2015-05-12 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / freeze.adb
blob7612c189b5c75ead426f74f8d8c523b27e9d3c43
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Disp; use Exp_Disp;
36 with Exp_Pakd; use Exp_Pakd;
37 with Exp_Util; use Exp_Util;
38 with Exp_Tss; use Exp_Tss;
39 with Ghost; use Ghost;
40 with Layout; use Layout;
41 with Lib; use Lib;
42 with Namet; use Namet;
43 with Nlists; use Nlists;
44 with Nmake; use Nmake;
45 with Opt; use Opt;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch6; use Sem_Ch6;
53 with Sem_Ch7; use Sem_Ch7;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Ch13; use Sem_Ch13;
56 with Sem_Eval; use Sem_Eval;
57 with Sem_Mech; use Sem_Mech;
58 with Sem_Prag; use Sem_Prag;
59 with Sem_Res; use Sem_Res;
60 with Sem_Util; use Sem_Util;
61 with Sinfo; use Sinfo;
62 with Snames; use Snames;
63 with Stand; use Stand;
64 with Targparm; use Targparm;
65 with Tbuild; use Tbuild;
66 with Ttypes; use Ttypes;
67 with Uintp; use Uintp;
68 with Urealp; use Urealp;
69 with Warnsw; use Warnsw;
71 package body Freeze is
73 -----------------------
74 -- Local Subprograms --
75 -----------------------
77 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
78 -- Typ is a type that is being frozen. If no size clause is given,
79 -- but a default Esize has been computed, then this default Esize is
80 -- adjusted up if necessary to be consistent with a given alignment,
81 -- but never to a value greater than Long_Long_Integer'Size. This
82 -- is used for all discrete types and for fixed-point types.
84 procedure Build_And_Analyze_Renamed_Body
85 (Decl : Node_Id;
86 New_S : Entity_Id;
87 After : in out Node_Id);
88 -- Build body for a renaming declaration, insert in tree and analyze
90 procedure Check_Address_Clause (E : Entity_Id);
91 -- Apply legality checks to address clauses for object declarations,
92 -- at the point the object is frozen. Also ensure any initialization is
93 -- performed only after the object has been frozen.
95 procedure Check_Component_Storage_Order
96 (Encl_Type : Entity_Id;
97 Comp : Entity_Id;
98 ADC : Node_Id;
99 Comp_ADC_Present : out Boolean);
100 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
101 -- clause, verify that the component type has an explicit and compatible
102 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
103 -- entity of the component under consideration. For an Encl_Type that
104 -- does not have a Scalar_Storage_Order attribute definition clause,
105 -- verify that the component also does not have such a clause.
106 -- ADC is the attribute definition clause if present (or Empty). On return,
107 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
108 -- attribute definition clause.
110 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
111 -- When an expression function is frozen by a use of it, the expression
112 -- itself is frozen. Check that the expression does not include references
113 -- to deferred constants without completion. We report this at the freeze
114 -- point of the function, to provide a better error message.
116 -- In most cases the expression itself is frozen by the time the function
117 -- itself is frozen, because the formals will be frozen by then. However,
118 -- Attribute references to outer types are freeze points for those types;
119 -- this routine generates the required freeze nodes for them.
121 procedure Check_Strict_Alignment (E : Entity_Id);
122 -- E is a base type. If E is tagged or has a component that is aliased
123 -- or tagged or contains something this is aliased or tagged, set
124 -- Strict_Alignment.
126 procedure Check_Unsigned_Type (E : Entity_Id);
127 pragma Inline (Check_Unsigned_Type);
128 -- If E is a fixed-point or discrete type, then all the necessary work
129 -- to freeze it is completed except for possible setting of the flag
130 -- Is_Unsigned_Type, which is done by this procedure. The call has no
131 -- effect if the entity E is not a discrete or fixed-point type.
133 procedure Freeze_And_Append
134 (Ent : Entity_Id;
135 N : Node_Id;
136 Result : in out List_Id);
137 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
138 -- nodes to Result, modifying Result from No_List if necessary. N has
139 -- the same usage as in Freeze_Entity.
141 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
142 -- Freeze enumeration type. The Esize field is set as processing
143 -- proceeds (i.e. set by default when the type is declared and then
144 -- adjusted by rep clauses. What this procedure does is to make sure
145 -- that if a foreign convention is specified, and no specific size
146 -- is given, then the size must be at least Integer'Size.
148 procedure Freeze_Static_Object (E : Entity_Id);
149 -- If an object is frozen which has Is_Statically_Allocated set, then
150 -- all referenced types must also be marked with this flag. This routine
151 -- is in charge of meeting this requirement for the object entity E.
153 procedure Freeze_Subprogram (E : Entity_Id);
154 -- Perform freezing actions for a subprogram (create extra formals,
155 -- and set proper default mechanism values). Note that this routine
156 -- is not called for internal subprograms, for which neither of these
157 -- actions is needed (or desirable, we do not want for example to have
158 -- these extra formals present in initialization procedures, where they
159 -- would serve no purpose). In this call E is either a subprogram or
160 -- a subprogram type (i.e. an access to a subprogram).
162 function Is_Fully_Defined (T : Entity_Id) return Boolean;
163 -- True if T is not private and has no private components, or has a full
164 -- view. Used to determine whether the designated type of an access type
165 -- should be frozen when the access type is frozen. This is done when an
166 -- allocator is frozen, or an expression that may involve attributes of
167 -- the designated type. Otherwise freezing the access type does not freeze
168 -- the designated type.
170 procedure Process_Default_Expressions
171 (E : Entity_Id;
172 After : in out Node_Id);
173 -- This procedure is called for each subprogram to complete processing of
174 -- default expressions at the point where all types are known to be frozen.
175 -- The expressions must be analyzed in full, to make sure that all error
176 -- processing is done (they have only been pre-analyzed). If the expression
177 -- is not an entity or literal, its analysis may generate code which must
178 -- not be executed. In that case we build a function body to hold that
179 -- code. This wrapper function serves no other purpose (it used to be
180 -- called to evaluate the default, but now the default is inlined at each
181 -- point of call).
183 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
184 -- Typ is a record or array type that is being frozen. This routine sets
185 -- the default component alignment from the scope stack values if the
186 -- alignment is otherwise not specified.
188 procedure Check_Debug_Info_Needed (T : Entity_Id);
189 -- As each entity is frozen, this routine is called to deal with the
190 -- setting of Debug_Info_Needed for the entity. This flag is set if
191 -- the entity comes from source, or if we are in Debug_Generated_Code
192 -- mode or if the -gnatdV debug flag is set. However, it never sets
193 -- the flag if Debug_Info_Off is set. This procedure also ensures that
194 -- subsidiary entities have the flag set as required.
196 procedure Set_SSO_From_Default (T : Entity_Id);
197 -- T is a record or array type that is being frozen. If it is a base type,
198 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
199 -- will be set appropriately. Note that an explicit occurrence of aspect
200 -- Scalar_Storage_Order or an explicit setting of this aspect with an
201 -- attribute definition clause occurs, then these two flags are reset in
202 -- any case, so call will have no effect.
204 procedure Undelay_Type (T : Entity_Id);
205 -- T is a type of a component that we know to be an Itype. We don't want
206 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
207 -- Full_View or Corresponding_Record_Type.
209 procedure Warn_Overlay
210 (Expr : Node_Id;
211 Typ : Entity_Id;
212 Nam : Node_Id);
213 -- Expr is the expression for an address clause for entity Nam whose type
214 -- is Typ. If Typ has a default initialization, and there is no explicit
215 -- initialization in the source declaration, check whether the address
216 -- clause might cause overlaying of an entity, and emit a warning on the
217 -- side effect that the initialization will cause.
219 -------------------------------
220 -- Adjust_Esize_For_Alignment --
221 -------------------------------
223 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
224 Align : Uint;
226 begin
227 if Known_Esize (Typ) and then Known_Alignment (Typ) then
228 Align := Alignment_In_Bits (Typ);
230 if Align > Esize (Typ)
231 and then Align <= Standard_Long_Long_Integer_Size
232 then
233 Set_Esize (Typ, Align);
234 end if;
235 end if;
236 end Adjust_Esize_For_Alignment;
238 ------------------------------------
239 -- Build_And_Analyze_Renamed_Body --
240 ------------------------------------
242 procedure Build_And_Analyze_Renamed_Body
243 (Decl : Node_Id;
244 New_S : Entity_Id;
245 After : in out Node_Id)
247 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
248 Ent : constant Entity_Id := Defining_Entity (Decl);
249 Body_Node : Node_Id;
250 Renamed_Subp : Entity_Id;
252 begin
253 -- If the renamed subprogram is intrinsic, there is no need for a
254 -- wrapper body: we set the alias that will be called and expanded which
255 -- completes the declaration. This transformation is only legal if the
256 -- renamed entity has already been elaborated.
258 -- Note that it is legal for a renaming_as_body to rename an intrinsic
259 -- subprogram, as long as the renaming occurs before the new entity
260 -- is frozen (RM 8.5.4 (5)).
262 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
263 and then Is_Entity_Name (Name (Body_Decl))
264 then
265 Renamed_Subp := Entity (Name (Body_Decl));
266 else
267 Renamed_Subp := Empty;
268 end if;
270 if Present (Renamed_Subp)
271 and then Is_Intrinsic_Subprogram (Renamed_Subp)
272 and then
273 (not In_Same_Source_Unit (Renamed_Subp, Ent)
274 or else Sloc (Renamed_Subp) < Sloc (Ent))
276 -- We can make the renaming entity intrinsic if the renamed function
277 -- has an interface name, or if it is one of the shift/rotate
278 -- operations known to the compiler.
280 and then
281 (Present (Interface_Name (Renamed_Subp))
282 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
283 Name_Rotate_Right,
284 Name_Shift_Left,
285 Name_Shift_Right,
286 Name_Shift_Right_Arithmetic))
287 then
288 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
290 if Present (Alias (Renamed_Subp)) then
291 Set_Alias (Ent, Alias (Renamed_Subp));
292 else
293 Set_Alias (Ent, Renamed_Subp);
294 end if;
296 Set_Is_Intrinsic_Subprogram (Ent);
297 Set_Has_Completion (Ent);
299 else
300 Body_Node := Build_Renamed_Body (Decl, New_S);
301 Insert_After (After, Body_Node);
302 Mark_Rewrite_Insertion (Body_Node);
303 Analyze (Body_Node);
304 After := Body_Node;
305 end if;
306 end Build_And_Analyze_Renamed_Body;
308 ------------------------
309 -- Build_Renamed_Body --
310 ------------------------
312 function Build_Renamed_Body
313 (Decl : Node_Id;
314 New_S : Entity_Id) return Node_Id
316 Loc : constant Source_Ptr := Sloc (New_S);
317 -- We use for the source location of the renamed body, the location of
318 -- the spec entity. It might seem more natural to use the location of
319 -- the renaming declaration itself, but that would be wrong, since then
320 -- the body we create would look as though it was created far too late,
321 -- and this could cause problems with elaboration order analysis,
322 -- particularly in connection with instantiations.
324 N : constant Node_Id := Unit_Declaration_Node (New_S);
325 Nam : constant Node_Id := Name (N);
326 Old_S : Entity_Id;
327 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
328 Actuals : List_Id := No_List;
329 Call_Node : Node_Id;
330 Call_Name : Node_Id;
331 Body_Node : Node_Id;
332 Formal : Entity_Id;
333 O_Formal : Entity_Id;
334 Param_Spec : Node_Id;
336 Pref : Node_Id := Empty;
337 -- If the renamed entity is a primitive operation given in prefix form,
338 -- the prefix is the target object and it has to be added as the first
339 -- actual in the generated call.
341 begin
342 -- Determine the entity being renamed, which is the target of the call
343 -- statement. If the name is an explicit dereference, this is a renaming
344 -- of a subprogram type rather than a subprogram. The name itself is
345 -- fully analyzed.
347 if Nkind (Nam) = N_Selected_Component then
348 Old_S := Entity (Selector_Name (Nam));
350 elsif Nkind (Nam) = N_Explicit_Dereference then
351 Old_S := Etype (Nam);
353 elsif Nkind (Nam) = N_Indexed_Component then
354 if Is_Entity_Name (Prefix (Nam)) then
355 Old_S := Entity (Prefix (Nam));
356 else
357 Old_S := Entity (Selector_Name (Prefix (Nam)));
358 end if;
360 elsif Nkind (Nam) = N_Character_Literal then
361 Old_S := Etype (New_S);
363 else
364 Old_S := Entity (Nam);
365 end if;
367 if Is_Entity_Name (Nam) then
369 -- If the renamed entity is a predefined operator, retain full name
370 -- to ensure its visibility.
372 if Ekind (Old_S) = E_Operator
373 and then Nkind (Nam) = N_Expanded_Name
374 then
375 Call_Name := New_Copy (Name (N));
376 else
377 Call_Name := New_Occurrence_Of (Old_S, Loc);
378 end if;
380 else
381 if Nkind (Nam) = N_Selected_Component
382 and then Present (First_Formal (Old_S))
383 and then
384 (Is_Controlling_Formal (First_Formal (Old_S))
385 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
386 then
388 -- Retrieve the target object, to be added as a first actual
389 -- in the call.
391 Call_Name := New_Occurrence_Of (Old_S, Loc);
392 Pref := Prefix (Nam);
394 else
395 Call_Name := New_Copy (Name (N));
396 end if;
398 -- Original name may have been overloaded, but is fully resolved now
400 Set_Is_Overloaded (Call_Name, False);
401 end if;
403 -- For simple renamings, subsequent calls can be expanded directly as
404 -- calls to the renamed entity. The body must be generated in any case
405 -- for calls that may appear elsewhere. This is not done in the case
406 -- where the subprogram is an instantiation because the actual proper
407 -- body has not been built yet.
409 if Ekind_In (Old_S, E_Function, E_Procedure)
410 and then Nkind (Decl) = N_Subprogram_Declaration
411 and then not Is_Generic_Instance (Old_S)
412 then
413 Set_Body_To_Inline (Decl, Old_S);
414 end if;
416 -- Check whether the return type is a limited view. If the subprogram
417 -- is already frozen the generated body may have a non-limited view
418 -- of the type, that must be used, because it is the one in the spec
419 -- of the renaming declaration.
421 if Ekind (Old_S) = E_Function
422 and then Is_Entity_Name (Result_Definition (Spec))
423 then
424 declare
425 Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
426 begin
427 if Has_Non_Limited_View (Ret_Type) then
428 Set_Result_Definition
429 (Spec, New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
430 end if;
431 end;
432 end if;
434 -- The body generated for this renaming is an internal artifact, and
435 -- does not constitute a freeze point for the called entity.
437 Set_Must_Not_Freeze (Call_Name);
439 Formal := First_Formal (Defining_Entity (Decl));
441 if Present (Pref) then
442 declare
443 Pref_Type : constant Entity_Id := Etype (Pref);
444 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
446 begin
447 -- The controlling formal may be an access parameter, or the
448 -- actual may be an access value, so adjust accordingly.
450 if Is_Access_Type (Pref_Type)
451 and then not Is_Access_Type (Form_Type)
452 then
453 Actuals := New_List
454 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
456 elsif Is_Access_Type (Form_Type)
457 and then not Is_Access_Type (Pref)
458 then
459 Actuals :=
460 New_List (
461 Make_Attribute_Reference (Loc,
462 Attribute_Name => Name_Access,
463 Prefix => Relocate_Node (Pref)));
464 else
465 Actuals := New_List (Pref);
466 end if;
467 end;
469 elsif Present (Formal) then
470 Actuals := New_List;
472 else
473 Actuals := No_List;
474 end if;
476 if Present (Formal) then
477 while Present (Formal) loop
478 Append (New_Occurrence_Of (Formal, Loc), Actuals);
479 Next_Formal (Formal);
480 end loop;
481 end if;
483 -- If the renamed entity is an entry, inherit its profile. For other
484 -- renamings as bodies, both profiles must be subtype conformant, so it
485 -- is not necessary to replace the profile given in the declaration.
486 -- However, default values that are aggregates are rewritten when
487 -- partially analyzed, so we recover the original aggregate to insure
488 -- that subsequent conformity checking works. Similarly, if the default
489 -- expression was constant-folded, recover the original expression.
491 Formal := First_Formal (Defining_Entity (Decl));
493 if Present (Formal) then
494 O_Formal := First_Formal (Old_S);
495 Param_Spec := First (Parameter_Specifications (Spec));
496 while Present (Formal) loop
497 if Is_Entry (Old_S) then
498 if Nkind (Parameter_Type (Param_Spec)) /=
499 N_Access_Definition
500 then
501 Set_Etype (Formal, Etype (O_Formal));
502 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
503 end if;
505 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
506 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
507 Nkind (Default_Value (O_Formal))
508 then
509 Set_Expression (Param_Spec,
510 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
511 end if;
513 Next_Formal (Formal);
514 Next_Formal (O_Formal);
515 Next (Param_Spec);
516 end loop;
517 end if;
519 -- If the renamed entity is a function, the generated body contains a
520 -- return statement. Otherwise, build a procedure call. If the entity is
521 -- an entry, subsequent analysis of the call will transform it into the
522 -- proper entry or protected operation call. If the renamed entity is
523 -- a character literal, return it directly.
525 if Ekind (Old_S) = E_Function
526 or else Ekind (Old_S) = E_Operator
527 or else (Ekind (Old_S) = E_Subprogram_Type
528 and then Etype (Old_S) /= Standard_Void_Type)
529 then
530 Call_Node :=
531 Make_Simple_Return_Statement (Loc,
532 Expression =>
533 Make_Function_Call (Loc,
534 Name => Call_Name,
535 Parameter_Associations => Actuals));
537 elsif Ekind (Old_S) = E_Enumeration_Literal then
538 Call_Node :=
539 Make_Simple_Return_Statement (Loc,
540 Expression => New_Occurrence_Of (Old_S, Loc));
542 elsif Nkind (Nam) = N_Character_Literal then
543 Call_Node :=
544 Make_Simple_Return_Statement (Loc, Expression => Call_Name);
546 else
547 Call_Node :=
548 Make_Procedure_Call_Statement (Loc,
549 Name => Call_Name,
550 Parameter_Associations => Actuals);
551 end if;
553 -- Create entities for subprogram body and formals
555 Set_Defining_Unit_Name (Spec,
556 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
558 Param_Spec := First (Parameter_Specifications (Spec));
559 while Present (Param_Spec) loop
560 Set_Defining_Identifier (Param_Spec,
561 Make_Defining_Identifier (Loc,
562 Chars => Chars (Defining_Identifier (Param_Spec))));
563 Next (Param_Spec);
564 end loop;
566 Body_Node :=
567 Make_Subprogram_Body (Loc,
568 Specification => Spec,
569 Declarations => New_List,
570 Handled_Statement_Sequence =>
571 Make_Handled_Sequence_Of_Statements (Loc,
572 Statements => New_List (Call_Node)));
574 if Nkind (Decl) /= N_Subprogram_Declaration then
575 Rewrite (N,
576 Make_Subprogram_Declaration (Loc,
577 Specification => Specification (N)));
578 end if;
580 -- Link the body to the entity whose declaration it completes. If
581 -- the body is analyzed when the renamed entity is frozen, it may
582 -- be necessary to restore the proper scope (see package Exp_Ch13).
584 if Nkind (N) = N_Subprogram_Renaming_Declaration
585 and then Present (Corresponding_Spec (N))
586 then
587 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
588 else
589 Set_Corresponding_Spec (Body_Node, New_S);
590 end if;
592 return Body_Node;
593 end Build_Renamed_Body;
595 --------------------------
596 -- Check_Address_Clause --
597 --------------------------
599 procedure Check_Address_Clause (E : Entity_Id) is
600 Addr : constant Node_Id := Address_Clause (E);
601 Expr : Node_Id;
602 Decl : constant Node_Id := Declaration_Node (E);
603 Loc : constant Source_Ptr := Sloc (Decl);
604 Typ : constant Entity_Id := Etype (E);
605 Lhs : Node_Id;
606 Tag_Assign : Node_Id;
608 begin
609 if Present (Addr) then
610 Expr := Expression (Addr);
612 if Needs_Constant_Address (Decl, Typ) then
613 Check_Constant_Address_Clause (Expr, E);
615 -- Has_Delayed_Freeze was set on E when the address clause was
616 -- analyzed, and must remain set because we want the address
617 -- clause to be elaborated only after any entity it references
618 -- has been elaborated.
619 end if;
621 -- If Rep_Clauses are to be ignored, remove address clause from
622 -- list attached to entity, because it may be illegal for gigi,
623 -- for example by breaking order of elaboration..
625 if Ignore_Rep_Clauses then
626 declare
627 Rep : Node_Id;
629 begin
630 Rep := First_Rep_Item (E);
632 if Rep = Addr then
633 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
635 else
636 while Present (Rep)
637 and then Next_Rep_Item (Rep) /= Addr
638 loop
639 Rep := Next_Rep_Item (Rep);
640 end loop;
641 end if;
643 if Present (Rep) then
644 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
645 end if;
646 end;
648 -- And now remove the address clause
650 Kill_Rep_Clause (Addr);
652 elsif not Error_Posted (Expr)
653 and then not Needs_Finalization (Typ)
654 then
655 Warn_Overlay (Expr, Typ, Name (Addr));
656 end if;
658 if Present (Expression (Decl)) then
660 -- Capture initialization value at point of declaration,
661 -- and make explicit assignment legal, because object may
662 -- be a constant.
664 Remove_Side_Effects (Expression (Decl));
665 Lhs := New_Occurrence_Of (E, Loc);
666 Set_Assignment_OK (Lhs);
668 -- Move initialization to freeze actions (once the object has
669 -- been frozen, and the address clause alignment check has been
670 -- performed.
672 Append_Freeze_Action (E,
673 Make_Assignment_Statement (Loc,
674 Name => Lhs,
675 Expression => Expression (Decl)));
677 Set_No_Initialization (Decl);
679 -- If the objet is tagged, check whether the tag must be
680 -- reassigned expliitly.
682 Tag_Assign := Make_Tag_Assignment (Decl);
683 if Present (Tag_Assign) then
684 Append_Freeze_Action (E, Tag_Assign);
685 end if;
686 end if;
687 end if;
688 end Check_Address_Clause;
690 -----------------------------
691 -- Check_Compile_Time_Size --
692 -----------------------------
694 procedure Check_Compile_Time_Size (T : Entity_Id) is
696 procedure Set_Small_Size (T : Entity_Id; S : Uint);
697 -- Sets the compile time known size (32 bits or less) in the Esize
698 -- field, of T checking for a size clause that was given which attempts
699 -- to give a smaller size, and also checking for an alignment clause.
701 function Size_Known (T : Entity_Id) return Boolean;
702 -- Recursive function that does all the work
704 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
705 -- If T is a constrained subtype, its size is not known if any of its
706 -- discriminant constraints is not static and it is not a null record.
707 -- The test is conservative and doesn't check that the components are
708 -- in fact constrained by non-static discriminant values. Could be made
709 -- more precise ???
711 --------------------
712 -- Set_Small_Size --
713 --------------------
715 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
716 begin
717 if S > 32 then
718 return;
720 -- Check for bad size clause given
722 elsif Has_Size_Clause (T) then
723 if RM_Size (T) < S then
724 Error_Msg_Uint_1 := S;
725 Error_Msg_NE
726 ("size for& too small, minimum allowed is ^",
727 Size_Clause (T), T);
728 end if;
730 -- Set size if not set already
732 elsif Unknown_RM_Size (T) then
733 Set_RM_Size (T, S);
734 end if;
735 end Set_Small_Size;
737 ----------------
738 -- Size_Known --
739 ----------------
741 function Size_Known (T : Entity_Id) return Boolean is
742 Index : Entity_Id;
743 Comp : Entity_Id;
744 Ctyp : Entity_Id;
745 Low : Node_Id;
746 High : Node_Id;
748 begin
749 if Size_Known_At_Compile_Time (T) then
750 return True;
752 -- Always True for scalar types. This is true even for generic formal
753 -- scalar types. We used to return False in the latter case, but the
754 -- size is known at compile time, even in the template, we just do
755 -- not know the exact size but that's not the point of this routine.
757 elsif Is_Scalar_Type (T)
758 or else Is_Task_Type (T)
759 then
760 return True;
762 -- Array types
764 elsif Is_Array_Type (T) then
766 -- String literals always have known size, and we can set it
768 if Ekind (T) = E_String_Literal_Subtype then
769 Set_Small_Size (T, Component_Size (T)
770 * String_Literal_Length (T));
771 return True;
773 -- Unconstrained types never have known at compile time size
775 elsif not Is_Constrained (T) then
776 return False;
778 -- Don't do any recursion on type with error posted, since we may
779 -- have a malformed type that leads us into a loop.
781 elsif Error_Posted (T) then
782 return False;
784 -- Otherwise if component size unknown, then array size unknown
786 elsif not Size_Known (Component_Type (T)) then
787 return False;
788 end if;
790 -- Check for all indexes static, and also compute possible size
791 -- (in case it is less than 32 and may be packable).
793 declare
794 Esiz : Uint := Component_Size (T);
795 Dim : Uint;
797 begin
798 Index := First_Index (T);
799 while Present (Index) loop
800 if Nkind (Index) = N_Range then
801 Get_Index_Bounds (Index, Low, High);
803 elsif Error_Posted (Scalar_Range (Etype (Index))) then
804 return False;
806 else
807 Low := Type_Low_Bound (Etype (Index));
808 High := Type_High_Bound (Etype (Index));
809 end if;
811 if not Compile_Time_Known_Value (Low)
812 or else not Compile_Time_Known_Value (High)
813 or else Etype (Index) = Any_Type
814 then
815 return False;
817 else
818 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
820 if Dim >= 0 then
821 Esiz := Esiz * Dim;
822 else
823 Esiz := Uint_0;
824 end if;
825 end if;
827 Next_Index (Index);
828 end loop;
830 Set_Small_Size (T, Esiz);
831 return True;
832 end;
834 -- Access types always have known at compile time sizes
836 elsif Is_Access_Type (T) then
837 return True;
839 -- For non-generic private types, go to underlying type if present
841 elsif Is_Private_Type (T)
842 and then not Is_Generic_Type (T)
843 and then Present (Underlying_Type (T))
844 then
845 -- Don't do any recursion on type with error posted, since we may
846 -- have a malformed type that leads us into a loop.
848 if Error_Posted (T) then
849 return False;
850 else
851 return Size_Known (Underlying_Type (T));
852 end if;
854 -- Record types
856 elsif Is_Record_Type (T) then
858 -- A class-wide type is never considered to have a known size
860 if Is_Class_Wide_Type (T) then
861 return False;
863 -- A subtype of a variant record must not have non-static
864 -- discriminated components.
866 elsif T /= Base_Type (T)
867 and then not Static_Discriminated_Components (T)
868 then
869 return False;
871 -- Don't do any recursion on type with error posted, since we may
872 -- have a malformed type that leads us into a loop.
874 elsif Error_Posted (T) then
875 return False;
876 end if;
878 -- Now look at the components of the record
880 declare
881 -- The following two variables are used to keep track of the
882 -- size of packed records if we can tell the size of the packed
883 -- record in the front end. Packed_Size_Known is True if so far
884 -- we can figure out the size. It is initialized to True for a
885 -- packed record, unless the record has discriminants or atomic
886 -- components or independent components.
888 -- The reason we eliminate the discriminated case is that
889 -- we don't know the way the back end lays out discriminated
890 -- packed records. If Packed_Size_Known is True, then
891 -- Packed_Size is the size in bits so far.
893 Packed_Size_Known : Boolean :=
894 Is_Packed (T)
895 and then not Has_Discriminants (T)
896 and then not Has_Atomic_Components (T)
897 and then not Has_Independent_Components (T);
899 Packed_Size : Uint := Uint_0;
900 -- Size in bits so far
902 begin
903 -- Test for variant part present
905 if Has_Discriminants (T)
906 and then Present (Parent (T))
907 and then Nkind (Parent (T)) = N_Full_Type_Declaration
908 and then Nkind (Type_Definition (Parent (T))) =
909 N_Record_Definition
910 and then not Null_Present (Type_Definition (Parent (T)))
911 and then
912 Present (Variant_Part
913 (Component_List (Type_Definition (Parent (T)))))
914 then
915 -- If variant part is present, and type is unconstrained,
916 -- then we must have defaulted discriminants, or a size
917 -- clause must be present for the type, or else the size
918 -- is definitely not known at compile time.
920 if not Is_Constrained (T)
921 and then
922 No (Discriminant_Default_Value (First_Discriminant (T)))
923 and then Unknown_RM_Size (T)
924 then
925 return False;
926 end if;
927 end if;
929 -- Loop through components
931 Comp := First_Component_Or_Discriminant (T);
932 while Present (Comp) loop
933 Ctyp := Etype (Comp);
935 -- We do not know the packed size if there is a component
936 -- clause present (we possibly could, but this would only
937 -- help in the case of a record with partial rep clauses.
938 -- That's because in the case of full rep clauses, the
939 -- size gets figured out anyway by a different circuit).
941 if Present (Component_Clause (Comp)) then
942 Packed_Size_Known := False;
943 end if;
945 -- We do not know the packed size if we have an atomic type
946 -- or component, or an independent type or component, or a
947 -- by reference type or aliased component (because packing
948 -- does not touch these).
950 if Is_Atomic (Ctyp)
951 or else Is_Atomic (Comp)
952 or else Is_Independent (Ctyp)
953 or else Is_Independent (Comp)
954 or else Is_By_Reference_Type (Ctyp)
955 or else Is_Aliased (Comp)
956 then
957 Packed_Size_Known := False;
958 end if;
960 -- We need to identify a component that is an array where
961 -- the index type is an enumeration type with non-standard
962 -- representation, and some bound of the type depends on a
963 -- discriminant.
965 -- This is because gigi computes the size by doing a
966 -- substitution of the appropriate discriminant value in
967 -- the size expression for the base type, and gigi is not
968 -- clever enough to evaluate the resulting expression (which
969 -- involves a call to rep_to_pos) at compile time.
971 -- It would be nice if gigi would either recognize that
972 -- this expression can be computed at compile time, or
973 -- alternatively figured out the size from the subtype
974 -- directly, where all the information is at hand ???
976 if Is_Array_Type (Etype (Comp))
977 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
978 then
979 declare
980 Ocomp : constant Entity_Id :=
981 Original_Record_Component (Comp);
982 OCtyp : constant Entity_Id := Etype (Ocomp);
983 Ind : Node_Id;
984 Indtyp : Entity_Id;
985 Lo, Hi : Node_Id;
987 begin
988 Ind := First_Index (OCtyp);
989 while Present (Ind) loop
990 Indtyp := Etype (Ind);
992 if Is_Enumeration_Type (Indtyp)
993 and then Has_Non_Standard_Rep (Indtyp)
994 then
995 Lo := Type_Low_Bound (Indtyp);
996 Hi := Type_High_Bound (Indtyp);
998 if Is_Entity_Name (Lo)
999 and then Ekind (Entity (Lo)) = E_Discriminant
1000 then
1001 return False;
1003 elsif Is_Entity_Name (Hi)
1004 and then Ekind (Entity (Hi)) = E_Discriminant
1005 then
1006 return False;
1007 end if;
1008 end if;
1010 Next_Index (Ind);
1011 end loop;
1012 end;
1013 end if;
1015 -- Clearly size of record is not known if the size of one of
1016 -- the components is not known.
1018 if not Size_Known (Ctyp) then
1019 return False;
1020 end if;
1022 -- Accumulate packed size if possible
1024 if Packed_Size_Known then
1026 -- We can only deal with elementary types, since for
1027 -- non-elementary components, alignment enters into the
1028 -- picture, and we don't know enough to handle proper
1029 -- alignment in this context. Packed arrays count as
1030 -- elementary if the representation is a modular type.
1032 if Is_Elementary_Type (Ctyp)
1033 or else (Is_Array_Type (Ctyp)
1034 and then Present
1035 (Packed_Array_Impl_Type (Ctyp))
1036 and then Is_Modular_Integer_Type
1037 (Packed_Array_Impl_Type (Ctyp)))
1038 then
1039 -- Packed size unknown if we have an atomic type
1040 -- or a by reference type, since the back end
1041 -- knows how these are layed out.
1043 if Is_Atomic (Ctyp)
1044 or else Is_By_Reference_Type (Ctyp)
1045 then
1046 Packed_Size_Known := False;
1048 -- If RM_Size is known and static, then we can keep
1049 -- accumulating the packed size
1051 elsif Known_Static_RM_Size (Ctyp) then
1053 -- A little glitch, to be removed sometime ???
1054 -- gigi does not understand zero sizes yet.
1056 if RM_Size (Ctyp) = Uint_0 then
1057 Packed_Size_Known := False;
1059 -- Normal case where we can keep accumulating the
1060 -- packed array size.
1062 else
1063 Packed_Size := Packed_Size + RM_Size (Ctyp);
1064 end if;
1066 -- If we have a field whose RM_Size is not known then
1067 -- we can't figure out the packed size here.
1069 else
1070 Packed_Size_Known := False;
1071 end if;
1073 -- If we have a non-elementary type we can't figure out
1074 -- the packed array size (alignment issues).
1076 else
1077 Packed_Size_Known := False;
1078 end if;
1079 end if;
1081 Next_Component_Or_Discriminant (Comp);
1082 end loop;
1084 if Packed_Size_Known then
1085 Set_Small_Size (T, Packed_Size);
1086 end if;
1088 return True;
1089 end;
1091 -- All other cases, size not known at compile time
1093 else
1094 return False;
1095 end if;
1096 end Size_Known;
1098 -------------------------------------
1099 -- Static_Discriminated_Components --
1100 -------------------------------------
1102 function Static_Discriminated_Components
1103 (T : Entity_Id) return Boolean
1105 Constraint : Elmt_Id;
1107 begin
1108 if Has_Discriminants (T)
1109 and then Present (Discriminant_Constraint (T))
1110 and then Present (First_Component (T))
1111 then
1112 Constraint := First_Elmt (Discriminant_Constraint (T));
1113 while Present (Constraint) loop
1114 if not Compile_Time_Known_Value (Node (Constraint)) then
1115 return False;
1116 end if;
1118 Next_Elmt (Constraint);
1119 end loop;
1120 end if;
1122 return True;
1123 end Static_Discriminated_Components;
1125 -- Start of processing for Check_Compile_Time_Size
1127 begin
1128 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1129 end Check_Compile_Time_Size;
1131 -----------------------------------
1132 -- Check_Component_Storage_Order --
1133 -----------------------------------
1135 procedure Check_Component_Storage_Order
1136 (Encl_Type : Entity_Id;
1137 Comp : Entity_Id;
1138 ADC : Node_Id;
1139 Comp_ADC_Present : out Boolean)
1141 Comp_Type : Entity_Id;
1142 Comp_ADC : Node_Id;
1143 Err_Node : Node_Id;
1145 Comp_Byte_Aligned : Boolean;
1146 -- Set for the record case, True if Comp starts on a byte boundary
1147 -- (in which case it is allowed to have different storage order).
1149 Comp_SSO_Differs : Boolean;
1150 -- Set True when the component is a nested composite, and it does not
1151 -- have the same scalar storage order as Encl_Type.
1153 Component_Aliased : Boolean;
1155 begin
1156 -- Record case
1158 if Present (Comp) then
1159 Err_Node := Comp;
1160 Comp_Type := Etype (Comp);
1162 if Is_Tag (Comp) then
1163 Comp_Byte_Aligned := True;
1164 Component_Aliased := False;
1166 else
1167 -- If a component clause is present, check if the component starts
1168 -- on a storage element boundary. Otherwise conservatively assume
1169 -- it does so only in the case where the record is not packed.
1171 if Present (Component_Clause (Comp)) then
1172 Comp_Byte_Aligned :=
1173 Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
1174 else
1175 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1176 end if;
1178 Component_Aliased := Is_Aliased (Comp);
1179 end if;
1181 -- Array case
1183 else
1184 Err_Node := Encl_Type;
1185 Comp_Type := Component_Type (Encl_Type);
1187 Component_Aliased := Has_Aliased_Components (Encl_Type);
1188 end if;
1190 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1191 -- the attribute definition clause is attached to the first subtype.
1193 Comp_Type := Base_Type (Comp_Type);
1194 Comp_ADC := Get_Attribute_Definition_Clause
1195 (First_Subtype (Comp_Type),
1196 Attribute_Scalar_Storage_Order);
1197 Comp_ADC_Present := Present (Comp_ADC);
1199 -- Case of record or array component: check storage order compatibility
1201 if Is_Record_Type (Comp_Type) or else Is_Array_Type (Comp_Type) then
1202 Comp_SSO_Differs :=
1203 Reverse_Storage_Order (Encl_Type)
1205 Reverse_Storage_Order (Comp_Type);
1207 -- Parent and extension must have same storage order
1209 if Present (Comp) and then Chars (Comp) = Name_uParent then
1210 if Comp_SSO_Differs then
1211 Error_Msg_N
1212 ("record extension must have same scalar storage order as "
1213 & "parent", Err_Node);
1214 end if;
1216 -- If enclosing composite has explicit SSO then nested composite must
1217 -- have explicit SSO as well.
1219 elsif Present (ADC) and then No (Comp_ADC) then
1220 Error_Msg_N ("nested composite must have explicit scalar "
1221 & "storage order", Err_Node);
1223 -- If component and composite SSO differs, check that component
1224 -- falls on byte boundaries and isn't packed.
1226 elsif Comp_SSO_Differs then
1228 -- Component SSO differs from enclosing composite:
1230 -- Reject if component is a packed array, as it may be represented
1231 -- as a scalar internally.
1233 if Is_Packed_Array (Comp_Type) then
1234 Error_Msg_N
1235 ("type of packed component must have same scalar "
1236 & "storage order as enclosing composite", Err_Node);
1238 -- Reject if composite is a packed array, as it may be rewritten
1239 -- into an array of scalars.
1241 elsif Is_Packed_Array (Encl_Type) then
1242 Error_Msg_N ("type of packed array must have same scalar "
1243 & "storage order as component", Err_Node);
1245 -- Reject if not byte aligned
1247 elsif Is_Record_Type (Encl_Type)
1248 and then not Comp_Byte_Aligned
1249 then
1250 Error_Msg_N
1251 ("type of non-byte-aligned component must have same scalar "
1252 & "storage order as enclosing composite", Err_Node);
1253 end if;
1254 end if;
1256 -- Enclosing type has explicit SSO: non-composite component must not
1257 -- be aliased.
1259 elsif Present (ADC) and then Component_Aliased then
1260 Error_Msg_N
1261 ("aliased component not permitted for type with "
1262 & "explicit Scalar_Storage_Order", Err_Node);
1263 end if;
1264 end Check_Component_Storage_Order;
1266 -----------------------------
1267 -- Check_Debug_Info_Needed --
1268 -----------------------------
1270 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1271 begin
1272 if Debug_Info_Off (T) then
1273 return;
1275 elsif Comes_From_Source (T)
1276 or else Debug_Generated_Code
1277 or else Debug_Flag_VV
1278 or else Needs_Debug_Info (T)
1279 then
1280 Set_Debug_Info_Needed (T);
1281 end if;
1282 end Check_Debug_Info_Needed;
1284 -------------------------------
1285 -- Check_Expression_Function --
1286 -------------------------------
1288 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
1289 Decl : Node_Id;
1291 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1292 -- Function to search for deferred constant
1294 -------------------
1295 -- Find_Constant --
1296 -------------------
1298 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1299 begin
1300 -- When a constant is initialized with the result of a dispatching
1301 -- call, the constant declaration is rewritten as a renaming of the
1302 -- displaced function result. This scenario is not a premature use of
1303 -- a constant even though the Has_Completion flag is not set.
1305 if Is_Entity_Name (Nod)
1306 and then Present (Entity (Nod))
1307 and then Ekind (Entity (Nod)) = E_Constant
1308 and then Scope (Entity (Nod)) = Current_Scope
1309 and then Nkind (Declaration_Node (Entity (Nod))) =
1310 N_Object_Declaration
1311 and then not Is_Imported (Entity (Nod))
1312 and then not Has_Completion (Entity (Nod))
1313 then
1314 Error_Msg_NE
1315 ("premature use of& in call or instance", N, Entity (Nod));
1317 elsif Nkind (Nod) = N_Attribute_Reference then
1318 Analyze (Prefix (Nod));
1320 if Is_Entity_Name (Prefix (Nod))
1321 and then Is_Type (Entity (Prefix (Nod)))
1322 then
1323 Freeze_Before (N, Entity (Prefix (Nod)));
1324 end if;
1325 end if;
1327 return OK;
1328 end Find_Constant;
1330 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1332 -- Start of processing for Check_Expression_Function
1334 begin
1335 Decl := Original_Node (Unit_Declaration_Node (Nam));
1337 if Scope (Nam) = Current_Scope
1338 and then Nkind (Decl) = N_Expression_Function
1339 then
1340 Check_Deferred (Expression (Decl));
1341 end if;
1342 end Check_Expression_Function;
1344 ----------------------------
1345 -- Check_Strict_Alignment --
1346 ----------------------------
1348 procedure Check_Strict_Alignment (E : Entity_Id) is
1349 Comp : Entity_Id;
1351 begin
1352 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1353 Set_Strict_Alignment (E);
1355 elsif Is_Array_Type (E) then
1356 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1358 elsif Is_Record_Type (E) then
1359 if Is_Limited_Record (E) then
1360 Set_Strict_Alignment (E);
1361 return;
1362 end if;
1364 Comp := First_Component (E);
1365 while Present (Comp) loop
1366 if not Is_Type (Comp)
1367 and then (Strict_Alignment (Etype (Comp))
1368 or else Is_Aliased (Comp))
1369 then
1370 Set_Strict_Alignment (E);
1371 return;
1372 end if;
1374 Next_Component (Comp);
1375 end loop;
1376 end if;
1377 end Check_Strict_Alignment;
1379 -------------------------
1380 -- Check_Unsigned_Type --
1381 -------------------------
1383 procedure Check_Unsigned_Type (E : Entity_Id) is
1384 Ancestor : Entity_Id;
1385 Lo_Bound : Node_Id;
1386 Btyp : Entity_Id;
1388 begin
1389 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1390 return;
1391 end if;
1393 -- Do not attempt to analyze case where range was in error
1395 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
1396 return;
1397 end if;
1399 -- The situation that is non trivial is something like
1401 -- subtype x1 is integer range -10 .. +10;
1402 -- subtype x2 is x1 range 0 .. V1;
1403 -- subtype x3 is x2 range V2 .. V3;
1404 -- subtype x4 is x3 range V4 .. V5;
1406 -- where Vn are variables. Here the base type is signed, but we still
1407 -- know that x4 is unsigned because of the lower bound of x2.
1409 -- The only way to deal with this is to look up the ancestor chain
1411 Ancestor := E;
1412 loop
1413 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1414 return;
1415 end if;
1417 Lo_Bound := Type_Low_Bound (Ancestor);
1419 if Compile_Time_Known_Value (Lo_Bound) then
1420 if Expr_Rep_Value (Lo_Bound) >= 0 then
1421 Set_Is_Unsigned_Type (E, True);
1422 end if;
1424 return;
1426 else
1427 Ancestor := Ancestor_Subtype (Ancestor);
1429 -- If no ancestor had a static lower bound, go to base type
1431 if No (Ancestor) then
1433 -- Note: the reason we still check for a compile time known
1434 -- value for the base type is that at least in the case of
1435 -- generic formals, we can have bounds that fail this test,
1436 -- and there may be other cases in error situations.
1438 Btyp := Base_Type (E);
1440 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1441 return;
1442 end if;
1444 Lo_Bound := Type_Low_Bound (Base_Type (E));
1446 if Compile_Time_Known_Value (Lo_Bound)
1447 and then Expr_Rep_Value (Lo_Bound) >= 0
1448 then
1449 Set_Is_Unsigned_Type (E, True);
1450 end if;
1452 return;
1453 end if;
1454 end if;
1455 end loop;
1456 end Check_Unsigned_Type;
1458 -------------------------
1459 -- Is_Atomic_Aggregate --
1460 -------------------------
1462 function Is_Atomic_Aggregate
1463 (E : Entity_Id;
1464 Typ : Entity_Id) return Boolean
1466 Loc : constant Source_Ptr := Sloc (E);
1467 New_N : Node_Id;
1468 Par : Node_Id;
1469 Temp : Entity_Id;
1471 begin
1472 Par := Parent (E);
1474 -- Array may be qualified, so find outer context
1476 if Nkind (Par) = N_Qualified_Expression then
1477 Par := Parent (Par);
1478 end if;
1480 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
1481 and then Comes_From_Source (Par)
1482 then
1483 Temp := Make_Temporary (Loc, 'T', E);
1484 New_N :=
1485 Make_Object_Declaration (Loc,
1486 Defining_Identifier => Temp,
1487 Object_Definition => New_Occurrence_Of (Typ, Loc),
1488 Expression => Relocate_Node (E));
1489 Insert_Before (Par, New_N);
1490 Analyze (New_N);
1492 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1493 return True;
1495 else
1496 return False;
1497 end if;
1498 end Is_Atomic_Aggregate;
1500 -----------------------------------------------
1501 -- Explode_Initialization_Compound_Statement --
1502 -----------------------------------------------
1504 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
1505 Init_Stmts : constant Node_Id := Initialization_Statements (E);
1507 begin
1508 if Present (Init_Stmts)
1509 and then Nkind (Init_Stmts) = N_Compound_Statement
1510 then
1511 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
1513 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1514 -- just removing it, because Freeze_All may rely on this particular
1515 -- Node_Id still being present in the enclosing list to know where to
1516 -- stop freezing.
1518 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
1520 Set_Initialization_Statements (E, Empty);
1521 end if;
1522 end Explode_Initialization_Compound_Statement;
1524 ----------------
1525 -- Freeze_All --
1526 ----------------
1528 -- Note: the easy coding for this procedure would be to just build a
1529 -- single list of freeze nodes and then insert them and analyze them
1530 -- all at once. This won't work, because the analysis of earlier freeze
1531 -- nodes may recursively freeze types which would otherwise appear later
1532 -- on in the freeze list. So we must analyze and expand the freeze nodes
1533 -- as they are generated.
1535 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1536 E : Entity_Id;
1537 Decl : Node_Id;
1539 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1540 -- This is the internal recursive routine that does freezing of entities
1541 -- (but NOT the analysis of default expressions, which should not be
1542 -- recursive, we don't want to analyze those till we are sure that ALL
1543 -- the types are frozen).
1545 --------------------
1546 -- Freeze_All_Ent --
1547 --------------------
1549 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1550 E : Entity_Id;
1551 Flist : List_Id;
1552 Lastn : Node_Id;
1554 procedure Process_Flist;
1555 -- If freeze nodes are present, insert and analyze, and reset cursor
1556 -- for next insertion.
1558 -------------------
1559 -- Process_Flist --
1560 -------------------
1562 procedure Process_Flist is
1563 begin
1564 if Is_Non_Empty_List (Flist) then
1565 Lastn := Next (After);
1566 Insert_List_After_And_Analyze (After, Flist);
1568 if Present (Lastn) then
1569 After := Prev (Lastn);
1570 else
1571 After := Last (List_Containing (After));
1572 end if;
1573 end if;
1574 end Process_Flist;
1576 -- Start or processing for Freeze_All_Ent
1578 begin
1579 E := From;
1580 while Present (E) loop
1582 -- If the entity is an inner package which is not a package
1583 -- renaming, then its entities must be frozen at this point. Note
1584 -- that such entities do NOT get frozen at the end of the nested
1585 -- package itself (only library packages freeze).
1587 -- Same is true for task declarations, where anonymous records
1588 -- created for entry parameters must be frozen.
1590 if Ekind (E) = E_Package
1591 and then No (Renamed_Object (E))
1592 and then not Is_Child_Unit (E)
1593 and then not Is_Frozen (E)
1594 then
1595 Push_Scope (E);
1596 Install_Visible_Declarations (E);
1597 Install_Private_Declarations (E);
1599 Freeze_All (First_Entity (E), After);
1601 End_Package_Scope (E);
1603 if Is_Generic_Instance (E)
1604 and then Has_Delayed_Freeze (E)
1605 then
1606 Set_Has_Delayed_Freeze (E, False);
1607 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1608 end if;
1610 elsif Ekind (E) in Task_Kind
1611 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1612 N_Single_Task_Declaration)
1613 then
1614 Push_Scope (E);
1615 Freeze_All (First_Entity (E), After);
1616 End_Scope;
1618 -- For a derived tagged type, we must ensure that all the
1619 -- primitive operations of the parent have been frozen, so that
1620 -- their addresses will be in the parent's dispatch table at the
1621 -- point it is inherited.
1623 elsif Ekind (E) = E_Record_Type
1624 and then Is_Tagged_Type (E)
1625 and then Is_Tagged_Type (Etype (E))
1626 and then Is_Derived_Type (E)
1627 then
1628 declare
1629 Prim_List : constant Elist_Id :=
1630 Primitive_Operations (Etype (E));
1632 Prim : Elmt_Id;
1633 Subp : Entity_Id;
1635 begin
1636 Prim := First_Elmt (Prim_List);
1637 while Present (Prim) loop
1638 Subp := Node (Prim);
1640 if Comes_From_Source (Subp)
1641 and then not Is_Frozen (Subp)
1642 then
1643 Flist := Freeze_Entity (Subp, After);
1644 Process_Flist;
1645 end if;
1647 Next_Elmt (Prim);
1648 end loop;
1649 end;
1650 end if;
1652 if not Is_Frozen (E) then
1653 Flist := Freeze_Entity (E, After);
1654 Process_Flist;
1656 -- If already frozen, and there are delayed aspects, this is where
1657 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1658 -- for a description of how we handle aspect visibility).
1660 elsif Has_Delayed_Aspects (E) then
1662 -- Retrieve the visibility to the discriminants in order to
1663 -- analyze properly the aspects.
1665 Push_Scope_And_Install_Discriminants (E);
1667 declare
1668 Ritem : Node_Id;
1670 begin
1671 Ritem := First_Rep_Item (E);
1672 while Present (Ritem) loop
1673 if Nkind (Ritem) = N_Aspect_Specification
1674 and then Entity (Ritem) = E
1675 and then Is_Delayed_Aspect (Ritem)
1676 then
1677 Check_Aspect_At_End_Of_Declarations (Ritem);
1678 end if;
1680 Ritem := Next_Rep_Item (Ritem);
1681 end loop;
1682 end;
1684 Uninstall_Discriminants_And_Pop_Scope (E);
1685 end if;
1687 -- If an incomplete type is still not frozen, this may be a
1688 -- premature freezing because of a body declaration that follows.
1689 -- Indicate where the freezing took place. Freezing will happen
1690 -- if the body comes from source, but not if it is internally
1691 -- generated, for example as the body of a type invariant.
1693 -- If the freezing is caused by the end of the current declarative
1694 -- part, it is a Taft Amendment type, and there is no error.
1696 if not Is_Frozen (E)
1697 and then Ekind (E) = E_Incomplete_Type
1698 then
1699 declare
1700 Bod : constant Node_Id := Next (After);
1702 begin
1703 -- The presence of a body freezes all entities previously
1704 -- declared in the current list of declarations, but this
1705 -- does not apply if the body does not come from source.
1706 -- A type invariant is transformed into a subprogram body
1707 -- which is placed at the end of the private part of the
1708 -- current package, but this body does not freeze incomplete
1709 -- types that may be declared in this private part.
1711 if (Nkind_In (Bod, N_Subprogram_Body,
1712 N_Entry_Body,
1713 N_Package_Body,
1714 N_Protected_Body,
1715 N_Task_Body)
1716 or else Nkind (Bod) in N_Body_Stub)
1717 and then
1718 List_Containing (After) = List_Containing (Parent (E))
1719 and then Comes_From_Source (Bod)
1720 then
1721 Error_Msg_Sloc := Sloc (Next (After));
1722 Error_Msg_NE
1723 ("type& is frozen# before its full declaration",
1724 Parent (E), E);
1725 end if;
1726 end;
1727 end if;
1729 Next_Entity (E);
1730 end loop;
1731 end Freeze_All_Ent;
1733 -- Start of processing for Freeze_All
1735 begin
1736 Freeze_All_Ent (From, After);
1738 -- Now that all types are frozen, we can deal with default expressions
1739 -- that require us to build a default expression functions. This is the
1740 -- point at which such functions are constructed (after all types that
1741 -- might be used in such expressions have been frozen).
1743 -- For subprograms that are renaming_as_body, we create the wrapper
1744 -- bodies as needed.
1746 -- We also add finalization chains to access types whose designated
1747 -- types are controlled. This is normally done when freezing the type,
1748 -- but this misses recursive type definitions where the later members
1749 -- of the recursion introduce controlled components.
1751 -- Loop through entities
1753 E := From;
1754 while Present (E) loop
1755 if Is_Subprogram (E) then
1756 if not Default_Expressions_Processed (E) then
1757 Process_Default_Expressions (E, After);
1758 end if;
1760 if not Has_Completion (E) then
1761 Decl := Unit_Declaration_Node (E);
1763 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1764 if Error_Posted (Decl) then
1765 Set_Has_Completion (E);
1766 else
1767 Build_And_Analyze_Renamed_Body (Decl, E, After);
1768 end if;
1770 elsif Nkind (Decl) = N_Subprogram_Declaration
1771 and then Present (Corresponding_Body (Decl))
1772 and then
1773 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1774 = N_Subprogram_Renaming_Declaration
1775 then
1776 Build_And_Analyze_Renamed_Body
1777 (Decl, Corresponding_Body (Decl), After);
1778 end if;
1779 end if;
1781 elsif Ekind (E) in Task_Kind
1782 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1783 N_Single_Task_Declaration)
1784 then
1785 declare
1786 Ent : Entity_Id;
1788 begin
1789 Ent := First_Entity (E);
1790 while Present (Ent) loop
1791 if Is_Entry (Ent)
1792 and then not Default_Expressions_Processed (Ent)
1793 then
1794 Process_Default_Expressions (Ent, After);
1795 end if;
1797 Next_Entity (Ent);
1798 end loop;
1799 end;
1800 end if;
1802 -- Historical note: We used to create a finalization master for an
1803 -- access type whose designated type is not controlled, but contains
1804 -- private controlled compoments. This form of postprocessing is no
1805 -- longer needed because the finalization master is now created when
1806 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
1808 Next_Entity (E);
1809 end loop;
1810 end Freeze_All;
1812 -----------------------
1813 -- Freeze_And_Append --
1814 -----------------------
1816 procedure Freeze_And_Append
1817 (Ent : Entity_Id;
1818 N : Node_Id;
1819 Result : in out List_Id)
1821 L : constant List_Id := Freeze_Entity (Ent, N);
1822 begin
1823 if Is_Non_Empty_List (L) then
1824 if Result = No_List then
1825 Result := L;
1826 else
1827 Append_List (L, Result);
1828 end if;
1829 end if;
1830 end Freeze_And_Append;
1832 -------------------
1833 -- Freeze_Before --
1834 -------------------
1836 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1837 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
1839 begin
1840 if Ekind (T) = E_Function then
1841 Check_Expression_Function (N, T);
1842 end if;
1844 if Is_Non_Empty_List (Freeze_Nodes) then
1845 Insert_Actions (N, Freeze_Nodes);
1846 end if;
1847 end Freeze_Before;
1849 -------------------
1850 -- Freeze_Entity --
1851 -------------------
1853 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1854 GM : constant Ghost_Mode_Type := Ghost_Mode;
1855 -- Save the current Ghost mode in effect in case the entity being frozen
1856 -- sets a different mode.
1858 Loc : constant Source_Ptr := Sloc (N);
1859 Atype : Entity_Id;
1860 Comp : Entity_Id;
1861 F_Node : Node_Id;
1862 Formal : Entity_Id;
1863 Indx : Node_Id;
1865 Test_E : Entity_Id := E;
1866 -- This could use a comment ???
1868 Late_Freezing : Boolean := False;
1869 -- Used to detect attempt to freeze function declared in another unit
1871 Result : List_Id := No_List;
1872 -- List of freezing actions, left at No_List if none
1874 Has_Default_Initialization : Boolean := False;
1875 -- This flag gets set to true for a variable with default initialization
1877 procedure Add_To_Result (N : Node_Id);
1878 -- N is a freezing action to be appended to the Result
1880 function After_Last_Declaration return Boolean;
1881 -- If Loc is a freeze_entity that appears after the last declaration
1882 -- in the scope, inhibit error messages on late completion.
1884 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1885 -- Check that an Access or Unchecked_Access attribute with a prefix
1886 -- which is the current instance type can only be applied when the type
1887 -- is limited.
1889 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1890 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1891 -- integer literal without an explicit corresponding size clause. The
1892 -- caller has checked that Utype is a modular integer type.
1894 procedure Freeze_Array_Type (Arr : Entity_Id);
1895 -- Freeze array type, including freezing index and component types
1897 procedure Freeze_Object_Declaration (E : Entity_Id);
1898 -- Perform checks and generate freeze node if needed for a constant or
1899 -- variable declared by an object declaration.
1901 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
1902 -- Create Freeze_Generic_Entity nodes for types declared in a generic
1903 -- package. Recurse on inner generic packages.
1905 function Freeze_Profile (E : Entity_Id) return Boolean;
1906 -- Freeze formals and return type of subprogram. If some type in the
1907 -- profile is a limited view, freezing of the entity will take place
1908 -- elsewhere, and the function returns False. This routine will be
1909 -- modified if and when we can implement AI05-019 efficiently ???
1911 procedure Freeze_Record_Type (Rec : Entity_Id);
1912 -- Freeze record type, including freezing component types, and freezing
1913 -- primitive operations if this is a tagged type.
1915 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
1916 -- Determine whether an arbitrary entity is subject to Boolean aspect
1917 -- Import and its value is specified as True.
1919 procedure Late_Freeze_Subprogram (E : Entity_Id);
1920 -- Following AI05-151, a function can return a limited view of a type
1921 -- declared elsewhere. In that case the function cannot be frozen at
1922 -- the end of its enclosing package. If its first use is in a different
1923 -- unit, it cannot be frozen there, but if the call is legal the full
1924 -- view of the return type is available and the subprogram can now be
1925 -- frozen. However the freeze node cannot be inserted at the point of
1926 -- call, but rather must go in the package holding the function, so that
1927 -- the backend can process it in the proper context.
1929 procedure Restore_Globals;
1930 -- Restore the values of all saved global variables
1932 procedure Wrap_Imported_Subprogram (E : Entity_Id);
1933 -- If E is an entity for an imported subprogram with pre/post-conditions
1934 -- then this procedure will create a wrapper to ensure that proper run-
1935 -- time checking of the pre/postconditions. See body for details.
1937 -------------------
1938 -- Add_To_Result --
1939 -------------------
1941 procedure Add_To_Result (N : Node_Id) is
1942 begin
1943 if No (Result) then
1944 Result := New_List (N);
1945 else
1946 Append (N, Result);
1947 end if;
1948 end Add_To_Result;
1950 ----------------------------
1951 -- After_Last_Declaration --
1952 ----------------------------
1954 function After_Last_Declaration return Boolean is
1955 Spec : constant Node_Id := Parent (Current_Scope);
1957 begin
1958 if Nkind (Spec) = N_Package_Specification then
1959 if Present (Private_Declarations (Spec)) then
1960 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1961 elsif Present (Visible_Declarations (Spec)) then
1962 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1963 else
1964 return False;
1965 end if;
1967 else
1968 return False;
1969 end if;
1970 end After_Last_Declaration;
1972 ----------------------------
1973 -- Check_Current_Instance --
1974 ----------------------------
1976 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1978 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
1979 -- Determine whether Typ is compatible with the rules for aliased
1980 -- views of types as defined in RM 3.10 in the various dialects.
1982 function Process (N : Node_Id) return Traverse_Result;
1983 -- Process routine to apply check to given node
1985 -----------------------------
1986 -- Is_Aliased_View_Of_Type --
1987 -----------------------------
1989 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
1990 Typ_Decl : constant Node_Id := Parent (Typ);
1992 begin
1993 -- Common case
1995 if Nkind (Typ_Decl) = N_Full_Type_Declaration
1996 and then Limited_Present (Type_Definition (Typ_Decl))
1997 then
1998 return True;
2000 -- The following paragraphs describe what a legal aliased view of
2001 -- a type is in the various dialects of Ada.
2003 -- Ada 95
2005 -- The current instance of a limited type, and a formal parameter
2006 -- or generic formal object of a tagged type.
2008 -- Ada 95 limited type
2009 -- * Type with reserved word "limited"
2010 -- * A protected or task type
2011 -- * A composite type with limited component
2013 elsif Ada_Version <= Ada_95 then
2014 return Is_Limited_Type (Typ);
2016 -- Ada 2005
2018 -- The current instance of a limited tagged type, a protected
2019 -- type, a task type, or a type that has the reserved word
2020 -- "limited" in its full definition ... a formal parameter or
2021 -- generic formal object of a tagged type.
2023 -- Ada 2005 limited type
2024 -- * Type with reserved word "limited", "synchronized", "task"
2025 -- or "protected"
2026 -- * A composite type with limited component
2027 -- * A derived type whose parent is a non-interface limited type
2029 elsif Ada_Version = Ada_2005 then
2030 return
2031 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
2032 or else
2033 (Is_Derived_Type (Typ)
2034 and then not Is_Interface (Etype (Typ))
2035 and then Is_Limited_Type (Etype (Typ)));
2037 -- Ada 2012 and beyond
2039 -- The current instance of an immutably limited type ... a formal
2040 -- parameter or generic formal object of a tagged type.
2042 -- Ada 2012 limited type
2043 -- * Type with reserved word "limited", "synchronized", "task"
2044 -- or "protected"
2045 -- * A composite type with limited component
2046 -- * A derived type whose parent is a non-interface limited type
2047 -- * An incomplete view
2049 -- Ada 2012 immutably limited type
2050 -- * Explicitly limited record type
2051 -- * Record extension with "limited" present
2052 -- * Non-formal limited private type that is either tagged
2053 -- or has at least one access discriminant with a default
2054 -- expression
2055 -- * Task type, protected type or synchronized interface
2056 -- * Type derived from immutably limited type
2058 else
2059 return
2060 Is_Immutably_Limited_Type (Typ)
2061 or else Is_Incomplete_Type (Typ);
2062 end if;
2063 end Is_Aliased_View_Of_Type;
2065 -------------
2066 -- Process --
2067 -------------
2069 function Process (N : Node_Id) return Traverse_Result is
2070 begin
2071 case Nkind (N) is
2072 when N_Attribute_Reference =>
2073 if Nam_In (Attribute_Name (N), Name_Access,
2074 Name_Unchecked_Access)
2075 and then Is_Entity_Name (Prefix (N))
2076 and then Is_Type (Entity (Prefix (N)))
2077 and then Entity (Prefix (N)) = E
2078 then
2079 if Ada_Version < Ada_2012 then
2080 Error_Msg_N
2081 ("current instance must be a limited type",
2082 Prefix (N));
2083 else
2084 Error_Msg_N
2085 ("current instance must be an immutably limited "
2086 & "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
2087 end if;
2089 return Abandon;
2091 else
2092 return OK;
2093 end if;
2095 when others => return OK;
2096 end case;
2097 end Process;
2099 procedure Traverse is new Traverse_Proc (Process);
2101 -- Local variables
2103 Rec_Type : constant Entity_Id :=
2104 Scope (Defining_Identifier (Comp_Decl));
2106 -- Start of processing for Check_Current_Instance
2108 begin
2109 if not Is_Aliased_View_Of_Type (Rec_Type) then
2110 Traverse (Comp_Decl);
2111 end if;
2112 end Check_Current_Instance;
2114 ------------------------------
2115 -- Check_Suspicious_Modulus --
2116 ------------------------------
2118 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
2119 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
2121 begin
2122 if not Warn_On_Suspicious_Modulus_Value then
2123 return;
2124 end if;
2126 if Nkind (Decl) = N_Full_Type_Declaration then
2127 declare
2128 Tdef : constant Node_Id := Type_Definition (Decl);
2130 begin
2131 if Nkind (Tdef) = N_Modular_Type_Definition then
2132 declare
2133 Modulus : constant Node_Id :=
2134 Original_Node (Expression (Tdef));
2136 begin
2137 if Nkind (Modulus) = N_Integer_Literal then
2138 declare
2139 Modv : constant Uint := Intval (Modulus);
2140 Sizv : constant Uint := RM_Size (Utype);
2142 begin
2143 -- First case, modulus and size are the same. This
2144 -- happens if you have something like mod 32, with
2145 -- an explicit size of 32, this is for sure a case
2146 -- where the warning is given, since it is seems
2147 -- very unlikely that someone would want e.g. a
2148 -- five bit type stored in 32 bits. It is much
2149 -- more likely they wanted a 32-bit type.
2151 if Modv = Sizv then
2152 null;
2154 -- Second case, the modulus is 32 or 64 and no
2155 -- size clause is present. This is a less clear
2156 -- case for giving the warning, but in the case
2157 -- of 32/64 (5-bit or 6-bit types) these seem rare
2158 -- enough that it is a likely error (and in any
2159 -- case using 2**5 or 2**6 in these cases seems
2160 -- clearer. We don't include 8 or 16 here, simply
2161 -- because in practice 3-bit and 4-bit types are
2162 -- more common and too many false positives if
2163 -- we warn in these cases.
2165 elsif not Has_Size_Clause (Utype)
2166 and then (Modv = Uint_32 or else Modv = Uint_64)
2167 then
2168 null;
2170 -- No warning needed
2172 else
2173 return;
2174 end if;
2176 -- If we fall through, give warning
2178 Error_Msg_Uint_1 := Modv;
2179 Error_Msg_N
2180 ("?M?2 '*'*^' may have been intended here",
2181 Modulus);
2182 end;
2183 end if;
2184 end;
2185 end if;
2186 end;
2187 end if;
2188 end Check_Suspicious_Modulus;
2190 -----------------------
2191 -- Freeze_Array_Type --
2192 -----------------------
2194 procedure Freeze_Array_Type (Arr : Entity_Id) is
2195 FS : constant Entity_Id := First_Subtype (Arr);
2196 Ctyp : constant Entity_Id := Component_Type (Arr);
2197 Clause : Entity_Id;
2199 Non_Standard_Enum : Boolean := False;
2200 -- Set true if any of the index types is an enumeration type with a
2201 -- non-standard representation.
2203 begin
2204 Freeze_And_Append (Ctyp, N, Result);
2206 Indx := First_Index (Arr);
2207 while Present (Indx) loop
2208 Freeze_And_Append (Etype (Indx), N, Result);
2210 if Is_Enumeration_Type (Etype (Indx))
2211 and then Has_Non_Standard_Rep (Etype (Indx))
2212 then
2213 Non_Standard_Enum := True;
2214 end if;
2216 Next_Index (Indx);
2217 end loop;
2219 -- Processing that is done only for base types
2221 if Ekind (Arr) = E_Array_Type then
2223 -- Deal with default setting of reverse storage order
2225 Set_SSO_From_Default (Arr);
2227 -- Propagate flags for component type
2229 if Is_Controlled (Component_Type (Arr))
2230 or else Has_Controlled_Component (Ctyp)
2231 then
2232 Set_Has_Controlled_Component (Arr);
2233 end if;
2235 if Has_Unchecked_Union (Component_Type (Arr)) then
2236 Set_Has_Unchecked_Union (Arr);
2237 end if;
2239 -- Warn for pragma Pack overriding foreign convention
2241 if Has_Foreign_Convention (Ctyp)
2242 and then Has_Pragma_Pack (Arr)
2243 then
2244 declare
2245 CN : constant Name_Id :=
2246 Get_Convention_Name (Convention (Ctyp));
2247 PP : constant Node_Id :=
2248 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2249 begin
2250 if Present (PP) then
2251 Error_Msg_Name_1 := CN;
2252 Error_Msg_Sloc := Sloc (Arr);
2253 Error_Msg_N
2254 ("pragma Pack affects convention % components #??", PP);
2255 Error_Msg_Name_1 := CN;
2256 Error_Msg_N
2257 ("\array components may not have % compatible "
2258 & "representation??", PP);
2259 end if;
2260 end;
2261 end if;
2263 -- If packing was requested or if the component size was
2264 -- set explicitly, then see if bit packing is required. This
2265 -- processing is only done for base types, since all of the
2266 -- representation aspects involved are type-related.
2268 -- This is not just an optimization, if we start processing the
2269 -- subtypes, they interfere with the settings on the base type
2270 -- (this is because Is_Packed has a slightly different meaning
2271 -- before and after freezing).
2273 declare
2274 Csiz : Uint;
2275 Esiz : Uint;
2277 begin
2278 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2279 and then Known_Static_RM_Size (Ctyp)
2280 and then not Has_Component_Size_Clause (Arr)
2281 then
2282 Csiz := UI_Max (RM_Size (Ctyp), 1);
2284 elsif Known_Component_Size (Arr) then
2285 Csiz := Component_Size (Arr);
2287 elsif not Known_Static_Esize (Ctyp) then
2288 Csiz := Uint_0;
2290 else
2291 Esiz := Esize (Ctyp);
2293 -- We can set the component size if it is less than 16,
2294 -- rounding it up to the next storage unit size.
2296 if Esiz <= 8 then
2297 Csiz := Uint_8;
2298 elsif Esiz <= 16 then
2299 Csiz := Uint_16;
2300 else
2301 Csiz := Uint_0;
2302 end if;
2304 -- Set component size up to match alignment if it would
2305 -- otherwise be less than the alignment. This deals with
2306 -- cases of types whose alignment exceeds their size (the
2307 -- padded type cases).
2309 if Csiz /= 0 then
2310 declare
2311 A : constant Uint := Alignment_In_Bits (Ctyp);
2312 begin
2313 if Csiz < A then
2314 Csiz := A;
2315 end if;
2316 end;
2317 end if;
2318 end if;
2320 -- Case of component size that may result in packing
2322 if 1 <= Csiz and then Csiz <= 64 then
2323 declare
2324 Ent : constant Entity_Id :=
2325 First_Subtype (Arr);
2326 Pack_Pragma : constant Node_Id :=
2327 Get_Rep_Pragma (Ent, Name_Pack);
2328 Comp_Size_C : constant Node_Id :=
2329 Get_Attribute_Definition_Clause
2330 (Ent, Attribute_Component_Size);
2332 begin
2333 -- Warn if we have pack and component size so that the
2334 -- pack is ignored.
2336 -- Note: here we must check for the presence of a
2337 -- component size before checking for a Pack pragma to
2338 -- deal with the case where the array type is a derived
2339 -- type whose parent is currently private.
2341 if Present (Comp_Size_C)
2342 and then Has_Pragma_Pack (Ent)
2343 and then Warn_On_Redundant_Constructs
2344 then
2345 Error_Msg_Sloc := Sloc (Comp_Size_C);
2346 Error_Msg_NE
2347 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
2348 Error_Msg_N
2349 ("\?r?explicit component size given#!", Pack_Pragma);
2350 Set_Is_Packed (Base_Type (Ent), False);
2351 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2352 end if;
2354 -- Set component size if not already set by a component
2355 -- size clause.
2357 if not Present (Comp_Size_C) then
2358 Set_Component_Size (Arr, Csiz);
2359 end if;
2361 -- Check for base type of 8, 16, 32 bits, where an
2362 -- unsigned subtype has a length one less than the
2363 -- base type (e.g. Natural subtype of Integer).
2365 -- In such cases, if a component size was not set
2366 -- explicitly, then generate a warning.
2368 if Has_Pragma_Pack (Arr)
2369 and then not Present (Comp_Size_C)
2370 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2371 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2372 then
2373 Error_Msg_Uint_1 := Csiz;
2375 if Present (Pack_Pragma) then
2376 Error_Msg_N
2377 ("??pragma Pack causes component size to be ^!",
2378 Pack_Pragma);
2379 Error_Msg_N
2380 ("\??use Component_Size to set desired value!",
2381 Pack_Pragma);
2382 end if;
2383 end if;
2385 -- Actual packing is not needed for 8, 16, 32, 64. Also
2386 -- not needed for 24 if alignment is 1.
2388 if Csiz = 8
2389 or else Csiz = 16
2390 or else Csiz = 32
2391 or else Csiz = 64
2392 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2393 then
2394 -- Here the array was requested to be packed, but
2395 -- the packing request had no effect, so Is_Packed
2396 -- is reset.
2398 -- Note: semantically this means that we lose track
2399 -- of the fact that a derived type inherited a pragma
2400 -- Pack that was non- effective, but that seems fine.
2402 -- We regard a Pack pragma as a request to set a
2403 -- representation characteristic, and this request
2404 -- may be ignored.
2406 Set_Is_Packed (Base_Type (Arr), False);
2407 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2409 if Known_Static_Esize (Component_Type (Arr))
2410 and then Esize (Component_Type (Arr)) = Csiz
2411 then
2412 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
2413 end if;
2415 -- In all other cases, packing is indeed needed
2417 else
2418 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2419 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2420 Set_Is_Packed (Base_Type (Arr), True);
2421 end if;
2422 end;
2423 end if;
2424 end;
2426 -- Check for Aliased or Atomic_Components/Atomic with unsuitable
2427 -- packing or explicit component size clause given.
2429 if (Has_Aliased_Components (Arr)
2430 or else Has_Atomic_Components (Arr)
2431 or else Is_Atomic (Ctyp))
2432 and then
2433 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2434 then
2435 Alias_Atomic_Check : declare
2437 procedure Complain_CS (T : String);
2438 -- Outputs error messages for incorrect CS clause or pragma
2439 -- Pack for aliased or atomic components (T is "aliased" or
2440 -- "atomic");
2442 -----------------
2443 -- Complain_CS --
2444 -----------------
2446 procedure Complain_CS (T : String) is
2447 begin
2448 if Has_Component_Size_Clause (Arr) then
2449 Clause :=
2450 Get_Attribute_Definition_Clause
2451 (FS, Attribute_Component_Size);
2453 Error_Msg_N
2454 ("incorrect component size for "
2455 & T & " components", Clause);
2456 Error_Msg_Uint_1 := Esize (Ctyp);
2457 Error_Msg_N
2458 ("\only allowed value is^", Clause);
2460 else
2461 Error_Msg_N
2462 ("cannot pack " & T & " components",
2463 Get_Rep_Pragma (FS, Name_Pack));
2464 end if;
2465 end Complain_CS;
2467 -- Start of processing for Alias_Atomic_Check
2469 begin
2470 -- If object size of component type isn't known, we cannot
2471 -- be sure so we defer to the back end.
2473 if not Known_Static_Esize (Ctyp) then
2474 null;
2476 -- Case where component size has no effect. First check for
2477 -- object size of component type multiple of the storage
2478 -- unit size.
2480 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2482 -- OK in both packing case and component size case if RM
2483 -- size is known and static and same as the object size.
2485 and then
2486 ((Known_Static_RM_Size (Ctyp)
2487 and then Esize (Ctyp) = RM_Size (Ctyp))
2489 -- Or if we have an explicit component size clause and
2490 -- the component size and object size are equal.
2492 or else
2493 (Has_Component_Size_Clause (Arr)
2494 and then Component_Size (Arr) = Esize (Ctyp)))
2495 then
2496 null;
2498 elsif Has_Aliased_Components (Arr) then
2499 Complain_CS ("aliased");
2501 elsif Has_Atomic_Components (Arr) or else Is_Atomic (Ctyp)
2502 then
2503 Complain_CS ("atomic");
2504 end if;
2505 end Alias_Atomic_Check;
2506 end if;
2508 -- Check for Independent_Components/Independent with unsuitable
2509 -- packing or explicit component size clause given.
2511 if (Has_Independent_Components (Arr) or else Is_Independent (Ctyp))
2512 and then
2513 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2514 then
2515 begin
2516 -- If object size of component type isn't known, we cannot
2517 -- be sure so we defer to the back end.
2519 if not Known_Static_Esize (Ctyp) then
2520 null;
2522 -- Case where component size has no effect. First check for
2523 -- object size of component type multiple of the storage
2524 -- unit size.
2526 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2528 -- OK in both packing case and component size case if RM
2529 -- size is known and multiple of the storage unit size.
2531 and then
2532 ((Known_Static_RM_Size (Ctyp)
2533 and then RM_Size (Ctyp) mod System_Storage_Unit = 0)
2535 -- Or if we have an explicit component size clause and
2536 -- the component size is larger than the object size.
2538 or else
2539 (Has_Component_Size_Clause (Arr)
2540 and then Component_Size (Arr) >= Esize (Ctyp)))
2541 then
2542 null;
2544 else
2545 if Has_Component_Size_Clause (Arr) then
2546 Clause :=
2547 Get_Attribute_Definition_Clause
2548 (FS, Attribute_Component_Size);
2550 Error_Msg_N
2551 ("incorrect component size for "
2552 & "independent components", Clause);
2553 Error_Msg_Uint_1 := Esize (Ctyp);
2554 Error_Msg_N
2555 ("\minimum allowed is^", Clause);
2557 else
2558 Error_Msg_N
2559 ("cannot pack independent components",
2560 Get_Rep_Pragma (FS, Name_Pack));
2561 end if;
2562 end if;
2563 end;
2564 end if;
2566 -- Warn for case of atomic type
2568 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2570 if Present (Clause)
2571 and then not Addressable (Component_Size (FS))
2572 then
2573 Error_Msg_NE
2574 ("non-atomic components of type& may not be "
2575 & "accessible by separate tasks??", Clause, Arr);
2577 if Has_Component_Size_Clause (Arr) then
2578 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2579 (FS, Attribute_Component_Size));
2580 Error_Msg_N ("\because of component size clause#??", Clause);
2582 elsif Has_Pragma_Pack (Arr) then
2583 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2584 Error_Msg_N ("\because of pragma Pack#??", Clause);
2585 end if;
2586 end if;
2588 -- Check for scalar storage order
2590 declare
2591 Dummy : Boolean;
2592 begin
2593 Check_Component_Storage_Order
2594 (Encl_Type => Arr,
2595 Comp => Empty,
2596 ADC => Get_Attribute_Definition_Clause
2597 (First_Subtype (Arr),
2598 Attribute_Scalar_Storage_Order),
2599 Comp_ADC_Present => Dummy);
2600 end;
2602 -- Processing that is done only for subtypes
2604 else
2605 -- Acquire alignment from base type
2607 if Unknown_Alignment (Arr) then
2608 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2609 Adjust_Esize_Alignment (Arr);
2610 end if;
2611 end if;
2613 -- Specific checks for bit-packed arrays
2615 if Is_Bit_Packed_Array (Arr) then
2617 -- Check number of elements for bit packed arrays that come from
2618 -- source and have compile time known ranges. The bit-packed
2619 -- arrays circuitry does not support arrays with more than
2620 -- Integer'Last + 1 elements, and when this restriction is
2621 -- violated, causes incorrect data access.
2623 -- For the case where this is not compile time known, a run-time
2624 -- check should be generated???
2626 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
2627 declare
2628 Elmts : Uint;
2629 Index : Node_Id;
2630 Ilen : Node_Id;
2631 Ityp : Entity_Id;
2633 begin
2634 Elmts := Uint_1;
2635 Index := First_Index (Arr);
2636 while Present (Index) loop
2637 Ityp := Etype (Index);
2639 -- Never generate an error if any index is of a generic
2640 -- type. We will check this in instances.
2642 if Is_Generic_Type (Ityp) then
2643 Elmts := Uint_0;
2644 exit;
2645 end if;
2647 Ilen :=
2648 Make_Attribute_Reference (Loc,
2649 Prefix => New_Occurrence_Of (Ityp, Loc),
2650 Attribute_Name => Name_Range_Length);
2651 Analyze_And_Resolve (Ilen);
2653 -- No attempt is made to check number of elements if not
2654 -- compile time known.
2656 if Nkind (Ilen) /= N_Integer_Literal then
2657 Elmts := Uint_0;
2658 exit;
2659 end if;
2661 Elmts := Elmts * Intval (Ilen);
2662 Next_Index (Index);
2663 end loop;
2665 if Elmts > Intval (High_Bound
2666 (Scalar_Range (Standard_Integer))) + 1
2667 then
2668 Error_Msg_N
2669 ("bit packed array type may not have "
2670 & "more than Integer''Last+1 elements", Arr);
2671 end if;
2672 end;
2673 end if;
2675 -- Check size
2677 if Known_RM_Size (Arr) then
2678 declare
2679 SizC : constant Node_Id := Size_Clause (Arr);
2680 Discard : Boolean;
2682 begin
2683 -- It is not clear if it is possible to have no size clause
2684 -- at this stage, but it is not worth worrying about. Post
2685 -- error on the entity name in the size clause if present,
2686 -- else on the type entity itself.
2688 if Present (SizC) then
2689 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
2690 else
2691 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
2692 end if;
2693 end;
2694 end if;
2695 end if;
2697 -- If any of the index types was an enumeration type with a non-
2698 -- standard rep clause, then we indicate that the array type is
2699 -- always packed (even if it is not bit packed).
2701 if Non_Standard_Enum then
2702 Set_Has_Non_Standard_Rep (Base_Type (Arr));
2703 Set_Is_Packed (Base_Type (Arr));
2704 end if;
2706 Set_Component_Alignment_If_Not_Set (Arr);
2708 -- If the array is packed, we must create the packed array type to be
2709 -- used to actually implement the type. This is only needed for real
2710 -- array types (not for string literal types, since they are present
2711 -- only for the front end).
2713 if Is_Packed (Arr)
2714 and then Ekind (Arr) /= E_String_Literal_Subtype
2715 then
2716 Create_Packed_Array_Impl_Type (Arr);
2717 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
2719 -- Make sure that we have the necessary routines to implement the
2720 -- packing, and complain now if not. Note that we only test this
2721 -- for constrained array types.
2723 if Is_Constrained (Arr)
2724 and then Is_Bit_Packed_Array (Arr)
2725 and then Present (Packed_Array_Impl_Type (Arr))
2726 and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
2727 then
2728 declare
2729 CS : constant Uint := Component_Size (Arr);
2730 RE : constant RE_Id := Get_Id (UI_To_Int (CS));
2732 begin
2733 if RE /= RE_Null
2734 and then not RTE_Available (RE)
2735 then
2736 Error_Msg_CRT
2737 ("packing of " & UI_Image (CS) & "-bit components",
2738 First_Subtype (Etype (Arr)));
2740 -- Cancel the packing
2742 Set_Is_Packed (Base_Type (Arr), False);
2743 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2744 Set_Packed_Array_Impl_Type (Arr, Empty);
2745 goto Skip_Packed;
2746 end if;
2747 end;
2748 end if;
2750 -- Size information of packed array type is copied to the array
2751 -- type, since this is really the representation. But do not
2752 -- override explicit existing size values. If the ancestor subtype
2753 -- is constrained the Packed_Array_Impl_Type will be inherited
2754 -- from it, but the size may have been provided already, and
2755 -- must not be overridden either.
2757 if not Has_Size_Clause (Arr)
2758 and then
2759 (No (Ancestor_Subtype (Arr))
2760 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
2761 then
2762 Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
2763 Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
2764 end if;
2766 if not Has_Alignment_Clause (Arr) then
2767 Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
2768 end if;
2769 end if;
2771 <<Skip_Packed>>
2773 -- For non-packed arrays set the alignment of the array to the
2774 -- alignment of the component type if it is unknown. Skip this
2775 -- in atomic case (atomic arrays may need larger alignments).
2777 if not Is_Packed (Arr)
2778 and then Unknown_Alignment (Arr)
2779 and then Known_Alignment (Ctyp)
2780 and then Known_Static_Component_Size (Arr)
2781 and then Known_Static_Esize (Ctyp)
2782 and then Esize (Ctyp) = Component_Size (Arr)
2783 and then not Is_Atomic (Arr)
2784 then
2785 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
2786 end if;
2787 end Freeze_Array_Type;
2789 -------------------------------
2790 -- Freeze_Object_Declaration --
2791 -------------------------------
2793 procedure Freeze_Object_Declaration (E : Entity_Id) is
2794 begin
2795 -- Abstract type allowed only for C++ imported variables or constants
2797 -- Note: we inhibit this check for objects that do not come from
2798 -- source because there is at least one case (the expansion of
2799 -- x'Class'Input where x is abstract) where we legitimately
2800 -- generate an abstract object.
2802 if Is_Abstract_Type (Etype (E))
2803 and then Comes_From_Source (Parent (E))
2804 and then not (Is_Imported (E) and then Is_CPP_Class (Etype (E)))
2805 then
2806 Error_Msg_N ("type of object cannot be abstract",
2807 Object_Definition (Parent (E)));
2809 if Is_CPP_Class (Etype (E)) then
2810 Error_Msg_NE
2811 ("\} may need a cpp_constructor",
2812 Object_Definition (Parent (E)), Etype (E));
2814 elsif Present (Expression (Parent (E))) then
2815 Error_Msg_N -- CODEFIX
2816 ("\maybe a class-wide type was meant",
2817 Object_Definition (Parent (E)));
2818 end if;
2819 end if;
2821 -- For object created by object declaration, perform required
2822 -- categorization (preelaborate and pure) checks. Defer these
2823 -- checks to freeze time since pragma Import inhibits default
2824 -- initialization and thus pragma Import affects these checks.
2826 Validate_Object_Declaration (Declaration_Node (E));
2828 -- If there is an address clause, check that it is valid
2829 -- and if need be move initialization to the freeze node.
2831 Check_Address_Clause (E);
2833 -- Similar processing is needed for aspects that may affect
2834 -- object layout, like Alignment, if there is an initialization
2835 -- expression.
2837 if Has_Delayed_Aspects (E)
2838 and then Expander_Active
2839 and then Is_Array_Type (Etype (E))
2840 and then Present (Expression (Parent (E)))
2841 then
2842 declare
2843 Decl : constant Node_Id := Parent (E);
2844 Lhs : constant Node_Id := New_Occurrence_Of (E, Loc);
2846 begin
2848 -- Capture initialization value at point of declaration, and
2849 -- make explicit assignment legal, because object may be a
2850 -- constant.
2852 Remove_Side_Effects (Expression (Decl));
2853 Set_Assignment_OK (Lhs);
2855 -- Move initialization to freeze actions.
2857 Append_Freeze_Action (E,
2858 Make_Assignment_Statement (Loc,
2859 Name => Lhs,
2860 Expression => Expression (Decl)));
2862 Set_No_Initialization (Decl);
2863 -- Set_Is_Frozen (E, False);
2864 end;
2865 end if;
2867 -- Reset Is_True_Constant for non-constant aliased object. We
2868 -- consider that the fact that a non-constant object is aliased may
2869 -- indicate that some funny business is going on, e.g. an aliased
2870 -- object is passed by reference to a procedure which captures the
2871 -- address of the object, which is later used to assign a new value,
2872 -- even though the compiler thinks that it is not modified. Such
2873 -- code is highly dubious, but we choose to make it "work" for
2874 -- non-constant aliased objects.
2876 -- Note that we used to do this for all aliased objects, whether or
2877 -- not constant, but this caused anomalies down the line because we
2878 -- ended up with static objects that were not Is_True_Constant. Not
2879 -- resetting Is_True_Constant for (aliased) constant objects ensures
2880 -- that this anomaly never occurs.
2882 -- However, we don't do that for internal entities. We figure that if
2883 -- we deliberately set Is_True_Constant for an internal entity, e.g.
2884 -- a dispatch table entry, then we mean it.
2886 if Ekind (E) /= E_Constant
2887 and then (Is_Aliased (E) or else Is_Aliased (Etype (E)))
2888 and then not Is_Internal_Name (Chars (E))
2889 then
2890 Set_Is_True_Constant (E, False);
2891 end if;
2893 -- If the object needs any kind of default initialization, an error
2894 -- must be issued if No_Default_Initialization applies. The check
2895 -- doesn't apply to imported objects, which are not ever default
2896 -- initialized, and is why the check is deferred until freezing, at
2897 -- which point we know if Import applies. Deferred constants are also
2898 -- exempted from this test because their completion is explicit, or
2899 -- through an import pragma.
2901 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
2902 null;
2904 elsif Comes_From_Source (E)
2905 and then not Is_Imported (E)
2906 and then not Has_Init_Expression (Declaration_Node (E))
2907 and then
2908 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2909 and then not No_Initialization (Declaration_Node (E))
2910 and then not Is_Value_Type (Etype (E))
2911 and then not Initialization_Suppressed (Etype (E)))
2912 or else
2913 (Needs_Simple_Initialization (Etype (E))
2914 and then not Is_Internal (E)))
2915 then
2916 Has_Default_Initialization := True;
2917 Check_Restriction
2918 (No_Default_Initialization, Declaration_Node (E));
2919 end if;
2921 -- Check that a Thread_Local_Storage variable does not have
2922 -- default initialization, and any explicit initialization must
2923 -- either be the null constant or a static constant.
2925 if Has_Pragma_Thread_Local_Storage (E) then
2926 declare
2927 Decl : constant Node_Id := Declaration_Node (E);
2928 begin
2929 if Has_Default_Initialization
2930 or else
2931 (Has_Init_Expression (Decl)
2932 and then
2933 (No (Expression (Decl))
2934 or else not
2935 (Is_OK_Static_Expression (Expression (Decl))
2936 or else Nkind (Expression (Decl)) = N_Null)))
2937 then
2938 Error_Msg_NE
2939 ("Thread_Local_Storage variable& is "
2940 & "improperly initialized", Decl, E);
2941 Error_Msg_NE
2942 ("\only allowed initialization is explicit "
2943 & "NULL or static expression", Decl, E);
2944 end if;
2945 end;
2946 end if;
2948 -- For imported objects, set Is_Public unless there is also an
2949 -- address clause, which means that there is no external symbol
2950 -- needed for the Import (Is_Public may still be set for other
2951 -- unrelated reasons). Note that we delayed this processing
2952 -- till freeze time so that we can be sure not to set the flag
2953 -- if there is an address clause. If there is such a clause,
2954 -- then the only purpose of the Import pragma is to suppress
2955 -- implicit initialization.
2957 if Is_Imported (E) and then No (Address_Clause (E)) then
2958 Set_Is_Public (E);
2959 end if;
2961 -- For source objects that are not Imported and are library
2962 -- level, if no linker section pragma was given inherit the
2963 -- appropriate linker section from the corresponding type.
2965 if Comes_From_Source (E)
2966 and then not Is_Imported (E)
2967 and then Is_Library_Level_Entity (E)
2968 and then No (Linker_Section_Pragma (E))
2969 then
2970 Set_Linker_Section_Pragma
2971 (E, Linker_Section_Pragma (Etype (E)));
2972 end if;
2974 -- For convention C objects of an enumeration type, warn if the
2975 -- size is not integer size and no explicit size given. Skip
2976 -- warning for Boolean, and Character, assume programmer expects
2977 -- 8-bit sizes for these cases.
2979 if (Convention (E) = Convention_C
2980 or else
2981 Convention (E) = Convention_CPP)
2982 and then Is_Enumeration_Type (Etype (E))
2983 and then not Is_Character_Type (Etype (E))
2984 and then not Is_Boolean_Type (Etype (E))
2985 and then Esize (Etype (E)) < Standard_Integer_Size
2986 and then not Has_Size_Clause (E)
2987 then
2988 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2989 Error_Msg_N
2990 ("??convention C enumeration object has size less than ^", E);
2991 Error_Msg_N ("\??use explicit size clause to set size", E);
2992 end if;
2993 end Freeze_Object_Declaration;
2995 -----------------------------
2996 -- Freeze_Generic_Entities --
2997 -----------------------------
2999 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
3000 E : Entity_Id;
3001 F : Node_Id;
3002 Flist : List_Id;
3004 begin
3005 Flist := New_List;
3006 E := First_Entity (Pack);
3007 while Present (E) loop
3008 if Is_Type (E) and then not Is_Generic_Type (E) then
3009 F := Make_Freeze_Generic_Entity (Sloc (Pack));
3010 Set_Entity (F, E);
3011 Append_To (Flist, F);
3013 elsif Ekind (E) = E_Generic_Package then
3014 Append_List_To (Flist, Freeze_Generic_Entities (E));
3015 end if;
3017 Next_Entity (E);
3018 end loop;
3020 return Flist;
3021 end Freeze_Generic_Entities;
3023 --------------------
3024 -- Freeze_Profile --
3025 --------------------
3027 function Freeze_Profile (E : Entity_Id) return Boolean is
3028 F_Type : Entity_Id;
3029 R_Type : Entity_Id;
3030 Warn_Node : Node_Id;
3032 begin
3033 -- Loop through formals
3035 Formal := First_Formal (E);
3036 while Present (Formal) loop
3037 F_Type := Etype (Formal);
3039 -- AI05-0151: incomplete types can appear in a profile. By the
3040 -- time the entity is frozen, the full view must be available,
3041 -- unless it is a limited view.
3043 if Is_Incomplete_Type (F_Type)
3044 and then Present (Full_View (F_Type))
3045 and then not From_Limited_With (F_Type)
3046 then
3047 F_Type := Full_View (F_Type);
3048 Set_Etype (Formal, F_Type);
3049 end if;
3051 Freeze_And_Append (F_Type, N, Result);
3053 if Is_Private_Type (F_Type)
3054 and then Is_Private_Type (Base_Type (F_Type))
3055 and then No (Full_View (Base_Type (F_Type)))
3056 and then not Is_Generic_Type (F_Type)
3057 and then not Is_Derived_Type (F_Type)
3058 then
3059 -- If the type of a formal is incomplete, subprogram is being
3060 -- frozen prematurely. Within an instance (but not within a
3061 -- wrapper package) this is an artifact of our need to regard
3062 -- the end of an instantiation as a freeze point. Otherwise it
3063 -- is a definite error.
3065 if In_Instance then
3066 Set_Is_Frozen (E, False);
3067 Result := No_List;
3068 return False;
3070 elsif not After_Last_Declaration
3071 and then not Freezing_Library_Level_Tagged_Type
3072 then
3073 Error_Msg_Node_1 := F_Type;
3074 Error_Msg
3075 ("type & must be fully defined before this point", Loc);
3076 end if;
3077 end if;
3079 -- Check suspicious parameter for C function. These tests apply
3080 -- only to exported/imported subprograms.
3082 if Warn_On_Export_Import
3083 and then Comes_From_Source (E)
3084 and then (Convention (E) = Convention_C
3085 or else
3086 Convention (E) = Convention_CPP)
3087 and then (Is_Imported (E) or else Is_Exported (E))
3088 and then Convention (E) /= Convention (Formal)
3089 and then not Has_Warnings_Off (E)
3090 and then not Has_Warnings_Off (F_Type)
3091 and then not Has_Warnings_Off (Formal)
3092 then
3093 -- Qualify mention of formals with subprogram name
3095 Error_Msg_Qual_Level := 1;
3097 -- Check suspicious use of fat C pointer
3099 if Is_Access_Type (F_Type)
3100 and then Esize (F_Type) > Ttypes.System_Address_Size
3101 then
3102 Error_Msg_N
3103 ("?x?type of & does not correspond to C pointer!", Formal);
3105 -- Check suspicious return of boolean
3107 elsif Root_Type (F_Type) = Standard_Boolean
3108 and then Convention (F_Type) = Convention_Ada
3109 and then not Has_Warnings_Off (F_Type)
3110 and then not Has_Size_Clause (F_Type)
3111 and then VM_Target = No_VM
3112 then
3113 Error_Msg_N
3114 ("& is an 8-bit Ada Boolean?x?", Formal);
3115 Error_Msg_N
3116 ("\use appropriate corresponding type in C "
3117 & "(e.g. char)?x?", Formal);
3119 -- Check suspicious tagged type
3121 elsif (Is_Tagged_Type (F_Type)
3122 or else
3123 (Is_Access_Type (F_Type)
3124 and then Is_Tagged_Type (Designated_Type (F_Type))))
3125 and then Convention (E) = Convention_C
3126 then
3127 Error_Msg_N
3128 ("?x?& involves a tagged type which does not "
3129 & "correspond to any C type!", Formal);
3131 -- Check wrong convention subprogram pointer
3133 elsif Ekind (F_Type) = E_Access_Subprogram_Type
3134 and then not Has_Foreign_Convention (F_Type)
3135 then
3136 Error_Msg_N
3137 ("?x?subprogram pointer & should "
3138 & "have foreign convention!", Formal);
3139 Error_Msg_Sloc := Sloc (F_Type);
3140 Error_Msg_NE
3141 ("\?x?add Convention pragma to declaration of &#",
3142 Formal, F_Type);
3143 end if;
3145 -- Turn off name qualification after message output
3147 Error_Msg_Qual_Level := 0;
3148 end if;
3150 -- Check for unconstrained array in exported foreign convention
3151 -- case.
3153 if Has_Foreign_Convention (E)
3154 and then not Is_Imported (E)
3155 and then Is_Array_Type (F_Type)
3156 and then not Is_Constrained (F_Type)
3157 and then Warn_On_Export_Import
3159 -- Exclude VM case, since both .NET and JVM can handle
3160 -- unconstrained arrays without a problem.
3162 and then VM_Target = No_VM
3163 then
3164 Error_Msg_Qual_Level := 1;
3166 -- If this is an inherited operation, place the warning on
3167 -- the derived type declaration, rather than on the original
3168 -- subprogram.
3170 if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
3171 then
3172 Warn_Node := Parent (E);
3174 if Formal = First_Formal (E) then
3175 Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
3176 end if;
3177 else
3178 Warn_Node := Formal;
3179 end if;
3181 Error_Msg_NE ("?x?type of argument& is unconstrained array",
3182 Warn_Node, Formal);
3183 Error_Msg_NE ("?x?foreign caller must pass bounds explicitly",
3184 Warn_Node, Formal);
3185 Error_Msg_Qual_Level := 0;
3186 end if;
3188 if not From_Limited_With (F_Type) then
3189 if Is_Access_Type (F_Type) then
3190 F_Type := Designated_Type (F_Type);
3191 end if;
3193 -- If the formal is an anonymous_access_to_subprogram
3194 -- freeze the subprogram type as well, to prevent
3195 -- scope anomalies in gigi, because there is no other
3196 -- clear point at which it could be frozen.
3198 if Is_Itype (Etype (Formal))
3199 and then Ekind (F_Type) = E_Subprogram_Type
3200 then
3201 Freeze_And_Append (F_Type, N, Result);
3202 end if;
3203 end if;
3205 Next_Formal (Formal);
3206 end loop;
3208 -- Case of function: similar checks on return type
3210 if Ekind (E) = E_Function then
3212 -- Check whether function is declared elsewhere.
3214 Late_Freezing :=
3215 Get_Source_Unit (E) /= Get_Source_Unit (N)
3216 and then Returns_Limited_View (E)
3217 and then not In_Open_Scopes (Scope (E));
3219 -- Freeze return type
3221 R_Type := Etype (E);
3223 -- AI05-0151: the return type may have been incomplete
3224 -- at the point of declaration. Replace it with the full
3225 -- view, unless the current type is a limited view. In
3226 -- that case the full view is in a different unit, and
3227 -- gigi finds the non-limited view after the other unit
3228 -- is elaborated.
3230 if Ekind (R_Type) = E_Incomplete_Type
3231 and then Present (Full_View (R_Type))
3232 and then not From_Limited_With (R_Type)
3233 then
3234 R_Type := Full_View (R_Type);
3235 Set_Etype (E, R_Type);
3237 -- If the return type is a limited view and the non-limited
3238 -- view is still incomplete, the function has to be frozen at a
3239 -- later time. If the function is abstract there is no place at
3240 -- which the full view will become available, and no code to be
3241 -- generated for it, so mark type as frozen.
3243 elsif Ekind (R_Type) = E_Incomplete_Type
3244 and then From_Limited_With (R_Type)
3245 and then Ekind (Non_Limited_View (R_Type)) = E_Incomplete_Type
3246 then
3247 if Is_Abstract_Subprogram (E) then
3248 null;
3249 else
3250 Set_Is_Frozen (E, False);
3251 Set_Returns_Limited_View (E);
3252 return False;
3253 end if;
3254 end if;
3256 Freeze_And_Append (R_Type, N, Result);
3258 -- Check suspicious return type for C function
3260 if Warn_On_Export_Import
3261 and then (Convention (E) = Convention_C
3262 or else
3263 Convention (E) = Convention_CPP)
3264 and then (Is_Imported (E) or else Is_Exported (E))
3265 then
3266 -- Check suspicious return of fat C pointer
3268 if Is_Access_Type (R_Type)
3269 and then Esize (R_Type) > Ttypes.System_Address_Size
3270 and then not Has_Warnings_Off (E)
3271 and then not Has_Warnings_Off (R_Type)
3272 then
3273 Error_Msg_N ("?x?return type of& does not "
3274 & "correspond to C pointer!", E);
3276 -- Check suspicious return of boolean
3278 elsif Root_Type (R_Type) = Standard_Boolean
3279 and then Convention (R_Type) = Convention_Ada
3280 and then VM_Target = No_VM
3281 and then not Has_Warnings_Off (E)
3282 and then not Has_Warnings_Off (R_Type)
3283 and then not Has_Size_Clause (R_Type)
3284 then
3285 declare
3286 N : constant Node_Id :=
3287 Result_Definition (Declaration_Node (E));
3288 begin
3289 Error_Msg_NE
3290 ("return type of & is an 8-bit Ada Boolean?x?", N, E);
3291 Error_Msg_NE
3292 ("\use appropriate corresponding type in C "
3293 & "(e.g. char)?x?", N, E);
3294 end;
3296 -- Check suspicious return tagged type
3298 elsif (Is_Tagged_Type (R_Type)
3299 or else (Is_Access_Type (R_Type)
3300 and then
3301 Is_Tagged_Type
3302 (Designated_Type (R_Type))))
3303 and then Convention (E) = Convention_C
3304 and then not Has_Warnings_Off (E)
3305 and then not Has_Warnings_Off (R_Type)
3306 then
3307 Error_Msg_N ("?x?return type of & does not "
3308 & "correspond to C type!", E);
3310 -- Check return of wrong convention subprogram pointer
3312 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3313 and then not Has_Foreign_Convention (R_Type)
3314 and then not Has_Warnings_Off (E)
3315 and then not Has_Warnings_Off (R_Type)
3316 then
3317 Error_Msg_N ("?x?& should return a foreign "
3318 & "convention subprogram pointer", E);
3319 Error_Msg_Sloc := Sloc (R_Type);
3320 Error_Msg_NE
3321 ("\?x?add Convention pragma to declaration of& #",
3322 E, R_Type);
3323 end if;
3324 end if;
3326 -- Give warning for suspicious return of a result of an
3327 -- unconstrained array type in a foreign convention function.
3329 if Has_Foreign_Convention (E)
3331 -- We are looking for a return of unconstrained array
3333 and then Is_Array_Type (R_Type)
3334 and then not Is_Constrained (R_Type)
3336 -- Exclude imported routines, the warning does not belong on
3337 -- the import, but rather on the routine definition.
3339 and then not Is_Imported (E)
3341 -- Exclude VM case, since both .NET and JVM can handle return
3342 -- of unconstrained arrays without a problem.
3344 and then VM_Target = No_VM
3346 -- Check that general warning is enabled, and that it is not
3347 -- suppressed for this particular case.
3349 and then Warn_On_Export_Import
3350 and then not Has_Warnings_Off (E)
3351 and then not Has_Warnings_Off (R_Type)
3352 then
3353 Error_Msg_N ("?x?foreign convention function& should not " &
3354 "return unconstrained array!", E);
3355 end if;
3356 end if;
3358 -- Check suspicious use of Import in pure unit
3360 if Is_Imported (E) and then Is_Pure (Cunit_Entity (Current_Sem_Unit))
3362 -- Ignore internally generated entity. This happens in some cases
3363 -- of subprograms in specs, where we generate an implied body.
3365 and then Comes_From_Source (Import_Pragma (E))
3367 -- Assume run-time knows what it is doing
3369 and then not GNAT_Mode
3371 -- Assume explicit Pure_Function means import is pure
3373 and then not Has_Pragma_Pure_Function (E)
3375 -- Don't need warning in relaxed semantics mode
3377 and then not Relaxed_RM_Semantics
3379 -- Assume convention Intrinsic is OK, since this is specialized.
3380 -- This deals with the DEC unit current_exception.ads
3382 and then Convention (E) /= Convention_Intrinsic
3384 -- Assume that ASM interface knows what it is doing. This deals
3385 -- with unsigned.ads in the AAMP back end.
3387 and then Convention (E) /= Convention_Assembler
3388 then
3389 Error_Msg_N
3390 ("pragma Import in Pure unit??", Import_Pragma (E));
3391 Error_Msg_NE
3392 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
3393 Import_Pragma (E), E);
3394 end if;
3396 return True;
3397 end Freeze_Profile;
3399 ------------------------
3400 -- Freeze_Record_Type --
3401 ------------------------
3403 procedure Freeze_Record_Type (Rec : Entity_Id) is
3404 ADC : Node_Id;
3405 Comp : Entity_Id;
3406 IR : Node_Id;
3407 Prev : Entity_Id;
3409 Junk : Boolean;
3410 pragma Warnings (Off, Junk);
3412 Rec_Pushed : Boolean := False;
3413 -- Set True if the record type scope Rec has been pushed on the scope
3414 -- stack. Needed for the analysis of delayed aspects specified to the
3415 -- components of Rec.
3417 SSO_ADC : Node_Id;
3418 -- Scalar_Storage_Order attribute definition clause for the record
3420 Unplaced_Component : Boolean := False;
3421 -- Set True if we find at least one component with no component
3422 -- clause (used to warn about useless Pack pragmas).
3424 Placed_Component : Boolean := False;
3425 -- Set True if we find at least one component with a component
3426 -- clause (used to warn about useless Bit_Order pragmas, and also
3427 -- to detect cases where Implicit_Packing may have an effect).
3429 Aliased_Component : Boolean := False;
3430 -- Set True if we find at least one component which is aliased. This
3431 -- is used to prevent Implicit_Packing of the record, since packing
3432 -- cannot modify the size of alignment of an aliased component.
3434 SSO_ADC_Component : Boolean := False;
3435 -- Set True if we find at least one component whose type has a
3436 -- Scalar_Storage_Order attribute definition clause.
3438 All_Scalar_Components : Boolean := True;
3439 -- Set False if we encounter a component of a non-scalar type
3441 Scalar_Component_Total_RM_Size : Uint := Uint_0;
3442 Scalar_Component_Total_Esize : Uint := Uint_0;
3443 -- Accumulates total RM_Size values and total Esize values of all
3444 -- scalar components. Used for processing of Implicit_Packing.
3446 function Check_Allocator (N : Node_Id) return Node_Id;
3447 -- If N is an allocator, possibly wrapped in one or more level of
3448 -- qualified expression(s), return the inner allocator node, else
3449 -- return Empty.
3451 procedure Check_Itype (Typ : Entity_Id);
3452 -- If the component subtype is an access to a constrained subtype of
3453 -- an already frozen type, make the subtype frozen as well. It might
3454 -- otherwise be frozen in the wrong scope, and a freeze node on
3455 -- subtype has no effect. Similarly, if the component subtype is a
3456 -- regular (not protected) access to subprogram, set the anonymous
3457 -- subprogram type to frozen as well, to prevent an out-of-scope
3458 -- freeze node at some eventual point of call. Protected operations
3459 -- are handled elsewhere.
3461 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
3462 -- Make sure that all types mentioned in Discrete_Choices of the
3463 -- variants referenceed by the Variant_Part VP are frozen. This is
3464 -- a recursive routine to deal with nested variants.
3466 ---------------------
3467 -- Check_Allocator --
3468 ---------------------
3470 function Check_Allocator (N : Node_Id) return Node_Id is
3471 Inner : Node_Id;
3472 begin
3473 Inner := N;
3474 loop
3475 if Nkind (Inner) = N_Allocator then
3476 return Inner;
3477 elsif Nkind (Inner) = N_Qualified_Expression then
3478 Inner := Expression (Inner);
3479 else
3480 return Empty;
3481 end if;
3482 end loop;
3483 end Check_Allocator;
3485 -----------------
3486 -- Check_Itype --
3487 -----------------
3489 procedure Check_Itype (Typ : Entity_Id) is
3490 Desig : constant Entity_Id := Designated_Type (Typ);
3492 begin
3493 if not Is_Frozen (Desig)
3494 and then Is_Frozen (Base_Type (Desig))
3495 then
3496 Set_Is_Frozen (Desig);
3498 -- In addition, add an Itype_Reference to ensure that the
3499 -- access subtype is elaborated early enough. This cannot be
3500 -- done if the subtype may depend on discriminants.
3502 if Ekind (Comp) = E_Component
3503 and then Is_Itype (Etype (Comp))
3504 and then not Has_Discriminants (Rec)
3505 then
3506 IR := Make_Itype_Reference (Sloc (Comp));
3507 Set_Itype (IR, Desig);
3508 Add_To_Result (IR);
3509 end if;
3511 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
3512 and then Convention (Desig) /= Convention_Protected
3513 then
3514 Set_Is_Frozen (Desig);
3515 end if;
3516 end Check_Itype;
3518 ------------------------------------
3519 -- Freeze_Choices_In_Variant_Part --
3520 ------------------------------------
3522 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
3523 pragma Assert (Nkind (VP) = N_Variant_Part);
3525 Variant : Node_Id;
3526 Choice : Node_Id;
3527 CL : Node_Id;
3529 begin
3530 -- Loop through variants
3532 Variant := First_Non_Pragma (Variants (VP));
3533 while Present (Variant) loop
3535 -- Loop through choices, checking that all types are frozen
3537 Choice := First_Non_Pragma (Discrete_Choices (Variant));
3538 while Present (Choice) loop
3539 if Nkind (Choice) in N_Has_Etype
3540 and then Present (Etype (Choice))
3541 then
3542 Freeze_And_Append (Etype (Choice), N, Result);
3543 end if;
3545 Next_Non_Pragma (Choice);
3546 end loop;
3548 -- Check for nested variant part to process
3550 CL := Component_List (Variant);
3552 if not Null_Present (CL) then
3553 if Present (Variant_Part (CL)) then
3554 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
3555 end if;
3556 end if;
3558 Next_Non_Pragma (Variant);
3559 end loop;
3560 end Freeze_Choices_In_Variant_Part;
3562 -- Start of processing for Freeze_Record_Type
3564 begin
3565 -- Deal with delayed aspect specifications for components. The
3566 -- analysis of the aspect is required to be delayed to the freeze
3567 -- point, thus we analyze the pragma or attribute definition
3568 -- clause in the tree at this point. We also analyze the aspect
3569 -- specification node at the freeze point when the aspect doesn't
3570 -- correspond to pragma/attribute definition clause.
3572 Comp := First_Entity (Rec);
3573 while Present (Comp) loop
3574 if Ekind (Comp) = E_Component
3575 and then Has_Delayed_Aspects (Comp)
3576 then
3577 if not Rec_Pushed then
3578 Push_Scope (Rec);
3579 Rec_Pushed := True;
3581 -- The visibility to the discriminants must be restored in
3582 -- order to properly analyze the aspects.
3584 if Has_Discriminants (Rec) then
3585 Install_Discriminants (Rec);
3586 end if;
3587 end if;
3589 Analyze_Aspects_At_Freeze_Point (Comp);
3590 end if;
3592 Next_Entity (Comp);
3593 end loop;
3595 -- Pop the scope if Rec scope has been pushed on the scope stack
3596 -- during the delayed aspect analysis process.
3598 if Rec_Pushed then
3599 if Has_Discriminants (Rec) then
3600 Uninstall_Discriminants (Rec);
3601 end if;
3603 Pop_Scope;
3604 end if;
3606 -- Freeze components and embedded subtypes
3608 Comp := First_Entity (Rec);
3609 Prev := Empty;
3610 while Present (Comp) loop
3611 if Is_Aliased (Comp) then
3612 Aliased_Component := True;
3613 end if;
3615 -- Handle the component and discriminant case
3617 if Ekind_In (Comp, E_Component, E_Discriminant) then
3618 declare
3619 CC : constant Node_Id := Component_Clause (Comp);
3621 begin
3622 -- Freezing a record type freezes the type of each of its
3623 -- components. However, if the type of the component is
3624 -- part of this record, we do not want or need a separate
3625 -- Freeze_Node. Note that Is_Itype is wrong because that's
3626 -- also set in private type cases. We also can't check for
3627 -- the Scope being exactly Rec because of private types and
3628 -- record extensions.
3630 if Is_Itype (Etype (Comp))
3631 and then Is_Record_Type (Underlying_Type
3632 (Scope (Etype (Comp))))
3633 then
3634 Undelay_Type (Etype (Comp));
3635 end if;
3637 Freeze_And_Append (Etype (Comp), N, Result);
3639 -- Warn for pragma Pack overriding foreign convention
3641 if Has_Foreign_Convention (Etype (Comp))
3642 and then Has_Pragma_Pack (Rec)
3644 -- Don't warn for aliased components, since override
3645 -- cannot happen in that case.
3647 and then not Is_Aliased (Comp)
3648 then
3649 declare
3650 CN : constant Name_Id :=
3651 Get_Convention_Name (Convention (Etype (Comp)));
3652 PP : constant Node_Id :=
3653 Get_Pragma (Rec, Pragma_Pack);
3654 begin
3655 if Present (PP) then
3656 Error_Msg_Name_1 := CN;
3657 Error_Msg_Sloc := Sloc (Comp);
3658 Error_Msg_N
3659 ("pragma Pack affects convention % component#??",
3660 PP);
3661 Error_Msg_Name_1 := CN;
3662 Error_Msg_NE
3663 ("\component & may not have % compatible "
3664 & "representation??", PP, Comp);
3665 end if;
3666 end;
3667 end if;
3669 -- Check for error of component clause given for variable
3670 -- sized type. We have to delay this test till this point,
3671 -- since the component type has to be frozen for us to know
3672 -- if it is variable length.
3674 if Present (CC) then
3675 Placed_Component := True;
3677 -- We omit this test in a generic context, it will be
3678 -- applied at instantiation time.
3680 if Inside_A_Generic then
3681 null;
3683 -- Also omit this test in CodePeer mode, since we do not
3684 -- have sufficient info on size and rep clauses.
3686 elsif CodePeer_Mode then
3687 null;
3689 -- Omit check if component has a generic type. This can
3690 -- happen in an instantiation within a generic in ASIS
3691 -- mode, where we force freeze actions without full
3692 -- expansion.
3694 elsif Is_Generic_Type (Etype (Comp)) then
3695 null;
3697 -- Do the check
3699 elsif not
3700 Size_Known_At_Compile_Time
3701 (Underlying_Type (Etype (Comp)))
3702 then
3703 Error_Msg_N
3704 ("component clause not allowed for variable " &
3705 "length component", CC);
3706 end if;
3708 else
3709 Unplaced_Component := True;
3710 end if;
3712 -- Case of component requires byte alignment
3714 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
3716 -- Set the enclosing record to also require byte align
3718 Set_Must_Be_On_Byte_Boundary (Rec);
3720 -- Check for component clause that is inconsistent with
3721 -- the required byte boundary alignment.
3723 if Present (CC)
3724 and then Normalized_First_Bit (Comp) mod
3725 System_Storage_Unit /= 0
3726 then
3727 Error_Msg_N
3728 ("component & must be byte aligned",
3729 Component_Name (Component_Clause (Comp)));
3730 end if;
3731 end if;
3732 end;
3733 end if;
3735 -- Gather data for possible Implicit_Packing later. Note that at
3736 -- this stage we might be dealing with a real component, or with
3737 -- an implicit subtype declaration.
3739 if not Is_Scalar_Type (Etype (Comp)) then
3740 All_Scalar_Components := False;
3741 else
3742 Scalar_Component_Total_RM_Size :=
3743 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
3744 Scalar_Component_Total_Esize :=
3745 Scalar_Component_Total_Esize + Esize (Etype (Comp));
3746 end if;
3748 -- If the component is an Itype with Delayed_Freeze and is either
3749 -- a record or array subtype and its base type has not yet been
3750 -- frozen, we must remove this from the entity list of this record
3751 -- and put it on the entity list of the scope of its base type.
3752 -- Note that we know that this is not the type of a component
3753 -- since we cleared Has_Delayed_Freeze for it in the previous
3754 -- loop. Thus this must be the Designated_Type of an access type,
3755 -- which is the type of a component.
3757 if Is_Itype (Comp)
3758 and then Is_Type (Scope (Comp))
3759 and then Is_Composite_Type (Comp)
3760 and then Base_Type (Comp) /= Comp
3761 and then Has_Delayed_Freeze (Comp)
3762 and then not Is_Frozen (Base_Type (Comp))
3763 then
3764 declare
3765 Will_Be_Frozen : Boolean := False;
3766 S : Entity_Id;
3768 begin
3769 -- We have a difficult case to handle here. Suppose Rec is
3770 -- subtype being defined in a subprogram that's created as
3771 -- part of the freezing of Rec'Base. In that case, we know
3772 -- that Comp'Base must have already been frozen by the time
3773 -- we get to elaborate this because Gigi doesn't elaborate
3774 -- any bodies until it has elaborated all of the declarative
3775 -- part. But Is_Frozen will not be set at this point because
3776 -- we are processing code in lexical order.
3778 -- We detect this case by going up the Scope chain of Rec
3779 -- and seeing if we have a subprogram scope before reaching
3780 -- the top of the scope chain or that of Comp'Base. If we
3781 -- do, then mark that Comp'Base will actually be frozen. If
3782 -- so, we merely undelay it.
3784 S := Scope (Rec);
3785 while Present (S) loop
3786 if Is_Subprogram (S) then
3787 Will_Be_Frozen := True;
3788 exit;
3789 elsif S = Scope (Base_Type (Comp)) then
3790 exit;
3791 end if;
3793 S := Scope (S);
3794 end loop;
3796 if Will_Be_Frozen then
3797 Undelay_Type (Comp);
3799 else
3800 if Present (Prev) then
3801 Set_Next_Entity (Prev, Next_Entity (Comp));
3802 else
3803 Set_First_Entity (Rec, Next_Entity (Comp));
3804 end if;
3806 -- Insert in entity list of scope of base type (which
3807 -- must be an enclosing scope, because still unfrozen).
3809 Append_Entity (Comp, Scope (Base_Type (Comp)));
3810 end if;
3811 end;
3813 -- If the component is an access type with an allocator as default
3814 -- value, the designated type will be frozen by the corresponding
3815 -- expression in init_proc. In order to place the freeze node for
3816 -- the designated type before that for the current record type,
3817 -- freeze it now.
3819 -- Same process if the component is an array of access types,
3820 -- initialized with an aggregate. If the designated type is
3821 -- private, it cannot contain allocators, and it is premature
3822 -- to freeze the type, so we check for this as well.
3824 elsif Is_Access_Type (Etype (Comp))
3825 and then Present (Parent (Comp))
3826 and then Present (Expression (Parent (Comp)))
3827 then
3828 declare
3829 Alloc : constant Node_Id :=
3830 Check_Allocator (Expression (Parent (Comp)));
3832 begin
3833 if Present (Alloc) then
3835 -- If component is pointer to a class-wide type, freeze
3836 -- the specific type in the expression being allocated.
3837 -- The expression may be a subtype indication, in which
3838 -- case freeze the subtype mark.
3840 if Is_Class_Wide_Type
3841 (Designated_Type (Etype (Comp)))
3842 then
3843 if Is_Entity_Name (Expression (Alloc)) then
3844 Freeze_And_Append
3845 (Entity (Expression (Alloc)), N, Result);
3847 elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
3848 then
3849 Freeze_And_Append
3850 (Entity (Subtype_Mark (Expression (Alloc))),
3851 N, Result);
3852 end if;
3854 elsif Is_Itype (Designated_Type (Etype (Comp))) then
3855 Check_Itype (Etype (Comp));
3857 else
3858 Freeze_And_Append
3859 (Designated_Type (Etype (Comp)), N, Result);
3860 end if;
3861 end if;
3862 end;
3864 elsif Is_Access_Type (Etype (Comp))
3865 and then Is_Itype (Designated_Type (Etype (Comp)))
3866 then
3867 Check_Itype (Etype (Comp));
3869 -- Freeze the designated type when initializing a component with
3870 -- an aggregate in case the aggregate contains allocators.
3872 -- type T is ...;
3873 -- type T_Ptr is access all T;
3874 -- type T_Array is array ... of T_Ptr;
3876 -- type Rec is record
3877 -- Comp : T_Array := (others => ...);
3878 -- end record;
3880 elsif Is_Array_Type (Etype (Comp))
3881 and then Is_Access_Type (Component_Type (Etype (Comp)))
3882 then
3883 declare
3884 Comp_Par : constant Node_Id := Parent (Comp);
3885 Desig_Typ : constant Entity_Id :=
3886 Designated_Type
3887 (Component_Type (Etype (Comp)));
3889 begin
3890 -- The only case when this sort of freezing is not done is
3891 -- when the designated type is class-wide and the root type
3892 -- is the record owning the component. This scenario results
3893 -- in a circularity because the class-wide type requires
3894 -- primitives that have not been created yet as the root
3895 -- type is in the process of being frozen.
3897 -- type Rec is tagged;
3898 -- type Rec_Ptr is access all Rec'Class;
3899 -- type Rec_Array is array ... of Rec_Ptr;
3901 -- type Rec is record
3902 -- Comp : Rec_Array := (others => ...);
3903 -- end record;
3905 if Is_Class_Wide_Type (Desig_Typ)
3906 and then Root_Type (Desig_Typ) = Rec
3907 then
3908 null;
3910 elsif Is_Fully_Defined (Desig_Typ)
3911 and then Present (Comp_Par)
3912 and then Nkind (Comp_Par) = N_Component_Declaration
3913 and then Present (Expression (Comp_Par))
3914 and then Nkind (Expression (Comp_Par)) = N_Aggregate
3915 then
3916 Freeze_And_Append (Desig_Typ, N, Result);
3917 end if;
3918 end;
3919 end if;
3921 Prev := Comp;
3922 Next_Entity (Comp);
3923 end loop;
3925 -- Deal with default setting of reverse storage order
3927 Set_SSO_From_Default (Rec);
3929 -- Check consistent attribute setting on component types
3931 SSO_ADC := Get_Attribute_Definition_Clause
3932 (Rec, Attribute_Scalar_Storage_Order);
3934 declare
3935 Comp_ADC_Present : Boolean;
3936 begin
3937 Comp := First_Component (Rec);
3938 while Present (Comp) loop
3939 Check_Component_Storage_Order
3940 (Encl_Type => Rec,
3941 Comp => Comp,
3942 ADC => SSO_ADC,
3943 Comp_ADC_Present => Comp_ADC_Present);
3944 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
3945 Next_Component (Comp);
3946 end loop;
3947 end;
3949 -- Now deal with reverse storage order/bit order issues
3951 if Present (SSO_ADC) then
3953 -- Check compatibility of Scalar_Storage_Order with Bit_Order, if
3954 -- the former is specified.
3956 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
3958 -- Note: report error on Rec, not on SSO_ADC, as ADC may apply
3959 -- to some ancestor type.
3961 Error_Msg_Sloc := Sloc (SSO_ADC);
3962 Error_Msg_N
3963 ("scalar storage order for& specified# inconsistent with "
3964 & "bit order", Rec);
3965 end if;
3967 -- Warn if there is an Scalar_Storage_Order attribute definition
3968 -- clause but no component clause, no component that itself has
3969 -- such an attribute definition, and no pragma Pack.
3971 if not (Placed_Component
3972 or else
3973 SSO_ADC_Component
3974 or else
3975 Is_Packed (Rec))
3976 then
3977 Error_Msg_N
3978 ("??scalar storage order specified but no component clause",
3979 SSO_ADC);
3980 end if;
3981 end if;
3983 -- Deal with Bit_Order aspect
3985 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
3987 if Present (ADC) and then Base_Type (Rec) = Rec then
3988 if not (Placed_Component
3989 or else Present (SSO_ADC)
3990 or else Is_Packed (Rec))
3991 then
3992 -- Warn if clause has no effect when no component clause is
3993 -- present, but suppress warning if the Bit_Order is required
3994 -- due to the presence of a Scalar_Storage_Order attribute.
3996 Error_Msg_N
3997 ("??bit order specification has no effect", ADC);
3998 Error_Msg_N
3999 ("\??since no component clauses were specified", ADC);
4001 -- Here is where we do the processing to adjust component clauses
4002 -- for reversed bit order, when not using reverse SSO.
4004 elsif Reverse_Bit_Order (Rec)
4005 and then not Reverse_Storage_Order (Rec)
4006 then
4007 Adjust_Record_For_Reverse_Bit_Order (Rec);
4009 -- Case where we have both an explicit Bit_Order and the same
4010 -- Scalar_Storage_Order: leave record untouched, the back-end
4011 -- will take care of required layout conversions.
4013 else
4014 null;
4016 end if;
4017 end if;
4019 -- Complete error checking on record representation clause (e.g.
4020 -- overlap of components). This is called after adjusting the
4021 -- record for reverse bit order.
4023 declare
4024 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
4025 begin
4026 if Present (RRC) then
4027 Check_Record_Representation_Clause (RRC);
4028 end if;
4029 end;
4031 -- Set OK_To_Reorder_Components depending on debug flags
4033 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
4034 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
4035 or else
4036 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
4037 then
4038 Set_OK_To_Reorder_Components (Rec);
4039 end if;
4040 end if;
4042 -- Check for useless pragma Pack when all components placed. We only
4043 -- do this check for record types, not subtypes, since a subtype may
4044 -- have all its components placed, and it still makes perfectly good
4045 -- sense to pack other subtypes or the parent type. We do not give
4046 -- this warning if Optimize_Alignment is set to Space, since the
4047 -- pragma Pack does have an effect in this case (it always resets
4048 -- the alignment to one).
4050 if Ekind (Rec) = E_Record_Type
4051 and then Is_Packed (Rec)
4052 and then not Unplaced_Component
4053 and then Optimize_Alignment /= 'S'
4054 then
4055 -- Reset packed status. Probably not necessary, but we do it so
4056 -- that there is no chance of the back end doing something strange
4057 -- with this redundant indication of packing.
4059 Set_Is_Packed (Rec, False);
4061 -- Give warning if redundant constructs warnings on
4063 if Warn_On_Redundant_Constructs then
4064 Error_Msg_N -- CODEFIX
4065 ("??pragma Pack has no effect, no unplaced components",
4066 Get_Rep_Pragma (Rec, Name_Pack));
4067 end if;
4068 end if;
4070 -- If this is the record corresponding to a remote type, freeze the
4071 -- remote type here since that is what we are semantically freezing.
4072 -- This prevents the freeze node for that type in an inner scope.
4074 if Ekind (Rec) = E_Record_Type then
4075 if Present (Corresponding_Remote_Type (Rec)) then
4076 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
4077 end if;
4079 -- Check for controlled components and unchecked unions.
4081 Comp := First_Component (Rec);
4082 while Present (Comp) loop
4084 -- Do not set Has_Controlled_Component on a class-wide
4085 -- equivalent type. See Make_CW_Equivalent_Type.
4087 if not Is_Class_Wide_Equivalent_Type (Rec)
4088 and then
4089 (Has_Controlled_Component (Etype (Comp))
4090 or else
4091 (Chars (Comp) /= Name_uParent
4092 and then Is_Controlled (Etype (Comp)))
4093 or else
4094 (Is_Protected_Type (Etype (Comp))
4095 and then
4096 Present (Corresponding_Record_Type (Etype (Comp)))
4097 and then
4098 Has_Controlled_Component
4099 (Corresponding_Record_Type (Etype (Comp)))))
4100 then
4101 Set_Has_Controlled_Component (Rec);
4102 end if;
4104 if Has_Unchecked_Union (Etype (Comp)) then
4105 Set_Has_Unchecked_Union (Rec);
4106 end if;
4108 -- Scan component declaration for likely misuses of current
4109 -- instance, either in a constraint or a default expression.
4111 if Has_Per_Object_Constraint (Comp) then
4112 Check_Current_Instance (Parent (Comp));
4113 end if;
4115 Next_Component (Comp);
4116 end loop;
4117 end if;
4119 -- Enforce the restriction that access attributes with a current
4120 -- instance prefix can only apply to limited types. This comment
4121 -- is floating here, but does not seem to belong here???
4123 -- Set component alignment if not otherwise already set
4125 Set_Component_Alignment_If_Not_Set (Rec);
4127 -- For first subtypes, check if there are any fixed-point fields with
4128 -- component clauses, where we must check the size. This is not done
4129 -- till the freeze point since for fixed-point types, we do not know
4130 -- the size until the type is frozen. Similar processing applies to
4131 -- bit packed arrays.
4133 if Is_First_Subtype (Rec) then
4134 Comp := First_Component (Rec);
4135 while Present (Comp) loop
4136 if Present (Component_Clause (Comp))
4137 and then (Is_Fixed_Point_Type (Etype (Comp))
4138 or else Is_Bit_Packed_Array (Etype (Comp)))
4139 then
4140 Check_Size
4141 (Component_Name (Component_Clause (Comp)),
4142 Etype (Comp),
4143 Esize (Comp),
4144 Junk);
4145 end if;
4147 Next_Component (Comp);
4148 end loop;
4149 end if;
4151 -- Generate warning for applying C or C++ convention to a record
4152 -- with discriminants. This is suppressed for the unchecked union
4153 -- case, since the whole point in this case is interface C. We also
4154 -- do not generate this within instantiations, since we will have
4155 -- generated a message on the template.
4157 if Has_Discriminants (E)
4158 and then not Is_Unchecked_Union (E)
4159 and then (Convention (E) = Convention_C
4160 or else
4161 Convention (E) = Convention_CPP)
4162 and then Comes_From_Source (E)
4163 and then not In_Instance
4164 and then not Has_Warnings_Off (E)
4165 and then not Has_Warnings_Off (Base_Type (E))
4166 then
4167 declare
4168 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
4169 A2 : Node_Id;
4171 begin
4172 if Present (Cprag) then
4173 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
4175 if Convention (E) = Convention_C then
4176 Error_Msg_N
4177 ("?x?variant record has no direct equivalent in C",
4178 A2);
4179 else
4180 Error_Msg_N
4181 ("?x?variant record has no direct equivalent in C++",
4182 A2);
4183 end if;
4185 Error_Msg_NE
4186 ("\?x?use of convention for type& is dubious", A2, E);
4187 end if;
4188 end;
4189 end if;
4191 -- See if Size is too small as is (and implicit packing might help)
4193 if not Is_Packed (Rec)
4195 -- No implicit packing if even one component is explicitly placed
4197 and then not Placed_Component
4199 -- Or even one component is aliased
4201 and then not Aliased_Component
4203 -- Must have size clause and all scalar components
4205 and then Has_Size_Clause (Rec)
4206 and then All_Scalar_Components
4208 -- Do not try implicit packing on records with discriminants, too
4209 -- complicated, especially in the variant record case.
4211 and then not Has_Discriminants (Rec)
4213 -- We can implicitly pack if the specified size of the record is
4214 -- less than the sum of the object sizes (no point in packing if
4215 -- this is not the case).
4217 and then RM_Size (Rec) < Scalar_Component_Total_Esize
4219 -- And the total RM size cannot be greater than the specified size
4220 -- since otherwise packing will not get us where we have to be.
4222 and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
4224 -- Never do implicit packing in CodePeer or SPARK modes since
4225 -- we don't do any packing in these modes, since this generates
4226 -- over-complex code that confuses static analysis, and in
4227 -- general, neither CodePeer not GNATprove care about the
4228 -- internal representation of objects.
4230 and then not (CodePeer_Mode or GNATprove_Mode)
4231 then
4232 -- If implicit packing enabled, do it
4234 if Implicit_Packing then
4235 Set_Is_Packed (Rec);
4237 -- Otherwise flag the size clause
4239 else
4240 declare
4241 Sz : constant Node_Id := Size_Clause (Rec);
4242 begin
4243 Error_Msg_NE -- CODEFIX
4244 ("size given for& too small", Sz, Rec);
4245 Error_Msg_N -- CODEFIX
4246 ("\use explicit pragma Pack "
4247 & "or use pragma Implicit_Packing", Sz);
4248 end;
4249 end if;
4250 end if;
4252 -- The following checks are only relevant when SPARK_Mode is on as
4253 -- they are not standard Ada legality rules.
4255 if SPARK_Mode = On then
4256 if Is_Effectively_Volatile (Rec) then
4258 -- A discriminated type cannot be effectively volatile
4259 -- (SPARK RM C.6(4)).
4261 if Has_Discriminants (Rec) then
4262 Error_Msg_N ("discriminated type & cannot be volatile", Rec);
4264 -- A tagged type cannot be effectively volatile
4265 -- (SPARK RM C.6(5)).
4267 elsif Is_Tagged_Type (Rec) then
4268 Error_Msg_N ("tagged type & cannot be volatile", Rec);
4269 end if;
4271 -- A non-effectively volatile record type cannot contain
4272 -- effectively volatile components (SPARK RM C.6(2)).
4274 else
4275 Comp := First_Component (Rec);
4276 while Present (Comp) loop
4277 if Comes_From_Source (Comp)
4278 and then Is_Effectively_Volatile (Etype (Comp))
4279 then
4280 Error_Msg_Name_1 := Chars (Rec);
4281 Error_Msg_N
4282 ("component & of non-volatile type % cannot be "
4283 & "volatile", Comp);
4284 end if;
4286 Next_Component (Comp);
4287 end loop;
4288 end if;
4289 end if;
4291 -- All done if not a full record definition
4293 if Ekind (Rec) /= E_Record_Type then
4294 return;
4295 end if;
4297 -- Finally we need to check the variant part to make sure that
4298 -- all types within choices are properly frozen as part of the
4299 -- freezing of the record type.
4301 Check_Variant_Part : declare
4302 D : constant Node_Id := Declaration_Node (Rec);
4303 T : Node_Id;
4304 C : Node_Id;
4306 begin
4307 -- Find component list
4309 C := Empty;
4311 if Nkind (D) = N_Full_Type_Declaration then
4312 T := Type_Definition (D);
4314 if Nkind (T) = N_Record_Definition then
4315 C := Component_List (T);
4317 elsif Nkind (T) = N_Derived_Type_Definition
4318 and then Present (Record_Extension_Part (T))
4319 then
4320 C := Component_List (Record_Extension_Part (T));
4321 end if;
4322 end if;
4324 -- Case of variant part present
4326 if Present (C) and then Present (Variant_Part (C)) then
4327 Freeze_Choices_In_Variant_Part (Variant_Part (C));
4328 end if;
4330 -- Note: we used to call Check_Choices here, but it is too early,
4331 -- since predicated subtypes are frozen here, but their freezing
4332 -- actions are in Analyze_Freeze_Entity, which has not been called
4333 -- yet for entities frozen within this procedure, so we moved that
4334 -- call to the Analyze_Freeze_Entity for the record type.
4336 end Check_Variant_Part;
4338 -- Check that all the primitives of an interface type are abstract
4339 -- or null procedures.
4341 if Is_Interface (Rec)
4342 and then not Error_Posted (Parent (Rec))
4343 then
4344 declare
4345 Elmt : Elmt_Id;
4346 Subp : Entity_Id;
4348 begin
4349 Elmt := First_Elmt (Primitive_Operations (Rec));
4350 while Present (Elmt) loop
4351 Subp := Node (Elmt);
4353 if not Is_Abstract_Subprogram (Subp)
4355 -- Avoid reporting the error on inherited primitives
4357 and then Comes_From_Source (Subp)
4358 then
4359 Error_Msg_Name_1 := Chars (Subp);
4361 if Ekind (Subp) = E_Procedure then
4362 if not Null_Present (Parent (Subp)) then
4363 Error_Msg_N
4364 ("interface procedure % must be abstract or null",
4365 Parent (Subp));
4366 end if;
4367 else
4368 Error_Msg_N
4369 ("interface function % must be abstract",
4370 Parent (Subp));
4371 end if;
4372 end if;
4374 Next_Elmt (Elmt);
4375 end loop;
4376 end;
4377 end if;
4378 end Freeze_Record_Type;
4380 -------------------------------
4381 -- Has_Boolean_Aspect_Import --
4382 -------------------------------
4384 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
4385 Decl : constant Node_Id := Declaration_Node (E);
4386 Asp : Node_Id;
4387 Expr : Node_Id;
4389 begin
4390 if Has_Aspects (Decl) then
4391 Asp := First (Aspect_Specifications (Decl));
4392 while Present (Asp) loop
4393 Expr := Expression (Asp);
4395 -- The value of aspect Import is True when the expression is
4396 -- either missing or it is explicitly set to True.
4398 if Get_Aspect_Id (Asp) = Aspect_Import
4399 and then (No (Expr)
4400 or else (Compile_Time_Known_Value (Expr)
4401 and then Is_True (Expr_Value (Expr))))
4402 then
4403 return True;
4404 end if;
4406 Next (Asp);
4407 end loop;
4408 end if;
4410 return False;
4411 end Has_Boolean_Aspect_Import;
4413 ----------------------------
4414 -- Late_Freeze_Subprogram --
4415 ----------------------------
4417 procedure Late_Freeze_Subprogram (E : Entity_Id) is
4418 Spec : constant Node_Id :=
4419 Specification (Unit_Declaration_Node (Scope (E)));
4420 Decls : List_Id;
4422 begin
4423 if Present (Private_Declarations (Spec)) then
4424 Decls := Private_Declarations (Spec);
4425 else
4426 Decls := Visible_Declarations (Spec);
4427 end if;
4429 Append_List (Result, Decls);
4430 end Late_Freeze_Subprogram;
4432 ---------------------
4433 -- Restore_Globals --
4434 ---------------------
4436 procedure Restore_Globals is
4437 begin
4438 Ghost_Mode := GM;
4439 end Restore_Globals;
4441 ------------------------------
4442 -- Wrap_Imported_Subprogram --
4443 ------------------------------
4445 -- The issue here is that our normal approach of checking preconditions
4446 -- and postconditions does not work for imported procedures, since we
4447 -- are not generating code for the body. To get around this we create
4448 -- a wrapper, as shown by the following example:
4450 -- procedure K (A : Integer);
4451 -- pragma Import (C, K);
4453 -- The spec is rewritten by removing the effects of pragma Import, but
4454 -- leaving the convention unchanged, as though the source had said:
4456 -- procedure K (A : Integer);
4457 -- pragma Convention (C, K);
4459 -- and we create a body, added to the entity K freeze actions, which
4460 -- looks like:
4462 -- procedure K (A : Integer) is
4463 -- procedure K (A : Integer);
4464 -- pragma Import (C, K);
4465 -- begin
4466 -- K (A);
4467 -- end K;
4469 -- Now the contract applies in the normal way to the outer procedure,
4470 -- and the inner procedure has no contracts, so there is no problem
4471 -- in just calling it to get the original effect.
4473 -- In the case of a function, we create an appropriate return statement
4474 -- for the subprogram body that calls the inner procedure.
4476 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
4477 Loc : constant Source_Ptr := Sloc (E);
4478 CE : constant Name_Id := Chars (E);
4479 Spec : Node_Id;
4480 Parms : List_Id;
4481 Stmt : Node_Id;
4482 Iprag : Node_Id;
4483 Bod : Node_Id;
4484 Forml : Entity_Id;
4486 begin
4487 -- Nothing to do if not imported
4489 if not Is_Imported (E) then
4490 return;
4492 -- Test enabling conditions for wrapping
4494 elsif Is_Subprogram (E)
4495 and then Present (Contract (E))
4496 and then Present (Pre_Post_Conditions (Contract (E)))
4497 and then not GNATprove_Mode
4498 then
4499 -- Here we do the wrap
4501 -- Note on calls to Copy_Separate_Tree. The trees we are copying
4502 -- here are fully analyzed, but we definitely want fully syntactic
4503 -- unanalyzed trees in the body we construct, so that the analysis
4504 -- generates the right visibility, and that is exactly what the
4505 -- calls to Copy_Separate_Tree give us.
4507 -- Acquire copy of Inline pragma, and indicate that it does not
4508 -- come from an aspect, as it applies to an internal entity.
4510 Iprag := Copy_Separate_Tree (Import_Pragma (E));
4511 Set_From_Aspect_Specification (Iprag, False);
4513 -- Fix up spec to be not imported any more
4515 Set_Is_Imported (E, False);
4516 Set_Interface_Name (E, Empty);
4517 Set_Has_Completion (E, False);
4518 Set_Import_Pragma (E, Empty);
4520 -- Grab the subprogram declaration and specification
4522 Spec := Declaration_Node (E);
4524 -- Build parameter list that we need
4526 Parms := New_List;
4527 Forml := First_Formal (E);
4528 while Present (Forml) loop
4529 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
4530 Next_Formal (Forml);
4531 end loop;
4533 -- Build the call
4535 if Ekind_In (E, E_Function, E_Generic_Function) then
4536 Stmt :=
4537 Make_Simple_Return_Statement (Loc,
4538 Expression =>
4539 Make_Function_Call (Loc,
4540 Name => Make_Identifier (Loc, CE),
4541 Parameter_Associations => Parms));
4543 else
4544 Stmt :=
4545 Make_Procedure_Call_Statement (Loc,
4546 Name => Make_Identifier (Loc, CE),
4547 Parameter_Associations => Parms);
4548 end if;
4550 -- Now build the body
4552 Bod :=
4553 Make_Subprogram_Body (Loc,
4554 Specification =>
4555 Copy_Separate_Tree (Spec),
4556 Declarations => New_List (
4557 Make_Subprogram_Declaration (Loc,
4558 Specification =>
4559 Copy_Separate_Tree (Spec)),
4560 Iprag),
4561 Handled_Statement_Sequence =>
4562 Make_Handled_Sequence_Of_Statements (Loc,
4563 Statements => New_List (Stmt),
4564 End_Label => Make_Identifier (Loc, CE)));
4566 -- Append the body to freeze result
4568 Add_To_Result (Bod);
4569 return;
4571 -- Case of imported subprogram that does not get wrapped
4573 else
4574 -- Set Is_Public. All imported entities need an external symbol
4575 -- created for them since they are always referenced from another
4576 -- object file. Note this used to be set when we set Is_Imported
4577 -- back in Sem_Prag, but now we delay it to this point, since we
4578 -- don't want to set this flag if we wrap an imported subprogram.
4580 Set_Is_Public (E);
4581 end if;
4582 end Wrap_Imported_Subprogram;
4584 -- Start of processing for Freeze_Entity
4586 begin
4587 -- The entity being frozen may be subject to pragma Ghost with policy
4588 -- Ignore. Set the mode now to ensure that any nodes generated during
4589 -- freezing are properly flagged as ignored Ghost.
4591 Set_Ghost_Mode_For_Freeze (E, N);
4593 -- We are going to test for various reasons why this entity need not be
4594 -- frozen here, but in the case of an Itype that's defined within a
4595 -- record, that test actually applies to the record.
4597 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
4598 Test_E := Scope (E);
4599 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
4600 and then Is_Record_Type (Underlying_Type (Scope (E)))
4601 then
4602 Test_E := Underlying_Type (Scope (E));
4603 end if;
4605 -- Do not freeze if already frozen since we only need one freeze node
4607 if Is_Frozen (E) then
4608 Restore_Globals;
4609 return No_List;
4611 -- It is improper to freeze an external entity within a generic because
4612 -- its freeze node will appear in a non-valid context. The entity will
4613 -- be frozen in the proper scope after the current generic is analyzed.
4614 -- However, aspects must be analyzed because they may be queried later
4615 -- within the generic itself, and the corresponding pragma or attribute
4616 -- definition has not been analyzed yet.
4618 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
4619 if Has_Delayed_Aspects (E) then
4620 Analyze_Aspects_At_Freeze_Point (E);
4621 end if;
4623 Restore_Globals;
4624 return No_List;
4626 -- AI05-0213: A formal incomplete type does not freeze the actual. In
4627 -- the instance, the same applies to the subtype renaming the actual.
4629 elsif Is_Private_Type (E)
4630 and then Is_Generic_Actual_Type (E)
4631 and then No (Full_View (Base_Type (E)))
4632 and then Ada_Version >= Ada_2012
4633 then
4634 Restore_Globals;
4635 return No_List;
4637 -- Formal subprograms are never frozen
4639 elsif Is_Formal_Subprogram (E) then
4640 Restore_Globals;
4641 return No_List;
4643 -- Generic types are never frozen as they lack delayed semantic checks
4645 elsif Is_Generic_Type (E) then
4646 Restore_Globals;
4647 return No_List;
4649 -- Do not freeze a global entity within an inner scope created during
4650 -- expansion. A call to subprogram E within some internal procedure
4651 -- (a stream attribute for example) might require freezing E, but the
4652 -- freeze node must appear in the same declarative part as E itself.
4653 -- The two-pass elaboration mechanism in gigi guarantees that E will
4654 -- be frozen before the inner call is elaborated. We exclude constants
4655 -- from this test, because deferred constants may be frozen early, and
4656 -- must be diagnosed (e.g. in the case of a deferred constant being used
4657 -- in a default expression). If the enclosing subprogram comes from
4658 -- source, or is a generic instance, then the freeze point is the one
4659 -- mandated by the language, and we freeze the entity. A subprogram that
4660 -- is a child unit body that acts as a spec does not have a spec that
4661 -- comes from source, but can only come from source.
4663 elsif In_Open_Scopes (Scope (Test_E))
4664 and then Scope (Test_E) /= Current_Scope
4665 and then Ekind (Test_E) /= E_Constant
4666 then
4667 declare
4668 S : Entity_Id;
4670 begin
4671 S := Current_Scope;
4672 while Present (S) loop
4673 if Is_Overloadable (S) then
4674 if Comes_From_Source (S)
4675 or else Is_Generic_Instance (S)
4676 or else Is_Child_Unit (S)
4677 then
4678 exit;
4679 else
4680 Restore_Globals;
4681 return No_List;
4682 end if;
4683 end if;
4685 S := Scope (S);
4686 end loop;
4687 end;
4689 -- Similarly, an inlined instance body may make reference to global
4690 -- entities, but these references cannot be the proper freezing point
4691 -- for them, and in the absence of inlining freezing will take place in
4692 -- their own scope. Normally instance bodies are analyzed after the
4693 -- enclosing compilation, and everything has been frozen at the proper
4694 -- place, but with front-end inlining an instance body is compiled
4695 -- before the end of the enclosing scope, and as a result out-of-order
4696 -- freezing must be prevented.
4698 elsif Front_End_Inlining
4699 and then In_Instance_Body
4700 and then Present (Scope (Test_E))
4701 then
4702 declare
4703 S : Entity_Id;
4705 begin
4706 S := Scope (Test_E);
4707 while Present (S) loop
4708 if Is_Generic_Instance (S) then
4709 exit;
4710 else
4711 S := Scope (S);
4712 end if;
4713 end loop;
4715 if No (S) then
4716 Restore_Globals;
4717 return No_List;
4718 end if;
4719 end;
4721 elsif Ekind (E) = E_Generic_Package then
4722 Result := Freeze_Generic_Entities (E);
4724 Restore_Globals;
4725 return Result;
4726 end if;
4728 -- Add checks to detect proper initialization of scalars that may appear
4729 -- as subprogram parameters.
4731 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
4732 Apply_Parameter_Validity_Checks (E);
4733 end if;
4735 -- Deal with delayed aspect specifications. The analysis of the aspect
4736 -- is required to be delayed to the freeze point, thus we analyze the
4737 -- pragma or attribute definition clause in the tree at this point. We
4738 -- also analyze the aspect specification node at the freeze point when
4739 -- the aspect doesn't correspond to pragma/attribute definition clause.
4741 if Has_Delayed_Aspects (E) then
4742 Analyze_Aspects_At_Freeze_Point (E);
4743 end if;
4745 -- Here to freeze the entity
4747 Set_Is_Frozen (E);
4749 -- Case of entity being frozen is other than a type
4751 if not Is_Type (E) then
4753 -- If entity is exported or imported and does not have an external
4754 -- name, now is the time to provide the appropriate default name.
4755 -- Skip this if the entity is stubbed, since we don't need a name
4756 -- for any stubbed routine. For the case on intrinsics, if no
4757 -- external name is specified, then calls will be handled in
4758 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
4759 -- external name is provided, then Expand_Intrinsic_Call leaves
4760 -- calls in place for expansion by GIGI.
4762 if (Is_Imported (E) or else Is_Exported (E))
4763 and then No (Interface_Name (E))
4764 and then Convention (E) /= Convention_Stubbed
4765 and then Convention (E) /= Convention_Intrinsic
4766 then
4767 Set_Encoded_Interface_Name
4768 (E, Get_Default_External_Name (E));
4770 -- If entity is an atomic object appearing in a declaration and
4771 -- the expression is an aggregate, assign it to a temporary to
4772 -- ensure that the actual assignment is done atomically rather
4773 -- than component-wise (the assignment to the temp may be done
4774 -- component-wise, but that is harmless).
4776 elsif Is_Atomic (E)
4777 and then Nkind (Parent (E)) = N_Object_Declaration
4778 and then Present (Expression (Parent (E)))
4779 and then Nkind (Expression (Parent (E))) = N_Aggregate
4780 and then Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
4781 then
4782 null;
4783 end if;
4785 -- Subprogram case
4787 if Is_Subprogram (E) then
4789 -- Check for needing to wrap imported subprogram
4791 Wrap_Imported_Subprogram (E);
4793 -- Freeze all parameter types and the return type (RM 13.14(14)).
4794 -- However skip this for internal subprograms. This is also where
4795 -- any extra formal parameters are created since we now know
4796 -- whether the subprogram will use a foreign convention.
4798 -- In Ada 2012, freezing a subprogram does not always freeze
4799 -- the corresponding profile (see AI05-019). An attribute
4800 -- reference is not a freezing point of the profile.
4801 -- Other constructs that should not freeze ???
4803 -- This processing doesn't apply to internal entities (see below)
4805 if not Is_Internal (E) then
4806 if not Freeze_Profile (E) then
4807 Restore_Globals;
4808 return Result;
4809 end if;
4810 end if;
4812 -- Must freeze its parent first if it is a derived subprogram
4814 if Present (Alias (E)) then
4815 Freeze_And_Append (Alias (E), N, Result);
4816 end if;
4818 -- We don't freeze internal subprograms, because we don't normally
4819 -- want addition of extra formals or mechanism setting to happen
4820 -- for those. However we do pass through predefined dispatching
4821 -- cases, since extra formals may be needed in some cases, such as
4822 -- for the stream 'Input function (build-in-place formals).
4824 if not Is_Internal (E)
4825 or else Is_Predefined_Dispatching_Operation (E)
4826 then
4827 Freeze_Subprogram (E);
4828 end if;
4830 if Late_Freezing then
4831 Late_Freeze_Subprogram (E);
4832 Restore_Globals;
4833 return No_List;
4834 end if;
4836 -- If warning on suspicious contracts then check for the case of
4837 -- a postcondition other than False for a No_Return subprogram.
4839 if No_Return (E)
4840 and then Warn_On_Suspicious_Contract
4841 and then Present (Contract (E))
4842 then
4843 declare
4844 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
4845 Exp : Node_Id;
4847 begin
4848 while Present (Prag) loop
4849 if Nam_In (Pragma_Name (Prag), Name_Post,
4850 Name_Postcondition,
4851 Name_Refined_Post)
4852 then
4853 Exp :=
4854 Expression
4855 (First (Pragma_Argument_Associations (Prag)));
4857 if Nkind (Exp) /= N_Identifier
4858 or else Chars (Exp) /= Name_False
4859 then
4860 Error_Msg_NE
4861 ("useless postcondition, & is marked "
4862 & "No_Return?T?", Exp, E);
4863 end if;
4864 end if;
4866 Prag := Next_Pragma (Prag);
4867 end loop;
4868 end;
4869 end if;
4871 -- Here for other than a subprogram or type
4873 else
4874 -- If entity has a type, and it is not a generic unit, then
4875 -- freeze it first (RM 13.14(10)).
4877 if Present (Etype (E))
4878 and then Ekind (E) /= E_Generic_Function
4879 then
4880 Freeze_And_Append (Etype (E), N, Result);
4882 -- For an object of an anonymous array type, aspects on the
4883 -- object declaration apply to the type itself. This is the
4884 -- case for Atomic_Components, Volatile_Components, and
4885 -- Independent_Components. In these cases analysis of the
4886 -- generated pragma will mark the anonymous types accordingly,
4887 -- and the object itself does not require a freeze node.
4889 if Ekind (E) = E_Variable
4890 and then Is_Itype (Etype (E))
4891 and then Is_Array_Type (Etype (E))
4892 and then Has_Delayed_Aspects (E)
4893 then
4894 Set_Has_Delayed_Aspects (E, False);
4895 Set_Has_Delayed_Freeze (E, False);
4896 Set_Freeze_Node (E, Empty);
4897 end if;
4898 end if;
4900 -- Special processing for objects created by object declaration
4902 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
4903 Freeze_Object_Declaration (E);
4904 end if;
4906 -- Check that a constant which has a pragma Volatile[_Components]
4907 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
4909 -- Note: Atomic[_Components] also sets Volatile[_Components]
4911 if Ekind (E) = E_Constant
4912 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
4913 and then not Is_Imported (E)
4914 and then not Has_Boolean_Aspect_Import (E)
4915 then
4916 -- Make sure we actually have a pragma, and have not merely
4917 -- inherited the indication from elsewhere (e.g. an address
4918 -- clause, which is not good enough in RM terms).
4920 if Has_Rep_Pragma (E, Name_Atomic)
4921 or else
4922 Has_Rep_Pragma (E, Name_Atomic_Components)
4923 then
4924 Error_Msg_N
4925 ("stand alone atomic constant must be " &
4926 "imported (RM C.6(13))", E);
4928 elsif Has_Rep_Pragma (E, Name_Volatile)
4929 or else
4930 Has_Rep_Pragma (E, Name_Volatile_Components)
4931 then
4932 Error_Msg_N
4933 ("stand alone volatile constant must be " &
4934 "imported (RM C.6(13))", E);
4935 end if;
4936 end if;
4938 -- Static objects require special handling
4940 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
4941 and then Is_Statically_Allocated (E)
4942 then
4943 Freeze_Static_Object (E);
4944 end if;
4946 -- Remaining step is to layout objects
4948 if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
4949 or else Is_Formal (E)
4950 then
4951 Layout_Object (E);
4952 end if;
4954 -- For an object that does not have delayed freezing, and whose
4955 -- initialization actions have been captured in a compound
4956 -- statement, move them back now directly within the enclosing
4957 -- statement sequence.
4959 if Ekind_In (E, E_Constant, E_Variable)
4960 and then not Has_Delayed_Freeze (E)
4961 then
4962 Explode_Initialization_Compound_Statement (E);
4963 end if;
4964 end if;
4966 -- Case of a type or subtype being frozen
4968 else
4969 -- We used to check here that a full type must have preelaborable
4970 -- initialization if it completes a private type specified with
4971 -- pragma Preelaborable_Initialization, but that missed cases where
4972 -- the types occur within a generic package, since the freezing
4973 -- that occurs within a containing scope generally skips traversal
4974 -- of a generic unit's declarations (those will be frozen within
4975 -- instances). This check was moved to Analyze_Package_Specification.
4977 -- The type may be defined in a generic unit. This can occur when
4978 -- freezing a generic function that returns the type (which is
4979 -- defined in a parent unit). It is clearly meaningless to freeze
4980 -- this type. However, if it is a subtype, its size may be determi-
4981 -- nable and used in subsequent checks, so might as well try to
4982 -- compute it.
4984 -- In Ada 2012, Freeze_Entities is also used in the front end to
4985 -- trigger the analysis of aspect expressions, so in this case we
4986 -- want to continue the freezing process.
4988 if Present (Scope (E))
4989 and then Is_Generic_Unit (Scope (E))
4990 and then
4991 (not Has_Predicates (E)
4992 and then not Has_Delayed_Freeze (E))
4993 then
4994 Check_Compile_Time_Size (E);
4995 Restore_Globals;
4996 return No_List;
4997 end if;
4999 -- Check for error of Type_Invariant'Class applied to an untagged
5000 -- type (check delayed to freeze time when full type is available).
5002 declare
5003 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
5004 begin
5005 if Present (Prag)
5006 and then Class_Present (Prag)
5007 and then not Is_Tagged_Type (E)
5008 then
5009 Error_Msg_NE
5010 ("Type_Invariant''Class cannot be specified for &",
5011 Prag, E);
5012 Error_Msg_N
5013 ("\can only be specified for a tagged type", Prag);
5014 end if;
5015 end;
5017 -- A Ghost type cannot be effectively volatile (SPARK RM 6.9(8))
5019 if Is_Ghost_Entity (E)
5020 and then Is_Effectively_Volatile (E)
5021 then
5022 Error_Msg_N ("ghost type & cannot be volatile", E);
5023 end if;
5025 -- Deal with special cases of freezing for subtype
5027 if E /= Base_Type (E) then
5029 -- Before we do anything else, a specialized test for the case of
5030 -- a size given for an array where the array needs to be packed,
5031 -- but was not so the size cannot be honored. This is the case
5032 -- where implicit packing may apply. The reason we do this so
5033 -- early is that if we have implicit packing, the layout of the
5034 -- base type is affected, so we must do this before we freeze
5035 -- the base type.
5037 -- We could do this processing only if implicit packing is enabled
5038 -- since in all other cases, the error would be caught by the back
5039 -- end. However, we choose to do the check even if we do not have
5040 -- implicit packing enabled, since this allows us to give a more
5041 -- useful error message (advising use of pragmas Implicit_Packing
5042 -- or Pack).
5044 if Is_Array_Type (E) then
5045 declare
5046 Ctyp : constant Entity_Id := Component_Type (E);
5047 Rsiz : constant Uint := RM_Size (Ctyp);
5048 SZ : constant Node_Id := Size_Clause (E);
5049 Btyp : constant Entity_Id := Base_Type (E);
5051 Lo : Node_Id;
5052 Hi : Node_Id;
5053 Indx : Node_Id;
5055 Num_Elmts : Uint;
5056 -- Number of elements in array
5058 begin
5059 -- Check enabling conditions. These are straightforward
5060 -- except for the test for a limited composite type. This
5061 -- eliminates the rare case of a array of limited components
5062 -- where there are issues of whether or not we can go ahead
5063 -- and pack the array (since we can't freely pack and unpack
5064 -- arrays if they are limited).
5066 -- Note that we check the root type explicitly because the
5067 -- whole point is we are doing this test before we have had
5068 -- a chance to freeze the base type (and it is that freeze
5069 -- action that causes stuff to be inherited).
5071 if Has_Size_Clause (E)
5072 and then Known_Static_RM_Size (E)
5073 and then not Is_Packed (E)
5074 and then not Has_Pragma_Pack (E)
5075 and then not Has_Component_Size_Clause (E)
5076 and then Known_Static_RM_Size (Ctyp)
5077 and then RM_Size (Ctyp) < 64
5078 and then not Is_Limited_Composite (E)
5079 and then not Is_Packed (Root_Type (E))
5080 and then not Has_Component_Size_Clause (Root_Type (E))
5081 and then not (CodePeer_Mode or GNATprove_Mode)
5082 then
5083 -- Compute number of elements in array
5085 Num_Elmts := Uint_1;
5086 Indx := First_Index (E);
5087 while Present (Indx) loop
5088 Get_Index_Bounds (Indx, Lo, Hi);
5090 if not (Compile_Time_Known_Value (Lo)
5091 and then
5092 Compile_Time_Known_Value (Hi))
5093 then
5094 goto No_Implicit_Packing;
5095 end if;
5097 Num_Elmts :=
5098 Num_Elmts *
5099 UI_Max (Uint_0,
5100 Expr_Value (Hi) - Expr_Value (Lo) + 1);
5101 Next_Index (Indx);
5102 end loop;
5104 -- What we are looking for here is the situation where
5105 -- the RM_Size given would be exactly right if there was
5106 -- a pragma Pack (resulting in the component size being
5107 -- the same as the RM_Size). Furthermore, the component
5108 -- type size must be an odd size (not a multiple of
5109 -- storage unit). If the component RM size is an exact
5110 -- number of storage units that is a power of two, the
5111 -- array is not packed and has a standard representation.
5113 if RM_Size (E) = Num_Elmts * Rsiz
5114 and then Rsiz mod System_Storage_Unit /= 0
5115 then
5116 -- For implicit packing mode, just set the component
5117 -- size silently.
5119 if Implicit_Packing then
5120 Set_Component_Size (Btyp, Rsiz);
5121 Set_Is_Bit_Packed_Array (Btyp);
5122 Set_Is_Packed (Btyp);
5123 Set_Has_Non_Standard_Rep (Btyp);
5125 -- Otherwise give an error message
5127 else
5128 Error_Msg_NE
5129 ("size given for& too small", SZ, E);
5130 Error_Msg_N -- CODEFIX
5131 ("\use explicit pragma Pack "
5132 & "or use pragma Implicit_Packing", SZ);
5133 end if;
5135 elsif RM_Size (E) = Num_Elmts * Rsiz
5136 and then Implicit_Packing
5137 and then
5138 (Rsiz / System_Storage_Unit = 1
5139 or else
5140 Rsiz / System_Storage_Unit = 2
5141 or else
5142 Rsiz / System_Storage_Unit = 4)
5143 then
5144 -- Not a packed array, but indicate the desired
5145 -- component size, for the back-end.
5147 Set_Component_Size (Btyp, Rsiz);
5148 end if;
5149 end if;
5150 end;
5151 end if;
5153 <<No_Implicit_Packing>>
5155 -- If ancestor subtype present, freeze that first. Note that this
5156 -- will also get the base type frozen. Need RM reference ???
5158 Atype := Ancestor_Subtype (E);
5160 if Present (Atype) then
5161 Freeze_And_Append (Atype, N, Result);
5163 -- No ancestor subtype present
5165 else
5166 -- See if we have a nearest ancestor that has a predicate.
5167 -- That catches the case of derived type with a predicate.
5168 -- Need RM reference here ???
5170 Atype := Nearest_Ancestor (E);
5172 if Present (Atype) and then Has_Predicates (Atype) then
5173 Freeze_And_Append (Atype, N, Result);
5174 end if;
5176 -- Freeze base type before freezing the entity (RM 13.14(15))
5178 if E /= Base_Type (E) then
5179 Freeze_And_Append (Base_Type (E), N, Result);
5180 end if;
5181 end if;
5183 -- A subtype inherits all the type-related representation aspects
5184 -- from its parents (RM 13.1(8)).
5186 Inherit_Aspects_At_Freeze_Point (E);
5188 -- For a derived type, freeze its parent type first (RM 13.14(15))
5190 elsif Is_Derived_Type (E) then
5191 Freeze_And_Append (Etype (E), N, Result);
5192 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
5194 -- A derived type inherits each type-related representation aspect
5195 -- of its parent type that was directly specified before the
5196 -- declaration of the derived type (RM 13.1(15)).
5198 Inherit_Aspects_At_Freeze_Point (E);
5199 end if;
5201 -- Check for incompatible size and alignment for record type
5203 if Warn_On_Size_Alignment
5204 and then Is_Record_Type (E)
5205 and then Has_Size_Clause (E) and then Has_Alignment_Clause (E)
5207 -- If explicit Object_Size clause given assume that the programmer
5208 -- knows what he is doing, and expects the compiler behavior.
5210 and then not Has_Object_Size_Clause (E)
5212 -- Check for size not a multiple of alignment
5214 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
5215 then
5216 declare
5217 SC : constant Node_Id := Size_Clause (E);
5218 AC : constant Node_Id := Alignment_Clause (E);
5219 Loc : Node_Id;
5220 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
5222 begin
5223 if Present (SC) and then Present (AC) then
5225 -- Give a warning
5227 if Sloc (SC) > Sloc (AC) then
5228 Loc := SC;
5229 Error_Msg_NE
5230 ("??size is not a multiple of alignment for &", Loc, E);
5231 Error_Msg_Sloc := Sloc (AC);
5232 Error_Msg_Uint_1 := Alignment (E);
5233 Error_Msg_N ("\??alignment of ^ specified #", Loc);
5235 else
5236 Loc := AC;
5237 Error_Msg_NE
5238 ("??size is not a multiple of alignment for &", Loc, E);
5239 Error_Msg_Sloc := Sloc (SC);
5240 Error_Msg_Uint_1 := RM_Size (E);
5241 Error_Msg_N ("\??size of ^ specified #", Loc);
5242 end if;
5244 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
5245 Error_Msg_N ("\??Object_Size will be increased to ^", Loc);
5246 end if;
5247 end;
5248 end if;
5250 -- Array type
5252 if Is_Array_Type (E) then
5253 Freeze_Array_Type (E);
5255 -- For a class-wide type, the corresponding specific type is
5256 -- frozen as well (RM 13.14(15))
5258 elsif Is_Class_Wide_Type (E) then
5259 Freeze_And_Append (Root_Type (E), N, Result);
5261 -- If the base type of the class-wide type is still incomplete,
5262 -- the class-wide remains unfrozen as well. This is legal when
5263 -- E is the formal of a primitive operation of some other type
5264 -- which is being frozen.
5266 if not Is_Frozen (Root_Type (E)) then
5267 Set_Is_Frozen (E, False);
5268 Restore_Globals;
5269 return Result;
5270 end if;
5272 -- The equivalent type associated with a class-wide subtype needs
5273 -- to be frozen to ensure that its layout is done.
5275 if Ekind (E) = E_Class_Wide_Subtype
5276 and then Present (Equivalent_Type (E))
5277 then
5278 Freeze_And_Append (Equivalent_Type (E), N, Result);
5279 end if;
5281 -- Generate an itype reference for a library-level class-wide type
5282 -- at the freeze point. Otherwise the first explicit reference to
5283 -- the type may appear in an inner scope which will be rejected by
5284 -- the back-end.
5286 if Is_Itype (E)
5287 and then Is_Compilation_Unit (Scope (E))
5288 then
5289 declare
5290 Ref : constant Node_Id := Make_Itype_Reference (Loc);
5292 begin
5293 Set_Itype (Ref, E);
5295 -- From a gigi point of view, a class-wide subtype derives
5296 -- from its record equivalent type. As a result, the itype
5297 -- reference must appear after the freeze node of the
5298 -- equivalent type or gigi will reject the reference.
5300 if Ekind (E) = E_Class_Wide_Subtype
5301 and then Present (Equivalent_Type (E))
5302 then
5303 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
5304 else
5305 Add_To_Result (Ref);
5306 end if;
5307 end;
5308 end if;
5310 -- For a record type or record subtype, freeze all component types
5311 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5312 -- using Is_Record_Type, because we don't want to attempt the freeze
5313 -- for the case of a private type with record extension (we will do
5314 -- that later when the full type is frozen).
5316 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype)
5317 and then not (Present (Scope (E))
5318 and then Is_Generic_Unit (Scope (E)))
5319 then
5320 Freeze_Record_Type (E);
5322 -- For a concurrent type, freeze corresponding record type. This does
5323 -- not correspond to any specific rule in the RM, but the record type
5324 -- is essentially part of the concurrent type. Also freeze all local
5325 -- entities. This includes record types created for entry parameter
5326 -- blocks and whatever local entities may appear in the private part.
5328 elsif Is_Concurrent_Type (E) then
5329 if Present (Corresponding_Record_Type (E)) then
5330 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
5331 end if;
5333 Comp := First_Entity (E);
5334 while Present (Comp) loop
5335 if Is_Type (Comp) then
5336 Freeze_And_Append (Comp, N, Result);
5338 elsif (Ekind (Comp)) /= E_Function then
5340 -- The guard on the presence of the Etype seems to be needed
5341 -- for some CodePeer (-gnatcC) cases, but not clear why???
5343 if Present (Etype (Comp)) then
5344 if Is_Itype (Etype (Comp))
5345 and then Underlying_Type (Scope (Etype (Comp))) = E
5346 then
5347 Undelay_Type (Etype (Comp));
5348 end if;
5350 Freeze_And_Append (Etype (Comp), N, Result);
5351 end if;
5352 end if;
5354 Next_Entity (Comp);
5355 end loop;
5357 -- Private types are required to point to the same freeze node as
5358 -- their corresponding full views. The freeze node itself has to
5359 -- point to the partial view of the entity (because from the partial
5360 -- view, we can retrieve the full view, but not the reverse).
5361 -- However, in order to freeze correctly, we need to freeze the full
5362 -- view. If we are freezing at the end of a scope (or within the
5363 -- scope) of the private type, the partial and full views will have
5364 -- been swapped, the full view appears first in the entity chain and
5365 -- the swapping mechanism ensures that the pointers are properly set
5366 -- (on scope exit).
5368 -- If we encounter the partial view before the full view (e.g. when
5369 -- freezing from another scope), we freeze the full view, and then
5370 -- set the pointers appropriately since we cannot rely on swapping to
5371 -- fix things up (subtypes in an outer scope might not get swapped).
5373 -- If the full view is itself private, the above requirements apply
5374 -- to the underlying full view instead of the full view. But there is
5375 -- no swapping mechanism for the underlying full view so we need to
5376 -- set the pointers appropriately in both cases.
5378 elsif Is_Incomplete_Or_Private_Type (E)
5379 and then not Is_Generic_Type (E)
5380 then
5381 -- The construction of the dispatch table associated with library
5382 -- level tagged types forces freezing of all the primitives of the
5383 -- type, which may cause premature freezing of the partial view.
5384 -- For example:
5386 -- package Pkg is
5387 -- type T is tagged private;
5388 -- type DT is new T with private;
5389 -- procedure Prim (X : in out T; Y : in out DT'Class);
5390 -- private
5391 -- type T is tagged null record;
5392 -- Obj : T;
5393 -- type DT is new T with null record;
5394 -- end;
5396 -- In this case the type will be frozen later by the usual
5397 -- mechanism: an object declaration, an instantiation, or the
5398 -- end of a declarative part.
5400 if Is_Library_Level_Tagged_Type (E)
5401 and then not Present (Full_View (E))
5402 then
5403 Set_Is_Frozen (E, False);
5404 Restore_Globals;
5405 return Result;
5407 -- Case of full view present
5409 elsif Present (Full_View (E)) then
5411 -- If full view has already been frozen, then no further
5412 -- processing is required
5414 if Is_Frozen (Full_View (E)) then
5415 Set_Has_Delayed_Freeze (E, False);
5416 Set_Freeze_Node (E, Empty);
5418 -- Otherwise freeze full view and patch the pointers so that
5419 -- the freeze node will elaborate both views in the back end.
5420 -- However, if full view is itself private, freeze underlying
5421 -- full view instead and patch the pointers so that the freeze
5422 -- node will elaborate the three views in the back end.
5424 else
5425 declare
5426 Full : Entity_Id := Full_View (E);
5428 begin
5429 if Is_Private_Type (Full)
5430 and then Present (Underlying_Full_View (Full))
5431 then
5432 Full := Underlying_Full_View (Full);
5433 end if;
5435 Freeze_And_Append (Full, N, Result);
5437 if Full /= Full_View (E)
5438 and then Has_Delayed_Freeze (Full_View (E))
5439 then
5440 F_Node := Freeze_Node (Full);
5442 if Present (F_Node) then
5443 Set_Freeze_Node (Full_View (E), F_Node);
5444 Set_Entity (F_Node, Full_View (E));
5446 else
5447 Set_Has_Delayed_Freeze (Full_View (E), False);
5448 Set_Freeze_Node (Full_View (E), Empty);
5449 end if;
5450 end if;
5452 if Has_Delayed_Freeze (E) then
5453 F_Node := Freeze_Node (Full_View (E));
5455 if Present (F_Node) then
5456 Set_Freeze_Node (E, F_Node);
5457 Set_Entity (F_Node, E);
5459 else
5460 -- {Incomplete,Private}_Subtypes with Full_Views
5461 -- constrained by discriminants.
5463 Set_Has_Delayed_Freeze (E, False);
5464 Set_Freeze_Node (E, Empty);
5465 end if;
5466 end if;
5467 end;
5468 end if;
5470 Check_Debug_Info_Needed (E);
5472 -- AI-117 requires that the convention of a partial view be the
5473 -- same as the convention of the full view. Note that this is a
5474 -- recognized breach of privacy, but it's essential for logical
5475 -- consistency of representation, and the lack of a rule in
5476 -- RM95 was an oversight.
5478 Set_Convention (E, Convention (Full_View (E)));
5480 Set_Size_Known_At_Compile_Time (E,
5481 Size_Known_At_Compile_Time (Full_View (E)));
5483 -- Size information is copied from the full view to the
5484 -- incomplete or private view for consistency.
5486 -- We skip this is the full view is not a type. This is very
5487 -- strange of course, and can only happen as a result of
5488 -- certain illegalities, such as a premature attempt to derive
5489 -- from an incomplete type.
5491 if Is_Type (Full_View (E)) then
5492 Set_Size_Info (E, Full_View (E));
5493 Set_RM_Size (E, RM_Size (Full_View (E)));
5494 end if;
5496 Restore_Globals;
5497 return Result;
5499 -- Case of underlying full view present
5501 elsif Is_Private_Type (E)
5502 and then Present (Underlying_Full_View (E))
5503 then
5504 if not Is_Frozen (Underlying_Full_View (E)) then
5505 Freeze_And_Append (Underlying_Full_View (E), N, Result);
5506 end if;
5508 -- Patch the pointers so that the freeze node will elaborate
5509 -- both views in the back end.
5511 if Has_Delayed_Freeze (E) then
5512 F_Node := Freeze_Node (Underlying_Full_View (E));
5514 if Present (F_Node) then
5515 Set_Freeze_Node (E, F_Node);
5516 Set_Entity (F_Node, E);
5518 else
5519 Set_Has_Delayed_Freeze (E, False);
5520 Set_Freeze_Node (E, Empty);
5521 end if;
5522 end if;
5524 Check_Debug_Info_Needed (E);
5526 Restore_Globals;
5527 return Result;
5529 -- Case of no full view present. If entity is derived or subtype,
5530 -- it is safe to freeze, correctness depends on the frozen status
5531 -- of parent. Otherwise it is either premature usage, or a Taft
5532 -- amendment type, so diagnosis is at the point of use and the
5533 -- type might be frozen later.
5535 elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
5536 null;
5538 else
5539 Set_Is_Frozen (E, False);
5540 Restore_Globals;
5541 return No_List;
5542 end if;
5544 -- For access subprogram, freeze types of all formals, the return
5545 -- type was already frozen, since it is the Etype of the function.
5546 -- Formal types can be tagged Taft amendment types, but otherwise
5547 -- they cannot be incomplete.
5549 elsif Ekind (E) = E_Subprogram_Type then
5550 Formal := First_Formal (E);
5551 while Present (Formal) loop
5552 if Ekind (Etype (Formal)) = E_Incomplete_Type
5553 and then No (Full_View (Etype (Formal)))
5554 and then not Is_Value_Type (Etype (Formal))
5555 then
5556 if Is_Tagged_Type (Etype (Formal)) then
5557 null;
5559 -- AI05-151: Incomplete types are allowed in access to
5560 -- subprogram specifications.
5562 elsif Ada_Version < Ada_2012 then
5563 Error_Msg_NE
5564 ("invalid use of incomplete type&", E, Etype (Formal));
5565 end if;
5566 end if;
5568 Freeze_And_Append (Etype (Formal), N, Result);
5569 Next_Formal (Formal);
5570 end loop;
5572 Freeze_Subprogram (E);
5574 -- For access to a protected subprogram, freeze the equivalent type
5575 -- (however this is not set if we are not generating code or if this
5576 -- is an anonymous type used just for resolution).
5578 elsif Is_Access_Protected_Subprogram_Type (E) then
5579 if Present (Equivalent_Type (E)) then
5580 Freeze_And_Append (Equivalent_Type (E), N, Result);
5581 end if;
5582 end if;
5584 -- Generic types are never seen by the back-end, and are also not
5585 -- processed by the expander (since the expander is turned off for
5586 -- generic processing), so we never need freeze nodes for them.
5588 if Is_Generic_Type (E) then
5589 Restore_Globals;
5590 return Result;
5591 end if;
5593 -- Some special processing for non-generic types to complete
5594 -- representation details not known till the freeze point.
5596 if Is_Fixed_Point_Type (E) then
5597 Freeze_Fixed_Point_Type (E);
5599 -- Some error checks required for ordinary fixed-point type. Defer
5600 -- these till the freeze-point since we need the small and range
5601 -- values. We only do these checks for base types
5603 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
5604 if Small_Value (E) < Ureal_2_M_80 then
5605 Error_Msg_Name_1 := Name_Small;
5606 Error_Msg_N
5607 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
5609 elsif Small_Value (E) > Ureal_2_80 then
5610 Error_Msg_Name_1 := Name_Small;
5611 Error_Msg_N
5612 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
5613 end if;
5615 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
5616 Error_Msg_Name_1 := Name_First;
5617 Error_Msg_N
5618 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
5619 end if;
5621 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
5622 Error_Msg_Name_1 := Name_Last;
5623 Error_Msg_N
5624 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
5625 end if;
5626 end if;
5628 elsif Is_Enumeration_Type (E) then
5629 Freeze_Enumeration_Type (E);
5631 elsif Is_Integer_Type (E) then
5632 Adjust_Esize_For_Alignment (E);
5634 if Is_Modular_Integer_Type (E)
5635 and then Warn_On_Suspicious_Modulus_Value
5636 then
5637 Check_Suspicious_Modulus (E);
5638 end if;
5640 -- The pool applies to named and anonymous access types, but not
5641 -- to subprogram and to internal types generated for 'Access
5642 -- references.
5644 elsif Is_Access_Type (E)
5645 and then not Is_Access_Subprogram_Type (E)
5646 and then Ekind (E) /= E_Access_Attribute_Type
5647 then
5648 -- If a pragma Default_Storage_Pool applies, and this type has no
5649 -- Storage_Pool or Storage_Size clause (which must have occurred
5650 -- before the freezing point), then use the default. This applies
5651 -- only to base types.
5653 -- None of this applies to access to subprograms, for which there
5654 -- are clearly no pools.
5656 if Present (Default_Pool)
5657 and then Is_Base_Type (E)
5658 and then not Has_Storage_Size_Clause (E)
5659 and then No (Associated_Storage_Pool (E))
5660 then
5661 -- Case of pragma Default_Storage_Pool (null)
5663 if Nkind (Default_Pool) = N_Null then
5664 Set_No_Pool_Assigned (E);
5666 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
5668 else
5669 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
5670 end if;
5671 end if;
5673 -- Check restriction for standard storage pool
5675 if No (Associated_Storage_Pool (E)) then
5676 Check_Restriction (No_Standard_Storage_Pools, E);
5677 end if;
5679 -- Deal with error message for pure access type. This is not an
5680 -- error in Ada 2005 if there is no pool (see AI-366).
5682 if Is_Pure_Unit_Access_Type (E)
5683 and then (Ada_Version < Ada_2005
5684 or else not No_Pool_Assigned (E))
5685 and then not Is_Generic_Unit (Scope (E))
5686 then
5687 Error_Msg_N ("named access type not allowed in pure unit", E);
5689 if Ada_Version >= Ada_2005 then
5690 Error_Msg_N
5691 ("\would be legal if Storage_Size of 0 given??", E);
5693 elsif No_Pool_Assigned (E) then
5694 Error_Msg_N
5695 ("\would be legal in Ada 2005??", E);
5697 else
5698 Error_Msg_N
5699 ("\would be legal in Ada 2005 if "
5700 & "Storage_Size of 0 given??", E);
5701 end if;
5702 end if;
5703 end if;
5705 -- Case of composite types
5707 if Is_Composite_Type (E) then
5709 -- AI-117 requires that all new primitives of a tagged type must
5710 -- inherit the convention of the full view of the type. Inherited
5711 -- and overriding operations are defined to inherit the convention
5712 -- of their parent or overridden subprogram (also specified in
5713 -- AI-117), which will have occurred earlier (in Derive_Subprogram
5714 -- and New_Overloaded_Entity). Here we set the convention of
5715 -- primitives that are still convention Ada, which will ensure
5716 -- that any new primitives inherit the type's convention. Class-
5717 -- wide types can have a foreign convention inherited from their
5718 -- specific type, but are excluded from this since they don't have
5719 -- any associated primitives.
5721 if Is_Tagged_Type (E)
5722 and then not Is_Class_Wide_Type (E)
5723 and then Convention (E) /= Convention_Ada
5724 then
5725 declare
5726 Prim_List : constant Elist_Id := Primitive_Operations (E);
5727 Prim : Elmt_Id;
5729 begin
5730 Prim := First_Elmt (Prim_List);
5731 while Present (Prim) loop
5732 if Convention (Node (Prim)) = Convention_Ada then
5733 Set_Convention (Node (Prim), Convention (E));
5734 end if;
5736 Next_Elmt (Prim);
5737 end loop;
5738 end;
5739 end if;
5741 -- If the type is a simple storage pool type, then this is where
5742 -- we attempt to locate and validate its Allocate, Deallocate, and
5743 -- Storage_Size operations (the first is required, and the latter
5744 -- two are optional). We also verify that the full type for a
5745 -- private type is allowed to be a simple storage pool type.
5747 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
5748 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
5749 then
5750 -- If the type is marked Has_Private_Declaration, then this is
5751 -- a full type for a private type that was specified with the
5752 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
5753 -- pragma is allowed for the full type (for example, it can't
5754 -- be an array type, or a nonlimited record type).
5756 if Has_Private_Declaration (E) then
5757 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
5758 and then not Is_Private_Type (E)
5759 then
5760 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
5761 Error_Msg_N
5762 ("pragma% can only apply to full type that is an " &
5763 "explicitly limited type", E);
5764 end if;
5765 end if;
5767 Validate_Simple_Pool_Ops : declare
5768 Pool_Type : Entity_Id renames E;
5769 Address_Type : constant Entity_Id := RTE (RE_Address);
5770 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
5772 procedure Validate_Simple_Pool_Op_Formal
5773 (Pool_Op : Entity_Id;
5774 Pool_Op_Formal : in out Entity_Id;
5775 Expected_Mode : Formal_Kind;
5776 Expected_Type : Entity_Id;
5777 Formal_Name : String;
5778 OK_Formal : in out Boolean);
5779 -- Validate one formal Pool_Op_Formal of the candidate pool
5780 -- operation Pool_Op. The formal must be of Expected_Type
5781 -- and have mode Expected_Mode. OK_Formal will be set to
5782 -- False if the formal doesn't match. If OK_Formal is False
5783 -- on entry, then the formal will effectively be ignored
5784 -- (because validation of the pool op has already failed).
5785 -- Upon return, Pool_Op_Formal will be updated to the next
5786 -- formal, if any.
5788 procedure Validate_Simple_Pool_Operation
5789 (Op_Name : Name_Id);
5790 -- Search for and validate a simple pool operation with the
5791 -- name Op_Name. If the name is Allocate, then there must be
5792 -- exactly one such primitive operation for the simple pool
5793 -- type. If the name is Deallocate or Storage_Size, then
5794 -- there can be at most one such primitive operation. The
5795 -- profile of the located primitive must conform to what
5796 -- is expected for each operation.
5798 ------------------------------------
5799 -- Validate_Simple_Pool_Op_Formal --
5800 ------------------------------------
5802 procedure Validate_Simple_Pool_Op_Formal
5803 (Pool_Op : Entity_Id;
5804 Pool_Op_Formal : in out Entity_Id;
5805 Expected_Mode : Formal_Kind;
5806 Expected_Type : Entity_Id;
5807 Formal_Name : String;
5808 OK_Formal : in out Boolean)
5810 begin
5811 -- If OK_Formal is False on entry, then simply ignore
5812 -- the formal, because an earlier formal has already
5813 -- been flagged.
5815 if not OK_Formal then
5816 return;
5818 -- If no formal is passed in, then issue an error for a
5819 -- missing formal.
5821 elsif not Present (Pool_Op_Formal) then
5822 Error_Msg_NE
5823 ("simple storage pool op missing formal " &
5824 Formal_Name & " of type&", Pool_Op, Expected_Type);
5825 OK_Formal := False;
5827 return;
5828 end if;
5830 if Etype (Pool_Op_Formal) /= Expected_Type then
5832 -- If the pool type was expected for this formal, then
5833 -- this will not be considered a candidate operation
5834 -- for the simple pool, so we unset OK_Formal so that
5835 -- the op and any later formals will be ignored.
5837 if Expected_Type = Pool_Type then
5838 OK_Formal := False;
5840 return;
5842 else
5843 Error_Msg_NE
5844 ("wrong type for formal " & Formal_Name &
5845 " of simple storage pool op; expected type&",
5846 Pool_Op_Formal, Expected_Type);
5847 end if;
5848 end if;
5850 -- Issue error if formal's mode is not the expected one
5852 if Ekind (Pool_Op_Formal) /= Expected_Mode then
5853 Error_Msg_N
5854 ("wrong mode for formal of simple storage pool op",
5855 Pool_Op_Formal);
5856 end if;
5858 -- Advance to the next formal
5860 Next_Formal (Pool_Op_Formal);
5861 end Validate_Simple_Pool_Op_Formal;
5863 ------------------------------------
5864 -- Validate_Simple_Pool_Operation --
5865 ------------------------------------
5867 procedure Validate_Simple_Pool_Operation
5868 (Op_Name : Name_Id)
5870 Op : Entity_Id;
5871 Found_Op : Entity_Id := Empty;
5872 Formal : Entity_Id;
5873 Is_OK : Boolean;
5875 begin
5876 pragma Assert
5877 (Nam_In (Op_Name, Name_Allocate,
5878 Name_Deallocate,
5879 Name_Storage_Size));
5881 Error_Msg_Name_1 := Op_Name;
5883 -- For each homonym declared immediately in the scope
5884 -- of the simple storage pool type, determine whether
5885 -- the homonym is an operation of the pool type, and,
5886 -- if so, check that its profile is as expected for
5887 -- a simple pool operation of that name.
5889 Op := Get_Name_Entity_Id (Op_Name);
5890 while Present (Op) loop
5891 if Ekind_In (Op, E_Function, E_Procedure)
5892 and then Scope (Op) = Current_Scope
5893 then
5894 Formal := First_Entity (Op);
5896 Is_OK := True;
5898 -- The first parameter must be of the pool type
5899 -- in order for the operation to qualify.
5901 if Op_Name = Name_Storage_Size then
5902 Validate_Simple_Pool_Op_Formal
5903 (Op, Formal, E_In_Parameter, Pool_Type,
5904 "Pool", Is_OK);
5905 else
5906 Validate_Simple_Pool_Op_Formal
5907 (Op, Formal, E_In_Out_Parameter, Pool_Type,
5908 "Pool", Is_OK);
5909 end if;
5911 -- If another operation with this name has already
5912 -- been located for the type, then flag an error,
5913 -- since we only allow the type to have a single
5914 -- such primitive.
5916 if Present (Found_Op) and then Is_OK then
5917 Error_Msg_NE
5918 ("only one % operation allowed for " &
5919 "simple storage pool type&", Op, Pool_Type);
5920 end if;
5922 -- In the case of Allocate and Deallocate, a formal
5923 -- of type System.Address is required.
5925 if Op_Name = Name_Allocate then
5926 Validate_Simple_Pool_Op_Formal
5927 (Op, Formal, E_Out_Parameter,
5928 Address_Type, "Storage_Address", Is_OK);
5930 elsif Op_Name = Name_Deallocate then
5931 Validate_Simple_Pool_Op_Formal
5932 (Op, Formal, E_In_Parameter,
5933 Address_Type, "Storage_Address", Is_OK);
5934 end if;
5936 -- In the case of Allocate and Deallocate, formals
5937 -- of type Storage_Count are required as the third
5938 -- and fourth parameters.
5940 if Op_Name /= Name_Storage_Size then
5941 Validate_Simple_Pool_Op_Formal
5942 (Op, Formal, E_In_Parameter,
5943 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
5944 Validate_Simple_Pool_Op_Formal
5945 (Op, Formal, E_In_Parameter,
5946 Stg_Cnt_Type, "Alignment", Is_OK);
5947 end if;
5949 -- If no mismatched formals have been found (Is_OK)
5950 -- and no excess formals are present, then this
5951 -- operation has been validated, so record it.
5953 if not Present (Formal) and then Is_OK then
5954 Found_Op := Op;
5955 end if;
5956 end if;
5958 Op := Homonym (Op);
5959 end loop;
5961 -- There must be a valid Allocate operation for the type,
5962 -- so issue an error if none was found.
5964 if Op_Name = Name_Allocate
5965 and then not Present (Found_Op)
5966 then
5967 Error_Msg_N ("missing % operation for simple " &
5968 "storage pool type", Pool_Type);
5970 elsif Present (Found_Op) then
5972 -- Simple pool operations can't be abstract
5974 if Is_Abstract_Subprogram (Found_Op) then
5975 Error_Msg_N
5976 ("simple storage pool operation must not be " &
5977 "abstract", Found_Op);
5978 end if;
5980 -- The Storage_Size operation must be a function with
5981 -- Storage_Count as its result type.
5983 if Op_Name = Name_Storage_Size then
5984 if Ekind (Found_Op) = E_Procedure then
5985 Error_Msg_N
5986 ("% operation must be a function", Found_Op);
5988 elsif Etype (Found_Op) /= Stg_Cnt_Type then
5989 Error_Msg_NE
5990 ("wrong result type for%, expected type&",
5991 Found_Op, Stg_Cnt_Type);
5992 end if;
5994 -- Allocate and Deallocate must be procedures
5996 elsif Ekind (Found_Op) = E_Function then
5997 Error_Msg_N
5998 ("% operation must be a procedure", Found_Op);
5999 end if;
6000 end if;
6001 end Validate_Simple_Pool_Operation;
6003 -- Start of processing for Validate_Simple_Pool_Ops
6005 begin
6006 Validate_Simple_Pool_Operation (Name_Allocate);
6007 Validate_Simple_Pool_Operation (Name_Deallocate);
6008 Validate_Simple_Pool_Operation (Name_Storage_Size);
6009 end Validate_Simple_Pool_Ops;
6010 end if;
6011 end if;
6013 -- Now that all types from which E may depend are frozen, see if the
6014 -- size is known at compile time, if it must be unsigned, or if
6015 -- strict alignment is required
6017 Check_Compile_Time_Size (E);
6018 Check_Unsigned_Type (E);
6020 if Base_Type (E) = E then
6021 Check_Strict_Alignment (E);
6022 end if;
6024 -- Do not allow a size clause for a type which does not have a size
6025 -- that is known at compile time
6027 if Has_Size_Clause (E)
6028 and then not Size_Known_At_Compile_Time (E)
6029 then
6030 -- Suppress this message if errors posted on E, even if we are
6031 -- in all errors mode, since this is often a junk message
6033 if not Error_Posted (E) then
6034 Error_Msg_N
6035 ("size clause not allowed for variable length type",
6036 Size_Clause (E));
6037 end if;
6038 end if;
6040 -- Now we set/verify the representation information, in particular
6041 -- the size and alignment values. This processing is not required for
6042 -- generic types, since generic types do not play any part in code
6043 -- generation, and so the size and alignment values for such types
6044 -- are irrelevant. Ditto for types declared within a generic unit,
6045 -- which may have components that depend on generic parameters, and
6046 -- that will be recreated in an instance.
6048 if Inside_A_Generic then
6049 null;
6051 -- Otherwise we call the layout procedure
6053 else
6054 Layout_Type (E);
6055 end if;
6057 -- If this is an access to subprogram whose designated type is itself
6058 -- a subprogram type, the return type of this anonymous subprogram
6059 -- type must be decorated as well.
6061 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
6062 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
6063 then
6064 Layout_Type (Etype (Designated_Type (E)));
6065 end if;
6067 -- If the type has a Defaut_Value/Default_Component_Value aspect,
6068 -- this is where we analye the expression (after the type is frozen,
6069 -- since in the case of Default_Value, we are analyzing with the
6070 -- type itself, and we treat Default_Component_Value similarly for
6071 -- the sake of uniformity).
6073 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
6074 declare
6075 Nam : Name_Id;
6076 Exp : Node_Id;
6077 Typ : Entity_Id;
6079 begin
6080 if Is_Scalar_Type (E) then
6081 Nam := Name_Default_Value;
6082 Typ := E;
6083 Exp := Default_Aspect_Value (Typ);
6084 else
6085 Nam := Name_Default_Component_Value;
6086 Typ := Component_Type (E);
6087 Exp := Default_Aspect_Component_Value (E);
6088 end if;
6090 Analyze_And_Resolve (Exp, Typ);
6092 if Etype (Exp) /= Any_Type then
6093 if not Is_OK_Static_Expression (Exp) then
6094 Error_Msg_Name_1 := Nam;
6095 Flag_Non_Static_Expr
6096 ("aspect% requires static expression", Exp);
6097 end if;
6098 end if;
6099 end;
6100 end if;
6102 -- End of freeze processing for type entities
6103 end if;
6105 -- Here is where we logically freeze the current entity. If it has a
6106 -- freeze node, then this is the point at which the freeze node is
6107 -- linked into the result list.
6109 if Has_Delayed_Freeze (E) then
6111 -- If a freeze node is already allocated, use it, otherwise allocate
6112 -- a new one. The preallocation happens in the case of anonymous base
6113 -- types, where we preallocate so that we can set First_Subtype_Link.
6114 -- Note that we reset the Sloc to the current freeze location.
6116 if Present (Freeze_Node (E)) then
6117 F_Node := Freeze_Node (E);
6118 Set_Sloc (F_Node, Loc);
6120 else
6121 F_Node := New_Node (N_Freeze_Entity, Loc);
6122 Set_Freeze_Node (E, F_Node);
6123 Set_Access_Types_To_Process (F_Node, No_Elist);
6124 Set_TSS_Elist (F_Node, No_Elist);
6125 Set_Actions (F_Node, No_List);
6126 end if;
6128 Set_Entity (F_Node, E);
6129 Add_To_Result (F_Node);
6131 -- A final pass over record types with discriminants. If the type
6132 -- has an incomplete declaration, there may be constrained access
6133 -- subtypes declared elsewhere, which do not depend on the discrimi-
6134 -- nants of the type, and which are used as component types (i.e.
6135 -- the full view is a recursive type). The designated types of these
6136 -- subtypes can only be elaborated after the type itself, and they
6137 -- need an itype reference.
6139 if Ekind (E) = E_Record_Type
6140 and then Has_Discriminants (E)
6141 then
6142 declare
6143 Comp : Entity_Id;
6144 IR : Node_Id;
6145 Typ : Entity_Id;
6147 begin
6148 Comp := First_Component (E);
6149 while Present (Comp) loop
6150 Typ := Etype (Comp);
6152 if Ekind (Comp) = E_Component
6153 and then Is_Access_Type (Typ)
6154 and then Scope (Typ) /= E
6155 and then Base_Type (Designated_Type (Typ)) = E
6156 and then Is_Itype (Designated_Type (Typ))
6157 then
6158 IR := Make_Itype_Reference (Sloc (Comp));
6159 Set_Itype (IR, Designated_Type (Typ));
6160 Append (IR, Result);
6161 end if;
6163 Next_Component (Comp);
6164 end loop;
6165 end;
6166 end if;
6167 end if;
6169 -- When a type is frozen, the first subtype of the type is frozen as
6170 -- well (RM 13.14(15)). This has to be done after freezing the type,
6171 -- since obviously the first subtype depends on its own base type.
6173 if Is_Type (E) then
6174 Freeze_And_Append (First_Subtype (E), N, Result);
6176 -- If we just froze a tagged non-class wide record, then freeze the
6177 -- corresponding class-wide type. This must be done after the tagged
6178 -- type itself is frozen, because the class-wide type refers to the
6179 -- tagged type which generates the class.
6181 if Is_Tagged_Type (E)
6182 and then not Is_Class_Wide_Type (E)
6183 and then Present (Class_Wide_Type (E))
6184 then
6185 Freeze_And_Append (Class_Wide_Type (E), N, Result);
6186 end if;
6187 end if;
6189 Check_Debug_Info_Needed (E);
6191 -- Special handling for subprograms
6193 if Is_Subprogram (E) then
6195 -- If subprogram has address clause then reset Is_Public flag, since
6196 -- we do not want the backend to generate external references.
6198 if Present (Address_Clause (E))
6199 and then not Is_Library_Level_Entity (E)
6200 then
6201 Set_Is_Public (E, False);
6202 end if;
6203 end if;
6205 Restore_Globals;
6206 return Result;
6207 end Freeze_Entity;
6209 -----------------------------
6210 -- Freeze_Enumeration_Type --
6211 -----------------------------
6213 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
6214 begin
6215 -- By default, if no size clause is present, an enumeration type with
6216 -- Convention C is assumed to interface to a C enum, and has integer
6217 -- size. This applies to types. For subtypes, verify that its base
6218 -- type has no size clause either. Treat other foreign conventions
6219 -- in the same way, and also make sure alignment is set right.
6221 if Has_Foreign_Convention (Typ)
6222 and then not Has_Size_Clause (Typ)
6223 and then not Has_Size_Clause (Base_Type (Typ))
6224 and then Esize (Typ) < Standard_Integer_Size
6226 -- Don't do this if Short_Enums on target
6228 and then not Target_Short_Enums
6229 then
6230 Init_Esize (Typ, Standard_Integer_Size);
6231 Set_Alignment (Typ, Alignment (Standard_Integer));
6233 -- Normal Ada case or size clause present or not Long_C_Enums on target
6235 else
6236 -- If the enumeration type interfaces to C, and it has a size clause
6237 -- that specifies less than int size, it warrants a warning. The
6238 -- user may intend the C type to be an enum or a char, so this is
6239 -- not by itself an error that the Ada compiler can detect, but it
6240 -- it is a worth a heads-up. For Boolean and Character types we
6241 -- assume that the programmer has the proper C type in mind.
6243 if Convention (Typ) = Convention_C
6244 and then Has_Size_Clause (Typ)
6245 and then Esize (Typ) /= Esize (Standard_Integer)
6246 and then not Is_Boolean_Type (Typ)
6247 and then not Is_Character_Type (Typ)
6249 -- Don't do this if Short_Enums on target
6251 and then not Target_Short_Enums
6252 then
6253 Error_Msg_N
6254 ("C enum types have the size of a C int??", Size_Clause (Typ));
6255 end if;
6257 Adjust_Esize_For_Alignment (Typ);
6258 end if;
6259 end Freeze_Enumeration_Type;
6261 -----------------------
6262 -- Freeze_Expression --
6263 -----------------------
6265 procedure Freeze_Expression (N : Node_Id) is
6266 In_Spec_Exp : constant Boolean := In_Spec_Expression;
6267 Typ : Entity_Id;
6268 Nam : Entity_Id;
6269 Desig_Typ : Entity_Id;
6270 P : Node_Id;
6271 Parent_P : Node_Id;
6273 Freeze_Outside : Boolean := False;
6274 -- This flag is set true if the entity must be frozen outside the
6275 -- current subprogram. This happens in the case of expander generated
6276 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
6277 -- not freeze all entities like other bodies, but which nevertheless
6278 -- may reference entities that have to be frozen before the body and
6279 -- obviously cannot be frozen inside the body.
6281 function Find_Aggregate_Component_Desig_Type return Entity_Id;
6282 -- If the expression is an array aggregate, the type of the component
6283 -- expressions is also frozen. If the component type is an access type
6284 -- and the expressions include allocators, the designed type is frozen
6285 -- as well.
6287 function In_Expanded_Body (N : Node_Id) return Boolean;
6288 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
6289 -- it is the handled statement sequence of an expander-generated
6290 -- subprogram (init proc, stream subprogram, or renaming as body).
6291 -- If so, this is not a freezing context.
6293 -----------------------------------------
6294 -- Find_Aggregate_Component_Desig_Type --
6295 -----------------------------------------
6297 function Find_Aggregate_Component_Desig_Type return Entity_Id is
6298 Assoc : Node_Id;
6299 Exp : Node_Id;
6301 begin
6302 if Present (Expressions (N)) then
6303 Exp := First (Expressions (N));
6304 while Present (Exp) loop
6305 if Nkind (Exp) = N_Allocator then
6306 return Designated_Type (Component_Type (Etype (N)));
6307 end if;
6309 Next (Exp);
6310 end loop;
6311 end if;
6313 if Present (Component_Associations (N)) then
6314 Assoc := First (Component_Associations (N));
6315 while Present (Assoc) loop
6316 if Nkind (Expression (Assoc)) = N_Allocator then
6317 return Designated_Type (Component_Type (Etype (N)));
6318 end if;
6320 Next (Assoc);
6321 end loop;
6322 end if;
6324 return Empty;
6325 end Find_Aggregate_Component_Desig_Type;
6327 ----------------------
6328 -- In_Expanded_Body --
6329 ----------------------
6331 function In_Expanded_Body (N : Node_Id) return Boolean is
6332 P : Node_Id;
6333 Id : Entity_Id;
6335 begin
6336 if Nkind (N) = N_Subprogram_Body then
6337 P := N;
6338 else
6339 P := Parent (N);
6340 end if;
6342 if Nkind (P) /= N_Subprogram_Body then
6343 return False;
6345 else
6346 Id := Defining_Unit_Name (Specification (P));
6348 -- The following are expander-created bodies, or bodies that
6349 -- are not freeze points.
6351 if Nkind (Id) = N_Defining_Identifier
6352 and then (Is_Init_Proc (Id)
6353 or else Is_TSS (Id, TSS_Stream_Input)
6354 or else Is_TSS (Id, TSS_Stream_Output)
6355 or else Is_TSS (Id, TSS_Stream_Read)
6356 or else Is_TSS (Id, TSS_Stream_Write)
6357 or else Nkind_In (Original_Node (P),
6358 N_Subprogram_Renaming_Declaration,
6359 N_Expression_Function))
6360 then
6361 return True;
6362 else
6363 return False;
6364 end if;
6365 end if;
6366 end In_Expanded_Body;
6368 -- Start of processing for Freeze_Expression
6370 begin
6371 -- Immediate return if freezing is inhibited. This flag is set by the
6372 -- analyzer to stop freezing on generated expressions that would cause
6373 -- freezing if they were in the source program, but which are not
6374 -- supposed to freeze, since they are created.
6376 if Must_Not_Freeze (N) then
6377 return;
6378 end if;
6380 -- If expression is non-static, then it does not freeze in a default
6381 -- expression, see section "Handling of Default Expressions" in the
6382 -- spec of package Sem for further details. Note that we have to make
6383 -- sure that we actually have a real expression (if we have a subtype
6384 -- indication, we can't test Is_OK_Static_Expression). However, we
6385 -- exclude the case of the prefix of an attribute of a static scalar
6386 -- subtype from this early return, because static subtype attributes
6387 -- should always cause freezing, even in default expressions, but
6388 -- the attribute may not have been marked as static yet (because in
6389 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6390 -- Freeze_Expression on the prefix).
6392 if In_Spec_Exp
6393 and then Nkind (N) in N_Subexpr
6394 and then not Is_OK_Static_Expression (N)
6395 and then (Nkind (Parent (N)) /= N_Attribute_Reference
6396 or else not (Is_Entity_Name (N)
6397 and then Is_Type (Entity (N))
6398 and then Is_OK_Static_Subtype (Entity (N))))
6399 then
6400 return;
6401 end if;
6403 -- Freeze type of expression if not frozen already
6405 Typ := Empty;
6407 if Nkind (N) in N_Has_Etype then
6408 if not Is_Frozen (Etype (N)) then
6409 Typ := Etype (N);
6411 -- Base type may be an derived numeric type that is frozen at
6412 -- the point of declaration, but first_subtype is still unfrozen.
6414 elsif not Is_Frozen (First_Subtype (Etype (N))) then
6415 Typ := First_Subtype (Etype (N));
6416 end if;
6417 end if;
6419 -- For entity name, freeze entity if not frozen already. A special
6420 -- exception occurs for an identifier that did not come from source.
6421 -- We don't let such identifiers freeze a non-internal entity, i.e.
6422 -- an entity that did come from source, since such an identifier was
6423 -- generated by the expander, and cannot have any semantic effect on
6424 -- the freezing semantics. For example, this stops the parameter of
6425 -- an initialization procedure from freezing the variable.
6427 if Is_Entity_Name (N)
6428 and then not Is_Frozen (Entity (N))
6429 and then (Nkind (N) /= N_Identifier
6430 or else Comes_From_Source (N)
6431 or else not Comes_From_Source (Entity (N)))
6432 then
6433 Nam := Entity (N);
6435 if Present (Nam) and then Ekind (Nam) = E_Function then
6436 Check_Expression_Function (N, Nam);
6437 end if;
6439 else
6440 Nam := Empty;
6441 end if;
6443 -- For an allocator freeze designated type if not frozen already
6445 -- For an aggregate whose component type is an access type, freeze the
6446 -- designated type now, so that its freeze does not appear within the
6447 -- loop that might be created in the expansion of the aggregate. If the
6448 -- designated type is a private type without full view, the expression
6449 -- cannot contain an allocator, so the type is not frozen.
6451 -- For a function, we freeze the entity when the subprogram declaration
6452 -- is frozen, but a function call may appear in an initialization proc.
6453 -- before the declaration is frozen. We need to generate the extra
6454 -- formals, if any, to ensure that the expansion of the call includes
6455 -- the proper actuals. This only applies to Ada subprograms, not to
6456 -- imported ones.
6458 Desig_Typ := Empty;
6460 case Nkind (N) is
6461 when N_Allocator =>
6462 Desig_Typ := Designated_Type (Etype (N));
6464 when N_Aggregate =>
6465 if Is_Array_Type (Etype (N))
6466 and then Is_Access_Type (Component_Type (Etype (N)))
6467 then
6469 -- Check whether aggregate includes allocators.
6471 Desig_Typ := Find_Aggregate_Component_Desig_Type;
6472 end if;
6474 when N_Selected_Component |
6475 N_Indexed_Component |
6476 N_Slice =>
6478 if Is_Access_Type (Etype (Prefix (N))) then
6479 Desig_Typ := Designated_Type (Etype (Prefix (N)));
6480 end if;
6482 when N_Identifier =>
6483 if Present (Nam)
6484 and then Ekind (Nam) = E_Function
6485 and then Nkind (Parent (N)) = N_Function_Call
6486 and then Convention (Nam) = Convention_Ada
6487 then
6488 Create_Extra_Formals (Nam);
6489 end if;
6491 when others =>
6492 null;
6493 end case;
6495 if Desig_Typ /= Empty
6496 and then (Is_Frozen (Desig_Typ)
6497 or else (not Is_Fully_Defined (Desig_Typ)))
6498 then
6499 Desig_Typ := Empty;
6500 end if;
6502 -- All done if nothing needs freezing
6504 if No (Typ)
6505 and then No (Nam)
6506 and then No (Desig_Typ)
6507 then
6508 return;
6509 end if;
6511 -- Examine the enclosing context by climbing the parent chain. The
6512 -- traversal serves two purposes - to detect scenarios where freezeing
6513 -- is not needed and to find the proper insertion point for the freeze
6514 -- nodes. Although somewhat similar to Insert_Actions, this traversal
6515 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
6516 -- the tree may result in types being frozen too early.
6518 P := N;
6519 loop
6520 Parent_P := Parent (P);
6522 -- If we don't have a parent, then we are not in a well-formed tree.
6523 -- This is an unusual case, but there are some legitimate situations
6524 -- in which this occurs, notably when the expressions in the range of
6525 -- a type declaration are resolved. We simply ignore the freeze
6526 -- request in this case. Is this right ???
6528 if No (Parent_P) then
6529 return;
6530 end if;
6532 -- See if we have got to an appropriate point in the tree
6534 case Nkind (Parent_P) is
6536 -- A special test for the exception of (RM 13.14(8)) for the case
6537 -- of per-object expressions (RM 3.8(18)) occurring in component
6538 -- definition or a discrete subtype definition. Note that we test
6539 -- for a component declaration which includes both cases we are
6540 -- interested in, and furthermore the tree does not have explicit
6541 -- nodes for either of these two constructs.
6543 when N_Component_Declaration =>
6545 -- The case we want to test for here is an identifier that is
6546 -- a per-object expression, this is either a discriminant that
6547 -- appears in a context other than the component declaration
6548 -- or it is a reference to the type of the enclosing construct.
6550 -- For either of these cases, we skip the freezing
6552 if not In_Spec_Expression
6553 and then Nkind (N) = N_Identifier
6554 and then (Present (Entity (N)))
6555 then
6556 -- We recognize the discriminant case by just looking for
6557 -- a reference to a discriminant. It can only be one for
6558 -- the enclosing construct. Skip freezing in this case.
6560 if Ekind (Entity (N)) = E_Discriminant then
6561 return;
6563 -- For the case of a reference to the enclosing record,
6564 -- (or task or protected type), we look for a type that
6565 -- matches the current scope.
6567 elsif Entity (N) = Current_Scope then
6568 return;
6569 end if;
6570 end if;
6572 -- If we have an enumeration literal that appears as the choice in
6573 -- the aggregate of an enumeration representation clause, then
6574 -- freezing does not occur (RM 13.14(10)).
6576 when N_Enumeration_Representation_Clause =>
6578 -- The case we are looking for is an enumeration literal
6580 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
6581 and then Is_Enumeration_Type (Etype (N))
6582 then
6583 -- If enumeration literal appears directly as the choice,
6584 -- do not freeze (this is the normal non-overloaded case)
6586 if Nkind (Parent (N)) = N_Component_Association
6587 and then First (Choices (Parent (N))) = N
6588 then
6589 return;
6591 -- If enumeration literal appears as the name of function
6592 -- which is the choice, then also do not freeze. This
6593 -- happens in the overloaded literal case, where the
6594 -- enumeration literal is temporarily changed to a function
6595 -- call for overloading analysis purposes.
6597 elsif Nkind (Parent (N)) = N_Function_Call
6598 and then
6599 Nkind (Parent (Parent (N))) = N_Component_Association
6600 and then
6601 First (Choices (Parent (Parent (N)))) = Parent (N)
6602 then
6603 return;
6604 end if;
6605 end if;
6607 -- Normally if the parent is a handled sequence of statements,
6608 -- then the current node must be a statement, and that is an
6609 -- appropriate place to insert a freeze node.
6611 when N_Handled_Sequence_Of_Statements =>
6613 -- An exception occurs when the sequence of statements is for
6614 -- an expander generated body that did not do the usual freeze
6615 -- all operation. In this case we usually want to freeze
6616 -- outside this body, not inside it, and we skip past the
6617 -- subprogram body that we are inside.
6619 if In_Expanded_Body (Parent_P) then
6620 declare
6621 Subp : constant Node_Id := Parent (Parent_P);
6622 Spec : Entity_Id;
6624 begin
6625 -- Freeze the entity only when it is declared inside the
6626 -- body of the expander generated procedure. This case
6627 -- is recognized by the scope of the entity or its type,
6628 -- which is either the spec for some enclosing body, or
6629 -- (in the case of init_procs, for which there are no
6630 -- separate specs) the current scope.
6632 if Nkind (Subp) = N_Subprogram_Body then
6633 Spec := Corresponding_Spec (Subp);
6635 if (Present (Typ) and then Scope (Typ) = Spec)
6636 or else
6637 (Present (Nam) and then Scope (Nam) = Spec)
6638 then
6639 exit;
6641 elsif Present (Typ)
6642 and then Scope (Typ) = Current_Scope
6643 and then Defining_Entity (Subp) = Current_Scope
6644 then
6645 exit;
6646 end if;
6647 end if;
6649 -- An expression function may act as a completion of
6650 -- a function declaration. As such, it can reference
6651 -- entities declared between the two views:
6653 -- Hidden []; -- 1
6654 -- function F return ...;
6655 -- private
6656 -- function Hidden return ...;
6657 -- function F return ... is (Hidden); -- 2
6659 -- Refering to the example above, freezing the expression
6660 -- of F (2) would place Hidden's freeze node (1) in the
6661 -- wrong place. Avoid explicit freezing and let the usual
6662 -- scenarios do the job - for example, reaching the end
6663 -- of the private declarations, or a call to F.
6665 if Nkind (Original_Node (Subp)) =
6666 N_Expression_Function
6667 then
6668 null;
6670 -- Freeze outside the body
6672 else
6673 Parent_P := Parent (Parent_P);
6674 Freeze_Outside := True;
6675 end if;
6676 end;
6678 -- Here if normal case where we are in handled statement
6679 -- sequence and want to do the insertion right there.
6681 else
6682 exit;
6683 end if;
6685 -- If parent is a body or a spec or a block, then the current node
6686 -- is a statement or declaration and we can insert the freeze node
6687 -- before it.
6689 when N_Block_Statement |
6690 N_Entry_Body |
6691 N_Package_Body |
6692 N_Package_Specification |
6693 N_Protected_Body |
6694 N_Subprogram_Body |
6695 N_Task_Body => exit;
6697 -- The expander is allowed to define types in any statements list,
6698 -- so any of the following parent nodes also mark a freezing point
6699 -- if the actual node is in a list of statements or declarations.
6701 when N_Abortable_Part |
6702 N_Accept_Alternative |
6703 N_And_Then |
6704 N_Case_Statement_Alternative |
6705 N_Compilation_Unit_Aux |
6706 N_Conditional_Entry_Call |
6707 N_Delay_Alternative |
6708 N_Elsif_Part |
6709 N_Entry_Call_Alternative |
6710 N_Exception_Handler |
6711 N_Extended_Return_Statement |
6712 N_Freeze_Entity |
6713 N_If_Statement |
6714 N_Or_Else |
6715 N_Selective_Accept |
6716 N_Triggering_Alternative =>
6718 exit when Is_List_Member (P);
6720 -- Freeze nodes produced by an expression coming from the Actions
6721 -- list of a N_Expression_With_Actions node must remain within the
6722 -- Actions list. Inserting the freeze nodes further up the tree
6723 -- may lead to use before declaration issues in the case of array
6724 -- types.
6726 when N_Expression_With_Actions =>
6727 if Is_List_Member (P)
6728 and then List_Containing (P) = Actions (Parent_P)
6729 then
6730 exit;
6731 end if;
6733 -- Note: N_Loop_Statement is a special case. A type that appears
6734 -- in the source can never be frozen in a loop (this occurs only
6735 -- because of a loop expanded by the expander), so we keep on
6736 -- going. Otherwise we terminate the search. Same is true of any
6737 -- entity which comes from source. (if they have predefined type,
6738 -- that type does not appear to come from source, but the entity
6739 -- should not be frozen here).
6741 when N_Loop_Statement =>
6742 exit when not Comes_From_Source (Etype (N))
6743 and then (No (Nam) or else not Comes_From_Source (Nam));
6745 -- For all other cases, keep looking at parents
6747 when others =>
6748 null;
6749 end case;
6751 -- We fall through the case if we did not yet find the proper
6752 -- place in the free for inserting the freeze node, so climb.
6754 P := Parent_P;
6755 end loop;
6757 -- If the expression appears in a record or an initialization procedure,
6758 -- the freeze nodes are collected and attached to the current scope, to
6759 -- be inserted and analyzed on exit from the scope, to insure that
6760 -- generated entities appear in the correct scope. If the expression is
6761 -- a default for a discriminant specification, the scope is still void.
6762 -- The expression can also appear in the discriminant part of a private
6763 -- or concurrent type.
6765 -- If the expression appears in a constrained subcomponent of an
6766 -- enclosing record declaration, the freeze nodes must be attached to
6767 -- the outer record type so they can eventually be placed in the
6768 -- enclosing declaration list.
6770 -- The other case requiring this special handling is if we are in a
6771 -- default expression, since in that case we are about to freeze a
6772 -- static type, and the freeze scope needs to be the outer scope, not
6773 -- the scope of the subprogram with the default parameter.
6775 -- For default expressions and other spec expressions in generic units,
6776 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
6777 -- placing them at the proper place, after the generic unit.
6779 if (In_Spec_Exp and not Inside_A_Generic)
6780 or else Freeze_Outside
6781 or else (Is_Type (Current_Scope)
6782 and then (not Is_Concurrent_Type (Current_Scope)
6783 or else not Has_Completion (Current_Scope)))
6784 or else Ekind (Current_Scope) = E_Void
6785 then
6786 declare
6787 N : constant Node_Id := Current_Scope;
6788 Freeze_Nodes : List_Id := No_List;
6789 Pos : Int := Scope_Stack.Last;
6791 begin
6792 if Present (Desig_Typ) then
6793 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
6794 end if;
6796 if Present (Typ) then
6797 Freeze_And_Append (Typ, N, Freeze_Nodes);
6798 end if;
6800 if Present (Nam) then
6801 Freeze_And_Append (Nam, N, Freeze_Nodes);
6802 end if;
6804 -- The current scope may be that of a constrained component of
6805 -- an enclosing record declaration, or of a loop of an enclosing
6806 -- quantified expression, which is above the current scope in the
6807 -- scope stack. Indeed in the context of a quantified expression,
6808 -- a scope is created and pushed above the current scope in order
6809 -- to emulate the loop-like behavior of the quantified expression.
6810 -- If the expression is within a top-level pragma, as for a pre-
6811 -- condition on a library-level subprogram, nothing to do.
6813 if not Is_Compilation_Unit (Current_Scope)
6814 and then (Is_Record_Type (Scope (Current_Scope))
6815 or else Nkind (Parent (Current_Scope)) =
6816 N_Quantified_Expression)
6817 then
6818 Pos := Pos - 1;
6819 end if;
6821 if Is_Non_Empty_List (Freeze_Nodes) then
6822 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
6823 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
6824 Freeze_Nodes;
6825 else
6826 Append_List (Freeze_Nodes,
6827 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
6828 end if;
6829 end if;
6830 end;
6832 return;
6833 end if;
6835 -- Now we have the right place to do the freezing. First, a special
6836 -- adjustment, if we are in spec-expression analysis mode, these freeze
6837 -- actions must not be thrown away (normally all inserted actions are
6838 -- thrown away in this mode. However, the freeze actions are from static
6839 -- expressions and one of the important reasons we are doing this
6840 -- special analysis is to get these freeze actions. Therefore we turn
6841 -- off the In_Spec_Expression mode to propagate these freeze actions.
6842 -- This also means they get properly analyzed and expanded.
6844 In_Spec_Expression := False;
6846 -- Freeze the designated type of an allocator (RM 13.14(13))
6848 if Present (Desig_Typ) then
6849 Freeze_Before (P, Desig_Typ);
6850 end if;
6852 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
6853 -- the enumeration representation clause exception in the loop above.
6855 if Present (Typ) then
6856 Freeze_Before (P, Typ);
6857 end if;
6859 -- Freeze name if one is present (RM 13.14(11))
6861 if Present (Nam) then
6862 Freeze_Before (P, Nam);
6863 end if;
6865 -- Restore In_Spec_Expression flag
6867 In_Spec_Expression := In_Spec_Exp;
6868 end Freeze_Expression;
6870 -----------------------------
6871 -- Freeze_Fixed_Point_Type --
6872 -----------------------------
6874 -- Certain fixed-point types and subtypes, including implicit base types
6875 -- and declared first subtypes, have not yet set up a range. This is
6876 -- because the range cannot be set until the Small and Size values are
6877 -- known, and these are not known till the type is frozen.
6879 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
6880 -- whose bounds are unanalyzed real literals. This routine will recognize
6881 -- this case, and transform this range node into a properly typed range
6882 -- with properly analyzed and resolved values.
6884 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
6885 Rng : constant Node_Id := Scalar_Range (Typ);
6886 Lo : constant Node_Id := Low_Bound (Rng);
6887 Hi : constant Node_Id := High_Bound (Rng);
6888 Btyp : constant Entity_Id := Base_Type (Typ);
6889 Brng : constant Node_Id := Scalar_Range (Btyp);
6890 BLo : constant Node_Id := Low_Bound (Brng);
6891 BHi : constant Node_Id := High_Bound (Brng);
6892 Small : constant Ureal := Small_Value (Typ);
6893 Loval : Ureal;
6894 Hival : Ureal;
6895 Atype : Entity_Id;
6897 Orig_Lo : Ureal;
6898 Orig_Hi : Ureal;
6899 -- Save original bounds (for shaving tests)
6901 Actual_Size : Nat;
6902 -- Actual size chosen
6904 function Fsize (Lov, Hiv : Ureal) return Nat;
6905 -- Returns size of type with given bounds. Also leaves these
6906 -- bounds set as the current bounds of the Typ.
6908 -----------
6909 -- Fsize --
6910 -----------
6912 function Fsize (Lov, Hiv : Ureal) return Nat is
6913 begin
6914 Set_Realval (Lo, Lov);
6915 Set_Realval (Hi, Hiv);
6916 return Minimum_Size (Typ);
6917 end Fsize;
6919 -- Start of processing for Freeze_Fixed_Point_Type
6921 begin
6922 -- If Esize of a subtype has not previously been set, set it now
6924 if Unknown_Esize (Typ) then
6925 Atype := Ancestor_Subtype (Typ);
6927 if Present (Atype) then
6928 Set_Esize (Typ, Esize (Atype));
6929 else
6930 Set_Esize (Typ, Esize (Base_Type (Typ)));
6931 end if;
6932 end if;
6934 -- Immediate return if the range is already analyzed. This means that
6935 -- the range is already set, and does not need to be computed by this
6936 -- routine.
6938 if Analyzed (Rng) then
6939 return;
6940 end if;
6942 -- Immediate return if either of the bounds raises Constraint_Error
6944 if Raises_Constraint_Error (Lo)
6945 or else Raises_Constraint_Error (Hi)
6946 then
6947 return;
6948 end if;
6950 Loval := Realval (Lo);
6951 Hival := Realval (Hi);
6953 Orig_Lo := Loval;
6954 Orig_Hi := Hival;
6956 -- Ordinary fixed-point case
6958 if Is_Ordinary_Fixed_Point_Type (Typ) then
6960 -- For the ordinary fixed-point case, we are allowed to fudge the
6961 -- end-points up or down by small. Generally we prefer to fudge up,
6962 -- i.e. widen the bounds for non-model numbers so that the end points
6963 -- are included. However there are cases in which this cannot be
6964 -- done, and indeed cases in which we may need to narrow the bounds.
6965 -- The following circuit makes the decision.
6967 -- Note: our terminology here is that Incl_EP means that the bounds
6968 -- are widened by Small if necessary to include the end points, and
6969 -- Excl_EP means that the bounds are narrowed by Small to exclude the
6970 -- end-points if this reduces the size.
6972 -- Note that in the Incl case, all we care about is including the
6973 -- end-points. In the Excl case, we want to narrow the bounds as
6974 -- much as permitted by the RM, to give the smallest possible size.
6976 Fudge : declare
6977 Loval_Incl_EP : Ureal;
6978 Hival_Incl_EP : Ureal;
6980 Loval_Excl_EP : Ureal;
6981 Hival_Excl_EP : Ureal;
6983 Size_Incl_EP : Nat;
6984 Size_Excl_EP : Nat;
6986 Model_Num : Ureal;
6987 First_Subt : Entity_Id;
6988 Actual_Lo : Ureal;
6989 Actual_Hi : Ureal;
6991 begin
6992 -- First step. Base types are required to be symmetrical. Right
6993 -- now, the base type range is a copy of the first subtype range.
6994 -- This will be corrected before we are done, but right away we
6995 -- need to deal with the case where both bounds are non-negative.
6996 -- In this case, we set the low bound to the negative of the high
6997 -- bound, to make sure that the size is computed to include the
6998 -- required sign. Note that we do not need to worry about the
6999 -- case of both bounds negative, because the sign will be dealt
7000 -- with anyway. Furthermore we can't just go making such a bound
7001 -- symmetrical, since in a twos-complement system, there is an
7002 -- extra negative value which could not be accommodated on the
7003 -- positive side.
7005 if Typ = Btyp
7006 and then not UR_Is_Negative (Loval)
7007 and then Hival > Loval
7008 then
7009 Loval := -Hival;
7010 Set_Realval (Lo, Loval);
7011 end if;
7013 -- Compute the fudged bounds. If the number is a model number,
7014 -- then we do nothing to include it, but we are allowed to backoff
7015 -- to the next adjacent model number when we exclude it. If it is
7016 -- not a model number then we straddle the two values with the
7017 -- model numbers on either side.
7019 Model_Num := UR_Trunc (Loval / Small) * Small;
7021 if Loval = Model_Num then
7022 Loval_Incl_EP := Model_Num;
7023 else
7024 Loval_Incl_EP := Model_Num - Small;
7025 end if;
7027 -- The low value excluding the end point is Small greater, but
7028 -- we do not do this exclusion if the low value is positive,
7029 -- since it can't help the size and could actually hurt by
7030 -- crossing the high bound.
7032 if UR_Is_Negative (Loval_Incl_EP) then
7033 Loval_Excl_EP := Loval_Incl_EP + Small;
7035 -- If the value went from negative to zero, then we have the
7036 -- case where Loval_Incl_EP is the model number just below
7037 -- zero, so we want to stick to the negative value for the
7038 -- base type to maintain the condition that the size will
7039 -- include signed values.
7041 if Typ = Btyp
7042 and then UR_Is_Zero (Loval_Excl_EP)
7043 then
7044 Loval_Excl_EP := Loval_Incl_EP;
7045 end if;
7047 else
7048 Loval_Excl_EP := Loval_Incl_EP;
7049 end if;
7051 -- Similar processing for upper bound and high value
7053 Model_Num := UR_Trunc (Hival / Small) * Small;
7055 if Hival = Model_Num then
7056 Hival_Incl_EP := Model_Num;
7057 else
7058 Hival_Incl_EP := Model_Num + Small;
7059 end if;
7061 if UR_Is_Positive (Hival_Incl_EP) then
7062 Hival_Excl_EP := Hival_Incl_EP - Small;
7063 else
7064 Hival_Excl_EP := Hival_Incl_EP;
7065 end if;
7067 -- One further adjustment is needed. In the case of subtypes, we
7068 -- cannot go outside the range of the base type, or we get
7069 -- peculiarities, and the base type range is already set. This
7070 -- only applies to the Incl values, since clearly the Excl values
7071 -- are already as restricted as they are allowed to be.
7073 if Typ /= Btyp then
7074 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
7075 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
7076 end if;
7078 -- Get size including and excluding end points
7080 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
7081 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
7083 -- No need to exclude end-points if it does not reduce size
7085 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
7086 Loval_Excl_EP := Loval_Incl_EP;
7087 end if;
7089 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
7090 Hival_Excl_EP := Hival_Incl_EP;
7091 end if;
7093 -- Now we set the actual size to be used. We want to use the
7094 -- bounds fudged up to include the end-points but only if this
7095 -- can be done without violating a specifically given size
7096 -- size clause or causing an unacceptable increase in size.
7098 -- Case of size clause given
7100 if Has_Size_Clause (Typ) then
7102 -- Use the inclusive size only if it is consistent with
7103 -- the explicitly specified size.
7105 if Size_Incl_EP <= RM_Size (Typ) then
7106 Actual_Lo := Loval_Incl_EP;
7107 Actual_Hi := Hival_Incl_EP;
7108 Actual_Size := Size_Incl_EP;
7110 -- If the inclusive size is too large, we try excluding
7111 -- the end-points (will be caught later if does not work).
7113 else
7114 Actual_Lo := Loval_Excl_EP;
7115 Actual_Hi := Hival_Excl_EP;
7116 Actual_Size := Size_Excl_EP;
7117 end if;
7119 -- Case of size clause not given
7121 else
7122 -- If we have a base type whose corresponding first subtype
7123 -- has an explicit size that is large enough to include our
7124 -- end-points, then do so. There is no point in working hard
7125 -- to get a base type whose size is smaller than the specified
7126 -- size of the first subtype.
7128 First_Subt := First_Subtype (Typ);
7130 if Has_Size_Clause (First_Subt)
7131 and then Size_Incl_EP <= Esize (First_Subt)
7132 then
7133 Actual_Size := Size_Incl_EP;
7134 Actual_Lo := Loval_Incl_EP;
7135 Actual_Hi := Hival_Incl_EP;
7137 -- If excluding the end-points makes the size smaller and
7138 -- results in a size of 8,16,32,64, then we take the smaller
7139 -- size. For the 64 case, this is compulsory. For the other
7140 -- cases, it seems reasonable. We like to include end points
7141 -- if we can, but not at the expense of moving to the next
7142 -- natural boundary of size.
7144 elsif Size_Incl_EP /= Size_Excl_EP
7145 and then Addressable (Size_Excl_EP)
7146 then
7147 Actual_Size := Size_Excl_EP;
7148 Actual_Lo := Loval_Excl_EP;
7149 Actual_Hi := Hival_Excl_EP;
7151 -- Otherwise we can definitely include the end points
7153 else
7154 Actual_Size := Size_Incl_EP;
7155 Actual_Lo := Loval_Incl_EP;
7156 Actual_Hi := Hival_Incl_EP;
7157 end if;
7159 -- One pathological case: normally we never fudge a low bound
7160 -- down, since it would seem to increase the size (if it has
7161 -- any effect), but for ranges containing single value, or no
7162 -- values, the high bound can be small too large. Consider:
7164 -- type t is delta 2.0**(-14)
7165 -- range 131072.0 .. 0;
7167 -- That lower bound is *just* outside the range of 32 bits, and
7168 -- does need fudging down in this case. Note that the bounds
7169 -- will always have crossed here, since the high bound will be
7170 -- fudged down if necessary, as in the case of:
7172 -- type t is delta 2.0**(-14)
7173 -- range 131072.0 .. 131072.0;
7175 -- So we detect the situation by looking for crossed bounds,
7176 -- and if the bounds are crossed, and the low bound is greater
7177 -- than zero, we will always back it off by small, since this
7178 -- is completely harmless.
7180 if Actual_Lo > Actual_Hi then
7181 if UR_Is_Positive (Actual_Lo) then
7182 Actual_Lo := Loval_Incl_EP - Small;
7183 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7185 -- And of course, we need to do exactly the same parallel
7186 -- fudge for flat ranges in the negative region.
7188 elsif UR_Is_Negative (Actual_Hi) then
7189 Actual_Hi := Hival_Incl_EP + Small;
7190 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7191 end if;
7192 end if;
7193 end if;
7195 Set_Realval (Lo, Actual_Lo);
7196 Set_Realval (Hi, Actual_Hi);
7197 end Fudge;
7199 -- For the decimal case, none of this fudging is required, since there
7200 -- are no end-point problems in the decimal case (the end-points are
7201 -- always included).
7203 else
7204 Actual_Size := Fsize (Loval, Hival);
7205 end if;
7207 -- At this stage, the actual size has been calculated and the proper
7208 -- required bounds are stored in the low and high bounds.
7210 if Actual_Size > 64 then
7211 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
7212 Error_Msg_N
7213 ("size required (^) for type& too large, maximum allowed is 64",
7214 Typ);
7215 Actual_Size := 64;
7216 end if;
7218 -- Check size against explicit given size
7220 if Has_Size_Clause (Typ) then
7221 if Actual_Size > RM_Size (Typ) then
7222 Error_Msg_Uint_1 := RM_Size (Typ);
7223 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
7224 Error_Msg_NE
7225 ("size given (^) for type& too small, minimum allowed is ^",
7226 Size_Clause (Typ), Typ);
7228 else
7229 Actual_Size := UI_To_Int (Esize (Typ));
7230 end if;
7232 -- Increase size to next natural boundary if no size clause given
7234 else
7235 if Actual_Size <= 8 then
7236 Actual_Size := 8;
7237 elsif Actual_Size <= 16 then
7238 Actual_Size := 16;
7239 elsif Actual_Size <= 32 then
7240 Actual_Size := 32;
7241 else
7242 Actual_Size := 64;
7243 end if;
7245 Init_Esize (Typ, Actual_Size);
7246 Adjust_Esize_For_Alignment (Typ);
7247 end if;
7249 -- If we have a base type, then expand the bounds so that they extend to
7250 -- the full width of the allocated size in bits, to avoid junk range
7251 -- checks on intermediate computations.
7253 if Base_Type (Typ) = Typ then
7254 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
7255 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
7256 end if;
7258 -- Final step is to reanalyze the bounds using the proper type
7259 -- and set the Corresponding_Integer_Value fields of the literals.
7261 Set_Etype (Lo, Empty);
7262 Set_Analyzed (Lo, False);
7263 Analyze (Lo);
7265 -- Resolve with universal fixed if the base type, and the base type if
7266 -- it is a subtype. Note we can't resolve the base type with itself,
7267 -- that would be a reference before definition.
7269 if Typ = Btyp then
7270 Resolve (Lo, Universal_Fixed);
7271 else
7272 Resolve (Lo, Btyp);
7273 end if;
7275 -- Set corresponding integer value for bound
7277 Set_Corresponding_Integer_Value
7278 (Lo, UR_To_Uint (Realval (Lo) / Small));
7280 -- Similar processing for high bound
7282 Set_Etype (Hi, Empty);
7283 Set_Analyzed (Hi, False);
7284 Analyze (Hi);
7286 if Typ = Btyp then
7287 Resolve (Hi, Universal_Fixed);
7288 else
7289 Resolve (Hi, Btyp);
7290 end if;
7292 Set_Corresponding_Integer_Value
7293 (Hi, UR_To_Uint (Realval (Hi) / Small));
7295 -- Set type of range to correspond to bounds
7297 Set_Etype (Rng, Etype (Lo));
7299 -- Set Esize to calculated size if not set already
7301 if Unknown_Esize (Typ) then
7302 Init_Esize (Typ, Actual_Size);
7303 end if;
7305 -- Set RM_Size if not already set. If already set, check value
7307 declare
7308 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
7310 begin
7311 if RM_Size (Typ) /= Uint_0 then
7312 if RM_Size (Typ) < Minsiz then
7313 Error_Msg_Uint_1 := RM_Size (Typ);
7314 Error_Msg_Uint_2 := Minsiz;
7315 Error_Msg_NE
7316 ("size given (^) for type& too small, minimum allowed is ^",
7317 Size_Clause (Typ), Typ);
7318 end if;
7320 else
7321 Set_RM_Size (Typ, Minsiz);
7322 end if;
7323 end;
7325 -- Check for shaving
7327 if Comes_From_Source (Typ) then
7328 if Orig_Lo < Expr_Value_R (Lo) then
7329 Error_Msg_N
7330 ("declared low bound of type & is outside type range??", Typ);
7331 Error_Msg_N
7332 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
7333 end if;
7335 if Orig_Hi > Expr_Value_R (Hi) then
7336 Error_Msg_N
7337 ("declared high bound of type & is outside type range??", Typ);
7338 Error_Msg_N
7339 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
7340 end if;
7341 end if;
7342 end Freeze_Fixed_Point_Type;
7344 ------------------
7345 -- Freeze_Itype --
7346 ------------------
7348 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
7349 L : List_Id;
7351 begin
7352 Set_Has_Delayed_Freeze (T);
7353 L := Freeze_Entity (T, N);
7355 if Is_Non_Empty_List (L) then
7356 Insert_Actions (N, L);
7357 end if;
7358 end Freeze_Itype;
7360 --------------------------
7361 -- Freeze_Static_Object --
7362 --------------------------
7364 procedure Freeze_Static_Object (E : Entity_Id) is
7366 Cannot_Be_Static : exception;
7367 -- Exception raised if the type of a static object cannot be made
7368 -- static. This happens if the type depends on non-global objects.
7370 procedure Ensure_Expression_Is_SA (N : Node_Id);
7371 -- Called to ensure that an expression used as part of a type definition
7372 -- is statically allocatable, which means that the expression type is
7373 -- statically allocatable, and the expression is either static, or a
7374 -- reference to a library level constant.
7376 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
7377 -- Called to mark a type as static, checking that it is possible
7378 -- to set the type as static. If it is not possible, then the
7379 -- exception Cannot_Be_Static is raised.
7381 -----------------------------
7382 -- Ensure_Expression_Is_SA --
7383 -----------------------------
7385 procedure Ensure_Expression_Is_SA (N : Node_Id) is
7386 Ent : Entity_Id;
7388 begin
7389 Ensure_Type_Is_SA (Etype (N));
7391 if Is_OK_Static_Expression (N) then
7392 return;
7394 elsif Nkind (N) = N_Identifier then
7395 Ent := Entity (N);
7397 if Present (Ent)
7398 and then Ekind (Ent) = E_Constant
7399 and then Is_Library_Level_Entity (Ent)
7400 then
7401 return;
7402 end if;
7403 end if;
7405 raise Cannot_Be_Static;
7406 end Ensure_Expression_Is_SA;
7408 -----------------------
7409 -- Ensure_Type_Is_SA --
7410 -----------------------
7412 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
7413 N : Node_Id;
7414 C : Entity_Id;
7416 begin
7417 -- If type is library level, we are all set
7419 if Is_Library_Level_Entity (Typ) then
7420 return;
7421 end if;
7423 -- We are also OK if the type already marked as statically allocated,
7424 -- which means we processed it before.
7426 if Is_Statically_Allocated (Typ) then
7427 return;
7428 end if;
7430 -- Mark type as statically allocated
7432 Set_Is_Statically_Allocated (Typ);
7434 -- Check that it is safe to statically allocate this type
7436 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
7437 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
7438 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
7440 elsif Is_Array_Type (Typ) then
7441 N := First_Index (Typ);
7442 while Present (N) loop
7443 Ensure_Type_Is_SA (Etype (N));
7444 Next_Index (N);
7445 end loop;
7447 Ensure_Type_Is_SA (Component_Type (Typ));
7449 elsif Is_Access_Type (Typ) then
7450 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
7452 declare
7453 F : Entity_Id;
7454 T : constant Entity_Id := Etype (Designated_Type (Typ));
7456 begin
7457 if T /= Standard_Void_Type then
7458 Ensure_Type_Is_SA (T);
7459 end if;
7461 F := First_Formal (Designated_Type (Typ));
7462 while Present (F) loop
7463 Ensure_Type_Is_SA (Etype (F));
7464 Next_Formal (F);
7465 end loop;
7466 end;
7468 else
7469 Ensure_Type_Is_SA (Designated_Type (Typ));
7470 end if;
7472 elsif Is_Record_Type (Typ) then
7473 C := First_Entity (Typ);
7474 while Present (C) loop
7475 if Ekind (C) = E_Discriminant
7476 or else Ekind (C) = E_Component
7477 then
7478 Ensure_Type_Is_SA (Etype (C));
7480 elsif Is_Type (C) then
7481 Ensure_Type_Is_SA (C);
7482 end if;
7484 Next_Entity (C);
7485 end loop;
7487 elsif Ekind (Typ) = E_Subprogram_Type then
7488 Ensure_Type_Is_SA (Etype (Typ));
7490 C := First_Formal (Typ);
7491 while Present (C) loop
7492 Ensure_Type_Is_SA (Etype (C));
7493 Next_Formal (C);
7494 end loop;
7496 else
7497 raise Cannot_Be_Static;
7498 end if;
7499 end Ensure_Type_Is_SA;
7501 -- Start of processing for Freeze_Static_Object
7503 begin
7504 Ensure_Type_Is_SA (Etype (E));
7506 exception
7507 when Cannot_Be_Static =>
7509 -- If the object that cannot be static is imported or exported, then
7510 -- issue an error message saying that this object cannot be imported
7511 -- or exported. If it has an address clause it is an overlay in the
7512 -- current partition and the static requirement is not relevant.
7513 -- Do not issue any error message when ignoring rep clauses.
7515 if Ignore_Rep_Clauses then
7516 null;
7518 elsif Is_Imported (E) then
7519 if No (Address_Clause (E)) then
7520 Error_Msg_N
7521 ("& cannot be imported (local type is not constant)", E);
7522 end if;
7524 -- Otherwise must be exported, something is wrong if compiler
7525 -- is marking something as statically allocated which cannot be).
7527 else pragma Assert (Is_Exported (E));
7528 Error_Msg_N
7529 ("& cannot be exported (local type is not constant)", E);
7530 end if;
7531 end Freeze_Static_Object;
7533 -----------------------
7534 -- Freeze_Subprogram --
7535 -----------------------
7537 procedure Freeze_Subprogram (E : Entity_Id) is
7538 Retype : Entity_Id;
7539 F : Entity_Id;
7541 begin
7542 -- Subprogram may not have an address clause unless it is imported
7544 if Present (Address_Clause (E)) then
7545 if not Is_Imported (E) then
7546 Error_Msg_N
7547 ("address clause can only be given " &
7548 "for imported subprogram",
7549 Name (Address_Clause (E)));
7550 end if;
7551 end if;
7553 -- Reset the Pure indication on an imported subprogram unless an
7554 -- explicit Pure_Function pragma was present or the subprogram is an
7555 -- intrinsic. We do this because otherwise it is an insidious error
7556 -- to call a non-pure function from pure unit and have calls
7557 -- mysteriously optimized away. What happens here is that the Import
7558 -- can bypass the normal check to ensure that pure units call only pure
7559 -- subprograms.
7561 -- The reason for the intrinsic exception is that in general, intrinsic
7562 -- functions (such as shifts) are pure anyway. The only exceptions are
7563 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
7564 -- in any case, so no problem arises.
7566 if Is_Imported (E)
7567 and then Is_Pure (E)
7568 and then not Has_Pragma_Pure_Function (E)
7569 and then not Is_Intrinsic_Subprogram (E)
7570 then
7571 Set_Is_Pure (E, False);
7572 end if;
7574 -- For non-foreign convention subprograms, this is where we create
7575 -- the extra formals (for accessibility level and constrained bit
7576 -- information). We delay this till the freeze point precisely so
7577 -- that we know the convention.
7579 if not Has_Foreign_Convention (E) then
7580 Create_Extra_Formals (E);
7581 Set_Mechanisms (E);
7583 -- If this is convention Ada and a Valued_Procedure, that's odd
7585 if Ekind (E) = E_Procedure
7586 and then Is_Valued_Procedure (E)
7587 and then Convention (E) = Convention_Ada
7588 and then Warn_On_Export_Import
7589 then
7590 Error_Msg_N
7591 ("??Valued_Procedure has no effect for convention Ada", E);
7592 Set_Is_Valued_Procedure (E, False);
7593 end if;
7595 -- Case of foreign convention
7597 else
7598 Set_Mechanisms (E);
7600 -- For foreign conventions, warn about return of unconstrained array
7602 if Ekind (E) = E_Function then
7603 Retype := Underlying_Type (Etype (E));
7605 -- If no return type, probably some other error, e.g. a
7606 -- missing full declaration, so ignore.
7608 if No (Retype) then
7609 null;
7611 -- If the return type is generic, we have emitted a warning
7612 -- earlier on, and there is nothing else to check here. Specific
7613 -- instantiations may lead to erroneous behavior.
7615 elsif Is_Generic_Type (Etype (E)) then
7616 null;
7618 -- Display warning if returning unconstrained array
7620 elsif Is_Array_Type (Retype)
7621 and then not Is_Constrained (Retype)
7623 -- Check appropriate warning is enabled (should we check for
7624 -- Warnings (Off) on specific entities here, probably so???)
7626 and then Warn_On_Export_Import
7628 -- Exclude the VM case, since return of unconstrained arrays
7629 -- is properly handled in both the JVM and .NET cases.
7631 and then VM_Target = No_VM
7632 then
7633 Error_Msg_N
7634 ("?x?foreign convention function& should not return " &
7635 "unconstrained array", E);
7636 return;
7637 end if;
7638 end if;
7640 -- If any of the formals for an exported foreign convention
7641 -- subprogram have defaults, then emit an appropriate warning since
7642 -- this is odd (default cannot be used from non-Ada code)
7644 if Is_Exported (E) then
7645 F := First_Formal (E);
7646 while Present (F) loop
7647 if Warn_On_Export_Import
7648 and then Present (Default_Value (F))
7649 then
7650 Error_Msg_N
7651 ("?x?parameter cannot be defaulted in non-Ada call",
7652 Default_Value (F));
7653 end if;
7655 Next_Formal (F);
7656 end loop;
7657 end if;
7658 end if;
7660 -- Pragma Inline_Always is disallowed for dispatching subprograms
7661 -- because the address of such subprograms is saved in the dispatch
7662 -- table to support dispatching calls, and dispatching calls cannot
7663 -- be inlined. This is consistent with the restriction against using
7664 -- 'Access or 'Address on an Inline_Always subprogram.
7666 if Is_Dispatching_Operation (E)
7667 and then Has_Pragma_Inline_Always (E)
7668 then
7669 Error_Msg_N
7670 ("pragma Inline_Always not allowed for dispatching subprograms", E);
7671 end if;
7673 -- Because of the implicit representation of inherited predefined
7674 -- operators in the front-end, the overriding status of the operation
7675 -- may be affected when a full view of a type is analyzed, and this is
7676 -- not captured by the analysis of the corresponding type declaration.
7677 -- Therefore the correctness of a not-overriding indicator must be
7678 -- rechecked when the subprogram is frozen.
7680 if Nkind (E) = N_Defining_Operator_Symbol
7681 and then not Error_Posted (Parent (E))
7682 then
7683 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
7684 end if;
7685 end Freeze_Subprogram;
7687 ----------------------
7688 -- Is_Fully_Defined --
7689 ----------------------
7691 function Is_Fully_Defined (T : Entity_Id) return Boolean is
7692 begin
7693 if Ekind (T) = E_Class_Wide_Type then
7694 return Is_Fully_Defined (Etype (T));
7696 elsif Is_Array_Type (T) then
7697 return Is_Fully_Defined (Component_Type (T));
7699 elsif Is_Record_Type (T)
7700 and not Is_Private_Type (T)
7701 then
7702 -- Verify that the record type has no components with private types
7703 -- without completion.
7705 declare
7706 Comp : Entity_Id;
7708 begin
7709 Comp := First_Component (T);
7710 while Present (Comp) loop
7711 if not Is_Fully_Defined (Etype (Comp)) then
7712 return False;
7713 end if;
7715 Next_Component (Comp);
7716 end loop;
7717 return True;
7718 end;
7720 -- For the designated type of an access to subprogram, all types in
7721 -- the profile must be fully defined.
7723 elsif Ekind (T) = E_Subprogram_Type then
7724 declare
7725 F : Entity_Id;
7727 begin
7728 F := First_Formal (T);
7729 while Present (F) loop
7730 if not Is_Fully_Defined (Etype (F)) then
7731 return False;
7732 end if;
7734 Next_Formal (F);
7735 end loop;
7737 return Is_Fully_Defined (Etype (T));
7738 end;
7740 else
7741 return not Is_Private_Type (T)
7742 or else Present (Full_View (Base_Type (T)));
7743 end if;
7744 end Is_Fully_Defined;
7746 ---------------------------------
7747 -- Process_Default_Expressions --
7748 ---------------------------------
7750 procedure Process_Default_Expressions
7751 (E : Entity_Id;
7752 After : in out Node_Id)
7754 Loc : constant Source_Ptr := Sloc (E);
7755 Dbody : Node_Id;
7756 Formal : Node_Id;
7757 Dcopy : Node_Id;
7758 Dnam : Entity_Id;
7760 begin
7761 Set_Default_Expressions_Processed (E);
7763 -- A subprogram instance and its associated anonymous subprogram share
7764 -- their signature. The default expression functions are defined in the
7765 -- wrapper packages for the anonymous subprogram, and should not be
7766 -- generated again for the instance.
7768 if Is_Generic_Instance (E)
7769 and then Present (Alias (E))
7770 and then Default_Expressions_Processed (Alias (E))
7771 then
7772 return;
7773 end if;
7775 Formal := First_Formal (E);
7776 while Present (Formal) loop
7777 if Present (Default_Value (Formal)) then
7779 -- We work with a copy of the default expression because we
7780 -- do not want to disturb the original, since this would mess
7781 -- up the conformance checking.
7783 Dcopy := New_Copy_Tree (Default_Value (Formal));
7785 -- The analysis of the expression may generate insert actions,
7786 -- which of course must not be executed. We wrap those actions
7787 -- in a procedure that is not called, and later on eliminated.
7788 -- The following cases have no side-effects, and are analyzed
7789 -- directly.
7791 if Nkind (Dcopy) = N_Identifier
7792 or else Nkind_In (Dcopy, N_Expanded_Name,
7793 N_Integer_Literal,
7794 N_Character_Literal,
7795 N_String_Literal,
7796 N_Real_Literal)
7797 or else (Nkind (Dcopy) = N_Attribute_Reference
7798 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
7799 or else Known_Null (Dcopy)
7800 then
7801 -- If there is no default function, we must still do a full
7802 -- analyze call on the default value, to ensure that all error
7803 -- checks are performed, e.g. those associated with static
7804 -- evaluation. Note: this branch will always be taken if the
7805 -- analyzer is turned off (but we still need the error checks).
7807 -- Note: the setting of parent here is to meet the requirement
7808 -- that we can only analyze the expression while attached to
7809 -- the tree. Really the requirement is that the parent chain
7810 -- be set, we don't actually need to be in the tree.
7812 Set_Parent (Dcopy, Declaration_Node (Formal));
7813 Analyze (Dcopy);
7815 -- Default expressions are resolved with their own type if the
7816 -- context is generic, to avoid anomalies with private types.
7818 if Ekind (Scope (E)) = E_Generic_Package then
7819 Resolve (Dcopy);
7820 else
7821 Resolve (Dcopy, Etype (Formal));
7822 end if;
7824 -- If that resolved expression will raise constraint error,
7825 -- then flag the default value as raising constraint error.
7826 -- This allows a proper error message on the calls.
7828 if Raises_Constraint_Error (Dcopy) then
7829 Set_Raises_Constraint_Error (Default_Value (Formal));
7830 end if;
7832 -- If the default is a parameterless call, we use the name of
7833 -- the called function directly, and there is no body to build.
7835 elsif Nkind (Dcopy) = N_Function_Call
7836 and then No (Parameter_Associations (Dcopy))
7837 then
7838 null;
7840 -- Else construct and analyze the body of a wrapper procedure
7841 -- that contains an object declaration to hold the expression.
7842 -- Given that this is done only to complete the analysis, it
7843 -- simpler to build a procedure than a function which might
7844 -- involve secondary stack expansion.
7846 else
7847 Dnam := Make_Temporary (Loc, 'D');
7849 Dbody :=
7850 Make_Subprogram_Body (Loc,
7851 Specification =>
7852 Make_Procedure_Specification (Loc,
7853 Defining_Unit_Name => Dnam),
7855 Declarations => New_List (
7856 Make_Object_Declaration (Loc,
7857 Defining_Identifier => Make_Temporary (Loc, 'T'),
7858 Object_Definition =>
7859 New_Occurrence_Of (Etype (Formal), Loc),
7860 Expression => New_Copy_Tree (Dcopy))),
7862 Handled_Statement_Sequence =>
7863 Make_Handled_Sequence_Of_Statements (Loc,
7864 Statements => Empty_List));
7866 Set_Scope (Dnam, Scope (E));
7867 Set_Assignment_OK (First (Declarations (Dbody)));
7868 Set_Is_Eliminated (Dnam);
7869 Insert_After (After, Dbody);
7870 Analyze (Dbody);
7871 After := Dbody;
7872 end if;
7873 end if;
7875 Next_Formal (Formal);
7876 end loop;
7877 end Process_Default_Expressions;
7879 ----------------------------------------
7880 -- Set_Component_Alignment_If_Not_Set --
7881 ----------------------------------------
7883 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
7884 begin
7885 -- Ignore if not base type, subtypes don't need anything
7887 if Typ /= Base_Type (Typ) then
7888 return;
7889 end if;
7891 -- Do not override existing representation
7893 if Is_Packed (Typ) then
7894 return;
7896 elsif Has_Specified_Layout (Typ) then
7897 return;
7899 elsif Component_Alignment (Typ) /= Calign_Default then
7900 return;
7902 else
7903 Set_Component_Alignment
7904 (Typ, Scope_Stack.Table
7905 (Scope_Stack.Last).Component_Alignment_Default);
7906 end if;
7907 end Set_Component_Alignment_If_Not_Set;
7909 --------------------------
7910 -- Set_SSO_From_Default --
7911 --------------------------
7913 procedure Set_SSO_From_Default (T : Entity_Id) is
7914 Reversed : Boolean;
7916 begin
7917 -- Set default SSO for an array or record base type, except in case of
7918 -- a type extension (which always inherits the SSO of its parent type).
7920 if Is_Base_Type (T)
7921 and then (Is_Array_Type (T)
7922 or else (Is_Record_Type (T)
7923 and then not (Is_Tagged_Type (T)
7924 and then Is_Derived_Type (T))))
7925 then
7926 Reversed :=
7927 (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
7928 or else
7929 (not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
7931 if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
7933 -- For a record type, if bit order is specified explicitly,
7934 -- then do not set SSO from default if not consistent. Note that
7935 -- we do not want to look at a Bit_Order attribute definition
7936 -- for a parent: if we were to inherit Bit_Order, then both
7937 -- SSO_Set_*_By_Default flags would have been cleared already
7938 -- (by Inherit_Aspects_At_Freeze_Point).
7940 and then not
7941 (Is_Record_Type (T)
7942 and then
7943 Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False)
7944 and then Reverse_Bit_Order (T) /= Reversed)
7945 then
7946 -- If flags cause reverse storage order, then set the result. Note
7947 -- that we would have ignored the pragma setting the non default
7948 -- storage order in any case, hence the assertion at this point.
7950 pragma Assert
7951 (not Reversed or else Support_Nondefault_SSO_On_Target);
7953 Set_Reverse_Storage_Order (T, Reversed);
7955 -- For a record type, also set reversed bit order. Note: if a bit
7956 -- order has been specified explicitly, then this is a no-op.
7958 if Is_Record_Type (T) then
7959 Set_Reverse_Bit_Order (T, Reversed);
7960 end if;
7961 end if;
7962 end if;
7963 end Set_SSO_From_Default;
7965 ------------------
7966 -- Undelay_Type --
7967 ------------------
7969 procedure Undelay_Type (T : Entity_Id) is
7970 begin
7971 Set_Has_Delayed_Freeze (T, False);
7972 Set_Freeze_Node (T, Empty);
7974 -- Since we don't want T to have a Freeze_Node, we don't want its
7975 -- Full_View or Corresponding_Record_Type to have one either.
7977 -- ??? Fundamentally, this whole handling is unpleasant. What we really
7978 -- want is to be sure that for an Itype that's part of record R and is a
7979 -- subtype of type T, that it's frozen after the later of the freeze
7980 -- points of R and T. We have no way of doing that directly, so what we
7981 -- do is force most such Itypes to be frozen as part of freezing R via
7982 -- this procedure and only delay the ones that need to be delayed
7983 -- (mostly the designated types of access types that are defined as part
7984 -- of the record).
7986 if Is_Private_Type (T)
7987 and then Present (Full_View (T))
7988 and then Is_Itype (Full_View (T))
7989 and then Is_Record_Type (Scope (Full_View (T)))
7990 then
7991 Undelay_Type (Full_View (T));
7992 end if;
7994 if Is_Concurrent_Type (T)
7995 and then Present (Corresponding_Record_Type (T))
7996 and then Is_Itype (Corresponding_Record_Type (T))
7997 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
7998 then
7999 Undelay_Type (Corresponding_Record_Type (T));
8000 end if;
8001 end Undelay_Type;
8003 ------------------
8004 -- Warn_Overlay --
8005 ------------------
8007 procedure Warn_Overlay
8008 (Expr : Node_Id;
8009 Typ : Entity_Id;
8010 Nam : Entity_Id)
8012 Ent : constant Entity_Id := Entity (Nam);
8013 -- The object to which the address clause applies
8015 Init : Node_Id;
8016 Old : Entity_Id := Empty;
8017 Decl : Node_Id;
8019 begin
8020 -- No warning if address clause overlay warnings are off
8022 if not Address_Clause_Overlay_Warnings then
8023 return;
8024 end if;
8026 -- No warning if there is an explicit initialization
8028 Init := Original_Node (Expression (Declaration_Node (Ent)));
8030 if Present (Init) and then Comes_From_Source (Init) then
8031 return;
8032 end if;
8034 -- We only give the warning for non-imported entities of a type for
8035 -- which a non-null base init proc is defined, or for objects of access
8036 -- types with implicit null initialization, or when Normalize_Scalars
8037 -- applies and the type is scalar or a string type (the latter being
8038 -- tested for because predefined String types are initialized by inline
8039 -- code rather than by an init_proc). Note that we do not give the
8040 -- warning for Initialize_Scalars, since we suppressed initialization
8041 -- in this case. Also, do not warn if Suppress_Initialization is set.
8043 if Present (Expr)
8044 and then not Is_Imported (Ent)
8045 and then not Initialization_Suppressed (Typ)
8046 and then (Has_Non_Null_Base_Init_Proc (Typ)
8047 or else Is_Access_Type (Typ)
8048 or else (Normalize_Scalars
8049 and then (Is_Scalar_Type (Typ)
8050 or else Is_String_Type (Typ))))
8051 then
8052 if Nkind (Expr) = N_Attribute_Reference
8053 and then Is_Entity_Name (Prefix (Expr))
8054 then
8055 Old := Entity (Prefix (Expr));
8057 elsif Is_Entity_Name (Expr)
8058 and then Ekind (Entity (Expr)) = E_Constant
8059 then
8060 Decl := Declaration_Node (Entity (Expr));
8062 if Nkind (Decl) = N_Object_Declaration
8063 and then Present (Expression (Decl))
8064 and then Nkind (Expression (Decl)) = N_Attribute_Reference
8065 and then Is_Entity_Name (Prefix (Expression (Decl)))
8066 then
8067 Old := Entity (Prefix (Expression (Decl)));
8069 elsif Nkind (Expr) = N_Function_Call then
8070 return;
8071 end if;
8073 -- A function call (most likely to To_Address) is probably not an
8074 -- overlay, so skip warning. Ditto if the function call was inlined
8075 -- and transformed into an entity.
8077 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
8078 return;
8079 end if;
8081 -- If a pragma Import follows, we assume that it is for the current
8082 -- target of the address clause, and skip the warning. There may be
8083 -- a source pragma or an aspect that specifies import and generates
8084 -- the corresponding pragma. These will indicate that the entity is
8085 -- imported and that is checked above so that the spurious warning
8086 -- (generated when the entity is frozen) will be suppressed. The
8087 -- pragma may be attached to the aspect, so it is not yet a list
8088 -- member.
8090 if Is_List_Member (Parent (Expr)) then
8091 Decl := Next (Parent (Expr));
8093 if Present (Decl)
8094 and then Nkind (Decl) = N_Pragma
8095 and then Pragma_Name (Decl) = Name_Import
8096 then
8097 return;
8098 end if;
8099 end if;
8101 -- Otherwise give warning message
8103 if Present (Old) then
8104 Error_Msg_Node_2 := Old;
8105 Error_Msg_N
8106 ("default initialization of & may modify &??",
8107 Nam);
8108 else
8109 Error_Msg_N
8110 ("default initialization of & may modify overlaid storage??",
8111 Nam);
8112 end if;
8114 -- Add friendly warning if initialization comes from a packed array
8115 -- component.
8117 if Is_Record_Type (Typ) then
8118 declare
8119 Comp : Entity_Id;
8121 begin
8122 Comp := First_Component (Typ);
8123 while Present (Comp) loop
8124 if Nkind (Parent (Comp)) = N_Component_Declaration
8125 and then Present (Expression (Parent (Comp)))
8126 then
8127 exit;
8128 elsif Is_Array_Type (Etype (Comp))
8129 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
8130 then
8131 Error_Msg_NE
8132 ("\packed array component& " &
8133 "will be initialized to zero??",
8134 Nam, Comp);
8135 exit;
8136 else
8137 Next_Component (Comp);
8138 end if;
8139 end loop;
8140 end;
8141 end if;
8143 Error_Msg_N
8144 ("\use pragma Import for & to " &
8145 "suppress initialization (RM B.1(24))??",
8146 Nam);
8147 end if;
8148 end Warn_Overlay;
8150 end Freeze;