1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Contracts
; use Contracts
;
30 with Debug
; use Debug
;
31 with Einfo
; use Einfo
;
32 with Elists
; use Elists
;
33 with Errout
; use Errout
;
34 with Exp_Ch3
; use Exp_Ch3
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Pakd
; use Exp_Pakd
;
38 with Exp_Util
; use Exp_Util
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Fname
; use Fname
;
41 with Ghost
; use Ghost
;
42 with Layout
; use Layout
;
44 with Namet
; use Namet
;
45 with Nlists
; use Nlists
;
46 with Nmake
; use Nmake
;
48 with Restrict
; use Restrict
;
49 with Rident
; use Rident
;
50 with Rtsfind
; use Rtsfind
;
52 with Sem_Aux
; use Sem_Aux
;
53 with Sem_Cat
; use Sem_Cat
;
54 with Sem_Ch6
; use Sem_Ch6
;
55 with Sem_Ch7
; use Sem_Ch7
;
56 with Sem_Ch8
; use Sem_Ch8
;
57 with Sem_Ch13
; use Sem_Ch13
;
58 with Sem_Eval
; use Sem_Eval
;
59 with Sem_Mech
; use Sem_Mech
;
60 with Sem_Prag
; use Sem_Prag
;
61 with Sem_Res
; use Sem_Res
;
62 with Sem_Util
; use Sem_Util
;
63 with Sinfo
; use Sinfo
;
64 with Snames
; use Snames
;
65 with Stand
; use Stand
;
66 with Targparm
; use Targparm
;
67 with Tbuild
; use Tbuild
;
68 with Ttypes
; use Ttypes
;
69 with Uintp
; use Uintp
;
70 with Urealp
; use Urealp
;
71 with Warnsw
; use Warnsw
;
73 package body Freeze
is
75 -----------------------
76 -- Local Subprograms --
77 -----------------------
79 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
);
80 -- Typ is a type that is being frozen. If no size clause is given,
81 -- but a default Esize has been computed, then this default Esize is
82 -- adjusted up if necessary to be consistent with a given alignment,
83 -- but never to a value greater than Long_Long_Integer'Size. This
84 -- is used for all discrete types and for fixed-point types.
86 procedure Build_And_Analyze_Renamed_Body
89 After
: in out Node_Id
);
90 -- Build body for a renaming declaration, insert in tree and analyze
92 procedure Check_Address_Clause
(E
: Entity_Id
);
93 -- Apply legality checks to address clauses for object declarations,
94 -- at the point the object is frozen. Also ensure any initialization is
95 -- performed only after the object has been frozen.
97 procedure Check_Component_Storage_Order
98 (Encl_Type
: Entity_Id
;
101 Comp_ADC_Present
: out Boolean);
102 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
103 -- clause, verify that the component type has an explicit and compatible
104 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
105 -- entity of the component under consideration. For an Encl_Type that
106 -- does not have a Scalar_Storage_Order attribute definition clause,
107 -- verify that the component also does not have such a clause.
108 -- ADC is the attribute definition clause if present (or Empty). On return,
109 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
110 -- attribute definition clause.
112 procedure Check_Debug_Info_Needed
(T
: Entity_Id
);
113 -- As each entity is frozen, this routine is called to deal with the
114 -- setting of Debug_Info_Needed for the entity. This flag is set if
115 -- the entity comes from source, or if we are in Debug_Generated_Code
116 -- mode or if the -gnatdV debug flag is set. However, it never sets
117 -- the flag if Debug_Info_Off is set. This procedure also ensures that
118 -- subsidiary entities have the flag set as required.
120 procedure Check_Expression_Function
(N
: Node_Id
; Nam
: Entity_Id
);
121 -- When an expression function is frozen by a use of it, the expression
122 -- itself is frozen. Check that the expression does not include references
123 -- to deferred constants without completion. We report this at the freeze
124 -- point of the function, to provide a better error message.
126 -- In most cases the expression itself is frozen by the time the function
127 -- itself is frozen, because the formals will be frozen by then. However,
128 -- Attribute references to outer types are freeze points for those types;
129 -- this routine generates the required freeze nodes for them.
131 procedure Check_Inherited_Conditions
(R
: Entity_Id
);
132 -- For a tagged derived type, create wrappers for inherited operations
133 -- that have a class-wide condition, so it can be properly rewritten if
134 -- it involves calls to other overriding primitives.
136 procedure Check_Strict_Alignment
(E
: Entity_Id
);
137 -- E is a base type. If E is tagged or has a component that is aliased
138 -- or tagged or contains something this is aliased or tagged, set
141 procedure Check_Unsigned_Type
(E
: Entity_Id
);
142 pragma Inline
(Check_Unsigned_Type
);
143 -- If E is a fixed-point or discrete type, then all the necessary work
144 -- to freeze it is completed except for possible setting of the flag
145 -- Is_Unsigned_Type, which is done by this procedure. The call has no
146 -- effect if the entity E is not a discrete or fixed-point type.
148 procedure Freeze_And_Append
151 Result
: in out List_Id
);
152 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
153 -- nodes to Result, modifying Result from No_List if necessary. N has
154 -- the same usage as in Freeze_Entity.
156 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
);
157 -- Freeze enumeration type. The Esize field is set as processing
158 -- proceeds (i.e. set by default when the type is declared and then
159 -- adjusted by rep clauses. What this procedure does is to make sure
160 -- that if a foreign convention is specified, and no specific size
161 -- is given, then the size must be at least Integer'Size.
163 procedure Freeze_Static_Object
(E
: Entity_Id
);
164 -- If an object is frozen which has Is_Statically_Allocated set, then
165 -- all referenced types must also be marked with this flag. This routine
166 -- is in charge of meeting this requirement for the object entity E.
168 procedure Freeze_Subprogram
(E
: Entity_Id
);
169 -- Perform freezing actions for a subprogram (create extra formals,
170 -- and set proper default mechanism values). Note that this routine
171 -- is not called for internal subprograms, for which neither of these
172 -- actions is needed (or desirable, we do not want for example to have
173 -- these extra formals present in initialization procedures, where they
174 -- would serve no purpose). In this call E is either a subprogram or
175 -- a subprogram type (i.e. an access to a subprogram).
177 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean;
178 -- True if T is not private and has no private components, or has a full
179 -- view. Used to determine whether the designated type of an access type
180 -- should be frozen when the access type is frozen. This is done when an
181 -- allocator is frozen, or an expression that may involve attributes of
182 -- the designated type. Otherwise freezing the access type does not freeze
183 -- the designated type.
185 procedure Process_Default_Expressions
187 After
: in out Node_Id
);
188 -- This procedure is called for each subprogram to complete processing of
189 -- default expressions at the point where all types are known to be frozen.
190 -- The expressions must be analyzed in full, to make sure that all error
191 -- processing is done (they have only been pre-analyzed). If the expression
192 -- is not an entity or literal, its analysis may generate code which must
193 -- not be executed. In that case we build a function body to hold that
194 -- code. This wrapper function serves no other purpose (it used to be
195 -- called to evaluate the default, but now the default is inlined at each
198 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
);
199 -- Typ is a record or array type that is being frozen. This routine sets
200 -- the default component alignment from the scope stack values if the
201 -- alignment is otherwise not specified.
203 procedure Set_SSO_From_Default
(T
: Entity_Id
);
204 -- T is a record or array type that is being frozen. If it is a base type,
205 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
206 -- will be set appropriately. Note that an explicit occurrence of aspect
207 -- Scalar_Storage_Order or an explicit setting of this aspect with an
208 -- attribute definition clause occurs, then these two flags are reset in
209 -- any case, so call will have no effect.
211 procedure Undelay_Type
(T
: Entity_Id
);
212 -- T is a type of a component that we know to be an Itype. We don't want
213 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
214 -- Full_View or Corresponding_Record_Type.
216 procedure Warn_Overlay
(Expr
: Node_Id
; Typ
: Entity_Id
; Nam
: Node_Id
);
217 -- Expr is the expression for an address clause for entity Nam whose type
218 -- is Typ. If Typ has a default initialization, and there is no explicit
219 -- initialization in the source declaration, check whether the address
220 -- clause might cause overlaying of an entity, and emit a warning on the
221 -- side effect that the initialization will cause.
223 -------------------------------
224 -- Adjust_Esize_For_Alignment --
225 -------------------------------
227 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
) is
231 if Known_Esize
(Typ
) and then Known_Alignment
(Typ
) then
232 Align
:= Alignment_In_Bits
(Typ
);
234 if Align
> Esize
(Typ
)
235 and then Align
<= Standard_Long_Long_Integer_Size
237 Set_Esize
(Typ
, Align
);
240 end Adjust_Esize_For_Alignment
;
242 ------------------------------------
243 -- Build_And_Analyze_Renamed_Body --
244 ------------------------------------
246 procedure Build_And_Analyze_Renamed_Body
249 After
: in out Node_Id
)
251 Body_Decl
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
252 Ent
: constant Entity_Id
:= Defining_Entity
(Decl
);
254 Renamed_Subp
: Entity_Id
;
257 -- If the renamed subprogram is intrinsic, there is no need for a
258 -- wrapper body: we set the alias that will be called and expanded which
259 -- completes the declaration. This transformation is only legal if the
260 -- renamed entity has already been elaborated.
262 -- Note that it is legal for a renaming_as_body to rename an intrinsic
263 -- subprogram, as long as the renaming occurs before the new entity
264 -- is frozen (RM 8.5.4 (5)).
266 if Nkind
(Body_Decl
) = N_Subprogram_Renaming_Declaration
267 and then Is_Entity_Name
(Name
(Body_Decl
))
269 Renamed_Subp
:= Entity
(Name
(Body_Decl
));
271 Renamed_Subp
:= Empty
;
274 if Present
(Renamed_Subp
)
275 and then Is_Intrinsic_Subprogram
(Renamed_Subp
)
277 (not In_Same_Source_Unit
(Renamed_Subp
, Ent
)
278 or else Sloc
(Renamed_Subp
) < Sloc
(Ent
))
280 -- We can make the renaming entity intrinsic if the renamed function
281 -- has an interface name, or if it is one of the shift/rotate
282 -- operations known to the compiler.
285 (Present
(Interface_Name
(Renamed_Subp
))
286 or else Nam_In
(Chars
(Renamed_Subp
), Name_Rotate_Left
,
290 Name_Shift_Right_Arithmetic
))
292 Set_Interface_Name
(Ent
, Interface_Name
(Renamed_Subp
));
294 if Present
(Alias
(Renamed_Subp
)) then
295 Set_Alias
(Ent
, Alias
(Renamed_Subp
));
297 Set_Alias
(Ent
, Renamed_Subp
);
300 Set_Is_Intrinsic_Subprogram
(Ent
);
301 Set_Has_Completion
(Ent
);
304 Body_Node
:= Build_Renamed_Body
(Decl
, New_S
);
305 Insert_After
(After
, Body_Node
);
306 Mark_Rewrite_Insertion
(Body_Node
);
310 end Build_And_Analyze_Renamed_Body
;
312 ------------------------
313 -- Build_Renamed_Body --
314 ------------------------
316 function Build_Renamed_Body
318 New_S
: Entity_Id
) return Node_Id
320 Loc
: constant Source_Ptr
:= Sloc
(New_S
);
321 -- We use for the source location of the renamed body, the location of
322 -- the spec entity. It might seem more natural to use the location of
323 -- the renaming declaration itself, but that would be wrong, since then
324 -- the body we create would look as though it was created far too late,
325 -- and this could cause problems with elaboration order analysis,
326 -- particularly in connection with instantiations.
328 N
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
329 Nam
: constant Node_Id
:= Name
(N
);
331 Spec
: constant Node_Id
:= New_Copy_Tree
(Specification
(Decl
));
332 Actuals
: List_Id
:= No_List
;
337 O_Formal
: Entity_Id
;
338 Param_Spec
: Node_Id
;
340 Pref
: Node_Id
:= Empty
;
341 -- If the renamed entity is a primitive operation given in prefix form,
342 -- the prefix is the target object and it has to be added as the first
343 -- actual in the generated call.
346 -- Determine the entity being renamed, which is the target of the call
347 -- statement. If the name is an explicit dereference, this is a renaming
348 -- of a subprogram type rather than a subprogram. The name itself is
351 if Nkind
(Nam
) = N_Selected_Component
then
352 Old_S
:= Entity
(Selector_Name
(Nam
));
354 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
355 Old_S
:= Etype
(Nam
);
357 elsif Nkind
(Nam
) = N_Indexed_Component
then
358 if Is_Entity_Name
(Prefix
(Nam
)) then
359 Old_S
:= Entity
(Prefix
(Nam
));
361 Old_S
:= Entity
(Selector_Name
(Prefix
(Nam
)));
364 elsif Nkind
(Nam
) = N_Character_Literal
then
365 Old_S
:= Etype
(New_S
);
368 Old_S
:= Entity
(Nam
);
371 if Is_Entity_Name
(Nam
) then
373 -- If the renamed entity is a predefined operator, retain full name
374 -- to ensure its visibility.
376 if Ekind
(Old_S
) = E_Operator
377 and then Nkind
(Nam
) = N_Expanded_Name
379 Call_Name
:= New_Copy
(Name
(N
));
381 Call_Name
:= New_Occurrence_Of
(Old_S
, Loc
);
385 if Nkind
(Nam
) = N_Selected_Component
386 and then Present
(First_Formal
(Old_S
))
388 (Is_Controlling_Formal
(First_Formal
(Old_S
))
389 or else Is_Class_Wide_Type
(Etype
(First_Formal
(Old_S
))))
392 -- Retrieve the target object, to be added as a first actual
395 Call_Name
:= New_Occurrence_Of
(Old_S
, Loc
);
396 Pref
:= Prefix
(Nam
);
399 Call_Name
:= New_Copy
(Name
(N
));
402 -- Original name may have been overloaded, but is fully resolved now
404 Set_Is_Overloaded
(Call_Name
, False);
407 -- For simple renamings, subsequent calls can be expanded directly as
408 -- calls to the renamed entity. The body must be generated in any case
409 -- for calls that may appear elsewhere. This is not done in the case
410 -- where the subprogram is an instantiation because the actual proper
411 -- body has not been built yet.
413 if Ekind_In
(Old_S
, E_Function
, E_Procedure
)
414 and then Nkind
(Decl
) = N_Subprogram_Declaration
415 and then not Is_Generic_Instance
(Old_S
)
417 Set_Body_To_Inline
(Decl
, Old_S
);
420 -- Check whether the return type is a limited view. If the subprogram
421 -- is already frozen the generated body may have a non-limited view
422 -- of the type, that must be used, because it is the one in the spec
423 -- of the renaming declaration.
425 if Ekind
(Old_S
) = E_Function
426 and then Is_Entity_Name
(Result_Definition
(Spec
))
429 Ret_Type
: constant Entity_Id
:= Etype
(Result_Definition
(Spec
));
431 if Has_Non_Limited_View
(Ret_Type
) then
432 Set_Result_Definition
433 (Spec
, New_Occurrence_Of
(Non_Limited_View
(Ret_Type
), Loc
));
438 -- The body generated for this renaming is an internal artifact, and
439 -- does not constitute a freeze point for the called entity.
441 Set_Must_Not_Freeze
(Call_Name
);
443 Formal
:= First_Formal
(Defining_Entity
(Decl
));
445 if Present
(Pref
) then
447 Pref_Type
: constant Entity_Id
:= Etype
(Pref
);
448 Form_Type
: constant Entity_Id
:= Etype
(First_Formal
(Old_S
));
451 -- The controlling formal may be an access parameter, or the
452 -- actual may be an access value, so adjust accordingly.
454 if Is_Access_Type
(Pref_Type
)
455 and then not Is_Access_Type
(Form_Type
)
458 (Make_Explicit_Dereference
(Loc
, Relocate_Node
(Pref
)));
460 elsif Is_Access_Type
(Form_Type
)
461 and then not Is_Access_Type
(Pref
)
465 Make_Attribute_Reference
(Loc
,
466 Attribute_Name
=> Name_Access
,
467 Prefix
=> Relocate_Node
(Pref
)));
469 Actuals
:= New_List
(Pref
);
473 elsif Present
(Formal
) then
480 if Present
(Formal
) then
481 while Present
(Formal
) loop
482 Append
(New_Occurrence_Of
(Formal
, Loc
), Actuals
);
483 Next_Formal
(Formal
);
487 -- If the renamed entity is an entry, inherit its profile. For other
488 -- renamings as bodies, both profiles must be subtype conformant, so it
489 -- is not necessary to replace the profile given in the declaration.
490 -- However, default values that are aggregates are rewritten when
491 -- partially analyzed, so we recover the original aggregate to insure
492 -- that subsequent conformity checking works. Similarly, if the default
493 -- expression was constant-folded, recover the original expression.
495 Formal
:= First_Formal
(Defining_Entity
(Decl
));
497 if Present
(Formal
) then
498 O_Formal
:= First_Formal
(Old_S
);
499 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
500 while Present
(Formal
) loop
501 if Is_Entry
(Old_S
) then
502 if Nkind
(Parameter_Type
(Param_Spec
)) /=
505 Set_Etype
(Formal
, Etype
(O_Formal
));
506 Set_Entity
(Parameter_Type
(Param_Spec
), Etype
(O_Formal
));
509 elsif Nkind
(Default_Value
(O_Formal
)) = N_Aggregate
510 or else Nkind
(Original_Node
(Default_Value
(O_Formal
))) /=
511 Nkind
(Default_Value
(O_Formal
))
513 Set_Expression
(Param_Spec
,
514 New_Copy_Tree
(Original_Node
(Default_Value
(O_Formal
))));
517 Next_Formal
(Formal
);
518 Next_Formal
(O_Formal
);
523 -- If the renamed entity is a function, the generated body contains a
524 -- return statement. Otherwise, build a procedure call. If the entity is
525 -- an entry, subsequent analysis of the call will transform it into the
526 -- proper entry or protected operation call. If the renamed entity is
527 -- a character literal, return it directly.
529 if Ekind
(Old_S
) = E_Function
530 or else Ekind
(Old_S
) = E_Operator
531 or else (Ekind
(Old_S
) = E_Subprogram_Type
532 and then Etype
(Old_S
) /= Standard_Void_Type
)
535 Make_Simple_Return_Statement
(Loc
,
537 Make_Function_Call
(Loc
,
539 Parameter_Associations
=> Actuals
));
541 elsif Ekind
(Old_S
) = E_Enumeration_Literal
then
543 Make_Simple_Return_Statement
(Loc
,
544 Expression
=> New_Occurrence_Of
(Old_S
, Loc
));
546 elsif Nkind
(Nam
) = N_Character_Literal
then
548 Make_Simple_Return_Statement
(Loc
, Expression
=> Call_Name
);
552 Make_Procedure_Call_Statement
(Loc
,
554 Parameter_Associations
=> Actuals
);
557 -- Create entities for subprogram body and formals
559 Set_Defining_Unit_Name
(Spec
,
560 Make_Defining_Identifier
(Loc
, Chars
=> Chars
(New_S
)));
562 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
563 while Present
(Param_Spec
) loop
564 Set_Defining_Identifier
(Param_Spec
,
565 Make_Defining_Identifier
(Loc
,
566 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
571 Make_Subprogram_Body
(Loc
,
572 Specification
=> Spec
,
573 Declarations
=> New_List
,
574 Handled_Statement_Sequence
=>
575 Make_Handled_Sequence_Of_Statements
(Loc
,
576 Statements
=> New_List
(Call_Node
)));
578 if Nkind
(Decl
) /= N_Subprogram_Declaration
then
580 Make_Subprogram_Declaration
(Loc
,
581 Specification
=> Specification
(N
)));
584 -- Link the body to the entity whose declaration it completes. If
585 -- the body is analyzed when the renamed entity is frozen, it may
586 -- be necessary to restore the proper scope (see package Exp_Ch13).
588 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
589 and then Present
(Corresponding_Spec
(N
))
591 Set_Corresponding_Spec
(Body_Node
, Corresponding_Spec
(N
));
593 Set_Corresponding_Spec
(Body_Node
, New_S
);
597 end Build_Renamed_Body
;
599 --------------------------
600 -- Check_Address_Clause --
601 --------------------------
603 procedure Check_Address_Clause
(E
: Entity_Id
) is
604 Addr
: constant Node_Id
:= Address_Clause
(E
);
605 Typ
: constant Entity_Id
:= Etype
(E
);
610 Tag_Assign
: Node_Id
;
613 if Present
(Addr
) then
615 -- For a deferred constant, the initialization value is on full view
617 if Ekind
(E
) = E_Constant
and then Present
(Full_View
(E
)) then
618 Decl
:= Declaration_Node
(Full_View
(E
));
620 Decl
:= Declaration_Node
(E
);
623 Expr
:= Expression
(Addr
);
625 if Needs_Constant_Address
(Decl
, Typ
) then
626 Check_Constant_Address_Clause
(Expr
, E
);
628 -- Has_Delayed_Freeze was set on E when the address clause was
629 -- analyzed, and must remain set because we want the address
630 -- clause to be elaborated only after any entity it references
631 -- has been elaborated.
634 -- If Rep_Clauses are to be ignored, remove address clause from
635 -- list attached to entity, because it may be illegal for gigi,
636 -- for example by breaking order of elaboration..
638 if Ignore_Rep_Clauses
then
643 Rep
:= First_Rep_Item
(E
);
646 Set_First_Rep_Item
(E
, Next_Rep_Item
(Addr
));
650 and then Next_Rep_Item
(Rep
) /= Addr
652 Rep
:= Next_Rep_Item
(Rep
);
656 if Present
(Rep
) then
657 Set_Next_Rep_Item
(Rep
, Next_Rep_Item
(Addr
));
661 -- And now remove the address clause
663 Kill_Rep_Clause
(Addr
);
665 elsif not Error_Posted
(Expr
)
666 and then not Needs_Finalization
(Typ
)
668 Warn_Overlay
(Expr
, Typ
, Name
(Addr
));
671 Init
:= Expression
(Decl
);
673 -- If a variable, or a non-imported constant, overlays a constant
674 -- object and has an initialization value, then the initialization
675 -- may end up writing into read-only memory. Detect the cases of
676 -- statically identical values and remove the initialization. In
677 -- the other cases, give a warning. We will give other warnings
678 -- later for the variable if it is assigned.
680 if (Ekind
(E
) = E_Variable
681 or else (Ekind
(E
) = E_Constant
682 and then not Is_Imported
(E
)))
683 and then Overlays_Constant
(E
)
684 and then Present
(Init
)
691 Find_Overlaid_Entity
(Addr
, O_Ent
, Off
);
693 if Ekind
(O_Ent
) = E_Constant
694 and then Etype
(O_Ent
) = Typ
695 and then Present
(Constant_Value
(O_Ent
))
696 and then Compile_Time_Compare
698 Constant_Value
(O_Ent
),
699 Assume_Valid
=> True) = EQ
701 Set_No_Initialization
(Decl
);
704 elsif Comes_From_Source
(Init
)
705 and then Address_Clause_Overlay_Warnings
707 Error_Msg_Sloc
:= Sloc
(Addr
);
709 ("??constant& may be modified via address clause#",
715 if Present
(Init
) then
717 -- Capture initialization value at point of declaration,
718 -- and make explicit assignment legal, because object may
721 Remove_Side_Effects
(Init
);
722 Lhs
:= New_Occurrence_Of
(E
, Sloc
(Decl
));
723 Set_Assignment_OK
(Lhs
);
725 -- Move initialization to freeze actions, once the object has
726 -- been frozen and the address clause alignment check has been
729 Append_Freeze_Action
(E
,
730 Make_Assignment_Statement
(Sloc
(Decl
),
732 Expression
=> Expression
(Decl
)));
734 Set_No_Initialization
(Decl
);
736 -- If the objet is tagged, check whether the tag must be
737 -- reassigned explicitly.
739 Tag_Assign
:= Make_Tag_Assignment
(Decl
);
740 if Present
(Tag_Assign
) then
741 Append_Freeze_Action
(E
, Tag_Assign
);
745 end Check_Address_Clause
;
747 -----------------------------
748 -- Check_Compile_Time_Size --
749 -----------------------------
751 procedure Check_Compile_Time_Size
(T
: Entity_Id
) is
753 procedure Set_Small_Size
(T
: Entity_Id
; S
: Uint
);
754 -- Sets the compile time known size (64 bits or less) in the RM_Size
755 -- field of T, checking for a size clause that was given which attempts
756 -- to give a smaller size.
758 function Size_Known
(T
: Entity_Id
) return Boolean;
759 -- Recursive function that does all the work
761 function Static_Discriminated_Components
(T
: Entity_Id
) return Boolean;
762 -- If T is a constrained subtype, its size is not known if any of its
763 -- discriminant constraints is not static and it is not a null record.
764 -- The test is conservative and doesn't check that the components are
765 -- in fact constrained by non-static discriminant values. Could be made
772 procedure Set_Small_Size
(T
: Entity_Id
; S
: Uint
) is
777 -- Check for bad size clause given
779 elsif Has_Size_Clause
(T
) then
780 if RM_Size
(T
) < S
then
781 Error_Msg_Uint_1
:= S
;
783 ("size for& too small, minimum allowed is ^",
787 -- Set size if not set already
789 elsif Unknown_RM_Size
(T
) then
798 function Size_Known
(T
: Entity_Id
) return Boolean is
806 if Size_Known_At_Compile_Time
(T
) then
809 -- Always True for elementary types, even generic formal elementary
810 -- types. We used to return False in the latter case, but the size
811 -- is known at compile time, even in the template, we just do not
812 -- know the exact size but that's not the point of this routine.
814 elsif Is_Elementary_Type
(T
) or else Is_Task_Type
(T
) then
819 elsif Is_Array_Type
(T
) then
821 -- String literals always have known size, and we can set it
823 if Ekind
(T
) = E_String_Literal_Subtype
then
825 (T
, Component_Size
(T
) * String_Literal_Length
(T
));
828 -- Unconstrained types never have known at compile time size
830 elsif not Is_Constrained
(T
) then
833 -- Don't do any recursion on type with error posted, since we may
834 -- have a malformed type that leads us into a loop.
836 elsif Error_Posted
(T
) then
839 -- Otherwise if component size unknown, then array size unknown
841 elsif not Size_Known
(Component_Type
(T
)) then
845 -- Check for all indexes static, and also compute possible size
846 -- (in case it is not greater than 64 and may be packable).
849 Size
: Uint
:= Component_Size
(T
);
853 Index
:= First_Index
(T
);
854 while Present
(Index
) loop
855 if Nkind
(Index
) = N_Range
then
856 Get_Index_Bounds
(Index
, Low
, High
);
858 elsif Error_Posted
(Scalar_Range
(Etype
(Index
))) then
862 Low
:= Type_Low_Bound
(Etype
(Index
));
863 High
:= Type_High_Bound
(Etype
(Index
));
866 if not Compile_Time_Known_Value
(Low
)
867 or else not Compile_Time_Known_Value
(High
)
868 or else Etype
(Index
) = Any_Type
873 Dim
:= Expr_Value
(High
) - Expr_Value
(Low
) + 1;
885 Set_Small_Size
(T
, Size
);
889 -- For non-generic private types, go to underlying type if present
891 elsif Is_Private_Type
(T
)
892 and then not Is_Generic_Type
(T
)
893 and then Present
(Underlying_Type
(T
))
895 -- Don't do any recursion on type with error posted, since we may
896 -- have a malformed type that leads us into a loop.
898 if Error_Posted
(T
) then
901 return Size_Known
(Underlying_Type
(T
));
906 elsif Is_Record_Type
(T
) then
908 -- A class-wide type is never considered to have a known size
910 if Is_Class_Wide_Type
(T
) then
913 -- A subtype of a variant record must not have non-static
914 -- discriminated components.
916 elsif T
/= Base_Type
(T
)
917 and then not Static_Discriminated_Components
(T
)
921 -- Don't do any recursion on type with error posted, since we may
922 -- have a malformed type that leads us into a loop.
924 elsif Error_Posted
(T
) then
928 -- Now look at the components of the record
931 -- The following two variables are used to keep track of the
932 -- size of packed records if we can tell the size of the packed
933 -- record in the front end. Packed_Size_Known is True if so far
934 -- we can figure out the size. It is initialized to True for a
935 -- packed record, unless the record has discriminants or atomic
936 -- components or independent components.
938 -- The reason we eliminate the discriminated case is that
939 -- we don't know the way the back end lays out discriminated
940 -- packed records. If Packed_Size_Known is True, then
941 -- Packed_Size is the size in bits so far.
943 Packed_Size_Known
: Boolean :=
945 and then not Has_Discriminants
(T
)
946 and then not Has_Atomic_Components
(T
)
947 and then not Has_Independent_Components
(T
);
949 Packed_Size
: Uint
:= Uint_0
;
950 -- Size in bits so far
953 -- Test for variant part present
955 if Has_Discriminants
(T
)
956 and then Present
(Parent
(T
))
957 and then Nkind
(Parent
(T
)) = N_Full_Type_Declaration
958 and then Nkind
(Type_Definition
(Parent
(T
))) =
960 and then not Null_Present
(Type_Definition
(Parent
(T
)))
962 Present
(Variant_Part
963 (Component_List
(Type_Definition
(Parent
(T
)))))
965 -- If variant part is present, and type is unconstrained,
966 -- then we must have defaulted discriminants, or a size
967 -- clause must be present for the type, or else the size
968 -- is definitely not known at compile time.
970 if not Is_Constrained
(T
)
972 No
(Discriminant_Default_Value
(First_Discriminant
(T
)))
973 and then Unknown_RM_Size
(T
)
979 -- Loop through components
981 Comp
:= First_Component_Or_Discriminant
(T
);
982 while Present
(Comp
) loop
983 Ctyp
:= Etype
(Comp
);
985 -- We do not know the packed size if there is a component
986 -- clause present (we possibly could, but this would only
987 -- help in the case of a record with partial rep clauses.
988 -- That's because in the case of full rep clauses, the
989 -- size gets figured out anyway by a different circuit).
991 if Present
(Component_Clause
(Comp
)) then
992 Packed_Size_Known
:= False;
995 -- We do not know the packed size for an atomic/VFA type
996 -- or component, or an independent type or component, or a
997 -- by-reference type or aliased component (because packing
998 -- does not touch these).
1000 if Is_Atomic_Or_VFA
(Ctyp
)
1001 or else Is_Atomic_Or_VFA
(Comp
)
1002 or else Is_Independent
(Ctyp
)
1003 or else Is_Independent
(Comp
)
1004 or else Is_By_Reference_Type
(Ctyp
)
1005 or else Is_Aliased
(Comp
)
1007 Packed_Size_Known
:= False;
1010 -- We need to identify a component that is an array where
1011 -- the index type is an enumeration type with non-standard
1012 -- representation, and some bound of the type depends on a
1015 -- This is because gigi computes the size by doing a
1016 -- substitution of the appropriate discriminant value in
1017 -- the size expression for the base type, and gigi is not
1018 -- clever enough to evaluate the resulting expression (which
1019 -- involves a call to rep_to_pos) at compile time.
1021 -- It would be nice if gigi would either recognize that
1022 -- this expression can be computed at compile time, or
1023 -- alternatively figured out the size from the subtype
1024 -- directly, where all the information is at hand ???
1026 if Is_Array_Type
(Etype
(Comp
))
1027 and then Present
(Packed_Array_Impl_Type
(Etype
(Comp
)))
1030 Ocomp
: constant Entity_Id
:=
1031 Original_Record_Component
(Comp
);
1032 OCtyp
: constant Entity_Id
:= Etype
(Ocomp
);
1038 Ind
:= First_Index
(OCtyp
);
1039 while Present
(Ind
) loop
1040 Indtyp
:= Etype
(Ind
);
1042 if Is_Enumeration_Type
(Indtyp
)
1043 and then Has_Non_Standard_Rep
(Indtyp
)
1045 Lo
:= Type_Low_Bound
(Indtyp
);
1046 Hi
:= Type_High_Bound
(Indtyp
);
1048 if Is_Entity_Name
(Lo
)
1049 and then Ekind
(Entity
(Lo
)) = E_Discriminant
1053 elsif Is_Entity_Name
(Hi
)
1054 and then Ekind
(Entity
(Hi
)) = E_Discriminant
1065 -- Clearly size of record is not known if the size of one of
1066 -- the components is not known.
1068 if not Size_Known
(Ctyp
) then
1072 -- Accumulate packed size if possible
1074 if Packed_Size_Known
then
1076 -- We can deal with elementary types, small packed arrays
1077 -- if the representation is a modular type and also small
1078 -- record types (if the size is not greater than 64, but
1079 -- the condition is checked by Set_Small_Size).
1081 if Is_Elementary_Type
(Ctyp
)
1082 or else (Is_Array_Type
(Ctyp
)
1084 (Packed_Array_Impl_Type
(Ctyp
))
1085 and then Is_Modular_Integer_Type
1086 (Packed_Array_Impl_Type
(Ctyp
)))
1087 or else Is_Record_Type
(Ctyp
)
1089 -- If RM_Size is known and static, then we can keep
1090 -- accumulating the packed size.
1092 if Known_Static_RM_Size
(Ctyp
) then
1094 Packed_Size
:= Packed_Size
+ RM_Size
(Ctyp
);
1096 -- If we have a field whose RM_Size is not known then
1097 -- we can't figure out the packed size here.
1100 Packed_Size_Known
:= False;
1103 -- For other types we can't figure out the packed size
1106 Packed_Size_Known
:= False;
1110 Next_Component_Or_Discriminant
(Comp
);
1113 if Packed_Size_Known
then
1114 Set_Small_Size
(T
, Packed_Size
);
1120 -- All other cases, size not known at compile time
1127 -------------------------------------
1128 -- Static_Discriminated_Components --
1129 -------------------------------------
1131 function Static_Discriminated_Components
1132 (T
: Entity_Id
) return Boolean
1134 Constraint
: Elmt_Id
;
1137 if Has_Discriminants
(T
)
1138 and then Present
(Discriminant_Constraint
(T
))
1139 and then Present
(First_Component
(T
))
1141 Constraint
:= First_Elmt
(Discriminant_Constraint
(T
));
1142 while Present
(Constraint
) loop
1143 if not Compile_Time_Known_Value
(Node
(Constraint
)) then
1147 Next_Elmt
(Constraint
);
1152 end Static_Discriminated_Components
;
1154 -- Start of processing for Check_Compile_Time_Size
1157 Set_Size_Known_At_Compile_Time
(T
, Size_Known
(T
));
1158 end Check_Compile_Time_Size
;
1160 -----------------------------------
1161 -- Check_Component_Storage_Order --
1162 -----------------------------------
1164 procedure Check_Component_Storage_Order
1165 (Encl_Type
: Entity_Id
;
1168 Comp_ADC_Present
: out Boolean)
1170 Comp_Base
: Entity_Id
;
1172 Encl_Base
: Entity_Id
;
1175 Component_Aliased
: Boolean;
1177 Comp_Byte_Aligned
: Boolean;
1178 -- Set for the record case, True if Comp starts on a byte boundary
1179 -- (in which case it is allowed to have different storage order).
1181 Comp_SSO_Differs
: Boolean;
1182 -- Set True when the component is a nested composite, and it does not
1183 -- have the same scalar storage order as Encl_Type.
1188 if Present
(Comp
) then
1190 Comp_Base
:= Etype
(Comp
);
1192 if Is_Tag
(Comp
) then
1193 Comp_Byte_Aligned
:= True;
1194 Component_Aliased
:= False;
1197 -- If a component clause is present, check if the component starts
1198 -- on a storage element boundary. Otherwise conservatively assume
1199 -- it does so only in the case where the record is not packed.
1201 if Present
(Component_Clause
(Comp
)) then
1202 Comp_Byte_Aligned
:=
1203 Normalized_First_Bit
(Comp
) mod System_Storage_Unit
= 0;
1205 Comp_Byte_Aligned
:= not Is_Packed
(Encl_Type
);
1208 Component_Aliased
:= Is_Aliased
(Comp
);
1214 Err_Node
:= Encl_Type
;
1215 Comp_Base
:= Component_Type
(Encl_Type
);
1217 Component_Aliased
:= Has_Aliased_Components
(Encl_Type
);
1220 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1221 -- the attribute definition clause is attached to the first subtype.
1222 -- Also, if the base type is incomplete or private, go to full view
1225 Encl_Base
:= Base_Type
(Encl_Type
);
1226 if Present
(Underlying_Type
(Encl_Base
)) then
1227 Encl_Base
:= Underlying_Type
(Encl_Base
);
1230 Comp_Base
:= Base_Type
(Comp_Base
);
1231 if Present
(Underlying_Type
(Comp_Base
)) then
1232 Comp_Base
:= Underlying_Type
(Comp_Base
);
1236 Get_Attribute_Definition_Clause
1237 (First_Subtype
(Comp_Base
), Attribute_Scalar_Storage_Order
);
1238 Comp_ADC_Present
:= Present
(Comp_ADC
);
1240 -- Case of record or array component: check storage order compatibility.
1241 -- But, if the record has Complex_Representation, then it is treated as
1242 -- a scalar in the back end so the storage order is irrelevant.
1244 if (Is_Record_Type
(Comp_Base
)
1245 and then not Has_Complex_Representation
(Comp_Base
))
1246 or else Is_Array_Type
(Comp_Base
)
1249 Reverse_Storage_Order
(Encl_Base
) /=
1250 Reverse_Storage_Order
(Comp_Base
);
1252 -- Parent and extension must have same storage order
1254 if Present
(Comp
) and then Chars
(Comp
) = Name_uParent
then
1255 if Comp_SSO_Differs
then
1257 ("record extension must have same scalar storage order as "
1258 & "parent", Err_Node
);
1261 -- If component and composite SSO differs, check that component
1262 -- falls on byte boundaries and isn't bit packed.
1264 elsif Comp_SSO_Differs
then
1266 -- Component SSO differs from enclosing composite:
1268 -- Reject if component is a bit-packed array, as it is represented
1269 -- as a scalar internally.
1271 if Is_Bit_Packed_Array
(Comp_Base
) then
1273 ("type of packed component must have same scalar storage "
1274 & "order as enclosing composite", Err_Node
);
1276 -- Reject if composite is a bit-packed array, as it is rewritten
1277 -- into an array of scalars.
1279 elsif Is_Bit_Packed_Array
(Encl_Base
) then
1281 ("type of packed array must have same scalar storage order "
1282 & "as component", Err_Node
);
1284 -- Reject if not byte aligned
1286 elsif Is_Record_Type
(Encl_Base
)
1287 and then not Comp_Byte_Aligned
1290 ("type of non-byte-aligned component must have same scalar "
1291 & "storage order as enclosing composite", Err_Node
);
1293 -- Warn if specified only for the outer composite
1295 elsif Present
(ADC
) and then No
(Comp_ADC
) then
1297 ("scalar storage order specified for & does not apply to "
1298 & "component?", Err_Node
, Encl_Base
);
1302 -- Enclosing type has explicit SSO: non-composite component must not
1305 elsif Present
(ADC
) and then Component_Aliased
then
1307 ("aliased component not permitted for type with explicit "
1308 & "Scalar_Storage_Order", Err_Node
);
1310 end Check_Component_Storage_Order
;
1312 -----------------------------
1313 -- Check_Debug_Info_Needed --
1314 -----------------------------
1316 procedure Check_Debug_Info_Needed
(T
: Entity_Id
) is
1318 if Debug_Info_Off
(T
) then
1321 elsif Comes_From_Source
(T
)
1322 or else Debug_Generated_Code
1323 or else Debug_Flag_VV
1324 or else Needs_Debug_Info
(T
)
1326 Set_Debug_Info_Needed
(T
);
1328 end Check_Debug_Info_Needed
;
1330 -------------------------------
1331 -- Check_Expression_Function --
1332 -------------------------------
1334 procedure Check_Expression_Function
(N
: Node_Id
; Nam
: Entity_Id
) is
1337 function Find_Constant
(Nod
: Node_Id
) return Traverse_Result
;
1338 -- Function to search for deferred constant
1344 function Find_Constant
(Nod
: Node_Id
) return Traverse_Result
is
1346 -- When a constant is initialized with the result of a dispatching
1347 -- call, the constant declaration is rewritten as a renaming of the
1348 -- displaced function result. This scenario is not a premature use of
1349 -- a constant even though the Has_Completion flag is not set.
1351 if Is_Entity_Name
(Nod
)
1352 and then Present
(Entity
(Nod
))
1353 and then Ekind
(Entity
(Nod
)) = E_Constant
1354 and then Scope
(Entity
(Nod
)) = Current_Scope
1355 and then Nkind
(Declaration_Node
(Entity
(Nod
))) =
1356 N_Object_Declaration
1357 and then not Is_Imported
(Entity
(Nod
))
1358 and then not Has_Completion
(Entity
(Nod
))
1361 ("premature use of& in call or instance", N
, Entity
(Nod
));
1363 elsif Nkind
(Nod
) = N_Attribute_Reference
then
1364 Analyze
(Prefix
(Nod
));
1366 if Is_Entity_Name
(Prefix
(Nod
))
1367 and then Is_Type
(Entity
(Prefix
(Nod
)))
1369 Freeze_Before
(N
, Entity
(Prefix
(Nod
)));
1376 procedure Check_Deferred
is new Traverse_Proc
(Find_Constant
);
1378 -- Start of processing for Check_Expression_Function
1381 Decl
:= Original_Node
(Unit_Declaration_Node
(Nam
));
1383 if Scope
(Nam
) = Current_Scope
1384 and then Nkind
(Decl
) = N_Expression_Function
1386 Check_Deferred
(Expression
(Decl
));
1388 end Check_Expression_Function
;
1390 --------------------------------
1391 -- Check_Inherited_Conditions --
1392 --------------------------------
1394 procedure Check_Inherited_Conditions
(R
: Entity_Id
) is
1395 Prim_Ops
: constant Elist_Id
:= Primitive_Operations
(R
);
1399 Par_Prim
: Entity_Id
;
1403 Op_Node
:= First_Elmt
(Prim_Ops
);
1404 while Present
(Op_Node
) loop
1405 Prim
:= Node
(Op_Node
);
1407 -- Map the overridden primitive to the overriding one. This takes
1408 -- care of all overridings and is done only once.
1410 if Present
(Overridden_Operation
(Prim
))
1411 and then Comes_From_Source
(Prim
)
1413 Update_Primitives_Mapping
(Overridden_Operation
(Prim
), Prim
);
1415 -- In SPARK mode this is where we can collect the inherited
1416 -- conditions, because we do not create the Check pragmas that
1417 -- normally convey the the modified class-wide conditions on
1418 -- overriding operations.
1420 if SPARK_Mode
= On
then
1422 -- Analyze the contract items of the parent operation, before
1423 -- they are rewritten when inherited.
1425 Analyze_Entry_Or_Subprogram_Contract
1426 (Overridden_Operation
(Prim
));
1428 -- Now verify the legality of inherited contracts for LSP
1431 Collect_Inherited_Class_Wide_Conditions
(Prim
);
1435 Next_Elmt
(Op_Node
);
1438 -- In all cases, we examine inherited operations to check whether they
1439 -- require a wrapper to handle inherited conditions that call other
1440 -- primitives, so that LSP can be verified/enforced.
1442 -- Wrapper construction TBD.
1444 Op_Node
:= First_Elmt
(Prim_Ops
);
1445 while Present
(Op_Node
) loop
1446 Prim
:= Node
(Op_Node
);
1447 if not Comes_From_Source
(Prim
) and then Present
(Alias
(Prim
)) then
1448 Par_Prim
:= Alias
(Prim
);
1449 A_Pre
:= Find_Aspect
(Par_Prim
, Aspect_Pre
);
1451 if Present
(A_Pre
) and then Class_Present
(A_Pre
) then
1452 Build_Class_Wide_Expression
1453 (Expression
(A_Pre
), Prim
, Par_Prim
, Adjust_Sloc
=> False);
1456 A_Post
:= Find_Aspect
(Par_Prim
, Aspect_Post
);
1458 if Present
(A_Post
) and then Class_Present
(A_Post
) then
1459 Build_Class_Wide_Expression
1460 (Expression
(A_Post
), Prim
, Par_Prim
, Adjust_Sloc
=> False);
1464 Next_Elmt
(Op_Node
);
1466 end Check_Inherited_Conditions
;
1468 ----------------------------
1469 -- Check_Strict_Alignment --
1470 ----------------------------
1472 procedure Check_Strict_Alignment
(E
: Entity_Id
) is
1476 if Is_Tagged_Type
(E
) or else Is_Concurrent_Type
(E
) then
1477 Set_Strict_Alignment
(E
);
1479 elsif Is_Array_Type
(E
) then
1480 Set_Strict_Alignment
(E
, Strict_Alignment
(Component_Type
(E
)));
1482 elsif Is_Record_Type
(E
) then
1483 if Is_Limited_Record
(E
) then
1484 Set_Strict_Alignment
(E
);
1488 Comp
:= First_Component
(E
);
1489 while Present
(Comp
) loop
1490 if not Is_Type
(Comp
)
1491 and then (Strict_Alignment
(Etype
(Comp
))
1492 or else Is_Aliased
(Comp
))
1494 Set_Strict_Alignment
(E
);
1498 Next_Component
(Comp
);
1501 end Check_Strict_Alignment
;
1503 -------------------------
1504 -- Check_Unsigned_Type --
1505 -------------------------
1507 procedure Check_Unsigned_Type
(E
: Entity_Id
) is
1508 Ancestor
: Entity_Id
;
1513 if not Is_Discrete_Or_Fixed_Point_Type
(E
) then
1517 -- Do not attempt to analyze case where range was in error
1519 if No
(Scalar_Range
(E
)) or else Error_Posted
(Scalar_Range
(E
)) then
1523 -- The situation that is nontrivial is something like:
1525 -- subtype x1 is integer range -10 .. +10;
1526 -- subtype x2 is x1 range 0 .. V1;
1527 -- subtype x3 is x2 range V2 .. V3;
1528 -- subtype x4 is x3 range V4 .. V5;
1530 -- where Vn are variables. Here the base type is signed, but we still
1531 -- know that x4 is unsigned because of the lower bound of x2.
1533 -- The only way to deal with this is to look up the ancestor chain
1537 if Ancestor
= Any_Type
or else Etype
(Ancestor
) = Any_Type
then
1541 Lo_Bound
:= Type_Low_Bound
(Ancestor
);
1543 if Compile_Time_Known_Value
(Lo_Bound
) then
1544 if Expr_Rep_Value
(Lo_Bound
) >= 0 then
1545 Set_Is_Unsigned_Type
(E
, True);
1551 Ancestor
:= Ancestor_Subtype
(Ancestor
);
1553 -- If no ancestor had a static lower bound, go to base type
1555 if No
(Ancestor
) then
1557 -- Note: the reason we still check for a compile time known
1558 -- value for the base type is that at least in the case of
1559 -- generic formals, we can have bounds that fail this test,
1560 -- and there may be other cases in error situations.
1562 Btyp
:= Base_Type
(E
);
1564 if Btyp
= Any_Type
or else Etype
(Btyp
) = Any_Type
then
1568 Lo_Bound
:= Type_Low_Bound
(Base_Type
(E
));
1570 if Compile_Time_Known_Value
(Lo_Bound
)
1571 and then Expr_Rep_Value
(Lo_Bound
) >= 0
1573 Set_Is_Unsigned_Type
(E
, True);
1580 end Check_Unsigned_Type
;
1582 -----------------------------
1583 -- Is_Atomic_VFA_Aggregate --
1584 -----------------------------
1586 function Is_Atomic_VFA_Aggregate
(N
: Node_Id
) return Boolean is
1587 Loc
: constant Source_Ptr
:= Sloc
(N
);
1596 -- Array may be qualified, so find outer context
1598 if Nkind
(Par
) = N_Qualified_Expression
then
1599 Par
:= Parent
(Par
);
1602 if not Comes_From_Source
(Par
) then
1607 when N_Assignment_Statement
=>
1608 Typ
:= Etype
(Name
(Par
));
1610 if not Is_Atomic_Or_VFA
(Typ
)
1611 and then not (Is_Entity_Name
(Name
(Par
))
1612 and then Is_Atomic_Or_VFA
(Entity
(Name
(Par
))))
1617 when N_Object_Declaration
=>
1618 Typ
:= Etype
(Defining_Identifier
(Par
));
1620 if not Is_Atomic_Or_VFA
(Typ
)
1621 and then not Is_Atomic_Or_VFA
(Defining_Identifier
(Par
))
1630 Temp
:= Make_Temporary
(Loc
, 'T', N
);
1632 Make_Object_Declaration
(Loc
,
1633 Defining_Identifier
=> Temp
,
1634 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
1635 Expression
=> Relocate_Node
(N
));
1636 Insert_Before
(Par
, New_N
);
1639 Set_Expression
(Par
, New_Occurrence_Of
(Temp
, Loc
));
1641 end Is_Atomic_VFA_Aggregate
;
1643 -----------------------------------------------
1644 -- Explode_Initialization_Compound_Statement --
1645 -----------------------------------------------
1647 procedure Explode_Initialization_Compound_Statement
(E
: Entity_Id
) is
1648 Init_Stmts
: constant Node_Id
:= Initialization_Statements
(E
);
1651 if Present
(Init_Stmts
)
1652 and then Nkind
(Init_Stmts
) = N_Compound_Statement
1654 Insert_List_Before
(Init_Stmts
, Actions
(Init_Stmts
));
1656 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1657 -- just removing it, because Freeze_All may rely on this particular
1658 -- Node_Id still being present in the enclosing list to know where to
1661 Rewrite
(Init_Stmts
, Make_Null_Statement
(Sloc
(Init_Stmts
)));
1663 Set_Initialization_Statements
(E
, Empty
);
1665 end Explode_Initialization_Compound_Statement
;
1671 -- Note: the easy coding for this procedure would be to just build a
1672 -- single list of freeze nodes and then insert them and analyze them
1673 -- all at once. This won't work, because the analysis of earlier freeze
1674 -- nodes may recursively freeze types which would otherwise appear later
1675 -- on in the freeze list. So we must analyze and expand the freeze nodes
1676 -- as they are generated.
1678 procedure Freeze_All
(From
: Entity_Id
; After
: in out Node_Id
) is
1682 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
);
1683 -- This is the internal recursive routine that does freezing of entities
1684 -- (but NOT the analysis of default expressions, which should not be
1685 -- recursive, we don't want to analyze those till we are sure that ALL
1686 -- the types are frozen).
1688 --------------------
1689 -- Freeze_All_Ent --
1690 --------------------
1692 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
) is
1697 procedure Process_Flist
;
1698 -- If freeze nodes are present, insert and analyze, and reset cursor
1699 -- for next insertion.
1705 procedure Process_Flist
is
1707 if Is_Non_Empty_List
(Flist
) then
1708 Lastn
:= Next
(After
);
1709 Insert_List_After_And_Analyze
(After
, Flist
);
1711 if Present
(Lastn
) then
1712 After
:= Prev
(Lastn
);
1714 After
:= Last
(List_Containing
(After
));
1719 -- Start of processing for Freeze_All_Ent
1723 while Present
(E
) loop
1725 -- If the entity is an inner package which is not a package
1726 -- renaming, then its entities must be frozen at this point. Note
1727 -- that such entities do NOT get frozen at the end of the nested
1728 -- package itself (only library packages freeze).
1730 -- Same is true for task declarations, where anonymous records
1731 -- created for entry parameters must be frozen.
1733 if Ekind
(E
) = E_Package
1734 and then No
(Renamed_Object
(E
))
1735 and then not Is_Child_Unit
(E
)
1736 and then not Is_Frozen
(E
)
1740 Install_Visible_Declarations
(E
);
1741 Install_Private_Declarations
(E
);
1742 Freeze_All
(First_Entity
(E
), After
);
1744 End_Package_Scope
(E
);
1746 if Is_Generic_Instance
(E
)
1747 and then Has_Delayed_Freeze
(E
)
1749 Set_Has_Delayed_Freeze
(E
, False);
1750 Expand_N_Package_Declaration
(Unit_Declaration_Node
(E
));
1753 elsif Ekind
(E
) in Task_Kind
1754 and then Nkind_In
(Parent
(E
), N_Single_Task_Declaration
,
1755 N_Task_Type_Declaration
)
1758 Freeze_All
(First_Entity
(E
), After
);
1761 -- For a derived tagged type, we must ensure that all the
1762 -- primitive operations of the parent have been frozen, so that
1763 -- their addresses will be in the parent's dispatch table at the
1764 -- point it is inherited.
1766 elsif Ekind
(E
) = E_Record_Type
1767 and then Is_Tagged_Type
(E
)
1768 and then Is_Tagged_Type
(Etype
(E
))
1769 and then Is_Derived_Type
(E
)
1772 Prim_List
: constant Elist_Id
:=
1773 Primitive_Operations
(Etype
(E
));
1779 Prim
:= First_Elmt
(Prim_List
);
1780 while Present
(Prim
) loop
1781 Subp
:= Node
(Prim
);
1783 if Comes_From_Source
(Subp
)
1784 and then not Is_Frozen
(Subp
)
1786 Flist
:= Freeze_Entity
(Subp
, After
);
1795 if not Is_Frozen
(E
) then
1796 Flist
:= Freeze_Entity
(E
, After
);
1799 -- If already frozen, and there are delayed aspects, this is where
1800 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1801 -- for a description of how we handle aspect visibility).
1803 elsif Has_Delayed_Aspects
(E
) then
1805 -- Retrieve the visibility to the discriminants in order to
1806 -- analyze properly the aspects.
1808 Push_Scope_And_Install_Discriminants
(E
);
1814 Ritem
:= First_Rep_Item
(E
);
1815 while Present
(Ritem
) loop
1816 if Nkind
(Ritem
) = N_Aspect_Specification
1817 and then Entity
(Ritem
) = E
1818 and then Is_Delayed_Aspect
(Ritem
)
1820 Check_Aspect_At_End_Of_Declarations
(Ritem
);
1823 Ritem
:= Next_Rep_Item
(Ritem
);
1827 Uninstall_Discriminants_And_Pop_Scope
(E
);
1830 -- If an incomplete type is still not frozen, this may be a
1831 -- premature freezing because of a body declaration that follows.
1832 -- Indicate where the freezing took place. Freezing will happen
1833 -- if the body comes from source, but not if it is internally
1834 -- generated, for example as the body of a type invariant.
1836 -- If the freezing is caused by the end of the current declarative
1837 -- part, it is a Taft Amendment type, and there is no error.
1839 if not Is_Frozen
(E
)
1840 and then Ekind
(E
) = E_Incomplete_Type
1843 Bod
: constant Node_Id
:= Next
(After
);
1846 -- The presence of a body freezes all entities previously
1847 -- declared in the current list of declarations, but this
1848 -- does not apply if the body does not come from source.
1849 -- A type invariant is transformed into a subprogram body
1850 -- which is placed at the end of the private part of the
1851 -- current package, but this body does not freeze incomplete
1852 -- types that may be declared in this private part.
1854 if (Nkind_In
(Bod
, N_Subprogram_Body
,
1859 or else Nkind
(Bod
) in N_Body_Stub
)
1861 List_Containing
(After
) = List_Containing
(Parent
(E
))
1862 and then Comes_From_Source
(Bod
)
1864 Error_Msg_Sloc
:= Sloc
(Next
(After
));
1866 ("type& is frozen# before its full declaration",
1876 -- Start of processing for Freeze_All
1879 Freeze_All_Ent
(From
, After
);
1881 -- Now that all types are frozen, we can deal with default expressions
1882 -- that require us to build a default expression functions. This is the
1883 -- point at which such functions are constructed (after all types that
1884 -- might be used in such expressions have been frozen).
1886 -- For subprograms that are renaming_as_body, we create the wrapper
1887 -- bodies as needed.
1889 -- We also add finalization chains to access types whose designated
1890 -- types are controlled. This is normally done when freezing the type,
1891 -- but this misses recursive type definitions where the later members
1892 -- of the recursion introduce controlled components.
1894 -- Loop through entities
1897 while Present
(E
) loop
1898 if Is_Subprogram
(E
) then
1899 if not Default_Expressions_Processed
(E
) then
1900 Process_Default_Expressions
(E
, After
);
1903 if not Has_Completion
(E
) then
1904 Decl
:= Unit_Declaration_Node
(E
);
1906 if Nkind
(Decl
) = N_Subprogram_Renaming_Declaration
then
1907 if Error_Posted
(Decl
) then
1908 Set_Has_Completion
(E
);
1910 Build_And_Analyze_Renamed_Body
(Decl
, E
, After
);
1913 elsif Nkind
(Decl
) = N_Subprogram_Declaration
1914 and then Present
(Corresponding_Body
(Decl
))
1916 Nkind
(Unit_Declaration_Node
(Corresponding_Body
(Decl
)))
1917 = N_Subprogram_Renaming_Declaration
1919 Build_And_Analyze_Renamed_Body
1920 (Decl
, Corresponding_Body
(Decl
), After
);
1924 elsif Ekind
(E
) in Task_Kind
1925 and then Nkind_In
(Parent
(E
), N_Task_Type_Declaration
,
1926 N_Single_Task_Declaration
)
1932 Ent
:= First_Entity
(E
);
1933 while Present
(Ent
) loop
1935 and then not Default_Expressions_Processed
(Ent
)
1937 Process_Default_Expressions
(Ent
, After
);
1945 -- Historical note: We used to create a finalization master for an
1946 -- access type whose designated type is not controlled, but contains
1947 -- private controlled compoments. This form of postprocessing is no
1948 -- longer needed because the finalization master is now created when
1949 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
1955 -----------------------
1956 -- Freeze_And_Append --
1957 -----------------------
1959 procedure Freeze_And_Append
1962 Result
: in out List_Id
)
1964 L
: constant List_Id
:= Freeze_Entity
(Ent
, N
);
1966 if Is_Non_Empty_List
(L
) then
1967 if Result
= No_List
then
1970 Append_List
(L
, Result
);
1973 end Freeze_And_Append
;
1979 procedure Freeze_Before
1982 Do_Freeze_Profile
: Boolean := True)
1984 -- Freeze T, then insert the generated Freeze nodes before the node N.
1985 -- Flag Freeze_Profile is used when T is an overloadable entity, and
1986 -- indicates whether its profile should be frozen at the same time.
1988 Freeze_Nodes
: constant List_Id
:=
1989 Freeze_Entity
(T
, N
, Do_Freeze_Profile
);
1992 if Ekind
(T
) = E_Function
then
1993 Check_Expression_Function
(N
, T
);
1996 if Is_Non_Empty_List
(Freeze_Nodes
) then
1997 Insert_Actions
(N
, Freeze_Nodes
);
2005 function Freeze_Entity
2008 Do_Freeze_Profile
: Boolean := True) return List_Id
2010 Loc
: constant Source_Ptr
:= Sloc
(N
);
2017 Has_Default_Initialization
: Boolean := False;
2018 -- This flag gets set to true for a variable with default initialization
2020 Result
: List_Id
:= No_List
;
2021 -- List of freezing actions, left at No_List if none
2023 Test_E
: Entity_Id
:= E
;
2024 -- This could use a comment ???
2026 procedure Add_To_Result
(N
: Node_Id
);
2027 -- N is a freezing action to be appended to the Result
2029 function After_Last_Declaration
return Boolean;
2030 -- If Loc is a freeze_entity that appears after the last declaration
2031 -- in the scope, inhibit error messages on late completion.
2033 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
);
2034 -- Check that an Access or Unchecked_Access attribute with a prefix
2035 -- which is the current instance type can only be applied when the type
2038 procedure Check_Suspicious_Modulus
(Utype
: Entity_Id
);
2039 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
2040 -- integer literal without an explicit corresponding size clause. The
2041 -- caller has checked that Utype is a modular integer type.
2043 procedure Freeze_Array_Type
(Arr
: Entity_Id
);
2044 -- Freeze array type, including freezing index and component types
2046 procedure Freeze_Object_Declaration
(E
: Entity_Id
);
2047 -- Perform checks and generate freeze node if needed for a constant or
2048 -- variable declared by an object declaration.
2050 function Freeze_Generic_Entities
(Pack
: Entity_Id
) return List_Id
;
2051 -- Create Freeze_Generic_Entity nodes for types declared in a generic
2052 -- package. Recurse on inner generic packages.
2054 function Freeze_Profile
(E
: Entity_Id
) return Boolean;
2055 -- Freeze formals and return type of subprogram. If some type in the
2056 -- profile is incomplete and we are in an instance, freezing of the
2057 -- entity will take place elsewhere, and the function returns False.
2059 procedure Freeze_Record_Type
(Rec
: Entity_Id
);
2060 -- Freeze record type, including freezing component types, and freezing
2061 -- primitive operations if this is a tagged type.
2063 function Has_Boolean_Aspect_Import
(E
: Entity_Id
) return Boolean;
2064 -- Determine whether an arbitrary entity is subject to Boolean aspect
2065 -- Import and its value is specified as True.
2067 function New_Freeze_Node
return Node_Id
;
2068 -- Create a new freeze node for entity E
2070 procedure Wrap_Imported_Subprogram
(E
: Entity_Id
);
2071 -- If E is an entity for an imported subprogram with pre/post-conditions
2072 -- then this procedure will create a wrapper to ensure that proper run-
2073 -- time checking of the pre/postconditions. See body for details.
2079 procedure Add_To_Result
(N
: Node_Id
) is
2082 Result
:= New_List
(N
);
2088 ----------------------------
2089 -- After_Last_Declaration --
2090 ----------------------------
2092 function After_Last_Declaration
return Boolean is
2093 Spec
: constant Node_Id
:= Parent
(Current_Scope
);
2096 if Nkind
(Spec
) = N_Package_Specification
then
2097 if Present
(Private_Declarations
(Spec
)) then
2098 return Loc
>= Sloc
(Last
(Private_Declarations
(Spec
)));
2099 elsif Present
(Visible_Declarations
(Spec
)) then
2100 return Loc
>= Sloc
(Last
(Visible_Declarations
(Spec
)));
2108 end After_Last_Declaration
;
2110 ----------------------------
2111 -- Check_Current_Instance --
2112 ----------------------------
2114 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
) is
2116 function Is_Aliased_View_Of_Type
(Typ
: Entity_Id
) return Boolean;
2117 -- Determine whether Typ is compatible with the rules for aliased
2118 -- views of types as defined in RM 3.10 in the various dialects.
2120 function Process
(N
: Node_Id
) return Traverse_Result
;
2121 -- Process routine to apply check to given node
2123 -----------------------------
2124 -- Is_Aliased_View_Of_Type --
2125 -----------------------------
2127 function Is_Aliased_View_Of_Type
(Typ
: Entity_Id
) return Boolean is
2128 Typ_Decl
: constant Node_Id
:= Parent
(Typ
);
2133 if Nkind
(Typ_Decl
) = N_Full_Type_Declaration
2134 and then Limited_Present
(Type_Definition
(Typ_Decl
))
2138 -- The following paragraphs describe what a legal aliased view of
2139 -- a type is in the various dialects of Ada.
2143 -- The current instance of a limited type, and a formal parameter
2144 -- or generic formal object of a tagged type.
2146 -- Ada 95 limited type
2147 -- * Type with reserved word "limited"
2148 -- * A protected or task type
2149 -- * A composite type with limited component
2151 elsif Ada_Version
<= Ada_95
then
2152 return Is_Limited_Type
(Typ
);
2156 -- The current instance of a limited tagged type, a protected
2157 -- type, a task type, or a type that has the reserved word
2158 -- "limited" in its full definition ... a formal parameter or
2159 -- generic formal object of a tagged type.
2161 -- Ada 2005 limited type
2162 -- * Type with reserved word "limited", "synchronized", "task"
2164 -- * A composite type with limited component
2165 -- * A derived type whose parent is a non-interface limited type
2167 elsif Ada_Version
= Ada_2005
then
2169 (Is_Limited_Type
(Typ
) and then Is_Tagged_Type
(Typ
))
2171 (Is_Derived_Type
(Typ
)
2172 and then not Is_Interface
(Etype
(Typ
))
2173 and then Is_Limited_Type
(Etype
(Typ
)));
2175 -- Ada 2012 and beyond
2177 -- The current instance of an immutably limited type ... a formal
2178 -- parameter or generic formal object of a tagged type.
2180 -- Ada 2012 limited type
2181 -- * Type with reserved word "limited", "synchronized", "task"
2183 -- * A composite type with limited component
2184 -- * A derived type whose parent is a non-interface limited type
2185 -- * An incomplete view
2187 -- Ada 2012 immutably limited type
2188 -- * Explicitly limited record type
2189 -- * Record extension with "limited" present
2190 -- * Non-formal limited private type that is either tagged
2191 -- or has at least one access discriminant with a default
2193 -- * Task type, protected type or synchronized interface
2194 -- * Type derived from immutably limited type
2198 Is_Immutably_Limited_Type
(Typ
)
2199 or else Is_Incomplete_Type
(Typ
);
2201 end Is_Aliased_View_Of_Type
;
2207 function Process
(N
: Node_Id
) return Traverse_Result
is
2210 when N_Attribute_Reference
=>
2211 if Nam_In
(Attribute_Name
(N
), Name_Access
,
2212 Name_Unchecked_Access
)
2213 and then Is_Entity_Name
(Prefix
(N
))
2214 and then Is_Type
(Entity
(Prefix
(N
)))
2215 and then Entity
(Prefix
(N
)) = E
2217 if Ada_Version
< Ada_2012
then
2219 ("current instance must be a limited type",
2223 ("current instance must be an immutably limited "
2224 & "type (RM-2012, 7.5 (8.1/3))", Prefix
(N
));
2233 when others => return OK
;
2237 procedure Traverse
is new Traverse_Proc
(Process
);
2241 Rec_Type
: constant Entity_Id
:=
2242 Scope
(Defining_Identifier
(Comp_Decl
));
2244 -- Start of processing for Check_Current_Instance
2247 if not Is_Aliased_View_Of_Type
(Rec_Type
) then
2248 Traverse
(Comp_Decl
);
2250 end Check_Current_Instance
;
2252 ------------------------------
2253 -- Check_Suspicious_Modulus --
2254 ------------------------------
2256 procedure Check_Suspicious_Modulus
(Utype
: Entity_Id
) is
2257 Decl
: constant Node_Id
:= Declaration_Node
(Underlying_Type
(Utype
));
2260 if not Warn_On_Suspicious_Modulus_Value
then
2264 if Nkind
(Decl
) = N_Full_Type_Declaration
then
2266 Tdef
: constant Node_Id
:= Type_Definition
(Decl
);
2269 if Nkind
(Tdef
) = N_Modular_Type_Definition
then
2271 Modulus
: constant Node_Id
:=
2272 Original_Node
(Expression
(Tdef
));
2275 if Nkind
(Modulus
) = N_Integer_Literal
then
2277 Modv
: constant Uint
:= Intval
(Modulus
);
2278 Sizv
: constant Uint
:= RM_Size
(Utype
);
2281 -- First case, modulus and size are the same. This
2282 -- happens if you have something like mod 32, with
2283 -- an explicit size of 32, this is for sure a case
2284 -- where the warning is given, since it is seems
2285 -- very unlikely that someone would want e.g. a
2286 -- five bit type stored in 32 bits. It is much
2287 -- more likely they wanted a 32-bit type.
2292 -- Second case, the modulus is 32 or 64 and no
2293 -- size clause is present. This is a less clear
2294 -- case for giving the warning, but in the case
2295 -- of 32/64 (5-bit or 6-bit types) these seem rare
2296 -- enough that it is a likely error (and in any
2297 -- case using 2**5 or 2**6 in these cases seems
2298 -- clearer. We don't include 8 or 16 here, simply
2299 -- because in practice 3-bit and 4-bit types are
2300 -- more common and too many false positives if
2301 -- we warn in these cases.
2303 elsif not Has_Size_Clause
(Utype
)
2304 and then (Modv
= Uint_32
or else Modv
= Uint_64
)
2308 -- No warning needed
2314 -- If we fall through, give warning
2316 Error_Msg_Uint_1
:= Modv
;
2318 ("?M?2 '*'*^' may have been intended here",
2326 end Check_Suspicious_Modulus
;
2328 -----------------------
2329 -- Freeze_Array_Type --
2330 -----------------------
2332 procedure Freeze_Array_Type
(Arr
: Entity_Id
) is
2333 FS
: constant Entity_Id
:= First_Subtype
(Arr
);
2334 Ctyp
: constant Entity_Id
:= Component_Type
(Arr
);
2337 Non_Standard_Enum
: Boolean := False;
2338 -- Set true if any of the index types is an enumeration type with a
2339 -- non-standard representation.
2342 Freeze_And_Append
(Ctyp
, N
, Result
);
2344 Indx
:= First_Index
(Arr
);
2345 while Present
(Indx
) loop
2346 Freeze_And_Append
(Etype
(Indx
), N
, Result
);
2348 if Is_Enumeration_Type
(Etype
(Indx
))
2349 and then Has_Non_Standard_Rep
(Etype
(Indx
))
2351 Non_Standard_Enum
:= True;
2357 -- Processing that is done only for base types
2359 if Ekind
(Arr
) = E_Array_Type
then
2361 -- Deal with default setting of reverse storage order
2363 Set_SSO_From_Default
(Arr
);
2365 -- Propagate flags for component type
2367 if Is_Controlled_Active
(Component_Type
(Arr
))
2368 or else Has_Controlled_Component
(Ctyp
)
2370 Set_Has_Controlled_Component
(Arr
);
2373 if Has_Unchecked_Union
(Component_Type
(Arr
)) then
2374 Set_Has_Unchecked_Union
(Arr
);
2377 -- The array type requires its own invariant procedure in order to
2378 -- verify the component invariant over all elements.
2380 if Has_Invariants
(Component_Type
(Arr
))
2382 (Is_Access_Type
(Component_Type
(Arr
))
2383 and then Has_Invariants
2384 (Designated_Type
(Component_Type
(Arr
))))
2386 Set_Has_Own_Invariants
(Arr
);
2388 -- The array type is an implementation base type. Propagate the
2389 -- same property to the first subtype.
2391 if Is_Itype
(Arr
) then
2392 Set_Has_Own_Invariants
(First_Subtype
(Arr
));
2396 -- Warn for pragma Pack overriding foreign convention
2398 if Has_Foreign_Convention
(Ctyp
)
2399 and then Has_Pragma_Pack
(Arr
)
2402 CN
: constant Name_Id
:=
2403 Get_Convention_Name
(Convention
(Ctyp
));
2404 PP
: constant Node_Id
:=
2405 Get_Pragma
(First_Subtype
(Arr
), Pragma_Pack
);
2407 if Present
(PP
) then
2408 Error_Msg_Name_1
:= CN
;
2409 Error_Msg_Sloc
:= Sloc
(Arr
);
2411 ("pragma Pack affects convention % components #??", PP
);
2412 Error_Msg_Name_1
:= CN
;
2414 ("\array components may not have % compatible "
2415 & "representation??", PP
);
2420 -- If packing was requested or if the component size was
2421 -- set explicitly, then see if bit packing is required. This
2422 -- processing is only done for base types, since all of the
2423 -- representation aspects involved are type-related.
2425 -- This is not just an optimization, if we start processing the
2426 -- subtypes, they interfere with the settings on the base type
2427 -- (this is because Is_Packed has a slightly different meaning
2428 -- before and after freezing).
2435 if (Is_Packed
(Arr
) or else Has_Pragma_Pack
(Arr
))
2436 and then Known_Static_RM_Size
(Ctyp
)
2437 and then not Has_Component_Size_Clause
(Arr
)
2439 Csiz
:= UI_Max
(RM_Size
(Ctyp
), 1);
2441 elsif Known_Component_Size
(Arr
) then
2442 Csiz
:= Component_Size
(Arr
);
2444 elsif not Known_Static_Esize
(Ctyp
) then
2448 Esiz
:= Esize
(Ctyp
);
2450 -- We can set the component size if it is less than 16,
2451 -- rounding it up to the next storage unit size.
2455 elsif Esiz
<= 16 then
2461 -- Set component size up to match alignment if it would
2462 -- otherwise be less than the alignment. This deals with
2463 -- cases of types whose alignment exceeds their size (the
2464 -- padded type cases).
2468 A
: constant Uint
:= Alignment_In_Bits
(Ctyp
);
2477 -- Case of component size that may result in bit packing
2479 if 1 <= Csiz
and then Csiz
<= 64 then
2481 Ent
: constant Entity_Id
:=
2482 First_Subtype
(Arr
);
2483 Pack_Pragma
: constant Node_Id
:=
2484 Get_Rep_Pragma
(Ent
, Name_Pack
);
2485 Comp_Size_C
: constant Node_Id
:=
2486 Get_Attribute_Definition_Clause
2487 (Ent
, Attribute_Component_Size
);
2490 -- Warn if we have pack and component size so that the
2493 -- Note: here we must check for the presence of a
2494 -- component size before checking for a Pack pragma to
2495 -- deal with the case where the array type is a derived
2496 -- type whose parent is currently private.
2498 if Present
(Comp_Size_C
)
2499 and then Has_Pragma_Pack
(Ent
)
2500 and then Warn_On_Redundant_Constructs
2502 Error_Msg_Sloc
:= Sloc
(Comp_Size_C
);
2504 ("?r?pragma Pack for& ignored!", Pack_Pragma
, Ent
);
2506 ("\?r?explicit component size given#!", Pack_Pragma
);
2507 Set_Is_Packed
(Base_Type
(Ent
), False);
2508 Set_Is_Bit_Packed_Array
(Base_Type
(Ent
), False);
2511 -- Set component size if not already set by a component
2514 if not Present
(Comp_Size_C
) then
2515 Set_Component_Size
(Arr
, Csiz
);
2518 -- Check for base type of 8, 16, 32 bits, where an
2519 -- unsigned subtype has a length one less than the
2520 -- base type (e.g. Natural subtype of Integer).
2522 -- In such cases, if a component size was not set
2523 -- explicitly, then generate a warning.
2525 if Has_Pragma_Pack
(Arr
)
2526 and then not Present
(Comp_Size_C
)
2527 and then (Csiz
= 7 or else Csiz
= 15 or else Csiz
= 31)
2528 and then Esize
(Base_Type
(Ctyp
)) = Csiz
+ 1
2530 Error_Msg_Uint_1
:= Csiz
;
2532 if Present
(Pack_Pragma
) then
2534 ("??pragma Pack causes component size to be ^!",
2537 ("\??use Component_Size to set desired value!",
2542 -- Bit packing is never needed for 8, 16, 32, 64
2544 if Addressable
(Csiz
) then
2546 -- If the Esize of the component is known and equal to
2547 -- the component size then even packing is not needed.
2549 if Known_Static_Esize
(Component_Type
(Arr
))
2550 and then Esize
(Component_Type
(Arr
)) = Csiz
2552 -- Here the array was requested to be packed, but
2553 -- the packing request had no effect whatsoever,
2554 -- so flag Is_Packed is reset.
2556 -- Note: semantically this means that we lose track
2557 -- of the fact that a derived type inherited pragma
2558 -- Pack that was non-effective, but that is fine.
2560 -- We regard a Pack pragma as a request to set a
2561 -- representation characteristic, and this request
2564 Set_Is_Packed
(Base_Type
(Arr
), False);
2565 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), False);
2567 Set_Is_Packed
(Base_Type
(Arr
), True);
2568 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), True);
2571 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), False);
2573 -- Bit packing is not needed for multiples of the storage
2574 -- unit if the type is composite because the back end can
2575 -- byte pack composite types.
2577 elsif Csiz
mod System_Storage_Unit
= 0
2578 and then Is_Composite_Type
(Ctyp
)
2581 Set_Is_Packed
(Base_Type
(Arr
), True);
2582 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), True);
2583 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), False);
2585 -- In all other cases, bit packing is needed
2588 Set_Is_Packed
(Base_Type
(Arr
), True);
2589 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), True);
2590 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), True);
2596 -- Check for Aliased or Atomic_Components/Atomic/VFA with
2597 -- unsuitable packing or explicit component size clause given.
2599 if (Has_Aliased_Components
(Arr
)
2600 or else Has_Atomic_Components
(Arr
)
2601 or else Is_Atomic_Or_VFA
(Ctyp
))
2603 (Has_Component_Size_Clause
(Arr
) or else Is_Packed
(Arr
))
2605 Alias_Atomic_Check
: declare
2607 procedure Complain_CS
(T
: String);
2608 -- Outputs error messages for incorrect CS clause or pragma
2609 -- Pack for aliased or atomic/VFA components (T is "aliased"
2610 -- or "atomic/vfa");
2616 procedure Complain_CS
(T
: String) is
2618 if Has_Component_Size_Clause
(Arr
) then
2620 Get_Attribute_Definition_Clause
2621 (FS
, Attribute_Component_Size
);
2624 ("incorrect component size for "
2625 & T
& " components", Clause
);
2626 Error_Msg_Uint_1
:= Esize
(Ctyp
);
2628 ("\only allowed value is^", Clause
);
2632 ("cannot pack " & T
& " components",
2633 Get_Rep_Pragma
(FS
, Name_Pack
));
2637 -- Start of processing for Alias_Atomic_Check
2640 -- If object size of component type isn't known, we cannot
2641 -- be sure so we defer to the back end.
2643 if not Known_Static_Esize
(Ctyp
) then
2646 -- Case where component size has no effect. First check for
2647 -- object size of component type multiple of the storage
2650 elsif Esize
(Ctyp
) mod System_Storage_Unit
= 0
2652 -- OK in both packing case and component size case if RM
2653 -- size is known and static and same as the object size.
2656 ((Known_Static_RM_Size
(Ctyp
)
2657 and then Esize
(Ctyp
) = RM_Size
(Ctyp
))
2659 -- Or if we have an explicit component size clause and
2660 -- the component size and object size are equal.
2663 (Has_Component_Size_Clause
(Arr
)
2664 and then Component_Size
(Arr
) = Esize
(Ctyp
)))
2668 elsif Has_Aliased_Components
(Arr
) then
2669 Complain_CS
("aliased");
2671 elsif Has_Atomic_Components
(Arr
)
2672 or else Is_Atomic
(Ctyp
)
2674 Complain_CS
("atomic");
2676 elsif Is_Volatile_Full_Access
(Ctyp
) then
2677 Complain_CS
("volatile full access");
2679 end Alias_Atomic_Check
;
2682 -- Check for Independent_Components/Independent with unsuitable
2683 -- packing or explicit component size clause given.
2685 if (Has_Independent_Components
(Arr
) or else Is_Independent
(Ctyp
))
2687 (Has_Component_Size_Clause
(Arr
) or else Is_Packed
(Arr
))
2690 -- If object size of component type isn't known, we cannot
2691 -- be sure so we defer to the back end.
2693 if not Known_Static_Esize
(Ctyp
) then
2696 -- Case where component size has no effect. First check for
2697 -- object size of component type multiple of the storage
2700 elsif Esize
(Ctyp
) mod System_Storage_Unit
= 0
2702 -- OK in both packing case and component size case if RM
2703 -- size is known and multiple of the storage unit size.
2706 ((Known_Static_RM_Size
(Ctyp
)
2707 and then RM_Size
(Ctyp
) mod System_Storage_Unit
= 0)
2709 -- Or if we have an explicit component size clause and
2710 -- the component size is larger than the object size.
2713 (Has_Component_Size_Clause
(Arr
)
2714 and then Component_Size
(Arr
) >= Esize
(Ctyp
)))
2719 if Has_Component_Size_Clause
(Arr
) then
2721 Get_Attribute_Definition_Clause
2722 (FS
, Attribute_Component_Size
);
2725 ("incorrect component size for "
2726 & "independent components", Clause
);
2727 Error_Msg_Uint_1
:= Esize
(Ctyp
);
2729 ("\minimum allowed is^", Clause
);
2733 ("cannot pack independent components",
2734 Get_Rep_Pragma
(FS
, Name_Pack
));
2740 -- Warn for case of atomic type
2742 Clause
:= Get_Rep_Pragma
(FS
, Name_Atomic
);
2745 and then not Addressable
(Component_Size
(FS
))
2748 ("non-atomic components of type& may not be "
2749 & "accessible by separate tasks??", Clause
, Arr
);
2751 if Has_Component_Size_Clause
(Arr
) then
2752 Error_Msg_Sloc
:= Sloc
(Get_Attribute_Definition_Clause
2753 (FS
, Attribute_Component_Size
));
2754 Error_Msg_N
("\because of component size clause#??", Clause
);
2756 elsif Has_Pragma_Pack
(Arr
) then
2757 Error_Msg_Sloc
:= Sloc
(Get_Rep_Pragma
(FS
, Name_Pack
));
2758 Error_Msg_N
("\because of pragma Pack#??", Clause
);
2762 -- Check for scalar storage order
2767 Check_Component_Storage_Order
2770 ADC
=> Get_Attribute_Definition_Clause
2771 (First_Subtype
(Arr
),
2772 Attribute_Scalar_Storage_Order
),
2773 Comp_ADC_Present
=> Dummy
);
2776 -- Processing that is done only for subtypes
2779 -- Acquire alignment from base type
2781 if Unknown_Alignment
(Arr
) then
2782 Set_Alignment
(Arr
, Alignment
(Base_Type
(Arr
)));
2783 Adjust_Esize_Alignment
(Arr
);
2787 -- Specific checks for bit-packed arrays
2789 if Is_Bit_Packed_Array
(Arr
) then
2791 -- Check number of elements for bit-packed arrays that come from
2792 -- source and have compile time known ranges. The bit-packed
2793 -- arrays circuitry does not support arrays with more than
2794 -- Integer'Last + 1 elements, and when this restriction is
2795 -- violated, causes incorrect data access.
2797 -- For the case where this is not compile time known, a run-time
2798 -- check should be generated???
2800 if Comes_From_Source
(Arr
) and then Is_Constrained
(Arr
) then
2809 Index
:= First_Index
(Arr
);
2810 while Present
(Index
) loop
2811 Ityp
:= Etype
(Index
);
2813 -- Never generate an error if any index is of a generic
2814 -- type. We will check this in instances.
2816 if Is_Generic_Type
(Ityp
) then
2822 Make_Attribute_Reference
(Loc
,
2823 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
2824 Attribute_Name
=> Name_Range_Length
);
2825 Analyze_And_Resolve
(Ilen
);
2827 -- No attempt is made to check number of elements if not
2828 -- compile time known.
2830 if Nkind
(Ilen
) /= N_Integer_Literal
then
2835 Elmts
:= Elmts
* Intval
(Ilen
);
2839 if Elmts
> Intval
(High_Bound
2840 (Scalar_Range
(Standard_Integer
))) + 1
2843 ("bit packed array type may not have "
2844 & "more than Integer''Last+1 elements", Arr
);
2851 if Known_RM_Size
(Arr
) then
2853 SizC
: constant Node_Id
:= Size_Clause
(Arr
);
2857 -- It is not clear if it is possible to have no size clause
2858 -- at this stage, but it is not worth worrying about. Post
2859 -- error on the entity name in the size clause if present,
2860 -- else on the type entity itself.
2862 if Present
(SizC
) then
2863 Check_Size
(Name
(SizC
), Arr
, RM_Size
(Arr
), Discard
);
2865 Check_Size
(Arr
, Arr
, RM_Size
(Arr
), Discard
);
2871 -- If any of the index types was an enumeration type with a non-
2872 -- standard rep clause, then we indicate that the array type is
2873 -- always packed (even if it is not bit-packed).
2875 if Non_Standard_Enum
then
2876 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
));
2877 Set_Is_Packed
(Base_Type
(Arr
));
2880 Set_Component_Alignment_If_Not_Set
(Arr
);
2882 -- If the array is packed and bit-packed or packed to eliminate holes
2883 -- in the non-contiguous enumeration index types, we must create the
2884 -- packed array type to be used to actually implement the type. This
2885 -- is only needed for real array types (not for string literal types,
2886 -- since they are present only for the front end).
2889 and then (Is_Bit_Packed_Array
(Arr
) or else Non_Standard_Enum
)
2890 and then Ekind
(Arr
) /= E_String_Literal_Subtype
2892 Create_Packed_Array_Impl_Type
(Arr
);
2893 Freeze_And_Append
(Packed_Array_Impl_Type
(Arr
), N
, Result
);
2895 -- Make sure that we have the necessary routines to implement the
2896 -- packing, and complain now if not. Note that we only test this
2897 -- for constrained array types.
2899 if Is_Constrained
(Arr
)
2900 and then Is_Bit_Packed_Array
(Arr
)
2901 and then Present
(Packed_Array_Impl_Type
(Arr
))
2902 and then Is_Array_Type
(Packed_Array_Impl_Type
(Arr
))
2905 CS
: constant Uint
:= Component_Size
(Arr
);
2906 RE
: constant RE_Id
:= Get_Id
(UI_To_Int
(CS
));
2910 and then not RTE_Available
(RE
)
2913 ("packing of " & UI_Image
(CS
) & "-bit components",
2914 First_Subtype
(Etype
(Arr
)));
2916 -- Cancel the packing
2918 Set_Is_Packed
(Base_Type
(Arr
), False);
2919 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), False);
2920 Set_Packed_Array_Impl_Type
(Arr
, Empty
);
2926 -- Size information of packed array type is copied to the array
2927 -- type, since this is really the representation. But do not
2928 -- override explicit existing size values. If the ancestor subtype
2929 -- is constrained the Packed_Array_Impl_Type will be inherited
2930 -- from it, but the size may have been provided already, and
2931 -- must not be overridden either.
2933 if not Has_Size_Clause
(Arr
)
2935 (No
(Ancestor_Subtype
(Arr
))
2936 or else not Has_Size_Clause
(Ancestor_Subtype
(Arr
)))
2938 Set_Esize
(Arr
, Esize
(Packed_Array_Impl_Type
(Arr
)));
2939 Set_RM_Size
(Arr
, RM_Size
(Packed_Array_Impl_Type
(Arr
)));
2942 if not Has_Alignment_Clause
(Arr
) then
2943 Set_Alignment
(Arr
, Alignment
(Packed_Array_Impl_Type
(Arr
)));
2949 -- For non-packed arrays set the alignment of the array to the
2950 -- alignment of the component type if it is unknown. Skip this
2951 -- in atomic/VFA case (atomic/VFA arrays may need larger alignments).
2953 if not Is_Packed
(Arr
)
2954 and then Unknown_Alignment
(Arr
)
2955 and then Known_Alignment
(Ctyp
)
2956 and then Known_Static_Component_Size
(Arr
)
2957 and then Known_Static_Esize
(Ctyp
)
2958 and then Esize
(Ctyp
) = Component_Size
(Arr
)
2959 and then not Is_Atomic_Or_VFA
(Arr
)
2961 Set_Alignment
(Arr
, Alignment
(Component_Type
(Arr
)));
2964 -- A Ghost type cannot have a component of protected or task type
2965 -- (SPARK RM 6.9(19)).
2967 if Is_Ghost_Entity
(Arr
) and then Is_Concurrent_Type
(Ctyp
) then
2969 ("ghost array type & cannot have concurrent component type",
2972 end Freeze_Array_Type
;
2974 -------------------------------
2975 -- Freeze_Object_Declaration --
2976 -------------------------------
2978 procedure Freeze_Object_Declaration
(E
: Entity_Id
) is
2980 -- Abstract type allowed only for C++ imported variables or constants
2982 -- Note: we inhibit this check for objects that do not come from
2983 -- source because there is at least one case (the expansion of
2984 -- x'Class'Input where x is abstract) where we legitimately
2985 -- generate an abstract object.
2987 if Is_Abstract_Type
(Etype
(E
))
2988 and then Comes_From_Source
(Parent
(E
))
2989 and then not (Is_Imported
(E
) and then Is_CPP_Class
(Etype
(E
)))
2991 Error_Msg_N
("type of object cannot be abstract",
2992 Object_Definition
(Parent
(E
)));
2994 if Is_CPP_Class
(Etype
(E
)) then
2996 ("\} may need a cpp_constructor",
2997 Object_Definition
(Parent
(E
)), Etype
(E
));
2999 elsif Present
(Expression
(Parent
(E
))) then
3000 Error_Msg_N
-- CODEFIX
3001 ("\maybe a class-wide type was meant",
3002 Object_Definition
(Parent
(E
)));
3006 -- For object created by object declaration, perform required
3007 -- categorization (preelaborate and pure) checks. Defer these
3008 -- checks to freeze time since pragma Import inhibits default
3009 -- initialization and thus pragma Import affects these checks.
3011 Validate_Object_Declaration
(Declaration_Node
(E
));
3013 -- If there is an address clause, check that it is valid
3014 -- and if need be move initialization to the freeze node.
3016 Check_Address_Clause
(E
);
3018 -- Similar processing is needed for aspects that may affect
3019 -- object layout, like Alignment, if there is an initialization
3022 if Has_Delayed_Aspects
(E
)
3023 and then Expander_Active
3024 and then Is_Array_Type
(Etype
(E
))
3025 and then Present
(Expression
(Parent
(E
)))
3028 Decl
: constant Node_Id
:= Parent
(E
);
3029 Lhs
: constant Node_Id
:= New_Occurrence_Of
(E
, Loc
);
3033 -- Capture initialization value at point of declaration, and
3034 -- make explicit assignment legal, because object may be a
3037 Remove_Side_Effects
(Expression
(Decl
));
3038 Set_Assignment_OK
(Lhs
);
3040 -- Move initialization to freeze actions.
3042 Append_Freeze_Action
(E
,
3043 Make_Assignment_Statement
(Loc
,
3045 Expression
=> Expression
(Decl
)));
3047 Set_No_Initialization
(Decl
);
3048 -- Set_Is_Frozen (E, False);
3052 -- Reset Is_True_Constant for non-constant aliased object. We
3053 -- consider that the fact that a non-constant object is aliased may
3054 -- indicate that some funny business is going on, e.g. an aliased
3055 -- object is passed by reference to a procedure which captures the
3056 -- address of the object, which is later used to assign a new value,
3057 -- even though the compiler thinks that it is not modified. Such
3058 -- code is highly dubious, but we choose to make it "work" for
3059 -- non-constant aliased objects.
3061 -- Note that we used to do this for all aliased objects, whether or
3062 -- not constant, but this caused anomalies down the line because we
3063 -- ended up with static objects that were not Is_True_Constant. Not
3064 -- resetting Is_True_Constant for (aliased) constant objects ensures
3065 -- that this anomaly never occurs.
3067 -- However, we don't do that for internal entities. We figure that if
3068 -- we deliberately set Is_True_Constant for an internal entity, e.g.
3069 -- a dispatch table entry, then we mean it.
3071 if Ekind
(E
) /= E_Constant
3072 and then (Is_Aliased
(E
) or else Is_Aliased
(Etype
(E
)))
3073 and then not Is_Internal_Name
(Chars
(E
))
3075 Set_Is_True_Constant
(E
, False);
3078 -- If the object needs any kind of default initialization, an error
3079 -- must be issued if No_Default_Initialization applies. The check
3080 -- doesn't apply to imported objects, which are not ever default
3081 -- initialized, and is why the check is deferred until freezing, at
3082 -- which point we know if Import applies. Deferred constants are also
3083 -- exempted from this test because their completion is explicit, or
3084 -- through an import pragma.
3086 if Ekind
(E
) = E_Constant
and then Present
(Full_View
(E
)) then
3089 elsif Comes_From_Source
(E
)
3090 and then not Is_Imported
(E
)
3091 and then not Has_Init_Expression
(Declaration_Node
(E
))
3093 ((Has_Non_Null_Base_Init_Proc
(Etype
(E
))
3094 and then not No_Initialization
(Declaration_Node
(E
))
3095 and then not Initialization_Suppressed
(Etype
(E
)))
3097 (Needs_Simple_Initialization
(Etype
(E
))
3098 and then not Is_Internal
(E
)))
3100 Has_Default_Initialization
:= True;
3102 (No_Default_Initialization
, Declaration_Node
(E
));
3105 -- Check that a Thread_Local_Storage variable does not have
3106 -- default initialization, and any explicit initialization must
3107 -- either be the null constant or a static constant.
3109 if Has_Pragma_Thread_Local_Storage
(E
) then
3111 Decl
: constant Node_Id
:= Declaration_Node
(E
);
3113 if Has_Default_Initialization
3115 (Has_Init_Expression
(Decl
)
3117 (No
(Expression
(Decl
))
3119 (Is_OK_Static_Expression
(Expression
(Decl
))
3120 or else Nkind
(Expression
(Decl
)) = N_Null
)))
3123 ("Thread_Local_Storage variable& is "
3124 & "improperly initialized", Decl
, E
);
3126 ("\only allowed initialization is explicit "
3127 & "NULL or static expression", Decl
, E
);
3132 -- For imported objects, set Is_Public unless there is also an
3133 -- address clause, which means that there is no external symbol
3134 -- needed for the Import (Is_Public may still be set for other
3135 -- unrelated reasons). Note that we delayed this processing
3136 -- till freeze time so that we can be sure not to set the flag
3137 -- if there is an address clause. If there is such a clause,
3138 -- then the only purpose of the Import pragma is to suppress
3139 -- implicit initialization.
3141 if Is_Imported
(E
) and then No
(Address_Clause
(E
)) then
3145 -- For source objects that are not Imported and are library
3146 -- level, if no linker section pragma was given inherit the
3147 -- appropriate linker section from the corresponding type.
3149 if Comes_From_Source
(E
)
3150 and then not Is_Imported
(E
)
3151 and then Is_Library_Level_Entity
(E
)
3152 and then No
(Linker_Section_Pragma
(E
))
3154 Set_Linker_Section_Pragma
3155 (E
, Linker_Section_Pragma
(Etype
(E
)));
3158 -- For convention C objects of an enumeration type, warn if the
3159 -- size is not integer size and no explicit size given. Skip
3160 -- warning for Boolean, and Character, assume programmer expects
3161 -- 8-bit sizes for these cases.
3163 if (Convention
(E
) = Convention_C
3165 Convention
(E
) = Convention_CPP
)
3166 and then Is_Enumeration_Type
(Etype
(E
))
3167 and then not Is_Character_Type
(Etype
(E
))
3168 and then not Is_Boolean_Type
(Etype
(E
))
3169 and then Esize
(Etype
(E
)) < Standard_Integer_Size
3170 and then not Has_Size_Clause
(E
)
3172 Error_Msg_Uint_1
:= UI_From_Int
(Standard_Integer_Size
);
3174 ("??convention C enumeration object has size less than ^", E
);
3175 Error_Msg_N
("\??use explicit size clause to set size", E
);
3177 end Freeze_Object_Declaration
;
3179 -----------------------------
3180 -- Freeze_Generic_Entities --
3181 -----------------------------
3183 function Freeze_Generic_Entities
(Pack
: Entity_Id
) return List_Id
is
3190 E
:= First_Entity
(Pack
);
3191 while Present
(E
) loop
3192 if Is_Type
(E
) and then not Is_Generic_Type
(E
) then
3193 F
:= Make_Freeze_Generic_Entity
(Sloc
(Pack
));
3195 Append_To
(Flist
, F
);
3197 elsif Ekind
(E
) = E_Generic_Package
then
3198 Append_List_To
(Flist
, Freeze_Generic_Entities
(E
));
3205 end Freeze_Generic_Entities
;
3207 --------------------
3208 -- Freeze_Profile --
3209 --------------------
3211 function Freeze_Profile
(E
: Entity_Id
) return Boolean is
3214 Warn_Node
: Node_Id
;
3217 -- Loop through formals
3219 Formal
:= First_Formal
(E
);
3220 while Present
(Formal
) loop
3221 F_Type
:= Etype
(Formal
);
3223 -- AI05-0151: incomplete types can appear in a profile. By the
3224 -- time the entity is frozen, the full view must be available,
3225 -- unless it is a limited view.
3227 if Is_Incomplete_Type
(F_Type
)
3228 and then Present
(Full_View
(F_Type
))
3229 and then not From_Limited_With
(F_Type
)
3231 F_Type
:= Full_View
(F_Type
);
3232 Set_Etype
(Formal
, F_Type
);
3235 if not From_Limited_With
(F_Type
) then
3236 Freeze_And_Append
(F_Type
, N
, Result
);
3239 if Is_Private_Type
(F_Type
)
3240 and then Is_Private_Type
(Base_Type
(F_Type
))
3241 and then No
(Full_View
(Base_Type
(F_Type
)))
3242 and then not Is_Generic_Type
(F_Type
)
3243 and then not Is_Derived_Type
(F_Type
)
3245 -- If the type of a formal is incomplete, subprogram is being
3246 -- frozen prematurely. Within an instance (but not within a
3247 -- wrapper package) this is an artifact of our need to regard
3248 -- the end of an instantiation as a freeze point. Otherwise it
3249 -- is a definite error.
3252 Set_Is_Frozen
(E
, False);
3256 elsif not After_Last_Declaration
3257 and then not Freezing_Library_Level_Tagged_Type
3259 Error_Msg_Node_1
:= F_Type
;
3261 ("type & must be fully defined before this point", Loc
);
3265 -- Check suspicious parameter for C function. These tests apply
3266 -- only to exported/imported subprograms.
3268 if Warn_On_Export_Import
3269 and then Comes_From_Source
(E
)
3270 and then (Convention
(E
) = Convention_C
3272 Convention
(E
) = Convention_CPP
)
3273 and then (Is_Imported
(E
) or else Is_Exported
(E
))
3274 and then Convention
(E
) /= Convention
(Formal
)
3275 and then not Has_Warnings_Off
(E
)
3276 and then not Has_Warnings_Off
(F_Type
)
3277 and then not Has_Warnings_Off
(Formal
)
3279 -- Qualify mention of formals with subprogram name
3281 Error_Msg_Qual_Level
:= 1;
3283 -- Check suspicious use of fat C pointer
3285 if Is_Access_Type
(F_Type
)
3286 and then Esize
(F_Type
) > Ttypes
.System_Address_Size
3289 ("?x?type of & does not correspond to C pointer!", Formal
);
3291 -- Check suspicious return of boolean
3293 elsif Root_Type
(F_Type
) = Standard_Boolean
3294 and then Convention
(F_Type
) = Convention_Ada
3295 and then not Has_Warnings_Off
(F_Type
)
3296 and then not Has_Size_Clause
(F_Type
)
3299 ("& is an 8-bit Ada Boolean?x?", Formal
);
3301 ("\use appropriate corresponding type in C "
3302 & "(e.g. char)?x?", Formal
);
3304 -- Check suspicious tagged type
3306 elsif (Is_Tagged_Type
(F_Type
)
3308 (Is_Access_Type
(F_Type
)
3309 and then Is_Tagged_Type
(Designated_Type
(F_Type
))))
3310 and then Convention
(E
) = Convention_C
3313 ("?x?& involves a tagged type which does not "
3314 & "correspond to any C type!", Formal
);
3316 -- Check wrong convention subprogram pointer
3318 elsif Ekind
(F_Type
) = E_Access_Subprogram_Type
3319 and then not Has_Foreign_Convention
(F_Type
)
3322 ("?x?subprogram pointer & should "
3323 & "have foreign convention!", Formal
);
3324 Error_Msg_Sloc
:= Sloc
(F_Type
);
3326 ("\?x?add Convention pragma to declaration of &#",
3330 -- Turn off name qualification after message output
3332 Error_Msg_Qual_Level
:= 0;
3335 -- Check for unconstrained array in exported foreign convention
3338 if Has_Foreign_Convention
(E
)
3339 and then not Is_Imported
(E
)
3340 and then Is_Array_Type
(F_Type
)
3341 and then not Is_Constrained
(F_Type
)
3342 and then Warn_On_Export_Import
3344 Error_Msg_Qual_Level
:= 1;
3346 -- If this is an inherited operation, place the warning on
3347 -- the derived type declaration, rather than on the original
3350 if Nkind
(Original_Node
(Parent
(E
))) = N_Full_Type_Declaration
3352 Warn_Node
:= Parent
(E
);
3354 if Formal
= First_Formal
(E
) then
3355 Error_Msg_NE
("??in inherited operation&", Warn_Node
, E
);
3358 Warn_Node
:= Formal
;
3361 Error_Msg_NE
("?x?type of argument& is unconstrained array",
3363 Error_Msg_NE
("?x?foreign caller must pass bounds explicitly",
3365 Error_Msg_Qual_Level
:= 0;
3368 if not From_Limited_With
(F_Type
) then
3369 if Is_Access_Type
(F_Type
) then
3370 F_Type
:= Designated_Type
(F_Type
);
3373 -- If the formal is an anonymous_access_to_subprogram
3374 -- freeze the subprogram type as well, to prevent
3375 -- scope anomalies in gigi, because there is no other
3376 -- clear point at which it could be frozen.
3378 if Is_Itype
(Etype
(Formal
))
3379 and then Ekind
(F_Type
) = E_Subprogram_Type
3381 Freeze_And_Append
(F_Type
, N
, Result
);
3385 Next_Formal
(Formal
);
3388 -- Case of function: similar checks on return type
3390 if Ekind
(E
) = E_Function
then
3392 -- Freeze return type
3394 R_Type
:= Etype
(E
);
3396 -- AI05-0151: the return type may have been incomplete
3397 -- at the point of declaration. Replace it with the full
3398 -- view, unless the current type is a limited view. In
3399 -- that case the full view is in a different unit, and
3400 -- gigi finds the non-limited view after the other unit
3403 if Ekind
(R_Type
) = E_Incomplete_Type
3404 and then Present
(Full_View
(R_Type
))
3405 and then not From_Limited_With
(R_Type
)
3407 R_Type
:= Full_View
(R_Type
);
3408 Set_Etype
(E
, R_Type
);
3411 Freeze_And_Append
(R_Type
, N
, Result
);
3413 -- Check suspicious return type for C function
3415 if Warn_On_Export_Import
3416 and then (Convention
(E
) = Convention_C
3418 Convention
(E
) = Convention_CPP
)
3419 and then (Is_Imported
(E
) or else Is_Exported
(E
))
3421 -- Check suspicious return of fat C pointer
3423 if Is_Access_Type
(R_Type
)
3424 and then Esize
(R_Type
) > Ttypes
.System_Address_Size
3425 and then not Has_Warnings_Off
(E
)
3426 and then not Has_Warnings_Off
(R_Type
)
3428 Error_Msg_N
("?x?return type of& does not "
3429 & "correspond to C pointer!", E
);
3431 -- Check suspicious return of boolean
3433 elsif Root_Type
(R_Type
) = Standard_Boolean
3434 and then Convention
(R_Type
) = Convention_Ada
3435 and then not Has_Warnings_Off
(E
)
3436 and then not Has_Warnings_Off
(R_Type
)
3437 and then not Has_Size_Clause
(R_Type
)
3440 N
: constant Node_Id
:=
3441 Result_Definition
(Declaration_Node
(E
));
3444 ("return type of & is an 8-bit Ada Boolean?x?", N
, E
);
3446 ("\use appropriate corresponding type in C "
3447 & "(e.g. char)?x?", N
, E
);
3450 -- Check suspicious return tagged type
3452 elsif (Is_Tagged_Type
(R_Type
)
3453 or else (Is_Access_Type
(R_Type
)
3456 (Designated_Type
(R_Type
))))
3457 and then Convention
(E
) = Convention_C
3458 and then not Has_Warnings_Off
(E
)
3459 and then not Has_Warnings_Off
(R_Type
)
3461 Error_Msg_N
("?x?return type of & does not "
3462 & "correspond to C type!", E
);
3464 -- Check return of wrong convention subprogram pointer
3466 elsif Ekind
(R_Type
) = E_Access_Subprogram_Type
3467 and then not Has_Foreign_Convention
(R_Type
)
3468 and then not Has_Warnings_Off
(E
)
3469 and then not Has_Warnings_Off
(R_Type
)
3471 Error_Msg_N
("?x?& should return a foreign "
3472 & "convention subprogram pointer", E
);
3473 Error_Msg_Sloc
:= Sloc
(R_Type
);
3475 ("\?x?add Convention pragma to declaration of& #",
3480 -- Give warning for suspicious return of a result of an
3481 -- unconstrained array type in a foreign convention function.
3483 if Has_Foreign_Convention
(E
)
3485 -- We are looking for a return of unconstrained array
3487 and then Is_Array_Type
(R_Type
)
3488 and then not Is_Constrained
(R_Type
)
3490 -- Exclude imported routines, the warning does not belong on
3491 -- the import, but rather on the routine definition.
3493 and then not Is_Imported
(E
)
3495 -- Check that general warning is enabled, and that it is not
3496 -- suppressed for this particular case.
3498 and then Warn_On_Export_Import
3499 and then not Has_Warnings_Off
(E
)
3500 and then not Has_Warnings_Off
(R_Type
)
3503 ("?x?foreign convention function& should not return "
3504 & "unconstrained array!", E
);
3508 -- Check suspicious use of Import in pure unit (cases where the RM
3509 -- allows calls to be omitted).
3513 -- It might be suspicious if the compilation unit has the Pure
3516 and then Has_Pragma_Pure
(Cunit_Entity
(Current_Sem_Unit
))
3518 -- The RM allows omission of calls only in the case of
3519 -- library-level subprograms (see RM-10.2.1(18)).
3521 and then Is_Library_Level_Entity
(E
)
3523 -- Ignore internally generated entity. This happens in some cases
3524 -- of subprograms in specs, where we generate an implied body.
3526 and then Comes_From_Source
(Import_Pragma
(E
))
3528 -- Assume run-time knows what it is doing
3530 and then not GNAT_Mode
3532 -- Assume explicit Pure_Function means import is pure
3534 and then not Has_Pragma_Pure_Function
(E
)
3536 -- Don't need warning in relaxed semantics mode
3538 and then not Relaxed_RM_Semantics
3540 -- Assume convention Intrinsic is OK, since this is specialized.
3541 -- This deals with the DEC unit current_exception.ads
3543 and then Convention
(E
) /= Convention_Intrinsic
3545 -- Assume that ASM interface knows what it is doing. This deals
3546 -- with e.g. unsigned.ads in the AAMP back end.
3548 and then Convention
(E
) /= Convention_Assembler
3551 ("pragma Import in Pure unit??", Import_Pragma
(E
));
3553 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
3554 Import_Pragma
(E
), E
);
3560 ------------------------
3561 -- Freeze_Record_Type --
3562 ------------------------
3564 procedure Freeze_Record_Type
(Rec
: Entity_Id
) is
3571 pragma Warnings
(Off
, Junk
);
3573 Aliased_Component
: Boolean := False;
3574 -- Set True if we find at least one component which is aliased. This
3575 -- is used to prevent Implicit_Packing of the record, since packing
3576 -- cannot modify the size of alignment of an aliased component.
3578 All_Elem_Components
: Boolean := True;
3579 -- Set False if we encounter a component of a composite type
3581 All_Sized_Components
: Boolean := True;
3582 -- Set False if we encounter a component with unknown RM_Size
3584 All_Storage_Unit_Components
: Boolean := True;
3585 -- Set False if we encounter a component of a composite type whose
3586 -- RM_Size is not a multiple of the storage unit.
3588 Elem_Component_Total_Esize
: Uint
:= Uint_0
;
3589 -- Accumulates total Esize values of all elementary components. Used
3590 -- for processing of Implicit_Packing.
3592 Placed_Component
: Boolean := False;
3593 -- Set True if we find at least one component with a component
3594 -- clause (used to warn about useless Bit_Order pragmas, and also
3595 -- to detect cases where Implicit_Packing may have an effect).
3597 Rec_Pushed
: Boolean := False;
3598 -- Set True if the record type scope Rec has been pushed on the scope
3599 -- stack. Needed for the analysis of delayed aspects specified to the
3600 -- components of Rec.
3602 Sized_Component_Total_RM_Size
: Uint
:= Uint_0
;
3603 -- Accumulates total RM_Size values of all sized components. Used
3604 -- for processing of Implicit_Packing.
3607 -- Scalar_Storage_Order attribute definition clause for the record
3609 SSO_ADC_Component
: Boolean := False;
3610 -- Set True if we find at least one component whose type has a
3611 -- Scalar_Storage_Order attribute definition clause.
3613 Unplaced_Component
: Boolean := False;
3614 -- Set True if we find at least one component with no component
3615 -- clause (used to warn about useless Pack pragmas).
3617 function Check_Allocator
(N
: Node_Id
) return Node_Id
;
3618 -- If N is an allocator, possibly wrapped in one or more level of
3619 -- qualified expression(s), return the inner allocator node, else
3622 procedure Check_Itype
(Typ
: Entity_Id
);
3623 -- If the component subtype is an access to a constrained subtype of
3624 -- an already frozen type, make the subtype frozen as well. It might
3625 -- otherwise be frozen in the wrong scope, and a freeze node on
3626 -- subtype has no effect. Similarly, if the component subtype is a
3627 -- regular (not protected) access to subprogram, set the anonymous
3628 -- subprogram type to frozen as well, to prevent an out-of-scope
3629 -- freeze node at some eventual point of call. Protected operations
3630 -- are handled elsewhere.
3632 procedure Freeze_Choices_In_Variant_Part
(VP
: Node_Id
);
3633 -- Make sure that all types mentioned in Discrete_Choices of the
3634 -- variants referenceed by the Variant_Part VP are frozen. This is
3635 -- a recursive routine to deal with nested variants.
3637 ---------------------
3638 -- Check_Allocator --
3639 ---------------------
3641 function Check_Allocator
(N
: Node_Id
) return Node_Id
is
3646 if Nkind
(Inner
) = N_Allocator
then
3648 elsif Nkind
(Inner
) = N_Qualified_Expression
then
3649 Inner
:= Expression
(Inner
);
3654 end Check_Allocator
;
3660 procedure Check_Itype
(Typ
: Entity_Id
) is
3661 Desig
: constant Entity_Id
:= Designated_Type
(Typ
);
3664 if not Is_Frozen
(Desig
)
3665 and then Is_Frozen
(Base_Type
(Desig
))
3667 Set_Is_Frozen
(Desig
);
3669 -- In addition, add an Itype_Reference to ensure that the
3670 -- access subtype is elaborated early enough. This cannot be
3671 -- done if the subtype may depend on discriminants.
3673 if Ekind
(Comp
) = E_Component
3674 and then Is_Itype
(Etype
(Comp
))
3675 and then not Has_Discriminants
(Rec
)
3677 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
3678 Set_Itype
(IR
, Desig
);
3682 elsif Ekind
(Typ
) = E_Anonymous_Access_Subprogram_Type
3683 and then Convention
(Desig
) /= Convention_Protected
3685 Set_Is_Frozen
(Desig
);
3689 ------------------------------------
3690 -- Freeze_Choices_In_Variant_Part --
3691 ------------------------------------
3693 procedure Freeze_Choices_In_Variant_Part
(VP
: Node_Id
) is
3694 pragma Assert
(Nkind
(VP
) = N_Variant_Part
);
3701 -- Loop through variants
3703 Variant
:= First_Non_Pragma
(Variants
(VP
));
3704 while Present
(Variant
) loop
3706 -- Loop through choices, checking that all types are frozen
3708 Choice
:= First_Non_Pragma
(Discrete_Choices
(Variant
));
3709 while Present
(Choice
) loop
3710 if Nkind
(Choice
) in N_Has_Etype
3711 and then Present
(Etype
(Choice
))
3713 Freeze_And_Append
(Etype
(Choice
), N
, Result
);
3716 Next_Non_Pragma
(Choice
);
3719 -- Check for nested variant part to process
3721 CL
:= Component_List
(Variant
);
3723 if not Null_Present
(CL
) then
3724 if Present
(Variant_Part
(CL
)) then
3725 Freeze_Choices_In_Variant_Part
(Variant_Part
(CL
));
3729 Next_Non_Pragma
(Variant
);
3731 end Freeze_Choices_In_Variant_Part
;
3733 -- Start of processing for Freeze_Record_Type
3736 -- Deal with delayed aspect specifications for components. The
3737 -- analysis of the aspect is required to be delayed to the freeze
3738 -- point, thus we analyze the pragma or attribute definition
3739 -- clause in the tree at this point. We also analyze the aspect
3740 -- specification node at the freeze point when the aspect doesn't
3741 -- correspond to pragma/attribute definition clause.
3743 Comp
:= First_Entity
(Rec
);
3744 while Present
(Comp
) loop
3745 if Ekind
(Comp
) = E_Component
3746 and then Has_Delayed_Aspects
(Comp
)
3748 if not Rec_Pushed
then
3752 -- The visibility to the discriminants must be restored in
3753 -- order to properly analyze the aspects.
3755 if Has_Discriminants
(Rec
) then
3756 Install_Discriminants
(Rec
);
3760 Analyze_Aspects_At_Freeze_Point
(Comp
);
3766 -- Pop the scope if Rec scope has been pushed on the scope stack
3767 -- during the delayed aspect analysis process.
3770 if Has_Discriminants
(Rec
) then
3771 Uninstall_Discriminants
(Rec
);
3777 -- Freeze components and embedded subtypes
3779 Comp
:= First_Entity
(Rec
);
3781 while Present
(Comp
) loop
3782 if Is_Aliased
(Comp
) then
3783 Aliased_Component
:= True;
3786 -- Handle the component and discriminant case
3788 if Ekind_In
(Comp
, E_Component
, E_Discriminant
) then
3790 CC
: constant Node_Id
:= Component_Clause
(Comp
);
3793 -- Freezing a record type freezes the type of each of its
3794 -- components. However, if the type of the component is
3795 -- part of this record, we do not want or need a separate
3796 -- Freeze_Node. Note that Is_Itype is wrong because that's
3797 -- also set in private type cases. We also can't check for
3798 -- the Scope being exactly Rec because of private types and
3799 -- record extensions.
3801 if Is_Itype
(Etype
(Comp
))
3802 and then Is_Record_Type
(Underlying_Type
3803 (Scope
(Etype
(Comp
))))
3805 Undelay_Type
(Etype
(Comp
));
3808 Freeze_And_Append
(Etype
(Comp
), N
, Result
);
3810 -- Warn for pragma Pack overriding foreign convention
3812 if Has_Foreign_Convention
(Etype
(Comp
))
3813 and then Has_Pragma_Pack
(Rec
)
3815 -- Don't warn for aliased components, since override
3816 -- cannot happen in that case.
3818 and then not Is_Aliased
(Comp
)
3821 CN
: constant Name_Id
:=
3822 Get_Convention_Name
(Convention
(Etype
(Comp
)));
3823 PP
: constant Node_Id
:=
3824 Get_Pragma
(Rec
, Pragma_Pack
);
3826 if Present
(PP
) then
3827 Error_Msg_Name_1
:= CN
;
3828 Error_Msg_Sloc
:= Sloc
(Comp
);
3830 ("pragma Pack affects convention % component#??",
3832 Error_Msg_Name_1
:= CN
;
3834 ("\component & may not have % compatible "
3835 & "representation??", PP
, Comp
);
3840 -- Check for error of component clause given for variable
3841 -- sized type. We have to delay this test till this point,
3842 -- since the component type has to be frozen for us to know
3843 -- if it is variable length.
3845 if Present
(CC
) then
3846 Placed_Component
:= True;
3848 -- We omit this test in a generic context, it will be
3849 -- applied at instantiation time.
3851 if Inside_A_Generic
then
3854 -- Also omit this test in CodePeer mode, since we do not
3855 -- have sufficient info on size and rep clauses.
3857 elsif CodePeer_Mode
then
3860 -- Omit check if component has a generic type. This can
3861 -- happen in an instantiation within a generic in ASIS
3862 -- mode, where we force freeze actions without full
3865 elsif Is_Generic_Type
(Etype
(Comp
)) then
3871 Size_Known_At_Compile_Time
3872 (Underlying_Type
(Etype
(Comp
)))
3875 ("component clause not allowed for variable " &
3876 "length component", CC
);
3880 Unplaced_Component
:= True;
3883 -- Case of component requires byte alignment
3885 if Must_Be_On_Byte_Boundary
(Etype
(Comp
)) then
3887 -- Set the enclosing record to also require byte align
3889 Set_Must_Be_On_Byte_Boundary
(Rec
);
3891 -- Check for component clause that is inconsistent with
3892 -- the required byte boundary alignment.
3895 and then Normalized_First_Bit
(Comp
) mod
3896 System_Storage_Unit
/= 0
3899 ("component & must be byte aligned",
3900 Component_Name
(Component_Clause
(Comp
)));
3906 -- Gather data for possible Implicit_Packing later. Note that at
3907 -- this stage we might be dealing with a real component, or with
3908 -- an implicit subtype declaration.
3910 if Known_Static_RM_Size
(Etype
(Comp
)) then
3911 Sized_Component_Total_RM_Size
:=
3912 Sized_Component_Total_RM_Size
+ RM_Size
(Etype
(Comp
));
3914 if Is_Elementary_Type
(Etype
(Comp
)) then
3915 Elem_Component_Total_Esize
:=
3916 Elem_Component_Total_Esize
+ Esize
(Etype
(Comp
));
3918 All_Elem_Components
:= False;
3920 if RM_Size
(Etype
(Comp
)) mod System_Storage_Unit
/= 0 then
3921 All_Storage_Unit_Components
:= False;
3925 All_Sized_Components
:= False;
3928 -- If the component is an Itype with Delayed_Freeze and is either
3929 -- a record or array subtype and its base type has not yet been
3930 -- frozen, we must remove this from the entity list of this record
3931 -- and put it on the entity list of the scope of its base type.
3932 -- Note that we know that this is not the type of a component
3933 -- since we cleared Has_Delayed_Freeze for it in the previous
3934 -- loop. Thus this must be the Designated_Type of an access type,
3935 -- which is the type of a component.
3938 and then Is_Type
(Scope
(Comp
))
3939 and then Is_Composite_Type
(Comp
)
3940 and then Base_Type
(Comp
) /= Comp
3941 and then Has_Delayed_Freeze
(Comp
)
3942 and then not Is_Frozen
(Base_Type
(Comp
))
3945 Will_Be_Frozen
: Boolean := False;
3949 -- We have a difficult case to handle here. Suppose Rec is
3950 -- subtype being defined in a subprogram that's created as
3951 -- part of the freezing of Rec'Base. In that case, we know
3952 -- that Comp'Base must have already been frozen by the time
3953 -- we get to elaborate this because Gigi doesn't elaborate
3954 -- any bodies until it has elaborated all of the declarative
3955 -- part. But Is_Frozen will not be set at this point because
3956 -- we are processing code in lexical order.
3958 -- We detect this case by going up the Scope chain of Rec
3959 -- and seeing if we have a subprogram scope before reaching
3960 -- the top of the scope chain or that of Comp'Base. If we
3961 -- do, then mark that Comp'Base will actually be frozen. If
3962 -- so, we merely undelay it.
3965 while Present
(S
) loop
3966 if Is_Subprogram
(S
) then
3967 Will_Be_Frozen
:= True;
3969 elsif S
= Scope
(Base_Type
(Comp
)) then
3976 if Will_Be_Frozen
then
3977 Undelay_Type
(Comp
);
3980 if Present
(Prev
) then
3981 Set_Next_Entity
(Prev
, Next_Entity
(Comp
));
3983 Set_First_Entity
(Rec
, Next_Entity
(Comp
));
3986 -- Insert in entity list of scope of base type (which
3987 -- must be an enclosing scope, because still unfrozen).
3989 Append_Entity
(Comp
, Scope
(Base_Type
(Comp
)));
3993 -- If the component is an access type with an allocator as default
3994 -- value, the designated type will be frozen by the corresponding
3995 -- expression in init_proc. In order to place the freeze node for
3996 -- the designated type before that for the current record type,
3999 -- Same process if the component is an array of access types,
4000 -- initialized with an aggregate. If the designated type is
4001 -- private, it cannot contain allocators, and it is premature
4002 -- to freeze the type, so we check for this as well.
4004 elsif Is_Access_Type
(Etype
(Comp
))
4005 and then Present
(Parent
(Comp
))
4006 and then Present
(Expression
(Parent
(Comp
)))
4009 Alloc
: constant Node_Id
:=
4010 Check_Allocator
(Expression
(Parent
(Comp
)));
4013 if Present
(Alloc
) then
4015 -- If component is pointer to a class-wide type, freeze
4016 -- the specific type in the expression being allocated.
4017 -- The expression may be a subtype indication, in which
4018 -- case freeze the subtype mark.
4020 if Is_Class_Wide_Type
4021 (Designated_Type
(Etype
(Comp
)))
4023 if Is_Entity_Name
(Expression
(Alloc
)) then
4025 (Entity
(Expression
(Alloc
)), N
, Result
);
4027 elsif Nkind
(Expression
(Alloc
)) = N_Subtype_Indication
4030 (Entity
(Subtype_Mark
(Expression
(Alloc
))),
4034 elsif Is_Itype
(Designated_Type
(Etype
(Comp
))) then
4035 Check_Itype
(Etype
(Comp
));
4039 (Designated_Type
(Etype
(Comp
)), N
, Result
);
4044 elsif Is_Access_Type
(Etype
(Comp
))
4045 and then Is_Itype
(Designated_Type
(Etype
(Comp
)))
4047 Check_Itype
(Etype
(Comp
));
4049 -- Freeze the designated type when initializing a component with
4050 -- an aggregate in case the aggregate contains allocators.
4053 -- type T_Ptr is access all T;
4054 -- type T_Array is array ... of T_Ptr;
4056 -- type Rec is record
4057 -- Comp : T_Array := (others => ...);
4060 elsif Is_Array_Type
(Etype
(Comp
))
4061 and then Is_Access_Type
(Component_Type
(Etype
(Comp
)))
4064 Comp_Par
: constant Node_Id
:= Parent
(Comp
);
4065 Desig_Typ
: constant Entity_Id
:=
4067 (Component_Type
(Etype
(Comp
)));
4070 -- The only case when this sort of freezing is not done is
4071 -- when the designated type is class-wide and the root type
4072 -- is the record owning the component. This scenario results
4073 -- in a circularity because the class-wide type requires
4074 -- primitives that have not been created yet as the root
4075 -- type is in the process of being frozen.
4077 -- type Rec is tagged;
4078 -- type Rec_Ptr is access all Rec'Class;
4079 -- type Rec_Array is array ... of Rec_Ptr;
4081 -- type Rec is record
4082 -- Comp : Rec_Array := (others => ...);
4085 if Is_Class_Wide_Type
(Desig_Typ
)
4086 and then Root_Type
(Desig_Typ
) = Rec
4090 elsif Is_Fully_Defined
(Desig_Typ
)
4091 and then Present
(Comp_Par
)
4092 and then Nkind
(Comp_Par
) = N_Component_Declaration
4093 and then Present
(Expression
(Comp_Par
))
4094 and then Nkind
(Expression
(Comp_Par
)) = N_Aggregate
4096 Freeze_And_Append
(Desig_Typ
, N
, Result
);
4106 Get_Attribute_Definition_Clause
4107 (Rec
, Attribute_Scalar_Storage_Order
);
4109 -- If the record type has Complex_Representation, then it is treated
4110 -- as a scalar in the back end so the storage order is irrelevant.
4112 if Has_Complex_Representation
(Rec
) then
4113 if Present
(SSO_ADC
) then
4115 ("??storage order has no effect with Complex_Representation",
4120 -- Deal with default setting of reverse storage order
4122 Set_SSO_From_Default
(Rec
);
4124 -- Check consistent attribute setting on component types
4127 Comp_ADC_Present
: Boolean;
4129 Comp
:= First_Component
(Rec
);
4130 while Present
(Comp
) loop
4131 Check_Component_Storage_Order
4135 Comp_ADC_Present
=> Comp_ADC_Present
);
4136 SSO_ADC_Component
:= SSO_ADC_Component
or Comp_ADC_Present
;
4137 Next_Component
(Comp
);
4141 -- Now deal with reverse storage order/bit order issues
4143 if Present
(SSO_ADC
) then
4145 -- Check compatibility of Scalar_Storage_Order with Bit_Order,
4146 -- if the former is specified.
4148 if Reverse_Bit_Order
(Rec
) /= Reverse_Storage_Order
(Rec
) then
4150 -- Note: report error on Rec, not on SSO_ADC, as ADC may
4151 -- apply to some ancestor type.
4153 Error_Msg_Sloc
:= Sloc
(SSO_ADC
);
4155 ("scalar storage order for& specified# inconsistent with "
4156 & "bit order", Rec
);
4159 -- Warn if there is a Scalar_Storage_Order attribute definition
4160 -- clause but no component clause, no component that itself has
4161 -- such an attribute definition, and no pragma Pack.
4163 if not (Placed_Component
4170 ("??scalar storage order specified but no component "
4171 & "clause", SSO_ADC
);
4176 -- Deal with Bit_Order aspect
4178 ADC
:= Get_Attribute_Definition_Clause
(Rec
, Attribute_Bit_Order
);
4180 if Present
(ADC
) and then Base_Type
(Rec
) = Rec
then
4181 if not (Placed_Component
4182 or else Present
(SSO_ADC
)
4183 or else Is_Packed
(Rec
))
4185 -- Warn if clause has no effect when no component clause is
4186 -- present, but suppress warning if the Bit_Order is required
4187 -- due to the presence of a Scalar_Storage_Order attribute.
4190 ("??bit order specification has no effect", ADC
);
4192 ("\??since no component clauses were specified", ADC
);
4194 -- Here is where we do the processing to adjust component clauses
4195 -- for reversed bit order, when not using reverse SSO.
4197 elsif Reverse_Bit_Order
(Rec
)
4198 and then not Reverse_Storage_Order
(Rec
)
4200 Adjust_Record_For_Reverse_Bit_Order
(Rec
);
4202 -- Case where we have both an explicit Bit_Order and the same
4203 -- Scalar_Storage_Order: leave record untouched, the back-end
4204 -- will take care of required layout conversions.
4212 -- Complete error checking on record representation clause (e.g.
4213 -- overlap of components). This is called after adjusting the
4214 -- record for reverse bit order.
4217 RRC
: constant Node_Id
:= Get_Record_Representation_Clause
(Rec
);
4219 if Present
(RRC
) then
4220 Check_Record_Representation_Clause
(RRC
);
4224 -- Set OK_To_Reorder_Components depending on debug flags
4226 if Is_Base_Type
(Rec
) and then Convention
(Rec
) = Convention_Ada
then
4227 if (Has_Discriminants
(Rec
) and then Debug_Flag_Dot_V
)
4229 (not Has_Discriminants
(Rec
) and then Debug_Flag_Dot_R
)
4231 Set_OK_To_Reorder_Components
(Rec
);
4235 -- Check for useless pragma Pack when all components placed. We only
4236 -- do this check for record types, not subtypes, since a subtype may
4237 -- have all its components placed, and it still makes perfectly good
4238 -- sense to pack other subtypes or the parent type. We do not give
4239 -- this warning if Optimize_Alignment is set to Space, since the
4240 -- pragma Pack does have an effect in this case (it always resets
4241 -- the alignment to one).
4243 if Ekind
(Rec
) = E_Record_Type
4244 and then Is_Packed
(Rec
)
4245 and then not Unplaced_Component
4246 and then Optimize_Alignment
/= 'S'
4248 -- Reset packed status. Probably not necessary, but we do it so
4249 -- that there is no chance of the back end doing something strange
4250 -- with this redundant indication of packing.
4252 Set_Is_Packed
(Rec
, False);
4254 -- Give warning if redundant constructs warnings on
4256 if Warn_On_Redundant_Constructs
then
4257 Error_Msg_N
-- CODEFIX
4258 ("??pragma Pack has no effect, no unplaced components",
4259 Get_Rep_Pragma
(Rec
, Name_Pack
));
4263 -- If this is the record corresponding to a remote type, freeze the
4264 -- remote type here since that is what we are semantically freezing.
4265 -- This prevents the freeze node for that type in an inner scope.
4267 if Ekind
(Rec
) = E_Record_Type
then
4268 if Present
(Corresponding_Remote_Type
(Rec
)) then
4269 Freeze_And_Append
(Corresponding_Remote_Type
(Rec
), N
, Result
);
4272 -- Check for controlled components, unchecked unions, and type
4275 Comp
:= First_Component
(Rec
);
4276 while Present
(Comp
) loop
4278 -- Do not set Has_Controlled_Component on a class-wide
4279 -- equivalent type. See Make_CW_Equivalent_Type.
4281 if not Is_Class_Wide_Equivalent_Type
(Rec
)
4283 (Has_Controlled_Component
(Etype
(Comp
))
4285 (Chars
(Comp
) /= Name_uParent
4286 and then Is_Controlled_Active
(Etype
(Comp
)))
4288 (Is_Protected_Type
(Etype
(Comp
))
4290 Present
(Corresponding_Record_Type
(Etype
(Comp
)))
4292 Has_Controlled_Component
4293 (Corresponding_Record_Type
(Etype
(Comp
)))))
4295 Set_Has_Controlled_Component
(Rec
);
4298 if Has_Unchecked_Union
(Etype
(Comp
)) then
4299 Set_Has_Unchecked_Union
(Rec
);
4302 -- The record type requires its own invariant procedure in
4303 -- order to verify the invariant of each individual component.
4304 -- Do not consider internal components such as _parent because
4305 -- parent class-wide invariants are always inherited.
4307 if Comes_From_Source
(Comp
)
4309 (Has_Invariants
(Etype
(Comp
))
4311 (Is_Access_Type
(Etype
(Comp
))
4312 and then Has_Invariants
4313 (Designated_Type
(Etype
(Comp
)))))
4315 Set_Has_Own_Invariants
(Rec
);
4318 -- Scan component declaration for likely misuses of current
4319 -- instance, either in a constraint or a default expression.
4321 if Has_Per_Object_Constraint
(Comp
) then
4322 Check_Current_Instance
(Parent
(Comp
));
4325 Next_Component
(Comp
);
4329 -- Enforce the restriction that access attributes with a current
4330 -- instance prefix can only apply to limited types. This comment
4331 -- is floating here, but does not seem to belong here???
4333 -- Set component alignment if not otherwise already set
4335 Set_Component_Alignment_If_Not_Set
(Rec
);
4337 -- For first subtypes, check if there are any fixed-point fields with
4338 -- component clauses, where we must check the size. This is not done
4339 -- till the freeze point since for fixed-point types, we do not know
4340 -- the size until the type is frozen. Similar processing applies to
4341 -- bit-packed arrays.
4343 if Is_First_Subtype
(Rec
) then
4344 Comp
:= First_Component
(Rec
);
4345 while Present
(Comp
) loop
4346 if Present
(Component_Clause
(Comp
))
4347 and then (Is_Fixed_Point_Type
(Etype
(Comp
))
4348 or else Is_Bit_Packed_Array
(Etype
(Comp
)))
4351 (Component_Name
(Component_Clause
(Comp
)),
4357 Next_Component
(Comp
);
4361 -- Generate warning for applying C or C++ convention to a record
4362 -- with discriminants. This is suppressed for the unchecked union
4363 -- case, since the whole point in this case is interface C. We also
4364 -- do not generate this within instantiations, since we will have
4365 -- generated a message on the template.
4367 if Has_Discriminants
(E
)
4368 and then not Is_Unchecked_Union
(E
)
4369 and then (Convention
(E
) = Convention_C
4371 Convention
(E
) = Convention_CPP
)
4372 and then Comes_From_Source
(E
)
4373 and then not In_Instance
4374 and then not Has_Warnings_Off
(E
)
4375 and then not Has_Warnings_Off
(Base_Type
(E
))
4378 Cprag
: constant Node_Id
:= Get_Rep_Pragma
(E
, Name_Convention
);
4382 if Present
(Cprag
) then
4383 A2
:= Next
(First
(Pragma_Argument_Associations
(Cprag
)));
4385 if Convention
(E
) = Convention_C
then
4387 ("?x?variant record has no direct equivalent in C",
4391 ("?x?variant record has no direct equivalent in C++",
4396 ("\?x?use of convention for type& is dubious", A2
, E
);
4401 -- See if Size is too small as is (and implicit packing might help)
4403 if not Is_Packed
(Rec
)
4405 -- No implicit packing if even one component is explicitly placed
4407 and then not Placed_Component
4409 -- Or even one component is aliased
4411 and then not Aliased_Component
4413 -- Must have size clause and all sized components
4415 and then Has_Size_Clause
(Rec
)
4416 and then All_Sized_Components
4418 -- Do not try implicit packing on records with discriminants, too
4419 -- complicated, especially in the variant record case.
4421 and then not Has_Discriminants
(Rec
)
4423 -- We want to implicitly pack if the specified size of the record
4424 -- is less than the sum of the object sizes (no point in packing
4425 -- if this is not the case), if we can compute it, i.e. if we have
4426 -- only elementary components. Otherwise, we have at least one
4427 -- composite component and we want to implicitly pack only if bit
4428 -- packing is required for it, as we are sure in this case that
4429 -- the back end cannot do the expected layout without packing.
4432 ((All_Elem_Components
4433 and then RM_Size
(Rec
) < Elem_Component_Total_Esize
)
4435 (not All_Elem_Components
4436 and then not All_Storage_Unit_Components
))
4438 -- And the total RM size cannot be greater than the specified size
4439 -- since otherwise packing will not get us where we have to be.
4441 and then RM_Size
(Rec
) >= Sized_Component_Total_RM_Size
4443 -- Never do implicit packing in CodePeer or SPARK modes since
4444 -- we don't do any packing in these modes, since this generates
4445 -- over-complex code that confuses static analysis, and in
4446 -- general, neither CodePeer not GNATprove care about the
4447 -- internal representation of objects.
4449 and then not (CodePeer_Mode
or GNATprove_Mode
)
4451 -- If implicit packing enabled, do it
4453 if Implicit_Packing
then
4454 Set_Is_Packed
(Rec
);
4456 -- Otherwise flag the size clause
4460 Sz
: constant Node_Id
:= Size_Clause
(Rec
);
4462 Error_Msg_NE
-- CODEFIX
4463 ("size given for& too small", Sz
, Rec
);
4464 Error_Msg_N
-- CODEFIX
4465 ("\use explicit pragma Pack "
4466 & "or use pragma Implicit_Packing", Sz
);
4471 -- The following checks are relevant only when SPARK_Mode is on as
4472 -- they are not standard Ada legality rules.
4474 if SPARK_Mode
= On
then
4475 if Is_Effectively_Volatile
(Rec
) then
4477 -- A discriminated type cannot be effectively volatile
4478 -- (SPARK RM C.6(4)).
4480 if Has_Discriminants
(Rec
) then
4481 Error_Msg_N
("discriminated type & cannot be volatile", Rec
);
4483 -- A tagged type cannot be effectively volatile
4484 -- (SPARK RM C.6(5)).
4486 elsif Is_Tagged_Type
(Rec
) then
4487 Error_Msg_N
("tagged type & cannot be volatile", Rec
);
4490 -- A non-effectively volatile record type cannot contain
4491 -- effectively volatile components (SPARK RM C.6(2)).
4494 Comp
:= First_Component
(Rec
);
4495 while Present
(Comp
) loop
4496 if Comes_From_Source
(Comp
)
4497 and then Is_Effectively_Volatile
(Etype
(Comp
))
4499 Error_Msg_Name_1
:= Chars
(Rec
);
4501 ("component & of non-volatile type % cannot be "
4502 & "volatile", Comp
);
4505 Next_Component
(Comp
);
4509 -- A type which does not yield a synchronized object cannot have
4510 -- a component that yields a synchronized object (SPARK RM 9.5).
4512 if not Yields_Synchronized_Object
(Rec
) then
4513 Comp
:= First_Component
(Rec
);
4514 while Present
(Comp
) loop
4515 if Comes_From_Source
(Comp
)
4516 and then Yields_Synchronized_Object
(Etype
(Comp
))
4518 Error_Msg_Name_1
:= Chars
(Rec
);
4520 ("component & of non-synchronized type % cannot be "
4521 & "synchronized", Comp
);
4524 Next_Component
(Comp
);
4528 -- A Ghost type cannot have a component of protected or task type
4529 -- (SPARK RM 6.9(19)).
4531 if Is_Ghost_Entity
(Rec
) then
4532 Comp
:= First_Component
(Rec
);
4533 while Present
(Comp
) loop
4534 if Comes_From_Source
(Comp
)
4535 and then Is_Concurrent_Type
(Etype
(Comp
))
4537 Error_Msg_Name_1
:= Chars
(Rec
);
4539 ("component & of ghost type % cannot be concurrent",
4543 Next_Component
(Comp
);
4548 -- Make sure that if we have an iterator aspect, then we have
4549 -- either Constant_Indexing or Variable_Indexing.
4552 Iterator_Aspect
: Node_Id
;
4555 Iterator_Aspect
:= Find_Aspect
(Rec
, Aspect_Iterator_Element
);
4557 if No
(Iterator_Aspect
) then
4558 Iterator_Aspect
:= Find_Aspect
(Rec
, Aspect_Default_Iterator
);
4561 if Present
(Iterator_Aspect
) then
4562 if Has_Aspect
(Rec
, Aspect_Constant_Indexing
)
4564 Has_Aspect
(Rec
, Aspect_Variable_Indexing
)
4569 ("Iterator_Element requires indexing aspect",
4575 -- All done if not a full record definition
4577 if Ekind
(Rec
) /= E_Record_Type
then
4581 -- Finally we need to check the variant part to make sure that
4582 -- all types within choices are properly frozen as part of the
4583 -- freezing of the record type.
4585 Check_Variant_Part
: declare
4586 D
: constant Node_Id
:= Declaration_Node
(Rec
);
4591 -- Find component list
4595 if Nkind
(D
) = N_Full_Type_Declaration
then
4596 T
:= Type_Definition
(D
);
4598 if Nkind
(T
) = N_Record_Definition
then
4599 C
:= Component_List
(T
);
4601 elsif Nkind
(T
) = N_Derived_Type_Definition
4602 and then Present
(Record_Extension_Part
(T
))
4604 C
:= Component_List
(Record_Extension_Part
(T
));
4608 -- Case of variant part present
4610 if Present
(C
) and then Present
(Variant_Part
(C
)) then
4611 Freeze_Choices_In_Variant_Part
(Variant_Part
(C
));
4614 -- Note: we used to call Check_Choices here, but it is too early,
4615 -- since predicated subtypes are frozen here, but their freezing
4616 -- actions are in Analyze_Freeze_Entity, which has not been called
4617 -- yet for entities frozen within this procedure, so we moved that
4618 -- call to the Analyze_Freeze_Entity for the record type.
4620 end Check_Variant_Part
;
4622 -- Check that all the primitives of an interface type are abstract
4623 -- or null procedures.
4625 if Is_Interface
(Rec
)
4626 and then not Error_Posted
(Parent
(Rec
))
4633 Elmt
:= First_Elmt
(Primitive_Operations
(Rec
));
4634 while Present
(Elmt
) loop
4635 Subp
:= Node
(Elmt
);
4637 if not Is_Abstract_Subprogram
(Subp
)
4639 -- Avoid reporting the error on inherited primitives
4641 and then Comes_From_Source
(Subp
)
4643 Error_Msg_Name_1
:= Chars
(Subp
);
4645 if Ekind
(Subp
) = E_Procedure
then
4646 if not Null_Present
(Parent
(Subp
)) then
4648 ("interface procedure % must be abstract or null",
4653 ("interface function % must be abstract",
4663 -- For a derived tagged type, check whether inherited primitives
4664 -- might require a wrapper to handle class-wide conditions.
4666 if Is_Tagged_Type
(Rec
) and then Is_Derived_Type
(Rec
) then
4667 Check_Inherited_Conditions
(Rec
);
4669 end Freeze_Record_Type
;
4671 -------------------------------
4672 -- Has_Boolean_Aspect_Import --
4673 -------------------------------
4675 function Has_Boolean_Aspect_Import
(E
: Entity_Id
) return Boolean is
4676 Decl
: constant Node_Id
:= Declaration_Node
(E
);
4681 if Has_Aspects
(Decl
) then
4682 Asp
:= First
(Aspect_Specifications
(Decl
));
4683 while Present
(Asp
) loop
4684 Expr
:= Expression
(Asp
);
4686 -- The value of aspect Import is True when the expression is
4687 -- either missing or it is explicitly set to True.
4689 if Get_Aspect_Id
(Asp
) = Aspect_Import
4691 or else (Compile_Time_Known_Value
(Expr
)
4692 and then Is_True
(Expr_Value
(Expr
))))
4702 end Has_Boolean_Aspect_Import
;
4704 ---------------------
4705 -- New_Freeze_Node --
4706 ---------------------
4708 function New_Freeze_Node
return Node_Id
is
4709 Save_Ghost_Mode
: constant Ghost_Mode_Type
:= Ghost_Mode
;
4713 -- Handle the case where an ignored Ghost subprogram freezes the type
4714 -- of one of its formals. The type can either be non-Ghost or checked
4715 -- Ghost. Since the freeze node for the type is generated in the
4716 -- context of the subprogram, the node will be incorrectly flagged as
4717 -- ignored Ghost and erroneously removed from the tree.
4720 -- procedure Ignored_Ghost_Proc (Formal : Typ) with Ghost;
4722 -- Reset the Ghost mode to "none". This preserves the freeze node.
4724 if Ghost_Mode
= Ignore
4725 and then not Is_Ignored_Ghost_Entity
(E
)
4726 and then not Is_Ignored_Ghost_Node
(E
)
4731 Result
:= New_Node
(N_Freeze_Entity
, Loc
);
4733 Ghost_Mode
:= Save_Ghost_Mode
;
4735 end New_Freeze_Node
;
4737 ------------------------------
4738 -- Wrap_Imported_Subprogram --
4739 ------------------------------
4741 -- The issue here is that our normal approach of checking preconditions
4742 -- and postconditions does not work for imported procedures, since we
4743 -- are not generating code for the body. To get around this we create
4744 -- a wrapper, as shown by the following example:
4746 -- procedure K (A : Integer);
4747 -- pragma Import (C, K);
4749 -- The spec is rewritten by removing the effects of pragma Import, but
4750 -- leaving the convention unchanged, as though the source had said:
4752 -- procedure K (A : Integer);
4753 -- pragma Convention (C, K);
4755 -- and we create a body, added to the entity K freeze actions, which
4758 -- procedure K (A : Integer) is
4759 -- procedure K (A : Integer);
4760 -- pragma Import (C, K);
4765 -- Now the contract applies in the normal way to the outer procedure,
4766 -- and the inner procedure has no contracts, so there is no problem
4767 -- in just calling it to get the original effect.
4769 -- In the case of a function, we create an appropriate return statement
4770 -- for the subprogram body that calls the inner procedure.
4772 procedure Wrap_Imported_Subprogram
(E
: Entity_Id
) is
4773 function Copy_Import_Pragma
return Node_Id
;
4774 -- Obtain a copy of the Import_Pragma which belongs to subprogram E
4776 ------------------------
4777 -- Copy_Import_Pragma --
4778 ------------------------
4780 function Copy_Import_Pragma
return Node_Id
is
4782 -- The subprogram should have an import pragma, otherwise it does
4785 Prag
: constant Node_Id
:= Import_Pragma
(E
);
4786 pragma Assert
(Present
(Prag
));
4788 -- Save all semantic fields of the pragma
4790 Save_Asp
: constant Node_Id
:= Corresponding_Aspect
(Prag
);
4791 Save_From
: constant Boolean := From_Aspect_Specification
(Prag
);
4792 Save_Prag
: constant Node_Id
:= Next_Pragma
(Prag
);
4793 Save_Rep
: constant Node_Id
:= Next_Rep_Item
(Prag
);
4798 -- Reset all semantic fields. This avoids a potential infinite
4799 -- loop when the pragma comes from an aspect as the duplication
4800 -- will copy the aspect, then copy the corresponding pragma and
4803 Set_Corresponding_Aspect
(Prag
, Empty
);
4804 Set_From_Aspect_Specification
(Prag
, False);
4805 Set_Next_Pragma
(Prag
, Empty
);
4806 Set_Next_Rep_Item
(Prag
, Empty
);
4808 Result
:= Copy_Separate_Tree
(Prag
);
4810 -- Restore the original semantic fields
4812 Set_Corresponding_Aspect
(Prag
, Save_Asp
);
4813 Set_From_Aspect_Specification
(Prag
, Save_From
);
4814 Set_Next_Pragma
(Prag
, Save_Prag
);
4815 Set_Next_Rep_Item
(Prag
, Save_Rep
);
4818 end Copy_Import_Pragma
;
4822 Loc
: constant Source_Ptr
:= Sloc
(E
);
4823 CE
: constant Name_Id
:= Chars
(E
);
4831 -- Start of processing for Wrap_Imported_Subprogram
4834 -- Nothing to do if not imported
4836 if not Is_Imported
(E
) then
4839 -- Test enabling conditions for wrapping
4841 elsif Is_Subprogram
(E
)
4842 and then Present
(Contract
(E
))
4843 and then Present
(Pre_Post_Conditions
(Contract
(E
)))
4844 and then not GNATprove_Mode
4846 -- Here we do the wrap
4848 -- Note on calls to Copy_Separate_Tree. The trees we are copying
4849 -- here are fully analyzed, but we definitely want fully syntactic
4850 -- unanalyzed trees in the body we construct, so that the analysis
4851 -- generates the right visibility, and that is exactly what the
4852 -- calls to Copy_Separate_Tree give us.
4854 Prag
:= Copy_Import_Pragma
;
4856 -- Fix up spec to be not imported any more
4858 Set_Has_Completion
(E
, False);
4859 Set_Import_Pragma
(E
, Empty
);
4860 Set_Interface_Name
(E
, Empty
);
4861 Set_Is_Imported
(E
, False);
4863 -- Grab the subprogram declaration and specification
4865 Spec
:= Declaration_Node
(E
);
4867 -- Build parameter list that we need
4870 Forml
:= First_Formal
(E
);
4871 while Present
(Forml
) loop
4872 Append_To
(Parms
, Make_Identifier
(Loc
, Chars
(Forml
)));
4873 Next_Formal
(Forml
);
4878 if Ekind_In
(E
, E_Function
, E_Generic_Function
) then
4880 Make_Simple_Return_Statement
(Loc
,
4882 Make_Function_Call
(Loc
,
4883 Name
=> Make_Identifier
(Loc
, CE
),
4884 Parameter_Associations
=> Parms
));
4888 Make_Procedure_Call_Statement
(Loc
,
4889 Name
=> Make_Identifier
(Loc
, CE
),
4890 Parameter_Associations
=> Parms
);
4893 -- Now build the body
4896 Make_Subprogram_Body
(Loc
,
4898 Copy_Separate_Tree
(Spec
),
4899 Declarations
=> New_List
(
4900 Make_Subprogram_Declaration
(Loc
,
4901 Specification
=> Copy_Separate_Tree
(Spec
)),
4903 Handled_Statement_Sequence
=>
4904 Make_Handled_Sequence_Of_Statements
(Loc
,
4905 Statements
=> New_List
(Stmt
),
4906 End_Label
=> Make_Identifier
(Loc
, CE
)));
4908 -- Append the body to freeze result
4910 Add_To_Result
(Bod
);
4913 -- Case of imported subprogram that does not get wrapped
4916 -- Set Is_Public. All imported entities need an external symbol
4917 -- created for them since they are always referenced from another
4918 -- object file. Note this used to be set when we set Is_Imported
4919 -- back in Sem_Prag, but now we delay it to this point, since we
4920 -- don't want to set this flag if we wrap an imported subprogram.
4924 end Wrap_Imported_Subprogram
;
4928 Save_Ghost_Mode
: constant Ghost_Mode_Type
:= Ghost_Mode
;
4930 -- Start of processing for Freeze_Entity
4933 -- The entity being frozen may be subject to pragma Ghost. Set the mode
4934 -- now to ensure that any nodes generated during freezing are properly
4935 -- flagged as Ghost.
4937 Set_Ghost_Mode_From_Entity
(E
);
4939 -- We are going to test for various reasons why this entity need not be
4940 -- frozen here, but in the case of an Itype that's defined within a
4941 -- record, that test actually applies to the record.
4943 if Is_Itype
(E
) and then Is_Record_Type
(Scope
(E
)) then
4944 Test_E
:= Scope
(E
);
4945 elsif Is_Itype
(E
) and then Present
(Underlying_Type
(Scope
(E
)))
4946 and then Is_Record_Type
(Underlying_Type
(Scope
(E
)))
4948 Test_E
:= Underlying_Type
(Scope
(E
));
4951 -- Do not freeze if already frozen since we only need one freeze node
4953 if Is_Frozen
(E
) then
4954 Ghost_Mode
:= Save_Ghost_Mode
;
4957 elsif Ekind
(E
) = E_Generic_Package
then
4958 Result
:= Freeze_Generic_Entities
(E
);
4960 Ghost_Mode
:= Save_Ghost_Mode
;
4963 -- It is improper to freeze an external entity within a generic because
4964 -- its freeze node will appear in a non-valid context. The entity will
4965 -- be frozen in the proper scope after the current generic is analyzed.
4966 -- However, aspects must be analyzed because they may be queried later
4967 -- within the generic itself, and the corresponding pragma or attribute
4968 -- definition has not been analyzed yet.
4970 elsif Inside_A_Generic
and then External_Ref_In_Generic
(Test_E
) then
4971 if Has_Delayed_Aspects
(E
) then
4972 Analyze_Aspects_At_Freeze_Point
(E
);
4975 Ghost_Mode
:= Save_Ghost_Mode
;
4978 -- AI05-0213: A formal incomplete type does not freeze the actual. In
4979 -- the instance, the same applies to the subtype renaming the actual.
4981 elsif Is_Private_Type
(E
)
4982 and then Is_Generic_Actual_Type
(E
)
4983 and then No
(Full_View
(Base_Type
(E
)))
4984 and then Ada_Version
>= Ada_2012
4986 Ghost_Mode
:= Save_Ghost_Mode
;
4989 -- Formal subprograms are never frozen
4991 elsif Is_Formal_Subprogram
(E
) then
4992 Ghost_Mode
:= Save_Ghost_Mode
;
4995 -- Generic types are never frozen as they lack delayed semantic checks
4997 elsif Is_Generic_Type
(E
) then
4998 Ghost_Mode
:= Save_Ghost_Mode
;
5001 -- Do not freeze a global entity within an inner scope created during
5002 -- expansion. A call to subprogram E within some internal procedure
5003 -- (a stream attribute for example) might require freezing E, but the
5004 -- freeze node must appear in the same declarative part as E itself.
5005 -- The two-pass elaboration mechanism in gigi guarantees that E will
5006 -- be frozen before the inner call is elaborated. We exclude constants
5007 -- from this test, because deferred constants may be frozen early, and
5008 -- must be diagnosed (e.g. in the case of a deferred constant being used
5009 -- in a default expression). If the enclosing subprogram comes from
5010 -- source, or is a generic instance, then the freeze point is the one
5011 -- mandated by the language, and we freeze the entity. A subprogram that
5012 -- is a child unit body that acts as a spec does not have a spec that
5013 -- comes from source, but can only come from source.
5015 elsif In_Open_Scopes
(Scope
(Test_E
))
5016 and then Scope
(Test_E
) /= Current_Scope
5017 and then Ekind
(Test_E
) /= E_Constant
5024 while Present
(S
) loop
5025 if Is_Overloadable
(S
) then
5026 if Comes_From_Source
(S
)
5027 or else Is_Generic_Instance
(S
)
5028 or else Is_Child_Unit
(S
)
5032 Ghost_Mode
:= Save_Ghost_Mode
;
5041 -- Similarly, an inlined instance body may make reference to global
5042 -- entities, but these references cannot be the proper freezing point
5043 -- for them, and in the absence of inlining freezing will take place in
5044 -- their own scope. Normally instance bodies are analyzed after the
5045 -- enclosing compilation, and everything has been frozen at the proper
5046 -- place, but with front-end inlining an instance body is compiled
5047 -- before the end of the enclosing scope, and as a result out-of-order
5048 -- freezing must be prevented.
5050 elsif Front_End_Inlining
5051 and then In_Instance_Body
5052 and then Present
(Scope
(Test_E
))
5058 S
:= Scope
(Test_E
);
5059 while Present
(S
) loop
5060 if Is_Generic_Instance
(S
) then
5068 Ghost_Mode
:= Save_Ghost_Mode
;
5074 -- Add checks to detect proper initialization of scalars that may appear
5075 -- as subprogram parameters.
5077 if Is_Subprogram
(E
) and then Check_Validity_Of_Parameters
then
5078 Apply_Parameter_Validity_Checks
(E
);
5081 -- Deal with delayed aspect specifications. The analysis of the aspect
5082 -- is required to be delayed to the freeze point, thus we analyze the
5083 -- pragma or attribute definition clause in the tree at this point. We
5084 -- also analyze the aspect specification node at the freeze point when
5085 -- the aspect doesn't correspond to pragma/attribute definition clause.
5087 if Has_Delayed_Aspects
(E
) then
5088 Analyze_Aspects_At_Freeze_Point
(E
);
5091 -- Here to freeze the entity
5095 -- Case of entity being frozen is other than a type
5097 if not Is_Type
(E
) then
5099 -- If entity is exported or imported and does not have an external
5100 -- name, now is the time to provide the appropriate default name.
5101 -- Skip this if the entity is stubbed, since we don't need a name
5102 -- for any stubbed routine. For the case on intrinsics, if no
5103 -- external name is specified, then calls will be handled in
5104 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
5105 -- external name is provided, then Expand_Intrinsic_Call leaves
5106 -- calls in place for expansion by GIGI.
5108 if (Is_Imported
(E
) or else Is_Exported
(E
))
5109 and then No
(Interface_Name
(E
))
5110 and then Convention
(E
) /= Convention_Stubbed
5111 and then Convention
(E
) /= Convention_Intrinsic
5113 Set_Encoded_Interface_Name
5114 (E
, Get_Default_External_Name
(E
));
5116 -- If entity is an atomic object appearing in a declaration and
5117 -- the expression is an aggregate, assign it to a temporary to
5118 -- ensure that the actual assignment is done atomically rather
5119 -- than component-wise (the assignment to the temp may be done
5120 -- component-wise, but that is harmless).
5122 elsif Is_Atomic_Or_VFA
(E
)
5123 and then Nkind
(Parent
(E
)) = N_Object_Declaration
5124 and then Present
(Expression
(Parent
(E
)))
5125 and then Nkind
(Expression
(Parent
(E
))) = N_Aggregate
5126 and then Is_Atomic_VFA_Aggregate
(Expression
(Parent
(E
)))
5133 if Is_Subprogram
(E
) then
5135 -- Check for needing to wrap imported subprogram
5137 Wrap_Imported_Subprogram
(E
);
5139 -- Freeze all parameter types and the return type (RM 13.14(14)).
5140 -- However skip this for internal subprograms. This is also where
5141 -- any extra formal parameters are created since we now know
5142 -- whether the subprogram will use a foreign convention.
5144 -- In Ada 2012, freezing a subprogram does not always freeze the
5145 -- corresponding profile (see AI05-019). An attribute reference
5146 -- is not a freezing point of the profile. Flag Do_Freeze_Profile
5147 -- indicates whether the profile should be frozen now.
5148 -- Other constructs that should not freeze ???
5150 -- This processing doesn't apply to internal entities (see below)
5152 if not Is_Internal
(E
) and then Do_Freeze_Profile
then
5153 if not Freeze_Profile
(E
) then
5154 Ghost_Mode
:= Save_Ghost_Mode
;
5159 -- Must freeze its parent first if it is a derived subprogram
5161 if Present
(Alias
(E
)) then
5162 Freeze_And_Append
(Alias
(E
), N
, Result
);
5165 -- We don't freeze internal subprograms, because we don't normally
5166 -- want addition of extra formals or mechanism setting to happen
5167 -- for those. However we do pass through predefined dispatching
5168 -- cases, since extra formals may be needed in some cases, such as
5169 -- for the stream 'Input function (build-in-place formals).
5171 if not Is_Internal
(E
)
5172 or else Is_Predefined_Dispatching_Operation
(E
)
5174 Freeze_Subprogram
(E
);
5177 -- If warning on suspicious contracts then check for the case of
5178 -- a postcondition other than False for a No_Return subprogram.
5181 and then Warn_On_Suspicious_Contract
5182 and then Present
(Contract
(E
))
5185 Prag
: Node_Id
:= Pre_Post_Conditions
(Contract
(E
));
5189 while Present
(Prag
) loop
5190 if Nam_In
(Pragma_Name
(Prag
), Name_Post
,
5196 (First
(Pragma_Argument_Associations
(Prag
)));
5198 if Nkind
(Exp
) /= N_Identifier
5199 or else Chars
(Exp
) /= Name_False
5202 ("useless postcondition, & is marked "
5203 & "No_Return?T?", Exp
, E
);
5207 Prag
:= Next_Pragma
(Prag
);
5212 -- Here for other than a subprogram or type
5215 -- If entity has a type, and it is not a generic unit, then
5216 -- freeze it first (RM 13.14(10)).
5218 if Present
(Etype
(E
))
5219 and then Ekind
(E
) /= E_Generic_Function
5221 Freeze_And_Append
(Etype
(E
), N
, Result
);
5223 -- For an object of an anonymous array type, aspects on the
5224 -- object declaration apply to the type itself. This is the
5225 -- case for Atomic_Components, Volatile_Components, and
5226 -- Independent_Components. In these cases analysis of the
5227 -- generated pragma will mark the anonymous types accordingly,
5228 -- and the object itself does not require a freeze node.
5230 if Ekind
(E
) = E_Variable
5231 and then Is_Itype
(Etype
(E
))
5232 and then Is_Array_Type
(Etype
(E
))
5233 and then Has_Delayed_Aspects
(E
)
5235 Set_Has_Delayed_Aspects
(E
, False);
5236 Set_Has_Delayed_Freeze
(E
, False);
5237 Set_Freeze_Node
(E
, Empty
);
5241 -- Special processing for objects created by object declaration
5243 if Nkind
(Declaration_Node
(E
)) = N_Object_Declaration
then
5244 Freeze_Object_Declaration
(E
);
5247 -- Check that a constant which has a pragma Volatile[_Components]
5248 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
5250 -- Note: Atomic[_Components] also sets Volatile[_Components]
5252 if Ekind
(E
) = E_Constant
5253 and then (Has_Volatile_Components
(E
) or else Is_Volatile
(E
))
5254 and then not Is_Imported
(E
)
5255 and then not Has_Boolean_Aspect_Import
(E
)
5257 -- Make sure we actually have a pragma, and have not merely
5258 -- inherited the indication from elsewhere (e.g. an address
5259 -- clause, which is not good enough in RM terms).
5261 if Has_Rep_Pragma
(E
, Name_Atomic
)
5263 Has_Rep_Pragma
(E
, Name_Atomic_Components
)
5266 ("stand alone atomic constant must be " &
5267 "imported (RM C.6(13))", E
);
5269 elsif Has_Rep_Pragma
(E
, Name_Volatile
)
5271 Has_Rep_Pragma
(E
, Name_Volatile_Components
)
5274 ("stand alone volatile constant must be " &
5275 "imported (RM C.6(13))", E
);
5279 -- Static objects require special handling
5281 if (Ekind
(E
) = E_Constant
or else Ekind
(E
) = E_Variable
)
5282 and then Is_Statically_Allocated
(E
)
5284 Freeze_Static_Object
(E
);
5287 -- Remaining step is to layout objects
5289 if Ekind_In
(E
, E_Variable
, E_Constant
, E_Loop_Parameter
)
5290 or else Is_Formal
(E
)
5295 -- For an object that does not have delayed freezing, and whose
5296 -- initialization actions have been captured in a compound
5297 -- statement, move them back now directly within the enclosing
5298 -- statement sequence.
5300 if Ekind_In
(E
, E_Constant
, E_Variable
)
5301 and then not Has_Delayed_Freeze
(E
)
5303 Explode_Initialization_Compound_Statement
(E
);
5307 -- Case of a type or subtype being frozen
5310 -- We used to check here that a full type must have preelaborable
5311 -- initialization if it completes a private type specified with
5312 -- pragma Preelaborable_Initialization, but that missed cases where
5313 -- the types occur within a generic package, since the freezing
5314 -- that occurs within a containing scope generally skips traversal
5315 -- of a generic unit's declarations (those will be frozen within
5316 -- instances). This check was moved to Analyze_Package_Specification.
5318 -- The type may be defined in a generic unit. This can occur when
5319 -- freezing a generic function that returns the type (which is
5320 -- defined in a parent unit). It is clearly meaningless to freeze
5321 -- this type. However, if it is a subtype, its size may be determi-
5322 -- nable and used in subsequent checks, so might as well try to
5325 -- In Ada 2012, Freeze_Entities is also used in the front end to
5326 -- trigger the analysis of aspect expressions, so in this case we
5327 -- want to continue the freezing process.
5329 if Present
(Scope
(E
))
5330 and then Is_Generic_Unit
(Scope
(E
))
5332 (not Has_Predicates
(E
)
5333 and then not Has_Delayed_Freeze
(E
))
5335 Check_Compile_Time_Size
(E
);
5336 Ghost_Mode
:= Save_Ghost_Mode
;
5340 -- Check for error of Type_Invariant'Class applied to an untagged
5341 -- type (check delayed to freeze time when full type is available).
5344 Prag
: constant Node_Id
:= Get_Pragma
(E
, Pragma_Invariant
);
5347 and then Class_Present
(Prag
)
5348 and then not Is_Tagged_Type
(E
)
5351 ("Type_Invariant''Class cannot be specified for &", Prag
, E
);
5353 ("\can only be specified for a tagged type", Prag
);
5357 if Is_Ghost_Entity
(E
) then
5359 -- A Ghost type cannot be concurrent (SPARK RM 6.9(19)). Verify
5360 -- this legality rule first to five a finer-grained diagnostic.
5362 if Is_Concurrent_Type
(E
) then
5363 Error_Msg_N
("ghost type & cannot be concurrent", E
);
5365 -- A Ghost type cannot be effectively volatile (SPARK RM 6.9(7))
5367 elsif Is_Effectively_Volatile
(E
) then
5368 Error_Msg_N
("ghost type & cannot be volatile", E
);
5372 -- Deal with special cases of freezing for subtype
5374 if E
/= Base_Type
(E
) then
5376 -- Before we do anything else, a specific test for the case of a
5377 -- size given for an array where the array would need to be packed
5378 -- in order for the size to be honored, but is not. This is the
5379 -- case where implicit packing may apply. The reason we do this so
5380 -- early is that, if we have implicit packing, the layout of the
5381 -- base type is affected, so we must do this before we freeze the
5384 -- We could do this processing only if implicit packing is enabled
5385 -- since in all other cases, the error would be caught by the back
5386 -- end. However, we choose to do the check even if we do not have
5387 -- implicit packing enabled, since this allows us to give a more
5388 -- useful error message (advising use of pragma Implicit_Packing
5391 if Is_Array_Type
(E
) then
5393 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
5394 Rsiz
: constant Uint
:= RM_Size
(Ctyp
);
5395 SZ
: constant Node_Id
:= Size_Clause
(E
);
5396 Btyp
: constant Entity_Id
:= Base_Type
(E
);
5403 Num_Elmts
: Uint
:= Uint_1
;
5404 -- Number of elements in array
5407 -- Check enabling conditions. These are straightforward
5408 -- except for the test for a limited composite type. This
5409 -- eliminates the rare case of a array of limited components
5410 -- where there are issues of whether or not we can go ahead
5411 -- and pack the array (since we can't freely pack and unpack
5412 -- arrays if they are limited).
5414 -- Note that we check the root type explicitly because the
5415 -- whole point is we are doing this test before we have had
5416 -- a chance to freeze the base type (and it is that freeze
5417 -- action that causes stuff to be inherited).
5419 -- The conditions on the size are identical to those used in
5420 -- Freeze_Array_Type to set the Is_Packed flag.
5422 if Has_Size_Clause
(E
)
5423 and then Known_Static_RM_Size
(E
)
5424 and then not Is_Packed
(E
)
5425 and then not Has_Pragma_Pack
(E
)
5426 and then not Has_Component_Size_Clause
(E
)
5427 and then Known_Static_RM_Size
(Ctyp
)
5429 and then not (Addressable
(Rsiz
)
5430 and then Known_Static_Esize
(Ctyp
)
5431 and then Esize
(Ctyp
) = Rsiz
)
5432 and then not (Rsiz
mod System_Storage_Unit
= 0
5433 and then Is_Composite_Type
(Ctyp
))
5434 and then not Is_Limited_Composite
(E
)
5435 and then not Is_Packed
(Root_Type
(E
))
5436 and then not Has_Component_Size_Clause
(Root_Type
(E
))
5437 and then not (CodePeer_Mode
or GNATprove_Mode
)
5439 -- Compute number of elements in array
5441 Indx
:= First_Index
(E
);
5442 while Present
(Indx
) loop
5443 Get_Index_Bounds
(Indx
, Lo
, Hi
);
5445 if not (Compile_Time_Known_Value
(Lo
)
5447 Compile_Time_Known_Value
(Hi
))
5449 goto No_Implicit_Packing
;
5452 Dim
:= Expr_Value
(Hi
) - Expr_Value
(Lo
) + 1;
5455 Num_Elmts
:= Num_Elmts
* Dim
;
5457 Num_Elmts
:= Uint_0
;
5463 -- What we are looking for here is the situation where
5464 -- the RM_Size given would be exactly right if there was
5465 -- a pragma Pack, resulting in the component size being
5466 -- the RM_Size of the component type.
5468 if RM_Size
(E
) = Num_Elmts
* Rsiz
then
5470 -- For implicit packing mode, just set the component
5471 -- size and Freeze_Array_Type will do the rest.
5473 if Implicit_Packing
then
5474 Set_Component_Size
(Btyp
, Rsiz
);
5476 -- Otherwise give an error message
5480 ("size given for& too small", SZ
, E
);
5481 Error_Msg_N
-- CODEFIX
5482 ("\use explicit pragma Pack or use pragma "
5483 & "Implicit_Packing", SZ
);
5490 <<No_Implicit_Packing
>>
5492 -- If ancestor subtype present, freeze that first. Note that this
5493 -- will also get the base type frozen. Need RM reference ???
5495 Atype
:= Ancestor_Subtype
(E
);
5497 if Present
(Atype
) then
5498 Freeze_And_Append
(Atype
, N
, Result
);
5500 -- No ancestor subtype present
5503 -- See if we have a nearest ancestor that has a predicate.
5504 -- That catches the case of derived type with a predicate.
5505 -- Need RM reference here ???
5507 Atype
:= Nearest_Ancestor
(E
);
5509 if Present
(Atype
) and then Has_Predicates
(Atype
) then
5510 Freeze_And_Append
(Atype
, N
, Result
);
5513 -- Freeze base type before freezing the entity (RM 13.14(15))
5515 if E
/= Base_Type
(E
) then
5516 Freeze_And_Append
(Base_Type
(E
), N
, Result
);
5520 -- A subtype inherits all the type-related representation aspects
5521 -- from its parents (RM 13.1(8)).
5523 Inherit_Aspects_At_Freeze_Point
(E
);
5525 -- For a derived type, freeze its parent type first (RM 13.14(15))
5527 elsif Is_Derived_Type
(E
) then
5528 Freeze_And_Append
(Etype
(E
), N
, Result
);
5529 Freeze_And_Append
(First_Subtype
(Etype
(E
)), N
, Result
);
5531 -- A derived type inherits each type-related representation aspect
5532 -- of its parent type that was directly specified before the
5533 -- declaration of the derived type (RM 13.1(15)).
5535 Inherit_Aspects_At_Freeze_Point
(E
);
5538 -- Check for incompatible size and alignment for record type
5540 if Warn_On_Size_Alignment
5541 and then Is_Record_Type
(E
)
5542 and then Has_Size_Clause
(E
) and then Has_Alignment_Clause
(E
)
5544 -- If explicit Object_Size clause given assume that the programmer
5545 -- knows what he is doing, and expects the compiler behavior.
5547 and then not Has_Object_Size_Clause
(E
)
5549 -- Check for size not a multiple of alignment
5551 and then RM_Size
(E
) mod (Alignment
(E
) * System_Storage_Unit
) /= 0
5554 SC
: constant Node_Id
:= Size_Clause
(E
);
5555 AC
: constant Node_Id
:= Alignment_Clause
(E
);
5557 Abits
: constant Uint
:= Alignment
(E
) * System_Storage_Unit
;
5560 if Present
(SC
) and then Present
(AC
) then
5564 if Sloc
(SC
) > Sloc
(AC
) then
5567 ("?Z?size is not a multiple of alignment for &",
5569 Error_Msg_Sloc
:= Sloc
(AC
);
5570 Error_Msg_Uint_1
:= Alignment
(E
);
5571 Error_Msg_N
("\?Z?alignment of ^ specified #", Loc
);
5576 ("?Z?size is not a multiple of alignment for &",
5578 Error_Msg_Sloc
:= Sloc
(SC
);
5579 Error_Msg_Uint_1
:= RM_Size
(E
);
5580 Error_Msg_N
("\?Z?size of ^ specified #", Loc
);
5583 Error_Msg_Uint_1
:= ((RM_Size
(E
) / Abits
) + 1) * Abits
;
5584 Error_Msg_N
("\?Z?Object_Size will be increased to ^", Loc
);
5591 if Is_Array_Type
(E
) then
5592 Freeze_Array_Type
(E
);
5594 -- For a class-wide type, the corresponding specific type is
5595 -- frozen as well (RM 13.14(15))
5597 elsif Is_Class_Wide_Type
(E
) then
5598 Freeze_And_Append
(Root_Type
(E
), N
, Result
);
5600 -- If the base type of the class-wide type is still incomplete,
5601 -- the class-wide remains unfrozen as well. This is legal when
5602 -- E is the formal of a primitive operation of some other type
5603 -- which is being frozen.
5605 if not Is_Frozen
(Root_Type
(E
)) then
5606 Set_Is_Frozen
(E
, False);
5607 Ghost_Mode
:= Save_Ghost_Mode
;
5611 -- The equivalent type associated with a class-wide subtype needs
5612 -- to be frozen to ensure that its layout is done.
5614 if Ekind
(E
) = E_Class_Wide_Subtype
5615 and then Present
(Equivalent_Type
(E
))
5617 Freeze_And_Append
(Equivalent_Type
(E
), N
, Result
);
5620 -- Generate an itype reference for a library-level class-wide type
5621 -- at the freeze point. Otherwise the first explicit reference to
5622 -- the type may appear in an inner scope which will be rejected by
5626 and then Is_Compilation_Unit
(Scope
(E
))
5629 Ref
: constant Node_Id
:= Make_Itype_Reference
(Loc
);
5634 -- From a gigi point of view, a class-wide subtype derives
5635 -- from its record equivalent type. As a result, the itype
5636 -- reference must appear after the freeze node of the
5637 -- equivalent type or gigi will reject the reference.
5639 if Ekind
(E
) = E_Class_Wide_Subtype
5640 and then Present
(Equivalent_Type
(E
))
5642 Insert_After
(Freeze_Node
(Equivalent_Type
(E
)), Ref
);
5644 Add_To_Result
(Ref
);
5649 -- For a record type or record subtype, freeze all component types
5650 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5651 -- using Is_Record_Type, because we don't want to attempt the freeze
5652 -- for the case of a private type with record extension (we will do
5653 -- that later when the full type is frozen).
5655 elsif Ekind_In
(E
, E_Record_Type
, E_Record_Subtype
)
5656 and then not (Present
(Scope
(E
))
5657 and then Is_Generic_Unit
(Scope
(E
)))
5659 Freeze_Record_Type
(E
);
5661 -- For a concurrent type, freeze corresponding record type. This does
5662 -- not correspond to any specific rule in the RM, but the record type
5663 -- is essentially part of the concurrent type. Also freeze all local
5664 -- entities. This includes record types created for entry parameter
5665 -- blocks and whatever local entities may appear in the private part.
5667 elsif Is_Concurrent_Type
(E
) then
5668 if Present
(Corresponding_Record_Type
(E
)) then
5669 Freeze_And_Append
(Corresponding_Record_Type
(E
), N
, Result
);
5672 Comp
:= First_Entity
(E
);
5673 while Present
(Comp
) loop
5674 if Is_Type
(Comp
) then
5675 Freeze_And_Append
(Comp
, N
, Result
);
5677 elsif (Ekind
(Comp
)) /= E_Function
then
5679 -- The guard on the presence of the Etype seems to be needed
5680 -- for some CodePeer (-gnatcC) cases, but not clear why???
5682 if Present
(Etype
(Comp
)) then
5683 if Is_Itype
(Etype
(Comp
))
5684 and then Underlying_Type
(Scope
(Etype
(Comp
))) = E
5686 Undelay_Type
(Etype
(Comp
));
5689 Freeze_And_Append
(Etype
(Comp
), N
, Result
);
5696 -- Private types are required to point to the same freeze node as
5697 -- their corresponding full views. The freeze node itself has to
5698 -- point to the partial view of the entity (because from the partial
5699 -- view, we can retrieve the full view, but not the reverse).
5700 -- However, in order to freeze correctly, we need to freeze the full
5701 -- view. If we are freezing at the end of a scope (or within the
5702 -- scope) of the private type, the partial and full views will have
5703 -- been swapped, the full view appears first in the entity chain and
5704 -- the swapping mechanism ensures that the pointers are properly set
5707 -- If we encounter the partial view before the full view (e.g. when
5708 -- freezing from another scope), we freeze the full view, and then
5709 -- set the pointers appropriately since we cannot rely on swapping to
5710 -- fix things up (subtypes in an outer scope might not get swapped).
5712 -- If the full view is itself private, the above requirements apply
5713 -- to the underlying full view instead of the full view. But there is
5714 -- no swapping mechanism for the underlying full view so we need to
5715 -- set the pointers appropriately in both cases.
5717 elsif Is_Incomplete_Or_Private_Type
(E
)
5718 and then not Is_Generic_Type
(E
)
5720 -- The construction of the dispatch table associated with library
5721 -- level tagged types forces freezing of all the primitives of the
5722 -- type, which may cause premature freezing of the partial view.
5726 -- type T is tagged private;
5727 -- type DT is new T with private;
5728 -- procedure Prim (X : in out T; Y : in out DT'Class);
5730 -- type T is tagged null record;
5732 -- type DT is new T with null record;
5735 -- In this case the type will be frozen later by the usual
5736 -- mechanism: an object declaration, an instantiation, or the
5737 -- end of a declarative part.
5739 if Is_Library_Level_Tagged_Type
(E
)
5740 and then not Present
(Full_View
(E
))
5742 Set_Is_Frozen
(E
, False);
5743 Ghost_Mode
:= Save_Ghost_Mode
;
5746 -- Case of full view present
5748 elsif Present
(Full_View
(E
)) then
5750 -- If full view has already been frozen, then no further
5751 -- processing is required
5753 if Is_Frozen
(Full_View
(E
)) then
5754 Set_Has_Delayed_Freeze
(E
, False);
5755 Set_Freeze_Node
(E
, Empty
);
5757 -- Otherwise freeze full view and patch the pointers so that
5758 -- the freeze node will elaborate both views in the back end.
5759 -- However, if full view is itself private, freeze underlying
5760 -- full view instead and patch the pointers so that the freeze
5761 -- node will elaborate the three views in the back end.
5765 Full
: Entity_Id
:= Full_View
(E
);
5768 if Is_Private_Type
(Full
)
5769 and then Present
(Underlying_Full_View
(Full
))
5771 Full
:= Underlying_Full_View
(Full
);
5774 Freeze_And_Append
(Full
, N
, Result
);
5776 if Full
/= Full_View
(E
)
5777 and then Has_Delayed_Freeze
(Full_View
(E
))
5779 F_Node
:= Freeze_Node
(Full
);
5781 if Present
(F_Node
) then
5782 Set_Freeze_Node
(Full_View
(E
), F_Node
);
5783 Set_Entity
(F_Node
, Full_View
(E
));
5786 Set_Has_Delayed_Freeze
(Full_View
(E
), False);
5787 Set_Freeze_Node
(Full_View
(E
), Empty
);
5791 if Has_Delayed_Freeze
(E
) then
5792 F_Node
:= Freeze_Node
(Full_View
(E
));
5794 if Present
(F_Node
) then
5795 Set_Freeze_Node
(E
, F_Node
);
5796 Set_Entity
(F_Node
, E
);
5799 -- {Incomplete,Private}_Subtypes with Full_Views
5800 -- constrained by discriminants.
5802 Set_Has_Delayed_Freeze
(E
, False);
5803 Set_Freeze_Node
(E
, Empty
);
5809 Check_Debug_Info_Needed
(E
);
5811 -- AI-117 requires that the convention of a partial view be the
5812 -- same as the convention of the full view. Note that this is a
5813 -- recognized breach of privacy, but it's essential for logical
5814 -- consistency of representation, and the lack of a rule in
5815 -- RM95 was an oversight.
5817 Set_Convention
(E
, Convention
(Full_View
(E
)));
5819 Set_Size_Known_At_Compile_Time
(E
,
5820 Size_Known_At_Compile_Time
(Full_View
(E
)));
5822 -- Size information is copied from the full view to the
5823 -- incomplete or private view for consistency.
5825 -- We skip this is the full view is not a type. This is very
5826 -- strange of course, and can only happen as a result of
5827 -- certain illegalities, such as a premature attempt to derive
5828 -- from an incomplete type.
5830 if Is_Type
(Full_View
(E
)) then
5831 Set_Size_Info
(E
, Full_View
(E
));
5832 Set_RM_Size
(E
, RM_Size
(Full_View
(E
)));
5835 Ghost_Mode
:= Save_Ghost_Mode
;
5838 -- Case of underlying full view present
5840 elsif Is_Private_Type
(E
)
5841 and then Present
(Underlying_Full_View
(E
))
5843 if not Is_Frozen
(Underlying_Full_View
(E
)) then
5844 Freeze_And_Append
(Underlying_Full_View
(E
), N
, Result
);
5847 -- Patch the pointers so that the freeze node will elaborate
5848 -- both views in the back end.
5850 if Has_Delayed_Freeze
(E
) then
5851 F_Node
:= Freeze_Node
(Underlying_Full_View
(E
));
5853 if Present
(F_Node
) then
5854 Set_Freeze_Node
(E
, F_Node
);
5855 Set_Entity
(F_Node
, E
);
5858 Set_Has_Delayed_Freeze
(E
, False);
5859 Set_Freeze_Node
(E
, Empty
);
5863 Check_Debug_Info_Needed
(E
);
5865 Ghost_Mode
:= Save_Ghost_Mode
;
5868 -- Case of no full view present. If entity is derived or subtype,
5869 -- it is safe to freeze, correctness depends on the frozen status
5870 -- of parent. Otherwise it is either premature usage, or a Taft
5871 -- amendment type, so diagnosis is at the point of use and the
5872 -- type might be frozen later.
5874 elsif E
/= Base_Type
(E
) or else Is_Derived_Type
(E
) then
5878 Set_Is_Frozen
(E
, False);
5879 Ghost_Mode
:= Save_Ghost_Mode
;
5883 -- For access subprogram, freeze types of all formals, the return
5884 -- type was already frozen, since it is the Etype of the function.
5885 -- Formal types can be tagged Taft amendment types, but otherwise
5886 -- they cannot be incomplete.
5888 elsif Ekind
(E
) = E_Subprogram_Type
then
5889 Formal
:= First_Formal
(E
);
5890 while Present
(Formal
) loop
5891 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
5892 and then No
(Full_View
(Etype
(Formal
)))
5894 if Is_Tagged_Type
(Etype
(Formal
)) then
5897 -- AI05-151: Incomplete types are allowed in access to
5898 -- subprogram specifications.
5900 elsif Ada_Version
< Ada_2012
then
5902 ("invalid use of incomplete type&", E
, Etype
(Formal
));
5906 Freeze_And_Append
(Etype
(Formal
), N
, Result
);
5907 Next_Formal
(Formal
);
5910 Freeze_Subprogram
(E
);
5912 -- For access to a protected subprogram, freeze the equivalent type
5913 -- (however this is not set if we are not generating code or if this
5914 -- is an anonymous type used just for resolution).
5916 elsif Is_Access_Protected_Subprogram_Type
(E
) then
5917 if Present
(Equivalent_Type
(E
)) then
5918 Freeze_And_Append
(Equivalent_Type
(E
), N
, Result
);
5922 -- Generic types are never seen by the back-end, and are also not
5923 -- processed by the expander (since the expander is turned off for
5924 -- generic processing), so we never need freeze nodes for them.
5926 if Is_Generic_Type
(E
) then
5927 Ghost_Mode
:= Save_Ghost_Mode
;
5931 -- Some special processing for non-generic types to complete
5932 -- representation details not known till the freeze point.
5934 if Is_Fixed_Point_Type
(E
) then
5935 Freeze_Fixed_Point_Type
(E
);
5937 -- Some error checks required for ordinary fixed-point type. Defer
5938 -- these till the freeze-point since we need the small and range
5939 -- values. We only do these checks for base types
5941 if Is_Ordinary_Fixed_Point_Type
(E
) and then Is_Base_Type
(E
) then
5942 if Small_Value
(E
) < Ureal_2_M_80
then
5943 Error_Msg_Name_1
:= Name_Small
;
5945 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E
);
5947 elsif Small_Value
(E
) > Ureal_2_80
then
5948 Error_Msg_Name_1
:= Name_Small
;
5950 ("`&''%` too large, maximum allowed is 2.0'*'*80", E
);
5953 if Expr_Value_R
(Type_Low_Bound
(E
)) < Ureal_M_10_36
then
5954 Error_Msg_Name_1
:= Name_First
;
5956 ("`&''%` too small, minimum allowed is -10.0'*'*36", E
);
5959 if Expr_Value_R
(Type_High_Bound
(E
)) > Ureal_10_36
then
5960 Error_Msg_Name_1
:= Name_Last
;
5962 ("`&''%` too large, maximum allowed is 10.0'*'*36", E
);
5966 elsif Is_Enumeration_Type
(E
) then
5967 Freeze_Enumeration_Type
(E
);
5969 elsif Is_Integer_Type
(E
) then
5970 Adjust_Esize_For_Alignment
(E
);
5972 if Is_Modular_Integer_Type
(E
)
5973 and then Warn_On_Suspicious_Modulus_Value
5975 Check_Suspicious_Modulus
(E
);
5978 -- The pool applies to named and anonymous access types, but not
5979 -- to subprogram and to internal types generated for 'Access
5982 elsif Is_Access_Type
(E
)
5983 and then not Is_Access_Subprogram_Type
(E
)
5984 and then Ekind
(E
) /= E_Access_Attribute_Type
5986 -- If a pragma Default_Storage_Pool applies, and this type has no
5987 -- Storage_Pool or Storage_Size clause (which must have occurred
5988 -- before the freezing point), then use the default. This applies
5989 -- only to base types.
5991 -- None of this applies to access to subprograms, for which there
5992 -- are clearly no pools.
5994 if Present
(Default_Pool
)
5995 and then Is_Base_Type
(E
)
5996 and then not Has_Storage_Size_Clause
(E
)
5997 and then No
(Associated_Storage_Pool
(E
))
5999 -- Case of pragma Default_Storage_Pool (null)
6001 if Nkind
(Default_Pool
) = N_Null
then
6002 Set_No_Pool_Assigned
(E
);
6004 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
6007 Set_Associated_Storage_Pool
(E
, Entity
(Default_Pool
));
6011 -- Check restriction for standard storage pool
6013 if No
(Associated_Storage_Pool
(E
)) then
6014 Check_Restriction
(No_Standard_Storage_Pools
, E
);
6017 -- Deal with error message for pure access type. This is not an
6018 -- error in Ada 2005 if there is no pool (see AI-366).
6020 if Is_Pure_Unit_Access_Type
(E
)
6021 and then (Ada_Version
< Ada_2005
6022 or else not No_Pool_Assigned
(E
))
6023 and then not Is_Generic_Unit
(Scope
(E
))
6025 Error_Msg_N
("named access type not allowed in pure unit", E
);
6027 if Ada_Version
>= Ada_2005
then
6029 ("\would be legal if Storage_Size of 0 given??", E
);
6031 elsif No_Pool_Assigned
(E
) then
6033 ("\would be legal in Ada 2005??", E
);
6037 ("\would be legal in Ada 2005 if "
6038 & "Storage_Size of 0 given??", E
);
6043 -- Case of composite types
6045 if Is_Composite_Type
(E
) then
6047 -- AI-117 requires that all new primitives of a tagged type must
6048 -- inherit the convention of the full view of the type. Inherited
6049 -- and overriding operations are defined to inherit the convention
6050 -- of their parent or overridden subprogram (also specified in
6051 -- AI-117), which will have occurred earlier (in Derive_Subprogram
6052 -- and New_Overloaded_Entity). Here we set the convention of
6053 -- primitives that are still convention Ada, which will ensure
6054 -- that any new primitives inherit the type's convention. Class-
6055 -- wide types can have a foreign convention inherited from their
6056 -- specific type, but are excluded from this since they don't have
6057 -- any associated primitives.
6059 if Is_Tagged_Type
(E
)
6060 and then not Is_Class_Wide_Type
(E
)
6061 and then Convention
(E
) /= Convention_Ada
6064 Prim_List
: constant Elist_Id
:= Primitive_Operations
(E
);
6068 Prim
:= First_Elmt
(Prim_List
);
6069 while Present
(Prim
) loop
6070 if Convention
(Node
(Prim
)) = Convention_Ada
then
6071 Set_Convention
(Node
(Prim
), Convention
(E
));
6079 -- If the type is a simple storage pool type, then this is where
6080 -- we attempt to locate and validate its Allocate, Deallocate, and
6081 -- Storage_Size operations (the first is required, and the latter
6082 -- two are optional). We also verify that the full type for a
6083 -- private type is allowed to be a simple storage pool type.
6085 if Present
(Get_Rep_Pragma
(E
, Name_Simple_Storage_Pool_Type
))
6086 and then (Is_Base_Type
(E
) or else Has_Private_Declaration
(E
))
6088 -- If the type is marked Has_Private_Declaration, then this is
6089 -- a full type for a private type that was specified with the
6090 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
6091 -- pragma is allowed for the full type (for example, it can't
6092 -- be an array type, or a nonlimited record type).
6094 if Has_Private_Declaration
(E
) then
6095 if (not Is_Record_Type
(E
) or else not Is_Limited_View
(E
))
6096 and then not Is_Private_Type
(E
)
6098 Error_Msg_Name_1
:= Name_Simple_Storage_Pool_Type
;
6100 ("pragma% can only apply to full type that is an " &
6101 "explicitly limited type", E
);
6105 Validate_Simple_Pool_Ops
: declare
6106 Pool_Type
: Entity_Id
renames E
;
6107 Address_Type
: constant Entity_Id
:= RTE
(RE_Address
);
6108 Stg_Cnt_Type
: constant Entity_Id
:= RTE
(RE_Storage_Count
);
6110 procedure Validate_Simple_Pool_Op_Formal
6111 (Pool_Op
: Entity_Id
;
6112 Pool_Op_Formal
: in out Entity_Id
;
6113 Expected_Mode
: Formal_Kind
;
6114 Expected_Type
: Entity_Id
;
6115 Formal_Name
: String;
6116 OK_Formal
: in out Boolean);
6117 -- Validate one formal Pool_Op_Formal of the candidate pool
6118 -- operation Pool_Op. The formal must be of Expected_Type
6119 -- and have mode Expected_Mode. OK_Formal will be set to
6120 -- False if the formal doesn't match. If OK_Formal is False
6121 -- on entry, then the formal will effectively be ignored
6122 -- (because validation of the pool op has already failed).
6123 -- Upon return, Pool_Op_Formal will be updated to the next
6126 procedure Validate_Simple_Pool_Operation
6127 (Op_Name
: Name_Id
);
6128 -- Search for and validate a simple pool operation with the
6129 -- name Op_Name. If the name is Allocate, then there must be
6130 -- exactly one such primitive operation for the simple pool
6131 -- type. If the name is Deallocate or Storage_Size, then
6132 -- there can be at most one such primitive operation. The
6133 -- profile of the located primitive must conform to what
6134 -- is expected for each operation.
6136 ------------------------------------
6137 -- Validate_Simple_Pool_Op_Formal --
6138 ------------------------------------
6140 procedure Validate_Simple_Pool_Op_Formal
6141 (Pool_Op
: Entity_Id
;
6142 Pool_Op_Formal
: in out Entity_Id
;
6143 Expected_Mode
: Formal_Kind
;
6144 Expected_Type
: Entity_Id
;
6145 Formal_Name
: String;
6146 OK_Formal
: in out Boolean)
6149 -- If OK_Formal is False on entry, then simply ignore
6150 -- the formal, because an earlier formal has already
6153 if not OK_Formal
then
6156 -- If no formal is passed in, then issue an error for a
6159 elsif not Present
(Pool_Op_Formal
) then
6161 ("simple storage pool op missing formal " &
6162 Formal_Name
& " of type&", Pool_Op
, Expected_Type
);
6168 if Etype
(Pool_Op_Formal
) /= Expected_Type
then
6170 -- If the pool type was expected for this formal, then
6171 -- this will not be considered a candidate operation
6172 -- for the simple pool, so we unset OK_Formal so that
6173 -- the op and any later formals will be ignored.
6175 if Expected_Type
= Pool_Type
then
6182 ("wrong type for formal " & Formal_Name
&
6183 " of simple storage pool op; expected type&",
6184 Pool_Op_Formal
, Expected_Type
);
6188 -- Issue error if formal's mode is not the expected one
6190 if Ekind
(Pool_Op_Formal
) /= Expected_Mode
then
6192 ("wrong mode for formal of simple storage pool op",
6196 -- Advance to the next formal
6198 Next_Formal
(Pool_Op_Formal
);
6199 end Validate_Simple_Pool_Op_Formal
;
6201 ------------------------------------
6202 -- Validate_Simple_Pool_Operation --
6203 ------------------------------------
6205 procedure Validate_Simple_Pool_Operation
6209 Found_Op
: Entity_Id
:= Empty
;
6215 (Nam_In
(Op_Name
, Name_Allocate
,
6217 Name_Storage_Size
));
6219 Error_Msg_Name_1
:= Op_Name
;
6221 -- For each homonym declared immediately in the scope
6222 -- of the simple storage pool type, determine whether
6223 -- the homonym is an operation of the pool type, and,
6224 -- if so, check that its profile is as expected for
6225 -- a simple pool operation of that name.
6227 Op
:= Get_Name_Entity_Id
(Op_Name
);
6228 while Present
(Op
) loop
6229 if Ekind_In
(Op
, E_Function
, E_Procedure
)
6230 and then Scope
(Op
) = Current_Scope
6232 Formal
:= First_Entity
(Op
);
6236 -- The first parameter must be of the pool type
6237 -- in order for the operation to qualify.
6239 if Op_Name
= Name_Storage_Size
then
6240 Validate_Simple_Pool_Op_Formal
6241 (Op
, Formal
, E_In_Parameter
, Pool_Type
,
6244 Validate_Simple_Pool_Op_Formal
6245 (Op
, Formal
, E_In_Out_Parameter
, Pool_Type
,
6249 -- If another operation with this name has already
6250 -- been located for the type, then flag an error,
6251 -- since we only allow the type to have a single
6254 if Present
(Found_Op
) and then Is_OK
then
6256 ("only one % operation allowed for " &
6257 "simple storage pool type&", Op
, Pool_Type
);
6260 -- In the case of Allocate and Deallocate, a formal
6261 -- of type System.Address is required.
6263 if Op_Name
= Name_Allocate
then
6264 Validate_Simple_Pool_Op_Formal
6265 (Op
, Formal
, E_Out_Parameter
,
6266 Address_Type
, "Storage_Address", Is_OK
);
6268 elsif Op_Name
= Name_Deallocate
then
6269 Validate_Simple_Pool_Op_Formal
6270 (Op
, Formal
, E_In_Parameter
,
6271 Address_Type
, "Storage_Address", Is_OK
);
6274 -- In the case of Allocate and Deallocate, formals
6275 -- of type Storage_Count are required as the third
6276 -- and fourth parameters.
6278 if Op_Name
/= Name_Storage_Size
then
6279 Validate_Simple_Pool_Op_Formal
6280 (Op
, Formal
, E_In_Parameter
,
6281 Stg_Cnt_Type
, "Size_In_Storage_Units", Is_OK
);
6282 Validate_Simple_Pool_Op_Formal
6283 (Op
, Formal
, E_In_Parameter
,
6284 Stg_Cnt_Type
, "Alignment", Is_OK
);
6287 -- If no mismatched formals have been found (Is_OK)
6288 -- and no excess formals are present, then this
6289 -- operation has been validated, so record it.
6291 if not Present
(Formal
) and then Is_OK
then
6299 -- There must be a valid Allocate operation for the type,
6300 -- so issue an error if none was found.
6302 if Op_Name
= Name_Allocate
6303 and then not Present
(Found_Op
)
6305 Error_Msg_N
("missing % operation for simple " &
6306 "storage pool type", Pool_Type
);
6308 elsif Present
(Found_Op
) then
6310 -- Simple pool operations can't be abstract
6312 if Is_Abstract_Subprogram
(Found_Op
) then
6314 ("simple storage pool operation must not be " &
6315 "abstract", Found_Op
);
6318 -- The Storage_Size operation must be a function with
6319 -- Storage_Count as its result type.
6321 if Op_Name
= Name_Storage_Size
then
6322 if Ekind
(Found_Op
) = E_Procedure
then
6324 ("% operation must be a function", Found_Op
);
6326 elsif Etype
(Found_Op
) /= Stg_Cnt_Type
then
6328 ("wrong result type for%, expected type&",
6329 Found_Op
, Stg_Cnt_Type
);
6332 -- Allocate and Deallocate must be procedures
6334 elsif Ekind
(Found_Op
) = E_Function
then
6336 ("% operation must be a procedure", Found_Op
);
6339 end Validate_Simple_Pool_Operation
;
6341 -- Start of processing for Validate_Simple_Pool_Ops
6344 Validate_Simple_Pool_Operation
(Name_Allocate
);
6345 Validate_Simple_Pool_Operation
(Name_Deallocate
);
6346 Validate_Simple_Pool_Operation
(Name_Storage_Size
);
6347 end Validate_Simple_Pool_Ops
;
6351 -- Now that all types from which E may depend are frozen, see if the
6352 -- size is known at compile time, if it must be unsigned, or if
6353 -- strict alignment is required
6355 Check_Compile_Time_Size
(E
);
6356 Check_Unsigned_Type
(E
);
6358 if Base_Type
(E
) = E
then
6359 Check_Strict_Alignment
(E
);
6362 -- Do not allow a size clause for a type which does not have a size
6363 -- that is known at compile time
6365 if Has_Size_Clause
(E
)
6366 and then not Size_Known_At_Compile_Time
(E
)
6368 -- Suppress this message if errors posted on E, even if we are
6369 -- in all errors mode, since this is often a junk message
6371 if not Error_Posted
(E
) then
6373 ("size clause not allowed for variable length type",
6378 -- Now we set/verify the representation information, in particular
6379 -- the size and alignment values. This processing is not required for
6380 -- generic types, since generic types do not play any part in code
6381 -- generation, and so the size and alignment values for such types
6382 -- are irrelevant. Ditto for types declared within a generic unit,
6383 -- which may have components that depend on generic parameters, and
6384 -- that will be recreated in an instance.
6386 if Inside_A_Generic
then
6389 -- Otherwise we call the layout procedure
6395 -- If this is an access to subprogram whose designated type is itself
6396 -- a subprogram type, the return type of this anonymous subprogram
6397 -- type must be decorated as well.
6399 if Ekind
(E
) = E_Anonymous_Access_Subprogram_Type
6400 and then Ekind
(Designated_Type
(E
)) = E_Subprogram_Type
6402 Layout_Type
(Etype
(Designated_Type
(E
)));
6405 -- If the type has a Defaut_Value/Default_Component_Value aspect,
6406 -- this is where we analye the expression (after the type is frozen,
6407 -- since in the case of Default_Value, we are analyzing with the
6408 -- type itself, and we treat Default_Component_Value similarly for
6409 -- the sake of uniformity).
6411 if Is_First_Subtype
(E
) and then Has_Default_Aspect
(E
) then
6418 if Is_Scalar_Type
(E
) then
6419 Nam
:= Name_Default_Value
;
6421 Exp
:= Default_Aspect_Value
(Typ
);
6423 Nam
:= Name_Default_Component_Value
;
6424 Typ
:= Component_Type
(E
);
6425 Exp
:= Default_Aspect_Component_Value
(E
);
6428 Analyze_And_Resolve
(Exp
, Typ
);
6430 if Etype
(Exp
) /= Any_Type
then
6431 if not Is_OK_Static_Expression
(Exp
) then
6432 Error_Msg_Name_1
:= Nam
;
6433 Flag_Non_Static_Expr
6434 ("aspect% requires static expression", Exp
);
6440 -- End of freeze processing for type entities
6443 -- Here is where we logically freeze the current entity. If it has a
6444 -- freeze node, then this is the point at which the freeze node is
6445 -- linked into the result list.
6447 if Has_Delayed_Freeze
(E
) then
6449 -- If a freeze node is already allocated, use it, otherwise allocate
6450 -- a new one. The preallocation happens in the case of anonymous base
6451 -- types, where we preallocate so that we can set First_Subtype_Link.
6452 -- Note that we reset the Sloc to the current freeze location.
6454 if Present
(Freeze_Node
(E
)) then
6455 F_Node
:= Freeze_Node
(E
);
6456 Set_Sloc
(F_Node
, Loc
);
6459 F_Node
:= New_Freeze_Node
;
6460 Set_Freeze_Node
(E
, F_Node
);
6461 Set_Access_Types_To_Process
(F_Node
, No_Elist
);
6462 Set_TSS_Elist
(F_Node
, No_Elist
);
6463 Set_Actions
(F_Node
, No_List
);
6466 Set_Entity
(F_Node
, E
);
6467 Add_To_Result
(F_Node
);
6469 -- A final pass over record types with discriminants. If the type
6470 -- has an incomplete declaration, there may be constrained access
6471 -- subtypes declared elsewhere, which do not depend on the discrimi-
6472 -- nants of the type, and which are used as component types (i.e.
6473 -- the full view is a recursive type). The designated types of these
6474 -- subtypes can only be elaborated after the type itself, and they
6475 -- need an itype reference.
6477 if Ekind
(E
) = E_Record_Type
and then Has_Discriminants
(E
) then
6484 Comp
:= First_Component
(E
);
6485 while Present
(Comp
) loop
6486 Typ
:= Etype
(Comp
);
6488 if Ekind
(Comp
) = E_Component
6489 and then Is_Access_Type
(Typ
)
6490 and then Scope
(Typ
) /= E
6491 and then Base_Type
(Designated_Type
(Typ
)) = E
6492 and then Is_Itype
(Designated_Type
(Typ
))
6494 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
6495 Set_Itype
(IR
, Designated_Type
(Typ
));
6496 Append
(IR
, Result
);
6499 Next_Component
(Comp
);
6505 -- When a type is frozen, the first subtype of the type is frozen as
6506 -- well (RM 13.14(15)). This has to be done after freezing the type,
6507 -- since obviously the first subtype depends on its own base type.
6510 Freeze_And_Append
(First_Subtype
(E
), N
, Result
);
6512 -- If we just froze a tagged non-class wide record, then freeze the
6513 -- corresponding class-wide type. This must be done after the tagged
6514 -- type itself is frozen, because the class-wide type refers to the
6515 -- tagged type which generates the class.
6517 if Is_Tagged_Type
(E
)
6518 and then not Is_Class_Wide_Type
(E
)
6519 and then Present
(Class_Wide_Type
(E
))
6521 Freeze_And_Append
(Class_Wide_Type
(E
), N
, Result
);
6525 Check_Debug_Info_Needed
(E
);
6527 -- Special handling for subprograms
6529 if Is_Subprogram
(E
) then
6531 -- If subprogram has address clause then reset Is_Public flag, since
6532 -- we do not want the backend to generate external references.
6534 if Present
(Address_Clause
(E
))
6535 and then not Is_Library_Level_Entity
(E
)
6537 Set_Is_Public
(E
, False);
6541 Ghost_Mode
:= Save_Ghost_Mode
;
6545 -----------------------------
6546 -- Freeze_Enumeration_Type --
6547 -----------------------------
6549 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
) is
6551 -- By default, if no size clause is present, an enumeration type with
6552 -- Convention C is assumed to interface to a C enum, and has integer
6553 -- size. This applies to types. For subtypes, verify that its base
6554 -- type has no size clause either. Treat other foreign conventions
6555 -- in the same way, and also make sure alignment is set right.
6557 if Has_Foreign_Convention
(Typ
)
6558 and then not Has_Size_Clause
(Typ
)
6559 and then not Has_Size_Clause
(Base_Type
(Typ
))
6560 and then Esize
(Typ
) < Standard_Integer_Size
6562 -- Don't do this if Short_Enums on target
6564 and then not Target_Short_Enums
6566 Init_Esize
(Typ
, Standard_Integer_Size
);
6567 Set_Alignment
(Typ
, Alignment
(Standard_Integer
));
6569 -- Normal Ada case or size clause present or not Long_C_Enums on target
6572 -- If the enumeration type interfaces to C, and it has a size clause
6573 -- that specifies less than int size, it warrants a warning. The
6574 -- user may intend the C type to be an enum or a char, so this is
6575 -- not by itself an error that the Ada compiler can detect, but it
6576 -- it is a worth a heads-up. For Boolean and Character types we
6577 -- assume that the programmer has the proper C type in mind.
6579 if Convention
(Typ
) = Convention_C
6580 and then Has_Size_Clause
(Typ
)
6581 and then Esize
(Typ
) /= Esize
(Standard_Integer
)
6582 and then not Is_Boolean_Type
(Typ
)
6583 and then not Is_Character_Type
(Typ
)
6585 -- Don't do this if Short_Enums on target
6587 and then not Target_Short_Enums
6590 ("C enum types have the size of a C int??", Size_Clause
(Typ
));
6593 Adjust_Esize_For_Alignment
(Typ
);
6595 end Freeze_Enumeration_Type
;
6597 -----------------------
6598 -- Freeze_Expression --
6599 -----------------------
6601 procedure Freeze_Expression
(N
: Node_Id
) is
6602 In_Spec_Exp
: constant Boolean := In_Spec_Expression
;
6605 Desig_Typ
: Entity_Id
;
6609 Freeze_Outside
: Boolean := False;
6610 -- This flag is set true if the entity must be frozen outside the
6611 -- current subprogram. This happens in the case of expander generated
6612 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
6613 -- not freeze all entities like other bodies, but which nevertheless
6614 -- may reference entities that have to be frozen before the body and
6615 -- obviously cannot be frozen inside the body.
6617 function Find_Aggregate_Component_Desig_Type
return Entity_Id
;
6618 -- If the expression is an array aggregate, the type of the component
6619 -- expressions is also frozen. If the component type is an access type
6620 -- and the expressions include allocators, the designed type is frozen
6623 function In_Expanded_Body
(N
: Node_Id
) return Boolean;
6624 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
6625 -- it is the handled statement sequence of an expander-generated
6626 -- subprogram (init proc, stream subprogram, or renaming as body).
6627 -- If so, this is not a freezing context.
6629 -----------------------------------------
6630 -- Find_Aggregate_Component_Desig_Type --
6631 -----------------------------------------
6633 function Find_Aggregate_Component_Desig_Type
return Entity_Id
is
6638 if Present
(Expressions
(N
)) then
6639 Exp
:= First
(Expressions
(N
));
6640 while Present
(Exp
) loop
6641 if Nkind
(Exp
) = N_Allocator
then
6642 return Designated_Type
(Component_Type
(Etype
(N
)));
6649 if Present
(Component_Associations
(N
)) then
6650 Assoc
:= First
(Component_Associations
(N
));
6651 while Present
(Assoc
) loop
6652 if Nkind
(Expression
(Assoc
)) = N_Allocator
then
6653 return Designated_Type
(Component_Type
(Etype
(N
)));
6661 end Find_Aggregate_Component_Desig_Type
;
6663 ----------------------
6664 -- In_Expanded_Body --
6665 ----------------------
6667 function In_Expanded_Body
(N
: Node_Id
) return Boolean is
6672 if Nkind
(N
) = N_Subprogram_Body
then
6678 if Nkind
(P
) /= N_Subprogram_Body
then
6682 Id
:= Defining_Unit_Name
(Specification
(P
));
6684 -- The following are expander-created bodies, or bodies that
6685 -- are not freeze points.
6687 if Nkind
(Id
) = N_Defining_Identifier
6688 and then (Is_Init_Proc
(Id
)
6689 or else Is_TSS
(Id
, TSS_Stream_Input
)
6690 or else Is_TSS
(Id
, TSS_Stream_Output
)
6691 or else Is_TSS
(Id
, TSS_Stream_Read
)
6692 or else Is_TSS
(Id
, TSS_Stream_Write
)
6693 or else Nkind_In
(Original_Node
(P
),
6694 N_Subprogram_Renaming_Declaration
,
6695 N_Expression_Function
))
6702 end In_Expanded_Body
;
6704 -- Start of processing for Freeze_Expression
6707 -- Immediate return if freezing is inhibited. This flag is set by the
6708 -- analyzer to stop freezing on generated expressions that would cause
6709 -- freezing if they were in the source program, but which are not
6710 -- supposed to freeze, since they are created.
6712 if Must_Not_Freeze
(N
) then
6716 -- If expression is non-static, then it does not freeze in a default
6717 -- expression, see section "Handling of Default Expressions" in the
6718 -- spec of package Sem for further details. Note that we have to make
6719 -- sure that we actually have a real expression (if we have a subtype
6720 -- indication, we can't test Is_OK_Static_Expression). However, we
6721 -- exclude the case of the prefix of an attribute of a static scalar
6722 -- subtype from this early return, because static subtype attributes
6723 -- should always cause freezing, even in default expressions, but
6724 -- the attribute may not have been marked as static yet (because in
6725 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6726 -- Freeze_Expression on the prefix).
6729 and then Nkind
(N
) in N_Subexpr
6730 and then not Is_OK_Static_Expression
(N
)
6731 and then (Nkind
(Parent
(N
)) /= N_Attribute_Reference
6732 or else not (Is_Entity_Name
(N
)
6733 and then Is_Type
(Entity
(N
))
6734 and then Is_OK_Static_Subtype
(Entity
(N
))))
6739 -- Freeze type of expression if not frozen already
6743 if Nkind
(N
) in N_Has_Etype
then
6744 if not Is_Frozen
(Etype
(N
)) then
6747 -- Base type may be an derived numeric type that is frozen at
6748 -- the point of declaration, but first_subtype is still unfrozen.
6750 elsif not Is_Frozen
(First_Subtype
(Etype
(N
))) then
6751 Typ
:= First_Subtype
(Etype
(N
));
6755 -- For entity name, freeze entity if not frozen already. A special
6756 -- exception occurs for an identifier that did not come from source.
6757 -- We don't let such identifiers freeze a non-internal entity, i.e.
6758 -- an entity that did come from source, since such an identifier was
6759 -- generated by the expander, and cannot have any semantic effect on
6760 -- the freezing semantics. For example, this stops the parameter of
6761 -- an initialization procedure from freezing the variable.
6763 if Is_Entity_Name
(N
)
6764 and then not Is_Frozen
(Entity
(N
))
6765 and then (Nkind
(N
) /= N_Identifier
6766 or else Comes_From_Source
(N
)
6767 or else not Comes_From_Source
(Entity
(N
)))
6771 if Present
(Nam
) and then Ekind
(Nam
) = E_Function
then
6772 Check_Expression_Function
(N
, Nam
);
6779 -- For an allocator freeze designated type if not frozen already
6781 -- For an aggregate whose component type is an access type, freeze the
6782 -- designated type now, so that its freeze does not appear within the
6783 -- loop that might be created in the expansion of the aggregate. If the
6784 -- designated type is a private type without full view, the expression
6785 -- cannot contain an allocator, so the type is not frozen.
6787 -- For a function, we freeze the entity when the subprogram declaration
6788 -- is frozen, but a function call may appear in an initialization proc.
6789 -- before the declaration is frozen. We need to generate the extra
6790 -- formals, if any, to ensure that the expansion of the call includes
6791 -- the proper actuals. This only applies to Ada subprograms, not to
6798 Desig_Typ
:= Designated_Type
(Etype
(N
));
6801 if Is_Array_Type
(Etype
(N
))
6802 and then Is_Access_Type
(Component_Type
(Etype
(N
)))
6805 -- Check whether aggregate includes allocators.
6807 Desig_Typ
:= Find_Aggregate_Component_Desig_Type
;
6810 when N_Selected_Component |
6811 N_Indexed_Component |
6814 if Is_Access_Type
(Etype
(Prefix
(N
))) then
6815 Desig_Typ
:= Designated_Type
(Etype
(Prefix
(N
)));
6818 when N_Identifier
=>
6820 and then Ekind
(Nam
) = E_Function
6821 and then Nkind
(Parent
(N
)) = N_Function_Call
6822 and then Convention
(Nam
) = Convention_Ada
6824 Create_Extra_Formals
(Nam
);
6831 if Desig_Typ
/= Empty
6832 and then (Is_Frozen
(Desig_Typ
)
6833 or else (not Is_Fully_Defined
(Desig_Typ
)))
6838 -- All done if nothing needs freezing
6842 and then No
(Desig_Typ
)
6847 -- Examine the enclosing context by climbing the parent chain. The
6848 -- traversal serves two purposes - to detect scenarios where freezeing
6849 -- is not needed and to find the proper insertion point for the freeze
6850 -- nodes. Although somewhat similar to Insert_Actions, this traversal
6851 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
6852 -- the tree may result in types being frozen too early.
6856 Parent_P
:= Parent
(P
);
6858 -- If we don't have a parent, then we are not in a well-formed tree.
6859 -- This is an unusual case, but there are some legitimate situations
6860 -- in which this occurs, notably when the expressions in the range of
6861 -- a type declaration are resolved. We simply ignore the freeze
6862 -- request in this case. Is this right ???
6864 if No
(Parent_P
) then
6868 -- See if we have got to an appropriate point in the tree
6870 case Nkind
(Parent_P
) is
6872 -- A special test for the exception of (RM 13.14(8)) for the case
6873 -- of per-object expressions (RM 3.8(18)) occurring in component
6874 -- definition or a discrete subtype definition. Note that we test
6875 -- for a component declaration which includes both cases we are
6876 -- interested in, and furthermore the tree does not have explicit
6877 -- nodes for either of these two constructs.
6879 when N_Component_Declaration
=>
6881 -- The case we want to test for here is an identifier that is
6882 -- a per-object expression, this is either a discriminant that
6883 -- appears in a context other than the component declaration
6884 -- or it is a reference to the type of the enclosing construct.
6886 -- For either of these cases, we skip the freezing
6888 if not In_Spec_Expression
6889 and then Nkind
(N
) = N_Identifier
6890 and then (Present
(Entity
(N
)))
6892 -- We recognize the discriminant case by just looking for
6893 -- a reference to a discriminant. It can only be one for
6894 -- the enclosing construct. Skip freezing in this case.
6896 if Ekind
(Entity
(N
)) = E_Discriminant
then
6899 -- For the case of a reference to the enclosing record,
6900 -- (or task or protected type), we look for a type that
6901 -- matches the current scope.
6903 elsif Entity
(N
) = Current_Scope
then
6908 -- If we have an enumeration literal that appears as the choice in
6909 -- the aggregate of an enumeration representation clause, then
6910 -- freezing does not occur (RM 13.14(10)).
6912 when N_Enumeration_Representation_Clause
=>
6914 -- The case we are looking for is an enumeration literal
6916 if (Nkind
(N
) = N_Identifier
or Nkind
(N
) = N_Character_Literal
)
6917 and then Is_Enumeration_Type
(Etype
(N
))
6919 -- If enumeration literal appears directly as the choice,
6920 -- do not freeze (this is the normal non-overloaded case)
6922 if Nkind
(Parent
(N
)) = N_Component_Association
6923 and then First
(Choices
(Parent
(N
))) = N
6927 -- If enumeration literal appears as the name of function
6928 -- which is the choice, then also do not freeze. This
6929 -- happens in the overloaded literal case, where the
6930 -- enumeration literal is temporarily changed to a function
6931 -- call for overloading analysis purposes.
6933 elsif Nkind
(Parent
(N
)) = N_Function_Call
6935 Nkind
(Parent
(Parent
(N
))) = N_Component_Association
6937 First
(Choices
(Parent
(Parent
(N
)))) = Parent
(N
)
6943 -- Normally if the parent is a handled sequence of statements,
6944 -- then the current node must be a statement, and that is an
6945 -- appropriate place to insert a freeze node.
6947 when N_Handled_Sequence_Of_Statements
=>
6949 -- An exception occurs when the sequence of statements is for
6950 -- an expander generated body that did not do the usual freeze
6951 -- all operation. In this case we usually want to freeze
6952 -- outside this body, not inside it, and we skip past the
6953 -- subprogram body that we are inside.
6955 if In_Expanded_Body
(Parent_P
) then
6957 Subp
: constant Node_Id
:= Parent
(Parent_P
);
6961 -- Freeze the entity only when it is declared inside the
6962 -- body of the expander generated procedure. This case
6963 -- is recognized by the scope of the entity or its type,
6964 -- which is either the spec for some enclosing body, or
6965 -- (in the case of init_procs, for which there are no
6966 -- separate specs) the current scope.
6968 if Nkind
(Subp
) = N_Subprogram_Body
then
6969 Spec
:= Corresponding_Spec
(Subp
);
6971 if (Present
(Typ
) and then Scope
(Typ
) = Spec
)
6973 (Present
(Nam
) and then Scope
(Nam
) = Spec
)
6978 and then Scope
(Typ
) = Current_Scope
6979 and then Defining_Entity
(Subp
) = Current_Scope
6985 -- An expression function may act as a completion of
6986 -- a function declaration. As such, it can reference
6987 -- entities declared between the two views:
6990 -- function F return ...;
6992 -- function Hidden return ...;
6993 -- function F return ... is (Hidden); -- 2
6995 -- Refering to the example above, freezing the expression
6996 -- of F (2) would place Hidden's freeze node (1) in the
6997 -- wrong place. Avoid explicit freezing and let the usual
6998 -- scenarios do the job - for example, reaching the end
6999 -- of the private declarations, or a call to F.
7001 if Nkind
(Original_Node
(Subp
)) =
7002 N_Expression_Function
7006 -- Freeze outside the body
7009 Parent_P
:= Parent
(Parent_P
);
7010 Freeze_Outside
:= True;
7014 -- Here if normal case where we are in handled statement
7015 -- sequence and want to do the insertion right there.
7021 -- If parent is a body or a spec or a block, then the current node
7022 -- is a statement or declaration and we can insert the freeze node
7025 when N_Block_Statement |
7028 N_Package_Specification |
7031 N_Task_Body
=> exit;
7033 -- The expander is allowed to define types in any statements list,
7034 -- so any of the following parent nodes also mark a freezing point
7035 -- if the actual node is in a list of statements or declarations.
7037 when N_Abortable_Part |
7038 N_Accept_Alternative |
7040 N_Case_Statement_Alternative |
7041 N_Compilation_Unit_Aux |
7042 N_Conditional_Entry_Call |
7043 N_Delay_Alternative |
7045 N_Entry_Call_Alternative |
7046 N_Exception_Handler |
7047 N_Extended_Return_Statement |
7051 N_Selective_Accept |
7052 N_Triggering_Alternative
=>
7054 exit when Is_List_Member
(P
);
7056 -- Freeze nodes produced by an expression coming from the Actions
7057 -- list of a N_Expression_With_Actions node must remain within the
7058 -- Actions list. Inserting the freeze nodes further up the tree
7059 -- may lead to use before declaration issues in the case of array
7062 when N_Expression_With_Actions
=>
7063 if Is_List_Member
(P
)
7064 and then List_Containing
(P
) = Actions
(Parent_P
)
7069 -- Note: N_Loop_Statement is a special case. A type that appears
7070 -- in the source can never be frozen in a loop (this occurs only
7071 -- because of a loop expanded by the expander), so we keep on
7072 -- going. Otherwise we terminate the search. Same is true of any
7073 -- entity which comes from source. (if they have predefined type,
7074 -- that type does not appear to come from source, but the entity
7075 -- should not be frozen here).
7077 when N_Loop_Statement
=>
7078 exit when not Comes_From_Source
(Etype
(N
))
7079 and then (No
(Nam
) or else not Comes_From_Source
(Nam
));
7081 -- For all other cases, keep looking at parents
7087 -- We fall through the case if we did not yet find the proper
7088 -- place in the free for inserting the freeze node, so climb.
7093 -- If the expression appears in a record or an initialization procedure,
7094 -- the freeze nodes are collected and attached to the current scope, to
7095 -- be inserted and analyzed on exit from the scope, to insure that
7096 -- generated entities appear in the correct scope. If the expression is
7097 -- a default for a discriminant specification, the scope is still void.
7098 -- The expression can also appear in the discriminant part of a private
7099 -- or concurrent type.
7101 -- If the expression appears in a constrained subcomponent of an
7102 -- enclosing record declaration, the freeze nodes must be attached to
7103 -- the outer record type so they can eventually be placed in the
7104 -- enclosing declaration list.
7106 -- The other case requiring this special handling is if we are in a
7107 -- default expression, since in that case we are about to freeze a
7108 -- static type, and the freeze scope needs to be the outer scope, not
7109 -- the scope of the subprogram with the default parameter.
7111 -- For default expressions and other spec expressions in generic units,
7112 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
7113 -- placing them at the proper place, after the generic unit.
7115 if (In_Spec_Exp
and not Inside_A_Generic
)
7116 or else Freeze_Outside
7117 or else (Is_Type
(Current_Scope
)
7118 and then (not Is_Concurrent_Type
(Current_Scope
)
7119 or else not Has_Completion
(Current_Scope
)))
7120 or else Ekind
(Current_Scope
) = E_Void
7123 N
: constant Node_Id
:= Current_Scope
;
7124 Freeze_Nodes
: List_Id
:= No_List
;
7125 Pos
: Int
:= Scope_Stack
.Last
;
7128 if Present
(Desig_Typ
) then
7129 Freeze_And_Append
(Desig_Typ
, N
, Freeze_Nodes
);
7132 if Present
(Typ
) then
7133 Freeze_And_Append
(Typ
, N
, Freeze_Nodes
);
7136 if Present
(Nam
) then
7137 Freeze_And_Append
(Nam
, N
, Freeze_Nodes
);
7140 -- The current scope may be that of a constrained component of
7141 -- an enclosing record declaration, or of a loop of an enclosing
7142 -- quantified expression, which is above the current scope in the
7143 -- scope stack. Indeed in the context of a quantified expression,
7144 -- a scope is created and pushed above the current scope in order
7145 -- to emulate the loop-like behavior of the quantified expression.
7146 -- If the expression is within a top-level pragma, as for a pre-
7147 -- condition on a library-level subprogram, nothing to do.
7149 if not Is_Compilation_Unit
(Current_Scope
)
7150 and then (Is_Record_Type
(Scope
(Current_Scope
))
7151 or else Nkind
(Parent
(Current_Scope
)) =
7152 N_Quantified_Expression
)
7157 if Is_Non_Empty_List
(Freeze_Nodes
) then
7158 if No
(Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
) then
7159 Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
:=
7162 Append_List
(Freeze_Nodes
,
7163 Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
);
7171 -- Now we have the right place to do the freezing. First, a special
7172 -- adjustment, if we are in spec-expression analysis mode, these freeze
7173 -- actions must not be thrown away (normally all inserted actions are
7174 -- thrown away in this mode. However, the freeze actions are from static
7175 -- expressions and one of the important reasons we are doing this
7176 -- special analysis is to get these freeze actions. Therefore we turn
7177 -- off the In_Spec_Expression mode to propagate these freeze actions.
7178 -- This also means they get properly analyzed and expanded.
7180 In_Spec_Expression
:= False;
7182 -- Freeze the designated type of an allocator (RM 13.14(13))
7184 if Present
(Desig_Typ
) then
7185 Freeze_Before
(P
, Desig_Typ
);
7188 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
7189 -- the enumeration representation clause exception in the loop above.
7191 if Present
(Typ
) then
7192 Freeze_Before
(P
, Typ
);
7195 -- Freeze name if one is present (RM 13.14(11))
7197 if Present
(Nam
) then
7198 Freeze_Before
(P
, Nam
);
7201 -- Restore In_Spec_Expression flag
7203 In_Spec_Expression
:= In_Spec_Exp
;
7204 end Freeze_Expression
;
7206 -----------------------------
7207 -- Freeze_Fixed_Point_Type --
7208 -----------------------------
7210 -- Certain fixed-point types and subtypes, including implicit base types
7211 -- and declared first subtypes, have not yet set up a range. This is
7212 -- because the range cannot be set until the Small and Size values are
7213 -- known, and these are not known till the type is frozen.
7215 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
7216 -- whose bounds are unanalyzed real literals. This routine will recognize
7217 -- this case, and transform this range node into a properly typed range
7218 -- with properly analyzed and resolved values.
7220 procedure Freeze_Fixed_Point_Type
(Typ
: Entity_Id
) is
7221 Rng
: constant Node_Id
:= Scalar_Range
(Typ
);
7222 Lo
: constant Node_Id
:= Low_Bound
(Rng
);
7223 Hi
: constant Node_Id
:= High_Bound
(Rng
);
7224 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
7225 Brng
: constant Node_Id
:= Scalar_Range
(Btyp
);
7226 BLo
: constant Node_Id
:= Low_Bound
(Brng
);
7227 BHi
: constant Node_Id
:= High_Bound
(Brng
);
7228 Small
: constant Ureal
:= Small_Value
(Typ
);
7235 -- Save original bounds (for shaving tests)
7238 -- Actual size chosen
7240 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
;
7241 -- Returns size of type with given bounds. Also leaves these
7242 -- bounds set as the current bounds of the Typ.
7248 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
is
7250 Set_Realval
(Lo
, Lov
);
7251 Set_Realval
(Hi
, Hiv
);
7252 return Minimum_Size
(Typ
);
7255 -- Start of processing for Freeze_Fixed_Point_Type
7258 -- If Esize of a subtype has not previously been set, set it now
7260 if Unknown_Esize
(Typ
) then
7261 Atype
:= Ancestor_Subtype
(Typ
);
7263 if Present
(Atype
) then
7264 Set_Esize
(Typ
, Esize
(Atype
));
7266 Set_Esize
(Typ
, Esize
(Base_Type
(Typ
)));
7270 -- Immediate return if the range is already analyzed. This means that
7271 -- the range is already set, and does not need to be computed by this
7274 if Analyzed
(Rng
) then
7278 -- Immediate return if either of the bounds raises Constraint_Error
7280 if Raises_Constraint_Error
(Lo
)
7281 or else Raises_Constraint_Error
(Hi
)
7286 Loval
:= Realval
(Lo
);
7287 Hival
:= Realval
(Hi
);
7292 -- Ordinary fixed-point case
7294 if Is_Ordinary_Fixed_Point_Type
(Typ
) then
7296 -- For the ordinary fixed-point case, we are allowed to fudge the
7297 -- end-points up or down by small. Generally we prefer to fudge up,
7298 -- i.e. widen the bounds for non-model numbers so that the end points
7299 -- are included. However there are cases in which this cannot be
7300 -- done, and indeed cases in which we may need to narrow the bounds.
7301 -- The following circuit makes the decision.
7303 -- Note: our terminology here is that Incl_EP means that the bounds
7304 -- are widened by Small if necessary to include the end points, and
7305 -- Excl_EP means that the bounds are narrowed by Small to exclude the
7306 -- end-points if this reduces the size.
7308 -- Note that in the Incl case, all we care about is including the
7309 -- end-points. In the Excl case, we want to narrow the bounds as
7310 -- much as permitted by the RM, to give the smallest possible size.
7313 Loval_Incl_EP
: Ureal
;
7314 Hival_Incl_EP
: Ureal
;
7316 Loval_Excl_EP
: Ureal
;
7317 Hival_Excl_EP
: Ureal
;
7323 First_Subt
: Entity_Id
;
7328 -- First step. Base types are required to be symmetrical. Right
7329 -- now, the base type range is a copy of the first subtype range.
7330 -- This will be corrected before we are done, but right away we
7331 -- need to deal with the case where both bounds are non-negative.
7332 -- In this case, we set the low bound to the negative of the high
7333 -- bound, to make sure that the size is computed to include the
7334 -- required sign. Note that we do not need to worry about the
7335 -- case of both bounds negative, because the sign will be dealt
7336 -- with anyway. Furthermore we can't just go making such a bound
7337 -- symmetrical, since in a twos-complement system, there is an
7338 -- extra negative value which could not be accommodated on the
7342 and then not UR_Is_Negative
(Loval
)
7343 and then Hival
> Loval
7346 Set_Realval
(Lo
, Loval
);
7349 -- Compute the fudged bounds. If the number is a model number,
7350 -- then we do nothing to include it, but we are allowed to backoff
7351 -- to the next adjacent model number when we exclude it. If it is
7352 -- not a model number then we straddle the two values with the
7353 -- model numbers on either side.
7355 Model_Num
:= UR_Trunc
(Loval
/ Small
) * Small
;
7357 if Loval
= Model_Num
then
7358 Loval_Incl_EP
:= Model_Num
;
7360 Loval_Incl_EP
:= Model_Num
- Small
;
7363 -- The low value excluding the end point is Small greater, but
7364 -- we do not do this exclusion if the low value is positive,
7365 -- since it can't help the size and could actually hurt by
7366 -- crossing the high bound.
7368 if UR_Is_Negative
(Loval_Incl_EP
) then
7369 Loval_Excl_EP
:= Loval_Incl_EP
+ Small
;
7371 -- If the value went from negative to zero, then we have the
7372 -- case where Loval_Incl_EP is the model number just below
7373 -- zero, so we want to stick to the negative value for the
7374 -- base type to maintain the condition that the size will
7375 -- include signed values.
7378 and then UR_Is_Zero
(Loval_Excl_EP
)
7380 Loval_Excl_EP
:= Loval_Incl_EP
;
7384 Loval_Excl_EP
:= Loval_Incl_EP
;
7387 -- Similar processing for upper bound and high value
7389 Model_Num
:= UR_Trunc
(Hival
/ Small
) * Small
;
7391 if Hival
= Model_Num
then
7392 Hival_Incl_EP
:= Model_Num
;
7394 Hival_Incl_EP
:= Model_Num
+ Small
;
7397 if UR_Is_Positive
(Hival_Incl_EP
) then
7398 Hival_Excl_EP
:= Hival_Incl_EP
- Small
;
7400 Hival_Excl_EP
:= Hival_Incl_EP
;
7403 -- One further adjustment is needed. In the case of subtypes, we
7404 -- cannot go outside the range of the base type, or we get
7405 -- peculiarities, and the base type range is already set. This
7406 -- only applies to the Incl values, since clearly the Excl values
7407 -- are already as restricted as they are allowed to be.
7410 Loval_Incl_EP
:= UR_Max
(Loval_Incl_EP
, Realval
(BLo
));
7411 Hival_Incl_EP
:= UR_Min
(Hival_Incl_EP
, Realval
(BHi
));
7414 -- Get size including and excluding end points
7416 Size_Incl_EP
:= Fsize
(Loval_Incl_EP
, Hival_Incl_EP
);
7417 Size_Excl_EP
:= Fsize
(Loval_Excl_EP
, Hival_Excl_EP
);
7419 -- No need to exclude end-points if it does not reduce size
7421 if Fsize
(Loval_Incl_EP
, Hival_Excl_EP
) = Size_Excl_EP
then
7422 Loval_Excl_EP
:= Loval_Incl_EP
;
7425 if Fsize
(Loval_Excl_EP
, Hival_Incl_EP
) = Size_Excl_EP
then
7426 Hival_Excl_EP
:= Hival_Incl_EP
;
7429 -- Now we set the actual size to be used. We want to use the
7430 -- bounds fudged up to include the end-points but only if this
7431 -- can be done without violating a specifically given size
7432 -- size clause or causing an unacceptable increase in size.
7434 -- Case of size clause given
7436 if Has_Size_Clause
(Typ
) then
7438 -- Use the inclusive size only if it is consistent with
7439 -- the explicitly specified size.
7441 if Size_Incl_EP
<= RM_Size
(Typ
) then
7442 Actual_Lo
:= Loval_Incl_EP
;
7443 Actual_Hi
:= Hival_Incl_EP
;
7444 Actual_Size
:= Size_Incl_EP
;
7446 -- If the inclusive size is too large, we try excluding
7447 -- the end-points (will be caught later if does not work).
7450 Actual_Lo
:= Loval_Excl_EP
;
7451 Actual_Hi
:= Hival_Excl_EP
;
7452 Actual_Size
:= Size_Excl_EP
;
7455 -- Case of size clause not given
7458 -- If we have a base type whose corresponding first subtype
7459 -- has an explicit size that is large enough to include our
7460 -- end-points, then do so. There is no point in working hard
7461 -- to get a base type whose size is smaller than the specified
7462 -- size of the first subtype.
7464 First_Subt
:= First_Subtype
(Typ
);
7466 if Has_Size_Clause
(First_Subt
)
7467 and then Size_Incl_EP
<= Esize
(First_Subt
)
7469 Actual_Size
:= Size_Incl_EP
;
7470 Actual_Lo
:= Loval_Incl_EP
;
7471 Actual_Hi
:= Hival_Incl_EP
;
7473 -- If excluding the end-points makes the size smaller and
7474 -- results in a size of 8,16,32,64, then we take the smaller
7475 -- size. For the 64 case, this is compulsory. For the other
7476 -- cases, it seems reasonable. We like to include end points
7477 -- if we can, but not at the expense of moving to the next
7478 -- natural boundary of size.
7480 elsif Size_Incl_EP
/= Size_Excl_EP
7481 and then Addressable
(Size_Excl_EP
)
7483 Actual_Size
:= Size_Excl_EP
;
7484 Actual_Lo
:= Loval_Excl_EP
;
7485 Actual_Hi
:= Hival_Excl_EP
;
7487 -- Otherwise we can definitely include the end points
7490 Actual_Size
:= Size_Incl_EP
;
7491 Actual_Lo
:= Loval_Incl_EP
;
7492 Actual_Hi
:= Hival_Incl_EP
;
7495 -- One pathological case: normally we never fudge a low bound
7496 -- down, since it would seem to increase the size (if it has
7497 -- any effect), but for ranges containing single value, or no
7498 -- values, the high bound can be small too large. Consider:
7500 -- type t is delta 2.0**(-14)
7501 -- range 131072.0 .. 0;
7503 -- That lower bound is *just* outside the range of 32 bits, and
7504 -- does need fudging down in this case. Note that the bounds
7505 -- will always have crossed here, since the high bound will be
7506 -- fudged down if necessary, as in the case of:
7508 -- type t is delta 2.0**(-14)
7509 -- range 131072.0 .. 131072.0;
7511 -- So we detect the situation by looking for crossed bounds,
7512 -- and if the bounds are crossed, and the low bound is greater
7513 -- than zero, we will always back it off by small, since this
7514 -- is completely harmless.
7516 if Actual_Lo
> Actual_Hi
then
7517 if UR_Is_Positive
(Actual_Lo
) then
7518 Actual_Lo
:= Loval_Incl_EP
- Small
;
7519 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
7521 -- And of course, we need to do exactly the same parallel
7522 -- fudge for flat ranges in the negative region.
7524 elsif UR_Is_Negative
(Actual_Hi
) then
7525 Actual_Hi
:= Hival_Incl_EP
+ Small
;
7526 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
7531 Set_Realval
(Lo
, Actual_Lo
);
7532 Set_Realval
(Hi
, Actual_Hi
);
7535 -- For the decimal case, none of this fudging is required, since there
7536 -- are no end-point problems in the decimal case (the end-points are
7537 -- always included).
7540 Actual_Size
:= Fsize
(Loval
, Hival
);
7543 -- At this stage, the actual size has been calculated and the proper
7544 -- required bounds are stored in the low and high bounds.
7546 if Actual_Size
> 64 then
7547 Error_Msg_Uint_1
:= UI_From_Int
(Actual_Size
);
7549 ("size required (^) for type& too large, maximum allowed is 64",
7554 -- Check size against explicit given size
7556 if Has_Size_Clause
(Typ
) then
7557 if Actual_Size
> RM_Size
(Typ
) then
7558 Error_Msg_Uint_1
:= RM_Size
(Typ
);
7559 Error_Msg_Uint_2
:= UI_From_Int
(Actual_Size
);
7561 ("size given (^) for type& too small, minimum allowed is ^",
7562 Size_Clause
(Typ
), Typ
);
7565 Actual_Size
:= UI_To_Int
(Esize
(Typ
));
7568 -- Increase size to next natural boundary if no size clause given
7571 if Actual_Size
<= 8 then
7573 elsif Actual_Size
<= 16 then
7575 elsif Actual_Size
<= 32 then
7581 Init_Esize
(Typ
, Actual_Size
);
7582 Adjust_Esize_For_Alignment
(Typ
);
7585 -- If we have a base type, then expand the bounds so that they extend to
7586 -- the full width of the allocated size in bits, to avoid junk range
7587 -- checks on intermediate computations.
7589 if Base_Type
(Typ
) = Typ
then
7590 Set_Realval
(Lo
, -(Small
* (Uint_2
** (Actual_Size
- 1))));
7591 Set_Realval
(Hi
, (Small
* (Uint_2
** (Actual_Size
- 1) - 1)));
7594 -- Final step is to reanalyze the bounds using the proper type
7595 -- and set the Corresponding_Integer_Value fields of the literals.
7597 Set_Etype
(Lo
, Empty
);
7598 Set_Analyzed
(Lo
, False);
7601 -- Resolve with universal fixed if the base type, and the base type if
7602 -- it is a subtype. Note we can't resolve the base type with itself,
7603 -- that would be a reference before definition.
7606 Resolve
(Lo
, Universal_Fixed
);
7611 -- Set corresponding integer value for bound
7613 Set_Corresponding_Integer_Value
7614 (Lo
, UR_To_Uint
(Realval
(Lo
) / Small
));
7616 -- Similar processing for high bound
7618 Set_Etype
(Hi
, Empty
);
7619 Set_Analyzed
(Hi
, False);
7623 Resolve
(Hi
, Universal_Fixed
);
7628 Set_Corresponding_Integer_Value
7629 (Hi
, UR_To_Uint
(Realval
(Hi
) / Small
));
7631 -- Set type of range to correspond to bounds
7633 Set_Etype
(Rng
, Etype
(Lo
));
7635 -- Set Esize to calculated size if not set already
7637 if Unknown_Esize
(Typ
) then
7638 Init_Esize
(Typ
, Actual_Size
);
7641 -- Set RM_Size if not already set. If already set, check value
7644 Minsiz
: constant Uint
:= UI_From_Int
(Minimum_Size
(Typ
));
7647 if RM_Size
(Typ
) /= Uint_0
then
7648 if RM_Size
(Typ
) < Minsiz
then
7649 Error_Msg_Uint_1
:= RM_Size
(Typ
);
7650 Error_Msg_Uint_2
:= Minsiz
;
7652 ("size given (^) for type& too small, minimum allowed is ^",
7653 Size_Clause
(Typ
), Typ
);
7657 Set_RM_Size
(Typ
, Minsiz
);
7661 -- Check for shaving
7663 if Comes_From_Source
(Typ
) then
7665 -- In SPARK mode the given bounds must be strictly representable
7667 if SPARK_Mode
= On
then
7668 if Orig_Lo
< Expr_Value_R
(Lo
) then
7670 ("declared low bound of type & is outside type range",
7674 if Orig_Hi
> Expr_Value_R
(Hi
) then
7676 ("declared high bound of type & is outside type range",
7681 if Orig_Lo
< Expr_Value_R
(Lo
) then
7683 ("declared low bound of type & is outside type range??", Typ
);
7685 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ
);
7688 if Orig_Hi
> Expr_Value_R
(Hi
) then
7690 ("declared high bound of type & is outside type range??",
7693 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ
);
7697 end Freeze_Fixed_Point_Type
;
7703 procedure Freeze_Itype
(T
: Entity_Id
; N
: Node_Id
) is
7707 Set_Has_Delayed_Freeze
(T
);
7708 L
:= Freeze_Entity
(T
, N
);
7710 if Is_Non_Empty_List
(L
) then
7711 Insert_Actions
(N
, L
);
7715 --------------------------
7716 -- Freeze_Static_Object --
7717 --------------------------
7719 procedure Freeze_Static_Object
(E
: Entity_Id
) is
7721 Cannot_Be_Static
: exception;
7722 -- Exception raised if the type of a static object cannot be made
7723 -- static. This happens if the type depends on non-global objects.
7725 procedure Ensure_Expression_Is_SA
(N
: Node_Id
);
7726 -- Called to ensure that an expression used as part of a type definition
7727 -- is statically allocatable, which means that the expression type is
7728 -- statically allocatable, and the expression is either static, or a
7729 -- reference to a library level constant.
7731 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
);
7732 -- Called to mark a type as static, checking that it is possible
7733 -- to set the type as static. If it is not possible, then the
7734 -- exception Cannot_Be_Static is raised.
7736 -----------------------------
7737 -- Ensure_Expression_Is_SA --
7738 -----------------------------
7740 procedure Ensure_Expression_Is_SA
(N
: Node_Id
) is
7744 Ensure_Type_Is_SA
(Etype
(N
));
7746 if Is_OK_Static_Expression
(N
) then
7749 elsif Nkind
(N
) = N_Identifier
then
7753 and then Ekind
(Ent
) = E_Constant
7754 and then Is_Library_Level_Entity
(Ent
)
7760 raise Cannot_Be_Static
;
7761 end Ensure_Expression_Is_SA
;
7763 -----------------------
7764 -- Ensure_Type_Is_SA --
7765 -----------------------
7767 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
) is
7772 -- If type is library level, we are all set
7774 if Is_Library_Level_Entity
(Typ
) then
7778 -- We are also OK if the type already marked as statically allocated,
7779 -- which means we processed it before.
7781 if Is_Statically_Allocated
(Typ
) then
7785 -- Mark type as statically allocated
7787 Set_Is_Statically_Allocated
(Typ
);
7789 -- Check that it is safe to statically allocate this type
7791 if Is_Scalar_Type
(Typ
) or else Is_Real_Type
(Typ
) then
7792 Ensure_Expression_Is_SA
(Type_Low_Bound
(Typ
));
7793 Ensure_Expression_Is_SA
(Type_High_Bound
(Typ
));
7795 elsif Is_Array_Type
(Typ
) then
7796 N
:= First_Index
(Typ
);
7797 while Present
(N
) loop
7798 Ensure_Type_Is_SA
(Etype
(N
));
7802 Ensure_Type_Is_SA
(Component_Type
(Typ
));
7804 elsif Is_Access_Type
(Typ
) then
7805 if Ekind
(Designated_Type
(Typ
)) = E_Subprogram_Type
then
7809 T
: constant Entity_Id
:= Etype
(Designated_Type
(Typ
));
7812 if T
/= Standard_Void_Type
then
7813 Ensure_Type_Is_SA
(T
);
7816 F
:= First_Formal
(Designated_Type
(Typ
));
7817 while Present
(F
) loop
7818 Ensure_Type_Is_SA
(Etype
(F
));
7824 Ensure_Type_Is_SA
(Designated_Type
(Typ
));
7827 elsif Is_Record_Type
(Typ
) then
7828 C
:= First_Entity
(Typ
);
7829 while Present
(C
) loop
7830 if Ekind
(C
) = E_Discriminant
7831 or else Ekind
(C
) = E_Component
7833 Ensure_Type_Is_SA
(Etype
(C
));
7835 elsif Is_Type
(C
) then
7836 Ensure_Type_Is_SA
(C
);
7842 elsif Ekind
(Typ
) = E_Subprogram_Type
then
7843 Ensure_Type_Is_SA
(Etype
(Typ
));
7845 C
:= First_Formal
(Typ
);
7846 while Present
(C
) loop
7847 Ensure_Type_Is_SA
(Etype
(C
));
7852 raise Cannot_Be_Static
;
7854 end Ensure_Type_Is_SA
;
7856 -- Start of processing for Freeze_Static_Object
7859 Ensure_Type_Is_SA
(Etype
(E
));
7862 when Cannot_Be_Static
=>
7864 -- If the object that cannot be static is imported or exported, then
7865 -- issue an error message saying that this object cannot be imported
7866 -- or exported. If it has an address clause it is an overlay in the
7867 -- current partition and the static requirement is not relevant.
7868 -- Do not issue any error message when ignoring rep clauses.
7870 if Ignore_Rep_Clauses
then
7873 elsif Is_Imported
(E
) then
7874 if No
(Address_Clause
(E
)) then
7876 ("& cannot be imported (local type is not constant)", E
);
7879 -- Otherwise must be exported, something is wrong if compiler
7880 -- is marking something as statically allocated which cannot be).
7882 else pragma Assert
(Is_Exported
(E
));
7884 ("& cannot be exported (local type is not constant)", E
);
7886 end Freeze_Static_Object
;
7888 -----------------------
7889 -- Freeze_Subprogram --
7890 -----------------------
7892 procedure Freeze_Subprogram
(E
: Entity_Id
) is
7897 -- Subprogram may not have an address clause unless it is imported
7899 if Present
(Address_Clause
(E
)) then
7900 if not Is_Imported
(E
) then
7902 ("address clause can only be given " &
7903 "for imported subprogram",
7904 Name
(Address_Clause
(E
)));
7908 -- Reset the Pure indication on an imported subprogram unless an
7909 -- explicit Pure_Function pragma was present or the subprogram is an
7910 -- intrinsic. We do this because otherwise it is an insidious error
7911 -- to call a non-pure function from pure unit and have calls
7912 -- mysteriously optimized away. What happens here is that the Import
7913 -- can bypass the normal check to ensure that pure units call only pure
7916 -- The reason for the intrinsic exception is that in general, intrinsic
7917 -- functions (such as shifts) are pure anyway. The only exceptions are
7918 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
7919 -- in any case, so no problem arises.
7922 and then Is_Pure
(E
)
7923 and then not Has_Pragma_Pure_Function
(E
)
7924 and then not Is_Intrinsic_Subprogram
(E
)
7926 Set_Is_Pure
(E
, False);
7929 -- We also reset the Pure indication on a subprogram with an Address
7930 -- parameter, because the parameter may be used as a pointer and the
7931 -- referenced data may change even if the address value does not.
7933 -- Note that if the programmer gave an explicit Pure_Function pragma,
7934 -- then we believe the programmer, and leave the subprogram Pure.
7935 -- We also suppress this check on run-time files.
7938 and then Is_Subprogram
(E
)
7939 and then not Has_Pragma_Pure_Function
(E
)
7940 and then not Is_Internal_File_Name
(Unit_File_Name
(Current_Sem_Unit
))
7942 Check_Function_With_Address_Parameter
(E
);
7945 -- For non-foreign convention subprograms, this is where we create
7946 -- the extra formals (for accessibility level and constrained bit
7947 -- information). We delay this till the freeze point precisely so
7948 -- that we know the convention.
7950 if not Has_Foreign_Convention
(E
) then
7951 Create_Extra_Formals
(E
);
7954 -- If this is convention Ada and a Valued_Procedure, that's odd
7956 if Ekind
(E
) = E_Procedure
7957 and then Is_Valued_Procedure
(E
)
7958 and then Convention
(E
) = Convention_Ada
7959 and then Warn_On_Export_Import
7962 ("??Valued_Procedure has no effect for convention Ada", E
);
7963 Set_Is_Valued_Procedure
(E
, False);
7966 -- Case of foreign convention
7971 -- For foreign conventions, warn about return of unconstrained array
7973 if Ekind
(E
) = E_Function
then
7974 Retype
:= Underlying_Type
(Etype
(E
));
7976 -- If no return type, probably some other error, e.g. a
7977 -- missing full declaration, so ignore.
7982 -- If the return type is generic, we have emitted a warning
7983 -- earlier on, and there is nothing else to check here. Specific
7984 -- instantiations may lead to erroneous behavior.
7986 elsif Is_Generic_Type
(Etype
(E
)) then
7989 -- Display warning if returning unconstrained array
7991 elsif Is_Array_Type
(Retype
)
7992 and then not Is_Constrained
(Retype
)
7994 -- Check appropriate warning is enabled (should we check for
7995 -- Warnings (Off) on specific entities here, probably so???)
7997 and then Warn_On_Export_Import
8000 ("?x?foreign convention function& should not return " &
8001 "unconstrained array", E
);
8006 -- If any of the formals for an exported foreign convention
8007 -- subprogram have defaults, then emit an appropriate warning since
8008 -- this is odd (default cannot be used from non-Ada code)
8010 if Is_Exported
(E
) then
8011 F
:= First_Formal
(E
);
8012 while Present
(F
) loop
8013 if Warn_On_Export_Import
8014 and then Present
(Default_Value
(F
))
8017 ("?x?parameter cannot be defaulted in non-Ada call",
8026 -- Pragma Inline_Always is disallowed for dispatching subprograms
8027 -- because the address of such subprograms is saved in the dispatch
8028 -- table to support dispatching calls, and dispatching calls cannot
8029 -- be inlined. This is consistent with the restriction against using
8030 -- 'Access or 'Address on an Inline_Always subprogram.
8032 if Is_Dispatching_Operation
(E
)
8033 and then Has_Pragma_Inline_Always
(E
)
8036 ("pragma Inline_Always not allowed for dispatching subprograms", E
);
8039 -- Because of the implicit representation of inherited predefined
8040 -- operators in the front-end, the overriding status of the operation
8041 -- may be affected when a full view of a type is analyzed, and this is
8042 -- not captured by the analysis of the corresponding type declaration.
8043 -- Therefore the correctness of a not-overriding indicator must be
8044 -- rechecked when the subprogram is frozen.
8046 if Nkind
(E
) = N_Defining_Operator_Symbol
8047 and then not Error_Posted
(Parent
(E
))
8049 Check_Overriding_Indicator
(E
, Empty
, Is_Primitive
(E
));
8052 if Modify_Tree_For_C
8053 and then Nkind
(Parent
(E
)) = N_Function_Specification
8054 and then Is_Array_Type
(Etype
(E
))
8055 and then Is_Constrained
(Etype
(E
))
8056 and then not Is_Unchecked_Conversion_Instance
(E
)
8057 and then not Rewritten_For_C
(E
)
8059 Build_Procedure_Form
(Unit_Declaration_Node
(E
));
8061 end Freeze_Subprogram
;
8063 ----------------------
8064 -- Is_Fully_Defined --
8065 ----------------------
8067 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean is
8069 if Ekind
(T
) = E_Class_Wide_Type
then
8070 return Is_Fully_Defined
(Etype
(T
));
8072 elsif Is_Array_Type
(T
) then
8073 return Is_Fully_Defined
(Component_Type
(T
));
8075 elsif Is_Record_Type
(T
)
8076 and not Is_Private_Type
(T
)
8078 -- Verify that the record type has no components with private types
8079 -- without completion.
8085 Comp
:= First_Component
(T
);
8086 while Present
(Comp
) loop
8087 if not Is_Fully_Defined
(Etype
(Comp
)) then
8091 Next_Component
(Comp
);
8096 -- For the designated type of an access to subprogram, all types in
8097 -- the profile must be fully defined.
8099 elsif Ekind
(T
) = E_Subprogram_Type
then
8104 F
:= First_Formal
(T
);
8105 while Present
(F
) loop
8106 if not Is_Fully_Defined
(Etype
(F
)) then
8113 return Is_Fully_Defined
(Etype
(T
));
8117 return not Is_Private_Type
(T
)
8118 or else Present
(Full_View
(Base_Type
(T
)));
8120 end Is_Fully_Defined
;
8122 ---------------------------------
8123 -- Process_Default_Expressions --
8124 ---------------------------------
8126 procedure Process_Default_Expressions
8128 After
: in out Node_Id
)
8130 Loc
: constant Source_Ptr
:= Sloc
(E
);
8137 Set_Default_Expressions_Processed
(E
);
8139 -- A subprogram instance and its associated anonymous subprogram share
8140 -- their signature. The default expression functions are defined in the
8141 -- wrapper packages for the anonymous subprogram, and should not be
8142 -- generated again for the instance.
8144 if Is_Generic_Instance
(E
)
8145 and then Present
(Alias
(E
))
8146 and then Default_Expressions_Processed
(Alias
(E
))
8151 Formal
:= First_Formal
(E
);
8152 while Present
(Formal
) loop
8153 if Present
(Default_Value
(Formal
)) then
8155 -- We work with a copy of the default expression because we
8156 -- do not want to disturb the original, since this would mess
8157 -- up the conformance checking.
8159 Dcopy
:= New_Copy_Tree
(Default_Value
(Formal
));
8161 -- The analysis of the expression may generate insert actions,
8162 -- which of course must not be executed. We wrap those actions
8163 -- in a procedure that is not called, and later on eliminated.
8164 -- The following cases have no side-effects, and are analyzed
8167 if Nkind
(Dcopy
) = N_Identifier
8168 or else Nkind_In
(Dcopy
, N_Expanded_Name
,
8170 N_Character_Literal
,
8173 or else (Nkind
(Dcopy
) = N_Attribute_Reference
8174 and then Attribute_Name
(Dcopy
) = Name_Null_Parameter
)
8175 or else Known_Null
(Dcopy
)
8177 -- If there is no default function, we must still do a full
8178 -- analyze call on the default value, to ensure that all error
8179 -- checks are performed, e.g. those associated with static
8180 -- evaluation. Note: this branch will always be taken if the
8181 -- analyzer is turned off (but we still need the error checks).
8183 -- Note: the setting of parent here is to meet the requirement
8184 -- that we can only analyze the expression while attached to
8185 -- the tree. Really the requirement is that the parent chain
8186 -- be set, we don't actually need to be in the tree.
8188 Set_Parent
(Dcopy
, Declaration_Node
(Formal
));
8191 -- Default expressions are resolved with their own type if the
8192 -- context is generic, to avoid anomalies with private types.
8194 if Ekind
(Scope
(E
)) = E_Generic_Package
then
8197 Resolve
(Dcopy
, Etype
(Formal
));
8200 -- If that resolved expression will raise constraint error,
8201 -- then flag the default value as raising constraint error.
8202 -- This allows a proper error message on the calls.
8204 if Raises_Constraint_Error
(Dcopy
) then
8205 Set_Raises_Constraint_Error
(Default_Value
(Formal
));
8208 -- If the default is a parameterless call, we use the name of
8209 -- the called function directly, and there is no body to build.
8211 elsif Nkind
(Dcopy
) = N_Function_Call
8212 and then No
(Parameter_Associations
(Dcopy
))
8216 -- Else construct and analyze the body of a wrapper procedure
8217 -- that contains an object declaration to hold the expression.
8218 -- Given that this is done only to complete the analysis, it is
8219 -- simpler to build a procedure than a function which might
8220 -- involve secondary stack expansion.
8223 Dnam
:= Make_Temporary
(Loc
, 'D');
8226 Make_Subprogram_Body
(Loc
,
8228 Make_Procedure_Specification
(Loc
,
8229 Defining_Unit_Name
=> Dnam
),
8231 Declarations
=> New_List
(
8232 Make_Object_Declaration
(Loc
,
8233 Defining_Identifier
=> Make_Temporary
(Loc
, 'T'),
8234 Object_Definition
=>
8235 New_Occurrence_Of
(Etype
(Formal
), Loc
),
8236 Expression
=> New_Copy_Tree
(Dcopy
))),
8238 Handled_Statement_Sequence
=>
8239 Make_Handled_Sequence_Of_Statements
(Loc
,
8240 Statements
=> Empty_List
));
8242 Set_Scope
(Dnam
, Scope
(E
));
8243 Set_Assignment_OK
(First
(Declarations
(Dbody
)));
8244 Set_Is_Eliminated
(Dnam
);
8245 Insert_After
(After
, Dbody
);
8251 Next_Formal
(Formal
);
8253 end Process_Default_Expressions
;
8255 ----------------------------------------
8256 -- Set_Component_Alignment_If_Not_Set --
8257 ----------------------------------------
8259 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
) is
8261 -- Ignore if not base type, subtypes don't need anything
8263 if Typ
/= Base_Type
(Typ
) then
8267 -- Do not override existing representation
8269 if Is_Packed
(Typ
) then
8272 elsif Has_Specified_Layout
(Typ
) then
8275 elsif Component_Alignment
(Typ
) /= Calign_Default
then
8279 Set_Component_Alignment
8280 (Typ
, Scope_Stack
.Table
8281 (Scope_Stack
.Last
).Component_Alignment_Default
);
8283 end Set_Component_Alignment_If_Not_Set
;
8285 --------------------------
8286 -- Set_SSO_From_Default --
8287 --------------------------
8289 procedure Set_SSO_From_Default
(T
: Entity_Id
) is
8293 -- Set default SSO for an array or record base type, except in case of
8294 -- a type extension (which always inherits the SSO of its parent type).
8297 and then (Is_Array_Type
(T
)
8298 or else (Is_Record_Type
(T
)
8299 and then not (Is_Tagged_Type
(T
)
8300 and then Is_Derived_Type
(T
))))
8303 (Bytes_Big_Endian
and then SSO_Set_Low_By_Default
(T
))
8305 (not Bytes_Big_Endian
and then SSO_Set_High_By_Default
(T
));
8307 if (SSO_Set_Low_By_Default
(T
) or else SSO_Set_High_By_Default
(T
))
8309 -- For a record type, if bit order is specified explicitly,
8310 -- then do not set SSO from default if not consistent. Note that
8311 -- we do not want to look at a Bit_Order attribute definition
8312 -- for a parent: if we were to inherit Bit_Order, then both
8313 -- SSO_Set_*_By_Default flags would have been cleared already
8314 -- (by Inherit_Aspects_At_Freeze_Point).
8319 Has_Rep_Item
(T
, Name_Bit_Order
, Check_Parents
=> False)
8320 and then Reverse_Bit_Order
(T
) /= Reversed
)
8322 -- If flags cause reverse storage order, then set the result. Note
8323 -- that we would have ignored the pragma setting the non default
8324 -- storage order in any case, hence the assertion at this point.
8327 (not Reversed
or else Support_Nondefault_SSO_On_Target
);
8329 Set_Reverse_Storage_Order
(T
, Reversed
);
8331 -- For a record type, also set reversed bit order. Note: if a bit
8332 -- order has been specified explicitly, then this is a no-op.
8334 if Is_Record_Type
(T
) then
8335 Set_Reverse_Bit_Order
(T
, Reversed
);
8339 end Set_SSO_From_Default
;
8345 procedure Undelay_Type
(T
: Entity_Id
) is
8347 Set_Has_Delayed_Freeze
(T
, False);
8348 Set_Freeze_Node
(T
, Empty
);
8350 -- Since we don't want T to have a Freeze_Node, we don't want its
8351 -- Full_View or Corresponding_Record_Type to have one either.
8353 -- ??? Fundamentally, this whole handling is unpleasant. What we really
8354 -- want is to be sure that for an Itype that's part of record R and is a
8355 -- subtype of type T, that it's frozen after the later of the freeze
8356 -- points of R and T. We have no way of doing that directly, so what we
8357 -- do is force most such Itypes to be frozen as part of freezing R via
8358 -- this procedure and only delay the ones that need to be delayed
8359 -- (mostly the designated types of access types that are defined as part
8362 if Is_Private_Type
(T
)
8363 and then Present
(Full_View
(T
))
8364 and then Is_Itype
(Full_View
(T
))
8365 and then Is_Record_Type
(Scope
(Full_View
(T
)))
8367 Undelay_Type
(Full_View
(T
));
8370 if Is_Concurrent_Type
(T
)
8371 and then Present
(Corresponding_Record_Type
(T
))
8372 and then Is_Itype
(Corresponding_Record_Type
(T
))
8373 and then Is_Record_Type
(Scope
(Corresponding_Record_Type
(T
)))
8375 Undelay_Type
(Corresponding_Record_Type
(T
));
8383 procedure Warn_Overlay
(Expr
: Node_Id
; Typ
: Entity_Id
; Nam
: Entity_Id
) is
8384 Ent
: constant Entity_Id
:= Entity
(Nam
);
8385 -- The object to which the address clause applies
8388 Old
: Entity_Id
:= Empty
;
8392 -- No warning if address clause overlay warnings are off
8394 if not Address_Clause_Overlay_Warnings
then
8398 -- No warning if there is an explicit initialization
8400 Init
:= Original_Node
(Expression
(Declaration_Node
(Ent
)));
8402 if Present
(Init
) and then Comes_From_Source
(Init
) then
8406 -- We only give the warning for non-imported entities of a type for
8407 -- which a non-null base init proc is defined, or for objects of access
8408 -- types with implicit null initialization, or when Normalize_Scalars
8409 -- applies and the type is scalar or a string type (the latter being
8410 -- tested for because predefined String types are initialized by inline
8411 -- code rather than by an init_proc). Note that we do not give the
8412 -- warning for Initialize_Scalars, since we suppressed initialization
8413 -- in this case. Also, do not warn if Suppress_Initialization is set.
8416 and then not Is_Imported
(Ent
)
8417 and then not Initialization_Suppressed
(Typ
)
8418 and then (Has_Non_Null_Base_Init_Proc
(Typ
)
8419 or else Is_Access_Type
(Typ
)
8420 or else (Normalize_Scalars
8421 and then (Is_Scalar_Type
(Typ
)
8422 or else Is_String_Type
(Typ
))))
8424 if Nkind
(Expr
) = N_Attribute_Reference
8425 and then Is_Entity_Name
(Prefix
(Expr
))
8427 Old
:= Entity
(Prefix
(Expr
));
8429 elsif Is_Entity_Name
(Expr
)
8430 and then Ekind
(Entity
(Expr
)) = E_Constant
8432 Decl
:= Declaration_Node
(Entity
(Expr
));
8434 if Nkind
(Decl
) = N_Object_Declaration
8435 and then Present
(Expression
(Decl
))
8436 and then Nkind
(Expression
(Decl
)) = N_Attribute_Reference
8437 and then Is_Entity_Name
(Prefix
(Expression
(Decl
)))
8439 Old
:= Entity
(Prefix
(Expression
(Decl
)));
8441 elsif Nkind
(Expr
) = N_Function_Call
then
8445 -- A function call (most likely to To_Address) is probably not an
8446 -- overlay, so skip warning. Ditto if the function call was inlined
8447 -- and transformed into an entity.
8449 elsif Nkind
(Original_Node
(Expr
)) = N_Function_Call
then
8453 -- If a pragma Import follows, we assume that it is for the current
8454 -- target of the address clause, and skip the warning. There may be
8455 -- a source pragma or an aspect that specifies import and generates
8456 -- the corresponding pragma. These will indicate that the entity is
8457 -- imported and that is checked above so that the spurious warning
8458 -- (generated when the entity is frozen) will be suppressed. The
8459 -- pragma may be attached to the aspect, so it is not yet a list
8462 if Is_List_Member
(Parent
(Expr
)) then
8463 Decl
:= Next
(Parent
(Expr
));
8466 and then Nkind
(Decl
) = N_Pragma
8467 and then Pragma_Name_Mapped
(Decl
) = Name_Import
8473 -- Otherwise give warning message
8475 if Present
(Old
) then
8476 Error_Msg_Node_2
:= Old
;
8478 ("default initialization of & may modify &??",
8482 ("default initialization of & may modify overlaid storage??",
8486 -- Add friendly warning if initialization comes from a packed array
8489 if Is_Record_Type
(Typ
) then
8494 Comp
:= First_Component
(Typ
);
8495 while Present
(Comp
) loop
8496 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
8497 and then Present
(Expression
(Parent
(Comp
)))
8500 elsif Is_Array_Type
(Etype
(Comp
))
8501 and then Present
(Packed_Array_Impl_Type
(Etype
(Comp
)))
8504 ("\packed array component& " &
8505 "will be initialized to zero??",
8509 Next_Component
(Comp
);
8516 ("\use pragma Import for & to " &
8517 "suppress initialization (RM B.1(24))??",