
3497 -- freeze outside this body, not inside it, and we skip
3498 -- past the subprogram body that we are inside.
3500 if In_Exp_Body
(Parent_P
) then
3502 -- However, we *do* want to freeze at this point if we have
3503 -- an entity to freeze, and that entity is declared *inside*
3504 -- the body of the expander generated procedure. This case
3505 -- is recognized by the scope of the type, which is either
3506 -- the spec for some enclosing body, or (in the case of
3507 -- init_procs, for which there are no separate specs) the
3511 Subp
: constant Node_Id
:= Parent
(Parent_P
);
3515 if Nkind
(Subp
) = N_Subprogram_Body
then
3516 Cspc
:= Corresponding_Spec
(Subp
);
3518 if (Present
(Typ
) and then Scope
(Typ
) = Cspc
)
3520 (Present
(Nam
) and then Scope
(Nam
) = Cspc
)
3525 and then Scope
(Typ
) = Current_Scope
3526 and then Current_Scope
= Defining_Entity
(Subp
)
3533 -- If not that exception to the exception, then this is
3534 -- where we delay the freeze till outside the body.
3536 Parent_P
:= Parent
(Parent_P
);
3537 Freeze_Outside
:= True;
3539 -- Here if normal case where we are in handled statement
3540 -- sequence and want to do the insertion right there.
3546 -- If parent is a body or a spec or a block, then the current
3547 -- node is a statement or declaration and we can insert the
3548 -- freeze node before it.
3550 when N_Package_Specification |
3556 N_Block_Statement
=> exit;
3558 -- The expander is allowed to define types in any statements list,
3559 -- so any of the following parent nodes also mark a freezing point
3560 -- if the actual node is in a list of statements or declarations.
3562 when N_Exception_Handler |
3565 N_Case_Statement_Alternative |
3566 N_Compilation_Unit_Aux |
3567 N_Selective_Accept |
3568 N_Accept_Alternative |
3569 N_Delay_Alternative |
3570 N_Conditional_Entry_Call |
3571 N_Entry_Call_Alternative |
3572 N_Triggering_Alternative |
3576 exit when Is_List_Member
(P
);
3578 -- Note: The N_Loop_Statement is a special case. A type that
3579 -- appears in the source can never be frozen in a loop (this
3580 -- occurs only because of a loop expanded by the expander),
3581 -- so we keep on going. Otherwise we terminate the search.
3582 -- Same is true of any entity which comes from source. (if they
3583 -- have a predefined type, that type does not appear to come
3584 -- from source, but the entity should not be frozen here).
3586 when N_Loop_Statement
=>
3587 exit when not Comes_From_Source
(Etype
(N
))
3588 and then (No
(Nam
) or else not Comes_From_Source
(Nam
));
3590 -- For all other cases, keep looking at parents
3596 -- We fall through the case if we did not yet find the proper
3597 -- place in the free for inserting the freeze node, so climb!
3602 -- If the expression appears in a record or an initialization
3603 -- procedure, the freeze nodes are collected and attached to
3604 -- the current scope, to be inserted and analyzed on exit from
3605 -- the scope, to insure that generated entities appear in the
3606 -- correct scope. If the expression is a default for a discriminant
3607 -- specification, the scope is still void. The expression can also
3608 -- appear in the discriminant part of a private or concurrent type.
3610 -- The other case requiring this special handling is if we are in
3611 -- a default expression, since in that case we are about to freeze
3612 -- a static type, and the freeze scope needs to be the outer scope,
3613 -- not the scope of the subprogram with the default parameter.
3615 -- For default expressions in generic units, the Move_Freeze_Nodes
3616 -- mechanism (see sem_ch12.adb) takes care of placing them at the
3617 -- proper place, after the generic unit.
3619 if (In_Def_Exp
and not Inside_A_Generic
)
3620 or else Freeze_Outside
3621 or else (Is_Type
(Current_Scope
)
3622 and then (not Is_Concurrent_Type
(Current_Scope
)
3623 or else not Has_Completion
(Current_Scope
)))
3624 or else Ekind
(Current_Scope
) = E_Void
3627 Loc
: constant Source_Ptr
:= Sloc
(Current_Scope
);
3628 Freeze_Nodes
: List_Id
:= No_List
;
3631 if Present
(Desig_Typ
) then
3632 Freeze_And_Append
(Desig_Typ
, Loc
, Freeze_Nodes
);
3635 if Present
(Typ
) then
3636 Freeze_And_Append
(Typ
, Loc
, Freeze_Nodes
);
3639 if Present
(Nam
) then
3640 Freeze_And_Append
(Nam
, Loc
, Freeze_Nodes
);
3643 if Is_Non_Empty_List
(Freeze_Nodes
) then
3644 if No
(Scope_Stack
.Table
3645 (Scope_Stack
.Last
).Pending_Freeze_Actions
)
3648 (Scope_Stack
.Last
).Pending_Freeze_Actions
:=
3651 Append_List
(Freeze_Nodes
, Scope_Stack
.Table
3652 (Scope_Stack
.Last
).Pending_Freeze_Actions
);
3660 -- Now we have the right place to do the freezing. First, a special
3661 -- adjustment, if we are in default expression analysis mode, these
3662 -- freeze actions must not be thrown away (normally all inserted
3663 -- actions are thrown away in this mode. However, the freeze actions
3664 -- are from static expressions and one of the important reasons we
3665 -- are doing this special analysis is to get these freeze actions.
3666 -- Therefore we turn off the In_Default_Expression mode to propagate
3667 -- these freeze actions. This also means they get properly analyzed
3670 In_Default_Expression
:= False;
3672 -- Freeze the designated type of an allocator (RM 13.14(13))
3674 if Present
(Desig_Typ
) then
3675 Freeze_Before
(P
, Desig_Typ
);
3678 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
3679 -- the enumeration representation clause exception in the loop above.
3681 if Present
(Typ
) then
3682 Freeze_Before
(P
, Typ
);
3685 -- Freeze name if one is present (RM 13.14(11))
3687 if Present
(Nam
) then
3688 Freeze_Before
(P
, Nam
);
3691 In_Default_Expression
:= In_Def_Exp
;
3692 end Freeze_Expression
;
3694 -----------------------------
3695 -- Freeze_Fixed_Point_Type --
3696 -----------------------------
3698 -- Certain fixed-point types and subtypes, including implicit base
3699 -- types and declared first subtypes, have not yet set up a range.
3700 -- This is because the range cannot be set until the Small and Size
3701 -- values are known, and these are not known till the type is frozen.
3703 -- To signal this case, Scalar_Range contains an unanalyzed syntactic
3704 -- range whose bounds are unanalyzed real literals. This routine will
3705 -- recognize this case, and transform this range node into a properly
3706 -- typed range with properly analyzed and resolved values.
3708 procedure Freeze_Fixed_Point_Type
(Typ
: Entity_Id
) is
3709 Rng
: constant Node_Id
:= Scalar_Range
(Typ
);
3710 Lo
: constant Node_Id
:= Low_Bound
(Rng
);
3711 Hi
: constant Node_Id
:= High_Bound
(Rng
);
3712 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
3713 Brng
: constant Node_Id
:= Scalar_Range
(Btyp
);
3714 BLo
: constant Node_Id
:= Low_Bound
(Brng
);
3715 BHi
: constant Node_Id
:= High_Bound
(Brng
);
3716 Small
: constant Ureal
:= Small_Value
(Typ
);
3723 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
;
3724 -- Returns size of type with given bounds. Also leaves these
3725 -- bounds set as the current bounds of the Typ.
3731 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
is
3733 Set_Realval
(Lo
, Lov
);
3734 Set_Realval
(Hi
, Hiv
);
3735 return Minimum_Size
(Typ
);
3738 -- Start of processing for Freeze_Fixed_Point_Type
3741 -- If Esize of a subtype has not previously been set, set it now
3743 if Unknown_Esize
(Typ
) then
3744 Atype
:= Ancestor_Subtype
(Typ
);
3746 if Present
(Atype
) then
3747 Set_Esize
(Typ
, Esize
(Atype
));
3749 Set_Esize
(Typ
, Esize
(Base_Type
(Typ
)));
3753 -- Immediate return if the range is already analyzed. This means
3754 -- that the range is already set, and does not need to be computed
3757 if Analyzed
(Rng
) then
3761 -- Immediate return if either of the bounds raises Constraint_Error
3763 if Raises_Constraint_Error
(Lo
)
3764 or else Raises_Constraint_Error
(Hi
)
3769 Loval
:= Realval
(Lo
);
3770 Hival
:= Realval
(Hi
);
3772 -- Ordinary fixed-point case
3774 if Is_Ordinary_Fixed_Point_Type
(Typ
) then
3776 -- For the ordinary fixed-point case, we are allowed to fudge the
3777 -- end-points up or down by small. Generally we prefer to fudge
3778 -- up, i.e. widen the bounds for non-model numbers so that the
3779 -- end points are included. However there are cases in which this
3780 -- cannot be done, and indeed cases in which we may need to narrow
3781 -- the bounds. The following circuit makes the decision.
3783 -- Note: our terminology here is that Incl_EP means that the
3784 -- bounds are widened by Small if necessary to include the end
3785 -- points, and Excl_EP means that the bounds are narrowed by
3786 -- Small to exclude the end-points if this reduces the size.
3788 -- Note that in the Incl case, all we care about is including the
3789 -- end-points. In the Excl case, we want to narrow the bounds as
3790 -- much as permitted by the RM, to give the smallest possible size.
3793 Loval_Incl_EP
: Ureal
;
3794 Hival_Incl_EP
: Ureal
;
3796 Loval_Excl_EP
: Ureal
;
3797 Hival_Excl_EP
: Ureal
;
3803 First_Subt
: Entity_Id
;
3808 -- First step. Base types are required to be symmetrical. Right
3809 -- now, the base type range is a copy of the first subtype range.
3810 -- This will be corrected before we are done, but right away we
3811 -- need to deal with the case where both bounds are non-negative.
3812 -- In this case, we set the low bound to the negative of the high
3813 -- bound, to make sure that the size is computed to include the
3814 -- required sign. Note that we do not need to worry about the
3815 -- case of both bounds negative, because the sign will be dealt
3816 -- with anyway. Furthermore we can't just go making such a bound
3817 -- symmetrical, since in a twos-complement system, there is an
3818 -- extra negative value which could not be accomodated on the
3822 and then not UR_Is_Negative
(Loval
)
3823 and then Hival
> Loval
3826 Set_Realval
(Lo
, Loval
);
3829 -- Compute the fudged bounds. If the number is a model number,
3830 -- then we do nothing to include it, but we are allowed to
3831 -- backoff to the next adjacent model number when we exclude
3832 -- it. If it is not a model number then we straddle the two
3833 -- values with the model numbers on either side.
3835 Model_Num
:= UR_Trunc
(Loval
/ Small
) * Small
;
3837 if Loval
= Model_Num
then
3838 Loval_Incl_EP
:= Model_Num
;
3840 Loval_Incl_EP
:= Model_Num
- Small
;
3843 -- The low value excluding the end point is Small greater, but
3844 -- we do not do this exclusion if the low value is positive,
3845 -- since it can't help the size and could actually hurt by
3846 -- crossing the high bound.
3848 if UR_Is_Negative
(Loval_Incl_EP
) then
3849 Loval_Excl_EP
:= Loval_Incl_EP
+ Small
;
3851 Loval_Excl_EP
:= Loval_Incl_EP
;
3854 -- Similar processing for upper bound and high value
3856 Model_Num
:= UR_Trunc
(Hival
/ Small
) * Small
;
3858 if Hival
= Model_Num
then
3859 Hival_Incl_EP
:= Model_Num
;
3861 Hival_Incl_EP
:= Model_Num
+ Small
;
3864 if UR_Is_Positive
(Hival_Incl_EP
) then
3865 Hival_Excl_EP
:= Hival_Incl_EP
- Small
;
3867 Hival_Excl_EP
:= Hival_Incl_EP
;
3870 -- One further adjustment is needed. In the case of subtypes,
3871 -- we cannot go outside the range of the base type, or we get
3872 -- peculiarities, and the base type range is already set. This
3873 -- only applies to the Incl values, since clearly the Excl
3874 -- values are already as restricted as they are allowed to be.
3877 Loval_Incl_EP
:= UR_Max
(Loval_Incl_EP
, Realval
(BLo
));
3878 Hival_Incl_EP
:= UR_Min
(Hival_Incl_EP
, Realval
(BHi
));
3881 -- Get size including and excluding end points
3883 Size_Incl_EP
:= Fsize
(Loval_Incl_EP
, Hival_Incl_EP
);
3884 Size_Excl_EP
:= Fsize
(Loval_Excl_EP
, Hival_Excl_EP
);
3886 -- No need to exclude end-points if it does not reduce size
3888 if Fsize
(Loval_Incl_EP
, Hival_Excl_EP
) = Size_Excl_EP
then
3889 Loval_Excl_EP
:= Loval_Incl_EP
;
3892 if Fsize
(Loval_Excl_EP
, Hival_Incl_EP
) = Size_Excl_EP
then
3893 Hival_Excl_EP
:= Hival_Incl_EP
;
3896 -- Now we set the actual size to be used. We want to use the
3897 -- bounds fudged up to include the end-points but only if this
3898 -- can be done without violating a specifically given size
3899 -- size clause or causing an unacceptable increase in size.
3901 -- Case of size clause given
3903 if Has_Size_Clause
(Typ
) then
3905 -- Use the inclusive size only if it is consistent with
3906 -- the explicitly specified size.
3908 if Size_Incl_EP
<= RM_Size
(Typ
) then
3909 Actual_Lo
:= Loval_Incl_EP
;
3910 Actual_Hi
:= Hival_Incl_EP
;
3911 Actual_Size
:= Size_Incl_EP
;
3913 -- If the inclusive size is too large, we try excluding
3914 -- the end-points (will be caught later if does not work).
3917 Actual_Lo
:= Loval_Excl_EP
;
3918 Actual_Hi
:= Hival_Excl_EP
;
3919 Actual_Size
:= Size_Excl_EP
;
3922 -- Case of size clause not given
3925 -- If we have a base type whose corresponding first subtype
3926 -- has an explicit size that is large enough to include our
3927 -- end-points, then do so. There is no point in working hard
3928 -- to get a base type whose size is smaller than the specified
3929 -- size of the first subtype.
3931 First_Subt
:= First_Subtype
(Typ
);
3933 if Has_Size_Clause
(First_Subt
)
3934 and then Size_Incl_EP
<= Esize
(First_Subt
)
3936 Actual_Size
:= Size_Incl_EP
;
3937 Actual_Lo
:= Loval_Incl_EP
;
3938 Actual_Hi
:= Hival_Incl_EP
;
3940 -- If excluding the end-points makes the size smaller and
3941 -- results in a size of 8,16,32,64, then we take the smaller
3942 -- size. For the 64 case, this is compulsory. For the other
3943 -- cases, it seems reasonable. We like to include end points
3944 -- if we can, but not at the expense of moving to the next
3945 -- natural boundary of size.
3947 elsif Size_Incl_EP
/= Size_Excl_EP
3949 (Size_Excl_EP
= 8 or else
3950 Size_Excl_EP
= 16 or else
3951 Size_Excl_EP
= 32 or else
3954 Actual_Size
:= Size_Excl_EP
;
3955 Actual_Lo
:= Loval_Excl_EP
;
3956 Actual_Hi
:= Hival_Excl_EP
;
3958 -- Otherwise we can definitely include the end points
3961 Actual_Size
:= Size_Incl_EP
;
3962 Actual_Lo
:= Loval_Incl_EP
;
3963 Actual_Hi
:= Hival_Incl_EP
;
3966 -- One pathological case: normally we never fudge a low
3967 -- bound down, since it would seem to increase the size
3968 -- (if it has any effect), but for ranges containing a
3969 -- single value, or no values, the high bound can be
3970 -- small too large. Consider:
3972 -- type t is delta 2.0**(-14)
3973 -- range 131072.0 .. 0;
3975 -- That lower bound is *just* outside the range of 32
3976 -- bits, and does need fudging down in this case. Note
3977 -- that the bounds will always have crossed here, since
3978 -- the high bound will be fudged down if necessary, as
3981 -- type t is delta 2.0**(-14)
3982 -- range 131072.0 .. 131072.0;
3984 -- So we can detect the situation by looking for crossed
3985 -- bounds, and if the bounds are crossed, and the low
3986 -- bound is greater than zero, we will always back it
3987 -- off by small, since this is completely harmless.
3989 if Actual_Lo
> Actual_Hi
then
3990 if UR_Is_Positive
(Actual_Lo
) then
3991 Actual_Lo
:= Loval_Incl_EP
- Small
;
3992 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
3994 -- And of course, we need to do exactly the same parallel
3995 -- fudge for flat ranges in the negative region.
3997 elsif UR_Is_Negative
(Actual_Hi
) then
3998 Actual_Hi
:= Hival_Incl_EP
+ Small
;
3999 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
4004 Set_Realval
(Lo
, Actual_Lo
);
4005 Set_Realval
(Hi
, Actual_Hi
);
4008 -- For the decimal case, none of this fudging is required, since there
4009 -- are no end-point problems in the decimal case (the end-points are
4010 -- always included).
4013 Actual_Size
:= Fsize
(Loval
, Hival
);
4016 -- At this stage, the actual size has been calculated and the proper
4017 -- required bounds are stored in the low and high bounds.
4019 if Actual_Size
> 64 then
4020 Error_Msg_Uint_1
:= UI_From_Int
(Actual_Size
);
4022 ("size required (^) for type& too large, maximum is 64", Typ
);
4026 -- Check size against explicit given size
4028 if Has_Size_Clause
(Typ
) then
4029 if Actual_Size
> RM_Size
(Typ
) then
4030 Error_Msg_Uint_1
:= RM_Size
(Typ
);
4031 Error_Msg_Uint_2
:= UI_From_Int
(Actual_Size
);
4033 ("size given (^) for type& too small, minimum is ^",
4034 Size_Clause
(Typ
), Typ
);
4037 Actual_Size
:= UI_To_Int
(Esize
(Typ
));
4040 -- Increase size to next natural boundary if no size clause given
4043 if Actual_Size
<= 8 then
4045 elsif Actual_Size
<= 16 then
4047 elsif Actual_Size
<= 32 then
4053 Init_Esize
(Typ
, Actual_Size
);
4054 Adjust_Esize_For_Alignment
(Typ
);
4057 -- If we have a base type, then expand the bounds so that they
4058 -- extend to the full width of the allocated size in bits, to
4059 -- avoid junk range checks on intermediate computations.
4061 if Base_Type
(Typ
) = Typ
then
4062 Set_Realval
(Lo
, -(Small
* (Uint_2
** (Actual_Size
- 1))));
4063 Set_Realval
(Hi
, (Small
* (Uint_2
** (Actual_Size
- 1) - 1)));
4066 -- Final step is to reanalyze the bounds using the proper type
4067 -- and set the Corresponding_Integer_Value fields of the literals.
4069 Set_Etype
(Lo
, Empty
);
4070 Set_Analyzed
(Lo
, False);
4073 -- Resolve with universal fixed if the base type, and the base
4074 -- type if it is a subtype. Note we can't resolve the base type
4075 -- with itself, that would be a reference before definition.
4078 Resolve
(Lo
, Universal_Fixed
);
4083 -- Set corresponding integer value for bound
4085 Set_Corresponding_Integer_Value
4086 (Lo
, UR_To_Uint
(Realval
(Lo
) / Small
));
4088 -- Similar processing for high bound
4090 Set_Etype
(Hi
, Empty
);
4091 Set_Analyzed
(Hi
, False);
4095 Resolve
(Hi
, Universal_Fixed
);
4100 Set_Corresponding_Integer_Value
4101 (Hi
, UR_To_Uint
(Realval
(Hi
) / Small
));
4103 -- Set type of range to correspond to bounds
4105 Set_Etype
(Rng
, Etype
(Lo
));
4107 -- Set Esize to calculated size if not set already
4109 if Unknown_Esize
(Typ
) then
4110 Init_Esize
(Typ
, Actual_Size
);
4113 -- Set RM_Size if not already set. If already set, check value
4116 Minsiz
: constant Uint
:= UI_From_Int
(Minimum_Size
(Typ
));
4119 if RM_Size
(Typ
) /= Uint_0
then
4120 if RM_Size
(Typ
) < Minsiz
then
4121 Error_Msg_Uint_1
:= RM_Size
(Typ
);
4122 Error_Msg_Uint_2
:= Minsiz
;
4124 ("size given (^) for type& too small, minimum is ^",
4125 Size_Clause
(Typ
), Typ
);
4129 Set_RM_Size
(Typ
, Minsiz
);
4132 end Freeze_Fixed_Point_Type
;
4138 procedure Freeze_Itype
(T
: Entity_Id
; N
: Node_Id
) is
4142 Set_Has_Delayed_Freeze
(T
);
4143 L
:= Freeze_Entity
(T
, Sloc
(N
));
4145 if Is_Non_Empty_List
(L
) then
4146 Insert_Actions
(N
, L
);
4150 --------------------------
4151 -- Freeze_Static_Object --
4152 --------------------------
4154 procedure Freeze_Static_Object
(E
: Entity_Id
) is
4156 Cannot_Be_Static
: exception;
4157 -- Exception raised if the type of a static object cannot be made
4158 -- static. This happens if the type depends on non-global objects.
4160 procedure Ensure_Expression_Is_SA
(N
: Node_Id
);
4161 -- Called to ensure that an expression used as part of a type
4162 -- definition is statically allocatable, which means that the type
4163 -- of the expression is statically allocatable, and the expression
4164 -- is either static, or a reference to a library level constant.
4166 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
);
4167 -- Called to mark a type as static, checking that it is possible
4168 -- to set the type as static. If it is not possible, then the
4169 -- exception Cannot_Be_Static is raised.
4171 -----------------------------
4172 -- Ensure_Expression_Is_SA --
4173 -----------------------------
4175 procedure Ensure_Expression_Is_SA
(N
: Node_Id
) is
4179 Ensure_Type_Is_SA
(Etype
(N
));
4181 if Is_Static_Expression
(N
) then
4184 elsif Nkind
(N
) = N_Identifier
then
4188 and then Ekind
(Ent
) = E_Constant
4189 and then Is_Library_Level_Entity
(Ent
)
4195 raise Cannot_Be_Static
;
4196 end Ensure_Expression_Is_SA
;
4198 -----------------------
4199 -- Ensure_Type_Is_SA --
4200 -----------------------
4202 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
) is
4207 -- If type is library level, we are all set
4209 if Is_Library_Level_Entity
(Typ
) then
4213 -- We are also OK if the type is already marked as statically
4214 -- allocated, which means we processed it before.
4216 if Is_Statically_Allocated
(Typ
) then
4220 -- Mark type as statically allocated
4222 Set_Is_Statically_Allocated
(Typ
);
4224 -- Check that it is safe to statically allocate this type
4226 if Is_Scalar_Type
(Typ
) or else Is_Real_Type
(Typ
) then
4227 Ensure_Expression_Is_SA
(Type_Low_Bound
(Typ
));
4228 Ensure_Expression_Is_SA
(Type_High_Bound
(Typ
));
4230 elsif Is_Array_Type
(Typ
) then
4231 N
:= First_Index
(Typ
);
4232 while Present
(N
) loop
4233 Ensure_Type_Is_SA
(Etype
(N
));
4237 Ensure_Type_Is_SA
(Component_Type
(Typ
));
4239 elsif Is_Access_Type
(Typ
) then
4240 if Ekind
(Designated_Type
(Typ
)) = E_Subprogram_Type
then
4244 T
: constant Entity_Id
:= Etype
(Designated_Type
(Typ
));
4247 if T
/= Standard_Void_Type
then
4248 Ensure_Type_Is_SA
(T
);
4251 F
:= First_Formal
(Designated_Type
(Typ
));
4253 while Present
(F
) loop
4254 Ensure_Type_Is_SA
(Etype
(F
));
4260 Ensure_Type_Is_SA
(Designated_Type
(Typ
));
4263 elsif Is_Record_Type
(Typ
) then
4264 C
:= First_Entity
(Typ
);
4266 while Present
(C
) loop
4267 if Ekind
(C
) = E_Discriminant
4268 or else Ekind
(C
) = E_Component
4270 Ensure_Type_Is_SA
(Etype
(C
));
4272 elsif Is_Type
(C
) then
4273 Ensure_Type_Is_SA
(C
);
4279 elsif Ekind
(Typ
) = E_Subprogram_Type
then
4280 Ensure_Type_Is_SA
(Etype
(Typ
));
4282 C
:= First_Formal
(Typ
);
4283 while Present
(C
) loop
4284 Ensure_Type_Is_SA
(Etype
(C
));
4289 raise Cannot_Be_Static
;
4291 end Ensure_Type_Is_SA
;
4293 -- Start of processing for Freeze_Static_Object
4296 Ensure_Type_Is_SA
(Etype
(E
));
4298 -- Reset True_Constant flag, since something strange is going on
4299 -- with the scoping here, and our simple value tracing may not
4300 -- be sufficient for this indication to be reliable. We kill the
4301 -- Constant_Value indication for the same reason.
4303 Set_Is_True_Constant
(E
, False);
4304 Set_Current_Value
(E
, Empty
);
4307 when Cannot_Be_Static
=>
4309 -- If the object that cannot be static is imported or exported,
4310 -- then we give an error message saying that this object cannot
4311 -- be imported or exported.
4313 if Is_Imported
(E
) then
4315 ("& cannot be imported (local type is not constant)", E
);
4317 -- Otherwise must be exported, something is wrong if compiler
4318 -- is marking something as statically allocated which cannot be).
4320 else pragma Assert
(Is_Exported
(E
));
4322 ("& cannot be exported (local type is not constant)", E
);
4324 end Freeze_Static_Object
;
4326 -----------------------
4327 -- Freeze_Subprogram --
4328 -----------------------
4330 procedure Freeze_Subprogram
(E
: Entity_Id
) is
4335 -- Subprogram may not have an address clause unless it is imported
4337 if Present
(Address_Clause
(E
)) then
4338 if not Is_Imported
(E
) then
4340 ("address clause can only be given " &
4341 "for imported subprogram",
4342 Name
(Address_Clause
(E
)));
4346 -- Reset the Pure indication on an imported subprogram unless an
4347 -- explicit Pure_Function pragma was present. We do this because
4348 -- otherwise it is an insidious error to call a non-pure function
4349 -- from a pure unit and have calls mysteriously optimized away.
4350 -- What happens here is that the Import can bypass the normal
4351 -- check to ensure that pure units call only pure subprograms.
4354 and then Is_Pure
(E
)
4355 and then not Has_Pragma_Pure_Function
(E
)
4357 Set_Is_Pure
(E
, False);
4360 -- For non-foreign convention subprograms, this is where we create
4361 -- the extra formals (for accessibility level and constrained bit
4362 -- information). We delay this till the freeze point precisely so
4363 -- that we know the convention!
4365 if not Has_Foreign_Convention
(E
) then
4366 Create_Extra_Formals
(E
);
4369 -- If this is convention Ada and a Valued_Procedure, that's odd
4371 if Ekind
(E
) = E_Procedure
4372 and then Is_Valued_Procedure
(E
)
4373 and then Convention
(E
) = Convention_Ada
4374 and then Warn_On_Export_Import
4377 ("?Valued_Procedure has no effect for convention Ada", E
);
4378 Set_Is_Valued_Procedure
(E
, False);
4381 -- Case of foreign convention
4386 -- For foreign conventions, warn about return of an
4387 -- unconstrained array.
4389 -- Note: we *do* allow a return by descriptor for the VMS case,
4390 -- though here there is probably more to be done ???
4392 if Ekind
(E
) = E_Function
then
4393 Retype
:= Underlying_Type
(Etype
(E
));
4395 -- If no return type, probably some other error, e.g. a
4396 -- missing full declaration, so ignore.
4401 -- If the return type is generic, we have emitted a warning
4402 -- earlier on, and there is nothing else to check here.
4403 -- Specific instantiations may lead to erroneous behavior.
4405 elsif Is_Generic_Type
(Etype
(E
)) then
4408 elsif Is_Array_Type
(Retype
)
4409 and then not Is_Constrained
(Retype
)
4410 and then Mechanism
(E
) not in Descriptor_Codes
4411 and then Warn_On_Export_Import
4414 ("?foreign convention function& should not return " &
4415 "unconstrained array", E
);
4420 -- If any of the formals for an exported foreign convention
4421 -- subprogram have defaults, then emit an appropriate warning
4422 -- since this is odd (default cannot be used from non-Ada code)
4424 if Is_Exported
(E
) then
4425 F
:= First_Formal
(E
);
4426 while Present
(F
) loop
4427 if Warn_On_Export_Import
4428 and then Present
(Default_Value
(F
))
4431 ("?parameter cannot be defaulted in non-Ada call",
4440 -- For VMS, descriptor mechanisms for parameters are allowed only
4441 -- for imported subprograms.
4443 if OpenVMS_On_Target
then
4444 if not Is_Imported
(E
) then
4445 F
:= First_Formal
(E
);
4446 while Present
(F
) loop
4447 if Mechanism
(F
) in Descriptor_Codes
then
4449 ("descriptor mechanism for parameter not permitted", F
);
4451 ("\can only be used for imported subprogram", F
);
4458 end Freeze_Subprogram
;
4460 ----------------------
4461 -- Is_Fully_Defined --
4462 ----------------------
4464 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean is
4466 if Ekind
(T
) = E_Class_Wide_Type
then
4467 return Is_Fully_Defined
(Etype
(T
));
4469 elsif Is_Array_Type
(T
) then
4470 return Is_Fully_Defined
(Component_Type
(T
));
4472 elsif Is_Record_Type
(T
)
4473 and not Is_Private_Type
(T
)
4475 -- Verify that the record type has no components with
4476 -- private types without completion.
4482 Comp
:= First_Component
(T
);
4484 while Present
(Comp
) loop
4485 if not Is_Fully_Defined
(Etype
(Comp
)) then
4489 Next_Component
(Comp
);
4494 else return not Is_Private_Type
(T
)
4495 or else Present
(Full_View
(Base_Type
(T
)));
4497 end Is_Fully_Defined
;
4499 ---------------------------------
4500 -- Process_Default_Expressions --
4501 ---------------------------------
4503 procedure Process_Default_Expressions
4505 After
: in out Node_Id
)
4507 Loc
: constant Source_Ptr
:= Sloc
(E
);
4514 Set_Default_Expressions_Processed
(E
);
4516 -- A subprogram instance and its associated anonymous subprogram
4517 -- share their signature. The default expression functions are defined
4518 -- in the wrapper packages for the anonymous subprogram, and should
4519 -- not be generated again for the instance.
4521 if Is_Generic_Instance
(E
)
4522 and then Present
(Alias
(E
))
4523 and then Default_Expressions_Processed
(Alias
(E
))
4528 Formal
:= First_Formal
(E
);
4530 while Present
(Formal
) loop
4531 if Present
(Default_Value
(Formal
)) then
4533 -- We work with a copy of the default expression because we
4534 -- do not want to disturb the original, since this would mess
4535 -- up the conformance checking.
4537 Dcopy
:= New_Copy_Tree
(Default_Value
(Formal
));
4539 -- The analysis of the expression may generate insert actions,
4540 -- which of course must not be executed. We wrap those actions
4541 -- in a procedure that is not called, and later on eliminated.
4542 -- The following cases have no side-effects, and are analyzed
4545 if Nkind
(Dcopy
) = N_Identifier
4546 or else Nkind
(Dcopy
) = N_Expanded_Name
4547 or else Nkind
(Dcopy
) = N_Integer_Literal
4548 or else (Nkind
(Dcopy
) = N_Real_Literal
4549 and then not Vax_Float
(Etype
(Dcopy
)))
4550 or else Nkind
(Dcopy
) = N_Character_Literal
4551 or else Nkind
(Dcopy
) = N_String_Literal
4552 or else Nkind
(Dcopy
) = N_Null
4553 or else (Nkind
(Dcopy
) = N_Attribute_Reference
4555 Attribute_Name
(Dcopy
) = Name_Null_Parameter
)
4558 -- If there is no default function, we must still do a full
4559 -- analyze call on the default value, to ensure that all
4560 -- error checks are performed, e.g. those associated with
4561 -- static evaluation. Note that this branch will always be
4562 -- taken if the analyzer is turned off (but we still need the
4565 -- Note: the setting of parent here is to meet the requirement
4566 -- that we can only analyze the expression while attached to
4567 -- the tree. Really the requirement is that the parent chain
4568 -- be set, we don't actually need to be in the tree.
4570 Set_Parent
(Dcopy
, Declaration_Node
(Formal
));
4573 -- Default expressions are resolved with their own type if the
4574 -- context is generic, to avoid anomalies with private types.
4576 if Ekind
(Scope
(E
)) = E_Generic_Package
then
4579 Resolve
(Dcopy
, Etype
(Formal
));
4582 -- If that resolved expression will raise constraint error,
4583 -- then flag the default value as raising constraint error.
4584 -- This allows a proper error message on the calls.
4586 if Raises_Constraint_Error
(Dcopy
) then
4587 Set_Raises_Constraint_Error
(Default_Value
(Formal
));
4590 -- If the default is a parameterless call, we use the name of
4591 -- the called function directly, and there is no body to build.
4593 elsif Nkind
(Dcopy
) = N_Function_Call
4594 and then No
(Parameter_Associations
(Dcopy
))
4598 -- Else construct and analyze the body of a wrapper procedure
4599 -- that contains an object declaration to hold the expression.
4600 -- Given that this is done only to complete the analysis, it
4601 -- simpler to build a procedure than a function which might
4602 -- involve secondary stack expansion.
4606 Make_Defining_Identifier
(Loc
, New_Internal_Name
('D'));
4609 Make_Subprogram_Body
(Loc
,
4611 Make_Procedure_Specification
(Loc
,
4612 Defining_Unit_Name
=> Dnam
),
4614 Declarations
=> New_List
(
4615 Make_Object_Declaration
(Loc
,
4616 Defining_Identifier
=>
4617 Make_Defining_Identifier
(Loc
,
4618 New_Internal_Name
('T')),
4619 Object_Definition
=>
4620 New_Occurrence_Of
(Etype
(Formal
), Loc
),
4621 Expression
=> New_Copy_Tree
(Dcopy
))),
4623 Handled_Statement_Sequence
=>
4624 Make_Handled_Sequence_Of_Statements
(Loc
,
4625 Statements
=> New_List
));
4627 Set_Scope
(Dnam
, Scope
(E
));
4628 Set_Assignment_OK
(First
(Declarations
(Dbody
)));
4629 Set_Is_Eliminated
(Dnam
);
4630 Insert_After
(After
, Dbody
);
4636 Next_Formal
(Formal
);
4639 end Process_Default_Expressions
;
4641 ----------------------------------------
4642 -- Set_Component_Alignment_If_Not_Set --
4643 ----------------------------------------
4645 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
) is
4647 -- Ignore if not base type, subtypes don't need anything
4649 if Typ
/= Base_Type
(Typ
) then
4653 -- Do not override existing representation
4655 if Is_Packed
(Typ
) then
4658 elsif Has_Specified_Layout
(Typ
) then
4661 elsif Component_Alignment
(Typ
) /= Calign_Default
then
4665 Set_Component_Alignment
4666 (Typ
, Scope_Stack
.Table
4667 (Scope_Stack
.Last
).Component_Alignment_Default
);
4669 end Set_Component_Alignment_If_Not_Set
;
4671 ---------------------------
4672 -- Set_Debug_Info_Needed --
4673 ---------------------------
4675 procedure Set_Debug_Info_Needed
(T
: Entity_Id
) is
4678 or else Needs_Debug_Info
(T
)
4679 or else Debug_Info_Off
(T
)
4683 Set_Needs_Debug_Info
(T
);
4686 if Is_Object
(T
) then
4687 Set_Debug_Info_Needed
(Etype
(T
));
4689 elsif Is_Type
(T
) then
4690 Set_Debug_Info_Needed
(Etype
(T
));
4692 if Is_Record_Type
(T
) then
4694 Ent
: Entity_Id
:= First_Entity
(T
);
4696 while Present
(Ent
) loop
4697 Set_Debug_Info_Needed
(Ent
);
4702 elsif Is_Array_Type
(T
) then
4703 Set_Debug_Info_Needed
(Component_Type
(T
));
4706 Indx
: Node_Id
:= First_Index
(T
);
4708 while Present
(Indx
) loop
4709 Set_Debug_Info_Needed
(Etype
(Indx
));
4710 Indx
:= Next_Index
(Indx
);
4714 if Is_Packed
(T
) then
4715 Set_Debug_Info_Needed
(Packed_Array_Type
(T
));
4718 elsif Is_Access_Type
(T
) then
4719 Set_Debug_Info_Needed
(Directly_Designated_Type
(T
));
4721 elsif Is_Private_Type
(T
) then
4722 Set_Debug_Info_Needed
(Full_View
(T
));
4724 elsif Is_Protected_Type
(T
) then
4725 Set_Debug_Info_Needed
(Corresponding_Record_Type
(T
));
4728 end Set_Debug_Info_Needed
;
4734 procedure Warn_Overlay
4739 Ent
: constant Entity_Id
:= Entity
(Nam
);
4740 -- The object to which the address clause applies.
4743 Old
: Entity_Id
:= Empty
;
4747 -- No warning if address clause overlay warnings are off
4749 if not Address_Clause_Overlay_Warnings
then
4753 -- No warning if there is an explicit initialization
4755 Init
:= Original_Node
(Expression
(Declaration_Node
(Ent
)));
4757 if Present
(Init
) and then Comes_From_Source
(Init
) then
4761 -- We only give the warning for non-imported entities of a type
4762 -- for which a non-null base init proc is defined (or for access
4763 -- types which have implicit null initialization).
4766 and then (Has_Non_Null_Base_Init_Proc
(Typ
)
4767 or else Is_Access_Type
(Typ
))
4768 and then not Is_Imported
(Ent
)
4770 if Nkind
(Expr
) = N_Attribute_Reference
4771 and then Is_Entity_Name
(Prefix
(Expr
))
4773 Old
:= Entity
(Prefix
(Expr
));
4775 elsif Is_Entity_Name
(Expr
)
4776 and then Ekind
(Entity
(Expr
)) = E_Constant
4778 Decl
:= Declaration_Node
(Entity
(Expr
));
4780 if Nkind
(Decl
) = N_Object_Declaration
4781 and then Present
(Expression
(Decl
))
4782 and then Nkind
(Expression
(Decl
)) = N_Attribute_Reference
4783 and then Is_Entity_Name
(Prefix
(Expression
(Decl
)))
4785 Old
:= Entity
(Prefix
(Expression
(Decl
)));
4787 elsif Nkind
(Expr
) = N_Function_Call
then
4791 -- A function call (most likely to To_Address) is probably not
4792 -- an overlay, so skip warning. Ditto if the function call was
4793 -- inlined and transformed into an entity.
4795 elsif Nkind
(Original_Node
(Expr
)) = N_Function_Call
then
4799 Decl
:= Next
(Parent
(Expr
));
4801 -- If a pragma Import follows, we assume that it is for the current
4802 -- target of the address clause, and skip the warning.
4805 and then Nkind
(Decl
) = N_Pragma
4806 and then Chars
(Decl
) = Name_Import
4811 if Present
(Old
) then
4812 Error_Msg_Node_2
:= Old
;
4814 ("default initialization of & may modify &?",
4818 ("default initialization of & may modify overlaid storage?",
4822 -- Add friendly warning if initialization comes from a packed array
4825 if Is_Record_Type
(Typ
) then
4830 Comp
:= First_Component
(Typ
);
4832 while Present
(Comp
) loop
4833 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
4834 and then Present
(Expression
(Parent
(Comp
)))
4837 elsif Is_Array_Type
(Etype
(Comp
))
4838 and then Present
(Packed_Array_Type
(Etype
(Comp
)))
4841 ("packed array component& will be initialized to zero?",
4845 Next_Component
(Comp
);
4852 ("use pragma Import for & to " &
4853 "suppress initialization ('R'M B.1(24))?",