2016-01-15 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / ada / freeze.adb
blob93fd53cc377349a0bec0eddc9de4435a58c7d234
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Disp; use Exp_Disp;
36 with Exp_Pakd; use Exp_Pakd;
37 with Exp_Util; use Exp_Util;
38 with Exp_Tss; use Exp_Tss;
39 with Fname; use Fname;
40 with Ghost; use Ghost;
41 with Layout; use Layout;
42 with Lib; use Lib;
43 with Namet; use Namet;
44 with Nlists; use Nlists;
45 with Nmake; use Nmake;
46 with Opt; use Opt;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Sem; use Sem;
51 with Sem_Aux; use Sem_Aux;
52 with Sem_Cat; use Sem_Cat;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch7; use Sem_Ch7;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Ch13; use Sem_Ch13;
57 with Sem_Eval; use Sem_Eval;
58 with Sem_Mech; use Sem_Mech;
59 with Sem_Prag; use Sem_Prag;
60 with Sem_Res; use Sem_Res;
61 with Sem_Util; use Sem_Util;
62 with Sinfo; use Sinfo;
63 with Snames; use Snames;
64 with Stand; use Stand;
65 with Targparm; use Targparm;
66 with Tbuild; use Tbuild;
67 with Ttypes; use Ttypes;
68 with Uintp; use Uintp;
69 with Urealp; use Urealp;
70 with Warnsw; use Warnsw;
72 package body Freeze is
74 -----------------------
75 -- Local Subprograms --
76 -----------------------
78 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
79 -- Typ is a type that is being frozen. If no size clause is given,
80 -- but a default Esize has been computed, then this default Esize is
81 -- adjusted up if necessary to be consistent with a given alignment,
82 -- but never to a value greater than Long_Long_Integer'Size. This
83 -- is used for all discrete types and for fixed-point types.
85 procedure Build_And_Analyze_Renamed_Body
86 (Decl : Node_Id;
87 New_S : Entity_Id;
88 After : in out Node_Id);
89 -- Build body for a renaming declaration, insert in tree and analyze
91 procedure Check_Address_Clause (E : Entity_Id);
92 -- Apply legality checks to address clauses for object declarations,
93 -- at the point the object is frozen. Also ensure any initialization is
94 -- performed only after the object has been frozen.
96 procedure Check_Component_Storage_Order
97 (Encl_Type : Entity_Id;
98 Comp : Entity_Id;
99 ADC : Node_Id;
100 Comp_ADC_Present : out Boolean);
101 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
102 -- clause, verify that the component type has an explicit and compatible
103 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
104 -- entity of the component under consideration. For an Encl_Type that
105 -- does not have a Scalar_Storage_Order attribute definition clause,
106 -- verify that the component also does not have such a clause.
107 -- ADC is the attribute definition clause if present (or Empty). On return,
108 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
109 -- attribute definition clause.
111 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
112 -- When an expression function is frozen by a use of it, the expression
113 -- itself is frozen. Check that the expression does not include references
114 -- to deferred constants without completion. We report this at the freeze
115 -- point of the function, to provide a better error message.
117 -- In most cases the expression itself is frozen by the time the function
118 -- itself is frozen, because the formals will be frozen by then. However,
119 -- Attribute references to outer types are freeze points for those types;
120 -- this routine generates the required freeze nodes for them.
122 procedure Check_Strict_Alignment (E : Entity_Id);
123 -- E is a base type. If E is tagged or has a component that is aliased
124 -- or tagged or contains something this is aliased or tagged, set
125 -- Strict_Alignment.
127 procedure Check_Unsigned_Type (E : Entity_Id);
128 pragma Inline (Check_Unsigned_Type);
129 -- If E is a fixed-point or discrete type, then all the necessary work
130 -- to freeze it is completed except for possible setting of the flag
131 -- Is_Unsigned_Type, which is done by this procedure. The call has no
132 -- effect if the entity E is not a discrete or fixed-point type.
134 procedure Freeze_And_Append
135 (Ent : Entity_Id;
136 N : Node_Id;
137 Result : in out List_Id);
138 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
139 -- nodes to Result, modifying Result from No_List if necessary. N has
140 -- the same usage as in Freeze_Entity.
142 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
143 -- Freeze enumeration type. The Esize field is set as processing
144 -- proceeds (i.e. set by default when the type is declared and then
145 -- adjusted by rep clauses. What this procedure does is to make sure
146 -- that if a foreign convention is specified, and no specific size
147 -- is given, then the size must be at least Integer'Size.
149 procedure Freeze_Static_Object (E : Entity_Id);
150 -- If an object is frozen which has Is_Statically_Allocated set, then
151 -- all referenced types must also be marked with this flag. This routine
152 -- is in charge of meeting this requirement for the object entity E.
154 procedure Freeze_Subprogram (E : Entity_Id);
155 -- Perform freezing actions for a subprogram (create extra formals,
156 -- and set proper default mechanism values). Note that this routine
157 -- is not called for internal subprograms, for which neither of these
158 -- actions is needed (or desirable, we do not want for example to have
159 -- these extra formals present in initialization procedures, where they
160 -- would serve no purpose). In this call E is either a subprogram or
161 -- a subprogram type (i.e. an access to a subprogram).
163 function Is_Fully_Defined (T : Entity_Id) return Boolean;
164 -- True if T is not private and has no private components, or has a full
165 -- view. Used to determine whether the designated type of an access type
166 -- should be frozen when the access type is frozen. This is done when an
167 -- allocator is frozen, or an expression that may involve attributes of
168 -- the designated type. Otherwise freezing the access type does not freeze
169 -- the designated type.
171 procedure Process_Default_Expressions
172 (E : Entity_Id;
173 After : in out Node_Id);
174 -- This procedure is called for each subprogram to complete processing of
175 -- default expressions at the point where all types are known to be frozen.
176 -- The expressions must be analyzed in full, to make sure that all error
177 -- processing is done (they have only been pre-analyzed). If the expression
178 -- is not an entity or literal, its analysis may generate code which must
179 -- not be executed. In that case we build a function body to hold that
180 -- code. This wrapper function serves no other purpose (it used to be
181 -- called to evaluate the default, but now the default is inlined at each
182 -- point of call).
184 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
185 -- Typ is a record or array type that is being frozen. This routine sets
186 -- the default component alignment from the scope stack values if the
187 -- alignment is otherwise not specified.
189 procedure Check_Debug_Info_Needed (T : Entity_Id);
190 -- As each entity is frozen, this routine is called to deal with the
191 -- setting of Debug_Info_Needed for the entity. This flag is set if
192 -- the entity comes from source, or if we are in Debug_Generated_Code
193 -- mode or if the -gnatdV debug flag is set. However, it never sets
194 -- the flag if Debug_Info_Off is set. This procedure also ensures that
195 -- subsidiary entities have the flag set as required.
197 procedure Set_SSO_From_Default (T : Entity_Id);
198 -- T is a record or array type that is being frozen. If it is a base type,
199 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
200 -- will be set appropriately. Note that an explicit occurrence of aspect
201 -- Scalar_Storage_Order or an explicit setting of this aspect with an
202 -- attribute definition clause occurs, then these two flags are reset in
203 -- any case, so call will have no effect.
205 procedure Undelay_Type (T : Entity_Id);
206 -- T is a type of a component that we know to be an Itype. We don't want
207 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
208 -- Full_View or Corresponding_Record_Type.
210 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id);
211 -- Expr is the expression for an address clause for entity Nam whose type
212 -- is Typ. If Typ has a default initialization, and there is no explicit
213 -- initialization in the source declaration, check whether the address
214 -- clause might cause overlaying of an entity, and emit a warning on the
215 -- side effect that the initialization will cause.
217 -------------------------------
218 -- Adjust_Esize_For_Alignment --
219 -------------------------------
221 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
222 Align : Uint;
224 begin
225 if Known_Esize (Typ) and then Known_Alignment (Typ) then
226 Align := Alignment_In_Bits (Typ);
228 if Align > Esize (Typ)
229 and then Align <= Standard_Long_Long_Integer_Size
230 then
231 Set_Esize (Typ, Align);
232 end if;
233 end if;
234 end Adjust_Esize_For_Alignment;
236 ------------------------------------
237 -- Build_And_Analyze_Renamed_Body --
238 ------------------------------------
240 procedure Build_And_Analyze_Renamed_Body
241 (Decl : Node_Id;
242 New_S : Entity_Id;
243 After : in out Node_Id)
245 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
246 Ent : constant Entity_Id := Defining_Entity (Decl);
247 Body_Node : Node_Id;
248 Renamed_Subp : Entity_Id;
250 begin
251 -- If the renamed subprogram is intrinsic, there is no need for a
252 -- wrapper body: we set the alias that will be called and expanded which
253 -- completes the declaration. This transformation is only legal if the
254 -- renamed entity has already been elaborated.
256 -- Note that it is legal for a renaming_as_body to rename an intrinsic
257 -- subprogram, as long as the renaming occurs before the new entity
258 -- is frozen (RM 8.5.4 (5)).
260 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
261 and then Is_Entity_Name (Name (Body_Decl))
262 then
263 Renamed_Subp := Entity (Name (Body_Decl));
264 else
265 Renamed_Subp := Empty;
266 end if;
268 if Present (Renamed_Subp)
269 and then Is_Intrinsic_Subprogram (Renamed_Subp)
270 and then
271 (not In_Same_Source_Unit (Renamed_Subp, Ent)
272 or else Sloc (Renamed_Subp) < Sloc (Ent))
274 -- We can make the renaming entity intrinsic if the renamed function
275 -- has an interface name, or if it is one of the shift/rotate
276 -- operations known to the compiler.
278 and then
279 (Present (Interface_Name (Renamed_Subp))
280 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
281 Name_Rotate_Right,
282 Name_Shift_Left,
283 Name_Shift_Right,
284 Name_Shift_Right_Arithmetic))
285 then
286 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
288 if Present (Alias (Renamed_Subp)) then
289 Set_Alias (Ent, Alias (Renamed_Subp));
290 else
291 Set_Alias (Ent, Renamed_Subp);
292 end if;
294 Set_Is_Intrinsic_Subprogram (Ent);
295 Set_Has_Completion (Ent);
297 else
298 Body_Node := Build_Renamed_Body (Decl, New_S);
299 Insert_After (After, Body_Node);
300 Mark_Rewrite_Insertion (Body_Node);
301 Analyze (Body_Node);
302 After := Body_Node;
303 end if;
304 end Build_And_Analyze_Renamed_Body;
306 ------------------------
307 -- Build_Renamed_Body --
308 ------------------------
310 function Build_Renamed_Body
311 (Decl : Node_Id;
312 New_S : Entity_Id) return Node_Id
314 Loc : constant Source_Ptr := Sloc (New_S);
315 -- We use for the source location of the renamed body, the location of
316 -- the spec entity. It might seem more natural to use the location of
317 -- the renaming declaration itself, but that would be wrong, since then
318 -- the body we create would look as though it was created far too late,
319 -- and this could cause problems with elaboration order analysis,
320 -- particularly in connection with instantiations.
322 N : constant Node_Id := Unit_Declaration_Node (New_S);
323 Nam : constant Node_Id := Name (N);
324 Old_S : Entity_Id;
325 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
326 Actuals : List_Id := No_List;
327 Call_Node : Node_Id;
328 Call_Name : Node_Id;
329 Body_Node : Node_Id;
330 Formal : Entity_Id;
331 O_Formal : Entity_Id;
332 Param_Spec : Node_Id;
334 Pref : Node_Id := Empty;
335 -- If the renamed entity is a primitive operation given in prefix form,
336 -- the prefix is the target object and it has to be added as the first
337 -- actual in the generated call.
339 begin
340 -- Determine the entity being renamed, which is the target of the call
341 -- statement. If the name is an explicit dereference, this is a renaming
342 -- of a subprogram type rather than a subprogram. The name itself is
343 -- fully analyzed.
345 if Nkind (Nam) = N_Selected_Component then
346 Old_S := Entity (Selector_Name (Nam));
348 elsif Nkind (Nam) = N_Explicit_Dereference then
349 Old_S := Etype (Nam);
351 elsif Nkind (Nam) = N_Indexed_Component then
352 if Is_Entity_Name (Prefix (Nam)) then
353 Old_S := Entity (Prefix (Nam));
354 else
355 Old_S := Entity (Selector_Name (Prefix (Nam)));
356 end if;
358 elsif Nkind (Nam) = N_Character_Literal then
359 Old_S := Etype (New_S);
361 else
362 Old_S := Entity (Nam);
363 end if;
365 if Is_Entity_Name (Nam) then
367 -- If the renamed entity is a predefined operator, retain full name
368 -- to ensure its visibility.
370 if Ekind (Old_S) = E_Operator
371 and then Nkind (Nam) = N_Expanded_Name
372 then
373 Call_Name := New_Copy (Name (N));
374 else
375 Call_Name := New_Occurrence_Of (Old_S, Loc);
376 end if;
378 else
379 if Nkind (Nam) = N_Selected_Component
380 and then Present (First_Formal (Old_S))
381 and then
382 (Is_Controlling_Formal (First_Formal (Old_S))
383 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
384 then
386 -- Retrieve the target object, to be added as a first actual
387 -- in the call.
389 Call_Name := New_Occurrence_Of (Old_S, Loc);
390 Pref := Prefix (Nam);
392 else
393 Call_Name := New_Copy (Name (N));
394 end if;
396 -- Original name may have been overloaded, but is fully resolved now
398 Set_Is_Overloaded (Call_Name, False);
399 end if;
401 -- For simple renamings, subsequent calls can be expanded directly as
402 -- calls to the renamed entity. The body must be generated in any case
403 -- for calls that may appear elsewhere. This is not done in the case
404 -- where the subprogram is an instantiation because the actual proper
405 -- body has not been built yet.
407 if Ekind_In (Old_S, E_Function, E_Procedure)
408 and then Nkind (Decl) = N_Subprogram_Declaration
409 and then not Is_Generic_Instance (Old_S)
410 then
411 Set_Body_To_Inline (Decl, Old_S);
412 end if;
414 -- Check whether the return type is a limited view. If the subprogram
415 -- is already frozen the generated body may have a non-limited view
416 -- of the type, that must be used, because it is the one in the spec
417 -- of the renaming declaration.
419 if Ekind (Old_S) = E_Function
420 and then Is_Entity_Name (Result_Definition (Spec))
421 then
422 declare
423 Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
424 begin
425 if Has_Non_Limited_View (Ret_Type) then
426 Set_Result_Definition
427 (Spec, New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
428 end if;
429 end;
430 end if;
432 -- The body generated for this renaming is an internal artifact, and
433 -- does not constitute a freeze point for the called entity.
435 Set_Must_Not_Freeze (Call_Name);
437 Formal := First_Formal (Defining_Entity (Decl));
439 if Present (Pref) then
440 declare
441 Pref_Type : constant Entity_Id := Etype (Pref);
442 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
444 begin
445 -- The controlling formal may be an access parameter, or the
446 -- actual may be an access value, so adjust accordingly.
448 if Is_Access_Type (Pref_Type)
449 and then not Is_Access_Type (Form_Type)
450 then
451 Actuals := New_List
452 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
454 elsif Is_Access_Type (Form_Type)
455 and then not Is_Access_Type (Pref)
456 then
457 Actuals :=
458 New_List (
459 Make_Attribute_Reference (Loc,
460 Attribute_Name => Name_Access,
461 Prefix => Relocate_Node (Pref)));
462 else
463 Actuals := New_List (Pref);
464 end if;
465 end;
467 elsif Present (Formal) then
468 Actuals := New_List;
470 else
471 Actuals := No_List;
472 end if;
474 if Present (Formal) then
475 while Present (Formal) loop
476 Append (New_Occurrence_Of (Formal, Loc), Actuals);
477 Next_Formal (Formal);
478 end loop;
479 end if;
481 -- If the renamed entity is an entry, inherit its profile. For other
482 -- renamings as bodies, both profiles must be subtype conformant, so it
483 -- is not necessary to replace the profile given in the declaration.
484 -- However, default values that are aggregates are rewritten when
485 -- partially analyzed, so we recover the original aggregate to insure
486 -- that subsequent conformity checking works. Similarly, if the default
487 -- expression was constant-folded, recover the original expression.
489 Formal := First_Formal (Defining_Entity (Decl));
491 if Present (Formal) then
492 O_Formal := First_Formal (Old_S);
493 Param_Spec := First (Parameter_Specifications (Spec));
494 while Present (Formal) loop
495 if Is_Entry (Old_S) then
496 if Nkind (Parameter_Type (Param_Spec)) /=
497 N_Access_Definition
498 then
499 Set_Etype (Formal, Etype (O_Formal));
500 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
501 end if;
503 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
504 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
505 Nkind (Default_Value (O_Formal))
506 then
507 Set_Expression (Param_Spec,
508 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
509 end if;
511 Next_Formal (Formal);
512 Next_Formal (O_Formal);
513 Next (Param_Spec);
514 end loop;
515 end if;
517 -- If the renamed entity is a function, the generated body contains a
518 -- return statement. Otherwise, build a procedure call. If the entity is
519 -- an entry, subsequent analysis of the call will transform it into the
520 -- proper entry or protected operation call. If the renamed entity is
521 -- a character literal, return it directly.
523 if Ekind (Old_S) = E_Function
524 or else Ekind (Old_S) = E_Operator
525 or else (Ekind (Old_S) = E_Subprogram_Type
526 and then Etype (Old_S) /= Standard_Void_Type)
527 then
528 Call_Node :=
529 Make_Simple_Return_Statement (Loc,
530 Expression =>
531 Make_Function_Call (Loc,
532 Name => Call_Name,
533 Parameter_Associations => Actuals));
535 elsif Ekind (Old_S) = E_Enumeration_Literal then
536 Call_Node :=
537 Make_Simple_Return_Statement (Loc,
538 Expression => New_Occurrence_Of (Old_S, Loc));
540 elsif Nkind (Nam) = N_Character_Literal then
541 Call_Node :=
542 Make_Simple_Return_Statement (Loc, Expression => Call_Name);
544 else
545 Call_Node :=
546 Make_Procedure_Call_Statement (Loc,
547 Name => Call_Name,
548 Parameter_Associations => Actuals);
549 end if;
551 -- Create entities for subprogram body and formals
553 Set_Defining_Unit_Name (Spec,
554 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
556 Param_Spec := First (Parameter_Specifications (Spec));
557 while Present (Param_Spec) loop
558 Set_Defining_Identifier (Param_Spec,
559 Make_Defining_Identifier (Loc,
560 Chars => Chars (Defining_Identifier (Param_Spec))));
561 Next (Param_Spec);
562 end loop;
564 Body_Node :=
565 Make_Subprogram_Body (Loc,
566 Specification => Spec,
567 Declarations => New_List,
568 Handled_Statement_Sequence =>
569 Make_Handled_Sequence_Of_Statements (Loc,
570 Statements => New_List (Call_Node)));
572 if Nkind (Decl) /= N_Subprogram_Declaration then
573 Rewrite (N,
574 Make_Subprogram_Declaration (Loc,
575 Specification => Specification (N)));
576 end if;
578 -- Link the body to the entity whose declaration it completes. If
579 -- the body is analyzed when the renamed entity is frozen, it may
580 -- be necessary to restore the proper scope (see package Exp_Ch13).
582 if Nkind (N) = N_Subprogram_Renaming_Declaration
583 and then Present (Corresponding_Spec (N))
584 then
585 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
586 else
587 Set_Corresponding_Spec (Body_Node, New_S);
588 end if;
590 return Body_Node;
591 end Build_Renamed_Body;
593 --------------------------
594 -- Check_Address_Clause --
595 --------------------------
597 procedure Check_Address_Clause (E : Entity_Id) is
598 Addr : constant Node_Id := Address_Clause (E);
599 Typ : constant Entity_Id := Etype (E);
600 Decl : Node_Id;
601 Expr : Node_Id;
602 Init : Node_Id;
603 Lhs : Node_Id;
604 Tag_Assign : Node_Id;
606 begin
607 if Present (Addr) then
609 -- For a deferred constant, the initialization value is on full view
611 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
612 Decl := Declaration_Node (Full_View (E));
613 else
614 Decl := Declaration_Node (E);
615 end if;
617 Expr := Expression (Addr);
619 if Needs_Constant_Address (Decl, Typ) then
620 Check_Constant_Address_Clause (Expr, E);
622 -- Has_Delayed_Freeze was set on E when the address clause was
623 -- analyzed, and must remain set because we want the address
624 -- clause to be elaborated only after any entity it references
625 -- has been elaborated.
626 end if;
628 -- If Rep_Clauses are to be ignored, remove address clause from
629 -- list attached to entity, because it may be illegal for gigi,
630 -- for example by breaking order of elaboration..
632 if Ignore_Rep_Clauses then
633 declare
634 Rep : Node_Id;
636 begin
637 Rep := First_Rep_Item (E);
639 if Rep = Addr then
640 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
642 else
643 while Present (Rep)
644 and then Next_Rep_Item (Rep) /= Addr
645 loop
646 Rep := Next_Rep_Item (Rep);
647 end loop;
648 end if;
650 if Present (Rep) then
651 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
652 end if;
653 end;
655 -- And now remove the address clause
657 Kill_Rep_Clause (Addr);
659 elsif not Error_Posted (Expr)
660 and then not Needs_Finalization (Typ)
661 then
662 Warn_Overlay (Expr, Typ, Name (Addr));
663 end if;
665 Init := Expression (Decl);
667 -- If a variable, or a non-imported constant, overlays a constant
668 -- object and has an initialization value, then the initialization
669 -- may end up writing into read-only memory. Detect the cases of
670 -- statically identical values and remove the initialization. In
671 -- the other cases, give a warning. We will give other warnings
672 -- later for the variable if it is assigned.
674 if (Ekind (E) = E_Variable
675 or else (Ekind (E) = E_Constant
676 and then not Is_Imported (E)))
677 and then Overlays_Constant (E)
678 and then Present (Init)
679 then
680 declare
681 O_Ent : Entity_Id;
682 Off : Boolean;
684 begin
685 Find_Overlaid_Entity (Addr, O_Ent, Off);
687 if Ekind (O_Ent) = E_Constant
688 and then Etype (O_Ent) = Typ
689 and then Present (Constant_Value (O_Ent))
690 and then Compile_Time_Compare
691 (Init,
692 Constant_Value (O_Ent),
693 Assume_Valid => True) = EQ
694 then
695 Set_No_Initialization (Decl);
696 return;
698 elsif Comes_From_Source (Init)
699 and then Address_Clause_Overlay_Warnings
700 then
701 Error_Msg_Sloc := Sloc (Addr);
702 Error_Msg_NE
703 ("??constant& may be modified via address clause#",
704 Decl, O_Ent);
705 end if;
706 end;
707 end if;
709 if Present (Init) then
711 -- Capture initialization value at point of declaration,
712 -- and make explicit assignment legal, because object may
713 -- be a constant.
715 Remove_Side_Effects (Init);
716 Lhs := New_Occurrence_Of (E, Sloc (Decl));
717 Set_Assignment_OK (Lhs);
719 -- Move initialization to freeze actions, once the object has
720 -- been frozen and the address clause alignment check has been
721 -- performed.
723 Append_Freeze_Action (E,
724 Make_Assignment_Statement (Sloc (Decl),
725 Name => Lhs,
726 Expression => Expression (Decl)));
728 Set_No_Initialization (Decl);
730 -- If the objet is tagged, check whether the tag must be
731 -- reassigned explicitly.
733 Tag_Assign := Make_Tag_Assignment (Decl);
734 if Present (Tag_Assign) then
735 Append_Freeze_Action (E, Tag_Assign);
736 end if;
737 end if;
738 end if;
739 end Check_Address_Clause;
741 -----------------------------
742 -- Check_Compile_Time_Size --
743 -----------------------------
745 procedure Check_Compile_Time_Size (T : Entity_Id) is
747 procedure Set_Small_Size (T : Entity_Id; S : Uint);
748 -- Sets the compile time known size (32 bits or less) in the Esize
749 -- field, of T checking for a size clause that was given which attempts
750 -- to give a smaller size, and also checking for an alignment clause.
752 function Size_Known (T : Entity_Id) return Boolean;
753 -- Recursive function that does all the work
755 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
756 -- If T is a constrained subtype, its size is not known if any of its
757 -- discriminant constraints is not static and it is not a null record.
758 -- The test is conservative and doesn't check that the components are
759 -- in fact constrained by non-static discriminant values. Could be made
760 -- more precise ???
762 --------------------
763 -- Set_Small_Size --
764 --------------------
766 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
767 begin
768 if S > 32 then
769 return;
771 -- Check for bad size clause given
773 elsif Has_Size_Clause (T) then
774 if RM_Size (T) < S then
775 Error_Msg_Uint_1 := S;
776 Error_Msg_NE
777 ("size for& too small, minimum allowed is ^",
778 Size_Clause (T), T);
779 end if;
781 -- Set size if not set already
783 elsif Unknown_RM_Size (T) then
784 Set_RM_Size (T, S);
785 end if;
786 end Set_Small_Size;
788 ----------------
789 -- Size_Known --
790 ----------------
792 function Size_Known (T : Entity_Id) return Boolean is
793 Index : Entity_Id;
794 Comp : Entity_Id;
795 Ctyp : Entity_Id;
796 Low : Node_Id;
797 High : Node_Id;
799 begin
800 if Size_Known_At_Compile_Time (T) then
801 return True;
803 -- Always True for scalar types. This is true even for generic formal
804 -- scalar types. We used to return False in the latter case, but the
805 -- size is known at compile time, even in the template, we just do
806 -- not know the exact size but that's not the point of this routine.
808 elsif Is_Scalar_Type (T)
809 or else Is_Task_Type (T)
810 then
811 return True;
813 -- Array types
815 elsif Is_Array_Type (T) then
817 -- String literals always have known size, and we can set it
819 if Ekind (T) = E_String_Literal_Subtype then
820 Set_Small_Size (T, Component_Size (T)
821 * String_Literal_Length (T));
822 return True;
824 -- Unconstrained types never have known at compile time size
826 elsif not Is_Constrained (T) then
827 return False;
829 -- Don't do any recursion on type with error posted, since we may
830 -- have a malformed type that leads us into a loop.
832 elsif Error_Posted (T) then
833 return False;
835 -- Otherwise if component size unknown, then array size unknown
837 elsif not Size_Known (Component_Type (T)) then
838 return False;
839 end if;
841 -- Check for all indexes static, and also compute possible size
842 -- (in case it is less than 32 and may be packable).
844 declare
845 Esiz : Uint := Component_Size (T);
846 Dim : Uint;
848 begin
849 Index := First_Index (T);
850 while Present (Index) loop
851 if Nkind (Index) = N_Range then
852 Get_Index_Bounds (Index, Low, High);
854 elsif Error_Posted (Scalar_Range (Etype (Index))) then
855 return False;
857 else
858 Low := Type_Low_Bound (Etype (Index));
859 High := Type_High_Bound (Etype (Index));
860 end if;
862 if not Compile_Time_Known_Value (Low)
863 or else not Compile_Time_Known_Value (High)
864 or else Etype (Index) = Any_Type
865 then
866 return False;
868 else
869 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
871 if Dim >= 0 then
872 Esiz := Esiz * Dim;
873 else
874 Esiz := Uint_0;
875 end if;
876 end if;
878 Next_Index (Index);
879 end loop;
881 Set_Small_Size (T, Esiz);
882 return True;
883 end;
885 -- Access types always have known at compile time sizes
887 elsif Is_Access_Type (T) then
888 return True;
890 -- For non-generic private types, go to underlying type if present
892 elsif Is_Private_Type (T)
893 and then not Is_Generic_Type (T)
894 and then Present (Underlying_Type (T))
895 then
896 -- Don't do any recursion on type with error posted, since we may
897 -- have a malformed type that leads us into a loop.
899 if Error_Posted (T) then
900 return False;
901 else
902 return Size_Known (Underlying_Type (T));
903 end if;
905 -- Record types
907 elsif Is_Record_Type (T) then
909 -- A class-wide type is never considered to have a known size
911 if Is_Class_Wide_Type (T) then
912 return False;
914 -- A subtype of a variant record must not have non-static
915 -- discriminated components.
917 elsif T /= Base_Type (T)
918 and then not Static_Discriminated_Components (T)
919 then
920 return False;
922 -- Don't do any recursion on type with error posted, since we may
923 -- have a malformed type that leads us into a loop.
925 elsif Error_Posted (T) then
926 return False;
927 end if;
929 -- Now look at the components of the record
931 declare
932 -- The following two variables are used to keep track of the
933 -- size of packed records if we can tell the size of the packed
934 -- record in the front end. Packed_Size_Known is True if so far
935 -- we can figure out the size. It is initialized to True for a
936 -- packed record, unless the record has discriminants or atomic
937 -- components or independent components.
939 -- The reason we eliminate the discriminated case is that
940 -- we don't know the way the back end lays out discriminated
941 -- packed records. If Packed_Size_Known is True, then
942 -- Packed_Size is the size in bits so far.
944 Packed_Size_Known : Boolean :=
945 Is_Packed (T)
946 and then not Has_Discriminants (T)
947 and then not Has_Atomic_Components (T)
948 and then not Has_Independent_Components (T);
950 Packed_Size : Uint := Uint_0;
951 -- Size in bits so far
953 begin
954 -- Test for variant part present
956 if Has_Discriminants (T)
957 and then Present (Parent (T))
958 and then Nkind (Parent (T)) = N_Full_Type_Declaration
959 and then Nkind (Type_Definition (Parent (T))) =
960 N_Record_Definition
961 and then not Null_Present (Type_Definition (Parent (T)))
962 and then
963 Present (Variant_Part
964 (Component_List (Type_Definition (Parent (T)))))
965 then
966 -- If variant part is present, and type is unconstrained,
967 -- then we must have defaulted discriminants, or a size
968 -- clause must be present for the type, or else the size
969 -- is definitely not known at compile time.
971 if not Is_Constrained (T)
972 and then
973 No (Discriminant_Default_Value (First_Discriminant (T)))
974 and then Unknown_RM_Size (T)
975 then
976 return False;
977 end if;
978 end if;
980 -- Loop through components
982 Comp := First_Component_Or_Discriminant (T);
983 while Present (Comp) loop
984 Ctyp := Etype (Comp);
986 -- We do not know the packed size if there is a component
987 -- clause present (we possibly could, but this would only
988 -- help in the case of a record with partial rep clauses.
989 -- That's because in the case of full rep clauses, the
990 -- size gets figured out anyway by a different circuit).
992 if Present (Component_Clause (Comp)) then
993 Packed_Size_Known := False;
994 end if;
996 -- We do not know the packed size for an atomic/VFA type
997 -- or component, or an independent type or component, or a
998 -- by-reference type or aliased component (because packing
999 -- does not touch these).
1001 if Is_Atomic_Or_VFA (Ctyp)
1002 or else Is_Atomic_Or_VFA (Comp)
1003 or else Is_Independent (Ctyp)
1004 or else Is_Independent (Comp)
1005 or else Is_By_Reference_Type (Ctyp)
1006 or else Is_Aliased (Comp)
1007 then
1008 Packed_Size_Known := False;
1009 end if;
1011 -- We need to identify a component that is an array where
1012 -- the index type is an enumeration type with non-standard
1013 -- representation, and some bound of the type depends on a
1014 -- discriminant.
1016 -- This is because gigi computes the size by doing a
1017 -- substitution of the appropriate discriminant value in
1018 -- the size expression for the base type, and gigi is not
1019 -- clever enough to evaluate the resulting expression (which
1020 -- involves a call to rep_to_pos) at compile time.
1022 -- It would be nice if gigi would either recognize that
1023 -- this expression can be computed at compile time, or
1024 -- alternatively figured out the size from the subtype
1025 -- directly, where all the information is at hand ???
1027 if Is_Array_Type (Etype (Comp))
1028 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
1029 then
1030 declare
1031 Ocomp : constant Entity_Id :=
1032 Original_Record_Component (Comp);
1033 OCtyp : constant Entity_Id := Etype (Ocomp);
1034 Ind : Node_Id;
1035 Indtyp : Entity_Id;
1036 Lo, Hi : Node_Id;
1038 begin
1039 Ind := First_Index (OCtyp);
1040 while Present (Ind) loop
1041 Indtyp := Etype (Ind);
1043 if Is_Enumeration_Type (Indtyp)
1044 and then Has_Non_Standard_Rep (Indtyp)
1045 then
1046 Lo := Type_Low_Bound (Indtyp);
1047 Hi := Type_High_Bound (Indtyp);
1049 if Is_Entity_Name (Lo)
1050 and then Ekind (Entity (Lo)) = E_Discriminant
1051 then
1052 return False;
1054 elsif Is_Entity_Name (Hi)
1055 and then Ekind (Entity (Hi)) = E_Discriminant
1056 then
1057 return False;
1058 end if;
1059 end if;
1061 Next_Index (Ind);
1062 end loop;
1063 end;
1064 end if;
1066 -- Clearly size of record is not known if the size of one of
1067 -- the components is not known.
1069 if not Size_Known (Ctyp) then
1070 return False;
1071 end if;
1073 -- Accumulate packed size if possible
1075 if Packed_Size_Known then
1077 -- We can only deal with elementary types, since for
1078 -- non-elementary components, alignment enters into the
1079 -- picture, and we don't know enough to handle proper
1080 -- alignment in this context. Packed arrays count as
1081 -- elementary if the representation is a modular type.
1083 if Is_Elementary_Type (Ctyp)
1084 or else (Is_Array_Type (Ctyp)
1085 and then Present
1086 (Packed_Array_Impl_Type (Ctyp))
1087 and then Is_Modular_Integer_Type
1088 (Packed_Array_Impl_Type (Ctyp)))
1089 then
1090 -- Packed size unknown if we have an atomic/VFA type
1091 -- or a by-reference type, since the back end knows
1092 -- how these are layed out.
1094 if Is_Atomic_Or_VFA (Ctyp)
1095 or else Is_By_Reference_Type (Ctyp)
1096 then
1097 Packed_Size_Known := False;
1099 -- If RM_Size is known and static, then we can keep
1100 -- accumulating the packed size
1102 elsif Known_Static_RM_Size (Ctyp) then
1104 -- A little glitch, to be removed sometime ???
1105 -- gigi does not understand zero sizes yet.
1107 if RM_Size (Ctyp) = Uint_0 then
1108 Packed_Size_Known := False;
1110 -- Normal case where we can keep accumulating the
1111 -- packed array size.
1113 else
1114 Packed_Size := Packed_Size + RM_Size (Ctyp);
1115 end if;
1117 -- If we have a field whose RM_Size is not known then
1118 -- we can't figure out the packed size here.
1120 else
1121 Packed_Size_Known := False;
1122 end if;
1124 -- If we have a non-elementary type we can't figure out
1125 -- the packed array size (alignment issues).
1127 else
1128 Packed_Size_Known := False;
1129 end if;
1130 end if;
1132 Next_Component_Or_Discriminant (Comp);
1133 end loop;
1135 if Packed_Size_Known then
1136 Set_Small_Size (T, Packed_Size);
1137 end if;
1139 return True;
1140 end;
1142 -- All other cases, size not known at compile time
1144 else
1145 return False;
1146 end if;
1147 end Size_Known;
1149 -------------------------------------
1150 -- Static_Discriminated_Components --
1151 -------------------------------------
1153 function Static_Discriminated_Components
1154 (T : Entity_Id) return Boolean
1156 Constraint : Elmt_Id;
1158 begin
1159 if Has_Discriminants (T)
1160 and then Present (Discriminant_Constraint (T))
1161 and then Present (First_Component (T))
1162 then
1163 Constraint := First_Elmt (Discriminant_Constraint (T));
1164 while Present (Constraint) loop
1165 if not Compile_Time_Known_Value (Node (Constraint)) then
1166 return False;
1167 end if;
1169 Next_Elmt (Constraint);
1170 end loop;
1171 end if;
1173 return True;
1174 end Static_Discriminated_Components;
1176 -- Start of processing for Check_Compile_Time_Size
1178 begin
1179 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1180 end Check_Compile_Time_Size;
1182 -----------------------------------
1183 -- Check_Component_Storage_Order --
1184 -----------------------------------
1186 procedure Check_Component_Storage_Order
1187 (Encl_Type : Entity_Id;
1188 Comp : Entity_Id;
1189 ADC : Node_Id;
1190 Comp_ADC_Present : out Boolean)
1192 Comp_Type : Entity_Id;
1193 Comp_ADC : Node_Id;
1194 Err_Node : Node_Id;
1196 Comp_Byte_Aligned : Boolean;
1197 -- Set for the record case, True if Comp starts on a byte boundary
1198 -- (in which case it is allowed to have different storage order).
1200 Comp_SSO_Differs : Boolean;
1201 -- Set True when the component is a nested composite, and it does not
1202 -- have the same scalar storage order as Encl_Type.
1204 Component_Aliased : Boolean;
1206 begin
1207 -- Record case
1209 if Present (Comp) then
1210 Err_Node := Comp;
1211 Comp_Type := Etype (Comp);
1213 if Is_Tag (Comp) then
1214 Comp_Byte_Aligned := True;
1215 Component_Aliased := False;
1217 else
1218 -- If a component clause is present, check if the component starts
1219 -- on a storage element boundary. Otherwise conservatively assume
1220 -- it does so only in the case where the record is not packed.
1222 if Present (Component_Clause (Comp)) then
1223 Comp_Byte_Aligned :=
1224 Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
1225 else
1226 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1227 end if;
1229 Component_Aliased := Is_Aliased (Comp);
1230 end if;
1232 -- Array case
1234 else
1235 Err_Node := Encl_Type;
1236 Comp_Type := Component_Type (Encl_Type);
1238 Component_Aliased := Has_Aliased_Components (Encl_Type);
1239 end if;
1241 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1242 -- the attribute definition clause is attached to the first subtype.
1244 Comp_Type := Base_Type (Comp_Type);
1245 Comp_ADC := Get_Attribute_Definition_Clause
1246 (First_Subtype (Comp_Type),
1247 Attribute_Scalar_Storage_Order);
1248 Comp_ADC_Present := Present (Comp_ADC);
1250 -- Case of record or array component: check storage order compatibility.
1251 -- But, if the record has Complex_Representation, then it is treated as
1252 -- a scalar in the back end so the storage order is irrelevant.
1254 if (Is_Record_Type (Comp_Type)
1255 and then not Has_Complex_Representation (Comp_Type))
1256 or else Is_Array_Type (Comp_Type)
1257 then
1258 Comp_SSO_Differs :=
1259 Reverse_Storage_Order (Encl_Type)
1261 Reverse_Storage_Order (Comp_Type);
1263 -- Parent and extension must have same storage order
1265 if Present (Comp) and then Chars (Comp) = Name_uParent then
1266 if Comp_SSO_Differs then
1267 Error_Msg_N
1268 ("record extension must have same scalar storage order as "
1269 & "parent", Err_Node);
1270 end if;
1272 -- If enclosing composite has explicit SSO then nested composite must
1273 -- have explicit SSO as well.
1275 elsif Present (ADC) and then No (Comp_ADC) then
1276 Error_Msg_N ("nested composite must have explicit scalar "
1277 & "storage order", Err_Node);
1279 -- If component and composite SSO differs, check that component
1280 -- falls on byte boundaries and isn't packed.
1282 elsif Comp_SSO_Differs then
1284 -- Component SSO differs from enclosing composite:
1286 -- Reject if component is a packed array, as it may be represented
1287 -- as a scalar internally.
1289 if Is_Packed_Array (Comp_Type) then
1290 Error_Msg_N
1291 ("type of packed component must have same scalar "
1292 & "storage order as enclosing composite", Err_Node);
1294 -- Reject if composite is a packed array, as it may be rewritten
1295 -- into an array of scalars.
1297 elsif Is_Packed_Array (Encl_Type) then
1298 Error_Msg_N ("type of packed array must have same scalar "
1299 & "storage order as component", Err_Node);
1301 -- Reject if not byte aligned
1303 elsif Is_Record_Type (Encl_Type)
1304 and then not Comp_Byte_Aligned
1305 then
1306 Error_Msg_N
1307 ("type of non-byte-aligned component must have same scalar "
1308 & "storage order as enclosing composite", Err_Node);
1309 end if;
1310 end if;
1312 -- Enclosing type has explicit SSO: non-composite component must not
1313 -- be aliased.
1315 elsif Present (ADC) and then Component_Aliased then
1316 Error_Msg_N
1317 ("aliased component not permitted for type with "
1318 & "explicit Scalar_Storage_Order", Err_Node);
1319 end if;
1320 end Check_Component_Storage_Order;
1322 -----------------------------
1323 -- Check_Debug_Info_Needed --
1324 -----------------------------
1326 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1327 begin
1328 if Debug_Info_Off (T) then
1329 return;
1331 elsif Comes_From_Source (T)
1332 or else Debug_Generated_Code
1333 or else Debug_Flag_VV
1334 or else Needs_Debug_Info (T)
1335 then
1336 Set_Debug_Info_Needed (T);
1337 end if;
1338 end Check_Debug_Info_Needed;
1340 -------------------------------
1341 -- Check_Expression_Function --
1342 -------------------------------
1344 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
1345 Decl : Node_Id;
1347 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1348 -- Function to search for deferred constant
1350 -------------------
1351 -- Find_Constant --
1352 -------------------
1354 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1355 begin
1356 -- When a constant is initialized with the result of a dispatching
1357 -- call, the constant declaration is rewritten as a renaming of the
1358 -- displaced function result. This scenario is not a premature use of
1359 -- a constant even though the Has_Completion flag is not set.
1361 if Is_Entity_Name (Nod)
1362 and then Present (Entity (Nod))
1363 and then Ekind (Entity (Nod)) = E_Constant
1364 and then Scope (Entity (Nod)) = Current_Scope
1365 and then Nkind (Declaration_Node (Entity (Nod))) =
1366 N_Object_Declaration
1367 and then not Is_Imported (Entity (Nod))
1368 and then not Has_Completion (Entity (Nod))
1369 then
1370 Error_Msg_NE
1371 ("premature use of& in call or instance", N, Entity (Nod));
1373 elsif Nkind (Nod) = N_Attribute_Reference then
1374 Analyze (Prefix (Nod));
1376 if Is_Entity_Name (Prefix (Nod))
1377 and then Is_Type (Entity (Prefix (Nod)))
1378 then
1379 Freeze_Before (N, Entity (Prefix (Nod)));
1380 end if;
1381 end if;
1383 return OK;
1384 end Find_Constant;
1386 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1388 -- Start of processing for Check_Expression_Function
1390 begin
1391 Decl := Original_Node (Unit_Declaration_Node (Nam));
1393 if Scope (Nam) = Current_Scope
1394 and then Nkind (Decl) = N_Expression_Function
1395 then
1396 Check_Deferred (Expression (Decl));
1397 end if;
1398 end Check_Expression_Function;
1400 ----------------------------
1401 -- Check_Strict_Alignment --
1402 ----------------------------
1404 procedure Check_Strict_Alignment (E : Entity_Id) is
1405 Comp : Entity_Id;
1407 begin
1408 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1409 Set_Strict_Alignment (E);
1411 elsif Is_Array_Type (E) then
1412 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1414 elsif Is_Record_Type (E) then
1415 if Is_Limited_Record (E) then
1416 Set_Strict_Alignment (E);
1417 return;
1418 end if;
1420 Comp := First_Component (E);
1421 while Present (Comp) loop
1422 if not Is_Type (Comp)
1423 and then (Strict_Alignment (Etype (Comp))
1424 or else Is_Aliased (Comp))
1425 then
1426 Set_Strict_Alignment (E);
1427 return;
1428 end if;
1430 Next_Component (Comp);
1431 end loop;
1432 end if;
1433 end Check_Strict_Alignment;
1435 -------------------------
1436 -- Check_Unsigned_Type --
1437 -------------------------
1439 procedure Check_Unsigned_Type (E : Entity_Id) is
1440 Ancestor : Entity_Id;
1441 Lo_Bound : Node_Id;
1442 Btyp : Entity_Id;
1444 begin
1445 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1446 return;
1447 end if;
1449 -- Do not attempt to analyze case where range was in error
1451 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
1452 return;
1453 end if;
1455 -- The situation that is nontrivial is something like:
1457 -- subtype x1 is integer range -10 .. +10;
1458 -- subtype x2 is x1 range 0 .. V1;
1459 -- subtype x3 is x2 range V2 .. V3;
1460 -- subtype x4 is x3 range V4 .. V5;
1462 -- where Vn are variables. Here the base type is signed, but we still
1463 -- know that x4 is unsigned because of the lower bound of x2.
1465 -- The only way to deal with this is to look up the ancestor chain
1467 Ancestor := E;
1468 loop
1469 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1470 return;
1471 end if;
1473 Lo_Bound := Type_Low_Bound (Ancestor);
1475 if Compile_Time_Known_Value (Lo_Bound) then
1476 if Expr_Rep_Value (Lo_Bound) >= 0 then
1477 Set_Is_Unsigned_Type (E, True);
1478 end if;
1480 return;
1482 else
1483 Ancestor := Ancestor_Subtype (Ancestor);
1485 -- If no ancestor had a static lower bound, go to base type
1487 if No (Ancestor) then
1489 -- Note: the reason we still check for a compile time known
1490 -- value for the base type is that at least in the case of
1491 -- generic formals, we can have bounds that fail this test,
1492 -- and there may be other cases in error situations.
1494 Btyp := Base_Type (E);
1496 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1497 return;
1498 end if;
1500 Lo_Bound := Type_Low_Bound (Base_Type (E));
1502 if Compile_Time_Known_Value (Lo_Bound)
1503 and then Expr_Rep_Value (Lo_Bound) >= 0
1504 then
1505 Set_Is_Unsigned_Type (E, True);
1506 end if;
1508 return;
1509 end if;
1510 end if;
1511 end loop;
1512 end Check_Unsigned_Type;
1514 -----------------------------
1515 -- Is_Atomic_VFA_Aggregate --
1516 -----------------------------
1518 function Is_Atomic_VFA_Aggregate (N : Node_Id) return Boolean is
1519 Loc : constant Source_Ptr := Sloc (N);
1520 New_N : Node_Id;
1521 Par : Node_Id;
1522 Temp : Entity_Id;
1523 Typ : Entity_Id;
1525 begin
1526 Par := Parent (N);
1528 -- Array may be qualified, so find outer context
1530 if Nkind (Par) = N_Qualified_Expression then
1531 Par := Parent (Par);
1532 end if;
1534 if not Comes_From_Source (Par) then
1535 return False;
1536 end if;
1538 case Nkind (Par) is
1539 when N_Assignment_Statement =>
1540 Typ := Etype (Name (Par));
1542 if not Is_Atomic_Or_VFA (Typ)
1543 and then not (Is_Entity_Name (Name (Par))
1544 and then Is_Atomic_Or_VFA (Entity (Name (Par))))
1545 then
1546 return False;
1547 end if;
1549 when N_Object_Declaration =>
1550 Typ := Etype (Defining_Identifier (Par));
1552 if not Is_Atomic_Or_VFA (Typ)
1553 and then not Is_Atomic_Or_VFA (Defining_Identifier (Par))
1554 then
1555 return False;
1556 end if;
1558 when others =>
1559 return False;
1560 end case;
1562 Temp := Make_Temporary (Loc, 'T', N);
1563 New_N :=
1564 Make_Object_Declaration (Loc,
1565 Defining_Identifier => Temp,
1566 Object_Definition => New_Occurrence_Of (Typ, Loc),
1567 Expression => Relocate_Node (N));
1568 Insert_Before (Par, New_N);
1569 Analyze (New_N);
1571 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1572 return True;
1573 end Is_Atomic_VFA_Aggregate;
1575 -----------------------------------------------
1576 -- Explode_Initialization_Compound_Statement --
1577 -----------------------------------------------
1579 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
1580 Init_Stmts : constant Node_Id := Initialization_Statements (E);
1582 begin
1583 if Present (Init_Stmts)
1584 and then Nkind (Init_Stmts) = N_Compound_Statement
1585 then
1586 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
1588 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1589 -- just removing it, because Freeze_All may rely on this particular
1590 -- Node_Id still being present in the enclosing list to know where to
1591 -- stop freezing.
1593 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
1595 Set_Initialization_Statements (E, Empty);
1596 end if;
1597 end Explode_Initialization_Compound_Statement;
1599 ----------------
1600 -- Freeze_All --
1601 ----------------
1603 -- Note: the easy coding for this procedure would be to just build a
1604 -- single list of freeze nodes and then insert them and analyze them
1605 -- all at once. This won't work, because the analysis of earlier freeze
1606 -- nodes may recursively freeze types which would otherwise appear later
1607 -- on in the freeze list. So we must analyze and expand the freeze nodes
1608 -- as they are generated.
1610 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1611 E : Entity_Id;
1612 Decl : Node_Id;
1614 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1615 -- This is the internal recursive routine that does freezing of entities
1616 -- (but NOT the analysis of default expressions, which should not be
1617 -- recursive, we don't want to analyze those till we are sure that ALL
1618 -- the types are frozen).
1620 --------------------
1621 -- Freeze_All_Ent --
1622 --------------------
1624 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1625 E : Entity_Id;
1626 Flist : List_Id;
1627 Lastn : Node_Id;
1629 procedure Process_Flist;
1630 -- If freeze nodes are present, insert and analyze, and reset cursor
1631 -- for next insertion.
1633 -------------------
1634 -- Process_Flist --
1635 -------------------
1637 procedure Process_Flist is
1638 begin
1639 if Is_Non_Empty_List (Flist) then
1640 Lastn := Next (After);
1641 Insert_List_After_And_Analyze (After, Flist);
1643 if Present (Lastn) then
1644 After := Prev (Lastn);
1645 else
1646 After := Last (List_Containing (After));
1647 end if;
1648 end if;
1649 end Process_Flist;
1651 -- Start of processing for Freeze_All_Ent
1653 begin
1654 E := From;
1655 while Present (E) loop
1657 -- If the entity is an inner package which is not a package
1658 -- renaming, then its entities must be frozen at this point. Note
1659 -- that such entities do NOT get frozen at the end of the nested
1660 -- package itself (only library packages freeze).
1662 -- Same is true for task declarations, where anonymous records
1663 -- created for entry parameters must be frozen.
1665 if Ekind (E) = E_Package
1666 and then No (Renamed_Object (E))
1667 and then not Is_Child_Unit (E)
1668 and then not Is_Frozen (E)
1669 then
1670 Push_Scope (E);
1671 Install_Visible_Declarations (E);
1672 Install_Private_Declarations (E);
1674 Freeze_All (First_Entity (E), After);
1676 End_Package_Scope (E);
1678 if Is_Generic_Instance (E)
1679 and then Has_Delayed_Freeze (E)
1680 then
1681 Set_Has_Delayed_Freeze (E, False);
1682 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1683 end if;
1685 elsif Ekind (E) in Task_Kind
1686 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1687 N_Single_Task_Declaration)
1688 then
1689 Push_Scope (E);
1690 Freeze_All (First_Entity (E), After);
1691 End_Scope;
1693 -- For a derived tagged type, we must ensure that all the
1694 -- primitive operations of the parent have been frozen, so that
1695 -- their addresses will be in the parent's dispatch table at the
1696 -- point it is inherited.
1698 elsif Ekind (E) = E_Record_Type
1699 and then Is_Tagged_Type (E)
1700 and then Is_Tagged_Type (Etype (E))
1701 and then Is_Derived_Type (E)
1702 then
1703 declare
1704 Prim_List : constant Elist_Id :=
1705 Primitive_Operations (Etype (E));
1707 Prim : Elmt_Id;
1708 Subp : Entity_Id;
1710 begin
1711 Prim := First_Elmt (Prim_List);
1712 while Present (Prim) loop
1713 Subp := Node (Prim);
1715 if Comes_From_Source (Subp)
1716 and then not Is_Frozen (Subp)
1717 then
1718 Flist := Freeze_Entity (Subp, After);
1719 Process_Flist;
1720 end if;
1722 Next_Elmt (Prim);
1723 end loop;
1724 end;
1725 end if;
1727 if not Is_Frozen (E) then
1728 Flist := Freeze_Entity (E, After);
1729 Process_Flist;
1731 -- If already frozen, and there are delayed aspects, this is where
1732 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1733 -- for a description of how we handle aspect visibility).
1735 elsif Has_Delayed_Aspects (E) then
1737 -- Retrieve the visibility to the discriminants in order to
1738 -- analyze properly the aspects.
1740 Push_Scope_And_Install_Discriminants (E);
1742 declare
1743 Ritem : Node_Id;
1745 begin
1746 Ritem := First_Rep_Item (E);
1747 while Present (Ritem) loop
1748 if Nkind (Ritem) = N_Aspect_Specification
1749 and then Entity (Ritem) = E
1750 and then Is_Delayed_Aspect (Ritem)
1751 then
1752 Check_Aspect_At_End_Of_Declarations (Ritem);
1753 end if;
1755 Ritem := Next_Rep_Item (Ritem);
1756 end loop;
1757 end;
1759 Uninstall_Discriminants_And_Pop_Scope (E);
1760 end if;
1762 -- If an incomplete type is still not frozen, this may be a
1763 -- premature freezing because of a body declaration that follows.
1764 -- Indicate where the freezing took place. Freezing will happen
1765 -- if the body comes from source, but not if it is internally
1766 -- generated, for example as the body of a type invariant.
1768 -- If the freezing is caused by the end of the current declarative
1769 -- part, it is a Taft Amendment type, and there is no error.
1771 if not Is_Frozen (E)
1772 and then Ekind (E) = E_Incomplete_Type
1773 then
1774 declare
1775 Bod : constant Node_Id := Next (After);
1777 begin
1778 -- The presence of a body freezes all entities previously
1779 -- declared in the current list of declarations, but this
1780 -- does not apply if the body does not come from source.
1781 -- A type invariant is transformed into a subprogram body
1782 -- which is placed at the end of the private part of the
1783 -- current package, but this body does not freeze incomplete
1784 -- types that may be declared in this private part.
1786 if (Nkind_In (Bod, N_Subprogram_Body,
1787 N_Entry_Body,
1788 N_Package_Body,
1789 N_Protected_Body,
1790 N_Task_Body)
1791 or else Nkind (Bod) in N_Body_Stub)
1792 and then
1793 List_Containing (After) = List_Containing (Parent (E))
1794 and then Comes_From_Source (Bod)
1795 then
1796 Error_Msg_Sloc := Sloc (Next (After));
1797 Error_Msg_NE
1798 ("type& is frozen# before its full declaration",
1799 Parent (E), E);
1800 end if;
1801 end;
1802 end if;
1804 Next_Entity (E);
1805 end loop;
1806 end Freeze_All_Ent;
1808 -- Start of processing for Freeze_All
1810 begin
1811 Freeze_All_Ent (From, After);
1813 -- Now that all types are frozen, we can deal with default expressions
1814 -- that require us to build a default expression functions. This is the
1815 -- point at which such functions are constructed (after all types that
1816 -- might be used in such expressions have been frozen).
1818 -- For subprograms that are renaming_as_body, we create the wrapper
1819 -- bodies as needed.
1821 -- We also add finalization chains to access types whose designated
1822 -- types are controlled. This is normally done when freezing the type,
1823 -- but this misses recursive type definitions where the later members
1824 -- of the recursion introduce controlled components.
1826 -- Loop through entities
1828 E := From;
1829 while Present (E) loop
1830 if Is_Subprogram (E) then
1831 if not Default_Expressions_Processed (E) then
1832 Process_Default_Expressions (E, After);
1833 end if;
1835 if not Has_Completion (E) then
1836 Decl := Unit_Declaration_Node (E);
1838 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1839 if Error_Posted (Decl) then
1840 Set_Has_Completion (E);
1841 else
1842 Build_And_Analyze_Renamed_Body (Decl, E, After);
1843 end if;
1845 elsif Nkind (Decl) = N_Subprogram_Declaration
1846 and then Present (Corresponding_Body (Decl))
1847 and then
1848 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1849 = N_Subprogram_Renaming_Declaration
1850 then
1851 Build_And_Analyze_Renamed_Body
1852 (Decl, Corresponding_Body (Decl), After);
1853 end if;
1854 end if;
1856 elsif Ekind (E) in Task_Kind
1857 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1858 N_Single_Task_Declaration)
1859 then
1860 declare
1861 Ent : Entity_Id;
1863 begin
1864 Ent := First_Entity (E);
1865 while Present (Ent) loop
1866 if Is_Entry (Ent)
1867 and then not Default_Expressions_Processed (Ent)
1868 then
1869 Process_Default_Expressions (Ent, After);
1870 end if;
1872 Next_Entity (Ent);
1873 end loop;
1874 end;
1875 end if;
1877 -- Historical note: We used to create a finalization master for an
1878 -- access type whose designated type is not controlled, but contains
1879 -- private controlled compoments. This form of postprocessing is no
1880 -- longer needed because the finalization master is now created when
1881 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
1883 Next_Entity (E);
1884 end loop;
1885 end Freeze_All;
1887 -----------------------
1888 -- Freeze_And_Append --
1889 -----------------------
1891 procedure Freeze_And_Append
1892 (Ent : Entity_Id;
1893 N : Node_Id;
1894 Result : in out List_Id)
1896 L : constant List_Id := Freeze_Entity (Ent, N);
1897 begin
1898 if Is_Non_Empty_List (L) then
1899 if Result = No_List then
1900 Result := L;
1901 else
1902 Append_List (L, Result);
1903 end if;
1904 end if;
1905 end Freeze_And_Append;
1907 -------------------
1908 -- Freeze_Before --
1909 -------------------
1911 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1912 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
1914 begin
1915 if Ekind (T) = E_Function then
1916 Check_Expression_Function (N, T);
1917 end if;
1919 if Is_Non_Empty_List (Freeze_Nodes) then
1920 Insert_Actions (N, Freeze_Nodes);
1921 end if;
1922 end Freeze_Before;
1924 -------------------
1925 -- Freeze_Entity --
1926 -------------------
1928 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1929 Loc : constant Source_Ptr := Sloc (N);
1930 Atype : Entity_Id;
1931 Comp : Entity_Id;
1932 F_Node : Node_Id;
1933 Formal : Entity_Id;
1934 Indx : Node_Id;
1936 Has_Default_Initialization : Boolean := False;
1937 -- This flag gets set to true for a variable with default initialization
1939 Late_Freezing : Boolean := False;
1940 -- Used to detect attempt to freeze function declared in another unit
1942 Result : List_Id := No_List;
1943 -- List of freezing actions, left at No_List if none
1945 Test_E : Entity_Id := E;
1946 -- This could use a comment ???
1948 procedure Add_To_Result (N : Node_Id);
1949 -- N is a freezing action to be appended to the Result
1951 function After_Last_Declaration return Boolean;
1952 -- If Loc is a freeze_entity that appears after the last declaration
1953 -- in the scope, inhibit error messages on late completion.
1955 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1956 -- Check that an Access or Unchecked_Access attribute with a prefix
1957 -- which is the current instance type can only be applied when the type
1958 -- is limited.
1960 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1961 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1962 -- integer literal without an explicit corresponding size clause. The
1963 -- caller has checked that Utype is a modular integer type.
1965 procedure Freeze_Array_Type (Arr : Entity_Id);
1966 -- Freeze array type, including freezing index and component types
1968 procedure Freeze_Object_Declaration (E : Entity_Id);
1969 -- Perform checks and generate freeze node if needed for a constant or
1970 -- variable declared by an object declaration.
1972 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
1973 -- Create Freeze_Generic_Entity nodes for types declared in a generic
1974 -- package. Recurse on inner generic packages.
1976 function Freeze_Profile (E : Entity_Id) return Boolean;
1977 -- Freeze formals and return type of subprogram. If some type in the
1978 -- profile is a limited view, freezing of the entity will take place
1979 -- elsewhere, and the function returns False. This routine will be
1980 -- modified if and when we can implement AI05-019 efficiently ???
1982 procedure Freeze_Record_Type (Rec : Entity_Id);
1983 -- Freeze record type, including freezing component types, and freezing
1984 -- primitive operations if this is a tagged type.
1986 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
1987 -- Determine whether an arbitrary entity is subject to Boolean aspect
1988 -- Import and its value is specified as True.
1990 procedure Late_Freeze_Subprogram (E : Entity_Id);
1991 -- Following AI05-151, a function can return a limited view of a type
1992 -- declared elsewhere. In that case the function cannot be frozen at
1993 -- the end of its enclosing package. If its first use is in a different
1994 -- unit, it cannot be frozen there, but if the call is legal the full
1995 -- view of the return type is available and the subprogram can now be
1996 -- frozen. However the freeze node cannot be inserted at the point of
1997 -- call, but rather must go in the package holding the function, so that
1998 -- the backend can process it in the proper context.
2000 procedure Wrap_Imported_Subprogram (E : Entity_Id);
2001 -- If E is an entity for an imported subprogram with pre/post-conditions
2002 -- then this procedure will create a wrapper to ensure that proper run-
2003 -- time checking of the pre/postconditions. See body for details.
2005 -------------------
2006 -- Add_To_Result --
2007 -------------------
2009 procedure Add_To_Result (N : Node_Id) is
2010 begin
2011 if No (Result) then
2012 Result := New_List (N);
2013 else
2014 Append (N, Result);
2015 end if;
2016 end Add_To_Result;
2018 ----------------------------
2019 -- After_Last_Declaration --
2020 ----------------------------
2022 function After_Last_Declaration return Boolean is
2023 Spec : constant Node_Id := Parent (Current_Scope);
2025 begin
2026 if Nkind (Spec) = N_Package_Specification then
2027 if Present (Private_Declarations (Spec)) then
2028 return Loc >= Sloc (Last (Private_Declarations (Spec)));
2029 elsif Present (Visible_Declarations (Spec)) then
2030 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
2031 else
2032 return False;
2033 end if;
2035 else
2036 return False;
2037 end if;
2038 end After_Last_Declaration;
2040 ----------------------------
2041 -- Check_Current_Instance --
2042 ----------------------------
2044 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
2046 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
2047 -- Determine whether Typ is compatible with the rules for aliased
2048 -- views of types as defined in RM 3.10 in the various dialects.
2050 function Process (N : Node_Id) return Traverse_Result;
2051 -- Process routine to apply check to given node
2053 -----------------------------
2054 -- Is_Aliased_View_Of_Type --
2055 -----------------------------
2057 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
2058 Typ_Decl : constant Node_Id := Parent (Typ);
2060 begin
2061 -- Common case
2063 if Nkind (Typ_Decl) = N_Full_Type_Declaration
2064 and then Limited_Present (Type_Definition (Typ_Decl))
2065 then
2066 return True;
2068 -- The following paragraphs describe what a legal aliased view of
2069 -- a type is in the various dialects of Ada.
2071 -- Ada 95
2073 -- The current instance of a limited type, and a formal parameter
2074 -- or generic formal object of a tagged type.
2076 -- Ada 95 limited type
2077 -- * Type with reserved word "limited"
2078 -- * A protected or task type
2079 -- * A composite type with limited component
2081 elsif Ada_Version <= Ada_95 then
2082 return Is_Limited_Type (Typ);
2084 -- Ada 2005
2086 -- The current instance of a limited tagged type, a protected
2087 -- type, a task type, or a type that has the reserved word
2088 -- "limited" in its full definition ... a formal parameter or
2089 -- generic formal object of a tagged type.
2091 -- Ada 2005 limited type
2092 -- * Type with reserved word "limited", "synchronized", "task"
2093 -- or "protected"
2094 -- * A composite type with limited component
2095 -- * A derived type whose parent is a non-interface limited type
2097 elsif Ada_Version = Ada_2005 then
2098 return
2099 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
2100 or else
2101 (Is_Derived_Type (Typ)
2102 and then not Is_Interface (Etype (Typ))
2103 and then Is_Limited_Type (Etype (Typ)));
2105 -- Ada 2012 and beyond
2107 -- The current instance of an immutably limited type ... a formal
2108 -- parameter or generic formal object of a tagged type.
2110 -- Ada 2012 limited type
2111 -- * Type with reserved word "limited", "synchronized", "task"
2112 -- or "protected"
2113 -- * A composite type with limited component
2114 -- * A derived type whose parent is a non-interface limited type
2115 -- * An incomplete view
2117 -- Ada 2012 immutably limited type
2118 -- * Explicitly limited record type
2119 -- * Record extension with "limited" present
2120 -- * Non-formal limited private type that is either tagged
2121 -- or has at least one access discriminant with a default
2122 -- expression
2123 -- * Task type, protected type or synchronized interface
2124 -- * Type derived from immutably limited type
2126 else
2127 return
2128 Is_Immutably_Limited_Type (Typ)
2129 or else Is_Incomplete_Type (Typ);
2130 end if;
2131 end Is_Aliased_View_Of_Type;
2133 -------------
2134 -- Process --
2135 -------------
2137 function Process (N : Node_Id) return Traverse_Result is
2138 begin
2139 case Nkind (N) is
2140 when N_Attribute_Reference =>
2141 if Nam_In (Attribute_Name (N), Name_Access,
2142 Name_Unchecked_Access)
2143 and then Is_Entity_Name (Prefix (N))
2144 and then Is_Type (Entity (Prefix (N)))
2145 and then Entity (Prefix (N)) = E
2146 then
2147 if Ada_Version < Ada_2012 then
2148 Error_Msg_N
2149 ("current instance must be a limited type",
2150 Prefix (N));
2151 else
2152 Error_Msg_N
2153 ("current instance must be an immutably limited "
2154 & "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
2155 end if;
2157 return Abandon;
2159 else
2160 return OK;
2161 end if;
2163 when others => return OK;
2164 end case;
2165 end Process;
2167 procedure Traverse is new Traverse_Proc (Process);
2169 -- Local variables
2171 Rec_Type : constant Entity_Id :=
2172 Scope (Defining_Identifier (Comp_Decl));
2174 -- Start of processing for Check_Current_Instance
2176 begin
2177 if not Is_Aliased_View_Of_Type (Rec_Type) then
2178 Traverse (Comp_Decl);
2179 end if;
2180 end Check_Current_Instance;
2182 ------------------------------
2183 -- Check_Suspicious_Modulus --
2184 ------------------------------
2186 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
2187 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
2189 begin
2190 if not Warn_On_Suspicious_Modulus_Value then
2191 return;
2192 end if;
2194 if Nkind (Decl) = N_Full_Type_Declaration then
2195 declare
2196 Tdef : constant Node_Id := Type_Definition (Decl);
2198 begin
2199 if Nkind (Tdef) = N_Modular_Type_Definition then
2200 declare
2201 Modulus : constant Node_Id :=
2202 Original_Node (Expression (Tdef));
2204 begin
2205 if Nkind (Modulus) = N_Integer_Literal then
2206 declare
2207 Modv : constant Uint := Intval (Modulus);
2208 Sizv : constant Uint := RM_Size (Utype);
2210 begin
2211 -- First case, modulus and size are the same. This
2212 -- happens if you have something like mod 32, with
2213 -- an explicit size of 32, this is for sure a case
2214 -- where the warning is given, since it is seems
2215 -- very unlikely that someone would want e.g. a
2216 -- five bit type stored in 32 bits. It is much
2217 -- more likely they wanted a 32-bit type.
2219 if Modv = Sizv then
2220 null;
2222 -- Second case, the modulus is 32 or 64 and no
2223 -- size clause is present. This is a less clear
2224 -- case for giving the warning, but in the case
2225 -- of 32/64 (5-bit or 6-bit types) these seem rare
2226 -- enough that it is a likely error (and in any
2227 -- case using 2**5 or 2**6 in these cases seems
2228 -- clearer. We don't include 8 or 16 here, simply
2229 -- because in practice 3-bit and 4-bit types are
2230 -- more common and too many false positives if
2231 -- we warn in these cases.
2233 elsif not Has_Size_Clause (Utype)
2234 and then (Modv = Uint_32 or else Modv = Uint_64)
2235 then
2236 null;
2238 -- No warning needed
2240 else
2241 return;
2242 end if;
2244 -- If we fall through, give warning
2246 Error_Msg_Uint_1 := Modv;
2247 Error_Msg_N
2248 ("?M?2 '*'*^' may have been intended here",
2249 Modulus);
2250 end;
2251 end if;
2252 end;
2253 end if;
2254 end;
2255 end if;
2256 end Check_Suspicious_Modulus;
2258 -----------------------
2259 -- Freeze_Array_Type --
2260 -----------------------
2262 procedure Freeze_Array_Type (Arr : Entity_Id) is
2263 FS : constant Entity_Id := First_Subtype (Arr);
2264 Ctyp : constant Entity_Id := Component_Type (Arr);
2265 Clause : Entity_Id;
2267 Non_Standard_Enum : Boolean := False;
2268 -- Set true if any of the index types is an enumeration type with a
2269 -- non-standard representation.
2271 begin
2272 Freeze_And_Append (Ctyp, N, Result);
2274 Indx := First_Index (Arr);
2275 while Present (Indx) loop
2276 Freeze_And_Append (Etype (Indx), N, Result);
2278 if Is_Enumeration_Type (Etype (Indx))
2279 and then Has_Non_Standard_Rep (Etype (Indx))
2280 then
2281 Non_Standard_Enum := True;
2282 end if;
2284 Next_Index (Indx);
2285 end loop;
2287 -- Processing that is done only for base types
2289 if Ekind (Arr) = E_Array_Type then
2291 -- Deal with default setting of reverse storage order
2293 Set_SSO_From_Default (Arr);
2295 -- Propagate flags for component type
2297 if Is_Controlled_Active (Component_Type (Arr))
2298 or else Has_Controlled_Component (Ctyp)
2299 then
2300 Set_Has_Controlled_Component (Arr);
2301 end if;
2303 if Has_Unchecked_Union (Component_Type (Arr)) then
2304 Set_Has_Unchecked_Union (Arr);
2305 end if;
2307 -- Warn for pragma Pack overriding foreign convention
2309 if Has_Foreign_Convention (Ctyp)
2310 and then Has_Pragma_Pack (Arr)
2311 then
2312 declare
2313 CN : constant Name_Id :=
2314 Get_Convention_Name (Convention (Ctyp));
2315 PP : constant Node_Id :=
2316 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2317 begin
2318 if Present (PP) then
2319 Error_Msg_Name_1 := CN;
2320 Error_Msg_Sloc := Sloc (Arr);
2321 Error_Msg_N
2322 ("pragma Pack affects convention % components #??", PP);
2323 Error_Msg_Name_1 := CN;
2324 Error_Msg_N
2325 ("\array components may not have % compatible "
2326 & "representation??", PP);
2327 end if;
2328 end;
2329 end if;
2331 -- If packing was requested or if the component size was
2332 -- set explicitly, then see if bit packing is required. This
2333 -- processing is only done for base types, since all of the
2334 -- representation aspects involved are type-related.
2336 -- This is not just an optimization, if we start processing the
2337 -- subtypes, they interfere with the settings on the base type
2338 -- (this is because Is_Packed has a slightly different meaning
2339 -- before and after freezing).
2341 declare
2342 Csiz : Uint;
2343 Esiz : Uint;
2345 begin
2346 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2347 and then Known_Static_RM_Size (Ctyp)
2348 and then not Has_Component_Size_Clause (Arr)
2349 then
2350 Csiz := UI_Max (RM_Size (Ctyp), 1);
2352 elsif Known_Component_Size (Arr) then
2353 Csiz := Component_Size (Arr);
2355 elsif not Known_Static_Esize (Ctyp) then
2356 Csiz := Uint_0;
2358 else
2359 Esiz := Esize (Ctyp);
2361 -- We can set the component size if it is less than 16,
2362 -- rounding it up to the next storage unit size.
2364 if Esiz <= 8 then
2365 Csiz := Uint_8;
2366 elsif Esiz <= 16 then
2367 Csiz := Uint_16;
2368 else
2369 Csiz := Uint_0;
2370 end if;
2372 -- Set component size up to match alignment if it would
2373 -- otherwise be less than the alignment. This deals with
2374 -- cases of types whose alignment exceeds their size (the
2375 -- padded type cases).
2377 if Csiz /= 0 then
2378 declare
2379 A : constant Uint := Alignment_In_Bits (Ctyp);
2380 begin
2381 if Csiz < A then
2382 Csiz := A;
2383 end if;
2384 end;
2385 end if;
2386 end if;
2388 -- Case of component size that may result in packing
2390 if 1 <= Csiz and then Csiz <= 64 then
2391 declare
2392 Ent : constant Entity_Id :=
2393 First_Subtype (Arr);
2394 Pack_Pragma : constant Node_Id :=
2395 Get_Rep_Pragma (Ent, Name_Pack);
2396 Comp_Size_C : constant Node_Id :=
2397 Get_Attribute_Definition_Clause
2398 (Ent, Attribute_Component_Size);
2400 begin
2401 -- Warn if we have pack and component size so that the
2402 -- pack is ignored.
2404 -- Note: here we must check for the presence of a
2405 -- component size before checking for a Pack pragma to
2406 -- deal with the case where the array type is a derived
2407 -- type whose parent is currently private.
2409 if Present (Comp_Size_C)
2410 and then Has_Pragma_Pack (Ent)
2411 and then Warn_On_Redundant_Constructs
2412 then
2413 Error_Msg_Sloc := Sloc (Comp_Size_C);
2414 Error_Msg_NE
2415 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
2416 Error_Msg_N
2417 ("\?r?explicit component size given#!", Pack_Pragma);
2418 Set_Is_Packed (Base_Type (Ent), False);
2419 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2420 end if;
2422 -- Set component size if not already set by a component
2423 -- size clause.
2425 if not Present (Comp_Size_C) then
2426 Set_Component_Size (Arr, Csiz);
2427 end if;
2429 -- Check for base type of 8, 16, 32 bits, where an
2430 -- unsigned subtype has a length one less than the
2431 -- base type (e.g. Natural subtype of Integer).
2433 -- In such cases, if a component size was not set
2434 -- explicitly, then generate a warning.
2436 if Has_Pragma_Pack (Arr)
2437 and then not Present (Comp_Size_C)
2438 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2439 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2440 then
2441 Error_Msg_Uint_1 := Csiz;
2443 if Present (Pack_Pragma) then
2444 Error_Msg_N
2445 ("??pragma Pack causes component size to be ^!",
2446 Pack_Pragma);
2447 Error_Msg_N
2448 ("\??use Component_Size to set desired value!",
2449 Pack_Pragma);
2450 end if;
2451 end if;
2453 -- Actual packing is not needed for 8, 16, 32, 64. Also
2454 -- not needed for 24 if alignment is 1.
2456 if Csiz = 8
2457 or else Csiz = 16
2458 or else Csiz = 32
2459 or else Csiz = 64
2460 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2461 then
2462 -- Here the array was requested to be packed, but
2463 -- the packing request had no effect, so Is_Packed
2464 -- is reset.
2466 -- Note: semantically this means that we lose track
2467 -- of the fact that a derived type inherited a pragma
2468 -- Pack that was non- effective, but that seems fine.
2470 -- We regard a Pack pragma as a request to set a
2471 -- representation characteristic, and this request
2472 -- may be ignored.
2474 Set_Is_Packed (Base_Type (Arr), False);
2475 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2477 if Known_Static_Esize (Component_Type (Arr))
2478 and then Esize (Component_Type (Arr)) = Csiz
2479 then
2480 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
2481 end if;
2483 -- In all other cases, packing is indeed needed
2485 else
2486 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2487 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2488 Set_Is_Packed (Base_Type (Arr), True);
2489 end if;
2490 end;
2491 end if;
2492 end;
2494 -- Check for Aliased or Atomic_Components/Atomic/VFA with
2495 -- unsuitable packing or explicit component size clause given.
2497 if (Has_Aliased_Components (Arr)
2498 or else Has_Atomic_Components (Arr)
2499 or else Is_Atomic_Or_VFA (Ctyp))
2500 and then
2501 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2502 then
2503 Alias_Atomic_Check : declare
2505 procedure Complain_CS (T : String);
2506 -- Outputs error messages for incorrect CS clause or pragma
2507 -- Pack for aliased or atomic/VFA components (T is "aliased"
2508 -- or "atomic/vfa");
2510 -----------------
2511 -- Complain_CS --
2512 -----------------
2514 procedure Complain_CS (T : String) is
2515 begin
2516 if Has_Component_Size_Clause (Arr) then
2517 Clause :=
2518 Get_Attribute_Definition_Clause
2519 (FS, Attribute_Component_Size);
2521 Error_Msg_N
2522 ("incorrect component size for "
2523 & T & " components", Clause);
2524 Error_Msg_Uint_1 := Esize (Ctyp);
2525 Error_Msg_N
2526 ("\only allowed value is^", Clause);
2528 else
2529 Error_Msg_N
2530 ("cannot pack " & T & " components",
2531 Get_Rep_Pragma (FS, Name_Pack));
2532 end if;
2533 end Complain_CS;
2535 -- Start of processing for Alias_Atomic_Check
2537 begin
2538 -- If object size of component type isn't known, we cannot
2539 -- be sure so we defer to the back end.
2541 if not Known_Static_Esize (Ctyp) then
2542 null;
2544 -- Case where component size has no effect. First check for
2545 -- object size of component type multiple of the storage
2546 -- unit size.
2548 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2550 -- OK in both packing case and component size case if RM
2551 -- size is known and static and same as the object size.
2553 and then
2554 ((Known_Static_RM_Size (Ctyp)
2555 and then Esize (Ctyp) = RM_Size (Ctyp))
2557 -- Or if we have an explicit component size clause and
2558 -- the component size and object size are equal.
2560 or else
2561 (Has_Component_Size_Clause (Arr)
2562 and then Component_Size (Arr) = Esize (Ctyp)))
2563 then
2564 null;
2566 elsif Has_Aliased_Components (Arr) then
2567 Complain_CS ("aliased");
2569 elsif Has_Atomic_Components (Arr)
2570 or else Is_Atomic (Ctyp)
2571 then
2572 Complain_CS ("atomic");
2574 elsif Is_Volatile_Full_Access (Ctyp) then
2575 Complain_CS ("volatile full access");
2576 end if;
2577 end Alias_Atomic_Check;
2578 end if;
2580 -- Check for Independent_Components/Independent with unsuitable
2581 -- packing or explicit component size clause given.
2583 if (Has_Independent_Components (Arr) or else Is_Independent (Ctyp))
2584 and then
2585 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2586 then
2587 begin
2588 -- If object size of component type isn't known, we cannot
2589 -- be sure so we defer to the back end.
2591 if not Known_Static_Esize (Ctyp) then
2592 null;
2594 -- Case where component size has no effect. First check for
2595 -- object size of component type multiple of the storage
2596 -- unit size.
2598 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2600 -- OK in both packing case and component size case if RM
2601 -- size is known and multiple of the storage unit size.
2603 and then
2604 ((Known_Static_RM_Size (Ctyp)
2605 and then RM_Size (Ctyp) mod System_Storage_Unit = 0)
2607 -- Or if we have an explicit component size clause and
2608 -- the component size is larger than the object size.
2610 or else
2611 (Has_Component_Size_Clause (Arr)
2612 and then Component_Size (Arr) >= Esize (Ctyp)))
2613 then
2614 null;
2616 else
2617 if Has_Component_Size_Clause (Arr) then
2618 Clause :=
2619 Get_Attribute_Definition_Clause
2620 (FS, Attribute_Component_Size);
2622 Error_Msg_N
2623 ("incorrect component size for "
2624 & "independent components", Clause);
2625 Error_Msg_Uint_1 := Esize (Ctyp);
2626 Error_Msg_N
2627 ("\minimum allowed is^", Clause);
2629 else
2630 Error_Msg_N
2631 ("cannot pack independent components",
2632 Get_Rep_Pragma (FS, Name_Pack));
2633 end if;
2634 end if;
2635 end;
2636 end if;
2638 -- Warn for case of atomic type
2640 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2642 if Present (Clause)
2643 and then not Addressable (Component_Size (FS))
2644 then
2645 Error_Msg_NE
2646 ("non-atomic components of type& may not be "
2647 & "accessible by separate tasks??", Clause, Arr);
2649 if Has_Component_Size_Clause (Arr) then
2650 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2651 (FS, Attribute_Component_Size));
2652 Error_Msg_N ("\because of component size clause#??", Clause);
2654 elsif Has_Pragma_Pack (Arr) then
2655 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2656 Error_Msg_N ("\because of pragma Pack#??", Clause);
2657 end if;
2658 end if;
2660 -- Check for scalar storage order
2662 declare
2663 Dummy : Boolean;
2664 begin
2665 Check_Component_Storage_Order
2666 (Encl_Type => Arr,
2667 Comp => Empty,
2668 ADC => Get_Attribute_Definition_Clause
2669 (First_Subtype (Arr),
2670 Attribute_Scalar_Storage_Order),
2671 Comp_ADC_Present => Dummy);
2672 end;
2674 -- Processing that is done only for subtypes
2676 else
2677 -- Acquire alignment from base type
2679 if Unknown_Alignment (Arr) then
2680 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2681 Adjust_Esize_Alignment (Arr);
2682 end if;
2683 end if;
2685 -- Specific checks for bit-packed arrays
2687 if Is_Bit_Packed_Array (Arr) then
2689 -- Check number of elements for bit packed arrays that come from
2690 -- source and have compile time known ranges. The bit-packed
2691 -- arrays circuitry does not support arrays with more than
2692 -- Integer'Last + 1 elements, and when this restriction is
2693 -- violated, causes incorrect data access.
2695 -- For the case where this is not compile time known, a run-time
2696 -- check should be generated???
2698 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
2699 declare
2700 Elmts : Uint;
2701 Index : Node_Id;
2702 Ilen : Node_Id;
2703 Ityp : Entity_Id;
2705 begin
2706 Elmts := Uint_1;
2707 Index := First_Index (Arr);
2708 while Present (Index) loop
2709 Ityp := Etype (Index);
2711 -- Never generate an error if any index is of a generic
2712 -- type. We will check this in instances.
2714 if Is_Generic_Type (Ityp) then
2715 Elmts := Uint_0;
2716 exit;
2717 end if;
2719 Ilen :=
2720 Make_Attribute_Reference (Loc,
2721 Prefix => New_Occurrence_Of (Ityp, Loc),
2722 Attribute_Name => Name_Range_Length);
2723 Analyze_And_Resolve (Ilen);
2725 -- No attempt is made to check number of elements if not
2726 -- compile time known.
2728 if Nkind (Ilen) /= N_Integer_Literal then
2729 Elmts := Uint_0;
2730 exit;
2731 end if;
2733 Elmts := Elmts * Intval (Ilen);
2734 Next_Index (Index);
2735 end loop;
2737 if Elmts > Intval (High_Bound
2738 (Scalar_Range (Standard_Integer))) + 1
2739 then
2740 Error_Msg_N
2741 ("bit packed array type may not have "
2742 & "more than Integer''Last+1 elements", Arr);
2743 end if;
2744 end;
2745 end if;
2747 -- Check size
2749 if Known_RM_Size (Arr) then
2750 declare
2751 SizC : constant Node_Id := Size_Clause (Arr);
2752 Discard : Boolean;
2754 begin
2755 -- It is not clear if it is possible to have no size clause
2756 -- at this stage, but it is not worth worrying about. Post
2757 -- error on the entity name in the size clause if present,
2758 -- else on the type entity itself.
2760 if Present (SizC) then
2761 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
2762 else
2763 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
2764 end if;
2765 end;
2766 end if;
2767 end if;
2769 -- If any of the index types was an enumeration type with a non-
2770 -- standard rep clause, then we indicate that the array type is
2771 -- always packed (even if it is not bit packed).
2773 if Non_Standard_Enum then
2774 Set_Has_Non_Standard_Rep (Base_Type (Arr));
2775 Set_Is_Packed (Base_Type (Arr));
2776 end if;
2778 Set_Component_Alignment_If_Not_Set (Arr);
2780 -- If the array is packed, we must create the packed array type to be
2781 -- used to actually implement the type. This is only needed for real
2782 -- array types (not for string literal types, since they are present
2783 -- only for the front end).
2785 if Is_Packed (Arr)
2786 and then Ekind (Arr) /= E_String_Literal_Subtype
2787 then
2788 Create_Packed_Array_Impl_Type (Arr);
2789 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
2791 -- Make sure that we have the necessary routines to implement the
2792 -- packing, and complain now if not. Note that we only test this
2793 -- for constrained array types.
2795 if Is_Constrained (Arr)
2796 and then Is_Bit_Packed_Array (Arr)
2797 and then Present (Packed_Array_Impl_Type (Arr))
2798 and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
2799 then
2800 declare
2801 CS : constant Uint := Component_Size (Arr);
2802 RE : constant RE_Id := Get_Id (UI_To_Int (CS));
2804 begin
2805 if RE /= RE_Null
2806 and then not RTE_Available (RE)
2807 then
2808 Error_Msg_CRT
2809 ("packing of " & UI_Image (CS) & "-bit components",
2810 First_Subtype (Etype (Arr)));
2812 -- Cancel the packing
2814 Set_Is_Packed (Base_Type (Arr), False);
2815 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2816 Set_Packed_Array_Impl_Type (Arr, Empty);
2817 goto Skip_Packed;
2818 end if;
2819 end;
2820 end if;
2822 -- Size information of packed array type is copied to the array
2823 -- type, since this is really the representation. But do not
2824 -- override explicit existing size values. If the ancestor subtype
2825 -- is constrained the Packed_Array_Impl_Type will be inherited
2826 -- from it, but the size may have been provided already, and
2827 -- must not be overridden either.
2829 if not Has_Size_Clause (Arr)
2830 and then
2831 (No (Ancestor_Subtype (Arr))
2832 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
2833 then
2834 Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
2835 Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
2836 end if;
2838 if not Has_Alignment_Clause (Arr) then
2839 Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
2840 end if;
2841 end if;
2843 <<Skip_Packed>>
2845 -- For non-packed arrays set the alignment of the array to the
2846 -- alignment of the component type if it is unknown. Skip this
2847 -- in atomic/VFA case (atomic/VFA arrays may need larger alignments).
2849 if not Is_Packed (Arr)
2850 and then Unknown_Alignment (Arr)
2851 and then Known_Alignment (Ctyp)
2852 and then Known_Static_Component_Size (Arr)
2853 and then Known_Static_Esize (Ctyp)
2854 and then Esize (Ctyp) = Component_Size (Arr)
2855 and then not Is_Atomic_Or_VFA (Arr)
2856 then
2857 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
2858 end if;
2860 -- A Ghost type cannot have a component of protected or task type
2861 -- (SPARK RM 6.9(19)).
2863 if Is_Ghost_Entity (Arr) and then Is_Concurrent_Type (Ctyp) then
2864 Error_Msg_N
2865 ("ghost array type & cannot have concurrent component type",
2866 Arr);
2867 end if;
2868 end Freeze_Array_Type;
2870 -------------------------------
2871 -- Freeze_Object_Declaration --
2872 -------------------------------
2874 procedure Freeze_Object_Declaration (E : Entity_Id) is
2875 begin
2876 -- Abstract type allowed only for C++ imported variables or constants
2878 -- Note: we inhibit this check for objects that do not come from
2879 -- source because there is at least one case (the expansion of
2880 -- x'Class'Input where x is abstract) where we legitimately
2881 -- generate an abstract object.
2883 if Is_Abstract_Type (Etype (E))
2884 and then Comes_From_Source (Parent (E))
2885 and then not (Is_Imported (E) and then Is_CPP_Class (Etype (E)))
2886 then
2887 Error_Msg_N ("type of object cannot be abstract",
2888 Object_Definition (Parent (E)));
2890 if Is_CPP_Class (Etype (E)) then
2891 Error_Msg_NE
2892 ("\} may need a cpp_constructor",
2893 Object_Definition (Parent (E)), Etype (E));
2895 elsif Present (Expression (Parent (E))) then
2896 Error_Msg_N -- CODEFIX
2897 ("\maybe a class-wide type was meant",
2898 Object_Definition (Parent (E)));
2899 end if;
2900 end if;
2902 -- For object created by object declaration, perform required
2903 -- categorization (preelaborate and pure) checks. Defer these
2904 -- checks to freeze time since pragma Import inhibits default
2905 -- initialization and thus pragma Import affects these checks.
2907 Validate_Object_Declaration (Declaration_Node (E));
2909 -- If there is an address clause, check that it is valid
2910 -- and if need be move initialization to the freeze node.
2912 Check_Address_Clause (E);
2914 -- Similar processing is needed for aspects that may affect
2915 -- object layout, like Alignment, if there is an initialization
2916 -- expression.
2918 if Has_Delayed_Aspects (E)
2919 and then Expander_Active
2920 and then Is_Array_Type (Etype (E))
2921 and then Present (Expression (Parent (E)))
2922 then
2923 declare
2924 Decl : constant Node_Id := Parent (E);
2925 Lhs : constant Node_Id := New_Occurrence_Of (E, Loc);
2927 begin
2929 -- Capture initialization value at point of declaration, and
2930 -- make explicit assignment legal, because object may be a
2931 -- constant.
2933 Remove_Side_Effects (Expression (Decl));
2934 Set_Assignment_OK (Lhs);
2936 -- Move initialization to freeze actions.
2938 Append_Freeze_Action (E,
2939 Make_Assignment_Statement (Loc,
2940 Name => Lhs,
2941 Expression => Expression (Decl)));
2943 Set_No_Initialization (Decl);
2944 -- Set_Is_Frozen (E, False);
2945 end;
2946 end if;
2948 -- Reset Is_True_Constant for non-constant aliased object. We
2949 -- consider that the fact that a non-constant object is aliased may
2950 -- indicate that some funny business is going on, e.g. an aliased
2951 -- object is passed by reference to a procedure which captures the
2952 -- address of the object, which is later used to assign a new value,
2953 -- even though the compiler thinks that it is not modified. Such
2954 -- code is highly dubious, but we choose to make it "work" for
2955 -- non-constant aliased objects.
2957 -- Note that we used to do this for all aliased objects, whether or
2958 -- not constant, but this caused anomalies down the line because we
2959 -- ended up with static objects that were not Is_True_Constant. Not
2960 -- resetting Is_True_Constant for (aliased) constant objects ensures
2961 -- that this anomaly never occurs.
2963 -- However, we don't do that for internal entities. We figure that if
2964 -- we deliberately set Is_True_Constant for an internal entity, e.g.
2965 -- a dispatch table entry, then we mean it.
2967 if Ekind (E) /= E_Constant
2968 and then (Is_Aliased (E) or else Is_Aliased (Etype (E)))
2969 and then not Is_Internal_Name (Chars (E))
2970 then
2971 Set_Is_True_Constant (E, False);
2972 end if;
2974 -- If the object needs any kind of default initialization, an error
2975 -- must be issued if No_Default_Initialization applies. The check
2976 -- doesn't apply to imported objects, which are not ever default
2977 -- initialized, and is why the check is deferred until freezing, at
2978 -- which point we know if Import applies. Deferred constants are also
2979 -- exempted from this test because their completion is explicit, or
2980 -- through an import pragma.
2982 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
2983 null;
2985 elsif Comes_From_Source (E)
2986 and then not Is_Imported (E)
2987 and then not Has_Init_Expression (Declaration_Node (E))
2988 and then
2989 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2990 and then not No_Initialization (Declaration_Node (E))
2991 and then not Initialization_Suppressed (Etype (E)))
2992 or else
2993 (Needs_Simple_Initialization (Etype (E))
2994 and then not Is_Internal (E)))
2995 then
2996 Has_Default_Initialization := True;
2997 Check_Restriction
2998 (No_Default_Initialization, Declaration_Node (E));
2999 end if;
3001 -- Check that a Thread_Local_Storage variable does not have
3002 -- default initialization, and any explicit initialization must
3003 -- either be the null constant or a static constant.
3005 if Has_Pragma_Thread_Local_Storage (E) then
3006 declare
3007 Decl : constant Node_Id := Declaration_Node (E);
3008 begin
3009 if Has_Default_Initialization
3010 or else
3011 (Has_Init_Expression (Decl)
3012 and then
3013 (No (Expression (Decl))
3014 or else not
3015 (Is_OK_Static_Expression (Expression (Decl))
3016 or else Nkind (Expression (Decl)) = N_Null)))
3017 then
3018 Error_Msg_NE
3019 ("Thread_Local_Storage variable& is "
3020 & "improperly initialized", Decl, E);
3021 Error_Msg_NE
3022 ("\only allowed initialization is explicit "
3023 & "NULL or static expression", Decl, E);
3024 end if;
3025 end;
3026 end if;
3028 -- For imported objects, set Is_Public unless there is also an
3029 -- address clause, which means that there is no external symbol
3030 -- needed for the Import (Is_Public may still be set for other
3031 -- unrelated reasons). Note that we delayed this processing
3032 -- till freeze time so that we can be sure not to set the flag
3033 -- if there is an address clause. If there is such a clause,
3034 -- then the only purpose of the Import pragma is to suppress
3035 -- implicit initialization.
3037 if Is_Imported (E) and then No (Address_Clause (E)) then
3038 Set_Is_Public (E);
3039 end if;
3041 -- For source objects that are not Imported and are library
3042 -- level, if no linker section pragma was given inherit the
3043 -- appropriate linker section from the corresponding type.
3045 if Comes_From_Source (E)
3046 and then not Is_Imported (E)
3047 and then Is_Library_Level_Entity (E)
3048 and then No (Linker_Section_Pragma (E))
3049 then
3050 Set_Linker_Section_Pragma
3051 (E, Linker_Section_Pragma (Etype (E)));
3052 end if;
3054 -- For convention C objects of an enumeration type, warn if the
3055 -- size is not integer size and no explicit size given. Skip
3056 -- warning for Boolean, and Character, assume programmer expects
3057 -- 8-bit sizes for these cases.
3059 if (Convention (E) = Convention_C
3060 or else
3061 Convention (E) = Convention_CPP)
3062 and then Is_Enumeration_Type (Etype (E))
3063 and then not Is_Character_Type (Etype (E))
3064 and then not Is_Boolean_Type (Etype (E))
3065 and then Esize (Etype (E)) < Standard_Integer_Size
3066 and then not Has_Size_Clause (E)
3067 then
3068 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
3069 Error_Msg_N
3070 ("??convention C enumeration object has size less than ^", E);
3071 Error_Msg_N ("\??use explicit size clause to set size", E);
3072 end if;
3073 end Freeze_Object_Declaration;
3075 -----------------------------
3076 -- Freeze_Generic_Entities --
3077 -----------------------------
3079 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
3080 E : Entity_Id;
3081 F : Node_Id;
3082 Flist : List_Id;
3084 begin
3085 Flist := New_List;
3086 E := First_Entity (Pack);
3087 while Present (E) loop
3088 if Is_Type (E) and then not Is_Generic_Type (E) then
3089 F := Make_Freeze_Generic_Entity (Sloc (Pack));
3090 Set_Entity (F, E);
3091 Append_To (Flist, F);
3093 elsif Ekind (E) = E_Generic_Package then
3094 Append_List_To (Flist, Freeze_Generic_Entities (E));
3095 end if;
3097 Next_Entity (E);
3098 end loop;
3100 return Flist;
3101 end Freeze_Generic_Entities;
3103 --------------------
3104 -- Freeze_Profile --
3105 --------------------
3107 function Freeze_Profile (E : Entity_Id) return Boolean is
3108 F_Type : Entity_Id;
3109 R_Type : Entity_Id;
3110 Warn_Node : Node_Id;
3112 begin
3113 -- Loop through formals
3115 Formal := First_Formal (E);
3116 while Present (Formal) loop
3117 F_Type := Etype (Formal);
3119 -- AI05-0151: incomplete types can appear in a profile. By the
3120 -- time the entity is frozen, the full view must be available,
3121 -- unless it is a limited view.
3123 if Is_Incomplete_Type (F_Type)
3124 and then Present (Full_View (F_Type))
3125 and then not From_Limited_With (F_Type)
3126 then
3127 F_Type := Full_View (F_Type);
3128 Set_Etype (Formal, F_Type);
3129 end if;
3131 if not From_Limited_With (F_Type) then
3132 Freeze_And_Append (F_Type, N, Result);
3133 end if;
3135 if Is_Private_Type (F_Type)
3136 and then Is_Private_Type (Base_Type (F_Type))
3137 and then No (Full_View (Base_Type (F_Type)))
3138 and then not Is_Generic_Type (F_Type)
3139 and then not Is_Derived_Type (F_Type)
3140 then
3141 -- If the type of a formal is incomplete, subprogram is being
3142 -- frozen prematurely. Within an instance (but not within a
3143 -- wrapper package) this is an artifact of our need to regard
3144 -- the end of an instantiation as a freeze point. Otherwise it
3145 -- is a definite error.
3147 if In_Instance then
3148 Set_Is_Frozen (E, False);
3149 Result := No_List;
3150 return False;
3152 elsif not After_Last_Declaration
3153 and then not Freezing_Library_Level_Tagged_Type
3154 then
3155 Error_Msg_Node_1 := F_Type;
3156 Error_Msg
3157 ("type & must be fully defined before this point", Loc);
3158 end if;
3159 end if;
3161 -- Check suspicious parameter for C function. These tests apply
3162 -- only to exported/imported subprograms.
3164 if Warn_On_Export_Import
3165 and then Comes_From_Source (E)
3166 and then (Convention (E) = Convention_C
3167 or else
3168 Convention (E) = Convention_CPP)
3169 and then (Is_Imported (E) or else Is_Exported (E))
3170 and then Convention (E) /= Convention (Formal)
3171 and then not Has_Warnings_Off (E)
3172 and then not Has_Warnings_Off (F_Type)
3173 and then not Has_Warnings_Off (Formal)
3174 then
3175 -- Qualify mention of formals with subprogram name
3177 Error_Msg_Qual_Level := 1;
3179 -- Check suspicious use of fat C pointer
3181 if Is_Access_Type (F_Type)
3182 and then Esize (F_Type) > Ttypes.System_Address_Size
3183 then
3184 Error_Msg_N
3185 ("?x?type of & does not correspond to C pointer!", Formal);
3187 -- Check suspicious return of boolean
3189 elsif Root_Type (F_Type) = Standard_Boolean
3190 and then Convention (F_Type) = Convention_Ada
3191 and then not Has_Warnings_Off (F_Type)
3192 and then not Has_Size_Clause (F_Type)
3193 then
3194 Error_Msg_N
3195 ("& is an 8-bit Ada Boolean?x?", Formal);
3196 Error_Msg_N
3197 ("\use appropriate corresponding type in C "
3198 & "(e.g. char)?x?", Formal);
3200 -- Check suspicious tagged type
3202 elsif (Is_Tagged_Type (F_Type)
3203 or else
3204 (Is_Access_Type (F_Type)
3205 and then Is_Tagged_Type (Designated_Type (F_Type))))
3206 and then Convention (E) = Convention_C
3207 then
3208 Error_Msg_N
3209 ("?x?& involves a tagged type which does not "
3210 & "correspond to any C type!", Formal);
3212 -- Check wrong convention subprogram pointer
3214 elsif Ekind (F_Type) = E_Access_Subprogram_Type
3215 and then not Has_Foreign_Convention (F_Type)
3216 then
3217 Error_Msg_N
3218 ("?x?subprogram pointer & should "
3219 & "have foreign convention!", Formal);
3220 Error_Msg_Sloc := Sloc (F_Type);
3221 Error_Msg_NE
3222 ("\?x?add Convention pragma to declaration of &#",
3223 Formal, F_Type);
3224 end if;
3226 -- Turn off name qualification after message output
3228 Error_Msg_Qual_Level := 0;
3229 end if;
3231 -- Check for unconstrained array in exported foreign convention
3232 -- case.
3234 if Has_Foreign_Convention (E)
3235 and then not Is_Imported (E)
3236 and then Is_Array_Type (F_Type)
3237 and then not Is_Constrained (F_Type)
3238 and then Warn_On_Export_Import
3239 then
3240 Error_Msg_Qual_Level := 1;
3242 -- If this is an inherited operation, place the warning on
3243 -- the derived type declaration, rather than on the original
3244 -- subprogram.
3246 if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
3247 then
3248 Warn_Node := Parent (E);
3250 if Formal = First_Formal (E) then
3251 Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
3252 end if;
3253 else
3254 Warn_Node := Formal;
3255 end if;
3257 Error_Msg_NE ("?x?type of argument& is unconstrained array",
3258 Warn_Node, Formal);
3259 Error_Msg_NE ("?x?foreign caller must pass bounds explicitly",
3260 Warn_Node, Formal);
3261 Error_Msg_Qual_Level := 0;
3262 end if;
3264 if not From_Limited_With (F_Type) then
3265 if Is_Access_Type (F_Type) then
3266 F_Type := Designated_Type (F_Type);
3267 end if;
3269 -- If the formal is an anonymous_access_to_subprogram
3270 -- freeze the subprogram type as well, to prevent
3271 -- scope anomalies in gigi, because there is no other
3272 -- clear point at which it could be frozen.
3274 if Is_Itype (Etype (Formal))
3275 and then Ekind (F_Type) = E_Subprogram_Type
3276 then
3277 Freeze_And_Append (F_Type, N, Result);
3278 end if;
3279 end if;
3281 Next_Formal (Formal);
3282 end loop;
3284 -- Case of function: similar checks on return type
3286 if Ekind (E) = E_Function then
3288 -- Check whether function is declared elsewhere.
3290 Late_Freezing :=
3291 Get_Source_Unit (E) /= Get_Source_Unit (N)
3292 and then Returns_Limited_View (E)
3293 and then not In_Open_Scopes (Scope (E));
3295 -- Freeze return type
3297 R_Type := Etype (E);
3299 -- AI05-0151: the return type may have been incomplete
3300 -- at the point of declaration. Replace it with the full
3301 -- view, unless the current type is a limited view. In
3302 -- that case the full view is in a different unit, and
3303 -- gigi finds the non-limited view after the other unit
3304 -- is elaborated.
3306 if Ekind (R_Type) = E_Incomplete_Type
3307 and then Present (Full_View (R_Type))
3308 and then not From_Limited_With (R_Type)
3309 then
3310 R_Type := Full_View (R_Type);
3311 Set_Etype (E, R_Type);
3313 -- If the return type is a limited view and the non-limited
3314 -- view is still incomplete, the function has to be frozen at a
3315 -- later time. If the function is abstract there is no place at
3316 -- which the full view will become available, and no code to be
3317 -- generated for it, so mark type as frozen.
3319 elsif Ekind (R_Type) = E_Incomplete_Type
3320 and then From_Limited_With (R_Type)
3321 and then Ekind (Non_Limited_View (R_Type)) = E_Incomplete_Type
3322 then
3323 if Is_Abstract_Subprogram (E) then
3324 null;
3325 else
3326 Set_Is_Frozen (E, False);
3327 Set_Returns_Limited_View (E);
3328 return False;
3329 end if;
3330 end if;
3332 Freeze_And_Append (R_Type, N, Result);
3334 -- Check suspicious return type for C function
3336 if Warn_On_Export_Import
3337 and then (Convention (E) = Convention_C
3338 or else
3339 Convention (E) = Convention_CPP)
3340 and then (Is_Imported (E) or else Is_Exported (E))
3341 then
3342 -- Check suspicious return of fat C pointer
3344 if Is_Access_Type (R_Type)
3345 and then Esize (R_Type) > Ttypes.System_Address_Size
3346 and then not Has_Warnings_Off (E)
3347 and then not Has_Warnings_Off (R_Type)
3348 then
3349 Error_Msg_N ("?x?return type of& does not "
3350 & "correspond to C pointer!", E);
3352 -- Check suspicious return of boolean
3354 elsif Root_Type (R_Type) = Standard_Boolean
3355 and then Convention (R_Type) = Convention_Ada
3356 and then not Has_Warnings_Off (E)
3357 and then not Has_Warnings_Off (R_Type)
3358 and then not Has_Size_Clause (R_Type)
3359 then
3360 declare
3361 N : constant Node_Id :=
3362 Result_Definition (Declaration_Node (E));
3363 begin
3364 Error_Msg_NE
3365 ("return type of & is an 8-bit Ada Boolean?x?", N, E);
3366 Error_Msg_NE
3367 ("\use appropriate corresponding type in C "
3368 & "(e.g. char)?x?", N, E);
3369 end;
3371 -- Check suspicious return tagged type
3373 elsif (Is_Tagged_Type (R_Type)
3374 or else (Is_Access_Type (R_Type)
3375 and then
3376 Is_Tagged_Type
3377 (Designated_Type (R_Type))))
3378 and then Convention (E) = Convention_C
3379 and then not Has_Warnings_Off (E)
3380 and then not Has_Warnings_Off (R_Type)
3381 then
3382 Error_Msg_N ("?x?return type of & does not "
3383 & "correspond to C type!", E);
3385 -- Check return of wrong convention subprogram pointer
3387 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3388 and then not Has_Foreign_Convention (R_Type)
3389 and then not Has_Warnings_Off (E)
3390 and then not Has_Warnings_Off (R_Type)
3391 then
3392 Error_Msg_N ("?x?& should return a foreign "
3393 & "convention subprogram pointer", E);
3394 Error_Msg_Sloc := Sloc (R_Type);
3395 Error_Msg_NE
3396 ("\?x?add Convention pragma to declaration of& #",
3397 E, R_Type);
3398 end if;
3399 end if;
3401 -- Give warning for suspicious return of a result of an
3402 -- unconstrained array type in a foreign convention function.
3404 if Has_Foreign_Convention (E)
3406 -- We are looking for a return of unconstrained array
3408 and then Is_Array_Type (R_Type)
3409 and then not Is_Constrained (R_Type)
3411 -- Exclude imported routines, the warning does not belong on
3412 -- the import, but rather on the routine definition.
3414 and then not Is_Imported (E)
3416 -- Check that general warning is enabled, and that it is not
3417 -- suppressed for this particular case.
3419 and then Warn_On_Export_Import
3420 and then not Has_Warnings_Off (E)
3421 and then not Has_Warnings_Off (R_Type)
3422 then
3423 Error_Msg_N
3424 ("?x?foreign convention function& should not return "
3425 & "unconstrained array!", E);
3426 end if;
3427 end if;
3429 -- Check suspicious use of Import in pure unit (cases where the RM
3430 -- allows calls to be omitted).
3432 if Is_Imported (E)
3434 -- It might be suspicious if the compilation unit has the Pure
3435 -- aspect/pragma.
3437 and then Has_Pragma_Pure (Cunit_Entity (Current_Sem_Unit))
3439 -- The RM allows omission of calls only in the case of
3440 -- library-level subprograms (see RM-10.2.1(18)).
3442 and then Is_Library_Level_Entity (E)
3444 -- Ignore internally generated entity. This happens in some cases
3445 -- of subprograms in specs, where we generate an implied body.
3447 and then Comes_From_Source (Import_Pragma (E))
3449 -- Assume run-time knows what it is doing
3451 and then not GNAT_Mode
3453 -- Assume explicit Pure_Function means import is pure
3455 and then not Has_Pragma_Pure_Function (E)
3457 -- Don't need warning in relaxed semantics mode
3459 and then not Relaxed_RM_Semantics
3461 -- Assume convention Intrinsic is OK, since this is specialized.
3462 -- This deals with the DEC unit current_exception.ads
3464 and then Convention (E) /= Convention_Intrinsic
3466 -- Assume that ASM interface knows what it is doing. This deals
3467 -- with unsigned.ads in the AAMP back end.
3469 and then Convention (E) /= Convention_Assembler
3470 then
3471 Error_Msg_N
3472 ("pragma Import in Pure unit??", Import_Pragma (E));
3473 Error_Msg_NE
3474 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
3475 Import_Pragma (E), E);
3476 end if;
3478 return True;
3479 end Freeze_Profile;
3481 ------------------------
3482 -- Freeze_Record_Type --
3483 ------------------------
3485 procedure Freeze_Record_Type (Rec : Entity_Id) is
3486 ADC : Node_Id;
3487 Comp : Entity_Id;
3488 IR : Node_Id;
3489 Prev : Entity_Id;
3491 Junk : Boolean;
3492 pragma Warnings (Off, Junk);
3494 Rec_Pushed : Boolean := False;
3495 -- Set True if the record type scope Rec has been pushed on the scope
3496 -- stack. Needed for the analysis of delayed aspects specified to the
3497 -- components of Rec.
3499 SSO_ADC : Node_Id;
3500 -- Scalar_Storage_Order attribute definition clause for the record
3502 Unplaced_Component : Boolean := False;
3503 -- Set True if we find at least one component with no component
3504 -- clause (used to warn about useless Pack pragmas).
3506 Placed_Component : Boolean := False;
3507 -- Set True if we find at least one component with a component
3508 -- clause (used to warn about useless Bit_Order pragmas, and also
3509 -- to detect cases where Implicit_Packing may have an effect).
3511 Aliased_Component : Boolean := False;
3512 -- Set True if we find at least one component which is aliased. This
3513 -- is used to prevent Implicit_Packing of the record, since packing
3514 -- cannot modify the size of alignment of an aliased component.
3516 SSO_ADC_Component : Boolean := False;
3517 -- Set True if we find at least one component whose type has a
3518 -- Scalar_Storage_Order attribute definition clause.
3520 All_Scalar_Components : Boolean := True;
3521 -- Set False if we encounter a component of a non-scalar type
3523 Scalar_Component_Total_RM_Size : Uint := Uint_0;
3524 Scalar_Component_Total_Esize : Uint := Uint_0;
3525 -- Accumulates total RM_Size values and total Esize values of all
3526 -- scalar components. Used for processing of Implicit_Packing.
3528 function Check_Allocator (N : Node_Id) return Node_Id;
3529 -- If N is an allocator, possibly wrapped in one or more level of
3530 -- qualified expression(s), return the inner allocator node, else
3531 -- return Empty.
3533 procedure Check_Itype (Typ : Entity_Id);
3534 -- If the component subtype is an access to a constrained subtype of
3535 -- an already frozen type, make the subtype frozen as well. It might
3536 -- otherwise be frozen in the wrong scope, and a freeze node on
3537 -- subtype has no effect. Similarly, if the component subtype is a
3538 -- regular (not protected) access to subprogram, set the anonymous
3539 -- subprogram type to frozen as well, to prevent an out-of-scope
3540 -- freeze node at some eventual point of call. Protected operations
3541 -- are handled elsewhere.
3543 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
3544 -- Make sure that all types mentioned in Discrete_Choices of the
3545 -- variants referenceed by the Variant_Part VP are frozen. This is
3546 -- a recursive routine to deal with nested variants.
3548 ---------------------
3549 -- Check_Allocator --
3550 ---------------------
3552 function Check_Allocator (N : Node_Id) return Node_Id is
3553 Inner : Node_Id;
3554 begin
3555 Inner := N;
3556 loop
3557 if Nkind (Inner) = N_Allocator then
3558 return Inner;
3559 elsif Nkind (Inner) = N_Qualified_Expression then
3560 Inner := Expression (Inner);
3561 else
3562 return Empty;
3563 end if;
3564 end loop;
3565 end Check_Allocator;
3567 -----------------
3568 -- Check_Itype --
3569 -----------------
3571 procedure Check_Itype (Typ : Entity_Id) is
3572 Desig : constant Entity_Id := Designated_Type (Typ);
3574 begin
3575 if not Is_Frozen (Desig)
3576 and then Is_Frozen (Base_Type (Desig))
3577 then
3578 Set_Is_Frozen (Desig);
3580 -- In addition, add an Itype_Reference to ensure that the
3581 -- access subtype is elaborated early enough. This cannot be
3582 -- done if the subtype may depend on discriminants.
3584 if Ekind (Comp) = E_Component
3585 and then Is_Itype (Etype (Comp))
3586 and then not Has_Discriminants (Rec)
3587 then
3588 IR := Make_Itype_Reference (Sloc (Comp));
3589 Set_Itype (IR, Desig);
3590 Add_To_Result (IR);
3591 end if;
3593 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
3594 and then Convention (Desig) /= Convention_Protected
3595 then
3596 Set_Is_Frozen (Desig);
3597 end if;
3598 end Check_Itype;
3600 ------------------------------------
3601 -- Freeze_Choices_In_Variant_Part --
3602 ------------------------------------
3604 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
3605 pragma Assert (Nkind (VP) = N_Variant_Part);
3607 Variant : Node_Id;
3608 Choice : Node_Id;
3609 CL : Node_Id;
3611 begin
3612 -- Loop through variants
3614 Variant := First_Non_Pragma (Variants (VP));
3615 while Present (Variant) loop
3617 -- Loop through choices, checking that all types are frozen
3619 Choice := First_Non_Pragma (Discrete_Choices (Variant));
3620 while Present (Choice) loop
3621 if Nkind (Choice) in N_Has_Etype
3622 and then Present (Etype (Choice))
3623 then
3624 Freeze_And_Append (Etype (Choice), N, Result);
3625 end if;
3627 Next_Non_Pragma (Choice);
3628 end loop;
3630 -- Check for nested variant part to process
3632 CL := Component_List (Variant);
3634 if not Null_Present (CL) then
3635 if Present (Variant_Part (CL)) then
3636 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
3637 end if;
3638 end if;
3640 Next_Non_Pragma (Variant);
3641 end loop;
3642 end Freeze_Choices_In_Variant_Part;
3644 -- Start of processing for Freeze_Record_Type
3646 begin
3647 -- Deal with delayed aspect specifications for components. The
3648 -- analysis of the aspect is required to be delayed to the freeze
3649 -- point, thus we analyze the pragma or attribute definition
3650 -- clause in the tree at this point. We also analyze the aspect
3651 -- specification node at the freeze point when the aspect doesn't
3652 -- correspond to pragma/attribute definition clause.
3654 Comp := First_Entity (Rec);
3655 while Present (Comp) loop
3656 if Ekind (Comp) = E_Component
3657 and then Has_Delayed_Aspects (Comp)
3658 then
3659 if not Rec_Pushed then
3660 Push_Scope (Rec);
3661 Rec_Pushed := True;
3663 -- The visibility to the discriminants must be restored in
3664 -- order to properly analyze the aspects.
3666 if Has_Discriminants (Rec) then
3667 Install_Discriminants (Rec);
3668 end if;
3669 end if;
3671 Analyze_Aspects_At_Freeze_Point (Comp);
3672 end if;
3674 Next_Entity (Comp);
3675 end loop;
3677 -- Pop the scope if Rec scope has been pushed on the scope stack
3678 -- during the delayed aspect analysis process.
3680 if Rec_Pushed then
3681 if Has_Discriminants (Rec) then
3682 Uninstall_Discriminants (Rec);
3683 end if;
3685 Pop_Scope;
3686 end if;
3688 -- Freeze components and embedded subtypes
3690 Comp := First_Entity (Rec);
3691 Prev := Empty;
3692 while Present (Comp) loop
3693 if Is_Aliased (Comp) then
3694 Aliased_Component := True;
3695 end if;
3697 -- Handle the component and discriminant case
3699 if Ekind_In (Comp, E_Component, E_Discriminant) then
3700 declare
3701 CC : constant Node_Id := Component_Clause (Comp);
3703 begin
3704 -- Freezing a record type freezes the type of each of its
3705 -- components. However, if the type of the component is
3706 -- part of this record, we do not want or need a separate
3707 -- Freeze_Node. Note that Is_Itype is wrong because that's
3708 -- also set in private type cases. We also can't check for
3709 -- the Scope being exactly Rec because of private types and
3710 -- record extensions.
3712 if Is_Itype (Etype (Comp))
3713 and then Is_Record_Type (Underlying_Type
3714 (Scope (Etype (Comp))))
3715 then
3716 Undelay_Type (Etype (Comp));
3717 end if;
3719 Freeze_And_Append (Etype (Comp), N, Result);
3721 -- Warn for pragma Pack overriding foreign convention
3723 if Has_Foreign_Convention (Etype (Comp))
3724 and then Has_Pragma_Pack (Rec)
3726 -- Don't warn for aliased components, since override
3727 -- cannot happen in that case.
3729 and then not Is_Aliased (Comp)
3730 then
3731 declare
3732 CN : constant Name_Id :=
3733 Get_Convention_Name (Convention (Etype (Comp)));
3734 PP : constant Node_Id :=
3735 Get_Pragma (Rec, Pragma_Pack);
3736 begin
3737 if Present (PP) then
3738 Error_Msg_Name_1 := CN;
3739 Error_Msg_Sloc := Sloc (Comp);
3740 Error_Msg_N
3741 ("pragma Pack affects convention % component#??",
3742 PP);
3743 Error_Msg_Name_1 := CN;
3744 Error_Msg_NE
3745 ("\component & may not have % compatible "
3746 & "representation??", PP, Comp);
3747 end if;
3748 end;
3749 end if;
3751 -- Check for error of component clause given for variable
3752 -- sized type. We have to delay this test till this point,
3753 -- since the component type has to be frozen for us to know
3754 -- if it is variable length.
3756 if Present (CC) then
3757 Placed_Component := True;
3759 -- We omit this test in a generic context, it will be
3760 -- applied at instantiation time.
3762 if Inside_A_Generic then
3763 null;
3765 -- Also omit this test in CodePeer mode, since we do not
3766 -- have sufficient info on size and rep clauses.
3768 elsif CodePeer_Mode then
3769 null;
3771 -- Omit check if component has a generic type. This can
3772 -- happen in an instantiation within a generic in ASIS
3773 -- mode, where we force freeze actions without full
3774 -- expansion.
3776 elsif Is_Generic_Type (Etype (Comp)) then
3777 null;
3779 -- Do the check
3781 elsif not
3782 Size_Known_At_Compile_Time
3783 (Underlying_Type (Etype (Comp)))
3784 then
3785 Error_Msg_N
3786 ("component clause not allowed for variable " &
3787 "length component", CC);
3788 end if;
3790 else
3791 Unplaced_Component := True;
3792 end if;
3794 -- Case of component requires byte alignment
3796 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
3798 -- Set the enclosing record to also require byte align
3800 Set_Must_Be_On_Byte_Boundary (Rec);
3802 -- Check for component clause that is inconsistent with
3803 -- the required byte boundary alignment.
3805 if Present (CC)
3806 and then Normalized_First_Bit (Comp) mod
3807 System_Storage_Unit /= 0
3808 then
3809 Error_Msg_N
3810 ("component & must be byte aligned",
3811 Component_Name (Component_Clause (Comp)));
3812 end if;
3813 end if;
3814 end;
3815 end if;
3817 -- Gather data for possible Implicit_Packing later. Note that at
3818 -- this stage we might be dealing with a real component, or with
3819 -- an implicit subtype declaration.
3821 if not Is_Scalar_Type (Etype (Comp)) then
3822 All_Scalar_Components := False;
3823 else
3824 Scalar_Component_Total_RM_Size :=
3825 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
3826 Scalar_Component_Total_Esize :=
3827 Scalar_Component_Total_Esize + Esize (Etype (Comp));
3828 end if;
3830 -- If the component is an Itype with Delayed_Freeze and is either
3831 -- a record or array subtype and its base type has not yet been
3832 -- frozen, we must remove this from the entity list of this record
3833 -- and put it on the entity list of the scope of its base type.
3834 -- Note that we know that this is not the type of a component
3835 -- since we cleared Has_Delayed_Freeze for it in the previous
3836 -- loop. Thus this must be the Designated_Type of an access type,
3837 -- which is the type of a component.
3839 if Is_Itype (Comp)
3840 and then Is_Type (Scope (Comp))
3841 and then Is_Composite_Type (Comp)
3842 and then Base_Type (Comp) /= Comp
3843 and then Has_Delayed_Freeze (Comp)
3844 and then not Is_Frozen (Base_Type (Comp))
3845 then
3846 declare
3847 Will_Be_Frozen : Boolean := False;
3848 S : Entity_Id;
3850 begin
3851 -- We have a difficult case to handle here. Suppose Rec is
3852 -- subtype being defined in a subprogram that's created as
3853 -- part of the freezing of Rec'Base. In that case, we know
3854 -- that Comp'Base must have already been frozen by the time
3855 -- we get to elaborate this because Gigi doesn't elaborate
3856 -- any bodies until it has elaborated all of the declarative
3857 -- part. But Is_Frozen will not be set at this point because
3858 -- we are processing code in lexical order.
3860 -- We detect this case by going up the Scope chain of Rec
3861 -- and seeing if we have a subprogram scope before reaching
3862 -- the top of the scope chain or that of Comp'Base. If we
3863 -- do, then mark that Comp'Base will actually be frozen. If
3864 -- so, we merely undelay it.
3866 S := Scope (Rec);
3867 while Present (S) loop
3868 if Is_Subprogram (S) then
3869 Will_Be_Frozen := True;
3870 exit;
3871 elsif S = Scope (Base_Type (Comp)) then
3872 exit;
3873 end if;
3875 S := Scope (S);
3876 end loop;
3878 if Will_Be_Frozen then
3879 Undelay_Type (Comp);
3881 else
3882 if Present (Prev) then
3883 Set_Next_Entity (Prev, Next_Entity (Comp));
3884 else
3885 Set_First_Entity (Rec, Next_Entity (Comp));
3886 end if;
3888 -- Insert in entity list of scope of base type (which
3889 -- must be an enclosing scope, because still unfrozen).
3891 Append_Entity (Comp, Scope (Base_Type (Comp)));
3892 end if;
3893 end;
3895 -- If the component is an access type with an allocator as default
3896 -- value, the designated type will be frozen by the corresponding
3897 -- expression in init_proc. In order to place the freeze node for
3898 -- the designated type before that for the current record type,
3899 -- freeze it now.
3901 -- Same process if the component is an array of access types,
3902 -- initialized with an aggregate. If the designated type is
3903 -- private, it cannot contain allocators, and it is premature
3904 -- to freeze the type, so we check for this as well.
3906 elsif Is_Access_Type (Etype (Comp))
3907 and then Present (Parent (Comp))
3908 and then Present (Expression (Parent (Comp)))
3909 then
3910 declare
3911 Alloc : constant Node_Id :=
3912 Check_Allocator (Expression (Parent (Comp)));
3914 begin
3915 if Present (Alloc) then
3917 -- If component is pointer to a class-wide type, freeze
3918 -- the specific type in the expression being allocated.
3919 -- The expression may be a subtype indication, in which
3920 -- case freeze the subtype mark.
3922 if Is_Class_Wide_Type
3923 (Designated_Type (Etype (Comp)))
3924 then
3925 if Is_Entity_Name (Expression (Alloc)) then
3926 Freeze_And_Append
3927 (Entity (Expression (Alloc)), N, Result);
3929 elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
3930 then
3931 Freeze_And_Append
3932 (Entity (Subtype_Mark (Expression (Alloc))),
3933 N, Result);
3934 end if;
3936 elsif Is_Itype (Designated_Type (Etype (Comp))) then
3937 Check_Itype (Etype (Comp));
3939 else
3940 Freeze_And_Append
3941 (Designated_Type (Etype (Comp)), N, Result);
3942 end if;
3943 end if;
3944 end;
3946 elsif Is_Access_Type (Etype (Comp))
3947 and then Is_Itype (Designated_Type (Etype (Comp)))
3948 then
3949 Check_Itype (Etype (Comp));
3951 -- Freeze the designated type when initializing a component with
3952 -- an aggregate in case the aggregate contains allocators.
3954 -- type T is ...;
3955 -- type T_Ptr is access all T;
3956 -- type T_Array is array ... of T_Ptr;
3958 -- type Rec is record
3959 -- Comp : T_Array := (others => ...);
3960 -- end record;
3962 elsif Is_Array_Type (Etype (Comp))
3963 and then Is_Access_Type (Component_Type (Etype (Comp)))
3964 then
3965 declare
3966 Comp_Par : constant Node_Id := Parent (Comp);
3967 Desig_Typ : constant Entity_Id :=
3968 Designated_Type
3969 (Component_Type (Etype (Comp)));
3971 begin
3972 -- The only case when this sort of freezing is not done is
3973 -- when the designated type is class-wide and the root type
3974 -- is the record owning the component. This scenario results
3975 -- in a circularity because the class-wide type requires
3976 -- primitives that have not been created yet as the root
3977 -- type is in the process of being frozen.
3979 -- type Rec is tagged;
3980 -- type Rec_Ptr is access all Rec'Class;
3981 -- type Rec_Array is array ... of Rec_Ptr;
3983 -- type Rec is record
3984 -- Comp : Rec_Array := (others => ...);
3985 -- end record;
3987 if Is_Class_Wide_Type (Desig_Typ)
3988 and then Root_Type (Desig_Typ) = Rec
3989 then
3990 null;
3992 elsif Is_Fully_Defined (Desig_Typ)
3993 and then Present (Comp_Par)
3994 and then Nkind (Comp_Par) = N_Component_Declaration
3995 and then Present (Expression (Comp_Par))
3996 and then Nkind (Expression (Comp_Par)) = N_Aggregate
3997 then
3998 Freeze_And_Append (Desig_Typ, N, Result);
3999 end if;
4000 end;
4001 end if;
4003 Prev := Comp;
4004 Next_Entity (Comp);
4005 end loop;
4007 SSO_ADC :=
4008 Get_Attribute_Definition_Clause
4009 (Rec, Attribute_Scalar_Storage_Order);
4011 -- If the record type has Complex_Representation, then it is treated
4012 -- as a scalar in the back end so the storage order is irrelevant.
4014 if Has_Complex_Representation (Rec) then
4015 if Present (SSO_ADC) then
4016 Error_Msg_N
4017 ("??storage order has no effect with Complex_Representation",
4018 SSO_ADC);
4019 end if;
4021 else
4022 -- Deal with default setting of reverse storage order
4024 Set_SSO_From_Default (Rec);
4026 -- Check consistent attribute setting on component types
4028 declare
4029 Comp_ADC_Present : Boolean;
4030 begin
4031 Comp := First_Component (Rec);
4032 while Present (Comp) loop
4033 Check_Component_Storage_Order
4034 (Encl_Type => Rec,
4035 Comp => Comp,
4036 ADC => SSO_ADC,
4037 Comp_ADC_Present => Comp_ADC_Present);
4038 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
4039 Next_Component (Comp);
4040 end loop;
4041 end;
4043 -- Now deal with reverse storage order/bit order issues
4045 if Present (SSO_ADC) then
4047 -- Check compatibility of Scalar_Storage_Order with Bit_Order,
4048 -- if the former is specified.
4050 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
4052 -- Note: report error on Rec, not on SSO_ADC, as ADC may
4053 -- apply to some ancestor type.
4055 Error_Msg_Sloc := Sloc (SSO_ADC);
4056 Error_Msg_N
4057 ("scalar storage order for& specified# inconsistent with "
4058 & "bit order", Rec);
4059 end if;
4061 -- Warn if there is a Scalar_Storage_Order attribute definition
4062 -- clause but no component clause, no component that itself has
4063 -- such an attribute definition, and no pragma Pack.
4065 if not (Placed_Component
4066 or else
4067 SSO_ADC_Component
4068 or else
4069 Is_Packed (Rec))
4070 then
4071 Error_Msg_N
4072 ("??scalar storage order specified but no component "
4073 & "clause", SSO_ADC);
4074 end if;
4075 end if;
4076 end if;
4078 -- Deal with Bit_Order aspect
4080 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
4082 if Present (ADC) and then Base_Type (Rec) = Rec then
4083 if not (Placed_Component
4084 or else Present (SSO_ADC)
4085 or else Is_Packed (Rec))
4086 then
4087 -- Warn if clause has no effect when no component clause is
4088 -- present, but suppress warning if the Bit_Order is required
4089 -- due to the presence of a Scalar_Storage_Order attribute.
4091 Error_Msg_N
4092 ("??bit order specification has no effect", ADC);
4093 Error_Msg_N
4094 ("\??since no component clauses were specified", ADC);
4096 -- Here is where we do the processing to adjust component clauses
4097 -- for reversed bit order, when not using reverse SSO.
4099 elsif Reverse_Bit_Order (Rec)
4100 and then not Reverse_Storage_Order (Rec)
4101 then
4102 Adjust_Record_For_Reverse_Bit_Order (Rec);
4104 -- Case where we have both an explicit Bit_Order and the same
4105 -- Scalar_Storage_Order: leave record untouched, the back-end
4106 -- will take care of required layout conversions.
4108 else
4109 null;
4111 end if;
4112 end if;
4114 -- Complete error checking on record representation clause (e.g.
4115 -- overlap of components). This is called after adjusting the
4116 -- record for reverse bit order.
4118 declare
4119 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
4120 begin
4121 if Present (RRC) then
4122 Check_Record_Representation_Clause (RRC);
4123 end if;
4124 end;
4126 -- Set OK_To_Reorder_Components depending on debug flags
4128 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
4129 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
4130 or else
4131 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
4132 then
4133 Set_OK_To_Reorder_Components (Rec);
4134 end if;
4135 end if;
4137 -- Check for useless pragma Pack when all components placed. We only
4138 -- do this check for record types, not subtypes, since a subtype may
4139 -- have all its components placed, and it still makes perfectly good
4140 -- sense to pack other subtypes or the parent type. We do not give
4141 -- this warning if Optimize_Alignment is set to Space, since the
4142 -- pragma Pack does have an effect in this case (it always resets
4143 -- the alignment to one).
4145 if Ekind (Rec) = E_Record_Type
4146 and then Is_Packed (Rec)
4147 and then not Unplaced_Component
4148 and then Optimize_Alignment /= 'S'
4149 then
4150 -- Reset packed status. Probably not necessary, but we do it so
4151 -- that there is no chance of the back end doing something strange
4152 -- with this redundant indication of packing.
4154 Set_Is_Packed (Rec, False);
4156 -- Give warning if redundant constructs warnings on
4158 if Warn_On_Redundant_Constructs then
4159 Error_Msg_N -- CODEFIX
4160 ("??pragma Pack has no effect, no unplaced components",
4161 Get_Rep_Pragma (Rec, Name_Pack));
4162 end if;
4163 end if;
4165 -- If this is the record corresponding to a remote type, freeze the
4166 -- remote type here since that is what we are semantically freezing.
4167 -- This prevents the freeze node for that type in an inner scope.
4169 if Ekind (Rec) = E_Record_Type then
4170 if Present (Corresponding_Remote_Type (Rec)) then
4171 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
4172 end if;
4174 -- Check for controlled components and unchecked unions.
4176 Comp := First_Component (Rec);
4177 while Present (Comp) loop
4179 -- Do not set Has_Controlled_Component on a class-wide
4180 -- equivalent type. See Make_CW_Equivalent_Type.
4182 if not Is_Class_Wide_Equivalent_Type (Rec)
4183 and then
4184 (Has_Controlled_Component (Etype (Comp))
4185 or else
4186 (Chars (Comp) /= Name_uParent
4187 and then Is_Controlled_Active (Etype (Comp)))
4188 or else
4189 (Is_Protected_Type (Etype (Comp))
4190 and then
4191 Present (Corresponding_Record_Type (Etype (Comp)))
4192 and then
4193 Has_Controlled_Component
4194 (Corresponding_Record_Type (Etype (Comp)))))
4195 then
4196 Set_Has_Controlled_Component (Rec);
4197 end if;
4199 if Has_Unchecked_Union (Etype (Comp)) then
4200 Set_Has_Unchecked_Union (Rec);
4201 end if;
4203 -- Scan component declaration for likely misuses of current
4204 -- instance, either in a constraint or a default expression.
4206 if Has_Per_Object_Constraint (Comp) then
4207 Check_Current_Instance (Parent (Comp));
4208 end if;
4210 Next_Component (Comp);
4211 end loop;
4212 end if;
4214 -- Enforce the restriction that access attributes with a current
4215 -- instance prefix can only apply to limited types. This comment
4216 -- is floating here, but does not seem to belong here???
4218 -- Set component alignment if not otherwise already set
4220 Set_Component_Alignment_If_Not_Set (Rec);
4222 -- For first subtypes, check if there are any fixed-point fields with
4223 -- component clauses, where we must check the size. This is not done
4224 -- till the freeze point since for fixed-point types, we do not know
4225 -- the size until the type is frozen. Similar processing applies to
4226 -- bit packed arrays.
4228 if Is_First_Subtype (Rec) then
4229 Comp := First_Component (Rec);
4230 while Present (Comp) loop
4231 if Present (Component_Clause (Comp))
4232 and then (Is_Fixed_Point_Type (Etype (Comp))
4233 or else Is_Bit_Packed_Array (Etype (Comp)))
4234 then
4235 Check_Size
4236 (Component_Name (Component_Clause (Comp)),
4237 Etype (Comp),
4238 Esize (Comp),
4239 Junk);
4240 end if;
4242 Next_Component (Comp);
4243 end loop;
4244 end if;
4246 -- Generate warning for applying C or C++ convention to a record
4247 -- with discriminants. This is suppressed for the unchecked union
4248 -- case, since the whole point in this case is interface C. We also
4249 -- do not generate this within instantiations, since we will have
4250 -- generated a message on the template.
4252 if Has_Discriminants (E)
4253 and then not Is_Unchecked_Union (E)
4254 and then (Convention (E) = Convention_C
4255 or else
4256 Convention (E) = Convention_CPP)
4257 and then Comes_From_Source (E)
4258 and then not In_Instance
4259 and then not Has_Warnings_Off (E)
4260 and then not Has_Warnings_Off (Base_Type (E))
4261 then
4262 declare
4263 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
4264 A2 : Node_Id;
4266 begin
4267 if Present (Cprag) then
4268 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
4270 if Convention (E) = Convention_C then
4271 Error_Msg_N
4272 ("?x?variant record has no direct equivalent in C",
4273 A2);
4274 else
4275 Error_Msg_N
4276 ("?x?variant record has no direct equivalent in C++",
4277 A2);
4278 end if;
4280 Error_Msg_NE
4281 ("\?x?use of convention for type& is dubious", A2, E);
4282 end if;
4283 end;
4284 end if;
4286 -- See if Size is too small as is (and implicit packing might help)
4288 if not Is_Packed (Rec)
4290 -- No implicit packing if even one component is explicitly placed
4292 and then not Placed_Component
4294 -- Or even one component is aliased
4296 and then not Aliased_Component
4298 -- Must have size clause and all scalar components
4300 and then Has_Size_Clause (Rec)
4301 and then All_Scalar_Components
4303 -- Do not try implicit packing on records with discriminants, too
4304 -- complicated, especially in the variant record case.
4306 and then not Has_Discriminants (Rec)
4308 -- We can implicitly pack if the specified size of the record is
4309 -- less than the sum of the object sizes (no point in packing if
4310 -- this is not the case).
4312 and then RM_Size (Rec) < Scalar_Component_Total_Esize
4314 -- And the total RM size cannot be greater than the specified size
4315 -- since otherwise packing will not get us where we have to be.
4317 and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
4319 -- Never do implicit packing in CodePeer or SPARK modes since
4320 -- we don't do any packing in these modes, since this generates
4321 -- over-complex code that confuses static analysis, and in
4322 -- general, neither CodePeer not GNATprove care about the
4323 -- internal representation of objects.
4325 and then not (CodePeer_Mode or GNATprove_Mode)
4326 then
4327 -- If implicit packing enabled, do it
4329 if Implicit_Packing then
4330 Set_Is_Packed (Rec);
4332 -- Otherwise flag the size clause
4334 else
4335 declare
4336 Sz : constant Node_Id := Size_Clause (Rec);
4337 begin
4338 Error_Msg_NE -- CODEFIX
4339 ("size given for& too small", Sz, Rec);
4340 Error_Msg_N -- CODEFIX
4341 ("\use explicit pragma Pack "
4342 & "or use pragma Implicit_Packing", Sz);
4343 end;
4344 end if;
4345 end if;
4347 -- The following checks are relevant only when SPARK_Mode is on as
4348 -- they are not standard Ada legality rules.
4350 if SPARK_Mode = On then
4351 if Is_Effectively_Volatile (Rec) then
4353 -- A discriminated type cannot be effectively volatile
4354 -- (SPARK RM C.6(4)).
4356 if Has_Discriminants (Rec) then
4357 Error_Msg_N ("discriminated type & cannot be volatile", Rec);
4359 -- A tagged type cannot be effectively volatile
4360 -- (SPARK RM C.6(5)).
4362 elsif Is_Tagged_Type (Rec) then
4363 Error_Msg_N ("tagged type & cannot be volatile", Rec);
4364 end if;
4366 -- A non-effectively volatile record type cannot contain
4367 -- effectively volatile components (SPARK RM C.6(2)).
4369 else
4370 Comp := First_Component (Rec);
4371 while Present (Comp) loop
4372 if Comes_From_Source (Comp)
4373 and then Is_Effectively_Volatile (Etype (Comp))
4374 then
4375 Error_Msg_Name_1 := Chars (Rec);
4376 Error_Msg_N
4377 ("component & of non-volatile type % cannot be "
4378 & "volatile", Comp);
4379 end if;
4381 Next_Component (Comp);
4382 end loop;
4383 end if;
4385 -- A type which does not yield a synchronized object cannot have
4386 -- a component that yields a synchronized object (SPARK RM 9.5).
4388 if not Yields_Synchronized_Object (Rec) then
4389 Comp := First_Component (Rec);
4390 while Present (Comp) loop
4391 if Comes_From_Source (Comp)
4392 and then Yields_Synchronized_Object (Etype (Comp))
4393 then
4394 Error_Msg_Name_1 := Chars (Rec);
4395 Error_Msg_N
4396 ("component & of non-synchronized type % cannot be "
4397 & "synchronized", Comp);
4398 end if;
4400 Next_Component (Comp);
4401 end loop;
4402 end if;
4404 -- A Ghost type cannot have a component of protected or task type
4405 -- (SPARK RM 6.9(19)).
4407 if Is_Ghost_Entity (Rec) then
4408 Comp := First_Component (Rec);
4409 while Present (Comp) loop
4410 if Comes_From_Source (Comp)
4411 and then Is_Concurrent_Type (Etype (Comp))
4412 then
4413 Error_Msg_Name_1 := Chars (Rec);
4414 Error_Msg_N
4415 ("component & of ghost type % cannot be concurrent",
4416 Comp);
4417 end if;
4419 Next_Component (Comp);
4420 end loop;
4421 end if;
4422 end if;
4424 -- Make sure that if we have an iterator aspect, then we have
4425 -- either Constant_Indexing or Variable_Indexing.
4427 declare
4428 Iterator_Aspect : Node_Id;
4430 begin
4431 Iterator_Aspect := Find_Aspect (Rec, Aspect_Iterator_Element);
4433 if No (Iterator_Aspect) then
4434 Iterator_Aspect := Find_Aspect (Rec, Aspect_Default_Iterator);
4435 end if;
4437 if Present (Iterator_Aspect) then
4438 if Has_Aspect (Rec, Aspect_Constant_Indexing)
4439 or else
4440 Has_Aspect (Rec, Aspect_Variable_Indexing)
4441 then
4442 null;
4443 else
4444 Error_Msg_N
4445 ("Iterator_Element requires indexing aspect",
4446 Iterator_Aspect);
4447 end if;
4448 end if;
4449 end;
4451 -- All done if not a full record definition
4453 if Ekind (Rec) /= E_Record_Type then
4454 return;
4455 end if;
4457 -- Finally we need to check the variant part to make sure that
4458 -- all types within choices are properly frozen as part of the
4459 -- freezing of the record type.
4461 Check_Variant_Part : declare
4462 D : constant Node_Id := Declaration_Node (Rec);
4463 T : Node_Id;
4464 C : Node_Id;
4466 begin
4467 -- Find component list
4469 C := Empty;
4471 if Nkind (D) = N_Full_Type_Declaration then
4472 T := Type_Definition (D);
4474 if Nkind (T) = N_Record_Definition then
4475 C := Component_List (T);
4477 elsif Nkind (T) = N_Derived_Type_Definition
4478 and then Present (Record_Extension_Part (T))
4479 then
4480 C := Component_List (Record_Extension_Part (T));
4481 end if;
4482 end if;
4484 -- Case of variant part present
4486 if Present (C) and then Present (Variant_Part (C)) then
4487 Freeze_Choices_In_Variant_Part (Variant_Part (C));
4488 end if;
4490 -- Note: we used to call Check_Choices here, but it is too early,
4491 -- since predicated subtypes are frozen here, but their freezing
4492 -- actions are in Analyze_Freeze_Entity, which has not been called
4493 -- yet for entities frozen within this procedure, so we moved that
4494 -- call to the Analyze_Freeze_Entity for the record type.
4496 end Check_Variant_Part;
4498 -- Check that all the primitives of an interface type are abstract
4499 -- or null procedures.
4501 if Is_Interface (Rec)
4502 and then not Error_Posted (Parent (Rec))
4503 then
4504 declare
4505 Elmt : Elmt_Id;
4506 Subp : Entity_Id;
4508 begin
4509 Elmt := First_Elmt (Primitive_Operations (Rec));
4510 while Present (Elmt) loop
4511 Subp := Node (Elmt);
4513 if not Is_Abstract_Subprogram (Subp)
4515 -- Avoid reporting the error on inherited primitives
4517 and then Comes_From_Source (Subp)
4518 then
4519 Error_Msg_Name_1 := Chars (Subp);
4521 if Ekind (Subp) = E_Procedure then
4522 if not Null_Present (Parent (Subp)) then
4523 Error_Msg_N
4524 ("interface procedure % must be abstract or null",
4525 Parent (Subp));
4526 end if;
4527 else
4528 Error_Msg_N
4529 ("interface function % must be abstract",
4530 Parent (Subp));
4531 end if;
4532 end if;
4534 Next_Elmt (Elmt);
4535 end loop;
4536 end;
4537 end if;
4538 end Freeze_Record_Type;
4540 -------------------------------
4541 -- Has_Boolean_Aspect_Import --
4542 -------------------------------
4544 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
4545 Decl : constant Node_Id := Declaration_Node (E);
4546 Asp : Node_Id;
4547 Expr : Node_Id;
4549 begin
4550 if Has_Aspects (Decl) then
4551 Asp := First (Aspect_Specifications (Decl));
4552 while Present (Asp) loop
4553 Expr := Expression (Asp);
4555 -- The value of aspect Import is True when the expression is
4556 -- either missing or it is explicitly set to True.
4558 if Get_Aspect_Id (Asp) = Aspect_Import
4559 and then (No (Expr)
4560 or else (Compile_Time_Known_Value (Expr)
4561 and then Is_True (Expr_Value (Expr))))
4562 then
4563 return True;
4564 end if;
4566 Next (Asp);
4567 end loop;
4568 end if;
4570 return False;
4571 end Has_Boolean_Aspect_Import;
4573 ----------------------------
4574 -- Late_Freeze_Subprogram --
4575 ----------------------------
4577 procedure Late_Freeze_Subprogram (E : Entity_Id) is
4578 Spec : constant Node_Id :=
4579 Specification (Unit_Declaration_Node (Scope (E)));
4580 Decls : List_Id;
4582 begin
4583 if Present (Private_Declarations (Spec)) then
4584 Decls := Private_Declarations (Spec);
4585 else
4586 Decls := Visible_Declarations (Spec);
4587 end if;
4589 Append_List (Result, Decls);
4590 end Late_Freeze_Subprogram;
4592 ------------------------------
4593 -- Wrap_Imported_Subprogram --
4594 ------------------------------
4596 -- The issue here is that our normal approach of checking preconditions
4597 -- and postconditions does not work for imported procedures, since we
4598 -- are not generating code for the body. To get around this we create
4599 -- a wrapper, as shown by the following example:
4601 -- procedure K (A : Integer);
4602 -- pragma Import (C, K);
4604 -- The spec is rewritten by removing the effects of pragma Import, but
4605 -- leaving the convention unchanged, as though the source had said:
4607 -- procedure K (A : Integer);
4608 -- pragma Convention (C, K);
4610 -- and we create a body, added to the entity K freeze actions, which
4611 -- looks like:
4613 -- procedure K (A : Integer) is
4614 -- procedure K (A : Integer);
4615 -- pragma Import (C, K);
4616 -- begin
4617 -- K (A);
4618 -- end K;
4620 -- Now the contract applies in the normal way to the outer procedure,
4621 -- and the inner procedure has no contracts, so there is no problem
4622 -- in just calling it to get the original effect.
4624 -- In the case of a function, we create an appropriate return statement
4625 -- for the subprogram body that calls the inner procedure.
4627 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
4628 Loc : constant Source_Ptr := Sloc (E);
4629 CE : constant Name_Id := Chars (E);
4630 Spec : Node_Id;
4631 Parms : List_Id;
4632 Stmt : Node_Id;
4633 Iprag : Node_Id;
4634 Bod : Node_Id;
4635 Forml : Entity_Id;
4637 begin
4638 -- Nothing to do if not imported
4640 if not Is_Imported (E) then
4641 return;
4643 -- Test enabling conditions for wrapping
4645 elsif Is_Subprogram (E)
4646 and then Present (Contract (E))
4647 and then Present (Pre_Post_Conditions (Contract (E)))
4648 and then not GNATprove_Mode
4649 then
4650 -- Here we do the wrap
4652 -- Note on calls to Copy_Separate_Tree. The trees we are copying
4653 -- here are fully analyzed, but we definitely want fully syntactic
4654 -- unanalyzed trees in the body we construct, so that the analysis
4655 -- generates the right visibility, and that is exactly what the
4656 -- calls to Copy_Separate_Tree give us.
4658 -- Acquire copy of Inline pragma, and indicate that it does not
4659 -- come from an aspect, as it applies to an internal entity.
4661 Iprag := Copy_Separate_Tree (Import_Pragma (E));
4662 Set_From_Aspect_Specification (Iprag, False);
4664 -- Fix up spec to be not imported any more
4666 Set_Is_Imported (E, False);
4667 Set_Interface_Name (E, Empty);
4668 Set_Has_Completion (E, False);
4669 Set_Import_Pragma (E, Empty);
4671 -- Grab the subprogram declaration and specification
4673 Spec := Declaration_Node (E);
4675 -- Build parameter list that we need
4677 Parms := New_List;
4678 Forml := First_Formal (E);
4679 while Present (Forml) loop
4680 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
4681 Next_Formal (Forml);
4682 end loop;
4684 -- Build the call
4686 if Ekind_In (E, E_Function, E_Generic_Function) then
4687 Stmt :=
4688 Make_Simple_Return_Statement (Loc,
4689 Expression =>
4690 Make_Function_Call (Loc,
4691 Name => Make_Identifier (Loc, CE),
4692 Parameter_Associations => Parms));
4694 else
4695 Stmt :=
4696 Make_Procedure_Call_Statement (Loc,
4697 Name => Make_Identifier (Loc, CE),
4698 Parameter_Associations => Parms);
4699 end if;
4701 -- Now build the body
4703 Bod :=
4704 Make_Subprogram_Body (Loc,
4705 Specification =>
4706 Copy_Separate_Tree (Spec),
4707 Declarations => New_List (
4708 Make_Subprogram_Declaration (Loc,
4709 Specification =>
4710 Copy_Separate_Tree (Spec)),
4711 Iprag),
4712 Handled_Statement_Sequence =>
4713 Make_Handled_Sequence_Of_Statements (Loc,
4714 Statements => New_List (Stmt),
4715 End_Label => Make_Identifier (Loc, CE)));
4717 -- Append the body to freeze result
4719 Add_To_Result (Bod);
4720 return;
4722 -- Case of imported subprogram that does not get wrapped
4724 else
4725 -- Set Is_Public. All imported entities need an external symbol
4726 -- created for them since they are always referenced from another
4727 -- object file. Note this used to be set when we set Is_Imported
4728 -- back in Sem_Prag, but now we delay it to this point, since we
4729 -- don't want to set this flag if we wrap an imported subprogram.
4731 Set_Is_Public (E);
4732 end if;
4733 end Wrap_Imported_Subprogram;
4735 -- Local variables
4737 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
4739 -- Start of processing for Freeze_Entity
4741 begin
4742 -- The entity being frozen may be subject to pragma Ghost. Set the mode
4743 -- now to ensure that any nodes generated during freezing are properly
4744 -- flagged as Ghost.
4746 Set_Ghost_Mode_From_Entity (E);
4748 -- We are going to test for various reasons why this entity need not be
4749 -- frozen here, but in the case of an Itype that's defined within a
4750 -- record, that test actually applies to the record.
4752 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
4753 Test_E := Scope (E);
4754 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
4755 and then Is_Record_Type (Underlying_Type (Scope (E)))
4756 then
4757 Test_E := Underlying_Type (Scope (E));
4758 end if;
4760 -- Do not freeze if already frozen since we only need one freeze node
4762 if Is_Frozen (E) then
4763 Ghost_Mode := Save_Ghost_Mode;
4764 return No_List;
4766 -- It is improper to freeze an external entity within a generic because
4767 -- its freeze node will appear in a non-valid context. The entity will
4768 -- be frozen in the proper scope after the current generic is analyzed.
4769 -- However, aspects must be analyzed because they may be queried later
4770 -- within the generic itself, and the corresponding pragma or attribute
4771 -- definition has not been analyzed yet.
4773 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
4774 if Has_Delayed_Aspects (E) then
4775 Analyze_Aspects_At_Freeze_Point (E);
4776 end if;
4778 Ghost_Mode := Save_Ghost_Mode;
4779 return No_List;
4781 -- AI05-0213: A formal incomplete type does not freeze the actual. In
4782 -- the instance, the same applies to the subtype renaming the actual.
4784 elsif Is_Private_Type (E)
4785 and then Is_Generic_Actual_Type (E)
4786 and then No (Full_View (Base_Type (E)))
4787 and then Ada_Version >= Ada_2012
4788 then
4789 Ghost_Mode := Save_Ghost_Mode;
4790 return No_List;
4792 -- Formal subprograms are never frozen
4794 elsif Is_Formal_Subprogram (E) then
4795 Ghost_Mode := Save_Ghost_Mode;
4796 return No_List;
4798 -- Generic types are never frozen as they lack delayed semantic checks
4800 elsif Is_Generic_Type (E) then
4801 Ghost_Mode := Save_Ghost_Mode;
4802 return No_List;
4804 -- Do not freeze a global entity within an inner scope created during
4805 -- expansion. A call to subprogram E within some internal procedure
4806 -- (a stream attribute for example) might require freezing E, but the
4807 -- freeze node must appear in the same declarative part as E itself.
4808 -- The two-pass elaboration mechanism in gigi guarantees that E will
4809 -- be frozen before the inner call is elaborated. We exclude constants
4810 -- from this test, because deferred constants may be frozen early, and
4811 -- must be diagnosed (e.g. in the case of a deferred constant being used
4812 -- in a default expression). If the enclosing subprogram comes from
4813 -- source, or is a generic instance, then the freeze point is the one
4814 -- mandated by the language, and we freeze the entity. A subprogram that
4815 -- is a child unit body that acts as a spec does not have a spec that
4816 -- comes from source, but can only come from source.
4818 elsif In_Open_Scopes (Scope (Test_E))
4819 and then Scope (Test_E) /= Current_Scope
4820 and then Ekind (Test_E) /= E_Constant
4821 then
4822 declare
4823 S : Entity_Id;
4825 begin
4826 S := Current_Scope;
4827 while Present (S) loop
4828 if Is_Overloadable (S) then
4829 if Comes_From_Source (S)
4830 or else Is_Generic_Instance (S)
4831 or else Is_Child_Unit (S)
4832 then
4833 exit;
4834 else
4835 Ghost_Mode := Save_Ghost_Mode;
4836 return No_List;
4837 end if;
4838 end if;
4840 S := Scope (S);
4841 end loop;
4842 end;
4844 -- Similarly, an inlined instance body may make reference to global
4845 -- entities, but these references cannot be the proper freezing point
4846 -- for them, and in the absence of inlining freezing will take place in
4847 -- their own scope. Normally instance bodies are analyzed after the
4848 -- enclosing compilation, and everything has been frozen at the proper
4849 -- place, but with front-end inlining an instance body is compiled
4850 -- before the end of the enclosing scope, and as a result out-of-order
4851 -- freezing must be prevented.
4853 elsif Front_End_Inlining
4854 and then In_Instance_Body
4855 and then Present (Scope (Test_E))
4856 then
4857 declare
4858 S : Entity_Id;
4860 begin
4861 S := Scope (Test_E);
4862 while Present (S) loop
4863 if Is_Generic_Instance (S) then
4864 exit;
4865 else
4866 S := Scope (S);
4867 end if;
4868 end loop;
4870 if No (S) then
4871 Ghost_Mode := Save_Ghost_Mode;
4872 return No_List;
4873 end if;
4874 end;
4876 elsif Ekind (E) = E_Generic_Package then
4877 Result := Freeze_Generic_Entities (E);
4879 Ghost_Mode := Save_Ghost_Mode;
4880 return Result;
4881 end if;
4883 -- Add checks to detect proper initialization of scalars that may appear
4884 -- as subprogram parameters.
4886 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
4887 Apply_Parameter_Validity_Checks (E);
4888 end if;
4890 -- Deal with delayed aspect specifications. The analysis of the aspect
4891 -- is required to be delayed to the freeze point, thus we analyze the
4892 -- pragma or attribute definition clause in the tree at this point. We
4893 -- also analyze the aspect specification node at the freeze point when
4894 -- the aspect doesn't correspond to pragma/attribute definition clause.
4896 if Has_Delayed_Aspects (E) then
4897 Analyze_Aspects_At_Freeze_Point (E);
4898 end if;
4900 -- Here to freeze the entity
4902 Set_Is_Frozen (E);
4904 -- Case of entity being frozen is other than a type
4906 if not Is_Type (E) then
4908 -- If entity is exported or imported and does not have an external
4909 -- name, now is the time to provide the appropriate default name.
4910 -- Skip this if the entity is stubbed, since we don't need a name
4911 -- for any stubbed routine. For the case on intrinsics, if no
4912 -- external name is specified, then calls will be handled in
4913 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
4914 -- external name is provided, then Expand_Intrinsic_Call leaves
4915 -- calls in place for expansion by GIGI.
4917 if (Is_Imported (E) or else Is_Exported (E))
4918 and then No (Interface_Name (E))
4919 and then Convention (E) /= Convention_Stubbed
4920 and then Convention (E) /= Convention_Intrinsic
4921 then
4922 Set_Encoded_Interface_Name
4923 (E, Get_Default_External_Name (E));
4925 -- If entity is an atomic object appearing in a declaration and
4926 -- the expression is an aggregate, assign it to a temporary to
4927 -- ensure that the actual assignment is done atomically rather
4928 -- than component-wise (the assignment to the temp may be done
4929 -- component-wise, but that is harmless).
4931 elsif Is_Atomic_Or_VFA (E)
4932 and then Nkind (Parent (E)) = N_Object_Declaration
4933 and then Present (Expression (Parent (E)))
4934 and then Nkind (Expression (Parent (E))) = N_Aggregate
4935 and then Is_Atomic_VFA_Aggregate (Expression (Parent (E)))
4936 then
4937 null;
4938 end if;
4940 -- Subprogram case
4942 if Is_Subprogram (E) then
4944 -- Check for needing to wrap imported subprogram
4946 Wrap_Imported_Subprogram (E);
4948 -- Freeze all parameter types and the return type (RM 13.14(14)).
4949 -- However skip this for internal subprograms. This is also where
4950 -- any extra formal parameters are created since we now know
4951 -- whether the subprogram will use a foreign convention.
4953 -- In Ada 2012, freezing a subprogram does not always freeze
4954 -- the corresponding profile (see AI05-019). An attribute
4955 -- reference is not a freezing point of the profile.
4956 -- Other constructs that should not freeze ???
4958 -- This processing doesn't apply to internal entities (see below)
4960 if not Is_Internal (E) then
4961 if not Freeze_Profile (E) then
4962 Ghost_Mode := Save_Ghost_Mode;
4963 return Result;
4964 end if;
4965 end if;
4967 -- Must freeze its parent first if it is a derived subprogram
4969 if Present (Alias (E)) then
4970 Freeze_And_Append (Alias (E), N, Result);
4971 end if;
4973 -- We don't freeze internal subprograms, because we don't normally
4974 -- want addition of extra formals or mechanism setting to happen
4975 -- for those. However we do pass through predefined dispatching
4976 -- cases, since extra formals may be needed in some cases, such as
4977 -- for the stream 'Input function (build-in-place formals).
4979 if not Is_Internal (E)
4980 or else Is_Predefined_Dispatching_Operation (E)
4981 then
4982 Freeze_Subprogram (E);
4983 end if;
4985 if Late_Freezing then
4986 Late_Freeze_Subprogram (E);
4987 Ghost_Mode := Save_Ghost_Mode;
4988 return No_List;
4989 end if;
4991 -- If warning on suspicious contracts then check for the case of
4992 -- a postcondition other than False for a No_Return subprogram.
4994 if No_Return (E)
4995 and then Warn_On_Suspicious_Contract
4996 and then Present (Contract (E))
4997 then
4998 declare
4999 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
5000 Exp : Node_Id;
5002 begin
5003 while Present (Prag) loop
5004 if Nam_In (Pragma_Name (Prag), Name_Post,
5005 Name_Postcondition,
5006 Name_Refined_Post)
5007 then
5008 Exp :=
5009 Expression
5010 (First (Pragma_Argument_Associations (Prag)));
5012 if Nkind (Exp) /= N_Identifier
5013 or else Chars (Exp) /= Name_False
5014 then
5015 Error_Msg_NE
5016 ("useless postcondition, & is marked "
5017 & "No_Return?T?", Exp, E);
5018 end if;
5019 end if;
5021 Prag := Next_Pragma (Prag);
5022 end loop;
5023 end;
5024 end if;
5026 -- Here for other than a subprogram or type
5028 else
5029 -- If entity has a type, and it is not a generic unit, then
5030 -- freeze it first (RM 13.14(10)).
5032 if Present (Etype (E))
5033 and then Ekind (E) /= E_Generic_Function
5034 then
5035 Freeze_And_Append (Etype (E), N, Result);
5037 -- For an object of an anonymous array type, aspects on the
5038 -- object declaration apply to the type itself. This is the
5039 -- case for Atomic_Components, Volatile_Components, and
5040 -- Independent_Components. In these cases analysis of the
5041 -- generated pragma will mark the anonymous types accordingly,
5042 -- and the object itself does not require a freeze node.
5044 if Ekind (E) = E_Variable
5045 and then Is_Itype (Etype (E))
5046 and then Is_Array_Type (Etype (E))
5047 and then Has_Delayed_Aspects (E)
5048 then
5049 Set_Has_Delayed_Aspects (E, False);
5050 Set_Has_Delayed_Freeze (E, False);
5051 Set_Freeze_Node (E, Empty);
5052 end if;
5053 end if;
5055 -- Special processing for objects created by object declaration
5057 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
5058 Freeze_Object_Declaration (E);
5059 end if;
5061 -- Check that a constant which has a pragma Volatile[_Components]
5062 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
5064 -- Note: Atomic[_Components] also sets Volatile[_Components]
5066 if Ekind (E) = E_Constant
5067 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
5068 and then not Is_Imported (E)
5069 and then not Has_Boolean_Aspect_Import (E)
5070 then
5071 -- Make sure we actually have a pragma, and have not merely
5072 -- inherited the indication from elsewhere (e.g. an address
5073 -- clause, which is not good enough in RM terms).
5075 if Has_Rep_Pragma (E, Name_Atomic)
5076 or else
5077 Has_Rep_Pragma (E, Name_Atomic_Components)
5078 then
5079 Error_Msg_N
5080 ("stand alone atomic constant must be " &
5081 "imported (RM C.6(13))", E);
5083 elsif Has_Rep_Pragma (E, Name_Volatile)
5084 or else
5085 Has_Rep_Pragma (E, Name_Volatile_Components)
5086 then
5087 Error_Msg_N
5088 ("stand alone volatile constant must be " &
5089 "imported (RM C.6(13))", E);
5090 end if;
5091 end if;
5093 -- Static objects require special handling
5095 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
5096 and then Is_Statically_Allocated (E)
5097 then
5098 Freeze_Static_Object (E);
5099 end if;
5101 -- Remaining step is to layout objects
5103 if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
5104 or else Is_Formal (E)
5105 then
5106 Layout_Object (E);
5107 end if;
5109 -- For an object that does not have delayed freezing, and whose
5110 -- initialization actions have been captured in a compound
5111 -- statement, move them back now directly within the enclosing
5112 -- statement sequence.
5114 if Ekind_In (E, E_Constant, E_Variable)
5115 and then not Has_Delayed_Freeze (E)
5116 then
5117 Explode_Initialization_Compound_Statement (E);
5118 end if;
5119 end if;
5121 -- Case of a type or subtype being frozen
5123 else
5124 -- We used to check here that a full type must have preelaborable
5125 -- initialization if it completes a private type specified with
5126 -- pragma Preelaborable_Initialization, but that missed cases where
5127 -- the types occur within a generic package, since the freezing
5128 -- that occurs within a containing scope generally skips traversal
5129 -- of a generic unit's declarations (those will be frozen within
5130 -- instances). This check was moved to Analyze_Package_Specification.
5132 -- The type may be defined in a generic unit. This can occur when
5133 -- freezing a generic function that returns the type (which is
5134 -- defined in a parent unit). It is clearly meaningless to freeze
5135 -- this type. However, if it is a subtype, its size may be determi-
5136 -- nable and used in subsequent checks, so might as well try to
5137 -- compute it.
5139 -- In Ada 2012, Freeze_Entities is also used in the front end to
5140 -- trigger the analysis of aspect expressions, so in this case we
5141 -- want to continue the freezing process.
5143 if Present (Scope (E))
5144 and then Is_Generic_Unit (Scope (E))
5145 and then
5146 (not Has_Predicates (E)
5147 and then not Has_Delayed_Freeze (E))
5148 then
5149 Check_Compile_Time_Size (E);
5150 Ghost_Mode := Save_Ghost_Mode;
5151 return No_List;
5152 end if;
5154 -- Check for error of Type_Invariant'Class applied to an untagged
5155 -- type (check delayed to freeze time when full type is available).
5157 declare
5158 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
5159 begin
5160 if Present (Prag)
5161 and then Class_Present (Prag)
5162 and then not Is_Tagged_Type (E)
5163 then
5164 Error_Msg_NE
5165 ("Type_Invariant''Class cannot be specified for &",
5166 Prag, E);
5167 Error_Msg_N
5168 ("\can only be specified for a tagged type", Prag);
5169 end if;
5170 end;
5172 if Is_Ghost_Entity (E) then
5174 -- A Ghost type cannot be concurrent (SPARK RM 6.9(19)). Verify
5175 -- this legality rule first to five a finer-grained diagnostic.
5177 if Is_Concurrent_Type (E) then
5178 Error_Msg_N ("ghost type & cannot be concurrent", E);
5180 -- A Ghost type cannot be effectively volatile (SPARK RM 6.9(8))
5182 elsif Is_Effectively_Volatile (E) then
5183 Error_Msg_N ("ghost type & cannot be volatile", E);
5184 end if;
5185 end if;
5187 -- Deal with special cases of freezing for subtype
5189 if E /= Base_Type (E) then
5191 -- Before we do anything else, a specialized test for the case of
5192 -- a size given for an array where the array needs to be packed,
5193 -- but was not so the size cannot be honored. This is the case
5194 -- where implicit packing may apply. The reason we do this so
5195 -- early is that if we have implicit packing, the layout of the
5196 -- base type is affected, so we must do this before we freeze
5197 -- the base type.
5199 -- We could do this processing only if implicit packing is enabled
5200 -- since in all other cases, the error would be caught by the back
5201 -- end. However, we choose to do the check even if we do not have
5202 -- implicit packing enabled, since this allows us to give a more
5203 -- useful error message (advising use of pragmas Implicit_Packing
5204 -- or Pack).
5206 if Is_Array_Type (E) then
5207 declare
5208 Ctyp : constant Entity_Id := Component_Type (E);
5209 Rsiz : constant Uint := RM_Size (Ctyp);
5210 SZ : constant Node_Id := Size_Clause (E);
5211 Btyp : constant Entity_Id := Base_Type (E);
5213 Lo : Node_Id;
5214 Hi : Node_Id;
5215 Indx : Node_Id;
5217 Num_Elmts : Uint;
5218 -- Number of elements in array
5220 begin
5221 -- Check enabling conditions. These are straightforward
5222 -- except for the test for a limited composite type. This
5223 -- eliminates the rare case of a array of limited components
5224 -- where there are issues of whether or not we can go ahead
5225 -- and pack the array (since we can't freely pack and unpack
5226 -- arrays if they are limited).
5228 -- Note that we check the root type explicitly because the
5229 -- whole point is we are doing this test before we have had
5230 -- a chance to freeze the base type (and it is that freeze
5231 -- action that causes stuff to be inherited).
5233 if Has_Size_Clause (E)
5234 and then Known_Static_RM_Size (E)
5235 and then not Is_Packed (E)
5236 and then not Has_Pragma_Pack (E)
5237 and then not Has_Component_Size_Clause (E)
5238 and then Known_Static_RM_Size (Ctyp)
5239 and then RM_Size (Ctyp) < 64
5240 and then not Is_Limited_Composite (E)
5241 and then not Is_Packed (Root_Type (E))
5242 and then not Has_Component_Size_Clause (Root_Type (E))
5243 and then not (CodePeer_Mode or GNATprove_Mode)
5244 then
5245 -- Compute number of elements in array
5247 Num_Elmts := Uint_1;
5248 Indx := First_Index (E);
5249 while Present (Indx) loop
5250 Get_Index_Bounds (Indx, Lo, Hi);
5252 if not (Compile_Time_Known_Value (Lo)
5253 and then
5254 Compile_Time_Known_Value (Hi))
5255 then
5256 goto No_Implicit_Packing;
5257 end if;
5259 Num_Elmts :=
5260 Num_Elmts *
5261 UI_Max (Uint_0,
5262 Expr_Value (Hi) - Expr_Value (Lo) + 1);
5263 Next_Index (Indx);
5264 end loop;
5266 -- What we are looking for here is the situation where
5267 -- the RM_Size given would be exactly right if there was
5268 -- a pragma Pack (resulting in the component size being
5269 -- the same as the RM_Size). Furthermore, the component
5270 -- type size must be an odd size (not a multiple of
5271 -- storage unit). If the component RM size is an exact
5272 -- number of storage units that is a power of two, the
5273 -- array is not packed and has a standard representation.
5275 if RM_Size (E) = Num_Elmts * Rsiz
5276 and then Rsiz mod System_Storage_Unit /= 0
5277 then
5278 -- For implicit packing mode, just set the component
5279 -- size silently.
5281 if Implicit_Packing then
5282 Set_Component_Size (Btyp, Rsiz);
5283 Set_Is_Bit_Packed_Array (Btyp);
5284 Set_Is_Packed (Btyp);
5285 Set_Has_Non_Standard_Rep (Btyp);
5287 -- Otherwise give an error message
5289 else
5290 Error_Msg_NE
5291 ("size given for& too small", SZ, E);
5292 Error_Msg_N -- CODEFIX
5293 ("\use explicit pragma Pack "
5294 & "or use pragma Implicit_Packing", SZ);
5295 end if;
5297 elsif RM_Size (E) = Num_Elmts * Rsiz
5298 and then Implicit_Packing
5299 and then
5300 (Rsiz / System_Storage_Unit = 1
5301 or else
5302 Rsiz / System_Storage_Unit = 2
5303 or else
5304 Rsiz / System_Storage_Unit = 4)
5305 then
5306 -- Not a packed array, but indicate the desired
5307 -- component size, for the back-end.
5309 Set_Component_Size (Btyp, Rsiz);
5310 end if;
5311 end if;
5312 end;
5313 end if;
5315 <<No_Implicit_Packing>>
5317 -- If ancestor subtype present, freeze that first. Note that this
5318 -- will also get the base type frozen. Need RM reference ???
5320 Atype := Ancestor_Subtype (E);
5322 if Present (Atype) then
5323 Freeze_And_Append (Atype, N, Result);
5325 -- No ancestor subtype present
5327 else
5328 -- See if we have a nearest ancestor that has a predicate.
5329 -- That catches the case of derived type with a predicate.
5330 -- Need RM reference here ???
5332 Atype := Nearest_Ancestor (E);
5334 if Present (Atype) and then Has_Predicates (Atype) then
5335 Freeze_And_Append (Atype, N, Result);
5336 end if;
5338 -- Freeze base type before freezing the entity (RM 13.14(15))
5340 if E /= Base_Type (E) then
5341 Freeze_And_Append (Base_Type (E), N, Result);
5342 end if;
5343 end if;
5345 -- A subtype inherits all the type-related representation aspects
5346 -- from its parents (RM 13.1(8)).
5348 Inherit_Aspects_At_Freeze_Point (E);
5350 -- For a derived type, freeze its parent type first (RM 13.14(15))
5352 elsif Is_Derived_Type (E) then
5353 Freeze_And_Append (Etype (E), N, Result);
5354 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
5356 -- A derived type inherits each type-related representation aspect
5357 -- of its parent type that was directly specified before the
5358 -- declaration of the derived type (RM 13.1(15)).
5360 Inherit_Aspects_At_Freeze_Point (E);
5361 end if;
5363 -- Check for incompatible size and alignment for record type
5365 if Warn_On_Size_Alignment
5366 and then Is_Record_Type (E)
5367 and then Has_Size_Clause (E) and then Has_Alignment_Clause (E)
5369 -- If explicit Object_Size clause given assume that the programmer
5370 -- knows what he is doing, and expects the compiler behavior.
5372 and then not Has_Object_Size_Clause (E)
5374 -- Check for size not a multiple of alignment
5376 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
5377 then
5378 declare
5379 SC : constant Node_Id := Size_Clause (E);
5380 AC : constant Node_Id := Alignment_Clause (E);
5381 Loc : Node_Id;
5382 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
5384 begin
5385 if Present (SC) and then Present (AC) then
5387 -- Give a warning
5389 if Sloc (SC) > Sloc (AC) then
5390 Loc := SC;
5391 Error_Msg_NE
5392 ("?Z?size is not a multiple of alignment for &",
5393 Loc, E);
5394 Error_Msg_Sloc := Sloc (AC);
5395 Error_Msg_Uint_1 := Alignment (E);
5396 Error_Msg_N ("\?Z?alignment of ^ specified #", Loc);
5398 else
5399 Loc := AC;
5400 Error_Msg_NE
5401 ("?Z?size is not a multiple of alignment for &",
5402 Loc, E);
5403 Error_Msg_Sloc := Sloc (SC);
5404 Error_Msg_Uint_1 := RM_Size (E);
5405 Error_Msg_N ("\?Z?size of ^ specified #", Loc);
5406 end if;
5408 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
5409 Error_Msg_N ("\?Z?Object_Size will be increased to ^", Loc);
5410 end if;
5411 end;
5412 end if;
5414 -- Array type
5416 if Is_Array_Type (E) then
5417 Freeze_Array_Type (E);
5419 -- For a class-wide type, the corresponding specific type is
5420 -- frozen as well (RM 13.14(15))
5422 elsif Is_Class_Wide_Type (E) then
5423 Freeze_And_Append (Root_Type (E), N, Result);
5425 -- If the base type of the class-wide type is still incomplete,
5426 -- the class-wide remains unfrozen as well. This is legal when
5427 -- E is the formal of a primitive operation of some other type
5428 -- which is being frozen.
5430 if not Is_Frozen (Root_Type (E)) then
5431 Set_Is_Frozen (E, False);
5432 Ghost_Mode := Save_Ghost_Mode;
5433 return Result;
5434 end if;
5436 -- The equivalent type associated with a class-wide subtype needs
5437 -- to be frozen to ensure that its layout is done.
5439 if Ekind (E) = E_Class_Wide_Subtype
5440 and then Present (Equivalent_Type (E))
5441 then
5442 Freeze_And_Append (Equivalent_Type (E), N, Result);
5443 end if;
5445 -- Generate an itype reference for a library-level class-wide type
5446 -- at the freeze point. Otherwise the first explicit reference to
5447 -- the type may appear in an inner scope which will be rejected by
5448 -- the back-end.
5450 if Is_Itype (E)
5451 and then Is_Compilation_Unit (Scope (E))
5452 then
5453 declare
5454 Ref : constant Node_Id := Make_Itype_Reference (Loc);
5456 begin
5457 Set_Itype (Ref, E);
5459 -- From a gigi point of view, a class-wide subtype derives
5460 -- from its record equivalent type. As a result, the itype
5461 -- reference must appear after the freeze node of the
5462 -- equivalent type or gigi will reject the reference.
5464 if Ekind (E) = E_Class_Wide_Subtype
5465 and then Present (Equivalent_Type (E))
5466 then
5467 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
5468 else
5469 Add_To_Result (Ref);
5470 end if;
5471 end;
5472 end if;
5474 -- For a record type or record subtype, freeze all component types
5475 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5476 -- using Is_Record_Type, because we don't want to attempt the freeze
5477 -- for the case of a private type with record extension (we will do
5478 -- that later when the full type is frozen).
5480 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype)
5481 and then not (Present (Scope (E))
5482 and then Is_Generic_Unit (Scope (E)))
5483 then
5484 Freeze_Record_Type (E);
5486 -- For a concurrent type, freeze corresponding record type. This does
5487 -- not correspond to any specific rule in the RM, but the record type
5488 -- is essentially part of the concurrent type. Also freeze all local
5489 -- entities. This includes record types created for entry parameter
5490 -- blocks and whatever local entities may appear in the private part.
5492 elsif Is_Concurrent_Type (E) then
5493 if Present (Corresponding_Record_Type (E)) then
5494 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
5495 end if;
5497 Comp := First_Entity (E);
5498 while Present (Comp) loop
5499 if Is_Type (Comp) then
5500 Freeze_And_Append (Comp, N, Result);
5502 elsif (Ekind (Comp)) /= E_Function then
5504 -- The guard on the presence of the Etype seems to be needed
5505 -- for some CodePeer (-gnatcC) cases, but not clear why???
5507 if Present (Etype (Comp)) then
5508 if Is_Itype (Etype (Comp))
5509 and then Underlying_Type (Scope (Etype (Comp))) = E
5510 then
5511 Undelay_Type (Etype (Comp));
5512 end if;
5514 Freeze_And_Append (Etype (Comp), N, Result);
5515 end if;
5516 end if;
5518 Next_Entity (Comp);
5519 end loop;
5521 -- Private types are required to point to the same freeze node as
5522 -- their corresponding full views. The freeze node itself has to
5523 -- point to the partial view of the entity (because from the partial
5524 -- view, we can retrieve the full view, but not the reverse).
5525 -- However, in order to freeze correctly, we need to freeze the full
5526 -- view. If we are freezing at the end of a scope (or within the
5527 -- scope) of the private type, the partial and full views will have
5528 -- been swapped, the full view appears first in the entity chain and
5529 -- the swapping mechanism ensures that the pointers are properly set
5530 -- (on scope exit).
5532 -- If we encounter the partial view before the full view (e.g. when
5533 -- freezing from another scope), we freeze the full view, and then
5534 -- set the pointers appropriately since we cannot rely on swapping to
5535 -- fix things up (subtypes in an outer scope might not get swapped).
5537 -- If the full view is itself private, the above requirements apply
5538 -- to the underlying full view instead of the full view. But there is
5539 -- no swapping mechanism for the underlying full view so we need to
5540 -- set the pointers appropriately in both cases.
5542 elsif Is_Incomplete_Or_Private_Type (E)
5543 and then not Is_Generic_Type (E)
5544 then
5545 -- The construction of the dispatch table associated with library
5546 -- level tagged types forces freezing of all the primitives of the
5547 -- type, which may cause premature freezing of the partial view.
5548 -- For example:
5550 -- package Pkg is
5551 -- type T is tagged private;
5552 -- type DT is new T with private;
5553 -- procedure Prim (X : in out T; Y : in out DT'Class);
5554 -- private
5555 -- type T is tagged null record;
5556 -- Obj : T;
5557 -- type DT is new T with null record;
5558 -- end;
5560 -- In this case the type will be frozen later by the usual
5561 -- mechanism: an object declaration, an instantiation, or the
5562 -- end of a declarative part.
5564 if Is_Library_Level_Tagged_Type (E)
5565 and then not Present (Full_View (E))
5566 then
5567 Set_Is_Frozen (E, False);
5568 Ghost_Mode := Save_Ghost_Mode;
5569 return Result;
5571 -- Case of full view present
5573 elsif Present (Full_View (E)) then
5575 -- If full view has already been frozen, then no further
5576 -- processing is required
5578 if Is_Frozen (Full_View (E)) then
5579 Set_Has_Delayed_Freeze (E, False);
5580 Set_Freeze_Node (E, Empty);
5582 -- Otherwise freeze full view and patch the pointers so that
5583 -- the freeze node will elaborate both views in the back end.
5584 -- However, if full view is itself private, freeze underlying
5585 -- full view instead and patch the pointers so that the freeze
5586 -- node will elaborate the three views in the back end.
5588 else
5589 declare
5590 Full : Entity_Id := Full_View (E);
5592 begin
5593 if Is_Private_Type (Full)
5594 and then Present (Underlying_Full_View (Full))
5595 then
5596 Full := Underlying_Full_View (Full);
5597 end if;
5599 Freeze_And_Append (Full, N, Result);
5601 if Full /= Full_View (E)
5602 and then Has_Delayed_Freeze (Full_View (E))
5603 then
5604 F_Node := Freeze_Node (Full);
5606 if Present (F_Node) then
5607 Set_Freeze_Node (Full_View (E), F_Node);
5608 Set_Entity (F_Node, Full_View (E));
5610 else
5611 Set_Has_Delayed_Freeze (Full_View (E), False);
5612 Set_Freeze_Node (Full_View (E), Empty);
5613 end if;
5614 end if;
5616 if Has_Delayed_Freeze (E) then
5617 F_Node := Freeze_Node (Full_View (E));
5619 if Present (F_Node) then
5620 Set_Freeze_Node (E, F_Node);
5621 Set_Entity (F_Node, E);
5623 else
5624 -- {Incomplete,Private}_Subtypes with Full_Views
5625 -- constrained by discriminants.
5627 Set_Has_Delayed_Freeze (E, False);
5628 Set_Freeze_Node (E, Empty);
5629 end if;
5630 end if;
5631 end;
5632 end if;
5634 Check_Debug_Info_Needed (E);
5636 -- AI-117 requires that the convention of a partial view be the
5637 -- same as the convention of the full view. Note that this is a
5638 -- recognized breach of privacy, but it's essential for logical
5639 -- consistency of representation, and the lack of a rule in
5640 -- RM95 was an oversight.
5642 Set_Convention (E, Convention (Full_View (E)));
5644 Set_Size_Known_At_Compile_Time (E,
5645 Size_Known_At_Compile_Time (Full_View (E)));
5647 -- Size information is copied from the full view to the
5648 -- incomplete or private view for consistency.
5650 -- We skip this is the full view is not a type. This is very
5651 -- strange of course, and can only happen as a result of
5652 -- certain illegalities, such as a premature attempt to derive
5653 -- from an incomplete type.
5655 if Is_Type (Full_View (E)) then
5656 Set_Size_Info (E, Full_View (E));
5657 Set_RM_Size (E, RM_Size (Full_View (E)));
5658 end if;
5660 Ghost_Mode := Save_Ghost_Mode;
5661 return Result;
5663 -- Case of underlying full view present
5665 elsif Is_Private_Type (E)
5666 and then Present (Underlying_Full_View (E))
5667 then
5668 if not Is_Frozen (Underlying_Full_View (E)) then
5669 Freeze_And_Append (Underlying_Full_View (E), N, Result);
5670 end if;
5672 -- Patch the pointers so that the freeze node will elaborate
5673 -- both views in the back end.
5675 if Has_Delayed_Freeze (E) then
5676 F_Node := Freeze_Node (Underlying_Full_View (E));
5678 if Present (F_Node) then
5679 Set_Freeze_Node (E, F_Node);
5680 Set_Entity (F_Node, E);
5682 else
5683 Set_Has_Delayed_Freeze (E, False);
5684 Set_Freeze_Node (E, Empty);
5685 end if;
5686 end if;
5688 Check_Debug_Info_Needed (E);
5690 Ghost_Mode := Save_Ghost_Mode;
5691 return Result;
5693 -- Case of no full view present. If entity is derived or subtype,
5694 -- it is safe to freeze, correctness depends on the frozen status
5695 -- of parent. Otherwise it is either premature usage, or a Taft
5696 -- amendment type, so diagnosis is at the point of use and the
5697 -- type might be frozen later.
5699 elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
5700 null;
5702 else
5703 Set_Is_Frozen (E, False);
5704 Ghost_Mode := Save_Ghost_Mode;
5705 return No_List;
5706 end if;
5708 -- For access subprogram, freeze types of all formals, the return
5709 -- type was already frozen, since it is the Etype of the function.
5710 -- Formal types can be tagged Taft amendment types, but otherwise
5711 -- they cannot be incomplete.
5713 elsif Ekind (E) = E_Subprogram_Type then
5714 Formal := First_Formal (E);
5715 while Present (Formal) loop
5716 if Ekind (Etype (Formal)) = E_Incomplete_Type
5717 and then No (Full_View (Etype (Formal)))
5718 then
5719 if Is_Tagged_Type (Etype (Formal)) then
5720 null;
5722 -- AI05-151: Incomplete types are allowed in access to
5723 -- subprogram specifications.
5725 elsif Ada_Version < Ada_2012 then
5726 Error_Msg_NE
5727 ("invalid use of incomplete type&", E, Etype (Formal));
5728 end if;
5729 end if;
5731 Freeze_And_Append (Etype (Formal), N, Result);
5732 Next_Formal (Formal);
5733 end loop;
5735 Freeze_Subprogram (E);
5737 -- For access to a protected subprogram, freeze the equivalent type
5738 -- (however this is not set if we are not generating code or if this
5739 -- is an anonymous type used just for resolution).
5741 elsif Is_Access_Protected_Subprogram_Type (E) then
5742 if Present (Equivalent_Type (E)) then
5743 Freeze_And_Append (Equivalent_Type (E), N, Result);
5744 end if;
5745 end if;
5747 -- Generic types are never seen by the back-end, and are also not
5748 -- processed by the expander (since the expander is turned off for
5749 -- generic processing), so we never need freeze nodes for them.
5751 if Is_Generic_Type (E) then
5752 Ghost_Mode := Save_Ghost_Mode;
5753 return Result;
5754 end if;
5756 -- Some special processing for non-generic types to complete
5757 -- representation details not known till the freeze point.
5759 if Is_Fixed_Point_Type (E) then
5760 Freeze_Fixed_Point_Type (E);
5762 -- Some error checks required for ordinary fixed-point type. Defer
5763 -- these till the freeze-point since we need the small and range
5764 -- values. We only do these checks for base types
5766 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
5767 if Small_Value (E) < Ureal_2_M_80 then
5768 Error_Msg_Name_1 := Name_Small;
5769 Error_Msg_N
5770 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
5772 elsif Small_Value (E) > Ureal_2_80 then
5773 Error_Msg_Name_1 := Name_Small;
5774 Error_Msg_N
5775 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
5776 end if;
5778 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
5779 Error_Msg_Name_1 := Name_First;
5780 Error_Msg_N
5781 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
5782 end if;
5784 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
5785 Error_Msg_Name_1 := Name_Last;
5786 Error_Msg_N
5787 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
5788 end if;
5789 end if;
5791 elsif Is_Enumeration_Type (E) then
5792 Freeze_Enumeration_Type (E);
5794 elsif Is_Integer_Type (E) then
5795 Adjust_Esize_For_Alignment (E);
5797 if Is_Modular_Integer_Type (E)
5798 and then Warn_On_Suspicious_Modulus_Value
5799 then
5800 Check_Suspicious_Modulus (E);
5801 end if;
5803 -- The pool applies to named and anonymous access types, but not
5804 -- to subprogram and to internal types generated for 'Access
5805 -- references.
5807 elsif Is_Access_Type (E)
5808 and then not Is_Access_Subprogram_Type (E)
5809 and then Ekind (E) /= E_Access_Attribute_Type
5810 then
5811 -- If a pragma Default_Storage_Pool applies, and this type has no
5812 -- Storage_Pool or Storage_Size clause (which must have occurred
5813 -- before the freezing point), then use the default. This applies
5814 -- only to base types.
5816 -- None of this applies to access to subprograms, for which there
5817 -- are clearly no pools.
5819 if Present (Default_Pool)
5820 and then Is_Base_Type (E)
5821 and then not Has_Storage_Size_Clause (E)
5822 and then No (Associated_Storage_Pool (E))
5823 then
5824 -- Case of pragma Default_Storage_Pool (null)
5826 if Nkind (Default_Pool) = N_Null then
5827 Set_No_Pool_Assigned (E);
5829 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
5831 else
5832 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
5833 end if;
5834 end if;
5836 -- Check restriction for standard storage pool
5838 if No (Associated_Storage_Pool (E)) then
5839 Check_Restriction (No_Standard_Storage_Pools, E);
5840 end if;
5842 -- Deal with error message for pure access type. This is not an
5843 -- error in Ada 2005 if there is no pool (see AI-366).
5845 if Is_Pure_Unit_Access_Type (E)
5846 and then (Ada_Version < Ada_2005
5847 or else not No_Pool_Assigned (E))
5848 and then not Is_Generic_Unit (Scope (E))
5849 then
5850 Error_Msg_N ("named access type not allowed in pure unit", E);
5852 if Ada_Version >= Ada_2005 then
5853 Error_Msg_N
5854 ("\would be legal if Storage_Size of 0 given??", E);
5856 elsif No_Pool_Assigned (E) then
5857 Error_Msg_N
5858 ("\would be legal in Ada 2005??", E);
5860 else
5861 Error_Msg_N
5862 ("\would be legal in Ada 2005 if "
5863 & "Storage_Size of 0 given??", E);
5864 end if;
5865 end if;
5866 end if;
5868 -- Case of composite types
5870 if Is_Composite_Type (E) then
5872 -- AI-117 requires that all new primitives of a tagged type must
5873 -- inherit the convention of the full view of the type. Inherited
5874 -- and overriding operations are defined to inherit the convention
5875 -- of their parent or overridden subprogram (also specified in
5876 -- AI-117), which will have occurred earlier (in Derive_Subprogram
5877 -- and New_Overloaded_Entity). Here we set the convention of
5878 -- primitives that are still convention Ada, which will ensure
5879 -- that any new primitives inherit the type's convention. Class-
5880 -- wide types can have a foreign convention inherited from their
5881 -- specific type, but are excluded from this since they don't have
5882 -- any associated primitives.
5884 if Is_Tagged_Type (E)
5885 and then not Is_Class_Wide_Type (E)
5886 and then Convention (E) /= Convention_Ada
5887 then
5888 declare
5889 Prim_List : constant Elist_Id := Primitive_Operations (E);
5890 Prim : Elmt_Id;
5892 begin
5893 Prim := First_Elmt (Prim_List);
5894 while Present (Prim) loop
5895 if Convention (Node (Prim)) = Convention_Ada then
5896 Set_Convention (Node (Prim), Convention (E));
5897 end if;
5899 Next_Elmt (Prim);
5900 end loop;
5901 end;
5902 end if;
5904 -- If the type is a simple storage pool type, then this is where
5905 -- we attempt to locate and validate its Allocate, Deallocate, and
5906 -- Storage_Size operations (the first is required, and the latter
5907 -- two are optional). We also verify that the full type for a
5908 -- private type is allowed to be a simple storage pool type.
5910 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
5911 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
5912 then
5913 -- If the type is marked Has_Private_Declaration, then this is
5914 -- a full type for a private type that was specified with the
5915 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
5916 -- pragma is allowed for the full type (for example, it can't
5917 -- be an array type, or a nonlimited record type).
5919 if Has_Private_Declaration (E) then
5920 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
5921 and then not Is_Private_Type (E)
5922 then
5923 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
5924 Error_Msg_N
5925 ("pragma% can only apply to full type that is an " &
5926 "explicitly limited type", E);
5927 end if;
5928 end if;
5930 Validate_Simple_Pool_Ops : declare
5931 Pool_Type : Entity_Id renames E;
5932 Address_Type : constant Entity_Id := RTE (RE_Address);
5933 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
5935 procedure Validate_Simple_Pool_Op_Formal
5936 (Pool_Op : Entity_Id;
5937 Pool_Op_Formal : in out Entity_Id;
5938 Expected_Mode : Formal_Kind;
5939 Expected_Type : Entity_Id;
5940 Formal_Name : String;
5941 OK_Formal : in out Boolean);
5942 -- Validate one formal Pool_Op_Formal of the candidate pool
5943 -- operation Pool_Op. The formal must be of Expected_Type
5944 -- and have mode Expected_Mode. OK_Formal will be set to
5945 -- False if the formal doesn't match. If OK_Formal is False
5946 -- on entry, then the formal will effectively be ignored
5947 -- (because validation of the pool op has already failed).
5948 -- Upon return, Pool_Op_Formal will be updated to the next
5949 -- formal, if any.
5951 procedure Validate_Simple_Pool_Operation
5952 (Op_Name : Name_Id);
5953 -- Search for and validate a simple pool operation with the
5954 -- name Op_Name. If the name is Allocate, then there must be
5955 -- exactly one such primitive operation for the simple pool
5956 -- type. If the name is Deallocate or Storage_Size, then
5957 -- there can be at most one such primitive operation. The
5958 -- profile of the located primitive must conform to what
5959 -- is expected for each operation.
5961 ------------------------------------
5962 -- Validate_Simple_Pool_Op_Formal --
5963 ------------------------------------
5965 procedure Validate_Simple_Pool_Op_Formal
5966 (Pool_Op : Entity_Id;
5967 Pool_Op_Formal : in out Entity_Id;
5968 Expected_Mode : Formal_Kind;
5969 Expected_Type : Entity_Id;
5970 Formal_Name : String;
5971 OK_Formal : in out Boolean)
5973 begin
5974 -- If OK_Formal is False on entry, then simply ignore
5975 -- the formal, because an earlier formal has already
5976 -- been flagged.
5978 if not OK_Formal then
5979 return;
5981 -- If no formal is passed in, then issue an error for a
5982 -- missing formal.
5984 elsif not Present (Pool_Op_Formal) then
5985 Error_Msg_NE
5986 ("simple storage pool op missing formal " &
5987 Formal_Name & " of type&", Pool_Op, Expected_Type);
5988 OK_Formal := False;
5990 return;
5991 end if;
5993 if Etype (Pool_Op_Formal) /= Expected_Type then
5995 -- If the pool type was expected for this formal, then
5996 -- this will not be considered a candidate operation
5997 -- for the simple pool, so we unset OK_Formal so that
5998 -- the op and any later formals will be ignored.
6000 if Expected_Type = Pool_Type then
6001 OK_Formal := False;
6003 return;
6005 else
6006 Error_Msg_NE
6007 ("wrong type for formal " & Formal_Name &
6008 " of simple storage pool op; expected type&",
6009 Pool_Op_Formal, Expected_Type);
6010 end if;
6011 end if;
6013 -- Issue error if formal's mode is not the expected one
6015 if Ekind (Pool_Op_Formal) /= Expected_Mode then
6016 Error_Msg_N
6017 ("wrong mode for formal of simple storage pool op",
6018 Pool_Op_Formal);
6019 end if;
6021 -- Advance to the next formal
6023 Next_Formal (Pool_Op_Formal);
6024 end Validate_Simple_Pool_Op_Formal;
6026 ------------------------------------
6027 -- Validate_Simple_Pool_Operation --
6028 ------------------------------------
6030 procedure Validate_Simple_Pool_Operation
6031 (Op_Name : Name_Id)
6033 Op : Entity_Id;
6034 Found_Op : Entity_Id := Empty;
6035 Formal : Entity_Id;
6036 Is_OK : Boolean;
6038 begin
6039 pragma Assert
6040 (Nam_In (Op_Name, Name_Allocate,
6041 Name_Deallocate,
6042 Name_Storage_Size));
6044 Error_Msg_Name_1 := Op_Name;
6046 -- For each homonym declared immediately in the scope
6047 -- of the simple storage pool type, determine whether
6048 -- the homonym is an operation of the pool type, and,
6049 -- if so, check that its profile is as expected for
6050 -- a simple pool operation of that name.
6052 Op := Get_Name_Entity_Id (Op_Name);
6053 while Present (Op) loop
6054 if Ekind_In (Op, E_Function, E_Procedure)
6055 and then Scope (Op) = Current_Scope
6056 then
6057 Formal := First_Entity (Op);
6059 Is_OK := True;
6061 -- The first parameter must be of the pool type
6062 -- in order for the operation to qualify.
6064 if Op_Name = Name_Storage_Size then
6065 Validate_Simple_Pool_Op_Formal
6066 (Op, Formal, E_In_Parameter, Pool_Type,
6067 "Pool", Is_OK);
6068 else
6069 Validate_Simple_Pool_Op_Formal
6070 (Op, Formal, E_In_Out_Parameter, Pool_Type,
6071 "Pool", Is_OK);
6072 end if;
6074 -- If another operation with this name has already
6075 -- been located for the type, then flag an error,
6076 -- since we only allow the type to have a single
6077 -- such primitive.
6079 if Present (Found_Op) and then Is_OK then
6080 Error_Msg_NE
6081 ("only one % operation allowed for " &
6082 "simple storage pool type&", Op, Pool_Type);
6083 end if;
6085 -- In the case of Allocate and Deallocate, a formal
6086 -- of type System.Address is required.
6088 if Op_Name = Name_Allocate then
6089 Validate_Simple_Pool_Op_Formal
6090 (Op, Formal, E_Out_Parameter,
6091 Address_Type, "Storage_Address", Is_OK);
6093 elsif Op_Name = Name_Deallocate then
6094 Validate_Simple_Pool_Op_Formal
6095 (Op, Formal, E_In_Parameter,
6096 Address_Type, "Storage_Address", Is_OK);
6097 end if;
6099 -- In the case of Allocate and Deallocate, formals
6100 -- of type Storage_Count are required as the third
6101 -- and fourth parameters.
6103 if Op_Name /= Name_Storage_Size then
6104 Validate_Simple_Pool_Op_Formal
6105 (Op, Formal, E_In_Parameter,
6106 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
6107 Validate_Simple_Pool_Op_Formal
6108 (Op, Formal, E_In_Parameter,
6109 Stg_Cnt_Type, "Alignment", Is_OK);
6110 end if;
6112 -- If no mismatched formals have been found (Is_OK)
6113 -- and no excess formals are present, then this
6114 -- operation has been validated, so record it.
6116 if not Present (Formal) and then Is_OK then
6117 Found_Op := Op;
6118 end if;
6119 end if;
6121 Op := Homonym (Op);
6122 end loop;
6124 -- There must be a valid Allocate operation for the type,
6125 -- so issue an error if none was found.
6127 if Op_Name = Name_Allocate
6128 and then not Present (Found_Op)
6129 then
6130 Error_Msg_N ("missing % operation for simple " &
6131 "storage pool type", Pool_Type);
6133 elsif Present (Found_Op) then
6135 -- Simple pool operations can't be abstract
6137 if Is_Abstract_Subprogram (Found_Op) then
6138 Error_Msg_N
6139 ("simple storage pool operation must not be " &
6140 "abstract", Found_Op);
6141 end if;
6143 -- The Storage_Size operation must be a function with
6144 -- Storage_Count as its result type.
6146 if Op_Name = Name_Storage_Size then
6147 if Ekind (Found_Op) = E_Procedure then
6148 Error_Msg_N
6149 ("% operation must be a function", Found_Op);
6151 elsif Etype (Found_Op) /= Stg_Cnt_Type then
6152 Error_Msg_NE
6153 ("wrong result type for%, expected type&",
6154 Found_Op, Stg_Cnt_Type);
6155 end if;
6157 -- Allocate and Deallocate must be procedures
6159 elsif Ekind (Found_Op) = E_Function then
6160 Error_Msg_N
6161 ("% operation must be a procedure", Found_Op);
6162 end if;
6163 end if;
6164 end Validate_Simple_Pool_Operation;
6166 -- Start of processing for Validate_Simple_Pool_Ops
6168 begin
6169 Validate_Simple_Pool_Operation (Name_Allocate);
6170 Validate_Simple_Pool_Operation (Name_Deallocate);
6171 Validate_Simple_Pool_Operation (Name_Storage_Size);
6172 end Validate_Simple_Pool_Ops;
6173 end if;
6174 end if;
6176 -- Now that all types from which E may depend are frozen, see if the
6177 -- size is known at compile time, if it must be unsigned, or if
6178 -- strict alignment is required
6180 Check_Compile_Time_Size (E);
6181 Check_Unsigned_Type (E);
6183 if Base_Type (E) = E then
6184 Check_Strict_Alignment (E);
6185 end if;
6187 -- Do not allow a size clause for a type which does not have a size
6188 -- that is known at compile time
6190 if Has_Size_Clause (E)
6191 and then not Size_Known_At_Compile_Time (E)
6192 then
6193 -- Suppress this message if errors posted on E, even if we are
6194 -- in all errors mode, since this is often a junk message
6196 if not Error_Posted (E) then
6197 Error_Msg_N
6198 ("size clause not allowed for variable length type",
6199 Size_Clause (E));
6200 end if;
6201 end if;
6203 -- Now we set/verify the representation information, in particular
6204 -- the size and alignment values. This processing is not required for
6205 -- generic types, since generic types do not play any part in code
6206 -- generation, and so the size and alignment values for such types
6207 -- are irrelevant. Ditto for types declared within a generic unit,
6208 -- which may have components that depend on generic parameters, and
6209 -- that will be recreated in an instance.
6211 if Inside_A_Generic then
6212 null;
6214 -- Otherwise we call the layout procedure
6216 else
6217 Layout_Type (E);
6218 end if;
6220 -- If this is an access to subprogram whose designated type is itself
6221 -- a subprogram type, the return type of this anonymous subprogram
6222 -- type must be decorated as well.
6224 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
6225 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
6226 then
6227 Layout_Type (Etype (Designated_Type (E)));
6228 end if;
6230 -- If the type has a Defaut_Value/Default_Component_Value aspect,
6231 -- this is where we analye the expression (after the type is frozen,
6232 -- since in the case of Default_Value, we are analyzing with the
6233 -- type itself, and we treat Default_Component_Value similarly for
6234 -- the sake of uniformity).
6236 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
6237 declare
6238 Nam : Name_Id;
6239 Exp : Node_Id;
6240 Typ : Entity_Id;
6242 begin
6243 if Is_Scalar_Type (E) then
6244 Nam := Name_Default_Value;
6245 Typ := E;
6246 Exp := Default_Aspect_Value (Typ);
6247 else
6248 Nam := Name_Default_Component_Value;
6249 Typ := Component_Type (E);
6250 Exp := Default_Aspect_Component_Value (E);
6251 end if;
6253 Analyze_And_Resolve (Exp, Typ);
6255 if Etype (Exp) /= Any_Type then
6256 if not Is_OK_Static_Expression (Exp) then
6257 Error_Msg_Name_1 := Nam;
6258 Flag_Non_Static_Expr
6259 ("aspect% requires static expression", Exp);
6260 end if;
6261 end if;
6262 end;
6263 end if;
6265 -- End of freeze processing for type entities
6266 end if;
6268 -- Here is where we logically freeze the current entity. If it has a
6269 -- freeze node, then this is the point at which the freeze node is
6270 -- linked into the result list.
6272 if Has_Delayed_Freeze (E) then
6274 -- If a freeze node is already allocated, use it, otherwise allocate
6275 -- a new one. The preallocation happens in the case of anonymous base
6276 -- types, where we preallocate so that we can set First_Subtype_Link.
6277 -- Note that we reset the Sloc to the current freeze location.
6279 if Present (Freeze_Node (E)) then
6280 F_Node := Freeze_Node (E);
6281 Set_Sloc (F_Node, Loc);
6283 else
6284 F_Node := New_Node (N_Freeze_Entity, Loc);
6285 Set_Freeze_Node (E, F_Node);
6286 Set_Access_Types_To_Process (F_Node, No_Elist);
6287 Set_TSS_Elist (F_Node, No_Elist);
6288 Set_Actions (F_Node, No_List);
6289 end if;
6291 Set_Entity (F_Node, E);
6292 Add_To_Result (F_Node);
6294 -- A final pass over record types with discriminants. If the type
6295 -- has an incomplete declaration, there may be constrained access
6296 -- subtypes declared elsewhere, which do not depend on the discrimi-
6297 -- nants of the type, and which are used as component types (i.e.
6298 -- the full view is a recursive type). The designated types of these
6299 -- subtypes can only be elaborated after the type itself, and they
6300 -- need an itype reference.
6302 if Ekind (E) = E_Record_Type
6303 and then Has_Discriminants (E)
6304 then
6305 declare
6306 Comp : Entity_Id;
6307 IR : Node_Id;
6308 Typ : Entity_Id;
6310 begin
6311 Comp := First_Component (E);
6312 while Present (Comp) loop
6313 Typ := Etype (Comp);
6315 if Ekind (Comp) = E_Component
6316 and then Is_Access_Type (Typ)
6317 and then Scope (Typ) /= E
6318 and then Base_Type (Designated_Type (Typ)) = E
6319 and then Is_Itype (Designated_Type (Typ))
6320 then
6321 IR := Make_Itype_Reference (Sloc (Comp));
6322 Set_Itype (IR, Designated_Type (Typ));
6323 Append (IR, Result);
6324 end if;
6326 Next_Component (Comp);
6327 end loop;
6328 end;
6329 end if;
6330 end if;
6332 -- When a type is frozen, the first subtype of the type is frozen as
6333 -- well (RM 13.14(15)). This has to be done after freezing the type,
6334 -- since obviously the first subtype depends on its own base type.
6336 if Is_Type (E) then
6337 Freeze_And_Append (First_Subtype (E), N, Result);
6339 -- If we just froze a tagged non-class wide record, then freeze the
6340 -- corresponding class-wide type. This must be done after the tagged
6341 -- type itself is frozen, because the class-wide type refers to the
6342 -- tagged type which generates the class.
6344 if Is_Tagged_Type (E)
6345 and then not Is_Class_Wide_Type (E)
6346 and then Present (Class_Wide_Type (E))
6347 then
6348 Freeze_And_Append (Class_Wide_Type (E), N, Result);
6349 end if;
6350 end if;
6352 Check_Debug_Info_Needed (E);
6354 -- Special handling for subprograms
6356 if Is_Subprogram (E) then
6358 -- If subprogram has address clause then reset Is_Public flag, since
6359 -- we do not want the backend to generate external references.
6361 if Present (Address_Clause (E))
6362 and then not Is_Library_Level_Entity (E)
6363 then
6364 Set_Is_Public (E, False);
6365 end if;
6366 end if;
6368 Ghost_Mode := Save_Ghost_Mode;
6369 return Result;
6370 end Freeze_Entity;
6372 -----------------------------
6373 -- Freeze_Enumeration_Type --
6374 -----------------------------
6376 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
6377 begin
6378 -- By default, if no size clause is present, an enumeration type with
6379 -- Convention C is assumed to interface to a C enum, and has integer
6380 -- size. This applies to types. For subtypes, verify that its base
6381 -- type has no size clause either. Treat other foreign conventions
6382 -- in the same way, and also make sure alignment is set right.
6384 if Has_Foreign_Convention (Typ)
6385 and then not Has_Size_Clause (Typ)
6386 and then not Has_Size_Clause (Base_Type (Typ))
6387 and then Esize (Typ) < Standard_Integer_Size
6389 -- Don't do this if Short_Enums on target
6391 and then not Target_Short_Enums
6392 then
6393 Init_Esize (Typ, Standard_Integer_Size);
6394 Set_Alignment (Typ, Alignment (Standard_Integer));
6396 -- Normal Ada case or size clause present or not Long_C_Enums on target
6398 else
6399 -- If the enumeration type interfaces to C, and it has a size clause
6400 -- that specifies less than int size, it warrants a warning. The
6401 -- user may intend the C type to be an enum or a char, so this is
6402 -- not by itself an error that the Ada compiler can detect, but it
6403 -- it is a worth a heads-up. For Boolean and Character types we
6404 -- assume that the programmer has the proper C type in mind.
6406 if Convention (Typ) = Convention_C
6407 and then Has_Size_Clause (Typ)
6408 and then Esize (Typ) /= Esize (Standard_Integer)
6409 and then not Is_Boolean_Type (Typ)
6410 and then not Is_Character_Type (Typ)
6412 -- Don't do this if Short_Enums on target
6414 and then not Target_Short_Enums
6415 then
6416 Error_Msg_N
6417 ("C enum types have the size of a C int??", Size_Clause (Typ));
6418 end if;
6420 Adjust_Esize_For_Alignment (Typ);
6421 end if;
6422 end Freeze_Enumeration_Type;
6424 -----------------------
6425 -- Freeze_Expression --
6426 -----------------------
6428 procedure Freeze_Expression (N : Node_Id) is
6429 In_Spec_Exp : constant Boolean := In_Spec_Expression;
6430 Typ : Entity_Id;
6431 Nam : Entity_Id;
6432 Desig_Typ : Entity_Id;
6433 P : Node_Id;
6434 Parent_P : Node_Id;
6436 Freeze_Outside : Boolean := False;
6437 -- This flag is set true if the entity must be frozen outside the
6438 -- current subprogram. This happens in the case of expander generated
6439 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
6440 -- not freeze all entities like other bodies, but which nevertheless
6441 -- may reference entities that have to be frozen before the body and
6442 -- obviously cannot be frozen inside the body.
6444 function Find_Aggregate_Component_Desig_Type return Entity_Id;
6445 -- If the expression is an array aggregate, the type of the component
6446 -- expressions is also frozen. If the component type is an access type
6447 -- and the expressions include allocators, the designed type is frozen
6448 -- as well.
6450 function In_Expanded_Body (N : Node_Id) return Boolean;
6451 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
6452 -- it is the handled statement sequence of an expander-generated
6453 -- subprogram (init proc, stream subprogram, or renaming as body).
6454 -- If so, this is not a freezing context.
6456 -----------------------------------------
6457 -- Find_Aggregate_Component_Desig_Type --
6458 -----------------------------------------
6460 function Find_Aggregate_Component_Desig_Type return Entity_Id is
6461 Assoc : Node_Id;
6462 Exp : Node_Id;
6464 begin
6465 if Present (Expressions (N)) then
6466 Exp := First (Expressions (N));
6467 while Present (Exp) loop
6468 if Nkind (Exp) = N_Allocator then
6469 return Designated_Type (Component_Type (Etype (N)));
6470 end if;
6472 Next (Exp);
6473 end loop;
6474 end if;
6476 if Present (Component_Associations (N)) then
6477 Assoc := First (Component_Associations (N));
6478 while Present (Assoc) loop
6479 if Nkind (Expression (Assoc)) = N_Allocator then
6480 return Designated_Type (Component_Type (Etype (N)));
6481 end if;
6483 Next (Assoc);
6484 end loop;
6485 end if;
6487 return Empty;
6488 end Find_Aggregate_Component_Desig_Type;
6490 ----------------------
6491 -- In_Expanded_Body --
6492 ----------------------
6494 function In_Expanded_Body (N : Node_Id) return Boolean is
6495 P : Node_Id;
6496 Id : Entity_Id;
6498 begin
6499 if Nkind (N) = N_Subprogram_Body then
6500 P := N;
6501 else
6502 P := Parent (N);
6503 end if;
6505 if Nkind (P) /= N_Subprogram_Body then
6506 return False;
6508 else
6509 Id := Defining_Unit_Name (Specification (P));
6511 -- The following are expander-created bodies, or bodies that
6512 -- are not freeze points.
6514 if Nkind (Id) = N_Defining_Identifier
6515 and then (Is_Init_Proc (Id)
6516 or else Is_TSS (Id, TSS_Stream_Input)
6517 or else Is_TSS (Id, TSS_Stream_Output)
6518 or else Is_TSS (Id, TSS_Stream_Read)
6519 or else Is_TSS (Id, TSS_Stream_Write)
6520 or else Nkind_In (Original_Node (P),
6521 N_Subprogram_Renaming_Declaration,
6522 N_Expression_Function))
6523 then
6524 return True;
6525 else
6526 return False;
6527 end if;
6528 end if;
6529 end In_Expanded_Body;
6531 -- Start of processing for Freeze_Expression
6533 begin
6534 -- Immediate return if freezing is inhibited. This flag is set by the
6535 -- analyzer to stop freezing on generated expressions that would cause
6536 -- freezing if they were in the source program, but which are not
6537 -- supposed to freeze, since they are created.
6539 if Must_Not_Freeze (N) then
6540 return;
6541 end if;
6543 -- If expression is non-static, then it does not freeze in a default
6544 -- expression, see section "Handling of Default Expressions" in the
6545 -- spec of package Sem for further details. Note that we have to make
6546 -- sure that we actually have a real expression (if we have a subtype
6547 -- indication, we can't test Is_OK_Static_Expression). However, we
6548 -- exclude the case of the prefix of an attribute of a static scalar
6549 -- subtype from this early return, because static subtype attributes
6550 -- should always cause freezing, even in default expressions, but
6551 -- the attribute may not have been marked as static yet (because in
6552 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6553 -- Freeze_Expression on the prefix).
6555 if In_Spec_Exp
6556 and then Nkind (N) in N_Subexpr
6557 and then not Is_OK_Static_Expression (N)
6558 and then (Nkind (Parent (N)) /= N_Attribute_Reference
6559 or else not (Is_Entity_Name (N)
6560 and then Is_Type (Entity (N))
6561 and then Is_OK_Static_Subtype (Entity (N))))
6562 then
6563 return;
6564 end if;
6566 -- Freeze type of expression if not frozen already
6568 Typ := Empty;
6570 if Nkind (N) in N_Has_Etype then
6571 if not Is_Frozen (Etype (N)) then
6572 Typ := Etype (N);
6574 -- Base type may be an derived numeric type that is frozen at
6575 -- the point of declaration, but first_subtype is still unfrozen.
6577 elsif not Is_Frozen (First_Subtype (Etype (N))) then
6578 Typ := First_Subtype (Etype (N));
6579 end if;
6580 end if;
6582 -- For entity name, freeze entity if not frozen already. A special
6583 -- exception occurs for an identifier that did not come from source.
6584 -- We don't let such identifiers freeze a non-internal entity, i.e.
6585 -- an entity that did come from source, since such an identifier was
6586 -- generated by the expander, and cannot have any semantic effect on
6587 -- the freezing semantics. For example, this stops the parameter of
6588 -- an initialization procedure from freezing the variable.
6590 if Is_Entity_Name (N)
6591 and then not Is_Frozen (Entity (N))
6592 and then (Nkind (N) /= N_Identifier
6593 or else Comes_From_Source (N)
6594 or else not Comes_From_Source (Entity (N)))
6595 then
6596 Nam := Entity (N);
6598 if Present (Nam) and then Ekind (Nam) = E_Function then
6599 Check_Expression_Function (N, Nam);
6600 end if;
6602 else
6603 Nam := Empty;
6604 end if;
6606 -- For an allocator freeze designated type if not frozen already
6608 -- For an aggregate whose component type is an access type, freeze the
6609 -- designated type now, so that its freeze does not appear within the
6610 -- loop that might be created in the expansion of the aggregate. If the
6611 -- designated type is a private type without full view, the expression
6612 -- cannot contain an allocator, so the type is not frozen.
6614 -- For a function, we freeze the entity when the subprogram declaration
6615 -- is frozen, but a function call may appear in an initialization proc.
6616 -- before the declaration is frozen. We need to generate the extra
6617 -- formals, if any, to ensure that the expansion of the call includes
6618 -- the proper actuals. This only applies to Ada subprograms, not to
6619 -- imported ones.
6621 Desig_Typ := Empty;
6623 case Nkind (N) is
6624 when N_Allocator =>
6625 Desig_Typ := Designated_Type (Etype (N));
6627 when N_Aggregate =>
6628 if Is_Array_Type (Etype (N))
6629 and then Is_Access_Type (Component_Type (Etype (N)))
6630 then
6632 -- Check whether aggregate includes allocators.
6634 Desig_Typ := Find_Aggregate_Component_Desig_Type;
6635 end if;
6637 when N_Selected_Component |
6638 N_Indexed_Component |
6639 N_Slice =>
6641 if Is_Access_Type (Etype (Prefix (N))) then
6642 Desig_Typ := Designated_Type (Etype (Prefix (N)));
6643 end if;
6645 when N_Identifier =>
6646 if Present (Nam)
6647 and then Ekind (Nam) = E_Function
6648 and then Nkind (Parent (N)) = N_Function_Call
6649 and then Convention (Nam) = Convention_Ada
6650 then
6651 Create_Extra_Formals (Nam);
6652 end if;
6654 when others =>
6655 null;
6656 end case;
6658 if Desig_Typ /= Empty
6659 and then (Is_Frozen (Desig_Typ)
6660 or else (not Is_Fully_Defined (Desig_Typ)))
6661 then
6662 Desig_Typ := Empty;
6663 end if;
6665 -- All done if nothing needs freezing
6667 if No (Typ)
6668 and then No (Nam)
6669 and then No (Desig_Typ)
6670 then
6671 return;
6672 end if;
6674 -- Examine the enclosing context by climbing the parent chain. The
6675 -- traversal serves two purposes - to detect scenarios where freezeing
6676 -- is not needed and to find the proper insertion point for the freeze
6677 -- nodes. Although somewhat similar to Insert_Actions, this traversal
6678 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
6679 -- the tree may result in types being frozen too early.
6681 P := N;
6682 loop
6683 Parent_P := Parent (P);
6685 -- If we don't have a parent, then we are not in a well-formed tree.
6686 -- This is an unusual case, but there are some legitimate situations
6687 -- in which this occurs, notably when the expressions in the range of
6688 -- a type declaration are resolved. We simply ignore the freeze
6689 -- request in this case. Is this right ???
6691 if No (Parent_P) then
6692 return;
6693 end if;
6695 -- See if we have got to an appropriate point in the tree
6697 case Nkind (Parent_P) is
6699 -- A special test for the exception of (RM 13.14(8)) for the case
6700 -- of per-object expressions (RM 3.8(18)) occurring in component
6701 -- definition or a discrete subtype definition. Note that we test
6702 -- for a component declaration which includes both cases we are
6703 -- interested in, and furthermore the tree does not have explicit
6704 -- nodes for either of these two constructs.
6706 when N_Component_Declaration =>
6708 -- The case we want to test for here is an identifier that is
6709 -- a per-object expression, this is either a discriminant that
6710 -- appears in a context other than the component declaration
6711 -- or it is a reference to the type of the enclosing construct.
6713 -- For either of these cases, we skip the freezing
6715 if not In_Spec_Expression
6716 and then Nkind (N) = N_Identifier
6717 and then (Present (Entity (N)))
6718 then
6719 -- We recognize the discriminant case by just looking for
6720 -- a reference to a discriminant. It can only be one for
6721 -- the enclosing construct. Skip freezing in this case.
6723 if Ekind (Entity (N)) = E_Discriminant then
6724 return;
6726 -- For the case of a reference to the enclosing record,
6727 -- (or task or protected type), we look for a type that
6728 -- matches the current scope.
6730 elsif Entity (N) = Current_Scope then
6731 return;
6732 end if;
6733 end if;
6735 -- If we have an enumeration literal that appears as the choice in
6736 -- the aggregate of an enumeration representation clause, then
6737 -- freezing does not occur (RM 13.14(10)).
6739 when N_Enumeration_Representation_Clause =>
6741 -- The case we are looking for is an enumeration literal
6743 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
6744 and then Is_Enumeration_Type (Etype (N))
6745 then
6746 -- If enumeration literal appears directly as the choice,
6747 -- do not freeze (this is the normal non-overloaded case)
6749 if Nkind (Parent (N)) = N_Component_Association
6750 and then First (Choices (Parent (N))) = N
6751 then
6752 return;
6754 -- If enumeration literal appears as the name of function
6755 -- which is the choice, then also do not freeze. This
6756 -- happens in the overloaded literal case, where the
6757 -- enumeration literal is temporarily changed to a function
6758 -- call for overloading analysis purposes.
6760 elsif Nkind (Parent (N)) = N_Function_Call
6761 and then
6762 Nkind (Parent (Parent (N))) = N_Component_Association
6763 and then
6764 First (Choices (Parent (Parent (N)))) = Parent (N)
6765 then
6766 return;
6767 end if;
6768 end if;
6770 -- Normally if the parent is a handled sequence of statements,
6771 -- then the current node must be a statement, and that is an
6772 -- appropriate place to insert a freeze node.
6774 when N_Handled_Sequence_Of_Statements =>
6776 -- An exception occurs when the sequence of statements is for
6777 -- an expander generated body that did not do the usual freeze
6778 -- all operation. In this case we usually want to freeze
6779 -- outside this body, not inside it, and we skip past the
6780 -- subprogram body that we are inside.
6782 if In_Expanded_Body (Parent_P) then
6783 declare
6784 Subp : constant Node_Id := Parent (Parent_P);
6785 Spec : Entity_Id;
6787 begin
6788 -- Freeze the entity only when it is declared inside the
6789 -- body of the expander generated procedure. This case
6790 -- is recognized by the scope of the entity or its type,
6791 -- which is either the spec for some enclosing body, or
6792 -- (in the case of init_procs, for which there are no
6793 -- separate specs) the current scope.
6795 if Nkind (Subp) = N_Subprogram_Body then
6796 Spec := Corresponding_Spec (Subp);
6798 if (Present (Typ) and then Scope (Typ) = Spec)
6799 or else
6800 (Present (Nam) and then Scope (Nam) = Spec)
6801 then
6802 exit;
6804 elsif Present (Typ)
6805 and then Scope (Typ) = Current_Scope
6806 and then Defining_Entity (Subp) = Current_Scope
6807 then
6808 exit;
6809 end if;
6810 end if;
6812 -- An expression function may act as a completion of
6813 -- a function declaration. As such, it can reference
6814 -- entities declared between the two views:
6816 -- Hidden []; -- 1
6817 -- function F return ...;
6818 -- private
6819 -- function Hidden return ...;
6820 -- function F return ... is (Hidden); -- 2
6822 -- Refering to the example above, freezing the expression
6823 -- of F (2) would place Hidden's freeze node (1) in the
6824 -- wrong place. Avoid explicit freezing and let the usual
6825 -- scenarios do the job - for example, reaching the end
6826 -- of the private declarations, or a call to F.
6828 if Nkind (Original_Node (Subp)) =
6829 N_Expression_Function
6830 then
6831 null;
6833 -- Freeze outside the body
6835 else
6836 Parent_P := Parent (Parent_P);
6837 Freeze_Outside := True;
6838 end if;
6839 end;
6841 -- Here if normal case where we are in handled statement
6842 -- sequence and want to do the insertion right there.
6844 else
6845 exit;
6846 end if;
6848 -- If parent is a body or a spec or a block, then the current node
6849 -- is a statement or declaration and we can insert the freeze node
6850 -- before it.
6852 when N_Block_Statement |
6853 N_Entry_Body |
6854 N_Package_Body |
6855 N_Package_Specification |
6856 N_Protected_Body |
6857 N_Subprogram_Body |
6858 N_Task_Body => exit;
6860 -- The expander is allowed to define types in any statements list,
6861 -- so any of the following parent nodes also mark a freezing point
6862 -- if the actual node is in a list of statements or declarations.
6864 when N_Abortable_Part |
6865 N_Accept_Alternative |
6866 N_And_Then |
6867 N_Case_Statement_Alternative |
6868 N_Compilation_Unit_Aux |
6869 N_Conditional_Entry_Call |
6870 N_Delay_Alternative |
6871 N_Elsif_Part |
6872 N_Entry_Call_Alternative |
6873 N_Exception_Handler |
6874 N_Extended_Return_Statement |
6875 N_Freeze_Entity |
6876 N_If_Statement |
6877 N_Or_Else |
6878 N_Selective_Accept |
6879 N_Triggering_Alternative =>
6881 exit when Is_List_Member (P);
6883 -- Freeze nodes produced by an expression coming from the Actions
6884 -- list of a N_Expression_With_Actions node must remain within the
6885 -- Actions list. Inserting the freeze nodes further up the tree
6886 -- may lead to use before declaration issues in the case of array
6887 -- types.
6889 when N_Expression_With_Actions =>
6890 if Is_List_Member (P)
6891 and then List_Containing (P) = Actions (Parent_P)
6892 then
6893 exit;
6894 end if;
6896 -- Note: N_Loop_Statement is a special case. A type that appears
6897 -- in the source can never be frozen in a loop (this occurs only
6898 -- because of a loop expanded by the expander), so we keep on
6899 -- going. Otherwise we terminate the search. Same is true of any
6900 -- entity which comes from source. (if they have predefined type,
6901 -- that type does not appear to come from source, but the entity
6902 -- should not be frozen here).
6904 when N_Loop_Statement =>
6905 exit when not Comes_From_Source (Etype (N))
6906 and then (No (Nam) or else not Comes_From_Source (Nam));
6908 -- For all other cases, keep looking at parents
6910 when others =>
6911 null;
6912 end case;
6914 -- We fall through the case if we did not yet find the proper
6915 -- place in the free for inserting the freeze node, so climb.
6917 P := Parent_P;
6918 end loop;
6920 -- If the expression appears in a record or an initialization procedure,
6921 -- the freeze nodes are collected and attached to the current scope, to
6922 -- be inserted and analyzed on exit from the scope, to insure that
6923 -- generated entities appear in the correct scope. If the expression is
6924 -- a default for a discriminant specification, the scope is still void.
6925 -- The expression can also appear in the discriminant part of a private
6926 -- or concurrent type.
6928 -- If the expression appears in a constrained subcomponent of an
6929 -- enclosing record declaration, the freeze nodes must be attached to
6930 -- the outer record type so they can eventually be placed in the
6931 -- enclosing declaration list.
6933 -- The other case requiring this special handling is if we are in a
6934 -- default expression, since in that case we are about to freeze a
6935 -- static type, and the freeze scope needs to be the outer scope, not
6936 -- the scope of the subprogram with the default parameter.
6938 -- For default expressions and other spec expressions in generic units,
6939 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
6940 -- placing them at the proper place, after the generic unit.
6942 if (In_Spec_Exp and not Inside_A_Generic)
6943 or else Freeze_Outside
6944 or else (Is_Type (Current_Scope)
6945 and then (not Is_Concurrent_Type (Current_Scope)
6946 or else not Has_Completion (Current_Scope)))
6947 or else Ekind (Current_Scope) = E_Void
6948 then
6949 declare
6950 N : constant Node_Id := Current_Scope;
6951 Freeze_Nodes : List_Id := No_List;
6952 Pos : Int := Scope_Stack.Last;
6954 begin
6955 if Present (Desig_Typ) then
6956 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
6957 end if;
6959 if Present (Typ) then
6960 Freeze_And_Append (Typ, N, Freeze_Nodes);
6961 end if;
6963 if Present (Nam) then
6964 Freeze_And_Append (Nam, N, Freeze_Nodes);
6965 end if;
6967 -- The current scope may be that of a constrained component of
6968 -- an enclosing record declaration, or of a loop of an enclosing
6969 -- quantified expression, which is above the current scope in the
6970 -- scope stack. Indeed in the context of a quantified expression,
6971 -- a scope is created and pushed above the current scope in order
6972 -- to emulate the loop-like behavior of the quantified expression.
6973 -- If the expression is within a top-level pragma, as for a pre-
6974 -- condition on a library-level subprogram, nothing to do.
6976 if not Is_Compilation_Unit (Current_Scope)
6977 and then (Is_Record_Type (Scope (Current_Scope))
6978 or else Nkind (Parent (Current_Scope)) =
6979 N_Quantified_Expression)
6980 then
6981 Pos := Pos - 1;
6982 end if;
6984 if Is_Non_Empty_List (Freeze_Nodes) then
6985 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
6986 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
6987 Freeze_Nodes;
6988 else
6989 Append_List (Freeze_Nodes,
6990 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
6991 end if;
6992 end if;
6993 end;
6995 return;
6996 end if;
6998 -- Now we have the right place to do the freezing. First, a special
6999 -- adjustment, if we are in spec-expression analysis mode, these freeze
7000 -- actions must not be thrown away (normally all inserted actions are
7001 -- thrown away in this mode. However, the freeze actions are from static
7002 -- expressions and one of the important reasons we are doing this
7003 -- special analysis is to get these freeze actions. Therefore we turn
7004 -- off the In_Spec_Expression mode to propagate these freeze actions.
7005 -- This also means they get properly analyzed and expanded.
7007 In_Spec_Expression := False;
7009 -- Freeze the designated type of an allocator (RM 13.14(13))
7011 if Present (Desig_Typ) then
7012 Freeze_Before (P, Desig_Typ);
7013 end if;
7015 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
7016 -- the enumeration representation clause exception in the loop above.
7018 if Present (Typ) then
7019 Freeze_Before (P, Typ);
7020 end if;
7022 -- Freeze name if one is present (RM 13.14(11))
7024 if Present (Nam) then
7025 Freeze_Before (P, Nam);
7026 end if;
7028 -- Restore In_Spec_Expression flag
7030 In_Spec_Expression := In_Spec_Exp;
7031 end Freeze_Expression;
7033 -----------------------------
7034 -- Freeze_Fixed_Point_Type --
7035 -----------------------------
7037 -- Certain fixed-point types and subtypes, including implicit base types
7038 -- and declared first subtypes, have not yet set up a range. This is
7039 -- because the range cannot be set until the Small and Size values are
7040 -- known, and these are not known till the type is frozen.
7042 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
7043 -- whose bounds are unanalyzed real literals. This routine will recognize
7044 -- this case, and transform this range node into a properly typed range
7045 -- with properly analyzed and resolved values.
7047 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
7048 Rng : constant Node_Id := Scalar_Range (Typ);
7049 Lo : constant Node_Id := Low_Bound (Rng);
7050 Hi : constant Node_Id := High_Bound (Rng);
7051 Btyp : constant Entity_Id := Base_Type (Typ);
7052 Brng : constant Node_Id := Scalar_Range (Btyp);
7053 BLo : constant Node_Id := Low_Bound (Brng);
7054 BHi : constant Node_Id := High_Bound (Brng);
7055 Small : constant Ureal := Small_Value (Typ);
7056 Loval : Ureal;
7057 Hival : Ureal;
7058 Atype : Entity_Id;
7060 Orig_Lo : Ureal;
7061 Orig_Hi : Ureal;
7062 -- Save original bounds (for shaving tests)
7064 Actual_Size : Nat;
7065 -- Actual size chosen
7067 function Fsize (Lov, Hiv : Ureal) return Nat;
7068 -- Returns size of type with given bounds. Also leaves these
7069 -- bounds set as the current bounds of the Typ.
7071 -----------
7072 -- Fsize --
7073 -----------
7075 function Fsize (Lov, Hiv : Ureal) return Nat is
7076 begin
7077 Set_Realval (Lo, Lov);
7078 Set_Realval (Hi, Hiv);
7079 return Minimum_Size (Typ);
7080 end Fsize;
7082 -- Start of processing for Freeze_Fixed_Point_Type
7084 begin
7085 -- If Esize of a subtype has not previously been set, set it now
7087 if Unknown_Esize (Typ) then
7088 Atype := Ancestor_Subtype (Typ);
7090 if Present (Atype) then
7091 Set_Esize (Typ, Esize (Atype));
7092 else
7093 Set_Esize (Typ, Esize (Base_Type (Typ)));
7094 end if;
7095 end if;
7097 -- Immediate return if the range is already analyzed. This means that
7098 -- the range is already set, and does not need to be computed by this
7099 -- routine.
7101 if Analyzed (Rng) then
7102 return;
7103 end if;
7105 -- Immediate return if either of the bounds raises Constraint_Error
7107 if Raises_Constraint_Error (Lo)
7108 or else Raises_Constraint_Error (Hi)
7109 then
7110 return;
7111 end if;
7113 Loval := Realval (Lo);
7114 Hival := Realval (Hi);
7116 Orig_Lo := Loval;
7117 Orig_Hi := Hival;
7119 -- Ordinary fixed-point case
7121 if Is_Ordinary_Fixed_Point_Type (Typ) then
7123 -- For the ordinary fixed-point case, we are allowed to fudge the
7124 -- end-points up or down by small. Generally we prefer to fudge up,
7125 -- i.e. widen the bounds for non-model numbers so that the end points
7126 -- are included. However there are cases in which this cannot be
7127 -- done, and indeed cases in which we may need to narrow the bounds.
7128 -- The following circuit makes the decision.
7130 -- Note: our terminology here is that Incl_EP means that the bounds
7131 -- are widened by Small if necessary to include the end points, and
7132 -- Excl_EP means that the bounds are narrowed by Small to exclude the
7133 -- end-points if this reduces the size.
7135 -- Note that in the Incl case, all we care about is including the
7136 -- end-points. In the Excl case, we want to narrow the bounds as
7137 -- much as permitted by the RM, to give the smallest possible size.
7139 Fudge : declare
7140 Loval_Incl_EP : Ureal;
7141 Hival_Incl_EP : Ureal;
7143 Loval_Excl_EP : Ureal;
7144 Hival_Excl_EP : Ureal;
7146 Size_Incl_EP : Nat;
7147 Size_Excl_EP : Nat;
7149 Model_Num : Ureal;
7150 First_Subt : Entity_Id;
7151 Actual_Lo : Ureal;
7152 Actual_Hi : Ureal;
7154 begin
7155 -- First step. Base types are required to be symmetrical. Right
7156 -- now, the base type range is a copy of the first subtype range.
7157 -- This will be corrected before we are done, but right away we
7158 -- need to deal with the case where both bounds are non-negative.
7159 -- In this case, we set the low bound to the negative of the high
7160 -- bound, to make sure that the size is computed to include the
7161 -- required sign. Note that we do not need to worry about the
7162 -- case of both bounds negative, because the sign will be dealt
7163 -- with anyway. Furthermore we can't just go making such a bound
7164 -- symmetrical, since in a twos-complement system, there is an
7165 -- extra negative value which could not be accommodated on the
7166 -- positive side.
7168 if Typ = Btyp
7169 and then not UR_Is_Negative (Loval)
7170 and then Hival > Loval
7171 then
7172 Loval := -Hival;
7173 Set_Realval (Lo, Loval);
7174 end if;
7176 -- Compute the fudged bounds. If the number is a model number,
7177 -- then we do nothing to include it, but we are allowed to backoff
7178 -- to the next adjacent model number when we exclude it. If it is
7179 -- not a model number then we straddle the two values with the
7180 -- model numbers on either side.
7182 Model_Num := UR_Trunc (Loval / Small) * Small;
7184 if Loval = Model_Num then
7185 Loval_Incl_EP := Model_Num;
7186 else
7187 Loval_Incl_EP := Model_Num - Small;
7188 end if;
7190 -- The low value excluding the end point is Small greater, but
7191 -- we do not do this exclusion if the low value is positive,
7192 -- since it can't help the size and could actually hurt by
7193 -- crossing the high bound.
7195 if UR_Is_Negative (Loval_Incl_EP) then
7196 Loval_Excl_EP := Loval_Incl_EP + Small;
7198 -- If the value went from negative to zero, then we have the
7199 -- case where Loval_Incl_EP is the model number just below
7200 -- zero, so we want to stick to the negative value for the
7201 -- base type to maintain the condition that the size will
7202 -- include signed values.
7204 if Typ = Btyp
7205 and then UR_Is_Zero (Loval_Excl_EP)
7206 then
7207 Loval_Excl_EP := Loval_Incl_EP;
7208 end if;
7210 else
7211 Loval_Excl_EP := Loval_Incl_EP;
7212 end if;
7214 -- Similar processing for upper bound and high value
7216 Model_Num := UR_Trunc (Hival / Small) * Small;
7218 if Hival = Model_Num then
7219 Hival_Incl_EP := Model_Num;
7220 else
7221 Hival_Incl_EP := Model_Num + Small;
7222 end if;
7224 if UR_Is_Positive (Hival_Incl_EP) then
7225 Hival_Excl_EP := Hival_Incl_EP - Small;
7226 else
7227 Hival_Excl_EP := Hival_Incl_EP;
7228 end if;
7230 -- One further adjustment is needed. In the case of subtypes, we
7231 -- cannot go outside the range of the base type, or we get
7232 -- peculiarities, and the base type range is already set. This
7233 -- only applies to the Incl values, since clearly the Excl values
7234 -- are already as restricted as they are allowed to be.
7236 if Typ /= Btyp then
7237 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
7238 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
7239 end if;
7241 -- Get size including and excluding end points
7243 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
7244 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
7246 -- No need to exclude end-points if it does not reduce size
7248 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
7249 Loval_Excl_EP := Loval_Incl_EP;
7250 end if;
7252 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
7253 Hival_Excl_EP := Hival_Incl_EP;
7254 end if;
7256 -- Now we set the actual size to be used. We want to use the
7257 -- bounds fudged up to include the end-points but only if this
7258 -- can be done without violating a specifically given size
7259 -- size clause or causing an unacceptable increase in size.
7261 -- Case of size clause given
7263 if Has_Size_Clause (Typ) then
7265 -- Use the inclusive size only if it is consistent with
7266 -- the explicitly specified size.
7268 if Size_Incl_EP <= RM_Size (Typ) then
7269 Actual_Lo := Loval_Incl_EP;
7270 Actual_Hi := Hival_Incl_EP;
7271 Actual_Size := Size_Incl_EP;
7273 -- If the inclusive size is too large, we try excluding
7274 -- the end-points (will be caught later if does not work).
7276 else
7277 Actual_Lo := Loval_Excl_EP;
7278 Actual_Hi := Hival_Excl_EP;
7279 Actual_Size := Size_Excl_EP;
7280 end if;
7282 -- Case of size clause not given
7284 else
7285 -- If we have a base type whose corresponding first subtype
7286 -- has an explicit size that is large enough to include our
7287 -- end-points, then do so. There is no point in working hard
7288 -- to get a base type whose size is smaller than the specified
7289 -- size of the first subtype.
7291 First_Subt := First_Subtype (Typ);
7293 if Has_Size_Clause (First_Subt)
7294 and then Size_Incl_EP <= Esize (First_Subt)
7295 then
7296 Actual_Size := Size_Incl_EP;
7297 Actual_Lo := Loval_Incl_EP;
7298 Actual_Hi := Hival_Incl_EP;
7300 -- If excluding the end-points makes the size smaller and
7301 -- results in a size of 8,16,32,64, then we take the smaller
7302 -- size. For the 64 case, this is compulsory. For the other
7303 -- cases, it seems reasonable. We like to include end points
7304 -- if we can, but not at the expense of moving to the next
7305 -- natural boundary of size.
7307 elsif Size_Incl_EP /= Size_Excl_EP
7308 and then Addressable (Size_Excl_EP)
7309 then
7310 Actual_Size := Size_Excl_EP;
7311 Actual_Lo := Loval_Excl_EP;
7312 Actual_Hi := Hival_Excl_EP;
7314 -- Otherwise we can definitely include the end points
7316 else
7317 Actual_Size := Size_Incl_EP;
7318 Actual_Lo := Loval_Incl_EP;
7319 Actual_Hi := Hival_Incl_EP;
7320 end if;
7322 -- One pathological case: normally we never fudge a low bound
7323 -- down, since it would seem to increase the size (if it has
7324 -- any effect), but for ranges containing single value, or no
7325 -- values, the high bound can be small too large. Consider:
7327 -- type t is delta 2.0**(-14)
7328 -- range 131072.0 .. 0;
7330 -- That lower bound is *just* outside the range of 32 bits, and
7331 -- does need fudging down in this case. Note that the bounds
7332 -- will always have crossed here, since the high bound will be
7333 -- fudged down if necessary, as in the case of:
7335 -- type t is delta 2.0**(-14)
7336 -- range 131072.0 .. 131072.0;
7338 -- So we detect the situation by looking for crossed bounds,
7339 -- and if the bounds are crossed, and the low bound is greater
7340 -- than zero, we will always back it off by small, since this
7341 -- is completely harmless.
7343 if Actual_Lo > Actual_Hi then
7344 if UR_Is_Positive (Actual_Lo) then
7345 Actual_Lo := Loval_Incl_EP - Small;
7346 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7348 -- And of course, we need to do exactly the same parallel
7349 -- fudge for flat ranges in the negative region.
7351 elsif UR_Is_Negative (Actual_Hi) then
7352 Actual_Hi := Hival_Incl_EP + Small;
7353 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7354 end if;
7355 end if;
7356 end if;
7358 Set_Realval (Lo, Actual_Lo);
7359 Set_Realval (Hi, Actual_Hi);
7360 end Fudge;
7362 -- For the decimal case, none of this fudging is required, since there
7363 -- are no end-point problems in the decimal case (the end-points are
7364 -- always included).
7366 else
7367 Actual_Size := Fsize (Loval, Hival);
7368 end if;
7370 -- At this stage, the actual size has been calculated and the proper
7371 -- required bounds are stored in the low and high bounds.
7373 if Actual_Size > 64 then
7374 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
7375 Error_Msg_N
7376 ("size required (^) for type& too large, maximum allowed is 64",
7377 Typ);
7378 Actual_Size := 64;
7379 end if;
7381 -- Check size against explicit given size
7383 if Has_Size_Clause (Typ) then
7384 if Actual_Size > RM_Size (Typ) then
7385 Error_Msg_Uint_1 := RM_Size (Typ);
7386 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
7387 Error_Msg_NE
7388 ("size given (^) for type& too small, minimum allowed is ^",
7389 Size_Clause (Typ), Typ);
7391 else
7392 Actual_Size := UI_To_Int (Esize (Typ));
7393 end if;
7395 -- Increase size to next natural boundary if no size clause given
7397 else
7398 if Actual_Size <= 8 then
7399 Actual_Size := 8;
7400 elsif Actual_Size <= 16 then
7401 Actual_Size := 16;
7402 elsif Actual_Size <= 32 then
7403 Actual_Size := 32;
7404 else
7405 Actual_Size := 64;
7406 end if;
7408 Init_Esize (Typ, Actual_Size);
7409 Adjust_Esize_For_Alignment (Typ);
7410 end if;
7412 -- If we have a base type, then expand the bounds so that they extend to
7413 -- the full width of the allocated size in bits, to avoid junk range
7414 -- checks on intermediate computations.
7416 if Base_Type (Typ) = Typ then
7417 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
7418 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
7419 end if;
7421 -- Final step is to reanalyze the bounds using the proper type
7422 -- and set the Corresponding_Integer_Value fields of the literals.
7424 Set_Etype (Lo, Empty);
7425 Set_Analyzed (Lo, False);
7426 Analyze (Lo);
7428 -- Resolve with universal fixed if the base type, and the base type if
7429 -- it is a subtype. Note we can't resolve the base type with itself,
7430 -- that would be a reference before definition.
7432 if Typ = Btyp then
7433 Resolve (Lo, Universal_Fixed);
7434 else
7435 Resolve (Lo, Btyp);
7436 end if;
7438 -- Set corresponding integer value for bound
7440 Set_Corresponding_Integer_Value
7441 (Lo, UR_To_Uint (Realval (Lo) / Small));
7443 -- Similar processing for high bound
7445 Set_Etype (Hi, Empty);
7446 Set_Analyzed (Hi, False);
7447 Analyze (Hi);
7449 if Typ = Btyp then
7450 Resolve (Hi, Universal_Fixed);
7451 else
7452 Resolve (Hi, Btyp);
7453 end if;
7455 Set_Corresponding_Integer_Value
7456 (Hi, UR_To_Uint (Realval (Hi) / Small));
7458 -- Set type of range to correspond to bounds
7460 Set_Etype (Rng, Etype (Lo));
7462 -- Set Esize to calculated size if not set already
7464 if Unknown_Esize (Typ) then
7465 Init_Esize (Typ, Actual_Size);
7466 end if;
7468 -- Set RM_Size if not already set. If already set, check value
7470 declare
7471 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
7473 begin
7474 if RM_Size (Typ) /= Uint_0 then
7475 if RM_Size (Typ) < Minsiz then
7476 Error_Msg_Uint_1 := RM_Size (Typ);
7477 Error_Msg_Uint_2 := Minsiz;
7478 Error_Msg_NE
7479 ("size given (^) for type& too small, minimum allowed is ^",
7480 Size_Clause (Typ), Typ);
7481 end if;
7483 else
7484 Set_RM_Size (Typ, Minsiz);
7485 end if;
7486 end;
7488 -- Check for shaving
7490 if Comes_From_Source (Typ) then
7491 if Orig_Lo < Expr_Value_R (Lo) then
7492 Error_Msg_N
7493 ("declared low bound of type & is outside type range??", Typ);
7494 Error_Msg_N
7495 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
7496 end if;
7498 if Orig_Hi > Expr_Value_R (Hi) then
7499 Error_Msg_N
7500 ("declared high bound of type & is outside type range??", Typ);
7501 Error_Msg_N
7502 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
7503 end if;
7504 end if;
7505 end Freeze_Fixed_Point_Type;
7507 ------------------
7508 -- Freeze_Itype --
7509 ------------------
7511 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
7512 L : List_Id;
7514 begin
7515 Set_Has_Delayed_Freeze (T);
7516 L := Freeze_Entity (T, N);
7518 if Is_Non_Empty_List (L) then
7519 Insert_Actions (N, L);
7520 end if;
7521 end Freeze_Itype;
7523 --------------------------
7524 -- Freeze_Static_Object --
7525 --------------------------
7527 procedure Freeze_Static_Object (E : Entity_Id) is
7529 Cannot_Be_Static : exception;
7530 -- Exception raised if the type of a static object cannot be made
7531 -- static. This happens if the type depends on non-global objects.
7533 procedure Ensure_Expression_Is_SA (N : Node_Id);
7534 -- Called to ensure that an expression used as part of a type definition
7535 -- is statically allocatable, which means that the expression type is
7536 -- statically allocatable, and the expression is either static, or a
7537 -- reference to a library level constant.
7539 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
7540 -- Called to mark a type as static, checking that it is possible
7541 -- to set the type as static. If it is not possible, then the
7542 -- exception Cannot_Be_Static is raised.
7544 -----------------------------
7545 -- Ensure_Expression_Is_SA --
7546 -----------------------------
7548 procedure Ensure_Expression_Is_SA (N : Node_Id) is
7549 Ent : Entity_Id;
7551 begin
7552 Ensure_Type_Is_SA (Etype (N));
7554 if Is_OK_Static_Expression (N) then
7555 return;
7557 elsif Nkind (N) = N_Identifier then
7558 Ent := Entity (N);
7560 if Present (Ent)
7561 and then Ekind (Ent) = E_Constant
7562 and then Is_Library_Level_Entity (Ent)
7563 then
7564 return;
7565 end if;
7566 end if;
7568 raise Cannot_Be_Static;
7569 end Ensure_Expression_Is_SA;
7571 -----------------------
7572 -- Ensure_Type_Is_SA --
7573 -----------------------
7575 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
7576 N : Node_Id;
7577 C : Entity_Id;
7579 begin
7580 -- If type is library level, we are all set
7582 if Is_Library_Level_Entity (Typ) then
7583 return;
7584 end if;
7586 -- We are also OK if the type already marked as statically allocated,
7587 -- which means we processed it before.
7589 if Is_Statically_Allocated (Typ) then
7590 return;
7591 end if;
7593 -- Mark type as statically allocated
7595 Set_Is_Statically_Allocated (Typ);
7597 -- Check that it is safe to statically allocate this type
7599 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
7600 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
7601 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
7603 elsif Is_Array_Type (Typ) then
7604 N := First_Index (Typ);
7605 while Present (N) loop
7606 Ensure_Type_Is_SA (Etype (N));
7607 Next_Index (N);
7608 end loop;
7610 Ensure_Type_Is_SA (Component_Type (Typ));
7612 elsif Is_Access_Type (Typ) then
7613 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
7615 declare
7616 F : Entity_Id;
7617 T : constant Entity_Id := Etype (Designated_Type (Typ));
7619 begin
7620 if T /= Standard_Void_Type then
7621 Ensure_Type_Is_SA (T);
7622 end if;
7624 F := First_Formal (Designated_Type (Typ));
7625 while Present (F) loop
7626 Ensure_Type_Is_SA (Etype (F));
7627 Next_Formal (F);
7628 end loop;
7629 end;
7631 else
7632 Ensure_Type_Is_SA (Designated_Type (Typ));
7633 end if;
7635 elsif Is_Record_Type (Typ) then
7636 C := First_Entity (Typ);
7637 while Present (C) loop
7638 if Ekind (C) = E_Discriminant
7639 or else Ekind (C) = E_Component
7640 then
7641 Ensure_Type_Is_SA (Etype (C));
7643 elsif Is_Type (C) then
7644 Ensure_Type_Is_SA (C);
7645 end if;
7647 Next_Entity (C);
7648 end loop;
7650 elsif Ekind (Typ) = E_Subprogram_Type then
7651 Ensure_Type_Is_SA (Etype (Typ));
7653 C := First_Formal (Typ);
7654 while Present (C) loop
7655 Ensure_Type_Is_SA (Etype (C));
7656 Next_Formal (C);
7657 end loop;
7659 else
7660 raise Cannot_Be_Static;
7661 end if;
7662 end Ensure_Type_Is_SA;
7664 -- Start of processing for Freeze_Static_Object
7666 begin
7667 Ensure_Type_Is_SA (Etype (E));
7669 exception
7670 when Cannot_Be_Static =>
7672 -- If the object that cannot be static is imported or exported, then
7673 -- issue an error message saying that this object cannot be imported
7674 -- or exported. If it has an address clause it is an overlay in the
7675 -- current partition and the static requirement is not relevant.
7676 -- Do not issue any error message when ignoring rep clauses.
7678 if Ignore_Rep_Clauses then
7679 null;
7681 elsif Is_Imported (E) then
7682 if No (Address_Clause (E)) then
7683 Error_Msg_N
7684 ("& cannot be imported (local type is not constant)", E);
7685 end if;
7687 -- Otherwise must be exported, something is wrong if compiler
7688 -- is marking something as statically allocated which cannot be).
7690 else pragma Assert (Is_Exported (E));
7691 Error_Msg_N
7692 ("& cannot be exported (local type is not constant)", E);
7693 end if;
7694 end Freeze_Static_Object;
7696 -----------------------
7697 -- Freeze_Subprogram --
7698 -----------------------
7700 procedure Freeze_Subprogram (E : Entity_Id) is
7701 Retype : Entity_Id;
7702 F : Entity_Id;
7704 begin
7705 -- Subprogram may not have an address clause unless it is imported
7707 if Present (Address_Clause (E)) then
7708 if not Is_Imported (E) then
7709 Error_Msg_N
7710 ("address clause can only be given " &
7711 "for imported subprogram",
7712 Name (Address_Clause (E)));
7713 end if;
7714 end if;
7716 -- Reset the Pure indication on an imported subprogram unless an
7717 -- explicit Pure_Function pragma was present or the subprogram is an
7718 -- intrinsic. We do this because otherwise it is an insidious error
7719 -- to call a non-pure function from pure unit and have calls
7720 -- mysteriously optimized away. What happens here is that the Import
7721 -- can bypass the normal check to ensure that pure units call only pure
7722 -- subprograms.
7724 -- The reason for the intrinsic exception is that in general, intrinsic
7725 -- functions (such as shifts) are pure anyway. The only exceptions are
7726 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
7727 -- in any case, so no problem arises.
7729 if Is_Imported (E)
7730 and then Is_Pure (E)
7731 and then not Has_Pragma_Pure_Function (E)
7732 and then not Is_Intrinsic_Subprogram (E)
7733 then
7734 Set_Is_Pure (E, False);
7735 end if;
7737 -- We also reset the Pure indication on a subprogram with an Address
7738 -- parameter, because the parameter may be used as a pointer and the
7739 -- referenced data may change even if the address value does not.
7741 -- Note that if the programmer gave an explicit Pure_Function pragma,
7742 -- then we believe the programmer, and leave the subprogram Pure.
7743 -- We also suppress this check on run-time files.
7745 if Is_Pure (E)
7746 and then Is_Subprogram (E)
7747 and then not Has_Pragma_Pure_Function (E)
7748 and then not Is_Internal_File_Name (Unit_File_Name (Current_Sem_Unit))
7749 then
7750 Check_Function_With_Address_Parameter (E);
7751 end if;
7753 -- For non-foreign convention subprograms, this is where we create
7754 -- the extra formals (for accessibility level and constrained bit
7755 -- information). We delay this till the freeze point precisely so
7756 -- that we know the convention.
7758 if not Has_Foreign_Convention (E) then
7759 Create_Extra_Formals (E);
7760 Set_Mechanisms (E);
7762 -- If this is convention Ada and a Valued_Procedure, that's odd
7764 if Ekind (E) = E_Procedure
7765 and then Is_Valued_Procedure (E)
7766 and then Convention (E) = Convention_Ada
7767 and then Warn_On_Export_Import
7768 then
7769 Error_Msg_N
7770 ("??Valued_Procedure has no effect for convention Ada", E);
7771 Set_Is_Valued_Procedure (E, False);
7772 end if;
7774 -- Case of foreign convention
7776 else
7777 Set_Mechanisms (E);
7779 -- For foreign conventions, warn about return of unconstrained array
7781 if Ekind (E) = E_Function then
7782 Retype := Underlying_Type (Etype (E));
7784 -- If no return type, probably some other error, e.g. a
7785 -- missing full declaration, so ignore.
7787 if No (Retype) then
7788 null;
7790 -- If the return type is generic, we have emitted a warning
7791 -- earlier on, and there is nothing else to check here. Specific
7792 -- instantiations may lead to erroneous behavior.
7794 elsif Is_Generic_Type (Etype (E)) then
7795 null;
7797 -- Display warning if returning unconstrained array
7799 elsif Is_Array_Type (Retype)
7800 and then not Is_Constrained (Retype)
7802 -- Check appropriate warning is enabled (should we check for
7803 -- Warnings (Off) on specific entities here, probably so???)
7805 and then Warn_On_Export_Import
7806 then
7807 Error_Msg_N
7808 ("?x?foreign convention function& should not return " &
7809 "unconstrained array", E);
7810 return;
7811 end if;
7812 end if;
7814 -- If any of the formals for an exported foreign convention
7815 -- subprogram have defaults, then emit an appropriate warning since
7816 -- this is odd (default cannot be used from non-Ada code)
7818 if Is_Exported (E) then
7819 F := First_Formal (E);
7820 while Present (F) loop
7821 if Warn_On_Export_Import
7822 and then Present (Default_Value (F))
7823 then
7824 Error_Msg_N
7825 ("?x?parameter cannot be defaulted in non-Ada call",
7826 Default_Value (F));
7827 end if;
7829 Next_Formal (F);
7830 end loop;
7831 end if;
7832 end if;
7834 -- Pragma Inline_Always is disallowed for dispatching subprograms
7835 -- because the address of such subprograms is saved in the dispatch
7836 -- table to support dispatching calls, and dispatching calls cannot
7837 -- be inlined. This is consistent with the restriction against using
7838 -- 'Access or 'Address on an Inline_Always subprogram.
7840 if Is_Dispatching_Operation (E)
7841 and then Has_Pragma_Inline_Always (E)
7842 then
7843 Error_Msg_N
7844 ("pragma Inline_Always not allowed for dispatching subprograms", E);
7845 end if;
7847 -- Because of the implicit representation of inherited predefined
7848 -- operators in the front-end, the overriding status of the operation
7849 -- may be affected when a full view of a type is analyzed, and this is
7850 -- not captured by the analysis of the corresponding type declaration.
7851 -- Therefore the correctness of a not-overriding indicator must be
7852 -- rechecked when the subprogram is frozen.
7854 if Nkind (E) = N_Defining_Operator_Symbol
7855 and then not Error_Posted (Parent (E))
7856 then
7857 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
7858 end if;
7859 end Freeze_Subprogram;
7861 ----------------------
7862 -- Is_Fully_Defined --
7863 ----------------------
7865 function Is_Fully_Defined (T : Entity_Id) return Boolean is
7866 begin
7867 if Ekind (T) = E_Class_Wide_Type then
7868 return Is_Fully_Defined (Etype (T));
7870 elsif Is_Array_Type (T) then
7871 return Is_Fully_Defined (Component_Type (T));
7873 elsif Is_Record_Type (T)
7874 and not Is_Private_Type (T)
7875 then
7876 -- Verify that the record type has no components with private types
7877 -- without completion.
7879 declare
7880 Comp : Entity_Id;
7882 begin
7883 Comp := First_Component (T);
7884 while Present (Comp) loop
7885 if not Is_Fully_Defined (Etype (Comp)) then
7886 return False;
7887 end if;
7889 Next_Component (Comp);
7890 end loop;
7891 return True;
7892 end;
7894 -- For the designated type of an access to subprogram, all types in
7895 -- the profile must be fully defined.
7897 elsif Ekind (T) = E_Subprogram_Type then
7898 declare
7899 F : Entity_Id;
7901 begin
7902 F := First_Formal (T);
7903 while Present (F) loop
7904 if not Is_Fully_Defined (Etype (F)) then
7905 return False;
7906 end if;
7908 Next_Formal (F);
7909 end loop;
7911 return Is_Fully_Defined (Etype (T));
7912 end;
7914 else
7915 return not Is_Private_Type (T)
7916 or else Present (Full_View (Base_Type (T)));
7917 end if;
7918 end Is_Fully_Defined;
7920 ---------------------------------
7921 -- Process_Default_Expressions --
7922 ---------------------------------
7924 procedure Process_Default_Expressions
7925 (E : Entity_Id;
7926 After : in out Node_Id)
7928 Loc : constant Source_Ptr := Sloc (E);
7929 Dbody : Node_Id;
7930 Formal : Node_Id;
7931 Dcopy : Node_Id;
7932 Dnam : Entity_Id;
7934 begin
7935 Set_Default_Expressions_Processed (E);
7937 -- A subprogram instance and its associated anonymous subprogram share
7938 -- their signature. The default expression functions are defined in the
7939 -- wrapper packages for the anonymous subprogram, and should not be
7940 -- generated again for the instance.
7942 if Is_Generic_Instance (E)
7943 and then Present (Alias (E))
7944 and then Default_Expressions_Processed (Alias (E))
7945 then
7946 return;
7947 end if;
7949 Formal := First_Formal (E);
7950 while Present (Formal) loop
7951 if Present (Default_Value (Formal)) then
7953 -- We work with a copy of the default expression because we
7954 -- do not want to disturb the original, since this would mess
7955 -- up the conformance checking.
7957 Dcopy := New_Copy_Tree (Default_Value (Formal));
7959 -- The analysis of the expression may generate insert actions,
7960 -- which of course must not be executed. We wrap those actions
7961 -- in a procedure that is not called, and later on eliminated.
7962 -- The following cases have no side-effects, and are analyzed
7963 -- directly.
7965 if Nkind (Dcopy) = N_Identifier
7966 or else Nkind_In (Dcopy, N_Expanded_Name,
7967 N_Integer_Literal,
7968 N_Character_Literal,
7969 N_String_Literal,
7970 N_Real_Literal)
7971 or else (Nkind (Dcopy) = N_Attribute_Reference
7972 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
7973 or else Known_Null (Dcopy)
7974 then
7975 -- If there is no default function, we must still do a full
7976 -- analyze call on the default value, to ensure that all error
7977 -- checks are performed, e.g. those associated with static
7978 -- evaluation. Note: this branch will always be taken if the
7979 -- analyzer is turned off (but we still need the error checks).
7981 -- Note: the setting of parent here is to meet the requirement
7982 -- that we can only analyze the expression while attached to
7983 -- the tree. Really the requirement is that the parent chain
7984 -- be set, we don't actually need to be in the tree.
7986 Set_Parent (Dcopy, Declaration_Node (Formal));
7987 Analyze (Dcopy);
7989 -- Default expressions are resolved with their own type if the
7990 -- context is generic, to avoid anomalies with private types.
7992 if Ekind (Scope (E)) = E_Generic_Package then
7993 Resolve (Dcopy);
7994 else
7995 Resolve (Dcopy, Etype (Formal));
7996 end if;
7998 -- If that resolved expression will raise constraint error,
7999 -- then flag the default value as raising constraint error.
8000 -- This allows a proper error message on the calls.
8002 if Raises_Constraint_Error (Dcopy) then
8003 Set_Raises_Constraint_Error (Default_Value (Formal));
8004 end if;
8006 -- If the default is a parameterless call, we use the name of
8007 -- the called function directly, and there is no body to build.
8009 elsif Nkind (Dcopy) = N_Function_Call
8010 and then No (Parameter_Associations (Dcopy))
8011 then
8012 null;
8014 -- Else construct and analyze the body of a wrapper procedure
8015 -- that contains an object declaration to hold the expression.
8016 -- Given that this is done only to complete the analysis, it
8017 -- simpler to build a procedure than a function which might
8018 -- involve secondary stack expansion.
8020 else
8021 Dnam := Make_Temporary (Loc, 'D');
8023 Dbody :=
8024 Make_Subprogram_Body (Loc,
8025 Specification =>
8026 Make_Procedure_Specification (Loc,
8027 Defining_Unit_Name => Dnam),
8029 Declarations => New_List (
8030 Make_Object_Declaration (Loc,
8031 Defining_Identifier => Make_Temporary (Loc, 'T'),
8032 Object_Definition =>
8033 New_Occurrence_Of (Etype (Formal), Loc),
8034 Expression => New_Copy_Tree (Dcopy))),
8036 Handled_Statement_Sequence =>
8037 Make_Handled_Sequence_Of_Statements (Loc,
8038 Statements => Empty_List));
8040 Set_Scope (Dnam, Scope (E));
8041 Set_Assignment_OK (First (Declarations (Dbody)));
8042 Set_Is_Eliminated (Dnam);
8043 Insert_After (After, Dbody);
8044 Analyze (Dbody);
8045 After := Dbody;
8046 end if;
8047 end if;
8049 Next_Formal (Formal);
8050 end loop;
8051 end Process_Default_Expressions;
8053 ----------------------------------------
8054 -- Set_Component_Alignment_If_Not_Set --
8055 ----------------------------------------
8057 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
8058 begin
8059 -- Ignore if not base type, subtypes don't need anything
8061 if Typ /= Base_Type (Typ) then
8062 return;
8063 end if;
8065 -- Do not override existing representation
8067 if Is_Packed (Typ) then
8068 return;
8070 elsif Has_Specified_Layout (Typ) then
8071 return;
8073 elsif Component_Alignment (Typ) /= Calign_Default then
8074 return;
8076 else
8077 Set_Component_Alignment
8078 (Typ, Scope_Stack.Table
8079 (Scope_Stack.Last).Component_Alignment_Default);
8080 end if;
8081 end Set_Component_Alignment_If_Not_Set;
8083 --------------------------
8084 -- Set_SSO_From_Default --
8085 --------------------------
8087 procedure Set_SSO_From_Default (T : Entity_Id) is
8088 Reversed : Boolean;
8090 begin
8091 -- Set default SSO for an array or record base type, except in case of
8092 -- a type extension (which always inherits the SSO of its parent type).
8094 if Is_Base_Type (T)
8095 and then (Is_Array_Type (T)
8096 or else (Is_Record_Type (T)
8097 and then not (Is_Tagged_Type (T)
8098 and then Is_Derived_Type (T))))
8099 then
8100 Reversed :=
8101 (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
8102 or else
8103 (not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
8105 if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
8107 -- For a record type, if bit order is specified explicitly,
8108 -- then do not set SSO from default if not consistent. Note that
8109 -- we do not want to look at a Bit_Order attribute definition
8110 -- for a parent: if we were to inherit Bit_Order, then both
8111 -- SSO_Set_*_By_Default flags would have been cleared already
8112 -- (by Inherit_Aspects_At_Freeze_Point).
8114 and then not
8115 (Is_Record_Type (T)
8116 and then
8117 Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False)
8118 and then Reverse_Bit_Order (T) /= Reversed)
8119 then
8120 -- If flags cause reverse storage order, then set the result. Note
8121 -- that we would have ignored the pragma setting the non default
8122 -- storage order in any case, hence the assertion at this point.
8124 pragma Assert
8125 (not Reversed or else Support_Nondefault_SSO_On_Target);
8127 Set_Reverse_Storage_Order (T, Reversed);
8129 -- For a record type, also set reversed bit order. Note: if a bit
8130 -- order has been specified explicitly, then this is a no-op.
8132 if Is_Record_Type (T) then
8133 Set_Reverse_Bit_Order (T, Reversed);
8134 end if;
8135 end if;
8136 end if;
8137 end Set_SSO_From_Default;
8139 ------------------
8140 -- Undelay_Type --
8141 ------------------
8143 procedure Undelay_Type (T : Entity_Id) is
8144 begin
8145 Set_Has_Delayed_Freeze (T, False);
8146 Set_Freeze_Node (T, Empty);
8148 -- Since we don't want T to have a Freeze_Node, we don't want its
8149 -- Full_View or Corresponding_Record_Type to have one either.
8151 -- ??? Fundamentally, this whole handling is unpleasant. What we really
8152 -- want is to be sure that for an Itype that's part of record R and is a
8153 -- subtype of type T, that it's frozen after the later of the freeze
8154 -- points of R and T. We have no way of doing that directly, so what we
8155 -- do is force most such Itypes to be frozen as part of freezing R via
8156 -- this procedure and only delay the ones that need to be delayed
8157 -- (mostly the designated types of access types that are defined as part
8158 -- of the record).
8160 if Is_Private_Type (T)
8161 and then Present (Full_View (T))
8162 and then Is_Itype (Full_View (T))
8163 and then Is_Record_Type (Scope (Full_View (T)))
8164 then
8165 Undelay_Type (Full_View (T));
8166 end if;
8168 if Is_Concurrent_Type (T)
8169 and then Present (Corresponding_Record_Type (T))
8170 and then Is_Itype (Corresponding_Record_Type (T))
8171 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
8172 then
8173 Undelay_Type (Corresponding_Record_Type (T));
8174 end if;
8175 end Undelay_Type;
8177 ------------------
8178 -- Warn_Overlay --
8179 ------------------
8181 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Entity_Id) is
8182 Ent : constant Entity_Id := Entity (Nam);
8183 -- The object to which the address clause applies
8185 Init : Node_Id;
8186 Old : Entity_Id := Empty;
8187 Decl : Node_Id;
8189 begin
8190 -- No warning if address clause overlay warnings are off
8192 if not Address_Clause_Overlay_Warnings then
8193 return;
8194 end if;
8196 -- No warning if there is an explicit initialization
8198 Init := Original_Node (Expression (Declaration_Node (Ent)));
8200 if Present (Init) and then Comes_From_Source (Init) then
8201 return;
8202 end if;
8204 -- We only give the warning for non-imported entities of a type for
8205 -- which a non-null base init proc is defined, or for objects of access
8206 -- types with implicit null initialization, or when Normalize_Scalars
8207 -- applies and the type is scalar or a string type (the latter being
8208 -- tested for because predefined String types are initialized by inline
8209 -- code rather than by an init_proc). Note that we do not give the
8210 -- warning for Initialize_Scalars, since we suppressed initialization
8211 -- in this case. Also, do not warn if Suppress_Initialization is set.
8213 if Present (Expr)
8214 and then not Is_Imported (Ent)
8215 and then not Initialization_Suppressed (Typ)
8216 and then (Has_Non_Null_Base_Init_Proc (Typ)
8217 or else Is_Access_Type (Typ)
8218 or else (Normalize_Scalars
8219 and then (Is_Scalar_Type (Typ)
8220 or else Is_String_Type (Typ))))
8221 then
8222 if Nkind (Expr) = N_Attribute_Reference
8223 and then Is_Entity_Name (Prefix (Expr))
8224 then
8225 Old := Entity (Prefix (Expr));
8227 elsif Is_Entity_Name (Expr)
8228 and then Ekind (Entity (Expr)) = E_Constant
8229 then
8230 Decl := Declaration_Node (Entity (Expr));
8232 if Nkind (Decl) = N_Object_Declaration
8233 and then Present (Expression (Decl))
8234 and then Nkind (Expression (Decl)) = N_Attribute_Reference
8235 and then Is_Entity_Name (Prefix (Expression (Decl)))
8236 then
8237 Old := Entity (Prefix (Expression (Decl)));
8239 elsif Nkind (Expr) = N_Function_Call then
8240 return;
8241 end if;
8243 -- A function call (most likely to To_Address) is probably not an
8244 -- overlay, so skip warning. Ditto if the function call was inlined
8245 -- and transformed into an entity.
8247 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
8248 return;
8249 end if;
8251 -- If a pragma Import follows, we assume that it is for the current
8252 -- target of the address clause, and skip the warning. There may be
8253 -- a source pragma or an aspect that specifies import and generates
8254 -- the corresponding pragma. These will indicate that the entity is
8255 -- imported and that is checked above so that the spurious warning
8256 -- (generated when the entity is frozen) will be suppressed. The
8257 -- pragma may be attached to the aspect, so it is not yet a list
8258 -- member.
8260 if Is_List_Member (Parent (Expr)) then
8261 Decl := Next (Parent (Expr));
8263 if Present (Decl)
8264 and then Nkind (Decl) = N_Pragma
8265 and then Pragma_Name (Decl) = Name_Import
8266 then
8267 return;
8268 end if;
8269 end if;
8271 -- Otherwise give warning message
8273 if Present (Old) then
8274 Error_Msg_Node_2 := Old;
8275 Error_Msg_N
8276 ("default initialization of & may modify &??",
8277 Nam);
8278 else
8279 Error_Msg_N
8280 ("default initialization of & may modify overlaid storage??",
8281 Nam);
8282 end if;
8284 -- Add friendly warning if initialization comes from a packed array
8285 -- component.
8287 if Is_Record_Type (Typ) then
8288 declare
8289 Comp : Entity_Id;
8291 begin
8292 Comp := First_Component (Typ);
8293 while Present (Comp) loop
8294 if Nkind (Parent (Comp)) = N_Component_Declaration
8295 and then Present (Expression (Parent (Comp)))
8296 then
8297 exit;
8298 elsif Is_Array_Type (Etype (Comp))
8299 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
8300 then
8301 Error_Msg_NE
8302 ("\packed array component& " &
8303 "will be initialized to zero??",
8304 Nam, Comp);
8305 exit;
8306 else
8307 Next_Component (Comp);
8308 end if;
8309 end loop;
8310 end;
8311 end if;
8313 Error_Msg_N
8314 ("\use pragma Import for & to " &
8315 "suppress initialization (RM B.1(24))??",
8316 Nam);
8317 end if;
8318 end Warn_Overlay;
8320 end Freeze;