2002-05-03 David S. Miller <davem@redhat.com>
[official-gcc.git] / gcc / config / sparc / sparc.h
blobfd6312a6b45f2e12f0ed05b0ddebcad795521e8b
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com).
5 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6 at Cygnus Support.
8 This file is part of GNU CC.
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
28 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
29 /* #define SPARC_BI_ARCH */
31 /* Macro used later in this file to determine default architecture. */
32 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
34 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
35 architectures to compile for. We allow targets to choose compile time or
36 runtime selection. */
37 #ifdef IN_LIBGCC2
38 #if defined(__sparcv9) || defined(__arch64__)
39 #define TARGET_ARCH32 0
40 #else
41 #define TARGET_ARCH32 1
42 #endif /* sparc64 */
43 #else
44 #ifdef SPARC_BI_ARCH
45 #define TARGET_ARCH32 (! TARGET_64BIT)
46 #else
47 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
48 #endif /* SPARC_BI_ARCH */
49 #endif /* IN_LIBGCC2 */
50 #define TARGET_ARCH64 (! TARGET_ARCH32)
52 /* Code model selection.
53 -mcmodel is used to select the v9 code model.
54 Different code models aren't supported for v7/8 code.
56 TARGET_CM_32: 32 bit address space, top 32 bits = 0,
57 pointers are 32 bits. Note that this isn't intended
58 to imply a v7/8 abi.
60 TARGET_CM_MEDLOW: 32 bit address space, top 32 bits = 0,
61 avoid generating %uhi and %ulo terms,
62 pointers are 64 bits.
64 TARGET_CM_MEDMID: 64 bit address space.
65 The executable must be in the low 16 TB of memory.
66 This corresponds to the low 44 bits, and the %[hml]44
67 relocs are used. The text segment has a maximum size
68 of 31 bits.
70 TARGET_CM_MEDANY: 64 bit address space.
71 The text and data segments have a maximum size of 31
72 bits and may be located anywhere. The maximum offset
73 from any instruction to the label _GLOBAL_OFFSET_TABLE_
74 is 31 bits.
76 TARGET_CM_EMBMEDANY: 64 bit address space.
77 The text and data segments have a maximum size of 31 bits
78 and may be located anywhere. Register %g4 contains
79 the start address of the data segment.
82 enum cmodel {
83 CM_32,
84 CM_MEDLOW,
85 CM_MEDMID,
86 CM_MEDANY,
87 CM_EMBMEDANY
90 /* Value of -mcmodel specified by user. */
91 extern const char *sparc_cmodel_string;
92 /* One of CM_FOO. */
93 extern enum cmodel sparc_cmodel;
95 /* V9 code model selection. */
96 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
97 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
98 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
99 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
101 #define SPARC_DEFAULT_CMODEL CM_32
103 /* This is call-clobbered in the normal ABI, but is reserved in the
104 home grown (aka upward compatible) embedded ABI. */
105 #define EMBMEDANY_BASE_REG "%g4"
107 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
108 and specified by the user via --with-cpu=foo.
109 This specifies the cpu implementation, not the architecture size. */
110 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
111 capable cpu's. */
112 #define TARGET_CPU_sparc 0
113 #define TARGET_CPU_v7 0 /* alias for previous */
114 #define TARGET_CPU_sparclet 1
115 #define TARGET_CPU_sparclite 2
116 #define TARGET_CPU_v8 3 /* generic v8 implementation */
117 #define TARGET_CPU_supersparc 4
118 #define TARGET_CPU_hypersparc 5
119 #define TARGET_CPU_sparc86x 6
120 #define TARGET_CPU_sparclite86x 6
121 #define TARGET_CPU_v9 7 /* generic v9 implementation */
122 #define TARGET_CPU_sparcv9 7 /* alias */
123 #define TARGET_CPU_sparc64 7 /* alias */
124 #define TARGET_CPU_ultrasparc 8
125 #define TARGET_CPU_ultrasparc3 9
127 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
128 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
129 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
131 #define CPP_CPU32_DEFAULT_SPEC ""
132 #define ASM_CPU32_DEFAULT_SPEC ""
134 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
135 /* ??? What does Sun's CC pass? */
136 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
137 /* ??? It's not clear how other assemblers will handle this, so by default
138 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
139 is handled in sol2.h. */
140 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
141 #endif
142 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
143 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
144 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
145 #endif
146 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
147 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
148 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
149 #endif
151 #else
153 #define CPP_CPU64_DEFAULT_SPEC ""
154 #define ASM_CPU64_DEFAULT_SPEC ""
156 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
157 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
158 #define CPP_CPU32_DEFAULT_SPEC ""
159 #define ASM_CPU32_DEFAULT_SPEC ""
160 #endif
162 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
163 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
164 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
165 #endif
167 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
168 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
169 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
170 #endif
172 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
173 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
174 #define ASM_CPU32_DEFAULT_SPEC ""
175 #endif
177 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
178 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
179 #define ASM_CPU32_DEFAULT_SPEC ""
180 #endif
182 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
183 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
184 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
185 #endif
187 #endif
189 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
190 Unrecognized value in TARGET_CPU_DEFAULT.
191 #endif
193 #ifdef SPARC_BI_ARCH
195 #define CPP_CPU_DEFAULT_SPEC \
196 (DEFAULT_ARCH32_P ? "\
197 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
198 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
199 " : "\
200 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
201 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
203 #define ASM_CPU_DEFAULT_SPEC \
204 (DEFAULT_ARCH32_P ? "\
205 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
206 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
207 " : "\
208 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
209 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
212 #else /* !SPARC_BI_ARCH */
214 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
215 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
217 #endif /* !SPARC_BI_ARCH */
219 /* Define macros to distinguish architectures. */
221 /* Common CPP definitions used by CPP_SPEC amongst the various targets
222 for handling -mcpu=xxx switches. */
223 #define CPP_CPU_SPEC "\
224 %{msoft-float:-D_SOFT_FLOAT} \
225 %{mcypress:} \
226 %{msparclite:-D__sparclite__} \
227 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
228 %{mv8:-D__sparc_v8__} \
229 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
230 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
231 %{mcpu=sparclite:-D__sparclite__} \
232 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
233 %{mcpu=v8:-D__sparc_v8__} \
234 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
235 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
236 %{mcpu=sparclite86x:-D__sparclite86x__} \
237 %{mcpu=v9:-D__sparc_v9__} \
238 %{mcpu=ultrasparc:-D__sparc_v9__} \
239 %{mcpu=ultrasparc3:-D__sparc_v9__} \
240 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
243 /* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
244 the right varags.h file when bootstrapping. */
245 /* ??? It's not clear what value we want to use for -Acpu/machine for
246 sparc64 in 32 bit environments, so for now we only use `sparc64' in
247 64 bit environments. */
249 #ifdef SPARC_BI_ARCH
251 #define CPP_ARCH32_SPEC "-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int \
252 -D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
253 #define CPP_ARCH64_SPEC "-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int \
254 -D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
256 #else
258 #define CPP_ARCH32_SPEC "-D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
259 #define CPP_ARCH64_SPEC "-D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
261 #endif
263 #define CPP_ARCH_DEFAULT_SPEC \
264 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
266 #define CPP_ARCH_SPEC "\
267 %{m32:%(cpp_arch32)} \
268 %{m64:%(cpp_arch64)} \
269 %{!m32:%{!m64:%(cpp_arch_default)}} \
272 /* Macros to distinguish endianness. */
273 #define CPP_ENDIAN_SPEC "\
274 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
275 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
277 /* Macros to distinguish the particular subtarget. */
278 #define CPP_SUBTARGET_SPEC ""
280 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
282 /* Prevent error on `-sun4' and `-target sun4' options. */
283 /* This used to translate -dalign to -malign, but that is no good
284 because it can't turn off the usual meaning of making debugging dumps. */
285 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
286 ??? Delete support for -m<cpu> for 2.9. */
288 #define CC1_SPEC "\
289 %{sun4:} %{target:} \
290 %{mcypress:-mcpu=cypress} \
291 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
292 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
295 /* Override in target specific files. */
296 #define ASM_CPU_SPEC "\
297 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
298 %{msparclite:-Asparclite} \
299 %{mf930:-Asparclite} %{mf934:-Asparclite} \
300 %{mcpu=sparclite:-Asparclite} \
301 %{mcpu=sparclite86x:-Asparclite} \
302 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
303 %{mv8plus:-Av8plus} \
304 %{mcpu=v9:-Av9} \
305 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
306 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
307 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
310 /* Word size selection, among other things.
311 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
313 #define ASM_ARCH32_SPEC "-32"
314 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
315 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
316 #else
317 #define ASM_ARCH64_SPEC "-64"
318 #endif
319 #define ASM_ARCH_DEFAULT_SPEC \
320 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
322 #define ASM_ARCH_SPEC "\
323 %{m32:%(asm_arch32)} \
324 %{m64:%(asm_arch64)} \
325 %{!m32:%{!m64:%(asm_arch_default)}} \
328 #ifdef HAVE_AS_RELAX_OPTION
329 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
330 #else
331 #define ASM_RELAX_SPEC ""
332 #endif
334 /* Special flags to the Sun-4 assembler when using pipe for input. */
336 #define ASM_SPEC "\
337 %| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \
338 %(asm_cpu) %(asm_relax)"
340 /* This macro defines names of additional specifications to put in the specs
341 that can be used in various specifications like CC1_SPEC. Its definition
342 is an initializer with a subgrouping for each command option.
344 Each subgrouping contains a string constant, that defines the
345 specification name, and a string constant that used by the GNU CC driver
346 program.
348 Do not define this macro if it does not need to do anything. */
350 #define EXTRA_SPECS \
351 { "cpp_cpu", CPP_CPU_SPEC }, \
352 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
353 { "cpp_arch32", CPP_ARCH32_SPEC }, \
354 { "cpp_arch64", CPP_ARCH64_SPEC }, \
355 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
356 { "cpp_arch", CPP_ARCH_SPEC }, \
357 { "cpp_endian", CPP_ENDIAN_SPEC }, \
358 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
359 { "asm_cpu", ASM_CPU_SPEC }, \
360 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
361 { "asm_arch32", ASM_ARCH32_SPEC }, \
362 { "asm_arch64", ASM_ARCH64_SPEC }, \
363 { "asm_relax", ASM_RELAX_SPEC }, \
364 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
365 { "asm_arch", ASM_ARCH_SPEC }, \
366 SUBTARGET_EXTRA_SPECS
368 #define SUBTARGET_EXTRA_SPECS
370 /* Because libgcc can generate references back to libc (via .umul etc.) we have
371 to list libc again after the second libgcc. */
372 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
375 #ifdef SPARC_BI_ARCH
376 #define NO_BUILTIN_PTRDIFF_TYPE
377 #define NO_BUILTIN_SIZE_TYPE
378 #endif
379 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
380 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
382 /* ??? This should be 32 bits for v9 but what can we do? */
383 #define WCHAR_TYPE "short unsigned int"
384 #define WCHAR_TYPE_SIZE 16
386 /* Show we can debug even without a frame pointer. */
387 #define CAN_DEBUG_WITHOUT_FP
389 #define OVERRIDE_OPTIONS sparc_override_options ()
391 /* Generate DBX debugging information. */
393 #define DBX_DEBUGGING_INFO
395 /* Run-time compilation parameters selecting different hardware subsets. */
397 extern int target_flags;
399 /* Nonzero if we should generate code to use the fpu. */
400 #define MASK_FPU 1
401 #define TARGET_FPU (target_flags & MASK_FPU)
403 /* Nonzero if we should assume that double pointers might be unaligned.
404 This can happen when linking gcc compiled code with other compilers,
405 because the ABI only guarantees 4 byte alignment. */
406 #define MASK_UNALIGNED_DOUBLES 4
407 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
409 /* Nonzero means that we should generate code for a v8 sparc. */
410 #define MASK_V8 0x8
411 #define TARGET_V8 (target_flags & MASK_V8)
413 /* Nonzero means that we should generate code for a sparclite.
414 This enables the sparclite specific instructions, but does not affect
415 whether FPU instructions are emitted. */
416 #define MASK_SPARCLITE 0x10
417 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
419 /* Nonzero if we're compiling for the sparclet. */
420 #define MASK_SPARCLET 0x20
421 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
423 /* Nonzero if we're compiling for v9 sparc.
424 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
425 the word size is 64. */
426 #define MASK_V9 0x40
427 #define TARGET_V9 (target_flags & MASK_V9)
429 /* Non-zero to generate code that uses the instructions deprecated in
430 the v9 architecture. This option only applies to v9 systems. */
431 /* ??? This isn't user selectable yet. It's used to enable such insns
432 on 32 bit v9 systems and for the moment they're permanently disabled
433 on 64 bit v9 systems. */
434 #define MASK_DEPRECATED_V8_INSNS 0x80
435 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
437 /* Mask of all CPU selection flags. */
438 #define MASK_ISA \
439 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
441 /* Non-zero means don't pass `-assert pure-text' to the linker. */
442 #define MASK_IMPURE_TEXT 0x100
443 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
445 /* Nonzero means that we should generate code using a flat register window
446 model, i.e. no save/restore instructions are generated, which is
447 compatible with normal sparc code.
448 The frame pointer is %i7 instead of %fp. */
449 #define MASK_FLAT 0x200
450 #define TARGET_FLAT (target_flags & MASK_FLAT)
452 /* Nonzero means use the registers that the Sparc ABI reserves for
453 application software. This must be the default to coincide with the
454 setting in FIXED_REGISTERS. */
455 #define MASK_APP_REGS 0x400
456 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
458 /* Option to select how quad word floating point is implemented.
459 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
460 Otherwise, we use the SPARC ABI quad library functions. */
461 #define MASK_HARD_QUAD 0x800
462 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
464 /* Non-zero on little-endian machines. */
465 /* ??? Little endian support currently only exists for sparclet-aout and
466 sparc64-elf configurations. May eventually want to expand the support
467 to all targets, but for now it's kept local to only those two. */
468 #define MASK_LITTLE_ENDIAN 0x1000
469 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
471 /* 0x2000, 0x4000 are unused */
473 /* Nonzero if pointers are 64 bits. */
474 #define MASK_PTR64 0x8000
475 #define TARGET_PTR64 (target_flags & MASK_PTR64)
477 /* Nonzero if generating code to run in a 64 bit environment.
478 This is intended to only be used by TARGET_ARCH{32,64} as they are the
479 mechanism used to control compile time or run time selection. */
480 #define MASK_64BIT 0x10000
481 #define TARGET_64BIT (target_flags & MASK_64BIT)
483 /* 0x20000,0x40000 unused */
485 /* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
486 adding 2047 to %sp. This option is for v9 only and is the default. */
487 #define MASK_STACK_BIAS 0x80000
488 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
490 /* 0x100000,0x200000 unused */
492 /* Non-zero means -m{,no-}fpu was passed on the command line. */
493 #define MASK_FPU_SET 0x400000
494 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
496 /* Use the UltraSPARC Visual Instruction Set extensions. */
497 #define MASK_VIS 0x1000000
498 #define TARGET_VIS (target_flags & MASK_VIS)
500 /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
501 the current out and global registers and Linux 2.2+ as well. */
502 #define MASK_V8PLUS 0x2000000
503 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
505 /* Force a the fastest alignment on structures to take advantage of
506 faster copies. */
507 #define MASK_FASTER_STRUCTS 0x4000000
508 #define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
510 /* Use IEEE quad long double. */
511 #define MASK_LONG_DOUBLE_128 0x8000000
512 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
514 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
515 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
516 to get high 32 bits. False in V8+ or V9 because multiply stores
517 a 64 bit result in a register. */
519 #define TARGET_HARD_MUL32 \
520 ((TARGET_V8 || TARGET_SPARCLITE \
521 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
522 && ! TARGET_V8PLUS && TARGET_ARCH32)
524 #define TARGET_HARD_MUL \
525 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
526 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
529 /* Macro to define tables used to set the flags.
530 This is a list in braces of pairs in braces,
531 each pair being { "NAME", VALUE }
532 where VALUE is the bits to set or minus the bits to clear.
533 An empty string NAME is used to identify the default VALUE. */
535 #define TARGET_SWITCHES \
536 { {"fpu", MASK_FPU | MASK_FPU_SET, \
537 N_("Use hardware fp") }, \
538 {"no-fpu", -MASK_FPU, \
539 N_("Do not use hardware fp") }, \
540 {"no-fpu", MASK_FPU_SET, NULL, }, \
541 {"hard-float", MASK_FPU | MASK_FPU_SET, \
542 N_("Use hardware fp") }, \
543 {"soft-float", -MASK_FPU, \
544 N_("Do not use hardware fp") }, \
545 {"soft-float", MASK_FPU_SET, NULL }, \
546 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, \
547 N_("Assume possible double misalignment") }, \
548 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, \
549 N_("Assume all doubles are aligned") }, \
550 {"impure-text", MASK_IMPURE_TEXT, \
551 N_("Pass -assert pure-text to linker") }, \
552 {"no-impure-text", -MASK_IMPURE_TEXT, \
553 N_("Do not pass -assert pure-text to linker") }, \
554 {"flat", MASK_FLAT, \
555 N_("Use flat register window model") }, \
556 {"no-flat", -MASK_FLAT, \
557 N_("Do not use flat register window model") }, \
558 {"app-regs", MASK_APP_REGS, \
559 N_("Use ABI reserved registers") }, \
560 {"no-app-regs", -MASK_APP_REGS, \
561 N_("Do not use ABI reserved registers") }, \
562 {"hard-quad-float", MASK_HARD_QUAD, \
563 N_("Use hardware quad fp instructions") }, \
564 {"soft-quad-float", -MASK_HARD_QUAD, \
565 N_("Do not use hardware quad fp instructions") }, \
566 {"v8plus", MASK_V8PLUS, \
567 N_("Compile for v8plus ABI") }, \
568 {"no-v8plus", -MASK_V8PLUS, \
569 N_("Do not compile for v8plus ABI") }, \
570 {"vis", MASK_VIS, \
571 N_("Utilize Visual Instruction Set") }, \
572 {"no-vis", -MASK_VIS, \
573 N_("Do not utilize Visual Instruction Set") }, \
574 /* ??? These are deprecated, coerced to -mcpu=. Delete in 2.9. */ \
575 {"cypress", 0, \
576 N_("Optimize for Cypress processors") }, \
577 {"sparclite", 0, \
578 N_("Optimize for SparcLite processors") }, \
579 {"f930", 0, \
580 N_("Optimize for F930 processors") }, \
581 {"f934", 0, \
582 N_("Optimize for F934 processors") }, \
583 {"v8", 0, \
584 N_("Use V8 Sparc ISA") }, \
585 {"supersparc", 0, \
586 N_("Optimize for SuperSparc processors") }, \
587 /* End of deprecated options. */ \
588 {"ptr64", MASK_PTR64, \
589 N_("Pointers are 64-bit") }, \
590 {"ptr32", -MASK_PTR64, \
591 N_("Pointers are 32-bit") }, \
592 {"32", -MASK_64BIT, \
593 N_("Use 32-bit ABI") }, \
594 {"64", MASK_64BIT, \
595 N_("Use 64-bit ABI") }, \
596 {"stack-bias", MASK_STACK_BIAS, \
597 N_("Use stack bias") }, \
598 {"no-stack-bias", -MASK_STACK_BIAS, \
599 N_("Do not use stack bias") }, \
600 {"faster-structs", MASK_FASTER_STRUCTS, \
601 N_("Use structs on stronger alignment for double-word copies") }, \
602 {"no-faster-structs", -MASK_FASTER_STRUCTS, \
603 N_("Do not use structs on stronger alignment for double-word copies") }, \
604 {"relax", 0, \
605 N_("Optimize tail call instructions in assembler and linker") }, \
606 {"no-relax", 0, \
607 N_("Do not optimize tail call instructions in assembler or linker") }, \
608 SUBTARGET_SWITCHES \
609 { "", TARGET_DEFAULT, ""}}
611 /* MASK_APP_REGS must always be the default because that's what
612 FIXED_REGISTERS is set to and -ffixed- is processed before
613 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
614 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
616 /* This is meant to be redefined in target specific files. */
617 #define SUBTARGET_SWITCHES
619 /* Processor type.
620 These must match the values for the cpu attribute in sparc.md. */
621 enum processor_type {
622 PROCESSOR_V7,
623 PROCESSOR_CYPRESS,
624 PROCESSOR_V8,
625 PROCESSOR_SUPERSPARC,
626 PROCESSOR_SPARCLITE,
627 PROCESSOR_F930,
628 PROCESSOR_F934,
629 PROCESSOR_HYPERSPARC,
630 PROCESSOR_SPARCLITE86X,
631 PROCESSOR_SPARCLET,
632 PROCESSOR_TSC701,
633 PROCESSOR_V9,
634 PROCESSOR_ULTRASPARC,
635 PROCESSOR_ULTRASPARC3
638 /* This is set from -m{cpu,tune}=xxx. */
639 extern enum processor_type sparc_cpu;
641 /* Recast the cpu class to be the cpu attribute.
642 Every file includes us, but not every file includes insn-attr.h. */
643 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
645 #define TARGET_OPTIONS \
647 { "cpu=", &sparc_select[1].string, \
648 N_("Use features of and schedule code for given CPU") }, \
649 { "tune=", &sparc_select[2].string, \
650 N_("Schedule code for given CPU") }, \
651 { "cmodel=", &sparc_cmodel_string, \
652 N_("Use given Sparc code model") }, \
653 SUBTARGET_OPTIONS \
656 /* This is meant to be redefined in target specific files. */
657 #define SUBTARGET_OPTIONS
659 /* sparc_select[0] is reserved for the default cpu. */
660 struct sparc_cpu_select
662 const char *string;
663 const char *const name;
664 const int set_tune_p;
665 const int set_arch_p;
668 extern struct sparc_cpu_select sparc_select[];
670 /* target machine storage layout */
672 /* Define this if most significant bit is lowest numbered
673 in instructions that operate on numbered bit-fields. */
674 #define BITS_BIG_ENDIAN 1
676 /* Define this if most significant byte of a word is the lowest numbered. */
677 #define BYTES_BIG_ENDIAN 1
679 /* Define this if most significant word of a multiword number is the lowest
680 numbered. */
681 #define WORDS_BIG_ENDIAN 1
683 /* Define this to set the endianness to use in libgcc2.c, which can
684 not depend on target_flags. */
685 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
686 #define LIBGCC2_WORDS_BIG_ENDIAN 0
687 #else
688 #define LIBGCC2_WORDS_BIG_ENDIAN 1
689 #endif
691 #define MAX_BITS_PER_WORD 64
693 /* Width of a word, in units (bytes). */
694 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
695 #ifdef IN_LIBGCC2
696 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
697 #else
698 #define MIN_UNITS_PER_WORD 4
699 #endif
701 /* Now define the sizes of the C data types. */
703 #define SHORT_TYPE_SIZE 16
704 #define INT_TYPE_SIZE 32
705 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
706 #define LONG_LONG_TYPE_SIZE 64
707 #define FLOAT_TYPE_SIZE 32
708 #define DOUBLE_TYPE_SIZE 64
710 #ifdef SPARC_BI_ARCH
711 #define MAX_LONG_TYPE_SIZE 64
712 #endif
714 #if 0
715 /* ??? This does not work in SunOS 4.x, so it is not enabled here.
716 Instead, it is enabled in sol2.h, because it does work under Solaris. */
717 /* Define for support of TFmode long double.
718 Sparc ABI says that long double is 4 words. */
719 #define LONG_DOUBLE_TYPE_SIZE 128
720 #endif
722 /* Width in bits of a pointer.
723 See also the macro `Pmode' defined below. */
724 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
726 /* If we have to extend pointers (only when TARGET_ARCH64 and not
727 TARGET_PTR64), we want to do it unsigned. This macro does nothing
728 if ptr_mode and Pmode are the same. */
729 #define POINTERS_EXTEND_UNSIGNED 1
731 /* A macro to update MODE and UNSIGNEDP when an object whose type
732 is TYPE and which has the specified mode and signedness is to be
733 stored in a register. This macro is only called when TYPE is a
734 scalar type. */
735 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
736 if (TARGET_ARCH64 \
737 && GET_MODE_CLASS (MODE) == MODE_INT \
738 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
739 (MODE) = DImode;
741 /* Define this macro if the promotion described by PROMOTE_MODE
742 should also be done for outgoing function arguments. */
743 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
744 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
745 for this value. */
746 #define PROMOTE_FUNCTION_ARGS
748 /* Define this macro if the promotion described by PROMOTE_MODE
749 should also be done for the return value of functions.
750 If this macro is defined, FUNCTION_VALUE must perform the same
751 promotions done by PROMOTE_MODE. */
752 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
753 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
754 for this value. */
755 #define PROMOTE_FUNCTION_RETURN
757 /* Define this macro if the promotion described by PROMOTE_MODE
758 should _only_ be performed for outgoing function arguments or
759 function return values, as specified by PROMOTE_FUNCTION_ARGS
760 and PROMOTE_FUNCTION_RETURN, respectively. */
761 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
762 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
763 for this value. For TARGET_ARCH64 we need it, as we don't have instructions
764 for arithmetic operations which do zero/sign extension at the same time,
765 so without this we end up with a srl/sra after every assignment to an
766 user variable, which means very very bad code. */
767 #define PROMOTE_FOR_CALL_ONLY
769 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
770 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
772 /* Boundary (in *bits*) on which stack pointer should be aligned. */
773 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
775 /* ALIGN FRAMES on double word boundaries */
777 #define SPARC_STACK_ALIGN(LOC) \
778 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
780 /* Allocation boundary (in *bits*) for the code of a function. */
781 #define FUNCTION_BOUNDARY 32
783 /* Alignment of field after `int : 0' in a structure. */
784 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
786 /* Every structure's size must be a multiple of this. */
787 #define STRUCTURE_SIZE_BOUNDARY 8
789 /* A bitfield declared as `int' forces `int' alignment for the struct. */
790 #define PCC_BITFIELD_TYPE_MATTERS 1
792 /* No data type wants to be aligned rounder than this. */
793 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
795 /* The best alignment to use in cases where we have a choice. */
796 #define FASTEST_ALIGNMENT 64
798 /* Define this macro as an expression for the alignment of a structure
799 (given by STRUCT as a tree node) if the alignment computed in the
800 usual way is COMPUTED and the alignment explicitly specified was
801 SPECIFIED.
803 The default is to use SPECIFIED if it is larger; otherwise, use
804 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
805 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
806 (TARGET_FASTER_STRUCTS ? \
807 ((TREE_CODE (STRUCT) == RECORD_TYPE \
808 || TREE_CODE (STRUCT) == UNION_TYPE \
809 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
810 && TYPE_FIELDS (STRUCT) != 0 \
811 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
812 : MAX ((COMPUTED), (SPECIFIED))) \
813 : MAX ((COMPUTED), (SPECIFIED)))
815 /* Make strings word-aligned so strcpy from constants will be faster. */
816 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
817 ((TREE_CODE (EXP) == STRING_CST \
818 && (ALIGN) < FASTEST_ALIGNMENT) \
819 ? FASTEST_ALIGNMENT : (ALIGN))
821 /* Make arrays of chars word-aligned for the same reasons. */
822 #define DATA_ALIGNMENT(TYPE, ALIGN) \
823 (TREE_CODE (TYPE) == ARRAY_TYPE \
824 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
825 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
827 /* Set this nonzero if move instructions will actually fail to work
828 when given unaligned data. */
829 #define STRICT_ALIGNMENT 1
831 /* Things that must be doubleword aligned cannot go in the text section,
832 because the linker fails to align the text section enough!
833 Put them in the data section. This macro is only used in this file. */
834 #define MAX_TEXT_ALIGN 32
836 /* This forces all variables and constants to the data section when PIC.
837 This is because the SunOS 4 shared library scheme thinks everything in
838 text is a function, and patches the address to point to a loader stub. */
839 /* This is defined to zero for every system which doesn't use the a.out object
840 file format. */
841 #ifndef SUNOS4_SHARED_LIBRARIES
842 #define SUNOS4_SHARED_LIBRARIES 0
843 #endif
846 /* Use text section for a constant
847 unless we need more alignment than that offers. */
848 /* This is defined differently for v9 in a cover file. */
849 #define SELECT_RTX_SECTION(MODE, X, ALIGN) \
851 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
852 && ! (flag_pic && (symbolic_operand ((X), (MODE)) || SUNOS4_SHARED_LIBRARIES))) \
853 text_section (); \
854 else \
855 data_section (); \
858 /* Standard register usage. */
860 /* Number of actual hardware registers.
861 The hardware registers are assigned numbers for the compiler
862 from 0 to just below FIRST_PSEUDO_REGISTER.
863 All registers that the compiler knows about must be given numbers,
864 even those that are not normally considered general registers.
866 SPARC has 32 integer registers and 32 floating point registers.
867 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
868 accessible. We still account for them to simplify register computations
869 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
870 32+32+32+4 == 100.
871 Register 100 is used as the integer condition code register.
872 Register 101 is used as the soft frame pointer register. */
874 #define FIRST_PSEUDO_REGISTER 102
876 #define SPARC_FIRST_FP_REG 32
877 /* Additional V9 fp regs. */
878 #define SPARC_FIRST_V9_FP_REG 64
879 #define SPARC_LAST_V9_FP_REG 95
880 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
881 #define SPARC_FIRST_V9_FCC_REG 96
882 #define SPARC_LAST_V9_FCC_REG 99
883 /* V8 fcc reg. */
884 #define SPARC_FCC_REG 96
885 /* Integer CC reg. We don't distinguish %icc from %xcc. */
886 #define SPARC_ICC_REG 100
888 /* Nonzero if REGNO is an fp reg. */
889 #define SPARC_FP_REG_P(REGNO) \
890 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
892 /* Argument passing regs. */
893 #define SPARC_OUTGOING_INT_ARG_FIRST 8
894 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
895 #define SPARC_FP_ARG_FIRST 32
897 /* 1 for registers that have pervasive standard uses
898 and are not available for the register allocator.
900 On non-v9 systems:
901 g1 is free to use as temporary.
902 g2-g4 are reserved for applications. Gcc normally uses them as
903 temporaries, but this can be disabled via the -mno-app-regs option.
904 g5 through g7 are reserved for the operating system.
906 On v9 systems:
907 g1,g5 are free to use as temporaries, and are free to use between calls
908 if the call is to an external function via the PLT.
909 g4 is free to use as a temporary in the non-embedded case.
910 g4 is reserved in the embedded case.
911 g2-g3 are reserved for applications. Gcc normally uses them as
912 temporaries, but this can be disabled via the -mno-app-regs option.
913 g6-g7 are reserved for the operating system (or application in
914 embedded case).
915 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
916 currently be a fixed register until this pattern is rewritten.
917 Register 1 is also used when restoring call-preserved registers in large
918 stack frames.
920 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
921 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
924 #define FIXED_REGISTERS \
925 {1, 0, 2, 2, 2, 2, 1, 1, \
926 0, 0, 0, 0, 0, 0, 1, 0, \
927 0, 0, 0, 0, 0, 0, 0, 0, \
928 0, 0, 0, 0, 0, 0, 1, 1, \
930 0, 0, 0, 0, 0, 0, 0, 0, \
931 0, 0, 0, 0, 0, 0, 0, 0, \
932 0, 0, 0, 0, 0, 0, 0, 0, \
933 0, 0, 0, 0, 0, 0, 0, 0, \
935 0, 0, 0, 0, 0, 0, 0, 0, \
936 0, 0, 0, 0, 0, 0, 0, 0, \
937 0, 0, 0, 0, 0, 0, 0, 0, \
938 0, 0, 0, 0, 0, 0, 0, 0, \
940 0, 0, 0, 0, 0, 1}
942 /* 1 for registers not available across function calls.
943 These must include the FIXED_REGISTERS and also any
944 registers that can be used without being saved.
945 The latter must include the registers where values are returned
946 and the register where structure-value addresses are passed.
947 Aside from that, you can include as many other registers as you like. */
949 #define CALL_USED_REGISTERS \
950 {1, 1, 1, 1, 1, 1, 1, 1, \
951 1, 1, 1, 1, 1, 1, 1, 1, \
952 0, 0, 0, 0, 0, 0, 0, 0, \
953 0, 0, 0, 0, 0, 0, 1, 1, \
955 1, 1, 1, 1, 1, 1, 1, 1, \
956 1, 1, 1, 1, 1, 1, 1, 1, \
957 1, 1, 1, 1, 1, 1, 1, 1, \
958 1, 1, 1, 1, 1, 1, 1, 1, \
960 1, 1, 1, 1, 1, 1, 1, 1, \
961 1, 1, 1, 1, 1, 1, 1, 1, \
962 1, 1, 1, 1, 1, 1, 1, 1, \
963 1, 1, 1, 1, 1, 1, 1, 1, \
965 1, 1, 1, 1, 1, 1}
967 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
968 they won't be allocated. */
970 #define CONDITIONAL_REGISTER_USAGE \
971 do \
973 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
975 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
976 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
978 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
979 /* then honour it. */ \
980 if (TARGET_ARCH32 && fixed_regs[5]) \
981 fixed_regs[5] = 1; \
982 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
983 fixed_regs[5] = 0; \
984 if (! TARGET_V9) \
986 int regno; \
987 for (regno = SPARC_FIRST_V9_FP_REG; \
988 regno <= SPARC_LAST_V9_FP_REG; \
989 regno++) \
990 fixed_regs[regno] = 1; \
991 /* %fcc0 is used by v8 and v9. */ \
992 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
993 regno <= SPARC_LAST_V9_FCC_REG; \
994 regno++) \
995 fixed_regs[regno] = 1; \
997 if (! TARGET_FPU) \
999 int regno; \
1000 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
1001 fixed_regs[regno] = 1; \
1003 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
1004 /* then honour it. Likewise with g3 and g4. */ \
1005 if (fixed_regs[2] == 2) \
1006 fixed_regs[2] = ! TARGET_APP_REGS; \
1007 if (fixed_regs[3] == 2) \
1008 fixed_regs[3] = ! TARGET_APP_REGS; \
1009 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
1010 fixed_regs[4] = ! TARGET_APP_REGS; \
1011 else if (TARGET_CM_EMBMEDANY) \
1012 fixed_regs[4] = 1; \
1013 else if (fixed_regs[4] == 2) \
1014 fixed_regs[4] = 0; \
1015 if (TARGET_FLAT) \
1017 int regno; \
1018 /* Let the compiler believe the frame pointer is still \
1019 %fp, but output it as %i7. */ \
1020 fixed_regs[31] = 1; \
1021 reg_names[HARD_FRAME_POINTER_REGNUM] = "%i7"; \
1022 /* Disable leaf functions */ \
1023 memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER); \
1024 /* Make LEAF_REG_REMAP a noop. */ \
1025 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
1026 leaf_reg_remap [regno] = regno; \
1029 while (0)
1031 /* Return number of consecutive hard regs needed starting at reg REGNO
1032 to hold something of mode MODE.
1033 This is ordinarily the length in words of a value of mode MODE
1034 but can be less for certain modes in special long registers.
1036 On SPARC, ordinary registers hold 32 bits worth;
1037 this means both integer and floating point registers.
1038 On v9, integer regs hold 64 bits worth; floating point regs hold
1039 32 bits worth (this includes the new fp regs as even the odd ones are
1040 included in the hard register count). */
1042 #define HARD_REGNO_NREGS(REGNO, MODE) \
1043 (TARGET_ARCH64 \
1044 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
1045 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
1046 : (GET_MODE_SIZE (MODE) + 3) / 4) \
1047 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1049 /* Due to the ARCH64 descrepancy above we must override this next
1050 macro too. */
1051 #define REGMODE_NATURAL_SIZE(MODE) \
1052 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
1054 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1055 See sparc.c for how we initialize this. */
1056 extern const int *hard_regno_mode_classes;
1057 extern int sparc_mode_class[];
1059 /* ??? Because of the funny way we pass parameters we should allow certain
1060 ??? types of float/complex values to be in integer registers during
1061 ??? RTL generation. This only matters on arch32. */
1062 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1063 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1065 /* Value is 1 if it is a good idea to tie two pseudo registers
1066 when one has mode MODE1 and one has mode MODE2.
1067 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1068 for any hard reg, then this must be 0 for correct output.
1070 For V9: SFmode can't be combined with other float modes, because they can't
1071 be allocated to the %d registers. Also, DFmode won't fit in odd %f
1072 registers, but SFmode will. */
1073 #define MODES_TIEABLE_P(MODE1, MODE2) \
1074 ((MODE1) == (MODE2) \
1075 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1076 && (! TARGET_V9 \
1077 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
1078 || (MODE1 != SFmode && MODE2 != SFmode)))))
1080 /* Specify the registers used for certain standard purposes.
1081 The values of these macros are register numbers. */
1083 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
1084 /* #define PC_REGNUM */
1086 /* Register to use for pushing function arguments. */
1087 #define STACK_POINTER_REGNUM 14
1089 /* The stack bias (amount by which the hardware register is offset by). */
1090 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1092 /* Actual top-of-stack address is 92/176 greater than the contents of the
1093 stack pointer register for !v9/v9. That is:
1094 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1095 address, and 6*4 bytes for the 6 register parameters.
1096 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1097 parameter regs. */
1098 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
1100 /* Base register for access to local variables of the function. */
1101 #define HARD_FRAME_POINTER_REGNUM 30
1103 /* The soft frame pointer does not have the stack bias applied. */
1104 #define FRAME_POINTER_REGNUM 101
1106 /* Given the stack bias, the stack pointer isn't actually aligned. */
1107 #define INIT_EXPANDERS \
1108 do { \
1109 if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS) \
1111 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
1112 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
1114 } while (0)
1116 /* Value should be nonzero if functions must have frame pointers.
1117 Zero means the frame pointer need not be set up (and parms
1118 may be accessed via the stack pointer) in functions that seem suitable.
1119 This is computed in `reload', in reload1.c.
1120 Used in flow.c, global.c, and reload1.c.
1122 Being a non-leaf function does not mean a frame pointer is needed in the
1123 flat window model. However, the debugger won't be able to backtrace through
1124 us with out it. */
1125 #define FRAME_POINTER_REQUIRED \
1126 (TARGET_FLAT \
1127 ? (current_function_calls_alloca \
1128 || current_function_varargs \
1129 || !leaf_function_p ()) \
1130 : ! (leaf_function_p () && only_leaf_regs_used ()))
1132 /* Base register for access to arguments of the function. */
1133 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1135 /* Register in which static-chain is passed to a function. This must
1136 not be a register used by the prologue. */
1137 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1139 /* Register which holds offset table for position-independent
1140 data references. */
1142 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
1144 /* Pick a default value we can notice from override_options:
1145 !v9: Default is on.
1146 v9: Default is off. */
1148 #define DEFAULT_PCC_STRUCT_RETURN -1
1150 /* Sparc ABI says that quad-precision floats and all structures are returned
1151 in memory.
1152 For v9: unions <= 32 bytes in size are returned in int regs,
1153 structures up to 32 bytes are returned in int and fp regs. */
1155 #define RETURN_IN_MEMORY(TYPE) \
1156 (TARGET_ARCH32 \
1157 ? (TYPE_MODE (TYPE) == BLKmode \
1158 || TYPE_MODE (TYPE) == TFmode \
1159 || TYPE_MODE (TYPE) == TCmode) \
1160 : (TYPE_MODE (TYPE) == BLKmode \
1161 && (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 32))
1163 /* Functions which return large structures get the address
1164 to place the wanted value at offset 64 from the frame.
1165 Must reserve 64 bytes for the in and local registers.
1166 v9: Functions which return large structures get the address to place the
1167 wanted value from an invisible first argument. */
1168 /* Used only in other #defines in this file. */
1169 #define STRUCT_VALUE_OFFSET 64
1171 #define STRUCT_VALUE \
1172 (TARGET_ARCH64 \
1173 ? 0 \
1174 : gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1175 STRUCT_VALUE_OFFSET)))
1177 #define STRUCT_VALUE_INCOMING \
1178 (TARGET_ARCH64 \
1179 ? 0 \
1180 : gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, \
1181 STRUCT_VALUE_OFFSET)))
1183 /* Define the classes of registers for register constraints in the
1184 machine description. Also define ranges of constants.
1186 One of the classes must always be named ALL_REGS and include all hard regs.
1187 If there is more than one class, another class must be named NO_REGS
1188 and contain no registers.
1190 The name GENERAL_REGS must be the name of a class (or an alias for
1191 another name such as ALL_REGS). This is the class of registers
1192 that is allowed by "g" or "r" in a register constraint.
1193 Also, registers outside this class are allocated only when
1194 instructions express preferences for them.
1196 The classes must be numbered in nondecreasing order; that is,
1197 a larger-numbered class must never be contained completely
1198 in a smaller-numbered class.
1200 For any two classes, it is very desirable that there be another
1201 class that represents their union. */
1203 /* The SPARC has various kinds of registers: general, floating point,
1204 and condition codes [well, it has others as well, but none that we
1205 care directly about].
1207 For v9 we must distinguish between the upper and lower floating point
1208 registers because the upper ones can't hold SFmode values.
1209 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1210 satisfying a group need for a class will also satisfy a single need for
1211 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1212 regs.
1214 It is important that one class contains all the general and all the standard
1215 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1216 because reg_class_record() will bias the selection in favor of fp regs,
1217 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1218 because FP_REGS > GENERAL_REGS.
1220 It is also important that one class contain all the general and all the
1221 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1222 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1223 allocate_reload_reg() to bypass it causing an abort because the compiler
1224 thinks it doesn't have a spill reg when in fact it does.
1226 v9 also has 4 floating point condition code registers. Since we don't
1227 have a class that is the union of FPCC_REGS with either of the others,
1228 it is important that it appear first. Otherwise the compiler will die
1229 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1230 constraints.
1232 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1233 may try to use it to hold an SImode value. See register_operand.
1234 ??? Should %fcc[0123] be handled similarly?
1237 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1238 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1239 ALL_REGS, LIM_REG_CLASSES };
1241 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1243 /* Give names of register classes as strings for dump file. */
1245 #define REG_CLASS_NAMES \
1246 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1247 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1248 "ALL_REGS" }
1250 /* Define which registers fit in which classes.
1251 This is an initializer for a vector of HARD_REG_SET
1252 of length N_REG_CLASSES. */
1254 #define REG_CLASS_CONTENTS \
1255 {{0, 0, 0, 0}, /* NO_REGS */ \
1256 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
1257 {0xffff, 0, 0, 0}, /* I64_REGS */ \
1258 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
1259 {0, -1, 0, 0}, /* FP_REGS */ \
1260 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
1261 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
1262 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
1263 {-1, -1, -1, 0x3f}} /* ALL_REGS */
1265 /* The same information, inverted:
1266 Return the class number of the smallest class containing
1267 reg number REGNO. This could be a conditional expression
1268 or could index an array. */
1270 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1272 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1274 /* This is the order in which to allocate registers normally.
1276 We put %f0-%f7 last among the float registers, so as to make it more
1277 likely that a pseudo-register which dies in the float return register
1278 area will get allocated to the float return register, thus saving a move
1279 instruction at the end of the function.
1281 Similarly for integer return value registers.
1283 We know in this case that we will not end up with a leaf function.
1285 The register allocater is given the global and out registers first
1286 because these registers are call clobbered and thus less useful to
1287 global register allocation.
1289 Next we list the local and in registers. They are not call clobbered
1290 and thus very useful for global register allocation. We list the input
1291 registers before the locals so that it is more likely the incoming
1292 arguments received in those registers can just stay there and not be
1293 reloaded. */
1295 #define REG_ALLOC_ORDER \
1296 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1297 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1298 15, /* %o7 */ \
1299 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1300 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
1301 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1302 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1303 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1304 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1305 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1306 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1307 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1308 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1309 96, 97, 98, 99, /* %fcc0-3 */ \
1310 100, 0, 14, 30, 101} /* %icc, %g0, %o6, %i6, %sfp */
1312 /* This is the order in which to allocate registers for
1313 leaf functions. If all registers can fit in the global and
1314 output registers, then we have the possibility of having a leaf
1315 function.
1317 The macro actually mentioned the input registers first,
1318 because they get renumbered into the output registers once
1319 we know really do have a leaf function.
1321 To be more precise, this register allocation order is used
1322 when %o7 is found to not be clobbered right before register
1323 allocation. Normally, the reason %o7 would be clobbered is
1324 due to a call which could not be transformed into a sibling
1325 call.
1327 As a consequence, it is possible to use the leaf register
1328 allocation order and not end up with a leaf function. We will
1329 not get suboptimal register allocation in that case because by
1330 definition of being potentially leaf, there were no function
1331 calls. Therefore, allocation order within the local register
1332 window is not critical like it is when we do have function calls. */
1334 #define REG_LEAF_ALLOC_ORDER \
1335 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1336 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
1337 15, /* %o7 */ \
1338 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1339 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1340 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1341 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1342 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1343 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1344 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1345 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1346 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1347 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1348 96, 97, 98, 99, /* %fcc0-3 */ \
1349 100, 0, 14, 30, 31, 101} /* %icc, %g0, %o6, %i6, %i7, %sfp */
1351 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1353 extern char sparc_leaf_regs[];
1354 #define LEAF_REGISTERS sparc_leaf_regs
1356 extern char leaf_reg_remap[];
1357 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1359 /* The class value for index registers, and the one for base regs. */
1360 #define INDEX_REG_CLASS GENERAL_REGS
1361 #define BASE_REG_CLASS GENERAL_REGS
1363 /* Local macro to handle the two v9 classes of FP regs. */
1364 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1366 /* Get reg_class from a letter such as appears in the machine description.
1367 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1368 .md file for v8 and v9.
1369 'd' and 'b' are used for single and double precision VIS operations,
1370 if TARGET_VIS.
1371 'h' is used for V8+ 64 bit global and out registers. */
1373 #define REG_CLASS_FROM_LETTER(C) \
1374 (TARGET_V9 \
1375 ? ((C) == 'f' ? FP_REGS \
1376 : (C) == 'e' ? EXTRA_FP_REGS \
1377 : (C) == 'c' ? FPCC_REGS \
1378 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1379 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1380 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1381 : NO_REGS) \
1382 : ((C) == 'f' ? FP_REGS \
1383 : (C) == 'e' ? FP_REGS \
1384 : (C) == 'c' ? FPCC_REGS \
1385 : NO_REGS))
1387 /* The letters I, J, K, L and M in a register constraint string
1388 can be used to stand for particular ranges of immediate operands.
1389 This macro defines what the ranges are.
1390 C is the letter, and VALUE is a constant value.
1391 Return 1 if VALUE is in the range specified by C.
1393 `I' is used for the range of constants an insn can actually contain.
1394 `J' is used for the range which is just zero (since that is R0).
1395 `K' is used for constants which can be loaded with a single sethi insn.
1396 `L' is used for the range of constants supported by the movcc insns.
1397 `M' is used for the range of constants supported by the movrcc insns.
1398 `N' is like K, but for constants wider than 32 bits. */
1400 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1401 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1402 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1403 /* 10 and 11 bit immediates are only used for a few specific insns.
1404 SMALL_INT is used throughout the port so we continue to use it. */
1405 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1406 /* 13 bit immediate, considering only the low 32 bits */
1407 #define SMALL_INT32(X) (SPARC_SIMM13_P (trunc_int_for_mode \
1408 (INTVAL (X), SImode)))
1409 #define SPARC_SETHI_P(X) \
1410 (((unsigned HOST_WIDE_INT) (X) \
1411 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1412 #define SPARC_SETHI32_P(X) \
1413 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1415 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1416 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1417 : (C) == 'J' ? (VALUE) == 0 \
1418 : (C) == 'K' ? SPARC_SETHI32_P (VALUE) \
1419 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1420 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1421 : (C) == 'N' ? SPARC_SETHI_P (VALUE) \
1422 : 0)
1424 /* Similar, but for floating constants, and defining letters G and H.
1425 Here VALUE is the CONST_DOUBLE rtx itself. */
1427 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1428 ((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE)) \
1429 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1430 : 0)
1432 /* Given an rtx X being reloaded into a reg required to be
1433 in class CLASS, return the class of reg to actually use.
1434 In general this is just CLASS; but on some machines
1435 in some cases it is preferable to use a more restrictive class. */
1436 /* - We can't load constants into FP registers.
1437 - We can't load FP constants into integer registers when soft-float,
1438 because there is no soft-float pattern with a r/F constraint.
1439 - We can't load FP constants into integer registers for TFmode unless
1440 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1441 - Try and reload integer constants (symbolic or otherwise) back into
1442 registers directly, rather than having them dumped to memory. */
1444 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1445 (CONSTANT_P (X) \
1446 ? ((FP_REG_CLASS_P (CLASS) \
1447 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1448 && ! TARGET_FPU) \
1449 || (GET_MODE (X) == TFmode \
1450 && ! fp_zero_operand (X, TFmode))) \
1451 ? NO_REGS \
1452 : (!FP_REG_CLASS_P (CLASS) \
1453 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1454 ? GENERAL_REGS \
1455 : (CLASS)) \
1456 : (CLASS))
1458 /* Return the register class of a scratch register needed to load IN into
1459 a register of class CLASS in MODE.
1461 We need a temporary when loading/storing a HImode/QImode value
1462 between memory and the FPU registers. This can happen when combine puts
1463 a paradoxical subreg in a float/fix conversion insn.
1465 We need a temporary when loading/storing a DFmode value between
1466 unaligned memory and the upper FPU registers. */
1468 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1469 ((FP_REG_CLASS_P (CLASS) \
1470 && ((MODE) == HImode || (MODE) == QImode) \
1471 && (GET_CODE (IN) == MEM \
1472 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1473 && true_regnum (IN) == -1))) \
1474 ? GENERAL_REGS \
1475 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1476 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1477 && ! mem_min_alignment ((IN), 8)) \
1478 ? FP_REGS \
1479 : (((TARGET_CM_MEDANY \
1480 && symbolic_operand ((IN), (MODE))) \
1481 || (TARGET_CM_EMBMEDANY \
1482 && text_segment_operand ((IN), (MODE)))) \
1483 && !flag_pic) \
1484 ? GENERAL_REGS \
1485 : NO_REGS)
1487 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1488 ((FP_REG_CLASS_P (CLASS) \
1489 && ((MODE) == HImode || (MODE) == QImode) \
1490 && (GET_CODE (IN) == MEM \
1491 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1492 && true_regnum (IN) == -1))) \
1493 ? GENERAL_REGS \
1494 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1495 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1496 && ! mem_min_alignment ((IN), 8)) \
1497 ? FP_REGS \
1498 : (((TARGET_CM_MEDANY \
1499 && symbolic_operand ((IN), (MODE))) \
1500 || (TARGET_CM_EMBMEDANY \
1501 && text_segment_operand ((IN), (MODE)))) \
1502 && !flag_pic) \
1503 ? GENERAL_REGS \
1504 : NO_REGS)
1506 /* On SPARC it is not possible to directly move data between
1507 GENERAL_REGS and FP_REGS. */
1508 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1509 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1511 /* Return the stack location to use for secondary memory needed reloads.
1512 We want to use the reserved location just below the frame pointer.
1513 However, we must ensure that there is a frame, so use assign_stack_local
1514 if the frame size is zero. */
1515 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1516 (get_frame_size () == 0 \
1517 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1518 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1519 STARTING_FRAME_OFFSET)))
1521 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1522 because the movsi and movsf patterns don't handle r/f moves.
1523 For v8 we copy the default definition. */
1524 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1525 (TARGET_ARCH64 \
1526 ? (GET_MODE_BITSIZE (MODE) < 32 \
1527 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1528 : MODE) \
1529 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1530 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1531 : MODE))
1533 /* Return the maximum number of consecutive registers
1534 needed to represent mode MODE in a register of class CLASS. */
1535 /* On SPARC, this is the size of MODE in words. */
1536 #define CLASS_MAX_NREGS(CLASS, MODE) \
1537 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1538 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1540 /* Stack layout; function entry, exit and calling. */
1542 /* Define the number of register that can hold parameters.
1543 This macro is only used in other macro definitions below and in sparc.c.
1544 MODE is the mode of the argument.
1545 !v9: All args are passed in %o0-%o5.
1546 v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values.
1547 See the description in sparc.c. */
1548 #define NPARM_REGS(MODE) \
1549 (TARGET_ARCH64 \
1550 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \
1551 : 6)
1553 /* Define this if pushing a word on the stack
1554 makes the stack pointer a smaller address. */
1555 #define STACK_GROWS_DOWNWARD
1557 /* Define this if the nominal address of the stack frame
1558 is at the high-address end of the local variables;
1559 that is, each additional local variable allocated
1560 goes at a more negative offset in the frame. */
1561 #define FRAME_GROWS_DOWNWARD
1563 /* Offset within stack frame to start allocating local variables at.
1564 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1565 first local allocated. Otherwise, it is the offset to the BEGINNING
1566 of the first local allocated. */
1567 /* This allows space for one TFmode floating point value. */
1568 #define STARTING_FRAME_OFFSET \
1569 (TARGET_ARCH64 ? -16 \
1570 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1572 /* If we generate an insn to push BYTES bytes,
1573 this says how many the stack pointer really advances by.
1574 On SPARC, don't define this because there are no push insns. */
1575 /* #define PUSH_ROUNDING(BYTES) */
1577 /* Offset of first parameter from the argument pointer register value.
1578 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1579 even if this function isn't going to use it.
1580 v9: This is 128 for the ins and locals. */
1581 #define FIRST_PARM_OFFSET(FNDECL) \
1582 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1584 /* Offset from the argument pointer register value to the CFA.
1585 This is different from FIRST_PARM_OFFSET because the register window
1586 comes between the CFA and the arguments. */
1587 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1589 /* When a parameter is passed in a register, stack space is still
1590 allocated for it.
1591 !v9: All 6 possible integer registers have backing store allocated.
1592 v9: Only space for the arguments passed is allocated. */
1593 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1594 meaning to the backend. Further, we need to be able to detect if a
1595 varargs/unprototyped function is called, as they may want to spill more
1596 registers than we've provided space. Ugly, ugly. So for now we retain
1597 all 6 slots even for v9. */
1598 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1600 /* Definitions for register elimination. */
1601 /* ??? In TARGET_FLAT mode we needn't have a hard frame pointer. */
1603 #define ELIMINABLE_REGS \
1604 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1605 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1607 /* The way this is structured, we can't eliminate SFP in favor of SP
1608 if the frame pointer is required: we want to use the SFP->HFP elimination
1609 in that case. But the test in update_eliminables doesn't know we are
1610 assuming below that we only do the former elimination. */
1611 #define CAN_ELIMINATE(FROM, TO) \
1612 ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
1614 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1615 do { \
1616 (OFFSET) = 0; \
1617 if ((TO) == STACK_POINTER_REGNUM) \
1619 /* Note, we always pretend that this is a leaf function \
1620 because if it's not, there's no point in trying to \
1621 eliminate the frame pointer. If it is a leaf \
1622 function, we guessed right! */ \
1623 if (TARGET_FLAT) \
1624 (OFFSET) = \
1625 sparc_flat_compute_frame_size (get_frame_size ()); \
1626 else \
1627 (OFFSET) = compute_frame_size (get_frame_size (), 1); \
1629 (OFFSET) += SPARC_STACK_BIAS; \
1630 } while (0)
1632 /* Keep the stack pointer constant throughout the function.
1633 This is both an optimization and a necessity: longjmp
1634 doesn't behave itself when the stack pointer moves within
1635 the function! */
1636 #define ACCUMULATE_OUTGOING_ARGS 1
1638 /* Value is the number of bytes of arguments automatically
1639 popped when returning from a subroutine call.
1640 FUNDECL is the declaration node of the function (as a tree),
1641 FUNTYPE is the data type of the function (as a tree),
1642 or for a library call it is an identifier node for the subroutine name.
1643 SIZE is the number of bytes of arguments passed on the stack. */
1645 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1647 /* Some subroutine macros specific to this machine.
1648 When !TARGET_FPU, put float return values in the general registers,
1649 since we don't have any fp registers. */
1650 #define BASE_RETURN_VALUE_REG(MODE) \
1651 (TARGET_ARCH64 \
1652 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1653 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1655 #define BASE_OUTGOING_VALUE_REG(MODE) \
1656 (TARGET_ARCH64 \
1657 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1658 : TARGET_FLAT ? 8 : 24) \
1659 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
1660 : (TARGET_FLAT ? 8 : 24)))
1662 #define BASE_PASSING_ARG_REG(MODE) \
1663 (TARGET_ARCH64 \
1664 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1665 : 8)
1667 /* ??? FIXME -- seems wrong for v9 structure passing... */
1668 #define BASE_INCOMING_ARG_REG(MODE) \
1669 (TARGET_ARCH64 \
1670 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1671 : TARGET_FLAT ? 8 : 24) \
1672 : (TARGET_FLAT ? 8 : 24))
1674 /* Define this macro if the target machine has "register windows". This
1675 C expression returns the register number as seen by the called function
1676 corresponding to register number OUT as seen by the calling function.
1677 Return OUT if register number OUT is not an outbound register. */
1679 #define INCOMING_REGNO(OUT) \
1680 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1682 /* Define this macro if the target machine has "register windows". This
1683 C expression returns the register number as seen by the calling function
1684 corresponding to register number IN as seen by the called function.
1685 Return IN if register number IN is not an inbound register. */
1687 #define OUTGOING_REGNO(IN) \
1688 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1690 /* Define this macro if the target machine has register windows. This
1691 C expression returns true if the register is call-saved but is in the
1692 register window. */
1694 #define LOCAL_REGNO(REGNO) \
1695 (TARGET_FLAT ? 0 : (REGNO) >= 16 && (REGNO) <= 31)
1697 /* Define how to find the value returned by a function.
1698 VALTYPE is the data type of the value (as a tree).
1699 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1700 otherwise, FUNC is 0. */
1702 /* On SPARC the value is found in the first "output" register. */
1704 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1705 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1707 /* But the called function leaves it in the first "input" register. */
1709 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1710 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1712 /* Define how to find the value returned by a library function
1713 assuming the value has mode MODE. */
1715 #define LIBCALL_VALUE(MODE) \
1716 function_value (NULL_TREE, (MODE), 1)
1718 /* 1 if N is a possible register number for a function value
1719 as seen by the caller.
1720 On SPARC, the first "output" reg is used for integer values,
1721 and the first floating point register is used for floating point values. */
1723 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1725 /* Define the size of space to allocate for the return value of an
1726 untyped_call. */
1728 #define APPLY_RESULT_SIZE 16
1730 /* 1 if N is a possible register number for function argument passing.
1731 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1733 #define FUNCTION_ARG_REGNO_P(N) \
1734 (TARGET_ARCH64 \
1735 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1736 : ((N) >= 8 && (N) <= 13))
1738 /* Define a data type for recording info about an argument list
1739 during the scan of that argument list. This data type should
1740 hold all necessary information about the function itself
1741 and about the args processed so far, enough to enable macros
1742 such as FUNCTION_ARG to determine where the next arg should go.
1744 On SPARC (!v9), this is a single integer, which is a number of words
1745 of arguments scanned so far (including the invisible argument,
1746 if any, which holds the structure-value-address).
1747 Thus 7 or more means all following args should go on the stack.
1749 For v9, we also need to know whether a prototype is present. */
1751 struct sparc_args {
1752 int words; /* number of words passed so far */
1753 int prototype_p; /* non-zero if a prototype is present */
1754 int libcall_p; /* non-zero if a library call */
1756 #define CUMULATIVE_ARGS struct sparc_args
1758 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1759 for a call to a function whose data type is FNTYPE.
1760 For a library call, FNTYPE is 0. */
1762 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1763 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (INDIRECT));
1765 /* Update the data in CUM to advance over an argument
1766 of mode MODE and data type TYPE.
1767 TYPE is null for libcalls where that information may not be available. */
1769 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1770 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1772 /* Nonzero if we do not know how to pass TYPE solely in registers. */
1774 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1775 ((TYPE) != 0 \
1776 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1777 || TREE_ADDRESSABLE (TYPE)))
1779 /* Determine where to put an argument to a function.
1780 Value is zero to push the argument on the stack,
1781 or a hard register in which to store the argument.
1783 MODE is the argument's machine mode.
1784 TYPE is the data type of the argument (as a tree).
1785 This is null for libcalls where that information may
1786 not be available.
1787 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1788 the preceding args and about the function being called.
1789 NAMED is nonzero if this argument is a named parameter
1790 (otherwise it is an extra parameter matching an ellipsis). */
1792 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1793 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1795 /* Define where a function finds its arguments.
1796 This is different from FUNCTION_ARG because of register windows. */
1798 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1799 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1801 /* For an arg passed partly in registers and partly in memory,
1802 this is the number of registers used.
1803 For args passed entirely in registers or entirely in memory, zero. */
1805 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1806 function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1808 /* A C expression that indicates when an argument must be passed by reference.
1809 If nonzero for an argument, a copy of that argument is made in memory and a
1810 pointer to the argument is passed instead of the argument itself.
1811 The pointer is passed in whatever way is appropriate for passing a pointer
1812 to that type. */
1814 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1815 function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1817 /* If defined, a C expression which determines whether, and in which direction,
1818 to pad out an argument with extra space. The value should be of type
1819 `enum direction': either `upward' to pad above the argument,
1820 `downward' to pad below, or `none' to inhibit padding. */
1822 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1823 function_arg_padding ((MODE), (TYPE))
1825 /* If defined, a C expression that gives the alignment boundary, in bits,
1826 of an argument with the specified mode and type. If it is not defined,
1827 PARM_BOUNDARY is used for all arguments.
1828 For sparc64, objects requiring 16 byte alignment are passed that way. */
1830 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1831 ((TARGET_ARCH64 \
1832 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1833 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1834 ? 128 : PARM_BOUNDARY)
1836 /* Define the information needed to generate branch and scc insns. This is
1837 stored from the compare operation. Note that we can't use "rtx" here
1838 since it hasn't been defined! */
1840 extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
1843 /* Generate the special assembly code needed to tell the assembler whatever
1844 it might need to know about the return value of a function.
1846 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
1847 information to the assembler relating to peephole optimization (done in
1848 the assembler). */
1850 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1851 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1853 /* Output the special assembly code needed to tell the assembler some
1854 register is used as global register variable.
1856 SPARC 64bit psABI declares registers %g2 and %g3 as application
1857 registers and %g6 and %g7 as OS registers. Any object using them
1858 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1859 and how they are used (scratch or some global variable).
1860 Linker will then refuse to link together objects which use those
1861 registers incompatibly.
1863 Unless the registers are used for scratch, two different global
1864 registers cannot be declared to the same name, so in the unlikely
1865 case of a global register variable occupying more than one register
1866 we prefix the second and following registers with .gnu.part1. etc. */
1868 extern char sparc_hard_reg_printed[8];
1870 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1871 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1872 do { \
1873 if (TARGET_ARCH64) \
1875 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1876 int reg; \
1877 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1878 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1880 if (reg == (REGNO)) \
1881 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1882 else \
1883 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1884 reg, reg - (REGNO), (NAME)); \
1885 sparc_hard_reg_printed[reg] = 1; \
1888 } while (0)
1889 #endif
1892 /* Emit rtl for profiling. */
1893 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1895 /* All the work done in PROFILE_HOOK, but still required. */
1896 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1898 /* Set the name of the mcount function for the system. */
1899 #define MCOUNT_FUNCTION "*mcount"
1901 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1902 the stack pointer does not matter. The value is tested only in
1903 functions that have frame pointers.
1904 No definition is equivalent to always zero. */
1906 #define EXIT_IGNORE_STACK \
1907 (get_frame_size () != 0 \
1908 || current_function_calls_alloca || current_function_outgoing_args_size)
1910 #define DELAY_SLOTS_FOR_EPILOGUE \
1911 (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
1912 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
1913 (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
1914 : eligible_for_epilogue_delay (trial, slots_filled))
1916 /* Define registers used by the epilogue and return instruction. */
1917 #define EPILOGUE_USES(REGNO) \
1918 (!TARGET_FLAT && REGNO == 31)
1920 /* Length in units of the trampoline for entering a nested function. */
1922 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1924 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1926 /* Emit RTL insns to initialize the variable parts of a trampoline.
1927 FNADDR is an RTX for the address of the function's pure code.
1928 CXT is an RTX for the static chain value for the function. */
1930 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1931 if (TARGET_ARCH64) \
1932 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1933 else \
1934 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1936 /* Generate necessary RTL for __builtin_saveregs(). */
1938 #define EXPAND_BUILTIN_SAVEREGS() sparc_builtin_saveregs ()
1940 /* Implement `va_start' for varargs and stdarg. */
1941 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1942 sparc_va_start (stdarg, valist, nextarg)
1944 /* Implement `va_arg'. */
1945 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1946 sparc_va_arg (valist, type)
1948 /* Define this macro if the location where a function argument is passed
1949 depends on whether or not it is a named argument.
1951 This macro controls how the NAMED argument to FUNCTION_ARG
1952 is set for varargs and stdarg functions. With this macro defined,
1953 the NAMED argument is always true for named arguments, and false for
1954 unnamed arguments. If this is not defined, but SETUP_INCOMING_VARARGS
1955 is defined, then all arguments are treated as named. Otherwise, all named
1956 arguments except the last are treated as named.
1957 For the v9 we want NAMED to mean what it says it means. */
1959 #define STRICT_ARGUMENT_NAMING TARGET_V9
1961 /* We do not allow sibling calls if -mflat, nor
1962 we do not allow indirect calls to be optimized into sibling calls.
1964 Also, on sparc 32-bit we cannot emit a sibling call when the
1965 current function returns a structure. This is because the "unimp
1966 after call" convention would cause the callee to return to the
1967 wrong place. The generic code already disallows cases where the
1968 function being called returns a structure.
1970 It may seem strange how this last case could occur. Usually there
1971 is code after the call which jumps to epilogue code which dumps the
1972 return value into the struct return area. That ought to invalidate
1973 the sibling call right? Well, in the c++ case we can end up passing
1974 the pointer to the struct return area to a constructor (which returns
1975 void) and then nothing else happens. Such a sibling call would look
1976 valid without the added check here. */
1977 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1978 (DECL \
1979 && ! TARGET_FLAT \
1980 && (TARGET_ARCH64 || ! current_function_returns_struct))
1982 /* Generate RTL to flush the register windows so as to make arbitrary frames
1983 available. */
1984 #define SETUP_FRAME_ADDRESSES() \
1985 emit_insn (gen_flush_register_windows ())
1987 /* Given an rtx for the address of a frame,
1988 return an rtx for the address of the word in the frame
1989 that holds the dynamic chain--the previous frame's address.
1990 ??? -mflat support? */
1991 #define DYNAMIC_CHAIN_ADDRESS(frame) plus_constant (frame, 14 * UNITS_PER_WORD)
1993 /* The return address isn't on the stack, it is in a register, so we can't
1994 access it from the current frame pointer. We can access it from the
1995 previous frame pointer though by reading a value from the register window
1996 save area. */
1997 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1999 /* This is the offset of the return address to the true next instruction to be
2000 executed for the current function. */
2001 #define RETURN_ADDR_OFFSET \
2002 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
2004 /* The current return address is in %i7. The return address of anything
2005 farther back is in the register window save area at [%fp+60]. */
2006 /* ??? This ignores the fact that the actual return address is +8 for normal
2007 returns, and +12 for structure returns. */
2008 #define RETURN_ADDR_RTX(count, frame) \
2009 ((count == -1) \
2010 ? gen_rtx_REG (Pmode, 31) \
2011 : gen_rtx_MEM (Pmode, \
2012 memory_address (Pmode, plus_constant (frame, \
2013 15 * UNITS_PER_WORD \
2014 + SPARC_STACK_BIAS))))
2016 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
2017 +12, but always using +8 is close enough for frame unwind purposes.
2018 Actually, just using %o7 is close enough for unwinding, but %o7+8
2019 is something you can return to. */
2020 #define INCOMING_RETURN_ADDR_RTX \
2021 plus_constant (gen_rtx_REG (word_mode, 15), 8)
2022 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
2024 /* The offset from the incoming value of %sp to the top of the stack frame
2025 for the current function. On sparc64, we have to account for the stack
2026 bias if present. */
2027 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
2029 /* Describe how we implement __builtin_eh_return. */
2030 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
2031 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
2032 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
2034 /* Select a format to encode pointers in exception handling data. CODE
2035 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2036 true if the symbol may be affected by dynamic relocations.
2038 If assembler and linker properly support .uaword %r_disp32(foo),
2039 then use PC relative 32-bit relocations instead of absolute relocs
2040 for shared libraries. On sparc64, use pc relative 32-bit relocs even
2041 for binaries, to save memory.
2043 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
2044 symbol %r_disp32() is against was not local, but .hidden. In that
2045 case, we have to use DW_EH_PE_absptr for pic personality. */
2046 #ifdef HAVE_AS_SPARC_UA_PCREL
2047 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
2048 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2049 (flag_pic \
2050 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2051 : ((TARGET_ARCH64 && ! GLOBAL) \
2052 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
2053 : DW_EH_PE_absptr))
2054 #else
2055 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2056 (flag_pic \
2057 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
2058 : ((TARGET_ARCH64 && ! GLOBAL) \
2059 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
2060 : DW_EH_PE_absptr))
2061 #endif
2063 /* Emit a PC-relative relocation. */
2064 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
2065 do { \
2066 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2067 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
2068 assemble_name (FILE, LABEL); \
2069 fputc (')', FILE); \
2070 } while (0)
2071 #endif
2073 /* Addressing modes, and classification of registers for them. */
2075 /* #define HAVE_POST_INCREMENT 0 */
2076 /* #define HAVE_POST_DECREMENT 0 */
2078 /* #define HAVE_PRE_DECREMENT 0 */
2079 /* #define HAVE_PRE_INCREMENT 0 */
2081 /* Macros to check register numbers against specific register classes. */
2083 /* These assume that REGNO is a hard or pseudo reg number.
2084 They give nonzero only if REGNO is a hard reg of the suitable class
2085 or a pseudo reg currently allocated to a suitable hard reg.
2086 Since they use reg_renumber, they are safe only once reg_renumber
2087 has been allocated, which happens in local-alloc.c. */
2089 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2090 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
2091 || (REGNO) == FRAME_POINTER_REGNUM \
2092 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
2094 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
2096 #define REGNO_OK_FOR_FP_P(REGNO) \
2097 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
2098 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
2099 #define REGNO_OK_FOR_CCFP_P(REGNO) \
2100 (TARGET_V9 \
2101 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
2102 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
2104 /* Now macros that check whether X is a register and also,
2105 strictly, whether it is in a specified class.
2107 These macros are specific to the SPARC, and may be used only
2108 in code for printing assembler insns and in conditions for
2109 define_optimization. */
2111 /* 1 if X is an fp register. */
2113 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
2115 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
2116 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
2118 /* Maximum number of registers that can appear in a valid memory address. */
2120 #define MAX_REGS_PER_ADDRESS 2
2122 /* Recognize any constant value that is a valid address.
2123 When PIC, we do not accept an address that would require a scratch reg
2124 to load into a register. */
2126 #define CONSTANT_ADDRESS_P(X) \
2127 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2128 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2129 || (GET_CODE (X) == CONST \
2130 && ! (flag_pic && pic_address_needs_scratch (X))))
2132 /* Define this, so that when PIC, reload won't try to reload invalid
2133 addresses which require two reload registers. */
2135 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2137 /* Nonzero if the constant value X is a legitimate general operand.
2138 Anything can be made to work except floating point constants.
2139 If TARGET_VIS, 0.0 can be made to work as well. */
2141 #define LEGITIMATE_CONSTANT_P(X) \
2142 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode || \
2143 (TARGET_VIS && \
2144 (GET_MODE (X) == SFmode || GET_MODE (X) == DFmode || \
2145 GET_MODE (X) == TFmode) && \
2146 fp_zero_operand (X, GET_MODE (X))))
2148 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2149 and check its validity for a certain class.
2150 We have two alternate definitions for each of them.
2151 The usual definition accepts all pseudo regs; the other rejects
2152 them unless they have been allocated suitable hard regs.
2153 The symbol REG_OK_STRICT causes the latter definition to be used.
2155 Most source files want to accept pseudo regs in the hope that
2156 they will get allocated to the class that the insn wants them to be in.
2157 Source files for reload pass need to be strict.
2158 After reload, it makes no difference, since pseudo regs have
2159 been eliminated by then. */
2161 /* Optional extra constraints for this machine.
2163 'Q' handles floating point constants which can be moved into
2164 an integer register with a single sethi instruction.
2166 'R' handles floating point constants which can be moved into
2167 an integer register with a single mov instruction.
2169 'S' handles floating point constants which can be moved into
2170 an integer register using a high/lo_sum sequence.
2172 'T' handles memory addresses where the alignment is known to
2173 be at least 8 bytes.
2175 `U' handles all pseudo registers or a hard even numbered
2176 integer register, needed for ldd/std instructions.
2178 'W' handles the memory operand when moving operands in/out
2179 of 'e' constraint floating point registers. */
2181 #ifndef REG_OK_STRICT
2183 /* Nonzero if X is a hard reg that can be used as an index
2184 or if it is a pseudo reg. */
2185 #define REG_OK_FOR_INDEX_P(X) \
2186 (REGNO (X) < 32 \
2187 || REGNO (X) == FRAME_POINTER_REGNUM \
2188 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2190 /* Nonzero if X is a hard reg that can be used as a base reg
2191 or if it is a pseudo reg. */
2192 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
2194 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
2195 'W' is like 'T' but is assumed true on arch64.
2197 Remember to accept pseudo-registers for memory constraints if reload is
2198 in progress. */
2200 #define EXTRA_CONSTRAINT(OP, C) \
2201 sparc_extra_constraint_check(OP, C, 0)
2203 #else
2205 /* Nonzero if X is a hard reg that can be used as an index. */
2206 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2207 /* Nonzero if X is a hard reg that can be used as a base reg. */
2208 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2210 #define EXTRA_CONSTRAINT(OP, C) \
2211 sparc_extra_constraint_check(OP, C, 1)
2213 #endif
2215 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
2217 #ifdef HAVE_AS_OFFSETABLE_LO10
2218 #define USE_AS_OFFSETABLE_LO10 1
2219 #else
2220 #define USE_AS_OFFSETABLE_LO10 0
2221 #endif
2223 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2224 that is a valid memory address for an instruction.
2225 The MODE argument is the machine mode for the MEM expression
2226 that wants to use this address.
2228 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2229 ordinarily. This changes a bit when generating PIC.
2231 If you change this, execute "rm explow.o recog.o reload.o". */
2233 #define RTX_OK_FOR_BASE_P(X) \
2234 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2235 || (GET_CODE (X) == SUBREG \
2236 && GET_CODE (SUBREG_REG (X)) == REG \
2237 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2239 #define RTX_OK_FOR_INDEX_P(X) \
2240 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2241 || (GET_CODE (X) == SUBREG \
2242 && GET_CODE (SUBREG_REG (X)) == REG \
2243 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2245 #define RTX_OK_FOR_OFFSET_P(X) \
2246 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
2248 #define RTX_OK_FOR_OLO10_P(X) \
2249 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2251 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2252 { if (RTX_OK_FOR_BASE_P (X)) \
2253 goto ADDR; \
2254 else if (GET_CODE (X) == PLUS) \
2256 register rtx op0 = XEXP (X, 0); \
2257 register rtx op1 = XEXP (X, 1); \
2258 if (flag_pic && op0 == pic_offset_table_rtx) \
2260 if (RTX_OK_FOR_BASE_P (op1)) \
2261 goto ADDR; \
2262 else if (flag_pic == 1 \
2263 && GET_CODE (op1) != REG \
2264 && GET_CODE (op1) != LO_SUM \
2265 && GET_CODE (op1) != MEM \
2266 && (GET_CODE (op1) != CONST_INT \
2267 || SMALL_INT (op1))) \
2268 goto ADDR; \
2270 else if (RTX_OK_FOR_BASE_P (op0)) \
2272 if ((RTX_OK_FOR_INDEX_P (op1) \
2273 /* We prohibit REG + REG for TFmode when \
2274 there are no instructions which accept \
2275 REG+REG instructions. We do this \
2276 because REG+REG is not an offsetable \
2277 address. If we get the situation \
2278 in reload where source and destination \
2279 of a movtf pattern are both MEMs with \
2280 REG+REG address, then only one of them \
2281 gets converted to an offsetable \
2282 address. */ \
2283 && (MODE != TFmode \
2284 || (TARGET_FPU && TARGET_ARCH64 \
2285 && TARGET_V9 \
2286 && TARGET_HARD_QUAD)) \
2287 /* We prohibit REG + REG on ARCH32 if \
2288 not optimizing for DFmode/DImode \
2289 because then mem_min_alignment is \
2290 likely to be zero after reload and the \
2291 forced split would lack a matching \
2292 splitter pattern. */ \
2293 && (TARGET_ARCH64 || optimize \
2294 || (MODE != DFmode \
2295 && MODE != DImode))) \
2296 || RTX_OK_FOR_OFFSET_P (op1)) \
2297 goto ADDR; \
2299 else if (RTX_OK_FOR_BASE_P (op1)) \
2301 if ((RTX_OK_FOR_INDEX_P (op0) \
2302 /* See the previous comment. */ \
2303 && (MODE != TFmode \
2304 || (TARGET_FPU && TARGET_ARCH64 \
2305 && TARGET_V9 \
2306 && TARGET_HARD_QUAD)) \
2307 && (TARGET_ARCH64 || optimize \
2308 || (MODE != DFmode \
2309 && MODE != DImode))) \
2310 || RTX_OK_FOR_OFFSET_P (op0)) \
2311 goto ADDR; \
2313 else if (USE_AS_OFFSETABLE_LO10 \
2314 && GET_CODE (op0) == LO_SUM \
2315 && TARGET_ARCH64 \
2316 && ! TARGET_CM_MEDMID \
2317 && RTX_OK_FOR_OLO10_P (op1)) \
2319 register rtx op00 = XEXP (op0, 0); \
2320 register rtx op01 = XEXP (op0, 1); \
2321 if (RTX_OK_FOR_BASE_P (op00) \
2322 && CONSTANT_P (op01)) \
2323 goto ADDR; \
2325 else if (USE_AS_OFFSETABLE_LO10 \
2326 && GET_CODE (op1) == LO_SUM \
2327 && TARGET_ARCH64 \
2328 && ! TARGET_CM_MEDMID \
2329 && RTX_OK_FOR_OLO10_P (op0)) \
2331 register rtx op10 = XEXP (op1, 0); \
2332 register rtx op11 = XEXP (op1, 1); \
2333 if (RTX_OK_FOR_BASE_P (op10) \
2334 && CONSTANT_P (op11)) \
2335 goto ADDR; \
2338 else if (GET_CODE (X) == LO_SUM) \
2340 register rtx op0 = XEXP (X, 0); \
2341 register rtx op1 = XEXP (X, 1); \
2342 if (RTX_OK_FOR_BASE_P (op0) \
2343 && CONSTANT_P (op1) \
2344 /* We can't allow TFmode, because an offset \
2345 greater than or equal to the alignment (8) \
2346 may cause the LO_SUM to overflow if !v9. */\
2347 && (MODE != TFmode || TARGET_V9)) \
2348 goto ADDR; \
2350 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
2351 goto ADDR; \
2354 /* Try machine-dependent ways of modifying an illegitimate address
2355 to be legitimate. If we find one, return the new, valid address.
2356 This macro is used in only one place: `memory_address' in explow.c.
2358 OLDX is the address as it was before break_out_memory_refs was called.
2359 In some cases it is useful to look at this to decide what needs to be done.
2361 MODE and WIN are passed so that this macro can use
2362 GO_IF_LEGITIMATE_ADDRESS.
2364 It is always safe for this macro to do nothing. It exists to recognize
2365 opportunities to optimize the output. */
2367 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2368 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2369 { rtx sparc_x = (X); \
2370 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
2371 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2372 force_operand (XEXP (X, 0), NULL_RTX)); \
2373 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
2374 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2375 force_operand (XEXP (X, 1), NULL_RTX)); \
2376 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
2377 (X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
2378 XEXP (X, 1)); \
2379 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
2380 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2381 force_operand (XEXP (X, 1), NULL_RTX)); \
2382 if (sparc_x != (X) && memory_address_p (MODE, X)) \
2383 goto WIN; \
2384 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
2385 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
2386 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2387 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
2388 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
2389 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2390 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
2391 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
2392 || GET_CODE (X) == LABEL_REF) \
2393 (X) = copy_to_suggested_reg (X, NULL_RTX, Pmode); \
2394 if (memory_address_p (MODE, X)) \
2395 goto WIN; }
2397 /* Try a machine-dependent way of reloading an illegitimate address
2398 operand. If we find one, push the reload and jump to WIN. This
2399 macro is used in only one place: `find_reloads_address' in reload.c.
2401 For Sparc 32, we wish to handle addresses by splitting them into
2402 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2403 This cuts the number of extra insns by one.
2405 Do nothing when generating PIC code and the address is a
2406 symbolic operand or requires a scratch register. */
2408 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2409 do { \
2410 /* Decompose SImode constants into hi+lo_sum. We do have to \
2411 rerecognize what we produce, so be careful. */ \
2412 if (CONSTANT_P (X) \
2413 && (MODE != TFmode || TARGET_ARCH64) \
2414 && GET_MODE (X) == SImode \
2415 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2416 && ! (flag_pic \
2417 && (symbolic_operand (X, Pmode) \
2418 || pic_address_needs_scratch (X))) \
2419 && sparc_cmodel <= CM_MEDLOW) \
2421 X = gen_rtx_LO_SUM (GET_MODE (X), \
2422 gen_rtx_HIGH (GET_MODE (X), X), X); \
2423 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
2424 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2425 OPNUM, TYPE); \
2426 goto WIN; \
2428 /* ??? 64-bit reloads. */ \
2429 } while (0)
2431 /* Go to LABEL if ADDR (a legitimate address expression)
2432 has an effect that depends on the machine mode it is used for.
2433 On the SPARC this is never true. */
2435 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
2437 /* If we are referencing a function make the SYMBOL_REF special.
2438 In the Embedded Medium/Anywhere code model, %g4 points to the data segment
2439 so we must not add it to function addresses. */
2441 #define ENCODE_SECTION_INFO(DECL, FIRST) \
2442 do { \
2443 if (TARGET_CM_EMBMEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
2444 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2445 } while (0)
2447 /* Specify the machine mode that this machine uses
2448 for the index in the tablejump instruction. */
2449 /* If we ever implement any of the full models (such as CM_FULLANY),
2450 this has to be DImode in that case */
2451 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2452 #define CASE_VECTOR_MODE \
2453 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2454 #else
2455 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2456 we have to sign extend which slows things down. */
2457 #define CASE_VECTOR_MODE \
2458 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2459 #endif
2461 /* Define as C expression which evaluates to nonzero if the tablejump
2462 instruction expects the table to contain offsets from the address of the
2463 table.
2464 Do not define this if the table should contain absolute addresses. */
2465 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2467 /* Define this as 1 if `char' should by default be signed; else as 0. */
2468 #define DEFAULT_SIGNED_CHAR 1
2470 /* Max number of bytes we can move from memory to memory
2471 in one reasonably fast instruction. */
2472 #define MOVE_MAX 8
2474 #if 0 /* Sun 4 has matherr, so this is no good. */
2475 /* This is the value of the error code EDOM for this machine,
2476 used by the sqrt instruction. */
2477 #define TARGET_EDOM 33
2479 /* This is how to refer to the variable errno. */
2480 #define GEN_ERRNO_RTX \
2481 gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno"))
2482 #endif /* 0 */
2484 /* Define if operations between registers always perform the operation
2485 on the full register even if a narrower mode is specified. */
2486 #define WORD_REGISTER_OPERATIONS
2488 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2489 will either zero-extend or sign-extend. The value of this macro should
2490 be the code that says which one of the two operations is implicitly
2491 done, NIL if none. */
2492 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2494 /* Nonzero if access to memory by bytes is slow and undesirable.
2495 For RISC chips, it means that access to memory by bytes is no
2496 better than access by words when possible, so grab a whole word
2497 and maybe make use of that. */
2498 #define SLOW_BYTE_ACCESS 1
2500 /* We assume that the store-condition-codes instructions store 0 for false
2501 and some other value for true. This is the value stored for true. */
2503 #define STORE_FLAG_VALUE 1
2505 /* When a prototype says `char' or `short', really pass an `int'. */
2506 #define PROMOTE_PROTOTYPES (TARGET_ARCH32)
2508 /* Define this to be nonzero if shift instructions ignore all but the low-order
2509 few bits. */
2510 #define SHIFT_COUNT_TRUNCATED 1
2512 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2513 is done just by pretending it is already truncated. */
2514 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2516 /* Specify the machine mode that pointers have.
2517 After generation of rtl, the compiler makes no further distinction
2518 between pointers and any other objects of this machine mode. */
2519 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2521 /* Generate calls to memcpy, memcmp and memset. */
2522 #define TARGET_MEM_FUNCTIONS
2524 /* Add any extra modes needed to represent the condition code.
2526 On the Sparc, we have a "no-overflow" mode which is used when an add or
2527 subtract insn is used to set the condition code. Different branches are
2528 used in this case for some operations.
2530 We also have two modes to indicate that the relevant condition code is
2531 in the floating-point condition code register. One for comparisons which
2532 will generate an exception if the result is unordered (CCFPEmode) and
2533 one for comparisons which will never trap (CCFPmode).
2535 CCXmode and CCX_NOOVmode are only used by v9. */
2537 #define EXTRA_CC_MODES \
2538 CC(CCXmode, "CCX") \
2539 CC(CC_NOOVmode, "CC_NOOV") \
2540 CC(CCX_NOOVmode, "CCX_NOOV") \
2541 CC(CCFPmode, "CCFP") \
2542 CC(CCFPEmode, "CCFPE")
2544 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2545 return the mode to be used for the comparison. For floating-point,
2546 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
2547 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2548 processing is needed. */
2549 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
2551 /* Return non-zero if MODE implies a floating point inequality can be
2552 reversed. For Sparc this is always true because we have a full
2553 compliment of ordered and unordered comparisons, but until generic
2554 code knows how to reverse it correctly we keep the old definition. */
2555 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2557 /* A function address in a call instruction for indexing purposes. */
2558 #define FUNCTION_MODE Pmode
2560 /* Define this if addresses of constant functions
2561 shouldn't be put through pseudo regs where they can be cse'd.
2562 Desirable on machines where ordinary constants are expensive
2563 but a CALL with constant address is cheap. */
2564 #define NO_FUNCTION_CSE
2566 /* alloca should avoid clobbering the old register save area. */
2567 #define SETJMP_VIA_SAVE_AREA
2569 /* Define subroutines to call to handle multiply and divide.
2570 Use the subroutines that Sun's library provides.
2571 The `*' prevents an underscore from being prepended by the compiler. */
2573 #define DIVSI3_LIBCALL "*.div"
2574 #define UDIVSI3_LIBCALL "*.udiv"
2575 #define MODSI3_LIBCALL "*.rem"
2576 #define UMODSI3_LIBCALL "*.urem"
2577 /* .umul is a little faster than .mul. */
2578 #define MULSI3_LIBCALL "*.umul"
2580 /* Define library calls for quad FP operations. These are all part of the
2581 SPARC 32bit ABI. */
2582 #define ADDTF3_LIBCALL "_Q_add"
2583 #define SUBTF3_LIBCALL "_Q_sub"
2584 #define NEGTF2_LIBCALL "_Q_neg"
2585 #define MULTF3_LIBCALL "_Q_mul"
2586 #define DIVTF3_LIBCALL "_Q_div"
2587 #define FLOATSITF2_LIBCALL "_Q_itoq"
2588 #define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
2589 #define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
2590 #define EXTENDSFTF2_LIBCALL "_Q_stoq"
2591 #define TRUNCTFSF2_LIBCALL "_Q_qtos"
2592 #define EXTENDDFTF2_LIBCALL "_Q_dtoq"
2593 #define TRUNCTFDF2_LIBCALL "_Q_qtod"
2594 #define EQTF2_LIBCALL "_Q_feq"
2595 #define NETF2_LIBCALL "_Q_fne"
2596 #define GTTF2_LIBCALL "_Q_fgt"
2597 #define GETF2_LIBCALL "_Q_fge"
2598 #define LTTF2_LIBCALL "_Q_flt"
2599 #define LETF2_LIBCALL "_Q_fle"
2601 /* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
2602 with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2603 and the compiler will notice and try to use the TFmode sqrt instruction
2604 for calls to the builtin function sqrt, but this fails. */
2605 #define INIT_TARGET_OPTABS \
2606 do { \
2607 if (TARGET_ARCH32) \
2609 add_optab->handlers[(int) TFmode].libfunc \
2610 = init_one_libfunc (ADDTF3_LIBCALL); \
2611 sub_optab->handlers[(int) TFmode].libfunc \
2612 = init_one_libfunc (SUBTF3_LIBCALL); \
2613 neg_optab->handlers[(int) TFmode].libfunc \
2614 = init_one_libfunc (NEGTF2_LIBCALL); \
2615 smul_optab->handlers[(int) TFmode].libfunc \
2616 = init_one_libfunc (MULTF3_LIBCALL); \
2617 sdiv_optab->handlers[(int) TFmode].libfunc \
2618 = init_one_libfunc (DIVTF3_LIBCALL); \
2619 eqtf2_libfunc = init_one_libfunc (EQTF2_LIBCALL); \
2620 netf2_libfunc = init_one_libfunc (NETF2_LIBCALL); \
2621 gttf2_libfunc = init_one_libfunc (GTTF2_LIBCALL); \
2622 getf2_libfunc = init_one_libfunc (GETF2_LIBCALL); \
2623 lttf2_libfunc = init_one_libfunc (LTTF2_LIBCALL); \
2624 letf2_libfunc = init_one_libfunc (LETF2_LIBCALL); \
2625 trunctfsf2_libfunc = init_one_libfunc (TRUNCTFSF2_LIBCALL); \
2626 trunctfdf2_libfunc = init_one_libfunc (TRUNCTFDF2_LIBCALL); \
2627 extendsftf2_libfunc = init_one_libfunc (EXTENDSFTF2_LIBCALL); \
2628 extenddftf2_libfunc = init_one_libfunc (EXTENDDFTF2_LIBCALL); \
2629 floatsitf_libfunc = init_one_libfunc (FLOATSITF2_LIBCALL); \
2630 fixtfsi_libfunc = init_one_libfunc (FIX_TRUNCTFSI2_LIBCALL); \
2631 fixunstfsi_libfunc \
2632 = init_one_libfunc (FIXUNS_TRUNCTFSI2_LIBCALL); \
2633 if (TARGET_FPU) \
2634 sqrt_optab->handlers[(int) TFmode].libfunc \
2635 = init_one_libfunc ("_Q_sqrt"); \
2637 INIT_SUBTARGET_OPTABS; \
2638 } while (0)
2640 /* This is meant to be redefined in the host dependent files */
2641 #define INIT_SUBTARGET_OPTABS
2643 /* Nonzero if a floating point comparison library call for
2644 mode MODE that will return a boolean value. Zero if one
2645 of the libgcc2 functions is used. */
2646 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2648 /* Compute extra cost of moving data between one register class
2649 and another. */
2650 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2651 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2652 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2653 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2654 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2655 ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
2656 || sparc_cpu == PROCESSOR_ULTRASPARC3) ? 12 : 6) : 2)
2658 /* Provide the cost of a branch. For pre-v9 processors we use
2659 a value of 3 to take into account the potential annulling of
2660 the delay slot (which ends up being a bubble in the pipeline slot)
2661 plus a cycle to take into consideration the instruction cache
2662 effects.
2664 On v9 and later, which have branch prediction facilities, we set
2665 it to the depth of the pipeline as that is the cost of a
2666 mispredicted branch. */
2668 #define BRANCH_COST \
2669 ((sparc_cpu == PROCESSOR_V9 \
2670 || sparc_cpu == PROCESSOR_ULTRASPARC) \
2671 ? 7 \
2672 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2673 ? 9 : 3))
2675 /* The cases that RTX_COSTS handles. */
2677 #define RTX_COSTS_CASES \
2678 case MULT: case DIV: case UDIV: case MOD: case UMOD: \
2679 case FLOAT: case FIX: \
2680 case CONST_INT: case HIGH: case CONST: \
2681 case LABEL_REF: case SYMBOL_REF: case CONST_DOUBLE:
2683 /* Provide the costs of a rtl expression. This is in the body of a
2684 switch on CODE. */
2686 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2687 RTX_COSTS_CASES \
2688 return sparc_rtx_costs(X,CODE,OUTER_CODE);
2690 #define ADDRESS_COST(RTX) 1
2692 #define PREFETCH_BLOCK \
2693 ((sparc_cpu == PROCESSOR_ULTRASPARC \
2694 || sparc_cpu == PROCESSOR_ULTRASPARC3) \
2695 ? 64 : 32)
2697 #define SIMULTANEOUS_PREFETCHES \
2698 ((sparc_cpu == PROCESSOR_ULTRASPARC) \
2699 ? 2 \
2700 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2701 ? 8 : 3))
2703 /* Control the assembler format that we output. */
2705 /* Output at beginning of assembler file. */
2707 #define ASM_FILE_START(file)
2709 /* A C string constant describing how to begin a comment in the target
2710 assembler language. The compiler assumes that the comment will end at
2711 the end of the line. */
2713 #define ASM_COMMENT_START "!"
2715 /* Output to assembler file text saying following lines
2716 may contain character constants, extra white space, comments, etc. */
2718 #define ASM_APP_ON ""
2720 /* Output to assembler file text saying following lines
2721 no longer contain unusual constructs. */
2723 #define ASM_APP_OFF ""
2725 /* ??? Try to make the style consistent here (_OP?). */
2727 #define ASM_FLOAT ".single"
2728 #define ASM_DOUBLE ".double"
2729 #define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
2731 /* How to refer to registers in assembler output.
2732 This sequence is indexed by compiler's hard-register-number (see above). */
2734 #define REGISTER_NAMES \
2735 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2736 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2737 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2738 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2739 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2740 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2741 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2742 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2743 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2744 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2745 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2746 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2747 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2749 /* Define additional names for use in asm clobbers and asm declarations. */
2751 #define ADDITIONAL_REGISTER_NAMES \
2752 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2754 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2755 can run past this up to a continuation point. Once we used 1500, but
2756 a single entry in C++ can run more than 500 bytes, due to the length of
2757 mangled symbol names. dbxout.c should really be fixed to do
2758 continuations when they are actually needed instead of trying to
2759 guess... */
2760 #define DBX_CONTIN_LENGTH 1000
2762 /* This is how to output the definition of a user-level label named NAME,
2763 such as the label on a static function or variable NAME. */
2765 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2766 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2768 /* This is how to output a command to make the user-level label named NAME
2769 defined for reference from other files. */
2771 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2772 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2774 /* The prefix to add to user-visible assembler symbols. */
2776 #define USER_LABEL_PREFIX "_"
2778 /* This is how to output a definition of an internal numbered label where
2779 PREFIX is the class of label and NUM is the number within the class. */
2781 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2782 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
2784 /* This is how to store into the string LABEL
2785 the symbol_ref name of an internal numbered label where
2786 PREFIX is the class of label and NUM is the number within the class.
2787 This is suitable for output with `assemble_name'. */
2789 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2790 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2792 /* This is how we hook in and defer the case-vector until the end of
2793 the function. */
2794 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2795 sparc_defer_case_vector ((LAB),(VEC), 0)
2797 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2798 sparc_defer_case_vector ((LAB),(VEC), 1)
2800 /* This is how to output an element of a case-vector that is absolute. */
2802 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2803 do { \
2804 char label[30]; \
2805 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2806 if (CASE_VECTOR_MODE == SImode) \
2807 fprintf (FILE, "\t.word\t"); \
2808 else \
2809 fprintf (FILE, "\t.xword\t"); \
2810 assemble_name (FILE, label); \
2811 fputc ('\n', FILE); \
2812 } while (0)
2814 /* This is how to output an element of a case-vector that is relative.
2815 (SPARC uses such vectors only when generating PIC.) */
2817 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2818 do { \
2819 char label[30]; \
2820 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
2821 if (CASE_VECTOR_MODE == SImode) \
2822 fprintf (FILE, "\t.word\t"); \
2823 else \
2824 fprintf (FILE, "\t.xword\t"); \
2825 assemble_name (FILE, label); \
2826 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
2827 fputc ('-', FILE); \
2828 assemble_name (FILE, label); \
2829 fputc ('\n', FILE); \
2830 } while (0)
2832 /* This is what to output before and after case-vector (both
2833 relative and absolute). If .subsection -1 works, we put case-vectors
2834 at the beginning of the current section. */
2836 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2838 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
2839 fprintf(FILE, "\t.subsection\t-1\n")
2841 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
2842 fprintf(FILE, "\t.previous\n")
2844 #endif
2846 /* This is how to output an assembler line
2847 that says to advance the location counter
2848 to a multiple of 2**LOG bytes. */
2850 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2851 if ((LOG) != 0) \
2852 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2854 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2855 fprintf (FILE, "\t.skip %u\n", (SIZE))
2857 /* This says how to output an assembler line
2858 to define a global common symbol. */
2860 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2861 ( fputs ("\t.common ", (FILE)), \
2862 assemble_name ((FILE), (NAME)), \
2863 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
2865 /* This says how to output an assembler line to define a local common
2866 symbol. */
2868 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2869 ( fputs ("\t.reserve ", (FILE)), \
2870 assemble_name ((FILE), (NAME)), \
2871 fprintf ((FILE), ",%u,\"bss\",%u\n", \
2872 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2874 /* A C statement (sans semicolon) to output to the stdio stream
2875 FILE the assembler definition of uninitialized global DECL named
2876 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2877 Try to use asm_output_aligned_bss to implement this macro. */
2879 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2880 do { \
2881 fputs (".globl ", (FILE)); \
2882 assemble_name ((FILE), (NAME)); \
2883 fputs ("\n", (FILE)); \
2884 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
2885 } while (0)
2887 /* Store in OUTPUT a string (made with alloca) containing
2888 an assembler-name for a local static variable named NAME.
2889 LABELNO is an integer which is different for each call. */
2891 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2892 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2893 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2895 #define IDENT_ASM_OP "\t.ident\t"
2897 /* Output #ident as a .ident. */
2899 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2900 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2902 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2903 Used for C++ multiple inheritance. */
2904 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2905 do { \
2906 int reg = 0; \
2908 if (TARGET_ARCH64 \
2909 && aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION)))) \
2910 reg = 1; \
2911 if ((DELTA) >= 4096 || (DELTA) < -4096) \
2912 fprintf (FILE, "\tset\t%d, %%g1\n\tadd\t%%o%d, %%g1, %%o%d\n", \
2913 (int)(DELTA), reg, reg); \
2914 else \
2915 fprintf (FILE, "\tadd\t%%o%d, %d, %%o%d\n", reg, (int)(DELTA), reg);\
2916 fprintf (FILE, "\tor\t%%o7, %%g0, %%g1\n"); \
2917 fprintf (FILE, "\tcall\t"); \
2918 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
2919 fprintf (FILE, ", 0\n"); \
2920 fprintf (FILE, "\t or\t%%g1, %%g0, %%o7\n"); \
2921 } while (0)
2923 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2924 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(' || (CHAR) == '_')
2926 /* Print operand X (an rtx) in assembler syntax to file FILE.
2927 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2928 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2930 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2932 /* Print a memory address as an operand to reference that memory location. */
2934 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2935 { register rtx base, index = 0; \
2936 int offset = 0; \
2937 register rtx addr = ADDR; \
2938 if (GET_CODE (addr) == REG) \
2939 fputs (reg_names[REGNO (addr)], FILE); \
2940 else if (GET_CODE (addr) == PLUS) \
2942 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2943 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2944 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2945 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2946 else \
2947 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2948 if (GET_CODE (base) == LO_SUM) \
2950 if (! USE_AS_OFFSETABLE_LO10 \
2951 || TARGET_ARCH32 \
2952 || TARGET_CM_MEDMID) \
2953 abort (); \
2954 output_operand (XEXP (base, 0), 0); \
2955 fputs ("+%lo(", FILE); \
2956 output_address (XEXP (base, 1)); \
2957 fprintf (FILE, ")+%d", offset); \
2959 else \
2961 fputs (reg_names[REGNO (base)], FILE); \
2962 if (index == 0) \
2963 fprintf (FILE, "%+d", offset); \
2964 else if (GET_CODE (index) == REG) \
2965 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2966 else if (GET_CODE (index) == SYMBOL_REF \
2967 || GET_CODE (index) == CONST) \
2968 fputc ('+', FILE), output_addr_const (FILE, index); \
2969 else abort (); \
2972 else if (GET_CODE (addr) == MINUS \
2973 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2975 output_addr_const (FILE, XEXP (addr, 0)); \
2976 fputs ("-(", FILE); \
2977 output_addr_const (FILE, XEXP (addr, 1)); \
2978 fputs ("-.)", FILE); \
2980 else if (GET_CODE (addr) == LO_SUM) \
2982 output_operand (XEXP (addr, 0), 0); \
2983 if (TARGET_CM_MEDMID) \
2984 fputs ("+%l44(", FILE); \
2985 else \
2986 fputs ("+%lo(", FILE); \
2987 output_address (XEXP (addr, 1)); \
2988 fputc (')', FILE); \
2990 else if (flag_pic && GET_CODE (addr) == CONST \
2991 && GET_CODE (XEXP (addr, 0)) == MINUS \
2992 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2993 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2994 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2996 addr = XEXP (addr, 0); \
2997 output_addr_const (FILE, XEXP (addr, 0)); \
2998 /* Group the args of the second CONST in parenthesis. */ \
2999 fputs ("-(", FILE); \
3000 /* Skip past the second CONST--it does nothing for us. */\
3001 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
3002 /* Close the parenthesis. */ \
3003 fputc (')', FILE); \
3005 else \
3007 output_addr_const (FILE, addr); \
3011 /* Define the codes that are matched by predicates in sparc.c. */
3013 #define PREDICATE_CODES \
3014 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3015 {"fp_zero_operand", {CONST_DOUBLE}}, \
3016 {"fp_register_operand", {SUBREG, REG}}, \
3017 {"intreg_operand", {SUBREG, REG}}, \
3018 {"fcc_reg_operand", {REG}}, \
3019 {"fcc0_reg_operand", {REG}}, \
3020 {"icc_or_fcc_reg_operand", {REG}}, \
3021 {"restore_operand", {REG}}, \
3022 {"call_operand", {MEM}}, \
3023 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
3024 ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
3025 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
3026 {"symbolic_memory_operand", {SUBREG, MEM}}, \
3027 {"label_ref_operand", {LABEL_REF}}, \
3028 {"sp64_medium_pic_operand", {CONST}}, \
3029 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
3030 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
3031 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
3032 {"splittable_symbolic_memory_operand", {MEM}}, \
3033 {"splittable_immediate_memory_operand", {MEM}}, \
3034 {"eq_or_neq", {EQ, NE}}, \
3035 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
3036 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
3037 {"noov_compare64_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
3038 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
3039 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
3040 {"cc_arithop", {AND, IOR, XOR}}, \
3041 {"cc_arithopn", {AND, IOR}}, \
3042 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
3043 {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
3044 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
3045 {"arith10_operand", {SUBREG, REG, CONST_INT}}, \
3046 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3047 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3048 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3049 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3050 {"small_int", {CONST_INT}}, \
3051 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
3052 {"uns_small_int", {CONST_INT}}, \
3053 {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
3054 {"clobbered_register", {REG}}, \
3055 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
3056 {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
3057 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}},
3059 /* The number of Pmode words for the setjmp buffer. */
3060 #define JMP_BUF_SIZE 12
3062 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)