sh.c (shift_insns_rtx, [...]): Truncate shift counts to avoid out-of-bounds array...
[official-gcc.git] / gcc / ada / freeze.adb
bloba74a6c26ca1044f35c1cd7f58c5c499abd38154d
1 -----------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- You should have received a copy of the GNU General Public License along --
19 -- with this program; see file COPYING3. If not see --
20 -- <http://www.gnu.org/licenses/>. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Ch3; use Exp_Ch3;
33 with Exp_Ch7; use Exp_Ch7;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Exp_Tss; use Exp_Tss;
38 with Layout; use Layout;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch6; use Sem_Ch6;
50 with Sem_Ch7; use Sem_Ch7;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Ch13; use Sem_Ch13;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Mech; use Sem_Mech;
55 with Sem_Prag; use Sem_Prag;
56 with Sem_Res; use Sem_Res;
57 with Sem_Util; use Sem_Util;
58 with Sinfo; use Sinfo;
59 with Snames; use Snames;
60 with Stand; use Stand;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Ttypes; use Ttypes;
64 with Uintp; use Uintp;
65 with Urealp; use Urealp;
67 package body Freeze is
69 -----------------------
70 -- Local Subprograms --
71 -----------------------
73 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
74 -- Typ is a type that is being frozen. If no size clause is given,
75 -- but a default Esize has been computed, then this default Esize is
76 -- adjusted up if necessary to be consistent with a given alignment,
77 -- but never to a value greater than Long_Long_Integer'Size. This
78 -- is used for all discrete types and for fixed-point types.
80 procedure Build_And_Analyze_Renamed_Body
81 (Decl : Node_Id;
82 New_S : Entity_Id;
83 After : in out Node_Id);
84 -- Build body for a renaming declaration, insert in tree and analyze
86 procedure Check_Address_Clause (E : Entity_Id);
87 -- Apply legality checks to address clauses for object declarations,
88 -- at the point the object is frozen.
90 procedure Check_Strict_Alignment (E : Entity_Id);
91 -- E is a base type. If E is tagged or has a component that is aliased
92 -- or tagged or contains something this is aliased or tagged, set
93 -- Strict_Alignment.
95 procedure Check_Unsigned_Type (E : Entity_Id);
96 pragma Inline (Check_Unsigned_Type);
97 -- If E is a fixed-point or discrete type, then all the necessary work
98 -- to freeze it is completed except for possible setting of the flag
99 -- Is_Unsigned_Type, which is done by this procedure. The call has no
100 -- effect if the entity E is not a discrete or fixed-point type.
102 procedure Freeze_And_Append
103 (Ent : Entity_Id;
104 Loc : Source_Ptr;
105 Result : in out List_Id);
106 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
107 -- nodes to Result, modifying Result from No_List if necessary.
109 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
110 -- Freeze enumeration type. The Esize field is set as processing
111 -- proceeds (i.e. set by default when the type is declared and then
112 -- adjusted by rep clauses. What this procedure does is to make sure
113 -- that if a foreign convention is specified, and no specific size
114 -- is given, then the size must be at least Integer'Size.
116 procedure Freeze_Static_Object (E : Entity_Id);
117 -- If an object is frozen which has Is_Statically_Allocated set, then
118 -- all referenced types must also be marked with this flag. This routine
119 -- is in charge of meeting this requirement for the object entity E.
121 procedure Freeze_Subprogram (E : Entity_Id);
122 -- Perform freezing actions for a subprogram (create extra formals,
123 -- and set proper default mechanism values). Note that this routine
124 -- is not called for internal subprograms, for which neither of these
125 -- actions is needed (or desirable, we do not want for example to have
126 -- these extra formals present in initialization procedures, where they
127 -- would serve no purpose). In this call E is either a subprogram or
128 -- a subprogram type (i.e. an access to a subprogram).
130 function Is_Fully_Defined (T : Entity_Id) return Boolean;
131 -- True if T is not private and has no private components, or has a full
132 -- view. Used to determine whether the designated type of an access type
133 -- should be frozen when the access type is frozen. This is done when an
134 -- allocator is frozen, or an expression that may involve attributes of
135 -- the designated type. Otherwise freezing the access type does not freeze
136 -- the designated type.
138 procedure Generate_Prim_Op_References (Typ : Entity_Id);
139 -- For a tagged type, generate implicit references to its primitive
140 -- operations, for source navigation.
142 procedure Process_Default_Expressions
143 (E : Entity_Id;
144 After : in out Node_Id);
145 -- This procedure is called for each subprogram to complete processing
146 -- of default expressions at the point where all types are known to be
147 -- frozen. The expressions must be analyzed in full, to make sure that
148 -- all error processing is done (they have only been pre-analyzed). If
149 -- the expression is not an entity or literal, its analysis may generate
150 -- code which must not be executed. In that case we build a function
151 -- body to hold that code. This wrapper function serves no other purpose
152 -- (it used to be called to evaluate the default, but now the default is
153 -- inlined at each point of call).
155 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
156 -- Typ is a record or array type that is being frozen. This routine
157 -- sets the default component alignment from the scope stack values
158 -- if the alignment is otherwise not specified.
160 procedure Check_Debug_Info_Needed (T : Entity_Id);
161 -- As each entity is frozen, this routine is called to deal with the
162 -- setting of Debug_Info_Needed for the entity. This flag is set if
163 -- the entity comes from source, or if we are in Debug_Generated_Code
164 -- mode or if the -gnatdV debug flag is set. However, it never sets
165 -- the flag if Debug_Info_Off is set. This procedure also ensures that
166 -- subsidiary entities have the flag set as required.
168 procedure Undelay_Type (T : Entity_Id);
169 -- T is a type of a component that we know to be an Itype.
170 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
171 -- Do the same for any Full_View or Corresponding_Record_Type.
173 procedure Warn_Overlay
174 (Expr : Node_Id;
175 Typ : Entity_Id;
176 Nam : Node_Id);
177 -- Expr is the expression for an address clause for entity Nam whose type
178 -- is Typ. If Typ has a default initialization, and there is no explicit
179 -- initialization in the source declaration, check whether the address
180 -- clause might cause overlaying of an entity, and emit a warning on the
181 -- side effect that the initialization will cause.
183 -------------------------------
184 -- Adjust_Esize_For_Alignment --
185 -------------------------------
187 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
188 Align : Uint;
190 begin
191 if Known_Esize (Typ) and then Known_Alignment (Typ) then
192 Align := Alignment_In_Bits (Typ);
194 if Align > Esize (Typ)
195 and then Align <= Standard_Long_Long_Integer_Size
196 then
197 Set_Esize (Typ, Align);
198 end if;
199 end if;
200 end Adjust_Esize_For_Alignment;
202 ------------------------------------
203 -- Build_And_Analyze_Renamed_Body --
204 ------------------------------------
206 procedure Build_And_Analyze_Renamed_Body
207 (Decl : Node_Id;
208 New_S : Entity_Id;
209 After : in out Node_Id)
211 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
212 begin
213 Insert_After (After, Body_Node);
214 Mark_Rewrite_Insertion (Body_Node);
215 Analyze (Body_Node);
216 After := Body_Node;
217 end Build_And_Analyze_Renamed_Body;
219 ------------------------
220 -- Build_Renamed_Body --
221 ------------------------
223 function Build_Renamed_Body
224 (Decl : Node_Id;
225 New_S : Entity_Id) return Node_Id
227 Loc : constant Source_Ptr := Sloc (New_S);
228 -- We use for the source location of the renamed body, the location
229 -- of the spec entity. It might seem more natural to use the location
230 -- of the renaming declaration itself, but that would be wrong, since
231 -- then the body we create would look as though it was created far
232 -- too late, and this could cause problems with elaboration order
233 -- analysis, particularly in connection with instantiations.
235 N : constant Node_Id := Unit_Declaration_Node (New_S);
236 Nam : constant Node_Id := Name (N);
237 Old_S : Entity_Id;
238 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
239 Actuals : List_Id := No_List;
240 Call_Node : Node_Id;
241 Call_Name : Node_Id;
242 Body_Node : Node_Id;
243 Formal : Entity_Id;
244 O_Formal : Entity_Id;
245 Param_Spec : Node_Id;
247 Pref : Node_Id := Empty;
248 -- If the renamed entity is a primitive operation given in prefix form,
249 -- the prefix is the target object and it has to be added as the first
250 -- actual in the generated call.
252 begin
253 -- Determine the entity being renamed, which is the target of the call
254 -- statement. If the name is an explicit dereference, this is a renaming
255 -- of a subprogram type rather than a subprogram. The name itself is
256 -- fully analyzed.
258 if Nkind (Nam) = N_Selected_Component then
259 Old_S := Entity (Selector_Name (Nam));
261 elsif Nkind (Nam) = N_Explicit_Dereference then
262 Old_S := Etype (Nam);
264 elsif Nkind (Nam) = N_Indexed_Component then
265 if Is_Entity_Name (Prefix (Nam)) then
266 Old_S := Entity (Prefix (Nam));
267 else
268 Old_S := Entity (Selector_Name (Prefix (Nam)));
269 end if;
271 elsif Nkind (Nam) = N_Character_Literal then
272 Old_S := Etype (New_S);
274 else
275 Old_S := Entity (Nam);
276 end if;
278 if Is_Entity_Name (Nam) then
280 -- If the renamed entity is a predefined operator, retain full name
281 -- to ensure its visibility.
283 if Ekind (Old_S) = E_Operator
284 and then Nkind (Nam) = N_Expanded_Name
285 then
286 Call_Name := New_Copy (Name (N));
287 else
288 Call_Name := New_Reference_To (Old_S, Loc);
289 end if;
291 else
292 if Nkind (Nam) = N_Selected_Component
293 and then Present (First_Formal (Old_S))
294 and then
295 (Is_Controlling_Formal (First_Formal (Old_S))
296 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
297 then
299 -- Retrieve the target object, to be added as a first actual
300 -- in the call.
302 Call_Name := New_Occurrence_Of (Old_S, Loc);
303 Pref := Prefix (Nam);
305 else
306 Call_Name := New_Copy (Name (N));
307 end if;
309 -- The original name may have been overloaded, but
310 -- is fully resolved now.
312 Set_Is_Overloaded (Call_Name, False);
313 end if;
315 -- For simple renamings, subsequent calls can be expanded directly as
316 -- called to the renamed entity. The body must be generated in any case
317 -- for calls they may appear elsewhere.
319 if (Ekind (Old_S) = E_Function
320 or else Ekind (Old_S) = E_Procedure)
321 and then Nkind (Decl) = N_Subprogram_Declaration
322 then
323 Set_Body_To_Inline (Decl, Old_S);
324 end if;
326 -- The body generated for this renaming is an internal artifact, and
327 -- does not constitute a freeze point for the called entity.
329 Set_Must_Not_Freeze (Call_Name);
331 Formal := First_Formal (Defining_Entity (Decl));
333 if Present (Pref) then
334 declare
335 Pref_Type : constant Entity_Id := Etype (Pref);
336 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
338 begin
340 -- The controlling formal may be an access parameter, or the
341 -- actual may be an access value, so adjust accordingly.
343 if Is_Access_Type (Pref_Type)
344 and then not Is_Access_Type (Form_Type)
345 then
346 Actuals := New_List
347 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
349 elsif Is_Access_Type (Form_Type)
350 and then not Is_Access_Type (Pref)
351 then
352 Actuals := New_List
353 (Make_Attribute_Reference (Loc,
354 Attribute_Name => Name_Access,
355 Prefix => Relocate_Node (Pref)));
356 else
357 Actuals := New_List (Pref);
358 end if;
359 end;
361 elsif Present (Formal) then
362 Actuals := New_List;
364 else
365 Actuals := No_List;
366 end if;
368 if Present (Formal) then
369 while Present (Formal) loop
370 Append (New_Reference_To (Formal, Loc), Actuals);
371 Next_Formal (Formal);
372 end loop;
373 end if;
375 -- If the renamed entity is an entry, inherit its profile. For other
376 -- renamings as bodies, both profiles must be subtype conformant, so it
377 -- is not necessary to replace the profile given in the declaration.
378 -- However, default values that are aggregates are rewritten when
379 -- partially analyzed, so we recover the original aggregate to insure
380 -- that subsequent conformity checking works. Similarly, if the default
381 -- expression was constant-folded, recover the original expression.
383 Formal := First_Formal (Defining_Entity (Decl));
385 if Present (Formal) then
386 O_Formal := First_Formal (Old_S);
387 Param_Spec := First (Parameter_Specifications (Spec));
389 while Present (Formal) loop
390 if Is_Entry (Old_S) then
392 if Nkind (Parameter_Type (Param_Spec)) /=
393 N_Access_Definition
394 then
395 Set_Etype (Formal, Etype (O_Formal));
396 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
397 end if;
399 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
400 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
401 Nkind (Default_Value (O_Formal))
402 then
403 Set_Expression (Param_Spec,
404 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
405 end if;
407 Next_Formal (Formal);
408 Next_Formal (O_Formal);
409 Next (Param_Spec);
410 end loop;
411 end if;
413 -- If the renamed entity is a function, the generated body contains a
414 -- return statement. Otherwise, build a procedure call. If the entity is
415 -- an entry, subsequent analysis of the call will transform it into the
416 -- proper entry or protected operation call. If the renamed entity is
417 -- a character literal, return it directly.
419 if Ekind (Old_S) = E_Function
420 or else Ekind (Old_S) = E_Operator
421 or else (Ekind (Old_S) = E_Subprogram_Type
422 and then Etype (Old_S) /= Standard_Void_Type)
423 then
424 Call_Node :=
425 Make_Simple_Return_Statement (Loc,
426 Expression =>
427 Make_Function_Call (Loc,
428 Name => Call_Name,
429 Parameter_Associations => Actuals));
431 elsif Ekind (Old_S) = E_Enumeration_Literal then
432 Call_Node :=
433 Make_Simple_Return_Statement (Loc,
434 Expression => New_Occurrence_Of (Old_S, Loc));
436 elsif Nkind (Nam) = N_Character_Literal then
437 Call_Node :=
438 Make_Simple_Return_Statement (Loc,
439 Expression => Call_Name);
441 else
442 Call_Node :=
443 Make_Procedure_Call_Statement (Loc,
444 Name => Call_Name,
445 Parameter_Associations => Actuals);
446 end if;
448 -- Create entities for subprogram body and formals
450 Set_Defining_Unit_Name (Spec,
451 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
453 Param_Spec := First (Parameter_Specifications (Spec));
455 while Present (Param_Spec) loop
456 Set_Defining_Identifier (Param_Spec,
457 Make_Defining_Identifier (Loc,
458 Chars => Chars (Defining_Identifier (Param_Spec))));
459 Next (Param_Spec);
460 end loop;
462 Body_Node :=
463 Make_Subprogram_Body (Loc,
464 Specification => Spec,
465 Declarations => New_List,
466 Handled_Statement_Sequence =>
467 Make_Handled_Sequence_Of_Statements (Loc,
468 Statements => New_List (Call_Node)));
470 if Nkind (Decl) /= N_Subprogram_Declaration then
471 Rewrite (N,
472 Make_Subprogram_Declaration (Loc,
473 Specification => Specification (N)));
474 end if;
476 -- Link the body to the entity whose declaration it completes. If
477 -- the body is analyzed when the renamed entity is frozen, it may
478 -- be necessary to restore the proper scope (see package Exp_Ch13).
480 if Nkind (N) = N_Subprogram_Renaming_Declaration
481 and then Present (Corresponding_Spec (N))
482 then
483 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
484 else
485 Set_Corresponding_Spec (Body_Node, New_S);
486 end if;
488 return Body_Node;
489 end Build_Renamed_Body;
491 --------------------------
492 -- Check_Address_Clause --
493 --------------------------
495 procedure Check_Address_Clause (E : Entity_Id) is
496 Addr : constant Node_Id := Address_Clause (E);
497 Expr : Node_Id;
498 Decl : constant Node_Id := Declaration_Node (E);
499 Typ : constant Entity_Id := Etype (E);
501 begin
502 if Present (Addr) then
503 Expr := Expression (Addr);
505 -- If we have no initialization of any kind, then we don't need to
506 -- place any restrictions on the address clause, because the object
507 -- will be elaborated after the address clause is evaluated. This
508 -- happens if the declaration has no initial expression, or the type
509 -- has no implicit initialization, or the object is imported.
511 -- The same holds for all initialized scalar types and all access
512 -- types. Packed bit arrays of size up to 64 are represented using a
513 -- modular type with an initialization (to zero) and can be processed
514 -- like other initialized scalar types.
516 -- If the type is controlled, code to attach the object to a
517 -- finalization chain is generated at the point of declaration,
518 -- and therefore the elaboration of the object cannot be delayed:
519 -- the address expression must be a constant.
521 if (No (Expression (Decl))
522 and then not Needs_Finalization (Typ)
523 and then
524 (not Has_Non_Null_Base_Init_Proc (Typ)
525 or else Is_Imported (E)))
527 or else
528 (Present (Expression (Decl))
529 and then Is_Scalar_Type (Typ))
531 or else
532 Is_Access_Type (Typ)
534 or else
535 (Is_Bit_Packed_Array (Typ)
536 and then
537 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
538 then
539 null;
541 -- Otherwise, we require the address clause to be constant because
542 -- the call to the initialization procedure (or the attach code) has
543 -- to happen at the point of the declaration.
545 else
546 Check_Constant_Address_Clause (Expr, E);
547 Set_Has_Delayed_Freeze (E, False);
548 end if;
550 if not Error_Posted (Expr)
551 and then not Needs_Finalization (Typ)
552 then
553 Warn_Overlay (Expr, Typ, Name (Addr));
554 end if;
555 end if;
556 end Check_Address_Clause;
558 -----------------------------
559 -- Check_Compile_Time_Size --
560 -----------------------------
562 procedure Check_Compile_Time_Size (T : Entity_Id) is
564 procedure Set_Small_Size (T : Entity_Id; S : Uint);
565 -- Sets the compile time known size (32 bits or less) in the Esize
566 -- field, of T checking for a size clause that was given which attempts
567 -- to give a smaller size.
569 function Size_Known (T : Entity_Id) return Boolean;
570 -- Recursive function that does all the work
572 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
573 -- If T is a constrained subtype, its size is not known if any of its
574 -- discriminant constraints is not static and it is not a null record.
575 -- The test is conservative and doesn't check that the components are
576 -- in fact constrained by non-static discriminant values. Could be made
577 -- more precise ???
579 --------------------
580 -- Set_Small_Size --
581 --------------------
583 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
584 begin
585 if S > 32 then
586 return;
588 elsif Has_Size_Clause (T) then
589 if RM_Size (T) < S then
590 Error_Msg_Uint_1 := S;
591 Error_Msg_NE
592 ("size for & too small, minimum allowed is ^",
593 Size_Clause (T), T);
595 elsif Unknown_Esize (T) then
596 Set_Esize (T, S);
597 end if;
599 -- Set sizes if not set already
601 else
602 if Unknown_Esize (T) then
603 Set_Esize (T, S);
604 end if;
606 if Unknown_RM_Size (T) then
607 Set_RM_Size (T, S);
608 end if;
609 end if;
610 end Set_Small_Size;
612 ----------------
613 -- Size_Known --
614 ----------------
616 function Size_Known (T : Entity_Id) return Boolean is
617 Index : Entity_Id;
618 Comp : Entity_Id;
619 Ctyp : Entity_Id;
620 Low : Node_Id;
621 High : Node_Id;
623 begin
624 if Size_Known_At_Compile_Time (T) then
625 return True;
627 -- Always True for scalar types. This is true even for generic formal
628 -- scalar types. We used to return False in the latter case, but the
629 -- size is known at compile time, even in the template, we just do
630 -- not know the exact size but that's not the point of this routine.
632 elsif Is_Scalar_Type (T)
633 or else Is_Task_Type (T)
634 then
635 return True;
637 -- Array types
639 elsif Is_Array_Type (T) then
641 -- String literals always have known size, and we can set it
643 if Ekind (T) = E_String_Literal_Subtype then
644 Set_Small_Size (T, Component_Size (T)
645 * String_Literal_Length (T));
646 return True;
648 -- Unconstrained types never have known at compile time size
650 elsif not Is_Constrained (T) then
651 return False;
653 -- Don't do any recursion on type with error posted, since we may
654 -- have a malformed type that leads us into a loop.
656 elsif Error_Posted (T) then
657 return False;
659 -- Otherwise if component size unknown, then array size unknown
661 elsif not Size_Known (Component_Type (T)) then
662 return False;
663 end if;
665 -- Check for all indexes static, and also compute possible size
666 -- (in case it is less than 32 and may be packable).
668 declare
669 Esiz : Uint := Component_Size (T);
670 Dim : Uint;
672 begin
673 Index := First_Index (T);
674 while Present (Index) loop
675 if Nkind (Index) = N_Range then
676 Get_Index_Bounds (Index, Low, High);
678 elsif Error_Posted (Scalar_Range (Etype (Index))) then
679 return False;
681 else
682 Low := Type_Low_Bound (Etype (Index));
683 High := Type_High_Bound (Etype (Index));
684 end if;
686 if not Compile_Time_Known_Value (Low)
687 or else not Compile_Time_Known_Value (High)
688 or else Etype (Index) = Any_Type
689 then
690 return False;
692 else
693 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
695 if Dim >= 0 then
696 Esiz := Esiz * Dim;
697 else
698 Esiz := Uint_0;
699 end if;
700 end if;
702 Next_Index (Index);
703 end loop;
705 Set_Small_Size (T, Esiz);
706 return True;
707 end;
709 -- Access types always have known at compile time sizes
711 elsif Is_Access_Type (T) then
712 return True;
714 -- For non-generic private types, go to underlying type if present
716 elsif Is_Private_Type (T)
717 and then not Is_Generic_Type (T)
718 and then Present (Underlying_Type (T))
719 then
720 -- Don't do any recursion on type with error posted, since we may
721 -- have a malformed type that leads us into a loop.
723 if Error_Posted (T) then
724 return False;
725 else
726 return Size_Known (Underlying_Type (T));
727 end if;
729 -- Record types
731 elsif Is_Record_Type (T) then
733 -- A class-wide type is never considered to have a known size
735 if Is_Class_Wide_Type (T) then
736 return False;
738 -- A subtype of a variant record must not have non-static
739 -- discriminanted components.
741 elsif T /= Base_Type (T)
742 and then not Static_Discriminated_Components (T)
743 then
744 return False;
746 -- Don't do any recursion on type with error posted, since we may
747 -- have a malformed type that leads us into a loop.
749 elsif Error_Posted (T) then
750 return False;
751 end if;
753 -- Now look at the components of the record
755 declare
756 -- The following two variables are used to keep track of the
757 -- size of packed records if we can tell the size of the packed
758 -- record in the front end. Packed_Size_Known is True if so far
759 -- we can figure out the size. It is initialized to True for a
760 -- packed record, unless the record has discriminants. The
761 -- reason we eliminate the discriminated case is that we don't
762 -- know the way the back end lays out discriminated packed
763 -- records. If Packed_Size_Known is True, then Packed_Size is
764 -- the size in bits so far.
766 Packed_Size_Known : Boolean :=
767 Is_Packed (T)
768 and then not Has_Discriminants (T);
770 Packed_Size : Uint := Uint_0;
772 begin
773 -- Test for variant part present
775 if Has_Discriminants (T)
776 and then Present (Parent (T))
777 and then Nkind (Parent (T)) = N_Full_Type_Declaration
778 and then Nkind (Type_Definition (Parent (T))) =
779 N_Record_Definition
780 and then not Null_Present (Type_Definition (Parent (T)))
781 and then Present (Variant_Part
782 (Component_List (Type_Definition (Parent (T)))))
783 then
784 -- If variant part is present, and type is unconstrained,
785 -- then we must have defaulted discriminants, or a size
786 -- clause must be present for the type, or else the size
787 -- is definitely not known at compile time.
789 if not Is_Constrained (T)
790 and then
791 No (Discriminant_Default_Value
792 (First_Discriminant (T)))
793 and then Unknown_Esize (T)
794 then
795 return False;
796 end if;
797 end if;
799 -- Loop through components
801 Comp := First_Component_Or_Discriminant (T);
802 while Present (Comp) loop
803 Ctyp := Etype (Comp);
805 -- We do not know the packed size if there is a component
806 -- clause present (we possibly could, but this would only
807 -- help in the case of a record with partial rep clauses.
808 -- That's because in the case of full rep clauses, the
809 -- size gets figured out anyway by a different circuit).
811 if Present (Component_Clause (Comp)) then
812 Packed_Size_Known := False;
813 end if;
815 -- We need to identify a component that is an array where
816 -- the index type is an enumeration type with non-standard
817 -- representation, and some bound of the type depends on a
818 -- discriminant.
820 -- This is because gigi computes the size by doing a
821 -- substitution of the appropriate discriminant value in
822 -- the size expression for the base type, and gigi is not
823 -- clever enough to evaluate the resulting expression (which
824 -- involves a call to rep_to_pos) at compile time.
826 -- It would be nice if gigi would either recognize that
827 -- this expression can be computed at compile time, or
828 -- alternatively figured out the size from the subtype
829 -- directly, where all the information is at hand ???
831 if Is_Array_Type (Etype (Comp))
832 and then Present (Packed_Array_Type (Etype (Comp)))
833 then
834 declare
835 Ocomp : constant Entity_Id :=
836 Original_Record_Component (Comp);
837 OCtyp : constant Entity_Id := Etype (Ocomp);
838 Ind : Node_Id;
839 Indtyp : Entity_Id;
840 Lo, Hi : Node_Id;
842 begin
843 Ind := First_Index (OCtyp);
844 while Present (Ind) loop
845 Indtyp := Etype (Ind);
847 if Is_Enumeration_Type (Indtyp)
848 and then Has_Non_Standard_Rep (Indtyp)
849 then
850 Lo := Type_Low_Bound (Indtyp);
851 Hi := Type_High_Bound (Indtyp);
853 if Is_Entity_Name (Lo)
854 and then Ekind (Entity (Lo)) = E_Discriminant
855 then
856 return False;
858 elsif Is_Entity_Name (Hi)
859 and then Ekind (Entity (Hi)) = E_Discriminant
860 then
861 return False;
862 end if;
863 end if;
865 Next_Index (Ind);
866 end loop;
867 end;
868 end if;
870 -- Clearly size of record is not known if the size of one of
871 -- the components is not known.
873 if not Size_Known (Ctyp) then
874 return False;
875 end if;
877 -- Accumulate packed size if possible
879 if Packed_Size_Known then
881 -- We can only deal with elementary types, since for
882 -- non-elementary components, alignment enters into the
883 -- picture, and we don't know enough to handle proper
884 -- alignment in this context. Packed arrays count as
885 -- elementary if the representation is a modular type.
887 if Is_Elementary_Type (Ctyp)
888 or else (Is_Array_Type (Ctyp)
889 and then Present (Packed_Array_Type (Ctyp))
890 and then Is_Modular_Integer_Type
891 (Packed_Array_Type (Ctyp)))
892 then
893 -- If RM_Size is known and static, then we can
894 -- keep accumulating the packed size.
896 if Known_Static_RM_Size (Ctyp) then
898 -- A little glitch, to be removed sometime ???
899 -- gigi does not understand zero sizes yet.
901 if RM_Size (Ctyp) = Uint_0 then
902 Packed_Size_Known := False;
904 -- Normal case where we can keep accumulating the
905 -- packed array size.
907 else
908 Packed_Size := Packed_Size + RM_Size (Ctyp);
909 end if;
911 -- If we have a field whose RM_Size is not known then
912 -- we can't figure out the packed size here.
914 else
915 Packed_Size_Known := False;
916 end if;
918 -- If we have a non-elementary type we can't figure out
919 -- the packed array size (alignment issues).
921 else
922 Packed_Size_Known := False;
923 end if;
924 end if;
926 Next_Component_Or_Discriminant (Comp);
927 end loop;
929 if Packed_Size_Known then
930 Set_Small_Size (T, Packed_Size);
931 end if;
933 return True;
934 end;
936 -- All other cases, size not known at compile time
938 else
939 return False;
940 end if;
941 end Size_Known;
943 -------------------------------------
944 -- Static_Discriminated_Components --
945 -------------------------------------
947 function Static_Discriminated_Components
948 (T : Entity_Id) return Boolean
950 Constraint : Elmt_Id;
952 begin
953 if Has_Discriminants (T)
954 and then Present (Discriminant_Constraint (T))
955 and then Present (First_Component (T))
956 then
957 Constraint := First_Elmt (Discriminant_Constraint (T));
958 while Present (Constraint) loop
959 if not Compile_Time_Known_Value (Node (Constraint)) then
960 return False;
961 end if;
963 Next_Elmt (Constraint);
964 end loop;
965 end if;
967 return True;
968 end Static_Discriminated_Components;
970 -- Start of processing for Check_Compile_Time_Size
972 begin
973 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
974 end Check_Compile_Time_Size;
976 -----------------------------
977 -- Check_Debug_Info_Needed --
978 -----------------------------
980 procedure Check_Debug_Info_Needed (T : Entity_Id) is
981 begin
982 if Debug_Info_Off (T) then
983 return;
985 elsif Comes_From_Source (T)
986 or else Debug_Generated_Code
987 or else Debug_Flag_VV
988 or else Needs_Debug_Info (T)
989 then
990 Set_Debug_Info_Needed (T);
991 end if;
992 end Check_Debug_Info_Needed;
994 ----------------------------
995 -- Check_Strict_Alignment --
996 ----------------------------
998 procedure Check_Strict_Alignment (E : Entity_Id) is
999 Comp : Entity_Id;
1001 begin
1002 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1003 Set_Strict_Alignment (E);
1005 elsif Is_Array_Type (E) then
1006 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1008 elsif Is_Record_Type (E) then
1009 if Is_Limited_Record (E) then
1010 Set_Strict_Alignment (E);
1011 return;
1012 end if;
1014 Comp := First_Component (E);
1016 while Present (Comp) loop
1017 if not Is_Type (Comp)
1018 and then (Strict_Alignment (Etype (Comp))
1019 or else Is_Aliased (Comp))
1020 then
1021 Set_Strict_Alignment (E);
1022 return;
1023 end if;
1025 Next_Component (Comp);
1026 end loop;
1027 end if;
1028 end Check_Strict_Alignment;
1030 -------------------------
1031 -- Check_Unsigned_Type --
1032 -------------------------
1034 procedure Check_Unsigned_Type (E : Entity_Id) is
1035 Ancestor : Entity_Id;
1036 Lo_Bound : Node_Id;
1037 Btyp : Entity_Id;
1039 begin
1040 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1041 return;
1042 end if;
1044 -- Do not attempt to analyze case where range was in error
1046 if Error_Posted (Scalar_Range (E)) then
1047 return;
1048 end if;
1050 -- The situation that is non trivial is something like
1052 -- subtype x1 is integer range -10 .. +10;
1053 -- subtype x2 is x1 range 0 .. V1;
1054 -- subtype x3 is x2 range V2 .. V3;
1055 -- subtype x4 is x3 range V4 .. V5;
1057 -- where Vn are variables. Here the base type is signed, but we still
1058 -- know that x4 is unsigned because of the lower bound of x2.
1060 -- The only way to deal with this is to look up the ancestor chain
1062 Ancestor := E;
1063 loop
1064 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1065 return;
1066 end if;
1068 Lo_Bound := Type_Low_Bound (Ancestor);
1070 if Compile_Time_Known_Value (Lo_Bound) then
1072 if Expr_Rep_Value (Lo_Bound) >= 0 then
1073 Set_Is_Unsigned_Type (E, True);
1074 end if;
1076 return;
1078 else
1079 Ancestor := Ancestor_Subtype (Ancestor);
1081 -- If no ancestor had a static lower bound, go to base type
1083 if No (Ancestor) then
1085 -- Note: the reason we still check for a compile time known
1086 -- value for the base type is that at least in the case of
1087 -- generic formals, we can have bounds that fail this test,
1088 -- and there may be other cases in error situations.
1090 Btyp := Base_Type (E);
1092 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1093 return;
1094 end if;
1096 Lo_Bound := Type_Low_Bound (Base_Type (E));
1098 if Compile_Time_Known_Value (Lo_Bound)
1099 and then Expr_Rep_Value (Lo_Bound) >= 0
1100 then
1101 Set_Is_Unsigned_Type (E, True);
1102 end if;
1104 return;
1105 end if;
1106 end if;
1107 end loop;
1108 end Check_Unsigned_Type;
1110 -----------------------------
1111 -- Expand_Atomic_Aggregate --
1112 -----------------------------
1114 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1115 Loc : constant Source_Ptr := Sloc (E);
1116 New_N : Node_Id;
1117 Temp : Entity_Id;
1119 begin
1120 if (Nkind (Parent (E)) = N_Object_Declaration
1121 or else Nkind (Parent (E)) = N_Assignment_Statement)
1122 and then Comes_From_Source (Parent (E))
1123 and then Nkind (E) = N_Aggregate
1124 then
1125 Temp :=
1126 Make_Defining_Identifier (Loc,
1127 New_Internal_Name ('T'));
1129 New_N :=
1130 Make_Object_Declaration (Loc,
1131 Defining_Identifier => Temp,
1132 Object_Definition => New_Occurrence_Of (Typ, Loc),
1133 Expression => Relocate_Node (E));
1134 Insert_Before (Parent (E), New_N);
1135 Analyze (New_N);
1137 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1139 -- To prevent the temporary from being constant-folded (which would
1140 -- lead to the same piecemeal assignment on the original target)
1141 -- indicate to the back-end that the temporary is a variable with
1142 -- real storage. See description of this flag in Einfo, and the notes
1143 -- on N_Assignment_Statement and N_Object_Declaration in Sinfo.
1145 Set_Is_True_Constant (Temp, False);
1146 end if;
1147 end Expand_Atomic_Aggregate;
1149 ----------------
1150 -- Freeze_All --
1151 ----------------
1153 -- Note: the easy coding for this procedure would be to just build a
1154 -- single list of freeze nodes and then insert them and analyze them
1155 -- all at once. This won't work, because the analysis of earlier freeze
1156 -- nodes may recursively freeze types which would otherwise appear later
1157 -- on in the freeze list. So we must analyze and expand the freeze nodes
1158 -- as they are generated.
1160 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1161 Loc : constant Source_Ptr := Sloc (After);
1162 E : Entity_Id;
1163 Decl : Node_Id;
1165 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1166 -- This is the internal recursive routine that does freezing of entities
1167 -- (but NOT the analysis of default expressions, which should not be
1168 -- recursive, we don't want to analyze those till we are sure that ALL
1169 -- the types are frozen).
1171 --------------------
1172 -- Freeze_All_Ent --
1173 --------------------
1175 procedure Freeze_All_Ent
1176 (From : Entity_Id;
1177 After : in out Node_Id)
1179 E : Entity_Id;
1180 Flist : List_Id;
1181 Lastn : Node_Id;
1183 procedure Process_Flist;
1184 -- If freeze nodes are present, insert and analyze, and reset cursor
1185 -- for next insertion.
1187 -------------------
1188 -- Process_Flist --
1189 -------------------
1191 procedure Process_Flist is
1192 begin
1193 if Is_Non_Empty_List (Flist) then
1194 Lastn := Next (After);
1195 Insert_List_After_And_Analyze (After, Flist);
1197 if Present (Lastn) then
1198 After := Prev (Lastn);
1199 else
1200 After := Last (List_Containing (After));
1201 end if;
1202 end if;
1203 end Process_Flist;
1205 -- Start or processing for Freeze_All_Ent
1207 begin
1208 E := From;
1209 while Present (E) loop
1211 -- If the entity is an inner package which is not a package
1212 -- renaming, then its entities must be frozen at this point. Note
1213 -- that such entities do NOT get frozen at the end of the nested
1214 -- package itself (only library packages freeze).
1216 -- Same is true for task declarations, where anonymous records
1217 -- created for entry parameters must be frozen.
1219 if Ekind (E) = E_Package
1220 and then No (Renamed_Object (E))
1221 and then not Is_Child_Unit (E)
1222 and then not Is_Frozen (E)
1223 then
1224 Push_Scope (E);
1225 Install_Visible_Declarations (E);
1226 Install_Private_Declarations (E);
1228 Freeze_All (First_Entity (E), After);
1230 End_Package_Scope (E);
1232 elsif Ekind (E) in Task_Kind
1233 and then
1234 (Nkind (Parent (E)) = N_Task_Type_Declaration
1235 or else
1236 Nkind (Parent (E)) = N_Single_Task_Declaration)
1237 then
1238 Push_Scope (E);
1239 Freeze_All (First_Entity (E), After);
1240 End_Scope;
1242 -- For a derived tagged type, we must ensure that all the
1243 -- primitive operations of the parent have been frozen, so that
1244 -- their addresses will be in the parent's dispatch table at the
1245 -- point it is inherited.
1247 elsif Ekind (E) = E_Record_Type
1248 and then Is_Tagged_Type (E)
1249 and then Is_Tagged_Type (Etype (E))
1250 and then Is_Derived_Type (E)
1251 then
1252 declare
1253 Prim_List : constant Elist_Id :=
1254 Primitive_Operations (Etype (E));
1256 Prim : Elmt_Id;
1257 Subp : Entity_Id;
1259 begin
1260 Prim := First_Elmt (Prim_List);
1262 while Present (Prim) loop
1263 Subp := Node (Prim);
1265 if Comes_From_Source (Subp)
1266 and then not Is_Frozen (Subp)
1267 then
1268 Flist := Freeze_Entity (Subp, Loc);
1269 Process_Flist;
1270 end if;
1272 Next_Elmt (Prim);
1273 end loop;
1274 end;
1275 end if;
1277 if not Is_Frozen (E) then
1278 Flist := Freeze_Entity (E, Loc);
1279 Process_Flist;
1280 end if;
1282 -- If an incomplete type is still not frozen, this may be a
1283 -- premature freezing because of a body declaration that follows.
1284 -- Indicate where the freezing took place.
1286 -- If the freezing is caused by the end of the current declarative
1287 -- part, it is a Taft Amendment type, and there is no error.
1289 if not Is_Frozen (E)
1290 and then Ekind (E) = E_Incomplete_Type
1291 then
1292 declare
1293 Bod : constant Node_Id := Next (After);
1295 begin
1296 if (Nkind (Bod) = N_Subprogram_Body
1297 or else Nkind (Bod) = N_Entry_Body
1298 or else Nkind (Bod) = N_Package_Body
1299 or else Nkind (Bod) = N_Protected_Body
1300 or else Nkind (Bod) = N_Task_Body
1301 or else Nkind (Bod) in N_Body_Stub)
1302 and then
1303 List_Containing (After) = List_Containing (Parent (E))
1304 then
1305 Error_Msg_Sloc := Sloc (Next (After));
1306 Error_Msg_NE
1307 ("type& is frozen# before its full declaration",
1308 Parent (E), E);
1309 end if;
1310 end;
1311 end if;
1313 Next_Entity (E);
1314 end loop;
1315 end Freeze_All_Ent;
1317 -- Start of processing for Freeze_All
1319 begin
1320 Freeze_All_Ent (From, After);
1322 -- Now that all types are frozen, we can deal with default expressions
1323 -- that require us to build a default expression functions. This is the
1324 -- point at which such functions are constructed (after all types that
1325 -- might be used in such expressions have been frozen).
1327 -- We also add finalization chains to access types whose designated
1328 -- types are controlled. This is normally done when freezing the type,
1329 -- but this misses recursive type definitions where the later members
1330 -- of the recursion introduce controlled components.
1332 -- Loop through entities
1334 E := From;
1335 while Present (E) loop
1336 if Is_Subprogram (E) then
1338 if not Default_Expressions_Processed (E) then
1339 Process_Default_Expressions (E, After);
1340 end if;
1342 if not Has_Completion (E) then
1343 Decl := Unit_Declaration_Node (E);
1345 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1346 Build_And_Analyze_Renamed_Body (Decl, E, After);
1348 elsif Nkind (Decl) = N_Subprogram_Declaration
1349 and then Present (Corresponding_Body (Decl))
1350 and then
1351 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1352 = N_Subprogram_Renaming_Declaration
1353 then
1354 Build_And_Analyze_Renamed_Body
1355 (Decl, Corresponding_Body (Decl), After);
1356 end if;
1357 end if;
1359 elsif Ekind (E) in Task_Kind
1360 and then
1361 (Nkind (Parent (E)) = N_Task_Type_Declaration
1362 or else
1363 Nkind (Parent (E)) = N_Single_Task_Declaration)
1364 then
1365 declare
1366 Ent : Entity_Id;
1367 begin
1368 Ent := First_Entity (E);
1370 while Present (Ent) loop
1372 if Is_Entry (Ent)
1373 and then not Default_Expressions_Processed (Ent)
1374 then
1375 Process_Default_Expressions (Ent, After);
1376 end if;
1378 Next_Entity (Ent);
1379 end loop;
1380 end;
1382 elsif Is_Access_Type (E)
1383 and then Comes_From_Source (E)
1384 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1385 and then Needs_Finalization (Designated_Type (E))
1386 and then No (Associated_Final_Chain (E))
1387 then
1388 Build_Final_List (Parent (E), E);
1389 end if;
1391 Next_Entity (E);
1392 end loop;
1393 end Freeze_All;
1395 -----------------------
1396 -- Freeze_And_Append --
1397 -----------------------
1399 procedure Freeze_And_Append
1400 (Ent : Entity_Id;
1401 Loc : Source_Ptr;
1402 Result : in out List_Id)
1404 L : constant List_Id := Freeze_Entity (Ent, Loc);
1405 begin
1406 if Is_Non_Empty_List (L) then
1407 if Result = No_List then
1408 Result := L;
1409 else
1410 Append_List (L, Result);
1411 end if;
1412 end if;
1413 end Freeze_And_Append;
1415 -------------------
1416 -- Freeze_Before --
1417 -------------------
1419 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1420 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
1421 begin
1422 if Is_Non_Empty_List (Freeze_Nodes) then
1423 Insert_Actions (N, Freeze_Nodes);
1424 end if;
1425 end Freeze_Before;
1427 -------------------
1428 -- Freeze_Entity --
1429 -------------------
1431 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
1432 Test_E : Entity_Id := E;
1433 Comp : Entity_Id;
1434 F_Node : Node_Id;
1435 Result : List_Id;
1436 Indx : Node_Id;
1437 Formal : Entity_Id;
1438 Atype : Entity_Id;
1440 Has_Default_Initialization : Boolean := False;
1441 -- This flag gets set to true for a variable with default initialization
1443 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1444 -- Check that an Access or Unchecked_Access attribute with a prefix
1445 -- which is the current instance type can only be applied when the type
1446 -- is limited.
1448 function After_Last_Declaration return Boolean;
1449 -- If Loc is a freeze_entity that appears after the last declaration
1450 -- in the scope, inhibit error messages on late completion.
1452 procedure Freeze_Record_Type (Rec : Entity_Id);
1453 -- Freeze each component, handle some representation clauses, and freeze
1454 -- primitive operations if this is a tagged type.
1456 ----------------------------
1457 -- After_Last_Declaration --
1458 ----------------------------
1460 function After_Last_Declaration return Boolean is
1461 Spec : constant Node_Id := Parent (Current_Scope);
1462 begin
1463 if Nkind (Spec) = N_Package_Specification then
1464 if Present (Private_Declarations (Spec)) then
1465 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1466 elsif Present (Visible_Declarations (Spec)) then
1467 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1468 else
1469 return False;
1470 end if;
1471 else
1472 return False;
1473 end if;
1474 end After_Last_Declaration;
1476 ----------------------------
1477 -- Check_Current_Instance --
1478 ----------------------------
1480 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1482 Rec_Type : constant Entity_Id :=
1483 Scope (Defining_Identifier (Comp_Decl));
1485 Decl : constant Node_Id := Parent (Rec_Type);
1487 function Process (N : Node_Id) return Traverse_Result;
1488 -- Process routine to apply check to given node
1490 -------------
1491 -- Process --
1492 -------------
1494 function Process (N : Node_Id) return Traverse_Result is
1495 begin
1496 case Nkind (N) is
1497 when N_Attribute_Reference =>
1498 if (Attribute_Name (N) = Name_Access
1499 or else
1500 Attribute_Name (N) = Name_Unchecked_Access)
1501 and then Is_Entity_Name (Prefix (N))
1502 and then Is_Type (Entity (Prefix (N)))
1503 and then Entity (Prefix (N)) = E
1504 then
1505 Error_Msg_N
1506 ("current instance must be a limited type", Prefix (N));
1507 return Abandon;
1508 else
1509 return OK;
1510 end if;
1512 when others => return OK;
1513 end case;
1514 end Process;
1516 procedure Traverse is new Traverse_Proc (Process);
1518 -- Start of processing for Check_Current_Instance
1520 begin
1521 -- In Ada95, the (imprecise) rule is that the current instance of a
1522 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1523 -- either a tagged type, or a limited record.
1525 if Is_Limited_Type (Rec_Type)
1526 and then
1527 (Ada_Version < Ada_05
1528 or else Is_Tagged_Type (Rec_Type))
1529 then
1530 return;
1532 elsif Nkind (Decl) = N_Full_Type_Declaration
1533 and then Limited_Present (Type_Definition (Decl))
1534 then
1535 return;
1537 else
1538 Traverse (Comp_Decl);
1539 end if;
1540 end Check_Current_Instance;
1542 ------------------------
1543 -- Freeze_Record_Type --
1544 ------------------------
1546 procedure Freeze_Record_Type (Rec : Entity_Id) is
1547 Comp : Entity_Id;
1548 IR : Node_Id;
1549 ADC : Node_Id;
1550 Prev : Entity_Id;
1552 Junk : Boolean;
1553 pragma Warnings (Off, Junk);
1555 Unplaced_Component : Boolean := False;
1556 -- Set True if we find at least one component with no component
1557 -- clause (used to warn about useless Pack pragmas).
1559 Placed_Component : Boolean := False;
1560 -- Set True if we find at least one component with a component
1561 -- clause (used to warn about useless Bit_Order pragmas).
1563 function Check_Allocator (N : Node_Id) return Node_Id;
1564 -- If N is an allocator, possibly wrapped in one or more level of
1565 -- qualified expression(s), return the inner allocator node, else
1566 -- return Empty.
1568 procedure Check_Itype (Typ : Entity_Id);
1569 -- If the component subtype is an access to a constrained subtype of
1570 -- an already frozen type, make the subtype frozen as well. It might
1571 -- otherwise be frozen in the wrong scope, and a freeze node on
1572 -- subtype has no effect. Similarly, if the component subtype is a
1573 -- regular (not protected) access to subprogram, set the anonymous
1574 -- subprogram type to frozen as well, to prevent an out-of-scope
1575 -- freeze node at some eventual point of call. Protected operations
1576 -- are handled elsewhere.
1578 ---------------------
1579 -- Check_Allocator --
1580 ---------------------
1582 function Check_Allocator (N : Node_Id) return Node_Id is
1583 Inner : Node_Id;
1584 begin
1585 Inner := N;
1586 loop
1587 if Nkind (Inner) = N_Allocator then
1588 return Inner;
1589 elsif Nkind (Inner) = N_Qualified_Expression then
1590 Inner := Expression (Inner);
1591 else
1592 return Empty;
1593 end if;
1594 end loop;
1595 end Check_Allocator;
1597 -----------------
1598 -- Check_Itype --
1599 -----------------
1601 procedure Check_Itype (Typ : Entity_Id) is
1602 Desig : constant Entity_Id := Designated_Type (Typ);
1604 begin
1605 if not Is_Frozen (Desig)
1606 and then Is_Frozen (Base_Type (Desig))
1607 then
1608 Set_Is_Frozen (Desig);
1610 -- In addition, add an Itype_Reference to ensure that the
1611 -- access subtype is elaborated early enough. This cannot be
1612 -- done if the subtype may depend on discriminants.
1614 if Ekind (Comp) = E_Component
1615 and then Is_Itype (Etype (Comp))
1616 and then not Has_Discriminants (Rec)
1617 then
1618 IR := Make_Itype_Reference (Sloc (Comp));
1619 Set_Itype (IR, Desig);
1621 if No (Result) then
1622 Result := New_List (IR);
1623 else
1624 Append (IR, Result);
1625 end if;
1626 end if;
1628 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1629 and then Convention (Desig) /= Convention_Protected
1630 then
1631 Set_Is_Frozen (Desig);
1632 end if;
1633 end Check_Itype;
1635 -- Start of processing for Freeze_Record_Type
1637 begin
1638 -- If this is a subtype of a controlled type, declared without a
1639 -- constraint, the _controller may not appear in the component list
1640 -- if the parent was not frozen at the point of subtype declaration.
1641 -- Inherit the _controller component now.
1643 if Rec /= Base_Type (Rec)
1644 and then Has_Controlled_Component (Rec)
1645 then
1646 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1647 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1648 then
1649 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1651 -- If this is an internal type without a declaration, as for
1652 -- record component, the base type may not yet be frozen, and its
1653 -- controller has not been created. Add an explicit freeze node
1654 -- for the itype, so it will be frozen after the base type. This
1655 -- freeze node is used to communicate with the expander, in order
1656 -- to create the controller for the enclosing record, and it is
1657 -- deleted afterwards (see exp_ch3). It must not be created when
1658 -- expansion is off, because it might appear in the wrong context
1659 -- for the back end.
1661 elsif Is_Itype (Rec)
1662 and then Has_Delayed_Freeze (Base_Type (Rec))
1663 and then
1664 Nkind (Associated_Node_For_Itype (Rec)) =
1665 N_Component_Declaration
1666 and then Expander_Active
1667 then
1668 Ensure_Freeze_Node (Rec);
1669 end if;
1670 end if;
1672 -- Freeze components and embedded subtypes
1674 Comp := First_Entity (Rec);
1675 Prev := Empty;
1676 while Present (Comp) loop
1678 -- First handle the (real) component case
1680 if Ekind (Comp) = E_Component
1681 or else Ekind (Comp) = E_Discriminant
1682 then
1683 declare
1684 CC : constant Node_Id := Component_Clause (Comp);
1686 begin
1687 -- Freezing a record type freezes the type of each of its
1688 -- components. However, if the type of the component is
1689 -- part of this record, we do not want or need a separate
1690 -- Freeze_Node. Note that Is_Itype is wrong because that's
1691 -- also set in private type cases. We also can't check for
1692 -- the Scope being exactly Rec because of private types and
1693 -- record extensions.
1695 if Is_Itype (Etype (Comp))
1696 and then Is_Record_Type (Underlying_Type
1697 (Scope (Etype (Comp))))
1698 then
1699 Undelay_Type (Etype (Comp));
1700 end if;
1702 Freeze_And_Append (Etype (Comp), Loc, Result);
1704 -- Check for error of component clause given for variable
1705 -- sized type. We have to delay this test till this point,
1706 -- since the component type has to be frozen for us to know
1707 -- if it is variable length. We omit this test in a generic
1708 -- context, it will be applied at instantiation time.
1710 if Present (CC) then
1711 Placed_Component := True;
1713 if Inside_A_Generic then
1714 null;
1716 elsif not
1717 Size_Known_At_Compile_Time
1718 (Underlying_Type (Etype (Comp)))
1719 then
1720 Error_Msg_N
1721 ("component clause not allowed for variable " &
1722 "length component", CC);
1723 end if;
1725 else
1726 Unplaced_Component := True;
1727 end if;
1729 -- Case of component requires byte alignment
1731 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
1733 -- Set the enclosing record to also require byte align
1735 Set_Must_Be_On_Byte_Boundary (Rec);
1737 -- Check for component clause that is inconsistent with
1738 -- the required byte boundary alignment.
1740 if Present (CC)
1741 and then Normalized_First_Bit (Comp) mod
1742 System_Storage_Unit /= 0
1743 then
1744 Error_Msg_N
1745 ("component & must be byte aligned",
1746 Component_Name (Component_Clause (Comp)));
1747 end if;
1748 end if;
1750 -- If component clause is present, then deal with the non-
1751 -- default bit order case for Ada 95 mode. The required
1752 -- processing for Ada 2005 mode is handled separately after
1753 -- processing all components.
1755 -- We only do this processing for the base type, and in
1756 -- fact that's important, since otherwise if there are
1757 -- record subtypes, we could reverse the bits once for
1758 -- each subtype, which would be incorrect.
1760 if Present (CC)
1761 and then Reverse_Bit_Order (Rec)
1762 and then Ekind (E) = E_Record_Type
1763 and then Ada_Version <= Ada_95
1764 then
1765 declare
1766 CFB : constant Uint := Component_Bit_Offset (Comp);
1767 CSZ : constant Uint := Esize (Comp);
1768 CLC : constant Node_Id := Component_Clause (Comp);
1769 Pos : constant Node_Id := Position (CLC);
1770 FB : constant Node_Id := First_Bit (CLC);
1772 Storage_Unit_Offset : constant Uint :=
1773 CFB / System_Storage_Unit;
1775 Start_Bit : constant Uint :=
1776 CFB mod System_Storage_Unit;
1778 begin
1779 -- Cases where field goes over storage unit boundary
1781 if Start_Bit + CSZ > System_Storage_Unit then
1783 -- Allow multi-byte field but generate warning
1785 if Start_Bit mod System_Storage_Unit = 0
1786 and then CSZ mod System_Storage_Unit = 0
1787 then
1788 Error_Msg_N
1789 ("multi-byte field specified with non-standard"
1790 & " Bit_Order?", CLC);
1792 if Bytes_Big_Endian then
1793 Error_Msg_N
1794 ("bytes are not reversed "
1795 & "(component is big-endian)?", CLC);
1796 else
1797 Error_Msg_N
1798 ("bytes are not reversed "
1799 & "(component is little-endian)?", CLC);
1800 end if;
1802 -- Do not allow non-contiguous field
1804 else
1805 Error_Msg_N
1806 ("attempt to specify non-contiguous field "
1807 & "not permitted", CLC);
1808 Error_Msg_N
1809 ("\caused by non-standard Bit_Order "
1810 & "specified", CLC);
1811 Error_Msg_N
1812 ("\consider possibility of using "
1813 & "Ada 2005 mode here", CLC);
1814 end if;
1816 -- Case where field fits in one storage unit
1818 else
1819 -- Give warning if suspicious component clause
1821 if Intval (FB) >= System_Storage_Unit
1822 and then Warn_On_Reverse_Bit_Order
1823 then
1824 Error_Msg_N
1825 ("?Bit_Order clause does not affect " &
1826 "byte ordering", Pos);
1827 Error_Msg_Uint_1 :=
1828 Intval (Pos) + Intval (FB) /
1829 System_Storage_Unit;
1830 Error_Msg_N
1831 ("?position normalized to ^ before bit " &
1832 "order interpreted", Pos);
1833 end if;
1835 -- Here is where we fix up the Component_Bit_Offset
1836 -- value to account for the reverse bit order.
1837 -- Some examples of what needs to be done are:
1839 -- First_Bit .. Last_Bit Component_Bit_Offset
1840 -- old new old new
1842 -- 0 .. 0 7 .. 7 0 7
1843 -- 0 .. 1 6 .. 7 0 6
1844 -- 0 .. 2 5 .. 7 0 5
1845 -- 0 .. 7 0 .. 7 0 4
1847 -- 1 .. 1 6 .. 6 1 6
1848 -- 1 .. 4 3 .. 6 1 3
1849 -- 4 .. 7 0 .. 3 4 0
1851 -- The general rule is that the first bit is
1852 -- is obtained by subtracting the old ending bit
1853 -- from storage_unit - 1.
1855 Set_Component_Bit_Offset
1856 (Comp,
1857 (Storage_Unit_Offset * System_Storage_Unit) +
1858 (System_Storage_Unit - 1) -
1859 (Start_Bit + CSZ - 1));
1861 Set_Normalized_First_Bit
1862 (Comp,
1863 Component_Bit_Offset (Comp) mod
1864 System_Storage_Unit);
1865 end if;
1866 end;
1867 end if;
1868 end;
1869 end if;
1871 -- If the component is an Itype with Delayed_Freeze and is either
1872 -- a record or array subtype and its base type has not yet been
1873 -- frozen, we must remove this from the entity list of this
1874 -- record and put it on the entity list of the scope of its base
1875 -- type. Note that we know that this is not the type of a
1876 -- component since we cleared Has_Delayed_Freeze for it in the
1877 -- previous loop. Thus this must be the Designated_Type of an
1878 -- access type, which is the type of a component.
1880 if Is_Itype (Comp)
1881 and then Is_Type (Scope (Comp))
1882 and then Is_Composite_Type (Comp)
1883 and then Base_Type (Comp) /= Comp
1884 and then Has_Delayed_Freeze (Comp)
1885 and then not Is_Frozen (Base_Type (Comp))
1886 then
1887 declare
1888 Will_Be_Frozen : Boolean := False;
1889 S : Entity_Id;
1891 begin
1892 -- We have a pretty bad kludge here. Suppose Rec is subtype
1893 -- being defined in a subprogram that's created as part of
1894 -- the freezing of Rec'Base. In that case, we know that
1895 -- Comp'Base must have already been frozen by the time we
1896 -- get to elaborate this because Gigi doesn't elaborate any
1897 -- bodies until it has elaborated all of the declarative
1898 -- part. But Is_Frozen will not be set at this point because
1899 -- we are processing code in lexical order.
1901 -- We detect this case by going up the Scope chain of Rec
1902 -- and seeing if we have a subprogram scope before reaching
1903 -- the top of the scope chain or that of Comp'Base. If we
1904 -- do, then mark that Comp'Base will actually be frozen. If
1905 -- so, we merely undelay it.
1907 S := Scope (Rec);
1908 while Present (S) loop
1909 if Is_Subprogram (S) then
1910 Will_Be_Frozen := True;
1911 exit;
1912 elsif S = Scope (Base_Type (Comp)) then
1913 exit;
1914 end if;
1916 S := Scope (S);
1917 end loop;
1919 if Will_Be_Frozen then
1920 Undelay_Type (Comp);
1921 else
1922 if Present (Prev) then
1923 Set_Next_Entity (Prev, Next_Entity (Comp));
1924 else
1925 Set_First_Entity (Rec, Next_Entity (Comp));
1926 end if;
1928 -- Insert in entity list of scope of base type (which
1929 -- must be an enclosing scope, because still unfrozen).
1931 Append_Entity (Comp, Scope (Base_Type (Comp)));
1932 end if;
1933 end;
1935 -- If the component is an access type with an allocator as default
1936 -- value, the designated type will be frozen by the corresponding
1937 -- expression in init_proc. In order to place the freeze node for
1938 -- the designated type before that for the current record type,
1939 -- freeze it now.
1941 -- Same process if the component is an array of access types,
1942 -- initialized with an aggregate. If the designated type is
1943 -- private, it cannot contain allocators, and it is premature
1944 -- to freeze the type, so we check for this as well.
1946 elsif Is_Access_Type (Etype (Comp))
1947 and then Present (Parent (Comp))
1948 and then Present (Expression (Parent (Comp)))
1949 then
1950 declare
1951 Alloc : constant Node_Id :=
1952 Check_Allocator (Expression (Parent (Comp)));
1954 begin
1955 if Present (Alloc) then
1957 -- If component is pointer to a classwide type, freeze
1958 -- the specific type in the expression being allocated.
1959 -- The expression may be a subtype indication, in which
1960 -- case freeze the subtype mark.
1962 if Is_Class_Wide_Type
1963 (Designated_Type (Etype (Comp)))
1964 then
1965 if Is_Entity_Name (Expression (Alloc)) then
1966 Freeze_And_Append
1967 (Entity (Expression (Alloc)), Loc, Result);
1968 elsif
1969 Nkind (Expression (Alloc)) = N_Subtype_Indication
1970 then
1971 Freeze_And_Append
1972 (Entity (Subtype_Mark (Expression (Alloc))),
1973 Loc, Result);
1974 end if;
1976 elsif Is_Itype (Designated_Type (Etype (Comp))) then
1977 Check_Itype (Etype (Comp));
1979 else
1980 Freeze_And_Append
1981 (Designated_Type (Etype (Comp)), Loc, Result);
1982 end if;
1983 end if;
1984 end;
1986 elsif Is_Access_Type (Etype (Comp))
1987 and then Is_Itype (Designated_Type (Etype (Comp)))
1988 then
1989 Check_Itype (Etype (Comp));
1991 elsif Is_Array_Type (Etype (Comp))
1992 and then Is_Access_Type (Component_Type (Etype (Comp)))
1993 and then Present (Parent (Comp))
1994 and then Nkind (Parent (Comp)) = N_Component_Declaration
1995 and then Present (Expression (Parent (Comp)))
1996 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1997 and then Is_Fully_Defined
1998 (Designated_Type (Component_Type (Etype (Comp))))
1999 then
2000 Freeze_And_Append
2001 (Designated_Type
2002 (Component_Type (Etype (Comp))), Loc, Result);
2003 end if;
2005 Prev := Comp;
2006 Next_Entity (Comp);
2007 end loop;
2009 -- Deal with pragma Bit_Order
2011 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2012 if not Placed_Component then
2013 ADC :=
2014 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
2015 Error_Msg_N
2016 ("?Bit_Order specification has no effect", ADC);
2017 Error_Msg_N
2018 ("\?since no component clauses were specified", ADC);
2020 -- Here is where we do Ada 2005 processing for bit order (the Ada
2021 -- 95 case was already taken care of above).
2023 elsif Ada_Version >= Ada_05 then
2024 Adjust_Record_For_Reverse_Bit_Order (Rec);
2025 end if;
2026 end if;
2028 -- Set OK_To_Reorder_Components depending on debug flags
2030 if Rec = Base_Type (Rec)
2031 and then Convention (Rec) = Convention_Ada
2032 then
2033 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2034 or else
2035 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2036 then
2037 Set_OK_To_Reorder_Components (Rec);
2038 end if;
2039 end if;
2041 -- Check for useless pragma Pack when all components placed. We only
2042 -- do this check for record types, not subtypes, since a subtype may
2043 -- have all its components placed, and it still makes perfectly good
2044 -- sense to pack other subtypes or the parent type. We do not give
2045 -- this warning if Optimize_Alignment is set to Space, since the
2046 -- pragma Pack does have an effect in this case (it always resets
2047 -- the alignment to one).
2049 if Ekind (Rec) = E_Record_Type
2050 and then Is_Packed (Rec)
2051 and then not Unplaced_Component
2052 and then Optimize_Alignment /= 'S'
2053 then
2054 -- Reset packed status. Probably not necessary, but we do it so
2055 -- that there is no chance of the back end doing something strange
2056 -- with this redundant indication of packing.
2058 Set_Is_Packed (Rec, False);
2060 -- Give warning if redundant constructs warnings on
2062 if Warn_On_Redundant_Constructs then
2063 Error_Msg_N
2064 ("?pragma Pack has no effect, no unplaced components",
2065 Get_Rep_Pragma (Rec, Name_Pack));
2066 end if;
2067 end if;
2069 -- If this is the record corresponding to a remote type, freeze the
2070 -- remote type here since that is what we are semantically freezing.
2071 -- This prevents the freeze node for that type in an inner scope.
2073 -- Also, Check for controlled components and unchecked unions.
2074 -- Finally, enforce the restriction that access attributes with a
2075 -- current instance prefix can only apply to limited types.
2077 if Ekind (Rec) = E_Record_Type then
2078 if Present (Corresponding_Remote_Type (Rec)) then
2079 Freeze_And_Append
2080 (Corresponding_Remote_Type (Rec), Loc, Result);
2081 end if;
2083 Comp := First_Component (Rec);
2084 while Present (Comp) loop
2085 if Has_Controlled_Component (Etype (Comp))
2086 or else (Chars (Comp) /= Name_uParent
2087 and then Is_Controlled (Etype (Comp)))
2088 or else (Is_Protected_Type (Etype (Comp))
2089 and then Present
2090 (Corresponding_Record_Type (Etype (Comp)))
2091 and then Has_Controlled_Component
2092 (Corresponding_Record_Type (Etype (Comp))))
2093 then
2094 Set_Has_Controlled_Component (Rec);
2095 exit;
2096 end if;
2098 if Has_Unchecked_Union (Etype (Comp)) then
2099 Set_Has_Unchecked_Union (Rec);
2100 end if;
2102 if Has_Per_Object_Constraint (Comp) then
2104 -- Scan component declaration for likely misuses of current
2105 -- instance, either in a constraint or a default expression.
2107 Check_Current_Instance (Parent (Comp));
2108 end if;
2110 Next_Component (Comp);
2111 end loop;
2112 end if;
2114 Set_Component_Alignment_If_Not_Set (Rec);
2116 -- For first subtypes, check if there are any fixed-point fields with
2117 -- component clauses, where we must check the size. This is not done
2118 -- till the freeze point, since for fixed-point types, we do not know
2119 -- the size until the type is frozen. Similar processing applies to
2120 -- bit packed arrays.
2122 if Is_First_Subtype (Rec) then
2123 Comp := First_Component (Rec);
2125 while Present (Comp) loop
2126 if Present (Component_Clause (Comp))
2127 and then (Is_Fixed_Point_Type (Etype (Comp))
2128 or else
2129 Is_Bit_Packed_Array (Etype (Comp)))
2130 then
2131 Check_Size
2132 (Component_Name (Component_Clause (Comp)),
2133 Etype (Comp),
2134 Esize (Comp),
2135 Junk);
2136 end if;
2138 Next_Component (Comp);
2139 end loop;
2140 end if;
2142 -- Generate warning for applying C or C++ convention to a record
2143 -- with discriminants. This is suppressed for the unchecked union
2144 -- case, since the whole point in this case is interface C. We also
2145 -- do not generate this within instantiations, since we will have
2146 -- generated a message on the template.
2148 if Has_Discriminants (E)
2149 and then not Is_Unchecked_Union (E)
2150 and then (Convention (E) = Convention_C
2151 or else
2152 Convention (E) = Convention_CPP)
2153 and then Comes_From_Source (E)
2154 and then not In_Instance
2155 and then not Has_Warnings_Off (E)
2156 and then not Has_Warnings_Off (Base_Type (E))
2157 then
2158 declare
2159 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2160 A2 : Node_Id;
2162 begin
2163 if Present (Cprag) then
2164 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2166 if Convention (E) = Convention_C then
2167 Error_Msg_N
2168 ("?variant record has no direct equivalent in C", A2);
2169 else
2170 Error_Msg_N
2171 ("?variant record has no direct equivalent in C++", A2);
2172 end if;
2174 Error_Msg_NE
2175 ("\?use of convention for type& is dubious", A2, E);
2176 end if;
2177 end;
2178 end if;
2179 end Freeze_Record_Type;
2181 -- Start of processing for Freeze_Entity
2183 begin
2184 -- We are going to test for various reasons why this entity need not be
2185 -- frozen here, but in the case of an Itype that's defined within a
2186 -- record, that test actually applies to the record.
2188 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2189 Test_E := Scope (E);
2190 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2191 and then Is_Record_Type (Underlying_Type (Scope (E)))
2192 then
2193 Test_E := Underlying_Type (Scope (E));
2194 end if;
2196 -- Do not freeze if already frozen since we only need one freeze node
2198 if Is_Frozen (E) then
2199 return No_List;
2201 -- It is improper to freeze an external entity within a generic because
2202 -- its freeze node will appear in a non-valid context. The entity will
2203 -- be frozen in the proper scope after the current generic is analyzed.
2205 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
2206 return No_List;
2208 -- Do not freeze a global entity within an inner scope created during
2209 -- expansion. A call to subprogram E within some internal procedure
2210 -- (a stream attribute for example) might require freezing E, but the
2211 -- freeze node must appear in the same declarative part as E itself.
2212 -- The two-pass elaboration mechanism in gigi guarantees that E will
2213 -- be frozen before the inner call is elaborated. We exclude constants
2214 -- from this test, because deferred constants may be frozen early, and
2215 -- must be diagnosed (e.g. in the case of a deferred constant being used
2216 -- in a default expression). If the enclosing subprogram comes from
2217 -- source, or is a generic instance, then the freeze point is the one
2218 -- mandated by the language, and we freeze the entity. A subprogram that
2219 -- is a child unit body that acts as a spec does not have a spec that
2220 -- comes from source, but can only come from source.
2222 elsif In_Open_Scopes (Scope (Test_E))
2223 and then Scope (Test_E) /= Current_Scope
2224 and then Ekind (Test_E) /= E_Constant
2225 then
2226 declare
2227 S : Entity_Id := Current_Scope;
2229 begin
2230 while Present (S) loop
2231 if Is_Overloadable (S) then
2232 if Comes_From_Source (S)
2233 or else Is_Generic_Instance (S)
2234 or else Is_Child_Unit (S)
2235 then
2236 exit;
2237 else
2238 return No_List;
2239 end if;
2240 end if;
2242 S := Scope (S);
2243 end loop;
2244 end;
2246 -- Similarly, an inlined instance body may make reference to global
2247 -- entities, but these references cannot be the proper freezing point
2248 -- for them, and in the absence of inlining freezing will take place in
2249 -- their own scope. Normally instance bodies are analyzed after the
2250 -- enclosing compilation, and everything has been frozen at the proper
2251 -- place, but with front-end inlining an instance body is compiled
2252 -- before the end of the enclosing scope, and as a result out-of-order
2253 -- freezing must be prevented.
2255 elsif Front_End_Inlining
2256 and then In_Instance_Body
2257 and then Present (Scope (Test_E))
2258 then
2259 declare
2260 S : Entity_Id := Scope (Test_E);
2262 begin
2263 while Present (S) loop
2264 if Is_Generic_Instance (S) then
2265 exit;
2266 else
2267 S := Scope (S);
2268 end if;
2269 end loop;
2271 if No (S) then
2272 return No_List;
2273 end if;
2274 end;
2275 end if;
2277 -- Here to freeze the entity
2279 Result := No_List;
2280 Set_Is_Frozen (E);
2282 -- Case of entity being frozen is other than a type
2284 if not Is_Type (E) then
2286 -- If entity is exported or imported and does not have an external
2287 -- name, now is the time to provide the appropriate default name.
2288 -- Skip this if the entity is stubbed, since we don't need a name
2289 -- for any stubbed routine.
2291 if (Is_Imported (E) or else Is_Exported (E))
2292 and then No (Interface_Name (E))
2293 and then Convention (E) /= Convention_Stubbed
2294 then
2295 Set_Encoded_Interface_Name
2296 (E, Get_Default_External_Name (E));
2298 -- Special processing for atomic objects appearing in object decls
2300 elsif Is_Atomic (E)
2301 and then Nkind (Parent (E)) = N_Object_Declaration
2302 and then Present (Expression (Parent (E)))
2303 then
2304 declare
2305 Expr : constant Node_Id := Expression (Parent (E));
2307 begin
2308 -- If expression is an aggregate, assign to a temporary to
2309 -- ensure that the actual assignment is done atomically rather
2310 -- than component-wise (the assignment to the temp may be done
2311 -- component-wise, but that is harmless).
2313 if Nkind (Expr) = N_Aggregate then
2314 Expand_Atomic_Aggregate (Expr, Etype (E));
2316 -- If the expression is a reference to a record or array object
2317 -- entity, then reset Is_True_Constant to False so that the
2318 -- compiler will not optimize away the intermediate object,
2319 -- which we need in this case for the same reason (to ensure
2320 -- that the actual assignment is atomic, rather than
2321 -- component-wise).
2323 elsif Is_Entity_Name (Expr)
2324 and then (Is_Record_Type (Etype (Expr))
2325 or else
2326 Is_Array_Type (Etype (Expr)))
2327 then
2328 Set_Is_True_Constant (Entity (Expr), False);
2329 end if;
2330 end;
2331 end if;
2333 -- For a subprogram, freeze all parameter types and also the return
2334 -- type (RM 13.14(14)). However skip this for internal subprograms.
2335 -- This is also the point where any extra formal parameters are
2336 -- created since we now know whether the subprogram will use
2337 -- a foreign convention.
2339 if Is_Subprogram (E) then
2340 if not Is_Internal (E) then
2341 declare
2342 F_Type : Entity_Id;
2343 R_Type : Entity_Id;
2344 Warn_Node : Node_Id;
2346 begin
2347 -- Loop through formals
2349 Formal := First_Formal (E);
2350 while Present (Formal) loop
2351 F_Type := Etype (Formal);
2352 Freeze_And_Append (F_Type, Loc, Result);
2354 if Is_Private_Type (F_Type)
2355 and then Is_Private_Type (Base_Type (F_Type))
2356 and then No (Full_View (Base_Type (F_Type)))
2357 and then not Is_Generic_Type (F_Type)
2358 and then not Is_Derived_Type (F_Type)
2359 then
2360 -- If the type of a formal is incomplete, subprogram
2361 -- is being frozen prematurely. Within an instance
2362 -- (but not within a wrapper package) this is an
2363 -- an artifact of our need to regard the end of an
2364 -- instantiation as a freeze point. Otherwise it is
2365 -- a definite error.
2367 -- and then not Is_Wrapper_Package (Current_Scope) ???
2369 if In_Instance then
2370 Set_Is_Frozen (E, False);
2371 return No_List;
2373 elsif not After_Last_Declaration
2374 and then not Freezing_Library_Level_Tagged_Type
2375 then
2376 Error_Msg_Node_1 := F_Type;
2377 Error_Msg
2378 ("type& must be fully defined before this point",
2379 Loc);
2380 end if;
2381 end if;
2383 -- Check suspicious parameter for C function. These tests
2384 -- apply only to exported/imported subprograms.
2386 if Warn_On_Export_Import
2387 and then Comes_From_Source (E)
2388 and then (Convention (E) = Convention_C
2389 or else
2390 Convention (E) = Convention_CPP)
2391 and then (Is_Imported (E) or else Is_Exported (E))
2392 and then Convention (E) /= Convention (Formal)
2393 and then not Has_Warnings_Off (E)
2394 and then not Has_Warnings_Off (F_Type)
2395 and then not Has_Warnings_Off (Formal)
2396 then
2397 Error_Msg_Qual_Level := 1;
2399 -- Check suspicious use of fat C pointer
2401 if Is_Access_Type (F_Type)
2402 and then Esize (F_Type) > Ttypes.System_Address_Size
2403 then
2404 Error_Msg_N
2405 ("?type of & does not correspond "
2406 & "to C pointer!", Formal);
2408 -- Check suspicious return of boolean
2410 elsif Root_Type (F_Type) = Standard_Boolean
2411 and then Convention (F_Type) = Convention_Ada
2412 and then not Has_Warnings_Off (F_Type)
2413 and then not Has_Size_Clause (F_Type)
2414 then
2415 Error_Msg_N
2416 ("?& is an 8-bit Ada Boolean, "
2417 & "use char in C!", Formal);
2419 -- Check suspicious tagged type
2421 elsif (Is_Tagged_Type (F_Type)
2422 or else (Is_Access_Type (F_Type)
2423 and then
2424 Is_Tagged_Type
2425 (Designated_Type (F_Type))))
2426 and then Convention (E) = Convention_C
2427 then
2428 Error_Msg_N
2429 ("?& is a tagged type which does not "
2430 & "correspond to any C type!", Formal);
2432 -- Check wrong convention subprogram pointer
2434 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2435 and then not Has_Foreign_Convention (F_Type)
2436 then
2437 Error_Msg_N
2438 ("?subprogram pointer & should "
2439 & "have foreign convention!", Formal);
2440 Error_Msg_Sloc := Sloc (F_Type);
2441 Error_Msg_NE
2442 ("\?add Convention pragma to declaration of &#",
2443 Formal, F_Type);
2444 end if;
2446 Error_Msg_Qual_Level := 0;
2447 end if;
2449 -- Check for unconstrained array in exported foreign
2450 -- convention case.
2452 if Has_Foreign_Convention (E)
2453 and then not Is_Imported (E)
2454 and then Is_Array_Type (F_Type)
2455 and then not Is_Constrained (F_Type)
2456 and then Warn_On_Export_Import
2457 then
2458 Error_Msg_Qual_Level := 1;
2460 -- If this is an inherited operation, place the
2461 -- warning on the derived type declaration, rather
2462 -- than on the original subprogram.
2464 if Nkind (Original_Node (Parent (E))) =
2465 N_Full_Type_Declaration
2466 then
2467 Warn_Node := Parent (E);
2469 if Formal = First_Formal (E) then
2470 Error_Msg_NE
2471 ("?in inherited operation&", Warn_Node, E);
2472 end if;
2473 else
2474 Warn_Node := Formal;
2475 end if;
2477 Error_Msg_NE
2478 ("?type of argument& is unconstrained array",
2479 Warn_Node, Formal);
2480 Error_Msg_NE
2481 ("?foreign caller must pass bounds explicitly",
2482 Warn_Node, Formal);
2483 Error_Msg_Qual_Level := 0;
2484 end if;
2486 if not From_With_Type (F_Type) then
2487 if Is_Access_Type (F_Type) then
2488 F_Type := Designated_Type (F_Type);
2489 end if;
2491 -- If the formal is an anonymous_access_to_subprogram
2492 -- freeze the subprogram type as well, to prevent
2493 -- scope anomalies in gigi, because there is no other
2494 -- clear point at which it could be frozen.
2496 if Is_Itype (Etype (Formal))
2497 and then Ekind (F_Type) = E_Subprogram_Type
2498 then
2499 Freeze_And_Append (F_Type, Loc, Result);
2500 end if;
2501 end if;
2503 Next_Formal (Formal);
2504 end loop;
2506 -- Case of function: similar checks on return type
2508 if Ekind (E) = E_Function then
2510 -- Freeze return type
2512 R_Type := Etype (E);
2513 Freeze_And_Append (R_Type, Loc, Result);
2515 -- Check suspicious return type for C function
2517 if Warn_On_Export_Import
2518 and then (Convention (E) = Convention_C
2519 or else
2520 Convention (E) = Convention_CPP)
2521 and then (Is_Imported (E) or else Is_Exported (E))
2522 then
2523 -- Check suspicious return of fat C pointer
2525 if Is_Access_Type (R_Type)
2526 and then Esize (R_Type) > Ttypes.System_Address_Size
2527 and then not Has_Warnings_Off (E)
2528 and then not Has_Warnings_Off (R_Type)
2529 then
2530 Error_Msg_N
2531 ("?return type of& does not "
2532 & "correspond to C pointer!", E);
2534 -- Check suspicious return of boolean
2536 elsif Root_Type (R_Type) = Standard_Boolean
2537 and then Convention (R_Type) = Convention_Ada
2538 and then not Has_Warnings_Off (E)
2539 and then not Has_Warnings_Off (R_Type)
2540 and then not Has_Size_Clause (R_Type)
2541 then
2542 Error_Msg_N
2543 ("?return type of & is an 8-bit "
2544 & "Ada Boolean, use char in C!", E);
2546 -- Check suspicious return tagged type
2548 elsif (Is_Tagged_Type (R_Type)
2549 or else (Is_Access_Type (R_Type)
2550 and then
2551 Is_Tagged_Type
2552 (Designated_Type (R_Type))))
2553 and then Convention (E) = Convention_C
2554 and then not Has_Warnings_Off (E)
2555 and then not Has_Warnings_Off (R_Type)
2556 then
2557 Error_Msg_N
2558 ("?return type of & does not "
2559 & "correspond to C type!", E);
2561 -- Check return of wrong convention subprogram pointer
2563 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2564 and then not Has_Foreign_Convention (R_Type)
2565 and then not Has_Warnings_Off (E)
2566 and then not Has_Warnings_Off (R_Type)
2567 then
2568 Error_Msg_N
2569 ("?& should return a foreign "
2570 & "convention subprogram pointer", E);
2571 Error_Msg_Sloc := Sloc (R_Type);
2572 Error_Msg_NE
2573 ("\?add Convention pragma to declaration of& #",
2574 E, R_Type);
2575 end if;
2576 end if;
2578 if Is_Array_Type (R_Type)
2579 and then not Is_Constrained (R_Type)
2580 and then not Is_Imported (E)
2581 and then Has_Foreign_Convention (E)
2582 and then Warn_On_Export_Import
2583 and then not Has_Warnings_Off (E)
2584 and then not Has_Warnings_Off (R_Type)
2585 then
2586 Error_Msg_N
2587 ("?foreign convention function& should not " &
2588 "return unconstrained array!", E);
2589 end if;
2590 end if;
2591 end;
2592 end if;
2594 -- Must freeze its parent first if it is a derived subprogram
2596 if Present (Alias (E)) then
2597 Freeze_And_Append (Alias (E), Loc, Result);
2598 end if;
2600 -- We don't freeze internal subprograms, because we don't normally
2601 -- want addition of extra formals or mechanism setting to happen
2602 -- for those. However we do pass through predefined dispatching
2603 -- cases, since extra formals may be needed in some cases, such as
2604 -- for the stream 'Input function (build-in-place formals).
2606 if not Is_Internal (E)
2607 or else Is_Predefined_Dispatching_Operation (E)
2608 then
2609 Freeze_Subprogram (E);
2610 end if;
2612 -- Here for other than a subprogram or type
2614 else
2615 -- For a generic package, freeze types within, so that proper
2616 -- cross-reference information is generated for tagged types.
2617 -- This is the only freeze processing needed for generic packages.
2619 if Ekind (E) = E_Generic_Package then
2620 declare
2621 T : Entity_Id;
2623 begin
2624 T := First_Entity (E);
2625 while Present (T) loop
2626 if Is_Type (T) then
2627 Generate_Prim_Op_References (T);
2628 end if;
2630 Next_Entity (T);
2631 end loop;
2632 end;
2634 -- If entity has a type, and it is not a generic unit, then
2635 -- freeze it first (RM 13.14(10)).
2637 elsif Present (Etype (E))
2638 and then Ekind (E) /= E_Generic_Function
2639 then
2640 Freeze_And_Append (Etype (E), Loc, Result);
2641 end if;
2643 -- Special processing for objects created by object declaration
2645 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2647 -- For object created by object declaration, perform required
2648 -- categorization (preelaborate and pure) checks. Defer these
2649 -- checks to freeze time since pragma Import inhibits default
2650 -- initialization and thus pragma Import affects these checks.
2652 Validate_Object_Declaration (Declaration_Node (E));
2654 -- If there is an address clause, check that it is valid
2656 Check_Address_Clause (E);
2658 -- If the object needs any kind of default initialization, an
2659 -- error must be issued if No_Default_Initialization applies.
2660 -- The check doesn't apply to imported objects, which are not
2661 -- ever default initialized, and is why the check is deferred
2662 -- until freezing, at which point we know if Import applies.
2663 -- Deferred constants are also exempted from this test because
2664 -- their completion is explicit, or through an import pragma.
2666 if Ekind (E) = E_Constant
2667 and then Present (Full_View (E))
2668 then
2669 null;
2671 elsif Comes_From_Source (E)
2672 and then not Is_Imported (E)
2673 and then not Has_Init_Expression (Declaration_Node (E))
2674 and then
2675 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2676 and then not No_Initialization (Declaration_Node (E))
2677 and then not Is_Value_Type (Etype (E))
2678 and then not Suppress_Init_Proc (Etype (E)))
2679 or else
2680 (Needs_Simple_Initialization (Etype (E))
2681 and then not Is_Internal (E)))
2682 then
2683 Has_Default_Initialization := True;
2684 Check_Restriction
2685 (No_Default_Initialization, Declaration_Node (E));
2686 end if;
2688 -- Check that a Thread_Local_Storage variable does not have
2689 -- default initialization, and any explicit initialization must
2690 -- either be the null constant or a static constant.
2692 if Has_Pragma_Thread_Local_Storage (E) then
2693 declare
2694 Decl : constant Node_Id := Declaration_Node (E);
2695 begin
2696 if Has_Default_Initialization
2697 or else
2698 (Has_Init_Expression (Decl)
2699 and then
2700 (No (Expression (Decl))
2701 or else not
2702 (Is_Static_Expression (Expression (Decl))
2703 or else
2704 Nkind (Expression (Decl)) = N_Null)))
2705 then
2706 Error_Msg_NE
2707 ("Thread_Local_Storage variable& is "
2708 & "improperly initialized", Decl, E);
2709 Error_Msg_NE
2710 ("\only allowed initialization is explicit "
2711 & "NULL or static expression", Decl, E);
2712 end if;
2713 end;
2714 end if;
2716 -- For imported objects, set Is_Public unless there is also an
2717 -- address clause, which means that there is no external symbol
2718 -- needed for the Import (Is_Public may still be set for other
2719 -- unrelated reasons). Note that we delayed this processing
2720 -- till freeze time so that we can be sure not to set the flag
2721 -- if there is an address clause. If there is such a clause,
2722 -- then the only purpose of the Import pragma is to suppress
2723 -- implicit initialization.
2725 if Is_Imported (E)
2726 and then No (Address_Clause (E))
2727 then
2728 Set_Is_Public (E);
2729 end if;
2731 -- For convention C objects of an enumeration type, warn if
2732 -- the size is not integer size and no explicit size given.
2733 -- Skip warning for Boolean, and Character, assume programmer
2734 -- expects 8-bit sizes for these cases.
2736 if (Convention (E) = Convention_C
2737 or else
2738 Convention (E) = Convention_CPP)
2739 and then Is_Enumeration_Type (Etype (E))
2740 and then not Is_Character_Type (Etype (E))
2741 and then not Is_Boolean_Type (Etype (E))
2742 and then Esize (Etype (E)) < Standard_Integer_Size
2743 and then not Has_Size_Clause (E)
2744 then
2745 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2746 Error_Msg_N
2747 ("?convention C enumeration object has size less than ^",
2749 Error_Msg_N ("\?use explicit size clause to set size", E);
2750 end if;
2751 end if;
2753 -- Check that a constant which has a pragma Volatile[_Components]
2754 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
2756 -- Note: Atomic[_Components] also sets Volatile[_Components]
2758 if Ekind (E) = E_Constant
2759 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2760 and then not Is_Imported (E)
2761 then
2762 -- Make sure we actually have a pragma, and have not merely
2763 -- inherited the indication from elsewhere (e.g. an address
2764 -- clause, which is not good enough in RM terms!)
2766 if Has_Rep_Pragma (E, Name_Atomic)
2767 or else
2768 Has_Rep_Pragma (E, Name_Atomic_Components)
2769 then
2770 Error_Msg_N
2771 ("stand alone atomic constant must be " &
2772 "imported (RM C.6(13))", E);
2774 elsif Has_Rep_Pragma (E, Name_Volatile)
2775 or else
2776 Has_Rep_Pragma (E, Name_Volatile_Components)
2777 then
2778 Error_Msg_N
2779 ("stand alone volatile constant must be " &
2780 "imported (RM C.6(13))", E);
2781 end if;
2782 end if;
2784 -- Static objects require special handling
2786 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2787 and then Is_Statically_Allocated (E)
2788 then
2789 Freeze_Static_Object (E);
2790 end if;
2792 -- Remaining step is to layout objects
2794 if Ekind (E) = E_Variable
2795 or else
2796 Ekind (E) = E_Constant
2797 or else
2798 Ekind (E) = E_Loop_Parameter
2799 or else
2800 Is_Formal (E)
2801 then
2802 Layout_Object (E);
2803 end if;
2804 end if;
2806 -- Case of a type or subtype being frozen
2808 else
2809 -- We used to check here that a full type must have preelaborable
2810 -- initialization if it completes a private type specified with
2811 -- pragma Preelaborable_Intialization, but that missed cases where
2812 -- the types occur within a generic package, since the freezing
2813 -- that occurs within a containing scope generally skips traversal
2814 -- of a generic unit's declarations (those will be frozen within
2815 -- instances). This check was moved to Analyze_Package_Specification.
2817 -- The type may be defined in a generic unit. This can occur when
2818 -- freezing a generic function that returns the type (which is
2819 -- defined in a parent unit). It is clearly meaningless to freeze
2820 -- this type. However, if it is a subtype, its size may be determi-
2821 -- nable and used in subsequent checks, so might as well try to
2822 -- compute it.
2824 if Present (Scope (E))
2825 and then Is_Generic_Unit (Scope (E))
2826 then
2827 Check_Compile_Time_Size (E);
2828 return No_List;
2829 end if;
2831 -- Deal with special cases of freezing for subtype
2833 if E /= Base_Type (E) then
2835 -- Before we do anything else, a specialized test for the case of
2836 -- a size given for an array where the array needs to be packed,
2837 -- but was not so the size cannot be honored. This would of course
2838 -- be caught by the backend, and indeed we don't catch all cases.
2839 -- The point is that we can give a better error message in those
2840 -- cases that we do catch with the circuitry here. Also if pragma
2841 -- Implicit_Packing is set, this is where the packing occurs.
2843 -- The reason we do this so early is that the processing in the
2844 -- automatic packing case affects the layout of the base type, so
2845 -- it must be done before we freeze the base type.
2847 if Is_Array_Type (E) then
2848 declare
2849 Lo, Hi : Node_Id;
2850 Ctyp : constant Entity_Id := Component_Type (E);
2852 begin
2853 -- Check enabling conditions. These are straightforward
2854 -- except for the test for a limited composite type. This
2855 -- eliminates the rare case of a array of limited components
2856 -- where there are issues of whether or not we can go ahead
2857 -- and pack the array (since we can't freely pack and unpack
2858 -- arrays if they are limited).
2860 -- Note that we check the root type explicitly because the
2861 -- whole point is we are doing this test before we have had
2862 -- a chance to freeze the base type (and it is that freeze
2863 -- action that causes stuff to be inherited).
2865 if Present (Size_Clause (E))
2866 and then Known_Static_Esize (E)
2867 and then not Is_Packed (E)
2868 and then not Has_Pragma_Pack (E)
2869 and then Number_Dimensions (E) = 1
2870 and then not Has_Component_Size_Clause (E)
2871 and then Known_Static_Esize (Ctyp)
2872 and then not Is_Limited_Composite (E)
2873 and then not Is_Packed (Root_Type (E))
2874 and then not Has_Component_Size_Clause (Root_Type (E))
2875 then
2876 Get_Index_Bounds (First_Index (E), Lo, Hi);
2878 if Compile_Time_Known_Value (Lo)
2879 and then Compile_Time_Known_Value (Hi)
2880 and then Known_Static_RM_Size (Ctyp)
2881 and then RM_Size (Ctyp) < 64
2882 then
2883 declare
2884 Lov : constant Uint := Expr_Value (Lo);
2885 Hiv : constant Uint := Expr_Value (Hi);
2886 Len : constant Uint := UI_Max
2887 (Uint_0,
2888 Hiv - Lov + 1);
2889 Rsiz : constant Uint := RM_Size (Ctyp);
2890 SZ : constant Node_Id := Size_Clause (E);
2891 Btyp : constant Entity_Id := Base_Type (E);
2893 -- What we are looking for here is the situation where
2894 -- the RM_Size given would be exactly right if there
2895 -- was a pragma Pack (resulting in the component size
2896 -- being the same as the RM_Size). Furthermore, the
2897 -- component type size must be an odd size (not a
2898 -- multiple of storage unit)
2900 begin
2901 if RM_Size (E) = Len * Rsiz
2902 and then Rsiz mod System_Storage_Unit /= 0
2903 then
2904 -- For implicit packing mode, just set the
2905 -- component size silently
2907 if Implicit_Packing then
2908 Set_Component_Size (Btyp, Rsiz);
2909 Set_Is_Bit_Packed_Array (Btyp);
2910 Set_Is_Packed (Btyp);
2911 Set_Has_Non_Standard_Rep (Btyp);
2913 -- Otherwise give an error message
2915 else
2916 Error_Msg_NE
2917 ("size given for& too small", SZ, E);
2918 Error_Msg_N
2919 ("\use explicit pragma Pack "
2920 & "or use pragma Implicit_Packing", SZ);
2921 end if;
2922 end if;
2923 end;
2924 end if;
2925 end if;
2926 end;
2927 end if;
2929 -- If ancestor subtype present, freeze that first. Note that this
2930 -- will also get the base type frozen.
2932 Atype := Ancestor_Subtype (E);
2934 if Present (Atype) then
2935 Freeze_And_Append (Atype, Loc, Result);
2937 -- Otherwise freeze the base type of the entity before freezing
2938 -- the entity itself (RM 13.14(15)).
2940 elsif E /= Base_Type (E) then
2941 Freeze_And_Append (Base_Type (E), Loc, Result);
2942 end if;
2944 -- For a derived type, freeze its parent type first (RM 13.14(15))
2946 elsif Is_Derived_Type (E) then
2947 Freeze_And_Append (Etype (E), Loc, Result);
2948 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2949 end if;
2951 -- For array type, freeze index types and component type first
2952 -- before freezing the array (RM 13.14(15)).
2954 if Is_Array_Type (E) then
2955 declare
2956 Ctyp : constant Entity_Id := Component_Type (E);
2958 Non_Standard_Enum : Boolean := False;
2959 -- Set true if any of the index types is an enumeration type
2960 -- with a non-standard representation.
2962 begin
2963 Freeze_And_Append (Ctyp, Loc, Result);
2965 Indx := First_Index (E);
2966 while Present (Indx) loop
2967 Freeze_And_Append (Etype (Indx), Loc, Result);
2969 if Is_Enumeration_Type (Etype (Indx))
2970 and then Has_Non_Standard_Rep (Etype (Indx))
2971 then
2972 Non_Standard_Enum := True;
2973 end if;
2975 Next_Index (Indx);
2976 end loop;
2978 -- Processing that is done only for base types
2980 if Ekind (E) = E_Array_Type then
2982 -- Propagate flags for component type
2984 if Is_Controlled (Component_Type (E))
2985 or else Has_Controlled_Component (Ctyp)
2986 then
2987 Set_Has_Controlled_Component (E);
2988 end if;
2990 if Has_Unchecked_Union (Component_Type (E)) then
2991 Set_Has_Unchecked_Union (E);
2992 end if;
2994 -- If packing was requested or if the component size was set
2995 -- explicitly, then see if bit packing is required. This
2996 -- processing is only done for base types, since all the
2997 -- representation aspects involved are type-related. This
2998 -- is not just an optimization, if we start processing the
2999 -- subtypes, they interfere with the settings on the base
3000 -- type (this is because Is_Packed has a slightly different
3001 -- meaning before and after freezing).
3003 declare
3004 Csiz : Uint;
3005 Esiz : Uint;
3007 begin
3008 if (Is_Packed (E) or else Has_Pragma_Pack (E))
3009 and then not Has_Atomic_Components (E)
3010 and then Known_Static_RM_Size (Ctyp)
3011 then
3012 Csiz := UI_Max (RM_Size (Ctyp), 1);
3014 elsif Known_Component_Size (E) then
3015 Csiz := Component_Size (E);
3017 elsif not Known_Static_Esize (Ctyp) then
3018 Csiz := Uint_0;
3020 else
3021 Esiz := Esize (Ctyp);
3023 -- We can set the component size if it is less than
3024 -- 16, rounding it up to the next storage unit size.
3026 if Esiz <= 8 then
3027 Csiz := Uint_8;
3028 elsif Esiz <= 16 then
3029 Csiz := Uint_16;
3030 else
3031 Csiz := Uint_0;
3032 end if;
3034 -- Set component size up to match alignment if it
3035 -- would otherwise be less than the alignment. This
3036 -- deals with cases of types whose alignment exceeds
3037 -- their size (padded types).
3039 if Csiz /= 0 then
3040 declare
3041 A : constant Uint := Alignment_In_Bits (Ctyp);
3042 begin
3043 if Csiz < A then
3044 Csiz := A;
3045 end if;
3046 end;
3047 end if;
3048 end if;
3050 -- Case of component size that may result in packing
3052 if 1 <= Csiz and then Csiz <= 64 then
3053 declare
3054 Ent : constant Entity_Id :=
3055 First_Subtype (E);
3056 Pack_Pragma : constant Node_Id :=
3057 Get_Rep_Pragma (Ent, Name_Pack);
3058 Comp_Size_C : constant Node_Id :=
3059 Get_Attribute_Definition_Clause
3060 (Ent, Attribute_Component_Size);
3061 begin
3062 -- Warn if we have pack and component size so that
3063 -- the pack is ignored.
3065 -- Note: here we must check for the presence of a
3066 -- component size before checking for a Pack pragma
3067 -- to deal with the case where the array type is a
3068 -- derived type whose parent is currently private.
3070 if Present (Comp_Size_C)
3071 and then Has_Pragma_Pack (Ent)
3072 then
3073 Error_Msg_Sloc := Sloc (Comp_Size_C);
3074 Error_Msg_NE
3075 ("?pragma Pack for& ignored!",
3076 Pack_Pragma, Ent);
3077 Error_Msg_N
3078 ("\?explicit component size given#!",
3079 Pack_Pragma);
3080 end if;
3082 -- Set component size if not already set by a
3083 -- component size clause.
3085 if not Present (Comp_Size_C) then
3086 Set_Component_Size (E, Csiz);
3087 end if;
3089 -- Check for base type of 8, 16, 32 bits, where an
3090 -- unsigned subtype has a length one less than the
3091 -- base type (e.g. Natural subtype of Integer).
3093 -- In such cases, if a component size was not set
3094 -- explicitly, then generate a warning.
3096 if Has_Pragma_Pack (E)
3097 and then not Present (Comp_Size_C)
3098 and then
3099 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3100 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3101 then
3102 Error_Msg_Uint_1 := Csiz;
3104 if Present (Pack_Pragma) then
3105 Error_Msg_N
3106 ("?pragma Pack causes component size "
3107 & "to be ^!", Pack_Pragma);
3108 Error_Msg_N
3109 ("\?use Component_Size to set "
3110 & "desired value!", Pack_Pragma);
3111 end if;
3112 end if;
3114 -- Actual packing is not needed for 8, 16, 32, 64.
3115 -- Also not needed for 24 if alignment is 1.
3117 if Csiz = 8
3118 or else Csiz = 16
3119 or else Csiz = 32
3120 or else Csiz = 64
3121 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3122 then
3123 -- Here the array was requested to be packed,
3124 -- but the packing request had no effect, so
3125 -- Is_Packed is reset.
3127 -- Note: semantically this means that we lose
3128 -- track of the fact that a derived type
3129 -- inherited a pragma Pack that was non-
3130 -- effective, but that seems fine.
3132 -- We regard a Pack pragma as a request to set
3133 -- a representation characteristic, and this
3134 -- request may be ignored.
3136 Set_Is_Packed (Base_Type (E), False);
3138 -- In all other cases, packing is indeed needed
3140 else
3141 Set_Has_Non_Standard_Rep (Base_Type (E));
3142 Set_Is_Bit_Packed_Array (Base_Type (E));
3143 Set_Is_Packed (Base_Type (E));
3144 end if;
3145 end;
3146 end if;
3147 end;
3149 -- Processing that is done only for subtypes
3151 else
3152 -- Acquire alignment from base type
3154 if Unknown_Alignment (E) then
3155 Set_Alignment (E, Alignment (Base_Type (E)));
3156 Adjust_Esize_Alignment (E);
3157 end if;
3158 end if;
3160 -- For bit-packed arrays, check the size
3162 if Is_Bit_Packed_Array (E)
3163 and then Known_RM_Size (E)
3164 then
3165 declare
3166 SizC : constant Node_Id := Size_Clause (E);
3168 Discard : Boolean;
3169 pragma Warnings (Off, Discard);
3171 begin
3172 -- It is not clear if it is possible to have no size
3173 -- clause at this stage, but it is not worth worrying
3174 -- about. Post error on the entity name in the size
3175 -- clause if present, else on the type entity itself.
3177 if Present (SizC) then
3178 Check_Size (Name (SizC), E, RM_Size (E), Discard);
3179 else
3180 Check_Size (E, E, RM_Size (E), Discard);
3181 end if;
3182 end;
3183 end if;
3185 -- If any of the index types was an enumeration type with
3186 -- a non-standard rep clause, then we indicate that the
3187 -- array type is always packed (even if it is not bit packed).
3189 if Non_Standard_Enum then
3190 Set_Has_Non_Standard_Rep (Base_Type (E));
3191 Set_Is_Packed (Base_Type (E));
3192 end if;
3194 Set_Component_Alignment_If_Not_Set (E);
3196 -- If the array is packed, we must create the packed array
3197 -- type to be used to actually implement the type. This is
3198 -- only needed for real array types (not for string literal
3199 -- types, since they are present only for the front end).
3201 if Is_Packed (E)
3202 and then Ekind (E) /= E_String_Literal_Subtype
3203 then
3204 Create_Packed_Array_Type (E);
3205 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
3207 -- Size information of packed array type is copied to the
3208 -- array type, since this is really the representation. But
3209 -- do not override explicit existing size values. If the
3210 -- ancestor subtype is constrained the packed_array_type
3211 -- will be inherited from it, but the size may have been
3212 -- provided already, and must not be overridden either.
3214 if not Has_Size_Clause (E)
3215 and then
3216 (No (Ancestor_Subtype (E))
3217 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3218 then
3219 Set_Esize (E, Esize (Packed_Array_Type (E)));
3220 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3221 end if;
3223 if not Has_Alignment_Clause (E) then
3224 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3225 end if;
3226 end if;
3228 -- For non-packed arrays set the alignment of the array to the
3229 -- alignment of the component type if it is unknown. Skip this
3230 -- in atomic case (atomic arrays may need larger alignments).
3232 if not Is_Packed (E)
3233 and then Unknown_Alignment (E)
3234 and then Known_Alignment (Ctyp)
3235 and then Known_Static_Component_Size (E)
3236 and then Known_Static_Esize (Ctyp)
3237 and then Esize (Ctyp) = Component_Size (E)
3238 and then not Is_Atomic (E)
3239 then
3240 Set_Alignment (E, Alignment (Component_Type (E)));
3241 end if;
3242 end;
3244 -- For a class-wide type, the corresponding specific type is
3245 -- frozen as well (RM 13.14(15))
3247 elsif Is_Class_Wide_Type (E) then
3248 Freeze_And_Append (Root_Type (E), Loc, Result);
3250 -- If the base type of the class-wide type is still incomplete,
3251 -- the class-wide remains unfrozen as well. This is legal when
3252 -- E is the formal of a primitive operation of some other type
3253 -- which is being frozen.
3255 if not Is_Frozen (Root_Type (E)) then
3256 Set_Is_Frozen (E, False);
3257 return Result;
3258 end if;
3260 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3261 -- parent of a derived type) and it is a library-level entity,
3262 -- generate an itype reference for it. Otherwise, its first
3263 -- explicit reference may be in an inner scope, which will be
3264 -- rejected by the back-end.
3266 if Is_Itype (E)
3267 and then Is_Compilation_Unit (Scope (E))
3268 then
3269 declare
3270 Ref : constant Node_Id := Make_Itype_Reference (Loc);
3272 begin
3273 Set_Itype (Ref, E);
3274 if No (Result) then
3275 Result := New_List (Ref);
3276 else
3277 Append (Ref, Result);
3278 end if;
3279 end;
3280 end if;
3282 -- The equivalent type associated with a class-wide subtype needs
3283 -- to be frozen to ensure that its layout is done. Class-wide
3284 -- subtypes are currently only frozen on targets requiring
3285 -- front-end layout (see New_Class_Wide_Subtype and
3286 -- Make_CW_Equivalent_Type in exp_util.adb).
3288 if Ekind (E) = E_Class_Wide_Subtype
3289 and then Present (Equivalent_Type (E))
3290 then
3291 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3292 end if;
3294 -- For a record (sub)type, freeze all the component types (RM
3295 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3296 -- Is_Record_Type, because we don't want to attempt the freeze for
3297 -- the case of a private type with record extension (we will do that
3298 -- later when the full type is frozen).
3300 elsif Ekind (E) = E_Record_Type
3301 or else Ekind (E) = E_Record_Subtype
3302 then
3303 Freeze_Record_Type (E);
3305 -- For a concurrent type, freeze corresponding record type. This
3306 -- does not correspond to any specific rule in the RM, but the
3307 -- record type is essentially part of the concurrent type.
3308 -- Freeze as well all local entities. This includes record types
3309 -- created for entry parameter blocks, and whatever local entities
3310 -- may appear in the private part.
3312 elsif Is_Concurrent_Type (E) then
3313 if Present (Corresponding_Record_Type (E)) then
3314 Freeze_And_Append
3315 (Corresponding_Record_Type (E), Loc, Result);
3316 end if;
3318 Comp := First_Entity (E);
3320 while Present (Comp) loop
3321 if Is_Type (Comp) then
3322 Freeze_And_Append (Comp, Loc, Result);
3324 elsif (Ekind (Comp)) /= E_Function then
3325 if Is_Itype (Etype (Comp))
3326 and then Underlying_Type (Scope (Etype (Comp))) = E
3327 then
3328 Undelay_Type (Etype (Comp));
3329 end if;
3331 Freeze_And_Append (Etype (Comp), Loc, Result);
3332 end if;
3334 Next_Entity (Comp);
3335 end loop;
3337 -- Private types are required to point to the same freeze node as
3338 -- their corresponding full views. The freeze node itself has to
3339 -- point to the partial view of the entity (because from the partial
3340 -- view, we can retrieve the full view, but not the reverse).
3341 -- However, in order to freeze correctly, we need to freeze the full
3342 -- view. If we are freezing at the end of a scope (or within the
3343 -- scope of the private type), the partial and full views will have
3344 -- been swapped, the full view appears first in the entity chain and
3345 -- the swapping mechanism ensures that the pointers are properly set
3346 -- (on scope exit).
3348 -- If we encounter the partial view before the full view (e.g. when
3349 -- freezing from another scope), we freeze the full view, and then
3350 -- set the pointers appropriately since we cannot rely on swapping to
3351 -- fix things up (subtypes in an outer scope might not get swapped).
3353 elsif Is_Incomplete_Or_Private_Type (E)
3354 and then not Is_Generic_Type (E)
3355 then
3356 -- The construction of the dispatch table associated with library
3357 -- level tagged types forces freezing of all the primitives of the
3358 -- type, which may cause premature freezing of the partial view.
3359 -- For example:
3361 -- package Pkg is
3362 -- type T is tagged private;
3363 -- type DT is new T with private;
3364 -- procedure Prim (X : in out T; Y : in out DT'class);
3365 -- private
3366 -- type T is tagged null record;
3367 -- Obj : T;
3368 -- type DT is new T with null record;
3369 -- end;
3371 -- In this case the type will be frozen later by the usual
3372 -- mechanism: an object declaration, an instantiation, or the
3373 -- end of a declarative part.
3375 if Is_Library_Level_Tagged_Type (E)
3376 and then not Present (Full_View (E))
3377 then
3378 Set_Is_Frozen (E, False);
3379 return Result;
3381 -- Case of full view present
3383 elsif Present (Full_View (E)) then
3385 -- If full view has already been frozen, then no further
3386 -- processing is required
3388 if Is_Frozen (Full_View (E)) then
3390 Set_Has_Delayed_Freeze (E, False);
3391 Set_Freeze_Node (E, Empty);
3392 Check_Debug_Info_Needed (E);
3394 -- Otherwise freeze full view and patch the pointers so that
3395 -- the freeze node will elaborate both views in the back-end.
3397 else
3398 declare
3399 Full : constant Entity_Id := Full_View (E);
3401 begin
3402 if Is_Private_Type (Full)
3403 and then Present (Underlying_Full_View (Full))
3404 then
3405 Freeze_And_Append
3406 (Underlying_Full_View (Full), Loc, Result);
3407 end if;
3409 Freeze_And_Append (Full, Loc, Result);
3411 if Has_Delayed_Freeze (E) then
3412 F_Node := Freeze_Node (Full);
3414 if Present (F_Node) then
3415 Set_Freeze_Node (E, F_Node);
3416 Set_Entity (F_Node, E);
3418 else
3419 -- {Incomplete,Private}_Subtypes with Full_Views
3420 -- constrained by discriminants.
3422 Set_Has_Delayed_Freeze (E, False);
3423 Set_Freeze_Node (E, Empty);
3424 end if;
3425 end if;
3426 end;
3428 Check_Debug_Info_Needed (E);
3429 end if;
3431 -- AI-117 requires that the convention of a partial view be the
3432 -- same as the convention of the full view. Note that this is a
3433 -- recognized breach of privacy, but it's essential for logical
3434 -- consistency of representation, and the lack of a rule in
3435 -- RM95 was an oversight.
3437 Set_Convention (E, Convention (Full_View (E)));
3439 Set_Size_Known_At_Compile_Time (E,
3440 Size_Known_At_Compile_Time (Full_View (E)));
3442 -- Size information is copied from the full view to the
3443 -- incomplete or private view for consistency.
3445 -- We skip this is the full view is not a type. This is very
3446 -- strange of course, and can only happen as a result of
3447 -- certain illegalities, such as a premature attempt to derive
3448 -- from an incomplete type.
3450 if Is_Type (Full_View (E)) then
3451 Set_Size_Info (E, Full_View (E));
3452 Set_RM_Size (E, RM_Size (Full_View (E)));
3453 end if;
3455 return Result;
3457 -- Case of no full view present. If entity is derived or subtype,
3458 -- it is safe to freeze, correctness depends on the frozen status
3459 -- of parent. Otherwise it is either premature usage, or a Taft
3460 -- amendment type, so diagnosis is at the point of use and the
3461 -- type might be frozen later.
3463 elsif E /= Base_Type (E)
3464 or else Is_Derived_Type (E)
3465 then
3466 null;
3468 else
3469 Set_Is_Frozen (E, False);
3470 return No_List;
3471 end if;
3473 -- For access subprogram, freeze types of all formals, the return
3474 -- type was already frozen, since it is the Etype of the function.
3475 -- Formal types can be tagged Taft amendment types, but otherwise
3476 -- they cannot be incomplete.
3478 elsif Ekind (E) = E_Subprogram_Type then
3479 Formal := First_Formal (E);
3481 while Present (Formal) loop
3482 if Ekind (Etype (Formal)) = E_Incomplete_Type
3483 and then No (Full_View (Etype (Formal)))
3484 and then not Is_Value_Type (Etype (Formal))
3485 then
3486 if Is_Tagged_Type (Etype (Formal)) then
3487 null;
3488 else
3489 Error_Msg_NE
3490 ("invalid use of incomplete type&", E, Etype (Formal));
3491 end if;
3492 end if;
3494 Freeze_And_Append (Etype (Formal), Loc, Result);
3495 Next_Formal (Formal);
3496 end loop;
3498 Freeze_Subprogram (E);
3500 -- For access to a protected subprogram, freeze the equivalent type
3501 -- (however this is not set if we are not generating code or if this
3502 -- is an anonymous type used just for resolution).
3504 elsif Is_Access_Protected_Subprogram_Type (E) then
3505 if Present (Equivalent_Type (E)) then
3506 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3507 end if;
3508 end if;
3510 -- Generic types are never seen by the back-end, and are also not
3511 -- processed by the expander (since the expander is turned off for
3512 -- generic processing), so we never need freeze nodes for them.
3514 if Is_Generic_Type (E) then
3515 return Result;
3516 end if;
3518 -- Some special processing for non-generic types to complete
3519 -- representation details not known till the freeze point.
3521 if Is_Fixed_Point_Type (E) then
3522 Freeze_Fixed_Point_Type (E);
3524 -- Some error checks required for ordinary fixed-point type. Defer
3525 -- these till the freeze-point since we need the small and range
3526 -- values. We only do these checks for base types
3528 if Is_Ordinary_Fixed_Point_Type (E)
3529 and then E = Base_Type (E)
3530 then
3531 if Small_Value (E) < Ureal_2_M_80 then
3532 Error_Msg_Name_1 := Name_Small;
3533 Error_Msg_N
3534 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
3536 elsif Small_Value (E) > Ureal_2_80 then
3537 Error_Msg_Name_1 := Name_Small;
3538 Error_Msg_N
3539 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
3540 end if;
3542 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3543 Error_Msg_Name_1 := Name_First;
3544 Error_Msg_N
3545 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
3546 end if;
3548 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3549 Error_Msg_Name_1 := Name_Last;
3550 Error_Msg_N
3551 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
3552 end if;
3553 end if;
3555 elsif Is_Enumeration_Type (E) then
3556 Freeze_Enumeration_Type (E);
3558 elsif Is_Integer_Type (E) then
3559 Adjust_Esize_For_Alignment (E);
3561 elsif Is_Access_Type (E) then
3563 -- Check restriction for standard storage pool
3565 if No (Associated_Storage_Pool (E)) then
3566 Check_Restriction (No_Standard_Storage_Pools, E);
3567 end if;
3569 -- Deal with error message for pure access type. This is not an
3570 -- error in Ada 2005 if there is no pool (see AI-366).
3572 if Is_Pure_Unit_Access_Type (E)
3573 and then (Ada_Version < Ada_05
3574 or else not No_Pool_Assigned (E))
3575 then
3576 Error_Msg_N ("named access type not allowed in pure unit", E);
3578 if Ada_Version >= Ada_05 then
3579 Error_Msg_N
3580 ("\would be legal if Storage_Size of 0 given?", E);
3582 elsif No_Pool_Assigned (E) then
3583 Error_Msg_N
3584 ("\would be legal in Ada 2005?", E);
3586 else
3587 Error_Msg_N
3588 ("\would be legal in Ada 2005 if "
3589 & "Storage_Size of 0 given?", E);
3590 end if;
3591 end if;
3592 end if;
3594 -- Case of composite types
3596 if Is_Composite_Type (E) then
3598 -- AI-117 requires that all new primitives of a tagged type must
3599 -- inherit the convention of the full view of the type. Inherited
3600 -- and overriding operations are defined to inherit the convention
3601 -- of their parent or overridden subprogram (also specified in
3602 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3603 -- and New_Overloaded_Entity). Here we set the convention of
3604 -- primitives that are still convention Ada, which will ensure
3605 -- that any new primitives inherit the type's convention. Class-
3606 -- wide types can have a foreign convention inherited from their
3607 -- specific type, but are excluded from this since they don't have
3608 -- any associated primitives.
3610 if Is_Tagged_Type (E)
3611 and then not Is_Class_Wide_Type (E)
3612 and then Convention (E) /= Convention_Ada
3613 then
3614 declare
3615 Prim_List : constant Elist_Id := Primitive_Operations (E);
3616 Prim : Elmt_Id;
3617 begin
3618 Prim := First_Elmt (Prim_List);
3619 while Present (Prim) loop
3620 if Convention (Node (Prim)) = Convention_Ada then
3621 Set_Convention (Node (Prim), Convention (E));
3622 end if;
3624 Next_Elmt (Prim);
3625 end loop;
3626 end;
3627 end if;
3628 end if;
3630 -- Generate references to primitive operations for a tagged type
3632 Generate_Prim_Op_References (E);
3634 -- Now that all types from which E may depend are frozen, see if the
3635 -- size is known at compile time, if it must be unsigned, or if
3636 -- strict alignment is required
3638 Check_Compile_Time_Size (E);
3639 Check_Unsigned_Type (E);
3641 if Base_Type (E) = E then
3642 Check_Strict_Alignment (E);
3643 end if;
3645 -- Do not allow a size clause for a type which does not have a size
3646 -- that is known at compile time
3648 if Has_Size_Clause (E)
3649 and then not Size_Known_At_Compile_Time (E)
3650 then
3651 -- Suppress this message if errors posted on E, even if we are
3652 -- in all errors mode, since this is often a junk message
3654 if not Error_Posted (E) then
3655 Error_Msg_N
3656 ("size clause not allowed for variable length type",
3657 Size_Clause (E));
3658 end if;
3659 end if;
3661 -- Remaining process is to set/verify the representation information,
3662 -- in particular the size and alignment values. This processing is
3663 -- not required for generic types, since generic types do not play
3664 -- any part in code generation, and so the size and alignment values
3665 -- for such types are irrelevant.
3667 if Is_Generic_Type (E) then
3668 return Result;
3670 -- Otherwise we call the layout procedure
3672 else
3673 Layout_Type (E);
3674 end if;
3676 -- End of freeze processing for type entities
3677 end if;
3679 -- Here is where we logically freeze the current entity. If it has a
3680 -- freeze node, then this is the point at which the freeze node is
3681 -- linked into the result list.
3683 if Has_Delayed_Freeze (E) then
3685 -- If a freeze node is already allocated, use it, otherwise allocate
3686 -- a new one. The preallocation happens in the case of anonymous base
3687 -- types, where we preallocate so that we can set First_Subtype_Link.
3688 -- Note that we reset the Sloc to the current freeze location.
3690 if Present (Freeze_Node (E)) then
3691 F_Node := Freeze_Node (E);
3692 Set_Sloc (F_Node, Loc);
3694 else
3695 F_Node := New_Node (N_Freeze_Entity, Loc);
3696 Set_Freeze_Node (E, F_Node);
3697 Set_Access_Types_To_Process (F_Node, No_Elist);
3698 Set_TSS_Elist (F_Node, No_Elist);
3699 Set_Actions (F_Node, No_List);
3700 end if;
3702 Set_Entity (F_Node, E);
3704 if Result = No_List then
3705 Result := New_List (F_Node);
3706 else
3707 Append (F_Node, Result);
3708 end if;
3710 -- A final pass over record types with discriminants. If the type
3711 -- has an incomplete declaration, there may be constrained access
3712 -- subtypes declared elsewhere, which do not depend on the discrimi-
3713 -- nants of the type, and which are used as component types (i.e.
3714 -- the full view is a recursive type). The designated types of these
3715 -- subtypes can only be elaborated after the type itself, and they
3716 -- need an itype reference.
3718 if Ekind (E) = E_Record_Type
3719 and then Has_Discriminants (E)
3720 then
3721 declare
3722 Comp : Entity_Id;
3723 IR : Node_Id;
3724 Typ : Entity_Id;
3726 begin
3727 Comp := First_Component (E);
3729 while Present (Comp) loop
3730 Typ := Etype (Comp);
3732 if Ekind (Comp) = E_Component
3733 and then Is_Access_Type (Typ)
3734 and then Scope (Typ) /= E
3735 and then Base_Type (Designated_Type (Typ)) = E
3736 and then Is_Itype (Designated_Type (Typ))
3737 then
3738 IR := Make_Itype_Reference (Sloc (Comp));
3739 Set_Itype (IR, Designated_Type (Typ));
3740 Append (IR, Result);
3741 end if;
3743 Next_Component (Comp);
3744 end loop;
3745 end;
3746 end if;
3747 end if;
3749 -- When a type is frozen, the first subtype of the type is frozen as
3750 -- well (RM 13.14(15)). This has to be done after freezing the type,
3751 -- since obviously the first subtype depends on its own base type.
3753 if Is_Type (E) then
3754 Freeze_And_Append (First_Subtype (E), Loc, Result);
3756 -- If we just froze a tagged non-class wide record, then freeze the
3757 -- corresponding class-wide type. This must be done after the tagged
3758 -- type itself is frozen, because the class-wide type refers to the
3759 -- tagged type which generates the class.
3761 if Is_Tagged_Type (E)
3762 and then not Is_Class_Wide_Type (E)
3763 and then Present (Class_Wide_Type (E))
3764 then
3765 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3766 end if;
3767 end if;
3769 Check_Debug_Info_Needed (E);
3771 -- Special handling for subprograms
3773 if Is_Subprogram (E) then
3775 -- If subprogram has address clause then reset Is_Public flag, since
3776 -- we do not want the backend to generate external references.
3778 if Present (Address_Clause (E))
3779 and then not Is_Library_Level_Entity (E)
3780 then
3781 Set_Is_Public (E, False);
3783 -- If no address clause and not intrinsic, then for imported
3784 -- subprogram in main unit, generate descriptor if we are in
3785 -- Propagate_Exceptions mode.
3787 elsif Propagate_Exceptions
3788 and then Is_Imported (E)
3789 and then not Is_Intrinsic_Subprogram (E)
3790 and then Convention (E) /= Convention_Stubbed
3791 then
3792 if Result = No_List then
3793 Result := Empty_List;
3794 end if;
3795 end if;
3796 end if;
3798 return Result;
3799 end Freeze_Entity;
3801 -----------------------------
3802 -- Freeze_Enumeration_Type --
3803 -----------------------------
3805 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3806 begin
3807 -- By default, if no size clause is present, an enumeration type with
3808 -- Convention C is assumed to interface to a C enum, and has integer
3809 -- size. This applies to types. For subtypes, verify that its base
3810 -- type has no size clause either.
3812 if Has_Foreign_Convention (Typ)
3813 and then not Has_Size_Clause (Typ)
3814 and then not Has_Size_Clause (Base_Type (Typ))
3815 and then Esize (Typ) < Standard_Integer_Size
3816 then
3817 Init_Esize (Typ, Standard_Integer_Size);
3819 else
3820 -- If the enumeration type interfaces to C, and it has a size clause
3821 -- that specifies less than int size, it warrants a warning. The
3822 -- user may intend the C type to be an enum or a char, so this is
3823 -- not by itself an error that the Ada compiler can detect, but it
3824 -- it is a worth a heads-up. For Boolean and Character types we
3825 -- assume that the programmer has the proper C type in mind.
3827 if Convention (Typ) = Convention_C
3828 and then Has_Size_Clause (Typ)
3829 and then Esize (Typ) /= Esize (Standard_Integer)
3830 and then not Is_Boolean_Type (Typ)
3831 and then not Is_Character_Type (Typ)
3832 then
3833 Error_Msg_N
3834 ("C enum types have the size of a C int?", Size_Clause (Typ));
3835 end if;
3837 Adjust_Esize_For_Alignment (Typ);
3838 end if;
3839 end Freeze_Enumeration_Type;
3841 -----------------------
3842 -- Freeze_Expression --
3843 -----------------------
3845 procedure Freeze_Expression (N : Node_Id) is
3846 In_Spec_Exp : constant Boolean := In_Spec_Expression;
3847 Typ : Entity_Id;
3848 Nam : Entity_Id;
3849 Desig_Typ : Entity_Id;
3850 P : Node_Id;
3851 Parent_P : Node_Id;
3853 Freeze_Outside : Boolean := False;
3854 -- This flag is set true if the entity must be frozen outside the
3855 -- current subprogram. This happens in the case of expander generated
3856 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3857 -- not freeze all entities like other bodies, but which nevertheless
3858 -- may reference entities that have to be frozen before the body and
3859 -- obviously cannot be frozen inside the body.
3861 function In_Exp_Body (N : Node_Id) return Boolean;
3862 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
3863 -- it is the handled statement sequence of an expander-generated
3864 -- subprogram (init proc, stream subprogram, or renaming as body).
3865 -- If so, this is not a freezing context.
3867 -----------------
3868 -- In_Exp_Body --
3869 -----------------
3871 function In_Exp_Body (N : Node_Id) return Boolean is
3872 P : Node_Id;
3873 Id : Entity_Id;
3875 begin
3876 if Nkind (N) = N_Subprogram_Body then
3877 P := N;
3878 else
3879 P := Parent (N);
3880 end if;
3882 if Nkind (P) /= N_Subprogram_Body then
3883 return False;
3885 else
3886 Id := Defining_Unit_Name (Specification (P));
3888 if Nkind (Id) = N_Defining_Identifier
3889 and then (Is_Init_Proc (Id) or else
3890 Is_TSS (Id, TSS_Stream_Input) or else
3891 Is_TSS (Id, TSS_Stream_Output) or else
3892 Is_TSS (Id, TSS_Stream_Read) or else
3893 Is_TSS (Id, TSS_Stream_Write) or else
3894 Nkind (Original_Node (P)) =
3895 N_Subprogram_Renaming_Declaration)
3896 then
3897 return True;
3898 else
3899 return False;
3900 end if;
3901 end if;
3902 end In_Exp_Body;
3904 -- Start of processing for Freeze_Expression
3906 begin
3907 -- Immediate return if freezing is inhibited. This flag is set by the
3908 -- analyzer to stop freezing on generated expressions that would cause
3909 -- freezing if they were in the source program, but which are not
3910 -- supposed to freeze, since they are created.
3912 if Must_Not_Freeze (N) then
3913 return;
3914 end if;
3916 -- If expression is non-static, then it does not freeze in a default
3917 -- expression, see section "Handling of Default Expressions" in the
3918 -- spec of package Sem for further details. Note that we have to
3919 -- make sure that we actually have a real expression (if we have
3920 -- a subtype indication, we can't test Is_Static_Expression!)
3922 if In_Spec_Exp
3923 and then Nkind (N) in N_Subexpr
3924 and then not Is_Static_Expression (N)
3925 then
3926 return;
3927 end if;
3929 -- Freeze type of expression if not frozen already
3931 Typ := Empty;
3933 if Nkind (N) in N_Has_Etype then
3934 if not Is_Frozen (Etype (N)) then
3935 Typ := Etype (N);
3937 -- Base type may be an derived numeric type that is frozen at
3938 -- the point of declaration, but first_subtype is still unfrozen.
3940 elsif not Is_Frozen (First_Subtype (Etype (N))) then
3941 Typ := First_Subtype (Etype (N));
3942 end if;
3943 end if;
3945 -- For entity name, freeze entity if not frozen already. A special
3946 -- exception occurs for an identifier that did not come from source.
3947 -- We don't let such identifiers freeze a non-internal entity, i.e.
3948 -- an entity that did come from source, since such an identifier was
3949 -- generated by the expander, and cannot have any semantic effect on
3950 -- the freezing semantics. For example, this stops the parameter of
3951 -- an initialization procedure from freezing the variable.
3953 if Is_Entity_Name (N)
3954 and then not Is_Frozen (Entity (N))
3955 and then (Nkind (N) /= N_Identifier
3956 or else Comes_From_Source (N)
3957 or else not Comes_From_Source (Entity (N)))
3958 then
3959 Nam := Entity (N);
3960 else
3961 Nam := Empty;
3962 end if;
3964 -- For an allocator freeze designated type if not frozen already
3966 -- For an aggregate whose component type is an access type, freeze the
3967 -- designated type now, so that its freeze does not appear within the
3968 -- loop that might be created in the expansion of the aggregate. If the
3969 -- designated type is a private type without full view, the expression
3970 -- cannot contain an allocator, so the type is not frozen.
3972 Desig_Typ := Empty;
3974 case Nkind (N) is
3975 when N_Allocator =>
3976 Desig_Typ := Designated_Type (Etype (N));
3978 when N_Aggregate =>
3979 if Is_Array_Type (Etype (N))
3980 and then Is_Access_Type (Component_Type (Etype (N)))
3981 then
3982 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
3983 end if;
3985 when N_Selected_Component |
3986 N_Indexed_Component |
3987 N_Slice =>
3989 if Is_Access_Type (Etype (Prefix (N))) then
3990 Desig_Typ := Designated_Type (Etype (Prefix (N)));
3991 end if;
3993 when others =>
3994 null;
3995 end case;
3997 if Desig_Typ /= Empty
3998 and then (Is_Frozen (Desig_Typ)
3999 or else (not Is_Fully_Defined (Desig_Typ)))
4000 then
4001 Desig_Typ := Empty;
4002 end if;
4004 -- All done if nothing needs freezing
4006 if No (Typ)
4007 and then No (Nam)
4008 and then No (Desig_Typ)
4009 then
4010 return;
4011 end if;
4013 -- Loop for looking at the right place to insert the freeze nodes
4014 -- exiting from the loop when it is appropriate to insert the freeze
4015 -- node before the current node P.
4017 -- Also checks some special exceptions to the freezing rules. These
4018 -- cases result in a direct return, bypassing the freeze action.
4020 P := N;
4021 loop
4022 Parent_P := Parent (P);
4024 -- If we don't have a parent, then we are not in a well-formed tree.
4025 -- This is an unusual case, but there are some legitimate situations
4026 -- in which this occurs, notably when the expressions in the range of
4027 -- a type declaration are resolved. We simply ignore the freeze
4028 -- request in this case. Is this right ???
4030 if No (Parent_P) then
4031 return;
4032 end if;
4034 -- See if we have got to an appropriate point in the tree
4036 case Nkind (Parent_P) is
4038 -- A special test for the exception of (RM 13.14(8)) for the case
4039 -- of per-object expressions (RM 3.8(18)) occurring in component
4040 -- definition or a discrete subtype definition. Note that we test
4041 -- for a component declaration which includes both cases we are
4042 -- interested in, and furthermore the tree does not have explicit
4043 -- nodes for either of these two constructs.
4045 when N_Component_Declaration =>
4047 -- The case we want to test for here is an identifier that is
4048 -- a per-object expression, this is either a discriminant that
4049 -- appears in a context other than the component declaration
4050 -- or it is a reference to the type of the enclosing construct.
4052 -- For either of these cases, we skip the freezing
4054 if not In_Spec_Expression
4055 and then Nkind (N) = N_Identifier
4056 and then (Present (Entity (N)))
4057 then
4058 -- We recognize the discriminant case by just looking for
4059 -- a reference to a discriminant. It can only be one for
4060 -- the enclosing construct. Skip freezing in this case.
4062 if Ekind (Entity (N)) = E_Discriminant then
4063 return;
4065 -- For the case of a reference to the enclosing record,
4066 -- (or task or protected type), we look for a type that
4067 -- matches the current scope.
4069 elsif Entity (N) = Current_Scope then
4070 return;
4071 end if;
4072 end if;
4074 -- If we have an enumeration literal that appears as the choice in
4075 -- the aggregate of an enumeration representation clause, then
4076 -- freezing does not occur (RM 13.14(10)).
4078 when N_Enumeration_Representation_Clause =>
4080 -- The case we are looking for is an enumeration literal
4082 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4083 and then Is_Enumeration_Type (Etype (N))
4084 then
4085 -- If enumeration literal appears directly as the choice,
4086 -- do not freeze (this is the normal non-overloaded case)
4088 if Nkind (Parent (N)) = N_Component_Association
4089 and then First (Choices (Parent (N))) = N
4090 then
4091 return;
4093 -- If enumeration literal appears as the name of function
4094 -- which is the choice, then also do not freeze. This
4095 -- happens in the overloaded literal case, where the
4096 -- enumeration literal is temporarily changed to a function
4097 -- call for overloading analysis purposes.
4099 elsif Nkind (Parent (N)) = N_Function_Call
4100 and then
4101 Nkind (Parent (Parent (N))) = N_Component_Association
4102 and then
4103 First (Choices (Parent (Parent (N)))) = Parent (N)
4104 then
4105 return;
4106 end if;
4107 end if;
4109 -- Normally if the parent is a handled sequence of statements,
4110 -- then the current node must be a statement, and that is an
4111 -- appropriate place to insert a freeze node.
4113 when N_Handled_Sequence_Of_Statements =>
4115 -- An exception occurs when the sequence of statements is for
4116 -- an expander generated body that did not do the usual freeze
4117 -- all operation. In this case we usually want to freeze
4118 -- outside this body, not inside it, and we skip past the
4119 -- subprogram body that we are inside.
4121 if In_Exp_Body (Parent_P) then
4123 -- However, we *do* want to freeze at this point if we have
4124 -- an entity to freeze, and that entity is declared *inside*
4125 -- the body of the expander generated procedure. This case
4126 -- is recognized by the scope of the type, which is either
4127 -- the spec for some enclosing body, or (in the case of
4128 -- init_procs, for which there are no separate specs) the
4129 -- current scope.
4131 declare
4132 Subp : constant Node_Id := Parent (Parent_P);
4133 Cspc : Entity_Id;
4135 begin
4136 if Nkind (Subp) = N_Subprogram_Body then
4137 Cspc := Corresponding_Spec (Subp);
4139 if (Present (Typ) and then Scope (Typ) = Cspc)
4140 or else
4141 (Present (Nam) and then Scope (Nam) = Cspc)
4142 then
4143 exit;
4145 elsif Present (Typ)
4146 and then Scope (Typ) = Current_Scope
4147 and then Current_Scope = Defining_Entity (Subp)
4148 then
4149 exit;
4150 end if;
4151 end if;
4152 end;
4154 -- If not that exception to the exception, then this is
4155 -- where we delay the freeze till outside the body.
4157 Parent_P := Parent (Parent_P);
4158 Freeze_Outside := True;
4160 -- Here if normal case where we are in handled statement
4161 -- sequence and want to do the insertion right there.
4163 else
4164 exit;
4165 end if;
4167 -- If parent is a body or a spec or a block, then the current node
4168 -- is a statement or declaration and we can insert the freeze node
4169 -- before it.
4171 when N_Package_Specification |
4172 N_Package_Body |
4173 N_Subprogram_Body |
4174 N_Task_Body |
4175 N_Protected_Body |
4176 N_Entry_Body |
4177 N_Block_Statement => exit;
4179 -- The expander is allowed to define types in any statements list,
4180 -- so any of the following parent nodes also mark a freezing point
4181 -- if the actual node is in a list of statements or declarations.
4183 when N_Exception_Handler |
4184 N_If_Statement |
4185 N_Elsif_Part |
4186 N_Case_Statement_Alternative |
4187 N_Compilation_Unit_Aux |
4188 N_Selective_Accept |
4189 N_Accept_Alternative |
4190 N_Delay_Alternative |
4191 N_Conditional_Entry_Call |
4192 N_Entry_Call_Alternative |
4193 N_Triggering_Alternative |
4194 N_Abortable_Part |
4195 N_Freeze_Entity =>
4197 exit when Is_List_Member (P);
4199 -- Note: The N_Loop_Statement is a special case. A type that
4200 -- appears in the source can never be frozen in a loop (this
4201 -- occurs only because of a loop expanded by the expander), so we
4202 -- keep on going. Otherwise we terminate the search. Same is true
4203 -- of any entity which comes from source. (if they have predefined
4204 -- type, that type does not appear to come from source, but the
4205 -- entity should not be frozen here).
4207 when N_Loop_Statement =>
4208 exit when not Comes_From_Source (Etype (N))
4209 and then (No (Nam) or else not Comes_From_Source (Nam));
4211 -- For all other cases, keep looking at parents
4213 when others =>
4214 null;
4215 end case;
4217 -- We fall through the case if we did not yet find the proper
4218 -- place in the free for inserting the freeze node, so climb!
4220 P := Parent_P;
4221 end loop;
4223 -- If the expression appears in a record or an initialization procedure,
4224 -- the freeze nodes are collected and attached to the current scope, to
4225 -- be inserted and analyzed on exit from the scope, to insure that
4226 -- generated entities appear in the correct scope. If the expression is
4227 -- a default for a discriminant specification, the scope is still void.
4228 -- The expression can also appear in the discriminant part of a private
4229 -- or concurrent type.
4231 -- If the expression appears in a constrained subcomponent of an
4232 -- enclosing record declaration, the freeze nodes must be attached to
4233 -- the outer record type so they can eventually be placed in the
4234 -- enclosing declaration list.
4236 -- The other case requiring this special handling is if we are in a
4237 -- default expression, since in that case we are about to freeze a
4238 -- static type, and the freeze scope needs to be the outer scope, not
4239 -- the scope of the subprogram with the default parameter.
4241 -- For default expressions and other spec expressions in generic units,
4242 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4243 -- placing them at the proper place, after the generic unit.
4245 if (In_Spec_Exp and not Inside_A_Generic)
4246 or else Freeze_Outside
4247 or else (Is_Type (Current_Scope)
4248 and then (not Is_Concurrent_Type (Current_Scope)
4249 or else not Has_Completion (Current_Scope)))
4250 or else Ekind (Current_Scope) = E_Void
4251 then
4252 declare
4253 Loc : constant Source_Ptr := Sloc (Current_Scope);
4254 Freeze_Nodes : List_Id := No_List;
4255 Pos : Int := Scope_Stack.Last;
4257 begin
4258 if Present (Desig_Typ) then
4259 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4260 end if;
4262 if Present (Typ) then
4263 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4264 end if;
4266 if Present (Nam) then
4267 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4268 end if;
4270 -- The current scope may be that of a constrained component of
4271 -- an enclosing record declaration, which is above the current
4272 -- scope in the scope stack.
4274 if Is_Record_Type (Scope (Current_Scope)) then
4275 Pos := Pos - 1;
4276 end if;
4278 if Is_Non_Empty_List (Freeze_Nodes) then
4279 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4280 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
4281 Freeze_Nodes;
4282 else
4283 Append_List (Freeze_Nodes, Scope_Stack.Table
4284 (Pos).Pending_Freeze_Actions);
4285 end if;
4286 end if;
4287 end;
4289 return;
4290 end if;
4292 -- Now we have the right place to do the freezing. First, a special
4293 -- adjustment, if we are in spec-expression analysis mode, these freeze
4294 -- actions must not be thrown away (normally all inserted actions are
4295 -- thrown away in this mode. However, the freeze actions are from static
4296 -- expressions and one of the important reasons we are doing this
4297 -- special analysis is to get these freeze actions. Therefore we turn
4298 -- off the In_Spec_Expression mode to propagate these freeze actions.
4299 -- This also means they get properly analyzed and expanded.
4301 In_Spec_Expression := False;
4303 -- Freeze the designated type of an allocator (RM 13.14(13))
4305 if Present (Desig_Typ) then
4306 Freeze_Before (P, Desig_Typ);
4307 end if;
4309 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
4310 -- the enumeration representation clause exception in the loop above.
4312 if Present (Typ) then
4313 Freeze_Before (P, Typ);
4314 end if;
4316 -- Freeze name if one is present (RM 13.14(11))
4318 if Present (Nam) then
4319 Freeze_Before (P, Nam);
4320 end if;
4322 -- Restore In_Spec_Expression flag
4324 In_Spec_Expression := In_Spec_Exp;
4325 end Freeze_Expression;
4327 -----------------------------
4328 -- Freeze_Fixed_Point_Type --
4329 -----------------------------
4331 -- Certain fixed-point types and subtypes, including implicit base types
4332 -- and declared first subtypes, have not yet set up a range. This is
4333 -- because the range cannot be set until the Small and Size values are
4334 -- known, and these are not known till the type is frozen.
4336 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4337 -- whose bounds are unanalyzed real literals. This routine will recognize
4338 -- this case, and transform this range node into a properly typed range
4339 -- with properly analyzed and resolved values.
4341 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4342 Rng : constant Node_Id := Scalar_Range (Typ);
4343 Lo : constant Node_Id := Low_Bound (Rng);
4344 Hi : constant Node_Id := High_Bound (Rng);
4345 Btyp : constant Entity_Id := Base_Type (Typ);
4346 Brng : constant Node_Id := Scalar_Range (Btyp);
4347 BLo : constant Node_Id := Low_Bound (Brng);
4348 BHi : constant Node_Id := High_Bound (Brng);
4349 Small : constant Ureal := Small_Value (Typ);
4350 Loval : Ureal;
4351 Hival : Ureal;
4352 Atype : Entity_Id;
4354 Actual_Size : Nat;
4356 function Fsize (Lov, Hiv : Ureal) return Nat;
4357 -- Returns size of type with given bounds. Also leaves these
4358 -- bounds set as the current bounds of the Typ.
4360 -----------
4361 -- Fsize --
4362 -----------
4364 function Fsize (Lov, Hiv : Ureal) return Nat is
4365 begin
4366 Set_Realval (Lo, Lov);
4367 Set_Realval (Hi, Hiv);
4368 return Minimum_Size (Typ);
4369 end Fsize;
4371 -- Start of processing for Freeze_Fixed_Point_Type
4373 begin
4374 -- If Esize of a subtype has not previously been set, set it now
4376 if Unknown_Esize (Typ) then
4377 Atype := Ancestor_Subtype (Typ);
4379 if Present (Atype) then
4380 Set_Esize (Typ, Esize (Atype));
4381 else
4382 Set_Esize (Typ, Esize (Base_Type (Typ)));
4383 end if;
4384 end if;
4386 -- Immediate return if the range is already analyzed. This means that
4387 -- the range is already set, and does not need to be computed by this
4388 -- routine.
4390 if Analyzed (Rng) then
4391 return;
4392 end if;
4394 -- Immediate return if either of the bounds raises Constraint_Error
4396 if Raises_Constraint_Error (Lo)
4397 or else Raises_Constraint_Error (Hi)
4398 then
4399 return;
4400 end if;
4402 Loval := Realval (Lo);
4403 Hival := Realval (Hi);
4405 -- Ordinary fixed-point case
4407 if Is_Ordinary_Fixed_Point_Type (Typ) then
4409 -- For the ordinary fixed-point case, we are allowed to fudge the
4410 -- end-points up or down by small. Generally we prefer to fudge up,
4411 -- i.e. widen the bounds for non-model numbers so that the end points
4412 -- are included. However there are cases in which this cannot be
4413 -- done, and indeed cases in which we may need to narrow the bounds.
4414 -- The following circuit makes the decision.
4416 -- Note: our terminology here is that Incl_EP means that the bounds
4417 -- are widened by Small if necessary to include the end points, and
4418 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4419 -- end-points if this reduces the size.
4421 -- Note that in the Incl case, all we care about is including the
4422 -- end-points. In the Excl case, we want to narrow the bounds as
4423 -- much as permitted by the RM, to give the smallest possible size.
4425 Fudge : declare
4426 Loval_Incl_EP : Ureal;
4427 Hival_Incl_EP : Ureal;
4429 Loval_Excl_EP : Ureal;
4430 Hival_Excl_EP : Ureal;
4432 Size_Incl_EP : Nat;
4433 Size_Excl_EP : Nat;
4435 Model_Num : Ureal;
4436 First_Subt : Entity_Id;
4437 Actual_Lo : Ureal;
4438 Actual_Hi : Ureal;
4440 begin
4441 -- First step. Base types are required to be symmetrical. Right
4442 -- now, the base type range is a copy of the first subtype range.
4443 -- This will be corrected before we are done, but right away we
4444 -- need to deal with the case where both bounds are non-negative.
4445 -- In this case, we set the low bound to the negative of the high
4446 -- bound, to make sure that the size is computed to include the
4447 -- required sign. Note that we do not need to worry about the
4448 -- case of both bounds negative, because the sign will be dealt
4449 -- with anyway. Furthermore we can't just go making such a bound
4450 -- symmetrical, since in a twos-complement system, there is an
4451 -- extra negative value which could not be accommodated on the
4452 -- positive side.
4454 if Typ = Btyp
4455 and then not UR_Is_Negative (Loval)
4456 and then Hival > Loval
4457 then
4458 Loval := -Hival;
4459 Set_Realval (Lo, Loval);
4460 end if;
4462 -- Compute the fudged bounds. If the number is a model number,
4463 -- then we do nothing to include it, but we are allowed to backoff
4464 -- to the next adjacent model number when we exclude it. If it is
4465 -- not a model number then we straddle the two values with the
4466 -- model numbers on either side.
4468 Model_Num := UR_Trunc (Loval / Small) * Small;
4470 if Loval = Model_Num then
4471 Loval_Incl_EP := Model_Num;
4472 else
4473 Loval_Incl_EP := Model_Num - Small;
4474 end if;
4476 -- The low value excluding the end point is Small greater, but
4477 -- we do not do this exclusion if the low value is positive,
4478 -- since it can't help the size and could actually hurt by
4479 -- crossing the high bound.
4481 if UR_Is_Negative (Loval_Incl_EP) then
4482 Loval_Excl_EP := Loval_Incl_EP + Small;
4484 -- If the value went from negative to zero, then we have the
4485 -- case where Loval_Incl_EP is the model number just below
4486 -- zero, so we want to stick to the negative value for the
4487 -- base type to maintain the condition that the size will
4488 -- include signed values.
4490 if Typ = Btyp
4491 and then UR_Is_Zero (Loval_Excl_EP)
4492 then
4493 Loval_Excl_EP := Loval_Incl_EP;
4494 end if;
4496 else
4497 Loval_Excl_EP := Loval_Incl_EP;
4498 end if;
4500 -- Similar processing for upper bound and high value
4502 Model_Num := UR_Trunc (Hival / Small) * Small;
4504 if Hival = Model_Num then
4505 Hival_Incl_EP := Model_Num;
4506 else
4507 Hival_Incl_EP := Model_Num + Small;
4508 end if;
4510 if UR_Is_Positive (Hival_Incl_EP) then
4511 Hival_Excl_EP := Hival_Incl_EP - Small;
4512 else
4513 Hival_Excl_EP := Hival_Incl_EP;
4514 end if;
4516 -- One further adjustment is needed. In the case of subtypes, we
4517 -- cannot go outside the range of the base type, or we get
4518 -- peculiarities, and the base type range is already set. This
4519 -- only applies to the Incl values, since clearly the Excl values
4520 -- are already as restricted as they are allowed to be.
4522 if Typ /= Btyp then
4523 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4524 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4525 end if;
4527 -- Get size including and excluding end points
4529 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4530 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4532 -- No need to exclude end-points if it does not reduce size
4534 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4535 Loval_Excl_EP := Loval_Incl_EP;
4536 end if;
4538 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4539 Hival_Excl_EP := Hival_Incl_EP;
4540 end if;
4542 -- Now we set the actual size to be used. We want to use the
4543 -- bounds fudged up to include the end-points but only if this
4544 -- can be done without violating a specifically given size
4545 -- size clause or causing an unacceptable increase in size.
4547 -- Case of size clause given
4549 if Has_Size_Clause (Typ) then
4551 -- Use the inclusive size only if it is consistent with
4552 -- the explicitly specified size.
4554 if Size_Incl_EP <= RM_Size (Typ) then
4555 Actual_Lo := Loval_Incl_EP;
4556 Actual_Hi := Hival_Incl_EP;
4557 Actual_Size := Size_Incl_EP;
4559 -- If the inclusive size is too large, we try excluding
4560 -- the end-points (will be caught later if does not work).
4562 else
4563 Actual_Lo := Loval_Excl_EP;
4564 Actual_Hi := Hival_Excl_EP;
4565 Actual_Size := Size_Excl_EP;
4566 end if;
4568 -- Case of size clause not given
4570 else
4571 -- If we have a base type whose corresponding first subtype
4572 -- has an explicit size that is large enough to include our
4573 -- end-points, then do so. There is no point in working hard
4574 -- to get a base type whose size is smaller than the specified
4575 -- size of the first subtype.
4577 First_Subt := First_Subtype (Typ);
4579 if Has_Size_Clause (First_Subt)
4580 and then Size_Incl_EP <= Esize (First_Subt)
4581 then
4582 Actual_Size := Size_Incl_EP;
4583 Actual_Lo := Loval_Incl_EP;
4584 Actual_Hi := Hival_Incl_EP;
4586 -- If excluding the end-points makes the size smaller and
4587 -- results in a size of 8,16,32,64, then we take the smaller
4588 -- size. For the 64 case, this is compulsory. For the other
4589 -- cases, it seems reasonable. We like to include end points
4590 -- if we can, but not at the expense of moving to the next
4591 -- natural boundary of size.
4593 elsif Size_Incl_EP /= Size_Excl_EP
4594 and then
4595 (Size_Excl_EP = 8 or else
4596 Size_Excl_EP = 16 or else
4597 Size_Excl_EP = 32 or else
4598 Size_Excl_EP = 64)
4599 then
4600 Actual_Size := Size_Excl_EP;
4601 Actual_Lo := Loval_Excl_EP;
4602 Actual_Hi := Hival_Excl_EP;
4604 -- Otherwise we can definitely include the end points
4606 else
4607 Actual_Size := Size_Incl_EP;
4608 Actual_Lo := Loval_Incl_EP;
4609 Actual_Hi := Hival_Incl_EP;
4610 end if;
4612 -- One pathological case: normally we never fudge a low bound
4613 -- down, since it would seem to increase the size (if it has
4614 -- any effect), but for ranges containing single value, or no
4615 -- values, the high bound can be small too large. Consider:
4617 -- type t is delta 2.0**(-14)
4618 -- range 131072.0 .. 0;
4620 -- That lower bound is *just* outside the range of 32 bits, and
4621 -- does need fudging down in this case. Note that the bounds
4622 -- will always have crossed here, since the high bound will be
4623 -- fudged down if necessary, as in the case of:
4625 -- type t is delta 2.0**(-14)
4626 -- range 131072.0 .. 131072.0;
4628 -- So we detect the situation by looking for crossed bounds,
4629 -- and if the bounds are crossed, and the low bound is greater
4630 -- than zero, we will always back it off by small, since this
4631 -- is completely harmless.
4633 if Actual_Lo > Actual_Hi then
4634 if UR_Is_Positive (Actual_Lo) then
4635 Actual_Lo := Loval_Incl_EP - Small;
4636 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4638 -- And of course, we need to do exactly the same parallel
4639 -- fudge for flat ranges in the negative region.
4641 elsif UR_Is_Negative (Actual_Hi) then
4642 Actual_Hi := Hival_Incl_EP + Small;
4643 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4644 end if;
4645 end if;
4646 end if;
4648 Set_Realval (Lo, Actual_Lo);
4649 Set_Realval (Hi, Actual_Hi);
4650 end Fudge;
4652 -- For the decimal case, none of this fudging is required, since there
4653 -- are no end-point problems in the decimal case (the end-points are
4654 -- always included).
4656 else
4657 Actual_Size := Fsize (Loval, Hival);
4658 end if;
4660 -- At this stage, the actual size has been calculated and the proper
4661 -- required bounds are stored in the low and high bounds.
4663 if Actual_Size > 64 then
4664 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4665 Error_Msg_N
4666 ("size required (^) for type& too large, maximum allowed is 64",
4667 Typ);
4668 Actual_Size := 64;
4669 end if;
4671 -- Check size against explicit given size
4673 if Has_Size_Clause (Typ) then
4674 if Actual_Size > RM_Size (Typ) then
4675 Error_Msg_Uint_1 := RM_Size (Typ);
4676 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4677 Error_Msg_NE
4678 ("size given (^) for type& too small, minimum allowed is ^",
4679 Size_Clause (Typ), Typ);
4681 else
4682 Actual_Size := UI_To_Int (Esize (Typ));
4683 end if;
4685 -- Increase size to next natural boundary if no size clause given
4687 else
4688 if Actual_Size <= 8 then
4689 Actual_Size := 8;
4690 elsif Actual_Size <= 16 then
4691 Actual_Size := 16;
4692 elsif Actual_Size <= 32 then
4693 Actual_Size := 32;
4694 else
4695 Actual_Size := 64;
4696 end if;
4698 Init_Esize (Typ, Actual_Size);
4699 Adjust_Esize_For_Alignment (Typ);
4700 end if;
4702 -- If we have a base type, then expand the bounds so that they extend to
4703 -- the full width of the allocated size in bits, to avoid junk range
4704 -- checks on intermediate computations.
4706 if Base_Type (Typ) = Typ then
4707 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4708 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4709 end if;
4711 -- Final step is to reanalyze the bounds using the proper type
4712 -- and set the Corresponding_Integer_Value fields of the literals.
4714 Set_Etype (Lo, Empty);
4715 Set_Analyzed (Lo, False);
4716 Analyze (Lo);
4718 -- Resolve with universal fixed if the base type, and the base type if
4719 -- it is a subtype. Note we can't resolve the base type with itself,
4720 -- that would be a reference before definition.
4722 if Typ = Btyp then
4723 Resolve (Lo, Universal_Fixed);
4724 else
4725 Resolve (Lo, Btyp);
4726 end if;
4728 -- Set corresponding integer value for bound
4730 Set_Corresponding_Integer_Value
4731 (Lo, UR_To_Uint (Realval (Lo) / Small));
4733 -- Similar processing for high bound
4735 Set_Etype (Hi, Empty);
4736 Set_Analyzed (Hi, False);
4737 Analyze (Hi);
4739 if Typ = Btyp then
4740 Resolve (Hi, Universal_Fixed);
4741 else
4742 Resolve (Hi, Btyp);
4743 end if;
4745 Set_Corresponding_Integer_Value
4746 (Hi, UR_To_Uint (Realval (Hi) / Small));
4748 -- Set type of range to correspond to bounds
4750 Set_Etype (Rng, Etype (Lo));
4752 -- Set Esize to calculated size if not set already
4754 if Unknown_Esize (Typ) then
4755 Init_Esize (Typ, Actual_Size);
4756 end if;
4758 -- Set RM_Size if not already set. If already set, check value
4760 declare
4761 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4763 begin
4764 if RM_Size (Typ) /= Uint_0 then
4765 if RM_Size (Typ) < Minsiz then
4766 Error_Msg_Uint_1 := RM_Size (Typ);
4767 Error_Msg_Uint_2 := Minsiz;
4768 Error_Msg_NE
4769 ("size given (^) for type& too small, minimum allowed is ^",
4770 Size_Clause (Typ), Typ);
4771 end if;
4773 else
4774 Set_RM_Size (Typ, Minsiz);
4775 end if;
4776 end;
4777 end Freeze_Fixed_Point_Type;
4779 ------------------
4780 -- Freeze_Itype --
4781 ------------------
4783 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4784 L : List_Id;
4786 begin
4787 Set_Has_Delayed_Freeze (T);
4788 L := Freeze_Entity (T, Sloc (N));
4790 if Is_Non_Empty_List (L) then
4791 Insert_Actions (N, L);
4792 end if;
4793 end Freeze_Itype;
4795 --------------------------
4796 -- Freeze_Static_Object --
4797 --------------------------
4799 procedure Freeze_Static_Object (E : Entity_Id) is
4801 Cannot_Be_Static : exception;
4802 -- Exception raised if the type of a static object cannot be made
4803 -- static. This happens if the type depends on non-global objects.
4805 procedure Ensure_Expression_Is_SA (N : Node_Id);
4806 -- Called to ensure that an expression used as part of a type definition
4807 -- is statically allocatable, which means that the expression type is
4808 -- statically allocatable, and the expression is either static, or a
4809 -- reference to a library level constant.
4811 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4812 -- Called to mark a type as static, checking that it is possible
4813 -- to set the type as static. If it is not possible, then the
4814 -- exception Cannot_Be_Static is raised.
4816 -----------------------------
4817 -- Ensure_Expression_Is_SA --
4818 -----------------------------
4820 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4821 Ent : Entity_Id;
4823 begin
4824 Ensure_Type_Is_SA (Etype (N));
4826 if Is_Static_Expression (N) then
4827 return;
4829 elsif Nkind (N) = N_Identifier then
4830 Ent := Entity (N);
4832 if Present (Ent)
4833 and then Ekind (Ent) = E_Constant
4834 and then Is_Library_Level_Entity (Ent)
4835 then
4836 return;
4837 end if;
4838 end if;
4840 raise Cannot_Be_Static;
4841 end Ensure_Expression_Is_SA;
4843 -----------------------
4844 -- Ensure_Type_Is_SA --
4845 -----------------------
4847 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4848 N : Node_Id;
4849 C : Entity_Id;
4851 begin
4852 -- If type is library level, we are all set
4854 if Is_Library_Level_Entity (Typ) then
4855 return;
4856 end if;
4858 -- We are also OK if the type already marked as statically allocated,
4859 -- which means we processed it before.
4861 if Is_Statically_Allocated (Typ) then
4862 return;
4863 end if;
4865 -- Mark type as statically allocated
4867 Set_Is_Statically_Allocated (Typ);
4869 -- Check that it is safe to statically allocate this type
4871 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4872 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4873 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4875 elsif Is_Array_Type (Typ) then
4876 N := First_Index (Typ);
4877 while Present (N) loop
4878 Ensure_Type_Is_SA (Etype (N));
4879 Next_Index (N);
4880 end loop;
4882 Ensure_Type_Is_SA (Component_Type (Typ));
4884 elsif Is_Access_Type (Typ) then
4885 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4887 declare
4888 F : Entity_Id;
4889 T : constant Entity_Id := Etype (Designated_Type (Typ));
4891 begin
4892 if T /= Standard_Void_Type then
4893 Ensure_Type_Is_SA (T);
4894 end if;
4896 F := First_Formal (Designated_Type (Typ));
4898 while Present (F) loop
4899 Ensure_Type_Is_SA (Etype (F));
4900 Next_Formal (F);
4901 end loop;
4902 end;
4904 else
4905 Ensure_Type_Is_SA (Designated_Type (Typ));
4906 end if;
4908 elsif Is_Record_Type (Typ) then
4909 C := First_Entity (Typ);
4910 while Present (C) loop
4911 if Ekind (C) = E_Discriminant
4912 or else Ekind (C) = E_Component
4913 then
4914 Ensure_Type_Is_SA (Etype (C));
4916 elsif Is_Type (C) then
4917 Ensure_Type_Is_SA (C);
4918 end if;
4920 Next_Entity (C);
4921 end loop;
4923 elsif Ekind (Typ) = E_Subprogram_Type then
4924 Ensure_Type_Is_SA (Etype (Typ));
4926 C := First_Formal (Typ);
4927 while Present (C) loop
4928 Ensure_Type_Is_SA (Etype (C));
4929 Next_Formal (C);
4930 end loop;
4932 else
4933 raise Cannot_Be_Static;
4934 end if;
4935 end Ensure_Type_Is_SA;
4937 -- Start of processing for Freeze_Static_Object
4939 begin
4940 Ensure_Type_Is_SA (Etype (E));
4942 exception
4943 when Cannot_Be_Static =>
4945 -- If the object that cannot be static is imported or exported,
4946 -- then we give an error message saying that this object cannot
4947 -- be imported or exported.
4949 if Is_Imported (E) then
4950 Error_Msg_N
4951 ("& cannot be imported (local type is not constant)", E);
4953 -- Otherwise must be exported, something is wrong if compiler
4954 -- is marking something as statically allocated which cannot be).
4956 else pragma Assert (Is_Exported (E));
4957 Error_Msg_N
4958 ("& cannot be exported (local type is not constant)", E);
4959 end if;
4960 end Freeze_Static_Object;
4962 -----------------------
4963 -- Freeze_Subprogram --
4964 -----------------------
4966 procedure Freeze_Subprogram (E : Entity_Id) is
4967 Retype : Entity_Id;
4968 F : Entity_Id;
4970 begin
4971 -- Subprogram may not have an address clause unless it is imported
4973 if Present (Address_Clause (E)) then
4974 if not Is_Imported (E) then
4975 Error_Msg_N
4976 ("address clause can only be given " &
4977 "for imported subprogram",
4978 Name (Address_Clause (E)));
4979 end if;
4980 end if;
4982 -- Reset the Pure indication on an imported subprogram unless an
4983 -- explicit Pure_Function pragma was present. We do this because
4984 -- otherwise it is an insidious error to call a non-pure function from
4985 -- pure unit and have calls mysteriously optimized away. What happens
4986 -- here is that the Import can bypass the normal check to ensure that
4987 -- pure units call only pure subprograms.
4989 if Is_Imported (E)
4990 and then Is_Pure (E)
4991 and then not Has_Pragma_Pure_Function (E)
4992 then
4993 Set_Is_Pure (E, False);
4994 end if;
4996 -- For non-foreign convention subprograms, this is where we create
4997 -- the extra formals (for accessibility level and constrained bit
4998 -- information). We delay this till the freeze point precisely so
4999 -- that we know the convention!
5001 if not Has_Foreign_Convention (E) then
5002 Create_Extra_Formals (E);
5003 Set_Mechanisms (E);
5005 -- If this is convention Ada and a Valued_Procedure, that's odd
5007 if Ekind (E) = E_Procedure
5008 and then Is_Valued_Procedure (E)
5009 and then Convention (E) = Convention_Ada
5010 and then Warn_On_Export_Import
5011 then
5012 Error_Msg_N
5013 ("?Valued_Procedure has no effect for convention Ada", E);
5014 Set_Is_Valued_Procedure (E, False);
5015 end if;
5017 -- Case of foreign convention
5019 else
5020 Set_Mechanisms (E);
5022 -- For foreign conventions, warn about return of an
5023 -- unconstrained array.
5025 -- Note: we *do* allow a return by descriptor for the VMS case,
5026 -- though here there is probably more to be done ???
5028 if Ekind (E) = E_Function then
5029 Retype := Underlying_Type (Etype (E));
5031 -- If no return type, probably some other error, e.g. a
5032 -- missing full declaration, so ignore.
5034 if No (Retype) then
5035 null;
5037 -- If the return type is generic, we have emitted a warning
5038 -- earlier on, and there is nothing else to check here. Specific
5039 -- instantiations may lead to erroneous behavior.
5041 elsif Is_Generic_Type (Etype (E)) then
5042 null;
5044 elsif Is_Array_Type (Retype)
5045 and then not Is_Constrained (Retype)
5046 and then Mechanism (E) not in Descriptor_Codes
5047 and then Warn_On_Export_Import
5048 then
5049 Error_Msg_N
5050 ("?foreign convention function& should not return " &
5051 "unconstrained array", E);
5052 return;
5053 end if;
5054 end if;
5056 -- If any of the formals for an exported foreign convention
5057 -- subprogram have defaults, then emit an appropriate warning since
5058 -- this is odd (default cannot be used from non-Ada code)
5060 if Is_Exported (E) then
5061 F := First_Formal (E);
5062 while Present (F) loop
5063 if Warn_On_Export_Import
5064 and then Present (Default_Value (F))
5065 then
5066 Error_Msg_N
5067 ("?parameter cannot be defaulted in non-Ada call",
5068 Default_Value (F));
5069 end if;
5071 Next_Formal (F);
5072 end loop;
5073 end if;
5074 end if;
5076 -- For VMS, descriptor mechanisms for parameters are allowed only
5077 -- for imported/exported subprograms. Moreover, the NCA descriptor
5078 -- is not allowed for parameters of exported subprograms.
5080 if OpenVMS_On_Target then
5081 if Is_Exported (E) then
5082 F := First_Formal (E);
5083 while Present (F) loop
5084 if Mechanism (F) = By_Descriptor_NCA then
5085 Error_Msg_N
5086 ("'N'C'A' descriptor for parameter not permitted", F);
5087 Error_Msg_N
5088 ("\can only be used for imported subprogram", F);
5089 end if;
5091 Next_Formal (F);
5092 end loop;
5094 elsif not Is_Imported (E) then
5095 F := First_Formal (E);
5096 while Present (F) loop
5097 if Mechanism (F) in Descriptor_Codes then
5098 Error_Msg_N
5099 ("descriptor mechanism for parameter not permitted", F);
5100 Error_Msg_N
5101 ("\can only be used for imported/exported subprogram", F);
5102 end if;
5104 Next_Formal (F);
5105 end loop;
5106 end if;
5107 end if;
5109 -- Pragma Inline_Always is disallowed for dispatching subprograms
5110 -- because the address of such subprograms is saved in the dispatch
5111 -- table to support dispatching calls, and dispatching calls cannot
5112 -- be inlined. This is consistent with the restriction against using
5113 -- 'Access or 'Address on an Inline_Always subprogram.
5115 if Is_Dispatching_Operation (E)
5116 and then Has_Pragma_Inline_Always (E)
5117 then
5118 Error_Msg_N
5119 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5120 end if;
5122 -- Because of the implicit representation of inherited predefined
5123 -- operators in the front-end, the overriding status of the operation
5124 -- may be affected when a full view of a type is analyzed, and this is
5125 -- not captured by the analysis of the corresponding type declaration.
5126 -- Therefore the correctness of a not-overriding indicator must be
5127 -- rechecked when the subprogram is frozen.
5129 if Nkind (E) = N_Defining_Operator_Symbol
5130 and then not Error_Posted (Parent (E))
5131 then
5132 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5133 end if;
5134 end Freeze_Subprogram;
5136 ----------------------
5137 -- Is_Fully_Defined --
5138 ----------------------
5140 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5141 begin
5142 if Ekind (T) = E_Class_Wide_Type then
5143 return Is_Fully_Defined (Etype (T));
5145 elsif Is_Array_Type (T) then
5146 return Is_Fully_Defined (Component_Type (T));
5148 elsif Is_Record_Type (T)
5149 and not Is_Private_Type (T)
5150 then
5151 -- Verify that the record type has no components with private types
5152 -- without completion.
5154 declare
5155 Comp : Entity_Id;
5157 begin
5158 Comp := First_Component (T);
5160 while Present (Comp) loop
5161 if not Is_Fully_Defined (Etype (Comp)) then
5162 return False;
5163 end if;
5165 Next_Component (Comp);
5166 end loop;
5167 return True;
5168 end;
5170 else
5171 return not Is_Private_Type (T)
5172 or else Present (Full_View (Base_Type (T)));
5173 end if;
5174 end Is_Fully_Defined;
5176 ---------------------------------
5177 -- Generate_Prim_Op_References --
5178 ---------------------------------
5180 procedure Generate_Prim_Op_References (Typ : Entity_Id) is
5181 Base_T : Entity_Id;
5182 Prim : Elmt_Id;
5183 Prim_List : Elist_Id;
5184 Ent : Entity_Id;
5186 begin
5187 -- Handle subtypes of synchronized types
5189 if Ekind (Typ) = E_Protected_Subtype
5190 or else Ekind (Typ) = E_Task_Subtype
5191 then
5192 Base_T := Etype (Typ);
5193 else
5194 Base_T := Typ;
5195 end if;
5197 -- References to primitive operations are only relevant for tagged types
5199 if not Is_Tagged_Type (Base_T)
5200 or else Is_Class_Wide_Type (Base_T)
5201 then
5202 return;
5203 end if;
5205 -- Ada 2005 (AI-345): For synchronized types generate reference
5206 -- to the wrapper that allow us to dispatch calls through their
5207 -- implemented abstract interface types.
5209 -- The check for Present here is to protect against previously
5210 -- reported critical errors.
5212 if Is_Concurrent_Type (Base_T)
5213 and then Present (Corresponding_Record_Type (Base_T))
5214 then
5215 Prim_List := Primitive_Operations
5216 (Corresponding_Record_Type (Base_T));
5217 else
5218 Prim_List := Primitive_Operations (Base_T);
5219 end if;
5221 if No (Prim_List) then
5222 return;
5223 end if;
5225 Prim := First_Elmt (Prim_List);
5226 while Present (Prim) loop
5228 -- If the operation is derived, get the original for cross-reference
5229 -- reference purposes (it is the original for which we want the xref
5230 -- and for which the comes_from_source test must be performed).
5232 Ent := Node (Prim);
5233 while Present (Alias (Ent)) loop
5234 Ent := Alias (Ent);
5235 end loop;
5237 Generate_Reference (Typ, Ent, 'p', Set_Ref => False);
5238 Next_Elmt (Prim);
5239 end loop;
5240 end Generate_Prim_Op_References;
5242 ---------------------------------
5243 -- Process_Default_Expressions --
5244 ---------------------------------
5246 procedure Process_Default_Expressions
5247 (E : Entity_Id;
5248 After : in out Node_Id)
5250 Loc : constant Source_Ptr := Sloc (E);
5251 Dbody : Node_Id;
5252 Formal : Node_Id;
5253 Dcopy : Node_Id;
5254 Dnam : Entity_Id;
5256 begin
5257 Set_Default_Expressions_Processed (E);
5259 -- A subprogram instance and its associated anonymous subprogram share
5260 -- their signature. The default expression functions are defined in the
5261 -- wrapper packages for the anonymous subprogram, and should not be
5262 -- generated again for the instance.
5264 if Is_Generic_Instance (E)
5265 and then Present (Alias (E))
5266 and then Default_Expressions_Processed (Alias (E))
5267 then
5268 return;
5269 end if;
5271 Formal := First_Formal (E);
5272 while Present (Formal) loop
5273 if Present (Default_Value (Formal)) then
5275 -- We work with a copy of the default expression because we
5276 -- do not want to disturb the original, since this would mess
5277 -- up the conformance checking.
5279 Dcopy := New_Copy_Tree (Default_Value (Formal));
5281 -- The analysis of the expression may generate insert actions,
5282 -- which of course must not be executed. We wrap those actions
5283 -- in a procedure that is not called, and later on eliminated.
5284 -- The following cases have no side-effects, and are analyzed
5285 -- directly.
5287 if Nkind (Dcopy) = N_Identifier
5288 or else Nkind (Dcopy) = N_Expanded_Name
5289 or else Nkind (Dcopy) = N_Integer_Literal
5290 or else (Nkind (Dcopy) = N_Real_Literal
5291 and then not Vax_Float (Etype (Dcopy)))
5292 or else Nkind (Dcopy) = N_Character_Literal
5293 or else Nkind (Dcopy) = N_String_Literal
5294 or else Known_Null (Dcopy)
5295 or else (Nkind (Dcopy) = N_Attribute_Reference
5296 and then
5297 Attribute_Name (Dcopy) = Name_Null_Parameter)
5298 then
5300 -- If there is no default function, we must still do a full
5301 -- analyze call on the default value, to ensure that all error
5302 -- checks are performed, e.g. those associated with static
5303 -- evaluation. Note: this branch will always be taken if the
5304 -- analyzer is turned off (but we still need the error checks).
5306 -- Note: the setting of parent here is to meet the requirement
5307 -- that we can only analyze the expression while attached to
5308 -- the tree. Really the requirement is that the parent chain
5309 -- be set, we don't actually need to be in the tree.
5311 Set_Parent (Dcopy, Declaration_Node (Formal));
5312 Analyze (Dcopy);
5314 -- Default expressions are resolved with their own type if the
5315 -- context is generic, to avoid anomalies with private types.
5317 if Ekind (Scope (E)) = E_Generic_Package then
5318 Resolve (Dcopy);
5319 else
5320 Resolve (Dcopy, Etype (Formal));
5321 end if;
5323 -- If that resolved expression will raise constraint error,
5324 -- then flag the default value as raising constraint error.
5325 -- This allows a proper error message on the calls.
5327 if Raises_Constraint_Error (Dcopy) then
5328 Set_Raises_Constraint_Error (Default_Value (Formal));
5329 end if;
5331 -- If the default is a parameterless call, we use the name of
5332 -- the called function directly, and there is no body to build.
5334 elsif Nkind (Dcopy) = N_Function_Call
5335 and then No (Parameter_Associations (Dcopy))
5336 then
5337 null;
5339 -- Else construct and analyze the body of a wrapper procedure
5340 -- that contains an object declaration to hold the expression.
5341 -- Given that this is done only to complete the analysis, it
5342 -- simpler to build a procedure than a function which might
5343 -- involve secondary stack expansion.
5345 else
5346 Dnam :=
5347 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5349 Dbody :=
5350 Make_Subprogram_Body (Loc,
5351 Specification =>
5352 Make_Procedure_Specification (Loc,
5353 Defining_Unit_Name => Dnam),
5355 Declarations => New_List (
5356 Make_Object_Declaration (Loc,
5357 Defining_Identifier =>
5358 Make_Defining_Identifier (Loc,
5359 New_Internal_Name ('T')),
5360 Object_Definition =>
5361 New_Occurrence_Of (Etype (Formal), Loc),
5362 Expression => New_Copy_Tree (Dcopy))),
5364 Handled_Statement_Sequence =>
5365 Make_Handled_Sequence_Of_Statements (Loc,
5366 Statements => New_List));
5368 Set_Scope (Dnam, Scope (E));
5369 Set_Assignment_OK (First (Declarations (Dbody)));
5370 Set_Is_Eliminated (Dnam);
5371 Insert_After (After, Dbody);
5372 Analyze (Dbody);
5373 After := Dbody;
5374 end if;
5375 end if;
5377 Next_Formal (Formal);
5378 end loop;
5379 end Process_Default_Expressions;
5381 ----------------------------------------
5382 -- Set_Component_Alignment_If_Not_Set --
5383 ----------------------------------------
5385 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5386 begin
5387 -- Ignore if not base type, subtypes don't need anything
5389 if Typ /= Base_Type (Typ) then
5390 return;
5391 end if;
5393 -- Do not override existing representation
5395 if Is_Packed (Typ) then
5396 return;
5398 elsif Has_Specified_Layout (Typ) then
5399 return;
5401 elsif Component_Alignment (Typ) /= Calign_Default then
5402 return;
5404 else
5405 Set_Component_Alignment
5406 (Typ, Scope_Stack.Table
5407 (Scope_Stack.Last).Component_Alignment_Default);
5408 end if;
5409 end Set_Component_Alignment_If_Not_Set;
5411 ------------------
5412 -- Undelay_Type --
5413 ------------------
5415 procedure Undelay_Type (T : Entity_Id) is
5416 begin
5417 Set_Has_Delayed_Freeze (T, False);
5418 Set_Freeze_Node (T, Empty);
5420 -- Since we don't want T to have a Freeze_Node, we don't want its
5421 -- Full_View or Corresponding_Record_Type to have one either.
5423 -- ??? Fundamentally, this whole handling is a kludge. What we really
5424 -- want is to be sure that for an Itype that's part of record R and is a
5425 -- subtype of type T, that it's frozen after the later of the freeze
5426 -- points of R and T. We have no way of doing that directly, so what we
5427 -- do is force most such Itypes to be frozen as part of freezing R via
5428 -- this procedure and only delay the ones that need to be delayed
5429 -- (mostly the designated types of access types that are defined as part
5430 -- of the record).
5432 if Is_Private_Type (T)
5433 and then Present (Full_View (T))
5434 and then Is_Itype (Full_View (T))
5435 and then Is_Record_Type (Scope (Full_View (T)))
5436 then
5437 Undelay_Type (Full_View (T));
5438 end if;
5440 if Is_Concurrent_Type (T)
5441 and then Present (Corresponding_Record_Type (T))
5442 and then Is_Itype (Corresponding_Record_Type (T))
5443 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5444 then
5445 Undelay_Type (Corresponding_Record_Type (T));
5446 end if;
5447 end Undelay_Type;
5449 ------------------
5450 -- Warn_Overlay --
5451 ------------------
5453 procedure Warn_Overlay
5454 (Expr : Node_Id;
5455 Typ : Entity_Id;
5456 Nam : Entity_Id)
5458 Ent : constant Entity_Id := Entity (Nam);
5459 -- The object to which the address clause applies
5461 Init : Node_Id;
5462 Old : Entity_Id := Empty;
5463 Decl : Node_Id;
5465 begin
5466 -- No warning if address clause overlay warnings are off
5468 if not Address_Clause_Overlay_Warnings then
5469 return;
5470 end if;
5472 -- No warning if there is an explicit initialization
5474 Init := Original_Node (Expression (Declaration_Node (Ent)));
5476 if Present (Init) and then Comes_From_Source (Init) then
5477 return;
5478 end if;
5480 -- We only give the warning for non-imported entities of a type for
5481 -- which a non-null base init proc is defined, or for objects of access
5482 -- types with implicit null initialization, or when Initialize_Scalars
5483 -- applies and the type is scalar or a string type (the latter being
5484 -- tested for because predefined String types are initialized by inline
5485 -- code rather than by an init_proc).
5487 if Present (Expr)
5488 and then not Is_Imported (Ent)
5489 and then (Has_Non_Null_Base_Init_Proc (Typ)
5490 or else Is_Access_Type (Typ)
5491 or else (Init_Or_Norm_Scalars
5492 and then (Is_Scalar_Type (Typ)
5493 or else Is_String_Type (Typ))))
5494 then
5495 if Nkind (Expr) = N_Attribute_Reference
5496 and then Is_Entity_Name (Prefix (Expr))
5497 then
5498 Old := Entity (Prefix (Expr));
5500 elsif Is_Entity_Name (Expr)
5501 and then Ekind (Entity (Expr)) = E_Constant
5502 then
5503 Decl := Declaration_Node (Entity (Expr));
5505 if Nkind (Decl) = N_Object_Declaration
5506 and then Present (Expression (Decl))
5507 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5508 and then Is_Entity_Name (Prefix (Expression (Decl)))
5509 then
5510 Old := Entity (Prefix (Expression (Decl)));
5512 elsif Nkind (Expr) = N_Function_Call then
5513 return;
5514 end if;
5516 -- A function call (most likely to To_Address) is probably not an
5517 -- overlay, so skip warning. Ditto if the function call was inlined
5518 -- and transformed into an entity.
5520 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5521 return;
5522 end if;
5524 Decl := Next (Parent (Expr));
5526 -- If a pragma Import follows, we assume that it is for the current
5527 -- target of the address clause, and skip the warning.
5529 if Present (Decl)
5530 and then Nkind (Decl) = N_Pragma
5531 and then Pragma_Name (Decl) = Name_Import
5532 then
5533 return;
5534 end if;
5536 if Present (Old) then
5537 Error_Msg_Node_2 := Old;
5538 Error_Msg_N
5539 ("default initialization of & may modify &?",
5540 Nam);
5541 else
5542 Error_Msg_N
5543 ("default initialization of & may modify overlaid storage?",
5544 Nam);
5545 end if;
5547 -- Add friendly warning if initialization comes from a packed array
5548 -- component.
5550 if Is_Record_Type (Typ) then
5551 declare
5552 Comp : Entity_Id;
5554 begin
5555 Comp := First_Component (Typ);
5557 while Present (Comp) loop
5558 if Nkind (Parent (Comp)) = N_Component_Declaration
5559 and then Present (Expression (Parent (Comp)))
5560 then
5561 exit;
5562 elsif Is_Array_Type (Etype (Comp))
5563 and then Present (Packed_Array_Type (Etype (Comp)))
5564 then
5565 Error_Msg_NE
5566 ("\packed array component& " &
5567 "will be initialized to zero?",
5568 Nam, Comp);
5569 exit;
5570 else
5571 Next_Component (Comp);
5572 end if;
5573 end loop;
5574 end;
5575 end if;
5577 Error_Msg_N
5578 ("\use pragma Import for & to " &
5579 "suppress initialization (RM B.1(24))?",
5580 Nam);
5581 end if;
5582 end Warn_Overlay;
5584 end Freeze;