1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Casing
; use Casing
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Eval_Fat
; use Eval_Fat
;
32 with Exp_Ch11
; use Exp_Ch11
;
33 with Exp_Ch2
; use Exp_Ch2
;
34 with Exp_Ch4
; use Exp_Ch4
;
35 with Exp_Pakd
; use Exp_Pakd
;
36 with Exp_Util
; use Exp_Util
;
37 with Expander
; use Expander
;
38 with Freeze
; use Freeze
;
40 with Nlists
; use Nlists
;
41 with Nmake
; use Nmake
;
43 with Output
; use Output
;
44 with Restrict
; use Restrict
;
45 with Rident
; use Rident
;
46 with Rtsfind
; use Rtsfind
;
48 with Sem_Aux
; use Sem_Aux
;
49 with Sem_Ch3
; use Sem_Ch3
;
50 with Sem_Ch8
; use Sem_Ch8
;
51 with Sem_Eval
; use Sem_Eval
;
52 with Sem_Res
; use Sem_Res
;
53 with Sem_Util
; use Sem_Util
;
54 with Sem_Warn
; use Sem_Warn
;
55 with Sinfo
; use Sinfo
;
56 with Sinput
; use Sinput
;
57 with Snames
; use Snames
;
58 with Sprint
; use Sprint
;
59 with Stand
; use Stand
;
60 with Stringt
; use Stringt
;
61 with Targparm
; use Targparm
;
62 with Tbuild
; use Tbuild
;
63 with Ttypes
; use Ttypes
;
64 with Validsw
; use Validsw
;
66 package body Checks
is
68 -- General note: many of these routines are concerned with generating
69 -- checking code to make sure that constraint error is raised at runtime.
70 -- Clearly this code is only needed if the expander is active, since
71 -- otherwise we will not be generating code or going into the runtime
74 -- We therefore disconnect most of these checks if the expander is
75 -- inactive. This has the additional benefit that we do not need to
76 -- worry about the tree being messed up by previous errors (since errors
77 -- turn off expansion anyway).
79 -- There are a few exceptions to the above rule. For instance routines
80 -- such as Apply_Scalar_Range_Check that do not insert any code can be
81 -- safely called even when the Expander is inactive (but Errors_Detected
82 -- is 0). The benefit of executing this code when expansion is off, is
83 -- the ability to emit constraint error warning for static expressions
84 -- even when we are not generating code.
86 -- The above is modified in gnatprove mode to ensure that proper check
87 -- flags are always placed, even if expansion is off.
89 -------------------------------------
90 -- Suppression of Redundant Checks --
91 -------------------------------------
93 -- This unit implements a limited circuit for removal of redundant
94 -- checks. The processing is based on a tracing of simple sequential
95 -- flow. For any sequence of statements, we save expressions that are
96 -- marked to be checked, and then if the same expression appears later
97 -- with the same check, then under certain circumstances, the second
98 -- check can be suppressed.
100 -- Basically, we can suppress the check if we know for certain that
101 -- the previous expression has been elaborated (together with its
102 -- check), and we know that the exception frame is the same, and that
103 -- nothing has happened to change the result of the exception.
105 -- Let us examine each of these three conditions in turn to describe
106 -- how we ensure that this condition is met.
108 -- First, we need to know for certain that the previous expression has
109 -- been executed. This is done principally by the mechanism of calling
110 -- Conditional_Statements_Begin at the start of any statement sequence
111 -- and Conditional_Statements_End at the end. The End call causes all
112 -- checks remembered since the Begin call to be discarded. This does
113 -- miss a few cases, notably the case of a nested BEGIN-END block with
114 -- no exception handlers. But the important thing is to be conservative.
115 -- The other protection is that all checks are discarded if a label
116 -- is encountered, since then the assumption of sequential execution
117 -- is violated, and we don't know enough about the flow.
119 -- Second, we need to know that the exception frame is the same. We
120 -- do this by killing all remembered checks when we enter a new frame.
121 -- Again, that's over-conservative, but generally the cases we can help
122 -- with are pretty local anyway (like the body of a loop for example).
124 -- Third, we must be sure to forget any checks which are no longer valid.
125 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
126 -- used to note any changes to local variables. We only attempt to deal
127 -- with checks involving local variables, so we do not need to worry
128 -- about global variables. Second, a call to any non-global procedure
129 -- causes us to abandon all stored checks, since such a all may affect
130 -- the values of any local variables.
132 -- The following define the data structures used to deal with remembering
133 -- checks so that redundant checks can be eliminated as described above.
135 -- Right now, the only expressions that we deal with are of the form of
136 -- simple local objects (either declared locally, or IN parameters) or
137 -- such objects plus/minus a compile time known constant. We can do
138 -- more later on if it seems worthwhile, but this catches many simple
139 -- cases in practice.
141 -- The following record type reflects a single saved check. An entry
142 -- is made in the stack of saved checks if and only if the expression
143 -- has been elaborated with the indicated checks.
145 type Saved_Check
is record
147 -- Set True if entry is killed by Kill_Checks
150 -- The entity involved in the expression that is checked
153 -- A compile time value indicating the result of adding or
154 -- subtracting a compile time value. This value is to be
155 -- added to the value of the Entity. A value of zero is
156 -- used for the case of a simple entity reference.
158 Check_Type
: Character;
159 -- This is set to 'R' for a range check (in which case Target_Type
160 -- is set to the target type for the range check) or to 'O' for an
161 -- overflow check (in which case Target_Type is set to Empty).
163 Target_Type
: Entity_Id
;
164 -- Used only if Do_Range_Check is set. Records the target type for
165 -- the check. We need this, because a check is a duplicate only if
166 -- it has the same target type (or more accurately one with a
167 -- range that is smaller or equal to the stored target type of a
171 -- The following table keeps track of saved checks. Rather than use an
172 -- extensible table, we just use a table of fixed size, and we discard
173 -- any saved checks that do not fit. That's very unlikely to happen and
174 -- this is only an optimization in any case.
176 Saved_Checks
: array (Int
range 1 .. 200) of Saved_Check
;
177 -- Array of saved checks
179 Num_Saved_Checks
: Nat
:= 0;
180 -- Number of saved checks
182 -- The following stack keeps track of statement ranges. It is treated
183 -- as a stack. When Conditional_Statements_Begin is called, an entry
184 -- is pushed onto this stack containing the value of Num_Saved_Checks
185 -- at the time of the call. Then when Conditional_Statements_End is
186 -- called, this value is popped off and used to reset Num_Saved_Checks.
188 -- Note: again, this is a fixed length stack with a size that should
189 -- always be fine. If the value of the stack pointer goes above the
190 -- limit, then we just forget all saved checks.
192 Saved_Checks_Stack
: array (Int
range 1 .. 100) of Nat
;
193 Saved_Checks_TOS
: Nat
:= 0;
195 -----------------------
196 -- Local Subprograms --
197 -----------------------
199 procedure Apply_Arithmetic_Overflow_Strict
(N
: Node_Id
);
200 -- Used to apply arithmetic overflow checks for all cases except operators
201 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
202 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
203 -- signed integer arithmetic operator (but not an if or case expression).
204 -- It is also called for types other than signed integers.
206 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated
(Op
: Node_Id
);
207 -- Used to apply arithmetic overflow checks for the case where the overflow
208 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
209 -- arithmetic op (which includes the case of if and case expressions). Note
210 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
211 -- we have work to do even if overflow checking is suppressed.
213 procedure Apply_Division_Check
218 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
219 -- division checks as required if the Do_Division_Check flag is set.
220 -- Rlo and Rhi give the possible range of the right operand, these values
221 -- can be referenced and trusted only if ROK is set True.
223 procedure Apply_Float_Conversion_Check
225 Target_Typ
: Entity_Id
);
226 -- The checks on a conversion from a floating-point type to an integer
227 -- type are delicate. They have to be performed before conversion, they
228 -- have to raise an exception when the operand is a NaN, and rounding must
229 -- be taken into account to determine the safe bounds of the operand.
231 procedure Apply_Selected_Length_Checks
233 Target_Typ
: Entity_Id
;
234 Source_Typ
: Entity_Id
;
235 Do_Static
: Boolean);
236 -- This is the subprogram that does all the work for Apply_Length_Check
237 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
238 -- described for the above routines. The Do_Static flag indicates that
239 -- only a static check is to be done.
241 procedure Apply_Selected_Range_Checks
243 Target_Typ
: Entity_Id
;
244 Source_Typ
: Entity_Id
;
245 Do_Static
: Boolean);
246 -- This is the subprogram that does all the work for Apply_Range_Check.
247 -- Expr, Target_Typ and Source_Typ are as described for the above
248 -- routine. The Do_Static flag indicates that only a static check is
251 type Check_Type
is new Check_Id
range Access_Check
.. Division_Check
;
252 function Check_Needed
(Nod
: Node_Id
; Check
: Check_Type
) return Boolean;
253 -- This function is used to see if an access or division by zero check is
254 -- needed. The check is to be applied to a single variable appearing in the
255 -- source, and N is the node for the reference. If N is not of this form,
256 -- True is returned with no further processing. If N is of the right form,
257 -- then further processing determines if the given Check is needed.
259 -- The particular circuit is to see if we have the case of a check that is
260 -- not needed because it appears in the right operand of a short circuited
261 -- conditional where the left operand guards the check. For example:
263 -- if Var = 0 or else Q / Var > 12 then
267 -- In this example, the division check is not required. At the same time
268 -- we can issue warnings for suspicious use of non-short-circuited forms,
271 -- if Var = 0 or Q / Var > 12 then
277 Check_Type
: Character;
278 Target_Type
: Entity_Id
;
279 Entry_OK
: out Boolean;
283 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
284 -- to see if a check is of the form for optimization, and if so, to see
285 -- if it has already been performed. Expr is the expression to check,
286 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
287 -- Target_Type is the target type for a range check, and Empty for an
288 -- overflow check. If the entry is not of the form for optimization,
289 -- then Entry_OK is set to False, and the remaining out parameters
290 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
291 -- entity and offset from the expression. Check_Num is the number of
292 -- a matching saved entry in Saved_Checks, or zero if no such entry
295 function Get_Discriminal
(E
: Entity_Id
; Bound
: Node_Id
) return Node_Id
;
296 -- If a discriminal is used in constraining a prival, Return reference
297 -- to the discriminal of the protected body (which renames the parameter
298 -- of the enclosing protected operation). This clumsy transformation is
299 -- needed because privals are created too late and their actual subtypes
300 -- are not available when analysing the bodies of the protected operations.
301 -- This function is called whenever the bound is an entity and the scope
302 -- indicates a protected operation. If the bound is an in-parameter of
303 -- a protected operation that is not a prival, the function returns the
305 -- To be cleaned up???
307 function Guard_Access
310 Ck_Node
: Node_Id
) return Node_Id
;
311 -- In the access type case, guard the test with a test to ensure
312 -- that the access value is non-null, since the checks do not
313 -- not apply to null access values.
315 procedure Install_Static_Check
(R_Cno
: Node_Id
; Loc
: Source_Ptr
);
316 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
317 -- Constraint_Error node.
319 function Is_Signed_Integer_Arithmetic_Op
(N
: Node_Id
) return Boolean;
320 -- Returns True if node N is for an arithmetic operation with signed
321 -- integer operands. This includes unary and binary operators, and also
322 -- if and case expression nodes where the dependent expressions are of
323 -- a signed integer type. These are the kinds of nodes for which special
324 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
326 function Range_Or_Validity_Checks_Suppressed
327 (Expr
: Node_Id
) return Boolean;
328 -- Returns True if either range or validity checks or both are suppressed
329 -- for the type of the given expression, or, if the expression is the name
330 -- of an entity, if these checks are suppressed for the entity.
332 function Selected_Length_Checks
334 Target_Typ
: Entity_Id
;
335 Source_Typ
: Entity_Id
;
336 Warn_Node
: Node_Id
) return Check_Result
;
337 -- Like Apply_Selected_Length_Checks, except it doesn't modify
338 -- anything, just returns a list of nodes as described in the spec of
339 -- this package for the Range_Check function.
340 -- ??? In fact it does construct the test and insert it into the tree,
341 -- and insert actions in various ways (calling Insert_Action directly
342 -- in particular) so we do not call it in GNATprove mode, contrary to
343 -- Selected_Range_Checks.
345 function Selected_Range_Checks
347 Target_Typ
: Entity_Id
;
348 Source_Typ
: Entity_Id
;
349 Warn_Node
: Node_Id
) return Check_Result
;
350 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
351 -- just returns a list of nodes as described in the spec of this package
352 -- for the Range_Check function.
354 ------------------------------
355 -- Access_Checks_Suppressed --
356 ------------------------------
358 function Access_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
360 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
361 return Is_Check_Suppressed
(E
, Access_Check
);
363 return Scope_Suppress
.Suppress
(Access_Check
);
365 end Access_Checks_Suppressed
;
367 -------------------------------------
368 -- Accessibility_Checks_Suppressed --
369 -------------------------------------
371 function Accessibility_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
373 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
374 return Is_Check_Suppressed
(E
, Accessibility_Check
);
376 return Scope_Suppress
.Suppress
(Accessibility_Check
);
378 end Accessibility_Checks_Suppressed
;
380 -----------------------------
381 -- Activate_Division_Check --
382 -----------------------------
384 procedure Activate_Division_Check
(N
: Node_Id
) is
386 Set_Do_Division_Check
(N
, True);
387 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
388 end Activate_Division_Check
;
390 -----------------------------
391 -- Activate_Overflow_Check --
392 -----------------------------
394 procedure Activate_Overflow_Check
(N
: Node_Id
) is
395 Typ
: constant Entity_Id
:= Etype
(N
);
398 -- Floating-point case. If Etype is not set (this can happen when we
399 -- activate a check on a node that has not yet been analyzed), then
400 -- we assume we do not have a floating-point type (as per our spec).
402 if Present
(Typ
) and then Is_Floating_Point_Type
(Typ
) then
404 -- Ignore call if we have no automatic overflow checks on the target
405 -- and Check_Float_Overflow mode is not set. These are the cases in
406 -- which we expect to generate infinities and NaN's with no check.
408 if not (Machine_Overflows_On_Target
or Check_Float_Overflow
) then
411 -- Ignore for unary operations ("+", "-", abs) since these can never
412 -- result in overflow for floating-point cases.
414 elsif Nkind
(N
) in N_Unary_Op
then
417 -- Otherwise we will set the flag
426 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
427 -- for zero-divide is a divide check, not an overflow check).
429 if Nkind_In
(N
, N_Op_Rem
, N_Op_Mod
, N_Op_Plus
) then
434 -- Fall through for cases where we do set the flag
436 Set_Do_Overflow_Check
(N
, True);
437 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
438 end Activate_Overflow_Check
;
440 --------------------------
441 -- Activate_Range_Check --
442 --------------------------
444 procedure Activate_Range_Check
(N
: Node_Id
) is
446 Set_Do_Range_Check
(N
, True);
447 Possible_Local_Raise
(N
, Standard_Constraint_Error
);
448 end Activate_Range_Check
;
450 ---------------------------------
451 -- Alignment_Checks_Suppressed --
452 ---------------------------------
454 function Alignment_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
456 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
457 return Is_Check_Suppressed
(E
, Alignment_Check
);
459 return Scope_Suppress
.Suppress
(Alignment_Check
);
461 end Alignment_Checks_Suppressed
;
463 ----------------------------------
464 -- Allocation_Checks_Suppressed --
465 ----------------------------------
467 -- Note: at the current time there are no calls to this function, because
468 -- the relevant check is in the run-time, so it is not a check that the
469 -- compiler can suppress anyway, but we still have to recognize the check
470 -- name Allocation_Check since it is part of the standard.
472 function Allocation_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
474 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
475 return Is_Check_Suppressed
(E
, Allocation_Check
);
477 return Scope_Suppress
.Suppress
(Allocation_Check
);
479 end Allocation_Checks_Suppressed
;
481 -------------------------
482 -- Append_Range_Checks --
483 -------------------------
485 procedure Append_Range_Checks
486 (Checks
: Check_Result
;
488 Suppress_Typ
: Entity_Id
;
489 Static_Sloc
: Source_Ptr
;
492 Internal_Flag_Node
: constant Node_Id
:= Flag_Node
;
493 Internal_Static_Sloc
: constant Source_Ptr
:= Static_Sloc
;
495 Checks_On
: constant Boolean :=
496 (not Index_Checks_Suppressed
(Suppress_Typ
))
497 or else (not Range_Checks_Suppressed
(Suppress_Typ
));
500 -- For now we just return if Checks_On is false, however this should
501 -- be enhanced to check for an always True value in the condition
502 -- and to generate a compilation warning???
504 if not Checks_On
then
509 exit when No
(Checks
(J
));
511 if Nkind
(Checks
(J
)) = N_Raise_Constraint_Error
512 and then Present
(Condition
(Checks
(J
)))
514 if not Has_Dynamic_Range_Check
(Internal_Flag_Node
) then
515 Append_To
(Stmts
, Checks
(J
));
516 Set_Has_Dynamic_Range_Check
(Internal_Flag_Node
);
522 Make_Raise_Constraint_Error
(Internal_Static_Sloc
,
523 Reason
=> CE_Range_Check_Failed
));
526 end Append_Range_Checks
;
528 ------------------------
529 -- Apply_Access_Check --
530 ------------------------
532 procedure Apply_Access_Check
(N
: Node_Id
) is
533 P
: constant Node_Id
:= Prefix
(N
);
536 -- We do not need checks if we are not generating code (i.e. the
537 -- expander is not active). This is not just an optimization, there
538 -- are cases (e.g. with pragma Debug) where generating the checks
539 -- can cause real trouble).
541 if not Expander_Active
then
545 -- No check if short circuiting makes check unnecessary
547 if not Check_Needed
(P
, Access_Check
) then
551 -- No check if accessing the Offset_To_Top component of a dispatch
552 -- table. They are safe by construction.
554 if Tagged_Type_Expansion
555 and then Present
(Etype
(P
))
556 and then RTU_Loaded
(Ada_Tags
)
557 and then RTE_Available
(RE_Offset_To_Top_Ptr
)
558 and then Etype
(P
) = RTE
(RE_Offset_To_Top_Ptr
)
563 -- Otherwise go ahead and install the check
565 Install_Null_Excluding_Check
(P
);
566 end Apply_Access_Check
;
568 -------------------------------
569 -- Apply_Accessibility_Check --
570 -------------------------------
572 procedure Apply_Accessibility_Check
575 Insert_Node
: Node_Id
)
577 Loc
: constant Source_Ptr
:= Sloc
(N
);
578 Param_Ent
: Entity_Id
:= Param_Entity
(N
);
579 Param_Level
: Node_Id
;
580 Type_Level
: Node_Id
;
583 if Ada_Version
>= Ada_2012
584 and then not Present
(Param_Ent
)
585 and then Is_Entity_Name
(N
)
586 and then Ekind_In
(Entity
(N
), E_Constant
, E_Variable
)
587 and then Present
(Effective_Extra_Accessibility
(Entity
(N
)))
589 Param_Ent
:= Entity
(N
);
590 while Present
(Renamed_Object
(Param_Ent
)) loop
592 -- Renamed_Object must return an Entity_Name here
593 -- because of preceding "Present (E_E_A (...))" test.
595 Param_Ent
:= Entity
(Renamed_Object
(Param_Ent
));
599 if Inside_A_Generic
then
602 -- Only apply the run-time check if the access parameter has an
603 -- associated extra access level parameter and when the level of the
604 -- type is less deep than the level of the access parameter, and
605 -- accessibility checks are not suppressed.
607 elsif Present
(Param_Ent
)
608 and then Present
(Extra_Accessibility
(Param_Ent
))
609 and then UI_Gt
(Object_Access_Level
(N
),
610 Deepest_Type_Access_Level
(Typ
))
611 and then not Accessibility_Checks_Suppressed
(Param_Ent
)
612 and then not Accessibility_Checks_Suppressed
(Typ
)
615 New_Occurrence_Of
(Extra_Accessibility
(Param_Ent
), Loc
);
618 Make_Integer_Literal
(Loc
, Deepest_Type_Access_Level
(Typ
));
620 -- Raise Program_Error if the accessibility level of the access
621 -- parameter is deeper than the level of the target access type.
623 Insert_Action
(Insert_Node
,
624 Make_Raise_Program_Error
(Loc
,
627 Left_Opnd
=> Param_Level
,
628 Right_Opnd
=> Type_Level
),
629 Reason
=> PE_Accessibility_Check_Failed
));
631 Analyze_And_Resolve
(N
);
633 end Apply_Accessibility_Check
;
635 --------------------------------
636 -- Apply_Address_Clause_Check --
637 --------------------------------
639 procedure Apply_Address_Clause_Check
(E
: Entity_Id
; N
: Node_Id
) is
640 pragma Assert
(Nkind
(N
) = N_Freeze_Entity
);
642 AC
: constant Node_Id
:= Address_Clause
(E
);
643 Loc
: constant Source_Ptr
:= Sloc
(AC
);
644 Typ
: constant Entity_Id
:= Etype
(E
);
647 -- Address expression (not necessarily the same as Aexp, for example
648 -- when Aexp is a reference to a constant, in which case Expr gets
649 -- reset to reference the value expression of the constant).
652 -- See if alignment check needed. Note that we never need a check if the
653 -- maximum alignment is one, since the check will always succeed.
655 -- Note: we do not check for checks suppressed here, since that check
656 -- was done in Sem_Ch13 when the address clause was processed. We are
657 -- only called if checks were not suppressed. The reason for this is
658 -- that we have to delay the call to Apply_Alignment_Check till freeze
659 -- time (so that all types etc are elaborated), but we have to check
660 -- the status of check suppressing at the point of the address clause.
663 or else not Check_Address_Alignment
(AC
)
664 or else Maximum_Alignment
= 1
669 -- Obtain expression from address clause
671 Expr
:= Address_Value
(Expression
(AC
));
673 -- See if we know that Expr has an acceptable value at compile time. If
674 -- it hasn't or we don't know, we defer issuing the warning until the
675 -- end of the compilation to take into account back end annotations.
677 if Compile_Time_Known_Value
(Expr
)
678 and then (Known_Alignment
(E
) or else Known_Alignment
(Typ
))
681 AL
: Uint
:= Alignment
(Typ
);
684 -- The object alignment might be more restrictive than the type
687 if Known_Alignment
(E
) then
691 if Expr_Value
(Expr
) mod AL
= 0 then
696 -- If the expression has the form X'Address, then we can find out if the
697 -- object X has an alignment that is compatible with the object E. If it
698 -- hasn't or we don't know, we defer issuing the warning until the end
699 -- of the compilation to take into account back end annotations.
701 elsif Nkind
(Expr
) = N_Attribute_Reference
702 and then Attribute_Name
(Expr
) = Name_Address
704 Has_Compatible_Alignment
(E
, Prefix
(Expr
), False) = Known_Compatible
709 -- Here we do not know if the value is acceptable. Strictly we don't
710 -- have to do anything, since if the alignment is bad, we have an
711 -- erroneous program. However we are allowed to check for erroneous
712 -- conditions and we decide to do this by default if the check is not
715 -- However, don't do the check if elaboration code is unwanted
717 if Restriction_Active
(No_Elaboration_Code
) then
720 -- Generate a check to raise PE if alignment may be inappropriate
723 -- If the original expression is a non-static constant, use the name
724 -- of the constant itself rather than duplicating its initialization
725 -- expression, which was extracted above.
727 -- Note: Expr is empty if the address-clause is applied to in-mode
728 -- actuals (allowed by 13.1(22)).
730 if not Present
(Expr
)
732 (Is_Entity_Name
(Expression
(AC
))
733 and then Ekind
(Entity
(Expression
(AC
))) = E_Constant
734 and then Nkind
(Parent
(Entity
(Expression
(AC
)))) =
735 N_Object_Declaration
)
737 Expr
:= New_Copy_Tree
(Expression
(AC
));
739 Remove_Side_Effects
(Expr
);
742 if No
(Actions
(N
)) then
743 Set_Actions
(N
, New_List
);
746 Prepend_To
(Actions
(N
),
747 Make_Raise_Program_Error
(Loc
,
754 (RTE
(RE_Integer_Address
), Expr
),
756 Make_Attribute_Reference
(Loc
,
757 Prefix
=> New_Occurrence_Of
(E
, Loc
),
758 Attribute_Name
=> Name_Alignment
)),
759 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)),
760 Reason
=> PE_Misaligned_Address_Value
));
762 Warning_Msg
:= No_Error_Msg
;
763 Analyze
(First
(Actions
(N
)), Suppress
=> All_Checks
);
765 -- If the above raise action generated a warning message (for example
766 -- from Warn_On_Non_Local_Exception mode with the active restriction
767 -- No_Exception_Propagation).
769 if Warning_Msg
/= No_Error_Msg
then
771 -- If the expression has a known at compile time value, then
772 -- once we know the alignment of the type, we can check if the
773 -- exception will be raised or not, and if not, we don't need
774 -- the warning so we will kill the warning later on.
776 if Compile_Time_Known_Value
(Expr
) then
777 Alignment_Warnings
.Append
778 ((E
=> E
, A
=> Expr_Value
(Expr
), W
=> Warning_Msg
));
780 -- Add explanation of the warning generated by the check
784 ("\address value may be incompatible with alignment of "
794 -- If we have some missing run time component in configurable run time
795 -- mode then just skip the check (it is not required in any case).
797 when RE_Not_Available
=>
799 end Apply_Address_Clause_Check
;
801 -------------------------------------
802 -- Apply_Arithmetic_Overflow_Check --
803 -------------------------------------
805 procedure Apply_Arithmetic_Overflow_Check
(N
: Node_Id
) is
807 -- Use old routine in almost all cases (the only case we are treating
808 -- specially is the case of a signed integer arithmetic op with the
809 -- overflow checking mode set to MINIMIZED or ELIMINATED).
811 if Overflow_Check_Mode
= Strict
812 or else not Is_Signed_Integer_Arithmetic_Op
(N
)
814 Apply_Arithmetic_Overflow_Strict
(N
);
816 -- Otherwise use the new routine for the case of a signed integer
817 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
818 -- mode is MINIMIZED or ELIMINATED.
821 Apply_Arithmetic_Overflow_Minimized_Eliminated
(N
);
823 end Apply_Arithmetic_Overflow_Check
;
825 --------------------------------------
826 -- Apply_Arithmetic_Overflow_Strict --
827 --------------------------------------
829 -- This routine is called only if the type is an integer type and an
830 -- arithmetic overflow check may be needed for op (add, subtract, or
831 -- multiply). This check is performed if Backend_Overflow_Checks_On_Target
832 -- is not enabled and Do_Overflow_Check is set. In this case we expand the
833 -- operation into a more complex sequence of tests that ensures that
834 -- overflow is properly caught.
836 -- This is used in CHECKED modes. It is identical to the code for this
837 -- cases before the big overflow earthquake, thus ensuring that in this
838 -- modes we have compatible behavior (and reliability) to what was there
839 -- before. It is also called for types other than signed integers, and if
840 -- the Do_Overflow_Check flag is off.
842 -- Note: we also call this routine if we decide in the MINIMIZED case
843 -- to give up and just generate an overflow check without any fuss.
845 procedure Apply_Arithmetic_Overflow_Strict
(N
: Node_Id
) is
846 Loc
: constant Source_Ptr
:= Sloc
(N
);
847 Typ
: constant Entity_Id
:= Etype
(N
);
848 Rtyp
: constant Entity_Id
:= Root_Type
(Typ
);
851 -- Nothing to do if Do_Overflow_Check not set or overflow checks
854 if not Do_Overflow_Check
(N
) then
858 -- An interesting special case. If the arithmetic operation appears as
859 -- the operand of a type conversion:
863 -- and all the following conditions apply:
865 -- arithmetic operation is for a signed integer type
866 -- target type type1 is a static integer subtype
867 -- range of x and y are both included in the range of type1
868 -- range of x op y is included in the range of type1
869 -- size of type1 is at least twice the result size of op
871 -- then we don't do an overflow check in any case. Instead, we transform
872 -- the operation so that we end up with:
874 -- type1 (type1 (x) op type1 (y))
876 -- This avoids intermediate overflow before the conversion. It is
877 -- explicitly permitted by RM 3.5.4(24):
879 -- For the execution of a predefined operation of a signed integer
880 -- type, the implementation need not raise Constraint_Error if the
881 -- result is outside the base range of the type, so long as the
882 -- correct result is produced.
884 -- It's hard to imagine that any programmer counts on the exception
885 -- being raised in this case, and in any case it's wrong coding to
886 -- have this expectation, given the RM permission. Furthermore, other
887 -- Ada compilers do allow such out of range results.
889 -- Note that we do this transformation even if overflow checking is
890 -- off, since this is precisely about giving the "right" result and
891 -- avoiding the need for an overflow check.
893 -- Note: this circuit is partially redundant with respect to the similar
894 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
895 -- with cases that do not come through here. We still need the following
896 -- processing even with the Exp_Ch4 code in place, since we want to be
897 -- sure not to generate the arithmetic overflow check in these cases
898 -- (Exp_Ch4 would have a hard time removing them once generated).
900 if Is_Signed_Integer_Type
(Typ
)
901 and then Nkind
(Parent
(N
)) = N_Type_Conversion
903 Conversion_Optimization
: declare
904 Target_Type
: constant Entity_Id
:=
905 Base_Type
(Entity
(Subtype_Mark
(Parent
(N
))));
919 if Is_Integer_Type
(Target_Type
)
920 and then RM_Size
(Root_Type
(Target_Type
)) >= 2 * RM_Size
(Rtyp
)
922 Tlo
:= Expr_Value
(Type_Low_Bound
(Target_Type
));
923 Thi
:= Expr_Value
(Type_High_Bound
(Target_Type
));
926 (Left_Opnd
(N
), LOK
, Llo
, Lhi
, Assume_Valid
=> True);
928 (Right_Opnd
(N
), ROK
, Rlo
, Rhi
, Assume_Valid
=> True);
931 and then Tlo
<= Llo
and then Lhi
<= Thi
932 and then Tlo
<= Rlo
and then Rhi
<= Thi
934 Determine_Range
(N
, VOK
, Vlo
, Vhi
, Assume_Valid
=> True);
936 if VOK
and then Tlo
<= Vlo
and then Vhi
<= Thi
then
937 Rewrite
(Left_Opnd
(N
),
938 Make_Type_Conversion
(Loc
,
939 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
940 Expression
=> Relocate_Node
(Left_Opnd
(N
))));
942 Rewrite
(Right_Opnd
(N
),
943 Make_Type_Conversion
(Loc
,
944 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
945 Expression
=> Relocate_Node
(Right_Opnd
(N
))));
947 -- Rewrite the conversion operand so that the original
948 -- node is retained, in order to avoid the warning for
949 -- redundant conversions in Resolve_Type_Conversion.
951 Rewrite
(N
, Relocate_Node
(N
));
953 Set_Etype
(N
, Target_Type
);
955 Analyze_And_Resolve
(Left_Opnd
(N
), Target_Type
);
956 Analyze_And_Resolve
(Right_Opnd
(N
), Target_Type
);
958 -- Given that the target type is twice the size of the
959 -- source type, overflow is now impossible, so we can
960 -- safely kill the overflow check and return.
962 Set_Do_Overflow_Check
(N
, False);
967 end Conversion_Optimization
;
970 -- Now see if an overflow check is required
973 Siz
: constant Int
:= UI_To_Int
(Esize
(Rtyp
));
974 Dsiz
: constant Int
:= Siz
* 2;
981 -- Skip check if back end does overflow checks, or the overflow flag
982 -- is not set anyway, or we are not doing code expansion, or the
983 -- parent node is a type conversion whose operand is an arithmetic
984 -- operation on signed integers on which the expander can promote
985 -- later the operands to type Integer (see Expand_N_Type_Conversion).
987 if Backend_Overflow_Checks_On_Target
988 or else not Do_Overflow_Check
(N
)
989 or else not Expander_Active
990 or else (Present
(Parent
(N
))
991 and then Nkind
(Parent
(N
)) = N_Type_Conversion
992 and then Integer_Promotion_Possible
(Parent
(N
)))
997 -- Otherwise, generate the full general code for front end overflow
998 -- detection, which works by doing arithmetic in a larger type:
1004 -- Typ (Checktyp (x) op Checktyp (y));
1006 -- where Typ is the type of the original expression, and Checktyp is
1007 -- an integer type of sufficient length to hold the largest possible
1010 -- If the size of check type exceeds the size of Long_Long_Integer,
1011 -- we use a different approach, expanding to:
1013 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
1015 -- where xxx is Add, Multiply or Subtract as appropriate
1017 -- Find check type if one exists
1019 if Dsiz
<= Standard_Integer_Size
then
1020 Ctyp
:= Standard_Integer
;
1022 elsif Dsiz
<= Standard_Long_Long_Integer_Size
then
1023 Ctyp
:= Standard_Long_Long_Integer
;
1025 -- No check type exists, use runtime call
1028 if Nkind
(N
) = N_Op_Add
then
1029 Cent
:= RE_Add_With_Ovflo_Check
;
1031 elsif Nkind
(N
) = N_Op_Multiply
then
1032 Cent
:= RE_Multiply_With_Ovflo_Check
;
1035 pragma Assert
(Nkind
(N
) = N_Op_Subtract
);
1036 Cent
:= RE_Subtract_With_Ovflo_Check
;
1041 Make_Function_Call
(Loc
,
1042 Name
=> New_Occurrence_Of
(RTE
(Cent
), Loc
),
1043 Parameter_Associations
=> New_List
(
1044 OK_Convert_To
(RTE
(RE_Integer_64
), Left_Opnd
(N
)),
1045 OK_Convert_To
(RTE
(RE_Integer_64
), Right_Opnd
(N
))))));
1047 Analyze_And_Resolve
(N
, Typ
);
1051 -- If we fall through, we have the case where we do the arithmetic
1052 -- in the next higher type and get the check by conversion. In these
1053 -- cases Ctyp is set to the type to be used as the check type.
1055 Opnod
:= Relocate_Node
(N
);
1057 Opnd
:= OK_Convert_To
(Ctyp
, Left_Opnd
(Opnod
));
1060 Set_Etype
(Opnd
, Ctyp
);
1061 Set_Analyzed
(Opnd
, True);
1062 Set_Left_Opnd
(Opnod
, Opnd
);
1064 Opnd
:= OK_Convert_To
(Ctyp
, Right_Opnd
(Opnod
));
1067 Set_Etype
(Opnd
, Ctyp
);
1068 Set_Analyzed
(Opnd
, True);
1069 Set_Right_Opnd
(Opnod
, Opnd
);
1071 -- The type of the operation changes to the base type of the check
1072 -- type, and we reset the overflow check indication, since clearly no
1073 -- overflow is possible now that we are using a double length type.
1074 -- We also set the Analyzed flag to avoid a recursive attempt to
1077 Set_Etype
(Opnod
, Base_Type
(Ctyp
));
1078 Set_Do_Overflow_Check
(Opnod
, False);
1079 Set_Analyzed
(Opnod
, True);
1081 -- Now build the outer conversion
1083 Opnd
:= OK_Convert_To
(Typ
, Opnod
);
1085 Set_Etype
(Opnd
, Typ
);
1087 -- In the discrete type case, we directly generate the range check
1088 -- for the outer operand. This range check will implement the
1089 -- required overflow check.
1091 if Is_Discrete_Type
(Typ
) then
1093 Generate_Range_Check
1094 (Expression
(N
), Typ
, CE_Overflow_Check_Failed
);
1096 -- For other types, we enable overflow checking on the conversion,
1097 -- after setting the node as analyzed to prevent recursive attempts
1098 -- to expand the conversion node.
1101 Set_Analyzed
(Opnd
, True);
1102 Enable_Overflow_Check
(Opnd
);
1107 when RE_Not_Available
=>
1110 end Apply_Arithmetic_Overflow_Strict
;
1112 ----------------------------------------------------
1113 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1114 ----------------------------------------------------
1116 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated
(Op
: Node_Id
) is
1117 pragma Assert
(Is_Signed_Integer_Arithmetic_Op
(Op
));
1119 Loc
: constant Source_Ptr
:= Sloc
(Op
);
1120 P
: constant Node_Id
:= Parent
(Op
);
1122 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
1123 -- Operands and results are of this type when we convert
1125 Result_Type
: constant Entity_Id
:= Etype
(Op
);
1126 -- Original result type
1128 Check_Mode
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
1129 pragma Assert
(Check_Mode
in Minimized_Or_Eliminated
);
1132 -- Ranges of values for result
1135 -- Nothing to do if our parent is one of the following:
1137 -- Another signed integer arithmetic op
1138 -- A membership operation
1139 -- A comparison operation
1141 -- In all these cases, we will process at the higher level (and then
1142 -- this node will be processed during the downwards recursion that
1143 -- is part of the processing in Minimize_Eliminate_Overflows).
1145 if Is_Signed_Integer_Arithmetic_Op
(P
)
1146 or else Nkind
(P
) in N_Membership_Test
1147 or else Nkind
(P
) in N_Op_Compare
1149 -- This is also true for an alternative in a case expression
1151 or else Nkind
(P
) = N_Case_Expression_Alternative
1153 -- This is also true for a range operand in a membership test
1155 or else (Nkind
(P
) = N_Range
1156 and then Nkind
(Parent
(P
)) in N_Membership_Test
)
1158 -- If_Expressions and Case_Expressions are treated as arithmetic
1159 -- ops, but if they appear in an assignment or similar contexts
1160 -- there is no overflow check that starts from that parent node,
1161 -- so apply check now.
1163 if Nkind_In
(P
, N_If_Expression
, N_Case_Expression
)
1164 and then not Is_Signed_Integer_Arithmetic_Op
(Parent
(P
))
1172 -- Otherwise, we have a top level arithmetic operation node, and this
1173 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1174 -- modes. This is the case where we tell the machinery not to move into
1175 -- Bignum mode at this top level (of course the top level operation
1176 -- will still be in Bignum mode if either of its operands are of type
1179 Minimize_Eliminate_Overflows
(Op
, Lo
, Hi
, Top_Level
=> True);
1181 -- That call may but does not necessarily change the result type of Op.
1182 -- It is the job of this routine to undo such changes, so that at the
1183 -- top level, we have the proper type. This "undoing" is a point at
1184 -- which a final overflow check may be applied.
1186 -- If the result type was not fiddled we are all set. We go to base
1187 -- types here because things may have been rewritten to generate the
1188 -- base type of the operand types.
1190 if Base_Type
(Etype
(Op
)) = Base_Type
(Result_Type
) then
1195 elsif Is_RTE
(Etype
(Op
), RE_Bignum
) then
1197 -- We need a sequence that looks like:
1199 -- Rnn : Result_Type;
1202 -- M : Mark_Id := SS_Mark;
1204 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1208 -- This block is inserted (using Insert_Actions), and then the node
1209 -- is replaced with a reference to Rnn.
1211 -- If our parent is a conversion node then there is no point in
1212 -- generating a conversion to Result_Type. Instead, we let the parent
1213 -- handle this. Note that this special case is not just about
1214 -- optimization. Consider
1218 -- X := Long_Long_Integer'Base (A * (B ** C));
1220 -- Now the product may fit in Long_Long_Integer but not in Integer.
1221 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1222 -- overflow exception for this intermediate value.
1225 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
1226 Rnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R', Op
);
1232 RHS
:= Convert_From_Bignum
(Op
);
1234 if Nkind
(P
) /= N_Type_Conversion
then
1235 Convert_To_And_Rewrite
(Result_Type
, RHS
);
1236 Rtype
:= Result_Type
;
1238 -- Interesting question, do we need a check on that conversion
1239 -- operation. Answer, not if we know the result is in range.
1240 -- At the moment we are not taking advantage of this. To be
1241 -- looked at later ???
1248 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
1249 Make_Assignment_Statement
(Loc
,
1250 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
1251 Expression
=> RHS
));
1253 Insert_Actions
(Op
, New_List
(
1254 Make_Object_Declaration
(Loc
,
1255 Defining_Identifier
=> Rnn
,
1256 Object_Definition
=> New_Occurrence_Of
(Rtype
, Loc
)),
1259 Rewrite
(Op
, New_Occurrence_Of
(Rnn
, Loc
));
1260 Analyze_And_Resolve
(Op
);
1263 -- Here we know the result is Long_Long_Integer'Base, or that it has
1264 -- been rewritten because the parent operation is a conversion. See
1265 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1269 (Etype
(Op
) = LLIB
or else Nkind
(Parent
(Op
)) = N_Type_Conversion
);
1271 -- All we need to do here is to convert the result to the proper
1272 -- result type. As explained above for the Bignum case, we can
1273 -- omit this if our parent is a type conversion.
1275 if Nkind
(P
) /= N_Type_Conversion
then
1276 Convert_To_And_Rewrite
(Result_Type
, Op
);
1279 Analyze_And_Resolve
(Op
);
1281 end Apply_Arithmetic_Overflow_Minimized_Eliminated
;
1283 ----------------------------
1284 -- Apply_Constraint_Check --
1285 ----------------------------
1287 procedure Apply_Constraint_Check
1290 No_Sliding
: Boolean := False)
1292 Desig_Typ
: Entity_Id
;
1295 -- No checks inside a generic (check the instantiations)
1297 if Inside_A_Generic
then
1301 -- Apply required constraint checks
1303 if Is_Scalar_Type
(Typ
) then
1304 Apply_Scalar_Range_Check
(N
, Typ
);
1306 elsif Is_Array_Type
(Typ
) then
1308 -- A useful optimization: an aggregate with only an others clause
1309 -- always has the right bounds.
1311 if Nkind
(N
) = N_Aggregate
1312 and then No
(Expressions
(N
))
1314 (First
(Choices
(First
(Component_Associations
(N
)))))
1320 if Is_Constrained
(Typ
) then
1321 Apply_Length_Check
(N
, Typ
);
1324 Apply_Range_Check
(N
, Typ
);
1327 Apply_Range_Check
(N
, Typ
);
1330 elsif (Is_Record_Type
(Typ
) or else Is_Private_Type
(Typ
))
1331 and then Has_Discriminants
(Base_Type
(Typ
))
1332 and then Is_Constrained
(Typ
)
1334 Apply_Discriminant_Check
(N
, Typ
);
1336 elsif Is_Access_Type
(Typ
) then
1338 Desig_Typ
:= Designated_Type
(Typ
);
1340 -- No checks necessary if expression statically null
1342 if Known_Null
(N
) then
1343 if Can_Never_Be_Null
(Typ
) then
1344 Install_Null_Excluding_Check
(N
);
1347 -- No sliding possible on access to arrays
1349 elsif Is_Array_Type
(Desig_Typ
) then
1350 if Is_Constrained
(Desig_Typ
) then
1351 Apply_Length_Check
(N
, Typ
);
1354 Apply_Range_Check
(N
, Typ
);
1356 elsif Has_Discriminants
(Base_Type
(Desig_Typ
))
1357 and then Is_Constrained
(Desig_Typ
)
1359 Apply_Discriminant_Check
(N
, Typ
);
1362 -- Apply the 2005 Null_Excluding check. Note that we do not apply
1363 -- this check if the constraint node is illegal, as shown by having
1364 -- an error posted. This additional guard prevents cascaded errors
1365 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1367 if Can_Never_Be_Null
(Typ
)
1368 and then not Can_Never_Be_Null
(Etype
(N
))
1369 and then not Error_Posted
(N
)
1371 Install_Null_Excluding_Check
(N
);
1374 end Apply_Constraint_Check
;
1376 ------------------------------
1377 -- Apply_Discriminant_Check --
1378 ------------------------------
1380 procedure Apply_Discriminant_Check
1383 Lhs
: Node_Id
:= Empty
)
1385 Loc
: constant Source_Ptr
:= Sloc
(N
);
1386 Do_Access
: constant Boolean := Is_Access_Type
(Typ
);
1387 S_Typ
: Entity_Id
:= Etype
(N
);
1391 function Denotes_Explicit_Dereference
(Obj
: Node_Id
) return Boolean;
1392 -- A heap object with an indefinite subtype is constrained by its
1393 -- initial value, and assigning to it requires a constraint_check.
1394 -- The target may be an explicit dereference, or a renaming of one.
1396 function Is_Aliased_Unconstrained_Component
return Boolean;
1397 -- It is possible for an aliased component to have a nominal
1398 -- unconstrained subtype (through instantiation). If this is a
1399 -- discriminated component assigned in the expansion of an aggregate
1400 -- in an initialization, the check must be suppressed. This unusual
1401 -- situation requires a predicate of its own.
1403 ----------------------------------
1404 -- Denotes_Explicit_Dereference --
1405 ----------------------------------
1407 function Denotes_Explicit_Dereference
(Obj
: Node_Id
) return Boolean is
1410 Nkind
(Obj
) = N_Explicit_Dereference
1412 (Is_Entity_Name
(Obj
)
1413 and then Present
(Renamed_Object
(Entity
(Obj
)))
1414 and then Nkind
(Renamed_Object
(Entity
(Obj
))) =
1415 N_Explicit_Dereference
);
1416 end Denotes_Explicit_Dereference
;
1418 ----------------------------------------
1419 -- Is_Aliased_Unconstrained_Component --
1420 ----------------------------------------
1422 function Is_Aliased_Unconstrained_Component
return Boolean is
1427 if Nkind
(Lhs
) /= N_Selected_Component
then
1430 Comp
:= Entity
(Selector_Name
(Lhs
));
1431 Pref
:= Prefix
(Lhs
);
1434 if Ekind
(Comp
) /= E_Component
1435 or else not Is_Aliased
(Comp
)
1440 return not Comes_From_Source
(Pref
)
1441 and then In_Instance
1442 and then not Is_Constrained
(Etype
(Comp
));
1443 end Is_Aliased_Unconstrained_Component
;
1445 -- Start of processing for Apply_Discriminant_Check
1449 T_Typ
:= Designated_Type
(Typ
);
1454 -- Only apply checks when generating code and discriminant checks are
1455 -- not suppressed. In GNATprove mode, we do not apply the checks, but we
1456 -- still analyze the expression to possibly issue errors on SPARK code
1457 -- when a run-time error can be detected at compile time.
1459 if not GNATprove_Mode
then
1460 if not Expander_Active
1461 or else Discriminant_Checks_Suppressed
(T_Typ
)
1467 -- No discriminant checks necessary for an access when expression is
1468 -- statically Null. This is not only an optimization, it is fundamental
1469 -- because otherwise discriminant checks may be generated in init procs
1470 -- for types containing an access to a not-yet-frozen record, causing a
1471 -- deadly forward reference.
1473 -- Also, if the expression is of an access type whose designated type is
1474 -- incomplete, then the access value must be null and we suppress the
1477 if Known_Null
(N
) then
1480 elsif Is_Access_Type
(S_Typ
) then
1481 S_Typ
:= Designated_Type
(S_Typ
);
1483 if Ekind
(S_Typ
) = E_Incomplete_Type
then
1488 -- If an assignment target is present, then we need to generate the
1489 -- actual subtype if the target is a parameter or aliased object with
1490 -- an unconstrained nominal subtype.
1492 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1493 -- subtype to the parameter and dereference cases, since other aliased
1494 -- objects are unconstrained (unless the nominal subtype is explicitly
1498 and then (Present
(Param_Entity
(Lhs
))
1499 or else (Ada_Version
< Ada_2005
1500 and then not Is_Constrained
(T_Typ
)
1501 and then Is_Aliased_View
(Lhs
)
1502 and then not Is_Aliased_Unconstrained_Component
)
1503 or else (Ada_Version
>= Ada_2005
1504 and then not Is_Constrained
(T_Typ
)
1505 and then Denotes_Explicit_Dereference
(Lhs
)
1506 and then Nkind
(Original_Node
(Lhs
)) /=
1509 T_Typ
:= Get_Actual_Subtype
(Lhs
);
1512 -- Nothing to do if the type is unconstrained (this is the case where
1513 -- the actual subtype in the RM sense of N is unconstrained and no check
1516 if not Is_Constrained
(T_Typ
) then
1519 -- Ada 2005: nothing to do if the type is one for which there is a
1520 -- partial view that is constrained.
1522 elsif Ada_Version
>= Ada_2005
1523 and then Object_Type_Has_Constrained_Partial_View
1524 (Typ
=> Base_Type
(T_Typ
),
1525 Scop
=> Current_Scope
)
1530 -- Nothing to do if the type is an Unchecked_Union
1532 if Is_Unchecked_Union
(Base_Type
(T_Typ
)) then
1536 -- Suppress checks if the subtypes are the same. The check must be
1537 -- preserved in an assignment to a formal, because the constraint is
1538 -- given by the actual.
1540 if Nkind
(Original_Node
(N
)) /= N_Allocator
1542 or else not Is_Entity_Name
(Lhs
)
1543 or else No
(Param_Entity
(Lhs
)))
1546 or else (Do_Access
and then Designated_Type
(Typ
) = S_Typ
))
1547 and then not Is_Aliased_View
(Lhs
)
1552 -- We can also eliminate checks on allocators with a subtype mark that
1553 -- coincides with the context type. The context type may be a subtype
1554 -- without a constraint (common case, a generic actual).
1556 elsif Nkind
(Original_Node
(N
)) = N_Allocator
1557 and then Is_Entity_Name
(Expression
(Original_Node
(N
)))
1560 Alloc_Typ
: constant Entity_Id
:=
1561 Entity
(Expression
(Original_Node
(N
)));
1564 if Alloc_Typ
= T_Typ
1565 or else (Nkind
(Parent
(T_Typ
)) = N_Subtype_Declaration
1566 and then Is_Entity_Name
(
1567 Subtype_Indication
(Parent
(T_Typ
)))
1568 and then Alloc_Typ
= Base_Type
(T_Typ
))
1576 -- See if we have a case where the types are both constrained, and all
1577 -- the constraints are constants. In this case, we can do the check
1578 -- successfully at compile time.
1580 -- We skip this check for the case where the node is rewritten as
1581 -- an allocator, because it already carries the context subtype,
1582 -- and extracting the discriminants from the aggregate is messy.
1584 if Is_Constrained
(S_Typ
)
1585 and then Nkind
(Original_Node
(N
)) /= N_Allocator
1595 -- S_Typ may not have discriminants in the case where it is a
1596 -- private type completed by a default discriminated type. In that
1597 -- case, we need to get the constraints from the underlying type.
1598 -- If the underlying type is unconstrained (i.e. has no default
1599 -- discriminants) no check is needed.
1601 if Has_Discriminants
(S_Typ
) then
1602 Discr
:= First_Discriminant
(S_Typ
);
1603 DconS
:= First_Elmt
(Discriminant_Constraint
(S_Typ
));
1606 Discr
:= First_Discriminant
(Underlying_Type
(S_Typ
));
1609 (Discriminant_Constraint
(Underlying_Type
(S_Typ
)));
1615 -- A further optimization: if T_Typ is derived from S_Typ
1616 -- without imposing a constraint, no check is needed.
1618 if Nkind
(Original_Node
(Parent
(T_Typ
))) =
1619 N_Full_Type_Declaration
1622 Type_Def
: constant Node_Id
:=
1623 Type_Definition
(Original_Node
(Parent
(T_Typ
)));
1625 if Nkind
(Type_Def
) = N_Derived_Type_Definition
1626 and then Is_Entity_Name
(Subtype_Indication
(Type_Def
))
1627 and then Entity
(Subtype_Indication
(Type_Def
)) = S_Typ
1635 -- Constraint may appear in full view of type
1637 if Ekind
(T_Typ
) = E_Private_Subtype
1638 and then Present
(Full_View
(T_Typ
))
1641 First_Elmt
(Discriminant_Constraint
(Full_View
(T_Typ
)));
1644 First_Elmt
(Discriminant_Constraint
(T_Typ
));
1647 while Present
(Discr
) loop
1648 ItemS
:= Node
(DconS
);
1649 ItemT
:= Node
(DconT
);
1651 -- For a discriminated component type constrained by the
1652 -- current instance of an enclosing type, there is no
1653 -- applicable discriminant check.
1655 if Nkind
(ItemT
) = N_Attribute_Reference
1656 and then Is_Access_Type
(Etype
(ItemT
))
1657 and then Is_Entity_Name
(Prefix
(ItemT
))
1658 and then Is_Type
(Entity
(Prefix
(ItemT
)))
1663 -- If the expressions for the discriminants are identical
1664 -- and it is side-effect free (for now just an entity),
1665 -- this may be a shared constraint, e.g. from a subtype
1666 -- without a constraint introduced as a generic actual.
1667 -- Examine other discriminants if any.
1670 and then Is_Entity_Name
(ItemS
)
1674 elsif not Is_OK_Static_Expression
(ItemS
)
1675 or else not Is_OK_Static_Expression
(ItemT
)
1679 elsif Expr_Value
(ItemS
) /= Expr_Value
(ItemT
) then
1680 if Do_Access
then -- needs run-time check.
1683 Apply_Compile_Time_Constraint_Error
1684 (N
, "incorrect value for discriminant&??",
1685 CE_Discriminant_Check_Failed
, Ent
=> Discr
);
1692 Next_Discriminant
(Discr
);
1701 -- In GNATprove mode, we do not apply the checks
1703 if GNATprove_Mode
then
1707 -- Here we need a discriminant check. First build the expression
1708 -- for the comparisons of the discriminants:
1710 -- (n.disc1 /= typ.disc1) or else
1711 -- (n.disc2 /= typ.disc2) or else
1713 -- (n.discn /= typ.discn)
1715 Cond
:= Build_Discriminant_Checks
(N
, T_Typ
);
1717 -- If Lhs is set and is a parameter, then the condition is guarded by:
1718 -- lhs'constrained and then (condition built above)
1720 if Present
(Param_Entity
(Lhs
)) then
1724 Make_Attribute_Reference
(Loc
,
1725 Prefix
=> New_Occurrence_Of
(Param_Entity
(Lhs
), Loc
),
1726 Attribute_Name
=> Name_Constrained
),
1727 Right_Opnd
=> Cond
);
1731 Cond
:= Guard_Access
(Cond
, Loc
, N
);
1735 Make_Raise_Constraint_Error
(Loc
,
1737 Reason
=> CE_Discriminant_Check_Failed
));
1738 end Apply_Discriminant_Check
;
1740 -------------------------
1741 -- Apply_Divide_Checks --
1742 -------------------------
1744 procedure Apply_Divide_Checks
(N
: Node_Id
) is
1745 Loc
: constant Source_Ptr
:= Sloc
(N
);
1746 Typ
: constant Entity_Id
:= Etype
(N
);
1747 Left
: constant Node_Id
:= Left_Opnd
(N
);
1748 Right
: constant Node_Id
:= Right_Opnd
(N
);
1750 Mode
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
1751 -- Current overflow checking mode
1761 pragma Warnings
(Off
, Lhi
);
1762 -- Don't actually use this value
1765 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1766 -- operating on signed integer types, then the only thing this routine
1767 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1768 -- procedure will (possibly later on during recursive downward calls),
1769 -- ensure that any needed overflow/division checks are properly applied.
1771 if Mode
in Minimized_Or_Eliminated
1772 and then Is_Signed_Integer_Type
(Typ
)
1774 Apply_Arithmetic_Overflow_Minimized_Eliminated
(N
);
1778 -- Proceed here in SUPPRESSED or CHECKED modes
1781 and then not Backend_Divide_Checks_On_Target
1782 and then Check_Needed
(Right
, Division_Check
)
1784 Determine_Range
(Right
, ROK
, Rlo
, Rhi
, Assume_Valid
=> True);
1786 -- Deal with division check
1788 if Do_Division_Check
(N
)
1789 and then not Division_Checks_Suppressed
(Typ
)
1791 Apply_Division_Check
(N
, Rlo
, Rhi
, ROK
);
1794 -- Deal with overflow check
1796 if Do_Overflow_Check
(N
)
1797 and then not Overflow_Checks_Suppressed
(Etype
(N
))
1799 Set_Do_Overflow_Check
(N
, False);
1801 -- Test for extremely annoying case of xxx'First divided by -1
1802 -- for division of signed integer types (only overflow case).
1804 if Nkind
(N
) = N_Op_Divide
1805 and then Is_Signed_Integer_Type
(Typ
)
1807 Determine_Range
(Left
, LOK
, Llo
, Lhi
, Assume_Valid
=> True);
1808 LLB
:= Expr_Value
(Type_Low_Bound
(Base_Type
(Typ
)));
1810 if ((not ROK
) or else (Rlo
<= (-1) and then (-1) <= Rhi
))
1812 ((not LOK
) or else (Llo
= LLB
))
1815 Make_Raise_Constraint_Error
(Loc
,
1821 Duplicate_Subexpr_Move_Checks
(Left
),
1822 Right_Opnd
=> Make_Integer_Literal
(Loc
, LLB
)),
1826 Left_Opnd
=> Duplicate_Subexpr
(Right
),
1827 Right_Opnd
=> Make_Integer_Literal
(Loc
, -1))),
1829 Reason
=> CE_Overflow_Check_Failed
));
1834 end Apply_Divide_Checks
;
1836 --------------------------
1837 -- Apply_Division_Check --
1838 --------------------------
1840 procedure Apply_Division_Check
1846 pragma Assert
(Do_Division_Check
(N
));
1848 Loc
: constant Source_Ptr
:= Sloc
(N
);
1849 Right
: constant Node_Id
:= Right_Opnd
(N
);
1853 and then not Backend_Divide_Checks_On_Target
1854 and then Check_Needed
(Right
, Division_Check
)
1856 -- See if division by zero possible, and if so generate test. This
1857 -- part of the test is not controlled by the -gnato switch, since
1858 -- it is a Division_Check and not an Overflow_Check.
1860 if Do_Division_Check
(N
) then
1861 Set_Do_Division_Check
(N
, False);
1863 if (not ROK
) or else (Rlo
<= 0 and then 0 <= Rhi
) then
1865 Make_Raise_Constraint_Error
(Loc
,
1868 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Right
),
1869 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
1870 Reason
=> CE_Divide_By_Zero
));
1874 end Apply_Division_Check
;
1876 ----------------------------------
1877 -- Apply_Float_Conversion_Check --
1878 ----------------------------------
1880 -- Let F and I be the source and target types of the conversion. The RM
1881 -- specifies that a floating-point value X is rounded to the nearest
1882 -- integer, with halfway cases being rounded away from zero. The rounded
1883 -- value of X is checked against I'Range.
1885 -- The catch in the above paragraph is that there is no good way to know
1886 -- whether the round-to-integer operation resulted in overflow. A remedy is
1887 -- to perform a range check in the floating-point domain instead, however:
1889 -- (1) The bounds may not be known at compile time
1890 -- (2) The check must take into account rounding or truncation.
1891 -- (3) The range of type I may not be exactly representable in F.
1892 -- (4) For the rounding case, The end-points I'First - 0.5 and
1893 -- I'Last + 0.5 may or may not be in range, depending on the
1894 -- sign of I'First and I'Last.
1895 -- (5) X may be a NaN, which will fail any comparison
1897 -- The following steps correctly convert X with rounding:
1899 -- (1) If either I'First or I'Last is not known at compile time, use
1900 -- I'Base instead of I in the next three steps and perform a
1901 -- regular range check against I'Range after conversion.
1902 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1903 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1904 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1905 -- In other words, take one of the closest floating-point numbers
1906 -- (which is an integer value) to I'First, and see if it is in
1908 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1909 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1910 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1911 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1912 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1914 -- For the truncating case, replace steps (2) and (3) as follows:
1915 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1916 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1918 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1919 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1922 procedure Apply_Float_Conversion_Check
1924 Target_Typ
: Entity_Id
)
1926 LB
: constant Node_Id
:= Type_Low_Bound
(Target_Typ
);
1927 HB
: constant Node_Id
:= Type_High_Bound
(Target_Typ
);
1928 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
1929 Expr_Type
: constant Entity_Id
:= Base_Type
(Etype
(Ck_Node
));
1930 Target_Base
: constant Entity_Id
:=
1931 Implementation_Base_Type
(Target_Typ
);
1933 Par
: constant Node_Id
:= Parent
(Ck_Node
);
1934 pragma Assert
(Nkind
(Par
) = N_Type_Conversion
);
1935 -- Parent of check node, must be a type conversion
1937 Truncate
: constant Boolean := Float_Truncate
(Par
);
1938 Max_Bound
: constant Uint
:=
1940 (Machine_Radix_Value
(Expr_Type
),
1941 Machine_Mantissa_Value
(Expr_Type
) - 1) - 1;
1943 -- Largest bound, so bound plus or minus half is a machine number of F
1945 Ifirst
, Ilast
: Uint
;
1946 -- Bounds of integer type
1949 -- Bounds to check in floating-point domain
1951 Lo_OK
, Hi_OK
: Boolean;
1952 -- True iff Lo resp. Hi belongs to I'Range
1954 Lo_Chk
, Hi_Chk
: Node_Id
;
1955 -- Expressions that are False iff check fails
1957 Reason
: RT_Exception_Code
;
1960 -- We do not need checks if we are not generating code (i.e. the full
1961 -- expander is not active). In SPARK mode, we specifically don't want
1962 -- the frontend to expand these checks, which are dealt with directly
1963 -- in the formal verification backend.
1965 if not Expander_Active
then
1969 if not Compile_Time_Known_Value
(LB
)
1970 or not Compile_Time_Known_Value
(HB
)
1973 -- First check that the value falls in the range of the base type,
1974 -- to prevent overflow during conversion and then perform a
1975 -- regular range check against the (dynamic) bounds.
1977 pragma Assert
(Target_Base
/= Target_Typ
);
1979 Temp
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', Par
);
1982 Apply_Float_Conversion_Check
(Ck_Node
, Target_Base
);
1983 Set_Etype
(Temp
, Target_Base
);
1985 Insert_Action
(Parent
(Par
),
1986 Make_Object_Declaration
(Loc
,
1987 Defining_Identifier
=> Temp
,
1988 Object_Definition
=> New_Occurrence_Of
(Target_Typ
, Loc
),
1989 Expression
=> New_Copy_Tree
(Par
)),
1990 Suppress
=> All_Checks
);
1993 Make_Raise_Constraint_Error
(Loc
,
1996 Left_Opnd
=> New_Occurrence_Of
(Temp
, Loc
),
1997 Right_Opnd
=> New_Occurrence_Of
(Target_Typ
, Loc
)),
1998 Reason
=> CE_Range_Check_Failed
));
1999 Rewrite
(Par
, New_Occurrence_Of
(Temp
, Loc
));
2005 -- Get the (static) bounds of the target type
2007 Ifirst
:= Expr_Value
(LB
);
2008 Ilast
:= Expr_Value
(HB
);
2010 -- A simple optimization: if the expression is a universal literal,
2011 -- we can do the comparison with the bounds and the conversion to
2012 -- an integer type statically. The range checks are unchanged.
2014 if Nkind
(Ck_Node
) = N_Real_Literal
2015 and then Etype
(Ck_Node
) = Universal_Real
2016 and then Is_Integer_Type
(Target_Typ
)
2017 and then Nkind
(Parent
(Ck_Node
)) = N_Type_Conversion
2020 Int_Val
: constant Uint
:= UR_To_Uint
(Realval
(Ck_Node
));
2023 if Int_Val
<= Ilast
and then Int_Val
>= Ifirst
then
2025 -- Conversion is safe
2027 Rewrite
(Parent
(Ck_Node
),
2028 Make_Integer_Literal
(Loc
, UI_To_Int
(Int_Val
)));
2029 Analyze_And_Resolve
(Parent
(Ck_Node
), Target_Typ
);
2035 -- Check against lower bound
2037 if Truncate
and then Ifirst
> 0 then
2038 Lo
:= Pred
(Expr_Type
, UR_From_Uint
(Ifirst
));
2042 Lo
:= Succ
(Expr_Type
, UR_From_Uint
(Ifirst
- 1));
2045 elsif abs (Ifirst
) < Max_Bound
then
2046 Lo
:= UR_From_Uint
(Ifirst
) - Ureal_Half
;
2047 Lo_OK
:= (Ifirst
> 0);
2050 Lo
:= Machine
(Expr_Type
, UR_From_Uint
(Ifirst
), Round_Even
, Ck_Node
);
2051 Lo_OK
:= (Lo
>= UR_From_Uint
(Ifirst
));
2056 -- Lo_Chk := (X >= Lo)
2058 Lo_Chk
:= Make_Op_Ge
(Loc
,
2059 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
2060 Right_Opnd
=> Make_Real_Literal
(Loc
, Lo
));
2063 -- Lo_Chk := (X > Lo)
2065 Lo_Chk
:= Make_Op_Gt
(Loc
,
2066 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
2067 Right_Opnd
=> Make_Real_Literal
(Loc
, Lo
));
2070 -- Check against higher bound
2072 if Truncate
and then Ilast
< 0 then
2073 Hi
:= Succ
(Expr_Type
, UR_From_Uint
(Ilast
));
2077 Hi
:= Pred
(Expr_Type
, UR_From_Uint
(Ilast
+ 1));
2080 elsif abs (Ilast
) < Max_Bound
then
2081 Hi
:= UR_From_Uint
(Ilast
) + Ureal_Half
;
2082 Hi_OK
:= (Ilast
< 0);
2084 Hi
:= Machine
(Expr_Type
, UR_From_Uint
(Ilast
), Round_Even
, Ck_Node
);
2085 Hi_OK
:= (Hi
<= UR_From_Uint
(Ilast
));
2090 -- Hi_Chk := (X <= Hi)
2092 Hi_Chk
:= Make_Op_Le
(Loc
,
2093 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
2094 Right_Opnd
=> Make_Real_Literal
(Loc
, Hi
));
2097 -- Hi_Chk := (X < Hi)
2099 Hi_Chk
:= Make_Op_Lt
(Loc
,
2100 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
2101 Right_Opnd
=> Make_Real_Literal
(Loc
, Hi
));
2104 -- If the bounds of the target type are the same as those of the base
2105 -- type, the check is an overflow check as a range check is not
2106 -- performed in these cases.
2108 if Expr_Value
(Type_Low_Bound
(Target_Base
)) = Ifirst
2109 and then Expr_Value
(Type_High_Bound
(Target_Base
)) = Ilast
2111 Reason
:= CE_Overflow_Check_Failed
;
2113 Reason
:= CE_Range_Check_Failed
;
2116 -- Raise CE if either conditions does not hold
2118 Insert_Action
(Ck_Node
,
2119 Make_Raise_Constraint_Error
(Loc
,
2120 Condition
=> Make_Op_Not
(Loc
, Make_And_Then
(Loc
, Lo_Chk
, Hi_Chk
)),
2122 end Apply_Float_Conversion_Check
;
2124 ------------------------
2125 -- Apply_Length_Check --
2126 ------------------------
2128 procedure Apply_Length_Check
2130 Target_Typ
: Entity_Id
;
2131 Source_Typ
: Entity_Id
:= Empty
)
2134 Apply_Selected_Length_Checks
2135 (Ck_Node
, Target_Typ
, Source_Typ
, Do_Static
=> False);
2136 end Apply_Length_Check
;
2138 -------------------------------------
2139 -- Apply_Parameter_Aliasing_Checks --
2140 -------------------------------------
2142 procedure Apply_Parameter_Aliasing_Checks
2146 Loc
: constant Source_Ptr
:= Sloc
(Call
);
2148 function May_Cause_Aliasing
2149 (Formal_1
: Entity_Id
;
2150 Formal_2
: Entity_Id
) return Boolean;
2151 -- Determine whether two formal parameters can alias each other
2152 -- depending on their modes.
2154 function Original_Actual
(N
: Node_Id
) return Node_Id
;
2155 -- The expander may replace an actual with a temporary for the sake of
2156 -- side effect removal. The temporary may hide a potential aliasing as
2157 -- it does not share the address of the actual. This routine attempts
2158 -- to retrieve the original actual.
2160 procedure Overlap_Check
2161 (Actual_1
: Node_Id
;
2163 Formal_1
: Entity_Id
;
2164 Formal_2
: Entity_Id
;
2165 Check
: in out Node_Id
);
2166 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2167 -- If detailed exception messages are enabled, the check is augmented to
2168 -- provide information about the names of the corresponding formals. See
2169 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2170 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2171 -- Check contains all and-ed simple tests generated so far or remains
2172 -- unchanged in the case of detailed exception messaged.
2174 ------------------------
2175 -- May_Cause_Aliasing --
2176 ------------------------
2178 function May_Cause_Aliasing
2179 (Formal_1
: Entity_Id
;
2180 Formal_2
: Entity_Id
) return Boolean
2183 -- The following combination cannot lead to aliasing
2185 -- Formal 1 Formal 2
2188 if Ekind
(Formal_1
) = E_In_Parameter
2190 Ekind
(Formal_2
) = E_In_Parameter
2194 -- The following combinations may lead to aliasing
2196 -- Formal 1 Formal 2
2206 end May_Cause_Aliasing
;
2208 ---------------------
2209 -- Original_Actual --
2210 ---------------------
2212 function Original_Actual
(N
: Node_Id
) return Node_Id
is
2214 if Nkind
(N
) = N_Type_Conversion
then
2215 return Expression
(N
);
2217 -- The expander created a temporary to capture the result of a type
2218 -- conversion where the expression is the real actual.
2220 elsif Nkind
(N
) = N_Identifier
2221 and then Present
(Original_Node
(N
))
2222 and then Nkind
(Original_Node
(N
)) = N_Type_Conversion
2224 return Expression
(Original_Node
(N
));
2228 end Original_Actual
;
2234 procedure Overlap_Check
2235 (Actual_1
: Node_Id
;
2237 Formal_1
: Entity_Id
;
2238 Formal_2
: Entity_Id
;
2239 Check
: in out Node_Id
)
2242 ID_Casing
: constant Casing_Type
:=
2243 Identifier_Casing
(Source_Index
(Current_Sem_Unit
));
2247 -- Actual_1'Overlaps_Storage (Actual_2)
2250 Make_Attribute_Reference
(Loc
,
2251 Prefix
=> New_Copy_Tree
(Original_Actual
(Actual_1
)),
2252 Attribute_Name
=> Name_Overlaps_Storage
,
2254 New_List
(New_Copy_Tree
(Original_Actual
(Actual_2
))));
2256 -- Generate the following check when detailed exception messages are
2259 -- if Actual_1'Overlaps_Storage (Actual_2) then
2260 -- raise Program_Error with <detailed message>;
2263 if Exception_Extra_Info
then
2266 -- Do not generate location information for internal calls
2268 if Comes_From_Source
(Call
) then
2269 Store_String_Chars
(Build_Location_String
(Loc
));
2270 Store_String_Char
(' ');
2273 Store_String_Chars
("aliased parameters, actuals for """);
2275 Get_Name_String
(Chars
(Formal_1
));
2276 Set_Casing
(ID_Casing
);
2277 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
2279 Store_String_Chars
(""" and """);
2281 Get_Name_String
(Chars
(Formal_2
));
2282 Set_Casing
(ID_Casing
);
2283 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
2285 Store_String_Chars
(""" overlap");
2287 Insert_Action
(Call
,
2288 Make_If_Statement
(Loc
,
2290 Then_Statements
=> New_List
(
2291 Make_Raise_Statement
(Loc
,
2293 New_Occurrence_Of
(Standard_Program_Error
, Loc
),
2294 Expression
=> Make_String_Literal
(Loc
, End_String
)))));
2296 -- Create a sequence of overlapping checks by and-ing them all
2306 Right_Opnd
=> Cond
);
2316 Formal_1
: Entity_Id
;
2317 Formal_2
: Entity_Id
;
2318 Orig_Act_1
: Node_Id
;
2319 Orig_Act_2
: Node_Id
;
2321 -- Start of processing for Apply_Parameter_Aliasing_Checks
2326 Actual_1
:= First_Actual
(Call
);
2327 Formal_1
:= First_Formal
(Subp
);
2328 while Present
(Actual_1
) and then Present
(Formal_1
) loop
2329 Orig_Act_1
:= Original_Actual
(Actual_1
);
2331 -- Ensure that the actual is an object that is not passed by value.
2332 -- Elementary types are always passed by value, therefore actuals of
2333 -- such types cannot lead to aliasing. An aggregate is an object in
2334 -- Ada 2012, but an actual that is an aggregate cannot overlap with
2335 -- another actual. A type that is By_Reference (such as an array of
2336 -- controlled types) is not subject to the check because any update
2337 -- will be done in place and a subsequent read will always see the
2338 -- correct value, see RM 6.2 (12/3).
2340 if Nkind
(Orig_Act_1
) = N_Aggregate
2341 or else (Nkind
(Orig_Act_1
) = N_Qualified_Expression
2342 and then Nkind
(Expression
(Orig_Act_1
)) = N_Aggregate
)
2346 elsif Is_Object_Reference
(Orig_Act_1
)
2347 and then not Is_Elementary_Type
(Etype
(Orig_Act_1
))
2348 and then not Is_By_Reference_Type
(Etype
(Orig_Act_1
))
2350 Actual_2
:= Next_Actual
(Actual_1
);
2351 Formal_2
:= Next_Formal
(Formal_1
);
2352 while Present
(Actual_2
) and then Present
(Formal_2
) loop
2353 Orig_Act_2
:= Original_Actual
(Actual_2
);
2355 -- The other actual we are testing against must also denote
2356 -- a non pass-by-value object. Generate the check only when
2357 -- the mode of the two formals may lead to aliasing.
2359 if Is_Object_Reference
(Orig_Act_2
)
2360 and then not Is_Elementary_Type
(Etype
(Orig_Act_2
))
2361 and then May_Cause_Aliasing
(Formal_1
, Formal_2
)
2363 Remove_Side_Effects
(Actual_1
);
2364 Remove_Side_Effects
(Actual_2
);
2367 (Actual_1
=> Actual_1
,
2368 Actual_2
=> Actual_2
,
2369 Formal_1
=> Formal_1
,
2370 Formal_2
=> Formal_2
,
2374 Next_Actual
(Actual_2
);
2375 Next_Formal
(Formal_2
);
2379 Next_Actual
(Actual_1
);
2380 Next_Formal
(Formal_1
);
2383 -- Place a simple check right before the call
2385 if Present
(Check
) and then not Exception_Extra_Info
then
2386 Insert_Action
(Call
,
2387 Make_Raise_Program_Error
(Loc
,
2389 Reason
=> PE_Aliased_Parameters
));
2391 end Apply_Parameter_Aliasing_Checks
;
2393 -------------------------------------
2394 -- Apply_Parameter_Validity_Checks --
2395 -------------------------------------
2397 procedure Apply_Parameter_Validity_Checks
(Subp
: Entity_Id
) is
2398 Subp_Decl
: Node_Id
;
2400 procedure Add_Validity_Check
2401 (Formal
: Entity_Id
;
2403 For_Result
: Boolean := False);
2404 -- Add a single 'Valid[_Scalar] check which verifies the initialization
2405 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
2406 -- Set flag For_Result when to verify the result of a function.
2408 ------------------------
2409 -- Add_Validity_Check --
2410 ------------------------
2412 procedure Add_Validity_Check
2413 (Formal
: Entity_Id
;
2415 For_Result
: Boolean := False)
2417 procedure Build_Pre_Post_Condition
(Expr
: Node_Id
);
2418 -- Create a pre/postcondition pragma that tests expression Expr
2420 ------------------------------
2421 -- Build_Pre_Post_Condition --
2422 ------------------------------
2424 procedure Build_Pre_Post_Condition
(Expr
: Node_Id
) is
2425 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
2433 Pragma_Argument_Associations
=> New_List
(
2434 Make_Pragma_Argument_Association
(Loc
,
2435 Chars
=> Name_Check
,
2436 Expression
=> Expr
)));
2438 -- Add a message unless exception messages are suppressed
2440 if not Exception_Locations_Suppressed
then
2441 Append_To
(Pragma_Argument_Associations
(Prag
),
2442 Make_Pragma_Argument_Association
(Loc
,
2443 Chars
=> Name_Message
,
2445 Make_String_Literal
(Loc
,
2447 & Get_Name_String
(Prag_Nam
)
2449 & Build_Location_String
(Loc
))));
2452 -- Insert the pragma in the tree
2454 if Nkind
(Parent
(Subp_Decl
)) = N_Compilation_Unit
then
2455 Add_Global_Declaration
(Prag
);
2458 -- PPC pragmas associated with subprogram bodies must be inserted
2459 -- in the declarative part of the body.
2461 elsif Nkind
(Subp_Decl
) = N_Subprogram_Body
then
2462 Decls
:= Declarations
(Subp_Decl
);
2466 Set_Declarations
(Subp_Decl
, Decls
);
2469 Prepend_To
(Decls
, Prag
);
2472 -- For subprogram declarations insert the PPC pragma right after
2473 -- the declarative node.
2476 Insert_After_And_Analyze
(Subp_Decl
, Prag
);
2478 end Build_Pre_Post_Condition
;
2482 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
2483 Typ
: constant Entity_Id
:= Etype
(Formal
);
2487 -- Start of processing for Add_Validity_Check
2490 -- For scalars, generate 'Valid test
2492 if Is_Scalar_Type
(Typ
) then
2495 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2497 elsif Scalar_Part_Present
(Typ
) then
2498 Nam
:= Name_Valid_Scalars
;
2500 -- No test needed for other cases (no scalars to test)
2506 -- Step 1: Create the expression to verify the validity of the
2509 Check
:= New_Occurrence_Of
(Formal
, Loc
);
2511 -- When processing a function result, use 'Result. Generate
2516 Make_Attribute_Reference
(Loc
,
2518 Attribute_Name
=> Name_Result
);
2522 -- Context['Result]'Valid[_Scalars]
2525 Make_Attribute_Reference
(Loc
,
2527 Attribute_Name
=> Nam
);
2529 -- Step 2: Create a pre or post condition pragma
2531 Build_Pre_Post_Condition
(Check
);
2532 end Add_Validity_Check
;
2537 Subp_Spec
: Node_Id
;
2539 -- Start of processing for Apply_Parameter_Validity_Checks
2542 -- Extract the subprogram specification and declaration nodes
2544 Subp_Spec
:= Parent
(Subp
);
2546 if Nkind
(Subp_Spec
) = N_Defining_Program_Unit_Name
then
2547 Subp_Spec
:= Parent
(Subp_Spec
);
2550 Subp_Decl
:= Parent
(Subp_Spec
);
2552 if not Comes_From_Source
(Subp
)
2554 -- Do not process formal subprograms because the corresponding actual
2555 -- will receive the proper checks when the instance is analyzed.
2557 or else Is_Formal_Subprogram
(Subp
)
2559 -- Do not process imported subprograms since pre and postconditions
2560 -- are never verified on routines coming from a different language.
2562 or else Is_Imported
(Subp
)
2563 or else Is_Intrinsic_Subprogram
(Subp
)
2565 -- The PPC pragmas generated by this routine do not correspond to
2566 -- source aspects, therefore they cannot be applied to abstract
2569 or else Nkind
(Subp_Decl
) = N_Abstract_Subprogram_Declaration
2571 -- Do not consider subprogram renaminds because the renamed entity
2572 -- already has the proper PPC pragmas.
2574 or else Nkind
(Subp_Decl
) = N_Subprogram_Renaming_Declaration
2576 -- Do not process null procedures because there is no benefit of
2577 -- adding the checks to a no action routine.
2579 or else (Nkind
(Subp_Spec
) = N_Procedure_Specification
2580 and then Null_Present
(Subp_Spec
))
2585 -- Inspect all the formals applying aliasing and scalar initialization
2586 -- checks where applicable.
2588 Formal
:= First_Formal
(Subp
);
2589 while Present
(Formal
) loop
2591 -- Generate the following scalar initialization checks for each
2592 -- formal parameter:
2594 -- mode IN - Pre => Formal'Valid[_Scalars]
2595 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2596 -- mode OUT - Post => Formal'Valid[_Scalars]
2598 if Check_Validity_Of_Parameters
then
2599 if Ekind_In
(Formal
, E_In_Parameter
, E_In_Out_Parameter
) then
2600 Add_Validity_Check
(Formal
, Name_Precondition
, False);
2603 if Ekind_In
(Formal
, E_In_Out_Parameter
, E_Out_Parameter
) then
2604 Add_Validity_Check
(Formal
, Name_Postcondition
, False);
2608 Next_Formal
(Formal
);
2611 -- Generate following scalar initialization check for function result:
2613 -- Post => Subp'Result'Valid[_Scalars]
2615 if Check_Validity_Of_Parameters
and then Ekind
(Subp
) = E_Function
then
2616 Add_Validity_Check
(Subp
, Name_Postcondition
, True);
2618 end Apply_Parameter_Validity_Checks
;
2620 ---------------------------
2621 -- Apply_Predicate_Check --
2622 ---------------------------
2624 procedure Apply_Predicate_Check
2627 Fun
: Entity_Id
:= Empty
)
2632 if Predicate_Checks_Suppressed
(Empty
) then
2635 elsif Predicates_Ignored
(Typ
) then
2638 elsif Present
(Predicate_Function
(Typ
)) then
2640 while Present
(S
) and then not Is_Subprogram
(S
) loop
2644 -- A predicate check does not apply within internally generated
2645 -- subprograms, such as TSS functions.
2647 if Within_Internal_Subprogram
then
2650 -- If the check appears within the predicate function itself, it
2651 -- means that the user specified a check whose formal is the
2652 -- predicated subtype itself, rather than some covering type. This
2653 -- is likely to be a common error, and thus deserves a warning.
2655 elsif Present
(S
) and then S
= Predicate_Function
(Typ
) then
2657 ("predicate check includes a call to& that requires a "
2658 & "predicate check??", Parent
(N
), Fun
);
2660 ("\this will result in infinite recursion??", Parent
(N
));
2662 if Is_First_Subtype
(Typ
) then
2664 ("\use an explicit subtype of& to carry the predicate",
2669 Make_Raise_Storage_Error
(Sloc
(N
),
2670 Reason
=> SE_Infinite_Recursion
));
2672 -- Here for normal case of predicate active
2675 -- If the type has a static predicate and the expression is known
2676 -- at compile time, see if the expression satisfies the predicate.
2678 Check_Expression_Against_Static_Predicate
(N
, Typ
);
2680 if not Expander_Active
then
2684 -- For an entity of the type, generate a call to the predicate
2685 -- function, unless its type is an actual subtype, which is not
2686 -- visible outside of the enclosing subprogram.
2688 if Is_Entity_Name
(N
)
2689 and then not Is_Actual_Subtype
(Typ
)
2692 Make_Predicate_Check
2693 (Typ
, New_Occurrence_Of
(Entity
(N
), Sloc
(N
))));
2695 -- If the expression is not an entity it may have side effects,
2696 -- and the following call will create an object declaration for
2697 -- it. We disable checks during its analysis, to prevent an
2698 -- infinite recursion.
2702 Make_Predicate_Check
2703 (Typ
, Duplicate_Subexpr
(N
)), Suppress
=> All_Checks
);
2707 end Apply_Predicate_Check
;
2709 -----------------------
2710 -- Apply_Range_Check --
2711 -----------------------
2713 procedure Apply_Range_Check
2715 Target_Typ
: Entity_Id
;
2716 Source_Typ
: Entity_Id
:= Empty
)
2719 Apply_Selected_Range_Checks
2720 (Ck_Node
, Target_Typ
, Source_Typ
, Do_Static
=> False);
2721 end Apply_Range_Check
;
2723 ------------------------------
2724 -- Apply_Scalar_Range_Check --
2725 ------------------------------
2727 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2728 -- off if it is already set on.
2730 procedure Apply_Scalar_Range_Check
2732 Target_Typ
: Entity_Id
;
2733 Source_Typ
: Entity_Id
:= Empty
;
2734 Fixed_Int
: Boolean := False)
2736 Parnt
: constant Node_Id
:= Parent
(Expr
);
2738 Arr
: Node_Id
:= Empty
; -- initialize to prevent warning
2739 Arr_Typ
: Entity_Id
:= Empty
; -- initialize to prevent warning
2742 Is_Subscr_Ref
: Boolean;
2743 -- Set true if Expr is a subscript
2745 Is_Unconstrained_Subscr_Ref
: Boolean;
2746 -- Set true if Expr is a subscript of an unconstrained array. In this
2747 -- case we do not attempt to do an analysis of the value against the
2748 -- range of the subscript, since we don't know the actual subtype.
2751 -- Set to True if Expr should be regarded as a real value even though
2752 -- the type of Expr might be discrete.
2754 procedure Bad_Value
(Warn
: Boolean := False);
2755 -- Procedure called if value is determined to be out of range. Warn is
2756 -- True to force a warning instead of an error, even when SPARK_Mode is
2763 procedure Bad_Value
(Warn
: Boolean := False) is
2765 Apply_Compile_Time_Constraint_Error
2766 (Expr
, "value not in range of}??", CE_Range_Check_Failed
,
2772 -- Start of processing for Apply_Scalar_Range_Check
2775 -- Return if check obviously not needed
2778 -- Not needed inside generic
2782 -- Not needed if previous error
2784 or else Target_Typ
= Any_Type
2785 or else Nkind
(Expr
) = N_Error
2787 -- Not needed for non-scalar type
2789 or else not Is_Scalar_Type
(Target_Typ
)
2791 -- Not needed if we know node raises CE already
2793 or else Raises_Constraint_Error
(Expr
)
2798 -- Now, see if checks are suppressed
2801 Is_List_Member
(Expr
) and then Nkind
(Parnt
) = N_Indexed_Component
;
2803 if Is_Subscr_Ref
then
2804 Arr
:= Prefix
(Parnt
);
2805 Arr_Typ
:= Get_Actual_Subtype_If_Available
(Arr
);
2807 if Is_Access_Type
(Arr_Typ
) then
2808 Arr_Typ
:= Designated_Type
(Arr_Typ
);
2812 if not Do_Range_Check
(Expr
) then
2814 -- Subscript reference. Check for Index_Checks suppressed
2816 if Is_Subscr_Ref
then
2818 -- Check array type and its base type
2820 if Index_Checks_Suppressed
(Arr_Typ
)
2821 or else Index_Checks_Suppressed
(Base_Type
(Arr_Typ
))
2825 -- Check array itself if it is an entity name
2827 elsif Is_Entity_Name
(Arr
)
2828 and then Index_Checks_Suppressed
(Entity
(Arr
))
2832 -- Check expression itself if it is an entity name
2834 elsif Is_Entity_Name
(Expr
)
2835 and then Index_Checks_Suppressed
(Entity
(Expr
))
2840 -- All other cases, check for Range_Checks suppressed
2843 -- Check target type and its base type
2845 if Range_Checks_Suppressed
(Target_Typ
)
2846 or else Range_Checks_Suppressed
(Base_Type
(Target_Typ
))
2850 -- Check expression itself if it is an entity name
2852 elsif Is_Entity_Name
(Expr
)
2853 and then Range_Checks_Suppressed
(Entity
(Expr
))
2857 -- If Expr is part of an assignment statement, then check left
2858 -- side of assignment if it is an entity name.
2860 elsif Nkind
(Parnt
) = N_Assignment_Statement
2861 and then Is_Entity_Name
(Name
(Parnt
))
2862 and then Range_Checks_Suppressed
(Entity
(Name
(Parnt
)))
2869 -- Do not set range checks if they are killed
2871 if Nkind
(Expr
) = N_Unchecked_Type_Conversion
2872 and then Kill_Range_Check
(Expr
)
2877 -- Do not set range checks for any values from System.Scalar_Values
2878 -- since the whole idea of such values is to avoid checking them.
2880 if Is_Entity_Name
(Expr
)
2881 and then Is_RTU
(Scope
(Entity
(Expr
)), System_Scalar_Values
)
2886 -- Now see if we need a check
2888 if No
(Source_Typ
) then
2889 S_Typ
:= Etype
(Expr
);
2891 S_Typ
:= Source_Typ
;
2894 if not Is_Scalar_Type
(S_Typ
) or else S_Typ
= Any_Type
then
2898 Is_Unconstrained_Subscr_Ref
:=
2899 Is_Subscr_Ref
and then not Is_Constrained
(Arr_Typ
);
2901 -- Special checks for floating-point type
2903 if Is_Floating_Point_Type
(S_Typ
) then
2905 -- Always do a range check if the source type includes infinities and
2906 -- the target type does not include infinities. We do not do this if
2907 -- range checks are killed.
2908 -- If the expression is a literal and the bounds of the type are
2909 -- static constants it may be possible to optimize the check.
2911 if Has_Infinities
(S_Typ
)
2912 and then not Has_Infinities
(Target_Typ
)
2914 -- If the expression is a literal and the bounds of the type are
2915 -- static constants it may be possible to optimize the check.
2917 if Nkind
(Expr
) = N_Real_Literal
then
2919 Tlo
: constant Node_Id
:= Type_Low_Bound
(Target_Typ
);
2920 Thi
: constant Node_Id
:= Type_High_Bound
(Target_Typ
);
2923 if Compile_Time_Known_Value
(Tlo
)
2924 and then Compile_Time_Known_Value
(Thi
)
2925 and then Expr_Value_R
(Expr
) >= Expr_Value_R
(Tlo
)
2926 and then Expr_Value_R
(Expr
) <= Expr_Value_R
(Thi
)
2930 Enable_Range_Check
(Expr
);
2935 Enable_Range_Check
(Expr
);
2940 -- Return if we know expression is definitely in the range of the target
2941 -- type as determined by Determine_Range. Right now we only do this for
2942 -- discrete types, and not fixed-point or floating-point types.
2944 -- The additional less-precise tests below catch these cases
2946 -- Note: skip this if we are given a source_typ, since the point of
2947 -- supplying a Source_Typ is to stop us looking at the expression.
2948 -- We could sharpen this test to be out parameters only ???
2950 if Is_Discrete_Type
(Target_Typ
)
2951 and then Is_Discrete_Type
(Etype
(Expr
))
2952 and then not Is_Unconstrained_Subscr_Ref
2953 and then No
(Source_Typ
)
2956 Tlo
: constant Node_Id
:= Type_Low_Bound
(Target_Typ
);
2957 Thi
: constant Node_Id
:= Type_High_Bound
(Target_Typ
);
2962 if Compile_Time_Known_Value
(Tlo
)
2963 and then Compile_Time_Known_Value
(Thi
)
2966 Lov
: constant Uint
:= Expr_Value
(Tlo
);
2967 Hiv
: constant Uint
:= Expr_Value
(Thi
);
2970 -- If range is null, we for sure have a constraint error
2971 -- (we don't even need to look at the value involved,
2972 -- since all possible values will raise CE).
2976 -- When SPARK_Mode is On, force a warning instead of
2977 -- an error in that case, as this likely corresponds
2978 -- to deactivated code.
2980 Bad_Value
(Warn
=> SPARK_Mode
= On
);
2982 -- In GNATprove mode, we enable the range check so that
2983 -- GNATprove will issue a message if it cannot be proved.
2985 if GNATprove_Mode
then
2986 Enable_Range_Check
(Expr
);
2992 -- Otherwise determine range of value
2994 Determine_Range
(Expr
, OK
, Lo
, Hi
, Assume_Valid
=> True);
2998 -- If definitely in range, all OK
3000 if Lo
>= Lov
and then Hi
<= Hiv
then
3003 -- If definitely not in range, warn
3005 elsif Lov
> Hi
or else Hiv
< Lo
then
3009 -- Otherwise we don't know
3021 Is_Floating_Point_Type
(S_Typ
)
3022 or else (Is_Fixed_Point_Type
(S_Typ
) and then not Fixed_Int
);
3024 -- Check if we can determine at compile time whether Expr is in the
3025 -- range of the target type. Note that if S_Typ is within the bounds
3026 -- of Target_Typ then this must be the case. This check is meaningful
3027 -- only if this is not a conversion between integer and real types.
3029 if not Is_Unconstrained_Subscr_Ref
3030 and then Is_Discrete_Type
(S_Typ
) = Is_Discrete_Type
(Target_Typ
)
3032 (In_Subrange_Of
(S_Typ
, Target_Typ
, Fixed_Int
)
3034 -- Also check if the expression itself is in the range of the
3035 -- target type if it is a known at compile time value. We skip
3036 -- this test if S_Typ is set since for OUT and IN OUT parameters
3037 -- the Expr itself is not relevant to the checking.
3041 and then Is_In_Range
(Expr
, Target_Typ
,
3042 Assume_Valid
=> True,
3043 Fixed_Int
=> Fixed_Int
,
3044 Int_Real
=> Int_Real
)))
3048 elsif Is_Out_Of_Range
(Expr
, Target_Typ
,
3049 Assume_Valid
=> True,
3050 Fixed_Int
=> Fixed_Int
,
3051 Int_Real
=> Int_Real
)
3056 -- Floating-point case
3057 -- In the floating-point case, we only do range checks if the type is
3058 -- constrained. We definitely do NOT want range checks for unconstrained
3059 -- types, since we want to have infinities, except when
3060 -- Check_Float_Overflow is set.
3062 elsif Is_Floating_Point_Type
(S_Typ
) then
3063 if Is_Constrained
(S_Typ
) or else Check_Float_Overflow
then
3064 Enable_Range_Check
(Expr
);
3067 -- For all other cases we enable a range check unconditionally
3070 Enable_Range_Check
(Expr
);
3073 end Apply_Scalar_Range_Check
;
3075 ----------------------------------
3076 -- Apply_Selected_Length_Checks --
3077 ----------------------------------
3079 procedure Apply_Selected_Length_Checks
3081 Target_Typ
: Entity_Id
;
3082 Source_Typ
: Entity_Id
;
3083 Do_Static
: Boolean)
3086 R_Result
: Check_Result
;
3089 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
3090 Checks_On
: constant Boolean :=
3091 (not Index_Checks_Suppressed
(Target_Typ
))
3092 or else (not Length_Checks_Suppressed
(Target_Typ
));
3095 -- Only apply checks when generating code
3097 -- Note: this means that we lose some useful warnings if the expander
3100 if not Expander_Active
then
3105 Selected_Length_Checks
(Ck_Node
, Target_Typ
, Source_Typ
, Empty
);
3107 for J
in 1 .. 2 loop
3108 R_Cno
:= R_Result
(J
);
3109 exit when No
(R_Cno
);
3111 -- A length check may mention an Itype which is attached to a
3112 -- subsequent node. At the top level in a package this can cause
3113 -- an order-of-elaboration problem, so we make sure that the itype
3114 -- is referenced now.
3116 if Ekind
(Current_Scope
) = E_Package
3117 and then Is_Compilation_Unit
(Current_Scope
)
3119 Ensure_Defined
(Target_Typ
, Ck_Node
);
3121 if Present
(Source_Typ
) then
3122 Ensure_Defined
(Source_Typ
, Ck_Node
);
3124 elsif Is_Itype
(Etype
(Ck_Node
)) then
3125 Ensure_Defined
(Etype
(Ck_Node
), Ck_Node
);
3129 -- If the item is a conditional raise of constraint error, then have
3130 -- a look at what check is being performed and ???
3132 if Nkind
(R_Cno
) = N_Raise_Constraint_Error
3133 and then Present
(Condition
(R_Cno
))
3135 Cond
:= Condition
(R_Cno
);
3137 -- Case where node does not now have a dynamic check
3139 if not Has_Dynamic_Length_Check
(Ck_Node
) then
3141 -- If checks are on, just insert the check
3144 Insert_Action
(Ck_Node
, R_Cno
);
3146 if not Do_Static
then
3147 Set_Has_Dynamic_Length_Check
(Ck_Node
);
3150 -- If checks are off, then analyze the length check after
3151 -- temporarily attaching it to the tree in case the relevant
3152 -- condition can be evaluated at compile time. We still want a
3153 -- compile time warning in this case.
3156 Set_Parent
(R_Cno
, Ck_Node
);
3161 -- Output a warning if the condition is known to be True
3163 if Is_Entity_Name
(Cond
)
3164 and then Entity
(Cond
) = Standard_True
3166 Apply_Compile_Time_Constraint_Error
3167 (Ck_Node
, "wrong length for array of}??",
3168 CE_Length_Check_Failed
,
3172 -- If we were only doing a static check, or if checks are not
3173 -- on, then we want to delete the check, since it is not needed.
3174 -- We do this by replacing the if statement by a null statement
3176 elsif Do_Static
or else not Checks_On
then
3177 Remove_Warning_Messages
(R_Cno
);
3178 Rewrite
(R_Cno
, Make_Null_Statement
(Loc
));
3182 Install_Static_Check
(R_Cno
, Loc
);
3185 end Apply_Selected_Length_Checks
;
3187 ---------------------------------
3188 -- Apply_Selected_Range_Checks --
3189 ---------------------------------
3191 procedure Apply_Selected_Range_Checks
3193 Target_Typ
: Entity_Id
;
3194 Source_Typ
: Entity_Id
;
3195 Do_Static
: Boolean)
3197 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
3198 Checks_On
: constant Boolean :=
3199 not Index_Checks_Suppressed
(Target_Typ
)
3201 not Range_Checks_Suppressed
(Target_Typ
);
3205 R_Result
: Check_Result
;
3208 -- Only apply checks when generating code. In GNATprove mode, we do not
3209 -- apply the checks, but we still call Selected_Range_Checks to possibly
3210 -- issue errors on SPARK code when a run-time error can be detected at
3213 if not GNATprove_Mode
then
3214 if not Expander_Active
or not Checks_On
then
3220 Selected_Range_Checks
(Ck_Node
, Target_Typ
, Source_Typ
, Empty
);
3222 if GNATprove_Mode
then
3226 for J
in 1 .. 2 loop
3227 R_Cno
:= R_Result
(J
);
3228 exit when No
(R_Cno
);
3230 -- The range check requires runtime evaluation. Depending on what its
3231 -- triggering condition is, the check may be converted into a compile
3232 -- time constraint check.
3234 if Nkind
(R_Cno
) = N_Raise_Constraint_Error
3235 and then Present
(Condition
(R_Cno
))
3237 Cond
:= Condition
(R_Cno
);
3239 -- Insert the range check before the related context. Note that
3240 -- this action analyses the triggering condition.
3242 Insert_Action
(Ck_Node
, R_Cno
);
3244 -- This old code doesn't make sense, why is the context flagged as
3245 -- requiring dynamic range checks now in the middle of generating
3248 if not Do_Static
then
3249 Set_Has_Dynamic_Range_Check
(Ck_Node
);
3252 -- The triggering condition evaluates to True, the range check
3253 -- can be converted into a compile time constraint check.
3255 if Is_Entity_Name
(Cond
)
3256 and then Entity
(Cond
) = Standard_True
3258 -- Since an N_Range is technically not an expression, we have
3259 -- to set one of the bounds to C_E and then just flag the
3260 -- N_Range. The warning message will point to the lower bound
3261 -- and complain about a range, which seems OK.
3263 if Nkind
(Ck_Node
) = N_Range
then
3264 Apply_Compile_Time_Constraint_Error
3265 (Low_Bound
(Ck_Node
),
3266 "static range out of bounds of}??",
3267 CE_Range_Check_Failed
,
3271 Set_Raises_Constraint_Error
(Ck_Node
);
3274 Apply_Compile_Time_Constraint_Error
3276 "static value out of range of}??",
3277 CE_Range_Check_Failed
,
3282 -- If we were only doing a static check, or if checks are not
3283 -- on, then we want to delete the check, since it is not needed.
3284 -- We do this by replacing the if statement by a null statement
3286 elsif Do_Static
then
3287 Remove_Warning_Messages
(R_Cno
);
3288 Rewrite
(R_Cno
, Make_Null_Statement
(Loc
));
3291 -- The range check raises Constraint_Error explicitly
3294 Install_Static_Check
(R_Cno
, Loc
);
3297 end Apply_Selected_Range_Checks
;
3299 -------------------------------
3300 -- Apply_Static_Length_Check --
3301 -------------------------------
3303 procedure Apply_Static_Length_Check
3305 Target_Typ
: Entity_Id
;
3306 Source_Typ
: Entity_Id
:= Empty
)
3309 Apply_Selected_Length_Checks
3310 (Expr
, Target_Typ
, Source_Typ
, Do_Static
=> True);
3311 end Apply_Static_Length_Check
;
3313 -------------------------------------
3314 -- Apply_Subscript_Validity_Checks --
3315 -------------------------------------
3317 procedure Apply_Subscript_Validity_Checks
(Expr
: Node_Id
) is
3321 pragma Assert
(Nkind
(Expr
) = N_Indexed_Component
);
3323 -- Loop through subscripts
3325 Sub
:= First
(Expressions
(Expr
));
3326 while Present
(Sub
) loop
3328 -- Check one subscript. Note that we do not worry about enumeration
3329 -- type with holes, since we will convert the value to a Pos value
3330 -- for the subscript, and that convert will do the necessary validity
3333 Ensure_Valid
(Sub
, Holes_OK
=> True);
3335 -- Move to next subscript
3339 end Apply_Subscript_Validity_Checks
;
3341 ----------------------------------
3342 -- Apply_Type_Conversion_Checks --
3343 ----------------------------------
3345 procedure Apply_Type_Conversion_Checks
(N
: Node_Id
) is
3346 Target_Type
: constant Entity_Id
:= Etype
(N
);
3347 Target_Base
: constant Entity_Id
:= Base_Type
(Target_Type
);
3348 Expr
: constant Node_Id
:= Expression
(N
);
3350 Expr_Type
: constant Entity_Id
:= Underlying_Type
(Etype
(Expr
));
3351 -- Note: if Etype (Expr) is a private type without discriminants, its
3352 -- full view might have discriminants with defaults, so we need the
3353 -- full view here to retrieve the constraints.
3356 if Inside_A_Generic
then
3359 -- Skip these checks if serious errors detected, there are some nasty
3360 -- situations of incomplete trees that blow things up.
3362 elsif Serious_Errors_Detected
> 0 then
3365 -- Never generate discriminant checks for Unchecked_Union types
3367 elsif Present
(Expr_Type
)
3368 and then Is_Unchecked_Union
(Expr_Type
)
3372 -- Scalar type conversions of the form Target_Type (Expr) require a
3373 -- range check if we cannot be sure that Expr is in the base type of
3374 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3375 -- are not quite the same condition from an implementation point of
3376 -- view, but clearly the second includes the first.
3378 elsif Is_Scalar_Type
(Target_Type
) then
3380 Conv_OK
: constant Boolean := Conversion_OK
(N
);
3381 -- If the Conversion_OK flag on the type conversion is set and no
3382 -- floating-point type is involved in the type conversion then
3383 -- fixed-point values must be read as integral values.
3385 Float_To_Int
: constant Boolean :=
3386 Is_Floating_Point_Type
(Expr_Type
)
3387 and then Is_Integer_Type
(Target_Type
);
3390 if not Overflow_Checks_Suppressed
(Target_Base
)
3391 and then not Overflow_Checks_Suppressed
(Target_Type
)
3393 In_Subrange_Of
(Expr_Type
, Target_Base
, Fixed_Int
=> Conv_OK
)
3394 and then not Float_To_Int
3396 -- A small optimization: the attribute 'Pos applied to an
3397 -- enumeration type has a known range, even though its type is
3398 -- Universal_Integer. So in numeric conversions it is usually
3399 -- within range of the target integer type. Use the static
3400 -- bounds of the base types to check. Disable this optimization
3401 -- in case of a generic formal discrete type, because we don't
3402 -- necessarily know the upper bound yet.
3404 if Nkind
(Expr
) = N_Attribute_Reference
3405 and then Attribute_Name
(Expr
) = Name_Pos
3406 and then Is_Enumeration_Type
(Etype
(Prefix
(Expr
)))
3407 and then not Is_Generic_Type
(Etype
(Prefix
(Expr
)))
3408 and then Is_Integer_Type
(Target_Type
)
3411 Enum_T
: constant Entity_Id
:=
3412 Root_Type
(Etype
(Prefix
(Expr
)));
3413 Int_T
: constant Entity_Id
:= Base_Type
(Target_Type
);
3414 Last_I
: constant Uint
:=
3415 Intval
(High_Bound
(Scalar_Range
(Int_T
)));
3419 -- Character types have no explicit literals, so we use
3420 -- the known number of characters in the type.
3422 if Root_Type
(Enum_T
) = Standard_Character
then
3423 Last_E
:= UI_From_Int
(255);
3425 elsif Enum_T
= Standard_Wide_Character
3426 or else Enum_T
= Standard_Wide_Wide_Character
3428 Last_E
:= UI_From_Int
(65535);
3433 (Entity
(High_Bound
(Scalar_Range
(Enum_T
))));
3436 if Last_E
<= Last_I
then
3440 Activate_Overflow_Check
(N
);
3445 Activate_Overflow_Check
(N
);
3449 if not Range_Checks_Suppressed
(Target_Type
)
3450 and then not Range_Checks_Suppressed
(Expr_Type
)
3452 if Float_To_Int
then
3453 Apply_Float_Conversion_Check
(Expr
, Target_Type
);
3455 Apply_Scalar_Range_Check
3456 (Expr
, Target_Type
, Fixed_Int
=> Conv_OK
);
3458 -- If the target type has predicates, we need to indicate
3459 -- the need for a check, even if Determine_Range finds that
3460 -- the value is within bounds. This may be the case e.g for
3461 -- a division with a constant denominator.
3463 if Has_Predicates
(Target_Type
) then
3464 Enable_Range_Check
(Expr
);
3470 elsif Comes_From_Source
(N
)
3471 and then not Discriminant_Checks_Suppressed
(Target_Type
)
3472 and then Is_Record_Type
(Target_Type
)
3473 and then Is_Derived_Type
(Target_Type
)
3474 and then not Is_Tagged_Type
(Target_Type
)
3475 and then not Is_Constrained
(Target_Type
)
3476 and then Present
(Stored_Constraint
(Target_Type
))
3478 -- An unconstrained derived type may have inherited discriminant.
3479 -- Build an actual discriminant constraint list using the stored
3480 -- constraint, to verify that the expression of the parent type
3481 -- satisfies the constraints imposed by the (unconstrained) derived
3482 -- type. This applies to value conversions, not to view conversions
3486 Loc
: constant Source_Ptr
:= Sloc
(N
);
3488 Constraint
: Elmt_Id
;
3489 Discr_Value
: Node_Id
;
3492 New_Constraints
: constant Elist_Id
:= New_Elmt_List
;
3493 Old_Constraints
: constant Elist_Id
:=
3494 Discriminant_Constraint
(Expr_Type
);
3497 Constraint
:= First_Elmt
(Stored_Constraint
(Target_Type
));
3498 while Present
(Constraint
) loop
3499 Discr_Value
:= Node
(Constraint
);
3501 if Is_Entity_Name
(Discr_Value
)
3502 and then Ekind
(Entity
(Discr_Value
)) = E_Discriminant
3504 Discr
:= Corresponding_Discriminant
(Entity
(Discr_Value
));
3507 and then Scope
(Discr
) = Base_Type
(Expr_Type
)
3509 -- Parent is constrained by new discriminant. Obtain
3510 -- Value of original discriminant in expression. If the
3511 -- new discriminant has been used to constrain more than
3512 -- one of the stored discriminants, this will provide the
3513 -- required consistency check.
3516 (Make_Selected_Component
(Loc
,
3518 Duplicate_Subexpr_No_Checks
3519 (Expr
, Name_Req
=> True),
3521 Make_Identifier
(Loc
, Chars
(Discr
))),
3525 -- Discriminant of more remote ancestor ???
3530 -- Derived type definition has an explicit value for this
3531 -- stored discriminant.
3535 (Duplicate_Subexpr_No_Checks
(Discr_Value
),
3539 Next_Elmt
(Constraint
);
3542 -- Use the unconstrained expression type to retrieve the
3543 -- discriminants of the parent, and apply momentarily the
3544 -- discriminant constraint synthesized above.
3546 Set_Discriminant_Constraint
(Expr_Type
, New_Constraints
);
3547 Cond
:= Build_Discriminant_Checks
(Expr
, Expr_Type
);
3548 Set_Discriminant_Constraint
(Expr_Type
, Old_Constraints
);
3551 Make_Raise_Constraint_Error
(Loc
,
3553 Reason
=> CE_Discriminant_Check_Failed
));
3556 -- For arrays, checks are set now, but conversions are applied during
3557 -- expansion, to take into accounts changes of representation. The
3558 -- checks become range checks on the base type or length checks on the
3559 -- subtype, depending on whether the target type is unconstrained or
3560 -- constrained. Note that the range check is put on the expression of a
3561 -- type conversion, while the length check is put on the type conversion
3564 elsif Is_Array_Type
(Target_Type
) then
3565 if Is_Constrained
(Target_Type
) then
3566 Set_Do_Length_Check
(N
);
3568 Set_Do_Range_Check
(Expr
);
3571 end Apply_Type_Conversion_Checks
;
3573 ----------------------------------------------
3574 -- Apply_Universal_Integer_Attribute_Checks --
3575 ----------------------------------------------
3577 procedure Apply_Universal_Integer_Attribute_Checks
(N
: Node_Id
) is
3578 Loc
: constant Source_Ptr
:= Sloc
(N
);
3579 Typ
: constant Entity_Id
:= Etype
(N
);
3582 if Inside_A_Generic
then
3585 -- Nothing to do if checks are suppressed
3587 elsif Range_Checks_Suppressed
(Typ
)
3588 and then Overflow_Checks_Suppressed
(Typ
)
3592 -- Nothing to do if the attribute does not come from source. The
3593 -- internal attributes we generate of this type do not need checks,
3594 -- and furthermore the attempt to check them causes some circular
3595 -- elaboration orders when dealing with packed types.
3597 elsif not Comes_From_Source
(N
) then
3600 -- If the prefix is a selected component that depends on a discriminant
3601 -- the check may improperly expose a discriminant instead of using
3602 -- the bounds of the object itself. Set the type of the attribute to
3603 -- the base type of the context, so that a check will be imposed when
3604 -- needed (e.g. if the node appears as an index).
3606 elsif Nkind
(Prefix
(N
)) = N_Selected_Component
3607 and then Ekind
(Typ
) = E_Signed_Integer_Subtype
3608 and then Depends_On_Discriminant
(Scalar_Range
(Typ
))
3610 Set_Etype
(N
, Base_Type
(Typ
));
3612 -- Otherwise, replace the attribute node with a type conversion node
3613 -- whose expression is the attribute, retyped to universal integer, and
3614 -- whose subtype mark is the target type. The call to analyze this
3615 -- conversion will set range and overflow checks as required for proper
3616 -- detection of an out of range value.
3619 Set_Etype
(N
, Universal_Integer
);
3620 Set_Analyzed
(N
, True);
3623 Make_Type_Conversion
(Loc
,
3624 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
3625 Expression
=> Relocate_Node
(N
)));
3627 Analyze_And_Resolve
(N
, Typ
);
3630 end Apply_Universal_Integer_Attribute_Checks
;
3632 -------------------------------------
3633 -- Atomic_Synchronization_Disabled --
3634 -------------------------------------
3636 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3637 -- using a bogus check called Atomic_Synchronization. This is to make it
3638 -- more convenient to get exactly the same semantics as [Un]Suppress.
3640 function Atomic_Synchronization_Disabled
(E
: Entity_Id
) return Boolean is
3642 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3643 -- looks enabled, since it is never disabled.
3645 if Debug_Flag_Dot_E
then
3648 -- If debug flag d.d is set then always return True, i.e. all atomic
3649 -- sync looks disabled, since it always tests True.
3651 elsif Debug_Flag_Dot_D
then
3654 -- If entity present, then check result for that entity
3656 elsif Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
3657 return Is_Check_Suppressed
(E
, Atomic_Synchronization
);
3659 -- Otherwise result depends on current scope setting
3662 return Scope_Suppress
.Suppress
(Atomic_Synchronization
);
3664 end Atomic_Synchronization_Disabled
;
3666 -------------------------------
3667 -- Build_Discriminant_Checks --
3668 -------------------------------
3670 function Build_Discriminant_Checks
3672 T_Typ
: Entity_Id
) return Node_Id
3674 Loc
: constant Source_Ptr
:= Sloc
(N
);
3677 Disc_Ent
: Entity_Id
;
3681 function Aggregate_Discriminant_Val
(Disc
: Entity_Id
) return Node_Id
;
3683 ----------------------------------
3684 -- Aggregate_Discriminant_Value --
3685 ----------------------------------
3687 function Aggregate_Discriminant_Val
(Disc
: Entity_Id
) return Node_Id
is
3691 -- The aggregate has been normalized with named associations. We use
3692 -- the Chars field to locate the discriminant to take into account
3693 -- discriminants in derived types, which carry the same name as those
3696 Assoc
:= First
(Component_Associations
(N
));
3697 while Present
(Assoc
) loop
3698 if Chars
(First
(Choices
(Assoc
))) = Chars
(Disc
) then
3699 return Expression
(Assoc
);
3705 -- Discriminant must have been found in the loop above
3707 raise Program_Error
;
3708 end Aggregate_Discriminant_Val
;
3710 -- Start of processing for Build_Discriminant_Checks
3713 -- Loop through discriminants evolving the condition
3716 Disc
:= First_Elmt
(Discriminant_Constraint
(T_Typ
));
3718 -- For a fully private type, use the discriminants of the parent type
3720 if Is_Private_Type
(T_Typ
)
3721 and then No
(Full_View
(T_Typ
))
3723 Disc_Ent
:= First_Discriminant
(Etype
(Base_Type
(T_Typ
)));
3725 Disc_Ent
:= First_Discriminant
(T_Typ
);
3728 while Present
(Disc
) loop
3729 Dval
:= Node
(Disc
);
3731 if Nkind
(Dval
) = N_Identifier
3732 and then Ekind
(Entity
(Dval
)) = E_Discriminant
3734 Dval
:= New_Occurrence_Of
(Discriminal
(Entity
(Dval
)), Loc
);
3736 Dval
:= Duplicate_Subexpr_No_Checks
(Dval
);
3739 -- If we have an Unchecked_Union node, we can infer the discriminants
3742 if Is_Unchecked_Union
(Base_Type
(T_Typ
)) then
3744 Get_Discriminant_Value
(
3745 First_Discriminant
(T_Typ
),
3747 Stored_Constraint
(T_Typ
)));
3749 elsif Nkind
(N
) = N_Aggregate
then
3751 Duplicate_Subexpr_No_Checks
3752 (Aggregate_Discriminant_Val
(Disc_Ent
));
3756 Make_Selected_Component
(Loc
,
3758 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
3759 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Disc_Ent
)));
3761 Set_Is_In_Discriminant_Check
(Dref
);
3764 Evolve_Or_Else
(Cond
,
3767 Right_Opnd
=> Dval
));
3770 Next_Discriminant
(Disc_Ent
);
3774 end Build_Discriminant_Checks
;
3780 function Check_Needed
(Nod
: Node_Id
; Check
: Check_Type
) return Boolean is
3787 function Left_Expression
(Op
: Node_Id
) return Node_Id
;
3788 -- Return the relevant expression from the left operand of the given
3789 -- short circuit form: this is LO itself, except if LO is a qualified
3790 -- expression, a type conversion, or an expression with actions, in
3791 -- which case this is Left_Expression (Expression (LO)).
3793 ---------------------
3794 -- Left_Expression --
3795 ---------------------
3797 function Left_Expression
(Op
: Node_Id
) return Node_Id
is
3798 LE
: Node_Id
:= Left_Opnd
(Op
);
3800 while Nkind_In
(LE
, N_Qualified_Expression
,
3802 N_Expression_With_Actions
)
3804 LE
:= Expression
(LE
);
3808 end Left_Expression
;
3810 -- Start of processing for Check_Needed
3813 -- Always check if not simple entity
3815 if Nkind
(Nod
) not in N_Has_Entity
3816 or else not Comes_From_Source
(Nod
)
3821 -- Look up tree for short circuit
3828 -- Done if out of subexpression (note that we allow generated stuff
3829 -- such as itype declarations in this context, to keep the loop going
3830 -- since we may well have generated such stuff in complex situations.
3831 -- Also done if no parent (probably an error condition, but no point
3832 -- in behaving nasty if we find it).
3835 or else (K
not in N_Subexpr
and then Comes_From_Source
(P
))
3839 -- Or/Or Else case, where test is part of the right operand, or is
3840 -- part of one of the actions associated with the right operand, and
3841 -- the left operand is an equality test.
3843 elsif K
= N_Op_Or
then
3844 exit when N
= Right_Opnd
(P
)
3845 and then Nkind
(Left_Expression
(P
)) = N_Op_Eq
;
3847 elsif K
= N_Or_Else
then
3848 exit when (N
= Right_Opnd
(P
)
3851 and then List_Containing
(N
) = Actions
(P
)))
3852 and then Nkind
(Left_Expression
(P
)) = N_Op_Eq
;
3854 -- Similar test for the And/And then case, where the left operand
3855 -- is an inequality test.
3857 elsif K
= N_Op_And
then
3858 exit when N
= Right_Opnd
(P
)
3859 and then Nkind
(Left_Expression
(P
)) = N_Op_Ne
;
3861 elsif K
= N_And_Then
then
3862 exit when (N
= Right_Opnd
(P
)
3865 and then List_Containing
(N
) = Actions
(P
)))
3866 and then Nkind
(Left_Expression
(P
)) = N_Op_Ne
;
3872 -- If we fall through the loop, then we have a conditional with an
3873 -- appropriate test as its left operand, so look further.
3875 L
:= Left_Expression
(P
);
3877 -- L is an "=" or "/=" operator: extract its operands
3879 R
:= Right_Opnd
(L
);
3882 -- Left operand of test must match original variable
3884 if Nkind
(L
) not in N_Has_Entity
or else Entity
(L
) /= Entity
(Nod
) then
3888 -- Right operand of test must be key value (zero or null)
3891 when Access_Check
=>
3892 if not Known_Null
(R
) then
3896 when Division_Check
=>
3897 if not Compile_Time_Known_Value
(R
)
3898 or else Expr_Value
(R
) /= Uint_0
3904 raise Program_Error
;
3907 -- Here we have the optimizable case, warn if not short-circuited
3909 if K
= N_Op_And
or else K
= N_Op_Or
then
3910 Error_Msg_Warn
:= SPARK_Mode
/= On
;
3913 when Access_Check
=>
3914 if GNATprove_Mode
then
3916 ("Constraint_Error might have been raised (access check)",
3920 ("Constraint_Error may be raised (access check)??",
3924 when Division_Check
=>
3925 if GNATprove_Mode
then
3927 ("Constraint_Error might have been raised (zero divide)",
3931 ("Constraint_Error may be raised (zero divide)??",
3936 raise Program_Error
;
3939 if K
= N_Op_And
then
3940 Error_Msg_N
-- CODEFIX
3941 ("use `AND THEN` instead of AND??", P
);
3943 Error_Msg_N
-- CODEFIX
3944 ("use `OR ELSE` instead of OR??", P
);
3947 -- If not short-circuited, we need the check
3951 -- If short-circuited, we can omit the check
3958 -----------------------------------
3959 -- Check_Valid_Lvalue_Subscripts --
3960 -----------------------------------
3962 procedure Check_Valid_Lvalue_Subscripts
(Expr
: Node_Id
) is
3964 -- Skip this if range checks are suppressed
3966 if Range_Checks_Suppressed
(Etype
(Expr
)) then
3969 -- Only do this check for expressions that come from source. We assume
3970 -- that expander generated assignments explicitly include any necessary
3971 -- checks. Note that this is not just an optimization, it avoids
3972 -- infinite recursions.
3974 elsif not Comes_From_Source
(Expr
) then
3977 -- For a selected component, check the prefix
3979 elsif Nkind
(Expr
) = N_Selected_Component
then
3980 Check_Valid_Lvalue_Subscripts
(Prefix
(Expr
));
3983 -- Case of indexed component
3985 elsif Nkind
(Expr
) = N_Indexed_Component
then
3986 Apply_Subscript_Validity_Checks
(Expr
);
3988 -- Prefix may itself be or contain an indexed component, and these
3989 -- subscripts need checking as well.
3991 Check_Valid_Lvalue_Subscripts
(Prefix
(Expr
));
3993 end Check_Valid_Lvalue_Subscripts
;
3995 ----------------------------------
3996 -- Null_Exclusion_Static_Checks --
3997 ----------------------------------
3999 procedure Null_Exclusion_Static_Checks
(N
: Node_Id
) is
4000 Error_Node
: Node_Id
;
4002 Has_Null
: constant Boolean := Has_Null_Exclusion
(N
);
4003 K
: constant Node_Kind
:= Nkind
(N
);
4008 (Nkind_In
(K
, N_Component_Declaration
,
4009 N_Discriminant_Specification
,
4010 N_Function_Specification
,
4011 N_Object_Declaration
,
4012 N_Parameter_Specification
));
4014 if K
= N_Function_Specification
then
4015 Typ
:= Etype
(Defining_Entity
(N
));
4017 Typ
:= Etype
(Defining_Identifier
(N
));
4021 when N_Component_Declaration
=>
4022 if Present
(Access_Definition
(Component_Definition
(N
))) then
4023 Error_Node
:= Component_Definition
(N
);
4025 Error_Node
:= Subtype_Indication
(Component_Definition
(N
));
4028 when N_Discriminant_Specification
=>
4029 Error_Node
:= Discriminant_Type
(N
);
4031 when N_Function_Specification
=>
4032 Error_Node
:= Result_Definition
(N
);
4034 when N_Object_Declaration
=>
4035 Error_Node
:= Object_Definition
(N
);
4037 when N_Parameter_Specification
=>
4038 Error_Node
:= Parameter_Type
(N
);
4041 raise Program_Error
;
4046 -- Enforce legality rule 3.10 (13): A null exclusion can only be
4047 -- applied to an access [sub]type.
4049 if not Is_Access_Type
(Typ
) then
4051 ("`NOT NULL` allowed only for an access type", Error_Node
);
4053 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
4054 -- be applied to a [sub]type that does not exclude null already.
4056 elsif Can_Never_Be_Null
(Typ
)
4057 and then Comes_From_Source
(Typ
)
4060 ("`NOT NULL` not allowed (& already excludes null)",
4065 -- Check that null-excluding objects are always initialized, except for
4066 -- deferred constants, for which the expression will appear in the full
4069 if K
= N_Object_Declaration
4070 and then No
(Expression
(N
))
4071 and then not Constant_Present
(N
)
4072 and then not No_Initialization
(N
)
4074 -- Add an expression that assigns null. This node is needed by
4075 -- Apply_Compile_Time_Constraint_Error, which will replace this with
4076 -- a Constraint_Error node.
4078 Set_Expression
(N
, Make_Null
(Sloc
(N
)));
4079 Set_Etype
(Expression
(N
), Etype
(Defining_Identifier
(N
)));
4081 Apply_Compile_Time_Constraint_Error
4082 (N
=> Expression
(N
),
4084 "(Ada 2005) null-excluding objects must be initialized??",
4085 Reason
=> CE_Null_Not_Allowed
);
4088 -- Check that a null-excluding component, formal or object is not being
4089 -- assigned a null value. Otherwise generate a warning message and
4090 -- replace Expression (N) by an N_Constraint_Error node.
4092 if K
/= N_Function_Specification
then
4093 Expr
:= Expression
(N
);
4095 if Present
(Expr
) and then Known_Null
(Expr
) then
4097 when N_Component_Declaration
4098 | N_Discriminant_Specification
4100 Apply_Compile_Time_Constraint_Error
4103 "(Ada 2005) null not allowed in null-excluding "
4105 Reason
=> CE_Null_Not_Allowed
);
4107 when N_Object_Declaration
=>
4108 Apply_Compile_Time_Constraint_Error
4111 "(Ada 2005) null not allowed in null-excluding "
4113 Reason
=> CE_Null_Not_Allowed
);
4115 when N_Parameter_Specification
=>
4116 Apply_Compile_Time_Constraint_Error
4119 "(Ada 2005) null not allowed in null-excluding "
4121 Reason
=> CE_Null_Not_Allowed
);
4128 end Null_Exclusion_Static_Checks
;
4130 ----------------------------------
4131 -- Conditional_Statements_Begin --
4132 ----------------------------------
4134 procedure Conditional_Statements_Begin
is
4136 Saved_Checks_TOS
:= Saved_Checks_TOS
+ 1;
4138 -- If stack overflows, kill all checks, that way we know to simply reset
4139 -- the number of saved checks to zero on return. This should never occur
4142 if Saved_Checks_TOS
> Saved_Checks_Stack
'Last then
4145 -- In the normal case, we just make a new stack entry saving the current
4146 -- number of saved checks for a later restore.
4149 Saved_Checks_Stack
(Saved_Checks_TOS
) := Num_Saved_Checks
;
4151 if Debug_Flag_CC
then
4152 w
("Conditional_Statements_Begin: Num_Saved_Checks = ",
4156 end Conditional_Statements_Begin
;
4158 --------------------------------
4159 -- Conditional_Statements_End --
4160 --------------------------------
4162 procedure Conditional_Statements_End
is
4164 pragma Assert
(Saved_Checks_TOS
> 0);
4166 -- If the saved checks stack overflowed, then we killed all checks, so
4167 -- setting the number of saved checks back to zero is correct. This
4168 -- should never occur in practice.
4170 if Saved_Checks_TOS
> Saved_Checks_Stack
'Last then
4171 Num_Saved_Checks
:= 0;
4173 -- In the normal case, restore the number of saved checks from the top
4177 Num_Saved_Checks
:= Saved_Checks_Stack
(Saved_Checks_TOS
);
4179 if Debug_Flag_CC
then
4180 w
("Conditional_Statements_End: Num_Saved_Checks = ",
4185 Saved_Checks_TOS
:= Saved_Checks_TOS
- 1;
4186 end Conditional_Statements_End
;
4188 -------------------------
4189 -- Convert_From_Bignum --
4190 -------------------------
4192 function Convert_From_Bignum
(N
: Node_Id
) return Node_Id
is
4193 Loc
: constant Source_Ptr
:= Sloc
(N
);
4196 pragma Assert
(Is_RTE
(Etype
(N
), RE_Bignum
));
4198 -- Construct call From Bignum
4201 Make_Function_Call
(Loc
,
4203 New_Occurrence_Of
(RTE
(RE_From_Bignum
), Loc
),
4204 Parameter_Associations
=> New_List
(Relocate_Node
(N
)));
4205 end Convert_From_Bignum
;
4207 -----------------------
4208 -- Convert_To_Bignum --
4209 -----------------------
4211 function Convert_To_Bignum
(N
: Node_Id
) return Node_Id
is
4212 Loc
: constant Source_Ptr
:= Sloc
(N
);
4215 -- Nothing to do if Bignum already except call Relocate_Node
4217 if Is_RTE
(Etype
(N
), RE_Bignum
) then
4218 return Relocate_Node
(N
);
4220 -- Otherwise construct call to To_Bignum, converting the operand to the
4221 -- required Long_Long_Integer form.
4224 pragma Assert
(Is_Signed_Integer_Type
(Etype
(N
)));
4226 Make_Function_Call
(Loc
,
4228 New_Occurrence_Of
(RTE
(RE_To_Bignum
), Loc
),
4229 Parameter_Associations
=> New_List
(
4230 Convert_To
(Standard_Long_Long_Integer
, Relocate_Node
(N
))));
4232 end Convert_To_Bignum
;
4234 ---------------------
4235 -- Determine_Range --
4236 ---------------------
4238 Cache_Size
: constant := 2 ** 10;
4239 type Cache_Index
is range 0 .. Cache_Size
- 1;
4240 -- Determine size of below cache (power of 2 is more efficient)
4242 Determine_Range_Cache_N
: array (Cache_Index
) of Node_Id
;
4243 Determine_Range_Cache_V
: array (Cache_Index
) of Boolean;
4244 Determine_Range_Cache_Lo
: array (Cache_Index
) of Uint
;
4245 Determine_Range_Cache_Hi
: array (Cache_Index
) of Uint
;
4246 Determine_Range_Cache_Lo_R
: array (Cache_Index
) of Ureal
;
4247 Determine_Range_Cache_Hi_R
: array (Cache_Index
) of Ureal
;
4248 -- The above arrays are used to implement a small direct cache for
4249 -- Determine_Range and Determine_Range_R calls. Because of the way these
4250 -- subprograms recursively traces subexpressions, and because overflow
4251 -- checking calls the routine on the way up the tree, a quadratic behavior
4252 -- can otherwise be encountered in large expressions. The cache entry for
4253 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4254 -- by checking the actual node value stored there. The Range_Cache_V array
4255 -- records the setting of Assume_Valid for the cache entry.
4257 procedure Determine_Range
4262 Assume_Valid
: Boolean := False)
4264 Typ
: Entity_Id
:= Etype
(N
);
4265 -- Type to use, may get reset to base type for possibly invalid entity
4269 -- Lo and Hi bounds of left operand
4273 -- Lo and Hi bounds of right (or only) operand
4276 -- Temp variable used to hold a bound node
4279 -- High bound of base type of expression
4283 -- Refined values for low and high bounds, after tightening
4286 -- Used in lower level calls to indicate if call succeeded
4288 Cindex
: Cache_Index
;
4289 -- Used to search cache
4294 function OK_Operands
return Boolean;
4295 -- Used for binary operators. Determines the ranges of the left and
4296 -- right operands, and if they are both OK, returns True, and puts
4297 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4303 function OK_Operands
return Boolean is
4306 (Left_Opnd
(N
), OK1
, Lo_Left
, Hi_Left
, Assume_Valid
);
4313 (Right_Opnd
(N
), OK1
, Lo_Right
, Hi_Right
, Assume_Valid
);
4317 -- Start of processing for Determine_Range
4320 -- Prevent junk warnings by initializing range variables
4327 -- For temporary constants internally generated to remove side effects
4328 -- we must use the corresponding expression to determine the range of
4329 -- the expression. But note that the expander can also generate
4330 -- constants in other cases, including deferred constants.
4332 if Is_Entity_Name
(N
)
4333 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
4334 and then Ekind
(Entity
(N
)) = E_Constant
4335 and then Is_Internal_Name
(Chars
(Entity
(N
)))
4337 if Present
(Expression
(Parent
(Entity
(N
)))) then
4339 (Expression
(Parent
(Entity
(N
))), OK
, Lo
, Hi
, Assume_Valid
);
4341 elsif Present
(Full_View
(Entity
(N
))) then
4343 (Expression
(Parent
(Full_View
(Entity
(N
)))),
4344 OK
, Lo
, Hi
, Assume_Valid
);
4352 -- If type is not defined, we can't determine its range
4356 -- We don't deal with anything except discrete types
4358 or else not Is_Discrete_Type
(Typ
)
4360 -- Ignore type for which an error has been posted, since range in
4361 -- this case may well be a bogosity deriving from the error. Also
4362 -- ignore if error posted on the reference node.
4364 or else Error_Posted
(N
) or else Error_Posted
(Typ
)
4370 -- For all other cases, we can determine the range
4374 -- If value is compile time known, then the possible range is the one
4375 -- value that we know this expression definitely has.
4377 if Compile_Time_Known_Value
(N
) then
4378 Lo
:= Expr_Value
(N
);
4383 -- Return if already in the cache
4385 Cindex
:= Cache_Index
(N
mod Cache_Size
);
4387 if Determine_Range_Cache_N
(Cindex
) = N
4389 Determine_Range_Cache_V
(Cindex
) = Assume_Valid
4391 Lo
:= Determine_Range_Cache_Lo
(Cindex
);
4392 Hi
:= Determine_Range_Cache_Hi
(Cindex
);
4396 -- Otherwise, start by finding the bounds of the type of the expression,
4397 -- the value cannot be outside this range (if it is, then we have an
4398 -- overflow situation, which is a separate check, we are talking here
4399 -- only about the expression value).
4401 -- First a check, never try to find the bounds of a generic type, since
4402 -- these bounds are always junk values, and it is only valid to look at
4403 -- the bounds in an instance.
4405 if Is_Generic_Type
(Typ
) then
4410 -- First step, change to use base type unless we know the value is valid
4412 if (Is_Entity_Name
(N
) and then Is_Known_Valid
(Entity
(N
)))
4413 or else Assume_No_Invalid_Values
4414 or else Assume_Valid
4418 Typ
:= Underlying_Type
(Base_Type
(Typ
));
4421 -- Retrieve the base type. Handle the case where the base type is a
4422 -- private enumeration type.
4424 Btyp
:= Base_Type
(Typ
);
4426 if Is_Private_Type
(Btyp
) and then Present
(Full_View
(Btyp
)) then
4427 Btyp
:= Full_View
(Btyp
);
4430 -- We use the actual bound unless it is dynamic, in which case use the
4431 -- corresponding base type bound if possible. If we can't get a bound
4432 -- then we figure we can't determine the range (a peculiar case, that
4433 -- perhaps cannot happen, but there is no point in bombing in this
4434 -- optimization circuit.
4436 -- First the low bound
4438 Bound
:= Type_Low_Bound
(Typ
);
4440 if Compile_Time_Known_Value
(Bound
) then
4441 Lo
:= Expr_Value
(Bound
);
4443 elsif Compile_Time_Known_Value
(Type_Low_Bound
(Btyp
)) then
4444 Lo
:= Expr_Value
(Type_Low_Bound
(Btyp
));
4451 -- Now the high bound
4453 Bound
:= Type_High_Bound
(Typ
);
4455 -- We need the high bound of the base type later on, and this should
4456 -- always be compile time known. Again, it is not clear that this
4457 -- can ever be false, but no point in bombing.
4459 if Compile_Time_Known_Value
(Type_High_Bound
(Btyp
)) then
4460 Hbound
:= Expr_Value
(Type_High_Bound
(Btyp
));
4468 -- If we have a static subtype, then that may have a tighter bound so
4469 -- use the upper bound of the subtype instead in this case.
4471 if Compile_Time_Known_Value
(Bound
) then
4472 Hi
:= Expr_Value
(Bound
);
4475 -- We may be able to refine this value in certain situations. If any
4476 -- refinement is possible, then Lor and Hir are set to possibly tighter
4477 -- bounds, and OK1 is set to True.
4481 -- For unary plus, result is limited by range of operand
4485 (Right_Opnd
(N
), OK1
, Lor
, Hir
, Assume_Valid
);
4487 -- For unary minus, determine range of operand, and negate it
4491 (Right_Opnd
(N
), OK1
, Lo_Right
, Hi_Right
, Assume_Valid
);
4498 -- For binary addition, get range of each operand and do the
4499 -- addition to get the result range.
4503 Lor
:= Lo_Left
+ Lo_Right
;
4504 Hir
:= Hi_Left
+ Hi_Right
;
4507 -- Division is tricky. The only case we consider is where the right
4508 -- operand is a positive constant, and in this case we simply divide
4509 -- the bounds of the left operand
4513 if Lo_Right
= Hi_Right
4514 and then Lo_Right
> 0
4516 Lor
:= Lo_Left
/ Lo_Right
;
4517 Hir
:= Hi_Left
/ Lo_Right
;
4523 -- For binary subtraction, get range of each operand and do the worst
4524 -- case subtraction to get the result range.
4526 when N_Op_Subtract
=>
4528 Lor
:= Lo_Left
- Hi_Right
;
4529 Hir
:= Hi_Left
- Lo_Right
;
4532 -- For MOD, if right operand is a positive constant, then result must
4533 -- be in the allowable range of mod results.
4537 if Lo_Right
= Hi_Right
4538 and then Lo_Right
/= 0
4540 if Lo_Right
> 0 then
4542 Hir
:= Lo_Right
- 1;
4544 else -- Lo_Right < 0
4545 Lor
:= Lo_Right
+ 1;
4554 -- For REM, if right operand is a positive constant, then result must
4555 -- be in the allowable range of mod results.
4559 if Lo_Right
= Hi_Right
and then Lo_Right
/= 0 then
4561 Dval
: constant Uint
:= (abs Lo_Right
) - 1;
4564 -- The sign of the result depends on the sign of the
4565 -- dividend (but not on the sign of the divisor, hence
4566 -- the abs operation above).
4586 -- Attribute reference cases
4588 when N_Attribute_Reference
=>
4589 case Attribute_Name
(N
) is
4591 -- For Pos/Val attributes, we can refine the range using the
4592 -- possible range of values of the attribute expression.
4598 (First
(Expressions
(N
)), OK1
, Lor
, Hir
, Assume_Valid
);
4600 -- For Length attribute, use the bounds of the corresponding
4601 -- index type to refine the range.
4605 Atyp
: Entity_Id
:= Etype
(Prefix
(N
));
4613 if Is_Access_Type
(Atyp
) then
4614 Atyp
:= Designated_Type
(Atyp
);
4617 -- For string literal, we know exact value
4619 if Ekind
(Atyp
) = E_String_Literal_Subtype
then
4621 Lo
:= String_Literal_Length
(Atyp
);
4622 Hi
:= String_Literal_Length
(Atyp
);
4626 -- Otherwise check for expression given
4628 if No
(Expressions
(N
)) then
4632 UI_To_Int
(Expr_Value
(First
(Expressions
(N
))));
4635 Indx
:= First_Index
(Atyp
);
4636 for J
in 2 .. Inum
loop
4637 Indx
:= Next_Index
(Indx
);
4640 -- If the index type is a formal type or derived from
4641 -- one, the bounds are not static.
4643 if Is_Generic_Type
(Root_Type
(Etype
(Indx
))) then
4649 (Type_Low_Bound
(Etype
(Indx
)), OK1
, LL
, LU
,
4654 (Type_High_Bound
(Etype
(Indx
)), OK1
, UL
, UU
,
4659 -- The maximum value for Length is the biggest
4660 -- possible gap between the values of the bounds.
4661 -- But of course, this value cannot be negative.
4663 Hir
:= UI_Max
(Uint_0
, UU
- LL
+ 1);
4665 -- For constrained arrays, the minimum value for
4666 -- Length is taken from the actual value of the
4667 -- bounds, since the index will be exactly of this
4670 if Is_Constrained
(Atyp
) then
4671 Lor
:= UI_Max
(Uint_0
, UL
- LU
+ 1);
4673 -- For an unconstrained array, the minimum value
4674 -- for length is always zero.
4683 -- No special handling for other attributes
4684 -- Probably more opportunities exist here???
4691 -- For type conversion from one discrete type to another, we can
4692 -- refine the range using the converted value.
4694 when N_Type_Conversion
=>
4695 Determine_Range
(Expression
(N
), OK1
, Lor
, Hir
, Assume_Valid
);
4697 -- Nothing special to do for all other expression kinds
4705 -- At this stage, if OK1 is true, then we know that the actual result of
4706 -- the computed expression is in the range Lor .. Hir. We can use this
4707 -- to restrict the possible range of results.
4711 -- If the refined value of the low bound is greater than the type
4712 -- low bound, then reset it to the more restrictive value. However,
4713 -- we do NOT do this for the case of a modular type where the
4714 -- possible upper bound on the value is above the base type high
4715 -- bound, because that means the result could wrap.
4718 and then not (Is_Modular_Integer_Type
(Typ
) and then Hir
> Hbound
)
4723 -- Similarly, if the refined value of the high bound is less than the
4724 -- value so far, then reset it to the more restrictive value. Again,
4725 -- we do not do this if the refined low bound is negative for a
4726 -- modular type, since this would wrap.
4729 and then not (Is_Modular_Integer_Type
(Typ
) and then Lor
< Uint_0
)
4735 -- Set cache entry for future call and we are all done
4737 Determine_Range_Cache_N
(Cindex
) := N
;
4738 Determine_Range_Cache_V
(Cindex
) := Assume_Valid
;
4739 Determine_Range_Cache_Lo
(Cindex
) := Lo
;
4740 Determine_Range_Cache_Hi
(Cindex
) := Hi
;
4743 -- If any exception occurs, it means that we have some bug in the compiler,
4744 -- possibly triggered by a previous error, or by some unforeseen peculiar
4745 -- occurrence. However, this is only an optimization attempt, so there is
4746 -- really no point in crashing the compiler. Instead we just decide, too
4747 -- bad, we can't figure out a range in this case after all.
4752 -- Debug flag K disables this behavior (useful for debugging)
4754 if Debug_Flag_K
then
4762 end Determine_Range
;
4764 -----------------------
4765 -- Determine_Range_R --
4766 -----------------------
4768 procedure Determine_Range_R
4773 Assume_Valid
: Boolean := False)
4775 Typ
: Entity_Id
:= Etype
(N
);
4776 -- Type to use, may get reset to base type for possibly invalid entity
4780 -- Lo and Hi bounds of left operand
4784 -- Lo and Hi bounds of right (or only) operand
4787 -- Temp variable used to hold a bound node
4790 -- High bound of base type of expression
4794 -- Refined values for low and high bounds, after tightening
4797 -- Used in lower level calls to indicate if call succeeded
4799 Cindex
: Cache_Index
;
4800 -- Used to search cache
4805 function OK_Operands
return Boolean;
4806 -- Used for binary operators. Determines the ranges of the left and
4807 -- right operands, and if they are both OK, returns True, and puts
4808 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4810 function Round_Machine
(B
: Ureal
) return Ureal
;
4811 -- B is a real bound. Round it using mode Round_Even.
4817 function OK_Operands
return Boolean is
4820 (Left_Opnd
(N
), OK1
, Lo_Left
, Hi_Left
, Assume_Valid
);
4827 (Right_Opnd
(N
), OK1
, Lo_Right
, Hi_Right
, Assume_Valid
);
4835 function Round_Machine
(B
: Ureal
) return Ureal
is
4837 return Machine
(Typ
, B
, Round_Even
, N
);
4840 -- Start of processing for Determine_Range_R
4843 -- Prevent junk warnings by initializing range variables
4850 -- For temporary constants internally generated to remove side effects
4851 -- we must use the corresponding expression to determine the range of
4852 -- the expression. But note that the expander can also generate
4853 -- constants in other cases, including deferred constants.
4855 if Is_Entity_Name
(N
)
4856 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
4857 and then Ekind
(Entity
(N
)) = E_Constant
4858 and then Is_Internal_Name
(Chars
(Entity
(N
)))
4860 if Present
(Expression
(Parent
(Entity
(N
)))) then
4862 (Expression
(Parent
(Entity
(N
))), OK
, Lo
, Hi
, Assume_Valid
);
4864 elsif Present
(Full_View
(Entity
(N
))) then
4866 (Expression
(Parent
(Full_View
(Entity
(N
)))),
4867 OK
, Lo
, Hi
, Assume_Valid
);
4876 -- If type is not defined, we can't determine its range
4880 -- We don't deal with anything except IEEE floating-point types
4882 or else not Is_Floating_Point_Type
(Typ
)
4883 or else Float_Rep
(Typ
) /= IEEE_Binary
4885 -- Ignore type for which an error has been posted, since range in
4886 -- this case may well be a bogosity deriving from the error. Also
4887 -- ignore if error posted on the reference node.
4889 or else Error_Posted
(N
) or else Error_Posted
(Typ
)
4895 -- For all other cases, we can determine the range
4899 -- If value is compile time known, then the possible range is the one
4900 -- value that we know this expression definitely has.
4902 if Compile_Time_Known_Value
(N
) then
4903 Lo
:= Expr_Value_R
(N
);
4908 -- Return if already in the cache
4910 Cindex
:= Cache_Index
(N
mod Cache_Size
);
4912 if Determine_Range_Cache_N
(Cindex
) = N
4914 Determine_Range_Cache_V
(Cindex
) = Assume_Valid
4916 Lo
:= Determine_Range_Cache_Lo_R
(Cindex
);
4917 Hi
:= Determine_Range_Cache_Hi_R
(Cindex
);
4921 -- Otherwise, start by finding the bounds of the type of the expression,
4922 -- the value cannot be outside this range (if it is, then we have an
4923 -- overflow situation, which is a separate check, we are talking here
4924 -- only about the expression value).
4926 -- First a check, never try to find the bounds of a generic type, since
4927 -- these bounds are always junk values, and it is only valid to look at
4928 -- the bounds in an instance.
4930 if Is_Generic_Type
(Typ
) then
4935 -- First step, change to use base type unless we know the value is valid
4937 if (Is_Entity_Name
(N
) and then Is_Known_Valid
(Entity
(N
)))
4938 or else Assume_No_Invalid_Values
4939 or else Assume_Valid
4943 Typ
:= Underlying_Type
(Base_Type
(Typ
));
4946 -- Retrieve the base type. Handle the case where the base type is a
4949 Btyp
:= Base_Type
(Typ
);
4951 if Is_Private_Type
(Btyp
) and then Present
(Full_View
(Btyp
)) then
4952 Btyp
:= Full_View
(Btyp
);
4955 -- We use the actual bound unless it is dynamic, in which case use the
4956 -- corresponding base type bound if possible. If we can't get a bound
4957 -- then we figure we can't determine the range (a peculiar case, that
4958 -- perhaps cannot happen, but there is no point in bombing in this
4959 -- optimization circuit).
4961 -- First the low bound
4963 Bound
:= Type_Low_Bound
(Typ
);
4965 if Compile_Time_Known_Value
(Bound
) then
4966 Lo
:= Expr_Value_R
(Bound
);
4968 elsif Compile_Time_Known_Value
(Type_Low_Bound
(Btyp
)) then
4969 Lo
:= Expr_Value_R
(Type_Low_Bound
(Btyp
));
4976 -- Now the high bound
4978 Bound
:= Type_High_Bound
(Typ
);
4980 -- We need the high bound of the base type later on, and this should
4981 -- always be compile time known. Again, it is not clear that this
4982 -- can ever be false, but no point in bombing.
4984 if Compile_Time_Known_Value
(Type_High_Bound
(Btyp
)) then
4985 Hbound
:= Expr_Value_R
(Type_High_Bound
(Btyp
));
4993 -- If we have a static subtype, then that may have a tighter bound so
4994 -- use the upper bound of the subtype instead in this case.
4996 if Compile_Time_Known_Value
(Bound
) then
4997 Hi
:= Expr_Value_R
(Bound
);
5000 -- We may be able to refine this value in certain situations. If any
5001 -- refinement is possible, then Lor and Hir are set to possibly tighter
5002 -- bounds, and OK1 is set to True.
5006 -- For unary plus, result is limited by range of operand
5010 (Right_Opnd
(N
), OK1
, Lor
, Hir
, Assume_Valid
);
5012 -- For unary minus, determine range of operand, and negate it
5016 (Right_Opnd
(N
), OK1
, Lo_Right
, Hi_Right
, Assume_Valid
);
5023 -- For binary addition, get range of each operand and do the
5024 -- addition to get the result range.
5028 Lor
:= Round_Machine
(Lo_Left
+ Lo_Right
);
5029 Hir
:= Round_Machine
(Hi_Left
+ Hi_Right
);
5032 -- For binary subtraction, get range of each operand and do the worst
5033 -- case subtraction to get the result range.
5035 when N_Op_Subtract
=>
5037 Lor
:= Round_Machine
(Lo_Left
- Hi_Right
);
5038 Hir
:= Round_Machine
(Hi_Left
- Lo_Right
);
5041 -- For multiplication, get range of each operand and do the
5042 -- four multiplications to get the result range.
5044 when N_Op_Multiply
=>
5047 M1
: constant Ureal
:= Round_Machine
(Lo_Left
* Lo_Right
);
5048 M2
: constant Ureal
:= Round_Machine
(Lo_Left
* Hi_Right
);
5049 M3
: constant Ureal
:= Round_Machine
(Hi_Left
* Lo_Right
);
5050 M4
: constant Ureal
:= Round_Machine
(Hi_Left
* Hi_Right
);
5052 Lor
:= UR_Min
(UR_Min
(M1
, M2
), UR_Min
(M3
, M4
));
5053 Hir
:= UR_Max
(UR_Max
(M1
, M2
), UR_Max
(M3
, M4
));
5057 -- For division, consider separately the cases where the right
5058 -- operand is positive or negative. Otherwise, the right operand
5059 -- can be arbitrarily close to zero, so the result is likely to
5060 -- be unbounded in one direction, do not attempt to compute it.
5065 -- Right operand is positive
5067 if Lo_Right
> Ureal_0
then
5069 -- If the low bound of the left operand is negative, obtain
5070 -- the overall low bound by dividing it by the smallest
5071 -- value of the right operand, and otherwise by the largest
5072 -- value of the right operand.
5074 if Lo_Left
< Ureal_0
then
5075 Lor
:= Round_Machine
(Lo_Left
/ Lo_Right
);
5077 Lor
:= Round_Machine
(Lo_Left
/ Hi_Right
);
5080 -- If the high bound of the left operand is negative, obtain
5081 -- the overall high bound by dividing it by the largest
5082 -- value of the right operand, and otherwise by the
5083 -- smallest value of the right operand.
5085 if Hi_Left
< Ureal_0
then
5086 Hir
:= Round_Machine
(Hi_Left
/ Hi_Right
);
5088 Hir
:= Round_Machine
(Hi_Left
/ Lo_Right
);
5091 -- Right operand is negative
5093 elsif Hi_Right
< Ureal_0
then
5095 -- If the low bound of the left operand is negative, obtain
5096 -- the overall low bound by dividing it by the largest
5097 -- value of the right operand, and otherwise by the smallest
5098 -- value of the right operand.
5100 if Lo_Left
< Ureal_0
then
5101 Lor
:= Round_Machine
(Lo_Left
/ Hi_Right
);
5103 Lor
:= Round_Machine
(Lo_Left
/ Lo_Right
);
5106 -- If the high bound of the left operand is negative, obtain
5107 -- the overall high bound by dividing it by the smallest
5108 -- value of the right operand, and otherwise by the
5109 -- largest value of the right operand.
5111 if Hi_Left
< Ureal_0
then
5112 Hir
:= Round_Machine
(Hi_Left
/ Lo_Right
);
5114 Hir
:= Round_Machine
(Hi_Left
/ Hi_Right
);
5122 -- For type conversion from one floating-point type to another, we
5123 -- can refine the range using the converted value.
5125 when N_Type_Conversion
=>
5126 Determine_Range_R
(Expression
(N
), OK1
, Lor
, Hir
, Assume_Valid
);
5128 -- Nothing special to do for all other expression kinds
5136 -- At this stage, if OK1 is true, then we know that the actual result of
5137 -- the computed expression is in the range Lor .. Hir. We can use this
5138 -- to restrict the possible range of results.
5142 -- If the refined value of the low bound is greater than the type
5143 -- low bound, then reset it to the more restrictive value.
5149 -- Similarly, if the refined value of the high bound is less than the
5150 -- value so far, then reset it to the more restrictive value.
5157 -- Set cache entry for future call and we are all done
5159 Determine_Range_Cache_N
(Cindex
) := N
;
5160 Determine_Range_Cache_V
(Cindex
) := Assume_Valid
;
5161 Determine_Range_Cache_Lo_R
(Cindex
) := Lo
;
5162 Determine_Range_Cache_Hi_R
(Cindex
) := Hi
;
5165 -- If any exception occurs, it means that we have some bug in the compiler,
5166 -- possibly triggered by a previous error, or by some unforeseen peculiar
5167 -- occurrence. However, this is only an optimization attempt, so there is
5168 -- really no point in crashing the compiler. Instead we just decide, too
5169 -- bad, we can't figure out a range in this case after all.
5174 -- Debug flag K disables this behavior (useful for debugging)
5176 if Debug_Flag_K
then
5184 end Determine_Range_R
;
5186 ------------------------------------
5187 -- Discriminant_Checks_Suppressed --
5188 ------------------------------------
5190 function Discriminant_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5193 if Is_Unchecked_Union
(E
) then
5195 elsif Checks_May_Be_Suppressed
(E
) then
5196 return Is_Check_Suppressed
(E
, Discriminant_Check
);
5200 return Scope_Suppress
.Suppress
(Discriminant_Check
);
5201 end Discriminant_Checks_Suppressed
;
5203 --------------------------------
5204 -- Division_Checks_Suppressed --
5205 --------------------------------
5207 function Division_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5209 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
5210 return Is_Check_Suppressed
(E
, Division_Check
);
5212 return Scope_Suppress
.Suppress
(Division_Check
);
5214 end Division_Checks_Suppressed
;
5216 --------------------------------------
5217 -- Duplicated_Tag_Checks_Suppressed --
5218 --------------------------------------
5220 function Duplicated_Tag_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5222 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
5223 return Is_Check_Suppressed
(E
, Duplicated_Tag_Check
);
5225 return Scope_Suppress
.Suppress
(Duplicated_Tag_Check
);
5227 end Duplicated_Tag_Checks_Suppressed
;
5229 -----------------------------------
5230 -- Elaboration_Checks_Suppressed --
5231 -----------------------------------
5233 function Elaboration_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
5235 -- The complication in this routine is that if we are in the dynamic
5236 -- model of elaboration, we also check All_Checks, since All_Checks
5237 -- does not set Elaboration_Check explicitly.
5240 if Kill_Elaboration_Checks
(E
) then
5243 elsif Checks_May_Be_Suppressed
(E
) then
5244 if Is_Check_Suppressed
(E
, Elaboration_Check
) then
5246 elsif Dynamic_Elaboration_Checks
then
5247 return Is_Check_Suppressed
(E
, All_Checks
);
5254 if Scope_Suppress
.Suppress
(Elaboration_Check
) then
5256 elsif Dynamic_Elaboration_Checks
then
5257 return Scope_Suppress
.Suppress
(All_Checks
);
5261 end Elaboration_Checks_Suppressed
;
5263 ---------------------------
5264 -- Enable_Overflow_Check --
5265 ---------------------------
5267 procedure Enable_Overflow_Check
(N
: Node_Id
) is
5268 Typ
: constant Entity_Id
:= Base_Type
(Etype
(N
));
5269 Mode
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
5277 Do_Ovflow_Check
: Boolean;
5280 if Debug_Flag_CC
then
5281 w
("Enable_Overflow_Check for node ", Int
(N
));
5282 Write_Str
(" Source location = ");
5287 -- No check if overflow checks suppressed for type of node
5289 if Overflow_Checks_Suppressed
(Etype
(N
)) then
5292 -- Nothing to do for unsigned integer types, which do not overflow
5294 elsif Is_Modular_Integer_Type
(Typ
) then
5298 -- This is the point at which processing for STRICT mode diverges
5299 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
5300 -- probably more extreme that it needs to be, but what is going on here
5301 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
5302 -- to leave the processing for STRICT mode untouched. There were
5303 -- two reasons for this. First it avoided any incompatible change of
5304 -- behavior. Second, it guaranteed that STRICT mode continued to be
5307 -- The big difference is that in STRICT mode there is a fair amount of
5308 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
5309 -- know that no check is needed. We skip all that in the two new modes,
5310 -- since really overflow checking happens over a whole subtree, and we
5311 -- do the corresponding optimizations later on when applying the checks.
5313 if Mode
in Minimized_Or_Eliminated
then
5314 if not (Overflow_Checks_Suppressed
(Etype
(N
)))
5315 and then not (Is_Entity_Name
(N
)
5316 and then Overflow_Checks_Suppressed
(Entity
(N
)))
5318 Activate_Overflow_Check
(N
);
5321 if Debug_Flag_CC
then
5322 w
("Minimized/Eliminated mode");
5328 -- Remainder of processing is for STRICT case, and is unchanged from
5329 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
5331 -- Nothing to do if the range of the result is known OK. We skip this
5332 -- for conversions, since the caller already did the check, and in any
5333 -- case the condition for deleting the check for a type conversion is
5336 if Nkind
(N
) /= N_Type_Conversion
then
5337 Determine_Range
(N
, OK
, Lo
, Hi
, Assume_Valid
=> True);
5339 -- Note in the test below that we assume that the range is not OK
5340 -- if a bound of the range is equal to that of the type. That's not
5341 -- quite accurate but we do this for the following reasons:
5343 -- a) The way that Determine_Range works, it will typically report
5344 -- the bounds of the value as being equal to the bounds of the
5345 -- type, because it either can't tell anything more precise, or
5346 -- does not think it is worth the effort to be more precise.
5348 -- b) It is very unusual to have a situation in which this would
5349 -- generate an unnecessary overflow check (an example would be
5350 -- a subtype with a range 0 .. Integer'Last - 1 to which the
5351 -- literal value one is added).
5353 -- c) The alternative is a lot of special casing in this routine
5354 -- which would partially duplicate Determine_Range processing.
5357 Do_Ovflow_Check
:= True;
5359 -- Note that the following checks are quite deliberately > and <
5360 -- rather than >= and <= as explained above.
5362 if Lo
> Expr_Value
(Type_Low_Bound
(Typ
))
5364 Hi
< Expr_Value
(Type_High_Bound
(Typ
))
5366 Do_Ovflow_Check
:= False;
5368 -- Despite the comments above, it is worth dealing specially with
5369 -- division specially. The only case where integer division can
5370 -- overflow is (largest negative number) / (-1). So we will do
5371 -- an extra range analysis to see if this is possible.
5373 elsif Nkind
(N
) = N_Op_Divide
then
5375 (Left_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5377 if OK
and then Lo
> Expr_Value
(Type_Low_Bound
(Typ
)) then
5378 Do_Ovflow_Check
:= False;
5382 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5384 if OK
and then (Lo
> Uint_Minus_1
5388 Do_Ovflow_Check
:= False;
5393 -- If no overflow check required, we are done
5395 if not Do_Ovflow_Check
then
5396 if Debug_Flag_CC
then
5397 w
("No overflow check required");
5405 -- If not in optimizing mode, set flag and we are done. We are also done
5406 -- (and just set the flag) if the type is not a discrete type, since it
5407 -- is not worth the effort to eliminate checks for other than discrete
5408 -- types. In addition, we take this same path if we have stored the
5409 -- maximum number of checks possible already (a very unlikely situation,
5410 -- but we do not want to blow up).
5412 if Optimization_Level
= 0
5413 or else not Is_Discrete_Type
(Etype
(N
))
5414 or else Num_Saved_Checks
= Saved_Checks
'Last
5416 Activate_Overflow_Check
(N
);
5418 if Debug_Flag_CC
then
5419 w
("Optimization off");
5425 -- Otherwise evaluate and check the expression
5430 Target_Type
=> Empty
,
5436 if Debug_Flag_CC
then
5437 w
("Called Find_Check");
5441 w
(" Check_Num = ", Chk
);
5442 w
(" Ent = ", Int
(Ent
));
5443 Write_Str
(" Ofs = ");
5448 -- If check is not of form to optimize, then set flag and we are done
5451 Activate_Overflow_Check
(N
);
5455 -- If check is already performed, then return without setting flag
5458 if Debug_Flag_CC
then
5459 w
("Check suppressed!");
5465 -- Here we will make a new entry for the new check
5467 Activate_Overflow_Check
(N
);
5468 Num_Saved_Checks
:= Num_Saved_Checks
+ 1;
5469 Saved_Checks
(Num_Saved_Checks
) :=
5474 Target_Type
=> Empty
);
5476 if Debug_Flag_CC
then
5477 w
("Make new entry, check number = ", Num_Saved_Checks
);
5478 w
(" Entity = ", Int
(Ent
));
5479 Write_Str
(" Offset = ");
5481 w
(" Check_Type = O");
5482 w
(" Target_Type = Empty");
5485 -- If we get an exception, then something went wrong, probably because of
5486 -- an error in the structure of the tree due to an incorrect program. Or
5487 -- it may be a bug in the optimization circuit. In either case the safest
5488 -- thing is simply to set the check flag unconditionally.
5492 Activate_Overflow_Check
(N
);
5494 if Debug_Flag_CC
then
5495 w
(" exception occurred, overflow flag set");
5499 end Enable_Overflow_Check
;
5501 ------------------------
5502 -- Enable_Range_Check --
5503 ------------------------
5505 procedure Enable_Range_Check
(N
: Node_Id
) is
5514 -- Return if unchecked type conversion with range check killed. In this
5515 -- case we never set the flag (that's what Kill_Range_Check is about).
5517 if Nkind
(N
) = N_Unchecked_Type_Conversion
5518 and then Kill_Range_Check
(N
)
5523 -- Do not set range check flag if parent is assignment statement or
5524 -- object declaration with Suppress_Assignment_Checks flag set
5526 if Nkind_In
(Parent
(N
), N_Assignment_Statement
, N_Object_Declaration
)
5527 and then Suppress_Assignment_Checks
(Parent
(N
))
5532 -- Check for various cases where we should suppress the range check
5534 -- No check if range checks suppressed for type of node
5536 if Present
(Etype
(N
)) and then Range_Checks_Suppressed
(Etype
(N
)) then
5539 -- No check if node is an entity name, and range checks are suppressed
5540 -- for this entity, or for the type of this entity.
5542 elsif Is_Entity_Name
(N
)
5543 and then (Range_Checks_Suppressed
(Entity
(N
))
5544 or else Range_Checks_Suppressed
(Etype
(Entity
(N
))))
5548 -- No checks if index of array, and index checks are suppressed for
5549 -- the array object or the type of the array.
5551 elsif Nkind
(Parent
(N
)) = N_Indexed_Component
then
5553 Pref
: constant Node_Id
:= Prefix
(Parent
(N
));
5555 if Is_Entity_Name
(Pref
)
5556 and then Index_Checks_Suppressed
(Entity
(Pref
))
5559 elsif Index_Checks_Suppressed
(Etype
(Pref
)) then
5565 -- Debug trace output
5567 if Debug_Flag_CC
then
5568 w
("Enable_Range_Check for node ", Int
(N
));
5569 Write_Str
(" Source location = ");
5574 -- If not in optimizing mode, set flag and we are done. We are also done
5575 -- (and just set the flag) if the type is not a discrete type, since it
5576 -- is not worth the effort to eliminate checks for other than discrete
5577 -- types. In addition, we take this same path if we have stored the
5578 -- maximum number of checks possible already (a very unlikely situation,
5579 -- but we do not want to blow up).
5581 if Optimization_Level
= 0
5582 or else No
(Etype
(N
))
5583 or else not Is_Discrete_Type
(Etype
(N
))
5584 or else Num_Saved_Checks
= Saved_Checks
'Last
5586 Activate_Range_Check
(N
);
5588 if Debug_Flag_CC
then
5589 w
("Optimization off");
5595 -- Otherwise find out the target type
5599 -- For assignment, use left side subtype
5601 if Nkind
(P
) = N_Assignment_Statement
5602 and then Expression
(P
) = N
5604 Ttyp
:= Etype
(Name
(P
));
5606 -- For indexed component, use subscript subtype
5608 elsif Nkind
(P
) = N_Indexed_Component
then
5615 Atyp
:= Etype
(Prefix
(P
));
5617 if Is_Access_Type
(Atyp
) then
5618 Atyp
:= Designated_Type
(Atyp
);
5620 -- If the prefix is an access to an unconstrained array,
5621 -- perform check unconditionally: it depends on the bounds of
5622 -- an object and we cannot currently recognize whether the test
5623 -- may be redundant.
5625 if not Is_Constrained
(Atyp
) then
5626 Activate_Range_Check
(N
);
5630 -- Ditto if prefix is simply an unconstrained array. We used
5631 -- to think this case was OK, if the prefix was not an explicit
5632 -- dereference, but we have now seen a case where this is not
5633 -- true, so it is safer to just suppress the optimization in this
5634 -- case. The back end is getting better at eliminating redundant
5635 -- checks in any case, so the loss won't be important.
5637 elsif Is_Array_Type
(Atyp
)
5638 and then not Is_Constrained
(Atyp
)
5640 Activate_Range_Check
(N
);
5644 Indx
:= First_Index
(Atyp
);
5645 Subs
:= First
(Expressions
(P
));
5648 Ttyp
:= Etype
(Indx
);
5657 -- For now, ignore all other cases, they are not so interesting
5660 if Debug_Flag_CC
then
5661 w
(" target type not found, flag set");
5664 Activate_Range_Check
(N
);
5668 -- Evaluate and check the expression
5673 Target_Type
=> Ttyp
,
5679 if Debug_Flag_CC
then
5680 w
("Called Find_Check");
5681 w
("Target_Typ = ", Int
(Ttyp
));
5685 w
(" Check_Num = ", Chk
);
5686 w
(" Ent = ", Int
(Ent
));
5687 Write_Str
(" Ofs = ");
5692 -- If check is not of form to optimize, then set flag and we are done
5695 if Debug_Flag_CC
then
5696 w
(" expression not of optimizable type, flag set");
5699 Activate_Range_Check
(N
);
5703 -- If check is already performed, then return without setting flag
5706 if Debug_Flag_CC
then
5707 w
("Check suppressed!");
5713 -- Here we will make a new entry for the new check
5715 Activate_Range_Check
(N
);
5716 Num_Saved_Checks
:= Num_Saved_Checks
+ 1;
5717 Saved_Checks
(Num_Saved_Checks
) :=
5722 Target_Type
=> Ttyp
);
5724 if Debug_Flag_CC
then
5725 w
("Make new entry, check number = ", Num_Saved_Checks
);
5726 w
(" Entity = ", Int
(Ent
));
5727 Write_Str
(" Offset = ");
5729 w
(" Check_Type = R");
5730 w
(" Target_Type = ", Int
(Ttyp
));
5731 pg
(Union_Id
(Ttyp
));
5734 -- If we get an exception, then something went wrong, probably because of
5735 -- an error in the structure of the tree due to an incorrect program. Or
5736 -- it may be a bug in the optimization circuit. In either case the safest
5737 -- thing is simply to set the check flag unconditionally.
5741 Activate_Range_Check
(N
);
5743 if Debug_Flag_CC
then
5744 w
(" exception occurred, range flag set");
5748 end Enable_Range_Check
;
5754 procedure Ensure_Valid
5756 Holes_OK
: Boolean := False;
5757 Related_Id
: Entity_Id
:= Empty
;
5758 Is_Low_Bound
: Boolean := False;
5759 Is_High_Bound
: Boolean := False)
5761 Typ
: constant Entity_Id
:= Etype
(Expr
);
5764 -- Ignore call if we are not doing any validity checking
5766 if not Validity_Checks_On
then
5769 -- Ignore call if range or validity checks suppressed on entity or type
5771 elsif Range_Or_Validity_Checks_Suppressed
(Expr
) then
5774 -- No check required if expression is from the expander, we assume the
5775 -- expander will generate whatever checks are needed. Note that this is
5776 -- not just an optimization, it avoids infinite recursions.
5778 -- Unchecked conversions must be checked, unless they are initialized
5779 -- scalar values, as in a component assignment in an init proc.
5781 -- In addition, we force a check if Force_Validity_Checks is set
5783 elsif not Comes_From_Source
(Expr
)
5784 and then not Force_Validity_Checks
5785 and then (Nkind
(Expr
) /= N_Unchecked_Type_Conversion
5786 or else Kill_Range_Check
(Expr
))
5790 -- No check required if expression is known to have valid value
5792 elsif Expr_Known_Valid
(Expr
) then
5795 -- No check needed within a generated predicate function. Validity
5796 -- of input value will have been checked earlier.
5798 elsif Ekind
(Current_Scope
) = E_Function
5799 and then Is_Predicate_Function
(Current_Scope
)
5803 -- Ignore case of enumeration with holes where the flag is set not to
5804 -- worry about holes, since no special validity check is needed
5806 elsif Is_Enumeration_Type
(Typ
)
5807 and then Has_Non_Standard_Rep
(Typ
)
5812 -- No check required on the left-hand side of an assignment
5814 elsif Nkind
(Parent
(Expr
)) = N_Assignment_Statement
5815 and then Expr
= Name
(Parent
(Expr
))
5819 -- No check on a universal real constant. The context will eventually
5820 -- convert it to a machine number for some target type, or report an
5823 elsif Nkind
(Expr
) = N_Real_Literal
5824 and then Etype
(Expr
) = Universal_Real
5828 -- If the expression denotes a component of a packed boolean array,
5829 -- no possible check applies. We ignore the old ACATS chestnuts that
5830 -- involve Boolean range True..True.
5832 -- Note: validity checks are generated for expressions that yield a
5833 -- scalar type, when it is possible to create a value that is outside of
5834 -- the type. If this is a one-bit boolean no such value exists. This is
5835 -- an optimization, and it also prevents compiler blowing up during the
5836 -- elaboration of improperly expanded packed array references.
5838 elsif Nkind
(Expr
) = N_Indexed_Component
5839 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Expr
)))
5840 and then Root_Type
(Etype
(Expr
)) = Standard_Boolean
5844 -- For an expression with actions, we want to insert the validity check
5845 -- on the final Expression.
5847 elsif Nkind
(Expr
) = N_Expression_With_Actions
then
5848 Ensure_Valid
(Expression
(Expr
));
5851 -- An annoying special case. If this is an out parameter of a scalar
5852 -- type, then the value is not going to be accessed, therefore it is
5853 -- inappropriate to do any validity check at the call site.
5856 -- Only need to worry about scalar types
5858 if Is_Scalar_Type
(Typ
) then
5868 -- Find actual argument (which may be a parameter association)
5869 -- and the parent of the actual argument (the call statement)
5874 if Nkind
(P
) = N_Parameter_Association
then
5879 -- Only need to worry if we are argument of a procedure call
5880 -- since functions don't have out parameters. If this is an
5881 -- indirect or dispatching call, get signature from the
5884 if Nkind
(P
) = N_Procedure_Call_Statement
then
5885 L
:= Parameter_Associations
(P
);
5887 if Is_Entity_Name
(Name
(P
)) then
5888 E
:= Entity
(Name
(P
));
5890 pragma Assert
(Nkind
(Name
(P
)) = N_Explicit_Dereference
);
5891 E
:= Etype
(Name
(P
));
5894 -- Only need to worry if there are indeed actuals, and if
5895 -- this could be a procedure call, otherwise we cannot get a
5896 -- match (either we are not an argument, or the mode of the
5897 -- formal is not OUT). This test also filters out the
5900 if Is_Non_Empty_List
(L
) and then Is_Subprogram
(E
) then
5902 -- This is the loop through parameters, looking for an
5903 -- OUT parameter for which we are the argument.
5905 F
:= First_Formal
(E
);
5907 while Present
(F
) loop
5908 if Ekind
(F
) = E_Out_Parameter
and then A
= N
then
5921 -- If this is a boolean expression, only its elementary operands need
5922 -- checking: if they are valid, a boolean or short-circuit operation
5923 -- with them will be valid as well.
5925 if Base_Type
(Typ
) = Standard_Boolean
5927 (Nkind
(Expr
) in N_Op
or else Nkind
(Expr
) in N_Short_Circuit
)
5932 -- If we fall through, a validity check is required
5934 Insert_Valid_Check
(Expr
, Related_Id
, Is_Low_Bound
, Is_High_Bound
);
5936 if Is_Entity_Name
(Expr
)
5937 and then Safe_To_Capture_Value
(Expr
, Entity
(Expr
))
5939 Set_Is_Known_Valid
(Entity
(Expr
));
5943 ----------------------
5944 -- Expr_Known_Valid --
5945 ----------------------
5947 function Expr_Known_Valid
(Expr
: Node_Id
) return Boolean is
5948 Typ
: constant Entity_Id
:= Etype
(Expr
);
5951 -- Non-scalar types are always considered valid, since they never give
5952 -- rise to the issues of erroneous or bounded error behavior that are
5953 -- the concern. In formal reference manual terms the notion of validity
5954 -- only applies to scalar types. Note that even when packed arrays are
5955 -- represented using modular types, they are still arrays semantically,
5956 -- so they are also always valid (in particular, the unused bits can be
5957 -- random rubbish without affecting the validity of the array value).
5959 if not Is_Scalar_Type
(Typ
) or else Is_Packed_Array_Impl_Type
(Typ
) then
5962 -- If no validity checking, then everything is considered valid
5964 elsif not Validity_Checks_On
then
5967 -- Floating-point types are considered valid unless floating-point
5968 -- validity checks have been specifically turned on.
5970 elsif Is_Floating_Point_Type
(Typ
)
5971 and then not Validity_Check_Floating_Point
5975 -- If the expression is the value of an object that is known to be
5976 -- valid, then clearly the expression value itself is valid.
5978 elsif Is_Entity_Name
(Expr
)
5979 and then Is_Known_Valid
(Entity
(Expr
))
5981 -- Exclude volatile variables
5983 and then not Treat_As_Volatile
(Entity
(Expr
))
5987 -- References to discriminants are always considered valid. The value
5988 -- of a discriminant gets checked when the object is built. Within the
5989 -- record, we consider it valid, and it is important to do so, since
5990 -- otherwise we can try to generate bogus validity checks which
5991 -- reference discriminants out of scope. Discriminants of concurrent
5992 -- types are excluded for the same reason.
5994 elsif Is_Entity_Name
(Expr
)
5995 and then Denotes_Discriminant
(Expr
, Check_Concurrent
=> True)
5999 -- If the type is one for which all values are known valid, then we are
6000 -- sure that the value is valid except in the slightly odd case where
6001 -- the expression is a reference to a variable whose size has been
6002 -- explicitly set to a value greater than the object size.
6004 elsif Is_Known_Valid
(Typ
) then
6005 if Is_Entity_Name
(Expr
)
6006 and then Ekind
(Entity
(Expr
)) = E_Variable
6007 and then Esize
(Entity
(Expr
)) > Esize
(Typ
)
6014 -- Integer and character literals always have valid values, where
6015 -- appropriate these will be range checked in any case.
6017 elsif Nkind_In
(Expr
, N_Integer_Literal
, N_Character_Literal
) then
6020 -- If we have a type conversion or a qualification of a known valid
6021 -- value, then the result will always be valid.
6023 elsif Nkind_In
(Expr
, N_Type_Conversion
, N_Qualified_Expression
) then
6024 return Expr_Known_Valid
(Expression
(Expr
));
6026 -- Case of expression is a non-floating-point operator. In this case we
6027 -- can assume the result is valid the generated code for the operator
6028 -- will include whatever checks are needed (e.g. range checks) to ensure
6029 -- validity. This assumption does not hold for the floating-point case,
6030 -- since floating-point operators can generate Infinite or NaN results
6031 -- which are considered invalid.
6033 -- Historical note: in older versions, the exemption of floating-point
6034 -- types from this assumption was done only in cases where the parent
6035 -- was an assignment, function call or parameter association. Presumably
6036 -- the idea was that in other contexts, the result would be checked
6037 -- elsewhere, but this list of cases was missing tests (at least the
6038 -- N_Object_Declaration case, as shown by a reported missing validity
6039 -- check), and it is not clear why function calls but not procedure
6040 -- calls were tested for. It really seems more accurate and much
6041 -- safer to recognize that expressions which are the result of a
6042 -- floating-point operator can never be assumed to be valid.
6044 elsif Nkind
(Expr
) in N_Op
and then not Is_Floating_Point_Type
(Typ
) then
6047 -- The result of a membership test is always valid, since it is true or
6048 -- false, there are no other possibilities.
6050 elsif Nkind
(Expr
) in N_Membership_Test
then
6053 -- For all other cases, we do not know the expression is valid
6058 end Expr_Known_Valid
;
6064 procedure Find_Check
6066 Check_Type
: Character;
6067 Target_Type
: Entity_Id
;
6068 Entry_OK
: out Boolean;
6069 Check_Num
: out Nat
;
6070 Ent
: out Entity_Id
;
6073 function Within_Range_Of
6074 (Target_Type
: Entity_Id
;
6075 Check_Type
: Entity_Id
) return Boolean;
6076 -- Given a requirement for checking a range against Target_Type, and
6077 -- and a range Check_Type against which a check has already been made,
6078 -- determines if the check against check type is sufficient to ensure
6079 -- that no check against Target_Type is required.
6081 ---------------------
6082 -- Within_Range_Of --
6083 ---------------------
6085 function Within_Range_Of
6086 (Target_Type
: Entity_Id
;
6087 Check_Type
: Entity_Id
) return Boolean
6090 if Target_Type
= Check_Type
then
6095 Tlo
: constant Node_Id
:= Type_Low_Bound
(Target_Type
);
6096 Thi
: constant Node_Id
:= Type_High_Bound
(Target_Type
);
6097 Clo
: constant Node_Id
:= Type_Low_Bound
(Check_Type
);
6098 Chi
: constant Node_Id
:= Type_High_Bound
(Check_Type
);
6102 or else (Compile_Time_Known_Value
(Tlo
)
6104 Compile_Time_Known_Value
(Clo
)
6106 Expr_Value
(Clo
) >= Expr_Value
(Tlo
)))
6109 or else (Compile_Time_Known_Value
(Thi
)
6111 Compile_Time_Known_Value
(Chi
)
6113 Expr_Value
(Chi
) <= Expr_Value
(Clo
)))
6121 end Within_Range_Of
;
6123 -- Start of processing for Find_Check
6126 -- Establish default, in case no entry is found
6130 -- Case of expression is simple entity reference
6132 if Is_Entity_Name
(Expr
) then
6133 Ent
:= Entity
(Expr
);
6136 -- Case of expression is entity + known constant
6138 elsif Nkind
(Expr
) = N_Op_Add
6139 and then Compile_Time_Known_Value
(Right_Opnd
(Expr
))
6140 and then Is_Entity_Name
(Left_Opnd
(Expr
))
6142 Ent
:= Entity
(Left_Opnd
(Expr
));
6143 Ofs
:= Expr_Value
(Right_Opnd
(Expr
));
6145 -- Case of expression is entity - known constant
6147 elsif Nkind
(Expr
) = N_Op_Subtract
6148 and then Compile_Time_Known_Value
(Right_Opnd
(Expr
))
6149 and then Is_Entity_Name
(Left_Opnd
(Expr
))
6151 Ent
:= Entity
(Left_Opnd
(Expr
));
6152 Ofs
:= UI_Negate
(Expr_Value
(Right_Opnd
(Expr
)));
6154 -- Any other expression is not of the right form
6163 -- Come here with expression of appropriate form, check if entity is an
6164 -- appropriate one for our purposes.
6166 if (Ekind
(Ent
) = E_Variable
6167 or else Is_Constant_Object
(Ent
))
6168 and then not Is_Library_Level_Entity
(Ent
)
6176 -- See if there is matching check already
6178 for J
in reverse 1 .. Num_Saved_Checks
loop
6180 SC
: Saved_Check
renames Saved_Checks
(J
);
6182 if SC
.Killed
= False
6183 and then SC
.Entity
= Ent
6184 and then SC
.Offset
= Ofs
6185 and then SC
.Check_Type
= Check_Type
6186 and then Within_Range_Of
(Target_Type
, SC
.Target_Type
)
6194 -- If we fall through entry was not found
6199 ---------------------------------
6200 -- Generate_Discriminant_Check --
6201 ---------------------------------
6203 -- Note: the code for this procedure is derived from the
6204 -- Emit_Discriminant_Check Routine in trans.c.
6206 procedure Generate_Discriminant_Check
(N
: Node_Id
) is
6207 Loc
: constant Source_Ptr
:= Sloc
(N
);
6208 Pref
: constant Node_Id
:= Prefix
(N
);
6209 Sel
: constant Node_Id
:= Selector_Name
(N
);
6211 Orig_Comp
: constant Entity_Id
:=
6212 Original_Record_Component
(Entity
(Sel
));
6213 -- The original component to be checked
6215 Discr_Fct
: constant Entity_Id
:=
6216 Discriminant_Checking_Func
(Orig_Comp
);
6217 -- The discriminant checking function
6220 -- One discriminant to be checked in the type
6222 Real_Discr
: Entity_Id
;
6223 -- Actual discriminant in the call
6225 Pref_Type
: Entity_Id
;
6226 -- Type of relevant prefix (ignoring private/access stuff)
6229 -- List of arguments for function call
6232 -- Keep track of the formal corresponding to the actual we build for
6233 -- each discriminant, in order to be able to perform the necessary type
6237 -- Selected component reference for checking function argument
6240 Pref_Type
:= Etype
(Pref
);
6242 -- Force evaluation of the prefix, so that it does not get evaluated
6243 -- twice (once for the check, once for the actual reference). Such a
6244 -- double evaluation is always a potential source of inefficiency, and
6245 -- is functionally incorrect in the volatile case, or when the prefix
6246 -- may have side effects. A nonvolatile entity or a component of a
6247 -- nonvolatile entity requires no evaluation.
6249 if Is_Entity_Name
(Pref
) then
6250 if Treat_As_Volatile
(Entity
(Pref
)) then
6251 Force_Evaluation
(Pref
, Name_Req
=> True);
6254 elsif Treat_As_Volatile
(Etype
(Pref
)) then
6255 Force_Evaluation
(Pref
, Name_Req
=> True);
6257 elsif Nkind
(Pref
) = N_Selected_Component
6258 and then Is_Entity_Name
(Prefix
(Pref
))
6263 Force_Evaluation
(Pref
, Name_Req
=> True);
6266 -- For a tagged type, use the scope of the original component to
6267 -- obtain the type, because ???
6269 if Is_Tagged_Type
(Scope
(Orig_Comp
)) then
6270 Pref_Type
:= Scope
(Orig_Comp
);
6272 -- For an untagged derived type, use the discriminants of the parent
6273 -- which have been renamed in the derivation, possibly by a one-to-many
6274 -- discriminant constraint. For untagged type, initially get the Etype
6278 if Is_Derived_Type
(Pref_Type
)
6279 and then Number_Discriminants
(Pref_Type
) /=
6280 Number_Discriminants
(Etype
(Base_Type
(Pref_Type
)))
6282 Pref_Type
:= Etype
(Base_Type
(Pref_Type
));
6286 -- We definitely should have a checking function, This routine should
6287 -- not be called if no discriminant checking function is present.
6289 pragma Assert
(Present
(Discr_Fct
));
6291 -- Create the list of the actual parameters for the call. This list
6292 -- is the list of the discriminant fields of the record expression to
6293 -- be discriminant checked.
6296 Formal
:= First_Formal
(Discr_Fct
);
6297 Discr
:= First_Discriminant
(Pref_Type
);
6298 while Present
(Discr
) loop
6300 -- If we have a corresponding discriminant field, and a parent
6301 -- subtype is present, then we want to use the corresponding
6302 -- discriminant since this is the one with the useful value.
6304 if Present
(Corresponding_Discriminant
(Discr
))
6305 and then Ekind
(Pref_Type
) = E_Record_Type
6306 and then Present
(Parent_Subtype
(Pref_Type
))
6308 Real_Discr
:= Corresponding_Discriminant
(Discr
);
6310 Real_Discr
:= Discr
;
6313 -- Construct the reference to the discriminant
6316 Make_Selected_Component
(Loc
,
6318 Unchecked_Convert_To
(Pref_Type
,
6319 Duplicate_Subexpr
(Pref
)),
6320 Selector_Name
=> New_Occurrence_Of
(Real_Discr
, Loc
));
6322 -- Manually analyze and resolve this selected component. We really
6323 -- want it just as it appears above, and do not want the expander
6324 -- playing discriminal games etc with this reference. Then we append
6325 -- the argument to the list we are gathering.
6327 Set_Etype
(Scomp
, Etype
(Real_Discr
));
6328 Set_Analyzed
(Scomp
, True);
6329 Append_To
(Args
, Convert_To
(Etype
(Formal
), Scomp
));
6331 Next_Formal_With_Extras
(Formal
);
6332 Next_Discriminant
(Discr
);
6335 -- Now build and insert the call
6338 Make_Raise_Constraint_Error
(Loc
,
6340 Make_Function_Call
(Loc
,
6341 Name
=> New_Occurrence_Of
(Discr_Fct
, Loc
),
6342 Parameter_Associations
=> Args
),
6343 Reason
=> CE_Discriminant_Check_Failed
));
6344 end Generate_Discriminant_Check
;
6346 ---------------------------
6347 -- Generate_Index_Checks --
6348 ---------------------------
6350 procedure Generate_Index_Checks
(N
: Node_Id
) is
6352 function Entity_Of_Prefix
return Entity_Id
;
6353 -- Returns the entity of the prefix of N (or Empty if not found)
6355 ----------------------
6356 -- Entity_Of_Prefix --
6357 ----------------------
6359 function Entity_Of_Prefix
return Entity_Id
is
6364 while not Is_Entity_Name
(P
) loop
6365 if not Nkind_In
(P
, N_Selected_Component
,
6366 N_Indexed_Component
)
6375 end Entity_Of_Prefix
;
6379 Loc
: constant Source_Ptr
:= Sloc
(N
);
6380 A
: constant Node_Id
:= Prefix
(N
);
6381 A_Ent
: constant Entity_Id
:= Entity_Of_Prefix
;
6384 -- Start of processing for Generate_Index_Checks
6387 -- Ignore call if the prefix is not an array since we have a serious
6388 -- error in the sources. Ignore it also if index checks are suppressed
6389 -- for array object or type.
6391 if not Is_Array_Type
(Etype
(A
))
6392 or else (Present
(A_Ent
) and then Index_Checks_Suppressed
(A_Ent
))
6393 or else Index_Checks_Suppressed
(Etype
(A
))
6397 -- The indexed component we are dealing with contains 'Loop_Entry in its
6398 -- prefix. This case arises when analysis has determined that constructs
6401 -- Prefix'Loop_Entry (Expr)
6402 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6404 -- require rewriting for error detection purposes. A side effect of this
6405 -- action is the generation of index checks that mention 'Loop_Entry.
6406 -- Delay the generation of the check until 'Loop_Entry has been properly
6407 -- expanded. This is done in Expand_Loop_Entry_Attributes.
6409 elsif Nkind
(Prefix
(N
)) = N_Attribute_Reference
6410 and then Attribute_Name
(Prefix
(N
)) = Name_Loop_Entry
6415 -- Generate a raise of constraint error with the appropriate reason and
6416 -- a condition of the form:
6418 -- Base_Type (Sub) not in Array'Range (Subscript)
6420 -- Note that the reason we generate the conversion to the base type here
6421 -- is that we definitely want the range check to take place, even if it
6422 -- looks like the subtype is OK. Optimization considerations that allow
6423 -- us to omit the check have already been taken into account in the
6424 -- setting of the Do_Range_Check flag earlier on.
6426 Sub
:= First
(Expressions
(N
));
6428 -- Handle string literals
6430 if Ekind
(Etype
(A
)) = E_String_Literal_Subtype
then
6431 if Do_Range_Check
(Sub
) then
6432 Set_Do_Range_Check
(Sub
, False);
6434 -- For string literals we obtain the bounds of the string from the
6435 -- associated subtype.
6438 Make_Raise_Constraint_Error
(Loc
,
6442 Convert_To
(Base_Type
(Etype
(Sub
)),
6443 Duplicate_Subexpr_Move_Checks
(Sub
)),
6445 Make_Attribute_Reference
(Loc
,
6446 Prefix
=> New_Occurrence_Of
(Etype
(A
), Loc
),
6447 Attribute_Name
=> Name_Range
)),
6448 Reason
=> CE_Index_Check_Failed
));
6455 A_Idx
: Node_Id
:= Empty
;
6462 A_Idx
:= First_Index
(Etype
(A
));
6464 while Present
(Sub
) loop
6465 if Do_Range_Check
(Sub
) then
6466 Set_Do_Range_Check
(Sub
, False);
6468 -- Force evaluation except for the case of a simple name of
6469 -- a nonvolatile entity.
6471 if not Is_Entity_Name
(Sub
)
6472 or else Treat_As_Volatile
(Entity
(Sub
))
6474 Force_Evaluation
(Sub
);
6477 if Nkind
(A_Idx
) = N_Range
then
6480 elsif Nkind
(A_Idx
) = N_Identifier
6481 or else Nkind
(A_Idx
) = N_Expanded_Name
6483 A_Range
:= Scalar_Range
(Entity
(A_Idx
));
6485 else pragma Assert
(Nkind
(A_Idx
) = N_Subtype_Indication
);
6486 A_Range
:= Range_Expression
(Constraint
(A_Idx
));
6489 -- For array objects with constant bounds we can generate
6490 -- the index check using the bounds of the type of the index
6493 and then Ekind
(A_Ent
) = E_Variable
6494 and then Is_Constant_Bound
(Low_Bound
(A_Range
))
6495 and then Is_Constant_Bound
(High_Bound
(A_Range
))
6498 Make_Attribute_Reference
(Loc
,
6500 New_Occurrence_Of
(Etype
(A_Idx
), Loc
),
6501 Attribute_Name
=> Name_Range
);
6503 -- For arrays with non-constant bounds we cannot generate
6504 -- the index check using the bounds of the type of the index
6505 -- since it may reference discriminants of some enclosing
6506 -- type. We obtain the bounds directly from the prefix
6513 Num
:= New_List
(Make_Integer_Literal
(Loc
, Ind
));
6517 Make_Attribute_Reference
(Loc
,
6519 Duplicate_Subexpr_Move_Checks
(A
, Name_Req
=> True),
6520 Attribute_Name
=> Name_Range
,
6521 Expressions
=> Num
);
6525 Make_Raise_Constraint_Error
(Loc
,
6529 Convert_To
(Base_Type
(Etype
(Sub
)),
6530 Duplicate_Subexpr_Move_Checks
(Sub
)),
6531 Right_Opnd
=> Range_N
),
6532 Reason
=> CE_Index_Check_Failed
));
6535 A_Idx
:= Next_Index
(A_Idx
);
6541 end Generate_Index_Checks
;
6543 --------------------------
6544 -- Generate_Range_Check --
6545 --------------------------
6547 procedure Generate_Range_Check
6549 Target_Type
: Entity_Id
;
6550 Reason
: RT_Exception_Code
)
6552 Loc
: constant Source_Ptr
:= Sloc
(N
);
6553 Source_Type
: constant Entity_Id
:= Etype
(N
);
6554 Source_Base_Type
: constant Entity_Id
:= Base_Type
(Source_Type
);
6555 Target_Base_Type
: constant Entity_Id
:= Base_Type
(Target_Type
);
6557 procedure Convert_And_Check_Range
;
6558 -- Convert the conversion operand to the target base type and save in
6559 -- a temporary. Then check the converted value against the range of the
6562 -----------------------------
6563 -- Convert_And_Check_Range --
6564 -----------------------------
6566 procedure Convert_And_Check_Range
is
6567 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
6570 -- We make a temporary to hold the value of the converted value
6571 -- (converted to the base type), and then do the test against this
6572 -- temporary. The conversion itself is replaced by an occurrence of
6573 -- Tnn and followed by the explicit range check. Note that checks
6574 -- are suppressed for this code, since we don't want a recursive
6575 -- range check popping up.
6577 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
6578 -- [constraint_error when Tnn not in Target_Type]
6580 Insert_Actions
(N
, New_List
(
6581 Make_Object_Declaration
(Loc
,
6582 Defining_Identifier
=> Tnn
,
6583 Object_Definition
=> New_Occurrence_Of
(Target_Base_Type
, Loc
),
6584 Constant_Present
=> True,
6586 Make_Type_Conversion
(Loc
,
6587 Subtype_Mark
=> New_Occurrence_Of
(Target_Base_Type
, Loc
),
6588 Expression
=> Duplicate_Subexpr
(N
))),
6590 Make_Raise_Constraint_Error
(Loc
,
6593 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
6594 Right_Opnd
=> New_Occurrence_Of
(Target_Type
, Loc
)),
6596 Suppress
=> All_Checks
);
6598 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
6600 -- Set the type of N, because the declaration for Tnn might not
6601 -- be analyzed yet, as is the case if N appears within a record
6602 -- declaration, as a discriminant constraint or expression.
6604 Set_Etype
(N
, Target_Base_Type
);
6605 end Convert_And_Check_Range
;
6607 -- Start of processing for Generate_Range_Check
6610 -- First special case, if the source type is already within the range
6611 -- of the target type, then no check is needed (probably we should have
6612 -- stopped Do_Range_Check from being set in the first place, but better
6613 -- late than never in preventing junk code and junk flag settings.
6615 if In_Subrange_Of
(Source_Type
, Target_Type
)
6617 -- We do NOT apply this if the source node is a literal, since in this
6618 -- case the literal has already been labeled as having the subtype of
6622 (Nkind_In
(N
, N_Integer_Literal
, N_Real_Literal
, N_Character_Literal
)
6625 and then Ekind
(Entity
(N
)) = E_Enumeration_Literal
))
6627 Set_Do_Range_Check
(N
, False);
6631 -- Here a check is needed. If the expander is not active, or if we are
6632 -- in GNATProve mode, then simply set the Do_Range_Check flag and we
6633 -- are done. In both these cases, we just want to see the range check
6634 -- flag set, we do not want to generate the explicit range check code.
6636 if GNATprove_Mode
or else not Expander_Active
then
6637 Set_Do_Range_Check
(N
, True);
6641 -- Here we will generate an explicit range check, so we don't want to
6642 -- set the Do_Range check flag, since the range check is taken care of
6643 -- by the code we will generate.
6645 Set_Do_Range_Check
(N
, False);
6647 -- Force evaluation of the node, so that it does not get evaluated twice
6648 -- (once for the check, once for the actual reference). Such a double
6649 -- evaluation is always a potential source of inefficiency, and is
6650 -- functionally incorrect in the volatile case.
6652 if not Is_Entity_Name
(N
) or else Treat_As_Volatile
(Entity
(N
)) then
6653 Force_Evaluation
(N
);
6656 -- The easiest case is when Source_Base_Type and Target_Base_Type are
6657 -- the same since in this case we can simply do a direct check of the
6658 -- value of N against the bounds of Target_Type.
6660 -- [constraint_error when N not in Target_Type]
6662 -- Note: this is by far the most common case, for example all cases of
6663 -- checks on the RHS of assignments are in this category, but not all
6664 -- cases are like this. Notably conversions can involve two types.
6666 if Source_Base_Type
= Target_Base_Type
then
6668 -- Insert the explicit range check. Note that we suppress checks for
6669 -- this code, since we don't want a recursive range check popping up.
6672 Make_Raise_Constraint_Error
(Loc
,
6675 Left_Opnd
=> Duplicate_Subexpr
(N
),
6676 Right_Opnd
=> New_Occurrence_Of
(Target_Type
, Loc
)),
6678 Suppress
=> All_Checks
);
6680 -- Next test for the case where the target type is within the bounds
6681 -- of the base type of the source type, since in this case we can
6682 -- simply convert these bounds to the base type of T to do the test.
6684 -- [constraint_error when N not in
6685 -- Source_Base_Type (Target_Type'First)
6687 -- Source_Base_Type(Target_Type'Last))]
6689 -- The conversions will always work and need no check
6691 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
6692 -- of converting from an enumeration value to an integer type, such as
6693 -- occurs for the case of generating a range check on Enum'Val(Exp)
6694 -- (which used to be handled by gigi). This is OK, since the conversion
6695 -- itself does not require a check.
6697 elsif In_Subrange_Of
(Target_Type
, Source_Base_Type
) then
6699 -- Insert the explicit range check. Note that we suppress checks for
6700 -- this code, since we don't want a recursive range check popping up.
6702 if Is_Discrete_Type
(Source_Base_Type
)
6704 Is_Discrete_Type
(Target_Base_Type
)
6707 Make_Raise_Constraint_Error
(Loc
,
6710 Left_Opnd
=> Duplicate_Subexpr
(N
),
6715 Unchecked_Convert_To
(Source_Base_Type
,
6716 Make_Attribute_Reference
(Loc
,
6718 New_Occurrence_Of
(Target_Type
, Loc
),
6719 Attribute_Name
=> Name_First
)),
6722 Unchecked_Convert_To
(Source_Base_Type
,
6723 Make_Attribute_Reference
(Loc
,
6725 New_Occurrence_Of
(Target_Type
, Loc
),
6726 Attribute_Name
=> Name_Last
)))),
6728 Suppress
=> All_Checks
);
6730 -- For conversions involving at least one type that is not discrete,
6731 -- first convert to target type and then generate the range check.
6732 -- This avoids problems with values that are close to a bound of the
6733 -- target type that would fail a range check when done in a larger
6734 -- source type before converting but would pass if converted with
6735 -- rounding and then checked (such as in float-to-float conversions).
6738 Convert_And_Check_Range
;
6741 -- Note that at this stage we now that the Target_Base_Type is not in
6742 -- the range of the Source_Base_Type (since even the Target_Type itself
6743 -- is not in this range). It could still be the case that Source_Type is
6744 -- in range of the target base type since we have not checked that case.
6746 -- If that is the case, we can freely convert the source to the target,
6747 -- and then test the target result against the bounds.
6749 elsif In_Subrange_Of
(Source_Type
, Target_Base_Type
) then
6750 Convert_And_Check_Range
;
6752 -- At this stage, we know that we have two scalar types, which are
6753 -- directly convertible, and where neither scalar type has a base
6754 -- range that is in the range of the other scalar type.
6756 -- The only way this can happen is with a signed and unsigned type.
6757 -- So test for these two cases:
6760 -- Case of the source is unsigned and the target is signed
6762 if Is_Unsigned_Type
(Source_Base_Type
)
6763 and then not Is_Unsigned_Type
(Target_Base_Type
)
6765 -- If the source is unsigned and the target is signed, then we
6766 -- know that the source is not shorter than the target (otherwise
6767 -- the source base type would be in the target base type range).
6769 -- In other words, the unsigned type is either the same size as
6770 -- the target, or it is larger. It cannot be smaller.
6773 (Esize
(Source_Base_Type
) >= Esize
(Target_Base_Type
));
6775 -- We only need to check the low bound if the low bound of the
6776 -- target type is non-negative. If the low bound of the target
6777 -- type is negative, then we know that we will fit fine.
6779 -- If the high bound of the target type is negative, then we
6780 -- know we have a constraint error, since we can't possibly
6781 -- have a negative source.
6783 -- With these two checks out of the way, we can do the check
6784 -- using the source type safely
6786 -- This is definitely the most annoying case.
6788 -- [constraint_error
6789 -- when (Target_Type'First >= 0
6791 -- N < Source_Base_Type (Target_Type'First))
6792 -- or else Target_Type'Last < 0
6793 -- or else N > Source_Base_Type (Target_Type'Last)];
6795 -- We turn off all checks since we know that the conversions
6796 -- will work fine, given the guards for negative values.
6799 Make_Raise_Constraint_Error
(Loc
,
6805 Left_Opnd
=> Make_Op_Ge
(Loc
,
6807 Make_Attribute_Reference
(Loc
,
6809 New_Occurrence_Of
(Target_Type
, Loc
),
6810 Attribute_Name
=> Name_First
),
6811 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)),
6815 Left_Opnd
=> Duplicate_Subexpr
(N
),
6817 Convert_To
(Source_Base_Type
,
6818 Make_Attribute_Reference
(Loc
,
6820 New_Occurrence_Of
(Target_Type
, Loc
),
6821 Attribute_Name
=> Name_First
)))),
6826 Make_Attribute_Reference
(Loc
,
6827 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
6828 Attribute_Name
=> Name_Last
),
6829 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
))),
6833 Left_Opnd
=> Duplicate_Subexpr
(N
),
6835 Convert_To
(Source_Base_Type
,
6836 Make_Attribute_Reference
(Loc
,
6837 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
6838 Attribute_Name
=> Name_Last
)))),
6841 Suppress
=> All_Checks
);
6843 -- Only remaining possibility is that the source is signed and
6844 -- the target is unsigned.
6847 pragma Assert
(not Is_Unsigned_Type
(Source_Base_Type
)
6848 and then Is_Unsigned_Type
(Target_Base_Type
));
6850 -- If the source is signed and the target is unsigned, then we
6851 -- know that the target is not shorter than the source (otherwise
6852 -- the target base type would be in the source base type range).
6854 -- In other words, the unsigned type is either the same size as
6855 -- the target, or it is larger. It cannot be smaller.
6857 -- Clearly we have an error if the source value is negative since
6858 -- no unsigned type can have negative values. If the source type
6859 -- is non-negative, then the check can be done using the target
6862 -- Tnn : constant Target_Base_Type (N) := Target_Type;
6864 -- [constraint_error
6865 -- when N < 0 or else Tnn not in Target_Type];
6867 -- We turn off all checks for the conversion of N to the target
6868 -- base type, since we generate the explicit check to ensure that
6869 -- the value is non-negative
6872 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
6875 Insert_Actions
(N
, New_List
(
6876 Make_Object_Declaration
(Loc
,
6877 Defining_Identifier
=> Tnn
,
6878 Object_Definition
=>
6879 New_Occurrence_Of
(Target_Base_Type
, Loc
),
6880 Constant_Present
=> True,
6882 Make_Unchecked_Type_Conversion
(Loc
,
6884 New_Occurrence_Of
(Target_Base_Type
, Loc
),
6885 Expression
=> Duplicate_Subexpr
(N
))),
6887 Make_Raise_Constraint_Error
(Loc
,
6892 Left_Opnd
=> Duplicate_Subexpr
(N
),
6893 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)),
6897 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
6899 New_Occurrence_Of
(Target_Type
, Loc
))),
6902 Suppress
=> All_Checks
);
6904 -- Set the Etype explicitly, because Insert_Actions may have
6905 -- placed the declaration in the freeze list for an enclosing
6906 -- construct, and thus it is not analyzed yet.
6908 Set_Etype
(Tnn
, Target_Base_Type
);
6909 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
6913 end Generate_Range_Check
;
6919 function Get_Check_Id
(N
: Name_Id
) return Check_Id
is
6921 -- For standard check name, we can do a direct computation
6923 if N
in First_Check_Name
.. Last_Check_Name
then
6924 return Check_Id
(N
- (First_Check_Name
- 1));
6926 -- For non-standard names added by pragma Check_Name, search table
6929 for J
in All_Checks
+ 1 .. Check_Names
.Last
loop
6930 if Check_Names
.Table
(J
) = N
then
6936 -- No matching name found
6941 ---------------------
6942 -- Get_Discriminal --
6943 ---------------------
6945 function Get_Discriminal
(E
: Entity_Id
; Bound
: Node_Id
) return Node_Id
is
6946 Loc
: constant Source_Ptr
:= Sloc
(E
);
6951 -- The bound can be a bona fide parameter of a protected operation,
6952 -- rather than a prival encoded as an in-parameter.
6954 if No
(Discriminal_Link
(Entity
(Bound
))) then
6958 -- Climb the scope stack looking for an enclosing protected type. If
6959 -- we run out of scopes, return the bound itself.
6962 while Present
(Sc
) loop
6963 if Sc
= Standard_Standard
then
6965 elsif Ekind
(Sc
) = E_Protected_Type
then
6972 D
:= First_Discriminant
(Sc
);
6973 while Present
(D
) loop
6974 if Chars
(D
) = Chars
(Bound
) then
6975 return New_Occurrence_Of
(Discriminal
(D
), Loc
);
6978 Next_Discriminant
(D
);
6982 end Get_Discriminal
;
6984 ----------------------
6985 -- Get_Range_Checks --
6986 ----------------------
6988 function Get_Range_Checks
6990 Target_Typ
: Entity_Id
;
6991 Source_Typ
: Entity_Id
:= Empty
;
6992 Warn_Node
: Node_Id
:= Empty
) return Check_Result
6996 Selected_Range_Checks
(Ck_Node
, Target_Typ
, Source_Typ
, Warn_Node
);
6997 end Get_Range_Checks
;
7003 function Guard_Access
7006 Ck_Node
: Node_Id
) return Node_Id
7009 if Nkind
(Cond
) = N_Or_Else
then
7010 Set_Paren_Count
(Cond
, 1);
7013 if Nkind
(Ck_Node
) = N_Allocator
then
7021 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Ck_Node
),
7022 Right_Opnd
=> Make_Null
(Loc
)),
7023 Right_Opnd
=> Cond
);
7027 -----------------------------
7028 -- Index_Checks_Suppressed --
7029 -----------------------------
7031 function Index_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
7033 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
7034 return Is_Check_Suppressed
(E
, Index_Check
);
7036 return Scope_Suppress
.Suppress
(Index_Check
);
7038 end Index_Checks_Suppressed
;
7044 procedure Initialize
is
7046 for J
in Determine_Range_Cache_N
'Range loop
7047 Determine_Range_Cache_N
(J
) := Empty
;
7052 for J
in Int
range 1 .. All_Checks
loop
7053 Check_Names
.Append
(Name_Id
(Int
(First_Check_Name
) + J
- 1));
7057 -------------------------
7058 -- Insert_Range_Checks --
7059 -------------------------
7061 procedure Insert_Range_Checks
7062 (Checks
: Check_Result
;
7064 Suppress_Typ
: Entity_Id
;
7065 Static_Sloc
: Source_Ptr
:= No_Location
;
7066 Flag_Node
: Node_Id
:= Empty
;
7067 Do_Before
: Boolean := False)
7069 Internal_Flag_Node
: Node_Id
:= Flag_Node
;
7070 Internal_Static_Sloc
: Source_Ptr
:= Static_Sloc
;
7072 Check_Node
: Node_Id
;
7073 Checks_On
: constant Boolean :=
7074 (not Index_Checks_Suppressed
(Suppress_Typ
))
7075 or else (not Range_Checks_Suppressed
(Suppress_Typ
));
7078 -- For now we just return if Checks_On is false, however this should be
7079 -- enhanced to check for an always True value in the condition and to
7080 -- generate a compilation warning???
7082 if not Expander_Active
or not Checks_On
then
7086 if Static_Sloc
= No_Location
then
7087 Internal_Static_Sloc
:= Sloc
(Node
);
7090 if No
(Flag_Node
) then
7091 Internal_Flag_Node
:= Node
;
7094 for J
in 1 .. 2 loop
7095 exit when No
(Checks
(J
));
7097 if Nkind
(Checks
(J
)) = N_Raise_Constraint_Error
7098 and then Present
(Condition
(Checks
(J
)))
7100 if not Has_Dynamic_Range_Check
(Internal_Flag_Node
) then
7101 Check_Node
:= Checks
(J
);
7102 Mark_Rewrite_Insertion
(Check_Node
);
7105 Insert_Before_And_Analyze
(Node
, Check_Node
);
7107 Insert_After_And_Analyze
(Node
, Check_Node
);
7110 Set_Has_Dynamic_Range_Check
(Internal_Flag_Node
);
7115 Make_Raise_Constraint_Error
(Internal_Static_Sloc
,
7116 Reason
=> CE_Range_Check_Failed
);
7117 Mark_Rewrite_Insertion
(Check_Node
);
7120 Insert_Before_And_Analyze
(Node
, Check_Node
);
7122 Insert_After_And_Analyze
(Node
, Check_Node
);
7126 end Insert_Range_Checks
;
7128 ------------------------
7129 -- Insert_Valid_Check --
7130 ------------------------
7132 procedure Insert_Valid_Check
7134 Related_Id
: Entity_Id
:= Empty
;
7135 Is_Low_Bound
: Boolean := False;
7136 Is_High_Bound
: Boolean := False)
7138 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
7139 Typ
: constant Entity_Id
:= Etype
(Expr
);
7143 -- Do not insert if checks off, or if not checking validity or if
7144 -- expression is known to be valid.
7146 if not Validity_Checks_On
7147 or else Range_Or_Validity_Checks_Suppressed
(Expr
)
7148 or else Expr_Known_Valid
(Expr
)
7153 -- Do not insert checks within a predicate function. This will arise
7154 -- if the current unit and the predicate function are being compiled
7155 -- with validity checks enabled.
7157 if Present
(Predicate_Function
(Typ
))
7158 and then Current_Scope
= Predicate_Function
(Typ
)
7163 -- If the expression is a packed component of a modular type of the
7164 -- right size, the data is always valid.
7166 if Nkind
(Expr
) = N_Selected_Component
7167 and then Present
(Component_Clause
(Entity
(Selector_Name
(Expr
))))
7168 and then Is_Modular_Integer_Type
(Typ
)
7169 and then Modulus
(Typ
) = 2 ** Esize
(Entity
(Selector_Name
(Expr
)))
7174 -- If we have a checked conversion, then validity check applies to
7175 -- the expression inside the conversion, not the result, since if
7176 -- the expression inside is valid, then so is the conversion result.
7179 while Nkind
(Exp
) = N_Type_Conversion
loop
7180 Exp
:= Expression
(Exp
);
7183 -- We are about to insert the validity check for Exp. We save and
7184 -- reset the Do_Range_Check flag over this validity check, and then
7185 -- put it back for the final original reference (Exp may be rewritten).
7188 DRC
: constant Boolean := Do_Range_Check
(Exp
);
7193 Set_Do_Range_Check
(Exp
, False);
7195 -- Force evaluation to avoid multiple reads for atomic/volatile
7197 -- Note: we set Name_Req to False. We used to set it to True, with
7198 -- the thinking that a name is required as the prefix of the 'Valid
7199 -- call, but in fact the check that the prefix of an attribute is
7200 -- a name is in the parser, and we just don't require it here.
7201 -- Moreover, when we set Name_Req to True, that interfered with the
7202 -- checking for Volatile, since we couldn't just capture the value.
7204 if Is_Entity_Name
(Exp
)
7205 and then Is_Volatile
(Entity
(Exp
))
7207 -- Same reasoning as above for setting Name_Req to False
7209 Force_Evaluation
(Exp
, Name_Req
=> False);
7212 -- Build the prefix for the 'Valid call. If the expression denotes
7213 -- a name, use a renaming to alias it, otherwise use a constant to
7214 -- capture the value of the expression.
7216 -- Temp : ... renames Expr; -- reference to a name
7217 -- Temp : constant ... := Expr; -- all other cases
7220 Duplicate_Subexpr_No_Checks
7223 Renaming_Req
=> Is_Name_Reference
(Exp
),
7224 Related_Id
=> Related_Id
,
7225 Is_Low_Bound
=> Is_Low_Bound
,
7226 Is_High_Bound
=> Is_High_Bound
);
7228 -- A rather specialized test. If PV is an analyzed expression which
7229 -- is an indexed component of a packed array that has not been
7230 -- properly expanded, turn off its Analyzed flag to make sure it
7231 -- gets properly reexpanded. If the prefix is an access value,
7232 -- the dereference will be added later.
7234 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
7235 -- an analyze with the old parent pointer. This may point e.g. to
7236 -- a subprogram call, which deactivates this expansion.
7239 and then Nkind
(PV
) = N_Indexed_Component
7240 and then Is_Array_Type
(Etype
(Prefix
(PV
)))
7241 and then Present
(Packed_Array_Impl_Type
(Etype
(Prefix
(PV
))))
7243 Set_Analyzed
(PV
, False);
7246 -- Build the raise CE node to check for validity. We build a type
7247 -- qualification for the prefix, since it may not be of the form of
7248 -- a name, and we don't care in this context!
7251 Make_Raise_Constraint_Error
(Loc
,
7255 Make_Attribute_Reference
(Loc
,
7257 Attribute_Name
=> Name_Valid
)),
7258 Reason
=> CE_Invalid_Data
);
7260 -- Insert the validity check. Note that we do this with validity
7261 -- checks turned off, to avoid recursion, we do not want validity
7262 -- checks on the validity checking code itself.
7264 Insert_Action
(Expr
, CE
, Suppress
=> Validity_Check
);
7266 -- If the expression is a reference to an element of a bit-packed
7267 -- array, then it is rewritten as a renaming declaration. If the
7268 -- expression is an actual in a call, it has not been expanded,
7269 -- waiting for the proper point at which to do it. The same happens
7270 -- with renamings, so that we have to force the expansion now. This
7271 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7274 if Is_Entity_Name
(Exp
)
7275 and then Nkind
(Parent
(Entity
(Exp
))) =
7276 N_Object_Renaming_Declaration
7279 Old_Exp
: constant Node_Id
:= Name
(Parent
(Entity
(Exp
)));
7281 if Nkind
(Old_Exp
) = N_Indexed_Component
7282 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Old_Exp
)))
7284 Expand_Packed_Element_Reference
(Old_Exp
);
7289 -- Put back the Do_Range_Check flag on the resulting (possibly
7290 -- rewritten) expression.
7292 -- Note: it might be thought that a validity check is not required
7293 -- when a range check is present, but that's not the case, because
7294 -- the back end is allowed to assume for the range check that the
7295 -- operand is within its declared range (an assumption that validity
7296 -- checking is all about NOT assuming).
7298 -- Note: no need to worry about Possible_Local_Raise here, it will
7299 -- already have been called if original node has Do_Range_Check set.
7301 Set_Do_Range_Check
(Exp
, DRC
);
7303 end Insert_Valid_Check
;
7305 -------------------------------------
7306 -- Is_Signed_Integer_Arithmetic_Op --
7307 -------------------------------------
7309 function Is_Signed_Integer_Arithmetic_Op
(N
: Node_Id
) return Boolean is
7323 return Is_Signed_Integer_Type
(Etype
(N
));
7325 when N_Case_Expression
7328 return Is_Signed_Integer_Type
(Etype
(N
));
7333 end Is_Signed_Integer_Arithmetic_Op
;
7335 ----------------------------------
7336 -- Install_Null_Excluding_Check --
7337 ----------------------------------
7339 procedure Install_Null_Excluding_Check
(N
: Node_Id
) is
7340 Loc
: constant Source_Ptr
:= Sloc
(Parent
(N
));
7341 Typ
: constant Entity_Id
:= Etype
(N
);
7343 function Safe_To_Capture_In_Parameter_Value
return Boolean;
7344 -- Determines if it is safe to capture Known_Non_Null status for an
7345 -- the entity referenced by node N. The caller ensures that N is indeed
7346 -- an entity name. It is safe to capture the non-null status for an IN
7347 -- parameter when the reference occurs within a declaration that is sure
7348 -- to be executed as part of the declarative region.
7350 procedure Mark_Non_Null
;
7351 -- After installation of check, if the node in question is an entity
7352 -- name, then mark this entity as non-null if possible.
7354 function Safe_To_Capture_In_Parameter_Value
return Boolean is
7355 E
: constant Entity_Id
:= Entity
(N
);
7356 S
: constant Entity_Id
:= Current_Scope
;
7360 if Ekind
(E
) /= E_In_Parameter
then
7364 -- Two initial context checks. We must be inside a subprogram body
7365 -- with declarations and reference must not appear in nested scopes.
7367 if (Ekind
(S
) /= E_Function
and then Ekind
(S
) /= E_Procedure
)
7368 or else Scope
(E
) /= S
7373 S_Par
:= Parent
(Parent
(S
));
7375 if Nkind
(S_Par
) /= N_Subprogram_Body
7376 or else No
(Declarations
(S_Par
))
7386 -- Retrieve the declaration node of N (if any). Note that N
7387 -- may be a part of a complex initialization expression.
7391 while Present
(P
) loop
7393 -- If we have a short circuit form, and we are within the right
7394 -- hand expression, we return false, since the right hand side
7395 -- is not guaranteed to be elaborated.
7397 if Nkind
(P
) in N_Short_Circuit
7398 and then N
= Right_Opnd
(P
)
7403 -- Similarly, if we are in an if expression and not part of the
7404 -- condition, then we return False, since neither the THEN or
7405 -- ELSE dependent expressions will always be elaborated.
7407 if Nkind
(P
) = N_If_Expression
7408 and then N
/= First
(Expressions
(P
))
7413 -- If within a case expression, and not part of the expression,
7414 -- then return False, since a particular dependent expression
7415 -- may not always be elaborated
7417 if Nkind
(P
) = N_Case_Expression
7418 and then N
/= Expression
(P
)
7423 -- While traversing the parent chain, if node N belongs to a
7424 -- statement, then it may never appear in a declarative region.
7426 if Nkind
(P
) in N_Statement_Other_Than_Procedure_Call
7427 or else Nkind
(P
) = N_Procedure_Call_Statement
7432 -- If we are at a declaration, record it and exit
7434 if Nkind
(P
) in N_Declaration
7435 and then Nkind
(P
) not in N_Subprogram_Specification
7448 return List_Containing
(N_Decl
) = Declarations
(S_Par
);
7450 end Safe_To_Capture_In_Parameter_Value
;
7456 procedure Mark_Non_Null
is
7458 -- Only case of interest is if node N is an entity name
7460 if Is_Entity_Name
(N
) then
7462 -- For sure, we want to clear an indication that this is known to
7463 -- be null, since if we get past this check, it definitely is not.
7465 Set_Is_Known_Null
(Entity
(N
), False);
7467 -- We can mark the entity as known to be non-null if either it is
7468 -- safe to capture the value, or in the case of an IN parameter,
7469 -- which is a constant, if the check we just installed is in the
7470 -- declarative region of the subprogram body. In this latter case,
7471 -- a check is decisive for the rest of the body if the expression
7472 -- is sure to be elaborated, since we know we have to elaborate
7473 -- all declarations before executing the body.
7475 -- Couldn't this always be part of Safe_To_Capture_Value ???
7477 if Safe_To_Capture_Value
(N
, Entity
(N
))
7478 or else Safe_To_Capture_In_Parameter_Value
7480 Set_Is_Known_Non_Null
(Entity
(N
));
7485 -- Start of processing for Install_Null_Excluding_Check
7488 pragma Assert
(Is_Access_Type
(Typ
));
7490 -- No check inside a generic, check will be emitted in instance
7492 if Inside_A_Generic
then
7496 -- No check needed if known to be non-null
7498 if Known_Non_Null
(N
) then
7502 -- If known to be null, here is where we generate a compile time check
7504 if Known_Null
(N
) then
7506 -- Avoid generating warning message inside init procs. In SPARK mode
7507 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
7508 -- since it will be turned into an error in any case.
7510 if (not Inside_Init_Proc
or else SPARK_Mode
= On
)
7512 -- Do not emit the warning within a conditional expression,
7513 -- where the expression might not be evaluated, and the warning
7514 -- appear as extraneous noise.
7516 and then not Within_Case_Or_If_Expression
(N
)
7518 Apply_Compile_Time_Constraint_Error
7519 (N
, "null value not allowed here??", CE_Access_Check_Failed
);
7521 -- Remaining cases, where we silently insert the raise
7525 Make_Raise_Constraint_Error
(Loc
,
7526 Reason
=> CE_Access_Check_Failed
));
7533 -- If entity is never assigned, for sure a warning is appropriate
7535 if Is_Entity_Name
(N
) then
7536 Check_Unset_Reference
(N
);
7539 -- No check needed if checks are suppressed on the range. Note that we
7540 -- don't set Is_Known_Non_Null in this case (we could legitimately do
7541 -- so, since the program is erroneous, but we don't like to casually
7542 -- propagate such conclusions from erroneosity).
7544 if Access_Checks_Suppressed
(Typ
) then
7548 -- No check needed for access to concurrent record types generated by
7549 -- the expander. This is not just an optimization (though it does indeed
7550 -- remove junk checks). It also avoids generation of junk warnings.
7552 if Nkind
(N
) in N_Has_Chars
7553 and then Chars
(N
) = Name_uObject
7554 and then Is_Concurrent_Record_Type
7555 (Directly_Designated_Type
(Etype
(N
)))
7560 -- No check needed in interface thunks since the runtime check is
7561 -- already performed at the caller side.
7563 if Is_Thunk
(Current_Scope
) then
7567 -- No check needed for the Get_Current_Excep.all.all idiom generated by
7568 -- the expander within exception handlers, since we know that the value
7569 -- can never be null.
7571 -- Is this really the right way to do this? Normally we generate such
7572 -- code in the expander with checks off, and that's how we suppress this
7573 -- kind of junk check ???
7575 if Nkind
(N
) = N_Function_Call
7576 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
7577 and then Nkind
(Prefix
(Name
(N
))) = N_Identifier
7578 and then Is_RTE
(Entity
(Prefix
(Name
(N
))), RE_Get_Current_Excep
)
7583 -- Otherwise install access check
7586 Make_Raise_Constraint_Error
(Loc
,
7589 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(N
),
7590 Right_Opnd
=> Make_Null
(Loc
)),
7591 Reason
=> CE_Access_Check_Failed
));
7594 end Install_Null_Excluding_Check
;
7596 --------------------------
7597 -- Install_Static_Check --
7598 --------------------------
7600 procedure Install_Static_Check
(R_Cno
: Node_Id
; Loc
: Source_Ptr
) is
7601 Stat
: constant Boolean := Is_OK_Static_Expression
(R_Cno
);
7602 Typ
: constant Entity_Id
:= Etype
(R_Cno
);
7606 Make_Raise_Constraint_Error
(Loc
,
7607 Reason
=> CE_Range_Check_Failed
));
7608 Set_Analyzed
(R_Cno
);
7609 Set_Etype
(R_Cno
, Typ
);
7610 Set_Raises_Constraint_Error
(R_Cno
);
7611 Set_Is_Static_Expression
(R_Cno
, Stat
);
7613 -- Now deal with possible local raise handling
7615 Possible_Local_Raise
(R_Cno
, Standard_Constraint_Error
);
7616 end Install_Static_Check
;
7618 -------------------------
7619 -- Is_Check_Suppressed --
7620 -------------------------
7622 function Is_Check_Suppressed
(E
: Entity_Id
; C
: Check_Id
) return Boolean is
7623 Ptr
: Suppress_Stack_Entry_Ptr
;
7626 -- First search the local entity suppress stack. We search this from the
7627 -- top of the stack down so that we get the innermost entry that applies
7628 -- to this case if there are nested entries.
7630 Ptr
:= Local_Suppress_Stack_Top
;
7631 while Ptr
/= null loop
7632 if (Ptr
.Entity
= Empty
or else Ptr
.Entity
= E
)
7633 and then (Ptr
.Check
= All_Checks
or else Ptr
.Check
= C
)
7635 return Ptr
.Suppress
;
7641 -- Now search the global entity suppress table for a matching entry.
7642 -- We also search this from the top down so that if there are multiple
7643 -- pragmas for the same entity, the last one applies (not clear what
7644 -- or whether the RM specifies this handling, but it seems reasonable).
7646 Ptr
:= Global_Suppress_Stack_Top
;
7647 while Ptr
/= null loop
7648 if (Ptr
.Entity
= Empty
or else Ptr
.Entity
= E
)
7649 and then (Ptr
.Check
= All_Checks
or else Ptr
.Check
= C
)
7651 return Ptr
.Suppress
;
7657 -- If we did not find a matching entry, then use the normal scope
7658 -- suppress value after all (actually this will be the global setting
7659 -- since it clearly was not overridden at any point). For a predefined
7660 -- check, we test the specific flag. For a user defined check, we check
7661 -- the All_Checks flag. The Overflow flag requires special handling to
7662 -- deal with the General vs Assertion case
7664 if C
= Overflow_Check
then
7665 return Overflow_Checks_Suppressed
(Empty
);
7666 elsif C
in Predefined_Check_Id
then
7667 return Scope_Suppress
.Suppress
(C
);
7669 return Scope_Suppress
.Suppress
(All_Checks
);
7671 end Is_Check_Suppressed
;
7673 ---------------------
7674 -- Kill_All_Checks --
7675 ---------------------
7677 procedure Kill_All_Checks
is
7679 if Debug_Flag_CC
then
7680 w
("Kill_All_Checks");
7683 -- We reset the number of saved checks to zero, and also modify all
7684 -- stack entries for statement ranges to indicate that the number of
7685 -- checks at each level is now zero.
7687 Num_Saved_Checks
:= 0;
7689 -- Note: the Int'Min here avoids any possibility of J being out of
7690 -- range when called from e.g. Conditional_Statements_Begin.
7692 for J
in 1 .. Int
'Min (Saved_Checks_TOS
, Saved_Checks_Stack
'Last) loop
7693 Saved_Checks_Stack
(J
) := 0;
7695 end Kill_All_Checks
;
7701 procedure Kill_Checks
(V
: Entity_Id
) is
7703 if Debug_Flag_CC
then
7704 w
("Kill_Checks for entity", Int
(V
));
7707 for J
in 1 .. Num_Saved_Checks
loop
7708 if Saved_Checks
(J
).Entity
= V
then
7709 if Debug_Flag_CC
then
7710 w
(" Checks killed for saved check ", J
);
7713 Saved_Checks
(J
).Killed
:= True;
7718 ------------------------------
7719 -- Length_Checks_Suppressed --
7720 ------------------------------
7722 function Length_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
7724 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
7725 return Is_Check_Suppressed
(E
, Length_Check
);
7727 return Scope_Suppress
.Suppress
(Length_Check
);
7729 end Length_Checks_Suppressed
;
7731 -----------------------
7732 -- Make_Bignum_Block --
7733 -----------------------
7735 function Make_Bignum_Block
(Loc
: Source_Ptr
) return Node_Id
is
7736 M
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uM
);
7739 Make_Block_Statement
(Loc
,
7741 New_List
(Build_SS_Mark_Call
(Loc
, M
)),
7742 Handled_Statement_Sequence
=>
7743 Make_Handled_Sequence_Of_Statements
(Loc
,
7744 Statements
=> New_List
(Build_SS_Release_Call
(Loc
, M
))));
7745 end Make_Bignum_Block
;
7747 ----------------------------------
7748 -- Minimize_Eliminate_Overflows --
7749 ----------------------------------
7751 -- This is a recursive routine that is called at the top of an expression
7752 -- tree to properly process overflow checking for a whole subtree by making
7753 -- recursive calls to process operands. This processing may involve the use
7754 -- of bignum or long long integer arithmetic, which will change the types
7755 -- of operands and results. That's why we can't do this bottom up (since
7756 -- it would interfere with semantic analysis).
7758 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
7759 -- the operator expansion routines, as well as the expansion routines for
7760 -- if/case expression, do nothing (for the moment) except call the routine
7761 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
7762 -- routine does nothing for non top-level nodes, so at the point where the
7763 -- call is made for the top level node, the entire expression subtree has
7764 -- not been expanded, or processed for overflow. All that has to happen as
7765 -- a result of the top level call to this routine.
7767 -- As noted above, the overflow processing works by making recursive calls
7768 -- for the operands, and figuring out what to do, based on the processing
7769 -- of these operands (e.g. if a bignum operand appears, the parent op has
7770 -- to be done in bignum mode), and the determined ranges of the operands.
7772 -- After possible rewriting of a constituent subexpression node, a call is
7773 -- made to either reexpand the node (if nothing has changed) or reanalyze
7774 -- the node (if it has been modified by the overflow check processing). The
7775 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
7776 -- a recursive call into the whole overflow apparatus, an important rule
7777 -- for this call is that the overflow handling mode must be temporarily set
7780 procedure Minimize_Eliminate_Overflows
7784 Top_Level
: Boolean)
7786 Rtyp
: constant Entity_Id
:= Etype
(N
);
7787 pragma Assert
(Is_Signed_Integer_Type
(Rtyp
));
7788 -- Result type, must be a signed integer type
7790 Check_Mode
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
7791 pragma Assert
(Check_Mode
in Minimized_Or_Eliminated
);
7793 Loc
: constant Source_Ptr
:= Sloc
(N
);
7796 -- Ranges of values for right operand (operator case)
7799 -- Ranges of values for left operand (operator case)
7801 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
7802 -- Operands and results are of this type when we convert
7804 LLLo
: constant Uint
:= Intval
(Type_Low_Bound
(LLIB
));
7805 LLHi
: constant Uint
:= Intval
(Type_High_Bound
(LLIB
));
7806 -- Bounds of Long_Long_Integer
7808 Binary
: constant Boolean := Nkind
(N
) in N_Binary_Op
;
7809 -- Indicates binary operator case
7812 -- Used in call to Determine_Range
7814 Bignum_Operands
: Boolean;
7815 -- Set True if one or more operands is already of type Bignum, meaning
7816 -- that for sure (regardless of Top_Level setting) we are committed to
7817 -- doing the operation in Bignum mode (or in the case of a case or if
7818 -- expression, converting all the dependent expressions to Bignum).
7820 Long_Long_Integer_Operands
: Boolean;
7821 -- Set True if one or more operands is already of type Long_Long_Integer
7822 -- which means that if the result is known to be in the result type
7823 -- range, then we must convert such operands back to the result type.
7825 procedure Reanalyze
(Typ
: Entity_Id
; Suppress
: Boolean := False);
7826 -- This is called when we have modified the node and we therefore need
7827 -- to reanalyze it. It is important that we reset the mode to STRICT for
7828 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
7829 -- we would reenter this routine recursively which would not be good.
7830 -- The argument Suppress is set True if we also want to suppress
7831 -- overflow checking for the reexpansion (this is set when we know
7832 -- overflow is not possible). Typ is the type for the reanalysis.
7834 procedure Reexpand
(Suppress
: Boolean := False);
7835 -- This is like Reanalyze, but does not do the Analyze step, it only
7836 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
7837 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
7838 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
7839 -- Note that skipping reanalysis is not just an optimization, testing
7840 -- has showed up several complex cases in which reanalyzing an already
7841 -- analyzed node causes incorrect behavior.
7843 function In_Result_Range
return Boolean;
7844 -- Returns True iff Lo .. Hi are within range of the result type
7846 procedure Max
(A
: in out Uint
; B
: Uint
);
7847 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
7849 procedure Min
(A
: in out Uint
; B
: Uint
);
7850 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
7852 ---------------------
7853 -- In_Result_Range --
7854 ---------------------
7856 function In_Result_Range
return Boolean is
7858 if Lo
= No_Uint
or else Hi
= No_Uint
then
7861 elsif Is_OK_Static_Subtype
(Etype
(N
)) then
7862 return Lo
>= Expr_Value
(Type_Low_Bound
(Rtyp
))
7864 Hi
<= Expr_Value
(Type_High_Bound
(Rtyp
));
7867 return Lo
>= Expr_Value
(Type_Low_Bound
(Base_Type
(Rtyp
)))
7869 Hi
<= Expr_Value
(Type_High_Bound
(Base_Type
(Rtyp
)));
7871 end In_Result_Range
;
7877 procedure Max
(A
: in out Uint
; B
: Uint
) is
7879 if A
= No_Uint
or else B
> A
then
7888 procedure Min
(A
: in out Uint
; B
: Uint
) is
7890 if A
= No_Uint
or else B
< A
then
7899 procedure Reanalyze
(Typ
: Entity_Id
; Suppress
: Boolean := False) is
7900 Svg
: constant Overflow_Mode_Type
:=
7901 Scope_Suppress
.Overflow_Mode_General
;
7902 Sva
: constant Overflow_Mode_Type
:=
7903 Scope_Suppress
.Overflow_Mode_Assertions
;
7904 Svo
: constant Boolean :=
7905 Scope_Suppress
.Suppress
(Overflow_Check
);
7908 Scope_Suppress
.Overflow_Mode_General
:= Strict
;
7909 Scope_Suppress
.Overflow_Mode_Assertions
:= Strict
;
7912 Scope_Suppress
.Suppress
(Overflow_Check
) := True;
7915 Analyze_And_Resolve
(N
, Typ
);
7917 Scope_Suppress
.Suppress
(Overflow_Check
) := Svo
;
7918 Scope_Suppress
.Overflow_Mode_General
:= Svg
;
7919 Scope_Suppress
.Overflow_Mode_Assertions
:= Sva
;
7926 procedure Reexpand
(Suppress
: Boolean := False) is
7927 Svg
: constant Overflow_Mode_Type
:=
7928 Scope_Suppress
.Overflow_Mode_General
;
7929 Sva
: constant Overflow_Mode_Type
:=
7930 Scope_Suppress
.Overflow_Mode_Assertions
;
7931 Svo
: constant Boolean :=
7932 Scope_Suppress
.Suppress
(Overflow_Check
);
7935 Scope_Suppress
.Overflow_Mode_General
:= Strict
;
7936 Scope_Suppress
.Overflow_Mode_Assertions
:= Strict
;
7937 Set_Analyzed
(N
, False);
7940 Scope_Suppress
.Suppress
(Overflow_Check
) := True;
7945 Scope_Suppress
.Suppress
(Overflow_Check
) := Svo
;
7946 Scope_Suppress
.Overflow_Mode_General
:= Svg
;
7947 Scope_Suppress
.Overflow_Mode_Assertions
:= Sva
;
7950 -- Start of processing for Minimize_Eliminate_Overflows
7953 -- Case where we do not have a signed integer arithmetic operation
7955 if not Is_Signed_Integer_Arithmetic_Op
(N
) then
7957 -- Use the normal Determine_Range routine to get the range. We
7958 -- don't require operands to be valid, invalid values may result in
7959 -- rubbish results where the result has not been properly checked for
7960 -- overflow, that's fine.
7962 Determine_Range
(N
, OK
, Lo
, Hi
, Assume_Valid
=> False);
7964 -- If Determine_Range did not work (can this in fact happen? Not
7965 -- clear but might as well protect), use type bounds.
7968 Lo
:= Intval
(Type_Low_Bound
(Base_Type
(Etype
(N
))));
7969 Hi
:= Intval
(Type_High_Bound
(Base_Type
(Etype
(N
))));
7972 -- If we don't have a binary operator, all we have to do is to set
7973 -- the Hi/Lo range, so we are done.
7977 -- Processing for if expression
7979 elsif Nkind
(N
) = N_If_Expression
then
7981 Then_DE
: constant Node_Id
:= Next
(First
(Expressions
(N
)));
7982 Else_DE
: constant Node_Id
:= Next
(Then_DE
);
7985 Bignum_Operands
:= False;
7987 Minimize_Eliminate_Overflows
7988 (Then_DE
, Lo
, Hi
, Top_Level
=> False);
7990 if Lo
= No_Uint
then
7991 Bignum_Operands
:= True;
7994 Minimize_Eliminate_Overflows
7995 (Else_DE
, Rlo
, Rhi
, Top_Level
=> False);
7997 if Rlo
= No_Uint
then
7998 Bignum_Operands
:= True;
8000 Long_Long_Integer_Operands
:=
8001 Etype
(Then_DE
) = LLIB
or else Etype
(Else_DE
) = LLIB
;
8007 -- If at least one of our operands is now Bignum, we must rebuild
8008 -- the if expression to use Bignum operands. We will analyze the
8009 -- rebuilt if expression with overflow checks off, since once we
8010 -- are in bignum mode, we are all done with overflow checks.
8012 if Bignum_Operands
then
8014 Make_If_Expression
(Loc
,
8015 Expressions
=> New_List
(
8016 Remove_Head
(Expressions
(N
)),
8017 Convert_To_Bignum
(Then_DE
),
8018 Convert_To_Bignum
(Else_DE
)),
8019 Is_Elsif
=> Is_Elsif
(N
)));
8021 Reanalyze
(RTE
(RE_Bignum
), Suppress
=> True);
8023 -- If we have no Long_Long_Integer operands, then we are in result
8024 -- range, since it means that none of our operands felt the need
8025 -- to worry about overflow (otherwise it would have already been
8026 -- converted to long long integer or bignum). We reexpand to
8027 -- complete the expansion of the if expression (but we do not
8028 -- need to reanalyze).
8030 elsif not Long_Long_Integer_Operands
then
8031 Set_Do_Overflow_Check
(N
, False);
8034 -- Otherwise convert us to long long integer mode. Note that we
8035 -- don't need any further overflow checking at this level.
8038 Convert_To_And_Rewrite
(LLIB
, Then_DE
);
8039 Convert_To_And_Rewrite
(LLIB
, Else_DE
);
8040 Set_Etype
(N
, LLIB
);
8042 -- Now reanalyze with overflow checks off
8044 Set_Do_Overflow_Check
(N
, False);
8045 Reanalyze
(LLIB
, Suppress
=> True);
8051 -- Here for case expression
8053 elsif Nkind
(N
) = N_Case_Expression
then
8054 Bignum_Operands
:= False;
8055 Long_Long_Integer_Operands
:= False;
8061 -- Loop through expressions applying recursive call
8063 Alt
:= First
(Alternatives
(N
));
8064 while Present
(Alt
) loop
8066 Aexp
: constant Node_Id
:= Expression
(Alt
);
8069 Minimize_Eliminate_Overflows
8070 (Aexp
, Lo
, Hi
, Top_Level
=> False);
8072 if Lo
= No_Uint
then
8073 Bignum_Operands
:= True;
8074 elsif Etype
(Aexp
) = LLIB
then
8075 Long_Long_Integer_Operands
:= True;
8082 -- If we have no bignum or long long integer operands, it means
8083 -- that none of our dependent expressions could raise overflow.
8084 -- In this case, we simply return with no changes except for
8085 -- resetting the overflow flag, since we are done with overflow
8086 -- checks for this node. We will reexpand to get the needed
8087 -- expansion for the case expression, but we do not need to
8088 -- reanalyze, since nothing has changed.
8090 if not (Bignum_Operands
or Long_Long_Integer_Operands
) then
8091 Set_Do_Overflow_Check
(N
, False);
8092 Reexpand
(Suppress
=> True);
8094 -- Otherwise we are going to rebuild the case expression using
8095 -- either bignum or long long integer operands throughout.
8104 New_Alts
:= New_List
;
8105 Alt
:= First
(Alternatives
(N
));
8106 while Present
(Alt
) loop
8107 if Bignum_Operands
then
8108 New_Exp
:= Convert_To_Bignum
(Expression
(Alt
));
8109 Rtype
:= RTE
(RE_Bignum
);
8111 New_Exp
:= Convert_To
(LLIB
, Expression
(Alt
));
8115 Append_To
(New_Alts
,
8116 Make_Case_Expression_Alternative
(Sloc
(Alt
),
8118 Discrete_Choices
=> Discrete_Choices
(Alt
),
8119 Expression
=> New_Exp
));
8125 Make_Case_Expression
(Loc
,
8126 Expression
=> Expression
(N
),
8127 Alternatives
=> New_Alts
));
8129 Reanalyze
(Rtype
, Suppress
=> True);
8137 -- If we have an arithmetic operator we make recursive calls on the
8138 -- operands to get the ranges (and to properly process the subtree
8139 -- that lies below us).
8141 Minimize_Eliminate_Overflows
8142 (Right_Opnd
(N
), Rlo
, Rhi
, Top_Level
=> False);
8145 Minimize_Eliminate_Overflows
8146 (Left_Opnd
(N
), Llo
, Lhi
, Top_Level
=> False);
8149 -- Record if we have Long_Long_Integer operands
8151 Long_Long_Integer_Operands
:=
8152 Etype
(Right_Opnd
(N
)) = LLIB
8153 or else (Binary
and then Etype
(Left_Opnd
(N
)) = LLIB
);
8155 -- If either operand is a bignum, then result will be a bignum and we
8156 -- don't need to do any range analysis. As previously discussed we could
8157 -- do range analysis in such cases, but it could mean working with giant
8158 -- numbers at compile time for very little gain (the number of cases
8159 -- in which we could slip back from bignum mode is small).
8161 if Rlo
= No_Uint
or else (Binary
and then Llo
= No_Uint
) then
8164 Bignum_Operands
:= True;
8166 -- Otherwise compute result range
8169 Bignum_Operands
:= False;
8177 Hi
:= UI_Max
(abs Rlo
, abs Rhi
);
8189 -- If the right operand can only be zero, set 0..0
8191 if Rlo
= 0 and then Rhi
= 0 then
8195 -- Possible bounds of division must come from dividing end
8196 -- values of the input ranges (four possibilities), provided
8197 -- zero is not included in the possible values of the right
8200 -- Otherwise, we just consider two intervals of values for
8201 -- the right operand: the interval of negative values (up to
8202 -- -1) and the interval of positive values (starting at 1).
8203 -- Since division by 1 is the identity, and division by -1
8204 -- is negation, we get all possible bounds of division in that
8205 -- case by considering:
8206 -- - all values from the division of end values of input
8208 -- - the end values of the left operand;
8209 -- - the negation of the end values of the left operand.
8213 Mrk
: constant Uintp
.Save_Mark
:= Mark
;
8214 -- Mark so we can release the RR and Ev values
8222 -- Discard extreme values of zero for the divisor, since
8223 -- they will simply result in an exception in any case.
8231 -- Compute possible bounds coming from dividing end
8232 -- values of the input ranges.
8239 Lo
:= UI_Min
(UI_Min
(Ev1
, Ev2
), UI_Min
(Ev3
, Ev4
));
8240 Hi
:= UI_Max
(UI_Max
(Ev1
, Ev2
), UI_Max
(Ev3
, Ev4
));
8242 -- If the right operand can be both negative or positive,
8243 -- include the end values of the left operand in the
8244 -- extreme values, as well as their negation.
8246 if Rlo
< 0 and then Rhi
> 0 then
8253 UI_Min
(UI_Min
(Ev1
, Ev2
), UI_Min
(Ev3
, Ev4
)));
8255 UI_Max
(UI_Max
(Ev1
, Ev2
), UI_Max
(Ev3
, Ev4
)));
8258 -- Release the RR and Ev values
8260 Release_And_Save
(Mrk
, Lo
, Hi
);
8268 -- Discard negative values for the exponent, since they will
8269 -- simply result in an exception in any case.
8277 -- Estimate number of bits in result before we go computing
8278 -- giant useless bounds. Basically the number of bits in the
8279 -- result is the number of bits in the base multiplied by the
8280 -- value of the exponent. If this is big enough that the result
8281 -- definitely won't fit in Long_Long_Integer, switch to bignum
8282 -- mode immediately, and avoid computing giant bounds.
8284 -- The comparison here is approximate, but conservative, it
8285 -- only clicks on cases that are sure to exceed the bounds.
8287 if Num_Bits
(UI_Max
(abs Llo
, abs Lhi
)) * Rhi
+ 1 > 100 then
8291 -- If right operand is zero then result is 1
8298 -- High bound comes either from exponentiation of largest
8299 -- positive value to largest exponent value, or from
8300 -- the exponentiation of most negative value to an
8314 if Rhi
mod 2 = 0 then
8317 Hi2
:= Llo
** (Rhi
- 1);
8323 Hi
:= UI_Max
(Hi1
, Hi2
);
8326 -- Result can only be negative if base can be negative
8329 if Rhi
mod 2 = 0 then
8330 Lo
:= Llo
** (Rhi
- 1);
8335 -- Otherwise low bound is minimum ** minimum
8352 Maxabs
: constant Uint
:= UI_Max
(abs Rlo
, abs Rhi
) - 1;
8353 -- This is the maximum absolute value of the result
8359 -- The result depends only on the sign and magnitude of
8360 -- the right operand, it does not depend on the sign or
8361 -- magnitude of the left operand.
8374 when N_Op_Multiply
=>
8376 -- Possible bounds of multiplication must come from multiplying
8377 -- end values of the input ranges (four possibilities).
8380 Mrk
: constant Uintp
.Save_Mark
:= Mark
;
8381 -- Mark so we can release the Ev values
8383 Ev1
: constant Uint
:= Llo
* Rlo
;
8384 Ev2
: constant Uint
:= Llo
* Rhi
;
8385 Ev3
: constant Uint
:= Lhi
* Rlo
;
8386 Ev4
: constant Uint
:= Lhi
* Rhi
;
8389 Lo
:= UI_Min
(UI_Min
(Ev1
, Ev2
), UI_Min
(Ev3
, Ev4
));
8390 Hi
:= UI_Max
(UI_Max
(Ev1
, Ev2
), UI_Max
(Ev3
, Ev4
));
8392 -- Release the Ev values
8394 Release_And_Save
(Mrk
, Lo
, Hi
);
8397 -- Plus operator (affirmation)
8407 Maxabs
: constant Uint
:= UI_Max
(abs Rlo
, abs Rhi
) - 1;
8408 -- This is the maximum absolute value of the result. Note
8409 -- that the result range does not depend on the sign of the
8416 -- Case of left operand negative, which results in a range
8417 -- of -Maxabs .. 0 for those negative values. If there are
8418 -- no negative values then Lo value of result is always 0.
8424 -- Case of left operand positive
8433 when N_Op_Subtract
=>
8437 -- Nothing else should be possible
8440 raise Program_Error
;
8444 -- Here for the case where we have not rewritten anything (no bignum
8445 -- operands or long long integer operands), and we know the result.
8446 -- If we know we are in the result range, and we do not have Bignum
8447 -- operands or Long_Long_Integer operands, we can just reexpand with
8448 -- overflow checks turned off (since we know we cannot have overflow).
8449 -- As always the reexpansion is required to complete expansion of the
8450 -- operator, but we do not need to reanalyze, and we prevent recursion
8451 -- by suppressing the check.
8453 if not (Bignum_Operands
or Long_Long_Integer_Operands
)
8454 and then In_Result_Range
8456 Set_Do_Overflow_Check
(N
, False);
8457 Reexpand
(Suppress
=> True);
8460 -- Here we know that we are not in the result range, and in the general
8461 -- case we will move into either the Bignum or Long_Long_Integer domain
8462 -- to compute the result. However, there is one exception. If we are
8463 -- at the top level, and we do not have Bignum or Long_Long_Integer
8464 -- operands, we will have to immediately convert the result back to
8465 -- the result type, so there is no point in Bignum/Long_Long_Integer
8469 and then not (Bignum_Operands
or Long_Long_Integer_Operands
)
8471 -- One further refinement. If we are at the top level, but our parent
8472 -- is a type conversion, then go into bignum or long long integer node
8473 -- since the result will be converted to that type directly without
8474 -- going through the result type, and we may avoid an overflow. This
8475 -- is the case for example of Long_Long_Integer (A ** 4), where A is
8476 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
8477 -- but does not fit in Integer.
8479 and then Nkind
(Parent
(N
)) /= N_Type_Conversion
8481 -- Here keep original types, but we need to complete analysis
8483 -- One subtlety. We can't just go ahead and do an analyze operation
8484 -- here because it will cause recursion into the whole MINIMIZED/
8485 -- ELIMINATED overflow processing which is not what we want. Here
8486 -- we are at the top level, and we need a check against the result
8487 -- mode (i.e. we want to use STRICT mode). So do exactly that.
8488 -- Also, we have not modified the node, so this is a case where
8489 -- we need to reexpand, but not reanalyze.
8494 -- Cases where we do the operation in Bignum mode. This happens either
8495 -- because one of our operands is in Bignum mode already, or because
8496 -- the computed bounds are outside the bounds of Long_Long_Integer,
8497 -- which in some cases can be indicated by Hi and Lo being No_Uint.
8499 -- Note: we could do better here and in some cases switch back from
8500 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
8501 -- 0 .. 1, but the cases are rare and it is not worth the effort.
8502 -- Failing to do this switching back is only an efficiency issue.
8504 elsif Lo
= No_Uint
or else Lo
< LLLo
or else Hi
> LLHi
then
8506 -- OK, we are definitely outside the range of Long_Long_Integer. The
8507 -- question is whether to move to Bignum mode, or stay in the domain
8508 -- of Long_Long_Integer, signalling that an overflow check is needed.
8510 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
8511 -- the Bignum business. In ELIMINATED mode, we will normally move
8512 -- into Bignum mode, but there is an exception if neither of our
8513 -- operands is Bignum now, and we are at the top level (Top_Level
8514 -- set True). In this case, there is no point in moving into Bignum
8515 -- mode to prevent overflow if the caller will immediately convert
8516 -- the Bignum value back to LLI with an overflow check. It's more
8517 -- efficient to stay in LLI mode with an overflow check (if needed)
8519 if Check_Mode
= Minimized
8520 or else (Top_Level
and not Bignum_Operands
)
8522 if Do_Overflow_Check
(N
) then
8523 Enable_Overflow_Check
(N
);
8526 -- The result now has to be in Long_Long_Integer mode, so adjust
8527 -- the possible range to reflect this. Note these calls also
8528 -- change No_Uint values from the top level case to LLI bounds.
8533 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
8536 pragma Assert
(Check_Mode
= Eliminated
);
8545 Fent
:= RTE
(RE_Big_Abs
);
8548 Fent
:= RTE
(RE_Big_Add
);
8551 Fent
:= RTE
(RE_Big_Div
);
8554 Fent
:= RTE
(RE_Big_Exp
);
8557 Fent
:= RTE
(RE_Big_Neg
);
8560 Fent
:= RTE
(RE_Big_Mod
);
8562 when N_Op_Multiply
=>
8563 Fent
:= RTE
(RE_Big_Mul
);
8566 Fent
:= RTE
(RE_Big_Rem
);
8568 when N_Op_Subtract
=>
8569 Fent
:= RTE
(RE_Big_Sub
);
8571 -- Anything else is an internal error, this includes the
8572 -- N_Op_Plus case, since how can plus cause the result
8573 -- to be out of range if the operand is in range?
8576 raise Program_Error
;
8579 -- Construct argument list for Bignum call, converting our
8580 -- operands to Bignum form if they are not already there.
8585 Append_To
(Args
, Convert_To_Bignum
(Left_Opnd
(N
)));
8588 Append_To
(Args
, Convert_To_Bignum
(Right_Opnd
(N
)));
8590 -- Now rewrite the arithmetic operator with a call to the
8591 -- corresponding bignum function.
8594 Make_Function_Call
(Loc
,
8595 Name
=> New_Occurrence_Of
(Fent
, Loc
),
8596 Parameter_Associations
=> Args
));
8597 Reanalyze
(RTE
(RE_Bignum
), Suppress
=> True);
8599 -- Indicate result is Bignum mode
8607 -- Otherwise we are in range of Long_Long_Integer, so no overflow
8608 -- check is required, at least not yet.
8611 Set_Do_Overflow_Check
(N
, False);
8614 -- Here we are not in Bignum territory, but we may have long long
8615 -- integer operands that need special handling. First a special check:
8616 -- If an exponentiation operator exponent is of type Long_Long_Integer,
8617 -- it means we converted it to prevent overflow, but exponentiation
8618 -- requires a Natural right operand, so convert it back to Natural.
8619 -- This conversion may raise an exception which is fine.
8621 if Nkind
(N
) = N_Op_Expon
and then Etype
(Right_Opnd
(N
)) = LLIB
then
8622 Convert_To_And_Rewrite
(Standard_Natural
, Right_Opnd
(N
));
8625 -- Here we will do the operation in Long_Long_Integer. We do this even
8626 -- if we know an overflow check is required, better to do this in long
8627 -- long integer mode, since we are less likely to overflow.
8629 -- Convert right or only operand to Long_Long_Integer, except that
8630 -- we do not touch the exponentiation right operand.
8632 if Nkind
(N
) /= N_Op_Expon
then
8633 Convert_To_And_Rewrite
(LLIB
, Right_Opnd
(N
));
8636 -- Convert left operand to Long_Long_Integer for binary case
8639 Convert_To_And_Rewrite
(LLIB
, Left_Opnd
(N
));
8642 -- Reset node to unanalyzed
8644 Set_Analyzed
(N
, False);
8645 Set_Etype
(N
, Empty
);
8646 Set_Entity
(N
, Empty
);
8648 -- Now analyze this new node. This reanalysis will complete processing
8649 -- for the node. In particular we will complete the expansion of an
8650 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
8651 -- we will complete any division checks (since we have not changed the
8652 -- setting of the Do_Division_Check flag).
8654 -- We do this reanalysis in STRICT mode to avoid recursion into the
8655 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
8658 SG
: constant Overflow_Mode_Type
:=
8659 Scope_Suppress
.Overflow_Mode_General
;
8660 SA
: constant Overflow_Mode_Type
:=
8661 Scope_Suppress
.Overflow_Mode_Assertions
;
8664 Scope_Suppress
.Overflow_Mode_General
:= Strict
;
8665 Scope_Suppress
.Overflow_Mode_Assertions
:= Strict
;
8667 if not Do_Overflow_Check
(N
) then
8668 Reanalyze
(LLIB
, Suppress
=> True);
8673 Scope_Suppress
.Overflow_Mode_General
:= SG
;
8674 Scope_Suppress
.Overflow_Mode_Assertions
:= SA
;
8676 end Minimize_Eliminate_Overflows
;
8678 -------------------------
8679 -- Overflow_Check_Mode --
8680 -------------------------
8682 function Overflow_Check_Mode
return Overflow_Mode_Type
is
8684 if In_Assertion_Expr
= 0 then
8685 return Scope_Suppress
.Overflow_Mode_General
;
8687 return Scope_Suppress
.Overflow_Mode_Assertions
;
8689 end Overflow_Check_Mode
;
8691 --------------------------------
8692 -- Overflow_Checks_Suppressed --
8693 --------------------------------
8695 function Overflow_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
8697 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
8698 return Is_Check_Suppressed
(E
, Overflow_Check
);
8700 return Scope_Suppress
.Suppress
(Overflow_Check
);
8702 end Overflow_Checks_Suppressed
;
8704 ---------------------------------
8705 -- Predicate_Checks_Suppressed --
8706 ---------------------------------
8708 function Predicate_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
8710 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
8711 return Is_Check_Suppressed
(E
, Predicate_Check
);
8713 return Scope_Suppress
.Suppress
(Predicate_Check
);
8715 end Predicate_Checks_Suppressed
;
8717 -----------------------------
8718 -- Range_Checks_Suppressed --
8719 -----------------------------
8721 function Range_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
8724 if Kill_Range_Checks
(E
) then
8727 elsif Checks_May_Be_Suppressed
(E
) then
8728 return Is_Check_Suppressed
(E
, Range_Check
);
8732 return Scope_Suppress
.Suppress
(Range_Check
);
8733 end Range_Checks_Suppressed
;
8735 -----------------------------------------
8736 -- Range_Or_Validity_Checks_Suppressed --
8737 -----------------------------------------
8739 -- Note: the coding would be simpler here if we simply made appropriate
8740 -- calls to Range/Validity_Checks_Suppressed, but that would result in
8741 -- duplicated checks which we prefer to avoid.
8743 function Range_Or_Validity_Checks_Suppressed
8744 (Expr
: Node_Id
) return Boolean
8747 -- Immediate return if scope checks suppressed for either check
8749 if Scope_Suppress
.Suppress
(Range_Check
)
8751 Scope_Suppress
.Suppress
(Validity_Check
)
8756 -- If no expression, that's odd, decide that checks are suppressed,
8757 -- since we don't want anyone trying to do checks in this case, which
8758 -- is most likely the result of some other error.
8764 -- Expression is present, so perform suppress checks on type
8767 Typ
: constant Entity_Id
:= Etype
(Expr
);
8769 if Checks_May_Be_Suppressed
(Typ
)
8770 and then (Is_Check_Suppressed
(Typ
, Range_Check
)
8772 Is_Check_Suppressed
(Typ
, Validity_Check
))
8778 -- If expression is an entity name, perform checks on this entity
8780 if Is_Entity_Name
(Expr
) then
8782 Ent
: constant Entity_Id
:= Entity
(Expr
);
8784 if Checks_May_Be_Suppressed
(Ent
) then
8785 return Is_Check_Suppressed
(Ent
, Range_Check
)
8786 or else Is_Check_Suppressed
(Ent
, Validity_Check
);
8791 -- If we fall through, no checks suppressed
8794 end Range_Or_Validity_Checks_Suppressed
;
8800 procedure Remove_Checks
(Expr
: Node_Id
) is
8801 function Process
(N
: Node_Id
) return Traverse_Result
;
8802 -- Process a single node during the traversal
8804 procedure Traverse
is new Traverse_Proc
(Process
);
8805 -- The traversal procedure itself
8811 function Process
(N
: Node_Id
) return Traverse_Result
is
8813 if Nkind
(N
) not in N_Subexpr
then
8817 Set_Do_Range_Check
(N
, False);
8821 Traverse
(Left_Opnd
(N
));
8824 when N_Attribute_Reference
=>
8825 Set_Do_Overflow_Check
(N
, False);
8827 when N_Function_Call
=>
8828 Set_Do_Tag_Check
(N
, False);
8831 Set_Do_Overflow_Check
(N
, False);
8835 Set_Do_Division_Check
(N
, False);
8838 Set_Do_Length_Check
(N
, False);
8841 Set_Do_Division_Check
(N
, False);
8844 Set_Do_Length_Check
(N
, False);
8847 Set_Do_Division_Check
(N
, False);
8850 Set_Do_Length_Check
(N
, False);
8857 Traverse
(Left_Opnd
(N
));
8860 when N_Selected_Component
=>
8861 Set_Do_Discriminant_Check
(N
, False);
8863 when N_Type_Conversion
=>
8864 Set_Do_Length_Check
(N
, False);
8865 Set_Do_Tag_Check
(N
, False);
8866 Set_Do_Overflow_Check
(N
, False);
8875 -- Start of processing for Remove_Checks
8881 ----------------------------
8882 -- Selected_Length_Checks --
8883 ----------------------------
8885 function Selected_Length_Checks
8887 Target_Typ
: Entity_Id
;
8888 Source_Typ
: Entity_Id
;
8889 Warn_Node
: Node_Id
) return Check_Result
8891 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
8894 Expr_Actual
: Node_Id
;
8896 Cond
: Node_Id
:= Empty
;
8897 Do_Access
: Boolean := False;
8898 Wnode
: Node_Id
:= Warn_Node
;
8899 Ret_Result
: Check_Result
:= (Empty
, Empty
);
8900 Num_Checks
: Natural := 0;
8902 procedure Add_Check
(N
: Node_Id
);
8903 -- Adds the action given to Ret_Result if N is non-Empty
8905 function Get_E_Length
(E
: Entity_Id
; Indx
: Nat
) return Node_Id
;
8906 function Get_N_Length
(N
: Node_Id
; Indx
: Nat
) return Node_Id
;
8907 -- Comments required ???
8909 function Same_Bounds
(L
: Node_Id
; R
: Node_Id
) return Boolean;
8910 -- True for equal literals and for nodes that denote the same constant
8911 -- entity, even if its value is not a static constant. This includes the
8912 -- case of a discriminal reference within an init proc. Removes some
8913 -- obviously superfluous checks.
8915 function Length_E_Cond
8916 (Exptyp
: Entity_Id
;
8918 Indx
: Nat
) return Node_Id
;
8919 -- Returns expression to compute:
8920 -- Typ'Length /= Exptyp'Length
8922 function Length_N_Cond
8925 Indx
: Nat
) return Node_Id
;
8926 -- Returns expression to compute:
8927 -- Typ'Length /= Expr'Length
8933 procedure Add_Check
(N
: Node_Id
) is
8937 -- For now, ignore attempt to place more than two checks ???
8938 -- This is really worrisome, are we really discarding checks ???
8940 if Num_Checks
= 2 then
8944 pragma Assert
(Num_Checks
<= 1);
8945 Num_Checks
:= Num_Checks
+ 1;
8946 Ret_Result
(Num_Checks
) := N
;
8954 function Get_E_Length
(E
: Entity_Id
; Indx
: Nat
) return Node_Id
is
8955 SE
: constant Entity_Id
:= Scope
(E
);
8957 E1
: Entity_Id
:= E
;
8960 if Ekind
(Scope
(E
)) = E_Record_Type
8961 and then Has_Discriminants
(Scope
(E
))
8963 N
:= Build_Discriminal_Subtype_Of_Component
(E
);
8966 Insert_Action
(Ck_Node
, N
);
8967 E1
:= Defining_Identifier
(N
);
8971 if Ekind
(E1
) = E_String_Literal_Subtype
then
8973 Make_Integer_Literal
(Loc
,
8974 Intval
=> String_Literal_Length
(E1
));
8976 elsif SE
/= Standard_Standard
8977 and then Ekind
(Scope
(SE
)) = E_Protected_Type
8978 and then Has_Discriminants
(Scope
(SE
))
8979 and then Has_Completion
(Scope
(SE
))
8980 and then not Inside_Init_Proc
8982 -- If the type whose length is needed is a private component
8983 -- constrained by a discriminant, we must expand the 'Length
8984 -- attribute into an explicit computation, using the discriminal
8985 -- of the current protected operation. This is because the actual
8986 -- type of the prival is constructed after the protected opera-
8987 -- tion has been fully expanded.
8990 Indx_Type
: Node_Id
;
8993 Do_Expand
: Boolean := False;
8996 Indx_Type
:= First_Index
(E
);
8998 for J
in 1 .. Indx
- 1 loop
8999 Next_Index
(Indx_Type
);
9002 Get_Index_Bounds
(Indx_Type
, Lo
, Hi
);
9004 if Nkind
(Lo
) = N_Identifier
9005 and then Ekind
(Entity
(Lo
)) = E_In_Parameter
9007 Lo
:= Get_Discriminal
(E
, Lo
);
9011 if Nkind
(Hi
) = N_Identifier
9012 and then Ekind
(Entity
(Hi
)) = E_In_Parameter
9014 Hi
:= Get_Discriminal
(E
, Hi
);
9019 if not Is_Entity_Name
(Lo
) then
9020 Lo
:= Duplicate_Subexpr_No_Checks
(Lo
);
9023 if not Is_Entity_Name
(Hi
) then
9024 Lo
:= Duplicate_Subexpr_No_Checks
(Hi
);
9030 Make_Op_Subtract
(Loc
,
9034 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
9039 Make_Attribute_Reference
(Loc
,
9040 Attribute_Name
=> Name_Length
,
9042 New_Occurrence_Of
(E1
, Loc
));
9045 Set_Expressions
(N
, New_List
(
9046 Make_Integer_Literal
(Loc
, Indx
)));
9055 Make_Attribute_Reference
(Loc
,
9056 Attribute_Name
=> Name_Length
,
9058 New_Occurrence_Of
(E1
, Loc
));
9061 Set_Expressions
(N
, New_List
(
9062 Make_Integer_Literal
(Loc
, Indx
)));
9073 function Get_N_Length
(N
: Node_Id
; Indx
: Nat
) return Node_Id
is
9076 Make_Attribute_Reference
(Loc
,
9077 Attribute_Name
=> Name_Length
,
9079 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
9080 Expressions
=> New_List
(
9081 Make_Integer_Literal
(Loc
, Indx
)));
9088 function Length_E_Cond
9089 (Exptyp
: Entity_Id
;
9091 Indx
: Nat
) return Node_Id
9096 Left_Opnd
=> Get_E_Length
(Typ
, Indx
),
9097 Right_Opnd
=> Get_E_Length
(Exptyp
, Indx
));
9104 function Length_N_Cond
9107 Indx
: Nat
) return Node_Id
9112 Left_Opnd
=> Get_E_Length
(Typ
, Indx
),
9113 Right_Opnd
=> Get_N_Length
(Expr
, Indx
));
9120 function Same_Bounds
(L
: Node_Id
; R
: Node_Id
) return Boolean is
9123 (Nkind
(L
) = N_Integer_Literal
9124 and then Nkind
(R
) = N_Integer_Literal
9125 and then Intval
(L
) = Intval
(R
))
9129 and then Ekind
(Entity
(L
)) = E_Constant
9130 and then ((Is_Entity_Name
(R
)
9131 and then Entity
(L
) = Entity
(R
))
9133 (Nkind
(R
) = N_Type_Conversion
9134 and then Is_Entity_Name
(Expression
(R
))
9135 and then Entity
(L
) = Entity
(Expression
(R
)))))
9139 and then Ekind
(Entity
(R
)) = E_Constant
9140 and then Nkind
(L
) = N_Type_Conversion
9141 and then Is_Entity_Name
(Expression
(L
))
9142 and then Entity
(R
) = Entity
(Expression
(L
)))
9146 and then Is_Entity_Name
(R
)
9147 and then Entity
(L
) = Entity
(R
)
9148 and then Ekind
(Entity
(L
)) = E_In_Parameter
9149 and then Inside_Init_Proc
);
9152 -- Start of processing for Selected_Length_Checks
9155 -- Checks will be applied only when generating code
9157 if not Expander_Active
then
9161 if Target_Typ
= Any_Type
9162 or else Target_Typ
= Any_Composite
9163 or else Raises_Constraint_Error
(Ck_Node
)
9172 T_Typ
:= Target_Typ
;
9174 if No
(Source_Typ
) then
9175 S_Typ
:= Etype
(Ck_Node
);
9177 S_Typ
:= Source_Typ
;
9180 if S_Typ
= Any_Type
or else S_Typ
= Any_Composite
then
9184 if Is_Access_Type
(T_Typ
) and then Is_Access_Type
(S_Typ
) then
9185 S_Typ
:= Designated_Type
(S_Typ
);
9186 T_Typ
:= Designated_Type
(T_Typ
);
9189 -- A simple optimization for the null case
9191 if Known_Null
(Ck_Node
) then
9196 if Is_Array_Type
(T_Typ
) and then Is_Array_Type
(S_Typ
) then
9197 if Is_Constrained
(T_Typ
) then
9199 -- The checking code to be generated will freeze the corresponding
9200 -- array type. However, we must freeze the type now, so that the
9201 -- freeze node does not appear within the generated if expression,
9204 Freeze_Before
(Ck_Node
, T_Typ
);
9206 Expr_Actual
:= Get_Referenced_Object
(Ck_Node
);
9207 Exptyp
:= Get_Actual_Subtype
(Ck_Node
);
9209 if Is_Access_Type
(Exptyp
) then
9210 Exptyp
:= Designated_Type
(Exptyp
);
9213 -- String_Literal case. This needs to be handled specially be-
9214 -- cause no index types are available for string literals. The
9215 -- condition is simply:
9217 -- T_Typ'Length = string-literal-length
9219 if Nkind
(Expr_Actual
) = N_String_Literal
9220 and then Ekind
(Etype
(Expr_Actual
)) = E_String_Literal_Subtype
9224 Left_Opnd
=> Get_E_Length
(T_Typ
, 1),
9226 Make_Integer_Literal
(Loc
,
9228 String_Literal_Length
(Etype
(Expr_Actual
))));
9230 -- General array case. Here we have a usable actual subtype for
9231 -- the expression, and the condition is built from the two types
9234 -- T_Typ'Length /= Exptyp'Length or else
9235 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
9236 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
9239 elsif Is_Constrained
(Exptyp
) then
9241 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
9254 -- At the library level, we need to ensure that the type of
9255 -- the object is elaborated before the check itself is
9256 -- emitted. This is only done if the object is in the
9257 -- current compilation unit, otherwise the type is frozen
9258 -- and elaborated in its unit.
9260 if Is_Itype
(Exptyp
)
9262 Ekind
(Cunit_Entity
(Current_Sem_Unit
)) = E_Package
9264 not In_Package_Body
(Cunit_Entity
(Current_Sem_Unit
))
9265 and then In_Open_Scopes
(Scope
(Exptyp
))
9267 Ref_Node
:= Make_Itype_Reference
(Sloc
(Ck_Node
));
9268 Set_Itype
(Ref_Node
, Exptyp
);
9269 Insert_Action
(Ck_Node
, Ref_Node
);
9272 L_Index
:= First_Index
(T_Typ
);
9273 R_Index
:= First_Index
(Exptyp
);
9275 for Indx
in 1 .. Ndims
loop
9276 if not (Nkind
(L_Index
) = N_Raise_Constraint_Error
9278 Nkind
(R_Index
) = N_Raise_Constraint_Error
)
9280 Get_Index_Bounds
(L_Index
, L_Low
, L_High
);
9281 Get_Index_Bounds
(R_Index
, R_Low
, R_High
);
9283 -- Deal with compile time length check. Note that we
9284 -- skip this in the access case, because the access
9285 -- value may be null, so we cannot know statically.
9288 and then Compile_Time_Known_Value
(L_Low
)
9289 and then Compile_Time_Known_Value
(L_High
)
9290 and then Compile_Time_Known_Value
(R_Low
)
9291 and then Compile_Time_Known_Value
(R_High
)
9293 if Expr_Value
(L_High
) >= Expr_Value
(L_Low
) then
9294 L_Length
:= Expr_Value
(L_High
) -
9295 Expr_Value
(L_Low
) + 1;
9297 L_Length
:= UI_From_Int
(0);
9300 if Expr_Value
(R_High
) >= Expr_Value
(R_Low
) then
9301 R_Length
:= Expr_Value
(R_High
) -
9302 Expr_Value
(R_Low
) + 1;
9304 R_Length
:= UI_From_Int
(0);
9307 if L_Length
> R_Length
then
9309 (Compile_Time_Constraint_Error
9310 (Wnode
, "too few elements for}??", T_Typ
));
9312 elsif L_Length
< R_Length
then
9314 (Compile_Time_Constraint_Error
9315 (Wnode
, "too many elements for}??", T_Typ
));
9318 -- The comparison for an individual index subtype
9319 -- is omitted if the corresponding index subtypes
9320 -- statically match, since the result is known to
9321 -- be true. Note that this test is worth while even
9322 -- though we do static evaluation, because non-static
9323 -- subtypes can statically match.
9326 Subtypes_Statically_Match
9327 (Etype
(L_Index
), Etype
(R_Index
))
9330 (Same_Bounds
(L_Low
, R_Low
)
9331 and then Same_Bounds
(L_High
, R_High
))
9334 (Cond
, Length_E_Cond
(Exptyp
, T_Typ
, Indx
));
9343 -- Handle cases where we do not get a usable actual subtype that
9344 -- is constrained. This happens for example in the function call
9345 -- and explicit dereference cases. In these cases, we have to get
9346 -- the length or range from the expression itself, making sure we
9347 -- do not evaluate it more than once.
9349 -- Here Ck_Node is the original expression, or more properly the
9350 -- result of applying Duplicate_Expr to the original tree, forcing
9351 -- the result to be a name.
9355 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
9358 -- Build the condition for the explicit dereference case
9360 for Indx
in 1 .. Ndims
loop
9362 (Cond
, Length_N_Cond
(Ck_Node
, T_Typ
, Indx
));
9369 -- Construct the test and insert into the tree
9371 if Present
(Cond
) then
9373 Cond
:= Guard_Access
(Cond
, Loc
, Ck_Node
);
9377 (Make_Raise_Constraint_Error
(Loc
,
9379 Reason
=> CE_Length_Check_Failed
));
9383 end Selected_Length_Checks
;
9385 ---------------------------
9386 -- Selected_Range_Checks --
9387 ---------------------------
9389 function Selected_Range_Checks
9391 Target_Typ
: Entity_Id
;
9392 Source_Typ
: Entity_Id
;
9393 Warn_Node
: Node_Id
) return Check_Result
9395 Loc
: constant Source_Ptr
:= Sloc
(Ck_Node
);
9398 Expr_Actual
: Node_Id
;
9400 Cond
: Node_Id
:= Empty
;
9401 Do_Access
: Boolean := False;
9402 Wnode
: Node_Id
:= Warn_Node
;
9403 Ret_Result
: Check_Result
:= (Empty
, Empty
);
9404 Num_Checks
: Integer := 0;
9406 procedure Add_Check
(N
: Node_Id
);
9407 -- Adds the action given to Ret_Result if N is non-Empty
9409 function Discrete_Range_Cond
9411 Typ
: Entity_Id
) return Node_Id
;
9412 -- Returns expression to compute:
9413 -- Low_Bound (Expr) < Typ'First
9415 -- High_Bound (Expr) > Typ'Last
9417 function Discrete_Expr_Cond
9419 Typ
: Entity_Id
) return Node_Id
;
9420 -- Returns expression to compute:
9425 function Get_E_First_Or_Last
9429 Nam
: Name_Id
) return Node_Id
;
9430 -- Returns an attribute reference
9431 -- E'First or E'Last
9432 -- with a source location of Loc.
9434 -- Nam is Name_First or Name_Last, according to which attribute is
9435 -- desired. If Indx is non-zero, it is passed as a literal in the
9436 -- Expressions of the attribute reference (identifying the desired
9437 -- array dimension).
9439 function Get_N_First
(N
: Node_Id
; Indx
: Nat
) return Node_Id
;
9440 function Get_N_Last
(N
: Node_Id
; Indx
: Nat
) return Node_Id
;
9441 -- Returns expression to compute:
9442 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
9444 function Range_E_Cond
9445 (Exptyp
: Entity_Id
;
9449 -- Returns expression to compute:
9450 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
9452 function Range_Equal_E_Cond
9453 (Exptyp
: Entity_Id
;
9455 Indx
: Nat
) return Node_Id
;
9456 -- Returns expression to compute:
9457 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
9459 function Range_N_Cond
9462 Indx
: Nat
) return Node_Id
;
9463 -- Return expression to compute:
9464 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
9470 procedure Add_Check
(N
: Node_Id
) is
9474 -- For now, ignore attempt to place more than 2 checks ???
9476 if Num_Checks
= 2 then
9480 pragma Assert
(Num_Checks
<= 1);
9481 Num_Checks
:= Num_Checks
+ 1;
9482 Ret_Result
(Num_Checks
) := N
;
9486 -------------------------
9487 -- Discrete_Expr_Cond --
9488 -------------------------
9490 function Discrete_Expr_Cond
9492 Typ
: Entity_Id
) return Node_Id
9500 Convert_To
(Base_Type
(Typ
),
9501 Duplicate_Subexpr_No_Checks
(Expr
)),
9503 Convert_To
(Base_Type
(Typ
),
9504 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_First
))),
9509 Convert_To
(Base_Type
(Typ
),
9510 Duplicate_Subexpr_No_Checks
(Expr
)),
9514 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_Last
))));
9515 end Discrete_Expr_Cond
;
9517 -------------------------
9518 -- Discrete_Range_Cond --
9519 -------------------------
9521 function Discrete_Range_Cond
9523 Typ
: Entity_Id
) return Node_Id
9525 LB
: Node_Id
:= Low_Bound
(Expr
);
9526 HB
: Node_Id
:= High_Bound
(Expr
);
9528 Left_Opnd
: Node_Id
;
9529 Right_Opnd
: Node_Id
;
9532 if Nkind
(LB
) = N_Identifier
9533 and then Ekind
(Entity
(LB
)) = E_Discriminant
9535 LB
:= New_Occurrence_Of
(Discriminal
(Entity
(LB
)), Loc
);
9542 (Base_Type
(Typ
), Duplicate_Subexpr_No_Checks
(LB
)),
9547 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_First
)));
9549 if Nkind
(HB
) = N_Identifier
9550 and then Ekind
(Entity
(HB
)) = E_Discriminant
9552 HB
:= New_Occurrence_Of
(Discriminal
(Entity
(HB
)), Loc
);
9559 (Base_Type
(Typ
), Duplicate_Subexpr_No_Checks
(HB
)),
9564 Get_E_First_Or_Last
(Loc
, Typ
, 0, Name_Last
)));
9566 return Make_Or_Else
(Loc
, Left_Opnd
, Right_Opnd
);
9567 end Discrete_Range_Cond
;
9569 -------------------------
9570 -- Get_E_First_Or_Last --
9571 -------------------------
9573 function Get_E_First_Or_Last
9577 Nam
: Name_Id
) return Node_Id
9582 Exprs
:= New_List
(Make_Integer_Literal
(Loc
, UI_From_Int
(Indx
)));
9587 return Make_Attribute_Reference
(Loc
,
9588 Prefix
=> New_Occurrence_Of
(E
, Loc
),
9589 Attribute_Name
=> Nam
,
9590 Expressions
=> Exprs
);
9591 end Get_E_First_Or_Last
;
9597 function Get_N_First
(N
: Node_Id
; Indx
: Nat
) return Node_Id
is
9600 Make_Attribute_Reference
(Loc
,
9601 Attribute_Name
=> Name_First
,
9603 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
9604 Expressions
=> New_List
(
9605 Make_Integer_Literal
(Loc
, Indx
)));
9612 function Get_N_Last
(N
: Node_Id
; Indx
: Nat
) return Node_Id
is
9615 Make_Attribute_Reference
(Loc
,
9616 Attribute_Name
=> Name_Last
,
9618 Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True),
9619 Expressions
=> New_List
(
9620 Make_Integer_Literal
(Loc
, Indx
)));
9627 function Range_E_Cond
9628 (Exptyp
: Entity_Id
;
9630 Indx
: Nat
) return Node_Id
9638 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_First
),
9640 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_First
)),
9645 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_Last
),
9647 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_Last
)));
9650 ------------------------
9651 -- Range_Equal_E_Cond --
9652 ------------------------
9654 function Range_Equal_E_Cond
9655 (Exptyp
: Entity_Id
;
9657 Indx
: Nat
) return Node_Id
9665 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_First
),
9667 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_First
)),
9672 Get_E_First_Or_Last
(Loc
, Exptyp
, Indx
, Name_Last
),
9674 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_Last
)));
9675 end Range_Equal_E_Cond
;
9681 function Range_N_Cond
9684 Indx
: Nat
) return Node_Id
9692 Get_N_First
(Expr
, Indx
),
9694 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_First
)),
9699 Get_N_Last
(Expr
, Indx
),
9701 Get_E_First_Or_Last
(Loc
, Typ
, Indx
, Name_Last
)));
9704 -- Start of processing for Selected_Range_Checks
9707 -- Checks will be applied only when generating code. In GNATprove mode,
9708 -- we do not apply the checks, but we still call Selected_Range_Checks
9709 -- to possibly issue errors on SPARK code when a run-time error can be
9710 -- detected at compile time.
9712 if not Expander_Active
and not GNATprove_Mode
then
9716 if Target_Typ
= Any_Type
9717 or else Target_Typ
= Any_Composite
9718 or else Raises_Constraint_Error
(Ck_Node
)
9727 T_Typ
:= Target_Typ
;
9729 if No
(Source_Typ
) then
9730 S_Typ
:= Etype
(Ck_Node
);
9732 S_Typ
:= Source_Typ
;
9735 if S_Typ
= Any_Type
or else S_Typ
= Any_Composite
then
9739 -- The order of evaluating T_Typ before S_Typ seems to be critical
9740 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
9741 -- in, and since Node can be an N_Range node, it might be invalid.
9742 -- Should there be an assert check somewhere for taking the Etype of
9743 -- an N_Range node ???
9745 if Is_Access_Type
(T_Typ
) and then Is_Access_Type
(S_Typ
) then
9746 S_Typ
:= Designated_Type
(S_Typ
);
9747 T_Typ
:= Designated_Type
(T_Typ
);
9750 -- A simple optimization for the null case
9752 if Known_Null
(Ck_Node
) then
9757 -- For an N_Range Node, check for a null range and then if not
9758 -- null generate a range check action.
9760 if Nkind
(Ck_Node
) = N_Range
then
9762 -- There's no point in checking a range against itself
9764 if Ck_Node
= Scalar_Range
(T_Typ
) then
9769 T_LB
: constant Node_Id
:= Type_Low_Bound
(T_Typ
);
9770 T_HB
: constant Node_Id
:= Type_High_Bound
(T_Typ
);
9771 Known_T_LB
: constant Boolean := Compile_Time_Known_Value
(T_LB
);
9772 Known_T_HB
: constant Boolean := Compile_Time_Known_Value
(T_HB
);
9774 LB
: Node_Id
:= Low_Bound
(Ck_Node
);
9775 HB
: Node_Id
:= High_Bound
(Ck_Node
);
9776 Known_LB
: Boolean := False;
9777 Known_HB
: Boolean := False;
9779 Null_Range
: Boolean;
9780 Out_Of_Range_L
: Boolean;
9781 Out_Of_Range_H
: Boolean;
9784 -- Compute what is known at compile time
9786 if Known_T_LB
and Known_T_HB
then
9787 if Compile_Time_Known_Value
(LB
) then
9790 -- There's no point in checking that a bound is within its
9791 -- own range so pretend that it is known in this case. First
9792 -- deal with low bound.
9794 elsif Ekind
(Etype
(LB
)) = E_Signed_Integer_Subtype
9795 and then Scalar_Range
(Etype
(LB
)) = Scalar_Range
(T_Typ
)
9801 -- Likewise for the high bound
9803 if Compile_Time_Known_Value
(HB
) then
9806 elsif Ekind
(Etype
(HB
)) = E_Signed_Integer_Subtype
9807 and then Scalar_Range
(Etype
(HB
)) = Scalar_Range
(T_Typ
)
9814 -- Check for case where everything is static and we can do the
9815 -- check at compile time. This is skipped if we have an access
9816 -- type, since the access value may be null.
9818 -- ??? This code can be improved since you only need to know that
9819 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
9820 -- compile time to emit pertinent messages.
9822 if Known_T_LB
and Known_T_HB
and Known_LB
and Known_HB
9825 -- Floating-point case
9827 if Is_Floating_Point_Type
(S_Typ
) then
9828 Null_Range
:= Expr_Value_R
(HB
) < Expr_Value_R
(LB
);
9830 (Expr_Value_R
(LB
) < Expr_Value_R
(T_LB
))
9832 (Expr_Value_R
(LB
) > Expr_Value_R
(T_HB
));
9835 (Expr_Value_R
(HB
) > Expr_Value_R
(T_HB
))
9837 (Expr_Value_R
(HB
) < Expr_Value_R
(T_LB
));
9839 -- Fixed or discrete type case
9842 Null_Range
:= Expr_Value
(HB
) < Expr_Value
(LB
);
9844 (Expr_Value
(LB
) < Expr_Value
(T_LB
))
9846 (Expr_Value
(LB
) > Expr_Value
(T_HB
));
9849 (Expr_Value
(HB
) > Expr_Value
(T_HB
))
9851 (Expr_Value
(HB
) < Expr_Value
(T_LB
));
9854 if not Null_Range
then
9855 if Out_Of_Range_L
then
9856 if No
(Warn_Node
) then
9858 (Compile_Time_Constraint_Error
9859 (Low_Bound
(Ck_Node
),
9860 "static value out of range of}??", T_Typ
));
9864 (Compile_Time_Constraint_Error
9866 "static range out of bounds of}??", T_Typ
));
9870 if Out_Of_Range_H
then
9871 if No
(Warn_Node
) then
9873 (Compile_Time_Constraint_Error
9874 (High_Bound
(Ck_Node
),
9875 "static value out of range of}??", T_Typ
));
9879 (Compile_Time_Constraint_Error
9881 "static range out of bounds of}??", T_Typ
));
9888 LB
: Node_Id
:= Low_Bound
(Ck_Node
);
9889 HB
: Node_Id
:= High_Bound
(Ck_Node
);
9892 -- If either bound is a discriminant and we are within the
9893 -- record declaration, it is a use of the discriminant in a
9894 -- constraint of a component, and nothing can be checked
9895 -- here. The check will be emitted within the init proc.
9896 -- Before then, the discriminal has no real meaning.
9897 -- Similarly, if the entity is a discriminal, there is no
9898 -- check to perform yet.
9900 -- The same holds within a discriminated synchronized type,
9901 -- where the discriminant may constrain a component or an
9904 if Nkind
(LB
) = N_Identifier
9905 and then Denotes_Discriminant
(LB
, True)
9907 if Current_Scope
= Scope
(Entity
(LB
))
9908 or else Is_Concurrent_Type
(Current_Scope
)
9909 or else Ekind
(Entity
(LB
)) /= E_Discriminant
9914 New_Occurrence_Of
(Discriminal
(Entity
(LB
)), Loc
);
9918 if Nkind
(HB
) = N_Identifier
9919 and then Denotes_Discriminant
(HB
, True)
9921 if Current_Scope
= Scope
(Entity
(HB
))
9922 or else Is_Concurrent_Type
(Current_Scope
)
9923 or else Ekind
(Entity
(HB
)) /= E_Discriminant
9928 New_Occurrence_Of
(Discriminal
(Entity
(HB
)), Loc
);
9932 Cond
:= Discrete_Range_Cond
(Ck_Node
, T_Typ
);
9933 Set_Paren_Count
(Cond
, 1);
9940 Convert_To
(Base_Type
(Etype
(HB
)),
9941 Duplicate_Subexpr_No_Checks
(HB
)),
9943 Convert_To
(Base_Type
(Etype
(LB
)),
9944 Duplicate_Subexpr_No_Checks
(LB
))),
9945 Right_Opnd
=> Cond
);
9950 elsif Is_Scalar_Type
(S_Typ
) then
9952 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
9953 -- except the above simply sets a flag in the node and lets
9954 -- gigi generate the check base on the Etype of the expression.
9955 -- Sometimes, however we want to do a dynamic check against an
9956 -- arbitrary target type, so we do that here.
9958 if Ekind
(Base_Type
(S_Typ
)) /= Ekind
(Base_Type
(T_Typ
)) then
9959 Cond
:= Discrete_Expr_Cond
(Ck_Node
, T_Typ
);
9961 -- For literals, we can tell if the constraint error will be
9962 -- raised at compile time, so we never need a dynamic check, but
9963 -- if the exception will be raised, then post the usual warning,
9964 -- and replace the literal with a raise constraint error
9965 -- expression. As usual, skip this for access types
9967 elsif Compile_Time_Known_Value
(Ck_Node
) and then not Do_Access
then
9969 LB
: constant Node_Id
:= Type_Low_Bound
(T_Typ
);
9970 UB
: constant Node_Id
:= Type_High_Bound
(T_Typ
);
9972 Out_Of_Range
: Boolean;
9973 Static_Bounds
: constant Boolean :=
9974 Compile_Time_Known_Value
(LB
)
9975 and Compile_Time_Known_Value
(UB
);
9978 -- Following range tests should use Sem_Eval routine ???
9980 if Static_Bounds
then
9981 if Is_Floating_Point_Type
(S_Typ
) then
9983 (Expr_Value_R
(Ck_Node
) < Expr_Value_R
(LB
))
9985 (Expr_Value_R
(Ck_Node
) > Expr_Value_R
(UB
));
9987 -- Fixed or discrete type
9991 Expr_Value
(Ck_Node
) < Expr_Value
(LB
)
9993 Expr_Value
(Ck_Node
) > Expr_Value
(UB
);
9996 -- Bounds of the type are static and the literal is out of
9997 -- range so output a warning message.
9999 if Out_Of_Range
then
10000 if No
(Warn_Node
) then
10002 (Compile_Time_Constraint_Error
10004 "static value out of range of}??", T_Typ
));
10008 (Compile_Time_Constraint_Error
10010 "static value out of range of}??", T_Typ
));
10015 Cond
:= Discrete_Expr_Cond
(Ck_Node
, T_Typ
);
10019 -- Here for the case of a non-static expression, we need a runtime
10020 -- check unless the source type range is guaranteed to be in the
10021 -- range of the target type.
10024 if not In_Subrange_Of
(S_Typ
, T_Typ
) then
10025 Cond
:= Discrete_Expr_Cond
(Ck_Node
, T_Typ
);
10030 if Is_Array_Type
(T_Typ
) and then Is_Array_Type
(S_Typ
) then
10031 if Is_Constrained
(T_Typ
) then
10033 Expr_Actual
:= Get_Referenced_Object
(Ck_Node
);
10034 Exptyp
:= Get_Actual_Subtype
(Expr_Actual
);
10036 if Is_Access_Type
(Exptyp
) then
10037 Exptyp
:= Designated_Type
(Exptyp
);
10040 -- String_Literal case. This needs to be handled specially be-
10041 -- cause no index types are available for string literals. The
10042 -- condition is simply:
10044 -- T_Typ'Length = string-literal-length
10046 if Nkind
(Expr_Actual
) = N_String_Literal
then
10049 -- General array case. Here we have a usable actual subtype for
10050 -- the expression, and the condition is built from the two types
10052 -- T_Typ'First < Exptyp'First or else
10053 -- T_Typ'Last > Exptyp'Last or else
10054 -- T_Typ'First(1) < Exptyp'First(1) or else
10055 -- T_Typ'Last(1) > Exptyp'Last(1) or else
10058 elsif Is_Constrained
(Exptyp
) then
10060 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
10066 L_Index
:= First_Index
(T_Typ
);
10067 R_Index
:= First_Index
(Exptyp
);
10069 for Indx
in 1 .. Ndims
loop
10070 if not (Nkind
(L_Index
) = N_Raise_Constraint_Error
10072 Nkind
(R_Index
) = N_Raise_Constraint_Error
)
10074 -- Deal with compile time length check. Note that we
10075 -- skip this in the access case, because the access
10076 -- value may be null, so we cannot know statically.
10079 Subtypes_Statically_Match
10080 (Etype
(L_Index
), Etype
(R_Index
))
10082 -- If the target type is constrained then we
10083 -- have to check for exact equality of bounds
10084 -- (required for qualified expressions).
10086 if Is_Constrained
(T_Typ
) then
10089 Range_Equal_E_Cond
(Exptyp
, T_Typ
, Indx
));
10092 (Cond
, Range_E_Cond
(Exptyp
, T_Typ
, Indx
));
10102 -- Handle cases where we do not get a usable actual subtype that
10103 -- is constrained. This happens for example in the function call
10104 -- and explicit dereference cases. In these cases, we have to get
10105 -- the length or range from the expression itself, making sure we
10106 -- do not evaluate it more than once.
10108 -- Here Ck_Node is the original expression, or more properly the
10109 -- result of applying Duplicate_Expr to the original tree,
10110 -- forcing the result to be a name.
10114 Ndims
: constant Nat
:= Number_Dimensions
(T_Typ
);
10117 -- Build the condition for the explicit dereference case
10119 for Indx
in 1 .. Ndims
loop
10121 (Cond
, Range_N_Cond
(Ck_Node
, T_Typ
, Indx
));
10127 -- For a conversion to an unconstrained array type, generate an
10128 -- Action to check that the bounds of the source value are within
10129 -- the constraints imposed by the target type (RM 4.6(38)). No
10130 -- check is needed for a conversion to an access to unconstrained
10131 -- array type, as 4.6(24.15/2) requires the designated subtypes
10132 -- of the two access types to statically match.
10134 if Nkind
(Parent
(Ck_Node
)) = N_Type_Conversion
10135 and then not Do_Access
10138 Opnd_Index
: Node_Id
;
10139 Targ_Index
: Node_Id
;
10140 Opnd_Range
: Node_Id
;
10143 Opnd_Index
:= First_Index
(Get_Actual_Subtype
(Ck_Node
));
10144 Targ_Index
:= First_Index
(T_Typ
);
10145 while Present
(Opnd_Index
) loop
10147 -- If the index is a range, use its bounds. If it is an
10148 -- entity (as will be the case if it is a named subtype
10149 -- or an itype created for a slice) retrieve its range.
10151 if Is_Entity_Name
(Opnd_Index
)
10152 and then Is_Type
(Entity
(Opnd_Index
))
10154 Opnd_Range
:= Scalar_Range
(Entity
(Opnd_Index
));
10156 Opnd_Range
:= Opnd_Index
;
10159 if Nkind
(Opnd_Range
) = N_Range
then
10161 (Low_Bound
(Opnd_Range
), Etype
(Targ_Index
),
10162 Assume_Valid
=> True)
10165 (High_Bound
(Opnd_Range
), Etype
(Targ_Index
),
10166 Assume_Valid
=> True)
10170 -- If null range, no check needed
10173 Compile_Time_Known_Value
(High_Bound
(Opnd_Range
))
10175 Compile_Time_Known_Value
(Low_Bound
(Opnd_Range
))
10177 Expr_Value
(High_Bound
(Opnd_Range
)) <
10178 Expr_Value
(Low_Bound
(Opnd_Range
))
10182 elsif Is_Out_Of_Range
10183 (Low_Bound
(Opnd_Range
), Etype
(Targ_Index
),
10184 Assume_Valid
=> True)
10187 (High_Bound
(Opnd_Range
), Etype
(Targ_Index
),
10188 Assume_Valid
=> True)
10191 (Compile_Time_Constraint_Error
10192 (Wnode
, "value out of range of}??", T_Typ
));
10197 Discrete_Range_Cond
10198 (Opnd_Range
, Etype
(Targ_Index
)));
10202 Next_Index
(Opnd_Index
);
10203 Next_Index
(Targ_Index
);
10210 -- Construct the test and insert into the tree
10212 if Present
(Cond
) then
10214 Cond
:= Guard_Access
(Cond
, Loc
, Ck_Node
);
10218 (Make_Raise_Constraint_Error
(Loc
,
10220 Reason
=> CE_Range_Check_Failed
));
10224 end Selected_Range_Checks
;
10226 -------------------------------
10227 -- Storage_Checks_Suppressed --
10228 -------------------------------
10230 function Storage_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
10232 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
10233 return Is_Check_Suppressed
(E
, Storage_Check
);
10235 return Scope_Suppress
.Suppress
(Storage_Check
);
10237 end Storage_Checks_Suppressed
;
10239 ---------------------------
10240 -- Tag_Checks_Suppressed --
10241 ---------------------------
10243 function Tag_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
10246 and then Checks_May_Be_Suppressed
(E
)
10248 return Is_Check_Suppressed
(E
, Tag_Check
);
10250 return Scope_Suppress
.Suppress
(Tag_Check
);
10252 end Tag_Checks_Suppressed
;
10254 ---------------------------------------
10255 -- Validate_Alignment_Check_Warnings --
10256 ---------------------------------------
10258 procedure Validate_Alignment_Check_Warnings
is
10260 for J
in Alignment_Warnings
.First
.. Alignment_Warnings
.Last
loop
10262 AWR
: Alignment_Warnings_Record
10263 renames Alignment_Warnings
.Table
(J
);
10265 if Known_Alignment
(AWR
.E
)
10266 and then AWR
.A
mod Alignment
(AWR
.E
) = 0
10268 Delete_Warning_And_Continuations
(AWR
.W
);
10272 end Validate_Alignment_Check_Warnings
;
10274 --------------------------
10275 -- Validity_Check_Range --
10276 --------------------------
10278 procedure Validity_Check_Range
10280 Related_Id
: Entity_Id
:= Empty
)
10283 if Validity_Checks_On
and Validity_Check_Operands
then
10284 if Nkind
(N
) = N_Range
then
10286 (Expr
=> Low_Bound
(N
),
10287 Related_Id
=> Related_Id
,
10288 Is_Low_Bound
=> True);
10291 (Expr
=> High_Bound
(N
),
10292 Related_Id
=> Related_Id
,
10293 Is_High_Bound
=> True);
10296 end Validity_Check_Range
;
10298 --------------------------------
10299 -- Validity_Checks_Suppressed --
10300 --------------------------------
10302 function Validity_Checks_Suppressed
(E
: Entity_Id
) return Boolean is
10304 if Present
(E
) and then Checks_May_Be_Suppressed
(E
) then
10305 return Is_Check_Suppressed
(E
, Validity_Check
);
10307 return Scope_Suppress
.Suppress
(Validity_Check
);
10309 end Validity_Checks_Suppressed
;