gcov: make profile merging smarter
[official-gcc.git] / gcc / gimple-range-fold.cc
blobed2fbe121cffbc250052d4ed0cc978a8d02abc70
1 /* Code for GIMPLE range related routines.
2 Copyright (C) 2019-2021 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "insn-codes.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "ssa.h"
30 #include "gimple-pretty-print.h"
31 #include "optabs-tree.h"
32 #include "gimple-fold.h"
33 #include "wide-int.h"
34 #include "fold-const.h"
35 #include "case-cfn-macros.h"
36 #include "omp-general.h"
37 #include "cfgloop.h"
38 #include "tree-ssa-loop.h"
39 #include "tree-scalar-evolution.h"
40 #include "langhooks.h"
41 #include "vr-values.h"
42 #include "range.h"
43 #include "value-query.h"
44 #include "range-op.h"
45 #include "gimple-range.h"
46 // Construct a fur_source, and set the m_query field.
48 fur_source::fur_source (range_query *q)
50 if (q)
51 m_query = q;
52 else if (cfun)
53 m_query = get_range_query (cfun);
54 else
55 m_query = get_global_range_query ();
56 m_gori = NULL;
59 // Invoke range_of_expr on EXPR.
61 bool
62 fur_source::get_operand (irange &r, tree expr)
64 return m_query->range_of_expr (r, expr);
67 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
68 // range_query to get the range on the edge.
70 bool
71 fur_source::get_phi_operand (irange &r, tree expr, edge e)
73 return m_query->range_on_edge (r, e, expr);
76 // Default is no relation.
78 relation_kind
79 fur_source::query_relation (tree op1 ATTRIBUTE_UNUSED,
80 tree op2 ATTRIBUTE_UNUSED)
82 return VREL_NONE;
85 // Default registers nothing.
87 void
88 fur_source::register_relation (gimple *s ATTRIBUTE_UNUSED,
89 relation_kind k ATTRIBUTE_UNUSED,
90 tree op1 ATTRIBUTE_UNUSED,
91 tree op2 ATTRIBUTE_UNUSED)
95 // Default registers nothing.
97 void
98 fur_source::register_relation (edge e ATTRIBUTE_UNUSED,
99 relation_kind k ATTRIBUTE_UNUSED,
100 tree op1 ATTRIBUTE_UNUSED,
101 tree op2 ATTRIBUTE_UNUSED)
105 // This version of fur_source will pick a range up off an edge.
107 class fur_edge : public fur_source
109 public:
110 fur_edge (edge e, range_query *q = NULL);
111 virtual bool get_operand (irange &r, tree expr) OVERRIDE;
112 virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE;
113 private:
114 edge m_edge;
117 // Instantiate an edge based fur_source.
119 inline
120 fur_edge::fur_edge (edge e, range_query *q) : fur_source (q)
122 m_edge = e;
125 // Get the value of EXPR on edge m_edge.
127 bool
128 fur_edge::get_operand (irange &r, tree expr)
130 return m_query->range_on_edge (r, m_edge, expr);
133 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
134 // range_query to get the range on the edge.
136 bool
137 fur_edge::get_phi_operand (irange &r, tree expr, edge e)
139 // Edge to edge recalculations not supoprted yet, until we sort it out.
140 gcc_checking_assert (e == m_edge);
141 return m_query->range_on_edge (r, e, expr);
144 // Instantiate a stmt based fur_source.
146 fur_stmt::fur_stmt (gimple *s, range_query *q) : fur_source (q)
148 m_stmt = s;
151 // Retreive range of EXPR as it occurs as a use on stmt M_STMT.
153 bool
154 fur_stmt::get_operand (irange &r, tree expr)
156 return m_query->range_of_expr (r, expr, m_stmt);
159 // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current
160 // range_query to get the range on the edge.
162 bool
163 fur_stmt::get_phi_operand (irange &r, tree expr, edge e)
165 // Pick up the range of expr from edge E.
166 fur_edge e_src (e, m_query);
167 return e_src.get_operand (r, expr);
170 // Return relation based from m_stmt.
172 relation_kind
173 fur_stmt::query_relation (tree op1, tree op2)
175 return m_query->query_relation (m_stmt, op1, op2);
178 // Instantiate a stmt based fur_source with a GORI object.
181 fur_depend::fur_depend (gimple *s, gori_compute *gori, range_query *q)
182 : fur_stmt (s, q)
184 gcc_checking_assert (gori);
185 m_gori = gori;
186 // Set relations if there is an oracle in the range_query.
187 // This will enable registering of relationships as they are discovered.
188 m_oracle = q->oracle ();
192 // Register a relation on a stmt if there is an oracle.
194 void
195 fur_depend::register_relation (gimple *s, relation_kind k, tree op1, tree op2)
197 if (m_oracle)
198 m_oracle->register_stmt (s, k, op1, op2);
201 // Register a relation on an edge if there is an oracle.
203 void
204 fur_depend::register_relation (edge e, relation_kind k, tree op1, tree op2)
206 if (m_oracle)
207 m_oracle->register_edge (e, k, op1, op2);
210 // This version of fur_source will pick a range up from a list of ranges
211 // supplied by the caller.
213 class fur_list : public fur_source
215 public:
216 fur_list (irange &r1);
217 fur_list (irange &r1, irange &r2);
218 fur_list (unsigned num, irange *list);
219 virtual bool get_operand (irange &r, tree expr) OVERRIDE;
220 virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE;
221 private:
222 int_range_max m_local[2];
223 irange *m_list;
224 unsigned m_index;
225 unsigned m_limit;
228 // One range supplied for unary operations.
230 fur_list::fur_list (irange &r1) : fur_source (NULL)
232 m_list = m_local;
233 m_index = 0;
234 m_limit = 1;
235 m_local[0] = r1;
238 // Two ranges supplied for binary operations.
240 fur_list::fur_list (irange &r1, irange &r2) : fur_source (NULL)
242 m_list = m_local;
243 m_index = 0;
244 m_limit = 2;
245 m_local[0] = r1;
246 m_local[0] = r2;
249 // Arbitrary number of ranges in a vector.
251 fur_list::fur_list (unsigned num, irange *list) : fur_source (NULL)
253 m_list = list;
254 m_index = 0;
255 m_limit = num;
258 // Get the next operand from the vector, ensure types are compatible.
260 bool
261 fur_list::get_operand (irange &r, tree expr)
263 if (m_index >= m_limit)
264 return m_query->range_of_expr (r, expr);
265 r = m_list[m_index++];
266 gcc_checking_assert (range_compatible_p (TREE_TYPE (expr), r.type ()));
267 return true;
270 // This will simply pick the next operand from the vector.
271 bool
272 fur_list::get_phi_operand (irange &r, tree expr, edge e ATTRIBUTE_UNUSED)
274 return get_operand (r, expr);
277 // Fold stmt S into range R using R1 as the first operand.
279 bool
280 fold_range (irange &r, gimple *s, irange &r1)
282 fold_using_range f;
283 fur_list src (r1);
284 return f.fold_stmt (r, s, src);
287 // Fold stmt S into range R using R1 and R2 as the first two operands.
289 bool
290 fold_range (irange &r, gimple *s, irange &r1, irange &r2)
292 fold_using_range f;
293 fur_list src (r1, r2);
294 return f.fold_stmt (r, s, src);
297 // Fold stmt S into range R using NUM_ELEMENTS from VECTOR as the initial
298 // operands encountered.
300 bool
301 fold_range (irange &r, gimple *s, unsigned num_elements, irange *vector)
303 fold_using_range f;
304 fur_list src (num_elements, vector);
305 return f.fold_stmt (r, s, src);
308 // Fold stmt S into range R using range query Q.
310 bool
311 fold_range (irange &r, gimple *s, range_query *q)
313 fold_using_range f;
314 fur_stmt src (s, q);
315 return f.fold_stmt (r, s, src);
318 // Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE.
320 bool
321 fold_range (irange &r, gimple *s, edge on_edge, range_query *q)
323 fold_using_range f;
324 fur_edge src (on_edge, q);
325 return f.fold_stmt (r, s, src);
328 // -------------------------------------------------------------------------
330 // Adjust the range for a pointer difference where the operands came
331 // from a memchr.
333 // This notices the following sequence:
335 // def = __builtin_memchr (arg, 0, sz)
336 // n = def - arg
338 // The range for N can be narrowed to [0, PTRDIFF_MAX - 1].
340 static void
341 adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
343 tree op0 = gimple_assign_rhs1 (diff_stmt);
344 tree op1 = gimple_assign_rhs2 (diff_stmt);
345 tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
346 tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
347 gimple *call;
349 if (TREE_CODE (op0) == SSA_NAME
350 && TREE_CODE (op1) == SSA_NAME
351 && (call = SSA_NAME_DEF_STMT (op0))
352 && is_gimple_call (call)
353 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
354 && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
355 && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
356 && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
357 && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
358 && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
359 && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
360 && integer_zerop (gimple_call_arg (call, 1)))
362 tree max = vrp_val_max (ptrdiff_type_node);
363 unsigned prec = TYPE_PRECISION (TREE_TYPE (max));
364 wide_int wmaxm1 = wi::to_wide (max, prec) - 1;
365 res.intersect (wi::zero (prec), wmaxm1);
369 // Adjust the range for an IMAGPART_EXPR.
371 static void
372 adjust_imagpart_expr (irange &res, const gimple *stmt)
374 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
376 if (TREE_CODE (name) != SSA_NAME || !SSA_NAME_DEF_STMT (name))
377 return;
379 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
380 if (is_gimple_call (def_stmt) && gimple_call_internal_p (def_stmt))
382 switch (gimple_call_internal_fn (def_stmt))
384 case IFN_ADD_OVERFLOW:
385 case IFN_SUB_OVERFLOW:
386 case IFN_MUL_OVERFLOW:
387 case IFN_ATOMIC_COMPARE_EXCHANGE:
389 int_range<2> r;
390 r.set_varying (boolean_type_node);
391 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
392 range_cast (r, type);
393 res.intersect (r);
395 default:
396 break;
398 return;
400 if (is_gimple_assign (def_stmt))
402 tree cst = gimple_assign_rhs1 (def_stmt);
403 if (TREE_CODE (cst) == COMPLEX_CST)
405 wide_int imag = wi::to_wide (TREE_IMAGPART (cst));
406 res.intersect (imag, imag);
411 // Adjust the range for a REALPART_EXPR.
413 static void
414 adjust_realpart_expr (irange &res, const gimple *stmt)
416 tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
418 if (TREE_CODE (name) != SSA_NAME)
419 return;
421 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
422 if (!SSA_NAME_DEF_STMT (name))
423 return;
425 if (is_gimple_assign (def_stmt))
427 tree cst = gimple_assign_rhs1 (def_stmt);
428 if (TREE_CODE (cst) == COMPLEX_CST)
430 tree imag = TREE_REALPART (cst);
431 int_range<2> tmp (imag, imag);
432 res.intersect (tmp);
437 // This function looks for situations when walking the use/def chains
438 // may provide additonal contextual range information not exposed on
439 // this statement.
441 static void
442 gimple_range_adjustment (irange &res, const gimple *stmt)
444 switch (gimple_expr_code (stmt))
446 case POINTER_DIFF_EXPR:
447 adjust_pointer_diff_expr (res, stmt);
448 return;
450 case IMAGPART_EXPR:
451 adjust_imagpart_expr (res, stmt);
452 return;
454 case REALPART_EXPR:
455 adjust_realpart_expr (res, stmt);
456 return;
458 default:
459 break;
463 // Return the base of the RHS of an assignment.
465 static tree
466 gimple_range_base_of_assignment (const gimple *stmt)
468 gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
469 tree op1 = gimple_assign_rhs1 (stmt);
470 if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
471 return get_base_address (TREE_OPERAND (op1, 0));
472 return op1;
475 // Return the first operand of this statement if it is a valid operand
476 // supported by ranges, otherwise return NULL_TREE. Special case is
477 // &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr.
479 tree
480 gimple_range_operand1 (const gimple *stmt)
482 gcc_checking_assert (gimple_range_handler (stmt));
484 switch (gimple_code (stmt))
486 case GIMPLE_COND:
487 return gimple_cond_lhs (stmt);
488 case GIMPLE_ASSIGN:
490 tree base = gimple_range_base_of_assignment (stmt);
491 if (base && TREE_CODE (base) == MEM_REF)
493 // If the base address is an SSA_NAME, we return it
494 // here. This allows processing of the range of that
495 // name, while the rest of the expression is simply
496 // ignored. The code in range_ops will see the
497 // ADDR_EXPR and do the right thing.
498 tree ssa = TREE_OPERAND (base, 0);
499 if (TREE_CODE (ssa) == SSA_NAME)
500 return ssa;
502 return base;
504 default:
505 break;
507 return NULL;
510 // Return the second operand of statement STMT, otherwise return NULL_TREE.
512 tree
513 gimple_range_operand2 (const gimple *stmt)
515 gcc_checking_assert (gimple_range_handler (stmt));
517 switch (gimple_code (stmt))
519 case GIMPLE_COND:
520 return gimple_cond_rhs (stmt);
521 case GIMPLE_ASSIGN:
522 if (gimple_num_ops (stmt) >= 3)
523 return gimple_assign_rhs2 (stmt);
524 default:
525 break;
527 return NULL_TREE;
530 // Calculate a range for statement S and return it in R. If NAME is provided it
531 // represents the SSA_NAME on the LHS of the statement. It is only required
532 // if there is more than one lhs/output. If a range cannot
533 // be calculated, return false.
535 bool
536 fold_using_range::fold_stmt (irange &r, gimple *s, fur_source &src, tree name)
538 bool res = false;
539 // If name and S are specified, make sure it is an LHS of S.
540 gcc_checking_assert (!name || !gimple_get_lhs (s) ||
541 name == gimple_get_lhs (s));
543 if (!name)
544 name = gimple_get_lhs (s);
546 // Process addresses.
547 if (gimple_code (s) == GIMPLE_ASSIGN
548 && gimple_assign_rhs_code (s) == ADDR_EXPR)
549 return range_of_address (r, s, src);
551 if (gimple_range_handler (s))
552 res = range_of_range_op (r, s, src);
553 else if (is_a<gphi *>(s))
554 res = range_of_phi (r, as_a<gphi *> (s), src);
555 else if (is_a<gcall *>(s))
556 res = range_of_call (r, as_a<gcall *> (s), src);
557 else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
558 res = range_of_cond_expr (r, as_a<gassign *> (s), src);
560 if (!res)
562 // If no name specified or range is unsupported, bail.
563 if (!name || !gimple_range_ssa_p (name))
564 return false;
565 // We don't understand the stmt, so return the global range.
566 r = gimple_range_global (name);
567 return true;
570 if (r.undefined_p ())
571 return true;
573 // We sometimes get compatible types copied from operands, make sure
574 // the correct type is being returned.
575 if (name && TREE_TYPE (name) != r.type ())
577 gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name)));
578 range_cast (r, TREE_TYPE (name));
580 return true;
583 // Calculate a range for range_op statement S and return it in R. If any
584 // If a range cannot be calculated, return false.
586 bool
587 fold_using_range::range_of_range_op (irange &r, gimple *s, fur_source &src)
589 int_range_max range1, range2;
590 tree type = gimple_range_type (s);
591 if (!type)
592 return false;
593 range_operator *handler = gimple_range_handler (s);
594 gcc_checking_assert (handler);
596 tree lhs = gimple_get_lhs (s);
597 tree op1 = gimple_range_operand1 (s);
598 tree op2 = gimple_range_operand2 (s);
600 if (src.get_operand (range1, op1))
602 if (!op2)
604 // Fold range, and register any dependency if available.
605 int_range<2> r2 (type);
606 handler->fold_range (r, type, range1, r2);
607 if (lhs && gimple_range_ssa_p (op1))
609 if (src.gori ())
610 src.gori ()->register_dependency (lhs, op1);
611 relation_kind rel;
612 rel = handler->lhs_op1_relation (r, range1, range1);
613 if (rel != VREL_NONE)
614 src.register_relation (s, rel, lhs, op1);
617 else if (src.get_operand (range2, op2))
619 relation_kind rel = src.query_relation (op1, op2);
620 if (dump_file && (dump_flags & TDF_DETAILS) && rel != VREL_NONE)
622 fprintf (dump_file, " folding with relation ");
623 print_relation (dump_file, rel);
624 fputc ('\n', dump_file);
626 // Fold range, and register any dependency if available.
627 handler->fold_range (r, type, range1, range2, rel);
628 relation_fold_and_or (r, s, src);
629 if (lhs)
631 if (src.gori ())
633 src.gori ()->register_dependency (lhs, op1);
634 src.gori ()->register_dependency (lhs, op2);
636 if (gimple_range_ssa_p (op1))
638 rel = handler->lhs_op1_relation (r, range1, range2);
639 if (rel != VREL_NONE)
640 src.register_relation (s, rel, lhs, op1);
642 if (gimple_range_ssa_p (op2))
644 rel= handler->lhs_op2_relation (r, range1, range2);
645 if (rel != VREL_NONE)
646 src.register_relation (s, rel, lhs, op2);
649 // Check for an existing BB, as we maybe asked to fold an
650 // artificial statement not in the CFG.
651 else if (is_a<gcond *> (s) && gimple_bb (s))
653 basic_block bb = gimple_bb (s);
654 edge e0 = EDGE_SUCC (bb, 0);
655 edge e1 = EDGE_SUCC (bb, 1);
657 if (!single_pred_p (e0->dest))
658 e0 = NULL;
659 if (!single_pred_p (e1->dest))
660 e1 = NULL;
661 src.register_outgoing_edges (as_a<gcond *> (s), r, e0, e1);
664 else
665 r.set_varying (type);
667 else
668 r.set_varying (type);
669 // Make certain range-op adjustments that aren't handled any other way.
670 gimple_range_adjustment (r, s);
671 return true;
674 // Calculate the range of an assignment containing an ADDR_EXPR.
675 // Return the range in R.
676 // If a range cannot be calculated, set it to VARYING and return true.
678 bool
679 fold_using_range::range_of_address (irange &r, gimple *stmt, fur_source &src)
681 gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
682 gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR);
684 bool strict_overflow_p;
685 tree expr = gimple_assign_rhs1 (stmt);
686 poly_int64 bitsize, bitpos;
687 tree offset;
688 machine_mode mode;
689 int unsignedp, reversep, volatilep;
690 tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
691 &bitpos, &offset, &mode, &unsignedp,
692 &reversep, &volatilep);
695 if (base != NULL_TREE
696 && TREE_CODE (base) == MEM_REF
697 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
699 tree ssa = TREE_OPERAND (base, 0);
700 tree lhs = gimple_get_lhs (stmt);
701 if (lhs && gimple_range_ssa_p (ssa) && src.gori ())
702 src.gori ()->register_dependency (lhs, ssa);
703 gcc_checking_assert (irange::supports_type_p (TREE_TYPE (ssa)));
704 src.get_operand (r, ssa);
705 range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt)));
707 poly_offset_int off = 0;
708 bool off_cst = false;
709 if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
711 off = mem_ref_offset (base);
712 if (offset)
713 off += poly_offset_int::from (wi::to_poly_wide (offset),
714 SIGNED);
715 off <<= LOG2_BITS_PER_UNIT;
716 off += bitpos;
717 off_cst = true;
719 /* If &X->a is equal to X, the range of X is the result. */
720 if (off_cst && known_eq (off, 0))
721 return true;
722 else if (flag_delete_null_pointer_checks
723 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
725 /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
726 allow going from non-NULL pointer to NULL. */
727 if(!range_includes_zero_p (&r))
728 return true;
730 /* If MEM_REF has a "positive" offset, consider it non-NULL
731 always, for -fdelete-null-pointer-checks also "negative"
732 ones. Punt for unknown offsets (e.g. variable ones). */
733 if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
734 && off_cst
735 && known_ne (off, 0)
736 && (flag_delete_null_pointer_checks || known_gt (off, 0)))
738 r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
739 return true;
741 r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
742 return true;
745 // Handle "= &a".
746 if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p))
748 r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
749 return true;
752 // Otherwise return varying.
753 r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
754 return true;
757 // Calculate a range for phi statement S and return it in R.
758 // If a range cannot be calculated, return false.
760 bool
761 fold_using_range::range_of_phi (irange &r, gphi *phi, fur_source &src)
763 tree phi_def = gimple_phi_result (phi);
764 tree type = gimple_range_type (phi);
765 int_range_max arg_range;
766 unsigned x;
768 if (!type)
769 return false;
771 // Track if all executable arguments are the same.
772 tree single_arg = NULL_TREE;
773 bool seen_arg = false;
775 // Start with an empty range, unioning in each argument's range.
776 r.set_undefined ();
777 for (x = 0; x < gimple_phi_num_args (phi); x++)
779 tree arg = gimple_phi_arg_def (phi, x);
780 edge e = gimple_phi_arg_edge (phi, x);
782 // Get the range of the argument on its edge.
783 src.get_phi_operand (arg_range, arg, e);
785 if (!arg_range.undefined_p ())
787 // Register potential dependencies for stale value tracking.
788 r.union_ (arg_range);
789 if (gimple_range_ssa_p (arg) && src.gori ())
790 src.gori ()->register_dependency (phi_def, arg);
792 // Track if all arguments are the same.
793 if (!seen_arg)
795 seen_arg = true;
796 single_arg = arg;
798 else if (single_arg != arg)
799 single_arg = NULL_TREE;
802 // Once the value reaches varying, stop looking.
803 if (r.varying_p () && single_arg == NULL_TREE)
804 break;
807 // If the PHI boils down to a single effective argument, look at it.
808 if (single_arg)
810 // Symbolic arguments are equivalences.
811 if (gimple_range_ssa_p (single_arg))
812 src.register_relation (phi, EQ_EXPR, phi_def, single_arg);
813 else if (src.get_operand (arg_range, single_arg)
814 && arg_range.singleton_p ())
816 // Numerical arguments that are a constant can be returned as
817 // the constant. This can help fold later cases where even this
818 // constant might have been UNDEFINED via an unreachable edge.
819 r = arg_range;
820 return true;
824 // If SCEV is available, query if this PHI has any knonwn values.
825 if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def)))
827 value_range loop_range;
828 class loop *l = loop_containing_stmt (phi);
829 if (l && loop_outer (l))
831 range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi, src);
832 if (!loop_range.varying_p ())
834 if (dump_file && (dump_flags & TDF_DETAILS))
836 fprintf (dump_file, " Loops range found for ");
837 print_generic_expr (dump_file, phi_def, TDF_SLIM);
838 fprintf (dump_file, ": ");
839 loop_range.dump (dump_file);
840 fprintf (dump_file, " and calculated range :");
841 r.dump (dump_file);
842 fprintf (dump_file, "\n");
844 r.intersect (loop_range);
849 return true;
852 // Calculate a range for call statement S and return it in R.
853 // If a range cannot be calculated, return false.
855 bool
856 fold_using_range::range_of_call (irange &r, gcall *call, fur_source &src)
858 tree type = gimple_range_type (call);
859 if (!type)
860 return false;
862 tree lhs = gimple_call_lhs (call);
863 bool strict_overflow_p;
865 if (range_of_builtin_call (r, call, src))
867 else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
868 r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type));
869 else if (gimple_call_nonnull_result_p (call)
870 || gimple_call_nonnull_arg (call))
871 r = range_nonzero (type);
872 else
873 r.set_varying (type);
875 // If there is an LHS, intersect that with what is known.
876 if (lhs)
878 value_range def;
879 def = gimple_range_global (lhs);
880 r.intersect (def);
882 return true;
885 // Return the range of a __builtin_ubsan* in CALL and set it in R.
886 // CODE is the type of ubsan call (PLUS_EXPR, MINUS_EXPR or
887 // MULT_EXPR).
889 void
890 fold_using_range::range_of_builtin_ubsan_call (irange &r, gcall *call,
891 tree_code code, fur_source &src)
893 gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR
894 || code == MULT_EXPR);
895 tree type = gimple_range_type (call);
896 range_operator *op = range_op_handler (code, type);
897 gcc_checking_assert (op);
898 int_range_max ir0, ir1;
899 tree arg0 = gimple_call_arg (call, 0);
900 tree arg1 = gimple_call_arg (call, 1);
901 src.get_operand (ir0, arg0);
902 src.get_operand (ir1, arg1);
903 // Check for any relation between arg0 and arg1.
904 relation_kind relation = src.query_relation (arg0, arg1);
906 bool saved_flag_wrapv = flag_wrapv;
907 // Pretend the arithmetic is wrapping. If there is any overflow,
908 // we'll complain, but will actually do wrapping operation.
909 flag_wrapv = 1;
910 op->fold_range (r, type, ir0, ir1, relation);
911 flag_wrapv = saved_flag_wrapv;
913 // If for both arguments vrp_valueize returned non-NULL, this should
914 // have been already folded and if not, it wasn't folded because of
915 // overflow. Avoid removing the UBSAN_CHECK_* calls in that case.
916 if (r.singleton_p ())
917 r.set_varying (type);
920 // Return TRUE if we recognize the target character set and return the
921 // range for lower case and upper case letters.
923 static bool
924 get_letter_range (tree type, irange &lowers, irange &uppers)
926 // ASCII
927 int a = lang_hooks.to_target_charset ('a');
928 int z = lang_hooks.to_target_charset ('z');
929 int A = lang_hooks.to_target_charset ('A');
930 int Z = lang_hooks.to_target_charset ('Z');
932 if ((z - a == 25) && (Z - A == 25))
934 lowers = int_range<2> (build_int_cst (type, a), build_int_cst (type, z));
935 uppers = int_range<2> (build_int_cst (type, A), build_int_cst (type, Z));
936 return true;
938 // Unknown character set.
939 return false;
942 // For a builtin in CALL, return a range in R if known and return
943 // TRUE. Otherwise return FALSE.
945 bool
946 fold_using_range::range_of_builtin_call (irange &r, gcall *call,
947 fur_source &src)
949 combined_fn func = gimple_call_combined_fn (call);
950 if (func == CFN_LAST)
951 return false;
953 tree type = gimple_range_type (call);
954 tree arg;
955 int mini, maxi, zerov = 0, prec;
956 scalar_int_mode mode;
958 switch (func)
960 case CFN_BUILT_IN_CONSTANT_P:
961 if (cfun->after_inlining)
963 r.set_zero (type);
964 // r.equiv_clear ();
965 return true;
967 arg = gimple_call_arg (call, 0);
968 if (src.get_operand (r, arg) && r.singleton_p ())
970 r.set (build_one_cst (type), build_one_cst (type));
971 return true;
973 break;
975 case CFN_BUILT_IN_TOUPPER:
977 arg = gimple_call_arg (call, 0);
978 // If the argument isn't compatible with the LHS, do nothing.
979 if (!range_compatible_p (type, TREE_TYPE (arg)))
980 return false;
981 if (!src.get_operand (r, arg))
982 return false;
984 int_range<3> lowers;
985 int_range<3> uppers;
986 if (!get_letter_range (type, lowers, uppers))
987 return false;
989 // Return the range passed in without any lower case characters,
990 // but including all the upper case ones.
991 lowers.invert ();
992 r.intersect (lowers);
993 r.union_ (uppers);
994 return true;
997 case CFN_BUILT_IN_TOLOWER:
999 arg = gimple_call_arg (call, 0);
1000 // If the argument isn't compatible with the LHS, do nothing.
1001 if (!range_compatible_p (type, TREE_TYPE (arg)))
1002 return false;
1003 if (!src.get_operand (r, arg))
1004 return false;
1006 int_range<3> lowers;
1007 int_range<3> uppers;
1008 if (!get_letter_range (type, lowers, uppers))
1009 return false;
1011 // Return the range passed in without any upper case characters,
1012 // but including all the lower case ones.
1013 uppers.invert ();
1014 r.intersect (uppers);
1015 r.union_ (lowers);
1016 return true;
1019 CASE_CFN_FFS:
1020 CASE_CFN_POPCOUNT:
1021 // __builtin_ffs* and __builtin_popcount* return [0, prec].
1022 arg = gimple_call_arg (call, 0);
1023 prec = TYPE_PRECISION (TREE_TYPE (arg));
1024 mini = 0;
1025 maxi = prec;
1026 src.get_operand (r, arg);
1027 // If arg is non-zero, then ffs or popcount are non-zero.
1028 if (!range_includes_zero_p (&r))
1029 mini = 1;
1030 // If some high bits are known to be zero, decrease the maximum.
1031 if (!r.undefined_p ())
1033 if (TYPE_SIGN (r.type ()) == SIGNED)
1034 range_cast (r, unsigned_type_for (r.type ()));
1035 wide_int max = r.upper_bound ();
1036 maxi = wi::floor_log2 (max) + 1;
1038 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
1039 return true;
1041 CASE_CFN_PARITY:
1042 r.set (build_zero_cst (type), build_one_cst (type));
1043 return true;
1045 CASE_CFN_CLZ:
1046 // __builtin_c[lt]z* return [0, prec-1], except when the
1047 // argument is 0, but that is undefined behavior.
1049 // For __builtin_c[lt]z* consider argument of 0 always undefined
1050 // behavior, for internal fns depending on C?Z_DEFINED_VALUE_AT_ZERO.
1051 arg = gimple_call_arg (call, 0);
1052 prec = TYPE_PRECISION (TREE_TYPE (arg));
1053 mini = 0;
1054 maxi = prec - 1;
1055 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
1056 if (gimple_call_internal_p (call))
1058 if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
1059 && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
1061 // Only handle the single common value.
1062 if (zerov == prec)
1063 maxi = prec;
1064 else
1065 // Magic value to give up, unless we can prove arg is non-zero.
1066 mini = -2;
1070 src.get_operand (r, arg);
1071 // From clz of minimum we can compute result maximum.
1072 if (!r.undefined_p ())
1074 // From clz of minimum we can compute result maximum.
1075 if (wi::gt_p (r.lower_bound (), 0, TYPE_SIGN (r.type ())))
1077 maxi = prec - 1 - wi::floor_log2 (r.lower_bound ());
1078 if (mini == -2)
1079 mini = 0;
1081 else if (!range_includes_zero_p (&r))
1083 mini = 0;
1084 maxi = prec - 1;
1086 if (mini == -2)
1087 break;
1088 // From clz of maximum we can compute result minimum.
1089 wide_int max = r.upper_bound ();
1090 int newmini = prec - 1 - wi::floor_log2 (max);
1091 if (max == 0)
1093 // If CLZ_DEFINED_VALUE_AT_ZERO is 2 with VALUE of prec,
1094 // return [prec, prec], otherwise ignore the range.
1095 if (maxi == prec)
1096 mini = prec;
1098 else
1099 mini = newmini;
1101 if (mini == -2)
1102 break;
1103 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
1104 return true;
1106 CASE_CFN_CTZ:
1107 // __builtin_ctz* return [0, prec-1], except for when the
1108 // argument is 0, but that is undefined behavior.
1110 // For __builtin_ctz* consider argument of 0 always undefined
1111 // behavior, for internal fns depending on CTZ_DEFINED_VALUE_AT_ZERO.
1112 arg = gimple_call_arg (call, 0);
1113 prec = TYPE_PRECISION (TREE_TYPE (arg));
1114 mini = 0;
1115 maxi = prec - 1;
1116 mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
1117 if (gimple_call_internal_p (call))
1119 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
1120 && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
1122 // Handle only the two common values.
1123 if (zerov == -1)
1124 mini = -1;
1125 else if (zerov == prec)
1126 maxi = prec;
1127 else
1128 // Magic value to give up, unless we can prove arg is non-zero.
1129 mini = -2;
1132 src.get_operand (r, arg);
1133 if (!r.undefined_p ())
1135 // If arg is non-zero, then use [0, prec - 1].
1136 if (!range_includes_zero_p (&r))
1138 mini = 0;
1139 maxi = prec - 1;
1141 // If some high bits are known to be zero, we can decrease
1142 // the maximum.
1143 wide_int max = r.upper_bound ();
1144 if (max == 0)
1146 // Argument is [0, 0]. If CTZ_DEFINED_VALUE_AT_ZERO
1147 // is 2 with value -1 or prec, return [-1, -1] or [prec, prec].
1148 // Otherwise ignore the range.
1149 if (mini == -1)
1150 maxi = -1;
1151 else if (maxi == prec)
1152 mini = prec;
1154 // If value at zero is prec and 0 is in the range, we can't lower
1155 // the upper bound. We could create two separate ranges though,
1156 // [0,floor_log2(max)][prec,prec] though.
1157 else if (maxi != prec)
1158 maxi = wi::floor_log2 (max);
1160 if (mini == -2)
1161 break;
1162 r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
1163 return true;
1165 CASE_CFN_CLRSB:
1166 arg = gimple_call_arg (call, 0);
1167 prec = TYPE_PRECISION (TREE_TYPE (arg));
1168 r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1));
1169 return true;
1170 case CFN_UBSAN_CHECK_ADD:
1171 range_of_builtin_ubsan_call (r, call, PLUS_EXPR, src);
1172 return true;
1173 case CFN_UBSAN_CHECK_SUB:
1174 range_of_builtin_ubsan_call (r, call, MINUS_EXPR, src);
1175 return true;
1176 case CFN_UBSAN_CHECK_MUL:
1177 range_of_builtin_ubsan_call (r, call, MULT_EXPR, src);
1178 return true;
1180 case CFN_GOACC_DIM_SIZE:
1181 case CFN_GOACC_DIM_POS:
1182 // Optimizing these two internal functions helps the loop
1183 // optimizer eliminate outer comparisons. Size is [1,N]
1184 // and pos is [0,N-1].
1186 bool is_pos = func == CFN_GOACC_DIM_POS;
1187 int axis = oacc_get_ifn_dim_arg (call);
1188 int size = oacc_get_fn_dim_size (current_function_decl, axis);
1189 if (!size)
1190 // If it's dynamic, the backend might know a hardware limitation.
1191 size = targetm.goacc.dim_limit (axis);
1193 r.set (build_int_cst (type, is_pos ? 0 : 1),
1194 size
1195 ? build_int_cst (type, size - is_pos) : vrp_val_max (type));
1196 return true;
1199 case CFN_BUILT_IN_STRLEN:
1200 if (tree lhs = gimple_call_lhs (call))
1201 if (ptrdiff_type_node
1202 && (TYPE_PRECISION (ptrdiff_type_node)
1203 == TYPE_PRECISION (TREE_TYPE (lhs))))
1205 tree type = TREE_TYPE (lhs);
1206 tree max = vrp_val_max (ptrdiff_type_node);
1207 wide_int wmax
1208 = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
1209 tree range_min = build_zero_cst (type);
1210 // To account for the terminating NULL, the maximum length
1211 // is one less than the maximum array size, which in turn
1212 // is one less than PTRDIFF_MAX (or SIZE_MAX where it's
1213 // smaller than the former type).
1214 // FIXME: Use max_object_size() - 1 here.
1215 tree range_max = wide_int_to_tree (type, wmax - 2);
1216 r.set (range_min, range_max);
1217 return true;
1219 break;
1220 default:
1221 break;
1223 return false;
1227 // Calculate a range for COND_EXPR statement S and return it in R.
1228 // If a range cannot be calculated, return false.
1230 bool
1231 fold_using_range::range_of_cond_expr (irange &r, gassign *s, fur_source &src)
1233 int_range_max cond_range, range1, range2;
1234 tree cond = gimple_assign_rhs1 (s);
1235 tree op1 = gimple_assign_rhs2 (s);
1236 tree op2 = gimple_assign_rhs3 (s);
1238 tree type = gimple_range_type (s);
1239 if (!type)
1240 return false;
1242 gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
1243 gcc_checking_assert (range_compatible_p (TREE_TYPE (op1), TREE_TYPE (op2)));
1244 src.get_operand (cond_range, cond);
1245 src.get_operand (range1, op1);
1246 src.get_operand (range2, op2);
1248 // If the condition is known, choose the appropriate expression.
1249 if (cond_range.singleton_p ())
1251 // False, pick second operand.
1252 if (cond_range.zero_p ())
1253 r = range2;
1254 else
1255 r = range1;
1257 else
1259 r = range1;
1260 r.union_ (range2);
1262 gcc_checking_assert (r.undefined_p ()
1263 || range_compatible_p (r.type (), type));
1264 return true;
1267 // If SCEV has any information about phi node NAME, return it as a range in R.
1269 void
1270 fold_using_range::range_of_ssa_name_with_loop_info (irange &r, tree name,
1271 class loop *l, gphi *phi,
1272 fur_source &src)
1274 gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
1275 tree min, max, type = TREE_TYPE (name);
1276 if (bounds_of_var_in_loop (&min, &max, src.query (), l, phi, name))
1278 if (TREE_CODE (min) != INTEGER_CST)
1280 if (src.query ()->range_of_expr (r, min, phi) && !r.undefined_p ())
1281 min = wide_int_to_tree (type, r.lower_bound ());
1282 else
1283 min = vrp_val_min (type);
1285 if (TREE_CODE (max) != INTEGER_CST)
1287 if (src.query ()->range_of_expr (r, max, phi) && !r.undefined_p ())
1288 max = wide_int_to_tree (type, r.upper_bound ());
1289 else
1290 max = vrp_val_max (type);
1292 r.set (min, max);
1294 else
1295 r.set_varying (type);
1298 // -----------------------------------------------------------------------
1300 // Check if an && or || expression can be folded based on relations. ie
1301 // c_2 = a_6 > b_7
1302 // c_3 = a_6 < b_7
1303 // c_4 = c_2 && c_3
1304 // c_2 and c_3 can never be true at the same time,
1305 // Therefore c_4 can always resolve to false based purely on the relations.
1307 void
1308 fold_using_range::relation_fold_and_or (irange& lhs_range, gimple *s,
1309 fur_source &src)
1311 // No queries or already folded.
1312 if (!src.gori () || !src.query ()->oracle () || lhs_range.singleton_p ())
1313 return;
1315 // Only care about AND and OR expressions.
1316 enum tree_code code = gimple_expr_code (s);
1317 bool is_and = false;
1318 if (code == BIT_AND_EXPR || code == TRUTH_AND_EXPR)
1319 is_and = true;
1320 else if (code != BIT_IOR_EXPR && code != TRUTH_OR_EXPR)
1321 return;
1323 tree lhs = gimple_get_lhs (s);
1324 tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s));
1325 tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s));
1327 // Deal with || and && only when there is a full set of symbolics.
1328 if (!lhs || !ssa1 || !ssa2
1329 || (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE)
1330 || (TREE_CODE (TREE_TYPE (ssa1)) != BOOLEAN_TYPE)
1331 || (TREE_CODE (TREE_TYPE (ssa2)) != BOOLEAN_TYPE))
1332 return;
1334 // Now we know its a boolean AND or OR expression with boolean operands.
1335 // Ideally we search dependencies for common names, and see what pops out.
1336 // until then, simply try to resolve direct dependencies.
1338 // Both names will need to have 2 direct dependencies.
1339 tree ssa1_dep2 = src.gori ()->depend2 (ssa1);
1340 tree ssa2_dep2 = src.gori ()->depend2 (ssa2);
1341 if (!ssa1_dep2 || !ssa2_dep2)
1342 return;
1344 tree ssa1_dep1 = src.gori ()->depend1 (ssa1);
1345 tree ssa2_dep1 = src.gori ()->depend1 (ssa2);
1346 // Make sure they are the same dependencies, and detect the order of the
1347 // relationship.
1348 bool reverse_op2 = true;
1349 if (ssa1_dep1 == ssa2_dep1 && ssa1_dep2 == ssa2_dep2)
1350 reverse_op2 = false;
1351 else if (ssa1_dep1 != ssa2_dep2 || ssa1_dep2 != ssa2_dep1)
1352 return;
1354 range_operator *handler1 = gimple_range_handler (SSA_NAME_DEF_STMT (ssa1));
1355 range_operator *handler2 = gimple_range_handler (SSA_NAME_DEF_STMT (ssa2));
1357 // If either handler is not present, no relation is found.
1358 if (!handler1 || !handler2)
1359 return;
1361 int_range<2> bool_one (boolean_true_node, boolean_true_node);
1363 relation_kind relation1 = handler1->op1_op2_relation (bool_one);
1364 relation_kind relation2 = handler2->op1_op2_relation (bool_one);
1365 if (relation1 == VREL_NONE || relation2 == VREL_NONE)
1366 return;
1368 if (reverse_op2)
1369 relation2 = relation_negate (relation2);
1371 // x && y is false if the relation intersection of the true cases is NULL.
1372 if (is_and && relation_intersect (relation1, relation2) == VREL_EMPTY)
1373 lhs_range = int_range<2> (boolean_false_node, boolean_false_node);
1374 // x || y is true if the union of the true cases is NO-RELATION..
1375 // ie, one or the other being true covers the full range of possibilties.
1376 else if (!is_and && relation_union (relation1, relation2) == VREL_NONE)
1377 lhs_range = bool_one;
1378 else
1379 return;
1381 range_cast (lhs_range, TREE_TYPE (lhs));
1382 if (dump_file && (dump_flags & TDF_DETAILS))
1384 fprintf (dump_file, " Relation adjustment: ");
1385 print_generic_expr (dump_file, ssa1, TDF_SLIM);
1386 fprintf (dump_file, " and ");
1387 print_generic_expr (dump_file, ssa2, TDF_SLIM);
1388 fprintf (dump_file, " combine to produce ");
1389 lhs_range.dump (dump_file);
1390 fputc ('\n', dump_file);
1393 return;
1396 // Register any outgoing edge relations from a conditional branch.
1398 void
1399 fur_source::register_outgoing_edges (gcond *s, irange &lhs_range, edge e0, edge e1)
1401 int_range_max r;
1402 int_range<2> e0_range, e1_range;
1403 tree name;
1404 range_operator *handler;
1405 basic_block bb = gimple_bb (s);
1407 if (e0)
1409 // If this edge is never taken, ignore it.
1410 gcond_edge_range (e0_range, e0);
1411 e0_range.intersect (lhs_range);
1412 if (e0_range.undefined_p ())
1413 e0 = NULL;
1417 if (e1)
1419 // If this edge is never taken, ignore it.
1420 gcond_edge_range (e1_range, e1);
1421 e1_range.intersect (lhs_range);
1422 if (e1_range.undefined_p ())
1423 e1 = NULL;
1426 if (!e0 && !e1)
1427 return;
1429 // First, register the gcond itself. This will catch statements like
1430 // if (a_2 < b_5)
1431 tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s));
1432 tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s));
1433 if (ssa1 && ssa2)
1435 handler = gimple_range_handler (s);
1436 gcc_checking_assert (handler);
1437 if (e0)
1439 relation_kind relation = handler->op1_op2_relation (e0_range);
1440 if (relation != VREL_NONE)
1441 register_relation (e0, relation, ssa1, ssa2);
1443 if (e1)
1445 relation_kind relation = handler->op1_op2_relation (e1_range);
1446 if (relation != VREL_NONE)
1447 register_relation (e1, relation, ssa1, ssa2);
1451 // Outgoing relations of GORI exports require a gori engine.
1452 if (!gori ())
1453 return;
1455 // Now look for other relations in the exports. This will find stmts
1456 // leading to the condition such as:
1457 // c_2 = a_4 < b_7
1458 // if (c_2)
1459 FOR_EACH_GORI_EXPORT_NAME (*(gori ()), bb, name)
1461 if (TREE_CODE (TREE_TYPE (name)) != BOOLEAN_TYPE)
1462 continue;
1463 gimple *stmt = SSA_NAME_DEF_STMT (name);
1464 handler = gimple_range_handler (stmt);
1465 if (!handler)
1466 continue;
1467 tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (stmt));
1468 tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (stmt));
1469 if (ssa1 && ssa2)
1471 if (e0 && gori ()->outgoing_edge_range_p (r, e0, name, *m_query)
1472 && r.singleton_p ())
1474 relation_kind relation = handler->op1_op2_relation (r);
1475 if (relation != VREL_NONE)
1476 register_relation (e0, relation, ssa1, ssa2);
1478 if (e1 && gori ()->outgoing_edge_range_p (r, e1, name, *m_query)
1479 && r.singleton_p ())
1481 relation_kind relation = handler->op1_op2_relation (r);
1482 if (relation != VREL_NONE)
1483 register_relation (e1, relation, ssa1, ssa2);