1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Elists
; use Elists
;
32 with Exp_Aggr
; use Exp_Aggr
;
33 with Exp_Atag
; use Exp_Atag
;
34 with Exp_Ch2
; use Exp_Ch2
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Ch7
; use Exp_Ch7
;
37 with Exp_Ch9
; use Exp_Ch9
;
38 with Exp_Dbug
; use Exp_Dbug
;
39 with Exp_Disp
; use Exp_Disp
;
40 with Exp_Dist
; use Exp_Dist
;
41 with Exp_Intr
; use Exp_Intr
;
42 with Exp_Pakd
; use Exp_Pakd
;
43 with Exp_Prag
; use Exp_Prag
;
44 with Exp_Tss
; use Exp_Tss
;
45 with Exp_Unst
; use Exp_Unst
;
46 with Exp_Util
; use Exp_Util
;
47 with Freeze
; use Freeze
;
48 with Inline
; use Inline
;
50 with Namet
; use Namet
;
51 with Nlists
; use Nlists
;
52 with Nmake
; use Nmake
;
54 with Restrict
; use Restrict
;
55 with Rident
; use Rident
;
56 with Rtsfind
; use Rtsfind
;
58 with Sem_Aux
; use Sem_Aux
;
59 with Sem_Ch6
; use Sem_Ch6
;
60 with Sem_Ch8
; use Sem_Ch8
;
61 with Sem_Ch13
; use Sem_Ch13
;
62 with Sem_Dim
; use Sem_Dim
;
63 with Sem_Disp
; use Sem_Disp
;
64 with Sem_Dist
; use Sem_Dist
;
65 with Sem_Eval
; use Sem_Eval
;
66 with Sem_Mech
; use Sem_Mech
;
67 with Sem_Res
; use Sem_Res
;
68 with Sem_SCIL
; use Sem_SCIL
;
69 with Sem_Util
; use Sem_Util
;
70 with Sinfo
; use Sinfo
;
71 with Snames
; use Snames
;
72 with Stand
; use Stand
;
73 with Stringt
; use Stringt
;
75 with Targparm
; use Targparm
;
76 with Tbuild
; use Tbuild
;
77 with Uintp
; use Uintp
;
78 with Validsw
; use Validsw
;
80 package body Exp_Ch6
is
82 -------------------------------------
83 -- Table for Unnesting Subprograms --
84 -------------------------------------
86 -- When we expand a subprogram body, if it has nested subprograms and if
87 -- we are in Unnest_Subprogram_Mode, then we record the subprogram entity
88 -- and the body in this table, to later be passed to Unnest_Subprogram.
90 -- We need this delaying mechanism, because we have to wait untiil all
91 -- instantiated bodies have been inserted before doing the unnesting.
93 type Unest_Entry
is record
95 -- Entity for subprogram to be unnested
98 -- Subprogram body to be unnested
101 package Unest_Bodies
is new Table
.Table
(
102 Table_Component_Type
=> Unest_Entry
,
103 Table_Index_Type
=> Nat
,
104 Table_Low_Bound
=> 1,
105 Table_Initial
=> 100,
106 Table_Increment
=> 200,
107 Table_Name
=> "Unest_Bodies");
109 -----------------------
110 -- Local Subprograms --
111 -----------------------
113 procedure Add_Access_Actual_To_Build_In_Place_Call
114 (Function_Call
: Node_Id
;
115 Function_Id
: Entity_Id
;
116 Return_Object
: Node_Id
;
117 Is_Access
: Boolean := False);
118 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
119 -- object name given by Return_Object and add the attribute to the end of
120 -- the actual parameter list associated with the build-in-place function
121 -- call denoted by Function_Call. However, if Is_Access is True, then
122 -- Return_Object is already an access expression, in which case it's passed
123 -- along directly to the build-in-place function. Finally, if Return_Object
124 -- is empty, then pass a null literal as the actual.
126 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
127 (Function_Call
: Node_Id
;
128 Function_Id
: Entity_Id
;
129 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
130 Alloc_Form_Exp
: Node_Id
:= Empty
;
131 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
));
132 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
133 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
134 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
135 -- otherwise pass a literal corresponding to the Alloc_Form parameter
136 -- (which must not be Unspecified in that case). Pool_Actual is the
137 -- parameter to pass to BIP_Storage_Pool.
139 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
140 (Func_Call
: Node_Id
;
142 Ptr_Typ
: Entity_Id
:= Empty
;
143 Master_Exp
: Node_Id
:= Empty
);
144 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
145 -- finalization actions, add an actual parameter which is a pointer to the
146 -- finalization master of the caller. If Master_Exp is not Empty, then that
147 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
148 -- will result in an automatic "null" value for the actual.
150 procedure Add_Task_Actuals_To_Build_In_Place_Call
151 (Function_Call
: Node_Id
;
152 Function_Id
: Entity_Id
;
153 Master_Actual
: Node_Id
;
154 Chain
: Node_Id
:= Empty
);
155 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
156 -- contains tasks, add two actual parameters: the master, and a pointer to
157 -- the caller's activation chain. Master_Actual is the actual parameter
158 -- expression to pass for the master. In most cases, this is the current
159 -- master (_master). The two exceptions are: If the function call is the
160 -- initialization expression for an allocator, we pass the master of the
161 -- access type. If the function call is the initialization expression for a
162 -- return object, we pass along the master passed in by the caller. In most
163 -- contexts, the activation chain to pass is the local one, which is
164 -- indicated by No (Chain). However, in an allocator, the caller passes in
165 -- the activation Chain. Note: Master_Actual can be Empty, but only if
166 -- there are no tasks.
168 procedure Check_Overriding_Operation
(Subp
: Entity_Id
);
169 -- Subp is a dispatching operation. Check whether it may override an
170 -- inherited private operation, in which case its DT entry is that of
171 -- the hidden operation, not the one it may have received earlier.
172 -- This must be done before emitting the code to set the corresponding
173 -- DT to the address of the subprogram. The actual placement of Subp in
174 -- the proper place in the list of primitive operations is done in
175 -- Declare_Inherited_Private_Subprograms, which also has to deal with
176 -- implicit operations. This duplication is unavoidable for now???
178 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
);
179 -- This procedure is called only if the subprogram body N, whose spec
180 -- has the given entity Spec, contains a parameterless recursive call.
181 -- It attempts to generate runtime code to detect if this a case of
182 -- infinite recursion.
184 -- The body is scanned to determine dependencies. If the only external
185 -- dependencies are on a small set of scalar variables, then the values
186 -- of these variables are captured on entry to the subprogram, and if
187 -- the values are not changed for the call, we know immediately that
188 -- we have an infinite recursion.
190 procedure Expand_Actuals
(N
: in out Node_Id
; Subp
: Entity_Id
);
191 -- For each actual of an in-out or out parameter which is a numeric
192 -- (view) conversion of the form T (A), where A denotes a variable,
193 -- we insert the declaration:
195 -- Temp : T[ := T (A)];
197 -- prior to the call. Then we replace the actual with a reference to Temp,
198 -- and append the assignment:
200 -- A := TypeA (Temp);
202 -- after the call. Here TypeA is the actual type of variable A. For out
203 -- parameters, the initial declaration has no expression. If A is not an
204 -- entity name, we generate instead:
206 -- Var : TypeA renames A;
207 -- Temp : T := Var; -- omitting expression for out parameter.
209 -- Var := TypeA (Temp);
211 -- For other in-out parameters, we emit the required constraint checks
212 -- before and/or after the call.
214 -- For all parameter modes, actuals that denote components and slices of
215 -- packed arrays are expanded into suitable temporaries.
217 -- For non-scalar objects that are possibly unaligned, add call by copy
218 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
220 -- For OUT and IN OUT parameters, add predicate checks after the call
221 -- based on the predicates of the actual type.
223 -- The parameter N is IN OUT because in some cases, the expansion code
224 -- rewrites the call as an expression actions with the call inside. In
225 -- this case N is reset to point to the inside call so that the caller
226 -- can continue processing of this call.
228 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
);
229 -- N is a function call which returns a controlled object. Transform the
230 -- call into a temporary which retrieves the returned object from the
231 -- secondary stack using 'reference.
233 procedure Expand_Non_Function_Return
(N
: Node_Id
);
234 -- Expand a simple return statement found in a procedure body, entry body,
235 -- accept statement, or an extended return statement. Note that all non-
236 -- function returns are simple return statements.
238 function Expand_Protected_Object_Reference
240 Scop
: Entity_Id
) return Node_Id
;
242 procedure Expand_Protected_Subprogram_Call
246 -- A call to a protected subprogram within the protected object may appear
247 -- as a regular call. The list of actuals must be expanded to contain a
248 -- reference to the object itself, and the call becomes a call to the
249 -- corresponding protected subprogram.
251 function Has_Unconstrained_Access_Discriminants
252 (Subtyp
: Entity_Id
) return Boolean;
253 -- Returns True if the given subtype is unconstrained and has one
254 -- or more access discriminants.
256 procedure Expand_Simple_Function_Return
(N
: Node_Id
);
257 -- Expand simple return from function. In the case where we are returning
258 -- from a function body this is called by Expand_N_Simple_Return_Statement.
260 ----------------------------------------------
261 -- Add_Access_Actual_To_Build_In_Place_Call --
262 ----------------------------------------------
264 procedure Add_Access_Actual_To_Build_In_Place_Call
265 (Function_Call
: Node_Id
;
266 Function_Id
: Entity_Id
;
267 Return_Object
: Node_Id
;
268 Is_Access
: Boolean := False)
270 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
271 Obj_Address
: Node_Id
;
272 Obj_Acc_Formal
: Entity_Id
;
275 -- Locate the implicit access parameter in the called function
277 Obj_Acc_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Object_Access
);
279 -- If no return object is provided, then pass null
281 if not Present
(Return_Object
) then
282 Obj_Address
:= Make_Null
(Loc
);
283 Set_Parent
(Obj_Address
, Function_Call
);
285 -- If Return_Object is already an expression of an access type, then use
286 -- it directly, since it must be an access value denoting the return
287 -- object, and couldn't possibly be the return object itself.
290 Obj_Address
:= Return_Object
;
291 Set_Parent
(Obj_Address
, Function_Call
);
293 -- Apply Unrestricted_Access to caller's return object
297 Make_Attribute_Reference
(Loc
,
298 Prefix
=> Return_Object
,
299 Attribute_Name
=> Name_Unrestricted_Access
);
301 Set_Parent
(Return_Object
, Obj_Address
);
302 Set_Parent
(Obj_Address
, Function_Call
);
305 Analyze_And_Resolve
(Obj_Address
, Etype
(Obj_Acc_Formal
));
307 -- Build the parameter association for the new actual and add it to the
308 -- end of the function's actuals.
310 Add_Extra_Actual_To_Call
(Function_Call
, Obj_Acc_Formal
, Obj_Address
);
311 end Add_Access_Actual_To_Build_In_Place_Call
;
313 ------------------------------------------------------
314 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
315 ------------------------------------------------------
317 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
318 (Function_Call
: Node_Id
;
319 Function_Id
: Entity_Id
;
320 Alloc_Form
: BIP_Allocation_Form
:= Unspecified
;
321 Alloc_Form_Exp
: Node_Id
:= Empty
;
322 Pool_Actual
: Node_Id
:= Make_Null
(No_Location
))
324 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
325 Alloc_Form_Actual
: Node_Id
;
326 Alloc_Form_Formal
: Node_Id
;
327 Pool_Formal
: Node_Id
;
330 -- The allocation form generally doesn't need to be passed in the case
331 -- of a constrained result subtype, since normally the caller performs
332 -- the allocation in that case. However this formal is still needed in
333 -- the case where the function has a tagged result, because generally
334 -- such functions can be called in a dispatching context and such calls
335 -- must be handled like calls to class-wide functions.
337 if Is_Constrained
(Underlying_Type
(Etype
(Function_Id
)))
338 and then not Is_Tagged_Type
(Underlying_Type
(Etype
(Function_Id
)))
343 -- Locate the implicit allocation form parameter in the called function.
344 -- Maybe it would be better for each implicit formal of a build-in-place
345 -- function to have a flag or a Uint attribute to identify it. ???
347 Alloc_Form_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Alloc_Form
);
349 if Present
(Alloc_Form_Exp
) then
350 pragma Assert
(Alloc_Form
= Unspecified
);
352 Alloc_Form_Actual
:= Alloc_Form_Exp
;
355 pragma Assert
(Alloc_Form
/= Unspecified
);
358 Make_Integer_Literal
(Loc
,
359 Intval
=> UI_From_Int
(BIP_Allocation_Form
'Pos (Alloc_Form
)));
362 Analyze_And_Resolve
(Alloc_Form_Actual
, Etype
(Alloc_Form_Formal
));
364 -- Build the parameter association for the new actual and add it to the
365 -- end of the function's actuals.
367 Add_Extra_Actual_To_Call
368 (Function_Call
, Alloc_Form_Formal
, Alloc_Form_Actual
);
370 -- Pass the Storage_Pool parameter. This parameter is omitted on
371 -- .NET/JVM/ZFP as those targets do not support pools.
374 and then RTE_Available
(RE_Root_Storage_Pool_Ptr
)
376 Pool_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Storage_Pool
);
377 Analyze_And_Resolve
(Pool_Actual
, Etype
(Pool_Formal
));
378 Add_Extra_Actual_To_Call
379 (Function_Call
, Pool_Formal
, Pool_Actual
);
381 end Add_Unconstrained_Actuals_To_Build_In_Place_Call
;
383 -----------------------------------------------------------
384 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
385 -----------------------------------------------------------
387 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
388 (Func_Call
: Node_Id
;
390 Ptr_Typ
: Entity_Id
:= Empty
;
391 Master_Exp
: Node_Id
:= Empty
)
394 if not Needs_BIP_Finalization_Master
(Func_Id
) then
399 Formal
: constant Entity_Id
:=
400 Build_In_Place_Formal
(Func_Id
, BIP_Finalization_Master
);
401 Loc
: constant Source_Ptr
:= Sloc
(Func_Call
);
404 Desig_Typ
: Entity_Id
;
407 -- If there is a finalization master actual, such as the implicit
408 -- finalization master of an enclosing build-in-place function,
409 -- then this must be added as an extra actual of the call.
411 if Present
(Master_Exp
) then
412 Actual
:= Master_Exp
;
414 -- Case where the context does not require an actual master
416 elsif No
(Ptr_Typ
) then
417 Actual
:= Make_Null
(Loc
);
420 Desig_Typ
:= Directly_Designated_Type
(Ptr_Typ
);
422 -- Check for a library-level access type whose designated type has
423 -- supressed finalization. Such an access types lack a master.
424 -- Pass a null actual to the callee in order to signal a missing
427 if Is_Library_Level_Entity
(Ptr_Typ
)
428 and then Finalize_Storage_Only
(Desig_Typ
)
430 Actual
:= Make_Null
(Loc
);
432 -- Types in need of finalization actions
434 elsif Needs_Finalization
(Desig_Typ
) then
436 -- The general mechanism of creating finalization masters for
437 -- anonymous access types is disabled by default, otherwise
438 -- finalization masters will pop all over the place. Such types
439 -- use context-specific masters.
441 if Ekind
(Ptr_Typ
) = E_Anonymous_Access_Type
442 and then No
(Finalization_Master
(Ptr_Typ
))
444 Build_Finalization_Master
446 For_Anonymous
=> True,
447 Context_Scope
=> Scope
(Ptr_Typ
),
448 Insertion_Node
=> Associated_Node_For_Itype
(Ptr_Typ
));
451 -- Access-to-controlled types should always have a master
453 pragma Assert
(Present
(Finalization_Master
(Ptr_Typ
)));
456 Make_Attribute_Reference
(Loc
,
458 New_Occurrence_Of
(Finalization_Master
(Ptr_Typ
), Loc
),
459 Attribute_Name
=> Name_Unrestricted_Access
);
464 Actual
:= Make_Null
(Loc
);
468 Analyze_And_Resolve
(Actual
, Etype
(Formal
));
470 -- Build the parameter association for the new actual and add it to
471 -- the end of the function's actuals.
473 Add_Extra_Actual_To_Call
(Func_Call
, Formal
, Actual
);
475 end Add_Finalization_Master_Actual_To_Build_In_Place_Call
;
477 ------------------------------
478 -- Add_Extra_Actual_To_Call --
479 ------------------------------
481 procedure Add_Extra_Actual_To_Call
482 (Subprogram_Call
: Node_Id
;
483 Extra_Formal
: Entity_Id
;
484 Extra_Actual
: Node_Id
)
486 Loc
: constant Source_Ptr
:= Sloc
(Subprogram_Call
);
487 Param_Assoc
: Node_Id
;
491 Make_Parameter_Association
(Loc
,
492 Selector_Name
=> New_Occurrence_Of
(Extra_Formal
, Loc
),
493 Explicit_Actual_Parameter
=> Extra_Actual
);
495 Set_Parent
(Param_Assoc
, Subprogram_Call
);
496 Set_Parent
(Extra_Actual
, Param_Assoc
);
498 if Present
(Parameter_Associations
(Subprogram_Call
)) then
499 if Nkind
(Last
(Parameter_Associations
(Subprogram_Call
))) =
500 N_Parameter_Association
503 -- Find last named actual, and append
508 L
:= First_Actual
(Subprogram_Call
);
509 while Present
(L
) loop
510 if No
(Next_Actual
(L
)) then
511 Set_Next_Named_Actual
(Parent
(L
), Extra_Actual
);
519 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
522 Append
(Param_Assoc
, To
=> Parameter_Associations
(Subprogram_Call
));
525 Set_Parameter_Associations
(Subprogram_Call
, New_List
(Param_Assoc
));
526 Set_First_Named_Actual
(Subprogram_Call
, Extra_Actual
);
528 end Add_Extra_Actual_To_Call
;
530 ---------------------------------------------
531 -- Add_Task_Actuals_To_Build_In_Place_Call --
532 ---------------------------------------------
534 procedure Add_Task_Actuals_To_Build_In_Place_Call
535 (Function_Call
: Node_Id
;
536 Function_Id
: Entity_Id
;
537 Master_Actual
: Node_Id
;
538 Chain
: Node_Id
:= Empty
)
540 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
541 Result_Subt
: constant Entity_Id
:=
542 Available_View
(Etype
(Function_Id
));
544 Chain_Actual
: Node_Id
;
545 Chain_Formal
: Node_Id
;
546 Master_Formal
: Node_Id
;
549 -- No such extra parameters are needed if there are no tasks
551 if not Has_Task
(Result_Subt
) then
555 Actual
:= Master_Actual
;
557 -- Use a dummy _master actual in case of No_Task_Hierarchy
559 if Restriction_Active
(No_Task_Hierarchy
) then
560 Actual
:= New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
);
562 -- In the case where we use the master associated with an access type,
563 -- the actual is an entity and requires an explicit reference.
565 elsif Nkind
(Actual
) = N_Defining_Identifier
then
566 Actual
:= New_Occurrence_Of
(Actual
, Loc
);
569 -- Locate the implicit master parameter in the called function
571 Master_Formal
:= Build_In_Place_Formal
(Function_Id
, BIP_Task_Master
);
572 Analyze_And_Resolve
(Actual
, Etype
(Master_Formal
));
574 -- Build the parameter association for the new actual and add it to the
575 -- end of the function's actuals.
577 Add_Extra_Actual_To_Call
(Function_Call
, Master_Formal
, Actual
);
579 -- Locate the implicit activation chain parameter in the called function
582 Build_In_Place_Formal
(Function_Id
, BIP_Activation_Chain
);
584 -- Create the actual which is a pointer to the current activation chain
588 Make_Attribute_Reference
(Loc
,
589 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
590 Attribute_Name
=> Name_Unrestricted_Access
);
592 -- Allocator case; make a reference to the Chain passed in by the caller
596 Make_Attribute_Reference
(Loc
,
597 Prefix
=> New_Occurrence_Of
(Chain
, Loc
),
598 Attribute_Name
=> Name_Unrestricted_Access
);
601 Analyze_And_Resolve
(Chain_Actual
, Etype
(Chain_Formal
));
603 -- Build the parameter association for the new actual and add it to the
604 -- end of the function's actuals.
606 Add_Extra_Actual_To_Call
(Function_Call
, Chain_Formal
, Chain_Actual
);
607 end Add_Task_Actuals_To_Build_In_Place_Call
;
609 -----------------------
610 -- BIP_Formal_Suffix --
611 -----------------------
613 function BIP_Formal_Suffix
(Kind
: BIP_Formal_Kind
) return String is
616 when BIP_Alloc_Form
=>
618 when BIP_Storage_Pool
=>
619 return "BIPstoragepool";
620 when BIP_Finalization_Master
=>
621 return "BIPfinalizationmaster";
622 when BIP_Task_Master
=>
623 return "BIPtaskmaster";
624 when BIP_Activation_Chain
=>
625 return "BIPactivationchain";
626 when BIP_Object_Access
=>
629 end BIP_Formal_Suffix
;
631 ---------------------------
632 -- Build_In_Place_Formal --
633 ---------------------------
635 function Build_In_Place_Formal
637 Kind
: BIP_Formal_Kind
) return Entity_Id
639 Formal_Name
: constant Name_Id
:=
641 (Chars
(Func
), BIP_Formal_Suffix
(Kind
));
642 Extra_Formal
: Entity_Id
:= Extra_Formals
(Func
);
645 -- Maybe it would be better for each implicit formal of a build-in-place
646 -- function to have a flag or a Uint attribute to identify it. ???
648 -- The return type in the function declaration may have been a limited
649 -- view, and the extra formals for the function were not generated at
650 -- that point. At the point of call the full view must be available and
651 -- the extra formals can be created.
653 if No
(Extra_Formal
) then
654 Create_Extra_Formals
(Func
);
655 Extra_Formal
:= Extra_Formals
(Func
);
659 pragma Assert
(Present
(Extra_Formal
));
660 exit when Chars
(Extra_Formal
) = Formal_Name
;
662 Next_Formal_With_Extras
(Extra_Formal
);
666 end Build_In_Place_Formal
;
668 --------------------------------
669 -- Check_Overriding_Operation --
670 --------------------------------
672 procedure Check_Overriding_Operation
(Subp
: Entity_Id
) is
673 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
674 Op_List
: constant Elist_Id
:= Primitive_Operations
(Typ
);
680 if Is_Derived_Type
(Typ
)
681 and then not Is_Private_Type
(Typ
)
682 and then In_Open_Scopes
(Scope
(Etype
(Typ
)))
683 and then Is_Base_Type
(Typ
)
685 -- Subp overrides an inherited private operation if there is an
686 -- inherited operation with a different name than Subp (see
687 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
688 -- same name as Subp.
690 Op_Elmt
:= First_Elmt
(Op_List
);
691 while Present
(Op_Elmt
) loop
692 Prim_Op
:= Node
(Op_Elmt
);
693 Par_Op
:= Alias
(Prim_Op
);
696 and then not Comes_From_Source
(Prim_Op
)
697 and then Chars
(Prim_Op
) /= Chars
(Par_Op
)
698 and then Chars
(Par_Op
) = Chars
(Subp
)
699 and then Is_Hidden
(Par_Op
)
700 and then Type_Conformant
(Prim_Op
, Subp
)
702 Set_DT_Position_Value
(Subp
, DT_Position
(Prim_Op
));
708 end Check_Overriding_Operation
;
710 -------------------------------
711 -- Detect_Infinite_Recursion --
712 -------------------------------
714 procedure Detect_Infinite_Recursion
(N
: Node_Id
; Spec
: Entity_Id
) is
715 Loc
: constant Source_Ptr
:= Sloc
(N
);
717 Var_List
: constant Elist_Id
:= New_Elmt_List
;
718 -- List of globals referenced by body of procedure
720 Call_List
: constant Elist_Id
:= New_Elmt_List
;
721 -- List of recursive calls in body of procedure
723 Shad_List
: constant Elist_Id
:= New_Elmt_List
;
724 -- List of entity id's for entities created to capture the value of
725 -- referenced globals on entry to the procedure.
727 Scop
: constant Uint
:= Scope_Depth
(Spec
);
728 -- This is used to record the scope depth of the current procedure, so
729 -- that we can identify global references.
731 Max_Vars
: constant := 4;
732 -- Do not test more than four global variables
734 Count_Vars
: Natural := 0;
735 -- Count variables found so far
747 function Process
(Nod
: Node_Id
) return Traverse_Result
;
748 -- Function to traverse the subprogram body (using Traverse_Func)
754 function Process
(Nod
: Node_Id
) return Traverse_Result
is
758 if Nkind
(Nod
) = N_Procedure_Call_Statement
then
760 -- Case of one of the detected recursive calls
762 if Is_Entity_Name
(Name
(Nod
))
763 and then Has_Recursive_Call
(Entity
(Name
(Nod
)))
764 and then Entity
(Name
(Nod
)) = Spec
766 Append_Elmt
(Nod
, Call_List
);
769 -- Any other procedure call may have side effects
775 -- A call to a pure function can always be ignored
777 elsif Nkind
(Nod
) = N_Function_Call
778 and then Is_Entity_Name
(Name
(Nod
))
779 and then Is_Pure
(Entity
(Name
(Nod
)))
783 -- Case of an identifier reference
785 elsif Nkind
(Nod
) = N_Identifier
then
788 -- If no entity, then ignore the reference
790 -- Not clear why this can happen. To investigate, remove this
791 -- test and look at the crash that occurs here in 3401-004 ???
796 -- Ignore entities with no Scope, again not clear how this
797 -- can happen, to investigate, look at 4108-008 ???
799 elsif No
(Scope
(Ent
)) then
802 -- Ignore the reference if not to a more global object
804 elsif Scope_Depth
(Scope
(Ent
)) >= Scop
then
807 -- References to types, exceptions and constants are always OK
810 or else Ekind
(Ent
) = E_Exception
811 or else Ekind
(Ent
) = E_Constant
815 -- If other than a non-volatile scalar variable, we have some
816 -- kind of global reference (e.g. to a function) that we cannot
817 -- deal with so we forget the attempt.
819 elsif Ekind
(Ent
) /= E_Variable
820 or else not Is_Scalar_Type
(Etype
(Ent
))
821 or else Treat_As_Volatile
(Ent
)
825 -- Otherwise we have a reference to a global scalar
828 -- Loop through global entities already detected
830 Elm
:= First_Elmt
(Var_List
);
832 -- If not detected before, record this new global reference
835 Count_Vars
:= Count_Vars
+ 1;
837 if Count_Vars
<= Max_Vars
then
838 Append_Elmt
(Entity
(Nod
), Var_List
);
845 -- If recorded before, ignore
847 elsif Node
(Elm
) = Entity
(Nod
) then
850 -- Otherwise keep looking
860 -- For all other node kinds, recursively visit syntactic children
867 function Traverse_Body
is new Traverse_Func
(Process
);
869 -- Start of processing for Detect_Infinite_Recursion
872 -- Do not attempt detection in No_Implicit_Conditional mode, since we
873 -- won't be able to generate the code to handle the recursion in any
876 if Restriction_Active
(No_Implicit_Conditionals
) then
880 -- Otherwise do traversal and quit if we get abandon signal
882 if Traverse_Body
(N
) = Abandon
then
885 -- We must have a call, since Has_Recursive_Call was set. If not just
886 -- ignore (this is only an error check, so if we have a funny situation,
887 -- due to bugs or errors, we do not want to bomb).
889 elsif Is_Empty_Elmt_List
(Call_List
) then
893 -- Here is the case where we detect recursion at compile time
895 -- Push our current scope for analyzing the declarations and code that
896 -- we will insert for the checking.
900 -- This loop builds temporary variables for each of the referenced
901 -- globals, so that at the end of the loop the list Shad_List contains
902 -- these temporaries in one-to-one correspondence with the elements in
906 Elm
:= First_Elmt
(Var_List
);
907 while Present
(Elm
) loop
909 Ent
:= Make_Temporary
(Loc
, 'S');
910 Append_Elmt
(Ent
, Shad_List
);
912 -- Insert a declaration for this temporary at the start of the
913 -- declarations for the procedure. The temporaries are declared as
914 -- constant objects initialized to the current values of the
915 -- corresponding temporaries.
918 Make_Object_Declaration
(Loc
,
919 Defining_Identifier
=> Ent
,
920 Object_Definition
=> New_Occurrence_Of
(Etype
(Var
), Loc
),
921 Constant_Present
=> True,
922 Expression
=> New_Occurrence_Of
(Var
, Loc
));
925 Prepend
(Decl
, Declarations
(N
));
927 Insert_After
(Last
, Decl
);
935 -- Loop through calls
937 Call
:= First_Elmt
(Call_List
);
938 while Present
(Call
) loop
940 -- Build a predicate expression of the form
943 -- and then global1 = temp1
944 -- and then global2 = temp2
947 -- This predicate determines if any of the global values
948 -- referenced by the procedure have changed since the
949 -- current call, if not an infinite recursion is assured.
951 Test
:= New_Occurrence_Of
(Standard_True
, Loc
);
953 Elm1
:= First_Elmt
(Var_List
);
954 Elm2
:= First_Elmt
(Shad_List
);
955 while Present
(Elm1
) loop
961 Left_Opnd
=> New_Occurrence_Of
(Node
(Elm1
), Loc
),
962 Right_Opnd
=> New_Occurrence_Of
(Node
(Elm2
), Loc
)));
968 -- Now we replace the call with the sequence
970 -- if no-changes (see above) then
971 -- raise Storage_Error;
976 Rewrite
(Node
(Call
),
977 Make_If_Statement
(Loc
,
979 Then_Statements
=> New_List
(
980 Make_Raise_Storage_Error
(Loc
,
981 Reason
=> SE_Infinite_Recursion
)),
983 Else_Statements
=> New_List
(
984 Relocate_Node
(Node
(Call
)))));
986 Analyze
(Node
(Call
));
991 -- Remove temporary scope stack entry used for analysis
994 end Detect_Infinite_Recursion
;
1000 --------------------
1001 -- Expand_Actuals --
1002 --------------------
1004 procedure Expand_Actuals
(N
: in out Node_Id
; Subp
: Entity_Id
) is
1005 Loc
: constant Source_Ptr
:= Sloc
(N
);
1009 Post_Call
: List_Id
;
1010 E_Actual
: Entity_Id
;
1011 E_Formal
: Entity_Id
;
1013 procedure Add_Call_By_Copy_Code
;
1014 -- For cases where the parameter must be passed by copy, this routine
1015 -- generates a temporary variable into which the actual is copied and
1016 -- then passes this as the parameter. For an OUT or IN OUT parameter,
1017 -- an assignment is also generated to copy the result back. The call
1018 -- also takes care of any constraint checks required for the type
1019 -- conversion case (on both the way in and the way out).
1021 procedure Add_Simple_Call_By_Copy_Code
;
1022 -- This is similar to the above, but is used in cases where we know
1023 -- that all that is needed is to simply create a temporary and copy
1024 -- the value in and out of the temporary.
1026 procedure Check_Fortran_Logical
;
1027 -- A value of type Logical that is passed through a formal parameter
1028 -- must be normalized because .TRUE. usually does not have the same
1029 -- representation as True. We assume that .FALSE. = False = 0.
1030 -- What about functions that return a logical type ???
1032 function Is_Legal_Copy
return Boolean;
1033 -- Check that an actual can be copied before generating the temporary
1034 -- to be used in the call. If the actual is of a by_reference type then
1035 -- the program is illegal (this can only happen in the presence of
1036 -- rep. clauses that force an incorrect alignment). If the formal is
1037 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1038 -- the effect that this might lead to unaligned arguments.
1040 function Make_Var
(Actual
: Node_Id
) return Entity_Id
;
1041 -- Returns an entity that refers to the given actual parameter, Actual
1042 -- (not including any type conversion). If Actual is an entity name,
1043 -- then this entity is returned unchanged, otherwise a renaming is
1044 -- created to provide an entity for the actual.
1046 procedure Reset_Packed_Prefix
;
1047 -- The expansion of a packed array component reference is delayed in
1048 -- the context of a call. Now we need to complete the expansion, so we
1049 -- unmark the analyzed bits in all prefixes.
1051 ---------------------------
1052 -- Add_Call_By_Copy_Code --
1053 ---------------------------
1055 procedure Add_Call_By_Copy_Code
is
1061 F_Typ
: constant Entity_Id
:= Etype
(Formal
);
1066 if not Is_Legal_Copy
then
1070 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1072 -- Use formal type for temp, unless formal type is an unconstrained
1073 -- array, in which case we don't have to worry about bounds checks,
1074 -- and we use the actual type, since that has appropriate bounds.
1076 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1077 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1079 Indic
:= New_Occurrence_Of
(Etype
(Formal
), Loc
);
1082 if Nkind
(Actual
) = N_Type_Conversion
then
1083 V_Typ
:= Etype
(Expression
(Actual
));
1085 -- If the formal is an (in-)out parameter, capture the name
1086 -- of the variable in order to build the post-call assignment.
1088 Var
:= Make_Var
(Expression
(Actual
));
1090 Crep
:= not Same_Representation
1091 (F_Typ
, Etype
(Expression
(Actual
)));
1094 V_Typ
:= Etype
(Actual
);
1095 Var
:= Make_Var
(Actual
);
1099 -- Setup initialization for case of in out parameter, or an out
1100 -- parameter where the formal is an unconstrained array (in the
1101 -- latter case, we have to pass in an object with bounds).
1103 -- If this is an out parameter, the initial copy is wasteful, so as
1104 -- an optimization for the one-dimensional case we extract the
1105 -- bounds of the actual and build an uninitialized temporary of the
1108 if Ekind
(Formal
) = E_In_Out_Parameter
1109 or else (Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
))
1111 if Nkind
(Actual
) = N_Type_Conversion
then
1112 if Conversion_OK
(Actual
) then
1113 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1115 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1118 elsif Ekind
(Formal
) = E_Out_Parameter
1119 and then Is_Array_Type
(F_Typ
)
1120 and then Number_Dimensions
(F_Typ
) = 1
1121 and then not Has_Non_Null_Base_Init_Proc
(F_Typ
)
1123 -- Actual is a one-dimensional array or slice, and the type
1124 -- requires no initialization. Create a temporary of the
1125 -- right size, but do not copy actual into it (optimization).
1129 Make_Subtype_Indication
(Loc
,
1130 Subtype_Mark
=> New_Occurrence_Of
(F_Typ
, Loc
),
1132 Make_Index_Or_Discriminant_Constraint
(Loc
,
1133 Constraints
=> New_List
(
1136 Make_Attribute_Reference
(Loc
,
1137 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1138 Attribute_Name
=> Name_First
),
1140 Make_Attribute_Reference
(Loc
,
1141 Prefix
=> New_Occurrence_Of
(Var
, Loc
),
1142 Attribute_Name
=> Name_Last
)))));
1145 Init
:= New_Occurrence_Of
(Var
, Loc
);
1148 -- An initialization is created for packed conversions as
1149 -- actuals for out parameters to enable Make_Object_Declaration
1150 -- to determine the proper subtype for N_Node. Note that this
1151 -- is wasteful because the extra copying on the call side is
1152 -- not required for such out parameters. ???
1154 elsif Ekind
(Formal
) = E_Out_Parameter
1155 and then Nkind
(Actual
) = N_Type_Conversion
1156 and then (Is_Bit_Packed_Array
(F_Typ
)
1158 Is_Bit_Packed_Array
(Etype
(Expression
(Actual
))))
1160 if Conversion_OK
(Actual
) then
1161 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1163 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1166 elsif Ekind
(Formal
) = E_In_Parameter
then
1168 -- Handle the case in which the actual is a type conversion
1170 if Nkind
(Actual
) = N_Type_Conversion
then
1171 if Conversion_OK
(Actual
) then
1172 Init
:= OK_Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1174 Init
:= Convert_To
(F_Typ
, New_Occurrence_Of
(Var
, Loc
));
1177 Init
:= New_Occurrence_Of
(Var
, Loc
);
1185 Make_Object_Declaration
(Loc
,
1186 Defining_Identifier
=> Temp
,
1187 Object_Definition
=> Indic
,
1188 Expression
=> Init
);
1189 Set_Assignment_OK
(N_Node
);
1190 Insert_Action
(N
, N_Node
);
1192 -- Now, normally the deal here is that we use the defining
1193 -- identifier created by that object declaration. There is
1194 -- one exception to this. In the change of representation case
1195 -- the above declaration will end up looking like:
1197 -- temp : type := identifier;
1199 -- And in this case we might as well use the identifier directly
1200 -- and eliminate the temporary. Note that the analysis of the
1201 -- declaration was not a waste of time in that case, since it is
1202 -- what generated the necessary change of representation code. If
1203 -- the change of representation introduced additional code, as in
1204 -- a fixed-integer conversion, the expression is not an identifier
1205 -- and must be kept.
1208 and then Present
(Expression
(N_Node
))
1209 and then Is_Entity_Name
(Expression
(N_Node
))
1211 Temp
:= Entity
(Expression
(N_Node
));
1212 Rewrite
(N_Node
, Make_Null_Statement
(Loc
));
1215 -- For IN parameter, all we do is to replace the actual
1217 if Ekind
(Formal
) = E_In_Parameter
then
1218 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1221 -- Processing for OUT or IN OUT parameter
1224 -- Kill current value indications for the temporary variable we
1225 -- created, since we just passed it as an OUT parameter.
1227 Kill_Current_Values
(Temp
);
1228 Set_Is_Known_Valid
(Temp
, False);
1230 -- If type conversion, use reverse conversion on exit
1232 if Nkind
(Actual
) = N_Type_Conversion
then
1233 if Conversion_OK
(Actual
) then
1234 Expr
:= OK_Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1236 Expr
:= Convert_To
(V_Typ
, New_Occurrence_Of
(Temp
, Loc
));
1239 Expr
:= New_Occurrence_Of
(Temp
, Loc
);
1242 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1245 -- If the actual is a conversion of a packed reference, it may
1246 -- already have been expanded by Remove_Side_Effects, and the
1247 -- resulting variable is a temporary which does not designate
1248 -- the proper out-parameter, which may not be addressable. In
1249 -- that case, generate an assignment to the original expression
1250 -- (before expansion of the packed reference) so that the proper
1251 -- expansion of assignment to a packed component can take place.
1258 if Is_Renaming_Of_Object
(Var
)
1259 and then Nkind
(Renamed_Object
(Var
)) = N_Selected_Component
1260 and then Is_Entity_Name
(Prefix
(Renamed_Object
(Var
)))
1261 and then Nkind
(Original_Node
(Prefix
(Renamed_Object
(Var
))))
1262 = N_Indexed_Component
1264 Has_Non_Standard_Rep
(Etype
(Prefix
(Renamed_Object
(Var
))))
1266 Obj
:= Renamed_Object
(Var
);
1268 Make_Selected_Component
(Loc
,
1270 New_Copy_Tree
(Original_Node
(Prefix
(Obj
))),
1271 Selector_Name
=> New_Copy
(Selector_Name
(Obj
)));
1272 Reset_Analyzed_Flags
(Lhs
);
1275 Lhs
:= New_Occurrence_Of
(Var
, Loc
);
1278 Set_Assignment_OK
(Lhs
);
1280 if Is_Access_Type
(E_Formal
)
1281 and then Is_Entity_Name
(Lhs
)
1283 Present
(Effective_Extra_Accessibility
(Entity
(Lhs
)))
1285 -- Copyback target is an Ada 2012 stand-alone object of an
1286 -- anonymous access type.
1288 pragma Assert
(Ada_Version
>= Ada_2012
);
1290 if Type_Access_Level
(E_Formal
) >
1291 Object_Access_Level
(Lhs
)
1293 Append_To
(Post_Call
,
1294 Make_Raise_Program_Error
(Loc
,
1295 Reason
=> PE_Accessibility_Check_Failed
));
1298 Append_To
(Post_Call
,
1299 Make_Assignment_Statement
(Loc
,
1301 Expression
=> Expr
));
1303 -- We would like to somehow suppress generation of the
1304 -- extra_accessibility assignment generated by the expansion
1305 -- of the above assignment statement. It's not a correctness
1306 -- issue because the following assignment renders it dead,
1307 -- but generating back-to-back assignments to the same
1308 -- target is undesirable. ???
1310 Append_To
(Post_Call
,
1311 Make_Assignment_Statement
(Loc
,
1312 Name
=> New_Occurrence_Of
(
1313 Effective_Extra_Accessibility
(Entity
(Lhs
)), Loc
),
1314 Expression
=> Make_Integer_Literal
(Loc
,
1315 Type_Access_Level
(E_Formal
))));
1318 Append_To
(Post_Call
,
1319 Make_Assignment_Statement
(Loc
,
1321 Expression
=> Expr
));
1325 end Add_Call_By_Copy_Code
;
1327 ----------------------------------
1328 -- Add_Simple_Call_By_Copy_Code --
1329 ----------------------------------
1331 procedure Add_Simple_Call_By_Copy_Code
is
1339 F_Typ
: constant Entity_Id
:= Etype
(Formal
);
1342 if not Is_Legal_Copy
then
1346 -- Use formal type for temp, unless formal type is an unconstrained
1347 -- array, in which case we don't have to worry about bounds checks,
1348 -- and we use the actual type, since that has appropriate bounds.
1350 if Is_Array_Type
(F_Typ
) and then not Is_Constrained
(F_Typ
) then
1351 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1353 Indic
:= New_Occurrence_Of
(Etype
(Formal
), Loc
);
1356 -- Prepare to generate code
1358 Reset_Packed_Prefix
;
1360 Temp
:= Make_Temporary
(Loc
, 'T', Actual
);
1361 Incod
:= Relocate_Node
(Actual
);
1362 Outcod
:= New_Copy_Tree
(Incod
);
1364 -- Generate declaration of temporary variable, initializing it
1365 -- with the input parameter unless we have an OUT formal or
1366 -- this is an initialization call.
1368 -- If the formal is an out parameter with discriminants, the
1369 -- discriminants must be captured even if the rest of the object
1370 -- is in principle uninitialized, because the discriminants may
1371 -- be read by the called subprogram.
1373 if Ekind
(Formal
) = E_Out_Parameter
then
1376 if Has_Discriminants
(Etype
(Formal
)) then
1377 Indic
:= New_Occurrence_Of
(Etype
(Actual
), Loc
);
1380 elsif Inside_Init_Proc
then
1382 -- Could use a comment here to match comment below ???
1384 if Nkind
(Actual
) /= N_Selected_Component
1386 not Has_Discriminant_Dependent_Constraint
1387 (Entity
(Selector_Name
(Actual
)))
1391 -- Otherwise, keep the component in order to generate the proper
1392 -- actual subtype, that depends on enclosing discriminants.
1400 Make_Object_Declaration
(Loc
,
1401 Defining_Identifier
=> Temp
,
1402 Object_Definition
=> Indic
,
1403 Expression
=> Incod
);
1408 -- If the call is to initialize a component of a composite type,
1409 -- and the component does not depend on discriminants, use the
1410 -- actual type of the component. This is required in case the
1411 -- component is constrained, because in general the formal of the
1412 -- initialization procedure will be unconstrained. Note that if
1413 -- the component being initialized is constrained by an enclosing
1414 -- discriminant, the presence of the initialization in the
1415 -- declaration will generate an expression for the actual subtype.
1417 Set_No_Initialization
(Decl
);
1418 Set_Object_Definition
(Decl
,
1419 New_Occurrence_Of
(Etype
(Actual
), Loc
));
1422 Insert_Action
(N
, Decl
);
1424 -- The actual is simply a reference to the temporary
1426 Rewrite
(Actual
, New_Occurrence_Of
(Temp
, Loc
));
1428 -- Generate copy out if OUT or IN OUT parameter
1430 if Ekind
(Formal
) /= E_In_Parameter
then
1432 Rhs
:= New_Occurrence_Of
(Temp
, Loc
);
1434 -- Deal with conversion
1436 if Nkind
(Lhs
) = N_Type_Conversion
then
1437 Lhs
:= Expression
(Lhs
);
1438 Rhs
:= Convert_To
(Etype
(Actual
), Rhs
);
1441 Append_To
(Post_Call
,
1442 Make_Assignment_Statement
(Loc
,
1444 Expression
=> Rhs
));
1445 Set_Assignment_OK
(Name
(Last
(Post_Call
)));
1447 end Add_Simple_Call_By_Copy_Code
;
1449 ---------------------------
1450 -- Check_Fortran_Logical --
1451 ---------------------------
1453 procedure Check_Fortran_Logical
is
1454 Logical
: constant Entity_Id
:= Etype
(Formal
);
1457 -- Note: this is very incomplete, e.g. it does not handle arrays
1458 -- of logical values. This is really not the right approach at all???)
1461 if Convention
(Subp
) = Convention_Fortran
1462 and then Root_Type
(Etype
(Formal
)) = Standard_Boolean
1463 and then Ekind
(Formal
) /= E_In_Parameter
1465 Var
:= Make_Var
(Actual
);
1466 Append_To
(Post_Call
,
1467 Make_Assignment_Statement
(Loc
,
1468 Name
=> New_Occurrence_Of
(Var
, Loc
),
1470 Unchecked_Convert_To
(
1473 Left_Opnd
=> New_Occurrence_Of
(Var
, Loc
),
1475 Unchecked_Convert_To
(
1477 New_Occurrence_Of
(Standard_False
, Loc
))))));
1479 end Check_Fortran_Logical
;
1485 function Is_Legal_Copy
return Boolean is
1487 -- An attempt to copy a value of such a type can only occur if
1488 -- representation clauses give the actual a misaligned address.
1490 if Is_By_Reference_Type
(Etype
(Formal
)) then
1492 -- If the front-end does not perform full type layout, the actual
1493 -- may in fact be properly aligned but there is not enough front-
1494 -- end information to determine this. In that case gigi will emit
1495 -- an error if a copy is not legal, or generate the proper code.
1496 -- For other backends we report the error now.
1498 -- Seems wrong to be issuing an error in the expander, since it
1499 -- will be missed in -gnatc mode ???
1501 if Frontend_Layout_On_Target
then
1503 ("misaligned actual cannot be passed by reference", Actual
);
1508 -- For users of Starlet, we assume that the specification of by-
1509 -- reference mechanism is mandatory. This may lead to unaligned
1510 -- objects but at least for DEC legacy code it is known to work.
1511 -- The warning will alert users of this code that a problem may
1514 elsif Mechanism
(Formal
) = By_Reference
1515 and then Is_Valued_Procedure
(Scope
(Formal
))
1518 ("by_reference actual may be misaligned??", Actual
);
1530 function Make_Var
(Actual
: Node_Id
) return Entity_Id
is
1534 if Is_Entity_Name
(Actual
) then
1535 return Entity
(Actual
);
1538 Var
:= Make_Temporary
(Loc
, 'T', Actual
);
1541 Make_Object_Renaming_Declaration
(Loc
,
1542 Defining_Identifier
=> Var
,
1544 New_Occurrence_Of
(Etype
(Actual
), Loc
),
1545 Name
=> Relocate_Node
(Actual
));
1547 Insert_Action
(N
, N_Node
);
1552 -------------------------
1553 -- Reset_Packed_Prefix --
1554 -------------------------
1556 procedure Reset_Packed_Prefix
is
1557 Pfx
: Node_Id
:= Actual
;
1560 Set_Analyzed
(Pfx
, False);
1562 not Nkind_In
(Pfx
, N_Selected_Component
, N_Indexed_Component
);
1563 Pfx
:= Prefix
(Pfx
);
1565 end Reset_Packed_Prefix
;
1567 -- Start of processing for Expand_Actuals
1570 Post_Call
:= New_List
;
1572 Formal
:= First_Formal
(Subp
);
1573 Actual
:= First_Actual
(N
);
1574 while Present
(Formal
) loop
1575 E_Formal
:= Etype
(Formal
);
1576 E_Actual
:= Etype
(Actual
);
1578 if Is_Scalar_Type
(E_Formal
)
1579 or else Nkind
(Actual
) = N_Slice
1581 Check_Fortran_Logical
;
1585 elsif Ekind
(Formal
) /= E_Out_Parameter
then
1587 -- The unusual case of the current instance of a protected type
1588 -- requires special handling. This can only occur in the context
1589 -- of a call within the body of a protected operation.
1591 if Is_Entity_Name
(Actual
)
1592 and then Ekind
(Entity
(Actual
)) = E_Protected_Type
1593 and then In_Open_Scopes
(Entity
(Actual
))
1595 if Scope
(Subp
) /= Entity
(Actual
) then
1597 ("operation outside protected type may not "
1598 & "call back its protected operations??", Actual
);
1602 Expand_Protected_Object_Reference
(N
, Entity
(Actual
)));
1605 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1606 -- build-in-place function, then a temporary return object needs
1607 -- to be created and access to it must be passed to the function.
1608 -- Currently we limit such functions to those with inherently
1609 -- limited result subtypes, but eventually we plan to expand the
1610 -- functions that are treated as build-in-place to include other
1611 -- composite result types.
1613 if Is_Build_In_Place_Function_Call
(Actual
) then
1614 Make_Build_In_Place_Call_In_Anonymous_Context
(Actual
);
1617 Apply_Constraint_Check
(Actual
, E_Formal
);
1619 -- Out parameter case. No constraint checks on access type
1622 elsif Is_Access_Type
(E_Formal
) then
1627 elsif Has_Discriminants
(Base_Type
(E_Formal
))
1628 or else Has_Non_Null_Base_Init_Proc
(E_Formal
)
1630 Apply_Constraint_Check
(Actual
, E_Formal
);
1635 Apply_Constraint_Check
(Actual
, Base_Type
(E_Formal
));
1638 -- Processing for IN-OUT and OUT parameters
1640 if Ekind
(Formal
) /= E_In_Parameter
then
1642 -- For type conversions of arrays, apply length/range checks
1644 if Is_Array_Type
(E_Formal
)
1645 and then Nkind
(Actual
) = N_Type_Conversion
1647 if Is_Constrained
(E_Formal
) then
1648 Apply_Length_Check
(Expression
(Actual
), E_Formal
);
1650 Apply_Range_Check
(Expression
(Actual
), E_Formal
);
1654 -- If argument is a type conversion for a type that is passed
1655 -- by copy, then we must pass the parameter by copy.
1657 if Nkind
(Actual
) = N_Type_Conversion
1659 (Is_Numeric_Type
(E_Formal
)
1660 or else Is_Access_Type
(E_Formal
)
1661 or else Is_Enumeration_Type
(E_Formal
)
1662 or else Is_Bit_Packed_Array
(Etype
(Formal
))
1663 or else Is_Bit_Packed_Array
(Etype
(Expression
(Actual
)))
1665 -- Also pass by copy if change of representation
1667 or else not Same_Representation
1669 Etype
(Expression
(Actual
))))
1671 Add_Call_By_Copy_Code
;
1673 -- References to components of bit packed arrays are expanded
1674 -- at this point, rather than at the point of analysis of the
1675 -- actuals, to handle the expansion of the assignment to
1676 -- [in] out parameters.
1678 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
1679 Add_Simple_Call_By_Copy_Code
;
1681 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1682 -- because the back-end cannot cope with such objects. In other
1683 -- cases where alignment forces a copy, the back-end generates
1684 -- it properly. It should not be generated unconditionally in the
1685 -- front-end because it does not know precisely the alignment
1686 -- requirements of the target, and makes too conservative an
1687 -- estimate, leading to superfluous copies or spurious errors
1688 -- on by-reference parameters.
1690 elsif Nkind
(Actual
) = N_Selected_Component
1692 Component_May_Be_Bit_Aligned
(Entity
(Selector_Name
(Actual
)))
1693 and then not Represented_As_Scalar
(Etype
(Formal
))
1695 Add_Simple_Call_By_Copy_Code
;
1697 -- References to slices of bit packed arrays are expanded
1699 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
1700 Add_Call_By_Copy_Code
;
1702 -- References to possibly unaligned slices of arrays are expanded
1704 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
1705 Add_Call_By_Copy_Code
;
1707 -- Deal with access types where the actual subtype and the
1708 -- formal subtype are not the same, requiring a check.
1710 -- It is necessary to exclude tagged types because of "downward
1711 -- conversion" errors.
1713 elsif Is_Access_Type
(E_Formal
)
1714 and then not Same_Type
(E_Formal
, E_Actual
)
1715 and then not Is_Tagged_Type
(Designated_Type
(E_Formal
))
1717 Add_Call_By_Copy_Code
;
1719 -- If the actual is not a scalar and is marked for volatile
1720 -- treatment, whereas the formal is not volatile, then pass
1721 -- by copy unless it is a by-reference type.
1723 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
1724 -- because this is the enforcement of a language rule that applies
1725 -- only to "real" volatile variables, not e.g. to the address
1726 -- clause overlay case.
1728 elsif Is_Entity_Name
(Actual
)
1729 and then Is_Volatile
(Entity
(Actual
))
1730 and then not Is_By_Reference_Type
(E_Actual
)
1731 and then not Is_Scalar_Type
(Etype
(Entity
(Actual
)))
1732 and then not Is_Volatile
(E_Formal
)
1734 Add_Call_By_Copy_Code
;
1736 elsif Nkind
(Actual
) = N_Indexed_Component
1737 and then Is_Entity_Name
(Prefix
(Actual
))
1738 and then Has_Volatile_Components
(Entity
(Prefix
(Actual
)))
1740 Add_Call_By_Copy_Code
;
1742 -- Add call-by-copy code for the case of scalar out parameters
1743 -- when it is not known at compile time that the subtype of the
1744 -- formal is a subrange of the subtype of the actual (or vice
1745 -- versa for in out parameters), in order to get range checks
1746 -- on such actuals. (Maybe this case should be handled earlier
1747 -- in the if statement???)
1749 elsif Is_Scalar_Type
(E_Formal
)
1751 (not In_Subrange_Of
(E_Formal
, E_Actual
)
1753 (Ekind
(Formal
) = E_In_Out_Parameter
1754 and then not In_Subrange_Of
(E_Actual
, E_Formal
)))
1756 -- Perhaps the setting back to False should be done within
1757 -- Add_Call_By_Copy_Code, since it could get set on other
1758 -- cases occurring above???
1760 if Do_Range_Check
(Actual
) then
1761 Set_Do_Range_Check
(Actual
, False);
1764 Add_Call_By_Copy_Code
;
1767 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
1768 -- by-reference parameters on exit from the call. If the actual
1769 -- is a derived type and the operation is inherited, the body
1770 -- of the operation will not contain a call to the predicate
1771 -- function, so it must be done explicitly after the call. Ditto
1772 -- if the actual is an entity of a predicated subtype.
1774 -- The rule refers to by-reference types, but a check is needed
1775 -- for by-copy types as well. That check is subsumed by the rule
1776 -- for subtype conversion on assignment, but we can generate the
1777 -- required check now.
1779 -- Note also that Subp may be either a subprogram entity for
1780 -- direct calls, or a type entity for indirect calls, which must
1781 -- be handled separately because the name does not denote an
1782 -- overloadable entity.
1784 By_Ref_Predicate_Check
: declare
1785 Aund
: constant Entity_Id
:= Underlying_Type
(E_Actual
);
1788 function Is_Public_Subp
return Boolean;
1789 -- Check whether the subprogram being called is a visible
1790 -- operation of the type of the actual. Used to determine
1791 -- whether an invariant check must be generated on the
1794 ---------------------
1795 -- Is_Public_Subp --
1796 ---------------------
1798 function Is_Public_Subp
return Boolean is
1799 Pack
: constant Entity_Id
:= Scope
(Subp
);
1800 Subp_Decl
: Node_Id
;
1803 if not Is_Subprogram
(Subp
) then
1806 -- The operation may be inherited, or a primitive of the
1810 Nkind_In
(Parent
(Subp
), N_Private_Extension_Declaration
,
1811 N_Full_Type_Declaration
)
1813 Subp_Decl
:= Parent
(Subp
);
1816 Subp_Decl
:= Unit_Declaration_Node
(Subp
);
1819 return Ekind
(Pack
) = E_Package
1821 List_Containing
(Subp_Decl
) =
1822 Visible_Declarations
1823 (Specification
(Unit_Declaration_Node
(Pack
)));
1826 -- Start of processing for By_Ref_Predicate_Check
1835 if Has_Predicates
(Atyp
)
1836 and then Present
(Predicate_Function
(Atyp
))
1838 -- Skip predicate checks for special cases
1840 and then Predicate_Tests_On_Arguments
(Subp
)
1842 Append_To
(Post_Call
,
1843 Make_Predicate_Check
(Atyp
, Actual
));
1846 -- We generated caller-side invariant checks in two cases:
1848 -- a) when calling an inherited operation, where there is an
1849 -- implicit view conversion of the actual to the parent type.
1851 -- b) When the conversion is explicit
1853 -- We treat these cases separately because the required
1854 -- conversion for a) is added later when expanding the call.
1856 if Has_Invariants
(Etype
(Actual
))
1858 Nkind
(Parent
(Subp
)) = N_Private_Extension_Declaration
1860 if Comes_From_Source
(N
) and then Is_Public_Subp
then
1861 Append_To
(Post_Call
, Make_Invariant_Call
(Actual
));
1864 elsif Nkind
(Actual
) = N_Type_Conversion
1865 and then Has_Invariants
(Etype
(Expression
(Actual
)))
1867 if Comes_From_Source
(N
) and then Is_Public_Subp
then
1868 Append_To
(Post_Call
,
1869 Make_Invariant_Call
(Expression
(Actual
)));
1872 end By_Ref_Predicate_Check
;
1874 -- Processing for IN parameters
1877 -- For IN parameters is in the packed array case, we expand an
1878 -- indexed component (the circuit in Exp_Ch4 deliberately left
1879 -- indexed components appearing as actuals untouched, so that
1880 -- the special processing above for the OUT and IN OUT cases
1881 -- could be performed. We could make the test in Exp_Ch4 more
1882 -- complex and have it detect the parameter mode, but it is
1883 -- easier simply to handle all cases here.)
1885 if Nkind
(Actual
) = N_Indexed_Component
1886 and then Is_Packed
(Etype
(Prefix
(Actual
)))
1888 Reset_Packed_Prefix
;
1889 Expand_Packed_Element_Reference
(Actual
);
1891 -- If we have a reference to a bit packed array, we copy it, since
1892 -- the actual must be byte aligned.
1894 -- Is this really necessary in all cases???
1896 elsif Is_Ref_To_Bit_Packed_Array
(Actual
) then
1897 Add_Simple_Call_By_Copy_Code
;
1899 -- If a non-scalar actual is possibly unaligned, we need a copy
1901 elsif Is_Possibly_Unaligned_Object
(Actual
)
1902 and then not Represented_As_Scalar
(Etype
(Formal
))
1904 Add_Simple_Call_By_Copy_Code
;
1906 -- Similarly, we have to expand slices of packed arrays here
1907 -- because the result must be byte aligned.
1909 elsif Is_Ref_To_Bit_Packed_Slice
(Actual
) then
1910 Add_Call_By_Copy_Code
;
1912 -- Only processing remaining is to pass by copy if this is a
1913 -- reference to a possibly unaligned slice, since the caller
1914 -- expects an appropriately aligned argument.
1916 elsif Is_Possibly_Unaligned_Slice
(Actual
) then
1917 Add_Call_By_Copy_Code
;
1919 -- An unusual case: a current instance of an enclosing task can be
1920 -- an actual, and must be replaced by a reference to self.
1922 elsif Is_Entity_Name
(Actual
)
1923 and then Is_Task_Type
(Entity
(Actual
))
1925 if In_Open_Scopes
(Entity
(Actual
)) then
1927 (Make_Function_Call
(Loc
,
1928 Name
=> New_Occurrence_Of
(RTE
(RE_Self
), Loc
))));
1931 -- A task type cannot otherwise appear as an actual
1934 raise Program_Error
;
1939 Next_Formal
(Formal
);
1940 Next_Actual
(Actual
);
1943 -- Find right place to put post call stuff if it is present
1945 if not Is_Empty_List
(Post_Call
) then
1947 -- Cases where the call is not a member of a statement list
1949 if not Is_List_Member
(N
) then
1951 -- In Ada 2012 the call may be a function call in an expression
1952 -- (since OUT and IN OUT parameters are now allowed for such
1953 -- calls). The write-back of (in)-out parameters is handled
1954 -- by the back-end, but the constraint checks generated when
1955 -- subtypes of formal and actual don't match must be inserted
1956 -- in the form of assignments.
1958 if Ada_Version
>= Ada_2012
1959 and then Nkind
(N
) = N_Function_Call
1961 -- We used to just do handle this by climbing up parents to
1962 -- a non-statement/declaration and then simply making a call
1963 -- to Insert_Actions_After (P, Post_Call), but that doesn't
1964 -- work. If we are in the middle of an expression, e.g. the
1965 -- condition of an IF, this call would insert after the IF
1966 -- statement, which is much too late to be doing the write
1967 -- back. For example:
1969 -- if Clobber (X) then
1970 -- Put_Line (X'Img);
1975 -- Now assume Clobber changes X, if we put the write back
1976 -- after the IF, the Put_Line gets the wrong value and the
1977 -- goto causes the write back to be skipped completely.
1979 -- To deal with this, we replace the call by
1982 -- Tnnn : function-result-type renames function-call;
1983 -- Post_Call actions
1988 -- Note: this won't do in Modify_Tree_For_C mode, but we
1989 -- will deal with that later (it will require creating a
1990 -- declaration for Temp, using Insert_Declaration) ???
1993 Tnnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
1994 FRTyp
: constant Entity_Id
:= Etype
(N
);
1995 Name
: constant Node_Id
:= Relocate_Node
(N
);
1998 Prepend_To
(Post_Call
,
1999 Make_Object_Renaming_Declaration
(Loc
,
2000 Defining_Identifier
=> Tnnn
,
2001 Subtype_Mark
=> New_Occurrence_Of
(FRTyp
, Loc
),
2005 Make_Expression_With_Actions
(Loc
,
2006 Actions
=> Post_Call
,
2007 Expression
=> New_Occurrence_Of
(Tnnn
, Loc
)));
2009 -- We don't want to just blindly call Analyze_And_Resolve
2010 -- because that would cause unwanted recursion on the call.
2011 -- So for a moment set the call as analyzed to prevent that
2012 -- recursion, and get the rest analyzed properly, then reset
2013 -- the analyzed flag, so our caller can continue.
2015 Set_Analyzed
(Name
, True);
2016 Analyze_And_Resolve
(N
, FRTyp
);
2017 Set_Analyzed
(Name
, False);
2019 -- Reset calling argument to point to function call inside
2020 -- the expression with actions so the caller can continue
2021 -- to process the call.
2026 -- If not the special Ada 2012 case of a function call, then
2027 -- we must have the triggering statement of a triggering
2028 -- alternative or an entry call alternative, and we can add
2029 -- the post call stuff to the corresponding statement list.
2037 pragma Assert
(Nkind_In
(P
, N_Triggering_Alternative
,
2038 N_Entry_Call_Alternative
));
2040 if Is_Non_Empty_List
(Statements
(P
)) then
2041 Insert_List_Before_And_Analyze
2042 (First
(Statements
(P
)), Post_Call
);
2044 Set_Statements
(P
, Post_Call
);
2051 -- Otherwise, normal case where N is in a statement sequence,
2052 -- just put the post-call stuff after the call statement.
2055 Insert_Actions_After
(N
, Post_Call
);
2060 -- The call node itself is re-analyzed in Expand_Call
2068 -- This procedure handles expansion of function calls and procedure call
2069 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
2070 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
2072 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
2073 -- Provide values of actuals for all formals in Extra_Formals list
2074 -- Replace "call" to enumeration literal function by literal itself
2075 -- Rewrite call to predefined operator as operator
2076 -- Replace actuals to in-out parameters that are numeric conversions,
2077 -- with explicit assignment to temporaries before and after the call.
2079 -- Note that the list of actuals has been filled with default expressions
2080 -- during semantic analysis of the call. Only the extra actuals required
2081 -- for the 'Constrained attribute and for accessibility checks are added
2084 procedure Expand_Call
(N
: Node_Id
) is
2085 Loc
: constant Source_Ptr
:= Sloc
(N
);
2086 Call_Node
: Node_Id
:= N
;
2087 Extra_Actuals
: List_Id
:= No_List
;
2088 Prev
: Node_Id
:= Empty
;
2090 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
);
2091 -- Adds one entry to the end of the actual parameter list. Used for
2092 -- default parameters and for extra actuals (for Extra_Formals). The
2093 -- argument is an N_Parameter_Association node.
2095 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
);
2096 -- Adds an extra actual to the list of extra actuals. Expr is the
2097 -- expression for the value of the actual, EF is the entity for the
2100 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
;
2101 -- Within an instance, a type derived from an untagged formal derived
2102 -- type inherits from the original parent, not from the actual. The
2103 -- current derivation mechanism has the derived type inherit from the
2104 -- actual, which is only correct outside of the instance. If the
2105 -- subprogram is inherited, we test for this particular case through a
2106 -- convoluted tree traversal before setting the proper subprogram to be
2109 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean;
2110 -- Return true if E comes from an instance that is not yet frozen
2112 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean;
2113 -- Determine if Subp denotes a non-dispatching call to a Deep routine
2115 function New_Value
(From
: Node_Id
) return Node_Id
;
2116 -- From is the original Expression. New_Value is equivalent to a call
2117 -- to Duplicate_Subexpr with an explicit dereference when From is an
2118 -- access parameter.
2120 --------------------------
2121 -- Add_Actual_Parameter --
2122 --------------------------
2124 procedure Add_Actual_Parameter
(Insert_Param
: Node_Id
) is
2125 Actual_Expr
: constant Node_Id
:=
2126 Explicit_Actual_Parameter
(Insert_Param
);
2129 -- Case of insertion is first named actual
2131 if No
(Prev
) or else
2132 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
2134 Set_Next_Named_Actual
2135 (Insert_Param
, First_Named_Actual
(Call_Node
));
2136 Set_First_Named_Actual
(Call_Node
, Actual_Expr
);
2139 if No
(Parameter_Associations
(Call_Node
)) then
2140 Set_Parameter_Associations
(Call_Node
, New_List
);
2143 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2146 Insert_After
(Prev
, Insert_Param
);
2149 -- Case of insertion is not first named actual
2152 Set_Next_Named_Actual
2153 (Insert_Param
, Next_Named_Actual
(Parent
(Prev
)));
2154 Set_Next_Named_Actual
(Parent
(Prev
), Actual_Expr
);
2155 Append
(Insert_Param
, Parameter_Associations
(Call_Node
));
2158 Prev
:= Actual_Expr
;
2159 end Add_Actual_Parameter
;
2161 ----------------------
2162 -- Add_Extra_Actual --
2163 ----------------------
2165 procedure Add_Extra_Actual
(Expr
: Node_Id
; EF
: Entity_Id
) is
2166 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
2169 if Extra_Actuals
= No_List
then
2170 Extra_Actuals
:= New_List
;
2171 Set_Parent
(Extra_Actuals
, Call_Node
);
2174 Append_To
(Extra_Actuals
,
2175 Make_Parameter_Association
(Loc
,
2176 Selector_Name
=> New_Occurrence_Of
(EF
, Loc
),
2177 Explicit_Actual_Parameter
=> Expr
));
2179 Analyze_And_Resolve
(Expr
, Etype
(EF
));
2181 if Nkind
(Call_Node
) = N_Function_Call
then
2182 Set_Is_Accessibility_Actual
(Parent
(Expr
));
2184 end Add_Extra_Actual
;
2186 ---------------------------
2187 -- Inherited_From_Formal --
2188 ---------------------------
2190 function Inherited_From_Formal
(S
: Entity_Id
) return Entity_Id
is
2192 Gen_Par
: Entity_Id
;
2193 Gen_Prim
: Elist_Id
;
2198 -- If the operation is inherited, it is attached to the corresponding
2199 -- type derivation. If the parent in the derivation is a generic
2200 -- actual, it is a subtype of the actual, and we have to recover the
2201 -- original derived type declaration to find the proper parent.
2203 if Nkind
(Parent
(S
)) /= N_Full_Type_Declaration
2204 or else not Is_Derived_Type
(Defining_Identifier
(Parent
(S
)))
2205 or else Nkind
(Type_Definition
(Original_Node
(Parent
(S
)))) /=
2206 N_Derived_Type_Definition
2207 or else not In_Instance
2214 (Type_Definition
(Original_Node
(Parent
(S
))));
2216 if Nkind
(Indic
) = N_Subtype_Indication
then
2217 Par
:= Entity
(Subtype_Mark
(Indic
));
2219 Par
:= Entity
(Indic
);
2223 if not Is_Generic_Actual_Type
(Par
)
2224 or else Is_Tagged_Type
(Par
)
2225 or else Nkind
(Parent
(Par
)) /= N_Subtype_Declaration
2226 or else not In_Open_Scopes
(Scope
(Par
))
2230 Gen_Par
:= Generic_Parent_Type
(Parent
(Par
));
2233 -- If the actual has no generic parent type, the formal is not
2234 -- a formal derived type, so nothing to inherit.
2236 if No
(Gen_Par
) then
2240 -- If the generic parent type is still the generic type, this is a
2241 -- private formal, not a derived formal, and there are no operations
2242 -- inherited from the formal.
2244 if Nkind
(Parent
(Gen_Par
)) = N_Formal_Type_Declaration
then
2248 Gen_Prim
:= Collect_Primitive_Operations
(Gen_Par
);
2250 Elmt
:= First_Elmt
(Gen_Prim
);
2251 while Present
(Elmt
) loop
2252 if Chars
(Node
(Elmt
)) = Chars
(S
) then
2258 F1
:= First_Formal
(S
);
2259 F2
:= First_Formal
(Node
(Elmt
));
2261 and then Present
(F2
)
2263 if Etype
(F1
) = Etype
(F2
)
2264 or else Etype
(F2
) = Gen_Par
2270 exit; -- not the right subprogram
2282 raise Program_Error
;
2283 end Inherited_From_Formal
;
2285 --------------------------
2286 -- In_Unfrozen_Instance --
2287 --------------------------
2289 function In_Unfrozen_Instance
(E
: Entity_Id
) return Boolean is
2294 while Present
(S
) and then S
/= Standard_Standard
loop
2295 if Is_Generic_Instance
(S
)
2296 and then Present
(Freeze_Node
(S
))
2297 and then not Analyzed
(Freeze_Node
(S
))
2306 end In_Unfrozen_Instance
;
2308 -------------------------
2309 -- Is_Direct_Deep_Call --
2310 -------------------------
2312 function Is_Direct_Deep_Call
(Subp
: Entity_Id
) return Boolean is
2314 if Is_TSS
(Subp
, TSS_Deep_Adjust
)
2315 or else Is_TSS
(Subp
, TSS_Deep_Finalize
)
2316 or else Is_TSS
(Subp
, TSS_Deep_Initialize
)
2323 Actual
:= First
(Parameter_Associations
(N
));
2324 Formal
:= First_Formal
(Subp
);
2325 while Present
(Actual
)
2326 and then Present
(Formal
)
2328 if Nkind
(Actual
) = N_Identifier
2329 and then Is_Controlling_Actual
(Actual
)
2330 and then Etype
(Actual
) = Etype
(Formal
)
2336 Next_Formal
(Formal
);
2342 end Is_Direct_Deep_Call
;
2348 function New_Value
(From
: Node_Id
) return Node_Id
is
2349 Res
: constant Node_Id
:= Duplicate_Subexpr
(From
);
2351 if Is_Access_Type
(Etype
(From
)) then
2352 return Make_Explicit_Dereference
(Sloc
(From
), Prefix
=> Res
);
2360 Curr_S
: constant Entity_Id
:= Current_Scope
;
2361 Remote
: constant Boolean := Is_Remote_Call
(Call_Node
);
2364 Orig_Subp
: Entity_Id
:= Empty
;
2365 Param_Count
: Natural := 0;
2366 Parent_Formal
: Entity_Id
;
2367 Parent_Subp
: Entity_Id
;
2371 Prev_Orig
: Node_Id
;
2372 -- Original node for an actual, which may have been rewritten. If the
2373 -- actual is a function call that has been transformed from a selected
2374 -- component, the original node is unanalyzed. Otherwise, it carries
2375 -- semantic information used to generate additional actuals.
2377 CW_Interface_Formals_Present
: Boolean := False;
2379 -- Start of processing for Expand_Call
2382 -- Expand the procedure call if the first actual has a dimension and if
2383 -- the procedure is Put (Ada 2012).
2385 if Ada_Version
>= Ada_2012
2386 and then Nkind
(Call_Node
) = N_Procedure_Call_Statement
2387 and then Present
(Parameter_Associations
(Call_Node
))
2389 Expand_Put_Call_With_Symbol
(Call_Node
);
2392 -- Ignore if previous error
2394 if Nkind
(Call_Node
) in N_Has_Etype
2395 and then Etype
(Call_Node
) = Any_Type
2400 -- Call using access to subprogram with explicit dereference
2402 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
2403 Subp
:= Etype
(Name
(Call_Node
));
2404 Parent_Subp
:= Empty
;
2406 -- Case of call to simple entry, where the Name is a selected component
2407 -- whose prefix is the task, and whose selector name is the entry name
2409 elsif Nkind
(Name
(Call_Node
)) = N_Selected_Component
then
2410 Subp
:= Entity
(Selector_Name
(Name
(Call_Node
)));
2411 Parent_Subp
:= Empty
;
2413 -- Case of call to member of entry family, where Name is an indexed
2414 -- component, with the prefix being a selected component giving the
2415 -- task and entry family name, and the index being the entry index.
2417 elsif Nkind
(Name
(Call_Node
)) = N_Indexed_Component
then
2418 Subp
:= Entity
(Selector_Name
(Prefix
(Name
(Call_Node
))));
2419 Parent_Subp
:= Empty
;
2424 Subp
:= Entity
(Name
(Call_Node
));
2425 Parent_Subp
:= Alias
(Subp
);
2427 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2428 -- if we can tell that the first parameter cannot possibly be null.
2429 -- This improves efficiency by avoiding a run-time test.
2431 -- We do not do this if Raise_Exception_Always does not exist, which
2432 -- can happen in configurable run time profiles which provide only a
2435 if Is_RTE
(Subp
, RE_Raise_Exception
)
2436 and then RTE_Available
(RE_Raise_Exception_Always
)
2439 FA
: constant Node_Id
:=
2440 Original_Node
(First_Actual
(Call_Node
));
2443 -- The case we catch is where the first argument is obtained
2444 -- using the Identity attribute (which must always be
2447 if Nkind
(FA
) = N_Attribute_Reference
2448 and then Attribute_Name
(FA
) = Name_Identity
2450 Subp
:= RTE
(RE_Raise_Exception_Always
);
2451 Set_Name
(Call_Node
, New_Occurrence_Of
(Subp
, Loc
));
2456 if Ekind
(Subp
) = E_Entry
then
2457 Parent_Subp
:= Empty
;
2461 -- Detect the following code in System.Finalization_Masters only on
2462 -- .NET/JVM targets:
2464 -- procedure Finalize (Master : in out Finalization_Master) is
2468 -- Finalize (Curr_Ptr.all);
2470 -- Since .NET/JVM compilers lack address arithmetic and Deep_Finalize
2471 -- cannot be named in library or user code, the compiler has to deal
2472 -- with this by transforming the call to Finalize into Deep_Finalize.
2474 if VM_Target
/= No_VM
2475 and then Chars
(Subp
) = Name_Finalize
2476 and then Ekind
(Curr_S
) = E_Block
2477 and then Ekind
(Scope
(Curr_S
)) = E_Procedure
2478 and then Chars
(Scope
(Curr_S
)) = Name_Finalize
2479 and then Etype
(First_Formal
(Scope
(Curr_S
))) =
2480 RTE
(RE_Finalization_Master
)
2483 Deep_Fin
: constant Entity_Id
:=
2484 Find_Prim_Op
(RTE
(RE_Root_Controlled
),
2487 -- Since Root_Controlled is a tagged type, the compiler should
2488 -- always generate Deep_Finalize for it.
2490 pragma Assert
(Present
(Deep_Fin
));
2493 -- Deep_Finalize (Curr_Ptr.all);
2496 Make_Procedure_Call_Statement
(Loc
,
2498 New_Occurrence_Of
(Deep_Fin
, Loc
),
2499 Parameter_Associations
=>
2500 New_Copy_List_Tree
(Parameter_Associations
(N
))));
2507 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2508 -- alternative in an asynchronous select or as an entry call in
2509 -- a conditional or timed select. Check whether the procedure call
2510 -- is a renaming of an entry and rewrite it as an entry call.
2512 if Ada_Version
>= Ada_2005
2513 and then Nkind
(Call_Node
) = N_Procedure_Call_Statement
2515 ((Nkind
(Parent
(Call_Node
)) = N_Triggering_Alternative
2516 and then Triggering_Statement
(Parent
(Call_Node
)) = Call_Node
)
2518 (Nkind
(Parent
(Call_Node
)) = N_Entry_Call_Alternative
2519 and then Entry_Call_Statement
(Parent
(Call_Node
)) = Call_Node
))
2523 Ren_Root
: Entity_Id
:= Subp
;
2526 -- This may be a chain of renamings, find the root
2528 if Present
(Alias
(Ren_Root
)) then
2529 Ren_Root
:= Alias
(Ren_Root
);
2532 if Present
(Original_Node
(Parent
(Parent
(Ren_Root
)))) then
2533 Ren_Decl
:= Original_Node
(Parent
(Parent
(Ren_Root
)));
2535 if Nkind
(Ren_Decl
) = N_Subprogram_Renaming_Declaration
then
2537 Make_Entry_Call_Statement
(Loc
,
2539 New_Copy_Tree
(Name
(Ren_Decl
)),
2540 Parameter_Associations
=>
2542 (Parameter_Associations
(Call_Node
))));
2550 -- First step, compute extra actuals, corresponding to any Extra_Formals
2551 -- present. Note that we do not access Extra_Formals directly, instead
2552 -- we simply note the presence of the extra formals as we process the
2553 -- regular formals collecting corresponding actuals in Extra_Actuals.
2555 -- We also generate any required range checks for actuals for in formals
2556 -- as we go through the loop, since this is a convenient place to do it.
2557 -- (Though it seems that this would be better done in Expand_Actuals???)
2559 -- Special case: Thunks must not compute the extra actuals; they must
2560 -- just propagate to the target primitive their extra actuals.
2562 if Is_Thunk
(Current_Scope
)
2563 and then Thunk_Entity
(Current_Scope
) = Subp
2564 and then Present
(Extra_Formals
(Subp
))
2566 pragma Assert
(Present
(Extra_Formals
(Current_Scope
)));
2569 Target_Formal
: Entity_Id
;
2570 Thunk_Formal
: Entity_Id
;
2573 Target_Formal
:= Extra_Formals
(Subp
);
2574 Thunk_Formal
:= Extra_Formals
(Current_Scope
);
2575 while Present
(Target_Formal
) loop
2577 (New_Occurrence_Of
(Thunk_Formal
, Loc
), Thunk_Formal
);
2579 Target_Formal
:= Extra_Formal
(Target_Formal
);
2580 Thunk_Formal
:= Extra_Formal
(Thunk_Formal
);
2583 while Is_Non_Empty_List
(Extra_Actuals
) loop
2584 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
2587 Expand_Actuals
(Call_Node
, Subp
);
2592 Formal
:= First_Formal
(Subp
);
2593 Actual
:= First_Actual
(Call_Node
);
2595 while Present
(Formal
) loop
2597 -- Generate range check if required
2599 if Do_Range_Check
(Actual
)
2600 and then Ekind
(Formal
) = E_In_Parameter
2602 Generate_Range_Check
2603 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
2606 -- Prepare to examine current entry
2609 Prev_Orig
:= Original_Node
(Prev
);
2611 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2612 -- to expand it in a further round.
2614 CW_Interface_Formals_Present
:=
2615 CW_Interface_Formals_Present
2617 (Ekind
(Etype
(Formal
)) = E_Class_Wide_Type
2618 and then Is_Interface
(Etype
(Etype
(Formal
))))
2620 (Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
2621 and then Is_Interface
(Directly_Designated_Type
2622 (Etype
(Etype
(Formal
)))));
2624 -- Create possible extra actual for constrained case. Usually, the
2625 -- extra actual is of the form actual'constrained, but since this
2626 -- attribute is only available for unconstrained records, TRUE is
2627 -- expanded if the type of the formal happens to be constrained (for
2628 -- instance when this procedure is inherited from an unconstrained
2629 -- record to a constrained one) or if the actual has no discriminant
2630 -- (its type is constrained). An exception to this is the case of a
2631 -- private type without discriminants. In this case we pass FALSE
2632 -- because the object has underlying discriminants with defaults.
2634 if Present
(Extra_Constrained
(Formal
)) then
2635 if Ekind
(Etype
(Prev
)) in Private_Kind
2636 and then not Has_Discriminants
(Base_Type
(Etype
(Prev
)))
2639 (New_Occurrence_Of
(Standard_False
, Loc
),
2640 Extra_Constrained
(Formal
));
2642 elsif Is_Constrained
(Etype
(Formal
))
2643 or else not Has_Discriminants
(Etype
(Prev
))
2646 (New_Occurrence_Of
(Standard_True
, Loc
),
2647 Extra_Constrained
(Formal
));
2649 -- Do not produce extra actuals for Unchecked_Union parameters.
2650 -- Jump directly to the end of the loop.
2652 elsif Is_Unchecked_Union
(Base_Type
(Etype
(Actual
))) then
2653 goto Skip_Extra_Actual_Generation
;
2656 -- If the actual is a type conversion, then the constrained
2657 -- test applies to the actual, not the target type.
2663 -- Test for unchecked conversions as well, which can occur
2664 -- as out parameter actuals on calls to stream procedures.
2667 while Nkind_In
(Act_Prev
, N_Type_Conversion
,
2668 N_Unchecked_Type_Conversion
)
2670 Act_Prev
:= Expression
(Act_Prev
);
2673 -- If the expression is a conversion of a dereference, this
2674 -- is internally generated code that manipulates addresses,
2675 -- e.g. when building interface tables. No check should
2676 -- occur in this case, and the discriminated object is not
2679 if not Comes_From_Source
(Actual
)
2680 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
2681 and then Nkind
(Act_Prev
) = N_Explicit_Dereference
2684 (New_Occurrence_Of
(Standard_False
, Loc
),
2685 Extra_Constrained
(Formal
));
2689 (Make_Attribute_Reference
(Sloc
(Prev
),
2691 Duplicate_Subexpr_No_Checks
2692 (Act_Prev
, Name_Req
=> True),
2693 Attribute_Name
=> Name_Constrained
),
2694 Extra_Constrained
(Formal
));
2700 -- Create possible extra actual for accessibility level
2702 if Present
(Extra_Accessibility
(Formal
)) then
2704 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2705 -- attribute, then the original actual may be an aliased object
2706 -- occurring as the prefix in a call using "Object.Operation"
2707 -- notation. In that case we must pass the level of the object,
2708 -- so Prev_Orig is reset to Prev and the attribute will be
2709 -- processed by the code for Access attributes further below.
2711 if Prev_Orig
/= Prev
2712 and then Nkind
(Prev
) = N_Attribute_Reference
2714 Get_Attribute_Id
(Attribute_Name
(Prev
)) = Attribute_Access
2715 and then Is_Aliased_View
(Prev_Orig
)
2720 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
2721 -- accessibility levels.
2723 if Is_Thunk
(Current_Scope
) then
2725 Parm_Ent
: Entity_Id
;
2728 if Is_Controlling_Actual
(Actual
) then
2730 -- Find the corresponding actual of the thunk
2732 Parm_Ent
:= First_Entity
(Current_Scope
);
2733 for J
in 2 .. Param_Count
loop
2734 Next_Entity
(Parm_Ent
);
2737 -- Handle unchecked conversion of access types generated
2738 -- in thunks (cf. Expand_Interface_Thunk).
2740 elsif Is_Access_Type
(Etype
(Actual
))
2741 and then Nkind
(Actual
) = N_Unchecked_Type_Conversion
2743 Parm_Ent
:= Entity
(Expression
(Actual
));
2745 else pragma Assert
(Is_Entity_Name
(Actual
));
2746 Parm_Ent
:= Entity
(Actual
);
2750 (New_Occurrence_Of
(Extra_Accessibility
(Parm_Ent
), Loc
),
2751 Extra_Accessibility
(Formal
));
2754 elsif Is_Entity_Name
(Prev_Orig
) then
2756 -- When passing an access parameter, or a renaming of an access
2757 -- parameter, as the actual to another access parameter we need
2758 -- to pass along the actual's own access level parameter. This
2759 -- is done if we are within the scope of the formal access
2760 -- parameter (if this is an inlined body the extra formal is
2763 if (Is_Formal
(Entity
(Prev_Orig
))
2765 (Present
(Renamed_Object
(Entity
(Prev_Orig
)))
2767 Is_Entity_Name
(Renamed_Object
(Entity
(Prev_Orig
)))
2770 (Entity
(Renamed_Object
(Entity
(Prev_Orig
))))))
2771 and then Ekind
(Etype
(Prev_Orig
)) = E_Anonymous_Access_Type
2772 and then In_Open_Scopes
(Scope
(Entity
(Prev_Orig
)))
2775 Parm_Ent
: constant Entity_Id
:= Param_Entity
(Prev_Orig
);
2778 pragma Assert
(Present
(Parm_Ent
));
2780 if Present
(Extra_Accessibility
(Parm_Ent
)) then
2783 (Extra_Accessibility
(Parm_Ent
), Loc
),
2784 Extra_Accessibility
(Formal
));
2786 -- If the actual access parameter does not have an
2787 -- associated extra formal providing its scope level,
2788 -- then treat the actual as having library-level
2793 (Make_Integer_Literal
(Loc
,
2794 Intval
=> Scope_Depth
(Standard_Standard
)),
2795 Extra_Accessibility
(Formal
));
2799 -- The actual is a normal access value, so just pass the level
2800 -- of the actual's access type.
2804 (Dynamic_Accessibility_Level
(Prev_Orig
),
2805 Extra_Accessibility
(Formal
));
2808 -- If the actual is an access discriminant, then pass the level
2809 -- of the enclosing object (RM05-3.10.2(12.4/2)).
2811 elsif Nkind
(Prev_Orig
) = N_Selected_Component
2812 and then Ekind
(Entity
(Selector_Name
(Prev_Orig
))) =
2814 and then Ekind
(Etype
(Entity
(Selector_Name
(Prev_Orig
)))) =
2815 E_Anonymous_Access_Type
2818 (Make_Integer_Literal
(Loc
,
2819 Intval
=> Object_Access_Level
(Prefix
(Prev_Orig
))),
2820 Extra_Accessibility
(Formal
));
2825 case Nkind
(Prev_Orig
) is
2827 when N_Attribute_Reference
=>
2828 case Get_Attribute_Id
(Attribute_Name
(Prev_Orig
)) is
2830 -- For X'Access, pass on the level of the prefix X
2832 when Attribute_Access
=>
2834 -- If this is an Access attribute applied to the
2835 -- the current instance object passed to a type
2836 -- initialization procedure, then use the level
2837 -- of the type itself. This is not really correct,
2838 -- as there should be an extra level parameter
2839 -- passed in with _init formals (only in the case
2840 -- where the type is immutably limited), but we
2841 -- don't have an easy way currently to create such
2842 -- an extra formal (init procs aren't ever frozen).
2843 -- For now we just use the level of the type,
2844 -- which may be too shallow, but that works better
2845 -- than passing Object_Access_Level of the type,
2846 -- which can be one level too deep in some cases.
2849 if Is_Entity_Name
(Prefix
(Prev_Orig
))
2850 and then Is_Type
(Entity
(Prefix
(Prev_Orig
)))
2853 (Make_Integer_Literal
(Loc
,
2856 (Entity
(Prefix
(Prev_Orig
)))),
2857 Extra_Accessibility
(Formal
));
2861 (Make_Integer_Literal
(Loc
,
2864 (Prefix
(Prev_Orig
))),
2865 Extra_Accessibility
(Formal
));
2868 -- Treat the unchecked attributes as library-level
2870 when Attribute_Unchecked_Access |
2871 Attribute_Unrestricted_Access
=>
2873 (Make_Integer_Literal
(Loc
,
2874 Intval
=> Scope_Depth
(Standard_Standard
)),
2875 Extra_Accessibility
(Formal
));
2877 -- No other cases of attributes returning access
2878 -- values that can be passed to access parameters.
2881 raise Program_Error
;
2885 -- For allocators we pass the level of the execution of the
2886 -- called subprogram, which is one greater than the current
2891 (Make_Integer_Literal
(Loc
,
2892 Intval
=> Scope_Depth
(Current_Scope
) + 1),
2893 Extra_Accessibility
(Formal
));
2895 -- For most other cases we simply pass the level of the
2896 -- actual's access type. The type is retrieved from
2897 -- Prev rather than Prev_Orig, because in some cases
2898 -- Prev_Orig denotes an original expression that has
2899 -- not been analyzed.
2903 (Dynamic_Accessibility_Level
(Prev
),
2904 Extra_Accessibility
(Formal
));
2909 -- Perform the check of 4.6(49) that prevents a null value from being
2910 -- passed as an actual to an access parameter. Note that the check
2911 -- is elided in the common cases of passing an access attribute or
2912 -- access parameter as an actual. Also, we currently don't enforce
2913 -- this check for expander-generated actuals and when -gnatdj is set.
2915 if Ada_Version
>= Ada_2005
then
2917 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
2918 -- the intent of 6.4.1(13) is that null-exclusion checks should
2919 -- not be done for 'out' parameters, even though it refers only
2920 -- to constraint checks, and a null_exclusion is not a constraint.
2921 -- Note that AI05-0196-1 corrects this mistake in the RM.
2923 if Is_Access_Type
(Etype
(Formal
))
2924 and then Can_Never_Be_Null
(Etype
(Formal
))
2925 and then Ekind
(Formal
) /= E_Out_Parameter
2926 and then Nkind
(Prev
) /= N_Raise_Constraint_Error
2927 and then (Known_Null
(Prev
)
2928 or else not Can_Never_Be_Null
(Etype
(Prev
)))
2930 Install_Null_Excluding_Check
(Prev
);
2933 -- Ada_Version < Ada_2005
2936 if Ekind
(Etype
(Formal
)) /= E_Anonymous_Access_Type
2937 or else Access_Checks_Suppressed
(Subp
)
2941 elsif Debug_Flag_J
then
2944 elsif not Comes_From_Source
(Prev
) then
2947 elsif Is_Entity_Name
(Prev
)
2948 and then Ekind
(Etype
(Prev
)) = E_Anonymous_Access_Type
2952 elsif Nkind_In
(Prev
, N_Allocator
, N_Attribute_Reference
) then
2955 -- Suppress null checks when passing to access parameters of Java
2956 -- and CIL subprograms. (Should this be done for other foreign
2957 -- conventions as well ???)
2959 elsif Convention
(Subp
) = Convention_Java
2960 or else Convention
(Subp
) = Convention_CIL
2965 Install_Null_Excluding_Check
(Prev
);
2969 -- Perform appropriate validity checks on parameters that
2972 if Validity_Checks_On
then
2973 if (Ekind
(Formal
) = E_In_Parameter
2974 and then Validity_Check_In_Params
)
2976 (Ekind
(Formal
) = E_In_Out_Parameter
2977 and then Validity_Check_In_Out_Params
)
2979 -- If the actual is an indexed component of a packed type (or
2980 -- is an indexed or selected component whose prefix recursively
2981 -- meets this condition), it has not been expanded yet. It will
2982 -- be copied in the validity code that follows, and has to be
2983 -- expanded appropriately, so reanalyze it.
2985 -- What we do is just to unset analyzed bits on prefixes till
2986 -- we reach something that does not have a prefix.
2993 while Nkind_In
(Nod
, N_Indexed_Component
,
2994 N_Selected_Component
)
2996 Set_Analyzed
(Nod
, False);
2997 Nod
:= Prefix
(Nod
);
3001 Ensure_Valid
(Actual
);
3005 -- For IN OUT and OUT parameters, ensure that subscripts are valid
3006 -- since this is a left side reference. We only do this for calls
3007 -- from the source program since we assume that compiler generated
3008 -- calls explicitly generate any required checks. We also need it
3009 -- only if we are doing standard validity checks, since clearly it is
3010 -- not needed if validity checks are off, and in subscript validity
3011 -- checking mode, all indexed components are checked with a call
3012 -- directly from Expand_N_Indexed_Component.
3014 if Comes_From_Source
(Call_Node
)
3015 and then Ekind
(Formal
) /= E_In_Parameter
3016 and then Validity_Checks_On
3017 and then Validity_Check_Default
3018 and then not Validity_Check_Subscripts
3020 Check_Valid_Lvalue_Subscripts
(Actual
);
3023 -- Mark any scalar OUT parameter that is a simple variable as no
3024 -- longer known to be valid (unless the type is always valid). This
3025 -- reflects the fact that if an OUT parameter is never set in a
3026 -- procedure, then it can become invalid on the procedure return.
3028 if Ekind
(Formal
) = E_Out_Parameter
3029 and then Is_Entity_Name
(Actual
)
3030 and then Ekind
(Entity
(Actual
)) = E_Variable
3031 and then not Is_Known_Valid
(Etype
(Actual
))
3033 Set_Is_Known_Valid
(Entity
(Actual
), False);
3036 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3037 -- clear current values, since they can be clobbered. We are probably
3038 -- doing this in more places than we need to, but better safe than
3039 -- sorry when it comes to retaining bad current values.
3041 if Ekind
(Formal
) /= E_In_Parameter
3042 and then Is_Entity_Name
(Actual
)
3043 and then Present
(Entity
(Actual
))
3046 Ent
: constant Entity_Id
:= Entity
(Actual
);
3050 -- For an OUT or IN OUT parameter that is an assignable entity,
3051 -- we do not want to clobber the Last_Assignment field, since
3052 -- if it is set, it was precisely because it is indeed an OUT
3053 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
3054 -- since the subprogram could have returned in invalid value.
3056 if Ekind_In
(Formal
, E_Out_Parameter
, E_In_Out_Parameter
)
3057 and then Is_Assignable
(Ent
)
3059 Sav
:= Last_Assignment
(Ent
);
3060 Kill_Current_Values
(Ent
);
3061 Set_Last_Assignment
(Ent
, Sav
);
3062 Set_Is_Known_Valid
(Ent
, False);
3064 -- For all other cases, just kill the current values
3067 Kill_Current_Values
(Ent
);
3072 -- If the formal is class wide and the actual is an aggregate, force
3073 -- evaluation so that the back end who does not know about class-wide
3074 -- type, does not generate a temporary of the wrong size.
3076 if not Is_Class_Wide_Type
(Etype
(Formal
)) then
3079 elsif Nkind
(Actual
) = N_Aggregate
3080 or else (Nkind
(Actual
) = N_Qualified_Expression
3081 and then Nkind
(Expression
(Actual
)) = N_Aggregate
)
3083 Force_Evaluation
(Actual
);
3086 -- In a remote call, if the formal is of a class-wide type, check
3087 -- that the actual meets the requirements described in E.4(18).
3089 if Remote
and then Is_Class_Wide_Type
(Etype
(Formal
)) then
3090 Insert_Action
(Actual
,
3091 Make_Transportable_Check
(Loc
,
3092 Duplicate_Subexpr_Move_Checks
(Actual
)));
3095 -- This label is required when skipping extra actual generation for
3096 -- Unchecked_Union parameters.
3098 <<Skip_Extra_Actual_Generation
>>
3100 Param_Count
:= Param_Count
+ 1;
3101 Next_Actual
(Actual
);
3102 Next_Formal
(Formal
);
3105 -- If we are calling an Ada 2012 function which needs to have the
3106 -- "accessibility level determined by the point of call" (AI05-0234)
3107 -- passed in to it, then pass it in.
3109 if Ekind_In
(Subp
, E_Function
, E_Operator
, E_Subprogram_Type
)
3111 Present
(Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)))
3114 Ancestor
: Node_Id
:= Parent
(Call_Node
);
3115 Level
: Node_Id
:= Empty
;
3116 Defer
: Boolean := False;
3119 -- Unimplemented: if Subp returns an anonymous access type, then
3121 -- a) if the call is the operand of an explict conversion, then
3122 -- the target type of the conversion (a named access type)
3123 -- determines the accessibility level pass in;
3125 -- b) if the call defines an access discriminant of an object
3126 -- (e.g., the discriminant of an object being created by an
3127 -- allocator, or the discriminant of a function result),
3128 -- then the accessibility level to pass in is that of the
3129 -- discriminated object being initialized).
3133 while Nkind
(Ancestor
) = N_Qualified_Expression
3135 Ancestor
:= Parent
(Ancestor
);
3138 case Nkind
(Ancestor
) is
3141 -- At this point, we'd like to assign
3143 -- Level := Dynamic_Accessibility_Level (Ancestor);
3145 -- but Etype of Ancestor may not have been set yet,
3146 -- so that doesn't work.
3148 -- Handle this later in Expand_Allocator_Expression.
3152 when N_Object_Declaration | N_Object_Renaming_Declaration
=>
3154 Def_Id
: constant Entity_Id
:=
3155 Defining_Identifier
(Ancestor
);
3158 if Is_Return_Object
(Def_Id
) then
3159 if Present
(Extra_Accessibility_Of_Result
3160 (Return_Applies_To
(Scope
(Def_Id
))))
3162 -- Pass along value that was passed in if the
3163 -- routine we are returning from also has an
3164 -- Accessibility_Of_Result formal.
3168 (Extra_Accessibility_Of_Result
3169 (Return_Applies_To
(Scope
(Def_Id
))), Loc
);
3173 Make_Integer_Literal
(Loc
,
3174 Intval
=> Object_Access_Level
(Def_Id
));
3178 when N_Simple_Return_Statement
=>
3179 if Present
(Extra_Accessibility_Of_Result
3181 (Return_Statement_Entity
(Ancestor
))))
3183 -- Pass along value that was passed in if the returned
3184 -- routine also has an Accessibility_Of_Result formal.
3188 (Extra_Accessibility_Of_Result
3190 (Return_Statement_Entity
(Ancestor
))), Loc
);
3198 if not Present
(Level
) then
3200 -- The "innermost master that evaluates the function call".
3202 -- ??? - Should we use Integer'Last here instead in order
3203 -- to deal with (some of) the problems associated with
3204 -- calls to subps whose enclosing scope is unknown (e.g.,
3205 -- Anon_Access_To_Subp_Param.all)?
3207 Level
:= Make_Integer_Literal
(Loc
,
3208 Scope_Depth
(Current_Scope
) + 1);
3213 Extra_Accessibility_Of_Result
(Ultimate_Alias
(Subp
)));
3218 -- If we are expanding the RHS of an assignment we need to check if tag
3219 -- propagation is needed. You might expect this processing to be in
3220 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3221 -- assignment might be transformed to a declaration for an unconstrained
3222 -- value if the expression is classwide.
3224 if Nkind
(Call_Node
) = N_Function_Call
3225 and then Is_Tag_Indeterminate
(Call_Node
)
3226 and then Is_Entity_Name
(Name
(Call_Node
))
3229 Ass
: Node_Id
:= Empty
;
3232 if Nkind
(Parent
(Call_Node
)) = N_Assignment_Statement
then
3233 Ass
:= Parent
(Call_Node
);
3235 elsif Nkind
(Parent
(Call_Node
)) = N_Qualified_Expression
3236 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3237 N_Assignment_Statement
3239 Ass
:= Parent
(Parent
(Call_Node
));
3241 elsif Nkind
(Parent
(Call_Node
)) = N_Explicit_Dereference
3242 and then Nkind
(Parent
(Parent
(Call_Node
))) =
3243 N_Assignment_Statement
3245 Ass
:= Parent
(Parent
(Call_Node
));
3249 and then Is_Class_Wide_Type
(Etype
(Name
(Ass
)))
3251 if Is_Access_Type
(Etype
(Call_Node
)) then
3252 if Designated_Type
(Etype
(Call_Node
)) /=
3253 Root_Type
(Etype
(Name
(Ass
)))
3256 ("tag-indeterminate expression "
3257 & " must have designated type& (RM 5.2 (6))",
3258 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3260 Propagate_Tag
(Name
(Ass
), Call_Node
);
3263 elsif Etype
(Call_Node
) /= Root_Type
(Etype
(Name
(Ass
))) then
3265 ("tag-indeterminate expression must have type&"
3267 Call_Node
, Root_Type
(Etype
(Name
(Ass
))));
3270 Propagate_Tag
(Name
(Ass
), Call_Node
);
3273 -- The call will be rewritten as a dispatching call, and
3274 -- expanded as such.
3281 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3282 -- it to point to the correct secondary virtual table
3284 if Nkind
(Call_Node
) in N_Subprogram_Call
3285 and then CW_Interface_Formals_Present
3287 Expand_Interface_Actuals
(Call_Node
);
3290 -- Deals with Dispatch_Call if we still have a call, before expanding
3291 -- extra actuals since this will be done on the re-analysis of the
3292 -- dispatching call. Note that we do not try to shorten the actual list
3293 -- for a dispatching call, it would not make sense to do so. Expansion
3294 -- of dispatching calls is suppressed when VM_Target, because the VM
3295 -- back-ends directly handle the generation of dispatching calls and
3296 -- would have to undo any expansion to an indirect call.
3298 if Nkind
(Call_Node
) in N_Subprogram_Call
3299 and then Present
(Controlling_Argument
(Call_Node
))
3302 Call_Typ
: constant Entity_Id
:= Etype
(Call_Node
);
3303 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Subp
);
3304 Eq_Prim_Op
: Entity_Id
:= Empty
;
3307 Prev_Call
: Node_Id
;
3310 if not Is_Limited_Type
(Typ
) then
3311 Eq_Prim_Op
:= Find_Prim_Op
(Typ
, Name_Op_Eq
);
3314 if Tagged_Type_Expansion
then
3315 Expand_Dispatching_Call
(Call_Node
);
3317 -- The following return is worrisome. Is it really OK to skip
3318 -- all remaining processing in this procedure ???
3325 Apply_Tag_Checks
(Call_Node
);
3327 -- If this is a dispatching "=", we must first compare the
3328 -- tags so we generate: x.tag = y.tag and then x = y
3330 if Subp
= Eq_Prim_Op
then
3332 -- Mark the node as analyzed to avoid reanalizing this
3333 -- dispatching call (which would cause a never-ending loop)
3335 Prev_Call
:= Relocate_Node
(Call_Node
);
3336 Set_Analyzed
(Prev_Call
);
3338 Param
:= First_Actual
(Call_Node
);
3344 Make_Selected_Component
(Loc
,
3345 Prefix
=> New_Value
(Param
),
3348 (First_Tag_Component
(Typ
), Loc
)),
3351 Make_Selected_Component
(Loc
,
3353 Unchecked_Convert_To
(Typ
,
3354 New_Value
(Next_Actual
(Param
))),
3357 (First_Tag_Component
(Typ
), Loc
))),
3358 Right_Opnd
=> Prev_Call
);
3360 Rewrite
(Call_Node
, New_Call
);
3363 (Call_Node
, Call_Typ
, Suppress
=> All_Checks
);
3366 -- Expansion of a dispatching call results in an indirect call,
3367 -- which in turn causes current values to be killed (see
3368 -- Resolve_Call), so on VM targets we do the call here to
3369 -- ensure consistent warnings between VM and non-VM targets.
3371 Kill_Current_Values
;
3374 -- If this is a dispatching "=" then we must update the reference
3375 -- to the call node because we generated:
3376 -- x.tag = y.tag and then x = y
3378 if Subp
= Eq_Prim_Op
then
3379 Call_Node
:= Right_Opnd
(Call_Node
);
3384 -- Similarly, expand calls to RCI subprograms on which pragma
3385 -- All_Calls_Remote applies. The rewriting will be reanalyzed
3386 -- later. Do this only when the call comes from source since we
3387 -- do not want such a rewriting to occur in expanded code.
3389 if Is_All_Remote_Call
(Call_Node
) then
3390 Expand_All_Calls_Remote_Subprogram_Call
(Call_Node
);
3392 -- Similarly, do not add extra actuals for an entry call whose entity
3393 -- is a protected procedure, or for an internal protected subprogram
3394 -- call, because it will be rewritten as a protected subprogram call
3395 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3397 elsif Is_Protected_Type
(Scope
(Subp
))
3398 and then (Ekind
(Subp
) = E_Procedure
3399 or else Ekind
(Subp
) = E_Function
)
3403 -- During that loop we gathered the extra actuals (the ones that
3404 -- correspond to Extra_Formals), so now they can be appended.
3407 while Is_Non_Empty_List
(Extra_Actuals
) loop
3408 Add_Actual_Parameter
(Remove_Head
(Extra_Actuals
));
3412 -- At this point we have all the actuals, so this is the point at which
3413 -- the various expansion activities for actuals is carried out.
3415 Expand_Actuals
(Call_Node
, Subp
);
3417 -- Verify that the actuals do not share storage. This check must be done
3418 -- on the caller side rather that inside the subprogram to avoid issues
3419 -- of parameter passing.
3421 if Check_Aliasing_Of_Parameters
then
3422 Apply_Parameter_Aliasing_Checks
(Call_Node
, Subp
);
3425 -- If the subprogram is a renaming, or if it is inherited, replace it in
3426 -- the call with the name of the actual subprogram being called. If this
3427 -- is a dispatching call, the run-time decides what to call. The Alias
3428 -- attribute does not apply to entries.
3430 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
3431 and then No
(Controlling_Argument
(Call_Node
))
3432 and then Present
(Parent_Subp
)
3433 and then not Is_Direct_Deep_Call
(Subp
)
3435 if Present
(Inherited_From_Formal
(Subp
)) then
3436 Parent_Subp
:= Inherited_From_Formal
(Subp
);
3438 Parent_Subp
:= Ultimate_Alias
(Parent_Subp
);
3441 -- The below setting of Entity is suspect, see F109-018 discussion???
3443 Set_Entity
(Name
(Call_Node
), Parent_Subp
);
3445 if Is_Abstract_Subprogram
(Parent_Subp
)
3446 and then not In_Instance
3449 ("cannot call abstract subprogram &!",
3450 Name
(Call_Node
), Parent_Subp
);
3453 -- Inspect all formals of derived subprogram Subp. Compare parameter
3454 -- types with the parent subprogram and check whether an actual may
3455 -- need a type conversion to the corresponding formal of the parent
3458 -- Not clear whether intrinsic subprograms need such conversions. ???
3460 if not Is_Intrinsic_Subprogram
(Parent_Subp
)
3461 or else Is_Generic_Instance
(Parent_Subp
)
3464 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
);
3465 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3466 -- and resolve the newly generated construct.
3472 procedure Convert
(Act
: Node_Id
; Typ
: Entity_Id
) is
3474 Rewrite
(Act
, OK_Convert_To
(Typ
, Relocate_Node
(Act
)));
3481 Actual_Typ
: Entity_Id
;
3482 Formal_Typ
: Entity_Id
;
3483 Parent_Typ
: Entity_Id
;
3486 Actual
:= First_Actual
(Call_Node
);
3487 Formal
:= First_Formal
(Subp
);
3488 Parent_Formal
:= First_Formal
(Parent_Subp
);
3489 while Present
(Formal
) loop
3490 Actual_Typ
:= Etype
(Actual
);
3491 Formal_Typ
:= Etype
(Formal
);
3492 Parent_Typ
:= Etype
(Parent_Formal
);
3494 -- For an IN parameter of a scalar type, the parent formal
3495 -- type and derived formal type differ or the parent formal
3496 -- type and actual type do not match statically.
3498 if Is_Scalar_Type
(Formal_Typ
)
3499 and then Ekind
(Formal
) = E_In_Parameter
3500 and then Formal_Typ
/= Parent_Typ
3502 not Subtypes_Statically_Match
(Parent_Typ
, Actual_Typ
)
3503 and then not Raises_Constraint_Error
(Actual
)
3505 Convert
(Actual
, Parent_Typ
);
3506 Enable_Range_Check
(Actual
);
3508 -- If the actual has been marked as requiring a range
3509 -- check, then generate it here.
3511 if Do_Range_Check
(Actual
) then
3512 Generate_Range_Check
3513 (Actual
, Etype
(Formal
), CE_Range_Check_Failed
);
3516 -- For access types, the parent formal type and actual type
3519 elsif Is_Access_Type
(Formal_Typ
)
3520 and then Base_Type
(Parent_Typ
) /= Base_Type
(Actual_Typ
)
3522 if Ekind
(Formal
) /= E_In_Parameter
then
3523 Convert
(Actual
, Parent_Typ
);
3525 elsif Ekind
(Parent_Typ
) = E_Anonymous_Access_Type
3526 and then Designated_Type
(Parent_Typ
) /=
3527 Designated_Type
(Actual_Typ
)
3528 and then not Is_Controlling_Formal
(Formal
)
3530 -- This unchecked conversion is not necessary unless
3531 -- inlining is enabled, because in that case the type
3532 -- mismatch may become visible in the body about to be
3536 Unchecked_Convert_To
(Parent_Typ
,
3537 Relocate_Node
(Actual
)));
3539 Resolve
(Actual
, Parent_Typ
);
3542 -- If there is a change of representation, then generate a
3543 -- warning, and do the change of representation.
3545 elsif not Same_Representation
(Formal_Typ
, Parent_Typ
) then
3547 ("??change of representation required", Actual
);
3548 Convert
(Actual
, Parent_Typ
);
3550 -- For array and record types, the parent formal type and
3551 -- derived formal type have different sizes or pragma Pack
3554 elsif ((Is_Array_Type
(Formal_Typ
)
3555 and then Is_Array_Type
(Parent_Typ
))
3557 (Is_Record_Type
(Formal_Typ
)
3558 and then Is_Record_Type
(Parent_Typ
)))
3560 (Esize
(Formal_Typ
) /= Esize
(Parent_Typ
)
3561 or else Has_Pragma_Pack
(Formal_Typ
) /=
3562 Has_Pragma_Pack
(Parent_Typ
))
3564 Convert
(Actual
, Parent_Typ
);
3567 Next_Actual
(Actual
);
3568 Next_Formal
(Formal
);
3569 Next_Formal
(Parent_Formal
);
3575 Subp
:= Parent_Subp
;
3578 -- Deal with case where call is an explicit dereference
3580 if Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
3582 -- Handle case of access to protected subprogram type
3584 if Is_Access_Protected_Subprogram_Type
3585 (Base_Type
(Etype
(Prefix
(Name
(Call_Node
)))))
3587 -- If this is a call through an access to protected operation, the
3588 -- prefix has the form (object'address, operation'access). Rewrite
3589 -- as a for other protected calls: the object is the 1st parameter
3590 -- of the list of actuals.
3597 Ptr
: constant Node_Id
:= Prefix
(Name
(Call_Node
));
3599 T
: constant Entity_Id
:=
3600 Equivalent_Type
(Base_Type
(Etype
(Ptr
)));
3602 D_T
: constant Entity_Id
:=
3603 Designated_Type
(Base_Type
(Etype
(Ptr
)));
3607 Make_Selected_Component
(Loc
,
3608 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
3610 New_Occurrence_Of
(First_Entity
(T
), Loc
));
3613 Make_Selected_Component
(Loc
,
3614 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
3616 New_Occurrence_Of
(Next_Entity
(First_Entity
(T
)), Loc
));
3619 Make_Explicit_Dereference
(Loc
,
3622 if Present
(Parameter_Associations
(Call_Node
)) then
3623 Parm
:= Parameter_Associations
(Call_Node
);
3628 Prepend
(Obj
, Parm
);
3630 if Etype
(D_T
) = Standard_Void_Type
then
3632 Make_Procedure_Call_Statement
(Loc
,
3634 Parameter_Associations
=> Parm
);
3637 Make_Function_Call
(Loc
,
3639 Parameter_Associations
=> Parm
);
3642 Set_First_Named_Actual
(Call
, First_Named_Actual
(Call_Node
));
3643 Set_Etype
(Call
, Etype
(D_T
));
3645 -- We do not re-analyze the call to avoid infinite recursion.
3646 -- We analyze separately the prefix and the object, and set
3647 -- the checks on the prefix that would otherwise be emitted
3648 -- when resolving a call.
3650 Rewrite
(Call_Node
, Call
);
3652 Apply_Access_Check
(Nam
);
3659 -- If this is a call to an intrinsic subprogram, then perform the
3660 -- appropriate expansion to the corresponding tree node and we
3661 -- are all done (since after that the call is gone).
3663 -- In the case where the intrinsic is to be processed by the back end,
3664 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
3665 -- since the idea in this case is to pass the call unchanged. If the
3666 -- intrinsic is an inherited unchecked conversion, and the derived type
3667 -- is the target type of the conversion, we must retain it as the return
3668 -- type of the expression. Otherwise the expansion below, which uses the
3669 -- parent operation, will yield the wrong type.
3671 if Is_Intrinsic_Subprogram
(Subp
) then
3672 Expand_Intrinsic_Call
(Call_Node
, Subp
);
3674 if Nkind
(Call_Node
) = N_Unchecked_Type_Conversion
3675 and then Parent_Subp
/= Orig_Subp
3676 and then Etype
(Parent_Subp
) /= Etype
(Orig_Subp
)
3678 Set_Etype
(Call_Node
, Etype
(Orig_Subp
));
3684 if Ekind_In
(Subp
, E_Function
, E_Procedure
) then
3686 -- We perform two simple optimization on calls:
3688 -- a) replace calls to null procedures unconditionally;
3690 -- b) for To_Address, just do an unchecked conversion. Not only is
3691 -- this efficient, but it also avoids order of elaboration problems
3692 -- when address clauses are inlined (address expression elaborated
3693 -- at the wrong point).
3695 -- We perform these optimization regardless of whether we are in the
3696 -- main unit or in a unit in the context of the main unit, to ensure
3697 -- that tree generated is the same in both cases, for CodePeer use.
3699 if Is_RTE
(Subp
, RE_To_Address
) then
3701 Unchecked_Convert_To
3702 (RTE
(RE_Address
), Relocate_Node
(First_Actual
(Call_Node
))));
3705 elsif Is_Null_Procedure
(Subp
) then
3706 Rewrite
(Call_Node
, Make_Null_Statement
(Loc
));
3710 -- Handle inlining. No action needed if the subprogram is not inlined
3712 if not Is_Inlined
(Subp
) then
3715 -- Handle frontend inlining
3717 elsif not Back_End_Inlining
then
3718 Inlined_Subprogram
: declare
3720 Must_Inline
: Boolean := False;
3721 Spec
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
3724 -- Verify that the body to inline has already been seen, and
3725 -- that if the body is in the current unit the inlining does
3726 -- not occur earlier. This avoids order-of-elaboration problems
3729 -- This should be documented in sinfo/einfo ???
3732 or else Nkind
(Spec
) /= N_Subprogram_Declaration
3733 or else No
(Body_To_Inline
(Spec
))
3735 Must_Inline
:= False;
3737 -- If this an inherited function that returns a private type,
3738 -- do not inline if the full view is an unconstrained array,
3739 -- because such calls cannot be inlined.
3741 elsif Present
(Orig_Subp
)
3742 and then Is_Array_Type
(Etype
(Orig_Subp
))
3743 and then not Is_Constrained
(Etype
(Orig_Subp
))
3745 Must_Inline
:= False;
3747 elsif In_Unfrozen_Instance
(Scope
(Subp
)) then
3748 Must_Inline
:= False;
3751 Bod
:= Body_To_Inline
(Spec
);
3753 if (In_Extended_Main_Code_Unit
(Call_Node
)
3754 or else In_Extended_Main_Code_Unit
(Parent
(Call_Node
))
3755 or else Has_Pragma_Inline_Always
(Subp
))
3756 and then (not In_Same_Extended_Unit
(Sloc
(Bod
), Loc
)
3758 Earlier_In_Extended_Unit
(Sloc
(Bod
), Loc
))
3760 Must_Inline
:= True;
3762 -- If we are compiling a package body that is not the main
3763 -- unit, it must be for inlining/instantiation purposes,
3764 -- in which case we inline the call to insure that the same
3765 -- temporaries are generated when compiling the body by
3766 -- itself. Otherwise link errors can occur.
3768 -- If the function being called is itself in the main unit,
3769 -- we cannot inline, because there is a risk of double
3770 -- elaboration and/or circularity: the inlining can make
3771 -- visible a private entity in the body of the main unit,
3772 -- that gigi will see before its sees its proper definition.
3774 elsif not (In_Extended_Main_Code_Unit
(Call_Node
))
3775 and then In_Package_Body
3777 Must_Inline
:= not In_Extended_Main_Source_Unit
(Subp
);
3782 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
3785 -- Let the back end handle it
3787 Add_Inlined_Body
(Subp
, Call_Node
);
3789 if Front_End_Inlining
3790 and then Nkind
(Spec
) = N_Subprogram_Declaration
3791 and then (In_Extended_Main_Code_Unit
(Call_Node
))
3792 and then No
(Body_To_Inline
(Spec
))
3793 and then not Has_Completion
(Subp
)
3794 and then In_Same_Extended_Unit
(Sloc
(Spec
), Loc
)
3797 ("cannot inline& (body not seen yet)?",
3801 end Inlined_Subprogram
;
3803 -- Back end inlining: let the back end handle it
3805 elsif No
(Unit_Declaration_Node
(Subp
))
3806 or else Nkind
(Unit_Declaration_Node
(Subp
)) /=
3807 N_Subprogram_Declaration
3808 or else No
(Body_To_Inline
(Unit_Declaration_Node
(Subp
)))
3809 or else Nkind
(Body_To_Inline
(Unit_Declaration_Node
(Subp
))) in
3812 Add_Inlined_Body
(Subp
, Call_Node
);
3814 -- Front end expansion of simple functions returning unconstrained
3815 -- types (see Check_And_Split_Unconstrained_Function). Note that the
3816 -- case of a simple renaming (Body_To_Inline in N_Entity above, see
3817 -- also Build_Renamed_Body) cannot be expanded here because this may
3818 -- give rise to order-of-elaboration issues for the types of the
3819 -- parameters of the subprogram, if any.
3822 Expand_Inlined_Call
(Call_Node
, Subp
, Orig_Subp
);
3826 -- Check for protected subprogram. This is either an intra-object call,
3827 -- or a protected function call. Protected procedure calls are rewritten
3828 -- as entry calls and handled accordingly.
3830 -- In Ada 2005, this may be an indirect call to an access parameter that
3831 -- is an access_to_subprogram. In that case the anonymous type has a
3832 -- scope that is a protected operation, but the call is a regular one.
3833 -- In either case do not expand call if subprogram is eliminated.
3835 Scop
:= Scope
(Subp
);
3837 if Nkind
(Call_Node
) /= N_Entry_Call_Statement
3838 and then Is_Protected_Type
(Scop
)
3839 and then Ekind
(Subp
) /= E_Subprogram_Type
3840 and then not Is_Eliminated
(Subp
)
3842 -- If the call is an internal one, it is rewritten as a call to the
3843 -- corresponding unprotected subprogram.
3845 Expand_Protected_Subprogram_Call
(Call_Node
, Subp
, Scop
);
3848 -- Functions returning controlled objects need special attention. If
3849 -- the return type is limited, then the context is initialization and
3850 -- different processing applies. If the call is to a protected function,
3851 -- the expansion above will call Expand_Call recursively. Otherwise the
3852 -- function call is transformed into a temporary which obtains the
3853 -- result from the secondary stack.
3855 if Needs_Finalization
(Etype
(Subp
)) then
3856 if not Is_Limited_View
(Etype
(Subp
))
3858 (No
(First_Formal
(Subp
))
3860 not Is_Concurrent_Record_Type
(Etype
(First_Formal
(Subp
))))
3862 Expand_Ctrl_Function_Call
(Call_Node
);
3864 -- Build-in-place function calls which appear in anonymous contexts
3865 -- need a transient scope to ensure the proper finalization of the
3866 -- intermediate result after its use.
3868 elsif Is_Build_In_Place_Function_Call
(Call_Node
)
3870 Nkind_In
(Parent
(Call_Node
), N_Attribute_Reference
,
3872 N_Indexed_Component
,
3873 N_Object_Renaming_Declaration
,
3874 N_Procedure_Call_Statement
,
3875 N_Selected_Component
,
3878 Establish_Transient_Scope
(Call_Node
, Sec_Stack
=> True);
3883 -------------------------------
3884 -- Expand_Ctrl_Function_Call --
3885 -------------------------------
3887 procedure Expand_Ctrl_Function_Call
(N
: Node_Id
) is
3888 function Is_Element_Reference
(N
: Node_Id
) return Boolean;
3889 -- Determine whether node N denotes a reference to an Ada 2012 container
3892 --------------------------
3893 -- Is_Element_Reference --
3894 --------------------------
3896 function Is_Element_Reference
(N
: Node_Id
) return Boolean is
3897 Ref
: constant Node_Id
:= Original_Node
(N
);
3900 -- Analysis marks an element reference by setting the generalized
3901 -- indexing attribute of an indexed component before the component
3902 -- is rewritten into a function call.
3905 Nkind
(Ref
) = N_Indexed_Component
3906 and then Present
(Generalized_Indexing
(Ref
));
3907 end Is_Element_Reference
;
3911 Is_Elem_Ref
: constant Boolean := Is_Element_Reference
(N
);
3913 -- Start of processing for Expand_Ctrl_Function_Call
3916 -- Optimization, if the returned value (which is on the sec-stack) is
3917 -- returned again, no need to copy/readjust/finalize, we can just pass
3918 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
3919 -- attachment is needed
3921 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
then
3925 -- Resolution is now finished, make sure we don't start analysis again
3926 -- because of the duplication.
3930 -- A function which returns a controlled object uses the secondary
3931 -- stack. Rewrite the call into a temporary which obtains the result of
3932 -- the function using 'reference.
3934 Remove_Side_Effects
(N
);
3936 -- When the temporary function result appears inside a case expression
3937 -- or an if expression, its lifetime must be extended to match that of
3938 -- the context. If not, the function result will be finalized too early
3939 -- and the evaluation of the expression could yield incorrect result. An
3940 -- exception to this rule are references to Ada 2012 container elements.
3941 -- Such references must be finalized at the end of each iteration of the
3942 -- related quantified expression, otherwise the container will remain
3946 and then Within_Case_Or_If_Expression
(N
)
3947 and then Nkind
(N
) = N_Explicit_Dereference
3949 Set_Is_Processed_Transient
(Entity
(Prefix
(N
)));
3951 end Expand_Ctrl_Function_Call
;
3953 ----------------------------------------
3954 -- Expand_N_Extended_Return_Statement --
3955 ----------------------------------------
3957 -- If there is a Handled_Statement_Sequence, we rewrite this:
3959 -- return Result : T := <expression> do
3960 -- <handled_seq_of_stms>
3966 -- Result : T := <expression>;
3968 -- <handled_seq_of_stms>
3972 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
3974 -- return Result : T := <expression>;
3978 -- return <expression>;
3980 -- unless it's build-in-place or there's no <expression>, in which case
3984 -- Result : T := <expression>;
3989 -- Note that this case could have been written by the user as an extended
3990 -- return statement, or could have been transformed to this from a simple
3991 -- return statement.
3993 -- That is, we need to have a reified return object if there are statements
3994 -- (which might refer to it) or if we're doing build-in-place (so we can
3995 -- set its address to the final resting place or if there is no expression
3996 -- (in which case default initial values might need to be set).
3998 procedure Expand_N_Extended_Return_Statement
(N
: Node_Id
) is
3999 Loc
: constant Source_Ptr
:= Sloc
(N
);
4001 Par_Func
: constant Entity_Id
:=
4002 Return_Applies_To
(Return_Statement_Entity
(N
));
4003 Result_Subt
: constant Entity_Id
:= Etype
(Par_Func
);
4004 Ret_Obj_Id
: constant Entity_Id
:=
4005 First_Entity
(Return_Statement_Entity
(N
));
4006 Ret_Obj_Decl
: constant Node_Id
:= Parent
(Ret_Obj_Id
);
4008 Is_Build_In_Place
: constant Boolean :=
4009 Is_Build_In_Place_Function
(Par_Func
);
4014 Return_Stmt
: Node_Id
;
4017 function Build_Heap_Allocator
4018 (Temp_Id
: Entity_Id
;
4019 Temp_Typ
: Entity_Id
;
4020 Func_Id
: Entity_Id
;
4021 Ret_Typ
: Entity_Id
;
4022 Alloc_Expr
: Node_Id
) return Node_Id
;
4023 -- Create the statements necessary to allocate a return object on the
4024 -- caller's master. The master is available through implicit parameter
4025 -- BIPfinalizationmaster.
4027 -- if BIPfinalizationmaster /= null then
4029 -- type Ptr_Typ is access Ret_Typ;
4030 -- for Ptr_Typ'Storage_Pool use
4031 -- Base_Pool (BIPfinalizationmaster.all).all;
4035 -- procedure Allocate (...) is
4037 -- System.Storage_Pools.Subpools.Allocate_Any (...);
4040 -- Local := <Alloc_Expr>;
4041 -- Temp_Id := Temp_Typ (Local);
4045 -- Temp_Id is the temporary which is used to reference the internally
4046 -- created object in all allocation forms. Temp_Typ is the type of the
4047 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4048 -- type of Func_Id. Alloc_Expr is the actual allocator.
4050 function Move_Activation_Chain
return Node_Id
;
4051 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4053 -- From current activation chain
4054 -- To activation chain passed in by the caller
4055 -- New_Master master passed in by the caller
4057 --------------------------
4058 -- Build_Heap_Allocator --
4059 --------------------------
4061 function Build_Heap_Allocator
4062 (Temp_Id
: Entity_Id
;
4063 Temp_Typ
: Entity_Id
;
4064 Func_Id
: Entity_Id
;
4065 Ret_Typ
: Entity_Id
;
4066 Alloc_Expr
: Node_Id
) return Node_Id
4069 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
4071 -- Processing for build-in-place object allocation. This is disabled
4072 -- on .NET/JVM because the targets do not support pools.
4074 if VM_Target
= No_VM
4075 and then Needs_Finalization
(Ret_Typ
)
4078 Decls
: constant List_Id
:= New_List
;
4079 Fin_Mas_Id
: constant Entity_Id
:=
4080 Build_In_Place_Formal
4081 (Func_Id
, BIP_Finalization_Master
);
4082 Stmts
: constant List_Id
:= New_List
;
4083 Desig_Typ
: Entity_Id
;
4084 Local_Id
: Entity_Id
;
4085 Pool_Id
: Entity_Id
;
4086 Ptr_Typ
: Entity_Id
;
4090 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4092 Pool_Id
:= Make_Temporary
(Loc
, 'P');
4095 Make_Object_Renaming_Declaration
(Loc
,
4096 Defining_Identifier
=> Pool_Id
,
4098 New_Occurrence_Of
(RTE
(RE_Root_Storage_Pool
), Loc
),
4100 Make_Explicit_Dereference
(Loc
,
4102 Make_Function_Call
(Loc
,
4104 New_Occurrence_Of
(RTE
(RE_Base_Pool
), Loc
),
4105 Parameter_Associations
=> New_List
(
4106 Make_Explicit_Dereference
(Loc
,
4108 New_Occurrence_Of
(Fin_Mas_Id
, Loc
)))))));
4110 -- Create an access type which uses the storage pool of the
4111 -- caller's master. This additional type is necessary because
4112 -- the finalization master cannot be associated with the type
4113 -- of the temporary. Otherwise the secondary stack allocation
4116 Desig_Typ
:= Ret_Typ
;
4118 -- Ensure that the build-in-place machinery uses a fat pointer
4119 -- when allocating an unconstrained array on the heap. In this
4120 -- case the result object type is a constrained array type even
4121 -- though the function type is unconstrained.
4123 if Ekind
(Desig_Typ
) = E_Array_Subtype
then
4124 Desig_Typ
:= Base_Type
(Desig_Typ
);
4128 -- type Ptr_Typ is access Desig_Typ;
4130 Ptr_Typ
:= Make_Temporary
(Loc
, 'P');
4133 Make_Full_Type_Declaration
(Loc
,
4134 Defining_Identifier
=> Ptr_Typ
,
4136 Make_Access_To_Object_Definition
(Loc
,
4137 Subtype_Indication
=>
4138 New_Occurrence_Of
(Desig_Typ
, Loc
))));
4140 -- Perform minor decoration in order to set the master and the
4141 -- storage pool attributes.
4143 Set_Ekind
(Ptr_Typ
, E_Access_Type
);
4144 Set_Finalization_Master
(Ptr_Typ
, Fin_Mas_Id
);
4145 Set_Associated_Storage_Pool
(Ptr_Typ
, Pool_Id
);
4147 -- Create the temporary, generate:
4148 -- Local_Id : Ptr_Typ;
4150 Local_Id
:= Make_Temporary
(Loc
, 'T');
4153 Make_Object_Declaration
(Loc
,
4154 Defining_Identifier
=> Local_Id
,
4155 Object_Definition
=>
4156 New_Occurrence_Of
(Ptr_Typ
, Loc
)));
4158 -- Allocate the object, generate:
4159 -- Local_Id := <Alloc_Expr>;
4162 Make_Assignment_Statement
(Loc
,
4163 Name
=> New_Occurrence_Of
(Local_Id
, Loc
),
4164 Expression
=> Alloc_Expr
));
4167 -- Temp_Id := Temp_Typ (Local_Id);
4170 Make_Assignment_Statement
(Loc
,
4171 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4173 Unchecked_Convert_To
(Temp_Typ
,
4174 New_Occurrence_Of
(Local_Id
, Loc
))));
4176 -- Wrap the allocation in a block. This is further conditioned
4177 -- by checking the caller finalization master at runtime. A
4178 -- null value indicates a non-existent master, most likely due
4179 -- to a Finalize_Storage_Only allocation.
4182 -- if BIPfinalizationmaster /= null then
4191 Make_If_Statement
(Loc
,
4194 Left_Opnd
=> New_Occurrence_Of
(Fin_Mas_Id
, Loc
),
4195 Right_Opnd
=> Make_Null
(Loc
)),
4197 Then_Statements
=> New_List
(
4198 Make_Block_Statement
(Loc
,
4199 Declarations
=> Decls
,
4200 Handled_Statement_Sequence
=>
4201 Make_Handled_Sequence_Of_Statements
(Loc
,
4202 Statements
=> Stmts
))));
4205 -- For all other cases, generate:
4206 -- Temp_Id := <Alloc_Expr>;
4210 Make_Assignment_Statement
(Loc
,
4211 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4212 Expression
=> Alloc_Expr
);
4214 end Build_Heap_Allocator
;
4216 ---------------------------
4217 -- Move_Activation_Chain --
4218 ---------------------------
4220 function Move_Activation_Chain
return Node_Id
is
4223 Make_Procedure_Call_Statement
(Loc
,
4225 New_Occurrence_Of
(RTE
(RE_Move_Activation_Chain
), Loc
),
4227 Parameter_Associations
=> New_List
(
4231 Make_Attribute_Reference
(Loc
,
4232 Prefix
=> Make_Identifier
(Loc
, Name_uChain
),
4233 Attribute_Name
=> Name_Unrestricted_Access
),
4235 -- Destination chain
4238 (Build_In_Place_Formal
(Par_Func
, BIP_Activation_Chain
), Loc
),
4243 (Build_In_Place_Formal
(Par_Func
, BIP_Task_Master
), Loc
)));
4244 end Move_Activation_Chain
;
4246 -- Start of processing for Expand_N_Extended_Return_Statement
4249 -- Given that functionality of interface thunks is simple (just displace
4250 -- the pointer to the object) they are always handled by means of
4251 -- simple return statements.
4253 pragma Assert
(not Is_Thunk
(Current_Scope
));
4255 if Nkind
(Ret_Obj_Decl
) = N_Object_Declaration
then
4256 Exp
:= Expression
(Ret_Obj_Decl
);
4261 HSS
:= Handled_Statement_Sequence
(N
);
4263 -- If the returned object needs finalization actions, the function must
4264 -- perform the appropriate cleanup should it fail to return. The state
4265 -- of the function itself is tracked through a flag which is coupled
4266 -- with the scope finalizer. There is one flag per each return object
4267 -- in case of multiple returns.
4269 if Is_Build_In_Place
4270 and then Needs_Finalization
(Etype
(Ret_Obj_Id
))
4273 Flag_Decl
: Node_Id
;
4274 Flag_Id
: Entity_Id
;
4278 -- Recover the function body
4280 Func_Bod
:= Unit_Declaration_Node
(Par_Func
);
4282 if Nkind
(Func_Bod
) = N_Subprogram_Declaration
then
4283 Func_Bod
:= Parent
(Parent
(Corresponding_Body
(Func_Bod
)));
4286 -- Create a flag to track the function state
4288 Flag_Id
:= Make_Temporary
(Loc
, 'F');
4289 Set_Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
, Flag_Id
);
4291 -- Insert the flag at the beginning of the function declarations,
4293 -- Fnn : Boolean := False;
4296 Make_Object_Declaration
(Loc
,
4297 Defining_Identifier
=> Flag_Id
,
4298 Object_Definition
=>
4299 New_Occurrence_Of
(Standard_Boolean
, Loc
),
4301 New_Occurrence_Of
(Standard_False
, Loc
));
4303 Prepend_To
(Declarations
(Func_Bod
), Flag_Decl
);
4304 Analyze
(Flag_Decl
);
4308 -- Build a simple_return_statement that returns the return object when
4309 -- there is a statement sequence, or no expression, or the result will
4310 -- be built in place. Note however that we currently do this for all
4311 -- composite cases, even though nonlimited composite results are not yet
4312 -- built in place (though we plan to do so eventually).
4315 or else Is_Composite_Type
(Result_Subt
)
4321 -- If the extended return has a handled statement sequence, then wrap
4322 -- it in a block and use the block as the first statement.
4326 Make_Block_Statement
(Loc
,
4327 Declarations
=> New_List
,
4328 Handled_Statement_Sequence
=> HSS
));
4331 -- If the result type contains tasks, we call Move_Activation_Chain.
4332 -- Later, the cleanup code will call Complete_Master, which will
4333 -- terminate any unactivated tasks belonging to the return statement
4334 -- master. But Move_Activation_Chain updates their master to be that
4335 -- of the caller, so they will not be terminated unless the return
4336 -- statement completes unsuccessfully due to exception, abort, goto,
4337 -- or exit. As a formality, we test whether the function requires the
4338 -- result to be built in place, though that's necessarily true for
4339 -- the case of result types with task parts.
4341 if Is_Build_In_Place
4342 and then Has_Task
(Result_Subt
)
4344 -- The return expression is an aggregate for a complex type which
4345 -- contains tasks. This particular case is left unexpanded since
4346 -- the regular expansion would insert all temporaries and
4347 -- initialization code in the wrong block.
4349 if Nkind
(Exp
) = N_Aggregate
then
4350 Expand_N_Aggregate
(Exp
);
4353 -- Do not move the activation chain if the return object does not
4356 if Has_Task
(Etype
(Ret_Obj_Id
)) then
4357 Append_To
(Stmts
, Move_Activation_Chain
);
4361 -- Update the state of the function right before the object is
4364 if Is_Build_In_Place
4365 and then Needs_Finalization
(Etype
(Ret_Obj_Id
))
4368 Flag_Id
: constant Entity_Id
:=
4369 Status_Flag_Or_Transient_Decl
(Ret_Obj_Id
);
4376 Make_Assignment_Statement
(Loc
,
4377 Name
=> New_Occurrence_Of
(Flag_Id
, Loc
),
4378 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
4382 -- Build a simple_return_statement that returns the return object
4385 Make_Simple_Return_Statement
(Loc
,
4386 Expression
=> New_Occurrence_Of
(Ret_Obj_Id
, Loc
));
4387 Append_To
(Stmts
, Return_Stmt
);
4389 HSS
:= Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
);
4392 -- Case where we build a return statement block
4394 if Present
(HSS
) then
4396 Make_Block_Statement
(Loc
,
4397 Declarations
=> Return_Object_Declarations
(N
),
4398 Handled_Statement_Sequence
=> HSS
);
4400 -- We set the entity of the new block statement to be that of the
4401 -- return statement. This is necessary so that various fields, such
4402 -- as Finalization_Chain_Entity carry over from the return statement
4403 -- to the block. Note that this block is unusual, in that its entity
4404 -- is an E_Return_Statement rather than an E_Block.
4407 (Result
, New_Occurrence_Of
(Return_Statement_Entity
(N
), Loc
));
4409 -- If the object decl was already rewritten as a renaming, then we
4410 -- don't want to do the object allocation and transformation of
4411 -- the return object declaration to a renaming. This case occurs
4412 -- when the return object is initialized by a call to another
4413 -- build-in-place function, and that function is responsible for
4414 -- the allocation of the return object.
4416 if Is_Build_In_Place
4417 and then Nkind
(Ret_Obj_Decl
) = N_Object_Renaming_Declaration
4420 (Nkind
(Original_Node
(Ret_Obj_Decl
)) = N_Object_Declaration
4421 and then Is_Build_In_Place_Function_Call
4422 (Expression
(Original_Node
(Ret_Obj_Decl
))));
4424 -- Return the build-in-place result by reference
4426 Set_By_Ref
(Return_Stmt
);
4428 elsif Is_Build_In_Place
then
4430 -- Locate the implicit access parameter associated with the
4431 -- caller-supplied return object and convert the return
4432 -- statement's return object declaration to a renaming of a
4433 -- dereference of the access parameter. If the return object's
4434 -- declaration includes an expression that has not already been
4435 -- expanded as separate assignments, then add an assignment
4436 -- statement to ensure the return object gets initialized.
4439 -- Result : T [:= <expression>];
4446 -- Result : T renames FuncRA.all;
4447 -- [Result := <expression;]
4452 Return_Obj_Id
: constant Entity_Id
:=
4453 Defining_Identifier
(Ret_Obj_Decl
);
4454 Return_Obj_Typ
: constant Entity_Id
:= Etype
(Return_Obj_Id
);
4455 Return_Obj_Expr
: constant Node_Id
:=
4456 Expression
(Ret_Obj_Decl
);
4457 Constr_Result
: constant Boolean :=
4458 Is_Constrained
(Result_Subt
);
4459 Obj_Alloc_Formal
: Entity_Id
;
4460 Object_Access
: Entity_Id
;
4461 Obj_Acc_Deref
: Node_Id
;
4462 Init_Assignment
: Node_Id
:= Empty
;
4465 -- Build-in-place results must be returned by reference
4467 Set_By_Ref
(Return_Stmt
);
4469 -- Retrieve the implicit access parameter passed by the caller
4472 Build_In_Place_Formal
(Par_Func
, BIP_Object_Access
);
4474 -- If the return object's declaration includes an expression
4475 -- and the declaration isn't marked as No_Initialization, then
4476 -- we need to generate an assignment to the object and insert
4477 -- it after the declaration before rewriting it as a renaming
4478 -- (otherwise we'll lose the initialization). The case where
4479 -- the result type is an interface (or class-wide interface)
4480 -- is also excluded because the context of the function call
4481 -- must be unconstrained, so the initialization will always
4482 -- be done as part of an allocator evaluation (storage pool
4483 -- or secondary stack), never to a constrained target object
4484 -- passed in by the caller. Besides the assignment being
4485 -- unneeded in this case, it avoids problems with trying to
4486 -- generate a dispatching assignment when the return expression
4487 -- is a nonlimited descendant of a limited interface (the
4488 -- interface has no assignment operation).
4490 if Present
(Return_Obj_Expr
)
4491 and then not No_Initialization
(Ret_Obj_Decl
)
4492 and then not Is_Interface
(Return_Obj_Typ
)
4495 Make_Assignment_Statement
(Loc
,
4496 Name
=> New_Occurrence_Of
(Return_Obj_Id
, Loc
),
4497 Expression
=> Relocate_Node
(Return_Obj_Expr
));
4499 Set_Etype
(Name
(Init_Assignment
), Etype
(Return_Obj_Id
));
4500 Set_Assignment_OK
(Name
(Init_Assignment
));
4501 Set_No_Ctrl_Actions
(Init_Assignment
);
4503 Set_Parent
(Name
(Init_Assignment
), Init_Assignment
);
4504 Set_Parent
(Expression
(Init_Assignment
), Init_Assignment
);
4506 Set_Expression
(Ret_Obj_Decl
, Empty
);
4508 if Is_Class_Wide_Type
(Etype
(Return_Obj_Id
))
4509 and then not Is_Class_Wide_Type
4510 (Etype
(Expression
(Init_Assignment
)))
4512 Rewrite
(Expression
(Init_Assignment
),
4513 Make_Type_Conversion
(Loc
,
4515 New_Occurrence_Of
(Etype
(Return_Obj_Id
), Loc
),
4517 Relocate_Node
(Expression
(Init_Assignment
))));
4520 -- In the case of functions where the calling context can
4521 -- determine the form of allocation needed, initialization
4522 -- is done with each part of the if statement that handles
4523 -- the different forms of allocation (this is true for
4524 -- unconstrained and tagged result subtypes).
4527 and then not Is_Tagged_Type
(Underlying_Type
(Result_Subt
))
4529 Insert_After
(Ret_Obj_Decl
, Init_Assignment
);
4533 -- When the function's subtype is unconstrained, a run-time
4534 -- test is needed to determine the form of allocation to use
4535 -- for the return object. The function has an implicit formal
4536 -- parameter indicating this. If the BIP_Alloc_Form formal has
4537 -- the value one, then the caller has passed access to an
4538 -- existing object for use as the return object. If the value
4539 -- is two, then the return object must be allocated on the
4540 -- secondary stack. Otherwise, the object must be allocated in
4541 -- a storage pool (currently only supported for the global
4542 -- heap, user-defined storage pools TBD ???). We generate an
4543 -- if statement to test the implicit allocation formal and
4544 -- initialize a local access value appropriately, creating
4545 -- allocators in the secondary stack and global heap cases.
4546 -- The special formal also exists and must be tested when the
4547 -- function has a tagged result, even when the result subtype
4548 -- is constrained, because in general such functions can be
4549 -- called in dispatching contexts and must be handled similarly
4550 -- to functions with a class-wide result.
4552 if not Constr_Result
4553 or else Is_Tagged_Type
(Underlying_Type
(Result_Subt
))
4556 Build_In_Place_Formal
(Par_Func
, BIP_Alloc_Form
);
4559 Pool_Id
: constant Entity_Id
:=
4560 Make_Temporary
(Loc
, 'P');
4561 Alloc_Obj_Id
: Entity_Id
;
4562 Alloc_Obj_Decl
: Node_Id
;
4563 Alloc_If_Stmt
: Node_Id
;
4564 Heap_Allocator
: Node_Id
;
4565 Pool_Decl
: Node_Id
;
4566 Pool_Allocator
: Node_Id
;
4567 Ptr_Type_Decl
: Node_Id
;
4568 Ref_Type
: Entity_Id
;
4569 SS_Allocator
: Node_Id
;
4572 -- Reuse the itype created for the function's implicit
4573 -- access formal. This avoids the need to create a new
4574 -- access type here, plus it allows assigning the access
4575 -- formal directly without applying a conversion.
4577 -- Ref_Type := Etype (Object_Access);
4579 -- Create an access type designating the function's
4582 Ref_Type
:= Make_Temporary
(Loc
, 'A');
4585 Make_Full_Type_Declaration
(Loc
,
4586 Defining_Identifier
=> Ref_Type
,
4588 Make_Access_To_Object_Definition
(Loc
,
4589 All_Present
=> True,
4590 Subtype_Indication
=>
4591 New_Occurrence_Of
(Return_Obj_Typ
, Loc
)));
4593 Insert_Before
(Ret_Obj_Decl
, Ptr_Type_Decl
);
4595 -- Create an access object that will be initialized to an
4596 -- access value denoting the return object, either coming
4597 -- from an implicit access value passed in by the caller
4598 -- or from the result of an allocator.
4600 Alloc_Obj_Id
:= Make_Temporary
(Loc
, 'R');
4601 Set_Etype
(Alloc_Obj_Id
, Ref_Type
);
4604 Make_Object_Declaration
(Loc
,
4605 Defining_Identifier
=> Alloc_Obj_Id
,
4606 Object_Definition
=>
4607 New_Occurrence_Of
(Ref_Type
, Loc
));
4609 Insert_Before
(Ret_Obj_Decl
, Alloc_Obj_Decl
);
4611 -- Create allocators for both the secondary stack and
4612 -- global heap. If there's an initialization expression,
4613 -- then create these as initialized allocators.
4615 if Present
(Return_Obj_Expr
)
4616 and then not No_Initialization
(Ret_Obj_Decl
)
4618 -- Always use the type of the expression for the
4619 -- qualified expression, rather than the result type.
4620 -- In general we cannot always use the result type
4621 -- for the allocator, because the expression might be
4622 -- of a specific type, such as in the case of an
4623 -- aggregate or even a nonlimited object when the
4624 -- result type is a limited class-wide interface type.
4627 Make_Allocator
(Loc
,
4629 Make_Qualified_Expression
(Loc
,
4632 (Etype
(Return_Obj_Expr
), Loc
),
4634 New_Copy_Tree
(Return_Obj_Expr
)));
4637 -- If the function returns a class-wide type we cannot
4638 -- use the return type for the allocator. Instead we
4639 -- use the type of the expression, which must be an
4640 -- aggregate of a definite type.
4642 if Is_Class_Wide_Type
(Return_Obj_Typ
) then
4644 Make_Allocator
(Loc
,
4647 (Etype
(Return_Obj_Expr
), Loc
));
4650 Make_Allocator
(Loc
,
4652 New_Occurrence_Of
(Return_Obj_Typ
, Loc
));
4655 -- If the object requires default initialization then
4656 -- that will happen later following the elaboration of
4657 -- the object renaming. If we don't turn it off here
4658 -- then the object will be default initialized twice.
4660 Set_No_Initialization
(Heap_Allocator
);
4663 -- The Pool_Allocator is just like the Heap_Allocator,
4664 -- except we set Storage_Pool and Procedure_To_Call so
4665 -- it will use the user-defined storage pool.
4667 Pool_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
4669 -- Do not generate the renaming of the build-in-place
4670 -- pool parameter on .NET/JVM/ZFP because the parameter
4671 -- is not created in the first place.
4673 if VM_Target
= No_VM
4674 and then RTE_Available
(RE_Root_Storage_Pool_Ptr
)
4677 Make_Object_Renaming_Declaration
(Loc
,
4678 Defining_Identifier
=> Pool_Id
,
4681 (RTE
(RE_Root_Storage_Pool
), Loc
),
4683 Make_Explicit_Dereference
(Loc
,
4685 (Build_In_Place_Formal
4686 (Par_Func
, BIP_Storage_Pool
), Loc
)));
4687 Set_Storage_Pool
(Pool_Allocator
, Pool_Id
);
4688 Set_Procedure_To_Call
4689 (Pool_Allocator
, RTE
(RE_Allocate_Any
));
4691 Pool_Decl
:= Make_Null_Statement
(Loc
);
4694 -- If the No_Allocators restriction is active, then only
4695 -- an allocator for secondary stack allocation is needed.
4696 -- It's OK for such allocators to have Comes_From_Source
4697 -- set to False, because gigi knows not to flag them as
4698 -- being a violation of No_Implicit_Heap_Allocations.
4700 if Restriction_Active
(No_Allocators
) then
4701 SS_Allocator
:= Heap_Allocator
;
4702 Heap_Allocator
:= Make_Null
(Loc
);
4703 Pool_Allocator
:= Make_Null
(Loc
);
4705 -- Otherwise the heap and pool allocators may be needed,
4706 -- so we make another allocator for secondary stack
4710 SS_Allocator
:= New_Copy_Tree
(Heap_Allocator
);
4712 -- The heap and pool allocators are marked as
4713 -- Comes_From_Source since they correspond to an
4714 -- explicit user-written allocator (that is, it will
4715 -- only be executed on behalf of callers that call the
4716 -- function as initialization for such an allocator).
4717 -- Prevents errors when No_Implicit_Heap_Allocations
4720 Set_Comes_From_Source
(Heap_Allocator
, True);
4721 Set_Comes_From_Source
(Pool_Allocator
, True);
4724 -- The allocator is returned on the secondary stack. We
4725 -- don't do this on VM targets, since the SS is not used.
4727 if VM_Target
= No_VM
then
4728 Set_Storage_Pool
(SS_Allocator
, RTE
(RE_SS_Pool
));
4729 Set_Procedure_To_Call
4730 (SS_Allocator
, RTE
(RE_SS_Allocate
));
4732 -- The allocator is returned on the secondary stack,
4733 -- so indicate that the function return, as well as
4734 -- the block that encloses the allocator, must not
4735 -- release it. The flags must be set now because
4736 -- the decision to use the secondary stack is done
4737 -- very late in the course of expanding the return
4738 -- statement, past the point where these flags are
4741 Set_Sec_Stack_Needed_For_Return
(Par_Func
);
4742 Set_Sec_Stack_Needed_For_Return
4743 (Return_Statement_Entity
(N
));
4744 Set_Uses_Sec_Stack
(Par_Func
);
4745 Set_Uses_Sec_Stack
(Return_Statement_Entity
(N
));
4748 -- Create an if statement to test the BIP_Alloc_Form
4749 -- formal and initialize the access object to either the
4750 -- BIP_Object_Access formal (BIP_Alloc_Form =
4751 -- Caller_Allocation), the result of allocating the
4752 -- object in the secondary stack (BIP_Alloc_Form =
4753 -- Secondary_Stack), or else an allocator to create the
4754 -- return object in the heap or user-defined pool
4755 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
4757 -- ??? An unchecked type conversion must be made in the
4758 -- case of assigning the access object formal to the
4759 -- local access object, because a normal conversion would
4760 -- be illegal in some cases (such as converting access-
4761 -- to-unconstrained to access-to-constrained), but the
4762 -- the unchecked conversion will presumably fail to work
4763 -- right in just such cases. It's not clear at all how to
4767 Make_If_Statement
(Loc
,
4771 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
4773 Make_Integer_Literal
(Loc
,
4774 UI_From_Int
(BIP_Allocation_Form
'Pos
4775 (Caller_Allocation
)))),
4777 Then_Statements
=> New_List
(
4778 Make_Assignment_Statement
(Loc
,
4780 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
4782 Make_Unchecked_Type_Conversion
(Loc
,
4784 New_Occurrence_Of
(Ref_Type
, Loc
),
4786 New_Occurrence_Of
(Object_Access
, Loc
)))),
4788 Elsif_Parts
=> New_List
(
4789 Make_Elsif_Part
(Loc
,
4793 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
4795 Make_Integer_Literal
(Loc
,
4796 UI_From_Int
(BIP_Allocation_Form
'Pos
4797 (Secondary_Stack
)))),
4799 Then_Statements
=> New_List
(
4800 Make_Assignment_Statement
(Loc
,
4802 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
4803 Expression
=> SS_Allocator
))),
4805 Make_Elsif_Part
(Loc
,
4809 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
4811 Make_Integer_Literal
(Loc
,
4812 UI_From_Int
(BIP_Allocation_Form
'Pos
4815 Then_Statements
=> New_List
(
4816 Build_Heap_Allocator
4817 (Temp_Id
=> Alloc_Obj_Id
,
4818 Temp_Typ
=> Ref_Type
,
4819 Func_Id
=> Par_Func
,
4820 Ret_Typ
=> Return_Obj_Typ
,
4821 Alloc_Expr
=> Heap_Allocator
)))),
4823 Else_Statements
=> New_List
(
4825 Build_Heap_Allocator
4826 (Temp_Id
=> Alloc_Obj_Id
,
4827 Temp_Typ
=> Ref_Type
,
4828 Func_Id
=> Par_Func
,
4829 Ret_Typ
=> Return_Obj_Typ
,
4830 Alloc_Expr
=> Pool_Allocator
)));
4832 -- If a separate initialization assignment was created
4833 -- earlier, append that following the assignment of the
4834 -- implicit access formal to the access object, to ensure
4835 -- that the return object is initialized in that case. In
4836 -- this situation, the target of the assignment must be
4837 -- rewritten to denote a dereference of the access to the
4838 -- return object passed in by the caller.
4840 if Present
(Init_Assignment
) then
4841 Rewrite
(Name
(Init_Assignment
),
4842 Make_Explicit_Dereference
(Loc
,
4843 Prefix
=> New_Occurrence_Of
(Alloc_Obj_Id
, Loc
)));
4846 (Name
(Init_Assignment
), Etype
(Return_Obj_Id
));
4849 (Then_Statements
(Alloc_If_Stmt
), Init_Assignment
);
4852 Insert_Before
(Ret_Obj_Decl
, Alloc_If_Stmt
);
4854 -- Remember the local access object for use in the
4855 -- dereference of the renaming created below.
4857 Object_Access
:= Alloc_Obj_Id
;
4861 -- Replace the return object declaration with a renaming of a
4862 -- dereference of the access value designating the return
4866 Make_Explicit_Dereference
(Loc
,
4867 Prefix
=> New_Occurrence_Of
(Object_Access
, Loc
));
4869 Rewrite
(Ret_Obj_Decl
,
4870 Make_Object_Renaming_Declaration
(Loc
,
4871 Defining_Identifier
=> Return_Obj_Id
,
4872 Access_Definition
=> Empty
,
4874 New_Occurrence_Of
(Return_Obj_Typ
, Loc
),
4875 Name
=> Obj_Acc_Deref
));
4877 Set_Renamed_Object
(Return_Obj_Id
, Obj_Acc_Deref
);
4881 -- Case where we do not build a block
4884 -- We're about to drop Return_Object_Declarations on the floor, so
4885 -- we need to insert it, in case it got expanded into useful code.
4886 -- Remove side effects from expression, which may be duplicated in
4887 -- subsequent checks (see Expand_Simple_Function_Return).
4889 Insert_List_Before
(N
, Return_Object_Declarations
(N
));
4890 Remove_Side_Effects
(Exp
);
4892 -- Build simple_return_statement that returns the expression directly
4894 Return_Stmt
:= Make_Simple_Return_Statement
(Loc
, Expression
=> Exp
);
4895 Result
:= Return_Stmt
;
4898 -- Set the flag to prevent infinite recursion
4900 Set_Comes_From_Extended_Return_Statement
(Return_Stmt
);
4902 Rewrite
(N
, Result
);
4904 end Expand_N_Extended_Return_Statement
;
4906 ----------------------------
4907 -- Expand_N_Function_Call --
4908 ----------------------------
4910 procedure Expand_N_Function_Call
(N
: Node_Id
) is
4913 end Expand_N_Function_Call
;
4915 ---------------------------------------
4916 -- Expand_N_Procedure_Call_Statement --
4917 ---------------------------------------
4919 procedure Expand_N_Procedure_Call_Statement
(N
: Node_Id
) is
4922 end Expand_N_Procedure_Call_Statement
;
4924 --------------------------------------
4925 -- Expand_N_Simple_Return_Statement --
4926 --------------------------------------
4928 procedure Expand_N_Simple_Return_Statement
(N
: Node_Id
) is
4930 -- Defend against previous errors (i.e. the return statement calls a
4931 -- function that is not available in configurable runtime).
4933 if Present
(Expression
(N
))
4934 and then Nkind
(Expression
(N
)) = N_Empty
4936 Check_Error_Detected
;
4940 -- Distinguish the function and non-function cases:
4942 case Ekind
(Return_Applies_To
(Return_Statement_Entity
(N
))) is
4945 E_Generic_Function
=>
4946 Expand_Simple_Function_Return
(N
);
4949 E_Generic_Procedure |
4952 E_Return_Statement
=>
4953 Expand_Non_Function_Return
(N
);
4956 raise Program_Error
;
4960 when RE_Not_Available
=>
4962 end Expand_N_Simple_Return_Statement
;
4964 ------------------------------
4965 -- Expand_N_Subprogram_Body --
4966 ------------------------------
4968 -- Add poll call if ATC polling is enabled, unless the body will be inlined
4971 -- Add dummy push/pop label nodes at start and end to clear any local
4972 -- exception indications if local-exception-to-goto optimization is active.
4974 -- Add return statement if last statement in body is not a return statement
4975 -- (this makes things easier on Gigi which does not want to have to handle
4976 -- a missing return).
4978 -- Add call to Activate_Tasks if body is a task activator
4980 -- Deal with possible detection of infinite recursion
4982 -- Eliminate body completely if convention stubbed
4984 -- Encode entity names within body, since we will not need to reference
4985 -- these entities any longer in the front end.
4987 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
4989 -- Reset Pure indication if any parameter has root type System.Address
4990 -- or has any parameters of limited types, where limited means that the
4991 -- run-time view is limited (i.e. the full type is limited).
4995 procedure Expand_N_Subprogram_Body
(N
: Node_Id
) is
4996 Loc
: constant Source_Ptr
:= Sloc
(N
);
4997 H
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
4998 Body_Id
: Entity_Id
;
5001 Spec_Id
: Entity_Id
;
5003 procedure Add_Return
(S
: List_Id
);
5004 -- Append a return statement to the statement sequence S if the last
5005 -- statement is not already a return or a goto statement. Note that
5006 -- the latter test is not critical, it does not matter if we add a few
5007 -- extra returns, since they get eliminated anyway later on.
5013 procedure Add_Return
(S
: List_Id
) is
5014 Last_Stmt
: Node_Id
;
5019 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5020 -- not relevant in this context since they are not executable.
5022 Last_Stmt
:= Last
(S
);
5023 while Nkind
(Last_Stmt
) in N_Pop_xxx_Label
loop
5027 -- Now insert return unless last statement is a transfer
5029 if not Is_Transfer
(Last_Stmt
) then
5031 -- The source location for the return is the end label of the
5032 -- procedure if present. Otherwise use the sloc of the last
5033 -- statement in the list. If the list comes from a generated
5034 -- exception handler and we are not debugging generated code,
5035 -- all the statements within the handler are made invisible
5038 if Nkind
(Parent
(S
)) = N_Exception_Handler
5039 and then not Comes_From_Source
(Parent
(S
))
5041 Loc
:= Sloc
(Last_Stmt
);
5042 elsif Present
(End_Label
(H
)) then
5043 Loc
:= Sloc
(End_Label
(H
));
5045 Loc
:= Sloc
(Last_Stmt
);
5048 -- Append return statement, and set analyzed manually. We can't
5049 -- call Analyze on this return since the scope is wrong.
5051 -- Note: it almost works to push the scope and then do the Analyze
5052 -- call, but something goes wrong in some weird cases and it is
5053 -- not worth worrying about ???
5055 Stmt
:= Make_Simple_Return_Statement
(Loc
);
5057 -- The return statement is handled properly, and the call to the
5058 -- postcondition, inserted below, does not require information
5059 -- from the body either. However, that call is analyzed in the
5060 -- enclosing scope, and an elaboration check might improperly be
5061 -- added to it. A guard in Sem_Elab is needed to prevent that
5062 -- spurious check, see Check_Elab_Call.
5064 Append_To
(S
, Stmt
);
5065 Set_Analyzed
(Stmt
);
5067 -- Call the _Postconditions procedure if the related subprogram
5068 -- has contract assertions that need to be verified on exit.
5070 if Ekind
(Spec_Id
) = E_Procedure
5071 and then Present
(Postconditions_Proc
(Spec_Id
))
5073 Insert_Action
(Stmt
,
5074 Make_Procedure_Call_Statement
(Loc
,
5076 New_Occurrence_Of
(Postconditions_Proc
(Spec_Id
), Loc
)));
5081 -- Start of processing for Expand_N_Subprogram_Body
5084 -- Set L to either the list of declarations if present, or to the list
5085 -- of statements if no declarations are present. This is used to insert
5086 -- new stuff at the start.
5088 if Is_Non_Empty_List
(Declarations
(N
)) then
5089 L
:= Declarations
(N
);
5091 L
:= Statements
(H
);
5094 -- If local-exception-to-goto optimization active, insert dummy push
5095 -- statements at start, and dummy pop statements at end, but inhibit
5096 -- this if we have No_Exception_Handlers, since they are useless and
5097 -- intefere with analysis, e.g. by codepeer.
5099 if (Debug_Flag_Dot_G
5100 or else Restriction_Active
(No_Exception_Propagation
))
5101 and then not Restriction_Active
(No_Exception_Handlers
)
5102 and then not CodePeer_Mode
5103 and then Is_Non_Empty_List
(L
)
5106 FS
: constant Node_Id
:= First
(L
);
5107 FL
: constant Source_Ptr
:= Sloc
(FS
);
5112 -- LS points to either last statement, if statements are present
5113 -- or to the last declaration if there are no statements present.
5114 -- It is the node after which the pop's are generated.
5116 if Is_Non_Empty_List
(Statements
(H
)) then
5117 LS
:= Last
(Statements
(H
));
5124 Insert_List_Before_And_Analyze
(FS
, New_List
(
5125 Make_Push_Constraint_Error_Label
(FL
),
5126 Make_Push_Program_Error_Label
(FL
),
5127 Make_Push_Storage_Error_Label
(FL
)));
5129 Insert_List_After_And_Analyze
(LS
, New_List
(
5130 Make_Pop_Constraint_Error_Label
(LL
),
5131 Make_Pop_Program_Error_Label
(LL
),
5132 Make_Pop_Storage_Error_Label
(LL
)));
5136 -- Find entity for subprogram
5138 Body_Id
:= Defining_Entity
(N
);
5140 if Present
(Corresponding_Spec
(N
)) then
5141 Spec_Id
:= Corresponding_Spec
(N
);
5146 -- Need poll on entry to subprogram if polling enabled. We only do this
5147 -- for non-empty subprograms, since it does not seem necessary to poll
5148 -- for a dummy null subprogram.
5150 if Is_Non_Empty_List
(L
) then
5152 -- Do not add a polling call if the subprogram is to be inlined by
5153 -- the back-end, to avoid repeated calls with multiple inlinings.
5155 if Is_Inlined
(Spec_Id
)
5156 and then Front_End_Inlining
5157 and then Optimization_Level
> 1
5161 Generate_Poll_Call
(First
(L
));
5165 -- If this is a Pure function which has any parameters whose root type
5166 -- is System.Address, reset the Pure indication, since it will likely
5167 -- cause incorrect code to be generated as the parameter is probably
5168 -- a pointer, and the fact that the same pointer is passed does not mean
5169 -- that the same value is being referenced.
5171 -- Note that if the programmer gave an explicit Pure_Function pragma,
5172 -- then we believe the programmer, and leave the subprogram Pure.
5174 -- This code should probably be at the freeze point, so that it happens
5175 -- even on a -gnatc (or more importantly -gnatt) compile, so that the
5176 -- semantic tree has Is_Pure set properly ???
5178 if Is_Pure
(Spec_Id
)
5179 and then Is_Subprogram
(Spec_Id
)
5180 and then not Has_Pragma_Pure_Function
(Spec_Id
)
5186 F
:= First_Formal
(Spec_Id
);
5187 while Present
(F
) loop
5188 if Is_Descendent_Of_Address
(Etype
(F
))
5190 -- Note that this test is being made in the body of the
5191 -- subprogram, not the spec, so we are testing the full
5192 -- type for being limited here, as required.
5194 or else Is_Limited_Type
(Etype
(F
))
5196 Set_Is_Pure
(Spec_Id
, False);
5198 if Spec_Id
/= Body_Id
then
5199 Set_Is_Pure
(Body_Id
, False);
5210 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5212 if Init_Or_Norm_Scalars
and then Is_Subprogram
(Spec_Id
) then
5218 -- Loop through formals
5220 F
:= First_Formal
(Spec_Id
);
5221 while Present
(F
) loop
5222 if Is_Scalar_Type
(Etype
(F
))
5223 and then Ekind
(F
) = E_Out_Parameter
5225 Check_Restriction
(No_Default_Initialization
, F
);
5227 -- Insert the initialization. We turn off validity checks
5228 -- for this assignment, since we do not want any check on
5229 -- the initial value itself (which may well be invalid).
5230 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
5233 Make_Assignment_Statement
(Loc
,
5234 Name
=> New_Occurrence_Of
(F
, Loc
),
5235 Expression
=> Get_Simple_Init_Val
(Etype
(F
), N
));
5236 Set_Suppress_Assignment_Checks
(A
);
5238 Insert_Before_And_Analyze
(First
(L
),
5239 A
, Suppress
=> Validity_Check
);
5247 -- Clear out statement list for stubbed procedure
5249 if Present
(Corresponding_Spec
(N
)) then
5250 Set_Elaboration_Flag
(N
, Spec_Id
);
5252 if Convention
(Spec_Id
) = Convention_Stubbed
5253 or else Is_Eliminated
(Spec_Id
)
5255 Set_Declarations
(N
, Empty_List
);
5256 Set_Handled_Statement_Sequence
(N
,
5257 Make_Handled_Sequence_Of_Statements
(Loc
,
5258 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
5263 -- Create a set of discriminals for the next protected subprogram body
5265 if Is_List_Member
(N
)
5266 and then Present
(Parent
(List_Containing
(N
)))
5267 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5268 and then Present
(Next_Protected_Operation
(N
))
5270 Set_Discriminals
(Parent
(Base_Type
(Scope
(Spec_Id
))));
5273 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5274 -- subprograms with no specs are not frozen.
5277 Typ
: constant Entity_Id
:= Etype
(Spec_Id
);
5278 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
5281 if not Acts_As_Spec
(N
)
5282 and then Nkind
(Parent
(Parent
(Spec_Id
))) /=
5283 N_Subprogram_Body_Stub
5287 elsif Is_Limited_View
(Typ
) then
5288 Set_Returns_By_Ref
(Spec_Id
);
5290 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
5291 Set_Returns_By_Ref
(Spec_Id
);
5295 -- For a procedure, we add a return for all possible syntactic ends of
5298 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
) then
5299 Add_Return
(Statements
(H
));
5301 if Present
(Exception_Handlers
(H
)) then
5302 Except_H
:= First_Non_Pragma
(Exception_Handlers
(H
));
5303 while Present
(Except_H
) loop
5304 Add_Return
(Statements
(Except_H
));
5305 Next_Non_Pragma
(Except_H
);
5309 -- For a function, we must deal with the case where there is at least
5310 -- one missing return. What we do is to wrap the entire body of the
5311 -- function in a block:
5324 -- raise Program_Error;
5327 -- This approach is necessary because the raise must be signalled to the
5328 -- caller, not handled by any local handler (RM 6.4(11)).
5330 -- Note: we do not need to analyze the constructed sequence here, since
5331 -- it has no handler, and an attempt to analyze the handled statement
5332 -- sequence twice is risky in various ways (e.g. the issue of expanding
5333 -- cleanup actions twice).
5335 elsif Has_Missing_Return
(Spec_Id
) then
5337 Hloc
: constant Source_Ptr
:= Sloc
(H
);
5338 Blok
: constant Node_Id
:=
5339 Make_Block_Statement
(Hloc
,
5340 Handled_Statement_Sequence
=> H
);
5341 Rais
: constant Node_Id
:=
5342 Make_Raise_Program_Error
(Hloc
,
5343 Reason
=> PE_Missing_Return
);
5346 Set_Handled_Statement_Sequence
(N
,
5347 Make_Handled_Sequence_Of_Statements
(Hloc
,
5348 Statements
=> New_List
(Blok
, Rais
)));
5350 Push_Scope
(Spec_Id
);
5357 -- If subprogram contains a parameterless recursive call, then we may
5358 -- have an infinite recursion, so see if we can generate code to check
5359 -- for this possibility if storage checks are not suppressed.
5361 if Ekind
(Spec_Id
) = E_Procedure
5362 and then Has_Recursive_Call
(Spec_Id
)
5363 and then not Storage_Checks_Suppressed
(Spec_Id
)
5365 Detect_Infinite_Recursion
(N
, Spec_Id
);
5368 -- Set to encode entity names in package body before gigi is called
5370 Qualify_Entity_Names
(N
);
5372 -- If we are unnesting procedures, and this is an outer level procedure
5373 -- with nested subprograms, do the unnesting operation now.
5375 if Opt
.Unnest_Subprogram_Mode
5377 -- We are only interested in subprograms (not generic subprograms)
5379 and then Is_Subprogram
(Spec_Id
)
5381 -- Only deal with outer level subprograms. Nested subprograms are
5382 -- handled as part of dealing with the outer level subprogram in
5383 -- which they are nested.
5385 and then Enclosing_Subprogram
(Spec_Id
) = Empty
5387 -- We are only interested in subprograms that have nested subprograms
5389 and then Has_Nested_Subprogram
(Spec_Id
)
5391 Unest_Bodies
.Append
((Spec_Id
, N
));
5393 end Expand_N_Subprogram_Body
;
5395 -----------------------------------
5396 -- Expand_N_Subprogram_Body_Stub --
5397 -----------------------------------
5399 procedure Expand_N_Subprogram_Body_Stub
(N
: Node_Id
) is
5401 if Present
(Corresponding_Body
(N
)) then
5402 Expand_N_Subprogram_Body
(
5403 Unit_Declaration_Node
(Corresponding_Body
(N
)));
5405 end Expand_N_Subprogram_Body_Stub
;
5407 -------------------------------------
5408 -- Expand_N_Subprogram_Declaration --
5409 -------------------------------------
5411 -- If the declaration appears within a protected body, it is a private
5412 -- operation of the protected type. We must create the corresponding
5413 -- protected subprogram an associated formals. For a normal protected
5414 -- operation, this is done when expanding the protected type declaration.
5416 -- If the declaration is for a null procedure, emit null body
5418 procedure Expand_N_Subprogram_Declaration
(N
: Node_Id
) is
5419 Loc
: constant Source_Ptr
:= Sloc
(N
);
5420 Subp
: constant Entity_Id
:= Defining_Entity
(N
);
5421 Scop
: constant Entity_Id
:= Scope
(Subp
);
5422 Prot_Decl
: Node_Id
;
5424 Prot_Id
: Entity_Id
;
5427 -- In SPARK, subprogram declarations are only allowed in package
5430 if Nkind
(Parent
(N
)) /= N_Package_Specification
then
5431 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5432 Check_SPARK_05_Restriction
5433 ("subprogram declaration is not a library item", N
);
5435 elsif Present
(Next
(N
))
5436 and then Nkind
(Next
(N
)) = N_Pragma
5437 and then Get_Pragma_Id
(Pragma_Name
(Next
(N
))) = Pragma_Import
5439 -- In SPARK, subprogram declarations are also permitted in
5440 -- declarative parts when immediately followed by a corresponding
5441 -- pragma Import. We only check here that there is some pragma
5446 Check_SPARK_05_Restriction
5447 ("subprogram declaration is not allowed here", N
);
5451 -- Deal with case of protected subprogram. Do not generate protected
5452 -- operation if operation is flagged as eliminated.
5454 if Is_List_Member
(N
)
5455 and then Present
(Parent
(List_Containing
(N
)))
5456 and then Nkind
(Parent
(List_Containing
(N
))) = N_Protected_Body
5457 and then Is_Protected_Type
(Scop
)
5459 if No
(Protected_Body_Subprogram
(Subp
))
5460 and then not Is_Eliminated
(Subp
)
5463 Make_Subprogram_Declaration
(Loc
,
5465 Build_Protected_Sub_Specification
5466 (N
, Scop
, Unprotected_Mode
));
5468 -- The protected subprogram is declared outside of the protected
5469 -- body. Given that the body has frozen all entities so far, we
5470 -- analyze the subprogram and perform freezing actions explicitly.
5471 -- including the generation of an explicit freeze node, to ensure
5472 -- that gigi has the proper order of elaboration.
5473 -- If the body is a subunit, the insertion point is before the
5474 -- stub in the parent.
5476 Prot_Bod
:= Parent
(List_Containing
(N
));
5478 if Nkind
(Parent
(Prot_Bod
)) = N_Subunit
then
5479 Prot_Bod
:= Corresponding_Stub
(Parent
(Prot_Bod
));
5482 Insert_Before
(Prot_Bod
, Prot_Decl
);
5483 Prot_Id
:= Defining_Unit_Name
(Specification
(Prot_Decl
));
5484 Set_Has_Delayed_Freeze
(Prot_Id
);
5486 Push_Scope
(Scope
(Scop
));
5487 Analyze
(Prot_Decl
);
5488 Freeze_Before
(N
, Prot_Id
);
5489 Set_Protected_Body_Subprogram
(Subp
, Prot_Id
);
5491 -- Create protected operation as well. Even though the operation
5492 -- is only accessible within the body, it is possible to make it
5493 -- available outside of the protected object by using 'Access to
5494 -- provide a callback, so build protected version in all cases.
5497 Make_Subprogram_Declaration
(Loc
,
5499 Build_Protected_Sub_Specification
(N
, Scop
, Protected_Mode
));
5500 Insert_Before
(Prot_Bod
, Prot_Decl
);
5501 Analyze
(Prot_Decl
);
5506 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
5507 -- cases this is superfluous because calls to it will be automatically
5508 -- inlined, but we definitely need the body if preconditions for the
5509 -- procedure are present.
5511 elsif Nkind
(Specification
(N
)) = N_Procedure_Specification
5512 and then Null_Present
(Specification
(N
))
5515 Bod
: constant Node_Id
:= Body_To_Inline
(N
);
5518 Set_Has_Completion
(Subp
, False);
5519 Append_Freeze_Action
(Subp
, Bod
);
5521 -- The body now contains raise statements, so calls to it will
5524 Set_Is_Inlined
(Subp
, False);
5527 end Expand_N_Subprogram_Declaration
;
5529 --------------------------------
5530 -- Expand_Non_Function_Return --
5531 --------------------------------
5533 procedure Expand_Non_Function_Return
(N
: Node_Id
) is
5534 pragma Assert
(No
(Expression
(N
)));
5536 Loc
: constant Source_Ptr
:= Sloc
(N
);
5537 Scope_Id
: Entity_Id
:= Return_Applies_To
(Return_Statement_Entity
(N
));
5538 Kind
: constant Entity_Kind
:= Ekind
(Scope_Id
);
5541 Goto_Stat
: Node_Id
;
5545 -- Call the _Postconditions procedure if the related subprogram has
5546 -- contract assertions that need to be verified on exit.
5548 if Ekind_In
(Scope_Id
, E_Entry
, E_Entry_Family
, E_Procedure
)
5549 and then Present
(Postconditions_Proc
(Scope_Id
))
5552 Make_Procedure_Call_Statement
(Loc
,
5553 Name
=> New_Occurrence_Of
(Postconditions_Proc
(Scope_Id
), Loc
)));
5556 -- If it is a return from a procedure do no extra steps
5558 if Kind
= E_Procedure
or else Kind
= E_Generic_Procedure
then
5561 -- If it is a nested return within an extended one, replace it with a
5562 -- return of the previously declared return object.
5564 elsif Kind
= E_Return_Statement
then
5566 Make_Simple_Return_Statement
(Loc
,
5568 New_Occurrence_Of
(First_Entity
(Scope_Id
), Loc
)));
5569 Set_Comes_From_Extended_Return_Statement
(N
);
5570 Set_Return_Statement_Entity
(N
, Scope_Id
);
5571 Expand_Simple_Function_Return
(N
);
5575 pragma Assert
(Is_Entry
(Scope_Id
));
5577 -- Look at the enclosing block to see whether the return is from an
5578 -- accept statement or an entry body.
5580 for J
in reverse 0 .. Scope_Stack
.Last
loop
5581 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
5582 exit when Is_Concurrent_Type
(Scope_Id
);
5585 -- If it is a return from accept statement it is expanded as call to
5586 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
5588 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
5589 -- Expand_N_Accept_Alternative in exp_ch9.adb)
5591 if Is_Task_Type
(Scope_Id
) then
5594 Make_Procedure_Call_Statement
(Loc
,
5595 Name
=> New_Occurrence_Of
(RTE
(RE_Complete_Rendezvous
), Loc
));
5596 Insert_Before
(N
, Call
);
5597 -- why not insert actions here???
5600 Acc_Stat
:= Parent
(N
);
5601 while Nkind
(Acc_Stat
) /= N_Accept_Statement
loop
5602 Acc_Stat
:= Parent
(Acc_Stat
);
5605 Lab_Node
:= Last
(Statements
5606 (Handled_Statement_Sequence
(Acc_Stat
)));
5608 Goto_Stat
:= Make_Goto_Statement
(Loc
,
5609 Name
=> New_Occurrence_Of
5610 (Entity
(Identifier
(Lab_Node
)), Loc
));
5612 Set_Analyzed
(Goto_Stat
);
5614 Rewrite
(N
, Goto_Stat
);
5617 -- If it is a return from an entry body, put a Complete_Entry_Body call
5618 -- in front of the return.
5620 elsif Is_Protected_Type
(Scope_Id
) then
5622 Make_Procedure_Call_Statement
(Loc
,
5624 New_Occurrence_Of
(RTE
(RE_Complete_Entry_Body
), Loc
),
5625 Parameter_Associations
=> New_List
(
5626 Make_Attribute_Reference
(Loc
,
5629 (Find_Protection_Object
(Current_Scope
), Loc
),
5630 Attribute_Name
=> Name_Unchecked_Access
)));
5632 Insert_Before
(N
, Call
);
5635 end Expand_Non_Function_Return
;
5637 ---------------------------------------
5638 -- Expand_Protected_Object_Reference --
5639 ---------------------------------------
5641 function Expand_Protected_Object_Reference
5643 Scop
: Entity_Id
) return Node_Id
5645 Loc
: constant Source_Ptr
:= Sloc
(N
);
5652 Rec
:= Make_Identifier
(Loc
, Name_uObject
);
5653 Set_Etype
(Rec
, Corresponding_Record_Type
(Scop
));
5655 -- Find enclosing protected operation, and retrieve its first parameter,
5656 -- which denotes the enclosing protected object. If the enclosing
5657 -- operation is an entry, we are immediately within the protected body,
5658 -- and we can retrieve the object from the service entries procedure. A
5659 -- barrier function has the same signature as an entry. A barrier
5660 -- function is compiled within the protected object, but unlike
5661 -- protected operations its never needs locks, so that its protected
5662 -- body subprogram points to itself.
5664 Proc
:= Current_Scope
;
5665 while Present
(Proc
)
5666 and then Scope
(Proc
) /= Scop
5668 Proc
:= Scope
(Proc
);
5671 Corr
:= Protected_Body_Subprogram
(Proc
);
5675 -- Previous error left expansion incomplete.
5676 -- Nothing to do on this call.
5683 (First
(Parameter_Specifications
(Parent
(Corr
))));
5685 if Is_Subprogram
(Proc
) and then Proc
/= Corr
then
5687 -- Protected function or procedure
5689 Set_Entity
(Rec
, Param
);
5691 -- Rec is a reference to an entity which will not be in scope when
5692 -- the call is reanalyzed, and needs no further analysis.
5697 -- Entry or barrier function for entry body. The first parameter of
5698 -- the entry body procedure is pointer to the object. We create a
5699 -- local variable of the proper type, duplicating what is done to
5700 -- define _object later on.
5704 Obj_Ptr
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
5708 Make_Full_Type_Declaration
(Loc
,
5709 Defining_Identifier
=> Obj_Ptr
,
5711 Make_Access_To_Object_Definition
(Loc
,
5712 Subtype_Indication
=>
5714 (Corresponding_Record_Type
(Scop
), Loc
))));
5716 Insert_Actions
(N
, Decls
);
5717 Freeze_Before
(N
, Obj_Ptr
);
5720 Make_Explicit_Dereference
(Loc
,
5722 Unchecked_Convert_To
(Obj_Ptr
,
5723 New_Occurrence_Of
(Param
, Loc
)));
5725 -- Analyze new actual. Other actuals in calls are already analyzed
5726 -- and the list of actuals is not reanalyzed after rewriting.
5728 Set_Parent
(Rec
, N
);
5734 end Expand_Protected_Object_Reference
;
5736 --------------------------------------
5737 -- Expand_Protected_Subprogram_Call --
5738 --------------------------------------
5740 procedure Expand_Protected_Subprogram_Call
5747 procedure Freeze_Called_Function
;
5748 -- If it is a function call it can appear in elaboration code and
5749 -- the called entity must be frozen before the call. This must be
5750 -- done before the call is expanded, as the expansion may rewrite it
5751 -- to something other than a call (e.g. a temporary initialized in a
5752 -- transient block).
5754 ----------------------------
5755 -- Freeze_Called_Function --
5756 ----------------------------
5758 procedure Freeze_Called_Function
is
5760 if Ekind
(Subp
) = E_Function
then
5761 Freeze_Expression
(Name
(N
));
5763 end Freeze_Called_Function
;
5765 -- Start of processing for Expand_Protected_Subprogram_Call
5768 -- If the protected object is not an enclosing scope, this is an inter-
5769 -- object function call. Inter-object procedure calls are expanded by
5770 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
5771 -- subprogram being called is in the protected body being compiled, and
5772 -- if the protected object in the call is statically the enclosing type.
5773 -- The object may be an component of some other data structure, in which
5774 -- case this must be handled as an inter-object call.
5776 if not In_Open_Scopes
(Scop
)
5777 or else not Is_Entity_Name
(Name
(N
))
5779 if Nkind
(Name
(N
)) = N_Selected_Component
then
5780 Rec
:= Prefix
(Name
(N
));
5783 pragma Assert
(Nkind
(Name
(N
)) = N_Indexed_Component
);
5784 Rec
:= Prefix
(Prefix
(Name
(N
)));
5787 Freeze_Called_Function
;
5788 Build_Protected_Subprogram_Call
(N
,
5789 Name
=> New_Occurrence_Of
(Subp
, Sloc
(N
)),
5790 Rec
=> Convert_Concurrent
(Rec
, Etype
(Rec
)),
5794 Rec
:= Expand_Protected_Object_Reference
(N
, Scop
);
5800 Freeze_Called_Function
;
5801 Build_Protected_Subprogram_Call
(N
,
5808 -- Analyze and resolve the new call. The actuals have already been
5809 -- resolved, but expansion of a function call will add extra actuals
5810 -- if needed. Analysis of a procedure call already includes resolution.
5814 if Ekind
(Subp
) = E_Function
then
5815 Resolve
(N
, Etype
(Subp
));
5817 end Expand_Protected_Subprogram_Call
;
5819 -----------------------------------
5820 -- Expand_Simple_Function_Return --
5821 -----------------------------------
5823 -- The "simple" comes from the syntax rule simple_return_statement. The
5824 -- semantics are not at all simple.
5826 procedure Expand_Simple_Function_Return
(N
: Node_Id
) is
5827 Loc
: constant Source_Ptr
:= Sloc
(N
);
5829 Scope_Id
: constant Entity_Id
:=
5830 Return_Applies_To
(Return_Statement_Entity
(N
));
5831 -- The function we are returning from
5833 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
5834 -- The result type of the function
5836 Utyp
: constant Entity_Id
:= Underlying_Type
(R_Type
);
5838 Exp
: constant Node_Id
:= Expression
(N
);
5839 pragma Assert
(Present
(Exp
));
5841 Exptyp
: constant Entity_Id
:= Etype
(Exp
);
5842 -- The type of the expression (not necessarily the same as R_Type)
5844 Subtype_Ind
: Node_Id
;
5845 -- If the result type of the function is class-wide and the expression
5846 -- has a specific type, then we use the expression's type as the type of
5847 -- the return object. In cases where the expression is an aggregate that
5848 -- is built in place, this avoids the need for an expensive conversion
5849 -- of the return object to the specific type on assignments to the
5850 -- individual components.
5853 if Is_Class_Wide_Type
(R_Type
)
5854 and then not Is_Class_Wide_Type
(Etype
(Exp
))
5856 Subtype_Ind
:= New_Occurrence_Of
(Etype
(Exp
), Loc
);
5858 Subtype_Ind
:= New_Occurrence_Of
(R_Type
, Loc
);
5861 -- For the case of a simple return that does not come from an extended
5862 -- return, in the case of Ada 2005 where we are returning a limited
5863 -- type, we rewrite "return <expression>;" to be:
5865 -- return _anon_ : <return_subtype> := <expression>
5867 -- The expansion produced by Expand_N_Extended_Return_Statement will
5868 -- contain simple return statements (for example, a block containing
5869 -- simple return of the return object), which brings us back here with
5870 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
5871 -- checking for a simple return that does not come from an extended
5872 -- return is to avoid this infinite recursion.
5874 -- The reason for this design is that for Ada 2005 limited returns, we
5875 -- need to reify the return object, so we can build it "in place", and
5876 -- we need a block statement to hang finalization and tasking stuff.
5878 -- ??? In order to avoid disruption, we avoid translating to extended
5879 -- return except in the cases where we really need to (Ada 2005 for
5880 -- inherently limited). We might prefer to do this translation in all
5881 -- cases (except perhaps for the case of Ada 95 inherently limited),
5882 -- in order to fully exercise the Expand_N_Extended_Return_Statement
5883 -- code. This would also allow us to do the build-in-place optimization
5884 -- for efficiency even in cases where it is semantically not required.
5886 -- As before, we check the type of the return expression rather than the
5887 -- return type of the function, because the latter may be a limited
5888 -- class-wide interface type, which is not a limited type, even though
5889 -- the type of the expression may be.
5891 if not Comes_From_Extended_Return_Statement
(N
)
5892 and then Is_Limited_View
(Etype
(Expression
(N
)))
5893 and then Ada_Version
>= Ada_2005
5894 and then not Debug_Flag_Dot_L
5896 -- The functionality of interface thunks is simple and it is always
5897 -- handled by means of simple return statements. This leaves their
5898 -- expansion simple and clean.
5900 and then not Is_Thunk
(Current_Scope
)
5903 Return_Object_Entity
: constant Entity_Id
:=
5904 Make_Temporary
(Loc
, 'R', Exp
);
5906 Obj_Decl
: constant Node_Id
:=
5907 Make_Object_Declaration
(Loc
,
5908 Defining_Identifier
=> Return_Object_Entity
,
5909 Object_Definition
=> Subtype_Ind
,
5912 Ext
: constant Node_Id
:=
5913 Make_Extended_Return_Statement
(Loc
,
5914 Return_Object_Declarations
=> New_List
(Obj_Decl
));
5915 -- Do not perform this high-level optimization if the result type
5916 -- is an interface because the "this" pointer must be displaced.
5925 -- Here we have a simple return statement that is part of the expansion
5926 -- of an extended return statement (either written by the user, or
5927 -- generated by the above code).
5929 -- Always normalize C/Fortran boolean result. This is not always needed,
5930 -- but it seems a good idea to minimize the passing around of non-
5931 -- normalized values, and in any case this handles the processing of
5932 -- barrier functions for protected types, which turn the condition into
5933 -- a return statement.
5935 if Is_Boolean_Type
(Exptyp
)
5936 and then Nonzero_Is_True
(Exptyp
)
5938 Adjust_Condition
(Exp
);
5939 Adjust_Result_Type
(Exp
, Exptyp
);
5942 -- Do validity check if enabled for returns
5944 if Validity_Checks_On
5945 and then Validity_Check_Returns
5950 -- Check the result expression of a scalar function against the subtype
5951 -- of the function by inserting a conversion. This conversion must
5952 -- eventually be performed for other classes of types, but for now it's
5953 -- only done for scalars.
5956 if Is_Scalar_Type
(Exptyp
) then
5957 Rewrite
(Exp
, Convert_To
(R_Type
, Exp
));
5959 -- The expression is resolved to ensure that the conversion gets
5960 -- expanded to generate a possible constraint check.
5962 Analyze_And_Resolve
(Exp
, R_Type
);
5965 -- Deal with returning variable length objects and controlled types
5967 -- Nothing to do if we are returning by reference, or this is not a
5968 -- type that requires special processing (indicated by the fact that
5969 -- it requires a cleanup scope for the secondary stack case).
5971 if Is_Limited_View
(Exptyp
)
5972 or else Is_Limited_Interface
(Exptyp
)
5976 -- No copy needed for thunks returning interface type objects since
5977 -- the object is returned by reference and the maximum functionality
5978 -- required is just to displace the pointer.
5980 elsif Is_Thunk
(Current_Scope
) and then Is_Interface
(Exptyp
) then
5983 -- If the call is within a thunk and the type is a limited view, the
5984 -- backend will eventually see the non-limited view of the type.
5986 elsif Is_Thunk
(Current_Scope
) and then Is_Incomplete_Type
(Exptyp
) then
5989 elsif not Requires_Transient_Scope
(R_Type
) then
5991 -- Mutable records with no variable length components are not
5992 -- returned on the sec-stack, so we need to make sure that the
5993 -- backend will only copy back the size of the actual value, and not
5994 -- the maximum size. We create an actual subtype for this purpose.
5997 Ubt
: constant Entity_Id
:= Underlying_Type
(Base_Type
(Exptyp
));
6001 if Has_Discriminants
(Ubt
)
6002 and then not Is_Constrained
(Ubt
)
6003 and then not Has_Unchecked_Union
(Ubt
)
6005 Decl
:= Build_Actual_Subtype
(Ubt
, Exp
);
6006 Ent
:= Defining_Identifier
(Decl
);
6007 Insert_Action
(Exp
, Decl
);
6008 Rewrite
(Exp
, Unchecked_Convert_To
(Ent
, Exp
));
6009 Analyze_And_Resolve
(Exp
);
6013 -- Here if secondary stack is used
6016 -- Prevent the reclamation of the secondary stack by all enclosing
6017 -- blocks and loops as well as the related function, otherwise the
6018 -- result will be reclaimed too early or even clobbered. Due to a
6019 -- possible mix of internally generated blocks, source blocks and
6020 -- loops, the scope stack may not be contiguous as all labels are
6021 -- inserted at the top level within the related function. Instead,
6022 -- perform a parent-based traversal and mark all appropriate
6030 while Present
(P
) loop
6032 -- Mark the label of a source or internally generated block or
6035 if Nkind_In
(P
, N_Block_Statement
, N_Loop_Statement
) then
6036 Set_Sec_Stack_Needed_For_Return
(Entity
(Identifier
(P
)));
6038 -- Mark the enclosing function
6040 elsif Nkind
(P
) = N_Subprogram_Body
then
6041 if Present
(Corresponding_Spec
(P
)) then
6042 Set_Sec_Stack_Needed_For_Return
(Corresponding_Spec
(P
));
6044 Set_Sec_Stack_Needed_For_Return
(Defining_Entity
(P
));
6047 -- Do not go beyond the enclosing function
6056 -- Optimize the case where the result is a function call. In this
6057 -- case either the result is already on the secondary stack, or is
6058 -- already being returned with the stack pointer depressed and no
6059 -- further processing is required except to set the By_Ref flag
6060 -- to ensure that gigi does not attempt an extra unnecessary copy.
6061 -- (actually not just unnecessary but harmfully wrong in the case
6062 -- of a controlled type, where gigi does not know how to do a copy).
6063 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6064 -- for array types if the constrained status of the target type is
6065 -- different from that of the expression.
6067 if Requires_Transient_Scope
(Exptyp
)
6069 (not Is_Array_Type
(Exptyp
)
6070 or else Is_Constrained
(Exptyp
) = Is_Constrained
(R_Type
)
6071 or else CW_Or_Has_Controlled_Part
(Utyp
))
6072 and then Nkind
(Exp
) = N_Function_Call
6076 -- Remove side effects from the expression now so that other parts
6077 -- of the expander do not have to reanalyze this node without this
6080 Rewrite
(Exp
, Duplicate_Subexpr_No_Checks
(Exp
));
6082 -- For controlled types, do the allocation on the secondary stack
6083 -- manually in order to call adjust at the right time:
6085 -- type Anon1 is access R_Type;
6086 -- for Anon1'Storage_pool use ss_pool;
6087 -- Anon2 : anon1 := new R_Type'(expr);
6088 -- return Anon2.all;
6090 -- We do the same for classwide types that are not potentially
6091 -- controlled (by the virtue of restriction No_Finalization) because
6092 -- gigi is not able to properly allocate class-wide types.
6094 elsif CW_Or_Has_Controlled_Part
(Utyp
) then
6096 Loc
: constant Source_Ptr
:= Sloc
(N
);
6097 Acc_Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
6098 Alloc_Node
: Node_Id
;
6102 Set_Ekind
(Acc_Typ
, E_Access_Type
);
6104 Set_Associated_Storage_Pool
(Acc_Typ
, RTE
(RE_SS_Pool
));
6106 -- This is an allocator for the secondary stack, and it's fine
6107 -- to have Comes_From_Source set False on it, as gigi knows not
6108 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6111 Make_Allocator
(Loc
,
6113 Make_Qualified_Expression
(Loc
,
6114 Subtype_Mark
=> New_Occurrence_Of
(Etype
(Exp
), Loc
),
6115 Expression
=> Relocate_Node
(Exp
)));
6117 -- We do not want discriminant checks on the declaration,
6118 -- given that it gets its value from the allocator.
6120 Set_No_Initialization
(Alloc_Node
);
6122 Temp
:= Make_Temporary
(Loc
, 'R', Alloc_Node
);
6124 Insert_List_Before_And_Analyze
(N
, New_List
(
6125 Make_Full_Type_Declaration
(Loc
,
6126 Defining_Identifier
=> Acc_Typ
,
6128 Make_Access_To_Object_Definition
(Loc
,
6129 Subtype_Indication
=> Subtype_Ind
)),
6131 Make_Object_Declaration
(Loc
,
6132 Defining_Identifier
=> Temp
,
6133 Object_Definition
=> New_Occurrence_Of
(Acc_Typ
, Loc
),
6134 Expression
=> Alloc_Node
)));
6137 Make_Explicit_Dereference
(Loc
,
6138 Prefix
=> New_Occurrence_Of
(Temp
, Loc
)));
6140 -- Ada 2005 (AI-251): If the type of the returned object is
6141 -- an interface then add an implicit type conversion to force
6142 -- displacement of the "this" pointer.
6144 if Is_Interface
(R_Type
) then
6145 Rewrite
(Exp
, Convert_To
(R_Type
, Relocate_Node
(Exp
)));
6148 Analyze_And_Resolve
(Exp
, R_Type
);
6151 -- Otherwise use the gigi mechanism to allocate result on the
6155 Check_Restriction
(No_Secondary_Stack
, N
);
6156 Set_Storage_Pool
(N
, RTE
(RE_SS_Pool
));
6158 -- If we are generating code for the VM do not use
6159 -- SS_Allocate since everything is heap-allocated anyway.
6161 if VM_Target
= No_VM
then
6162 Set_Procedure_To_Call
(N
, RTE
(RE_SS_Allocate
));
6167 -- Implement the rules of 6.5(8-10), which require a tag check in
6168 -- the case of a limited tagged return type, and tag reassignment for
6169 -- nonlimited tagged results. These actions are needed when the return
6170 -- type is a specific tagged type and the result expression is a
6171 -- conversion or a formal parameter, because in that case the tag of
6172 -- the expression might differ from the tag of the specific result type.
6174 if Is_Tagged_Type
(Utyp
)
6175 and then not Is_Class_Wide_Type
(Utyp
)
6176 and then (Nkind_In
(Exp
, N_Type_Conversion
,
6177 N_Unchecked_Type_Conversion
)
6178 or else (Is_Entity_Name
(Exp
)
6179 and then Ekind
(Entity
(Exp
)) in Formal_Kind
))
6181 -- When the return type is limited, perform a check that the tag of
6182 -- the result is the same as the tag of the return type.
6184 if Is_Limited_Type
(R_Type
) then
6186 Make_Raise_Constraint_Error
(Loc
,
6190 Make_Selected_Component
(Loc
,
6191 Prefix
=> Duplicate_Subexpr
(Exp
),
6192 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6194 Make_Attribute_Reference
(Loc
,
6196 New_Occurrence_Of
(Base_Type
(Utyp
), Loc
),
6197 Attribute_Name
=> Name_Tag
)),
6198 Reason
=> CE_Tag_Check_Failed
));
6200 -- If the result type is a specific nonlimited tagged type, then we
6201 -- have to ensure that the tag of the result is that of the result
6202 -- type. This is handled by making a copy of the expression in
6203 -- the case where it might have a different tag, namely when the
6204 -- expression is a conversion or a formal parameter. We create a new
6205 -- object of the result type and initialize it from the expression,
6206 -- which will implicitly force the tag to be set appropriately.
6210 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
6211 Result_Id
: constant Entity_Id
:=
6212 Make_Temporary
(Loc
, 'R', ExpR
);
6213 Result_Exp
: constant Node_Id
:=
6214 New_Occurrence_Of
(Result_Id
, Loc
);
6215 Result_Obj
: constant Node_Id
:=
6216 Make_Object_Declaration
(Loc
,
6217 Defining_Identifier
=> Result_Id
,
6218 Object_Definition
=>
6219 New_Occurrence_Of
(R_Type
, Loc
),
6220 Constant_Present
=> True,
6221 Expression
=> ExpR
);
6224 Set_Assignment_OK
(Result_Obj
);
6225 Insert_Action
(Exp
, Result_Obj
);
6227 Rewrite
(Exp
, Result_Exp
);
6228 Analyze_And_Resolve
(Exp
, R_Type
);
6232 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6233 -- a check that the level of the return expression's underlying type
6234 -- is not deeper than the level of the master enclosing the function.
6235 -- Always generate the check when the type of the return expression
6236 -- is class-wide, when it's a type conversion, or when it's a formal
6237 -- parameter. Otherwise, suppress the check in the case where the
6238 -- return expression has a specific type whose level is known not to
6239 -- be statically deeper than the function's result type.
6241 -- No runtime check needed in interface thunks since it is performed
6242 -- by the target primitive associated with the thunk.
6244 -- Note: accessibility check is skipped in the VM case, since there
6245 -- does not seem to be any practical way to implement this check.
6247 elsif Ada_Version
>= Ada_2005
6248 and then Tagged_Type_Expansion
6249 and then Is_Class_Wide_Type
(R_Type
)
6250 and then not Is_Thunk
(Current_Scope
)
6251 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
6253 (Is_Class_Wide_Type
(Etype
(Exp
))
6254 or else Nkind_In
(Exp
, N_Type_Conversion
,
6255 N_Unchecked_Type_Conversion
)
6256 or else (Is_Entity_Name
(Exp
)
6257 and then Ekind
(Entity
(Exp
)) in Formal_Kind
)
6258 or else Scope_Depth
(Enclosing_Dynamic_Scope
(Etype
(Exp
))) >
6259 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))
6265 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6266 -- "this" to reference the base of the object. This is required to
6267 -- get access to the TSD of the object.
6269 if Is_Class_Wide_Type
(Etype
(Exp
))
6270 and then Is_Interface
(Etype
(Exp
))
6272 -- If the expression is an explicit dereference then we can
6273 -- directly displace the pointer to reference the base of
6276 if Nkind
(Exp
) = N_Explicit_Dereference
then
6278 Make_Explicit_Dereference
(Loc
,
6280 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6281 Make_Function_Call
(Loc
,
6283 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6284 Parameter_Associations
=> New_List
(
6285 Unchecked_Convert_To
(RTE
(RE_Address
),
6286 Duplicate_Subexpr
(Prefix
(Exp
)))))));
6288 -- Similar case to the previous one but the expression is a
6289 -- renaming of an explicit dereference.
6291 elsif Nkind
(Exp
) = N_Identifier
6292 and then Present
(Renamed_Object
(Entity
(Exp
)))
6293 and then Nkind
(Renamed_Object
(Entity
(Exp
)))
6294 = N_Explicit_Dereference
6297 Make_Explicit_Dereference
(Loc
,
6299 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6300 Make_Function_Call
(Loc
,
6302 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6303 Parameter_Associations
=> New_List
(
6304 Unchecked_Convert_To
(RTE
(RE_Address
),
6307 (Renamed_Object
(Entity
(Exp
)))))))));
6309 -- Common case: obtain the address of the actual object and
6310 -- displace the pointer to reference the base of the object.
6314 Make_Explicit_Dereference
(Loc
,
6316 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6317 Make_Function_Call
(Loc
,
6319 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
6320 Parameter_Associations
=> New_List
(
6321 Make_Attribute_Reference
(Loc
,
6322 Prefix
=> Duplicate_Subexpr
(Exp
),
6323 Attribute_Name
=> Name_Address
)))));
6327 Make_Attribute_Reference
(Loc
,
6328 Prefix
=> Duplicate_Subexpr
(Exp
),
6329 Attribute_Name
=> Name_Tag
);
6333 Make_Raise_Program_Error
(Loc
,
6336 Left_Opnd
=> Build_Get_Access_Level
(Loc
, Tag_Node
),
6338 Make_Integer_Literal
(Loc
,
6339 Scope_Depth
(Enclosing_Dynamic_Scope
(Scope_Id
)))),
6340 Reason
=> PE_Accessibility_Check_Failed
));
6343 -- AI05-0073: If function has a controlling access result, check that
6344 -- the tag of the return value, if it is not null, matches designated
6345 -- type of return type.
6347 -- The return expression is referenced twice in the code below, so it
6348 -- must be made free of side effects. Given that different compilers
6349 -- may evaluate these parameters in different order, both occurrences
6352 elsif Ekind
(R_Type
) = E_Anonymous_Access_Type
6353 and then Has_Controlling_Result
(Scope_Id
)
6356 Make_Raise_Constraint_Error
(Loc
,
6361 Left_Opnd
=> Duplicate_Subexpr
(Exp
),
6362 Right_Opnd
=> Make_Null
(Loc
)),
6364 Right_Opnd
=> Make_Op_Ne
(Loc
,
6366 Make_Selected_Component
(Loc
,
6367 Prefix
=> Duplicate_Subexpr
(Exp
),
6368 Selector_Name
=> Make_Identifier
(Loc
, Name_uTag
)),
6371 Make_Attribute_Reference
(Loc
,
6373 New_Occurrence_Of
(Designated_Type
(R_Type
), Loc
),
6374 Attribute_Name
=> Name_Tag
))),
6376 Reason
=> CE_Tag_Check_Failed
),
6377 Suppress
=> All_Checks
);
6380 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6381 -- ensure that the function result does not outlive an
6382 -- object designated by one of it discriminants.
6384 if Present
(Extra_Accessibility_Of_Result
(Scope_Id
))
6385 and then Has_Unconstrained_Access_Discriminants
(R_Type
)
6388 Discrim_Source
: Node_Id
;
6390 procedure Check_Against_Result_Level
(Level
: Node_Id
);
6391 -- Check the given accessibility level against the level
6392 -- determined by the point of call. (AI05-0234).
6394 --------------------------------
6395 -- Check_Against_Result_Level --
6396 --------------------------------
6398 procedure Check_Against_Result_Level
(Level
: Node_Id
) is
6401 Make_Raise_Program_Error
(Loc
,
6407 (Extra_Accessibility_Of_Result
(Scope_Id
), Loc
)),
6408 Reason
=> PE_Accessibility_Check_Failed
));
6409 end Check_Against_Result_Level
;
6412 Discrim_Source
:= Exp
;
6413 while Nkind
(Discrim_Source
) = N_Qualified_Expression
loop
6414 Discrim_Source
:= Expression
(Discrim_Source
);
6417 if Nkind
(Discrim_Source
) = N_Identifier
6418 and then Is_Return_Object
(Entity
(Discrim_Source
))
6420 Discrim_Source
:= Entity
(Discrim_Source
);
6422 if Is_Constrained
(Etype
(Discrim_Source
)) then
6423 Discrim_Source
:= Etype
(Discrim_Source
);
6425 Discrim_Source
:= Expression
(Parent
(Discrim_Source
));
6428 elsif Nkind
(Discrim_Source
) = N_Identifier
6429 and then Nkind_In
(Original_Node
(Discrim_Source
),
6430 N_Aggregate
, N_Extension_Aggregate
)
6432 Discrim_Source
:= Original_Node
(Discrim_Source
);
6434 elsif Nkind
(Discrim_Source
) = N_Explicit_Dereference
and then
6435 Nkind
(Original_Node
(Discrim_Source
)) = N_Function_Call
6437 Discrim_Source
:= Original_Node
(Discrim_Source
);
6440 while Nkind_In
(Discrim_Source
, N_Qualified_Expression
,
6442 N_Unchecked_Type_Conversion
)
6444 Discrim_Source
:= Expression
(Discrim_Source
);
6447 case Nkind
(Discrim_Source
) is
6448 when N_Defining_Identifier
=>
6450 pragma Assert
(Is_Composite_Type
(Discrim_Source
)
6451 and then Has_Discriminants
(Discrim_Source
)
6452 and then Is_Constrained
(Discrim_Source
));
6455 Discrim
: Entity_Id
:=
6456 First_Discriminant
(Base_Type
(R_Type
));
6457 Disc_Elmt
: Elmt_Id
:=
6458 First_Elmt
(Discriminant_Constraint
6462 if Ekind
(Etype
(Discrim
)) =
6463 E_Anonymous_Access_Type
6465 Check_Against_Result_Level
6466 (Dynamic_Accessibility_Level
(Node
(Disc_Elmt
)));
6469 Next_Elmt
(Disc_Elmt
);
6470 Next_Discriminant
(Discrim
);
6471 exit when not Present
(Discrim
);
6475 when N_Aggregate | N_Extension_Aggregate
=>
6477 -- Unimplemented: extension aggregate case where discrims
6478 -- come from ancestor part, not extension part.
6481 Discrim
: Entity_Id
:=
6482 First_Discriminant
(Base_Type
(R_Type
));
6484 Disc_Exp
: Node_Id
:= Empty
;
6486 Positionals_Exhausted
6487 : Boolean := not Present
(Expressions
6490 function Associated_Expr
6491 (Comp_Id
: Entity_Id
;
6492 Associations
: List_Id
) return Node_Id
;
6494 -- Given a component and a component associations list,
6495 -- locate the expression for that component; returns
6496 -- Empty if no such expression is found.
6498 ---------------------
6499 -- Associated_Expr --
6500 ---------------------
6502 function Associated_Expr
6503 (Comp_Id
: Entity_Id
;
6504 Associations
: List_Id
) return Node_Id
6510 -- Simple linear search seems ok here
6512 Assoc
:= First
(Associations
);
6513 while Present
(Assoc
) loop
6514 Choice
:= First
(Choices
(Assoc
));
6515 while Present
(Choice
) loop
6516 if (Nkind
(Choice
) = N_Identifier
6517 and then Chars
(Choice
) = Chars
(Comp_Id
))
6518 or else (Nkind
(Choice
) = N_Others_Choice
)
6520 return Expression
(Assoc
);
6530 end Associated_Expr
;
6532 -- Start of processing for Expand_Simple_Function_Return
6535 if not Positionals_Exhausted
then
6536 Disc_Exp
:= First
(Expressions
(Discrim_Source
));
6540 if Positionals_Exhausted
then
6544 Component_Associations
(Discrim_Source
));
6547 if Ekind
(Etype
(Discrim
)) =
6548 E_Anonymous_Access_Type
6550 Check_Against_Result_Level
6551 (Dynamic_Accessibility_Level
(Disc_Exp
));
6554 Next_Discriminant
(Discrim
);
6555 exit when not Present
(Discrim
);
6557 if not Positionals_Exhausted
then
6559 Positionals_Exhausted
:= not Present
(Disc_Exp
);
6564 when N_Function_Call
=>
6566 -- No check needed (check performed by callee)
6573 Level
: constant Node_Id
:=
6574 Make_Integer_Literal
(Loc
,
6575 Object_Access_Level
(Discrim_Source
));
6578 -- Unimplemented: check for name prefix that includes
6579 -- a dereference of an access value with a dynamic
6580 -- accessibility level (e.g., an access param or a
6581 -- saooaaat) and use dynamic level in that case. For
6583 -- return Access_Param.all(Some_Index).Some_Component;
6586 Set_Etype
(Level
, Standard_Natural
);
6587 Check_Against_Result_Level
(Level
);
6594 -- If we are returning an object that may not be bit-aligned, then copy
6595 -- the value into a temporary first. This copy may need to expand to a
6596 -- loop of component operations.
6598 if Is_Possibly_Unaligned_Slice
(Exp
)
6599 or else Is_Possibly_Unaligned_Object
(Exp
)
6602 ExpR
: constant Node_Id
:= Relocate_Node
(Exp
);
6603 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', ExpR
);
6606 Make_Object_Declaration
(Loc
,
6607 Defining_Identifier
=> Tnn
,
6608 Constant_Present
=> True,
6609 Object_Definition
=> New_Occurrence_Of
(R_Type
, Loc
),
6610 Expression
=> ExpR
),
6611 Suppress
=> All_Checks
);
6612 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
6616 -- Call the _Postconditions procedure if the related function has
6617 -- contract assertions that need to be verified on exit.
6619 if Ekind
(Scope_Id
) = E_Function
6620 and then Present
(Postconditions_Proc
(Scope_Id
))
6622 -- We are going to reference the returned value twice in this case,
6623 -- once in the call to _Postconditions, and once in the actual return
6624 -- statement, but we can't have side effects happening twice, and in
6625 -- any case for efficiency we don't want to do the computation twice.
6627 -- If the returned expression is an entity name, we don't need to
6628 -- worry since it is efficient and safe to reference it twice, that's
6629 -- also true for literals other than string literals, and for the
6630 -- case of X.all where X is an entity name.
6632 if Is_Entity_Name
(Exp
)
6633 or else Nkind_In
(Exp
, N_Character_Literal
,
6636 or else (Nkind
(Exp
) = N_Explicit_Dereference
6637 and then Is_Entity_Name
(Prefix
(Exp
)))
6641 -- Otherwise we are going to need a temporary to capture the value
6645 ExpR
: Node_Id
:= Relocate_Node
(Exp
);
6646 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', ExpR
);
6649 -- In the case of discriminated objects, we have created a
6650 -- constrained subtype above, and used the underlying type.
6651 -- This transformation is post-analysis and harmless, except
6652 -- that now the call to the post-condition will be analyzed and
6653 -- type kinds have to match.
6655 if Nkind
(ExpR
) = N_Unchecked_Type_Conversion
6657 Is_Private_Type
(R_Type
) /= Is_Private_Type
(Etype
(ExpR
))
6659 ExpR
:= Expression
(ExpR
);
6662 -- For a complex expression of an elementary type, capture
6663 -- value in the temporary and use it as the reference.
6665 if Is_Elementary_Type
(R_Type
) then
6667 Make_Object_Declaration
(Loc
,
6668 Defining_Identifier
=> Tnn
,
6669 Constant_Present
=> True,
6670 Object_Definition
=> New_Occurrence_Of
(R_Type
, Loc
),
6671 Expression
=> ExpR
),
6672 Suppress
=> All_Checks
);
6674 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
6676 -- If we have something we can rename, generate a renaming of
6677 -- the object and replace the expression with a reference
6679 elsif Is_Object_Reference
(Exp
) then
6681 Make_Object_Renaming_Declaration
(Loc
,
6682 Defining_Identifier
=> Tnn
,
6683 Subtype_Mark
=> New_Occurrence_Of
(R_Type
, Loc
),
6685 Suppress
=> All_Checks
);
6687 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
6689 -- Otherwise we have something like a string literal or an
6690 -- aggregate. We could copy the value, but that would be
6691 -- inefficient. Instead we make a reference to the value and
6692 -- capture this reference with a renaming, the expression is
6693 -- then replaced by a dereference of this renaming.
6696 -- For now, copy the value, since the code below does not
6697 -- seem to work correctly ???
6700 Make_Object_Declaration
(Loc
,
6701 Defining_Identifier
=> Tnn
,
6702 Constant_Present
=> True,
6703 Object_Definition
=> New_Occurrence_Of
(R_Type
, Loc
),
6704 Expression
=> Relocate_Node
(Exp
)),
6705 Suppress
=> All_Checks
);
6707 Rewrite
(Exp
, New_Occurrence_Of
(Tnn
, Loc
));
6709 -- Insert_Action (Exp,
6710 -- Make_Object_Renaming_Declaration (Loc,
6711 -- Defining_Identifier => Tnn,
6712 -- Access_Definition =>
6713 -- Make_Access_Definition (Loc,
6714 -- All_Present => True,
6715 -- Subtype_Mark => New_Occurrence_Of (R_Type, Loc)),
6717 -- Make_Reference (Loc,
6718 -- Prefix => Relocate_Node (Exp))),
6719 -- Suppress => All_Checks);
6722 -- Make_Explicit_Dereference (Loc,
6723 -- Prefix => New_Occurrence_Of (Tnn, Loc)));
6728 -- Generate call to _Postconditions
6731 Make_Procedure_Call_Statement
(Loc
,
6733 New_Occurrence_Of
(Postconditions_Proc
(Scope_Id
), Loc
),
6734 Parameter_Associations
=> New_List
(Duplicate_Subexpr
(Exp
))));
6737 -- Ada 2005 (AI-251): If this return statement corresponds with an
6738 -- simple return statement associated with an extended return statement
6739 -- and the type of the returned object is an interface then generate an
6740 -- implicit conversion to force displacement of the "this" pointer.
6742 if Ada_Version
>= Ada_2005
6743 and then Comes_From_Extended_Return_Statement
(N
)
6744 and then Nkind
(Expression
(N
)) = N_Identifier
6745 and then Is_Interface
(Utyp
)
6746 and then Utyp
/= Underlying_Type
(Exptyp
)
6748 Rewrite
(Exp
, Convert_To
(Utyp
, Relocate_Node
(Exp
)));
6749 Analyze_And_Resolve
(Exp
);
6751 end Expand_Simple_Function_Return
;
6753 --------------------------------
6754 -- Expand_Subprogram_Contract --
6755 --------------------------------
6757 procedure Expand_Subprogram_Contract
(N
: Node_Id
) is
6758 Body_Id
: constant Entity_Id
:= Defining_Entity
(N
);
6759 Spec_Id
: constant Entity_Id
:= Corresponding_Spec
(N
);
6761 procedure Add_Invariant_And_Predicate_Checks
6762 (Subp_Id
: Entity_Id
;
6763 Stmts
: in out List_Id
;
6764 Result
: out Node_Id
);
6765 -- Process the result of function Subp_Id (if applicable) and all its
6766 -- formals. Add invariant and predicate checks where applicable. The
6767 -- routine appends all the checks to list Stmts. If Subp_Id denotes a
6768 -- function, Result contains the entity of parameter _Result, to be
6769 -- used in the creation of procedure _Postconditions.
6771 procedure Append_Enabled_Item
(Item
: Node_Id
; List
: in out List_Id
);
6772 -- Append a node to a list. If there is no list, create a new one. When
6773 -- the item denotes a pragma, it is added to the list only when it is
6776 procedure Build_Postconditions_Procedure
6777 (Subp_Id
: Entity_Id
;
6779 Result
: Entity_Id
);
6780 -- Create the body of procedure _Postconditions which handles various
6781 -- assertion actions on exit from subprogram Subp_Id. Stmts is the list
6782 -- of statements to be checked on exit. Parameter Result is the entity
6783 -- of parameter _Result when Subp_Id denotes a function.
6785 function Build_Pragma_Check_Equivalent
6787 Subp_Id
: Entity_Id
:= Empty
;
6788 Inher_Id
: Entity_Id
:= Empty
) return Node_Id
;
6789 -- Transform a [refined] pre- or postcondition denoted by Prag into an
6790 -- equivalent pragma Check. When the pre- or postcondition is inherited,
6791 -- the routine corrects the references of all formals of Inher_Id to
6792 -- point to the formals of Subp_Id.
6794 procedure Process_Contract_Cases
(Stmts
: in out List_Id
);
6795 -- Process pragma Contract_Cases. This routine prepends items to the
6796 -- body declarations and appends items to list Stmts.
6798 procedure Process_Postconditions
(Stmts
: in out List_Id
);
6799 -- Collect all [inherited] spec and body postconditions and accumulate
6800 -- their pragma Check equivalents in list Stmts.
6802 procedure Process_Preconditions
;
6803 -- Collect all [inherited] spec and body preconditions and prepend their
6804 -- pragma Check equivalents to the declarations of the body.
6806 ----------------------------------------
6807 -- Add_Invariant_And_Predicate_Checks --
6808 ----------------------------------------
6810 procedure Add_Invariant_And_Predicate_Checks
6811 (Subp_Id
: Entity_Id
;
6812 Stmts
: in out List_Id
;
6813 Result
: out Node_Id
)
6815 procedure Add_Invariant_Access_Checks
(Id
: Entity_Id
);
6816 -- Id denotes the return value of a function or a formal parameter.
6817 -- Add an invariant check if the type of Id is access to a type with
6818 -- invariants. The routine appends the generated code to Stmts.
6820 function Invariant_Checks_OK
(Typ
: Entity_Id
) return Boolean;
6821 -- Determine whether type Typ can benefit from invariant checks. To
6822 -- qualify, the type must have a non-null invariant procedure and
6823 -- subprogram Subp_Id must appear visible from the point of view of
6826 ---------------------------------
6827 -- Add_Invariant_Access_Checks --
6828 ---------------------------------
6830 procedure Add_Invariant_Access_Checks
(Id
: Entity_Id
) is
6831 Loc
: constant Source_Ptr
:= Sloc
(N
);
6838 if Is_Access_Type
(Typ
) and then not Is_Access_Constant
(Typ
) then
6839 Typ
:= Designated_Type
(Typ
);
6841 if Invariant_Checks_OK
(Typ
) then
6843 Make_Explicit_Dereference
(Loc
,
6844 Prefix
=> New_Occurrence_Of
(Id
, Loc
));
6845 Set_Etype
(Ref
, Typ
);
6848 -- if <Id> /= null then
6849 -- <invariant_call (<Ref>)>
6854 Make_If_Statement
(Loc
,
6857 Left_Opnd
=> New_Occurrence_Of
(Id
, Loc
),
6858 Right_Opnd
=> Make_Null
(Loc
)),
6859 Then_Statements
=> New_List
(
6860 Make_Invariant_Call
(Ref
))),
6864 end Add_Invariant_Access_Checks
;
6866 -------------------------
6867 -- Invariant_Checks_OK --
6868 -------------------------
6870 function Invariant_Checks_OK
(Typ
: Entity_Id
) return Boolean is
6871 function Has_Null_Body
(Proc_Id
: Entity_Id
) return Boolean;
6872 -- Determine whether the body of procedure Proc_Id contains a sole
6873 -- null statement, possibly followed by an optional return.
6875 function Has_Public_Visibility_Of_Subprogram
return Boolean;
6876 -- Determine whether type Typ has public visibility of subprogram
6883 function Has_Null_Body
(Proc_Id
: Entity_Id
) return Boolean is
6884 Body_Id
: Entity_Id
;
6891 Spec
:= Parent
(Proc_Id
);
6892 Decl
:= Parent
(Spec
);
6894 -- Retrieve the entity of the invariant procedure body
6896 if Nkind
(Spec
) = N_Procedure_Specification
6897 and then Nkind
(Decl
) = N_Subprogram_Declaration
6899 Body_Id
:= Corresponding_Body
(Decl
);
6901 -- The body acts as a spec
6907 -- The body will be generated later
6909 if No
(Body_Id
) then
6913 Spec
:= Parent
(Body_Id
);
6914 Decl
:= Parent
(Spec
);
6917 (Nkind
(Spec
) = N_Procedure_Specification
6918 and then Nkind
(Decl
) = N_Subprogram_Body
);
6920 Stmt1
:= First
(Statements
(Handled_Statement_Sequence
(Decl
)));
6922 -- Look for a null statement followed by an optional return
6925 if Nkind
(Stmt1
) = N_Null_Statement
then
6926 Stmt2
:= Next
(Stmt1
);
6928 if Present
(Stmt2
) then
6929 return Nkind
(Stmt2
) = N_Simple_Return_Statement
;
6938 -----------------------------------------
6939 -- Has_Public_Visibility_Of_Subprogram --
6940 -----------------------------------------
6942 function Has_Public_Visibility_Of_Subprogram
return Boolean is
6943 Subp_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp_Id
);
6946 -- An Initialization procedure must be considered visible even
6947 -- though it is internally generated.
6949 if Is_Init_Proc
(Defining_Entity
(Subp_Decl
)) then
6952 elsif Ekind
(Scope
(Typ
)) /= E_Package
then
6955 -- Internally generated code is never publicly visible except
6956 -- for a subprogram that is the implementation of an expression
6957 -- function. In that case the visibility is determined by the
6960 elsif not Comes_From_Source
(Subp_Decl
)
6962 (Nkind
(Original_Node
(Subp_Decl
)) /= N_Expression_Function
6964 Comes_From_Source
(Defining_Entity
(Subp_Decl
)))
6968 -- Determine whether the subprogram is declared in the visible
6969 -- declarations of the package containing the type.
6972 return List_Containing
(Subp_Decl
) =
6973 Visible_Declarations
6974 (Specification
(Unit_Declaration_Node
(Scope
(Typ
))));
6976 end Has_Public_Visibility_Of_Subprogram
;
6978 -- Start of processing for Invariant_Checks_OK
6982 Has_Invariants
(Typ
)
6983 and then Present
(Invariant_Procedure
(Typ
))
6984 and then not Has_Null_Body
(Invariant_Procedure
(Typ
))
6985 and then Has_Public_Visibility_Of_Subprogram
;
6986 end Invariant_Checks_OK
;
6990 Loc
: constant Source_Ptr
:= Sloc
(N
);
6991 -- Source location of subprogram contract
6996 -- Start of processing for Add_Invariant_And_Predicate_Checks
7001 -- Process the result of a function
7003 if Ekind
(Subp_Id
) = E_Function
then
7004 Typ
:= Etype
(Subp_Id
);
7006 -- Generate _Result which is used in procedure _Postconditions to
7007 -- verify the return value.
7009 Result
:= Make_Defining_Identifier
(Loc
, Name_uResult
);
7010 Set_Etype
(Result
, Typ
);
7012 -- Add an invariant check when the return type has invariants and
7013 -- the related function is visible to the outside.
7015 if Invariant_Checks_OK
(Typ
) then
7018 Make_Invariant_Call
(New_Occurrence_Of
(Result
, Loc
)),
7022 -- Add an invariant check when the return type is an access to a
7023 -- type with invariants.
7025 Add_Invariant_Access_Checks
(Result
);
7028 -- Add invariant and predicates for all formals that qualify
7030 Formal
:= First_Formal
(Subp_Id
);
7031 while Present
(Formal
) loop
7032 Typ
:= Etype
(Formal
);
7034 if Ekind
(Formal
) /= E_In_Parameter
7035 or else Is_Access_Type
(Typ
)
7037 if Invariant_Checks_OK
(Typ
) then
7040 Make_Invariant_Call
(New_Occurrence_Of
(Formal
, Loc
)),
7044 Add_Invariant_Access_Checks
(Formal
);
7046 -- Note: we used to add predicate checks for OUT and IN OUT
7047 -- formals here, but that was misguided, since such checks are
7048 -- performed on the caller side, based on the predicate of the
7049 -- actual, rather than the predicate of the formal.
7053 Next_Formal
(Formal
);
7055 end Add_Invariant_And_Predicate_Checks
;
7057 -------------------------
7058 -- Append_Enabled_Item --
7059 -------------------------
7061 procedure Append_Enabled_Item
(Item
: Node_Id
; List
: in out List_Id
) is
7063 -- Do not chain ignored or disabled pragmas
7065 if Nkind
(Item
) = N_Pragma
7066 and then (Is_Ignored
(Item
) or else Is_Disabled
(Item
))
7070 -- Otherwise, add the item
7077 -- If the pragma is a conjunct in a composite postcondition, it
7078 -- has been processed in reverse order. In the postcondition body
7079 -- if must appear before the others.
7081 if Nkind
(Item
) = N_Pragma
7082 and then From_Aspect_Specification
(Item
)
7083 and then Split_PPC
(Item
)
7085 Prepend
(Item
, List
);
7087 Append
(Item
, List
);
7090 end Append_Enabled_Item
;
7092 ------------------------------------
7093 -- Build_Postconditions_Procedure --
7094 ------------------------------------
7096 procedure Build_Postconditions_Procedure
7097 (Subp_Id
: Entity_Id
;
7101 procedure Insert_Before_First_Source_Declaration
(Stmt
: Node_Id
);
7102 -- Insert node Stmt before the first source declaration of the
7103 -- related subprogram's body. If no such declaration exists, Stmt
7104 -- becomes the last declaration.
7106 --------------------------------------------
7107 -- Insert_Before_First_Source_Declaration --
7108 --------------------------------------------
7110 procedure Insert_Before_First_Source_Declaration
(Stmt
: Node_Id
) is
7111 Decls
: constant List_Id
:= Declarations
(N
);
7115 -- Inspect the declarations of the related subprogram body looking
7116 -- for the first source declaration.
7118 if Present
(Decls
) then
7119 Decl
:= First
(Decls
);
7120 while Present
(Decl
) loop
7121 if Comes_From_Source
(Decl
) then
7122 Insert_Before
(Decl
, Stmt
);
7129 -- If we get there, then the subprogram body lacks any source
7130 -- declarations. The body of _Postconditions now acts as the
7131 -- last declaration.
7133 Append
(Stmt
, Decls
);
7135 -- Ensure that the body has a declaration list
7138 Set_Declarations
(N
, New_List
(Stmt
));
7140 end Insert_Before_First_Source_Declaration
;
7144 Loc
: constant Source_Ptr
:= Sloc
(N
);
7145 Params
: List_Id
:= No_List
;
7147 Proc_Id
: Entity_Id
;
7149 -- Start of processing for Build_Postconditions_Procedure
7152 -- Nothing to do if there are no actions to check on exit
7158 Proc_Id
:= Make_Defining_Identifier
(Loc
, Name_uPostconditions
);
7159 Set_Debug_Info_Needed
(Proc_Id
);
7160 Set_Postconditions_Proc
(Subp_Id
, Proc_Id
);
7162 -- The related subprogram is a function, create the specification of
7163 -- parameter _Result.
7165 if Present
(Result
) then
7166 Params
:= New_List
(
7167 Make_Parameter_Specification
(Loc
,
7168 Defining_Identifier
=> Result
,
7170 New_Occurrence_Of
(Etype
(Result
), Loc
)));
7173 -- Insert _Postconditions before the first source declaration of the
7174 -- body. This ensures that the body will not cause any premature
7175 -- freezing as it may mention types:
7177 -- procedure Proc (Obj : Array_Typ) is
7178 -- procedure _postconditions is
7181 -- end _postconditions;
7183 -- subtype T is Array_Typ (Obj'First (1) .. Obj'Last (1));
7186 -- In the example above, Obj is of type T but the incorrect placement
7187 -- of _Postconditions will cause a crash in gigi due to an out of
7188 -- order reference. The body of _Postconditions must be placed after
7189 -- the declaration of Temp to preserve correct visibility.
7191 -- Set an explicit End_Lavel to override the sloc of the implicit
7192 -- RETURN statement, and prevent it from inheriting the sloc of one
7193 -- the postconditions: this would cause confusing debug into to be
7194 -- produced, interfering with coverage analysis tools.
7197 Make_Subprogram_Body
(Loc
,
7199 Make_Procedure_Specification
(Loc
,
7200 Defining_Unit_Name
=> Proc_Id
,
7201 Parameter_Specifications
=> Params
),
7203 Declarations
=> Empty_List
,
7204 Handled_Statement_Sequence
=>
7205 Make_Handled_Sequence_Of_Statements
(Loc
,
7206 Statements
=> Stmts
,
7207 End_Label
=> Make_Identifier
(Loc
, Chars
(Proc_Id
))));
7209 Insert_Before_First_Source_Declaration
(Proc_Bod
);
7211 end Build_Postconditions_Procedure
;
7213 -----------------------------------
7214 -- Build_Pragma_Check_Equivalent --
7215 -----------------------------------
7217 function Build_Pragma_Check_Equivalent
7219 Subp_Id
: Entity_Id
:= Empty
;
7220 Inher_Id
: Entity_Id
:= Empty
) return Node_Id
7222 function Suppress_Reference
(N
: Node_Id
) return Traverse_Result
;
7223 -- Detect whether node N references a formal parameter subject to
7224 -- pragma Unreferenced. If this is the case, set Comes_From_Source
7225 -- to False to suppress the generation of a reference when analyzing
7228 ------------------------
7229 -- Suppress_Reference --
7230 ------------------------
7232 function Suppress_Reference
(N
: Node_Id
) return Traverse_Result
is
7236 if Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
7237 Formal
:= Entity
(N
);
7239 -- The formal parameter is subject to pragma Unreferenced.
7240 -- Prevent the generation of a reference by resetting the
7241 -- Comes_From_Source flag.
7243 if Is_Formal
(Formal
)
7244 and then Has_Pragma_Unreferenced
(Formal
)
7246 Set_Comes_From_Source
(N
, False);
7251 end Suppress_Reference
;
7253 procedure Suppress_References
is
7254 new Traverse_Proc
(Suppress_Reference
);
7258 Loc
: constant Source_Ptr
:= Sloc
(Prag
);
7259 Prag_Nam
: constant Name_Id
:= Pragma_Name
(Prag
);
7260 Check_Prag
: Node_Id
;
7261 Formals_Map
: Elist_Id
;
7262 Inher_Formal
: Entity_Id
;
7265 Subp_Formal
: Entity_Id
;
7267 -- Start of processing for Build_Pragma_Check_Equivalent
7270 Formals_Map
:= No_Elist
;
7272 -- When the pre- or postcondition is inherited, map the formals of
7273 -- the inherited subprogram to those of the current subprogram.
7275 if Present
(Inher_Id
) then
7276 pragma Assert
(Present
(Subp_Id
));
7278 Formals_Map
:= New_Elmt_List
;
7280 -- Create a relation <inherited formal> => <subprogram formal>
7282 Inher_Formal
:= First_Formal
(Inher_Id
);
7283 Subp_Formal
:= First_Formal
(Subp_Id
);
7284 while Present
(Inher_Formal
) and then Present
(Subp_Formal
) loop
7285 Append_Elmt
(Inher_Formal
, Formals_Map
);
7286 Append_Elmt
(Subp_Formal
, Formals_Map
);
7288 Next_Formal
(Inher_Formal
);
7289 Next_Formal
(Subp_Formal
);
7293 -- Copy the original pragma while performing substitutions (if
7300 New_Scope
=> Current_Scope
);
7302 -- Mark the pragma as being internally generated and reset the
7305 Set_Analyzed
(Check_Prag
, False);
7306 Set_Comes_From_Source
(Check_Prag
, False);
7308 -- The tree of the original pragma may contain references to the
7309 -- formal parameters of the related subprogram. At the same time
7310 -- the corresponding body may mark the formals as unreferenced:
7312 -- procedure Proc (Formal : ...)
7313 -- with Pre => Formal ...;
7315 -- procedure Proc (Formal : ...) is
7316 -- pragma Unreferenced (Formal);
7319 -- This creates problems because all pragma Check equivalents are
7320 -- analyzed at the end of the body declarations. Since all source
7321 -- references have already been accounted for, reset any references
7322 -- to such formals in the generated pragma Check equivalent.
7324 Suppress_References
(Check_Prag
);
7326 if Present
(Corresponding_Aspect
(Prag
)) then
7327 Nam
:= Chars
(Identifier
(Corresponding_Aspect
(Prag
)));
7332 -- Convert the copy into pragma Check by correcting the name and
7333 -- adding a check_kind argument.
7335 Set_Pragma_Identifier
7336 (Check_Prag
, Make_Identifier
(Loc
, Name_Check
));
7338 Prepend_To
(Pragma_Argument_Associations
(Check_Prag
),
7339 Make_Pragma_Argument_Association
(Loc
,
7340 Expression
=> Make_Identifier
(Loc
, Nam
)));
7342 -- Update the error message when the pragma is inherited
7344 if Present
(Inher_Id
) then
7345 Msg_Arg
:= Last
(Pragma_Argument_Associations
(Check_Prag
));
7347 if Chars
(Msg_Arg
) = Name_Message
then
7348 String_To_Name_Buffer
(Strval
(Expression
(Msg_Arg
)));
7350 -- Insert "inherited" to improve the error message
7352 if Name_Buffer
(1 .. 8) = "failed p" then
7353 Insert_Str_In_Name_Buffer
("inherited ", 8);
7354 Set_Strval
(Expression
(Msg_Arg
), String_From_Name_Buffer
);
7360 end Build_Pragma_Check_Equivalent
;
7362 ----------------------------
7363 -- Process_Contract_Cases --
7364 ----------------------------
7366 procedure Process_Contract_Cases
(Stmts
: in out List_Id
) is
7367 procedure Process_Contract_Cases_For
(Subp_Id
: Entity_Id
);
7368 -- Process pragma Contract_Cases for subprogram Subp_Id
7370 --------------------------------
7371 -- Process_Contract_Cases_For --
7372 --------------------------------
7374 procedure Process_Contract_Cases_For
(Subp_Id
: Entity_Id
) is
7375 Items
: constant Node_Id
:= Contract
(Subp_Id
);
7379 if Present
(Items
) then
7380 Prag
:= Contract_Test_Cases
(Items
);
7381 while Present
(Prag
) loop
7382 if Pragma_Name
(Prag
) = Name_Contract_Cases
then
7383 Expand_Contract_Cases
7386 Decls
=> Declarations
(N
),
7390 Prag
:= Next_Pragma
(Prag
);
7393 end Process_Contract_Cases_For
;
7395 -- Start of processing for Process_Contract_Cases
7398 Process_Contract_Cases_For
(Body_Id
);
7400 if Present
(Spec_Id
) then
7401 Process_Contract_Cases_For
(Spec_Id
);
7403 end Process_Contract_Cases
;
7405 ----------------------------
7406 -- Process_Postconditions --
7407 ----------------------------
7409 procedure Process_Postconditions
(Stmts
: in out List_Id
) is
7410 procedure Process_Body_Postconditions
(Post_Nam
: Name_Id
);
7411 -- Collect all [refined] postconditions of a specific kind denoted
7412 -- by Post_Nam that belong to the body and generate pragma Check
7413 -- equivalents in list Stmts.
7415 procedure Process_Spec_Postconditions
;
7416 -- Collect all [inherited] postconditions of the spec and generate
7417 -- pragma Check equivalents in list Stmts.
7419 ---------------------------------
7420 -- Process_Body_Postconditions --
7421 ---------------------------------
7423 procedure Process_Body_Postconditions
(Post_Nam
: Name_Id
) is
7424 Items
: constant Node_Id
:= Contract
(Body_Id
);
7425 Unit_Decl
: constant Node_Id
:= Parent
(N
);
7430 -- Process the contract
7432 if Present
(Items
) then
7433 Prag
:= Pre_Post_Conditions
(Items
);
7434 while Present
(Prag
) loop
7435 if Pragma_Name
(Prag
) = Post_Nam
then
7437 (Item
=> Build_Pragma_Check_Equivalent
(Prag
),
7441 Prag
:= Next_Pragma
(Prag
);
7445 -- The subprogram body being processed is actually the proper body
7446 -- of a stub with a corresponding spec. The subprogram stub may
7447 -- carry a postcondition pragma in which case it must be taken
7448 -- into account. The pragma appears after the stub.
7450 if Present
(Spec_Id
) and then Nkind
(Unit_Decl
) = N_Subunit
then
7451 Decl
:= Next
(Corresponding_Stub
(Unit_Decl
));
7452 while Present
(Decl
) loop
7454 -- Note that non-matching pragmas are skipped
7456 if Nkind
(Decl
) = N_Pragma
then
7457 if Pragma_Name
(Decl
) = Post_Nam
then
7459 (Item
=> Build_Pragma_Check_Equivalent
(Decl
),
7463 -- Skip internally generated code
7465 elsif not Comes_From_Source
(Decl
) then
7468 -- Postcondition pragmas are usually grouped together. There
7469 -- is no need to inspect the whole declarative list.
7478 end Process_Body_Postconditions
;
7480 ---------------------------------
7481 -- Process_Spec_Postconditions --
7482 ---------------------------------
7484 procedure Process_Spec_Postconditions
is
7485 Subps
: constant Subprogram_List
:=
7486 Inherited_Subprograms
(Spec_Id
);
7489 Subp_Id
: Entity_Id
;
7492 -- Process the contract
7494 Items
:= Contract
(Spec_Id
);
7496 if Present
(Items
) then
7497 Prag
:= Pre_Post_Conditions
(Items
);
7498 while Present
(Prag
) loop
7499 if Pragma_Name
(Prag
) = Name_Postcondition
then
7501 (Item
=> Build_Pragma_Check_Equivalent
(Prag
),
7505 Prag
:= Next_Pragma
(Prag
);
7509 -- Process the contracts of all inherited subprograms, looking for
7510 -- class-wide postconditions.
7512 for Index
in Subps
'Range loop
7513 Subp_Id
:= Subps
(Index
);
7514 Items
:= Contract
(Subp_Id
);
7516 if Present
(Items
) then
7517 Prag
:= Pre_Post_Conditions
(Items
);
7518 while Present
(Prag
) loop
7519 if Pragma_Name
(Prag
) = Name_Postcondition
7520 and then Class_Present
(Prag
)
7524 Build_Pragma_Check_Equivalent
7527 Inher_Id
=> Subp_Id
),
7531 Prag
:= Next_Pragma
(Prag
);
7535 end Process_Spec_Postconditions
;
7537 -- Start of processing for Process_Postconditions
7540 -- The processing of postconditions is done in reverse order (body
7541 -- first) to ensure the following arrangement:
7543 -- <refined postconditions from body>
7544 -- <postconditions from body>
7545 -- <postconditions from spec>
7546 -- <inherited postconditions>
7548 Process_Body_Postconditions
(Name_Refined_Post
);
7549 Process_Body_Postconditions
(Name_Postcondition
);
7551 if Present
(Spec_Id
) then
7552 Process_Spec_Postconditions
;
7554 end Process_Postconditions
;
7556 ---------------------------
7557 -- Process_Preconditions --
7558 ---------------------------
7560 procedure Process_Preconditions
is
7561 Class_Pre
: Node_Id
:= Empty
;
7562 -- The sole [inherited] class-wide precondition pragma that applies
7563 -- to the subprogram.
7565 Insert_Node
: Node_Id
:= Empty
;
7566 -- The insertion node after which all pragma Check equivalents are
7569 procedure Merge_Preconditions
(From
: Node_Id
; Into
: Node_Id
);
7570 -- Merge two class-wide preconditions by "or else"-ing them. The
7571 -- changes are accumulated in parameter Into. Update the error
7574 procedure Prepend_To_Decls
(Item
: Node_Id
);
7575 -- Prepend a single item to the declarations of the subprogram body
7577 procedure Prepend_To_Decls_Or_Save
(Prag
: Node_Id
);
7578 -- Save a class-wide precondition into Class_Pre or prepend a normal
7579 -- precondition ot the declarations of the body and analyze it.
7581 procedure Process_Inherited_Preconditions
;
7582 -- Collect all inherited class-wide preconditions and merge them into
7583 -- one big precondition to be evaluated as pragma Check.
7585 procedure Process_Preconditions_For
(Subp_Id
: Entity_Id
);
7586 -- Collect all preconditions of subprogram Subp_Id and prepend their
7587 -- pragma Check equivalents to the declarations of the body.
7589 -------------------------
7590 -- Merge_Preconditions --
7591 -------------------------
7593 procedure Merge_Preconditions
(From
: Node_Id
; Into
: Node_Id
) is
7594 function Expression_Arg
(Prag
: Node_Id
) return Node_Id
;
7595 -- Return the boolean expression argument of a precondition while
7596 -- updating its parenteses count for the subsequent merge.
7598 function Message_Arg
(Prag
: Node_Id
) return Node_Id
;
7599 -- Return the message argument of a precondition
7601 --------------------
7602 -- Expression_Arg --
7603 --------------------
7605 function Expression_Arg
(Prag
: Node_Id
) return Node_Id
is
7606 Args
: constant List_Id
:= Pragma_Argument_Associations
(Prag
);
7607 Arg
: constant Node_Id
:= Get_Pragma_Arg
(Next
(First
(Args
)));
7610 if Paren_Count
(Arg
) = 0 then
7611 Set_Paren_Count
(Arg
, 1);
7621 function Message_Arg
(Prag
: Node_Id
) return Node_Id
is
7622 Args
: constant List_Id
:= Pragma_Argument_Associations
(Prag
);
7624 return Get_Pragma_Arg
(Last
(Args
));
7629 From_Expr
: constant Node_Id
:= Expression_Arg
(From
);
7630 From_Msg
: constant Node_Id
:= Message_Arg
(From
);
7631 Into_Expr
: constant Node_Id
:= Expression_Arg
(Into
);
7632 Into_Msg
: constant Node_Id
:= Message_Arg
(Into
);
7633 Loc
: constant Source_Ptr
:= Sloc
(Into
);
7635 -- Start of processing for Merge_Preconditions
7638 -- Merge the two preconditions by "or else"-ing them
7642 Right_Opnd
=> Relocate_Node
(Into_Expr
),
7643 Left_Opnd
=> From_Expr
));
7645 -- Merge the two error messages to produce a single message of the
7648 -- failed precondition from ...
7649 -- also failed inherited precondition from ...
7651 if not Exception_Locations_Suppressed
then
7652 Start_String
(Strval
(Into_Msg
));
7653 Store_String_Char
(ASCII
.LF
);
7654 Store_String_Chars
(" also ");
7655 Store_String_Chars
(Strval
(From_Msg
));
7657 Set_Strval
(Into_Msg
, End_String
);
7659 end Merge_Preconditions
;
7661 ----------------------
7662 -- Prepend_To_Decls --
7663 ----------------------
7665 procedure Prepend_To_Decls
(Item
: Node_Id
) is
7666 Decls
: List_Id
:= Declarations
(N
);
7669 -- Ensure that the body has a declarative list
7673 Set_Declarations
(N
, Decls
);
7676 Prepend_To
(Decls
, Item
);
7677 end Prepend_To_Decls
;
7679 ------------------------------
7680 -- Prepend_To_Decls_Or_Save --
7681 ------------------------------
7683 procedure Prepend_To_Decls_Or_Save
(Prag
: Node_Id
) is
7684 Check_Prag
: Node_Id
;
7687 Check_Prag
:= Build_Pragma_Check_Equivalent
(Prag
);
7689 -- Save the sole class-wide precondition (if any) for the next
7690 -- step where it will be merged with inherited preconditions.
7692 if Class_Present
(Prag
) then
7693 pragma Assert
(No
(Class_Pre
));
7694 Class_Pre
:= Check_Prag
;
7696 -- Accumulate the corresponding Check pragmas at the top of the
7697 -- declarations. Prepending the items ensures that they will be
7698 -- evaluated in their original order.
7701 if Present
(Insert_Node
) then
7702 Insert_After
(Insert_Node
, Check_Prag
);
7704 Prepend_To_Decls
(Check_Prag
);
7707 Analyze
(Check_Prag
);
7709 end Prepend_To_Decls_Or_Save
;
7711 -------------------------------------
7712 -- Process_Inherited_Preconditions --
7713 -------------------------------------
7715 procedure Process_Inherited_Preconditions
is
7716 Subps
: constant Subprogram_List
:=
7717 Inherited_Subprograms
(Spec_Id
);
7718 Check_Prag
: Node_Id
;
7721 Subp_Id
: Entity_Id
;
7724 -- Process the contracts of all inherited subprograms, looking for
7725 -- class-wide preconditions.
7727 for Index
in Subps
'Range loop
7728 Subp_Id
:= Subps
(Index
);
7729 Items
:= Contract
(Subp_Id
);
7731 if Present
(Items
) then
7732 Prag
:= Pre_Post_Conditions
(Items
);
7733 while Present
(Prag
) loop
7734 if Pragma_Name
(Prag
) = Name_Precondition
7735 and then Class_Present
(Prag
)
7738 Build_Pragma_Check_Equivalent
7741 Inher_Id
=> Subp_Id
);
7743 -- The spec or an inherited subprogram already yielded
7744 -- a class-wide precondition. Merge the existing
7745 -- precondition with the current one using "or else".
7747 if Present
(Class_Pre
) then
7748 Merge_Preconditions
(Check_Prag
, Class_Pre
);
7750 Class_Pre
:= Check_Prag
;
7754 Prag
:= Next_Pragma
(Prag
);
7759 -- Add the merged class-wide preconditions
7761 if Present
(Class_Pre
) then
7762 Prepend_To_Decls
(Class_Pre
);
7763 Analyze
(Class_Pre
);
7765 end Process_Inherited_Preconditions
;
7767 -------------------------------
7768 -- Process_Preconditions_For --
7769 -------------------------------
7771 procedure Process_Preconditions_For
(Subp_Id
: Entity_Id
) is
7772 Items
: constant Node_Id
:= Contract
(Subp_Id
);
7775 Subp_Decl
: Node_Id
;
7778 -- Process the contract
7780 if Present
(Items
) then
7781 Prag
:= Pre_Post_Conditions
(Items
);
7782 while Present
(Prag
) loop
7783 if Pragma_Name
(Prag
) = Name_Precondition
then
7784 Prepend_To_Decls_Or_Save
(Prag
);
7787 Prag
:= Next_Pragma
(Prag
);
7791 -- The subprogram declaration being processed is actually a body
7792 -- stub. The stub may carry a precondition pragma in which case it
7793 -- must be taken into account. The pragma appears after the stub.
7795 Subp_Decl
:= Unit_Declaration_Node
(Subp_Id
);
7797 if Nkind
(Subp_Decl
) = N_Subprogram_Body_Stub
then
7799 -- Inspect the declarations following the body stub
7801 Decl
:= Next
(Subp_Decl
);
7802 while Present
(Decl
) loop
7804 -- Note that non-matching pragmas are skipped
7806 if Nkind
(Decl
) = N_Pragma
then
7807 if Pragma_Name
(Decl
) = Name_Precondition
then
7808 Prepend_To_Decls_Or_Save
(Decl
);
7811 -- Skip internally generated code
7813 elsif not Comes_From_Source
(Decl
) then
7816 -- Preconditions are usually grouped together. There is no
7817 -- need to inspect the whole declarative list.
7826 end Process_Preconditions_For
;
7830 Decls
: constant List_Id
:= Declarations
(N
);
7833 -- Start of processing for Process_Preconditions
7836 -- Find the last internally generate declaration starting from the
7837 -- top of the body declarations. This ensures that discriminals and
7838 -- subtypes are properly visible to the pragma Check equivalents.
7840 if Present
(Decls
) then
7841 Decl
:= First
(Decls
);
7842 while Present
(Decl
) loop
7843 exit when Comes_From_Source
(Decl
);
7844 Insert_Node
:= Decl
;
7849 -- The processing of preconditions is done in reverse order (body
7850 -- first) because each pragma Check equivalent is inserted at the
7851 -- top of the declarations. This ensures that the final order is
7852 -- consistent with following diagram:
7854 -- <inherited preconditions>
7855 -- <preconditions from spec>
7856 -- <preconditions from body>
7858 Process_Preconditions_For
(Body_Id
);
7860 if Present
(Spec_Id
) then
7861 Process_Preconditions_For
(Spec_Id
);
7862 Process_Inherited_Preconditions
;
7864 end Process_Preconditions
;
7868 Restore_Scope
: Boolean := False;
7870 Stmts
: List_Id
:= No_List
;
7871 Subp_Id
: Entity_Id
;
7873 -- Start of processing for Expand_Subprogram_Contract
7876 -- Obtain the entity of the initial declaration
7878 if Present
(Spec_Id
) then
7884 -- Do not perform expansion activity when it is not needed
7886 if not Expander_Active
then
7889 -- ASIS requires an unaltered tree
7891 elsif ASIS_Mode
then
7894 -- GNATprove does not need the executable semantics of a contract
7896 elsif GNATprove_Mode
then
7899 -- The contract of a generic subprogram or one declared in a generic
7900 -- context is not expanded as the corresponding instance will provide
7901 -- the executable semantics of the contract.
7903 elsif Is_Generic_Subprogram
(Subp_Id
) or else Inside_A_Generic
then
7906 -- All subprograms carry a contract, but for some it is not significant
7907 -- and should not be processed. This is a small optimization.
7909 elsif not Has_Significant_Contract
(Subp_Id
) then
7913 -- Do not re-expand the same contract. This scenario occurs when a
7914 -- construct is rewritten into something else during its analysis
7915 -- (expression functions for instance).
7917 if Has_Expanded_Contract
(Subp_Id
) then
7920 -- Otherwise mark the subprogram
7923 Set_Has_Expanded_Contract
(Subp_Id
);
7926 -- Ensure that the formal parameters are visible when expanding all
7929 if not In_Open_Scopes
(Subp_Id
) then
7930 Restore_Scope
:= True;
7931 Push_Scope
(Subp_Id
);
7933 if Is_Generic_Subprogram
(Subp_Id
) then
7934 Install_Generic_Formals
(Subp_Id
);
7936 Install_Formals
(Subp_Id
);
7940 -- The expansion of a subprogram contract involves the creation of Check
7941 -- pragmas to verify the contract assertions of the spec and body in a
7942 -- particular order. The order is as follows:
7944 -- function Example (...) return ... is
7945 -- procedure _Postconditions (...) is
7947 -- <refined postconditions from body>
7948 -- <postconditions from body>
7949 -- <postconditions from spec>
7950 -- <inherited postconditions>
7951 -- <contract case consequences>
7952 -- <invariant check of function result>
7953 -- <invariant and predicate checks of parameters>
7954 -- end _Postconditions;
7956 -- <inherited preconditions>
7957 -- <preconditions from spec>
7958 -- <preconditions from body>
7959 -- <contract case conditions>
7961 -- <source declarations>
7963 -- <source statements>
7965 -- _Preconditions (Result);
7969 -- Routine _Postconditions holds all contract assertions that must be
7970 -- verified on exit from the related subprogram.
7972 -- Step 1: Handle all preconditions. This action must come before the
7973 -- processing of pragma Contract_Cases because the pragma prepends items
7974 -- to the body declarations.
7976 Process_Preconditions
;
7978 -- Step 2: Handle all postconditions. This action must come before the
7979 -- processing of pragma Contract_Cases because the pragma appends items
7982 Process_Postconditions
(Stmts
);
7984 -- Step 3: Handle pragma Contract_Cases. This action must come before
7985 -- the processing of invariants and predicates because those append
7986 -- items to list Smts.
7988 Process_Contract_Cases
(Stmts
);
7990 -- Step 4: Apply invariant and predicate checks on a function result and
7991 -- all formals. The resulting checks are accumulated in list Stmts.
7993 Add_Invariant_And_Predicate_Checks
(Subp_Id
, Stmts
, Result
);
7995 -- Step 5: Construct procedure _Postconditions
7997 Build_Postconditions_Procedure
(Subp_Id
, Stmts
, Result
);
7999 if Restore_Scope
then
8002 end Expand_Subprogram_Contract
;
8004 --------------------------------------------
8005 -- Has_Unconstrained_Access_Discriminants --
8006 --------------------------------------------
8008 function Has_Unconstrained_Access_Discriminants
8009 (Subtyp
: Entity_Id
) return Boolean
8014 if Has_Discriminants
(Subtyp
)
8015 and then not Is_Constrained
(Subtyp
)
8017 Discr
:= First_Discriminant
(Subtyp
);
8018 while Present
(Discr
) loop
8019 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
then
8023 Next_Discriminant
(Discr
);
8028 end Has_Unconstrained_Access_Discriminants
;
8034 procedure Initialize
is
8039 --------------------------------
8040 -- Is_Build_In_Place_Function --
8041 --------------------------------
8043 function Is_Build_In_Place_Function
(E
: Entity_Id
) return Boolean is
8045 -- This function is called from Expand_Subtype_From_Expr during
8046 -- semantic analysis, even when expansion is off. In those cases
8047 -- the build_in_place expansion will not take place.
8049 if not Expander_Active
then
8053 -- For now we test whether E denotes a function or access-to-function
8054 -- type whose result subtype is inherently limited. Later this test
8055 -- may be revised to allow composite nonlimited types. Functions with
8056 -- a foreign convention or whose result type has a foreign convention
8059 if Ekind_In
(E
, E_Function
, E_Generic_Function
)
8060 or else (Ekind
(E
) = E_Subprogram_Type
8061 and then Etype
(E
) /= Standard_Void_Type
)
8063 -- Note: If the function has a foreign convention, it cannot build
8064 -- its result in place, so you're on your own. On the other hand,
8065 -- if only the return type has a foreign convention, its layout is
8066 -- intended to be compatible with the other language, but the build-
8067 -- in place machinery can ensure that the object is not copied.
8069 if Has_Foreign_Convention
(E
) then
8072 -- In Ada 2005 all functions with an inherently limited return type
8073 -- must be handled using a build-in-place profile, including the case
8074 -- of a function with a limited interface result, where the function
8075 -- may return objects of nonlimited descendants.
8078 return Is_Limited_View
(Etype
(E
))
8079 and then Ada_Version
>= Ada_2005
8080 and then not Debug_Flag_Dot_L
;
8086 end Is_Build_In_Place_Function
;
8088 -------------------------------------
8089 -- Is_Build_In_Place_Function_Call --
8090 -------------------------------------
8092 function Is_Build_In_Place_Function_Call
(N
: Node_Id
) return Boolean is
8093 Exp_Node
: Node_Id
:= N
;
8094 Function_Id
: Entity_Id
;
8097 -- Return False if the expander is currently inactive, since awareness
8098 -- of build-in-place treatment is only relevant during expansion. Note
8099 -- that Is_Build_In_Place_Function, which is called as part of this
8100 -- function, is also conditioned this way, but we need to check here as
8101 -- well to avoid blowing up on processing protected calls when expansion
8102 -- is disabled (such as with -gnatc) since those would trip over the
8103 -- raise of Program_Error below.
8105 -- In SPARK mode, build-in-place calls are not expanded, so that we
8106 -- may end up with a call that is neither resolved to an entity, nor
8107 -- an indirect call.
8109 if not Expander_Active
then
8113 -- Step past qualification or unchecked conversion (the latter can occur
8114 -- in cases of calls to 'Input).
8116 if Nkind_In
(Exp_Node
, N_Qualified_Expression
,
8117 N_Unchecked_Type_Conversion
)
8119 Exp_Node
:= Expression
(N
);
8122 if Nkind
(Exp_Node
) /= N_Function_Call
then
8126 if Is_Entity_Name
(Name
(Exp_Node
)) then
8127 Function_Id
:= Entity
(Name
(Exp_Node
));
8129 -- In the case of an explicitly dereferenced call, use the subprogram
8130 -- type generated for the dereference.
8132 elsif Nkind
(Name
(Exp_Node
)) = N_Explicit_Dereference
then
8133 Function_Id
:= Etype
(Name
(Exp_Node
));
8135 -- This may be a call to a protected function.
8137 elsif Nkind
(Name
(Exp_Node
)) = N_Selected_Component
then
8138 Function_Id
:= Etype
(Entity
(Selector_Name
(Name
(Exp_Node
))));
8141 raise Program_Error
;
8144 return Is_Build_In_Place_Function
(Function_Id
);
8146 end Is_Build_In_Place_Function_Call
;
8148 -----------------------
8149 -- Freeze_Subprogram --
8150 -----------------------
8152 procedure Freeze_Subprogram
(N
: Node_Id
) is
8153 Loc
: constant Source_Ptr
:= Sloc
(N
);
8155 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
);
8156 -- (Ada 2005): Register a predefined primitive in all the secondary
8157 -- dispatch tables of its primitive type.
8159 ----------------------------------
8160 -- Register_Predefined_DT_Entry --
8161 ----------------------------------
8163 procedure Register_Predefined_DT_Entry
(Prim
: Entity_Id
) is
8164 Iface_DT_Ptr
: Elmt_Id
;
8165 Tagged_Typ
: Entity_Id
;
8166 Thunk_Id
: Entity_Id
;
8167 Thunk_Code
: Node_Id
;
8170 Tagged_Typ
:= Find_Dispatching_Type
(Prim
);
8172 if No
(Access_Disp_Table
(Tagged_Typ
))
8173 or else not Has_Interfaces
(Tagged_Typ
)
8174 or else not RTE_Available
(RE_Interface_Tag
)
8175 or else Restriction_Active
(No_Dispatching_Calls
)
8180 -- Skip the first two access-to-dispatch-table pointers since they
8181 -- leads to the primary dispatch table (predefined DT and user
8182 -- defined DT). We are only concerned with the secondary dispatch
8183 -- table pointers. Note that the access-to- dispatch-table pointer
8184 -- corresponds to the first implemented interface retrieved below.
8187 Next_Elmt
(Next_Elmt
(First_Elmt
(Access_Disp_Table
(Tagged_Typ
))));
8189 while Present
(Iface_DT_Ptr
)
8190 and then Ekind
(Node
(Iface_DT_Ptr
)) = E_Constant
8192 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
8193 Expand_Interface_Thunk
(Prim
, Thunk_Id
, Thunk_Code
);
8195 if Present
(Thunk_Code
) then
8196 Insert_Actions_After
(N
, New_List
(
8199 Build_Set_Predefined_Prim_Op_Address
(Loc
,
8201 New_Occurrence_Of
(Node
(Next_Elmt
(Iface_DT_Ptr
)), Loc
),
8202 Position
=> DT_Position
(Prim
),
8204 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
8205 Make_Attribute_Reference
(Loc
,
8206 Prefix
=> New_Occurrence_Of
(Thunk_Id
, Loc
),
8207 Attribute_Name
=> Name_Unrestricted_Access
))),
8209 Build_Set_Predefined_Prim_Op_Address
(Loc
,
8212 (Node
(Next_Elmt
(Next_Elmt
(Next_Elmt
(Iface_DT_Ptr
)))),
8214 Position
=> DT_Position
(Prim
),
8216 Unchecked_Convert_To
(RTE
(RE_Prim_Ptr
),
8217 Make_Attribute_Reference
(Loc
,
8218 Prefix
=> New_Occurrence_Of
(Prim
, Loc
),
8219 Attribute_Name
=> Name_Unrestricted_Access
)))));
8222 -- Skip the tag of the predefined primitives dispatch table
8224 Next_Elmt
(Iface_DT_Ptr
);
8225 pragma Assert
(Has_Thunks
(Node
(Iface_DT_Ptr
)));
8227 -- Skip tag of the no-thunks dispatch table
8229 Next_Elmt
(Iface_DT_Ptr
);
8230 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
8232 -- Skip tag of predefined primitives no-thunks dispatch table
8234 Next_Elmt
(Iface_DT_Ptr
);
8235 pragma Assert
(not Has_Thunks
(Node
(Iface_DT_Ptr
)));
8237 Next_Elmt
(Iface_DT_Ptr
);
8239 end Register_Predefined_DT_Entry
;
8243 Subp
: constant Entity_Id
:= Entity
(N
);
8245 -- Start of processing for Freeze_Subprogram
8248 -- We suppress the initialization of the dispatch table entry when
8249 -- VM_Target because the dispatching mechanism is handled internally
8252 if Is_Dispatching_Operation
(Subp
)
8253 and then not Is_Abstract_Subprogram
(Subp
)
8254 and then Present
(DTC_Entity
(Subp
))
8255 and then Present
(Scope
(DTC_Entity
(Subp
)))
8256 and then Tagged_Type_Expansion
8257 and then not Restriction_Active
(No_Dispatching_Calls
)
8258 and then RTE_Available
(RE_Tag
)
8261 Typ
: constant Entity_Id
:= Scope
(DTC_Entity
(Subp
));
8264 -- Handle private overridden primitives
8266 if not Is_CPP_Class
(Typ
) then
8267 Check_Overriding_Operation
(Subp
);
8270 -- We assume that imported CPP primitives correspond with objects
8271 -- whose constructor is in the CPP side; therefore we don't need
8272 -- to generate code to register them in the dispatch table.
8274 if Is_CPP_Class
(Typ
) then
8277 -- Handle CPP primitives found in derivations of CPP_Class types.
8278 -- These primitives must have been inherited from some parent, and
8279 -- there is no need to register them in the dispatch table because
8280 -- Build_Inherit_Prims takes care of initializing these slots.
8282 elsif Is_Imported
(Subp
)
8283 and then (Convention
(Subp
) = Convention_CPP
8284 or else Convention
(Subp
) = Convention_C
)
8288 -- Generate code to register the primitive in non statically
8289 -- allocated dispatch tables
8291 elsif not Building_Static_DT
(Scope
(DTC_Entity
(Subp
))) then
8293 -- When a primitive is frozen, enter its name in its dispatch
8296 if not Is_Interface
(Typ
)
8297 or else Present
(Interface_Alias
(Subp
))
8299 if Is_Predefined_Dispatching_Operation
(Subp
) then
8300 Register_Predefined_DT_Entry
(Subp
);
8303 Insert_Actions_After
(N
,
8304 Register_Primitive
(Loc
, Prim
=> Subp
));
8310 -- Mark functions that return by reference. Note that it cannot be part
8311 -- of the normal semantic analysis of the spec since the underlying
8312 -- returned type may not be known yet (for private types).
8315 Typ
: constant Entity_Id
:= Etype
(Subp
);
8316 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
8318 if Is_Limited_View
(Typ
) then
8319 Set_Returns_By_Ref
(Subp
);
8320 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
8321 Set_Returns_By_Ref
(Subp
);
8325 -- Wnen freezing a null procedure, analyze its delayed aspects now
8326 -- because we may not have reached the end of the declarative list when
8327 -- delayed aspects are normally analyzed. This ensures that dispatching
8328 -- calls are properly rewritten when the generated _Postcondition
8329 -- procedure is analyzed in the null procedure body.
8331 if Nkind
(Parent
(Subp
)) = N_Procedure_Specification
8332 and then Null_Present
(Parent
(Subp
))
8334 Analyze_Subprogram_Contract
(Subp
);
8336 end Freeze_Subprogram
;
8338 -----------------------
8339 -- Is_Null_Procedure --
8340 -----------------------
8342 function Is_Null_Procedure
(Subp
: Entity_Id
) return Boolean is
8343 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
8346 if Ekind
(Subp
) /= E_Procedure
then
8349 -- Check if this is a declared null procedure
8351 elsif Nkind
(Decl
) = N_Subprogram_Declaration
then
8352 if not Null_Present
(Specification
(Decl
)) then
8355 elsif No
(Body_To_Inline
(Decl
)) then
8358 -- Check if the body contains only a null statement, followed by
8359 -- the return statement added during expansion.
8363 Orig_Bod
: constant Node_Id
:= Body_To_Inline
(Decl
);
8369 if Nkind
(Orig_Bod
) /= N_Subprogram_Body
then
8372 -- We must skip SCIL nodes because they are currently
8373 -- implemented as special N_Null_Statement nodes.
8377 (Statements
(Handled_Statement_Sequence
(Orig_Bod
)));
8378 Stat2
:= Next_Non_SCIL_Node
(Stat
);
8381 Is_Empty_List
(Declarations
(Orig_Bod
))
8382 and then Nkind
(Stat
) = N_Null_Statement
8386 (Nkind
(Stat2
) = N_Simple_Return_Statement
8387 and then No
(Next
(Stat2
))));
8395 end Is_Null_Procedure
;
8397 -------------------------------------------
8398 -- Make_Build_In_Place_Call_In_Allocator --
8399 -------------------------------------------
8401 procedure Make_Build_In_Place_Call_In_Allocator
8402 (Allocator
: Node_Id
;
8403 Function_Call
: Node_Id
)
8405 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
8407 Func_Call
: Node_Id
:= Function_Call
;
8408 Ref_Func_Call
: Node_Id
;
8409 Function_Id
: Entity_Id
;
8410 Result_Subt
: Entity_Id
;
8411 New_Allocator
: Node_Id
;
8412 Return_Obj_Access
: Entity_Id
; -- temp for function result
8413 Temp_Init
: Node_Id
; -- initial value of Return_Obj_Access
8414 Alloc_Form
: BIP_Allocation_Form
;
8415 Pool
: Node_Id
; -- nonnull if Alloc_Form = User_Storage_Pool
8416 Return_Obj_Actual
: Node_Id
; -- the temp.all, in caller-allocates case
8417 Chain
: Entity_Id
; -- activation chain, in case of tasks
8420 -- Step past qualification or unchecked conversion (the latter can occur
8421 -- in cases of calls to 'Input).
8423 if Nkind_In
(Func_Call
,
8424 N_Qualified_Expression
,
8425 N_Unchecked_Type_Conversion
)
8427 Func_Call
:= Expression
(Func_Call
);
8430 -- If the call has already been processed to add build-in-place actuals
8431 -- then return. This should not normally occur in an allocator context,
8432 -- but we add the protection as a defensive measure.
8434 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8438 -- Mark the call as processed as a build-in-place call
8440 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8442 Loc
:= Sloc
(Function_Call
);
8444 if Is_Entity_Name
(Name
(Func_Call
)) then
8445 Function_Id
:= Entity
(Name
(Func_Call
));
8447 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8448 Function_Id
:= Etype
(Name
(Func_Call
));
8451 raise Program_Error
;
8454 Result_Subt
:= Available_View
(Etype
(Function_Id
));
8456 -- Create a temp for the function result. In the caller-allocates case,
8457 -- this will be initialized to the result of a new uninitialized
8458 -- allocator. Note: we do not use Allocator as the Related_Node of
8459 -- Return_Obj_Access in call to Make_Temporary below as this would
8460 -- create a sort of infinite "recursion".
8462 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
8463 Set_Etype
(Return_Obj_Access
, Acc_Type
);
8465 -- When the result subtype is constrained, the return object is
8466 -- allocated on the caller side, and access to it is passed to the
8469 -- Here and in related routines, we must examine the full view of the
8470 -- type, because the view at the point of call may differ from that
8471 -- that in the function body, and the expansion mechanism depends on
8472 -- the characteristics of the full view.
8474 if Is_Constrained
(Underlying_Type
(Result_Subt
)) then
8476 -- Replace the initialized allocator of form "new T'(Func (...))"
8477 -- with an uninitialized allocator of form "new T", where T is the
8478 -- result subtype of the called function. The call to the function
8479 -- is handled separately further below.
8482 Make_Allocator
(Loc
,
8483 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
8484 Set_No_Initialization
(New_Allocator
);
8486 -- Copy attributes to new allocator. Note that the new allocator
8487 -- logically comes from source if the original one did, so copy the
8488 -- relevant flag. This ensures proper treatment of the restriction
8489 -- No_Implicit_Heap_Allocations in this case.
8491 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
8492 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
8493 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
8495 Rewrite
(Allocator
, New_Allocator
);
8497 -- Initial value of the temp is the result of the uninitialized
8500 Temp_Init
:= Relocate_Node
(Allocator
);
8502 -- Indicate that caller allocates, and pass in the return object
8504 Alloc_Form
:= Caller_Allocation
;
8505 Pool
:= Make_Null
(No_Location
);
8506 Return_Obj_Actual
:=
8507 Make_Unchecked_Type_Conversion
(Loc
,
8508 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
8510 Make_Explicit_Dereference
(Loc
,
8511 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)));
8513 -- When the result subtype is unconstrained, the function itself must
8514 -- perform the allocation of the return object, so we pass parameters
8520 -- Case of a user-defined storage pool. Pass an allocation parameter
8521 -- indicating that the function should allocate its result in the
8522 -- pool, and pass the pool. Use 'Unrestricted_Access because the
8523 -- pool may not be aliased.
8525 if VM_Target
= No_VM
8526 and then Present
(Associated_Storage_Pool
(Acc_Type
))
8528 Alloc_Form
:= User_Storage_Pool
;
8530 Make_Attribute_Reference
(Loc
,
8533 (Associated_Storage_Pool
(Acc_Type
), Loc
),
8534 Attribute_Name
=> Name_Unrestricted_Access
);
8536 -- No user-defined pool; pass an allocation parameter indicating that
8537 -- the function should allocate its result on the heap.
8540 Alloc_Form
:= Global_Heap
;
8541 Pool
:= Make_Null
(No_Location
);
8544 -- The caller does not provide the return object in this case, so we
8545 -- have to pass null for the object access actual.
8547 Return_Obj_Actual
:= Empty
;
8550 -- Declare the temp object
8552 Insert_Action
(Allocator
,
8553 Make_Object_Declaration
(Loc
,
8554 Defining_Identifier
=> Return_Obj_Access
,
8555 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
8556 Expression
=> Temp_Init
));
8558 Ref_Func_Call
:= Make_Reference
(Loc
, Func_Call
);
8560 -- Ada 2005 (AI-251): If the type of the allocator is an interface
8561 -- then generate an implicit conversion to force displacement of the
8564 if Is_Interface
(Designated_Type
(Acc_Type
)) then
8567 OK_Convert_To
(Acc_Type
, Ref_Func_Call
));
8571 Assign
: constant Node_Id
:=
8572 Make_Assignment_Statement
(Loc
,
8573 Name
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
),
8574 Expression
=> Ref_Func_Call
);
8575 -- Assign the result of the function call into the temp. In the
8576 -- caller-allocates case, this is overwriting the temp with its
8577 -- initial value, which has no effect. In the callee-allocates case,
8578 -- this is setting the temp to point to the object allocated by the
8582 -- Actions to be inserted. If there are no tasks, this is just the
8583 -- assignment statement. If the allocated object has tasks, we need
8584 -- to wrap the assignment in a block that activates them. The
8585 -- activation chain of that block must be passed to the function,
8586 -- rather than some outer chain.
8588 if Has_Task
(Result_Subt
) then
8589 Actions
:= New_List
;
8590 Build_Task_Allocate_Block_With_Init_Stmts
8591 (Actions
, Allocator
, Init_Stmts
=> New_List
(Assign
));
8592 Chain
:= Activation_Chain_Entity
(Last
(Actions
));
8594 Actions
:= New_List
(Assign
);
8598 Insert_Actions
(Allocator
, Actions
);
8601 -- When the function has a controlling result, an allocation-form
8602 -- parameter must be passed indicating that the caller is allocating
8603 -- the result object. This is needed because such a function can be
8604 -- called as a dispatching operation and must be treated similarly
8605 -- to functions with unconstrained result subtypes.
8607 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8608 (Func_Call
, Function_Id
, Alloc_Form
, Pool_Actual
=> Pool
);
8610 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8611 (Func_Call
, Function_Id
, Acc_Type
);
8613 Add_Task_Actuals_To_Build_In_Place_Call
8614 (Func_Call
, Function_Id
, Master_Actual
=> Master_Id
(Acc_Type
),
8617 -- Add an implicit actual to the function call that provides access
8618 -- to the allocated object. An unchecked conversion to the (specific)
8619 -- result subtype of the function is inserted to handle cases where
8620 -- the access type of the allocator has a class-wide designated type.
8622 Add_Access_Actual_To_Build_In_Place_Call
8623 (Func_Call
, Function_Id
, Return_Obj_Actual
);
8625 -- Finally, replace the allocator node with a reference to the temp
8627 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
8629 Analyze_And_Resolve
(Allocator
, Acc_Type
);
8630 end Make_Build_In_Place_Call_In_Allocator
;
8632 ---------------------------------------------------
8633 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8634 ---------------------------------------------------
8636 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8637 (Function_Call
: Node_Id
)
8640 Func_Call
: Node_Id
:= Function_Call
;
8641 Function_Id
: Entity_Id
;
8642 Result_Subt
: Entity_Id
;
8643 Return_Obj_Id
: Entity_Id
;
8644 Return_Obj_Decl
: Entity_Id
;
8647 -- Step past qualification or unchecked conversion (the latter can occur
8648 -- in cases of calls to 'Input).
8650 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
8651 N_Unchecked_Type_Conversion
)
8653 Func_Call
:= Expression
(Func_Call
);
8656 -- If the call has already been processed to add build-in-place actuals
8657 -- then return. One place this can occur is for calls to build-in-place
8658 -- functions that occur within a call to a protected operation, where
8659 -- due to rewriting and expansion of the protected call there can be
8660 -- more than one call to Expand_Actuals for the same set of actuals.
8662 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8666 -- Mark the call as processed as a build-in-place call
8668 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8670 Loc
:= Sloc
(Function_Call
);
8672 if Is_Entity_Name
(Name
(Func_Call
)) then
8673 Function_Id
:= Entity
(Name
(Func_Call
));
8675 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8676 Function_Id
:= Etype
(Name
(Func_Call
));
8679 raise Program_Error
;
8682 Result_Subt
:= Etype
(Function_Id
);
8684 -- If the build-in-place function returns a controlled object, then the
8685 -- object needs to be finalized immediately after the context. Since
8686 -- this case produces a transient scope, the servicing finalizer needs
8687 -- to name the returned object. Create a temporary which is initialized
8688 -- with the function call:
8690 -- Temp_Id : Func_Type := BIP_Func_Call;
8692 -- The initialization expression of the temporary will be rewritten by
8693 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8694 -- Call_In_Object_Declaration.
8696 if Needs_Finalization
(Result_Subt
) then
8698 Temp_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
8699 Temp_Decl
: Node_Id
;
8702 -- Reset the guard on the function call since the following does
8703 -- not perform actual call expansion.
8705 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
, False);
8708 Make_Object_Declaration
(Loc
,
8709 Defining_Identifier
=> Temp_Id
,
8710 Object_Definition
=>
8711 New_Occurrence_Of
(Result_Subt
, Loc
),
8713 New_Copy_Tree
(Function_Call
));
8715 Insert_Action
(Function_Call
, Temp_Decl
);
8717 Rewrite
(Function_Call
, New_Occurrence_Of
(Temp_Id
, Loc
));
8718 Analyze
(Function_Call
);
8721 -- When the result subtype is constrained, an object of the subtype is
8722 -- declared and an access value designating it is passed as an actual.
8724 elsif Is_Constrained
(Underlying_Type
(Result_Subt
)) then
8726 -- Create a temporary object to hold the function result
8728 Return_Obj_Id
:= Make_Temporary
(Loc
, 'R');
8729 Set_Etype
(Return_Obj_Id
, Result_Subt
);
8732 Make_Object_Declaration
(Loc
,
8733 Defining_Identifier
=> Return_Obj_Id
,
8734 Aliased_Present
=> True,
8735 Object_Definition
=> New_Occurrence_Of
(Result_Subt
, Loc
));
8737 Set_No_Initialization
(Return_Obj_Decl
);
8739 Insert_Action
(Func_Call
, Return_Obj_Decl
);
8741 -- When the function has a controlling result, an allocation-form
8742 -- parameter must be passed indicating that the caller is allocating
8743 -- the result object. This is needed because such a function can be
8744 -- called as a dispatching operation and must be treated similarly
8745 -- to functions with unconstrained result subtypes.
8747 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8748 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
8750 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8751 (Func_Call
, Function_Id
);
8753 Add_Task_Actuals_To_Build_In_Place_Call
8754 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8756 -- Add an implicit actual to the function call that provides access
8757 -- to the caller's return object.
8759 Add_Access_Actual_To_Build_In_Place_Call
8760 (Func_Call
, Function_Id
, New_Occurrence_Of
(Return_Obj_Id
, Loc
));
8762 -- When the result subtype is unconstrained, the function must allocate
8763 -- the return object in the secondary stack, so appropriate implicit
8764 -- parameters are added to the call to indicate that. A transient
8765 -- scope is established to ensure eventual cleanup of the result.
8768 -- Pass an allocation parameter indicating that the function should
8769 -- allocate its result on the secondary stack.
8771 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8772 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
8774 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8775 (Func_Call
, Function_Id
);
8777 Add_Task_Actuals_To_Build_In_Place_Call
8778 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8780 -- Pass a null value to the function since no return object is
8781 -- available on the caller side.
8783 Add_Access_Actual_To_Build_In_Place_Call
8784 (Func_Call
, Function_Id
, Empty
);
8786 end Make_Build_In_Place_Call_In_Anonymous_Context
;
8788 --------------------------------------------
8789 -- Make_Build_In_Place_Call_In_Assignment --
8790 --------------------------------------------
8792 procedure Make_Build_In_Place_Call_In_Assignment
8794 Function_Call
: Node_Id
)
8796 Lhs
: constant Node_Id
:= Name
(Assign
);
8797 Func_Call
: Node_Id
:= Function_Call
;
8798 Func_Id
: Entity_Id
;
8802 Ptr_Typ
: Entity_Id
;
8803 Ptr_Typ_Decl
: Node_Id
;
8805 Result_Subt
: Entity_Id
;
8809 -- Step past qualification or unchecked conversion (the latter can occur
8810 -- in cases of calls to 'Input).
8812 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
8813 N_Unchecked_Type_Conversion
)
8815 Func_Call
:= Expression
(Func_Call
);
8818 -- If the call has already been processed to add build-in-place actuals
8819 -- then return. This should not normally occur in an assignment context,
8820 -- but we add the protection as a defensive measure.
8822 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8826 -- Mark the call as processed as a build-in-place call
8828 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8830 Loc
:= Sloc
(Function_Call
);
8832 if Is_Entity_Name
(Name
(Func_Call
)) then
8833 Func_Id
:= Entity
(Name
(Func_Call
));
8835 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8836 Func_Id
:= Etype
(Name
(Func_Call
));
8839 raise Program_Error
;
8842 Result_Subt
:= Etype
(Func_Id
);
8844 -- When the result subtype is unconstrained, an additional actual must
8845 -- be passed to indicate that the caller is providing the return object.
8846 -- This parameter must also be passed when the called function has a
8847 -- controlling result, because dispatching calls to the function needs
8848 -- to be treated effectively the same as calls to class-wide functions.
8850 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8851 (Func_Call
, Func_Id
, Alloc_Form
=> Caller_Allocation
);
8853 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8854 (Func_Call
, Func_Id
);
8856 Add_Task_Actuals_To_Build_In_Place_Call
8857 (Func_Call
, Func_Id
, Make_Identifier
(Loc
, Name_uMaster
));
8859 -- Add an implicit actual to the function call that provides access to
8860 -- the caller's return object.
8862 Add_Access_Actual_To_Build_In_Place_Call
8865 Make_Unchecked_Type_Conversion
(Loc
,
8866 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
8867 Expression
=> Relocate_Node
(Lhs
)));
8869 -- Create an access type designating the function's result subtype
8871 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
8874 Make_Full_Type_Declaration
(Loc
,
8875 Defining_Identifier
=> Ptr_Typ
,
8877 Make_Access_To_Object_Definition
(Loc
,
8878 All_Present
=> True,
8879 Subtype_Indication
=>
8880 New_Occurrence_Of
(Result_Subt
, Loc
)));
8881 Insert_After_And_Analyze
(Assign
, Ptr_Typ_Decl
);
8883 -- Finally, create an access object initialized to a reference to the
8884 -- function call. We know this access value is non-null, so mark the
8885 -- entity accordingly to suppress junk access checks.
8887 New_Expr
:= Make_Reference
(Loc
, Relocate_Node
(Func_Call
));
8889 Obj_Id
:= Make_Temporary
(Loc
, 'R', New_Expr
);
8890 Set_Etype
(Obj_Id
, Ptr_Typ
);
8891 Set_Is_Known_Non_Null
(Obj_Id
);
8894 Make_Object_Declaration
(Loc
,
8895 Defining_Identifier
=> Obj_Id
,
8896 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
8897 Expression
=> New_Expr
);
8898 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Obj_Decl
);
8900 Rewrite
(Assign
, Make_Null_Statement
(Loc
));
8902 -- Retrieve the target of the assignment
8904 if Nkind
(Lhs
) = N_Selected_Component
then
8905 Target
:= Selector_Name
(Lhs
);
8906 elsif Nkind
(Lhs
) = N_Type_Conversion
then
8907 Target
:= Expression
(Lhs
);
8912 -- If we are assigning to a return object or this is an expression of
8913 -- an extension aggregate, the target should either be an identifier
8914 -- or a simple expression. All other cases imply a different scenario.
8916 if Nkind
(Target
) in N_Has_Entity
then
8917 Target
:= Entity
(Target
);
8921 end Make_Build_In_Place_Call_In_Assignment
;
8923 ----------------------------------------------------
8924 -- Make_Build_In_Place_Call_In_Object_Declaration --
8925 ----------------------------------------------------
8927 procedure Make_Build_In_Place_Call_In_Object_Declaration
8928 (Object_Decl
: Node_Id
;
8929 Function_Call
: Node_Id
)
8932 Obj_Def_Id
: constant Entity_Id
:=
8933 Defining_Identifier
(Object_Decl
);
8934 Enclosing_Func
: constant Entity_Id
:=
8935 Enclosing_Subprogram
(Obj_Def_Id
);
8936 Call_Deref
: Node_Id
;
8937 Caller_Object
: Node_Id
;
8939 Fmaster_Actual
: Node_Id
:= Empty
;
8940 Func_Call
: Node_Id
:= Function_Call
;
8941 Function_Id
: Entity_Id
;
8942 Pool_Actual
: Node_Id
;
8943 Ptr_Typ
: Entity_Id
;
8944 Ptr_Typ_Decl
: Node_Id
;
8945 Pass_Caller_Acc
: Boolean := False;
8947 Result_Subt
: Entity_Id
;
8950 -- Step past qualification or unchecked conversion (the latter can occur
8951 -- in cases of calls to 'Input).
8953 if Nkind_In
(Func_Call
, N_Qualified_Expression
,
8954 N_Unchecked_Type_Conversion
)
8956 Func_Call
:= Expression
(Func_Call
);
8959 -- If the call has already been processed to add build-in-place actuals
8960 -- then return. This should not normally occur in an object declaration,
8961 -- but we add the protection as a defensive measure.
8963 if Is_Expanded_Build_In_Place_Call
(Func_Call
) then
8967 -- Mark the call as processed as a build-in-place call
8969 Set_Is_Expanded_Build_In_Place_Call
(Func_Call
);
8971 Loc
:= Sloc
(Function_Call
);
8973 if Is_Entity_Name
(Name
(Func_Call
)) then
8974 Function_Id
:= Entity
(Name
(Func_Call
));
8976 elsif Nkind
(Name
(Func_Call
)) = N_Explicit_Dereference
then
8977 Function_Id
:= Etype
(Name
(Func_Call
));
8980 raise Program_Error
;
8983 Result_Subt
:= Etype
(Function_Id
);
8985 -- Create an access type designating the function's result subtype. We
8986 -- use the type of the original call because it may be a call to an
8987 -- inherited operation, which the expansion has replaced with the parent
8988 -- operation that yields the parent type. Note that this access type
8989 -- must be declared before we establish a transient scope, so that it
8990 -- receives the proper accessibility level.
8992 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
8994 Make_Full_Type_Declaration
(Loc
,
8995 Defining_Identifier
=> Ptr_Typ
,
8997 Make_Access_To_Object_Definition
(Loc
,
8998 All_Present
=> True,
8999 Subtype_Indication
=>
9000 New_Occurrence_Of
(Etype
(Function_Call
), Loc
)));
9002 -- The access type and its accompanying object must be inserted after
9003 -- the object declaration in the constrained case, so that the function
9004 -- call can be passed access to the object. In the unconstrained case,
9005 -- or if the object declaration is for a return object, the access type
9006 -- and object must be inserted before the object, since the object
9007 -- declaration is rewritten to be a renaming of a dereference of the
9008 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
9009 -- the result object is in a different (transient) scope, so won't
9012 if Is_Constrained
(Underlying_Type
(Result_Subt
))
9013 and then not Is_Return_Object
(Defining_Identifier
(Object_Decl
))
9015 Insert_After_And_Analyze
(Object_Decl
, Ptr_Typ_Decl
);
9017 Insert_Action
(Object_Decl
, Ptr_Typ_Decl
);
9020 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
9021 -- elaborated in an inner (transient) scope and thus won't cause
9022 -- freezing by itself.
9025 Ptr_Typ_Freeze_Ref
: constant Node_Id
:=
9026 New_Occurrence_Of
(Ptr_Typ
, Loc
);
9028 Set_Parent
(Ptr_Typ_Freeze_Ref
, Ptr_Typ_Decl
);
9029 Freeze_Expression
(Ptr_Typ_Freeze_Ref
);
9032 -- If the the object is a return object of an enclosing build-in-place
9033 -- function, then the implicit build-in-place parameters of the
9034 -- enclosing function are simply passed along to the called function.
9035 -- (Unfortunately, this won't cover the case of extension aggregates
9036 -- where the ancestor part is a build-in-place unconstrained function
9037 -- call that should be passed along the caller's parameters. Currently
9038 -- those get mishandled by reassigning the result of the call to the
9039 -- aggregate return object, when the call result should really be
9040 -- directly built in place in the aggregate and not in a temporary. ???)
9042 if Is_Return_Object
(Defining_Identifier
(Object_Decl
)) then
9043 Pass_Caller_Acc
:= True;
9045 -- When the enclosing function has a BIP_Alloc_Form formal then we
9046 -- pass it along to the callee (such as when the enclosing function
9047 -- has an unconstrained or tagged result type).
9049 if Needs_BIP_Alloc_Form
(Enclosing_Func
) then
9050 if VM_Target
= No_VM
and then
9051 RTE_Available
(RE_Root_Storage_Pool_Ptr
)
9054 New_Occurrence_Of
(Build_In_Place_Formal
9055 (Enclosing_Func
, BIP_Storage_Pool
), Loc
);
9057 -- The build-in-place pool formal is not built on .NET/JVM
9060 Pool_Actual
:= Empty
;
9063 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9068 (Build_In_Place_Formal
(Enclosing_Func
, BIP_Alloc_Form
),
9070 Pool_Actual
=> Pool_Actual
);
9072 -- Otherwise, if enclosing function has a constrained result subtype,
9073 -- then caller allocation will be used.
9076 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9077 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
9080 if Needs_BIP_Finalization_Master
(Enclosing_Func
) then
9083 (Build_In_Place_Formal
9084 (Enclosing_Func
, BIP_Finalization_Master
), Loc
);
9087 -- Retrieve the BIPacc formal from the enclosing function and convert
9088 -- it to the access type of the callee's BIP_Object_Access formal.
9091 Make_Unchecked_Type_Conversion
(Loc
,
9095 (Build_In_Place_Formal
(Function_Id
, BIP_Object_Access
)),
9099 (Build_In_Place_Formal
(Enclosing_Func
, BIP_Object_Access
),
9102 -- In the constrained case, add an implicit actual to the function call
9103 -- that provides access to the declared object. An unchecked conversion
9104 -- to the (specific) result type of the function is inserted to handle
9105 -- the case where the object is declared with a class-wide type.
9107 elsif Is_Constrained
(Underlying_Type
(Result_Subt
)) then
9109 Make_Unchecked_Type_Conversion
(Loc
,
9110 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
9111 Expression
=> New_Occurrence_Of
(Obj_Def_Id
, Loc
));
9113 -- When the function has a controlling result, an allocation-form
9114 -- parameter must be passed indicating that the caller is allocating
9115 -- the result object. This is needed because such a function can be
9116 -- called as a dispatching operation and must be treated similarly
9117 -- to functions with unconstrained result subtypes.
9119 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9120 (Func_Call
, Function_Id
, Alloc_Form
=> Caller_Allocation
);
9122 -- In other unconstrained cases, pass an indication to do the allocation
9123 -- on the secondary stack and set Caller_Object to Empty so that a null
9124 -- value will be passed for the caller's object address. A transient
9125 -- scope is established to ensure eventual cleanup of the result.
9128 Add_Unconstrained_Actuals_To_Build_In_Place_Call
9129 (Func_Call
, Function_Id
, Alloc_Form
=> Secondary_Stack
);
9130 Caller_Object
:= Empty
;
9132 Establish_Transient_Scope
(Object_Decl
, Sec_Stack
=> True);
9135 -- Pass along any finalization master actual, which is needed in the
9136 -- case where the called function initializes a return object of an
9137 -- enclosing build-in-place function.
9139 Add_Finalization_Master_Actual_To_Build_In_Place_Call
9140 (Func_Call
=> Func_Call
,
9141 Func_Id
=> Function_Id
,
9142 Master_Exp
=> Fmaster_Actual
);
9144 if Nkind
(Parent
(Object_Decl
)) = N_Extended_Return_Statement
9145 and then Has_Task
(Result_Subt
)
9147 -- Here we're passing along the master that was passed in to this
9150 Add_Task_Actuals_To_Build_In_Place_Call
9151 (Func_Call
, Function_Id
,
9153 New_Occurrence_Of
(Build_In_Place_Formal
9154 (Enclosing_Func
, BIP_Task_Master
), Loc
));
9157 Add_Task_Actuals_To_Build_In_Place_Call
9158 (Func_Call
, Function_Id
, Make_Identifier
(Loc
, Name_uMaster
));
9161 Add_Access_Actual_To_Build_In_Place_Call
9162 (Func_Call
, Function_Id
, Caller_Object
, Is_Access
=> Pass_Caller_Acc
);
9164 -- Finally, create an access object initialized to a reference to the
9165 -- function call. We know this access value cannot be null, so mark the
9166 -- entity accordingly to suppress the access check.
9168 Def_Id
:= Make_Temporary
(Loc
, 'R', Func_Call
);
9169 Set_Etype
(Def_Id
, Ptr_Typ
);
9170 Set_Is_Known_Non_Null
(Def_Id
);
9173 Make_Object_Declaration
(Loc
,
9174 Defining_Identifier
=> Def_Id
,
9175 Constant_Present
=> True,
9176 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
9178 Make_Reference
(Loc
, Relocate_Node
(Func_Call
)));
9180 Insert_After_And_Analyze
(Ptr_Typ_Decl
, Res_Decl
);
9182 -- If the result subtype of the called function is constrained and
9183 -- is not itself the return expression of an enclosing BIP function,
9184 -- then mark the object as having no initialization.
9186 if Is_Constrained
(Underlying_Type
(Result_Subt
))
9187 and then not Is_Return_Object
(Defining_Identifier
(Object_Decl
))
9189 -- The related object declaration is encased in a transient block
9190 -- because the build-in-place function call contains at least one
9191 -- nested function call that produces a controlled transient
9194 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
9196 -- Since the build-in-place expansion decouples the call from the
9197 -- object declaration, the finalization machinery lacks the context
9198 -- which prompted the generation of the transient block. To resolve
9199 -- this scenario, store the build-in-place call.
9201 if Scope_Is_Transient
9202 and then Node_To_Be_Wrapped
= Object_Decl
9204 Set_BIP_Initialization_Call
(Obj_Def_Id
, Res_Decl
);
9207 Set_Expression
(Object_Decl
, Empty
);
9208 Set_No_Initialization
(Object_Decl
);
9210 -- In case of an unconstrained result subtype, or if the call is the
9211 -- return expression of an enclosing BIP function, rewrite the object
9212 -- declaration as an object renaming where the renamed object is a
9213 -- dereference of <function_Call>'reference:
9215 -- Obj : Subt renames <function_call>'Ref.all;
9219 Make_Explicit_Dereference
(Loc
,
9220 Prefix
=> New_Occurrence_Of
(Def_Id
, Loc
));
9222 Loc
:= Sloc
(Object_Decl
);
9223 Rewrite
(Object_Decl
,
9224 Make_Object_Renaming_Declaration
(Loc
,
9225 Defining_Identifier
=> Make_Temporary
(Loc
, 'D'),
9226 Access_Definition
=> Empty
,
9227 Subtype_Mark
=> New_Occurrence_Of
(Result_Subt
, Loc
),
9228 Name
=> Call_Deref
));
9230 Set_Renamed_Object
(Defining_Identifier
(Object_Decl
), Call_Deref
);
9232 Analyze
(Object_Decl
);
9234 -- Replace the internal identifier of the renaming declaration's
9235 -- entity with identifier of the original object entity. We also have
9236 -- to exchange the entities containing their defining identifiers to
9237 -- ensure the correct replacement of the object declaration by the
9238 -- object renaming declaration to avoid homograph conflicts (since
9239 -- the object declaration's defining identifier was already entered
9240 -- in current scope). The Next_Entity links of the two entities also
9241 -- have to be swapped since the entities are part of the return
9242 -- scope's entity list and the list structure would otherwise be
9243 -- corrupted. Finally, the homonym chain must be preserved as well.
9246 Renaming_Def_Id
: constant Entity_Id
:=
9247 Defining_Identifier
(Object_Decl
);
9248 Next_Entity_Temp
: constant Entity_Id
:=
9249 Next_Entity
(Renaming_Def_Id
);
9251 Set_Chars
(Renaming_Def_Id
, Chars
(Obj_Def_Id
));
9253 -- Swap next entity links in preparation for exchanging entities
9255 Set_Next_Entity
(Renaming_Def_Id
, Next_Entity
(Obj_Def_Id
));
9256 Set_Next_Entity
(Obj_Def_Id
, Next_Entity_Temp
);
9257 Set_Homonym
(Renaming_Def_Id
, Homonym
(Obj_Def_Id
));
9259 Exchange_Entities
(Renaming_Def_Id
, Obj_Def_Id
);
9261 -- Preserve source indication of original declaration, so that
9262 -- xref information is properly generated for the right entity.
9264 Preserve_Comes_From_Source
9265 (Object_Decl
, Original_Node
(Object_Decl
));
9267 Preserve_Comes_From_Source
9268 (Obj_Def_Id
, Original_Node
(Object_Decl
));
9270 Set_Comes_From_Source
(Renaming_Def_Id
, False);
9274 -- If the object entity has a class-wide Etype, then we need to change
9275 -- it to the result subtype of the function call, because otherwise the
9276 -- object will be class-wide without an explicit initialization and
9277 -- won't be allocated properly by the back end. It seems unclean to make
9278 -- such a revision to the type at this point, and we should try to
9279 -- improve this treatment when build-in-place functions with class-wide
9280 -- results are implemented. ???
9282 if Is_Class_Wide_Type
(Etype
(Defining_Identifier
(Object_Decl
))) then
9283 Set_Etype
(Defining_Identifier
(Object_Decl
), Result_Subt
);
9285 end Make_Build_In_Place_Call_In_Object_Declaration
;
9287 --------------------------------------------
9288 -- Make_CPP_Constructor_Call_In_Allocator --
9289 --------------------------------------------
9291 procedure Make_CPP_Constructor_Call_In_Allocator
9292 (Allocator
: Node_Id
;
9293 Function_Call
: Node_Id
)
9295 Loc
: constant Source_Ptr
:= Sloc
(Function_Call
);
9296 Acc_Type
: constant Entity_Id
:= Etype
(Allocator
);
9297 Function_Id
: constant Entity_Id
:= Entity
(Name
(Function_Call
));
9298 Result_Subt
: constant Entity_Id
:= Available_View
(Etype
(Function_Id
));
9300 New_Allocator
: Node_Id
;
9301 Return_Obj_Access
: Entity_Id
;
9305 pragma Assert
(Nkind
(Allocator
) = N_Allocator
9306 and then Nkind
(Function_Call
) = N_Function_Call
);
9307 pragma Assert
(Convention
(Function_Id
) = Convention_CPP
9308 and then Is_Constructor
(Function_Id
));
9309 pragma Assert
(Is_Constrained
(Underlying_Type
(Result_Subt
)));
9311 -- Replace the initialized allocator of form "new T'(Func (...))" with
9312 -- an uninitialized allocator of form "new T", where T is the result
9313 -- subtype of the called function. The call to the function is handled
9314 -- separately further below.
9317 Make_Allocator
(Loc
,
9318 Expression
=> New_Occurrence_Of
(Result_Subt
, Loc
));
9319 Set_No_Initialization
(New_Allocator
);
9321 -- Copy attributes to new allocator. Note that the new allocator
9322 -- logically comes from source if the original one did, so copy the
9323 -- relevant flag. This ensures proper treatment of the restriction
9324 -- No_Implicit_Heap_Allocations in this case.
9326 Set_Storage_Pool
(New_Allocator
, Storage_Pool
(Allocator
));
9327 Set_Procedure_To_Call
(New_Allocator
, Procedure_To_Call
(Allocator
));
9328 Set_Comes_From_Source
(New_Allocator
, Comes_From_Source
(Allocator
));
9330 Rewrite
(Allocator
, New_Allocator
);
9332 -- Create a new access object and initialize it to the result of the
9333 -- new uninitialized allocator. Note: we do not use Allocator as the
9334 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
9335 -- as this would create a sort of infinite "recursion".
9337 Return_Obj_Access
:= Make_Temporary
(Loc
, 'R');
9338 Set_Etype
(Return_Obj_Access
, Acc_Type
);
9341 -- Rnnn : constant ptr_T := new (T);
9342 -- Init (Rnn.all,...);
9345 Make_Object_Declaration
(Loc
,
9346 Defining_Identifier
=> Return_Obj_Access
,
9347 Constant_Present
=> True,
9348 Object_Definition
=> New_Occurrence_Of
(Acc_Type
, Loc
),
9349 Expression
=> Relocate_Node
(Allocator
));
9350 Insert_Action
(Allocator
, Tmp_Obj
);
9352 Insert_List_After_And_Analyze
(Tmp_Obj
,
9353 Build_Initialization_Call
(Loc
,
9355 Make_Explicit_Dereference
(Loc
,
9356 Prefix
=> New_Occurrence_Of
(Return_Obj_Access
, Loc
)),
9357 Typ
=> Etype
(Function_Id
),
9358 Constructor_Ref
=> Function_Call
));
9360 -- Finally, replace the allocator node with a reference to the result of
9361 -- the function call itself (which will effectively be an access to the
9362 -- object created by the allocator).
9364 Rewrite
(Allocator
, New_Occurrence_Of
(Return_Obj_Access
, Loc
));
9366 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
9367 -- generate an implicit conversion to force displacement of the "this"
9370 if Is_Interface
(Designated_Type
(Acc_Type
)) then
9371 Rewrite
(Allocator
, Convert_To
(Acc_Type
, Relocate_Node
(Allocator
)));
9374 Analyze_And_Resolve
(Allocator
, Acc_Type
);
9375 end Make_CPP_Constructor_Call_In_Allocator
;
9377 -----------------------------------
9378 -- Needs_BIP_Finalization_Master --
9379 -----------------------------------
9381 function Needs_BIP_Finalization_Master
9382 (Func_Id
: Entity_Id
) return Boolean
9384 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
9385 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
9388 not Restriction_Active
(No_Finalization
)
9389 and then Needs_Finalization
(Func_Typ
);
9390 end Needs_BIP_Finalization_Master
;
9392 --------------------------
9393 -- Needs_BIP_Alloc_Form --
9394 --------------------------
9396 function Needs_BIP_Alloc_Form
(Func_Id
: Entity_Id
) return Boolean is
9397 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
9398 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
9400 return not Is_Constrained
(Func_Typ
) or else Is_Tagged_Type
(Func_Typ
);
9401 end Needs_BIP_Alloc_Form
;
9403 --------------------------------------
9404 -- Needs_Result_Accessibility_Level --
9405 --------------------------------------
9407 function Needs_Result_Accessibility_Level
9408 (Func_Id
: Entity_Id
) return Boolean
9410 Func_Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Func_Id
));
9412 function Has_Unconstrained_Access_Discriminant_Component
9413 (Comp_Typ
: Entity_Id
) return Boolean;
9414 -- Returns True if any component of the type has an unconstrained access
9417 -----------------------------------------------------
9418 -- Has_Unconstrained_Access_Discriminant_Component --
9419 -----------------------------------------------------
9421 function Has_Unconstrained_Access_Discriminant_Component
9422 (Comp_Typ
: Entity_Id
) return Boolean
9425 if not Is_Limited_Type
(Comp_Typ
) then
9428 -- Only limited types can have access discriminants with
9431 elsif Has_Unconstrained_Access_Discriminants
(Comp_Typ
) then
9434 elsif Is_Array_Type
(Comp_Typ
) then
9435 return Has_Unconstrained_Access_Discriminant_Component
9436 (Underlying_Type
(Component_Type
(Comp_Typ
)));
9438 elsif Is_Record_Type
(Comp_Typ
) then
9443 Comp
:= First_Component
(Comp_Typ
);
9444 while Present
(Comp
) loop
9445 if Has_Unconstrained_Access_Discriminant_Component
9446 (Underlying_Type
(Etype
(Comp
)))
9451 Next_Component
(Comp
);
9457 end Has_Unconstrained_Access_Discriminant_Component
;
9459 Feature_Disabled
: constant Boolean := True;
9462 -- Start of processing for Needs_Result_Accessibility_Level
9465 -- False if completion unavailable (how does this happen???)
9467 if not Present
(Func_Typ
) then
9470 elsif Feature_Disabled
then
9473 -- False if not a function, also handle enum-lit renames case
9475 elsif Func_Typ
= Standard_Void_Type
9476 or else Is_Scalar_Type
(Func_Typ
)
9480 -- Handle a corner case, a cross-dialect subp renaming. For example,
9481 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9482 -- an Ada 2005 (or earlier) unit references predefined run-time units.
9484 elsif Present
(Alias
(Func_Id
)) then
9486 -- Unimplemented: a cross-dialect subp renaming which does not set
9487 -- the Alias attribute (e.g., a rename of a dereference of an access
9488 -- to subprogram value). ???
9490 return Present
(Extra_Accessibility_Of_Result
(Alias
(Func_Id
)));
9492 -- Remaining cases require Ada 2012 mode
9494 elsif Ada_Version
< Ada_2012
then
9497 elsif Ekind
(Func_Typ
) = E_Anonymous_Access_Type
9498 or else Is_Tagged_Type
(Func_Typ
)
9500 -- In the case of, say, a null tagged record result type, the need
9501 -- for this extra parameter might not be obvious. This function
9502 -- returns True for all tagged types for compatibility reasons.
9503 -- A function with, say, a tagged null controlling result type might
9504 -- be overridden by a primitive of an extension having an access
9505 -- discriminant and the overrider and overridden must have compatible
9506 -- calling conventions (including implicitly declared parameters).
9507 -- Similarly, values of one access-to-subprogram type might designate
9508 -- both a primitive subprogram of a given type and a function
9509 -- which is, for example, not a primitive subprogram of any type.
9510 -- Again, this requires calling convention compatibility.
9511 -- It might be possible to solve these issues by introducing
9512 -- wrappers, but that is not the approach that was chosen.
9516 elsif Has_Unconstrained_Access_Discriminants
(Func_Typ
) then
9519 elsif Has_Unconstrained_Access_Discriminant_Component
(Func_Typ
) then
9522 -- False for all other cases
9527 end Needs_Result_Accessibility_Level
;
9529 ------------------------
9530 -- Unnest_Subprograms --
9531 ------------------------
9533 procedure Unnest_Subprograms
is
9535 for J
in Unest_Bodies
.First
.. Unest_Bodies
.Last
loop
9537 UBJ
: Unest_Entry
renames Unest_Bodies
.Table
(J
);
9539 Unnest_Subprogram
(UBJ
.Ent
, UBJ
.Bod
);
9542 end Unnest_Subprograms
;