[26/46] Make more use of dyn_cast in tree-vect*
[official-gcc.git] / gcc / ada / checks.adb
blob871f1f73bdd87aeabe30cc6490aa484f8d6b0af9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Casing; use Casing;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Eval_Fat; use Eval_Fat;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Ch2; use Exp_Ch2;
34 with Exp_Ch4; use Exp_Ch4;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Expander; use Expander;
38 with Freeze; use Freeze;
39 with Lib; use Lib;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Output; use Output;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Eval; use Sem_Eval;
53 with Sem_Res; use Sem_Res;
54 with Sem_Util; use Sem_Util;
55 with Sem_Warn; use Sem_Warn;
56 with Sinfo; use Sinfo;
57 with Sinput; use Sinput;
58 with Snames; use Snames;
59 with Sprint; use Sprint;
60 with Stand; use Stand;
61 with Stringt; use Stringt;
62 with Targparm; use Targparm;
63 with Tbuild; use Tbuild;
64 with Ttypes; use Ttypes;
65 with Validsw; use Validsw;
67 package body Checks is
69 -- General note: many of these routines are concerned with generating
70 -- checking code to make sure that constraint error is raised at runtime.
71 -- Clearly this code is only needed if the expander is active, since
72 -- otherwise we will not be generating code or going into the runtime
73 -- execution anyway.
75 -- We therefore disconnect most of these checks if the expander is
76 -- inactive. This has the additional benefit that we do not need to
77 -- worry about the tree being messed up by previous errors (since errors
78 -- turn off expansion anyway).
80 -- There are a few exceptions to the above rule. For instance routines
81 -- such as Apply_Scalar_Range_Check that do not insert any code can be
82 -- safely called even when the Expander is inactive (but Errors_Detected
83 -- is 0). The benefit of executing this code when expansion is off, is
84 -- the ability to emit constraint error warning for static expressions
85 -- even when we are not generating code.
87 -- The above is modified in gnatprove mode to ensure that proper check
88 -- flags are always placed, even if expansion is off.
90 -------------------------------------
91 -- Suppression of Redundant Checks --
92 -------------------------------------
94 -- This unit implements a limited circuit for removal of redundant
95 -- checks. The processing is based on a tracing of simple sequential
96 -- flow. For any sequence of statements, we save expressions that are
97 -- marked to be checked, and then if the same expression appears later
98 -- with the same check, then under certain circumstances, the second
99 -- check can be suppressed.
101 -- Basically, we can suppress the check if we know for certain that
102 -- the previous expression has been elaborated (together with its
103 -- check), and we know that the exception frame is the same, and that
104 -- nothing has happened to change the result of the exception.
106 -- Let us examine each of these three conditions in turn to describe
107 -- how we ensure that this condition is met.
109 -- First, we need to know for certain that the previous expression has
110 -- been executed. This is done principally by the mechanism of calling
111 -- Conditional_Statements_Begin at the start of any statement sequence
112 -- and Conditional_Statements_End at the end. The End call causes all
113 -- checks remembered since the Begin call to be discarded. This does
114 -- miss a few cases, notably the case of a nested BEGIN-END block with
115 -- no exception handlers. But the important thing is to be conservative.
116 -- The other protection is that all checks are discarded if a label
117 -- is encountered, since then the assumption of sequential execution
118 -- is violated, and we don't know enough about the flow.
120 -- Second, we need to know that the exception frame is the same. We
121 -- do this by killing all remembered checks when we enter a new frame.
122 -- Again, that's over-conservative, but generally the cases we can help
123 -- with are pretty local anyway (like the body of a loop for example).
125 -- Third, we must be sure to forget any checks which are no longer valid.
126 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
127 -- used to note any changes to local variables. We only attempt to deal
128 -- with checks involving local variables, so we do not need to worry
129 -- about global variables. Second, a call to any non-global procedure
130 -- causes us to abandon all stored checks, since such a all may affect
131 -- the values of any local variables.
133 -- The following define the data structures used to deal with remembering
134 -- checks so that redundant checks can be eliminated as described above.
136 -- Right now, the only expressions that we deal with are of the form of
137 -- simple local objects (either declared locally, or IN parameters) or
138 -- such objects plus/minus a compile time known constant. We can do
139 -- more later on if it seems worthwhile, but this catches many simple
140 -- cases in practice.
142 -- The following record type reflects a single saved check. An entry
143 -- is made in the stack of saved checks if and only if the expression
144 -- has been elaborated with the indicated checks.
146 type Saved_Check is record
147 Killed : Boolean;
148 -- Set True if entry is killed by Kill_Checks
150 Entity : Entity_Id;
151 -- The entity involved in the expression that is checked
153 Offset : Uint;
154 -- A compile time value indicating the result of adding or
155 -- subtracting a compile time value. This value is to be
156 -- added to the value of the Entity. A value of zero is
157 -- used for the case of a simple entity reference.
159 Check_Type : Character;
160 -- This is set to 'R' for a range check (in which case Target_Type
161 -- is set to the target type for the range check) or to 'O' for an
162 -- overflow check (in which case Target_Type is set to Empty).
164 Target_Type : Entity_Id;
165 -- Used only if Do_Range_Check is set. Records the target type for
166 -- the check. We need this, because a check is a duplicate only if
167 -- it has the same target type (or more accurately one with a
168 -- range that is smaller or equal to the stored target type of a
169 -- saved check).
170 end record;
172 -- The following table keeps track of saved checks. Rather than use an
173 -- extensible table, we just use a table of fixed size, and we discard
174 -- any saved checks that do not fit. That's very unlikely to happen and
175 -- this is only an optimization in any case.
177 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
178 -- Array of saved checks
180 Num_Saved_Checks : Nat := 0;
181 -- Number of saved checks
183 -- The following stack keeps track of statement ranges. It is treated
184 -- as a stack. When Conditional_Statements_Begin is called, an entry
185 -- is pushed onto this stack containing the value of Num_Saved_Checks
186 -- at the time of the call. Then when Conditional_Statements_End is
187 -- called, this value is popped off and used to reset Num_Saved_Checks.
189 -- Note: again, this is a fixed length stack with a size that should
190 -- always be fine. If the value of the stack pointer goes above the
191 -- limit, then we just forget all saved checks.
193 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
194 Saved_Checks_TOS : Nat := 0;
196 -----------------------
197 -- Local Subprograms --
198 -----------------------
200 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
201 -- Used to apply arithmetic overflow checks for all cases except operators
202 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
203 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
204 -- signed integer arithmetic operator (but not an if or case expression).
205 -- It is also called for types other than signed integers.
207 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
208 -- Used to apply arithmetic overflow checks for the case where the overflow
209 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
210 -- arithmetic op (which includes the case of if and case expressions). Note
211 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
212 -- we have work to do even if overflow checking is suppressed.
214 procedure Apply_Division_Check
215 (N : Node_Id;
216 Rlo : Uint;
217 Rhi : Uint;
218 ROK : Boolean);
219 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
220 -- division checks as required if the Do_Division_Check flag is set.
221 -- Rlo and Rhi give the possible range of the right operand, these values
222 -- can be referenced and trusted only if ROK is set True.
224 procedure Apply_Float_Conversion_Check
225 (Ck_Node : Node_Id;
226 Target_Typ : Entity_Id);
227 -- The checks on a conversion from a floating-point type to an integer
228 -- type are delicate. They have to be performed before conversion, they
229 -- have to raise an exception when the operand is a NaN, and rounding must
230 -- be taken into account to determine the safe bounds of the operand.
232 procedure Apply_Selected_Length_Checks
233 (Ck_Node : Node_Id;
234 Target_Typ : Entity_Id;
235 Source_Typ : Entity_Id;
236 Do_Static : Boolean);
237 -- This is the subprogram that does all the work for Apply_Length_Check
238 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
239 -- described for the above routines. The Do_Static flag indicates that
240 -- only a static check is to be done.
242 procedure Apply_Selected_Range_Checks
243 (Ck_Node : Node_Id;
244 Target_Typ : Entity_Id;
245 Source_Typ : Entity_Id;
246 Do_Static : Boolean);
247 -- This is the subprogram that does all the work for Apply_Range_Check.
248 -- Expr, Target_Typ and Source_Typ are as described for the above
249 -- routine. The Do_Static flag indicates that only a static check is
250 -- to be done.
252 type Check_Type is new Check_Id range Access_Check .. Division_Check;
253 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
254 -- This function is used to see if an access or division by zero check is
255 -- needed. The check is to be applied to a single variable appearing in the
256 -- source, and N is the node for the reference. If N is not of this form,
257 -- True is returned with no further processing. If N is of the right form,
258 -- then further processing determines if the given Check is needed.
260 -- The particular circuit is to see if we have the case of a check that is
261 -- not needed because it appears in the right operand of a short circuited
262 -- conditional where the left operand guards the check. For example:
264 -- if Var = 0 or else Q / Var > 12 then
265 -- ...
266 -- end if;
268 -- In this example, the division check is not required. At the same time
269 -- we can issue warnings for suspicious use of non-short-circuited forms,
270 -- such as:
272 -- if Var = 0 or Q / Var > 12 then
273 -- ...
274 -- end if;
276 procedure Find_Check
277 (Expr : Node_Id;
278 Check_Type : Character;
279 Target_Type : Entity_Id;
280 Entry_OK : out Boolean;
281 Check_Num : out Nat;
282 Ent : out Entity_Id;
283 Ofs : out Uint);
284 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
285 -- to see if a check is of the form for optimization, and if so, to see
286 -- if it has already been performed. Expr is the expression to check,
287 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
288 -- Target_Type is the target type for a range check, and Empty for an
289 -- overflow check. If the entry is not of the form for optimization,
290 -- then Entry_OK is set to False, and the remaining out parameters
291 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
292 -- entity and offset from the expression. Check_Num is the number of
293 -- a matching saved entry in Saved_Checks, or zero if no such entry
294 -- is located.
296 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
297 -- If a discriminal is used in constraining a prival, Return reference
298 -- to the discriminal of the protected body (which renames the parameter
299 -- of the enclosing protected operation). This clumsy transformation is
300 -- needed because privals are created too late and their actual subtypes
301 -- are not available when analysing the bodies of the protected operations.
302 -- This function is called whenever the bound is an entity and the scope
303 -- indicates a protected operation. If the bound is an in-parameter of
304 -- a protected operation that is not a prival, the function returns the
305 -- bound itself.
306 -- To be cleaned up???
308 function Guard_Access
309 (Cond : Node_Id;
310 Loc : Source_Ptr;
311 Ck_Node : Node_Id) return Node_Id;
312 -- In the access type case, guard the test with a test to ensure
313 -- that the access value is non-null, since the checks do not
314 -- not apply to null access values.
316 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
317 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
318 -- Constraint_Error node.
320 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
321 -- Returns True if node N is for an arithmetic operation with signed
322 -- integer operands. This includes unary and binary operators, and also
323 -- if and case expression nodes where the dependent expressions are of
324 -- a signed integer type. These are the kinds of nodes for which special
325 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
327 function Range_Or_Validity_Checks_Suppressed
328 (Expr : Node_Id) return Boolean;
329 -- Returns True if either range or validity checks or both are suppressed
330 -- for the type of the given expression, or, if the expression is the name
331 -- of an entity, if these checks are suppressed for the entity.
333 function Selected_Length_Checks
334 (Ck_Node : Node_Id;
335 Target_Typ : Entity_Id;
336 Source_Typ : Entity_Id;
337 Warn_Node : Node_Id) return Check_Result;
338 -- Like Apply_Selected_Length_Checks, except it doesn't modify
339 -- anything, just returns a list of nodes as described in the spec of
340 -- this package for the Range_Check function.
341 -- ??? In fact it does construct the test and insert it into the tree,
342 -- and insert actions in various ways (calling Insert_Action directly
343 -- in particular) so we do not call it in GNATprove mode, contrary to
344 -- Selected_Range_Checks.
346 function Selected_Range_Checks
347 (Ck_Node : Node_Id;
348 Target_Typ : Entity_Id;
349 Source_Typ : Entity_Id;
350 Warn_Node : Node_Id) return Check_Result;
351 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
352 -- just returns a list of nodes as described in the spec of this package
353 -- for the Range_Check function.
355 ------------------------------
356 -- Access_Checks_Suppressed --
357 ------------------------------
359 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
360 begin
361 if Present (E) and then Checks_May_Be_Suppressed (E) then
362 return Is_Check_Suppressed (E, Access_Check);
363 else
364 return Scope_Suppress.Suppress (Access_Check);
365 end if;
366 end Access_Checks_Suppressed;
368 -------------------------------------
369 -- Accessibility_Checks_Suppressed --
370 -------------------------------------
372 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
373 begin
374 if Present (E) and then Checks_May_Be_Suppressed (E) then
375 return Is_Check_Suppressed (E, Accessibility_Check);
376 else
377 return Scope_Suppress.Suppress (Accessibility_Check);
378 end if;
379 end Accessibility_Checks_Suppressed;
381 -----------------------------
382 -- Activate_Division_Check --
383 -----------------------------
385 procedure Activate_Division_Check (N : Node_Id) is
386 begin
387 Set_Do_Division_Check (N, True);
388 Possible_Local_Raise (N, Standard_Constraint_Error);
389 end Activate_Division_Check;
391 -----------------------------
392 -- Activate_Overflow_Check --
393 -----------------------------
395 procedure Activate_Overflow_Check (N : Node_Id) is
396 Typ : constant Entity_Id := Etype (N);
398 begin
399 -- Floating-point case. If Etype is not set (this can happen when we
400 -- activate a check on a node that has not yet been analyzed), then
401 -- we assume we do not have a floating-point type (as per our spec).
403 if Present (Typ) and then Is_Floating_Point_Type (Typ) then
405 -- Ignore call if we have no automatic overflow checks on the target
406 -- and Check_Float_Overflow mode is not set. These are the cases in
407 -- which we expect to generate infinities and NaN's with no check.
409 if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
410 return;
412 -- Ignore for unary operations ("+", "-", abs) since these can never
413 -- result in overflow for floating-point cases.
415 elsif Nkind (N) in N_Unary_Op then
416 return;
418 -- Otherwise we will set the flag
420 else
421 null;
422 end if;
424 -- Discrete case
426 else
427 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
428 -- for zero-divide is a divide check, not an overflow check).
430 if Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
431 return;
432 end if;
433 end if;
435 -- Fall through for cases where we do set the flag
437 Set_Do_Overflow_Check (N, True);
438 Possible_Local_Raise (N, Standard_Constraint_Error);
439 end Activate_Overflow_Check;
441 --------------------------
442 -- Activate_Range_Check --
443 --------------------------
445 procedure Activate_Range_Check (N : Node_Id) is
446 begin
447 Set_Do_Range_Check (N, True);
448 Possible_Local_Raise (N, Standard_Constraint_Error);
449 end Activate_Range_Check;
451 ---------------------------------
452 -- Alignment_Checks_Suppressed --
453 ---------------------------------
455 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
456 begin
457 if Present (E) and then Checks_May_Be_Suppressed (E) then
458 return Is_Check_Suppressed (E, Alignment_Check);
459 else
460 return Scope_Suppress.Suppress (Alignment_Check);
461 end if;
462 end Alignment_Checks_Suppressed;
464 ----------------------------------
465 -- Allocation_Checks_Suppressed --
466 ----------------------------------
468 -- Note: at the current time there are no calls to this function, because
469 -- the relevant check is in the run-time, so it is not a check that the
470 -- compiler can suppress anyway, but we still have to recognize the check
471 -- name Allocation_Check since it is part of the standard.
473 function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
474 begin
475 if Present (E) and then Checks_May_Be_Suppressed (E) then
476 return Is_Check_Suppressed (E, Allocation_Check);
477 else
478 return Scope_Suppress.Suppress (Allocation_Check);
479 end if;
480 end Allocation_Checks_Suppressed;
482 -------------------------
483 -- Append_Range_Checks --
484 -------------------------
486 procedure Append_Range_Checks
487 (Checks : Check_Result;
488 Stmts : List_Id;
489 Suppress_Typ : Entity_Id;
490 Static_Sloc : Source_Ptr;
491 Flag_Node : Node_Id)
493 Checks_On : constant Boolean :=
494 not Index_Checks_Suppressed (Suppress_Typ)
495 or else
496 not Range_Checks_Suppressed (Suppress_Typ);
498 Internal_Flag_Node : constant Node_Id := Flag_Node;
499 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
501 begin
502 -- For now we just return if Checks_On is false, however this should be
503 -- enhanced to check for an always True value in the condition and to
504 -- generate a compilation warning???
506 if not Checks_On then
507 return;
508 end if;
510 for J in 1 .. 2 loop
511 exit when No (Checks (J));
513 if Nkind (Checks (J)) = N_Raise_Constraint_Error
514 and then Present (Condition (Checks (J)))
515 then
516 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
517 Append_To (Stmts, Checks (J));
518 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
519 end if;
521 else
522 Append_To
523 (Stmts,
524 Make_Raise_Constraint_Error (Internal_Static_Sloc,
525 Reason => CE_Range_Check_Failed));
526 end if;
527 end loop;
528 end Append_Range_Checks;
530 ------------------------
531 -- Apply_Access_Check --
532 ------------------------
534 procedure Apply_Access_Check (N : Node_Id) is
535 P : constant Node_Id := Prefix (N);
537 begin
538 -- We do not need checks if we are not generating code (i.e. the
539 -- expander is not active). This is not just an optimization, there
540 -- are cases (e.g. with pragma Debug) where generating the checks
541 -- can cause real trouble).
543 if not Expander_Active then
544 return;
545 end if;
547 -- No check if short circuiting makes check unnecessary
549 if not Check_Needed (P, Access_Check) then
550 return;
551 end if;
553 -- No check if accessing the Offset_To_Top component of a dispatch
554 -- table. They are safe by construction.
556 if Tagged_Type_Expansion
557 and then Present (Etype (P))
558 and then RTU_Loaded (Ada_Tags)
559 and then RTE_Available (RE_Offset_To_Top_Ptr)
560 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
561 then
562 return;
563 end if;
565 -- Otherwise go ahead and install the check
567 Install_Null_Excluding_Check (P);
568 end Apply_Access_Check;
570 -------------------------------
571 -- Apply_Accessibility_Check --
572 -------------------------------
574 procedure Apply_Accessibility_Check
575 (N : Node_Id;
576 Typ : Entity_Id;
577 Insert_Node : Node_Id)
579 Loc : constant Source_Ptr := Sloc (N);
580 Param_Ent : Entity_Id := Param_Entity (N);
581 Param_Level : Node_Id;
582 Type_Level : Node_Id;
584 begin
585 if Ada_Version >= Ada_2012
586 and then not Present (Param_Ent)
587 and then Is_Entity_Name (N)
588 and then Ekind_In (Entity (N), E_Constant, E_Variable)
589 and then Present (Effective_Extra_Accessibility (Entity (N)))
590 then
591 Param_Ent := Entity (N);
592 while Present (Renamed_Object (Param_Ent)) loop
594 -- Renamed_Object must return an Entity_Name here
595 -- because of preceding "Present (E_E_A (...))" test.
597 Param_Ent := Entity (Renamed_Object (Param_Ent));
598 end loop;
599 end if;
601 if Inside_A_Generic then
602 return;
604 -- Only apply the run-time check if the access parameter has an
605 -- associated extra access level parameter and when the level of the
606 -- type is less deep than the level of the access parameter, and
607 -- accessibility checks are not suppressed.
609 elsif Present (Param_Ent)
610 and then Present (Extra_Accessibility (Param_Ent))
611 and then UI_Gt (Object_Access_Level (N),
612 Deepest_Type_Access_Level (Typ))
613 and then not Accessibility_Checks_Suppressed (Param_Ent)
614 and then not Accessibility_Checks_Suppressed (Typ)
615 then
616 Param_Level :=
617 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
619 Type_Level :=
620 Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
622 -- Raise Program_Error if the accessibility level of the access
623 -- parameter is deeper than the level of the target access type.
625 Insert_Action (Insert_Node,
626 Make_Raise_Program_Error (Loc,
627 Condition =>
628 Make_Op_Gt (Loc,
629 Left_Opnd => Param_Level,
630 Right_Opnd => Type_Level),
631 Reason => PE_Accessibility_Check_Failed));
633 Analyze_And_Resolve (N);
634 end if;
635 end Apply_Accessibility_Check;
637 --------------------------------
638 -- Apply_Address_Clause_Check --
639 --------------------------------
641 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
642 pragma Assert (Nkind (N) = N_Freeze_Entity);
644 AC : constant Node_Id := Address_Clause (E);
645 Loc : constant Source_Ptr := Sloc (AC);
646 Typ : constant Entity_Id := Etype (E);
648 Expr : Node_Id;
649 -- Address expression (not necessarily the same as Aexp, for example
650 -- when Aexp is a reference to a constant, in which case Expr gets
651 -- reset to reference the value expression of the constant).
653 begin
654 -- See if alignment check needed. Note that we never need a check if the
655 -- maximum alignment is one, since the check will always succeed.
657 -- Note: we do not check for checks suppressed here, since that check
658 -- was done in Sem_Ch13 when the address clause was processed. We are
659 -- only called if checks were not suppressed. The reason for this is
660 -- that we have to delay the call to Apply_Alignment_Check till freeze
661 -- time (so that all types etc are elaborated), but we have to check
662 -- the status of check suppressing at the point of the address clause.
664 if No (AC)
665 or else not Check_Address_Alignment (AC)
666 or else Maximum_Alignment = 1
667 then
668 return;
669 end if;
671 -- Obtain expression from address clause
673 Expr := Address_Value (Expression (AC));
675 -- See if we know that Expr has an acceptable value at compile time. If
676 -- it hasn't or we don't know, we defer issuing the warning until the
677 -- end of the compilation to take into account back end annotations.
679 if Compile_Time_Known_Value (Expr)
680 and then (Known_Alignment (E) or else Known_Alignment (Typ))
681 then
682 declare
683 AL : Uint := Alignment (Typ);
685 begin
686 -- The object alignment might be more restrictive than the type
687 -- alignment.
689 if Known_Alignment (E) then
690 AL := Alignment (E);
691 end if;
693 if Expr_Value (Expr) mod AL = 0 then
694 return;
695 end if;
696 end;
698 -- If the expression has the form X'Address, then we can find out if the
699 -- object X has an alignment that is compatible with the object E. If it
700 -- hasn't or we don't know, we defer issuing the warning until the end
701 -- of the compilation to take into account back end annotations.
703 elsif Nkind (Expr) = N_Attribute_Reference
704 and then Attribute_Name (Expr) = Name_Address
705 and then
706 Has_Compatible_Alignment (E, Prefix (Expr), False) = Known_Compatible
707 then
708 return;
709 end if;
711 -- Here we do not know if the value is acceptable. Strictly we don't
712 -- have to do anything, since if the alignment is bad, we have an
713 -- erroneous program. However we are allowed to check for erroneous
714 -- conditions and we decide to do this by default if the check is not
715 -- suppressed.
717 -- However, don't do the check if elaboration code is unwanted
719 if Restriction_Active (No_Elaboration_Code) then
720 return;
722 -- Generate a check to raise PE if alignment may be inappropriate
724 else
725 -- If the original expression is a non-static constant, use the name
726 -- of the constant itself rather than duplicating its initialization
727 -- expression, which was extracted above.
729 -- Note: Expr is empty if the address-clause is applied to in-mode
730 -- actuals (allowed by 13.1(22)).
732 if not Present (Expr)
733 or else
734 (Is_Entity_Name (Expression (AC))
735 and then Ekind (Entity (Expression (AC))) = E_Constant
736 and then Nkind (Parent (Entity (Expression (AC)))) =
737 N_Object_Declaration)
738 then
739 Expr := New_Copy_Tree (Expression (AC));
740 else
741 Remove_Side_Effects (Expr);
742 end if;
744 if No (Actions (N)) then
745 Set_Actions (N, New_List);
746 end if;
748 Prepend_To (Actions (N),
749 Make_Raise_Program_Error (Loc,
750 Condition =>
751 Make_Op_Ne (Loc,
752 Left_Opnd =>
753 Make_Op_Mod (Loc,
754 Left_Opnd =>
755 Unchecked_Convert_To
756 (RTE (RE_Integer_Address), Expr),
757 Right_Opnd =>
758 Make_Attribute_Reference (Loc,
759 Prefix => New_Occurrence_Of (E, Loc),
760 Attribute_Name => Name_Alignment)),
761 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
762 Reason => PE_Misaligned_Address_Value));
764 Warning_Msg := No_Error_Msg;
765 Analyze (First (Actions (N)), Suppress => All_Checks);
767 -- If the above raise action generated a warning message (for example
768 -- from Warn_On_Non_Local_Exception mode with the active restriction
769 -- No_Exception_Propagation).
771 if Warning_Msg /= No_Error_Msg then
773 -- If the expression has a known at compile time value, then
774 -- once we know the alignment of the type, we can check if the
775 -- exception will be raised or not, and if not, we don't need
776 -- the warning so we will kill the warning later on.
778 if Compile_Time_Known_Value (Expr) then
779 Alignment_Warnings.Append
780 ((E => E, A => Expr_Value (Expr), W => Warning_Msg));
782 -- Add explanation of the warning generated by the check
784 else
785 Error_Msg_N
786 ("\address value may be incompatible with alignment of "
787 & "object?X?", AC);
788 end if;
789 end if;
791 return;
792 end if;
794 exception
796 -- If we have some missing run time component in configurable run time
797 -- mode then just skip the check (it is not required in any case).
799 when RE_Not_Available =>
800 return;
801 end Apply_Address_Clause_Check;
803 -------------------------------------
804 -- Apply_Arithmetic_Overflow_Check --
805 -------------------------------------
807 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
808 begin
809 -- Use old routine in almost all cases (the only case we are treating
810 -- specially is the case of a signed integer arithmetic op with the
811 -- overflow checking mode set to MINIMIZED or ELIMINATED).
813 if Overflow_Check_Mode = Strict
814 or else not Is_Signed_Integer_Arithmetic_Op (N)
815 then
816 Apply_Arithmetic_Overflow_Strict (N);
818 -- Otherwise use the new routine for the case of a signed integer
819 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
820 -- mode is MINIMIZED or ELIMINATED.
822 else
823 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
824 end if;
825 end Apply_Arithmetic_Overflow_Check;
827 --------------------------------------
828 -- Apply_Arithmetic_Overflow_Strict --
829 --------------------------------------
831 -- This routine is called only if the type is an integer type and an
832 -- arithmetic overflow check may be needed for op (add, subtract, or
833 -- multiply). This check is performed if Backend_Overflow_Checks_On_Target
834 -- is not enabled and Do_Overflow_Check is set. In this case we expand the
835 -- operation into a more complex sequence of tests that ensures that
836 -- overflow is properly caught.
838 -- This is used in CHECKED modes. It is identical to the code for this
839 -- cases before the big overflow earthquake, thus ensuring that in this
840 -- modes we have compatible behavior (and reliability) to what was there
841 -- before. It is also called for types other than signed integers, and if
842 -- the Do_Overflow_Check flag is off.
844 -- Note: we also call this routine if we decide in the MINIMIZED case
845 -- to give up and just generate an overflow check without any fuss.
847 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
848 Loc : constant Source_Ptr := Sloc (N);
849 Typ : constant Entity_Id := Etype (N);
850 Rtyp : constant Entity_Id := Root_Type (Typ);
852 begin
853 -- Nothing to do if Do_Overflow_Check not set or overflow checks
854 -- suppressed.
856 if not Do_Overflow_Check (N) then
857 return;
858 end if;
860 -- An interesting special case. If the arithmetic operation appears as
861 -- the operand of a type conversion:
863 -- type1 (x op y)
865 -- and all the following conditions apply:
867 -- arithmetic operation is for a signed integer type
868 -- target type type1 is a static integer subtype
869 -- range of x and y are both included in the range of type1
870 -- range of x op y is included in the range of type1
871 -- size of type1 is at least twice the result size of op
873 -- then we don't do an overflow check in any case. Instead, we transform
874 -- the operation so that we end up with:
876 -- type1 (type1 (x) op type1 (y))
878 -- This avoids intermediate overflow before the conversion. It is
879 -- explicitly permitted by RM 3.5.4(24):
881 -- For the execution of a predefined operation of a signed integer
882 -- type, the implementation need not raise Constraint_Error if the
883 -- result is outside the base range of the type, so long as the
884 -- correct result is produced.
886 -- It's hard to imagine that any programmer counts on the exception
887 -- being raised in this case, and in any case it's wrong coding to
888 -- have this expectation, given the RM permission. Furthermore, other
889 -- Ada compilers do allow such out of range results.
891 -- Note that we do this transformation even if overflow checking is
892 -- off, since this is precisely about giving the "right" result and
893 -- avoiding the need for an overflow check.
895 -- Note: this circuit is partially redundant with respect to the similar
896 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
897 -- with cases that do not come through here. We still need the following
898 -- processing even with the Exp_Ch4 code in place, since we want to be
899 -- sure not to generate the arithmetic overflow check in these cases
900 -- (Exp_Ch4 would have a hard time removing them once generated).
902 if Is_Signed_Integer_Type (Typ)
903 and then Nkind (Parent (N)) = N_Type_Conversion
904 then
905 Conversion_Optimization : declare
906 Target_Type : constant Entity_Id :=
907 Base_Type (Entity (Subtype_Mark (Parent (N))));
909 Llo, Lhi : Uint;
910 Rlo, Rhi : Uint;
911 LOK, ROK : Boolean;
913 Vlo : Uint;
914 Vhi : Uint;
915 VOK : Boolean;
917 Tlo : Uint;
918 Thi : Uint;
920 begin
921 if Is_Integer_Type (Target_Type)
922 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
923 then
924 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
925 Thi := Expr_Value (Type_High_Bound (Target_Type));
927 Determine_Range
928 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
929 Determine_Range
930 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
932 if (LOK and ROK)
933 and then Tlo <= Llo and then Lhi <= Thi
934 and then Tlo <= Rlo and then Rhi <= Thi
935 then
936 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
938 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
939 Rewrite (Left_Opnd (N),
940 Make_Type_Conversion (Loc,
941 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
942 Expression => Relocate_Node (Left_Opnd (N))));
944 Rewrite (Right_Opnd (N),
945 Make_Type_Conversion (Loc,
946 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
947 Expression => Relocate_Node (Right_Opnd (N))));
949 -- Rewrite the conversion operand so that the original
950 -- node is retained, in order to avoid the warning for
951 -- redundant conversions in Resolve_Type_Conversion.
953 Rewrite (N, Relocate_Node (N));
955 Set_Etype (N, Target_Type);
957 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
958 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
960 -- Given that the target type is twice the size of the
961 -- source type, overflow is now impossible, so we can
962 -- safely kill the overflow check and return.
964 Set_Do_Overflow_Check (N, False);
965 return;
966 end if;
967 end if;
968 end if;
969 end Conversion_Optimization;
970 end if;
972 -- Now see if an overflow check is required
974 declare
975 Siz : constant Int := UI_To_Int (Esize (Rtyp));
976 Dsiz : constant Int := Siz * 2;
977 Opnod : Node_Id;
978 Ctyp : Entity_Id;
979 Opnd : Node_Id;
980 Cent : RE_Id;
982 begin
983 -- Skip check if back end does overflow checks, or the overflow flag
984 -- is not set anyway, or we are not doing code expansion, or the
985 -- parent node is a type conversion whose operand is an arithmetic
986 -- operation on signed integers on which the expander can promote
987 -- later the operands to type Integer (see Expand_N_Type_Conversion).
989 if Backend_Overflow_Checks_On_Target
990 or else not Do_Overflow_Check (N)
991 or else not Expander_Active
992 or else (Present (Parent (N))
993 and then Nkind (Parent (N)) = N_Type_Conversion
994 and then Integer_Promotion_Possible (Parent (N)))
995 then
996 return;
997 end if;
999 -- Otherwise, generate the full general code for front end overflow
1000 -- detection, which works by doing arithmetic in a larger type:
1002 -- x op y
1004 -- is expanded into
1006 -- Typ (Checktyp (x) op Checktyp (y));
1008 -- where Typ is the type of the original expression, and Checktyp is
1009 -- an integer type of sufficient length to hold the largest possible
1010 -- result.
1012 -- If the size of check type exceeds the size of Long_Long_Integer,
1013 -- we use a different approach, expanding to:
1015 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
1017 -- where xxx is Add, Multiply or Subtract as appropriate
1019 -- Find check type if one exists
1021 if Dsiz <= Standard_Integer_Size then
1022 Ctyp := Standard_Integer;
1024 elsif Dsiz <= Standard_Long_Long_Integer_Size then
1025 Ctyp := Standard_Long_Long_Integer;
1027 -- No check type exists, use runtime call
1029 else
1030 if Nkind (N) = N_Op_Add then
1031 Cent := RE_Add_With_Ovflo_Check;
1033 elsif Nkind (N) = N_Op_Multiply then
1034 Cent := RE_Multiply_With_Ovflo_Check;
1036 else
1037 pragma Assert (Nkind (N) = N_Op_Subtract);
1038 Cent := RE_Subtract_With_Ovflo_Check;
1039 end if;
1041 Rewrite (N,
1042 OK_Convert_To (Typ,
1043 Make_Function_Call (Loc,
1044 Name => New_Occurrence_Of (RTE (Cent), Loc),
1045 Parameter_Associations => New_List (
1046 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
1047 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
1049 Analyze_And_Resolve (N, Typ);
1050 return;
1051 end if;
1053 -- If we fall through, we have the case where we do the arithmetic
1054 -- in the next higher type and get the check by conversion. In these
1055 -- cases Ctyp is set to the type to be used as the check type.
1057 Opnod := Relocate_Node (N);
1059 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
1061 Analyze (Opnd);
1062 Set_Etype (Opnd, Ctyp);
1063 Set_Analyzed (Opnd, True);
1064 Set_Left_Opnd (Opnod, Opnd);
1066 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
1068 Analyze (Opnd);
1069 Set_Etype (Opnd, Ctyp);
1070 Set_Analyzed (Opnd, True);
1071 Set_Right_Opnd (Opnod, Opnd);
1073 -- The type of the operation changes to the base type of the check
1074 -- type, and we reset the overflow check indication, since clearly no
1075 -- overflow is possible now that we are using a double length type.
1076 -- We also set the Analyzed flag to avoid a recursive attempt to
1077 -- expand the node.
1079 Set_Etype (Opnod, Base_Type (Ctyp));
1080 Set_Do_Overflow_Check (Opnod, False);
1081 Set_Analyzed (Opnod, True);
1083 -- Now build the outer conversion
1085 Opnd := OK_Convert_To (Typ, Opnod);
1086 Analyze (Opnd);
1087 Set_Etype (Opnd, Typ);
1089 -- In the discrete type case, we directly generate the range check
1090 -- for the outer operand. This range check will implement the
1091 -- required overflow check.
1093 if Is_Discrete_Type (Typ) then
1094 Rewrite (N, Opnd);
1095 Generate_Range_Check
1096 (Expression (N), Typ, CE_Overflow_Check_Failed);
1098 -- For other types, we enable overflow checking on the conversion,
1099 -- after setting the node as analyzed to prevent recursive attempts
1100 -- to expand the conversion node.
1102 else
1103 Set_Analyzed (Opnd, True);
1104 Enable_Overflow_Check (Opnd);
1105 Rewrite (N, Opnd);
1106 end if;
1108 exception
1109 when RE_Not_Available =>
1110 return;
1111 end;
1112 end Apply_Arithmetic_Overflow_Strict;
1114 ----------------------------------------------------
1115 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1116 ----------------------------------------------------
1118 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1119 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
1121 Loc : constant Source_Ptr := Sloc (Op);
1122 P : constant Node_Id := Parent (Op);
1124 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1125 -- Operands and results are of this type when we convert
1127 Result_Type : constant Entity_Id := Etype (Op);
1128 -- Original result type
1130 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1131 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1133 Lo, Hi : Uint;
1134 -- Ranges of values for result
1136 begin
1137 -- Nothing to do if our parent is one of the following:
1139 -- Another signed integer arithmetic op
1140 -- A membership operation
1141 -- A comparison operation
1143 -- In all these cases, we will process at the higher level (and then
1144 -- this node will be processed during the downwards recursion that
1145 -- is part of the processing in Minimize_Eliminate_Overflows).
1147 if Is_Signed_Integer_Arithmetic_Op (P)
1148 or else Nkind (P) in N_Membership_Test
1149 or else Nkind (P) in N_Op_Compare
1151 -- This is also true for an alternative in a case expression
1153 or else Nkind (P) = N_Case_Expression_Alternative
1155 -- This is also true for a range operand in a membership test
1157 or else (Nkind (P) = N_Range
1158 and then Nkind (Parent (P)) in N_Membership_Test)
1159 then
1160 -- If_Expressions and Case_Expressions are treated as arithmetic
1161 -- ops, but if they appear in an assignment or similar contexts
1162 -- there is no overflow check that starts from that parent node,
1163 -- so apply check now.
1165 if Nkind_In (P, N_If_Expression, N_Case_Expression)
1166 and then not Is_Signed_Integer_Arithmetic_Op (Parent (P))
1167 then
1168 null;
1169 else
1170 return;
1171 end if;
1172 end if;
1174 -- Otherwise, we have a top level arithmetic operation node, and this
1175 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1176 -- modes. This is the case where we tell the machinery not to move into
1177 -- Bignum mode at this top level (of course the top level operation
1178 -- will still be in Bignum mode if either of its operands are of type
1179 -- Bignum).
1181 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
1183 -- That call may but does not necessarily change the result type of Op.
1184 -- It is the job of this routine to undo such changes, so that at the
1185 -- top level, we have the proper type. This "undoing" is a point at
1186 -- which a final overflow check may be applied.
1188 -- If the result type was not fiddled we are all set. We go to base
1189 -- types here because things may have been rewritten to generate the
1190 -- base type of the operand types.
1192 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
1193 return;
1195 -- Bignum case
1197 elsif Is_RTE (Etype (Op), RE_Bignum) then
1199 -- We need a sequence that looks like:
1201 -- Rnn : Result_Type;
1203 -- declare
1204 -- M : Mark_Id := SS_Mark;
1205 -- begin
1206 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1207 -- SS_Release (M);
1208 -- end;
1210 -- This block is inserted (using Insert_Actions), and then the node
1211 -- is replaced with a reference to Rnn.
1213 -- If our parent is a conversion node then there is no point in
1214 -- generating a conversion to Result_Type. Instead, we let the parent
1215 -- handle this. Note that this special case is not just about
1216 -- optimization. Consider
1218 -- A,B,C : Integer;
1219 -- ...
1220 -- X := Long_Long_Integer'Base (A * (B ** C));
1222 -- Now the product may fit in Long_Long_Integer but not in Integer.
1223 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1224 -- overflow exception for this intermediate value.
1226 declare
1227 Blk : constant Node_Id := Make_Bignum_Block (Loc);
1228 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1229 RHS : Node_Id;
1231 Rtype : Entity_Id;
1233 begin
1234 RHS := Convert_From_Bignum (Op);
1236 if Nkind (P) /= N_Type_Conversion then
1237 Convert_To_And_Rewrite (Result_Type, RHS);
1238 Rtype := Result_Type;
1240 -- Interesting question, do we need a check on that conversion
1241 -- operation. Answer, not if we know the result is in range.
1242 -- At the moment we are not taking advantage of this. To be
1243 -- looked at later ???
1245 else
1246 Rtype := LLIB;
1247 end if;
1249 Insert_Before
1250 (First (Statements (Handled_Statement_Sequence (Blk))),
1251 Make_Assignment_Statement (Loc,
1252 Name => New_Occurrence_Of (Rnn, Loc),
1253 Expression => RHS));
1255 Insert_Actions (Op, New_List (
1256 Make_Object_Declaration (Loc,
1257 Defining_Identifier => Rnn,
1258 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1259 Blk));
1261 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1262 Analyze_And_Resolve (Op);
1263 end;
1265 -- Here we know the result is Long_Long_Integer'Base, or that it has
1266 -- been rewritten because the parent operation is a conversion. See
1267 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1269 else
1270 pragma Assert
1271 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
1273 -- All we need to do here is to convert the result to the proper
1274 -- result type. As explained above for the Bignum case, we can
1275 -- omit this if our parent is a type conversion.
1277 if Nkind (P) /= N_Type_Conversion then
1278 Convert_To_And_Rewrite (Result_Type, Op);
1279 end if;
1281 Analyze_And_Resolve (Op);
1282 end if;
1283 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
1285 ----------------------------
1286 -- Apply_Constraint_Check --
1287 ----------------------------
1289 procedure Apply_Constraint_Check
1290 (N : Node_Id;
1291 Typ : Entity_Id;
1292 No_Sliding : Boolean := False)
1294 Desig_Typ : Entity_Id;
1296 begin
1297 -- No checks inside a generic (check the instantiations)
1299 if Inside_A_Generic then
1300 return;
1301 end if;
1303 -- Apply required constraint checks
1305 if Is_Scalar_Type (Typ) then
1306 Apply_Scalar_Range_Check (N, Typ);
1308 elsif Is_Array_Type (Typ) then
1310 -- A useful optimization: an aggregate with only an others clause
1311 -- always has the right bounds.
1313 if Nkind (N) = N_Aggregate
1314 and then No (Expressions (N))
1315 and then Nkind
1316 (First (Choices (First (Component_Associations (N)))))
1317 = N_Others_Choice
1318 then
1319 return;
1320 end if;
1322 if Is_Constrained (Typ) then
1323 Apply_Length_Check (N, Typ);
1325 if No_Sliding then
1326 Apply_Range_Check (N, Typ);
1327 end if;
1328 else
1329 Apply_Range_Check (N, Typ);
1330 end if;
1332 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
1333 and then Has_Discriminants (Base_Type (Typ))
1334 and then Is_Constrained (Typ)
1335 then
1336 Apply_Discriminant_Check (N, Typ);
1338 elsif Is_Access_Type (Typ) then
1340 Desig_Typ := Designated_Type (Typ);
1342 -- No checks necessary if expression statically null
1344 if Known_Null (N) then
1345 if Can_Never_Be_Null (Typ) then
1346 Install_Null_Excluding_Check (N);
1347 end if;
1349 -- No sliding possible on access to arrays
1351 elsif Is_Array_Type (Desig_Typ) then
1352 if Is_Constrained (Desig_Typ) then
1353 Apply_Length_Check (N, Typ);
1354 end if;
1356 Apply_Range_Check (N, Typ);
1358 -- Do not install a discriminant check for a constrained subtype
1359 -- created for an unconstrained nominal type because the subtype
1360 -- has the correct constraints by construction.
1362 elsif Has_Discriminants (Base_Type (Desig_Typ))
1363 and then Is_Constrained (Desig_Typ)
1364 and then not Is_Constr_Subt_For_U_Nominal (Desig_Typ)
1365 then
1366 Apply_Discriminant_Check (N, Typ);
1367 end if;
1369 -- Apply the 2005 Null_Excluding check. Note that we do not apply
1370 -- this check if the constraint node is illegal, as shown by having
1371 -- an error posted. This additional guard prevents cascaded errors
1372 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1374 if Can_Never_Be_Null (Typ)
1375 and then not Can_Never_Be_Null (Etype (N))
1376 and then not Error_Posted (N)
1377 then
1378 Install_Null_Excluding_Check (N);
1379 end if;
1380 end if;
1381 end Apply_Constraint_Check;
1383 ------------------------------
1384 -- Apply_Discriminant_Check --
1385 ------------------------------
1387 procedure Apply_Discriminant_Check
1388 (N : Node_Id;
1389 Typ : Entity_Id;
1390 Lhs : Node_Id := Empty)
1392 Loc : constant Source_Ptr := Sloc (N);
1393 Do_Access : constant Boolean := Is_Access_Type (Typ);
1394 S_Typ : Entity_Id := Etype (N);
1395 Cond : Node_Id;
1396 T_Typ : Entity_Id;
1398 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1399 -- A heap object with an indefinite subtype is constrained by its
1400 -- initial value, and assigning to it requires a constraint_check.
1401 -- The target may be an explicit dereference, or a renaming of one.
1403 function Is_Aliased_Unconstrained_Component return Boolean;
1404 -- It is possible for an aliased component to have a nominal
1405 -- unconstrained subtype (through instantiation). If this is a
1406 -- discriminated component assigned in the expansion of an aggregate
1407 -- in an initialization, the check must be suppressed. This unusual
1408 -- situation requires a predicate of its own.
1410 ----------------------------------
1411 -- Denotes_Explicit_Dereference --
1412 ----------------------------------
1414 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1415 begin
1416 return
1417 Nkind (Obj) = N_Explicit_Dereference
1418 or else
1419 (Is_Entity_Name (Obj)
1420 and then Present (Renamed_Object (Entity (Obj)))
1421 and then Nkind (Renamed_Object (Entity (Obj))) =
1422 N_Explicit_Dereference);
1423 end Denotes_Explicit_Dereference;
1425 ----------------------------------------
1426 -- Is_Aliased_Unconstrained_Component --
1427 ----------------------------------------
1429 function Is_Aliased_Unconstrained_Component return Boolean is
1430 Comp : Entity_Id;
1431 Pref : Node_Id;
1433 begin
1434 if Nkind (Lhs) /= N_Selected_Component then
1435 return False;
1436 else
1437 Comp := Entity (Selector_Name (Lhs));
1438 Pref := Prefix (Lhs);
1439 end if;
1441 if Ekind (Comp) /= E_Component
1442 or else not Is_Aliased (Comp)
1443 then
1444 return False;
1445 end if;
1447 return not Comes_From_Source (Pref)
1448 and then In_Instance
1449 and then not Is_Constrained (Etype (Comp));
1450 end Is_Aliased_Unconstrained_Component;
1452 -- Start of processing for Apply_Discriminant_Check
1454 begin
1455 if Do_Access then
1456 T_Typ := Designated_Type (Typ);
1457 else
1458 T_Typ := Typ;
1459 end if;
1461 -- If the expression is a function call that returns a limited object
1462 -- it cannot be copied. It is not clear how to perform the proper
1463 -- discriminant check in this case because the discriminant value must
1464 -- be retrieved from the constructed object itself.
1466 if Nkind (N) = N_Function_Call
1467 and then Is_Limited_Type (Typ)
1468 and then Is_Entity_Name (Name (N))
1469 and then Returns_By_Ref (Entity (Name (N)))
1470 then
1471 return;
1472 end if;
1474 -- Only apply checks when generating code and discriminant checks are
1475 -- not suppressed. In GNATprove mode, we do not apply the checks, but we
1476 -- still analyze the expression to possibly issue errors on SPARK code
1477 -- when a run-time error can be detected at compile time.
1479 if not GNATprove_Mode then
1480 if not Expander_Active
1481 or else Discriminant_Checks_Suppressed (T_Typ)
1482 then
1483 return;
1484 end if;
1485 end if;
1487 -- No discriminant checks necessary for an access when expression is
1488 -- statically Null. This is not only an optimization, it is fundamental
1489 -- because otherwise discriminant checks may be generated in init procs
1490 -- for types containing an access to a not-yet-frozen record, causing a
1491 -- deadly forward reference.
1493 -- Also, if the expression is of an access type whose designated type is
1494 -- incomplete, then the access value must be null and we suppress the
1495 -- check.
1497 if Known_Null (N) then
1498 return;
1500 elsif Is_Access_Type (S_Typ) then
1501 S_Typ := Designated_Type (S_Typ);
1503 if Ekind (S_Typ) = E_Incomplete_Type then
1504 return;
1505 end if;
1506 end if;
1508 -- If an assignment target is present, then we need to generate the
1509 -- actual subtype if the target is a parameter or aliased object with
1510 -- an unconstrained nominal subtype.
1512 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1513 -- subtype to the parameter and dereference cases, since other aliased
1514 -- objects are unconstrained (unless the nominal subtype is explicitly
1515 -- constrained).
1517 if Present (Lhs)
1518 and then (Present (Param_Entity (Lhs))
1519 or else (Ada_Version < Ada_2005
1520 and then not Is_Constrained (T_Typ)
1521 and then Is_Aliased_View (Lhs)
1522 and then not Is_Aliased_Unconstrained_Component)
1523 or else (Ada_Version >= Ada_2005
1524 and then not Is_Constrained (T_Typ)
1525 and then Denotes_Explicit_Dereference (Lhs)
1526 and then Nkind (Original_Node (Lhs)) /=
1527 N_Function_Call))
1528 then
1529 T_Typ := Get_Actual_Subtype (Lhs);
1530 end if;
1532 -- Nothing to do if the type is unconstrained (this is the case where
1533 -- the actual subtype in the RM sense of N is unconstrained and no check
1534 -- is required).
1536 if not Is_Constrained (T_Typ) then
1537 return;
1539 -- Ada 2005: nothing to do if the type is one for which there is a
1540 -- partial view that is constrained.
1542 elsif Ada_Version >= Ada_2005
1543 and then Object_Type_Has_Constrained_Partial_View
1544 (Typ => Base_Type (T_Typ),
1545 Scop => Current_Scope)
1546 then
1547 return;
1548 end if;
1550 -- Nothing to do if the type is an Unchecked_Union
1552 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1553 return;
1554 end if;
1556 -- Suppress checks if the subtypes are the same. The check must be
1557 -- preserved in an assignment to a formal, because the constraint is
1558 -- given by the actual.
1560 if Nkind (Original_Node (N)) /= N_Allocator
1561 and then (No (Lhs)
1562 or else not Is_Entity_Name (Lhs)
1563 or else No (Param_Entity (Lhs)))
1564 then
1565 if (Etype (N) = Typ
1566 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1567 and then not Is_Aliased_View (Lhs)
1568 then
1569 return;
1570 end if;
1572 -- We can also eliminate checks on allocators with a subtype mark that
1573 -- coincides with the context type. The context type may be a subtype
1574 -- without a constraint (common case, a generic actual).
1576 elsif Nkind (Original_Node (N)) = N_Allocator
1577 and then Is_Entity_Name (Expression (Original_Node (N)))
1578 then
1579 declare
1580 Alloc_Typ : constant Entity_Id :=
1581 Entity (Expression (Original_Node (N)));
1583 begin
1584 if Alloc_Typ = T_Typ
1585 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1586 and then Is_Entity_Name (
1587 Subtype_Indication (Parent (T_Typ)))
1588 and then Alloc_Typ = Base_Type (T_Typ))
1590 then
1591 return;
1592 end if;
1593 end;
1594 end if;
1596 -- See if we have a case where the types are both constrained, and all
1597 -- the constraints are constants. In this case, we can do the check
1598 -- successfully at compile time.
1600 -- We skip this check for the case where the node is rewritten as
1601 -- an allocator, because it already carries the context subtype,
1602 -- and extracting the discriminants from the aggregate is messy.
1604 if Is_Constrained (S_Typ)
1605 and then Nkind (Original_Node (N)) /= N_Allocator
1606 then
1607 declare
1608 DconT : Elmt_Id;
1609 Discr : Entity_Id;
1610 DconS : Elmt_Id;
1611 ItemS : Node_Id;
1612 ItemT : Node_Id;
1614 begin
1615 -- S_Typ may not have discriminants in the case where it is a
1616 -- private type completed by a default discriminated type. In that
1617 -- case, we need to get the constraints from the underlying type.
1618 -- If the underlying type is unconstrained (i.e. has no default
1619 -- discriminants) no check is needed.
1621 if Has_Discriminants (S_Typ) then
1622 Discr := First_Discriminant (S_Typ);
1623 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1625 else
1626 Discr := First_Discriminant (Underlying_Type (S_Typ));
1627 DconS :=
1628 First_Elmt
1629 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1631 if No (DconS) then
1632 return;
1633 end if;
1635 -- A further optimization: if T_Typ is derived from S_Typ
1636 -- without imposing a constraint, no check is needed.
1638 if Nkind (Original_Node (Parent (T_Typ))) =
1639 N_Full_Type_Declaration
1640 then
1641 declare
1642 Type_Def : constant Node_Id :=
1643 Type_Definition (Original_Node (Parent (T_Typ)));
1644 begin
1645 if Nkind (Type_Def) = N_Derived_Type_Definition
1646 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1647 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1648 then
1649 return;
1650 end if;
1651 end;
1652 end if;
1653 end if;
1655 -- Constraint may appear in full view of type
1657 if Ekind (T_Typ) = E_Private_Subtype
1658 and then Present (Full_View (T_Typ))
1659 then
1660 DconT :=
1661 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
1662 else
1663 DconT :=
1664 First_Elmt (Discriminant_Constraint (T_Typ));
1665 end if;
1667 while Present (Discr) loop
1668 ItemS := Node (DconS);
1669 ItemT := Node (DconT);
1671 -- For a discriminated component type constrained by the
1672 -- current instance of an enclosing type, there is no
1673 -- applicable discriminant check.
1675 if Nkind (ItemT) = N_Attribute_Reference
1676 and then Is_Access_Type (Etype (ItemT))
1677 and then Is_Entity_Name (Prefix (ItemT))
1678 and then Is_Type (Entity (Prefix (ItemT)))
1679 then
1680 return;
1681 end if;
1683 -- If the expressions for the discriminants are identical
1684 -- and it is side-effect free (for now just an entity),
1685 -- this may be a shared constraint, e.g. from a subtype
1686 -- without a constraint introduced as a generic actual.
1687 -- Examine other discriminants if any.
1689 if ItemS = ItemT
1690 and then Is_Entity_Name (ItemS)
1691 then
1692 null;
1694 elsif not Is_OK_Static_Expression (ItemS)
1695 or else not Is_OK_Static_Expression (ItemT)
1696 then
1697 exit;
1699 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
1700 if Do_Access then -- needs run-time check.
1701 exit;
1702 else
1703 Apply_Compile_Time_Constraint_Error
1704 (N, "incorrect value for discriminant&??",
1705 CE_Discriminant_Check_Failed, Ent => Discr);
1706 return;
1707 end if;
1708 end if;
1710 Next_Elmt (DconS);
1711 Next_Elmt (DconT);
1712 Next_Discriminant (Discr);
1713 end loop;
1715 if No (Discr) then
1716 return;
1717 end if;
1718 end;
1719 end if;
1721 -- In GNATprove mode, we do not apply the checks
1723 if GNATprove_Mode then
1724 return;
1725 end if;
1727 -- Here we need a discriminant check. First build the expression
1728 -- for the comparisons of the discriminants:
1730 -- (n.disc1 /= typ.disc1) or else
1731 -- (n.disc2 /= typ.disc2) or else
1732 -- ...
1733 -- (n.discn /= typ.discn)
1735 Cond := Build_Discriminant_Checks (N, T_Typ);
1737 -- If Lhs is set and is a parameter, then the condition is guarded by:
1738 -- lhs'constrained and then (condition built above)
1740 if Present (Param_Entity (Lhs)) then
1741 Cond :=
1742 Make_And_Then (Loc,
1743 Left_Opnd =>
1744 Make_Attribute_Reference (Loc,
1745 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1746 Attribute_Name => Name_Constrained),
1747 Right_Opnd => Cond);
1748 end if;
1750 if Do_Access then
1751 Cond := Guard_Access (Cond, Loc, N);
1752 end if;
1754 Insert_Action (N,
1755 Make_Raise_Constraint_Error (Loc,
1756 Condition => Cond,
1757 Reason => CE_Discriminant_Check_Failed));
1758 end Apply_Discriminant_Check;
1760 -------------------------
1761 -- Apply_Divide_Checks --
1762 -------------------------
1764 procedure Apply_Divide_Checks (N : Node_Id) is
1765 Loc : constant Source_Ptr := Sloc (N);
1766 Typ : constant Entity_Id := Etype (N);
1767 Left : constant Node_Id := Left_Opnd (N);
1768 Right : constant Node_Id := Right_Opnd (N);
1770 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1771 -- Current overflow checking mode
1773 LLB : Uint;
1774 Llo : Uint;
1775 Lhi : Uint;
1776 LOK : Boolean;
1777 Rlo : Uint;
1778 Rhi : Uint;
1779 ROK : Boolean;
1781 pragma Warnings (Off, Lhi);
1782 -- Don't actually use this value
1784 begin
1785 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1786 -- operating on signed integer types, then the only thing this routine
1787 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1788 -- procedure will (possibly later on during recursive downward calls),
1789 -- ensure that any needed overflow/division checks are properly applied.
1791 if Mode in Minimized_Or_Eliminated
1792 and then Is_Signed_Integer_Type (Typ)
1793 then
1794 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1795 return;
1796 end if;
1798 -- Proceed here in SUPPRESSED or CHECKED modes
1800 if Expander_Active
1801 and then not Backend_Divide_Checks_On_Target
1802 and then Check_Needed (Right, Division_Check)
1803 then
1804 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
1806 -- Deal with division check
1808 if Do_Division_Check (N)
1809 and then not Division_Checks_Suppressed (Typ)
1810 then
1811 Apply_Division_Check (N, Rlo, Rhi, ROK);
1812 end if;
1814 -- Deal with overflow check
1816 if Do_Overflow_Check (N)
1817 and then not Overflow_Checks_Suppressed (Etype (N))
1818 then
1819 Set_Do_Overflow_Check (N, False);
1821 -- Test for extremely annoying case of xxx'First divided by -1
1822 -- for division of signed integer types (only overflow case).
1824 if Nkind (N) = N_Op_Divide
1825 and then Is_Signed_Integer_Type (Typ)
1826 then
1827 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
1828 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1830 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1831 and then
1832 ((not LOK) or else (Llo = LLB))
1833 then
1834 -- Ensure that expressions are not evaluated twice (once
1835 -- for their runtime checks and once for their regular
1836 -- computation).
1838 Force_Evaluation (Left, Mode => Strict);
1839 Force_Evaluation (Right, Mode => Strict);
1841 Insert_Action (N,
1842 Make_Raise_Constraint_Error (Loc,
1843 Condition =>
1844 Make_And_Then (Loc,
1845 Left_Opnd =>
1846 Make_Op_Eq (Loc,
1847 Left_Opnd =>
1848 Duplicate_Subexpr_Move_Checks (Left),
1849 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1851 Right_Opnd =>
1852 Make_Op_Eq (Loc,
1853 Left_Opnd => Duplicate_Subexpr (Right),
1854 Right_Opnd => Make_Integer_Literal (Loc, -1))),
1856 Reason => CE_Overflow_Check_Failed));
1857 end if;
1858 end if;
1859 end if;
1860 end if;
1861 end Apply_Divide_Checks;
1863 --------------------------
1864 -- Apply_Division_Check --
1865 --------------------------
1867 procedure Apply_Division_Check
1868 (N : Node_Id;
1869 Rlo : Uint;
1870 Rhi : Uint;
1871 ROK : Boolean)
1873 pragma Assert (Do_Division_Check (N));
1875 Loc : constant Source_Ptr := Sloc (N);
1876 Right : constant Node_Id := Right_Opnd (N);
1877 Opnd : Node_Id;
1879 begin
1880 if Expander_Active
1881 and then not Backend_Divide_Checks_On_Target
1882 and then Check_Needed (Right, Division_Check)
1884 -- See if division by zero possible, and if so generate test. This
1885 -- part of the test is not controlled by the -gnato switch, since it
1886 -- is a Division_Check and not an Overflow_Check.
1888 and then Do_Division_Check (N)
1889 then
1890 Set_Do_Division_Check (N, False);
1892 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1893 if Is_Floating_Point_Type (Etype (N)) then
1894 Opnd := Make_Real_Literal (Loc, Ureal_0);
1895 else
1896 Opnd := Make_Integer_Literal (Loc, 0);
1897 end if;
1899 Insert_Action (N,
1900 Make_Raise_Constraint_Error (Loc,
1901 Condition =>
1902 Make_Op_Eq (Loc,
1903 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1904 Right_Opnd => Opnd),
1905 Reason => CE_Divide_By_Zero));
1906 end if;
1907 end if;
1908 end Apply_Division_Check;
1910 ----------------------------------
1911 -- Apply_Float_Conversion_Check --
1912 ----------------------------------
1914 -- Let F and I be the source and target types of the conversion. The RM
1915 -- specifies that a floating-point value X is rounded to the nearest
1916 -- integer, with halfway cases being rounded away from zero. The rounded
1917 -- value of X is checked against I'Range.
1919 -- The catch in the above paragraph is that there is no good way to know
1920 -- whether the round-to-integer operation resulted in overflow. A remedy is
1921 -- to perform a range check in the floating-point domain instead, however:
1923 -- (1) The bounds may not be known at compile time
1924 -- (2) The check must take into account rounding or truncation.
1925 -- (3) The range of type I may not be exactly representable in F.
1926 -- (4) For the rounding case, The end-points I'First - 0.5 and
1927 -- I'Last + 0.5 may or may not be in range, depending on the
1928 -- sign of I'First and I'Last.
1929 -- (5) X may be a NaN, which will fail any comparison
1931 -- The following steps correctly convert X with rounding:
1933 -- (1) If either I'First or I'Last is not known at compile time, use
1934 -- I'Base instead of I in the next three steps and perform a
1935 -- regular range check against I'Range after conversion.
1936 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1937 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1938 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1939 -- In other words, take one of the closest floating-point numbers
1940 -- (which is an integer value) to I'First, and see if it is in
1941 -- range or not.
1942 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1943 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1944 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1945 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1946 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1948 -- For the truncating case, replace steps (2) and (3) as follows:
1949 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1950 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1951 -- Lo_OK be True.
1952 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1953 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1954 -- Hi_OK be True.
1956 procedure Apply_Float_Conversion_Check
1957 (Ck_Node : Node_Id;
1958 Target_Typ : Entity_Id)
1960 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1961 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1962 Loc : constant Source_Ptr := Sloc (Ck_Node);
1963 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
1964 Target_Base : constant Entity_Id :=
1965 Implementation_Base_Type (Target_Typ);
1967 Par : constant Node_Id := Parent (Ck_Node);
1968 pragma Assert (Nkind (Par) = N_Type_Conversion);
1969 -- Parent of check node, must be a type conversion
1971 Truncate : constant Boolean := Float_Truncate (Par);
1972 Max_Bound : constant Uint :=
1973 UI_Expon
1974 (Machine_Radix_Value (Expr_Type),
1975 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
1977 -- Largest bound, so bound plus or minus half is a machine number of F
1979 Ifirst, Ilast : Uint;
1980 -- Bounds of integer type
1982 Lo, Hi : Ureal;
1983 -- Bounds to check in floating-point domain
1985 Lo_OK, Hi_OK : Boolean;
1986 -- True iff Lo resp. Hi belongs to I'Range
1988 Lo_Chk, Hi_Chk : Node_Id;
1989 -- Expressions that are False iff check fails
1991 Reason : RT_Exception_Code;
1993 begin
1994 -- We do not need checks if we are not generating code (i.e. the full
1995 -- expander is not active). In SPARK mode, we specifically don't want
1996 -- the frontend to expand these checks, which are dealt with directly
1997 -- in the formal verification backend.
1999 if not Expander_Active then
2000 return;
2001 end if;
2003 if not Compile_Time_Known_Value (LB)
2004 or not Compile_Time_Known_Value (HB)
2005 then
2006 declare
2007 -- First check that the value falls in the range of the base type,
2008 -- to prevent overflow during conversion and then perform a
2009 -- regular range check against the (dynamic) bounds.
2011 pragma Assert (Target_Base /= Target_Typ);
2013 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
2015 begin
2016 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
2017 Set_Etype (Temp, Target_Base);
2019 Insert_Action (Parent (Par),
2020 Make_Object_Declaration (Loc,
2021 Defining_Identifier => Temp,
2022 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
2023 Expression => New_Copy_Tree (Par)),
2024 Suppress => All_Checks);
2026 Insert_Action (Par,
2027 Make_Raise_Constraint_Error (Loc,
2028 Condition =>
2029 Make_Not_In (Loc,
2030 Left_Opnd => New_Occurrence_Of (Temp, Loc),
2031 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
2032 Reason => CE_Range_Check_Failed));
2033 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
2035 return;
2036 end;
2037 end if;
2039 -- Get the (static) bounds of the target type
2041 Ifirst := Expr_Value (LB);
2042 Ilast := Expr_Value (HB);
2044 -- A simple optimization: if the expression is a universal literal,
2045 -- we can do the comparison with the bounds and the conversion to
2046 -- an integer type statically. The range checks are unchanged.
2048 if Nkind (Ck_Node) = N_Real_Literal
2049 and then Etype (Ck_Node) = Universal_Real
2050 and then Is_Integer_Type (Target_Typ)
2051 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
2052 then
2053 declare
2054 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
2056 begin
2057 if Int_Val <= Ilast and then Int_Val >= Ifirst then
2059 -- Conversion is safe
2061 Rewrite (Parent (Ck_Node),
2062 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
2063 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
2064 return;
2065 end if;
2066 end;
2067 end if;
2069 -- Check against lower bound
2071 if Truncate and then Ifirst > 0 then
2072 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2073 Lo_OK := False;
2075 elsif Truncate then
2076 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2077 Lo_OK := True;
2079 elsif abs (Ifirst) < Max_Bound then
2080 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2081 Lo_OK := (Ifirst > 0);
2083 else
2084 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
2085 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2086 end if;
2088 if Lo_OK then
2090 -- Lo_Chk := (X >= Lo)
2092 Lo_Chk := Make_Op_Ge (Loc,
2093 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2094 Right_Opnd => Make_Real_Literal (Loc, Lo));
2096 else
2097 -- Lo_Chk := (X > Lo)
2099 Lo_Chk := Make_Op_Gt (Loc,
2100 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2101 Right_Opnd => Make_Real_Literal (Loc, Lo));
2102 end if;
2104 -- Check against higher bound
2106 if Truncate and then Ilast < 0 then
2107 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
2108 Hi_OK := False;
2110 elsif Truncate then
2111 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2112 Hi_OK := True;
2114 elsif abs (Ilast) < Max_Bound then
2115 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2116 Hi_OK := (Ilast < 0);
2117 else
2118 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2119 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2120 end if;
2122 if Hi_OK then
2124 -- Hi_Chk := (X <= Hi)
2126 Hi_Chk := Make_Op_Le (Loc,
2127 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2128 Right_Opnd => Make_Real_Literal (Loc, Hi));
2130 else
2131 -- Hi_Chk := (X < Hi)
2133 Hi_Chk := Make_Op_Lt (Loc,
2134 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2135 Right_Opnd => Make_Real_Literal (Loc, Hi));
2136 end if;
2138 -- If the bounds of the target type are the same as those of the base
2139 -- type, the check is an overflow check as a range check is not
2140 -- performed in these cases.
2142 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2143 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2144 then
2145 Reason := CE_Overflow_Check_Failed;
2146 else
2147 Reason := CE_Range_Check_Failed;
2148 end if;
2150 -- Raise CE if either conditions does not hold
2152 Insert_Action (Ck_Node,
2153 Make_Raise_Constraint_Error (Loc,
2154 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
2155 Reason => Reason));
2156 end Apply_Float_Conversion_Check;
2158 ------------------------
2159 -- Apply_Length_Check --
2160 ------------------------
2162 procedure Apply_Length_Check
2163 (Ck_Node : Node_Id;
2164 Target_Typ : Entity_Id;
2165 Source_Typ : Entity_Id := Empty)
2167 begin
2168 Apply_Selected_Length_Checks
2169 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2170 end Apply_Length_Check;
2172 -------------------------------------
2173 -- Apply_Parameter_Aliasing_Checks --
2174 -------------------------------------
2176 procedure Apply_Parameter_Aliasing_Checks
2177 (Call : Node_Id;
2178 Subp : Entity_Id)
2180 Loc : constant Source_Ptr := Sloc (Call);
2182 function May_Cause_Aliasing
2183 (Formal_1 : Entity_Id;
2184 Formal_2 : Entity_Id) return Boolean;
2185 -- Determine whether two formal parameters can alias each other
2186 -- depending on their modes.
2188 function Original_Actual (N : Node_Id) return Node_Id;
2189 -- The expander may replace an actual with a temporary for the sake of
2190 -- side effect removal. The temporary may hide a potential aliasing as
2191 -- it does not share the address of the actual. This routine attempts
2192 -- to retrieve the original actual.
2194 procedure Overlap_Check
2195 (Actual_1 : Node_Id;
2196 Actual_2 : Node_Id;
2197 Formal_1 : Entity_Id;
2198 Formal_2 : Entity_Id;
2199 Check : in out Node_Id);
2200 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2201 -- If detailed exception messages are enabled, the check is augmented to
2202 -- provide information about the names of the corresponding formals. See
2203 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2204 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2205 -- Check contains all and-ed simple tests generated so far or remains
2206 -- unchanged in the case of detailed exception messaged.
2208 ------------------------
2209 -- May_Cause_Aliasing --
2210 ------------------------
2212 function May_Cause_Aliasing
2213 (Formal_1 : Entity_Id;
2214 Formal_2 : Entity_Id) return Boolean
2216 begin
2217 -- The following combination cannot lead to aliasing
2219 -- Formal 1 Formal 2
2220 -- IN IN
2222 if Ekind (Formal_1) = E_In_Parameter
2223 and then
2224 Ekind (Formal_2) = E_In_Parameter
2225 then
2226 return False;
2228 -- The following combinations may lead to aliasing
2230 -- Formal 1 Formal 2
2231 -- IN OUT
2232 -- IN IN OUT
2233 -- OUT IN
2234 -- OUT IN OUT
2235 -- OUT OUT
2237 else
2238 return True;
2239 end if;
2240 end May_Cause_Aliasing;
2242 ---------------------
2243 -- Original_Actual --
2244 ---------------------
2246 function Original_Actual (N : Node_Id) return Node_Id is
2247 begin
2248 if Nkind (N) = N_Type_Conversion then
2249 return Expression (N);
2251 -- The expander created a temporary to capture the result of a type
2252 -- conversion where the expression is the real actual.
2254 elsif Nkind (N) = N_Identifier
2255 and then Present (Original_Node (N))
2256 and then Nkind (Original_Node (N)) = N_Type_Conversion
2257 then
2258 return Expression (Original_Node (N));
2259 end if;
2261 return N;
2262 end Original_Actual;
2264 -------------------
2265 -- Overlap_Check --
2266 -------------------
2268 procedure Overlap_Check
2269 (Actual_1 : Node_Id;
2270 Actual_2 : Node_Id;
2271 Formal_1 : Entity_Id;
2272 Formal_2 : Entity_Id;
2273 Check : in out Node_Id)
2275 Cond : Node_Id;
2276 ID_Casing : constant Casing_Type :=
2277 Identifier_Casing (Source_Index (Current_Sem_Unit));
2279 begin
2280 -- Generate:
2281 -- Actual_1'Overlaps_Storage (Actual_2)
2283 Cond :=
2284 Make_Attribute_Reference (Loc,
2285 Prefix => New_Copy_Tree (Original_Actual (Actual_1)),
2286 Attribute_Name => Name_Overlaps_Storage,
2287 Expressions =>
2288 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2290 -- Generate the following check when detailed exception messages are
2291 -- enabled:
2293 -- if Actual_1'Overlaps_Storage (Actual_2) then
2294 -- raise Program_Error with <detailed message>;
2295 -- end if;
2297 if Exception_Extra_Info then
2298 Start_String;
2300 -- Do not generate location information for internal calls
2302 if Comes_From_Source (Call) then
2303 Store_String_Chars (Build_Location_String (Loc));
2304 Store_String_Char (' ');
2305 end if;
2307 Store_String_Chars ("aliased parameters, actuals for """);
2309 Get_Name_String (Chars (Formal_1));
2310 Set_Casing (ID_Casing);
2311 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2313 Store_String_Chars (""" and """);
2315 Get_Name_String (Chars (Formal_2));
2316 Set_Casing (ID_Casing);
2317 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2319 Store_String_Chars (""" overlap");
2321 Insert_Action (Call,
2322 Make_If_Statement (Loc,
2323 Condition => Cond,
2324 Then_Statements => New_List (
2325 Make_Raise_Statement (Loc,
2326 Name =>
2327 New_Occurrence_Of (Standard_Program_Error, Loc),
2328 Expression => Make_String_Literal (Loc, End_String)))));
2330 -- Create a sequence of overlapping checks by and-ing them all
2331 -- together.
2333 else
2334 if No (Check) then
2335 Check := Cond;
2336 else
2337 Check :=
2338 Make_And_Then (Loc,
2339 Left_Opnd => Check,
2340 Right_Opnd => Cond);
2341 end if;
2342 end if;
2343 end Overlap_Check;
2345 -- Local variables
2347 Actual_1 : Node_Id;
2348 Actual_2 : Node_Id;
2349 Check : Node_Id;
2350 Formal_1 : Entity_Id;
2351 Formal_2 : Entity_Id;
2352 Orig_Act_1 : Node_Id;
2353 Orig_Act_2 : Node_Id;
2355 -- Start of processing for Apply_Parameter_Aliasing_Checks
2357 begin
2358 Check := Empty;
2360 Actual_1 := First_Actual (Call);
2361 Formal_1 := First_Formal (Subp);
2362 while Present (Actual_1) and then Present (Formal_1) loop
2363 Orig_Act_1 := Original_Actual (Actual_1);
2365 -- Ensure that the actual is an object that is not passed by value.
2366 -- Elementary types are always passed by value, therefore actuals of
2367 -- such types cannot lead to aliasing. An aggregate is an object in
2368 -- Ada 2012, but an actual that is an aggregate cannot overlap with
2369 -- another actual. A type that is By_Reference (such as an array of
2370 -- controlled types) is not subject to the check because any update
2371 -- will be done in place and a subsequent read will always see the
2372 -- correct value, see RM 6.2 (12/3).
2374 if Nkind (Orig_Act_1) = N_Aggregate
2375 or else (Nkind (Orig_Act_1) = N_Qualified_Expression
2376 and then Nkind (Expression (Orig_Act_1)) = N_Aggregate)
2377 then
2378 null;
2380 elsif Is_Object_Reference (Orig_Act_1)
2381 and then not Is_Elementary_Type (Etype (Orig_Act_1))
2382 and then not Is_By_Reference_Type (Etype (Orig_Act_1))
2383 then
2384 Actual_2 := Next_Actual (Actual_1);
2385 Formal_2 := Next_Formal (Formal_1);
2386 while Present (Actual_2) and then Present (Formal_2) loop
2387 Orig_Act_2 := Original_Actual (Actual_2);
2389 -- The other actual we are testing against must also denote
2390 -- a non pass-by-value object. Generate the check only when
2391 -- the mode of the two formals may lead to aliasing.
2393 if Is_Object_Reference (Orig_Act_2)
2394 and then not Is_Elementary_Type (Etype (Orig_Act_2))
2395 and then May_Cause_Aliasing (Formal_1, Formal_2)
2396 then
2397 Remove_Side_Effects (Actual_1);
2398 Remove_Side_Effects (Actual_2);
2400 Overlap_Check
2401 (Actual_1 => Actual_1,
2402 Actual_2 => Actual_2,
2403 Formal_1 => Formal_1,
2404 Formal_2 => Formal_2,
2405 Check => Check);
2406 end if;
2408 Next_Actual (Actual_2);
2409 Next_Formal (Formal_2);
2410 end loop;
2411 end if;
2413 Next_Actual (Actual_1);
2414 Next_Formal (Formal_1);
2415 end loop;
2417 -- Place a simple check right before the call
2419 if Present (Check) and then not Exception_Extra_Info then
2420 Insert_Action (Call,
2421 Make_Raise_Program_Error (Loc,
2422 Condition => Check,
2423 Reason => PE_Aliased_Parameters));
2424 end if;
2425 end Apply_Parameter_Aliasing_Checks;
2427 -------------------------------------
2428 -- Apply_Parameter_Validity_Checks --
2429 -------------------------------------
2431 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2432 Subp_Decl : Node_Id;
2434 procedure Add_Validity_Check
2435 (Formal : Entity_Id;
2436 Prag_Nam : Name_Id;
2437 For_Result : Boolean := False);
2438 -- Add a single 'Valid[_Scalar] check which verifies the initialization
2439 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
2440 -- Set flag For_Result when to verify the result of a function.
2442 ------------------------
2443 -- Add_Validity_Check --
2444 ------------------------
2446 procedure Add_Validity_Check
2447 (Formal : Entity_Id;
2448 Prag_Nam : Name_Id;
2449 For_Result : Boolean := False)
2451 procedure Build_Pre_Post_Condition (Expr : Node_Id);
2452 -- Create a pre/postcondition pragma that tests expression Expr
2454 ------------------------------
2455 -- Build_Pre_Post_Condition --
2456 ------------------------------
2458 procedure Build_Pre_Post_Condition (Expr : Node_Id) is
2459 Loc : constant Source_Ptr := Sloc (Subp);
2460 Decls : List_Id;
2461 Prag : Node_Id;
2463 begin
2464 Prag :=
2465 Make_Pragma (Loc,
2466 Chars => Prag_Nam,
2467 Pragma_Argument_Associations => New_List (
2468 Make_Pragma_Argument_Association (Loc,
2469 Chars => Name_Check,
2470 Expression => Expr)));
2472 -- Add a message unless exception messages are suppressed
2474 if not Exception_Locations_Suppressed then
2475 Append_To (Pragma_Argument_Associations (Prag),
2476 Make_Pragma_Argument_Association (Loc,
2477 Chars => Name_Message,
2478 Expression =>
2479 Make_String_Literal (Loc,
2480 Strval => "failed "
2481 & Get_Name_String (Prag_Nam)
2482 & " from "
2483 & Build_Location_String (Loc))));
2484 end if;
2486 -- Insert the pragma in the tree
2488 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2489 Add_Global_Declaration (Prag);
2490 Analyze (Prag);
2492 -- PPC pragmas associated with subprogram bodies must be inserted
2493 -- in the declarative part of the body.
2495 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2496 Decls := Declarations (Subp_Decl);
2498 if No (Decls) then
2499 Decls := New_List;
2500 Set_Declarations (Subp_Decl, Decls);
2501 end if;
2503 Prepend_To (Decls, Prag);
2504 Analyze (Prag);
2506 -- For subprogram declarations insert the PPC pragma right after
2507 -- the declarative node.
2509 else
2510 Insert_After_And_Analyze (Subp_Decl, Prag);
2511 end if;
2512 end Build_Pre_Post_Condition;
2514 -- Local variables
2516 Loc : constant Source_Ptr := Sloc (Subp);
2517 Typ : constant Entity_Id := Etype (Formal);
2518 Check : Node_Id;
2519 Nam : Name_Id;
2521 -- Start of processing for Add_Validity_Check
2523 begin
2524 -- For scalars, generate 'Valid test
2526 if Is_Scalar_Type (Typ) then
2527 Nam := Name_Valid;
2529 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2531 elsif Scalar_Part_Present (Typ) then
2532 Nam := Name_Valid_Scalars;
2534 -- No test needed for other cases (no scalars to test)
2536 else
2537 return;
2538 end if;
2540 -- Step 1: Create the expression to verify the validity of the
2541 -- context.
2543 Check := New_Occurrence_Of (Formal, Loc);
2545 -- When processing a function result, use 'Result. Generate
2546 -- Context'Result
2548 if For_Result then
2549 Check :=
2550 Make_Attribute_Reference (Loc,
2551 Prefix => Check,
2552 Attribute_Name => Name_Result);
2553 end if;
2555 -- Generate:
2556 -- Context['Result]'Valid[_Scalars]
2558 Check :=
2559 Make_Attribute_Reference (Loc,
2560 Prefix => Check,
2561 Attribute_Name => Nam);
2563 -- Step 2: Create a pre or post condition pragma
2565 Build_Pre_Post_Condition (Check);
2566 end Add_Validity_Check;
2568 -- Local variables
2570 Formal : Entity_Id;
2571 Subp_Spec : Node_Id;
2573 -- Start of processing for Apply_Parameter_Validity_Checks
2575 begin
2576 -- Extract the subprogram specification and declaration nodes
2578 Subp_Spec := Parent (Subp);
2580 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2581 Subp_Spec := Parent (Subp_Spec);
2582 end if;
2584 Subp_Decl := Parent (Subp_Spec);
2586 if not Comes_From_Source (Subp)
2588 -- Do not process formal subprograms because the corresponding actual
2589 -- will receive the proper checks when the instance is analyzed.
2591 or else Is_Formal_Subprogram (Subp)
2593 -- Do not process imported subprograms since pre and postconditions
2594 -- are never verified on routines coming from a different language.
2596 or else Is_Imported (Subp)
2597 or else Is_Intrinsic_Subprogram (Subp)
2599 -- The PPC pragmas generated by this routine do not correspond to
2600 -- source aspects, therefore they cannot be applied to abstract
2601 -- subprograms.
2603 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
2605 -- Do not consider subprogram renaminds because the renamed entity
2606 -- already has the proper PPC pragmas.
2608 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2610 -- Do not process null procedures because there is no benefit of
2611 -- adding the checks to a no action routine.
2613 or else (Nkind (Subp_Spec) = N_Procedure_Specification
2614 and then Null_Present (Subp_Spec))
2615 then
2616 return;
2617 end if;
2619 -- Inspect all the formals applying aliasing and scalar initialization
2620 -- checks where applicable.
2622 Formal := First_Formal (Subp);
2623 while Present (Formal) loop
2625 -- Generate the following scalar initialization checks for each
2626 -- formal parameter:
2628 -- mode IN - Pre => Formal'Valid[_Scalars]
2629 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2630 -- mode OUT - Post => Formal'Valid[_Scalars]
2632 if Check_Validity_Of_Parameters then
2633 if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2634 Add_Validity_Check (Formal, Name_Precondition, False);
2635 end if;
2637 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2638 Add_Validity_Check (Formal, Name_Postcondition, False);
2639 end if;
2640 end if;
2642 Next_Formal (Formal);
2643 end loop;
2645 -- Generate following scalar initialization check for function result:
2647 -- Post => Subp'Result'Valid[_Scalars]
2649 if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
2650 Add_Validity_Check (Subp, Name_Postcondition, True);
2651 end if;
2652 end Apply_Parameter_Validity_Checks;
2654 ---------------------------
2655 -- Apply_Predicate_Check --
2656 ---------------------------
2658 procedure Apply_Predicate_Check
2659 (N : Node_Id;
2660 Typ : Entity_Id;
2661 Fun : Entity_Id := Empty)
2663 S : Entity_Id;
2665 begin
2666 if Predicate_Checks_Suppressed (Empty) then
2667 return;
2669 elsif Predicates_Ignored (Typ) then
2670 return;
2672 elsif Present (Predicate_Function (Typ)) then
2673 S := Current_Scope;
2674 while Present (S) and then not Is_Subprogram (S) loop
2675 S := Scope (S);
2676 end loop;
2678 -- A predicate check does not apply within internally generated
2679 -- subprograms, such as TSS functions.
2681 if Within_Internal_Subprogram then
2682 return;
2684 -- If the check appears within the predicate function itself, it
2685 -- means that the user specified a check whose formal is the
2686 -- predicated subtype itself, rather than some covering type. This
2687 -- is likely to be a common error, and thus deserves a warning.
2689 elsif Present (S) and then S = Predicate_Function (Typ) then
2690 Error_Msg_NE
2691 ("predicate check includes a call to& that requires a "
2692 & "predicate check??", Parent (N), Fun);
2693 Error_Msg_N
2694 ("\this will result in infinite recursion??", Parent (N));
2696 if Is_First_Subtype (Typ) then
2697 Error_Msg_NE
2698 ("\use an explicit subtype of& to carry the predicate",
2699 Parent (N), Typ);
2700 end if;
2702 Insert_Action (N,
2703 Make_Raise_Storage_Error (Sloc (N),
2704 Reason => SE_Infinite_Recursion));
2706 -- Here for normal case of predicate active
2708 else
2709 -- If the type has a static predicate and the expression is known
2710 -- at compile time, see if the expression satisfies the predicate.
2712 Check_Expression_Against_Static_Predicate (N, Typ);
2714 if not Expander_Active then
2715 return;
2716 end if;
2718 -- For an entity of the type, generate a call to the predicate
2719 -- function, unless its type is an actual subtype, which is not
2720 -- visible outside of the enclosing subprogram.
2722 if Is_Entity_Name (N)
2723 and then not Is_Actual_Subtype (Typ)
2724 then
2725 Insert_Action (N,
2726 Make_Predicate_Check
2727 (Typ, New_Occurrence_Of (Entity (N), Sloc (N))));
2729 -- If the expression is not an entity it may have side effects,
2730 -- and the following call will create an object declaration for
2731 -- it. We disable checks during its analysis, to prevent an
2732 -- infinite recursion.
2734 -- If the prefix is an aggregate in an assignment, apply the
2735 -- check to the LHS after assignment, rather than create a
2736 -- redundant temporary. This is only necessary in rare cases
2737 -- of array types (including strings) initialized with an
2738 -- aggregate with an "others" clause, either coming from source
2739 -- or generated by an Initialize_Scalars pragma.
2741 elsif Nkind (N) = N_Aggregate
2742 and then Nkind (Parent (N)) = N_Assignment_Statement
2743 then
2744 Insert_Action_After (Parent (N),
2745 Make_Predicate_Check
2746 (Typ, Duplicate_Subexpr (Name (Parent (N)))));
2748 else
2749 Insert_Action (N,
2750 Make_Predicate_Check
2751 (Typ, Duplicate_Subexpr (N)), Suppress => All_Checks);
2752 end if;
2753 end if;
2754 end if;
2755 end Apply_Predicate_Check;
2757 -----------------------
2758 -- Apply_Range_Check --
2759 -----------------------
2761 procedure Apply_Range_Check
2762 (Ck_Node : Node_Id;
2763 Target_Typ : Entity_Id;
2764 Source_Typ : Entity_Id := Empty)
2766 begin
2767 Apply_Selected_Range_Checks
2768 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2769 end Apply_Range_Check;
2771 ------------------------------
2772 -- Apply_Scalar_Range_Check --
2773 ------------------------------
2775 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2776 -- off if it is already set on.
2778 procedure Apply_Scalar_Range_Check
2779 (Expr : Node_Id;
2780 Target_Typ : Entity_Id;
2781 Source_Typ : Entity_Id := Empty;
2782 Fixed_Int : Boolean := False)
2784 Parnt : constant Node_Id := Parent (Expr);
2785 S_Typ : Entity_Id;
2786 Arr : Node_Id := Empty; -- initialize to prevent warning
2787 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
2789 Is_Subscr_Ref : Boolean;
2790 -- Set true if Expr is a subscript
2792 Is_Unconstrained_Subscr_Ref : Boolean;
2793 -- Set true if Expr is a subscript of an unconstrained array. In this
2794 -- case we do not attempt to do an analysis of the value against the
2795 -- range of the subscript, since we don't know the actual subtype.
2797 Int_Real : Boolean;
2798 -- Set to True if Expr should be regarded as a real value even though
2799 -- the type of Expr might be discrete.
2801 procedure Bad_Value (Warn : Boolean := False);
2802 -- Procedure called if value is determined to be out of range. Warn is
2803 -- True to force a warning instead of an error, even when SPARK_Mode is
2804 -- On.
2806 ---------------
2807 -- Bad_Value --
2808 ---------------
2810 procedure Bad_Value (Warn : Boolean := False) is
2811 begin
2812 Apply_Compile_Time_Constraint_Error
2813 (Expr, "value not in range of}??", CE_Range_Check_Failed,
2814 Ent => Target_Typ,
2815 Typ => Target_Typ,
2816 Warn => Warn);
2817 end Bad_Value;
2819 -- Start of processing for Apply_Scalar_Range_Check
2821 begin
2822 -- Return if check obviously not needed
2825 -- Not needed inside generic
2827 Inside_A_Generic
2829 -- Not needed if previous error
2831 or else Target_Typ = Any_Type
2832 or else Nkind (Expr) = N_Error
2834 -- Not needed for non-scalar type
2836 or else not Is_Scalar_Type (Target_Typ)
2838 -- Not needed if we know node raises CE already
2840 or else Raises_Constraint_Error (Expr)
2841 then
2842 return;
2843 end if;
2845 -- Now, see if checks are suppressed
2847 Is_Subscr_Ref :=
2848 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2850 if Is_Subscr_Ref then
2851 Arr := Prefix (Parnt);
2852 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
2854 if Is_Access_Type (Arr_Typ) then
2855 Arr_Typ := Designated_Type (Arr_Typ);
2856 end if;
2857 end if;
2859 if not Do_Range_Check (Expr) then
2861 -- Subscript reference. Check for Index_Checks suppressed
2863 if Is_Subscr_Ref then
2865 -- Check array type and its base type
2867 if Index_Checks_Suppressed (Arr_Typ)
2868 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
2869 then
2870 return;
2872 -- Check array itself if it is an entity name
2874 elsif Is_Entity_Name (Arr)
2875 and then Index_Checks_Suppressed (Entity (Arr))
2876 then
2877 return;
2879 -- Check expression itself if it is an entity name
2881 elsif Is_Entity_Name (Expr)
2882 and then Index_Checks_Suppressed (Entity (Expr))
2883 then
2884 return;
2885 end if;
2887 -- All other cases, check for Range_Checks suppressed
2889 else
2890 -- Check target type and its base type
2892 if Range_Checks_Suppressed (Target_Typ)
2893 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
2894 then
2895 return;
2897 -- Check expression itself if it is an entity name
2899 elsif Is_Entity_Name (Expr)
2900 and then Range_Checks_Suppressed (Entity (Expr))
2901 then
2902 return;
2904 -- If Expr is part of an assignment statement, then check left
2905 -- side of assignment if it is an entity name.
2907 elsif Nkind (Parnt) = N_Assignment_Statement
2908 and then Is_Entity_Name (Name (Parnt))
2909 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
2910 then
2911 return;
2912 end if;
2913 end if;
2914 end if;
2916 -- Do not set range checks if they are killed
2918 if Nkind (Expr) = N_Unchecked_Type_Conversion
2919 and then Kill_Range_Check (Expr)
2920 then
2921 return;
2922 end if;
2924 -- Do not set range checks for any values from System.Scalar_Values
2925 -- since the whole idea of such values is to avoid checking them.
2927 if Is_Entity_Name (Expr)
2928 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
2929 then
2930 return;
2931 end if;
2933 -- Now see if we need a check
2935 if No (Source_Typ) then
2936 S_Typ := Etype (Expr);
2937 else
2938 S_Typ := Source_Typ;
2939 end if;
2941 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
2942 return;
2943 end if;
2945 Is_Unconstrained_Subscr_Ref :=
2946 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
2948 -- Special checks for floating-point type
2950 if Is_Floating_Point_Type (S_Typ) then
2952 -- Always do a range check if the source type includes infinities and
2953 -- the target type does not include infinities. We do not do this if
2954 -- range checks are killed.
2955 -- If the expression is a literal and the bounds of the type are
2956 -- static constants it may be possible to optimize the check.
2958 if Has_Infinities (S_Typ)
2959 and then not Has_Infinities (Target_Typ)
2960 then
2961 -- If the expression is a literal and the bounds of the type are
2962 -- static constants it may be possible to optimize the check.
2964 if Nkind (Expr) = N_Real_Literal then
2965 declare
2966 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2967 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2969 begin
2970 if Compile_Time_Known_Value (Tlo)
2971 and then Compile_Time_Known_Value (Thi)
2972 and then Expr_Value_R (Expr) >= Expr_Value_R (Tlo)
2973 and then Expr_Value_R (Expr) <= Expr_Value_R (Thi)
2974 then
2975 return;
2976 else
2977 Enable_Range_Check (Expr);
2978 end if;
2979 end;
2981 else
2982 Enable_Range_Check (Expr);
2983 end if;
2984 end if;
2985 end if;
2987 -- Return if we know expression is definitely in the range of the target
2988 -- type as determined by Determine_Range. Right now we only do this for
2989 -- discrete types, and not fixed-point or floating-point types.
2991 -- The additional less-precise tests below catch these cases
2993 -- In GNATprove_Mode, also deal with the case of a conversion from
2994 -- floating-point to integer. It is only possible because analysis
2995 -- in GNATprove rules out the possibility of a NaN or infinite value.
2997 -- Note: skip this if we are given a source_typ, since the point of
2998 -- supplying a Source_Typ is to stop us looking at the expression.
2999 -- We could sharpen this test to be out parameters only ???
3001 if Is_Discrete_Type (Target_Typ)
3002 and then (Is_Discrete_Type (Etype (Expr))
3003 or else (GNATprove_Mode
3004 and then Is_Floating_Point_Type (Etype (Expr))))
3005 and then not Is_Unconstrained_Subscr_Ref
3006 and then No (Source_Typ)
3007 then
3008 declare
3009 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
3010 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
3012 begin
3013 if Compile_Time_Known_Value (Tlo)
3014 and then Compile_Time_Known_Value (Thi)
3015 then
3016 declare
3017 OK : Boolean := False; -- initialize to prevent warning
3018 Hiv : constant Uint := Expr_Value (Thi);
3019 Lov : constant Uint := Expr_Value (Tlo);
3020 Hi : Uint := No_Uint;
3021 Lo : Uint := No_Uint;
3023 begin
3024 -- If range is null, we for sure have a constraint error (we
3025 -- don't even need to look at the value involved, since all
3026 -- possible values will raise CE).
3028 if Lov > Hiv then
3030 -- When SPARK_Mode is On, force a warning instead of
3031 -- an error in that case, as this likely corresponds
3032 -- to deactivated code.
3034 Bad_Value (Warn => SPARK_Mode = On);
3036 -- In GNATprove mode, we enable the range check so that
3037 -- GNATprove will issue a message if it cannot be proved.
3039 if GNATprove_Mode then
3040 Enable_Range_Check (Expr);
3041 end if;
3043 return;
3044 end if;
3046 -- Otherwise determine range of value
3048 if Is_Discrete_Type (Etype (Expr)) then
3049 Determine_Range
3050 (Expr, OK, Lo, Hi, Assume_Valid => True);
3052 -- When converting a float to an integer type, determine the
3053 -- range in real first, and then convert the bounds using
3054 -- UR_To_Uint which correctly rounds away from zero when
3055 -- half way between two integers, as required by normal
3056 -- Ada 95 rounding semantics. It is only possible because
3057 -- analysis in GNATprove rules out the possibility of a NaN
3058 -- or infinite value.
3060 elsif GNATprove_Mode
3061 and then Is_Floating_Point_Type (Etype (Expr))
3062 then
3063 declare
3064 Hir : Ureal;
3065 Lor : Ureal;
3067 begin
3068 Determine_Range_R
3069 (Expr, OK, Lor, Hir, Assume_Valid => True);
3071 if OK then
3072 Lo := UR_To_Uint (Lor);
3073 Hi := UR_To_Uint (Hir);
3074 end if;
3075 end;
3076 end if;
3078 if OK then
3080 -- If definitely in range, all OK
3082 if Lo >= Lov and then Hi <= Hiv then
3083 return;
3085 -- If definitely not in range, warn
3087 elsif Lov > Hi or else Hiv < Lo then
3089 -- Ignore out of range values for System.Priority in
3090 -- CodePeer mode since the actual target compiler may
3091 -- provide a wider range.
3093 if not CodePeer_Mode
3094 or else Target_Typ /= RTE (RE_Priority)
3095 then
3096 Bad_Value;
3097 end if;
3099 return;
3101 -- Otherwise we don't know
3103 else
3104 null;
3105 end if;
3106 end if;
3107 end;
3108 end if;
3109 end;
3110 end if;
3112 Int_Real :=
3113 Is_Floating_Point_Type (S_Typ)
3114 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
3116 -- Check if we can determine at compile time whether Expr is in the
3117 -- range of the target type. Note that if S_Typ is within the bounds
3118 -- of Target_Typ then this must be the case. This check is meaningful
3119 -- only if this is not a conversion between integer and real types.
3121 if not Is_Unconstrained_Subscr_Ref
3122 and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
3123 and then
3124 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
3126 -- Also check if the expression itself is in the range of the
3127 -- target type if it is a known at compile time value. We skip
3128 -- this test if S_Typ is set since for OUT and IN OUT parameters
3129 -- the Expr itself is not relevant to the checking.
3131 or else
3132 (No (Source_Typ)
3133 and then Is_In_Range (Expr, Target_Typ,
3134 Assume_Valid => True,
3135 Fixed_Int => Fixed_Int,
3136 Int_Real => Int_Real)))
3137 then
3138 return;
3140 elsif Is_Out_Of_Range (Expr, Target_Typ,
3141 Assume_Valid => True,
3142 Fixed_Int => Fixed_Int,
3143 Int_Real => Int_Real)
3144 then
3145 Bad_Value;
3146 return;
3148 -- Floating-point case
3149 -- In the floating-point case, we only do range checks if the type is
3150 -- constrained. We definitely do NOT want range checks for unconstrained
3151 -- types, since we want to have infinities, except when
3152 -- Check_Float_Overflow is set.
3154 elsif Is_Floating_Point_Type (S_Typ) then
3155 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
3156 Enable_Range_Check (Expr);
3157 end if;
3159 -- For all other cases we enable a range check unconditionally
3161 else
3162 Enable_Range_Check (Expr);
3163 return;
3164 end if;
3165 end Apply_Scalar_Range_Check;
3167 ----------------------------------
3168 -- Apply_Selected_Length_Checks --
3169 ----------------------------------
3171 procedure Apply_Selected_Length_Checks
3172 (Ck_Node : Node_Id;
3173 Target_Typ : Entity_Id;
3174 Source_Typ : Entity_Id;
3175 Do_Static : Boolean)
3177 Checks_On : constant Boolean :=
3178 not Index_Checks_Suppressed (Target_Typ)
3179 or else
3180 not Length_Checks_Suppressed (Target_Typ);
3182 Loc : constant Source_Ptr := Sloc (Ck_Node);
3184 Cond : Node_Id;
3185 R_Cno : Node_Id;
3186 R_Result : Check_Result;
3188 begin
3189 -- Only apply checks when generating code
3191 -- Note: this means that we lose some useful warnings if the expander
3192 -- is not active.
3194 if not Expander_Active then
3195 return;
3196 end if;
3198 R_Result :=
3199 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3201 for J in 1 .. 2 loop
3202 R_Cno := R_Result (J);
3203 exit when No (R_Cno);
3205 -- A length check may mention an Itype which is attached to a
3206 -- subsequent node. At the top level in a package this can cause
3207 -- an order-of-elaboration problem, so we make sure that the itype
3208 -- is referenced now.
3210 if Ekind (Current_Scope) = E_Package
3211 and then Is_Compilation_Unit (Current_Scope)
3212 then
3213 Ensure_Defined (Target_Typ, Ck_Node);
3215 if Present (Source_Typ) then
3216 Ensure_Defined (Source_Typ, Ck_Node);
3218 elsif Is_Itype (Etype (Ck_Node)) then
3219 Ensure_Defined (Etype (Ck_Node), Ck_Node);
3220 end if;
3221 end if;
3223 -- If the item is a conditional raise of constraint error, then have
3224 -- a look at what check is being performed and ???
3226 if Nkind (R_Cno) = N_Raise_Constraint_Error
3227 and then Present (Condition (R_Cno))
3228 then
3229 Cond := Condition (R_Cno);
3231 -- Case where node does not now have a dynamic check
3233 if not Has_Dynamic_Length_Check (Ck_Node) then
3235 -- If checks are on, just insert the check
3237 if Checks_On then
3238 Insert_Action (Ck_Node, R_Cno);
3240 if not Do_Static then
3241 Set_Has_Dynamic_Length_Check (Ck_Node);
3242 end if;
3244 -- If checks are off, then analyze the length check after
3245 -- temporarily attaching it to the tree in case the relevant
3246 -- condition can be evaluated at compile time. We still want a
3247 -- compile time warning in this case.
3249 else
3250 Set_Parent (R_Cno, Ck_Node);
3251 Analyze (R_Cno);
3252 end if;
3253 end if;
3255 -- Output a warning if the condition is known to be True
3257 if Is_Entity_Name (Cond)
3258 and then Entity (Cond) = Standard_True
3259 then
3260 Apply_Compile_Time_Constraint_Error
3261 (Ck_Node, "wrong length for array of}??",
3262 CE_Length_Check_Failed,
3263 Ent => Target_Typ,
3264 Typ => Target_Typ);
3266 -- If we were only doing a static check, or if checks are not
3267 -- on, then we want to delete the check, since it is not needed.
3268 -- We do this by replacing the if statement by a null statement
3270 elsif Do_Static or else not Checks_On then
3271 Remove_Warning_Messages (R_Cno);
3272 Rewrite (R_Cno, Make_Null_Statement (Loc));
3273 end if;
3275 else
3276 Install_Static_Check (R_Cno, Loc);
3277 end if;
3278 end loop;
3279 end Apply_Selected_Length_Checks;
3281 ---------------------------------
3282 -- Apply_Selected_Range_Checks --
3283 ---------------------------------
3285 procedure Apply_Selected_Range_Checks
3286 (Ck_Node : Node_Id;
3287 Target_Typ : Entity_Id;
3288 Source_Typ : Entity_Id;
3289 Do_Static : Boolean)
3291 Checks_On : constant Boolean :=
3292 not Index_Checks_Suppressed (Target_Typ)
3293 or else
3294 not Range_Checks_Suppressed (Target_Typ);
3296 Loc : constant Source_Ptr := Sloc (Ck_Node);
3298 Cond : Node_Id;
3299 R_Cno : Node_Id;
3300 R_Result : Check_Result;
3302 begin
3303 -- Only apply checks when generating code. In GNATprove mode, we do not
3304 -- apply the checks, but we still call Selected_Range_Checks to possibly
3305 -- issue errors on SPARK code when a run-time error can be detected at
3306 -- compile time.
3308 if not GNATprove_Mode then
3309 if not Expander_Active or not Checks_On then
3310 return;
3311 end if;
3312 end if;
3314 R_Result :=
3315 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3317 if GNATprove_Mode then
3318 return;
3319 end if;
3321 for J in 1 .. 2 loop
3322 R_Cno := R_Result (J);
3323 exit when No (R_Cno);
3325 -- The range check requires runtime evaluation. Depending on what its
3326 -- triggering condition is, the check may be converted into a compile
3327 -- time constraint check.
3329 if Nkind (R_Cno) = N_Raise_Constraint_Error
3330 and then Present (Condition (R_Cno))
3331 then
3332 Cond := Condition (R_Cno);
3334 -- Insert the range check before the related context. Note that
3335 -- this action analyses the triggering condition.
3337 Insert_Action (Ck_Node, R_Cno);
3339 -- This old code doesn't make sense, why is the context flagged as
3340 -- requiring dynamic range checks now in the middle of generating
3341 -- them ???
3343 if not Do_Static then
3344 Set_Has_Dynamic_Range_Check (Ck_Node);
3345 end if;
3347 -- The triggering condition evaluates to True, the range check
3348 -- can be converted into a compile time constraint check.
3350 if Is_Entity_Name (Cond)
3351 and then Entity (Cond) = Standard_True
3352 then
3353 -- Since an N_Range is technically not an expression, we have
3354 -- to set one of the bounds to C_E and then just flag the
3355 -- N_Range. The warning message will point to the lower bound
3356 -- and complain about a range, which seems OK.
3358 if Nkind (Ck_Node) = N_Range then
3359 Apply_Compile_Time_Constraint_Error
3360 (Low_Bound (Ck_Node),
3361 "static range out of bounds of}??",
3362 CE_Range_Check_Failed,
3363 Ent => Target_Typ,
3364 Typ => Target_Typ);
3366 Set_Raises_Constraint_Error (Ck_Node);
3368 else
3369 Apply_Compile_Time_Constraint_Error
3370 (Ck_Node,
3371 "static value out of range of}??",
3372 CE_Range_Check_Failed,
3373 Ent => Target_Typ,
3374 Typ => Target_Typ);
3375 end if;
3377 -- If we were only doing a static check, or if checks are not
3378 -- on, then we want to delete the check, since it is not needed.
3379 -- We do this by replacing the if statement by a null statement
3381 elsif Do_Static then
3382 Remove_Warning_Messages (R_Cno);
3383 Rewrite (R_Cno, Make_Null_Statement (Loc));
3384 end if;
3386 -- The range check raises Constraint_Error explicitly
3388 else
3389 Install_Static_Check (R_Cno, Loc);
3390 end if;
3391 end loop;
3392 end Apply_Selected_Range_Checks;
3394 -------------------------------
3395 -- Apply_Static_Length_Check --
3396 -------------------------------
3398 procedure Apply_Static_Length_Check
3399 (Expr : Node_Id;
3400 Target_Typ : Entity_Id;
3401 Source_Typ : Entity_Id := Empty)
3403 begin
3404 Apply_Selected_Length_Checks
3405 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3406 end Apply_Static_Length_Check;
3408 -------------------------------------
3409 -- Apply_Subscript_Validity_Checks --
3410 -------------------------------------
3412 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3413 Sub : Node_Id;
3415 begin
3416 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3418 -- Loop through subscripts
3420 Sub := First (Expressions (Expr));
3421 while Present (Sub) loop
3423 -- Check one subscript. Note that we do not worry about enumeration
3424 -- type with holes, since we will convert the value to a Pos value
3425 -- for the subscript, and that convert will do the necessary validity
3426 -- check.
3428 Ensure_Valid (Sub, Holes_OK => True);
3430 -- Move to next subscript
3432 Sub := Next (Sub);
3433 end loop;
3434 end Apply_Subscript_Validity_Checks;
3436 ----------------------------------
3437 -- Apply_Type_Conversion_Checks --
3438 ----------------------------------
3440 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3441 Target_Type : constant Entity_Id := Etype (N);
3442 Target_Base : constant Entity_Id := Base_Type (Target_Type);
3443 Expr : constant Node_Id := Expression (N);
3445 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
3446 -- Note: if Etype (Expr) is a private type without discriminants, its
3447 -- full view might have discriminants with defaults, so we need the
3448 -- full view here to retrieve the constraints.
3450 begin
3451 if Inside_A_Generic then
3452 return;
3454 -- Skip these checks if serious errors detected, there are some nasty
3455 -- situations of incomplete trees that blow things up.
3457 elsif Serious_Errors_Detected > 0 then
3458 return;
3460 -- Never generate discriminant checks for Unchecked_Union types
3462 elsif Present (Expr_Type)
3463 and then Is_Unchecked_Union (Expr_Type)
3464 then
3465 return;
3467 -- Scalar type conversions of the form Target_Type (Expr) require a
3468 -- range check if we cannot be sure that Expr is in the base type of
3469 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3470 -- are not quite the same condition from an implementation point of
3471 -- view, but clearly the second includes the first.
3473 elsif Is_Scalar_Type (Target_Type) then
3474 declare
3475 Conv_OK : constant Boolean := Conversion_OK (N);
3476 -- If the Conversion_OK flag on the type conversion is set and no
3477 -- floating-point type is involved in the type conversion then
3478 -- fixed-point values must be read as integral values.
3480 Float_To_Int : constant Boolean :=
3481 Is_Floating_Point_Type (Expr_Type)
3482 and then Is_Integer_Type (Target_Type);
3484 begin
3485 if not Overflow_Checks_Suppressed (Target_Base)
3486 and then not Overflow_Checks_Suppressed (Target_Type)
3487 and then not
3488 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
3489 and then not Float_To_Int
3490 then
3491 -- A small optimization: the attribute 'Pos applied to an
3492 -- enumeration type has a known range, even though its type is
3493 -- Universal_Integer. So in numeric conversions it is usually
3494 -- within range of the target integer type. Use the static
3495 -- bounds of the base types to check. Disable this optimization
3496 -- in case of a generic formal discrete type, because we don't
3497 -- necessarily know the upper bound yet.
3499 if Nkind (Expr) = N_Attribute_Reference
3500 and then Attribute_Name (Expr) = Name_Pos
3501 and then Is_Enumeration_Type (Etype (Prefix (Expr)))
3502 and then not Is_Generic_Type (Etype (Prefix (Expr)))
3503 and then Is_Integer_Type (Target_Type)
3504 then
3505 declare
3506 Enum_T : constant Entity_Id :=
3507 Root_Type (Etype (Prefix (Expr)));
3508 Int_T : constant Entity_Id := Base_Type (Target_Type);
3509 Last_I : constant Uint :=
3510 Intval (High_Bound (Scalar_Range (Int_T)));
3511 Last_E : Uint;
3513 begin
3514 -- Character types have no explicit literals, so we use
3515 -- the known number of characters in the type.
3517 if Root_Type (Enum_T) = Standard_Character then
3518 Last_E := UI_From_Int (255);
3520 elsif Enum_T = Standard_Wide_Character
3521 or else Enum_T = Standard_Wide_Wide_Character
3522 then
3523 Last_E := UI_From_Int (65535);
3525 else
3526 Last_E :=
3527 Enumeration_Pos
3528 (Entity (High_Bound (Scalar_Range (Enum_T))));
3529 end if;
3531 if Last_E <= Last_I then
3532 null;
3534 else
3535 Activate_Overflow_Check (N);
3536 end if;
3537 end;
3539 else
3540 Activate_Overflow_Check (N);
3541 end if;
3542 end if;
3544 if not Range_Checks_Suppressed (Target_Type)
3545 and then not Range_Checks_Suppressed (Expr_Type)
3546 then
3547 if Float_To_Int
3548 and then not GNATprove_Mode
3549 then
3550 Apply_Float_Conversion_Check (Expr, Target_Type);
3552 else
3553 Apply_Scalar_Range_Check
3554 (Expr, Target_Type, Fixed_Int => Conv_OK);
3556 -- If the target type has predicates, we need to indicate
3557 -- the need for a check, even if Determine_Range finds that
3558 -- the value is within bounds. This may be the case e.g for
3559 -- a division with a constant denominator.
3561 if Has_Predicates (Target_Type) then
3562 Enable_Range_Check (Expr);
3563 end if;
3564 end if;
3565 end if;
3566 end;
3568 elsif Comes_From_Source (N)
3569 and then not Discriminant_Checks_Suppressed (Target_Type)
3570 and then Is_Record_Type (Target_Type)
3571 and then Is_Derived_Type (Target_Type)
3572 and then not Is_Tagged_Type (Target_Type)
3573 and then not Is_Constrained (Target_Type)
3574 and then Present (Stored_Constraint (Target_Type))
3575 then
3576 -- An unconstrained derived type may have inherited discriminant.
3577 -- Build an actual discriminant constraint list using the stored
3578 -- constraint, to verify that the expression of the parent type
3579 -- satisfies the constraints imposed by the (unconstrained) derived
3580 -- type. This applies to value conversions, not to view conversions
3581 -- of tagged types.
3583 declare
3584 Loc : constant Source_Ptr := Sloc (N);
3585 Cond : Node_Id;
3586 Constraint : Elmt_Id;
3587 Discr_Value : Node_Id;
3588 Discr : Entity_Id;
3590 New_Constraints : constant Elist_Id := New_Elmt_List;
3591 Old_Constraints : constant Elist_Id :=
3592 Discriminant_Constraint (Expr_Type);
3594 begin
3595 Constraint := First_Elmt (Stored_Constraint (Target_Type));
3596 while Present (Constraint) loop
3597 Discr_Value := Node (Constraint);
3599 if Is_Entity_Name (Discr_Value)
3600 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3601 then
3602 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3604 if Present (Discr)
3605 and then Scope (Discr) = Base_Type (Expr_Type)
3606 then
3607 -- Parent is constrained by new discriminant. Obtain
3608 -- Value of original discriminant in expression. If the
3609 -- new discriminant has been used to constrain more than
3610 -- one of the stored discriminants, this will provide the
3611 -- required consistency check.
3613 Append_Elmt
3614 (Make_Selected_Component (Loc,
3615 Prefix =>
3616 Duplicate_Subexpr_No_Checks
3617 (Expr, Name_Req => True),
3618 Selector_Name =>
3619 Make_Identifier (Loc, Chars (Discr))),
3620 New_Constraints);
3622 else
3623 -- Discriminant of more remote ancestor ???
3625 return;
3626 end if;
3628 -- Derived type definition has an explicit value for this
3629 -- stored discriminant.
3631 else
3632 Append_Elmt
3633 (Duplicate_Subexpr_No_Checks (Discr_Value),
3634 New_Constraints);
3635 end if;
3637 Next_Elmt (Constraint);
3638 end loop;
3640 -- Use the unconstrained expression type to retrieve the
3641 -- discriminants of the parent, and apply momentarily the
3642 -- discriminant constraint synthesized above.
3644 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3645 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3646 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3648 Insert_Action (N,
3649 Make_Raise_Constraint_Error (Loc,
3650 Condition => Cond,
3651 Reason => CE_Discriminant_Check_Failed));
3652 end;
3654 -- For arrays, checks are set now, but conversions are applied during
3655 -- expansion, to take into accounts changes of representation. The
3656 -- checks become range checks on the base type or length checks on the
3657 -- subtype, depending on whether the target type is unconstrained or
3658 -- constrained. Note that the range check is put on the expression of a
3659 -- type conversion, while the length check is put on the type conversion
3660 -- itself.
3662 elsif Is_Array_Type (Target_Type) then
3663 if Is_Constrained (Target_Type) then
3664 Set_Do_Length_Check (N);
3665 else
3666 Set_Do_Range_Check (Expr);
3667 end if;
3668 end if;
3669 end Apply_Type_Conversion_Checks;
3671 ----------------------------------------------
3672 -- Apply_Universal_Integer_Attribute_Checks --
3673 ----------------------------------------------
3675 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3676 Loc : constant Source_Ptr := Sloc (N);
3677 Typ : constant Entity_Id := Etype (N);
3679 begin
3680 if Inside_A_Generic then
3681 return;
3683 -- Nothing to do if checks are suppressed
3685 elsif Range_Checks_Suppressed (Typ)
3686 and then Overflow_Checks_Suppressed (Typ)
3687 then
3688 return;
3690 -- Nothing to do if the attribute does not come from source. The
3691 -- internal attributes we generate of this type do not need checks,
3692 -- and furthermore the attempt to check them causes some circular
3693 -- elaboration orders when dealing with packed types.
3695 elsif not Comes_From_Source (N) then
3696 return;
3698 -- If the prefix is a selected component that depends on a discriminant
3699 -- the check may improperly expose a discriminant instead of using
3700 -- the bounds of the object itself. Set the type of the attribute to
3701 -- the base type of the context, so that a check will be imposed when
3702 -- needed (e.g. if the node appears as an index).
3704 elsif Nkind (Prefix (N)) = N_Selected_Component
3705 and then Ekind (Typ) = E_Signed_Integer_Subtype
3706 and then Depends_On_Discriminant (Scalar_Range (Typ))
3707 then
3708 Set_Etype (N, Base_Type (Typ));
3710 -- Otherwise, replace the attribute node with a type conversion node
3711 -- whose expression is the attribute, retyped to universal integer, and
3712 -- whose subtype mark is the target type. The call to analyze this
3713 -- conversion will set range and overflow checks as required for proper
3714 -- detection of an out of range value.
3716 else
3717 Set_Etype (N, Universal_Integer);
3718 Set_Analyzed (N, True);
3720 Rewrite (N,
3721 Make_Type_Conversion (Loc,
3722 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3723 Expression => Relocate_Node (N)));
3725 Analyze_And_Resolve (N, Typ);
3726 return;
3727 end if;
3728 end Apply_Universal_Integer_Attribute_Checks;
3730 -------------------------------------
3731 -- Atomic_Synchronization_Disabled --
3732 -------------------------------------
3734 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3735 -- using a bogus check called Atomic_Synchronization. This is to make it
3736 -- more convenient to get exactly the same semantics as [Un]Suppress.
3738 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3739 begin
3740 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3741 -- looks enabled, since it is never disabled.
3743 if Debug_Flag_Dot_E then
3744 return False;
3746 -- If debug flag d.d is set then always return True, i.e. all atomic
3747 -- sync looks disabled, since it always tests True.
3749 elsif Debug_Flag_Dot_D then
3750 return True;
3752 -- If entity present, then check result for that entity
3754 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
3755 return Is_Check_Suppressed (E, Atomic_Synchronization);
3757 -- Otherwise result depends on current scope setting
3759 else
3760 return Scope_Suppress.Suppress (Atomic_Synchronization);
3761 end if;
3762 end Atomic_Synchronization_Disabled;
3764 -------------------------------
3765 -- Build_Discriminant_Checks --
3766 -------------------------------
3768 function Build_Discriminant_Checks
3769 (N : Node_Id;
3770 T_Typ : Entity_Id) return Node_Id
3772 Loc : constant Source_Ptr := Sloc (N);
3773 Cond : Node_Id;
3774 Disc : Elmt_Id;
3775 Disc_Ent : Entity_Id;
3776 Dref : Node_Id;
3777 Dval : Node_Id;
3779 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3781 --------------------------------
3782 -- Aggregate_Discriminant_Val --
3783 --------------------------------
3785 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3786 Assoc : Node_Id;
3788 begin
3789 -- The aggregate has been normalized with named associations. We use
3790 -- the Chars field to locate the discriminant to take into account
3791 -- discriminants in derived types, which carry the same name as those
3792 -- in the parent.
3794 Assoc := First (Component_Associations (N));
3795 while Present (Assoc) loop
3796 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3797 return Expression (Assoc);
3798 else
3799 Next (Assoc);
3800 end if;
3801 end loop;
3803 -- Discriminant must have been found in the loop above
3805 raise Program_Error;
3806 end Aggregate_Discriminant_Val;
3808 -- Start of processing for Build_Discriminant_Checks
3810 begin
3811 -- Loop through discriminants evolving the condition
3813 Cond := Empty;
3814 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3816 -- For a fully private type, use the discriminants of the parent type
3818 if Is_Private_Type (T_Typ)
3819 and then No (Full_View (T_Typ))
3820 then
3821 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3822 else
3823 Disc_Ent := First_Discriminant (T_Typ);
3824 end if;
3826 while Present (Disc) loop
3827 Dval := Node (Disc);
3829 if Nkind (Dval) = N_Identifier
3830 and then Ekind (Entity (Dval)) = E_Discriminant
3831 then
3832 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3833 else
3834 Dval := Duplicate_Subexpr_No_Checks (Dval);
3835 end if;
3837 -- If we have an Unchecked_Union node, we can infer the discriminants
3838 -- of the node.
3840 if Is_Unchecked_Union (Base_Type (T_Typ)) then
3841 Dref := New_Copy (
3842 Get_Discriminant_Value (
3843 First_Discriminant (T_Typ),
3844 T_Typ,
3845 Stored_Constraint (T_Typ)));
3847 elsif Nkind (N) = N_Aggregate then
3848 Dref :=
3849 Duplicate_Subexpr_No_Checks
3850 (Aggregate_Discriminant_Val (Disc_Ent));
3852 else
3853 Dref :=
3854 Make_Selected_Component (Loc,
3855 Prefix =>
3856 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
3857 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
3859 Set_Is_In_Discriminant_Check (Dref);
3860 end if;
3862 Evolve_Or_Else (Cond,
3863 Make_Op_Ne (Loc,
3864 Left_Opnd => Dref,
3865 Right_Opnd => Dval));
3867 Next_Elmt (Disc);
3868 Next_Discriminant (Disc_Ent);
3869 end loop;
3871 return Cond;
3872 end Build_Discriminant_Checks;
3874 ------------------
3875 -- Check_Needed --
3876 ------------------
3878 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3879 N : Node_Id;
3880 P : Node_Id;
3881 K : Node_Kind;
3882 L : Node_Id;
3883 R : Node_Id;
3885 function Left_Expression (Op : Node_Id) return Node_Id;
3886 -- Return the relevant expression from the left operand of the given
3887 -- short circuit form: this is LO itself, except if LO is a qualified
3888 -- expression, a type conversion, or an expression with actions, in
3889 -- which case this is Left_Expression (Expression (LO)).
3891 ---------------------
3892 -- Left_Expression --
3893 ---------------------
3895 function Left_Expression (Op : Node_Id) return Node_Id is
3896 LE : Node_Id := Left_Opnd (Op);
3897 begin
3898 while Nkind_In (LE, N_Qualified_Expression,
3899 N_Type_Conversion,
3900 N_Expression_With_Actions)
3901 loop
3902 LE := Expression (LE);
3903 end loop;
3905 return LE;
3906 end Left_Expression;
3908 -- Start of processing for Check_Needed
3910 begin
3911 -- Always check if not simple entity
3913 if Nkind (Nod) not in N_Has_Entity
3914 or else not Comes_From_Source (Nod)
3915 then
3916 return True;
3917 end if;
3919 -- Look up tree for short circuit
3921 N := Nod;
3922 loop
3923 P := Parent (N);
3924 K := Nkind (P);
3926 -- Done if out of subexpression (note that we allow generated stuff
3927 -- such as itype declarations in this context, to keep the loop going
3928 -- since we may well have generated such stuff in complex situations.
3929 -- Also done if no parent (probably an error condition, but no point
3930 -- in behaving nasty if we find it).
3932 if No (P)
3933 or else (K not in N_Subexpr and then Comes_From_Source (P))
3934 then
3935 return True;
3937 -- Or/Or Else case, where test is part of the right operand, or is
3938 -- part of one of the actions associated with the right operand, and
3939 -- the left operand is an equality test.
3941 elsif K = N_Op_Or then
3942 exit when N = Right_Opnd (P)
3943 and then Nkind (Left_Expression (P)) = N_Op_Eq;
3945 elsif K = N_Or_Else then
3946 exit when (N = Right_Opnd (P)
3947 or else
3948 (Is_List_Member (N)
3949 and then List_Containing (N) = Actions (P)))
3950 and then Nkind (Left_Expression (P)) = N_Op_Eq;
3952 -- Similar test for the And/And then case, where the left operand
3953 -- is an inequality test.
3955 elsif K = N_Op_And then
3956 exit when N = Right_Opnd (P)
3957 and then Nkind (Left_Expression (P)) = N_Op_Ne;
3959 elsif K = N_And_Then then
3960 exit when (N = Right_Opnd (P)
3961 or else
3962 (Is_List_Member (N)
3963 and then List_Containing (N) = Actions (P)))
3964 and then Nkind (Left_Expression (P)) = N_Op_Ne;
3965 end if;
3967 N := P;
3968 end loop;
3970 -- If we fall through the loop, then we have a conditional with an
3971 -- appropriate test as its left operand, so look further.
3973 L := Left_Expression (P);
3975 -- L is an "=" or "/=" operator: extract its operands
3977 R := Right_Opnd (L);
3978 L := Left_Opnd (L);
3980 -- Left operand of test must match original variable
3982 if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
3983 return True;
3984 end if;
3986 -- Right operand of test must be key value (zero or null)
3988 case Check is
3989 when Access_Check =>
3990 if not Known_Null (R) then
3991 return True;
3992 end if;
3994 when Division_Check =>
3995 if not Compile_Time_Known_Value (R)
3996 or else Expr_Value (R) /= Uint_0
3997 then
3998 return True;
3999 end if;
4001 when others =>
4002 raise Program_Error;
4003 end case;
4005 -- Here we have the optimizable case, warn if not short-circuited
4007 if K = N_Op_And or else K = N_Op_Or then
4008 Error_Msg_Warn := SPARK_Mode /= On;
4010 case Check is
4011 when Access_Check =>
4012 if GNATprove_Mode then
4013 Error_Msg_N
4014 ("Constraint_Error might have been raised (access check)",
4015 Parent (Nod));
4016 else
4017 Error_Msg_N
4018 ("Constraint_Error may be raised (access check)??",
4019 Parent (Nod));
4020 end if;
4022 when Division_Check =>
4023 if GNATprove_Mode then
4024 Error_Msg_N
4025 ("Constraint_Error might have been raised (zero divide)",
4026 Parent (Nod));
4027 else
4028 Error_Msg_N
4029 ("Constraint_Error may be raised (zero divide)??",
4030 Parent (Nod));
4031 end if;
4033 when others =>
4034 raise Program_Error;
4035 end case;
4037 if K = N_Op_And then
4038 Error_Msg_N -- CODEFIX
4039 ("use `AND THEN` instead of AND??", P);
4040 else
4041 Error_Msg_N -- CODEFIX
4042 ("use `OR ELSE` instead of OR??", P);
4043 end if;
4045 -- If not short-circuited, we need the check
4047 return True;
4049 -- If short-circuited, we can omit the check
4051 else
4052 return False;
4053 end if;
4054 end Check_Needed;
4056 -----------------------------------
4057 -- Check_Valid_Lvalue_Subscripts --
4058 -----------------------------------
4060 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
4061 begin
4062 -- Skip this if range checks are suppressed
4064 if Range_Checks_Suppressed (Etype (Expr)) then
4065 return;
4067 -- Only do this check for expressions that come from source. We assume
4068 -- that expander generated assignments explicitly include any necessary
4069 -- checks. Note that this is not just an optimization, it avoids
4070 -- infinite recursions.
4072 elsif not Comes_From_Source (Expr) then
4073 return;
4075 -- For a selected component, check the prefix
4077 elsif Nkind (Expr) = N_Selected_Component then
4078 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4079 return;
4081 -- Case of indexed component
4083 elsif Nkind (Expr) = N_Indexed_Component then
4084 Apply_Subscript_Validity_Checks (Expr);
4086 -- Prefix may itself be or contain an indexed component, and these
4087 -- subscripts need checking as well.
4089 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4090 end if;
4091 end Check_Valid_Lvalue_Subscripts;
4093 ----------------------------------
4094 -- Null_Exclusion_Static_Checks --
4095 ----------------------------------
4097 procedure Null_Exclusion_Static_Checks
4098 (N : Node_Id;
4099 Comp : Node_Id := Empty;
4100 Array_Comp : Boolean := False)
4102 Has_Null : constant Boolean := Has_Null_Exclusion (N);
4103 Kind : constant Node_Kind := Nkind (N);
4104 Error_Nod : Node_Id;
4105 Expr : Node_Id;
4106 Typ : Entity_Id;
4108 begin
4109 pragma Assert
4110 (Nkind_In (Kind, N_Component_Declaration,
4111 N_Discriminant_Specification,
4112 N_Function_Specification,
4113 N_Object_Declaration,
4114 N_Parameter_Specification));
4116 if Kind = N_Function_Specification then
4117 Typ := Etype (Defining_Entity (N));
4118 else
4119 Typ := Etype (Defining_Identifier (N));
4120 end if;
4122 case Kind is
4123 when N_Component_Declaration =>
4124 if Present (Access_Definition (Component_Definition (N))) then
4125 Error_Nod := Component_Definition (N);
4126 else
4127 Error_Nod := Subtype_Indication (Component_Definition (N));
4128 end if;
4130 when N_Discriminant_Specification =>
4131 Error_Nod := Discriminant_Type (N);
4133 when N_Function_Specification =>
4134 Error_Nod := Result_Definition (N);
4136 when N_Object_Declaration =>
4137 Error_Nod := Object_Definition (N);
4139 when N_Parameter_Specification =>
4140 Error_Nod := Parameter_Type (N);
4142 when others =>
4143 raise Program_Error;
4144 end case;
4146 if Has_Null then
4148 -- Enforce legality rule 3.10 (13): A null exclusion can only be
4149 -- applied to an access [sub]type.
4151 if not Is_Access_Type (Typ) then
4152 Error_Msg_N
4153 ("`NOT NULL` allowed only for an access type", Error_Nod);
4155 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
4156 -- be applied to a [sub]type that does not exclude null already.
4158 elsif Can_Never_Be_Null (Typ) and then Comes_From_Source (Typ) then
4159 Error_Msg_NE
4160 ("`NOT NULL` not allowed (& already excludes null)",
4161 Error_Nod, Typ);
4162 end if;
4163 end if;
4165 -- Check that null-excluding objects are always initialized, except for
4166 -- deferred constants, for which the expression will appear in the full
4167 -- declaration.
4169 if Kind = N_Object_Declaration
4170 and then No (Expression (N))
4171 and then not Constant_Present (N)
4172 and then not No_Initialization (N)
4173 then
4174 if Present (Comp) then
4176 -- Specialize the warning message to indicate that we are dealing
4177 -- with an uninitialized composite object that has a defaulted
4178 -- null-excluding component.
4180 Error_Msg_Name_1 := Chars (Defining_Identifier (Comp));
4181 Error_Msg_Name_2 := Chars (Defining_Identifier (N));
4183 Discard_Node
4184 (Compile_Time_Constraint_Error
4185 (N => N,
4186 Msg =>
4187 "(Ada 2005) null-excluding component % of object % must "
4188 & "be initialized??",
4189 Ent => Defining_Identifier (Comp)));
4191 -- This is a case of an array with null-excluding components, so
4192 -- indicate that in the warning.
4194 elsif Array_Comp then
4195 Discard_Node
4196 (Compile_Time_Constraint_Error
4197 (N => N,
4198 Msg =>
4199 "(Ada 2005) null-excluding array components must "
4200 & "be initialized??",
4201 Ent => Defining_Identifier (N)));
4203 -- Normal case of object of a null-excluding access type
4205 else
4206 -- Add an expression that assigns null. This node is needed by
4207 -- Apply_Compile_Time_Constraint_Error, which will replace this
4208 -- with a Constraint_Error node.
4210 Set_Expression (N, Make_Null (Sloc (N)));
4211 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
4213 Apply_Compile_Time_Constraint_Error
4214 (N => Expression (N),
4215 Msg =>
4216 "(Ada 2005) null-excluding objects must be initialized??",
4217 Reason => CE_Null_Not_Allowed);
4218 end if;
4219 end if;
4221 -- Check that a null-excluding component, formal or object is not being
4222 -- assigned a null value. Otherwise generate a warning message and
4223 -- replace Expression (N) by an N_Constraint_Error node.
4225 if Kind /= N_Function_Specification then
4226 Expr := Expression (N);
4228 if Present (Expr) and then Known_Null (Expr) then
4229 case Kind is
4230 when N_Component_Declaration
4231 | N_Discriminant_Specification
4233 Apply_Compile_Time_Constraint_Error
4234 (N => Expr,
4235 Msg =>
4236 "(Ada 2005) null not allowed in null-excluding "
4237 & "components??",
4238 Reason => CE_Null_Not_Allowed);
4240 when N_Object_Declaration =>
4241 Apply_Compile_Time_Constraint_Error
4242 (N => Expr,
4243 Msg =>
4244 "(Ada 2005) null not allowed in null-excluding "
4245 & "objects??",
4246 Reason => CE_Null_Not_Allowed);
4248 when N_Parameter_Specification =>
4249 Apply_Compile_Time_Constraint_Error
4250 (N => Expr,
4251 Msg =>
4252 "(Ada 2005) null not allowed in null-excluding "
4253 & "formals??",
4254 Reason => CE_Null_Not_Allowed);
4256 when others =>
4257 null;
4258 end case;
4259 end if;
4260 end if;
4261 end Null_Exclusion_Static_Checks;
4263 ----------------------------------
4264 -- Conditional_Statements_Begin --
4265 ----------------------------------
4267 procedure Conditional_Statements_Begin is
4268 begin
4269 Saved_Checks_TOS := Saved_Checks_TOS + 1;
4271 -- If stack overflows, kill all checks, that way we know to simply reset
4272 -- the number of saved checks to zero on return. This should never occur
4273 -- in practice.
4275 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4276 Kill_All_Checks;
4278 -- In the normal case, we just make a new stack entry saving the current
4279 -- number of saved checks for a later restore.
4281 else
4282 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4284 if Debug_Flag_CC then
4285 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4286 Num_Saved_Checks);
4287 end if;
4288 end if;
4289 end Conditional_Statements_Begin;
4291 --------------------------------
4292 -- Conditional_Statements_End --
4293 --------------------------------
4295 procedure Conditional_Statements_End is
4296 begin
4297 pragma Assert (Saved_Checks_TOS > 0);
4299 -- If the saved checks stack overflowed, then we killed all checks, so
4300 -- setting the number of saved checks back to zero is correct. This
4301 -- should never occur in practice.
4303 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4304 Num_Saved_Checks := 0;
4306 -- In the normal case, restore the number of saved checks from the top
4307 -- stack entry.
4309 else
4310 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
4312 if Debug_Flag_CC then
4313 w ("Conditional_Statements_End: Num_Saved_Checks = ",
4314 Num_Saved_Checks);
4315 end if;
4316 end if;
4318 Saved_Checks_TOS := Saved_Checks_TOS - 1;
4319 end Conditional_Statements_End;
4321 -------------------------
4322 -- Convert_From_Bignum --
4323 -------------------------
4325 function Convert_From_Bignum (N : Node_Id) return Node_Id is
4326 Loc : constant Source_Ptr := Sloc (N);
4328 begin
4329 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4331 -- Construct call From Bignum
4333 return
4334 Make_Function_Call (Loc,
4335 Name =>
4336 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4337 Parameter_Associations => New_List (Relocate_Node (N)));
4338 end Convert_From_Bignum;
4340 -----------------------
4341 -- Convert_To_Bignum --
4342 -----------------------
4344 function Convert_To_Bignum (N : Node_Id) return Node_Id is
4345 Loc : constant Source_Ptr := Sloc (N);
4347 begin
4348 -- Nothing to do if Bignum already except call Relocate_Node
4350 if Is_RTE (Etype (N), RE_Bignum) then
4351 return Relocate_Node (N);
4353 -- Otherwise construct call to To_Bignum, converting the operand to the
4354 -- required Long_Long_Integer form.
4356 else
4357 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4358 return
4359 Make_Function_Call (Loc,
4360 Name =>
4361 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4362 Parameter_Associations => New_List (
4363 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4364 end if;
4365 end Convert_To_Bignum;
4367 ---------------------
4368 -- Determine_Range --
4369 ---------------------
4371 Cache_Size : constant := 2 ** 10;
4372 type Cache_Index is range 0 .. Cache_Size - 1;
4373 -- Determine size of below cache (power of 2 is more efficient)
4375 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
4376 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
4377 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
4378 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
4379 Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4380 Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
4381 -- The above arrays are used to implement a small direct cache for
4382 -- Determine_Range and Determine_Range_R calls. Because of the way these
4383 -- subprograms recursively traces subexpressions, and because overflow
4384 -- checking calls the routine on the way up the tree, a quadratic behavior
4385 -- can otherwise be encountered in large expressions. The cache entry for
4386 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4387 -- by checking the actual node value stored there. The Range_Cache_V array
4388 -- records the setting of Assume_Valid for the cache entry.
4390 procedure Determine_Range
4391 (N : Node_Id;
4392 OK : out Boolean;
4393 Lo : out Uint;
4394 Hi : out Uint;
4395 Assume_Valid : Boolean := False)
4397 Typ : Entity_Id := Etype (N);
4398 -- Type to use, may get reset to base type for possibly invalid entity
4400 Lo_Left : Uint;
4401 Hi_Left : Uint;
4402 -- Lo and Hi bounds of left operand
4404 Lo_Right : Uint := No_Uint;
4405 Hi_Right : Uint := No_Uint;
4406 -- Lo and Hi bounds of right (or only) operand
4408 Bound : Node_Id;
4409 -- Temp variable used to hold a bound node
4411 Hbound : Uint;
4412 -- High bound of base type of expression
4414 Lor : Uint;
4415 Hir : Uint;
4416 -- Refined values for low and high bounds, after tightening
4418 OK1 : Boolean;
4419 -- Used in lower level calls to indicate if call succeeded
4421 Cindex : Cache_Index;
4422 -- Used to search cache
4424 Btyp : Entity_Id;
4425 -- Base type
4427 function OK_Operands return Boolean;
4428 -- Used for binary operators. Determines the ranges of the left and
4429 -- right operands, and if they are both OK, returns True, and puts
4430 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4432 -----------------
4433 -- OK_Operands --
4434 -----------------
4436 function OK_Operands return Boolean is
4437 begin
4438 Determine_Range
4439 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4441 if not OK1 then
4442 return False;
4443 end if;
4445 Determine_Range
4446 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4447 return OK1;
4448 end OK_Operands;
4450 -- Start of processing for Determine_Range
4452 begin
4453 -- Prevent junk warnings by initializing range variables
4455 Lo := No_Uint;
4456 Hi := No_Uint;
4457 Lor := No_Uint;
4458 Hir := No_Uint;
4460 -- For temporary constants internally generated to remove side effects
4461 -- we must use the corresponding expression to determine the range of
4462 -- the expression. But note that the expander can also generate
4463 -- constants in other cases, including deferred constants.
4465 if Is_Entity_Name (N)
4466 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4467 and then Ekind (Entity (N)) = E_Constant
4468 and then Is_Internal_Name (Chars (Entity (N)))
4469 then
4470 if Present (Expression (Parent (Entity (N)))) then
4471 Determine_Range
4472 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4474 elsif Present (Full_View (Entity (N))) then
4475 Determine_Range
4476 (Expression (Parent (Full_View (Entity (N)))),
4477 OK, Lo, Hi, Assume_Valid);
4479 else
4480 OK := False;
4481 end if;
4482 return;
4483 end if;
4485 -- If type is not defined, we can't determine its range
4487 if No (Typ)
4489 -- We don't deal with anything except discrete types
4491 or else not Is_Discrete_Type (Typ)
4493 -- Ignore type for which an error has been posted, since range in
4494 -- this case may well be a bogosity deriving from the error. Also
4495 -- ignore if error posted on the reference node.
4497 or else Error_Posted (N) or else Error_Posted (Typ)
4498 then
4499 OK := False;
4500 return;
4501 end if;
4503 -- For all other cases, we can determine the range
4505 OK := True;
4507 -- If value is compile time known, then the possible range is the one
4508 -- value that we know this expression definitely has.
4510 if Compile_Time_Known_Value (N) then
4511 Lo := Expr_Value (N);
4512 Hi := Lo;
4513 return;
4514 end if;
4516 -- Return if already in the cache
4518 Cindex := Cache_Index (N mod Cache_Size);
4520 if Determine_Range_Cache_N (Cindex) = N
4521 and then
4522 Determine_Range_Cache_V (Cindex) = Assume_Valid
4523 then
4524 Lo := Determine_Range_Cache_Lo (Cindex);
4525 Hi := Determine_Range_Cache_Hi (Cindex);
4526 return;
4527 end if;
4529 -- Otherwise, start by finding the bounds of the type of the expression,
4530 -- the value cannot be outside this range (if it is, then we have an
4531 -- overflow situation, which is a separate check, we are talking here
4532 -- only about the expression value).
4534 -- First a check, never try to find the bounds of a generic type, since
4535 -- these bounds are always junk values, and it is only valid to look at
4536 -- the bounds in an instance.
4538 if Is_Generic_Type (Typ) then
4539 OK := False;
4540 return;
4541 end if;
4543 -- First step, change to use base type unless we know the value is valid
4545 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4546 or else Assume_No_Invalid_Values
4547 or else Assume_Valid
4548 then
4549 null;
4550 else
4551 Typ := Underlying_Type (Base_Type (Typ));
4552 end if;
4554 -- Retrieve the base type. Handle the case where the base type is a
4555 -- private enumeration type.
4557 Btyp := Base_Type (Typ);
4559 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4560 Btyp := Full_View (Btyp);
4561 end if;
4563 -- We use the actual bound unless it is dynamic, in which case use the
4564 -- corresponding base type bound if possible. If we can't get a bound
4565 -- then we figure we can't determine the range (a peculiar case, that
4566 -- perhaps cannot happen, but there is no point in bombing in this
4567 -- optimization circuit.
4569 -- First the low bound
4571 Bound := Type_Low_Bound (Typ);
4573 if Compile_Time_Known_Value (Bound) then
4574 Lo := Expr_Value (Bound);
4576 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4577 Lo := Expr_Value (Type_Low_Bound (Btyp));
4579 else
4580 OK := False;
4581 return;
4582 end if;
4584 -- Now the high bound
4586 Bound := Type_High_Bound (Typ);
4588 -- We need the high bound of the base type later on, and this should
4589 -- always be compile time known. Again, it is not clear that this
4590 -- can ever be false, but no point in bombing.
4592 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4593 Hbound := Expr_Value (Type_High_Bound (Btyp));
4594 Hi := Hbound;
4596 else
4597 OK := False;
4598 return;
4599 end if;
4601 -- If we have a static subtype, then that may have a tighter bound so
4602 -- use the upper bound of the subtype instead in this case.
4604 if Compile_Time_Known_Value (Bound) then
4605 Hi := Expr_Value (Bound);
4606 end if;
4608 -- We may be able to refine this value in certain situations. If any
4609 -- refinement is possible, then Lor and Hir are set to possibly tighter
4610 -- bounds, and OK1 is set to True.
4612 case Nkind (N) is
4614 -- For unary plus, result is limited by range of operand
4616 when N_Op_Plus =>
4617 Determine_Range
4618 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
4620 -- For unary minus, determine range of operand, and negate it
4622 when N_Op_Minus =>
4623 Determine_Range
4624 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4626 if OK1 then
4627 Lor := -Hi_Right;
4628 Hir := -Lo_Right;
4629 end if;
4631 -- For binary addition, get range of each operand and do the
4632 -- addition to get the result range.
4634 when N_Op_Add =>
4635 if OK_Operands then
4636 Lor := Lo_Left + Lo_Right;
4637 Hir := Hi_Left + Hi_Right;
4638 end if;
4640 -- Division is tricky. The only case we consider is where the right
4641 -- operand is a positive constant, and in this case we simply divide
4642 -- the bounds of the left operand
4644 when N_Op_Divide =>
4645 if OK_Operands then
4646 if Lo_Right = Hi_Right
4647 and then Lo_Right > 0
4648 then
4649 Lor := Lo_Left / Lo_Right;
4650 Hir := Hi_Left / Lo_Right;
4651 else
4652 OK1 := False;
4653 end if;
4654 end if;
4656 -- For binary subtraction, get range of each operand and do the worst
4657 -- case subtraction to get the result range.
4659 when N_Op_Subtract =>
4660 if OK_Operands then
4661 Lor := Lo_Left - Hi_Right;
4662 Hir := Hi_Left - Lo_Right;
4663 end if;
4665 -- For MOD, if right operand is a positive constant, then result must
4666 -- be in the allowable range of mod results.
4668 when N_Op_Mod =>
4669 if OK_Operands then
4670 if Lo_Right = Hi_Right
4671 and then Lo_Right /= 0
4672 then
4673 if Lo_Right > 0 then
4674 Lor := Uint_0;
4675 Hir := Lo_Right - 1;
4677 else -- Lo_Right < 0
4678 Lor := Lo_Right + 1;
4679 Hir := Uint_0;
4680 end if;
4682 else
4683 OK1 := False;
4684 end if;
4685 end if;
4687 -- For REM, if right operand is a positive constant, then result must
4688 -- be in the allowable range of mod results.
4690 when N_Op_Rem =>
4691 if OK_Operands then
4692 if Lo_Right = Hi_Right and then Lo_Right /= 0 then
4693 declare
4694 Dval : constant Uint := (abs Lo_Right) - 1;
4696 begin
4697 -- The sign of the result depends on the sign of the
4698 -- dividend (but not on the sign of the divisor, hence
4699 -- the abs operation above).
4701 if Lo_Left < 0 then
4702 Lor := -Dval;
4703 else
4704 Lor := Uint_0;
4705 end if;
4707 if Hi_Left < 0 then
4708 Hir := Uint_0;
4709 else
4710 Hir := Dval;
4711 end if;
4712 end;
4714 else
4715 OK1 := False;
4716 end if;
4717 end if;
4719 -- Attribute reference cases
4721 when N_Attribute_Reference =>
4722 case Attribute_Name (N) is
4724 -- For Pos/Val attributes, we can refine the range using the
4725 -- possible range of values of the attribute expression.
4727 when Name_Pos
4728 | Name_Val
4730 Determine_Range
4731 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
4733 -- For Length attribute, use the bounds of the corresponding
4734 -- index type to refine the range.
4736 when Name_Length =>
4737 declare
4738 Atyp : Entity_Id := Etype (Prefix (N));
4739 Inum : Nat;
4740 Indx : Node_Id;
4742 LL, LU : Uint;
4743 UL, UU : Uint;
4745 begin
4746 if Is_Access_Type (Atyp) then
4747 Atyp := Designated_Type (Atyp);
4748 end if;
4750 -- For string literal, we know exact value
4752 if Ekind (Atyp) = E_String_Literal_Subtype then
4753 OK := True;
4754 Lo := String_Literal_Length (Atyp);
4755 Hi := String_Literal_Length (Atyp);
4756 return;
4757 end if;
4759 -- Otherwise check for expression given
4761 if No (Expressions (N)) then
4762 Inum := 1;
4763 else
4764 Inum :=
4765 UI_To_Int (Expr_Value (First (Expressions (N))));
4766 end if;
4768 Indx := First_Index (Atyp);
4769 for J in 2 .. Inum loop
4770 Indx := Next_Index (Indx);
4771 end loop;
4773 -- If the index type is a formal type or derived from
4774 -- one, the bounds are not static.
4776 if Is_Generic_Type (Root_Type (Etype (Indx))) then
4777 OK := False;
4778 return;
4779 end if;
4781 Determine_Range
4782 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4783 Assume_Valid);
4785 if OK1 then
4786 Determine_Range
4787 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4788 Assume_Valid);
4790 if OK1 then
4792 -- The maximum value for Length is the biggest
4793 -- possible gap between the values of the bounds.
4794 -- But of course, this value cannot be negative.
4796 Hir := UI_Max (Uint_0, UU - LL + 1);
4798 -- For constrained arrays, the minimum value for
4799 -- Length is taken from the actual value of the
4800 -- bounds, since the index will be exactly of this
4801 -- subtype.
4803 if Is_Constrained (Atyp) then
4804 Lor := UI_Max (Uint_0, UL - LU + 1);
4806 -- For an unconstrained array, the minimum value
4807 -- for length is always zero.
4809 else
4810 Lor := Uint_0;
4811 end if;
4812 end if;
4813 end if;
4814 end;
4816 -- No special handling for other attributes
4817 -- Probably more opportunities exist here???
4819 when others =>
4820 OK1 := False;
4822 end case;
4824 when N_Type_Conversion =>
4826 -- For type conversion from one discrete type to another, we can
4827 -- refine the range using the converted value.
4829 if Is_Discrete_Type (Etype (Expression (N))) then
4830 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
4832 -- When converting a float to an integer type, determine the range
4833 -- in real first, and then convert the bounds using UR_To_Uint
4834 -- which correctly rounds away from zero when half way between two
4835 -- integers, as required by normal Ada 95 rounding semantics. It
4836 -- is only possible because analysis in GNATprove rules out the
4837 -- possibility of a NaN or infinite value.
4839 elsif GNATprove_Mode
4840 and then Is_Floating_Point_Type (Etype (Expression (N)))
4841 then
4842 declare
4843 Lor_Real, Hir_Real : Ureal;
4844 begin
4845 Determine_Range_R (Expression (N), OK1, Lor_Real, Hir_Real,
4846 Assume_Valid);
4848 if OK1 then
4849 Lor := UR_To_Uint (Lor_Real);
4850 Hir := UR_To_Uint (Hir_Real);
4851 end if;
4852 end;
4854 else
4855 OK1 := False;
4856 end if;
4858 -- Nothing special to do for all other expression kinds
4860 when others =>
4861 OK1 := False;
4862 Lor := No_Uint;
4863 Hir := No_Uint;
4864 end case;
4866 -- At this stage, if OK1 is true, then we know that the actual result of
4867 -- the computed expression is in the range Lor .. Hir. We can use this
4868 -- to restrict the possible range of results.
4870 if OK1 then
4872 -- If the refined value of the low bound is greater than the type
4873 -- low bound, then reset it to the more restrictive value. However,
4874 -- we do NOT do this for the case of a modular type where the
4875 -- possible upper bound on the value is above the base type high
4876 -- bound, because that means the result could wrap.
4878 if Lor > Lo
4879 and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
4880 then
4881 Lo := Lor;
4882 end if;
4884 -- Similarly, if the refined value of the high bound is less than the
4885 -- value so far, then reset it to the more restrictive value. Again,
4886 -- we do not do this if the refined low bound is negative for a
4887 -- modular type, since this would wrap.
4889 if Hir < Hi
4890 and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
4891 then
4892 Hi := Hir;
4893 end if;
4894 end if;
4896 -- Set cache entry for future call and we are all done
4898 Determine_Range_Cache_N (Cindex) := N;
4899 Determine_Range_Cache_V (Cindex) := Assume_Valid;
4900 Determine_Range_Cache_Lo (Cindex) := Lo;
4901 Determine_Range_Cache_Hi (Cindex) := Hi;
4902 return;
4904 -- If any exception occurs, it means that we have some bug in the compiler,
4905 -- possibly triggered by a previous error, or by some unforeseen peculiar
4906 -- occurrence. However, this is only an optimization attempt, so there is
4907 -- really no point in crashing the compiler. Instead we just decide, too
4908 -- bad, we can't figure out a range in this case after all.
4910 exception
4911 when others =>
4913 -- Debug flag K disables this behavior (useful for debugging)
4915 if Debug_Flag_K then
4916 raise;
4917 else
4918 OK := False;
4919 Lo := No_Uint;
4920 Hi := No_Uint;
4921 return;
4922 end if;
4923 end Determine_Range;
4925 -----------------------
4926 -- Determine_Range_R --
4927 -----------------------
4929 procedure Determine_Range_R
4930 (N : Node_Id;
4931 OK : out Boolean;
4932 Lo : out Ureal;
4933 Hi : out Ureal;
4934 Assume_Valid : Boolean := False)
4936 Typ : Entity_Id := Etype (N);
4937 -- Type to use, may get reset to base type for possibly invalid entity
4939 Lo_Left : Ureal;
4940 Hi_Left : Ureal;
4941 -- Lo and Hi bounds of left operand
4943 Lo_Right : Ureal := No_Ureal;
4944 Hi_Right : Ureal := No_Ureal;
4945 -- Lo and Hi bounds of right (or only) operand
4947 Bound : Node_Id;
4948 -- Temp variable used to hold a bound node
4950 Hbound : Ureal;
4951 -- High bound of base type of expression
4953 Lor : Ureal;
4954 Hir : Ureal;
4955 -- Refined values for low and high bounds, after tightening
4957 OK1 : Boolean;
4958 -- Used in lower level calls to indicate if call succeeded
4960 Cindex : Cache_Index;
4961 -- Used to search cache
4963 Btyp : Entity_Id;
4964 -- Base type
4966 function OK_Operands return Boolean;
4967 -- Used for binary operators. Determines the ranges of the left and
4968 -- right operands, and if they are both OK, returns True, and puts
4969 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4971 function Round_Machine (B : Ureal) return Ureal;
4972 -- B is a real bound. Round it using mode Round_Even.
4974 -----------------
4975 -- OK_Operands --
4976 -----------------
4978 function OK_Operands return Boolean is
4979 begin
4980 Determine_Range_R
4981 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4983 if not OK1 then
4984 return False;
4985 end if;
4987 Determine_Range_R
4988 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4989 return OK1;
4990 end OK_Operands;
4992 -------------------
4993 -- Round_Machine --
4994 -------------------
4996 function Round_Machine (B : Ureal) return Ureal is
4997 begin
4998 return Machine (Typ, B, Round_Even, N);
4999 end Round_Machine;
5001 -- Start of processing for Determine_Range_R
5003 begin
5004 -- Prevent junk warnings by initializing range variables
5006 Lo := No_Ureal;
5007 Hi := No_Ureal;
5008 Lor := No_Ureal;
5009 Hir := No_Ureal;
5011 -- For temporary constants internally generated to remove side effects
5012 -- we must use the corresponding expression to determine the range of
5013 -- the expression. But note that the expander can also generate
5014 -- constants in other cases, including deferred constants.
5016 if Is_Entity_Name (N)
5017 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
5018 and then Ekind (Entity (N)) = E_Constant
5019 and then Is_Internal_Name (Chars (Entity (N)))
5020 then
5021 if Present (Expression (Parent (Entity (N)))) then
5022 Determine_Range_R
5023 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
5025 elsif Present (Full_View (Entity (N))) then
5026 Determine_Range_R
5027 (Expression (Parent (Full_View (Entity (N)))),
5028 OK, Lo, Hi, Assume_Valid);
5030 else
5031 OK := False;
5032 end if;
5034 return;
5035 end if;
5037 -- If type is not defined, we can't determine its range
5039 if No (Typ)
5041 -- We don't deal with anything except IEEE floating-point types
5043 or else not Is_Floating_Point_Type (Typ)
5044 or else Float_Rep (Typ) /= IEEE_Binary
5046 -- Ignore type for which an error has been posted, since range in
5047 -- this case may well be a bogosity deriving from the error. Also
5048 -- ignore if error posted on the reference node.
5050 or else Error_Posted (N) or else Error_Posted (Typ)
5051 then
5052 OK := False;
5053 return;
5054 end if;
5056 -- For all other cases, we can determine the range
5058 OK := True;
5060 -- If value is compile time known, then the possible range is the one
5061 -- value that we know this expression definitely has.
5063 if Compile_Time_Known_Value (N) then
5064 Lo := Expr_Value_R (N);
5065 Hi := Lo;
5066 return;
5067 end if;
5069 -- Return if already in the cache
5071 Cindex := Cache_Index (N mod Cache_Size);
5073 if Determine_Range_Cache_N (Cindex) = N
5074 and then
5075 Determine_Range_Cache_V (Cindex) = Assume_Valid
5076 then
5077 Lo := Determine_Range_Cache_Lo_R (Cindex);
5078 Hi := Determine_Range_Cache_Hi_R (Cindex);
5079 return;
5080 end if;
5082 -- Otherwise, start by finding the bounds of the type of the expression,
5083 -- the value cannot be outside this range (if it is, then we have an
5084 -- overflow situation, which is a separate check, we are talking here
5085 -- only about the expression value).
5087 -- First a check, never try to find the bounds of a generic type, since
5088 -- these bounds are always junk values, and it is only valid to look at
5089 -- the bounds in an instance.
5091 if Is_Generic_Type (Typ) then
5092 OK := False;
5093 return;
5094 end if;
5096 -- First step, change to use base type unless we know the value is valid
5098 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5099 or else Assume_No_Invalid_Values
5100 or else Assume_Valid
5101 then
5102 null;
5103 else
5104 Typ := Underlying_Type (Base_Type (Typ));
5105 end if;
5107 -- Retrieve the base type. Handle the case where the base type is a
5108 -- private type.
5110 Btyp := Base_Type (Typ);
5112 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5113 Btyp := Full_View (Btyp);
5114 end if;
5116 -- We use the actual bound unless it is dynamic, in which case use the
5117 -- corresponding base type bound if possible. If we can't get a bound
5118 -- then we figure we can't determine the range (a peculiar case, that
5119 -- perhaps cannot happen, but there is no point in bombing in this
5120 -- optimization circuit).
5122 -- First the low bound
5124 Bound := Type_Low_Bound (Typ);
5126 if Compile_Time_Known_Value (Bound) then
5127 Lo := Expr_Value_R (Bound);
5129 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5130 Lo := Expr_Value_R (Type_Low_Bound (Btyp));
5132 else
5133 OK := False;
5134 return;
5135 end if;
5137 -- Now the high bound
5139 Bound := Type_High_Bound (Typ);
5141 -- We need the high bound of the base type later on, and this should
5142 -- always be compile time known. Again, it is not clear that this
5143 -- can ever be false, but no point in bombing.
5145 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5146 Hbound := Expr_Value_R (Type_High_Bound (Btyp));
5147 Hi := Hbound;
5149 else
5150 OK := False;
5151 return;
5152 end if;
5154 -- If we have a static subtype, then that may have a tighter bound so
5155 -- use the upper bound of the subtype instead in this case.
5157 if Compile_Time_Known_Value (Bound) then
5158 Hi := Expr_Value_R (Bound);
5159 end if;
5161 -- We may be able to refine this value in certain situations. If any
5162 -- refinement is possible, then Lor and Hir are set to possibly tighter
5163 -- bounds, and OK1 is set to True.
5165 case Nkind (N) is
5167 -- For unary plus, result is limited by range of operand
5169 when N_Op_Plus =>
5170 Determine_Range_R
5171 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
5173 -- For unary minus, determine range of operand, and negate it
5175 when N_Op_Minus =>
5176 Determine_Range_R
5177 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5179 if OK1 then
5180 Lor := -Hi_Right;
5181 Hir := -Lo_Right;
5182 end if;
5184 -- For binary addition, get range of each operand and do the
5185 -- addition to get the result range.
5187 when N_Op_Add =>
5188 if OK_Operands then
5189 Lor := Round_Machine (Lo_Left + Lo_Right);
5190 Hir := Round_Machine (Hi_Left + Hi_Right);
5191 end if;
5193 -- For binary subtraction, get range of each operand and do the worst
5194 -- case subtraction to get the result range.
5196 when N_Op_Subtract =>
5197 if OK_Operands then
5198 Lor := Round_Machine (Lo_Left - Hi_Right);
5199 Hir := Round_Machine (Hi_Left - Lo_Right);
5200 end if;
5202 -- For multiplication, get range of each operand and do the
5203 -- four multiplications to get the result range.
5205 when N_Op_Multiply =>
5206 if OK_Operands then
5207 declare
5208 M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
5209 M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
5210 M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
5211 M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
5213 begin
5214 Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
5215 Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
5216 end;
5217 end if;
5219 -- For division, consider separately the cases where the right
5220 -- operand is positive or negative. Otherwise, the right operand
5221 -- can be arbitrarily close to zero, so the result is likely to
5222 -- be unbounded in one direction, do not attempt to compute it.
5224 when N_Op_Divide =>
5225 if OK_Operands then
5227 -- Right operand is positive
5229 if Lo_Right > Ureal_0 then
5231 -- If the low bound of the left operand is negative, obtain
5232 -- the overall low bound by dividing it by the smallest
5233 -- value of the right operand, and otherwise by the largest
5234 -- value of the right operand.
5236 if Lo_Left < Ureal_0 then
5237 Lor := Round_Machine (Lo_Left / Lo_Right);
5238 else
5239 Lor := Round_Machine (Lo_Left / Hi_Right);
5240 end if;
5242 -- If the high bound of the left operand is negative, obtain
5243 -- the overall high bound by dividing it by the largest
5244 -- value of the right operand, and otherwise by the
5245 -- smallest value of the right operand.
5247 if Hi_Left < Ureal_0 then
5248 Hir := Round_Machine (Hi_Left / Hi_Right);
5249 else
5250 Hir := Round_Machine (Hi_Left / Lo_Right);
5251 end if;
5253 -- Right operand is negative
5255 elsif Hi_Right < Ureal_0 then
5257 -- If the low bound of the left operand is negative, obtain
5258 -- the overall low bound by dividing it by the largest
5259 -- value of the right operand, and otherwise by the smallest
5260 -- value of the right operand.
5262 if Lo_Left < Ureal_0 then
5263 Lor := Round_Machine (Lo_Left / Hi_Right);
5264 else
5265 Lor := Round_Machine (Lo_Left / Lo_Right);
5266 end if;
5268 -- If the high bound of the left operand is negative, obtain
5269 -- the overall high bound by dividing it by the smallest
5270 -- value of the right operand, and otherwise by the
5271 -- largest value of the right operand.
5273 if Hi_Left < Ureal_0 then
5274 Hir := Round_Machine (Hi_Left / Lo_Right);
5275 else
5276 Hir := Round_Machine (Hi_Left / Hi_Right);
5277 end if;
5279 else
5280 OK1 := False;
5281 end if;
5282 end if;
5284 when N_Type_Conversion =>
5286 -- For type conversion from one floating-point type to another, we
5287 -- can refine the range using the converted value.
5289 if Is_Floating_Point_Type (Etype (Expression (N))) then
5290 Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
5292 -- When converting an integer to a floating-point type, determine
5293 -- the range in integer first, and then convert the bounds.
5295 elsif Is_Discrete_Type (Etype (Expression (N))) then
5296 declare
5297 Hir_Int : Uint;
5298 Lor_Int : Uint;
5300 begin
5301 Determine_Range
5302 (Expression (N), OK1, Lor_Int, Hir_Int, Assume_Valid);
5304 if OK1 then
5305 Lor := Round_Machine (UR_From_Uint (Lor_Int));
5306 Hir := Round_Machine (UR_From_Uint (Hir_Int));
5307 end if;
5308 end;
5310 else
5311 OK1 := False;
5312 end if;
5314 -- Nothing special to do for all other expression kinds
5316 when others =>
5317 OK1 := False;
5318 Lor := No_Ureal;
5319 Hir := No_Ureal;
5320 end case;
5322 -- At this stage, if OK1 is true, then we know that the actual result of
5323 -- the computed expression is in the range Lor .. Hir. We can use this
5324 -- to restrict the possible range of results.
5326 if OK1 then
5328 -- If the refined value of the low bound is greater than the type
5329 -- low bound, then reset it to the more restrictive value.
5331 if Lor > Lo then
5332 Lo := Lor;
5333 end if;
5335 -- Similarly, if the refined value of the high bound is less than the
5336 -- value so far, then reset it to the more restrictive value.
5338 if Hir < Hi then
5339 Hi := Hir;
5340 end if;
5341 end if;
5343 -- Set cache entry for future call and we are all done
5345 Determine_Range_Cache_N (Cindex) := N;
5346 Determine_Range_Cache_V (Cindex) := Assume_Valid;
5347 Determine_Range_Cache_Lo_R (Cindex) := Lo;
5348 Determine_Range_Cache_Hi_R (Cindex) := Hi;
5349 return;
5351 -- If any exception occurs, it means that we have some bug in the compiler,
5352 -- possibly triggered by a previous error, or by some unforeseen peculiar
5353 -- occurrence. However, this is only an optimization attempt, so there is
5354 -- really no point in crashing the compiler. Instead we just decide, too
5355 -- bad, we can't figure out a range in this case after all.
5357 exception
5358 when others =>
5360 -- Debug flag K disables this behavior (useful for debugging)
5362 if Debug_Flag_K then
5363 raise;
5364 else
5365 OK := False;
5366 Lo := No_Ureal;
5367 Hi := No_Ureal;
5368 return;
5369 end if;
5370 end Determine_Range_R;
5372 ------------------------------------
5373 -- Discriminant_Checks_Suppressed --
5374 ------------------------------------
5376 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
5377 begin
5378 if Present (E) then
5379 if Is_Unchecked_Union (E) then
5380 return True;
5381 elsif Checks_May_Be_Suppressed (E) then
5382 return Is_Check_Suppressed (E, Discriminant_Check);
5383 end if;
5384 end if;
5386 return Scope_Suppress.Suppress (Discriminant_Check);
5387 end Discriminant_Checks_Suppressed;
5389 --------------------------------
5390 -- Division_Checks_Suppressed --
5391 --------------------------------
5393 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
5394 begin
5395 if Present (E) and then Checks_May_Be_Suppressed (E) then
5396 return Is_Check_Suppressed (E, Division_Check);
5397 else
5398 return Scope_Suppress.Suppress (Division_Check);
5399 end if;
5400 end Division_Checks_Suppressed;
5402 --------------------------------------
5403 -- Duplicated_Tag_Checks_Suppressed --
5404 --------------------------------------
5406 function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
5407 begin
5408 if Present (E) and then Checks_May_Be_Suppressed (E) then
5409 return Is_Check_Suppressed (E, Duplicated_Tag_Check);
5410 else
5411 return Scope_Suppress.Suppress (Duplicated_Tag_Check);
5412 end if;
5413 end Duplicated_Tag_Checks_Suppressed;
5415 -----------------------------------
5416 -- Elaboration_Checks_Suppressed --
5417 -----------------------------------
5419 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
5420 begin
5421 -- The complication in this routine is that if we are in the dynamic
5422 -- model of elaboration, we also check All_Checks, since All_Checks
5423 -- does not set Elaboration_Check explicitly.
5425 if Present (E) then
5426 if Kill_Elaboration_Checks (E) then
5427 return True;
5429 elsif Checks_May_Be_Suppressed (E) then
5430 if Is_Check_Suppressed (E, Elaboration_Check) then
5431 return True;
5433 elsif Dynamic_Elaboration_Checks then
5434 return Is_Check_Suppressed (E, All_Checks);
5436 else
5437 return False;
5438 end if;
5439 end if;
5440 end if;
5442 if Scope_Suppress.Suppress (Elaboration_Check) then
5443 return True;
5445 elsif Dynamic_Elaboration_Checks then
5446 return Scope_Suppress.Suppress (All_Checks);
5448 else
5449 return False;
5450 end if;
5451 end Elaboration_Checks_Suppressed;
5453 ---------------------------
5454 -- Enable_Overflow_Check --
5455 ---------------------------
5457 procedure Enable_Overflow_Check (N : Node_Id) is
5458 Typ : constant Entity_Id := Base_Type (Etype (N));
5459 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
5460 Chk : Nat;
5461 OK : Boolean;
5462 Ent : Entity_Id;
5463 Ofs : Uint;
5464 Lo : Uint;
5465 Hi : Uint;
5467 Do_Ovflow_Check : Boolean;
5469 begin
5470 if Debug_Flag_CC then
5471 w ("Enable_Overflow_Check for node ", Int (N));
5472 Write_Str (" Source location = ");
5473 wl (Sloc (N));
5474 pg (Union_Id (N));
5475 end if;
5477 -- No check if overflow checks suppressed for type of node
5479 if Overflow_Checks_Suppressed (Etype (N)) then
5480 return;
5482 -- Nothing to do for unsigned integer types, which do not overflow
5484 elsif Is_Modular_Integer_Type (Typ) then
5485 return;
5486 end if;
5488 -- This is the point at which processing for STRICT mode diverges
5489 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
5490 -- probably more extreme that it needs to be, but what is going on here
5491 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
5492 -- to leave the processing for STRICT mode untouched. There were
5493 -- two reasons for this. First it avoided any incompatible change of
5494 -- behavior. Second, it guaranteed that STRICT mode continued to be
5495 -- legacy reliable.
5497 -- The big difference is that in STRICT mode there is a fair amount of
5498 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
5499 -- know that no check is needed. We skip all that in the two new modes,
5500 -- since really overflow checking happens over a whole subtree, and we
5501 -- do the corresponding optimizations later on when applying the checks.
5503 if Mode in Minimized_Or_Eliminated then
5504 if not (Overflow_Checks_Suppressed (Etype (N)))
5505 and then not (Is_Entity_Name (N)
5506 and then Overflow_Checks_Suppressed (Entity (N)))
5507 then
5508 Activate_Overflow_Check (N);
5509 end if;
5511 if Debug_Flag_CC then
5512 w ("Minimized/Eliminated mode");
5513 end if;
5515 return;
5516 end if;
5518 -- Remainder of processing is for STRICT case, and is unchanged from
5519 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
5521 -- Nothing to do if the range of the result is known OK. We skip this
5522 -- for conversions, since the caller already did the check, and in any
5523 -- case the condition for deleting the check for a type conversion is
5524 -- different.
5526 if Nkind (N) /= N_Type_Conversion then
5527 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
5529 -- Note in the test below that we assume that the range is not OK
5530 -- if a bound of the range is equal to that of the type. That's not
5531 -- quite accurate but we do this for the following reasons:
5533 -- a) The way that Determine_Range works, it will typically report
5534 -- the bounds of the value as being equal to the bounds of the
5535 -- type, because it either can't tell anything more precise, or
5536 -- does not think it is worth the effort to be more precise.
5538 -- b) It is very unusual to have a situation in which this would
5539 -- generate an unnecessary overflow check (an example would be
5540 -- a subtype with a range 0 .. Integer'Last - 1 to which the
5541 -- literal value one is added).
5543 -- c) The alternative is a lot of special casing in this routine
5544 -- which would partially duplicate Determine_Range processing.
5546 if OK then
5547 Do_Ovflow_Check := True;
5549 -- Note that the following checks are quite deliberately > and <
5550 -- rather than >= and <= as explained above.
5552 if Lo > Expr_Value (Type_Low_Bound (Typ))
5553 and then
5554 Hi < Expr_Value (Type_High_Bound (Typ))
5555 then
5556 Do_Ovflow_Check := False;
5558 -- Despite the comments above, it is worth dealing specially with
5559 -- division specially. The only case where integer division can
5560 -- overflow is (largest negative number) / (-1). So we will do
5561 -- an extra range analysis to see if this is possible.
5563 elsif Nkind (N) = N_Op_Divide then
5564 Determine_Range
5565 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5567 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
5568 Do_Ovflow_Check := False;
5570 else
5571 Determine_Range
5572 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5574 if OK and then (Lo > Uint_Minus_1
5575 or else
5576 Hi < Uint_Minus_1)
5577 then
5578 Do_Ovflow_Check := False;
5579 end if;
5580 end if;
5581 end if;
5583 -- If no overflow check required, we are done
5585 if not Do_Ovflow_Check then
5586 if Debug_Flag_CC then
5587 w ("No overflow check required");
5588 end if;
5590 return;
5591 end if;
5592 end if;
5593 end if;
5595 -- If not in optimizing mode, set flag and we are done. We are also done
5596 -- (and just set the flag) if the type is not a discrete type, since it
5597 -- is not worth the effort to eliminate checks for other than discrete
5598 -- types. In addition, we take this same path if we have stored the
5599 -- maximum number of checks possible already (a very unlikely situation,
5600 -- but we do not want to blow up).
5602 if Optimization_Level = 0
5603 or else not Is_Discrete_Type (Etype (N))
5604 or else Num_Saved_Checks = Saved_Checks'Last
5605 then
5606 Activate_Overflow_Check (N);
5608 if Debug_Flag_CC then
5609 w ("Optimization off");
5610 end if;
5612 return;
5613 end if;
5615 -- Otherwise evaluate and check the expression
5617 Find_Check
5618 (Expr => N,
5619 Check_Type => 'O',
5620 Target_Type => Empty,
5621 Entry_OK => OK,
5622 Check_Num => Chk,
5623 Ent => Ent,
5624 Ofs => Ofs);
5626 if Debug_Flag_CC then
5627 w ("Called Find_Check");
5628 w (" OK = ", OK);
5630 if OK then
5631 w (" Check_Num = ", Chk);
5632 w (" Ent = ", Int (Ent));
5633 Write_Str (" Ofs = ");
5634 pid (Ofs);
5635 end if;
5636 end if;
5638 -- If check is not of form to optimize, then set flag and we are done
5640 if not OK then
5641 Activate_Overflow_Check (N);
5642 return;
5643 end if;
5645 -- If check is already performed, then return without setting flag
5647 if Chk /= 0 then
5648 if Debug_Flag_CC then
5649 w ("Check suppressed!");
5650 end if;
5652 return;
5653 end if;
5655 -- Here we will make a new entry for the new check
5657 Activate_Overflow_Check (N);
5658 Num_Saved_Checks := Num_Saved_Checks + 1;
5659 Saved_Checks (Num_Saved_Checks) :=
5660 (Killed => False,
5661 Entity => Ent,
5662 Offset => Ofs,
5663 Check_Type => 'O',
5664 Target_Type => Empty);
5666 if Debug_Flag_CC then
5667 w ("Make new entry, check number = ", Num_Saved_Checks);
5668 w (" Entity = ", Int (Ent));
5669 Write_Str (" Offset = ");
5670 pid (Ofs);
5671 w (" Check_Type = O");
5672 w (" Target_Type = Empty");
5673 end if;
5675 -- If we get an exception, then something went wrong, probably because of
5676 -- an error in the structure of the tree due to an incorrect program. Or
5677 -- it may be a bug in the optimization circuit. In either case the safest
5678 -- thing is simply to set the check flag unconditionally.
5680 exception
5681 when others =>
5682 Activate_Overflow_Check (N);
5684 if Debug_Flag_CC then
5685 w (" exception occurred, overflow flag set");
5686 end if;
5688 return;
5689 end Enable_Overflow_Check;
5691 ------------------------
5692 -- Enable_Range_Check --
5693 ------------------------
5695 procedure Enable_Range_Check (N : Node_Id) is
5696 Chk : Nat;
5697 OK : Boolean;
5698 Ent : Entity_Id;
5699 Ofs : Uint;
5700 Ttyp : Entity_Id;
5701 P : Node_Id;
5703 begin
5704 -- Return if unchecked type conversion with range check killed. In this
5705 -- case we never set the flag (that's what Kill_Range_Check is about).
5707 if Nkind (N) = N_Unchecked_Type_Conversion
5708 and then Kill_Range_Check (N)
5709 then
5710 return;
5711 end if;
5713 -- Do not set range check flag if parent is assignment statement or
5714 -- object declaration with Suppress_Assignment_Checks flag set
5716 if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
5717 and then Suppress_Assignment_Checks (Parent (N))
5718 then
5719 return;
5720 end if;
5722 -- Check for various cases where we should suppress the range check
5724 -- No check if range checks suppressed for type of node
5726 if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
5727 return;
5729 -- No check if node is an entity name, and range checks are suppressed
5730 -- for this entity, or for the type of this entity.
5732 elsif Is_Entity_Name (N)
5733 and then (Range_Checks_Suppressed (Entity (N))
5734 or else Range_Checks_Suppressed (Etype (Entity (N))))
5735 then
5736 return;
5738 -- No checks if index of array, and index checks are suppressed for
5739 -- the array object or the type of the array.
5741 elsif Nkind (Parent (N)) = N_Indexed_Component then
5742 declare
5743 Pref : constant Node_Id := Prefix (Parent (N));
5744 begin
5745 if Is_Entity_Name (Pref)
5746 and then Index_Checks_Suppressed (Entity (Pref))
5747 then
5748 return;
5749 elsif Index_Checks_Suppressed (Etype (Pref)) then
5750 return;
5751 end if;
5752 end;
5753 end if;
5755 -- Debug trace output
5757 if Debug_Flag_CC then
5758 w ("Enable_Range_Check for node ", Int (N));
5759 Write_Str (" Source location = ");
5760 wl (Sloc (N));
5761 pg (Union_Id (N));
5762 end if;
5764 -- If not in optimizing mode, set flag and we are done. We are also done
5765 -- (and just set the flag) if the type is not a discrete type, since it
5766 -- is not worth the effort to eliminate checks for other than discrete
5767 -- types. In addition, we take this same path if we have stored the
5768 -- maximum number of checks possible already (a very unlikely situation,
5769 -- but we do not want to blow up).
5771 if Optimization_Level = 0
5772 or else No (Etype (N))
5773 or else not Is_Discrete_Type (Etype (N))
5774 or else Num_Saved_Checks = Saved_Checks'Last
5775 then
5776 Activate_Range_Check (N);
5778 if Debug_Flag_CC then
5779 w ("Optimization off");
5780 end if;
5782 return;
5783 end if;
5785 -- Otherwise find out the target type
5787 P := Parent (N);
5789 -- For assignment, use left side subtype
5791 if Nkind (P) = N_Assignment_Statement
5792 and then Expression (P) = N
5793 then
5794 Ttyp := Etype (Name (P));
5796 -- For indexed component, use subscript subtype
5798 elsif Nkind (P) = N_Indexed_Component then
5799 declare
5800 Atyp : Entity_Id;
5801 Indx : Node_Id;
5802 Subs : Node_Id;
5804 begin
5805 Atyp := Etype (Prefix (P));
5807 if Is_Access_Type (Atyp) then
5808 Atyp := Designated_Type (Atyp);
5810 -- If the prefix is an access to an unconstrained array,
5811 -- perform check unconditionally: it depends on the bounds of
5812 -- an object and we cannot currently recognize whether the test
5813 -- may be redundant.
5815 if not Is_Constrained (Atyp) then
5816 Activate_Range_Check (N);
5817 return;
5818 end if;
5820 -- Ditto if prefix is simply an unconstrained array. We used
5821 -- to think this case was OK, if the prefix was not an explicit
5822 -- dereference, but we have now seen a case where this is not
5823 -- true, so it is safer to just suppress the optimization in this
5824 -- case. The back end is getting better at eliminating redundant
5825 -- checks in any case, so the loss won't be important.
5827 elsif Is_Array_Type (Atyp)
5828 and then not Is_Constrained (Atyp)
5829 then
5830 Activate_Range_Check (N);
5831 return;
5832 end if;
5834 Indx := First_Index (Atyp);
5835 Subs := First (Expressions (P));
5836 loop
5837 if Subs = N then
5838 Ttyp := Etype (Indx);
5839 exit;
5840 end if;
5842 Next_Index (Indx);
5843 Next (Subs);
5844 end loop;
5845 end;
5847 -- For now, ignore all other cases, they are not so interesting
5849 else
5850 if Debug_Flag_CC then
5851 w (" target type not found, flag set");
5852 end if;
5854 Activate_Range_Check (N);
5855 return;
5856 end if;
5858 -- Evaluate and check the expression
5860 Find_Check
5861 (Expr => N,
5862 Check_Type => 'R',
5863 Target_Type => Ttyp,
5864 Entry_OK => OK,
5865 Check_Num => Chk,
5866 Ent => Ent,
5867 Ofs => Ofs);
5869 if Debug_Flag_CC then
5870 w ("Called Find_Check");
5871 w ("Target_Typ = ", Int (Ttyp));
5872 w (" OK = ", OK);
5874 if OK then
5875 w (" Check_Num = ", Chk);
5876 w (" Ent = ", Int (Ent));
5877 Write_Str (" Ofs = ");
5878 pid (Ofs);
5879 end if;
5880 end if;
5882 -- If check is not of form to optimize, then set flag and we are done
5884 if not OK then
5885 if Debug_Flag_CC then
5886 w (" expression not of optimizable type, flag set");
5887 end if;
5889 Activate_Range_Check (N);
5890 return;
5891 end if;
5893 -- If check is already performed, then return without setting flag
5895 if Chk /= 0 then
5896 if Debug_Flag_CC then
5897 w ("Check suppressed!");
5898 end if;
5900 return;
5901 end if;
5903 -- Here we will make a new entry for the new check
5905 Activate_Range_Check (N);
5906 Num_Saved_Checks := Num_Saved_Checks + 1;
5907 Saved_Checks (Num_Saved_Checks) :=
5908 (Killed => False,
5909 Entity => Ent,
5910 Offset => Ofs,
5911 Check_Type => 'R',
5912 Target_Type => Ttyp);
5914 if Debug_Flag_CC then
5915 w ("Make new entry, check number = ", Num_Saved_Checks);
5916 w (" Entity = ", Int (Ent));
5917 Write_Str (" Offset = ");
5918 pid (Ofs);
5919 w (" Check_Type = R");
5920 w (" Target_Type = ", Int (Ttyp));
5921 pg (Union_Id (Ttyp));
5922 end if;
5924 -- If we get an exception, then something went wrong, probably because of
5925 -- an error in the structure of the tree due to an incorrect program. Or
5926 -- it may be a bug in the optimization circuit. In either case the safest
5927 -- thing is simply to set the check flag unconditionally.
5929 exception
5930 when others =>
5931 Activate_Range_Check (N);
5933 if Debug_Flag_CC then
5934 w (" exception occurred, range flag set");
5935 end if;
5937 return;
5938 end Enable_Range_Check;
5940 ------------------
5941 -- Ensure_Valid --
5942 ------------------
5944 procedure Ensure_Valid
5945 (Expr : Node_Id;
5946 Holes_OK : Boolean := False;
5947 Related_Id : Entity_Id := Empty;
5948 Is_Low_Bound : Boolean := False;
5949 Is_High_Bound : Boolean := False)
5951 Typ : constant Entity_Id := Etype (Expr);
5953 begin
5954 -- Ignore call if we are not doing any validity checking
5956 if not Validity_Checks_On then
5957 return;
5959 -- Ignore call if range or validity checks suppressed on entity or type
5961 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
5962 return;
5964 -- No check required if expression is from the expander, we assume the
5965 -- expander will generate whatever checks are needed. Note that this is
5966 -- not just an optimization, it avoids infinite recursions.
5968 -- Unchecked conversions must be checked, unless they are initialized
5969 -- scalar values, as in a component assignment in an init proc.
5971 -- In addition, we force a check if Force_Validity_Checks is set
5973 elsif not Comes_From_Source (Expr)
5974 and then not
5975 (Nkind (Expr) = N_Identifier
5976 and then Present (Renamed_Object (Entity (Expr)))
5977 and then Comes_From_Source (Renamed_Object (Entity (Expr))))
5978 and then not Force_Validity_Checks
5979 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
5980 or else Kill_Range_Check (Expr))
5981 then
5982 return;
5984 -- No check required if expression is known to have valid value
5986 elsif Expr_Known_Valid (Expr) then
5987 return;
5989 -- No check needed within a generated predicate function. Validity
5990 -- of input value will have been checked earlier.
5992 elsif Ekind (Current_Scope) = E_Function
5993 and then Is_Predicate_Function (Current_Scope)
5994 then
5995 return;
5997 -- Ignore case of enumeration with holes where the flag is set not to
5998 -- worry about holes, since no special validity check is needed
6000 elsif Is_Enumeration_Type (Typ)
6001 and then Has_Non_Standard_Rep (Typ)
6002 and then Holes_OK
6003 then
6004 return;
6006 -- No check required on the left-hand side of an assignment
6008 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
6009 and then Expr = Name (Parent (Expr))
6010 then
6011 return;
6013 -- No check on a universal real constant. The context will eventually
6014 -- convert it to a machine number for some target type, or report an
6015 -- illegality.
6017 elsif Nkind (Expr) = N_Real_Literal
6018 and then Etype (Expr) = Universal_Real
6019 then
6020 return;
6022 -- If the expression denotes a component of a packed boolean array,
6023 -- no possible check applies. We ignore the old ACATS chestnuts that
6024 -- involve Boolean range True..True.
6026 -- Note: validity checks are generated for expressions that yield a
6027 -- scalar type, when it is possible to create a value that is outside of
6028 -- the type. If this is a one-bit boolean no such value exists. This is
6029 -- an optimization, and it also prevents compiler blowing up during the
6030 -- elaboration of improperly expanded packed array references.
6032 elsif Nkind (Expr) = N_Indexed_Component
6033 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
6034 and then Root_Type (Etype (Expr)) = Standard_Boolean
6035 then
6036 return;
6038 -- For an expression with actions, we want to insert the validity check
6039 -- on the final Expression.
6041 elsif Nkind (Expr) = N_Expression_With_Actions then
6042 Ensure_Valid (Expression (Expr));
6043 return;
6045 -- An annoying special case. If this is an out parameter of a scalar
6046 -- type, then the value is not going to be accessed, therefore it is
6047 -- inappropriate to do any validity check at the call site.
6049 else
6050 -- Only need to worry about scalar types
6052 if Is_Scalar_Type (Typ) then
6053 declare
6054 P : Node_Id;
6055 N : Node_Id;
6056 E : Entity_Id;
6057 F : Entity_Id;
6058 A : Node_Id;
6059 L : List_Id;
6061 begin
6062 -- Find actual argument (which may be a parameter association)
6063 -- and the parent of the actual argument (the call statement)
6065 N := Expr;
6066 P := Parent (Expr);
6068 if Nkind (P) = N_Parameter_Association then
6069 N := P;
6070 P := Parent (N);
6071 end if;
6073 -- Only need to worry if we are argument of a procedure call
6074 -- since functions don't have out parameters. If this is an
6075 -- indirect or dispatching call, get signature from the
6076 -- subprogram type.
6078 if Nkind (P) = N_Procedure_Call_Statement then
6079 L := Parameter_Associations (P);
6081 if Is_Entity_Name (Name (P)) then
6082 E := Entity (Name (P));
6083 else
6084 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
6085 E := Etype (Name (P));
6086 end if;
6088 -- Only need to worry if there are indeed actuals, and if
6089 -- this could be a procedure call, otherwise we cannot get a
6090 -- match (either we are not an argument, or the mode of the
6091 -- formal is not OUT). This test also filters out the
6092 -- generic case.
6094 if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
6096 -- This is the loop through parameters, looking for an
6097 -- OUT parameter for which we are the argument.
6099 F := First_Formal (E);
6100 A := First (L);
6101 while Present (F) loop
6102 if Ekind (F) = E_Out_Parameter and then A = N then
6103 return;
6104 end if;
6106 Next_Formal (F);
6107 Next (A);
6108 end loop;
6109 end if;
6110 end if;
6111 end;
6112 end if;
6113 end if;
6115 -- If this is a boolean expression, only its elementary operands need
6116 -- checking: if they are valid, a boolean or short-circuit operation
6117 -- with them will be valid as well.
6119 if Base_Type (Typ) = Standard_Boolean
6120 and then
6121 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
6122 then
6123 return;
6124 end if;
6126 -- If we fall through, a validity check is required
6128 Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);
6130 if Is_Entity_Name (Expr)
6131 and then Safe_To_Capture_Value (Expr, Entity (Expr))
6132 then
6133 Set_Is_Known_Valid (Entity (Expr));
6134 end if;
6135 end Ensure_Valid;
6137 ----------------------
6138 -- Expr_Known_Valid --
6139 ----------------------
6141 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
6142 Typ : constant Entity_Id := Etype (Expr);
6144 begin
6145 -- Non-scalar types are always considered valid, since they never give
6146 -- rise to the issues of erroneous or bounded error behavior that are
6147 -- the concern. In formal reference manual terms the notion of validity
6148 -- only applies to scalar types. Note that even when packed arrays are
6149 -- represented using modular types, they are still arrays semantically,
6150 -- so they are also always valid (in particular, the unused bits can be
6151 -- random rubbish without affecting the validity of the array value).
6153 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
6154 return True;
6156 -- If no validity checking, then everything is considered valid
6158 elsif not Validity_Checks_On then
6159 return True;
6161 -- Floating-point types are considered valid unless floating-point
6162 -- validity checks have been specifically turned on.
6164 elsif Is_Floating_Point_Type (Typ)
6165 and then not Validity_Check_Floating_Point
6166 then
6167 return True;
6169 -- If the expression is the value of an object that is known to be
6170 -- valid, then clearly the expression value itself is valid.
6172 elsif Is_Entity_Name (Expr)
6173 and then Is_Known_Valid (Entity (Expr))
6175 -- Exclude volatile variables
6177 and then not Treat_As_Volatile (Entity (Expr))
6178 then
6179 return True;
6181 -- References to discriminants are always considered valid. The value
6182 -- of a discriminant gets checked when the object is built. Within the
6183 -- record, we consider it valid, and it is important to do so, since
6184 -- otherwise we can try to generate bogus validity checks which
6185 -- reference discriminants out of scope. Discriminants of concurrent
6186 -- types are excluded for the same reason.
6188 elsif Is_Entity_Name (Expr)
6189 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
6190 then
6191 return True;
6193 -- If the type is one for which all values are known valid, then we are
6194 -- sure that the value is valid except in the slightly odd case where
6195 -- the expression is a reference to a variable whose size has been
6196 -- explicitly set to a value greater than the object size.
6198 elsif Is_Known_Valid (Typ) then
6199 if Is_Entity_Name (Expr)
6200 and then Ekind (Entity (Expr)) = E_Variable
6201 and then Esize (Entity (Expr)) > Esize (Typ)
6202 then
6203 return False;
6204 else
6205 return True;
6206 end if;
6208 -- Integer and character literals always have valid values, where
6209 -- appropriate these will be range checked in any case.
6211 elsif Nkind_In (Expr, N_Integer_Literal, N_Character_Literal) then
6212 return True;
6214 -- If we have a type conversion or a qualification of a known valid
6215 -- value, then the result will always be valid.
6217 elsif Nkind_In (Expr, N_Type_Conversion, N_Qualified_Expression) then
6218 return Expr_Known_Valid (Expression (Expr));
6220 -- Case of expression is a non-floating-point operator. In this case we
6221 -- can assume the result is valid the generated code for the operator
6222 -- will include whatever checks are needed (e.g. range checks) to ensure
6223 -- validity. This assumption does not hold for the floating-point case,
6224 -- since floating-point operators can generate Infinite or NaN results
6225 -- which are considered invalid.
6227 -- Historical note: in older versions, the exemption of floating-point
6228 -- types from this assumption was done only in cases where the parent
6229 -- was an assignment, function call or parameter association. Presumably
6230 -- the idea was that in other contexts, the result would be checked
6231 -- elsewhere, but this list of cases was missing tests (at least the
6232 -- N_Object_Declaration case, as shown by a reported missing validity
6233 -- check), and it is not clear why function calls but not procedure
6234 -- calls were tested for. It really seems more accurate and much
6235 -- safer to recognize that expressions which are the result of a
6236 -- floating-point operator can never be assumed to be valid.
6238 elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
6239 return True;
6241 -- The result of a membership test is always valid, since it is true or
6242 -- false, there are no other possibilities.
6244 elsif Nkind (Expr) in N_Membership_Test then
6245 return True;
6247 -- For all other cases, we do not know the expression is valid
6249 else
6250 return False;
6251 end if;
6252 end Expr_Known_Valid;
6254 ----------------
6255 -- Find_Check --
6256 ----------------
6258 procedure Find_Check
6259 (Expr : Node_Id;
6260 Check_Type : Character;
6261 Target_Type : Entity_Id;
6262 Entry_OK : out Boolean;
6263 Check_Num : out Nat;
6264 Ent : out Entity_Id;
6265 Ofs : out Uint)
6267 function Within_Range_Of
6268 (Target_Type : Entity_Id;
6269 Check_Type : Entity_Id) return Boolean;
6270 -- Given a requirement for checking a range against Target_Type, and
6271 -- and a range Check_Type against which a check has already been made,
6272 -- determines if the check against check type is sufficient to ensure
6273 -- that no check against Target_Type is required.
6275 ---------------------
6276 -- Within_Range_Of --
6277 ---------------------
6279 function Within_Range_Of
6280 (Target_Type : Entity_Id;
6281 Check_Type : Entity_Id) return Boolean
6283 begin
6284 if Target_Type = Check_Type then
6285 return True;
6287 else
6288 declare
6289 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
6290 Thi : constant Node_Id := Type_High_Bound (Target_Type);
6291 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
6292 Chi : constant Node_Id := Type_High_Bound (Check_Type);
6294 begin
6295 if (Tlo = Clo
6296 or else (Compile_Time_Known_Value (Tlo)
6297 and then
6298 Compile_Time_Known_Value (Clo)
6299 and then
6300 Expr_Value (Clo) >= Expr_Value (Tlo)))
6301 and then
6302 (Thi = Chi
6303 or else (Compile_Time_Known_Value (Thi)
6304 and then
6305 Compile_Time_Known_Value (Chi)
6306 and then
6307 Expr_Value (Chi) <= Expr_Value (Clo)))
6308 then
6309 return True;
6310 else
6311 return False;
6312 end if;
6313 end;
6314 end if;
6315 end Within_Range_Of;
6317 -- Start of processing for Find_Check
6319 begin
6320 -- Establish default, in case no entry is found
6322 Check_Num := 0;
6324 -- Case of expression is simple entity reference
6326 if Is_Entity_Name (Expr) then
6327 Ent := Entity (Expr);
6328 Ofs := Uint_0;
6330 -- Case of expression is entity + known constant
6332 elsif Nkind (Expr) = N_Op_Add
6333 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6334 and then Is_Entity_Name (Left_Opnd (Expr))
6335 then
6336 Ent := Entity (Left_Opnd (Expr));
6337 Ofs := Expr_Value (Right_Opnd (Expr));
6339 -- Case of expression is entity - known constant
6341 elsif Nkind (Expr) = N_Op_Subtract
6342 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6343 and then Is_Entity_Name (Left_Opnd (Expr))
6344 then
6345 Ent := Entity (Left_Opnd (Expr));
6346 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
6348 -- Any other expression is not of the right form
6350 else
6351 Ent := Empty;
6352 Ofs := Uint_0;
6353 Entry_OK := False;
6354 return;
6355 end if;
6357 -- Come here with expression of appropriate form, check if entity is an
6358 -- appropriate one for our purposes.
6360 if (Ekind (Ent) = E_Variable
6361 or else Is_Constant_Object (Ent))
6362 and then not Is_Library_Level_Entity (Ent)
6363 then
6364 Entry_OK := True;
6365 else
6366 Entry_OK := False;
6367 return;
6368 end if;
6370 -- See if there is matching check already
6372 for J in reverse 1 .. Num_Saved_Checks loop
6373 declare
6374 SC : Saved_Check renames Saved_Checks (J);
6375 begin
6376 if SC.Killed = False
6377 and then SC.Entity = Ent
6378 and then SC.Offset = Ofs
6379 and then SC.Check_Type = Check_Type
6380 and then Within_Range_Of (Target_Type, SC.Target_Type)
6381 then
6382 Check_Num := J;
6383 return;
6384 end if;
6385 end;
6386 end loop;
6388 -- If we fall through entry was not found
6390 return;
6391 end Find_Check;
6393 ---------------------------------
6394 -- Generate_Discriminant_Check --
6395 ---------------------------------
6397 -- Note: the code for this procedure is derived from the
6398 -- Emit_Discriminant_Check Routine in trans.c.
6400 procedure Generate_Discriminant_Check (N : Node_Id) is
6401 Loc : constant Source_Ptr := Sloc (N);
6402 Pref : constant Node_Id := Prefix (N);
6403 Sel : constant Node_Id := Selector_Name (N);
6405 Orig_Comp : constant Entity_Id :=
6406 Original_Record_Component (Entity (Sel));
6407 -- The original component to be checked
6409 Discr_Fct : constant Entity_Id :=
6410 Discriminant_Checking_Func (Orig_Comp);
6411 -- The discriminant checking function
6413 Discr : Entity_Id;
6414 -- One discriminant to be checked in the type
6416 Real_Discr : Entity_Id;
6417 -- Actual discriminant in the call
6419 Pref_Type : Entity_Id;
6420 -- Type of relevant prefix (ignoring private/access stuff)
6422 Args : List_Id;
6423 -- List of arguments for function call
6425 Formal : Entity_Id;
6426 -- Keep track of the formal corresponding to the actual we build for
6427 -- each discriminant, in order to be able to perform the necessary type
6428 -- conversions.
6430 Scomp : Node_Id;
6431 -- Selected component reference for checking function argument
6433 begin
6434 Pref_Type := Etype (Pref);
6436 -- Force evaluation of the prefix, so that it does not get evaluated
6437 -- twice (once for the check, once for the actual reference). Such a
6438 -- double evaluation is always a potential source of inefficiency, and
6439 -- is functionally incorrect in the volatile case, or when the prefix
6440 -- may have side effects. A nonvolatile entity or a component of a
6441 -- nonvolatile entity requires no evaluation.
6443 if Is_Entity_Name (Pref) then
6444 if Treat_As_Volatile (Entity (Pref)) then
6445 Force_Evaluation (Pref, Name_Req => True);
6446 end if;
6448 elsif Treat_As_Volatile (Etype (Pref)) then
6449 Force_Evaluation (Pref, Name_Req => True);
6451 elsif Nkind (Pref) = N_Selected_Component
6452 and then Is_Entity_Name (Prefix (Pref))
6453 then
6454 null;
6456 else
6457 Force_Evaluation (Pref, Name_Req => True);
6458 end if;
6460 -- For a tagged type, use the scope of the original component to
6461 -- obtain the type, because ???
6463 if Is_Tagged_Type (Scope (Orig_Comp)) then
6464 Pref_Type := Scope (Orig_Comp);
6466 -- For an untagged derived type, use the discriminants of the parent
6467 -- which have been renamed in the derivation, possibly by a one-to-many
6468 -- discriminant constraint. For untagged type, initially get the Etype
6469 -- of the prefix
6471 else
6472 if Is_Derived_Type (Pref_Type)
6473 and then Number_Discriminants (Pref_Type) /=
6474 Number_Discriminants (Etype (Base_Type (Pref_Type)))
6475 then
6476 Pref_Type := Etype (Base_Type (Pref_Type));
6477 end if;
6478 end if;
6480 -- We definitely should have a checking function, This routine should
6481 -- not be called if no discriminant checking function is present.
6483 pragma Assert (Present (Discr_Fct));
6485 -- Create the list of the actual parameters for the call. This list
6486 -- is the list of the discriminant fields of the record expression to
6487 -- be discriminant checked.
6489 Args := New_List;
6490 Formal := First_Formal (Discr_Fct);
6491 Discr := First_Discriminant (Pref_Type);
6492 while Present (Discr) loop
6494 -- If we have a corresponding discriminant field, and a parent
6495 -- subtype is present, then we want to use the corresponding
6496 -- discriminant since this is the one with the useful value.
6498 if Present (Corresponding_Discriminant (Discr))
6499 and then Ekind (Pref_Type) = E_Record_Type
6500 and then Present (Parent_Subtype (Pref_Type))
6501 then
6502 Real_Discr := Corresponding_Discriminant (Discr);
6503 else
6504 Real_Discr := Discr;
6505 end if;
6507 -- Construct the reference to the discriminant
6509 Scomp :=
6510 Make_Selected_Component (Loc,
6511 Prefix =>
6512 Unchecked_Convert_To (Pref_Type,
6513 Duplicate_Subexpr (Pref)),
6514 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
6516 -- Manually analyze and resolve this selected component. We really
6517 -- want it just as it appears above, and do not want the expander
6518 -- playing discriminal games etc with this reference. Then we append
6519 -- the argument to the list we are gathering.
6521 Set_Etype (Scomp, Etype (Real_Discr));
6522 Set_Analyzed (Scomp, True);
6523 Append_To (Args, Convert_To (Etype (Formal), Scomp));
6525 Next_Formal_With_Extras (Formal);
6526 Next_Discriminant (Discr);
6527 end loop;
6529 -- Now build and insert the call
6531 Insert_Action (N,
6532 Make_Raise_Constraint_Error (Loc,
6533 Condition =>
6534 Make_Function_Call (Loc,
6535 Name => New_Occurrence_Of (Discr_Fct, Loc),
6536 Parameter_Associations => Args),
6537 Reason => CE_Discriminant_Check_Failed));
6538 end Generate_Discriminant_Check;
6540 ---------------------------
6541 -- Generate_Index_Checks --
6542 ---------------------------
6544 procedure Generate_Index_Checks (N : Node_Id) is
6546 function Entity_Of_Prefix return Entity_Id;
6547 -- Returns the entity of the prefix of N (or Empty if not found)
6549 ----------------------
6550 -- Entity_Of_Prefix --
6551 ----------------------
6553 function Entity_Of_Prefix return Entity_Id is
6554 P : Node_Id;
6556 begin
6557 P := Prefix (N);
6558 while not Is_Entity_Name (P) loop
6559 if not Nkind_In (P, N_Selected_Component,
6560 N_Indexed_Component)
6561 then
6562 return Empty;
6563 end if;
6565 P := Prefix (P);
6566 end loop;
6568 return Entity (P);
6569 end Entity_Of_Prefix;
6571 -- Local variables
6573 Loc : constant Source_Ptr := Sloc (N);
6574 A : constant Node_Id := Prefix (N);
6575 A_Ent : constant Entity_Id := Entity_Of_Prefix;
6576 Sub : Node_Id;
6578 -- Start of processing for Generate_Index_Checks
6580 begin
6581 -- Ignore call if the prefix is not an array since we have a serious
6582 -- error in the sources. Ignore it also if index checks are suppressed
6583 -- for array object or type.
6585 if not Is_Array_Type (Etype (A))
6586 or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
6587 or else Index_Checks_Suppressed (Etype (A))
6588 then
6589 return;
6591 -- The indexed component we are dealing with contains 'Loop_Entry in its
6592 -- prefix. This case arises when analysis has determined that constructs
6593 -- such as
6595 -- Prefix'Loop_Entry (Expr)
6596 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6598 -- require rewriting for error detection purposes. A side effect of this
6599 -- action is the generation of index checks that mention 'Loop_Entry.
6600 -- Delay the generation of the check until 'Loop_Entry has been properly
6601 -- expanded. This is done in Expand_Loop_Entry_Attributes.
6603 elsif Nkind (Prefix (N)) = N_Attribute_Reference
6604 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
6605 then
6606 return;
6607 end if;
6609 -- Generate a raise of constraint error with the appropriate reason and
6610 -- a condition of the form:
6612 -- Base_Type (Sub) not in Array'Range (Subscript)
6614 -- Note that the reason we generate the conversion to the base type here
6615 -- is that we definitely want the range check to take place, even if it
6616 -- looks like the subtype is OK. Optimization considerations that allow
6617 -- us to omit the check have already been taken into account in the
6618 -- setting of the Do_Range_Check flag earlier on.
6620 Sub := First (Expressions (N));
6622 -- Handle string literals
6624 if Ekind (Etype (A)) = E_String_Literal_Subtype then
6625 if Do_Range_Check (Sub) then
6626 Set_Do_Range_Check (Sub, False);
6628 -- For string literals we obtain the bounds of the string from the
6629 -- associated subtype.
6631 Insert_Action (N,
6632 Make_Raise_Constraint_Error (Loc,
6633 Condition =>
6634 Make_Not_In (Loc,
6635 Left_Opnd =>
6636 Convert_To (Base_Type (Etype (Sub)),
6637 Duplicate_Subexpr_Move_Checks (Sub)),
6638 Right_Opnd =>
6639 Make_Attribute_Reference (Loc,
6640 Prefix => New_Occurrence_Of (Etype (A), Loc),
6641 Attribute_Name => Name_Range)),
6642 Reason => CE_Index_Check_Failed));
6643 end if;
6645 -- General case
6647 else
6648 declare
6649 A_Idx : Node_Id := Empty;
6650 A_Range : Node_Id;
6651 Ind : Nat;
6652 Num : List_Id;
6653 Range_N : Node_Id;
6655 begin
6656 A_Idx := First_Index (Etype (A));
6657 Ind := 1;
6658 while Present (Sub) loop
6659 if Do_Range_Check (Sub) then
6660 Set_Do_Range_Check (Sub, False);
6662 -- Force evaluation except for the case of a simple name of
6663 -- a nonvolatile entity.
6665 if not Is_Entity_Name (Sub)
6666 or else Treat_As_Volatile (Entity (Sub))
6667 then
6668 Force_Evaluation (Sub);
6669 end if;
6671 if Nkind (A_Idx) = N_Range then
6672 A_Range := A_Idx;
6674 elsif Nkind (A_Idx) = N_Identifier
6675 or else Nkind (A_Idx) = N_Expanded_Name
6676 then
6677 A_Range := Scalar_Range (Entity (A_Idx));
6679 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
6680 A_Range := Range_Expression (Constraint (A_Idx));
6681 end if;
6683 -- For array objects with constant bounds we can generate
6684 -- the index check using the bounds of the type of the index
6686 if Present (A_Ent)
6687 and then Ekind (A_Ent) = E_Variable
6688 and then Is_Constant_Bound (Low_Bound (A_Range))
6689 and then Is_Constant_Bound (High_Bound (A_Range))
6690 then
6691 Range_N :=
6692 Make_Attribute_Reference (Loc,
6693 Prefix =>
6694 New_Occurrence_Of (Etype (A_Idx), Loc),
6695 Attribute_Name => Name_Range);
6697 -- For arrays with non-constant bounds we cannot generate
6698 -- the index check using the bounds of the type of the index
6699 -- since it may reference discriminants of some enclosing
6700 -- type. We obtain the bounds directly from the prefix
6701 -- object.
6703 else
6704 if Ind = 1 then
6705 Num := No_List;
6706 else
6707 Num := New_List (Make_Integer_Literal (Loc, Ind));
6708 end if;
6710 Range_N :=
6711 Make_Attribute_Reference (Loc,
6712 Prefix =>
6713 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
6714 Attribute_Name => Name_Range,
6715 Expressions => Num);
6716 end if;
6718 Insert_Action (N,
6719 Make_Raise_Constraint_Error (Loc,
6720 Condition =>
6721 Make_Not_In (Loc,
6722 Left_Opnd =>
6723 Convert_To (Base_Type (Etype (Sub)),
6724 Duplicate_Subexpr_Move_Checks (Sub)),
6725 Right_Opnd => Range_N),
6726 Reason => CE_Index_Check_Failed));
6727 end if;
6729 A_Idx := Next_Index (A_Idx);
6730 Ind := Ind + 1;
6731 Next (Sub);
6732 end loop;
6733 end;
6734 end if;
6735 end Generate_Index_Checks;
6737 --------------------------
6738 -- Generate_Range_Check --
6739 --------------------------
6741 procedure Generate_Range_Check
6742 (N : Node_Id;
6743 Target_Type : Entity_Id;
6744 Reason : RT_Exception_Code)
6746 Loc : constant Source_Ptr := Sloc (N);
6747 Source_Type : constant Entity_Id := Etype (N);
6748 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
6749 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
6751 procedure Convert_And_Check_Range;
6752 -- Convert the conversion operand to the target base type and save in
6753 -- a temporary. Then check the converted value against the range of the
6754 -- target subtype.
6756 -----------------------------
6757 -- Convert_And_Check_Range --
6758 -----------------------------
6760 procedure Convert_And_Check_Range is
6761 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
6763 begin
6764 -- We make a temporary to hold the value of the converted value
6765 -- (converted to the base type), and then do the test against this
6766 -- temporary. The conversion itself is replaced by an occurrence of
6767 -- Tnn and followed by the explicit range check. Note that checks
6768 -- are suppressed for this code, since we don't want a recursive
6769 -- range check popping up.
6771 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
6772 -- [constraint_error when Tnn not in Target_Type]
6774 Insert_Actions (N, New_List (
6775 Make_Object_Declaration (Loc,
6776 Defining_Identifier => Tnn,
6777 Object_Definition => New_Occurrence_Of (Target_Base_Type, Loc),
6778 Constant_Present => True,
6779 Expression =>
6780 Make_Type_Conversion (Loc,
6781 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
6782 Expression => Duplicate_Subexpr (N))),
6784 Make_Raise_Constraint_Error (Loc,
6785 Condition =>
6786 Make_Not_In (Loc,
6787 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6788 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6789 Reason => Reason)),
6790 Suppress => All_Checks);
6792 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6794 -- Set the type of N, because the declaration for Tnn might not
6795 -- be analyzed yet, as is the case if N appears within a record
6796 -- declaration, as a discriminant constraint or expression.
6798 Set_Etype (N, Target_Base_Type);
6799 end Convert_And_Check_Range;
6801 -- Start of processing for Generate_Range_Check
6803 begin
6804 -- First special case, if the source type is already within the range
6805 -- of the target type, then no check is needed (probably we should have
6806 -- stopped Do_Range_Check from being set in the first place, but better
6807 -- late than never in preventing junk code and junk flag settings.
6809 if In_Subrange_Of (Source_Type, Target_Type)
6811 -- We do NOT apply this if the source node is a literal, since in this
6812 -- case the literal has already been labeled as having the subtype of
6813 -- the target.
6815 and then not
6816 (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
6817 or else
6818 (Is_Entity_Name (N)
6819 and then Ekind (Entity (N)) = E_Enumeration_Literal))
6820 then
6821 Set_Do_Range_Check (N, False);
6822 return;
6823 end if;
6825 -- Here a check is needed. If the expander is not active, or if we are
6826 -- in GNATProve mode, then simply set the Do_Range_Check flag and we
6827 -- are done. In both these cases, we just want to see the range check
6828 -- flag set, we do not want to generate the explicit range check code.
6830 if GNATprove_Mode or else not Expander_Active then
6831 Set_Do_Range_Check (N, True);
6832 return;
6833 end if;
6835 -- Here we will generate an explicit range check, so we don't want to
6836 -- set the Do_Range check flag, since the range check is taken care of
6837 -- by the code we will generate.
6839 Set_Do_Range_Check (N, False);
6841 -- Force evaluation of the node, so that it does not get evaluated twice
6842 -- (once for the check, once for the actual reference). Such a double
6843 -- evaluation is always a potential source of inefficiency, and is
6844 -- functionally incorrect in the volatile case.
6846 -- We skip the evaluation of attribute references because, after these
6847 -- runtime checks are generated, the expander may need to rewrite this
6848 -- node (for example, see Attribute_Max_Size_In_Storage_Elements in
6849 -- Expand_N_Attribute_Reference).
6851 if Nkind (N) /= N_Attribute_Reference
6852 and then (not Is_Entity_Name (N)
6853 or else Treat_As_Volatile (Entity (N)))
6854 then
6855 Force_Evaluation (N, Mode => Strict);
6856 end if;
6858 -- The easiest case is when Source_Base_Type and Target_Base_Type are
6859 -- the same since in this case we can simply do a direct check of the
6860 -- value of N against the bounds of Target_Type.
6862 -- [constraint_error when N not in Target_Type]
6864 -- Note: this is by far the most common case, for example all cases of
6865 -- checks on the RHS of assignments are in this category, but not all
6866 -- cases are like this. Notably conversions can involve two types.
6868 if Source_Base_Type = Target_Base_Type then
6870 -- Insert the explicit range check. Note that we suppress checks for
6871 -- this code, since we don't want a recursive range check popping up.
6873 Insert_Action (N,
6874 Make_Raise_Constraint_Error (Loc,
6875 Condition =>
6876 Make_Not_In (Loc,
6877 Left_Opnd => Duplicate_Subexpr (N),
6878 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6879 Reason => Reason),
6880 Suppress => All_Checks);
6882 -- Next test for the case where the target type is within the bounds
6883 -- of the base type of the source type, since in this case we can
6884 -- simply convert these bounds to the base type of T to do the test.
6886 -- [constraint_error when N not in
6887 -- Source_Base_Type (Target_Type'First)
6888 -- ..
6889 -- Source_Base_Type(Target_Type'Last))]
6891 -- The conversions will always work and need no check
6893 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
6894 -- of converting from an enumeration value to an integer type, such as
6895 -- occurs for the case of generating a range check on Enum'Val(Exp)
6896 -- (which used to be handled by gigi). This is OK, since the conversion
6897 -- itself does not require a check.
6899 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
6901 -- Insert the explicit range check. Note that we suppress checks for
6902 -- this code, since we don't want a recursive range check popping up.
6904 if Is_Discrete_Type (Source_Base_Type)
6905 and then
6906 Is_Discrete_Type (Target_Base_Type)
6907 then
6908 Insert_Action (N,
6909 Make_Raise_Constraint_Error (Loc,
6910 Condition =>
6911 Make_Not_In (Loc,
6912 Left_Opnd => Duplicate_Subexpr (N),
6914 Right_Opnd =>
6915 Make_Range (Loc,
6916 Low_Bound =>
6917 Unchecked_Convert_To (Source_Base_Type,
6918 Make_Attribute_Reference (Loc,
6919 Prefix =>
6920 New_Occurrence_Of (Target_Type, Loc),
6921 Attribute_Name => Name_First)),
6923 High_Bound =>
6924 Unchecked_Convert_To (Source_Base_Type,
6925 Make_Attribute_Reference (Loc,
6926 Prefix =>
6927 New_Occurrence_Of (Target_Type, Loc),
6928 Attribute_Name => Name_Last)))),
6929 Reason => Reason),
6930 Suppress => All_Checks);
6932 -- For conversions involving at least one type that is not discrete,
6933 -- first convert to target type and then generate the range check.
6934 -- This avoids problems with values that are close to a bound of the
6935 -- target type that would fail a range check when done in a larger
6936 -- source type before converting but would pass if converted with
6937 -- rounding and then checked (such as in float-to-float conversions).
6939 else
6940 Convert_And_Check_Range;
6941 end if;
6943 -- Note that at this stage we now that the Target_Base_Type is not in
6944 -- the range of the Source_Base_Type (since even the Target_Type itself
6945 -- is not in this range). It could still be the case that Source_Type is
6946 -- in range of the target base type since we have not checked that case.
6948 -- If that is the case, we can freely convert the source to the target,
6949 -- and then test the target result against the bounds.
6951 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
6952 Convert_And_Check_Range;
6954 -- At this stage, we know that we have two scalar types, which are
6955 -- directly convertible, and where neither scalar type has a base
6956 -- range that is in the range of the other scalar type.
6958 -- The only way this can happen is with a signed and unsigned type.
6959 -- So test for these two cases:
6961 else
6962 -- Case of the source is unsigned and the target is signed
6964 if Is_Unsigned_Type (Source_Base_Type)
6965 and then not Is_Unsigned_Type (Target_Base_Type)
6966 then
6967 -- If the source is unsigned and the target is signed, then we
6968 -- know that the source is not shorter than the target (otherwise
6969 -- the source base type would be in the target base type range).
6971 -- In other words, the unsigned type is either the same size as
6972 -- the target, or it is larger. It cannot be smaller.
6974 pragma Assert
6975 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
6977 -- We only need to check the low bound if the low bound of the
6978 -- target type is non-negative. If the low bound of the target
6979 -- type is negative, then we know that we will fit fine.
6981 -- If the high bound of the target type is negative, then we
6982 -- know we have a constraint error, since we can't possibly
6983 -- have a negative source.
6985 -- With these two checks out of the way, we can do the check
6986 -- using the source type safely
6988 -- This is definitely the most annoying case.
6990 -- [constraint_error
6991 -- when (Target_Type'First >= 0
6992 -- and then
6993 -- N < Source_Base_Type (Target_Type'First))
6994 -- or else Target_Type'Last < 0
6995 -- or else N > Source_Base_Type (Target_Type'Last)];
6997 -- We turn off all checks since we know that the conversions
6998 -- will work fine, given the guards for negative values.
7000 Insert_Action (N,
7001 Make_Raise_Constraint_Error (Loc,
7002 Condition =>
7003 Make_Or_Else (Loc,
7004 Make_Or_Else (Loc,
7005 Left_Opnd =>
7006 Make_And_Then (Loc,
7007 Left_Opnd => Make_Op_Ge (Loc,
7008 Left_Opnd =>
7009 Make_Attribute_Reference (Loc,
7010 Prefix =>
7011 New_Occurrence_Of (Target_Type, Loc),
7012 Attribute_Name => Name_First),
7013 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7015 Right_Opnd =>
7016 Make_Op_Lt (Loc,
7017 Left_Opnd => Duplicate_Subexpr (N),
7018 Right_Opnd =>
7019 Convert_To (Source_Base_Type,
7020 Make_Attribute_Reference (Loc,
7021 Prefix =>
7022 New_Occurrence_Of (Target_Type, Loc),
7023 Attribute_Name => Name_First)))),
7025 Right_Opnd =>
7026 Make_Op_Lt (Loc,
7027 Left_Opnd =>
7028 Make_Attribute_Reference (Loc,
7029 Prefix => New_Occurrence_Of (Target_Type, Loc),
7030 Attribute_Name => Name_Last),
7031 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
7033 Right_Opnd =>
7034 Make_Op_Gt (Loc,
7035 Left_Opnd => Duplicate_Subexpr (N),
7036 Right_Opnd =>
7037 Convert_To (Source_Base_Type,
7038 Make_Attribute_Reference (Loc,
7039 Prefix => New_Occurrence_Of (Target_Type, Loc),
7040 Attribute_Name => Name_Last)))),
7042 Reason => Reason),
7043 Suppress => All_Checks);
7045 -- Only remaining possibility is that the source is signed and
7046 -- the target is unsigned.
7048 else
7049 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
7050 and then Is_Unsigned_Type (Target_Base_Type));
7052 -- If the source is signed and the target is unsigned, then we
7053 -- know that the target is not shorter than the source (otherwise
7054 -- the target base type would be in the source base type range).
7056 -- In other words, the unsigned type is either the same size as
7057 -- the target, or it is larger. It cannot be smaller.
7059 -- Clearly we have an error if the source value is negative since
7060 -- no unsigned type can have negative values. If the source type
7061 -- is non-negative, then the check can be done using the target
7062 -- type.
7064 -- Tnn : constant Target_Base_Type (N) := Target_Type;
7066 -- [constraint_error
7067 -- when N < 0 or else Tnn not in Target_Type];
7069 -- We turn off all checks for the conversion of N to the target
7070 -- base type, since we generate the explicit check to ensure that
7071 -- the value is non-negative
7073 declare
7074 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
7076 begin
7077 Insert_Actions (N, New_List (
7078 Make_Object_Declaration (Loc,
7079 Defining_Identifier => Tnn,
7080 Object_Definition =>
7081 New_Occurrence_Of (Target_Base_Type, Loc),
7082 Constant_Present => True,
7083 Expression =>
7084 Make_Unchecked_Type_Conversion (Loc,
7085 Subtype_Mark =>
7086 New_Occurrence_Of (Target_Base_Type, Loc),
7087 Expression => Duplicate_Subexpr (N))),
7089 Make_Raise_Constraint_Error (Loc,
7090 Condition =>
7091 Make_Or_Else (Loc,
7092 Left_Opnd =>
7093 Make_Op_Lt (Loc,
7094 Left_Opnd => Duplicate_Subexpr (N),
7095 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7097 Right_Opnd =>
7098 Make_Not_In (Loc,
7099 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
7100 Right_Opnd =>
7101 New_Occurrence_Of (Target_Type, Loc))),
7103 Reason => Reason)),
7104 Suppress => All_Checks);
7106 -- Set the Etype explicitly, because Insert_Actions may have
7107 -- placed the declaration in the freeze list for an enclosing
7108 -- construct, and thus it is not analyzed yet.
7110 Set_Etype (Tnn, Target_Base_Type);
7111 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7112 end;
7113 end if;
7114 end if;
7115 end Generate_Range_Check;
7117 ------------------
7118 -- Get_Check_Id --
7119 ------------------
7121 function Get_Check_Id (N : Name_Id) return Check_Id is
7122 begin
7123 -- For standard check name, we can do a direct computation
7125 if N in First_Check_Name .. Last_Check_Name then
7126 return Check_Id (N - (First_Check_Name - 1));
7128 -- For non-standard names added by pragma Check_Name, search table
7130 else
7131 for J in All_Checks + 1 .. Check_Names.Last loop
7132 if Check_Names.Table (J) = N then
7133 return J;
7134 end if;
7135 end loop;
7136 end if;
7138 -- No matching name found
7140 return No_Check_Id;
7141 end Get_Check_Id;
7143 ---------------------
7144 -- Get_Discriminal --
7145 ---------------------
7147 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
7148 Loc : constant Source_Ptr := Sloc (E);
7149 D : Entity_Id;
7150 Sc : Entity_Id;
7152 begin
7153 -- The bound can be a bona fide parameter of a protected operation,
7154 -- rather than a prival encoded as an in-parameter.
7156 if No (Discriminal_Link (Entity (Bound))) then
7157 return Bound;
7158 end if;
7160 -- Climb the scope stack looking for an enclosing protected type. If
7161 -- we run out of scopes, return the bound itself.
7163 Sc := Scope (E);
7164 while Present (Sc) loop
7165 if Sc = Standard_Standard then
7166 return Bound;
7167 elsif Ekind (Sc) = E_Protected_Type then
7168 exit;
7169 end if;
7171 Sc := Scope (Sc);
7172 end loop;
7174 D := First_Discriminant (Sc);
7175 while Present (D) loop
7176 if Chars (D) = Chars (Bound) then
7177 return New_Occurrence_Of (Discriminal (D), Loc);
7178 end if;
7180 Next_Discriminant (D);
7181 end loop;
7183 return Bound;
7184 end Get_Discriminal;
7186 ----------------------
7187 -- Get_Range_Checks --
7188 ----------------------
7190 function Get_Range_Checks
7191 (Ck_Node : Node_Id;
7192 Target_Typ : Entity_Id;
7193 Source_Typ : Entity_Id := Empty;
7194 Warn_Node : Node_Id := Empty) return Check_Result
7196 begin
7197 return
7198 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
7199 end Get_Range_Checks;
7201 ------------------
7202 -- Guard_Access --
7203 ------------------
7205 function Guard_Access
7206 (Cond : Node_Id;
7207 Loc : Source_Ptr;
7208 Ck_Node : Node_Id) return Node_Id
7210 begin
7211 if Nkind (Cond) = N_Or_Else then
7212 Set_Paren_Count (Cond, 1);
7213 end if;
7215 if Nkind (Ck_Node) = N_Allocator then
7216 return Cond;
7218 else
7219 return
7220 Make_And_Then (Loc,
7221 Left_Opnd =>
7222 Make_Op_Ne (Loc,
7223 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
7224 Right_Opnd => Make_Null (Loc)),
7225 Right_Opnd => Cond);
7226 end if;
7227 end Guard_Access;
7229 -----------------------------
7230 -- Index_Checks_Suppressed --
7231 -----------------------------
7233 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
7234 begin
7235 if Present (E) and then Checks_May_Be_Suppressed (E) then
7236 return Is_Check_Suppressed (E, Index_Check);
7237 else
7238 return Scope_Suppress.Suppress (Index_Check);
7239 end if;
7240 end Index_Checks_Suppressed;
7242 ----------------
7243 -- Initialize --
7244 ----------------
7246 procedure Initialize is
7247 begin
7248 for J in Determine_Range_Cache_N'Range loop
7249 Determine_Range_Cache_N (J) := Empty;
7250 end loop;
7252 Check_Names.Init;
7254 for J in Int range 1 .. All_Checks loop
7255 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
7256 end loop;
7257 end Initialize;
7259 -------------------------
7260 -- Insert_Range_Checks --
7261 -------------------------
7263 procedure Insert_Range_Checks
7264 (Checks : Check_Result;
7265 Node : Node_Id;
7266 Suppress_Typ : Entity_Id;
7267 Static_Sloc : Source_Ptr := No_Location;
7268 Flag_Node : Node_Id := Empty;
7269 Do_Before : Boolean := False)
7271 Checks_On : constant Boolean :=
7272 not Index_Checks_Suppressed (Suppress_Typ)
7273 or else
7274 not Range_Checks_Suppressed (Suppress_Typ);
7276 Check_Node : Node_Id;
7277 Internal_Flag_Node : Node_Id := Flag_Node;
7278 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
7280 begin
7281 -- For now we just return if Checks_On is false, however this should be
7282 -- enhanced to check for an always True value in the condition and to
7283 -- generate a compilation warning???
7285 if not Expander_Active or not Checks_On then
7286 return;
7287 end if;
7289 if Static_Sloc = No_Location then
7290 Internal_Static_Sloc := Sloc (Node);
7291 end if;
7293 if No (Flag_Node) then
7294 Internal_Flag_Node := Node;
7295 end if;
7297 for J in 1 .. 2 loop
7298 exit when No (Checks (J));
7300 if Nkind (Checks (J)) = N_Raise_Constraint_Error
7301 and then Present (Condition (Checks (J)))
7302 then
7303 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
7304 Check_Node := Checks (J);
7305 Mark_Rewrite_Insertion (Check_Node);
7307 if Do_Before then
7308 Insert_Before_And_Analyze (Node, Check_Node);
7309 else
7310 Insert_After_And_Analyze (Node, Check_Node);
7311 end if;
7313 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
7314 end if;
7316 else
7317 Check_Node :=
7318 Make_Raise_Constraint_Error (Internal_Static_Sloc,
7319 Reason => CE_Range_Check_Failed);
7320 Mark_Rewrite_Insertion (Check_Node);
7322 if Do_Before then
7323 Insert_Before_And_Analyze (Node, Check_Node);
7324 else
7325 Insert_After_And_Analyze (Node, Check_Node);
7326 end if;
7327 end if;
7328 end loop;
7329 end Insert_Range_Checks;
7331 ------------------------
7332 -- Insert_Valid_Check --
7333 ------------------------
7335 procedure Insert_Valid_Check
7336 (Expr : Node_Id;
7337 Related_Id : Entity_Id := Empty;
7338 Is_Low_Bound : Boolean := False;
7339 Is_High_Bound : Boolean := False)
7341 Loc : constant Source_Ptr := Sloc (Expr);
7342 Typ : constant Entity_Id := Etype (Expr);
7343 Exp : Node_Id;
7345 begin
7346 -- Do not insert if checks off, or if not checking validity or if
7347 -- expression is known to be valid.
7349 if not Validity_Checks_On
7350 or else Range_Or_Validity_Checks_Suppressed (Expr)
7351 or else Expr_Known_Valid (Expr)
7352 then
7353 return;
7355 -- Do not insert checks within a predicate function. This will arise
7356 -- if the current unit and the predicate function are being compiled
7357 -- with validity checks enabled.
7359 elsif Present (Predicate_Function (Typ))
7360 and then Current_Scope = Predicate_Function (Typ)
7361 then
7362 return;
7364 -- If the expression is a packed component of a modular type of the
7365 -- right size, the data is always valid.
7367 elsif Nkind (Expr) = N_Selected_Component
7368 and then Present (Component_Clause (Entity (Selector_Name (Expr))))
7369 and then Is_Modular_Integer_Type (Typ)
7370 and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
7371 then
7372 return;
7374 -- Do not generate a validity check when inside a generic unit as this
7375 -- is an expansion activity.
7377 elsif Inside_A_Generic then
7378 return;
7379 end if;
7381 -- If we have a checked conversion, then validity check applies to
7382 -- the expression inside the conversion, not the result, since if
7383 -- the expression inside is valid, then so is the conversion result.
7385 Exp := Expr;
7386 while Nkind (Exp) = N_Type_Conversion loop
7387 Exp := Expression (Exp);
7388 end loop;
7390 -- Do not generate a check for a variable which already validates the
7391 -- value of an assignable object.
7393 if Is_Validation_Variable_Reference (Exp) then
7394 return;
7395 end if;
7397 declare
7398 CE : Node_Id;
7399 PV : Node_Id;
7400 Var_Id : Entity_Id;
7402 begin
7403 -- If the expression denotes an assignable object, capture its value
7404 -- in a variable and replace the original expression by the variable.
7405 -- This approach has several effects:
7407 -- 1) The evaluation of the object results in only one read in the
7408 -- case where the object is atomic or volatile.
7410 -- Var ... := Object; -- read
7412 -- 2) The captured value is the one verified by attribute 'Valid.
7413 -- As a result the object is not evaluated again, which would
7414 -- result in an unwanted read in the case where the object is
7415 -- atomic or volatile.
7417 -- if not Var'Valid then -- OK, no read of Object
7419 -- if not Object'Valid then -- Wrong, extra read of Object
7421 -- 3) The captured value replaces the original object reference.
7422 -- As a result the object is not evaluated again, in the same
7423 -- vein as 2).
7425 -- ... Var ... -- OK, no read of Object
7427 -- ... Object ... -- Wrong, extra read of Object
7429 -- 4) The use of a variable to capture the value of the object
7430 -- allows the propagation of any changes back to the original
7431 -- object.
7433 -- procedure Call (Val : in out ...);
7435 -- Var : ... := Object; -- read Object
7436 -- if not Var'Valid then -- validity check
7437 -- Call (Var); -- modify Var
7438 -- Object := Var; -- update Object
7440 if Is_Variable (Exp) then
7441 Var_Id := Make_Temporary (Loc, 'T', Exp);
7443 -- Because we could be dealing with a transient scope which would
7444 -- cause our object declaration to remain unanalyzed we must do
7445 -- some manual decoration.
7447 Set_Ekind (Var_Id, E_Variable);
7448 Set_Etype (Var_Id, Typ);
7450 Insert_Action (Exp,
7451 Make_Object_Declaration (Loc,
7452 Defining_Identifier => Var_Id,
7453 Object_Definition => New_Occurrence_Of (Typ, Loc),
7454 Expression => New_Copy_Tree (Exp)),
7455 Suppress => Validity_Check);
7457 Set_Validated_Object (Var_Id, New_Copy_Tree (Exp));
7458 Rewrite (Exp, New_Occurrence_Of (Var_Id, Loc));
7459 PV := New_Occurrence_Of (Var_Id, Loc);
7461 -- Copy the Do_Range_Check flag over to the new Exp, so it doesn't
7462 -- get lost. Floating point types are handled elsewhere.
7464 if not Is_Floating_Point_Type (Typ) then
7465 Set_Do_Range_Check (Exp, Do_Range_Check (Original_Node (Exp)));
7466 end if;
7468 -- Otherwise the expression does not denote a variable. Force its
7469 -- evaluation by capturing its value in a constant. Generate:
7471 -- Temp : constant ... := Exp;
7473 else
7474 Force_Evaluation
7475 (Exp => Exp,
7476 Related_Id => Related_Id,
7477 Is_Low_Bound => Is_Low_Bound,
7478 Is_High_Bound => Is_High_Bound);
7480 PV := New_Copy_Tree (Exp);
7481 end if;
7483 -- A rather specialized test. If PV is an analyzed expression which
7484 -- is an indexed component of a packed array that has not been
7485 -- properly expanded, turn off its Analyzed flag to make sure it
7486 -- gets properly reexpanded. If the prefix is an access value,
7487 -- the dereference will be added later.
7489 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
7490 -- an analyze with the old parent pointer. This may point e.g. to
7491 -- a subprogram call, which deactivates this expansion.
7493 if Analyzed (PV)
7494 and then Nkind (PV) = N_Indexed_Component
7495 and then Is_Array_Type (Etype (Prefix (PV)))
7496 and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
7497 then
7498 Set_Analyzed (PV, False);
7499 end if;
7501 -- Build the raise CE node to check for validity. We build a type
7502 -- qualification for the prefix, since it may not be of the form of
7503 -- a name, and we don't care in this context!
7505 CE :=
7506 Make_Raise_Constraint_Error (Loc,
7507 Condition =>
7508 Make_Op_Not (Loc,
7509 Right_Opnd =>
7510 Make_Attribute_Reference (Loc,
7511 Prefix => PV,
7512 Attribute_Name => Name_Valid)),
7513 Reason => CE_Invalid_Data);
7515 -- Insert the validity check. Note that we do this with validity
7516 -- checks turned off, to avoid recursion, we do not want validity
7517 -- checks on the validity checking code itself.
7519 Insert_Action (Expr, CE, Suppress => Validity_Check);
7521 -- If the expression is a reference to an element of a bit-packed
7522 -- array, then it is rewritten as a renaming declaration. If the
7523 -- expression is an actual in a call, it has not been expanded,
7524 -- waiting for the proper point at which to do it. The same happens
7525 -- with renamings, so that we have to force the expansion now. This
7526 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7527 -- and exp_ch6.adb.
7529 if Is_Entity_Name (Exp)
7530 and then Nkind (Parent (Entity (Exp))) =
7531 N_Object_Renaming_Declaration
7532 then
7533 declare
7534 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
7535 begin
7536 if Nkind (Old_Exp) = N_Indexed_Component
7537 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
7538 then
7539 Expand_Packed_Element_Reference (Old_Exp);
7540 end if;
7541 end;
7542 end if;
7543 end;
7544 end Insert_Valid_Check;
7546 -------------------------------------
7547 -- Is_Signed_Integer_Arithmetic_Op --
7548 -------------------------------------
7550 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
7551 begin
7552 case Nkind (N) is
7553 when N_Op_Abs
7554 | N_Op_Add
7555 | N_Op_Divide
7556 | N_Op_Expon
7557 | N_Op_Minus
7558 | N_Op_Mod
7559 | N_Op_Multiply
7560 | N_Op_Plus
7561 | N_Op_Rem
7562 | N_Op_Subtract
7564 return Is_Signed_Integer_Type (Etype (N));
7566 when N_Case_Expression
7567 | N_If_Expression
7569 return Is_Signed_Integer_Type (Etype (N));
7571 when others =>
7572 return False;
7573 end case;
7574 end Is_Signed_Integer_Arithmetic_Op;
7576 ----------------------------------
7577 -- Install_Null_Excluding_Check --
7578 ----------------------------------
7580 procedure Install_Null_Excluding_Check (N : Node_Id) is
7581 Loc : constant Source_Ptr := Sloc (Parent (N));
7582 Typ : constant Entity_Id := Etype (N);
7584 function Safe_To_Capture_In_Parameter_Value return Boolean;
7585 -- Determines if it is safe to capture Known_Non_Null status for an
7586 -- the entity referenced by node N. The caller ensures that N is indeed
7587 -- an entity name. It is safe to capture the non-null status for an IN
7588 -- parameter when the reference occurs within a declaration that is sure
7589 -- to be executed as part of the declarative region.
7591 procedure Mark_Non_Null;
7592 -- After installation of check, if the node in question is an entity
7593 -- name, then mark this entity as non-null if possible.
7595 function Safe_To_Capture_In_Parameter_Value return Boolean is
7596 E : constant Entity_Id := Entity (N);
7597 S : constant Entity_Id := Current_Scope;
7598 S_Par : Node_Id;
7600 begin
7601 if Ekind (E) /= E_In_Parameter then
7602 return False;
7603 end if;
7605 -- Two initial context checks. We must be inside a subprogram body
7606 -- with declarations and reference must not appear in nested scopes.
7608 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
7609 or else Scope (E) /= S
7610 then
7611 return False;
7612 end if;
7614 S_Par := Parent (Parent (S));
7616 if Nkind (S_Par) /= N_Subprogram_Body
7617 or else No (Declarations (S_Par))
7618 then
7619 return False;
7620 end if;
7622 declare
7623 N_Decl : Node_Id;
7624 P : Node_Id;
7626 begin
7627 -- Retrieve the declaration node of N (if any). Note that N
7628 -- may be a part of a complex initialization expression.
7630 P := Parent (N);
7631 N_Decl := Empty;
7632 while Present (P) loop
7634 -- If we have a short circuit form, and we are within the right
7635 -- hand expression, we return false, since the right hand side
7636 -- is not guaranteed to be elaborated.
7638 if Nkind (P) in N_Short_Circuit
7639 and then N = Right_Opnd (P)
7640 then
7641 return False;
7642 end if;
7644 -- Similarly, if we are in an if expression and not part of the
7645 -- condition, then we return False, since neither the THEN or
7646 -- ELSE dependent expressions will always be elaborated.
7648 if Nkind (P) = N_If_Expression
7649 and then N /= First (Expressions (P))
7650 then
7651 return False;
7652 end if;
7654 -- If within a case expression, and not part of the expression,
7655 -- then return False, since a particular dependent expression
7656 -- may not always be elaborated
7658 if Nkind (P) = N_Case_Expression
7659 and then N /= Expression (P)
7660 then
7661 return False;
7662 end if;
7664 -- While traversing the parent chain, if node N belongs to a
7665 -- statement, then it may never appear in a declarative region.
7667 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
7668 or else Nkind (P) = N_Procedure_Call_Statement
7669 then
7670 return False;
7671 end if;
7673 -- If we are at a declaration, record it and exit
7675 if Nkind (P) in N_Declaration
7676 and then Nkind (P) not in N_Subprogram_Specification
7677 then
7678 N_Decl := P;
7679 exit;
7680 end if;
7682 P := Parent (P);
7683 end loop;
7685 if No (N_Decl) then
7686 return False;
7687 end if;
7689 return List_Containing (N_Decl) = Declarations (S_Par);
7690 end;
7691 end Safe_To_Capture_In_Parameter_Value;
7693 -------------------
7694 -- Mark_Non_Null --
7695 -------------------
7697 procedure Mark_Non_Null is
7698 begin
7699 -- Only case of interest is if node N is an entity name
7701 if Is_Entity_Name (N) then
7703 -- For sure, we want to clear an indication that this is known to
7704 -- be null, since if we get past this check, it definitely is not.
7706 Set_Is_Known_Null (Entity (N), False);
7708 -- We can mark the entity as known to be non-null if either it is
7709 -- safe to capture the value, or in the case of an IN parameter,
7710 -- which is a constant, if the check we just installed is in the
7711 -- declarative region of the subprogram body. In this latter case,
7712 -- a check is decisive for the rest of the body if the expression
7713 -- is sure to be elaborated, since we know we have to elaborate
7714 -- all declarations before executing the body.
7716 -- Couldn't this always be part of Safe_To_Capture_Value ???
7718 if Safe_To_Capture_Value (N, Entity (N))
7719 or else Safe_To_Capture_In_Parameter_Value
7720 then
7721 Set_Is_Known_Non_Null (Entity (N));
7722 end if;
7723 end if;
7724 end Mark_Non_Null;
7726 -- Start of processing for Install_Null_Excluding_Check
7728 begin
7729 pragma Assert (Is_Access_Type (Typ));
7731 -- No check inside a generic, check will be emitted in instance
7733 if Inside_A_Generic then
7734 return;
7735 end if;
7737 -- No check needed if known to be non-null
7739 if Known_Non_Null (N) then
7740 return;
7741 end if;
7743 -- If known to be null, here is where we generate a compile time check
7745 if Known_Null (N) then
7747 -- Avoid generating warning message inside init procs. In SPARK mode
7748 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
7749 -- since it will be turned into an error in any case.
7751 if (not Inside_Init_Proc or else SPARK_Mode = On)
7753 -- Do not emit the warning within a conditional expression,
7754 -- where the expression might not be evaluated, and the warning
7755 -- appear as extraneous noise.
7757 and then not Within_Case_Or_If_Expression (N)
7758 then
7759 Apply_Compile_Time_Constraint_Error
7760 (N, "null value not allowed here??", CE_Access_Check_Failed);
7762 -- Remaining cases, where we silently insert the raise
7764 else
7765 Insert_Action (N,
7766 Make_Raise_Constraint_Error (Loc,
7767 Reason => CE_Access_Check_Failed));
7768 end if;
7770 Mark_Non_Null;
7771 return;
7772 end if;
7774 -- If entity is never assigned, for sure a warning is appropriate
7776 if Is_Entity_Name (N) then
7777 Check_Unset_Reference (N);
7778 end if;
7780 -- No check needed if checks are suppressed on the range. Note that we
7781 -- don't set Is_Known_Non_Null in this case (we could legitimately do
7782 -- so, since the program is erroneous, but we don't like to casually
7783 -- propagate such conclusions from erroneosity).
7785 if Access_Checks_Suppressed (Typ) then
7786 return;
7787 end if;
7789 -- No check needed for access to concurrent record types generated by
7790 -- the expander. This is not just an optimization (though it does indeed
7791 -- remove junk checks). It also avoids generation of junk warnings.
7793 if Nkind (N) in N_Has_Chars
7794 and then Chars (N) = Name_uObject
7795 and then Is_Concurrent_Record_Type
7796 (Directly_Designated_Type (Etype (N)))
7797 then
7798 return;
7799 end if;
7801 -- No check needed in interface thunks since the runtime check is
7802 -- already performed at the caller side.
7804 if Is_Thunk (Current_Scope) then
7805 return;
7806 end if;
7808 -- No check needed for the Get_Current_Excep.all.all idiom generated by
7809 -- the expander within exception handlers, since we know that the value
7810 -- can never be null.
7812 -- Is this really the right way to do this? Normally we generate such
7813 -- code in the expander with checks off, and that's how we suppress this
7814 -- kind of junk check ???
7816 if Nkind (N) = N_Function_Call
7817 and then Nkind (Name (N)) = N_Explicit_Dereference
7818 and then Nkind (Prefix (Name (N))) = N_Identifier
7819 and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
7820 then
7821 return;
7822 end if;
7824 -- Otherwise install access check
7826 Insert_Action (N,
7827 Make_Raise_Constraint_Error (Loc,
7828 Condition =>
7829 Make_Op_Eq (Loc,
7830 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
7831 Right_Opnd => Make_Null (Loc)),
7832 Reason => CE_Access_Check_Failed));
7834 Mark_Non_Null;
7835 end Install_Null_Excluding_Check;
7837 -----------------------------------------
7838 -- Install_Primitive_Elaboration_Check --
7839 -----------------------------------------
7841 procedure Install_Primitive_Elaboration_Check (Subp_Body : Node_Id) is
7842 function Within_Compilation_Unit_Instance
7843 (Subp_Id : Entity_Id) return Boolean;
7844 -- Determine whether subprogram Subp_Id appears within an instance which
7845 -- acts as a compilation unit.
7847 --------------------------------------
7848 -- Within_Compilation_Unit_Instance --
7849 --------------------------------------
7851 function Within_Compilation_Unit_Instance
7852 (Subp_Id : Entity_Id) return Boolean
7854 Pack : Entity_Id;
7856 begin
7857 -- Examine the scope chain looking for a compilation-unit-level
7858 -- instance.
7860 Pack := Scope (Subp_Id);
7861 while Present (Pack) and then Pack /= Standard_Standard loop
7862 if Ekind (Pack) = E_Package
7863 and then Is_Generic_Instance (Pack)
7864 and then Nkind (Parent (Unit_Declaration_Node (Pack))) =
7865 N_Compilation_Unit
7866 then
7867 return True;
7868 end if;
7870 Pack := Scope (Pack);
7871 end loop;
7873 return False;
7874 end Within_Compilation_Unit_Instance;
7876 -- Local declarations
7878 Context : constant Node_Id := Parent (Subp_Body);
7879 Loc : constant Source_Ptr := Sloc (Subp_Body);
7880 Subp_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Body);
7881 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
7883 Decls : List_Id;
7884 Flag_Id : Entity_Id;
7885 Set_Ins : Node_Id;
7886 Set_Stmt : Node_Id;
7887 Tag_Typ : Entity_Id;
7889 -- Start of processing for Install_Primitive_Elaboration_Check
7891 begin
7892 -- Do not generate an elaboration check in compilation modes where
7893 -- expansion is not desirable.
7895 if ASIS_Mode or GNATprove_Mode then
7896 return;
7898 -- Do not generate an elaboration check if all checks have been
7899 -- suppressed.
7901 elsif Suppress_Checks then
7902 return;
7904 -- Do not generate an elaboration check if the related subprogram is
7905 -- not subjected to accessibility checks.
7907 elsif Elaboration_Checks_Suppressed (Subp_Id) then
7908 return;
7910 -- Do not generate an elaboration check if such code is not desirable
7912 elsif Restriction_Active (No_Elaboration_Code) then
7913 return;
7915 -- Do not consider subprograms which act as compilation units, because
7916 -- they cannot be the target of a dispatching call.
7918 elsif Nkind (Context) = N_Compilation_Unit then
7919 return;
7921 -- Do not consider anything other than nonabstract library-level source
7922 -- primitives.
7924 elsif not
7925 (Comes_From_Source (Subp_Id)
7926 and then Is_Library_Level_Entity (Subp_Id)
7927 and then Is_Primitive (Subp_Id)
7928 and then not Is_Abstract_Subprogram (Subp_Id))
7929 then
7930 return;
7932 -- Do not consider inlined primitives, because once the body is inlined
7933 -- the reference to the elaboration flag will be out of place and will
7934 -- result in an undefined symbol.
7936 elsif Is_Inlined (Subp_Id) or else Has_Pragma_Inline (Subp_Id) then
7937 return;
7939 -- Do not generate a duplicate elaboration check. This happens only in
7940 -- the case of primitives completed by an expression function, as the
7941 -- corresponding body is apparently analyzed and expanded twice.
7943 elsif Analyzed (Subp_Body) then
7944 return;
7946 -- Do not consider primitives which occur within an instance that acts
7947 -- as a compilation unit. Such an instance defines its spec and body out
7948 -- of order (body is first) within the tree, which causes the reference
7949 -- to the elaboration flag to appear as an undefined symbol.
7951 elsif Within_Compilation_Unit_Instance (Subp_Id) then
7952 return;
7953 end if;
7955 Tag_Typ := Find_Dispatching_Type (Subp_Id);
7957 -- Only tagged primitives may be the target of a dispatching call
7959 if No (Tag_Typ) then
7960 return;
7962 -- Do not consider finalization-related primitives, because they may
7963 -- need to be called while elaboration is taking place.
7965 elsif Is_Controlled (Tag_Typ)
7966 and then Nam_In (Chars (Subp_Id), Name_Adjust,
7967 Name_Finalize,
7968 Name_Initialize)
7969 then
7970 return;
7971 end if;
7973 -- Create the declaration of the elaboration flag. The name carries a
7974 -- unique counter in case of name overloading.
7976 Flag_Id :=
7977 Make_Defining_Identifier (Loc,
7978 Chars => New_External_Name (Chars (Subp_Id), 'E', -1));
7979 Set_Is_Frozen (Flag_Id);
7981 -- Insert the declaration of the elaboration flag in front of the
7982 -- primitive spec and analyze it in the proper context.
7984 Push_Scope (Scope (Subp_Id));
7986 -- Generate:
7987 -- E : Boolean := False;
7989 Insert_Action (Subp_Decl,
7990 Make_Object_Declaration (Loc,
7991 Defining_Identifier => Flag_Id,
7992 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
7993 Expression => New_Occurrence_Of (Standard_False, Loc)));
7994 Pop_Scope;
7996 -- Prevent the compiler from optimizing the elaboration check by killing
7997 -- the current value of the flag and the associated assignment.
7999 Set_Current_Value (Flag_Id, Empty);
8000 Set_Last_Assignment (Flag_Id, Empty);
8002 -- Add a check at the top of the body declarations to ensure that the
8003 -- elaboration flag has been set.
8005 Decls := Declarations (Subp_Body);
8007 if No (Decls) then
8008 Decls := New_List;
8009 Set_Declarations (Subp_Body, Decls);
8010 end if;
8012 -- Generate:
8013 -- if not F then
8014 -- raise Program_Error with "access before elaboration";
8015 -- end if;
8017 Prepend_To (Decls,
8018 Make_Raise_Program_Error (Loc,
8019 Condition =>
8020 Make_Op_Not (Loc,
8021 Right_Opnd => New_Occurrence_Of (Flag_Id, Loc)),
8022 Reason => PE_Access_Before_Elaboration));
8024 Analyze (First (Decls));
8026 -- Set the elaboration flag once the body has been elaborated. Insert
8027 -- the statement after the subprogram stub when the primitive body is
8028 -- a subunit.
8030 if Nkind (Context) = N_Subunit then
8031 Set_Ins := Corresponding_Stub (Context);
8032 else
8033 Set_Ins := Subp_Body;
8034 end if;
8036 -- Generate:
8037 -- E := True;
8039 Set_Stmt :=
8040 Make_Assignment_Statement (Loc,
8041 Name => New_Occurrence_Of (Flag_Id, Loc),
8042 Expression => New_Occurrence_Of (Standard_True, Loc));
8044 -- Mark the assignment statement as elaboration code. This allows the
8045 -- early call region mechanism (see Sem_Elab) to properly ignore such
8046 -- assignments even though they are non-preelaborable code.
8048 Set_Is_Elaboration_Code (Set_Stmt);
8050 Insert_After_And_Analyze (Set_Ins, Set_Stmt);
8051 end Install_Primitive_Elaboration_Check;
8053 --------------------------
8054 -- Install_Static_Check --
8055 --------------------------
8057 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
8058 Stat : constant Boolean := Is_OK_Static_Expression (R_Cno);
8059 Typ : constant Entity_Id := Etype (R_Cno);
8061 begin
8062 Rewrite (R_Cno,
8063 Make_Raise_Constraint_Error (Loc,
8064 Reason => CE_Range_Check_Failed));
8065 Set_Analyzed (R_Cno);
8066 Set_Etype (R_Cno, Typ);
8067 Set_Raises_Constraint_Error (R_Cno);
8068 Set_Is_Static_Expression (R_Cno, Stat);
8070 -- Now deal with possible local raise handling
8072 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
8073 end Install_Static_Check;
8075 -------------------------
8076 -- Is_Check_Suppressed --
8077 -------------------------
8079 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
8080 Ptr : Suppress_Stack_Entry_Ptr;
8082 begin
8083 -- First search the local entity suppress stack. We search this from the
8084 -- top of the stack down so that we get the innermost entry that applies
8085 -- to this case if there are nested entries.
8087 Ptr := Local_Suppress_Stack_Top;
8088 while Ptr /= null loop
8089 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8090 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8091 then
8092 return Ptr.Suppress;
8093 end if;
8095 Ptr := Ptr.Prev;
8096 end loop;
8098 -- Now search the global entity suppress table for a matching entry.
8099 -- We also search this from the top down so that if there are multiple
8100 -- pragmas for the same entity, the last one applies (not clear what
8101 -- or whether the RM specifies this handling, but it seems reasonable).
8103 Ptr := Global_Suppress_Stack_Top;
8104 while Ptr /= null loop
8105 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8106 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8107 then
8108 return Ptr.Suppress;
8109 end if;
8111 Ptr := Ptr.Prev;
8112 end loop;
8114 -- If we did not find a matching entry, then use the normal scope
8115 -- suppress value after all (actually this will be the global setting
8116 -- since it clearly was not overridden at any point). For a predefined
8117 -- check, we test the specific flag. For a user defined check, we check
8118 -- the All_Checks flag. The Overflow flag requires special handling to
8119 -- deal with the General vs Assertion case.
8121 if C = Overflow_Check then
8122 return Overflow_Checks_Suppressed (Empty);
8124 elsif C in Predefined_Check_Id then
8125 return Scope_Suppress.Suppress (C);
8127 else
8128 return Scope_Suppress.Suppress (All_Checks);
8129 end if;
8130 end Is_Check_Suppressed;
8132 ---------------------
8133 -- Kill_All_Checks --
8134 ---------------------
8136 procedure Kill_All_Checks is
8137 begin
8138 if Debug_Flag_CC then
8139 w ("Kill_All_Checks");
8140 end if;
8142 -- We reset the number of saved checks to zero, and also modify all
8143 -- stack entries for statement ranges to indicate that the number of
8144 -- checks at each level is now zero.
8146 Num_Saved_Checks := 0;
8148 -- Note: the Int'Min here avoids any possibility of J being out of
8149 -- range when called from e.g. Conditional_Statements_Begin.
8151 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
8152 Saved_Checks_Stack (J) := 0;
8153 end loop;
8154 end Kill_All_Checks;
8156 -----------------
8157 -- Kill_Checks --
8158 -----------------
8160 procedure Kill_Checks (V : Entity_Id) is
8161 begin
8162 if Debug_Flag_CC then
8163 w ("Kill_Checks for entity", Int (V));
8164 end if;
8166 for J in 1 .. Num_Saved_Checks loop
8167 if Saved_Checks (J).Entity = V then
8168 if Debug_Flag_CC then
8169 w (" Checks killed for saved check ", J);
8170 end if;
8172 Saved_Checks (J).Killed := True;
8173 end if;
8174 end loop;
8175 end Kill_Checks;
8177 ------------------------------
8178 -- Length_Checks_Suppressed --
8179 ------------------------------
8181 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
8182 begin
8183 if Present (E) and then Checks_May_Be_Suppressed (E) then
8184 return Is_Check_Suppressed (E, Length_Check);
8185 else
8186 return Scope_Suppress.Suppress (Length_Check);
8187 end if;
8188 end Length_Checks_Suppressed;
8190 -----------------------
8191 -- Make_Bignum_Block --
8192 -----------------------
8194 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
8195 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
8196 begin
8197 return
8198 Make_Block_Statement (Loc,
8199 Declarations =>
8200 New_List (Build_SS_Mark_Call (Loc, M)),
8201 Handled_Statement_Sequence =>
8202 Make_Handled_Sequence_Of_Statements (Loc,
8203 Statements => New_List (Build_SS_Release_Call (Loc, M))));
8204 end Make_Bignum_Block;
8206 ----------------------------------
8207 -- Minimize_Eliminate_Overflows --
8208 ----------------------------------
8210 -- This is a recursive routine that is called at the top of an expression
8211 -- tree to properly process overflow checking for a whole subtree by making
8212 -- recursive calls to process operands. This processing may involve the use
8213 -- of bignum or long long integer arithmetic, which will change the types
8214 -- of operands and results. That's why we can't do this bottom up (since
8215 -- it would interfere with semantic analysis).
8217 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
8218 -- the operator expansion routines, as well as the expansion routines for
8219 -- if/case expression, do nothing (for the moment) except call the routine
8220 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
8221 -- routine does nothing for non top-level nodes, so at the point where the
8222 -- call is made for the top level node, the entire expression subtree has
8223 -- not been expanded, or processed for overflow. All that has to happen as
8224 -- a result of the top level call to this routine.
8226 -- As noted above, the overflow processing works by making recursive calls
8227 -- for the operands, and figuring out what to do, based on the processing
8228 -- of these operands (e.g. if a bignum operand appears, the parent op has
8229 -- to be done in bignum mode), and the determined ranges of the operands.
8231 -- After possible rewriting of a constituent subexpression node, a call is
8232 -- made to either reexpand the node (if nothing has changed) or reanalyze
8233 -- the node (if it has been modified by the overflow check processing). The
8234 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
8235 -- a recursive call into the whole overflow apparatus, an important rule
8236 -- for this call is that the overflow handling mode must be temporarily set
8237 -- to STRICT.
8239 procedure Minimize_Eliminate_Overflows
8240 (N : Node_Id;
8241 Lo : out Uint;
8242 Hi : out Uint;
8243 Top_Level : Boolean)
8245 Rtyp : constant Entity_Id := Etype (N);
8246 pragma Assert (Is_Signed_Integer_Type (Rtyp));
8247 -- Result type, must be a signed integer type
8249 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
8250 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
8252 Loc : constant Source_Ptr := Sloc (N);
8254 Rlo, Rhi : Uint;
8255 -- Ranges of values for right operand (operator case)
8257 Llo : Uint := No_Uint; -- initialize to prevent warning
8258 Lhi : Uint := No_Uint; -- initialize to prevent warning
8259 -- Ranges of values for left operand (operator case)
8261 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
8262 -- Operands and results are of this type when we convert
8264 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
8265 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
8266 -- Bounds of Long_Long_Integer
8268 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
8269 -- Indicates binary operator case
8271 OK : Boolean;
8272 -- Used in call to Determine_Range
8274 Bignum_Operands : Boolean;
8275 -- Set True if one or more operands is already of type Bignum, meaning
8276 -- that for sure (regardless of Top_Level setting) we are committed to
8277 -- doing the operation in Bignum mode (or in the case of a case or if
8278 -- expression, converting all the dependent expressions to Bignum).
8280 Long_Long_Integer_Operands : Boolean;
8281 -- Set True if one or more operands is already of type Long_Long_Integer
8282 -- which means that if the result is known to be in the result type
8283 -- range, then we must convert such operands back to the result type.
8285 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
8286 -- This is called when we have modified the node and we therefore need
8287 -- to reanalyze it. It is important that we reset the mode to STRICT for
8288 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
8289 -- we would reenter this routine recursively which would not be good.
8290 -- The argument Suppress is set True if we also want to suppress
8291 -- overflow checking for the reexpansion (this is set when we know
8292 -- overflow is not possible). Typ is the type for the reanalysis.
8294 procedure Reexpand (Suppress : Boolean := False);
8295 -- This is like Reanalyze, but does not do the Analyze step, it only
8296 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
8297 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
8298 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
8299 -- Note that skipping reanalysis is not just an optimization, testing
8300 -- has showed up several complex cases in which reanalyzing an already
8301 -- analyzed node causes incorrect behavior.
8303 function In_Result_Range return Boolean;
8304 -- Returns True iff Lo .. Hi are within range of the result type
8306 procedure Max (A : in out Uint; B : Uint);
8307 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
8309 procedure Min (A : in out Uint; B : Uint);
8310 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
8312 ---------------------
8313 -- In_Result_Range --
8314 ---------------------
8316 function In_Result_Range return Boolean is
8317 begin
8318 if Lo = No_Uint or else Hi = No_Uint then
8319 return False;
8321 elsif Is_OK_Static_Subtype (Etype (N)) then
8322 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
8323 and then
8324 Hi <= Expr_Value (Type_High_Bound (Rtyp));
8326 else
8327 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
8328 and then
8329 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
8330 end if;
8331 end In_Result_Range;
8333 ---------
8334 -- Max --
8335 ---------
8337 procedure Max (A : in out Uint; B : Uint) is
8338 begin
8339 if A = No_Uint or else B > A then
8340 A := B;
8341 end if;
8342 end Max;
8344 ---------
8345 -- Min --
8346 ---------
8348 procedure Min (A : in out Uint; B : Uint) is
8349 begin
8350 if A = No_Uint or else B < A then
8351 A := B;
8352 end if;
8353 end Min;
8355 ---------------
8356 -- Reanalyze --
8357 ---------------
8359 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
8360 Svg : constant Overflow_Mode_Type :=
8361 Scope_Suppress.Overflow_Mode_General;
8362 Sva : constant Overflow_Mode_Type :=
8363 Scope_Suppress.Overflow_Mode_Assertions;
8364 Svo : constant Boolean :=
8365 Scope_Suppress.Suppress (Overflow_Check);
8367 begin
8368 Scope_Suppress.Overflow_Mode_General := Strict;
8369 Scope_Suppress.Overflow_Mode_Assertions := Strict;
8371 if Suppress then
8372 Scope_Suppress.Suppress (Overflow_Check) := True;
8373 end if;
8375 Analyze_And_Resolve (N, Typ);
8377 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8378 Scope_Suppress.Overflow_Mode_General := Svg;
8379 Scope_Suppress.Overflow_Mode_Assertions := Sva;
8380 end Reanalyze;
8382 --------------
8383 -- Reexpand --
8384 --------------
8386 procedure Reexpand (Suppress : Boolean := False) is
8387 Svg : constant Overflow_Mode_Type :=
8388 Scope_Suppress.Overflow_Mode_General;
8389 Sva : constant Overflow_Mode_Type :=
8390 Scope_Suppress.Overflow_Mode_Assertions;
8391 Svo : constant Boolean :=
8392 Scope_Suppress.Suppress (Overflow_Check);
8394 begin
8395 Scope_Suppress.Overflow_Mode_General := Strict;
8396 Scope_Suppress.Overflow_Mode_Assertions := Strict;
8397 Set_Analyzed (N, False);
8399 if Suppress then
8400 Scope_Suppress.Suppress (Overflow_Check) := True;
8401 end if;
8403 Expand (N);
8405 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8406 Scope_Suppress.Overflow_Mode_General := Svg;
8407 Scope_Suppress.Overflow_Mode_Assertions := Sva;
8408 end Reexpand;
8410 -- Start of processing for Minimize_Eliminate_Overflows
8412 begin
8413 -- Default initialize Lo and Hi since these are not guaranteed to be
8414 -- set otherwise.
8416 Lo := No_Uint;
8417 Hi := No_Uint;
8419 -- Case where we do not have a signed integer arithmetic operation
8421 if not Is_Signed_Integer_Arithmetic_Op (N) then
8423 -- Use the normal Determine_Range routine to get the range. We
8424 -- don't require operands to be valid, invalid values may result in
8425 -- rubbish results where the result has not been properly checked for
8426 -- overflow, that's fine.
8428 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
8430 -- If Determine_Range did not work (can this in fact happen? Not
8431 -- clear but might as well protect), use type bounds.
8433 if not OK then
8434 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
8435 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
8436 end if;
8438 -- If we don't have a binary operator, all we have to do is to set
8439 -- the Hi/Lo range, so we are done.
8441 return;
8443 -- Processing for if expression
8445 elsif Nkind (N) = N_If_Expression then
8446 declare
8447 Then_DE : constant Node_Id := Next (First (Expressions (N)));
8448 Else_DE : constant Node_Id := Next (Then_DE);
8450 begin
8451 Bignum_Operands := False;
8453 Minimize_Eliminate_Overflows
8454 (Then_DE, Lo, Hi, Top_Level => False);
8456 if Lo = No_Uint then
8457 Bignum_Operands := True;
8458 end if;
8460 Minimize_Eliminate_Overflows
8461 (Else_DE, Rlo, Rhi, Top_Level => False);
8463 if Rlo = No_Uint then
8464 Bignum_Operands := True;
8465 else
8466 Long_Long_Integer_Operands :=
8467 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
8469 Min (Lo, Rlo);
8470 Max (Hi, Rhi);
8471 end if;
8473 -- If at least one of our operands is now Bignum, we must rebuild
8474 -- the if expression to use Bignum operands. We will analyze the
8475 -- rebuilt if expression with overflow checks off, since once we
8476 -- are in bignum mode, we are all done with overflow checks.
8478 if Bignum_Operands then
8479 Rewrite (N,
8480 Make_If_Expression (Loc,
8481 Expressions => New_List (
8482 Remove_Head (Expressions (N)),
8483 Convert_To_Bignum (Then_DE),
8484 Convert_To_Bignum (Else_DE)),
8485 Is_Elsif => Is_Elsif (N)));
8487 Reanalyze (RTE (RE_Bignum), Suppress => True);
8489 -- If we have no Long_Long_Integer operands, then we are in result
8490 -- range, since it means that none of our operands felt the need
8491 -- to worry about overflow (otherwise it would have already been
8492 -- converted to long long integer or bignum). We reexpand to
8493 -- complete the expansion of the if expression (but we do not
8494 -- need to reanalyze).
8496 elsif not Long_Long_Integer_Operands then
8497 Set_Do_Overflow_Check (N, False);
8498 Reexpand;
8500 -- Otherwise convert us to long long integer mode. Note that we
8501 -- don't need any further overflow checking at this level.
8503 else
8504 Convert_To_And_Rewrite (LLIB, Then_DE);
8505 Convert_To_And_Rewrite (LLIB, Else_DE);
8506 Set_Etype (N, LLIB);
8508 -- Now reanalyze with overflow checks off
8510 Set_Do_Overflow_Check (N, False);
8511 Reanalyze (LLIB, Suppress => True);
8512 end if;
8513 end;
8515 return;
8517 -- Here for case expression
8519 elsif Nkind (N) = N_Case_Expression then
8520 Bignum_Operands := False;
8521 Long_Long_Integer_Operands := False;
8523 declare
8524 Alt : Node_Id;
8526 begin
8527 -- Loop through expressions applying recursive call
8529 Alt := First (Alternatives (N));
8530 while Present (Alt) loop
8531 declare
8532 Aexp : constant Node_Id := Expression (Alt);
8534 begin
8535 Minimize_Eliminate_Overflows
8536 (Aexp, Lo, Hi, Top_Level => False);
8538 if Lo = No_Uint then
8539 Bignum_Operands := True;
8540 elsif Etype (Aexp) = LLIB then
8541 Long_Long_Integer_Operands := True;
8542 end if;
8543 end;
8545 Next (Alt);
8546 end loop;
8548 -- If we have no bignum or long long integer operands, it means
8549 -- that none of our dependent expressions could raise overflow.
8550 -- In this case, we simply return with no changes except for
8551 -- resetting the overflow flag, since we are done with overflow
8552 -- checks for this node. We will reexpand to get the needed
8553 -- expansion for the case expression, but we do not need to
8554 -- reanalyze, since nothing has changed.
8556 if not (Bignum_Operands or Long_Long_Integer_Operands) then
8557 Set_Do_Overflow_Check (N, False);
8558 Reexpand (Suppress => True);
8560 -- Otherwise we are going to rebuild the case expression using
8561 -- either bignum or long long integer operands throughout.
8563 else
8564 declare
8565 Rtype : Entity_Id;
8566 pragma Warnings (Off, Rtype);
8567 New_Alts : List_Id;
8568 New_Exp : Node_Id;
8570 begin
8571 New_Alts := New_List;
8572 Alt := First (Alternatives (N));
8573 while Present (Alt) loop
8574 if Bignum_Operands then
8575 New_Exp := Convert_To_Bignum (Expression (Alt));
8576 Rtype := RTE (RE_Bignum);
8577 else
8578 New_Exp := Convert_To (LLIB, Expression (Alt));
8579 Rtype := LLIB;
8580 end if;
8582 Append_To (New_Alts,
8583 Make_Case_Expression_Alternative (Sloc (Alt),
8584 Actions => No_List,
8585 Discrete_Choices => Discrete_Choices (Alt),
8586 Expression => New_Exp));
8588 Next (Alt);
8589 end loop;
8591 Rewrite (N,
8592 Make_Case_Expression (Loc,
8593 Expression => Expression (N),
8594 Alternatives => New_Alts));
8596 Reanalyze (Rtype, Suppress => True);
8597 end;
8598 end if;
8599 end;
8601 return;
8602 end if;
8604 -- If we have an arithmetic operator we make recursive calls on the
8605 -- operands to get the ranges (and to properly process the subtree
8606 -- that lies below us).
8608 Minimize_Eliminate_Overflows
8609 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
8611 if Binary then
8612 Minimize_Eliminate_Overflows
8613 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
8614 end if;
8616 -- Record if we have Long_Long_Integer operands
8618 Long_Long_Integer_Operands :=
8619 Etype (Right_Opnd (N)) = LLIB
8620 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
8622 -- If either operand is a bignum, then result will be a bignum and we
8623 -- don't need to do any range analysis. As previously discussed we could
8624 -- do range analysis in such cases, but it could mean working with giant
8625 -- numbers at compile time for very little gain (the number of cases
8626 -- in which we could slip back from bignum mode is small).
8628 if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
8629 Lo := No_Uint;
8630 Hi := No_Uint;
8631 Bignum_Operands := True;
8633 -- Otherwise compute result range
8635 else
8636 Bignum_Operands := False;
8638 case Nkind (N) is
8640 -- Absolute value
8642 when N_Op_Abs =>
8643 Lo := Uint_0;
8644 Hi := UI_Max (abs Rlo, abs Rhi);
8646 -- Addition
8648 when N_Op_Add =>
8649 Lo := Llo + Rlo;
8650 Hi := Lhi + Rhi;
8652 -- Division
8654 when N_Op_Divide =>
8656 -- If the right operand can only be zero, set 0..0
8658 if Rlo = 0 and then Rhi = 0 then
8659 Lo := Uint_0;
8660 Hi := Uint_0;
8662 -- Possible bounds of division must come from dividing end
8663 -- values of the input ranges (four possibilities), provided
8664 -- zero is not included in the possible values of the right
8665 -- operand.
8667 -- Otherwise, we just consider two intervals of values for
8668 -- the right operand: the interval of negative values (up to
8669 -- -1) and the interval of positive values (starting at 1).
8670 -- Since division by 1 is the identity, and division by -1
8671 -- is negation, we get all possible bounds of division in that
8672 -- case by considering:
8673 -- - all values from the division of end values of input
8674 -- ranges;
8675 -- - the end values of the left operand;
8676 -- - the negation of the end values of the left operand.
8678 else
8679 declare
8680 Mrk : constant Uintp.Save_Mark := Mark;
8681 -- Mark so we can release the RR and Ev values
8683 Ev1 : Uint;
8684 Ev2 : Uint;
8685 Ev3 : Uint;
8686 Ev4 : Uint;
8688 begin
8689 -- Discard extreme values of zero for the divisor, since
8690 -- they will simply result in an exception in any case.
8692 if Rlo = 0 then
8693 Rlo := Uint_1;
8694 elsif Rhi = 0 then
8695 Rhi := -Uint_1;
8696 end if;
8698 -- Compute possible bounds coming from dividing end
8699 -- values of the input ranges.
8701 Ev1 := Llo / Rlo;
8702 Ev2 := Llo / Rhi;
8703 Ev3 := Lhi / Rlo;
8704 Ev4 := Lhi / Rhi;
8706 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8707 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8709 -- If the right operand can be both negative or positive,
8710 -- include the end values of the left operand in the
8711 -- extreme values, as well as their negation.
8713 if Rlo < 0 and then Rhi > 0 then
8714 Ev1 := Llo;
8715 Ev2 := -Llo;
8716 Ev3 := Lhi;
8717 Ev4 := -Lhi;
8719 Min (Lo,
8720 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
8721 Max (Hi,
8722 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
8723 end if;
8725 -- Release the RR and Ev values
8727 Release_And_Save (Mrk, Lo, Hi);
8728 end;
8729 end if;
8731 -- Exponentiation
8733 when N_Op_Expon =>
8735 -- Discard negative values for the exponent, since they will
8736 -- simply result in an exception in any case.
8738 if Rhi < 0 then
8739 Rhi := Uint_0;
8740 elsif Rlo < 0 then
8741 Rlo := Uint_0;
8742 end if;
8744 -- Estimate number of bits in result before we go computing
8745 -- giant useless bounds. Basically the number of bits in the
8746 -- result is the number of bits in the base multiplied by the
8747 -- value of the exponent. If this is big enough that the result
8748 -- definitely won't fit in Long_Long_Integer, switch to bignum
8749 -- mode immediately, and avoid computing giant bounds.
8751 -- The comparison here is approximate, but conservative, it
8752 -- only clicks on cases that are sure to exceed the bounds.
8754 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
8755 Lo := No_Uint;
8756 Hi := No_Uint;
8758 -- If right operand is zero then result is 1
8760 elsif Rhi = 0 then
8761 Lo := Uint_1;
8762 Hi := Uint_1;
8764 else
8765 -- High bound comes either from exponentiation of largest
8766 -- positive value to largest exponent value, or from
8767 -- the exponentiation of most negative value to an
8768 -- even exponent.
8770 declare
8771 Hi1, Hi2 : Uint;
8773 begin
8774 if Lhi > 0 then
8775 Hi1 := Lhi ** Rhi;
8776 else
8777 Hi1 := Uint_0;
8778 end if;
8780 if Llo < 0 then
8781 if Rhi mod 2 = 0 then
8782 Hi2 := Llo ** Rhi;
8783 else
8784 Hi2 := Llo ** (Rhi - 1);
8785 end if;
8786 else
8787 Hi2 := Uint_0;
8788 end if;
8790 Hi := UI_Max (Hi1, Hi2);
8791 end;
8793 -- Result can only be negative if base can be negative
8795 if Llo < 0 then
8796 if Rhi mod 2 = 0 then
8797 Lo := Llo ** (Rhi - 1);
8798 else
8799 Lo := Llo ** Rhi;
8800 end if;
8802 -- Otherwise low bound is minimum ** minimum
8804 else
8805 Lo := Llo ** Rlo;
8806 end if;
8807 end if;
8809 -- Negation
8811 when N_Op_Minus =>
8812 Lo := -Rhi;
8813 Hi := -Rlo;
8815 -- Mod
8817 when N_Op_Mod =>
8818 declare
8819 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8820 -- This is the maximum absolute value of the result
8822 begin
8823 Lo := Uint_0;
8824 Hi := Uint_0;
8826 -- The result depends only on the sign and magnitude of
8827 -- the right operand, it does not depend on the sign or
8828 -- magnitude of the left operand.
8830 if Rlo < 0 then
8831 Lo := -Maxabs;
8832 end if;
8834 if Rhi > 0 then
8835 Hi := Maxabs;
8836 end if;
8837 end;
8839 -- Multiplication
8841 when N_Op_Multiply =>
8843 -- Possible bounds of multiplication must come from multiplying
8844 -- end values of the input ranges (four possibilities).
8846 declare
8847 Mrk : constant Uintp.Save_Mark := Mark;
8848 -- Mark so we can release the Ev values
8850 Ev1 : constant Uint := Llo * Rlo;
8851 Ev2 : constant Uint := Llo * Rhi;
8852 Ev3 : constant Uint := Lhi * Rlo;
8853 Ev4 : constant Uint := Lhi * Rhi;
8855 begin
8856 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8857 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8859 -- Release the Ev values
8861 Release_And_Save (Mrk, Lo, Hi);
8862 end;
8864 -- Plus operator (affirmation)
8866 when N_Op_Plus =>
8867 Lo := Rlo;
8868 Hi := Rhi;
8870 -- Remainder
8872 when N_Op_Rem =>
8873 declare
8874 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8875 -- This is the maximum absolute value of the result. Note
8876 -- that the result range does not depend on the sign of the
8877 -- right operand.
8879 begin
8880 Lo := Uint_0;
8881 Hi := Uint_0;
8883 -- Case of left operand negative, which results in a range
8884 -- of -Maxabs .. 0 for those negative values. If there are
8885 -- no negative values then Lo value of result is always 0.
8887 if Llo < 0 then
8888 Lo := -Maxabs;
8889 end if;
8891 -- Case of left operand positive
8893 if Lhi > 0 then
8894 Hi := Maxabs;
8895 end if;
8896 end;
8898 -- Subtract
8900 when N_Op_Subtract =>
8901 Lo := Llo - Rhi;
8902 Hi := Lhi - Rlo;
8904 -- Nothing else should be possible
8906 when others =>
8907 raise Program_Error;
8908 end case;
8909 end if;
8911 -- Here for the case where we have not rewritten anything (no bignum
8912 -- operands or long long integer operands), and we know the result.
8913 -- If we know we are in the result range, and we do not have Bignum
8914 -- operands or Long_Long_Integer operands, we can just reexpand with
8915 -- overflow checks turned off (since we know we cannot have overflow).
8916 -- As always the reexpansion is required to complete expansion of the
8917 -- operator, but we do not need to reanalyze, and we prevent recursion
8918 -- by suppressing the check.
8920 if not (Bignum_Operands or Long_Long_Integer_Operands)
8921 and then In_Result_Range
8922 then
8923 Set_Do_Overflow_Check (N, False);
8924 Reexpand (Suppress => True);
8925 return;
8927 -- Here we know that we are not in the result range, and in the general
8928 -- case we will move into either the Bignum or Long_Long_Integer domain
8929 -- to compute the result. However, there is one exception. If we are
8930 -- at the top level, and we do not have Bignum or Long_Long_Integer
8931 -- operands, we will have to immediately convert the result back to
8932 -- the result type, so there is no point in Bignum/Long_Long_Integer
8933 -- fiddling.
8935 elsif Top_Level
8936 and then not (Bignum_Operands or Long_Long_Integer_Operands)
8938 -- One further refinement. If we are at the top level, but our parent
8939 -- is a type conversion, then go into bignum or long long integer node
8940 -- since the result will be converted to that type directly without
8941 -- going through the result type, and we may avoid an overflow. This
8942 -- is the case for example of Long_Long_Integer (A ** 4), where A is
8943 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
8944 -- but does not fit in Integer.
8946 and then Nkind (Parent (N)) /= N_Type_Conversion
8947 then
8948 -- Here keep original types, but we need to complete analysis
8950 -- One subtlety. We can't just go ahead and do an analyze operation
8951 -- here because it will cause recursion into the whole MINIMIZED/
8952 -- ELIMINATED overflow processing which is not what we want. Here
8953 -- we are at the top level, and we need a check against the result
8954 -- mode (i.e. we want to use STRICT mode). So do exactly that.
8955 -- Also, we have not modified the node, so this is a case where
8956 -- we need to reexpand, but not reanalyze.
8958 Reexpand;
8959 return;
8961 -- Cases where we do the operation in Bignum mode. This happens either
8962 -- because one of our operands is in Bignum mode already, or because
8963 -- the computed bounds are outside the bounds of Long_Long_Integer,
8964 -- which in some cases can be indicated by Hi and Lo being No_Uint.
8966 -- Note: we could do better here and in some cases switch back from
8967 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
8968 -- 0 .. 1, but the cases are rare and it is not worth the effort.
8969 -- Failing to do this switching back is only an efficiency issue.
8971 elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
8973 -- OK, we are definitely outside the range of Long_Long_Integer. The
8974 -- question is whether to move to Bignum mode, or stay in the domain
8975 -- of Long_Long_Integer, signalling that an overflow check is needed.
8977 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
8978 -- the Bignum business. In ELIMINATED mode, we will normally move
8979 -- into Bignum mode, but there is an exception if neither of our
8980 -- operands is Bignum now, and we are at the top level (Top_Level
8981 -- set True). In this case, there is no point in moving into Bignum
8982 -- mode to prevent overflow if the caller will immediately convert
8983 -- the Bignum value back to LLI with an overflow check. It's more
8984 -- efficient to stay in LLI mode with an overflow check (if needed)
8986 if Check_Mode = Minimized
8987 or else (Top_Level and not Bignum_Operands)
8988 then
8989 if Do_Overflow_Check (N) then
8990 Enable_Overflow_Check (N);
8991 end if;
8993 -- The result now has to be in Long_Long_Integer mode, so adjust
8994 -- the possible range to reflect this. Note these calls also
8995 -- change No_Uint values from the top level case to LLI bounds.
8997 Max (Lo, LLLo);
8998 Min (Hi, LLHi);
9000 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
9002 else
9003 pragma Assert (Check_Mode = Eliminated);
9005 declare
9006 Fent : Entity_Id;
9007 Args : List_Id;
9009 begin
9010 case Nkind (N) is
9011 when N_Op_Abs =>
9012 Fent := RTE (RE_Big_Abs);
9014 when N_Op_Add =>
9015 Fent := RTE (RE_Big_Add);
9017 when N_Op_Divide =>
9018 Fent := RTE (RE_Big_Div);
9020 when N_Op_Expon =>
9021 Fent := RTE (RE_Big_Exp);
9023 when N_Op_Minus =>
9024 Fent := RTE (RE_Big_Neg);
9026 when N_Op_Mod =>
9027 Fent := RTE (RE_Big_Mod);
9029 when N_Op_Multiply =>
9030 Fent := RTE (RE_Big_Mul);
9032 when N_Op_Rem =>
9033 Fent := RTE (RE_Big_Rem);
9035 when N_Op_Subtract =>
9036 Fent := RTE (RE_Big_Sub);
9038 -- Anything else is an internal error, this includes the
9039 -- N_Op_Plus case, since how can plus cause the result
9040 -- to be out of range if the operand is in range?
9042 when others =>
9043 raise Program_Error;
9044 end case;
9046 -- Construct argument list for Bignum call, converting our
9047 -- operands to Bignum form if they are not already there.
9049 Args := New_List;
9051 if Binary then
9052 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
9053 end if;
9055 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
9057 -- Now rewrite the arithmetic operator with a call to the
9058 -- corresponding bignum function.
9060 Rewrite (N,
9061 Make_Function_Call (Loc,
9062 Name => New_Occurrence_Of (Fent, Loc),
9063 Parameter_Associations => Args));
9064 Reanalyze (RTE (RE_Bignum), Suppress => True);
9066 -- Indicate result is Bignum mode
9068 Lo := No_Uint;
9069 Hi := No_Uint;
9070 return;
9071 end;
9072 end if;
9074 -- Otherwise we are in range of Long_Long_Integer, so no overflow
9075 -- check is required, at least not yet.
9077 else
9078 Set_Do_Overflow_Check (N, False);
9079 end if;
9081 -- Here we are not in Bignum territory, but we may have long long
9082 -- integer operands that need special handling. First a special check:
9083 -- If an exponentiation operator exponent is of type Long_Long_Integer,
9084 -- it means we converted it to prevent overflow, but exponentiation
9085 -- requires a Natural right operand, so convert it back to Natural.
9086 -- This conversion may raise an exception which is fine.
9088 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
9089 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
9090 end if;
9092 -- Here we will do the operation in Long_Long_Integer. We do this even
9093 -- if we know an overflow check is required, better to do this in long
9094 -- long integer mode, since we are less likely to overflow.
9096 -- Convert right or only operand to Long_Long_Integer, except that
9097 -- we do not touch the exponentiation right operand.
9099 if Nkind (N) /= N_Op_Expon then
9100 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
9101 end if;
9103 -- Convert left operand to Long_Long_Integer for binary case
9105 if Binary then
9106 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
9107 end if;
9109 -- Reset node to unanalyzed
9111 Set_Analyzed (N, False);
9112 Set_Etype (N, Empty);
9113 Set_Entity (N, Empty);
9115 -- Now analyze this new node. This reanalysis will complete processing
9116 -- for the node. In particular we will complete the expansion of an
9117 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
9118 -- we will complete any division checks (since we have not changed the
9119 -- setting of the Do_Division_Check flag).
9121 -- We do this reanalysis in STRICT mode to avoid recursion into the
9122 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
9124 declare
9125 SG : constant Overflow_Mode_Type :=
9126 Scope_Suppress.Overflow_Mode_General;
9127 SA : constant Overflow_Mode_Type :=
9128 Scope_Suppress.Overflow_Mode_Assertions;
9130 begin
9131 Scope_Suppress.Overflow_Mode_General := Strict;
9132 Scope_Suppress.Overflow_Mode_Assertions := Strict;
9134 if not Do_Overflow_Check (N) then
9135 Reanalyze (LLIB, Suppress => True);
9136 else
9137 Reanalyze (LLIB);
9138 end if;
9140 Scope_Suppress.Overflow_Mode_General := SG;
9141 Scope_Suppress.Overflow_Mode_Assertions := SA;
9142 end;
9143 end Minimize_Eliminate_Overflows;
9145 -------------------------
9146 -- Overflow_Check_Mode --
9147 -------------------------
9149 function Overflow_Check_Mode return Overflow_Mode_Type is
9150 begin
9151 if In_Assertion_Expr = 0 then
9152 return Scope_Suppress.Overflow_Mode_General;
9153 else
9154 return Scope_Suppress.Overflow_Mode_Assertions;
9155 end if;
9156 end Overflow_Check_Mode;
9158 --------------------------------
9159 -- Overflow_Checks_Suppressed --
9160 --------------------------------
9162 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
9163 begin
9164 if Present (E) and then Checks_May_Be_Suppressed (E) then
9165 return Is_Check_Suppressed (E, Overflow_Check);
9166 else
9167 return Scope_Suppress.Suppress (Overflow_Check);
9168 end if;
9169 end Overflow_Checks_Suppressed;
9171 ---------------------------------
9172 -- Predicate_Checks_Suppressed --
9173 ---------------------------------
9175 function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
9176 begin
9177 if Present (E) and then Checks_May_Be_Suppressed (E) then
9178 return Is_Check_Suppressed (E, Predicate_Check);
9179 else
9180 return Scope_Suppress.Suppress (Predicate_Check);
9181 end if;
9182 end Predicate_Checks_Suppressed;
9184 -----------------------------
9185 -- Range_Checks_Suppressed --
9186 -----------------------------
9188 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
9189 begin
9190 if Present (E) then
9191 if Kill_Range_Checks (E) then
9192 return True;
9194 elsif Checks_May_Be_Suppressed (E) then
9195 return Is_Check_Suppressed (E, Range_Check);
9196 end if;
9197 end if;
9199 return Scope_Suppress.Suppress (Range_Check);
9200 end Range_Checks_Suppressed;
9202 -----------------------------------------
9203 -- Range_Or_Validity_Checks_Suppressed --
9204 -----------------------------------------
9206 -- Note: the coding would be simpler here if we simply made appropriate
9207 -- calls to Range/Validity_Checks_Suppressed, but that would result in
9208 -- duplicated checks which we prefer to avoid.
9210 function Range_Or_Validity_Checks_Suppressed
9211 (Expr : Node_Id) return Boolean
9213 begin
9214 -- Immediate return if scope checks suppressed for either check
9216 if Scope_Suppress.Suppress (Range_Check)
9218 Scope_Suppress.Suppress (Validity_Check)
9219 then
9220 return True;
9221 end if;
9223 -- If no expression, that's odd, decide that checks are suppressed,
9224 -- since we don't want anyone trying to do checks in this case, which
9225 -- is most likely the result of some other error.
9227 if No (Expr) then
9228 return True;
9229 end if;
9231 -- Expression is present, so perform suppress checks on type
9233 declare
9234 Typ : constant Entity_Id := Etype (Expr);
9235 begin
9236 if Checks_May_Be_Suppressed (Typ)
9237 and then (Is_Check_Suppressed (Typ, Range_Check)
9238 or else
9239 Is_Check_Suppressed (Typ, Validity_Check))
9240 then
9241 return True;
9242 end if;
9243 end;
9245 -- If expression is an entity name, perform checks on this entity
9247 if Is_Entity_Name (Expr) then
9248 declare
9249 Ent : constant Entity_Id := Entity (Expr);
9250 begin
9251 if Checks_May_Be_Suppressed (Ent) then
9252 return Is_Check_Suppressed (Ent, Range_Check)
9253 or else Is_Check_Suppressed (Ent, Validity_Check);
9254 end if;
9255 end;
9256 end if;
9258 -- If we fall through, no checks suppressed
9260 return False;
9261 end Range_Or_Validity_Checks_Suppressed;
9263 -------------------
9264 -- Remove_Checks --
9265 -------------------
9267 procedure Remove_Checks (Expr : Node_Id) is
9268 function Process (N : Node_Id) return Traverse_Result;
9269 -- Process a single node during the traversal
9271 procedure Traverse is new Traverse_Proc (Process);
9272 -- The traversal procedure itself
9274 -------------
9275 -- Process --
9276 -------------
9278 function Process (N : Node_Id) return Traverse_Result is
9279 begin
9280 if Nkind (N) not in N_Subexpr then
9281 return Skip;
9282 end if;
9284 Set_Do_Range_Check (N, False);
9286 case Nkind (N) is
9287 when N_And_Then =>
9288 Traverse (Left_Opnd (N));
9289 return Skip;
9291 when N_Attribute_Reference =>
9292 Set_Do_Overflow_Check (N, False);
9294 when N_Function_Call =>
9295 Set_Do_Tag_Check (N, False);
9297 when N_Op =>
9298 Set_Do_Overflow_Check (N, False);
9300 case Nkind (N) is
9301 when N_Op_Divide =>
9302 Set_Do_Division_Check (N, False);
9304 when N_Op_And =>
9305 Set_Do_Length_Check (N, False);
9307 when N_Op_Mod =>
9308 Set_Do_Division_Check (N, False);
9310 when N_Op_Or =>
9311 Set_Do_Length_Check (N, False);
9313 when N_Op_Rem =>
9314 Set_Do_Division_Check (N, False);
9316 when N_Op_Xor =>
9317 Set_Do_Length_Check (N, False);
9319 when others =>
9320 null;
9321 end case;
9323 when N_Or_Else =>
9324 Traverse (Left_Opnd (N));
9325 return Skip;
9327 when N_Selected_Component =>
9328 Set_Do_Discriminant_Check (N, False);
9330 when N_Type_Conversion =>
9331 Set_Do_Length_Check (N, False);
9332 Set_Do_Tag_Check (N, False);
9333 Set_Do_Overflow_Check (N, False);
9335 when others =>
9336 null;
9337 end case;
9339 return OK;
9340 end Process;
9342 -- Start of processing for Remove_Checks
9344 begin
9345 Traverse (Expr);
9346 end Remove_Checks;
9348 ----------------------------
9349 -- Selected_Length_Checks --
9350 ----------------------------
9352 function Selected_Length_Checks
9353 (Ck_Node : Node_Id;
9354 Target_Typ : Entity_Id;
9355 Source_Typ : Entity_Id;
9356 Warn_Node : Node_Id) return Check_Result
9358 Loc : constant Source_Ptr := Sloc (Ck_Node);
9359 S_Typ : Entity_Id;
9360 T_Typ : Entity_Id;
9361 Expr_Actual : Node_Id;
9362 Exptyp : Entity_Id;
9363 Cond : Node_Id := Empty;
9364 Do_Access : Boolean := False;
9365 Wnode : Node_Id := Warn_Node;
9366 Ret_Result : Check_Result := (Empty, Empty);
9367 Num_Checks : Natural := 0;
9369 procedure Add_Check (N : Node_Id);
9370 -- Adds the action given to Ret_Result if N is non-Empty
9372 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
9373 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
9374 -- Comments required ???
9376 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
9377 -- True for equal literals and for nodes that denote the same constant
9378 -- entity, even if its value is not a static constant. This includes the
9379 -- case of a discriminal reference within an init proc. Removes some
9380 -- obviously superfluous checks.
9382 function Length_E_Cond
9383 (Exptyp : Entity_Id;
9384 Typ : Entity_Id;
9385 Indx : Nat) return Node_Id;
9386 -- Returns expression to compute:
9387 -- Typ'Length /= Exptyp'Length
9389 function Length_N_Cond
9390 (Expr : Node_Id;
9391 Typ : Entity_Id;
9392 Indx : Nat) return Node_Id;
9393 -- Returns expression to compute:
9394 -- Typ'Length /= Expr'Length
9396 ---------------
9397 -- Add_Check --
9398 ---------------
9400 procedure Add_Check (N : Node_Id) is
9401 begin
9402 if Present (N) then
9404 -- For now, ignore attempt to place more than two checks ???
9405 -- This is really worrisome, are we really discarding checks ???
9407 if Num_Checks = 2 then
9408 return;
9409 end if;
9411 pragma Assert (Num_Checks <= 1);
9412 Num_Checks := Num_Checks + 1;
9413 Ret_Result (Num_Checks) := N;
9414 end if;
9415 end Add_Check;
9417 ------------------
9418 -- Get_E_Length --
9419 ------------------
9421 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
9422 SE : constant Entity_Id := Scope (E);
9423 N : Node_Id;
9424 E1 : Entity_Id := E;
9426 begin
9427 if Ekind (Scope (E)) = E_Record_Type
9428 and then Has_Discriminants (Scope (E))
9429 then
9430 N := Build_Discriminal_Subtype_Of_Component (E);
9432 if Present (N) then
9433 Insert_Action (Ck_Node, N);
9434 E1 := Defining_Identifier (N);
9435 end if;
9436 end if;
9438 if Ekind (E1) = E_String_Literal_Subtype then
9439 return
9440 Make_Integer_Literal (Loc,
9441 Intval => String_Literal_Length (E1));
9443 elsif SE /= Standard_Standard
9444 and then Ekind (Scope (SE)) = E_Protected_Type
9445 and then Has_Discriminants (Scope (SE))
9446 and then Has_Completion (Scope (SE))
9447 and then not Inside_Init_Proc
9448 then
9449 -- If the type whose length is needed is a private component
9450 -- constrained by a discriminant, we must expand the 'Length
9451 -- attribute into an explicit computation, using the discriminal
9452 -- of the current protected operation. This is because the actual
9453 -- type of the prival is constructed after the protected opera-
9454 -- tion has been fully expanded.
9456 declare
9457 Indx_Type : Node_Id;
9458 Lo : Node_Id;
9459 Hi : Node_Id;
9460 Do_Expand : Boolean := False;
9462 begin
9463 Indx_Type := First_Index (E);
9465 for J in 1 .. Indx - 1 loop
9466 Next_Index (Indx_Type);
9467 end loop;
9469 Get_Index_Bounds (Indx_Type, Lo, Hi);
9471 if Nkind (Lo) = N_Identifier
9472 and then Ekind (Entity (Lo)) = E_In_Parameter
9473 then
9474 Lo := Get_Discriminal (E, Lo);
9475 Do_Expand := True;
9476 end if;
9478 if Nkind (Hi) = N_Identifier
9479 and then Ekind (Entity (Hi)) = E_In_Parameter
9480 then
9481 Hi := Get_Discriminal (E, Hi);
9482 Do_Expand := True;
9483 end if;
9485 if Do_Expand then
9486 if not Is_Entity_Name (Lo) then
9487 Lo := Duplicate_Subexpr_No_Checks (Lo);
9488 end if;
9490 if not Is_Entity_Name (Hi) then
9491 Lo := Duplicate_Subexpr_No_Checks (Hi);
9492 end if;
9494 N :=
9495 Make_Op_Add (Loc,
9496 Left_Opnd =>
9497 Make_Op_Subtract (Loc,
9498 Left_Opnd => Hi,
9499 Right_Opnd => Lo),
9501 Right_Opnd => Make_Integer_Literal (Loc, 1));
9502 return N;
9504 else
9505 N :=
9506 Make_Attribute_Reference (Loc,
9507 Attribute_Name => Name_Length,
9508 Prefix =>
9509 New_Occurrence_Of (E1, Loc));
9511 if Indx > 1 then
9512 Set_Expressions (N, New_List (
9513 Make_Integer_Literal (Loc, Indx)));
9514 end if;
9516 return N;
9517 end if;
9518 end;
9520 else
9521 N :=
9522 Make_Attribute_Reference (Loc,
9523 Attribute_Name => Name_Length,
9524 Prefix =>
9525 New_Occurrence_Of (E1, Loc));
9527 if Indx > 1 then
9528 Set_Expressions (N, New_List (
9529 Make_Integer_Literal (Loc, Indx)));
9530 end if;
9532 return N;
9533 end if;
9534 end Get_E_Length;
9536 ------------------
9537 -- Get_N_Length --
9538 ------------------
9540 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
9541 begin
9542 return
9543 Make_Attribute_Reference (Loc,
9544 Attribute_Name => Name_Length,
9545 Prefix =>
9546 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
9547 Expressions => New_List (
9548 Make_Integer_Literal (Loc, Indx)));
9549 end Get_N_Length;
9551 -------------------
9552 -- Length_E_Cond --
9553 -------------------
9555 function Length_E_Cond
9556 (Exptyp : Entity_Id;
9557 Typ : Entity_Id;
9558 Indx : Nat) return Node_Id
9560 begin
9561 return
9562 Make_Op_Ne (Loc,
9563 Left_Opnd => Get_E_Length (Typ, Indx),
9564 Right_Opnd => Get_E_Length (Exptyp, Indx));
9565 end Length_E_Cond;
9567 -------------------
9568 -- Length_N_Cond --
9569 -------------------
9571 function Length_N_Cond
9572 (Expr : Node_Id;
9573 Typ : Entity_Id;
9574 Indx : Nat) return Node_Id
9576 begin
9577 return
9578 Make_Op_Ne (Loc,
9579 Left_Opnd => Get_E_Length (Typ, Indx),
9580 Right_Opnd => Get_N_Length (Expr, Indx));
9581 end Length_N_Cond;
9583 -----------------
9584 -- Same_Bounds --
9585 -----------------
9587 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
9588 begin
9589 return
9590 (Nkind (L) = N_Integer_Literal
9591 and then Nkind (R) = N_Integer_Literal
9592 and then Intval (L) = Intval (R))
9594 or else
9595 (Is_Entity_Name (L)
9596 and then Ekind (Entity (L)) = E_Constant
9597 and then ((Is_Entity_Name (R)
9598 and then Entity (L) = Entity (R))
9599 or else
9600 (Nkind (R) = N_Type_Conversion
9601 and then Is_Entity_Name (Expression (R))
9602 and then Entity (L) = Entity (Expression (R)))))
9604 or else
9605 (Is_Entity_Name (R)
9606 and then Ekind (Entity (R)) = E_Constant
9607 and then Nkind (L) = N_Type_Conversion
9608 and then Is_Entity_Name (Expression (L))
9609 and then Entity (R) = Entity (Expression (L)))
9611 or else
9612 (Is_Entity_Name (L)
9613 and then Is_Entity_Name (R)
9614 and then Entity (L) = Entity (R)
9615 and then Ekind (Entity (L)) = E_In_Parameter
9616 and then Inside_Init_Proc);
9617 end Same_Bounds;
9619 -- Start of processing for Selected_Length_Checks
9621 begin
9622 -- Checks will be applied only when generating code
9624 if not Expander_Active then
9625 return Ret_Result;
9626 end if;
9628 if Target_Typ = Any_Type
9629 or else Target_Typ = Any_Composite
9630 or else Raises_Constraint_Error (Ck_Node)
9631 then
9632 return Ret_Result;
9633 end if;
9635 if No (Wnode) then
9636 Wnode := Ck_Node;
9637 end if;
9639 T_Typ := Target_Typ;
9641 if No (Source_Typ) then
9642 S_Typ := Etype (Ck_Node);
9643 else
9644 S_Typ := Source_Typ;
9645 end if;
9647 if S_Typ = Any_Type or else S_Typ = Any_Composite then
9648 return Ret_Result;
9649 end if;
9651 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
9652 S_Typ := Designated_Type (S_Typ);
9653 T_Typ := Designated_Type (T_Typ);
9654 Do_Access := True;
9656 -- A simple optimization for the null case
9658 if Known_Null (Ck_Node) then
9659 return Ret_Result;
9660 end if;
9661 end if;
9663 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9664 if Is_Constrained (T_Typ) then
9666 -- The checking code to be generated will freeze the corresponding
9667 -- array type. However, we must freeze the type now, so that the
9668 -- freeze node does not appear within the generated if expression,
9669 -- but ahead of it.
9671 Freeze_Before (Ck_Node, T_Typ);
9673 Expr_Actual := Get_Referenced_Object (Ck_Node);
9674 Exptyp := Get_Actual_Subtype (Ck_Node);
9676 if Is_Access_Type (Exptyp) then
9677 Exptyp := Designated_Type (Exptyp);
9678 end if;
9680 -- String_Literal case. This needs to be handled specially be-
9681 -- cause no index types are available for string literals. The
9682 -- condition is simply:
9684 -- T_Typ'Length = string-literal-length
9686 if Nkind (Expr_Actual) = N_String_Literal
9687 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
9688 then
9689 Cond :=
9690 Make_Op_Ne (Loc,
9691 Left_Opnd => Get_E_Length (T_Typ, 1),
9692 Right_Opnd =>
9693 Make_Integer_Literal (Loc,
9694 Intval =>
9695 String_Literal_Length (Etype (Expr_Actual))));
9697 -- General array case. Here we have a usable actual subtype for
9698 -- the expression, and the condition is built from the two types
9699 -- (Do_Length):
9701 -- T_Typ'Length /= Exptyp'Length or else
9702 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
9703 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
9704 -- ...
9706 elsif Is_Constrained (Exptyp) then
9707 declare
9708 Ndims : constant Nat := Number_Dimensions (T_Typ);
9710 L_Index : Node_Id;
9711 R_Index : Node_Id;
9712 L_Low : Node_Id;
9713 L_High : Node_Id;
9714 R_Low : Node_Id;
9715 R_High : Node_Id;
9716 L_Length : Uint;
9717 R_Length : Uint;
9718 Ref_Node : Node_Id;
9720 begin
9721 -- At the library level, we need to ensure that the type of
9722 -- the object is elaborated before the check itself is
9723 -- emitted. This is only done if the object is in the
9724 -- current compilation unit, otherwise the type is frozen
9725 -- and elaborated in its unit.
9727 if Is_Itype (Exptyp)
9728 and then
9729 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
9730 and then
9731 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
9732 and then In_Open_Scopes (Scope (Exptyp))
9733 then
9734 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
9735 Set_Itype (Ref_Node, Exptyp);
9736 Insert_Action (Ck_Node, Ref_Node);
9737 end if;
9739 L_Index := First_Index (T_Typ);
9740 R_Index := First_Index (Exptyp);
9742 for Indx in 1 .. Ndims loop
9743 if not (Nkind (L_Index) = N_Raise_Constraint_Error
9744 or else
9745 Nkind (R_Index) = N_Raise_Constraint_Error)
9746 then
9747 Get_Index_Bounds (L_Index, L_Low, L_High);
9748 Get_Index_Bounds (R_Index, R_Low, R_High);
9750 -- Deal with compile time length check. Note that we
9751 -- skip this in the access case, because the access
9752 -- value may be null, so we cannot know statically.
9754 if not Do_Access
9755 and then Compile_Time_Known_Value (L_Low)
9756 and then Compile_Time_Known_Value (L_High)
9757 and then Compile_Time_Known_Value (R_Low)
9758 and then Compile_Time_Known_Value (R_High)
9759 then
9760 if Expr_Value (L_High) >= Expr_Value (L_Low) then
9761 L_Length := Expr_Value (L_High) -
9762 Expr_Value (L_Low) + 1;
9763 else
9764 L_Length := UI_From_Int (0);
9765 end if;
9767 if Expr_Value (R_High) >= Expr_Value (R_Low) then
9768 R_Length := Expr_Value (R_High) -
9769 Expr_Value (R_Low) + 1;
9770 else
9771 R_Length := UI_From_Int (0);
9772 end if;
9774 if L_Length > R_Length then
9775 Add_Check
9776 (Compile_Time_Constraint_Error
9777 (Wnode, "too few elements for}??", T_Typ));
9779 elsif L_Length < R_Length then
9780 Add_Check
9781 (Compile_Time_Constraint_Error
9782 (Wnode, "too many elements for}??", T_Typ));
9783 end if;
9785 -- The comparison for an individual index subtype
9786 -- is omitted if the corresponding index subtypes
9787 -- statically match, since the result is known to
9788 -- be true. Note that this test is worth while even
9789 -- though we do static evaluation, because non-static
9790 -- subtypes can statically match.
9792 elsif not
9793 Subtypes_Statically_Match
9794 (Etype (L_Index), Etype (R_Index))
9796 and then not
9797 (Same_Bounds (L_Low, R_Low)
9798 and then Same_Bounds (L_High, R_High))
9799 then
9800 Evolve_Or_Else
9801 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
9802 end if;
9804 Next (L_Index);
9805 Next (R_Index);
9806 end if;
9807 end loop;
9808 end;
9810 -- Handle cases where we do not get a usable actual subtype that
9811 -- is constrained. This happens for example in the function call
9812 -- and explicit dereference cases. In these cases, we have to get
9813 -- the length or range from the expression itself, making sure we
9814 -- do not evaluate it more than once.
9816 -- Here Ck_Node is the original expression, or more properly the
9817 -- result of applying Duplicate_Expr to the original tree, forcing
9818 -- the result to be a name.
9820 else
9821 declare
9822 Ndims : constant Nat := Number_Dimensions (T_Typ);
9824 begin
9825 -- Build the condition for the explicit dereference case
9827 for Indx in 1 .. Ndims loop
9828 Evolve_Or_Else
9829 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
9830 end loop;
9831 end;
9832 end if;
9833 end if;
9834 end if;
9836 -- Construct the test and insert into the tree
9838 if Present (Cond) then
9839 if Do_Access then
9840 Cond := Guard_Access (Cond, Loc, Ck_Node);
9841 end if;
9843 Add_Check
9844 (Make_Raise_Constraint_Error (Loc,
9845 Condition => Cond,
9846 Reason => CE_Length_Check_Failed));
9847 end if;
9849 return Ret_Result;
9850 end Selected_Length_Checks;
9852 ---------------------------
9853 -- Selected_Range_Checks --
9854 ---------------------------
9856 function Selected_Range_Checks
9857 (Ck_Node : Node_Id;
9858 Target_Typ : Entity_Id;
9859 Source_Typ : Entity_Id;
9860 Warn_Node : Node_Id) return Check_Result
9862 Loc : constant Source_Ptr := Sloc (Ck_Node);
9863 S_Typ : Entity_Id;
9864 T_Typ : Entity_Id;
9865 Expr_Actual : Node_Id;
9866 Exptyp : Entity_Id;
9867 Cond : Node_Id := Empty;
9868 Do_Access : Boolean := False;
9869 Wnode : Node_Id := Warn_Node;
9870 Ret_Result : Check_Result := (Empty, Empty);
9871 Num_Checks : Natural := 0;
9873 procedure Add_Check (N : Node_Id);
9874 -- Adds the action given to Ret_Result if N is non-Empty
9876 function Discrete_Range_Cond
9877 (Expr : Node_Id;
9878 Typ : Entity_Id) return Node_Id;
9879 -- Returns expression to compute:
9880 -- Low_Bound (Expr) < Typ'First
9881 -- or else
9882 -- High_Bound (Expr) > Typ'Last
9884 function Discrete_Expr_Cond
9885 (Expr : Node_Id;
9886 Typ : Entity_Id) return Node_Id;
9887 -- Returns expression to compute:
9888 -- Expr < Typ'First
9889 -- or else
9890 -- Expr > Typ'Last
9892 function Get_E_First_Or_Last
9893 (Loc : Source_Ptr;
9894 E : Entity_Id;
9895 Indx : Nat;
9896 Nam : Name_Id) return Node_Id;
9897 -- Returns an attribute reference
9898 -- E'First or E'Last
9899 -- with a source location of Loc.
9901 -- Nam is Name_First or Name_Last, according to which attribute is
9902 -- desired. If Indx is non-zero, it is passed as a literal in the
9903 -- Expressions of the attribute reference (identifying the desired
9904 -- array dimension).
9906 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
9907 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
9908 -- Returns expression to compute:
9909 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
9911 function Range_E_Cond
9912 (Exptyp : Entity_Id;
9913 Typ : Entity_Id;
9914 Indx : Nat)
9915 return Node_Id;
9916 -- Returns expression to compute:
9917 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
9919 function Range_Equal_E_Cond
9920 (Exptyp : Entity_Id;
9921 Typ : Entity_Id;
9922 Indx : Nat) return Node_Id;
9923 -- Returns expression to compute:
9924 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
9926 function Range_N_Cond
9927 (Expr : Node_Id;
9928 Typ : Entity_Id;
9929 Indx : Nat) return Node_Id;
9930 -- Return expression to compute:
9931 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
9933 ---------------
9934 -- Add_Check --
9935 ---------------
9937 procedure Add_Check (N : Node_Id) is
9938 begin
9939 if Present (N) then
9941 -- For now, ignore attempt to place more than 2 checks ???
9943 if Num_Checks = 2 then
9944 return;
9945 end if;
9947 pragma Assert (Num_Checks <= 1);
9948 Num_Checks := Num_Checks + 1;
9949 Ret_Result (Num_Checks) := N;
9950 end if;
9951 end Add_Check;
9953 -------------------------
9954 -- Discrete_Expr_Cond --
9955 -------------------------
9957 function Discrete_Expr_Cond
9958 (Expr : Node_Id;
9959 Typ : Entity_Id) return Node_Id
9961 begin
9962 return
9963 Make_Or_Else (Loc,
9964 Left_Opnd =>
9965 Make_Op_Lt (Loc,
9966 Left_Opnd =>
9967 Convert_To (Base_Type (Typ),
9968 Duplicate_Subexpr_No_Checks (Expr)),
9969 Right_Opnd =>
9970 Convert_To (Base_Type (Typ),
9971 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
9973 Right_Opnd =>
9974 Make_Op_Gt (Loc,
9975 Left_Opnd =>
9976 Convert_To (Base_Type (Typ),
9977 Duplicate_Subexpr_No_Checks (Expr)),
9978 Right_Opnd =>
9979 Convert_To
9980 (Base_Type (Typ),
9981 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
9982 end Discrete_Expr_Cond;
9984 -------------------------
9985 -- Discrete_Range_Cond --
9986 -------------------------
9988 function Discrete_Range_Cond
9989 (Expr : Node_Id;
9990 Typ : Entity_Id) return Node_Id
9992 LB : Node_Id := Low_Bound (Expr);
9993 HB : Node_Id := High_Bound (Expr);
9995 Left_Opnd : Node_Id;
9996 Right_Opnd : Node_Id;
9998 begin
9999 if Nkind (LB) = N_Identifier
10000 and then Ekind (Entity (LB)) = E_Discriminant
10001 then
10002 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10003 end if;
10005 Left_Opnd :=
10006 Make_Op_Lt (Loc,
10007 Left_Opnd =>
10008 Convert_To
10009 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
10011 Right_Opnd =>
10012 Convert_To
10013 (Base_Type (Typ),
10014 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
10016 if Nkind (HB) = N_Identifier
10017 and then Ekind (Entity (HB)) = E_Discriminant
10018 then
10019 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10020 end if;
10022 Right_Opnd :=
10023 Make_Op_Gt (Loc,
10024 Left_Opnd =>
10025 Convert_To
10026 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
10028 Right_Opnd =>
10029 Convert_To
10030 (Base_Type (Typ),
10031 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
10033 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
10034 end Discrete_Range_Cond;
10036 -------------------------
10037 -- Get_E_First_Or_Last --
10038 -------------------------
10040 function Get_E_First_Or_Last
10041 (Loc : Source_Ptr;
10042 E : Entity_Id;
10043 Indx : Nat;
10044 Nam : Name_Id) return Node_Id
10046 Exprs : List_Id;
10047 begin
10048 if Indx > 0 then
10049 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
10050 else
10051 Exprs := No_List;
10052 end if;
10054 return Make_Attribute_Reference (Loc,
10055 Prefix => New_Occurrence_Of (E, Loc),
10056 Attribute_Name => Nam,
10057 Expressions => Exprs);
10058 end Get_E_First_Or_Last;
10060 -----------------
10061 -- Get_N_First --
10062 -----------------
10064 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
10065 begin
10066 return
10067 Make_Attribute_Reference (Loc,
10068 Attribute_Name => Name_First,
10069 Prefix =>
10070 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10071 Expressions => New_List (
10072 Make_Integer_Literal (Loc, Indx)));
10073 end Get_N_First;
10075 ----------------
10076 -- Get_N_Last --
10077 ----------------
10079 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
10080 begin
10081 return
10082 Make_Attribute_Reference (Loc,
10083 Attribute_Name => Name_Last,
10084 Prefix =>
10085 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10086 Expressions => New_List (
10087 Make_Integer_Literal (Loc, Indx)));
10088 end Get_N_Last;
10090 ------------------
10091 -- Range_E_Cond --
10092 ------------------
10094 function Range_E_Cond
10095 (Exptyp : Entity_Id;
10096 Typ : Entity_Id;
10097 Indx : Nat) return Node_Id
10099 begin
10100 return
10101 Make_Or_Else (Loc,
10102 Left_Opnd =>
10103 Make_Op_Lt (Loc,
10104 Left_Opnd =>
10105 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10106 Right_Opnd =>
10107 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10109 Right_Opnd =>
10110 Make_Op_Gt (Loc,
10111 Left_Opnd =>
10112 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10113 Right_Opnd =>
10114 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10115 end Range_E_Cond;
10117 ------------------------
10118 -- Range_Equal_E_Cond --
10119 ------------------------
10121 function Range_Equal_E_Cond
10122 (Exptyp : Entity_Id;
10123 Typ : Entity_Id;
10124 Indx : Nat) return Node_Id
10126 begin
10127 return
10128 Make_Or_Else (Loc,
10129 Left_Opnd =>
10130 Make_Op_Ne (Loc,
10131 Left_Opnd =>
10132 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10133 Right_Opnd =>
10134 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10136 Right_Opnd =>
10137 Make_Op_Ne (Loc,
10138 Left_Opnd =>
10139 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10140 Right_Opnd =>
10141 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10142 end Range_Equal_E_Cond;
10144 ------------------
10145 -- Range_N_Cond --
10146 ------------------
10148 function Range_N_Cond
10149 (Expr : Node_Id;
10150 Typ : Entity_Id;
10151 Indx : Nat) return Node_Id
10153 begin
10154 return
10155 Make_Or_Else (Loc,
10156 Left_Opnd =>
10157 Make_Op_Lt (Loc,
10158 Left_Opnd =>
10159 Get_N_First (Expr, Indx),
10160 Right_Opnd =>
10161 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10163 Right_Opnd =>
10164 Make_Op_Gt (Loc,
10165 Left_Opnd =>
10166 Get_N_Last (Expr, Indx),
10167 Right_Opnd =>
10168 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10169 end Range_N_Cond;
10171 -- Start of processing for Selected_Range_Checks
10173 begin
10174 -- Checks will be applied only when generating code. In GNATprove mode,
10175 -- we do not apply the checks, but we still call Selected_Range_Checks
10176 -- to possibly issue errors on SPARK code when a run-time error can be
10177 -- detected at compile time.
10179 if not Expander_Active and not GNATprove_Mode then
10180 return Ret_Result;
10181 end if;
10183 if Target_Typ = Any_Type
10184 or else Target_Typ = Any_Composite
10185 or else Raises_Constraint_Error (Ck_Node)
10186 then
10187 return Ret_Result;
10188 end if;
10190 if No (Wnode) then
10191 Wnode := Ck_Node;
10192 end if;
10194 T_Typ := Target_Typ;
10196 if No (Source_Typ) then
10197 S_Typ := Etype (Ck_Node);
10198 else
10199 S_Typ := Source_Typ;
10200 end if;
10202 if S_Typ = Any_Type or else S_Typ = Any_Composite then
10203 return Ret_Result;
10204 end if;
10206 -- The order of evaluating T_Typ before S_Typ seems to be critical
10207 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
10208 -- in, and since Node can be an N_Range node, it might be invalid.
10209 -- Should there be an assert check somewhere for taking the Etype of
10210 -- an N_Range node ???
10212 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10213 S_Typ := Designated_Type (S_Typ);
10214 T_Typ := Designated_Type (T_Typ);
10215 Do_Access := True;
10217 -- A simple optimization for the null case
10219 if Known_Null (Ck_Node) then
10220 return Ret_Result;
10221 end if;
10222 end if;
10224 -- For an N_Range Node, check for a null range and then if not
10225 -- null generate a range check action.
10227 if Nkind (Ck_Node) = N_Range then
10229 -- There's no point in checking a range against itself
10231 if Ck_Node = Scalar_Range (T_Typ) then
10232 return Ret_Result;
10233 end if;
10235 declare
10236 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
10237 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
10238 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
10239 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
10241 LB : Node_Id := Low_Bound (Ck_Node);
10242 HB : Node_Id := High_Bound (Ck_Node);
10243 Known_LB : Boolean := False;
10244 Known_HB : Boolean := False;
10246 Null_Range : Boolean;
10247 Out_Of_Range_L : Boolean;
10248 Out_Of_Range_H : Boolean;
10250 begin
10251 -- Compute what is known at compile time
10253 if Known_T_LB and Known_T_HB then
10254 if Compile_Time_Known_Value (LB) then
10255 Known_LB := True;
10257 -- There's no point in checking that a bound is within its
10258 -- own range so pretend that it is known in this case. First
10259 -- deal with low bound.
10261 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
10262 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
10263 then
10264 LB := T_LB;
10265 Known_LB := True;
10266 end if;
10268 -- Likewise for the high bound
10270 if Compile_Time_Known_Value (HB) then
10271 Known_HB := True;
10273 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
10274 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
10275 then
10276 HB := T_HB;
10277 Known_HB := True;
10278 end if;
10279 end if;
10281 -- Check for case where everything is static and we can do the
10282 -- check at compile time. This is skipped if we have an access
10283 -- type, since the access value may be null.
10285 -- ??? This code can be improved since you only need to know that
10286 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
10287 -- compile time to emit pertinent messages.
10289 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
10290 and not Do_Access
10291 then
10292 -- Floating-point case
10294 if Is_Floating_Point_Type (S_Typ) then
10295 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
10296 Out_Of_Range_L :=
10297 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
10298 or else
10299 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
10301 Out_Of_Range_H :=
10302 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
10303 or else
10304 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
10306 -- Fixed or discrete type case
10308 else
10309 Null_Range := Expr_Value (HB) < Expr_Value (LB);
10310 Out_Of_Range_L :=
10311 (Expr_Value (LB) < Expr_Value (T_LB))
10312 or else
10313 (Expr_Value (LB) > Expr_Value (T_HB));
10315 Out_Of_Range_H :=
10316 (Expr_Value (HB) > Expr_Value (T_HB))
10317 or else
10318 (Expr_Value (HB) < Expr_Value (T_LB));
10319 end if;
10321 if not Null_Range then
10322 if Out_Of_Range_L then
10323 if No (Warn_Node) then
10324 Add_Check
10325 (Compile_Time_Constraint_Error
10326 (Low_Bound (Ck_Node),
10327 "static value out of range of}??", T_Typ));
10329 else
10330 Add_Check
10331 (Compile_Time_Constraint_Error
10332 (Wnode,
10333 "static range out of bounds of}??", T_Typ));
10334 end if;
10335 end if;
10337 if Out_Of_Range_H then
10338 if No (Warn_Node) then
10339 Add_Check
10340 (Compile_Time_Constraint_Error
10341 (High_Bound (Ck_Node),
10342 "static value out of range of}??", T_Typ));
10344 else
10345 Add_Check
10346 (Compile_Time_Constraint_Error
10347 (Wnode,
10348 "static range out of bounds of}??", T_Typ));
10349 end if;
10350 end if;
10351 end if;
10353 else
10354 declare
10355 LB : Node_Id := Low_Bound (Ck_Node);
10356 HB : Node_Id := High_Bound (Ck_Node);
10358 begin
10359 -- If either bound is a discriminant and we are within the
10360 -- record declaration, it is a use of the discriminant in a
10361 -- constraint of a component, and nothing can be checked
10362 -- here. The check will be emitted within the init proc.
10363 -- Before then, the discriminal has no real meaning.
10364 -- Similarly, if the entity is a discriminal, there is no
10365 -- check to perform yet.
10367 -- The same holds within a discriminated synchronized type,
10368 -- where the discriminant may constrain a component or an
10369 -- entry family.
10371 if Nkind (LB) = N_Identifier
10372 and then Denotes_Discriminant (LB, True)
10373 then
10374 if Current_Scope = Scope (Entity (LB))
10375 or else Is_Concurrent_Type (Current_Scope)
10376 or else Ekind (Entity (LB)) /= E_Discriminant
10377 then
10378 return Ret_Result;
10379 else
10380 LB :=
10381 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10382 end if;
10383 end if;
10385 if Nkind (HB) = N_Identifier
10386 and then Denotes_Discriminant (HB, True)
10387 then
10388 if Current_Scope = Scope (Entity (HB))
10389 or else Is_Concurrent_Type (Current_Scope)
10390 or else Ekind (Entity (HB)) /= E_Discriminant
10391 then
10392 return Ret_Result;
10393 else
10394 HB :=
10395 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10396 end if;
10397 end if;
10399 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
10400 Set_Paren_Count (Cond, 1);
10402 Cond :=
10403 Make_And_Then (Loc,
10404 Left_Opnd =>
10405 Make_Op_Ge (Loc,
10406 Left_Opnd =>
10407 Convert_To (Base_Type (Etype (HB)),
10408 Duplicate_Subexpr_No_Checks (HB)),
10409 Right_Opnd =>
10410 Convert_To (Base_Type (Etype (LB)),
10411 Duplicate_Subexpr_No_Checks (LB))),
10412 Right_Opnd => Cond);
10413 end;
10414 end if;
10415 end;
10417 elsif Is_Scalar_Type (S_Typ) then
10419 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
10420 -- except the above simply sets a flag in the node and lets
10421 -- gigi generate the check base on the Etype of the expression.
10422 -- Sometimes, however we want to do a dynamic check against an
10423 -- arbitrary target type, so we do that here.
10425 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
10426 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10428 -- For literals, we can tell if the constraint error will be
10429 -- raised at compile time, so we never need a dynamic check, but
10430 -- if the exception will be raised, then post the usual warning,
10431 -- and replace the literal with a raise constraint error
10432 -- expression. As usual, skip this for access types
10434 elsif Compile_Time_Known_Value (Ck_Node) and then not Do_Access then
10435 declare
10436 LB : constant Node_Id := Type_Low_Bound (T_Typ);
10437 UB : constant Node_Id := Type_High_Bound (T_Typ);
10439 Out_Of_Range : Boolean;
10440 Static_Bounds : constant Boolean :=
10441 Compile_Time_Known_Value (LB)
10442 and Compile_Time_Known_Value (UB);
10444 begin
10445 -- Following range tests should use Sem_Eval routine ???
10447 if Static_Bounds then
10448 if Is_Floating_Point_Type (S_Typ) then
10449 Out_Of_Range :=
10450 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
10451 or else
10452 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
10454 -- Fixed or discrete type
10456 else
10457 Out_Of_Range :=
10458 Expr_Value (Ck_Node) < Expr_Value (LB)
10459 or else
10460 Expr_Value (Ck_Node) > Expr_Value (UB);
10461 end if;
10463 -- Bounds of the type are static and the literal is out of
10464 -- range so output a warning message.
10466 if Out_Of_Range then
10467 if No (Warn_Node) then
10468 Add_Check
10469 (Compile_Time_Constraint_Error
10470 (Ck_Node,
10471 "static value out of range of}??", T_Typ));
10473 else
10474 Add_Check
10475 (Compile_Time_Constraint_Error
10476 (Wnode,
10477 "static value out of range of}??", T_Typ));
10478 end if;
10479 end if;
10481 else
10482 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10483 end if;
10484 end;
10486 -- Here for the case of a non-static expression, we need a runtime
10487 -- check unless the source type range is guaranteed to be in the
10488 -- range of the target type.
10490 else
10491 if not In_Subrange_Of (S_Typ, T_Typ) then
10492 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10493 end if;
10494 end if;
10495 end if;
10497 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
10498 if Is_Constrained (T_Typ) then
10500 Expr_Actual := Get_Referenced_Object (Ck_Node);
10501 Exptyp := Get_Actual_Subtype (Expr_Actual);
10503 if Is_Access_Type (Exptyp) then
10504 Exptyp := Designated_Type (Exptyp);
10505 end if;
10507 -- String_Literal case. This needs to be handled specially be-
10508 -- cause no index types are available for string literals. The
10509 -- condition is simply:
10511 -- T_Typ'Length = string-literal-length
10513 if Nkind (Expr_Actual) = N_String_Literal then
10514 null;
10516 -- General array case. Here we have a usable actual subtype for
10517 -- the expression, and the condition is built from the two types
10519 -- T_Typ'First < Exptyp'First or else
10520 -- T_Typ'Last > Exptyp'Last or else
10521 -- T_Typ'First(1) < Exptyp'First(1) or else
10522 -- T_Typ'Last(1) > Exptyp'Last(1) or else
10523 -- ...
10525 elsif Is_Constrained (Exptyp) then
10526 declare
10527 Ndims : constant Nat := Number_Dimensions (T_Typ);
10529 L_Index : Node_Id;
10530 R_Index : Node_Id;
10532 begin
10533 L_Index := First_Index (T_Typ);
10534 R_Index := First_Index (Exptyp);
10536 for Indx in 1 .. Ndims loop
10537 if not (Nkind (L_Index) = N_Raise_Constraint_Error
10538 or else
10539 Nkind (R_Index) = N_Raise_Constraint_Error)
10540 then
10541 -- Deal with compile time length check. Note that we
10542 -- skip this in the access case, because the access
10543 -- value may be null, so we cannot know statically.
10545 if not
10546 Subtypes_Statically_Match
10547 (Etype (L_Index), Etype (R_Index))
10548 then
10549 -- If the target type is constrained then we
10550 -- have to check for exact equality of bounds
10551 -- (required for qualified expressions).
10553 if Is_Constrained (T_Typ) then
10554 Evolve_Or_Else
10555 (Cond,
10556 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
10557 else
10558 Evolve_Or_Else
10559 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
10560 end if;
10561 end if;
10563 Next (L_Index);
10564 Next (R_Index);
10565 end if;
10566 end loop;
10567 end;
10569 -- Handle cases where we do not get a usable actual subtype that
10570 -- is constrained. This happens for example in the function call
10571 -- and explicit dereference cases. In these cases, we have to get
10572 -- the length or range from the expression itself, making sure we
10573 -- do not evaluate it more than once.
10575 -- Here Ck_Node is the original expression, or more properly the
10576 -- result of applying Duplicate_Expr to the original tree,
10577 -- forcing the result to be a name.
10579 else
10580 declare
10581 Ndims : constant Nat := Number_Dimensions (T_Typ);
10583 begin
10584 -- Build the condition for the explicit dereference case
10586 for Indx in 1 .. Ndims loop
10587 Evolve_Or_Else
10588 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
10589 end loop;
10590 end;
10591 end if;
10593 else
10594 -- For a conversion to an unconstrained array type, generate an
10595 -- Action to check that the bounds of the source value are within
10596 -- the constraints imposed by the target type (RM 4.6(38)). No
10597 -- check is needed for a conversion to an access to unconstrained
10598 -- array type, as 4.6(24.15/2) requires the designated subtypes
10599 -- of the two access types to statically match.
10601 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
10602 and then not Do_Access
10603 then
10604 declare
10605 Opnd_Index : Node_Id;
10606 Targ_Index : Node_Id;
10607 Opnd_Range : Node_Id;
10609 begin
10610 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
10611 Targ_Index := First_Index (T_Typ);
10612 while Present (Opnd_Index) loop
10614 -- If the index is a range, use its bounds. If it is an
10615 -- entity (as will be the case if it is a named subtype
10616 -- or an itype created for a slice) retrieve its range.
10618 if Is_Entity_Name (Opnd_Index)
10619 and then Is_Type (Entity (Opnd_Index))
10620 then
10621 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
10622 else
10623 Opnd_Range := Opnd_Index;
10624 end if;
10626 if Nkind (Opnd_Range) = N_Range then
10627 if Is_In_Range
10628 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10629 Assume_Valid => True)
10630 and then
10631 Is_In_Range
10632 (High_Bound (Opnd_Range), Etype (Targ_Index),
10633 Assume_Valid => True)
10634 then
10635 null;
10637 -- If null range, no check needed
10639 elsif
10640 Compile_Time_Known_Value (High_Bound (Opnd_Range))
10641 and then
10642 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
10643 and then
10644 Expr_Value (High_Bound (Opnd_Range)) <
10645 Expr_Value (Low_Bound (Opnd_Range))
10646 then
10647 null;
10649 elsif Is_Out_Of_Range
10650 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10651 Assume_Valid => True)
10652 or else
10653 Is_Out_Of_Range
10654 (High_Bound (Opnd_Range), Etype (Targ_Index),
10655 Assume_Valid => True)
10656 then
10657 Add_Check
10658 (Compile_Time_Constraint_Error
10659 (Wnode, "value out of range of}??", T_Typ));
10661 else
10662 Evolve_Or_Else
10663 (Cond,
10664 Discrete_Range_Cond
10665 (Opnd_Range, Etype (Targ_Index)));
10666 end if;
10667 end if;
10669 Next_Index (Opnd_Index);
10670 Next_Index (Targ_Index);
10671 end loop;
10672 end;
10673 end if;
10674 end if;
10675 end if;
10677 -- Construct the test and insert into the tree
10679 if Present (Cond) then
10680 if Do_Access then
10681 Cond := Guard_Access (Cond, Loc, Ck_Node);
10682 end if;
10684 Add_Check
10685 (Make_Raise_Constraint_Error (Loc,
10686 Condition => Cond,
10687 Reason => CE_Range_Check_Failed));
10688 end if;
10690 return Ret_Result;
10691 end Selected_Range_Checks;
10693 -------------------------------
10694 -- Storage_Checks_Suppressed --
10695 -------------------------------
10697 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
10698 begin
10699 if Present (E) and then Checks_May_Be_Suppressed (E) then
10700 return Is_Check_Suppressed (E, Storage_Check);
10701 else
10702 return Scope_Suppress.Suppress (Storage_Check);
10703 end if;
10704 end Storage_Checks_Suppressed;
10706 ---------------------------
10707 -- Tag_Checks_Suppressed --
10708 ---------------------------
10710 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
10711 begin
10712 if Present (E)
10713 and then Checks_May_Be_Suppressed (E)
10714 then
10715 return Is_Check_Suppressed (E, Tag_Check);
10716 else
10717 return Scope_Suppress.Suppress (Tag_Check);
10718 end if;
10719 end Tag_Checks_Suppressed;
10721 ---------------------------------------
10722 -- Validate_Alignment_Check_Warnings --
10723 ---------------------------------------
10725 procedure Validate_Alignment_Check_Warnings is
10726 begin
10727 for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
10728 declare
10729 AWR : Alignment_Warnings_Record
10730 renames Alignment_Warnings.Table (J);
10731 begin
10732 if Known_Alignment (AWR.E)
10733 and then AWR.A mod Alignment (AWR.E) = 0
10734 then
10735 Delete_Warning_And_Continuations (AWR.W);
10736 end if;
10737 end;
10738 end loop;
10739 end Validate_Alignment_Check_Warnings;
10741 --------------------------
10742 -- Validity_Check_Range --
10743 --------------------------
10745 procedure Validity_Check_Range
10746 (N : Node_Id;
10747 Related_Id : Entity_Id := Empty)
10749 begin
10750 if Validity_Checks_On and Validity_Check_Operands then
10751 if Nkind (N) = N_Range then
10752 Ensure_Valid
10753 (Expr => Low_Bound (N),
10754 Related_Id => Related_Id,
10755 Is_Low_Bound => True);
10757 Ensure_Valid
10758 (Expr => High_Bound (N),
10759 Related_Id => Related_Id,
10760 Is_High_Bound => True);
10761 end if;
10762 end if;
10763 end Validity_Check_Range;
10765 --------------------------------
10766 -- Validity_Checks_Suppressed --
10767 --------------------------------
10769 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
10770 begin
10771 if Present (E) and then Checks_May_Be_Suppressed (E) then
10772 return Is_Check_Suppressed (E, Validity_Check);
10773 else
10774 return Scope_Suppress.Suppress (Validity_Check);
10775 end if;
10776 end Validity_Checks_Suppressed;
10778 end Checks;