PR rtl-optimization/79386
[official-gcc.git] / gcc / ada / freeze.adb
blob4d8e52cee742eb2bf60943328251d2eeb3523159
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Pakd; use Exp_Pakd;
38 with Exp_Util; use Exp_Util;
39 with Exp_Tss; use Exp_Tss;
40 with Fname; use Fname;
41 with Ghost; use Ghost;
42 with Layout; use Layout;
43 with Lib; use Lib;
44 with Namet; use Namet;
45 with Nlists; use Nlists;
46 with Nmake; use Nmake;
47 with Opt; use Opt;
48 with Restrict; use Restrict;
49 with Rident; use Rident;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Cat; use Sem_Cat;
54 with Sem_Ch6; use Sem_Ch6;
55 with Sem_Ch7; use Sem_Ch7;
56 with Sem_Ch8; use Sem_Ch8;
57 with Sem_Ch13; use Sem_Ch13;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Mech; use Sem_Mech;
60 with Sem_Prag; use Sem_Prag;
61 with Sem_Res; use Sem_Res;
62 with Sem_Util; use Sem_Util;
63 with Sinfo; use Sinfo;
64 with Snames; use Snames;
65 with Stand; use Stand;
66 with Targparm; use Targparm;
67 with Tbuild; use Tbuild;
68 with Ttypes; use Ttypes;
69 with Uintp; use Uintp;
70 with Urealp; use Urealp;
71 with Warnsw; use Warnsw;
73 package body Freeze is
75 -----------------------
76 -- Local Subprograms --
77 -----------------------
79 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
80 -- Typ is a type that is being frozen. If no size clause is given,
81 -- but a default Esize has been computed, then this default Esize is
82 -- adjusted up if necessary to be consistent with a given alignment,
83 -- but never to a value greater than Long_Long_Integer'Size. This
84 -- is used for all discrete types and for fixed-point types.
86 procedure Build_And_Analyze_Renamed_Body
87 (Decl : Node_Id;
88 New_S : Entity_Id;
89 After : in out Node_Id);
90 -- Build body for a renaming declaration, insert in tree and analyze
92 procedure Check_Address_Clause (E : Entity_Id);
93 -- Apply legality checks to address clauses for object declarations,
94 -- at the point the object is frozen. Also ensure any initialization is
95 -- performed only after the object has been frozen.
97 procedure Check_Component_Storage_Order
98 (Encl_Type : Entity_Id;
99 Comp : Entity_Id;
100 ADC : Node_Id;
101 Comp_ADC_Present : out Boolean);
102 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
103 -- clause, verify that the component type has an explicit and compatible
104 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
105 -- entity of the component under consideration. For an Encl_Type that
106 -- does not have a Scalar_Storage_Order attribute definition clause,
107 -- verify that the component also does not have such a clause.
108 -- ADC is the attribute definition clause if present (or Empty). On return,
109 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
110 -- attribute definition clause.
112 procedure Check_Debug_Info_Needed (T : Entity_Id);
113 -- As each entity is frozen, this routine is called to deal with the
114 -- setting of Debug_Info_Needed for the entity. This flag is set if
115 -- the entity comes from source, or if we are in Debug_Generated_Code
116 -- mode or if the -gnatdV debug flag is set. However, it never sets
117 -- the flag if Debug_Info_Off is set. This procedure also ensures that
118 -- subsidiary entities have the flag set as required.
120 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
121 -- When an expression function is frozen by a use of it, the expression
122 -- itself is frozen. Check that the expression does not include references
123 -- to deferred constants without completion. We report this at the freeze
124 -- point of the function, to provide a better error message.
126 -- In most cases the expression itself is frozen by the time the function
127 -- itself is frozen, because the formals will be frozen by then. However,
128 -- Attribute references to outer types are freeze points for those types;
129 -- this routine generates the required freeze nodes for them.
131 procedure Check_Inherited_Conditions (R : Entity_Id);
132 -- For a tagged derived type, create wrappers for inherited operations
133 -- that have a class-wide condition, so it can be properly rewritten if
134 -- it involves calls to other overriding primitives.
136 procedure Check_Strict_Alignment (E : Entity_Id);
137 -- E is a base type. If E is tagged or has a component that is aliased
138 -- or tagged or contains something this is aliased or tagged, set
139 -- Strict_Alignment.
141 procedure Check_Unsigned_Type (E : Entity_Id);
142 pragma Inline (Check_Unsigned_Type);
143 -- If E is a fixed-point or discrete type, then all the necessary work
144 -- to freeze it is completed except for possible setting of the flag
145 -- Is_Unsigned_Type, which is done by this procedure. The call has no
146 -- effect if the entity E is not a discrete or fixed-point type.
148 procedure Freeze_And_Append
149 (Ent : Entity_Id;
150 N : Node_Id;
151 Result : in out List_Id);
152 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
153 -- nodes to Result, modifying Result from No_List if necessary. N has
154 -- the same usage as in Freeze_Entity.
156 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
157 -- Freeze enumeration type. The Esize field is set as processing
158 -- proceeds (i.e. set by default when the type is declared and then
159 -- adjusted by rep clauses. What this procedure does is to make sure
160 -- that if a foreign convention is specified, and no specific size
161 -- is given, then the size must be at least Integer'Size.
163 procedure Freeze_Static_Object (E : Entity_Id);
164 -- If an object is frozen which has Is_Statically_Allocated set, then
165 -- all referenced types must also be marked with this flag. This routine
166 -- is in charge of meeting this requirement for the object entity E.
168 procedure Freeze_Subprogram (E : Entity_Id);
169 -- Perform freezing actions for a subprogram (create extra formals,
170 -- and set proper default mechanism values). Note that this routine
171 -- is not called for internal subprograms, for which neither of these
172 -- actions is needed (or desirable, we do not want for example to have
173 -- these extra formals present in initialization procedures, where they
174 -- would serve no purpose). In this call E is either a subprogram or
175 -- a subprogram type (i.e. an access to a subprogram).
177 function Is_Fully_Defined (T : Entity_Id) return Boolean;
178 -- True if T is not private and has no private components, or has a full
179 -- view. Used to determine whether the designated type of an access type
180 -- should be frozen when the access type is frozen. This is done when an
181 -- allocator is frozen, or an expression that may involve attributes of
182 -- the designated type. Otherwise freezing the access type does not freeze
183 -- the designated type.
185 procedure Process_Default_Expressions
186 (E : Entity_Id;
187 After : in out Node_Id);
188 -- This procedure is called for each subprogram to complete processing of
189 -- default expressions at the point where all types are known to be frozen.
190 -- The expressions must be analyzed in full, to make sure that all error
191 -- processing is done (they have only been pre-analyzed). If the expression
192 -- is not an entity or literal, its analysis may generate code which must
193 -- not be executed. In that case we build a function body to hold that
194 -- code. This wrapper function serves no other purpose (it used to be
195 -- called to evaluate the default, but now the default is inlined at each
196 -- point of call).
198 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
199 -- Typ is a record or array type that is being frozen. This routine sets
200 -- the default component alignment from the scope stack values if the
201 -- alignment is otherwise not specified.
203 procedure Set_SSO_From_Default (T : Entity_Id);
204 -- T is a record or array type that is being frozen. If it is a base type,
205 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
206 -- will be set appropriately. Note that an explicit occurrence of aspect
207 -- Scalar_Storage_Order or an explicit setting of this aspect with an
208 -- attribute definition clause occurs, then these two flags are reset in
209 -- any case, so call will have no effect.
211 procedure Undelay_Type (T : Entity_Id);
212 -- T is a type of a component that we know to be an Itype. We don't want
213 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
214 -- Full_View or Corresponding_Record_Type.
216 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Node_Id);
217 -- Expr is the expression for an address clause for entity Nam whose type
218 -- is Typ. If Typ has a default initialization, and there is no explicit
219 -- initialization in the source declaration, check whether the address
220 -- clause might cause overlaying of an entity, and emit a warning on the
221 -- side effect that the initialization will cause.
223 -------------------------------
224 -- Adjust_Esize_For_Alignment --
225 -------------------------------
227 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
228 Align : Uint;
230 begin
231 if Known_Esize (Typ) and then Known_Alignment (Typ) then
232 Align := Alignment_In_Bits (Typ);
234 if Align > Esize (Typ)
235 and then Align <= Standard_Long_Long_Integer_Size
236 then
237 Set_Esize (Typ, Align);
238 end if;
239 end if;
240 end Adjust_Esize_For_Alignment;
242 ------------------------------------
243 -- Build_And_Analyze_Renamed_Body --
244 ------------------------------------
246 procedure Build_And_Analyze_Renamed_Body
247 (Decl : Node_Id;
248 New_S : Entity_Id;
249 After : in out Node_Id)
251 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
252 Ent : constant Entity_Id := Defining_Entity (Decl);
253 Body_Node : Node_Id;
254 Renamed_Subp : Entity_Id;
256 begin
257 -- If the renamed subprogram is intrinsic, there is no need for a
258 -- wrapper body: we set the alias that will be called and expanded which
259 -- completes the declaration. This transformation is only legal if the
260 -- renamed entity has already been elaborated.
262 -- Note that it is legal for a renaming_as_body to rename an intrinsic
263 -- subprogram, as long as the renaming occurs before the new entity
264 -- is frozen (RM 8.5.4 (5)).
266 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
267 and then Is_Entity_Name (Name (Body_Decl))
268 then
269 Renamed_Subp := Entity (Name (Body_Decl));
270 else
271 Renamed_Subp := Empty;
272 end if;
274 if Present (Renamed_Subp)
275 and then Is_Intrinsic_Subprogram (Renamed_Subp)
276 and then
277 (not In_Same_Source_Unit (Renamed_Subp, Ent)
278 or else Sloc (Renamed_Subp) < Sloc (Ent))
280 -- We can make the renaming entity intrinsic if the renamed function
281 -- has an interface name, or if it is one of the shift/rotate
282 -- operations known to the compiler.
284 and then
285 (Present (Interface_Name (Renamed_Subp))
286 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
287 Name_Rotate_Right,
288 Name_Shift_Left,
289 Name_Shift_Right,
290 Name_Shift_Right_Arithmetic))
291 then
292 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
294 if Present (Alias (Renamed_Subp)) then
295 Set_Alias (Ent, Alias (Renamed_Subp));
296 else
297 Set_Alias (Ent, Renamed_Subp);
298 end if;
300 Set_Is_Intrinsic_Subprogram (Ent);
301 Set_Has_Completion (Ent);
303 else
304 Body_Node := Build_Renamed_Body (Decl, New_S);
305 Insert_After (After, Body_Node);
306 Mark_Rewrite_Insertion (Body_Node);
307 Analyze (Body_Node);
308 After := Body_Node;
309 end if;
310 end Build_And_Analyze_Renamed_Body;
312 ------------------------
313 -- Build_Renamed_Body --
314 ------------------------
316 function Build_Renamed_Body
317 (Decl : Node_Id;
318 New_S : Entity_Id) return Node_Id
320 Loc : constant Source_Ptr := Sloc (New_S);
321 -- We use for the source location of the renamed body, the location of
322 -- the spec entity. It might seem more natural to use the location of
323 -- the renaming declaration itself, but that would be wrong, since then
324 -- the body we create would look as though it was created far too late,
325 -- and this could cause problems with elaboration order analysis,
326 -- particularly in connection with instantiations.
328 N : constant Node_Id := Unit_Declaration_Node (New_S);
329 Nam : constant Node_Id := Name (N);
330 Old_S : Entity_Id;
331 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
332 Actuals : List_Id := No_List;
333 Call_Node : Node_Id;
334 Call_Name : Node_Id;
335 Body_Node : Node_Id;
336 Formal : Entity_Id;
337 O_Formal : Entity_Id;
338 Param_Spec : Node_Id;
340 Pref : Node_Id := Empty;
341 -- If the renamed entity is a primitive operation given in prefix form,
342 -- the prefix is the target object and it has to be added as the first
343 -- actual in the generated call.
345 begin
346 -- Determine the entity being renamed, which is the target of the call
347 -- statement. If the name is an explicit dereference, this is a renaming
348 -- of a subprogram type rather than a subprogram. The name itself is
349 -- fully analyzed.
351 if Nkind (Nam) = N_Selected_Component then
352 Old_S := Entity (Selector_Name (Nam));
354 elsif Nkind (Nam) = N_Explicit_Dereference then
355 Old_S := Etype (Nam);
357 elsif Nkind (Nam) = N_Indexed_Component then
358 if Is_Entity_Name (Prefix (Nam)) then
359 Old_S := Entity (Prefix (Nam));
360 else
361 Old_S := Entity (Selector_Name (Prefix (Nam)));
362 end if;
364 elsif Nkind (Nam) = N_Character_Literal then
365 Old_S := Etype (New_S);
367 else
368 Old_S := Entity (Nam);
369 end if;
371 if Is_Entity_Name (Nam) then
373 -- If the renamed entity is a predefined operator, retain full name
374 -- to ensure its visibility.
376 if Ekind (Old_S) = E_Operator
377 and then Nkind (Nam) = N_Expanded_Name
378 then
379 Call_Name := New_Copy (Name (N));
380 else
381 Call_Name := New_Occurrence_Of (Old_S, Loc);
382 end if;
384 else
385 if Nkind (Nam) = N_Selected_Component
386 and then Present (First_Formal (Old_S))
387 and then
388 (Is_Controlling_Formal (First_Formal (Old_S))
389 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
390 then
392 -- Retrieve the target object, to be added as a first actual
393 -- in the call.
395 Call_Name := New_Occurrence_Of (Old_S, Loc);
396 Pref := Prefix (Nam);
398 else
399 Call_Name := New_Copy (Name (N));
400 end if;
402 -- Original name may have been overloaded, but is fully resolved now
404 Set_Is_Overloaded (Call_Name, False);
405 end if;
407 -- For simple renamings, subsequent calls can be expanded directly as
408 -- calls to the renamed entity. The body must be generated in any case
409 -- for calls that may appear elsewhere. This is not done in the case
410 -- where the subprogram is an instantiation because the actual proper
411 -- body has not been built yet.
413 if Ekind_In (Old_S, E_Function, E_Procedure)
414 and then Nkind (Decl) = N_Subprogram_Declaration
415 and then not Is_Generic_Instance (Old_S)
416 then
417 Set_Body_To_Inline (Decl, Old_S);
418 end if;
420 -- Check whether the return type is a limited view. If the subprogram
421 -- is already frozen the generated body may have a non-limited view
422 -- of the type, that must be used, because it is the one in the spec
423 -- of the renaming declaration.
425 if Ekind (Old_S) = E_Function
426 and then Is_Entity_Name (Result_Definition (Spec))
427 then
428 declare
429 Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
430 begin
431 if Has_Non_Limited_View (Ret_Type) then
432 Set_Result_Definition
433 (Spec, New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
434 end if;
435 end;
436 end if;
438 -- The body generated for this renaming is an internal artifact, and
439 -- does not constitute a freeze point for the called entity.
441 Set_Must_Not_Freeze (Call_Name);
443 Formal := First_Formal (Defining_Entity (Decl));
445 if Present (Pref) then
446 declare
447 Pref_Type : constant Entity_Id := Etype (Pref);
448 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
450 begin
451 -- The controlling formal may be an access parameter, or the
452 -- actual may be an access value, so adjust accordingly.
454 if Is_Access_Type (Pref_Type)
455 and then not Is_Access_Type (Form_Type)
456 then
457 Actuals := New_List
458 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
460 elsif Is_Access_Type (Form_Type)
461 and then not Is_Access_Type (Pref)
462 then
463 Actuals :=
464 New_List (
465 Make_Attribute_Reference (Loc,
466 Attribute_Name => Name_Access,
467 Prefix => Relocate_Node (Pref)));
468 else
469 Actuals := New_List (Pref);
470 end if;
471 end;
473 elsif Present (Formal) then
474 Actuals := New_List;
476 else
477 Actuals := No_List;
478 end if;
480 if Present (Formal) then
481 while Present (Formal) loop
482 Append (New_Occurrence_Of (Formal, Loc), Actuals);
483 Next_Formal (Formal);
484 end loop;
485 end if;
487 -- If the renamed entity is an entry, inherit its profile. For other
488 -- renamings as bodies, both profiles must be subtype conformant, so it
489 -- is not necessary to replace the profile given in the declaration.
490 -- However, default values that are aggregates are rewritten when
491 -- partially analyzed, so we recover the original aggregate to insure
492 -- that subsequent conformity checking works. Similarly, if the default
493 -- expression was constant-folded, recover the original expression.
495 Formal := First_Formal (Defining_Entity (Decl));
497 if Present (Formal) then
498 O_Formal := First_Formal (Old_S);
499 Param_Spec := First (Parameter_Specifications (Spec));
500 while Present (Formal) loop
501 if Is_Entry (Old_S) then
502 if Nkind (Parameter_Type (Param_Spec)) /=
503 N_Access_Definition
504 then
505 Set_Etype (Formal, Etype (O_Formal));
506 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
507 end if;
509 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
510 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
511 Nkind (Default_Value (O_Formal))
512 then
513 Set_Expression (Param_Spec,
514 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
515 end if;
517 Next_Formal (Formal);
518 Next_Formal (O_Formal);
519 Next (Param_Spec);
520 end loop;
521 end if;
523 -- If the renamed entity is a function, the generated body contains a
524 -- return statement. Otherwise, build a procedure call. If the entity is
525 -- an entry, subsequent analysis of the call will transform it into the
526 -- proper entry or protected operation call. If the renamed entity is
527 -- a character literal, return it directly.
529 if Ekind (Old_S) = E_Function
530 or else Ekind (Old_S) = E_Operator
531 or else (Ekind (Old_S) = E_Subprogram_Type
532 and then Etype (Old_S) /= Standard_Void_Type)
533 then
534 Call_Node :=
535 Make_Simple_Return_Statement (Loc,
536 Expression =>
537 Make_Function_Call (Loc,
538 Name => Call_Name,
539 Parameter_Associations => Actuals));
541 elsif Ekind (Old_S) = E_Enumeration_Literal then
542 Call_Node :=
543 Make_Simple_Return_Statement (Loc,
544 Expression => New_Occurrence_Of (Old_S, Loc));
546 elsif Nkind (Nam) = N_Character_Literal then
547 Call_Node :=
548 Make_Simple_Return_Statement (Loc, Expression => Call_Name);
550 else
551 Call_Node :=
552 Make_Procedure_Call_Statement (Loc,
553 Name => Call_Name,
554 Parameter_Associations => Actuals);
555 end if;
557 -- Create entities for subprogram body and formals
559 Set_Defining_Unit_Name (Spec,
560 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
562 Param_Spec := First (Parameter_Specifications (Spec));
563 while Present (Param_Spec) loop
564 Set_Defining_Identifier (Param_Spec,
565 Make_Defining_Identifier (Loc,
566 Chars => Chars (Defining_Identifier (Param_Spec))));
567 Next (Param_Spec);
568 end loop;
570 Body_Node :=
571 Make_Subprogram_Body (Loc,
572 Specification => Spec,
573 Declarations => New_List,
574 Handled_Statement_Sequence =>
575 Make_Handled_Sequence_Of_Statements (Loc,
576 Statements => New_List (Call_Node)));
578 if Nkind (Decl) /= N_Subprogram_Declaration then
579 Rewrite (N,
580 Make_Subprogram_Declaration (Loc,
581 Specification => Specification (N)));
582 end if;
584 -- Link the body to the entity whose declaration it completes. If
585 -- the body is analyzed when the renamed entity is frozen, it may
586 -- be necessary to restore the proper scope (see package Exp_Ch13).
588 if Nkind (N) = N_Subprogram_Renaming_Declaration
589 and then Present (Corresponding_Spec (N))
590 then
591 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
592 else
593 Set_Corresponding_Spec (Body_Node, New_S);
594 end if;
596 return Body_Node;
597 end Build_Renamed_Body;
599 --------------------------
600 -- Check_Address_Clause --
601 --------------------------
603 procedure Check_Address_Clause (E : Entity_Id) is
604 Addr : constant Node_Id := Address_Clause (E);
605 Typ : constant Entity_Id := Etype (E);
606 Decl : Node_Id;
607 Expr : Node_Id;
608 Init : Node_Id;
609 Lhs : Node_Id;
610 Tag_Assign : Node_Id;
612 begin
613 if Present (Addr) then
615 -- For a deferred constant, the initialization value is on full view
617 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
618 Decl := Declaration_Node (Full_View (E));
619 else
620 Decl := Declaration_Node (E);
621 end if;
623 Expr := Expression (Addr);
625 if Needs_Constant_Address (Decl, Typ) then
626 Check_Constant_Address_Clause (Expr, E);
628 -- Has_Delayed_Freeze was set on E when the address clause was
629 -- analyzed, and must remain set because we want the address
630 -- clause to be elaborated only after any entity it references
631 -- has been elaborated.
632 end if;
634 -- If Rep_Clauses are to be ignored, remove address clause from
635 -- list attached to entity, because it may be illegal for gigi,
636 -- for example by breaking order of elaboration..
638 if Ignore_Rep_Clauses then
639 declare
640 Rep : Node_Id;
642 begin
643 Rep := First_Rep_Item (E);
645 if Rep = Addr then
646 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
648 else
649 while Present (Rep)
650 and then Next_Rep_Item (Rep) /= Addr
651 loop
652 Rep := Next_Rep_Item (Rep);
653 end loop;
654 end if;
656 if Present (Rep) then
657 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
658 end if;
659 end;
661 -- And now remove the address clause
663 Kill_Rep_Clause (Addr);
665 elsif not Error_Posted (Expr)
666 and then not Needs_Finalization (Typ)
667 then
668 Warn_Overlay (Expr, Typ, Name (Addr));
669 end if;
671 Init := Expression (Decl);
673 -- If a variable, or a non-imported constant, overlays a constant
674 -- object and has an initialization value, then the initialization
675 -- may end up writing into read-only memory. Detect the cases of
676 -- statically identical values and remove the initialization. In
677 -- the other cases, give a warning. We will give other warnings
678 -- later for the variable if it is assigned.
680 if (Ekind (E) = E_Variable
681 or else (Ekind (E) = E_Constant
682 and then not Is_Imported (E)))
683 and then Overlays_Constant (E)
684 and then Present (Init)
685 then
686 declare
687 O_Ent : Entity_Id;
688 Off : Boolean;
690 begin
691 Find_Overlaid_Entity (Addr, O_Ent, Off);
693 if Ekind (O_Ent) = E_Constant
694 and then Etype (O_Ent) = Typ
695 and then Present (Constant_Value (O_Ent))
696 and then Compile_Time_Compare
697 (Init,
698 Constant_Value (O_Ent),
699 Assume_Valid => True) = EQ
700 then
701 Set_No_Initialization (Decl);
702 return;
704 elsif Comes_From_Source (Init)
705 and then Address_Clause_Overlay_Warnings
706 then
707 Error_Msg_Sloc := Sloc (Addr);
708 Error_Msg_NE
709 ("??constant& may be modified via address clause#",
710 Decl, O_Ent);
711 end if;
712 end;
713 end if;
715 if Present (Init) then
717 -- Capture initialization value at point of declaration,
718 -- and make explicit assignment legal, because object may
719 -- be a constant.
721 Remove_Side_Effects (Init);
722 Lhs := New_Occurrence_Of (E, Sloc (Decl));
723 Set_Assignment_OK (Lhs);
725 -- Move initialization to freeze actions, once the object has
726 -- been frozen and the address clause alignment check has been
727 -- performed.
729 Append_Freeze_Action (E,
730 Make_Assignment_Statement (Sloc (Decl),
731 Name => Lhs,
732 Expression => Expression (Decl)));
734 Set_No_Initialization (Decl);
736 -- If the objet is tagged, check whether the tag must be
737 -- reassigned explicitly.
739 Tag_Assign := Make_Tag_Assignment (Decl);
740 if Present (Tag_Assign) then
741 Append_Freeze_Action (E, Tag_Assign);
742 end if;
743 end if;
744 end if;
745 end Check_Address_Clause;
747 -----------------------------
748 -- Check_Compile_Time_Size --
749 -----------------------------
751 procedure Check_Compile_Time_Size (T : Entity_Id) is
753 procedure Set_Small_Size (T : Entity_Id; S : Uint);
754 -- Sets the compile time known size (64 bits or less) in the RM_Size
755 -- field of T, checking for a size clause that was given which attempts
756 -- to give a smaller size.
758 function Size_Known (T : Entity_Id) return Boolean;
759 -- Recursive function that does all the work
761 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
762 -- If T is a constrained subtype, its size is not known if any of its
763 -- discriminant constraints is not static and it is not a null record.
764 -- The test is conservative and doesn't check that the components are
765 -- in fact constrained by non-static discriminant values. Could be made
766 -- more precise ???
768 --------------------
769 -- Set_Small_Size --
770 --------------------
772 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
773 begin
774 if S > 64 then
775 return;
777 -- Check for bad size clause given
779 elsif Has_Size_Clause (T) then
780 if RM_Size (T) < S then
781 Error_Msg_Uint_1 := S;
782 Error_Msg_NE
783 ("size for& too small, minimum allowed is ^",
784 Size_Clause (T), T);
785 end if;
787 -- Set size if not set already
789 elsif Unknown_RM_Size (T) then
790 Set_RM_Size (T, S);
791 end if;
792 end Set_Small_Size;
794 ----------------
795 -- Size_Known --
796 ----------------
798 function Size_Known (T : Entity_Id) return Boolean is
799 Index : Entity_Id;
800 Comp : Entity_Id;
801 Ctyp : Entity_Id;
802 Low : Node_Id;
803 High : Node_Id;
805 begin
806 if Size_Known_At_Compile_Time (T) then
807 return True;
809 -- Always True for elementary types, even generic formal elementary
810 -- types. We used to return False in the latter case, but the size
811 -- is known at compile time, even in the template, we just do not
812 -- know the exact size but that's not the point of this routine.
814 elsif Is_Elementary_Type (T) or else Is_Task_Type (T) then
815 return True;
817 -- Array types
819 elsif Is_Array_Type (T) then
821 -- String literals always have known size, and we can set it
823 if Ekind (T) = E_String_Literal_Subtype then
824 Set_Small_Size
825 (T, Component_Size (T) * String_Literal_Length (T));
826 return True;
828 -- Unconstrained types never have known at compile time size
830 elsif not Is_Constrained (T) then
831 return False;
833 -- Don't do any recursion on type with error posted, since we may
834 -- have a malformed type that leads us into a loop.
836 elsif Error_Posted (T) then
837 return False;
839 -- Otherwise if component size unknown, then array size unknown
841 elsif not Size_Known (Component_Type (T)) then
842 return False;
843 end if;
845 -- Check for all indexes static, and also compute possible size
846 -- (in case it is not greater than 64 and may be packable).
848 declare
849 Size : Uint := Component_Size (T);
850 Dim : Uint;
852 begin
853 Index := First_Index (T);
854 while Present (Index) loop
855 if Nkind (Index) = N_Range then
856 Get_Index_Bounds (Index, Low, High);
858 elsif Error_Posted (Scalar_Range (Etype (Index))) then
859 return False;
861 else
862 Low := Type_Low_Bound (Etype (Index));
863 High := Type_High_Bound (Etype (Index));
864 end if;
866 if not Compile_Time_Known_Value (Low)
867 or else not Compile_Time_Known_Value (High)
868 or else Etype (Index) = Any_Type
869 then
870 return False;
872 else
873 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
875 if Dim >= 0 then
876 Size := Size * Dim;
877 else
878 Size := Uint_0;
879 end if;
880 end if;
882 Next_Index (Index);
883 end loop;
885 Set_Small_Size (T, Size);
886 return True;
887 end;
889 -- For non-generic private types, go to underlying type if present
891 elsif Is_Private_Type (T)
892 and then not Is_Generic_Type (T)
893 and then Present (Underlying_Type (T))
894 then
895 -- Don't do any recursion on type with error posted, since we may
896 -- have a malformed type that leads us into a loop.
898 if Error_Posted (T) then
899 return False;
900 else
901 return Size_Known (Underlying_Type (T));
902 end if;
904 -- Record types
906 elsif Is_Record_Type (T) then
908 -- A class-wide type is never considered to have a known size
910 if Is_Class_Wide_Type (T) then
911 return False;
913 -- A subtype of a variant record must not have non-static
914 -- discriminated components.
916 elsif T /= Base_Type (T)
917 and then not Static_Discriminated_Components (T)
918 then
919 return False;
921 -- Don't do any recursion on type with error posted, since we may
922 -- have a malformed type that leads us into a loop.
924 elsif Error_Posted (T) then
925 return False;
926 end if;
928 -- Now look at the components of the record
930 declare
931 -- The following two variables are used to keep track of the
932 -- size of packed records if we can tell the size of the packed
933 -- record in the front end. Packed_Size_Known is True if so far
934 -- we can figure out the size. It is initialized to True for a
935 -- packed record, unless the record has discriminants or atomic
936 -- components or independent components.
938 -- The reason we eliminate the discriminated case is that
939 -- we don't know the way the back end lays out discriminated
940 -- packed records. If Packed_Size_Known is True, then
941 -- Packed_Size is the size in bits so far.
943 Packed_Size_Known : Boolean :=
944 Is_Packed (T)
945 and then not Has_Discriminants (T)
946 and then not Has_Atomic_Components (T)
947 and then not Has_Independent_Components (T);
949 Packed_Size : Uint := Uint_0;
950 -- Size in bits so far
952 begin
953 -- Test for variant part present
955 if Has_Discriminants (T)
956 and then Present (Parent (T))
957 and then Nkind (Parent (T)) = N_Full_Type_Declaration
958 and then Nkind (Type_Definition (Parent (T))) =
959 N_Record_Definition
960 and then not Null_Present (Type_Definition (Parent (T)))
961 and then
962 Present (Variant_Part
963 (Component_List (Type_Definition (Parent (T)))))
964 then
965 -- If variant part is present, and type is unconstrained,
966 -- then we must have defaulted discriminants, or a size
967 -- clause must be present for the type, or else the size
968 -- is definitely not known at compile time.
970 if not Is_Constrained (T)
971 and then
972 No (Discriminant_Default_Value (First_Discriminant (T)))
973 and then Unknown_RM_Size (T)
974 then
975 return False;
976 end if;
977 end if;
979 -- Loop through components
981 Comp := First_Component_Or_Discriminant (T);
982 while Present (Comp) loop
983 Ctyp := Etype (Comp);
985 -- We do not know the packed size if there is a component
986 -- clause present (we possibly could, but this would only
987 -- help in the case of a record with partial rep clauses.
988 -- That's because in the case of full rep clauses, the
989 -- size gets figured out anyway by a different circuit).
991 if Present (Component_Clause (Comp)) then
992 Packed_Size_Known := False;
993 end if;
995 -- We do not know the packed size for an atomic/VFA type
996 -- or component, or an independent type or component, or a
997 -- by-reference type or aliased component (because packing
998 -- does not touch these).
1000 if Is_Atomic_Or_VFA (Ctyp)
1001 or else Is_Atomic_Or_VFA (Comp)
1002 or else Is_Independent (Ctyp)
1003 or else Is_Independent (Comp)
1004 or else Is_By_Reference_Type (Ctyp)
1005 or else Is_Aliased (Comp)
1006 then
1007 Packed_Size_Known := False;
1008 end if;
1010 -- We need to identify a component that is an array where
1011 -- the index type is an enumeration type with non-standard
1012 -- representation, and some bound of the type depends on a
1013 -- discriminant.
1015 -- This is because gigi computes the size by doing a
1016 -- substitution of the appropriate discriminant value in
1017 -- the size expression for the base type, and gigi is not
1018 -- clever enough to evaluate the resulting expression (which
1019 -- involves a call to rep_to_pos) at compile time.
1021 -- It would be nice if gigi would either recognize that
1022 -- this expression can be computed at compile time, or
1023 -- alternatively figured out the size from the subtype
1024 -- directly, where all the information is at hand ???
1026 if Is_Array_Type (Etype (Comp))
1027 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
1028 then
1029 declare
1030 Ocomp : constant Entity_Id :=
1031 Original_Record_Component (Comp);
1032 OCtyp : constant Entity_Id := Etype (Ocomp);
1033 Ind : Node_Id;
1034 Indtyp : Entity_Id;
1035 Lo, Hi : Node_Id;
1037 begin
1038 Ind := First_Index (OCtyp);
1039 while Present (Ind) loop
1040 Indtyp := Etype (Ind);
1042 if Is_Enumeration_Type (Indtyp)
1043 and then Has_Non_Standard_Rep (Indtyp)
1044 then
1045 Lo := Type_Low_Bound (Indtyp);
1046 Hi := Type_High_Bound (Indtyp);
1048 if Is_Entity_Name (Lo)
1049 and then Ekind (Entity (Lo)) = E_Discriminant
1050 then
1051 return False;
1053 elsif Is_Entity_Name (Hi)
1054 and then Ekind (Entity (Hi)) = E_Discriminant
1055 then
1056 return False;
1057 end if;
1058 end if;
1060 Next_Index (Ind);
1061 end loop;
1062 end;
1063 end if;
1065 -- Clearly size of record is not known if the size of one of
1066 -- the components is not known.
1068 if not Size_Known (Ctyp) then
1069 return False;
1070 end if;
1072 -- Accumulate packed size if possible
1074 if Packed_Size_Known then
1076 -- We can deal with elementary types, small packed arrays
1077 -- if the representation is a modular type and also small
1078 -- record types (if the size is not greater than 64, but
1079 -- the condition is checked by Set_Small_Size).
1081 if Is_Elementary_Type (Ctyp)
1082 or else (Is_Array_Type (Ctyp)
1083 and then Present
1084 (Packed_Array_Impl_Type (Ctyp))
1085 and then Is_Modular_Integer_Type
1086 (Packed_Array_Impl_Type (Ctyp)))
1087 or else Is_Record_Type (Ctyp)
1088 then
1089 -- If RM_Size is known and static, then we can keep
1090 -- accumulating the packed size.
1092 if Known_Static_RM_Size (Ctyp) then
1094 Packed_Size := Packed_Size + RM_Size (Ctyp);
1096 -- If we have a field whose RM_Size is not known then
1097 -- we can't figure out the packed size here.
1099 else
1100 Packed_Size_Known := False;
1101 end if;
1103 -- For other types we can't figure out the packed size
1105 else
1106 Packed_Size_Known := False;
1107 end if;
1108 end if;
1110 Next_Component_Or_Discriminant (Comp);
1111 end loop;
1113 if Packed_Size_Known then
1114 Set_Small_Size (T, Packed_Size);
1115 end if;
1117 return True;
1118 end;
1120 -- All other cases, size not known at compile time
1122 else
1123 return False;
1124 end if;
1125 end Size_Known;
1127 -------------------------------------
1128 -- Static_Discriminated_Components --
1129 -------------------------------------
1131 function Static_Discriminated_Components
1132 (T : Entity_Id) return Boolean
1134 Constraint : Elmt_Id;
1136 begin
1137 if Has_Discriminants (T)
1138 and then Present (Discriminant_Constraint (T))
1139 and then Present (First_Component (T))
1140 then
1141 Constraint := First_Elmt (Discriminant_Constraint (T));
1142 while Present (Constraint) loop
1143 if not Compile_Time_Known_Value (Node (Constraint)) then
1144 return False;
1145 end if;
1147 Next_Elmt (Constraint);
1148 end loop;
1149 end if;
1151 return True;
1152 end Static_Discriminated_Components;
1154 -- Start of processing for Check_Compile_Time_Size
1156 begin
1157 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1158 end Check_Compile_Time_Size;
1160 -----------------------------------
1161 -- Check_Component_Storage_Order --
1162 -----------------------------------
1164 procedure Check_Component_Storage_Order
1165 (Encl_Type : Entity_Id;
1166 Comp : Entity_Id;
1167 ADC : Node_Id;
1168 Comp_ADC_Present : out Boolean)
1170 Comp_Base : Entity_Id;
1171 Comp_ADC : Node_Id;
1172 Encl_Base : Entity_Id;
1173 Err_Node : Node_Id;
1175 Component_Aliased : Boolean;
1177 Comp_Byte_Aligned : Boolean;
1178 -- Set for the record case, True if Comp starts on a byte boundary
1179 -- (in which case it is allowed to have different storage order).
1181 Comp_SSO_Differs : Boolean;
1182 -- Set True when the component is a nested composite, and it does not
1183 -- have the same scalar storage order as Encl_Type.
1185 begin
1186 -- Record case
1188 if Present (Comp) then
1189 Err_Node := Comp;
1190 Comp_Base := Etype (Comp);
1192 if Is_Tag (Comp) then
1193 Comp_Byte_Aligned := True;
1194 Component_Aliased := False;
1196 else
1197 -- If a component clause is present, check if the component starts
1198 -- on a storage element boundary. Otherwise conservatively assume
1199 -- it does so only in the case where the record is not packed.
1201 if Present (Component_Clause (Comp)) then
1202 Comp_Byte_Aligned :=
1203 Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
1204 else
1205 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1206 end if;
1208 Component_Aliased := Is_Aliased (Comp);
1209 end if;
1211 -- Array case
1213 else
1214 Err_Node := Encl_Type;
1215 Comp_Base := Component_Type (Encl_Type);
1217 Component_Aliased := Has_Aliased_Components (Encl_Type);
1218 end if;
1220 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1221 -- the attribute definition clause is attached to the first subtype.
1222 -- Also, if the base type is incomplete or private, go to full view
1223 -- if known
1225 Encl_Base := Base_Type (Encl_Type);
1226 if Present (Underlying_Type (Encl_Base)) then
1227 Encl_Base := Underlying_Type (Encl_Base);
1228 end if;
1230 Comp_Base := Base_Type (Comp_Base);
1231 if Present (Underlying_Type (Comp_Base)) then
1232 Comp_Base := Underlying_Type (Comp_Base);
1233 end if;
1235 Comp_ADC :=
1236 Get_Attribute_Definition_Clause
1237 (First_Subtype (Comp_Base), Attribute_Scalar_Storage_Order);
1238 Comp_ADC_Present := Present (Comp_ADC);
1240 -- Case of record or array component: check storage order compatibility.
1241 -- But, if the record has Complex_Representation, then it is treated as
1242 -- a scalar in the back end so the storage order is irrelevant.
1244 if (Is_Record_Type (Comp_Base)
1245 and then not Has_Complex_Representation (Comp_Base))
1246 or else Is_Array_Type (Comp_Base)
1247 then
1248 Comp_SSO_Differs :=
1249 Reverse_Storage_Order (Encl_Base) /=
1250 Reverse_Storage_Order (Comp_Base);
1252 -- Parent and extension must have same storage order
1254 if Present (Comp) and then Chars (Comp) = Name_uParent then
1255 if Comp_SSO_Differs then
1256 Error_Msg_N
1257 ("record extension must have same scalar storage order as "
1258 & "parent", Err_Node);
1259 end if;
1261 -- If component and composite SSO differs, check that component
1262 -- falls on byte boundaries and isn't bit packed.
1264 elsif Comp_SSO_Differs then
1266 -- Component SSO differs from enclosing composite:
1268 -- Reject if component is a bit-packed array, as it is represented
1269 -- as a scalar internally.
1271 if Is_Bit_Packed_Array (Comp_Base) then
1272 Error_Msg_N
1273 ("type of packed component must have same scalar storage "
1274 & "order as enclosing composite", Err_Node);
1276 -- Reject if composite is a bit-packed array, as it is rewritten
1277 -- into an array of scalars.
1279 elsif Is_Bit_Packed_Array (Encl_Base) then
1280 Error_Msg_N
1281 ("type of packed array must have same scalar storage order "
1282 & "as component", Err_Node);
1284 -- Reject if not byte aligned
1286 elsif Is_Record_Type (Encl_Base)
1287 and then not Comp_Byte_Aligned
1288 then
1289 Error_Msg_N
1290 ("type of non-byte-aligned component must have same scalar "
1291 & "storage order as enclosing composite", Err_Node);
1293 -- Warn if specified only for the outer composite
1295 elsif Present (ADC) and then No (Comp_ADC) then
1296 Error_Msg_NE
1297 ("scalar storage order specified for & does not apply to "
1298 & "component?", Err_Node, Encl_Base);
1299 end if;
1300 end if;
1302 -- Enclosing type has explicit SSO: non-composite component must not
1303 -- be aliased.
1305 elsif Present (ADC) and then Component_Aliased then
1306 Error_Msg_N
1307 ("aliased component not permitted for type with explicit "
1308 & "Scalar_Storage_Order", Err_Node);
1309 end if;
1310 end Check_Component_Storage_Order;
1312 -----------------------------
1313 -- Check_Debug_Info_Needed --
1314 -----------------------------
1316 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1317 begin
1318 if Debug_Info_Off (T) then
1319 return;
1321 elsif Comes_From_Source (T)
1322 or else Debug_Generated_Code
1323 or else Debug_Flag_VV
1324 or else Needs_Debug_Info (T)
1325 then
1326 Set_Debug_Info_Needed (T);
1327 end if;
1328 end Check_Debug_Info_Needed;
1330 -------------------------------
1331 -- Check_Expression_Function --
1332 -------------------------------
1334 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
1335 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1336 -- Function to search for deferred constant
1338 -------------------
1339 -- Find_Constant --
1340 -------------------
1342 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1343 begin
1344 -- When a constant is initialized with the result of a dispatching
1345 -- call, the constant declaration is rewritten as a renaming of the
1346 -- displaced function result. This scenario is not a premature use of
1347 -- a constant even though the Has_Completion flag is not set.
1349 if Is_Entity_Name (Nod)
1350 and then Present (Entity (Nod))
1351 and then Ekind (Entity (Nod)) = E_Constant
1352 and then Scope (Entity (Nod)) = Current_Scope
1353 and then Nkind (Declaration_Node (Entity (Nod))) =
1354 N_Object_Declaration
1355 and then not Is_Imported (Entity (Nod))
1356 and then not Has_Completion (Entity (Nod))
1357 and then not Is_Frozen (Entity (Nod))
1358 then
1359 Error_Msg_NE
1360 ("premature use of& in call or instance", N, Entity (Nod));
1362 elsif Nkind (Nod) = N_Attribute_Reference then
1363 Analyze (Prefix (Nod));
1365 if Is_Entity_Name (Prefix (Nod))
1366 and then Is_Type (Entity (Prefix (Nod)))
1367 then
1368 Freeze_Before (N, Entity (Prefix (Nod)));
1369 end if;
1370 end if;
1372 return OK;
1373 end Find_Constant;
1375 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1377 -- Local variables
1379 Decl : Node_Id;
1381 -- Start of processing for Check_Expression_Function
1383 begin
1384 Decl := Original_Node (Unit_Declaration_Node (Nam));
1386 if Scope (Nam) = Current_Scope
1387 and then Nkind (Decl) = N_Expression_Function
1388 then
1389 Check_Deferred (Expression (Decl));
1390 end if;
1391 end Check_Expression_Function;
1393 --------------------------------
1394 -- Check_Inherited_Conditions --
1395 --------------------------------
1397 procedure Check_Inherited_Conditions (R : Entity_Id) is
1398 Prim_Ops : constant Elist_Id := Primitive_Operations (R);
1399 A_Post : Node_Id;
1400 A_Pre : Node_Id;
1401 Op_Node : Elmt_Id;
1402 Par_Prim : Entity_Id;
1403 Prim : Entity_Id;
1405 begin
1406 Op_Node := First_Elmt (Prim_Ops);
1407 while Present (Op_Node) loop
1408 Prim := Node (Op_Node);
1410 -- Map the overridden primitive to the overriding one. This takes
1411 -- care of all overridings and is done only once.
1413 if Present (Overridden_Operation (Prim))
1414 and then Comes_From_Source (Prim)
1415 then
1416 Update_Primitives_Mapping (Overridden_Operation (Prim), Prim);
1418 -- In SPARK mode this is where we can collect the inherited
1419 -- conditions, because we do not create the Check pragmas that
1420 -- normally convey the the modified class-wide conditions on
1421 -- overriding operations.
1423 if SPARK_Mode = On then
1425 -- Analyze the contract items of the parent operation, before
1426 -- they are rewritten when inherited.
1428 Analyze_Entry_Or_Subprogram_Contract
1429 (Overridden_Operation (Prim));
1431 -- Now verify the legality of inherited contracts for LSP
1432 -- conformance.
1434 Collect_Inherited_Class_Wide_Conditions (Prim);
1435 end if;
1436 end if;
1438 Next_Elmt (Op_Node);
1439 end loop;
1441 -- In all cases, we examine inherited operations to check whether they
1442 -- require a wrapper to handle inherited conditions that call other
1443 -- primitives, so that LSP can be verified/enforced.
1445 -- Wrapper construction TBD.
1447 Op_Node := First_Elmt (Prim_Ops);
1448 while Present (Op_Node) loop
1449 Prim := Node (Op_Node);
1450 if not Comes_From_Source (Prim) and then Present (Alias (Prim)) then
1451 Par_Prim := Alias (Prim);
1453 -- Analyze the contract items of the parent operation, before
1454 -- they are rewritten when inherited.
1456 Analyze_Entry_Or_Subprogram_Contract (Par_Prim);
1458 A_Pre := Get_Pragma (Par_Prim, Pragma_Precondition);
1460 if Present (A_Pre) and then Class_Present (A_Pre) then
1461 Build_Class_Wide_Expression
1462 (Prag => New_Copy_Tree (A_Pre),
1463 Subp => Prim,
1464 Par_Subp => Par_Prim,
1465 Adjust_Sloc => False);
1466 end if;
1468 A_Post := Get_Pragma (Par_Prim, Pragma_Postcondition);
1470 if Present (A_Post) and then Class_Present (A_Post) then
1471 Build_Class_Wide_Expression
1472 (Prag => New_Copy_Tree (A_Post),
1473 Subp => Prim,
1474 Par_Subp => Par_Prim,
1475 Adjust_Sloc => False);
1476 end if;
1477 end if;
1479 Next_Elmt (Op_Node);
1480 end loop;
1481 end Check_Inherited_Conditions;
1483 ----------------------------
1484 -- Check_Strict_Alignment --
1485 ----------------------------
1487 procedure Check_Strict_Alignment (E : Entity_Id) is
1488 Comp : Entity_Id;
1490 begin
1491 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1492 Set_Strict_Alignment (E);
1494 elsif Is_Array_Type (E) then
1495 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1497 elsif Is_Record_Type (E) then
1498 if Is_Limited_Record (E) then
1499 Set_Strict_Alignment (E);
1500 return;
1501 end if;
1503 Comp := First_Component (E);
1504 while Present (Comp) loop
1505 if not Is_Type (Comp)
1506 and then (Strict_Alignment (Etype (Comp))
1507 or else Is_Aliased (Comp))
1508 then
1509 Set_Strict_Alignment (E);
1510 return;
1511 end if;
1513 Next_Component (Comp);
1514 end loop;
1515 end if;
1516 end Check_Strict_Alignment;
1518 -------------------------
1519 -- Check_Unsigned_Type --
1520 -------------------------
1522 procedure Check_Unsigned_Type (E : Entity_Id) is
1523 Ancestor : Entity_Id;
1524 Lo_Bound : Node_Id;
1525 Btyp : Entity_Id;
1527 begin
1528 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1529 return;
1530 end if;
1532 -- Do not attempt to analyze case where range was in error
1534 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
1535 return;
1536 end if;
1538 -- The situation that is nontrivial is something like:
1540 -- subtype x1 is integer range -10 .. +10;
1541 -- subtype x2 is x1 range 0 .. V1;
1542 -- subtype x3 is x2 range V2 .. V3;
1543 -- subtype x4 is x3 range V4 .. V5;
1545 -- where Vn are variables. Here the base type is signed, but we still
1546 -- know that x4 is unsigned because of the lower bound of x2.
1548 -- The only way to deal with this is to look up the ancestor chain
1550 Ancestor := E;
1551 loop
1552 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1553 return;
1554 end if;
1556 Lo_Bound := Type_Low_Bound (Ancestor);
1558 if Compile_Time_Known_Value (Lo_Bound) then
1559 if Expr_Rep_Value (Lo_Bound) >= 0 then
1560 Set_Is_Unsigned_Type (E, True);
1561 end if;
1563 return;
1565 else
1566 Ancestor := Ancestor_Subtype (Ancestor);
1568 -- If no ancestor had a static lower bound, go to base type
1570 if No (Ancestor) then
1572 -- Note: the reason we still check for a compile time known
1573 -- value for the base type is that at least in the case of
1574 -- generic formals, we can have bounds that fail this test,
1575 -- and there may be other cases in error situations.
1577 Btyp := Base_Type (E);
1579 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1580 return;
1581 end if;
1583 Lo_Bound := Type_Low_Bound (Base_Type (E));
1585 if Compile_Time_Known_Value (Lo_Bound)
1586 and then Expr_Rep_Value (Lo_Bound) >= 0
1587 then
1588 Set_Is_Unsigned_Type (E, True);
1589 end if;
1591 return;
1592 end if;
1593 end if;
1594 end loop;
1595 end Check_Unsigned_Type;
1597 -----------------------------
1598 -- Is_Atomic_VFA_Aggregate --
1599 -----------------------------
1601 function Is_Atomic_VFA_Aggregate (N : Node_Id) return Boolean is
1602 Loc : constant Source_Ptr := Sloc (N);
1603 New_N : Node_Id;
1604 Par : Node_Id;
1605 Temp : Entity_Id;
1606 Typ : Entity_Id;
1608 begin
1609 Par := Parent (N);
1611 -- Array may be qualified, so find outer context
1613 if Nkind (Par) = N_Qualified_Expression then
1614 Par := Parent (Par);
1615 end if;
1617 if not Comes_From_Source (Par) then
1618 return False;
1619 end if;
1621 case Nkind (Par) is
1622 when N_Assignment_Statement =>
1623 Typ := Etype (Name (Par));
1625 if not Is_Atomic_Or_VFA (Typ)
1626 and then not (Is_Entity_Name (Name (Par))
1627 and then Is_Atomic_Or_VFA (Entity (Name (Par))))
1628 then
1629 return False;
1630 end if;
1632 when N_Object_Declaration =>
1633 Typ := Etype (Defining_Identifier (Par));
1635 if not Is_Atomic_Or_VFA (Typ)
1636 and then not Is_Atomic_Or_VFA (Defining_Identifier (Par))
1637 then
1638 return False;
1639 end if;
1641 when others =>
1642 return False;
1643 end case;
1645 Temp := Make_Temporary (Loc, 'T', N);
1646 New_N :=
1647 Make_Object_Declaration (Loc,
1648 Defining_Identifier => Temp,
1649 Object_Definition => New_Occurrence_Of (Typ, Loc),
1650 Expression => Relocate_Node (N));
1651 Insert_Before (Par, New_N);
1652 Analyze (New_N);
1654 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1655 return True;
1656 end Is_Atomic_VFA_Aggregate;
1658 -----------------------------------------------
1659 -- Explode_Initialization_Compound_Statement --
1660 -----------------------------------------------
1662 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
1663 Init_Stmts : constant Node_Id := Initialization_Statements (E);
1665 begin
1666 if Present (Init_Stmts)
1667 and then Nkind (Init_Stmts) = N_Compound_Statement
1668 then
1669 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
1671 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1672 -- just removing it, because Freeze_All may rely on this particular
1673 -- Node_Id still being present in the enclosing list to know where to
1674 -- stop freezing.
1676 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
1678 Set_Initialization_Statements (E, Empty);
1679 end if;
1680 end Explode_Initialization_Compound_Statement;
1682 ----------------
1683 -- Freeze_All --
1684 ----------------
1686 -- Note: the easy coding for this procedure would be to just build a
1687 -- single list of freeze nodes and then insert them and analyze them
1688 -- all at once. This won't work, because the analysis of earlier freeze
1689 -- nodes may recursively freeze types which would otherwise appear later
1690 -- on in the freeze list. So we must analyze and expand the freeze nodes
1691 -- as they are generated.
1693 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1694 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1695 -- This is the internal recursive routine that does freezing of entities
1696 -- (but NOT the analysis of default expressions, which should not be
1697 -- recursive, we don't want to analyze those till we are sure that ALL
1698 -- the types are frozen).
1700 --------------------
1701 -- Freeze_All_Ent --
1702 --------------------
1704 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1705 E : Entity_Id;
1706 Flist : List_Id;
1707 Lastn : Node_Id;
1709 procedure Process_Flist;
1710 -- If freeze nodes are present, insert and analyze, and reset cursor
1711 -- for next insertion.
1713 -------------------
1714 -- Process_Flist --
1715 -------------------
1717 procedure Process_Flist is
1718 begin
1719 if Is_Non_Empty_List (Flist) then
1720 Lastn := Next (After);
1721 Insert_List_After_And_Analyze (After, Flist);
1723 if Present (Lastn) then
1724 After := Prev (Lastn);
1725 else
1726 After := Last (List_Containing (After));
1727 end if;
1728 end if;
1729 end Process_Flist;
1731 -- Start of processing for Freeze_All_Ent
1733 begin
1734 E := From;
1735 while Present (E) loop
1737 -- If the entity is an inner package which is not a package
1738 -- renaming, then its entities must be frozen at this point. Note
1739 -- that such entities do NOT get frozen at the end of the nested
1740 -- package itself (only library packages freeze).
1742 -- Same is true for task declarations, where anonymous records
1743 -- created for entry parameters must be frozen.
1745 if Ekind (E) = E_Package
1746 and then No (Renamed_Object (E))
1747 and then not Is_Child_Unit (E)
1748 and then not Is_Frozen (E)
1749 then
1750 Push_Scope (E);
1752 Install_Visible_Declarations (E);
1753 Install_Private_Declarations (E);
1754 Freeze_All (First_Entity (E), After);
1756 End_Package_Scope (E);
1758 if Is_Generic_Instance (E)
1759 and then Has_Delayed_Freeze (E)
1760 then
1761 Set_Has_Delayed_Freeze (E, False);
1762 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1763 end if;
1765 elsif Ekind (E) in Task_Kind
1766 and then Nkind_In (Parent (E), N_Single_Task_Declaration,
1767 N_Task_Type_Declaration)
1768 then
1769 Push_Scope (E);
1770 Freeze_All (First_Entity (E), After);
1771 End_Scope;
1773 -- For a derived tagged type, we must ensure that all the
1774 -- primitive operations of the parent have been frozen, so that
1775 -- their addresses will be in the parent's dispatch table at the
1776 -- point it is inherited.
1778 elsif Ekind (E) = E_Record_Type
1779 and then Is_Tagged_Type (E)
1780 and then Is_Tagged_Type (Etype (E))
1781 and then Is_Derived_Type (E)
1782 then
1783 declare
1784 Prim_List : constant Elist_Id :=
1785 Primitive_Operations (Etype (E));
1787 Prim : Elmt_Id;
1788 Subp : Entity_Id;
1790 begin
1791 Prim := First_Elmt (Prim_List);
1792 while Present (Prim) loop
1793 Subp := Node (Prim);
1795 if Comes_From_Source (Subp)
1796 and then not Is_Frozen (Subp)
1797 then
1798 Flist := Freeze_Entity (Subp, After);
1799 Process_Flist;
1800 end if;
1802 Next_Elmt (Prim);
1803 end loop;
1804 end;
1805 end if;
1807 if not Is_Frozen (E) then
1808 Flist := Freeze_Entity (E, After);
1809 Process_Flist;
1811 -- If already frozen, and there are delayed aspects, this is where
1812 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1813 -- for a description of how we handle aspect visibility).
1815 elsif Has_Delayed_Aspects (E) then
1817 -- Retrieve the visibility to the discriminants in order to
1818 -- analyze properly the aspects.
1820 Push_Scope_And_Install_Discriminants (E);
1822 declare
1823 Ritem : Node_Id;
1825 begin
1826 Ritem := First_Rep_Item (E);
1827 while Present (Ritem) loop
1828 if Nkind (Ritem) = N_Aspect_Specification
1829 and then Entity (Ritem) = E
1830 and then Is_Delayed_Aspect (Ritem)
1831 then
1832 Check_Aspect_At_End_Of_Declarations (Ritem);
1833 end if;
1835 Ritem := Next_Rep_Item (Ritem);
1836 end loop;
1837 end;
1839 Uninstall_Discriminants_And_Pop_Scope (E);
1840 end if;
1842 -- If an incomplete type is still not frozen, this may be a
1843 -- premature freezing because of a body declaration that follows.
1844 -- Indicate where the freezing took place. Freezing will happen
1845 -- if the body comes from source, but not if it is internally
1846 -- generated, for example as the body of a type invariant.
1848 -- If the freezing is caused by the end of the current declarative
1849 -- part, it is a Taft Amendment type, and there is no error.
1851 if not Is_Frozen (E)
1852 and then Ekind (E) = E_Incomplete_Type
1853 then
1854 declare
1855 Bod : constant Node_Id := Next (After);
1857 begin
1858 -- The presence of a body freezes all entities previously
1859 -- declared in the current list of declarations, but this
1860 -- does not apply if the body does not come from source.
1861 -- A type invariant is transformed into a subprogram body
1862 -- which is placed at the end of the private part of the
1863 -- current package, but this body does not freeze incomplete
1864 -- types that may be declared in this private part.
1866 if (Nkind_In (Bod, N_Entry_Body,
1867 N_Package_Body,
1868 N_Protected_Body,
1869 N_Subprogram_Body,
1870 N_Task_Body)
1871 or else Nkind (Bod) in N_Body_Stub)
1872 and then
1873 List_Containing (After) = List_Containing (Parent (E))
1874 and then Comes_From_Source (Bod)
1875 then
1876 Error_Msg_Sloc := Sloc (Next (After));
1877 Error_Msg_NE
1878 ("type& is frozen# before its full declaration",
1879 Parent (E), E);
1880 end if;
1881 end;
1882 end if;
1884 Next_Entity (E);
1885 end loop;
1886 end Freeze_All_Ent;
1888 -- Local variables
1890 Decl : Node_Id;
1891 E : Entity_Id;
1892 Item : Entity_Id;
1894 -- Start of processing for Freeze_All
1896 begin
1897 Freeze_All_Ent (From, After);
1899 -- Now that all types are frozen, we can deal with default expressions
1900 -- that require us to build a default expression functions. This is the
1901 -- point at which such functions are constructed (after all types that
1902 -- might be used in such expressions have been frozen).
1904 -- For subprograms that are renaming_as_body, we create the wrapper
1905 -- bodies as needed.
1907 -- We also add finalization chains to access types whose designated
1908 -- types are controlled. This is normally done when freezing the type,
1909 -- but this misses recursive type definitions where the later members
1910 -- of the recursion introduce controlled components.
1912 -- Loop through entities
1914 E := From;
1915 while Present (E) loop
1916 if Is_Subprogram (E) then
1917 if not Default_Expressions_Processed (E) then
1918 Process_Default_Expressions (E, After);
1919 end if;
1921 if not Has_Completion (E) then
1922 Decl := Unit_Declaration_Node (E);
1924 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1925 if Error_Posted (Decl) then
1926 Set_Has_Completion (E);
1927 else
1928 Build_And_Analyze_Renamed_Body (Decl, E, After);
1929 end if;
1931 elsif Nkind (Decl) = N_Subprogram_Declaration
1932 and then Present (Corresponding_Body (Decl))
1933 and then
1934 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) =
1935 N_Subprogram_Renaming_Declaration
1936 then
1937 Build_And_Analyze_Renamed_Body
1938 (Decl, Corresponding_Body (Decl), After);
1939 end if;
1940 end if;
1942 -- Freeze the default expressions of entries, entry families, and
1943 -- protected subprograms.
1945 elsif Is_Concurrent_Type (E) then
1946 Item := First_Entity (E);
1947 while Present (Item) loop
1948 if (Is_Entry (Item) or else Is_Subprogram (Item))
1949 and then not Default_Expressions_Processed (Item)
1950 then
1951 Process_Default_Expressions (Item, After);
1952 end if;
1954 Next_Entity (Item);
1955 end loop;
1956 end if;
1958 -- Historical note: We used to create a finalization master for an
1959 -- access type whose designated type is not controlled, but contains
1960 -- private controlled compoments. This form of postprocessing is no
1961 -- longer needed because the finalization master is now created when
1962 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
1964 Next_Entity (E);
1965 end loop;
1966 end Freeze_All;
1968 -----------------------
1969 -- Freeze_And_Append --
1970 -----------------------
1972 procedure Freeze_And_Append
1973 (Ent : Entity_Id;
1974 N : Node_Id;
1975 Result : in out List_Id)
1977 L : constant List_Id := Freeze_Entity (Ent, N);
1978 begin
1979 if Is_Non_Empty_List (L) then
1980 if Result = No_List then
1981 Result := L;
1982 else
1983 Append_List (L, Result);
1984 end if;
1985 end if;
1986 end Freeze_And_Append;
1988 -------------------
1989 -- Freeze_Before --
1990 -------------------
1992 procedure Freeze_Before
1993 (N : Node_Id;
1994 T : Entity_Id;
1995 Do_Freeze_Profile : Boolean := True)
1997 -- Freeze T, then insert the generated Freeze nodes before the node N.
1998 -- Flag Freeze_Profile is used when T is an overloadable entity, and
1999 -- indicates whether its profile should be frozen at the same time.
2001 Freeze_Nodes : constant List_Id :=
2002 Freeze_Entity (T, N, Do_Freeze_Profile);
2004 begin
2005 if Ekind (T) = E_Function then
2006 Check_Expression_Function (N, T);
2007 end if;
2009 if Is_Non_Empty_List (Freeze_Nodes) then
2010 Insert_Actions (N, Freeze_Nodes);
2011 end if;
2012 end Freeze_Before;
2014 -------------------
2015 -- Freeze_Entity --
2016 -------------------
2018 -- WARNING: This routine manages Ghost regions. Return statements must be
2019 -- replaced by gotos which jump to the end of the routine and restore the
2020 -- Ghost mode.
2022 function Freeze_Entity
2023 (E : Entity_Id;
2024 N : Node_Id;
2025 Do_Freeze_Profile : Boolean := True) return List_Id
2027 Loc : constant Source_Ptr := Sloc (N);
2028 Atype : Entity_Id;
2029 Comp : Entity_Id;
2030 F_Node : Node_Id;
2031 Formal : Entity_Id;
2032 Indx : Node_Id;
2034 Has_Default_Initialization : Boolean := False;
2035 -- This flag gets set to true for a variable with default initialization
2037 Result : List_Id := No_List;
2038 -- List of freezing actions, left at No_List if none
2040 Test_E : Entity_Id := E;
2041 -- This could use a comment ???
2043 procedure Add_To_Result (N : Node_Id);
2044 -- N is a freezing action to be appended to the Result
2046 function After_Last_Declaration return Boolean;
2047 -- If Loc is a freeze_entity that appears after the last declaration
2048 -- in the scope, inhibit error messages on late completion.
2050 procedure Check_Current_Instance (Comp_Decl : Node_Id);
2051 -- Check that an Access or Unchecked_Access attribute with a prefix
2052 -- which is the current instance type can only be applied when the type
2053 -- is limited.
2055 procedure Check_Suspicious_Convention (Rec_Type : Entity_Id);
2056 -- Give a warning for pragma Convention with language C or C++ applied
2057 -- to a discriminated record type. This is suppressed for the unchecked
2058 -- union case, since the whole point in this case is interface C. We
2059 -- also do not generate this within instantiations, since we will have
2060 -- generated a message on the template.
2062 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
2063 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
2064 -- integer literal without an explicit corresponding size clause. The
2065 -- caller has checked that Utype is a modular integer type.
2067 procedure Freeze_Array_Type (Arr : Entity_Id);
2068 -- Freeze array type, including freezing index and component types
2070 procedure Freeze_Object_Declaration (E : Entity_Id);
2071 -- Perform checks and generate freeze node if needed for a constant or
2072 -- variable declared by an object declaration.
2074 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
2075 -- Create Freeze_Generic_Entity nodes for types declared in a generic
2076 -- package. Recurse on inner generic packages.
2078 function Freeze_Profile (E : Entity_Id) return Boolean;
2079 -- Freeze formals and return type of subprogram. If some type in the
2080 -- profile is incomplete and we are in an instance, freezing of the
2081 -- entity will take place elsewhere, and the function returns False.
2083 procedure Freeze_Record_Type (Rec : Entity_Id);
2084 -- Freeze record type, including freezing component types, and freezing
2085 -- primitive operations if this is a tagged type.
2087 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
2088 -- Determine whether an arbitrary entity is subject to Boolean aspect
2089 -- Import and its value is specified as True.
2091 procedure Inherit_Freeze_Node
2092 (Fnod : Node_Id;
2093 Typ : Entity_Id);
2094 -- Set type Typ's freeze node to refer to Fnode. This routine ensures
2095 -- that any attributes attached to Typ's original node are preserved.
2097 procedure Wrap_Imported_Subprogram (E : Entity_Id);
2098 -- If E is an entity for an imported subprogram with pre/post-conditions
2099 -- then this procedure will create a wrapper to ensure that proper run-
2100 -- time checking of the pre/postconditions. See body for details.
2102 -------------------
2103 -- Add_To_Result --
2104 -------------------
2106 procedure Add_To_Result (N : Node_Id) is
2107 begin
2108 if No (Result) then
2109 Result := New_List (N);
2110 else
2111 Append (N, Result);
2112 end if;
2113 end Add_To_Result;
2115 ----------------------------
2116 -- After_Last_Declaration --
2117 ----------------------------
2119 function After_Last_Declaration return Boolean is
2120 Spec : constant Node_Id := Parent (Current_Scope);
2122 begin
2123 if Nkind (Spec) = N_Package_Specification then
2124 if Present (Private_Declarations (Spec)) then
2125 return Loc >= Sloc (Last (Private_Declarations (Spec)));
2126 elsif Present (Visible_Declarations (Spec)) then
2127 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
2128 else
2129 return False;
2130 end if;
2132 else
2133 return False;
2134 end if;
2135 end After_Last_Declaration;
2137 ----------------------------
2138 -- Check_Current_Instance --
2139 ----------------------------
2141 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
2143 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
2144 -- Determine whether Typ is compatible with the rules for aliased
2145 -- views of types as defined in RM 3.10 in the various dialects.
2147 function Process (N : Node_Id) return Traverse_Result;
2148 -- Process routine to apply check to given node
2150 -----------------------------
2151 -- Is_Aliased_View_Of_Type --
2152 -----------------------------
2154 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
2155 Typ_Decl : constant Node_Id := Parent (Typ);
2157 begin
2158 -- Common case
2160 if Nkind (Typ_Decl) = N_Full_Type_Declaration
2161 and then Limited_Present (Type_Definition (Typ_Decl))
2162 then
2163 return True;
2165 -- The following paragraphs describe what a legal aliased view of
2166 -- a type is in the various dialects of Ada.
2168 -- Ada 95
2170 -- The current instance of a limited type, and a formal parameter
2171 -- or generic formal object of a tagged type.
2173 -- Ada 95 limited type
2174 -- * Type with reserved word "limited"
2175 -- * A protected or task type
2176 -- * A composite type with limited component
2178 elsif Ada_Version <= Ada_95 then
2179 return Is_Limited_Type (Typ);
2181 -- Ada 2005
2183 -- The current instance of a limited tagged type, a protected
2184 -- type, a task type, or a type that has the reserved word
2185 -- "limited" in its full definition ... a formal parameter or
2186 -- generic formal object of a tagged type.
2188 -- Ada 2005 limited type
2189 -- * Type with reserved word "limited", "synchronized", "task"
2190 -- or "protected"
2191 -- * A composite type with limited component
2192 -- * A derived type whose parent is a non-interface limited type
2194 elsif Ada_Version = Ada_2005 then
2195 return
2196 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
2197 or else
2198 (Is_Derived_Type (Typ)
2199 and then not Is_Interface (Etype (Typ))
2200 and then Is_Limited_Type (Etype (Typ)));
2202 -- Ada 2012 and beyond
2204 -- The current instance of an immutably limited type ... a formal
2205 -- parameter or generic formal object of a tagged type.
2207 -- Ada 2012 limited type
2208 -- * Type with reserved word "limited", "synchronized", "task"
2209 -- or "protected"
2210 -- * A composite type with limited component
2211 -- * A derived type whose parent is a non-interface limited type
2212 -- * An incomplete view
2214 -- Ada 2012 immutably limited type
2215 -- * Explicitly limited record type
2216 -- * Record extension with "limited" present
2217 -- * Non-formal limited private type that is either tagged
2218 -- or has at least one access discriminant with a default
2219 -- expression
2220 -- * Task type, protected type or synchronized interface
2221 -- * Type derived from immutably limited type
2223 else
2224 return
2225 Is_Immutably_Limited_Type (Typ)
2226 or else Is_Incomplete_Type (Typ);
2227 end if;
2228 end Is_Aliased_View_Of_Type;
2230 -------------
2231 -- Process --
2232 -------------
2234 function Process (N : Node_Id) return Traverse_Result is
2235 begin
2236 case Nkind (N) is
2237 when N_Attribute_Reference =>
2238 if Nam_In (Attribute_Name (N), Name_Access,
2239 Name_Unchecked_Access)
2240 and then Is_Entity_Name (Prefix (N))
2241 and then Is_Type (Entity (Prefix (N)))
2242 and then Entity (Prefix (N)) = E
2243 then
2244 if Ada_Version < Ada_2012 then
2245 Error_Msg_N
2246 ("current instance must be a limited type",
2247 Prefix (N));
2248 else
2249 Error_Msg_N
2250 ("current instance must be an immutably limited "
2251 & "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
2252 end if;
2254 return Abandon;
2256 else
2257 return OK;
2258 end if;
2260 when others =>
2261 return OK;
2262 end case;
2263 end Process;
2265 procedure Traverse is new Traverse_Proc (Process);
2267 -- Local variables
2269 Rec_Type : constant Entity_Id :=
2270 Scope (Defining_Identifier (Comp_Decl));
2272 -- Start of processing for Check_Current_Instance
2274 begin
2275 if not Is_Aliased_View_Of_Type (Rec_Type) then
2276 Traverse (Comp_Decl);
2277 end if;
2278 end Check_Current_Instance;
2280 ---------------------------------
2281 -- Check_Suspicious_Convention --
2282 ---------------------------------
2284 procedure Check_Suspicious_Convention (Rec_Type : Entity_Id) is
2285 begin
2286 if Has_Discriminants (Rec_Type)
2287 and then Is_Base_Type (Rec_Type)
2288 and then not Is_Unchecked_Union (Rec_Type)
2289 and then (Convention (Rec_Type) = Convention_C
2290 or else
2291 Convention (Rec_Type) = Convention_CPP)
2292 and then Comes_From_Source (Rec_Type)
2293 and then not In_Instance
2294 and then not Has_Warnings_Off (Rec_Type)
2295 then
2296 declare
2297 Cprag : constant Node_Id :=
2298 Get_Rep_Pragma (Rec_Type, Name_Convention);
2299 A2 : Node_Id;
2301 begin
2302 if Present (Cprag) then
2303 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2305 if Convention (Rec_Type) = Convention_C then
2306 Error_Msg_N
2307 ("?x?discriminated record has no direct equivalent in "
2308 & "C", A2);
2309 else
2310 Error_Msg_N
2311 ("?x?discriminated record has no direct equivalent in "
2312 & "C++", A2);
2313 end if;
2315 Error_Msg_NE
2316 ("\?x?use of convention for type& is dubious",
2317 A2, Rec_Type);
2318 end if;
2319 end;
2320 end if;
2321 end Check_Suspicious_Convention;
2323 ------------------------------
2324 -- Check_Suspicious_Modulus --
2325 ------------------------------
2327 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
2328 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
2330 begin
2331 if not Warn_On_Suspicious_Modulus_Value then
2332 return;
2333 end if;
2335 if Nkind (Decl) = N_Full_Type_Declaration then
2336 declare
2337 Tdef : constant Node_Id := Type_Definition (Decl);
2339 begin
2340 if Nkind (Tdef) = N_Modular_Type_Definition then
2341 declare
2342 Modulus : constant Node_Id :=
2343 Original_Node (Expression (Tdef));
2345 begin
2346 if Nkind (Modulus) = N_Integer_Literal then
2347 declare
2348 Modv : constant Uint := Intval (Modulus);
2349 Sizv : constant Uint := RM_Size (Utype);
2351 begin
2352 -- First case, modulus and size are the same. This
2353 -- happens if you have something like mod 32, with
2354 -- an explicit size of 32, this is for sure a case
2355 -- where the warning is given, since it is seems
2356 -- very unlikely that someone would want e.g. a
2357 -- five bit type stored in 32 bits. It is much
2358 -- more likely they wanted a 32-bit type.
2360 if Modv = Sizv then
2361 null;
2363 -- Second case, the modulus is 32 or 64 and no
2364 -- size clause is present. This is a less clear
2365 -- case for giving the warning, but in the case
2366 -- of 32/64 (5-bit or 6-bit types) these seem rare
2367 -- enough that it is a likely error (and in any
2368 -- case using 2**5 or 2**6 in these cases seems
2369 -- clearer. We don't include 8 or 16 here, simply
2370 -- because in practice 3-bit and 4-bit types are
2371 -- more common and too many false positives if
2372 -- we warn in these cases.
2374 elsif not Has_Size_Clause (Utype)
2375 and then (Modv = Uint_32 or else Modv = Uint_64)
2376 then
2377 null;
2379 -- No warning needed
2381 else
2382 return;
2383 end if;
2385 -- If we fall through, give warning
2387 Error_Msg_Uint_1 := Modv;
2388 Error_Msg_N
2389 ("?M?2 '*'*^' may have been intended here",
2390 Modulus);
2391 end;
2392 end if;
2393 end;
2394 end if;
2395 end;
2396 end if;
2397 end Check_Suspicious_Modulus;
2399 -----------------------
2400 -- Freeze_Array_Type --
2401 -----------------------
2403 procedure Freeze_Array_Type (Arr : Entity_Id) is
2404 FS : constant Entity_Id := First_Subtype (Arr);
2405 Ctyp : constant Entity_Id := Component_Type (Arr);
2406 Clause : Entity_Id;
2408 Non_Standard_Enum : Boolean := False;
2409 -- Set true if any of the index types is an enumeration type with a
2410 -- non-standard representation.
2412 begin
2413 Freeze_And_Append (Ctyp, N, Result);
2415 Indx := First_Index (Arr);
2416 while Present (Indx) loop
2417 Freeze_And_Append (Etype (Indx), N, Result);
2419 if Is_Enumeration_Type (Etype (Indx))
2420 and then Has_Non_Standard_Rep (Etype (Indx))
2421 then
2422 Non_Standard_Enum := True;
2423 end if;
2425 Next_Index (Indx);
2426 end loop;
2428 -- Processing that is done only for base types
2430 if Ekind (Arr) = E_Array_Type then
2432 -- Deal with default setting of reverse storage order
2434 Set_SSO_From_Default (Arr);
2436 -- Propagate flags for component type
2438 if Is_Controlled_Active (Component_Type (Arr))
2439 or else Has_Controlled_Component (Ctyp)
2440 then
2441 Set_Has_Controlled_Component (Arr);
2442 end if;
2444 if Has_Unchecked_Union (Component_Type (Arr)) then
2445 Set_Has_Unchecked_Union (Arr);
2446 end if;
2448 -- The array type requires its own invariant procedure in order to
2449 -- verify the component invariant over all elements. In GNATprove
2450 -- mode, the component invariants are checked by other means. They
2451 -- should not be added to the array type invariant procedure, so
2452 -- that the procedure can be used to check the array type
2453 -- invariants if any.
2455 if Has_Invariants (Component_Type (Arr))
2456 and then not GNATprove_Mode
2457 then
2458 Set_Has_Own_Invariants (Arr);
2460 -- The array type is an implementation base type. Propagate the
2461 -- same property to the first subtype.
2463 if Is_Itype (Arr) then
2464 Set_Has_Own_Invariants (First_Subtype (Arr));
2465 end if;
2466 end if;
2468 -- Warn for pragma Pack overriding foreign convention
2470 if Has_Foreign_Convention (Ctyp)
2471 and then Has_Pragma_Pack (Arr)
2472 then
2473 declare
2474 CN : constant Name_Id :=
2475 Get_Convention_Name (Convention (Ctyp));
2476 PP : constant Node_Id :=
2477 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2478 begin
2479 if Present (PP) then
2480 Error_Msg_Name_1 := CN;
2481 Error_Msg_Sloc := Sloc (Arr);
2482 Error_Msg_N
2483 ("pragma Pack affects convention % components #??", PP);
2484 Error_Msg_Name_1 := CN;
2485 Error_Msg_N
2486 ("\array components may not have % compatible "
2487 & "representation??", PP);
2488 end if;
2489 end;
2490 end if;
2492 -- If packing was requested or if the component size was
2493 -- set explicitly, then see if bit packing is required. This
2494 -- processing is only done for base types, since all of the
2495 -- representation aspects involved are type-related.
2497 -- This is not just an optimization, if we start processing the
2498 -- subtypes, they interfere with the settings on the base type
2499 -- (this is because Is_Packed has a slightly different meaning
2500 -- before and after freezing).
2502 declare
2503 Csiz : Uint;
2504 Esiz : Uint;
2506 begin
2507 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2508 and then Known_Static_RM_Size (Ctyp)
2509 and then not Has_Component_Size_Clause (Arr)
2510 then
2511 Csiz := UI_Max (RM_Size (Ctyp), 1);
2513 elsif Known_Component_Size (Arr) then
2514 Csiz := Component_Size (Arr);
2516 elsif not Known_Static_Esize (Ctyp) then
2517 Csiz := Uint_0;
2519 else
2520 Esiz := Esize (Ctyp);
2522 -- We can set the component size if it is less than 16,
2523 -- rounding it up to the next storage unit size.
2525 if Esiz <= 8 then
2526 Csiz := Uint_8;
2527 elsif Esiz <= 16 then
2528 Csiz := Uint_16;
2529 else
2530 Csiz := Uint_0;
2531 end if;
2533 -- Set component size up to match alignment if it would
2534 -- otherwise be less than the alignment. This deals with
2535 -- cases of types whose alignment exceeds their size (the
2536 -- padded type cases).
2538 if Csiz /= 0 then
2539 declare
2540 A : constant Uint := Alignment_In_Bits (Ctyp);
2541 begin
2542 if Csiz < A then
2543 Csiz := A;
2544 end if;
2545 end;
2546 end if;
2547 end if;
2549 -- Case of component size that may result in bit packing
2551 if 1 <= Csiz and then Csiz <= 64 then
2552 declare
2553 Ent : constant Entity_Id :=
2554 First_Subtype (Arr);
2555 Pack_Pragma : constant Node_Id :=
2556 Get_Rep_Pragma (Ent, Name_Pack);
2557 Comp_Size_C : constant Node_Id :=
2558 Get_Attribute_Definition_Clause
2559 (Ent, Attribute_Component_Size);
2561 begin
2562 -- Warn if we have pack and component size so that the
2563 -- pack is ignored.
2565 -- Note: here we must check for the presence of a
2566 -- component size before checking for a Pack pragma to
2567 -- deal with the case where the array type is a derived
2568 -- type whose parent is currently private.
2570 if Present (Comp_Size_C)
2571 and then Has_Pragma_Pack (Ent)
2572 and then Warn_On_Redundant_Constructs
2573 then
2574 Error_Msg_Sloc := Sloc (Comp_Size_C);
2575 Error_Msg_NE
2576 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
2577 Error_Msg_N
2578 ("\?r?explicit component size given#!", Pack_Pragma);
2579 Set_Is_Packed (Base_Type (Ent), False);
2580 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2581 end if;
2583 -- Set component size if not already set by a component
2584 -- size clause.
2586 if not Present (Comp_Size_C) then
2587 Set_Component_Size (Arr, Csiz);
2588 end if;
2590 -- Check for base type of 8, 16, 32 bits, where an
2591 -- unsigned subtype has a length one less than the
2592 -- base type (e.g. Natural subtype of Integer).
2594 -- In such cases, if a component size was not set
2595 -- explicitly, then generate a warning.
2597 if Has_Pragma_Pack (Arr)
2598 and then not Present (Comp_Size_C)
2599 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2600 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2601 then
2602 Error_Msg_Uint_1 := Csiz;
2604 if Present (Pack_Pragma) then
2605 Error_Msg_N
2606 ("??pragma Pack causes component size to be ^!",
2607 Pack_Pragma);
2608 Error_Msg_N
2609 ("\??use Component_Size to set desired value!",
2610 Pack_Pragma);
2611 end if;
2612 end if;
2614 -- Bit packing is never needed for 8, 16, 32, 64
2616 if Addressable (Csiz) then
2618 -- If the Esize of the component is known and equal to
2619 -- the component size then even packing is not needed.
2621 if Known_Static_Esize (Component_Type (Arr))
2622 and then Esize (Component_Type (Arr)) = Csiz
2623 then
2624 -- Here the array was requested to be packed, but
2625 -- the packing request had no effect whatsoever,
2626 -- so flag Is_Packed is reset.
2628 -- Note: semantically this means that we lose track
2629 -- of the fact that a derived type inherited pragma
2630 -- Pack that was non-effective, but that is fine.
2632 -- We regard a Pack pragma as a request to set a
2633 -- representation characteristic, and this request
2634 -- may be ignored.
2636 Set_Is_Packed (Base_Type (Arr), False);
2637 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
2638 else
2639 Set_Is_Packed (Base_Type (Arr), True);
2640 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2641 end if;
2643 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2645 -- Bit packing is not needed for multiples of the storage
2646 -- unit if the type is composite because the back end can
2647 -- byte pack composite types.
2649 elsif Csiz mod System_Storage_Unit = 0
2650 and then Is_Composite_Type (Ctyp)
2651 then
2653 Set_Is_Packed (Base_Type (Arr), True);
2654 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2655 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2657 -- In all other cases, bit packing is needed
2659 else
2660 Set_Is_Packed (Base_Type (Arr), True);
2661 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2662 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2663 end if;
2664 end;
2665 end if;
2666 end;
2668 -- Check for Aliased or Atomic_Components/Atomic/VFA with
2669 -- unsuitable packing or explicit component size clause given.
2671 if (Has_Aliased_Components (Arr)
2672 or else Has_Atomic_Components (Arr)
2673 or else Is_Atomic_Or_VFA (Ctyp))
2674 and then
2675 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2676 then
2677 Alias_Atomic_Check : declare
2679 procedure Complain_CS (T : String);
2680 -- Outputs error messages for incorrect CS clause or pragma
2681 -- Pack for aliased or atomic/VFA components (T is "aliased"
2682 -- or "atomic/vfa");
2684 -----------------
2685 -- Complain_CS --
2686 -----------------
2688 procedure Complain_CS (T : String) is
2689 begin
2690 if Has_Component_Size_Clause (Arr) then
2691 Clause :=
2692 Get_Attribute_Definition_Clause
2693 (FS, Attribute_Component_Size);
2695 Error_Msg_N
2696 ("incorrect component size for "
2697 & T & " components", Clause);
2698 Error_Msg_Uint_1 := Esize (Ctyp);
2699 Error_Msg_N
2700 ("\only allowed value is^", Clause);
2702 else
2703 Error_Msg_N
2704 ("cannot pack " & T & " components",
2705 Get_Rep_Pragma (FS, Name_Pack));
2706 end if;
2707 end Complain_CS;
2709 -- Start of processing for Alias_Atomic_Check
2711 begin
2712 -- If object size of component type isn't known, we cannot
2713 -- be sure so we defer to the back end.
2715 if not Known_Static_Esize (Ctyp) then
2716 null;
2718 -- Case where component size has no effect. First check for
2719 -- object size of component type multiple of the storage
2720 -- unit size.
2722 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2724 -- OK in both packing case and component size case if RM
2725 -- size is known and static and same as the object size.
2727 and then
2728 ((Known_Static_RM_Size (Ctyp)
2729 and then Esize (Ctyp) = RM_Size (Ctyp))
2731 -- Or if we have an explicit component size clause and
2732 -- the component size and object size are equal.
2734 or else
2735 (Has_Component_Size_Clause (Arr)
2736 and then Component_Size (Arr) = Esize (Ctyp)))
2737 then
2738 null;
2740 elsif Has_Aliased_Components (Arr) then
2741 Complain_CS ("aliased");
2743 elsif Has_Atomic_Components (Arr)
2744 or else Is_Atomic (Ctyp)
2745 then
2746 Complain_CS ("atomic");
2748 elsif Is_Volatile_Full_Access (Ctyp) then
2749 Complain_CS ("volatile full access");
2750 end if;
2751 end Alias_Atomic_Check;
2752 end if;
2754 -- Check for Independent_Components/Independent with unsuitable
2755 -- packing or explicit component size clause given.
2757 if (Has_Independent_Components (Arr) or else Is_Independent (Ctyp))
2758 and then
2759 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2760 then
2761 begin
2762 -- If object size of component type isn't known, we cannot
2763 -- be sure so we defer to the back end.
2765 if not Known_Static_Esize (Ctyp) then
2766 null;
2768 -- Case where component size has no effect. First check for
2769 -- object size of component type multiple of the storage
2770 -- unit size.
2772 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2774 -- OK in both packing case and component size case if RM
2775 -- size is known and multiple of the storage unit size.
2777 and then
2778 ((Known_Static_RM_Size (Ctyp)
2779 and then RM_Size (Ctyp) mod System_Storage_Unit = 0)
2781 -- Or if we have an explicit component size clause and
2782 -- the component size is larger than the object size.
2784 or else
2785 (Has_Component_Size_Clause (Arr)
2786 and then Component_Size (Arr) >= Esize (Ctyp)))
2787 then
2788 null;
2790 else
2791 if Has_Component_Size_Clause (Arr) then
2792 Clause :=
2793 Get_Attribute_Definition_Clause
2794 (FS, Attribute_Component_Size);
2796 Error_Msg_N
2797 ("incorrect component size for "
2798 & "independent components", Clause);
2799 Error_Msg_Uint_1 := Esize (Ctyp);
2800 Error_Msg_N
2801 ("\minimum allowed is^", Clause);
2803 else
2804 Error_Msg_N
2805 ("cannot pack independent components",
2806 Get_Rep_Pragma (FS, Name_Pack));
2807 end if;
2808 end if;
2809 end;
2810 end if;
2812 -- Warn for case of atomic type
2814 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2816 if Present (Clause)
2817 and then not Addressable (Component_Size (FS))
2818 then
2819 Error_Msg_NE
2820 ("non-atomic components of type& may not be "
2821 & "accessible by separate tasks??", Clause, Arr);
2823 if Has_Component_Size_Clause (Arr) then
2824 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2825 (FS, Attribute_Component_Size));
2826 Error_Msg_N ("\because of component size clause#??", Clause);
2828 elsif Has_Pragma_Pack (Arr) then
2829 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2830 Error_Msg_N ("\because of pragma Pack#??", Clause);
2831 end if;
2832 end if;
2834 -- Check for scalar storage order
2836 declare
2837 Dummy : Boolean;
2838 begin
2839 Check_Component_Storage_Order
2840 (Encl_Type => Arr,
2841 Comp => Empty,
2842 ADC => Get_Attribute_Definition_Clause
2843 (First_Subtype (Arr),
2844 Attribute_Scalar_Storage_Order),
2845 Comp_ADC_Present => Dummy);
2846 end;
2848 -- Processing that is done only for subtypes
2850 else
2851 -- Acquire alignment from base type
2853 if Unknown_Alignment (Arr) then
2854 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2855 Adjust_Esize_Alignment (Arr);
2856 end if;
2857 end if;
2859 -- Specific checks for bit-packed arrays
2861 if Is_Bit_Packed_Array (Arr) then
2863 -- Check number of elements for bit-packed arrays that come from
2864 -- source and have compile time known ranges. The bit-packed
2865 -- arrays circuitry does not support arrays with more than
2866 -- Integer'Last + 1 elements, and when this restriction is
2867 -- violated, causes incorrect data access.
2869 -- For the case where this is not compile time known, a run-time
2870 -- check should be generated???
2872 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
2873 declare
2874 Elmts : Uint;
2875 Index : Node_Id;
2876 Ilen : Node_Id;
2877 Ityp : Entity_Id;
2879 begin
2880 Elmts := Uint_1;
2881 Index := First_Index (Arr);
2882 while Present (Index) loop
2883 Ityp := Etype (Index);
2885 -- Never generate an error if any index is of a generic
2886 -- type. We will check this in instances.
2888 if Is_Generic_Type (Ityp) then
2889 Elmts := Uint_0;
2890 exit;
2891 end if;
2893 Ilen :=
2894 Make_Attribute_Reference (Loc,
2895 Prefix => New_Occurrence_Of (Ityp, Loc),
2896 Attribute_Name => Name_Range_Length);
2897 Analyze_And_Resolve (Ilen);
2899 -- No attempt is made to check number of elements if not
2900 -- compile time known.
2902 if Nkind (Ilen) /= N_Integer_Literal then
2903 Elmts := Uint_0;
2904 exit;
2905 end if;
2907 Elmts := Elmts * Intval (Ilen);
2908 Next_Index (Index);
2909 end loop;
2911 if Elmts > Intval (High_Bound
2912 (Scalar_Range (Standard_Integer))) + 1
2913 then
2914 Error_Msg_N
2915 ("bit packed array type may not have "
2916 & "more than Integer''Last+1 elements", Arr);
2917 end if;
2918 end;
2919 end if;
2921 -- Check size
2923 if Known_RM_Size (Arr) then
2924 declare
2925 SizC : constant Node_Id := Size_Clause (Arr);
2926 Discard : Boolean;
2928 begin
2929 -- It is not clear if it is possible to have no size clause
2930 -- at this stage, but it is not worth worrying about. Post
2931 -- error on the entity name in the size clause if present,
2932 -- else on the type entity itself.
2934 if Present (SizC) then
2935 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
2936 else
2937 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
2938 end if;
2939 end;
2940 end if;
2941 end if;
2943 -- If any of the index types was an enumeration type with a non-
2944 -- standard rep clause, then we indicate that the array type is
2945 -- always packed (even if it is not bit-packed).
2947 if Non_Standard_Enum then
2948 Set_Has_Non_Standard_Rep (Base_Type (Arr));
2949 Set_Is_Packed (Base_Type (Arr));
2950 end if;
2952 Set_Component_Alignment_If_Not_Set (Arr);
2954 -- If the array is packed and bit-packed or packed to eliminate holes
2955 -- in the non-contiguous enumeration index types, we must create the
2956 -- packed array type to be used to actually implement the type. This
2957 -- is only needed for real array types (not for string literal types,
2958 -- since they are present only for the front end).
2960 if Is_Packed (Arr)
2961 and then (Is_Bit_Packed_Array (Arr) or else Non_Standard_Enum)
2962 and then Ekind (Arr) /= E_String_Literal_Subtype
2963 then
2964 Create_Packed_Array_Impl_Type (Arr);
2965 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
2967 -- Make sure that we have the necessary routines to implement the
2968 -- packing, and complain now if not. Note that we only test this
2969 -- for constrained array types.
2971 if Is_Constrained (Arr)
2972 and then Is_Bit_Packed_Array (Arr)
2973 and then Present (Packed_Array_Impl_Type (Arr))
2974 and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
2975 then
2976 declare
2977 CS : constant Uint := Component_Size (Arr);
2978 RE : constant RE_Id := Get_Id (UI_To_Int (CS));
2980 begin
2981 if RE /= RE_Null
2982 and then not RTE_Available (RE)
2983 then
2984 Error_Msg_CRT
2985 ("packing of " & UI_Image (CS) & "-bit components",
2986 First_Subtype (Etype (Arr)));
2988 -- Cancel the packing
2990 Set_Is_Packed (Base_Type (Arr), False);
2991 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2992 Set_Packed_Array_Impl_Type (Arr, Empty);
2993 goto Skip_Packed;
2994 end if;
2995 end;
2996 end if;
2998 -- Size information of packed array type is copied to the array
2999 -- type, since this is really the representation. But do not
3000 -- override explicit existing size values. If the ancestor subtype
3001 -- is constrained the Packed_Array_Impl_Type will be inherited
3002 -- from it, but the size may have been provided already, and
3003 -- must not be overridden either.
3005 if not Has_Size_Clause (Arr)
3006 and then
3007 (No (Ancestor_Subtype (Arr))
3008 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
3009 then
3010 Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
3011 Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
3012 end if;
3014 if not Has_Alignment_Clause (Arr) then
3015 Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
3016 end if;
3017 end if;
3019 <<Skip_Packed>>
3021 -- For non-packed arrays set the alignment of the array to the
3022 -- alignment of the component type if it is unknown. Skip this
3023 -- in atomic/VFA case (atomic/VFA arrays may need larger alignments).
3025 if not Is_Packed (Arr)
3026 and then Unknown_Alignment (Arr)
3027 and then Known_Alignment (Ctyp)
3028 and then Known_Static_Component_Size (Arr)
3029 and then Known_Static_Esize (Ctyp)
3030 and then Esize (Ctyp) = Component_Size (Arr)
3031 and then not Is_Atomic_Or_VFA (Arr)
3032 then
3033 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
3034 end if;
3036 -- A Ghost type cannot have a component of protected or task type
3037 -- (SPARK RM 6.9(19)).
3039 if Is_Ghost_Entity (Arr) and then Is_Concurrent_Type (Ctyp) then
3040 Error_Msg_N
3041 ("ghost array type & cannot have concurrent component type",
3042 Arr);
3043 end if;
3044 end Freeze_Array_Type;
3046 -------------------------------
3047 -- Freeze_Object_Declaration --
3048 -------------------------------
3050 procedure Freeze_Object_Declaration (E : Entity_Id) is
3051 begin
3052 -- Abstract type allowed only for C++ imported variables or constants
3054 -- Note: we inhibit this check for objects that do not come from
3055 -- source because there is at least one case (the expansion of
3056 -- x'Class'Input where x is abstract) where we legitimately
3057 -- generate an abstract object.
3059 if Is_Abstract_Type (Etype (E))
3060 and then Comes_From_Source (Parent (E))
3061 and then not (Is_Imported (E) and then Is_CPP_Class (Etype (E)))
3062 then
3063 Error_Msg_N ("type of object cannot be abstract",
3064 Object_Definition (Parent (E)));
3066 if Is_CPP_Class (Etype (E)) then
3067 Error_Msg_NE
3068 ("\} may need a cpp_constructor",
3069 Object_Definition (Parent (E)), Etype (E));
3071 elsif Present (Expression (Parent (E))) then
3072 Error_Msg_N -- CODEFIX
3073 ("\maybe a class-wide type was meant",
3074 Object_Definition (Parent (E)));
3075 end if;
3076 end if;
3078 -- For object created by object declaration, perform required
3079 -- categorization (preelaborate and pure) checks. Defer these
3080 -- checks to freeze time since pragma Import inhibits default
3081 -- initialization and thus pragma Import affects these checks.
3083 Validate_Object_Declaration (Declaration_Node (E));
3085 -- If there is an address clause, check that it is valid
3086 -- and if need be move initialization to the freeze node.
3088 Check_Address_Clause (E);
3090 -- Similar processing is needed for aspects that may affect
3091 -- object layout, like Alignment, if there is an initialization
3092 -- expression.
3094 if Has_Delayed_Aspects (E)
3095 and then Expander_Active
3096 and then Is_Array_Type (Etype (E))
3097 and then Present (Expression (Parent (E)))
3098 then
3099 declare
3100 Decl : constant Node_Id := Parent (E);
3101 Lhs : constant Node_Id := New_Occurrence_Of (E, Loc);
3103 begin
3105 -- Capture initialization value at point of declaration, and
3106 -- make explicit assignment legal, because object may be a
3107 -- constant.
3109 Remove_Side_Effects (Expression (Decl));
3110 Set_Assignment_OK (Lhs);
3112 -- Move initialization to freeze actions.
3114 Append_Freeze_Action (E,
3115 Make_Assignment_Statement (Loc,
3116 Name => Lhs,
3117 Expression => Expression (Decl)));
3119 Set_No_Initialization (Decl);
3120 -- Set_Is_Frozen (E, False);
3121 end;
3122 end if;
3124 -- Reset Is_True_Constant for non-constant aliased object. We
3125 -- consider that the fact that a non-constant object is aliased may
3126 -- indicate that some funny business is going on, e.g. an aliased
3127 -- object is passed by reference to a procedure which captures the
3128 -- address of the object, which is later used to assign a new value,
3129 -- even though the compiler thinks that it is not modified. Such
3130 -- code is highly dubious, but we choose to make it "work" for
3131 -- non-constant aliased objects.
3133 -- Note that we used to do this for all aliased objects, whether or
3134 -- not constant, but this caused anomalies down the line because we
3135 -- ended up with static objects that were not Is_True_Constant. Not
3136 -- resetting Is_True_Constant for (aliased) constant objects ensures
3137 -- that this anomaly never occurs.
3139 -- However, we don't do that for internal entities. We figure that if
3140 -- we deliberately set Is_True_Constant for an internal entity, e.g.
3141 -- a dispatch table entry, then we mean it.
3143 if Ekind (E) /= E_Constant
3144 and then (Is_Aliased (E) or else Is_Aliased (Etype (E)))
3145 and then not Is_Internal_Name (Chars (E))
3146 then
3147 Set_Is_True_Constant (E, False);
3148 end if;
3150 -- If the object needs any kind of default initialization, an error
3151 -- must be issued if No_Default_Initialization applies. The check
3152 -- doesn't apply to imported objects, which are not ever default
3153 -- initialized, and is why the check is deferred until freezing, at
3154 -- which point we know if Import applies. Deferred constants are also
3155 -- exempted from this test because their completion is explicit, or
3156 -- through an import pragma.
3158 if Ekind (E) = E_Constant and then Present (Full_View (E)) then
3159 null;
3161 elsif Comes_From_Source (E)
3162 and then not Is_Imported (E)
3163 and then not Has_Init_Expression (Declaration_Node (E))
3164 and then
3165 ((Has_Non_Null_Base_Init_Proc (Etype (E))
3166 and then not No_Initialization (Declaration_Node (E))
3167 and then not Initialization_Suppressed (Etype (E)))
3168 or else
3169 (Needs_Simple_Initialization (Etype (E))
3170 and then not Is_Internal (E)))
3171 then
3172 Has_Default_Initialization := True;
3173 Check_Restriction
3174 (No_Default_Initialization, Declaration_Node (E));
3175 end if;
3177 -- Check that a Thread_Local_Storage variable does not have
3178 -- default initialization, and any explicit initialization must
3179 -- either be the null constant or a static constant.
3181 if Has_Pragma_Thread_Local_Storage (E) then
3182 declare
3183 Decl : constant Node_Id := Declaration_Node (E);
3184 begin
3185 if Has_Default_Initialization
3186 or else
3187 (Has_Init_Expression (Decl)
3188 and then
3189 (No (Expression (Decl))
3190 or else not
3191 (Is_OK_Static_Expression (Expression (Decl))
3192 or else Nkind (Expression (Decl)) = N_Null)))
3193 then
3194 Error_Msg_NE
3195 ("Thread_Local_Storage variable& is "
3196 & "improperly initialized", Decl, E);
3197 Error_Msg_NE
3198 ("\only allowed initialization is explicit "
3199 & "NULL or static expression", Decl, E);
3200 end if;
3201 end;
3202 end if;
3204 -- For imported objects, set Is_Public unless there is also an
3205 -- address clause, which means that there is no external symbol
3206 -- needed for the Import (Is_Public may still be set for other
3207 -- unrelated reasons). Note that we delayed this processing
3208 -- till freeze time so that we can be sure not to set the flag
3209 -- if there is an address clause. If there is such a clause,
3210 -- then the only purpose of the Import pragma is to suppress
3211 -- implicit initialization.
3213 if Is_Imported (E) and then No (Address_Clause (E)) then
3214 Set_Is_Public (E);
3215 end if;
3217 -- For source objects that are not Imported and are library
3218 -- level, if no linker section pragma was given inherit the
3219 -- appropriate linker section from the corresponding type.
3221 if Comes_From_Source (E)
3222 and then not Is_Imported (E)
3223 and then Is_Library_Level_Entity (E)
3224 and then No (Linker_Section_Pragma (E))
3225 then
3226 Set_Linker_Section_Pragma
3227 (E, Linker_Section_Pragma (Etype (E)));
3228 end if;
3230 -- For convention C objects of an enumeration type, warn if the
3231 -- size is not integer size and no explicit size given. Skip
3232 -- warning for Boolean, and Character, assume programmer expects
3233 -- 8-bit sizes for these cases.
3235 if (Convention (E) = Convention_C
3236 or else
3237 Convention (E) = Convention_CPP)
3238 and then Is_Enumeration_Type (Etype (E))
3239 and then not Is_Character_Type (Etype (E))
3240 and then not Is_Boolean_Type (Etype (E))
3241 and then Esize (Etype (E)) < Standard_Integer_Size
3242 and then not Has_Size_Clause (E)
3243 then
3244 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
3245 Error_Msg_N
3246 ("??convention C enumeration object has size less than ^", E);
3247 Error_Msg_N ("\??use explicit size clause to set size", E);
3248 end if;
3249 end Freeze_Object_Declaration;
3251 -----------------------------
3252 -- Freeze_Generic_Entities --
3253 -----------------------------
3255 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
3256 E : Entity_Id;
3257 F : Node_Id;
3258 Flist : List_Id;
3260 begin
3261 Flist := New_List;
3262 E := First_Entity (Pack);
3263 while Present (E) loop
3264 if Is_Type (E) and then not Is_Generic_Type (E) then
3265 F := Make_Freeze_Generic_Entity (Sloc (Pack));
3266 Set_Entity (F, E);
3267 Append_To (Flist, F);
3269 elsif Ekind (E) = E_Generic_Package then
3270 Append_List_To (Flist, Freeze_Generic_Entities (E));
3271 end if;
3273 Next_Entity (E);
3274 end loop;
3276 return Flist;
3277 end Freeze_Generic_Entities;
3279 --------------------
3280 -- Freeze_Profile --
3281 --------------------
3283 function Freeze_Profile (E : Entity_Id) return Boolean is
3284 F_Type : Entity_Id;
3285 R_Type : Entity_Id;
3286 Warn_Node : Node_Id;
3288 begin
3289 -- Loop through formals
3291 Formal := First_Formal (E);
3292 while Present (Formal) loop
3293 F_Type := Etype (Formal);
3295 -- AI05-0151: incomplete types can appear in a profile. By the
3296 -- time the entity is frozen, the full view must be available,
3297 -- unless it is a limited view.
3299 if Is_Incomplete_Type (F_Type)
3300 and then Present (Full_View (F_Type))
3301 and then not From_Limited_With (F_Type)
3302 then
3303 F_Type := Full_View (F_Type);
3304 Set_Etype (Formal, F_Type);
3305 end if;
3307 if not From_Limited_With (F_Type) then
3308 Freeze_And_Append (F_Type, N, Result);
3309 end if;
3311 if Is_Private_Type (F_Type)
3312 and then Is_Private_Type (Base_Type (F_Type))
3313 and then No (Full_View (Base_Type (F_Type)))
3314 and then not Is_Generic_Type (F_Type)
3315 and then not Is_Derived_Type (F_Type)
3316 then
3317 -- If the type of a formal is incomplete, subprogram is being
3318 -- frozen prematurely. Within an instance (but not within a
3319 -- wrapper package) this is an artifact of our need to regard
3320 -- the end of an instantiation as a freeze point. Otherwise it
3321 -- is a definite error.
3323 if In_Instance then
3324 Set_Is_Frozen (E, False);
3325 Result := No_List;
3326 return False;
3328 elsif not After_Last_Declaration
3329 and then not Freezing_Library_Level_Tagged_Type
3330 then
3331 Error_Msg_Node_1 := F_Type;
3332 Error_Msg
3333 ("type & must be fully defined before this point", Loc);
3334 end if;
3335 end if;
3337 -- Check suspicious parameter for C function. These tests apply
3338 -- only to exported/imported subprograms.
3340 if Warn_On_Export_Import
3341 and then Comes_From_Source (E)
3342 and then (Convention (E) = Convention_C
3343 or else
3344 Convention (E) = Convention_CPP)
3345 and then (Is_Imported (E) or else Is_Exported (E))
3346 and then Convention (E) /= Convention (Formal)
3347 and then not Has_Warnings_Off (E)
3348 and then not Has_Warnings_Off (F_Type)
3349 and then not Has_Warnings_Off (Formal)
3350 then
3351 -- Qualify mention of formals with subprogram name
3353 Error_Msg_Qual_Level := 1;
3355 -- Check suspicious use of fat C pointer
3357 if Is_Access_Type (F_Type)
3358 and then Esize (F_Type) > Ttypes.System_Address_Size
3359 then
3360 Error_Msg_N
3361 ("?x?type of & does not correspond to C pointer!", Formal);
3363 -- Check suspicious return of boolean
3365 elsif Root_Type (F_Type) = Standard_Boolean
3366 and then Convention (F_Type) = Convention_Ada
3367 and then not Has_Warnings_Off (F_Type)
3368 and then not Has_Size_Clause (F_Type)
3369 then
3370 Error_Msg_N
3371 ("& is an 8-bit Ada Boolean?x?", Formal);
3372 Error_Msg_N
3373 ("\use appropriate corresponding type in C "
3374 & "(e.g. char)?x?", Formal);
3376 -- Check suspicious tagged type
3378 elsif (Is_Tagged_Type (F_Type)
3379 or else
3380 (Is_Access_Type (F_Type)
3381 and then Is_Tagged_Type (Designated_Type (F_Type))))
3382 and then Convention (E) = Convention_C
3383 then
3384 Error_Msg_N
3385 ("?x?& involves a tagged type which does not "
3386 & "correspond to any C type!", Formal);
3388 -- Check wrong convention subprogram pointer
3390 elsif Ekind (F_Type) = E_Access_Subprogram_Type
3391 and then not Has_Foreign_Convention (F_Type)
3392 then
3393 Error_Msg_N
3394 ("?x?subprogram pointer & should "
3395 & "have foreign convention!", Formal);
3396 Error_Msg_Sloc := Sloc (F_Type);
3397 Error_Msg_NE
3398 ("\?x?add Convention pragma to declaration of &#",
3399 Formal, F_Type);
3400 end if;
3402 -- Turn off name qualification after message output
3404 Error_Msg_Qual_Level := 0;
3405 end if;
3407 -- Check for unconstrained array in exported foreign convention
3408 -- case.
3410 if Has_Foreign_Convention (E)
3411 and then not Is_Imported (E)
3412 and then Is_Array_Type (F_Type)
3413 and then not Is_Constrained (F_Type)
3414 and then Warn_On_Export_Import
3415 then
3416 Error_Msg_Qual_Level := 1;
3418 -- If this is an inherited operation, place the warning on
3419 -- the derived type declaration, rather than on the original
3420 -- subprogram.
3422 if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
3423 then
3424 Warn_Node := Parent (E);
3426 if Formal = First_Formal (E) then
3427 Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
3428 end if;
3429 else
3430 Warn_Node := Formal;
3431 end if;
3433 Error_Msg_NE ("?x?type of argument& is unconstrained array",
3434 Warn_Node, Formal);
3435 Error_Msg_NE ("?x?foreign caller must pass bounds explicitly",
3436 Warn_Node, Formal);
3437 Error_Msg_Qual_Level := 0;
3438 end if;
3440 if not From_Limited_With (F_Type) then
3441 if Is_Access_Type (F_Type) then
3442 F_Type := Designated_Type (F_Type);
3443 end if;
3445 -- If the formal is an anonymous_access_to_subprogram
3446 -- freeze the subprogram type as well, to prevent
3447 -- scope anomalies in gigi, because there is no other
3448 -- clear point at which it could be frozen.
3450 if Is_Itype (Etype (Formal))
3451 and then Ekind (F_Type) = E_Subprogram_Type
3452 then
3453 Freeze_And_Append (F_Type, N, Result);
3454 end if;
3455 end if;
3457 Next_Formal (Formal);
3458 end loop;
3460 -- Case of function: similar checks on return type
3462 if Ekind (E) = E_Function then
3464 -- Freeze return type
3466 R_Type := Etype (E);
3468 -- AI05-0151: the return type may have been incomplete at the
3469 -- point of declaration. Replace it with the full view, unless the
3470 -- current type is a limited view. In that case the full view is
3471 -- in a different unit, and gigi finds the non-limited view after
3472 -- the other unit is elaborated.
3474 if Ekind (R_Type) = E_Incomplete_Type
3475 and then Present (Full_View (R_Type))
3476 and then not From_Limited_With (R_Type)
3477 then
3478 R_Type := Full_View (R_Type);
3479 Set_Etype (E, R_Type);
3480 end if;
3482 Freeze_And_Append (R_Type, N, Result);
3484 -- Check suspicious return type for C function
3486 if Warn_On_Export_Import
3487 and then (Convention (E) = Convention_C
3488 or else
3489 Convention (E) = Convention_CPP)
3490 and then (Is_Imported (E) or else Is_Exported (E))
3491 then
3492 -- Check suspicious return of fat C pointer
3494 if Is_Access_Type (R_Type)
3495 and then Esize (R_Type) > Ttypes.System_Address_Size
3496 and then not Has_Warnings_Off (E)
3497 and then not Has_Warnings_Off (R_Type)
3498 then
3499 Error_Msg_N
3500 ("?x?return type of& does not correspond to C pointer!",
3503 -- Check suspicious return of boolean
3505 elsif Root_Type (R_Type) = Standard_Boolean
3506 and then Convention (R_Type) = Convention_Ada
3507 and then not Has_Warnings_Off (E)
3508 and then not Has_Warnings_Off (R_Type)
3509 and then not Has_Size_Clause (R_Type)
3510 then
3511 declare
3512 N : constant Node_Id :=
3513 Result_Definition (Declaration_Node (E));
3514 begin
3515 Error_Msg_NE
3516 ("return type of & is an 8-bit Ada Boolean?x?", N, E);
3517 Error_Msg_NE
3518 ("\use appropriate corresponding type in C "
3519 & "(e.g. char)?x?", N, E);
3520 end;
3522 -- Check suspicious return tagged type
3524 elsif (Is_Tagged_Type (R_Type)
3525 or else (Is_Access_Type (R_Type)
3526 and then
3527 Is_Tagged_Type
3528 (Designated_Type (R_Type))))
3529 and then Convention (E) = Convention_C
3530 and then not Has_Warnings_Off (E)
3531 and then not Has_Warnings_Off (R_Type)
3532 then
3533 Error_Msg_N ("?x?return type of & does not "
3534 & "correspond to C type!", E);
3536 -- Check return of wrong convention subprogram pointer
3538 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3539 and then not Has_Foreign_Convention (R_Type)
3540 and then not Has_Warnings_Off (E)
3541 and then not Has_Warnings_Off (R_Type)
3542 then
3543 Error_Msg_N ("?x?& should return a foreign "
3544 & "convention subprogram pointer", E);
3545 Error_Msg_Sloc := Sloc (R_Type);
3546 Error_Msg_NE
3547 ("\?x?add Convention pragma to declaration of& #",
3548 E, R_Type);
3549 end if;
3550 end if;
3552 -- Give warning for suspicious return of a result of an
3553 -- unconstrained array type in a foreign convention function.
3555 if Has_Foreign_Convention (E)
3557 -- We are looking for a return of unconstrained array
3559 and then Is_Array_Type (R_Type)
3560 and then not Is_Constrained (R_Type)
3562 -- Exclude imported routines, the warning does not belong on
3563 -- the import, but rather on the routine definition.
3565 and then not Is_Imported (E)
3567 -- Check that general warning is enabled, and that it is not
3568 -- suppressed for this particular case.
3570 and then Warn_On_Export_Import
3571 and then not Has_Warnings_Off (E)
3572 and then not Has_Warnings_Off (R_Type)
3573 then
3574 Error_Msg_N
3575 ("?x?foreign convention function& should not return "
3576 & "unconstrained array!", E);
3577 end if;
3578 end if;
3580 -- Check suspicious use of Import in pure unit (cases where the RM
3581 -- allows calls to be omitted).
3583 if Is_Imported (E)
3585 -- It might be suspicious if the compilation unit has the Pure
3586 -- aspect/pragma.
3588 and then Has_Pragma_Pure (Cunit_Entity (Current_Sem_Unit))
3590 -- The RM allows omission of calls only in the case of
3591 -- library-level subprograms (see RM-10.2.1(18)).
3593 and then Is_Library_Level_Entity (E)
3595 -- Ignore internally generated entity. This happens in some cases
3596 -- of subprograms in specs, where we generate an implied body.
3598 and then Comes_From_Source (Import_Pragma (E))
3600 -- Assume run-time knows what it is doing
3602 and then not GNAT_Mode
3604 -- Assume explicit Pure_Function means import is pure
3606 and then not Has_Pragma_Pure_Function (E)
3608 -- Don't need warning in relaxed semantics mode
3610 and then not Relaxed_RM_Semantics
3612 -- Assume convention Intrinsic is OK, since this is specialized.
3613 -- This deals with the DEC unit current_exception.ads
3615 and then Convention (E) /= Convention_Intrinsic
3617 -- Assume that ASM interface knows what it is doing. This deals
3618 -- with e.g. unsigned.ads in the AAMP back end.
3620 and then Convention (E) /= Convention_Assembler
3621 then
3622 Error_Msg_N
3623 ("pragma Import in Pure unit??", Import_Pragma (E));
3624 Error_Msg_NE
3625 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
3626 Import_Pragma (E), E);
3627 end if;
3629 return True;
3630 end Freeze_Profile;
3632 ------------------------
3633 -- Freeze_Record_Type --
3634 ------------------------
3636 procedure Freeze_Record_Type (Rec : Entity_Id) is
3637 ADC : Node_Id;
3638 Comp : Entity_Id;
3639 IR : Node_Id;
3640 Prev : Entity_Id;
3642 Junk : Boolean;
3643 pragma Warnings (Off, Junk);
3645 Aliased_Component : Boolean := False;
3646 -- Set True if we find at least one component which is aliased. This
3647 -- is used to prevent Implicit_Packing of the record, since packing
3648 -- cannot modify the size of alignment of an aliased component.
3650 All_Elem_Components : Boolean := True;
3651 -- Set False if we encounter a component of a composite type
3653 All_Sized_Components : Boolean := True;
3654 -- Set False if we encounter a component with unknown RM_Size
3656 All_Storage_Unit_Components : Boolean := True;
3657 -- Set False if we encounter a component of a composite type whose
3658 -- RM_Size is not a multiple of the storage unit.
3660 Elem_Component_Total_Esize : Uint := Uint_0;
3661 -- Accumulates total Esize values of all elementary components. Used
3662 -- for processing of Implicit_Packing.
3664 Placed_Component : Boolean := False;
3665 -- Set True if we find at least one component with a component
3666 -- clause (used to warn about useless Bit_Order pragmas, and also
3667 -- to detect cases where Implicit_Packing may have an effect).
3669 Rec_Pushed : Boolean := False;
3670 -- Set True if the record type scope Rec has been pushed on the scope
3671 -- stack. Needed for the analysis of delayed aspects specified to the
3672 -- components of Rec.
3674 Sized_Component_Total_RM_Size : Uint := Uint_0;
3675 -- Accumulates total RM_Size values of all sized components. Used
3676 -- for processing of Implicit_Packing.
3678 SSO_ADC : Node_Id;
3679 -- Scalar_Storage_Order attribute definition clause for the record
3681 SSO_ADC_Component : Boolean := False;
3682 -- Set True if we find at least one component whose type has a
3683 -- Scalar_Storage_Order attribute definition clause.
3685 Unplaced_Component : Boolean := False;
3686 -- Set True if we find at least one component with no component
3687 -- clause (used to warn about useless Pack pragmas).
3689 function Check_Allocator (N : Node_Id) return Node_Id;
3690 -- If N is an allocator, possibly wrapped in one or more level of
3691 -- qualified expression(s), return the inner allocator node, else
3692 -- return Empty.
3694 procedure Check_Itype (Typ : Entity_Id);
3695 -- If the component subtype is an access to a constrained subtype of
3696 -- an already frozen type, make the subtype frozen as well. It might
3697 -- otherwise be frozen in the wrong scope, and a freeze node on
3698 -- subtype has no effect. Similarly, if the component subtype is a
3699 -- regular (not protected) access to subprogram, set the anonymous
3700 -- subprogram type to frozen as well, to prevent an out-of-scope
3701 -- freeze node at some eventual point of call. Protected operations
3702 -- are handled elsewhere.
3704 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
3705 -- Make sure that all types mentioned in Discrete_Choices of the
3706 -- variants referenceed by the Variant_Part VP are frozen. This is
3707 -- a recursive routine to deal with nested variants.
3709 ---------------------
3710 -- Check_Allocator --
3711 ---------------------
3713 function Check_Allocator (N : Node_Id) return Node_Id is
3714 Inner : Node_Id;
3715 begin
3716 Inner := N;
3717 loop
3718 if Nkind (Inner) = N_Allocator then
3719 return Inner;
3720 elsif Nkind (Inner) = N_Qualified_Expression then
3721 Inner := Expression (Inner);
3722 else
3723 return Empty;
3724 end if;
3725 end loop;
3726 end Check_Allocator;
3728 -----------------
3729 -- Check_Itype --
3730 -----------------
3732 procedure Check_Itype (Typ : Entity_Id) is
3733 Desig : constant Entity_Id := Designated_Type (Typ);
3735 begin
3736 if not Is_Frozen (Desig)
3737 and then Is_Frozen (Base_Type (Desig))
3738 then
3739 Set_Is_Frozen (Desig);
3741 -- In addition, add an Itype_Reference to ensure that the
3742 -- access subtype is elaborated early enough. This cannot be
3743 -- done if the subtype may depend on discriminants.
3745 if Ekind (Comp) = E_Component
3746 and then Is_Itype (Etype (Comp))
3747 and then not Has_Discriminants (Rec)
3748 then
3749 IR := Make_Itype_Reference (Sloc (Comp));
3750 Set_Itype (IR, Desig);
3751 Add_To_Result (IR);
3752 end if;
3754 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
3755 and then Convention (Desig) /= Convention_Protected
3756 then
3757 Set_Is_Frozen (Desig);
3758 end if;
3759 end Check_Itype;
3761 ------------------------------------
3762 -- Freeze_Choices_In_Variant_Part --
3763 ------------------------------------
3765 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
3766 pragma Assert (Nkind (VP) = N_Variant_Part);
3768 Variant : Node_Id;
3769 Choice : Node_Id;
3770 CL : Node_Id;
3772 begin
3773 -- Loop through variants
3775 Variant := First_Non_Pragma (Variants (VP));
3776 while Present (Variant) loop
3778 -- Loop through choices, checking that all types are frozen
3780 Choice := First_Non_Pragma (Discrete_Choices (Variant));
3781 while Present (Choice) loop
3782 if Nkind (Choice) in N_Has_Etype
3783 and then Present (Etype (Choice))
3784 then
3785 Freeze_And_Append (Etype (Choice), N, Result);
3786 end if;
3788 Next_Non_Pragma (Choice);
3789 end loop;
3791 -- Check for nested variant part to process
3793 CL := Component_List (Variant);
3795 if not Null_Present (CL) then
3796 if Present (Variant_Part (CL)) then
3797 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
3798 end if;
3799 end if;
3801 Next_Non_Pragma (Variant);
3802 end loop;
3803 end Freeze_Choices_In_Variant_Part;
3805 -- Start of processing for Freeze_Record_Type
3807 begin
3808 -- Deal with delayed aspect specifications for components. The
3809 -- analysis of the aspect is required to be delayed to the freeze
3810 -- point, thus we analyze the pragma or attribute definition
3811 -- clause in the tree at this point. We also analyze the aspect
3812 -- specification node at the freeze point when the aspect doesn't
3813 -- correspond to pragma/attribute definition clause.
3815 Comp := First_Entity (Rec);
3816 while Present (Comp) loop
3817 if Ekind (Comp) = E_Component
3818 and then Has_Delayed_Aspects (Comp)
3819 then
3820 if not Rec_Pushed then
3821 Push_Scope (Rec);
3822 Rec_Pushed := True;
3824 -- The visibility to the discriminants must be restored in
3825 -- order to properly analyze the aspects.
3827 if Has_Discriminants (Rec) then
3828 Install_Discriminants (Rec);
3829 end if;
3830 end if;
3832 Analyze_Aspects_At_Freeze_Point (Comp);
3833 end if;
3835 Next_Entity (Comp);
3836 end loop;
3838 -- Pop the scope if Rec scope has been pushed on the scope stack
3839 -- during the delayed aspect analysis process.
3841 if Rec_Pushed then
3842 if Has_Discriminants (Rec) then
3843 Uninstall_Discriminants (Rec);
3844 end if;
3846 Pop_Scope;
3847 end if;
3849 -- Freeze components and embedded subtypes
3851 Comp := First_Entity (Rec);
3852 Prev := Empty;
3853 while Present (Comp) loop
3854 if Is_Aliased (Comp) then
3855 Aliased_Component := True;
3856 end if;
3858 -- Handle the component and discriminant case
3860 if Ekind_In (Comp, E_Component, E_Discriminant) then
3861 declare
3862 CC : constant Node_Id := Component_Clause (Comp);
3864 begin
3865 -- Freezing a record type freezes the type of each of its
3866 -- components. However, if the type of the component is
3867 -- part of this record, we do not want or need a separate
3868 -- Freeze_Node. Note that Is_Itype is wrong because that's
3869 -- also set in private type cases. We also can't check for
3870 -- the Scope being exactly Rec because of private types and
3871 -- record extensions.
3873 if Is_Itype (Etype (Comp))
3874 and then Is_Record_Type (Underlying_Type
3875 (Scope (Etype (Comp))))
3876 then
3877 Undelay_Type (Etype (Comp));
3878 end if;
3880 Freeze_And_Append (Etype (Comp), N, Result);
3882 -- Warn for pragma Pack overriding foreign convention
3884 if Has_Foreign_Convention (Etype (Comp))
3885 and then Has_Pragma_Pack (Rec)
3887 -- Don't warn for aliased components, since override
3888 -- cannot happen in that case.
3890 and then not Is_Aliased (Comp)
3891 then
3892 declare
3893 CN : constant Name_Id :=
3894 Get_Convention_Name (Convention (Etype (Comp)));
3895 PP : constant Node_Id :=
3896 Get_Pragma (Rec, Pragma_Pack);
3897 begin
3898 if Present (PP) then
3899 Error_Msg_Name_1 := CN;
3900 Error_Msg_Sloc := Sloc (Comp);
3901 Error_Msg_N
3902 ("pragma Pack affects convention % component#??",
3903 PP);
3904 Error_Msg_Name_1 := CN;
3905 Error_Msg_NE
3906 ("\component & may not have % compatible "
3907 & "representation??", PP, Comp);
3908 end if;
3909 end;
3910 end if;
3912 -- Check for error of component clause given for variable
3913 -- sized type. We have to delay this test till this point,
3914 -- since the component type has to be frozen for us to know
3915 -- if it is variable length.
3917 if Present (CC) then
3918 Placed_Component := True;
3920 -- We omit this test in a generic context, it will be
3921 -- applied at instantiation time.
3923 if Inside_A_Generic then
3924 null;
3926 -- Also omit this test in CodePeer mode, since we do not
3927 -- have sufficient info on size and rep clauses.
3929 elsif CodePeer_Mode then
3930 null;
3932 -- Omit check if component has a generic type. This can
3933 -- happen in an instantiation within a generic in ASIS
3934 -- mode, where we force freeze actions without full
3935 -- expansion.
3937 elsif Is_Generic_Type (Etype (Comp)) then
3938 null;
3940 -- Do the check
3942 elsif not
3943 Size_Known_At_Compile_Time
3944 (Underlying_Type (Etype (Comp)))
3945 then
3946 Error_Msg_N
3947 ("component clause not allowed for variable " &
3948 "length component", CC);
3949 end if;
3951 else
3952 Unplaced_Component := True;
3953 end if;
3955 -- Case of component requires byte alignment
3957 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
3959 -- Set the enclosing record to also require byte align
3961 Set_Must_Be_On_Byte_Boundary (Rec);
3963 -- Check for component clause that is inconsistent with
3964 -- the required byte boundary alignment.
3966 if Present (CC)
3967 and then Normalized_First_Bit (Comp) mod
3968 System_Storage_Unit /= 0
3969 then
3970 Error_Msg_N
3971 ("component & must be byte aligned",
3972 Component_Name (Component_Clause (Comp)));
3973 end if;
3974 end if;
3975 end;
3976 end if;
3978 -- Gather data for possible Implicit_Packing later. Note that at
3979 -- this stage we might be dealing with a real component, or with
3980 -- an implicit subtype declaration.
3982 if Known_Static_RM_Size (Etype (Comp)) then
3983 Sized_Component_Total_RM_Size :=
3984 Sized_Component_Total_RM_Size + RM_Size (Etype (Comp));
3986 if Is_Elementary_Type (Etype (Comp)) then
3987 Elem_Component_Total_Esize :=
3988 Elem_Component_Total_Esize + Esize (Etype (Comp));
3989 else
3990 All_Elem_Components := False;
3992 if RM_Size (Etype (Comp)) mod System_Storage_Unit /= 0 then
3993 All_Storage_Unit_Components := False;
3994 end if;
3995 end if;
3996 else
3997 All_Sized_Components := False;
3998 end if;
4000 -- If the component is an Itype with Delayed_Freeze and is either
4001 -- a record or array subtype and its base type has not yet been
4002 -- frozen, we must remove this from the entity list of this record
4003 -- and put it on the entity list of the scope of its base type.
4004 -- Note that we know that this is not the type of a component
4005 -- since we cleared Has_Delayed_Freeze for it in the previous
4006 -- loop. Thus this must be the Designated_Type of an access type,
4007 -- which is the type of a component.
4009 if Is_Itype (Comp)
4010 and then Is_Type (Scope (Comp))
4011 and then Is_Composite_Type (Comp)
4012 and then Base_Type (Comp) /= Comp
4013 and then Has_Delayed_Freeze (Comp)
4014 and then not Is_Frozen (Base_Type (Comp))
4015 then
4016 declare
4017 Will_Be_Frozen : Boolean := False;
4018 S : Entity_Id;
4020 begin
4021 -- We have a difficult case to handle here. Suppose Rec is
4022 -- subtype being defined in a subprogram that's created as
4023 -- part of the freezing of Rec'Base. In that case, we know
4024 -- that Comp'Base must have already been frozen by the time
4025 -- we get to elaborate this because Gigi doesn't elaborate
4026 -- any bodies until it has elaborated all of the declarative
4027 -- part. But Is_Frozen will not be set at this point because
4028 -- we are processing code in lexical order.
4030 -- We detect this case by going up the Scope chain of Rec
4031 -- and seeing if we have a subprogram scope before reaching
4032 -- the top of the scope chain or that of Comp'Base. If we
4033 -- do, then mark that Comp'Base will actually be frozen. If
4034 -- so, we merely undelay it.
4036 S := Scope (Rec);
4037 while Present (S) loop
4038 if Is_Subprogram (S) then
4039 Will_Be_Frozen := True;
4040 exit;
4041 elsif S = Scope (Base_Type (Comp)) then
4042 exit;
4043 end if;
4045 S := Scope (S);
4046 end loop;
4048 if Will_Be_Frozen then
4049 Undelay_Type (Comp);
4051 else
4052 if Present (Prev) then
4053 Set_Next_Entity (Prev, Next_Entity (Comp));
4054 else
4055 Set_First_Entity (Rec, Next_Entity (Comp));
4056 end if;
4058 -- Insert in entity list of scope of base type (which
4059 -- must be an enclosing scope, because still unfrozen).
4061 Append_Entity (Comp, Scope (Base_Type (Comp)));
4062 end if;
4063 end;
4065 -- If the component is an access type with an allocator as default
4066 -- value, the designated type will be frozen by the corresponding
4067 -- expression in init_proc. In order to place the freeze node for
4068 -- the designated type before that for the current record type,
4069 -- freeze it now.
4071 -- Same process if the component is an array of access types,
4072 -- initialized with an aggregate. If the designated type is
4073 -- private, it cannot contain allocators, and it is premature
4074 -- to freeze the type, so we check for this as well.
4076 elsif Is_Access_Type (Etype (Comp))
4077 and then Present (Parent (Comp))
4078 and then Present (Expression (Parent (Comp)))
4079 then
4080 declare
4081 Alloc : constant Node_Id :=
4082 Check_Allocator (Expression (Parent (Comp)));
4084 begin
4085 if Present (Alloc) then
4087 -- If component is pointer to a class-wide type, freeze
4088 -- the specific type in the expression being allocated.
4089 -- The expression may be a subtype indication, in which
4090 -- case freeze the subtype mark.
4092 if Is_Class_Wide_Type
4093 (Designated_Type (Etype (Comp)))
4094 then
4095 if Is_Entity_Name (Expression (Alloc)) then
4096 Freeze_And_Append
4097 (Entity (Expression (Alloc)), N, Result);
4099 elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
4100 then
4101 Freeze_And_Append
4102 (Entity (Subtype_Mark (Expression (Alloc))),
4103 N, Result);
4104 end if;
4106 elsif Is_Itype (Designated_Type (Etype (Comp))) then
4107 Check_Itype (Etype (Comp));
4109 else
4110 Freeze_And_Append
4111 (Designated_Type (Etype (Comp)), N, Result);
4112 end if;
4113 end if;
4114 end;
4116 elsif Is_Access_Type (Etype (Comp))
4117 and then Is_Itype (Designated_Type (Etype (Comp)))
4118 then
4119 Check_Itype (Etype (Comp));
4121 -- Freeze the designated type when initializing a component with
4122 -- an aggregate in case the aggregate contains allocators.
4124 -- type T is ...;
4125 -- type T_Ptr is access all T;
4126 -- type T_Array is array ... of T_Ptr;
4128 -- type Rec is record
4129 -- Comp : T_Array := (others => ...);
4130 -- end record;
4132 elsif Is_Array_Type (Etype (Comp))
4133 and then Is_Access_Type (Component_Type (Etype (Comp)))
4134 then
4135 declare
4136 Comp_Par : constant Node_Id := Parent (Comp);
4137 Desig_Typ : constant Entity_Id :=
4138 Designated_Type
4139 (Component_Type (Etype (Comp)));
4141 begin
4142 -- The only case when this sort of freezing is not done is
4143 -- when the designated type is class-wide and the root type
4144 -- is the record owning the component. This scenario results
4145 -- in a circularity because the class-wide type requires
4146 -- primitives that have not been created yet as the root
4147 -- type is in the process of being frozen.
4149 -- type Rec is tagged;
4150 -- type Rec_Ptr is access all Rec'Class;
4151 -- type Rec_Array is array ... of Rec_Ptr;
4153 -- type Rec is record
4154 -- Comp : Rec_Array := (others => ...);
4155 -- end record;
4157 if Is_Class_Wide_Type (Desig_Typ)
4158 and then Root_Type (Desig_Typ) = Rec
4159 then
4160 null;
4162 elsif Is_Fully_Defined (Desig_Typ)
4163 and then Present (Comp_Par)
4164 and then Nkind (Comp_Par) = N_Component_Declaration
4165 and then Present (Expression (Comp_Par))
4166 and then Nkind (Expression (Comp_Par)) = N_Aggregate
4167 then
4168 Freeze_And_Append (Desig_Typ, N, Result);
4169 end if;
4170 end;
4171 end if;
4173 Prev := Comp;
4174 Next_Entity (Comp);
4175 end loop;
4177 SSO_ADC :=
4178 Get_Attribute_Definition_Clause
4179 (Rec, Attribute_Scalar_Storage_Order);
4181 -- If the record type has Complex_Representation, then it is treated
4182 -- as a scalar in the back end so the storage order is irrelevant.
4184 if Has_Complex_Representation (Rec) then
4185 if Present (SSO_ADC) then
4186 Error_Msg_N
4187 ("??storage order has no effect with Complex_Representation",
4188 SSO_ADC);
4189 end if;
4191 else
4192 -- Deal with default setting of reverse storage order
4194 Set_SSO_From_Default (Rec);
4196 -- Check consistent attribute setting on component types
4198 declare
4199 Comp_ADC_Present : Boolean;
4200 begin
4201 Comp := First_Component (Rec);
4202 while Present (Comp) loop
4203 Check_Component_Storage_Order
4204 (Encl_Type => Rec,
4205 Comp => Comp,
4206 ADC => SSO_ADC,
4207 Comp_ADC_Present => Comp_ADC_Present);
4208 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
4209 Next_Component (Comp);
4210 end loop;
4211 end;
4213 -- Now deal with reverse storage order/bit order issues
4215 if Present (SSO_ADC) then
4217 -- Check compatibility of Scalar_Storage_Order with Bit_Order,
4218 -- if the former is specified.
4220 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
4222 -- Note: report error on Rec, not on SSO_ADC, as ADC may
4223 -- apply to some ancestor type.
4225 Error_Msg_Sloc := Sloc (SSO_ADC);
4226 Error_Msg_N
4227 ("scalar storage order for& specified# inconsistent with "
4228 & "bit order", Rec);
4229 end if;
4231 -- Warn if there is a Scalar_Storage_Order attribute definition
4232 -- clause but no component clause, no component that itself has
4233 -- such an attribute definition, and no pragma Pack.
4235 if not (Placed_Component
4236 or else
4237 SSO_ADC_Component
4238 or else
4239 Is_Packed (Rec))
4240 then
4241 Error_Msg_N
4242 ("??scalar storage order specified but no component "
4243 & "clause", SSO_ADC);
4244 end if;
4245 end if;
4246 end if;
4248 -- Deal with Bit_Order aspect
4250 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
4252 if Present (ADC) and then Base_Type (Rec) = Rec then
4253 if not (Placed_Component
4254 or else Present (SSO_ADC)
4255 or else Is_Packed (Rec))
4256 then
4257 -- Warn if clause has no effect when no component clause is
4258 -- present, but suppress warning if the Bit_Order is required
4259 -- due to the presence of a Scalar_Storage_Order attribute.
4261 Error_Msg_N
4262 ("??bit order specification has no effect", ADC);
4263 Error_Msg_N
4264 ("\??since no component clauses were specified", ADC);
4266 -- Here is where we do the processing to adjust component clauses
4267 -- for reversed bit order, when not using reverse SSO. If an error
4268 -- has been reported on Rec already (such as SSO incompatible with
4269 -- bit order), don't bother adjusting as this may generate extra
4270 -- noise.
4272 elsif Reverse_Bit_Order (Rec)
4273 and then not Reverse_Storage_Order (Rec)
4274 and then not Error_Posted (Rec)
4275 then
4276 Adjust_Record_For_Reverse_Bit_Order (Rec);
4278 -- Case where we have both an explicit Bit_Order and the same
4279 -- Scalar_Storage_Order: leave record untouched, the back-end
4280 -- will take care of required layout conversions.
4282 else
4283 null;
4285 end if;
4286 end if;
4288 -- Complete error checking on record representation clause (e.g.
4289 -- overlap of components). This is called after adjusting the
4290 -- record for reverse bit order.
4292 declare
4293 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
4294 begin
4295 if Present (RRC) then
4296 Check_Record_Representation_Clause (RRC);
4297 end if;
4298 end;
4300 -- Set OK_To_Reorder_Components depending on debug flags
4302 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
4303 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
4304 or else
4305 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
4306 then
4307 Set_OK_To_Reorder_Components (Rec);
4308 end if;
4309 end if;
4311 -- Check for useless pragma Pack when all components placed. We only
4312 -- do this check for record types, not subtypes, since a subtype may
4313 -- have all its components placed, and it still makes perfectly good
4314 -- sense to pack other subtypes or the parent type. We do not give
4315 -- this warning if Optimize_Alignment is set to Space, since the
4316 -- pragma Pack does have an effect in this case (it always resets
4317 -- the alignment to one).
4319 if Ekind (Rec) = E_Record_Type
4320 and then Is_Packed (Rec)
4321 and then not Unplaced_Component
4322 and then Optimize_Alignment /= 'S'
4323 then
4324 -- Reset packed status. Probably not necessary, but we do it so
4325 -- that there is no chance of the back end doing something strange
4326 -- with this redundant indication of packing.
4328 Set_Is_Packed (Rec, False);
4330 -- Give warning if redundant constructs warnings on
4332 if Warn_On_Redundant_Constructs then
4333 Error_Msg_N -- CODEFIX
4334 ("??pragma Pack has no effect, no unplaced components",
4335 Get_Rep_Pragma (Rec, Name_Pack));
4336 end if;
4337 end if;
4339 -- If this is the record corresponding to a remote type, freeze the
4340 -- remote type here since that is what we are semantically freezing.
4341 -- This prevents the freeze node for that type in an inner scope.
4343 if Ekind (Rec) = E_Record_Type then
4344 if Present (Corresponding_Remote_Type (Rec)) then
4345 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
4346 end if;
4348 -- Check for controlled components, unchecked unions, and type
4349 -- invariants.
4351 Comp := First_Component (Rec);
4352 while Present (Comp) loop
4354 -- Do not set Has_Controlled_Component on a class-wide
4355 -- equivalent type. See Make_CW_Equivalent_Type.
4357 if not Is_Class_Wide_Equivalent_Type (Rec)
4358 and then
4359 (Has_Controlled_Component (Etype (Comp))
4360 or else
4361 (Chars (Comp) /= Name_uParent
4362 and then Is_Controlled_Active (Etype (Comp)))
4363 or else
4364 (Is_Protected_Type (Etype (Comp))
4365 and then
4366 Present (Corresponding_Record_Type (Etype (Comp)))
4367 and then
4368 Has_Controlled_Component
4369 (Corresponding_Record_Type (Etype (Comp)))))
4370 then
4371 Set_Has_Controlled_Component (Rec);
4372 end if;
4374 if Has_Unchecked_Union (Etype (Comp)) then
4375 Set_Has_Unchecked_Union (Rec);
4376 end if;
4378 -- The record type requires its own invariant procedure in
4379 -- order to verify the invariant of each individual component.
4380 -- Do not consider internal components such as _parent because
4381 -- parent class-wide invariants are always inherited.
4382 -- In GNATprove mode, the component invariants are checked by
4383 -- other means. They should not be added to the record type
4384 -- invariant procedure, so that the procedure can be used to
4385 -- check the recordy type invariants if any.
4387 if Comes_From_Source (Comp)
4388 and then Has_Invariants (Etype (Comp))
4389 and then not GNATprove_Mode
4390 then
4391 Set_Has_Own_Invariants (Rec);
4392 end if;
4394 -- Scan component declaration for likely misuses of current
4395 -- instance, either in a constraint or a default expression.
4397 if Has_Per_Object_Constraint (Comp) then
4398 Check_Current_Instance (Parent (Comp));
4399 end if;
4401 Next_Component (Comp);
4402 end loop;
4403 end if;
4405 -- Enforce the restriction that access attributes with a current
4406 -- instance prefix can only apply to limited types. This comment
4407 -- is floating here, but does not seem to belong here???
4409 -- Set component alignment if not otherwise already set
4411 Set_Component_Alignment_If_Not_Set (Rec);
4413 -- For first subtypes, check if there are any fixed-point fields with
4414 -- component clauses, where we must check the size. This is not done
4415 -- till the freeze point since for fixed-point types, we do not know
4416 -- the size until the type is frozen. Similar processing applies to
4417 -- bit-packed arrays.
4419 if Is_First_Subtype (Rec) then
4420 Comp := First_Component (Rec);
4421 while Present (Comp) loop
4422 if Present (Component_Clause (Comp))
4423 and then (Is_Fixed_Point_Type (Etype (Comp))
4424 or else Is_Bit_Packed_Array (Etype (Comp)))
4425 then
4426 Check_Size
4427 (Component_Name (Component_Clause (Comp)),
4428 Etype (Comp),
4429 Esize (Comp),
4430 Junk);
4431 end if;
4433 Next_Component (Comp);
4434 end loop;
4435 end if;
4437 -- See if Size is too small as is (and implicit packing might help)
4439 if not Is_Packed (Rec)
4441 -- No implicit packing if even one component is explicitly placed
4443 and then not Placed_Component
4445 -- Or even one component is aliased
4447 and then not Aliased_Component
4449 -- Must have size clause and all sized components
4451 and then Has_Size_Clause (Rec)
4452 and then All_Sized_Components
4454 -- Do not try implicit packing on records with discriminants, too
4455 -- complicated, especially in the variant record case.
4457 and then not Has_Discriminants (Rec)
4459 -- We want to implicitly pack if the specified size of the record
4460 -- is less than the sum of the object sizes (no point in packing
4461 -- if this is not the case), if we can compute it, i.e. if we have
4462 -- only elementary components. Otherwise, we have at least one
4463 -- composite component and we want to implicitly pack only if bit
4464 -- packing is required for it, as we are sure in this case that
4465 -- the back end cannot do the expected layout without packing.
4467 and then
4468 ((All_Elem_Components
4469 and then RM_Size (Rec) < Elem_Component_Total_Esize)
4470 or else
4471 (not All_Elem_Components
4472 and then not All_Storage_Unit_Components))
4474 -- And the total RM size cannot be greater than the specified size
4475 -- since otherwise packing will not get us where we have to be.
4477 and then RM_Size (Rec) >= Sized_Component_Total_RM_Size
4479 -- Never do implicit packing in CodePeer or SPARK modes since
4480 -- we don't do any packing in these modes, since this generates
4481 -- over-complex code that confuses static analysis, and in
4482 -- general, neither CodePeer not GNATprove care about the
4483 -- internal representation of objects.
4485 and then not (CodePeer_Mode or GNATprove_Mode)
4486 then
4487 -- If implicit packing enabled, do it
4489 if Implicit_Packing then
4490 Set_Is_Packed (Rec);
4492 -- Otherwise flag the size clause
4494 else
4495 declare
4496 Sz : constant Node_Id := Size_Clause (Rec);
4497 begin
4498 Error_Msg_NE -- CODEFIX
4499 ("size given for& too small", Sz, Rec);
4500 Error_Msg_N -- CODEFIX
4501 ("\use explicit pragma Pack "
4502 & "or use pragma Implicit_Packing", Sz);
4503 end;
4504 end if;
4505 end if;
4507 -- The following checks are relevant only when SPARK_Mode is on as
4508 -- they are not standard Ada legality rules.
4510 if SPARK_Mode = On then
4511 if Is_Effectively_Volatile (Rec) then
4513 -- A discriminated type cannot be effectively volatile
4514 -- (SPARK RM C.6(4)).
4516 if Has_Discriminants (Rec) then
4517 Error_Msg_N ("discriminated type & cannot be volatile", Rec);
4519 -- A tagged type cannot be effectively volatile
4520 -- (SPARK RM C.6(5)).
4522 elsif Is_Tagged_Type (Rec) then
4523 Error_Msg_N ("tagged type & cannot be volatile", Rec);
4524 end if;
4526 -- A non-effectively volatile record type cannot contain
4527 -- effectively volatile components (SPARK RM C.6(2)).
4529 else
4530 Comp := First_Component (Rec);
4531 while Present (Comp) loop
4532 if Comes_From_Source (Comp)
4533 and then Is_Effectively_Volatile (Etype (Comp))
4534 then
4535 Error_Msg_Name_1 := Chars (Rec);
4536 Error_Msg_N
4537 ("component & of non-volatile type % cannot be "
4538 & "volatile", Comp);
4539 end if;
4541 Next_Component (Comp);
4542 end loop;
4543 end if;
4545 -- A type which does not yield a synchronized object cannot have
4546 -- a component that yields a synchronized object (SPARK RM 9.5).
4548 if not Yields_Synchronized_Object (Rec) then
4549 Comp := First_Component (Rec);
4550 while Present (Comp) loop
4551 if Comes_From_Source (Comp)
4552 and then Yields_Synchronized_Object (Etype (Comp))
4553 then
4554 Error_Msg_Name_1 := Chars (Rec);
4555 Error_Msg_N
4556 ("component & of non-synchronized type % cannot be "
4557 & "synchronized", Comp);
4558 end if;
4560 Next_Component (Comp);
4561 end loop;
4562 end if;
4564 -- A Ghost type cannot have a component of protected or task type
4565 -- (SPARK RM 6.9(19)).
4567 if Is_Ghost_Entity (Rec) then
4568 Comp := First_Component (Rec);
4569 while Present (Comp) loop
4570 if Comes_From_Source (Comp)
4571 and then Is_Concurrent_Type (Etype (Comp))
4572 then
4573 Error_Msg_Name_1 := Chars (Rec);
4574 Error_Msg_N
4575 ("component & of ghost type % cannot be concurrent",
4576 Comp);
4577 end if;
4579 Next_Component (Comp);
4580 end loop;
4581 end if;
4582 end if;
4584 -- Make sure that if we have an iterator aspect, then we have
4585 -- either Constant_Indexing or Variable_Indexing.
4587 declare
4588 Iterator_Aspect : Node_Id;
4590 begin
4591 Iterator_Aspect := Find_Aspect (Rec, Aspect_Iterator_Element);
4593 if No (Iterator_Aspect) then
4594 Iterator_Aspect := Find_Aspect (Rec, Aspect_Default_Iterator);
4595 end if;
4597 if Present (Iterator_Aspect) then
4598 if Has_Aspect (Rec, Aspect_Constant_Indexing)
4599 or else
4600 Has_Aspect (Rec, Aspect_Variable_Indexing)
4601 then
4602 null;
4603 else
4604 Error_Msg_N
4605 ("Iterator_Element requires indexing aspect",
4606 Iterator_Aspect);
4607 end if;
4608 end if;
4609 end;
4611 -- All done if not a full record definition
4613 if Ekind (Rec) /= E_Record_Type then
4614 return;
4615 end if;
4617 -- Finally we need to check the variant part to make sure that
4618 -- all types within choices are properly frozen as part of the
4619 -- freezing of the record type.
4621 Check_Variant_Part : declare
4622 D : constant Node_Id := Declaration_Node (Rec);
4623 T : Node_Id;
4624 C : Node_Id;
4626 begin
4627 -- Find component list
4629 C := Empty;
4631 if Nkind (D) = N_Full_Type_Declaration then
4632 T := Type_Definition (D);
4634 if Nkind (T) = N_Record_Definition then
4635 C := Component_List (T);
4637 elsif Nkind (T) = N_Derived_Type_Definition
4638 and then Present (Record_Extension_Part (T))
4639 then
4640 C := Component_List (Record_Extension_Part (T));
4641 end if;
4642 end if;
4644 -- Case of variant part present
4646 if Present (C) and then Present (Variant_Part (C)) then
4647 Freeze_Choices_In_Variant_Part (Variant_Part (C));
4648 end if;
4650 -- Note: we used to call Check_Choices here, but it is too early,
4651 -- since predicated subtypes are frozen here, but their freezing
4652 -- actions are in Analyze_Freeze_Entity, which has not been called
4653 -- yet for entities frozen within this procedure, so we moved that
4654 -- call to the Analyze_Freeze_Entity for the record type.
4656 end Check_Variant_Part;
4658 -- Check that all the primitives of an interface type are abstract
4659 -- or null procedures.
4661 if Is_Interface (Rec)
4662 and then not Error_Posted (Parent (Rec))
4663 then
4664 declare
4665 Elmt : Elmt_Id;
4666 Subp : Entity_Id;
4668 begin
4669 Elmt := First_Elmt (Primitive_Operations (Rec));
4670 while Present (Elmt) loop
4671 Subp := Node (Elmt);
4673 if not Is_Abstract_Subprogram (Subp)
4675 -- Avoid reporting the error on inherited primitives
4677 and then Comes_From_Source (Subp)
4678 then
4679 Error_Msg_Name_1 := Chars (Subp);
4681 if Ekind (Subp) = E_Procedure then
4682 if not Null_Present (Parent (Subp)) then
4683 Error_Msg_N
4684 ("interface procedure % must be abstract or null",
4685 Parent (Subp));
4686 end if;
4687 else
4688 Error_Msg_N
4689 ("interface function % must be abstract",
4690 Parent (Subp));
4691 end if;
4692 end if;
4694 Next_Elmt (Elmt);
4695 end loop;
4696 end;
4697 end if;
4699 -- For a derived tagged type, check whether inherited primitives
4700 -- might require a wrapper to handle class-wide conditions.
4702 if Is_Tagged_Type (Rec) and then Is_Derived_Type (Rec) then
4703 Check_Inherited_Conditions (Rec);
4704 end if;
4705 end Freeze_Record_Type;
4707 -------------------------------
4708 -- Has_Boolean_Aspect_Import --
4709 -------------------------------
4711 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
4712 Decl : constant Node_Id := Declaration_Node (E);
4713 Asp : Node_Id;
4714 Expr : Node_Id;
4716 begin
4717 if Has_Aspects (Decl) then
4718 Asp := First (Aspect_Specifications (Decl));
4719 while Present (Asp) loop
4720 Expr := Expression (Asp);
4722 -- The value of aspect Import is True when the expression is
4723 -- either missing or it is explicitly set to True.
4725 if Get_Aspect_Id (Asp) = Aspect_Import
4726 and then (No (Expr)
4727 or else (Compile_Time_Known_Value (Expr)
4728 and then Is_True (Expr_Value (Expr))))
4729 then
4730 return True;
4731 end if;
4733 Next (Asp);
4734 end loop;
4735 end if;
4737 return False;
4738 end Has_Boolean_Aspect_Import;
4740 -------------------------
4741 -- Inherit_Freeze_Node --
4742 -------------------------
4744 procedure Inherit_Freeze_Node
4745 (Fnod : Node_Id;
4746 Typ : Entity_Id)
4748 Typ_Fnod : constant Node_Id := Freeze_Node (Typ);
4750 begin
4751 Set_Freeze_Node (Typ, Fnod);
4752 Set_Entity (Fnod, Typ);
4754 -- The input type had an existing node. Propagate relevant attributes
4755 -- from the old freeze node to the inherited freeze node.
4757 -- ??? if both freeze nodes have attributes, would they differ?
4759 if Present (Typ_Fnod) then
4761 -- Attribute Access_Types_To_Process
4763 if Present (Access_Types_To_Process (Typ_Fnod))
4764 and then No (Access_Types_To_Process (Fnod))
4765 then
4766 Set_Access_Types_To_Process (Fnod,
4767 Access_Types_To_Process (Typ_Fnod));
4768 end if;
4770 -- Attribute Actions
4772 if Present (Actions (Typ_Fnod)) and then No (Actions (Fnod)) then
4773 Set_Actions (Fnod, Actions (Typ_Fnod));
4774 end if;
4776 -- Attribute First_Subtype_Link
4778 if Present (First_Subtype_Link (Typ_Fnod))
4779 and then No (First_Subtype_Link (Fnod))
4780 then
4781 Set_First_Subtype_Link (Fnod, First_Subtype_Link (Typ_Fnod));
4782 end if;
4784 -- Attribute TSS_Elist
4786 if Present (TSS_Elist (Typ_Fnod))
4787 and then No (TSS_Elist (Fnod))
4788 then
4789 Set_TSS_Elist (Fnod, TSS_Elist (Typ_Fnod));
4790 end if;
4791 end if;
4792 end Inherit_Freeze_Node;
4794 ------------------------------
4795 -- Wrap_Imported_Subprogram --
4796 ------------------------------
4798 -- The issue here is that our normal approach of checking preconditions
4799 -- and postconditions does not work for imported procedures, since we
4800 -- are not generating code for the body. To get around this we create
4801 -- a wrapper, as shown by the following example:
4803 -- procedure K (A : Integer);
4804 -- pragma Import (C, K);
4806 -- The spec is rewritten by removing the effects of pragma Import, but
4807 -- leaving the convention unchanged, as though the source had said:
4809 -- procedure K (A : Integer);
4810 -- pragma Convention (C, K);
4812 -- and we create a body, added to the entity K freeze actions, which
4813 -- looks like:
4815 -- procedure K (A : Integer) is
4816 -- procedure K (A : Integer);
4817 -- pragma Import (C, K);
4818 -- begin
4819 -- K (A);
4820 -- end K;
4822 -- Now the contract applies in the normal way to the outer procedure,
4823 -- and the inner procedure has no contracts, so there is no problem
4824 -- in just calling it to get the original effect.
4826 -- In the case of a function, we create an appropriate return statement
4827 -- for the subprogram body that calls the inner procedure.
4829 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
4830 function Copy_Import_Pragma return Node_Id;
4831 -- Obtain a copy of the Import_Pragma which belongs to subprogram E
4833 ------------------------
4834 -- Copy_Import_Pragma --
4835 ------------------------
4837 function Copy_Import_Pragma return Node_Id is
4839 -- The subprogram should have an import pragma, otherwise it does
4840 -- need a wrapper.
4842 Prag : constant Node_Id := Import_Pragma (E);
4843 pragma Assert (Present (Prag));
4845 -- Save all semantic fields of the pragma
4847 Save_Asp : constant Node_Id := Corresponding_Aspect (Prag);
4848 Save_From : constant Boolean := From_Aspect_Specification (Prag);
4849 Save_Prag : constant Node_Id := Next_Pragma (Prag);
4850 Save_Rep : constant Node_Id := Next_Rep_Item (Prag);
4852 Result : Node_Id;
4854 begin
4855 -- Reset all semantic fields. This avoids a potential infinite
4856 -- loop when the pragma comes from an aspect as the duplication
4857 -- will copy the aspect, then copy the corresponding pragma and
4858 -- so on.
4860 Set_Corresponding_Aspect (Prag, Empty);
4861 Set_From_Aspect_Specification (Prag, False);
4862 Set_Next_Pragma (Prag, Empty);
4863 Set_Next_Rep_Item (Prag, Empty);
4865 Result := Copy_Separate_Tree (Prag);
4867 -- Restore the original semantic fields
4869 Set_Corresponding_Aspect (Prag, Save_Asp);
4870 Set_From_Aspect_Specification (Prag, Save_From);
4871 Set_Next_Pragma (Prag, Save_Prag);
4872 Set_Next_Rep_Item (Prag, Save_Rep);
4874 return Result;
4875 end Copy_Import_Pragma;
4877 -- Local variables
4879 Loc : constant Source_Ptr := Sloc (E);
4880 CE : constant Name_Id := Chars (E);
4881 Bod : Node_Id;
4882 Forml : Entity_Id;
4883 Parms : List_Id;
4884 Prag : Node_Id;
4885 Spec : Node_Id;
4886 Stmt : Node_Id;
4888 -- Start of processing for Wrap_Imported_Subprogram
4890 begin
4891 -- Nothing to do if not imported
4893 if not Is_Imported (E) then
4894 return;
4896 -- Test enabling conditions for wrapping
4898 elsif Is_Subprogram (E)
4899 and then Present (Contract (E))
4900 and then Present (Pre_Post_Conditions (Contract (E)))
4901 and then not GNATprove_Mode
4902 then
4903 -- Here we do the wrap
4905 -- Note on calls to Copy_Separate_Tree. The trees we are copying
4906 -- here are fully analyzed, but we definitely want fully syntactic
4907 -- unanalyzed trees in the body we construct, so that the analysis
4908 -- generates the right visibility, and that is exactly what the
4909 -- calls to Copy_Separate_Tree give us.
4911 Prag := Copy_Import_Pragma;
4913 -- Fix up spec to be not imported any more
4915 Set_Has_Completion (E, False);
4916 Set_Import_Pragma (E, Empty);
4917 Set_Interface_Name (E, Empty);
4918 Set_Is_Imported (E, False);
4920 -- Grab the subprogram declaration and specification
4922 Spec := Declaration_Node (E);
4924 -- Build parameter list that we need
4926 Parms := New_List;
4927 Forml := First_Formal (E);
4928 while Present (Forml) loop
4929 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
4930 Next_Formal (Forml);
4931 end loop;
4933 -- Build the call
4935 if Ekind_In (E, E_Function, E_Generic_Function) then
4936 Stmt :=
4937 Make_Simple_Return_Statement (Loc,
4938 Expression =>
4939 Make_Function_Call (Loc,
4940 Name => Make_Identifier (Loc, CE),
4941 Parameter_Associations => Parms));
4943 else
4944 Stmt :=
4945 Make_Procedure_Call_Statement (Loc,
4946 Name => Make_Identifier (Loc, CE),
4947 Parameter_Associations => Parms);
4948 end if;
4950 -- Now build the body
4952 Bod :=
4953 Make_Subprogram_Body (Loc,
4954 Specification =>
4955 Copy_Separate_Tree (Spec),
4956 Declarations => New_List (
4957 Make_Subprogram_Declaration (Loc,
4958 Specification => Copy_Separate_Tree (Spec)),
4959 Prag),
4960 Handled_Statement_Sequence =>
4961 Make_Handled_Sequence_Of_Statements (Loc,
4962 Statements => New_List (Stmt),
4963 End_Label => Make_Identifier (Loc, CE)));
4965 -- Append the body to freeze result
4967 Add_To_Result (Bod);
4968 return;
4970 -- Case of imported subprogram that does not get wrapped
4972 else
4973 -- Set Is_Public. All imported entities need an external symbol
4974 -- created for them since they are always referenced from another
4975 -- object file. Note this used to be set when we set Is_Imported
4976 -- back in Sem_Prag, but now we delay it to this point, since we
4977 -- don't want to set this flag if we wrap an imported subprogram.
4979 Set_Is_Public (E);
4980 end if;
4981 end Wrap_Imported_Subprogram;
4983 -- Local variables
4985 Mode : Ghost_Mode_Type;
4987 -- Start of processing for Freeze_Entity
4989 begin
4990 -- The entity being frozen may be subject to pragma Ghost. Set the mode
4991 -- now to ensure that any nodes generated during freezing are properly
4992 -- flagged as Ghost.
4994 Set_Ghost_Mode (E, Mode);
4996 -- We are going to test for various reasons why this entity need not be
4997 -- frozen here, but in the case of an Itype that's defined within a
4998 -- record, that test actually applies to the record.
5000 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
5001 Test_E := Scope (E);
5002 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
5003 and then Is_Record_Type (Underlying_Type (Scope (E)))
5004 then
5005 Test_E := Underlying_Type (Scope (E));
5006 end if;
5008 -- Do not freeze if already frozen since we only need one freeze node
5010 if Is_Frozen (E) then
5011 Result := No_List;
5012 goto Leave;
5014 elsif Ekind (E) = E_Generic_Package then
5015 Result := Freeze_Generic_Entities (E);
5016 goto Leave;
5018 -- It is improper to freeze an external entity within a generic because
5019 -- its freeze node will appear in a non-valid context. The entity will
5020 -- be frozen in the proper scope after the current generic is analyzed.
5021 -- However, aspects must be analyzed because they may be queried later
5022 -- within the generic itself, and the corresponding pragma or attribute
5023 -- definition has not been analyzed yet.
5025 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
5026 if Has_Delayed_Aspects (E) then
5027 Analyze_Aspects_At_Freeze_Point (E);
5028 end if;
5030 Result := No_List;
5031 goto Leave;
5033 -- AI05-0213: A formal incomplete type does not freeze the actual. In
5034 -- the instance, the same applies to the subtype renaming the actual.
5036 elsif Is_Private_Type (E)
5037 and then Is_Generic_Actual_Type (E)
5038 and then No (Full_View (Base_Type (E)))
5039 and then Ada_Version >= Ada_2012
5040 then
5041 Result := No_List;
5042 goto Leave;
5044 -- Formal subprograms are never frozen
5046 elsif Is_Formal_Subprogram (E) then
5047 Result := No_List;
5048 goto Leave;
5050 -- Generic types are never frozen as they lack delayed semantic checks
5052 elsif Is_Generic_Type (E) then
5053 Result := No_List;
5054 goto Leave;
5056 -- Do not freeze a global entity within an inner scope created during
5057 -- expansion. A call to subprogram E within some internal procedure
5058 -- (a stream attribute for example) might require freezing E, but the
5059 -- freeze node must appear in the same declarative part as E itself.
5060 -- The two-pass elaboration mechanism in gigi guarantees that E will
5061 -- be frozen before the inner call is elaborated. We exclude constants
5062 -- from this test, because deferred constants may be frozen early, and
5063 -- must be diagnosed (e.g. in the case of a deferred constant being used
5064 -- in a default expression). If the enclosing subprogram comes from
5065 -- source, or is a generic instance, then the freeze point is the one
5066 -- mandated by the language, and we freeze the entity. A subprogram that
5067 -- is a child unit body that acts as a spec does not have a spec that
5068 -- comes from source, but can only come from source.
5070 elsif In_Open_Scopes (Scope (Test_E))
5071 and then Scope (Test_E) /= Current_Scope
5072 and then Ekind (Test_E) /= E_Constant
5073 then
5074 declare
5075 S : Entity_Id;
5077 begin
5078 S := Current_Scope;
5079 while Present (S) loop
5080 if Is_Overloadable (S) then
5081 if Comes_From_Source (S)
5082 or else Is_Generic_Instance (S)
5083 or else Is_Child_Unit (S)
5084 then
5085 exit;
5086 else
5087 Result := No_List;
5088 goto Leave;
5089 end if;
5090 end if;
5092 S := Scope (S);
5093 end loop;
5094 end;
5096 -- Similarly, an inlined instance body may make reference to global
5097 -- entities, but these references cannot be the proper freezing point
5098 -- for them, and in the absence of inlining freezing will take place in
5099 -- their own scope. Normally instance bodies are analyzed after the
5100 -- enclosing compilation, and everything has been frozen at the proper
5101 -- place, but with front-end inlining an instance body is compiled
5102 -- before the end of the enclosing scope, and as a result out-of-order
5103 -- freezing must be prevented.
5105 elsif Front_End_Inlining
5106 and then In_Instance_Body
5107 and then Present (Scope (Test_E))
5108 then
5109 declare
5110 S : Entity_Id;
5112 begin
5113 S := Scope (Test_E);
5114 while Present (S) loop
5115 if Is_Generic_Instance (S) then
5116 exit;
5117 else
5118 S := Scope (S);
5119 end if;
5120 end loop;
5122 if No (S) then
5123 Result := No_List;
5124 goto Leave;
5125 end if;
5126 end;
5127 end if;
5129 -- Add checks to detect proper initialization of scalars that may appear
5130 -- as subprogram parameters.
5132 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
5133 Apply_Parameter_Validity_Checks (E);
5134 end if;
5136 -- Deal with delayed aspect specifications. The analysis of the aspect
5137 -- is required to be delayed to the freeze point, thus we analyze the
5138 -- pragma or attribute definition clause in the tree at this point. We
5139 -- also analyze the aspect specification node at the freeze point when
5140 -- the aspect doesn't correspond to pragma/attribute definition clause.
5142 if Has_Delayed_Aspects (E) then
5143 Analyze_Aspects_At_Freeze_Point (E);
5144 end if;
5146 -- Here to freeze the entity
5148 Set_Is_Frozen (E);
5150 -- Case of entity being frozen is other than a type
5152 if not Is_Type (E) then
5154 -- If entity is exported or imported and does not have an external
5155 -- name, now is the time to provide the appropriate default name.
5156 -- Skip this if the entity is stubbed, since we don't need a name
5157 -- for any stubbed routine. For the case on intrinsics, if no
5158 -- external name is specified, then calls will be handled in
5159 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
5160 -- external name is provided, then Expand_Intrinsic_Call leaves
5161 -- calls in place for expansion by GIGI.
5163 if (Is_Imported (E) or else Is_Exported (E))
5164 and then No (Interface_Name (E))
5165 and then Convention (E) /= Convention_Stubbed
5166 and then Convention (E) /= Convention_Intrinsic
5167 then
5168 Set_Encoded_Interface_Name
5169 (E, Get_Default_External_Name (E));
5171 -- If entity is an atomic object appearing in a declaration and
5172 -- the expression is an aggregate, assign it to a temporary to
5173 -- ensure that the actual assignment is done atomically rather
5174 -- than component-wise (the assignment to the temp may be done
5175 -- component-wise, but that is harmless).
5177 elsif Is_Atomic_Or_VFA (E)
5178 and then Nkind (Parent (E)) = N_Object_Declaration
5179 and then Present (Expression (Parent (E)))
5180 and then Nkind (Expression (Parent (E))) = N_Aggregate
5181 and then Is_Atomic_VFA_Aggregate (Expression (Parent (E)))
5182 then
5183 null;
5184 end if;
5186 -- Subprogram case
5188 if Is_Subprogram (E) then
5190 -- Check for needing to wrap imported subprogram
5192 Wrap_Imported_Subprogram (E);
5194 -- Freeze all parameter types and the return type (RM 13.14(14)).
5195 -- However skip this for internal subprograms. This is also where
5196 -- any extra formal parameters are created since we now know
5197 -- whether the subprogram will use a foreign convention.
5199 -- In Ada 2012, freezing a subprogram does not always freeze the
5200 -- corresponding profile (see AI05-019). An attribute reference
5201 -- is not a freezing point of the profile. Flag Do_Freeze_Profile
5202 -- indicates whether the profile should be frozen now.
5203 -- Other constructs that should not freeze ???
5205 -- This processing doesn't apply to internal entities (see below)
5207 if not Is_Internal (E) and then Do_Freeze_Profile then
5208 if not Freeze_Profile (E) then
5209 goto Leave;
5210 end if;
5211 end if;
5213 -- Must freeze its parent first if it is a derived subprogram
5215 if Present (Alias (E)) then
5216 Freeze_And_Append (Alias (E), N, Result);
5217 end if;
5219 -- We don't freeze internal subprograms, because we don't normally
5220 -- want addition of extra formals or mechanism setting to happen
5221 -- for those. However we do pass through predefined dispatching
5222 -- cases, since extra formals may be needed in some cases, such as
5223 -- for the stream 'Input function (build-in-place formals).
5225 if not Is_Internal (E)
5226 or else Is_Predefined_Dispatching_Operation (E)
5227 then
5228 Freeze_Subprogram (E);
5229 end if;
5231 -- If warning on suspicious contracts then check for the case of
5232 -- a postcondition other than False for a No_Return subprogram.
5234 if No_Return (E)
5235 and then Warn_On_Suspicious_Contract
5236 and then Present (Contract (E))
5237 then
5238 declare
5239 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
5240 Exp : Node_Id;
5242 begin
5243 while Present (Prag) loop
5244 if Nam_In (Pragma_Name_Unmapped (Prag),
5245 Name_Post,
5246 Name_Postcondition,
5247 Name_Refined_Post)
5248 then
5249 Exp :=
5250 Expression
5251 (First (Pragma_Argument_Associations (Prag)));
5253 if Nkind (Exp) /= N_Identifier
5254 or else Chars (Exp) /= Name_False
5255 then
5256 Error_Msg_NE
5257 ("useless postcondition, & is marked "
5258 & "No_Return?T?", Exp, E);
5259 end if;
5260 end if;
5262 Prag := Next_Pragma (Prag);
5263 end loop;
5264 end;
5265 end if;
5267 -- Here for other than a subprogram or type
5269 else
5270 -- If entity has a type, and it is not a generic unit, then
5271 -- freeze it first (RM 13.14(10)).
5273 if Present (Etype (E))
5274 and then Ekind (E) /= E_Generic_Function
5275 then
5276 Freeze_And_Append (Etype (E), N, Result);
5278 -- For an object of an anonymous array type, aspects on the
5279 -- object declaration apply to the type itself. This is the
5280 -- case for Atomic_Components, Volatile_Components, and
5281 -- Independent_Components. In these cases analysis of the
5282 -- generated pragma will mark the anonymous types accordingly,
5283 -- and the object itself does not require a freeze node.
5285 if Ekind (E) = E_Variable
5286 and then Is_Itype (Etype (E))
5287 and then Is_Array_Type (Etype (E))
5288 and then Has_Delayed_Aspects (E)
5289 then
5290 Set_Has_Delayed_Aspects (E, False);
5291 Set_Has_Delayed_Freeze (E, False);
5292 Set_Freeze_Node (E, Empty);
5293 end if;
5294 end if;
5296 -- Special processing for objects created by object declaration
5298 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
5299 Freeze_Object_Declaration (E);
5300 end if;
5302 -- Check that a constant which has a pragma Volatile[_Components]
5303 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
5305 -- Note: Atomic[_Components] also sets Volatile[_Components]
5307 if Ekind (E) = E_Constant
5308 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
5309 and then not Is_Imported (E)
5310 and then not Has_Boolean_Aspect_Import (E)
5311 then
5312 -- Make sure we actually have a pragma, and have not merely
5313 -- inherited the indication from elsewhere (e.g. an address
5314 -- clause, which is not good enough in RM terms).
5316 if Has_Rep_Pragma (E, Name_Atomic)
5317 or else
5318 Has_Rep_Pragma (E, Name_Atomic_Components)
5319 then
5320 Error_Msg_N
5321 ("stand alone atomic constant must be " &
5322 "imported (RM C.6(13))", E);
5324 elsif Has_Rep_Pragma (E, Name_Volatile)
5325 or else
5326 Has_Rep_Pragma (E, Name_Volatile_Components)
5327 then
5328 Error_Msg_N
5329 ("stand alone volatile constant must be " &
5330 "imported (RM C.6(13))", E);
5331 end if;
5332 end if;
5334 -- Static objects require special handling
5336 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
5337 and then Is_Statically_Allocated (E)
5338 then
5339 Freeze_Static_Object (E);
5340 end if;
5342 -- Remaining step is to layout objects
5344 if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
5345 or else Is_Formal (E)
5346 then
5347 Layout_Object (E);
5348 end if;
5350 -- For an object that does not have delayed freezing, and whose
5351 -- initialization actions have been captured in a compound
5352 -- statement, move them back now directly within the enclosing
5353 -- statement sequence.
5355 if Ekind_In (E, E_Constant, E_Variable)
5356 and then not Has_Delayed_Freeze (E)
5357 then
5358 Explode_Initialization_Compound_Statement (E);
5359 end if;
5360 end if;
5362 -- Case of a type or subtype being frozen
5364 else
5365 -- We used to check here that a full type must have preelaborable
5366 -- initialization if it completes a private type specified with
5367 -- pragma Preelaborable_Initialization, but that missed cases where
5368 -- the types occur within a generic package, since the freezing
5369 -- that occurs within a containing scope generally skips traversal
5370 -- of a generic unit's declarations (those will be frozen within
5371 -- instances). This check was moved to Analyze_Package_Specification.
5373 -- The type may be defined in a generic unit. This can occur when
5374 -- freezing a generic function that returns the type (which is
5375 -- defined in a parent unit). It is clearly meaningless to freeze
5376 -- this type. However, if it is a subtype, its size may be determi-
5377 -- nable and used in subsequent checks, so might as well try to
5378 -- compute it.
5380 -- In Ada 2012, Freeze_Entities is also used in the front end to
5381 -- trigger the analysis of aspect expressions, so in this case we
5382 -- want to continue the freezing process.
5384 -- Is_Generic_Unit (Scope (E)) is dubious here, do we want instead
5385 -- In_Generic_Scope (E)???
5387 if Present (Scope (E))
5388 and then Is_Generic_Unit (Scope (E))
5389 and then
5390 (not Has_Predicates (E)
5391 and then not Has_Delayed_Freeze (E))
5392 then
5393 Check_Compile_Time_Size (E);
5394 Result := No_List;
5395 goto Leave;
5396 end if;
5398 -- Check for error of Type_Invariant'Class applied to an untagged
5399 -- type (check delayed to freeze time when full type is available).
5401 declare
5402 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
5403 begin
5404 if Present (Prag)
5405 and then Class_Present (Prag)
5406 and then not Is_Tagged_Type (E)
5407 then
5408 Error_Msg_NE
5409 ("Type_Invariant''Class cannot be specified for &", Prag, E);
5410 Error_Msg_N
5411 ("\can only be specified for a tagged type", Prag);
5412 end if;
5413 end;
5415 if Is_Ghost_Entity (E) then
5417 -- A Ghost type cannot be concurrent (SPARK RM 6.9(19)). Verify
5418 -- this legality rule first to five a finer-grained diagnostic.
5420 if Is_Concurrent_Type (E) then
5421 Error_Msg_N ("ghost type & cannot be concurrent", E);
5423 -- A Ghost type cannot be effectively volatile (SPARK RM 6.9(7))
5425 elsif Is_Effectively_Volatile (E) then
5426 Error_Msg_N ("ghost type & cannot be volatile", E);
5427 end if;
5428 end if;
5430 -- Deal with special cases of freezing for subtype
5432 if E /= Base_Type (E) then
5434 -- Before we do anything else, a specific test for the case of a
5435 -- size given for an array where the array would need to be packed
5436 -- in order for the size to be honored, but is not. This is the
5437 -- case where implicit packing may apply. The reason we do this so
5438 -- early is that, if we have implicit packing, the layout of the
5439 -- base type is affected, so we must do this before we freeze the
5440 -- base type.
5442 -- We could do this processing only if implicit packing is enabled
5443 -- since in all other cases, the error would be caught by the back
5444 -- end. However, we choose to do the check even if we do not have
5445 -- implicit packing enabled, since this allows us to give a more
5446 -- useful error message (advising use of pragma Implicit_Packing
5447 -- or pragma Pack).
5449 if Is_Array_Type (E) then
5450 declare
5451 Ctyp : constant Entity_Id := Component_Type (E);
5452 Rsiz : constant Uint := RM_Size (Ctyp);
5453 SZ : constant Node_Id := Size_Clause (E);
5454 Btyp : constant Entity_Id := Base_Type (E);
5456 Lo : Node_Id;
5457 Hi : Node_Id;
5458 Indx : Node_Id;
5460 Dim : Uint;
5461 Num_Elmts : Uint := Uint_1;
5462 -- Number of elements in array
5464 begin
5465 -- Check enabling conditions. These are straightforward
5466 -- except for the test for a limited composite type. This
5467 -- eliminates the rare case of a array of limited components
5468 -- where there are issues of whether or not we can go ahead
5469 -- and pack the array (since we can't freely pack and unpack
5470 -- arrays if they are limited).
5472 -- Note that we check the root type explicitly because the
5473 -- whole point is we are doing this test before we have had
5474 -- a chance to freeze the base type (and it is that freeze
5475 -- action that causes stuff to be inherited).
5477 -- The conditions on the size are identical to those used in
5478 -- Freeze_Array_Type to set the Is_Packed flag.
5480 if Has_Size_Clause (E)
5481 and then Known_Static_RM_Size (E)
5482 and then not Is_Packed (E)
5483 and then not Has_Pragma_Pack (E)
5484 and then not Has_Component_Size_Clause (E)
5485 and then Known_Static_RM_Size (Ctyp)
5486 and then Rsiz <= 64
5487 and then not (Addressable (Rsiz)
5488 and then Known_Static_Esize (Ctyp)
5489 and then Esize (Ctyp) = Rsiz)
5490 and then not (Rsiz mod System_Storage_Unit = 0
5491 and then Is_Composite_Type (Ctyp))
5492 and then not Is_Limited_Composite (E)
5493 and then not Is_Packed (Root_Type (E))
5494 and then not Has_Component_Size_Clause (Root_Type (E))
5495 and then not (CodePeer_Mode or GNATprove_Mode)
5496 then
5497 -- Compute number of elements in array
5499 Indx := First_Index (E);
5500 while Present (Indx) loop
5501 Get_Index_Bounds (Indx, Lo, Hi);
5503 if not (Compile_Time_Known_Value (Lo)
5504 and then
5505 Compile_Time_Known_Value (Hi))
5506 then
5507 goto No_Implicit_Packing;
5508 end if;
5510 Dim := Expr_Value (Hi) - Expr_Value (Lo) + 1;
5512 if Dim >= 0 then
5513 Num_Elmts := Num_Elmts * Dim;
5514 else
5515 Num_Elmts := Uint_0;
5516 end if;
5518 Next_Index (Indx);
5519 end loop;
5521 -- What we are looking for here is the situation where
5522 -- the RM_Size given would be exactly right if there was
5523 -- a pragma Pack, resulting in the component size being
5524 -- the RM_Size of the component type.
5526 if RM_Size (E) = Num_Elmts * Rsiz then
5528 -- For implicit packing mode, just set the component
5529 -- size and Freeze_Array_Type will do the rest.
5531 if Implicit_Packing then
5532 Set_Component_Size (Btyp, Rsiz);
5534 -- Otherwise give an error message
5536 else
5537 Error_Msg_NE
5538 ("size given for& too small", SZ, E);
5539 Error_Msg_N -- CODEFIX
5540 ("\use explicit pragma Pack or use pragma "
5541 & "Implicit_Packing", SZ);
5542 end if;
5543 end if;
5544 end if;
5545 end;
5546 end if;
5548 <<No_Implicit_Packing>>
5550 -- If ancestor subtype present, freeze that first. Note that this
5551 -- will also get the base type frozen. Need RM reference ???
5553 Atype := Ancestor_Subtype (E);
5555 if Present (Atype) then
5556 Freeze_And_Append (Atype, N, Result);
5558 -- No ancestor subtype present
5560 else
5561 -- See if we have a nearest ancestor that has a predicate.
5562 -- That catches the case of derived type with a predicate.
5563 -- Need RM reference here ???
5565 Atype := Nearest_Ancestor (E);
5567 if Present (Atype) and then Has_Predicates (Atype) then
5568 Freeze_And_Append (Atype, N, Result);
5569 end if;
5571 -- Freeze base type before freezing the entity (RM 13.14(15))
5573 if E /= Base_Type (E) then
5574 Freeze_And_Append (Base_Type (E), N, Result);
5575 end if;
5576 end if;
5578 -- A subtype inherits all the type-related representation aspects
5579 -- from its parents (RM 13.1(8)).
5581 Inherit_Aspects_At_Freeze_Point (E);
5583 -- For a derived type, freeze its parent type first (RM 13.14(15))
5585 elsif Is_Derived_Type (E) then
5586 Freeze_And_Append (Etype (E), N, Result);
5587 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
5589 -- A derived type inherits each type-related representation aspect
5590 -- of its parent type that was directly specified before the
5591 -- declaration of the derived type (RM 13.1(15)).
5593 Inherit_Aspects_At_Freeze_Point (E);
5594 end if;
5596 -- Check for incompatible size and alignment for record type
5598 if Warn_On_Size_Alignment
5599 and then Is_Record_Type (E)
5600 and then Has_Size_Clause (E) and then Has_Alignment_Clause (E)
5602 -- If explicit Object_Size clause given assume that the programmer
5603 -- knows what he is doing, and expects the compiler behavior.
5605 and then not Has_Object_Size_Clause (E)
5607 -- Check for size not a multiple of alignment
5609 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
5610 then
5611 declare
5612 SC : constant Node_Id := Size_Clause (E);
5613 AC : constant Node_Id := Alignment_Clause (E);
5614 Loc : Node_Id;
5615 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
5617 begin
5618 if Present (SC) and then Present (AC) then
5620 -- Give a warning
5622 if Sloc (SC) > Sloc (AC) then
5623 Loc := SC;
5624 Error_Msg_NE
5625 ("?Z?size is not a multiple of alignment for &",
5626 Loc, E);
5627 Error_Msg_Sloc := Sloc (AC);
5628 Error_Msg_Uint_1 := Alignment (E);
5629 Error_Msg_N ("\?Z?alignment of ^ specified #", Loc);
5631 else
5632 Loc := AC;
5633 Error_Msg_NE
5634 ("?Z?size is not a multiple of alignment for &",
5635 Loc, E);
5636 Error_Msg_Sloc := Sloc (SC);
5637 Error_Msg_Uint_1 := RM_Size (E);
5638 Error_Msg_N ("\?Z?size of ^ specified #", Loc);
5639 end if;
5641 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
5642 Error_Msg_N ("\?Z?Object_Size will be increased to ^", Loc);
5643 end if;
5644 end;
5645 end if;
5647 -- Array type
5649 if Is_Array_Type (E) then
5650 Freeze_Array_Type (E);
5652 -- For a class-wide type, the corresponding specific type is
5653 -- frozen as well (RM 13.14(15))
5655 elsif Is_Class_Wide_Type (E) then
5656 Freeze_And_Append (Root_Type (E), N, Result);
5658 -- If the base type of the class-wide type is still incomplete,
5659 -- the class-wide remains unfrozen as well. This is legal when
5660 -- E is the formal of a primitive operation of some other type
5661 -- which is being frozen.
5663 if not Is_Frozen (Root_Type (E)) then
5664 Set_Is_Frozen (E, False);
5665 goto Leave;
5666 end if;
5668 -- The equivalent type associated with a class-wide subtype needs
5669 -- to be frozen to ensure that its layout is done.
5671 if Ekind (E) = E_Class_Wide_Subtype
5672 and then Present (Equivalent_Type (E))
5673 then
5674 Freeze_And_Append (Equivalent_Type (E), N, Result);
5675 end if;
5677 -- Generate an itype reference for a library-level class-wide type
5678 -- at the freeze point. Otherwise the first explicit reference to
5679 -- the type may appear in an inner scope which will be rejected by
5680 -- the back-end.
5682 if Is_Itype (E)
5683 and then Is_Compilation_Unit (Scope (E))
5684 then
5685 declare
5686 Ref : constant Node_Id := Make_Itype_Reference (Loc);
5688 begin
5689 Set_Itype (Ref, E);
5691 -- From a gigi point of view, a class-wide subtype derives
5692 -- from its record equivalent type. As a result, the itype
5693 -- reference must appear after the freeze node of the
5694 -- equivalent type or gigi will reject the reference.
5696 if Ekind (E) = E_Class_Wide_Subtype
5697 and then Present (Equivalent_Type (E))
5698 then
5699 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
5700 else
5701 Add_To_Result (Ref);
5702 end if;
5703 end;
5704 end if;
5706 -- For a record type or record subtype, freeze all component types
5707 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5708 -- using Is_Record_Type, because we don't want to attempt the freeze
5709 -- for the case of a private type with record extension (we will do
5710 -- that later when the full type is frozen).
5712 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype) then
5713 if not In_Generic_Scope (E) then
5714 Freeze_Record_Type (E);
5715 end if;
5717 -- Report a warning if a discriminated record base type has a
5718 -- convention with language C or C++ applied to it. This check is
5719 -- done even within generic scopes (but not in instantiations),
5720 -- which is why we don't do it as part of Freeze_Record_Type.
5722 Check_Suspicious_Convention (E);
5724 -- For a concurrent type, freeze corresponding record type. This does
5725 -- not correspond to any specific rule in the RM, but the record type
5726 -- is essentially part of the concurrent type. Also freeze all local
5727 -- entities. This includes record types created for entry parameter
5728 -- blocks and whatever local entities may appear in the private part.
5730 elsif Is_Concurrent_Type (E) then
5731 if Present (Corresponding_Record_Type (E)) then
5732 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
5733 end if;
5735 Comp := First_Entity (E);
5736 while Present (Comp) loop
5737 if Is_Type (Comp) then
5738 Freeze_And_Append (Comp, N, Result);
5740 elsif (Ekind (Comp)) /= E_Function then
5742 -- The guard on the presence of the Etype seems to be needed
5743 -- for some CodePeer (-gnatcC) cases, but not clear why???
5745 if Present (Etype (Comp)) then
5746 if Is_Itype (Etype (Comp))
5747 and then Underlying_Type (Scope (Etype (Comp))) = E
5748 then
5749 Undelay_Type (Etype (Comp));
5750 end if;
5752 Freeze_And_Append (Etype (Comp), N, Result);
5753 end if;
5754 end if;
5756 Next_Entity (Comp);
5757 end loop;
5759 -- Private types are required to point to the same freeze node as
5760 -- their corresponding full views. The freeze node itself has to
5761 -- point to the partial view of the entity (because from the partial
5762 -- view, we can retrieve the full view, but not the reverse).
5763 -- However, in order to freeze correctly, we need to freeze the full
5764 -- view. If we are freezing at the end of a scope (or within the
5765 -- scope) of the private type, the partial and full views will have
5766 -- been swapped, the full view appears first in the entity chain and
5767 -- the swapping mechanism ensures that the pointers are properly set
5768 -- (on scope exit).
5770 -- If we encounter the partial view before the full view (e.g. when
5771 -- freezing from another scope), we freeze the full view, and then
5772 -- set the pointers appropriately since we cannot rely on swapping to
5773 -- fix things up (subtypes in an outer scope might not get swapped).
5775 -- If the full view is itself private, the above requirements apply
5776 -- to the underlying full view instead of the full view. But there is
5777 -- no swapping mechanism for the underlying full view so we need to
5778 -- set the pointers appropriately in both cases.
5780 elsif Is_Incomplete_Or_Private_Type (E)
5781 and then not Is_Generic_Type (E)
5782 then
5783 -- The construction of the dispatch table associated with library
5784 -- level tagged types forces freezing of all the primitives of the
5785 -- type, which may cause premature freezing of the partial view.
5786 -- For example:
5788 -- package Pkg is
5789 -- type T is tagged private;
5790 -- type DT is new T with private;
5791 -- procedure Prim (X : in out T; Y : in out DT'Class);
5792 -- private
5793 -- type T is tagged null record;
5794 -- Obj : T;
5795 -- type DT is new T with null record;
5796 -- end;
5798 -- In this case the type will be frozen later by the usual
5799 -- mechanism: an object declaration, an instantiation, or the
5800 -- end of a declarative part.
5802 if Is_Library_Level_Tagged_Type (E)
5803 and then not Present (Full_View (E))
5804 then
5805 Set_Is_Frozen (E, False);
5806 goto Leave;
5808 -- Case of full view present
5810 elsif Present (Full_View (E)) then
5812 -- If full view has already been frozen, then no further
5813 -- processing is required
5815 if Is_Frozen (Full_View (E)) then
5816 Set_Has_Delayed_Freeze (E, False);
5817 Set_Freeze_Node (E, Empty);
5819 -- Otherwise freeze full view and patch the pointers so that
5820 -- the freeze node will elaborate both views in the back end.
5821 -- However, if full view is itself private, freeze underlying
5822 -- full view instead and patch the pointers so that the freeze
5823 -- node will elaborate the three views in the back end.
5825 else
5826 declare
5827 Full : Entity_Id := Full_View (E);
5829 begin
5830 if Is_Private_Type (Full)
5831 and then Present (Underlying_Full_View (Full))
5832 then
5833 Full := Underlying_Full_View (Full);
5834 end if;
5836 Freeze_And_Append (Full, N, Result);
5838 if Full /= Full_View (E)
5839 and then Has_Delayed_Freeze (Full_View (E))
5840 then
5841 F_Node := Freeze_Node (Full);
5843 if Present (F_Node) then
5844 Inherit_Freeze_Node
5845 (Fnod => F_Node,
5846 Typ => Full_View (E));
5847 else
5848 Set_Has_Delayed_Freeze (Full_View (E), False);
5849 Set_Freeze_Node (Full_View (E), Empty);
5850 end if;
5851 end if;
5853 if Has_Delayed_Freeze (E) then
5854 F_Node := Freeze_Node (Full_View (E));
5856 if Present (F_Node) then
5857 Inherit_Freeze_Node
5858 (Fnod => F_Node,
5859 Typ => E);
5860 else
5861 -- {Incomplete,Private}_Subtypes with Full_Views
5862 -- constrained by discriminants.
5864 Set_Has_Delayed_Freeze (E, False);
5865 Set_Freeze_Node (E, Empty);
5866 end if;
5867 end if;
5868 end;
5869 end if;
5871 Check_Debug_Info_Needed (E);
5873 -- AI-117 requires that the convention of a partial view be the
5874 -- same as the convention of the full view. Note that this is a
5875 -- recognized breach of privacy, but it's essential for logical
5876 -- consistency of representation, and the lack of a rule in
5877 -- RM95 was an oversight.
5879 Set_Convention (E, Convention (Full_View (E)));
5881 Set_Size_Known_At_Compile_Time (E,
5882 Size_Known_At_Compile_Time (Full_View (E)));
5884 -- Size information is copied from the full view to the
5885 -- incomplete or private view for consistency.
5887 -- We skip this is the full view is not a type. This is very
5888 -- strange of course, and can only happen as a result of
5889 -- certain illegalities, such as a premature attempt to derive
5890 -- from an incomplete type.
5892 if Is_Type (Full_View (E)) then
5893 Set_Size_Info (E, Full_View (E));
5894 Set_RM_Size (E, RM_Size (Full_View (E)));
5895 end if;
5897 goto Leave;
5899 -- Case of underlying full view present
5901 elsif Is_Private_Type (E)
5902 and then Present (Underlying_Full_View (E))
5903 then
5904 if not Is_Frozen (Underlying_Full_View (E)) then
5905 Freeze_And_Append (Underlying_Full_View (E), N, Result);
5906 end if;
5908 -- Patch the pointers so that the freeze node will elaborate
5909 -- both views in the back end.
5911 if Has_Delayed_Freeze (E) then
5912 F_Node := Freeze_Node (Underlying_Full_View (E));
5914 if Present (F_Node) then
5915 Inherit_Freeze_Node
5916 (Fnod => F_Node,
5917 Typ => E);
5918 else
5919 Set_Has_Delayed_Freeze (E, False);
5920 Set_Freeze_Node (E, Empty);
5921 end if;
5922 end if;
5924 Check_Debug_Info_Needed (E);
5926 goto Leave;
5928 -- Case of no full view present. If entity is derived or subtype,
5929 -- it is safe to freeze, correctness depends on the frozen status
5930 -- of parent. Otherwise it is either premature usage, or a Taft
5931 -- amendment type, so diagnosis is at the point of use and the
5932 -- type might be frozen later.
5934 elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
5935 null;
5937 else
5938 Set_Is_Frozen (E, False);
5939 Result := No_List;
5940 goto Leave;
5941 end if;
5943 -- For access subprogram, freeze types of all formals, the return
5944 -- type was already frozen, since it is the Etype of the function.
5945 -- Formal types can be tagged Taft amendment types, but otherwise
5946 -- they cannot be incomplete.
5948 elsif Ekind (E) = E_Subprogram_Type then
5949 Formal := First_Formal (E);
5950 while Present (Formal) loop
5951 if Ekind (Etype (Formal)) = E_Incomplete_Type
5952 and then No (Full_View (Etype (Formal)))
5953 then
5954 if Is_Tagged_Type (Etype (Formal)) then
5955 null;
5957 -- AI05-151: Incomplete types are allowed in access to
5958 -- subprogram specifications.
5960 elsif Ada_Version < Ada_2012 then
5961 Error_Msg_NE
5962 ("invalid use of incomplete type&", E, Etype (Formal));
5963 end if;
5964 end if;
5966 Freeze_And_Append (Etype (Formal), N, Result);
5967 Next_Formal (Formal);
5968 end loop;
5970 Freeze_Subprogram (E);
5972 -- For access to a protected subprogram, freeze the equivalent type
5973 -- (however this is not set if we are not generating code or if this
5974 -- is an anonymous type used just for resolution).
5976 elsif Is_Access_Protected_Subprogram_Type (E) then
5977 if Present (Equivalent_Type (E)) then
5978 Freeze_And_Append (Equivalent_Type (E), N, Result);
5979 end if;
5980 end if;
5982 -- Generic types are never seen by the back-end, and are also not
5983 -- processed by the expander (since the expander is turned off for
5984 -- generic processing), so we never need freeze nodes for them.
5986 if Is_Generic_Type (E) then
5987 goto Leave;
5988 end if;
5990 -- Some special processing for non-generic types to complete
5991 -- representation details not known till the freeze point.
5993 if Is_Fixed_Point_Type (E) then
5994 Freeze_Fixed_Point_Type (E);
5996 -- Some error checks required for ordinary fixed-point type. Defer
5997 -- these till the freeze-point since we need the small and range
5998 -- values. We only do these checks for base types
6000 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
6001 if Small_Value (E) < Ureal_2_M_80 then
6002 Error_Msg_Name_1 := Name_Small;
6003 Error_Msg_N
6004 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
6006 elsif Small_Value (E) > Ureal_2_80 then
6007 Error_Msg_Name_1 := Name_Small;
6008 Error_Msg_N
6009 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
6010 end if;
6012 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
6013 Error_Msg_Name_1 := Name_First;
6014 Error_Msg_N
6015 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
6016 end if;
6018 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
6019 Error_Msg_Name_1 := Name_Last;
6020 Error_Msg_N
6021 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
6022 end if;
6023 end if;
6025 elsif Is_Enumeration_Type (E) then
6026 Freeze_Enumeration_Type (E);
6028 elsif Is_Integer_Type (E) then
6029 Adjust_Esize_For_Alignment (E);
6031 if Is_Modular_Integer_Type (E)
6032 and then Warn_On_Suspicious_Modulus_Value
6033 then
6034 Check_Suspicious_Modulus (E);
6035 end if;
6037 -- The pool applies to named and anonymous access types, but not
6038 -- to subprogram and to internal types generated for 'Access
6039 -- references.
6041 elsif Is_Access_Type (E)
6042 and then not Is_Access_Subprogram_Type (E)
6043 and then Ekind (E) /= E_Access_Attribute_Type
6044 then
6045 -- If a pragma Default_Storage_Pool applies, and this type has no
6046 -- Storage_Pool or Storage_Size clause (which must have occurred
6047 -- before the freezing point), then use the default. This applies
6048 -- only to base types.
6050 -- None of this applies to access to subprograms, for which there
6051 -- are clearly no pools.
6053 if Present (Default_Pool)
6054 and then Is_Base_Type (E)
6055 and then not Has_Storage_Size_Clause (E)
6056 and then No (Associated_Storage_Pool (E))
6057 then
6058 -- Case of pragma Default_Storage_Pool (null)
6060 if Nkind (Default_Pool) = N_Null then
6061 Set_No_Pool_Assigned (E);
6063 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
6065 else
6066 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
6067 end if;
6068 end if;
6070 -- Check restriction for standard storage pool
6072 if No (Associated_Storage_Pool (E)) then
6073 Check_Restriction (No_Standard_Storage_Pools, E);
6074 end if;
6076 -- Deal with error message for pure access type. This is not an
6077 -- error in Ada 2005 if there is no pool (see AI-366).
6079 if Is_Pure_Unit_Access_Type (E)
6080 and then (Ada_Version < Ada_2005
6081 or else not No_Pool_Assigned (E))
6082 and then not Is_Generic_Unit (Scope (E))
6083 then
6084 Error_Msg_N ("named access type not allowed in pure unit", E);
6086 if Ada_Version >= Ada_2005 then
6087 Error_Msg_N
6088 ("\would be legal if Storage_Size of 0 given??", E);
6090 elsif No_Pool_Assigned (E) then
6091 Error_Msg_N
6092 ("\would be legal in Ada 2005??", E);
6094 else
6095 Error_Msg_N
6096 ("\would be legal in Ada 2005 if "
6097 & "Storage_Size of 0 given??", E);
6098 end if;
6099 end if;
6100 end if;
6102 -- Case of composite types
6104 if Is_Composite_Type (E) then
6106 -- AI-117 requires that all new primitives of a tagged type must
6107 -- inherit the convention of the full view of the type. Inherited
6108 -- and overriding operations are defined to inherit the convention
6109 -- of their parent or overridden subprogram (also specified in
6110 -- AI-117), which will have occurred earlier (in Derive_Subprogram
6111 -- and New_Overloaded_Entity). Here we set the convention of
6112 -- primitives that are still convention Ada, which will ensure
6113 -- that any new primitives inherit the type's convention. Class-
6114 -- wide types can have a foreign convention inherited from their
6115 -- specific type, but are excluded from this since they don't have
6116 -- any associated primitives.
6118 if Is_Tagged_Type (E)
6119 and then not Is_Class_Wide_Type (E)
6120 and then Convention (E) /= Convention_Ada
6121 then
6122 declare
6123 Prim_List : constant Elist_Id := Primitive_Operations (E);
6124 Prim : Elmt_Id;
6126 begin
6127 Prim := First_Elmt (Prim_List);
6128 while Present (Prim) loop
6129 if Convention (Node (Prim)) = Convention_Ada then
6130 Set_Convention (Node (Prim), Convention (E));
6131 end if;
6133 Next_Elmt (Prim);
6134 end loop;
6135 end;
6136 end if;
6138 -- If the type is a simple storage pool type, then this is where
6139 -- we attempt to locate and validate its Allocate, Deallocate, and
6140 -- Storage_Size operations (the first is required, and the latter
6141 -- two are optional). We also verify that the full type for a
6142 -- private type is allowed to be a simple storage pool type.
6144 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
6145 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
6146 then
6147 -- If the type is marked Has_Private_Declaration, then this is
6148 -- a full type for a private type that was specified with the
6149 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
6150 -- pragma is allowed for the full type (for example, it can't
6151 -- be an array type, or a nonlimited record type).
6153 if Has_Private_Declaration (E) then
6154 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
6155 and then not Is_Private_Type (E)
6156 then
6157 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
6158 Error_Msg_N
6159 ("pragma% can only apply to full type that is an " &
6160 "explicitly limited type", E);
6161 end if;
6162 end if;
6164 Validate_Simple_Pool_Ops : declare
6165 Pool_Type : Entity_Id renames E;
6166 Address_Type : constant Entity_Id := RTE (RE_Address);
6167 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
6169 procedure Validate_Simple_Pool_Op_Formal
6170 (Pool_Op : Entity_Id;
6171 Pool_Op_Formal : in out Entity_Id;
6172 Expected_Mode : Formal_Kind;
6173 Expected_Type : Entity_Id;
6174 Formal_Name : String;
6175 OK_Formal : in out Boolean);
6176 -- Validate one formal Pool_Op_Formal of the candidate pool
6177 -- operation Pool_Op. The formal must be of Expected_Type
6178 -- and have mode Expected_Mode. OK_Formal will be set to
6179 -- False if the formal doesn't match. If OK_Formal is False
6180 -- on entry, then the formal will effectively be ignored
6181 -- (because validation of the pool op has already failed).
6182 -- Upon return, Pool_Op_Formal will be updated to the next
6183 -- formal, if any.
6185 procedure Validate_Simple_Pool_Operation
6186 (Op_Name : Name_Id);
6187 -- Search for and validate a simple pool operation with the
6188 -- name Op_Name. If the name is Allocate, then there must be
6189 -- exactly one such primitive operation for the simple pool
6190 -- type. If the name is Deallocate or Storage_Size, then
6191 -- there can be at most one such primitive operation. The
6192 -- profile of the located primitive must conform to what
6193 -- is expected for each operation.
6195 ------------------------------------
6196 -- Validate_Simple_Pool_Op_Formal --
6197 ------------------------------------
6199 procedure Validate_Simple_Pool_Op_Formal
6200 (Pool_Op : Entity_Id;
6201 Pool_Op_Formal : in out Entity_Id;
6202 Expected_Mode : Formal_Kind;
6203 Expected_Type : Entity_Id;
6204 Formal_Name : String;
6205 OK_Formal : in out Boolean)
6207 begin
6208 -- If OK_Formal is False on entry, then simply ignore
6209 -- the formal, because an earlier formal has already
6210 -- been flagged.
6212 if not OK_Formal then
6213 return;
6215 -- If no formal is passed in, then issue an error for a
6216 -- missing formal.
6218 elsif not Present (Pool_Op_Formal) then
6219 Error_Msg_NE
6220 ("simple storage pool op missing formal " &
6221 Formal_Name & " of type&", Pool_Op, Expected_Type);
6222 OK_Formal := False;
6224 return;
6225 end if;
6227 if Etype (Pool_Op_Formal) /= Expected_Type then
6229 -- If the pool type was expected for this formal, then
6230 -- this will not be considered a candidate operation
6231 -- for the simple pool, so we unset OK_Formal so that
6232 -- the op and any later formals will be ignored.
6234 if Expected_Type = Pool_Type then
6235 OK_Formal := False;
6237 return;
6239 else
6240 Error_Msg_NE
6241 ("wrong type for formal " & Formal_Name &
6242 " of simple storage pool op; expected type&",
6243 Pool_Op_Formal, Expected_Type);
6244 end if;
6245 end if;
6247 -- Issue error if formal's mode is not the expected one
6249 if Ekind (Pool_Op_Formal) /= Expected_Mode then
6250 Error_Msg_N
6251 ("wrong mode for formal of simple storage pool op",
6252 Pool_Op_Formal);
6253 end if;
6255 -- Advance to the next formal
6257 Next_Formal (Pool_Op_Formal);
6258 end Validate_Simple_Pool_Op_Formal;
6260 ------------------------------------
6261 -- Validate_Simple_Pool_Operation --
6262 ------------------------------------
6264 procedure Validate_Simple_Pool_Operation
6265 (Op_Name : Name_Id)
6267 Op : Entity_Id;
6268 Found_Op : Entity_Id := Empty;
6269 Formal : Entity_Id;
6270 Is_OK : Boolean;
6272 begin
6273 pragma Assert
6274 (Nam_In (Op_Name, Name_Allocate,
6275 Name_Deallocate,
6276 Name_Storage_Size));
6278 Error_Msg_Name_1 := Op_Name;
6280 -- For each homonym declared immediately in the scope
6281 -- of the simple storage pool type, determine whether
6282 -- the homonym is an operation of the pool type, and,
6283 -- if so, check that its profile is as expected for
6284 -- a simple pool operation of that name.
6286 Op := Get_Name_Entity_Id (Op_Name);
6287 while Present (Op) loop
6288 if Ekind_In (Op, E_Function, E_Procedure)
6289 and then Scope (Op) = Current_Scope
6290 then
6291 Formal := First_Entity (Op);
6293 Is_OK := True;
6295 -- The first parameter must be of the pool type
6296 -- in order for the operation to qualify.
6298 if Op_Name = Name_Storage_Size then
6299 Validate_Simple_Pool_Op_Formal
6300 (Op, Formal, E_In_Parameter, Pool_Type,
6301 "Pool", Is_OK);
6302 else
6303 Validate_Simple_Pool_Op_Formal
6304 (Op, Formal, E_In_Out_Parameter, Pool_Type,
6305 "Pool", Is_OK);
6306 end if;
6308 -- If another operation with this name has already
6309 -- been located for the type, then flag an error,
6310 -- since we only allow the type to have a single
6311 -- such primitive.
6313 if Present (Found_Op) and then Is_OK then
6314 Error_Msg_NE
6315 ("only one % operation allowed for " &
6316 "simple storage pool type&", Op, Pool_Type);
6317 end if;
6319 -- In the case of Allocate and Deallocate, a formal
6320 -- of type System.Address is required.
6322 if Op_Name = Name_Allocate then
6323 Validate_Simple_Pool_Op_Formal
6324 (Op, Formal, E_Out_Parameter,
6325 Address_Type, "Storage_Address", Is_OK);
6327 elsif Op_Name = Name_Deallocate then
6328 Validate_Simple_Pool_Op_Formal
6329 (Op, Formal, E_In_Parameter,
6330 Address_Type, "Storage_Address", Is_OK);
6331 end if;
6333 -- In the case of Allocate and Deallocate, formals
6334 -- of type Storage_Count are required as the third
6335 -- and fourth parameters.
6337 if Op_Name /= Name_Storage_Size then
6338 Validate_Simple_Pool_Op_Formal
6339 (Op, Formal, E_In_Parameter,
6340 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
6341 Validate_Simple_Pool_Op_Formal
6342 (Op, Formal, E_In_Parameter,
6343 Stg_Cnt_Type, "Alignment", Is_OK);
6344 end if;
6346 -- If no mismatched formals have been found (Is_OK)
6347 -- and no excess formals are present, then this
6348 -- operation has been validated, so record it.
6350 if not Present (Formal) and then Is_OK then
6351 Found_Op := Op;
6352 end if;
6353 end if;
6355 Op := Homonym (Op);
6356 end loop;
6358 -- There must be a valid Allocate operation for the type,
6359 -- so issue an error if none was found.
6361 if Op_Name = Name_Allocate
6362 and then not Present (Found_Op)
6363 then
6364 Error_Msg_N ("missing % operation for simple " &
6365 "storage pool type", Pool_Type);
6367 elsif Present (Found_Op) then
6369 -- Simple pool operations can't be abstract
6371 if Is_Abstract_Subprogram (Found_Op) then
6372 Error_Msg_N
6373 ("simple storage pool operation must not be " &
6374 "abstract", Found_Op);
6375 end if;
6377 -- The Storage_Size operation must be a function with
6378 -- Storage_Count as its result type.
6380 if Op_Name = Name_Storage_Size then
6381 if Ekind (Found_Op) = E_Procedure then
6382 Error_Msg_N
6383 ("% operation must be a function", Found_Op);
6385 elsif Etype (Found_Op) /= Stg_Cnt_Type then
6386 Error_Msg_NE
6387 ("wrong result type for%, expected type&",
6388 Found_Op, Stg_Cnt_Type);
6389 end if;
6391 -- Allocate and Deallocate must be procedures
6393 elsif Ekind (Found_Op) = E_Function then
6394 Error_Msg_N
6395 ("% operation must be a procedure", Found_Op);
6396 end if;
6397 end if;
6398 end Validate_Simple_Pool_Operation;
6400 -- Start of processing for Validate_Simple_Pool_Ops
6402 begin
6403 Validate_Simple_Pool_Operation (Name_Allocate);
6404 Validate_Simple_Pool_Operation (Name_Deallocate);
6405 Validate_Simple_Pool_Operation (Name_Storage_Size);
6406 end Validate_Simple_Pool_Ops;
6407 end if;
6408 end if;
6410 -- Now that all types from which E may depend are frozen, see if the
6411 -- size is known at compile time, if it must be unsigned, or if
6412 -- strict alignment is required
6414 Check_Compile_Time_Size (E);
6415 Check_Unsigned_Type (E);
6417 if Base_Type (E) = E then
6418 Check_Strict_Alignment (E);
6419 end if;
6421 -- Do not allow a size clause for a type which does not have a size
6422 -- that is known at compile time
6424 if Has_Size_Clause (E)
6425 and then not Size_Known_At_Compile_Time (E)
6426 then
6427 -- Suppress this message if errors posted on E, even if we are
6428 -- in all errors mode, since this is often a junk message
6430 if not Error_Posted (E) then
6431 Error_Msg_N
6432 ("size clause not allowed for variable length type",
6433 Size_Clause (E));
6434 end if;
6435 end if;
6437 -- Now we set/verify the representation information, in particular
6438 -- the size and alignment values. This processing is not required for
6439 -- generic types, since generic types do not play any part in code
6440 -- generation, and so the size and alignment values for such types
6441 -- are irrelevant. Ditto for types declared within a generic unit,
6442 -- which may have components that depend on generic parameters, and
6443 -- that will be recreated in an instance.
6445 if Inside_A_Generic then
6446 null;
6448 -- Otherwise we call the layout procedure
6450 else
6451 Layout_Type (E);
6452 end if;
6454 -- If this is an access to subprogram whose designated type is itself
6455 -- a subprogram type, the return type of this anonymous subprogram
6456 -- type must be decorated as well.
6458 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
6459 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
6460 then
6461 Layout_Type (Etype (Designated_Type (E)));
6462 end if;
6464 -- If the type has a Defaut_Value/Default_Component_Value aspect,
6465 -- this is where we analye the expression (after the type is frozen,
6466 -- since in the case of Default_Value, we are analyzing with the
6467 -- type itself, and we treat Default_Component_Value similarly for
6468 -- the sake of uniformity).
6470 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
6471 declare
6472 Nam : Name_Id;
6473 Exp : Node_Id;
6474 Typ : Entity_Id;
6476 begin
6477 if Is_Scalar_Type (E) then
6478 Nam := Name_Default_Value;
6479 Typ := E;
6480 Exp := Default_Aspect_Value (Typ);
6481 else
6482 Nam := Name_Default_Component_Value;
6483 Typ := Component_Type (E);
6484 Exp := Default_Aspect_Component_Value (E);
6485 end if;
6487 Analyze_And_Resolve (Exp, Typ);
6489 if Etype (Exp) /= Any_Type then
6490 if not Is_OK_Static_Expression (Exp) then
6491 Error_Msg_Name_1 := Nam;
6492 Flag_Non_Static_Expr
6493 ("aspect% requires static expression", Exp);
6494 end if;
6495 end if;
6496 end;
6497 end if;
6499 -- End of freeze processing for type entities
6500 end if;
6502 -- Here is where we logically freeze the current entity. If it has a
6503 -- freeze node, then this is the point at which the freeze node is
6504 -- linked into the result list.
6506 if Has_Delayed_Freeze (E) then
6508 -- If a freeze node is already allocated, use it, otherwise allocate
6509 -- a new one. The preallocation happens in the case of anonymous base
6510 -- types, where we preallocate so that we can set First_Subtype_Link.
6511 -- Note that we reset the Sloc to the current freeze location.
6513 if Present (Freeze_Node (E)) then
6514 F_Node := Freeze_Node (E);
6515 Set_Sloc (F_Node, Loc);
6517 else
6518 F_Node := New_Node (N_Freeze_Entity, Loc);
6519 Set_Freeze_Node (E, F_Node);
6520 Set_Access_Types_To_Process (F_Node, No_Elist);
6521 Set_TSS_Elist (F_Node, No_Elist);
6522 Set_Actions (F_Node, No_List);
6523 end if;
6525 Set_Entity (F_Node, E);
6526 Add_To_Result (F_Node);
6528 -- A final pass over record types with discriminants. If the type
6529 -- has an incomplete declaration, there may be constrained access
6530 -- subtypes declared elsewhere, which do not depend on the discrimi-
6531 -- nants of the type, and which are used as component types (i.e.
6532 -- the full view is a recursive type). The designated types of these
6533 -- subtypes can only be elaborated after the type itself, and they
6534 -- need an itype reference.
6536 if Ekind (E) = E_Record_Type and then Has_Discriminants (E) then
6537 declare
6538 Comp : Entity_Id;
6539 IR : Node_Id;
6540 Typ : Entity_Id;
6542 begin
6543 Comp := First_Component (E);
6544 while Present (Comp) loop
6545 Typ := Etype (Comp);
6547 if Ekind (Comp) = E_Component
6548 and then Is_Access_Type (Typ)
6549 and then Scope (Typ) /= E
6550 and then Base_Type (Designated_Type (Typ)) = E
6551 and then Is_Itype (Designated_Type (Typ))
6552 then
6553 IR := Make_Itype_Reference (Sloc (Comp));
6554 Set_Itype (IR, Designated_Type (Typ));
6555 Append (IR, Result);
6556 end if;
6558 Next_Component (Comp);
6559 end loop;
6560 end;
6561 end if;
6562 end if;
6564 -- When a type is frozen, the first subtype of the type is frozen as
6565 -- well (RM 13.14(15)). This has to be done after freezing the type,
6566 -- since obviously the first subtype depends on its own base type.
6568 if Is_Type (E) then
6569 Freeze_And_Append (First_Subtype (E), N, Result);
6571 -- If we just froze a tagged non-class wide record, then freeze the
6572 -- corresponding class-wide type. This must be done after the tagged
6573 -- type itself is frozen, because the class-wide type refers to the
6574 -- tagged type which generates the class.
6576 if Is_Tagged_Type (E)
6577 and then not Is_Class_Wide_Type (E)
6578 and then Present (Class_Wide_Type (E))
6579 then
6580 Freeze_And_Append (Class_Wide_Type (E), N, Result);
6581 end if;
6582 end if;
6584 Check_Debug_Info_Needed (E);
6586 -- Special handling for subprograms
6588 if Is_Subprogram (E) then
6590 -- If subprogram has address clause then reset Is_Public flag, since
6591 -- we do not want the backend to generate external references.
6593 if Present (Address_Clause (E))
6594 and then not Is_Library_Level_Entity (E)
6595 then
6596 Set_Is_Public (E, False);
6597 end if;
6598 end if;
6600 <<Leave>>
6601 Restore_Ghost_Mode (Mode);
6602 return Result;
6603 end Freeze_Entity;
6605 -----------------------------
6606 -- Freeze_Enumeration_Type --
6607 -----------------------------
6609 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
6610 begin
6611 -- By default, if no size clause is present, an enumeration type with
6612 -- Convention C is assumed to interface to a C enum, and has integer
6613 -- size. This applies to types. For subtypes, verify that its base
6614 -- type has no size clause either. Treat other foreign conventions
6615 -- in the same way, and also make sure alignment is set right.
6617 if Has_Foreign_Convention (Typ)
6618 and then not Has_Size_Clause (Typ)
6619 and then not Has_Size_Clause (Base_Type (Typ))
6620 and then Esize (Typ) < Standard_Integer_Size
6622 -- Don't do this if Short_Enums on target
6624 and then not Target_Short_Enums
6625 then
6626 Init_Esize (Typ, Standard_Integer_Size);
6627 Set_Alignment (Typ, Alignment (Standard_Integer));
6629 -- Normal Ada case or size clause present or not Long_C_Enums on target
6631 else
6632 -- If the enumeration type interfaces to C, and it has a size clause
6633 -- that specifies less than int size, it warrants a warning. The
6634 -- user may intend the C type to be an enum or a char, so this is
6635 -- not by itself an error that the Ada compiler can detect, but it
6636 -- it is a worth a heads-up. For Boolean and Character types we
6637 -- assume that the programmer has the proper C type in mind.
6639 if Convention (Typ) = Convention_C
6640 and then Has_Size_Clause (Typ)
6641 and then Esize (Typ) /= Esize (Standard_Integer)
6642 and then not Is_Boolean_Type (Typ)
6643 and then not Is_Character_Type (Typ)
6645 -- Don't do this if Short_Enums on target
6647 and then not Target_Short_Enums
6648 then
6649 Error_Msg_N
6650 ("C enum types have the size of a C int??", Size_Clause (Typ));
6651 end if;
6653 Adjust_Esize_For_Alignment (Typ);
6654 end if;
6655 end Freeze_Enumeration_Type;
6657 -----------------------
6658 -- Freeze_Expression --
6659 -----------------------
6661 procedure Freeze_Expression (N : Node_Id) is
6662 In_Spec_Exp : constant Boolean := In_Spec_Expression;
6663 Typ : Entity_Id;
6664 Nam : Entity_Id;
6665 Desig_Typ : Entity_Id;
6666 P : Node_Id;
6667 Parent_P : Node_Id;
6669 Freeze_Outside : Boolean := False;
6670 -- This flag is set true if the entity must be frozen outside the
6671 -- current subprogram. This happens in the case of expander generated
6672 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
6673 -- not freeze all entities like other bodies, but which nevertheless
6674 -- may reference entities that have to be frozen before the body and
6675 -- obviously cannot be frozen inside the body.
6677 function Find_Aggregate_Component_Desig_Type return Entity_Id;
6678 -- If the expression is an array aggregate, the type of the component
6679 -- expressions is also frozen. If the component type is an access type
6680 -- and the expressions include allocators, the designed type is frozen
6681 -- as well.
6683 function In_Expanded_Body (N : Node_Id) return Boolean;
6684 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
6685 -- it is the handled statement sequence of an expander-generated
6686 -- subprogram (init proc, stream subprogram, or renaming as body).
6687 -- If so, this is not a freezing context.
6689 -----------------------------------------
6690 -- Find_Aggregate_Component_Desig_Type --
6691 -----------------------------------------
6693 function Find_Aggregate_Component_Desig_Type return Entity_Id is
6694 Assoc : Node_Id;
6695 Exp : Node_Id;
6697 begin
6698 if Present (Expressions (N)) then
6699 Exp := First (Expressions (N));
6700 while Present (Exp) loop
6701 if Nkind (Exp) = N_Allocator then
6702 return Designated_Type (Component_Type (Etype (N)));
6703 end if;
6705 Next (Exp);
6706 end loop;
6707 end if;
6709 if Present (Component_Associations (N)) then
6710 Assoc := First (Component_Associations (N));
6711 while Present (Assoc) loop
6712 if Nkind (Expression (Assoc)) = N_Allocator then
6713 return Designated_Type (Component_Type (Etype (N)));
6714 end if;
6716 Next (Assoc);
6717 end loop;
6718 end if;
6720 return Empty;
6721 end Find_Aggregate_Component_Desig_Type;
6723 ----------------------
6724 -- In_Expanded_Body --
6725 ----------------------
6727 function In_Expanded_Body (N : Node_Id) return Boolean is
6728 P : Node_Id;
6729 Id : Entity_Id;
6731 begin
6732 if Nkind (N) = N_Subprogram_Body then
6733 P := N;
6734 else
6735 P := Parent (N);
6736 end if;
6738 if Nkind (P) /= N_Subprogram_Body then
6739 return False;
6741 else
6742 Id := Defining_Unit_Name (Specification (P));
6744 -- The following are expander-created bodies, or bodies that
6745 -- are not freeze points.
6747 if Nkind (Id) = N_Defining_Identifier
6748 and then (Is_Init_Proc (Id)
6749 or else Is_TSS (Id, TSS_Stream_Input)
6750 or else Is_TSS (Id, TSS_Stream_Output)
6751 or else Is_TSS (Id, TSS_Stream_Read)
6752 or else Is_TSS (Id, TSS_Stream_Write)
6753 or else Nkind_In (Original_Node (P),
6754 N_Subprogram_Renaming_Declaration,
6755 N_Expression_Function))
6756 then
6757 return True;
6758 else
6759 return False;
6760 end if;
6761 end if;
6762 end In_Expanded_Body;
6764 -- Start of processing for Freeze_Expression
6766 begin
6767 -- Immediate return if freezing is inhibited. This flag is set by the
6768 -- analyzer to stop freezing on generated expressions that would cause
6769 -- freezing if they were in the source program, but which are not
6770 -- supposed to freeze, since they are created.
6772 if Must_Not_Freeze (N) then
6773 return;
6774 end if;
6776 -- If expression is non-static, then it does not freeze in a default
6777 -- expression, see section "Handling of Default Expressions" in the
6778 -- spec of package Sem for further details. Note that we have to make
6779 -- sure that we actually have a real expression (if we have a subtype
6780 -- indication, we can't test Is_OK_Static_Expression). However, we
6781 -- exclude the case of the prefix of an attribute of a static scalar
6782 -- subtype from this early return, because static subtype attributes
6783 -- should always cause freezing, even in default expressions, but
6784 -- the attribute may not have been marked as static yet (because in
6785 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6786 -- Freeze_Expression on the prefix).
6788 if In_Spec_Exp
6789 and then Nkind (N) in N_Subexpr
6790 and then not Is_OK_Static_Expression (N)
6791 and then (Nkind (Parent (N)) /= N_Attribute_Reference
6792 or else not (Is_Entity_Name (N)
6793 and then Is_Type (Entity (N))
6794 and then Is_OK_Static_Subtype (Entity (N))))
6795 then
6796 return;
6797 end if;
6799 -- Freeze type of expression if not frozen already
6801 Typ := Empty;
6803 if Nkind (N) in N_Has_Etype then
6804 if not Is_Frozen (Etype (N)) then
6805 Typ := Etype (N);
6807 -- Base type may be an derived numeric type that is frozen at
6808 -- the point of declaration, but first_subtype is still unfrozen.
6810 elsif not Is_Frozen (First_Subtype (Etype (N))) then
6811 Typ := First_Subtype (Etype (N));
6812 end if;
6813 end if;
6815 -- For entity name, freeze entity if not frozen already. A special
6816 -- exception occurs for an identifier that did not come from source.
6817 -- We don't let such identifiers freeze a non-internal entity, i.e.
6818 -- an entity that did come from source, since such an identifier was
6819 -- generated by the expander, and cannot have any semantic effect on
6820 -- the freezing semantics. For example, this stops the parameter of
6821 -- an initialization procedure from freezing the variable.
6823 if Is_Entity_Name (N)
6824 and then not Is_Frozen (Entity (N))
6825 and then (Nkind (N) /= N_Identifier
6826 or else Comes_From_Source (N)
6827 or else not Comes_From_Source (Entity (N)))
6828 then
6829 Nam := Entity (N);
6831 if Present (Nam) and then Ekind (Nam) = E_Function then
6832 Check_Expression_Function (N, Nam);
6833 end if;
6835 else
6836 Nam := Empty;
6837 end if;
6839 -- For an allocator freeze designated type if not frozen already
6841 -- For an aggregate whose component type is an access type, freeze the
6842 -- designated type now, so that its freeze does not appear within the
6843 -- loop that might be created in the expansion of the aggregate. If the
6844 -- designated type is a private type without full view, the expression
6845 -- cannot contain an allocator, so the type is not frozen.
6847 -- For a function, we freeze the entity when the subprogram declaration
6848 -- is frozen, but a function call may appear in an initialization proc.
6849 -- before the declaration is frozen. We need to generate the extra
6850 -- formals, if any, to ensure that the expansion of the call includes
6851 -- the proper actuals. This only applies to Ada subprograms, not to
6852 -- imported ones.
6854 Desig_Typ := Empty;
6856 case Nkind (N) is
6857 when N_Allocator =>
6858 Desig_Typ := Designated_Type (Etype (N));
6860 when N_Aggregate =>
6861 if Is_Array_Type (Etype (N))
6862 and then Is_Access_Type (Component_Type (Etype (N)))
6863 then
6865 -- Check whether aggregate includes allocators.
6867 Desig_Typ := Find_Aggregate_Component_Desig_Type;
6868 end if;
6870 when N_Indexed_Component
6871 | N_Selected_Component
6872 | N_Slice
6874 if Is_Access_Type (Etype (Prefix (N))) then
6875 Desig_Typ := Designated_Type (Etype (Prefix (N)));
6876 end if;
6878 when N_Identifier =>
6879 if Present (Nam)
6880 and then Ekind (Nam) = E_Function
6881 and then Nkind (Parent (N)) = N_Function_Call
6882 and then Convention (Nam) = Convention_Ada
6883 then
6884 Create_Extra_Formals (Nam);
6885 end if;
6887 when others =>
6888 null;
6889 end case;
6891 if Desig_Typ /= Empty
6892 and then (Is_Frozen (Desig_Typ)
6893 or else (not Is_Fully_Defined (Desig_Typ)))
6894 then
6895 Desig_Typ := Empty;
6896 end if;
6898 -- All done if nothing needs freezing
6900 if No (Typ)
6901 and then No (Nam)
6902 and then No (Desig_Typ)
6903 then
6904 return;
6905 end if;
6907 -- Examine the enclosing context by climbing the parent chain. The
6908 -- traversal serves two purposes - to detect scenarios where freezeing
6909 -- is not needed and to find the proper insertion point for the freeze
6910 -- nodes. Although somewhat similar to Insert_Actions, this traversal
6911 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
6912 -- the tree may result in types being frozen too early.
6914 P := N;
6915 loop
6916 Parent_P := Parent (P);
6918 -- If we don't have a parent, then we are not in a well-formed tree.
6919 -- This is an unusual case, but there are some legitimate situations
6920 -- in which this occurs, notably when the expressions in the range of
6921 -- a type declaration are resolved. We simply ignore the freeze
6922 -- request in this case. Is this right ???
6924 if No (Parent_P) then
6925 return;
6926 end if;
6928 -- See if we have got to an appropriate point in the tree
6930 case Nkind (Parent_P) is
6932 -- A special test for the exception of (RM 13.14(8)) for the case
6933 -- of per-object expressions (RM 3.8(18)) occurring in component
6934 -- definition or a discrete subtype definition. Note that we test
6935 -- for a component declaration which includes both cases we are
6936 -- interested in, and furthermore the tree does not have explicit
6937 -- nodes for either of these two constructs.
6939 when N_Component_Declaration =>
6941 -- The case we want to test for here is an identifier that is
6942 -- a per-object expression, this is either a discriminant that
6943 -- appears in a context other than the component declaration
6944 -- or it is a reference to the type of the enclosing construct.
6946 -- For either of these cases, we skip the freezing
6948 if not In_Spec_Expression
6949 and then Nkind (N) = N_Identifier
6950 and then (Present (Entity (N)))
6951 then
6952 -- We recognize the discriminant case by just looking for
6953 -- a reference to a discriminant. It can only be one for
6954 -- the enclosing construct. Skip freezing in this case.
6956 if Ekind (Entity (N)) = E_Discriminant then
6957 return;
6959 -- For the case of a reference to the enclosing record,
6960 -- (or task or protected type), we look for a type that
6961 -- matches the current scope.
6963 elsif Entity (N) = Current_Scope then
6964 return;
6965 end if;
6966 end if;
6968 -- If we have an enumeration literal that appears as the choice in
6969 -- the aggregate of an enumeration representation clause, then
6970 -- freezing does not occur (RM 13.14(10)).
6972 when N_Enumeration_Representation_Clause =>
6974 -- The case we are looking for is an enumeration literal
6976 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
6977 and then Is_Enumeration_Type (Etype (N))
6978 then
6979 -- If enumeration literal appears directly as the choice,
6980 -- do not freeze (this is the normal non-overloaded case)
6982 if Nkind (Parent (N)) = N_Component_Association
6983 and then First (Choices (Parent (N))) = N
6984 then
6985 return;
6987 -- If enumeration literal appears as the name of function
6988 -- which is the choice, then also do not freeze. This
6989 -- happens in the overloaded literal case, where the
6990 -- enumeration literal is temporarily changed to a function
6991 -- call for overloading analysis purposes.
6993 elsif Nkind (Parent (N)) = N_Function_Call
6994 and then
6995 Nkind (Parent (Parent (N))) = N_Component_Association
6996 and then
6997 First (Choices (Parent (Parent (N)))) = Parent (N)
6998 then
6999 return;
7000 end if;
7001 end if;
7003 -- Normally if the parent is a handled sequence of statements,
7004 -- then the current node must be a statement, and that is an
7005 -- appropriate place to insert a freeze node.
7007 when N_Handled_Sequence_Of_Statements =>
7009 -- An exception occurs when the sequence of statements is for
7010 -- an expander generated body that did not do the usual freeze
7011 -- all operation. In this case we usually want to freeze
7012 -- outside this body, not inside it, and we skip past the
7013 -- subprogram body that we are inside.
7015 if In_Expanded_Body (Parent_P) then
7016 declare
7017 Subp : constant Node_Id := Parent (Parent_P);
7018 Spec : Entity_Id;
7020 begin
7021 -- Freeze the entity only when it is declared inside the
7022 -- body of the expander generated procedure. This case
7023 -- is recognized by the scope of the entity or its type,
7024 -- which is either the spec for some enclosing body, or
7025 -- (in the case of init_procs, for which there are no
7026 -- separate specs) the current scope.
7028 if Nkind (Subp) = N_Subprogram_Body then
7029 Spec := Corresponding_Spec (Subp);
7031 if (Present (Typ) and then Scope (Typ) = Spec)
7032 or else
7033 (Present (Nam) and then Scope (Nam) = Spec)
7034 then
7035 exit;
7037 elsif Present (Typ)
7038 and then Scope (Typ) = Current_Scope
7039 and then Defining_Entity (Subp) = Current_Scope
7040 then
7041 exit;
7042 end if;
7043 end if;
7045 -- An expression function may act as a completion of
7046 -- a function declaration. As such, it can reference
7047 -- entities declared between the two views:
7049 -- Hidden []; -- 1
7050 -- function F return ...;
7051 -- private
7052 -- function Hidden return ...;
7053 -- function F return ... is (Hidden); -- 2
7055 -- Refering to the example above, freezing the expression
7056 -- of F (2) would place Hidden's freeze node (1) in the
7057 -- wrong place. Avoid explicit freezing and let the usual
7058 -- scenarios do the job - for example, reaching the end
7059 -- of the private declarations, or a call to F.
7061 if Nkind (Original_Node (Subp)) =
7062 N_Expression_Function
7063 then
7064 null;
7066 -- Freeze outside the body
7068 else
7069 Parent_P := Parent (Parent_P);
7070 Freeze_Outside := True;
7071 end if;
7072 end;
7074 -- Here if normal case where we are in handled statement
7075 -- sequence and want to do the insertion right there.
7077 else
7078 exit;
7079 end if;
7081 -- If parent is a body or a spec or a block, then the current node
7082 -- is a statement or declaration and we can insert the freeze node
7083 -- before it.
7085 when N_Block_Statement
7086 | N_Entry_Body
7087 | N_Package_Body
7088 | N_Package_Specification
7089 | N_Protected_Body
7090 | N_Subprogram_Body
7091 | N_Task_Body
7093 exit;
7095 -- The expander is allowed to define types in any statements list,
7096 -- so any of the following parent nodes also mark a freezing point
7097 -- if the actual node is in a list of statements or declarations.
7099 when N_Abortable_Part
7100 | N_Accept_Alternative
7101 | N_And_Then
7102 | N_Case_Statement_Alternative
7103 | N_Compilation_Unit_Aux
7104 | N_Conditional_Entry_Call
7105 | N_Delay_Alternative
7106 | N_Elsif_Part
7107 | N_Entry_Call_Alternative
7108 | N_Exception_Handler
7109 | N_Extended_Return_Statement
7110 | N_Freeze_Entity
7111 | N_If_Statement
7112 | N_Or_Else
7113 | N_Selective_Accept
7114 | N_Triggering_Alternative
7116 exit when Is_List_Member (P);
7118 -- Freeze nodes produced by an expression coming from the Actions
7119 -- list of a N_Expression_With_Actions node must remain within the
7120 -- Actions list. Inserting the freeze nodes further up the tree
7121 -- may lead to use before declaration issues in the case of array
7122 -- types.
7124 when N_Expression_With_Actions =>
7125 if Is_List_Member (P)
7126 and then List_Containing (P) = Actions (Parent_P)
7127 then
7128 exit;
7129 end if;
7131 -- Note: N_Loop_Statement is a special case. A type that appears
7132 -- in the source can never be frozen in a loop (this occurs only
7133 -- because of a loop expanded by the expander), so we keep on
7134 -- going. Otherwise we terminate the search. Same is true of any
7135 -- entity which comes from source. (if they have predefined type,
7136 -- that type does not appear to come from source, but the entity
7137 -- should not be frozen here).
7139 when N_Loop_Statement =>
7140 exit when not Comes_From_Source (Etype (N))
7141 and then (No (Nam) or else not Comes_From_Source (Nam));
7143 -- For all other cases, keep looking at parents
7145 when others =>
7146 null;
7147 end case;
7149 -- We fall through the case if we did not yet find the proper
7150 -- place in the free for inserting the freeze node, so climb.
7152 P := Parent_P;
7153 end loop;
7155 -- If the expression appears in a record or an initialization procedure,
7156 -- the freeze nodes are collected and attached to the current scope, to
7157 -- be inserted and analyzed on exit from the scope, to insure that
7158 -- generated entities appear in the correct scope. If the expression is
7159 -- a default for a discriminant specification, the scope is still void.
7160 -- The expression can also appear in the discriminant part of a private
7161 -- or concurrent type.
7163 -- If the expression appears in a constrained subcomponent of an
7164 -- enclosing record declaration, the freeze nodes must be attached to
7165 -- the outer record type so they can eventually be placed in the
7166 -- enclosing declaration list.
7168 -- The other case requiring this special handling is if we are in a
7169 -- default expression, since in that case we are about to freeze a
7170 -- static type, and the freeze scope needs to be the outer scope, not
7171 -- the scope of the subprogram with the default parameter.
7173 -- For default expressions and other spec expressions in generic units,
7174 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
7175 -- placing them at the proper place, after the generic unit.
7177 if (In_Spec_Exp and not Inside_A_Generic)
7178 or else Freeze_Outside
7179 or else (Is_Type (Current_Scope)
7180 and then (not Is_Concurrent_Type (Current_Scope)
7181 or else not Has_Completion (Current_Scope)))
7182 or else Ekind (Current_Scope) = E_Void
7183 then
7184 declare
7185 N : constant Node_Id := Current_Scope;
7186 Freeze_Nodes : List_Id := No_List;
7187 Pos : Int := Scope_Stack.Last;
7189 begin
7190 if Present (Desig_Typ) then
7191 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
7192 end if;
7194 if Present (Typ) then
7195 Freeze_And_Append (Typ, N, Freeze_Nodes);
7196 end if;
7198 if Present (Nam) then
7199 Freeze_And_Append (Nam, N, Freeze_Nodes);
7200 end if;
7202 -- The current scope may be that of a constrained component of
7203 -- an enclosing record declaration, or of a loop of an enclosing
7204 -- quantified expression, which is above the current scope in the
7205 -- scope stack. Indeed in the context of a quantified expression,
7206 -- a scope is created and pushed above the current scope in order
7207 -- to emulate the loop-like behavior of the quantified expression.
7208 -- If the expression is within a top-level pragma, as for a pre-
7209 -- condition on a library-level subprogram, nothing to do.
7211 if not Is_Compilation_Unit (Current_Scope)
7212 and then (Is_Record_Type (Scope (Current_Scope))
7213 or else Nkind (Parent (Current_Scope)) =
7214 N_Quantified_Expression)
7215 then
7216 Pos := Pos - 1;
7217 end if;
7219 if Is_Non_Empty_List (Freeze_Nodes) then
7220 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
7221 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
7222 Freeze_Nodes;
7223 else
7224 Append_List (Freeze_Nodes,
7225 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
7226 end if;
7227 end if;
7228 end;
7230 return;
7231 end if;
7233 -- Now we have the right place to do the freezing. First, a special
7234 -- adjustment, if we are in spec-expression analysis mode, these freeze
7235 -- actions must not be thrown away (normally all inserted actions are
7236 -- thrown away in this mode. However, the freeze actions are from static
7237 -- expressions and one of the important reasons we are doing this
7238 -- special analysis is to get these freeze actions. Therefore we turn
7239 -- off the In_Spec_Expression mode to propagate these freeze actions.
7240 -- This also means they get properly analyzed and expanded.
7242 In_Spec_Expression := False;
7244 -- Freeze the designated type of an allocator (RM 13.14(13))
7246 if Present (Desig_Typ) then
7247 Freeze_Before (P, Desig_Typ);
7248 end if;
7250 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
7251 -- the enumeration representation clause exception in the loop above.
7253 if Present (Typ) then
7254 Freeze_Before (P, Typ);
7255 end if;
7257 -- Freeze name if one is present (RM 13.14(11))
7259 if Present (Nam) then
7260 Freeze_Before (P, Nam);
7261 end if;
7263 -- Restore In_Spec_Expression flag
7265 In_Spec_Expression := In_Spec_Exp;
7266 end Freeze_Expression;
7268 -----------------------------
7269 -- Freeze_Fixed_Point_Type --
7270 -----------------------------
7272 -- Certain fixed-point types and subtypes, including implicit base types
7273 -- and declared first subtypes, have not yet set up a range. This is
7274 -- because the range cannot be set until the Small and Size values are
7275 -- known, and these are not known till the type is frozen.
7277 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
7278 -- whose bounds are unanalyzed real literals. This routine will recognize
7279 -- this case, and transform this range node into a properly typed range
7280 -- with properly analyzed and resolved values.
7282 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
7283 Rng : constant Node_Id := Scalar_Range (Typ);
7284 Lo : constant Node_Id := Low_Bound (Rng);
7285 Hi : constant Node_Id := High_Bound (Rng);
7286 Btyp : constant Entity_Id := Base_Type (Typ);
7287 Brng : constant Node_Id := Scalar_Range (Btyp);
7288 BLo : constant Node_Id := Low_Bound (Brng);
7289 BHi : constant Node_Id := High_Bound (Brng);
7290 Small : constant Ureal := Small_Value (Typ);
7291 Loval : Ureal;
7292 Hival : Ureal;
7293 Atype : Entity_Id;
7295 Orig_Lo : Ureal;
7296 Orig_Hi : Ureal;
7297 -- Save original bounds (for shaving tests)
7299 Actual_Size : Nat;
7300 -- Actual size chosen
7302 function Fsize (Lov, Hiv : Ureal) return Nat;
7303 -- Returns size of type with given bounds. Also leaves these
7304 -- bounds set as the current bounds of the Typ.
7306 -----------
7307 -- Fsize --
7308 -----------
7310 function Fsize (Lov, Hiv : Ureal) return Nat is
7311 begin
7312 Set_Realval (Lo, Lov);
7313 Set_Realval (Hi, Hiv);
7314 return Minimum_Size (Typ);
7315 end Fsize;
7317 -- Start of processing for Freeze_Fixed_Point_Type
7319 begin
7320 -- If Esize of a subtype has not previously been set, set it now
7322 if Unknown_Esize (Typ) then
7323 Atype := Ancestor_Subtype (Typ);
7325 if Present (Atype) then
7326 Set_Esize (Typ, Esize (Atype));
7327 else
7328 Set_Esize (Typ, Esize (Base_Type (Typ)));
7329 end if;
7330 end if;
7332 -- Immediate return if the range is already analyzed. This means that
7333 -- the range is already set, and does not need to be computed by this
7334 -- routine.
7336 if Analyzed (Rng) then
7337 return;
7338 end if;
7340 -- Immediate return if either of the bounds raises Constraint_Error
7342 if Raises_Constraint_Error (Lo)
7343 or else Raises_Constraint_Error (Hi)
7344 then
7345 return;
7346 end if;
7348 Loval := Realval (Lo);
7349 Hival := Realval (Hi);
7351 Orig_Lo := Loval;
7352 Orig_Hi := Hival;
7354 -- Ordinary fixed-point case
7356 if Is_Ordinary_Fixed_Point_Type (Typ) then
7358 -- For the ordinary fixed-point case, we are allowed to fudge the
7359 -- end-points up or down by small. Generally we prefer to fudge up,
7360 -- i.e. widen the bounds for non-model numbers so that the end points
7361 -- are included. However there are cases in which this cannot be
7362 -- done, and indeed cases in which we may need to narrow the bounds.
7363 -- The following circuit makes the decision.
7365 -- Note: our terminology here is that Incl_EP means that the bounds
7366 -- are widened by Small if necessary to include the end points, and
7367 -- Excl_EP means that the bounds are narrowed by Small to exclude the
7368 -- end-points if this reduces the size.
7370 -- Note that in the Incl case, all we care about is including the
7371 -- end-points. In the Excl case, we want to narrow the bounds as
7372 -- much as permitted by the RM, to give the smallest possible size.
7374 Fudge : declare
7375 Loval_Incl_EP : Ureal;
7376 Hival_Incl_EP : Ureal;
7378 Loval_Excl_EP : Ureal;
7379 Hival_Excl_EP : Ureal;
7381 Size_Incl_EP : Nat;
7382 Size_Excl_EP : Nat;
7384 Model_Num : Ureal;
7385 First_Subt : Entity_Id;
7386 Actual_Lo : Ureal;
7387 Actual_Hi : Ureal;
7389 begin
7390 -- First step. Base types are required to be symmetrical. Right
7391 -- now, the base type range is a copy of the first subtype range.
7392 -- This will be corrected before we are done, but right away we
7393 -- need to deal with the case where both bounds are non-negative.
7394 -- In this case, we set the low bound to the negative of the high
7395 -- bound, to make sure that the size is computed to include the
7396 -- required sign. Note that we do not need to worry about the
7397 -- case of both bounds negative, because the sign will be dealt
7398 -- with anyway. Furthermore we can't just go making such a bound
7399 -- symmetrical, since in a twos-complement system, there is an
7400 -- extra negative value which could not be accommodated on the
7401 -- positive side.
7403 if Typ = Btyp
7404 and then not UR_Is_Negative (Loval)
7405 and then Hival > Loval
7406 then
7407 Loval := -Hival;
7408 Set_Realval (Lo, Loval);
7409 end if;
7411 -- Compute the fudged bounds. If the number is a model number,
7412 -- then we do nothing to include it, but we are allowed to backoff
7413 -- to the next adjacent model number when we exclude it. If it is
7414 -- not a model number then we straddle the two values with the
7415 -- model numbers on either side.
7417 Model_Num := UR_Trunc (Loval / Small) * Small;
7419 if Loval = Model_Num then
7420 Loval_Incl_EP := Model_Num;
7421 else
7422 Loval_Incl_EP := Model_Num - Small;
7423 end if;
7425 -- The low value excluding the end point is Small greater, but
7426 -- we do not do this exclusion if the low value is positive,
7427 -- since it can't help the size and could actually hurt by
7428 -- crossing the high bound.
7430 if UR_Is_Negative (Loval_Incl_EP) then
7431 Loval_Excl_EP := Loval_Incl_EP + Small;
7433 -- If the value went from negative to zero, then we have the
7434 -- case where Loval_Incl_EP is the model number just below
7435 -- zero, so we want to stick to the negative value for the
7436 -- base type to maintain the condition that the size will
7437 -- include signed values.
7439 if Typ = Btyp
7440 and then UR_Is_Zero (Loval_Excl_EP)
7441 then
7442 Loval_Excl_EP := Loval_Incl_EP;
7443 end if;
7445 else
7446 Loval_Excl_EP := Loval_Incl_EP;
7447 end if;
7449 -- Similar processing for upper bound and high value
7451 Model_Num := UR_Trunc (Hival / Small) * Small;
7453 if Hival = Model_Num then
7454 Hival_Incl_EP := Model_Num;
7455 else
7456 Hival_Incl_EP := Model_Num + Small;
7457 end if;
7459 if UR_Is_Positive (Hival_Incl_EP) then
7460 Hival_Excl_EP := Hival_Incl_EP - Small;
7461 else
7462 Hival_Excl_EP := Hival_Incl_EP;
7463 end if;
7465 -- One further adjustment is needed. In the case of subtypes, we
7466 -- cannot go outside the range of the base type, or we get
7467 -- peculiarities, and the base type range is already set. This
7468 -- only applies to the Incl values, since clearly the Excl values
7469 -- are already as restricted as they are allowed to be.
7471 if Typ /= Btyp then
7472 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
7473 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
7474 end if;
7476 -- Get size including and excluding end points
7478 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
7479 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
7481 -- No need to exclude end-points if it does not reduce size
7483 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
7484 Loval_Excl_EP := Loval_Incl_EP;
7485 end if;
7487 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
7488 Hival_Excl_EP := Hival_Incl_EP;
7489 end if;
7491 -- Now we set the actual size to be used. We want to use the
7492 -- bounds fudged up to include the end-points but only if this
7493 -- can be done without violating a specifically given size
7494 -- size clause or causing an unacceptable increase in size.
7496 -- Case of size clause given
7498 if Has_Size_Clause (Typ) then
7500 -- Use the inclusive size only if it is consistent with
7501 -- the explicitly specified size.
7503 if Size_Incl_EP <= RM_Size (Typ) then
7504 Actual_Lo := Loval_Incl_EP;
7505 Actual_Hi := Hival_Incl_EP;
7506 Actual_Size := Size_Incl_EP;
7508 -- If the inclusive size is too large, we try excluding
7509 -- the end-points (will be caught later if does not work).
7511 else
7512 Actual_Lo := Loval_Excl_EP;
7513 Actual_Hi := Hival_Excl_EP;
7514 Actual_Size := Size_Excl_EP;
7515 end if;
7517 -- Case of size clause not given
7519 else
7520 -- If we have a base type whose corresponding first subtype
7521 -- has an explicit size that is large enough to include our
7522 -- end-points, then do so. There is no point in working hard
7523 -- to get a base type whose size is smaller than the specified
7524 -- size of the first subtype.
7526 First_Subt := First_Subtype (Typ);
7528 if Has_Size_Clause (First_Subt)
7529 and then Size_Incl_EP <= Esize (First_Subt)
7530 then
7531 Actual_Size := Size_Incl_EP;
7532 Actual_Lo := Loval_Incl_EP;
7533 Actual_Hi := Hival_Incl_EP;
7535 -- If excluding the end-points makes the size smaller and
7536 -- results in a size of 8,16,32,64, then we take the smaller
7537 -- size. For the 64 case, this is compulsory. For the other
7538 -- cases, it seems reasonable. We like to include end points
7539 -- if we can, but not at the expense of moving to the next
7540 -- natural boundary of size.
7542 elsif Size_Incl_EP /= Size_Excl_EP
7543 and then Addressable (Size_Excl_EP)
7544 then
7545 Actual_Size := Size_Excl_EP;
7546 Actual_Lo := Loval_Excl_EP;
7547 Actual_Hi := Hival_Excl_EP;
7549 -- Otherwise we can definitely include the end points
7551 else
7552 Actual_Size := Size_Incl_EP;
7553 Actual_Lo := Loval_Incl_EP;
7554 Actual_Hi := Hival_Incl_EP;
7555 end if;
7557 -- One pathological case: normally we never fudge a low bound
7558 -- down, since it would seem to increase the size (if it has
7559 -- any effect), but for ranges containing single value, or no
7560 -- values, the high bound can be small too large. Consider:
7562 -- type t is delta 2.0**(-14)
7563 -- range 131072.0 .. 0;
7565 -- That lower bound is *just* outside the range of 32 bits, and
7566 -- does need fudging down in this case. Note that the bounds
7567 -- will always have crossed here, since the high bound will be
7568 -- fudged down if necessary, as in the case of:
7570 -- type t is delta 2.0**(-14)
7571 -- range 131072.0 .. 131072.0;
7573 -- So we detect the situation by looking for crossed bounds,
7574 -- and if the bounds are crossed, and the low bound is greater
7575 -- than zero, we will always back it off by small, since this
7576 -- is completely harmless.
7578 if Actual_Lo > Actual_Hi then
7579 if UR_Is_Positive (Actual_Lo) then
7580 Actual_Lo := Loval_Incl_EP - Small;
7581 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7583 -- And of course, we need to do exactly the same parallel
7584 -- fudge for flat ranges in the negative region.
7586 elsif UR_Is_Negative (Actual_Hi) then
7587 Actual_Hi := Hival_Incl_EP + Small;
7588 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7589 end if;
7590 end if;
7591 end if;
7593 Set_Realval (Lo, Actual_Lo);
7594 Set_Realval (Hi, Actual_Hi);
7595 end Fudge;
7597 -- For the decimal case, none of this fudging is required, since there
7598 -- are no end-point problems in the decimal case (the end-points are
7599 -- always included).
7601 else
7602 Actual_Size := Fsize (Loval, Hival);
7603 end if;
7605 -- At this stage, the actual size has been calculated and the proper
7606 -- required bounds are stored in the low and high bounds.
7608 if Actual_Size > 64 then
7609 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
7610 Error_Msg_N
7611 ("size required (^) for type& too large, maximum allowed is 64",
7612 Typ);
7613 Actual_Size := 64;
7614 end if;
7616 -- Check size against explicit given size
7618 if Has_Size_Clause (Typ) then
7619 if Actual_Size > RM_Size (Typ) then
7620 Error_Msg_Uint_1 := RM_Size (Typ);
7621 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
7622 Error_Msg_NE
7623 ("size given (^) for type& too small, minimum allowed is ^",
7624 Size_Clause (Typ), Typ);
7626 else
7627 Actual_Size := UI_To_Int (Esize (Typ));
7628 end if;
7630 -- Increase size to next natural boundary if no size clause given
7632 else
7633 if Actual_Size <= 8 then
7634 Actual_Size := 8;
7635 elsif Actual_Size <= 16 then
7636 Actual_Size := 16;
7637 elsif Actual_Size <= 32 then
7638 Actual_Size := 32;
7639 else
7640 Actual_Size := 64;
7641 end if;
7643 Init_Esize (Typ, Actual_Size);
7644 Adjust_Esize_For_Alignment (Typ);
7645 end if;
7647 -- If we have a base type, then expand the bounds so that they extend to
7648 -- the full width of the allocated size in bits, to avoid junk range
7649 -- checks on intermediate computations.
7651 if Base_Type (Typ) = Typ then
7652 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
7653 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
7654 end if;
7656 -- Final step is to reanalyze the bounds using the proper type
7657 -- and set the Corresponding_Integer_Value fields of the literals.
7659 Set_Etype (Lo, Empty);
7660 Set_Analyzed (Lo, False);
7661 Analyze (Lo);
7663 -- Resolve with universal fixed if the base type, and the base type if
7664 -- it is a subtype. Note we can't resolve the base type with itself,
7665 -- that would be a reference before definition.
7667 if Typ = Btyp then
7668 Resolve (Lo, Universal_Fixed);
7669 else
7670 Resolve (Lo, Btyp);
7671 end if;
7673 -- Set corresponding integer value for bound
7675 Set_Corresponding_Integer_Value
7676 (Lo, UR_To_Uint (Realval (Lo) / Small));
7678 -- Similar processing for high bound
7680 Set_Etype (Hi, Empty);
7681 Set_Analyzed (Hi, False);
7682 Analyze (Hi);
7684 if Typ = Btyp then
7685 Resolve (Hi, Universal_Fixed);
7686 else
7687 Resolve (Hi, Btyp);
7688 end if;
7690 Set_Corresponding_Integer_Value
7691 (Hi, UR_To_Uint (Realval (Hi) / Small));
7693 -- Set type of range to correspond to bounds
7695 Set_Etype (Rng, Etype (Lo));
7697 -- Set Esize to calculated size if not set already
7699 if Unknown_Esize (Typ) then
7700 Init_Esize (Typ, Actual_Size);
7701 end if;
7703 -- Set RM_Size if not already set. If already set, check value
7705 declare
7706 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
7708 begin
7709 if RM_Size (Typ) /= Uint_0 then
7710 if RM_Size (Typ) < Minsiz then
7711 Error_Msg_Uint_1 := RM_Size (Typ);
7712 Error_Msg_Uint_2 := Minsiz;
7713 Error_Msg_NE
7714 ("size given (^) for type& too small, minimum allowed is ^",
7715 Size_Clause (Typ), Typ);
7716 end if;
7718 else
7719 Set_RM_Size (Typ, Minsiz);
7720 end if;
7721 end;
7723 -- Check for shaving
7725 if Comes_From_Source (Typ) then
7727 -- In SPARK mode the given bounds must be strictly representable
7729 if SPARK_Mode = On then
7730 if Orig_Lo < Expr_Value_R (Lo) then
7731 Error_Msg_NE
7732 ("declared low bound of type & is outside type range",
7733 Lo, Typ);
7734 end if;
7736 if Orig_Hi > Expr_Value_R (Hi) then
7737 Error_Msg_NE
7738 ("declared high bound of type & is outside type range",
7739 Hi, Typ);
7740 end if;
7742 else
7743 if Orig_Lo < Expr_Value_R (Lo) then
7744 Error_Msg_N
7745 ("declared low bound of type & is outside type range??", Typ);
7746 Error_Msg_N
7747 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
7748 end if;
7750 if Orig_Hi > Expr_Value_R (Hi) then
7751 Error_Msg_N
7752 ("declared high bound of type & is outside type range??",
7753 Typ);
7754 Error_Msg_N
7755 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
7756 end if;
7757 end if;
7758 end if;
7759 end Freeze_Fixed_Point_Type;
7761 ------------------
7762 -- Freeze_Itype --
7763 ------------------
7765 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
7766 L : List_Id;
7768 begin
7769 Set_Has_Delayed_Freeze (T);
7770 L := Freeze_Entity (T, N);
7772 if Is_Non_Empty_List (L) then
7773 Insert_Actions (N, L);
7774 end if;
7775 end Freeze_Itype;
7777 --------------------------
7778 -- Freeze_Static_Object --
7779 --------------------------
7781 procedure Freeze_Static_Object (E : Entity_Id) is
7783 Cannot_Be_Static : exception;
7784 -- Exception raised if the type of a static object cannot be made
7785 -- static. This happens if the type depends on non-global objects.
7787 procedure Ensure_Expression_Is_SA (N : Node_Id);
7788 -- Called to ensure that an expression used as part of a type definition
7789 -- is statically allocatable, which means that the expression type is
7790 -- statically allocatable, and the expression is either static, or a
7791 -- reference to a library level constant.
7793 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
7794 -- Called to mark a type as static, checking that it is possible
7795 -- to set the type as static. If it is not possible, then the
7796 -- exception Cannot_Be_Static is raised.
7798 -----------------------------
7799 -- Ensure_Expression_Is_SA --
7800 -----------------------------
7802 procedure Ensure_Expression_Is_SA (N : Node_Id) is
7803 Ent : Entity_Id;
7805 begin
7806 Ensure_Type_Is_SA (Etype (N));
7808 if Is_OK_Static_Expression (N) then
7809 return;
7811 elsif Nkind (N) = N_Identifier then
7812 Ent := Entity (N);
7814 if Present (Ent)
7815 and then Ekind (Ent) = E_Constant
7816 and then Is_Library_Level_Entity (Ent)
7817 then
7818 return;
7819 end if;
7820 end if;
7822 raise Cannot_Be_Static;
7823 end Ensure_Expression_Is_SA;
7825 -----------------------
7826 -- Ensure_Type_Is_SA --
7827 -----------------------
7829 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
7830 N : Node_Id;
7831 C : Entity_Id;
7833 begin
7834 -- If type is library level, we are all set
7836 if Is_Library_Level_Entity (Typ) then
7837 return;
7838 end if;
7840 -- We are also OK if the type already marked as statically allocated,
7841 -- which means we processed it before.
7843 if Is_Statically_Allocated (Typ) then
7844 return;
7845 end if;
7847 -- Mark type as statically allocated
7849 Set_Is_Statically_Allocated (Typ);
7851 -- Check that it is safe to statically allocate this type
7853 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
7854 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
7855 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
7857 elsif Is_Array_Type (Typ) then
7858 N := First_Index (Typ);
7859 while Present (N) loop
7860 Ensure_Type_Is_SA (Etype (N));
7861 Next_Index (N);
7862 end loop;
7864 Ensure_Type_Is_SA (Component_Type (Typ));
7866 elsif Is_Access_Type (Typ) then
7867 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
7869 declare
7870 F : Entity_Id;
7871 T : constant Entity_Id := Etype (Designated_Type (Typ));
7873 begin
7874 if T /= Standard_Void_Type then
7875 Ensure_Type_Is_SA (T);
7876 end if;
7878 F := First_Formal (Designated_Type (Typ));
7879 while Present (F) loop
7880 Ensure_Type_Is_SA (Etype (F));
7881 Next_Formal (F);
7882 end loop;
7883 end;
7885 else
7886 Ensure_Type_Is_SA (Designated_Type (Typ));
7887 end if;
7889 elsif Is_Record_Type (Typ) then
7890 C := First_Entity (Typ);
7891 while Present (C) loop
7892 if Ekind (C) = E_Discriminant
7893 or else Ekind (C) = E_Component
7894 then
7895 Ensure_Type_Is_SA (Etype (C));
7897 elsif Is_Type (C) then
7898 Ensure_Type_Is_SA (C);
7899 end if;
7901 Next_Entity (C);
7902 end loop;
7904 elsif Ekind (Typ) = E_Subprogram_Type then
7905 Ensure_Type_Is_SA (Etype (Typ));
7907 C := First_Formal (Typ);
7908 while Present (C) loop
7909 Ensure_Type_Is_SA (Etype (C));
7910 Next_Formal (C);
7911 end loop;
7913 else
7914 raise Cannot_Be_Static;
7915 end if;
7916 end Ensure_Type_Is_SA;
7918 -- Start of processing for Freeze_Static_Object
7920 begin
7921 Ensure_Type_Is_SA (Etype (E));
7923 exception
7924 when Cannot_Be_Static =>
7926 -- If the object that cannot be static is imported or exported, then
7927 -- issue an error message saying that this object cannot be imported
7928 -- or exported. If it has an address clause it is an overlay in the
7929 -- current partition and the static requirement is not relevant.
7930 -- Do not issue any error message when ignoring rep clauses.
7932 if Ignore_Rep_Clauses then
7933 null;
7935 elsif Is_Imported (E) then
7936 if No (Address_Clause (E)) then
7937 Error_Msg_N
7938 ("& cannot be imported (local type is not constant)", E);
7939 end if;
7941 -- Otherwise must be exported, something is wrong if compiler
7942 -- is marking something as statically allocated which cannot be).
7944 else pragma Assert (Is_Exported (E));
7945 Error_Msg_N
7946 ("& cannot be exported (local type is not constant)", E);
7947 end if;
7948 end Freeze_Static_Object;
7950 -----------------------
7951 -- Freeze_Subprogram --
7952 -----------------------
7954 procedure Freeze_Subprogram (E : Entity_Id) is
7955 procedure Set_Profile_Convention (Subp_Id : Entity_Id);
7956 -- Set the conventions of all anonymous access-to-subprogram formals and
7957 -- result subtype of subprogram Subp_Id to the convention of Subp_Id.
7959 ----------------------------
7960 -- Set_Profile_Convention --
7961 ----------------------------
7963 procedure Set_Profile_Convention (Subp_Id : Entity_Id) is
7964 Conv : constant Convention_Id := Convention (Subp_Id);
7966 procedure Set_Type_Convention (Typ : Entity_Id);
7967 -- Set the convention of anonymous access-to-subprogram type Typ and
7968 -- its designated type to Conv.
7970 -------------------------
7971 -- Set_Type_Convention --
7972 -------------------------
7974 procedure Set_Type_Convention (Typ : Entity_Id) is
7975 begin
7976 -- Set the convention on both the anonymous access-to-subprogram
7977 -- type and the subprogram type it points to because both types
7978 -- participate in conformance-related checks.
7980 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
7981 Set_Convention (Typ, Conv);
7982 Set_Convention (Designated_Type (Typ), Conv);
7983 end if;
7984 end Set_Type_Convention;
7986 -- Local variables
7988 Formal : Entity_Id;
7990 -- Start of processing for Set_Profile_Convention
7992 begin
7993 Formal := First_Formal (Subp_Id);
7994 while Present (Formal) loop
7995 Set_Type_Convention (Etype (Formal));
7996 Next_Formal (Formal);
7997 end loop;
7999 if Ekind (Subp_Id) = E_Function then
8000 Set_Type_Convention (Etype (Subp_Id));
8001 end if;
8002 end Set_Profile_Convention;
8004 -- Local variables
8006 F : Entity_Id;
8007 Retype : Entity_Id;
8009 -- Start of processing for Freeze_Subprogram
8011 begin
8012 -- Subprogram may not have an address clause unless it is imported
8014 if Present (Address_Clause (E)) then
8015 if not Is_Imported (E) then
8016 Error_Msg_N
8017 ("address clause can only be given for imported subprogram",
8018 Name (Address_Clause (E)));
8019 end if;
8020 end if;
8022 -- Reset the Pure indication on an imported subprogram unless an
8023 -- explicit Pure_Function pragma was present or the subprogram is an
8024 -- intrinsic. We do this because otherwise it is an insidious error
8025 -- to call a non-pure function from pure unit and have calls
8026 -- mysteriously optimized away. What happens here is that the Import
8027 -- can bypass the normal check to ensure that pure units call only pure
8028 -- subprograms.
8030 -- The reason for the intrinsic exception is that in general, intrinsic
8031 -- functions (such as shifts) are pure anyway. The only exceptions are
8032 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
8033 -- in any case, so no problem arises.
8035 if Is_Imported (E)
8036 and then Is_Pure (E)
8037 and then not Has_Pragma_Pure_Function (E)
8038 and then not Is_Intrinsic_Subprogram (E)
8039 then
8040 Set_Is_Pure (E, False);
8041 end if;
8043 -- We also reset the Pure indication on a subprogram with an Address
8044 -- parameter, because the parameter may be used as a pointer and the
8045 -- referenced data may change even if the address value does not.
8047 -- Note that if the programmer gave an explicit Pure_Function pragma,
8048 -- then we believe the programmer, and leave the subprogram Pure. We
8049 -- also suppress this check on run-time files.
8051 if Is_Pure (E)
8052 and then Is_Subprogram (E)
8053 and then not Has_Pragma_Pure_Function (E)
8054 and then not Is_Internal_File_Name (Unit_File_Name (Current_Sem_Unit))
8055 then
8056 Check_Function_With_Address_Parameter (E);
8057 end if;
8059 -- Ensure that all anonymous access-to-subprogram types inherit the
8060 -- convention of their related subprogram (RM 6.3.1 13.1/3). This is
8061 -- not done for a defaulted convention Ada because those types also
8062 -- default to Ada. Convention Protected must not be propagated when
8063 -- the subprogram is an entry because this would be illegal. The only
8064 -- way to force convention Protected on these kinds of types is to
8065 -- include keyword "protected" in the access definition.
8067 if Convention (E) /= Convention_Ada
8068 and then Convention (E) /= Convention_Protected
8069 then
8070 Set_Profile_Convention (E);
8071 end if;
8073 -- For non-foreign convention subprograms, this is where we create
8074 -- the extra formals (for accessibility level and constrained bit
8075 -- information). We delay this till the freeze point precisely so
8076 -- that we know the convention.
8078 if not Has_Foreign_Convention (E) then
8079 Create_Extra_Formals (E);
8080 Set_Mechanisms (E);
8082 -- If this is convention Ada and a Valued_Procedure, that's odd
8084 if Ekind (E) = E_Procedure
8085 and then Is_Valued_Procedure (E)
8086 and then Convention (E) = Convention_Ada
8087 and then Warn_On_Export_Import
8088 then
8089 Error_Msg_N
8090 ("??Valued_Procedure has no effect for convention Ada", E);
8091 Set_Is_Valued_Procedure (E, False);
8092 end if;
8094 -- Case of foreign convention
8096 else
8097 Set_Mechanisms (E);
8099 -- For foreign conventions, warn about return of unconstrained array
8101 if Ekind (E) = E_Function then
8102 Retype := Underlying_Type (Etype (E));
8104 -- If no return type, probably some other error, e.g. a
8105 -- missing full declaration, so ignore.
8107 if No (Retype) then
8108 null;
8110 -- If the return type is generic, we have emitted a warning
8111 -- earlier on, and there is nothing else to check here. Specific
8112 -- instantiations may lead to erroneous behavior.
8114 elsif Is_Generic_Type (Etype (E)) then
8115 null;
8117 -- Display warning if returning unconstrained array
8119 elsif Is_Array_Type (Retype)
8120 and then not Is_Constrained (Retype)
8122 -- Check appropriate warning is enabled (should we check for
8123 -- Warnings (Off) on specific entities here, probably so???)
8125 and then Warn_On_Export_Import
8126 then
8127 Error_Msg_N
8128 ("?x?foreign convention function& should not return " &
8129 "unconstrained array", E);
8130 return;
8131 end if;
8132 end if;
8134 -- If any of the formals for an exported foreign convention
8135 -- subprogram have defaults, then emit an appropriate warning since
8136 -- this is odd (default cannot be used from non-Ada code)
8138 if Is_Exported (E) then
8139 F := First_Formal (E);
8140 while Present (F) loop
8141 if Warn_On_Export_Import
8142 and then Present (Default_Value (F))
8143 then
8144 Error_Msg_N
8145 ("?x?parameter cannot be defaulted in non-Ada call",
8146 Default_Value (F));
8147 end if;
8149 Next_Formal (F);
8150 end loop;
8151 end if;
8152 end if;
8154 -- Pragma Inline_Always is disallowed for dispatching subprograms
8155 -- because the address of such subprograms is saved in the dispatch
8156 -- table to support dispatching calls, and dispatching calls cannot
8157 -- be inlined. This is consistent with the restriction against using
8158 -- 'Access or 'Address on an Inline_Always subprogram.
8160 if Is_Dispatching_Operation (E)
8161 and then Has_Pragma_Inline_Always (E)
8162 then
8163 Error_Msg_N
8164 ("pragma Inline_Always not allowed for dispatching subprograms", E);
8165 end if;
8167 -- Because of the implicit representation of inherited predefined
8168 -- operators in the front-end, the overriding status of the operation
8169 -- may be affected when a full view of a type is analyzed, and this is
8170 -- not captured by the analysis of the corresponding type declaration.
8171 -- Therefore the correctness of a not-overriding indicator must be
8172 -- rechecked when the subprogram is frozen.
8174 if Nkind (E) = N_Defining_Operator_Symbol
8175 and then not Error_Posted (Parent (E))
8176 then
8177 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
8178 end if;
8180 if Modify_Tree_For_C
8181 and then Nkind (Parent (E)) = N_Function_Specification
8182 and then Is_Array_Type (Etype (E))
8183 and then Is_Constrained (Etype (E))
8184 and then not Is_Unchecked_Conversion_Instance (E)
8185 and then not Rewritten_For_C (E)
8186 then
8187 Build_Procedure_Form (Unit_Declaration_Node (E));
8188 end if;
8189 end Freeze_Subprogram;
8191 ----------------------
8192 -- Is_Fully_Defined --
8193 ----------------------
8195 function Is_Fully_Defined (T : Entity_Id) return Boolean is
8196 begin
8197 if Ekind (T) = E_Class_Wide_Type then
8198 return Is_Fully_Defined (Etype (T));
8200 elsif Is_Array_Type (T) then
8201 return Is_Fully_Defined (Component_Type (T));
8203 elsif Is_Record_Type (T)
8204 and not Is_Private_Type (T)
8205 then
8206 -- Verify that the record type has no components with private types
8207 -- without completion.
8209 declare
8210 Comp : Entity_Id;
8212 begin
8213 Comp := First_Component (T);
8214 while Present (Comp) loop
8215 if not Is_Fully_Defined (Etype (Comp)) then
8216 return False;
8217 end if;
8219 Next_Component (Comp);
8220 end loop;
8221 return True;
8222 end;
8224 -- For the designated type of an access to subprogram, all types in
8225 -- the profile must be fully defined.
8227 elsif Ekind (T) = E_Subprogram_Type then
8228 declare
8229 F : Entity_Id;
8231 begin
8232 F := First_Formal (T);
8233 while Present (F) loop
8234 if not Is_Fully_Defined (Etype (F)) then
8235 return False;
8236 end if;
8238 Next_Formal (F);
8239 end loop;
8241 return Is_Fully_Defined (Etype (T));
8242 end;
8244 else
8245 return not Is_Private_Type (T)
8246 or else Present (Full_View (Base_Type (T)));
8247 end if;
8248 end Is_Fully_Defined;
8250 ---------------------------------
8251 -- Process_Default_Expressions --
8252 ---------------------------------
8254 procedure Process_Default_Expressions
8255 (E : Entity_Id;
8256 After : in out Node_Id)
8258 Loc : constant Source_Ptr := Sloc (E);
8259 Dbody : Node_Id;
8260 Formal : Node_Id;
8261 Dcopy : Node_Id;
8262 Dnam : Entity_Id;
8264 begin
8265 Set_Default_Expressions_Processed (E);
8267 -- A subprogram instance and its associated anonymous subprogram share
8268 -- their signature. The default expression functions are defined in the
8269 -- wrapper packages for the anonymous subprogram, and should not be
8270 -- generated again for the instance.
8272 if Is_Generic_Instance (E)
8273 and then Present (Alias (E))
8274 and then Default_Expressions_Processed (Alias (E))
8275 then
8276 return;
8277 end if;
8279 Formal := First_Formal (E);
8280 while Present (Formal) loop
8281 if Present (Default_Value (Formal)) then
8283 -- We work with a copy of the default expression because we
8284 -- do not want to disturb the original, since this would mess
8285 -- up the conformance checking.
8287 Dcopy := New_Copy_Tree (Default_Value (Formal));
8289 -- The analysis of the expression may generate insert actions,
8290 -- which of course must not be executed. We wrap those actions
8291 -- in a procedure that is not called, and later on eliminated.
8292 -- The following cases have no side-effects, and are analyzed
8293 -- directly.
8295 if Nkind (Dcopy) = N_Identifier
8296 or else Nkind_In (Dcopy, N_Expanded_Name,
8297 N_Integer_Literal,
8298 N_Character_Literal,
8299 N_String_Literal,
8300 N_Real_Literal)
8301 or else (Nkind (Dcopy) = N_Attribute_Reference
8302 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
8303 or else Known_Null (Dcopy)
8304 then
8305 -- If there is no default function, we must still do a full
8306 -- analyze call on the default value, to ensure that all error
8307 -- checks are performed, e.g. those associated with static
8308 -- evaluation. Note: this branch will always be taken if the
8309 -- analyzer is turned off (but we still need the error checks).
8311 -- Note: the setting of parent here is to meet the requirement
8312 -- that we can only analyze the expression while attached to
8313 -- the tree. Really the requirement is that the parent chain
8314 -- be set, we don't actually need to be in the tree.
8316 Set_Parent (Dcopy, Declaration_Node (Formal));
8317 Analyze (Dcopy);
8319 -- Default expressions are resolved with their own type if the
8320 -- context is generic, to avoid anomalies with private types.
8322 if Ekind (Scope (E)) = E_Generic_Package then
8323 Resolve (Dcopy);
8324 else
8325 Resolve (Dcopy, Etype (Formal));
8326 end if;
8328 -- If that resolved expression will raise constraint error,
8329 -- then flag the default value as raising constraint error.
8330 -- This allows a proper error message on the calls.
8332 if Raises_Constraint_Error (Dcopy) then
8333 Set_Raises_Constraint_Error (Default_Value (Formal));
8334 end if;
8336 -- If the default is a parameterless call, we use the name of
8337 -- the called function directly, and there is no body to build.
8339 elsif Nkind (Dcopy) = N_Function_Call
8340 and then No (Parameter_Associations (Dcopy))
8341 then
8342 null;
8344 -- Else construct and analyze the body of a wrapper procedure
8345 -- that contains an object declaration to hold the expression.
8346 -- Given that this is done only to complete the analysis, it is
8347 -- simpler to build a procedure than a function which might
8348 -- involve secondary stack expansion.
8350 else
8351 Dnam := Make_Temporary (Loc, 'D');
8353 Dbody :=
8354 Make_Subprogram_Body (Loc,
8355 Specification =>
8356 Make_Procedure_Specification (Loc,
8357 Defining_Unit_Name => Dnam),
8359 Declarations => New_List (
8360 Make_Object_Declaration (Loc,
8361 Defining_Identifier => Make_Temporary (Loc, 'T'),
8362 Object_Definition =>
8363 New_Occurrence_Of (Etype (Formal), Loc),
8364 Expression => New_Copy_Tree (Dcopy))),
8366 Handled_Statement_Sequence =>
8367 Make_Handled_Sequence_Of_Statements (Loc,
8368 Statements => Empty_List));
8370 Set_Scope (Dnam, Scope (E));
8371 Set_Assignment_OK (First (Declarations (Dbody)));
8372 Set_Is_Eliminated (Dnam);
8373 Insert_After (After, Dbody);
8374 Analyze (Dbody);
8375 After := Dbody;
8376 end if;
8377 end if;
8379 Next_Formal (Formal);
8380 end loop;
8381 end Process_Default_Expressions;
8383 ----------------------------------------
8384 -- Set_Component_Alignment_If_Not_Set --
8385 ----------------------------------------
8387 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
8388 begin
8389 -- Ignore if not base type, subtypes don't need anything
8391 if Typ /= Base_Type (Typ) then
8392 return;
8393 end if;
8395 -- Do not override existing representation
8397 if Is_Packed (Typ) then
8398 return;
8400 elsif Has_Specified_Layout (Typ) then
8401 return;
8403 elsif Component_Alignment (Typ) /= Calign_Default then
8404 return;
8406 else
8407 Set_Component_Alignment
8408 (Typ, Scope_Stack.Table
8409 (Scope_Stack.Last).Component_Alignment_Default);
8410 end if;
8411 end Set_Component_Alignment_If_Not_Set;
8413 --------------------------
8414 -- Set_SSO_From_Default --
8415 --------------------------
8417 procedure Set_SSO_From_Default (T : Entity_Id) is
8418 Reversed : Boolean;
8420 begin
8421 -- Set default SSO for an array or record base type, except in case of
8422 -- a type extension (which always inherits the SSO of its parent type).
8424 if Is_Base_Type (T)
8425 and then (Is_Array_Type (T)
8426 or else (Is_Record_Type (T)
8427 and then not (Is_Tagged_Type (T)
8428 and then Is_Derived_Type (T))))
8429 then
8430 Reversed :=
8431 (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
8432 or else
8433 (not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
8435 if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
8437 -- For a record type, if bit order is specified explicitly,
8438 -- then do not set SSO from default if not consistent. Note that
8439 -- we do not want to look at a Bit_Order attribute definition
8440 -- for a parent: if we were to inherit Bit_Order, then both
8441 -- SSO_Set_*_By_Default flags would have been cleared already
8442 -- (by Inherit_Aspects_At_Freeze_Point).
8444 and then not
8445 (Is_Record_Type (T)
8446 and then
8447 Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False)
8448 and then Reverse_Bit_Order (T) /= Reversed)
8449 then
8450 -- If flags cause reverse storage order, then set the result. Note
8451 -- that we would have ignored the pragma setting the non default
8452 -- storage order in any case, hence the assertion at this point.
8454 pragma Assert
8455 (not Reversed or else Support_Nondefault_SSO_On_Target);
8457 Set_Reverse_Storage_Order (T, Reversed);
8459 -- For a record type, also set reversed bit order. Note: if a bit
8460 -- order has been specified explicitly, then this is a no-op.
8462 if Is_Record_Type (T) then
8463 Set_Reverse_Bit_Order (T, Reversed);
8464 end if;
8465 end if;
8466 end if;
8467 end Set_SSO_From_Default;
8469 ------------------
8470 -- Undelay_Type --
8471 ------------------
8473 procedure Undelay_Type (T : Entity_Id) is
8474 begin
8475 Set_Has_Delayed_Freeze (T, False);
8476 Set_Freeze_Node (T, Empty);
8478 -- Since we don't want T to have a Freeze_Node, we don't want its
8479 -- Full_View or Corresponding_Record_Type to have one either.
8481 -- ??? Fundamentally, this whole handling is unpleasant. What we really
8482 -- want is to be sure that for an Itype that's part of record R and is a
8483 -- subtype of type T, that it's frozen after the later of the freeze
8484 -- points of R and T. We have no way of doing that directly, so what we
8485 -- do is force most such Itypes to be frozen as part of freezing R via
8486 -- this procedure and only delay the ones that need to be delayed
8487 -- (mostly the designated types of access types that are defined as part
8488 -- of the record).
8490 if Is_Private_Type (T)
8491 and then Present (Full_View (T))
8492 and then Is_Itype (Full_View (T))
8493 and then Is_Record_Type (Scope (Full_View (T)))
8494 then
8495 Undelay_Type (Full_View (T));
8496 end if;
8498 if Is_Concurrent_Type (T)
8499 and then Present (Corresponding_Record_Type (T))
8500 and then Is_Itype (Corresponding_Record_Type (T))
8501 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
8502 then
8503 Undelay_Type (Corresponding_Record_Type (T));
8504 end if;
8505 end Undelay_Type;
8507 ------------------
8508 -- Warn_Overlay --
8509 ------------------
8511 procedure Warn_Overlay (Expr : Node_Id; Typ : Entity_Id; Nam : Entity_Id) is
8512 Ent : constant Entity_Id := Entity (Nam);
8513 -- The object to which the address clause applies
8515 Init : Node_Id;
8516 Old : Entity_Id := Empty;
8517 Decl : Node_Id;
8519 begin
8520 -- No warning if address clause overlay warnings are off
8522 if not Address_Clause_Overlay_Warnings then
8523 return;
8524 end if;
8526 -- No warning if there is an explicit initialization
8528 Init := Original_Node (Expression (Declaration_Node (Ent)));
8530 if Present (Init) and then Comes_From_Source (Init) then
8531 return;
8532 end if;
8534 -- We only give the warning for non-imported entities of a type for
8535 -- which a non-null base init proc is defined, or for objects of access
8536 -- types with implicit null initialization, or when Normalize_Scalars
8537 -- applies and the type is scalar or a string type (the latter being
8538 -- tested for because predefined String types are initialized by inline
8539 -- code rather than by an init_proc). Note that we do not give the
8540 -- warning for Initialize_Scalars, since we suppressed initialization
8541 -- in this case. Also, do not warn if Suppress_Initialization is set.
8543 if Present (Expr)
8544 and then not Is_Imported (Ent)
8545 and then not Initialization_Suppressed (Typ)
8546 and then (Has_Non_Null_Base_Init_Proc (Typ)
8547 or else Is_Access_Type (Typ)
8548 or else (Normalize_Scalars
8549 and then (Is_Scalar_Type (Typ)
8550 or else Is_String_Type (Typ))))
8551 then
8552 if Nkind (Expr) = N_Attribute_Reference
8553 and then Is_Entity_Name (Prefix (Expr))
8554 then
8555 Old := Entity (Prefix (Expr));
8557 elsif Is_Entity_Name (Expr)
8558 and then Ekind (Entity (Expr)) = E_Constant
8559 then
8560 Decl := Declaration_Node (Entity (Expr));
8562 if Nkind (Decl) = N_Object_Declaration
8563 and then Present (Expression (Decl))
8564 and then Nkind (Expression (Decl)) = N_Attribute_Reference
8565 and then Is_Entity_Name (Prefix (Expression (Decl)))
8566 then
8567 Old := Entity (Prefix (Expression (Decl)));
8569 elsif Nkind (Expr) = N_Function_Call then
8570 return;
8571 end if;
8573 -- A function call (most likely to To_Address) is probably not an
8574 -- overlay, so skip warning. Ditto if the function call was inlined
8575 -- and transformed into an entity.
8577 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
8578 return;
8579 end if;
8581 -- If a pragma Import follows, we assume that it is for the current
8582 -- target of the address clause, and skip the warning. There may be
8583 -- a source pragma or an aspect that specifies import and generates
8584 -- the corresponding pragma. These will indicate that the entity is
8585 -- imported and that is checked above so that the spurious warning
8586 -- (generated when the entity is frozen) will be suppressed. The
8587 -- pragma may be attached to the aspect, so it is not yet a list
8588 -- member.
8590 if Is_List_Member (Parent (Expr)) then
8591 Decl := Next (Parent (Expr));
8593 if Present (Decl)
8594 and then Nkind (Decl) = N_Pragma
8595 and then Pragma_Name (Decl) = Name_Import
8596 then
8597 return;
8598 end if;
8599 end if;
8601 -- Otherwise give warning message
8603 if Present (Old) then
8604 Error_Msg_Node_2 := Old;
8605 Error_Msg_N
8606 ("default initialization of & may modify &??",
8607 Nam);
8608 else
8609 Error_Msg_N
8610 ("default initialization of & may modify overlaid storage??",
8611 Nam);
8612 end if;
8614 -- Add friendly warning if initialization comes from a packed array
8615 -- component.
8617 if Is_Record_Type (Typ) then
8618 declare
8619 Comp : Entity_Id;
8621 begin
8622 Comp := First_Component (Typ);
8623 while Present (Comp) loop
8624 if Nkind (Parent (Comp)) = N_Component_Declaration
8625 and then Present (Expression (Parent (Comp)))
8626 then
8627 exit;
8628 elsif Is_Array_Type (Etype (Comp))
8629 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
8630 then
8631 Error_Msg_NE
8632 ("\packed array component& " &
8633 "will be initialized to zero??",
8634 Nam, Comp);
8635 exit;
8636 else
8637 Next_Component (Comp);
8638 end if;
8639 end loop;
8640 end;
8641 end if;
8643 Error_Msg_N
8644 ("\use pragma Import for & to " &
8645 "suppress initialization (RM B.1(24))??",
8646 Nam);
8647 end if;
8648 end Warn_Overlay;
8650 end Freeze;