1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Contracts
; use Contracts
;
30 with Debug
; use Debug
;
31 with Einfo
; use Einfo
;
32 with Elists
; use Elists
;
33 with Errout
; use Errout
;
34 with Exp_Ch3
; use Exp_Ch3
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Pakd
; use Exp_Pakd
;
38 with Exp_Util
; use Exp_Util
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Ghost
; use Ghost
;
41 with Layout
; use Layout
;
43 with Namet
; use Namet
;
44 with Nlists
; use Nlists
;
45 with Nmake
; use Nmake
;
47 with Restrict
; use Restrict
;
48 with Rident
; use Rident
;
49 with Rtsfind
; use Rtsfind
;
51 with Sem_Aux
; use Sem_Aux
;
52 with Sem_Cat
; use Sem_Cat
;
53 with Sem_Ch6
; use Sem_Ch6
;
54 with Sem_Ch7
; use Sem_Ch7
;
55 with Sem_Ch8
; use Sem_Ch8
;
56 with Sem_Ch13
; use Sem_Ch13
;
57 with Sem_Eval
; use Sem_Eval
;
58 with Sem_Mech
; use Sem_Mech
;
59 with Sem_Prag
; use Sem_Prag
;
60 with Sem_Res
; use Sem_Res
;
61 with Sem_Util
; use Sem_Util
;
62 with Sinfo
; use Sinfo
;
63 with Snames
; use Snames
;
64 with Stand
; use Stand
;
65 with Targparm
; use Targparm
;
66 with Tbuild
; use Tbuild
;
67 with Ttypes
; use Ttypes
;
68 with Uintp
; use Uintp
;
69 with Urealp
; use Urealp
;
70 with Warnsw
; use Warnsw
;
72 package body Freeze
is
74 -----------------------
75 -- Local Subprograms --
76 -----------------------
78 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
);
79 -- Typ is a type that is being frozen. If no size clause is given,
80 -- but a default Esize has been computed, then this default Esize is
81 -- adjusted up if necessary to be consistent with a given alignment,
82 -- but never to a value greater than Long_Long_Integer'Size. This
83 -- is used for all discrete types and for fixed-point types.
85 procedure Build_And_Analyze_Renamed_Body
88 After
: in out Node_Id
);
89 -- Build body for a renaming declaration, insert in tree and analyze
91 procedure Check_Address_Clause
(E
: Entity_Id
);
92 -- Apply legality checks to address clauses for object declarations,
93 -- at the point the object is frozen. Also ensure any initialization is
94 -- performed only after the object has been frozen.
96 procedure Check_Component_Storage_Order
97 (Encl_Type
: Entity_Id
;
100 Comp_ADC_Present
: out Boolean);
101 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
102 -- clause, verify that the component type has an explicit and compatible
103 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
104 -- entity of the component under consideration. For an Encl_Type that
105 -- does not have a Scalar_Storage_Order attribute definition clause,
106 -- verify that the component also does not have such a clause.
107 -- ADC is the attribute definition clause if present (or Empty). On return,
108 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
109 -- attribute definition clause.
111 procedure Check_Debug_Info_Needed
(T
: Entity_Id
);
112 -- As each entity is frozen, this routine is called to deal with the
113 -- setting of Debug_Info_Needed for the entity. This flag is set if
114 -- the entity comes from source, or if we are in Debug_Generated_Code
115 -- mode or if the -gnatdV debug flag is set. However, it never sets
116 -- the flag if Debug_Info_Off is set. This procedure also ensures that
117 -- subsidiary entities have the flag set as required.
119 procedure Check_Expression_Function
(N
: Node_Id
; Nam
: Entity_Id
);
120 -- When an expression function is frozen by a use of it, the expression
121 -- itself is frozen. Check that the expression does not include references
122 -- to deferred constants without completion. We report this at the freeze
123 -- point of the function, to provide a better error message.
125 -- In most cases the expression itself is frozen by the time the function
126 -- itself is frozen, because the formals will be frozen by then. However,
127 -- Attribute references to outer types are freeze points for those types;
128 -- this routine generates the required freeze nodes for them.
130 procedure Check_Inherited_Conditions
(R
: Entity_Id
);
131 -- For a tagged derived type, create wrappers for inherited operations
132 -- that have a class-wide condition, so it can be properly rewritten if
133 -- it involves calls to other overriding primitives.
135 procedure Check_Strict_Alignment
(E
: Entity_Id
);
136 -- E is a base type. If E is tagged or has a component that is aliased
137 -- or tagged or contains something this is aliased or tagged, set
140 procedure Check_Unsigned_Type
(E
: Entity_Id
);
141 pragma Inline
(Check_Unsigned_Type
);
142 -- If E is a fixed-point or discrete type, then all the necessary work
143 -- to freeze it is completed except for possible setting of the flag
144 -- Is_Unsigned_Type, which is done by this procedure. The call has no
145 -- effect if the entity E is not a discrete or fixed-point type.
147 procedure Freeze_And_Append
150 Result
: in out List_Id
);
151 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
152 -- nodes to Result, modifying Result from No_List if necessary. N has
153 -- the same usage as in Freeze_Entity.
155 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
);
156 -- Freeze enumeration type. The Esize field is set as processing
157 -- proceeds (i.e. set by default when the type is declared and then
158 -- adjusted by rep clauses. What this procedure does is to make sure
159 -- that if a foreign convention is specified, and no specific size
160 -- is given, then the size must be at least Integer'Size.
162 procedure Freeze_Static_Object
(E
: Entity_Id
);
163 -- If an object is frozen which has Is_Statically_Allocated set, then
164 -- all referenced types must also be marked with this flag. This routine
165 -- is in charge of meeting this requirement for the object entity E.
167 procedure Freeze_Subprogram
(E
: Entity_Id
);
168 -- Perform freezing actions for a subprogram (create extra formals,
169 -- and set proper default mechanism values). Note that this routine
170 -- is not called for internal subprograms, for which neither of these
171 -- actions is needed (or desirable, we do not want for example to have
172 -- these extra formals present in initialization procedures, where they
173 -- would serve no purpose). In this call E is either a subprogram or
174 -- a subprogram type (i.e. an access to a subprogram).
176 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean;
177 -- True if T is not private and has no private components, or has a full
178 -- view. Used to determine whether the designated type of an access type
179 -- should be frozen when the access type is frozen. This is done when an
180 -- allocator is frozen, or an expression that may involve attributes of
181 -- the designated type. Otherwise freezing the access type does not freeze
182 -- the designated type.
184 procedure Process_Default_Expressions
186 After
: in out Node_Id
);
187 -- This procedure is called for each subprogram to complete processing of
188 -- default expressions at the point where all types are known to be frozen.
189 -- The expressions must be analyzed in full, to make sure that all error
190 -- processing is done (they have only been pre-analyzed). If the expression
191 -- is not an entity or literal, its analysis may generate code which must
192 -- not be executed. In that case we build a function body to hold that
193 -- code. This wrapper function serves no other purpose (it used to be
194 -- called to evaluate the default, but now the default is inlined at each
197 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
);
198 -- Typ is a record or array type that is being frozen. This routine sets
199 -- the default component alignment from the scope stack values if the
200 -- alignment is otherwise not specified.
202 procedure Set_SSO_From_Default
(T
: Entity_Id
);
203 -- T is a record or array type that is being frozen. If it is a base type,
204 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
205 -- will be set appropriately. Note that an explicit occurrence of aspect
206 -- Scalar_Storage_Order or an explicit setting of this aspect with an
207 -- attribute definition clause occurs, then these two flags are reset in
208 -- any case, so call will have no effect.
210 procedure Undelay_Type
(T
: Entity_Id
);
211 -- T is a type of a component that we know to be an Itype. We don't want
212 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
213 -- Full_View or Corresponding_Record_Type.
215 procedure Warn_Overlay
(Expr
: Node_Id
; Typ
: Entity_Id
; Nam
: Node_Id
);
216 -- Expr is the expression for an address clause for entity Nam whose type
217 -- is Typ. If Typ has a default initialization, and there is no explicit
218 -- initialization in the source declaration, check whether the address
219 -- clause might cause overlaying of an entity, and emit a warning on the
220 -- side effect that the initialization will cause.
222 -------------------------------
223 -- Adjust_Esize_For_Alignment --
224 -------------------------------
226 procedure Adjust_Esize_For_Alignment
(Typ
: Entity_Id
) is
230 if Known_Esize
(Typ
) and then Known_Alignment
(Typ
) then
231 Align
:= Alignment_In_Bits
(Typ
);
233 if Align
> Esize
(Typ
)
234 and then Align
<= Standard_Long_Long_Integer_Size
236 Set_Esize
(Typ
, Align
);
239 end Adjust_Esize_For_Alignment
;
241 ------------------------------------
242 -- Build_And_Analyze_Renamed_Body --
243 ------------------------------------
245 procedure Build_And_Analyze_Renamed_Body
248 After
: in out Node_Id
)
250 Body_Decl
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
251 Ent
: constant Entity_Id
:= Defining_Entity
(Decl
);
253 Renamed_Subp
: Entity_Id
;
256 -- If the renamed subprogram is intrinsic, there is no need for a
257 -- wrapper body: we set the alias that will be called and expanded which
258 -- completes the declaration. This transformation is only legal if the
259 -- renamed entity has already been elaborated.
261 -- Note that it is legal for a renaming_as_body to rename an intrinsic
262 -- subprogram, as long as the renaming occurs before the new entity
263 -- is frozen (RM 8.5.4 (5)).
265 if Nkind
(Body_Decl
) = N_Subprogram_Renaming_Declaration
266 and then Is_Entity_Name
(Name
(Body_Decl
))
268 Renamed_Subp
:= Entity
(Name
(Body_Decl
));
270 Renamed_Subp
:= Empty
;
273 if Present
(Renamed_Subp
)
274 and then Is_Intrinsic_Subprogram
(Renamed_Subp
)
276 (not In_Same_Source_Unit
(Renamed_Subp
, Ent
)
277 or else Sloc
(Renamed_Subp
) < Sloc
(Ent
))
279 -- We can make the renaming entity intrinsic if the renamed function
280 -- has an interface name, or if it is one of the shift/rotate
281 -- operations known to the compiler.
284 (Present
(Interface_Name
(Renamed_Subp
))
285 or else Nam_In
(Chars
(Renamed_Subp
), Name_Rotate_Left
,
289 Name_Shift_Right_Arithmetic
))
291 Set_Interface_Name
(Ent
, Interface_Name
(Renamed_Subp
));
293 if Present
(Alias
(Renamed_Subp
)) then
294 Set_Alias
(Ent
, Alias
(Renamed_Subp
));
296 Set_Alias
(Ent
, Renamed_Subp
);
299 Set_Is_Intrinsic_Subprogram
(Ent
);
300 Set_Has_Completion
(Ent
);
303 Body_Node
:= Build_Renamed_Body
(Decl
, New_S
);
304 Insert_After
(After
, Body_Node
);
305 Mark_Rewrite_Insertion
(Body_Node
);
309 end Build_And_Analyze_Renamed_Body
;
311 ------------------------
312 -- Build_Renamed_Body --
313 ------------------------
315 function Build_Renamed_Body
317 New_S
: Entity_Id
) return Node_Id
319 Loc
: constant Source_Ptr
:= Sloc
(New_S
);
320 -- We use for the source location of the renamed body, the location of
321 -- the spec entity. It might seem more natural to use the location of
322 -- the renaming declaration itself, but that would be wrong, since then
323 -- the body we create would look as though it was created far too late,
324 -- and this could cause problems with elaboration order analysis,
325 -- particularly in connection with instantiations.
327 N
: constant Node_Id
:= Unit_Declaration_Node
(New_S
);
328 Nam
: constant Node_Id
:= Name
(N
);
330 Spec
: constant Node_Id
:= New_Copy_Tree
(Specification
(Decl
));
331 Actuals
: List_Id
:= No_List
;
336 O_Formal
: Entity_Id
;
337 Param_Spec
: Node_Id
;
339 Pref
: Node_Id
:= Empty
;
340 -- If the renamed entity is a primitive operation given in prefix form,
341 -- the prefix is the target object and it has to be added as the first
342 -- actual in the generated call.
345 -- Determine the entity being renamed, which is the target of the call
346 -- statement. If the name is an explicit dereference, this is a renaming
347 -- of a subprogram type rather than a subprogram. The name itself is
350 if Nkind
(Nam
) = N_Selected_Component
then
351 Old_S
:= Entity
(Selector_Name
(Nam
));
353 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
354 Old_S
:= Etype
(Nam
);
356 elsif Nkind
(Nam
) = N_Indexed_Component
then
357 if Is_Entity_Name
(Prefix
(Nam
)) then
358 Old_S
:= Entity
(Prefix
(Nam
));
360 Old_S
:= Entity
(Selector_Name
(Prefix
(Nam
)));
363 elsif Nkind
(Nam
) = N_Character_Literal
then
364 Old_S
:= Etype
(New_S
);
367 Old_S
:= Entity
(Nam
);
370 if Is_Entity_Name
(Nam
) then
372 -- If the renamed entity is a predefined operator, retain full name
373 -- to ensure its visibility.
375 if Ekind
(Old_S
) = E_Operator
376 and then Nkind
(Nam
) = N_Expanded_Name
378 Call_Name
:= New_Copy
(Name
(N
));
380 Call_Name
:= New_Occurrence_Of
(Old_S
, Loc
);
384 if Nkind
(Nam
) = N_Selected_Component
385 and then Present
(First_Formal
(Old_S
))
387 (Is_Controlling_Formal
(First_Formal
(Old_S
))
388 or else Is_Class_Wide_Type
(Etype
(First_Formal
(Old_S
))))
391 -- Retrieve the target object, to be added as a first actual
394 Call_Name
:= New_Occurrence_Of
(Old_S
, Loc
);
395 Pref
:= Prefix
(Nam
);
398 Call_Name
:= New_Copy
(Name
(N
));
401 -- Original name may have been overloaded, but is fully resolved now
403 Set_Is_Overloaded
(Call_Name
, False);
406 -- For simple renamings, subsequent calls can be expanded directly as
407 -- calls to the renamed entity. The body must be generated in any case
408 -- for calls that may appear elsewhere. This is not done in the case
409 -- where the subprogram is an instantiation because the actual proper
410 -- body has not been built yet.
412 if Ekind_In
(Old_S
, E_Function
, E_Procedure
)
413 and then Nkind
(Decl
) = N_Subprogram_Declaration
414 and then not Is_Generic_Instance
(Old_S
)
416 Set_Body_To_Inline
(Decl
, Old_S
);
419 -- Check whether the return type is a limited view. If the subprogram
420 -- is already frozen the generated body may have a non-limited view
421 -- of the type, that must be used, because it is the one in the spec
422 -- of the renaming declaration.
424 if Ekind
(Old_S
) = E_Function
425 and then Is_Entity_Name
(Result_Definition
(Spec
))
428 Ret_Type
: constant Entity_Id
:= Etype
(Result_Definition
(Spec
));
430 if Has_Non_Limited_View
(Ret_Type
) then
431 Set_Result_Definition
432 (Spec
, New_Occurrence_Of
(Non_Limited_View
(Ret_Type
), Loc
));
437 -- The body generated for this renaming is an internal artifact, and
438 -- does not constitute a freeze point for the called entity.
440 Set_Must_Not_Freeze
(Call_Name
);
442 Formal
:= First_Formal
(Defining_Entity
(Decl
));
444 if Present
(Pref
) then
446 Pref_Type
: constant Entity_Id
:= Etype
(Pref
);
447 Form_Type
: constant Entity_Id
:= Etype
(First_Formal
(Old_S
));
450 -- The controlling formal may be an access parameter, or the
451 -- actual may be an access value, so adjust accordingly.
453 if Is_Access_Type
(Pref_Type
)
454 and then not Is_Access_Type
(Form_Type
)
457 (Make_Explicit_Dereference
(Loc
, Relocate_Node
(Pref
)));
459 elsif Is_Access_Type
(Form_Type
)
460 and then not Is_Access_Type
(Pref
)
464 Make_Attribute_Reference
(Loc
,
465 Attribute_Name
=> Name_Access
,
466 Prefix
=> Relocate_Node
(Pref
)));
468 Actuals
:= New_List
(Pref
);
472 elsif Present
(Formal
) then
479 if Present
(Formal
) then
480 while Present
(Formal
) loop
481 Append
(New_Occurrence_Of
(Formal
, Loc
), Actuals
);
482 Next_Formal
(Formal
);
486 -- If the renamed entity is an entry, inherit its profile. For other
487 -- renamings as bodies, both profiles must be subtype conformant, so it
488 -- is not necessary to replace the profile given in the declaration.
489 -- However, default values that are aggregates are rewritten when
490 -- partially analyzed, so we recover the original aggregate to insure
491 -- that subsequent conformity checking works. Similarly, if the default
492 -- expression was constant-folded, recover the original expression.
494 Formal
:= First_Formal
(Defining_Entity
(Decl
));
496 if Present
(Formal
) then
497 O_Formal
:= First_Formal
(Old_S
);
498 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
499 while Present
(Formal
) loop
500 if Is_Entry
(Old_S
) then
501 if Nkind
(Parameter_Type
(Param_Spec
)) /=
504 Set_Etype
(Formal
, Etype
(O_Formal
));
505 Set_Entity
(Parameter_Type
(Param_Spec
), Etype
(O_Formal
));
508 elsif Nkind
(Default_Value
(O_Formal
)) = N_Aggregate
509 or else Nkind
(Original_Node
(Default_Value
(O_Formal
))) /=
510 Nkind
(Default_Value
(O_Formal
))
512 Set_Expression
(Param_Spec
,
513 New_Copy_Tree
(Original_Node
(Default_Value
(O_Formal
))));
516 Next_Formal
(Formal
);
517 Next_Formal
(O_Formal
);
522 -- If the renamed entity is a function, the generated body contains a
523 -- return statement. Otherwise, build a procedure call. If the entity is
524 -- an entry, subsequent analysis of the call will transform it into the
525 -- proper entry or protected operation call. If the renamed entity is
526 -- a character literal, return it directly.
528 if Ekind
(Old_S
) = E_Function
529 or else Ekind
(Old_S
) = E_Operator
530 or else (Ekind
(Old_S
) = E_Subprogram_Type
531 and then Etype
(Old_S
) /= Standard_Void_Type
)
534 Make_Simple_Return_Statement
(Loc
,
536 Make_Function_Call
(Loc
,
538 Parameter_Associations
=> Actuals
));
540 elsif Ekind
(Old_S
) = E_Enumeration_Literal
then
542 Make_Simple_Return_Statement
(Loc
,
543 Expression
=> New_Occurrence_Of
(Old_S
, Loc
));
545 elsif Nkind
(Nam
) = N_Character_Literal
then
547 Make_Simple_Return_Statement
(Loc
, Expression
=> Call_Name
);
551 Make_Procedure_Call_Statement
(Loc
,
553 Parameter_Associations
=> Actuals
);
556 -- Create entities for subprogram body and formals
558 Set_Defining_Unit_Name
(Spec
,
559 Make_Defining_Identifier
(Loc
, Chars
=> Chars
(New_S
)));
561 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
562 while Present
(Param_Spec
) loop
563 Set_Defining_Identifier
(Param_Spec
,
564 Make_Defining_Identifier
(Loc
,
565 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
570 Make_Subprogram_Body
(Loc
,
571 Specification
=> Spec
,
572 Declarations
=> New_List
,
573 Handled_Statement_Sequence
=>
574 Make_Handled_Sequence_Of_Statements
(Loc
,
575 Statements
=> New_List
(Call_Node
)));
577 if Nkind
(Decl
) /= N_Subprogram_Declaration
then
579 Make_Subprogram_Declaration
(Loc
,
580 Specification
=> Specification
(N
)));
583 -- Link the body to the entity whose declaration it completes. If
584 -- the body is analyzed when the renamed entity is frozen, it may
585 -- be necessary to restore the proper scope (see package Exp_Ch13).
587 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
588 and then Present
(Corresponding_Spec
(N
))
590 Set_Corresponding_Spec
(Body_Node
, Corresponding_Spec
(N
));
592 Set_Corresponding_Spec
(Body_Node
, New_S
);
596 end Build_Renamed_Body
;
598 --------------------------
599 -- Check_Address_Clause --
600 --------------------------
602 procedure Check_Address_Clause
(E
: Entity_Id
) is
603 Addr
: constant Node_Id
:= Address_Clause
(E
);
604 Typ
: constant Entity_Id
:= Etype
(E
);
609 Tag_Assign
: Node_Id
;
612 if Present
(Addr
) then
614 -- For a deferred constant, the initialization value is on full view
616 if Ekind
(E
) = E_Constant
and then Present
(Full_View
(E
)) then
617 Decl
:= Declaration_Node
(Full_View
(E
));
619 Decl
:= Declaration_Node
(E
);
622 Expr
:= Expression
(Addr
);
624 if Needs_Constant_Address
(Decl
, Typ
) then
625 Check_Constant_Address_Clause
(Expr
, E
);
627 -- Has_Delayed_Freeze was set on E when the address clause was
628 -- analyzed, and must remain set because we want the address
629 -- clause to be elaborated only after any entity it references
630 -- has been elaborated.
633 -- If Rep_Clauses are to be ignored, remove address clause from
634 -- list attached to entity, because it may be illegal for gigi,
635 -- for example by breaking order of elaboration..
637 if Ignore_Rep_Clauses
then
642 Rep
:= First_Rep_Item
(E
);
645 Set_First_Rep_Item
(E
, Next_Rep_Item
(Addr
));
649 and then Next_Rep_Item
(Rep
) /= Addr
651 Rep
:= Next_Rep_Item
(Rep
);
655 if Present
(Rep
) then
656 Set_Next_Rep_Item
(Rep
, Next_Rep_Item
(Addr
));
660 -- And now remove the address clause
662 Kill_Rep_Clause
(Addr
);
664 elsif not Error_Posted
(Expr
)
665 and then not Needs_Finalization
(Typ
)
667 Warn_Overlay
(Expr
, Typ
, Name
(Addr
));
670 Init
:= Expression
(Decl
);
672 -- If a variable, or a non-imported constant, overlays a constant
673 -- object and has an initialization value, then the initialization
674 -- may end up writing into read-only memory. Detect the cases of
675 -- statically identical values and remove the initialization. In
676 -- the other cases, give a warning. We will give other warnings
677 -- later for the variable if it is assigned.
679 if (Ekind
(E
) = E_Variable
680 or else (Ekind
(E
) = E_Constant
681 and then not Is_Imported
(E
)))
682 and then Overlays_Constant
(E
)
683 and then Present
(Init
)
690 Find_Overlaid_Entity
(Addr
, O_Ent
, Off
);
692 if Ekind
(O_Ent
) = E_Constant
693 and then Etype
(O_Ent
) = Typ
694 and then Present
(Constant_Value
(O_Ent
))
695 and then Compile_Time_Compare
697 Constant_Value
(O_Ent
),
698 Assume_Valid
=> True) = EQ
700 Set_No_Initialization
(Decl
);
703 elsif Comes_From_Source
(Init
)
704 and then Address_Clause_Overlay_Warnings
706 Error_Msg_Sloc
:= Sloc
(Addr
);
708 ("??constant& may be modified via address clause#",
714 -- Remove side effects from initial expression, except in the case
715 -- of a build-in-place call, which has its own later expansion.
718 and then (Nkind
(Init
) /= N_Function_Call
719 or else not Is_Expanded_Build_In_Place_Call
(Init
))
722 -- Capture initialization value at point of declaration, and make
723 -- explicit assignment legal, because object may be a constant.
725 Remove_Side_Effects
(Init
);
726 Lhs
:= New_Occurrence_Of
(E
, Sloc
(Decl
));
727 Set_Assignment_OK
(Lhs
);
729 -- Move initialization to freeze actions, once the object has
730 -- been frozen and the address clause alignment check has been
733 Append_Freeze_Action
(E
,
734 Make_Assignment_Statement
(Sloc
(Decl
),
736 Expression
=> Expression
(Decl
)));
738 Set_No_Initialization
(Decl
);
740 -- If the objet is tagged, check whether the tag must be
741 -- reassigned explicitly.
743 Tag_Assign
:= Make_Tag_Assignment
(Decl
);
744 if Present
(Tag_Assign
) then
745 Append_Freeze_Action
(E
, Tag_Assign
);
749 end Check_Address_Clause
;
751 -----------------------------
752 -- Check_Compile_Time_Size --
753 -----------------------------
755 procedure Check_Compile_Time_Size
(T
: Entity_Id
) is
757 procedure Set_Small_Size
(T
: Entity_Id
; S
: Uint
);
758 -- Sets the compile time known size (64 bits or less) in the RM_Size
759 -- field of T, checking for a size clause that was given which attempts
760 -- to give a smaller size.
762 function Size_Known
(T
: Entity_Id
) return Boolean;
763 -- Recursive function that does all the work
765 function Static_Discriminated_Components
(T
: Entity_Id
) return Boolean;
766 -- If T is a constrained subtype, its size is not known if any of its
767 -- discriminant constraints is not static and it is not a null record.
768 -- The test is conservative and doesn't check that the components are
769 -- in fact constrained by non-static discriminant values. Could be made
776 procedure Set_Small_Size
(T
: Entity_Id
; S
: Uint
) is
781 -- Check for bad size clause given
783 elsif Has_Size_Clause
(T
) then
784 if RM_Size
(T
) < S
then
785 Error_Msg_Uint_1
:= S
;
787 ("size for& too small, minimum allowed is ^",
791 -- Set size if not set already
793 elsif Unknown_RM_Size
(T
) then
802 function Size_Known
(T
: Entity_Id
) return Boolean is
810 if Size_Known_At_Compile_Time
(T
) then
813 -- Always True for elementary types, even generic formal elementary
814 -- types. We used to return False in the latter case, but the size
815 -- is known at compile time, even in the template, we just do not
816 -- know the exact size but that's not the point of this routine.
818 elsif Is_Elementary_Type
(T
) or else Is_Task_Type
(T
) then
823 elsif Is_Array_Type
(T
) then
825 -- String literals always have known size, and we can set it
827 if Ekind
(T
) = E_String_Literal_Subtype
then
829 (T
, Component_Size
(T
) * String_Literal_Length
(T
));
832 -- Unconstrained types never have known at compile time size
834 elsif not Is_Constrained
(T
) then
837 -- Don't do any recursion on type with error posted, since we may
838 -- have a malformed type that leads us into a loop.
840 elsif Error_Posted
(T
) then
843 -- Otherwise if component size unknown, then array size unknown
845 elsif not Size_Known
(Component_Type
(T
)) then
849 -- Check for all indexes static, and also compute possible size
850 -- (in case it is not greater than 64 and may be packable).
853 Size
: Uint
:= Component_Size
(T
);
857 Index
:= First_Index
(T
);
858 while Present
(Index
) loop
859 if Nkind
(Index
) = N_Range
then
860 Get_Index_Bounds
(Index
, Low
, High
);
862 elsif Error_Posted
(Scalar_Range
(Etype
(Index
))) then
866 Low
:= Type_Low_Bound
(Etype
(Index
));
867 High
:= Type_High_Bound
(Etype
(Index
));
870 if not Compile_Time_Known_Value
(Low
)
871 or else not Compile_Time_Known_Value
(High
)
872 or else Etype
(Index
) = Any_Type
877 Dim
:= Expr_Value
(High
) - Expr_Value
(Low
) + 1;
889 Set_Small_Size
(T
, Size
);
893 -- For non-generic private types, go to underlying type if present
895 elsif Is_Private_Type
(T
)
896 and then not Is_Generic_Type
(T
)
897 and then Present
(Underlying_Type
(T
))
899 -- Don't do any recursion on type with error posted, since we may
900 -- have a malformed type that leads us into a loop.
902 if Error_Posted
(T
) then
905 return Size_Known
(Underlying_Type
(T
));
910 elsif Is_Record_Type
(T
) then
912 -- A class-wide type is never considered to have a known size
914 if Is_Class_Wide_Type
(T
) then
917 -- A subtype of a variant record must not have non-static
918 -- discriminated components.
920 elsif T
/= Base_Type
(T
)
921 and then not Static_Discriminated_Components
(T
)
925 -- Don't do any recursion on type with error posted, since we may
926 -- have a malformed type that leads us into a loop.
928 elsif Error_Posted
(T
) then
932 -- Now look at the components of the record
935 -- The following two variables are used to keep track of the
936 -- size of packed records if we can tell the size of the packed
937 -- record in the front end. Packed_Size_Known is True if so far
938 -- we can figure out the size. It is initialized to True for a
939 -- packed record, unless the record has discriminants or atomic
940 -- components or independent components.
942 -- The reason we eliminate the discriminated case is that
943 -- we don't know the way the back end lays out discriminated
944 -- packed records. If Packed_Size_Known is True, then
945 -- Packed_Size is the size in bits so far.
947 Packed_Size_Known
: Boolean :=
949 and then not Has_Discriminants
(T
)
950 and then not Has_Atomic_Components
(T
)
951 and then not Has_Independent_Components
(T
);
953 Packed_Size
: Uint
:= Uint_0
;
954 -- Size in bits so far
957 -- Test for variant part present
959 if Has_Discriminants
(T
)
960 and then Present
(Parent
(T
))
961 and then Nkind
(Parent
(T
)) = N_Full_Type_Declaration
962 and then Nkind
(Type_Definition
(Parent
(T
))) =
964 and then not Null_Present
(Type_Definition
(Parent
(T
)))
966 Present
(Variant_Part
967 (Component_List
(Type_Definition
(Parent
(T
)))))
969 -- If variant part is present, and type is unconstrained,
970 -- then we must have defaulted discriminants, or a size
971 -- clause must be present for the type, or else the size
972 -- is definitely not known at compile time.
974 if not Is_Constrained
(T
)
976 No
(Discriminant_Default_Value
(First_Discriminant
(T
)))
977 and then Unknown_RM_Size
(T
)
983 -- Loop through components
985 Comp
:= First_Component_Or_Discriminant
(T
);
986 while Present
(Comp
) loop
987 Ctyp
:= Etype
(Comp
);
989 -- We do not know the packed size if there is a component
990 -- clause present (we possibly could, but this would only
991 -- help in the case of a record with partial rep clauses.
992 -- That's because in the case of full rep clauses, the
993 -- size gets figured out anyway by a different circuit).
995 if Present
(Component_Clause
(Comp
)) then
996 Packed_Size_Known
:= False;
999 -- We do not know the packed size for an atomic/VFA type
1000 -- or component, or an independent type or component, or a
1001 -- by-reference type or aliased component (because packing
1002 -- does not touch these).
1004 if Is_Atomic_Or_VFA
(Ctyp
)
1005 or else Is_Atomic_Or_VFA
(Comp
)
1006 or else Is_Independent
(Ctyp
)
1007 or else Is_Independent
(Comp
)
1008 or else Is_By_Reference_Type
(Ctyp
)
1009 or else Is_Aliased
(Comp
)
1011 Packed_Size_Known
:= False;
1014 -- We need to identify a component that is an array where
1015 -- the index type is an enumeration type with non-standard
1016 -- representation, and some bound of the type depends on a
1019 -- This is because gigi computes the size by doing a
1020 -- substitution of the appropriate discriminant value in
1021 -- the size expression for the base type, and gigi is not
1022 -- clever enough to evaluate the resulting expression (which
1023 -- involves a call to rep_to_pos) at compile time.
1025 -- It would be nice if gigi would either recognize that
1026 -- this expression can be computed at compile time, or
1027 -- alternatively figured out the size from the subtype
1028 -- directly, where all the information is at hand ???
1030 if Is_Array_Type
(Etype
(Comp
))
1031 and then Present
(Packed_Array_Impl_Type
(Etype
(Comp
)))
1034 Ocomp
: constant Entity_Id
:=
1035 Original_Record_Component
(Comp
);
1036 OCtyp
: constant Entity_Id
:= Etype
(Ocomp
);
1042 Ind
:= First_Index
(OCtyp
);
1043 while Present
(Ind
) loop
1044 Indtyp
:= Etype
(Ind
);
1046 if Is_Enumeration_Type
(Indtyp
)
1047 and then Has_Non_Standard_Rep
(Indtyp
)
1049 Lo
:= Type_Low_Bound
(Indtyp
);
1050 Hi
:= Type_High_Bound
(Indtyp
);
1052 if Is_Entity_Name
(Lo
)
1053 and then Ekind
(Entity
(Lo
)) = E_Discriminant
1057 elsif Is_Entity_Name
(Hi
)
1058 and then Ekind
(Entity
(Hi
)) = E_Discriminant
1069 -- Clearly size of record is not known if the size of one of
1070 -- the components is not known.
1072 if not Size_Known
(Ctyp
) then
1076 -- Accumulate packed size if possible
1078 if Packed_Size_Known
then
1080 -- We can deal with elementary types, small packed arrays
1081 -- if the representation is a modular type and also small
1082 -- record types (if the size is not greater than 64, but
1083 -- the condition is checked by Set_Small_Size).
1085 if Is_Elementary_Type
(Ctyp
)
1086 or else (Is_Array_Type
(Ctyp
)
1088 (Packed_Array_Impl_Type
(Ctyp
))
1089 and then Is_Modular_Integer_Type
1090 (Packed_Array_Impl_Type
(Ctyp
)))
1091 or else Is_Record_Type
(Ctyp
)
1093 -- If RM_Size is known and static, then we can keep
1094 -- accumulating the packed size.
1096 if Known_Static_RM_Size
(Ctyp
) then
1098 Packed_Size
:= Packed_Size
+ RM_Size
(Ctyp
);
1100 -- If we have a field whose RM_Size is not known then
1101 -- we can't figure out the packed size here.
1104 Packed_Size_Known
:= False;
1107 -- For other types we can't figure out the packed size
1110 Packed_Size_Known
:= False;
1114 Next_Component_Or_Discriminant
(Comp
);
1117 if Packed_Size_Known
then
1118 Set_Small_Size
(T
, Packed_Size
);
1124 -- All other cases, size not known at compile time
1131 -------------------------------------
1132 -- Static_Discriminated_Components --
1133 -------------------------------------
1135 function Static_Discriminated_Components
1136 (T
: Entity_Id
) return Boolean
1138 Constraint
: Elmt_Id
;
1141 if Has_Discriminants
(T
)
1142 and then Present
(Discriminant_Constraint
(T
))
1143 and then Present
(First_Component
(T
))
1145 Constraint
:= First_Elmt
(Discriminant_Constraint
(T
));
1146 while Present
(Constraint
) loop
1147 if not Compile_Time_Known_Value
(Node
(Constraint
)) then
1151 Next_Elmt
(Constraint
);
1156 end Static_Discriminated_Components
;
1158 -- Start of processing for Check_Compile_Time_Size
1161 Set_Size_Known_At_Compile_Time
(T
, Size_Known
(T
));
1162 end Check_Compile_Time_Size
;
1164 -----------------------------------
1165 -- Check_Component_Storage_Order --
1166 -----------------------------------
1168 procedure Check_Component_Storage_Order
1169 (Encl_Type
: Entity_Id
;
1172 Comp_ADC_Present
: out Boolean)
1174 Comp_Base
: Entity_Id
;
1176 Encl_Base
: Entity_Id
;
1179 Component_Aliased
: Boolean;
1181 Comp_Byte_Aligned
: Boolean := False;
1182 -- Set for the record case, True if Comp is aligned on byte boundaries
1183 -- (in which case it is allowed to have different storage order).
1185 Comp_SSO_Differs
: Boolean;
1186 -- Set True when the component is a nested composite, and it does not
1187 -- have the same scalar storage order as Encl_Type.
1192 if Present
(Comp
) then
1194 Comp_Base
:= Etype
(Comp
);
1196 if Is_Tag
(Comp
) then
1197 Comp_Byte_Aligned
:= True;
1198 Component_Aliased
:= False;
1201 -- If a component clause is present, check if the component starts
1202 -- and ends on byte boundaries. Otherwise conservatively assume it
1203 -- does so only in the case where the record is not packed.
1205 if Present
(Component_Clause
(Comp
)) then
1206 Comp_Byte_Aligned
:=
1207 (Normalized_First_Bit
(Comp
) mod System_Storage_Unit
= 0)
1209 (Esize
(Comp
) mod System_Storage_Unit
= 0);
1211 Comp_Byte_Aligned
:= not Is_Packed
(Encl_Type
);
1214 Component_Aliased
:= Is_Aliased
(Comp
);
1220 Err_Node
:= Encl_Type
;
1221 Comp_Base
:= Component_Type
(Encl_Type
);
1223 Component_Aliased
:= Has_Aliased_Components
(Encl_Type
);
1226 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1227 -- the attribute definition clause is attached to the first subtype.
1228 -- Also, if the base type is incomplete or private, go to full view
1231 Encl_Base
:= Base_Type
(Encl_Type
);
1232 if Present
(Underlying_Type
(Encl_Base
)) then
1233 Encl_Base
:= Underlying_Type
(Encl_Base
);
1236 Comp_Base
:= Base_Type
(Comp_Base
);
1237 if Present
(Underlying_Type
(Comp_Base
)) then
1238 Comp_Base
:= Underlying_Type
(Comp_Base
);
1242 Get_Attribute_Definition_Clause
1243 (First_Subtype
(Comp_Base
), Attribute_Scalar_Storage_Order
);
1244 Comp_ADC_Present
:= Present
(Comp_ADC
);
1246 -- Case of record or array component: check storage order compatibility.
1247 -- But, if the record has Complex_Representation, then it is treated as
1248 -- a scalar in the back end so the storage order is irrelevant.
1250 if (Is_Record_Type
(Comp_Base
)
1251 and then not Has_Complex_Representation
(Comp_Base
))
1252 or else Is_Array_Type
(Comp_Base
)
1255 Reverse_Storage_Order
(Encl_Base
) /=
1256 Reverse_Storage_Order
(Comp_Base
);
1258 -- Parent and extension must have same storage order
1260 if Present
(Comp
) and then Chars
(Comp
) = Name_uParent
then
1261 if Comp_SSO_Differs
then
1263 ("record extension must have same scalar storage order as "
1264 & "parent", Err_Node
);
1267 -- If component and composite SSO differs, check that component
1268 -- falls on byte boundaries and isn't bit packed.
1270 elsif Comp_SSO_Differs
then
1272 -- Component SSO differs from enclosing composite:
1274 -- Reject if composite is a bit-packed array, as it is rewritten
1275 -- into an array of scalars.
1277 if Is_Bit_Packed_Array
(Encl_Base
) then
1279 ("type of packed array must have same scalar storage order "
1280 & "as component", Err_Node
);
1282 -- Reject if not byte aligned
1284 elsif Is_Record_Type
(Encl_Base
)
1285 and then not Comp_Byte_Aligned
1288 ("type of non-byte-aligned component must have same scalar "
1289 & "storage order as enclosing composite", Err_Node
);
1291 -- Warn if specified only for the outer composite
1293 elsif Present
(ADC
) and then No
(Comp_ADC
) then
1295 ("scalar storage order specified for & does not apply to "
1296 & "component?", Err_Node
, Encl_Base
);
1300 -- Enclosing type has explicit SSO: non-composite component must not
1303 elsif Present
(ADC
) and then Component_Aliased
then
1305 ("aliased component not permitted for type with explicit "
1306 & "Scalar_Storage_Order", Err_Node
);
1308 end Check_Component_Storage_Order
;
1310 -----------------------------
1311 -- Check_Debug_Info_Needed --
1312 -----------------------------
1314 procedure Check_Debug_Info_Needed
(T
: Entity_Id
) is
1316 if Debug_Info_Off
(T
) then
1319 elsif Comes_From_Source
(T
)
1320 or else Debug_Generated_Code
1321 or else Debug_Flag_VV
1322 or else Needs_Debug_Info
(T
)
1324 Set_Debug_Info_Needed
(T
);
1326 end Check_Debug_Info_Needed
;
1328 -------------------------------
1329 -- Check_Expression_Function --
1330 -------------------------------
1332 procedure Check_Expression_Function
(N
: Node_Id
; Nam
: Entity_Id
) is
1333 function Find_Constant
(Nod
: Node_Id
) return Traverse_Result
;
1334 -- Function to search for deferred constant
1340 function Find_Constant
(Nod
: Node_Id
) return Traverse_Result
is
1342 -- When a constant is initialized with the result of a dispatching
1343 -- call, the constant declaration is rewritten as a renaming of the
1344 -- displaced function result. This scenario is not a premature use of
1345 -- a constant even though the Has_Completion flag is not set.
1347 if Is_Entity_Name
(Nod
)
1348 and then Present
(Entity
(Nod
))
1349 and then Ekind
(Entity
(Nod
)) = E_Constant
1350 and then Scope
(Entity
(Nod
)) = Current_Scope
1351 and then Nkind
(Declaration_Node
(Entity
(Nod
))) =
1352 N_Object_Declaration
1353 and then not Is_Imported
(Entity
(Nod
))
1354 and then not Has_Completion
(Entity
(Nod
))
1355 and then not Is_Frozen
(Entity
(Nod
))
1358 ("premature use of& in call or instance", N
, Entity
(Nod
));
1360 elsif Nkind
(Nod
) = N_Attribute_Reference
then
1361 Analyze
(Prefix
(Nod
));
1363 if Is_Entity_Name
(Prefix
(Nod
))
1364 and then Is_Type
(Entity
(Prefix
(Nod
)))
1366 Freeze_Before
(N
, Entity
(Prefix
(Nod
)));
1373 procedure Check_Deferred
is new Traverse_Proc
(Find_Constant
);
1379 -- Start of processing for Check_Expression_Function
1382 Decl
:= Original_Node
(Unit_Declaration_Node
(Nam
));
1384 -- The subprogram body created for the expression function is not
1385 -- itself a freeze point.
1387 if Scope
(Nam
) = Current_Scope
1388 and then Nkind
(Decl
) = N_Expression_Function
1389 and then Nkind
(N
) /= N_Subprogram_Body
1391 Check_Deferred
(Expression
(Decl
));
1393 end Check_Expression_Function
;
1395 --------------------------------
1396 -- Check_Inherited_Conditions --
1397 --------------------------------
1399 procedure Check_Inherited_Conditions
(R
: Entity_Id
) is
1400 Prim_Ops
: constant Elist_Id
:= Primitive_Operations
(R
);
1402 Needs_Wrapper
: Boolean;
1404 Par_Prim
: Entity_Id
;
1407 procedure Build_Inherited_Condition_Pragmas
(Subp
: Entity_Id
);
1408 -- Build corresponding pragmas for an operation whose ancestor has
1409 -- class-wide pre/postconditions. If the operation is inherited, the
1410 -- pragmas force the creation of a wrapper for the inherited operation.
1411 -- If the ancestor is being overridden, the pragmas are constructed only
1412 -- to verify their legality, in case they contain calls to other
1413 -- primitives that may haven been overridden.
1415 ---------------------------------------
1416 -- Build_Inherited_Condition_Pragmas --
1417 ---------------------------------------
1419 procedure Build_Inherited_Condition_Pragmas
(Subp
: Entity_Id
) is
1425 A_Pre
:= Get_Class_Wide_Pragma
(Par_Prim
, Pragma_Precondition
);
1427 if Present
(A_Pre
) then
1428 New_Prag
:= New_Copy_Tree
(A_Pre
);
1429 Build_Class_Wide_Expression
1432 Par_Subp
=> Par_Prim
,
1433 Adjust_Sloc
=> False,
1434 Needs_Wrapper
=> Needs_Wrapper
);
1437 and then not Comes_From_Source
(Subp
)
1438 and then Expander_Active
1440 Append
(New_Prag
, Decls
);
1444 A_Post
:= Get_Class_Wide_Pragma
(Par_Prim
, Pragma_Postcondition
);
1446 if Present
(A_Post
) then
1447 New_Prag
:= New_Copy_Tree
(A_Post
);
1448 Build_Class_Wide_Expression
1451 Par_Subp
=> Par_Prim
,
1452 Adjust_Sloc
=> False,
1453 Needs_Wrapper
=> Needs_Wrapper
);
1456 and then not Comes_From_Source
(Subp
)
1457 and then Expander_Active
1459 Append
(New_Prag
, Decls
);
1462 end Build_Inherited_Condition_Pragmas
;
1464 -- Start of processing for Check_Inherited_Conditions
1467 Op_Node
:= First_Elmt
(Prim_Ops
);
1468 while Present
(Op_Node
) loop
1469 Prim
:= Node
(Op_Node
);
1471 -- Map the overridden primitive to the overriding one. This takes
1472 -- care of all overridings and is done only once.
1474 if Present
(Overridden_Operation
(Prim
))
1475 and then Comes_From_Source
(Prim
)
1477 Par_Prim
:= Overridden_Operation
(Prim
);
1478 Update_Primitives_Mapping
(Par_Prim
, Prim
);
1481 Next_Elmt
(Op_Node
);
1484 -- Perform validity checks on the inherited conditions of overriding
1485 -- operations, for conformance with LSP, and apply SPARK-specific
1486 -- restrictions on inherited conditions.
1488 Op_Node
:= First_Elmt
(Prim_Ops
);
1489 while Present
(Op_Node
) loop
1490 Prim
:= Node
(Op_Node
);
1492 if Present
(Overridden_Operation
(Prim
))
1493 and then Comes_From_Source
(Prim
)
1495 Par_Prim
:= Overridden_Operation
(Prim
);
1497 -- Analyze the contract items of the overridden operation, before
1498 -- they are rewritten as pragmas.
1500 Analyze_Entry_Or_Subprogram_Contract
(Par_Prim
);
1502 -- In GNATprove mode this is where we can collect the inherited
1503 -- conditions, because we do not create the Check pragmas that
1504 -- normally convey the the modified class-wide conditions on
1505 -- overriding operations.
1507 if GNATprove_Mode
then
1508 Collect_Inherited_Class_Wide_Conditions
(Prim
);
1510 -- Otherwise build the corresponding pragmas to check for legality
1511 -- of the inherited condition.
1514 Build_Inherited_Condition_Pragmas
(Prim
);
1518 Next_Elmt
(Op_Node
);
1521 -- Now examine the inherited operations to check whether they require
1522 -- a wrapper to handle inherited conditions that call other primitives,
1523 -- so that LSP can be verified/enforced.
1525 Op_Node
:= First_Elmt
(Prim_Ops
);
1526 Needs_Wrapper
:= False;
1528 while Present
(Op_Node
) loop
1529 Decls
:= Empty_List
;
1530 Prim
:= Node
(Op_Node
);
1532 if not Comes_From_Source
(Prim
) and then Present
(Alias
(Prim
)) then
1533 Par_Prim
:= Alias
(Prim
);
1535 -- Analyze the contract items of the parent operation, and
1536 -- determine whether a wrapper is needed. This is determined
1537 -- when the condition is rewritten in sem_prag, using the
1538 -- mapping between overridden and overriding operations built
1539 -- in the loop above.
1541 Analyze_Entry_Or_Subprogram_Contract
(Par_Prim
);
1542 Build_Inherited_Condition_Pragmas
(Prim
);
1546 and then not Is_Abstract_Subprogram
(Par_Prim
)
1547 and then Expander_Active
1549 -- We need to build a new primitive that overrides the inherited
1550 -- one, and whose inherited expression has been updated above.
1551 -- These expressions are the arguments of pragmas that are part
1552 -- of the declarations of the wrapper. The wrapper holds a single
1553 -- statement that is a call to the class-wide clone, where the
1554 -- controlling actuals are conversions to the corresponding type
1555 -- in the parent primitive:
1557 -- procedure New_Prim (F1 : T1; ...);
1558 -- procedure New_Prim (F1 : T1; ...) is
1559 -- pragma Check (Precondition, Expr);
1561 -- Par_Prim_Clone (Par_Type (F1), ...);
1564 -- If the primitive is a function the statement is a return
1565 -- statement with a call.
1568 Loc
: constant Source_Ptr
:= Sloc
(R
);
1569 Par_R
: constant Node_Id
:= Parent
(R
);
1575 New_Spec
:= Build_Overriding_Spec
(Par_Prim
, R
);
1577 Make_Subprogram_Declaration
(Loc
,
1578 Specification
=> New_Spec
);
1580 -- Insert the declaration and the body of the wrapper after
1581 -- type declaration that generates inherited operation. For
1582 -- a null procedure, the declaration implies a null body.
1584 if Nkind
(New_Spec
) = N_Procedure_Specification
1585 and then Null_Present
(New_Spec
)
1587 Insert_After_And_Analyze
(Par_R
, New_Decl
);
1590 -- Build body as wrapper to a call to the already built
1591 -- class-wide clone.
1594 Build_Class_Wide_Clone_Call
1595 (Loc
, Decls
, Par_Prim
, New_Spec
);
1597 Insert_List_After_And_Analyze
1598 (Par_R
, New_List
(New_Decl
, New_Body
));
1602 Needs_Wrapper
:= False;
1605 Next_Elmt
(Op_Node
);
1607 end Check_Inherited_Conditions
;
1609 ----------------------------
1610 -- Check_Strict_Alignment --
1611 ----------------------------
1613 procedure Check_Strict_Alignment
(E
: Entity_Id
) is
1617 if Is_Tagged_Type
(E
) or else Is_Concurrent_Type
(E
) then
1618 Set_Strict_Alignment
(E
);
1620 elsif Is_Array_Type
(E
) then
1621 Set_Strict_Alignment
(E
, Strict_Alignment
(Component_Type
(E
)));
1623 elsif Is_Record_Type
(E
) then
1624 if Is_Limited_Record
(E
) then
1625 Set_Strict_Alignment
(E
);
1629 Comp
:= First_Component
(E
);
1630 while Present
(Comp
) loop
1631 if not Is_Type
(Comp
)
1632 and then (Strict_Alignment
(Etype
(Comp
))
1633 or else Is_Aliased
(Comp
))
1635 Set_Strict_Alignment
(E
);
1639 Next_Component
(Comp
);
1642 end Check_Strict_Alignment
;
1644 -------------------------
1645 -- Check_Unsigned_Type --
1646 -------------------------
1648 procedure Check_Unsigned_Type
(E
: Entity_Id
) is
1649 Ancestor
: Entity_Id
;
1654 if not Is_Discrete_Or_Fixed_Point_Type
(E
) then
1658 -- Do not attempt to analyze case where range was in error
1660 if No
(Scalar_Range
(E
)) or else Error_Posted
(Scalar_Range
(E
)) then
1664 -- The situation that is nontrivial is something like:
1666 -- subtype x1 is integer range -10 .. +10;
1667 -- subtype x2 is x1 range 0 .. V1;
1668 -- subtype x3 is x2 range V2 .. V3;
1669 -- subtype x4 is x3 range V4 .. V5;
1671 -- where Vn are variables. Here the base type is signed, but we still
1672 -- know that x4 is unsigned because of the lower bound of x2.
1674 -- The only way to deal with this is to look up the ancestor chain
1678 if Ancestor
= Any_Type
or else Etype
(Ancestor
) = Any_Type
then
1682 Lo_Bound
:= Type_Low_Bound
(Ancestor
);
1684 if Compile_Time_Known_Value
(Lo_Bound
) then
1685 if Expr_Rep_Value
(Lo_Bound
) >= 0 then
1686 Set_Is_Unsigned_Type
(E
, True);
1692 Ancestor
:= Ancestor_Subtype
(Ancestor
);
1694 -- If no ancestor had a static lower bound, go to base type
1696 if No
(Ancestor
) then
1698 -- Note: the reason we still check for a compile time known
1699 -- value for the base type is that at least in the case of
1700 -- generic formals, we can have bounds that fail this test,
1701 -- and there may be other cases in error situations.
1703 Btyp
:= Base_Type
(E
);
1705 if Btyp
= Any_Type
or else Etype
(Btyp
) = Any_Type
then
1709 Lo_Bound
:= Type_Low_Bound
(Base_Type
(E
));
1711 if Compile_Time_Known_Value
(Lo_Bound
)
1712 and then Expr_Rep_Value
(Lo_Bound
) >= 0
1714 Set_Is_Unsigned_Type
(E
, True);
1721 end Check_Unsigned_Type
;
1723 -----------------------------
1724 -- Is_Atomic_VFA_Aggregate --
1725 -----------------------------
1727 function Is_Atomic_VFA_Aggregate
(N
: Node_Id
) return Boolean is
1728 Loc
: constant Source_Ptr
:= Sloc
(N
);
1737 -- Array may be qualified, so find outer context
1739 if Nkind
(Par
) = N_Qualified_Expression
then
1740 Par
:= Parent
(Par
);
1743 if not Comes_From_Source
(Par
) then
1748 when N_Assignment_Statement
=>
1749 Typ
:= Etype
(Name
(Par
));
1751 if not Is_Atomic_Or_VFA
(Typ
)
1752 and then not (Is_Entity_Name
(Name
(Par
))
1753 and then Is_Atomic_Or_VFA
(Entity
(Name
(Par
))))
1758 when N_Object_Declaration
=>
1759 Typ
:= Etype
(Defining_Identifier
(Par
));
1761 if not Is_Atomic_Or_VFA
(Typ
)
1762 and then not Is_Atomic_Or_VFA
(Defining_Identifier
(Par
))
1771 Temp
:= Make_Temporary
(Loc
, 'T', N
);
1773 Make_Object_Declaration
(Loc
,
1774 Defining_Identifier
=> Temp
,
1775 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
1776 Expression
=> Relocate_Node
(N
));
1777 Insert_Before
(Par
, New_N
);
1780 Set_Expression
(Par
, New_Occurrence_Of
(Temp
, Loc
));
1782 end Is_Atomic_VFA_Aggregate
;
1784 -----------------------------------------------
1785 -- Explode_Initialization_Compound_Statement --
1786 -----------------------------------------------
1788 procedure Explode_Initialization_Compound_Statement
(E
: Entity_Id
) is
1789 Init_Stmts
: constant Node_Id
:= Initialization_Statements
(E
);
1792 if Present
(Init_Stmts
)
1793 and then Nkind
(Init_Stmts
) = N_Compound_Statement
1795 Insert_List_Before
(Init_Stmts
, Actions
(Init_Stmts
));
1797 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1798 -- just removing it, because Freeze_All may rely on this particular
1799 -- Node_Id still being present in the enclosing list to know where to
1802 Rewrite
(Init_Stmts
, Make_Null_Statement
(Sloc
(Init_Stmts
)));
1804 Set_Initialization_Statements
(E
, Empty
);
1806 end Explode_Initialization_Compound_Statement
;
1812 -- Note: the easy coding for this procedure would be to just build a
1813 -- single list of freeze nodes and then insert them and analyze them
1814 -- all at once. This won't work, because the analysis of earlier freeze
1815 -- nodes may recursively freeze types which would otherwise appear later
1816 -- on in the freeze list. So we must analyze and expand the freeze nodes
1817 -- as they are generated.
1819 procedure Freeze_All
(From
: Entity_Id
; After
: in out Node_Id
) is
1820 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
);
1821 -- This is the internal recursive routine that does freezing of entities
1822 -- (but NOT the analysis of default expressions, which should not be
1823 -- recursive, we don't want to analyze those till we are sure that ALL
1824 -- the types are frozen).
1826 --------------------
1827 -- Freeze_All_Ent --
1828 --------------------
1830 procedure Freeze_All_Ent
(From
: Entity_Id
; After
: in out Node_Id
) is
1835 procedure Process_Flist
;
1836 -- If freeze nodes are present, insert and analyze, and reset cursor
1837 -- for next insertion.
1843 procedure Process_Flist
is
1845 if Is_Non_Empty_List
(Flist
) then
1846 Lastn
:= Next
(After
);
1847 Insert_List_After_And_Analyze
(After
, Flist
);
1849 if Present
(Lastn
) then
1850 After
:= Prev
(Lastn
);
1852 After
:= Last
(List_Containing
(After
));
1857 -- Start of processing for Freeze_All_Ent
1861 while Present
(E
) loop
1863 -- If the entity is an inner package which is not a package
1864 -- renaming, then its entities must be frozen at this point. Note
1865 -- that such entities do NOT get frozen at the end of the nested
1866 -- package itself (only library packages freeze).
1868 -- Same is true for task declarations, where anonymous records
1869 -- created for entry parameters must be frozen.
1871 if Ekind
(E
) = E_Package
1872 and then No
(Renamed_Object
(E
))
1873 and then not Is_Child_Unit
(E
)
1874 and then not Is_Frozen
(E
)
1878 Install_Visible_Declarations
(E
);
1879 Install_Private_Declarations
(E
);
1880 Freeze_All
(First_Entity
(E
), After
);
1882 End_Package_Scope
(E
);
1884 if Is_Generic_Instance
(E
)
1885 and then Has_Delayed_Freeze
(E
)
1887 Set_Has_Delayed_Freeze
(E
, False);
1888 Expand_N_Package_Declaration
(Unit_Declaration_Node
(E
));
1891 elsif Ekind
(E
) in Task_Kind
1892 and then Nkind_In
(Parent
(E
), N_Single_Task_Declaration
,
1893 N_Task_Type_Declaration
)
1896 Freeze_All
(First_Entity
(E
), After
);
1899 -- For a derived tagged type, we must ensure that all the
1900 -- primitive operations of the parent have been frozen, so that
1901 -- their addresses will be in the parent's dispatch table at the
1902 -- point it is inherited.
1904 elsif Ekind
(E
) = E_Record_Type
1905 and then Is_Tagged_Type
(E
)
1906 and then Is_Tagged_Type
(Etype
(E
))
1907 and then Is_Derived_Type
(E
)
1910 Prim_List
: constant Elist_Id
:=
1911 Primitive_Operations
(Etype
(E
));
1917 Prim
:= First_Elmt
(Prim_List
);
1918 while Present
(Prim
) loop
1919 Subp
:= Node
(Prim
);
1921 if Comes_From_Source
(Subp
)
1922 and then not Is_Frozen
(Subp
)
1924 Flist
:= Freeze_Entity
(Subp
, After
);
1933 if not Is_Frozen
(E
) then
1934 Flist
:= Freeze_Entity
(E
, After
);
1937 -- If already frozen, and there are delayed aspects, this is where
1938 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1939 -- for a description of how we handle aspect visibility).
1941 elsif Has_Delayed_Aspects
(E
) then
1943 -- Retrieve the visibility to the discriminants in order to
1944 -- analyze properly the aspects.
1946 Push_Scope_And_Install_Discriminants
(E
);
1952 Ritem
:= First_Rep_Item
(E
);
1953 while Present
(Ritem
) loop
1954 if Nkind
(Ritem
) = N_Aspect_Specification
1955 and then Entity
(Ritem
) = E
1956 and then Is_Delayed_Aspect
(Ritem
)
1958 Check_Aspect_At_End_Of_Declarations
(Ritem
);
1961 Ritem
:= Next_Rep_Item
(Ritem
);
1965 Uninstall_Discriminants_And_Pop_Scope
(E
);
1968 -- If an incomplete type is still not frozen, this may be a
1969 -- premature freezing because of a body declaration that follows.
1970 -- Indicate where the freezing took place. Freezing will happen
1971 -- if the body comes from source, but not if it is internally
1972 -- generated, for example as the body of a type invariant.
1974 -- If the freezing is caused by the end of the current declarative
1975 -- part, it is a Taft Amendment type, and there is no error.
1977 if not Is_Frozen
(E
)
1978 and then Ekind
(E
) = E_Incomplete_Type
1981 Bod
: constant Node_Id
:= Next
(After
);
1984 -- The presence of a body freezes all entities previously
1985 -- declared in the current list of declarations, but this
1986 -- does not apply if the body does not come from source.
1987 -- A type invariant is transformed into a subprogram body
1988 -- which is placed at the end of the private part of the
1989 -- current package, but this body does not freeze incomplete
1990 -- types that may be declared in this private part.
1992 if (Nkind_In
(Bod
, N_Entry_Body
,
1997 or else Nkind
(Bod
) in N_Body_Stub
)
1999 List_Containing
(After
) = List_Containing
(Parent
(E
))
2000 and then Comes_From_Source
(Bod
)
2002 Error_Msg_Sloc
:= Sloc
(Next
(After
));
2004 ("type& is frozen# before its full declaration",
2020 -- Start of processing for Freeze_All
2023 Freeze_All_Ent
(From
, After
);
2025 -- Now that all types are frozen, we can deal with default expressions
2026 -- that require us to build a default expression functions. This is the
2027 -- point at which such functions are constructed (after all types that
2028 -- might be used in such expressions have been frozen).
2030 -- For subprograms that are renaming_as_body, we create the wrapper
2031 -- bodies as needed.
2033 -- We also add finalization chains to access types whose designated
2034 -- types are controlled. This is normally done when freezing the type,
2035 -- but this misses recursive type definitions where the later members
2036 -- of the recursion introduce controlled components.
2038 -- Loop through entities
2041 while Present
(E
) loop
2042 if Is_Subprogram
(E
) then
2043 if not Default_Expressions_Processed
(E
) then
2044 Process_Default_Expressions
(E
, After
);
2047 if not Has_Completion
(E
) then
2048 Decl
:= Unit_Declaration_Node
(E
);
2050 if Nkind
(Decl
) = N_Subprogram_Renaming_Declaration
then
2051 if Error_Posted
(Decl
) then
2052 Set_Has_Completion
(E
);
2054 Build_And_Analyze_Renamed_Body
(Decl
, E
, After
);
2057 elsif Nkind
(Decl
) = N_Subprogram_Declaration
2058 and then Present
(Corresponding_Body
(Decl
))
2060 Nkind
(Unit_Declaration_Node
(Corresponding_Body
(Decl
))) =
2061 N_Subprogram_Renaming_Declaration
2063 Build_And_Analyze_Renamed_Body
2064 (Decl
, Corresponding_Body
(Decl
), After
);
2068 -- Freeze the default expressions of entries, entry families, and
2069 -- protected subprograms.
2071 elsif Is_Concurrent_Type
(E
) then
2072 Item
:= First_Entity
(E
);
2073 while Present
(Item
) loop
2074 if (Is_Entry
(Item
) or else Is_Subprogram
(Item
))
2075 and then not Default_Expressions_Processed
(Item
)
2077 Process_Default_Expressions
(Item
, After
);
2084 -- Historical note: We used to create a finalization master for an
2085 -- access type whose designated type is not controlled, but contains
2086 -- private controlled compoments. This form of postprocessing is no
2087 -- longer needed because the finalization master is now created when
2088 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
2094 -----------------------
2095 -- Freeze_And_Append --
2096 -----------------------
2098 procedure Freeze_And_Append
2101 Result
: in out List_Id
)
2103 L
: constant List_Id
:= Freeze_Entity
(Ent
, N
);
2105 if Is_Non_Empty_List
(L
) then
2106 if Result
= No_List
then
2109 Append_List
(L
, Result
);
2112 end Freeze_And_Append
;
2118 procedure Freeze_Before
2121 Do_Freeze_Profile
: Boolean := True)
2123 -- Freeze T, then insert the generated Freeze nodes before the node N.
2124 -- Flag Freeze_Profile is used when T is an overloadable entity, and
2125 -- indicates whether its profile should be frozen at the same time.
2127 Freeze_Nodes
: constant List_Id
:=
2128 Freeze_Entity
(T
, N
, Do_Freeze_Profile
);
2129 Pack
: constant Entity_Id
:= Scope
(T
);
2132 if Ekind
(T
) = E_Function
then
2133 Check_Expression_Function
(N
, T
);
2136 if Is_Non_Empty_List
(Freeze_Nodes
) then
2138 -- If the entity is a type declared in an inner package, it may be
2139 -- frozen by an outer declaration before the package itself is
2140 -- frozen. Install the package scope to analyze the freeze nodes,
2141 -- which may include generated subprograms such as predicate
2144 if Is_Type
(T
) and then From_Nested_Package
(T
) then
2146 Install_Visible_Declarations
(Pack
);
2147 Install_Private_Declarations
(Pack
);
2148 Insert_Actions
(N
, Freeze_Nodes
);
2149 End_Package_Scope
(Pack
);
2152 Insert_Actions
(N
, Freeze_Nodes
);
2161 -- WARNING: This routine manages Ghost regions. Return statements must be
2162 -- replaced by gotos which jump to the end of the routine and restore the
2165 function Freeze_Entity
2168 Do_Freeze_Profile
: Boolean := True) return List_Id
2170 Loc
: constant Source_Ptr
:= Sloc
(N
);
2177 Has_Default_Initialization
: Boolean := False;
2178 -- This flag gets set to true for a variable with default initialization
2180 Result
: List_Id
:= No_List
;
2181 -- List of freezing actions, left at No_List if none
2183 Test_E
: Entity_Id
:= E
;
2184 -- This could use a comment ???
2186 procedure Add_To_Result
(N
: Node_Id
);
2187 -- N is a freezing action to be appended to the Result
2189 function After_Last_Declaration
return Boolean;
2190 -- If Loc is a freeze_entity that appears after the last declaration
2191 -- in the scope, inhibit error messages on late completion.
2193 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
);
2194 -- Check that an Access or Unchecked_Access attribute with a prefix
2195 -- which is the current instance type can only be applied when the type
2198 procedure Check_Suspicious_Convention
(Rec_Type
: Entity_Id
);
2199 -- Give a warning for pragma Convention with language C or C++ applied
2200 -- to a discriminated record type. This is suppressed for the unchecked
2201 -- union case, since the whole point in this case is interface C. We
2202 -- also do not generate this within instantiations, since we will have
2203 -- generated a message on the template.
2205 procedure Check_Suspicious_Modulus
(Utype
: Entity_Id
);
2206 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
2207 -- integer literal without an explicit corresponding size clause. The
2208 -- caller has checked that Utype is a modular integer type.
2210 procedure Freeze_Array_Type
(Arr
: Entity_Id
);
2211 -- Freeze array type, including freezing index and component types
2213 procedure Freeze_Object_Declaration
(E
: Entity_Id
);
2214 -- Perform checks and generate freeze node if needed for a constant or
2215 -- variable declared by an object declaration.
2217 function Freeze_Generic_Entities
(Pack
: Entity_Id
) return List_Id
;
2218 -- Create Freeze_Generic_Entity nodes for types declared in a generic
2219 -- package. Recurse on inner generic packages.
2221 function Freeze_Profile
(E
: Entity_Id
) return Boolean;
2222 -- Freeze formals and return type of subprogram. If some type in the
2223 -- profile is incomplete and we are in an instance, freezing of the
2224 -- entity will take place elsewhere, and the function returns False.
2226 procedure Freeze_Record_Type
(Rec
: Entity_Id
);
2227 -- Freeze record type, including freezing component types, and freezing
2228 -- primitive operations if this is a tagged type.
2230 function Has_Boolean_Aspect_Import
(E
: Entity_Id
) return Boolean;
2231 -- Determine whether an arbitrary entity is subject to Boolean aspect
2232 -- Import and its value is specified as True.
2234 procedure Inherit_Freeze_Node
2237 -- Set type Typ's freeze node to refer to Fnode. This routine ensures
2238 -- that any attributes attached to Typ's original node are preserved.
2240 procedure Wrap_Imported_Subprogram
(E
: Entity_Id
);
2241 -- If E is an entity for an imported subprogram with pre/post-conditions
2242 -- then this procedure will create a wrapper to ensure that proper run-
2243 -- time checking of the pre/postconditions. See body for details.
2249 procedure Add_To_Result
(N
: Node_Id
) is
2252 Result
:= New_List
(N
);
2258 ----------------------------
2259 -- After_Last_Declaration --
2260 ----------------------------
2262 function After_Last_Declaration
return Boolean is
2263 Spec
: constant Node_Id
:= Parent
(Current_Scope
);
2266 if Nkind
(Spec
) = N_Package_Specification
then
2267 if Present
(Private_Declarations
(Spec
)) then
2268 return Loc
>= Sloc
(Last
(Private_Declarations
(Spec
)));
2269 elsif Present
(Visible_Declarations
(Spec
)) then
2270 return Loc
>= Sloc
(Last
(Visible_Declarations
(Spec
)));
2278 end After_Last_Declaration
;
2280 ----------------------------
2281 -- Check_Current_Instance --
2282 ----------------------------
2284 procedure Check_Current_Instance
(Comp_Decl
: Node_Id
) is
2286 function Is_Aliased_View_Of_Type
(Typ
: Entity_Id
) return Boolean;
2287 -- Determine whether Typ is compatible with the rules for aliased
2288 -- views of types as defined in RM 3.10 in the various dialects.
2290 function Process
(N
: Node_Id
) return Traverse_Result
;
2291 -- Process routine to apply check to given node
2293 -----------------------------
2294 -- Is_Aliased_View_Of_Type --
2295 -----------------------------
2297 function Is_Aliased_View_Of_Type
(Typ
: Entity_Id
) return Boolean is
2298 Typ_Decl
: constant Node_Id
:= Parent
(Typ
);
2303 if Nkind
(Typ_Decl
) = N_Full_Type_Declaration
2304 and then Limited_Present
(Type_Definition
(Typ_Decl
))
2308 -- The following paragraphs describe what a legal aliased view of
2309 -- a type is in the various dialects of Ada.
2313 -- The current instance of a limited type, and a formal parameter
2314 -- or generic formal object of a tagged type.
2316 -- Ada 95 limited type
2317 -- * Type with reserved word "limited"
2318 -- * A protected or task type
2319 -- * A composite type with limited component
2321 elsif Ada_Version
<= Ada_95
then
2322 return Is_Limited_Type
(Typ
);
2326 -- The current instance of a limited tagged type, a protected
2327 -- type, a task type, or a type that has the reserved word
2328 -- "limited" in its full definition ... a formal parameter or
2329 -- generic formal object of a tagged type.
2331 -- Ada 2005 limited type
2332 -- * Type with reserved word "limited", "synchronized", "task"
2334 -- * A composite type with limited component
2335 -- * A derived type whose parent is a non-interface limited type
2337 elsif Ada_Version
= Ada_2005
then
2339 (Is_Limited_Type
(Typ
) and then Is_Tagged_Type
(Typ
))
2341 (Is_Derived_Type
(Typ
)
2342 and then not Is_Interface
(Etype
(Typ
))
2343 and then Is_Limited_Type
(Etype
(Typ
)));
2345 -- Ada 2012 and beyond
2347 -- The current instance of an immutably limited type ... a formal
2348 -- parameter or generic formal object of a tagged type.
2350 -- Ada 2012 limited type
2351 -- * Type with reserved word "limited", "synchronized", "task"
2353 -- * A composite type with limited component
2354 -- * A derived type whose parent is a non-interface limited type
2355 -- * An incomplete view
2357 -- Ada 2012 immutably limited type
2358 -- * Explicitly limited record type
2359 -- * Record extension with "limited" present
2360 -- * Non-formal limited private type that is either tagged
2361 -- or has at least one access discriminant with a default
2363 -- * Task type, protected type or synchronized interface
2364 -- * Type derived from immutably limited type
2368 Is_Immutably_Limited_Type
(Typ
)
2369 or else Is_Incomplete_Type
(Typ
);
2371 end Is_Aliased_View_Of_Type
;
2377 function Process
(N
: Node_Id
) return Traverse_Result
is
2380 when N_Attribute_Reference
=>
2381 if Nam_In
(Attribute_Name
(N
), Name_Access
,
2382 Name_Unchecked_Access
)
2383 and then Is_Entity_Name
(Prefix
(N
))
2384 and then Is_Type
(Entity
(Prefix
(N
)))
2385 and then Entity
(Prefix
(N
)) = E
2387 if Ada_Version
< Ada_2012
then
2389 ("current instance must be a limited type",
2393 ("current instance must be an immutably limited "
2394 & "type (RM-2012, 7.5 (8.1/3))", Prefix
(N
));
2408 procedure Traverse
is new Traverse_Proc
(Process
);
2412 Rec_Type
: constant Entity_Id
:=
2413 Scope
(Defining_Identifier
(Comp_Decl
));
2415 -- Start of processing for Check_Current_Instance
2418 if not Is_Aliased_View_Of_Type
(Rec_Type
) then
2419 Traverse
(Comp_Decl
);
2421 end Check_Current_Instance
;
2423 ---------------------------------
2424 -- Check_Suspicious_Convention --
2425 ---------------------------------
2427 procedure Check_Suspicious_Convention
(Rec_Type
: Entity_Id
) is
2429 if Has_Discriminants
(Rec_Type
)
2430 and then Is_Base_Type
(Rec_Type
)
2431 and then not Is_Unchecked_Union
(Rec_Type
)
2432 and then (Convention
(Rec_Type
) = Convention_C
2434 Convention
(Rec_Type
) = Convention_CPP
)
2435 and then Comes_From_Source
(Rec_Type
)
2436 and then not In_Instance
2437 and then not Has_Warnings_Off
(Rec_Type
)
2440 Cprag
: constant Node_Id
:=
2441 Get_Rep_Pragma
(Rec_Type
, Name_Convention
);
2445 if Present
(Cprag
) then
2446 A2
:= Next
(First
(Pragma_Argument_Associations
(Cprag
)));
2448 if Convention
(Rec_Type
) = Convention_C
then
2450 ("?x?discriminated record has no direct equivalent in "
2454 ("?x?discriminated record has no direct equivalent in "
2459 ("\?x?use of convention for type& is dubious",
2464 end Check_Suspicious_Convention
;
2466 ------------------------------
2467 -- Check_Suspicious_Modulus --
2468 ------------------------------
2470 procedure Check_Suspicious_Modulus
(Utype
: Entity_Id
) is
2471 Decl
: constant Node_Id
:= Declaration_Node
(Underlying_Type
(Utype
));
2474 if not Warn_On_Suspicious_Modulus_Value
then
2478 if Nkind
(Decl
) = N_Full_Type_Declaration
then
2480 Tdef
: constant Node_Id
:= Type_Definition
(Decl
);
2483 if Nkind
(Tdef
) = N_Modular_Type_Definition
then
2485 Modulus
: constant Node_Id
:=
2486 Original_Node
(Expression
(Tdef
));
2489 if Nkind
(Modulus
) = N_Integer_Literal
then
2491 Modv
: constant Uint
:= Intval
(Modulus
);
2492 Sizv
: constant Uint
:= RM_Size
(Utype
);
2495 -- First case, modulus and size are the same. This
2496 -- happens if you have something like mod 32, with
2497 -- an explicit size of 32, this is for sure a case
2498 -- where the warning is given, since it is seems
2499 -- very unlikely that someone would want e.g. a
2500 -- five bit type stored in 32 bits. It is much
2501 -- more likely they wanted a 32-bit type.
2506 -- Second case, the modulus is 32 or 64 and no
2507 -- size clause is present. This is a less clear
2508 -- case for giving the warning, but in the case
2509 -- of 32/64 (5-bit or 6-bit types) these seem rare
2510 -- enough that it is a likely error (and in any
2511 -- case using 2**5 or 2**6 in these cases seems
2512 -- clearer. We don't include 8 or 16 here, simply
2513 -- because in practice 3-bit and 4-bit types are
2514 -- more common and too many false positives if
2515 -- we warn in these cases.
2517 elsif not Has_Size_Clause
(Utype
)
2518 and then (Modv
= Uint_32
or else Modv
= Uint_64
)
2522 -- No warning needed
2528 -- If we fall through, give warning
2530 Error_Msg_Uint_1
:= Modv
;
2532 ("?M?2 '*'*^' may have been intended here",
2540 end Check_Suspicious_Modulus
;
2542 -----------------------
2543 -- Freeze_Array_Type --
2544 -----------------------
2546 procedure Freeze_Array_Type
(Arr
: Entity_Id
) is
2547 FS
: constant Entity_Id
:= First_Subtype
(Arr
);
2548 Ctyp
: constant Entity_Id
:= Component_Type
(Arr
);
2551 Non_Standard_Enum
: Boolean := False;
2552 -- Set true if any of the index types is an enumeration type with a
2553 -- non-standard representation.
2556 Freeze_And_Append
(Ctyp
, N
, Result
);
2558 Indx
:= First_Index
(Arr
);
2559 while Present
(Indx
) loop
2560 Freeze_And_Append
(Etype
(Indx
), N
, Result
);
2562 if Is_Enumeration_Type
(Etype
(Indx
))
2563 and then Has_Non_Standard_Rep
(Etype
(Indx
))
2565 Non_Standard_Enum
:= True;
2571 -- Processing that is done only for base types
2573 if Ekind
(Arr
) = E_Array_Type
then
2575 -- Deal with default setting of reverse storage order
2577 Set_SSO_From_Default
(Arr
);
2579 -- Propagate flags for component type
2581 if Is_Controlled
(Component_Type
(Arr
))
2582 or else Has_Controlled_Component
(Ctyp
)
2584 Set_Has_Controlled_Component
(Arr
);
2587 if Has_Unchecked_Union
(Component_Type
(Arr
)) then
2588 Set_Has_Unchecked_Union
(Arr
);
2591 -- The array type requires its own invariant procedure in order to
2592 -- verify the component invariant over all elements. In GNATprove
2593 -- mode, the component invariants are checked by other means. They
2594 -- should not be added to the array type invariant procedure, so
2595 -- that the procedure can be used to check the array type
2596 -- invariants if any.
2598 if Has_Invariants
(Component_Type
(Arr
))
2599 and then not GNATprove_Mode
2601 Set_Has_Own_Invariants
(Arr
);
2603 -- The array type is an implementation base type. Propagate the
2604 -- same property to the first subtype.
2606 if Is_Itype
(Arr
) then
2607 Set_Has_Own_Invariants
(First_Subtype
(Arr
));
2611 -- Warn for pragma Pack overriding foreign convention
2613 if Has_Foreign_Convention
(Ctyp
)
2614 and then Has_Pragma_Pack
(Arr
)
2617 CN
: constant Name_Id
:=
2618 Get_Convention_Name
(Convention
(Ctyp
));
2619 PP
: constant Node_Id
:=
2620 Get_Pragma
(First_Subtype
(Arr
), Pragma_Pack
);
2622 if Present
(PP
) then
2623 Error_Msg_Name_1
:= CN
;
2624 Error_Msg_Sloc
:= Sloc
(Arr
);
2626 ("pragma Pack affects convention % components #??", PP
);
2627 Error_Msg_Name_1
:= CN
;
2629 ("\array components may not have % compatible "
2630 & "representation??", PP
);
2635 -- If packing was requested or if the component size was
2636 -- set explicitly, then see if bit packing is required. This
2637 -- processing is only done for base types, since all of the
2638 -- representation aspects involved are type-related.
2640 -- This is not just an optimization, if we start processing the
2641 -- subtypes, they interfere with the settings on the base type
2642 -- (this is because Is_Packed has a slightly different meaning
2643 -- before and after freezing).
2650 if (Is_Packed
(Arr
) or else Has_Pragma_Pack
(Arr
))
2651 and then Known_Static_RM_Size
(Ctyp
)
2652 and then not Has_Component_Size_Clause
(Arr
)
2654 Csiz
:= UI_Max
(RM_Size
(Ctyp
), 1);
2656 elsif Known_Component_Size
(Arr
) then
2657 Csiz
:= Component_Size
(Arr
);
2659 elsif not Known_Static_Esize
(Ctyp
) then
2663 Esiz
:= Esize
(Ctyp
);
2665 -- We can set the component size if it is less than 16,
2666 -- rounding it up to the next storage unit size.
2670 elsif Esiz
<= 16 then
2676 -- Set component size up to match alignment if it would
2677 -- otherwise be less than the alignment. This deals with
2678 -- cases of types whose alignment exceeds their size (the
2679 -- padded type cases).
2683 A
: constant Uint
:= Alignment_In_Bits
(Ctyp
);
2692 -- Case of component size that may result in bit packing
2694 if 1 <= Csiz
and then Csiz
<= 64 then
2696 Ent
: constant Entity_Id
:=
2697 First_Subtype
(Arr
);
2698 Pack_Pragma
: constant Node_Id
:=
2699 Get_Rep_Pragma
(Ent
, Name_Pack
);
2700 Comp_Size_C
: constant Node_Id
:=
2701 Get_Attribute_Definition_Clause
2702 (Ent
, Attribute_Component_Size
);
2705 -- Warn if we have pack and component size so that the
2708 -- Note: here we must check for the presence of a
2709 -- component size before checking for a Pack pragma to
2710 -- deal with the case where the array type is a derived
2711 -- type whose parent is currently private.
2713 if Present
(Comp_Size_C
)
2714 and then Has_Pragma_Pack
(Ent
)
2715 and then Warn_On_Redundant_Constructs
2717 Error_Msg_Sloc
:= Sloc
(Comp_Size_C
);
2719 ("?r?pragma Pack for& ignored!", Pack_Pragma
, Ent
);
2721 ("\?r?explicit component size given#!", Pack_Pragma
);
2722 Set_Is_Packed
(Base_Type
(Ent
), False);
2723 Set_Is_Bit_Packed_Array
(Base_Type
(Ent
), False);
2726 -- Set component size if not already set by a component
2729 if not Present
(Comp_Size_C
) then
2730 Set_Component_Size
(Arr
, Csiz
);
2733 -- Check for base type of 8, 16, 32 bits, where an
2734 -- unsigned subtype has a length one less than the
2735 -- base type (e.g. Natural subtype of Integer).
2737 -- In such cases, if a component size was not set
2738 -- explicitly, then generate a warning.
2740 if Has_Pragma_Pack
(Arr
)
2741 and then not Present
(Comp_Size_C
)
2742 and then (Csiz
= 7 or else Csiz
= 15 or else Csiz
= 31)
2743 and then Esize
(Base_Type
(Ctyp
)) = Csiz
+ 1
2745 Error_Msg_Uint_1
:= Csiz
;
2747 if Present
(Pack_Pragma
) then
2749 ("??pragma Pack causes component size to be ^!",
2752 ("\??use Component_Size to set desired value!",
2757 -- Bit packing is never needed for 8, 16, 32, 64
2759 if Addressable
(Csiz
) then
2761 -- If the Esize of the component is known and equal to
2762 -- the component size then even packing is not needed.
2764 if Known_Static_Esize
(Component_Type
(Arr
))
2765 and then Esize
(Component_Type
(Arr
)) = Csiz
2767 -- Here the array was requested to be packed, but
2768 -- the packing request had no effect whatsoever,
2769 -- so flag Is_Packed is reset.
2771 -- Note: semantically this means that we lose track
2772 -- of the fact that a derived type inherited pragma
2773 -- Pack that was non-effective, but that is fine.
2775 -- We regard a Pack pragma as a request to set a
2776 -- representation characteristic, and this request
2779 Set_Is_Packed
(Base_Type
(Arr
), False);
2780 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), False);
2782 Set_Is_Packed
(Base_Type
(Arr
), True);
2783 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), True);
2786 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), False);
2788 -- Bit packing is not needed for multiples of the storage
2789 -- unit if the type is composite because the back end can
2790 -- byte pack composite types.
2792 elsif Csiz
mod System_Storage_Unit
= 0
2793 and then Is_Composite_Type
(Ctyp
)
2795 Set_Is_Packed
(Base_Type
(Arr
), True);
2796 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), True);
2797 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), False);
2799 -- In all other cases, bit packing is needed
2802 Set_Is_Packed
(Base_Type
(Arr
), True);
2803 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
), True);
2804 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), True);
2810 -- Check for Aliased or Atomic_Components/Atomic/VFA with
2811 -- unsuitable packing or explicit component size clause given.
2813 if (Has_Aliased_Components
(Arr
)
2814 or else Has_Atomic_Components
(Arr
)
2815 or else Is_Atomic_Or_VFA
(Ctyp
))
2817 (Has_Component_Size_Clause
(Arr
) or else Is_Packed
(Arr
))
2819 Alias_Atomic_Check
: declare
2821 procedure Complain_CS
(T
: String);
2822 -- Outputs error messages for incorrect CS clause or pragma
2823 -- Pack for aliased or atomic/VFA components (T is "aliased"
2824 -- or "atomic/vfa");
2830 procedure Complain_CS
(T
: String) is
2832 if Has_Component_Size_Clause
(Arr
) then
2834 Get_Attribute_Definition_Clause
2835 (FS
, Attribute_Component_Size
);
2838 ("incorrect component size for "
2839 & T
& " components", Clause
);
2840 Error_Msg_Uint_1
:= Esize
(Ctyp
);
2842 ("\only allowed value is^", Clause
);
2846 ("cannot pack " & T
& " components",
2847 Get_Rep_Pragma
(FS
, Name_Pack
));
2851 -- Start of processing for Alias_Atomic_Check
2854 -- If object size of component type isn't known, we cannot
2855 -- be sure so we defer to the back end.
2857 if not Known_Static_Esize
(Ctyp
) then
2860 -- Case where component size has no effect. First check for
2861 -- object size of component type multiple of the storage
2864 elsif Esize
(Ctyp
) mod System_Storage_Unit
= 0
2866 -- OK in both packing case and component size case if RM
2867 -- size is known and static and same as the object size.
2870 ((Known_Static_RM_Size
(Ctyp
)
2871 and then Esize
(Ctyp
) = RM_Size
(Ctyp
))
2873 -- Or if we have an explicit component size clause and
2874 -- the component size and object size are equal.
2877 (Has_Component_Size_Clause
(Arr
)
2878 and then Component_Size
(Arr
) = Esize
(Ctyp
)))
2882 elsif Has_Aliased_Components
(Arr
) then
2883 Complain_CS
("aliased");
2885 elsif Has_Atomic_Components
(Arr
)
2886 or else Is_Atomic
(Ctyp
)
2888 Complain_CS
("atomic");
2890 elsif Is_Volatile_Full_Access
(Ctyp
) then
2891 Complain_CS
("volatile full access");
2893 end Alias_Atomic_Check
;
2896 -- Check for Independent_Components/Independent with unsuitable
2897 -- packing or explicit component size clause given.
2899 if (Has_Independent_Components
(Arr
) or else Is_Independent
(Ctyp
))
2901 (Has_Component_Size_Clause
(Arr
) or else Is_Packed
(Arr
))
2904 -- If object size of component type isn't known, we cannot
2905 -- be sure so we defer to the back end.
2907 if not Known_Static_Esize
(Ctyp
) then
2910 -- Case where component size has no effect. First check for
2911 -- object size of component type multiple of the storage
2914 elsif Esize
(Ctyp
) mod System_Storage_Unit
= 0
2916 -- OK in both packing case and component size case if RM
2917 -- size is known and multiple of the storage unit size.
2920 ((Known_Static_RM_Size
(Ctyp
)
2921 and then RM_Size
(Ctyp
) mod System_Storage_Unit
= 0)
2923 -- Or if we have an explicit component size clause and
2924 -- the component size is larger than the object size.
2927 (Has_Component_Size_Clause
(Arr
)
2928 and then Component_Size
(Arr
) >= Esize
(Ctyp
)))
2933 if Has_Component_Size_Clause
(Arr
) then
2935 Get_Attribute_Definition_Clause
2936 (FS
, Attribute_Component_Size
);
2939 ("incorrect component size for "
2940 & "independent components", Clause
);
2941 Error_Msg_Uint_1
:= Esize
(Ctyp
);
2943 ("\minimum allowed is^", Clause
);
2947 ("cannot pack independent components",
2948 Get_Rep_Pragma
(FS
, Name_Pack
));
2954 -- Warn for case of atomic type
2956 Clause
:= Get_Rep_Pragma
(FS
, Name_Atomic
);
2959 and then not Addressable
(Component_Size
(FS
))
2962 ("non-atomic components of type& may not be "
2963 & "accessible by separate tasks??", Clause
, Arr
);
2965 if Has_Component_Size_Clause
(Arr
) then
2966 Error_Msg_Sloc
:= Sloc
(Get_Attribute_Definition_Clause
2967 (FS
, Attribute_Component_Size
));
2968 Error_Msg_N
("\because of component size clause#??", Clause
);
2970 elsif Has_Pragma_Pack
(Arr
) then
2971 Error_Msg_Sloc
:= Sloc
(Get_Rep_Pragma
(FS
, Name_Pack
));
2972 Error_Msg_N
("\because of pragma Pack#??", Clause
);
2976 -- Check for scalar storage order
2981 Check_Component_Storage_Order
2984 ADC
=> Get_Attribute_Definition_Clause
2985 (First_Subtype
(Arr
),
2986 Attribute_Scalar_Storage_Order
),
2987 Comp_ADC_Present
=> Dummy
);
2990 -- Processing that is done only for subtypes
2993 -- Acquire alignment from base type
2995 if Unknown_Alignment
(Arr
) then
2996 Set_Alignment
(Arr
, Alignment
(Base_Type
(Arr
)));
2997 Adjust_Esize_Alignment
(Arr
);
3001 -- Specific checks for bit-packed arrays
3003 if Is_Bit_Packed_Array
(Arr
) then
3005 -- Check number of elements for bit-packed arrays that come from
3006 -- source and have compile time known ranges. The bit-packed
3007 -- arrays circuitry does not support arrays with more than
3008 -- Integer'Last + 1 elements, and when this restriction is
3009 -- violated, causes incorrect data access.
3011 -- For the case where this is not compile time known, a run-time
3012 -- check should be generated???
3014 if Comes_From_Source
(Arr
) and then Is_Constrained
(Arr
) then
3023 Index
:= First_Index
(Arr
);
3024 while Present
(Index
) loop
3025 Ityp
:= Etype
(Index
);
3027 -- Never generate an error if any index is of a generic
3028 -- type. We will check this in instances.
3030 if Is_Generic_Type
(Ityp
) then
3036 Make_Attribute_Reference
(Loc
,
3037 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
3038 Attribute_Name
=> Name_Range_Length
);
3039 Analyze_And_Resolve
(Ilen
);
3041 -- No attempt is made to check number of elements if not
3042 -- compile time known.
3044 if Nkind
(Ilen
) /= N_Integer_Literal
then
3049 Elmts
:= Elmts
* Intval
(Ilen
);
3053 if Elmts
> Intval
(High_Bound
3054 (Scalar_Range
(Standard_Integer
))) + 1
3057 ("bit packed array type may not have "
3058 & "more than Integer''Last+1 elements", Arr
);
3065 if Known_RM_Size
(Arr
) then
3067 SizC
: constant Node_Id
:= Size_Clause
(Arr
);
3071 -- It is not clear if it is possible to have no size clause
3072 -- at this stage, but it is not worth worrying about. Post
3073 -- error on the entity name in the size clause if present,
3074 -- else on the type entity itself.
3076 if Present
(SizC
) then
3077 Check_Size
(Name
(SizC
), Arr
, RM_Size
(Arr
), Discard
);
3079 Check_Size
(Arr
, Arr
, RM_Size
(Arr
), Discard
);
3085 -- If any of the index types was an enumeration type with a non-
3086 -- standard rep clause, then we indicate that the array type is
3087 -- always packed (even if it is not bit-packed).
3089 if Non_Standard_Enum
then
3090 Set_Has_Non_Standard_Rep
(Base_Type
(Arr
));
3091 Set_Is_Packed
(Base_Type
(Arr
));
3094 Set_Component_Alignment_If_Not_Set
(Arr
);
3096 -- If the array is packed and bit-packed or packed to eliminate holes
3097 -- in the non-contiguous enumeration index types, we must create the
3098 -- packed array type to be used to actually implement the type. This
3099 -- is only needed for real array types (not for string literal types,
3100 -- since they are present only for the front end).
3103 and then (Is_Bit_Packed_Array
(Arr
) or else Non_Standard_Enum
)
3104 and then Ekind
(Arr
) /= E_String_Literal_Subtype
3106 Create_Packed_Array_Impl_Type
(Arr
);
3107 Freeze_And_Append
(Packed_Array_Impl_Type
(Arr
), N
, Result
);
3109 -- Make sure that we have the necessary routines to implement the
3110 -- packing, and complain now if not. Note that we only test this
3111 -- for constrained array types.
3113 if Is_Constrained
(Arr
)
3114 and then Is_Bit_Packed_Array
(Arr
)
3115 and then Present
(Packed_Array_Impl_Type
(Arr
))
3116 and then Is_Array_Type
(Packed_Array_Impl_Type
(Arr
))
3119 CS
: constant Uint
:= Component_Size
(Arr
);
3120 RE
: constant RE_Id
:= Get_Id
(UI_To_Int
(CS
));
3124 and then not RTE_Available
(RE
)
3127 ("packing of " & UI_Image
(CS
) & "-bit components",
3128 First_Subtype
(Etype
(Arr
)));
3130 -- Cancel the packing
3132 Set_Is_Packed
(Base_Type
(Arr
), False);
3133 Set_Is_Bit_Packed_Array
(Base_Type
(Arr
), False);
3134 Set_Packed_Array_Impl_Type
(Arr
, Empty
);
3140 -- Size information of packed array type is copied to the array
3141 -- type, since this is really the representation. But do not
3142 -- override explicit existing size values. If the ancestor subtype
3143 -- is constrained the Packed_Array_Impl_Type will be inherited
3144 -- from it, but the size may have been provided already, and
3145 -- must not be overridden either.
3147 if not Has_Size_Clause
(Arr
)
3149 (No
(Ancestor_Subtype
(Arr
))
3150 or else not Has_Size_Clause
(Ancestor_Subtype
(Arr
)))
3152 Set_Esize
(Arr
, Esize
(Packed_Array_Impl_Type
(Arr
)));
3153 Set_RM_Size
(Arr
, RM_Size
(Packed_Array_Impl_Type
(Arr
)));
3156 if not Has_Alignment_Clause
(Arr
) then
3157 Set_Alignment
(Arr
, Alignment
(Packed_Array_Impl_Type
(Arr
)));
3163 -- For non-packed arrays set the alignment of the array to the
3164 -- alignment of the component type if it is unknown. Skip this
3165 -- in atomic/VFA case (atomic/VFA arrays may need larger alignments).
3167 if not Is_Packed
(Arr
)
3168 and then Unknown_Alignment
(Arr
)
3169 and then Known_Alignment
(Ctyp
)
3170 and then Known_Static_Component_Size
(Arr
)
3171 and then Known_Static_Esize
(Ctyp
)
3172 and then Esize
(Ctyp
) = Component_Size
(Arr
)
3173 and then not Is_Atomic_Or_VFA
(Arr
)
3175 Set_Alignment
(Arr
, Alignment
(Component_Type
(Arr
)));
3178 -- A Ghost type cannot have a component of protected or task type
3179 -- (SPARK RM 6.9(19)).
3181 if Is_Ghost_Entity
(Arr
) and then Is_Concurrent_Type
(Ctyp
) then
3183 ("ghost array type & cannot have concurrent component type",
3186 end Freeze_Array_Type
;
3188 -------------------------------
3189 -- Freeze_Object_Declaration --
3190 -------------------------------
3192 procedure Freeze_Object_Declaration
(E
: Entity_Id
) is
3194 -- Abstract type allowed only for C++ imported variables or constants
3196 -- Note: we inhibit this check for objects that do not come from
3197 -- source because there is at least one case (the expansion of
3198 -- x'Class'Input where x is abstract) where we legitimately
3199 -- generate an abstract object.
3201 if Is_Abstract_Type
(Etype
(E
))
3202 and then Comes_From_Source
(Parent
(E
))
3203 and then not (Is_Imported
(E
) and then Is_CPP_Class
(Etype
(E
)))
3205 Error_Msg_N
("type of object cannot be abstract",
3206 Object_Definition
(Parent
(E
)));
3208 if Is_CPP_Class
(Etype
(E
)) then
3210 ("\} may need a cpp_constructor",
3211 Object_Definition
(Parent
(E
)), Etype
(E
));
3213 elsif Present
(Expression
(Parent
(E
))) then
3214 Error_Msg_N
-- CODEFIX
3215 ("\maybe a class-wide type was meant",
3216 Object_Definition
(Parent
(E
)));
3220 -- For object created by object declaration, perform required
3221 -- categorization (preelaborate and pure) checks. Defer these
3222 -- checks to freeze time since pragma Import inhibits default
3223 -- initialization and thus pragma Import affects these checks.
3225 Validate_Object_Declaration
(Declaration_Node
(E
));
3227 -- If there is an address clause, check that it is valid
3228 -- and if need be move initialization to the freeze node.
3230 Check_Address_Clause
(E
);
3232 -- Similar processing is needed for aspects that may affect
3233 -- object layout, like Alignment, if there is an initialization
3234 -- expression. We don't do this if there is a pragma Linker_Section,
3235 -- because it would prevent the back end from statically initializing
3236 -- the object; we don't want elaboration code in that case.
3238 if Has_Delayed_Aspects
(E
)
3239 and then Expander_Active
3240 and then Is_Array_Type
(Etype
(E
))
3241 and then Present
(Expression
(Parent
(E
)))
3242 and then No
(Linker_Section_Pragma
(E
))
3245 Decl
: constant Node_Id
:= Parent
(E
);
3246 Lhs
: constant Node_Id
:= New_Occurrence_Of
(E
, Loc
);
3250 -- Capture initialization value at point of declaration, and
3251 -- make explicit assignment legal, because object may be a
3254 Remove_Side_Effects
(Expression
(Decl
));
3255 Set_Assignment_OK
(Lhs
);
3257 -- Move initialization to freeze actions.
3259 Append_Freeze_Action
(E
,
3260 Make_Assignment_Statement
(Loc
,
3262 Expression
=> Expression
(Decl
)));
3264 Set_No_Initialization
(Decl
);
3265 -- Set_Is_Frozen (E, False);
3269 -- Reset Is_True_Constant for non-constant aliased object. We
3270 -- consider that the fact that a non-constant object is aliased may
3271 -- indicate that some funny business is going on, e.g. an aliased
3272 -- object is passed by reference to a procedure which captures the
3273 -- address of the object, which is later used to assign a new value,
3274 -- even though the compiler thinks that it is not modified. Such
3275 -- code is highly dubious, but we choose to make it "work" for
3276 -- non-constant aliased objects.
3278 -- Note that we used to do this for all aliased objects, whether or
3279 -- not constant, but this caused anomalies down the line because we
3280 -- ended up with static objects that were not Is_True_Constant. Not
3281 -- resetting Is_True_Constant for (aliased) constant objects ensures
3282 -- that this anomaly never occurs.
3284 -- However, we don't do that for internal entities. We figure that if
3285 -- we deliberately set Is_True_Constant for an internal entity, e.g.
3286 -- a dispatch table entry, then we mean it.
3288 if Ekind
(E
) /= E_Constant
3289 and then (Is_Aliased
(E
) or else Is_Aliased
(Etype
(E
)))
3290 and then not Is_Internal_Name
(Chars
(E
))
3292 Set_Is_True_Constant
(E
, False);
3295 -- If the object needs any kind of default initialization, an error
3296 -- must be issued if No_Default_Initialization applies. The check
3297 -- doesn't apply to imported objects, which are not ever default
3298 -- initialized, and is why the check is deferred until freezing, at
3299 -- which point we know if Import applies. Deferred constants are also
3300 -- exempted from this test because their completion is explicit, or
3301 -- through an import pragma.
3303 if Ekind
(E
) = E_Constant
and then Present
(Full_View
(E
)) then
3306 elsif Comes_From_Source
(E
)
3307 and then not Is_Imported
(E
)
3308 and then not Has_Init_Expression
(Declaration_Node
(E
))
3310 ((Has_Non_Null_Base_Init_Proc
(Etype
(E
))
3311 and then not No_Initialization
(Declaration_Node
(E
))
3312 and then not Initialization_Suppressed
(Etype
(E
)))
3314 (Needs_Simple_Initialization
(Etype
(E
))
3315 and then not Is_Internal
(E
)))
3317 Has_Default_Initialization
:= True;
3319 (No_Default_Initialization
, Declaration_Node
(E
));
3322 -- Check that a Thread_Local_Storage variable does not have
3323 -- default initialization, and any explicit initialization must
3324 -- either be the null constant or a static constant.
3326 if Has_Pragma_Thread_Local_Storage
(E
) then
3328 Decl
: constant Node_Id
:= Declaration_Node
(E
);
3330 if Has_Default_Initialization
3332 (Has_Init_Expression
(Decl
)
3334 (No
(Expression
(Decl
))
3336 (Is_OK_Static_Expression
(Expression
(Decl
))
3337 or else Nkind
(Expression
(Decl
)) = N_Null
)))
3340 ("Thread_Local_Storage variable& is "
3341 & "improperly initialized", Decl
, E
);
3343 ("\only allowed initialization is explicit "
3344 & "NULL or static expression", Decl
, E
);
3349 -- For imported objects, set Is_Public unless there is also an
3350 -- address clause, which means that there is no external symbol
3351 -- needed for the Import (Is_Public may still be set for other
3352 -- unrelated reasons). Note that we delayed this processing
3353 -- till freeze time so that we can be sure not to set the flag
3354 -- if there is an address clause. If there is such a clause,
3355 -- then the only purpose of the Import pragma is to suppress
3356 -- implicit initialization.
3358 if Is_Imported
(E
) and then No
(Address_Clause
(E
)) then
3362 -- For source objects that are not Imported and are library
3363 -- level, if no linker section pragma was given inherit the
3364 -- appropriate linker section from the corresponding type.
3366 if Comes_From_Source
(E
)
3367 and then not Is_Imported
(E
)
3368 and then Is_Library_Level_Entity
(E
)
3369 and then No
(Linker_Section_Pragma
(E
))
3371 Set_Linker_Section_Pragma
3372 (E
, Linker_Section_Pragma
(Etype
(E
)));
3375 -- For convention C objects of an enumeration type, warn if the
3376 -- size is not integer size and no explicit size given. Skip
3377 -- warning for Boolean, and Character, assume programmer expects
3378 -- 8-bit sizes for these cases.
3380 if (Convention
(E
) = Convention_C
3382 Convention
(E
) = Convention_CPP
)
3383 and then Is_Enumeration_Type
(Etype
(E
))
3384 and then not Is_Character_Type
(Etype
(E
))
3385 and then not Is_Boolean_Type
(Etype
(E
))
3386 and then Esize
(Etype
(E
)) < Standard_Integer_Size
3387 and then not Has_Size_Clause
(E
)
3389 Error_Msg_Uint_1
:= UI_From_Int
(Standard_Integer_Size
);
3391 ("??convention C enumeration object has size less than ^", E
);
3392 Error_Msg_N
("\??use explicit size clause to set size", E
);
3394 end Freeze_Object_Declaration
;
3396 -----------------------------
3397 -- Freeze_Generic_Entities --
3398 -----------------------------
3400 function Freeze_Generic_Entities
(Pack
: Entity_Id
) return List_Id
is
3407 E
:= First_Entity
(Pack
);
3408 while Present
(E
) loop
3409 if Is_Type
(E
) and then not Is_Generic_Type
(E
) then
3410 F
:= Make_Freeze_Generic_Entity
(Sloc
(Pack
));
3412 Append_To
(Flist
, F
);
3414 elsif Ekind
(E
) = E_Generic_Package
then
3415 Append_List_To
(Flist
, Freeze_Generic_Entities
(E
));
3422 end Freeze_Generic_Entities
;
3424 --------------------
3425 -- Freeze_Profile --
3426 --------------------
3428 function Freeze_Profile
(E
: Entity_Id
) return Boolean is
3431 Warn_Node
: Node_Id
;
3434 -- Loop through formals
3436 Formal
:= First_Formal
(E
);
3437 while Present
(Formal
) loop
3438 F_Type
:= Etype
(Formal
);
3440 -- AI05-0151: incomplete types can appear in a profile. By the
3441 -- time the entity is frozen, the full view must be available,
3442 -- unless it is a limited view.
3444 if Is_Incomplete_Type
(F_Type
)
3445 and then Present
(Full_View
(F_Type
))
3446 and then not From_Limited_With
(F_Type
)
3448 F_Type
:= Full_View
(F_Type
);
3449 Set_Etype
(Formal
, F_Type
);
3452 if not From_Limited_With
(F_Type
) then
3453 Freeze_And_Append
(F_Type
, N
, Result
);
3456 if Is_Private_Type
(F_Type
)
3457 and then Is_Private_Type
(Base_Type
(F_Type
))
3458 and then No
(Full_View
(Base_Type
(F_Type
)))
3459 and then not Is_Generic_Type
(F_Type
)
3460 and then not Is_Derived_Type
(F_Type
)
3462 -- If the type of a formal is incomplete, subprogram is being
3463 -- frozen prematurely. Within an instance (but not within a
3464 -- wrapper package) this is an artifact of our need to regard
3465 -- the end of an instantiation as a freeze point. Otherwise it
3466 -- is a definite error.
3469 Set_Is_Frozen
(E
, False);
3473 elsif not After_Last_Declaration
3474 and then not Freezing_Library_Level_Tagged_Type
3476 Error_Msg_Node_1
:= F_Type
;
3478 ("type & must be fully defined before this point", Loc
);
3482 -- Check suspicious parameter for C function. These tests apply
3483 -- only to exported/imported subprograms.
3485 if Warn_On_Export_Import
3486 and then Comes_From_Source
(E
)
3487 and then (Convention
(E
) = Convention_C
3489 Convention
(E
) = Convention_CPP
)
3490 and then (Is_Imported
(E
) or else Is_Exported
(E
))
3491 and then Convention
(E
) /= Convention
(Formal
)
3492 and then not Has_Warnings_Off
(E
)
3493 and then not Has_Warnings_Off
(F_Type
)
3494 and then not Has_Warnings_Off
(Formal
)
3496 -- Qualify mention of formals with subprogram name
3498 Error_Msg_Qual_Level
:= 1;
3500 -- Check suspicious use of fat C pointer
3502 if Is_Access_Type
(F_Type
)
3503 and then Esize
(F_Type
) > Ttypes
.System_Address_Size
3506 ("?x?type of & does not correspond to C pointer!", Formal
);
3508 -- Check suspicious return of boolean
3510 elsif Root_Type
(F_Type
) = Standard_Boolean
3511 and then Convention
(F_Type
) = Convention_Ada
3512 and then not Has_Warnings_Off
(F_Type
)
3513 and then not Has_Size_Clause
(F_Type
)
3516 ("& is an 8-bit Ada Boolean?x?", Formal
);
3518 ("\use appropriate corresponding type in C "
3519 & "(e.g. char)?x?", Formal
);
3521 -- Check suspicious tagged type
3523 elsif (Is_Tagged_Type
(F_Type
)
3525 (Is_Access_Type
(F_Type
)
3526 and then Is_Tagged_Type
(Designated_Type
(F_Type
))))
3527 and then Convention
(E
) = Convention_C
3530 ("?x?& involves a tagged type which does not "
3531 & "correspond to any C type!", Formal
);
3533 -- Check wrong convention subprogram pointer
3535 elsif Ekind
(F_Type
) = E_Access_Subprogram_Type
3536 and then not Has_Foreign_Convention
(F_Type
)
3539 ("?x?subprogram pointer & should "
3540 & "have foreign convention!", Formal
);
3541 Error_Msg_Sloc
:= Sloc
(F_Type
);
3543 ("\?x?add Convention pragma to declaration of &#",
3547 -- Turn off name qualification after message output
3549 Error_Msg_Qual_Level
:= 0;
3552 -- Check for unconstrained array in exported foreign convention
3555 if Has_Foreign_Convention
(E
)
3556 and then not Is_Imported
(E
)
3557 and then Is_Array_Type
(F_Type
)
3558 and then not Is_Constrained
(F_Type
)
3559 and then Warn_On_Export_Import
3561 Error_Msg_Qual_Level
:= 1;
3563 -- If this is an inherited operation, place the warning on
3564 -- the derived type declaration, rather than on the original
3567 if Nkind
(Original_Node
(Parent
(E
))) = N_Full_Type_Declaration
3569 Warn_Node
:= Parent
(E
);
3571 if Formal
= First_Formal
(E
) then
3572 Error_Msg_NE
("??in inherited operation&", Warn_Node
, E
);
3575 Warn_Node
:= Formal
;
3578 Error_Msg_NE
("?x?type of argument& is unconstrained array",
3580 Error_Msg_NE
("?x?foreign caller must pass bounds explicitly",
3582 Error_Msg_Qual_Level
:= 0;
3585 if not From_Limited_With
(F_Type
) then
3586 if Is_Access_Type
(F_Type
) then
3587 F_Type
:= Designated_Type
(F_Type
);
3590 -- If the formal is an anonymous_access_to_subprogram
3591 -- freeze the subprogram type as well, to prevent
3592 -- scope anomalies in gigi, because there is no other
3593 -- clear point at which it could be frozen.
3595 if Is_Itype
(Etype
(Formal
))
3596 and then Ekind
(F_Type
) = E_Subprogram_Type
3598 Freeze_And_Append
(F_Type
, N
, Result
);
3602 Next_Formal
(Formal
);
3605 -- Case of function: similar checks on return type
3607 if Ekind
(E
) = E_Function
then
3609 -- Freeze return type
3611 R_Type
:= Etype
(E
);
3613 -- AI05-0151: the return type may have been incomplete at the
3614 -- point of declaration. Replace it with the full view, unless the
3615 -- current type is a limited view. In that case the full view is
3616 -- in a different unit, and gigi finds the non-limited view after
3617 -- the other unit is elaborated.
3619 if Ekind
(R_Type
) = E_Incomplete_Type
3620 and then Present
(Full_View
(R_Type
))
3621 and then not From_Limited_With
(R_Type
)
3623 R_Type
:= Full_View
(R_Type
);
3624 Set_Etype
(E
, R_Type
);
3627 Freeze_And_Append
(R_Type
, N
, Result
);
3629 -- Check suspicious return type for C function
3631 if Warn_On_Export_Import
3632 and then (Convention
(E
) = Convention_C
3634 Convention
(E
) = Convention_CPP
)
3635 and then (Is_Imported
(E
) or else Is_Exported
(E
))
3637 -- Check suspicious return of fat C pointer
3639 if Is_Access_Type
(R_Type
)
3640 and then Esize
(R_Type
) > Ttypes
.System_Address_Size
3641 and then not Has_Warnings_Off
(E
)
3642 and then not Has_Warnings_Off
(R_Type
)
3645 ("?x?return type of& does not correspond to C pointer!",
3648 -- Check suspicious return of boolean
3650 elsif Root_Type
(R_Type
) = Standard_Boolean
3651 and then Convention
(R_Type
) = Convention_Ada
3652 and then not Has_Warnings_Off
(E
)
3653 and then not Has_Warnings_Off
(R_Type
)
3654 and then not Has_Size_Clause
(R_Type
)
3657 N
: constant Node_Id
:=
3658 Result_Definition
(Declaration_Node
(E
));
3661 ("return type of & is an 8-bit Ada Boolean?x?", N
, E
);
3663 ("\use appropriate corresponding type in C "
3664 & "(e.g. char)?x?", N
, E
);
3667 -- Check suspicious return tagged type
3669 elsif (Is_Tagged_Type
(R_Type
)
3670 or else (Is_Access_Type
(R_Type
)
3673 (Designated_Type
(R_Type
))))
3674 and then Convention
(E
) = Convention_C
3675 and then not Has_Warnings_Off
(E
)
3676 and then not Has_Warnings_Off
(R_Type
)
3678 Error_Msg_N
("?x?return type of & does not "
3679 & "correspond to C type!", E
);
3681 -- Check return of wrong convention subprogram pointer
3683 elsif Ekind
(R_Type
) = E_Access_Subprogram_Type
3684 and then not Has_Foreign_Convention
(R_Type
)
3685 and then not Has_Warnings_Off
(E
)
3686 and then not Has_Warnings_Off
(R_Type
)
3688 Error_Msg_N
("?x?& should return a foreign "
3689 & "convention subprogram pointer", E
);
3690 Error_Msg_Sloc
:= Sloc
(R_Type
);
3692 ("\?x?add Convention pragma to declaration of& #",
3697 -- Give warning for suspicious return of a result of an
3698 -- unconstrained array type in a foreign convention function.
3700 if Has_Foreign_Convention
(E
)
3702 -- We are looking for a return of unconstrained array
3704 and then Is_Array_Type
(R_Type
)
3705 and then not Is_Constrained
(R_Type
)
3707 -- Exclude imported routines, the warning does not belong on
3708 -- the import, but rather on the routine definition.
3710 and then not Is_Imported
(E
)
3712 -- Check that general warning is enabled, and that it is not
3713 -- suppressed for this particular case.
3715 and then Warn_On_Export_Import
3716 and then not Has_Warnings_Off
(E
)
3717 and then not Has_Warnings_Off
(R_Type
)
3720 ("?x?foreign convention function& should not return "
3721 & "unconstrained array!", E
);
3725 -- Check suspicious use of Import in pure unit (cases where the RM
3726 -- allows calls to be omitted).
3730 -- It might be suspicious if the compilation unit has the Pure
3733 and then Has_Pragma_Pure
(Cunit_Entity
(Current_Sem_Unit
))
3735 -- The RM allows omission of calls only in the case of
3736 -- library-level subprograms (see RM-10.2.1(18)).
3738 and then Is_Library_Level_Entity
(E
)
3740 -- Ignore internally generated entity. This happens in some cases
3741 -- of subprograms in specs, where we generate an implied body.
3743 and then Comes_From_Source
(Import_Pragma
(E
))
3745 -- Assume run-time knows what it is doing
3747 and then not GNAT_Mode
3749 -- Assume explicit Pure_Function means import is pure
3751 and then not Has_Pragma_Pure_Function
(E
)
3753 -- Don't need warning in relaxed semantics mode
3755 and then not Relaxed_RM_Semantics
3757 -- Assume convention Intrinsic is OK, since this is specialized.
3758 -- This deals with the DEC unit current_exception.ads
3760 and then Convention
(E
) /= Convention_Intrinsic
3762 -- Assume that ASM interface knows what it is doing. This deals
3763 -- with e.g. unsigned.ads in the AAMP back end.
3765 and then Convention
(E
) /= Convention_Assembler
3768 ("pragma Import in Pure unit??", Import_Pragma
(E
));
3770 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
3771 Import_Pragma
(E
), E
);
3777 ------------------------
3778 -- Freeze_Record_Type --
3779 ------------------------
3781 procedure Freeze_Record_Type
(Rec
: Entity_Id
) is
3788 pragma Warnings
(Off
, Junk
);
3790 Aliased_Component
: Boolean := False;
3791 -- Set True if we find at least one component which is aliased. This
3792 -- is used to prevent Implicit_Packing of the record, since packing
3793 -- cannot modify the size of alignment of an aliased component.
3795 All_Elem_Components
: Boolean := True;
3796 -- True if all components are of a type whose underlying type is
3799 All_Sized_Components
: Boolean := True;
3800 -- True if all components have a known RM_Size
3802 All_Storage_Unit_Components
: Boolean := True;
3803 -- True if all components have an RM_Size that is a multiple of the
3806 Elem_Component_Total_Esize
: Uint
:= Uint_0
;
3807 -- Accumulates total Esize values of all elementary components. Used
3808 -- for processing of Implicit_Packing.
3810 Placed_Component
: Boolean := False;
3811 -- Set True if we find at least one component with a component
3812 -- clause (used to warn about useless Bit_Order pragmas, and also
3813 -- to detect cases where Implicit_Packing may have an effect).
3815 Rec_Pushed
: Boolean := False;
3816 -- Set True if the record type scope Rec has been pushed on the scope
3817 -- stack. Needed for the analysis of delayed aspects specified to the
3818 -- components of Rec.
3820 Sized_Component_Total_RM_Size
: Uint
:= Uint_0
;
3821 -- Accumulates total RM_Size values of all sized components. Used
3822 -- for processing of Implicit_Packing.
3824 Sized_Component_Total_Round_RM_Size
: Uint
:= Uint_0
;
3825 -- Accumulates total RM_Size values of all sized components, rounded
3826 -- individually to a multiple of the storage unit.
3829 -- Scalar_Storage_Order attribute definition clause for the record
3831 SSO_ADC_Component
: Boolean := False;
3832 -- Set True if we find at least one component whose type has a
3833 -- Scalar_Storage_Order attribute definition clause.
3835 Unplaced_Component
: Boolean := False;
3836 -- Set True if we find at least one component with no component
3837 -- clause (used to warn about useless Pack pragmas).
3839 function Check_Allocator
(N
: Node_Id
) return Node_Id
;
3840 -- If N is an allocator, possibly wrapped in one or more level of
3841 -- qualified expression(s), return the inner allocator node, else
3844 procedure Check_Itype
(Typ
: Entity_Id
);
3845 -- If the component subtype is an access to a constrained subtype of
3846 -- an already frozen type, make the subtype frozen as well. It might
3847 -- otherwise be frozen in the wrong scope, and a freeze node on
3848 -- subtype has no effect. Similarly, if the component subtype is a
3849 -- regular (not protected) access to subprogram, set the anonymous
3850 -- subprogram type to frozen as well, to prevent an out-of-scope
3851 -- freeze node at some eventual point of call. Protected operations
3852 -- are handled elsewhere.
3854 procedure Freeze_Choices_In_Variant_Part
(VP
: Node_Id
);
3855 -- Make sure that all types mentioned in Discrete_Choices of the
3856 -- variants referenceed by the Variant_Part VP are frozen. This is
3857 -- a recursive routine to deal with nested variants.
3859 ---------------------
3860 -- Check_Allocator --
3861 ---------------------
3863 function Check_Allocator
(N
: Node_Id
) return Node_Id
is
3868 if Nkind
(Inner
) = N_Allocator
then
3870 elsif Nkind
(Inner
) = N_Qualified_Expression
then
3871 Inner
:= Expression
(Inner
);
3876 end Check_Allocator
;
3882 procedure Check_Itype
(Typ
: Entity_Id
) is
3883 Desig
: constant Entity_Id
:= Designated_Type
(Typ
);
3886 if not Is_Frozen
(Desig
)
3887 and then Is_Frozen
(Base_Type
(Desig
))
3889 Set_Is_Frozen
(Desig
);
3891 -- In addition, add an Itype_Reference to ensure that the
3892 -- access subtype is elaborated early enough. This cannot be
3893 -- done if the subtype may depend on discriminants.
3895 if Ekind
(Comp
) = E_Component
3896 and then Is_Itype
(Etype
(Comp
))
3897 and then not Has_Discriminants
(Rec
)
3899 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
3900 Set_Itype
(IR
, Desig
);
3904 elsif Ekind
(Typ
) = E_Anonymous_Access_Subprogram_Type
3905 and then Convention
(Desig
) /= Convention_Protected
3907 Set_Is_Frozen
(Desig
);
3911 ------------------------------------
3912 -- Freeze_Choices_In_Variant_Part --
3913 ------------------------------------
3915 procedure Freeze_Choices_In_Variant_Part
(VP
: Node_Id
) is
3916 pragma Assert
(Nkind
(VP
) = N_Variant_Part
);
3923 -- Loop through variants
3925 Variant
:= First_Non_Pragma
(Variants
(VP
));
3926 while Present
(Variant
) loop
3928 -- Loop through choices, checking that all types are frozen
3930 Choice
:= First_Non_Pragma
(Discrete_Choices
(Variant
));
3931 while Present
(Choice
) loop
3932 if Nkind
(Choice
) in N_Has_Etype
3933 and then Present
(Etype
(Choice
))
3935 Freeze_And_Append
(Etype
(Choice
), N
, Result
);
3938 Next_Non_Pragma
(Choice
);
3941 -- Check for nested variant part to process
3943 CL
:= Component_List
(Variant
);
3945 if not Null_Present
(CL
) then
3946 if Present
(Variant_Part
(CL
)) then
3947 Freeze_Choices_In_Variant_Part
(Variant_Part
(CL
));
3951 Next_Non_Pragma
(Variant
);
3953 end Freeze_Choices_In_Variant_Part
;
3955 -- Start of processing for Freeze_Record_Type
3958 -- Deal with delayed aspect specifications for components. The
3959 -- analysis of the aspect is required to be delayed to the freeze
3960 -- point, thus we analyze the pragma or attribute definition
3961 -- clause in the tree at this point. We also analyze the aspect
3962 -- specification node at the freeze point when the aspect doesn't
3963 -- correspond to pragma/attribute definition clause.
3965 Comp
:= First_Entity
(Rec
);
3966 while Present
(Comp
) loop
3967 if Ekind
(Comp
) = E_Component
3968 and then Has_Delayed_Aspects
(Comp
)
3970 if not Rec_Pushed
then
3974 -- The visibility to the discriminants must be restored in
3975 -- order to properly analyze the aspects.
3977 if Has_Discriminants
(Rec
) then
3978 Install_Discriminants
(Rec
);
3982 Analyze_Aspects_At_Freeze_Point
(Comp
);
3988 -- Pop the scope if Rec scope has been pushed on the scope stack
3989 -- during the delayed aspect analysis process.
3992 if Has_Discriminants
(Rec
) then
3993 Uninstall_Discriminants
(Rec
);
3999 -- Freeze components and embedded subtypes
4001 Comp
:= First_Entity
(Rec
);
4003 while Present
(Comp
) loop
4004 if Is_Aliased
(Comp
) then
4005 Aliased_Component
:= True;
4008 -- Handle the component and discriminant case
4010 if Ekind_In
(Comp
, E_Component
, E_Discriminant
) then
4012 CC
: constant Node_Id
:= Component_Clause
(Comp
);
4015 -- Freezing a record type freezes the type of each of its
4016 -- components. However, if the type of the component is
4017 -- part of this record, we do not want or need a separate
4018 -- Freeze_Node. Note that Is_Itype is wrong because that's
4019 -- also set in private type cases. We also can't check for
4020 -- the Scope being exactly Rec because of private types and
4021 -- record extensions.
4023 if Is_Itype
(Etype
(Comp
))
4024 and then Is_Record_Type
(Underlying_Type
4025 (Scope
(Etype
(Comp
))))
4027 Undelay_Type
(Etype
(Comp
));
4030 Freeze_And_Append
(Etype
(Comp
), N
, Result
);
4032 -- Warn for pragma Pack overriding foreign convention
4034 if Has_Foreign_Convention
(Etype
(Comp
))
4035 and then Has_Pragma_Pack
(Rec
)
4037 -- Don't warn for aliased components, since override
4038 -- cannot happen in that case.
4040 and then not Is_Aliased
(Comp
)
4043 CN
: constant Name_Id
:=
4044 Get_Convention_Name
(Convention
(Etype
(Comp
)));
4045 PP
: constant Node_Id
:=
4046 Get_Pragma
(Rec
, Pragma_Pack
);
4048 if Present
(PP
) then
4049 Error_Msg_Name_1
:= CN
;
4050 Error_Msg_Sloc
:= Sloc
(Comp
);
4052 ("pragma Pack affects convention % component#??",
4054 Error_Msg_Name_1
:= CN
;
4056 ("\component & may not have % compatible "
4057 & "representation??", PP
, Comp
);
4062 -- Check for error of component clause given for variable
4063 -- sized type. We have to delay this test till this point,
4064 -- since the component type has to be frozen for us to know
4065 -- if it is variable length.
4067 if Present
(CC
) then
4068 Placed_Component
:= True;
4070 -- We omit this test in a generic context, it will be
4071 -- applied at instantiation time.
4073 if Inside_A_Generic
then
4076 -- Also omit this test in CodePeer mode, since we do not
4077 -- have sufficient info on size and rep clauses.
4079 elsif CodePeer_Mode
then
4082 -- Omit check if component has a generic type. This can
4083 -- happen in an instantiation within a generic in ASIS
4084 -- mode, where we force freeze actions without full
4087 elsif Is_Generic_Type
(Etype
(Comp
)) then
4093 Size_Known_At_Compile_Time
4094 (Underlying_Type
(Etype
(Comp
)))
4097 ("component clause not allowed for variable " &
4098 "length component", CC
);
4102 Unplaced_Component
:= True;
4105 -- Case of component requires byte alignment
4107 if Must_Be_On_Byte_Boundary
(Etype
(Comp
)) then
4109 -- Set the enclosing record to also require byte align
4111 Set_Must_Be_On_Byte_Boundary
(Rec
);
4113 -- Check for component clause that is inconsistent with
4114 -- the required byte boundary alignment.
4117 and then Normalized_First_Bit
(Comp
) mod
4118 System_Storage_Unit
/= 0
4121 ("component & must be byte aligned",
4122 Component_Name
(Component_Clause
(Comp
)));
4128 -- Gather data for possible Implicit_Packing later. Note that at
4129 -- this stage we might be dealing with a real component, or with
4130 -- an implicit subtype declaration.
4132 if Known_Static_RM_Size
(Etype
(Comp
)) then
4134 Comp_Type
: constant Entity_Id
:= Etype
(Comp
);
4135 Comp_Size
: constant Uint
:= RM_Size
(Comp_Type
);
4136 SSU
: constant Int
:= Ttypes
.System_Storage_Unit
;
4139 Sized_Component_Total_RM_Size
:=
4140 Sized_Component_Total_RM_Size
+ Comp_Size
;
4142 Sized_Component_Total_Round_RM_Size
:=
4143 Sized_Component_Total_Round_RM_Size
+
4144 (Comp_Size
+ SSU
- 1) / SSU
* SSU
;
4146 if Present
(Underlying_Type
(Comp_Type
))
4147 and then Is_Elementary_Type
(Underlying_Type
(Comp_Type
))
4149 Elem_Component_Total_Esize
:=
4150 Elem_Component_Total_Esize
+ Esize
(Comp_Type
);
4152 All_Elem_Components
:= False;
4154 if Comp_Size
mod SSU
/= 0 then
4155 All_Storage_Unit_Components
:= False;
4160 All_Sized_Components
:= False;
4163 -- If the component is an Itype with Delayed_Freeze and is either
4164 -- a record or array subtype and its base type has not yet been
4165 -- frozen, we must remove this from the entity list of this record
4166 -- and put it on the entity list of the scope of its base type.
4167 -- Note that we know that this is not the type of a component
4168 -- since we cleared Has_Delayed_Freeze for it in the previous
4169 -- loop. Thus this must be the Designated_Type of an access type,
4170 -- which is the type of a component.
4173 and then Is_Type
(Scope
(Comp
))
4174 and then Is_Composite_Type
(Comp
)
4175 and then Base_Type
(Comp
) /= Comp
4176 and then Has_Delayed_Freeze
(Comp
)
4177 and then not Is_Frozen
(Base_Type
(Comp
))
4180 Will_Be_Frozen
: Boolean := False;
4184 -- We have a difficult case to handle here. Suppose Rec is
4185 -- subtype being defined in a subprogram that's created as
4186 -- part of the freezing of Rec'Base. In that case, we know
4187 -- that Comp'Base must have already been frozen by the time
4188 -- we get to elaborate this because Gigi doesn't elaborate
4189 -- any bodies until it has elaborated all of the declarative
4190 -- part. But Is_Frozen will not be set at this point because
4191 -- we are processing code in lexical order.
4193 -- We detect this case by going up the Scope chain of Rec
4194 -- and seeing if we have a subprogram scope before reaching
4195 -- the top of the scope chain or that of Comp'Base. If we
4196 -- do, then mark that Comp'Base will actually be frozen. If
4197 -- so, we merely undelay it.
4200 while Present
(S
) loop
4201 if Is_Subprogram
(S
) then
4202 Will_Be_Frozen
:= True;
4204 elsif S
= Scope
(Base_Type
(Comp
)) then
4211 if Will_Be_Frozen
then
4212 Undelay_Type
(Comp
);
4215 if Present
(Prev
) then
4216 Set_Next_Entity
(Prev
, Next_Entity
(Comp
));
4218 Set_First_Entity
(Rec
, Next_Entity
(Comp
));
4221 -- Insert in entity list of scope of base type (which
4222 -- must be an enclosing scope, because still unfrozen).
4224 Append_Entity
(Comp
, Scope
(Base_Type
(Comp
)));
4228 -- If the component is an access type with an allocator as default
4229 -- value, the designated type will be frozen by the corresponding
4230 -- expression in init_proc. In order to place the freeze node for
4231 -- the designated type before that for the current record type,
4234 -- Same process if the component is an array of access types,
4235 -- initialized with an aggregate. If the designated type is
4236 -- private, it cannot contain allocators, and it is premature
4237 -- to freeze the type, so we check for this as well.
4239 elsif Is_Access_Type
(Etype
(Comp
))
4240 and then Present
(Parent
(Comp
))
4241 and then Present
(Expression
(Parent
(Comp
)))
4244 Alloc
: constant Node_Id
:=
4245 Check_Allocator
(Expression
(Parent
(Comp
)));
4248 if Present
(Alloc
) then
4250 -- If component is pointer to a class-wide type, freeze
4251 -- the specific type in the expression being allocated.
4252 -- The expression may be a subtype indication, in which
4253 -- case freeze the subtype mark.
4255 if Is_Class_Wide_Type
4256 (Designated_Type
(Etype
(Comp
)))
4258 if Is_Entity_Name
(Expression
(Alloc
)) then
4260 (Entity
(Expression
(Alloc
)), N
, Result
);
4262 elsif Nkind
(Expression
(Alloc
)) = N_Subtype_Indication
4265 (Entity
(Subtype_Mark
(Expression
(Alloc
))),
4269 elsif Is_Itype
(Designated_Type
(Etype
(Comp
))) then
4270 Check_Itype
(Etype
(Comp
));
4274 (Designated_Type
(Etype
(Comp
)), N
, Result
);
4279 elsif Is_Access_Type
(Etype
(Comp
))
4280 and then Is_Itype
(Designated_Type
(Etype
(Comp
)))
4282 Check_Itype
(Etype
(Comp
));
4284 -- Freeze the designated type when initializing a component with
4285 -- an aggregate in case the aggregate contains allocators.
4288 -- type T_Ptr is access all T;
4289 -- type T_Array is array ... of T_Ptr;
4291 -- type Rec is record
4292 -- Comp : T_Array := (others => ...);
4295 elsif Is_Array_Type
(Etype
(Comp
))
4296 and then Is_Access_Type
(Component_Type
(Etype
(Comp
)))
4299 Comp_Par
: constant Node_Id
:= Parent
(Comp
);
4300 Desig_Typ
: constant Entity_Id
:=
4302 (Component_Type
(Etype
(Comp
)));
4305 -- The only case when this sort of freezing is not done is
4306 -- when the designated type is class-wide and the root type
4307 -- is the record owning the component. This scenario results
4308 -- in a circularity because the class-wide type requires
4309 -- primitives that have not been created yet as the root
4310 -- type is in the process of being frozen.
4312 -- type Rec is tagged;
4313 -- type Rec_Ptr is access all Rec'Class;
4314 -- type Rec_Array is array ... of Rec_Ptr;
4316 -- type Rec is record
4317 -- Comp : Rec_Array := (others => ...);
4320 if Is_Class_Wide_Type
(Desig_Typ
)
4321 and then Root_Type
(Desig_Typ
) = Rec
4325 elsif Is_Fully_Defined
(Desig_Typ
)
4326 and then Present
(Comp_Par
)
4327 and then Nkind
(Comp_Par
) = N_Component_Declaration
4328 and then Present
(Expression
(Comp_Par
))
4329 and then Nkind
(Expression
(Comp_Par
)) = N_Aggregate
4331 Freeze_And_Append
(Desig_Typ
, N
, Result
);
4341 Get_Attribute_Definition_Clause
4342 (Rec
, Attribute_Scalar_Storage_Order
);
4344 -- If the record type has Complex_Representation, then it is treated
4345 -- as a scalar in the back end so the storage order is irrelevant.
4347 if Has_Complex_Representation
(Rec
) then
4348 if Present
(SSO_ADC
) then
4350 ("??storage order has no effect with Complex_Representation",
4355 -- Deal with default setting of reverse storage order
4357 Set_SSO_From_Default
(Rec
);
4359 -- Check consistent attribute setting on component types
4362 Comp_ADC_Present
: Boolean;
4364 Comp
:= First_Component
(Rec
);
4365 while Present
(Comp
) loop
4366 Check_Component_Storage_Order
4370 Comp_ADC_Present
=> Comp_ADC_Present
);
4371 SSO_ADC_Component
:= SSO_ADC_Component
or Comp_ADC_Present
;
4372 Next_Component
(Comp
);
4376 -- Now deal with reverse storage order/bit order issues
4378 if Present
(SSO_ADC
) then
4380 -- Check compatibility of Scalar_Storage_Order with Bit_Order,
4381 -- if the former is specified.
4383 if Reverse_Bit_Order
(Rec
) /= Reverse_Storage_Order
(Rec
) then
4385 -- Note: report error on Rec, not on SSO_ADC, as ADC may
4386 -- apply to some ancestor type.
4388 Error_Msg_Sloc
:= Sloc
(SSO_ADC
);
4390 ("scalar storage order for& specified# inconsistent with "
4391 & "bit order", Rec
);
4394 -- Warn if there is a Scalar_Storage_Order attribute definition
4395 -- clause but no component clause, no component that itself has
4396 -- such an attribute definition, and no pragma Pack.
4398 if not (Placed_Component
4405 ("??scalar storage order specified but no component "
4406 & "clause", SSO_ADC
);
4411 -- Deal with Bit_Order aspect
4413 ADC
:= Get_Attribute_Definition_Clause
(Rec
, Attribute_Bit_Order
);
4415 if Present
(ADC
) and then Base_Type
(Rec
) = Rec
then
4416 if not (Placed_Component
4417 or else Present
(SSO_ADC
)
4418 or else Is_Packed
(Rec
))
4420 -- Warn if clause has no effect when no component clause is
4421 -- present, but suppress warning if the Bit_Order is required
4422 -- due to the presence of a Scalar_Storage_Order attribute.
4425 ("??bit order specification has no effect", ADC
);
4427 ("\??since no component clauses were specified", ADC
);
4429 -- Here is where we do the processing to adjust component clauses
4430 -- for reversed bit order, when not using reverse SSO. If an error
4431 -- has been reported on Rec already (such as SSO incompatible with
4432 -- bit order), don't bother adjusting as this may generate extra
4435 elsif Reverse_Bit_Order
(Rec
)
4436 and then not Reverse_Storage_Order
(Rec
)
4437 and then not Error_Posted
(Rec
)
4439 Adjust_Record_For_Reverse_Bit_Order
(Rec
);
4441 -- Case where we have both an explicit Bit_Order and the same
4442 -- Scalar_Storage_Order: leave record untouched, the back-end
4443 -- will take care of required layout conversions.
4451 -- Complete error checking on record representation clause (e.g.
4452 -- overlap of components). This is called after adjusting the
4453 -- record for reverse bit order.
4456 RRC
: constant Node_Id
:= Get_Record_Representation_Clause
(Rec
);
4458 if Present
(RRC
) then
4459 Check_Record_Representation_Clause
(RRC
);
4463 -- Check for useless pragma Pack when all components placed. We only
4464 -- do this check for record types, not subtypes, since a subtype may
4465 -- have all its components placed, and it still makes perfectly good
4466 -- sense to pack other subtypes or the parent type. We do not give
4467 -- this warning if Optimize_Alignment is set to Space, since the
4468 -- pragma Pack does have an effect in this case (it always resets
4469 -- the alignment to one).
4471 if Ekind
(Rec
) = E_Record_Type
4472 and then Is_Packed
(Rec
)
4473 and then not Unplaced_Component
4474 and then Optimize_Alignment
/= 'S'
4476 -- Reset packed status. Probably not necessary, but we do it so
4477 -- that there is no chance of the back end doing something strange
4478 -- with this redundant indication of packing.
4480 Set_Is_Packed
(Rec
, False);
4482 -- Give warning if redundant constructs warnings on
4484 if Warn_On_Redundant_Constructs
then
4485 Error_Msg_N
-- CODEFIX
4486 ("??pragma Pack has no effect, no unplaced components",
4487 Get_Rep_Pragma
(Rec
, Name_Pack
));
4491 -- If this is the record corresponding to a remote type, freeze the
4492 -- remote type here since that is what we are semantically freezing.
4493 -- This prevents the freeze node for that type in an inner scope.
4495 if Ekind
(Rec
) = E_Record_Type
then
4496 if Present
(Corresponding_Remote_Type
(Rec
)) then
4497 Freeze_And_Append
(Corresponding_Remote_Type
(Rec
), N
, Result
);
4500 -- Check for controlled components, unchecked unions, and type
4503 Comp
:= First_Component
(Rec
);
4504 while Present
(Comp
) loop
4506 -- Do not set Has_Controlled_Component on a class-wide
4507 -- equivalent type. See Make_CW_Equivalent_Type.
4509 if not Is_Class_Wide_Equivalent_Type
(Rec
)
4511 (Has_Controlled_Component
(Etype
(Comp
))
4513 (Chars
(Comp
) /= Name_uParent
4514 and then Is_Controlled
(Etype
(Comp
)))
4516 (Is_Protected_Type
(Etype
(Comp
))
4518 Present
(Corresponding_Record_Type
(Etype
(Comp
)))
4520 Has_Controlled_Component
4521 (Corresponding_Record_Type
(Etype
(Comp
)))))
4523 Set_Has_Controlled_Component
(Rec
);
4526 if Has_Unchecked_Union
(Etype
(Comp
)) then
4527 Set_Has_Unchecked_Union
(Rec
);
4530 -- The record type requires its own invariant procedure in
4531 -- order to verify the invariant of each individual component.
4532 -- Do not consider internal components such as _parent because
4533 -- parent class-wide invariants are always inherited.
4534 -- In GNATprove mode, the component invariants are checked by
4535 -- other means. They should not be added to the record type
4536 -- invariant procedure, so that the procedure can be used to
4537 -- check the recordy type invariants if any.
4539 if Comes_From_Source
(Comp
)
4540 and then Has_Invariants
(Etype
(Comp
))
4541 and then not GNATprove_Mode
4543 Set_Has_Own_Invariants
(Rec
);
4546 -- Scan component declaration for likely misuses of current
4547 -- instance, either in a constraint or a default expression.
4549 if Has_Per_Object_Constraint
(Comp
) then
4550 Check_Current_Instance
(Parent
(Comp
));
4553 Next_Component
(Comp
);
4557 -- Enforce the restriction that access attributes with a current
4558 -- instance prefix can only apply to limited types. This comment
4559 -- is floating here, but does not seem to belong here???
4561 -- Set component alignment if not otherwise already set
4563 Set_Component_Alignment_If_Not_Set
(Rec
);
4565 -- For first subtypes, check if there are any fixed-point fields with
4566 -- component clauses, where we must check the size. This is not done
4567 -- till the freeze point since for fixed-point types, we do not know
4568 -- the size until the type is frozen. Similar processing applies to
4569 -- bit-packed arrays.
4571 if Is_First_Subtype
(Rec
) then
4572 Comp
:= First_Component
(Rec
);
4573 while Present
(Comp
) loop
4574 if Present
(Component_Clause
(Comp
))
4575 and then (Is_Fixed_Point_Type
(Etype
(Comp
))
4576 or else Is_Bit_Packed_Array
(Etype
(Comp
)))
4579 (Component_Name
(Component_Clause
(Comp
)),
4585 Next_Component
(Comp
);
4589 -- See if Size is too small as is (and implicit packing might help)
4591 if not Is_Packed
(Rec
)
4593 -- No implicit packing if even one component is explicitly placed
4595 and then not Placed_Component
4597 -- Or even one component is aliased
4599 and then not Aliased_Component
4601 -- Must have size clause and all sized components
4603 and then Has_Size_Clause
(Rec
)
4604 and then All_Sized_Components
4606 -- Do not try implicit packing on records with discriminants, too
4607 -- complicated, especially in the variant record case.
4609 and then not Has_Discriminants
(Rec
)
4611 -- We want to implicitly pack if the specified size of the record
4612 -- is less than the sum of the object sizes (no point in packing
4613 -- if this is not the case), if we can compute it, i.e. if we have
4614 -- only elementary components. Otherwise, we have at least one
4615 -- composite component and we want to implicitly pack only if bit
4616 -- packing is required for it, as we are sure in this case that
4617 -- the back end cannot do the expected layout without packing.
4620 ((All_Elem_Components
4621 and then RM_Size
(Rec
) < Elem_Component_Total_Esize
)
4623 (not All_Elem_Components
4624 and then not All_Storage_Unit_Components
4625 and then RM_Size
(Rec
) < Sized_Component_Total_Round_RM_Size
))
4627 -- And the total RM size cannot be greater than the specified size
4628 -- since otherwise packing will not get us where we have to be.
4630 and then Sized_Component_Total_RM_Size
<= RM_Size
(Rec
)
4632 -- Never do implicit packing in CodePeer or SPARK modes since
4633 -- we don't do any packing in these modes, since this generates
4634 -- over-complex code that confuses static analysis, and in
4635 -- general, neither CodePeer not GNATprove care about the
4636 -- internal representation of objects.
4638 and then not (CodePeer_Mode
or GNATprove_Mode
)
4640 -- If implicit packing enabled, do it
4642 if Implicit_Packing
then
4643 Set_Is_Packed
(Rec
);
4645 -- Otherwise flag the size clause
4649 Sz
: constant Node_Id
:= Size_Clause
(Rec
);
4651 Error_Msg_NE
-- CODEFIX
4652 ("size given for& too small", Sz
, Rec
);
4653 Error_Msg_N
-- CODEFIX
4654 ("\use explicit pragma Pack "
4655 & "or use pragma Implicit_Packing", Sz
);
4660 -- The following checks are relevant only when SPARK_Mode is on as
4661 -- they are not standard Ada legality rules.
4663 if SPARK_Mode
= On
then
4665 -- A discriminated type cannot be effectively volatile
4666 -- (SPARK RM 7.1.3(5)).
4668 if Is_Effectively_Volatile
(Rec
) then
4669 if Has_Discriminants
(Rec
) then
4670 Error_Msg_N
("discriminated type & cannot be volatile", Rec
);
4673 -- A non-effectively volatile record type cannot contain
4674 -- effectively volatile components (SPARK RM 7.1.3(6)).
4677 Comp
:= First_Component
(Rec
);
4678 while Present
(Comp
) loop
4679 if Comes_From_Source
(Comp
)
4680 and then Is_Effectively_Volatile
(Etype
(Comp
))
4682 Error_Msg_Name_1
:= Chars
(Rec
);
4684 ("component & of non-volatile type % cannot be "
4685 & "volatile", Comp
);
4688 Next_Component
(Comp
);
4692 -- A type which does not yield a synchronized object cannot have
4693 -- a component that yields a synchronized object (SPARK RM 9.5).
4695 if not Yields_Synchronized_Object
(Rec
) then
4696 Comp
:= First_Component
(Rec
);
4697 while Present
(Comp
) loop
4698 if Comes_From_Source
(Comp
)
4699 and then Yields_Synchronized_Object
(Etype
(Comp
))
4701 Error_Msg_Name_1
:= Chars
(Rec
);
4703 ("component & of non-synchronized type % cannot be "
4704 & "synchronized", Comp
);
4707 Next_Component
(Comp
);
4711 -- A Ghost type cannot have a component of protected or task type
4712 -- (SPARK RM 6.9(19)).
4714 if Is_Ghost_Entity
(Rec
) then
4715 Comp
:= First_Component
(Rec
);
4716 while Present
(Comp
) loop
4717 if Comes_From_Source
(Comp
)
4718 and then Is_Concurrent_Type
(Etype
(Comp
))
4720 Error_Msg_Name_1
:= Chars
(Rec
);
4722 ("component & of ghost type % cannot be concurrent",
4726 Next_Component
(Comp
);
4731 -- Make sure that if we have an iterator aspect, then we have
4732 -- either Constant_Indexing or Variable_Indexing.
4735 Iterator_Aspect
: Node_Id
;
4738 Iterator_Aspect
:= Find_Aspect
(Rec
, Aspect_Iterator_Element
);
4740 if No
(Iterator_Aspect
) then
4741 Iterator_Aspect
:= Find_Aspect
(Rec
, Aspect_Default_Iterator
);
4744 if Present
(Iterator_Aspect
) then
4745 if Has_Aspect
(Rec
, Aspect_Constant_Indexing
)
4747 Has_Aspect
(Rec
, Aspect_Variable_Indexing
)
4752 ("Iterator_Element requires indexing aspect",
4758 -- All done if not a full record definition
4760 if Ekind
(Rec
) /= E_Record_Type
then
4764 -- Finally we need to check the variant part to make sure that
4765 -- all types within choices are properly frozen as part of the
4766 -- freezing of the record type.
4768 Check_Variant_Part
: declare
4769 D
: constant Node_Id
:= Declaration_Node
(Rec
);
4774 -- Find component list
4778 if Nkind
(D
) = N_Full_Type_Declaration
then
4779 T
:= Type_Definition
(D
);
4781 if Nkind
(T
) = N_Record_Definition
then
4782 C
:= Component_List
(T
);
4784 elsif Nkind
(T
) = N_Derived_Type_Definition
4785 and then Present
(Record_Extension_Part
(T
))
4787 C
:= Component_List
(Record_Extension_Part
(T
));
4791 -- Case of variant part present
4793 if Present
(C
) and then Present
(Variant_Part
(C
)) then
4794 Freeze_Choices_In_Variant_Part
(Variant_Part
(C
));
4797 -- Note: we used to call Check_Choices here, but it is too early,
4798 -- since predicated subtypes are frozen here, but their freezing
4799 -- actions are in Analyze_Freeze_Entity, which has not been called
4800 -- yet for entities frozen within this procedure, so we moved that
4801 -- call to the Analyze_Freeze_Entity for the record type.
4803 end Check_Variant_Part
;
4805 -- Check that all the primitives of an interface type are abstract
4806 -- or null procedures.
4808 if Is_Interface
(Rec
)
4809 and then not Error_Posted
(Parent
(Rec
))
4816 Elmt
:= First_Elmt
(Primitive_Operations
(Rec
));
4817 while Present
(Elmt
) loop
4818 Subp
:= Node
(Elmt
);
4820 if not Is_Abstract_Subprogram
(Subp
)
4822 -- Avoid reporting the error on inherited primitives
4824 and then Comes_From_Source
(Subp
)
4826 Error_Msg_Name_1
:= Chars
(Subp
);
4828 if Ekind
(Subp
) = E_Procedure
then
4829 if not Null_Present
(Parent
(Subp
)) then
4831 ("interface procedure % must be abstract or null",
4836 ("interface function % must be abstract",
4846 -- For a derived tagged type, check whether inherited primitives
4847 -- might require a wrapper to handle class-wide conditions.
4849 if Is_Tagged_Type
(Rec
) and then Is_Derived_Type
(Rec
) then
4850 Check_Inherited_Conditions
(Rec
);
4852 end Freeze_Record_Type
;
4854 -------------------------------
4855 -- Has_Boolean_Aspect_Import --
4856 -------------------------------
4858 function Has_Boolean_Aspect_Import
(E
: Entity_Id
) return Boolean is
4859 Decl
: constant Node_Id
:= Declaration_Node
(E
);
4864 if Has_Aspects
(Decl
) then
4865 Asp
:= First
(Aspect_Specifications
(Decl
));
4866 while Present
(Asp
) loop
4867 Expr
:= Expression
(Asp
);
4869 -- The value of aspect Import is True when the expression is
4870 -- either missing or it is explicitly set to True.
4872 if Get_Aspect_Id
(Asp
) = Aspect_Import
4874 or else (Compile_Time_Known_Value
(Expr
)
4875 and then Is_True
(Expr_Value
(Expr
))))
4885 end Has_Boolean_Aspect_Import
;
4887 -------------------------
4888 -- Inherit_Freeze_Node --
4889 -------------------------
4891 procedure Inherit_Freeze_Node
4895 Typ_Fnod
: constant Node_Id
:= Freeze_Node
(Typ
);
4898 Set_Freeze_Node
(Typ
, Fnod
);
4899 Set_Entity
(Fnod
, Typ
);
4901 -- The input type had an existing node. Propagate relevant attributes
4902 -- from the old freeze node to the inherited freeze node.
4904 -- ??? if both freeze nodes have attributes, would they differ?
4906 if Present
(Typ_Fnod
) then
4908 -- Attribute Access_Types_To_Process
4910 if Present
(Access_Types_To_Process
(Typ_Fnod
))
4911 and then No
(Access_Types_To_Process
(Fnod
))
4913 Set_Access_Types_To_Process
(Fnod
,
4914 Access_Types_To_Process
(Typ_Fnod
));
4917 -- Attribute Actions
4919 if Present
(Actions
(Typ_Fnod
)) and then No
(Actions
(Fnod
)) then
4920 Set_Actions
(Fnod
, Actions
(Typ_Fnod
));
4923 -- Attribute First_Subtype_Link
4925 if Present
(First_Subtype_Link
(Typ_Fnod
))
4926 and then No
(First_Subtype_Link
(Fnod
))
4928 Set_First_Subtype_Link
(Fnod
, First_Subtype_Link
(Typ_Fnod
));
4931 -- Attribute TSS_Elist
4933 if Present
(TSS_Elist
(Typ_Fnod
))
4934 and then No
(TSS_Elist
(Fnod
))
4936 Set_TSS_Elist
(Fnod
, TSS_Elist
(Typ_Fnod
));
4939 end Inherit_Freeze_Node
;
4941 ------------------------------
4942 -- Wrap_Imported_Subprogram --
4943 ------------------------------
4945 -- The issue here is that our normal approach of checking preconditions
4946 -- and postconditions does not work for imported procedures, since we
4947 -- are not generating code for the body. To get around this we create
4948 -- a wrapper, as shown by the following example:
4950 -- procedure K (A : Integer);
4951 -- pragma Import (C, K);
4953 -- The spec is rewritten by removing the effects of pragma Import, but
4954 -- leaving the convention unchanged, as though the source had said:
4956 -- procedure K (A : Integer);
4957 -- pragma Convention (C, K);
4959 -- and we create a body, added to the entity K freeze actions, which
4962 -- procedure K (A : Integer) is
4963 -- procedure K (A : Integer);
4964 -- pragma Import (C, K);
4969 -- Now the contract applies in the normal way to the outer procedure,
4970 -- and the inner procedure has no contracts, so there is no problem
4971 -- in just calling it to get the original effect.
4973 -- In the case of a function, we create an appropriate return statement
4974 -- for the subprogram body that calls the inner procedure.
4976 procedure Wrap_Imported_Subprogram
(E
: Entity_Id
) is
4977 function Copy_Import_Pragma
return Node_Id
;
4978 -- Obtain a copy of the Import_Pragma which belongs to subprogram E
4980 ------------------------
4981 -- Copy_Import_Pragma --
4982 ------------------------
4984 function Copy_Import_Pragma
return Node_Id
is
4986 -- The subprogram should have an import pragma, otherwise it does
4989 Prag
: constant Node_Id
:= Import_Pragma
(E
);
4990 pragma Assert
(Present
(Prag
));
4992 -- Save all semantic fields of the pragma
4994 Save_Asp
: constant Node_Id
:= Corresponding_Aspect
(Prag
);
4995 Save_From
: constant Boolean := From_Aspect_Specification
(Prag
);
4996 Save_Prag
: constant Node_Id
:= Next_Pragma
(Prag
);
4997 Save_Rep
: constant Node_Id
:= Next_Rep_Item
(Prag
);
5002 -- Reset all semantic fields. This avoids a potential infinite
5003 -- loop when the pragma comes from an aspect as the duplication
5004 -- will copy the aspect, then copy the corresponding pragma and
5007 Set_Corresponding_Aspect
(Prag
, Empty
);
5008 Set_From_Aspect_Specification
(Prag
, False);
5009 Set_Next_Pragma
(Prag
, Empty
);
5010 Set_Next_Rep_Item
(Prag
, Empty
);
5012 Result
:= Copy_Separate_Tree
(Prag
);
5014 -- Restore the original semantic fields
5016 Set_Corresponding_Aspect
(Prag
, Save_Asp
);
5017 Set_From_Aspect_Specification
(Prag
, Save_From
);
5018 Set_Next_Pragma
(Prag
, Save_Prag
);
5019 Set_Next_Rep_Item
(Prag
, Save_Rep
);
5022 end Copy_Import_Pragma
;
5026 Loc
: constant Source_Ptr
:= Sloc
(E
);
5027 CE
: constant Name_Id
:= Chars
(E
);
5035 -- Start of processing for Wrap_Imported_Subprogram
5038 -- Nothing to do if not imported
5040 if not Is_Imported
(E
) then
5043 -- Test enabling conditions for wrapping
5045 elsif Is_Subprogram
(E
)
5046 and then Present
(Contract
(E
))
5047 and then Present
(Pre_Post_Conditions
(Contract
(E
)))
5048 and then not GNATprove_Mode
5050 -- Here we do the wrap
5052 -- Note on calls to Copy_Separate_Tree. The trees we are copying
5053 -- here are fully analyzed, but we definitely want fully syntactic
5054 -- unanalyzed trees in the body we construct, so that the analysis
5055 -- generates the right visibility, and that is exactly what the
5056 -- calls to Copy_Separate_Tree give us.
5058 Prag
:= Copy_Import_Pragma
;
5060 -- Fix up spec so it is no longer imported and has convention Ada
5062 Set_Has_Completion
(E
, False);
5063 Set_Import_Pragma
(E
, Empty
);
5064 Set_Interface_Name
(E
, Empty
);
5065 Set_Is_Imported
(E
, False);
5066 Set_Convention
(E
, Convention_Ada
);
5068 -- Grab the subprogram declaration and specification
5070 Spec
:= Declaration_Node
(E
);
5072 -- Build parameter list that we need
5075 Forml
:= First_Formal
(E
);
5076 while Present
(Forml
) loop
5077 Append_To
(Parms
, Make_Identifier
(Loc
, Chars
(Forml
)));
5078 Next_Formal
(Forml
);
5083 if Ekind_In
(E
, E_Function
, E_Generic_Function
) then
5085 Make_Simple_Return_Statement
(Loc
,
5087 Make_Function_Call
(Loc
,
5088 Name
=> Make_Identifier
(Loc
, CE
),
5089 Parameter_Associations
=> Parms
));
5093 Make_Procedure_Call_Statement
(Loc
,
5094 Name
=> Make_Identifier
(Loc
, CE
),
5095 Parameter_Associations
=> Parms
);
5098 -- Now build the body
5101 Make_Subprogram_Body
(Loc
,
5103 Copy_Separate_Tree
(Spec
),
5104 Declarations
=> New_List
(
5105 Make_Subprogram_Declaration
(Loc
,
5106 Specification
=> Copy_Separate_Tree
(Spec
)),
5108 Handled_Statement_Sequence
=>
5109 Make_Handled_Sequence_Of_Statements
(Loc
,
5110 Statements
=> New_List
(Stmt
),
5111 End_Label
=> Make_Identifier
(Loc
, CE
)));
5113 -- Append the body to freeze result
5115 Add_To_Result
(Bod
);
5118 -- Case of imported subprogram that does not get wrapped
5121 -- Set Is_Public. All imported entities need an external symbol
5122 -- created for them since they are always referenced from another
5123 -- object file. Note this used to be set when we set Is_Imported
5124 -- back in Sem_Prag, but now we delay it to this point, since we
5125 -- don't want to set this flag if we wrap an imported subprogram.
5129 end Wrap_Imported_Subprogram
;
5133 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
5134 -- Save the Ghost mode to restore on exit
5136 -- Start of processing for Freeze_Entity
5139 -- The entity being frozen may be subject to pragma Ghost. Set the mode
5140 -- now to ensure that any nodes generated during freezing are properly
5141 -- flagged as Ghost.
5145 -- We are going to test for various reasons why this entity need not be
5146 -- frozen here, but in the case of an Itype that's defined within a
5147 -- record, that test actually applies to the record.
5149 if Is_Itype
(E
) and then Is_Record_Type
(Scope
(E
)) then
5150 Test_E
:= Scope
(E
);
5151 elsif Is_Itype
(E
) and then Present
(Underlying_Type
(Scope
(E
)))
5152 and then Is_Record_Type
(Underlying_Type
(Scope
(E
)))
5154 Test_E
:= Underlying_Type
(Scope
(E
));
5157 -- Do not freeze if already frozen since we only need one freeze node
5159 if Is_Frozen
(E
) then
5163 elsif Ekind
(E
) = E_Generic_Package
then
5164 Result
:= Freeze_Generic_Entities
(E
);
5167 -- It is improper to freeze an external entity within a generic because
5168 -- its freeze node will appear in a non-valid context. The entity will
5169 -- be frozen in the proper scope after the current generic is analyzed.
5170 -- However, aspects must be analyzed because they may be queried later
5171 -- within the generic itself, and the corresponding pragma or attribute
5172 -- definition has not been analyzed yet.
5174 elsif Inside_A_Generic
and then External_Ref_In_Generic
(Test_E
) then
5175 if Has_Delayed_Aspects
(E
) then
5176 Analyze_Aspects_At_Freeze_Point
(E
);
5182 -- AI05-0213: A formal incomplete type does not freeze the actual. In
5183 -- the instance, the same applies to the subtype renaming the actual.
5185 elsif Is_Private_Type
(E
)
5186 and then Is_Generic_Actual_Type
(E
)
5187 and then No
(Full_View
(Base_Type
(E
)))
5188 and then Ada_Version
>= Ada_2012
5193 -- Formal subprograms are never frozen
5195 elsif Is_Formal_Subprogram
(E
) then
5199 -- Generic types are never frozen as they lack delayed semantic checks
5201 elsif Is_Generic_Type
(E
) then
5205 -- Do not freeze a global entity within an inner scope created during
5206 -- expansion. A call to subprogram E within some internal procedure
5207 -- (a stream attribute for example) might require freezing E, but the
5208 -- freeze node must appear in the same declarative part as E itself.
5209 -- The two-pass elaboration mechanism in gigi guarantees that E will
5210 -- be frozen before the inner call is elaborated. We exclude constants
5211 -- from this test, because deferred constants may be frozen early, and
5212 -- must be diagnosed (e.g. in the case of a deferred constant being used
5213 -- in a default expression). If the enclosing subprogram comes from
5214 -- source, or is a generic instance, then the freeze point is the one
5215 -- mandated by the language, and we freeze the entity. A subprogram that
5216 -- is a child unit body that acts as a spec does not have a spec that
5217 -- comes from source, but can only come from source.
5219 elsif In_Open_Scopes
(Scope
(Test_E
))
5220 and then Scope
(Test_E
) /= Current_Scope
5221 and then Ekind
(Test_E
) /= E_Constant
5228 while Present
(S
) loop
5229 if Is_Overloadable
(S
) then
5230 if Comes_From_Source
(S
)
5231 or else Is_Generic_Instance
(S
)
5232 or else Is_Child_Unit
(S
)
5245 -- Similarly, an inlined instance body may make reference to global
5246 -- entities, but these references cannot be the proper freezing point
5247 -- for them, and in the absence of inlining freezing will take place in
5248 -- their own scope. Normally instance bodies are analyzed after the
5249 -- enclosing compilation, and everything has been frozen at the proper
5250 -- place, but with front-end inlining an instance body is compiled
5251 -- before the end of the enclosing scope, and as a result out-of-order
5252 -- freezing must be prevented.
5254 elsif Front_End_Inlining
5255 and then In_Instance_Body
5256 and then Present
(Scope
(Test_E
))
5262 S
:= Scope
(Test_E
);
5263 while Present
(S
) loop
5264 if Is_Generic_Instance
(S
) then
5278 -- Add checks to detect proper initialization of scalars that may appear
5279 -- as subprogram parameters.
5281 if Is_Subprogram
(E
) and then Check_Validity_Of_Parameters
then
5282 Apply_Parameter_Validity_Checks
(E
);
5285 -- Deal with delayed aspect specifications. The analysis of the aspect
5286 -- is required to be delayed to the freeze point, thus we analyze the
5287 -- pragma or attribute definition clause in the tree at this point. We
5288 -- also analyze the aspect specification node at the freeze point when
5289 -- the aspect doesn't correspond to pragma/attribute definition clause.
5290 -- In addition, a derived type may have inherited aspects that were
5291 -- delayed in the parent, so these must also be captured now.
5293 if Has_Delayed_Aspects
(E
)
5294 or else May_Inherit_Delayed_Rep_Aspects
(E
)
5296 Analyze_Aspects_At_Freeze_Point
(E
);
5299 -- Here to freeze the entity
5303 -- Case of entity being frozen is other than a type
5305 if not Is_Type
(E
) then
5307 -- If entity is exported or imported and does not have an external
5308 -- name, now is the time to provide the appropriate default name.
5309 -- Skip this if the entity is stubbed, since we don't need a name
5310 -- for any stubbed routine. For the case on intrinsics, if no
5311 -- external name is specified, then calls will be handled in
5312 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
5313 -- external name is provided, then Expand_Intrinsic_Call leaves
5314 -- calls in place for expansion by GIGI.
5316 if (Is_Imported
(E
) or else Is_Exported
(E
))
5317 and then No
(Interface_Name
(E
))
5318 and then Convention
(E
) /= Convention_Stubbed
5319 and then Convention
(E
) /= Convention_Intrinsic
5321 Set_Encoded_Interface_Name
5322 (E
, Get_Default_External_Name
(E
));
5324 -- If entity is an atomic object appearing in a declaration and
5325 -- the expression is an aggregate, assign it to a temporary to
5326 -- ensure that the actual assignment is done atomically rather
5327 -- than component-wise (the assignment to the temp may be done
5328 -- component-wise, but that is harmless).
5330 elsif Is_Atomic_Or_VFA
(E
)
5331 and then Nkind
(Parent
(E
)) = N_Object_Declaration
5332 and then Present
(Expression
(Parent
(E
)))
5333 and then Nkind
(Expression
(Parent
(E
))) = N_Aggregate
5334 and then Is_Atomic_VFA_Aggregate
(Expression
(Parent
(E
)))
5341 if Is_Subprogram
(E
) then
5343 -- Check for needing to wrap imported subprogram
5345 Wrap_Imported_Subprogram
(E
);
5347 -- Freeze all parameter types and the return type (RM 13.14(14)).
5348 -- However skip this for internal subprograms. This is also where
5349 -- any extra formal parameters are created since we now know
5350 -- whether the subprogram will use a foreign convention.
5352 -- In Ada 2012, freezing a subprogram does not always freeze the
5353 -- corresponding profile (see AI05-019). An attribute reference
5354 -- is not a freezing point of the profile. Flag Do_Freeze_Profile
5355 -- indicates whether the profile should be frozen now.
5356 -- Other constructs that should not freeze ???
5358 -- This processing doesn't apply to internal entities (see below)
5360 if not Is_Internal
(E
) and then Do_Freeze_Profile
then
5361 if not Freeze_Profile
(E
) then
5366 -- Must freeze its parent first if it is a derived subprogram
5368 if Present
(Alias
(E
)) then
5369 Freeze_And_Append
(Alias
(E
), N
, Result
);
5372 -- We don't freeze internal subprograms, because we don't normally
5373 -- want addition of extra formals or mechanism setting to happen
5374 -- for those. However we do pass through predefined dispatching
5375 -- cases, since extra formals may be needed in some cases, such as
5376 -- for the stream 'Input function (build-in-place formals).
5378 if not Is_Internal
(E
)
5379 or else Is_Predefined_Dispatching_Operation
(E
)
5381 Freeze_Subprogram
(E
);
5384 -- If warning on suspicious contracts then check for the case of
5385 -- a postcondition other than False for a No_Return subprogram.
5388 and then Warn_On_Suspicious_Contract
5389 and then Present
(Contract
(E
))
5392 Prag
: Node_Id
:= Pre_Post_Conditions
(Contract
(E
));
5396 while Present
(Prag
) loop
5397 if Nam_In
(Pragma_Name_Unmapped
(Prag
),
5404 (First
(Pragma_Argument_Associations
(Prag
)));
5406 if Nkind
(Exp
) /= N_Identifier
5407 or else Chars
(Exp
) /= Name_False
5410 ("useless postcondition, & is marked "
5411 & "No_Return?T?", Exp
, E
);
5415 Prag
:= Next_Pragma
(Prag
);
5420 -- Here for other than a subprogram or type
5423 -- If entity has a type, and it is not a generic unit, then
5424 -- freeze it first (RM 13.14(10)).
5426 if Present
(Etype
(E
))
5427 and then Ekind
(E
) /= E_Generic_Function
5429 Freeze_And_Append
(Etype
(E
), N
, Result
);
5431 -- For an object of an anonymous array type, aspects on the
5432 -- object declaration apply to the type itself. This is the
5433 -- case for Atomic_Components, Volatile_Components, and
5434 -- Independent_Components. In these cases analysis of the
5435 -- generated pragma will mark the anonymous types accordingly,
5436 -- and the object itself does not require a freeze node.
5438 if Ekind
(E
) = E_Variable
5439 and then Is_Itype
(Etype
(E
))
5440 and then Is_Array_Type
(Etype
(E
))
5441 and then Has_Delayed_Aspects
(E
)
5443 Set_Has_Delayed_Aspects
(E
, False);
5444 Set_Has_Delayed_Freeze
(E
, False);
5445 Set_Freeze_Node
(E
, Empty
);
5449 -- Special processing for objects created by object declaration
5451 if Nkind
(Declaration_Node
(E
)) = N_Object_Declaration
then
5452 Freeze_Object_Declaration
(E
);
5455 -- Check that a constant which has a pragma Volatile[_Components]
5456 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
5458 -- Note: Atomic[_Components] also sets Volatile[_Components]
5460 if Ekind
(E
) = E_Constant
5461 and then (Has_Volatile_Components
(E
) or else Is_Volatile
(E
))
5462 and then not Is_Imported
(E
)
5463 and then not Has_Boolean_Aspect_Import
(E
)
5465 -- Make sure we actually have a pragma, and have not merely
5466 -- inherited the indication from elsewhere (e.g. an address
5467 -- clause, which is not good enough in RM terms).
5469 if Has_Rep_Pragma
(E
, Name_Atomic
)
5471 Has_Rep_Pragma
(E
, Name_Atomic_Components
)
5474 ("stand alone atomic constant must be " &
5475 "imported (RM C.6(13))", E
);
5477 elsif Has_Rep_Pragma
(E
, Name_Volatile
)
5479 Has_Rep_Pragma
(E
, Name_Volatile_Components
)
5482 ("stand alone volatile constant must be " &
5483 "imported (RM C.6(13))", E
);
5487 -- Static objects require special handling
5489 if (Ekind
(E
) = E_Constant
or else Ekind
(E
) = E_Variable
)
5490 and then Is_Statically_Allocated
(E
)
5492 Freeze_Static_Object
(E
);
5495 -- Remaining step is to layout objects
5497 if Ekind_In
(E
, E_Variable
, E_Constant
, E_Loop_Parameter
)
5498 or else Is_Formal
(E
)
5503 -- For an object that does not have delayed freezing, and whose
5504 -- initialization actions have been captured in a compound
5505 -- statement, move them back now directly within the enclosing
5506 -- statement sequence.
5508 if Ekind_In
(E
, E_Constant
, E_Variable
)
5509 and then not Has_Delayed_Freeze
(E
)
5511 Explode_Initialization_Compound_Statement
(E
);
5514 -- Do not generate a freeze node for a generic unit
5516 if Is_Generic_Unit
(E
) then
5522 -- Case of a type or subtype being frozen
5525 -- Verify several SPARK legality rules related to Ghost types now
5526 -- that the type is frozen.
5528 Check_Ghost_Type
(E
);
5530 -- We used to check here that a full type must have preelaborable
5531 -- initialization if it completes a private type specified with
5532 -- pragma Preelaborable_Initialization, but that missed cases where
5533 -- the types occur within a generic package, since the freezing
5534 -- that occurs within a containing scope generally skips traversal
5535 -- of a generic unit's declarations (those will be frozen within
5536 -- instances). This check was moved to Analyze_Package_Specification.
5538 -- The type may be defined in a generic unit. This can occur when
5539 -- freezing a generic function that returns the type (which is
5540 -- defined in a parent unit). It is clearly meaningless to freeze
5541 -- this type. However, if it is a subtype, its size may be determi-
5542 -- nable and used in subsequent checks, so might as well try to
5545 -- In Ada 2012, Freeze_Entities is also used in the front end to
5546 -- trigger the analysis of aspect expressions, so in this case we
5547 -- want to continue the freezing process.
5549 -- Is_Generic_Unit (Scope (E)) is dubious here, do we want instead
5550 -- In_Generic_Scope (E)???
5552 if Present
(Scope
(E
))
5553 and then Is_Generic_Unit
(Scope
(E
))
5555 (not Has_Predicates
(E
)
5556 and then not Has_Delayed_Freeze
(E
))
5558 Check_Compile_Time_Size
(E
);
5563 -- Check for error of Type_Invariant'Class applied to an untagged
5564 -- type (check delayed to freeze time when full type is available).
5567 Prag
: constant Node_Id
:= Get_Pragma
(E
, Pragma_Invariant
);
5570 and then Class_Present
(Prag
)
5571 and then not Is_Tagged_Type
(E
)
5574 ("Type_Invariant''Class cannot be specified for &", Prag
, E
);
5576 ("\can only be specified for a tagged type", Prag
);
5580 -- Deal with special cases of freezing for subtype
5582 if E
/= Base_Type
(E
) then
5584 -- Before we do anything else, a specific test for the case of a
5585 -- size given for an array where the array would need to be packed
5586 -- in order for the size to be honored, but is not. This is the
5587 -- case where implicit packing may apply. The reason we do this so
5588 -- early is that, if we have implicit packing, the layout of the
5589 -- base type is affected, so we must do this before we freeze the
5592 -- We could do this processing only if implicit packing is enabled
5593 -- since in all other cases, the error would be caught by the back
5594 -- end. However, we choose to do the check even if we do not have
5595 -- implicit packing enabled, since this allows us to give a more
5596 -- useful error message (advising use of pragma Implicit_Packing
5599 if Is_Array_Type
(E
) then
5601 Ctyp
: constant Entity_Id
:= Component_Type
(E
);
5602 Rsiz
: constant Uint
:= RM_Size
(Ctyp
);
5603 SZ
: constant Node_Id
:= Size_Clause
(E
);
5604 Btyp
: constant Entity_Id
:= Base_Type
(E
);
5611 Num_Elmts
: Uint
:= Uint_1
;
5612 -- Number of elements in array
5615 -- Check enabling conditions. These are straightforward
5616 -- except for the test for a limited composite type. This
5617 -- eliminates the rare case of a array of limited components
5618 -- where there are issues of whether or not we can go ahead
5619 -- and pack the array (since we can't freely pack and unpack
5620 -- arrays if they are limited).
5622 -- Note that we check the root type explicitly because the
5623 -- whole point is we are doing this test before we have had
5624 -- a chance to freeze the base type (and it is that freeze
5625 -- action that causes stuff to be inherited).
5627 -- The conditions on the size are identical to those used in
5628 -- Freeze_Array_Type to set the Is_Packed flag.
5630 if Has_Size_Clause
(E
)
5631 and then Known_Static_RM_Size
(E
)
5632 and then not Is_Packed
(E
)
5633 and then not Has_Pragma_Pack
(E
)
5634 and then not Has_Component_Size_Clause
(E
)
5635 and then Known_Static_RM_Size
(Ctyp
)
5637 and then not (Addressable
(Rsiz
)
5638 and then Known_Static_Esize
(Ctyp
)
5639 and then Esize
(Ctyp
) = Rsiz
)
5640 and then not (Rsiz
mod System_Storage_Unit
= 0
5641 and then Is_Composite_Type
(Ctyp
))
5642 and then not Is_Limited_Composite
(E
)
5643 and then not Is_Packed
(Root_Type
(E
))
5644 and then not Has_Component_Size_Clause
(Root_Type
(E
))
5645 and then not (CodePeer_Mode
or GNATprove_Mode
)
5647 -- Compute number of elements in array
5649 Indx
:= First_Index
(E
);
5650 while Present
(Indx
) loop
5651 Get_Index_Bounds
(Indx
, Lo
, Hi
);
5653 if not (Compile_Time_Known_Value
(Lo
)
5655 Compile_Time_Known_Value
(Hi
))
5657 goto No_Implicit_Packing
;
5660 Dim
:= Expr_Value
(Hi
) - Expr_Value
(Lo
) + 1;
5663 Num_Elmts
:= Num_Elmts
* Dim
;
5665 Num_Elmts
:= Uint_0
;
5671 -- What we are looking for here is the situation where
5672 -- the RM_Size given would be exactly right if there was
5673 -- a pragma Pack, resulting in the component size being
5674 -- the RM_Size of the component type.
5676 if RM_Size
(E
) = Num_Elmts
* Rsiz
then
5678 -- For implicit packing mode, just set the component
5679 -- size and Freeze_Array_Type will do the rest.
5681 if Implicit_Packing
then
5682 Set_Component_Size
(Btyp
, Rsiz
);
5684 -- Otherwise give an error message
5688 ("size given for& too small", SZ
, E
);
5689 Error_Msg_N
-- CODEFIX
5690 ("\use explicit pragma Pack or use pragma "
5691 & "Implicit_Packing", SZ
);
5698 <<No_Implicit_Packing
>>
5700 -- If ancestor subtype present, freeze that first. Note that this
5701 -- will also get the base type frozen. Need RM reference ???
5703 Atype
:= Ancestor_Subtype
(E
);
5705 if Present
(Atype
) then
5706 Freeze_And_Append
(Atype
, N
, Result
);
5708 -- No ancestor subtype present
5711 -- See if we have a nearest ancestor that has a predicate.
5712 -- That catches the case of derived type with a predicate.
5713 -- Need RM reference here ???
5715 Atype
:= Nearest_Ancestor
(E
);
5717 if Present
(Atype
) and then Has_Predicates
(Atype
) then
5718 Freeze_And_Append
(Atype
, N
, Result
);
5721 -- Freeze base type before freezing the entity (RM 13.14(15))
5723 if E
/= Base_Type
(E
) then
5724 Freeze_And_Append
(Base_Type
(E
), N
, Result
);
5728 -- A subtype inherits all the type-related representation aspects
5729 -- from its parents (RM 13.1(8)).
5731 Inherit_Aspects_At_Freeze_Point
(E
);
5733 -- For a derived type, freeze its parent type first (RM 13.14(15))
5735 elsif Is_Derived_Type
(E
) then
5736 Freeze_And_Append
(Etype
(E
), N
, Result
);
5737 Freeze_And_Append
(First_Subtype
(Etype
(E
)), N
, Result
);
5739 -- A derived type inherits each type-related representation aspect
5740 -- of its parent type that was directly specified before the
5741 -- declaration of the derived type (RM 13.1(15)).
5743 Inherit_Aspects_At_Freeze_Point
(E
);
5746 -- Check for incompatible size and alignment for record type
5748 if Warn_On_Size_Alignment
5749 and then Is_Record_Type
(E
)
5750 and then Has_Size_Clause
(E
) and then Has_Alignment_Clause
(E
)
5752 -- If explicit Object_Size clause given assume that the programmer
5753 -- knows what he is doing, and expects the compiler behavior.
5755 and then not Has_Object_Size_Clause
(E
)
5757 -- Check for size not a multiple of alignment
5759 and then RM_Size
(E
) mod (Alignment
(E
) * System_Storage_Unit
) /= 0
5762 SC
: constant Node_Id
:= Size_Clause
(E
);
5763 AC
: constant Node_Id
:= Alignment_Clause
(E
);
5765 Abits
: constant Uint
:= Alignment
(E
) * System_Storage_Unit
;
5768 if Present
(SC
) and then Present
(AC
) then
5772 if Sloc
(SC
) > Sloc
(AC
) then
5775 ("?Z?size is not a multiple of alignment for &",
5777 Error_Msg_Sloc
:= Sloc
(AC
);
5778 Error_Msg_Uint_1
:= Alignment
(E
);
5779 Error_Msg_N
("\?Z?alignment of ^ specified #", Loc
);
5784 ("?Z?size is not a multiple of alignment for &",
5786 Error_Msg_Sloc
:= Sloc
(SC
);
5787 Error_Msg_Uint_1
:= RM_Size
(E
);
5788 Error_Msg_N
("\?Z?size of ^ specified #", Loc
);
5791 Error_Msg_Uint_1
:= ((RM_Size
(E
) / Abits
) + 1) * Abits
;
5792 Error_Msg_N
("\?Z?Object_Size will be increased to ^", Loc
);
5799 if Is_Array_Type
(E
) then
5800 Freeze_Array_Type
(E
);
5802 -- For a class-wide type, the corresponding specific type is
5803 -- frozen as well (RM 13.14(15))
5805 elsif Is_Class_Wide_Type
(E
) then
5806 Freeze_And_Append
(Root_Type
(E
), N
, Result
);
5808 -- If the base type of the class-wide type is still incomplete,
5809 -- the class-wide remains unfrozen as well. This is legal when
5810 -- E is the formal of a primitive operation of some other type
5811 -- which is being frozen.
5813 if not Is_Frozen
(Root_Type
(E
)) then
5814 Set_Is_Frozen
(E
, False);
5818 -- The equivalent type associated with a class-wide subtype needs
5819 -- to be frozen to ensure that its layout is done.
5821 if Ekind
(E
) = E_Class_Wide_Subtype
5822 and then Present
(Equivalent_Type
(E
))
5824 Freeze_And_Append
(Equivalent_Type
(E
), N
, Result
);
5827 -- Generate an itype reference for a library-level class-wide type
5828 -- at the freeze point. Otherwise the first explicit reference to
5829 -- the type may appear in an inner scope which will be rejected by
5833 and then Is_Compilation_Unit
(Scope
(E
))
5836 Ref
: constant Node_Id
:= Make_Itype_Reference
(Loc
);
5841 -- From a gigi point of view, a class-wide subtype derives
5842 -- from its record equivalent type. As a result, the itype
5843 -- reference must appear after the freeze node of the
5844 -- equivalent type or gigi will reject the reference.
5846 if Ekind
(E
) = E_Class_Wide_Subtype
5847 and then Present
(Equivalent_Type
(E
))
5849 Insert_After
(Freeze_Node
(Equivalent_Type
(E
)), Ref
);
5851 Add_To_Result
(Ref
);
5856 -- For a record type or record subtype, freeze all component types
5857 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5858 -- using Is_Record_Type, because we don't want to attempt the freeze
5859 -- for the case of a private type with record extension (we will do
5860 -- that later when the full type is frozen).
5862 elsif Ekind_In
(E
, E_Record_Type
, E_Record_Subtype
) then
5863 if not In_Generic_Scope
(E
) then
5864 Freeze_Record_Type
(E
);
5867 -- Report a warning if a discriminated record base type has a
5868 -- convention with language C or C++ applied to it. This check is
5869 -- done even within generic scopes (but not in instantiations),
5870 -- which is why we don't do it as part of Freeze_Record_Type.
5872 Check_Suspicious_Convention
(E
);
5874 -- For a concurrent type, freeze corresponding record type. This does
5875 -- not correspond to any specific rule in the RM, but the record type
5876 -- is essentially part of the concurrent type. Also freeze all local
5877 -- entities. This includes record types created for entry parameter
5878 -- blocks and whatever local entities may appear in the private part.
5880 elsif Is_Concurrent_Type
(E
) then
5881 if Present
(Corresponding_Record_Type
(E
)) then
5882 Freeze_And_Append
(Corresponding_Record_Type
(E
), N
, Result
);
5885 Comp
:= First_Entity
(E
);
5886 while Present
(Comp
) loop
5887 if Is_Type
(Comp
) then
5888 Freeze_And_Append
(Comp
, N
, Result
);
5890 elsif (Ekind
(Comp
)) /= E_Function
then
5892 -- The guard on the presence of the Etype seems to be needed
5893 -- for some CodePeer (-gnatcC) cases, but not clear why???
5895 if Present
(Etype
(Comp
)) then
5896 if Is_Itype
(Etype
(Comp
))
5897 and then Underlying_Type
(Scope
(Etype
(Comp
))) = E
5899 Undelay_Type
(Etype
(Comp
));
5902 Freeze_And_Append
(Etype
(Comp
), N
, Result
);
5909 -- Private types are required to point to the same freeze node as
5910 -- their corresponding full views. The freeze node itself has to
5911 -- point to the partial view of the entity (because from the partial
5912 -- view, we can retrieve the full view, but not the reverse).
5913 -- However, in order to freeze correctly, we need to freeze the full
5914 -- view. If we are freezing at the end of a scope (or within the
5915 -- scope) of the private type, the partial and full views will have
5916 -- been swapped, the full view appears first in the entity chain and
5917 -- the swapping mechanism ensures that the pointers are properly set
5920 -- If we encounter the partial view before the full view (e.g. when
5921 -- freezing from another scope), we freeze the full view, and then
5922 -- set the pointers appropriately since we cannot rely on swapping to
5923 -- fix things up (subtypes in an outer scope might not get swapped).
5925 -- If the full view is itself private, the above requirements apply
5926 -- to the underlying full view instead of the full view. But there is
5927 -- no swapping mechanism for the underlying full view so we need to
5928 -- set the pointers appropriately in both cases.
5930 elsif Is_Incomplete_Or_Private_Type
(E
)
5931 and then not Is_Generic_Type
(E
)
5933 -- The construction of the dispatch table associated with library
5934 -- level tagged types forces freezing of all the primitives of the
5935 -- type, which may cause premature freezing of the partial view.
5939 -- type T is tagged private;
5940 -- type DT is new T with private;
5941 -- procedure Prim (X : in out T; Y : in out DT'Class);
5943 -- type T is tagged null record;
5945 -- type DT is new T with null record;
5948 -- In this case the type will be frozen later by the usual
5949 -- mechanism: an object declaration, an instantiation, or the
5950 -- end of a declarative part.
5952 if Is_Library_Level_Tagged_Type
(E
)
5953 and then not Present
(Full_View
(E
))
5955 Set_Is_Frozen
(E
, False);
5958 -- Case of full view present
5960 elsif Present
(Full_View
(E
)) then
5962 -- If full view has already been frozen, then no further
5963 -- processing is required
5965 if Is_Frozen
(Full_View
(E
)) then
5966 Set_Has_Delayed_Freeze
(E
, False);
5967 Set_Freeze_Node
(E
, Empty
);
5969 -- Otherwise freeze full view and patch the pointers so that
5970 -- the freeze node will elaborate both views in the back end.
5971 -- However, if full view is itself private, freeze underlying
5972 -- full view instead and patch the pointers so that the freeze
5973 -- node will elaborate the three views in the back end.
5977 Full
: Entity_Id
:= Full_View
(E
);
5980 if Is_Private_Type
(Full
)
5981 and then Present
(Underlying_Full_View
(Full
))
5983 Full
:= Underlying_Full_View
(Full
);
5986 Freeze_And_Append
(Full
, N
, Result
);
5988 if Full
/= Full_View
(E
)
5989 and then Has_Delayed_Freeze
(Full_View
(E
))
5991 F_Node
:= Freeze_Node
(Full
);
5993 if Present
(F_Node
) then
5996 Typ
=> Full_View
(E
));
5998 Set_Has_Delayed_Freeze
(Full_View
(E
), False);
5999 Set_Freeze_Node
(Full_View
(E
), Empty
);
6003 if Has_Delayed_Freeze
(E
) then
6004 F_Node
:= Freeze_Node
(Full_View
(E
));
6006 if Present
(F_Node
) then
6011 -- {Incomplete,Private}_Subtypes with Full_Views
6012 -- constrained by discriminants.
6014 Set_Has_Delayed_Freeze
(E
, False);
6015 Set_Freeze_Node
(E
, Empty
);
6021 Check_Debug_Info_Needed
(E
);
6023 -- AI-117 requires that the convention of a partial view be the
6024 -- same as the convention of the full view. Note that this is a
6025 -- recognized breach of privacy, but it's essential for logical
6026 -- consistency of representation, and the lack of a rule in
6027 -- RM95 was an oversight.
6029 Set_Convention
(E
, Convention
(Full_View
(E
)));
6031 Set_Size_Known_At_Compile_Time
(E
,
6032 Size_Known_At_Compile_Time
(Full_View
(E
)));
6034 -- Size information is copied from the full view to the
6035 -- incomplete or private view for consistency.
6037 -- We skip this is the full view is not a type. This is very
6038 -- strange of course, and can only happen as a result of
6039 -- certain illegalities, such as a premature attempt to derive
6040 -- from an incomplete type.
6042 if Is_Type
(Full_View
(E
)) then
6043 Set_Size_Info
(E
, Full_View
(E
));
6044 Set_RM_Size
(E
, RM_Size
(Full_View
(E
)));
6049 -- Case of underlying full view present
6051 elsif Is_Private_Type
(E
)
6052 and then Present
(Underlying_Full_View
(E
))
6054 if not Is_Frozen
(Underlying_Full_View
(E
)) then
6055 Freeze_And_Append
(Underlying_Full_View
(E
), N
, Result
);
6058 -- Patch the pointers so that the freeze node will elaborate
6059 -- both views in the back end.
6061 if Has_Delayed_Freeze
(E
) then
6062 F_Node
:= Freeze_Node
(Underlying_Full_View
(E
));
6064 if Present
(F_Node
) then
6069 Set_Has_Delayed_Freeze
(E
, False);
6070 Set_Freeze_Node
(E
, Empty
);
6074 Check_Debug_Info_Needed
(E
);
6078 -- Case of no full view present. If entity is derived or subtype,
6079 -- it is safe to freeze, correctness depends on the frozen status
6080 -- of parent. Otherwise it is either premature usage, or a Taft
6081 -- amendment type, so diagnosis is at the point of use and the
6082 -- type might be frozen later.
6084 elsif E
/= Base_Type
(E
) or else Is_Derived_Type
(E
) then
6088 Set_Is_Frozen
(E
, False);
6093 -- For access subprogram, freeze types of all formals, the return
6094 -- type was already frozen, since it is the Etype of the function.
6095 -- Formal types can be tagged Taft amendment types, but otherwise
6096 -- they cannot be incomplete.
6098 elsif Ekind
(E
) = E_Subprogram_Type
then
6099 Formal
:= First_Formal
(E
);
6100 while Present
(Formal
) loop
6101 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
6102 and then No
(Full_View
(Etype
(Formal
)))
6104 if Is_Tagged_Type
(Etype
(Formal
)) then
6107 -- AI05-151: Incomplete types are allowed in access to
6108 -- subprogram specifications.
6110 elsif Ada_Version
< Ada_2012
then
6112 ("invalid use of incomplete type&", E
, Etype
(Formal
));
6116 Freeze_And_Append
(Etype
(Formal
), N
, Result
);
6117 Next_Formal
(Formal
);
6120 Freeze_Subprogram
(E
);
6122 -- For access to a protected subprogram, freeze the equivalent type
6123 -- (however this is not set if we are not generating code or if this
6124 -- is an anonymous type used just for resolution).
6126 elsif Is_Access_Protected_Subprogram_Type
(E
) then
6127 if Present
(Equivalent_Type
(E
)) then
6128 Freeze_And_Append
(Equivalent_Type
(E
), N
, Result
);
6132 -- Generic types are never seen by the back-end, and are also not
6133 -- processed by the expander (since the expander is turned off for
6134 -- generic processing), so we never need freeze nodes for them.
6136 if Is_Generic_Type
(E
) then
6140 -- Some special processing for non-generic types to complete
6141 -- representation details not known till the freeze point.
6143 if Is_Fixed_Point_Type
(E
) then
6144 Freeze_Fixed_Point_Type
(E
);
6146 -- Some error checks required for ordinary fixed-point type. Defer
6147 -- these till the freeze-point since we need the small and range
6148 -- values. We only do these checks for base types
6150 if Is_Ordinary_Fixed_Point_Type
(E
) and then Is_Base_Type
(E
) then
6151 if Small_Value
(E
) < Ureal_2_M_80
then
6152 Error_Msg_Name_1
:= Name_Small
;
6154 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E
);
6156 elsif Small_Value
(E
) > Ureal_2_80
then
6157 Error_Msg_Name_1
:= Name_Small
;
6159 ("`&''%` too large, maximum allowed is 2.0'*'*80", E
);
6162 if Expr_Value_R
(Type_Low_Bound
(E
)) < Ureal_M_10_36
then
6163 Error_Msg_Name_1
:= Name_First
;
6165 ("`&''%` too small, minimum allowed is -10.0'*'*36", E
);
6168 if Expr_Value_R
(Type_High_Bound
(E
)) > Ureal_10_36
then
6169 Error_Msg_Name_1
:= Name_Last
;
6171 ("`&''%` too large, maximum allowed is 10.0'*'*36", E
);
6175 elsif Is_Enumeration_Type
(E
) then
6176 Freeze_Enumeration_Type
(E
);
6178 elsif Is_Integer_Type
(E
) then
6179 Adjust_Esize_For_Alignment
(E
);
6181 if Is_Modular_Integer_Type
(E
)
6182 and then Warn_On_Suspicious_Modulus_Value
6184 Check_Suspicious_Modulus
(E
);
6187 -- The pool applies to named and anonymous access types, but not
6188 -- to subprogram and to internal types generated for 'Access
6191 elsif Is_Access_Type
(E
)
6192 and then not Is_Access_Subprogram_Type
(E
)
6193 and then Ekind
(E
) /= E_Access_Attribute_Type
6195 -- If a pragma Default_Storage_Pool applies, and this type has no
6196 -- Storage_Pool or Storage_Size clause (which must have occurred
6197 -- before the freezing point), then use the default. This applies
6198 -- only to base types.
6200 -- None of this applies to access to subprograms, for which there
6201 -- are clearly no pools.
6203 if Present
(Default_Pool
)
6204 and then Is_Base_Type
(E
)
6205 and then not Has_Storage_Size_Clause
(E
)
6206 and then No
(Associated_Storage_Pool
(E
))
6208 -- Case of pragma Default_Storage_Pool (null)
6210 if Nkind
(Default_Pool
) = N_Null
then
6211 Set_No_Pool_Assigned
(E
);
6213 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
6216 Set_Associated_Storage_Pool
(E
, Entity
(Default_Pool
));
6220 -- Check restriction for standard storage pool
6222 if No
(Associated_Storage_Pool
(E
)) then
6223 Check_Restriction
(No_Standard_Storage_Pools
, E
);
6226 -- Deal with error message for pure access type. This is not an
6227 -- error in Ada 2005 if there is no pool (see AI-366).
6229 if Is_Pure_Unit_Access_Type
(E
)
6230 and then (Ada_Version
< Ada_2005
6231 or else not No_Pool_Assigned
(E
))
6232 and then not Is_Generic_Unit
(Scope
(E
))
6234 Error_Msg_N
("named access type not allowed in pure unit", E
);
6236 if Ada_Version
>= Ada_2005
then
6238 ("\would be legal if Storage_Size of 0 given??", E
);
6240 elsif No_Pool_Assigned
(E
) then
6242 ("\would be legal in Ada 2005??", E
);
6246 ("\would be legal in Ada 2005 if "
6247 & "Storage_Size of 0 given??", E
);
6252 -- Case of composite types
6254 if Is_Composite_Type
(E
) then
6256 -- AI-117 requires that all new primitives of a tagged type must
6257 -- inherit the convention of the full view of the type. Inherited
6258 -- and overriding operations are defined to inherit the convention
6259 -- of their parent or overridden subprogram (also specified in
6260 -- AI-117), which will have occurred earlier (in Derive_Subprogram
6261 -- and New_Overloaded_Entity). Here we set the convention of
6262 -- primitives that are still convention Ada, which will ensure
6263 -- that any new primitives inherit the type's convention. Class-
6264 -- wide types can have a foreign convention inherited from their
6265 -- specific type, but are excluded from this since they don't have
6266 -- any associated primitives.
6268 if Is_Tagged_Type
(E
)
6269 and then not Is_Class_Wide_Type
(E
)
6270 and then Convention
(E
) /= Convention_Ada
6273 Prim_List
: constant Elist_Id
:= Primitive_Operations
(E
);
6277 Prim
:= First_Elmt
(Prim_List
);
6278 while Present
(Prim
) loop
6279 if Convention
(Node
(Prim
)) = Convention_Ada
then
6280 Set_Convention
(Node
(Prim
), Convention
(E
));
6288 -- If the type is a simple storage pool type, then this is where
6289 -- we attempt to locate and validate its Allocate, Deallocate, and
6290 -- Storage_Size operations (the first is required, and the latter
6291 -- two are optional). We also verify that the full type for a
6292 -- private type is allowed to be a simple storage pool type.
6294 if Present
(Get_Rep_Pragma
(E
, Name_Simple_Storage_Pool_Type
))
6295 and then (Is_Base_Type
(E
) or else Has_Private_Declaration
(E
))
6297 -- If the type is marked Has_Private_Declaration, then this is
6298 -- a full type for a private type that was specified with the
6299 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
6300 -- pragma is allowed for the full type (for example, it can't
6301 -- be an array type, or a nonlimited record type).
6303 if Has_Private_Declaration
(E
) then
6304 if (not Is_Record_Type
(E
) or else not Is_Limited_View
(E
))
6305 and then not Is_Private_Type
(E
)
6307 Error_Msg_Name_1
:= Name_Simple_Storage_Pool_Type
;
6309 ("pragma% can only apply to full type that is an " &
6310 "explicitly limited type", E
);
6314 Validate_Simple_Pool_Ops
: declare
6315 Pool_Type
: Entity_Id
renames E
;
6316 Address_Type
: constant Entity_Id
:= RTE
(RE_Address
);
6317 Stg_Cnt_Type
: constant Entity_Id
:= RTE
(RE_Storage_Count
);
6319 procedure Validate_Simple_Pool_Op_Formal
6320 (Pool_Op
: Entity_Id
;
6321 Pool_Op_Formal
: in out Entity_Id
;
6322 Expected_Mode
: Formal_Kind
;
6323 Expected_Type
: Entity_Id
;
6324 Formal_Name
: String;
6325 OK_Formal
: in out Boolean);
6326 -- Validate one formal Pool_Op_Formal of the candidate pool
6327 -- operation Pool_Op. The formal must be of Expected_Type
6328 -- and have mode Expected_Mode. OK_Formal will be set to
6329 -- False if the formal doesn't match. If OK_Formal is False
6330 -- on entry, then the formal will effectively be ignored
6331 -- (because validation of the pool op has already failed).
6332 -- Upon return, Pool_Op_Formal will be updated to the next
6335 procedure Validate_Simple_Pool_Operation
6336 (Op_Name
: Name_Id
);
6337 -- Search for and validate a simple pool operation with the
6338 -- name Op_Name. If the name is Allocate, then there must be
6339 -- exactly one such primitive operation for the simple pool
6340 -- type. If the name is Deallocate or Storage_Size, then
6341 -- there can be at most one such primitive operation. The
6342 -- profile of the located primitive must conform to what
6343 -- is expected for each operation.
6345 ------------------------------------
6346 -- Validate_Simple_Pool_Op_Formal --
6347 ------------------------------------
6349 procedure Validate_Simple_Pool_Op_Formal
6350 (Pool_Op
: Entity_Id
;
6351 Pool_Op_Formal
: in out Entity_Id
;
6352 Expected_Mode
: Formal_Kind
;
6353 Expected_Type
: Entity_Id
;
6354 Formal_Name
: String;
6355 OK_Formal
: in out Boolean)
6358 -- If OK_Formal is False on entry, then simply ignore
6359 -- the formal, because an earlier formal has already
6362 if not OK_Formal
then
6365 -- If no formal is passed in, then issue an error for a
6368 elsif not Present
(Pool_Op_Formal
) then
6370 ("simple storage pool op missing formal " &
6371 Formal_Name
& " of type&", Pool_Op
, Expected_Type
);
6377 if Etype
(Pool_Op_Formal
) /= Expected_Type
then
6379 -- If the pool type was expected for this formal, then
6380 -- this will not be considered a candidate operation
6381 -- for the simple pool, so we unset OK_Formal so that
6382 -- the op and any later formals will be ignored.
6384 if Expected_Type
= Pool_Type
then
6391 ("wrong type for formal " & Formal_Name
&
6392 " of simple storage pool op; expected type&",
6393 Pool_Op_Formal
, Expected_Type
);
6397 -- Issue error if formal's mode is not the expected one
6399 if Ekind
(Pool_Op_Formal
) /= Expected_Mode
then
6401 ("wrong mode for formal of simple storage pool op",
6405 -- Advance to the next formal
6407 Next_Formal
(Pool_Op_Formal
);
6408 end Validate_Simple_Pool_Op_Formal
;
6410 ------------------------------------
6411 -- Validate_Simple_Pool_Operation --
6412 ------------------------------------
6414 procedure Validate_Simple_Pool_Operation
6418 Found_Op
: Entity_Id
:= Empty
;
6424 (Nam_In
(Op_Name
, Name_Allocate
,
6426 Name_Storage_Size
));
6428 Error_Msg_Name_1
:= Op_Name
;
6430 -- For each homonym declared immediately in the scope
6431 -- of the simple storage pool type, determine whether
6432 -- the homonym is an operation of the pool type, and,
6433 -- if so, check that its profile is as expected for
6434 -- a simple pool operation of that name.
6436 Op
:= Get_Name_Entity_Id
(Op_Name
);
6437 while Present
(Op
) loop
6438 if Ekind_In
(Op
, E_Function
, E_Procedure
)
6439 and then Scope
(Op
) = Current_Scope
6441 Formal
:= First_Entity
(Op
);
6445 -- The first parameter must be of the pool type
6446 -- in order for the operation to qualify.
6448 if Op_Name
= Name_Storage_Size
then
6449 Validate_Simple_Pool_Op_Formal
6450 (Op
, Formal
, E_In_Parameter
, Pool_Type
,
6453 Validate_Simple_Pool_Op_Formal
6454 (Op
, Formal
, E_In_Out_Parameter
, Pool_Type
,
6458 -- If another operation with this name has already
6459 -- been located for the type, then flag an error,
6460 -- since we only allow the type to have a single
6463 if Present
(Found_Op
) and then Is_OK
then
6465 ("only one % operation allowed for " &
6466 "simple storage pool type&", Op
, Pool_Type
);
6469 -- In the case of Allocate and Deallocate, a formal
6470 -- of type System.Address is required.
6472 if Op_Name
= Name_Allocate
then
6473 Validate_Simple_Pool_Op_Formal
6474 (Op
, Formal
, E_Out_Parameter
,
6475 Address_Type
, "Storage_Address", Is_OK
);
6477 elsif Op_Name
= Name_Deallocate
then
6478 Validate_Simple_Pool_Op_Formal
6479 (Op
, Formal
, E_In_Parameter
,
6480 Address_Type
, "Storage_Address", Is_OK
);
6483 -- In the case of Allocate and Deallocate, formals
6484 -- of type Storage_Count are required as the third
6485 -- and fourth parameters.
6487 if Op_Name
/= Name_Storage_Size
then
6488 Validate_Simple_Pool_Op_Formal
6489 (Op
, Formal
, E_In_Parameter
,
6490 Stg_Cnt_Type
, "Size_In_Storage_Units", Is_OK
);
6491 Validate_Simple_Pool_Op_Formal
6492 (Op
, Formal
, E_In_Parameter
,
6493 Stg_Cnt_Type
, "Alignment", Is_OK
);
6496 -- If no mismatched formals have been found (Is_OK)
6497 -- and no excess formals are present, then this
6498 -- operation has been validated, so record it.
6500 if not Present
(Formal
) and then Is_OK
then
6508 -- There must be a valid Allocate operation for the type,
6509 -- so issue an error if none was found.
6511 if Op_Name
= Name_Allocate
6512 and then not Present
(Found_Op
)
6514 Error_Msg_N
("missing % operation for simple " &
6515 "storage pool type", Pool_Type
);
6517 elsif Present
(Found_Op
) then
6519 -- Simple pool operations can't be abstract
6521 if Is_Abstract_Subprogram
(Found_Op
) then
6523 ("simple storage pool operation must not be " &
6524 "abstract", Found_Op
);
6527 -- The Storage_Size operation must be a function with
6528 -- Storage_Count as its result type.
6530 if Op_Name
= Name_Storage_Size
then
6531 if Ekind
(Found_Op
) = E_Procedure
then
6533 ("% operation must be a function", Found_Op
);
6535 elsif Etype
(Found_Op
) /= Stg_Cnt_Type
then
6537 ("wrong result type for%, expected type&",
6538 Found_Op
, Stg_Cnt_Type
);
6541 -- Allocate and Deallocate must be procedures
6543 elsif Ekind
(Found_Op
) = E_Function
then
6545 ("% operation must be a procedure", Found_Op
);
6548 end Validate_Simple_Pool_Operation
;
6550 -- Start of processing for Validate_Simple_Pool_Ops
6553 Validate_Simple_Pool_Operation
(Name_Allocate
);
6554 Validate_Simple_Pool_Operation
(Name_Deallocate
);
6555 Validate_Simple_Pool_Operation
(Name_Storage_Size
);
6556 end Validate_Simple_Pool_Ops
;
6560 -- Now that all types from which E may depend are frozen, see if the
6561 -- size is known at compile time, if it must be unsigned, or if
6562 -- strict alignment is required
6564 Check_Compile_Time_Size
(E
);
6565 Check_Unsigned_Type
(E
);
6567 if Base_Type
(E
) = E
then
6568 Check_Strict_Alignment
(E
);
6571 -- Do not allow a size clause for a type which does not have a size
6572 -- that is known at compile time
6574 if Has_Size_Clause
(E
)
6575 and then not Size_Known_At_Compile_Time
(E
)
6577 -- Suppress this message if errors posted on E, even if we are
6578 -- in all errors mode, since this is often a junk message
6580 if not Error_Posted
(E
) then
6582 ("size clause not allowed for variable length type",
6587 -- Now we set/verify the representation information, in particular
6588 -- the size and alignment values. This processing is not required for
6589 -- generic types, since generic types do not play any part in code
6590 -- generation, and so the size and alignment values for such types
6591 -- are irrelevant. Ditto for types declared within a generic unit,
6592 -- which may have components that depend on generic parameters, and
6593 -- that will be recreated in an instance.
6595 if Inside_A_Generic
then
6598 -- Otherwise we call the layout procedure
6604 -- If this is an access to subprogram whose designated type is itself
6605 -- a subprogram type, the return type of this anonymous subprogram
6606 -- type must be decorated as well.
6608 if Ekind
(E
) = E_Anonymous_Access_Subprogram_Type
6609 and then Ekind
(Designated_Type
(E
)) = E_Subprogram_Type
6611 Layout_Type
(Etype
(Designated_Type
(E
)));
6614 -- If the type has a Defaut_Value/Default_Component_Value aspect,
6615 -- this is where we analye the expression (after the type is frozen,
6616 -- since in the case of Default_Value, we are analyzing with the
6617 -- type itself, and we treat Default_Component_Value similarly for
6618 -- the sake of uniformity).
6620 if Is_First_Subtype
(E
) and then Has_Default_Aspect
(E
) then
6627 if Is_Scalar_Type
(E
) then
6628 Nam
:= Name_Default_Value
;
6630 Exp
:= Default_Aspect_Value
(Typ
);
6632 Nam
:= Name_Default_Component_Value
;
6633 Typ
:= Component_Type
(E
);
6634 Exp
:= Default_Aspect_Component_Value
(E
);
6637 Analyze_And_Resolve
(Exp
, Typ
);
6639 if Etype
(Exp
) /= Any_Type
then
6640 if not Is_OK_Static_Expression
(Exp
) then
6641 Error_Msg_Name_1
:= Nam
;
6642 Flag_Non_Static_Expr
6643 ("aspect% requires static expression", Exp
);
6649 -- End of freeze processing for type entities
6652 -- Here is where we logically freeze the current entity. If it has a
6653 -- freeze node, then this is the point at which the freeze node is
6654 -- linked into the result list.
6656 if Has_Delayed_Freeze
(E
) then
6658 -- If a freeze node is already allocated, use it, otherwise allocate
6659 -- a new one. The preallocation happens in the case of anonymous base
6660 -- types, where we preallocate so that we can set First_Subtype_Link.
6661 -- Note that we reset the Sloc to the current freeze location.
6663 if Present
(Freeze_Node
(E
)) then
6664 F_Node
:= Freeze_Node
(E
);
6665 Set_Sloc
(F_Node
, Loc
);
6668 F_Node
:= New_Node
(N_Freeze_Entity
, Loc
);
6669 Set_Freeze_Node
(E
, F_Node
);
6670 Set_Access_Types_To_Process
(F_Node
, No_Elist
);
6671 Set_TSS_Elist
(F_Node
, No_Elist
);
6672 Set_Actions
(F_Node
, No_List
);
6675 Set_Entity
(F_Node
, E
);
6676 Add_To_Result
(F_Node
);
6678 -- A final pass over record types with discriminants. If the type
6679 -- has an incomplete declaration, there may be constrained access
6680 -- subtypes declared elsewhere, which do not depend on the discrimi-
6681 -- nants of the type, and which are used as component types (i.e.
6682 -- the full view is a recursive type). The designated types of these
6683 -- subtypes can only be elaborated after the type itself, and they
6684 -- need an itype reference.
6686 if Ekind
(E
) = E_Record_Type
and then Has_Discriminants
(E
) then
6693 Comp
:= First_Component
(E
);
6694 while Present
(Comp
) loop
6695 Typ
:= Etype
(Comp
);
6697 if Ekind
(Comp
) = E_Component
6698 and then Is_Access_Type
(Typ
)
6699 and then Scope
(Typ
) /= E
6700 and then Base_Type
(Designated_Type
(Typ
)) = E
6701 and then Is_Itype
(Designated_Type
(Typ
))
6703 IR
:= Make_Itype_Reference
(Sloc
(Comp
));
6704 Set_Itype
(IR
, Designated_Type
(Typ
));
6705 Append
(IR
, Result
);
6708 Next_Component
(Comp
);
6714 -- When a type is frozen, the first subtype of the type is frozen as
6715 -- well (RM 13.14(15)). This has to be done after freezing the type,
6716 -- since obviously the first subtype depends on its own base type.
6719 Freeze_And_Append
(First_Subtype
(E
), N
, Result
);
6721 -- If we just froze a tagged non-class wide record, then freeze the
6722 -- corresponding class-wide type. This must be done after the tagged
6723 -- type itself is frozen, because the class-wide type refers to the
6724 -- tagged type which generates the class.
6726 if Is_Tagged_Type
(E
)
6727 and then not Is_Class_Wide_Type
(E
)
6728 and then Present
(Class_Wide_Type
(E
))
6730 Freeze_And_Append
(Class_Wide_Type
(E
), N
, Result
);
6734 Check_Debug_Info_Needed
(E
);
6736 -- Special handling for subprograms
6738 if Is_Subprogram
(E
) then
6740 -- If subprogram has address clause then reset Is_Public flag, since
6741 -- we do not want the backend to generate external references.
6743 if Present
(Address_Clause
(E
))
6744 and then not Is_Library_Level_Entity
(E
)
6746 Set_Is_Public
(E
, False);
6751 Restore_Ghost_Mode
(Saved_GM
);
6756 -----------------------------
6757 -- Freeze_Enumeration_Type --
6758 -----------------------------
6760 procedure Freeze_Enumeration_Type
(Typ
: Entity_Id
) is
6762 -- By default, if no size clause is present, an enumeration type with
6763 -- Convention C is assumed to interface to a C enum, and has integer
6764 -- size. This applies to types. For subtypes, verify that its base
6765 -- type has no size clause either. Treat other foreign conventions
6766 -- in the same way, and also make sure alignment is set right.
6768 if Has_Foreign_Convention
(Typ
)
6769 and then not Has_Size_Clause
(Typ
)
6770 and then not Has_Size_Clause
(Base_Type
(Typ
))
6771 and then Esize
(Typ
) < Standard_Integer_Size
6773 -- Don't do this if Short_Enums on target
6775 and then not Target_Short_Enums
6777 Init_Esize
(Typ
, Standard_Integer_Size
);
6778 Set_Alignment
(Typ
, Alignment
(Standard_Integer
));
6780 -- Normal Ada case or size clause present or not Long_C_Enums on target
6783 -- If the enumeration type interfaces to C, and it has a size clause
6784 -- that specifies less than int size, it warrants a warning. The
6785 -- user may intend the C type to be an enum or a char, so this is
6786 -- not by itself an error that the Ada compiler can detect, but it
6787 -- it is a worth a heads-up. For Boolean and Character types we
6788 -- assume that the programmer has the proper C type in mind.
6790 if Convention
(Typ
) = Convention_C
6791 and then Has_Size_Clause
(Typ
)
6792 and then Esize
(Typ
) /= Esize
(Standard_Integer
)
6793 and then not Is_Boolean_Type
(Typ
)
6794 and then not Is_Character_Type
(Typ
)
6796 -- Don't do this if Short_Enums on target
6798 and then not Target_Short_Enums
6801 ("C enum types have the size of a C int??", Size_Clause
(Typ
));
6804 Adjust_Esize_For_Alignment
(Typ
);
6806 end Freeze_Enumeration_Type
;
6808 -----------------------
6809 -- Freeze_Expression --
6810 -----------------------
6812 procedure Freeze_Expression
(N
: Node_Id
) is
6813 In_Spec_Exp
: constant Boolean := In_Spec_Expression
;
6816 Desig_Typ
: Entity_Id
;
6820 Freeze_Outside
: Boolean := False;
6821 -- This flag is set true if the entity must be frozen outside the
6822 -- current subprogram. This happens in the case of expander generated
6823 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
6824 -- not freeze all entities like other bodies, but which nevertheless
6825 -- may reference entities that have to be frozen before the body and
6826 -- obviously cannot be frozen inside the body.
6828 function Find_Aggregate_Component_Desig_Type
return Entity_Id
;
6829 -- If the expression is an array aggregate, the type of the component
6830 -- expressions is also frozen. If the component type is an access type
6831 -- and the expressions include allocators, the designed type is frozen
6834 function In_Expanded_Body
(N
: Node_Id
) return Boolean;
6835 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
6836 -- it is the handled statement sequence of an expander-generated
6837 -- subprogram (init proc, stream subprogram, or renaming as body).
6838 -- If so, this is not a freezing context.
6840 -----------------------------------------
6841 -- Find_Aggregate_Component_Desig_Type --
6842 -----------------------------------------
6844 function Find_Aggregate_Component_Desig_Type
return Entity_Id
is
6849 if Present
(Expressions
(N
)) then
6850 Exp
:= First
(Expressions
(N
));
6851 while Present
(Exp
) loop
6852 if Nkind
(Exp
) = N_Allocator
then
6853 return Designated_Type
(Component_Type
(Etype
(N
)));
6860 if Present
(Component_Associations
(N
)) then
6861 Assoc
:= First
(Component_Associations
(N
));
6862 while Present
(Assoc
) loop
6863 if Nkind
(Expression
(Assoc
)) = N_Allocator
then
6864 return Designated_Type
(Component_Type
(Etype
(N
)));
6872 end Find_Aggregate_Component_Desig_Type
;
6874 ----------------------
6875 -- In_Expanded_Body --
6876 ----------------------
6878 function In_Expanded_Body
(N
: Node_Id
) return Boolean is
6883 if Nkind
(N
) = N_Subprogram_Body
then
6889 if Nkind
(P
) /= N_Subprogram_Body
then
6893 Id
:= Defining_Unit_Name
(Specification
(P
));
6895 -- The following are expander-created bodies, or bodies that
6896 -- are not freeze points.
6898 if Nkind
(Id
) = N_Defining_Identifier
6899 and then (Is_Init_Proc
(Id
)
6900 or else Is_TSS
(Id
, TSS_Stream_Input
)
6901 or else Is_TSS
(Id
, TSS_Stream_Output
)
6902 or else Is_TSS
(Id
, TSS_Stream_Read
)
6903 or else Is_TSS
(Id
, TSS_Stream_Write
)
6904 or else Nkind_In
(Original_Node
(P
),
6905 N_Subprogram_Renaming_Declaration
,
6906 N_Expression_Function
))
6913 end In_Expanded_Body
;
6915 -- Start of processing for Freeze_Expression
6918 -- Immediate return if freezing is inhibited. This flag is set by the
6919 -- analyzer to stop freezing on generated expressions that would cause
6920 -- freezing if they were in the source program, but which are not
6921 -- supposed to freeze, since they are created.
6923 if Must_Not_Freeze
(N
) then
6927 -- If expression is non-static, then it does not freeze in a default
6928 -- expression, see section "Handling of Default Expressions" in the
6929 -- spec of package Sem for further details. Note that we have to make
6930 -- sure that we actually have a real expression (if we have a subtype
6931 -- indication, we can't test Is_OK_Static_Expression). However, we
6932 -- exclude the case of the prefix of an attribute of a static scalar
6933 -- subtype from this early return, because static subtype attributes
6934 -- should always cause freezing, even in default expressions, but
6935 -- the attribute may not have been marked as static yet (because in
6936 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6937 -- Freeze_Expression on the prefix).
6940 and then Nkind
(N
) in N_Subexpr
6941 and then not Is_OK_Static_Expression
(N
)
6942 and then (Nkind
(Parent
(N
)) /= N_Attribute_Reference
6943 or else not (Is_Entity_Name
(N
)
6944 and then Is_Type
(Entity
(N
))
6945 and then Is_OK_Static_Subtype
(Entity
(N
))))
6950 -- Freeze type of expression if not frozen already
6954 if Nkind
(N
) in N_Has_Etype
then
6955 if not Is_Frozen
(Etype
(N
)) then
6958 -- Base type may be an derived numeric type that is frozen at
6959 -- the point of declaration, but first_subtype is still unfrozen.
6961 elsif not Is_Frozen
(First_Subtype
(Etype
(N
))) then
6962 Typ
:= First_Subtype
(Etype
(N
));
6966 -- For entity name, freeze entity if not frozen already. A special
6967 -- exception occurs for an identifier that did not come from source.
6968 -- We don't let such identifiers freeze a non-internal entity, i.e.
6969 -- an entity that did come from source, since such an identifier was
6970 -- generated by the expander, and cannot have any semantic effect on
6971 -- the freezing semantics. For example, this stops the parameter of
6972 -- an initialization procedure from freezing the variable.
6974 if Is_Entity_Name
(N
)
6975 and then not Is_Frozen
(Entity
(N
))
6976 and then (Nkind
(N
) /= N_Identifier
6977 or else Comes_From_Source
(N
)
6978 or else not Comes_From_Source
(Entity
(N
)))
6982 if Present
(Nam
) and then Ekind
(Nam
) = E_Function
then
6983 Check_Expression_Function
(N
, Nam
);
6990 -- For an allocator freeze designated type if not frozen already
6992 -- For an aggregate whose component type is an access type, freeze the
6993 -- designated type now, so that its freeze does not appear within the
6994 -- loop that might be created in the expansion of the aggregate. If the
6995 -- designated type is a private type without full view, the expression
6996 -- cannot contain an allocator, so the type is not frozen.
6998 -- For a function, we freeze the entity when the subprogram declaration
6999 -- is frozen, but a function call may appear in an initialization proc.
7000 -- before the declaration is frozen. We need to generate the extra
7001 -- formals, if any, to ensure that the expansion of the call includes
7002 -- the proper actuals. This only applies to Ada subprograms, not to
7009 Desig_Typ
:= Designated_Type
(Etype
(N
));
7012 if Is_Array_Type
(Etype
(N
))
7013 and then Is_Access_Type
(Component_Type
(Etype
(N
)))
7016 -- Check whether aggregate includes allocators.
7018 Desig_Typ
:= Find_Aggregate_Component_Desig_Type
;
7021 when N_Indexed_Component
7022 | N_Selected_Component
7025 if Is_Access_Type
(Etype
(Prefix
(N
))) then
7026 Desig_Typ
:= Designated_Type
(Etype
(Prefix
(N
)));
7029 when N_Identifier
=>
7031 and then Ekind
(Nam
) = E_Function
7032 and then Nkind
(Parent
(N
)) = N_Function_Call
7033 and then Convention
(Nam
) = Convention_Ada
7035 Create_Extra_Formals
(Nam
);
7042 if Desig_Typ
/= Empty
7043 and then (Is_Frozen
(Desig_Typ
)
7044 or else (not Is_Fully_Defined
(Desig_Typ
)))
7049 -- All done if nothing needs freezing
7053 and then No
(Desig_Typ
)
7058 -- Examine the enclosing context by climbing the parent chain. The
7059 -- traversal serves two purposes - to detect scenarios where freezeing
7060 -- is not needed and to find the proper insertion point for the freeze
7061 -- nodes. Although somewhat similar to Insert_Actions, this traversal
7062 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
7063 -- the tree may result in types being frozen too early.
7067 Parent_P
:= Parent
(P
);
7069 -- If we don't have a parent, then we are not in a well-formed tree.
7070 -- This is an unusual case, but there are some legitimate situations
7071 -- in which this occurs, notably when the expressions in the range of
7072 -- a type declaration are resolved. We simply ignore the freeze
7073 -- request in this case. Is this right ???
7075 if No
(Parent_P
) then
7079 -- See if we have got to an appropriate point in the tree
7081 case Nkind
(Parent_P
) is
7083 -- A special test for the exception of (RM 13.14(8)) for the case
7084 -- of per-object expressions (RM 3.8(18)) occurring in component
7085 -- definition or a discrete subtype definition. Note that we test
7086 -- for a component declaration which includes both cases we are
7087 -- interested in, and furthermore the tree does not have explicit
7088 -- nodes for either of these two constructs.
7090 when N_Component_Declaration
=>
7092 -- The case we want to test for here is an identifier that is
7093 -- a per-object expression, this is either a discriminant that
7094 -- appears in a context other than the component declaration
7095 -- or it is a reference to the type of the enclosing construct.
7097 -- For either of these cases, we skip the freezing
7099 if not In_Spec_Expression
7100 and then Nkind
(N
) = N_Identifier
7101 and then (Present
(Entity
(N
)))
7103 -- We recognize the discriminant case by just looking for
7104 -- a reference to a discriminant. It can only be one for
7105 -- the enclosing construct. Skip freezing in this case.
7107 if Ekind
(Entity
(N
)) = E_Discriminant
then
7110 -- For the case of a reference to the enclosing record,
7111 -- (or task or protected type), we look for a type that
7112 -- matches the current scope.
7114 elsif Entity
(N
) = Current_Scope
then
7119 -- If we have an enumeration literal that appears as the choice in
7120 -- the aggregate of an enumeration representation clause, then
7121 -- freezing does not occur (RM 13.14(10)).
7123 when N_Enumeration_Representation_Clause
=>
7125 -- The case we are looking for is an enumeration literal
7127 if (Nkind
(N
) = N_Identifier
or Nkind
(N
) = N_Character_Literal
)
7128 and then Is_Enumeration_Type
(Etype
(N
))
7130 -- If enumeration literal appears directly as the choice,
7131 -- do not freeze (this is the normal non-overloaded case)
7133 if Nkind
(Parent
(N
)) = N_Component_Association
7134 and then First
(Choices
(Parent
(N
))) = N
7138 -- If enumeration literal appears as the name of function
7139 -- which is the choice, then also do not freeze. This
7140 -- happens in the overloaded literal case, where the
7141 -- enumeration literal is temporarily changed to a function
7142 -- call for overloading analysis purposes.
7144 elsif Nkind
(Parent
(N
)) = N_Function_Call
7146 Nkind
(Parent
(Parent
(N
))) = N_Component_Association
7148 First
(Choices
(Parent
(Parent
(N
)))) = Parent
(N
)
7154 -- Normally if the parent is a handled sequence of statements,
7155 -- then the current node must be a statement, and that is an
7156 -- appropriate place to insert a freeze node.
7158 when N_Handled_Sequence_Of_Statements
=>
7160 -- An exception occurs when the sequence of statements is for
7161 -- an expander generated body that did not do the usual freeze
7162 -- all operation. In this case we usually want to freeze
7163 -- outside this body, not inside it, and we skip past the
7164 -- subprogram body that we are inside.
7166 if In_Expanded_Body
(Parent_P
) then
7168 Subp
: constant Node_Id
:= Parent
(Parent_P
);
7172 -- Freeze the entity only when it is declared inside the
7173 -- body of the expander generated procedure. This case
7174 -- is recognized by the scope of the entity or its type,
7175 -- which is either the spec for some enclosing body, or
7176 -- (in the case of init_procs, for which there are no
7177 -- separate specs) the current scope.
7179 if Nkind
(Subp
) = N_Subprogram_Body
then
7180 Spec
:= Corresponding_Spec
(Subp
);
7182 if (Present
(Typ
) and then Scope
(Typ
) = Spec
)
7184 (Present
(Nam
) and then Scope
(Nam
) = Spec
)
7189 and then Scope
(Typ
) = Current_Scope
7190 and then Defining_Entity
(Subp
) = Current_Scope
7196 -- An expression function may act as a completion of
7197 -- a function declaration. As such, it can reference
7198 -- entities declared between the two views:
7201 -- function F return ...;
7203 -- function Hidden return ...;
7204 -- function F return ... is (Hidden); -- 2
7206 -- Refering to the example above, freezing the expression
7207 -- of F (2) would place Hidden's freeze node (1) in the
7208 -- wrong place. Avoid explicit freezing and let the usual
7209 -- scenarios do the job - for example, reaching the end
7210 -- of the private declarations, or a call to F.
7212 if Nkind
(Original_Node
(Subp
)) =
7213 N_Expression_Function
7217 -- Freeze outside the body
7220 Parent_P
:= Parent
(Parent_P
);
7221 Freeze_Outside
:= True;
7225 -- Here if normal case where we are in handled statement
7226 -- sequence and want to do the insertion right there.
7232 -- If parent is a body or a spec or a block, then the current node
7233 -- is a statement or declaration and we can insert the freeze node
7236 when N_Block_Statement
7239 | N_Package_Specification
7246 -- The expander is allowed to define types in any statements list,
7247 -- so any of the following parent nodes also mark a freezing point
7248 -- if the actual node is in a list of statements or declarations.
7250 when N_Abortable_Part
7251 | N_Accept_Alternative
7253 | N_Case_Statement_Alternative
7254 | N_Compilation_Unit_Aux
7255 | N_Conditional_Entry_Call
7256 | N_Delay_Alternative
7258 | N_Entry_Call_Alternative
7259 | N_Exception_Handler
7260 | N_Extended_Return_Statement
7264 | N_Selective_Accept
7265 | N_Triggering_Alternative
7267 exit when Is_List_Member
(P
);
7269 -- Freeze nodes produced by an expression coming from the Actions
7270 -- list of a N_Expression_With_Actions node must remain within the
7271 -- Actions list. Inserting the freeze nodes further up the tree
7272 -- may lead to use before declaration issues in the case of array
7275 when N_Expression_With_Actions
=>
7276 if Is_List_Member
(P
)
7277 and then List_Containing
(P
) = Actions
(Parent_P
)
7282 -- Note: N_Loop_Statement is a special case. A type that appears
7283 -- in the source can never be frozen in a loop (this occurs only
7284 -- because of a loop expanded by the expander), so we keep on
7285 -- going. Otherwise we terminate the search. Same is true of any
7286 -- entity which comes from source. (if they have predefined type,
7287 -- that type does not appear to come from source, but the entity
7288 -- should not be frozen here).
7290 when N_Loop_Statement
=>
7291 exit when not Comes_From_Source
(Etype
(N
))
7292 and then (No
(Nam
) or else not Comes_From_Source
(Nam
));
7294 -- For all other cases, keep looking at parents
7300 -- We fall through the case if we did not yet find the proper
7301 -- place in the free for inserting the freeze node, so climb.
7306 -- If the expression appears in a record or an initialization procedure,
7307 -- the freeze nodes are collected and attached to the current scope, to
7308 -- be inserted and analyzed on exit from the scope, to insure that
7309 -- generated entities appear in the correct scope. If the expression is
7310 -- a default for a discriminant specification, the scope is still void.
7311 -- The expression can also appear in the discriminant part of a private
7312 -- or concurrent type.
7314 -- If the expression appears in a constrained subcomponent of an
7315 -- enclosing record declaration, the freeze nodes must be attached to
7316 -- the outer record type so they can eventually be placed in the
7317 -- enclosing declaration list.
7319 -- The other case requiring this special handling is if we are in a
7320 -- default expression, since in that case we are about to freeze a
7321 -- static type, and the freeze scope needs to be the outer scope, not
7322 -- the scope of the subprogram with the default parameter.
7324 -- For default expressions and other spec expressions in generic units,
7325 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
7326 -- placing them at the proper place, after the generic unit.
7328 if (In_Spec_Exp
and not Inside_A_Generic
)
7329 or else Freeze_Outside
7330 or else (Is_Type
(Current_Scope
)
7331 and then (not Is_Concurrent_Type
(Current_Scope
)
7332 or else not Has_Completion
(Current_Scope
)))
7333 or else Ekind
(Current_Scope
) = E_Void
7336 N
: constant Node_Id
:= Current_Scope
;
7337 Freeze_Nodes
: List_Id
:= No_List
;
7338 Pos
: Int
:= Scope_Stack
.Last
;
7341 if Present
(Desig_Typ
) then
7342 Freeze_And_Append
(Desig_Typ
, N
, Freeze_Nodes
);
7345 if Present
(Typ
) then
7346 Freeze_And_Append
(Typ
, N
, Freeze_Nodes
);
7349 if Present
(Nam
) then
7350 Freeze_And_Append
(Nam
, N
, Freeze_Nodes
);
7353 -- The current scope may be that of a constrained component of
7354 -- an enclosing record declaration, or of a loop of an enclosing
7355 -- quantified expression, which is above the current scope in the
7356 -- scope stack. Indeed in the context of a quantified expression,
7357 -- a scope is created and pushed above the current scope in order
7358 -- to emulate the loop-like behavior of the quantified expression.
7359 -- If the expression is within a top-level pragma, as for a pre-
7360 -- condition on a library-level subprogram, nothing to do.
7362 if not Is_Compilation_Unit
(Current_Scope
)
7363 and then (Is_Record_Type
(Scope
(Current_Scope
))
7364 or else Nkind
(Parent
(Current_Scope
)) =
7365 N_Quantified_Expression
)
7370 if Is_Non_Empty_List
(Freeze_Nodes
) then
7371 if No
(Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
) then
7372 Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
:=
7375 Append_List
(Freeze_Nodes
,
7376 Scope_Stack
.Table
(Pos
).Pending_Freeze_Actions
);
7384 -- Now we have the right place to do the freezing. First, a special
7385 -- adjustment, if we are in spec-expression analysis mode, these freeze
7386 -- actions must not be thrown away (normally all inserted actions are
7387 -- thrown away in this mode. However, the freeze actions are from static
7388 -- expressions and one of the important reasons we are doing this
7389 -- special analysis is to get these freeze actions. Therefore we turn
7390 -- off the In_Spec_Expression mode to propagate these freeze actions.
7391 -- This also means they get properly analyzed and expanded.
7393 In_Spec_Expression
:= False;
7395 -- Freeze the designated type of an allocator (RM 13.14(13))
7397 if Present
(Desig_Typ
) then
7398 Freeze_Before
(P
, Desig_Typ
);
7401 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
7402 -- the enumeration representation clause exception in the loop above.
7404 if Present
(Typ
) then
7405 Freeze_Before
(P
, Typ
);
7408 -- Freeze name if one is present (RM 13.14(11))
7410 if Present
(Nam
) then
7411 Freeze_Before
(P
, Nam
);
7414 -- Restore In_Spec_Expression flag
7416 In_Spec_Expression
:= In_Spec_Exp
;
7417 end Freeze_Expression
;
7419 -----------------------------
7420 -- Freeze_Fixed_Point_Type --
7421 -----------------------------
7423 -- Certain fixed-point types and subtypes, including implicit base types
7424 -- and declared first subtypes, have not yet set up a range. This is
7425 -- because the range cannot be set until the Small and Size values are
7426 -- known, and these are not known till the type is frozen.
7428 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
7429 -- whose bounds are unanalyzed real literals. This routine will recognize
7430 -- this case, and transform this range node into a properly typed range
7431 -- with properly analyzed and resolved values.
7433 procedure Freeze_Fixed_Point_Type
(Typ
: Entity_Id
) is
7434 Rng
: constant Node_Id
:= Scalar_Range
(Typ
);
7435 Lo
: constant Node_Id
:= Low_Bound
(Rng
);
7436 Hi
: constant Node_Id
:= High_Bound
(Rng
);
7437 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
7438 Brng
: constant Node_Id
:= Scalar_Range
(Btyp
);
7439 BLo
: constant Node_Id
:= Low_Bound
(Brng
);
7440 BHi
: constant Node_Id
:= High_Bound
(Brng
);
7441 Small
: constant Ureal
:= Small_Value
(Typ
);
7448 -- Save original bounds (for shaving tests)
7451 -- Actual size chosen
7453 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
;
7454 -- Returns size of type with given bounds. Also leaves these
7455 -- bounds set as the current bounds of the Typ.
7461 function Fsize
(Lov
, Hiv
: Ureal
) return Nat
is
7463 Set_Realval
(Lo
, Lov
);
7464 Set_Realval
(Hi
, Hiv
);
7465 return Minimum_Size
(Typ
);
7468 -- Start of processing for Freeze_Fixed_Point_Type
7471 -- If Esize of a subtype has not previously been set, set it now
7473 if Unknown_Esize
(Typ
) then
7474 Atype
:= Ancestor_Subtype
(Typ
);
7476 if Present
(Atype
) then
7477 Set_Esize
(Typ
, Esize
(Atype
));
7479 Set_Esize
(Typ
, Esize
(Base_Type
(Typ
)));
7483 -- Immediate return if the range is already analyzed. This means that
7484 -- the range is already set, and does not need to be computed by this
7487 if Analyzed
(Rng
) then
7491 -- Immediate return if either of the bounds raises Constraint_Error
7493 if Raises_Constraint_Error
(Lo
)
7494 or else Raises_Constraint_Error
(Hi
)
7499 Loval
:= Realval
(Lo
);
7500 Hival
:= Realval
(Hi
);
7505 -- Ordinary fixed-point case
7507 if Is_Ordinary_Fixed_Point_Type
(Typ
) then
7509 -- For the ordinary fixed-point case, we are allowed to fudge the
7510 -- end-points up or down by small. Generally we prefer to fudge up,
7511 -- i.e. widen the bounds for non-model numbers so that the end points
7512 -- are included. However there are cases in which this cannot be
7513 -- done, and indeed cases in which we may need to narrow the bounds.
7514 -- The following circuit makes the decision.
7516 -- Note: our terminology here is that Incl_EP means that the bounds
7517 -- are widened by Small if necessary to include the end points, and
7518 -- Excl_EP means that the bounds are narrowed by Small to exclude the
7519 -- end-points if this reduces the size.
7521 -- Note that in the Incl case, all we care about is including the
7522 -- end-points. In the Excl case, we want to narrow the bounds as
7523 -- much as permitted by the RM, to give the smallest possible size.
7526 Loval_Incl_EP
: Ureal
;
7527 Hival_Incl_EP
: Ureal
;
7529 Loval_Excl_EP
: Ureal
;
7530 Hival_Excl_EP
: Ureal
;
7536 First_Subt
: Entity_Id
;
7541 -- First step. Base types are required to be symmetrical. Right
7542 -- now, the base type range is a copy of the first subtype range.
7543 -- This will be corrected before we are done, but right away we
7544 -- need to deal with the case where both bounds are non-negative.
7545 -- In this case, we set the low bound to the negative of the high
7546 -- bound, to make sure that the size is computed to include the
7547 -- required sign. Note that we do not need to worry about the
7548 -- case of both bounds negative, because the sign will be dealt
7549 -- with anyway. Furthermore we can't just go making such a bound
7550 -- symmetrical, since in a twos-complement system, there is an
7551 -- extra negative value which could not be accommodated on the
7555 and then not UR_Is_Negative
(Loval
)
7556 and then Hival
> Loval
7559 Set_Realval
(Lo
, Loval
);
7562 -- Compute the fudged bounds. If the number is a model number,
7563 -- then we do nothing to include it, but we are allowed to backoff
7564 -- to the next adjacent model number when we exclude it. If it is
7565 -- not a model number then we straddle the two values with the
7566 -- model numbers on either side.
7568 Model_Num
:= UR_Trunc
(Loval
/ Small
) * Small
;
7570 if Loval
= Model_Num
then
7571 Loval_Incl_EP
:= Model_Num
;
7573 Loval_Incl_EP
:= Model_Num
- Small
;
7576 -- The low value excluding the end point is Small greater, but
7577 -- we do not do this exclusion if the low value is positive,
7578 -- since it can't help the size and could actually hurt by
7579 -- crossing the high bound.
7581 if UR_Is_Negative
(Loval_Incl_EP
) then
7582 Loval_Excl_EP
:= Loval_Incl_EP
+ Small
;
7584 -- If the value went from negative to zero, then we have the
7585 -- case where Loval_Incl_EP is the model number just below
7586 -- zero, so we want to stick to the negative value for the
7587 -- base type to maintain the condition that the size will
7588 -- include signed values.
7591 and then UR_Is_Zero
(Loval_Excl_EP
)
7593 Loval_Excl_EP
:= Loval_Incl_EP
;
7597 Loval_Excl_EP
:= Loval_Incl_EP
;
7600 -- Similar processing for upper bound and high value
7602 Model_Num
:= UR_Trunc
(Hival
/ Small
) * Small
;
7604 if Hival
= Model_Num
then
7605 Hival_Incl_EP
:= Model_Num
;
7607 Hival_Incl_EP
:= Model_Num
+ Small
;
7610 if UR_Is_Positive
(Hival_Incl_EP
) then
7611 Hival_Excl_EP
:= Hival_Incl_EP
- Small
;
7613 Hival_Excl_EP
:= Hival_Incl_EP
;
7616 -- One further adjustment is needed. In the case of subtypes, we
7617 -- cannot go outside the range of the base type, or we get
7618 -- peculiarities, and the base type range is already set. This
7619 -- only applies to the Incl values, since clearly the Excl values
7620 -- are already as restricted as they are allowed to be.
7623 Loval_Incl_EP
:= UR_Max
(Loval_Incl_EP
, Realval
(BLo
));
7624 Hival_Incl_EP
:= UR_Min
(Hival_Incl_EP
, Realval
(BHi
));
7627 -- Get size including and excluding end points
7629 Size_Incl_EP
:= Fsize
(Loval_Incl_EP
, Hival_Incl_EP
);
7630 Size_Excl_EP
:= Fsize
(Loval_Excl_EP
, Hival_Excl_EP
);
7632 -- No need to exclude end-points if it does not reduce size
7634 if Fsize
(Loval_Incl_EP
, Hival_Excl_EP
) = Size_Excl_EP
then
7635 Loval_Excl_EP
:= Loval_Incl_EP
;
7638 if Fsize
(Loval_Excl_EP
, Hival_Incl_EP
) = Size_Excl_EP
then
7639 Hival_Excl_EP
:= Hival_Incl_EP
;
7642 -- Now we set the actual size to be used. We want to use the
7643 -- bounds fudged up to include the end-points but only if this
7644 -- can be done without violating a specifically given size
7645 -- size clause or causing an unacceptable increase in size.
7647 -- Case of size clause given
7649 if Has_Size_Clause
(Typ
) then
7651 -- Use the inclusive size only if it is consistent with
7652 -- the explicitly specified size.
7654 if Size_Incl_EP
<= RM_Size
(Typ
) then
7655 Actual_Lo
:= Loval_Incl_EP
;
7656 Actual_Hi
:= Hival_Incl_EP
;
7657 Actual_Size
:= Size_Incl_EP
;
7659 -- If the inclusive size is too large, we try excluding
7660 -- the end-points (will be caught later if does not work).
7663 Actual_Lo
:= Loval_Excl_EP
;
7664 Actual_Hi
:= Hival_Excl_EP
;
7665 Actual_Size
:= Size_Excl_EP
;
7668 -- Case of size clause not given
7671 -- If we have a base type whose corresponding first subtype
7672 -- has an explicit size that is large enough to include our
7673 -- end-points, then do so. There is no point in working hard
7674 -- to get a base type whose size is smaller than the specified
7675 -- size of the first subtype.
7677 First_Subt
:= First_Subtype
(Typ
);
7679 if Has_Size_Clause
(First_Subt
)
7680 and then Size_Incl_EP
<= Esize
(First_Subt
)
7682 Actual_Size
:= Size_Incl_EP
;
7683 Actual_Lo
:= Loval_Incl_EP
;
7684 Actual_Hi
:= Hival_Incl_EP
;
7686 -- If excluding the end-points makes the size smaller and
7687 -- results in a size of 8,16,32,64, then we take the smaller
7688 -- size. For the 64 case, this is compulsory. For the other
7689 -- cases, it seems reasonable. We like to include end points
7690 -- if we can, but not at the expense of moving to the next
7691 -- natural boundary of size.
7693 elsif Size_Incl_EP
/= Size_Excl_EP
7694 and then Addressable
(Size_Excl_EP
)
7696 Actual_Size
:= Size_Excl_EP
;
7697 Actual_Lo
:= Loval_Excl_EP
;
7698 Actual_Hi
:= Hival_Excl_EP
;
7700 -- Otherwise we can definitely include the end points
7703 Actual_Size
:= Size_Incl_EP
;
7704 Actual_Lo
:= Loval_Incl_EP
;
7705 Actual_Hi
:= Hival_Incl_EP
;
7708 -- One pathological case: normally we never fudge a low bound
7709 -- down, since it would seem to increase the size (if it has
7710 -- any effect), but for ranges containing single value, or no
7711 -- values, the high bound can be small too large. Consider:
7713 -- type t is delta 2.0**(-14)
7714 -- range 131072.0 .. 0;
7716 -- That lower bound is *just* outside the range of 32 bits, and
7717 -- does need fudging down in this case. Note that the bounds
7718 -- will always have crossed here, since the high bound will be
7719 -- fudged down if necessary, as in the case of:
7721 -- type t is delta 2.0**(-14)
7722 -- range 131072.0 .. 131072.0;
7724 -- So we detect the situation by looking for crossed bounds,
7725 -- and if the bounds are crossed, and the low bound is greater
7726 -- than zero, we will always back it off by small, since this
7727 -- is completely harmless.
7729 if Actual_Lo
> Actual_Hi
then
7730 if UR_Is_Positive
(Actual_Lo
) then
7731 Actual_Lo
:= Loval_Incl_EP
- Small
;
7732 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
7734 -- And of course, we need to do exactly the same parallel
7735 -- fudge for flat ranges in the negative region.
7737 elsif UR_Is_Negative
(Actual_Hi
) then
7738 Actual_Hi
:= Hival_Incl_EP
+ Small
;
7739 Actual_Size
:= Fsize
(Actual_Lo
, Actual_Hi
);
7744 Set_Realval
(Lo
, Actual_Lo
);
7745 Set_Realval
(Hi
, Actual_Hi
);
7748 -- For the decimal case, none of this fudging is required, since there
7749 -- are no end-point problems in the decimal case (the end-points are
7750 -- always included).
7753 Actual_Size
:= Fsize
(Loval
, Hival
);
7756 -- At this stage, the actual size has been calculated and the proper
7757 -- required bounds are stored in the low and high bounds.
7759 if Actual_Size
> 64 then
7760 Error_Msg_Uint_1
:= UI_From_Int
(Actual_Size
);
7762 ("size required (^) for type& too large, maximum allowed is 64",
7767 -- Check size against explicit given size
7769 if Has_Size_Clause
(Typ
) then
7770 if Actual_Size
> RM_Size
(Typ
) then
7771 Error_Msg_Uint_1
:= RM_Size
(Typ
);
7772 Error_Msg_Uint_2
:= UI_From_Int
(Actual_Size
);
7774 ("size given (^) for type& too small, minimum allowed is ^",
7775 Size_Clause
(Typ
), Typ
);
7778 Actual_Size
:= UI_To_Int
(Esize
(Typ
));
7781 -- Increase size to next natural boundary if no size clause given
7784 if Actual_Size
<= 8 then
7786 elsif Actual_Size
<= 16 then
7788 elsif Actual_Size
<= 32 then
7794 Init_Esize
(Typ
, Actual_Size
);
7795 Adjust_Esize_For_Alignment
(Typ
);
7798 -- If we have a base type, then expand the bounds so that they extend to
7799 -- the full width of the allocated size in bits, to avoid junk range
7800 -- checks on intermediate computations.
7802 if Base_Type
(Typ
) = Typ
then
7803 Set_Realval
(Lo
, -(Small
* (Uint_2
** (Actual_Size
- 1))));
7804 Set_Realval
(Hi
, (Small
* (Uint_2
** (Actual_Size
- 1) - 1)));
7807 -- Final step is to reanalyze the bounds using the proper type
7808 -- and set the Corresponding_Integer_Value fields of the literals.
7810 Set_Etype
(Lo
, Empty
);
7811 Set_Analyzed
(Lo
, False);
7814 -- Resolve with universal fixed if the base type, and the base type if
7815 -- it is a subtype. Note we can't resolve the base type with itself,
7816 -- that would be a reference before definition.
7819 Resolve
(Lo
, Universal_Fixed
);
7824 -- Set corresponding integer value for bound
7826 Set_Corresponding_Integer_Value
7827 (Lo
, UR_To_Uint
(Realval
(Lo
) / Small
));
7829 -- Similar processing for high bound
7831 Set_Etype
(Hi
, Empty
);
7832 Set_Analyzed
(Hi
, False);
7836 Resolve
(Hi
, Universal_Fixed
);
7841 Set_Corresponding_Integer_Value
7842 (Hi
, UR_To_Uint
(Realval
(Hi
) / Small
));
7844 -- Set type of range to correspond to bounds
7846 Set_Etype
(Rng
, Etype
(Lo
));
7848 -- Set Esize to calculated size if not set already
7850 if Unknown_Esize
(Typ
) then
7851 Init_Esize
(Typ
, Actual_Size
);
7854 -- Set RM_Size if not already set. If already set, check value
7857 Minsiz
: constant Uint
:= UI_From_Int
(Minimum_Size
(Typ
));
7860 if RM_Size
(Typ
) /= Uint_0
then
7861 if RM_Size
(Typ
) < Minsiz
then
7862 Error_Msg_Uint_1
:= RM_Size
(Typ
);
7863 Error_Msg_Uint_2
:= Minsiz
;
7865 ("size given (^) for type& too small, minimum allowed is ^",
7866 Size_Clause
(Typ
), Typ
);
7870 Set_RM_Size
(Typ
, Minsiz
);
7874 -- Check for shaving
7876 if Comes_From_Source
(Typ
) then
7878 -- In SPARK mode the given bounds must be strictly representable
7880 if SPARK_Mode
= On
then
7881 if Orig_Lo
< Expr_Value_R
(Lo
) then
7883 ("declared low bound of type & is outside type range",
7887 if Orig_Hi
> Expr_Value_R
(Hi
) then
7889 ("declared high bound of type & is outside type range",
7894 if Orig_Lo
< Expr_Value_R
(Lo
) then
7896 ("declared low bound of type & is outside type range??", Typ
);
7898 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ
);
7901 if Orig_Hi
> Expr_Value_R
(Hi
) then
7903 ("declared high bound of type & is outside type range??",
7906 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ
);
7910 end Freeze_Fixed_Point_Type
;
7916 procedure Freeze_Itype
(T
: Entity_Id
; N
: Node_Id
) is
7920 Set_Has_Delayed_Freeze
(T
);
7921 L
:= Freeze_Entity
(T
, N
);
7923 if Is_Non_Empty_List
(L
) then
7924 Insert_Actions
(N
, L
);
7928 --------------------------
7929 -- Freeze_Static_Object --
7930 --------------------------
7932 procedure Freeze_Static_Object
(E
: Entity_Id
) is
7934 Cannot_Be_Static
: exception;
7935 -- Exception raised if the type of a static object cannot be made
7936 -- static. This happens if the type depends on non-global objects.
7938 procedure Ensure_Expression_Is_SA
(N
: Node_Id
);
7939 -- Called to ensure that an expression used as part of a type definition
7940 -- is statically allocatable, which means that the expression type is
7941 -- statically allocatable, and the expression is either static, or a
7942 -- reference to a library level constant.
7944 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
);
7945 -- Called to mark a type as static, checking that it is possible
7946 -- to set the type as static. If it is not possible, then the
7947 -- exception Cannot_Be_Static is raised.
7949 -----------------------------
7950 -- Ensure_Expression_Is_SA --
7951 -----------------------------
7953 procedure Ensure_Expression_Is_SA
(N
: Node_Id
) is
7957 Ensure_Type_Is_SA
(Etype
(N
));
7959 if Is_OK_Static_Expression
(N
) then
7962 elsif Nkind
(N
) = N_Identifier
then
7966 and then Ekind
(Ent
) = E_Constant
7967 and then Is_Library_Level_Entity
(Ent
)
7973 raise Cannot_Be_Static
;
7974 end Ensure_Expression_Is_SA
;
7976 -----------------------
7977 -- Ensure_Type_Is_SA --
7978 -----------------------
7980 procedure Ensure_Type_Is_SA
(Typ
: Entity_Id
) is
7985 -- If type is library level, we are all set
7987 if Is_Library_Level_Entity
(Typ
) then
7991 -- We are also OK if the type already marked as statically allocated,
7992 -- which means we processed it before.
7994 if Is_Statically_Allocated
(Typ
) then
7998 -- Mark type as statically allocated
8000 Set_Is_Statically_Allocated
(Typ
);
8002 -- Check that it is safe to statically allocate this type
8004 if Is_Scalar_Type
(Typ
) or else Is_Real_Type
(Typ
) then
8005 Ensure_Expression_Is_SA
(Type_Low_Bound
(Typ
));
8006 Ensure_Expression_Is_SA
(Type_High_Bound
(Typ
));
8008 elsif Is_Array_Type
(Typ
) then
8009 N
:= First_Index
(Typ
);
8010 while Present
(N
) loop
8011 Ensure_Type_Is_SA
(Etype
(N
));
8015 Ensure_Type_Is_SA
(Component_Type
(Typ
));
8017 elsif Is_Access_Type
(Typ
) then
8018 if Ekind
(Designated_Type
(Typ
)) = E_Subprogram_Type
then
8022 T
: constant Entity_Id
:= Etype
(Designated_Type
(Typ
));
8025 if T
/= Standard_Void_Type
then
8026 Ensure_Type_Is_SA
(T
);
8029 F
:= First_Formal
(Designated_Type
(Typ
));
8030 while Present
(F
) loop
8031 Ensure_Type_Is_SA
(Etype
(F
));
8037 Ensure_Type_Is_SA
(Designated_Type
(Typ
));
8040 elsif Is_Record_Type
(Typ
) then
8041 C
:= First_Entity
(Typ
);
8042 while Present
(C
) loop
8043 if Ekind
(C
) = E_Discriminant
8044 or else Ekind
(C
) = E_Component
8046 Ensure_Type_Is_SA
(Etype
(C
));
8048 elsif Is_Type
(C
) then
8049 Ensure_Type_Is_SA
(C
);
8055 elsif Ekind
(Typ
) = E_Subprogram_Type
then
8056 Ensure_Type_Is_SA
(Etype
(Typ
));
8058 C
:= First_Formal
(Typ
);
8059 while Present
(C
) loop
8060 Ensure_Type_Is_SA
(Etype
(C
));
8065 raise Cannot_Be_Static
;
8067 end Ensure_Type_Is_SA
;
8069 -- Start of processing for Freeze_Static_Object
8072 Ensure_Type_Is_SA
(Etype
(E
));
8075 when Cannot_Be_Static
=>
8077 -- If the object that cannot be static is imported or exported, then
8078 -- issue an error message saying that this object cannot be imported
8079 -- or exported. If it has an address clause it is an overlay in the
8080 -- current partition and the static requirement is not relevant.
8081 -- Do not issue any error message when ignoring rep clauses.
8083 if Ignore_Rep_Clauses
then
8086 elsif Is_Imported
(E
) then
8087 if No
(Address_Clause
(E
)) then
8089 ("& cannot be imported (local type is not constant)", E
);
8092 -- Otherwise must be exported, something is wrong if compiler
8093 -- is marking something as statically allocated which cannot be).
8095 else pragma Assert
(Is_Exported
(E
));
8097 ("& cannot be exported (local type is not constant)", E
);
8099 end Freeze_Static_Object
;
8101 -----------------------
8102 -- Freeze_Subprogram --
8103 -----------------------
8105 procedure Freeze_Subprogram
(E
: Entity_Id
) is
8106 procedure Set_Profile_Convention
(Subp_Id
: Entity_Id
);
8107 -- Set the conventions of all anonymous access-to-subprogram formals and
8108 -- result subtype of subprogram Subp_Id to the convention of Subp_Id.
8110 ----------------------------
8111 -- Set_Profile_Convention --
8112 ----------------------------
8114 procedure Set_Profile_Convention
(Subp_Id
: Entity_Id
) is
8115 Conv
: constant Convention_Id
:= Convention
(Subp_Id
);
8117 procedure Set_Type_Convention
(Typ
: Entity_Id
);
8118 -- Set the convention of anonymous access-to-subprogram type Typ and
8119 -- its designated type to Conv.
8121 -------------------------
8122 -- Set_Type_Convention --
8123 -------------------------
8125 procedure Set_Type_Convention
(Typ
: Entity_Id
) is
8127 -- Set the convention on both the anonymous access-to-subprogram
8128 -- type and the subprogram type it points to because both types
8129 -- participate in conformance-related checks.
8131 if Ekind
(Typ
) = E_Anonymous_Access_Subprogram_Type
then
8132 Set_Convention
(Typ
, Conv
);
8133 Set_Convention
(Designated_Type
(Typ
), Conv
);
8135 end Set_Type_Convention
;
8141 -- Start of processing for Set_Profile_Convention
8144 Formal
:= First_Formal
(Subp_Id
);
8145 while Present
(Formal
) loop
8146 Set_Type_Convention
(Etype
(Formal
));
8147 Next_Formal
(Formal
);
8150 if Ekind
(Subp_Id
) = E_Function
then
8151 Set_Type_Convention
(Etype
(Subp_Id
));
8153 end Set_Profile_Convention
;
8160 -- Start of processing for Freeze_Subprogram
8163 -- Subprogram may not have an address clause unless it is imported
8165 if Present
(Address_Clause
(E
)) then
8166 if not Is_Imported
(E
) then
8168 ("address clause can only be given for imported subprogram",
8169 Name
(Address_Clause
(E
)));
8173 -- Reset the Pure indication on an imported subprogram unless an
8174 -- explicit Pure_Function pragma was present or the subprogram is an
8175 -- intrinsic. We do this because otherwise it is an insidious error
8176 -- to call a non-pure function from pure unit and have calls
8177 -- mysteriously optimized away. What happens here is that the Import
8178 -- can bypass the normal check to ensure that pure units call only pure
8181 -- The reason for the intrinsic exception is that in general, intrinsic
8182 -- functions (such as shifts) are pure anyway. The only exceptions are
8183 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
8184 -- in any case, so no problem arises.
8187 and then Is_Pure
(E
)
8188 and then not Has_Pragma_Pure_Function
(E
)
8189 and then not Is_Intrinsic_Subprogram
(E
)
8191 Set_Is_Pure
(E
, False);
8194 -- We also reset the Pure indication on a subprogram with an Address
8195 -- parameter, because the parameter may be used as a pointer and the
8196 -- referenced data may change even if the address value does not.
8198 -- Note that if the programmer gave an explicit Pure_Function pragma,
8199 -- then we believe the programmer, and leave the subprogram Pure. We
8200 -- also suppress this check on run-time files.
8203 and then Is_Subprogram
(E
)
8204 and then not Has_Pragma_Pure_Function
(E
)
8205 and then not Is_Internal_Unit
(Current_Sem_Unit
)
8207 Check_Function_With_Address_Parameter
(E
);
8210 -- Ensure that all anonymous access-to-subprogram types inherit the
8211 -- convention of their related subprogram (RM 6.3.1 13.1/3). This is
8212 -- not done for a defaulted convention Ada because those types also
8213 -- default to Ada. Convention Protected must not be propagated when
8214 -- the subprogram is an entry because this would be illegal. The only
8215 -- way to force convention Protected on these kinds of types is to
8216 -- include keyword "protected" in the access definition.
8218 if Convention
(E
) /= Convention_Ada
8219 and then Convention
(E
) /= Convention_Protected
8221 Set_Profile_Convention
(E
);
8224 -- For non-foreign convention subprograms, this is where we create
8225 -- the extra formals (for accessibility level and constrained bit
8226 -- information). We delay this till the freeze point precisely so
8227 -- that we know the convention.
8229 if not Has_Foreign_Convention
(E
) then
8230 if No
(Extra_Formals
(E
)) then
8231 Create_Extra_Formals
(E
);
8236 -- If this is convention Ada and a Valued_Procedure, that's odd
8238 if Ekind
(E
) = E_Procedure
8239 and then Is_Valued_Procedure
(E
)
8240 and then Convention
(E
) = Convention_Ada
8241 and then Warn_On_Export_Import
8244 ("??Valued_Procedure has no effect for convention Ada", E
);
8245 Set_Is_Valued_Procedure
(E
, False);
8248 -- Case of foreign convention
8253 -- For foreign conventions, warn about return of unconstrained array
8255 if Ekind
(E
) = E_Function
then
8256 Retype
:= Underlying_Type
(Etype
(E
));
8258 -- If no return type, probably some other error, e.g. a
8259 -- missing full declaration, so ignore.
8264 -- If the return type is generic, we have emitted a warning
8265 -- earlier on, and there is nothing else to check here. Specific
8266 -- instantiations may lead to erroneous behavior.
8268 elsif Is_Generic_Type
(Etype
(E
)) then
8271 -- Display warning if returning unconstrained array
8273 elsif Is_Array_Type
(Retype
)
8274 and then not Is_Constrained
(Retype
)
8276 -- Check appropriate warning is enabled (should we check for
8277 -- Warnings (Off) on specific entities here, probably so???)
8279 and then Warn_On_Export_Import
8282 ("?x?foreign convention function& should not return " &
8283 "unconstrained array", E
);
8288 -- If any of the formals for an exported foreign convention
8289 -- subprogram have defaults, then emit an appropriate warning since
8290 -- this is odd (default cannot be used from non-Ada code)
8292 if Is_Exported
(E
) then
8293 F
:= First_Formal
(E
);
8294 while Present
(F
) loop
8295 if Warn_On_Export_Import
8296 and then Present
(Default_Value
(F
))
8299 ("?x?parameter cannot be defaulted in non-Ada call",
8308 -- Pragma Inline_Always is disallowed for dispatching subprograms
8309 -- because the address of such subprograms is saved in the dispatch
8310 -- table to support dispatching calls, and dispatching calls cannot
8311 -- be inlined. This is consistent with the restriction against using
8312 -- 'Access or 'Address on an Inline_Always subprogram.
8314 if Is_Dispatching_Operation
(E
)
8315 and then Has_Pragma_Inline_Always
(E
)
8318 ("pragma Inline_Always not allowed for dispatching subprograms", E
);
8321 -- Because of the implicit representation of inherited predefined
8322 -- operators in the front-end, the overriding status of the operation
8323 -- may be affected when a full view of a type is analyzed, and this is
8324 -- not captured by the analysis of the corresponding type declaration.
8325 -- Therefore the correctness of a not-overriding indicator must be
8326 -- rechecked when the subprogram is frozen.
8328 if Nkind
(E
) = N_Defining_Operator_Symbol
8329 and then not Error_Posted
(Parent
(E
))
8331 Check_Overriding_Indicator
(E
, Empty
, Is_Primitive
(E
));
8334 if Modify_Tree_For_C
8335 and then Nkind
(Parent
(E
)) = N_Function_Specification
8336 and then Is_Array_Type
(Etype
(E
))
8337 and then Is_Constrained
(Etype
(E
))
8338 and then not Is_Unchecked_Conversion_Instance
(E
)
8339 and then not Rewritten_For_C
(E
)
8341 Build_Procedure_Form
(Unit_Declaration_Node
(E
));
8343 end Freeze_Subprogram
;
8345 ----------------------
8346 -- Is_Fully_Defined --
8347 ----------------------
8349 function Is_Fully_Defined
(T
: Entity_Id
) return Boolean is
8351 if Ekind
(T
) = E_Class_Wide_Type
then
8352 return Is_Fully_Defined
(Etype
(T
));
8354 elsif Is_Array_Type
(T
) then
8355 return Is_Fully_Defined
(Component_Type
(T
));
8357 elsif Is_Record_Type
(T
)
8358 and not Is_Private_Type
(T
)
8360 -- Verify that the record type has no components with private types
8361 -- without completion.
8367 Comp
:= First_Component
(T
);
8368 while Present
(Comp
) loop
8369 if not Is_Fully_Defined
(Etype
(Comp
)) then
8373 Next_Component
(Comp
);
8378 -- For the designated type of an access to subprogram, all types in
8379 -- the profile must be fully defined.
8381 elsif Ekind
(T
) = E_Subprogram_Type
then
8386 F
:= First_Formal
(T
);
8387 while Present
(F
) loop
8388 if not Is_Fully_Defined
(Etype
(F
)) then
8395 return Is_Fully_Defined
(Etype
(T
));
8399 return not Is_Private_Type
(T
)
8400 or else Present
(Full_View
(Base_Type
(T
)));
8402 end Is_Fully_Defined
;
8404 ---------------------------------
8405 -- Process_Default_Expressions --
8406 ---------------------------------
8408 procedure Process_Default_Expressions
8410 After
: in out Node_Id
)
8412 Loc
: constant Source_Ptr
:= Sloc
(E
);
8419 Set_Default_Expressions_Processed
(E
);
8421 -- A subprogram instance and its associated anonymous subprogram share
8422 -- their signature. The default expression functions are defined in the
8423 -- wrapper packages for the anonymous subprogram, and should not be
8424 -- generated again for the instance.
8426 if Is_Generic_Instance
(E
)
8427 and then Present
(Alias
(E
))
8428 and then Default_Expressions_Processed
(Alias
(E
))
8433 Formal
:= First_Formal
(E
);
8434 while Present
(Formal
) loop
8435 if Present
(Default_Value
(Formal
)) then
8437 -- We work with a copy of the default expression because we
8438 -- do not want to disturb the original, since this would mess
8439 -- up the conformance checking.
8441 Dcopy
:= New_Copy_Tree
(Default_Value
(Formal
));
8443 -- The analysis of the expression may generate insert actions,
8444 -- which of course must not be executed. We wrap those actions
8445 -- in a procedure that is not called, and later on eliminated.
8446 -- The following cases have no side effects, and are analyzed
8449 if Nkind
(Dcopy
) = N_Identifier
8450 or else Nkind_In
(Dcopy
, N_Expanded_Name
,
8452 N_Character_Literal
,
8455 or else (Nkind
(Dcopy
) = N_Attribute_Reference
8456 and then Attribute_Name
(Dcopy
) = Name_Null_Parameter
)
8457 or else Known_Null
(Dcopy
)
8459 -- If there is no default function, we must still do a full
8460 -- analyze call on the default value, to ensure that all error
8461 -- checks are performed, e.g. those associated with static
8462 -- evaluation. Note: this branch will always be taken if the
8463 -- analyzer is turned off (but we still need the error checks).
8465 -- Note: the setting of parent here is to meet the requirement
8466 -- that we can only analyze the expression while attached to
8467 -- the tree. Really the requirement is that the parent chain
8468 -- be set, we don't actually need to be in the tree.
8470 Set_Parent
(Dcopy
, Declaration_Node
(Formal
));
8473 -- Default expressions are resolved with their own type if the
8474 -- context is generic, to avoid anomalies with private types.
8476 if Ekind
(Scope
(E
)) = E_Generic_Package
then
8479 Resolve
(Dcopy
, Etype
(Formal
));
8482 -- If that resolved expression will raise constraint error,
8483 -- then flag the default value as raising constraint error.
8484 -- This allows a proper error message on the calls.
8486 if Raises_Constraint_Error
(Dcopy
) then
8487 Set_Raises_Constraint_Error
(Default_Value
(Formal
));
8490 -- If the default is a parameterless call, we use the name of
8491 -- the called function directly, and there is no body to build.
8493 elsif Nkind
(Dcopy
) = N_Function_Call
8494 and then No
(Parameter_Associations
(Dcopy
))
8498 -- Else construct and analyze the body of a wrapper procedure
8499 -- that contains an object declaration to hold the expression.
8500 -- Given that this is done only to complete the analysis, it is
8501 -- simpler to build a procedure than a function which might
8502 -- involve secondary stack expansion.
8505 Dnam
:= Make_Temporary
(Loc
, 'D');
8508 Make_Subprogram_Body
(Loc
,
8510 Make_Procedure_Specification
(Loc
,
8511 Defining_Unit_Name
=> Dnam
),
8513 Declarations
=> New_List
(
8514 Make_Object_Declaration
(Loc
,
8515 Defining_Identifier
=> Make_Temporary
(Loc
, 'T'),
8516 Object_Definition
=>
8517 New_Occurrence_Of
(Etype
(Formal
), Loc
),
8518 Expression
=> New_Copy_Tree
(Dcopy
))),
8520 Handled_Statement_Sequence
=>
8521 Make_Handled_Sequence_Of_Statements
(Loc
,
8522 Statements
=> Empty_List
));
8524 Set_Scope
(Dnam
, Scope
(E
));
8525 Set_Assignment_OK
(First
(Declarations
(Dbody
)));
8526 Set_Is_Eliminated
(Dnam
);
8527 Insert_After
(After
, Dbody
);
8533 Next_Formal
(Formal
);
8535 end Process_Default_Expressions
;
8537 ----------------------------------------
8538 -- Set_Component_Alignment_If_Not_Set --
8539 ----------------------------------------
8541 procedure Set_Component_Alignment_If_Not_Set
(Typ
: Entity_Id
) is
8543 -- Ignore if not base type, subtypes don't need anything
8545 if Typ
/= Base_Type
(Typ
) then
8549 -- Do not override existing representation
8551 if Is_Packed
(Typ
) then
8554 elsif Has_Specified_Layout
(Typ
) then
8557 elsif Component_Alignment
(Typ
) /= Calign_Default
then
8561 Set_Component_Alignment
8562 (Typ
, Scope_Stack
.Table
8563 (Scope_Stack
.Last
).Component_Alignment_Default
);
8565 end Set_Component_Alignment_If_Not_Set
;
8567 --------------------------
8568 -- Set_SSO_From_Default --
8569 --------------------------
8571 procedure Set_SSO_From_Default
(T
: Entity_Id
) is
8575 -- Set default SSO for an array or record base type, except in case of
8576 -- a type extension (which always inherits the SSO of its parent type).
8579 and then (Is_Array_Type
(T
)
8580 or else (Is_Record_Type
(T
)
8581 and then not (Is_Tagged_Type
(T
)
8582 and then Is_Derived_Type
(T
))))
8585 (Bytes_Big_Endian
and then SSO_Set_Low_By_Default
(T
))
8587 (not Bytes_Big_Endian
and then SSO_Set_High_By_Default
(T
));
8589 if (SSO_Set_Low_By_Default
(T
) or else SSO_Set_High_By_Default
(T
))
8591 -- For a record type, if bit order is specified explicitly,
8592 -- then do not set SSO from default if not consistent. Note that
8593 -- we do not want to look at a Bit_Order attribute definition
8594 -- for a parent: if we were to inherit Bit_Order, then both
8595 -- SSO_Set_*_By_Default flags would have been cleared already
8596 -- (by Inherit_Aspects_At_Freeze_Point).
8601 Has_Rep_Item
(T
, Name_Bit_Order
, Check_Parents
=> False)
8602 and then Reverse_Bit_Order
(T
) /= Reversed
)
8604 -- If flags cause reverse storage order, then set the result. Note
8605 -- that we would have ignored the pragma setting the non default
8606 -- storage order in any case, hence the assertion at this point.
8609 (not Reversed
or else Support_Nondefault_SSO_On_Target
);
8611 Set_Reverse_Storage_Order
(T
, Reversed
);
8613 -- For a record type, also set reversed bit order. Note: if a bit
8614 -- order has been specified explicitly, then this is a no-op.
8616 if Is_Record_Type
(T
) then
8617 Set_Reverse_Bit_Order
(T
, Reversed
);
8621 end Set_SSO_From_Default
;
8627 procedure Undelay_Type
(T
: Entity_Id
) is
8629 Set_Has_Delayed_Freeze
(T
, False);
8630 Set_Freeze_Node
(T
, Empty
);
8632 -- Since we don't want T to have a Freeze_Node, we don't want its
8633 -- Full_View or Corresponding_Record_Type to have one either.
8635 -- ??? Fundamentally, this whole handling is unpleasant. What we really
8636 -- want is to be sure that for an Itype that's part of record R and is a
8637 -- subtype of type T, that it's frozen after the later of the freeze
8638 -- points of R and T. We have no way of doing that directly, so what we
8639 -- do is force most such Itypes to be frozen as part of freezing R via
8640 -- this procedure and only delay the ones that need to be delayed
8641 -- (mostly the designated types of access types that are defined as part
8644 if Is_Private_Type
(T
)
8645 and then Present
(Full_View
(T
))
8646 and then Is_Itype
(Full_View
(T
))
8647 and then Is_Record_Type
(Scope
(Full_View
(T
)))
8649 Undelay_Type
(Full_View
(T
));
8652 if Is_Concurrent_Type
(T
)
8653 and then Present
(Corresponding_Record_Type
(T
))
8654 and then Is_Itype
(Corresponding_Record_Type
(T
))
8655 and then Is_Record_Type
(Scope
(Corresponding_Record_Type
(T
)))
8657 Undelay_Type
(Corresponding_Record_Type
(T
));
8665 procedure Warn_Overlay
(Expr
: Node_Id
; Typ
: Entity_Id
; Nam
: Entity_Id
) is
8666 Ent
: constant Entity_Id
:= Entity
(Nam
);
8667 -- The object to which the address clause applies
8670 Old
: Entity_Id
:= Empty
;
8674 -- No warning if address clause overlay warnings are off
8676 if not Address_Clause_Overlay_Warnings
then
8680 -- No warning if there is an explicit initialization
8682 Init
:= Original_Node
(Expression
(Declaration_Node
(Ent
)));
8684 if Present
(Init
) and then Comes_From_Source
(Init
) then
8688 -- We only give the warning for non-imported entities of a type for
8689 -- which a non-null base init proc is defined, or for objects of access
8690 -- types with implicit null initialization, or when Normalize_Scalars
8691 -- applies and the type is scalar or a string type (the latter being
8692 -- tested for because predefined String types are initialized by inline
8693 -- code rather than by an init_proc). Note that we do not give the
8694 -- warning for Initialize_Scalars, since we suppressed initialization
8695 -- in this case. Also, do not warn if Suppress_Initialization is set.
8698 and then not Is_Imported
(Ent
)
8699 and then not Initialization_Suppressed
(Typ
)
8700 and then (Has_Non_Null_Base_Init_Proc
(Typ
)
8701 or else Is_Access_Type
(Typ
)
8702 or else (Normalize_Scalars
8703 and then (Is_Scalar_Type
(Typ
)
8704 or else Is_String_Type
(Typ
))))
8706 if Nkind
(Expr
) = N_Attribute_Reference
8707 and then Is_Entity_Name
(Prefix
(Expr
))
8709 Old
:= Entity
(Prefix
(Expr
));
8711 elsif Is_Entity_Name
(Expr
)
8712 and then Ekind
(Entity
(Expr
)) = E_Constant
8714 Decl
:= Declaration_Node
(Entity
(Expr
));
8716 if Nkind
(Decl
) = N_Object_Declaration
8717 and then Present
(Expression
(Decl
))
8718 and then Nkind
(Expression
(Decl
)) = N_Attribute_Reference
8719 and then Is_Entity_Name
(Prefix
(Expression
(Decl
)))
8721 Old
:= Entity
(Prefix
(Expression
(Decl
)));
8723 elsif Nkind
(Expr
) = N_Function_Call
then
8727 -- A function call (most likely to To_Address) is probably not an
8728 -- overlay, so skip warning. Ditto if the function call was inlined
8729 -- and transformed into an entity.
8731 elsif Nkind
(Original_Node
(Expr
)) = N_Function_Call
then
8735 -- If a pragma Import follows, we assume that it is for the current
8736 -- target of the address clause, and skip the warning. There may be
8737 -- a source pragma or an aspect that specifies import and generates
8738 -- the corresponding pragma. These will indicate that the entity is
8739 -- imported and that is checked above so that the spurious warning
8740 -- (generated when the entity is frozen) will be suppressed. The
8741 -- pragma may be attached to the aspect, so it is not yet a list
8744 if Is_List_Member
(Parent
(Expr
)) then
8745 Decl
:= Next
(Parent
(Expr
));
8748 and then Nkind
(Decl
) = N_Pragma
8749 and then Pragma_Name
(Decl
) = Name_Import
8755 -- Otherwise give warning message
8757 if Present
(Old
) then
8758 Error_Msg_Node_2
:= Old
;
8760 ("default initialization of & may modify &??",
8764 ("default initialization of & may modify overlaid storage??",
8768 -- Add friendly warning if initialization comes from a packed array
8771 if Is_Record_Type
(Typ
) then
8776 Comp
:= First_Component
(Typ
);
8777 while Present
(Comp
) loop
8778 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
8779 and then Present
(Expression
(Parent
(Comp
)))
8782 elsif Is_Array_Type
(Etype
(Comp
))
8783 and then Present
(Packed_Array_Impl_Type
(Etype
(Comp
)))
8786 ("\packed array component& " &
8787 "will be initialized to zero??",
8791 Next_Component
(Comp
);
8798 ("\use pragma Import for & to " &
8799 "suppress initialization (RM B.1(24))??",