[Ada] Incorrect accessibility level on type in formal package
[official-gcc.git] / gcc / ada / sem_util.ads
blob2e913594bc08c55cfa62d621fce9702a60a27213
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- Package containing utility procedures used throughout the semantics
28 with Aspects; use Aspects;
29 with Atree; use Atree;
30 with Einfo; use Einfo;
31 with Exp_Tss; use Exp_Tss;
32 with Namet; use Namet;
33 with Opt; use Opt;
34 with Snames; use Snames;
35 with Types; use Types;
36 with Uintp; use Uintp;
37 with Urealp; use Urealp;
39 package Sem_Util is
41 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
42 -- The list of interfaces implemented by Typ. Empty if there are none,
43 -- including the cases where there can't be any because e.g. the type is
44 -- not tagged.
46 type Accessibility_Level_Kind is
47 (Dynamic_Level,
48 Object_Decl_Level,
49 Zero_On_Dynamic_Level);
50 -- Accessibility_Level_Kind is an enumerated type which captures the
51 -- different modes in which an accessibility level could be obtained for
52 -- a given expression.
54 -- When in the context of the function Accessibility_Level,
55 -- Accessibility_Level_Kind signals what type of accessibility level to
56 -- obtain. For example, when Level is Dynamic_Level, a defining identifier
57 -- associated with a SAOOAAT may be returned or an N_Integer_Literal node.
58 -- When the level is Object_Decl_Level, an N_Integer_Literal node is
59 -- returned containing the level of the declaration of the object if
60 -- relevant (be it a SAOOAAT or otherwise). Finally, Zero_On_Dynamic_Level
61 -- returns library level for all cases where the accessibility level is
62 -- dynamic (used to bypass static accessibility checks in dynamic cases).
64 function Accessibility_Level
65 (Expr : Node_Id;
66 Level : Accessibility_Level_Kind;
67 In_Return_Context : Boolean := False) return Node_Id;
68 -- Centralized accessibility level calculation routine for finding the
69 -- accessibility level of a given expression Expr.
71 -- In_Return_Context forcing the Accessibility_Level calculations to be
72 -- carried out "as if" Expr existed in a return value. This is useful for
73 -- calculating the accessibility levels for discriminant associations
74 -- and return aggregates.
76 function Acquire_Warning_Match_String (Str_Lit : Node_Id) return String;
77 -- Used by pragma Warnings (Off, string), and Warn_As_Error (string) to get
78 -- the given string argument, adding leading and trailing asterisks if they
79 -- are not already present. Str_Lit is the static value of the pragma
80 -- argument.
82 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
83 -- Add A to the list of access types to process when expanding the
84 -- freeze node of E.
86 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
87 -- Given a block statement N, generate an internal E_Block label and make
88 -- it the identifier of the block. Id denotes the generated entity. If the
89 -- block already has an identifier, Id returns the entity of its label.
91 procedure Add_Global_Declaration (N : Node_Id);
92 -- These procedures adds a declaration N at the library level, to be
93 -- elaborated before any other code in the unit. It is used for example
94 -- for the entity that marks whether a unit has been elaborated. The
95 -- declaration is added to the Declarations list of the Aux_Decls_Node
96 -- for the current unit. The declarations are added in the current scope,
97 -- so the caller should push a new scope as required before the call.
99 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
100 -- Returns the name of E adding Suffix
102 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
103 -- Given two types, returns True if we are in Allow_Integer_Address mode
104 -- and one of the types is (a descendant of) System.Address (and this type
105 -- is private), and the other type is any integer type.
107 function Address_Value (N : Node_Id) return Node_Id;
108 -- Return the underlying value of the expression N of an address clause
110 function Addressable (V : Uint) return Boolean;
111 function Addressable (V : Int) return Boolean;
112 pragma Inline (Addressable);
113 -- Returns True if the value of V is the word size or an addressable factor
114 -- or multiple of the word size (typically 8, 16, 32, 64 or 128).
116 procedure Aggregate_Constraint_Checks
117 (Exp : Node_Id;
118 Check_Typ : Entity_Id);
119 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
120 -- and Check_Typ a constrained record type with discriminants, we generate
121 -- the appropriate discriminant checks. If Exp is an array aggregate then
122 -- emit the appropriate length checks. If Exp is a scalar type, or a string
123 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
124 -- are performed at run time. Also used for expressions in the argument of
125 -- 'Update, which shares some of the features of an aggregate.
127 function Alignment_In_Bits (E : Entity_Id) return Uint;
128 -- If the alignment of the type or object E is currently known to the
129 -- compiler, then this function returns the alignment value in bits.
130 -- Otherwise Uint_0 is returned, indicating that the alignment of the
131 -- entity is not yet known to the compiler.
133 function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
134 -- Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
135 -- Given a constraint or subtree of a constraint on a composite
136 -- subtype/object, returns True if there are no nonstatic constraints,
137 -- which might cause objects to be created with dynamic size.
138 -- Called for subtype declarations (including implicit ones created for
139 -- subtype indications in object declarations, as well as discriminated
140 -- record aggregate cases). For record aggregates, only records containing
141 -- discriminant-dependent arrays matter, because the discriminants must be
142 -- static when governing a variant part. Access discriminants are
143 -- irrelevant. Also called for array aggregates, but only named notation,
144 -- because those are the only dynamic cases.
146 procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id);
147 -- Recursive procedure to construct string for qualified name of enclosing
148 -- program unit. The qualification stops at an enclosing scope has no
149 -- source name (block or loop). If entity is a subprogram instance, skip
150 -- enclosing wrapper package. The name is appended to Buf.
152 procedure Append_Inherited_Subprogram (S : Entity_Id);
153 -- If the parent of the operation is declared in the visible part of
154 -- the current scope, the inherited operation is visible even though the
155 -- derived type that inherits the operation may be completed in the private
156 -- part of the current package.
158 procedure Apply_Compile_Time_Constraint_Error
159 (N : Node_Id;
160 Msg : String;
161 Reason : RT_Exception_Code;
162 Ent : Entity_Id := Empty;
163 Typ : Entity_Id := Empty;
164 Loc : Source_Ptr := No_Location;
165 Rep : Boolean := True;
166 Warn : Boolean := False);
167 -- N is a subexpression that will raise Constraint_Error when evaluated
168 -- at run time. Msg is a message that explains the reason for raising the
169 -- exception. The last character is ? if the message is always a warning,
170 -- even in Ada 95, and is not a ? if the message represents an illegality
171 -- (because of violation of static expression rules) in Ada 95 (but not
172 -- in Ada 83). Typically this routine posts all messages at the Sloc of
173 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
174 -- the message. After posting the appropriate message, and if the flag
175 -- Rep is set, this routine replaces the expression with an appropriate
176 -- N_Raise_Constraint_Error node using the given Reason code. This node
177 -- is then marked as being static if the original node is static, but
178 -- sets the flag Raises_Constraint_Error, preventing further evaluation.
179 -- The error message may contain a } or & insertion character. This
180 -- normally references Etype (N), unless the Ent argument is given
181 -- explicitly, in which case it is used instead. The type of the raise
182 -- node that is built is normally Etype (N), but if the Typ parameter
183 -- is present, this is used instead. Warn is normally False. If it is
184 -- True then the message is treated as a warning even though it does
185 -- not end with a ? (this is used when the caller wants to parameterize
186 -- whether an error or warning is given), or when the message should be
187 -- treated as a warning even when SPARK_Mode is On (which otherwise would
188 -- force an error).
190 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
191 -- Id should be the entity of a state abstraction, an object, or a type.
192 -- Returns True iff Id is subject to external property Async_Readers.
194 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
195 -- Id should be the entity of a state abstraction, an object, or a type.
196 -- Returns True iff Id is subject to external property Async_Writers.
198 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
199 -- If at the point of declaration an array type has a private or limited
200 -- component, several array operations are not available on the type, and
201 -- the array type is flagged accordingly. If in the immediate scope of
202 -- the array type the component becomes non-private or non-limited, these
203 -- operations become available. This can happen if the scopes of both types
204 -- are open, and the scope of the array is not outside the scope of the
205 -- component.
207 procedure Bad_Attribute
208 (N : Node_Id;
209 Nam : Name_Id;
210 Warn : Boolean := False);
211 -- Called when node N is expected to contain a valid attribute name, and
212 -- Nam is found instead. If Warn is set True this is a warning, else this
213 -- is an error.
215 procedure Bad_Predicated_Subtype_Use
216 (Msg : String;
217 N : Node_Id;
218 Typ : Entity_Id;
219 Suggest_Static : Boolean := False);
220 -- This is called when Typ, a predicated subtype, is used in a context
221 -- which does not allow the use of a predicated subtype. Msg is passed to
222 -- Error_Msg_FE to output an appropriate message using N as the location,
223 -- and Typ as the entity. The caller must set up any insertions other than
224 -- the & for the type itself. Note that if Typ is a generic actual type,
225 -- then the message will be output as a warning, and a raise Program_Error
226 -- is inserted using Insert_Action with node N as the insertion point. Node
227 -- N also supplies the source location for construction of the raise node.
228 -- If Typ does not have any predicates, the call has no effect. Set flag
229 -- Suggest_Static when the context warrants an advice on how to avoid the
230 -- use error.
232 function Bad_Unordered_Enumeration_Reference
233 (N : Node_Id;
234 T : Entity_Id) return Boolean;
235 -- Node N contains a potentially dubious reference to type T, either an
236 -- explicit comparison, or an explicit range. This function returns True
237 -- if the type T is an enumeration type for which No pragma Order has been
238 -- given, and the reference N is not in the same extended source unit as
239 -- the declaration of T.
241 function Begin_Keyword_Location (N : Node_Id) return Source_Ptr;
242 -- Given block statement, entry body, package body, subprogram body, or
243 -- task body N, return the closest source location to the "begin" keyword.
245 function Build_Actual_Subtype
246 (T : Entity_Id;
247 N : Node_Or_Entity_Id) return Node_Id;
248 -- Build an anonymous subtype for an entity or expression, using the
249 -- bounds of the entity or the discriminants of the enclosing record.
250 -- T is the type for which the actual subtype is required, and N is either
251 -- a defining identifier, or any subexpression.
253 function Build_Actual_Subtype_Of_Component
254 (T : Entity_Id;
255 N : Node_Id) return Node_Id;
256 -- Determine whether a selected component has a type that depends on
257 -- discriminants, and build actual subtype for it if so.
259 -- Handling of inherited primitives whose ancestors have class-wide
260 -- pre/postconditions.
262 -- If a primitive operation of a parent type has a class-wide pre/post-
263 -- condition that includes calls to other primitives, and that operation
264 -- is inherited by a descendant type that also overrides some of these
265 -- other primitives, the condition that applies to the inherited
266 -- operation has a modified condition in which the overridden primitives
267 -- have been replaced by the primitives of the descendent type. A call
268 -- to the inherited operation cannot be simply a call to the parent
269 -- operation (with an appropriate conversion) as is the case for other
270 -- inherited operations, but must appear with a wrapper subprogram to which
271 -- the modified conditions apply. Furthermore the call to the parent
272 -- operation must not be subject to the original class-wide condition,
273 -- given that modified conditions apply. To implement these semantics
274 -- economically we create a subprogram body (a "class-wide clone") to
275 -- which no pre/postconditions apply, and we create bodies for the
276 -- original and the inherited operation that have their respective
277 -- pre/postconditions and simply call the clone. The following operations
278 -- take care of constructing declaration and body of the clone, and
279 -- building the calls to it within the appropriate wrappers.
281 procedure Build_Class_Wide_Clone_Body
282 (Spec_Id : Entity_Id;
283 Bod : Node_Id);
284 -- Build body of subprogram that has a class-wide condition that contains
285 -- calls to other primitives. Spec_Id is the Id of the subprogram, and B
286 -- is its source body, which becomes the body of the clone.
288 function Build_Class_Wide_Clone_Call
289 (Loc : Source_Ptr;
290 Decls : List_Id;
291 Spec_Id : Entity_Id;
292 Spec : Node_Id) return Node_Id;
293 -- Build a call to the common class-wide clone of a subprogram with
294 -- class-wide conditions. The body of the subprogram becomes a wrapper
295 -- for a call to the clone. The inherited operation becomes a similar
296 -- wrapper to which modified conditions apply, and the call to the
297 -- clone includes the proper conversion in a call the parent operation.
299 procedure Build_Class_Wide_Clone_Decl (Spec_Id : Entity_Id);
300 -- For a subprogram that has a class-wide condition that contains calls
301 -- to other primitives, build an internal subprogram that is invoked
302 -- through a type-specific wrapper for all inherited subprograms that
303 -- may have a modified condition.
305 procedure Build_Constrained_Itype
306 (N : Node_Id;
307 Typ : Entity_Id;
308 New_Assoc_List : List_Id);
309 -- Build a constrained itype for the newly created record aggregate N and
310 -- set it as a type of N. The itype will have Typ as its base type and
311 -- will be constrained by the values of discriminants from the component
312 -- association list New_Assoc_List.
314 -- ??? This code used to be pretty much a copy of Build_Subtype, but now
315 -- those two routines behave differently for types with unknown
316 -- discriminants. They are both exported in from this package in the hope
317 -- to eventually unify them (a not duplicate them even more until then).
319 -- ??? Performance WARNING. The current implementation creates a new itype
320 -- for all aggregates whose base type is discriminated. This means that
321 -- for record aggregates nested inside an array aggregate we will create
322 -- a new itype for each record aggregate if the array component type has
323 -- discriminants. For large aggregates this may be a problem. What should
324 -- be done in this case is to reuse itypes as much as possible.
326 function Build_Default_Subtype
327 (T : Entity_Id;
328 N : Node_Id) return Entity_Id;
329 -- If T is an unconstrained type with defaulted discriminants, build a
330 -- subtype constrained by the default values, insert the subtype
331 -- declaration in the tree before N, and return the entity of that
332 -- subtype. Otherwise, simply return T.
334 function Build_Discriminal_Subtype_Of_Component
335 (T : Entity_Id) return Node_Id;
336 -- Determine whether a record component has a type that depends on
337 -- discriminants, and build actual subtype for it if so.
339 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
340 -- Given a compilation unit node N, allocate an elaboration counter for
341 -- the compilation unit, and install it in the Elaboration_Entity field
342 -- of Spec_Id, the entity for the compilation unit.
344 procedure Build_Explicit_Dereference
345 (Expr : Node_Id;
346 Disc : Entity_Id);
347 -- AI05-139: Names with implicit dereference. If the expression N is a
348 -- reference type and the context imposes the corresponding designated
349 -- type, convert N into N.Disc.all. Such expressions are always over-
350 -- loaded with both interpretations, and the dereference interpretation
351 -- carries the name of the reference discriminant.
353 function Build_Overriding_Spec
354 (Op : Node_Id;
355 Typ : Entity_Id) return Node_Id;
356 -- Build a subprogram specification for the wrapper of an inherited
357 -- operation with a modified pre- or postcondition (See AI12-0113).
358 -- Op is the parent operation, and Typ is the descendant type that
359 -- inherits the operation.
361 function Build_Subtype
362 (Related_Node : Node_Id;
363 Loc : Source_Ptr;
364 Typ : Entity_Id;
365 Constraints : List_Id)
366 return Entity_Id;
367 -- Typ is an array or discriminated type, Constraints is a list of
368 -- constraints that apply to Typ. This routine builds the constrained
369 -- subtype using Loc as the source location and attached this subtype
370 -- declaration to Related_Node. The returned subtype inherits predicates
371 -- from Typ.
373 -- ??? The routine is mostly a duplicate of Build_Constrained_Itype, so be
374 -- careful which of the two better suits your needs (and certainly do not
375 -- duplicate their code).
377 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
378 -- Returns True if the expression cannot possibly raise Constraint_Error.
379 -- The response is conservative in the sense that a result of False does
380 -- not necessarily mean that CE could be raised, but a response of True
381 -- means that for sure CE cannot be raised.
383 procedure Check_Ambiguous_Aggregate (Call : Node_Id);
384 -- Additional information on an ambiguous call in Ada_2020 when a
385 -- subprogram call has an actual that is an aggregate, and the
386 -- presence of container aggregates (or types with the correwponding
387 -- aspect) provides an additional interpretation. Message indicates
388 -- that an aggregate actual should carry a type qualification.
390 procedure Check_Dynamically_Tagged_Expression
391 (Expr : Node_Id;
392 Typ : Entity_Id;
393 Related_Nod : Node_Id);
394 -- Check wrong use of dynamically tagged expression
396 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
397 -- Verify that the full declaration of type T has been seen. If not, place
398 -- error message on node N. Used in object declarations, type conversions
399 -- and qualified expressions.
401 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
402 -- A subprogram that has an Address parameter and is declared in a Pure
403 -- package is not considered Pure, because the parameter may be used as a
404 -- pointer and the referenced data may change even if the address value
405 -- itself does not.
406 -- If the programmer gave an explicit Pure_Function pragma, then we respect
407 -- the pragma and leave the subprogram Pure.
409 procedure Check_Function_Writable_Actuals (N : Node_Id);
410 -- (Ada 2012): If the construct N has two or more direct constituents that
411 -- are names or expressions whose evaluation may occur in an arbitrary
412 -- order, at least one of which contains a function call with an in out or
413 -- out parameter, then the construct is legal only if: for each name that
414 -- is passed as a parameter of mode in out or out to some inner function
415 -- call C2 (not including the construct N itself), there is no other name
416 -- anywhere within a direct constituent of the construct C other than
417 -- the one containing C2, that is known to refer to the same object (RM
418 -- 6.4.1(6.17/3)).
420 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
421 -- AI05-139-2: Accessors and iterators for containers. This procedure
422 -- checks whether T is a reference type, and if so it adds an interprettion
423 -- to N whose type is the designated type of the reference_discriminant.
424 -- If N is a generalized indexing operation, the interpretation is added
425 -- both to the corresponding function call, and to the indexing node.
427 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
428 -- Within a protected function, the current object is a constant, and
429 -- internal calls to a procedure or entry are illegal. Similarly, other
430 -- uses of a protected procedure in a renaming or a generic instantiation
431 -- in the context of a protected function are illegal (AI05-0225).
433 procedure Check_Later_Vs_Basic_Declarations
434 (Decls : List_Id;
435 During_Parsing : Boolean);
436 -- If During_Parsing is True, check for misplacement of later vs basic
437 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
438 -- restriction is set, do the same: although SPARK 95 removes the
439 -- distinction between initial and later declarative items, the distinction
440 -- remains in the Examiner (JB01-005). Note that the Examiner does not
441 -- count package declarations in later declarative items.
443 procedure Check_No_Hidden_State (Id : Entity_Id);
444 -- Determine whether object or state Id introduces a hidden state. If this
445 -- is the case, emit an error.
447 procedure Check_Inherited_Nonoverridable_Aspects
448 (Inheritor : Entity_Id;
449 Interface_List : List_Id;
450 Parent_Type : Entity_Id);
451 -- Verify consistency of inherited nonoverridable aspects
452 -- when aspects are inherited from more than one source.
453 -- Parent_Type may be void (e.g., for a tagged task/protected type
454 -- whose declaration includes a non-empty interface list).
455 -- In the error case, error message is associate with Inheritor;
456 -- Inheritor parameter is otherwise unused.
458 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
459 -- Verify that the profile of nonvolatile function Func_Id does not contain
460 -- effectively volatile parameters or return type for reading.
462 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
463 -- Verify the legality of reference Ref to variable Var_Id when the
464 -- variable is a constituent of a single protected/task type.
466 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
467 -- N is one of the statement forms that is a potentially blocking
468 -- operation. If it appears within a protected action, emit warning.
470 procedure Check_Previous_Null_Procedure
471 (Decl : Node_Id;
472 Prev : Entity_Id);
473 -- A null procedure or a subprogram renaming can complete a previous
474 -- declaration, unless that previous declaration is itself a null
475 -- procedure. This must be treated specially because the analysis of
476 -- the null procedure leaves the corresponding entity as having no
477 -- completion, because its completion is provided by a generated body
478 -- inserted after all other declarations.
480 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
481 -- Determine whether the contract of subprogram Subp_Id mentions attribute
482 -- 'Result and it contains an expression that evaluates differently in pre-
483 -- and post-state.
485 procedure Check_State_Refinements
486 (Context : Node_Id;
487 Is_Main_Unit : Boolean := False);
488 -- Verify that all abstract states declared in a block statement, entry
489 -- body, package body, protected body, subprogram body, task body, or a
490 -- package declaration denoted by Context have proper refinement. Emit an
491 -- error if this is not the case. Flag Is_Main_Unit should be set when
492 -- Context denotes the main compilation unit.
494 procedure Check_Unused_Body_States (Body_Id : Entity_Id);
495 -- Verify that all abstract states and objects declared in the state space
496 -- of package body Body_Id are used as constituents. Emit an error if this
497 -- is not the case.
499 procedure Check_Unprotected_Access
500 (Context : Node_Id;
501 Expr : Node_Id);
502 -- Check whether the expression is a pointer to a protected component,
503 -- and the context is external to the protected operation, to warn against
504 -- a possible unlocked access to data.
506 procedure Check_Volatility_Compatibility
507 (Id1, Id2 : Entity_Id;
508 Description_1, Description_2 : String;
509 Srcpos_Bearer : Node_Id);
510 -- Id1 and Id2 should each be the entity of a state abstraction, a
511 -- variable, or a type (i.e., something suitable for passing to
512 -- Async_Readers_Enabled and similar functions).
513 -- Does nothing if SPARK_Mode /= On. Otherwise, flags a legality violation
514 -- if one or more of the four volatility-related aspects is False for Id1
515 -- and True for Id2. The two descriptions are included in the error message
516 -- text; the source position for the generated message is determined by
517 -- Srcpos_Bearer.
519 function Choice_List (N : Node_Id) return List_Id;
520 -- Utility to retrieve the choices of a Component_Association or the
521 -- Discrete_Choices of an Iterated_Component_Association. For various
522 -- reasons these nodes have a different structure even though they play
523 -- similar roles in array aggregates.
525 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
526 -- Gather the entities of all abstract states and objects declared in the
527 -- body state space of package body Body_Id.
529 procedure Collect_Interfaces
530 (T : Entity_Id;
531 Ifaces_List : out Elist_Id;
532 Exclude_Parents : Boolean := False;
533 Use_Full_View : Boolean := True);
534 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
535 -- directly or indirectly implemented by T. Exclude_Parents is used to
536 -- avoid the addition of inherited interfaces to the generated list.
537 -- Use_Full_View is used to collect the interfaces using the full-view
538 -- (if available).
540 procedure Collect_Interface_Components
541 (Tagged_Type : Entity_Id;
542 Components_List : out Elist_Id);
543 -- Ada 2005 (AI-251): Collect all the tag components associated with the
544 -- secondary dispatch tables of a tagged type.
546 procedure Collect_Interfaces_Info
547 (T : Entity_Id;
548 Ifaces_List : out Elist_Id;
549 Components_List : out Elist_Id;
550 Tags_List : out Elist_Id);
551 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
552 -- the record component and tag associated with each of these interfaces.
553 -- On exit Ifaces_List, Components_List and Tags_List have the same number
554 -- of elements, and elements at the same position on these tables provide
555 -- information on the same interface type.
557 procedure Collect_Parents
558 (T : Entity_Id;
559 List : out Elist_Id;
560 Use_Full_View : Boolean := True);
561 -- Collect all the parents of Typ. Use_Full_View is used to collect them
562 -- using the full-view of private parents (if available).
564 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
565 -- Called upon type derivation and extension. We scan the declarative part
566 -- in which the type appears, and collect subprograms that have one
567 -- subsidiary subtype of the type. These subprograms can only appear after
568 -- the type itself.
570 function Compile_Time_Constraint_Error
571 (N : Node_Id;
572 Msg : String;
573 Ent : Entity_Id := Empty;
574 Loc : Source_Ptr := No_Location;
575 Warn : Boolean := False;
576 Extra_Msg : String := "") return Node_Id;
577 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
578 -- generates a warning (or error) message in the same manner, but it does
579 -- not replace any nodes. For convenience, the function always returns its
580 -- first argument. The message is a warning if the message ends with ?, or
581 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
582 -- If Extra_Msg is not a null string, then it's associated with N and
583 -- emitted immediately after the main message (and before output of any
584 -- message indicating that Constraint_Error will be raised).
586 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
587 -- Sets the Has_Delayed_Freeze flag of New_Ent if the Delayed_Freeze flag
588 -- of Old_Ent is set and Old_Ent has not yet been Frozen (i.e. Is_Frozen is
589 -- False).
591 function Copy_Component_List
592 (R_Typ : Entity_Id;
593 Loc : Source_Ptr) return List_Id;
594 -- Copy components from record type R_Typ that come from source. Used to
595 -- create a new compatible record type. Loc is the source location assigned
596 -- to the created nodes.
598 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
599 -- Utility to create a parameter profile for a new subprogram spec, when
600 -- the subprogram has a body that acts as spec. This is done for some cases
601 -- of inlining, and for private protected ops. Also used to create bodies
602 -- for stubbed subprograms.
604 procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id);
605 -- Copy the SPARK_Mode aspect if present in the aspect specifications
606 -- of node From to node To. On entry it is assumed that To does not have
607 -- aspect specifications. If From has no aspects, the routine has no
608 -- effect.
610 function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id;
611 -- Replicate a function or a procedure specification denoted by Spec. The
612 -- resulting tree is an exact duplicate of the original tree. New entities
613 -- are created for the unit name and the formal parameters.
615 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
616 -- If a type is a generic actual type, return the corresponding formal in
617 -- the generic parent unit. There is no direct link in the tree for this
618 -- attribute, except in the case of formal private and derived types.
619 -- Possible optimization???
621 function Current_Entity (N : Node_Id) return Entity_Id;
622 pragma Inline (Current_Entity);
623 -- Find the currently visible definition for a given identifier, that is to
624 -- say the first entry in the visibility chain for the Chars of N.
626 function Current_Entity_In_Scope (N : Name_Id) return Entity_Id;
627 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
628 -- Find whether there is a previous definition for name or identifier N in
629 -- the current scope. Because declarations for a scope are not necessarily
630 -- contiguous (e.g. for packages) the first entry on the visibility chain
631 -- for N is not necessarily in the current scope.
633 function Current_Scope return Entity_Id;
634 -- Get entity representing current scope
636 function Current_Scope_No_Loops return Entity_Id;
637 -- Return the current scope ignoring internally generated loops
639 function Current_Subprogram return Entity_Id;
640 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
641 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
642 -- Current_Scope is returned. The returned value is Empty if this is called
643 -- from a library package which is not within any subprogram.
645 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint;
646 -- Same as Type_Access_Level, except that if the type is the type of an Ada
647 -- 2012 stand-alone object of an anonymous access type, then return the
648 -- static accessibility level of the object. In that case, the dynamic
649 -- accessibility level of the object may take on values in a range. The low
650 -- bound of that range is returned by Type_Access_Level; this function
651 -- yields the high bound of that range. Also differs from Type_Access_Level
652 -- in the case of a descendant of a generic formal type (returns Int'Last
653 -- instead of 0).
655 function Defining_Entity
656 (N : Node_Id;
657 Empty_On_Errors : Boolean := False) return Entity_Id;
658 -- Given a declaration N, returns the associated defining entity. If the
659 -- declaration has a specification, the entity is obtained from the
660 -- specification. If the declaration has a defining unit name, then the
661 -- defining entity is obtained from the defining unit name ignoring any
662 -- child unit prefixes.
664 -- Iterator loops also have a defining entity, which holds the list of
665 -- local entities declared during loop expansion. These entities need
666 -- debugging information, generated through Qualify_Entity_Names, and
667 -- the loop declaration must be placed in the table Name_Qualify_Units.
669 -- Set flag Empty_On_Errors to change the behavior of this routine as
670 -- follows:
672 -- * True - A declaration that lacks a defining entity returns Empty.
673 -- A node that does not allow for a defining entity returns Empty.
675 -- * False - A declaration that lacks a defining entity is given a new
676 -- internally generated entity which is subsequently returned. A node
677 -- that does not allow for a defining entity raises Program_Error
679 -- WARNING: There is a matching C declaration of this subprogram in fe.h
681 function Denotes_Discriminant
682 (N : Node_Id;
683 Check_Concurrent : Boolean := False) return Boolean;
684 -- Returns True if node N is an Entity_Name node for a discriminant. If the
685 -- flag Check_Concurrent is true, function also returns true when N denotes
686 -- the discriminal of the discriminant of a concurrent type. This is needed
687 -- to disable some optimizations on private components of protected types,
688 -- and constraint checks on entry families constrained by discriminants.
690 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
691 -- Detect suspicious overlapping between actuals in a call, when both are
692 -- writable (RM 2012 6.4.1(6.4/3)).
694 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
695 -- Functions to detect suspicious overlapping between actuals in a call,
696 -- when one of them is writable. The predicates are those proposed in
697 -- AI05-0144, to detect dangerous order dependence in complex calls.
698 -- I would add a parameter Warn which enables more extensive testing of
699 -- cases as we find appropriate when we are only warning ??? Or perhaps
700 -- return an indication of (Error, Warn, OK) ???
702 function Denotes_Variable (N : Node_Id) return Boolean;
703 -- Returns True if node N denotes a single variable without parentheses
705 function Depends_On_Discriminant (N : Node_Id) return Boolean;
706 -- Returns True if N denotes a discriminant or if N is a range, a subtype
707 -- indication or a scalar subtype where one of the bounds is a
708 -- discriminant.
710 function Derivation_Too_Early_To_Inherit
711 (Typ : Entity_Id; Streaming_Op : TSS_Name_Type) return Boolean;
712 -- Returns True if Typ is a derived type, the given Streaming_Op
713 -- (one of Read, Write, Input, or Output) is explicitly specified
714 -- for Typ's parent type, and that attribute specification is *not*
715 -- inherited by Typ because the declaration of Typ precedes that
716 -- of the attribute specification.
718 function Designate_Same_Unit
719 (Name1 : Node_Id;
720 Name2 : Node_Id) return Boolean;
721 -- Returns True if Name1 and Name2 designate the same unit name; each of
722 -- these names is supposed to be a selected component name, an expanded
723 -- name, a defining program unit name or an identifier.
725 procedure Diagnose_Iterated_Component_Association (N : Node_Id);
726 -- Emit an error if iterated component association N is actually an illegal
727 -- quantified expression lacking a quantifier.
729 function Discriminated_Size (Comp : Entity_Id) return Boolean;
730 -- If a component size is not static then a warning will be emitted
731 -- in Ravenscar or other restricted contexts. When a component is non-
732 -- static because of a discriminant constraint we can specialize the
733 -- warning by mentioning discriminants explicitly. This was created for
734 -- private components of protected objects, but is generally useful when
735 -- restriction No_Implicit_Heap_Allocation is active.
737 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
738 -- Same as Einfo.Extra_Accessibility except thtat object renames
739 -- are looked through.
741 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
742 -- Id should be the entity of a state abstraction, an object, or a type.
743 -- Returns True iff Id is subject to external property Effective_Reads.
745 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
746 -- Id should be the entity of a state abstraction, an object, or a type.
747 -- Returns True iff Id is subject to external property Effective_Writes.
749 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
750 -- Returns the enclosing N_Compilation_Unit node that is the root of a
751 -- subtree containing N.
753 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
754 -- Returns the closest ancestor of Typ that is a CPP type.
756 function Enclosing_Declaration (N : Node_Id) return Node_Id;
757 -- Returns the declaration node enclosing N (including possibly N itself),
758 -- if any, or Empty otherwise.
760 function Enclosing_Generic_Body (N : Node_Id) return Node_Id;
761 -- Returns the Node_Id associated with the innermost enclosing generic
762 -- body, if any. If none, then returns Empty.
764 function Enclosing_Generic_Unit (N : Node_Id) return Node_Id;
765 -- Returns the Node_Id associated with the innermost enclosing generic
766 -- unit, if any. If none, then returns Empty.
768 function Enclosing_Lib_Unit_Entity
769 (E : Entity_Id := Current_Scope) return Entity_Id;
770 -- Returns the entity of enclosing library unit node which is the root of
771 -- the current scope (which must not be Standard_Standard, and the caller
772 -- is responsible for ensuring this condition) or other specified entity.
774 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
775 -- Returns the N_Compilation_Unit node of the library unit that is directly
776 -- or indirectly (through a subunit) at the root of a subtree containing
777 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if
778 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
779 -- library unit. If no such item is found, returns Empty.
781 function Enclosing_Package (E : Entity_Id) return Entity_Id;
782 -- Utility function to return the Ada entity of the package enclosing
783 -- the entity E, if any. Returns Empty if no enclosing package.
785 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
786 -- Returns the entity of the package or subprogram enclosing E, if any.
787 -- Returns Empty if no enclosing package or subprogram.
789 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id;
790 -- Utility function to return the Ada entity of the subprogram enclosing
791 -- the entity E, if any. Returns Empty if no enclosing subprogram.
793 function End_Keyword_Location (N : Node_Id) return Source_Ptr;
794 -- Given block statement, entry body, package body, package declaration,
795 -- protected body, [single] protected type declaration, subprogram body,
796 -- task body, or [single] task type declaration N, return the closest
797 -- source location of the "end" keyword.
799 procedure Ensure_Freeze_Node (E : Entity_Id);
800 -- Make sure a freeze node is allocated for entity E. If necessary, build
801 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
803 procedure Enter_Name (Def_Id : Entity_Id);
804 -- Insert new name in symbol table of current scope with check for
805 -- duplications (error message is issued if a conflict is found).
806 -- Note: Enter_Name is not used for overloadable entities, instead these
807 -- are entered using Sem_Ch6.Enter_Overloaded_Entity.
809 function Entity_Of (N : Node_Id) return Entity_Id;
810 -- Obtain the entity of arbitrary node N. If N is a renaming, return the
811 -- entity of the earliest renamed source abstract state or whole object.
812 -- If no suitable entity is available, return Empty. This routine carries
813 -- out actions that are tied to SPARK semantics.
815 function Exceptions_OK return Boolean;
816 -- Determine whether exceptions are allowed to be caught, propagated, or
817 -- raised.
819 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
820 -- This procedure is called after issuing a message complaining about an
821 -- inappropriate use of limited type T. If useful, it adds additional
822 -- continuation lines to the message explaining why type T is limited.
823 -- Messages are placed at node N.
825 function Expression_Of_Expression_Function
826 (Subp : Entity_Id) return Node_Id;
827 -- Return the expression of expression function Subp
829 type Extensions_Visible_Mode is
830 (Extensions_Visible_None,
831 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
832 -- value acts as a default in a non-SPARK compilation.
834 Extensions_Visible_False,
835 -- A value of "False" signifies that Extensions_Visible is either
836 -- missing or the pragma is present and the value of its Boolean
837 -- expression is False.
839 Extensions_Visible_True);
840 -- A value of "True" signifies that Extensions_Visible is present and
841 -- the value of its Boolean expression is True.
843 function Extensions_Visible_Status
844 (Id : Entity_Id) return Extensions_Visible_Mode;
845 -- Given the entity of a subprogram or formal parameter subject to pragma
846 -- Extensions_Visible, return the Boolean value denoted by the expression
847 -- of the pragma.
849 procedure Find_Actual
850 (N : Node_Id;
851 Formal : out Entity_Id;
852 Call : out Node_Id);
853 -- Determines if the node N is an actual parameter of a function or a
854 -- procedure call. If so, then Formal points to the entity for the formal
855 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
856 -- Call is set to the node for the corresponding call. If the node N is not
857 -- an actual parameter then Formal and Call are set to Empty.
859 function Find_Body_Discriminal
860 (Spec_Discriminant : Entity_Id) return Entity_Id;
861 -- Given a discriminant of the record type that implements a task or
862 -- protected type, return the discriminal of the corresponding discriminant
863 -- of the actual concurrent type.
865 function Find_Corresponding_Discriminant
866 (Id : Node_Id;
867 Typ : Entity_Id) return Entity_Id;
868 -- Because discriminants may have different names in a generic unit and in
869 -- an instance, they are resolved positionally when possible. A reference
870 -- to a discriminant carries the discriminant that it denotes when it is
871 -- analyzed. Subsequent uses of this id on a different type denotes the
872 -- discriminant at the same position in this new type.
874 function Find_DIC_Type (Typ : Entity_Id) return Entity_Id;
875 -- Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which
876 -- defines the Default_Initial_Condition pragma of type Typ. This is either
877 -- Typ itself or a parent type when the pragma is inherited.
879 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
880 -- Find the nearest iterator loop which encloses arbitrary entity Id. If
881 -- such a loop exists, return the entity of its identifier (E_Loop scope),
882 -- otherwise return Empty.
884 function Find_Enclosing_Scope (N : Node_Id) return Entity_Id;
885 -- Find the nearest scope which encloses arbitrary node N
887 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
888 -- Find the nested loop statement in a conditional block. Loops subject to
889 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
890 -- loop are nested within the block.
892 procedure Find_Overlaid_Entity
893 (N : Node_Id;
894 Ent : out Entity_Id;
895 Off : out Boolean);
896 -- The node N should be an address representation clause. Determines if
897 -- the target expression is the address of an entity with an optional
898 -- offset. If so, set Ent to the entity and, if there is an offset, set
899 -- Off to True, otherwise to False. If N is not an address representation
900 -- clause, or if it is not possible to determine that the address is of
901 -- this form, then set Ent to Empty.
903 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
904 -- Return the type of formal parameter Param as determined by its
905 -- specification.
907 -- The following type describes the placement of an arbitrary entity with
908 -- respect to SPARK visible / hidden state space.
910 type State_Space_Kind is
911 (Not_In_Package,
912 -- An entity is not in the visible, private or body state space when
913 -- the immediate enclosing construct is not a package.
915 Visible_State_Space,
916 -- An entity is in the visible state space when it appears immediately
917 -- within the visible declarations of a package or when it appears in
918 -- the visible state space of a nested package which in turn is declared
919 -- in the visible declarations of an enclosing package:
921 -- package Pack is
922 -- Visible_Variable : ...
923 -- package Nested
924 -- with Abstract_State => Visible_State
925 -- is
926 -- Visible_Nested_Variable : ...
927 -- end Nested;
928 -- end Pack;
930 -- Entities associated with a package instantiation inherit the state
931 -- space from the instance placement:
933 -- generic
934 -- package Gen is
935 -- Generic_Variable : ...
936 -- end Gen;
938 -- with Gen;
939 -- package Pack is
940 -- package Inst is new Gen;
941 -- -- Generic_Variable is in the visible state space of Pack
942 -- end Pack;
944 Private_State_Space,
945 -- An entity is in the private state space when it appears immediately
946 -- within the private declarations of a package or when it appears in
947 -- the visible state space of a nested package which in turn is declared
948 -- in the private declarations of an enclosing package:
950 -- package Pack is
951 -- private
952 -- Private_Variable : ...
953 -- package Nested
954 -- with Abstract_State => Private_State
955 -- is
956 -- Private_Nested_Variable : ...
957 -- end Nested;
958 -- end Pack;
960 -- The same placement principle applies to package instantiations
962 Body_State_Space);
963 -- An entity is in the body state space when it appears immediately
964 -- within the declarations of a package body or when it appears in the
965 -- visible state space of a nested package which in turn is declared in
966 -- the declarations of an enclosing package body:
968 -- package body Pack is
969 -- Body_Variable : ...
970 -- package Nested
971 -- with Abstract_State => Body_State
972 -- is
973 -- Body_Nested_Variable : ...
974 -- end Nested;
975 -- end Pack;
977 -- The same placement principle applies to package instantiations
979 procedure Find_Placement_In_State_Space
980 (Item_Id : Entity_Id;
981 Placement : out State_Space_Kind;
982 Pack_Id : out Entity_Id);
983 -- Determine the state space placement of an item. Item_Id denotes the
984 -- entity of an abstract state, object, or package instantiation. Placement
985 -- captures the precise placement of the item in the enclosing state space.
986 -- If the state space is that of a package, Pack_Id denotes its entity,
987 -- otherwise Pack_Id is Empty.
989 function Find_Primitive_Eq (Typ : Entity_Id) return Entity_Id;
990 -- Locate primitive equality for type if it exists. Return Empty if it is
991 -- not available.
993 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
994 -- Find specific type of a class-wide type, and handle the case of an
995 -- incomplete type coming either from a limited_with clause or from an
996 -- incomplete type declaration. If resulting type is private return its
997 -- full view.
999 function Find_Static_Alternative (N : Node_Id) return Node_Id;
1000 -- N is a case statement whose expression is a compile-time value.
1001 -- Determine the alternative chosen, so that the code of non-selected
1002 -- alternatives, and the warnings that may apply to them, are removed.
1004 function First_Actual (Node : Node_Id) return Node_Id;
1005 -- Node is an N_Function_Call, N_Procedure_Call_Statement or
1006 -- N_Entry_Call_Statement node. The result returned is the first actual
1007 -- parameter in declaration order (not the order of parameters as they
1008 -- appeared in the source, which can be quite different as a result of the
1009 -- use of named parameters). Empty is returned for a call with no
1010 -- parameters. The procedure for iterating through the actuals in
1011 -- declaration order is to use this function to find the first actual, and
1012 -- then use Next_Actual to obtain the next actual in declaration order.
1013 -- Note that the value returned is always the expression (not the
1014 -- N_Parameter_Association nodes, even if named association is used).
1016 -- WARNING: There is a matching C declaration of this subprogram in fe.h
1018 function First_Global
1019 (Subp : Entity_Id;
1020 Global_Mode : Name_Id;
1021 Refined : Boolean := False) return Node_Id;
1022 -- Returns the first global item of mode Global_Mode (which can be
1023 -- Name_Input, Name_Output, Name_In_Out or Name_Proof_In) associated to
1024 -- subprogram Subp, or Empty otherwise. If Refined is True, the global item
1025 -- is retrieved from the Refined_Global aspect/pragma associated to the
1026 -- body of Subp if present. Next_Global can be used to get the next global
1027 -- item with the same mode.
1029 function Fix_Msg (Id : Entity_Id; Msg : String) return String;
1030 -- Replace all occurrences of a particular word in string Msg depending on
1031 -- the Ekind of Id as follows:
1032 -- * Replace "subprogram" with
1033 -- - "entry" when Id is an entry [family]
1034 -- - "task type" when Id is a single task object, task type or task
1035 -- body.
1036 -- * Replace "protected" with
1037 -- - "task" when Id is a single task object, task type or task body
1038 -- All other non-matching words remain as is
1040 function From_Nested_Package (T : Entity_Id) return Boolean;
1041 -- A type declared in a nested package may be frozen by a declaration
1042 -- appearing after the package but before the package is frozen. If the
1043 -- type has aspects that generate subprograms, these may contain references
1044 -- to entities local to the nested package. In that case the package must
1045 -- be installed on the scope stack to prevent spurious visibility errors.
1047 procedure Gather_Components
1048 (Typ : Entity_Id;
1049 Comp_List : Node_Id;
1050 Governed_By : List_Id;
1051 Into : Elist_Id;
1052 Report_Errors : out Boolean);
1053 -- The purpose of this procedure is to gather the valid components in a
1054 -- record type according to the values of its discriminants, in order to
1055 -- validate the components of a record aggregate.
1057 -- Typ is the type of the aggregate when its constrained discriminants
1058 -- need to be collected, otherwise it is Empty.
1060 -- Comp_List is an N_Component_List node.
1062 -- Governed_By is a list of N_Component_Association nodes, where each
1063 -- choice list contains the name of a discriminant and the expression
1064 -- field gives its value. The values of the discriminants governing
1065 -- the (possibly nested) variant parts in Comp_List are found in this
1066 -- Component_Association List.
1068 -- Into is the list where the valid components are appended. Note that
1069 -- Into need not be an Empty list. If it's not, components are attached
1070 -- to its tail.
1072 -- Report_Errors is set to True if the values of the discriminants are
1073 -- non-static.
1075 -- This procedure is also used when building a record subtype. If the
1076 -- discriminant constraint of the subtype is static, the components of the
1077 -- subtype are only those of the variants selected by the values of the
1078 -- discriminants. Otherwise all components of the parent must be included
1079 -- in the subtype for semantic analysis.
1081 function Get_Dynamic_Accessibility (E : Entity_Id) return Entity_Id;
1082 -- Obtain the accessibility level for a given entity formal taking into
1083 -- account both extra and minimum accessibility.
1085 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
1086 -- Given a node for an expression, obtain the actual subtype of the
1087 -- expression. In the case of a parameter where the formal is an
1088 -- unconstrained array or discriminated type, this will be the previously
1089 -- constructed subtype of the actual. Note that this is not quite the
1090 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
1091 -- it is the subtype of the value of the actual. The actual subtype is also
1092 -- returned in other cases where it has already been constructed for an
1093 -- object. Otherwise the expression type is returned unchanged, except for
1094 -- the case of an unconstrained array type, where an actual subtype is
1095 -- created, using Insert_Actions if necessary to insert any associated
1096 -- actions.
1098 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
1099 -- This is like Get_Actual_Subtype, except that it never constructs an
1100 -- actual subtype. If an actual subtype is already available, i.e. the
1101 -- Actual_Subtype field of the corresponding entity is set, then it is
1102 -- returned. Otherwise the Etype of the node is returned.
1104 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
1105 -- Return the body node for a stub
1107 function Get_Cursor_Type
1108 (Aspect : Node_Id;
1109 Typ : Entity_Id) return Entity_Id;
1110 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1111 -- primitive operation First. For use in resolving the other primitive
1112 -- operations of an Iterable type and expanding loops and quantified
1113 -- expressions over formal containers.
1115 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1116 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1117 -- primitive operation First. For use after resolving the primitive
1118 -- operations of an Iterable type.
1120 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
1121 -- This is used to construct the string literal node representing a
1122 -- default external name, i.e. one that is constructed from the name of an
1123 -- entity, or (in the case of extended DEC import/export pragmas) an
1124 -- identifier provided as the external name. Letters in the name are
1125 -- according to the setting of Opt.External_Name_Default_Casing.
1127 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
1128 -- If expression N references a part of an object, return this object.
1129 -- Otherwise return Empty. Expression N should have been resolved already.
1131 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
1132 -- Returns the true generic entity in an instantiation. If the name in the
1133 -- instantiation is a renaming, the function returns the renamed generic.
1135 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
1136 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
1137 -- in a child unit a derived type is within the derivation class of an
1138 -- ancestor declared in a parent unit, even if there is an intermediate
1139 -- derivation that does not see the full view of that ancestor.
1141 procedure Get_Index_Bounds
1142 (N : Node_Id;
1143 L : out Node_Id;
1144 H : out Node_Id;
1145 Use_Full_View : Boolean := False);
1146 -- This procedure assigns to L and H respectively the values of the low and
1147 -- high bounds of node N, which must be a range, subtype indication, or the
1148 -- name of a scalar subtype. The result in L, H may be set to Error if
1149 -- there was an earlier error in the range.
1150 -- Use_Full_View is intended for use by clients other than the compiler
1151 -- (specifically, gnat2scil) to indicate that we want the full view if
1152 -- the index type turns out to be a partial view; this case should not
1153 -- arise during normal compilation of semantically correct programs.
1155 procedure Get_Interfacing_Aspects
1156 (Iface_Asp : Node_Id;
1157 Conv_Asp : out Node_Id;
1158 EN_Asp : out Node_Id;
1159 Expo_Asp : out Node_Id;
1160 Imp_Asp : out Node_Id;
1161 LN_Asp : out Node_Id;
1162 Do_Checks : Boolean := False);
1163 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
1164 -- aspects that apply to the same related entity. The aspects considered by
1165 -- this routine are as follows:
1167 -- Conv_Asp - aspect Convention
1168 -- EN_Asp - aspect External_Name
1169 -- Expo_Asp - aspect Export
1170 -- Imp_Asp - aspect Import
1171 -- LN_Asp - aspect Link_Name
1173 -- When flag Do_Checks is set, this routine will flag duplicate uses of
1174 -- aspects.
1176 function Get_Enum_Lit_From_Pos
1177 (T : Entity_Id;
1178 Pos : Uint;
1179 Loc : Source_Ptr) return Node_Id;
1180 -- This function returns an identifier denoting the E_Enumeration_Literal
1181 -- entity for the specified value from the enumeration type or subtype T.
1182 -- The second argument is the Pos value. Constraint_Error is raised if
1183 -- argument Pos is not in range. The third argument supplies a source
1184 -- location for constructed nodes returned by this function. If No_Location
1185 -- is supplied as source location, the location of the returned node is
1186 -- copied from the original source location for the enumeration literal,
1187 -- when available.
1189 function Get_Iterable_Type_Primitive
1190 (Typ : Entity_Id;
1191 Nam : Name_Id) return Entity_Id;
1192 -- Retrieve one of the primitives First, Last, Next, Previous, Has_Element,
1193 -- Element from the value of the Iterable aspect of a type.
1195 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id);
1196 -- Retrieve the fully expanded name of the library unit declared by
1197 -- Decl_Node into the name buffer.
1199 function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
1200 -- Return the argument of pragma Max_Queue_Length or zero if the annotation
1201 -- is not present. It is assumed that Id denotes an entry.
1203 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
1204 pragma Inline (Get_Name_Entity_Id);
1205 -- An entity value is associated with each name in the name table. The
1206 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
1207 -- is the innermost visible entity with the given name. See the body of
1208 -- Sem_Ch8 for further details on handling of entity visibility.
1210 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
1211 -- Return the Name component of Test_Case pragma N
1212 -- Bad name now that this no longer applies to Contract_Case ???
1214 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
1215 -- Get defining entity of parent unit of a child unit. In most cases this
1216 -- is the defining entity of the unit, but for a child instance whose
1217 -- parent needs a body for inlining, the instantiation node of the parent
1218 -- has not yet been rewritten as a package declaration, and the entity has
1219 -- to be retrieved from the Instance_Spec of the unit.
1221 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
1222 pragma Inline (Get_Pragma_Id);
1223 -- Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
1225 function Get_Qualified_Name
1226 (Id : Entity_Id;
1227 Suffix : Entity_Id := Empty) return Name_Id;
1228 -- Obtain the fully qualified form of entity Id. The format is:
1229 -- scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
1231 function Get_Qualified_Name
1232 (Nam : Name_Id;
1233 Suffix : Name_Id := No_Name;
1234 Scop : Entity_Id := Current_Scope) return Name_Id;
1235 -- Obtain the fully qualified form of name Nam assuming it appears in scope
1236 -- Scop. The format is:
1237 -- scop-1__scop__nam__suffix
1239 procedure Get_Reason_String (N : Node_Id);
1240 -- Recursive routine to analyze reason argument for pragma Warnings. The
1241 -- value of the reason argument is appended to the current string using
1242 -- Store_String_Chars. The reason argument is expected to be a string
1243 -- literal or concatenation of string literals. An error is given for
1244 -- any other form.
1246 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
1247 -- If Typ has Implicit_Dereference, return discriminant specified in the
1248 -- corresponding aspect.
1250 function Get_Referenced_Object (N : Node_Id) return Node_Id;
1251 -- Given an arbitrary node, return the renamed object if the node
1252 -- represents a renamed object; otherwise return the node unchanged.
1253 -- The node can represent an arbitrary expression or any other kind of
1254 -- node (such as the name of a type).
1256 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
1257 -- Given an entity for an exception, package, subprogram or generic unit,
1258 -- returns the ultimately renamed entity if this is a renaming. If this is
1259 -- not a renamed entity, returns its argument. It is an error to call this
1260 -- with any other kind of entity.
1262 function Get_Return_Object (N : Node_Id) return Entity_Id;
1263 -- Given an extended return statement, return the corresponding return
1264 -- object, identified as the one for which Is_Return_Object = True.
1266 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
1267 -- Nod is either a procedure call statement, or a function call, or an
1268 -- accept statement node. This procedure finds the Entity_Id of the related
1269 -- subprogram or entry and returns it, or if no subprogram can be found,
1270 -- returns Empty.
1272 function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id;
1273 -- Given an entity for a task type or subtype, retrieves the
1274 -- Task_Body_Procedure field from the corresponding task type declaration.
1276 function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id;
1277 -- For a type entity, return the entity of the primitive equality function
1278 -- for the type if it exists, otherwise return Empty.
1280 procedure Get_Views
1281 (Typ : Entity_Id;
1282 Priv_Typ : out Entity_Id;
1283 Full_Typ : out Entity_Id;
1284 UFull_Typ : out Entity_Id;
1285 CRec_Typ : out Entity_Id);
1286 -- Obtain the partial and full views of type Typ and in addition any extra
1287 -- types the full views may have. The return entities are as follows:
1289 -- Priv_Typ - the partial view (a private type)
1290 -- Full_Typ - the full view
1291 -- UFull_Typ - the underlying full view, if the full view is private
1292 -- CRec_Typ - the corresponding record type of the full views
1294 function Get_Fullest_View
1295 (E : Entity_Id; Include_PAT : Boolean := True) return Entity_Id;
1296 -- Get the fullest possible view of E, looking through private,
1297 -- limited, packed array and other implementation types. If Include_PAT
1298 -- is False, don't look inside packed array types.
1300 function Has_Access_Values (T : Entity_Id) return Boolean;
1301 -- Returns true if type or subtype T is an access type, or has a component
1302 -- (at any recursive level) that is an access type. This is a conservative
1303 -- predicate, if it is not known whether or not T contains access values
1304 -- (happens for generic formals in some cases), then False is returned.
1305 -- Note that tagged types return False. Even though the tag is implemented
1306 -- as an access type internally, this function tests only for access types
1307 -- known to the programmer. See also Has_Tagged_Component.
1309 function Has_Anonymous_Access_Discriminant (Typ : Entity_Id) return Boolean;
1310 -- Returns True if Typ has one or more anonymous access discriminants
1312 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1313 -- Result of Has_Compatible_Alignment test, description found below. Note
1314 -- that the values are arranged in increasing order of problematicness.
1316 function Has_Compatible_Alignment
1317 (Obj : Entity_Id;
1318 Expr : Node_Id;
1319 Layout_Done : Boolean) return Alignment_Result;
1320 -- Obj is an object entity, and expr is a node for an object reference. If
1321 -- the alignment of the object referenced by Expr is known to be compatible
1322 -- with the alignment of Obj (i.e. is larger or the same), then the result
1323 -- is Known_Compatible. If the alignment of the object referenced by Expr
1324 -- is known to be less than the alignment of Obj, then Known_Incompatible
1325 -- is returned. If neither condition can be reliably established at compile
1326 -- time, then Unknown is returned. If Layout_Done is True, the function can
1327 -- assume that the information on size and alignment of types and objects
1328 -- is present in the tree. This is used to determine if alignment checks
1329 -- are required for address clauses (Layout_Done is False in this case) as
1330 -- well as to issue appropriate warnings for them in the post compilation
1331 -- phase (Layout_Done is True in this case).
1333 -- Note: Known_Incompatible does not mean that at run time the alignment
1334 -- of Expr is known to be wrong for Obj, just that it can be determined
1335 -- that alignments have been explicitly or implicitly specified which are
1336 -- incompatible (whereas Unknown means that even this is not known). The
1337 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
1338 -- Unknown, but issue a warning that there may be an alignment error.
1340 function Has_Declarations (N : Node_Id) return Boolean;
1341 -- Determines if the node can have declarations
1343 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1344 -- Simple predicate to test for defaulted discriminants
1346 function Has_Denormals (E : Entity_Id) return Boolean;
1347 -- Determines if the floating-point type E supports denormal numbers.
1348 -- Returns False if E is not a floating-point type.
1350 function Has_Discriminant_Dependent_Constraint
1351 (Comp : Entity_Id) return Boolean;
1352 -- Returns True if and only if Comp has a constrained subtype that depends
1353 -- on a discriminant.
1355 function Has_Effectively_Volatile_Profile
1356 (Subp_Id : Entity_Id) return Boolean;
1357 -- Determine whether subprogram Subp_Id has an effectively volatile formal
1358 -- parameter for reading or returns an effectively volatile value for
1359 -- reading.
1361 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1362 -- Determine whether type Typ defines "full default initialization" as
1363 -- specified by SPARK RM 3.1. To qualify as such, the type must be
1364 -- * A scalar type with specified Default_Value
1365 -- * An array-of-scalar type with specified Default_Component_Value
1366 -- * An array type whose element type defines full default initialization
1367 -- * A protected type, record type or type extension whose components
1368 -- either include a default expression or have a type which defines
1369 -- full default initialization. In the case of type extensions, the
1370 -- parent type defines full default initialization.
1371 -- * A task type
1372 -- * A private type with pragma Default_Initial_Condition that provides
1373 -- full default initialization.
1374 -- This function is not used in GNATprove anymore, but is used in CodePeer.
1376 function Has_Fully_Default_Initializing_DIC_Pragma
1377 (Typ : Entity_Id) return Boolean;
1378 -- Determine whether type Typ has a suitable Default_Initial_Condition
1379 -- pragma which provides the full default initialization of the type.
1381 function Has_Infinities (E : Entity_Id) return Boolean;
1382 -- Determines if the range of the floating-point type E includes
1383 -- infinities. Returns False if E is not a floating-point type.
1385 function Has_Interfaces
1386 (T : Entity_Id;
1387 Use_Full_View : Boolean := True) return Boolean;
1388 -- Where T is a concurrent type or a record type, returns true if T covers
1389 -- any abstract interface types. In case of private types the argument
1390 -- Use_Full_View controls if the check is done using its full view (if
1391 -- available).
1393 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1394 -- Determine whether Id is subject to pragma Max_Queue_Length. It is
1395 -- assumed that Id denotes an entry.
1397 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1398 -- This is a simple minded function for determining whether an expression
1399 -- has no obvious side effects. It is used only for determining whether
1400 -- warnings are needed in certain situations, and is not guaranteed to
1401 -- be accurate in either direction. Exceptions may mean an expression
1402 -- does in fact have side effects, but this may be ignored and True is
1403 -- returned, or a complex expression may in fact be side effect free
1404 -- but we don't recognize it here and return False. The Side_Effect_Free
1405 -- routine in Remove_Side_Effects is much more extensive and perhaps could
1406 -- be shared, so that this routine would be more accurate.
1408 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1409 -- Determine whether abstract state Id has at least one nonnull constituent
1410 -- as expressed in pragma Refined_State. This function does not take into
1411 -- account the visible refinement region of abstract state Id.
1413 function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean;
1414 -- Determine whether subprogram Subp has a class-wide precondition that is
1415 -- not statically True.
1417 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1418 -- Determine whether the body of procedure Proc_Id contains a sole null
1419 -- statement, possibly followed by an optional return. Used to optimize
1420 -- useless calls to assertion checks.
1422 function Has_Null_Exclusion (N : Node_Id) return Boolean;
1423 -- Determine whether node N has a null exclusion
1425 function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1426 -- Determine whether abstract state Id has a null refinement as expressed
1427 -- in pragma Refined_State. This function does not take into account the
1428 -- visible refinement region of abstract state Id.
1430 function Has_Non_Null_Statements (L : List_Id) return Boolean;
1431 -- Return True if L has non-null statements
1433 function Side_Effect_Free_Statements (L : List_Id) return Boolean;
1434 -- Return True if L has no statements with side effects
1436 function Side_Effect_Free_Loop (N : Node_Id) return Boolean;
1437 -- Return True if the loop has no side effect and can therefore be
1438 -- marked for removal. Return False if N is not a N_Loop_Statement.
1440 subtype Static_Accessibility_Level_Kind
1441 is Accessibility_Level_Kind range Object_Decl_Level
1442 .. Zero_On_Dynamic_Level;
1443 -- Restrict the reange of Accessibility_Level_Kind to be non-dynamic for
1444 -- use in the static version of Accessibility_Level below.
1446 function Static_Accessibility_Level
1447 (Expr : Node_Id;
1448 Level : Static_Accessibility_Level_Kind;
1449 In_Return_Context : Boolean := False) return Uint;
1450 -- Overloaded version of Accessibility_Level which returns a universal
1451 -- integer for use in compile-time checking. Note: Level is restricted to
1452 -- be non-dynamic.
1454 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1455 -- Predicate to determine whether a controlled type has a user-defined
1456 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1457 -- non-null), which causes the type to not have preelaborable
1458 -- initialization.
1460 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean;
1461 -- Return True iff type E has preelaborable initialization as defined in
1462 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1464 function Has_Prefix (N : Node_Id) return Boolean;
1465 -- Return True if N has attribute Prefix
1467 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1468 -- Check if a type has a (sub)component of a private type that has not
1469 -- yet received a full declaration.
1471 function Has_Relaxed_Initialization (E : Entity_Id) return Boolean;
1472 -- Returns True iff entity E is subject to the Relaxed_Initialization
1473 -- aspect. Entity E can be either type, variable, constant, subprogram,
1474 -- entry or an abstract state. For private types and deferred constants
1475 -- E should be the private view, because aspect can only be attached there.
1477 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1478 -- Determines if the floating-point type E supports signed zeros.
1479 -- Returns False if E is not a floating-point type.
1481 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1482 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1483 -- All subprograms have a N_Contract node, but this does not mean that the
1484 -- contract is useful.
1486 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1487 -- Return whether an array type has static bounds
1489 function Has_Static_Non_Empty_Array_Bounds (Typ : Node_Id) return Boolean;
1490 -- Determine whether array type Typ has static non-empty bounds
1492 function Has_Stream (T : Entity_Id) return Boolean;
1493 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1494 -- case of a composite type, has a component for which this predicate is
1495 -- True, and if so returns True. Otherwise a result of False means that
1496 -- there is no Stream type in sight. For a private type, the test is
1497 -- applied to the underlying type (or returns False if there is no
1498 -- underlying type).
1500 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1501 -- Returns true if the last character of E is Suffix. Used in Assertions.
1503 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1504 -- Returns True if Typ is a composite type (array or record) that is either
1505 -- a tagged type or has a subcomponent that is tagged. Returns False for a
1506 -- noncomposite type, or if no tagged subcomponents are present.
1508 function Has_Unconstrained_Access_Discriminants
1509 (Subtyp : Entity_Id) return Boolean;
1510 -- Returns True if the given subtype is unconstrained and has one or more
1511 -- access discriminants.
1513 function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1514 -- Given arbitrary expression Expr, determine whether it contains at
1515 -- least one name whose entity is Any_Id.
1517 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1518 -- Given arbitrary type Typ, determine whether it contains at least one
1519 -- volatile component.
1521 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1522 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1523 -- implementation requirement which the pragma imposes. The return value is
1524 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1526 function Implements_Interface
1527 (Typ_Ent : Entity_Id;
1528 Iface_Ent : Entity_Id;
1529 Exclude_Parents : Boolean := False) return Boolean;
1530 -- Returns true if the Typ_Ent implements interface Iface_Ent
1532 function Implicitly_Designated_Type (Typ : Entity_Id) return Entity_Id;
1533 -- Called when Typ is the type of the prefix of an implicit dereference.
1534 -- Return the designated type of Typ, taking into account that this type
1535 -- may be a limited view, when the nonlimited view is visible.
1537 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1538 -- Returns True if node N appears within a pragma that acts as an assertion
1539 -- expression. See Sem_Prag for the list of qualifying pragmas.
1541 function In_Generic_Formal_Package (E : Entity_Id) return Boolean;
1542 -- Returns True if entity E is inside a generic formal package
1544 function In_Generic_Scope (E : Entity_Id) return Boolean;
1545 -- Returns True if entity E is inside a generic scope
1547 function In_Instance return Boolean;
1548 -- Returns True if the current scope is within a generic instance
1550 function In_Instance_Body return Boolean;
1551 -- Returns True if current scope is within the body of an instance, where
1552 -- several semantic checks (e.g. accessibility checks) are relaxed.
1554 function In_Instance_Not_Visible return Boolean;
1555 -- Returns True if current scope is with the private part or the body of
1556 -- an instance. Other semantic checks are suppressed in this context.
1558 function In_Instance_Visible_Part
1559 (Id : Entity_Id := Current_Scope) return Boolean;
1560 -- Returns True if arbitrary entity Id is within the visible part of a
1561 -- package instance, where several additional semantic checks apply.
1563 function In_Package_Body return Boolean;
1564 -- Returns True if current scope is within a package body
1566 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1567 -- Returns true if the expression N occurs within a pragma with name Nam
1569 function In_Pre_Post_Condition (N : Node_Id) return Boolean;
1570 -- Returns True if node N appears within a pre/postcondition pragma. Note
1571 -- the pragma Check equivalents are NOT considered.
1573 function In_Quantified_Expression (N : Node_Id) return Boolean;
1574 -- Returns true if the expression N occurs within a quantified expression
1576 function In_Return_Value (Expr : Node_Id) return Boolean;
1577 -- Returns true if the expression Expr occurs within a simple return
1578 -- statement or is part of an assignment to the return object in an
1579 -- extended return statement.
1581 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1582 -- Returns True if N denotes a component or subcomponent in a record or
1583 -- array that has Reverse_Storage_Order.
1585 function In_Same_Declarative_Part
1586 (Context : Node_Id;
1587 N : Node_Id) return Boolean;
1588 -- True if the node N appears within the same declarative part denoted by
1589 -- the node Context.
1591 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1592 -- Determines if the current scope is within a subprogram compilation unit
1593 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1594 -- declaration) or within a task or protected body. The test is for
1595 -- appearing anywhere within such a construct (that is it does not need
1596 -- to be directly within).
1598 function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean;
1599 -- Determine whether node N is within the subtree rooted at Root
1601 function In_Subtree
1602 (N : Node_Id;
1603 Root1 : Node_Id;
1604 Root2 : Node_Id) return Boolean;
1605 -- Determine whether node N is within the subtree rooted at Root1 or Root2.
1606 -- This version is more efficient than calling the single root version of
1607 -- Is_Subtree twice.
1609 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1610 -- Determine whether a declaration occurs within the visible part of a
1611 -- package specification. The package must be on the scope stack, and the
1612 -- corresponding private part must not.
1614 function In_While_Loop_Condition (N : Node_Id) return Boolean;
1615 -- Returns true if the expression N occurs within the condition of a while
1617 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1618 -- Given the entity of a constant or a type, retrieve the incomplete or
1619 -- partial view of the same entity. Note that Id may not have a partial
1620 -- view in which case the function returns Empty.
1622 function Incomplete_View_From_Limited_With
1623 (Typ : Entity_Id) return Entity_Id;
1624 -- Typ is a type entity. This normally returns Typ. However, if there is
1625 -- an incomplete view of this entity that comes from a limited-with'ed
1626 -- package, then this returns that incomplete view.
1628 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1629 -- Given an N_Indexed_Component node, return the first bit position of the
1630 -- component if it is known at compile time. A value of No_Uint means that
1631 -- either the value is not yet known before back-end processing or it is
1632 -- not known at compile time after back-end processing.
1634 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
1635 -- Propagate static and dynamic predicate flags from a parent to the
1636 -- subtype in a subtype declaration with and without constraints.
1638 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1639 -- Inherit the rep item chain of type From_Typ without clobbering any
1640 -- existing rep items on Typ's chain. Typ is the destination type.
1642 function Inherits_From_Tagged_Full_View (Typ : Entity_Id) return Boolean;
1643 pragma Inline (Inherits_From_Tagged_Full_View);
1644 -- Return True if Typ is an untagged private type completed with a
1645 -- derivation of an untagged private type declaration whose full view
1646 -- is a tagged type.
1648 procedure Insert_Explicit_Dereference (N : Node_Id);
1649 -- In a context that requires a composite or subprogram type and where a
1650 -- prefix is an access type, rewrite the access type node N (which is the
1651 -- prefix, e.g. of an indexed component) as an explicit dereference.
1653 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1654 -- Examine all deferred constants in the declaration list Decls and check
1655 -- whether they have been completed by a full constant declaration or an
1656 -- Import pragma. Emit the error message if that is not the case.
1658 procedure Install_Elaboration_Model (Unit_Id : Entity_Id);
1659 -- Install the elaboration model specified by pragma Elaboration_Checks
1660 -- associated with compilation unit Unit_Id. No action is taken when the
1661 -- unit lacks such pragma.
1663 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1664 -- Install both the generic formal parameters and the formal parameters of
1665 -- generic subprogram Subp_Id into visibility.
1667 procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
1668 -- Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect
1670 function Invalid_Scalar_Value
1671 (Loc : Source_Ptr;
1672 Scal_Typ : Scalar_Id) return Node_Id;
1673 -- Obtain the invalid value for scalar type Scal_Typ as either specified by
1674 -- pragma Initialize_Scalars or by the binder. Return an expression created
1675 -- at source location Loc, which denotes the invalid value.
1677 function Is_Anonymous_Access_Actual (N : Node_Id) return Boolean;
1678 -- Determine if N is used as an actual for a call whose corresponding
1679 -- formal is of an anonymous access type.
1681 function Is_Access_Subprogram_Wrapper (E : Entity_Id) return Boolean;
1682 -- True if E is the constructed wrapper for an access_to_subprogram
1683 -- type with Pre/Postconditions.
1685 function Is_Access_Variable (E : Entity_Id) return Boolean;
1686 -- Determines if type E is an access-to-variable
1688 function Is_Actual_In_Out_Parameter (N : Node_Id) return Boolean;
1689 -- Determines if N is an actual parameter of in-out mode in a subprogram
1690 -- call.
1692 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1693 -- Determines if N is an actual parameter of out mode in a subprogram call
1695 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1696 -- Determines if N is an actual parameter in a subprogram call
1698 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1699 -- Determines if N is an actual parameter of a formal of tagged type in a
1700 -- subprogram call.
1702 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1703 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1704 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1705 -- rules of the language, it does not take into account the restriction
1706 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1707 -- and Obj violates the restriction. The caller is responsible for calling
1708 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1709 -- requirement for obeying the restriction in the call context.
1711 function Is_Ancestor_Package
1712 (E1 : Entity_Id;
1713 E2 : Entity_Id) return Boolean;
1714 -- Determine whether package E1 is an ancestor of E2
1716 function Is_Atomic_Object (N : Node_Id) return Boolean;
1717 -- Determine whether arbitrary node N denotes a reference to an atomic
1718 -- object as per RM C.6(7) and the crucial remark in RM C.6(8).
1720 function Is_Attribute_Loop_Entry (N : Node_Id) return Boolean;
1721 -- Determine whether node N denotes attribute 'Loop_Entry
1723 function Is_Attribute_Old (N : Node_Id) return Boolean;
1724 -- Determine whether node N denotes attribute 'Old
1726 function Is_Attribute_Result (N : Node_Id) return Boolean;
1727 -- Determine whether node N denotes attribute 'Result
1729 function Is_Attribute_Update (N : Node_Id) return Boolean;
1730 -- Determine whether node N denotes attribute 'Update
1732 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1733 -- Determine whether node N denotes a body or a package declaration
1735 function Is_Bounded_String (T : Entity_Id) return Boolean;
1736 -- True if T is a bounded string type. Used to make sure "=" composes
1737 -- properly for bounded string types.
1739 function Is_By_Protected_Procedure (Id : Entity_Id) return Boolean;
1740 -- Determine whether entity Id denotes a procedure with synchronization
1741 -- kind By_Protected_Procedure.
1743 function Is_Confirming (Aspect : Nonoverridable_Aspect_Id;
1744 Aspect_Spec_1, Aspect_Spec_2 : Node_Id)
1745 return Boolean;
1746 -- Returns true if the two specifications of the given
1747 -- nonoverridable aspect are compatible.
1749 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1750 -- Exp is the expression for an array bound. Determines whether the
1751 -- bound is a compile-time known value, or a constant entity, or an
1752 -- enumeration literal, or an expression composed of constant-bound
1753 -- subexpressions which are evaluated by means of standard operators.
1755 function Is_Container_Element (Exp : Node_Id) return Boolean;
1756 -- This routine recognizes expressions that denote an element of one of
1757 -- the predefined containers, when the source only contains an indexing
1758 -- operation and an implicit dereference is inserted by the compiler.
1759 -- In the absence of this optimization, the indexing creates a temporary
1760 -- controlled cursor that sets the tampering bit of the container, and
1761 -- restricts the use of the convenient notation C (X) to contexts that
1762 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1763 -- explicit dereference. The transformation applies when it has the form
1764 -- F (X).Discr.all.
1766 function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1767 -- Determine whether aspect specification or pragma Item is a contract
1768 -- annotation.
1770 function Is_Controlling_Limited_Procedure
1771 (Proc_Nam : Entity_Id) return Boolean;
1772 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1773 -- of a limited interface with a controlling first parameter.
1775 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1776 -- Returns True if N is a call to a CPP constructor
1778 function Is_CCT_Instance
1779 (Ref_Id : Entity_Id;
1780 Context_Id : Entity_Id) return Boolean;
1781 -- Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_]
1782 -- Global; also used when analyzing default expressions of protected and
1783 -- record components. Determine whether entity Ref_Id (which must represent
1784 -- either a protected type or a task type) denotes the current instance of
1785 -- a concurrent type. Context_Id denotes the associated context where the
1786 -- pragma appears.
1788 function Is_Child_Or_Sibling
1789 (Pack_1 : Entity_Id;
1790 Pack_2 : Entity_Id) return Boolean;
1791 -- Determine the following relations between two arbitrary packages:
1792 -- 1) One package is the parent of a child package
1793 -- 2) Both packages are siblings and share a common parent
1795 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1796 -- First determine whether type T is an interface and then check whether
1797 -- it is of protected, synchronized or task kind.
1799 function Is_Current_Instance (N : Node_Id) return Boolean;
1800 -- Predicate is true if N legally denotes a type name within its own
1801 -- declaration. Prior to Ada 2012 this covered only synchronized type
1802 -- declarations. In Ada 2012 it also covers type and subtype declarations
1803 -- with aspects: Invariant, Predicate, and Default_Initial_Condition.
1805 function Is_Current_Instance_Reference_In_Type_Aspect
1806 (N : Node_Id) return Boolean;
1807 -- True if N is a reference to a current instance object that occurs within
1808 -- an aspect_specification for a type or subtype. In this case N will be
1809 -- a formal parameter of a subprogram created for a predicate, invariant,
1810 -- or Default_Initial_Condition aspect.
1812 function Is_Declaration
1813 (N : Node_Id;
1814 Body_OK : Boolean := True;
1815 Concurrent_OK : Boolean := True;
1816 Formal_OK : Boolean := True;
1817 Generic_OK : Boolean := True;
1818 Instantiation_OK : Boolean := True;
1819 Renaming_OK : Boolean := True;
1820 Stub_OK : Boolean := True;
1821 Subprogram_OK : Boolean := True;
1822 Type_OK : Boolean := True) return Boolean;
1823 -- Determine whether arbitrary node N denotes a declaration depending
1824 -- on the allowed subsets of declarations. Set the following flags to
1825 -- consider specific subsets of declarations:
1827 -- * Body_OK - body declarations
1829 -- * Concurrent_OK - concurrent type declarations
1831 -- * Formal_OK - formal declarations
1833 -- * Generic_OK - generic declarations, including generic renamings
1835 -- * Instantiation_OK - generic instantiations
1837 -- * Renaming_OK - renaming declarations, including generic renamings
1839 -- * Stub_OK - stub declarations
1841 -- * Subprogram_OK - entry, expression function, and subprogram
1842 -- declarations.
1844 -- * Type_OK - type declarations, including concurrent types
1846 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1847 -- Returns True iff component Comp is declared within a variant part
1849 function Is_Dependent_Component_Of_Mutable_Object
1850 (Object : Node_Id) return Boolean;
1851 -- Returns True if Object is the name of a subcomponent that depends on
1852 -- discriminants of a variable whose nominal subtype is unconstrained and
1853 -- not indefinite, and the variable is not aliased. Otherwise returns
1854 -- False. The nodes passed to this function are assumed to denote objects.
1856 function Is_Dereferenced (N : Node_Id) return Boolean;
1857 -- N is a subexpression node of an access type. This function returns true
1858 -- if N appears as the prefix of a node that does a dereference of the
1859 -- access value (selected/indexed component, explicit dereference or a
1860 -- slice), and false otherwise.
1862 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
1863 -- Returns True if type T1 is a descendant of type T2, and false otherwise.
1864 -- This is the RM definition, a type is a descendant of another type if it
1865 -- is the same type or is derived from a descendant of the other type.
1867 function Is_Descendant_Of_Suspension_Object
1868 (Typ : Entity_Id) return Boolean;
1869 -- Determine whether type Typ is a descendant of type Suspension_Object
1870 -- defined in Ada.Synchronous_Task_Control. This version is different from
1871 -- Is_Descendant_Of as the detection of Suspension_Object does not involve
1872 -- an entity and by extension a call to RTSfind.
1874 function Is_Double_Precision_Floating_Point_Type
1875 (E : Entity_Id) return Boolean;
1876 -- Return whether E is a double precision floating point type,
1877 -- characterized by:
1878 -- . machine_radix = 2
1879 -- . machine_mantissa = 53
1880 -- . machine_emax = 2**10
1881 -- . machine_emin = 3 - machine_emax
1883 function Is_Effectively_Volatile
1884 (Id : Entity_Id;
1885 Ignore_Protected : Boolean := False) return Boolean;
1886 -- Determine whether a type or object denoted by entity Id is effectively
1887 -- volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
1888 -- * Volatile without No_Caching
1889 -- * An array type subject to aspect Volatile_Components
1890 -- * An array type whose component type is effectively volatile
1891 -- * A protected type
1892 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1894 -- If Ignore_Protected is True, then a protected object/type is treated
1895 -- like a non-protected record object/type for computing the result of
1896 -- this query.
1898 function Is_Effectively_Volatile_For_Reading
1899 (Id : Entity_Id;
1900 Ignore_Protected : Boolean := False) return Boolean;
1901 -- Determine whether a type or object denoted by entity Id is effectively
1902 -- volatile for reading (SPARK RM 7.1.2). To qualify as such, the entity
1903 -- must be either
1904 -- * Volatile without No_Caching and have Async_Writers or
1905 -- Effective_Reads set to True
1906 -- * An array type subject to aspect Volatile_Components, unless it has
1907 -- Async_Writers and Effective_Reads set to False
1908 -- * An array type whose component type is effectively volatile for
1909 -- reading
1910 -- * A protected type
1911 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
1913 -- If Ignore_Protected is True, then a protected object/type is treated
1914 -- like a non-protected record object/type for computing the result of
1915 -- this query.
1917 function Is_Effectively_Volatile_Object
1918 (N : Node_Id) return Boolean;
1919 -- Determine whether an arbitrary node denotes an effectively volatile
1920 -- object (SPARK RM 7.1.2).
1922 function Is_Effectively_Volatile_Object_For_Reading
1923 (N : Node_Id) return Boolean;
1924 -- Determine whether an arbitrary node denotes an effectively volatile
1925 -- object for reading (SPARK RM 7.1.2).
1927 function Is_Entry_Body (Id : Entity_Id) return Boolean;
1928 -- Determine whether entity Id is the body entity of an entry [family]
1930 function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
1931 -- Determine whether entity Id is the spec entity of an entry [family]
1933 function Is_Explicitly_Aliased (N : Node_Id) return Boolean;
1934 -- Determine if a given node N is an explicitly aliased formal parameter.
1936 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
1937 -- Check whether a function in a call is an expanded priority attribute,
1938 -- which is transformed into an Rtsfind call to Get_Ceiling. This expansion
1939 -- does not take place in a configurable runtime.
1941 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
1942 -- Determine whether subprogram [body] Subp denotes an expression function
1944 function Is_Expression_Function_Or_Completion
1945 (Subp : Entity_Id) return Boolean;
1946 -- Determine whether subprogram [body] Subp denotes an expression function
1947 -- or is completed by an expression function body.
1949 function Is_EVF_Expression (N : Node_Id) return Boolean;
1950 -- Determine whether node N denotes a reference to a formal parameter of
1951 -- a specific tagged type whose related subprogram is subject to pragma
1952 -- Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
1953 -- constructs fall under this category:
1954 -- 1) A qualified expression whose operand is EVF
1955 -- 2) A type conversion whose operand is EVF
1956 -- 3) An if expression with at least one EVF dependent_expression
1957 -- 4) A case expression with at least one EVF dependent_expression
1959 function Is_False (U : Uint) return Boolean;
1960 pragma Inline (Is_False);
1961 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
1962 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
1963 -- if it is False (i.e. zero).
1965 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
1966 -- Returns True iff the number U is a model number of the fixed-point type
1967 -- T, i.e. if it is an exact multiple of Small.
1969 function Is_Full_Access_Object (N : Node_Id) return Boolean;
1970 -- Determine whether arbitrary node N denotes a reference to a full access
1971 -- object as per Ada 2020 RM C.6(8.2).
1973 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
1974 -- Typ is a type entity. This function returns true if this type is fully
1975 -- initialized, meaning that an object of the type is fully initialized.
1976 -- Note that initialization resulting from use of pragma Normalize_Scalars
1977 -- does not count. Note that this is only used for the purpose of issuing
1978 -- warnings for objects that are potentially referenced uninitialized. This
1979 -- means that the result returned is not crucial, but should err on the
1980 -- side of thinking things are fully initialized if it does not know.
1982 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
1983 -- Determine whether arbitrary declaration Decl denotes a generic package,
1984 -- a generic subprogram or a generic body.
1986 function Is_Independent_Object (N : Node_Id) return Boolean;
1987 -- Determine whether arbitrary node N denotes a reference to an independent
1988 -- object as per RM C.6(8).
1990 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
1991 -- E is a subprogram. Return True is E is an implicit operation inherited
1992 -- by a derived type declaration.
1994 function Is_Inherited_Operation_For_Type
1995 (E : Entity_Id;
1996 Typ : Entity_Id) return Boolean;
1997 -- E is a subprogram. Return True is E is an implicit operation inherited
1998 -- by the derived type declaration for type Typ.
2000 function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean;
2001 -- Return True if Subp is an expression function that fulfills all the
2002 -- following requirements for inlining:
2003 -- 1. pragma/aspect Inline_Always
2004 -- 2. No formals
2005 -- 3. No contracts
2006 -- 4. No dispatching primitive
2007 -- 5. Result subtype controlled (or with controlled components)
2008 -- 6. Result subtype not subject to type-invariant checks
2009 -- 7. Result subtype not a class-wide type
2010 -- 8. Return expression naming an object global to the function
2011 -- 9. Nominal subtype of the returned object statically compatible
2012 -- with the result subtype of the expression function.
2014 function Is_Iterator (Typ : Entity_Id) return Boolean;
2015 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
2016 -- Ada.Iterator_Interfaces, or it is derived from one.
2018 function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
2019 -- N is an iterator specification. Returns True iff N is an iterator over
2020 -- an array, either inside a loop of the form 'for X of A' or a quantified
2021 -- expression of the form 'for all/some X of A' where A is of array type.
2023 type Is_LHS_Result is (Yes, No, Unknown);
2024 function Is_LHS (N : Node_Id) return Is_LHS_Result;
2025 -- Returns Yes if N is definitely used as Name in an assignment statement.
2026 -- Returns No if N is definitely NOT used as a Name in an assignment
2027 -- statement. Returns Unknown if we can't tell at this stage (happens in
2028 -- the case where we don't know the type of N yet, and we have something
2029 -- like N.A := 3, where this counts as N being used on the left side of
2030 -- an assignment only if N is not an access type. If it is an access type
2031 -- then it is N.all.A that is assigned, not N.
2033 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
2034 -- A library-level declaration is one that is accessible from Standard,
2035 -- i.e. a library unit or an entity declared in a library package.
2037 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
2038 -- Determine whether a given type is a limited class-wide type, in which
2039 -- case it needs a Master_Id, because extensions of its designated type
2040 -- may include task components. A class-wide type that comes from a
2041 -- limited view must be treated in the same way.
2043 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
2044 -- Determines whether Expr is a reference to a variable or IN OUT mode
2045 -- parameter of the current enclosing subprogram.
2046 -- Why are OUT parameters not considered here ???
2048 function Is_Master (N : Node_Id) return Boolean;
2049 -- Determine if the given node N constitutes a finalization master
2051 function Is_Name_Reference (N : Node_Id) return Boolean;
2052 -- Determine whether arbitrary node N is a reference to a name. This is
2053 -- similar to Is_Object_Reference but returns True only if N can be renamed
2054 -- without the need for a temporary, the typical example of an object not
2055 -- in this category being a function call.
2057 function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean;
2058 -- Determine whether arbitrary construct N violates preelaborability as
2059 -- defined in ARM 10.2.1 5-9/3. This routine takes into account both the
2060 -- syntactic and semantic properties of the construct.
2062 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
2063 -- Determine whether entity Id denotes the procedure that verifies the
2064 -- assertion expression of pragma Default_Initial_Condition and if it does,
2065 -- the encapsulated expression is nontrivial.
2067 function Is_Null_Record_Type (T : Entity_Id) return Boolean;
2068 -- Determine whether T is declared with a null record definition or a
2069 -- null component list.
2071 function Is_Object_Image (Prefix : Node_Id) return Boolean;
2072 -- Returns True if an 'Img, 'Image, 'Wide_Image, or 'Wide_Wide_Image
2073 -- attribute is applied to an object.
2075 function Is_Object_Reference (N : Node_Id) return Boolean;
2076 -- Determines if the tree referenced by N represents an object. Both
2077 -- variable and constant objects return True (compare Is_Variable).
2079 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
2080 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
2081 -- Note that the Is_Variable function is not quite the right test because
2082 -- this is a case in which conversions whose expression is a variable (in
2083 -- the Is_Variable sense) with an untagged type target are considered view
2084 -- conversions and hence variables.
2086 function Is_OK_Volatile_Context
2087 (Context : Node_Id;
2088 Obj_Ref : Node_Id) return Boolean;
2089 -- Determine whether node Context denotes a "non-interfering context" (as
2090 -- defined in SPARK RM 7.1.3(10)) where volatile reference Obj_Ref can
2091 -- safely reside.
2093 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
2094 -- Determine whether aspect specification or pragma Item is one of the
2095 -- following package contract annotations:
2096 -- Abstract_State
2097 -- Initial_Condition
2098 -- Initializes
2099 -- Refined_State
2101 function Is_Partially_Initialized_Type
2102 (Typ : Entity_Id;
2103 Include_Implicit : Boolean := True) return Boolean;
2104 -- Typ is a type entity. This function returns true if this type is partly
2105 -- initialized, meaning that an object of the type is at least partly
2106 -- initialized (in particular in the record case, that at least one
2107 -- component has an initialization expression, including via Default_Value
2108 -- and Default_Component_Value aspects). Note that initialization
2109 -- resulting from the use of pragma Normalize_Scalars does not count.
2110 -- Include_Implicit controls whether implicit initialization of access
2111 -- values to null, and of discriminant values, is counted as making the
2112 -- type be partially initialized. For the default setting of True, these
2113 -- implicit cases do count, and discriminated types or types containing
2114 -- access values not explicitly initialized will return True. Otherwise
2115 -- if Include_Implicit is False, these cases do not count as making the
2116 -- type be partially initialized.
2118 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
2119 -- Predicate to implement definition given in RM 6.1.1 (20/3)
2121 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
2122 -- Determines if type T is a potentially persistent type. A potentially
2123 -- persistent type is defined (recursively) as a scalar type, an untagged
2124 -- record whose components are all of a potentially persistent type, or an
2125 -- array with all static constraints whose component type is potentially
2126 -- persistent. A private type is potentially persistent if the full type
2127 -- is potentially persistent.
2129 function Is_Predefined_Dispatching_Operation (E : Entity_Id) return Boolean;
2130 -- Ada 2005 (AI-251): Determines if E is a predefined primitive operation
2132 function Is_Predefined_Interface_Primitive (E : Entity_Id) return Boolean;
2133 -- Ada 2005 (AI-345): Returns True if E is one of the predefined primitives
2134 -- required to implement interfaces.
2136 function Is_Predefined_Internal_Operation (E : Entity_Id) return Boolean;
2137 -- Similar to the previous one, but excludes stream operations, because
2138 -- these may be overridden, and need extra formals, like user-defined
2139 -- operations.
2141 function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean;
2142 -- Determine whether aggregate Aggr violates the restrictions of
2143 -- preelaborable constructs as defined in ARM 10.2.1(5-9).
2145 function Is_Preelaborable_Construct (N : Node_Id) return Boolean;
2146 -- Determine whether arbitrary node N violates the restrictions of
2147 -- preelaborable constructs as defined in ARM 10.2.1(5-9). Routine
2148 -- Is_Non_Preelaborable_Construct takes into account the syntactic
2149 -- and semantic properties of N for a more accurate diagnostic.
2151 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
2152 -- Return True if node N denotes a protected type name which represents
2153 -- the current instance of a protected object according to RM 9.4(21/2).
2155 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
2156 -- Return True if a compilation unit is the specification or the
2157 -- body of a remote call interface package.
2159 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
2160 -- Return True if E is a remote access-to-class-wide type
2162 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
2163 -- Return True if E is a remote access to subprogram type
2165 function Is_Remote_Call (N : Node_Id) return Boolean;
2166 -- Return True if N denotes a potentially remote call
2168 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
2169 -- Return True if Proc_Nam is a procedure renaming of an entry
2171 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
2172 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
2173 -- Ada.Iterator_Interfaces.Reversible_Iterator.
2175 function Is_Selector_Name (N : Node_Id) return Boolean;
2176 -- Given an N_Identifier node N, determines if it is a Selector_Name.
2177 -- As described in Sinfo, Selector_Names are special because they
2178 -- represent use of the N_Identifier node for a true identifier, when
2179 -- normally such nodes represent a direct name.
2181 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
2182 -- Determine whether arbitrary entity Id denotes the anonymous object
2183 -- created for a single protected or single task type.
2185 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
2186 -- Determine whether arbitrary entity Id denotes a single protected or
2187 -- single task type.
2189 function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
2190 -- Determine whether arbitrary node N denotes the declaration of a single
2191 -- protected type or single task type.
2193 function Is_Single_Precision_Floating_Point_Type
2194 (E : Entity_Id) return Boolean;
2195 -- Return whether E is a single precision floating point type,
2196 -- characterized by:
2197 -- . machine_radix = 2
2198 -- . machine_mantissa = 24
2199 -- . machine_emax = 2**7
2200 -- . machine_emin = 3 - machine_emax
2202 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
2203 -- Determine whether arbitrary entity Id denotes the anonymous object
2204 -- created for a single protected type.
2206 function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
2207 -- Determine whether arbitrary entity Id denotes the anonymous object
2208 -- created for a single task type.
2210 function Is_Special_Aliased_Formal_Access
2211 (Exp : Node_Id;
2212 In_Return_Context : Boolean := False) return Boolean;
2213 -- Determines whether a dynamic check must be generated for explicitly
2214 -- aliased formals within a function Scop for the expression Exp.
2216 -- In_Return_Context forces Is_Special_Aliased_Formal_Access to assume
2217 -- that Exp is within a return value which is useful for checking
2218 -- expressions within discriminant associations of return objects.
2220 -- More specially, Is_Special_Aliased_Formal_Access checks that Exp is a
2221 -- 'Access attribute reference within a return statement where the ultimate
2222 -- prefix is an aliased formal of Scop and that Scop returns an anonymous
2223 -- access type. See RM 3.10.2 for more details.
2225 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
2226 -- Determine whether an arbitrary [private] type is specifically tagged
2228 function Is_Statement (N : Node_Id) return Boolean;
2229 pragma Inline (Is_Statement);
2230 -- Check if the node N is a statement node. Note that this includes
2231 -- the case of procedure call statements (unlike the direct use of
2232 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
2233 -- Note that a label is *not* a statement, and will return False.
2235 function Is_Static_Function (Subp : Entity_Id) return Boolean;
2236 -- Determine whether subprogram Subp denotes a static function,
2237 -- which is a function with the aspect Static with value True.
2239 function Is_Static_Function_Call (Call : Node_Id) return Boolean;
2240 -- Determine whether Call is a static call to a static function,
2241 -- meaning that the name of the call denotes a static function
2242 -- and all of the call's actual parameters are given by static expressions.
2244 function Is_Subcomponent_Of_Full_Access_Object (N : Node_Id) return Boolean;
2245 -- Determine whether arbitrary node N denotes a reference to a subcomponent
2246 -- of a full access object as per RM C.6(7).
2248 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
2249 -- Determine whether aspect specification or pragma Item is one of the
2250 -- following subprogram contract annotations:
2251 -- Contract_Cases
2252 -- Depends
2253 -- Extensions_Visible
2254 -- Global
2255 -- Post
2256 -- Post_Class
2257 -- Postcondition
2258 -- Pre
2259 -- Pre_Class
2260 -- Precondition
2261 -- Refined_Depends
2262 -- Refined_Global
2263 -- Refined_Post
2264 -- Subprogram_Variant
2265 -- Test_Case
2267 function Is_Subprogram_Stub_Without_Prior_Declaration
2268 (N : Node_Id) return Boolean;
2269 -- Given an N_Subprogram_Body_Stub node N, return True if N is a subprogram
2270 -- stub with no prior subprogram declaration.
2272 function Is_Suitable_Primitive (Subp_Id : Entity_Id) return Boolean;
2273 -- Determine whether arbitrary subprogram Subp_Id may act as a primitive of
2274 -- an arbitrary tagged type.
2276 function Is_Suspension_Object (Id : Entity_Id) return Boolean;
2277 -- Determine whether arbitrary entity Id denotes Suspension_Object defined
2278 -- in Ada.Synchronous_Task_Control.
2280 function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
2281 -- Determine whether entity Id denotes an object and if it does, whether
2282 -- this object is synchronized as specified in SPARK RM 9.1. To qualify as
2283 -- such, the object must be
2284 -- * Of a type that yields a synchronized object
2285 -- * An atomic object with enabled Async_Writers
2286 -- * A constant not of access-to-variable type
2287 -- * A variable subject to pragma Constant_After_Elaboration
2289 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
2290 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
2292 function Is_Transfer (N : Node_Id) return Boolean;
2293 -- Returns True if the node N is a statement which is known to cause an
2294 -- unconditional transfer of control at run time, i.e. the following
2295 -- statement definitely will not be executed.
2297 function Is_True (U : Uint) return Boolean;
2298 pragma Inline (Is_True);
2299 -- The argument is a Uint value which is the Boolean'Pos value of a Boolean
2300 -- operand (i.e. is either 0 for False, or 1 for True). This function tests
2301 -- if it is True (i.e. non-zero).
2303 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
2304 -- Determine whether an arbitrary entity denotes an instance of function
2305 -- Ada.Unchecked_Conversion.
2307 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
2308 pragma Inline (Is_Universal_Numeric_Type);
2309 -- True if T is Universal_Integer or Universal_Real
2311 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
2312 -- Determine whether an entity denotes a user-defined equality
2314 function Is_Validation_Variable_Reference (N : Node_Id) return Boolean;
2315 -- Determine whether N denotes a reference to a variable which captures the
2316 -- value of an object for validation purposes.
2318 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
2319 -- Returns true if E has variable size components
2321 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
2322 -- Returns true if E has variable size components
2324 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2326 function Is_Variable
2327 (N : Node_Id;
2328 Use_Original_Node : Boolean := True) return Boolean;
2329 -- Determines if the tree referenced by N represents a variable, i.e. can
2330 -- appear on the left side of an assignment. There is one situation (formal
2331 -- parameters) in which untagged type conversions are also considered
2332 -- variables, but Is_Variable returns False for such cases, since it has
2333 -- no knowledge of the context. Note that this is the point at which
2334 -- Assignment_OK is checked, and True is returned for any tree thus marked.
2335 -- Use_Original_Node is used to perform the test on Original_Node (N). By
2336 -- default is True since this routine is commonly invoked as part of the
2337 -- semantic analysis and it must not be disturbed by the rewriten nodes.
2339 function Is_View_Conversion (N : Node_Id) return Boolean;
2340 -- Returns True if N is a type_conversion whose operand is the name of an
2341 -- object and both its target type and operand type are tagged, or it
2342 -- appears in a call as an actual parameter of mode out or in out
2343 -- (RM 4.6(5/2)).
2345 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
2346 -- Check whether T is derived from a visibly controlled type. This is true
2347 -- if the root type is declared in Ada.Finalization. If T is derived
2348 -- instead from a private type whose full view is controlled, an explicit
2349 -- Initialize/Adjust/Finalize subprogram does not override the inherited
2350 -- one.
2352 function Is_Volatile_Full_Access_Object (N : Node_Id) return Boolean;
2353 -- Determine whether arbitrary node N denotes a reference to an object
2354 -- which is Volatile_Full_Access.
2356 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
2357 -- Determine whether [generic] function Func_Id is subject to enabled
2358 -- pragma Volatile_Function. Protected functions are treated as volatile
2359 -- (SPARK RM 7.1.2).
2361 function Is_Volatile_Object (N : Node_Id) return Boolean;
2362 -- Determine whether arbitrary node N denotes a reference to a volatile
2363 -- object as per RM C.6(8). Note that the test here is for something that
2364 -- is actually declared as volatile, not for an object that gets treated
2365 -- as volatile (see Einfo.Treat_As_Volatile).
2367 generic
2368 with procedure Handle_Parameter (Formal : Entity_Id; Actual : Node_Id);
2369 procedure Iterate_Call_Parameters (Call : Node_Id);
2370 -- Calls Handle_Parameter for each pair of formal and actual parameters of
2371 -- a function, procedure, or entry call.
2373 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
2374 -- Applies to Itypes. True if the Itype is attached to a declaration for
2375 -- the type through its Parent field, which may or not be present in the
2376 -- tree.
2378 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
2379 -- This procedure is called to clear all constant indications from all
2380 -- entities in the current scope and in any parent scopes if the current
2381 -- scope is a block or a package (and that recursion continues to the top
2382 -- scope that is not a block or a package). This is used when the
2383 -- sequential flow-of-control assumption is violated (occurrence of a
2384 -- label, head of a loop, or start of an exception handler). The effect of
2385 -- the call is to clear the Current_Value field (but we do not need to
2386 -- clear the Is_True_Constant flag, since that only gets reset if there
2387 -- really is an assignment somewhere in the entity scope). This procedure
2388 -- also calls Kill_All_Checks, since this is a special case of needing to
2389 -- forget saved values. This procedure also clears the Is_Known_Null and
2390 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
2391 -- parameters since these are also not known to be trustable any more.
2393 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
2394 -- fields and leave other fields unchanged. This is used when we encounter
2395 -- an unconditional flow of control change (return, goto, raise). In such
2396 -- cases we don't need to clear the current values, since it may be that
2397 -- the flow of control change occurs in a conditional context, and if it
2398 -- is not taken, then it is just fine to keep the current values. But the
2399 -- Last_Assignment field is different, if we have a sequence assign-to-v,
2400 -- conditional-return, assign-to-v, we do not want to complain that the
2401 -- second assignment clobbers the first.
2403 procedure Kill_Current_Values
2404 (Ent : Entity_Id;
2405 Last_Assignment_Only : Boolean := False);
2406 -- This performs the same processing as described above for the form with
2407 -- no argument, but for the specific entity given. The call has no effect
2408 -- if the entity Ent is not for an object. Last_Assignment_Only has the
2409 -- same meaning as for the call with no Ent.
2411 procedure Kill_Size_Check_Code (E : Entity_Id);
2412 -- Called when an address clause or pragma Import is applied to an entity.
2413 -- If the entity is a variable or a constant, and size check code is
2414 -- present, this size check code is killed, since the object will not be
2415 -- allocated by the program.
2417 function Known_Non_Null (N : Node_Id) return Boolean;
2418 -- Given a node N for a subexpression of an access type, determines if
2419 -- this subexpression yields a value that is known at compile time to
2420 -- be non-null and returns True if so. Returns False otherwise. It is
2421 -- an error to call this function if N is not of an access type.
2423 function Known_Null (N : Node_Id) return Boolean;
2424 -- Given a node N for a subexpression of an access type, determines if this
2425 -- subexpression yields a value that is known at compile time to be null
2426 -- and returns True if so. Returns False otherwise. It is an error to call
2427 -- this function if N is not of an access type.
2429 function Known_To_Be_Assigned (N : Node_Id) return Boolean;
2430 -- The node N is an entity reference. This function determines whether the
2431 -- reference is for sure an assignment of the entity, returning True if
2432 -- so. This differs from May_Be_Lvalue in that it defaults in the other
2433 -- direction. Cases which may possibly be assignments but are not known to
2434 -- be may return True from May_Be_Lvalue, but False from this function.
2436 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
2437 -- HSS is a handled statement sequence. This function returns the last
2438 -- statement in Statements (HSS) that has Comes_From_Source set. If no
2439 -- such statement exists, Empty is returned.
2441 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
2442 -- Given a node which designates the context of analysis and an origin in
2443 -- the tree, traverse from Root_Nod and mark all allocators as either
2444 -- dynamic or static depending on Context_Nod. Any incorrect marking is
2445 -- cleaned up during resolution.
2447 procedure Mark_Elaboration_Attributes
2448 (N_Id : Node_Or_Entity_Id;
2449 Checks : Boolean := False;
2450 Level : Boolean := False;
2451 Modes : Boolean := False;
2452 Warnings : Boolean := False);
2453 -- Preserve relevant elaboration-related properties of the context in
2454 -- arbitrary entity or node N_Id. The flags control the properties as
2455 -- follows:
2457 -- Checks - Save the status of Elaboration_Check
2458 -- Level - Save the declaration level of N_Id (if appicable)
2459 -- Modes - Save the Ghost and SPARK modes in effect (if applicable)
2460 -- Warnings - Save the status of Elab_Warnings
2462 procedure Mark_Save_Invocation_Graph_Of_Body;
2463 -- Notify the body of the main unit that the invocation constructs and
2464 -- relations expressed within it must be recorded by the ABE mechanism.
2466 function Matching_Static_Array_Bounds
2467 (L_Typ : Node_Id;
2468 R_Typ : Node_Id) return Boolean;
2469 -- L_Typ and R_Typ are two array types. Returns True when they have the
2470 -- same number of dimensions, and the same static bounds for each index
2471 -- position.
2473 function May_Be_Lvalue (N : Node_Id) return Boolean;
2474 -- Determines if N could be an lvalue (e.g. an assignment left hand side).
2475 -- An lvalue is defined as any expression which appears in a context where
2476 -- a name is required by the syntax, and the identity, rather than merely
2477 -- the value of the node is needed (for example, the prefix of an Access
2478 -- attribute is in this category). Note that, as implied by the name, this
2479 -- test is conservative. If it cannot be sure that N is NOT an lvalue, then
2480 -- it returns True. It tries hard to get the answer right, but it is hard
2481 -- to guarantee this in all cases. Note that it is more possible to give
2482 -- correct answer if the tree is fully analyzed.
2484 function Might_Raise (N : Node_Id) return Boolean;
2485 -- True if evaluation of N might raise an exception. This is conservative;
2486 -- if we're not sure, we return True. If N is a subprogram body, this is
2487 -- about whether execution of that body can raise.
2489 function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id;
2490 -- Return the entity of the nearest enclosing instance which encapsulates
2491 -- entity E. If no such instance exits, return Empty.
2493 function Needs_Finalization (Typ : Entity_Id) return Boolean;
2494 -- Determine whether type Typ is controlled and this requires finalization
2495 -- actions.
2497 function Needs_One_Actual (E : Entity_Id) return Boolean;
2498 -- Returns True if a function has defaults for all but its first formal,
2499 -- which is a controlling formal. Used in Ada 2005 mode to solve the
2500 -- syntactic ambiguity that results from an indexing of a function call
2501 -- that returns an array, so that Obj.F (X, Y) may mean F (Ob) (X, Y).
2503 function Needs_Result_Accessibility_Level
2504 (Func_Id : Entity_Id) return Boolean;
2505 -- Ada 2012 (AI05-0234): Return True if the function needs an implicit
2506 -- parameter to identify the accessibility level of the function result
2507 -- "determined by the point of call".
2509 function Needs_Simple_Initialization
2510 (Typ : Entity_Id;
2511 Consider_IS : Boolean := True) return Boolean;
2512 -- Certain types need initialization even though there is no specific
2513 -- initialization routine:
2514 -- Access types (which need initializing to null)
2515 -- All scalar types if Normalize_Scalars mode set
2516 -- Descendants of standard string types if Normalize_Scalars mode set
2517 -- Scalar types having a Default_Value attribute
2518 -- Regarding Initialize_Scalars mode, this is ignored if Consider_IS is
2519 -- set to False, but if Consider_IS is set to True, then the cases above
2520 -- mentioning Normalize_Scalars also apply for Initialize_Scalars mode.
2522 function Needs_Variable_Reference_Marker
2523 (N : Node_Id;
2524 Calls_OK : Boolean) return Boolean;
2525 -- Determine whether arbitrary node N denotes a reference to a variable
2526 -- which is suitable for SPARK elaboration checks. Flag Calls_OK should
2527 -- be set when the reference is allowed to appear within calls.
2529 function New_Copy_List_Tree (List : List_Id) return List_Id;
2530 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
2531 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
2532 -- nodes (entities) either directly or indirectly using this function.
2534 function New_Copy_Separate_List (List : List_Id) return List_Id;
2535 -- Copy recursively a list of nodes using New_Copy_Separate_Tree
2537 function New_Copy_Separate_Tree (Source : Node_Id) return Node_Id;
2538 -- Perform a deep copy of the subtree rooted at Source using New_Copy_Tree
2539 -- replacing entities of local declarations by new entities. This behavior
2540 -- is required by the backend to ensure entities uniqueness when a copy of
2541 -- a subtree is attached to the tree. The new entities keep their original
2542 -- names to facilitate debugging the tree copy.
2544 function New_Copy_Tree
2545 (Source : Node_Id;
2546 Map : Elist_Id := No_Elist;
2547 New_Sloc : Source_Ptr := No_Location;
2548 New_Scope : Entity_Id := Empty;
2549 Scopes_In_EWA_OK : Boolean := False) return Node_Id;
2550 -- Perform a deep copy of the subtree rooted at Source. Entities, itypes,
2551 -- and nodes are handled separately as follows:
2553 -- * A node is replicated by first creating a shallow copy, then copying
2554 -- its syntactic fields, where all Parent pointers of the fields are
2555 -- updated to refer to the copy. In addition, the following semantic
2556 -- fields are recreated after the replication takes place.
2558 -- First_Named_Actual
2559 -- First_Real_Statement
2560 -- Next_Named_Actual
2562 -- If applicable, the Etype field (if any) is updated to refer to a
2563 -- local itype or type (see below).
2565 -- * An entity defined within an N_Expression_With_Actions node in the
2566 -- subtree is given a new entity, and all references to the original
2567 -- entity are updated to refer to the new entity. In addition, the
2568 -- following semantic fields are replicated and/or updated to refer
2569 -- to a local entity or itype.
2571 -- Discriminant_Constraint
2572 -- Etype
2573 -- First_Index
2574 -- Next_Entity
2575 -- Packed_Array_Impl_Type
2576 -- Scalar_Range
2577 -- Scope
2579 -- Note that currently no other expression can define entities.
2581 -- * An itype whose Associated_Node_For_Itype node is in the subtree
2582 -- is given a new entity, and all references to the original itype
2583 -- are updated to refer to the new itype. In addition, the following
2584 -- semantic fields are replicated and/or updated to refer to a local
2585 -- entity or itype.
2587 -- Discriminant_Constraint
2588 -- Etype
2589 -- First_Index
2590 -- Next_Entity
2591 -- Packed_Array_Impl_Type
2592 -- Scalar_Range
2593 -- Scope
2595 -- The Associated_Node_For_Itype is updated to refer to a replicated
2596 -- node.
2598 -- The routine can replicate both analyzed and unanalyzed trees. Copying an
2599 -- Empty or Error node yields the same node.
2601 -- Parameter Map may be used to specify a set of mappings between entities.
2602 -- These mappings are then taken into account when replicating entities.
2603 -- The format of Map must be as follows:
2605 -- old entity 1
2606 -- new entity to replace references to entity 1
2607 -- old entity 2
2608 -- new entity to replace references to entity 2
2609 -- ...
2611 -- Map and its contents are left unchanged.
2613 -- Parameter New_Sloc may be used to specify a new source location for all
2614 -- replicated entities, itypes, and nodes. The Comes_From_Source indicator
2615 -- is defaulted if a new source location is provided.
2617 -- Parameter New_Scope may be used to specify a new scope for all copied
2618 -- entities and itypes.
2620 -- Parameter Scopes_In_EWA_OK may be used to force the replication of both
2621 -- scoping entities and non-scoping entities found within expression with
2622 -- actions nodes.
2624 function New_External_Entity
2625 (Kind : Entity_Kind;
2626 Scope_Id : Entity_Id;
2627 Sloc_Value : Source_Ptr;
2628 Related_Id : Entity_Id;
2629 Suffix : Character;
2630 Suffix_Index : Int := 0;
2631 Prefix : Character := ' ') return Entity_Id;
2632 -- This function creates an N_Defining_Identifier node for an internal
2633 -- created entity, such as an implicit type or subtype, or a record
2634 -- initialization procedure. The entity name is constructed with a call
2635 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
2636 -- that the generated name may be referenced as a public entry, and the
2637 -- Is_Public flag is set if needed (using Set_Public_Status). If the
2638 -- entity is for a type or subtype, the size/align fields are initialized
2639 -- to unknown (Uint_0).
2641 function New_Internal_Entity
2642 (Kind : Entity_Kind;
2643 Scope_Id : Entity_Id;
2644 Sloc_Value : Source_Ptr;
2645 Id_Char : Character) return Entity_Id;
2646 -- This function is similar to New_External_Entity, except that the
2647 -- name is constructed by New_Internal_Name (Id_Char). This is used
2648 -- when the resulting entity does not have to be referenced as a
2649 -- public entity (and in this case Is_Public is not set).
2651 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
2652 -- Find next actual parameter in declaration order. As described for
2653 -- First_Actual, this is the next actual in the declaration order, not
2654 -- the call order, so this does not correspond to simply taking the
2655 -- next entry of the Parameter_Associations list. The argument is an
2656 -- actual previously returned by a call to First_Actual or Next_Actual.
2657 -- Note that the result produced is always an expression, not a parameter
2658 -- association node, even if named notation was used.
2660 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2662 procedure Next_Actual (Actual_Id : in out Node_Id);
2663 pragma Inline (Next_Actual);
2664 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
2665 -- inline this procedural form, but not the functional form above.
2667 function Next_Global (Node : Node_Id) return Node_Id;
2668 -- Node is a global item from a list, obtained through calling First_Global
2669 -- and possibly Next_Global a number of times. Returns the next global item
2670 -- with the same mode.
2672 procedure Next_Global (Node : in out Node_Id);
2673 pragma Inline (Next_Global);
2674 -- Next_Global (N) is equivalent to N := Next_Global (N). Note that we
2675 -- inline this procedural form, but not the functional form above.
2677 function No_Caching_Enabled (Id : Entity_Id) return Boolean;
2678 -- Given the entity of a variable, determine whether Id is subject to
2679 -- volatility property No_Caching and if it is, the related expression
2680 -- evaluates to True.
2682 function No_Heap_Finalization (Typ : Entity_Id) return Boolean;
2683 -- Determine whether type Typ is subject to pragma No_Heap_Finalization
2685 procedure Normalize_Actuals
2686 (N : Node_Id;
2687 S : Entity_Id;
2688 Report : Boolean;
2689 Success : out Boolean);
2690 -- Reorders lists of actuals according to names of formals, value returned
2691 -- in Success indicates success of reordering. For more details, see body.
2692 -- Errors are reported only if Report is set to True.
2694 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
2695 -- This routine is called if the sub-expression N maybe the target of
2696 -- an assignment (e.g. it is the left side of an assignment, used as
2697 -- an out parameters, or used as prefixes of access attributes). It
2698 -- sets May_Be_Modified in the associated entity if there is one,
2699 -- taking into account the rule that in the case of renamed objects,
2700 -- it is the flag in the renamed object that must be set.
2702 -- The parameter Sure is set True if the modification is sure to occur
2703 -- (e.g. target of assignment, or out parameter), and to False if the
2704 -- modification is only potential (e.g. address of entity taken).
2706 function Null_To_Null_Address_Convert_OK
2707 (N : Node_Id;
2708 Typ : Entity_Id := Empty) return Boolean;
2709 -- Return True if we are compiling in relaxed RM semantics mode and:
2710 -- 1) N is a N_Null node and Typ is a descendant of System.Address, or
2711 -- 2) N is a comparison operator, one of the operands is null, and the
2712 -- type of the other operand is a descendant of System.Address.
2714 function Number_Of_Elements_In_Array (T : Entity_Id) return Int;
2715 -- Returns the number of elements in the array T if the index bounds of T
2716 -- is known at compile time. If the bounds are not known at compile time,
2717 -- the function returns the value zero.
2719 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
2720 -- Retrieve the name of aspect or pragma N, taking into account a possible
2721 -- rewrite and whether the pragma is generated from an aspect as the names
2722 -- may be different. The routine also deals with 'Class in which case it
2723 -- returns the following values:
2725 -- Invariant -> Name_uInvariant
2726 -- Post'Class -> Name_uPost
2727 -- Pre'Class -> Name_uPre
2728 -- Type_Invariant -> Name_uType_Invariant
2729 -- Type_Invariant'Class -> Name_uType_Invariant
2731 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
2732 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
2733 -- or overrides an inherited dispatching primitive S2, the original
2734 -- corresponding operation of S is the original corresponding operation of
2735 -- S2. Otherwise, it is S itself.
2737 procedure Output_Entity (Id : Entity_Id);
2738 -- Print entity Id to standard output. The name of the entity appears in
2739 -- fully qualified form.
2741 -- WARNING: this routine should be used in debugging scenarios such as
2742 -- tracking down undefined symbols as it is fairly low level.
2744 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
2745 -- Print name Nam to standard output. The name appears in fully qualified
2746 -- form assuming it appears in scope Scop. Note that this may not reflect
2747 -- the final qualification as the entity which carries the name may be
2748 -- relocated to a different scope.
2750 -- WARNING: this routine should be used in debugging scenarios such as
2751 -- tracking down undefined symbols as it is fairly low level.
2753 function Param_Entity (N : Node_Id) return Entity_Id;
2754 -- Given an expression N, determines if the expression is a reference
2755 -- to a formal (of a subprogram or entry), and if so returns the Id
2756 -- of the corresponding formal entity, otherwise returns Empty. Also
2757 -- handles the case of references to renamings of formals.
2759 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2760 -- Given a policy, return the policy identifier associated with it. If no
2761 -- such policy is in effect, the value returned is No_Name.
2763 function Predicate_Enabled (Typ : Entity_Id) return Boolean;
2764 -- Return True if a predicate check should be emitted for the given type
2765 -- Typ, taking into account Predicates_Ignored and
2766 -- Predicate_Checks_Suppressed.
2768 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2769 -- Subp is the entity for a subprogram call. This function returns True if
2770 -- predicate tests are required for the arguments in this call (this is the
2771 -- normal case). It returns False for special cases where these predicate
2772 -- tests should be skipped (see body for details).
2774 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2775 -- Returns True if the names of both entities correspond with matching
2776 -- primitives. This routine includes support for the case in which one
2777 -- or both entities correspond with entities built by Derive_Subprogram
2778 -- with a special name to avoid being overridden (i.e. return true in case
2779 -- of entities with names "nameP" and "name" or vice versa).
2781 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2782 -- Returns some private component (if any) of the given Type_Id.
2783 -- Used to enforce the rules on visibility of operations on composite
2784 -- types, that depend on the full view of the component type. For a
2785 -- record type there may be several such components, we just return
2786 -- the first one.
2788 procedure Process_End_Label
2789 (N : Node_Id;
2790 Typ : Character;
2791 Ent : Entity_Id);
2792 -- N is a node whose End_Label is to be processed, generating all
2793 -- appropriate cross-reference entries, and performing style checks
2794 -- for any identifier references in the end label. Typ is either
2795 -- 'e' or 't indicating the type of the cross-reference entity
2796 -- (e for spec, t for body, see Lib.Xref spec for details). The
2797 -- parameter Ent gives the entity to which the End_Label refers,
2798 -- and to which cross-references are to be generated.
2800 procedure Propagate_Concurrent_Flags
2801 (Typ : Entity_Id;
2802 Comp_Typ : Entity_Id);
2803 -- Set Has_Task, Has_Protected and Has_Timing_Event on Typ when the flags
2804 -- are set on Comp_Typ. This follows the definition of these flags which
2805 -- are set (recursively) on any composite type which has a component marked
2806 -- by one of these flags. This procedure can only set flags for Typ, and
2807 -- never clear them. Comp_Typ is the type of a component or a parent.
2809 procedure Propagate_DIC_Attributes
2810 (Typ : Entity_Id;
2811 From_Typ : Entity_Id);
2812 -- Inherit all Default_Initial_Condition-related attributes from type
2813 -- From_Typ. Typ is the destination type.
2815 procedure Propagate_Invariant_Attributes
2816 (Typ : Entity_Id;
2817 From_Typ : Entity_Id);
2818 -- Inherit all invariant-related attributes form type From_Typ. Typ is the
2819 -- destination type.
2821 procedure Propagate_Predicate_Attributes
2822 (Typ : Entity_Id;
2823 From_Typ : Entity_Id);
2824 -- Inherit some predicate-related attributes form type From_Typ. Typ is the
2825 -- destination type. Probably to be completed with more attributes???
2827 procedure Record_Possible_Part_Of_Reference
2828 (Var_Id : Entity_Id;
2829 Ref : Node_Id);
2830 -- Save reference Ref to variable Var_Id when the variable is subject to
2831 -- pragma Part_Of. If the variable is known to be a constituent of a single
2832 -- protected/task type, the legality of the reference is verified and the
2833 -- save does not take place.
2835 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
2836 -- Determine whether entity Id is referenced within expression Expr
2838 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
2839 -- Returns True if the expression Expr contains any references to a generic
2840 -- type. This can only happen within a generic template.
2842 procedure Remove_Entity_And_Homonym (Id : Entity_Id);
2843 -- Remove arbitrary entity Id from both the homonym and scope chains. Use
2844 -- Remove_Overloaded_Entity for overloadable entities. Note: the removal
2845 -- performed by this routine does not affect the visibility of existing
2846 -- homonyms.
2848 procedure Remove_Homonym (Id : Entity_Id);
2849 -- Removes entity Id from the homonym chain
2851 procedure Remove_Overloaded_Entity (Id : Entity_Id);
2852 -- Remove arbitrary entity Id from the homonym chain, the scope chain and
2853 -- the primitive operations list of the associated controlling type. Use
2854 -- Remove_Entity for non-overloadable entities. Note: the removal performed
2855 -- by this routine does not affect the visibility of existing homonyms.
2857 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
2858 -- Returns the name of E without Suffix
2860 procedure Replace_Null_By_Null_Address (N : Node_Id);
2861 -- N is N_Null or a binary comparison operator, we are compiling in relaxed
2862 -- RM semantics mode, and one of the operands is null. Replace null with
2863 -- System.Null_Address.
2865 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
2866 -- This is used to construct the second argument in a call to Rep_To_Pos
2867 -- which is Standard_True if range checks are enabled (E is an entity to
2868 -- which the Range_Checks_Suppressed test is applied), and Standard_False
2869 -- if range checks are suppressed. Loc is the location for the node that
2870 -- is returned (which is a New_Occurrence of the appropriate entity).
2872 -- Note: one might think that it would be fine to always use True and
2873 -- to ignore the suppress in this case, but it is generally better to
2874 -- believe a request to suppress exceptions if possible, and further
2875 -- more there is at least one case in the generated code (the code for
2876 -- array assignment in a loop) that depends on this suppression.
2878 procedure Require_Entity (N : Node_Id);
2879 -- N is a node which should have an entity value if it is an entity name.
2880 -- If not, then check if there were previous errors. If so, just fill
2881 -- in with Any_Id and ignore. Otherwise signal a program error exception.
2882 -- This is used as a defense mechanism against ill-formed trees caused by
2883 -- previous errors (particularly in -gnatq mode).
2885 function Requires_Transient_Scope (Id : Entity_Id) return Boolean;
2886 -- Id is a type entity. The result is True when temporaries of this type
2887 -- need to be wrapped in a transient scope to be reclaimed properly when a
2888 -- secondary stack is in use. Examples of types requiring such wrapping are
2889 -- controlled types and variable-sized types including unconstrained
2890 -- arrays.
2892 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2894 procedure Reset_Analyzed_Flags (N : Node_Id);
2895 -- Reset the Analyzed flags in all nodes of the tree whose root is N
2897 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
2898 -- Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This
2899 -- routine must be used in tandem with Set_SPARK_Mode.
2901 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
2902 -- Return true if Subp is a function that returns an unconstrained type
2904 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
2905 -- Similar to attribute Root_Type, but this version always follows the
2906 -- Full_View of a private type (if available) while searching for the
2907 -- ultimate derivation ancestor.
2909 function Safe_To_Capture_Value
2910 (N : Node_Id;
2911 Ent : Entity_Id;
2912 Cond : Boolean := False) return Boolean;
2913 -- The caller is interested in capturing a value (either the current
2914 -- value, an indication that the value is [non-]null or an indication that
2915 -- the value is valid) for the given entity Ent. This value can only be
2916 -- captured if sequential execution semantics can be properly guaranteed so
2917 -- that a subsequent reference will indeed be sure that this current value
2918 -- indication is correct. The node N is the construct which resulted in
2919 -- the possible capture of the value (this is used to check if we are in
2920 -- a conditional).
2922 -- Cond is used to skip the test for being inside a conditional. It is used
2923 -- in the case of capturing values from if/while tests, which already do a
2924 -- proper job of handling scoping issues without this help.
2926 -- The only entities whose values can be captured are OUT and IN OUT formal
2927 -- parameters, and variables unless Cond is True, in which case we also
2928 -- allow IN formals, loop parameters and constants, where we cannot ever
2929 -- capture actual value information, but we can capture conditional tests.
2931 function Same_Name (N1, N2 : Node_Id) return Boolean;
2932 -- Determine if two (possibly expanded) names are the same name. This is
2933 -- a purely syntactic test, and N1 and N2 need not be analyzed.
2935 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
2936 -- Determine if Node1 and Node2 are known to designate the same object.
2937 -- This is a semantic test and both nodes must be fully analyzed. A result
2938 -- of True is decisively correct. A result of False does not necessarily
2939 -- mean that different objects are designated, just that this could not
2940 -- be reliably determined at compile time.
2942 function Same_Or_Aliased_Subprograms
2943 (S : Entity_Id;
2944 E : Entity_Id) return Boolean;
2945 -- Returns True if the subprogram entity S is the same as E or else S is an
2946 -- alias of E.
2948 function Same_Type (T1, T2 : Entity_Id) return Boolean;
2949 -- Determines if T1 and T2 represent exactly the same type. Two types
2950 -- are the same if they are identical, or if one is an unconstrained
2951 -- subtype of the other, or they are both common subtypes of the same
2952 -- type with identical constraints. The result returned is conservative.
2953 -- It is True if the types are known to be the same, but a result of
2954 -- False is indecisive (e.g. the compiler may not be able to tell that
2955 -- two constraints are identical).
2957 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
2958 -- Determines if Node1 and Node2 are known to be the same value, which is
2959 -- true if they are both compile time known values and have the same value,
2960 -- or if they are the same object (in the sense of function Same_Object).
2961 -- A result of False does not necessarily mean they have different values,
2962 -- just that it is not possible to determine they have the same value.
2964 function Scalar_Part_Present (Typ : Entity_Id) return Boolean;
2965 -- Determine whether arbitrary type Typ is a scalar type, or contains at
2966 -- least one scalar subcomponent.
2968 function Scope_Within
2969 (Inner : Entity_Id;
2970 Outer : Entity_Id) return Boolean;
2971 -- Determine whether scope Inner appears within scope Outer. Note that
2972 -- scopes are partially ordered, so Scope_Within (A, B) and Scope_Within
2973 -- (B, A) may both return False.
2975 function Scope_Within_Or_Same
2976 (Inner : Entity_Id;
2977 Outer : Entity_Id) return Boolean;
2978 -- Determine whether scope Inner appears within scope Outer or both denote
2979 -- the same scope. Note that scopes are partially ordered, so Scope_Within
2980 -- (A, B) and Scope_Within (B, A) may both return False.
2982 procedure Set_Convention (E : Entity_Id; Val : Convention_Id);
2983 -- Same as Basic_Set_Convention, but with an extra check for access types.
2984 -- In particular, if E is an access-to-subprogram type, and Val is a
2985 -- foreign convention, then we set Can_Use_Internal_Rep to False on E.
2986 -- Also, if the Etype of E is set and is an anonymous access type with
2987 -- no convention set, this anonymous type inherits the convention of E.
2989 procedure Set_Current_Entity (E : Entity_Id);
2990 pragma Inline (Set_Current_Entity);
2991 -- Establish the entity E as the currently visible definition of its
2992 -- associated name (i.e. the Node_Id associated with its name).
2994 procedure Set_Debug_Info_Defining_Id (N : Node_Id);
2995 -- Call Set_Debug_Info_Needed on Defining_Identifier (N) if it comes
2996 -- from source.
2998 procedure Set_Debug_Info_Needed (T : Entity_Id);
2999 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
3000 -- that are needed by T (for an object, the type of the object is needed,
3001 -- and for a type, various subsidiary types are needed -- see body for
3002 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
3003 -- This routine should always be used instead of Set_Needs_Debug_Info to
3004 -- ensure that subsidiary entities are properly handled.
3006 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
3007 -- This procedure has the same calling sequence as Set_Entity, but it
3008 -- performs additional checks as follows:
3010 -- If Style_Check is set, then it calls a style checking routine which
3011 -- can check identifier spelling style. This procedure also takes care
3012 -- of checking the restriction No_Implementation_Identifiers.
3014 -- If restriction No_Abort_Statements is set, then it checks that the
3015 -- entity is not Ada.Task_Identification.Abort_Task.
3017 -- If restriction No_Dynamic_Attachment is set, then it checks that the
3018 -- entity is not one of the restricted names for this restriction.
3020 -- If restriction No_Long_Long_Integers is set, then it checks that the
3021 -- entity is not Standard.Long_Long_Integer.
3023 -- If restriction No_Implementation_Identifiers is set, then it checks
3024 -- that the entity is not implementation defined.
3026 procedure Set_Invalid_Scalar_Value
3027 (Scal_Typ : Float_Scalar_Id;
3028 Value : Ureal);
3029 -- Associate invalid value Value with scalar type Scal_Typ as specified by
3030 -- pragma Initialize_Scalars.
3032 procedure Set_Invalid_Scalar_Value
3033 (Scal_Typ : Integer_Scalar_Id;
3034 Value : Uint);
3035 -- Associate invalid value Value with scalar type Scal_Typ as specified by
3036 -- pragma Initialize_Scalars.
3038 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
3039 pragma Inline (Set_Name_Entity_Id);
3040 -- Sets the Entity_Id value associated with the given name, which is the
3041 -- Id of the innermost visible entity with the given name. See the body
3042 -- of package Sem_Ch8 for further details on the handling of visibility.
3044 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
3045 -- The arguments may be parameter associations, whose descendants
3046 -- are the optional formal name and the actual parameter. Positional
3047 -- parameters are already members of a list, and do not need to be
3048 -- chained separately. See also First_Actual and Next_Actual.
3050 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
3051 pragma Inline (Set_Optimize_Alignment_Flags);
3052 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
3054 procedure Set_Public_Status (Id : Entity_Id);
3055 -- If an entity (visible or otherwise) is defined in a library
3056 -- package, or a package that is itself public, then this subprogram
3057 -- labels the entity public as well.
3059 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
3060 -- N is the node for either a left hand side (Out_Param set to False),
3061 -- or an Out or In_Out parameter (Out_Param set to True). If there is
3062 -- an assignable entity being referenced, then the appropriate flag
3063 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
3064 -- if Out_Param is True) is set True, and the other flag set False.
3066 procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id);
3067 pragma Inline (Set_Rep_Info);
3068 -- Copies the Is_Atomic, Is_Independent and Is_Volatile_Full_Access flags
3069 -- from sub(type) entity T2 to (sub)type entity T1, as well as Is_Volatile
3070 -- if T1 is a base type.
3072 procedure Set_Scope_Is_Transient (V : Boolean := True);
3073 -- Set the flag Is_Transient of the current scope
3075 procedure Set_Size_Info (T1, T2 : Entity_Id);
3076 pragma Inline (Set_Size_Info);
3077 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
3078 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
3079 -- in the fixed-point and discrete cases, and also copies the alignment
3080 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
3081 -- separately set if this is required to be copied also.
3083 procedure Set_SPARK_Mode (Context : Entity_Id);
3084 -- Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or
3085 -- a subprogram denoted by Context. This routine must be used in tandem
3086 -- with Restore_SPARK_Mode.
3088 function Scope_Is_Transient return Boolean;
3089 -- True if the current scope is transient
3091 function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean;
3092 function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean;
3093 -- True if we should ignore pragmas with the specified name. In particular,
3094 -- this returns True if pragma Ignore_Pragma applies, and we are not in a
3095 -- predefined unit. The _Par version should be called only from the parser;
3096 -- the _Sem version should be called only during semantic analysis.
3098 function Static_Boolean (N : Node_Id) return Uint;
3099 -- This function analyzes the given expression node and then resolves it
3100 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
3101 -- returned corresponding to the value, otherwise an error message is
3102 -- output and No_Uint is returned.
3104 function Static_Integer (N : Node_Id) return Uint;
3105 -- This function analyzes the given expression node and then resolves it
3106 -- as any integer type. If the result is static, then the value of the
3107 -- universal expression is returned, otherwise an error message is output
3108 -- and a value of No_Uint is returned.
3110 function Statically_Denotes_Entity (N : Node_Id) return Boolean;
3111 -- Return True iff N is a name that "statically denotes" an entity.
3113 function Statically_Denotes_Object (N : Node_Id) return Boolean;
3114 -- Return True iff N is a name that "statically denotes" an object.
3116 function Statically_Different (E1, E2 : Node_Id) return Boolean;
3117 -- Return True if it can be statically determined that the Expressions
3118 -- E1 and E2 refer to different objects
3120 function Statically_Names_Object (N : Node_Id) return Boolean;
3121 -- Return True iff N is a name that "statically names" an object.
3123 function String_From_Numeric_Literal (N : Node_Id) return String_Id;
3124 -- Return the string that corresponds to the numeric literal N as it
3125 -- appears in the source.
3127 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
3128 -- Determine whether node N is a loop statement subject to at least one
3129 -- 'Loop_Entry attribute.
3131 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
3132 -- Return the accessibility level of the view denoted by Subp
3134 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
3135 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
3136 -- Typ is properly sized and aligned).
3138 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
3139 -- Print debugging information on entry to each unit being analyzed
3141 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
3142 -- Move a list of entities from one scope to another, and recompute
3143 -- Is_Public based upon the new scope.
3145 generic
3146 with function Process (N : Node_Id) return Traverse_Result is <>;
3147 Process_Itypes : Boolean := False;
3148 function Traverse_More_Func (Node : Node_Id) return Traverse_Final_Result;
3149 -- This is a version of Atree.Traverse_Func that not only traverses
3150 -- syntactic children of nodes, but also semantic children which are
3151 -- logically children of the node. This concerns currently lists of
3152 -- action nodes and ranges under Itypes, both inserted by the compiler.
3153 -- Itypes are only traversed when Process_Itypes is True.
3155 generic
3156 with function Process (N : Node_Id) return Traverse_Result is <>;
3157 Process_Itypes : Boolean := False;
3158 procedure Traverse_More_Proc (Node : Node_Id);
3159 pragma Inline (Traverse_More_Proc);
3160 -- This is the same as Traverse_More_Func except that no result is
3161 -- returned, i.e. Traverse_More_Func is called and the result is simply
3162 -- discarded.
3164 function Type_Access_Level (Typ : Entity_Id) return Uint;
3165 -- Return the accessibility level of Typ
3167 function Type_Without_Stream_Operation
3168 (T : Entity_Id;
3169 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
3170 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
3171 -- is active then we cannot generate stream subprograms for composite types
3172 -- with elementary subcomponents that lack user-defined stream subprograms.
3173 -- This predicate determines whether a type has such an elementary
3174 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
3175 -- prevents the construction of a composite stream operation. If Op is
3176 -- specified we check only for the given stream operation.
3178 function Ultimate_Prefix (N : Node_Id) return Node_Id;
3179 -- Obtain the "outermost" prefix of arbitrary node N. Return N if no such
3180 -- prefix exists.
3182 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
3183 -- Return the entity that represents declaration N, so that different
3184 -- views of the same entity have the same unique defining entity:
3185 -- * private view and full view of a deferred constant
3186 -- --> full view
3187 -- * entry spec and entry body
3188 -- --> entry spec
3189 -- * formal parameter on spec and body
3190 -- --> formal parameter on spec
3191 -- * package spec, body, and body stub
3192 -- --> package spec
3193 -- * protected type, protected body, and protected body stub
3194 -- --> protected type (full view if private)
3195 -- * subprogram spec, body, and body stub
3196 -- --> subprogram spec
3197 -- * task type, task body, and task body stub
3198 -- --> task type (full view if private)
3199 -- * private or incomplete view and full view of a type
3200 -- --> full view
3201 -- In other cases, return the defining entity for N.
3203 function Unique_Entity (E : Entity_Id) return Entity_Id;
3204 -- Return the unique entity for entity E, which would be returned by
3205 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
3207 function Unique_Name (E : Entity_Id) return String;
3208 -- Return a unique name for entity E, which could be used to identify E
3209 -- across compilation units.
3211 Child_Prefix : constant String := "ada___";
3212 -- Prefix for child packages when building a unique name for an entity. It
3213 -- is included here to share between Unique_Name and gnatprove.
3215 function Unit_Is_Visible (U : Entity_Id) return Boolean;
3216 -- Determine whether a compilation unit is visible in the current context,
3217 -- because there is a with_clause that makes the unit available. Used to
3218 -- provide better messages on common visiblity errors on operators.
3220 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
3221 -- Yields Universal_Integer or Universal_Real if this is a candidate
3223 function Unqualify (Expr : Node_Id) return Node_Id;
3224 pragma Inline (Unqualify);
3225 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
3226 -- returns X. If Expr is not a qualified expression, returns Expr.
3228 function Unqual_Conv (Expr : Node_Id) return Node_Id;
3229 pragma Inline (Unqual_Conv);
3230 -- Similar to Unqualify, but removes qualified expressions, type
3231 -- conversions, and unchecked conversions.
3233 function Validated_View (Typ : Entity_Id) return Entity_Id;
3234 -- Obtain the "validated view" of arbitrary type Typ which is suitable for
3235 -- verification by attributes 'Valid_Scalars. This view is the type itself
3236 -- or its full view while stripping away concurrency, derivations, and
3237 -- privacy.
3239 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
3240 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
3241 -- of a type extension or private extension declaration. If the full-view
3242 -- of private parents and progenitors is available then it is used to
3243 -- generate the list of visible ancestors; otherwise their partial
3244 -- view is added to the resulting list.
3246 function Within_Init_Proc return Boolean;
3247 -- Determines if Current_Scope is within an init proc
3249 function Within_Protected_Type (E : Entity_Id) return Boolean;
3250 -- Returns True if entity E is declared within a protected type
3252 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
3253 -- Returns True if entity E is declared within scope S
3255 function Within_Subprogram_Call (N : Node_Id) return Boolean;
3256 -- Determine whether arbitrary node N appears in an entry, function, or
3257 -- procedure call.
3259 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
3260 -- Output error message for incorrectly typed expression. Expr is the node
3261 -- for the incorrectly typed construct (Etype (Expr) is the type found),
3262 -- and Expected_Type is the entity for the expected type. Note that Expr
3263 -- does not have to be a subexpression, anything with an Etype field may
3264 -- be used.
3266 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
3267 -- Determine whether type Typ "yields synchronized object" as specified by
3268 -- SPARK RM 9.1. To qualify as such, a type must be
3269 -- * An array type whose element type yields a synchronized object
3270 -- * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
3271 -- * A protected type
3272 -- * A record type or type extension without defaulted discriminants
3273 -- whose components are of a type that yields a synchronized object.
3274 -- * A synchronized interface type
3275 -- * A task type
3277 function Yields_Universal_Type (N : Node_Id) return Boolean;
3278 -- Determine whether unanalyzed node N yields a universal type
3280 procedure Preanalyze_Without_Errors (N : Node_Id);
3281 -- Preanalyze N without reporting errors
3283 package Interval_Lists is
3284 type Discrete_Interval is
3285 record
3286 Low, High : Uint;
3287 end record;
3289 type Discrete_Interval_List is
3290 array (Pos range <>) of Discrete_Interval;
3291 -- A sorted (in ascending order) list of non-empty pairwise-disjoint
3292 -- intervals, always with a gap of at least one value between
3293 -- successive intervals (i.e., mergeable intervals are merged).
3294 -- Low bound is one; high bound is nonnegative.
3296 function Aggregate_Intervals (N : Node_Id) return Discrete_Interval_List;
3297 -- Given an array aggregate N, returns the (unique) interval list
3298 -- representing the values of the aggregate choices; if all the array
3299 -- components are covered by the others choice then the length of the
3300 -- result is zero.
3302 function Choice_List_Intervals
3303 (Discrete_Choices : List_Id) return Discrete_Interval_List;
3304 -- Given a discrete choice list, returns the (unique) interval
3305 -- list representing the chosen values.
3307 function Type_Intervals (Typ : Entity_Id) return Discrete_Interval_List;
3308 -- Given a static discrete type or subtype, returns the (unique)
3309 -- interval list representing the values of the type/subtype.
3310 -- If no static predicates are involved, the length of the result
3311 -- will be at most one.
3313 function Is_Subset (Subset, Of_Set : Discrete_Interval_List)
3314 return Boolean;
3315 -- Returns True iff every value belonging to some interval of
3316 -- Subset also belongs to some interval of Of_Set.
3318 -- TBD: When we get around to implementing "is statically compatible"
3319 -- correctly for real types with static predicates, we may need
3320 -- an analogous Real_Interval_List type. Most of the language
3321 -- rules that reference "is statically compatible" pertain to
3322 -- discriminants and therefore do not require support for real types;
3323 -- the exception is 12.5.1(8).
3325 Intervals_Error : exception;
3326 -- Raised when the list of non-empty pair-wise disjoint intervals cannot
3327 -- be built.
3328 end Interval_Lists;
3330 package Old_Attr_Util is
3331 -- Operations related to 'Old attribute evaluation. This
3332 -- includes cases where a level of indirection is needed due to
3333 -- conditional evaluation as well as support for the
3334 -- "known on entry" rules.
3336 package Conditional_Evaluation is
3337 function Eligible_For_Conditional_Evaluation
3338 (Expr : Node_Id) return Boolean;
3339 -- Given a subexpression of a Postcondition expression
3340 -- (typically a 'Old attribute reference), returns True if
3341 -- - the expression is conditionally evaluated; and
3342 -- - its determining expressions are all known on entry; and
3343 -- - Ada_Version >= Ada_2020.
3344 -- See RM 6.1.1 for definitions of these terms.
3346 -- Also returns True if Expr is of an anonymous access type;
3347 -- this is just because we want the code that knows how to build
3348 -- 'Old temps in that case to reside in only one place.
3350 function Conditional_Evaluation_Condition
3351 (Expr : Node_Id) return Node_Id;
3352 -- Given an expression which is eligible for conditional evaluation,
3353 -- build a Boolean expression whose value indicates whether the
3354 -- expression should be evaluated.
3355 end Conditional_Evaluation;
3357 package Indirect_Temps is
3358 generic
3359 with procedure Append_Item (N : Node_Id; Is_Eval_Stmt : Boolean);
3360 -- If Is_Eval_Stmt is True, then N is a statement that should
3361 -- only be executed in the case where the 'Old prefix is to be
3362 -- evaluated. If Is_Eval_Stmt is False, then N is a declaration
3363 -- which should be elaborated unconditionally.
3364 -- Client is responsible for ensuring that any appended
3365 -- Eval_Stmt nodes are eventually analyzed.
3367 Append_Decls_In_Reverse_Order : Boolean := False;
3368 -- This parameter is for the convenience of exp_prag.adb, where we
3369 -- want to Prepend rather than Append so it is better to get the
3370 -- Append calls in reverse order.
3372 procedure Declare_Indirect_Temp
3373 (Attr_Prefix : Node_Id; -- prefix of 'Old attribute (or similar?)
3374 Indirect_Temp : out Entity_Id);
3375 -- Indirect_Temp is of an access type; it is unconditionally
3376 -- declared but only conditionally initialized to reference the
3377 -- saved value of Attr_Prefix.
3379 function Indirect_Temp_Needed (Typ : Entity_Id) return Boolean;
3380 -- Returns True for a specific tagged type because the temp must
3381 -- be of the class-wide type in order to preserve the underlying tag.
3383 -- Also returns True in the case of an anonymous access type
3384 -- because we want the code that knows how to deal with
3385 -- this case to reside in only one place.
3387 -- For an unconstrained-but-definite discriminated subtype, returns
3388 -- True if the potential difference in size between an
3389 -- unconstrained object and a constrained object is large.
3390 -- [This part is not implemented yet.]
3392 -- Otherwise, returns False if a declaration of the form
3393 -- Temp : Typ;
3394 -- is legal and side-effect-free (assuming that default
3395 -- initialization is suppressed). For example, returns True if Typ is
3396 -- indefinite, or if Typ has a controlled part.
3399 function Indirect_Temp_Value
3400 (Temp : Entity_Id;
3401 Typ : Entity_Id;
3402 Loc : Source_Ptr) return Node_Id;
3403 -- Evaluate a temp declared by Declare_Indirect_Temp.
3405 function Is_Access_Type_For_Indirect_Temp
3406 (T : Entity_Id) return Boolean;
3407 -- True for an access type that was declared via a call
3408 -- to Declare_Indirect_Temp.
3409 -- Indicates that the given access type should be treated
3410 -- the same with respect to finalization as a
3411 -- user-defined "comes from source" access type.
3413 end Indirect_Temps;
3414 end Old_Attr_Util;
3415 end Sem_Util;