[multiple changes]
[official-gcc.git] / gcc / ada / freeze.adb
blobfb4241a40aa2a64dabc260a1409eadf7b100b5bf
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Disp; use Exp_Disp;
36 with Exp_Pakd; use Exp_Pakd;
37 with Exp_Util; use Exp_Util;
38 with Exp_Tss; use Exp_Tss;
39 with Layout; use Layout;
40 with Lib; use Lib;
41 with Namet; use Namet;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Aux; use Sem_Aux;
50 with Sem_Cat; use Sem_Cat;
51 with Sem_Ch6; use Sem_Ch6;
52 with Sem_Ch7; use Sem_Ch7;
53 with Sem_Ch8; use Sem_Ch8;
54 with Sem_Ch13; use Sem_Ch13;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Mech; use Sem_Mech;
57 with Sem_Prag; use Sem_Prag;
58 with Sem_Res; use Sem_Res;
59 with Sem_Util; use Sem_Util;
60 with Sinfo; use Sinfo;
61 with Snames; use Snames;
62 with Stand; use Stand;
63 with Targparm; use Targparm;
64 with Tbuild; use Tbuild;
65 with Ttypes; use Ttypes;
66 with Uintp; use Uintp;
67 with Urealp; use Urealp;
68 with Warnsw; use Warnsw;
70 package body Freeze is
72 -----------------------
73 -- Local Subprograms --
74 -----------------------
76 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
77 -- Typ is a type that is being frozen. If no size clause is given,
78 -- but a default Esize has been computed, then this default Esize is
79 -- adjusted up if necessary to be consistent with a given alignment,
80 -- but never to a value greater than Long_Long_Integer'Size. This
81 -- is used for all discrete types and for fixed-point types.
83 procedure Build_And_Analyze_Renamed_Body
84 (Decl : Node_Id;
85 New_S : Entity_Id;
86 After : in out Node_Id);
87 -- Build body for a renaming declaration, insert in tree and analyze
89 procedure Check_Address_Clause (E : Entity_Id);
90 -- Apply legality checks to address clauses for object declarations,
91 -- at the point the object is frozen. Also ensure any initialization is
92 -- performed only after the object has been frozen.
94 procedure Check_Component_Storage_Order
95 (Encl_Type : Entity_Id;
96 Comp : Entity_Id;
97 ADC : Node_Id;
98 Comp_ADC_Present : out Boolean);
99 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
100 -- clause, verify that the component type has an explicit and compatible
101 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
102 -- entity of the component under consideration. For an Encl_Type that
103 -- does not have a Scalar_Storage_Order attribute definition clause,
104 -- verify that the component also does not have such a clause.
105 -- ADC is the attribute definition clause if present (or Empty). On return,
106 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
107 -- attribute definition clause.
109 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
110 -- When an expression function is frozen by a use of it, the expression
111 -- itself is frozen. Check that the expression does not include references
112 -- to deferred constants without completion. We report this at the freeze
113 -- point of the function, to provide a better error message.
115 procedure Check_Strict_Alignment (E : Entity_Id);
116 -- E is a base type. If E is tagged or has a component that is aliased
117 -- or tagged or contains something this is aliased or tagged, set
118 -- Strict_Alignment.
120 procedure Check_Unsigned_Type (E : Entity_Id);
121 pragma Inline (Check_Unsigned_Type);
122 -- If E is a fixed-point or discrete type, then all the necessary work
123 -- to freeze it is completed except for possible setting of the flag
124 -- Is_Unsigned_Type, which is done by this procedure. The call has no
125 -- effect if the entity E is not a discrete or fixed-point type.
127 procedure Freeze_And_Append
128 (Ent : Entity_Id;
129 N : Node_Id;
130 Result : in out List_Id);
131 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
132 -- nodes to Result, modifying Result from No_List if necessary. N has
133 -- the same usage as in Freeze_Entity.
135 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
136 -- Freeze enumeration type. The Esize field is set as processing
137 -- proceeds (i.e. set by default when the type is declared and then
138 -- adjusted by rep clauses. What this procedure does is to make sure
139 -- that if a foreign convention is specified, and no specific size
140 -- is given, then the size must be at least Integer'Size.
142 procedure Freeze_Static_Object (E : Entity_Id);
143 -- If an object is frozen which has Is_Statically_Allocated set, then
144 -- all referenced types must also be marked with this flag. This routine
145 -- is in charge of meeting this requirement for the object entity E.
147 procedure Freeze_Subprogram (E : Entity_Id);
148 -- Perform freezing actions for a subprogram (create extra formals,
149 -- and set proper default mechanism values). Note that this routine
150 -- is not called for internal subprograms, for which neither of these
151 -- actions is needed (or desirable, we do not want for example to have
152 -- these extra formals present in initialization procedures, where they
153 -- would serve no purpose). In this call E is either a subprogram or
154 -- a subprogram type (i.e. an access to a subprogram).
156 function Is_Fully_Defined (T : Entity_Id) return Boolean;
157 -- True if T is not private and has no private components, or has a full
158 -- view. Used to determine whether the designated type of an access type
159 -- should be frozen when the access type is frozen. This is done when an
160 -- allocator is frozen, or an expression that may involve attributes of
161 -- the designated type. Otherwise freezing the access type does not freeze
162 -- the designated type.
164 procedure Process_Default_Expressions
165 (E : Entity_Id;
166 After : in out Node_Id);
167 -- This procedure is called for each subprogram to complete processing of
168 -- default expressions at the point where all types are known to be frozen.
169 -- The expressions must be analyzed in full, to make sure that all error
170 -- processing is done (they have only been pre-analyzed). If the expression
171 -- is not an entity or literal, its analysis may generate code which must
172 -- not be executed. In that case we build a function body to hold that
173 -- code. This wrapper function serves no other purpose (it used to be
174 -- called to evaluate the default, but now the default is inlined at each
175 -- point of call).
177 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
178 -- Typ is a record or array type that is being frozen. This routine sets
179 -- the default component alignment from the scope stack values if the
180 -- alignment is otherwise not specified.
182 procedure Check_Debug_Info_Needed (T : Entity_Id);
183 -- As each entity is frozen, this routine is called to deal with the
184 -- setting of Debug_Info_Needed for the entity. This flag is set if
185 -- the entity comes from source, or if we are in Debug_Generated_Code
186 -- mode or if the -gnatdV debug flag is set. However, it never sets
187 -- the flag if Debug_Info_Off is set. This procedure also ensures that
188 -- subsidiary entities have the flag set as required.
190 procedure Set_SSO_From_Default (T : Entity_Id);
191 -- T is a record or array type that is being frozen. If it is a base type,
192 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
193 -- will be set appropriately. Note that an explicit occurrence of aspect
194 -- Scalar_Storage_Order or an explicit setting of this aspect with an
195 -- attribute definition clause occurs, then these two flags are reset in
196 -- any case, so call will have no effect.
198 procedure Undelay_Type (T : Entity_Id);
199 -- T is a type of a component that we know to be an Itype. We don't want
200 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
201 -- Full_View or Corresponding_Record_Type.
203 procedure Warn_Overlay
204 (Expr : Node_Id;
205 Typ : Entity_Id;
206 Nam : Node_Id);
207 -- Expr is the expression for an address clause for entity Nam whose type
208 -- is Typ. If Typ has a default initialization, and there is no explicit
209 -- initialization in the source declaration, check whether the address
210 -- clause might cause overlaying of an entity, and emit a warning on the
211 -- side effect that the initialization will cause.
213 -------------------------------
214 -- Adjust_Esize_For_Alignment --
215 -------------------------------
217 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
218 Align : Uint;
220 begin
221 if Known_Esize (Typ) and then Known_Alignment (Typ) then
222 Align := Alignment_In_Bits (Typ);
224 if Align > Esize (Typ)
225 and then Align <= Standard_Long_Long_Integer_Size
226 then
227 Set_Esize (Typ, Align);
228 end if;
229 end if;
230 end Adjust_Esize_For_Alignment;
232 ------------------------------------
233 -- Build_And_Analyze_Renamed_Body --
234 ------------------------------------
236 procedure Build_And_Analyze_Renamed_Body
237 (Decl : Node_Id;
238 New_S : Entity_Id;
239 After : in out Node_Id)
241 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
242 Ent : constant Entity_Id := Defining_Entity (Decl);
243 Body_Node : Node_Id;
244 Renamed_Subp : Entity_Id;
246 begin
247 -- If the renamed subprogram is intrinsic, there is no need for a
248 -- wrapper body: we set the alias that will be called and expanded which
249 -- completes the declaration. This transformation is only legal if the
250 -- renamed entity has already been elaborated.
252 -- Note that it is legal for a renaming_as_body to rename an intrinsic
253 -- subprogram, as long as the renaming occurs before the new entity
254 -- is frozen (RM 8.5.4 (5)).
256 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
257 and then Is_Entity_Name (Name (Body_Decl))
258 then
259 Renamed_Subp := Entity (Name (Body_Decl));
260 else
261 Renamed_Subp := Empty;
262 end if;
264 if Present (Renamed_Subp)
265 and then Is_Intrinsic_Subprogram (Renamed_Subp)
266 and then
267 (not In_Same_Source_Unit (Renamed_Subp, Ent)
268 or else Sloc (Renamed_Subp) < Sloc (Ent))
270 -- We can make the renaming entity intrinsic if the renamed function
271 -- has an interface name, or if it is one of the shift/rotate
272 -- operations known to the compiler.
274 and then
275 (Present (Interface_Name (Renamed_Subp))
276 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
277 Name_Rotate_Right,
278 Name_Shift_Left,
279 Name_Shift_Right,
280 Name_Shift_Right_Arithmetic))
281 then
282 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
284 if Present (Alias (Renamed_Subp)) then
285 Set_Alias (Ent, Alias (Renamed_Subp));
286 else
287 Set_Alias (Ent, Renamed_Subp);
288 end if;
290 Set_Is_Intrinsic_Subprogram (Ent);
291 Set_Has_Completion (Ent);
293 else
294 Body_Node := Build_Renamed_Body (Decl, New_S);
295 Insert_After (After, Body_Node);
296 Mark_Rewrite_Insertion (Body_Node);
297 Analyze (Body_Node);
298 After := Body_Node;
299 end if;
300 end Build_And_Analyze_Renamed_Body;
302 ------------------------
303 -- Build_Renamed_Body --
304 ------------------------
306 function Build_Renamed_Body
307 (Decl : Node_Id;
308 New_S : Entity_Id) return Node_Id
310 Loc : constant Source_Ptr := Sloc (New_S);
311 -- We use for the source location of the renamed body, the location of
312 -- the spec entity. It might seem more natural to use the location of
313 -- the renaming declaration itself, but that would be wrong, since then
314 -- the body we create would look as though it was created far too late,
315 -- and this could cause problems with elaboration order analysis,
316 -- particularly in connection with instantiations.
318 N : constant Node_Id := Unit_Declaration_Node (New_S);
319 Nam : constant Node_Id := Name (N);
320 Old_S : Entity_Id;
321 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
322 Actuals : List_Id := No_List;
323 Call_Node : Node_Id;
324 Call_Name : Node_Id;
325 Body_Node : Node_Id;
326 Formal : Entity_Id;
327 O_Formal : Entity_Id;
328 Param_Spec : Node_Id;
330 Pref : Node_Id := Empty;
331 -- If the renamed entity is a primitive operation given in prefix form,
332 -- the prefix is the target object and it has to be added as the first
333 -- actual in the generated call.
335 begin
336 -- Determine the entity being renamed, which is the target of the call
337 -- statement. If the name is an explicit dereference, this is a renaming
338 -- of a subprogram type rather than a subprogram. The name itself is
339 -- fully analyzed.
341 if Nkind (Nam) = N_Selected_Component then
342 Old_S := Entity (Selector_Name (Nam));
344 elsif Nkind (Nam) = N_Explicit_Dereference then
345 Old_S := Etype (Nam);
347 elsif Nkind (Nam) = N_Indexed_Component then
348 if Is_Entity_Name (Prefix (Nam)) then
349 Old_S := Entity (Prefix (Nam));
350 else
351 Old_S := Entity (Selector_Name (Prefix (Nam)));
352 end if;
354 elsif Nkind (Nam) = N_Character_Literal then
355 Old_S := Etype (New_S);
357 else
358 Old_S := Entity (Nam);
359 end if;
361 if Is_Entity_Name (Nam) then
363 -- If the renamed entity is a predefined operator, retain full name
364 -- to ensure its visibility.
366 if Ekind (Old_S) = E_Operator
367 and then Nkind (Nam) = N_Expanded_Name
368 then
369 Call_Name := New_Copy (Name (N));
370 else
371 Call_Name := New_Occurrence_Of (Old_S, Loc);
372 end if;
374 else
375 if Nkind (Nam) = N_Selected_Component
376 and then Present (First_Formal (Old_S))
377 and then
378 (Is_Controlling_Formal (First_Formal (Old_S))
379 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
380 then
382 -- Retrieve the target object, to be added as a first actual
383 -- in the call.
385 Call_Name := New_Occurrence_Of (Old_S, Loc);
386 Pref := Prefix (Nam);
388 else
389 Call_Name := New_Copy (Name (N));
390 end if;
392 -- Original name may have been overloaded, but is fully resolved now
394 Set_Is_Overloaded (Call_Name, False);
395 end if;
397 -- For simple renamings, subsequent calls can be expanded directly as
398 -- calls to the renamed entity. The body must be generated in any case
399 -- for calls that may appear elsewhere. This is not done in the case
400 -- where the subprogram is an instantiation because the actual proper
401 -- body has not been built yet.
403 if Ekind_In (Old_S, E_Function, E_Procedure)
404 and then Nkind (Decl) = N_Subprogram_Declaration
405 and then not Is_Generic_Instance (Old_S)
406 then
407 Set_Body_To_Inline (Decl, Old_S);
408 end if;
410 -- The body generated for this renaming is an internal artifact, and
411 -- does not constitute a freeze point for the called entity.
413 Set_Must_Not_Freeze (Call_Name);
415 Formal := First_Formal (Defining_Entity (Decl));
417 if Present (Pref) then
418 declare
419 Pref_Type : constant Entity_Id := Etype (Pref);
420 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
422 begin
423 -- The controlling formal may be an access parameter, or the
424 -- actual may be an access value, so adjust accordingly.
426 if Is_Access_Type (Pref_Type)
427 and then not Is_Access_Type (Form_Type)
428 then
429 Actuals := New_List
430 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
432 elsif Is_Access_Type (Form_Type)
433 and then not Is_Access_Type (Pref)
434 then
435 Actuals := New_List
436 (Make_Attribute_Reference (Loc,
437 Attribute_Name => Name_Access,
438 Prefix => Relocate_Node (Pref)));
439 else
440 Actuals := New_List (Pref);
441 end if;
442 end;
444 elsif Present (Formal) then
445 Actuals := New_List;
447 else
448 Actuals := No_List;
449 end if;
451 if Present (Formal) then
452 while Present (Formal) loop
453 Append (New_Occurrence_Of (Formal, Loc), Actuals);
454 Next_Formal (Formal);
455 end loop;
456 end if;
458 -- If the renamed entity is an entry, inherit its profile. For other
459 -- renamings as bodies, both profiles must be subtype conformant, so it
460 -- is not necessary to replace the profile given in the declaration.
461 -- However, default values that are aggregates are rewritten when
462 -- partially analyzed, so we recover the original aggregate to insure
463 -- that subsequent conformity checking works. Similarly, if the default
464 -- expression was constant-folded, recover the original expression.
466 Formal := First_Formal (Defining_Entity (Decl));
468 if Present (Formal) then
469 O_Formal := First_Formal (Old_S);
470 Param_Spec := First (Parameter_Specifications (Spec));
471 while Present (Formal) loop
472 if Is_Entry (Old_S) then
473 if Nkind (Parameter_Type (Param_Spec)) /=
474 N_Access_Definition
475 then
476 Set_Etype (Formal, Etype (O_Formal));
477 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
478 end if;
480 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
481 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
482 Nkind (Default_Value (O_Formal))
483 then
484 Set_Expression (Param_Spec,
485 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
486 end if;
488 Next_Formal (Formal);
489 Next_Formal (O_Formal);
490 Next (Param_Spec);
491 end loop;
492 end if;
494 -- If the renamed entity is a function, the generated body contains a
495 -- return statement. Otherwise, build a procedure call. If the entity is
496 -- an entry, subsequent analysis of the call will transform it into the
497 -- proper entry or protected operation call. If the renamed entity is
498 -- a character literal, return it directly.
500 if Ekind (Old_S) = E_Function
501 or else Ekind (Old_S) = E_Operator
502 or else (Ekind (Old_S) = E_Subprogram_Type
503 and then Etype (Old_S) /= Standard_Void_Type)
504 then
505 Call_Node :=
506 Make_Simple_Return_Statement (Loc,
507 Expression =>
508 Make_Function_Call (Loc,
509 Name => Call_Name,
510 Parameter_Associations => Actuals));
512 elsif Ekind (Old_S) = E_Enumeration_Literal then
513 Call_Node :=
514 Make_Simple_Return_Statement (Loc,
515 Expression => New_Occurrence_Of (Old_S, Loc));
517 elsif Nkind (Nam) = N_Character_Literal then
518 Call_Node :=
519 Make_Simple_Return_Statement (Loc,
520 Expression => Call_Name);
522 else
523 Call_Node :=
524 Make_Procedure_Call_Statement (Loc,
525 Name => Call_Name,
526 Parameter_Associations => Actuals);
527 end if;
529 -- Create entities for subprogram body and formals
531 Set_Defining_Unit_Name (Spec,
532 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
534 Param_Spec := First (Parameter_Specifications (Spec));
535 while Present (Param_Spec) loop
536 Set_Defining_Identifier (Param_Spec,
537 Make_Defining_Identifier (Loc,
538 Chars => Chars (Defining_Identifier (Param_Spec))));
539 Next (Param_Spec);
540 end loop;
542 Body_Node :=
543 Make_Subprogram_Body (Loc,
544 Specification => Spec,
545 Declarations => New_List,
546 Handled_Statement_Sequence =>
547 Make_Handled_Sequence_Of_Statements (Loc,
548 Statements => New_List (Call_Node)));
550 if Nkind (Decl) /= N_Subprogram_Declaration then
551 Rewrite (N,
552 Make_Subprogram_Declaration (Loc,
553 Specification => Specification (N)));
554 end if;
556 -- Link the body to the entity whose declaration it completes. If
557 -- the body is analyzed when the renamed entity is frozen, it may
558 -- be necessary to restore the proper scope (see package Exp_Ch13).
560 if Nkind (N) = N_Subprogram_Renaming_Declaration
561 and then Present (Corresponding_Spec (N))
562 then
563 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
564 else
565 Set_Corresponding_Spec (Body_Node, New_S);
566 end if;
568 return Body_Node;
569 end Build_Renamed_Body;
571 --------------------------
572 -- Check_Address_Clause --
573 --------------------------
575 procedure Check_Address_Clause (E : Entity_Id) is
576 Addr : constant Node_Id := Address_Clause (E);
577 Expr : Node_Id;
578 Decl : constant Node_Id := Declaration_Node (E);
579 Loc : constant Source_Ptr := Sloc (Decl);
580 Typ : constant Entity_Id := Etype (E);
582 begin
583 if Present (Addr) then
584 Expr := Expression (Addr);
586 if Needs_Constant_Address (Decl, Typ) then
587 Check_Constant_Address_Clause (Expr, E);
589 -- Has_Delayed_Freeze was set on E when the address clause was
590 -- analyzed, and must remain set because we want the address
591 -- clause to be elaborated only after any entity it references
592 -- has been elaborated.
593 end if;
595 -- If Rep_Clauses are to be ignored, remove address clause from
596 -- list attached to entity, because it may be illegal for gigi,
597 -- for example by breaking order of elaboration..
599 if Ignore_Rep_Clauses then
600 declare
601 Rep : Node_Id;
603 begin
604 Rep := First_Rep_Item (E);
606 if Rep = Addr then
607 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
609 else
610 while Present (Rep)
611 and then Next_Rep_Item (Rep) /= Addr
612 loop
613 Rep := Next_Rep_Item (Rep);
614 end loop;
615 end if;
617 if Present (Rep) then
618 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
619 end if;
620 end;
622 -- And now remove the address clause
624 Kill_Rep_Clause (Addr);
626 elsif not Error_Posted (Expr)
627 and then not Needs_Finalization (Typ)
628 then
629 Warn_Overlay (Expr, Typ, Name (Addr));
630 end if;
632 if Present (Expression (Decl)) then
634 -- Capture initialization value at point of declaration
636 Remove_Side_Effects (Expression (Decl));
638 -- Move initialization to freeze actions (once the object has
639 -- been frozen, and the address clause alignment check has been
640 -- performed.
642 Append_Freeze_Action (E,
643 Make_Assignment_Statement (Loc,
644 Name => New_Occurrence_Of (E, Loc),
645 Expression => Expression (Decl)));
647 Set_No_Initialization (Decl);
648 end if;
649 end if;
650 end Check_Address_Clause;
652 -----------------------------
653 -- Check_Compile_Time_Size --
654 -----------------------------
656 procedure Check_Compile_Time_Size (T : Entity_Id) is
658 procedure Set_Small_Size (T : Entity_Id; S : Uint);
659 -- Sets the compile time known size (32 bits or less) in the Esize
660 -- field, of T checking for a size clause that was given which attempts
661 -- to give a smaller size, and also checking for an alignment clause.
663 function Size_Known (T : Entity_Id) return Boolean;
664 -- Recursive function that does all the work
666 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
667 -- If T is a constrained subtype, its size is not known if any of its
668 -- discriminant constraints is not static and it is not a null record.
669 -- The test is conservative and doesn't check that the components are
670 -- in fact constrained by non-static discriminant values. Could be made
671 -- more precise ???
673 --------------------
674 -- Set_Small_Size --
675 --------------------
677 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
678 begin
679 if S > 32 then
680 return;
682 -- Check for bad size clause given
684 elsif Has_Size_Clause (T) then
685 if RM_Size (T) < S then
686 Error_Msg_Uint_1 := S;
687 Error_Msg_NE
688 ("size for& too small, minimum allowed is ^",
689 Size_Clause (T), T);
690 end if;
692 -- Set size if not set already
694 elsif Unknown_RM_Size (T) then
695 Set_RM_Size (T, S);
696 end if;
697 end Set_Small_Size;
699 ----------------
700 -- Size_Known --
701 ----------------
703 function Size_Known (T : Entity_Id) return Boolean is
704 Index : Entity_Id;
705 Comp : Entity_Id;
706 Ctyp : Entity_Id;
707 Low : Node_Id;
708 High : Node_Id;
710 begin
711 if Size_Known_At_Compile_Time (T) then
712 return True;
714 -- Always True for scalar types. This is true even for generic formal
715 -- scalar types. We used to return False in the latter case, but the
716 -- size is known at compile time, even in the template, we just do
717 -- not know the exact size but that's not the point of this routine.
719 elsif Is_Scalar_Type (T)
720 or else Is_Task_Type (T)
721 then
722 return True;
724 -- Array types
726 elsif Is_Array_Type (T) then
728 -- String literals always have known size, and we can set it
730 if Ekind (T) = E_String_Literal_Subtype then
731 Set_Small_Size (T, Component_Size (T)
732 * String_Literal_Length (T));
733 return True;
735 -- Unconstrained types never have known at compile time size
737 elsif not Is_Constrained (T) then
738 return False;
740 -- Don't do any recursion on type with error posted, since we may
741 -- have a malformed type that leads us into a loop.
743 elsif Error_Posted (T) then
744 return False;
746 -- Otherwise if component size unknown, then array size unknown
748 elsif not Size_Known (Component_Type (T)) then
749 return False;
750 end if;
752 -- Check for all indexes static, and also compute possible size
753 -- (in case it is less than 32 and may be packable).
755 declare
756 Esiz : Uint := Component_Size (T);
757 Dim : Uint;
759 begin
760 Index := First_Index (T);
761 while Present (Index) loop
762 if Nkind (Index) = N_Range then
763 Get_Index_Bounds (Index, Low, High);
765 elsif Error_Posted (Scalar_Range (Etype (Index))) then
766 return False;
768 else
769 Low := Type_Low_Bound (Etype (Index));
770 High := Type_High_Bound (Etype (Index));
771 end if;
773 if not Compile_Time_Known_Value (Low)
774 or else not Compile_Time_Known_Value (High)
775 or else Etype (Index) = Any_Type
776 then
777 return False;
779 else
780 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
782 if Dim >= 0 then
783 Esiz := Esiz * Dim;
784 else
785 Esiz := Uint_0;
786 end if;
787 end if;
789 Next_Index (Index);
790 end loop;
792 Set_Small_Size (T, Esiz);
793 return True;
794 end;
796 -- Access types always have known at compile time sizes
798 elsif Is_Access_Type (T) then
799 return True;
801 -- For non-generic private types, go to underlying type if present
803 elsif Is_Private_Type (T)
804 and then not Is_Generic_Type (T)
805 and then Present (Underlying_Type (T))
806 then
807 -- Don't do any recursion on type with error posted, since we may
808 -- have a malformed type that leads us into a loop.
810 if Error_Posted (T) then
811 return False;
812 else
813 return Size_Known (Underlying_Type (T));
814 end if;
816 -- Record types
818 elsif Is_Record_Type (T) then
820 -- A class-wide type is never considered to have a known size
822 if Is_Class_Wide_Type (T) then
823 return False;
825 -- A subtype of a variant record must not have non-static
826 -- discriminated components.
828 elsif T /= Base_Type (T)
829 and then not Static_Discriminated_Components (T)
830 then
831 return False;
833 -- Don't do any recursion on type with error posted, since we may
834 -- have a malformed type that leads us into a loop.
836 elsif Error_Posted (T) then
837 return False;
838 end if;
840 -- Now look at the components of the record
842 declare
843 -- The following two variables are used to keep track of the
844 -- size of packed records if we can tell the size of the packed
845 -- record in the front end. Packed_Size_Known is True if so far
846 -- we can figure out the size. It is initialized to True for a
847 -- packed record, unless the record has discriminants or atomic
848 -- components or independent components.
850 -- The reason we eliminate the discriminated case is that
851 -- we don't know the way the back end lays out discriminated
852 -- packed records. If Packed_Size_Known is True, then
853 -- Packed_Size is the size in bits so far.
855 Packed_Size_Known : Boolean :=
856 Is_Packed (T)
857 and then not Has_Discriminants (T)
858 and then not Has_Atomic_Components (T)
859 and then not Has_Independent_Components (T);
861 Packed_Size : Uint := Uint_0;
862 -- Size in bits so far
864 begin
865 -- Test for variant part present
867 if Has_Discriminants (T)
868 and then Present (Parent (T))
869 and then Nkind (Parent (T)) = N_Full_Type_Declaration
870 and then Nkind (Type_Definition (Parent (T))) =
871 N_Record_Definition
872 and then not Null_Present (Type_Definition (Parent (T)))
873 and then
874 Present (Variant_Part
875 (Component_List (Type_Definition (Parent (T)))))
876 then
877 -- If variant part is present, and type is unconstrained,
878 -- then we must have defaulted discriminants, or a size
879 -- clause must be present for the type, or else the size
880 -- is definitely not known at compile time.
882 if not Is_Constrained (T)
883 and then
884 No (Discriminant_Default_Value (First_Discriminant (T)))
885 and then Unknown_RM_Size (T)
886 then
887 return False;
888 end if;
889 end if;
891 -- Loop through components
893 Comp := First_Component_Or_Discriminant (T);
894 while Present (Comp) loop
895 Ctyp := Etype (Comp);
897 -- We do not know the packed size if there is a component
898 -- clause present (we possibly could, but this would only
899 -- help in the case of a record with partial rep clauses.
900 -- That's because in the case of full rep clauses, the
901 -- size gets figured out anyway by a different circuit).
903 if Present (Component_Clause (Comp)) then
904 Packed_Size_Known := False;
905 end if;
907 -- We do not know the packed size if we have a by reference
908 -- type, or an atomic type or an atomic component, or an
909 -- aliased component (because packing does not touch these).
911 if Is_Atomic (Ctyp)
912 or else Is_Atomic (Comp)
913 or else Is_By_Reference_Type (Ctyp)
914 or else Is_Aliased (Comp)
915 then
916 Packed_Size_Known := False;
917 end if;
919 -- We need to identify a component that is an array where
920 -- the index type is an enumeration type with non-standard
921 -- representation, and some bound of the type depends on a
922 -- discriminant.
924 -- This is because gigi computes the size by doing a
925 -- substitution of the appropriate discriminant value in
926 -- the size expression for the base type, and gigi is not
927 -- clever enough to evaluate the resulting expression (which
928 -- involves a call to rep_to_pos) at compile time.
930 -- It would be nice if gigi would either recognize that
931 -- this expression can be computed at compile time, or
932 -- alternatively figured out the size from the subtype
933 -- directly, where all the information is at hand ???
935 if Is_Array_Type (Etype (Comp))
936 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
937 then
938 declare
939 Ocomp : constant Entity_Id :=
940 Original_Record_Component (Comp);
941 OCtyp : constant Entity_Id := Etype (Ocomp);
942 Ind : Node_Id;
943 Indtyp : Entity_Id;
944 Lo, Hi : Node_Id;
946 begin
947 Ind := First_Index (OCtyp);
948 while Present (Ind) loop
949 Indtyp := Etype (Ind);
951 if Is_Enumeration_Type (Indtyp)
952 and then Has_Non_Standard_Rep (Indtyp)
953 then
954 Lo := Type_Low_Bound (Indtyp);
955 Hi := Type_High_Bound (Indtyp);
957 if Is_Entity_Name (Lo)
958 and then Ekind (Entity (Lo)) = E_Discriminant
959 then
960 return False;
962 elsif Is_Entity_Name (Hi)
963 and then Ekind (Entity (Hi)) = E_Discriminant
964 then
965 return False;
966 end if;
967 end if;
969 Next_Index (Ind);
970 end loop;
971 end;
972 end if;
974 -- Clearly size of record is not known if the size of one of
975 -- the components is not known.
977 if not Size_Known (Ctyp) then
978 return False;
979 end if;
981 -- Accumulate packed size if possible
983 if Packed_Size_Known then
985 -- We can only deal with elementary types, since for
986 -- non-elementary components, alignment enters into the
987 -- picture, and we don't know enough to handle proper
988 -- alignment in this context. Packed arrays count as
989 -- elementary if the representation is a modular type.
991 if Is_Elementary_Type (Ctyp)
992 or else (Is_Array_Type (Ctyp)
993 and then Present
994 (Packed_Array_Impl_Type (Ctyp))
995 and then Is_Modular_Integer_Type
996 (Packed_Array_Impl_Type (Ctyp)))
997 then
998 -- Packed size unknown if we have an atomic type
999 -- or a by reference type, since the back end
1000 -- knows how these are layed out.
1002 if Is_Atomic (Ctyp)
1003 or else Is_By_Reference_Type (Ctyp)
1004 then
1005 Packed_Size_Known := False;
1007 -- If RM_Size is known and static, then we can keep
1008 -- accumulating the packed size
1010 elsif Known_Static_RM_Size (Ctyp) then
1012 -- A little glitch, to be removed sometime ???
1013 -- gigi does not understand zero sizes yet.
1015 if RM_Size (Ctyp) = Uint_0 then
1016 Packed_Size_Known := False;
1018 -- Normal case where we can keep accumulating the
1019 -- packed array size.
1021 else
1022 Packed_Size := Packed_Size + RM_Size (Ctyp);
1023 end if;
1025 -- If we have a field whose RM_Size is not known then
1026 -- we can't figure out the packed size here.
1028 else
1029 Packed_Size_Known := False;
1030 end if;
1032 -- If we have a non-elementary type we can't figure out
1033 -- the packed array size (alignment issues).
1035 else
1036 Packed_Size_Known := False;
1037 end if;
1038 end if;
1040 Next_Component_Or_Discriminant (Comp);
1041 end loop;
1043 if Packed_Size_Known then
1044 Set_Small_Size (T, Packed_Size);
1045 end if;
1047 return True;
1048 end;
1050 -- All other cases, size not known at compile time
1052 else
1053 return False;
1054 end if;
1055 end Size_Known;
1057 -------------------------------------
1058 -- Static_Discriminated_Components --
1059 -------------------------------------
1061 function Static_Discriminated_Components
1062 (T : Entity_Id) return Boolean
1064 Constraint : Elmt_Id;
1066 begin
1067 if Has_Discriminants (T)
1068 and then Present (Discriminant_Constraint (T))
1069 and then Present (First_Component (T))
1070 then
1071 Constraint := First_Elmt (Discriminant_Constraint (T));
1072 while Present (Constraint) loop
1073 if not Compile_Time_Known_Value (Node (Constraint)) then
1074 return False;
1075 end if;
1077 Next_Elmt (Constraint);
1078 end loop;
1079 end if;
1081 return True;
1082 end Static_Discriminated_Components;
1084 -- Start of processing for Check_Compile_Time_Size
1086 begin
1087 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1088 end Check_Compile_Time_Size;
1090 -----------------------------------
1091 -- Check_Component_Storage_Order --
1092 -----------------------------------
1094 procedure Check_Component_Storage_Order
1095 (Encl_Type : Entity_Id;
1096 Comp : Entity_Id;
1097 ADC : Node_Id;
1098 Comp_ADC_Present : out Boolean)
1100 Comp_Type : Entity_Id;
1101 Comp_ADC : Node_Id;
1102 Err_Node : Node_Id;
1104 Comp_Byte_Aligned : Boolean;
1105 -- Set for the record case, True if Comp starts on a byte boundary
1106 -- (in which case it is allowed to have different storage order).
1108 Comp_SSO_Differs : Boolean;
1109 -- Set True when the component is a nested composite, and it does not
1110 -- have the same scalar storage order as Encl_Type.
1112 Component_Aliased : Boolean;
1114 begin
1115 -- Record case
1117 if Present (Comp) then
1118 Err_Node := Comp;
1119 Comp_Type := Etype (Comp);
1121 if Is_Tag (Comp) then
1122 Comp_Byte_Aligned := True;
1123 Component_Aliased := False;
1125 else
1126 -- If a component clause is present, check if the component starts
1127 -- on a storage element boundary. Otherwise conservatively assume
1128 -- it does so only in the case where the record is not packed.
1130 if Present (Component_Clause (Comp)) then
1131 Comp_Byte_Aligned :=
1132 Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
1133 else
1134 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1135 end if;
1137 Component_Aliased := Is_Aliased (Comp);
1138 end if;
1140 -- Array case
1142 else
1143 Err_Node := Encl_Type;
1144 Comp_Type := Component_Type (Encl_Type);
1146 Component_Aliased := Has_Aliased_Components (Encl_Type);
1147 end if;
1149 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1150 -- the attribute definition clause is attached to the first subtype.
1152 Comp_Type := Base_Type (Comp_Type);
1153 Comp_ADC := Get_Attribute_Definition_Clause
1154 (First_Subtype (Comp_Type),
1155 Attribute_Scalar_Storage_Order);
1156 Comp_ADC_Present := Present (Comp_ADC);
1158 -- Case of record or array component: check storage order compatibility
1160 if Is_Record_Type (Comp_Type) or else Is_Array_Type (Comp_Type) then
1161 Comp_SSO_Differs :=
1162 Reverse_Storage_Order (Encl_Type)
1164 Reverse_Storage_Order (Comp_Type);
1166 -- Parent and extension must have same storage order
1168 if Present (Comp) and then Chars (Comp) = Name_uParent then
1169 if Comp_SSO_Differs then
1170 Error_Msg_N
1171 ("record extension must have same scalar storage order as "
1172 & "parent", Err_Node);
1173 end if;
1175 -- If enclosing composite has explicit SSO then nested composite must
1176 -- have explicit SSO as well.
1178 elsif Present (ADC) and then No (Comp_ADC) then
1179 Error_Msg_N ("nested composite must have explicit scalar "
1180 & "storage order", Err_Node);
1182 -- If component and composite SSO differs, check that component
1183 -- falls on byte boundaries and isn't packed.
1185 elsif Comp_SSO_Differs then
1187 -- Component SSO differs from enclosing composite:
1189 -- Reject if component is a packed array, as it may be represented
1190 -- as a scalar internally.
1192 if Is_Packed_Array (Comp_Type) then
1193 Error_Msg_N
1194 ("type of packed component must have same scalar "
1195 & "storage order as enclosing composite", Err_Node);
1197 -- Reject if composite is a packed array, as it may be rewritten
1198 -- into an array of scalars.
1200 elsif Is_Packed_Array (Encl_Type) then
1201 Error_Msg_N ("type of packed array must have same scalar "
1202 & "storage order as component", Err_Node);
1204 -- Reject if not byte aligned
1206 elsif Is_Record_Type (Encl_Type)
1207 and then not Comp_Byte_Aligned
1208 then
1209 Error_Msg_N
1210 ("type of non-byte-aligned component must have same scalar "
1211 & "storage order as enclosing composite", Err_Node);
1212 end if;
1213 end if;
1215 -- Enclosing type has explicit SSO: non-composite component must not
1216 -- be aliased.
1218 elsif Present (ADC) and then Component_Aliased then
1219 Error_Msg_N
1220 ("aliased component not permitted for type with "
1221 & "explicit Scalar_Storage_Order", Err_Node);
1222 end if;
1223 end Check_Component_Storage_Order;
1225 -----------------------------
1226 -- Check_Debug_Info_Needed --
1227 -----------------------------
1229 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1230 begin
1231 if Debug_Info_Off (T) then
1232 return;
1234 elsif Comes_From_Source (T)
1235 or else Debug_Generated_Code
1236 or else Debug_Flag_VV
1237 or else Needs_Debug_Info (T)
1238 then
1239 Set_Debug_Info_Needed (T);
1240 end if;
1241 end Check_Debug_Info_Needed;
1243 -------------------------------
1244 -- Check_Expression_Function --
1245 -------------------------------
1247 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
1248 Decl : Node_Id;
1250 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1251 -- Function to search for deferred constant
1253 -------------------
1254 -- Find_Constant --
1255 -------------------
1257 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1258 begin
1259 -- When a constant is initialized with the result of a dispatching
1260 -- call, the constant declaration is rewritten as a renaming of the
1261 -- displaced function result. This scenario is not a premature use of
1262 -- a constant even though the Has_Completion flag is not set.
1264 if Is_Entity_Name (Nod)
1265 and then Present (Entity (Nod))
1266 and then Ekind (Entity (Nod)) = E_Constant
1267 and then Scope (Entity (Nod)) = Current_Scope
1268 and then Nkind (Declaration_Node (Entity (Nod))) =
1269 N_Object_Declaration
1270 and then not Is_Imported (Entity (Nod))
1271 and then not Has_Completion (Entity (Nod))
1272 then
1273 Error_Msg_NE
1274 ("premature use of& in call or instance", N, Entity (Nod));
1275 end if;
1277 return OK;
1278 end Find_Constant;
1280 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1282 -- Start of processing for Check_Expression_Function
1284 begin
1285 Decl := Original_Node (Unit_Declaration_Node (Nam));
1287 if Scope (Nam) = Current_Scope
1288 and then Nkind (Decl) = N_Expression_Function
1289 then
1290 Check_Deferred (Expression (Decl));
1291 end if;
1292 end Check_Expression_Function;
1294 ----------------------------
1295 -- Check_Strict_Alignment --
1296 ----------------------------
1298 procedure Check_Strict_Alignment (E : Entity_Id) is
1299 Comp : Entity_Id;
1301 begin
1302 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1303 Set_Strict_Alignment (E);
1305 elsif Is_Array_Type (E) then
1306 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1308 elsif Is_Record_Type (E) then
1309 if Is_Limited_Record (E) then
1310 Set_Strict_Alignment (E);
1311 return;
1312 end if;
1314 Comp := First_Component (E);
1315 while Present (Comp) loop
1316 if not Is_Type (Comp)
1317 and then (Strict_Alignment (Etype (Comp))
1318 or else Is_Aliased (Comp))
1319 then
1320 Set_Strict_Alignment (E);
1321 return;
1322 end if;
1324 Next_Component (Comp);
1325 end loop;
1326 end if;
1327 end Check_Strict_Alignment;
1329 -------------------------
1330 -- Check_Unsigned_Type --
1331 -------------------------
1333 procedure Check_Unsigned_Type (E : Entity_Id) is
1334 Ancestor : Entity_Id;
1335 Lo_Bound : Node_Id;
1336 Btyp : Entity_Id;
1338 begin
1339 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1340 return;
1341 end if;
1343 -- Do not attempt to analyze case where range was in error
1345 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
1346 return;
1347 end if;
1349 -- The situation that is non trivial is something like
1351 -- subtype x1 is integer range -10 .. +10;
1352 -- subtype x2 is x1 range 0 .. V1;
1353 -- subtype x3 is x2 range V2 .. V3;
1354 -- subtype x4 is x3 range V4 .. V5;
1356 -- where Vn are variables. Here the base type is signed, but we still
1357 -- know that x4 is unsigned because of the lower bound of x2.
1359 -- The only way to deal with this is to look up the ancestor chain
1361 Ancestor := E;
1362 loop
1363 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1364 return;
1365 end if;
1367 Lo_Bound := Type_Low_Bound (Ancestor);
1369 if Compile_Time_Known_Value (Lo_Bound) then
1370 if Expr_Rep_Value (Lo_Bound) >= 0 then
1371 Set_Is_Unsigned_Type (E, True);
1372 end if;
1374 return;
1376 else
1377 Ancestor := Ancestor_Subtype (Ancestor);
1379 -- If no ancestor had a static lower bound, go to base type
1381 if No (Ancestor) then
1383 -- Note: the reason we still check for a compile time known
1384 -- value for the base type is that at least in the case of
1385 -- generic formals, we can have bounds that fail this test,
1386 -- and there may be other cases in error situations.
1388 Btyp := Base_Type (E);
1390 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1391 return;
1392 end if;
1394 Lo_Bound := Type_Low_Bound (Base_Type (E));
1396 if Compile_Time_Known_Value (Lo_Bound)
1397 and then Expr_Rep_Value (Lo_Bound) >= 0
1398 then
1399 Set_Is_Unsigned_Type (E, True);
1400 end if;
1402 return;
1403 end if;
1404 end if;
1405 end loop;
1406 end Check_Unsigned_Type;
1408 -------------------------
1409 -- Is_Atomic_Aggregate --
1410 -------------------------
1412 function Is_Atomic_Aggregate
1413 (E : Entity_Id;
1414 Typ : Entity_Id) return Boolean
1416 Loc : constant Source_Ptr := Sloc (E);
1417 New_N : Node_Id;
1418 Par : Node_Id;
1419 Temp : Entity_Id;
1421 begin
1422 Par := Parent (E);
1424 -- Array may be qualified, so find outer context
1426 if Nkind (Par) = N_Qualified_Expression then
1427 Par := Parent (Par);
1428 end if;
1430 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
1431 and then Comes_From_Source (Par)
1432 then
1433 Temp := Make_Temporary (Loc, 'T', E);
1434 New_N :=
1435 Make_Object_Declaration (Loc,
1436 Defining_Identifier => Temp,
1437 Object_Definition => New_Occurrence_Of (Typ, Loc),
1438 Expression => Relocate_Node (E));
1439 Insert_Before (Par, New_N);
1440 Analyze (New_N);
1442 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1443 return True;
1445 else
1446 return False;
1447 end if;
1448 end Is_Atomic_Aggregate;
1450 -----------------------------------------------
1451 -- Explode_Initialization_Compound_Statement --
1452 -----------------------------------------------
1454 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
1455 Init_Stmts : constant Node_Id := Initialization_Statements (E);
1457 begin
1458 if Present (Init_Stmts)
1459 and then Nkind (Init_Stmts) = N_Compound_Statement
1460 then
1461 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
1463 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1464 -- just removing it, because Freeze_All may rely on this particular
1465 -- Node_Id still being present in the enclosing list to know where to
1466 -- stop freezing.
1468 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
1470 Set_Initialization_Statements (E, Empty);
1471 end if;
1472 end Explode_Initialization_Compound_Statement;
1474 ----------------
1475 -- Freeze_All --
1476 ----------------
1478 -- Note: the easy coding for this procedure would be to just build a
1479 -- single list of freeze nodes and then insert them and analyze them
1480 -- all at once. This won't work, because the analysis of earlier freeze
1481 -- nodes may recursively freeze types which would otherwise appear later
1482 -- on in the freeze list. So we must analyze and expand the freeze nodes
1483 -- as they are generated.
1485 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1486 E : Entity_Id;
1487 Decl : Node_Id;
1489 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1490 -- This is the internal recursive routine that does freezing of entities
1491 -- (but NOT the analysis of default expressions, which should not be
1492 -- recursive, we don't want to analyze those till we are sure that ALL
1493 -- the types are frozen).
1495 --------------------
1496 -- Freeze_All_Ent --
1497 --------------------
1499 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1500 E : Entity_Id;
1501 Flist : List_Id;
1502 Lastn : Node_Id;
1504 procedure Process_Flist;
1505 -- If freeze nodes are present, insert and analyze, and reset cursor
1506 -- for next insertion.
1508 -------------------
1509 -- Process_Flist --
1510 -------------------
1512 procedure Process_Flist is
1513 begin
1514 if Is_Non_Empty_List (Flist) then
1515 Lastn := Next (After);
1516 Insert_List_After_And_Analyze (After, Flist);
1518 if Present (Lastn) then
1519 After := Prev (Lastn);
1520 else
1521 After := Last (List_Containing (After));
1522 end if;
1523 end if;
1524 end Process_Flist;
1526 -- Start or processing for Freeze_All_Ent
1528 begin
1529 E := From;
1530 while Present (E) loop
1532 -- If the entity is an inner package which is not a package
1533 -- renaming, then its entities must be frozen at this point. Note
1534 -- that such entities do NOT get frozen at the end of the nested
1535 -- package itself (only library packages freeze).
1537 -- Same is true for task declarations, where anonymous records
1538 -- created for entry parameters must be frozen.
1540 if Ekind (E) = E_Package
1541 and then No (Renamed_Object (E))
1542 and then not Is_Child_Unit (E)
1543 and then not Is_Frozen (E)
1544 then
1545 Push_Scope (E);
1546 Install_Visible_Declarations (E);
1547 Install_Private_Declarations (E);
1549 Freeze_All (First_Entity (E), After);
1551 End_Package_Scope (E);
1553 if Is_Generic_Instance (E)
1554 and then Has_Delayed_Freeze (E)
1555 then
1556 Set_Has_Delayed_Freeze (E, False);
1557 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1558 end if;
1560 elsif Ekind (E) in Task_Kind
1561 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1562 N_Single_Task_Declaration)
1563 then
1564 Push_Scope (E);
1565 Freeze_All (First_Entity (E), After);
1566 End_Scope;
1568 -- For a derived tagged type, we must ensure that all the
1569 -- primitive operations of the parent have been frozen, so that
1570 -- their addresses will be in the parent's dispatch table at the
1571 -- point it is inherited.
1573 elsif Ekind (E) = E_Record_Type
1574 and then Is_Tagged_Type (E)
1575 and then Is_Tagged_Type (Etype (E))
1576 and then Is_Derived_Type (E)
1577 then
1578 declare
1579 Prim_List : constant Elist_Id :=
1580 Primitive_Operations (Etype (E));
1582 Prim : Elmt_Id;
1583 Subp : Entity_Id;
1585 begin
1586 Prim := First_Elmt (Prim_List);
1587 while Present (Prim) loop
1588 Subp := Node (Prim);
1590 if Comes_From_Source (Subp)
1591 and then not Is_Frozen (Subp)
1592 then
1593 Flist := Freeze_Entity (Subp, After);
1594 Process_Flist;
1595 end if;
1597 Next_Elmt (Prim);
1598 end loop;
1599 end;
1600 end if;
1602 if not Is_Frozen (E) then
1603 Flist := Freeze_Entity (E, After);
1604 Process_Flist;
1606 -- If already frozen, and there are delayed aspects, this is where
1607 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1608 -- for a description of how we handle aspect visibility).
1610 elsif Has_Delayed_Aspects (E) then
1612 -- Retrieve the visibility to the discriminants in order to
1613 -- analyze properly the aspects.
1615 Push_Scope_And_Install_Discriminants (E);
1617 declare
1618 Ritem : Node_Id;
1620 begin
1621 Ritem := First_Rep_Item (E);
1622 while Present (Ritem) loop
1623 if Nkind (Ritem) = N_Aspect_Specification
1624 and then Entity (Ritem) = E
1625 and then Is_Delayed_Aspect (Ritem)
1626 then
1627 Check_Aspect_At_End_Of_Declarations (Ritem);
1628 end if;
1630 Ritem := Next_Rep_Item (Ritem);
1631 end loop;
1632 end;
1634 Uninstall_Discriminants_And_Pop_Scope (E);
1635 end if;
1637 -- If an incomplete type is still not frozen, this may be a
1638 -- premature freezing because of a body declaration that follows.
1639 -- Indicate where the freezing took place. Freezing will happen
1640 -- if the body comes from source, but not if it is internally
1641 -- generated, for example as the body of a type invariant.
1643 -- If the freezing is caused by the end of the current declarative
1644 -- part, it is a Taft Amendment type, and there is no error.
1646 if not Is_Frozen (E)
1647 and then Ekind (E) = E_Incomplete_Type
1648 then
1649 declare
1650 Bod : constant Node_Id := Next (After);
1652 begin
1653 -- The presence of a body freezes all entities previously
1654 -- declared in the current list of declarations, but this
1655 -- does not apply if the body does not come from source.
1656 -- A type invariant is transformed into a subprogram body
1657 -- which is placed at the end of the private part of the
1658 -- current package, but this body does not freeze incomplete
1659 -- types that may be declared in this private part.
1661 if (Nkind_In (Bod, N_Subprogram_Body,
1662 N_Entry_Body,
1663 N_Package_Body,
1664 N_Protected_Body,
1665 N_Task_Body)
1666 or else Nkind (Bod) in N_Body_Stub)
1667 and then
1668 List_Containing (After) = List_Containing (Parent (E))
1669 and then Comes_From_Source (Bod)
1670 then
1671 Error_Msg_Sloc := Sloc (Next (After));
1672 Error_Msg_NE
1673 ("type& is frozen# before its full declaration",
1674 Parent (E), E);
1675 end if;
1676 end;
1677 end if;
1679 Next_Entity (E);
1680 end loop;
1681 end Freeze_All_Ent;
1683 -- Start of processing for Freeze_All
1685 begin
1686 Freeze_All_Ent (From, After);
1688 -- Now that all types are frozen, we can deal with default expressions
1689 -- that require us to build a default expression functions. This is the
1690 -- point at which such functions are constructed (after all types that
1691 -- might be used in such expressions have been frozen).
1693 -- For subprograms that are renaming_as_body, we create the wrapper
1694 -- bodies as needed.
1696 -- We also add finalization chains to access types whose designated
1697 -- types are controlled. This is normally done when freezing the type,
1698 -- but this misses recursive type definitions where the later members
1699 -- of the recursion introduce controlled components.
1701 -- Loop through entities
1703 E := From;
1704 while Present (E) loop
1705 if Is_Subprogram (E) then
1707 if not Default_Expressions_Processed (E) then
1708 Process_Default_Expressions (E, After);
1709 end if;
1711 if not Has_Completion (E) then
1712 Decl := Unit_Declaration_Node (E);
1714 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1715 if Error_Posted (Decl) then
1716 Set_Has_Completion (E);
1717 else
1718 Build_And_Analyze_Renamed_Body (Decl, E, After);
1719 end if;
1721 elsif Nkind (Decl) = N_Subprogram_Declaration
1722 and then Present (Corresponding_Body (Decl))
1723 and then
1724 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1725 = N_Subprogram_Renaming_Declaration
1726 then
1727 Build_And_Analyze_Renamed_Body
1728 (Decl, Corresponding_Body (Decl), After);
1729 end if;
1730 end if;
1732 elsif Ekind (E) in Task_Kind
1733 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1734 N_Single_Task_Declaration)
1735 then
1736 declare
1737 Ent : Entity_Id;
1739 begin
1740 Ent := First_Entity (E);
1741 while Present (Ent) loop
1742 if Is_Entry (Ent)
1743 and then not Default_Expressions_Processed (Ent)
1744 then
1745 Process_Default_Expressions (Ent, After);
1746 end if;
1748 Next_Entity (Ent);
1749 end loop;
1750 end;
1752 -- We add finalization masters to access types whose designated types
1753 -- require finalization. This is normally done when freezing the
1754 -- type, but this misses recursive type definitions where the later
1755 -- members of the recursion introduce controlled components (such as
1756 -- can happen when incomplete types are involved), as well cases
1757 -- where a component type is private and the controlled full type
1758 -- occurs after the access type is frozen. Cases that don't need a
1759 -- finalization master are generic formal types (the actual type will
1760 -- have it) and types derived from them, and types with Java and CIL
1761 -- conventions, since those are used for API bindings.
1762 -- (Are there any other cases that should be excluded here???)
1764 elsif Is_Access_Type (E)
1765 and then Comes_From_Source (E)
1766 and then not Is_Generic_Type (Root_Type (E))
1767 and then Needs_Finalization (Designated_Type (E))
1768 then
1769 Build_Finalization_Master (E);
1770 end if;
1772 Next_Entity (E);
1773 end loop;
1774 end Freeze_All;
1776 -----------------------
1777 -- Freeze_And_Append --
1778 -----------------------
1780 procedure Freeze_And_Append
1781 (Ent : Entity_Id;
1782 N : Node_Id;
1783 Result : in out List_Id)
1785 L : constant List_Id := Freeze_Entity (Ent, N);
1786 begin
1787 if Is_Non_Empty_List (L) then
1788 if Result = No_List then
1789 Result := L;
1790 else
1791 Append_List (L, Result);
1792 end if;
1793 end if;
1794 end Freeze_And_Append;
1796 -------------------
1797 -- Freeze_Before --
1798 -------------------
1800 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1801 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
1803 begin
1804 if Ekind (T) = E_Function then
1805 Check_Expression_Function (N, T);
1806 end if;
1808 if Is_Non_Empty_List (Freeze_Nodes) then
1809 Insert_Actions (N, Freeze_Nodes);
1810 end if;
1811 end Freeze_Before;
1813 -------------------
1814 -- Freeze_Entity --
1815 -------------------
1817 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1818 Loc : constant Source_Ptr := Sloc (N);
1819 Test_E : Entity_Id := E;
1820 Comp : Entity_Id;
1821 F_Node : Node_Id;
1822 Indx : Node_Id;
1823 Formal : Entity_Id;
1824 Atype : Entity_Id;
1826 Result : List_Id := No_List;
1827 -- List of freezing actions, left at No_List if none
1829 Has_Default_Initialization : Boolean := False;
1830 -- This flag gets set to true for a variable with default initialization
1832 procedure Add_To_Result (N : Node_Id);
1833 -- N is a freezing action to be appended to the Result
1835 function After_Last_Declaration return Boolean;
1836 -- If Loc is a freeze_entity that appears after the last declaration
1837 -- in the scope, inhibit error messages on late completion.
1839 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1840 -- Check that an Access or Unchecked_Access attribute with a prefix
1841 -- which is the current instance type can only be applied when the type
1842 -- is limited.
1844 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1845 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1846 -- integer literal without an explicit corresponding size clause. The
1847 -- caller has checked that Utype is a modular integer type.
1849 procedure Freeze_Array_Type (Arr : Entity_Id);
1850 -- Freeze array type, including freezing index and component types
1852 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
1853 -- Create Freeze_Generic_Entity nodes for types declared in a generic
1854 -- package. Recurse on inner generic packages.
1856 procedure Freeze_Record_Type (Rec : Entity_Id);
1857 -- Freeze record type, including freezing component types, and freezing
1858 -- primitive operations if this is a tagged type.
1860 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
1861 -- Determine whether an arbitrary entity is subject to Boolean aspect
1862 -- Import and its value is specified as True.
1864 procedure Wrap_Imported_Subprogram (E : Entity_Id);
1865 -- If E is an entity for an imported subprogram with pre/post-conditions
1866 -- then this procedure will create a wrapper to ensure that proper run-
1867 -- time checking of the pre/postconditions. See body for details.
1869 -------------------
1870 -- Add_To_Result --
1871 -------------------
1873 procedure Add_To_Result (N : Node_Id) is
1874 begin
1875 if No (Result) then
1876 Result := New_List (N);
1877 else
1878 Append (N, Result);
1879 end if;
1880 end Add_To_Result;
1882 ----------------------------
1883 -- After_Last_Declaration --
1884 ----------------------------
1886 function After_Last_Declaration return Boolean is
1887 Spec : constant Node_Id := Parent (Current_Scope);
1888 begin
1889 if Nkind (Spec) = N_Package_Specification then
1890 if Present (Private_Declarations (Spec)) then
1891 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1892 elsif Present (Visible_Declarations (Spec)) then
1893 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1894 else
1895 return False;
1896 end if;
1897 else
1898 return False;
1899 end if;
1900 end After_Last_Declaration;
1902 ----------------------------
1903 -- Check_Current_Instance --
1904 ----------------------------
1906 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1908 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
1909 -- Determine whether Typ is compatible with the rules for aliased
1910 -- views of types as defined in RM 3.10 in the various dialects.
1912 function Process (N : Node_Id) return Traverse_Result;
1913 -- Process routine to apply check to given node
1915 -----------------------------
1916 -- Is_Aliased_View_Of_Type --
1917 -----------------------------
1919 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
1920 Typ_Decl : constant Node_Id := Parent (Typ);
1922 begin
1923 -- Common case
1925 if Nkind (Typ_Decl) = N_Full_Type_Declaration
1926 and then Limited_Present (Type_Definition (Typ_Decl))
1927 then
1928 return True;
1930 -- The following paragraphs describe what a legal aliased view of
1931 -- a type is in the various dialects of Ada.
1933 -- Ada 95
1935 -- The current instance of a limited type, and a formal parameter
1936 -- or generic formal object of a tagged type.
1938 -- Ada 95 limited type
1939 -- * Type with reserved word "limited"
1940 -- * A protected or task type
1941 -- * A composite type with limited component
1943 elsif Ada_Version <= Ada_95 then
1944 return Is_Limited_Type (Typ);
1946 -- Ada 2005
1948 -- The current instance of a limited tagged type, a protected
1949 -- type, a task type, or a type that has the reserved word
1950 -- "limited" in its full definition ... a formal parameter or
1951 -- generic formal object of a tagged type.
1953 -- Ada 2005 limited type
1954 -- * Type with reserved word "limited", "synchronized", "task"
1955 -- or "protected"
1956 -- * A composite type with limited component
1957 -- * A derived type whose parent is a non-interface limited type
1959 elsif Ada_Version = Ada_2005 then
1960 return
1961 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
1962 or else
1963 (Is_Derived_Type (Typ)
1964 and then not Is_Interface (Etype (Typ))
1965 and then Is_Limited_Type (Etype (Typ)));
1967 -- Ada 2012 and beyond
1969 -- The current instance of an immutably limited type ... a formal
1970 -- parameter or generic formal object of a tagged type.
1972 -- Ada 2012 limited type
1973 -- * Type with reserved word "limited", "synchronized", "task"
1974 -- or "protected"
1975 -- * A composite type with limited component
1976 -- * A derived type whose parent is a non-interface limited type
1977 -- * An incomplete view
1979 -- Ada 2012 immutably limited type
1980 -- * Explicitly limited record type
1981 -- * Record extension with "limited" present
1982 -- * Non-formal limited private type that is either tagged
1983 -- or has at least one access discriminant with a default
1984 -- expression
1985 -- * Task type, protected type or synchronized interface
1986 -- * Type derived from immutably limited type
1988 else
1989 return
1990 Is_Immutably_Limited_Type (Typ)
1991 or else Is_Incomplete_Type (Typ);
1992 end if;
1993 end Is_Aliased_View_Of_Type;
1995 -------------
1996 -- Process --
1997 -------------
1999 function Process (N : Node_Id) return Traverse_Result is
2000 begin
2001 case Nkind (N) is
2002 when N_Attribute_Reference =>
2003 if Nam_In (Attribute_Name (N), Name_Access,
2004 Name_Unchecked_Access)
2005 and then Is_Entity_Name (Prefix (N))
2006 and then Is_Type (Entity (Prefix (N)))
2007 and then Entity (Prefix (N)) = E
2008 then
2009 if Ada_Version < Ada_2012 then
2010 Error_Msg_N
2011 ("current instance must be a limited type",
2012 Prefix (N));
2013 else
2014 Error_Msg_N
2015 ("current instance must be an immutably limited "
2016 & "type (RM-2012, 7.5 (8.1/3))",
2017 Prefix (N));
2018 end if;
2020 return Abandon;
2022 else
2023 return OK;
2024 end if;
2026 when others => return OK;
2027 end case;
2028 end Process;
2030 procedure Traverse is new Traverse_Proc (Process);
2032 -- Local variables
2034 Rec_Type : constant Entity_Id :=
2035 Scope (Defining_Identifier (Comp_Decl));
2037 -- Start of processing for Check_Current_Instance
2039 begin
2040 if not Is_Aliased_View_Of_Type (Rec_Type) then
2041 Traverse (Comp_Decl);
2042 end if;
2043 end Check_Current_Instance;
2045 ------------------------------
2046 -- Check_Suspicious_Modulus --
2047 ------------------------------
2049 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
2050 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
2052 begin
2053 if not Warn_On_Suspicious_Modulus_Value then
2054 return;
2055 end if;
2057 if Nkind (Decl) = N_Full_Type_Declaration then
2058 declare
2059 Tdef : constant Node_Id := Type_Definition (Decl);
2061 begin
2062 if Nkind (Tdef) = N_Modular_Type_Definition then
2063 declare
2064 Modulus : constant Node_Id :=
2065 Original_Node (Expression (Tdef));
2067 begin
2068 if Nkind (Modulus) = N_Integer_Literal then
2069 declare
2070 Modv : constant Uint := Intval (Modulus);
2071 Sizv : constant Uint := RM_Size (Utype);
2073 begin
2074 -- First case, modulus and size are the same. This
2075 -- happens if you have something like mod 32, with
2076 -- an explicit size of 32, this is for sure a case
2077 -- where the warning is given, since it is seems
2078 -- very unlikely that someone would want e.g. a
2079 -- five bit type stored in 32 bits. It is much
2080 -- more likely they wanted a 32-bit type.
2082 if Modv = Sizv then
2083 null;
2085 -- Second case, the modulus is 32 or 64 and no
2086 -- size clause is present. This is a less clear
2087 -- case for giving the warning, but in the case
2088 -- of 32/64 (5-bit or 6-bit types) these seem rare
2089 -- enough that it is a likely error (and in any
2090 -- case using 2**5 or 2**6 in these cases seems
2091 -- clearer. We don't include 8 or 16 here, simply
2092 -- because in practice 3-bit and 4-bit types are
2093 -- more common and too many false positives if
2094 -- we warn in these cases.
2096 elsif not Has_Size_Clause (Utype)
2097 and then (Modv = Uint_32 or else Modv = Uint_64)
2098 then
2099 null;
2101 -- No warning needed
2103 else
2104 return;
2105 end if;
2107 -- If we fall through, give warning
2109 Error_Msg_Uint_1 := Modv;
2110 Error_Msg_N
2111 ("?M?2 '*'*^' may have been intended here",
2112 Modulus);
2113 end;
2114 end if;
2115 end;
2116 end if;
2117 end;
2118 end if;
2119 end Check_Suspicious_Modulus;
2121 -----------------------
2122 -- Freeze_Array_Type --
2123 -----------------------
2125 procedure Freeze_Array_Type (Arr : Entity_Id) is
2126 FS : constant Entity_Id := First_Subtype (Arr);
2127 Ctyp : constant Entity_Id := Component_Type (Arr);
2128 Clause : Entity_Id;
2130 Non_Standard_Enum : Boolean := False;
2131 -- Set true if any of the index types is an enumeration type with a
2132 -- non-standard representation.
2134 begin
2135 Freeze_And_Append (Ctyp, N, Result);
2137 Indx := First_Index (Arr);
2138 while Present (Indx) loop
2139 Freeze_And_Append (Etype (Indx), N, Result);
2141 if Is_Enumeration_Type (Etype (Indx))
2142 and then Has_Non_Standard_Rep (Etype (Indx))
2143 then
2144 Non_Standard_Enum := True;
2145 end if;
2147 Next_Index (Indx);
2148 end loop;
2150 -- Processing that is done only for base types
2152 if Ekind (Arr) = E_Array_Type then
2154 -- Deal with default setting of reverse storage order
2156 Set_SSO_From_Default (Arr);
2158 -- Propagate flags for component type
2160 if Is_Controlled (Component_Type (Arr))
2161 or else Has_Controlled_Component (Ctyp)
2162 then
2163 Set_Has_Controlled_Component (Arr);
2164 end if;
2166 if Has_Unchecked_Union (Component_Type (Arr)) then
2167 Set_Has_Unchecked_Union (Arr);
2168 end if;
2170 -- Warn for pragma Pack overriding foreign convention
2172 if Has_Foreign_Convention (Ctyp)
2173 and then Has_Pragma_Pack (Arr)
2174 then
2175 declare
2176 CN : constant Name_Id :=
2177 Get_Convention_Name (Convention (Ctyp));
2178 PP : constant Node_Id :=
2179 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2180 begin
2181 if Present (PP) then
2182 Error_Msg_Name_1 := CN;
2183 Error_Msg_Sloc := Sloc (Arr);
2184 Error_Msg_N
2185 ("pragma Pack affects convention % components #??",
2186 PP);
2187 Error_Msg_Name_1 := CN;
2188 Error_Msg_N
2189 ("\array components may not have % compatible "
2190 & "representation??", PP);
2191 end if;
2192 end;
2193 end if;
2195 -- If packing was requested or if the component size was
2196 -- set explicitly, then see if bit packing is required. This
2197 -- processing is only done for base types, since all of the
2198 -- representation aspects involved are type-related.
2200 -- This is not just an optimization, if we start processing the
2201 -- subtypes, they interfere with the settings on the base type
2202 -- (this is because Is_Packed has a slightly different meaning
2203 -- before and after freezing).
2205 declare
2206 Csiz : Uint;
2207 Esiz : Uint;
2209 begin
2210 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2211 and then Known_Static_RM_Size (Ctyp)
2212 and then not Has_Component_Size_Clause (Arr)
2213 then
2214 Csiz := UI_Max (RM_Size (Ctyp), 1);
2216 elsif Known_Component_Size (Arr) then
2217 Csiz := Component_Size (Arr);
2219 elsif not Known_Static_Esize (Ctyp) then
2220 Csiz := Uint_0;
2222 else
2223 Esiz := Esize (Ctyp);
2225 -- We can set the component size if it is less than 16,
2226 -- rounding it up to the next storage unit size.
2228 if Esiz <= 8 then
2229 Csiz := Uint_8;
2230 elsif Esiz <= 16 then
2231 Csiz := Uint_16;
2232 else
2233 Csiz := Uint_0;
2234 end if;
2236 -- Set component size up to match alignment if it would
2237 -- otherwise be less than the alignment. This deals with
2238 -- cases of types whose alignment exceeds their size (the
2239 -- padded type cases).
2241 if Csiz /= 0 then
2242 declare
2243 A : constant Uint := Alignment_In_Bits (Ctyp);
2244 begin
2245 if Csiz < A then
2246 Csiz := A;
2247 end if;
2248 end;
2249 end if;
2250 end if;
2252 -- Case of component size that may result in packing
2254 if 1 <= Csiz and then Csiz <= 64 then
2255 declare
2256 Ent : constant Entity_Id :=
2257 First_Subtype (Arr);
2258 Pack_Pragma : constant Node_Id :=
2259 Get_Rep_Pragma (Ent, Name_Pack);
2260 Comp_Size_C : constant Node_Id :=
2261 Get_Attribute_Definition_Clause
2262 (Ent, Attribute_Component_Size);
2263 begin
2264 -- Warn if we have pack and component size so that the
2265 -- pack is ignored.
2267 -- Note: here we must check for the presence of a
2268 -- component size before checking for a Pack pragma to
2269 -- deal with the case where the array type is a derived
2270 -- type whose parent is currently private.
2272 if Present (Comp_Size_C)
2273 and then Has_Pragma_Pack (Ent)
2274 and then Warn_On_Redundant_Constructs
2275 then
2276 Error_Msg_Sloc := Sloc (Comp_Size_C);
2277 Error_Msg_NE
2278 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
2279 Error_Msg_N
2280 ("\?r?explicit component size given#!", Pack_Pragma);
2281 Set_Is_Packed (Base_Type (Ent), False);
2282 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2283 end if;
2285 -- Set component size if not already set by a component
2286 -- size clause.
2288 if not Present (Comp_Size_C) then
2289 Set_Component_Size (Arr, Csiz);
2290 end if;
2292 -- Check for base type of 8, 16, 32 bits, where an
2293 -- unsigned subtype has a length one less than the
2294 -- base type (e.g. Natural subtype of Integer).
2296 -- In such cases, if a component size was not set
2297 -- explicitly, then generate a warning.
2299 if Has_Pragma_Pack (Arr)
2300 and then not Present (Comp_Size_C)
2301 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2302 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2303 then
2304 Error_Msg_Uint_1 := Csiz;
2306 if Present (Pack_Pragma) then
2307 Error_Msg_N
2308 ("??pragma Pack causes component size "
2309 & "to be ^!", Pack_Pragma);
2310 Error_Msg_N
2311 ("\??use Component_Size to set "
2312 & "desired value!", Pack_Pragma);
2313 end if;
2314 end if;
2316 -- Actual packing is not needed for 8, 16, 32, 64. Also
2317 -- not needed for 24 if alignment is 1.
2319 if Csiz = 8
2320 or else Csiz = 16
2321 or else Csiz = 32
2322 or else Csiz = 64
2323 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2324 then
2325 -- Here the array was requested to be packed, but
2326 -- the packing request had no effect, so Is_Packed
2327 -- is reset.
2329 -- Note: semantically this means that we lose track
2330 -- of the fact that a derived type inherited a pragma
2331 -- Pack that was non- effective, but that seems fine.
2333 -- We regard a Pack pragma as a request to set a
2334 -- representation characteristic, and this request
2335 -- may be ignored.
2337 Set_Is_Packed (Base_Type (Arr), False);
2338 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2340 if Known_Static_Esize (Component_Type (Arr))
2341 and then Esize (Component_Type (Arr)) = Csiz
2342 then
2343 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
2344 end if;
2346 -- In all other cases, packing is indeed needed
2348 else
2349 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2350 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2351 Set_Is_Packed (Base_Type (Arr), True);
2352 end if;
2353 end;
2354 end if;
2355 end;
2357 -- Check for Atomic_Components or Aliased with unsuitable packing
2358 -- or explicit component size clause given.
2360 if (Has_Atomic_Components (Arr)
2361 or else
2362 Has_Aliased_Components (Arr))
2363 and then
2364 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2365 then
2366 Alias_Atomic_Check : declare
2368 procedure Complain_CS (T : String);
2369 -- Outputs error messages for incorrect CS clause or pragma
2370 -- Pack for aliased or atomic components (T is "aliased" or
2371 -- "atomic");
2373 -----------------
2374 -- Complain_CS --
2375 -----------------
2377 procedure Complain_CS (T : String) is
2378 begin
2379 if Has_Component_Size_Clause (Arr) then
2380 Clause :=
2381 Get_Attribute_Definition_Clause
2382 (FS, Attribute_Component_Size);
2384 if Known_Static_Esize (Ctyp) then
2385 Error_Msg_N
2386 ("incorrect component size for "
2387 & T & " components", Clause);
2388 Error_Msg_Uint_1 := Esize (Ctyp);
2389 Error_Msg_N
2390 ("\only allowed value is^", Clause);
2392 else
2393 Error_Msg_N
2394 ("component size cannot be given for "
2395 & T & " components", Clause);
2396 end if;
2398 else
2399 Error_Msg_N
2400 ("cannot pack " & T & " components",
2401 Get_Rep_Pragma (FS, Name_Pack));
2402 end if;
2404 return;
2405 end Complain_CS;
2407 -- Start of processing for Alias_Atomic_Check
2409 begin
2410 -- If object size of component type isn't known, we cannot
2411 -- be sure so we defer to the back end.
2413 if not Known_Static_Esize (Ctyp) then
2414 null;
2416 -- Case where component size has no effect. First check for
2417 -- object size of component type multiple of the storage
2418 -- unit size.
2420 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2422 -- OK in both packing case and component size case if RM
2423 -- size is known and static and same as the object size.
2425 and then
2426 ((Known_Static_RM_Size (Ctyp)
2427 and then Esize (Ctyp) = RM_Size (Ctyp))
2429 -- Or if we have an explicit component size clause and
2430 -- the component size and object size are equal.
2432 or else
2433 (Has_Component_Size_Clause (Arr)
2434 and then Component_Size (Arr) = Esize (Ctyp)))
2435 then
2436 null;
2438 elsif Has_Aliased_Components (Arr)
2439 or else Is_Aliased (Ctyp)
2440 then
2441 Complain_CS ("aliased");
2443 elsif Has_Atomic_Components (Arr)
2444 or else Is_Atomic (Ctyp)
2445 then
2446 Complain_CS ("atomic");
2447 end if;
2448 end Alias_Atomic_Check;
2449 end if;
2451 -- Warn for case of atomic type
2453 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2455 if Present (Clause)
2456 and then not Addressable (Component_Size (FS))
2457 then
2458 Error_Msg_NE
2459 ("non-atomic components of type& may not be "
2460 & "accessible by separate tasks??", Clause, Arr);
2462 if Has_Component_Size_Clause (Arr) then
2463 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2464 (FS, Attribute_Component_Size));
2465 Error_Msg_N ("\because of component size clause#??", Clause);
2467 elsif Has_Pragma_Pack (Arr) then
2468 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2469 Error_Msg_N ("\because of pragma Pack#??", Clause);
2470 end if;
2471 end if;
2473 -- Check for scalar storage order
2475 declare
2476 Dummy : Boolean;
2477 begin
2478 Check_Component_Storage_Order
2479 (Encl_Type => Arr,
2480 Comp => Empty,
2481 ADC => Get_Attribute_Definition_Clause
2482 (First_Subtype (Arr),
2483 Attribute_Scalar_Storage_Order),
2484 Comp_ADC_Present => Dummy);
2485 end;
2487 -- Processing that is done only for subtypes
2489 else
2490 -- Acquire alignment from base type
2492 if Unknown_Alignment (Arr) then
2493 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2494 Adjust_Esize_Alignment (Arr);
2495 end if;
2496 end if;
2498 -- Specific checks for bit-packed arrays
2500 if Is_Bit_Packed_Array (Arr) then
2502 -- Check number of elements for bit packed arrays that come from
2503 -- source and have compile time known ranges. The bit-packed
2504 -- arrays circuitry does not support arrays with more than
2505 -- Integer'Last + 1 elements, and when this restriction is
2506 -- violated, causes incorrect data access.
2508 -- For the case where this is not compile time known, a run-time
2509 -- check should be generated???
2511 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
2512 declare
2513 Elmts : Uint;
2514 Index : Node_Id;
2515 Ilen : Node_Id;
2516 Ityp : Entity_Id;
2518 begin
2519 Elmts := Uint_1;
2520 Index := First_Index (Arr);
2521 while Present (Index) loop
2522 Ityp := Etype (Index);
2524 -- Never generate an error if any index is of a generic
2525 -- type. We will check this in instances.
2527 if Is_Generic_Type (Ityp) then
2528 Elmts := Uint_0;
2529 exit;
2530 end if;
2532 Ilen :=
2533 Make_Attribute_Reference (Loc,
2534 Prefix =>
2535 New_Occurrence_Of (Ityp, Loc),
2536 Attribute_Name => Name_Range_Length);
2537 Analyze_And_Resolve (Ilen);
2539 -- No attempt is made to check number of elements
2540 -- if not compile time known.
2542 if Nkind (Ilen) /= N_Integer_Literal then
2543 Elmts := Uint_0;
2544 exit;
2545 end if;
2547 Elmts := Elmts * Intval (Ilen);
2548 Next_Index (Index);
2549 end loop;
2551 if Elmts > Intval (High_Bound
2552 (Scalar_Range (Standard_Integer))) + 1
2553 then
2554 Error_Msg_N
2555 ("bit packed array type may not have "
2556 & "more than Integer''Last+1 elements", Arr);
2557 end if;
2558 end;
2559 end if;
2561 -- Check size
2563 if Known_RM_Size (Arr) then
2564 declare
2565 SizC : constant Node_Id := Size_Clause (Arr);
2567 Discard : Boolean;
2568 pragma Warnings (Off, Discard);
2570 begin
2571 -- It is not clear if it is possible to have no size clause
2572 -- at this stage, but it is not worth worrying about. Post
2573 -- error on the entity name in the size clause if present,
2574 -- else on the type entity itself.
2576 if Present (SizC) then
2577 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
2578 else
2579 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
2580 end if;
2581 end;
2582 end if;
2583 end if;
2585 -- If any of the index types was an enumeration type with a
2586 -- non-standard rep clause, then we indicate that the array type
2587 -- is always packed (even if it is not bit packed).
2589 if Non_Standard_Enum then
2590 Set_Has_Non_Standard_Rep (Base_Type (Arr));
2591 Set_Is_Packed (Base_Type (Arr));
2592 end if;
2594 Set_Component_Alignment_If_Not_Set (Arr);
2596 -- If the array is packed, we must create the packed array type to be
2597 -- used to actually implement the type. This is only needed for real
2598 -- array types (not for string literal types, since they are present
2599 -- only for the front end).
2601 if Is_Packed (Arr)
2602 and then Ekind (Arr) /= E_String_Literal_Subtype
2603 then
2604 Create_Packed_Array_Impl_Type (Arr);
2605 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
2607 -- Size information of packed array type is copied to the array
2608 -- type, since this is really the representation. But do not
2609 -- override explicit existing size values. If the ancestor subtype
2610 -- is constrained the Packed_Array_Impl_Type will be inherited
2611 -- from it, but the size may have been provided already, and
2612 -- must not be overridden either.
2614 if not Has_Size_Clause (Arr)
2615 and then
2616 (No (Ancestor_Subtype (Arr))
2617 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
2618 then
2619 Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
2620 Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
2621 end if;
2623 if not Has_Alignment_Clause (Arr) then
2624 Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
2625 end if;
2626 end if;
2628 -- For non-packed arrays set the alignment of the array to the
2629 -- alignment of the component type if it is unknown. Skip this
2630 -- in atomic case (atomic arrays may need larger alignments).
2632 if not Is_Packed (Arr)
2633 and then Unknown_Alignment (Arr)
2634 and then Known_Alignment (Ctyp)
2635 and then Known_Static_Component_Size (Arr)
2636 and then Known_Static_Esize (Ctyp)
2637 and then Esize (Ctyp) = Component_Size (Arr)
2638 and then not Is_Atomic (Arr)
2639 then
2640 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
2641 end if;
2642 end Freeze_Array_Type;
2644 -----------------------------
2645 -- Freeze_Generic_Entities --
2646 -----------------------------
2648 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
2649 E : Entity_Id;
2650 F : Node_Id;
2651 Flist : List_Id;
2653 begin
2654 Flist := New_List;
2655 E := First_Entity (Pack);
2656 while Present (E) loop
2657 if Is_Type (E) and then not Is_Generic_Type (E) then
2658 F := Make_Freeze_Generic_Entity (Sloc (Pack));
2659 Set_Entity (F, E);
2660 Append_To (Flist, F);
2662 elsif Ekind (E) = E_Generic_Package then
2663 Append_List_To (Flist, Freeze_Generic_Entities (E));
2664 end if;
2666 Next_Entity (E);
2667 end loop;
2669 return Flist;
2670 end Freeze_Generic_Entities;
2672 ------------------------
2673 -- Freeze_Record_Type --
2674 ------------------------
2676 procedure Freeze_Record_Type (Rec : Entity_Id) is
2677 ADC : Node_Id;
2678 Comp : Entity_Id;
2679 IR : Node_Id;
2680 Prev : Entity_Id;
2682 Junk : Boolean;
2683 pragma Warnings (Off, Junk);
2685 Rec_Pushed : Boolean := False;
2686 -- Set True if the record type scope Rec has been pushed on the scope
2687 -- stack. Needed for the analysis of delayed aspects specified to the
2688 -- components of Rec.
2690 SSO_ADC : Node_Id;
2691 -- Scalar_Storage_Order attribute definition clause for the record
2693 Unplaced_Component : Boolean := False;
2694 -- Set True if we find at least one component with no component
2695 -- clause (used to warn about useless Pack pragmas).
2697 Placed_Component : Boolean := False;
2698 -- Set True if we find at least one component with a component
2699 -- clause (used to warn about useless Bit_Order pragmas, and also
2700 -- to detect cases where Implicit_Packing may have an effect).
2702 Aliased_Component : Boolean := False;
2703 -- Set True if we find at least one component which is aliased. This
2704 -- is used to prevent Implicit_Packing of the record, since packing
2705 -- cannot modify the size of alignment of an aliased component.
2707 SSO_ADC_Component : Boolean := False;
2708 -- Set True if we find at least one component whose type has a
2709 -- Scalar_Storage_Order attribute definition clause.
2711 All_Scalar_Components : Boolean := True;
2712 -- Set False if we encounter a component of a non-scalar type
2714 Scalar_Component_Total_RM_Size : Uint := Uint_0;
2715 Scalar_Component_Total_Esize : Uint := Uint_0;
2716 -- Accumulates total RM_Size values and total Esize values of all
2717 -- scalar components. Used for processing of Implicit_Packing.
2719 function Check_Allocator (N : Node_Id) return Node_Id;
2720 -- If N is an allocator, possibly wrapped in one or more level of
2721 -- qualified expression(s), return the inner allocator node, else
2722 -- return Empty.
2724 procedure Check_Itype (Typ : Entity_Id);
2725 -- If the component subtype is an access to a constrained subtype of
2726 -- an already frozen type, make the subtype frozen as well. It might
2727 -- otherwise be frozen in the wrong scope, and a freeze node on
2728 -- subtype has no effect. Similarly, if the component subtype is a
2729 -- regular (not protected) access to subprogram, set the anonymous
2730 -- subprogram type to frozen as well, to prevent an out-of-scope
2731 -- freeze node at some eventual point of call. Protected operations
2732 -- are handled elsewhere.
2734 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
2735 -- Make sure that all types mentioned in Discrete_Choices of the
2736 -- variants referenceed by the Variant_Part VP are frozen. This is
2737 -- a recursive routine to deal with nested variants.
2739 ---------------------
2740 -- Check_Allocator --
2741 ---------------------
2743 function Check_Allocator (N : Node_Id) return Node_Id is
2744 Inner : Node_Id;
2745 begin
2746 Inner := N;
2747 loop
2748 if Nkind (Inner) = N_Allocator then
2749 return Inner;
2750 elsif Nkind (Inner) = N_Qualified_Expression then
2751 Inner := Expression (Inner);
2752 else
2753 return Empty;
2754 end if;
2755 end loop;
2756 end Check_Allocator;
2758 -----------------
2759 -- Check_Itype --
2760 -----------------
2762 procedure Check_Itype (Typ : Entity_Id) is
2763 Desig : constant Entity_Id := Designated_Type (Typ);
2765 begin
2766 if not Is_Frozen (Desig)
2767 and then Is_Frozen (Base_Type (Desig))
2768 then
2769 Set_Is_Frozen (Desig);
2771 -- In addition, add an Itype_Reference to ensure that the
2772 -- access subtype is elaborated early enough. This cannot be
2773 -- done if the subtype may depend on discriminants.
2775 if Ekind (Comp) = E_Component
2776 and then Is_Itype (Etype (Comp))
2777 and then not Has_Discriminants (Rec)
2778 then
2779 IR := Make_Itype_Reference (Sloc (Comp));
2780 Set_Itype (IR, Desig);
2781 Add_To_Result (IR);
2782 end if;
2784 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
2785 and then Convention (Desig) /= Convention_Protected
2786 then
2787 Set_Is_Frozen (Desig);
2788 end if;
2789 end Check_Itype;
2791 ------------------------------------
2792 -- Freeze_Choices_In_Variant_Part --
2793 ------------------------------------
2795 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
2796 pragma Assert (Nkind (VP) = N_Variant_Part);
2798 Variant : Node_Id;
2799 Choice : Node_Id;
2800 CL : Node_Id;
2802 begin
2803 -- Loop through variants
2805 Variant := First_Non_Pragma (Variants (VP));
2806 while Present (Variant) loop
2808 -- Loop through choices, checking that all types are frozen
2810 Choice := First_Non_Pragma (Discrete_Choices (Variant));
2811 while Present (Choice) loop
2812 if Nkind (Choice) in N_Has_Etype
2813 and then Present (Etype (Choice))
2814 then
2815 Freeze_And_Append (Etype (Choice), N, Result);
2816 end if;
2818 Next_Non_Pragma (Choice);
2819 end loop;
2821 -- Check for nested variant part to process
2823 CL := Component_List (Variant);
2825 if not Null_Present (CL) then
2826 if Present (Variant_Part (CL)) then
2827 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
2828 end if;
2829 end if;
2831 Next_Non_Pragma (Variant);
2832 end loop;
2833 end Freeze_Choices_In_Variant_Part;
2835 -- Start of processing for Freeze_Record_Type
2837 begin
2838 -- Deal with delayed aspect specifications for components. The
2839 -- analysis of the aspect is required to be delayed to the freeze
2840 -- point, thus we analyze the pragma or attribute definition
2841 -- clause in the tree at this point. We also analyze the aspect
2842 -- specification node at the freeze point when the aspect doesn't
2843 -- correspond to pragma/attribute definition clause.
2845 Comp := First_Entity (Rec);
2846 while Present (Comp) loop
2847 if Ekind (Comp) = E_Component
2848 and then Has_Delayed_Aspects (Comp)
2849 then
2850 if not Rec_Pushed then
2851 Push_Scope (Rec);
2852 Rec_Pushed := True;
2854 -- The visibility to the discriminants must be restored in
2855 -- order to properly analyze the aspects.
2857 if Has_Discriminants (Rec) then
2858 Install_Discriminants (Rec);
2859 end if;
2860 end if;
2862 Analyze_Aspects_At_Freeze_Point (Comp);
2863 end if;
2865 Next_Entity (Comp);
2866 end loop;
2868 -- Pop the scope if Rec scope has been pushed on the scope stack
2869 -- during the delayed aspect analysis process.
2871 if Rec_Pushed then
2872 if Has_Discriminants (Rec) then
2873 Uninstall_Discriminants (Rec);
2874 end if;
2876 Pop_Scope;
2877 end if;
2879 -- Freeze components and embedded subtypes
2881 Comp := First_Entity (Rec);
2882 Prev := Empty;
2883 while Present (Comp) loop
2884 if Is_Aliased (Comp) then
2885 Aliased_Component := True;
2886 end if;
2888 -- Handle the component and discriminant case
2890 if Ekind_In (Comp, E_Component, E_Discriminant) then
2891 declare
2892 CC : constant Node_Id := Component_Clause (Comp);
2894 begin
2895 -- Freezing a record type freezes the type of each of its
2896 -- components. However, if the type of the component is
2897 -- part of this record, we do not want or need a separate
2898 -- Freeze_Node. Note that Is_Itype is wrong because that's
2899 -- also set in private type cases. We also can't check for
2900 -- the Scope being exactly Rec because of private types and
2901 -- record extensions.
2903 if Is_Itype (Etype (Comp))
2904 and then Is_Record_Type (Underlying_Type
2905 (Scope (Etype (Comp))))
2906 then
2907 Undelay_Type (Etype (Comp));
2908 end if;
2910 Freeze_And_Append (Etype (Comp), N, Result);
2912 -- Warn for pragma Pack overriding foreign convention
2914 if Has_Foreign_Convention (Etype (Comp))
2915 and then Has_Pragma_Pack (Rec)
2917 -- Don't warn for aliased components, since override
2918 -- cannot happen in that case.
2920 and then not Is_Aliased (Comp)
2921 then
2922 declare
2923 CN : constant Name_Id :=
2924 Get_Convention_Name (Convention (Etype (Comp)));
2925 PP : constant Node_Id :=
2926 Get_Pragma (Rec, Pragma_Pack);
2927 begin
2928 if Present (PP) then
2929 Error_Msg_Name_1 := CN;
2930 Error_Msg_Sloc := Sloc (Comp);
2931 Error_Msg_N
2932 ("pragma Pack affects convention % component#??",
2933 PP);
2934 Error_Msg_Name_1 := CN;
2935 Error_Msg_NE
2936 ("\component & may not have % compatible "
2937 & "representation??", PP, Comp);
2938 end if;
2939 end;
2940 end if;
2942 -- Check for error of component clause given for variable
2943 -- sized type. We have to delay this test till this point,
2944 -- since the component type has to be frozen for us to know
2945 -- if it is variable length.
2947 if Present (CC) then
2948 Placed_Component := True;
2950 -- We omit this test in a generic context, it will be
2951 -- applied at instantiation time.
2953 if Inside_A_Generic then
2954 null;
2956 -- Also omit this test in CodePeer mode, since we do not
2957 -- have sufficient info on size and rep clauses.
2959 elsif CodePeer_Mode then
2960 null;
2962 -- Do the check
2964 elsif not
2965 Size_Known_At_Compile_Time
2966 (Underlying_Type (Etype (Comp)))
2967 then
2968 Error_Msg_N
2969 ("component clause not allowed for variable " &
2970 "length component", CC);
2971 end if;
2973 else
2974 Unplaced_Component := True;
2975 end if;
2977 -- Case of component requires byte alignment
2979 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
2981 -- Set the enclosing record to also require byte align
2983 Set_Must_Be_On_Byte_Boundary (Rec);
2985 -- Check for component clause that is inconsistent with
2986 -- the required byte boundary alignment.
2988 if Present (CC)
2989 and then Normalized_First_Bit (Comp) mod
2990 System_Storage_Unit /= 0
2991 then
2992 Error_Msg_N
2993 ("component & must be byte aligned",
2994 Component_Name (Component_Clause (Comp)));
2995 end if;
2996 end if;
2997 end;
2998 end if;
3000 -- Gather data for possible Implicit_Packing later. Note that at
3001 -- this stage we might be dealing with a real component, or with
3002 -- an implicit subtype declaration.
3004 if not Is_Scalar_Type (Etype (Comp)) then
3005 All_Scalar_Components := False;
3006 else
3007 Scalar_Component_Total_RM_Size :=
3008 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
3009 Scalar_Component_Total_Esize :=
3010 Scalar_Component_Total_Esize + Esize (Etype (Comp));
3011 end if;
3013 -- If the component is an Itype with Delayed_Freeze and is either
3014 -- a record or array subtype and its base type has not yet been
3015 -- frozen, we must remove this from the entity list of this record
3016 -- and put it on the entity list of the scope of its base type.
3017 -- Note that we know that this is not the type of a component
3018 -- since we cleared Has_Delayed_Freeze for it in the previous
3019 -- loop. Thus this must be the Designated_Type of an access type,
3020 -- which is the type of a component.
3022 if Is_Itype (Comp)
3023 and then Is_Type (Scope (Comp))
3024 and then Is_Composite_Type (Comp)
3025 and then Base_Type (Comp) /= Comp
3026 and then Has_Delayed_Freeze (Comp)
3027 and then not Is_Frozen (Base_Type (Comp))
3028 then
3029 declare
3030 Will_Be_Frozen : Boolean := False;
3031 S : Entity_Id;
3033 begin
3034 -- We have a difficult case to handle here. Suppose Rec is
3035 -- subtype being defined in a subprogram that's created as
3036 -- part of the freezing of Rec'Base. In that case, we know
3037 -- that Comp'Base must have already been frozen by the time
3038 -- we get to elaborate this because Gigi doesn't elaborate
3039 -- any bodies until it has elaborated all of the declarative
3040 -- part. But Is_Frozen will not be set at this point because
3041 -- we are processing code in lexical order.
3043 -- We detect this case by going up the Scope chain of Rec
3044 -- and seeing if we have a subprogram scope before reaching
3045 -- the top of the scope chain or that of Comp'Base. If we
3046 -- do, then mark that Comp'Base will actually be frozen. If
3047 -- so, we merely undelay it.
3049 S := Scope (Rec);
3050 while Present (S) loop
3051 if Is_Subprogram (S) then
3052 Will_Be_Frozen := True;
3053 exit;
3054 elsif S = Scope (Base_Type (Comp)) then
3055 exit;
3056 end if;
3058 S := Scope (S);
3059 end loop;
3061 if Will_Be_Frozen then
3062 Undelay_Type (Comp);
3063 else
3064 if Present (Prev) then
3065 Set_Next_Entity (Prev, Next_Entity (Comp));
3066 else
3067 Set_First_Entity (Rec, Next_Entity (Comp));
3068 end if;
3070 -- Insert in entity list of scope of base type (which
3071 -- must be an enclosing scope, because still unfrozen).
3073 Append_Entity (Comp, Scope (Base_Type (Comp)));
3074 end if;
3075 end;
3077 -- If the component is an access type with an allocator as default
3078 -- value, the designated type will be frozen by the corresponding
3079 -- expression in init_proc. In order to place the freeze node for
3080 -- the designated type before that for the current record type,
3081 -- freeze it now.
3083 -- Same process if the component is an array of access types,
3084 -- initialized with an aggregate. If the designated type is
3085 -- private, it cannot contain allocators, and it is premature
3086 -- to freeze the type, so we check for this as well.
3088 elsif Is_Access_Type (Etype (Comp))
3089 and then Present (Parent (Comp))
3090 and then Present (Expression (Parent (Comp)))
3091 then
3092 declare
3093 Alloc : constant Node_Id :=
3094 Check_Allocator (Expression (Parent (Comp)));
3096 begin
3097 if Present (Alloc) then
3099 -- If component is pointer to a class-wide type, freeze
3100 -- the specific type in the expression being allocated.
3101 -- The expression may be a subtype indication, in which
3102 -- case freeze the subtype mark.
3104 if Is_Class_Wide_Type
3105 (Designated_Type (Etype (Comp)))
3106 then
3107 if Is_Entity_Name (Expression (Alloc)) then
3108 Freeze_And_Append
3109 (Entity (Expression (Alloc)), N, Result);
3110 elsif
3111 Nkind (Expression (Alloc)) = N_Subtype_Indication
3112 then
3113 Freeze_And_Append
3114 (Entity (Subtype_Mark (Expression (Alloc))),
3115 N, Result);
3116 end if;
3118 elsif Is_Itype (Designated_Type (Etype (Comp))) then
3119 Check_Itype (Etype (Comp));
3121 else
3122 Freeze_And_Append
3123 (Designated_Type (Etype (Comp)), N, Result);
3124 end if;
3125 end if;
3126 end;
3128 elsif Is_Access_Type (Etype (Comp))
3129 and then Is_Itype (Designated_Type (Etype (Comp)))
3130 then
3131 Check_Itype (Etype (Comp));
3133 -- Freeze the designated type when initializing a component with
3134 -- an aggregate in case the aggregate contains allocators.
3136 -- type T is ...;
3137 -- type T_Ptr is access all T;
3138 -- type T_Array is array ... of T_Ptr;
3140 -- type Rec is record
3141 -- Comp : T_Array := (others => ...);
3142 -- end record;
3144 elsif Is_Array_Type (Etype (Comp))
3145 and then Is_Access_Type (Component_Type (Etype (Comp)))
3146 then
3147 declare
3148 Comp_Par : constant Node_Id := Parent (Comp);
3149 Desig_Typ : constant Entity_Id :=
3150 Designated_Type
3151 (Component_Type (Etype (Comp)));
3153 begin
3154 -- The only case when this sort of freezing is not done is
3155 -- when the designated type is class-wide and the root type
3156 -- is the record owning the component. This scenario results
3157 -- in a circularity because the class-wide type requires
3158 -- primitives that have not been created yet as the root
3159 -- type is in the process of being frozen.
3161 -- type Rec is tagged;
3162 -- type Rec_Ptr is access all Rec'Class;
3163 -- type Rec_Array is array ... of Rec_Ptr;
3165 -- type Rec is record
3166 -- Comp : Rec_Array := (others => ...);
3167 -- end record;
3169 if Is_Class_Wide_Type (Desig_Typ)
3170 and then Root_Type (Desig_Typ) = Rec
3171 then
3172 null;
3174 elsif Is_Fully_Defined (Desig_Typ)
3175 and then Present (Comp_Par)
3176 and then Nkind (Comp_Par) = N_Component_Declaration
3177 and then Present (Expression (Comp_Par))
3178 and then Nkind (Expression (Comp_Par)) = N_Aggregate
3179 then
3180 Freeze_And_Append (Desig_Typ, N, Result);
3181 end if;
3182 end;
3183 end if;
3185 Prev := Comp;
3186 Next_Entity (Comp);
3187 end loop;
3189 SSO_ADC := Get_Attribute_Definition_Clause
3190 (Rec, Attribute_Scalar_Storage_Order);
3192 -- Check consistent attribute setting on component types
3194 declare
3195 Comp_ADC_Present : Boolean;
3196 begin
3197 Comp := First_Component (Rec);
3198 while Present (Comp) loop
3199 Check_Component_Storage_Order
3200 (Encl_Type => Rec,
3201 Comp => Comp,
3202 ADC => SSO_ADC,
3203 Comp_ADC_Present => Comp_ADC_Present);
3204 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
3205 Next_Component (Comp);
3206 end loop;
3207 end;
3209 -- Deal with default setting of reverse storage order
3211 Set_SSO_From_Default (Rec);
3213 -- Now deal with reverse storage order/bit order issues
3215 if Present (SSO_ADC) then
3217 -- Check compatibility of Scalar_Storage_Order with Bit_Order, if
3218 -- the former is specified.
3220 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
3222 -- Note: report error on Rec, not on SSO_ADC, as ADC may apply
3223 -- to some ancestor type.
3225 Error_Msg_Sloc := Sloc (SSO_ADC);
3226 Error_Msg_N
3227 ("scalar storage order for& specified# inconsistent with "
3228 & "bit order", Rec);
3229 end if;
3231 -- Warn if there is an Scalar_Storage_Order attribute definition
3232 -- clause but no component clause, no component that itself has
3233 -- such an attribute definition, and no pragma Pack.
3235 if not (Placed_Component
3236 or else
3237 SSO_ADC_Component
3238 or else
3239 Is_Packed (Rec))
3240 then
3241 Error_Msg_N
3242 ("??scalar storage order specified but no component clause",
3243 SSO_ADC);
3244 end if;
3245 end if;
3247 -- Deal with Bit_Order aspect
3249 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
3251 if Present (ADC) and then Base_Type (Rec) = Rec then
3252 if not (Placed_Component
3253 or else Present (SSO_ADC)
3254 or else Is_Packed (Rec))
3255 then
3256 -- Warn if clause has no effect when no component clause is
3257 -- present, but suppress warning if the Bit_Order is required
3258 -- due to the presence of a Scalar_Storage_Order attribute.
3260 Error_Msg_N
3261 ("??bit order specification has no effect", ADC);
3262 Error_Msg_N
3263 ("\??since no component clauses were specified", ADC);
3265 -- Here is where we do the processing to adjust component clauses
3266 -- for reversed bit order.
3268 elsif Reverse_Bit_Order (Rec)
3269 and then not Reverse_Storage_Order (Rec)
3270 then
3271 Adjust_Record_For_Reverse_Bit_Order (Rec);
3273 -- Case where we have both an explicit Bit_Order and the same
3274 -- Scalar_Storage_Order: leave record untouched, the back-end
3275 -- will take care of required layout conversions.
3277 else
3278 null;
3280 end if;
3281 end if;
3283 -- Complete error checking on record representation clause (e.g.
3284 -- overlap of components). This is called after adjusting the
3285 -- record for reverse bit order.
3287 declare
3288 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
3289 begin
3290 if Present (RRC) then
3291 Check_Record_Representation_Clause (RRC);
3292 end if;
3293 end;
3295 -- Set OK_To_Reorder_Components depending on debug flags
3297 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
3298 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
3299 or else
3300 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
3301 then
3302 Set_OK_To_Reorder_Components (Rec);
3303 end if;
3304 end if;
3306 -- Check for useless pragma Pack when all components placed. We only
3307 -- do this check for record types, not subtypes, since a subtype may
3308 -- have all its components placed, and it still makes perfectly good
3309 -- sense to pack other subtypes or the parent type. We do not give
3310 -- this warning if Optimize_Alignment is set to Space, since the
3311 -- pragma Pack does have an effect in this case (it always resets
3312 -- the alignment to one).
3314 if Ekind (Rec) = E_Record_Type
3315 and then Is_Packed (Rec)
3316 and then not Unplaced_Component
3317 and then Optimize_Alignment /= 'S'
3318 then
3319 -- Reset packed status. Probably not necessary, but we do it so
3320 -- that there is no chance of the back end doing something strange
3321 -- with this redundant indication of packing.
3323 Set_Is_Packed (Rec, False);
3325 -- Give warning if redundant constructs warnings on
3327 if Warn_On_Redundant_Constructs then
3328 Error_Msg_N -- CODEFIX
3329 ("??pragma Pack has no effect, no unplaced components",
3330 Get_Rep_Pragma (Rec, Name_Pack));
3331 end if;
3332 end if;
3334 -- If this is the record corresponding to a remote type, freeze the
3335 -- remote type here since that is what we are semantically freezing.
3336 -- This prevents the freeze node for that type in an inner scope.
3338 if Ekind (Rec) = E_Record_Type then
3339 if Present (Corresponding_Remote_Type (Rec)) then
3340 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
3341 end if;
3343 -- Check for controlled components and unchecked unions.
3345 Comp := First_Component (Rec);
3346 while Present (Comp) loop
3348 -- Do not set Has_Controlled_Component on a class-wide
3349 -- equivalent type. See Make_CW_Equivalent_Type.
3351 if not Is_Class_Wide_Equivalent_Type (Rec)
3352 and then
3353 (Has_Controlled_Component (Etype (Comp))
3354 or else
3355 (Chars (Comp) /= Name_uParent
3356 and then Is_Controlled (Etype (Comp)))
3357 or else
3358 (Is_Protected_Type (Etype (Comp))
3359 and then
3360 Present (Corresponding_Record_Type (Etype (Comp)))
3361 and then
3362 Has_Controlled_Component
3363 (Corresponding_Record_Type (Etype (Comp)))))
3364 then
3365 Set_Has_Controlled_Component (Rec);
3366 end if;
3368 if Has_Unchecked_Union (Etype (Comp)) then
3369 Set_Has_Unchecked_Union (Rec);
3370 end if;
3372 -- Scan component declaration for likely misuses of current
3373 -- instance, either in a constraint or a default expression.
3375 if Has_Per_Object_Constraint (Comp) then
3376 Check_Current_Instance (Parent (Comp));
3377 end if;
3379 Next_Component (Comp);
3380 end loop;
3381 end if;
3383 -- Enforce the restriction that access attributes with a current
3384 -- instance prefix can only apply to limited types. This comment
3385 -- is floating here, but does not seem to belong here???
3387 -- Set component alignment if not otherwise already set
3389 Set_Component_Alignment_If_Not_Set (Rec);
3391 -- For first subtypes, check if there are any fixed-point fields with
3392 -- component clauses, where we must check the size. This is not done
3393 -- till the freeze point since for fixed-point types, we do not know
3394 -- the size until the type is frozen. Similar processing applies to
3395 -- bit packed arrays.
3397 if Is_First_Subtype (Rec) then
3398 Comp := First_Component (Rec);
3399 while Present (Comp) loop
3400 if Present (Component_Clause (Comp))
3401 and then (Is_Fixed_Point_Type (Etype (Comp))
3402 or else Is_Bit_Packed_Array (Etype (Comp)))
3403 then
3404 Check_Size
3405 (Component_Name (Component_Clause (Comp)),
3406 Etype (Comp),
3407 Esize (Comp),
3408 Junk);
3409 end if;
3411 Next_Component (Comp);
3412 end loop;
3413 end if;
3415 -- Generate warning for applying C or C++ convention to a record
3416 -- with discriminants. This is suppressed for the unchecked union
3417 -- case, since the whole point in this case is interface C. We also
3418 -- do not generate this within instantiations, since we will have
3419 -- generated a message on the template.
3421 if Has_Discriminants (E)
3422 and then not Is_Unchecked_Union (E)
3423 and then (Convention (E) = Convention_C
3424 or else
3425 Convention (E) = Convention_CPP)
3426 and then Comes_From_Source (E)
3427 and then not In_Instance
3428 and then not Has_Warnings_Off (E)
3429 and then not Has_Warnings_Off (Base_Type (E))
3430 then
3431 declare
3432 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
3433 A2 : Node_Id;
3435 begin
3436 if Present (Cprag) then
3437 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
3439 if Convention (E) = Convention_C then
3440 Error_Msg_N
3441 ("?x?variant record has no direct equivalent in C",
3442 A2);
3443 else
3444 Error_Msg_N
3445 ("?x?variant record has no direct equivalent in C++",
3446 A2);
3447 end if;
3449 Error_Msg_NE
3450 ("\?x?use of convention for type& is dubious", A2, E);
3451 end if;
3452 end;
3453 end if;
3455 -- See if Size is too small as is (and implicit packing might help)
3457 if not Is_Packed (Rec)
3459 -- No implicit packing if even one component is explicitly placed
3461 and then not Placed_Component
3463 -- Or even one component is aliased
3465 and then not Aliased_Component
3467 -- Must have size clause and all scalar components
3469 and then Has_Size_Clause (Rec)
3470 and then All_Scalar_Components
3472 -- Do not try implicit packing on records with discriminants, too
3473 -- complicated, especially in the variant record case.
3475 and then not Has_Discriminants (Rec)
3477 -- We can implicitly pack if the specified size of the record is
3478 -- less than the sum of the object sizes (no point in packing if
3479 -- this is not the case).
3481 and then RM_Size (Rec) < Scalar_Component_Total_Esize
3483 -- And the total RM size cannot be greater than the specified size
3484 -- since otherwise packing will not get us where we have to be.
3486 and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
3488 -- Never do implicit packing in CodePeer or SPARK modes since
3489 -- we don't do any packing in these modes, since this generates
3490 -- over-complex code that confuses static analysis, and in
3491 -- general, neither CodePeer not GNATprove care about the
3492 -- internal representation of objects.
3494 and then not (CodePeer_Mode or GNATprove_Mode)
3495 then
3496 -- If implicit packing enabled, do it
3498 if Implicit_Packing then
3499 Set_Is_Packed (Rec);
3501 -- Otherwise flag the size clause
3503 else
3504 declare
3505 Sz : constant Node_Id := Size_Clause (Rec);
3506 begin
3507 Error_Msg_NE -- CODEFIX
3508 ("size given for& too small", Sz, Rec);
3509 Error_Msg_N -- CODEFIX
3510 ("\use explicit pragma Pack "
3511 & "or use pragma Implicit_Packing", Sz);
3512 end;
3513 end if;
3514 end if;
3516 -- The following checks are only relevant when SPARK_Mode is on as
3517 -- they are not standard Ada legality rules.
3519 if SPARK_Mode = On then
3520 if Is_Effectively_Volatile (Rec) then
3522 -- A discriminated type cannot be effectively volatile
3523 -- (SPARK RM C.6(4)).
3525 if Has_Discriminants (Rec) then
3526 Error_Msg_N ("discriminated type & cannot be volatile", Rec);
3528 -- A tagged type cannot be effectively volatile
3529 -- (SPARK RM C.6(5)).
3531 elsif Is_Tagged_Type (Rec) then
3532 Error_Msg_N ("tagged type & cannot be volatile", Rec);
3533 end if;
3535 -- A non-effectively volatile record type cannot contain
3536 -- effectively volatile components (SPARK RM C.6(2)).
3538 else
3539 Comp := First_Component (Rec);
3540 while Present (Comp) loop
3541 if Comes_From_Source (Comp)
3542 and then Is_Effectively_Volatile (Etype (Comp))
3543 then
3544 Error_Msg_Name_1 := Chars (Rec);
3545 Error_Msg_N
3546 ("component & of non-volatile type % cannot be "
3547 & "volatile", Comp);
3548 end if;
3550 Next_Component (Comp);
3551 end loop;
3552 end if;
3553 end if;
3555 -- All done if not a full record definition
3557 if Ekind (Rec) /= E_Record_Type then
3558 return;
3559 end if;
3561 -- Finally we need to check the variant part to make sure that
3562 -- all types within choices are properly frozen as part of the
3563 -- freezing of the record type.
3565 Check_Variant_Part : declare
3566 D : constant Node_Id := Declaration_Node (Rec);
3567 T : Node_Id;
3568 C : Node_Id;
3570 begin
3571 -- Find component list
3573 C := Empty;
3575 if Nkind (D) = N_Full_Type_Declaration then
3576 T := Type_Definition (D);
3578 if Nkind (T) = N_Record_Definition then
3579 C := Component_List (T);
3581 elsif Nkind (T) = N_Derived_Type_Definition
3582 and then Present (Record_Extension_Part (T))
3583 then
3584 C := Component_List (Record_Extension_Part (T));
3585 end if;
3586 end if;
3588 -- Case of variant part present
3590 if Present (C) and then Present (Variant_Part (C)) then
3591 Freeze_Choices_In_Variant_Part (Variant_Part (C));
3592 end if;
3594 -- Note: we used to call Check_Choices here, but it is too early,
3595 -- since predicated subtypes are frozen here, but their freezing
3596 -- actions are in Analyze_Freeze_Entity, which has not been called
3597 -- yet for entities frozen within this procedure, so we moved that
3598 -- call to the Analyze_Freeze_Entity for the record type.
3600 end Check_Variant_Part;
3601 end Freeze_Record_Type;
3603 -------------------------------
3604 -- Has_Boolean_Aspect_Import --
3605 -------------------------------
3607 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
3608 Decl : constant Node_Id := Declaration_Node (E);
3609 Asp : Node_Id;
3610 Expr : Node_Id;
3612 begin
3613 if Has_Aspects (Decl) then
3614 Asp := First (Aspect_Specifications (Decl));
3615 while Present (Asp) loop
3616 Expr := Expression (Asp);
3618 -- The value of aspect Import is True when the expression is
3619 -- either missing or it is explicitly set to True.
3621 if Get_Aspect_Id (Asp) = Aspect_Import
3622 and then (No (Expr)
3623 or else (Compile_Time_Known_Value (Expr)
3624 and then Is_True (Expr_Value (Expr))))
3625 then
3626 return True;
3627 end if;
3629 Next (Asp);
3630 end loop;
3631 end if;
3633 return False;
3634 end Has_Boolean_Aspect_Import;
3636 ------------------------------
3637 -- Wrap_Imported_Subprogram --
3638 ------------------------------
3640 -- The issue here is that our normal approach of checking preconditions
3641 -- and postconditions does not work for imported procedures, since we
3642 -- are not generating code for the body. To get around this we create
3643 -- a wrapper, as shown by the following example:
3645 -- procedure K (A : Integer);
3646 -- pragma Import (C, K);
3648 -- The spec is rewritten by removing the effects of pragma Import, but
3649 -- leaving the convention unchanged, as though the source had said:
3651 -- procedure K (A : Integer);
3652 -- pragma Convention (C, K);
3654 -- and we create a body, added to the entity K freeze actions, which
3655 -- looks like:
3657 -- procedure K (A : Integer) is
3658 -- procedure K (A : Integer);
3659 -- pragma Import (C, K);
3660 -- begin
3661 -- K (A);
3662 -- end K;
3664 -- Now the contract applies in the normal way to the outer procedure,
3665 -- and the inner procedure has no contracts, so there is no problem
3666 -- in just calling it to get the original effect.
3668 -- In the case of a function, we create an appropriate return statement
3669 -- for the subprogram body that calls the inner procedure.
3671 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
3672 Loc : constant Source_Ptr := Sloc (E);
3673 CE : constant Name_Id := Chars (E);
3674 Spec : Node_Id;
3675 Parms : List_Id;
3676 Stmt : Node_Id;
3677 Iprag : Node_Id;
3678 Bod : Node_Id;
3679 Forml : Entity_Id;
3681 begin
3682 -- Nothing to do if not imported
3684 if not Is_Imported (E) then
3685 return;
3687 -- Test enabling conditions for wrapping
3689 elsif Is_Subprogram (E)
3690 and then Present (Contract (E))
3691 and then Present (Pre_Post_Conditions (Contract (E)))
3692 and then not GNATprove_Mode
3693 then
3694 -- Here we do the wrap
3696 -- Note on calls to Copy_Separate_Tree. The trees we are copying
3697 -- here are fully analyzed, but we definitely want fully syntactic
3698 -- unanalyzed trees in the body we construct, so that the analysis
3699 -- generates the right visibility, and that is exactly what the
3700 -- calls to Copy_Separate_Tree give us.
3702 -- Acquire copy of Inline pragma
3704 Iprag := Copy_Separate_Tree (Import_Pragma (E));
3706 -- Fix up spec to be not imported any more
3708 Set_Is_Imported (E, False);
3709 Set_Interface_Name (E, Empty);
3710 Set_Has_Completion (E, False);
3711 Set_Import_Pragma (E, Empty);
3713 -- Grab the subprogram declaration and specification
3715 Spec := Declaration_Node (E);
3717 -- Build parameter list that we need
3719 Parms := New_List;
3720 Forml := First_Formal (E);
3721 while Present (Forml) loop
3722 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
3723 Next_Formal (Forml);
3724 end loop;
3726 -- Build the call
3728 if Ekind_In (E, E_Function, E_Generic_Function) then
3729 Stmt :=
3730 Make_Simple_Return_Statement (Loc,
3731 Expression =>
3732 Make_Function_Call (Loc,
3733 Name => Make_Identifier (Loc, CE),
3734 Parameter_Associations => Parms));
3736 else
3737 Stmt :=
3738 Make_Procedure_Call_Statement (Loc,
3739 Name => Make_Identifier (Loc, CE),
3740 Parameter_Associations => Parms);
3741 end if;
3743 -- Now build the body
3745 Bod :=
3746 Make_Subprogram_Body (Loc,
3747 Specification =>
3748 Copy_Separate_Tree (Spec),
3749 Declarations => New_List (
3750 Make_Subprogram_Declaration (Loc,
3751 Specification =>
3752 Copy_Separate_Tree (Spec)),
3753 Iprag),
3754 Handled_Statement_Sequence =>
3755 Make_Handled_Sequence_Of_Statements (Loc,
3756 Statements => New_List (Stmt),
3757 End_Label => Make_Identifier (Loc, CE)));
3759 -- Append the body to freeze result
3761 Add_To_Result (Bod);
3762 return;
3764 -- Case of imported subprogram that does not get wrapped
3766 else
3767 -- Set Is_Public. All imported entities need an external symbol
3768 -- created for them since they are always referenced from another
3769 -- object file. Note this used to be set when we set Is_Imported
3770 -- back in Sem_Prag, but now we delay it to this point, since we
3771 -- don't want to set this flag if we wrap an imported subprogram.
3773 Set_Is_Public (E);
3774 end if;
3775 end Wrap_Imported_Subprogram;
3777 -- Start of processing for Freeze_Entity
3779 begin
3780 -- We are going to test for various reasons why this entity need not be
3781 -- frozen here, but in the case of an Itype that's defined within a
3782 -- record, that test actually applies to the record.
3784 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
3785 Test_E := Scope (E);
3786 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
3787 and then Is_Record_Type (Underlying_Type (Scope (E)))
3788 then
3789 Test_E := Underlying_Type (Scope (E));
3790 end if;
3792 -- Do not freeze if already frozen since we only need one freeze node
3794 if Is_Frozen (E) then
3795 return No_List;
3797 -- It is improper to freeze an external entity within a generic because
3798 -- its freeze node will appear in a non-valid context. The entity will
3799 -- be frozen in the proper scope after the current generic is analyzed.
3800 -- However, aspects must be analyzed because they may be queried later
3801 -- within the generic itself, and the corresponding pragma or attribute
3802 -- definition has not been analyzed yet.
3804 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
3805 if Has_Delayed_Aspects (E) then
3806 Analyze_Aspects_At_Freeze_Point (E);
3807 end if;
3809 return No_List;
3811 -- AI05-0213: A formal incomplete type does not freeze the actual. In
3812 -- the instance, the same applies to the subtype renaming the actual.
3814 elsif Is_Private_Type (E)
3815 and then Is_Generic_Actual_Type (E)
3816 and then No (Full_View (Base_Type (E)))
3817 and then Ada_Version >= Ada_2012
3818 then
3819 return No_List;
3821 -- Generic types need no freeze node and have no delayed semantic
3822 -- checks.
3824 elsif Is_Generic_Type (E) then
3825 return No_List;
3827 -- Do not freeze a global entity within an inner scope created during
3828 -- expansion. A call to subprogram E within some internal procedure
3829 -- (a stream attribute for example) might require freezing E, but the
3830 -- freeze node must appear in the same declarative part as E itself.
3831 -- The two-pass elaboration mechanism in gigi guarantees that E will
3832 -- be frozen before the inner call is elaborated. We exclude constants
3833 -- from this test, because deferred constants may be frozen early, and
3834 -- must be diagnosed (e.g. in the case of a deferred constant being used
3835 -- in a default expression). If the enclosing subprogram comes from
3836 -- source, or is a generic instance, then the freeze point is the one
3837 -- mandated by the language, and we freeze the entity. A subprogram that
3838 -- is a child unit body that acts as a spec does not have a spec that
3839 -- comes from source, but can only come from source.
3841 elsif In_Open_Scopes (Scope (Test_E))
3842 and then Scope (Test_E) /= Current_Scope
3843 and then Ekind (Test_E) /= E_Constant
3844 then
3845 declare
3846 S : Entity_Id;
3848 begin
3849 S := Current_Scope;
3850 while Present (S) loop
3851 if Is_Overloadable (S) then
3852 if Comes_From_Source (S)
3853 or else Is_Generic_Instance (S)
3854 or else Is_Child_Unit (S)
3855 then
3856 exit;
3857 else
3858 return No_List;
3859 end if;
3860 end if;
3862 S := Scope (S);
3863 end loop;
3864 end;
3866 -- Similarly, an inlined instance body may make reference to global
3867 -- entities, but these references cannot be the proper freezing point
3868 -- for them, and in the absence of inlining freezing will take place in
3869 -- their own scope. Normally instance bodies are analyzed after the
3870 -- enclosing compilation, and everything has been frozen at the proper
3871 -- place, but with front-end inlining an instance body is compiled
3872 -- before the end of the enclosing scope, and as a result out-of-order
3873 -- freezing must be prevented.
3875 elsif Front_End_Inlining
3876 and then In_Instance_Body
3877 and then Present (Scope (Test_E))
3878 then
3879 declare
3880 S : Entity_Id;
3882 begin
3883 S := Scope (Test_E);
3884 while Present (S) loop
3885 if Is_Generic_Instance (S) then
3886 exit;
3887 else
3888 S := Scope (S);
3889 end if;
3890 end loop;
3892 if No (S) then
3893 return No_List;
3894 end if;
3895 end;
3897 elsif Ekind (E) = E_Generic_Package then
3898 return Freeze_Generic_Entities (E);
3899 end if;
3901 -- Add checks to detect proper initialization of scalars that may appear
3902 -- as subprogram parameters.
3904 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
3905 Apply_Parameter_Validity_Checks (E);
3906 end if;
3908 -- Deal with delayed aspect specifications. The analysis of the aspect
3909 -- is required to be delayed to the freeze point, thus we analyze the
3910 -- pragma or attribute definition clause in the tree at this point. We
3911 -- also analyze the aspect specification node at the freeze point when
3912 -- the aspect doesn't correspond to pragma/attribute definition clause.
3914 if Has_Delayed_Aspects (E) then
3915 Analyze_Aspects_At_Freeze_Point (E);
3916 end if;
3918 -- Here to freeze the entity
3920 Set_Is_Frozen (E);
3922 -- Case of entity being frozen is other than a type
3924 if not Is_Type (E) then
3926 -- If entity is exported or imported and does not have an external
3927 -- name, now is the time to provide the appropriate default name.
3928 -- Skip this if the entity is stubbed, since we don't need a name
3929 -- for any stubbed routine. For the case on intrinsics, if no
3930 -- external name is specified, then calls will be handled in
3931 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
3932 -- external name is provided, then Expand_Intrinsic_Call leaves
3933 -- calls in place for expansion by GIGI.
3935 if (Is_Imported (E) or else Is_Exported (E))
3936 and then No (Interface_Name (E))
3937 and then Convention (E) /= Convention_Stubbed
3938 and then Convention (E) /= Convention_Intrinsic
3939 then
3940 Set_Encoded_Interface_Name
3941 (E, Get_Default_External_Name (E));
3943 -- If entity is an atomic object appearing in a declaration and
3944 -- the expression is an aggregate, assign it to a temporary to
3945 -- ensure that the actual assignment is done atomically rather
3946 -- than component-wise (the assignment to the temp may be done
3947 -- component-wise, but that is harmless).
3949 elsif Is_Atomic (E)
3950 and then Nkind (Parent (E)) = N_Object_Declaration
3951 and then Present (Expression (Parent (E)))
3952 and then Nkind (Expression (Parent (E))) = N_Aggregate
3953 and then Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
3954 then
3955 null;
3956 end if;
3958 -- Subprogram case
3960 if Is_Subprogram (E) then
3962 -- Check for needing to wrap imported subprogram
3964 Wrap_Imported_Subprogram (E);
3966 -- Freeze all parameter types and the return type (RM 13.14(14)).
3967 -- However skip this for internal subprograms. This is also where
3968 -- any extra formal parameters are created since we now know
3969 -- whether the subprogram will use a foreign convention.
3971 if not Is_Internal (E) then
3972 declare
3973 F_Type : Entity_Id;
3974 R_Type : Entity_Id;
3975 Warn_Node : Node_Id;
3977 begin
3978 -- Loop through formals
3980 Formal := First_Formal (E);
3981 while Present (Formal) loop
3982 F_Type := Etype (Formal);
3984 -- AI05-0151 : incomplete types can appear in a profile.
3985 -- By the time the entity is frozen, the full view must
3986 -- be available, unless it is a limited view.
3988 if Is_Incomplete_Type (F_Type)
3989 and then Present (Full_View (F_Type))
3990 and then not From_Limited_With (F_Type)
3991 then
3992 F_Type := Full_View (F_Type);
3993 Set_Etype (Formal, F_Type);
3994 end if;
3996 Freeze_And_Append (F_Type, N, Result);
3998 if Is_Private_Type (F_Type)
3999 and then Is_Private_Type (Base_Type (F_Type))
4000 and then No (Full_View (Base_Type (F_Type)))
4001 and then not Is_Generic_Type (F_Type)
4002 and then not Is_Derived_Type (F_Type)
4003 then
4004 -- If the type of a formal is incomplete, subprogram
4005 -- is being frozen prematurely. Within an instance
4006 -- (but not within a wrapper package) this is an
4007 -- artifact of our need to regard the end of an
4008 -- instantiation as a freeze point. Otherwise it is
4009 -- a definite error.
4011 if In_Instance then
4012 Set_Is_Frozen (E, False);
4013 return No_List;
4015 elsif not After_Last_Declaration
4016 and then not Freezing_Library_Level_Tagged_Type
4017 then
4018 Error_Msg_Node_1 := F_Type;
4019 Error_Msg
4020 ("type& must be fully defined before this point",
4021 Loc);
4022 end if;
4023 end if;
4025 -- Check suspicious parameter for C function. These tests
4026 -- apply only to exported/imported subprograms.
4028 if Warn_On_Export_Import
4029 and then Comes_From_Source (E)
4030 and then (Convention (E) = Convention_C
4031 or else
4032 Convention (E) = Convention_CPP)
4033 and then (Is_Imported (E) or else Is_Exported (E))
4034 and then Convention (E) /= Convention (Formal)
4035 and then not Has_Warnings_Off (E)
4036 and then not Has_Warnings_Off (F_Type)
4037 and then not Has_Warnings_Off (Formal)
4038 then
4039 -- Qualify mention of formals with subprogram name
4041 Error_Msg_Qual_Level := 1;
4043 -- Check suspicious use of fat C pointer
4045 if Is_Access_Type (F_Type)
4046 and then Esize (F_Type) > Ttypes.System_Address_Size
4047 then
4048 Error_Msg_N
4049 ("?x?type of & does not correspond to C pointer!",
4050 Formal);
4052 -- Check suspicious return of boolean
4054 elsif Root_Type (F_Type) = Standard_Boolean
4055 and then Convention (F_Type) = Convention_Ada
4056 and then not Has_Warnings_Off (F_Type)
4057 and then not Has_Size_Clause (F_Type)
4058 and then VM_Target = No_VM
4059 then
4060 Error_Msg_N
4061 ("& is an 8-bit Ada Boolean?x?", Formal);
4062 Error_Msg_N
4063 ("\use appropriate corresponding type in C "
4064 & "(e.g. char)?x?", Formal);
4066 -- Check suspicious tagged type
4068 elsif (Is_Tagged_Type (F_Type)
4069 or else (Is_Access_Type (F_Type)
4070 and then
4071 Is_Tagged_Type
4072 (Designated_Type (F_Type))))
4073 and then Convention (E) = Convention_C
4074 then
4075 Error_Msg_N
4076 ("?x?& involves a tagged type which does not "
4077 & "correspond to any C type!", Formal);
4079 -- Check wrong convention subprogram pointer
4081 elsif Ekind (F_Type) = E_Access_Subprogram_Type
4082 and then not Has_Foreign_Convention (F_Type)
4083 then
4084 Error_Msg_N
4085 ("?x?subprogram pointer & should "
4086 & "have foreign convention!", Formal);
4087 Error_Msg_Sloc := Sloc (F_Type);
4088 Error_Msg_NE
4089 ("\?x?add Convention pragma to declaration of &#",
4090 Formal, F_Type);
4091 end if;
4093 -- Turn off name qualification after message output
4095 Error_Msg_Qual_Level := 0;
4096 end if;
4098 -- Check for unconstrained array in exported foreign
4099 -- convention case.
4101 if Has_Foreign_Convention (E)
4102 and then not Is_Imported (E)
4103 and then Is_Array_Type (F_Type)
4104 and then not Is_Constrained (F_Type)
4105 and then Warn_On_Export_Import
4107 -- Exclude VM case, since both .NET and JVM can handle
4108 -- unconstrained arrays without a problem.
4110 and then VM_Target = No_VM
4111 then
4112 Error_Msg_Qual_Level := 1;
4114 -- If this is an inherited operation, place the
4115 -- warning on the derived type declaration, rather
4116 -- than on the original subprogram.
4118 if Nkind (Original_Node (Parent (E))) =
4119 N_Full_Type_Declaration
4120 then
4121 Warn_Node := Parent (E);
4123 if Formal = First_Formal (E) then
4124 Error_Msg_NE
4125 ("??in inherited operation&", Warn_Node, E);
4126 end if;
4127 else
4128 Warn_Node := Formal;
4129 end if;
4131 Error_Msg_NE
4132 ("?x?type of argument& is unconstrained array",
4133 Warn_Node, Formal);
4134 Error_Msg_NE
4135 ("?x?foreign caller must pass bounds explicitly",
4136 Warn_Node, Formal);
4137 Error_Msg_Qual_Level := 0;
4138 end if;
4140 if not From_Limited_With (F_Type) then
4141 if Is_Access_Type (F_Type) then
4142 F_Type := Designated_Type (F_Type);
4143 end if;
4145 -- If the formal is an anonymous_access_to_subprogram
4146 -- freeze the subprogram type as well, to prevent
4147 -- scope anomalies in gigi, because there is no other
4148 -- clear point at which it could be frozen.
4150 if Is_Itype (Etype (Formal))
4151 and then Ekind (F_Type) = E_Subprogram_Type
4152 then
4153 Freeze_And_Append (F_Type, N, Result);
4154 end if;
4155 end if;
4157 Next_Formal (Formal);
4158 end loop;
4160 -- Case of function: similar checks on return type
4162 if Ekind (E) = E_Function then
4164 -- Freeze return type
4166 R_Type := Etype (E);
4168 -- AI05-0151: the return type may have been incomplete
4169 -- at the point of declaration. Replace it with the full
4170 -- view, unless the current type is a limited view. In
4171 -- that case the full view is in a different unit, and
4172 -- gigi finds the non-limited view after the other unit
4173 -- is elaborated.
4175 if Ekind (R_Type) = E_Incomplete_Type
4176 and then Present (Full_View (R_Type))
4177 and then not From_Limited_With (R_Type)
4178 then
4179 R_Type := Full_View (R_Type);
4180 Set_Etype (E, R_Type);
4182 -- If the return type is a limited view and the non-
4183 -- limited view is still incomplete, the function has
4184 -- to be frozen at a later time.
4186 elsif Ekind (R_Type) = E_Incomplete_Type
4187 and then From_Limited_With (R_Type)
4188 and then
4189 Ekind (Non_Limited_View (R_Type)) = E_Incomplete_Type
4190 then
4191 Set_Is_Frozen (E, False);
4192 return Result;
4193 end if;
4195 Freeze_And_Append (R_Type, N, Result);
4197 -- Check suspicious return type for C function
4199 if Warn_On_Export_Import
4200 and then (Convention (E) = Convention_C
4201 or else
4202 Convention (E) = Convention_CPP)
4203 and then (Is_Imported (E) or else Is_Exported (E))
4204 then
4205 -- Check suspicious return of fat C pointer
4207 if Is_Access_Type (R_Type)
4208 and then Esize (R_Type) > Ttypes.System_Address_Size
4209 and then not Has_Warnings_Off (E)
4210 and then not Has_Warnings_Off (R_Type)
4211 then
4212 Error_Msg_N
4213 ("?x?return type of& does not "
4214 & "correspond to C pointer!", E);
4216 -- Check suspicious return of boolean
4218 elsif Root_Type (R_Type) = Standard_Boolean
4219 and then Convention (R_Type) = Convention_Ada
4220 and then VM_Target = No_VM
4221 and then not Has_Warnings_Off (E)
4222 and then not Has_Warnings_Off (R_Type)
4223 and then not Has_Size_Clause (R_Type)
4224 then
4225 declare
4226 N : constant Node_Id :=
4227 Result_Definition (Declaration_Node (E));
4228 begin
4229 Error_Msg_NE
4230 ("return type of & is an 8-bit Ada Boolean?x?",
4231 N, E);
4232 Error_Msg_NE
4233 ("\use appropriate corresponding type in C "
4234 & "(e.g. char)?x?", N, E);
4235 end;
4237 -- Check suspicious return tagged type
4239 elsif (Is_Tagged_Type (R_Type)
4240 or else (Is_Access_Type (R_Type)
4241 and then
4242 Is_Tagged_Type
4243 (Designated_Type (R_Type))))
4244 and then Convention (E) = Convention_C
4245 and then not Has_Warnings_Off (E)
4246 and then not Has_Warnings_Off (R_Type)
4247 then
4248 Error_Msg_N
4249 ("?x?return type of & does not "
4250 & "correspond to C type!", E);
4252 -- Check return of wrong convention subprogram pointer
4254 elsif Ekind (R_Type) = E_Access_Subprogram_Type
4255 and then not Has_Foreign_Convention (R_Type)
4256 and then not Has_Warnings_Off (E)
4257 and then not Has_Warnings_Off (R_Type)
4258 then
4259 Error_Msg_N
4260 ("?x?& should return a foreign "
4261 & "convention subprogram pointer", E);
4262 Error_Msg_Sloc := Sloc (R_Type);
4263 Error_Msg_NE
4264 ("\?x?add Convention pragma to declaration of& #",
4265 E, R_Type);
4266 end if;
4267 end if;
4269 -- Give warning for suspicious return of a result of an
4270 -- unconstrained array type in a foreign convention
4271 -- function.
4273 if Has_Foreign_Convention (E)
4275 -- We are looking for a return of unconstrained array
4277 and then Is_Array_Type (R_Type)
4278 and then not Is_Constrained (R_Type)
4280 -- Exclude imported routines, the warning does not
4281 -- belong on the import, but rather on the routine
4282 -- definition.
4284 and then not Is_Imported (E)
4286 -- Exclude VM case, since both .NET and JVM can handle
4287 -- return of unconstrained arrays without a problem.
4289 and then VM_Target = No_VM
4291 -- Check that general warning is enabled, and that it
4292 -- is not suppressed for this particular case.
4294 and then Warn_On_Export_Import
4295 and then not Has_Warnings_Off (E)
4296 and then not Has_Warnings_Off (R_Type)
4297 then
4298 Error_Msg_N
4299 ("?x?foreign convention function& should not " &
4300 "return unconstrained array!", E);
4301 end if;
4302 end if;
4303 end;
4304 end if;
4306 -- Must freeze its parent first if it is a derived subprogram
4308 if Present (Alias (E)) then
4309 Freeze_And_Append (Alias (E), N, Result);
4310 end if;
4312 -- We don't freeze internal subprograms, because we don't normally
4313 -- want addition of extra formals or mechanism setting to happen
4314 -- for those. However we do pass through predefined dispatching
4315 -- cases, since extra formals may be needed in some cases, such as
4316 -- for the stream 'Input function (build-in-place formals).
4318 if not Is_Internal (E)
4319 or else Is_Predefined_Dispatching_Operation (E)
4320 then
4321 Freeze_Subprogram (E);
4322 end if;
4324 -- If warning on suspicious contracts then check for the case of
4325 -- a postcondition other than False for a No_Return subprogram.
4327 if No_Return (E)
4328 and then Warn_On_Suspicious_Contract
4329 and then Present (Contract (E))
4330 then
4331 declare
4332 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
4333 Exp : Node_Id;
4335 begin
4336 while Present (Prag) loop
4337 if Nam_In (Pragma_Name (Prag), Name_Post,
4338 Name_Postcondition,
4339 Name_Refined_Post)
4340 then
4341 Exp :=
4342 Expression
4343 (First (Pragma_Argument_Associations (Prag)));
4345 if Nkind (Exp) /= N_Identifier
4346 or else Chars (Exp) /= Name_False
4347 then
4348 Error_Msg_NE
4349 ("useless postcondition, & is marked "
4350 & "No_Return?T?", Exp, E);
4351 end if;
4352 end if;
4354 Prag := Next_Pragma (Prag);
4355 end loop;
4356 end;
4357 end if;
4359 -- Here for other than a subprogram or type
4361 else
4362 -- If entity has a type, and it is not a generic unit, then
4363 -- freeze it first (RM 13.14(10)).
4365 if Present (Etype (E))
4366 and then Ekind (E) /= E_Generic_Function
4367 then
4368 Freeze_And_Append (Etype (E), N, Result);
4369 end if;
4371 -- Special processing for objects created by object declaration
4373 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
4375 -- Abstract type allowed only for C++ imported variables or
4376 -- constants.
4378 -- Note: we inhibit this check for objects that do not come
4379 -- from source because there is at least one case (the
4380 -- expansion of x'Class'Input where x is abstract) where we
4381 -- legitimately generate an abstract object.
4383 if Is_Abstract_Type (Etype (E))
4384 and then Comes_From_Source (Parent (E))
4385 and then not (Is_Imported (E)
4386 and then Is_CPP_Class (Etype (E)))
4387 then
4388 Error_Msg_N ("type of object cannot be abstract",
4389 Object_Definition (Parent (E)));
4391 if Is_CPP_Class (Etype (E)) then
4392 Error_Msg_NE
4393 ("\} may need a cpp_constructor",
4394 Object_Definition (Parent (E)), Etype (E));
4395 end if;
4396 end if;
4398 -- For object created by object declaration, perform required
4399 -- categorization (preelaborate and pure) checks. Defer these
4400 -- checks to freeze time since pragma Import inhibits default
4401 -- initialization and thus pragma Import affects these checks.
4403 Validate_Object_Declaration (Declaration_Node (E));
4405 -- If there is an address clause, check that it is valid
4407 Check_Address_Clause (E);
4409 -- Reset Is_True_Constant for aliased object. We consider that
4410 -- the fact that something is aliased may indicate that some
4411 -- funny business is going on, e.g. an aliased object is passed
4412 -- by reference to a procedure which captures the address of
4413 -- the object, which is later used to assign a new value. Such
4414 -- code is highly dubious, but we choose to make it "work" for
4415 -- aliased objects.
4417 -- However, we don't do that for internal entities. We figure
4418 -- that if we deliberately set Is_True_Constant for an internal
4419 -- entity, e.g. a dispatch table entry, then we mean it.
4421 if (Is_Aliased (E) or else Is_Aliased (Etype (E)))
4422 and then not Is_Internal_Name (Chars (E))
4423 then
4424 Set_Is_True_Constant (E, False);
4425 end if;
4427 -- If the object needs any kind of default initialization, an
4428 -- error must be issued if No_Default_Initialization applies.
4429 -- The check doesn't apply to imported objects, which are not
4430 -- ever default initialized, and is why the check is deferred
4431 -- until freezing, at which point we know if Import applies.
4432 -- Deferred constants are also exempted from this test because
4433 -- their completion is explicit, or through an import pragma.
4435 if Ekind (E) = E_Constant
4436 and then Present (Full_View (E))
4437 then
4438 null;
4440 elsif Comes_From_Source (E)
4441 and then not Is_Imported (E)
4442 and then not Has_Init_Expression (Declaration_Node (E))
4443 and then
4444 ((Has_Non_Null_Base_Init_Proc (Etype (E))
4445 and then not No_Initialization (Declaration_Node (E))
4446 and then not Is_Value_Type (Etype (E))
4447 and then not Initialization_Suppressed (Etype (E)))
4448 or else
4449 (Needs_Simple_Initialization (Etype (E))
4450 and then not Is_Internal (E)))
4451 then
4452 Has_Default_Initialization := True;
4453 Check_Restriction
4454 (No_Default_Initialization, Declaration_Node (E));
4455 end if;
4457 -- Check that a Thread_Local_Storage variable does not have
4458 -- default initialization, and any explicit initialization must
4459 -- either be the null constant or a static constant.
4461 if Has_Pragma_Thread_Local_Storage (E) then
4462 declare
4463 Decl : constant Node_Id := Declaration_Node (E);
4464 begin
4465 if Has_Default_Initialization
4466 or else
4467 (Has_Init_Expression (Decl)
4468 and then
4469 (No (Expression (Decl))
4470 or else not
4471 (Is_OK_Static_Expression (Expression (Decl))
4472 or else
4473 Nkind (Expression (Decl)) = N_Null)))
4474 then
4475 Error_Msg_NE
4476 ("Thread_Local_Storage variable& is "
4477 & "improperly initialized", Decl, E);
4478 Error_Msg_NE
4479 ("\only allowed initialization is explicit "
4480 & "NULL or static expression", Decl, E);
4481 end if;
4482 end;
4483 end if;
4485 -- For imported objects, set Is_Public unless there is also an
4486 -- address clause, which means that there is no external symbol
4487 -- needed for the Import (Is_Public may still be set for other
4488 -- unrelated reasons). Note that we delayed this processing
4489 -- till freeze time so that we can be sure not to set the flag
4490 -- if there is an address clause. If there is such a clause,
4491 -- then the only purpose of the Import pragma is to suppress
4492 -- implicit initialization.
4494 if Is_Imported (E) and then No (Address_Clause (E)) then
4495 Set_Is_Public (E);
4496 end if;
4498 -- For source objects that are not Imported and are library
4499 -- level, if no linker section pragma was given inherit the
4500 -- appropriate linker section from the corresponding type.
4502 if Comes_From_Source (E)
4503 and then not Is_Imported (E)
4504 and then Is_Library_Level_Entity (E)
4505 and then No (Linker_Section_Pragma (E))
4506 then
4507 Set_Linker_Section_Pragma
4508 (E, Linker_Section_Pragma (Etype (E)));
4509 end if;
4511 -- For convention C objects of an enumeration type, warn if
4512 -- the size is not integer size and no explicit size given.
4513 -- Skip warning for Boolean, and Character, assume programmer
4514 -- expects 8-bit sizes for these cases.
4516 if (Convention (E) = Convention_C
4517 or else
4518 Convention (E) = Convention_CPP)
4519 and then Is_Enumeration_Type (Etype (E))
4520 and then not Is_Character_Type (Etype (E))
4521 and then not Is_Boolean_Type (Etype (E))
4522 and then Esize (Etype (E)) < Standard_Integer_Size
4523 and then not Has_Size_Clause (E)
4524 then
4525 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
4526 Error_Msg_N
4527 ("??convention C enumeration object has size less than ^",
4529 Error_Msg_N ("\??use explicit size clause to set size", E);
4530 end if;
4531 end if;
4533 -- Check that a constant which has a pragma Volatile[_Components]
4534 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
4536 -- Note: Atomic[_Components] also sets Volatile[_Components]
4538 if Ekind (E) = E_Constant
4539 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
4540 and then not Is_Imported (E)
4541 and then not Has_Boolean_Aspect_Import (E)
4542 then
4543 -- Make sure we actually have a pragma, and have not merely
4544 -- inherited the indication from elsewhere (e.g. an address
4545 -- clause, which is not good enough in RM terms).
4547 if Has_Rep_Pragma (E, Name_Atomic)
4548 or else
4549 Has_Rep_Pragma (E, Name_Atomic_Components)
4550 then
4551 Error_Msg_N
4552 ("stand alone atomic constant must be " &
4553 "imported (RM C.6(13))", E);
4555 elsif Has_Rep_Pragma (E, Name_Volatile)
4556 or else
4557 Has_Rep_Pragma (E, Name_Volatile_Components)
4558 then
4559 Error_Msg_N
4560 ("stand alone volatile constant must be " &
4561 "imported (RM C.6(13))", E);
4562 end if;
4563 end if;
4565 -- Static objects require special handling
4567 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
4568 and then Is_Statically_Allocated (E)
4569 then
4570 Freeze_Static_Object (E);
4571 end if;
4573 -- Remaining step is to layout objects
4575 if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
4576 or else Is_Formal (E)
4577 then
4578 Layout_Object (E);
4579 end if;
4581 -- For an object that does not have delayed freezing, and whose
4582 -- initialization actions have been captured in a compound
4583 -- statement, move them back now directly within the enclosing
4584 -- statement sequence.
4586 if Ekind_In (E, E_Constant, E_Variable)
4587 and then not Has_Delayed_Freeze (E)
4588 then
4589 Explode_Initialization_Compound_Statement (E);
4590 end if;
4591 end if;
4593 -- Case of a type or subtype being frozen
4595 else
4596 -- We used to check here that a full type must have preelaborable
4597 -- initialization if it completes a private type specified with
4598 -- pragma Preelaborable_Initialization, but that missed cases where
4599 -- the types occur within a generic package, since the freezing
4600 -- that occurs within a containing scope generally skips traversal
4601 -- of a generic unit's declarations (those will be frozen within
4602 -- instances). This check was moved to Analyze_Package_Specification.
4604 -- The type may be defined in a generic unit. This can occur when
4605 -- freezing a generic function that returns the type (which is
4606 -- defined in a parent unit). It is clearly meaningless to freeze
4607 -- this type. However, if it is a subtype, its size may be determi-
4608 -- nable and used in subsequent checks, so might as well try to
4609 -- compute it.
4611 -- In Ada 2012, Freeze_Entities is also used in the front end to
4612 -- trigger the analysis of aspect expressions, so in this case we
4613 -- want to continue the freezing process.
4615 if Present (Scope (E))
4616 and then Is_Generic_Unit (Scope (E))
4617 and then
4618 (not Has_Predicates (E)
4619 and then not Has_Delayed_Freeze (E))
4620 then
4621 Check_Compile_Time_Size (E);
4622 return No_List;
4623 end if;
4625 -- Check for error of Type_Invariant'Class applied to an untagged
4626 -- type (check delayed to freeze time when full type is available).
4628 declare
4629 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
4630 begin
4631 if Present (Prag)
4632 and then Class_Present (Prag)
4633 and then not Is_Tagged_Type (E)
4634 then
4635 Error_Msg_NE
4636 ("Type_Invariant''Class cannot be specified for &",
4637 Prag, E);
4638 Error_Msg_N
4639 ("\can only be specified for a tagged type", Prag);
4640 end if;
4641 end;
4643 -- Deal with special cases of freezing for subtype
4645 if E /= Base_Type (E) then
4647 -- Before we do anything else, a specialized test for the case of
4648 -- a size given for an array where the array needs to be packed,
4649 -- but was not so the size cannot be honored. This is the case
4650 -- where implicit packing may apply. The reason we do this so
4651 -- early is that if we have implicit packing, the layout of the
4652 -- base type is affected, so we must do this before we freeze
4653 -- the base type.
4655 -- We could do this processing only if implicit packing is enabled
4656 -- since in all other cases, the error would be caught by the back
4657 -- end. However, we choose to do the check even if we do not have
4658 -- implicit packing enabled, since this allows us to give a more
4659 -- useful error message (advising use of pragmas Implicit_Packing
4660 -- or Pack).
4662 if Is_Array_Type (E) then
4663 declare
4664 Ctyp : constant Entity_Id := Component_Type (E);
4665 Rsiz : constant Uint := RM_Size (Ctyp);
4666 SZ : constant Node_Id := Size_Clause (E);
4667 Btyp : constant Entity_Id := Base_Type (E);
4669 Lo : Node_Id;
4670 Hi : Node_Id;
4671 Indx : Node_Id;
4673 Num_Elmts : Uint;
4674 -- Number of elements in array
4676 begin
4677 -- Check enabling conditions. These are straightforward
4678 -- except for the test for a limited composite type. This
4679 -- eliminates the rare case of a array of limited components
4680 -- where there are issues of whether or not we can go ahead
4681 -- and pack the array (since we can't freely pack and unpack
4682 -- arrays if they are limited).
4684 -- Note that we check the root type explicitly because the
4685 -- whole point is we are doing this test before we have had
4686 -- a chance to freeze the base type (and it is that freeze
4687 -- action that causes stuff to be inherited).
4689 if Has_Size_Clause (E)
4690 and then Known_Static_RM_Size (E)
4691 and then not Is_Packed (E)
4692 and then not Has_Pragma_Pack (E)
4693 and then not Has_Component_Size_Clause (E)
4694 and then Known_Static_RM_Size (Ctyp)
4695 and then RM_Size (Ctyp) < 64
4696 and then not Is_Limited_Composite (E)
4697 and then not Is_Packed (Root_Type (E))
4698 and then not Has_Component_Size_Clause (Root_Type (E))
4699 and then not (CodePeer_Mode or GNATprove_Mode)
4700 then
4701 -- Compute number of elements in array
4703 Num_Elmts := Uint_1;
4704 Indx := First_Index (E);
4705 while Present (Indx) loop
4706 Get_Index_Bounds (Indx, Lo, Hi);
4708 if not (Compile_Time_Known_Value (Lo)
4709 and then
4710 Compile_Time_Known_Value (Hi))
4711 then
4712 goto No_Implicit_Packing;
4713 end if;
4715 Num_Elmts :=
4716 Num_Elmts *
4717 UI_Max (Uint_0,
4718 Expr_Value (Hi) - Expr_Value (Lo) + 1);
4719 Next_Index (Indx);
4720 end loop;
4722 -- What we are looking for here is the situation where
4723 -- the RM_Size given would be exactly right if there was
4724 -- a pragma Pack (resulting in the component size being
4725 -- the same as the RM_Size). Furthermore, the component
4726 -- type size must be an odd size (not a multiple of
4727 -- storage unit). If the component RM size is an exact
4728 -- number of storage units that is a power of two, the
4729 -- array is not packed and has a standard representation.
4731 if RM_Size (E) = Num_Elmts * Rsiz
4732 and then Rsiz mod System_Storage_Unit /= 0
4733 then
4734 -- For implicit packing mode, just set the component
4735 -- size silently.
4737 if Implicit_Packing then
4738 Set_Component_Size (Btyp, Rsiz);
4739 Set_Is_Bit_Packed_Array (Btyp);
4740 Set_Is_Packed (Btyp);
4741 Set_Has_Non_Standard_Rep (Btyp);
4743 -- Otherwise give an error message
4745 else
4746 Error_Msg_NE
4747 ("size given for& too small", SZ, E);
4748 Error_Msg_N -- CODEFIX
4749 ("\use explicit pragma Pack "
4750 & "or use pragma Implicit_Packing", SZ);
4751 end if;
4753 elsif RM_Size (E) = Num_Elmts * Rsiz
4754 and then Implicit_Packing
4755 and then
4756 (Rsiz / System_Storage_Unit = 1
4757 or else
4758 Rsiz / System_Storage_Unit = 2
4759 or else
4760 Rsiz / System_Storage_Unit = 4)
4761 then
4762 -- Not a packed array, but indicate the desired
4763 -- component size, for the back-end.
4765 Set_Component_Size (Btyp, Rsiz);
4766 end if;
4767 end if;
4768 end;
4769 end if;
4771 <<No_Implicit_Packing>>
4773 -- If ancestor subtype present, freeze that first. Note that this
4774 -- will also get the base type frozen. Need RM reference ???
4776 Atype := Ancestor_Subtype (E);
4778 if Present (Atype) then
4779 Freeze_And_Append (Atype, N, Result);
4781 -- No ancestor subtype present
4783 else
4784 -- See if we have a nearest ancestor that has a predicate.
4785 -- That catches the case of derived type with a predicate.
4786 -- Need RM reference here ???
4788 Atype := Nearest_Ancestor (E);
4790 if Present (Atype) and then Has_Predicates (Atype) then
4791 Freeze_And_Append (Atype, N, Result);
4792 end if;
4794 -- Freeze base type before freezing the entity (RM 13.14(15))
4796 if E /= Base_Type (E) then
4797 Freeze_And_Append (Base_Type (E), N, Result);
4798 end if;
4799 end if;
4801 -- A subtype inherits all the type-related representation aspects
4802 -- from its parents (RM 13.1(8)).
4804 Inherit_Aspects_At_Freeze_Point (E);
4806 -- For a derived type, freeze its parent type first (RM 13.14(15))
4808 elsif Is_Derived_Type (E) then
4809 Freeze_And_Append (Etype (E), N, Result);
4810 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
4812 -- A derived type inherits each type-related representation aspect
4813 -- of its parent type that was directly specified before the
4814 -- declaration of the derived type (RM 13.1(15)).
4816 Inherit_Aspects_At_Freeze_Point (E);
4817 end if;
4819 -- Check for incompatible size and alignment for record type
4821 if Warn_On_Size_Alignment
4822 and then Is_Record_Type (E)
4823 and then Has_Size_Clause (E) and then Has_Alignment_Clause (E)
4825 -- If explicit Object_Size clause given assume that the programmer
4826 -- knows what he is doing, and expects the compiler behavior.
4828 and then not Has_Object_Size_Clause (E)
4830 -- Check for size not a multiple of alignment
4832 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
4833 then
4834 declare
4835 SC : constant Node_Id := Size_Clause (E);
4836 AC : constant Node_Id := Alignment_Clause (E);
4837 Loc : Node_Id;
4838 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
4840 begin
4841 if Present (SC) and then Present (AC) then
4843 -- Give a warning
4845 if Sloc (SC) > Sloc (AC) then
4846 Loc := SC;
4847 Error_Msg_NE
4848 ("??size is not a multiple of alignment for &", Loc, E);
4849 Error_Msg_Sloc := Sloc (AC);
4850 Error_Msg_Uint_1 := Alignment (E);
4851 Error_Msg_N ("\??alignment of ^ specified #", Loc);
4853 else
4854 Loc := AC;
4855 Error_Msg_NE
4856 ("??size is not a multiple of alignment for &", Loc, E);
4857 Error_Msg_Sloc := Sloc (SC);
4858 Error_Msg_Uint_1 := RM_Size (E);
4859 Error_Msg_N ("\??size of ^ specified #", Loc);
4860 end if;
4862 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
4863 Error_Msg_N ("\??Object_Size will be increased to ^", Loc);
4864 end if;
4865 end;
4866 end if;
4868 -- Array type
4870 if Is_Array_Type (E) then
4871 Freeze_Array_Type (E);
4873 -- For a class-wide type, the corresponding specific type is
4874 -- frozen as well (RM 13.14(15))
4876 elsif Is_Class_Wide_Type (E) then
4877 Freeze_And_Append (Root_Type (E), N, Result);
4879 -- If the base type of the class-wide type is still incomplete,
4880 -- the class-wide remains unfrozen as well. This is legal when
4881 -- E is the formal of a primitive operation of some other type
4882 -- which is being frozen.
4884 if not Is_Frozen (Root_Type (E)) then
4885 Set_Is_Frozen (E, False);
4886 return Result;
4887 end if;
4889 -- The equivalent type associated with a class-wide subtype needs
4890 -- to be frozen to ensure that its layout is done.
4892 if Ekind (E) = E_Class_Wide_Subtype
4893 and then Present (Equivalent_Type (E))
4894 then
4895 Freeze_And_Append (Equivalent_Type (E), N, Result);
4896 end if;
4898 -- Generate an itype reference for a library-level class-wide type
4899 -- at the freeze point. Otherwise the first explicit reference to
4900 -- the type may appear in an inner scope which will be rejected by
4901 -- the back-end.
4903 if Is_Itype (E)
4904 and then Is_Compilation_Unit (Scope (E))
4905 then
4906 declare
4907 Ref : constant Node_Id := Make_Itype_Reference (Loc);
4909 begin
4910 Set_Itype (Ref, E);
4912 -- From a gigi point of view, a class-wide subtype derives
4913 -- from its record equivalent type. As a result, the itype
4914 -- reference must appear after the freeze node of the
4915 -- equivalent type or gigi will reject the reference.
4917 if Ekind (E) = E_Class_Wide_Subtype
4918 and then Present (Equivalent_Type (E))
4919 then
4920 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
4921 else
4922 Add_To_Result (Ref);
4923 end if;
4924 end;
4925 end if;
4927 -- For a record type or record subtype, freeze all component types
4928 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
4929 -- using Is_Record_Type, because we don't want to attempt the freeze
4930 -- for the case of a private type with record extension (we will do
4931 -- that later when the full type is frozen).
4933 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype)
4934 and then not Is_Generic_Unit (Scope (E))
4935 then
4936 Freeze_Record_Type (E);
4938 -- For a concurrent type, freeze corresponding record type. This does
4939 -- not correspond to any specific rule in the RM, but the record type
4940 -- is essentially part of the concurrent type. Also freeze all local
4941 -- entities. This includes record types created for entry parameter
4942 -- blocks and whatever local entities may appear in the private part.
4944 elsif Is_Concurrent_Type (E) then
4945 if Present (Corresponding_Record_Type (E)) then
4946 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
4947 end if;
4949 Comp := First_Entity (E);
4950 while Present (Comp) loop
4951 if Is_Type (Comp) then
4952 Freeze_And_Append (Comp, N, Result);
4954 elsif (Ekind (Comp)) /= E_Function then
4956 -- The guard on the presence of the Etype seems to be needed
4957 -- for some CodePeer (-gnatcC) cases, but not clear why???
4959 if Present (Etype (Comp)) then
4960 if Is_Itype (Etype (Comp))
4961 and then Underlying_Type (Scope (Etype (Comp))) = E
4962 then
4963 Undelay_Type (Etype (Comp));
4964 end if;
4966 Freeze_And_Append (Etype (Comp), N, Result);
4967 end if;
4968 end if;
4970 Next_Entity (Comp);
4971 end loop;
4973 -- Private types are required to point to the same freeze node as
4974 -- their corresponding full views. The freeze node itself has to
4975 -- point to the partial view of the entity (because from the partial
4976 -- view, we can retrieve the full view, but not the reverse).
4977 -- However, in order to freeze correctly, we need to freeze the full
4978 -- view. If we are freezing at the end of a scope (or within the
4979 -- scope) of the private type, the partial and full views will have
4980 -- been swapped, the full view appears first in the entity chain and
4981 -- the swapping mechanism ensures that the pointers are properly set
4982 -- (on scope exit).
4984 -- If we encounter the partial view before the full view (e.g. when
4985 -- freezing from another scope), we freeze the full view, and then
4986 -- set the pointers appropriately since we cannot rely on swapping to
4987 -- fix things up (subtypes in an outer scope might not get swapped).
4989 -- If the full view is itself private, the above requirements apply
4990 -- to the underlying full view instead of the full view. But there is
4991 -- no swapping mechanism for the underlying full view so we need to
4992 -- set the pointers appropriately in both cases.
4994 elsif Is_Incomplete_Or_Private_Type (E)
4995 and then not Is_Generic_Type (E)
4996 then
4997 -- The construction of the dispatch table associated with library
4998 -- level tagged types forces freezing of all the primitives of the
4999 -- type, which may cause premature freezing of the partial view.
5000 -- For example:
5002 -- package Pkg is
5003 -- type T is tagged private;
5004 -- type DT is new T with private;
5005 -- procedure Prim (X : in out T; Y : in out DT'Class);
5006 -- private
5007 -- type T is tagged null record;
5008 -- Obj : T;
5009 -- type DT is new T with null record;
5010 -- end;
5012 -- In this case the type will be frozen later by the usual
5013 -- mechanism: an object declaration, an instantiation, or the
5014 -- end of a declarative part.
5016 if Is_Library_Level_Tagged_Type (E)
5017 and then not Present (Full_View (E))
5018 then
5019 Set_Is_Frozen (E, False);
5020 return Result;
5022 -- Case of full view present
5024 elsif Present (Full_View (E)) then
5026 -- If full view has already been frozen, then no further
5027 -- processing is required
5029 if Is_Frozen (Full_View (E)) then
5030 Set_Has_Delayed_Freeze (E, False);
5031 Set_Freeze_Node (E, Empty);
5033 -- Otherwise freeze full view and patch the pointers so that
5034 -- the freeze node will elaborate both views in the back end.
5035 -- However, if full view is itself private, freeze underlying
5036 -- full view instead and patch the pointers so that the freeze
5037 -- node will elaborate the three views in the back end.
5039 else
5040 declare
5041 Full : Entity_Id := Full_View (E);
5043 begin
5044 if Is_Private_Type (Full)
5045 and then Present (Underlying_Full_View (Full))
5046 then
5047 Full := Underlying_Full_View (Full);
5048 end if;
5050 Freeze_And_Append (Full, N, Result);
5052 if Full /= Full_View (E)
5053 and then Has_Delayed_Freeze (Full_View (E))
5054 then
5055 F_Node := Freeze_Node (Full);
5057 if Present (F_Node) then
5058 Set_Freeze_Node (Full_View (E), F_Node);
5059 Set_Entity (F_Node, Full_View (E));
5061 else
5062 Set_Has_Delayed_Freeze (Full_View (E), False);
5063 Set_Freeze_Node (Full_View (E), Empty);
5064 end if;
5065 end if;
5067 if Has_Delayed_Freeze (E) then
5068 F_Node := Freeze_Node (Full_View (E));
5070 if Present (F_Node) then
5071 Set_Freeze_Node (E, F_Node);
5072 Set_Entity (F_Node, E);
5074 else
5075 -- {Incomplete,Private}_Subtypes with Full_Views
5076 -- constrained by discriminants.
5078 Set_Has_Delayed_Freeze (E, False);
5079 Set_Freeze_Node (E, Empty);
5080 end if;
5081 end if;
5082 end;
5083 end if;
5085 Check_Debug_Info_Needed (E);
5087 -- AI-117 requires that the convention of a partial view be the
5088 -- same as the convention of the full view. Note that this is a
5089 -- recognized breach of privacy, but it's essential for logical
5090 -- consistency of representation, and the lack of a rule in
5091 -- RM95 was an oversight.
5093 Set_Convention (E, Convention (Full_View (E)));
5095 Set_Size_Known_At_Compile_Time (E,
5096 Size_Known_At_Compile_Time (Full_View (E)));
5098 -- Size information is copied from the full view to the
5099 -- incomplete or private view for consistency.
5101 -- We skip this is the full view is not a type. This is very
5102 -- strange of course, and can only happen as a result of
5103 -- certain illegalities, such as a premature attempt to derive
5104 -- from an incomplete type.
5106 if Is_Type (Full_View (E)) then
5107 Set_Size_Info (E, Full_View (E));
5108 Set_RM_Size (E, RM_Size (Full_View (E)));
5109 end if;
5111 return Result;
5113 -- Case of underlying full view present
5115 elsif Is_Private_Type (E)
5116 and then Present (Underlying_Full_View (E))
5117 then
5118 if not Is_Frozen (Underlying_Full_View (E)) then
5119 Freeze_And_Append (Underlying_Full_View (E), N, Result);
5120 end if;
5122 -- Patch the pointers so that the freeze node will elaborate
5123 -- both views in the back end.
5125 if Has_Delayed_Freeze (E) then
5126 F_Node := Freeze_Node (Underlying_Full_View (E));
5128 if Present (F_Node) then
5129 Set_Freeze_Node (E, F_Node);
5130 Set_Entity (F_Node, E);
5132 else
5133 Set_Has_Delayed_Freeze (E, False);
5134 Set_Freeze_Node (E, Empty);
5135 end if;
5136 end if;
5138 Check_Debug_Info_Needed (E);
5140 return Result;
5142 -- Case of no full view present. If entity is derived or subtype,
5143 -- it is safe to freeze, correctness depends on the frozen status
5144 -- of parent. Otherwise it is either premature usage, or a Taft
5145 -- amendment type, so diagnosis is at the point of use and the
5146 -- type might be frozen later.
5148 elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
5149 null;
5151 else
5152 Set_Is_Frozen (E, False);
5153 return No_List;
5154 end if;
5156 -- For access subprogram, freeze types of all formals, the return
5157 -- type was already frozen, since it is the Etype of the function.
5158 -- Formal types can be tagged Taft amendment types, but otherwise
5159 -- they cannot be incomplete.
5161 elsif Ekind (E) = E_Subprogram_Type then
5162 Formal := First_Formal (E);
5163 while Present (Formal) loop
5164 if Ekind (Etype (Formal)) = E_Incomplete_Type
5165 and then No (Full_View (Etype (Formal)))
5166 and then not Is_Value_Type (Etype (Formal))
5167 then
5168 if Is_Tagged_Type (Etype (Formal)) then
5169 null;
5171 -- AI05-151: Incomplete types are allowed in access to
5172 -- subprogram specifications.
5174 elsif Ada_Version < Ada_2012 then
5175 Error_Msg_NE
5176 ("invalid use of incomplete type&", E, Etype (Formal));
5177 end if;
5178 end if;
5180 Freeze_And_Append (Etype (Formal), N, Result);
5181 Next_Formal (Formal);
5182 end loop;
5184 Freeze_Subprogram (E);
5186 -- For access to a protected subprogram, freeze the equivalent type
5187 -- (however this is not set if we are not generating code or if this
5188 -- is an anonymous type used just for resolution).
5190 elsif Is_Access_Protected_Subprogram_Type (E) then
5191 if Present (Equivalent_Type (E)) then
5192 Freeze_And_Append (Equivalent_Type (E), N, Result);
5193 end if;
5194 end if;
5196 -- Generic types are never seen by the back-end, and are also not
5197 -- processed by the expander (since the expander is turned off for
5198 -- generic processing), so we never need freeze nodes for them.
5200 if Is_Generic_Type (E) then
5201 return Result;
5202 end if;
5204 -- Some special processing for non-generic types to complete
5205 -- representation details not known till the freeze point.
5207 if Is_Fixed_Point_Type (E) then
5208 Freeze_Fixed_Point_Type (E);
5210 -- Some error checks required for ordinary fixed-point type. Defer
5211 -- these till the freeze-point since we need the small and range
5212 -- values. We only do these checks for base types
5214 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
5215 if Small_Value (E) < Ureal_2_M_80 then
5216 Error_Msg_Name_1 := Name_Small;
5217 Error_Msg_N
5218 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
5220 elsif Small_Value (E) > Ureal_2_80 then
5221 Error_Msg_Name_1 := Name_Small;
5222 Error_Msg_N
5223 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
5224 end if;
5226 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
5227 Error_Msg_Name_1 := Name_First;
5228 Error_Msg_N
5229 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
5230 end if;
5232 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
5233 Error_Msg_Name_1 := Name_Last;
5234 Error_Msg_N
5235 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
5236 end if;
5237 end if;
5239 elsif Is_Enumeration_Type (E) then
5240 Freeze_Enumeration_Type (E);
5242 elsif Is_Integer_Type (E) then
5243 Adjust_Esize_For_Alignment (E);
5245 if Is_Modular_Integer_Type (E)
5246 and then Warn_On_Suspicious_Modulus_Value
5247 then
5248 Check_Suspicious_Modulus (E);
5249 end if;
5251 elsif Is_Access_Type (E)
5252 and then not Is_Access_Subprogram_Type (E)
5253 then
5254 -- If a pragma Default_Storage_Pool applies, and this type has no
5255 -- Storage_Pool or Storage_Size clause (which must have occurred
5256 -- before the freezing point), then use the default. This applies
5257 -- only to base types.
5259 -- None of this applies to access to subprograms, for which there
5260 -- are clearly no pools.
5262 if Present (Default_Pool)
5263 and then Is_Base_Type (E)
5264 and then not Has_Storage_Size_Clause (E)
5265 and then No (Associated_Storage_Pool (E))
5266 then
5267 -- Case of pragma Default_Storage_Pool (null)
5269 if Nkind (Default_Pool) = N_Null then
5270 Set_No_Pool_Assigned (E);
5272 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
5274 else
5275 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
5276 end if;
5277 end if;
5279 -- Check restriction for standard storage pool
5281 if No (Associated_Storage_Pool (E)) then
5282 Check_Restriction (No_Standard_Storage_Pools, E);
5283 end if;
5285 -- Deal with error message for pure access type. This is not an
5286 -- error in Ada 2005 if there is no pool (see AI-366).
5288 if Is_Pure_Unit_Access_Type (E)
5289 and then (Ada_Version < Ada_2005
5290 or else not No_Pool_Assigned (E))
5291 and then not Is_Generic_Unit (Scope (E))
5292 then
5293 Error_Msg_N ("named access type not allowed in pure unit", E);
5295 if Ada_Version >= Ada_2005 then
5296 Error_Msg_N
5297 ("\would be legal if Storage_Size of 0 given??", E);
5299 elsif No_Pool_Assigned (E) then
5300 Error_Msg_N
5301 ("\would be legal in Ada 2005??", E);
5303 else
5304 Error_Msg_N
5305 ("\would be legal in Ada 2005 if "
5306 & "Storage_Size of 0 given??", E);
5307 end if;
5308 end if;
5309 end if;
5311 -- Case of composite types
5313 if Is_Composite_Type (E) then
5315 -- AI-117 requires that all new primitives of a tagged type must
5316 -- inherit the convention of the full view of the type. Inherited
5317 -- and overriding operations are defined to inherit the convention
5318 -- of their parent or overridden subprogram (also specified in
5319 -- AI-117), which will have occurred earlier (in Derive_Subprogram
5320 -- and New_Overloaded_Entity). Here we set the convention of
5321 -- primitives that are still convention Ada, which will ensure
5322 -- that any new primitives inherit the type's convention. Class-
5323 -- wide types can have a foreign convention inherited from their
5324 -- specific type, but are excluded from this since they don't have
5325 -- any associated primitives.
5327 if Is_Tagged_Type (E)
5328 and then not Is_Class_Wide_Type (E)
5329 and then Convention (E) /= Convention_Ada
5330 then
5331 declare
5332 Prim_List : constant Elist_Id := Primitive_Operations (E);
5333 Prim : Elmt_Id;
5335 begin
5336 Prim := First_Elmt (Prim_List);
5337 while Present (Prim) loop
5338 if Convention (Node (Prim)) = Convention_Ada then
5339 Set_Convention (Node (Prim), Convention (E));
5340 end if;
5342 Next_Elmt (Prim);
5343 end loop;
5344 end;
5345 end if;
5347 -- If the type is a simple storage pool type, then this is where
5348 -- we attempt to locate and validate its Allocate, Deallocate, and
5349 -- Storage_Size operations (the first is required, and the latter
5350 -- two are optional). We also verify that the full type for a
5351 -- private type is allowed to be a simple storage pool type.
5353 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
5354 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
5355 then
5356 -- If the type is marked Has_Private_Declaration, then this is
5357 -- a full type for a private type that was specified with the
5358 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
5359 -- pragma is allowed for the full type (for example, it can't
5360 -- be an array type, or a nonlimited record type).
5362 if Has_Private_Declaration (E) then
5363 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
5364 and then not Is_Private_Type (E)
5365 then
5366 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
5367 Error_Msg_N
5368 ("pragma% can only apply to full type that is an " &
5369 "explicitly limited type", E);
5370 end if;
5371 end if;
5373 Validate_Simple_Pool_Ops : declare
5374 Pool_Type : Entity_Id renames E;
5375 Address_Type : constant Entity_Id := RTE (RE_Address);
5376 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
5378 procedure Validate_Simple_Pool_Op_Formal
5379 (Pool_Op : Entity_Id;
5380 Pool_Op_Formal : in out Entity_Id;
5381 Expected_Mode : Formal_Kind;
5382 Expected_Type : Entity_Id;
5383 Formal_Name : String;
5384 OK_Formal : in out Boolean);
5385 -- Validate one formal Pool_Op_Formal of the candidate pool
5386 -- operation Pool_Op. The formal must be of Expected_Type
5387 -- and have mode Expected_Mode. OK_Formal will be set to
5388 -- False if the formal doesn't match. If OK_Formal is False
5389 -- on entry, then the formal will effectively be ignored
5390 -- (because validation of the pool op has already failed).
5391 -- Upon return, Pool_Op_Formal will be updated to the next
5392 -- formal, if any.
5394 procedure Validate_Simple_Pool_Operation
5395 (Op_Name : Name_Id);
5396 -- Search for and validate a simple pool operation with the
5397 -- name Op_Name. If the name is Allocate, then there must be
5398 -- exactly one such primitive operation for the simple pool
5399 -- type. If the name is Deallocate or Storage_Size, then
5400 -- there can be at most one such primitive operation. The
5401 -- profile of the located primitive must conform to what
5402 -- is expected for each operation.
5404 ------------------------------------
5405 -- Validate_Simple_Pool_Op_Formal --
5406 ------------------------------------
5408 procedure Validate_Simple_Pool_Op_Formal
5409 (Pool_Op : Entity_Id;
5410 Pool_Op_Formal : in out Entity_Id;
5411 Expected_Mode : Formal_Kind;
5412 Expected_Type : Entity_Id;
5413 Formal_Name : String;
5414 OK_Formal : in out Boolean)
5416 begin
5417 -- If OK_Formal is False on entry, then simply ignore
5418 -- the formal, because an earlier formal has already
5419 -- been flagged.
5421 if not OK_Formal then
5422 return;
5424 -- If no formal is passed in, then issue an error for a
5425 -- missing formal.
5427 elsif not Present (Pool_Op_Formal) then
5428 Error_Msg_NE
5429 ("simple storage pool op missing formal " &
5430 Formal_Name & " of type&", Pool_Op, Expected_Type);
5431 OK_Formal := False;
5433 return;
5434 end if;
5436 if Etype (Pool_Op_Formal) /= Expected_Type then
5438 -- If the pool type was expected for this formal, then
5439 -- this will not be considered a candidate operation
5440 -- for the simple pool, so we unset OK_Formal so that
5441 -- the op and any later formals will be ignored.
5443 if Expected_Type = Pool_Type then
5444 OK_Formal := False;
5446 return;
5448 else
5449 Error_Msg_NE
5450 ("wrong type for formal " & Formal_Name &
5451 " of simple storage pool op; expected type&",
5452 Pool_Op_Formal, Expected_Type);
5453 end if;
5454 end if;
5456 -- Issue error if formal's mode is not the expected one
5458 if Ekind (Pool_Op_Formal) /= Expected_Mode then
5459 Error_Msg_N
5460 ("wrong mode for formal of simple storage pool op",
5461 Pool_Op_Formal);
5462 end if;
5464 -- Advance to the next formal
5466 Next_Formal (Pool_Op_Formal);
5467 end Validate_Simple_Pool_Op_Formal;
5469 ------------------------------------
5470 -- Validate_Simple_Pool_Operation --
5471 ------------------------------------
5473 procedure Validate_Simple_Pool_Operation
5474 (Op_Name : Name_Id)
5476 Op : Entity_Id;
5477 Found_Op : Entity_Id := Empty;
5478 Formal : Entity_Id;
5479 Is_OK : Boolean;
5481 begin
5482 pragma Assert
5483 (Nam_In (Op_Name, Name_Allocate,
5484 Name_Deallocate,
5485 Name_Storage_Size));
5487 Error_Msg_Name_1 := Op_Name;
5489 -- For each homonym declared immediately in the scope
5490 -- of the simple storage pool type, determine whether
5491 -- the homonym is an operation of the pool type, and,
5492 -- if so, check that its profile is as expected for
5493 -- a simple pool operation of that name.
5495 Op := Get_Name_Entity_Id (Op_Name);
5496 while Present (Op) loop
5497 if Ekind_In (Op, E_Function, E_Procedure)
5498 and then Scope (Op) = Current_Scope
5499 then
5500 Formal := First_Entity (Op);
5502 Is_OK := True;
5504 -- The first parameter must be of the pool type
5505 -- in order for the operation to qualify.
5507 if Op_Name = Name_Storage_Size then
5508 Validate_Simple_Pool_Op_Formal
5509 (Op, Formal, E_In_Parameter, Pool_Type,
5510 "Pool", Is_OK);
5511 else
5512 Validate_Simple_Pool_Op_Formal
5513 (Op, Formal, E_In_Out_Parameter, Pool_Type,
5514 "Pool", Is_OK);
5515 end if;
5517 -- If another operation with this name has already
5518 -- been located for the type, then flag an error,
5519 -- since we only allow the type to have a single
5520 -- such primitive.
5522 if Present (Found_Op) and then Is_OK then
5523 Error_Msg_NE
5524 ("only one % operation allowed for " &
5525 "simple storage pool type&", Op, Pool_Type);
5526 end if;
5528 -- In the case of Allocate and Deallocate, a formal
5529 -- of type System.Address is required.
5531 if Op_Name = Name_Allocate then
5532 Validate_Simple_Pool_Op_Formal
5533 (Op, Formal, E_Out_Parameter,
5534 Address_Type, "Storage_Address", Is_OK);
5536 elsif Op_Name = Name_Deallocate then
5537 Validate_Simple_Pool_Op_Formal
5538 (Op, Formal, E_In_Parameter,
5539 Address_Type, "Storage_Address", Is_OK);
5540 end if;
5542 -- In the case of Allocate and Deallocate, formals
5543 -- of type Storage_Count are required as the third
5544 -- and fourth parameters.
5546 if Op_Name /= Name_Storage_Size then
5547 Validate_Simple_Pool_Op_Formal
5548 (Op, Formal, E_In_Parameter,
5549 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
5550 Validate_Simple_Pool_Op_Formal
5551 (Op, Formal, E_In_Parameter,
5552 Stg_Cnt_Type, "Alignment", Is_OK);
5553 end if;
5555 -- If no mismatched formals have been found (Is_OK)
5556 -- and no excess formals are present, then this
5557 -- operation has been validated, so record it.
5559 if not Present (Formal) and then Is_OK then
5560 Found_Op := Op;
5561 end if;
5562 end if;
5564 Op := Homonym (Op);
5565 end loop;
5567 -- There must be a valid Allocate operation for the type,
5568 -- so issue an error if none was found.
5570 if Op_Name = Name_Allocate
5571 and then not Present (Found_Op)
5572 then
5573 Error_Msg_N ("missing % operation for simple " &
5574 "storage pool type", Pool_Type);
5576 elsif Present (Found_Op) then
5578 -- Simple pool operations can't be abstract
5580 if Is_Abstract_Subprogram (Found_Op) then
5581 Error_Msg_N
5582 ("simple storage pool operation must not be " &
5583 "abstract", Found_Op);
5584 end if;
5586 -- The Storage_Size operation must be a function with
5587 -- Storage_Count as its result type.
5589 if Op_Name = Name_Storage_Size then
5590 if Ekind (Found_Op) = E_Procedure then
5591 Error_Msg_N
5592 ("% operation must be a function", Found_Op);
5594 elsif Etype (Found_Op) /= Stg_Cnt_Type then
5595 Error_Msg_NE
5596 ("wrong result type for%, expected type&",
5597 Found_Op, Stg_Cnt_Type);
5598 end if;
5600 -- Allocate and Deallocate must be procedures
5602 elsif Ekind (Found_Op) = E_Function then
5603 Error_Msg_N
5604 ("% operation must be a procedure", Found_Op);
5605 end if;
5606 end if;
5607 end Validate_Simple_Pool_Operation;
5609 -- Start of processing for Validate_Simple_Pool_Ops
5611 begin
5612 Validate_Simple_Pool_Operation (Name_Allocate);
5613 Validate_Simple_Pool_Operation (Name_Deallocate);
5614 Validate_Simple_Pool_Operation (Name_Storage_Size);
5615 end Validate_Simple_Pool_Ops;
5616 end if;
5617 end if;
5619 -- Now that all types from which E may depend are frozen, see if the
5620 -- size is known at compile time, if it must be unsigned, or if
5621 -- strict alignment is required
5623 Check_Compile_Time_Size (E);
5624 Check_Unsigned_Type (E);
5626 if Base_Type (E) = E then
5627 Check_Strict_Alignment (E);
5628 end if;
5630 -- Do not allow a size clause for a type which does not have a size
5631 -- that is known at compile time
5633 if Has_Size_Clause (E)
5634 and then not Size_Known_At_Compile_Time (E)
5635 then
5636 -- Suppress this message if errors posted on E, even if we are
5637 -- in all errors mode, since this is often a junk message
5639 if not Error_Posted (E) then
5640 Error_Msg_N
5641 ("size clause not allowed for variable length type",
5642 Size_Clause (E));
5643 end if;
5644 end if;
5646 -- Now we set/verify the representation information, in particular
5647 -- the size and alignment values. This processing is not required for
5648 -- generic types, since generic types do not play any part in code
5649 -- generation, and so the size and alignment values for such types
5650 -- are irrelevant. Ditto for types declared within a generic unit,
5651 -- which may have components that depend on generic parameters, and
5652 -- that will be recreated in an instance.
5654 if Inside_A_Generic then
5655 null;
5657 -- Otherwise we call the layout procedure
5659 else
5660 Layout_Type (E);
5661 end if;
5663 -- If this is an access to subprogram whose designated type is itself
5664 -- a subprogram type, the return type of this anonymous subprogram
5665 -- type must be decorated as well.
5667 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
5668 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
5669 then
5670 Layout_Type (Etype (Designated_Type (E)));
5671 end if;
5673 -- If the type has a Defaut_Value/Default_Component_Value aspect,
5674 -- this is where we analye the expression (after the type is frozen,
5675 -- since in the case of Default_Value, we are analyzing with the
5676 -- type itself, and we treat Default_Component_Value similarly for
5677 -- the sake of uniformity).
5679 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
5680 declare
5681 Nam : Name_Id;
5682 Exp : Node_Id;
5683 Typ : Entity_Id;
5685 begin
5686 if Is_Scalar_Type (E) then
5687 Nam := Name_Default_Value;
5688 Typ := E;
5689 Exp := Default_Aspect_Value (Typ);
5690 else
5691 Nam := Name_Default_Component_Value;
5692 Typ := Component_Type (E);
5693 Exp := Default_Aspect_Component_Value (E);
5694 end if;
5696 Analyze_And_Resolve (Exp, Typ);
5698 if Etype (Exp) /= Any_Type then
5699 if not Is_OK_Static_Expression (Exp) then
5700 Error_Msg_Name_1 := Nam;
5701 Flag_Non_Static_Expr
5702 ("aspect% requires static expression", Exp);
5703 end if;
5704 end if;
5705 end;
5706 end if;
5708 -- End of freeze processing for type entities
5709 end if;
5711 -- Here is where we logically freeze the current entity. If it has a
5712 -- freeze node, then this is the point at which the freeze node is
5713 -- linked into the result list.
5715 if Has_Delayed_Freeze (E) then
5717 -- If a freeze node is already allocated, use it, otherwise allocate
5718 -- a new one. The preallocation happens in the case of anonymous base
5719 -- types, where we preallocate so that we can set First_Subtype_Link.
5720 -- Note that we reset the Sloc to the current freeze location.
5722 if Present (Freeze_Node (E)) then
5723 F_Node := Freeze_Node (E);
5724 Set_Sloc (F_Node, Loc);
5726 else
5727 F_Node := New_Node (N_Freeze_Entity, Loc);
5728 Set_Freeze_Node (E, F_Node);
5729 Set_Access_Types_To_Process (F_Node, No_Elist);
5730 Set_TSS_Elist (F_Node, No_Elist);
5731 Set_Actions (F_Node, No_List);
5732 end if;
5734 Set_Entity (F_Node, E);
5735 Add_To_Result (F_Node);
5737 -- A final pass over record types with discriminants. If the type
5738 -- has an incomplete declaration, there may be constrained access
5739 -- subtypes declared elsewhere, which do not depend on the discrimi-
5740 -- nants of the type, and which are used as component types (i.e.
5741 -- the full view is a recursive type). The designated types of these
5742 -- subtypes can only be elaborated after the type itself, and they
5743 -- need an itype reference.
5745 if Ekind (E) = E_Record_Type
5746 and then Has_Discriminants (E)
5747 then
5748 declare
5749 Comp : Entity_Id;
5750 IR : Node_Id;
5751 Typ : Entity_Id;
5753 begin
5754 Comp := First_Component (E);
5755 while Present (Comp) loop
5756 Typ := Etype (Comp);
5758 if Ekind (Comp) = E_Component
5759 and then Is_Access_Type (Typ)
5760 and then Scope (Typ) /= E
5761 and then Base_Type (Designated_Type (Typ)) = E
5762 and then Is_Itype (Designated_Type (Typ))
5763 then
5764 IR := Make_Itype_Reference (Sloc (Comp));
5765 Set_Itype (IR, Designated_Type (Typ));
5766 Append (IR, Result);
5767 end if;
5769 Next_Component (Comp);
5770 end loop;
5771 end;
5772 end if;
5773 end if;
5775 -- When a type is frozen, the first subtype of the type is frozen as
5776 -- well (RM 13.14(15)). This has to be done after freezing the type,
5777 -- since obviously the first subtype depends on its own base type.
5779 if Is_Type (E) then
5780 Freeze_And_Append (First_Subtype (E), N, Result);
5782 -- If we just froze a tagged non-class wide record, then freeze the
5783 -- corresponding class-wide type. This must be done after the tagged
5784 -- type itself is frozen, because the class-wide type refers to the
5785 -- tagged type which generates the class.
5787 if Is_Tagged_Type (E)
5788 and then not Is_Class_Wide_Type (E)
5789 and then Present (Class_Wide_Type (E))
5790 then
5791 Freeze_And_Append (Class_Wide_Type (E), N, Result);
5792 end if;
5793 end if;
5795 Check_Debug_Info_Needed (E);
5797 -- Special handling for subprograms
5799 if Is_Subprogram (E) then
5801 -- If subprogram has address clause then reset Is_Public flag, since
5802 -- we do not want the backend to generate external references.
5804 if Present (Address_Clause (E))
5805 and then not Is_Library_Level_Entity (E)
5806 then
5807 Set_Is_Public (E, False);
5808 end if;
5809 end if;
5811 return Result;
5812 end Freeze_Entity;
5814 -----------------------------
5815 -- Freeze_Enumeration_Type --
5816 -----------------------------
5818 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
5819 begin
5820 -- By default, if no size clause is present, an enumeration type with
5821 -- Convention C is assumed to interface to a C enum, and has integer
5822 -- size. This applies to types. For subtypes, verify that its base
5823 -- type has no size clause either. Treat other foreign conventions
5824 -- in the same way, and also make sure alignment is set right.
5826 if Has_Foreign_Convention (Typ)
5827 and then not Has_Size_Clause (Typ)
5828 and then not Has_Size_Clause (Base_Type (Typ))
5829 and then Esize (Typ) < Standard_Integer_Size
5831 -- Don't do this if Short_Enums on target
5833 and then not Target_Short_Enums
5834 then
5835 Init_Esize (Typ, Standard_Integer_Size);
5836 Set_Alignment (Typ, Alignment (Standard_Integer));
5838 -- Normal Ada case or size clause present or not Long_C_Enums on target
5840 else
5841 -- If the enumeration type interfaces to C, and it has a size clause
5842 -- that specifies less than int size, it warrants a warning. The
5843 -- user may intend the C type to be an enum or a char, so this is
5844 -- not by itself an error that the Ada compiler can detect, but it
5845 -- it is a worth a heads-up. For Boolean and Character types we
5846 -- assume that the programmer has the proper C type in mind.
5848 if Convention (Typ) = Convention_C
5849 and then Has_Size_Clause (Typ)
5850 and then Esize (Typ) /= Esize (Standard_Integer)
5851 and then not Is_Boolean_Type (Typ)
5852 and then not Is_Character_Type (Typ)
5854 -- Don't do this if Short_Enums on target
5856 and then not Target_Short_Enums
5857 then
5858 Error_Msg_N
5859 ("C enum types have the size of a C int??", Size_Clause (Typ));
5860 end if;
5862 Adjust_Esize_For_Alignment (Typ);
5863 end if;
5864 end Freeze_Enumeration_Type;
5866 -----------------------
5867 -- Freeze_Expression --
5868 -----------------------
5870 procedure Freeze_Expression (N : Node_Id) is
5871 In_Spec_Exp : constant Boolean := In_Spec_Expression;
5872 Typ : Entity_Id;
5873 Nam : Entity_Id;
5874 Desig_Typ : Entity_Id;
5875 P : Node_Id;
5876 Parent_P : Node_Id;
5878 Freeze_Outside : Boolean := False;
5879 -- This flag is set true if the entity must be frozen outside the
5880 -- current subprogram. This happens in the case of expander generated
5881 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
5882 -- not freeze all entities like other bodies, but which nevertheless
5883 -- may reference entities that have to be frozen before the body and
5884 -- obviously cannot be frozen inside the body.
5886 function In_Exp_Body (N : Node_Id) return Boolean;
5887 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
5888 -- it is the handled statement sequence of an expander-generated
5889 -- subprogram (init proc, stream subprogram, or renaming as body).
5890 -- If so, this is not a freezing context.
5892 -----------------
5893 -- In_Exp_Body --
5894 -----------------
5896 function In_Exp_Body (N : Node_Id) return Boolean is
5897 P : Node_Id;
5898 Id : Entity_Id;
5900 begin
5901 if Nkind (N) = N_Subprogram_Body then
5902 P := N;
5903 else
5904 P := Parent (N);
5905 end if;
5907 if Nkind (P) /= N_Subprogram_Body then
5908 return False;
5910 else
5911 Id := Defining_Unit_Name (Specification (P));
5913 -- Following complex conditional could use comments ???
5915 if Nkind (Id) = N_Defining_Identifier
5916 and then (Is_Init_Proc (Id)
5917 or else Is_TSS (Id, TSS_Stream_Input)
5918 or else Is_TSS (Id, TSS_Stream_Output)
5919 or else Is_TSS (Id, TSS_Stream_Read)
5920 or else Is_TSS (Id, TSS_Stream_Write)
5921 or else Nkind_In (Original_Node (P),
5922 N_Subprogram_Renaming_Declaration,
5923 N_Expression_Function))
5924 then
5925 return True;
5926 else
5927 return False;
5928 end if;
5929 end if;
5930 end In_Exp_Body;
5932 -- Start of processing for Freeze_Expression
5934 begin
5935 -- Immediate return if freezing is inhibited. This flag is set by the
5936 -- analyzer to stop freezing on generated expressions that would cause
5937 -- freezing if they were in the source program, but which are not
5938 -- supposed to freeze, since they are created.
5940 if Must_Not_Freeze (N) then
5941 return;
5942 end if;
5944 -- If expression is non-static, then it does not freeze in a default
5945 -- expression, see section "Handling of Default Expressions" in the
5946 -- spec of package Sem for further details. Note that we have to make
5947 -- sure that we actually have a real expression (if we have a subtype
5948 -- indication, we can't test Is_OK_Static_Expression). However, we
5949 -- exclude the case of the prefix of an attribute of a static scalar
5950 -- subtype from this early return, because static subtype attributes
5951 -- should always cause freezing, even in default expressions, but
5952 -- the attribute may not have been marked as static yet (because in
5953 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
5954 -- Freeze_Expression on the prefix).
5956 if In_Spec_Exp
5957 and then Nkind (N) in N_Subexpr
5958 and then not Is_OK_Static_Expression (N)
5959 and then (Nkind (Parent (N)) /= N_Attribute_Reference
5960 or else not (Is_Entity_Name (N)
5961 and then Is_Type (Entity (N))
5962 and then Is_OK_Static_Subtype (Entity (N))))
5963 then
5964 return;
5965 end if;
5967 -- Freeze type of expression if not frozen already
5969 Typ := Empty;
5971 if Nkind (N) in N_Has_Etype then
5972 if not Is_Frozen (Etype (N)) then
5973 Typ := Etype (N);
5975 -- Base type may be an derived numeric type that is frozen at
5976 -- the point of declaration, but first_subtype is still unfrozen.
5978 elsif not Is_Frozen (First_Subtype (Etype (N))) then
5979 Typ := First_Subtype (Etype (N));
5980 end if;
5981 end if;
5983 -- For entity name, freeze entity if not frozen already. A special
5984 -- exception occurs for an identifier that did not come from source.
5985 -- We don't let such identifiers freeze a non-internal entity, i.e.
5986 -- an entity that did come from source, since such an identifier was
5987 -- generated by the expander, and cannot have any semantic effect on
5988 -- the freezing semantics. For example, this stops the parameter of
5989 -- an initialization procedure from freezing the variable.
5991 if Is_Entity_Name (N)
5992 and then not Is_Frozen (Entity (N))
5993 and then (Nkind (N) /= N_Identifier
5994 or else Comes_From_Source (N)
5995 or else not Comes_From_Source (Entity (N)))
5996 then
5997 Nam := Entity (N);
5999 if Present (Nam) and then Ekind (Nam) = E_Function then
6000 Check_Expression_Function (N, Nam);
6001 end if;
6003 else
6004 Nam := Empty;
6005 end if;
6007 -- For an allocator freeze designated type if not frozen already
6009 -- For an aggregate whose component type is an access type, freeze the
6010 -- designated type now, so that its freeze does not appear within the
6011 -- loop that might be created in the expansion of the aggregate. If the
6012 -- designated type is a private type without full view, the expression
6013 -- cannot contain an allocator, so the type is not frozen.
6015 -- For a function, we freeze the entity when the subprogram declaration
6016 -- is frozen, but a function call may appear in an initialization proc.
6017 -- before the declaration is frozen. We need to generate the extra
6018 -- formals, if any, to ensure that the expansion of the call includes
6019 -- the proper actuals. This only applies to Ada subprograms, not to
6020 -- imported ones.
6022 Desig_Typ := Empty;
6024 case Nkind (N) is
6025 when N_Allocator =>
6026 Desig_Typ := Designated_Type (Etype (N));
6028 when N_Aggregate =>
6029 if Is_Array_Type (Etype (N))
6030 and then Is_Access_Type (Component_Type (Etype (N)))
6031 then
6032 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
6033 end if;
6035 when N_Selected_Component |
6036 N_Indexed_Component |
6037 N_Slice =>
6039 if Is_Access_Type (Etype (Prefix (N))) then
6040 Desig_Typ := Designated_Type (Etype (Prefix (N)));
6041 end if;
6043 when N_Identifier =>
6044 if Present (Nam)
6045 and then Ekind (Nam) = E_Function
6046 and then Nkind (Parent (N)) = N_Function_Call
6047 and then Convention (Nam) = Convention_Ada
6048 then
6049 Create_Extra_Formals (Nam);
6050 end if;
6052 when others =>
6053 null;
6054 end case;
6056 if Desig_Typ /= Empty
6057 and then (Is_Frozen (Desig_Typ)
6058 or else (not Is_Fully_Defined (Desig_Typ)))
6059 then
6060 Desig_Typ := Empty;
6061 end if;
6063 -- All done if nothing needs freezing
6065 if No (Typ)
6066 and then No (Nam)
6067 and then No (Desig_Typ)
6068 then
6069 return;
6070 end if;
6072 -- Examine the enclosing context by climbing the parent chain. The
6073 -- traversal serves two purposes - to detect scenarios where freezeing
6074 -- is not needed and to find the proper insertion point for the freeze
6075 -- nodes. Although somewhat similar to Insert_Actions, this traversal
6076 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
6077 -- the tree may result in types being frozen too early.
6079 P := N;
6080 loop
6081 Parent_P := Parent (P);
6083 -- If we don't have a parent, then we are not in a well-formed tree.
6084 -- This is an unusual case, but there are some legitimate situations
6085 -- in which this occurs, notably when the expressions in the range of
6086 -- a type declaration are resolved. We simply ignore the freeze
6087 -- request in this case. Is this right ???
6089 if No (Parent_P) then
6090 return;
6091 end if;
6093 -- See if we have got to an appropriate point in the tree
6095 case Nkind (Parent_P) is
6097 -- A special test for the exception of (RM 13.14(8)) for the case
6098 -- of per-object expressions (RM 3.8(18)) occurring in component
6099 -- definition or a discrete subtype definition. Note that we test
6100 -- for a component declaration which includes both cases we are
6101 -- interested in, and furthermore the tree does not have explicit
6102 -- nodes for either of these two constructs.
6104 when N_Component_Declaration =>
6106 -- The case we want to test for here is an identifier that is
6107 -- a per-object expression, this is either a discriminant that
6108 -- appears in a context other than the component declaration
6109 -- or it is a reference to the type of the enclosing construct.
6111 -- For either of these cases, we skip the freezing
6113 if not In_Spec_Expression
6114 and then Nkind (N) = N_Identifier
6115 and then (Present (Entity (N)))
6116 then
6117 -- We recognize the discriminant case by just looking for
6118 -- a reference to a discriminant. It can only be one for
6119 -- the enclosing construct. Skip freezing in this case.
6121 if Ekind (Entity (N)) = E_Discriminant then
6122 return;
6124 -- For the case of a reference to the enclosing record,
6125 -- (or task or protected type), we look for a type that
6126 -- matches the current scope.
6128 elsif Entity (N) = Current_Scope then
6129 return;
6130 end if;
6131 end if;
6133 -- If we have an enumeration literal that appears as the choice in
6134 -- the aggregate of an enumeration representation clause, then
6135 -- freezing does not occur (RM 13.14(10)).
6137 when N_Enumeration_Representation_Clause =>
6139 -- The case we are looking for is an enumeration literal
6141 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
6142 and then Is_Enumeration_Type (Etype (N))
6143 then
6144 -- If enumeration literal appears directly as the choice,
6145 -- do not freeze (this is the normal non-overloaded case)
6147 if Nkind (Parent (N)) = N_Component_Association
6148 and then First (Choices (Parent (N))) = N
6149 then
6150 return;
6152 -- If enumeration literal appears as the name of function
6153 -- which is the choice, then also do not freeze. This
6154 -- happens in the overloaded literal case, where the
6155 -- enumeration literal is temporarily changed to a function
6156 -- call for overloading analysis purposes.
6158 elsif Nkind (Parent (N)) = N_Function_Call
6159 and then
6160 Nkind (Parent (Parent (N))) = N_Component_Association
6161 and then
6162 First (Choices (Parent (Parent (N)))) = Parent (N)
6163 then
6164 return;
6165 end if;
6166 end if;
6168 -- Normally if the parent is a handled sequence of statements,
6169 -- then the current node must be a statement, and that is an
6170 -- appropriate place to insert a freeze node.
6172 when N_Handled_Sequence_Of_Statements =>
6174 -- An exception occurs when the sequence of statements is for
6175 -- an expander generated body that did not do the usual freeze
6176 -- all operation. In this case we usually want to freeze
6177 -- outside this body, not inside it, and we skip past the
6178 -- subprogram body that we are inside.
6180 if In_Exp_Body (Parent_P) then
6181 declare
6182 Subp : constant Node_Id := Parent (Parent_P);
6183 Spec : Entity_Id;
6185 begin
6186 -- Freeze the entity only when it is declared inside the
6187 -- body of the expander generated procedure. This case
6188 -- is recognized by the scope of the entity or its type,
6189 -- which is either the spec for some enclosing body, or
6190 -- (in the case of init_procs, for which there are no
6191 -- separate specs) the current scope.
6193 if Nkind (Subp) = N_Subprogram_Body then
6194 Spec := Corresponding_Spec (Subp);
6196 if (Present (Typ) and then Scope (Typ) = Spec)
6197 or else
6198 (Present (Nam) and then Scope (Nam) = Spec)
6199 then
6200 exit;
6202 elsif Present (Typ)
6203 and then Scope (Typ) = Current_Scope
6204 and then Defining_Entity (Subp) = Current_Scope
6205 then
6206 exit;
6207 end if;
6208 end if;
6210 -- An expression function may act as a completion of
6211 -- a function declaration. As such, it can reference
6212 -- entities declared between the two views:
6214 -- Hidden []; -- 1
6215 -- function F return ...;
6216 -- private
6217 -- function Hidden return ...;
6218 -- function F return ... is (Hidden); -- 2
6220 -- Refering to the example above, freezing the expression
6221 -- of F (2) would place Hidden's freeze node (1) in the
6222 -- wrong place. Avoid explicit freezing and let the usual
6223 -- scenarios do the job - for example, reaching the end
6224 -- of the private declarations.
6226 if Nkind (Original_Node (Subp)) =
6227 N_Expression_Function
6228 then
6229 null;
6231 -- Freeze outside the body
6233 else
6234 Parent_P := Parent (Parent_P);
6235 Freeze_Outside := True;
6236 end if;
6237 end;
6239 -- Here if normal case where we are in handled statement
6240 -- sequence and want to do the insertion right there.
6242 else
6243 exit;
6244 end if;
6246 -- If parent is a body or a spec or a block, then the current node
6247 -- is a statement or declaration and we can insert the freeze node
6248 -- before it.
6250 when N_Block_Statement |
6251 N_Entry_Body |
6252 N_Package_Body |
6253 N_Package_Specification |
6254 N_Protected_Body |
6255 N_Subprogram_Body |
6256 N_Task_Body => exit;
6258 -- The expander is allowed to define types in any statements list,
6259 -- so any of the following parent nodes also mark a freezing point
6260 -- if the actual node is in a list of statements or declarations.
6262 when N_Abortable_Part |
6263 N_Accept_Alternative |
6264 N_And_Then |
6265 N_Case_Statement_Alternative |
6266 N_Compilation_Unit_Aux |
6267 N_Conditional_Entry_Call |
6268 N_Delay_Alternative |
6269 N_Elsif_Part |
6270 N_Entry_Call_Alternative |
6271 N_Exception_Handler |
6272 N_Extended_Return_Statement |
6273 N_Freeze_Entity |
6274 N_If_Statement |
6275 N_Or_Else |
6276 N_Selective_Accept |
6277 N_Triggering_Alternative =>
6279 exit when Is_List_Member (P);
6281 -- Freeze nodes produced by an expression coming from the Actions
6282 -- list of a N_Expression_With_Actions node must remain within the
6283 -- Actions list. Inserting the freeze nodes further up the tree
6284 -- may lead to use before declaration issues in the case of array
6285 -- types.
6287 when N_Expression_With_Actions =>
6288 if Is_List_Member (P)
6289 and then List_Containing (P) = Actions (Parent_P)
6290 then
6291 exit;
6292 end if;
6294 -- Note: N_Loop_Statement is a special case. A type that appears
6295 -- in the source can never be frozen in a loop (this occurs only
6296 -- because of a loop expanded by the expander), so we keep on
6297 -- going. Otherwise we terminate the search. Same is true of any
6298 -- entity which comes from source. (if they have predefined type,
6299 -- that type does not appear to come from source, but the entity
6300 -- should not be frozen here).
6302 when N_Loop_Statement =>
6303 exit when not Comes_From_Source (Etype (N))
6304 and then (No (Nam) or else not Comes_From_Source (Nam));
6306 -- For all other cases, keep looking at parents
6308 when others =>
6309 null;
6310 end case;
6312 -- We fall through the case if we did not yet find the proper
6313 -- place in the free for inserting the freeze node, so climb.
6315 P := Parent_P;
6316 end loop;
6318 -- If the expression appears in a record or an initialization procedure,
6319 -- the freeze nodes are collected and attached to the current scope, to
6320 -- be inserted and analyzed on exit from the scope, to insure that
6321 -- generated entities appear in the correct scope. If the expression is
6322 -- a default for a discriminant specification, the scope is still void.
6323 -- The expression can also appear in the discriminant part of a private
6324 -- or concurrent type.
6326 -- If the expression appears in a constrained subcomponent of an
6327 -- enclosing record declaration, the freeze nodes must be attached to
6328 -- the outer record type so they can eventually be placed in the
6329 -- enclosing declaration list.
6331 -- The other case requiring this special handling is if we are in a
6332 -- default expression, since in that case we are about to freeze a
6333 -- static type, and the freeze scope needs to be the outer scope, not
6334 -- the scope of the subprogram with the default parameter.
6336 -- For default expressions and other spec expressions in generic units,
6337 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
6338 -- placing them at the proper place, after the generic unit.
6340 if (In_Spec_Exp and not Inside_A_Generic)
6341 or else Freeze_Outside
6342 or else (Is_Type (Current_Scope)
6343 and then (not Is_Concurrent_Type (Current_Scope)
6344 or else not Has_Completion (Current_Scope)))
6345 or else Ekind (Current_Scope) = E_Void
6346 then
6347 declare
6348 N : constant Node_Id := Current_Scope;
6349 Freeze_Nodes : List_Id := No_List;
6350 Pos : Int := Scope_Stack.Last;
6352 begin
6353 if Present (Desig_Typ) then
6354 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
6355 end if;
6357 if Present (Typ) then
6358 Freeze_And_Append (Typ, N, Freeze_Nodes);
6359 end if;
6361 if Present (Nam) then
6362 Freeze_And_Append (Nam, N, Freeze_Nodes);
6363 end if;
6365 -- The current scope may be that of a constrained component of
6366 -- an enclosing record declaration, or of a loop of an enclosing
6367 -- quantified expression, which is above the current scope in the
6368 -- scope stack. Indeed in the context of a quantified expression,
6369 -- a scope is created and pushed above the current scope in order
6370 -- to emulate the loop-like behavior of the quantified expression.
6371 -- If the expression is within a top-level pragma, as for a pre-
6372 -- condition on a library-level subprogram, nothing to do.
6374 if not Is_Compilation_Unit (Current_Scope)
6375 and then (Is_Record_Type (Scope (Current_Scope))
6376 or else Nkind (Parent (Current_Scope)) =
6377 N_Quantified_Expression)
6378 then
6379 Pos := Pos - 1;
6380 end if;
6382 if Is_Non_Empty_List (Freeze_Nodes) then
6383 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
6384 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
6385 Freeze_Nodes;
6386 else
6387 Append_List (Freeze_Nodes,
6388 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
6389 end if;
6390 end if;
6391 end;
6393 return;
6394 end if;
6396 -- Now we have the right place to do the freezing. First, a special
6397 -- adjustment, if we are in spec-expression analysis mode, these freeze
6398 -- actions must not be thrown away (normally all inserted actions are
6399 -- thrown away in this mode. However, the freeze actions are from static
6400 -- expressions and one of the important reasons we are doing this
6401 -- special analysis is to get these freeze actions. Therefore we turn
6402 -- off the In_Spec_Expression mode to propagate these freeze actions.
6403 -- This also means they get properly analyzed and expanded.
6405 In_Spec_Expression := False;
6407 -- Freeze the designated type of an allocator (RM 13.14(13))
6409 if Present (Desig_Typ) then
6410 Freeze_Before (P, Desig_Typ);
6411 end if;
6413 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
6414 -- the enumeration representation clause exception in the loop above.
6416 if Present (Typ) then
6417 Freeze_Before (P, Typ);
6418 end if;
6420 -- Freeze name if one is present (RM 13.14(11))
6422 if Present (Nam) then
6423 Freeze_Before (P, Nam);
6424 end if;
6426 -- Restore In_Spec_Expression flag
6428 In_Spec_Expression := In_Spec_Exp;
6429 end Freeze_Expression;
6431 -----------------------------
6432 -- Freeze_Fixed_Point_Type --
6433 -----------------------------
6435 -- Certain fixed-point types and subtypes, including implicit base types
6436 -- and declared first subtypes, have not yet set up a range. This is
6437 -- because the range cannot be set until the Small and Size values are
6438 -- known, and these are not known till the type is frozen.
6440 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
6441 -- whose bounds are unanalyzed real literals. This routine will recognize
6442 -- this case, and transform this range node into a properly typed range
6443 -- with properly analyzed and resolved values.
6445 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
6446 Rng : constant Node_Id := Scalar_Range (Typ);
6447 Lo : constant Node_Id := Low_Bound (Rng);
6448 Hi : constant Node_Id := High_Bound (Rng);
6449 Btyp : constant Entity_Id := Base_Type (Typ);
6450 Brng : constant Node_Id := Scalar_Range (Btyp);
6451 BLo : constant Node_Id := Low_Bound (Brng);
6452 BHi : constant Node_Id := High_Bound (Brng);
6453 Small : constant Ureal := Small_Value (Typ);
6454 Loval : Ureal;
6455 Hival : Ureal;
6456 Atype : Entity_Id;
6458 Actual_Size : Nat;
6460 function Fsize (Lov, Hiv : Ureal) return Nat;
6461 -- Returns size of type with given bounds. Also leaves these
6462 -- bounds set as the current bounds of the Typ.
6464 -----------
6465 -- Fsize --
6466 -----------
6468 function Fsize (Lov, Hiv : Ureal) return Nat is
6469 begin
6470 Set_Realval (Lo, Lov);
6471 Set_Realval (Hi, Hiv);
6472 return Minimum_Size (Typ);
6473 end Fsize;
6475 -- Start of processing for Freeze_Fixed_Point_Type
6477 begin
6478 -- If Esize of a subtype has not previously been set, set it now
6480 if Unknown_Esize (Typ) then
6481 Atype := Ancestor_Subtype (Typ);
6483 if Present (Atype) then
6484 Set_Esize (Typ, Esize (Atype));
6485 else
6486 Set_Esize (Typ, Esize (Base_Type (Typ)));
6487 end if;
6488 end if;
6490 -- Immediate return if the range is already analyzed. This means that
6491 -- the range is already set, and does not need to be computed by this
6492 -- routine.
6494 if Analyzed (Rng) then
6495 return;
6496 end if;
6498 -- Immediate return if either of the bounds raises Constraint_Error
6500 if Raises_Constraint_Error (Lo)
6501 or else Raises_Constraint_Error (Hi)
6502 then
6503 return;
6504 end if;
6506 Loval := Realval (Lo);
6507 Hival := Realval (Hi);
6509 -- Ordinary fixed-point case
6511 if Is_Ordinary_Fixed_Point_Type (Typ) then
6513 -- For the ordinary fixed-point case, we are allowed to fudge the
6514 -- end-points up or down by small. Generally we prefer to fudge up,
6515 -- i.e. widen the bounds for non-model numbers so that the end points
6516 -- are included. However there are cases in which this cannot be
6517 -- done, and indeed cases in which we may need to narrow the bounds.
6518 -- The following circuit makes the decision.
6520 -- Note: our terminology here is that Incl_EP means that the bounds
6521 -- are widened by Small if necessary to include the end points, and
6522 -- Excl_EP means that the bounds are narrowed by Small to exclude the
6523 -- end-points if this reduces the size.
6525 -- Note that in the Incl case, all we care about is including the
6526 -- end-points. In the Excl case, we want to narrow the bounds as
6527 -- much as permitted by the RM, to give the smallest possible size.
6529 Fudge : declare
6530 Loval_Incl_EP : Ureal;
6531 Hival_Incl_EP : Ureal;
6533 Loval_Excl_EP : Ureal;
6534 Hival_Excl_EP : Ureal;
6536 Size_Incl_EP : Nat;
6537 Size_Excl_EP : Nat;
6539 Model_Num : Ureal;
6540 First_Subt : Entity_Id;
6541 Actual_Lo : Ureal;
6542 Actual_Hi : Ureal;
6544 begin
6545 -- First step. Base types are required to be symmetrical. Right
6546 -- now, the base type range is a copy of the first subtype range.
6547 -- This will be corrected before we are done, but right away we
6548 -- need to deal with the case where both bounds are non-negative.
6549 -- In this case, we set the low bound to the negative of the high
6550 -- bound, to make sure that the size is computed to include the
6551 -- required sign. Note that we do not need to worry about the
6552 -- case of both bounds negative, because the sign will be dealt
6553 -- with anyway. Furthermore we can't just go making such a bound
6554 -- symmetrical, since in a twos-complement system, there is an
6555 -- extra negative value which could not be accommodated on the
6556 -- positive side.
6558 if Typ = Btyp
6559 and then not UR_Is_Negative (Loval)
6560 and then Hival > Loval
6561 then
6562 Loval := -Hival;
6563 Set_Realval (Lo, Loval);
6564 end if;
6566 -- Compute the fudged bounds. If the number is a model number,
6567 -- then we do nothing to include it, but we are allowed to backoff
6568 -- to the next adjacent model number when we exclude it. If it is
6569 -- not a model number then we straddle the two values with the
6570 -- model numbers on either side.
6572 Model_Num := UR_Trunc (Loval / Small) * Small;
6574 if Loval = Model_Num then
6575 Loval_Incl_EP := Model_Num;
6576 else
6577 Loval_Incl_EP := Model_Num - Small;
6578 end if;
6580 -- The low value excluding the end point is Small greater, but
6581 -- we do not do this exclusion if the low value is positive,
6582 -- since it can't help the size and could actually hurt by
6583 -- crossing the high bound.
6585 if UR_Is_Negative (Loval_Incl_EP) then
6586 Loval_Excl_EP := Loval_Incl_EP + Small;
6588 -- If the value went from negative to zero, then we have the
6589 -- case where Loval_Incl_EP is the model number just below
6590 -- zero, so we want to stick to the negative value for the
6591 -- base type to maintain the condition that the size will
6592 -- include signed values.
6594 if Typ = Btyp
6595 and then UR_Is_Zero (Loval_Excl_EP)
6596 then
6597 Loval_Excl_EP := Loval_Incl_EP;
6598 end if;
6600 else
6601 Loval_Excl_EP := Loval_Incl_EP;
6602 end if;
6604 -- Similar processing for upper bound and high value
6606 Model_Num := UR_Trunc (Hival / Small) * Small;
6608 if Hival = Model_Num then
6609 Hival_Incl_EP := Model_Num;
6610 else
6611 Hival_Incl_EP := Model_Num + Small;
6612 end if;
6614 if UR_Is_Positive (Hival_Incl_EP) then
6615 Hival_Excl_EP := Hival_Incl_EP - Small;
6616 else
6617 Hival_Excl_EP := Hival_Incl_EP;
6618 end if;
6620 -- One further adjustment is needed. In the case of subtypes, we
6621 -- cannot go outside the range of the base type, or we get
6622 -- peculiarities, and the base type range is already set. This
6623 -- only applies to the Incl values, since clearly the Excl values
6624 -- are already as restricted as they are allowed to be.
6626 if Typ /= Btyp then
6627 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
6628 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
6629 end if;
6631 -- Get size including and excluding end points
6633 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
6634 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
6636 -- No need to exclude end-points if it does not reduce size
6638 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
6639 Loval_Excl_EP := Loval_Incl_EP;
6640 end if;
6642 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
6643 Hival_Excl_EP := Hival_Incl_EP;
6644 end if;
6646 -- Now we set the actual size to be used. We want to use the
6647 -- bounds fudged up to include the end-points but only if this
6648 -- can be done without violating a specifically given size
6649 -- size clause or causing an unacceptable increase in size.
6651 -- Case of size clause given
6653 if Has_Size_Clause (Typ) then
6655 -- Use the inclusive size only if it is consistent with
6656 -- the explicitly specified size.
6658 if Size_Incl_EP <= RM_Size (Typ) then
6659 Actual_Lo := Loval_Incl_EP;
6660 Actual_Hi := Hival_Incl_EP;
6661 Actual_Size := Size_Incl_EP;
6663 -- If the inclusive size is too large, we try excluding
6664 -- the end-points (will be caught later if does not work).
6666 else
6667 Actual_Lo := Loval_Excl_EP;
6668 Actual_Hi := Hival_Excl_EP;
6669 Actual_Size := Size_Excl_EP;
6670 end if;
6672 -- Case of size clause not given
6674 else
6675 -- If we have a base type whose corresponding first subtype
6676 -- has an explicit size that is large enough to include our
6677 -- end-points, then do so. There is no point in working hard
6678 -- to get a base type whose size is smaller than the specified
6679 -- size of the first subtype.
6681 First_Subt := First_Subtype (Typ);
6683 if Has_Size_Clause (First_Subt)
6684 and then Size_Incl_EP <= Esize (First_Subt)
6685 then
6686 Actual_Size := Size_Incl_EP;
6687 Actual_Lo := Loval_Incl_EP;
6688 Actual_Hi := Hival_Incl_EP;
6690 -- If excluding the end-points makes the size smaller and
6691 -- results in a size of 8,16,32,64, then we take the smaller
6692 -- size. For the 64 case, this is compulsory. For the other
6693 -- cases, it seems reasonable. We like to include end points
6694 -- if we can, but not at the expense of moving to the next
6695 -- natural boundary of size.
6697 elsif Size_Incl_EP /= Size_Excl_EP
6698 and then Addressable (Size_Excl_EP)
6699 then
6700 Actual_Size := Size_Excl_EP;
6701 Actual_Lo := Loval_Excl_EP;
6702 Actual_Hi := Hival_Excl_EP;
6704 -- Otherwise we can definitely include the end points
6706 else
6707 Actual_Size := Size_Incl_EP;
6708 Actual_Lo := Loval_Incl_EP;
6709 Actual_Hi := Hival_Incl_EP;
6710 end if;
6712 -- One pathological case: normally we never fudge a low bound
6713 -- down, since it would seem to increase the size (if it has
6714 -- any effect), but for ranges containing single value, or no
6715 -- values, the high bound can be small too large. Consider:
6717 -- type t is delta 2.0**(-14)
6718 -- range 131072.0 .. 0;
6720 -- That lower bound is *just* outside the range of 32 bits, and
6721 -- does need fudging down in this case. Note that the bounds
6722 -- will always have crossed here, since the high bound will be
6723 -- fudged down if necessary, as in the case of:
6725 -- type t is delta 2.0**(-14)
6726 -- range 131072.0 .. 131072.0;
6728 -- So we detect the situation by looking for crossed bounds,
6729 -- and if the bounds are crossed, and the low bound is greater
6730 -- than zero, we will always back it off by small, since this
6731 -- is completely harmless.
6733 if Actual_Lo > Actual_Hi then
6734 if UR_Is_Positive (Actual_Lo) then
6735 Actual_Lo := Loval_Incl_EP - Small;
6736 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
6738 -- And of course, we need to do exactly the same parallel
6739 -- fudge for flat ranges in the negative region.
6741 elsif UR_Is_Negative (Actual_Hi) then
6742 Actual_Hi := Hival_Incl_EP + Small;
6743 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
6744 end if;
6745 end if;
6746 end if;
6748 Set_Realval (Lo, Actual_Lo);
6749 Set_Realval (Hi, Actual_Hi);
6750 end Fudge;
6752 -- For the decimal case, none of this fudging is required, since there
6753 -- are no end-point problems in the decimal case (the end-points are
6754 -- always included).
6756 else
6757 Actual_Size := Fsize (Loval, Hival);
6758 end if;
6760 -- At this stage, the actual size has been calculated and the proper
6761 -- required bounds are stored in the low and high bounds.
6763 if Actual_Size > 64 then
6764 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
6765 Error_Msg_N
6766 ("size required (^) for type& too large, maximum allowed is 64",
6767 Typ);
6768 Actual_Size := 64;
6769 end if;
6771 -- Check size against explicit given size
6773 if Has_Size_Clause (Typ) then
6774 if Actual_Size > RM_Size (Typ) then
6775 Error_Msg_Uint_1 := RM_Size (Typ);
6776 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
6777 Error_Msg_NE
6778 ("size given (^) for type& too small, minimum allowed is ^",
6779 Size_Clause (Typ), Typ);
6781 else
6782 Actual_Size := UI_To_Int (Esize (Typ));
6783 end if;
6785 -- Increase size to next natural boundary if no size clause given
6787 else
6788 if Actual_Size <= 8 then
6789 Actual_Size := 8;
6790 elsif Actual_Size <= 16 then
6791 Actual_Size := 16;
6792 elsif Actual_Size <= 32 then
6793 Actual_Size := 32;
6794 else
6795 Actual_Size := 64;
6796 end if;
6798 Init_Esize (Typ, Actual_Size);
6799 Adjust_Esize_For_Alignment (Typ);
6800 end if;
6802 -- If we have a base type, then expand the bounds so that they extend to
6803 -- the full width of the allocated size in bits, to avoid junk range
6804 -- checks on intermediate computations.
6806 if Base_Type (Typ) = Typ then
6807 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
6808 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
6809 end if;
6811 -- Final step is to reanalyze the bounds using the proper type
6812 -- and set the Corresponding_Integer_Value fields of the literals.
6814 Set_Etype (Lo, Empty);
6815 Set_Analyzed (Lo, False);
6816 Analyze (Lo);
6818 -- Resolve with universal fixed if the base type, and the base type if
6819 -- it is a subtype. Note we can't resolve the base type with itself,
6820 -- that would be a reference before definition.
6822 if Typ = Btyp then
6823 Resolve (Lo, Universal_Fixed);
6824 else
6825 Resolve (Lo, Btyp);
6826 end if;
6828 -- Set corresponding integer value for bound
6830 Set_Corresponding_Integer_Value
6831 (Lo, UR_To_Uint (Realval (Lo) / Small));
6833 -- Similar processing for high bound
6835 Set_Etype (Hi, Empty);
6836 Set_Analyzed (Hi, False);
6837 Analyze (Hi);
6839 if Typ = Btyp then
6840 Resolve (Hi, Universal_Fixed);
6841 else
6842 Resolve (Hi, Btyp);
6843 end if;
6845 Set_Corresponding_Integer_Value
6846 (Hi, UR_To_Uint (Realval (Hi) / Small));
6848 -- Set type of range to correspond to bounds
6850 Set_Etype (Rng, Etype (Lo));
6852 -- Set Esize to calculated size if not set already
6854 if Unknown_Esize (Typ) then
6855 Init_Esize (Typ, Actual_Size);
6856 end if;
6858 -- Set RM_Size if not already set. If already set, check value
6860 declare
6861 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
6863 begin
6864 if RM_Size (Typ) /= Uint_0 then
6865 if RM_Size (Typ) < Minsiz then
6866 Error_Msg_Uint_1 := RM_Size (Typ);
6867 Error_Msg_Uint_2 := Minsiz;
6868 Error_Msg_NE
6869 ("size given (^) for type& too small, minimum allowed is ^",
6870 Size_Clause (Typ), Typ);
6871 end if;
6873 else
6874 Set_RM_Size (Typ, Minsiz);
6875 end if;
6876 end;
6877 end Freeze_Fixed_Point_Type;
6879 ------------------
6880 -- Freeze_Itype --
6881 ------------------
6883 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
6884 L : List_Id;
6886 begin
6887 Set_Has_Delayed_Freeze (T);
6888 L := Freeze_Entity (T, N);
6890 if Is_Non_Empty_List (L) then
6891 Insert_Actions (N, L);
6892 end if;
6893 end Freeze_Itype;
6895 --------------------------
6896 -- Freeze_Static_Object --
6897 --------------------------
6899 procedure Freeze_Static_Object (E : Entity_Id) is
6901 Cannot_Be_Static : exception;
6902 -- Exception raised if the type of a static object cannot be made
6903 -- static. This happens if the type depends on non-global objects.
6905 procedure Ensure_Expression_Is_SA (N : Node_Id);
6906 -- Called to ensure that an expression used as part of a type definition
6907 -- is statically allocatable, which means that the expression type is
6908 -- statically allocatable, and the expression is either static, or a
6909 -- reference to a library level constant.
6911 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
6912 -- Called to mark a type as static, checking that it is possible
6913 -- to set the type as static. If it is not possible, then the
6914 -- exception Cannot_Be_Static is raised.
6916 -----------------------------
6917 -- Ensure_Expression_Is_SA --
6918 -----------------------------
6920 procedure Ensure_Expression_Is_SA (N : Node_Id) is
6921 Ent : Entity_Id;
6923 begin
6924 Ensure_Type_Is_SA (Etype (N));
6926 if Is_OK_Static_Expression (N) then
6927 return;
6929 elsif Nkind (N) = N_Identifier then
6930 Ent := Entity (N);
6932 if Present (Ent)
6933 and then Ekind (Ent) = E_Constant
6934 and then Is_Library_Level_Entity (Ent)
6935 then
6936 return;
6937 end if;
6938 end if;
6940 raise Cannot_Be_Static;
6941 end Ensure_Expression_Is_SA;
6943 -----------------------
6944 -- Ensure_Type_Is_SA --
6945 -----------------------
6947 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
6948 N : Node_Id;
6949 C : Entity_Id;
6951 begin
6952 -- If type is library level, we are all set
6954 if Is_Library_Level_Entity (Typ) then
6955 return;
6956 end if;
6958 -- We are also OK if the type already marked as statically allocated,
6959 -- which means we processed it before.
6961 if Is_Statically_Allocated (Typ) then
6962 return;
6963 end if;
6965 -- Mark type as statically allocated
6967 Set_Is_Statically_Allocated (Typ);
6969 -- Check that it is safe to statically allocate this type
6971 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
6972 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
6973 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
6975 elsif Is_Array_Type (Typ) then
6976 N := First_Index (Typ);
6977 while Present (N) loop
6978 Ensure_Type_Is_SA (Etype (N));
6979 Next_Index (N);
6980 end loop;
6982 Ensure_Type_Is_SA (Component_Type (Typ));
6984 elsif Is_Access_Type (Typ) then
6985 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
6987 declare
6988 F : Entity_Id;
6989 T : constant Entity_Id := Etype (Designated_Type (Typ));
6991 begin
6992 if T /= Standard_Void_Type then
6993 Ensure_Type_Is_SA (T);
6994 end if;
6996 F := First_Formal (Designated_Type (Typ));
6997 while Present (F) loop
6998 Ensure_Type_Is_SA (Etype (F));
6999 Next_Formal (F);
7000 end loop;
7001 end;
7003 else
7004 Ensure_Type_Is_SA (Designated_Type (Typ));
7005 end if;
7007 elsif Is_Record_Type (Typ) then
7008 C := First_Entity (Typ);
7009 while Present (C) loop
7010 if Ekind (C) = E_Discriminant
7011 or else Ekind (C) = E_Component
7012 then
7013 Ensure_Type_Is_SA (Etype (C));
7015 elsif Is_Type (C) then
7016 Ensure_Type_Is_SA (C);
7017 end if;
7019 Next_Entity (C);
7020 end loop;
7022 elsif Ekind (Typ) = E_Subprogram_Type then
7023 Ensure_Type_Is_SA (Etype (Typ));
7025 C := First_Formal (Typ);
7026 while Present (C) loop
7027 Ensure_Type_Is_SA (Etype (C));
7028 Next_Formal (C);
7029 end loop;
7031 else
7032 raise Cannot_Be_Static;
7033 end if;
7034 end Ensure_Type_Is_SA;
7036 -- Start of processing for Freeze_Static_Object
7038 begin
7039 Ensure_Type_Is_SA (Etype (E));
7041 exception
7042 when Cannot_Be_Static =>
7044 -- If the object that cannot be static is imported or exported, then
7045 -- issue an error message saying that this object cannot be imported
7046 -- or exported. If it has an address clause it is an overlay in the
7047 -- current partition and the static requirement is not relevant.
7048 -- Do not issue any error message when ignoring rep clauses.
7050 if Ignore_Rep_Clauses then
7051 null;
7053 elsif Is_Imported (E) then
7054 if No (Address_Clause (E)) then
7055 Error_Msg_N
7056 ("& cannot be imported (local type is not constant)", E);
7057 end if;
7059 -- Otherwise must be exported, something is wrong if compiler
7060 -- is marking something as statically allocated which cannot be).
7062 else pragma Assert (Is_Exported (E));
7063 Error_Msg_N
7064 ("& cannot be exported (local type is not constant)", E);
7065 end if;
7066 end Freeze_Static_Object;
7068 -----------------------
7069 -- Freeze_Subprogram --
7070 -----------------------
7072 procedure Freeze_Subprogram (E : Entity_Id) is
7073 Retype : Entity_Id;
7074 F : Entity_Id;
7076 begin
7077 -- Subprogram may not have an address clause unless it is imported
7079 if Present (Address_Clause (E)) then
7080 if not Is_Imported (E) then
7081 Error_Msg_N
7082 ("address clause can only be given " &
7083 "for imported subprogram",
7084 Name (Address_Clause (E)));
7085 end if;
7086 end if;
7088 -- Reset the Pure indication on an imported subprogram unless an
7089 -- explicit Pure_Function pragma was present or the subprogram is an
7090 -- intrinsic. We do this because otherwise it is an insidious error
7091 -- to call a non-pure function from pure unit and have calls
7092 -- mysteriously optimized away. What happens here is that the Import
7093 -- can bypass the normal check to ensure that pure units call only pure
7094 -- subprograms.
7096 -- The reason for the intrinsic exception is that in general, intrinsic
7097 -- functions (such as shifts) are pure anyway. The only exceptions are
7098 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
7099 -- in any case, so no problem arises.
7101 if Is_Imported (E)
7102 and then Is_Pure (E)
7103 and then not Has_Pragma_Pure_Function (E)
7104 and then not Is_Intrinsic_Subprogram (E)
7105 then
7106 Set_Is_Pure (E, False);
7107 end if;
7109 -- For non-foreign convention subprograms, this is where we create
7110 -- the extra formals (for accessibility level and constrained bit
7111 -- information). We delay this till the freeze point precisely so
7112 -- that we know the convention.
7114 if not Has_Foreign_Convention (E) then
7115 Create_Extra_Formals (E);
7116 Set_Mechanisms (E);
7118 -- If this is convention Ada and a Valued_Procedure, that's odd
7120 if Ekind (E) = E_Procedure
7121 and then Is_Valued_Procedure (E)
7122 and then Convention (E) = Convention_Ada
7123 and then Warn_On_Export_Import
7124 then
7125 Error_Msg_N
7126 ("??Valued_Procedure has no effect for convention Ada", E);
7127 Set_Is_Valued_Procedure (E, False);
7128 end if;
7130 -- Case of foreign convention
7132 else
7133 Set_Mechanisms (E);
7135 -- For foreign conventions, warn about return of unconstrained array
7137 if Ekind (E) = E_Function then
7138 Retype := Underlying_Type (Etype (E));
7140 -- If no return type, probably some other error, e.g. a
7141 -- missing full declaration, so ignore.
7143 if No (Retype) then
7144 null;
7146 -- If the return type is generic, we have emitted a warning
7147 -- earlier on, and there is nothing else to check here. Specific
7148 -- instantiations may lead to erroneous behavior.
7150 elsif Is_Generic_Type (Etype (E)) then
7151 null;
7153 -- Display warning if returning unconstrained array
7155 elsif Is_Array_Type (Retype)
7156 and then not Is_Constrained (Retype)
7158 -- Check appropriate warning is enabled (should we check for
7159 -- Warnings (Off) on specific entities here, probably so???)
7161 and then Warn_On_Export_Import
7163 -- Exclude the VM case, since return of unconstrained arrays
7164 -- is properly handled in both the JVM and .NET cases.
7166 and then VM_Target = No_VM
7167 then
7168 Error_Msg_N
7169 ("?x?foreign convention function& should not return " &
7170 "unconstrained array", E);
7171 return;
7172 end if;
7173 end if;
7175 -- If any of the formals for an exported foreign convention
7176 -- subprogram have defaults, then emit an appropriate warning since
7177 -- this is odd (default cannot be used from non-Ada code)
7179 if Is_Exported (E) then
7180 F := First_Formal (E);
7181 while Present (F) loop
7182 if Warn_On_Export_Import
7183 and then Present (Default_Value (F))
7184 then
7185 Error_Msg_N
7186 ("?x?parameter cannot be defaulted in non-Ada call",
7187 Default_Value (F));
7188 end if;
7190 Next_Formal (F);
7191 end loop;
7192 end if;
7193 end if;
7195 -- Pragma Inline_Always is disallowed for dispatching subprograms
7196 -- because the address of such subprograms is saved in the dispatch
7197 -- table to support dispatching calls, and dispatching calls cannot
7198 -- be inlined. This is consistent with the restriction against using
7199 -- 'Access or 'Address on an Inline_Always subprogram.
7201 if Is_Dispatching_Operation (E)
7202 and then Has_Pragma_Inline_Always (E)
7203 then
7204 Error_Msg_N
7205 ("pragma Inline_Always not allowed for dispatching subprograms", E);
7206 end if;
7208 -- Because of the implicit representation of inherited predefined
7209 -- operators in the front-end, the overriding status of the operation
7210 -- may be affected when a full view of a type is analyzed, and this is
7211 -- not captured by the analysis of the corresponding type declaration.
7212 -- Therefore the correctness of a not-overriding indicator must be
7213 -- rechecked when the subprogram is frozen.
7215 if Nkind (E) = N_Defining_Operator_Symbol
7216 and then not Error_Posted (Parent (E))
7217 then
7218 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
7219 end if;
7220 end Freeze_Subprogram;
7222 ----------------------
7223 -- Is_Fully_Defined --
7224 ----------------------
7226 function Is_Fully_Defined (T : Entity_Id) return Boolean is
7227 begin
7228 if Ekind (T) = E_Class_Wide_Type then
7229 return Is_Fully_Defined (Etype (T));
7231 elsif Is_Array_Type (T) then
7232 return Is_Fully_Defined (Component_Type (T));
7234 elsif Is_Record_Type (T)
7235 and not Is_Private_Type (T)
7236 then
7237 -- Verify that the record type has no components with private types
7238 -- without completion.
7240 declare
7241 Comp : Entity_Id;
7243 begin
7244 Comp := First_Component (T);
7245 while Present (Comp) loop
7246 if not Is_Fully_Defined (Etype (Comp)) then
7247 return False;
7248 end if;
7250 Next_Component (Comp);
7251 end loop;
7252 return True;
7253 end;
7255 -- For the designated type of an access to subprogram, all types in
7256 -- the profile must be fully defined.
7258 elsif Ekind (T) = E_Subprogram_Type then
7259 declare
7260 F : Entity_Id;
7262 begin
7263 F := First_Formal (T);
7264 while Present (F) loop
7265 if not Is_Fully_Defined (Etype (F)) then
7266 return False;
7267 end if;
7269 Next_Formal (F);
7270 end loop;
7272 return Is_Fully_Defined (Etype (T));
7273 end;
7275 else
7276 return not Is_Private_Type (T)
7277 or else Present (Full_View (Base_Type (T)));
7278 end if;
7279 end Is_Fully_Defined;
7281 ---------------------------------
7282 -- Process_Default_Expressions --
7283 ---------------------------------
7285 procedure Process_Default_Expressions
7286 (E : Entity_Id;
7287 After : in out Node_Id)
7289 Loc : constant Source_Ptr := Sloc (E);
7290 Dbody : Node_Id;
7291 Formal : Node_Id;
7292 Dcopy : Node_Id;
7293 Dnam : Entity_Id;
7295 begin
7296 Set_Default_Expressions_Processed (E);
7298 -- A subprogram instance and its associated anonymous subprogram share
7299 -- their signature. The default expression functions are defined in the
7300 -- wrapper packages for the anonymous subprogram, and should not be
7301 -- generated again for the instance.
7303 if Is_Generic_Instance (E)
7304 and then Present (Alias (E))
7305 and then Default_Expressions_Processed (Alias (E))
7306 then
7307 return;
7308 end if;
7310 Formal := First_Formal (E);
7311 while Present (Formal) loop
7312 if Present (Default_Value (Formal)) then
7314 -- We work with a copy of the default expression because we
7315 -- do not want to disturb the original, since this would mess
7316 -- up the conformance checking.
7318 Dcopy := New_Copy_Tree (Default_Value (Formal));
7320 -- The analysis of the expression may generate insert actions,
7321 -- which of course must not be executed. We wrap those actions
7322 -- in a procedure that is not called, and later on eliminated.
7323 -- The following cases have no side-effects, and are analyzed
7324 -- directly.
7326 if Nkind (Dcopy) = N_Identifier
7327 or else Nkind_In (Dcopy, N_Expanded_Name,
7328 N_Integer_Literal,
7329 N_Character_Literal,
7330 N_String_Literal,
7331 N_Real_Literal)
7332 or else (Nkind (Dcopy) = N_Attribute_Reference
7333 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
7334 or else Known_Null (Dcopy)
7335 then
7336 -- If there is no default function, we must still do a full
7337 -- analyze call on the default value, to ensure that all error
7338 -- checks are performed, e.g. those associated with static
7339 -- evaluation. Note: this branch will always be taken if the
7340 -- analyzer is turned off (but we still need the error checks).
7342 -- Note: the setting of parent here is to meet the requirement
7343 -- that we can only analyze the expression while attached to
7344 -- the tree. Really the requirement is that the parent chain
7345 -- be set, we don't actually need to be in the tree.
7347 Set_Parent (Dcopy, Declaration_Node (Formal));
7348 Analyze (Dcopy);
7350 -- Default expressions are resolved with their own type if the
7351 -- context is generic, to avoid anomalies with private types.
7353 if Ekind (Scope (E)) = E_Generic_Package then
7354 Resolve (Dcopy);
7355 else
7356 Resolve (Dcopy, Etype (Formal));
7357 end if;
7359 -- If that resolved expression will raise constraint error,
7360 -- then flag the default value as raising constraint error.
7361 -- This allows a proper error message on the calls.
7363 if Raises_Constraint_Error (Dcopy) then
7364 Set_Raises_Constraint_Error (Default_Value (Formal));
7365 end if;
7367 -- If the default is a parameterless call, we use the name of
7368 -- the called function directly, and there is no body to build.
7370 elsif Nkind (Dcopy) = N_Function_Call
7371 and then No (Parameter_Associations (Dcopy))
7372 then
7373 null;
7375 -- Else construct and analyze the body of a wrapper procedure
7376 -- that contains an object declaration to hold the expression.
7377 -- Given that this is done only to complete the analysis, it
7378 -- simpler to build a procedure than a function which might
7379 -- involve secondary stack expansion.
7381 else
7382 Dnam := Make_Temporary (Loc, 'D');
7384 Dbody :=
7385 Make_Subprogram_Body (Loc,
7386 Specification =>
7387 Make_Procedure_Specification (Loc,
7388 Defining_Unit_Name => Dnam),
7390 Declarations => New_List (
7391 Make_Object_Declaration (Loc,
7392 Defining_Identifier => Make_Temporary (Loc, 'T'),
7393 Object_Definition =>
7394 New_Occurrence_Of (Etype (Formal), Loc),
7395 Expression => New_Copy_Tree (Dcopy))),
7397 Handled_Statement_Sequence =>
7398 Make_Handled_Sequence_Of_Statements (Loc,
7399 Statements => Empty_List));
7401 Set_Scope (Dnam, Scope (E));
7402 Set_Assignment_OK (First (Declarations (Dbody)));
7403 Set_Is_Eliminated (Dnam);
7404 Insert_After (After, Dbody);
7405 Analyze (Dbody);
7406 After := Dbody;
7407 end if;
7408 end if;
7410 Next_Formal (Formal);
7411 end loop;
7412 end Process_Default_Expressions;
7414 ----------------------------------------
7415 -- Set_Component_Alignment_If_Not_Set --
7416 ----------------------------------------
7418 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
7419 begin
7420 -- Ignore if not base type, subtypes don't need anything
7422 if Typ /= Base_Type (Typ) then
7423 return;
7424 end if;
7426 -- Do not override existing representation
7428 if Is_Packed (Typ) then
7429 return;
7431 elsif Has_Specified_Layout (Typ) then
7432 return;
7434 elsif Component_Alignment (Typ) /= Calign_Default then
7435 return;
7437 else
7438 Set_Component_Alignment
7439 (Typ, Scope_Stack.Table
7440 (Scope_Stack.Last).Component_Alignment_Default);
7441 end if;
7442 end Set_Component_Alignment_If_Not_Set;
7444 --------------------------
7445 -- Set_SSO_From_Default --
7446 --------------------------
7448 procedure Set_SSO_From_Default (T : Entity_Id) is
7449 begin
7450 if (Is_Record_Type (T) or else Is_Array_Type (T))
7451 and then Is_Base_Type (T)
7452 then
7453 if (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
7454 or else
7455 ((not Bytes_Big_Endian) and then SSO_Set_High_By_Default (T))
7456 then
7457 -- If flags cause reverse storage order, then set the result. Note
7458 -- that we would have ignored the pragma setting the non default
7459 -- storage order in any case, hence the assertion at this point.
7461 pragma Assert (Support_Nondefault_SSO_On_Target);
7462 Set_Reverse_Storage_Order (T);
7463 end if;
7464 end if;
7465 end Set_SSO_From_Default;
7467 ------------------
7468 -- Undelay_Type --
7469 ------------------
7471 procedure Undelay_Type (T : Entity_Id) is
7472 begin
7473 Set_Has_Delayed_Freeze (T, False);
7474 Set_Freeze_Node (T, Empty);
7476 -- Since we don't want T to have a Freeze_Node, we don't want its
7477 -- Full_View or Corresponding_Record_Type to have one either.
7479 -- ??? Fundamentally, this whole handling is unpleasant. What we really
7480 -- want is to be sure that for an Itype that's part of record R and is a
7481 -- subtype of type T, that it's frozen after the later of the freeze
7482 -- points of R and T. We have no way of doing that directly, so what we
7483 -- do is force most such Itypes to be frozen as part of freezing R via
7484 -- this procedure and only delay the ones that need to be delayed
7485 -- (mostly the designated types of access types that are defined as part
7486 -- of the record).
7488 if Is_Private_Type (T)
7489 and then Present (Full_View (T))
7490 and then Is_Itype (Full_View (T))
7491 and then Is_Record_Type (Scope (Full_View (T)))
7492 then
7493 Undelay_Type (Full_View (T));
7494 end if;
7496 if Is_Concurrent_Type (T)
7497 and then Present (Corresponding_Record_Type (T))
7498 and then Is_Itype (Corresponding_Record_Type (T))
7499 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
7500 then
7501 Undelay_Type (Corresponding_Record_Type (T));
7502 end if;
7503 end Undelay_Type;
7505 ------------------
7506 -- Warn_Overlay --
7507 ------------------
7509 procedure Warn_Overlay
7510 (Expr : Node_Id;
7511 Typ : Entity_Id;
7512 Nam : Entity_Id)
7514 Ent : constant Entity_Id := Entity (Nam);
7515 -- The object to which the address clause applies
7517 Init : Node_Id;
7518 Old : Entity_Id := Empty;
7519 Decl : Node_Id;
7521 begin
7522 -- No warning if address clause overlay warnings are off
7524 if not Address_Clause_Overlay_Warnings then
7525 return;
7526 end if;
7528 -- No warning if there is an explicit initialization
7530 Init := Original_Node (Expression (Declaration_Node (Ent)));
7532 if Present (Init) and then Comes_From_Source (Init) then
7533 return;
7534 end if;
7536 -- We only give the warning for non-imported entities of a type for
7537 -- which a non-null base init proc is defined, or for objects of access
7538 -- types with implicit null initialization, or when Normalize_Scalars
7539 -- applies and the type is scalar or a string type (the latter being
7540 -- tested for because predefined String types are initialized by inline
7541 -- code rather than by an init_proc). Note that we do not give the
7542 -- warning for Initialize_Scalars, since we suppressed initialization
7543 -- in this case. Also, do not warn if Suppress_Initialization is set.
7545 if Present (Expr)
7546 and then not Is_Imported (Ent)
7547 and then not Initialization_Suppressed (Typ)
7548 and then (Has_Non_Null_Base_Init_Proc (Typ)
7549 or else Is_Access_Type (Typ)
7550 or else (Normalize_Scalars
7551 and then (Is_Scalar_Type (Typ)
7552 or else Is_String_Type (Typ))))
7553 then
7554 if Nkind (Expr) = N_Attribute_Reference
7555 and then Is_Entity_Name (Prefix (Expr))
7556 then
7557 Old := Entity (Prefix (Expr));
7559 elsif Is_Entity_Name (Expr)
7560 and then Ekind (Entity (Expr)) = E_Constant
7561 then
7562 Decl := Declaration_Node (Entity (Expr));
7564 if Nkind (Decl) = N_Object_Declaration
7565 and then Present (Expression (Decl))
7566 and then Nkind (Expression (Decl)) = N_Attribute_Reference
7567 and then Is_Entity_Name (Prefix (Expression (Decl)))
7568 then
7569 Old := Entity (Prefix (Expression (Decl)));
7571 elsif Nkind (Expr) = N_Function_Call then
7572 return;
7573 end if;
7575 -- A function call (most likely to To_Address) is probably not an
7576 -- overlay, so skip warning. Ditto if the function call was inlined
7577 -- and transformed into an entity.
7579 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
7580 return;
7581 end if;
7583 Decl := Next (Parent (Expr));
7585 -- If a pragma Import follows, we assume that it is for the current
7586 -- target of the address clause, and skip the warning.
7588 if Present (Decl)
7589 and then Nkind (Decl) = N_Pragma
7590 and then Pragma_Name (Decl) = Name_Import
7591 then
7592 return;
7593 end if;
7595 if Present (Old) then
7596 Error_Msg_Node_2 := Old;
7597 Error_Msg_N
7598 ("default initialization of & may modify &??",
7599 Nam);
7600 else
7601 Error_Msg_N
7602 ("default initialization of & may modify overlaid storage??",
7603 Nam);
7604 end if;
7606 -- Add friendly warning if initialization comes from a packed array
7607 -- component.
7609 if Is_Record_Type (Typ) then
7610 declare
7611 Comp : Entity_Id;
7613 begin
7614 Comp := First_Component (Typ);
7615 while Present (Comp) loop
7616 if Nkind (Parent (Comp)) = N_Component_Declaration
7617 and then Present (Expression (Parent (Comp)))
7618 then
7619 exit;
7620 elsif Is_Array_Type (Etype (Comp))
7621 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
7622 then
7623 Error_Msg_NE
7624 ("\packed array component& " &
7625 "will be initialized to zero??",
7626 Nam, Comp);
7627 exit;
7628 else
7629 Next_Component (Comp);
7630 end if;
7631 end loop;
7632 end;
7633 end if;
7635 Error_Msg_N
7636 ("\use pragma Import for & to " &
7637 "suppress initialization (RM B.1(24))??",
7638 Nam);
7639 end if;
7640 end Warn_Overlay;
7642 end Freeze;