1 -----------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- You should have received a copy of the GNU General Public License along --
19 -- with this program; see file COPYING3. If not see --
20 -- <http://www.gnu.org/licenses/>. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Ch3
; use Exp_Ch3
;
33 with Exp_Ch7
; use Exp_Ch7
;
34 with Exp_Disp
; use Exp_Disp
;
35 with Exp_Pakd
; use Exp_Pakd
;
36 with Exp_Util
; use Exp_Util
;
37 with Exp_Tss
; use Exp_Tss
;
38 with Layout
; use Layout
;
39 with Lib
.Xref
; use Lib
.Xref
;
40 with Namet
; use Namet
;
41 with Nlists
; use Nlists
;
42 with Nmake
; use Nmake
;
44 with Restrict
; use Restrict
;
45 with Rident
; use Rident
;
47 with Sem_Aux
; use Sem_Aux
;
48 with Sem_Cat
; use Sem_Cat
;
49 with Sem_Ch6
; use Sem_Ch6
;
50 with Sem_Ch7
; use Sem_Ch7
;
51 with Sem_Ch8
; use Sem_Ch8
;
52 with Sem_Ch13
; use Sem_Ch13
;
53 with Sem_Eval
; use Sem_Eval
;
54 with Sem_Mech
; use Sem_Mech
;
55 with Sem_Prag
; use Sem_Prag
;
56 with Sem_Res
; use Sem_Res
;
57 with Sem_Util
; use Sem_Util
;
58 with Sinfo
; use Sinfo
;
59 with Snames
; use Snames
;
60 with Stand
; use Stand
;
61 with Targparm
; use Targparm
;
62 with Tbuild
; use Tbuild
;
63 with Ttypes
; use Ttypes
;
64 with Uintp
; use Uintp
;
65 with Urealp
; use Urealp
;
67 package body Freeze
is
69 -----------------------
70 -- Local Subprograms --
71 -----------------------
73 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
);
74 -- Typ is a type that is being frozen. If no size clause is given,
75 -- but a default Esize has been computed, then this default Esize is
76 -- adjusted up if necessary to be consistent with a given alignment,
77 -- but never to a value greater than Long_Long_Integer'Size. This
78 -- is used for all discrete types and for fixed-point types.
80 procedure Build_And_Analyze_Renamed_Body
83 After
: in out Node_Id
);
84 -- Build body for a renaming declaration, insert in tree and analyze
86 procedure Check_Address_Clause
(E
: Entity_Id
);
87 -- Apply legality checks to address clauses for object declarations,
88 -- at the point the object is frozen.
90 procedure Check_Strict_Alignment
(E
: Entity_Id
);
91 -- E is a base type. If E is tagged or has a component that is aliased
92 -- or tagged or contains something this is aliased or tagged, set
95 procedure Check_Unsigned_Type
(E
: Entity_Id
);
96 pragma Inline
(Check_Unsigned_Type
);
97 -- If E is a fixed-point or discrete type, then all the necessary work
98 -- to freeze it is completed except for possible setting of the flag
99 -- Is_Unsigned_Type, which is done by this procedure. The call has no
100 -- effect if the entity E is not a discrete or fixed-point type.
102 procedure Freeze_And_Append
105 Result
: in out List_Id
);
106 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
107 -- nodes to Result, modifying Result from No_List if necessary.
109 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
);
110 -- Freeze enumeration type. The Esize field is set as processing
111 -- proceeds (i.e. set by default when the type is declared and then
112 -- adjusted by rep clauses. What this procedure does is to make sure
113 -- that if a foreign convention is specified, and no specific size
114 -- is given, then the size must be at least Integer'Size.
116 procedure Freeze_Static_Object
(E
: Entity_Id
);
117 -- If an object is frozen which has Is_Statically_Allocated set, then
118 -- all referenced types must also be marked with this flag. This routine
119 -- is in charge of meeting this requirement for the object entity E.
121 procedure Freeze_Subprogram
(E
: Entity_Id
);
122 -- Perform freezing actions for a subprogram (create extra formals,
123 -- and set proper default mechanism values). Note that this routine
124 -- is not called for internal subprograms, for which neither of these
125 -- actions is needed (or desirable, we do not want for example to have
126 -- these extra formals present in initialization procedures, where they
127 -- would serve no purpose). In this call E is either a subprogram or
128 -- a subprogram type (i.e. an access to a subprogram).
130 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean;
131 -- True if T is not private and has no private components, or has a full
132 -- view. Used to determine whether the designated type of an access type
133 -- should be frozen when the access type is frozen. This is done when an
134 -- allocator is frozen, or an expression that may involve attributes of
135 -- the designated type. Otherwise freezing the access type does not freeze
136 -- the designated type.
138 procedure Generate_Prim_Op_References
(Typ
: Entity_Id
);
139 -- For a tagged type, generate implicit references to its primitive
140 -- operations, for source navigation.
142 procedure Process_Default_Expressions
144 After
: in out Node_Id
);
145 -- This procedure is called for each subprogram to complete processing
146 -- of default expressions at the point where all types are known to be
147 -- frozen. The expressions must be analyzed in full, to make sure that
148 -- all error processing is done (they have only been pre-analyzed). If
149 -- the expression is not an entity or literal, its analysis may generate
150 -- code which must not be executed. In that case we build a function
151 -- body to hold that code. This wrapper function serves no other purpose
152 -- (it used to be called to evaluate the default, but now the default is
153 -- inlined at each point of call).
155 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
);
156 -- Typ is a record or array type that is being frozen. This routine
157 -- sets the default component alignment from the scope stack values
158 -- if the alignment is otherwise not specified.
160 procedure Check_Debug_Info_Needed
(T
: Entity_Id
);
161 -- As each entity is frozen, this routine is called to deal with the
162 -- setting of Debug_Info_Needed for the entity. This flag is set if
163 -- the entity comes from source, or if we are in Debug_Generated_Code
164 -- mode or if the -gnatdV debug flag is set. However, it never sets
165 -- the flag if Debug_Info_Off is set. This procedure also ensures that
166 -- subsidiary entities have the flag set as required.
168 procedure Undelay_Type
(T
: Entity_Id
);
169 -- T is a type of a component that we know to be an Itype.
170 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
171 -- Do the same for any Full_View or Corresponding_Record_Type.
173 procedure Warn_Overlay
177 -- Expr is the expression for an address clause for entity Nam whose type
178 -- is Typ. If Typ has a default initialization, and there is no explicit
179 -- initialization in the source declaration, check whether the address
180 -- clause might cause overlaying of an entity, and emit a warning on the
181 -- side effect that the initialization will cause.
183 -------------------------------
184 -- Adjust_Esize_For_Alignment --
185 -------------------------------
187 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
) is
191 if Known_Esize
(Typ
) and then Known_Alignment
(Typ
) then
192 Align
:= Alignment_In_Bits
(Typ
);
194 if Align
> Esize
(Typ
)
195 and then Align
<= Standard_Long_Long_Integer_Size
197 Set_Esize
(Typ
, Align
);
200 end Adjust_Esize_For_Alignment
;
202 ------------------------------------
203 -- Build_And_Analyze_Renamed_Body --
204 ------------------------------------
206 procedure Build_And_Analyze_Renamed_Body
209 After
: in out Node_Id
)
211 Body_Node
: constant Node_Id
:= Build_Renamed_Body
(Decl
, New_S
);
213 Insert_After
(After
, Body_Node
);
214 Mark_Rewrite_Insertion
(Body_Node
);
217 end Build_And_Analyze_Renamed_Body
;
219 ------------------------
220 -- Build_Renamed_Body --
221 ------------------------
223 function Build_Renamed_Body
225 New_S
: Entity_Id
) return Node_Id
227 Loc
: constant Source_Ptr
:= Sloc
(New_S
);
228 -- We use for the source location of the renamed body, the location
229 -- of the spec entity. It might seem more natural to use the location
230 -- of the renaming declaration itself, but that would be wrong, since
231 -- then the body we create would look as though it was created far
232 -- too late, and this could cause problems with elaboration order
233 -- analysis, particularly in connection with instantiations.
235 N
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
236 Nam
: constant Node_Id
:= Name
(N
);
238 Spec
: constant Node_Id
:= New_Copy_Tree
(Specification
(Decl
));
239 Actuals
: List_Id
:= No_List
;
244 O_Formal
: Entity_Id
;
245 Param_Spec
: Node_Id
;
247 Pref
: Node_Id
:= Empty
;
248 -- If the renamed entity is a primitive operation given in prefix form,
249 -- the prefix is the target object and it has to be added as the first
250 -- actual in the generated call.
253 -- Determine the entity being renamed, which is the target of the call
254 -- statement. If the name is an explicit dereference, this is a renaming
255 -- of a subprogram type rather than a subprogram. The name itself is
258 if Nkind
(Nam
) = N_Selected_Component
then
259 Old_S
:= Entity
(Selector_Name
(Nam
));
261 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
262 Old_S
:= Etype
(Nam
);
264 elsif Nkind
(Nam
) = N_Indexed_Component
then
265 if Is_Entity_Name
(Prefix
(Nam
)) then
266 Old_S
:= Entity
(Prefix
(Nam
));
268 Old_S
:= Entity
(Selector_Name
(Prefix
(Nam
)));
271 elsif Nkind
(Nam
) = N_Character_Literal
then
272 Old_S
:= Etype
(New_S
);
275 Old_S
:= Entity
(Nam
);
278 if Is_Entity_Name
(Nam
) then
280 -- If the renamed entity is a predefined operator, retain full name
281 -- to ensure its visibility.
283 if Ekind
(Old_S
) = E_Operator
284 and then Nkind
(Nam
) = N_Expanded_Name
286 Call_Name
:= New_Copy
(Name
(N
));
288 Call_Name
:= New_Reference_To
(Old_S
, Loc
);
292 if Nkind
(Nam
) = N_Selected_Component
293 and then Present
(First_Formal
(Old_S
))
295 (Is_Controlling_Formal
(First_Formal
(Old_S
))
296 or else Is_Class_Wide_Type
(Etype
(First_Formal
(Old_S
))))
299 -- Retrieve the target object, to be added as a first actual
302 Call_Name
:= New_Occurrence_Of
(Old_S
, Loc
);
303 Pref
:= Prefix
(Nam
);
306 Call_Name
:= New_Copy
(Name
(N
));
309 -- The original name may have been overloaded, but
310 -- is fully resolved now.
312 Set_Is_Overloaded
(Call_Name
, False);
315 -- For simple renamings, subsequent calls can be expanded directly as
316 -- called to the renamed entity. The body must be generated in any case
317 -- for calls they may appear elsewhere.
319 if (Ekind
(Old_S
) = E_Function
320 or else Ekind
(Old_S
) = E_Procedure
)
321 and then Nkind
(Decl
) = N_Subprogram_Declaration
323 Set_Body_To_Inline
(Decl
, Old_S
);
326 -- The body generated for this renaming is an internal artifact, and
327 -- does not constitute a freeze point for the called entity.
329 Set_Must_Not_Freeze
(Call_Name
);
331 Formal
:= First_Formal
(Defining_Entity
(Decl
));
333 if Present
(Pref
) then
335 Pref_Type
: constant Entity_Id
:= Etype
(Pref
);
336 Form_Type
: constant Entity_Id
:= Etype
(First_Formal
(Old_S
));
340 -- The controlling formal may be an access parameter, or the
341 -- actual may be an access value, so adjust accordingly.
343 if Is_Access_Type
(Pref_Type
)
344 and then not Is_Access_Type
(Form_Type
)
347 (Make_Explicit_Dereference
(Loc
, Relocate_Node
(Pref
)));
349 elsif Is_Access_Type
(Form_Type
)
350 and then not Is_Access_Type
(Pref
)
353 (Make_Attribute_Reference
(Loc
,
354 Attribute_Name
=> Name_Access
,
355 Prefix
=> Relocate_Node
(Pref
)));
357 Actuals
:= New_List
(Pref
);
361 elsif Present
(Formal
) then
368 if Present
(Formal
) then
369 while Present
(Formal
) loop
370 Append
(New_Reference_To
(Formal
, Loc
), Actuals
);
371 Next_Formal
(Formal
);
375 -- If the renamed entity is an entry, inherit its profile. For other
376 -- renamings as bodies, both profiles must be subtype conformant, so it
377 -- is not necessary to replace the profile given in the declaration.
378 -- However, default values that are aggregates are rewritten when
379 -- partially analyzed, so we recover the original aggregate to insure
380 -- that subsequent conformity checking works. Similarly, if the default
381 -- expression was constant-folded, recover the original expression.
383 Formal
:= First_Formal
(Defining_Entity
(Decl
));
385 if Present
(Formal
) then
386 O_Formal
:= First_Formal
(Old_S
);
387 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
389 while Present
(Formal
) loop
390 if Is_Entry
(Old_S
) then
392 if Nkind
(Parameter_Type
(Param_Spec
)) /=
395 Set_Etype
(Formal
, Etype
(O_Formal
));
396 Set_Entity
(Parameter_Type
(Param_Spec
), Etype
(O_Formal
));
399 elsif Nkind
(Default_Value
(O_Formal
)) = N_Aggregate
400 or else Nkind
(Original_Node
(Default_Value
(O_Formal
))) /=
401 Nkind
(Default_Value
(O_Formal
))
403 Set_Expression
(Param_Spec
,
404 New_Copy_Tree
(Original_Node
(Default_Value
(O_Formal
))));
407 Next_Formal
(Formal
);
408 Next_Formal
(O_Formal
);
413 -- If the renamed entity is a function, the generated body contains a
414 -- return statement. Otherwise, build a procedure call. If the entity is
415 -- an entry, subsequent analysis of the call will transform it into the
416 -- proper entry or protected operation call. If the renamed entity is
417 -- a character literal, return it directly.
419 if Ekind
(Old_S
) = E_Function
420 or else Ekind
(Old_S
) = E_Operator
421 or else (Ekind
(Old_S
) = E_Subprogram_Type
422 and then Etype
(Old_S
) /= Standard_Void_Type
)
425 Make_Simple_Return_Statement
(Loc
,
427 Make_Function_Call
(Loc
,
429 Parameter_Associations
=> Actuals
));
431 elsif Ekind
(Old_S
) = E_Enumeration_Literal
then
433 Make_Simple_Return_Statement
(Loc
,
434 Expression
=> New_Occurrence_Of
(Old_S
, Loc
));
436 elsif Nkind
(Nam
) = N_Character_Literal
then
438 Make_Simple_Return_Statement
(Loc
,
439 Expression
=> Call_Name
);
443 Make_Procedure_Call_Statement
(Loc
,
445 Parameter_Associations
=> Actuals
);
448 -- Create entities for subprogram body and formals
450 Set_Defining_Unit_Name
(Spec
,
451 Make_Defining_Identifier
(Loc
, Chars
=> Chars
(New_S
)));
453 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
455 while Present
(Param_Spec
) loop
456 Set_Defining_Identifier
(Param_Spec
,
457 Make_Defining_Identifier
(Loc
,
458 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
463 Make_Subprogram_Body
(Loc
,
464 Specification
=> Spec
,
465 Declarations
=> New_List
,
466 Handled_Statement_Sequence
=>
467 Make_Handled_Sequence_Of_Statements
(Loc
,
468 Statements
=> New_List
(Call_Node
)));
470 if Nkind
(Decl
) /= N_Subprogram_Declaration
then
472 Make_Subprogram_Declaration
(Loc
,
473 Specification
=> Specification
(N
)));
476 -- Link the body to the entity whose declaration it completes. If
477 -- the body is analyzed when the renamed entity is frozen, it may
478 -- be necessary to restore the proper scope (see package Exp_Ch13).
480 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
481 and then Present
(Corresponding_Spec
(N
))
483 Set_Corresponding_Spec
(Body_Node
, Corresponding_Spec
(N
));
485 Set_Corresponding_Spec
(Body_Node
, New_S
);
489 end Build_Renamed_Body
;
491 --------------------------
492 -- Check_Address_Clause --
493 --------------------------
495 procedure Check_Address_Clause
(E
: Entity_Id
) is
496 Addr
: constant Node_Id
:= Address_Clause
(E
);
498 Decl
: constant Node_Id
:= Declaration_Node
(E
);
499 Typ
: constant Entity_Id
:= Etype
(E
);
502 if Present
(Addr
) then
503 Expr
:= Expression
(Addr
);
505 -- If we have no initialization of any kind, then we don't need to
506 -- place any restrictions on the address clause, because the object
507 -- will be elaborated after the address clause is evaluated. This
508 -- happens if the declaration has no initial expression, or the type
509 -- has no implicit initialization, or the object is imported.
511 -- The same holds for all initialized scalar types and all access
512 -- types. Packed bit arrays of size up to 64 are represented using a
513 -- modular type with an initialization (to zero) and can be processed
514 -- like other initialized scalar types.
516 -- If the type is controlled, code to attach the object to a
517 -- finalization chain is generated at the point of declaration,
518 -- and therefore the elaboration of the object cannot be delayed:
519 -- the address expression must be a constant.
521 if (No
(Expression
(Decl
))
522 and then not Needs_Finalization
(Typ
)
524 (not Has_Non_Null_Base_Init_Proc
(Typ
)
525 or else Is_Imported
(E
)))
528 (Present
(Expression
(Decl
))
529 and then Is_Scalar_Type
(Typ
))
535 (Is_Bit_Packed_Array
(Typ
)
537 Is_Modular_Integer_Type
(Packed_Array_Type
(Typ
)))
541 -- Otherwise, we require the address clause to be constant because
542 -- the call to the initialization procedure (or the attach code) has
543 -- to happen at the point of the declaration.
546 Check_Constant_Address_Clause
(Expr
, E
);
547 Set_Has_Delayed_Freeze
(E
, False);
550 if not Error_Posted
(Expr
)
551 and then not Needs_Finalization
(Typ
)
553 Warn_Overlay
(Expr
, Typ
, Name
(Addr
));
556 end Check_Address_Clause
;
558 -----------------------------
559 -- Check_Compile_Time_Size --
560 -----------------------------
562 procedure Check_Compile_Time_Size
(T
: Entity_Id
) is
564 procedure Set_Small_Size
(T
: Entity_Id
; S
: Uint
);
565 -- Sets the compile time known size (32 bits or less) in the Esize
566 -- field, of T checking for a size clause that was given which attempts
567 -- to give a smaller size.
569 function Size_Known
(T
: Entity_Id
) return Boolean;
570 -- Recursive function that does all the work
572 function Static_Discriminated_Components
(T
: Entity_Id
) return Boolean;
573 -- If T is a constrained subtype, its size is not known if any of its
574 -- discriminant constraints is not static and it is not a null record.
575 -- The test is conservative and doesn't check that the components are
576 -- in fact constrained by non-static discriminant values. Could be made
583 procedure Set_Small_Size
(T
: Entity_Id
; S
: Uint
) is
588 elsif Has_Size_Clause
(T
) then
589 if RM_Size
(T
) < S
then
590 Error_Msg_Uint_1
:= S
;
592 ("size for & too small, minimum allowed is ^",
595 elsif Unknown_Esize
(T
) then
599 -- Set sizes if not set already
602 if Unknown_Esize
(T
) then
606 if Unknown_RM_Size
(T
) then
616 function Size_Known
(T
: Entity_Id
) return Boolean is
624 if Size_Known_At_Compile_Time
(T
) then
627 -- Always True for scalar types. This is true even for generic formal
628 -- scalar types. We used to return False in the latter case, but the
629 -- size is known at compile time, even in the template, we just do
630 -- not know the exact size but that's not the point of this routine.
632 elsif Is_Scalar_Type
(T
)
633 or else Is_Task_Type
(T
)
639 elsif Is_Array_Type
(T
) then
641 -- String literals always have known size, and we can set it
643 if Ekind
(T
) = E_String_Literal_Subtype
then
644 Set_Small_Size
(T
, Component_Size
(T
)
645 * String_Literal_Length
(T
));
648 -- Unconstrained types never have known at compile time size
650 elsif not Is_Constrained
(T
) then
653 -- Don't do any recursion on type with error posted, since we may
654 -- have a malformed type that leads us into a loop.
656 elsif Error_Posted
(T
) then
659 -- Otherwise if component size unknown, then array size unknown
661 elsif not Size_Known
(Component_Type
(T
)) then
665 -- Check for all indexes static, and also compute possible size
666 -- (in case it is less than 32 and may be packable).
669 Esiz
: Uint
:= Component_Size
(T
);
673 Index
:= First_Index
(T
);
674 while Present
(Index
) loop
675 if Nkind
(Index
) = N_Range
then
676 Get_Index_Bounds
(Index
, Low
, High
);
678 elsif Error_Posted
(Scalar_Range
(Etype
(Index
))) then
682 Low
:= Type_Low_Bound
(Etype
(Index
));
683 High
:= Type_High_Bound
(Etype
(Index
));
686 if not Compile_Time_Known_Value
(Low
)
687 or else not Compile_Time_Known_Value
(High
)
688 or else Etype
(Index
) = Any_Type
693 Dim
:= Expr_Value
(High
) - Expr_Value
(Low
) + 1;
705 Set_Small_Size
(T
, Esiz
);
709 -- Access types always have known at compile time sizes
711 elsif Is_Access_Type
(T
) then
714 -- For non-generic private types, go to underlying type if present
716 elsif Is_Private_Type
(T
)
717 and then not Is_Generic_Type
(T
)
718 and then Present
(Underlying_Type
(T
))
720 -- Don't do any recursion on type with error posted, since we may
721 -- have a malformed type that leads us into a loop.
723 if Error_Posted
(T
) then
726 return Size_Known
(Underlying_Type
(T
));
731 elsif Is_Record_Type
(T
) then
733 -- A class-wide type is never considered to have a known size
735 if Is_Class_Wide_Type
(T
) then
738 -- A subtype of a variant record must not have non-static
739 -- discriminanted components.
741 elsif T
/= Base_Type
(T
)
742 and then not Static_Discriminated_Components
(T
)
746 -- Don't do any recursion on type with error posted, since we may
747 -- have a malformed type that leads us into a loop.
749 elsif Error_Posted
(T
) then
753 -- Now look at the components of the record
756 -- The following two variables are used to keep track of the
757 -- size of packed records if we can tell the size of the packed
758 -- record in the front end. Packed_Size_Known is True if so far
759 -- we can figure out the size. It is initialized to True for a
760 -- packed record, unless the record has discriminants. The
761 -- reason we eliminate the discriminated case is that we don't
762 -- know the way the back end lays out discriminated packed
763 -- records. If Packed_Size_Known is True, then Packed_Size is
764 -- the size in bits so far.
766 Packed_Size_Known
: Boolean :=
768 and then not Has_Discriminants
(T
);
770 Packed_Size
: Uint
:= Uint_0
;
773 -- Test for variant part present
775 if Has_Discriminants
(T
)
776 and then Present
(Parent
(T
))
777 and then Nkind
(Parent
(T
)) = N_Full_Type_Declaration
778 and then Nkind
(Type_Definition
(Parent
(T
))) =
780 and then not Null_Present
(Type_Definition
(Parent
(T
)))
781 and then Present
(Variant_Part
782 (Component_List
(Type_Definition
(Parent
(T
)))))
784 -- If variant part is present, and type is unconstrained,
785 -- then we must have defaulted discriminants, or a size
786 -- clause must be present for the type, or else the size
787 -- is definitely not known at compile time.
789 if not Is_Constrained
(T
)
791 No
(Discriminant_Default_Value
792 (First_Discriminant
(T
)))
793 and then Unknown_Esize
(T
)
799 -- Loop through components
801 Comp
:= First_Component_Or_Discriminant
(T
);
802 while Present
(Comp
) loop
803 Ctyp
:= Etype
(Comp
);
805 -- We do not know the packed size if there is a component
806 -- clause present (we possibly could, but this would only
807 -- help in the case of a record with partial rep clauses.
808 -- That's because in the case of full rep clauses, the
809 -- size gets figured out anyway by a different circuit).
811 if Present
(Component_Clause
(Comp
)) then
812 Packed_Size_Known
:= False;
815 -- We need to identify a component that is an array where
816 -- the index type is an enumeration type with non-standard
817 -- representation, and some bound of the type depends on a
820 -- This is because gigi computes the size by doing a
821 -- substitution of the appropriate discriminant value in
822 -- the size expression for the base type, and gigi is not
823 -- clever enough to evaluate the resulting expression (which
824 -- involves a call to rep_to_pos) at compile time.
826 -- It would be nice if gigi would either recognize that
827 -- this expression can be computed at compile time, or
828 -- alternatively figured out the size from the subtype
829 -- directly, where all the information is at hand ???
831 if Is_Array_Type
(Etype
(Comp
))
832 and then Present
(Packed_Array_Type
(Etype
(Comp
)))
835 Ocomp
: constant Entity_Id
:=
836 Original_Record_Component
(Comp
);
837 OCtyp
: constant Entity_Id
:= Etype
(Ocomp
);
843 Ind
:= First_Index
(OCtyp
);
844 while Present
(Ind
) loop
845 Indtyp
:= Etype
(Ind
);
847 if Is_Enumeration_Type
(Indtyp
)
848 and then Has_Non_Standard_Rep
(Indtyp
)
850 Lo
:= Type_Low_Bound
(Indtyp
);
851 Hi
:= Type_High_Bound
(Indtyp
);
853 if Is_Entity_Name
(Lo
)
854 and then Ekind
(Entity
(Lo
)) = E_Discriminant
858 elsif Is_Entity_Name
(Hi
)
859 and then Ekind
(Entity
(Hi
)) = E_Discriminant
870 -- Clearly size of record is not known if the size of one of
871 -- the components is not known.
873 if not Size_Known
(Ctyp
) then
877 -- Accumulate packed size if possible
879 if Packed_Size_Known
then
881 -- We can only deal with elementary types, since for
882 -- non-elementary components, alignment enters into the
883 -- picture, and we don't know enough to handle proper
884 -- alignment in this context. Packed arrays count as
885 -- elementary if the representation is a modular type.
887 if Is_Elementary_Type
(Ctyp
)
888 or else (Is_Array_Type
(Ctyp
)
889 and then Present
(Packed_Array_Type
(Ctyp
))
890 and then Is_Modular_Integer_Type
891 (Packed_Array_Type
(Ctyp
)))
893 -- If RM_Size is known and static, then we can
894 -- keep accumulating the packed size.
896 if Known_Static_RM_Size
(Ctyp
) then
898 -- A little glitch, to be removed sometime ???
899 -- gigi does not understand zero sizes yet.
901 if RM_Size
(Ctyp
) = Uint_0
then
902 Packed_Size_Known
:= False;
904 -- Normal case where we can keep accumulating the
905 -- packed array size.
908 Packed_Size
:= Packed_Size
+ RM_Size
(Ctyp
);
911 -- If we have a field whose RM_Size is not known then
912 -- we can't figure out the packed size here.
915 Packed_Size_Known
:= False;
918 -- If we have a non-elementary type we can't figure out
919 -- the packed array size (alignment issues).
922 Packed_Size_Known
:= False;
926 Next_Component_Or_Discriminant
(Comp
);
929 if Packed_Size_Known
then
930 Set_Small_Size
(T
, Packed_Size
);
936 -- All other cases, size not known at compile time
943 -------------------------------------
944 -- Static_Discriminated_Components --
945 -------------------------------------
947 function Static_Discriminated_Components
948 (T
: Entity_Id
) return Boolean
950 Constraint
: Elmt_Id
;
953 if Has_Discriminants
(T
)
954 and then Present
(Discriminant_Constraint
(T
))
955 and then Present
(First_Component
(T
))
957 Constraint
:= First_Elmt
(Discriminant_Constraint
(T
));
958 while Present
(Constraint
) loop
959 if not Compile_Time_Known_Value
(Node
(Constraint
)) then
963 Next_Elmt
(Constraint
);
968 end Static_Discriminated_Components
;
970 -- Start of processing for Check_Compile_Time_Size
973 Set_Size_Known_At_Compile_Time
(T
, Size_Known
(T
));
974 end Check_Compile_Time_Size
;
976 -----------------------------
977 -- Check_Debug_Info_Needed --
978 -----------------------------
980 procedure Check_Debug_Info_Needed
(T
: Entity_Id
) is
982 if Debug_Info_Off
(T
) then
985 elsif Comes_From_Source
(T
)
986 or else Debug_Generated_Code
987 or else Debug_Flag_VV
988 or else Needs_Debug_Info
(T
)
990 Set_Debug_Info_Needed
(T
);
992 end Check_Debug_Info_Needed
;
994 ----------------------------
995 -- Check_Strict_Alignment --
996 ----------------------------
998 procedure Check_Strict_Alignment
(E
: Entity_Id
) is
1002 if Is_Tagged_Type
(E
) or else Is_Concurrent_Type
(E
) then
1003 Set_Strict_Alignment
(E
);
1005 elsif Is_Array_Type
(E
) then
1006 Set_Strict_Alignment
(E
, Strict_Alignment
(Component_Type
(E
)));
1008 elsif Is_Record_Type
(E
) then
1009 if Is_Limited_Record
(E
) then
1010 Set_Strict_Alignment
(E
);
1014 Comp
:= First_Component
(E
);
1016 while Present
(Comp
) loop
1017 if not Is_Type
(Comp
)
1018 and then (Strict_Alignment
(Etype
(Comp
))
1019 or else Is_Aliased
(Comp
))
1021 Set_Strict_Alignment
(E
);
1025 Next_Component
(Comp
);
1028 end Check_Strict_Alignment
;
1030 -------------------------
1031 -- Check_Unsigned_Type --
1032 -------------------------
1034 procedure Check_Unsigned_Type
(E
: Entity_Id
) is
1035 Ancestor
: Entity_Id
;
1040 if not Is_Discrete_Or_Fixed_Point_Type
(E
) then
1044 -- Do not attempt to analyze case where range was in error
1046 if Error_Posted
(Scalar_Range
(E
)) then
1050 -- The situation that is non trivial is something like
1052 -- subtype x1 is integer range -10 .. +10;
1053 -- subtype x2 is x1 range 0 .. V1;
1054 -- subtype x3 is x2 range V2 .. V3;
1055 -- subtype x4 is x3 range V4 .. V5;
1057 -- where Vn are variables. Here the base type is signed, but we still
1058 -- know that x4 is unsigned because of the lower bound of x2.
1060 -- The only way to deal with this is to look up the ancestor chain
1064 if Ancestor
= Any_Type
or else Etype
(Ancestor
) = Any_Type
then
1068 Lo_Bound
:= Type_Low_Bound
(Ancestor
);
1070 if Compile_Time_Known_Value
(Lo_Bound
) then
1072 if Expr_Rep_Value
(Lo_Bound
) >= 0 then
1073 Set_Is_Unsigned_Type
(E
, True);
1079 Ancestor
:= Ancestor_Subtype
(Ancestor
);
1081 -- If no ancestor had a static lower bound, go to base type
1083 if No
(Ancestor
) then
1085 -- Note: the reason we still check for a compile time known
1086 -- value for the base type is that at least in the case of
1087 -- generic formals, we can have bounds that fail this test,
1088 -- and there may be other cases in error situations.
1090 Btyp
:= Base_Type
(E
);
1092 if Btyp
= Any_Type
or else Etype
(Btyp
) = Any_Type
then
1096 Lo_Bound
:= Type_Low_Bound
(Base_Type
(E
));
1098 if Compile_Time_Known_Value
(Lo_Bound
)
1099 and then Expr_Rep_Value
(Lo_Bound
) >= 0
1101 Set_Is_Unsigned_Type
(E
, True);
1108 end Check_Unsigned_Type
;
1110 -----------------------------
1111 -- Expand_Atomic_Aggregate --
1112 -----------------------------
1114 procedure Expand_Atomic_Aggregate
(E
: Entity_Id
; Typ
: Entity_Id
) is
1115 Loc
: constant Source_Ptr
:= Sloc
(E
);
1120 if (Nkind
(Parent
(E
)) = N_Object_Declaration
1121 or else Nkind
(Parent
(E
)) = N_Assignment_Statement
)
1122 and then Comes_From_Source
(Parent
(E
))
1123 and then Nkind
(E
) = N_Aggregate
1126 Make_Defining_Identifier
(Loc
,
1127 New_Internal_Name
('T'));
1130 Make_Object_Declaration
(Loc
,
1131 Defining_Identifier
=> Temp
,
1132 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
1133 Expression
=> Relocate_Node
(E
));
1134 Insert_Before
(Parent
(E
), New_N
);
1137 Set_Expression
(Parent
(E
), New_Occurrence_Of
(Temp
, Loc
));
1139 -- To prevent the temporary from being constant-folded (which would
1140 -- lead to the same piecemeal assignment on the original target)
1141 -- indicate to the back-end that the temporary is a variable with
1142 -- real storage. See description of this flag in Einfo, and the notes
1143 -- on N_Assignment_Statement and N_Object_Declaration in Sinfo.
1145 Set_Is_True_Constant
(Temp
, False);
1147 end Expand_Atomic_Aggregate
;
1153 -- Note: the easy coding for this procedure would be to just build a
1154 -- single list of freeze nodes and then insert them and analyze them
1155 -- all at once. This won't work, because the analysis of earlier freeze
1156 -- nodes may recursively freeze types which would otherwise appear later
1157 -- on in the freeze list. So we must analyze and expand the freeze nodes
1158 -- as they are generated.
1160 procedure Freeze_All
(From
: Entity_Id
; After
: in out Node_Id
) is
1161 Loc
: constant Source_Ptr
:= Sloc
(After
);
1165 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
);
1166 -- This is the internal recursive routine that does freezing of entities
1167 -- (but NOT the analysis of default expressions, which should not be
1168 -- recursive, we don't want to analyze those till we are sure that ALL
1169 -- the types are frozen).
1171 --------------------
1172 -- Freeze_All_Ent --
1173 --------------------
1175 procedure Freeze_All_Ent
1177 After
: in out Node_Id
)
1183 procedure Process_Flist
;
1184 -- If freeze nodes are present, insert and analyze, and reset cursor
1185 -- for next insertion.
1191 procedure Process_Flist
is
1193 if Is_Non_Empty_List
(Flist
) then
1194 Lastn
:= Next
(After
);
1195 Insert_List_After_And_Analyze
(After
, Flist
);
1197 if Present
(Lastn
) then
1198 After
:= Prev
(Lastn
);
1200 After
:= Last
(List_Containing
(After
));
1205 -- Start or processing for Freeze_All_Ent
1209 while Present
(E
) loop
1211 -- If the entity is an inner package which is not a package
1212 -- renaming, then its entities must be frozen at this point. Note
1213 -- that such entities do NOT get frozen at the end of the nested
1214 -- package itself (only library packages freeze).
1216 -- Same is true for task declarations, where anonymous records
1217 -- created for entry parameters must be frozen.
1219 if Ekind
(E
) = E_Package
1220 and then No
(Renamed_Object
(E
))
1221 and then not Is_Child_Unit
(E
)
1222 and then not Is_Frozen
(E
)
1225 Install_Visible_Declarations
(E
);
1226 Install_Private_Declarations
(E
);
1228 Freeze_All
(First_Entity
(E
), After
);
1230 End_Package_Scope
(E
);
1232 elsif Ekind
(E
) in Task_Kind
1234 (Nkind
(Parent
(E
)) = N_Task_Type_Declaration
1236 Nkind
(Parent
(E
)) = N_Single_Task_Declaration
)
1239 Freeze_All
(First_Entity
(E
), After
);
1242 -- For a derived tagged type, we must ensure that all the
1243 -- primitive operations of the parent have been frozen, so that
1244 -- their addresses will be in the parent's dispatch table at the
1245 -- point it is inherited.
1247 elsif Ekind
(E
) = E_Record_Type
1248 and then Is_Tagged_Type
(E
)
1249 and then Is_Tagged_Type
(Etype
(E
))
1250 and then Is_Derived_Type
(E
)
1253 Prim_List
: constant Elist_Id
:=
1254 Primitive_Operations
(Etype
(E
));
1260 Prim
:= First_Elmt
(Prim_List
);
1262 while Present
(Prim
) loop
1263 Subp
:= Node
(Prim
);
1265 if Comes_From_Source
(Subp
)
1266 and then not Is_Frozen
(Subp
)
1268 Flist
:= Freeze_Entity
(Subp
, Loc
);
1277 if not Is_Frozen
(E
) then
1278 Flist
:= Freeze_Entity
(E
, Loc
);
1282 -- If an incomplete type is still not frozen, this may be a
1283 -- premature freezing because of a body declaration that follows.
1284 -- Indicate where the freezing took place.
1286 -- If the freezing is caused by the end of the current declarative
1287 -- part, it is a Taft Amendment type, and there is no error.
1289 if not Is_Frozen
(E
)
1290 and then Ekind
(E
) = E_Incomplete_Type
1293 Bod
: constant Node_Id
:= Next
(After
);
1296 if (Nkind
(Bod
) = N_Subprogram_Body
1297 or else Nkind
(Bod
) = N_Entry_Body
1298 or else Nkind
(Bod
) = N_Package_Body
1299 or else Nkind
(Bod
) = N_Protected_Body
1300 or else Nkind
(Bod
) = N_Task_Body
1301 or else Nkind
(Bod
) in N_Body_Stub
)
1303 List_Containing
(After
) = List_Containing
(Parent
(E
))
1305 Error_Msg_Sloc
:= Sloc
(Next
(After
));
1307 ("type& is frozen# before its full declaration",
1317 -- Start of processing for Freeze_All
1320 Freeze_All_Ent
(From
, After
);
1322 -- Now that all types are frozen, we can deal with default expressions
1323 -- that require us to build a default expression functions. This is the
1324 -- point at which such functions are constructed (after all types that
1325 -- might be used in such expressions have been frozen).
1327 -- We also add finalization chains to access types whose designated
1328 -- types are controlled. This is normally done when freezing the type,
1329 -- but this misses recursive type definitions where the later members
1330 -- of the recursion introduce controlled components.
1332 -- Loop through entities
1335 while Present
(E
) loop
1336 if Is_Subprogram
(E
) then
1338 if not Default_Expressions_Processed
(E
) then
1339 Process_Default_Expressions
(E
, After
);
1342 if not Has_Completion
(E
) then
1343 Decl
:= Unit_Declaration_Node
(E
);
1345 if Nkind
(Decl
) = N_Subprogram_Renaming_Declaration
then
1346 Build_And_Analyze_Renamed_Body
(Decl
, E
, After
);
1348 elsif Nkind
(Decl
) = N_Subprogram_Declaration
1349 and then Present
(Corresponding_Body
(Decl
))
1351 Nkind
(Unit_Declaration_Node
(Corresponding_Body
(Decl
)))
1352 = N_Subprogram_Renaming_Declaration
1354 Build_And_Analyze_Renamed_Body
1355 (Decl
, Corresponding_Body
(Decl
), After
);
1359 elsif Ekind
(E
) in Task_Kind
1361 (Nkind
(Parent
(E
)) = N_Task_Type_Declaration
1363 Nkind
(Parent
(E
)) = N_Single_Task_Declaration
)
1368 Ent
:= First_Entity
(E
);
1370 while Present
(Ent
) loop
1373 and then not Default_Expressions_Processed
(Ent
)
1375 Process_Default_Expressions
(Ent
, After
);
1382 elsif Is_Access_Type
(E
)
1383 and then Comes_From_Source
(E
)
1384 and then Ekind
(Directly_Designated_Type
(E
)) = E_Incomplete_Type
1385 and then Needs_Finalization
(Designated_Type
(E
))
1386 and then No
(Associated_Final_Chain
(E
))
1388 Build_Final_List
(Parent
(E
), E
);
1395 -----------------------
1396 -- Freeze_And_Append --
1397 -----------------------
1399 procedure Freeze_And_Append
1402 Result
: in out List_Id
)
1404 L
: constant List_Id
:= Freeze_Entity
(Ent
, Loc
);
1406 if Is_Non_Empty_List
(L
) then
1407 if Result
= No_List
then
1410 Append_List
(L
, Result
);
1413 end Freeze_And_Append
;
1419 procedure Freeze_Before
(N
: Node_Id
; T
: Entity_Id
) is
1420 Freeze_Nodes
: constant List_Id
:= Freeze_Entity
(T
, Sloc
(N
));
1422 if Is_Non_Empty_List
(Freeze_Nodes
) then
1423 Insert_Actions
(N
, Freeze_Nodes
);
1431 function Freeze_Entity
(E
: Entity_Id
; Loc
: Source_Ptr
) return List_Id
is
1432 Test_E
: Entity_Id
:= E
;
1440 Has_Default_Initialization
: Boolean := False;
1441 -- This flag gets set to true for a variable with default initialization
1443 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
);
1444 -- Check that an Access or Unchecked_Access attribute with a prefix
1445 -- which is the current instance type can only be applied when the type
1448 function After_Last_Declaration
return Boolean;
1449 -- If Loc is a freeze_entity that appears after the last declaration
1450 -- in the scope, inhibit error messages on late completion.
1452 procedure Freeze_Record_Type
(Rec
: Entity_Id
);
1453 -- Freeze each component, handle some representation clauses, and freeze
1454 -- primitive operations if this is a tagged type.
1456 ----------------------------
1457 -- After_Last_Declaration --
1458 ----------------------------
1460 function After_Last_Declaration
return Boolean is
1461 Spec
: constant Node_Id
:= Parent
(Current_Scope
);
1463 if Nkind
(Spec
) = N_Package_Specification
then
1464 if Present
(Private_Declarations
(Spec
)) then
1465 return Loc
>= Sloc
(Last
(Private_Declarations
(Spec
)));
1466 elsif Present
(Visible_Declarations
(Spec
)) then
1467 return Loc
>= Sloc
(Last
(Visible_Declarations
(Spec
)));
1474 end After_Last_Declaration
;
1476 ----------------------------
1477 -- Check_Current_Instance --
1478 ----------------------------
1480 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
) is
1482 Rec_Type
: constant Entity_Id
:=
1483 Scope
(Defining_Identifier
(Comp_Decl
));
1485 Decl
: constant Node_Id
:= Parent
(Rec_Type
);
1487 function Process
(N
: Node_Id
) return Traverse_Result
;
1488 -- Process routine to apply check to given node
1494 function Process
(N
: Node_Id
) return Traverse_Result
is
1497 when N_Attribute_Reference
=>
1498 if (Attribute_Name
(N
) = Name_Access
1500 Attribute_Name
(N
) = Name_Unchecked_Access
)
1501 and then Is_Entity_Name
(Prefix
(N
))
1502 and then Is_Type
(Entity
(Prefix
(N
)))
1503 and then Entity
(Prefix
(N
)) = E
1506 ("current instance must be a limited type", Prefix
(N
));
1512 when others => return OK
;
1516 procedure Traverse
is new Traverse_Proc
(Process
);
1518 -- Start of processing for Check_Current_Instance
1521 -- In Ada95, the (imprecise) rule is that the current instance of a
1522 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1523 -- either a tagged type, or a limited record.
1525 if Is_Limited_Type
(Rec_Type
)
1527 (Ada_Version
< Ada_05
1528 or else Is_Tagged_Type
(Rec_Type
))
1532 elsif Nkind
(Decl
) = N_Full_Type_Declaration
1533 and then Limited_Present
(Type_Definition
(Decl
))
1538 Traverse
(Comp_Decl
);
1540 end Check_Current_Instance
;
1542 ------------------------
1543 -- Freeze_Record_Type --
1544 ------------------------
1546 procedure Freeze_Record_Type
(Rec
: Entity_Id
) is
1553 pragma Warnings
(Off
, Junk
);
1555 Unplaced_Component
: Boolean := False;
1556 -- Set True if we find at least one component with no component
1557 -- clause (used to warn about useless Pack pragmas).
1559 Placed_Component
: Boolean := False;
1560 -- Set True if we find at least one component with a component
1561 -- clause (used to warn about useless Bit_Order pragmas).
1563 function Check_Allocator
(N
: Node_Id
) return Node_Id
;
1564 -- If N is an allocator, possibly wrapped in one or more level of
1565 -- qualified expression(s), return the inner allocator node, else
1568 procedure Check_Itype
(Typ
: Entity_Id
);
1569 -- If the component subtype is an access to a constrained subtype of
1570 -- an already frozen type, make the subtype frozen as well. It might
1571 -- otherwise be frozen in the wrong scope, and a freeze node on
1572 -- subtype has no effect. Similarly, if the component subtype is a
1573 -- regular (not protected) access to subprogram, set the anonymous
1574 -- subprogram type to frozen as well, to prevent an out-of-scope
1575 -- freeze node at some eventual point of call. Protected operations
1576 -- are handled elsewhere.
1578 ---------------------
1579 -- Check_Allocator --
1580 ---------------------
1582 function Check_Allocator
(N
: Node_Id
) return Node_Id
is
1587 if Nkind
(Inner
) = N_Allocator
then
1589 elsif Nkind
(Inner
) = N_Qualified_Expression
then
1590 Inner
:= Expression
(Inner
);
1595 end Check_Allocator
;
1601 procedure Check_Itype
(Typ
: Entity_Id
) is
1602 Desig
: constant Entity_Id
:= Designated_Type
(Typ
);
1605 if not Is_Frozen
(Desig
)
1606 and then Is_Frozen
(Base_Type
(Desig
))
1608 Set_Is_Frozen
(Desig
);
1610 -- In addition, add an Itype_Reference to ensure that the
1611 -- access subtype is elaborated early enough. This cannot be
1612 -- done if the subtype may depend on discriminants.
1614 if Ekind
(Comp
) = E_Component
1615 and then Is_Itype
(Etype
(Comp
))
1616 and then not Has_Discriminants
(Rec
)
1618 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
1619 Set_Itype
(IR
, Desig
);
1622 Result
:= New_List
(IR
);
1624 Append
(IR
, Result
);
1628 elsif Ekind
(Typ
) = E_Anonymous_Access_Subprogram_Type
1629 and then Convention
(Desig
) /= Convention_Protected
1631 Set_Is_Frozen
(Desig
);
1635 -- Start of processing for Freeze_Record_Type
1638 -- If this is a subtype of a controlled type, declared without a
1639 -- constraint, the _controller may not appear in the component list
1640 -- if the parent was not frozen at the point of subtype declaration.
1641 -- Inherit the _controller component now.
1643 if Rec
/= Base_Type
(Rec
)
1644 and then Has_Controlled_Component
(Rec
)
1646 if Nkind
(Parent
(Rec
)) = N_Subtype_Declaration
1647 and then Is_Entity_Name
(Subtype_Indication
(Parent
(Rec
)))
1649 Set_First_Entity
(Rec
, First_Entity
(Base_Type
(Rec
)));
1651 -- If this is an internal type without a declaration, as for
1652 -- record component, the base type may not yet be frozen, and its
1653 -- controller has not been created. Add an explicit freeze node
1654 -- for the itype, so it will be frozen after the base type. This
1655 -- freeze node is used to communicate with the expander, in order
1656 -- to create the controller for the enclosing record, and it is
1657 -- deleted afterwards (see exp_ch3). It must not be created when
1658 -- expansion is off, because it might appear in the wrong context
1659 -- for the back end.
1661 elsif Is_Itype
(Rec
)
1662 and then Has_Delayed_Freeze
(Base_Type
(Rec
))
1664 Nkind
(Associated_Node_For_Itype
(Rec
)) =
1665 N_Component_Declaration
1666 and then Expander_Active
1668 Ensure_Freeze_Node
(Rec
);
1672 -- Freeze components and embedded subtypes
1674 Comp
:= First_Entity
(Rec
);
1676 while Present
(Comp
) loop
1678 -- First handle the (real) component case
1680 if Ekind
(Comp
) = E_Component
1681 or else Ekind
(Comp
) = E_Discriminant
1684 CC
: constant Node_Id
:= Component_Clause
(Comp
);
1687 -- Freezing a record type freezes the type of each of its
1688 -- components. However, if the type of the component is
1689 -- part of this record, we do not want or need a separate
1690 -- Freeze_Node. Note that Is_Itype is wrong because that's
1691 -- also set in private type cases. We also can't check for
1692 -- the Scope being exactly Rec because of private types and
1693 -- record extensions.
1695 if Is_Itype
(Etype
(Comp
))
1696 and then Is_Record_Type
(Underlying_Type
1697 (Scope
(Etype
(Comp
))))
1699 Undelay_Type
(Etype
(Comp
));
1702 Freeze_And_Append
(Etype
(Comp
), Loc
, Result
);
1704 -- Check for error of component clause given for variable
1705 -- sized type. We have to delay this test till this point,
1706 -- since the component type has to be frozen for us to know
1707 -- if it is variable length. We omit this test in a generic
1708 -- context, it will be applied at instantiation time.
1710 if Present
(CC
) then
1711 Placed_Component
:= True;
1713 if Inside_A_Generic
then
1717 Size_Known_At_Compile_Time
1718 (Underlying_Type
(Etype
(Comp
)))
1721 ("component clause not allowed for variable " &
1722 "length component", CC
);
1726 Unplaced_Component
:= True;
1729 -- Case of component requires byte alignment
1731 if Must_Be_On_Byte_Boundary
(Etype
(Comp
)) then
1733 -- Set the enclosing record to also require byte align
1735 Set_Must_Be_On_Byte_Boundary
(Rec
);
1737 -- Check for component clause that is inconsistent with
1738 -- the required byte boundary alignment.
1741 and then Normalized_First_Bit
(Comp
) mod
1742 System_Storage_Unit
/= 0
1745 ("component & must be byte aligned",
1746 Component_Name
(Component_Clause
(Comp
)));
1750 -- If component clause is present, then deal with the non-
1751 -- default bit order case for Ada 95 mode. The required
1752 -- processing for Ada 2005 mode is handled separately after
1753 -- processing all components.
1755 -- We only do this processing for the base type, and in
1756 -- fact that's important, since otherwise if there are
1757 -- record subtypes, we could reverse the bits once for
1758 -- each subtype, which would be incorrect.
1761 and then Reverse_Bit_Order
(Rec
)
1762 and then Ekind
(E
) = E_Record_Type
1763 and then Ada_Version
<= Ada_95
1766 CFB
: constant Uint
:= Component_Bit_Offset
(Comp
);
1767 CSZ
: constant Uint
:= Esize
(Comp
);
1768 CLC
: constant Node_Id
:= Component_Clause
(Comp
);
1769 Pos
: constant Node_Id
:= Position
(CLC
);
1770 FB
: constant Node_Id
:= First_Bit
(CLC
);
1772 Storage_Unit_Offset
: constant Uint
:=
1773 CFB
/ System_Storage_Unit
;
1775 Start_Bit
: constant Uint
:=
1776 CFB
mod System_Storage_Unit
;
1779 -- Cases where field goes over storage unit boundary
1781 if Start_Bit
+ CSZ
> System_Storage_Unit
then
1783 -- Allow multi-byte field but generate warning
1785 if Start_Bit
mod System_Storage_Unit
= 0
1786 and then CSZ
mod System_Storage_Unit
= 0
1789 ("multi-byte field specified with non-standard"
1790 & " Bit_Order?", CLC
);
1792 if Bytes_Big_Endian
then
1794 ("bytes are not reversed "
1795 & "(component is big-endian)?", CLC
);
1798 ("bytes are not reversed "
1799 & "(component is little-endian)?", CLC
);
1802 -- Do not allow non-contiguous field
1806 ("attempt to specify non-contiguous field "
1807 & "not permitted", CLC
);
1809 ("\caused by non-standard Bit_Order "
1810 & "specified", CLC
);
1812 ("\consider possibility of using "
1813 & "Ada 2005 mode here", CLC
);
1816 -- Case where field fits in one storage unit
1819 -- Give warning if suspicious component clause
1821 if Intval
(FB
) >= System_Storage_Unit
1822 and then Warn_On_Reverse_Bit_Order
1825 ("?Bit_Order clause does not affect " &
1826 "byte ordering", Pos
);
1828 Intval
(Pos
) + Intval
(FB
) /
1829 System_Storage_Unit
;
1831 ("?position normalized to ^ before bit " &
1832 "order interpreted", Pos
);
1835 -- Here is where we fix up the Component_Bit_Offset
1836 -- value to account for the reverse bit order.
1837 -- Some examples of what needs to be done are:
1839 -- First_Bit .. Last_Bit Component_Bit_Offset
1842 -- 0 .. 0 7 .. 7 0 7
1843 -- 0 .. 1 6 .. 7 0 6
1844 -- 0 .. 2 5 .. 7 0 5
1845 -- 0 .. 7 0 .. 7 0 4
1847 -- 1 .. 1 6 .. 6 1 6
1848 -- 1 .. 4 3 .. 6 1 3
1849 -- 4 .. 7 0 .. 3 4 0
1851 -- The general rule is that the first bit is
1852 -- is obtained by subtracting the old ending bit
1853 -- from storage_unit - 1.
1855 Set_Component_Bit_Offset
1857 (Storage_Unit_Offset
* System_Storage_Unit
) +
1858 (System_Storage_Unit
- 1) -
1859 (Start_Bit
+ CSZ
- 1));
1861 Set_Normalized_First_Bit
1863 Component_Bit_Offset
(Comp
) mod
1864 System_Storage_Unit
);
1871 -- If the component is an Itype with Delayed_Freeze and is either
1872 -- a record or array subtype and its base type has not yet been
1873 -- frozen, we must remove this from the entity list of this
1874 -- record and put it on the entity list of the scope of its base
1875 -- type. Note that we know that this is not the type of a
1876 -- component since we cleared Has_Delayed_Freeze for it in the
1877 -- previous loop. Thus this must be the Designated_Type of an
1878 -- access type, which is the type of a component.
1881 and then Is_Type
(Scope
(Comp
))
1882 and then Is_Composite_Type
(Comp
)
1883 and then Base_Type
(Comp
) /= Comp
1884 and then Has_Delayed_Freeze
(Comp
)
1885 and then not Is_Frozen
(Base_Type
(Comp
))
1888 Will_Be_Frozen
: Boolean := False;
1892 -- We have a pretty bad kludge here. Suppose Rec is subtype
1893 -- being defined in a subprogram that's created as part of
1894 -- the freezing of Rec'Base. In that case, we know that
1895 -- Comp'Base must have already been frozen by the time we
1896 -- get to elaborate this because Gigi doesn't elaborate any
1897 -- bodies until it has elaborated all of the declarative
1898 -- part. But Is_Frozen will not be set at this point because
1899 -- we are processing code in lexical order.
1901 -- We detect this case by going up the Scope chain of Rec
1902 -- and seeing if we have a subprogram scope before reaching
1903 -- the top of the scope chain or that of Comp'Base. If we
1904 -- do, then mark that Comp'Base will actually be frozen. If
1905 -- so, we merely undelay it.
1908 while Present
(S
) loop
1909 if Is_Subprogram
(S
) then
1910 Will_Be_Frozen
:= True;
1912 elsif S
= Scope
(Base_Type
(Comp
)) then
1919 if Will_Be_Frozen
then
1920 Undelay_Type
(Comp
);
1922 if Present
(Prev
) then
1923 Set_Next_Entity
(Prev
, Next_Entity
(Comp
));
1925 Set_First_Entity
(Rec
, Next_Entity
(Comp
));
1928 -- Insert in entity list of scope of base type (which
1929 -- must be an enclosing scope, because still unfrozen).
1931 Append_Entity
(Comp
, Scope
(Base_Type
(Comp
)));
1935 -- If the component is an access type with an allocator as default
1936 -- value, the designated type will be frozen by the corresponding
1937 -- expression in init_proc. In order to place the freeze node for
1938 -- the designated type before that for the current record type,
1941 -- Same process if the component is an array of access types,
1942 -- initialized with an aggregate. If the designated type is
1943 -- private, it cannot contain allocators, and it is premature
1944 -- to freeze the type, so we check for this as well.
1946 elsif Is_Access_Type
(Etype
(Comp
))
1947 and then Present
(Parent
(Comp
))
1948 and then Present
(Expression
(Parent
(Comp
)))
1951 Alloc
: constant Node_Id
:=
1952 Check_Allocator
(Expression
(Parent
(Comp
)));
1955 if Present
(Alloc
) then
1957 -- If component is pointer to a classwide type, freeze
1958 -- the specific type in the expression being allocated.
1959 -- The expression may be a subtype indication, in which
1960 -- case freeze the subtype mark.
1962 if Is_Class_Wide_Type
1963 (Designated_Type
(Etype
(Comp
)))
1965 if Is_Entity_Name
(Expression
(Alloc
)) then
1967 (Entity
(Expression
(Alloc
)), Loc
, Result
);
1969 Nkind
(Expression
(Alloc
)) = N_Subtype_Indication
1972 (Entity
(Subtype_Mark
(Expression
(Alloc
))),
1976 elsif Is_Itype
(Designated_Type
(Etype
(Comp
))) then
1977 Check_Itype
(Etype
(Comp
));
1981 (Designated_Type
(Etype
(Comp
)), Loc
, Result
);
1986 elsif Is_Access_Type
(Etype
(Comp
))
1987 and then Is_Itype
(Designated_Type
(Etype
(Comp
)))
1989 Check_Itype
(Etype
(Comp
));
1991 elsif Is_Array_Type
(Etype
(Comp
))
1992 and then Is_Access_Type
(Component_Type
(Etype
(Comp
)))
1993 and then Present
(Parent
(Comp
))
1994 and then Nkind
(Parent
(Comp
)) = N_Component_Declaration
1995 and then Present
(Expression
(Parent
(Comp
)))
1996 and then Nkind
(Expression
(Parent
(Comp
))) = N_Aggregate
1997 and then Is_Fully_Defined
1998 (Designated_Type
(Component_Type
(Etype
(Comp
))))
2002 (Component_Type
(Etype
(Comp
))), Loc
, Result
);
2009 -- Deal with pragma Bit_Order
2011 if Reverse_Bit_Order
(Rec
) and then Base_Type
(Rec
) = Rec
then
2012 if not Placed_Component
then
2014 Get_Attribute_Definition_Clause
(Rec
, Attribute_Bit_Order
);
2016 ("?Bit_Order specification has no effect", ADC
);
2018 ("\?since no component clauses were specified", ADC
);
2020 -- Here is where we do Ada 2005 processing for bit order (the Ada
2021 -- 95 case was already taken care of above).
2023 elsif Ada_Version
>= Ada_05
then
2024 Adjust_Record_For_Reverse_Bit_Order
(Rec
);
2028 -- Set OK_To_Reorder_Components depending on debug flags
2030 if Rec
= Base_Type
(Rec
)
2031 and then Convention
(Rec
) = Convention_Ada
2033 if (Has_Discriminants
(Rec
) and then Debug_Flag_Dot_V
)
2035 (not Has_Discriminants
(Rec
) and then Debug_Flag_Dot_R
)
2037 Set_OK_To_Reorder_Components
(Rec
);
2041 -- Check for useless pragma Pack when all components placed. We only
2042 -- do this check for record types, not subtypes, since a subtype may
2043 -- have all its components placed, and it still makes perfectly good
2044 -- sense to pack other subtypes or the parent type. We do not give
2045 -- this warning if Optimize_Alignment is set to Space, since the
2046 -- pragma Pack does have an effect in this case (it always resets
2047 -- the alignment to one).
2049 if Ekind
(Rec
) = E_Record_Type
2050 and then Is_Packed
(Rec
)
2051 and then not Unplaced_Component
2052 and then Optimize_Alignment
/= 'S'
2054 -- Reset packed status. Probably not necessary, but we do it so
2055 -- that there is no chance of the back end doing something strange
2056 -- with this redundant indication of packing.
2058 Set_Is_Packed
(Rec
, False);
2060 -- Give warning if redundant constructs warnings on
2062 if Warn_On_Redundant_Constructs
then
2064 ("?pragma Pack has no effect, no unplaced components",
2065 Get_Rep_Pragma
(Rec
, Name_Pack
));
2069 -- If this is the record corresponding to a remote type, freeze the
2070 -- remote type here since that is what we are semantically freezing.
2071 -- This prevents the freeze node for that type in an inner scope.
2073 -- Also, Check for controlled components and unchecked unions.
2074 -- Finally, enforce the restriction that access attributes with a
2075 -- current instance prefix can only apply to limited types.
2077 if Ekind
(Rec
) = E_Record_Type
then
2078 if Present
(Corresponding_Remote_Type
(Rec
)) then
2080 (Corresponding_Remote_Type
(Rec
), Loc
, Result
);
2083 Comp
:= First_Component
(Rec
);
2084 while Present
(Comp
) loop
2085 if Has_Controlled_Component
(Etype
(Comp
))
2086 or else (Chars
(Comp
) /= Name_uParent
2087 and then Is_Controlled
(Etype
(Comp
)))
2088 or else (Is_Protected_Type
(Etype
(Comp
))
2090 (Corresponding_Record_Type
(Etype
(Comp
)))
2091 and then Has_Controlled_Component
2092 (Corresponding_Record_Type
(Etype
(Comp
))))
2094 Set_Has_Controlled_Component
(Rec
);
2098 if Has_Unchecked_Union
(Etype
(Comp
)) then
2099 Set_Has_Unchecked_Union
(Rec
);
2102 if Has_Per_Object_Constraint
(Comp
) then
2104 -- Scan component declaration for likely misuses of current
2105 -- instance, either in a constraint or a default expression.
2107 Check_Current_Instance
(Parent
(Comp
));
2110 Next_Component
(Comp
);
2114 Set_Component_Alignment_If_Not_Set
(Rec
);
2116 -- For first subtypes, check if there are any fixed-point fields with
2117 -- component clauses, where we must check the size. This is not done
2118 -- till the freeze point, since for fixed-point types, we do not know
2119 -- the size until the type is frozen. Similar processing applies to
2120 -- bit packed arrays.
2122 if Is_First_Subtype
(Rec
) then
2123 Comp
:= First_Component
(Rec
);
2125 while Present
(Comp
) loop
2126 if Present
(Component_Clause
(Comp
))
2127 and then (Is_Fixed_Point_Type
(Etype
(Comp
))
2129 Is_Bit_Packed_Array
(Etype
(Comp
)))
2132 (Component_Name
(Component_Clause
(Comp
)),
2138 Next_Component
(Comp
);
2142 -- Generate warning for applying C or C++ convention to a record
2143 -- with discriminants. This is suppressed for the unchecked union
2144 -- case, since the whole point in this case is interface C. We also
2145 -- do not generate this within instantiations, since we will have
2146 -- generated a message on the template.
2148 if Has_Discriminants
(E
)
2149 and then not Is_Unchecked_Union
(E
)
2150 and then (Convention
(E
) = Convention_C
2152 Convention
(E
) = Convention_CPP
)
2153 and then Comes_From_Source
(E
)
2154 and then not In_Instance
2155 and then not Has_Warnings_Off
(E
)
2156 and then not Has_Warnings_Off
(Base_Type
(E
))
2159 Cprag
: constant Node_Id
:= Get_Rep_Pragma
(E
, Name_Convention
);
2163 if Present
(Cprag
) then
2164 A2
:= Next
(First
(Pragma_Argument_Associations
(Cprag
)));
2166 if Convention
(E
) = Convention_C
then
2168 ("?variant record has no direct equivalent in C", A2
);
2171 ("?variant record has no direct equivalent in C++", A2
);
2175 ("\?use of convention for type& is dubious", A2
, E
);
2179 end Freeze_Record_Type
;
2181 -- Start of processing for Freeze_Entity
2184 -- We are going to test for various reasons why this entity need not be
2185 -- frozen here, but in the case of an Itype that's defined within a
2186 -- record, that test actually applies to the record.
2188 if Is_Itype
(E
) and then Is_Record_Type
(Scope
(E
)) then
2189 Test_E
:= Scope
(E
);
2190 elsif Is_Itype
(E
) and then Present
(Underlying_Type
(Scope
(E
)))
2191 and then Is_Record_Type
(Underlying_Type
(Scope
(E
)))
2193 Test_E
:= Underlying_Type
(Scope
(E
));
2196 -- Do not freeze if already frozen since we only need one freeze node
2198 if Is_Frozen
(E
) then
2201 -- It is improper to freeze an external entity within a generic because
2202 -- its freeze node will appear in a non-valid context. The entity will
2203 -- be frozen in the proper scope after the current generic is analyzed.
2205 elsif Inside_A_Generic
and then External_Ref_In_Generic
(Test_E
) then
2208 -- Do not freeze a global entity within an inner scope created during
2209 -- expansion. A call to subprogram E within some internal procedure
2210 -- (a stream attribute for example) might require freezing E, but the
2211 -- freeze node must appear in the same declarative part as E itself.
2212 -- The two-pass elaboration mechanism in gigi guarantees that E will
2213 -- be frozen before the inner call is elaborated. We exclude constants
2214 -- from this test, because deferred constants may be frozen early, and
2215 -- must be diagnosed (e.g. in the case of a deferred constant being used
2216 -- in a default expression). If the enclosing subprogram comes from
2217 -- source, or is a generic instance, then the freeze point is the one
2218 -- mandated by the language, and we freeze the entity. A subprogram that
2219 -- is a child unit body that acts as a spec does not have a spec that
2220 -- comes from source, but can only come from source.
2222 elsif In_Open_Scopes
(Scope
(Test_E
))
2223 and then Scope
(Test_E
) /= Current_Scope
2224 and then Ekind
(Test_E
) /= E_Constant
2227 S
: Entity_Id
:= Current_Scope
;
2230 while Present
(S
) loop
2231 if Is_Overloadable
(S
) then
2232 if Comes_From_Source
(S
)
2233 or else Is_Generic_Instance
(S
)
2234 or else Is_Child_Unit
(S
)
2246 -- Similarly, an inlined instance body may make reference to global
2247 -- entities, but these references cannot be the proper freezing point
2248 -- for them, and in the absence of inlining freezing will take place in
2249 -- their own scope. Normally instance bodies are analyzed after the
2250 -- enclosing compilation, and everything has been frozen at the proper
2251 -- place, but with front-end inlining an instance body is compiled
2252 -- before the end of the enclosing scope, and as a result out-of-order
2253 -- freezing must be prevented.
2255 elsif Front_End_Inlining
2256 and then In_Instance_Body
2257 and then Present
(Scope
(Test_E
))
2260 S
: Entity_Id
:= Scope
(Test_E
);
2263 while Present
(S
) loop
2264 if Is_Generic_Instance
(S
) then
2277 -- Here to freeze the entity
2282 -- Case of entity being frozen is other than a type
2284 if not Is_Type
(E
) then
2286 -- If entity is exported or imported and does not have an external
2287 -- name, now is the time to provide the appropriate default name.
2288 -- Skip this if the entity is stubbed, since we don't need a name
2289 -- for any stubbed routine.
2291 if (Is_Imported
(E
) or else Is_Exported
(E
))
2292 and then No
(Interface_Name
(E
))
2293 and then Convention
(E
) /= Convention_Stubbed
2295 Set_Encoded_Interface_Name
2296 (E
, Get_Default_External_Name
(E
));
2298 -- Special processing for atomic objects appearing in object decls
2301 and then Nkind
(Parent
(E
)) = N_Object_Declaration
2302 and then Present
(Expression
(Parent
(E
)))
2305 Expr
: constant Node_Id
:= Expression
(Parent
(E
));
2308 -- If expression is an aggregate, assign to a temporary to
2309 -- ensure that the actual assignment is done atomically rather
2310 -- than component-wise (the assignment to the temp may be done
2311 -- component-wise, but that is harmless).
2313 if Nkind
(Expr
) = N_Aggregate
then
2314 Expand_Atomic_Aggregate
(Expr
, Etype
(E
));
2316 -- If the expression is a reference to a record or array object
2317 -- entity, then reset Is_True_Constant to False so that the
2318 -- compiler will not optimize away the intermediate object,
2319 -- which we need in this case for the same reason (to ensure
2320 -- that the actual assignment is atomic, rather than
2323 elsif Is_Entity_Name
(Expr
)
2324 and then (Is_Record_Type
(Etype
(Expr
))
2326 Is_Array_Type
(Etype
(Expr
)))
2328 Set_Is_True_Constant
(Entity
(Expr
), False);
2333 -- For a subprogram, freeze all parameter types and also the return
2334 -- type (RM 13.14(14)). However skip this for internal subprograms.
2335 -- This is also the point where any extra formal parameters are
2336 -- created since we now know whether the subprogram will use
2337 -- a foreign convention.
2339 if Is_Subprogram
(E
) then
2340 if not Is_Internal
(E
) then
2344 Warn_Node
: Node_Id
;
2347 -- Loop through formals
2349 Formal
:= First_Formal
(E
);
2350 while Present
(Formal
) loop
2351 F_Type
:= Etype
(Formal
);
2352 Freeze_And_Append
(F_Type
, Loc
, Result
);
2354 if Is_Private_Type
(F_Type
)
2355 and then Is_Private_Type
(Base_Type
(F_Type
))
2356 and then No
(Full_View
(Base_Type
(F_Type
)))
2357 and then not Is_Generic_Type
(F_Type
)
2358 and then not Is_Derived_Type
(F_Type
)
2360 -- If the type of a formal is incomplete, subprogram
2361 -- is being frozen prematurely. Within an instance
2362 -- (but not within a wrapper package) this is an
2363 -- an artifact of our need to regard the end of an
2364 -- instantiation as a freeze point. Otherwise it is
2365 -- a definite error.
2367 -- and then not Is_Wrapper_Package (Current_Scope) ???
2370 Set_Is_Frozen
(E
, False);
2373 elsif not After_Last_Declaration
2374 and then not Freezing_Library_Level_Tagged_Type
2376 Error_Msg_Node_1
:= F_Type
;
2378 ("type& must be fully defined before this point",
2383 -- Check suspicious parameter for C function. These tests
2384 -- apply only to exported/imported subprograms.
2386 if Warn_On_Export_Import
2387 and then Comes_From_Source
(E
)
2388 and then (Convention
(E
) = Convention_C
2390 Convention
(E
) = Convention_CPP
)
2391 and then (Is_Imported
(E
) or else Is_Exported
(E
))
2392 and then Convention
(E
) /= Convention
(Formal
)
2393 and then not Has_Warnings_Off
(E
)
2394 and then not Has_Warnings_Off
(F_Type
)
2395 and then not Has_Warnings_Off
(Formal
)
2397 Error_Msg_Qual_Level
:= 1;
2399 -- Check suspicious use of fat C pointer
2401 if Is_Access_Type
(F_Type
)
2402 and then Esize
(F_Type
) > Ttypes
.System_Address_Size
2405 ("?type of & does not correspond "
2406 & "to C pointer!", Formal
);
2408 -- Check suspicious return of boolean
2410 elsif Root_Type
(F_Type
) = Standard_Boolean
2411 and then Convention
(F_Type
) = Convention_Ada
2412 and then not Has_Warnings_Off
(F_Type
)
2413 and then not Has_Size_Clause
(F_Type
)
2416 ("?& is an 8-bit Ada Boolean, "
2417 & "use char in C!", Formal
);
2419 -- Check suspicious tagged type
2421 elsif (Is_Tagged_Type
(F_Type
)
2422 or else (Is_Access_Type
(F_Type
)
2425 (Designated_Type
(F_Type
))))
2426 and then Convention
(E
) = Convention_C
2429 ("?& is a tagged type which does not "
2430 & "correspond to any C type!", Formal
);
2432 -- Check wrong convention subprogram pointer
2434 elsif Ekind
(F_Type
) = E_Access_Subprogram_Type
2435 and then not Has_Foreign_Convention
(F_Type
)
2438 ("?subprogram pointer & should "
2439 & "have foreign convention!", Formal
);
2440 Error_Msg_Sloc
:= Sloc
(F_Type
);
2442 ("\?add Convention pragma to declaration of &#",
2446 Error_Msg_Qual_Level
:= 0;
2449 -- Check for unconstrained array in exported foreign
2452 if Has_Foreign_Convention
(E
)
2453 and then not Is_Imported
(E
)
2454 and then Is_Array_Type
(F_Type
)
2455 and then not Is_Constrained
(F_Type
)
2456 and then Warn_On_Export_Import
2458 Error_Msg_Qual_Level
:= 1;
2460 -- If this is an inherited operation, place the
2461 -- warning on the derived type declaration, rather
2462 -- than on the original subprogram.
2464 if Nkind
(Original_Node
(Parent
(E
))) =
2465 N_Full_Type_Declaration
2467 Warn_Node
:= Parent
(E
);
2469 if Formal
= First_Formal
(E
) then
2471 ("?in inherited operation&", Warn_Node
, E
);
2474 Warn_Node
:= Formal
;
2478 ("?type of argument& is unconstrained array",
2481 ("?foreign caller must pass bounds explicitly",
2483 Error_Msg_Qual_Level
:= 0;
2486 if not From_With_Type
(F_Type
) then
2487 if Is_Access_Type
(F_Type
) then
2488 F_Type
:= Designated_Type
(F_Type
);
2491 -- If the formal is an anonymous_access_to_subprogram
2492 -- freeze the subprogram type as well, to prevent
2493 -- scope anomalies in gigi, because there is no other
2494 -- clear point at which it could be frozen.
2496 if Is_Itype
(Etype
(Formal
))
2497 and then Ekind
(F_Type
) = E_Subprogram_Type
2499 Freeze_And_Append
(F_Type
, Loc
, Result
);
2503 Next_Formal
(Formal
);
2506 -- Case of function: similar checks on return type
2508 if Ekind
(E
) = E_Function
then
2510 -- Freeze return type
2512 R_Type
:= Etype
(E
);
2513 Freeze_And_Append
(R_Type
, Loc
, Result
);
2515 -- Check suspicious return type for C function
2517 if Warn_On_Export_Import
2518 and then (Convention
(E
) = Convention_C
2520 Convention
(E
) = Convention_CPP
)
2521 and then (Is_Imported
(E
) or else Is_Exported
(E
))
2523 -- Check suspicious return of fat C pointer
2525 if Is_Access_Type
(R_Type
)
2526 and then Esize
(R_Type
) > Ttypes
.System_Address_Size
2527 and then not Has_Warnings_Off
(E
)
2528 and then not Has_Warnings_Off
(R_Type
)
2531 ("?return type of& does not "
2532 & "correspond to C pointer!", E
);
2534 -- Check suspicious return of boolean
2536 elsif Root_Type
(R_Type
) = Standard_Boolean
2537 and then Convention
(R_Type
) = Convention_Ada
2538 and then not Has_Warnings_Off
(E
)
2539 and then not Has_Warnings_Off
(R_Type
)
2540 and then not Has_Size_Clause
(R_Type
)
2543 ("?return type of & is an 8-bit "
2544 & "Ada Boolean, use char in C!", E
);
2546 -- Check suspicious return tagged type
2548 elsif (Is_Tagged_Type
(R_Type
)
2549 or else (Is_Access_Type
(R_Type
)
2552 (Designated_Type
(R_Type
))))
2553 and then Convention
(E
) = Convention_C
2554 and then not Has_Warnings_Off
(E
)
2555 and then not Has_Warnings_Off
(R_Type
)
2558 ("?return type of & does not "
2559 & "correspond to C type!", E
);
2561 -- Check return of wrong convention subprogram pointer
2563 elsif Ekind
(R_Type
) = E_Access_Subprogram_Type
2564 and then not Has_Foreign_Convention
(R_Type
)
2565 and then not Has_Warnings_Off
(E
)
2566 and then not Has_Warnings_Off
(R_Type
)
2569 ("?& should return a foreign "
2570 & "convention subprogram pointer", E
);
2571 Error_Msg_Sloc
:= Sloc
(R_Type
);
2573 ("\?add Convention pragma to declaration of& #",
2578 if Is_Array_Type
(R_Type
)
2579 and then not Is_Constrained
(R_Type
)
2580 and then not Is_Imported
(E
)
2581 and then Has_Foreign_Convention
(E
)
2582 and then Warn_On_Export_Import
2583 and then not Has_Warnings_Off
(E
)
2584 and then not Has_Warnings_Off
(R_Type
)
2587 ("?foreign convention function& should not " &
2588 "return unconstrained array!", E
);
2594 -- Must freeze its parent first if it is a derived subprogram
2596 if Present
(Alias
(E
)) then
2597 Freeze_And_Append
(Alias
(E
), Loc
, Result
);
2600 -- We don't freeze internal subprograms, because we don't normally
2601 -- want addition of extra formals or mechanism setting to happen
2602 -- for those. However we do pass through predefined dispatching
2603 -- cases, since extra formals may be needed in some cases, such as
2604 -- for the stream 'Input function (build-in-place formals).
2606 if not Is_Internal
(E
)
2607 or else Is_Predefined_Dispatching_Operation
(E
)
2609 Freeze_Subprogram
(E
);
2612 -- Here for other than a subprogram or type
2615 -- For a generic package, freeze types within, so that proper
2616 -- cross-reference information is generated for tagged types.
2617 -- This is the only freeze processing needed for generic packages.
2619 if Ekind
(E
) = E_Generic_Package
then
2624 T
:= First_Entity
(E
);
2625 while Present
(T
) loop
2627 Generate_Prim_Op_References
(T
);
2634 -- If entity has a type, and it is not a generic unit, then
2635 -- freeze it first (RM 13.14(10)).
2637 elsif Present
(Etype
(E
))
2638 and then Ekind
(E
) /= E_Generic_Function
2640 Freeze_And_Append
(Etype
(E
), Loc
, Result
);
2643 -- Special processing for objects created by object declaration
2645 if Nkind
(Declaration_Node
(E
)) = N_Object_Declaration
then
2647 -- For object created by object declaration, perform required
2648 -- categorization (preelaborate and pure) checks. Defer these
2649 -- checks to freeze time since pragma Import inhibits default
2650 -- initialization and thus pragma Import affects these checks.
2652 Validate_Object_Declaration
(Declaration_Node
(E
));
2654 -- If there is an address clause, check that it is valid
2656 Check_Address_Clause
(E
);
2658 -- If the object needs any kind of default initialization, an
2659 -- error must be issued if No_Default_Initialization applies.
2660 -- The check doesn't apply to imported objects, which are not
2661 -- ever default initialized, and is why the check is deferred
2662 -- until freezing, at which point we know if Import applies.
2663 -- Deferred constants are also exempted from this test because
2664 -- their completion is explicit, or through an import pragma.
2666 if Ekind
(E
) = E_Constant
2667 and then Present
(Full_View
(E
))
2671 elsif Comes_From_Source
(E
)
2672 and then not Is_Imported
(E
)
2673 and then not Has_Init_Expression
(Declaration_Node
(E
))
2675 ((Has_Non_Null_Base_Init_Proc
(Etype
(E
))
2676 and then not No_Initialization
(Declaration_Node
(E
))
2677 and then not Is_Value_Type
(Etype
(E
))
2678 and then not Suppress_Init_Proc
(Etype
(E
)))
2680 (Needs_Simple_Initialization
(Etype
(E
))
2681 and then not Is_Internal
(E
)))
2683 Has_Default_Initialization
:= True;
2685 (No_Default_Initialization
, Declaration_Node
(E
));
2688 -- Check that a Thread_Local_Storage variable does not have
2689 -- default initialization, and any explicit initialization must
2690 -- either be the null constant or a static constant.
2692 if Has_Pragma_Thread_Local_Storage
(E
) then
2694 Decl
: constant Node_Id
:= Declaration_Node
(E
);
2696 if Has_Default_Initialization
2698 (Has_Init_Expression
(Decl
)
2700 (No
(Expression
(Decl
))
2702 (Is_Static_Expression
(Expression
(Decl
))
2704 Nkind
(Expression
(Decl
)) = N_Null
)))
2707 ("Thread_Local_Storage variable& is "
2708 & "improperly initialized", Decl
, E
);
2710 ("\only allowed initialization is explicit "
2711 & "NULL or static expression", Decl
, E
);
2716 -- For imported objects, set Is_Public unless there is also an
2717 -- address clause, which means that there is no external symbol
2718 -- needed for the Import (Is_Public may still be set for other
2719 -- unrelated reasons). Note that we delayed this processing
2720 -- till freeze time so that we can be sure not to set the flag
2721 -- if there is an address clause. If there is such a clause,
2722 -- then the only purpose of the Import pragma is to suppress
2723 -- implicit initialization.
2726 and then No
(Address_Clause
(E
))
2731 -- For convention C objects of an enumeration type, warn if
2732 -- the size is not integer size and no explicit size given.
2733 -- Skip warning for Boolean, and Character, assume programmer
2734 -- expects 8-bit sizes for these cases.
2736 if (Convention
(E
) = Convention_C
2738 Convention
(E
) = Convention_CPP
)
2739 and then Is_Enumeration_Type
(Etype
(E
))
2740 and then not Is_Character_Type
(Etype
(E
))
2741 and then not Is_Boolean_Type
(Etype
(E
))
2742 and then Esize
(Etype
(E
)) < Standard_Integer_Size
2743 and then not Has_Size_Clause
(E
)
2745 Error_Msg_Uint_1
:= UI_From_Int
(Standard_Integer_Size
);
2747 ("?convention C enumeration object has size less than ^",
2749 Error_Msg_N
("\?use explicit size clause to set size", E
);
2753 -- Check that a constant which has a pragma Volatile[_Components]
2754 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
2756 -- Note: Atomic[_Components] also sets Volatile[_Components]
2758 if Ekind
(E
) = E_Constant
2759 and then (Has_Volatile_Components
(E
) or else Is_Volatile
(E
))
2760 and then not Is_Imported
(E
)
2762 -- Make sure we actually have a pragma, and have not merely
2763 -- inherited the indication from elsewhere (e.g. an address
2764 -- clause, which is not good enough in RM terms!)
2766 if Has_Rep_Pragma
(E
, Name_Atomic
)
2768 Has_Rep_Pragma
(E
, Name_Atomic_Components
)
2771 ("stand alone atomic constant must be " &
2772 "imported (RM C.6(13))", E
);
2774 elsif Has_Rep_Pragma
(E
, Name_Volatile
)
2776 Has_Rep_Pragma
(E
, Name_Volatile_Components
)
2779 ("stand alone volatile constant must be " &
2780 "imported (RM C.6(13))", E
);
2784 -- Static objects require special handling
2786 if (Ekind
(E
) = E_Constant
or else Ekind
(E
) = E_Variable
)
2787 and then Is_Statically_Allocated
(E
)
2789 Freeze_Static_Object
(E
);
2792 -- Remaining step is to layout objects
2794 if Ekind
(E
) = E_Variable
2796 Ekind
(E
) = E_Constant
2798 Ekind
(E
) = E_Loop_Parameter
2806 -- Case of a type or subtype being frozen
2809 -- We used to check here that a full type must have preelaborable
2810 -- initialization if it completes a private type specified with
2811 -- pragma Preelaborable_Intialization, but that missed cases where
2812 -- the types occur within a generic package, since the freezing
2813 -- that occurs within a containing scope generally skips traversal
2814 -- of a generic unit's declarations (those will be frozen within
2815 -- instances). This check was moved to Analyze_Package_Specification.
2817 -- The type may be defined in a generic unit. This can occur when
2818 -- freezing a generic function that returns the type (which is
2819 -- defined in a parent unit). It is clearly meaningless to freeze
2820 -- this type. However, if it is a subtype, its size may be determi-
2821 -- nable and used in subsequent checks, so might as well try to
2824 if Present
(Scope
(E
))
2825 and then Is_Generic_Unit
(Scope
(E
))
2827 Check_Compile_Time_Size
(E
);
2831 -- Deal with special cases of freezing for subtype
2833 if E
/= Base_Type
(E
) then
2835 -- Before we do anything else, a specialized test for the case of
2836 -- a size given for an array where the array needs to be packed,
2837 -- but was not so the size cannot be honored. This would of course
2838 -- be caught by the backend, and indeed we don't catch all cases.
2839 -- The point is that we can give a better error message in those
2840 -- cases that we do catch with the circuitry here. Also if pragma
2841 -- Implicit_Packing is set, this is where the packing occurs.
2843 -- The reason we do this so early is that the processing in the
2844 -- automatic packing case affects the layout of the base type, so
2845 -- it must be done before we freeze the base type.
2847 if Is_Array_Type
(E
) then
2850 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
2853 -- Check enabling conditions. These are straightforward
2854 -- except for the test for a limited composite type. This
2855 -- eliminates the rare case of a array of limited components
2856 -- where there are issues of whether or not we can go ahead
2857 -- and pack the array (since we can't freely pack and unpack
2858 -- arrays if they are limited).
2860 -- Note that we check the root type explicitly because the
2861 -- whole point is we are doing this test before we have had
2862 -- a chance to freeze the base type (and it is that freeze
2863 -- action that causes stuff to be inherited).
2865 if Present
(Size_Clause
(E
))
2866 and then Known_Static_Esize
(E
)
2867 and then not Is_Packed
(E
)
2868 and then not Has_Pragma_Pack
(E
)
2869 and then Number_Dimensions
(E
) = 1
2870 and then not Has_Component_Size_Clause
(E
)
2871 and then Known_Static_Esize
(Ctyp
)
2872 and then not Is_Limited_Composite
(E
)
2873 and then not Is_Packed
(Root_Type
(E
))
2874 and then not Has_Component_Size_Clause
(Root_Type
(E
))
2876 Get_Index_Bounds
(First_Index
(E
), Lo
, Hi
);
2878 if Compile_Time_Known_Value
(Lo
)
2879 and then Compile_Time_Known_Value
(Hi
)
2880 and then Known_Static_RM_Size
(Ctyp
)
2881 and then RM_Size
(Ctyp
) < 64
2884 Lov
: constant Uint
:= Expr_Value
(Lo
);
2885 Hiv
: constant Uint
:= Expr_Value
(Hi
);
2886 Len
: constant Uint
:= UI_Max
2889 Rsiz
: constant Uint
:= RM_Size
(Ctyp
);
2890 SZ
: constant Node_Id
:= Size_Clause
(E
);
2891 Btyp
: constant Entity_Id
:= Base_Type
(E
);
2893 -- What we are looking for here is the situation where
2894 -- the RM_Size given would be exactly right if there
2895 -- was a pragma Pack (resulting in the component size
2896 -- being the same as the RM_Size). Furthermore, the
2897 -- component type size must be an odd size (not a
2898 -- multiple of storage unit)
2901 if RM_Size
(E
) = Len
* Rsiz
2902 and then Rsiz
mod System_Storage_Unit
/= 0
2904 -- For implicit packing mode, just set the
2905 -- component size silently
2907 if Implicit_Packing
then
2908 Set_Component_Size
(Btyp
, Rsiz
);
2909 Set_Is_Bit_Packed_Array
(Btyp
);
2910 Set_Is_Packed
(Btyp
);
2911 Set_Has_Non_Standard_Rep
(Btyp
);
2913 -- Otherwise give an error message
2917 ("size given for& too small", SZ
, E
);
2919 ("\use explicit pragma Pack "
2920 & "or use pragma Implicit_Packing", SZ
);
2929 -- If ancestor subtype present, freeze that first. Note that this
2930 -- will also get the base type frozen.
2932 Atype
:= Ancestor_Subtype
(E
);
2934 if Present
(Atype
) then
2935 Freeze_And_Append
(Atype
, Loc
, Result
);
2937 -- Otherwise freeze the base type of the entity before freezing
2938 -- the entity itself (RM 13.14(15)).
2940 elsif E
/= Base_Type
(E
) then
2941 Freeze_And_Append
(Base_Type
(E
), Loc
, Result
);
2944 -- For a derived type, freeze its parent type first (RM 13.14(15))
2946 elsif Is_Derived_Type
(E
) then
2947 Freeze_And_Append
(Etype
(E
), Loc
, Result
);
2948 Freeze_And_Append
(First_Subtype
(Etype
(E
)), Loc
, Result
);
2951 -- For array type, freeze index types and component type first
2952 -- before freezing the array (RM 13.14(15)).
2954 if Is_Array_Type
(E
) then
2956 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
2958 Non_Standard_Enum
: Boolean := False;
2959 -- Set true if any of the index types is an enumeration type
2960 -- with a non-standard representation.
2963 Freeze_And_Append
(Ctyp
, Loc
, Result
);
2965 Indx
:= First_Index
(E
);
2966 while Present
(Indx
) loop
2967 Freeze_And_Append
(Etype
(Indx
), Loc
, Result
);
2969 if Is_Enumeration_Type
(Etype
(Indx
))
2970 and then Has_Non_Standard_Rep
(Etype
(Indx
))
2972 Non_Standard_Enum
:= True;
2978 -- Processing that is done only for base types
2980 if Ekind
(E
) = E_Array_Type
then
2982 -- Propagate flags for component type
2984 if Is_Controlled
(Component_Type
(E
))
2985 or else Has_Controlled_Component
(Ctyp
)
2987 Set_Has_Controlled_Component
(E
);
2990 if Has_Unchecked_Union
(Component_Type
(E
)) then
2991 Set_Has_Unchecked_Union
(E
);
2994 -- If packing was requested or if the component size was set
2995 -- explicitly, then see if bit packing is required. This
2996 -- processing is only done for base types, since all the
2997 -- representation aspects involved are type-related. This
2998 -- is not just an optimization, if we start processing the
2999 -- subtypes, they interfere with the settings on the base
3000 -- type (this is because Is_Packed has a slightly different
3001 -- meaning before and after freezing).
3008 if (Is_Packed
(E
) or else Has_Pragma_Pack
(E
))
3009 and then not Has_Atomic_Components
(E
)
3010 and then Known_Static_RM_Size
(Ctyp
)
3012 Csiz
:= UI_Max
(RM_Size
(Ctyp
), 1);
3014 elsif Known_Component_Size
(E
) then
3015 Csiz
:= Component_Size
(E
);
3017 elsif not Known_Static_Esize
(Ctyp
) then
3021 Esiz
:= Esize
(Ctyp
);
3023 -- We can set the component size if it is less than
3024 -- 16, rounding it up to the next storage unit size.
3028 elsif Esiz
<= 16 then
3034 -- Set component size up to match alignment if it
3035 -- would otherwise be less than the alignment. This
3036 -- deals with cases of types whose alignment exceeds
3037 -- their size (padded types).
3041 A
: constant Uint
:= Alignment_In_Bits
(Ctyp
);
3050 -- Case of component size that may result in packing
3052 if 1 <= Csiz
and then Csiz
<= 64 then
3054 Ent
: constant Entity_Id
:=
3056 Pack_Pragma
: constant Node_Id
:=
3057 Get_Rep_Pragma
(Ent
, Name_Pack
);
3058 Comp_Size_C
: constant Node_Id
:=
3059 Get_Attribute_Definition_Clause
3060 (Ent
, Attribute_Component_Size
);
3062 -- Warn if we have pack and component size so that
3063 -- the pack is ignored.
3065 -- Note: here we must check for the presence of a
3066 -- component size before checking for a Pack pragma
3067 -- to deal with the case where the array type is a
3068 -- derived type whose parent is currently private.
3070 if Present
(Comp_Size_C
)
3071 and then Has_Pragma_Pack
(Ent
)
3073 Error_Msg_Sloc
:= Sloc
(Comp_Size_C
);
3075 ("?pragma Pack for& ignored!",
3078 ("\?explicit component size given#!",
3082 -- Set component size if not already set by a
3083 -- component size clause.
3085 if not Present
(Comp_Size_C
) then
3086 Set_Component_Size
(E
, Csiz
);
3089 -- Check for base type of 8, 16, 32 bits, where an
3090 -- unsigned subtype has a length one less than the
3091 -- base type (e.g. Natural subtype of Integer).
3093 -- In such cases, if a component size was not set
3094 -- explicitly, then generate a warning.
3096 if Has_Pragma_Pack
(E
)
3097 and then not Present
(Comp_Size_C
)
3099 (Csiz
= 7 or else Csiz
= 15 or else Csiz
= 31)
3100 and then Esize
(Base_Type
(Ctyp
)) = Csiz
+ 1
3102 Error_Msg_Uint_1
:= Csiz
;
3104 if Present
(Pack_Pragma
) then
3106 ("?pragma Pack causes component size "
3107 & "to be ^!", Pack_Pragma
);
3109 ("\?use Component_Size to set "
3110 & "desired value!", Pack_Pragma
);
3114 -- Actual packing is not needed for 8, 16, 32, 64.
3115 -- Also not needed for 24 if alignment is 1.
3121 or else (Csiz
= 24 and then Alignment
(Ctyp
) = 1)
3123 -- Here the array was requested to be packed,
3124 -- but the packing request had no effect, so
3125 -- Is_Packed is reset.
3127 -- Note: semantically this means that we lose
3128 -- track of the fact that a derived type
3129 -- inherited a pragma Pack that was non-
3130 -- effective, but that seems fine.
3132 -- We regard a Pack pragma as a request to set
3133 -- a representation characteristic, and this
3134 -- request may be ignored.
3136 Set_Is_Packed
(Base_Type
(E
), False);
3138 -- In all other cases, packing is indeed needed
3141 Set_Has_Non_Standard_Rep
(Base_Type
(E
));
3142 Set_Is_Bit_Packed_Array
(Base_Type
(E
));
3143 Set_Is_Packed
(Base_Type
(E
));
3149 -- Processing that is done only for subtypes
3152 -- Acquire alignment from base type
3154 if Unknown_Alignment
(E
) then
3155 Set_Alignment
(E
, Alignment
(Base_Type
(E
)));
3156 Adjust_Esize_Alignment
(E
);
3160 -- For bit-packed arrays, check the size
3162 if Is_Bit_Packed_Array
(E
)
3163 and then Known_RM_Size
(E
)
3166 SizC
: constant Node_Id
:= Size_Clause
(E
);
3169 pragma Warnings
(Off
, Discard
);
3172 -- It is not clear if it is possible to have no size
3173 -- clause at this stage, but it is not worth worrying
3174 -- about. Post error on the entity name in the size
3175 -- clause if present, else on the type entity itself.
3177 if Present
(SizC
) then
3178 Check_Size
(Name
(SizC
), E
, RM_Size
(E
), Discard
);
3180 Check_Size
(E
, E
, RM_Size
(E
), Discard
);
3185 -- If any of the index types was an enumeration type with
3186 -- a non-standard rep clause, then we indicate that the
3187 -- array type is always packed (even if it is not bit packed).
3189 if Non_Standard_Enum
then
3190 Set_Has_Non_Standard_Rep
(Base_Type
(E
));
3191 Set_Is_Packed
(Base_Type
(E
));
3194 Set_Component_Alignment_If_Not_Set
(E
);
3196 -- If the array is packed, we must create the packed array
3197 -- type to be used to actually implement the type. This is
3198 -- only needed for real array types (not for string literal
3199 -- types, since they are present only for the front end).
3202 and then Ekind
(E
) /= E_String_Literal_Subtype
3204 Create_Packed_Array_Type
(E
);
3205 Freeze_And_Append
(Packed_Array_Type
(E
), Loc
, Result
);
3207 -- Size information of packed array type is copied to the
3208 -- array type, since this is really the representation. But
3209 -- do not override explicit existing size values. If the
3210 -- ancestor subtype is constrained the packed_array_type
3211 -- will be inherited from it, but the size may have been
3212 -- provided already, and must not be overridden either.
3214 if not Has_Size_Clause
(E
)
3216 (No
(Ancestor_Subtype
(E
))
3217 or else not Has_Size_Clause
(Ancestor_Subtype
(E
)))
3219 Set_Esize
(E
, Esize
(Packed_Array_Type
(E
)));
3220 Set_RM_Size
(E
, RM_Size
(Packed_Array_Type
(E
)));
3223 if not Has_Alignment_Clause
(E
) then
3224 Set_Alignment
(E
, Alignment
(Packed_Array_Type
(E
)));
3228 -- For non-packed arrays set the alignment of the array to the
3229 -- alignment of the component type if it is unknown. Skip this
3230 -- in atomic case (atomic arrays may need larger alignments).
3232 if not Is_Packed
(E
)
3233 and then Unknown_Alignment
(E
)
3234 and then Known_Alignment
(Ctyp
)
3235 and then Known_Static_Component_Size
(E
)
3236 and then Known_Static_Esize
(Ctyp
)
3237 and then Esize
(Ctyp
) = Component_Size
(E
)
3238 and then not Is_Atomic
(E
)
3240 Set_Alignment
(E
, Alignment
(Component_Type
(E
)));
3244 -- For a class-wide type, the corresponding specific type is
3245 -- frozen as well (RM 13.14(15))
3247 elsif Is_Class_Wide_Type
(E
) then
3248 Freeze_And_Append
(Root_Type
(E
), Loc
, Result
);
3250 -- If the base type of the class-wide type is still incomplete,
3251 -- the class-wide remains unfrozen as well. This is legal when
3252 -- E is the formal of a primitive operation of some other type
3253 -- which is being frozen.
3255 if not Is_Frozen
(Root_Type
(E
)) then
3256 Set_Is_Frozen
(E
, False);
3260 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3261 -- parent of a derived type) and it is a library-level entity,
3262 -- generate an itype reference for it. Otherwise, its first
3263 -- explicit reference may be in an inner scope, which will be
3264 -- rejected by the back-end.
3267 and then Is_Compilation_Unit
(Scope
(E
))
3270 Ref
: constant Node_Id
:= Make_Itype_Reference
(Loc
);
3275 Result
:= New_List
(Ref
);
3277 Append
(Ref
, Result
);
3282 -- The equivalent type associated with a class-wide subtype needs
3283 -- to be frozen to ensure that its layout is done. Class-wide
3284 -- subtypes are currently only frozen on targets requiring
3285 -- front-end layout (see New_Class_Wide_Subtype and
3286 -- Make_CW_Equivalent_Type in exp_util.adb).
3288 if Ekind
(E
) = E_Class_Wide_Subtype
3289 and then Present
(Equivalent_Type
(E
))
3291 Freeze_And_Append
(Equivalent_Type
(E
), Loc
, Result
);
3294 -- For a record (sub)type, freeze all the component types (RM
3295 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3296 -- Is_Record_Type, because we don't want to attempt the freeze for
3297 -- the case of a private type with record extension (we will do that
3298 -- later when the full type is frozen).
3300 elsif Ekind
(E
) = E_Record_Type
3301 or else Ekind
(E
) = E_Record_Subtype
3303 Freeze_Record_Type
(E
);
3305 -- For a concurrent type, freeze corresponding record type. This
3306 -- does not correspond to any specific rule in the RM, but the
3307 -- record type is essentially part of the concurrent type.
3308 -- Freeze as well all local entities. This includes record types
3309 -- created for entry parameter blocks, and whatever local entities
3310 -- may appear in the private part.
3312 elsif Is_Concurrent_Type
(E
) then
3313 if Present
(Corresponding_Record_Type
(E
)) then
3315 (Corresponding_Record_Type
(E
), Loc
, Result
);
3318 Comp
:= First_Entity
(E
);
3320 while Present
(Comp
) loop
3321 if Is_Type
(Comp
) then
3322 Freeze_And_Append
(Comp
, Loc
, Result
);
3324 elsif (Ekind
(Comp
)) /= E_Function
then
3325 if Is_Itype
(Etype
(Comp
))
3326 and then Underlying_Type
(Scope
(Etype
(Comp
))) = E
3328 Undelay_Type
(Etype
(Comp
));
3331 Freeze_And_Append
(Etype
(Comp
), Loc
, Result
);
3337 -- Private types are required to point to the same freeze node as
3338 -- their corresponding full views. The freeze node itself has to
3339 -- point to the partial view of the entity (because from the partial
3340 -- view, we can retrieve the full view, but not the reverse).
3341 -- However, in order to freeze correctly, we need to freeze the full
3342 -- view. If we are freezing at the end of a scope (or within the
3343 -- scope of the private type), the partial and full views will have
3344 -- been swapped, the full view appears first in the entity chain and
3345 -- the swapping mechanism ensures that the pointers are properly set
3348 -- If we encounter the partial view before the full view (e.g. when
3349 -- freezing from another scope), we freeze the full view, and then
3350 -- set the pointers appropriately since we cannot rely on swapping to
3351 -- fix things up (subtypes in an outer scope might not get swapped).
3353 elsif Is_Incomplete_Or_Private_Type
(E
)
3354 and then not Is_Generic_Type
(E
)
3356 -- The construction of the dispatch table associated with library
3357 -- level tagged types forces freezing of all the primitives of the
3358 -- type, which may cause premature freezing of the partial view.
3362 -- type T is tagged private;
3363 -- type DT is new T with private;
3364 -- procedure Prim (X : in out T; Y : in out DT'class);
3366 -- type T is tagged null record;
3368 -- type DT is new T with null record;
3371 -- In this case the type will be frozen later by the usual
3372 -- mechanism: an object declaration, an instantiation, or the
3373 -- end of a declarative part.
3375 if Is_Library_Level_Tagged_Type
(E
)
3376 and then not Present
(Full_View
(E
))
3378 Set_Is_Frozen
(E
, False);
3381 -- Case of full view present
3383 elsif Present
(Full_View
(E
)) then
3385 -- If full view has already been frozen, then no further
3386 -- processing is required
3388 if Is_Frozen
(Full_View
(E
)) then
3390 Set_Has_Delayed_Freeze
(E
, False);
3391 Set_Freeze_Node
(E
, Empty
);
3392 Check_Debug_Info_Needed
(E
);
3394 -- Otherwise freeze full view and patch the pointers so that
3395 -- the freeze node will elaborate both views in the back-end.
3399 Full
: constant Entity_Id
:= Full_View
(E
);
3402 if Is_Private_Type
(Full
)
3403 and then Present
(Underlying_Full_View
(Full
))
3406 (Underlying_Full_View
(Full
), Loc
, Result
);
3409 Freeze_And_Append
(Full
, Loc
, Result
);
3411 if Has_Delayed_Freeze
(E
) then
3412 F_Node
:= Freeze_Node
(Full
);
3414 if Present
(F_Node
) then
3415 Set_Freeze_Node
(E
, F_Node
);
3416 Set_Entity
(F_Node
, E
);
3419 -- {Incomplete,Private}_Subtypes with Full_Views
3420 -- constrained by discriminants.
3422 Set_Has_Delayed_Freeze
(E
, False);
3423 Set_Freeze_Node
(E
, Empty
);
3428 Check_Debug_Info_Needed
(E
);
3431 -- AI-117 requires that the convention of a partial view be the
3432 -- same as the convention of the full view. Note that this is a
3433 -- recognized breach of privacy, but it's essential for logical
3434 -- consistency of representation, and the lack of a rule in
3435 -- RM95 was an oversight.
3437 Set_Convention
(E
, Convention
(Full_View
(E
)));
3439 Set_Size_Known_At_Compile_Time
(E
,
3440 Size_Known_At_Compile_Time
(Full_View
(E
)));
3442 -- Size information is copied from the full view to the
3443 -- incomplete or private view for consistency.
3445 -- We skip this is the full view is not a type. This is very
3446 -- strange of course, and can only happen as a result of
3447 -- certain illegalities, such as a premature attempt to derive
3448 -- from an incomplete type.
3450 if Is_Type
(Full_View
(E
)) then
3451 Set_Size_Info
(E
, Full_View
(E
));
3452 Set_RM_Size
(E
, RM_Size
(Full_View
(E
)));
3457 -- Case of no full view present. If entity is derived or subtype,
3458 -- it is safe to freeze, correctness depends on the frozen status
3459 -- of parent. Otherwise it is either premature usage, or a Taft
3460 -- amendment type, so diagnosis is at the point of use and the
3461 -- type might be frozen later.
3463 elsif E
/= Base_Type
(E
)
3464 or else Is_Derived_Type
(E
)
3469 Set_Is_Frozen
(E
, False);
3473 -- For access subprogram, freeze types of all formals, the return
3474 -- type was already frozen, since it is the Etype of the function.
3475 -- Formal types can be tagged Taft amendment types, but otherwise
3476 -- they cannot be incomplete.
3478 elsif Ekind
(E
) = E_Subprogram_Type
then
3479 Formal
:= First_Formal
(E
);
3481 while Present
(Formal
) loop
3482 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
3483 and then No
(Full_View
(Etype
(Formal
)))
3484 and then not Is_Value_Type
(Etype
(Formal
))
3486 if Is_Tagged_Type
(Etype
(Formal
)) then
3490 ("invalid use of incomplete type&", E
, Etype
(Formal
));
3494 Freeze_And_Append
(Etype
(Formal
), Loc
, Result
);
3495 Next_Formal
(Formal
);
3498 Freeze_Subprogram
(E
);
3500 -- For access to a protected subprogram, freeze the equivalent type
3501 -- (however this is not set if we are not generating code or if this
3502 -- is an anonymous type used just for resolution).
3504 elsif Is_Access_Protected_Subprogram_Type
(E
) then
3505 if Present
(Equivalent_Type
(E
)) then
3506 Freeze_And_Append
(Equivalent_Type
(E
), Loc
, Result
);
3510 -- Generic types are never seen by the back-end, and are also not
3511 -- processed by the expander (since the expander is turned off for
3512 -- generic processing), so we never need freeze nodes for them.
3514 if Is_Generic_Type
(E
) then
3518 -- Some special processing for non-generic types to complete
3519 -- representation details not known till the freeze point.
3521 if Is_Fixed_Point_Type
(E
) then
3522 Freeze_Fixed_Point_Type
(E
);
3524 -- Some error checks required for ordinary fixed-point type. Defer
3525 -- these till the freeze-point since we need the small and range
3526 -- values. We only do these checks for base types
3528 if Is_Ordinary_Fixed_Point_Type
(E
)
3529 and then E
= Base_Type
(E
)
3531 if Small_Value
(E
) < Ureal_2_M_80
then
3532 Error_Msg_Name_1
:= Name_Small
;
3534 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E
);
3536 elsif Small_Value
(E
) > Ureal_2_80
then
3537 Error_Msg_Name_1
:= Name_Small
;
3539 ("`&''%` too large, maximum allowed is 2.0'*'*80", E
);
3542 if Expr_Value_R
(Type_Low_Bound
(E
)) < Ureal_M_10_36
then
3543 Error_Msg_Name_1
:= Name_First
;
3545 ("`&''%` too small, minimum allowed is -10.0'*'*36", E
);
3548 if Expr_Value_R
(Type_High_Bound
(E
)) > Ureal_10_36
then
3549 Error_Msg_Name_1
:= Name_Last
;
3551 ("`&''%` too large, maximum allowed is 10.0'*'*36", E
);
3555 elsif Is_Enumeration_Type
(E
) then
3556 Freeze_Enumeration_Type
(E
);
3558 elsif Is_Integer_Type
(E
) then
3559 Adjust_Esize_For_Alignment
(E
);
3561 elsif Is_Access_Type
(E
) then
3563 -- Check restriction for standard storage pool
3565 if No
(Associated_Storage_Pool
(E
)) then
3566 Check_Restriction
(No_Standard_Storage_Pools
, E
);
3569 -- Deal with error message for pure access type. This is not an
3570 -- error in Ada 2005 if there is no pool (see AI-366).
3572 if Is_Pure_Unit_Access_Type
(E
)
3573 and then (Ada_Version
< Ada_05
3574 or else not No_Pool_Assigned
(E
))
3576 Error_Msg_N
("named access type not allowed in pure unit", E
);
3578 if Ada_Version
>= Ada_05
then
3580 ("\would be legal if Storage_Size of 0 given?", E
);
3582 elsif No_Pool_Assigned
(E
) then
3584 ("\would be legal in Ada 2005?", E
);
3588 ("\would be legal in Ada 2005 if "
3589 & "Storage_Size of 0 given?", E
);
3594 -- Case of composite types
3596 if Is_Composite_Type
(E
) then
3598 -- AI-117 requires that all new primitives of a tagged type must
3599 -- inherit the convention of the full view of the type. Inherited
3600 -- and overriding operations are defined to inherit the convention
3601 -- of their parent or overridden subprogram (also specified in
3602 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3603 -- and New_Overloaded_Entity). Here we set the convention of
3604 -- primitives that are still convention Ada, which will ensure
3605 -- that any new primitives inherit the type's convention. Class-
3606 -- wide types can have a foreign convention inherited from their
3607 -- specific type, but are excluded from this since they don't have
3608 -- any associated primitives.
3610 if Is_Tagged_Type
(E
)
3611 and then not Is_Class_Wide_Type
(E
)
3612 and then Convention
(E
) /= Convention_Ada
3615 Prim_List
: constant Elist_Id
:= Primitive_Operations
(E
);
3618 Prim
:= First_Elmt
(Prim_List
);
3619 while Present
(Prim
) loop
3620 if Convention
(Node
(Prim
)) = Convention_Ada
then
3621 Set_Convention
(Node
(Prim
), Convention
(E
));
3630 -- Generate references to primitive operations for a tagged type
3632 Generate_Prim_Op_References
(E
);
3634 -- Now that all types from which E may depend are frozen, see if the
3635 -- size is known at compile time, if it must be unsigned, or if
3636 -- strict alignment is required
3638 Check_Compile_Time_Size
(E
);
3639 Check_Unsigned_Type
(E
);
3641 if Base_Type
(E
) = E
then
3642 Check_Strict_Alignment
(E
);
3645 -- Do not allow a size clause for a type which does not have a size
3646 -- that is known at compile time
3648 if Has_Size_Clause
(E
)
3649 and then not Size_Known_At_Compile_Time
(E
)
3651 -- Suppress this message if errors posted on E, even if we are
3652 -- in all errors mode, since this is often a junk message
3654 if not Error_Posted
(E
) then
3656 ("size clause not allowed for variable length type",
3661 -- Remaining process is to set/verify the representation information,
3662 -- in particular the size and alignment values. This processing is
3663 -- not required for generic types, since generic types do not play
3664 -- any part in code generation, and so the size and alignment values
3665 -- for such types are irrelevant.
3667 if Is_Generic_Type
(E
) then
3670 -- Otherwise we call the layout procedure
3676 -- End of freeze processing for type entities
3679 -- Here is where we logically freeze the current entity. If it has a
3680 -- freeze node, then this is the point at which the freeze node is
3681 -- linked into the result list.
3683 if Has_Delayed_Freeze
(E
) then
3685 -- If a freeze node is already allocated, use it, otherwise allocate
3686 -- a new one. The preallocation happens in the case of anonymous base
3687 -- types, where we preallocate so that we can set First_Subtype_Link.
3688 -- Note that we reset the Sloc to the current freeze location.
3690 if Present
(Freeze_Node
(E
)) then
3691 F_Node
:= Freeze_Node
(E
);
3692 Set_Sloc
(F_Node
, Loc
);
3695 F_Node
:= New_Node
(N_Freeze_Entity
, Loc
);
3696 Set_Freeze_Node
(E
, F_Node
);
3697 Set_Access_Types_To_Process
(F_Node
, No_Elist
);
3698 Set_TSS_Elist
(F_Node
, No_Elist
);
3699 Set_Actions
(F_Node
, No_List
);
3702 Set_Entity
(F_Node
, E
);
3704 if Result
= No_List
then
3705 Result
:= New_List
(F_Node
);
3707 Append
(F_Node
, Result
);
3710 -- A final pass over record types with discriminants. If the type
3711 -- has an incomplete declaration, there may be constrained access
3712 -- subtypes declared elsewhere, which do not depend on the discrimi-
3713 -- nants of the type, and which are used as component types (i.e.
3714 -- the full view is a recursive type). The designated types of these
3715 -- subtypes can only be elaborated after the type itself, and they
3716 -- need an itype reference.
3718 if Ekind
(E
) = E_Record_Type
3719 and then Has_Discriminants
(E
)
3727 Comp
:= First_Component
(E
);
3729 while Present
(Comp
) loop
3730 Typ
:= Etype
(Comp
);
3732 if Ekind
(Comp
) = E_Component
3733 and then Is_Access_Type
(Typ
)
3734 and then Scope
(Typ
) /= E
3735 and then Base_Type
(Designated_Type
(Typ
)) = E
3736 and then Is_Itype
(Designated_Type
(Typ
))
3738 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
3739 Set_Itype
(IR
, Designated_Type
(Typ
));
3740 Append
(IR
, Result
);
3743 Next_Component
(Comp
);
3749 -- When a type is frozen, the first subtype of the type is frozen as
3750 -- well (RM 13.14(15)). This has to be done after freezing the type,
3751 -- since obviously the first subtype depends on its own base type.
3754 Freeze_And_Append
(First_Subtype
(E
), Loc
, Result
);
3756 -- If we just froze a tagged non-class wide record, then freeze the
3757 -- corresponding class-wide type. This must be done after the tagged
3758 -- type itself is frozen, because the class-wide type refers to the
3759 -- tagged type which generates the class.
3761 if Is_Tagged_Type
(E
)
3762 and then not Is_Class_Wide_Type
(E
)
3763 and then Present
(Class_Wide_Type
(E
))
3765 Freeze_And_Append
(Class_Wide_Type
(E
), Loc
, Result
);
3769 Check_Debug_Info_Needed
(E
);
3771 -- Special handling for subprograms
3773 if Is_Subprogram
(E
) then
3775 -- If subprogram has address clause then reset Is_Public flag, since
3776 -- we do not want the backend to generate external references.
3778 if Present
(Address_Clause
(E
))
3779 and then not Is_Library_Level_Entity
(E
)
3781 Set_Is_Public
(E
, False);
3783 -- If no address clause and not intrinsic, then for imported
3784 -- subprogram in main unit, generate descriptor if we are in
3785 -- Propagate_Exceptions mode.
3787 elsif Propagate_Exceptions
3788 and then Is_Imported
(E
)
3789 and then not Is_Intrinsic_Subprogram
(E
)
3790 and then Convention
(E
) /= Convention_Stubbed
3792 if Result
= No_List
then
3793 Result
:= Empty_List
;
3801 -----------------------------
3802 -- Freeze_Enumeration_Type --
3803 -----------------------------
3805 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
) is
3807 -- By default, if no size clause is present, an enumeration type with
3808 -- Convention C is assumed to interface to a C enum, and has integer
3809 -- size. This applies to types. For subtypes, verify that its base
3810 -- type has no size clause either.
3812 if Has_Foreign_Convention
(Typ
)
3813 and then not Has_Size_Clause
(Typ
)
3814 and then not Has_Size_Clause
(Base_Type
(Typ
))
3815 and then Esize
(Typ
) < Standard_Integer_Size
3817 Init_Esize
(Typ
, Standard_Integer_Size
);
3820 -- If the enumeration type interfaces to C, and it has a size clause
3821 -- that specifies less than int size, it warrants a warning. The
3822 -- user may intend the C type to be an enum or a char, so this is
3823 -- not by itself an error that the Ada compiler can detect, but it
3824 -- it is a worth a heads-up. For Boolean and Character types we
3825 -- assume that the programmer has the proper C type in mind.
3827 if Convention
(Typ
) = Convention_C
3828 and then Has_Size_Clause
(Typ
)
3829 and then Esize
(Typ
) /= Esize
(Standard_Integer
)
3830 and then not Is_Boolean_Type
(Typ
)
3831 and then not Is_Character_Type
(Typ
)
3834 ("C enum types have the size of a C int?", Size_Clause
(Typ
));
3837 Adjust_Esize_For_Alignment
(Typ
);
3839 end Freeze_Enumeration_Type
;
3841 -----------------------
3842 -- Freeze_Expression --
3843 -----------------------
3845 procedure Freeze_Expression
(N
: Node_Id
) is
3846 In_Spec_Exp
: constant Boolean := In_Spec_Expression
;
3849 Desig_Typ
: Entity_Id
;
3853 Freeze_Outside
: Boolean := False;
3854 -- This flag is set true if the entity must be frozen outside the
3855 -- current subprogram. This happens in the case of expander generated
3856 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3857 -- not freeze all entities like other bodies, but which nevertheless
3858 -- may reference entities that have to be frozen before the body and
3859 -- obviously cannot be frozen inside the body.
3861 function In_Exp_Body
(N
: Node_Id
) return Boolean;
3862 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
3863 -- it is the handled statement sequence of an expander-generated
3864 -- subprogram (init proc, stream subprogram, or renaming as body).
3865 -- If so, this is not a freezing context.
3871 function In_Exp_Body
(N
: Node_Id
) return Boolean is
3876 if Nkind
(N
) = N_Subprogram_Body
then
3882 if Nkind
(P
) /= N_Subprogram_Body
then
3886 Id
:= Defining_Unit_Name
(Specification
(P
));
3888 if Nkind
(Id
) = N_Defining_Identifier
3889 and then (Is_Init_Proc
(Id
) or else
3890 Is_TSS
(Id
, TSS_Stream_Input
) or else
3891 Is_TSS
(Id
, TSS_Stream_Output
) or else
3892 Is_TSS
(Id
, TSS_Stream_Read
) or else
3893 Is_TSS
(Id
, TSS_Stream_Write
) or else
3894 Nkind
(Original_Node
(P
)) =
3895 N_Subprogram_Renaming_Declaration
)
3904 -- Start of processing for Freeze_Expression
3907 -- Immediate return if freezing is inhibited. This flag is set by the
3908 -- analyzer to stop freezing on generated expressions that would cause
3909 -- freezing if they were in the source program, but which are not
3910 -- supposed to freeze, since they are created.
3912 if Must_Not_Freeze
(N
) then
3916 -- If expression is non-static, then it does not freeze in a default
3917 -- expression, see section "Handling of Default Expressions" in the
3918 -- spec of package Sem for further details. Note that we have to
3919 -- make sure that we actually have a real expression (if we have
3920 -- a subtype indication, we can't test Is_Static_Expression!)
3923 and then Nkind
(N
) in N_Subexpr
3924 and then not Is_Static_Expression
(N
)
3929 -- Freeze type of expression if not frozen already
3933 if Nkind
(N
) in N_Has_Etype
then
3934 if not Is_Frozen
(Etype
(N
)) then
3937 -- Base type may be an derived numeric type that is frozen at
3938 -- the point of declaration, but first_subtype is still unfrozen.
3940 elsif not Is_Frozen
(First_Subtype
(Etype
(N
))) then
3941 Typ
:= First_Subtype
(Etype
(N
));
3945 -- For entity name, freeze entity if not frozen already. A special
3946 -- exception occurs for an identifier that did not come from source.
3947 -- We don't let such identifiers freeze a non-internal entity, i.e.
3948 -- an entity that did come from source, since such an identifier was
3949 -- generated by the expander, and cannot have any semantic effect on
3950 -- the freezing semantics. For example, this stops the parameter of
3951 -- an initialization procedure from freezing the variable.
3953 if Is_Entity_Name
(N
)
3954 and then not Is_Frozen
(Entity
(N
))
3955 and then (Nkind
(N
) /= N_Identifier
3956 or else Comes_From_Source
(N
)
3957 or else not Comes_From_Source
(Entity
(N
)))
3964 -- For an allocator freeze designated type if not frozen already
3966 -- For an aggregate whose component type is an access type, freeze the
3967 -- designated type now, so that its freeze does not appear within the
3968 -- loop that might be created in the expansion of the aggregate. If the
3969 -- designated type is a private type without full view, the expression
3970 -- cannot contain an allocator, so the type is not frozen.
3976 Desig_Typ
:= Designated_Type
(Etype
(N
));
3979 if Is_Array_Type
(Etype
(N
))
3980 and then Is_Access_Type
(Component_Type
(Etype
(N
)))
3982 Desig_Typ
:= Designated_Type
(Component_Type
(Etype
(N
)));
3985 when N_Selected_Component |
3986 N_Indexed_Component |
3989 if Is_Access_Type
(Etype
(Prefix
(N
))) then
3990 Desig_Typ
:= Designated_Type
(Etype
(Prefix
(N
)));
3997 if Desig_Typ
/= Empty
3998 and then (Is_Frozen
(Desig_Typ
)
3999 or else (not Is_Fully_Defined
(Desig_Typ
)))
4004 -- All done if nothing needs freezing
4008 and then No
(Desig_Typ
)
4013 -- Loop for looking at the right place to insert the freeze nodes
4014 -- exiting from the loop when it is appropriate to insert the freeze
4015 -- node before the current node P.
4017 -- Also checks some special exceptions to the freezing rules. These
4018 -- cases result in a direct return, bypassing the freeze action.
4022 Parent_P
:= Parent
(P
);
4024 -- If we don't have a parent, then we are not in a well-formed tree.
4025 -- This is an unusual case, but there are some legitimate situations
4026 -- in which this occurs, notably when the expressions in the range of
4027 -- a type declaration are resolved. We simply ignore the freeze
4028 -- request in this case. Is this right ???
4030 if No
(Parent_P
) then
4034 -- See if we have got to an appropriate point in the tree
4036 case Nkind
(Parent_P
) is
4038 -- A special test for the exception of (RM 13.14(8)) for the case
4039 -- of per-object expressions (RM 3.8(18)) occurring in component
4040 -- definition or a discrete subtype definition. Note that we test
4041 -- for a component declaration which includes both cases we are
4042 -- interested in, and furthermore the tree does not have explicit
4043 -- nodes for either of these two constructs.
4045 when N_Component_Declaration
=>
4047 -- The case we want to test for here is an identifier that is
4048 -- a per-object expression, this is either a discriminant that
4049 -- appears in a context other than the component declaration
4050 -- or it is a reference to the type of the enclosing construct.
4052 -- For either of these cases, we skip the freezing
4054 if not In_Spec_Expression
4055 and then Nkind
(N
) = N_Identifier
4056 and then (Present
(Entity
(N
)))
4058 -- We recognize the discriminant case by just looking for
4059 -- a reference to a discriminant. It can only be one for
4060 -- the enclosing construct. Skip freezing in this case.
4062 if Ekind
(Entity
(N
)) = E_Discriminant
then
4065 -- For the case of a reference to the enclosing record,
4066 -- (or task or protected type), we look for a type that
4067 -- matches the current scope.
4069 elsif Entity
(N
) = Current_Scope
then
4074 -- If we have an enumeration literal that appears as the choice in
4075 -- the aggregate of an enumeration representation clause, then
4076 -- freezing does not occur (RM 13.14(10)).
4078 when N_Enumeration_Representation_Clause
=>
4080 -- The case we are looking for is an enumeration literal
4082 if (Nkind
(N
) = N_Identifier
or Nkind
(N
) = N_Character_Literal
)
4083 and then Is_Enumeration_Type
(Etype
(N
))
4085 -- If enumeration literal appears directly as the choice,
4086 -- do not freeze (this is the normal non-overloaded case)
4088 if Nkind
(Parent
(N
)) = N_Component_Association
4089 and then First
(Choices
(Parent
(N
))) = N
4093 -- If enumeration literal appears as the name of function
4094 -- which is the choice, then also do not freeze. This
4095 -- happens in the overloaded literal case, where the
4096 -- enumeration literal is temporarily changed to a function
4097 -- call for overloading analysis purposes.
4099 elsif Nkind
(Parent
(N
)) = N_Function_Call
4101 Nkind
(Parent
(Parent
(N
))) = N_Component_Association
4103 First
(Choices
(Parent
(Parent
(N
)))) = Parent
(N
)
4109 -- Normally if the parent is a handled sequence of statements,
4110 -- then the current node must be a statement, and that is an
4111 -- appropriate place to insert a freeze node.
4113 when N_Handled_Sequence_Of_Statements
=>
4115 -- An exception occurs when the sequence of statements is for
4116 -- an expander generated body that did not do the usual freeze
4117 -- all operation. In this case we usually want to freeze
4118 -- outside this body, not inside it, and we skip past the
4119 -- subprogram body that we are inside.
4121 if In_Exp_Body
(Parent_P
) then
4123 -- However, we *do* want to freeze at this point if we have
4124 -- an entity to freeze, and that entity is declared *inside*
4125 -- the body of the expander generated procedure. This case
4126 -- is recognized by the scope of the type, which is either
4127 -- the spec for some enclosing body, or (in the case of
4128 -- init_procs, for which there are no separate specs) the
4132 Subp
: constant Node_Id
:= Parent
(Parent_P
);
4136 if Nkind
(Subp
) = N_Subprogram_Body
then
4137 Cspc
:= Corresponding_Spec
(Subp
);
4139 if (Present
(Typ
) and then Scope
(Typ
) = Cspc
)
4141 (Present
(Nam
) and then Scope
(Nam
) = Cspc
)
4146 and then Scope
(Typ
) = Current_Scope
4147 and then Current_Scope
= Defining_Entity
(Subp
)
4154 -- If not that exception to the exception, then this is
4155 -- where we delay the freeze till outside the body.
4157 Parent_P
:= Parent
(Parent_P
);
4158 Freeze_Outside
:= True;
4160 -- Here if normal case where we are in handled statement
4161 -- sequence and want to do the insertion right there.
4167 -- If parent is a body or a spec or a block, then the current node
4168 -- is a statement or declaration and we can insert the freeze node
4171 when N_Package_Specification |
4177 N_Block_Statement
=> exit;
4179 -- The expander is allowed to define types in any statements list,
4180 -- so any of the following parent nodes also mark a freezing point
4181 -- if the actual node is in a list of statements or declarations.
4183 when N_Exception_Handler |
4186 N_Case_Statement_Alternative |
4187 N_Compilation_Unit_Aux |
4188 N_Selective_Accept |
4189 N_Accept_Alternative |
4190 N_Delay_Alternative |
4191 N_Conditional_Entry_Call |
4192 N_Entry_Call_Alternative |
4193 N_Triggering_Alternative |
4197 exit when Is_List_Member
(P
);
4199 -- Note: The N_Loop_Statement is a special case. A type that
4200 -- appears in the source can never be frozen in a loop (this
4201 -- occurs only because of a loop expanded by the expander), so we
4202 -- keep on going. Otherwise we terminate the search. Same is true
4203 -- of any entity which comes from source. (if they have predefined
4204 -- type, that type does not appear to come from source, but the
4205 -- entity should not be frozen here).
4207 when N_Loop_Statement
=>
4208 exit when not Comes_From_Source
(Etype
(N
))
4209 and then (No
(Nam
) or else not Comes_From_Source
(Nam
));
4211 -- For all other cases, keep looking at parents
4217 -- We fall through the case if we did not yet find the proper
4218 -- place in the free for inserting the freeze node, so climb!
4223 -- If the expression appears in a record or an initialization procedure,
4224 -- the freeze nodes are collected and attached to the current scope, to
4225 -- be inserted and analyzed on exit from the scope, to insure that
4226 -- generated entities appear in the correct scope. If the expression is
4227 -- a default for a discriminant specification, the scope is still void.
4228 -- The expression can also appear in the discriminant part of a private
4229 -- or concurrent type.
4231 -- If the expression appears in a constrained subcomponent of an
4232 -- enclosing record declaration, the freeze nodes must be attached to
4233 -- the outer record type so they can eventually be placed in the
4234 -- enclosing declaration list.
4236 -- The other case requiring this special handling is if we are in a
4237 -- default expression, since in that case we are about to freeze a
4238 -- static type, and the freeze scope needs to be the outer scope, not
4239 -- the scope of the subprogram with the default parameter.
4241 -- For default expressions and other spec expressions in generic units,
4242 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4243 -- placing them at the proper place, after the generic unit.
4245 if (In_Spec_Exp
and not Inside_A_Generic
)
4246 or else Freeze_Outside
4247 or else (Is_Type
(Current_Scope
)
4248 and then (not Is_Concurrent_Type
(Current_Scope
)
4249 or else not Has_Completion
(Current_Scope
)))
4250 or else Ekind
(Current_Scope
) = E_Void
4253 Loc
: constant Source_Ptr
:= Sloc
(Current_Scope
);
4254 Freeze_Nodes
: List_Id
:= No_List
;
4255 Pos
: Int
:= Scope_Stack
.Last
;
4258 if Present
(Desig_Typ
) then
4259 Freeze_And_Append
(Desig_Typ
, Loc
, Freeze_Nodes
);
4262 if Present
(Typ
) then
4263 Freeze_And_Append
(Typ
, Loc
, Freeze_Nodes
);
4266 if Present
(Nam
) then
4267 Freeze_And_Append
(Nam
, Loc
, Freeze_Nodes
);
4270 -- The current scope may be that of a constrained component of
4271 -- an enclosing record declaration, which is above the current
4272 -- scope in the scope stack.
4274 if Is_Record_Type
(Scope
(Current_Scope
)) then
4278 if Is_Non_Empty_List
(Freeze_Nodes
) then
4279 if No
(Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
) then
4280 Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
:=
4283 Append_List
(Freeze_Nodes
, Scope_Stack
.Table
4284 (Pos
).Pending_Freeze_Actions
);
4292 -- Now we have the right place to do the freezing. First, a special
4293 -- adjustment, if we are in spec-expression analysis mode, these freeze
4294 -- actions must not be thrown away (normally all inserted actions are
4295 -- thrown away in this mode. However, the freeze actions are from static
4296 -- expressions and one of the important reasons we are doing this
4297 -- special analysis is to get these freeze actions. Therefore we turn
4298 -- off the In_Spec_Expression mode to propagate these freeze actions.
4299 -- This also means they get properly analyzed and expanded.
4301 In_Spec_Expression
:= False;
4303 -- Freeze the designated type of an allocator (RM 13.14(13))
4305 if Present
(Desig_Typ
) then
4306 Freeze_Before
(P
, Desig_Typ
);
4309 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
4310 -- the enumeration representation clause exception in the loop above.
4312 if Present
(Typ
) then
4313 Freeze_Before
(P
, Typ
);
4316 -- Freeze name if one is present (RM 13.14(11))
4318 if Present
(Nam
) then
4319 Freeze_Before
(P
, Nam
);
4322 -- Restore In_Spec_Expression flag
4324 In_Spec_Expression
:= In_Spec_Exp
;
4325 end Freeze_Expression
;
4327 -----------------------------
4328 -- Freeze_Fixed_Point_Type --
4329 -----------------------------
4331 -- Certain fixed-point types and subtypes, including implicit base types
4332 -- and declared first subtypes, have not yet set up a range. This is
4333 -- because the range cannot be set until the Small and Size values are
4334 -- known, and these are not known till the type is frozen.
4336 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4337 -- whose bounds are unanalyzed real literals. This routine will recognize
4338 -- this case, and transform this range node into a properly typed range
4339 -- with properly analyzed and resolved values.
4341 procedure Freeze_Fixed_Point_Type
(Typ
: Entity_Id
) is
4342 Rng
: constant Node_Id
:= Scalar_Range
(Typ
);
4343 Lo
: constant Node_Id
:= Low_Bound
(Rng
);
4344 Hi
: constant Node_Id
:= High_Bound
(Rng
);
4345 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
4346 Brng
: constant Node_Id
:= Scalar_Range
(Btyp
);
4347 BLo
: constant Node_Id
:= Low_Bound
(Brng
);
4348 BHi
: constant Node_Id
:= High_Bound
(Brng
);
4349 Small
: constant Ureal
:= Small_Value
(Typ
);
4356 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
;
4357 -- Returns size of type with given bounds. Also leaves these
4358 -- bounds set as the current bounds of the Typ.
4364 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
is
4366 Set_Realval
(Lo
, Lov
);
4367 Set_Realval
(Hi
, Hiv
);
4368 return Minimum_Size
(Typ
);
4371 -- Start of processing for Freeze_Fixed_Point_Type
4374 -- If Esize of a subtype has not previously been set, set it now
4376 if Unknown_Esize
(Typ
) then
4377 Atype
:= Ancestor_Subtype
(Typ
);
4379 if Present
(Atype
) then
4380 Set_Esize
(Typ
, Esize
(Atype
));
4382 Set_Esize
(Typ
, Esize
(Base_Type
(Typ
)));
4386 -- Immediate return if the range is already analyzed. This means that
4387 -- the range is already set, and does not need to be computed by this
4390 if Analyzed
(Rng
) then
4394 -- Immediate return if either of the bounds raises Constraint_Error
4396 if Raises_Constraint_Error
(Lo
)
4397 or else Raises_Constraint_Error
(Hi
)
4402 Loval
:= Realval
(Lo
);
4403 Hival
:= Realval
(Hi
);
4405 -- Ordinary fixed-point case
4407 if Is_Ordinary_Fixed_Point_Type
(Typ
) then
4409 -- For the ordinary fixed-point case, we are allowed to fudge the
4410 -- end-points up or down by small. Generally we prefer to fudge up,
4411 -- i.e. widen the bounds for non-model numbers so that the end points
4412 -- are included. However there are cases in which this cannot be
4413 -- done, and indeed cases in which we may need to narrow the bounds.
4414 -- The following circuit makes the decision.
4416 -- Note: our terminology here is that Incl_EP means that the bounds
4417 -- are widened by Small if necessary to include the end points, and
4418 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4419 -- end-points if this reduces the size.
4421 -- Note that in the Incl case, all we care about is including the
4422 -- end-points. In the Excl case, we want to narrow the bounds as
4423 -- much as permitted by the RM, to give the smallest possible size.
4426 Loval_Incl_EP
: Ureal
;
4427 Hival_Incl_EP
: Ureal
;
4429 Loval_Excl_EP
: Ureal
;
4430 Hival_Excl_EP
: Ureal
;
4436 First_Subt
: Entity_Id
;
4441 -- First step. Base types are required to be symmetrical. Right
4442 -- now, the base type range is a copy of the first subtype range.
4443 -- This will be corrected before we are done, but right away we
4444 -- need to deal with the case where both bounds are non-negative.
4445 -- In this case, we set the low bound to the negative of the high
4446 -- bound, to make sure that the size is computed to include the
4447 -- required sign. Note that we do not need to worry about the
4448 -- case of both bounds negative, because the sign will be dealt
4449 -- with anyway. Furthermore we can't just go making such a bound
4450 -- symmetrical, since in a twos-complement system, there is an
4451 -- extra negative value which could not be accommodated on the
4455 and then not UR_Is_Negative
(Loval
)
4456 and then Hival
> Loval
4459 Set_Realval
(Lo
, Loval
);
4462 -- Compute the fudged bounds. If the number is a model number,
4463 -- then we do nothing to include it, but we are allowed to backoff
4464 -- to the next adjacent model number when we exclude it. If it is
4465 -- not a model number then we straddle the two values with the
4466 -- model numbers on either side.
4468 Model_Num
:= UR_Trunc
(Loval
/ Small
) * Small
;
4470 if Loval
= Model_Num
then
4471 Loval_Incl_EP
:= Model_Num
;
4473 Loval_Incl_EP
:= Model_Num
- Small
;
4476 -- The low value excluding the end point is Small greater, but
4477 -- we do not do this exclusion if the low value is positive,
4478 -- since it can't help the size and could actually hurt by
4479 -- crossing the high bound.
4481 if UR_Is_Negative
(Loval_Incl_EP
) then
4482 Loval_Excl_EP
:= Loval_Incl_EP
+ Small
;
4484 -- If the value went from negative to zero, then we have the
4485 -- case where Loval_Incl_EP is the model number just below
4486 -- zero, so we want to stick to the negative value for the
4487 -- base type to maintain the condition that the size will
4488 -- include signed values.
4491 and then UR_Is_Zero
(Loval_Excl_EP
)
4493 Loval_Excl_EP
:= Loval_Incl_EP
;
4497 Loval_Excl_EP
:= Loval_Incl_EP
;
4500 -- Similar processing for upper bound and high value
4502 Model_Num
:= UR_Trunc
(Hival
/ Small
) * Small
;
4504 if Hival
= Model_Num
then
4505 Hival_Incl_EP
:= Model_Num
;
4507 Hival_Incl_EP
:= Model_Num
+ Small
;
4510 if UR_Is_Positive
(Hival_Incl_EP
) then
4511 Hival_Excl_EP
:= Hival_Incl_EP
- Small
;
4513 Hival_Excl_EP
:= Hival_Incl_EP
;
4516 -- One further adjustment is needed. In the case of subtypes, we
4517 -- cannot go outside the range of the base type, or we get
4518 -- peculiarities, and the base type range is already set. This
4519 -- only applies to the Incl values, since clearly the Excl values
4520 -- are already as restricted as they are allowed to be.
4523 Loval_Incl_EP
:= UR_Max
(Loval_Incl_EP
, Realval
(BLo
));
4524 Hival_Incl_EP
:= UR_Min
(Hival_Incl_EP
, Realval
(BHi
));
4527 -- Get size including and excluding end points
4529 Size_Incl_EP
:= Fsize
(Loval_Incl_EP
, Hival_Incl_EP
);
4530 Size_Excl_EP
:= Fsize
(Loval_Excl_EP
, Hival_Excl_EP
);
4532 -- No need to exclude end-points if it does not reduce size
4534 if Fsize
(Loval_Incl_EP
, Hival_Excl_EP
) = Size_Excl_EP
then
4535 Loval_Excl_EP
:= Loval_Incl_EP
;
4538 if Fsize
(Loval_Excl_EP
, Hival_Incl_EP
) = Size_Excl_EP
then
4539 Hival_Excl_EP
:= Hival_Incl_EP
;
4542 -- Now we set the actual size to be used. We want to use the
4543 -- bounds fudged up to include the end-points but only if this
4544 -- can be done without violating a specifically given size
4545 -- size clause or causing an unacceptable increase in size.
4547 -- Case of size clause given
4549 if Has_Size_Clause
(Typ
) then
4551 -- Use the inclusive size only if it is consistent with
4552 -- the explicitly specified size.
4554 if Size_Incl_EP
<= RM_Size
(Typ
) then
4555 Actual_Lo
:= Loval_Incl_EP
;
4556 Actual_Hi
:= Hival_Incl_EP
;
4557 Actual_Size
:= Size_Incl_EP
;
4559 -- If the inclusive size is too large, we try excluding
4560 -- the end-points (will be caught later if does not work).
4563 Actual_Lo
:= Loval_Excl_EP
;
4564 Actual_Hi
:= Hival_Excl_EP
;
4565 Actual_Size
:= Size_Excl_EP
;
4568 -- Case of size clause not given
4571 -- If we have a base type whose corresponding first subtype
4572 -- has an explicit size that is large enough to include our
4573 -- end-points, then do so. There is no point in working hard
4574 -- to get a base type whose size is smaller than the specified
4575 -- size of the first subtype.
4577 First_Subt
:= First_Subtype
(Typ
);
4579 if Has_Size_Clause
(First_Subt
)
4580 and then Size_Incl_EP
<= Esize
(First_Subt
)
4582 Actual_Size
:= Size_Incl_EP
;
4583 Actual_Lo
:= Loval_Incl_EP
;
4584 Actual_Hi
:= Hival_Incl_EP
;
4586 -- If excluding the end-points makes the size smaller and
4587 -- results in a size of 8,16,32,64, then we take the smaller
4588 -- size. For the 64 case, this is compulsory. For the other
4589 -- cases, it seems reasonable. We like to include end points
4590 -- if we can, but not at the expense of moving to the next
4591 -- natural boundary of size.
4593 elsif Size_Incl_EP
/= Size_Excl_EP
4595 (Size_Excl_EP
= 8 or else
4596 Size_Excl_EP
= 16 or else
4597 Size_Excl_EP
= 32 or else
4600 Actual_Size
:= Size_Excl_EP
;
4601 Actual_Lo
:= Loval_Excl_EP
;
4602 Actual_Hi
:= Hival_Excl_EP
;
4604 -- Otherwise we can definitely include the end points
4607 Actual_Size
:= Size_Incl_EP
;
4608 Actual_Lo
:= Loval_Incl_EP
;
4609 Actual_Hi
:= Hival_Incl_EP
;
4612 -- One pathological case: normally we never fudge a low bound
4613 -- down, since it would seem to increase the size (if it has
4614 -- any effect), but for ranges containing single value, or no
4615 -- values, the high bound can be small too large. Consider:
4617 -- type t is delta 2.0**(-14)
4618 -- range 131072.0 .. 0;
4620 -- That lower bound is *just* outside the range of 32 bits, and
4621 -- does need fudging down in this case. Note that the bounds
4622 -- will always have crossed here, since the high bound will be
4623 -- fudged down if necessary, as in the case of:
4625 -- type t is delta 2.0**(-14)
4626 -- range 131072.0 .. 131072.0;
4628 -- So we detect the situation by looking for crossed bounds,
4629 -- and if the bounds are crossed, and the low bound is greater
4630 -- than zero, we will always back it off by small, since this
4631 -- is completely harmless.
4633 if Actual_Lo
> Actual_Hi
then
4634 if UR_Is_Positive
(Actual_Lo
) then
4635 Actual_Lo
:= Loval_Incl_EP
- Small
;
4636 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
4638 -- And of course, we need to do exactly the same parallel
4639 -- fudge for flat ranges in the negative region.
4641 elsif UR_Is_Negative
(Actual_Hi
) then
4642 Actual_Hi
:= Hival_Incl_EP
+ Small
;
4643 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
4648 Set_Realval
(Lo
, Actual_Lo
);
4649 Set_Realval
(Hi
, Actual_Hi
);
4652 -- For the decimal case, none of this fudging is required, since there
4653 -- are no end-point problems in the decimal case (the end-points are
4654 -- always included).
4657 Actual_Size
:= Fsize
(Loval
, Hival
);
4660 -- At this stage, the actual size has been calculated and the proper
4661 -- required bounds are stored in the low and high bounds.
4663 if Actual_Size
> 64 then
4664 Error_Msg_Uint_1
:= UI_From_Int
(Actual_Size
);
4666 ("size required (^) for type& too large, maximum allowed is 64",
4671 -- Check size against explicit given size
4673 if Has_Size_Clause
(Typ
) then
4674 if Actual_Size
> RM_Size
(Typ
) then
4675 Error_Msg_Uint_1
:= RM_Size
(Typ
);
4676 Error_Msg_Uint_2
:= UI_From_Int
(Actual_Size
);
4678 ("size given (^) for type& too small, minimum allowed is ^",
4679 Size_Clause
(Typ
), Typ
);
4682 Actual_Size
:= UI_To_Int
(Esize
(Typ
));
4685 -- Increase size to next natural boundary if no size clause given
4688 if Actual_Size
<= 8 then
4690 elsif Actual_Size
<= 16 then
4692 elsif Actual_Size
<= 32 then
4698 Init_Esize
(Typ
, Actual_Size
);
4699 Adjust_Esize_For_Alignment
(Typ
);
4702 -- If we have a base type, then expand the bounds so that they extend to
4703 -- the full width of the allocated size in bits, to avoid junk range
4704 -- checks on intermediate computations.
4706 if Base_Type
(Typ
) = Typ
then
4707 Set_Realval
(Lo
, -(Small
* (Uint_2
** (Actual_Size
- 1))));
4708 Set_Realval
(Hi
, (Small
* (Uint_2
** (Actual_Size
- 1) - 1)));
4711 -- Final step is to reanalyze the bounds using the proper type
4712 -- and set the Corresponding_Integer_Value fields of the literals.
4714 Set_Etype
(Lo
, Empty
);
4715 Set_Analyzed
(Lo
, False);
4718 -- Resolve with universal fixed if the base type, and the base type if
4719 -- it is a subtype. Note we can't resolve the base type with itself,
4720 -- that would be a reference before definition.
4723 Resolve
(Lo
, Universal_Fixed
);
4728 -- Set corresponding integer value for bound
4730 Set_Corresponding_Integer_Value
4731 (Lo
, UR_To_Uint
(Realval
(Lo
) / Small
));
4733 -- Similar processing for high bound
4735 Set_Etype
(Hi
, Empty
);
4736 Set_Analyzed
(Hi
, False);
4740 Resolve
(Hi
, Universal_Fixed
);
4745 Set_Corresponding_Integer_Value
4746 (Hi
, UR_To_Uint
(Realval
(Hi
) / Small
));
4748 -- Set type of range to correspond to bounds
4750 Set_Etype
(Rng
, Etype
(Lo
));
4752 -- Set Esize to calculated size if not set already
4754 if Unknown_Esize
(Typ
) then
4755 Init_Esize
(Typ
, Actual_Size
);
4758 -- Set RM_Size if not already set. If already set, check value
4761 Minsiz
: constant Uint
:= UI_From_Int
(Minimum_Size
(Typ
));
4764 if RM_Size
(Typ
) /= Uint_0
then
4765 if RM_Size
(Typ
) < Minsiz
then
4766 Error_Msg_Uint_1
:= RM_Size
(Typ
);
4767 Error_Msg_Uint_2
:= Minsiz
;
4769 ("size given (^) for type& too small, minimum allowed is ^",
4770 Size_Clause
(Typ
), Typ
);
4774 Set_RM_Size
(Typ
, Minsiz
);
4777 end Freeze_Fixed_Point_Type
;
4783 procedure Freeze_Itype
(T
: Entity_Id
; N
: Node_Id
) is
4787 Set_Has_Delayed_Freeze
(T
);
4788 L
:= Freeze_Entity
(T
, Sloc
(N
));
4790 if Is_Non_Empty_List
(L
) then
4791 Insert_Actions
(N
, L
);
4795 --------------------------
4796 -- Freeze_Static_Object --
4797 --------------------------
4799 procedure Freeze_Static_Object
(E
: Entity_Id
) is
4801 Cannot_Be_Static
: exception;
4802 -- Exception raised if the type of a static object cannot be made
4803 -- static. This happens if the type depends on non-global objects.
4805 procedure Ensure_Expression_Is_SA
(N
: Node_Id
);
4806 -- Called to ensure that an expression used as part of a type definition
4807 -- is statically allocatable, which means that the expression type is
4808 -- statically allocatable, and the expression is either static, or a
4809 -- reference to a library level constant.
4811 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
);
4812 -- Called to mark a type as static, checking that it is possible
4813 -- to set the type as static. If it is not possible, then the
4814 -- exception Cannot_Be_Static is raised.
4816 -----------------------------
4817 -- Ensure_Expression_Is_SA --
4818 -----------------------------
4820 procedure Ensure_Expression_Is_SA
(N
: Node_Id
) is
4824 Ensure_Type_Is_SA
(Etype
(N
));
4826 if Is_Static_Expression
(N
) then
4829 elsif Nkind
(N
) = N_Identifier
then
4833 and then Ekind
(Ent
) = E_Constant
4834 and then Is_Library_Level_Entity
(Ent
)
4840 raise Cannot_Be_Static
;
4841 end Ensure_Expression_Is_SA
;
4843 -----------------------
4844 -- Ensure_Type_Is_SA --
4845 -----------------------
4847 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
) is
4852 -- If type is library level, we are all set
4854 if Is_Library_Level_Entity
(Typ
) then
4858 -- We are also OK if the type already marked as statically allocated,
4859 -- which means we processed it before.
4861 if Is_Statically_Allocated
(Typ
) then
4865 -- Mark type as statically allocated
4867 Set_Is_Statically_Allocated
(Typ
);
4869 -- Check that it is safe to statically allocate this type
4871 if Is_Scalar_Type
(Typ
) or else Is_Real_Type
(Typ
) then
4872 Ensure_Expression_Is_SA
(Type_Low_Bound
(Typ
));
4873 Ensure_Expression_Is_SA
(Type_High_Bound
(Typ
));
4875 elsif Is_Array_Type
(Typ
) then
4876 N
:= First_Index
(Typ
);
4877 while Present
(N
) loop
4878 Ensure_Type_Is_SA
(Etype
(N
));
4882 Ensure_Type_Is_SA
(Component_Type
(Typ
));
4884 elsif Is_Access_Type
(Typ
) then
4885 if Ekind
(Designated_Type
(Typ
)) = E_Subprogram_Type
then
4889 T
: constant Entity_Id
:= Etype
(Designated_Type
(Typ
));
4892 if T
/= Standard_Void_Type
then
4893 Ensure_Type_Is_SA
(T
);
4896 F
:= First_Formal
(Designated_Type
(Typ
));
4898 while Present
(F
) loop
4899 Ensure_Type_Is_SA
(Etype
(F
));
4905 Ensure_Type_Is_SA
(Designated_Type
(Typ
));
4908 elsif Is_Record_Type
(Typ
) then
4909 C
:= First_Entity
(Typ
);
4910 while Present
(C
) loop
4911 if Ekind
(C
) = E_Discriminant
4912 or else Ekind
(C
) = E_Component
4914 Ensure_Type_Is_SA
(Etype
(C
));
4916 elsif Is_Type
(C
) then
4917 Ensure_Type_Is_SA
(C
);
4923 elsif Ekind
(Typ
) = E_Subprogram_Type
then
4924 Ensure_Type_Is_SA
(Etype
(Typ
));
4926 C
:= First_Formal
(Typ
);
4927 while Present
(C
) loop
4928 Ensure_Type_Is_SA
(Etype
(C
));
4933 raise Cannot_Be_Static
;
4935 end Ensure_Type_Is_SA
;
4937 -- Start of processing for Freeze_Static_Object
4940 Ensure_Type_Is_SA
(Etype
(E
));
4943 when Cannot_Be_Static
=>
4945 -- If the object that cannot be static is imported or exported,
4946 -- then we give an error message saying that this object cannot
4947 -- be imported or exported.
4949 if Is_Imported
(E
) then
4951 ("& cannot be imported (local type is not constant)", E
);
4953 -- Otherwise must be exported, something is wrong if compiler
4954 -- is marking something as statically allocated which cannot be).
4956 else pragma Assert
(Is_Exported
(E
));
4958 ("& cannot be exported (local type is not constant)", E
);
4960 end Freeze_Static_Object
;
4962 -----------------------
4963 -- Freeze_Subprogram --
4964 -----------------------
4966 procedure Freeze_Subprogram
(E
: Entity_Id
) is
4971 -- Subprogram may not have an address clause unless it is imported
4973 if Present
(Address_Clause
(E
)) then
4974 if not Is_Imported
(E
) then
4976 ("address clause can only be given " &
4977 "for imported subprogram",
4978 Name
(Address_Clause
(E
)));
4982 -- Reset the Pure indication on an imported subprogram unless an
4983 -- explicit Pure_Function pragma was present. We do this because
4984 -- otherwise it is an insidious error to call a non-pure function from
4985 -- pure unit and have calls mysteriously optimized away. What happens
4986 -- here is that the Import can bypass the normal check to ensure that
4987 -- pure units call only pure subprograms.
4990 and then Is_Pure
(E
)
4991 and then not Has_Pragma_Pure_Function
(E
)
4993 Set_Is_Pure
(E
, False);
4996 -- For non-foreign convention subprograms, this is where we create
4997 -- the extra formals (for accessibility level and constrained bit
4998 -- information). We delay this till the freeze point precisely so
4999 -- that we know the convention!
5001 if not Has_Foreign_Convention
(E
) then
5002 Create_Extra_Formals
(E
);
5005 -- If this is convention Ada and a Valued_Procedure, that's odd
5007 if Ekind
(E
) = E_Procedure
5008 and then Is_Valued_Procedure
(E
)
5009 and then Convention
(E
) = Convention_Ada
5010 and then Warn_On_Export_Import
5013 ("?Valued_Procedure has no effect for convention Ada", E
);
5014 Set_Is_Valued_Procedure
(E
, False);
5017 -- Case of foreign convention
5022 -- For foreign conventions, warn about return of an
5023 -- unconstrained array.
5025 -- Note: we *do* allow a return by descriptor for the VMS case,
5026 -- though here there is probably more to be done ???
5028 if Ekind
(E
) = E_Function
then
5029 Retype
:= Underlying_Type
(Etype
(E
));
5031 -- If no return type, probably some other error, e.g. a
5032 -- missing full declaration, so ignore.
5037 -- If the return type is generic, we have emitted a warning
5038 -- earlier on, and there is nothing else to check here. Specific
5039 -- instantiations may lead to erroneous behavior.
5041 elsif Is_Generic_Type
(Etype
(E
)) then
5044 elsif Is_Array_Type
(Retype
)
5045 and then not Is_Constrained
(Retype
)
5046 and then Mechanism
(E
) not in Descriptor_Codes
5047 and then Warn_On_Export_Import
5050 ("?foreign convention function& should not return " &
5051 "unconstrained array", E
);
5056 -- If any of the formals for an exported foreign convention
5057 -- subprogram have defaults, then emit an appropriate warning since
5058 -- this is odd (default cannot be used from non-Ada code)
5060 if Is_Exported
(E
) then
5061 F
:= First_Formal
(E
);
5062 while Present
(F
) loop
5063 if Warn_On_Export_Import
5064 and then Present
(Default_Value
(F
))
5067 ("?parameter cannot be defaulted in non-Ada call",
5076 -- For VMS, descriptor mechanisms for parameters are allowed only
5077 -- for imported/exported subprograms. Moreover, the NCA descriptor
5078 -- is not allowed for parameters of exported subprograms.
5080 if OpenVMS_On_Target
then
5081 if Is_Exported
(E
) then
5082 F
:= First_Formal
(E
);
5083 while Present
(F
) loop
5084 if Mechanism
(F
) = By_Descriptor_NCA
then
5086 ("'N'C'A' descriptor for parameter not permitted", F
);
5088 ("\can only be used for imported subprogram", F
);
5094 elsif not Is_Imported
(E
) then
5095 F
:= First_Formal
(E
);
5096 while Present
(F
) loop
5097 if Mechanism
(F
) in Descriptor_Codes
then
5099 ("descriptor mechanism for parameter not permitted", F
);
5101 ("\can only be used for imported/exported subprogram", F
);
5109 -- Pragma Inline_Always is disallowed for dispatching subprograms
5110 -- because the address of such subprograms is saved in the dispatch
5111 -- table to support dispatching calls, and dispatching calls cannot
5112 -- be inlined. This is consistent with the restriction against using
5113 -- 'Access or 'Address on an Inline_Always subprogram.
5115 if Is_Dispatching_Operation
(E
)
5116 and then Has_Pragma_Inline_Always
(E
)
5119 ("pragma Inline_Always not allowed for dispatching subprograms", E
);
5122 -- Because of the implicit representation of inherited predefined
5123 -- operators in the front-end, the overriding status of the operation
5124 -- may be affected when a full view of a type is analyzed, and this is
5125 -- not captured by the analysis of the corresponding type declaration.
5126 -- Therefore the correctness of a not-overriding indicator must be
5127 -- rechecked when the subprogram is frozen.
5129 if Nkind
(E
) = N_Defining_Operator_Symbol
5130 and then not Error_Posted
(Parent
(E
))
5132 Check_Overriding_Indicator
(E
, Empty
, Is_Primitive
(E
));
5134 end Freeze_Subprogram
;
5136 ----------------------
5137 -- Is_Fully_Defined --
5138 ----------------------
5140 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean is
5142 if Ekind
(T
) = E_Class_Wide_Type
then
5143 return Is_Fully_Defined
(Etype
(T
));
5145 elsif Is_Array_Type
(T
) then
5146 return Is_Fully_Defined
(Component_Type
(T
));
5148 elsif Is_Record_Type
(T
)
5149 and not Is_Private_Type
(T
)
5151 -- Verify that the record type has no components with private types
5152 -- without completion.
5158 Comp
:= First_Component
(T
);
5160 while Present
(Comp
) loop
5161 if not Is_Fully_Defined
(Etype
(Comp
)) then
5165 Next_Component
(Comp
);
5171 return not Is_Private_Type
(T
)
5172 or else Present
(Full_View
(Base_Type
(T
)));
5174 end Is_Fully_Defined
;
5176 ---------------------------------
5177 -- Generate_Prim_Op_References --
5178 ---------------------------------
5180 procedure Generate_Prim_Op_References
(Typ
: Entity_Id
) is
5183 Prim_List
: Elist_Id
;
5187 -- Handle subtypes of synchronized types
5189 if Ekind
(Typ
) = E_Protected_Subtype
5190 or else Ekind
(Typ
) = E_Task_Subtype
5192 Base_T
:= Etype
(Typ
);
5197 -- References to primitive operations are only relevant for tagged types
5199 if not Is_Tagged_Type
(Base_T
)
5200 or else Is_Class_Wide_Type
(Base_T
)
5205 -- Ada 2005 (AI-345): For synchronized types generate reference
5206 -- to the wrapper that allow us to dispatch calls through their
5207 -- implemented abstract interface types.
5209 -- The check for Present here is to protect against previously
5210 -- reported critical errors.
5212 if Is_Concurrent_Type
(Base_T
)
5213 and then Present
(Corresponding_Record_Type
(Base_T
))
5215 Prim_List
:= Primitive_Operations
5216 (Corresponding_Record_Type
(Base_T
));
5218 Prim_List
:= Primitive_Operations
(Base_T
);
5221 if No
(Prim_List
) then
5225 Prim
:= First_Elmt
(Prim_List
);
5226 while Present
(Prim
) loop
5228 -- If the operation is derived, get the original for cross-reference
5229 -- reference purposes (it is the original for which we want the xref
5230 -- and for which the comes_from_source test must be performed).
5233 while Present
(Alias
(Ent
)) loop
5237 Generate_Reference
(Typ
, Ent
, 'p', Set_Ref
=> False);
5240 end Generate_Prim_Op_References
;
5242 ---------------------------------
5243 -- Process_Default_Expressions --
5244 ---------------------------------
5246 procedure Process_Default_Expressions
5248 After
: in out Node_Id
)
5250 Loc
: constant Source_Ptr
:= Sloc
(E
);
5257 Set_Default_Expressions_Processed
(E
);
5259 -- A subprogram instance and its associated anonymous subprogram share
5260 -- their signature. The default expression functions are defined in the
5261 -- wrapper packages for the anonymous subprogram, and should not be
5262 -- generated again for the instance.
5264 if Is_Generic_Instance
(E
)
5265 and then Present
(Alias
(E
))
5266 and then Default_Expressions_Processed
(Alias
(E
))
5271 Formal
:= First_Formal
(E
);
5272 while Present
(Formal
) loop
5273 if Present
(Default_Value
(Formal
)) then
5275 -- We work with a copy of the default expression because we
5276 -- do not want to disturb the original, since this would mess
5277 -- up the conformance checking.
5279 Dcopy
:= New_Copy_Tree
(Default_Value
(Formal
));
5281 -- The analysis of the expression may generate insert actions,
5282 -- which of course must not be executed. We wrap those actions
5283 -- in a procedure that is not called, and later on eliminated.
5284 -- The following cases have no side-effects, and are analyzed
5287 if Nkind
(Dcopy
) = N_Identifier
5288 or else Nkind
(Dcopy
) = N_Expanded_Name
5289 or else Nkind
(Dcopy
) = N_Integer_Literal
5290 or else (Nkind
(Dcopy
) = N_Real_Literal
5291 and then not Vax_Float
(Etype
(Dcopy
)))
5292 or else Nkind
(Dcopy
) = N_Character_Literal
5293 or else Nkind
(Dcopy
) = N_String_Literal
5294 or else Known_Null
(Dcopy
)
5295 or else (Nkind
(Dcopy
) = N_Attribute_Reference
5297 Attribute_Name
(Dcopy
) = Name_Null_Parameter
)
5300 -- If there is no default function, we must still do a full
5301 -- analyze call on the default value, to ensure that all error
5302 -- checks are performed, e.g. those associated with static
5303 -- evaluation. Note: this branch will always be taken if the
5304 -- analyzer is turned off (but we still need the error checks).
5306 -- Note: the setting of parent here is to meet the requirement
5307 -- that we can only analyze the expression while attached to
5308 -- the tree. Really the requirement is that the parent chain
5309 -- be set, we don't actually need to be in the tree.
5311 Set_Parent
(Dcopy
, Declaration_Node
(Formal
));
5314 -- Default expressions are resolved with their own type if the
5315 -- context is generic, to avoid anomalies with private types.
5317 if Ekind
(Scope
(E
)) = E_Generic_Package
then
5320 Resolve
(Dcopy
, Etype
(Formal
));
5323 -- If that resolved expression will raise constraint error,
5324 -- then flag the default value as raising constraint error.
5325 -- This allows a proper error message on the calls.
5327 if Raises_Constraint_Error
(Dcopy
) then
5328 Set_Raises_Constraint_Error
(Default_Value
(Formal
));
5331 -- If the default is a parameterless call, we use the name of
5332 -- the called function directly, and there is no body to build.
5334 elsif Nkind
(Dcopy
) = N_Function_Call
5335 and then No
(Parameter_Associations
(Dcopy
))
5339 -- Else construct and analyze the body of a wrapper procedure
5340 -- that contains an object declaration to hold the expression.
5341 -- Given that this is done only to complete the analysis, it
5342 -- simpler to build a procedure than a function which might
5343 -- involve secondary stack expansion.
5347 Make_Defining_Identifier
(Loc
, New_Internal_Name
('D'));
5350 Make_Subprogram_Body
(Loc
,
5352 Make_Procedure_Specification
(Loc
,
5353 Defining_Unit_Name
=> Dnam
),
5355 Declarations
=> New_List
(
5356 Make_Object_Declaration
(Loc
,
5357 Defining_Identifier
=>
5358 Make_Defining_Identifier
(Loc
,
5359 New_Internal_Name
('T')),
5360 Object_Definition
=>
5361 New_Occurrence_Of
(Etype
(Formal
), Loc
),
5362 Expression
=> New_Copy_Tree
(Dcopy
))),
5364 Handled_Statement_Sequence
=>
5365 Make_Handled_Sequence_Of_Statements
(Loc
,
5366 Statements
=> New_List
));
5368 Set_Scope
(Dnam
, Scope
(E
));
5369 Set_Assignment_OK
(First
(Declarations
(Dbody
)));
5370 Set_Is_Eliminated
(Dnam
);
5371 Insert_After
(After
, Dbody
);
5377 Next_Formal
(Formal
);
5379 end Process_Default_Expressions
;
5381 ----------------------------------------
5382 -- Set_Component_Alignment_If_Not_Set --
5383 ----------------------------------------
5385 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
) is
5387 -- Ignore if not base type, subtypes don't need anything
5389 if Typ
/= Base_Type
(Typ
) then
5393 -- Do not override existing representation
5395 if Is_Packed
(Typ
) then
5398 elsif Has_Specified_Layout
(Typ
) then
5401 elsif Component_Alignment
(Typ
) /= Calign_Default
then
5405 Set_Component_Alignment
5406 (Typ
, Scope_Stack
.Table
5407 (Scope_Stack
.Last
).Component_Alignment_Default
);
5409 end Set_Component_Alignment_If_Not_Set
;
5415 procedure Undelay_Type
(T
: Entity_Id
) is
5417 Set_Has_Delayed_Freeze
(T
, False);
5418 Set_Freeze_Node
(T
, Empty
);
5420 -- Since we don't want T to have a Freeze_Node, we don't want its
5421 -- Full_View or Corresponding_Record_Type to have one either.
5423 -- ??? Fundamentally, this whole handling is a kludge. What we really
5424 -- want is to be sure that for an Itype that's part of record R and is a
5425 -- subtype of type T, that it's frozen after the later of the freeze
5426 -- points of R and T. We have no way of doing that directly, so what we
5427 -- do is force most such Itypes to be frozen as part of freezing R via
5428 -- this procedure and only delay the ones that need to be delayed
5429 -- (mostly the designated types of access types that are defined as part
5432 if Is_Private_Type
(T
)
5433 and then Present
(Full_View
(T
))
5434 and then Is_Itype
(Full_View
(T
))
5435 and then Is_Record_Type
(Scope
(Full_View
(T
)))
5437 Undelay_Type
(Full_View
(T
));
5440 if Is_Concurrent_Type
(T
)
5441 and then Present
(Corresponding_Record_Type
(T
))
5442 and then Is_Itype
(Corresponding_Record_Type
(T
))
5443 and then Is_Record_Type
(Scope
(Corresponding_Record_Type
(T
)))
5445 Undelay_Type
(Corresponding_Record_Type
(T
));
5453 procedure Warn_Overlay
5458 Ent
: constant Entity_Id
:= Entity
(Nam
);
5459 -- The object to which the address clause applies
5462 Old
: Entity_Id
:= Empty
;
5466 -- No warning if address clause overlay warnings are off
5468 if not Address_Clause_Overlay_Warnings
then
5472 -- No warning if there is an explicit initialization
5474 Init
:= Original_Node
(Expression
(Declaration_Node
(Ent
)));
5476 if Present
(Init
) and then Comes_From_Source
(Init
) then
5480 -- We only give the warning for non-imported entities of a type for
5481 -- which a non-null base init proc is defined, or for objects of access
5482 -- types with implicit null initialization, or when Initialize_Scalars
5483 -- applies and the type is scalar or a string type (the latter being
5484 -- tested for because predefined String types are initialized by inline
5485 -- code rather than by an init_proc).
5488 and then not Is_Imported
(Ent
)
5489 and then (Has_Non_Null_Base_Init_Proc
(Typ
)
5490 or else Is_Access_Type
(Typ
)
5491 or else (Init_Or_Norm_Scalars
5492 and then (Is_Scalar_Type
(Typ
)
5493 or else Is_String_Type
(Typ
))))
5495 if Nkind
(Expr
) = N_Attribute_Reference
5496 and then Is_Entity_Name
(Prefix
(Expr
))
5498 Old
:= Entity
(Prefix
(Expr
));
5500 elsif Is_Entity_Name
(Expr
)
5501 and then Ekind
(Entity
(Expr
)) = E_Constant
5503 Decl
:= Declaration_Node
(Entity
(Expr
));
5505 if Nkind
(Decl
) = N_Object_Declaration
5506 and then Present
(Expression
(Decl
))
5507 and then Nkind
(Expression
(Decl
)) = N_Attribute_Reference
5508 and then Is_Entity_Name
(Prefix
(Expression
(Decl
)))
5510 Old
:= Entity
(Prefix
(Expression
(Decl
)));
5512 elsif Nkind
(Expr
) = N_Function_Call
then
5516 -- A function call (most likely to To_Address) is probably not an
5517 -- overlay, so skip warning. Ditto if the function call was inlined
5518 -- and transformed into an entity.
5520 elsif Nkind
(Original_Node
(Expr
)) = N_Function_Call
then
5524 Decl
:= Next
(Parent
(Expr
));
5526 -- If a pragma Import follows, we assume that it is for the current
5527 -- target of the address clause, and skip the warning.
5530 and then Nkind
(Decl
) = N_Pragma
5531 and then Pragma_Name
(Decl
) = Name_Import
5536 if Present
(Old
) then
5537 Error_Msg_Node_2
:= Old
;
5539 ("default initialization of & may modify &?",
5543 ("default initialization of & may modify overlaid storage?",
5547 -- Add friendly warning if initialization comes from a packed array
5550 if Is_Record_Type
(Typ
) then
5555 Comp
:= First_Component
(Typ
);
5557 while Present
(Comp
) loop
5558 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
5559 and then Present
(Expression
(Parent
(Comp
)))
5562 elsif Is_Array_Type
(Etype
(Comp
))
5563 and then Present
(Packed_Array_Type
(Etype
(Comp
)))
5566 ("\packed array component& " &
5567 "will be initialized to zero?",
5571 Next_Component
(Comp
);
5578 ("\use pragma Import for & to " &
5579 "suppress initialization (RM B.1(24))?",