testsuite: -mbig/-mlittle only is valid for powerpc-linux.
[official-gcc.git] / gcc / gimple-range-fold.cc
blob5133a430f254defd8430985a6dd7deb650c2d8b9
1 /* Code for GIMPLE range related routines.
2 Copyright (C) 2019-2022 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "insn-codes.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "ssa.h"
30 #include "gimple-pretty-print.h"
31 #include "optabs-tree.h"
32 #include "gimple-fold.h"
33 #include "wide-int.h"
34 #include "fold-const.h"
35 #include "case-cfn-macros.h"
36 #include "omp-general.h"
37 #include "cfgloop.h"
38 #include "tree-ssa-loop.h"
39 #include "tree-scalar-evolution.h"
40 #include "langhooks.h"
41 #include "vr-values.h"
42 #include "range.h"
43 #include "value-query.h"
44 #include "range-op.h"
45 #include "gimple-range.h"
46 // Construct a fur_source, and set the m_query field.
48 fur_source::fur_source (range_query *q)
50 if (q)
51 m_query = q;
52 else if (cfun)
53 m_query = get_range_query (cfun);
54 else
55 m_query = get_global_range_query ();
56 m_gori = NULL;
59 // Invoke range_of_expr on EXPR.
61 bool
62 fur_source::get_operand (irange &r, tree expr)
64 return m_query->range_of_expr (r, expr);
67 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
68 // range_query to get the range on the edge.
70 bool
71 fur_source::get_phi_operand (irange &r, tree expr, edge e)
73 return m_query->range_on_edge (r, e, expr);
76 // Default is no relation.
78 relation_kind
79 fur_source::query_relation (tree op1 ATTRIBUTE_UNUSED,
80 tree op2 ATTRIBUTE_UNUSED)
82 return VREL_NONE;
85 // Default registers nothing.
87 void
88 fur_source::register_relation (gimple *s ATTRIBUTE_UNUSED,
89 relation_kind k ATTRIBUTE_UNUSED,
90 tree op1 ATTRIBUTE_UNUSED,
91 tree op2 ATTRIBUTE_UNUSED)
95 // Default registers nothing.
97 void
98 fur_source::register_relation (edge e ATTRIBUTE_UNUSED,
99 relation_kind k ATTRIBUTE_UNUSED,
100 tree op1 ATTRIBUTE_UNUSED,
101 tree op2 ATTRIBUTE_UNUSED)
105 // This version of fur_source will pick a range up off an edge.
107 class fur_edge : public fur_source
109 public:
110 fur_edge (edge e, range_query *q = NULL);
111 virtual bool get_operand (irange &r, tree expr) OVERRIDE;
112 virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE;
113 private:
114 edge m_edge;
117 // Instantiate an edge based fur_source.
119 inline
120 fur_edge::fur_edge (edge e, range_query *q) : fur_source (q)
122 m_edge = e;
125 // Get the value of EXPR on edge m_edge.
127 bool
128 fur_edge::get_operand (irange &r, tree expr)
130 return m_query->range_on_edge (r, m_edge, expr);
133 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
134 // range_query to get the range on the edge.
136 bool
137 fur_edge::get_phi_operand (irange &r, tree expr, edge e)
139 // Edge to edge recalculations not supoprted yet, until we sort it out.
140 gcc_checking_assert (e == m_edge);
141 return m_query->range_on_edge (r, e, expr);
144 // Instantiate a stmt based fur_source.
146 fur_stmt::fur_stmt (gimple *s, range_query *q) : fur_source (q)
148 m_stmt = s;
151 // Retreive range of EXPR as it occurs as a use on stmt M_STMT.
153 bool
154 fur_stmt::get_operand (irange &r, tree expr)
156 return m_query->range_of_expr (r, expr, m_stmt);
159 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
160 // range_query to get the range on the edge.
162 bool
163 fur_stmt::get_phi_operand (irange &r, tree expr, edge e)
165 // Pick up the range of expr from edge E.
166 fur_edge e_src (e, m_query);
167 return e_src.get_operand (r, expr);
170 // Return relation based from m_stmt.
172 relation_kind
173 fur_stmt::query_relation (tree op1, tree op2)
175 return m_query->query_relation (m_stmt, op1, op2);
178 // Instantiate a stmt based fur_source with a GORI object.
181 fur_depend::fur_depend (gimple *s, gori_compute *gori, range_query *q)
182 : fur_stmt (s, q)
184 gcc_checking_assert (gori);
185 m_gori = gori;
186 // Set relations if there is an oracle in the range_query.
187 // This will enable registering of relationships as they are discovered.
188 m_oracle = q->oracle ();
192 // Register a relation on a stmt if there is an oracle.
194 void
195 fur_depend::register_relation (gimple *s, relation_kind k, tree op1, tree op2)
197 if (m_oracle)
198 m_oracle->register_stmt (s, k, op1, op2);
201 // Register a relation on an edge if there is an oracle.
203 void
204 fur_depend::register_relation (edge e, relation_kind k, tree op1, tree op2)
206 if (m_oracle)
207 m_oracle->register_edge (e, k, op1, op2);
210 // This version of fur_source will pick a range up from a list of ranges
211 // supplied by the caller.
213 class fur_list : public fur_source
215 public:
216 fur_list (irange &r1);
217 fur_list (irange &r1, irange &r2);
218 fur_list (unsigned num, irange *list);
219 virtual bool get_operand (irange &r, tree expr) OVERRIDE;
220 virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE;
221 private:
222 int_range_max m_local[2];
223 irange *m_list;
224 unsigned m_index;
225 unsigned m_limit;
228 // One range supplied for unary operations.
230 fur_list::fur_list (irange &r1) : fur_source (NULL)
232 m_list = m_local;
233 m_index = 0;
234 m_limit = 1;
235 m_local[0] = r1;
238 // Two ranges supplied for binary operations.
240 fur_list::fur_list (irange &r1, irange &r2) : fur_source (NULL)
242 m_list = m_local;
243 m_index = 0;
244 m_limit = 2;
245 m_local[0] = r1;
246 m_local[1] = r2;
249 // Arbitrary number of ranges in a vector.
251 fur_list::fur_list (unsigned num, irange *list) : fur_source (NULL)
253 m_list = list;
254 m_index = 0;
255 m_limit = num;
258 // Get the next operand from the vector, ensure types are compatible.
260 bool
261 fur_list::get_operand (irange &r, tree expr)
263 if (m_index >= m_limit)
264 return m_query->range_of_expr (r, expr);
265 r = m_list[m_index++];
266 gcc_checking_assert (range_compatible_p (TREE_TYPE (expr), r.type ()));
267 return true;
270 // This will simply pick the next operand from the vector.
271 bool
272 fur_list::get_phi_operand (irange &r, tree expr, edge e ATTRIBUTE_UNUSED)
274 return get_operand (r, expr);
277 // Fold stmt S into range R using R1 as the first operand.
279 bool
280 fold_range (irange &r, gimple *s, irange &r1)
282 fold_using_range f;
283 fur_list src (r1);
284 return f.fold_stmt (r, s, src);
287 // Fold stmt S into range R using R1 and R2 as the first two operands.
289 bool
290 fold_range (irange &r, gimple *s, irange &r1, irange &r2)
292 fold_using_range f;
293 fur_list src (r1, r2);
294 return f.fold_stmt (r, s, src);
297 // Fold stmt S into range R using NUM_ELEMENTS from VECTOR as the initial
298 // operands encountered.
300 bool
301 fold_range (irange &r, gimple *s, unsigned num_elements, irange *vector)
303 fold_using_range f;
304 fur_list src (num_elements, vector);
305 return f.fold_stmt (r, s, src);
308 // Fold stmt S into range R using range query Q.
310 bool
311 fold_range (irange &r, gimple *s, range_query *q)
313 fold_using_range f;
314 fur_stmt src (s, q);
315 return f.fold_stmt (r, s, src);
318 // Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE.
320 bool
321 fold_range (irange &r, gimple *s, edge on_edge, range_query *q)
323 fold_using_range f;
324 fur_edge src (on_edge, q);
325 return f.fold_stmt (r, s, src);
328 // -------------------------------------------------------------------------
330 // Adjust the range for a pointer difference where the operands came
331 // from a memchr.
333 // This notices the following sequence:
335 // def = __builtin_memchr (arg, 0, sz)
336 // n = def - arg
338 // The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
340 static void
341 adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
343 tree op0 = gimple_assign_rhs1 (diff_stmt);
344 tree op1 = gimple_assign_rhs2 (diff_stmt);
345 tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
346 tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
347 gimple *call;
349 if (TREE_CODE (op0) == SSA_NAME
350 && TREE_CODE (op1) == SSA_NAME
351 && (call = SSA_NAME_DEF_STMT (op0))
352 && is_gimple_call (call)
353 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
354 && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
355 && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
356 && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
357 && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
358 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
359 && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
360 && integer_zerop (gimple_call_arg (call, 1)))
362 tree max = vrp_val_max (ptrdiff_type_node);
363 unsigned prec = TYPE_PRECISION (TREE_TYPE (max));
364 wide_int wmaxm1 = wi::to_wide (max, prec) - 1;
365 res.intersect (wi::zero (prec), wmaxm1);
369 // Adjust the range for an IMAGPART_EXPR.
371 static void
372 adjust_imagpart_expr (irange &res, const gimple *stmt)
374 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
376 if (TREE_CODE (name) != SSA_NAME || !SSA_NAME_DEF_STMT (name))
377 return;
379 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
380 if (is_gimple_call (def_stmt) && gimple_call_internal_p (def_stmt))
382 switch (gimple_call_internal_fn (def_stmt))
384 case IFN_ADD_OVERFLOW:
385 case IFN_SUB_OVERFLOW:
386 case IFN_MUL_OVERFLOW:
387 case IFN_ATOMIC_COMPARE_EXCHANGE:
389 int_range<2> r;
390 r.set_varying (boolean_type_node);
391 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
392 range_cast (r, type);
393 res.intersect (r);
395 default:
396 break;
398 return;
400 if (is_gimple_assign (def_stmt))
402 tree cst = gimple_assign_rhs1 (def_stmt);
403 if (TREE_CODE (cst) == COMPLEX_CST)
405 wide_int imag = wi::to_wide (TREE_IMAGPART (cst));
406 res.intersect (imag, imag);
411 // Adjust the range for a REALPART_EXPR.
413 static void
414 adjust_realpart_expr (irange &res, const gimple *stmt)
416 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
418 if (TREE_CODE (name) != SSA_NAME)
419 return;
421 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
422 if (!SSA_NAME_DEF_STMT (name))
423 return;
425 if (is_gimple_assign (def_stmt))
427 tree cst = gimple_assign_rhs1 (def_stmt);
428 if (TREE_CODE (cst) == COMPLEX_CST)
430 tree imag = TREE_REALPART (cst);
431 int_range<2> tmp (imag, imag);
432 res.intersect (tmp);
437 // This function looks for situations when walking the use/def chains
438 // may provide additonal contextual range information not exposed on
439 // this statement.
441 static void
442 gimple_range_adjustment (irange &res, const gimple *stmt)
444 switch (gimple_expr_code (stmt))
446 case POINTER_DIFF_EXPR:
447 adjust_pointer_diff_expr (res, stmt);
448 return;
450 case IMAGPART_EXPR:
451 adjust_imagpart_expr (res, stmt);
452 return;
454 case REALPART_EXPR:
455 adjust_realpart_expr (res, stmt);
456 return;
458 default:
459 break;
463 // Return the base of the RHS of an assignment.
465 static tree
466 gimple_range_base_of_assignment (const gimple *stmt)
468 gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
469 tree op1 = gimple_assign_rhs1 (stmt);
470 if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
471 return get_base_address (TREE_OPERAND (op1, 0));
472 return op1;
475 // Return the first operand of this statement if it is a valid operand
476 // supported by ranges, otherwise return NULL_TREE. Special case is
477 // &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr.
479 tree
480 gimple_range_operand1 (const gimple *stmt)
482 gcc_checking_assert (gimple_range_handler (stmt));
484 switch (gimple_code (stmt))
486 case GIMPLE_COND:
487 return gimple_cond_lhs (stmt);
488 case GIMPLE_ASSIGN:
490 tree base = gimple_range_base_of_assignment (stmt);
491 if (base && TREE_CODE (base) == MEM_REF)
493 // If the base address is an SSA_NAME, we return it
494 // here. This allows processing of the range of that
495 // name, while the rest of the expression is simply
496 // ignored. The code in range_ops will see the
497 // ADDR_EXPR and do the right thing.
498 tree ssa = TREE_OPERAND (base, 0);
499 if (TREE_CODE (ssa) == SSA_NAME)
500 return ssa;
502 return base;
504 default:
505 break;
507 return NULL;
510 // Return the second operand of statement STMT, otherwise return NULL_TREE.
512 tree
513 gimple_range_operand2 (const gimple *stmt)
515 gcc_checking_assert (gimple_range_handler (stmt));
517 switch (gimple_code (stmt))
519 case GIMPLE_COND:
520 return gimple_cond_rhs (stmt);
521 case GIMPLE_ASSIGN:
522 if (gimple_num_ops (stmt) >= 3)
523 return gimple_assign_rhs2 (stmt);
524 default:
525 break;
527 return NULL_TREE;
530 // Calculate a range for statement S and return it in R. If NAME is provided it
531 // represents the SSA_NAME on the LHS of the statement. It is only required
532 // if there is more than one lhs/output. If a range cannot
533 // be calculated, return false.
535 bool
536 fold_using_range::fold_stmt (irange &r, gimple *s, fur_source &src, tree name)
538 bool res = false;
539 // If name and S are specified, make sure it is an LHS of S.
540 gcc_checking_assert (!name || !gimple_get_lhs (s) ||
541 name == gimple_get_lhs (s));
543 if (!name)
544 name = gimple_get_lhs (s);
546 // Process addresses.
547 if (gimple_code (s) == GIMPLE_ASSIGN
548 && gimple_assign_rhs_code (s) == ADDR_EXPR)
549 return range_of_address (r, s, src);
551 if (gimple_range_handler (s))
552 res = range_of_range_op (r, s, src);
553 else if (is_a<gphi *>(s))
554 res = range_of_phi (r, as_a<gphi *> (s), src);
555 else if (is_a<gcall *>(s))
556 res = range_of_call (r, as_a<gcall *> (s), src);
557 else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
558 res = range_of_cond_expr (r, as_a<gassign *> (s), src);
560 if (!res)
562 // If no name specified or range is unsupported, bail.
563 if (!name || !gimple_range_ssa_p (name))
564 return false;
565 // We don't understand the stmt, so return the global range.
566 r = gimple_range_global (name);
567 return true;
570 if (r.undefined_p ())
571 return true;
573 // We sometimes get compatible types copied from operands, make sure
574 // the correct type is being returned.
575 if (name && TREE_TYPE (name) != r.type ())
577 gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name)));
578 range_cast (r, TREE_TYPE (name));
580 return true;
583 // Calculate a range for range_op statement S and return it in R. If any
584 // If a range cannot be calculated, return false.
586 bool
587 fold_using_range::range_of_range_op (irange &r, gimple *s, fur_source &src)
589 int_range_max range1, range2;
590 tree type = gimple_range_type (s);
591 if (!type)
592 return false;
593 range_operator *handler = gimple_range_handler (s);
594 gcc_checking_assert (handler);
596 tree lhs = gimple_get_lhs (s);
597 tree op1 = gimple_range_operand1 (s);
598 tree op2 = gimple_range_operand2 (s);
600 if (src.get_operand (range1, op1))
602 if (!op2)
604 // Fold range, and register any dependency if available.
605 int_range<2> r2 (type);
606 handler->fold_range (r, type, range1, r2);
607 if (lhs && gimple_range_ssa_p (op1))
609 if (src.gori ())
610 src.gori ()->register_dependency (lhs, op1);
611 relation_kind rel;
612 rel = handler->lhs_op1_relation (r, range1, range1);
613 if (rel != VREL_NONE)
614 src.register_relation (s, rel, lhs, op1);
617 else if (src.get_operand (range2, op2))
619 relation_kind rel = src.query_relation (op1, op2);
620 if (dump_file && (dump_flags & TDF_DETAILS) && rel != VREL_NONE)
622 fprintf (dump_file, " folding with relation ");
623 print_generic_expr (dump_file, op1, TDF_SLIM);
624 print_relation (dump_file, rel);
625 print_generic_expr (dump_file, op2, TDF_SLIM);
626 fputc ('\n', dump_file);
628 // Fold range, and register any dependency if available.
629 handler->fold_range (r, type, range1, range2, rel);
630 relation_fold_and_or (r, s, src);
631 if (lhs)
633 if (src.gori ())
635 src.gori ()->register_dependency (lhs, op1);
636 src.gori ()->register_dependency (lhs, op2);
638 if (gimple_range_ssa_p (op1))
640 rel = handler->lhs_op1_relation (r, range1, range2);
641 if (rel != VREL_NONE)
642 src.register_relation (s, rel, lhs, op1);
644 if (gimple_range_ssa_p (op2))
646 rel= handler->lhs_op2_relation (r, range1, range2);
647 if (rel != VREL_NONE)
648 src.register_relation (s, rel, lhs, op2);
651 // Check for an existing BB, as we maybe asked to fold an
652 // artificial statement not in the CFG.
653 else if (is_a<gcond *> (s) && gimple_bb (s))
655 basic_block bb = gimple_bb (s);
656 edge e0 = EDGE_SUCC (bb, 0);
657 edge e1 = EDGE_SUCC (bb, 1);
659 if (!single_pred_p (e0->dest))
660 e0 = NULL;
661 if (!single_pred_p (e1->dest))
662 e1 = NULL;
663 src.register_outgoing_edges (as_a<gcond *> (s), r, e0, e1);
666 else
667 r.set_varying (type);
669 else
670 r.set_varying (type);
671 // Make certain range-op adjustments that aren't handled any other way.
672 gimple_range_adjustment (r, s);
673 return true;
676 // Calculate the range of an assignment containing an ADDR_EXPR.
677 // Return the range in R.
678 // If a range cannot be calculated, set it to VARYING and return true.
680 bool
681 fold_using_range::range_of_address (irange &r, gimple *stmt, fur_source &src)
683 gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
684 gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR);
686 bool strict_overflow_p;
687 tree expr = gimple_assign_rhs1 (stmt);
688 poly_int64 bitsize, bitpos;
689 tree offset;
690 machine_mode mode;
691 int unsignedp, reversep, volatilep;
692 tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
693 &bitpos, &offset, &mode, &unsignedp,
694 &reversep, &volatilep);
697 if (base != NULL_TREE
698 && TREE_CODE (base) == MEM_REF
699 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
701 tree ssa = TREE_OPERAND (base, 0);
702 tree lhs = gimple_get_lhs (stmt);
703 if (lhs && gimple_range_ssa_p (ssa) && src.gori ())
704 src.gori ()->register_dependency (lhs, ssa);
705 gcc_checking_assert (irange::supports_type_p (TREE_TYPE (ssa)));
706 src.get_operand (r, ssa);
707 range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt)));
709 poly_offset_int off = 0;
710 bool off_cst = false;
711 if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
713 off = mem_ref_offset (base);
714 if (offset)
715 off += poly_offset_int::from (wi::to_poly_wide (offset),
716 SIGNED);
717 off <<= LOG2_BITS_PER_UNIT;
718 off += bitpos;
719 off_cst = true;
721 /* If &X->a is equal to X, the range of X is the result. */
722 if (off_cst && known_eq (off, 0))
723 return true;
724 else if (flag_delete_null_pointer_checks
725 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
727 /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
728 allow going from non-NULL pointer to NULL. */
729 if (!range_includes_zero_p (&r))
731 /* We could here instead adjust r by off >> LOG2_BITS_PER_UNIT
732 using POINTER_PLUS_EXPR if off_cst and just fall back to
733 this. */
734 r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
735 return true;
738 /* If MEM_REF has a "positive" offset, consider it non-NULL
739 always, for -fdelete-null-pointer-checks also "negative"
740 ones. Punt for unknown offsets (e.g. variable ones). */
741 if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
742 && off_cst
743 && known_ne (off, 0)
744 && (flag_delete_null_pointer_checks || known_gt (off, 0)))
746 r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
747 return true;
749 r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
750 return true;
753 // Handle "= &a".
754 if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p))
756 r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
757 return true;
760 // Otherwise return varying.
761 r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
762 return true;
765 // Calculate a range for phi statement S and return it in R.
766 // If a range cannot be calculated, return false.
768 bool
769 fold_using_range::range_of_phi (irange &r, gphi *phi, fur_source &src)
771 tree phi_def = gimple_phi_result (phi);
772 tree type = gimple_range_type (phi);
773 int_range_max arg_range;
774 int_range_max equiv_range;
775 unsigned x;
777 if (!type)
778 return false;
780 // Track if all executable arguments are the same.
781 tree single_arg = NULL_TREE;
782 bool seen_arg = false;
784 // Start with an empty range, unioning in each argument's range.
785 r.set_undefined ();
786 for (x = 0; x < gimple_phi_num_args (phi); x++)
788 tree arg = gimple_phi_arg_def (phi, x);
789 // An argument that is the same as the def provides no new range.
790 if (arg == phi_def)
791 continue;
793 edge e = gimple_phi_arg_edge (phi, x);
795 // Get the range of the argument on its edge.
796 src.get_phi_operand (arg_range, arg, e);
798 if (!arg_range.undefined_p ())
800 // Register potential dependencies for stale value tracking.
801 // Likewise, if the incoming PHI argument is equivalent to this
802 // PHI definition, it provides no new info. Accumulate these ranges
803 // in case all arguments are equivalences.
804 if (src.query ()->query_relation (e, arg, phi_def, false) == EQ_EXPR)
805 equiv_range.union_(arg_range);
806 else
807 r.union_ (arg_range);
809 if (gimple_range_ssa_p (arg) && src.gori ())
810 src.gori ()->register_dependency (phi_def, arg);
812 // Track if all arguments are the same.
813 if (!seen_arg)
815 seen_arg = true;
816 single_arg = arg;
818 else if (single_arg != arg)
819 single_arg = NULL_TREE;
822 // Once the value reaches varying, stop looking.
823 if (r.varying_p () && single_arg == NULL_TREE)
824 break;
827 // If all arguments were equivalences, use the equivalence ranges as no
828 // arguments were processed.
829 if (r.undefined_p () && !equiv_range.undefined_p ())
830 r = equiv_range;
832 // If the PHI boils down to a single effective argument, look at it.
833 if (single_arg)
835 // Symbolic arguments are equivalences.
836 if (gimple_range_ssa_p (single_arg))
837 src.register_relation (phi, EQ_EXPR, phi_def, single_arg);
838 else if (src.get_operand (arg_range, single_arg)
839 && arg_range.singleton_p ())
841 // Numerical arguments that are a constant can be returned as
842 // the constant. This can help fold later cases where even this
843 // constant might have been UNDEFINED via an unreachable edge.
844 r = arg_range;
845 return true;
849 // If SCEV is available, query if this PHI has any knonwn values.
850 if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def)))
852 value_range loop_range;
853 class loop *l = loop_containing_stmt (phi);
854 if (l && loop_outer (l))
856 range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi, src);
857 if (!loop_range.varying_p ())
859 if (dump_file && (dump_flags & TDF_DETAILS))
861 fprintf (dump_file, " Loops range found for ");
862 print_generic_expr (dump_file, phi_def, TDF_SLIM);
863 fprintf (dump_file, ": ");
864 loop_range.dump (dump_file);
865 fprintf (dump_file, " and calculated range :");
866 r.dump (dump_file);
867 fprintf (dump_file, "\n");
869 r.intersect (loop_range);
874 return true;
877 // Calculate a range for call statement S and return it in R.
878 // If a range cannot be calculated, return false.
880 bool
881 fold_using_range::range_of_call (irange &r, gcall *call, fur_source &src)
883 tree type = gimple_range_type (call);
884 if (!type)
885 return false;
887 tree lhs = gimple_call_lhs (call);
888 bool strict_overflow_p;
890 if (range_of_builtin_call (r, call, src))
892 else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
893 r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type));
894 else if (gimple_call_nonnull_result_p (call)
895 || gimple_call_nonnull_arg (call))
896 r = range_nonzero (type);
897 else
898 r.set_varying (type);
900 // If there is an LHS, intersect that with what is known.
901 if (lhs)
903 value_range def;
904 def = gimple_range_global (lhs);
905 r.intersect (def);
907 return true;
910 // Return the range of a __builtin_ubsan* in CALL and set it in R.
911 // CODE is the type of ubsan call (PLUS_EXPR, MINUS_EXPR or
912 // MULT_EXPR).
914 void
915 fold_using_range::range_of_builtin_ubsan_call (irange &r, gcall *call,
916 tree_code code, fur_source &src)
918 gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR
919 || code == MULT_EXPR);
920 tree type = gimple_range_type (call);
921 range_operator *op = range_op_handler (code, type);
922 gcc_checking_assert (op);
923 int_range_max ir0, ir1;
924 tree arg0 = gimple_call_arg (call, 0);
925 tree arg1 = gimple_call_arg (call, 1);
926 src.get_operand (ir0, arg0);
927 src.get_operand (ir1, arg1);
928 // Check for any relation between arg0 and arg1.
929 relation_kind relation = src.query_relation (arg0, arg1);
931 bool saved_flag_wrapv = flag_wrapv;
932 // Pretend the arithmetic is wrapping. If there is any overflow,
933 // we'll complain, but will actually do wrapping operation.
934 flag_wrapv = 1;
935 op->fold_range (r, type, ir0, ir1, relation);
936 flag_wrapv = saved_flag_wrapv;
938 // If for both arguments vrp_valueize returned non-NULL, this should
939 // have been already folded and if not, it wasn't folded because of
940 // overflow. Avoid removing the UBSAN_CHECK_* calls in that case.
941 if (r.singleton_p ())
942 r.set_varying (type);
945 // Return TRUE if we recognize the target character set and return the
946 // range for lower case and upper case letters.
948 static bool
949 get_letter_range (tree type, irange &lowers, irange &uppers)
951 // ASCII
952 int a = lang_hooks.to_target_charset ('a');
953 int z = lang_hooks.to_target_charset ('z');
954 int A = lang_hooks.to_target_charset ('A');
955 int Z = lang_hooks.to_target_charset ('Z');
957 if ((z - a == 25) && (Z - A == 25))
959 lowers = int_range<2> (build_int_cst (type, a), build_int_cst (type, z));
960 uppers = int_range<2> (build_int_cst (type, A), build_int_cst (type, Z));
961 return true;
963 // Unknown character set.
964 return false;
967 // For a builtin in CALL, return a range in R if known and return
968 // TRUE. Otherwise return FALSE.
970 bool
971 fold_using_range::range_of_builtin_call (irange &r, gcall *call,
972 fur_source &src)
974 combined_fn func = gimple_call_combined_fn (call);
975 if (func == CFN_LAST)
976 return false;
978 tree type = gimple_range_type (call);
979 tree arg;
980 int mini, maxi, zerov = 0, prec;
981 scalar_int_mode mode;
983 switch (func)
985 case CFN_BUILT_IN_CONSTANT_P:
986 arg = gimple_call_arg (call, 0);
987 if (src.get_operand (r, arg) && r.singleton_p ())
989 r.set (build_one_cst (type), build_one_cst (type));
990 return true;
992 if (cfun->after_inlining)
994 r.set_zero (type);
995 // r.equiv_clear ();
996 return true;
998 break;
1000 case CFN_BUILT_IN_TOUPPER:
1002 arg = gimple_call_arg (call, 0);
1003 // If the argument isn't compatible with the LHS, do nothing.
1004 if (!range_compatible_p (type, TREE_TYPE (arg)))
1005 return false;
1006 if (!src.get_operand (r, arg))
1007 return false;
1009 int_range<3> lowers;
1010 int_range<3> uppers;
1011 if (!get_letter_range (type, lowers, uppers))
1012 return false;
1014 // Return the range passed in without any lower case characters,
1015 // but including all the upper case ones.
1016 lowers.invert ();
1017 r.intersect (lowers);
1018 r.union_ (uppers);
1019 return true;
1022 case CFN_BUILT_IN_TOLOWER:
1024 arg = gimple_call_arg (call, 0);
1025 // If the argument isn't compatible with the LHS, do nothing.
1026 if (!range_compatible_p (type, TREE_TYPE (arg)))
1027 return false;
1028 if (!src.get_operand (r, arg))
1029 return false;
1031 int_range<3> lowers;
1032 int_range<3> uppers;
1033 if (!get_letter_range (type, lowers, uppers))
1034 return false;
1036 // Return the range passed in without any upper case characters,
1037 // but including all the lower case ones.
1038 uppers.invert ();
1039 r.intersect (uppers);
1040 r.union_ (lowers);
1041 return true;
1044 CASE_CFN_FFS:
1045 CASE_CFN_POPCOUNT:
1046 // __builtin_ffs* and __builtin_popcount* return [0, prec].
1047 arg = gimple_call_arg (call, 0);
1048 prec = TYPE_PRECISION (TREE_TYPE (arg));
1049 mini = 0;
1050 maxi = prec;
1051 src.get_operand (r, arg);
1052 // If arg is non-zero, then ffs or popcount are non-zero.
1053 if (!range_includes_zero_p (&r))
1054 mini = 1;
1055 // If some high bits are known to be zero, decrease the maximum.
1056 if (!r.undefined_p ())
1058 if (TYPE_SIGN (r.type ()) == SIGNED)
1059 range_cast (r, unsigned_type_for (r.type ()));
1060 wide_int max = r.upper_bound ();
1061 maxi = wi::floor_log2 (max) + 1;
1063 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
1064 return true;
1066 CASE_CFN_PARITY:
1067 r.set (build_zero_cst (type), build_one_cst (type));
1068 return true;
1070 CASE_CFN_CLZ:
1071 // __builtin_c[lt]z* return [0, prec-1], except when the
1072 // argument is 0, but that is undefined behavior.
1074 // For __builtin_c[lt]z* consider argument of 0 always undefined
1075 // behavior, for internal fns depending on C?Z_DEFINED_VALUE_AT_ZERO.
1076 arg = gimple_call_arg (call, 0);
1077 prec = TYPE_PRECISION (TREE_TYPE (arg));
1078 mini = 0;
1079 maxi = prec - 1;
1080 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
1081 if (gimple_call_internal_p (call))
1083 if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
1084 && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
1086 // Only handle the single common value.
1087 if (zerov == prec)
1088 maxi = prec;
1089 else
1090 // Magic value to give up, unless we can prove arg is non-zero.
1091 mini = -2;
1095 src.get_operand (r, arg);
1096 // From clz of minimum we can compute result maximum.
1097 if (!r.undefined_p ())
1099 // From clz of minimum we can compute result maximum.
1100 if (wi::gt_p (r.lower_bound (), 0, TYPE_SIGN (r.type ())))
1102 maxi = prec - 1 - wi::floor_log2 (r.lower_bound ());
1103 if (mini == -2)
1104 mini = 0;
1106 else if (!range_includes_zero_p (&r))
1108 mini = 0;
1109 maxi = prec - 1;
1111 if (mini == -2)
1112 break;
1113 // From clz of maximum we can compute result minimum.
1114 wide_int max = r.upper_bound ();
1115 int newmini = prec - 1 - wi::floor_log2 (max);
1116 if (max == 0)
1118 // If CLZ_DEFINED_VALUE_AT_ZERO is 2 with VALUE of prec,
1119 // return [prec, prec], otherwise ignore the range.
1120 if (maxi == prec)
1121 mini = prec;
1123 else
1124 mini = newmini;
1126 if (mini == -2)
1127 break;
1128 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
1129 return true;
1131 CASE_CFN_CTZ:
1132 // __builtin_ctz* return [0, prec-1], except for when the
1133 // argument is 0, but that is undefined behavior.
1135 // For __builtin_ctz* consider argument of 0 always undefined
1136 // behavior, for internal fns depending on CTZ_DEFINED_VALUE_AT_ZERO.
1137 arg = gimple_call_arg (call, 0);
1138 prec = TYPE_PRECISION (TREE_TYPE (arg));
1139 mini = 0;
1140 maxi = prec - 1;
1141 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
1142 if (gimple_call_internal_p (call))
1144 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
1145 && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
1147 // Handle only the two common values.
1148 if (zerov == -1)
1149 mini = -1;
1150 else if (zerov == prec)
1151 maxi = prec;
1152 else
1153 // Magic value to give up, unless we can prove arg is non-zero.
1154 mini = -2;
1157 src.get_operand (r, arg);
1158 if (!r.undefined_p ())
1160 // If arg is non-zero, then use [0, prec - 1].
1161 if (!range_includes_zero_p (&r))
1163 mini = 0;
1164 maxi = prec - 1;
1166 // If some high bits are known to be zero, we can decrease
1167 // the maximum.
1168 wide_int max = r.upper_bound ();
1169 if (max == 0)
1171 // Argument is [0, 0]. If CTZ_DEFINED_VALUE_AT_ZERO
1172 // is 2 with value -1 or prec, return [-1, -1] or [prec, prec].
1173 // Otherwise ignore the range.
1174 if (mini == -1)
1175 maxi = -1;
1176 else if (maxi == prec)
1177 mini = prec;
1179 // If value at zero is prec and 0 is in the range, we can't lower
1180 // the upper bound. We could create two separate ranges though,
1181 // [0,floor_log2(max)][prec,prec] though.
1182 else if (maxi != prec)
1183 maxi = wi::floor_log2 (max);
1185 if (mini == -2)
1186 break;
1187 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
1188 return true;
1190 CASE_CFN_CLRSB:
1191 arg = gimple_call_arg (call, 0);
1192 prec = TYPE_PRECISION (TREE_TYPE (arg));
1193 r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1));
1194 return true;
1195 case CFN_UBSAN_CHECK_ADD:
1196 range_of_builtin_ubsan_call (r, call, PLUS_EXPR, src);
1197 return true;
1198 case CFN_UBSAN_CHECK_SUB:
1199 range_of_builtin_ubsan_call (r, call, MINUS_EXPR, src);
1200 return true;
1201 case CFN_UBSAN_CHECK_MUL:
1202 range_of_builtin_ubsan_call (r, call, MULT_EXPR, src);
1203 return true;
1205 case CFN_GOACC_DIM_SIZE:
1206 case CFN_GOACC_DIM_POS:
1207 // Optimizing these two internal functions helps the loop
1208 // optimizer eliminate outer comparisons. Size is [1,N]
1209 // and pos is [0,N-1].
1211 bool is_pos = func == CFN_GOACC_DIM_POS;
1212 int axis = oacc_get_ifn_dim_arg (call);
1213 int size = oacc_get_fn_dim_size (current_function_decl, axis);
1214 if (!size)
1215 // If it's dynamic, the backend might know a hardware limitation.
1216 size = targetm.goacc.dim_limit (axis);
1218 r.set (build_int_cst (type, is_pos ? 0 : 1),
1219 size
1220 ? build_int_cst (type, size - is_pos) : vrp_val_max (type));
1221 return true;
1224 case CFN_BUILT_IN_STRLEN:
1225 if (tree lhs = gimple_call_lhs (call))
1226 if (ptrdiff_type_node
1227 && (TYPE_PRECISION (ptrdiff_type_node)
1228 == TYPE_PRECISION (TREE_TYPE (lhs))))
1230 tree type = TREE_TYPE (lhs);
1231 tree max = vrp_val_max (ptrdiff_type_node);
1232 wide_int wmax
1233 = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
1234 tree range_min = build_zero_cst (type);
1235 // To account for the terminating NULL, the maximum length
1236 // is one less than the maximum array size, which in turn
1237 // is one less than PTRDIFF_MAX (or SIZE_MAX where it's
1238 // smaller than the former type).
1239 // FIXME: Use max_object_size() - 1 here.
1240 tree range_max = wide_int_to_tree (type, wmax - 2);
1241 r.set (range_min, range_max);
1242 return true;
1244 break;
1245 default:
1246 break;
1248 return false;
1252 // Calculate a range for COND_EXPR statement S and return it in R.
1253 // If a range cannot be calculated, return false.
1255 bool
1256 fold_using_range::range_of_cond_expr (irange &r, gassign *s, fur_source &src)
1258 int_range_max cond_range, range1, range2;
1259 tree cond = gimple_assign_rhs1 (s);
1260 tree op1 = gimple_assign_rhs2 (s);
1261 tree op2 = gimple_assign_rhs3 (s);
1263 tree type = gimple_range_type (s);
1264 if (!type)
1265 return false;
1267 gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
1268 gcc_checking_assert (range_compatible_p (TREE_TYPE (op1), TREE_TYPE (op2)));
1269 src.get_operand (cond_range, cond);
1270 src.get_operand (range1, op1);
1271 src.get_operand (range2, op2);
1273 // If the condition is known, choose the appropriate expression.
1274 if (cond_range.singleton_p ())
1276 // False, pick second operand.
1277 if (cond_range.zero_p ())
1278 r = range2;
1279 else
1280 r = range1;
1282 else
1284 r = range1;
1285 r.union_ (range2);
1287 gcc_checking_assert (r.undefined_p ()
1288 || range_compatible_p (r.type (), type));
1289 return true;
1292 // If SCEV has any information about phi node NAME, return it as a range in R.
1294 void
1295 fold_using_range::range_of_ssa_name_with_loop_info (irange &r, tree name,
1296 class loop *l, gphi *phi,
1297 fur_source &src)
1299 gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
1300 tree min, max, type = TREE_TYPE (name);
1301 if (bounds_of_var_in_loop (&min, &max, src.query (), l, phi, name))
1303 if (TREE_CODE (min) != INTEGER_CST)
1305 if (src.query ()->range_of_expr (r, min, phi) && !r.undefined_p ())
1306 min = wide_int_to_tree (type, r.lower_bound ());
1307 else
1308 min = vrp_val_min (type);
1310 if (TREE_CODE (max) != INTEGER_CST)
1312 if (src.query ()->range_of_expr (r, max, phi) && !r.undefined_p ())
1313 max = wide_int_to_tree (type, r.upper_bound ());
1314 else
1315 max = vrp_val_max (type);
1317 r.set (min, max);
1319 else
1320 r.set_varying (type);
1323 // -----------------------------------------------------------------------
1325 // Check if an && or || expression can be folded based on relations. ie
1326 // c_2 = a_6 > b_7
1327 // c_3 = a_6 < b_7
1328 // c_4 = c_2 && c_3
1329 // c_2 and c_3 can never be true at the same time,
1330 // Therefore c_4 can always resolve to false based purely on the relations.
1332 void
1333 fold_using_range::relation_fold_and_or (irange& lhs_range, gimple *s,
1334 fur_source &src)
1336 // No queries or already folded.
1337 if (!src.gori () || !src.query ()->oracle () || lhs_range.singleton_p ())
1338 return;
1340 // Only care about AND and OR expressions.
1341 enum tree_code code = gimple_expr_code (s);
1342 bool is_and = false;
1343 if (code == BIT_AND_EXPR || code == TRUTH_AND_EXPR)
1344 is_and = true;
1345 else if (code != BIT_IOR_EXPR && code != TRUTH_OR_EXPR)
1346 return;
1348 tree lhs = gimple_get_lhs (s);
1349 tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s));
1350 tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s));
1352 // Deal with || and && only when there is a full set of symbolics.
1353 if (!lhs || !ssa1 || !ssa2
1354 || (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE)
1355 || (TREE_CODE (TREE_TYPE (ssa1)) != BOOLEAN_TYPE)
1356 || (TREE_CODE (TREE_TYPE (ssa2)) != BOOLEAN_TYPE))
1357 return;
1359 // Now we know its a boolean AND or OR expression with boolean operands.
1360 // Ideally we search dependencies for common names, and see what pops out.
1361 // until then, simply try to resolve direct dependencies.
1363 // Both names will need to have 2 direct dependencies.
1364 tree ssa1_dep2 = src.gori ()->depend2 (ssa1);
1365 tree ssa2_dep2 = src.gori ()->depend2 (ssa2);
1366 if (!ssa1_dep2 || !ssa2_dep2)
1367 return;
1369 tree ssa1_dep1 = src.gori ()->depend1 (ssa1);
1370 tree ssa2_dep1 = src.gori ()->depend1 (ssa2);
1371 // Make sure they are the same dependencies, and detect the order of the
1372 // relationship.
1373 bool reverse_op2 = true;
1374 if (ssa1_dep1 == ssa2_dep1 && ssa1_dep2 == ssa2_dep2)
1375 reverse_op2 = false;
1376 else if (ssa1_dep1 != ssa2_dep2 || ssa1_dep2 != ssa2_dep1)
1377 return;
1379 range_operator *handler1 = gimple_range_handler (SSA_NAME_DEF_STMT (ssa1));
1380 range_operator *handler2 = gimple_range_handler (SSA_NAME_DEF_STMT (ssa2));
1382 // If either handler is not present, no relation is found.
1383 if (!handler1 || !handler2)
1384 return;
1386 int_range<2> bool_one (boolean_true_node, boolean_true_node);
1388 relation_kind relation1 = handler1->op1_op2_relation (bool_one);
1389 relation_kind relation2 = handler2->op1_op2_relation (bool_one);
1390 if (relation1 == VREL_NONE || relation2 == VREL_NONE)
1391 return;
1393 if (reverse_op2)
1394 relation2 = relation_negate (relation2);
1396 // x && y is false if the relation intersection of the true cases is NULL.
1397 if (is_and && relation_intersect (relation1, relation2) == VREL_EMPTY)
1398 lhs_range = int_range<2> (boolean_false_node, boolean_false_node);
1399 // x || y is true if the union of the true cases is NO-RELATION..
1400 // ie, one or the other being true covers the full range of possibilties.
1401 else if (!is_and && relation_union (relation1, relation2) == VREL_NONE)
1402 lhs_range = bool_one;
1403 else
1404 return;
1406 range_cast (lhs_range, TREE_TYPE (lhs));
1407 if (dump_file && (dump_flags & TDF_DETAILS))
1409 fprintf (dump_file, " Relation adjustment: ");
1410 print_generic_expr (dump_file, ssa1, TDF_SLIM);
1411 fprintf (dump_file, " and ");
1412 print_generic_expr (dump_file, ssa2, TDF_SLIM);
1413 fprintf (dump_file, " combine to produce ");
1414 lhs_range.dump (dump_file);
1415 fputc ('\n', dump_file);
1418 return;
1421 // Register any outgoing edge relations from a conditional branch.
1423 void
1424 fur_source::register_outgoing_edges (gcond *s, irange &lhs_range, edge e0, edge e1)
1426 int_range_max r;
1427 int_range<2> e0_range, e1_range;
1428 tree name;
1429 range_operator *handler;
1430 basic_block bb = gimple_bb (s);
1432 if (e0)
1434 // If this edge is never taken, ignore it.
1435 gcond_edge_range (e0_range, e0);
1436 e0_range.intersect (lhs_range);
1437 if (e0_range.undefined_p ())
1438 e0 = NULL;
1442 if (e1)
1444 // If this edge is never taken, ignore it.
1445 gcond_edge_range (e1_range, e1);
1446 e1_range.intersect (lhs_range);
1447 if (e1_range.undefined_p ())
1448 e1 = NULL;
1451 if (!e0 && !e1)
1452 return;
1454 // First, register the gcond itself. This will catch statements like
1455 // if (a_2 < b_5)
1456 tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s));
1457 tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s));
1458 if (ssa1 && ssa2)
1460 handler = gimple_range_handler (s);
1461 gcc_checking_assert (handler);
1462 if (e0)
1464 relation_kind relation = handler->op1_op2_relation (e0_range);
1465 if (relation != VREL_NONE)
1466 register_relation (e0, relation, ssa1, ssa2);
1468 if (e1)
1470 relation_kind relation = handler->op1_op2_relation (e1_range);
1471 if (relation != VREL_NONE)
1472 register_relation (e1, relation, ssa1, ssa2);
1476 // Outgoing relations of GORI exports require a gori engine.
1477 if (!gori ())
1478 return;
1480 // Now look for other relations in the exports. This will find stmts
1481 // leading to the condition such as:
1482 // c_2 = a_4 < b_7
1483 // if (c_2)
1484 FOR_EACH_GORI_EXPORT_NAME (*(gori ()), bb, name)
1486 if (TREE_CODE (TREE_TYPE (name)) != BOOLEAN_TYPE)
1487 continue;
1488 gimple *stmt = SSA_NAME_DEF_STMT (name);
1489 handler = gimple_range_handler (stmt);
1490 if (!handler)
1491 continue;
1492 tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (stmt));
1493 tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (stmt));
1494 if (ssa1 && ssa2)
1496 if (e0 && gori ()->outgoing_edge_range_p (r, e0, name, *m_query)
1497 && r.singleton_p ())
1499 relation_kind relation = handler->op1_op2_relation (r);
1500 if (relation != VREL_NONE)
1501 register_relation (e0, relation, ssa1, ssa2);
1503 if (e1 && gori ()->outgoing_edge_range_p (r, e1, name, *m_query)
1504 && r.singleton_p ())
1506 relation_kind relation = handler->op1_op2_relation (r);
1507 if (relation != VREL_NONE)
1508 register_relation (e1, relation, ssa1, ssa2);