PR middle-end/66867
[official-gcc.git] / gcc / ada / checks.adb
blob961e4b5a5f679b2966ed372b86144f2966c1e665
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Casing; use Casing;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Eval_Fat; use Eval_Fat;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Ch2; use Exp_Ch2;
34 with Exp_Ch4; use Exp_Ch4;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Expander; use Expander;
38 with Freeze; use Freeze;
39 with Lib; use Lib;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Output; use Output;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Eval; use Sem_Eval;
52 with Sem_Res; use Sem_Res;
53 with Sem_Util; use Sem_Util;
54 with Sem_Warn; use Sem_Warn;
55 with Sinfo; use Sinfo;
56 with Sinput; use Sinput;
57 with Snames; use Snames;
58 with Sprint; use Sprint;
59 with Stand; use Stand;
60 with Stringt; use Stringt;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Ttypes; use Ttypes;
64 with Validsw; use Validsw;
66 package body Checks is
68 -- General note: many of these routines are concerned with generating
69 -- checking code to make sure that constraint error is raised at runtime.
70 -- Clearly this code is only needed if the expander is active, since
71 -- otherwise we will not be generating code or going into the runtime
72 -- execution anyway.
74 -- We therefore disconnect most of these checks if the expander is
75 -- inactive. This has the additional benefit that we do not need to
76 -- worry about the tree being messed up by previous errors (since errors
77 -- turn off expansion anyway).
79 -- There are a few exceptions to the above rule. For instance routines
80 -- such as Apply_Scalar_Range_Check that do not insert any code can be
81 -- safely called even when the Expander is inactive (but Errors_Detected
82 -- is 0). The benefit of executing this code when expansion is off, is
83 -- the ability to emit constraint error warning for static expressions
84 -- even when we are not generating code.
86 -- The above is modified in gnatprove mode to ensure that proper check
87 -- flags are always placed, even if expansion is off.
89 -------------------------------------
90 -- Suppression of Redundant Checks --
91 -------------------------------------
93 -- This unit implements a limited circuit for removal of redundant
94 -- checks. The processing is based on a tracing of simple sequential
95 -- flow. For any sequence of statements, we save expressions that are
96 -- marked to be checked, and then if the same expression appears later
97 -- with the same check, then under certain circumstances, the second
98 -- check can be suppressed.
100 -- Basically, we can suppress the check if we know for certain that
101 -- the previous expression has been elaborated (together with its
102 -- check), and we know that the exception frame is the same, and that
103 -- nothing has happened to change the result of the exception.
105 -- Let us examine each of these three conditions in turn to describe
106 -- how we ensure that this condition is met.
108 -- First, we need to know for certain that the previous expression has
109 -- been executed. This is done principally by the mechanism of calling
110 -- Conditional_Statements_Begin at the start of any statement sequence
111 -- and Conditional_Statements_End at the end. The End call causes all
112 -- checks remembered since the Begin call to be discarded. This does
113 -- miss a few cases, notably the case of a nested BEGIN-END block with
114 -- no exception handlers. But the important thing is to be conservative.
115 -- The other protection is that all checks are discarded if a label
116 -- is encountered, since then the assumption of sequential execution
117 -- is violated, and we don't know enough about the flow.
119 -- Second, we need to know that the exception frame is the same. We
120 -- do this by killing all remembered checks when we enter a new frame.
121 -- Again, that's over-conservative, but generally the cases we can help
122 -- with are pretty local anyway (like the body of a loop for example).
124 -- Third, we must be sure to forget any checks which are no longer valid.
125 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
126 -- used to note any changes to local variables. We only attempt to deal
127 -- with checks involving local variables, so we do not need to worry
128 -- about global variables. Second, a call to any non-global procedure
129 -- causes us to abandon all stored checks, since such a all may affect
130 -- the values of any local variables.
132 -- The following define the data structures used to deal with remembering
133 -- checks so that redundant checks can be eliminated as described above.
135 -- Right now, the only expressions that we deal with are of the form of
136 -- simple local objects (either declared locally, or IN parameters) or
137 -- such objects plus/minus a compile time known constant. We can do
138 -- more later on if it seems worthwhile, but this catches many simple
139 -- cases in practice.
141 -- The following record type reflects a single saved check. An entry
142 -- is made in the stack of saved checks if and only if the expression
143 -- has been elaborated with the indicated checks.
145 type Saved_Check is record
146 Killed : Boolean;
147 -- Set True if entry is killed by Kill_Checks
149 Entity : Entity_Id;
150 -- The entity involved in the expression that is checked
152 Offset : Uint;
153 -- A compile time value indicating the result of adding or
154 -- subtracting a compile time value. This value is to be
155 -- added to the value of the Entity. A value of zero is
156 -- used for the case of a simple entity reference.
158 Check_Type : Character;
159 -- This is set to 'R' for a range check (in which case Target_Type
160 -- is set to the target type for the range check) or to 'O' for an
161 -- overflow check (in which case Target_Type is set to Empty).
163 Target_Type : Entity_Id;
164 -- Used only if Do_Range_Check is set. Records the target type for
165 -- the check. We need this, because a check is a duplicate only if
166 -- it has the same target type (or more accurately one with a
167 -- range that is smaller or equal to the stored target type of a
168 -- saved check).
169 end record;
171 -- The following table keeps track of saved checks. Rather than use an
172 -- extensible table, we just use a table of fixed size, and we discard
173 -- any saved checks that do not fit. That's very unlikely to happen and
174 -- this is only an optimization in any case.
176 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
177 -- Array of saved checks
179 Num_Saved_Checks : Nat := 0;
180 -- Number of saved checks
182 -- The following stack keeps track of statement ranges. It is treated
183 -- as a stack. When Conditional_Statements_Begin is called, an entry
184 -- is pushed onto this stack containing the value of Num_Saved_Checks
185 -- at the time of the call. Then when Conditional_Statements_End is
186 -- called, this value is popped off and used to reset Num_Saved_Checks.
188 -- Note: again, this is a fixed length stack with a size that should
189 -- always be fine. If the value of the stack pointer goes above the
190 -- limit, then we just forget all saved checks.
192 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
193 Saved_Checks_TOS : Nat := 0;
195 -----------------------
196 -- Local Subprograms --
197 -----------------------
199 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
200 -- Used to apply arithmetic overflow checks for all cases except operators
201 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
202 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
203 -- signed integer arithmetic operator (but not an if or case expression).
204 -- It is also called for types other than signed integers.
206 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
207 -- Used to apply arithmetic overflow checks for the case where the overflow
208 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
209 -- arithmetic op (which includes the case of if and case expressions). Note
210 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
211 -- we have work to do even if overflow checking is suppressed.
213 procedure Apply_Division_Check
214 (N : Node_Id;
215 Rlo : Uint;
216 Rhi : Uint;
217 ROK : Boolean);
218 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
219 -- division checks as required if the Do_Division_Check flag is set.
220 -- Rlo and Rhi give the possible range of the right operand, these values
221 -- can be referenced and trusted only if ROK is set True.
223 procedure Apply_Float_Conversion_Check
224 (Ck_Node : Node_Id;
225 Target_Typ : Entity_Id);
226 -- The checks on a conversion from a floating-point type to an integer
227 -- type are delicate. They have to be performed before conversion, they
228 -- have to raise an exception when the operand is a NaN, and rounding must
229 -- be taken into account to determine the safe bounds of the operand.
231 procedure Apply_Selected_Length_Checks
232 (Ck_Node : Node_Id;
233 Target_Typ : Entity_Id;
234 Source_Typ : Entity_Id;
235 Do_Static : Boolean);
236 -- This is the subprogram that does all the work for Apply_Length_Check
237 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
238 -- described for the above routines. The Do_Static flag indicates that
239 -- only a static check is to be done.
241 procedure Apply_Selected_Range_Checks
242 (Ck_Node : Node_Id;
243 Target_Typ : Entity_Id;
244 Source_Typ : Entity_Id;
245 Do_Static : Boolean);
246 -- This is the subprogram that does all the work for Apply_Range_Check.
247 -- Expr, Target_Typ and Source_Typ are as described for the above
248 -- routine. The Do_Static flag indicates that only a static check is
249 -- to be done.
251 type Check_Type is new Check_Id range Access_Check .. Division_Check;
252 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
253 -- This function is used to see if an access or division by zero check is
254 -- needed. The check is to be applied to a single variable appearing in the
255 -- source, and N is the node for the reference. If N is not of this form,
256 -- True is returned with no further processing. If N is of the right form,
257 -- then further processing determines if the given Check is needed.
259 -- The particular circuit is to see if we have the case of a check that is
260 -- not needed because it appears in the right operand of a short circuited
261 -- conditional where the left operand guards the check. For example:
263 -- if Var = 0 or else Q / Var > 12 then
264 -- ...
265 -- end if;
267 -- In this example, the division check is not required. At the same time
268 -- we can issue warnings for suspicious use of non-short-circuited forms,
269 -- such as:
271 -- if Var = 0 or Q / Var > 12 then
272 -- ...
273 -- end if;
275 procedure Find_Check
276 (Expr : Node_Id;
277 Check_Type : Character;
278 Target_Type : Entity_Id;
279 Entry_OK : out Boolean;
280 Check_Num : out Nat;
281 Ent : out Entity_Id;
282 Ofs : out Uint);
283 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
284 -- to see if a check is of the form for optimization, and if so, to see
285 -- if it has already been performed. Expr is the expression to check,
286 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
287 -- Target_Type is the target type for a range check, and Empty for an
288 -- overflow check. If the entry is not of the form for optimization,
289 -- then Entry_OK is set to False, and the remaining out parameters
290 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
291 -- entity and offset from the expression. Check_Num is the number of
292 -- a matching saved entry in Saved_Checks, or zero if no such entry
293 -- is located.
295 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
296 -- If a discriminal is used in constraining a prival, Return reference
297 -- to the discriminal of the protected body (which renames the parameter
298 -- of the enclosing protected operation). This clumsy transformation is
299 -- needed because privals are created too late and their actual subtypes
300 -- are not available when analysing the bodies of the protected operations.
301 -- This function is called whenever the bound is an entity and the scope
302 -- indicates a protected operation. If the bound is an in-parameter of
303 -- a protected operation that is not a prival, the function returns the
304 -- bound itself.
305 -- To be cleaned up???
307 function Guard_Access
308 (Cond : Node_Id;
309 Loc : Source_Ptr;
310 Ck_Node : Node_Id) return Node_Id;
311 -- In the access type case, guard the test with a test to ensure
312 -- that the access value is non-null, since the checks do not
313 -- not apply to null access values.
315 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
316 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
317 -- Constraint_Error node.
319 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
320 -- Returns True if node N is for an arithmetic operation with signed
321 -- integer operands. This includes unary and binary operators, and also
322 -- if and case expression nodes where the dependent expressions are of
323 -- a signed integer type. These are the kinds of nodes for which special
324 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
326 function Range_Or_Validity_Checks_Suppressed
327 (Expr : Node_Id) return Boolean;
328 -- Returns True if either range or validity checks or both are suppressed
329 -- for the type of the given expression, or, if the expression is the name
330 -- of an entity, if these checks are suppressed for the entity.
332 function Selected_Length_Checks
333 (Ck_Node : Node_Id;
334 Target_Typ : Entity_Id;
335 Source_Typ : Entity_Id;
336 Warn_Node : Node_Id) return Check_Result;
337 -- Like Apply_Selected_Length_Checks, except it doesn't modify
338 -- anything, just returns a list of nodes as described in the spec of
339 -- this package for the Range_Check function.
341 function Selected_Range_Checks
342 (Ck_Node : Node_Id;
343 Target_Typ : Entity_Id;
344 Source_Typ : Entity_Id;
345 Warn_Node : Node_Id) return Check_Result;
346 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
347 -- just returns a list of nodes as described in the spec of this package
348 -- for the Range_Check function.
350 ------------------------------
351 -- Access_Checks_Suppressed --
352 ------------------------------
354 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
355 begin
356 if Present (E) and then Checks_May_Be_Suppressed (E) then
357 return Is_Check_Suppressed (E, Access_Check);
358 else
359 return Scope_Suppress.Suppress (Access_Check);
360 end if;
361 end Access_Checks_Suppressed;
363 -------------------------------------
364 -- Accessibility_Checks_Suppressed --
365 -------------------------------------
367 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
368 begin
369 if Present (E) and then Checks_May_Be_Suppressed (E) then
370 return Is_Check_Suppressed (E, Accessibility_Check);
371 else
372 return Scope_Suppress.Suppress (Accessibility_Check);
373 end if;
374 end Accessibility_Checks_Suppressed;
376 -----------------------------
377 -- Activate_Division_Check --
378 -----------------------------
380 procedure Activate_Division_Check (N : Node_Id) is
381 begin
382 Set_Do_Division_Check (N, True);
383 Possible_Local_Raise (N, Standard_Constraint_Error);
384 end Activate_Division_Check;
386 -----------------------------
387 -- Activate_Overflow_Check --
388 -----------------------------
390 procedure Activate_Overflow_Check (N : Node_Id) is
391 Typ : constant Entity_Id := Etype (N);
393 begin
394 -- Floating-point case. If Etype is not set (this can happen when we
395 -- activate a check on a node that has not yet been analyzed), then
396 -- we assume we do not have a floating-point type (as per our spec).
398 if Present (Typ) and then Is_Floating_Point_Type (Typ) then
400 -- Ignore call if we have no automatic overflow checks on the target
401 -- and Check_Float_Overflow mode is not set. These are the cases in
402 -- which we expect to generate infinities and NaN's with no check.
404 if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
405 return;
407 -- Ignore for unary operations ("+", "-", abs) since these can never
408 -- result in overflow for floating-point cases.
410 elsif Nkind (N) in N_Unary_Op then
411 return;
413 -- Otherwise we will set the flag
415 else
416 null;
417 end if;
419 -- Discrete case
421 else
422 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
423 -- for zero-divide is a divide check, not an overflow check).
425 if Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
426 return;
427 end if;
428 end if;
430 -- Fall through for cases where we do set the flag
432 Set_Do_Overflow_Check (N, True);
433 Possible_Local_Raise (N, Standard_Constraint_Error);
434 end Activate_Overflow_Check;
436 --------------------------
437 -- Activate_Range_Check --
438 --------------------------
440 procedure Activate_Range_Check (N : Node_Id) is
441 begin
442 Set_Do_Range_Check (N, True);
443 Possible_Local_Raise (N, Standard_Constraint_Error);
444 end Activate_Range_Check;
446 ---------------------------------
447 -- Alignment_Checks_Suppressed --
448 ---------------------------------
450 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
451 begin
452 if Present (E) and then Checks_May_Be_Suppressed (E) then
453 return Is_Check_Suppressed (E, Alignment_Check);
454 else
455 return Scope_Suppress.Suppress (Alignment_Check);
456 end if;
457 end Alignment_Checks_Suppressed;
459 ----------------------------------
460 -- Allocation_Checks_Suppressed --
461 ----------------------------------
463 -- Note: at the current time there are no calls to this function, because
464 -- the relevant check is in the run-time, so it is not a check that the
465 -- compiler can suppress anyway, but we still have to recognize the check
466 -- name Allocation_Check since it is part of the standard.
468 function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
469 begin
470 if Present (E) and then Checks_May_Be_Suppressed (E) then
471 return Is_Check_Suppressed (E, Allocation_Check);
472 else
473 return Scope_Suppress.Suppress (Allocation_Check);
474 end if;
475 end Allocation_Checks_Suppressed;
477 -------------------------
478 -- Append_Range_Checks --
479 -------------------------
481 procedure Append_Range_Checks
482 (Checks : Check_Result;
483 Stmts : List_Id;
484 Suppress_Typ : Entity_Id;
485 Static_Sloc : Source_Ptr;
486 Flag_Node : Node_Id)
488 Internal_Flag_Node : constant Node_Id := Flag_Node;
489 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
491 Checks_On : constant Boolean :=
492 (not Index_Checks_Suppressed (Suppress_Typ))
493 or else (not Range_Checks_Suppressed (Suppress_Typ));
495 begin
496 -- For now we just return if Checks_On is false, however this should
497 -- be enhanced to check for an always True value in the condition
498 -- and to generate a compilation warning???
500 if not Checks_On then
501 return;
502 end if;
504 for J in 1 .. 2 loop
505 exit when No (Checks (J));
507 if Nkind (Checks (J)) = N_Raise_Constraint_Error
508 and then Present (Condition (Checks (J)))
509 then
510 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
511 Append_To (Stmts, Checks (J));
512 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
513 end if;
515 else
516 Append_To
517 (Stmts,
518 Make_Raise_Constraint_Error (Internal_Static_Sloc,
519 Reason => CE_Range_Check_Failed));
520 end if;
521 end loop;
522 end Append_Range_Checks;
524 ------------------------
525 -- Apply_Access_Check --
526 ------------------------
528 procedure Apply_Access_Check (N : Node_Id) is
529 P : constant Node_Id := Prefix (N);
531 begin
532 -- We do not need checks if we are not generating code (i.e. the
533 -- expander is not active). This is not just an optimization, there
534 -- are cases (e.g. with pragma Debug) where generating the checks
535 -- can cause real trouble).
537 if not Expander_Active then
538 return;
539 end if;
541 -- No check if short circuiting makes check unnecessary
543 if not Check_Needed (P, Access_Check) then
544 return;
545 end if;
547 -- No check if accessing the Offset_To_Top component of a dispatch
548 -- table. They are safe by construction.
550 if Tagged_Type_Expansion
551 and then Present (Etype (P))
552 and then RTU_Loaded (Ada_Tags)
553 and then RTE_Available (RE_Offset_To_Top_Ptr)
554 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
555 then
556 return;
557 end if;
559 -- Otherwise go ahead and install the check
561 Install_Null_Excluding_Check (P);
562 end Apply_Access_Check;
564 -------------------------------
565 -- Apply_Accessibility_Check --
566 -------------------------------
568 procedure Apply_Accessibility_Check
569 (N : Node_Id;
570 Typ : Entity_Id;
571 Insert_Node : Node_Id)
573 Loc : constant Source_Ptr := Sloc (N);
574 Param_Ent : Entity_Id := Param_Entity (N);
575 Param_Level : Node_Id;
576 Type_Level : Node_Id;
578 begin
579 if Ada_Version >= Ada_2012
580 and then not Present (Param_Ent)
581 and then Is_Entity_Name (N)
582 and then Ekind_In (Entity (N), E_Constant, E_Variable)
583 and then Present (Effective_Extra_Accessibility (Entity (N)))
584 then
585 Param_Ent := Entity (N);
586 while Present (Renamed_Object (Param_Ent)) loop
588 -- Renamed_Object must return an Entity_Name here
589 -- because of preceding "Present (E_E_A (...))" test.
591 Param_Ent := Entity (Renamed_Object (Param_Ent));
592 end loop;
593 end if;
595 if Inside_A_Generic then
596 return;
598 -- Only apply the run-time check if the access parameter has an
599 -- associated extra access level parameter and when the level of the
600 -- type is less deep than the level of the access parameter, and
601 -- accessibility checks are not suppressed.
603 elsif Present (Param_Ent)
604 and then Present (Extra_Accessibility (Param_Ent))
605 and then UI_Gt (Object_Access_Level (N),
606 Deepest_Type_Access_Level (Typ))
607 and then not Accessibility_Checks_Suppressed (Param_Ent)
608 and then not Accessibility_Checks_Suppressed (Typ)
609 then
610 Param_Level :=
611 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
613 Type_Level :=
614 Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
616 -- Raise Program_Error if the accessibility level of the access
617 -- parameter is deeper than the level of the target access type.
619 Insert_Action (Insert_Node,
620 Make_Raise_Program_Error (Loc,
621 Condition =>
622 Make_Op_Gt (Loc,
623 Left_Opnd => Param_Level,
624 Right_Opnd => Type_Level),
625 Reason => PE_Accessibility_Check_Failed));
627 Analyze_And_Resolve (N);
628 end if;
629 end Apply_Accessibility_Check;
631 --------------------------------
632 -- Apply_Address_Clause_Check --
633 --------------------------------
635 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
636 pragma Assert (Nkind (N) = N_Freeze_Entity);
638 AC : constant Node_Id := Address_Clause (E);
639 Loc : constant Source_Ptr := Sloc (AC);
640 Typ : constant Entity_Id := Etype (E);
642 Expr : Node_Id;
643 -- Address expression (not necessarily the same as Aexp, for example
644 -- when Aexp is a reference to a constant, in which case Expr gets
645 -- reset to reference the value expression of the constant).
647 begin
648 -- See if alignment check needed. Note that we never need a check if the
649 -- maximum alignment is one, since the check will always succeed.
651 -- Note: we do not check for checks suppressed here, since that check
652 -- was done in Sem_Ch13 when the address clause was processed. We are
653 -- only called if checks were not suppressed. The reason for this is
654 -- that we have to delay the call to Apply_Alignment_Check till freeze
655 -- time (so that all types etc are elaborated), but we have to check
656 -- the status of check suppressing at the point of the address clause.
658 if No (AC)
659 or else not Check_Address_Alignment (AC)
660 or else Maximum_Alignment = 1
661 then
662 return;
663 end if;
665 -- Obtain expression from address clause
667 Expr := Address_Value (Expression (AC));
669 -- See if we know that Expr has an acceptable value at compile time. If
670 -- it hasn't or we don't know, we defer issuing the warning until the
671 -- end of the compilation to take into account back end annotations.
673 if Compile_Time_Known_Value (Expr)
674 and then (Known_Alignment (E) or else Known_Alignment (Typ))
675 then
676 declare
677 AL : Uint := Alignment (Typ);
679 begin
680 -- The object alignment might be more restrictive than the type
681 -- alignment.
683 if Known_Alignment (E) then
684 AL := Alignment (E);
685 end if;
687 if Expr_Value (Expr) mod AL = 0 then
688 return;
689 end if;
690 end;
692 -- If the expression has the form X'Address, then we can find out if the
693 -- object X has an alignment that is compatible with the object E. If it
694 -- hasn't or we don't know, we defer issuing the warning until the end
695 -- of the compilation to take into account back end annotations.
697 elsif Nkind (Expr) = N_Attribute_Reference
698 and then Attribute_Name (Expr) = Name_Address
699 and then
700 Has_Compatible_Alignment (E, Prefix (Expr), False) = Known_Compatible
701 then
702 return;
703 end if;
705 -- Here we do not know if the value is acceptable. Strictly we don't
706 -- have to do anything, since if the alignment is bad, we have an
707 -- erroneous program. However we are allowed to check for erroneous
708 -- conditions and we decide to do this by default if the check is not
709 -- suppressed.
711 -- However, don't do the check if elaboration code is unwanted
713 if Restriction_Active (No_Elaboration_Code) then
714 return;
716 -- Generate a check to raise PE if alignment may be inappropriate
718 else
719 -- If the original expression is a non-static constant, use the name
720 -- of the constant itself rather than duplicating its initialization
721 -- expression, which was extracted above.
723 -- Note: Expr is empty if the address-clause is applied to in-mode
724 -- actuals (allowed by 13.1(22)).
726 if not Present (Expr)
727 or else
728 (Is_Entity_Name (Expression (AC))
729 and then Ekind (Entity (Expression (AC))) = E_Constant
730 and then Nkind (Parent (Entity (Expression (AC)))) =
731 N_Object_Declaration)
732 then
733 Expr := New_Copy_Tree (Expression (AC));
734 else
735 Remove_Side_Effects (Expr);
736 end if;
738 if No (Actions (N)) then
739 Set_Actions (N, New_List);
740 end if;
742 Prepend_To (Actions (N),
743 Make_Raise_Program_Error (Loc,
744 Condition =>
745 Make_Op_Ne (Loc,
746 Left_Opnd =>
747 Make_Op_Mod (Loc,
748 Left_Opnd =>
749 Unchecked_Convert_To
750 (RTE (RE_Integer_Address), Expr),
751 Right_Opnd =>
752 Make_Attribute_Reference (Loc,
753 Prefix => New_Occurrence_Of (E, Loc),
754 Attribute_Name => Name_Alignment)),
755 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
756 Reason => PE_Misaligned_Address_Value));
758 Warning_Msg := No_Error_Msg;
759 Analyze (First (Actions (N)), Suppress => All_Checks);
761 -- If the above raise action generated a warning message (for example
762 -- from Warn_On_Non_Local_Exception mode with the active restriction
763 -- No_Exception_Propagation).
765 if Warning_Msg /= No_Error_Msg then
767 -- If the expression has a known at compile time value, then
768 -- once we know the alignment of the type, we can check if the
769 -- exception will be raised or not, and if not, we don't need
770 -- the warning so we will kill the warning later on.
772 if Compile_Time_Known_Value (Expr) then
773 Alignment_Warnings.Append
774 ((E => E, A => Expr_Value (Expr), W => Warning_Msg));
776 -- Add explanation of the warning generated by the check
778 else
779 Error_Msg_N
780 ("\address value may be incompatible with alignment of "
781 & "object?X?", AC);
782 end if;
783 end if;
785 return;
786 end if;
788 exception
790 -- If we have some missing run time component in configurable run time
791 -- mode then just skip the check (it is not required in any case).
793 when RE_Not_Available =>
794 return;
795 end Apply_Address_Clause_Check;
797 -------------------------------------
798 -- Apply_Arithmetic_Overflow_Check --
799 -------------------------------------
801 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
802 begin
803 -- Use old routine in almost all cases (the only case we are treating
804 -- specially is the case of a signed integer arithmetic op with the
805 -- overflow checking mode set to MINIMIZED or ELIMINATED).
807 if Overflow_Check_Mode = Strict
808 or else not Is_Signed_Integer_Arithmetic_Op (N)
809 then
810 Apply_Arithmetic_Overflow_Strict (N);
812 -- Otherwise use the new routine for the case of a signed integer
813 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
814 -- mode is MINIMIZED or ELIMINATED.
816 else
817 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
818 end if;
819 end Apply_Arithmetic_Overflow_Check;
821 --------------------------------------
822 -- Apply_Arithmetic_Overflow_Strict --
823 --------------------------------------
825 -- This routine is called only if the type is an integer type, and a
826 -- software arithmetic overflow check may be needed for op (add, subtract,
827 -- or multiply). This check is performed only if Software_Overflow_Checking
828 -- is enabled and Do_Overflow_Check is set. In this case we expand the
829 -- operation into a more complex sequence of tests that ensures that
830 -- overflow is properly caught.
832 -- This is used in CHECKED modes. It is identical to the code for this
833 -- cases before the big overflow earthquake, thus ensuring that in this
834 -- modes we have compatible behavior (and reliability) to what was there
835 -- before. It is also called for types other than signed integers, and if
836 -- the Do_Overflow_Check flag is off.
838 -- Note: we also call this routine if we decide in the MINIMIZED case
839 -- to give up and just generate an overflow check without any fuss.
841 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
842 Loc : constant Source_Ptr := Sloc (N);
843 Typ : constant Entity_Id := Etype (N);
844 Rtyp : constant Entity_Id := Root_Type (Typ);
846 begin
847 -- Nothing to do if Do_Overflow_Check not set or overflow checks
848 -- suppressed.
850 if not Do_Overflow_Check (N) then
851 return;
852 end if;
854 -- An interesting special case. If the arithmetic operation appears as
855 -- the operand of a type conversion:
857 -- type1 (x op y)
859 -- and all the following conditions apply:
861 -- arithmetic operation is for a signed integer type
862 -- target type type1 is a static integer subtype
863 -- range of x and y are both included in the range of type1
864 -- range of x op y is included in the range of type1
865 -- size of type1 is at least twice the result size of op
867 -- then we don't do an overflow check in any case. Instead, we transform
868 -- the operation so that we end up with:
870 -- type1 (type1 (x) op type1 (y))
872 -- This avoids intermediate overflow before the conversion. It is
873 -- explicitly permitted by RM 3.5.4(24):
875 -- For the execution of a predefined operation of a signed integer
876 -- type, the implementation need not raise Constraint_Error if the
877 -- result is outside the base range of the type, so long as the
878 -- correct result is produced.
880 -- It's hard to imagine that any programmer counts on the exception
881 -- being raised in this case, and in any case it's wrong coding to
882 -- have this expectation, given the RM permission. Furthermore, other
883 -- Ada compilers do allow such out of range results.
885 -- Note that we do this transformation even if overflow checking is
886 -- off, since this is precisely about giving the "right" result and
887 -- avoiding the need for an overflow check.
889 -- Note: this circuit is partially redundant with respect to the similar
890 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
891 -- with cases that do not come through here. We still need the following
892 -- processing even with the Exp_Ch4 code in place, since we want to be
893 -- sure not to generate the arithmetic overflow check in these cases
894 -- (Exp_Ch4 would have a hard time removing them once generated).
896 if Is_Signed_Integer_Type (Typ)
897 and then Nkind (Parent (N)) = N_Type_Conversion
898 then
899 Conversion_Optimization : declare
900 Target_Type : constant Entity_Id :=
901 Base_Type (Entity (Subtype_Mark (Parent (N))));
903 Llo, Lhi : Uint;
904 Rlo, Rhi : Uint;
905 LOK, ROK : Boolean;
907 Vlo : Uint;
908 Vhi : Uint;
909 VOK : Boolean;
911 Tlo : Uint;
912 Thi : Uint;
914 begin
915 if Is_Integer_Type (Target_Type)
916 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
917 then
918 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
919 Thi := Expr_Value (Type_High_Bound (Target_Type));
921 Determine_Range
922 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
923 Determine_Range
924 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
926 if (LOK and ROK)
927 and then Tlo <= Llo and then Lhi <= Thi
928 and then Tlo <= Rlo and then Rhi <= Thi
929 then
930 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
932 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
933 Rewrite (Left_Opnd (N),
934 Make_Type_Conversion (Loc,
935 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
936 Expression => Relocate_Node (Left_Opnd (N))));
938 Rewrite (Right_Opnd (N),
939 Make_Type_Conversion (Loc,
940 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
941 Expression => Relocate_Node (Right_Opnd (N))));
943 -- Rewrite the conversion operand so that the original
944 -- node is retained, in order to avoid the warning for
945 -- redundant conversions in Resolve_Type_Conversion.
947 Rewrite (N, Relocate_Node (N));
949 Set_Etype (N, Target_Type);
951 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
952 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
954 -- Given that the target type is twice the size of the
955 -- source type, overflow is now impossible, so we can
956 -- safely kill the overflow check and return.
958 Set_Do_Overflow_Check (N, False);
959 return;
960 end if;
961 end if;
962 end if;
963 end Conversion_Optimization;
964 end if;
966 -- Now see if an overflow check is required
968 declare
969 Siz : constant Int := UI_To_Int (Esize (Rtyp));
970 Dsiz : constant Int := Siz * 2;
971 Opnod : Node_Id;
972 Ctyp : Entity_Id;
973 Opnd : Node_Id;
974 Cent : RE_Id;
976 begin
977 -- Skip check if back end does overflow checks, or the overflow flag
978 -- is not set anyway, or we are not doing code expansion, or the
979 -- parent node is a type conversion whose operand is an arithmetic
980 -- operation on signed integers on which the expander can promote
981 -- later the operands to type Integer (see Expand_N_Type_Conversion).
983 if Backend_Overflow_Checks_On_Target
984 or else not Do_Overflow_Check (N)
985 or else not Expander_Active
986 or else (Present (Parent (N))
987 and then Nkind (Parent (N)) = N_Type_Conversion
988 and then Integer_Promotion_Possible (Parent (N)))
989 then
990 return;
991 end if;
993 -- Otherwise, generate the full general code for front end overflow
994 -- detection, which works by doing arithmetic in a larger type:
996 -- x op y
998 -- is expanded into
1000 -- Typ (Checktyp (x) op Checktyp (y));
1002 -- where Typ is the type of the original expression, and Checktyp is
1003 -- an integer type of sufficient length to hold the largest possible
1004 -- result.
1006 -- If the size of check type exceeds the size of Long_Long_Integer,
1007 -- we use a different approach, expanding to:
1009 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
1011 -- where xxx is Add, Multiply or Subtract as appropriate
1013 -- Find check type if one exists
1015 if Dsiz <= Standard_Integer_Size then
1016 Ctyp := Standard_Integer;
1018 elsif Dsiz <= Standard_Long_Long_Integer_Size then
1019 Ctyp := Standard_Long_Long_Integer;
1021 -- No check type exists, use runtime call
1023 else
1024 if Nkind (N) = N_Op_Add then
1025 Cent := RE_Add_With_Ovflo_Check;
1027 elsif Nkind (N) = N_Op_Multiply then
1028 Cent := RE_Multiply_With_Ovflo_Check;
1030 else
1031 pragma Assert (Nkind (N) = N_Op_Subtract);
1032 Cent := RE_Subtract_With_Ovflo_Check;
1033 end if;
1035 Rewrite (N,
1036 OK_Convert_To (Typ,
1037 Make_Function_Call (Loc,
1038 Name => New_Occurrence_Of (RTE (Cent), Loc),
1039 Parameter_Associations => New_List (
1040 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
1041 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
1043 Analyze_And_Resolve (N, Typ);
1044 return;
1045 end if;
1047 -- If we fall through, we have the case where we do the arithmetic
1048 -- in the next higher type and get the check by conversion. In these
1049 -- cases Ctyp is set to the type to be used as the check type.
1051 Opnod := Relocate_Node (N);
1053 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
1055 Analyze (Opnd);
1056 Set_Etype (Opnd, Ctyp);
1057 Set_Analyzed (Opnd, True);
1058 Set_Left_Opnd (Opnod, Opnd);
1060 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
1062 Analyze (Opnd);
1063 Set_Etype (Opnd, Ctyp);
1064 Set_Analyzed (Opnd, True);
1065 Set_Right_Opnd (Opnod, Opnd);
1067 -- The type of the operation changes to the base type of the check
1068 -- type, and we reset the overflow check indication, since clearly no
1069 -- overflow is possible now that we are using a double length type.
1070 -- We also set the Analyzed flag to avoid a recursive attempt to
1071 -- expand the node.
1073 Set_Etype (Opnod, Base_Type (Ctyp));
1074 Set_Do_Overflow_Check (Opnod, False);
1075 Set_Analyzed (Opnod, True);
1077 -- Now build the outer conversion
1079 Opnd := OK_Convert_To (Typ, Opnod);
1080 Analyze (Opnd);
1081 Set_Etype (Opnd, Typ);
1083 -- In the discrete type case, we directly generate the range check
1084 -- for the outer operand. This range check will implement the
1085 -- required overflow check.
1087 if Is_Discrete_Type (Typ) then
1088 Rewrite (N, Opnd);
1089 Generate_Range_Check
1090 (Expression (N), Typ, CE_Overflow_Check_Failed);
1092 -- For other types, we enable overflow checking on the conversion,
1093 -- after setting the node as analyzed to prevent recursive attempts
1094 -- to expand the conversion node.
1096 else
1097 Set_Analyzed (Opnd, True);
1098 Enable_Overflow_Check (Opnd);
1099 Rewrite (N, Opnd);
1100 end if;
1102 exception
1103 when RE_Not_Available =>
1104 return;
1105 end;
1106 end Apply_Arithmetic_Overflow_Strict;
1108 ----------------------------------------------------
1109 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1110 ----------------------------------------------------
1112 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1113 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
1115 Loc : constant Source_Ptr := Sloc (Op);
1116 P : constant Node_Id := Parent (Op);
1118 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1119 -- Operands and results are of this type when we convert
1121 Result_Type : constant Entity_Id := Etype (Op);
1122 -- Original result type
1124 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1125 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1127 Lo, Hi : Uint;
1128 -- Ranges of values for result
1130 begin
1131 -- Nothing to do if our parent is one of the following:
1133 -- Another signed integer arithmetic op
1134 -- A membership operation
1135 -- A comparison operation
1137 -- In all these cases, we will process at the higher level (and then
1138 -- this node will be processed during the downwards recursion that
1139 -- is part of the processing in Minimize_Eliminate_Overflows).
1141 if Is_Signed_Integer_Arithmetic_Op (P)
1142 or else Nkind (P) in N_Membership_Test
1143 or else Nkind (P) in N_Op_Compare
1145 -- This is also true for an alternative in a case expression
1147 or else Nkind (P) = N_Case_Expression_Alternative
1149 -- This is also true for a range operand in a membership test
1151 or else (Nkind (P) = N_Range
1152 and then Nkind (Parent (P)) in N_Membership_Test)
1153 then
1154 -- If_Expressions and Case_Expressions are treated as arithmetic
1155 -- ops, but if they appear in an assignment or similar contexts
1156 -- there is no overflow check that starts from that parent node,
1157 -- so apply check now.
1159 if Nkind_In (P, N_If_Expression, N_Case_Expression)
1160 and then not Is_Signed_Integer_Arithmetic_Op (Parent (P))
1161 then
1162 null;
1163 else
1164 return;
1165 end if;
1166 end if;
1168 -- Otherwise, we have a top level arithmetic operation node, and this
1169 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1170 -- modes. This is the case where we tell the machinery not to move into
1171 -- Bignum mode at this top level (of course the top level operation
1172 -- will still be in Bignum mode if either of its operands are of type
1173 -- Bignum).
1175 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
1177 -- That call may but does not necessarily change the result type of Op.
1178 -- It is the job of this routine to undo such changes, so that at the
1179 -- top level, we have the proper type. This "undoing" is a point at
1180 -- which a final overflow check may be applied.
1182 -- If the result type was not fiddled we are all set. We go to base
1183 -- types here because things may have been rewritten to generate the
1184 -- base type of the operand types.
1186 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
1187 return;
1189 -- Bignum case
1191 elsif Is_RTE (Etype (Op), RE_Bignum) then
1193 -- We need a sequence that looks like:
1195 -- Rnn : Result_Type;
1197 -- declare
1198 -- M : Mark_Id := SS_Mark;
1199 -- begin
1200 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1201 -- SS_Release (M);
1202 -- end;
1204 -- This block is inserted (using Insert_Actions), and then the node
1205 -- is replaced with a reference to Rnn.
1207 -- If our parent is a conversion node then there is no point in
1208 -- generating a conversion to Result_Type. Instead, we let the parent
1209 -- handle this. Note that this special case is not just about
1210 -- optimization. Consider
1212 -- A,B,C : Integer;
1213 -- ...
1214 -- X := Long_Long_Integer'Base (A * (B ** C));
1216 -- Now the product may fit in Long_Long_Integer but not in Integer.
1217 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1218 -- overflow exception for this intermediate value.
1220 declare
1221 Blk : constant Node_Id := Make_Bignum_Block (Loc);
1222 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1223 RHS : Node_Id;
1225 Rtype : Entity_Id;
1227 begin
1228 RHS := Convert_From_Bignum (Op);
1230 if Nkind (P) /= N_Type_Conversion then
1231 Convert_To_And_Rewrite (Result_Type, RHS);
1232 Rtype := Result_Type;
1234 -- Interesting question, do we need a check on that conversion
1235 -- operation. Answer, not if we know the result is in range.
1236 -- At the moment we are not taking advantage of this. To be
1237 -- looked at later ???
1239 else
1240 Rtype := LLIB;
1241 end if;
1243 Insert_Before
1244 (First (Statements (Handled_Statement_Sequence (Blk))),
1245 Make_Assignment_Statement (Loc,
1246 Name => New_Occurrence_Of (Rnn, Loc),
1247 Expression => RHS));
1249 Insert_Actions (Op, New_List (
1250 Make_Object_Declaration (Loc,
1251 Defining_Identifier => Rnn,
1252 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1253 Blk));
1255 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1256 Analyze_And_Resolve (Op);
1257 end;
1259 -- Here we know the result is Long_Long_Integer'Base, or that it has
1260 -- been rewritten because the parent operation is a conversion. See
1261 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1263 else
1264 pragma Assert
1265 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
1267 -- All we need to do here is to convert the result to the proper
1268 -- result type. As explained above for the Bignum case, we can
1269 -- omit this if our parent is a type conversion.
1271 if Nkind (P) /= N_Type_Conversion then
1272 Convert_To_And_Rewrite (Result_Type, Op);
1273 end if;
1275 Analyze_And_Resolve (Op);
1276 end if;
1277 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
1279 ----------------------------
1280 -- Apply_Constraint_Check --
1281 ----------------------------
1283 procedure Apply_Constraint_Check
1284 (N : Node_Id;
1285 Typ : Entity_Id;
1286 No_Sliding : Boolean := False)
1288 Desig_Typ : Entity_Id;
1290 begin
1291 -- No checks inside a generic (check the instantiations)
1293 if Inside_A_Generic then
1294 return;
1295 end if;
1297 -- Apply required constraint checks
1299 if Is_Scalar_Type (Typ) then
1300 Apply_Scalar_Range_Check (N, Typ);
1302 elsif Is_Array_Type (Typ) then
1304 -- A useful optimization: an aggregate with only an others clause
1305 -- always has the right bounds.
1307 if Nkind (N) = N_Aggregate
1308 and then No (Expressions (N))
1309 and then Nkind
1310 (First (Choices (First (Component_Associations (N)))))
1311 = N_Others_Choice
1312 then
1313 return;
1314 end if;
1316 if Is_Constrained (Typ) then
1317 Apply_Length_Check (N, Typ);
1319 if No_Sliding then
1320 Apply_Range_Check (N, Typ);
1321 end if;
1322 else
1323 Apply_Range_Check (N, Typ);
1324 end if;
1326 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
1327 and then Has_Discriminants (Base_Type (Typ))
1328 and then Is_Constrained (Typ)
1329 then
1330 Apply_Discriminant_Check (N, Typ);
1332 elsif Is_Access_Type (Typ) then
1334 Desig_Typ := Designated_Type (Typ);
1336 -- No checks necessary if expression statically null
1338 if Known_Null (N) then
1339 if Can_Never_Be_Null (Typ) then
1340 Install_Null_Excluding_Check (N);
1341 end if;
1343 -- No sliding possible on access to arrays
1345 elsif Is_Array_Type (Desig_Typ) then
1346 if Is_Constrained (Desig_Typ) then
1347 Apply_Length_Check (N, Typ);
1348 end if;
1350 Apply_Range_Check (N, Typ);
1352 elsif Has_Discriminants (Base_Type (Desig_Typ))
1353 and then Is_Constrained (Desig_Typ)
1354 then
1355 Apply_Discriminant_Check (N, Typ);
1356 end if;
1358 -- Apply the 2005 Null_Excluding check. Note that we do not apply
1359 -- this check if the constraint node is illegal, as shown by having
1360 -- an error posted. This additional guard prevents cascaded errors
1361 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1363 if Can_Never_Be_Null (Typ)
1364 and then not Can_Never_Be_Null (Etype (N))
1365 and then not Error_Posted (N)
1366 then
1367 Install_Null_Excluding_Check (N);
1368 end if;
1369 end if;
1370 end Apply_Constraint_Check;
1372 ------------------------------
1373 -- Apply_Discriminant_Check --
1374 ------------------------------
1376 procedure Apply_Discriminant_Check
1377 (N : Node_Id;
1378 Typ : Entity_Id;
1379 Lhs : Node_Id := Empty)
1381 Loc : constant Source_Ptr := Sloc (N);
1382 Do_Access : constant Boolean := Is_Access_Type (Typ);
1383 S_Typ : Entity_Id := Etype (N);
1384 Cond : Node_Id;
1385 T_Typ : Entity_Id;
1387 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1388 -- A heap object with an indefinite subtype is constrained by its
1389 -- initial value, and assigning to it requires a constraint_check.
1390 -- The target may be an explicit dereference, or a renaming of one.
1392 function Is_Aliased_Unconstrained_Component return Boolean;
1393 -- It is possible for an aliased component to have a nominal
1394 -- unconstrained subtype (through instantiation). If this is a
1395 -- discriminated component assigned in the expansion of an aggregate
1396 -- in an initialization, the check must be suppressed. This unusual
1397 -- situation requires a predicate of its own.
1399 ----------------------------------
1400 -- Denotes_Explicit_Dereference --
1401 ----------------------------------
1403 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1404 begin
1405 return
1406 Nkind (Obj) = N_Explicit_Dereference
1407 or else
1408 (Is_Entity_Name (Obj)
1409 and then Present (Renamed_Object (Entity (Obj)))
1410 and then Nkind (Renamed_Object (Entity (Obj))) =
1411 N_Explicit_Dereference);
1412 end Denotes_Explicit_Dereference;
1414 ----------------------------------------
1415 -- Is_Aliased_Unconstrained_Component --
1416 ----------------------------------------
1418 function Is_Aliased_Unconstrained_Component return Boolean is
1419 Comp : Entity_Id;
1420 Pref : Node_Id;
1422 begin
1423 if Nkind (Lhs) /= N_Selected_Component then
1424 return False;
1425 else
1426 Comp := Entity (Selector_Name (Lhs));
1427 Pref := Prefix (Lhs);
1428 end if;
1430 if Ekind (Comp) /= E_Component
1431 or else not Is_Aliased (Comp)
1432 then
1433 return False;
1434 end if;
1436 return not Comes_From_Source (Pref)
1437 and then In_Instance
1438 and then not Is_Constrained (Etype (Comp));
1439 end Is_Aliased_Unconstrained_Component;
1441 -- Start of processing for Apply_Discriminant_Check
1443 begin
1444 if Do_Access then
1445 T_Typ := Designated_Type (Typ);
1446 else
1447 T_Typ := Typ;
1448 end if;
1450 -- Nothing to do if discriminant checks are suppressed or else no code
1451 -- is to be generated
1453 if not Expander_Active
1454 or else Discriminant_Checks_Suppressed (T_Typ)
1455 then
1456 return;
1457 end if;
1459 -- No discriminant checks necessary for an access when expression is
1460 -- statically Null. This is not only an optimization, it is fundamental
1461 -- because otherwise discriminant checks may be generated in init procs
1462 -- for types containing an access to a not-yet-frozen record, causing a
1463 -- deadly forward reference.
1465 -- Also, if the expression is of an access type whose designated type is
1466 -- incomplete, then the access value must be null and we suppress the
1467 -- check.
1469 if Known_Null (N) then
1470 return;
1472 elsif Is_Access_Type (S_Typ) then
1473 S_Typ := Designated_Type (S_Typ);
1475 if Ekind (S_Typ) = E_Incomplete_Type then
1476 return;
1477 end if;
1478 end if;
1480 -- If an assignment target is present, then we need to generate the
1481 -- actual subtype if the target is a parameter or aliased object with
1482 -- an unconstrained nominal subtype.
1484 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1485 -- subtype to the parameter and dereference cases, since other aliased
1486 -- objects are unconstrained (unless the nominal subtype is explicitly
1487 -- constrained).
1489 if Present (Lhs)
1490 and then (Present (Param_Entity (Lhs))
1491 or else (Ada_Version < Ada_2005
1492 and then not Is_Constrained (T_Typ)
1493 and then Is_Aliased_View (Lhs)
1494 and then not Is_Aliased_Unconstrained_Component)
1495 or else (Ada_Version >= Ada_2005
1496 and then not Is_Constrained (T_Typ)
1497 and then Denotes_Explicit_Dereference (Lhs)
1498 and then Nkind (Original_Node (Lhs)) /=
1499 N_Function_Call))
1500 then
1501 T_Typ := Get_Actual_Subtype (Lhs);
1502 end if;
1504 -- Nothing to do if the type is unconstrained (this is the case where
1505 -- the actual subtype in the RM sense of N is unconstrained and no check
1506 -- is required).
1508 if not Is_Constrained (T_Typ) then
1509 return;
1511 -- Ada 2005: nothing to do if the type is one for which there is a
1512 -- partial view that is constrained.
1514 elsif Ada_Version >= Ada_2005
1515 and then Object_Type_Has_Constrained_Partial_View
1516 (Typ => Base_Type (T_Typ),
1517 Scop => Current_Scope)
1518 then
1519 return;
1520 end if;
1522 -- Nothing to do if the type is an Unchecked_Union
1524 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1525 return;
1526 end if;
1528 -- Suppress checks if the subtypes are the same. The check must be
1529 -- preserved in an assignment to a formal, because the constraint is
1530 -- given by the actual.
1532 if Nkind (Original_Node (N)) /= N_Allocator
1533 and then (No (Lhs)
1534 or else not Is_Entity_Name (Lhs)
1535 or else No (Param_Entity (Lhs)))
1536 then
1537 if (Etype (N) = Typ
1538 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1539 and then not Is_Aliased_View (Lhs)
1540 then
1541 return;
1542 end if;
1544 -- We can also eliminate checks on allocators with a subtype mark that
1545 -- coincides with the context type. The context type may be a subtype
1546 -- without a constraint (common case, a generic actual).
1548 elsif Nkind (Original_Node (N)) = N_Allocator
1549 and then Is_Entity_Name (Expression (Original_Node (N)))
1550 then
1551 declare
1552 Alloc_Typ : constant Entity_Id :=
1553 Entity (Expression (Original_Node (N)));
1555 begin
1556 if Alloc_Typ = T_Typ
1557 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1558 and then Is_Entity_Name (
1559 Subtype_Indication (Parent (T_Typ)))
1560 and then Alloc_Typ = Base_Type (T_Typ))
1562 then
1563 return;
1564 end if;
1565 end;
1566 end if;
1568 -- See if we have a case where the types are both constrained, and all
1569 -- the constraints are constants. In this case, we can do the check
1570 -- successfully at compile time.
1572 -- We skip this check for the case where the node is rewritten as
1573 -- an allocator, because it already carries the context subtype,
1574 -- and extracting the discriminants from the aggregate is messy.
1576 if Is_Constrained (S_Typ)
1577 and then Nkind (Original_Node (N)) /= N_Allocator
1578 then
1579 declare
1580 DconT : Elmt_Id;
1581 Discr : Entity_Id;
1582 DconS : Elmt_Id;
1583 ItemS : Node_Id;
1584 ItemT : Node_Id;
1586 begin
1587 -- S_Typ may not have discriminants in the case where it is a
1588 -- private type completed by a default discriminated type. In that
1589 -- case, we need to get the constraints from the underlying type.
1590 -- If the underlying type is unconstrained (i.e. has no default
1591 -- discriminants) no check is needed.
1593 if Has_Discriminants (S_Typ) then
1594 Discr := First_Discriminant (S_Typ);
1595 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1597 else
1598 Discr := First_Discriminant (Underlying_Type (S_Typ));
1599 DconS :=
1600 First_Elmt
1601 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1603 if No (DconS) then
1604 return;
1605 end if;
1607 -- A further optimization: if T_Typ is derived from S_Typ
1608 -- without imposing a constraint, no check is needed.
1610 if Nkind (Original_Node (Parent (T_Typ))) =
1611 N_Full_Type_Declaration
1612 then
1613 declare
1614 Type_Def : constant Node_Id :=
1615 Type_Definition (Original_Node (Parent (T_Typ)));
1616 begin
1617 if Nkind (Type_Def) = N_Derived_Type_Definition
1618 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1619 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1620 then
1621 return;
1622 end if;
1623 end;
1624 end if;
1625 end if;
1627 -- Constraint may appear in full view of type
1629 if Ekind (T_Typ) = E_Private_Subtype
1630 and then Present (Full_View (T_Typ))
1631 then
1632 DconT :=
1633 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
1634 else
1635 DconT :=
1636 First_Elmt (Discriminant_Constraint (T_Typ));
1637 end if;
1639 while Present (Discr) loop
1640 ItemS := Node (DconS);
1641 ItemT := Node (DconT);
1643 -- For a discriminated component type constrained by the
1644 -- current instance of an enclosing type, there is no
1645 -- applicable discriminant check.
1647 if Nkind (ItemT) = N_Attribute_Reference
1648 and then Is_Access_Type (Etype (ItemT))
1649 and then Is_Entity_Name (Prefix (ItemT))
1650 and then Is_Type (Entity (Prefix (ItemT)))
1651 then
1652 return;
1653 end if;
1655 -- If the expressions for the discriminants are identical
1656 -- and it is side-effect free (for now just an entity),
1657 -- this may be a shared constraint, e.g. from a subtype
1658 -- without a constraint introduced as a generic actual.
1659 -- Examine other discriminants if any.
1661 if ItemS = ItemT
1662 and then Is_Entity_Name (ItemS)
1663 then
1664 null;
1666 elsif not Is_OK_Static_Expression (ItemS)
1667 or else not Is_OK_Static_Expression (ItemT)
1668 then
1669 exit;
1671 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
1672 if Do_Access then -- needs run-time check.
1673 exit;
1674 else
1675 Apply_Compile_Time_Constraint_Error
1676 (N, "incorrect value for discriminant&??",
1677 CE_Discriminant_Check_Failed, Ent => Discr);
1678 return;
1679 end if;
1680 end if;
1682 Next_Elmt (DconS);
1683 Next_Elmt (DconT);
1684 Next_Discriminant (Discr);
1685 end loop;
1687 if No (Discr) then
1688 return;
1689 end if;
1690 end;
1691 end if;
1693 -- Here we need a discriminant check. First build the expression
1694 -- for the comparisons of the discriminants:
1696 -- (n.disc1 /= typ.disc1) or else
1697 -- (n.disc2 /= typ.disc2) or else
1698 -- ...
1699 -- (n.discn /= typ.discn)
1701 Cond := Build_Discriminant_Checks (N, T_Typ);
1703 -- If Lhs is set and is a parameter, then the condition is guarded by:
1704 -- lhs'constrained and then (condition built above)
1706 if Present (Param_Entity (Lhs)) then
1707 Cond :=
1708 Make_And_Then (Loc,
1709 Left_Opnd =>
1710 Make_Attribute_Reference (Loc,
1711 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1712 Attribute_Name => Name_Constrained),
1713 Right_Opnd => Cond);
1714 end if;
1716 if Do_Access then
1717 Cond := Guard_Access (Cond, Loc, N);
1718 end if;
1720 Insert_Action (N,
1721 Make_Raise_Constraint_Error (Loc,
1722 Condition => Cond,
1723 Reason => CE_Discriminant_Check_Failed));
1724 end Apply_Discriminant_Check;
1726 -------------------------
1727 -- Apply_Divide_Checks --
1728 -------------------------
1730 procedure Apply_Divide_Checks (N : Node_Id) is
1731 Loc : constant Source_Ptr := Sloc (N);
1732 Typ : constant Entity_Id := Etype (N);
1733 Left : constant Node_Id := Left_Opnd (N);
1734 Right : constant Node_Id := Right_Opnd (N);
1736 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1737 -- Current overflow checking mode
1739 LLB : Uint;
1740 Llo : Uint;
1741 Lhi : Uint;
1742 LOK : Boolean;
1743 Rlo : Uint;
1744 Rhi : Uint;
1745 ROK : Boolean;
1747 pragma Warnings (Off, Lhi);
1748 -- Don't actually use this value
1750 begin
1751 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1752 -- operating on signed integer types, then the only thing this routine
1753 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1754 -- procedure will (possibly later on during recursive downward calls),
1755 -- ensure that any needed overflow/division checks are properly applied.
1757 if Mode in Minimized_Or_Eliminated
1758 and then Is_Signed_Integer_Type (Typ)
1759 then
1760 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1761 return;
1762 end if;
1764 -- Proceed here in SUPPRESSED or CHECKED modes
1766 if Expander_Active
1767 and then not Backend_Divide_Checks_On_Target
1768 and then Check_Needed (Right, Division_Check)
1769 then
1770 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
1772 -- Deal with division check
1774 if Do_Division_Check (N)
1775 and then not Division_Checks_Suppressed (Typ)
1776 then
1777 Apply_Division_Check (N, Rlo, Rhi, ROK);
1778 end if;
1780 -- Deal with overflow check
1782 if Do_Overflow_Check (N)
1783 and then not Overflow_Checks_Suppressed (Etype (N))
1784 then
1785 Set_Do_Overflow_Check (N, False);
1787 -- Test for extremely annoying case of xxx'First divided by -1
1788 -- for division of signed integer types (only overflow case).
1790 if Nkind (N) = N_Op_Divide
1791 and then Is_Signed_Integer_Type (Typ)
1792 then
1793 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
1794 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1796 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1797 and then
1798 ((not LOK) or else (Llo = LLB))
1799 then
1800 Insert_Action (N,
1801 Make_Raise_Constraint_Error (Loc,
1802 Condition =>
1803 Make_And_Then (Loc,
1804 Left_Opnd =>
1805 Make_Op_Eq (Loc,
1806 Left_Opnd =>
1807 Duplicate_Subexpr_Move_Checks (Left),
1808 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1810 Right_Opnd =>
1811 Make_Op_Eq (Loc,
1812 Left_Opnd => Duplicate_Subexpr (Right),
1813 Right_Opnd => Make_Integer_Literal (Loc, -1))),
1815 Reason => CE_Overflow_Check_Failed));
1816 end if;
1817 end if;
1818 end if;
1819 end if;
1820 end Apply_Divide_Checks;
1822 --------------------------
1823 -- Apply_Division_Check --
1824 --------------------------
1826 procedure Apply_Division_Check
1827 (N : Node_Id;
1828 Rlo : Uint;
1829 Rhi : Uint;
1830 ROK : Boolean)
1832 pragma Assert (Do_Division_Check (N));
1834 Loc : constant Source_Ptr := Sloc (N);
1835 Right : constant Node_Id := Right_Opnd (N);
1837 begin
1838 if Expander_Active
1839 and then not Backend_Divide_Checks_On_Target
1840 and then Check_Needed (Right, Division_Check)
1841 then
1842 -- See if division by zero possible, and if so generate test. This
1843 -- part of the test is not controlled by the -gnato switch, since
1844 -- it is a Division_Check and not an Overflow_Check.
1846 if Do_Division_Check (N) then
1847 Set_Do_Division_Check (N, False);
1849 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1850 Insert_Action (N,
1851 Make_Raise_Constraint_Error (Loc,
1852 Condition =>
1853 Make_Op_Eq (Loc,
1854 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1855 Right_Opnd => Make_Integer_Literal (Loc, 0)),
1856 Reason => CE_Divide_By_Zero));
1857 end if;
1858 end if;
1859 end if;
1860 end Apply_Division_Check;
1862 ----------------------------------
1863 -- Apply_Float_Conversion_Check --
1864 ----------------------------------
1866 -- Let F and I be the source and target types of the conversion. The RM
1867 -- specifies that a floating-point value X is rounded to the nearest
1868 -- integer, with halfway cases being rounded away from zero. The rounded
1869 -- value of X is checked against I'Range.
1871 -- The catch in the above paragraph is that there is no good way to know
1872 -- whether the round-to-integer operation resulted in overflow. A remedy is
1873 -- to perform a range check in the floating-point domain instead, however:
1875 -- (1) The bounds may not be known at compile time
1876 -- (2) The check must take into account rounding or truncation.
1877 -- (3) The range of type I may not be exactly representable in F.
1878 -- (4) For the rounding case, The end-points I'First - 0.5 and
1879 -- I'Last + 0.5 may or may not be in range, depending on the
1880 -- sign of I'First and I'Last.
1881 -- (5) X may be a NaN, which will fail any comparison
1883 -- The following steps correctly convert X with rounding:
1885 -- (1) If either I'First or I'Last is not known at compile time, use
1886 -- I'Base instead of I in the next three steps and perform a
1887 -- regular range check against I'Range after conversion.
1888 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1889 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1890 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1891 -- In other words, take one of the closest floating-point numbers
1892 -- (which is an integer value) to I'First, and see if it is in
1893 -- range or not.
1894 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1895 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1896 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1897 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1898 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1900 -- For the truncating case, replace steps (2) and (3) as follows:
1901 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1902 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1903 -- Lo_OK be True.
1904 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1905 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1906 -- Hi_OK be True.
1908 procedure Apply_Float_Conversion_Check
1909 (Ck_Node : Node_Id;
1910 Target_Typ : Entity_Id)
1912 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1913 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1914 Loc : constant Source_Ptr := Sloc (Ck_Node);
1915 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
1916 Target_Base : constant Entity_Id :=
1917 Implementation_Base_Type (Target_Typ);
1919 Par : constant Node_Id := Parent (Ck_Node);
1920 pragma Assert (Nkind (Par) = N_Type_Conversion);
1921 -- Parent of check node, must be a type conversion
1923 Truncate : constant Boolean := Float_Truncate (Par);
1924 Max_Bound : constant Uint :=
1925 UI_Expon
1926 (Machine_Radix_Value (Expr_Type),
1927 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
1929 -- Largest bound, so bound plus or minus half is a machine number of F
1931 Ifirst, Ilast : Uint;
1932 -- Bounds of integer type
1934 Lo, Hi : Ureal;
1935 -- Bounds to check in floating-point domain
1937 Lo_OK, Hi_OK : Boolean;
1938 -- True iff Lo resp. Hi belongs to I'Range
1940 Lo_Chk, Hi_Chk : Node_Id;
1941 -- Expressions that are False iff check fails
1943 Reason : RT_Exception_Code;
1945 begin
1946 -- We do not need checks if we are not generating code (i.e. the full
1947 -- expander is not active). In SPARK mode, we specifically don't want
1948 -- the frontend to expand these checks, which are dealt with directly
1949 -- in the formal verification backend.
1951 if not Expander_Active then
1952 return;
1953 end if;
1955 if not Compile_Time_Known_Value (LB)
1956 or not Compile_Time_Known_Value (HB)
1957 then
1958 declare
1959 -- First check that the value falls in the range of the base type,
1960 -- to prevent overflow during conversion and then perform a
1961 -- regular range check against the (dynamic) bounds.
1963 pragma Assert (Target_Base /= Target_Typ);
1965 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
1967 begin
1968 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
1969 Set_Etype (Temp, Target_Base);
1971 Insert_Action (Parent (Par),
1972 Make_Object_Declaration (Loc,
1973 Defining_Identifier => Temp,
1974 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
1975 Expression => New_Copy_Tree (Par)),
1976 Suppress => All_Checks);
1978 Insert_Action (Par,
1979 Make_Raise_Constraint_Error (Loc,
1980 Condition =>
1981 Make_Not_In (Loc,
1982 Left_Opnd => New_Occurrence_Of (Temp, Loc),
1983 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
1984 Reason => CE_Range_Check_Failed));
1985 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
1987 return;
1988 end;
1989 end if;
1991 -- Get the (static) bounds of the target type
1993 Ifirst := Expr_Value (LB);
1994 Ilast := Expr_Value (HB);
1996 -- A simple optimization: if the expression is a universal literal,
1997 -- we can do the comparison with the bounds and the conversion to
1998 -- an integer type statically. The range checks are unchanged.
2000 if Nkind (Ck_Node) = N_Real_Literal
2001 and then Etype (Ck_Node) = Universal_Real
2002 and then Is_Integer_Type (Target_Typ)
2003 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
2004 then
2005 declare
2006 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
2008 begin
2009 if Int_Val <= Ilast and then Int_Val >= Ifirst then
2011 -- Conversion is safe
2013 Rewrite (Parent (Ck_Node),
2014 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
2015 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
2016 return;
2017 end if;
2018 end;
2019 end if;
2021 -- Check against lower bound
2023 if Truncate and then Ifirst > 0 then
2024 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2025 Lo_OK := False;
2027 elsif Truncate then
2028 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2029 Lo_OK := True;
2031 elsif abs (Ifirst) < Max_Bound then
2032 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2033 Lo_OK := (Ifirst > 0);
2035 else
2036 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
2037 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2038 end if;
2040 if Lo_OK then
2042 -- Lo_Chk := (X >= Lo)
2044 Lo_Chk := Make_Op_Ge (Loc,
2045 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2046 Right_Opnd => Make_Real_Literal (Loc, Lo));
2048 else
2049 -- Lo_Chk := (X > Lo)
2051 Lo_Chk := Make_Op_Gt (Loc,
2052 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2053 Right_Opnd => Make_Real_Literal (Loc, Lo));
2054 end if;
2056 -- Check against higher bound
2058 if Truncate and then Ilast < 0 then
2059 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
2060 Hi_OK := False;
2062 elsif Truncate then
2063 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2064 Hi_OK := True;
2066 elsif abs (Ilast) < Max_Bound then
2067 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2068 Hi_OK := (Ilast < 0);
2069 else
2070 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2071 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2072 end if;
2074 if Hi_OK then
2076 -- Hi_Chk := (X <= Hi)
2078 Hi_Chk := Make_Op_Le (Loc,
2079 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2080 Right_Opnd => Make_Real_Literal (Loc, Hi));
2082 else
2083 -- Hi_Chk := (X < Hi)
2085 Hi_Chk := Make_Op_Lt (Loc,
2086 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2087 Right_Opnd => Make_Real_Literal (Loc, Hi));
2088 end if;
2090 -- If the bounds of the target type are the same as those of the base
2091 -- type, the check is an overflow check as a range check is not
2092 -- performed in these cases.
2094 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2095 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2096 then
2097 Reason := CE_Overflow_Check_Failed;
2098 else
2099 Reason := CE_Range_Check_Failed;
2100 end if;
2102 -- Raise CE if either conditions does not hold
2104 Insert_Action (Ck_Node,
2105 Make_Raise_Constraint_Error (Loc,
2106 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
2107 Reason => Reason));
2108 end Apply_Float_Conversion_Check;
2110 ------------------------
2111 -- Apply_Length_Check --
2112 ------------------------
2114 procedure Apply_Length_Check
2115 (Ck_Node : Node_Id;
2116 Target_Typ : Entity_Id;
2117 Source_Typ : Entity_Id := Empty)
2119 begin
2120 Apply_Selected_Length_Checks
2121 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2122 end Apply_Length_Check;
2124 -------------------------------------
2125 -- Apply_Parameter_Aliasing_Checks --
2126 -------------------------------------
2128 procedure Apply_Parameter_Aliasing_Checks
2129 (Call : Node_Id;
2130 Subp : Entity_Id)
2132 Loc : constant Source_Ptr := Sloc (Call);
2134 function May_Cause_Aliasing
2135 (Formal_1 : Entity_Id;
2136 Formal_2 : Entity_Id) return Boolean;
2137 -- Determine whether two formal parameters can alias each other
2138 -- depending on their modes.
2140 function Original_Actual (N : Node_Id) return Node_Id;
2141 -- The expander may replace an actual with a temporary for the sake of
2142 -- side effect removal. The temporary may hide a potential aliasing as
2143 -- it does not share the address of the actual. This routine attempts
2144 -- to retrieve the original actual.
2146 procedure Overlap_Check
2147 (Actual_1 : Node_Id;
2148 Actual_2 : Node_Id;
2149 Formal_1 : Entity_Id;
2150 Formal_2 : Entity_Id;
2151 Check : in out Node_Id);
2152 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2153 -- If detailed exception messages are enabled, the check is augmented to
2154 -- provide information about the names of the corresponding formals. See
2155 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2156 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2157 -- Check contains all and-ed simple tests generated so far or remains
2158 -- unchanged in the case of detailed exception messaged.
2160 ------------------------
2161 -- May_Cause_Aliasing --
2162 ------------------------
2164 function May_Cause_Aliasing
2165 (Formal_1 : Entity_Id;
2166 Formal_2 : Entity_Id) return Boolean
2168 begin
2169 -- The following combination cannot lead to aliasing
2171 -- Formal 1 Formal 2
2172 -- IN IN
2174 if Ekind (Formal_1) = E_In_Parameter
2175 and then
2176 Ekind (Formal_2) = E_In_Parameter
2177 then
2178 return False;
2180 -- The following combinations may lead to aliasing
2182 -- Formal 1 Formal 2
2183 -- IN OUT
2184 -- IN IN OUT
2185 -- OUT IN
2186 -- OUT IN OUT
2187 -- OUT OUT
2189 else
2190 return True;
2191 end if;
2192 end May_Cause_Aliasing;
2194 ---------------------
2195 -- Original_Actual --
2196 ---------------------
2198 function Original_Actual (N : Node_Id) return Node_Id is
2199 begin
2200 if Nkind (N) = N_Type_Conversion then
2201 return Expression (N);
2203 -- The expander created a temporary to capture the result of a type
2204 -- conversion where the expression is the real actual.
2206 elsif Nkind (N) = N_Identifier
2207 and then Present (Original_Node (N))
2208 and then Nkind (Original_Node (N)) = N_Type_Conversion
2209 then
2210 return Expression (Original_Node (N));
2211 end if;
2213 return N;
2214 end Original_Actual;
2216 -------------------
2217 -- Overlap_Check --
2218 -------------------
2220 procedure Overlap_Check
2221 (Actual_1 : Node_Id;
2222 Actual_2 : Node_Id;
2223 Formal_1 : Entity_Id;
2224 Formal_2 : Entity_Id;
2225 Check : in out Node_Id)
2227 Cond : Node_Id;
2228 ID_Casing : constant Casing_Type :=
2229 Identifier_Casing (Source_Index (Current_Sem_Unit));
2231 begin
2232 -- Generate:
2233 -- Actual_1'Overlaps_Storage (Actual_2)
2235 Cond :=
2236 Make_Attribute_Reference (Loc,
2237 Prefix => New_Copy_Tree (Original_Actual (Actual_1)),
2238 Attribute_Name => Name_Overlaps_Storage,
2239 Expressions =>
2240 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2242 -- Generate the following check when detailed exception messages are
2243 -- enabled:
2245 -- if Actual_1'Overlaps_Storage (Actual_2) then
2246 -- raise Program_Error with <detailed message>;
2247 -- end if;
2249 if Exception_Extra_Info then
2250 Start_String;
2252 -- Do not generate location information for internal calls
2254 if Comes_From_Source (Call) then
2255 Store_String_Chars (Build_Location_String (Loc));
2256 Store_String_Char (' ');
2257 end if;
2259 Store_String_Chars ("aliased parameters, actuals for """);
2261 Get_Name_String (Chars (Formal_1));
2262 Set_Casing (ID_Casing);
2263 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2265 Store_String_Chars (""" and """);
2267 Get_Name_String (Chars (Formal_2));
2268 Set_Casing (ID_Casing);
2269 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2271 Store_String_Chars (""" overlap");
2273 Insert_Action (Call,
2274 Make_If_Statement (Loc,
2275 Condition => Cond,
2276 Then_Statements => New_List (
2277 Make_Raise_Statement (Loc,
2278 Name =>
2279 New_Occurrence_Of (Standard_Program_Error, Loc),
2280 Expression => Make_String_Literal (Loc, End_String)))));
2282 -- Create a sequence of overlapping checks by and-ing them all
2283 -- together.
2285 else
2286 if No (Check) then
2287 Check := Cond;
2288 else
2289 Check :=
2290 Make_And_Then (Loc,
2291 Left_Opnd => Check,
2292 Right_Opnd => Cond);
2293 end if;
2294 end if;
2295 end Overlap_Check;
2297 -- Local variables
2299 Actual_1 : Node_Id;
2300 Actual_2 : Node_Id;
2301 Check : Node_Id;
2302 Formal_1 : Entity_Id;
2303 Formal_2 : Entity_Id;
2304 Orig_Act_1 : Node_Id;
2305 Orig_Act_2 : Node_Id;
2307 -- Start of processing for Apply_Parameter_Aliasing_Checks
2309 begin
2310 Check := Empty;
2312 Actual_1 := First_Actual (Call);
2313 Formal_1 := First_Formal (Subp);
2314 while Present (Actual_1) and then Present (Formal_1) loop
2315 Orig_Act_1 := Original_Actual (Actual_1);
2317 -- Ensure that the actual is an object that is not passed by value.
2318 -- Elementary types are always passed by value, therefore actuals of
2319 -- such types cannot lead to aliasing. An aggregate is an object in
2320 -- Ada 2012, but an actual that is an aggregate cannot overlap with
2321 -- another actual. A type that is By_Reference (such as an array of
2322 -- controlled types) is not subject to the check because any update
2323 -- will be done in place and a subsequent read will always see the
2324 -- correct value, see RM 6.2 (12/3).
2326 if Nkind (Orig_Act_1) = N_Aggregate
2327 or else (Nkind (Orig_Act_1) = N_Qualified_Expression
2328 and then Nkind (Expression (Orig_Act_1)) = N_Aggregate)
2329 then
2330 null;
2332 elsif Is_Object_Reference (Orig_Act_1)
2333 and then not Is_Elementary_Type (Etype (Orig_Act_1))
2334 and then not Is_By_Reference_Type (Etype (Orig_Act_1))
2335 then
2336 Actual_2 := Next_Actual (Actual_1);
2337 Formal_2 := Next_Formal (Formal_1);
2338 while Present (Actual_2) and then Present (Formal_2) loop
2339 Orig_Act_2 := Original_Actual (Actual_2);
2341 -- The other actual we are testing against must also denote
2342 -- a non pass-by-value object. Generate the check only when
2343 -- the mode of the two formals may lead to aliasing.
2345 if Is_Object_Reference (Orig_Act_2)
2346 and then not Is_Elementary_Type (Etype (Orig_Act_2))
2347 and then May_Cause_Aliasing (Formal_1, Formal_2)
2348 then
2349 Overlap_Check
2350 (Actual_1 => Actual_1,
2351 Actual_2 => Actual_2,
2352 Formal_1 => Formal_1,
2353 Formal_2 => Formal_2,
2354 Check => Check);
2355 end if;
2357 Next_Actual (Actual_2);
2358 Next_Formal (Formal_2);
2359 end loop;
2360 end if;
2362 Next_Actual (Actual_1);
2363 Next_Formal (Formal_1);
2364 end loop;
2366 -- Place a simple check right before the call
2368 if Present (Check) and then not Exception_Extra_Info then
2369 Insert_Action (Call,
2370 Make_Raise_Program_Error (Loc,
2371 Condition => Check,
2372 Reason => PE_Aliased_Parameters));
2373 end if;
2374 end Apply_Parameter_Aliasing_Checks;
2376 -------------------------------------
2377 -- Apply_Parameter_Validity_Checks --
2378 -------------------------------------
2380 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2381 Subp_Decl : Node_Id;
2383 procedure Add_Validity_Check
2384 (Formal : Entity_Id;
2385 Prag_Nam : Name_Id;
2386 For_Result : Boolean := False);
2387 -- Add a single 'Valid[_Scalar] check which verifies the initialization
2388 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
2389 -- Set flag For_Result when to verify the result of a function.
2391 ------------------------
2392 -- Add_Validity_Check --
2393 ------------------------
2395 procedure Add_Validity_Check
2396 (Formal : Entity_Id;
2397 Prag_Nam : Name_Id;
2398 For_Result : Boolean := False)
2400 procedure Build_Pre_Post_Condition (Expr : Node_Id);
2401 -- Create a pre/postcondition pragma that tests expression Expr
2403 ------------------------------
2404 -- Build_Pre_Post_Condition --
2405 ------------------------------
2407 procedure Build_Pre_Post_Condition (Expr : Node_Id) is
2408 Loc : constant Source_Ptr := Sloc (Subp);
2409 Decls : List_Id;
2410 Prag : Node_Id;
2412 begin
2413 Prag :=
2414 Make_Pragma (Loc,
2415 Pragma_Identifier =>
2416 Make_Identifier (Loc, Prag_Nam),
2417 Pragma_Argument_Associations => New_List (
2418 Make_Pragma_Argument_Association (Loc,
2419 Chars => Name_Check,
2420 Expression => Expr)));
2422 -- Add a message unless exception messages are suppressed
2424 if not Exception_Locations_Suppressed then
2425 Append_To (Pragma_Argument_Associations (Prag),
2426 Make_Pragma_Argument_Association (Loc,
2427 Chars => Name_Message,
2428 Expression =>
2429 Make_String_Literal (Loc,
2430 Strval => "failed "
2431 & Get_Name_String (Prag_Nam)
2432 & " from "
2433 & Build_Location_String (Loc))));
2434 end if;
2436 -- Insert the pragma in the tree
2438 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2439 Add_Global_Declaration (Prag);
2440 Analyze (Prag);
2442 -- PPC pragmas associated with subprogram bodies must be inserted
2443 -- in the declarative part of the body.
2445 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2446 Decls := Declarations (Subp_Decl);
2448 if No (Decls) then
2449 Decls := New_List;
2450 Set_Declarations (Subp_Decl, Decls);
2451 end if;
2453 Prepend_To (Decls, Prag);
2454 Analyze (Prag);
2456 -- For subprogram declarations insert the PPC pragma right after
2457 -- the declarative node.
2459 else
2460 Insert_After_And_Analyze (Subp_Decl, Prag);
2461 end if;
2462 end Build_Pre_Post_Condition;
2464 -- Local variables
2466 Loc : constant Source_Ptr := Sloc (Subp);
2467 Typ : constant Entity_Id := Etype (Formal);
2468 Check : Node_Id;
2469 Nam : Name_Id;
2471 -- Start of processing for Add_Validity_Check
2473 begin
2474 -- For scalars, generate 'Valid test
2476 if Is_Scalar_Type (Typ) then
2477 Nam := Name_Valid;
2479 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2481 elsif Scalar_Part_Present (Typ) then
2482 Nam := Name_Valid_Scalars;
2484 -- No test needed for other cases (no scalars to test)
2486 else
2487 return;
2488 end if;
2490 -- Step 1: Create the expression to verify the validity of the
2491 -- context.
2493 Check := New_Occurrence_Of (Formal, Loc);
2495 -- When processing a function result, use 'Result. Generate
2496 -- Context'Result
2498 if For_Result then
2499 Check :=
2500 Make_Attribute_Reference (Loc,
2501 Prefix => Check,
2502 Attribute_Name => Name_Result);
2503 end if;
2505 -- Generate:
2506 -- Context['Result]'Valid[_Scalars]
2508 Check :=
2509 Make_Attribute_Reference (Loc,
2510 Prefix => Check,
2511 Attribute_Name => Nam);
2513 -- Step 2: Create a pre or post condition pragma
2515 Build_Pre_Post_Condition (Check);
2516 end Add_Validity_Check;
2518 -- Local variables
2520 Formal : Entity_Id;
2521 Subp_Spec : Node_Id;
2523 -- Start of processing for Apply_Parameter_Validity_Checks
2525 begin
2526 -- Extract the subprogram specification and declaration nodes
2528 Subp_Spec := Parent (Subp);
2530 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2531 Subp_Spec := Parent (Subp_Spec);
2532 end if;
2534 Subp_Decl := Parent (Subp_Spec);
2536 if not Comes_From_Source (Subp)
2538 -- Do not process formal subprograms because the corresponding actual
2539 -- will receive the proper checks when the instance is analyzed.
2541 or else Is_Formal_Subprogram (Subp)
2543 -- Do not process imported subprograms since pre and postconditions
2544 -- are never verified on routines coming from a different language.
2546 or else Is_Imported (Subp)
2547 or else Is_Intrinsic_Subprogram (Subp)
2549 -- The PPC pragmas generated by this routine do not correspond to
2550 -- source aspects, therefore they cannot be applied to abstract
2551 -- subprograms.
2553 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
2555 -- Do not consider subprogram renaminds because the renamed entity
2556 -- already has the proper PPC pragmas.
2558 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2560 -- Do not process null procedures because there is no benefit of
2561 -- adding the checks to a no action routine.
2563 or else (Nkind (Subp_Spec) = N_Procedure_Specification
2564 and then Null_Present (Subp_Spec))
2565 then
2566 return;
2567 end if;
2569 -- Inspect all the formals applying aliasing and scalar initialization
2570 -- checks where applicable.
2572 Formal := First_Formal (Subp);
2573 while Present (Formal) loop
2575 -- Generate the following scalar initialization checks for each
2576 -- formal parameter:
2578 -- mode IN - Pre => Formal'Valid[_Scalars]
2579 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2580 -- mode OUT - Post => Formal'Valid[_Scalars]
2582 if Check_Validity_Of_Parameters then
2583 if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2584 Add_Validity_Check (Formal, Name_Precondition, False);
2585 end if;
2587 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2588 Add_Validity_Check (Formal, Name_Postcondition, False);
2589 end if;
2590 end if;
2592 Next_Formal (Formal);
2593 end loop;
2595 -- Generate following scalar initialization check for function result:
2597 -- Post => Subp'Result'Valid[_Scalars]
2599 if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
2600 Add_Validity_Check (Subp, Name_Postcondition, True);
2601 end if;
2602 end Apply_Parameter_Validity_Checks;
2604 ---------------------------
2605 -- Apply_Predicate_Check --
2606 ---------------------------
2608 procedure Apply_Predicate_Check (N : Node_Id; Typ : Entity_Id) is
2609 S : Entity_Id;
2611 begin
2612 if Predicate_Checks_Suppressed (Empty) then
2613 return;
2615 elsif Predicates_Ignored (Typ) then
2616 return;
2618 elsif Present (Predicate_Function (Typ)) then
2619 S := Current_Scope;
2620 while Present (S) and then not Is_Subprogram (S) loop
2621 S := Scope (S);
2622 end loop;
2624 -- A predicate check does not apply within internally generated
2625 -- subprograms, such as TSS functions.
2627 if Within_Internal_Subprogram then
2628 return;
2630 -- If the check appears within the predicate function itself, it
2631 -- means that the user specified a check whose formal is the
2632 -- predicated subtype itself, rather than some covering type. This
2633 -- is likely to be a common error, and thus deserves a warning.
2635 elsif Present (S) and then S = Predicate_Function (Typ) then
2636 Error_Msg_N
2637 ("predicate check includes a function call that "
2638 & "requires a predicate check??", Parent (N));
2639 Error_Msg_N
2640 ("\this will result in infinite recursion??", Parent (N));
2641 Insert_Action (N,
2642 Make_Raise_Storage_Error (Sloc (N),
2643 Reason => SE_Infinite_Recursion));
2645 -- Here for normal case of predicate active
2647 else
2648 -- If the type has a static predicate and the expression is known
2649 -- at compile time, see if the expression satisfies the predicate.
2651 Check_Expression_Against_Static_Predicate (N, Typ);
2653 if not Expander_Active then
2654 return;
2655 end if;
2657 -- For an entity of the type, generate a call to the predicate
2658 -- function, unless its type is an actual subtype, which is not
2659 -- visible outside of the enclosing subprogram.
2661 if Is_Entity_Name (N)
2662 and then not Is_Actual_Subtype (Typ)
2663 then
2664 Insert_Action (N,
2665 Make_Predicate_Check
2666 (Typ, New_Occurrence_Of (Entity (N), Sloc (N))));
2668 -- If the expression is not an entity it may have side effects,
2669 -- and the following call will create an object declaration for
2670 -- it. We disable checks during its analysis, to prevent an
2671 -- infinite recursion.
2673 else
2674 Insert_Action (N,
2675 Make_Predicate_Check
2676 (Typ, Duplicate_Subexpr (N)), Suppress => All_Checks);
2677 end if;
2678 end if;
2679 end if;
2680 end Apply_Predicate_Check;
2682 -----------------------
2683 -- Apply_Range_Check --
2684 -----------------------
2686 procedure Apply_Range_Check
2687 (Ck_Node : Node_Id;
2688 Target_Typ : Entity_Id;
2689 Source_Typ : Entity_Id := Empty)
2691 begin
2692 Apply_Selected_Range_Checks
2693 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2694 end Apply_Range_Check;
2696 ------------------------------
2697 -- Apply_Scalar_Range_Check --
2698 ------------------------------
2700 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2701 -- off if it is already set on.
2703 procedure Apply_Scalar_Range_Check
2704 (Expr : Node_Id;
2705 Target_Typ : Entity_Id;
2706 Source_Typ : Entity_Id := Empty;
2707 Fixed_Int : Boolean := False)
2709 Parnt : constant Node_Id := Parent (Expr);
2710 S_Typ : Entity_Id;
2711 Arr : Node_Id := Empty; -- initialize to prevent warning
2712 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
2713 OK : Boolean;
2715 Is_Subscr_Ref : Boolean;
2716 -- Set true if Expr is a subscript
2718 Is_Unconstrained_Subscr_Ref : Boolean;
2719 -- Set true if Expr is a subscript of an unconstrained array. In this
2720 -- case we do not attempt to do an analysis of the value against the
2721 -- range of the subscript, since we don't know the actual subtype.
2723 Int_Real : Boolean;
2724 -- Set to True if Expr should be regarded as a real value even though
2725 -- the type of Expr might be discrete.
2727 procedure Bad_Value (Warn : Boolean := False);
2728 -- Procedure called if value is determined to be out of range. Warn is
2729 -- True to force a warning instead of an error, even when SPARK_Mode is
2730 -- On.
2732 ---------------
2733 -- Bad_Value --
2734 ---------------
2736 procedure Bad_Value (Warn : Boolean := False) is
2737 begin
2738 Apply_Compile_Time_Constraint_Error
2739 (Expr, "value not in range of}??", CE_Range_Check_Failed,
2740 Ent => Target_Typ,
2741 Typ => Target_Typ,
2742 Warn => Warn);
2743 end Bad_Value;
2745 -- Start of processing for Apply_Scalar_Range_Check
2747 begin
2748 -- Return if check obviously not needed
2751 -- Not needed inside generic
2753 Inside_A_Generic
2755 -- Not needed if previous error
2757 or else Target_Typ = Any_Type
2758 or else Nkind (Expr) = N_Error
2760 -- Not needed for non-scalar type
2762 or else not Is_Scalar_Type (Target_Typ)
2764 -- Not needed if we know node raises CE already
2766 or else Raises_Constraint_Error (Expr)
2767 then
2768 return;
2769 end if;
2771 -- Now, see if checks are suppressed
2773 Is_Subscr_Ref :=
2774 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2776 if Is_Subscr_Ref then
2777 Arr := Prefix (Parnt);
2778 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
2780 if Is_Access_Type (Arr_Typ) then
2781 Arr_Typ := Designated_Type (Arr_Typ);
2782 end if;
2783 end if;
2785 if not Do_Range_Check (Expr) then
2787 -- Subscript reference. Check for Index_Checks suppressed
2789 if Is_Subscr_Ref then
2791 -- Check array type and its base type
2793 if Index_Checks_Suppressed (Arr_Typ)
2794 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
2795 then
2796 return;
2798 -- Check array itself if it is an entity name
2800 elsif Is_Entity_Name (Arr)
2801 and then Index_Checks_Suppressed (Entity (Arr))
2802 then
2803 return;
2805 -- Check expression itself if it is an entity name
2807 elsif Is_Entity_Name (Expr)
2808 and then Index_Checks_Suppressed (Entity (Expr))
2809 then
2810 return;
2811 end if;
2813 -- All other cases, check for Range_Checks suppressed
2815 else
2816 -- Check target type and its base type
2818 if Range_Checks_Suppressed (Target_Typ)
2819 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
2820 then
2821 return;
2823 -- Check expression itself if it is an entity name
2825 elsif Is_Entity_Name (Expr)
2826 and then Range_Checks_Suppressed (Entity (Expr))
2827 then
2828 return;
2830 -- If Expr is part of an assignment statement, then check left
2831 -- side of assignment if it is an entity name.
2833 elsif Nkind (Parnt) = N_Assignment_Statement
2834 and then Is_Entity_Name (Name (Parnt))
2835 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
2836 then
2837 return;
2838 end if;
2839 end if;
2840 end if;
2842 -- Do not set range checks if they are killed
2844 if Nkind (Expr) = N_Unchecked_Type_Conversion
2845 and then Kill_Range_Check (Expr)
2846 then
2847 return;
2848 end if;
2850 -- Do not set range checks for any values from System.Scalar_Values
2851 -- since the whole idea of such values is to avoid checking them.
2853 if Is_Entity_Name (Expr)
2854 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
2855 then
2856 return;
2857 end if;
2859 -- Now see if we need a check
2861 if No (Source_Typ) then
2862 S_Typ := Etype (Expr);
2863 else
2864 S_Typ := Source_Typ;
2865 end if;
2867 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
2868 return;
2869 end if;
2871 Is_Unconstrained_Subscr_Ref :=
2872 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
2874 -- Special checks for floating-point type
2876 if Is_Floating_Point_Type (S_Typ) then
2878 -- Always do a range check if the source type includes infinities and
2879 -- the target type does not include infinities. We do not do this if
2880 -- range checks are killed.
2881 -- If the expression is a literal and the bounds of the type are
2882 -- static constants it may be possible to optimize the check.
2884 if Has_Infinities (S_Typ)
2885 and then not Has_Infinities (Target_Typ)
2886 then
2887 -- If the expression is a literal and the bounds of the type are
2888 -- static constants it may be possible to optimize the check.
2890 if Nkind (Expr) = N_Real_Literal then
2891 declare
2892 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2893 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2895 begin
2896 if Compile_Time_Known_Value (Tlo)
2897 and then Compile_Time_Known_Value (Thi)
2898 and then Expr_Value_R (Expr) >= Expr_Value_R (Tlo)
2899 and then Expr_Value_R (Expr) <= Expr_Value_R (Thi)
2900 then
2901 return;
2902 else
2903 Enable_Range_Check (Expr);
2904 end if;
2905 end;
2907 else
2908 Enable_Range_Check (Expr);
2909 end if;
2910 end if;
2911 end if;
2913 -- Return if we know expression is definitely in the range of the target
2914 -- type as determined by Determine_Range. Right now we only do this for
2915 -- discrete types, and not fixed-point or floating-point types.
2917 -- The additional less-precise tests below catch these cases
2919 -- Note: skip this if we are given a source_typ, since the point of
2920 -- supplying a Source_Typ is to stop us looking at the expression.
2921 -- We could sharpen this test to be out parameters only ???
2923 if Is_Discrete_Type (Target_Typ)
2924 and then Is_Discrete_Type (Etype (Expr))
2925 and then not Is_Unconstrained_Subscr_Ref
2926 and then No (Source_Typ)
2927 then
2928 declare
2929 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2930 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2931 Lo : Uint;
2932 Hi : Uint;
2934 begin
2935 if Compile_Time_Known_Value (Tlo)
2936 and then Compile_Time_Known_Value (Thi)
2937 then
2938 declare
2939 Lov : constant Uint := Expr_Value (Tlo);
2940 Hiv : constant Uint := Expr_Value (Thi);
2942 begin
2943 -- If range is null, we for sure have a constraint error
2944 -- (we don't even need to look at the value involved,
2945 -- since all possible values will raise CE).
2947 if Lov > Hiv then
2949 -- When SPARK_Mode is On, force a warning instead of
2950 -- an error in that case, as this likely corresponds
2951 -- to deactivated code.
2953 Bad_Value (Warn => SPARK_Mode = On);
2955 -- In GNATprove mode, we enable the range check so that
2956 -- GNATprove will issue a message if it cannot be proved.
2958 if GNATprove_Mode then
2959 Enable_Range_Check (Expr);
2960 end if;
2962 return;
2963 end if;
2965 -- Otherwise determine range of value
2967 Determine_Range (Expr, OK, Lo, Hi, Assume_Valid => True);
2969 if OK then
2971 -- If definitely in range, all OK
2973 if Lo >= Lov and then Hi <= Hiv then
2974 return;
2976 -- If definitely not in range, warn
2978 elsif Lov > Hi or else Hiv < Lo then
2979 Bad_Value;
2980 return;
2982 -- Otherwise we don't know
2984 else
2985 null;
2986 end if;
2987 end if;
2988 end;
2989 end if;
2990 end;
2991 end if;
2993 Int_Real :=
2994 Is_Floating_Point_Type (S_Typ)
2995 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
2997 -- Check if we can determine at compile time whether Expr is in the
2998 -- range of the target type. Note that if S_Typ is within the bounds
2999 -- of Target_Typ then this must be the case. This check is meaningful
3000 -- only if this is not a conversion between integer and real types.
3002 if not Is_Unconstrained_Subscr_Ref
3003 and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
3004 and then
3005 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
3007 -- Also check if the expression itself is in the range of the
3008 -- target type if it is a known at compile time value. We skip
3009 -- this test if S_Typ is set since for OUT and IN OUT parameters
3010 -- the Expr itself is not relevant to the checking.
3012 or else
3013 (No (Source_Typ)
3014 and then Is_In_Range (Expr, Target_Typ,
3015 Assume_Valid => True,
3016 Fixed_Int => Fixed_Int,
3017 Int_Real => Int_Real)))
3018 then
3019 return;
3021 elsif Is_Out_Of_Range (Expr, Target_Typ,
3022 Assume_Valid => True,
3023 Fixed_Int => Fixed_Int,
3024 Int_Real => Int_Real)
3025 then
3026 Bad_Value;
3027 return;
3029 -- Floating-point case
3030 -- In the floating-point case, we only do range checks if the type is
3031 -- constrained. We definitely do NOT want range checks for unconstrained
3032 -- types, since we want to have infinities, except when
3033 -- Check_Float_Overflow is set.
3035 elsif Is_Floating_Point_Type (S_Typ) then
3036 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
3037 Enable_Range_Check (Expr);
3038 end if;
3040 -- For all other cases we enable a range check unconditionally
3042 else
3043 Enable_Range_Check (Expr);
3044 return;
3045 end if;
3046 end Apply_Scalar_Range_Check;
3048 ----------------------------------
3049 -- Apply_Selected_Length_Checks --
3050 ----------------------------------
3052 procedure Apply_Selected_Length_Checks
3053 (Ck_Node : Node_Id;
3054 Target_Typ : Entity_Id;
3055 Source_Typ : Entity_Id;
3056 Do_Static : Boolean)
3058 Cond : Node_Id;
3059 R_Result : Check_Result;
3060 R_Cno : Node_Id;
3062 Loc : constant Source_Ptr := Sloc (Ck_Node);
3063 Checks_On : constant Boolean :=
3064 (not Index_Checks_Suppressed (Target_Typ))
3065 or else (not Length_Checks_Suppressed (Target_Typ));
3067 begin
3068 -- Note: this means that we lose some useful warnings if the expander
3069 -- is not active, and we also lose these warnings in SPARK mode ???
3071 if not Expander_Active then
3072 return;
3073 end if;
3075 R_Result :=
3076 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3078 for J in 1 .. 2 loop
3079 R_Cno := R_Result (J);
3080 exit when No (R_Cno);
3082 -- A length check may mention an Itype which is attached to a
3083 -- subsequent node. At the top level in a package this can cause
3084 -- an order-of-elaboration problem, so we make sure that the itype
3085 -- is referenced now.
3087 if Ekind (Current_Scope) = E_Package
3088 and then Is_Compilation_Unit (Current_Scope)
3089 then
3090 Ensure_Defined (Target_Typ, Ck_Node);
3092 if Present (Source_Typ) then
3093 Ensure_Defined (Source_Typ, Ck_Node);
3095 elsif Is_Itype (Etype (Ck_Node)) then
3096 Ensure_Defined (Etype (Ck_Node), Ck_Node);
3097 end if;
3098 end if;
3100 -- If the item is a conditional raise of constraint error, then have
3101 -- a look at what check is being performed and ???
3103 if Nkind (R_Cno) = N_Raise_Constraint_Error
3104 and then Present (Condition (R_Cno))
3105 then
3106 Cond := Condition (R_Cno);
3108 -- Case where node does not now have a dynamic check
3110 if not Has_Dynamic_Length_Check (Ck_Node) then
3112 -- If checks are on, just insert the check
3114 if Checks_On then
3115 Insert_Action (Ck_Node, R_Cno);
3117 if not Do_Static then
3118 Set_Has_Dynamic_Length_Check (Ck_Node);
3119 end if;
3121 -- If checks are off, then analyze the length check after
3122 -- temporarily attaching it to the tree in case the relevant
3123 -- condition can be evaluated at compile time. We still want a
3124 -- compile time warning in this case.
3126 else
3127 Set_Parent (R_Cno, Ck_Node);
3128 Analyze (R_Cno);
3129 end if;
3130 end if;
3132 -- Output a warning if the condition is known to be True
3134 if Is_Entity_Name (Cond)
3135 and then Entity (Cond) = Standard_True
3136 then
3137 Apply_Compile_Time_Constraint_Error
3138 (Ck_Node, "wrong length for array of}??",
3139 CE_Length_Check_Failed,
3140 Ent => Target_Typ,
3141 Typ => Target_Typ);
3143 -- If we were only doing a static check, or if checks are not
3144 -- on, then we want to delete the check, since it is not needed.
3145 -- We do this by replacing the if statement by a null statement
3147 elsif Do_Static or else not Checks_On then
3148 Remove_Warning_Messages (R_Cno);
3149 Rewrite (R_Cno, Make_Null_Statement (Loc));
3150 end if;
3152 else
3153 Install_Static_Check (R_Cno, Loc);
3154 end if;
3155 end loop;
3156 end Apply_Selected_Length_Checks;
3158 ---------------------------------
3159 -- Apply_Selected_Range_Checks --
3160 ---------------------------------
3162 procedure Apply_Selected_Range_Checks
3163 (Ck_Node : Node_Id;
3164 Target_Typ : Entity_Id;
3165 Source_Typ : Entity_Id;
3166 Do_Static : Boolean)
3168 Loc : constant Source_Ptr := Sloc (Ck_Node);
3169 Checks_On : constant Boolean :=
3170 not Index_Checks_Suppressed (Target_Typ)
3171 or else
3172 not Range_Checks_Suppressed (Target_Typ);
3174 Cond : Node_Id;
3175 R_Cno : Node_Id;
3176 R_Result : Check_Result;
3178 begin
3179 if not Expander_Active or not Checks_On then
3180 return;
3181 end if;
3183 R_Result :=
3184 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3186 for J in 1 .. 2 loop
3187 R_Cno := R_Result (J);
3188 exit when No (R_Cno);
3190 -- The range check requires runtime evaluation. Depending on what its
3191 -- triggering condition is, the check may be converted into a compile
3192 -- time constraint check.
3194 if Nkind (R_Cno) = N_Raise_Constraint_Error
3195 and then Present (Condition (R_Cno))
3196 then
3197 Cond := Condition (R_Cno);
3199 -- Insert the range check before the related context. Note that
3200 -- this action analyses the triggering condition.
3202 Insert_Action (Ck_Node, R_Cno);
3204 -- This old code doesn't make sense, why is the context flagged as
3205 -- requiring dynamic range checks now in the middle of generating
3206 -- them ???
3208 if not Do_Static then
3209 Set_Has_Dynamic_Range_Check (Ck_Node);
3210 end if;
3212 -- The triggering condition evaluates to True, the range check
3213 -- can be converted into a compile time constraint check.
3215 if Is_Entity_Name (Cond)
3216 and then Entity (Cond) = Standard_True
3217 then
3218 -- Since an N_Range is technically not an expression, we have
3219 -- to set one of the bounds to C_E and then just flag the
3220 -- N_Range. The warning message will point to the lower bound
3221 -- and complain about a range, which seems OK.
3223 if Nkind (Ck_Node) = N_Range then
3224 Apply_Compile_Time_Constraint_Error
3225 (Low_Bound (Ck_Node),
3226 "static range out of bounds of}??",
3227 CE_Range_Check_Failed,
3228 Ent => Target_Typ,
3229 Typ => Target_Typ);
3231 Set_Raises_Constraint_Error (Ck_Node);
3233 else
3234 Apply_Compile_Time_Constraint_Error
3235 (Ck_Node,
3236 "static value out of range of}??",
3237 CE_Range_Check_Failed,
3238 Ent => Target_Typ,
3239 Typ => Target_Typ);
3240 end if;
3242 -- If we were only doing a static check, or if checks are not
3243 -- on, then we want to delete the check, since it is not needed.
3244 -- We do this by replacing the if statement by a null statement
3246 -- Why are we even generating checks if checks are turned off ???
3248 elsif Do_Static or else not Checks_On then
3249 Remove_Warning_Messages (R_Cno);
3250 Rewrite (R_Cno, Make_Null_Statement (Loc));
3251 end if;
3253 -- The range check raises Constraint_Error explicitly
3255 else
3256 Install_Static_Check (R_Cno, Loc);
3257 end if;
3258 end loop;
3259 end Apply_Selected_Range_Checks;
3261 -------------------------------
3262 -- Apply_Static_Length_Check --
3263 -------------------------------
3265 procedure Apply_Static_Length_Check
3266 (Expr : Node_Id;
3267 Target_Typ : Entity_Id;
3268 Source_Typ : Entity_Id := Empty)
3270 begin
3271 Apply_Selected_Length_Checks
3272 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3273 end Apply_Static_Length_Check;
3275 -------------------------------------
3276 -- Apply_Subscript_Validity_Checks --
3277 -------------------------------------
3279 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3280 Sub : Node_Id;
3282 begin
3283 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3285 -- Loop through subscripts
3287 Sub := First (Expressions (Expr));
3288 while Present (Sub) loop
3290 -- Check one subscript. Note that we do not worry about enumeration
3291 -- type with holes, since we will convert the value to a Pos value
3292 -- for the subscript, and that convert will do the necessary validity
3293 -- check.
3295 Ensure_Valid (Sub, Holes_OK => True);
3297 -- Move to next subscript
3299 Sub := Next (Sub);
3300 end loop;
3301 end Apply_Subscript_Validity_Checks;
3303 ----------------------------------
3304 -- Apply_Type_Conversion_Checks --
3305 ----------------------------------
3307 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3308 Target_Type : constant Entity_Id := Etype (N);
3309 Target_Base : constant Entity_Id := Base_Type (Target_Type);
3310 Expr : constant Node_Id := Expression (N);
3312 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
3313 -- Note: if Etype (Expr) is a private type without discriminants, its
3314 -- full view might have discriminants with defaults, so we need the
3315 -- full view here to retrieve the constraints.
3317 begin
3318 if Inside_A_Generic then
3319 return;
3321 -- Skip these checks if serious errors detected, there are some nasty
3322 -- situations of incomplete trees that blow things up.
3324 elsif Serious_Errors_Detected > 0 then
3325 return;
3327 -- Never generate discriminant checks for Unchecked_Union types
3329 elsif Present (Expr_Type)
3330 and then Is_Unchecked_Union (Expr_Type)
3331 then
3332 return;
3334 -- Scalar type conversions of the form Target_Type (Expr) require a
3335 -- range check if we cannot be sure that Expr is in the base type of
3336 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3337 -- are not quite the same condition from an implementation point of
3338 -- view, but clearly the second includes the first.
3340 elsif Is_Scalar_Type (Target_Type) then
3341 declare
3342 Conv_OK : constant Boolean := Conversion_OK (N);
3343 -- If the Conversion_OK flag on the type conversion is set and no
3344 -- floating-point type is involved in the type conversion then
3345 -- fixed-point values must be read as integral values.
3347 Float_To_Int : constant Boolean :=
3348 Is_Floating_Point_Type (Expr_Type)
3349 and then Is_Integer_Type (Target_Type);
3351 begin
3352 if not Overflow_Checks_Suppressed (Target_Base)
3353 and then not Overflow_Checks_Suppressed (Target_Type)
3354 and then not
3355 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
3356 and then not Float_To_Int
3357 then
3358 Activate_Overflow_Check (N);
3359 end if;
3361 if not Range_Checks_Suppressed (Target_Type)
3362 and then not Range_Checks_Suppressed (Expr_Type)
3363 then
3364 if Float_To_Int then
3365 Apply_Float_Conversion_Check (Expr, Target_Type);
3366 else
3367 Apply_Scalar_Range_Check
3368 (Expr, Target_Type, Fixed_Int => Conv_OK);
3370 -- If the target type has predicates, we need to indicate
3371 -- the need for a check, even if Determine_Range finds that
3372 -- the value is within bounds. This may be the case e.g for
3373 -- a division with a constant denominator.
3375 if Has_Predicates (Target_Type) then
3376 Enable_Range_Check (Expr);
3377 end if;
3378 end if;
3379 end if;
3380 end;
3382 elsif Comes_From_Source (N)
3383 and then not Discriminant_Checks_Suppressed (Target_Type)
3384 and then Is_Record_Type (Target_Type)
3385 and then Is_Derived_Type (Target_Type)
3386 and then not Is_Tagged_Type (Target_Type)
3387 and then not Is_Constrained (Target_Type)
3388 and then Present (Stored_Constraint (Target_Type))
3389 then
3390 -- An unconstrained derived type may have inherited discriminant.
3391 -- Build an actual discriminant constraint list using the stored
3392 -- constraint, to verify that the expression of the parent type
3393 -- satisfies the constraints imposed by the (unconstrained) derived
3394 -- type. This applies to value conversions, not to view conversions
3395 -- of tagged types.
3397 declare
3398 Loc : constant Source_Ptr := Sloc (N);
3399 Cond : Node_Id;
3400 Constraint : Elmt_Id;
3401 Discr_Value : Node_Id;
3402 Discr : Entity_Id;
3404 New_Constraints : constant Elist_Id := New_Elmt_List;
3405 Old_Constraints : constant Elist_Id :=
3406 Discriminant_Constraint (Expr_Type);
3408 begin
3409 Constraint := First_Elmt (Stored_Constraint (Target_Type));
3410 while Present (Constraint) loop
3411 Discr_Value := Node (Constraint);
3413 if Is_Entity_Name (Discr_Value)
3414 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3415 then
3416 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3418 if Present (Discr)
3419 and then Scope (Discr) = Base_Type (Expr_Type)
3420 then
3421 -- Parent is constrained by new discriminant. Obtain
3422 -- Value of original discriminant in expression. If the
3423 -- new discriminant has been used to constrain more than
3424 -- one of the stored discriminants, this will provide the
3425 -- required consistency check.
3427 Append_Elmt
3428 (Make_Selected_Component (Loc,
3429 Prefix =>
3430 Duplicate_Subexpr_No_Checks
3431 (Expr, Name_Req => True),
3432 Selector_Name =>
3433 Make_Identifier (Loc, Chars (Discr))),
3434 New_Constraints);
3436 else
3437 -- Discriminant of more remote ancestor ???
3439 return;
3440 end if;
3442 -- Derived type definition has an explicit value for this
3443 -- stored discriminant.
3445 else
3446 Append_Elmt
3447 (Duplicate_Subexpr_No_Checks (Discr_Value),
3448 New_Constraints);
3449 end if;
3451 Next_Elmt (Constraint);
3452 end loop;
3454 -- Use the unconstrained expression type to retrieve the
3455 -- discriminants of the parent, and apply momentarily the
3456 -- discriminant constraint synthesized above.
3458 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3459 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3460 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3462 Insert_Action (N,
3463 Make_Raise_Constraint_Error (Loc,
3464 Condition => Cond,
3465 Reason => CE_Discriminant_Check_Failed));
3466 end;
3468 -- For arrays, checks are set now, but conversions are applied during
3469 -- expansion, to take into accounts changes of representation. The
3470 -- checks become range checks on the base type or length checks on the
3471 -- subtype, depending on whether the target type is unconstrained or
3472 -- constrained. Note that the range check is put on the expression of a
3473 -- type conversion, while the length check is put on the type conversion
3474 -- itself.
3476 elsif Is_Array_Type (Target_Type) then
3477 if Is_Constrained (Target_Type) then
3478 Set_Do_Length_Check (N);
3479 else
3480 Set_Do_Range_Check (Expr);
3481 end if;
3482 end if;
3483 end Apply_Type_Conversion_Checks;
3485 ----------------------------------------------
3486 -- Apply_Universal_Integer_Attribute_Checks --
3487 ----------------------------------------------
3489 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3490 Loc : constant Source_Ptr := Sloc (N);
3491 Typ : constant Entity_Id := Etype (N);
3493 begin
3494 if Inside_A_Generic then
3495 return;
3497 -- Nothing to do if checks are suppressed
3499 elsif Range_Checks_Suppressed (Typ)
3500 and then Overflow_Checks_Suppressed (Typ)
3501 then
3502 return;
3504 -- Nothing to do if the attribute does not come from source. The
3505 -- internal attributes we generate of this type do not need checks,
3506 -- and furthermore the attempt to check them causes some circular
3507 -- elaboration orders when dealing with packed types.
3509 elsif not Comes_From_Source (N) then
3510 return;
3512 -- If the prefix is a selected component that depends on a discriminant
3513 -- the check may improperly expose a discriminant instead of using
3514 -- the bounds of the object itself. Set the type of the attribute to
3515 -- the base type of the context, so that a check will be imposed when
3516 -- needed (e.g. if the node appears as an index).
3518 elsif Nkind (Prefix (N)) = N_Selected_Component
3519 and then Ekind (Typ) = E_Signed_Integer_Subtype
3520 and then Depends_On_Discriminant (Scalar_Range (Typ))
3521 then
3522 Set_Etype (N, Base_Type (Typ));
3524 -- Otherwise, replace the attribute node with a type conversion node
3525 -- whose expression is the attribute, retyped to universal integer, and
3526 -- whose subtype mark is the target type. The call to analyze this
3527 -- conversion will set range and overflow checks as required for proper
3528 -- detection of an out of range value.
3530 else
3531 Set_Etype (N, Universal_Integer);
3532 Set_Analyzed (N, True);
3534 Rewrite (N,
3535 Make_Type_Conversion (Loc,
3536 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3537 Expression => Relocate_Node (N)));
3539 Analyze_And_Resolve (N, Typ);
3540 return;
3541 end if;
3542 end Apply_Universal_Integer_Attribute_Checks;
3544 -------------------------------------
3545 -- Atomic_Synchronization_Disabled --
3546 -------------------------------------
3548 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3549 -- using a bogus check called Atomic_Synchronization. This is to make it
3550 -- more convenient to get exactly the same semantics as [Un]Suppress.
3552 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3553 begin
3554 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3555 -- looks enabled, since it is never disabled.
3557 if Debug_Flag_Dot_E then
3558 return False;
3560 -- If debug flag d.d is set then always return True, i.e. all atomic
3561 -- sync looks disabled, since it always tests True.
3563 elsif Debug_Flag_Dot_D then
3564 return True;
3566 -- If entity present, then check result for that entity
3568 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
3569 return Is_Check_Suppressed (E, Atomic_Synchronization);
3571 -- Otherwise result depends on current scope setting
3573 else
3574 return Scope_Suppress.Suppress (Atomic_Synchronization);
3575 end if;
3576 end Atomic_Synchronization_Disabled;
3578 -------------------------------
3579 -- Build_Discriminant_Checks --
3580 -------------------------------
3582 function Build_Discriminant_Checks
3583 (N : Node_Id;
3584 T_Typ : Entity_Id) return Node_Id
3586 Loc : constant Source_Ptr := Sloc (N);
3587 Cond : Node_Id;
3588 Disc : Elmt_Id;
3589 Disc_Ent : Entity_Id;
3590 Dref : Node_Id;
3591 Dval : Node_Id;
3593 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3595 ----------------------------------
3596 -- Aggregate_Discriminant_Value --
3597 ----------------------------------
3599 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3600 Assoc : Node_Id;
3602 begin
3603 -- The aggregate has been normalized with named associations. We use
3604 -- the Chars field to locate the discriminant to take into account
3605 -- discriminants in derived types, which carry the same name as those
3606 -- in the parent.
3608 Assoc := First (Component_Associations (N));
3609 while Present (Assoc) loop
3610 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3611 return Expression (Assoc);
3612 else
3613 Next (Assoc);
3614 end if;
3615 end loop;
3617 -- Discriminant must have been found in the loop above
3619 raise Program_Error;
3620 end Aggregate_Discriminant_Val;
3622 -- Start of processing for Build_Discriminant_Checks
3624 begin
3625 -- Loop through discriminants evolving the condition
3627 Cond := Empty;
3628 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3630 -- For a fully private type, use the discriminants of the parent type
3632 if Is_Private_Type (T_Typ)
3633 and then No (Full_View (T_Typ))
3634 then
3635 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3636 else
3637 Disc_Ent := First_Discriminant (T_Typ);
3638 end if;
3640 while Present (Disc) loop
3641 Dval := Node (Disc);
3643 if Nkind (Dval) = N_Identifier
3644 and then Ekind (Entity (Dval)) = E_Discriminant
3645 then
3646 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3647 else
3648 Dval := Duplicate_Subexpr_No_Checks (Dval);
3649 end if;
3651 -- If we have an Unchecked_Union node, we can infer the discriminants
3652 -- of the node.
3654 if Is_Unchecked_Union (Base_Type (T_Typ)) then
3655 Dref := New_Copy (
3656 Get_Discriminant_Value (
3657 First_Discriminant (T_Typ),
3658 T_Typ,
3659 Stored_Constraint (T_Typ)));
3661 elsif Nkind (N) = N_Aggregate then
3662 Dref :=
3663 Duplicate_Subexpr_No_Checks
3664 (Aggregate_Discriminant_Val (Disc_Ent));
3666 else
3667 Dref :=
3668 Make_Selected_Component (Loc,
3669 Prefix =>
3670 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
3671 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
3673 Set_Is_In_Discriminant_Check (Dref);
3674 end if;
3676 Evolve_Or_Else (Cond,
3677 Make_Op_Ne (Loc,
3678 Left_Opnd => Dref,
3679 Right_Opnd => Dval));
3681 Next_Elmt (Disc);
3682 Next_Discriminant (Disc_Ent);
3683 end loop;
3685 return Cond;
3686 end Build_Discriminant_Checks;
3688 ------------------
3689 -- Check_Needed --
3690 ------------------
3692 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3693 N : Node_Id;
3694 P : Node_Id;
3695 K : Node_Kind;
3696 L : Node_Id;
3697 R : Node_Id;
3699 function Left_Expression (Op : Node_Id) return Node_Id;
3700 -- Return the relevant expression from the left operand of the given
3701 -- short circuit form: this is LO itself, except if LO is a qualified
3702 -- expression, a type conversion, or an expression with actions, in
3703 -- which case this is Left_Expression (Expression (LO)).
3705 ---------------------
3706 -- Left_Expression --
3707 ---------------------
3709 function Left_Expression (Op : Node_Id) return Node_Id is
3710 LE : Node_Id := Left_Opnd (Op);
3711 begin
3712 while Nkind_In (LE, N_Qualified_Expression,
3713 N_Type_Conversion,
3714 N_Expression_With_Actions)
3715 loop
3716 LE := Expression (LE);
3717 end loop;
3719 return LE;
3720 end Left_Expression;
3722 -- Start of processing for Check_Needed
3724 begin
3725 -- Always check if not simple entity
3727 if Nkind (Nod) not in N_Has_Entity
3728 or else not Comes_From_Source (Nod)
3729 then
3730 return True;
3731 end if;
3733 -- Look up tree for short circuit
3735 N := Nod;
3736 loop
3737 P := Parent (N);
3738 K := Nkind (P);
3740 -- Done if out of subexpression (note that we allow generated stuff
3741 -- such as itype declarations in this context, to keep the loop going
3742 -- since we may well have generated such stuff in complex situations.
3743 -- Also done if no parent (probably an error condition, but no point
3744 -- in behaving nasty if we find it).
3746 if No (P)
3747 or else (K not in N_Subexpr and then Comes_From_Source (P))
3748 then
3749 return True;
3751 -- Or/Or Else case, where test is part of the right operand, or is
3752 -- part of one of the actions associated with the right operand, and
3753 -- the left operand is an equality test.
3755 elsif K = N_Op_Or then
3756 exit when N = Right_Opnd (P)
3757 and then Nkind (Left_Expression (P)) = N_Op_Eq;
3759 elsif K = N_Or_Else then
3760 exit when (N = Right_Opnd (P)
3761 or else
3762 (Is_List_Member (N)
3763 and then List_Containing (N) = Actions (P)))
3764 and then Nkind (Left_Expression (P)) = N_Op_Eq;
3766 -- Similar test for the And/And then case, where the left operand
3767 -- is an inequality test.
3769 elsif K = N_Op_And then
3770 exit when N = Right_Opnd (P)
3771 and then Nkind (Left_Expression (P)) = N_Op_Ne;
3773 elsif K = N_And_Then then
3774 exit when (N = Right_Opnd (P)
3775 or else
3776 (Is_List_Member (N)
3777 and then List_Containing (N) = Actions (P)))
3778 and then Nkind (Left_Expression (P)) = N_Op_Ne;
3779 end if;
3781 N := P;
3782 end loop;
3784 -- If we fall through the loop, then we have a conditional with an
3785 -- appropriate test as its left operand, so look further.
3787 L := Left_Expression (P);
3789 -- L is an "=" or "/=" operator: extract its operands
3791 R := Right_Opnd (L);
3792 L := Left_Opnd (L);
3794 -- Left operand of test must match original variable
3796 if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
3797 return True;
3798 end if;
3800 -- Right operand of test must be key value (zero or null)
3802 case Check is
3803 when Access_Check =>
3804 if not Known_Null (R) then
3805 return True;
3806 end if;
3808 when Division_Check =>
3809 if not Compile_Time_Known_Value (R)
3810 or else Expr_Value (R) /= Uint_0
3811 then
3812 return True;
3813 end if;
3815 when others =>
3816 raise Program_Error;
3817 end case;
3819 -- Here we have the optimizable case, warn if not short-circuited
3821 if K = N_Op_And or else K = N_Op_Or then
3822 Error_Msg_Warn := SPARK_Mode /= On;
3824 case Check is
3825 when Access_Check =>
3826 if GNATprove_Mode then
3827 Error_Msg_N
3828 ("Constraint_Error might have been raised (access check)",
3829 Parent (Nod));
3830 else
3831 Error_Msg_N
3832 ("Constraint_Error may be raised (access check)??",
3833 Parent (Nod));
3834 end if;
3836 when Division_Check =>
3837 if GNATprove_Mode then
3838 Error_Msg_N
3839 ("Constraint_Error might have been raised (zero divide)",
3840 Parent (Nod));
3841 else
3842 Error_Msg_N
3843 ("Constraint_Error may be raised (zero divide)??",
3844 Parent (Nod));
3845 end if;
3847 when others =>
3848 raise Program_Error;
3849 end case;
3851 if K = N_Op_And then
3852 Error_Msg_N -- CODEFIX
3853 ("use `AND THEN` instead of AND??", P);
3854 else
3855 Error_Msg_N -- CODEFIX
3856 ("use `OR ELSE` instead of OR??", P);
3857 end if;
3859 -- If not short-circuited, we need the check
3861 return True;
3863 -- If short-circuited, we can omit the check
3865 else
3866 return False;
3867 end if;
3868 end Check_Needed;
3870 -----------------------------------
3871 -- Check_Valid_Lvalue_Subscripts --
3872 -----------------------------------
3874 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
3875 begin
3876 -- Skip this if range checks are suppressed
3878 if Range_Checks_Suppressed (Etype (Expr)) then
3879 return;
3881 -- Only do this check for expressions that come from source. We assume
3882 -- that expander generated assignments explicitly include any necessary
3883 -- checks. Note that this is not just an optimization, it avoids
3884 -- infinite recursions.
3886 elsif not Comes_From_Source (Expr) then
3887 return;
3889 -- For a selected component, check the prefix
3891 elsif Nkind (Expr) = N_Selected_Component then
3892 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
3893 return;
3895 -- Case of indexed component
3897 elsif Nkind (Expr) = N_Indexed_Component then
3898 Apply_Subscript_Validity_Checks (Expr);
3900 -- Prefix may itself be or contain an indexed component, and these
3901 -- subscripts need checking as well.
3903 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
3904 end if;
3905 end Check_Valid_Lvalue_Subscripts;
3907 ----------------------------------
3908 -- Null_Exclusion_Static_Checks --
3909 ----------------------------------
3911 procedure Null_Exclusion_Static_Checks (N : Node_Id) is
3912 Error_Node : Node_Id;
3913 Expr : Node_Id;
3914 Has_Null : constant Boolean := Has_Null_Exclusion (N);
3915 K : constant Node_Kind := Nkind (N);
3916 Typ : Entity_Id;
3918 begin
3919 pragma Assert
3920 (Nkind_In (K, N_Component_Declaration,
3921 N_Discriminant_Specification,
3922 N_Function_Specification,
3923 N_Object_Declaration,
3924 N_Parameter_Specification));
3926 if K = N_Function_Specification then
3927 Typ := Etype (Defining_Entity (N));
3928 else
3929 Typ := Etype (Defining_Identifier (N));
3930 end if;
3932 case K is
3933 when N_Component_Declaration =>
3934 if Present (Access_Definition (Component_Definition (N))) then
3935 Error_Node := Component_Definition (N);
3936 else
3937 Error_Node := Subtype_Indication (Component_Definition (N));
3938 end if;
3940 when N_Discriminant_Specification =>
3941 Error_Node := Discriminant_Type (N);
3943 when N_Function_Specification =>
3944 Error_Node := Result_Definition (N);
3946 when N_Object_Declaration =>
3947 Error_Node := Object_Definition (N);
3949 when N_Parameter_Specification =>
3950 Error_Node := Parameter_Type (N);
3952 when others =>
3953 raise Program_Error;
3954 end case;
3956 if Has_Null then
3958 -- Enforce legality rule 3.10 (13): A null exclusion can only be
3959 -- applied to an access [sub]type.
3961 if not Is_Access_Type (Typ) then
3962 Error_Msg_N
3963 ("`NOT NULL` allowed only for an access type", Error_Node);
3965 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
3966 -- be applied to a [sub]type that does not exclude null already.
3968 elsif Can_Never_Be_Null (Typ)
3969 and then Comes_From_Source (Typ)
3970 then
3971 Error_Msg_NE
3972 ("`NOT NULL` not allowed (& already excludes null)",
3973 Error_Node, Typ);
3974 end if;
3975 end if;
3977 -- Check that null-excluding objects are always initialized, except for
3978 -- deferred constants, for which the expression will appear in the full
3979 -- declaration.
3981 if K = N_Object_Declaration
3982 and then No (Expression (N))
3983 and then not Constant_Present (N)
3984 and then not No_Initialization (N)
3985 then
3986 -- Add an expression that assigns null. This node is needed by
3987 -- Apply_Compile_Time_Constraint_Error, which will replace this with
3988 -- a Constraint_Error node.
3990 Set_Expression (N, Make_Null (Sloc (N)));
3991 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
3993 Apply_Compile_Time_Constraint_Error
3994 (N => Expression (N),
3995 Msg =>
3996 "(Ada 2005) null-excluding objects must be initialized??",
3997 Reason => CE_Null_Not_Allowed);
3998 end if;
4000 -- Check that a null-excluding component, formal or object is not being
4001 -- assigned a null value. Otherwise generate a warning message and
4002 -- replace Expression (N) by an N_Constraint_Error node.
4004 if K /= N_Function_Specification then
4005 Expr := Expression (N);
4007 if Present (Expr) and then Known_Null (Expr) then
4008 case K is
4009 when N_Component_Declaration |
4010 N_Discriminant_Specification =>
4011 Apply_Compile_Time_Constraint_Error
4012 (N => Expr,
4013 Msg => "(Ada 2005) null not allowed "
4014 & "in null-excluding components??",
4015 Reason => CE_Null_Not_Allowed);
4017 when N_Object_Declaration =>
4018 Apply_Compile_Time_Constraint_Error
4019 (N => Expr,
4020 Msg => "(Ada 2005) null not allowed "
4021 & "in null-excluding objects??",
4022 Reason => CE_Null_Not_Allowed);
4024 when N_Parameter_Specification =>
4025 Apply_Compile_Time_Constraint_Error
4026 (N => Expr,
4027 Msg => "(Ada 2005) null not allowed "
4028 & "in null-excluding formals??",
4029 Reason => CE_Null_Not_Allowed);
4031 when others =>
4032 null;
4033 end case;
4034 end if;
4035 end if;
4036 end Null_Exclusion_Static_Checks;
4038 ----------------------------------
4039 -- Conditional_Statements_Begin --
4040 ----------------------------------
4042 procedure Conditional_Statements_Begin is
4043 begin
4044 Saved_Checks_TOS := Saved_Checks_TOS + 1;
4046 -- If stack overflows, kill all checks, that way we know to simply reset
4047 -- the number of saved checks to zero on return. This should never occur
4048 -- in practice.
4050 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4051 Kill_All_Checks;
4053 -- In the normal case, we just make a new stack entry saving the current
4054 -- number of saved checks for a later restore.
4056 else
4057 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4059 if Debug_Flag_CC then
4060 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4061 Num_Saved_Checks);
4062 end if;
4063 end if;
4064 end Conditional_Statements_Begin;
4066 --------------------------------
4067 -- Conditional_Statements_End --
4068 --------------------------------
4070 procedure Conditional_Statements_End is
4071 begin
4072 pragma Assert (Saved_Checks_TOS > 0);
4074 -- If the saved checks stack overflowed, then we killed all checks, so
4075 -- setting the number of saved checks back to zero is correct. This
4076 -- should never occur in practice.
4078 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4079 Num_Saved_Checks := 0;
4081 -- In the normal case, restore the number of saved checks from the top
4082 -- stack entry.
4084 else
4085 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
4087 if Debug_Flag_CC then
4088 w ("Conditional_Statements_End: Num_Saved_Checks = ",
4089 Num_Saved_Checks);
4090 end if;
4091 end if;
4093 Saved_Checks_TOS := Saved_Checks_TOS - 1;
4094 end Conditional_Statements_End;
4096 -------------------------
4097 -- Convert_From_Bignum --
4098 -------------------------
4100 function Convert_From_Bignum (N : Node_Id) return Node_Id is
4101 Loc : constant Source_Ptr := Sloc (N);
4103 begin
4104 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4106 -- Construct call From Bignum
4108 return
4109 Make_Function_Call (Loc,
4110 Name =>
4111 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4112 Parameter_Associations => New_List (Relocate_Node (N)));
4113 end Convert_From_Bignum;
4115 -----------------------
4116 -- Convert_To_Bignum --
4117 -----------------------
4119 function Convert_To_Bignum (N : Node_Id) return Node_Id is
4120 Loc : constant Source_Ptr := Sloc (N);
4122 begin
4123 -- Nothing to do if Bignum already except call Relocate_Node
4125 if Is_RTE (Etype (N), RE_Bignum) then
4126 return Relocate_Node (N);
4128 -- Otherwise construct call to To_Bignum, converting the operand to the
4129 -- required Long_Long_Integer form.
4131 else
4132 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4133 return
4134 Make_Function_Call (Loc,
4135 Name =>
4136 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4137 Parameter_Associations => New_List (
4138 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4139 end if;
4140 end Convert_To_Bignum;
4142 ---------------------
4143 -- Determine_Range --
4144 ---------------------
4146 Cache_Size : constant := 2 ** 10;
4147 type Cache_Index is range 0 .. Cache_Size - 1;
4148 -- Determine size of below cache (power of 2 is more efficient)
4150 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
4151 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
4152 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
4153 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
4154 Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4155 Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
4156 -- The above arrays are used to implement a small direct cache for
4157 -- Determine_Range and Determine_Range_R calls. Because of the way these
4158 -- subprograms recursively traces subexpressions, and because overflow
4159 -- checking calls the routine on the way up the tree, a quadratic behavior
4160 -- can otherwise be encountered in large expressions. The cache entry for
4161 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4162 -- by checking the actual node value stored there. The Range_Cache_V array
4163 -- records the setting of Assume_Valid for the cache entry.
4165 procedure Determine_Range
4166 (N : Node_Id;
4167 OK : out Boolean;
4168 Lo : out Uint;
4169 Hi : out Uint;
4170 Assume_Valid : Boolean := False)
4172 Typ : Entity_Id := Etype (N);
4173 -- Type to use, may get reset to base type for possibly invalid entity
4175 Lo_Left : Uint;
4176 Hi_Left : Uint;
4177 -- Lo and Hi bounds of left operand
4179 Lo_Right : Uint;
4180 Hi_Right : Uint;
4181 -- Lo and Hi bounds of right (or only) operand
4183 Bound : Node_Id;
4184 -- Temp variable used to hold a bound node
4186 Hbound : Uint;
4187 -- High bound of base type of expression
4189 Lor : Uint;
4190 Hir : Uint;
4191 -- Refined values for low and high bounds, after tightening
4193 OK1 : Boolean;
4194 -- Used in lower level calls to indicate if call succeeded
4196 Cindex : Cache_Index;
4197 -- Used to search cache
4199 Btyp : Entity_Id;
4200 -- Base type
4202 function OK_Operands return Boolean;
4203 -- Used for binary operators. Determines the ranges of the left and
4204 -- right operands, and if they are both OK, returns True, and puts
4205 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4207 -----------------
4208 -- OK_Operands --
4209 -----------------
4211 function OK_Operands return Boolean is
4212 begin
4213 Determine_Range
4214 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4216 if not OK1 then
4217 return False;
4218 end if;
4220 Determine_Range
4221 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4222 return OK1;
4223 end OK_Operands;
4225 -- Start of processing for Determine_Range
4227 begin
4228 -- Prevent junk warnings by initializing range variables
4230 Lo := No_Uint;
4231 Hi := No_Uint;
4232 Lor := No_Uint;
4233 Hir := No_Uint;
4235 -- For temporary constants internally generated to remove side effects
4236 -- we must use the corresponding expression to determine the range of
4237 -- the expression. But note that the expander can also generate
4238 -- constants in other cases, including deferred constants.
4240 if Is_Entity_Name (N)
4241 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4242 and then Ekind (Entity (N)) = E_Constant
4243 and then Is_Internal_Name (Chars (Entity (N)))
4244 then
4245 if Present (Expression (Parent (Entity (N)))) then
4246 Determine_Range
4247 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4249 elsif Present (Full_View (Entity (N))) then
4250 Determine_Range
4251 (Expression (Parent (Full_View (Entity (N)))),
4252 OK, Lo, Hi, Assume_Valid);
4254 else
4255 OK := False;
4256 end if;
4257 return;
4258 end if;
4260 -- If type is not defined, we can't determine its range
4262 if No (Typ)
4264 -- We don't deal with anything except discrete types
4266 or else not Is_Discrete_Type (Typ)
4268 -- Ignore type for which an error has been posted, since range in
4269 -- this case may well be a bogosity deriving from the error. Also
4270 -- ignore if error posted on the reference node.
4272 or else Error_Posted (N) or else Error_Posted (Typ)
4273 then
4274 OK := False;
4275 return;
4276 end if;
4278 -- For all other cases, we can determine the range
4280 OK := True;
4282 -- If value is compile time known, then the possible range is the one
4283 -- value that we know this expression definitely has.
4285 if Compile_Time_Known_Value (N) then
4286 Lo := Expr_Value (N);
4287 Hi := Lo;
4288 return;
4289 end if;
4291 -- Return if already in the cache
4293 Cindex := Cache_Index (N mod Cache_Size);
4295 if Determine_Range_Cache_N (Cindex) = N
4296 and then
4297 Determine_Range_Cache_V (Cindex) = Assume_Valid
4298 then
4299 Lo := Determine_Range_Cache_Lo (Cindex);
4300 Hi := Determine_Range_Cache_Hi (Cindex);
4301 return;
4302 end if;
4304 -- Otherwise, start by finding the bounds of the type of the expression,
4305 -- the value cannot be outside this range (if it is, then we have an
4306 -- overflow situation, which is a separate check, we are talking here
4307 -- only about the expression value).
4309 -- First a check, never try to find the bounds of a generic type, since
4310 -- these bounds are always junk values, and it is only valid to look at
4311 -- the bounds in an instance.
4313 if Is_Generic_Type (Typ) then
4314 OK := False;
4315 return;
4316 end if;
4318 -- First step, change to use base type unless we know the value is valid
4320 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4321 or else Assume_No_Invalid_Values
4322 or else Assume_Valid
4323 then
4324 null;
4325 else
4326 Typ := Underlying_Type (Base_Type (Typ));
4327 end if;
4329 -- Retrieve the base type. Handle the case where the base type is a
4330 -- private enumeration type.
4332 Btyp := Base_Type (Typ);
4334 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4335 Btyp := Full_View (Btyp);
4336 end if;
4338 -- We use the actual bound unless it is dynamic, in which case use the
4339 -- corresponding base type bound if possible. If we can't get a bound
4340 -- then we figure we can't determine the range (a peculiar case, that
4341 -- perhaps cannot happen, but there is no point in bombing in this
4342 -- optimization circuit.
4344 -- First the low bound
4346 Bound := Type_Low_Bound (Typ);
4348 if Compile_Time_Known_Value (Bound) then
4349 Lo := Expr_Value (Bound);
4351 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4352 Lo := Expr_Value (Type_Low_Bound (Btyp));
4354 else
4355 OK := False;
4356 return;
4357 end if;
4359 -- Now the high bound
4361 Bound := Type_High_Bound (Typ);
4363 -- We need the high bound of the base type later on, and this should
4364 -- always be compile time known. Again, it is not clear that this
4365 -- can ever be false, but no point in bombing.
4367 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4368 Hbound := Expr_Value (Type_High_Bound (Btyp));
4369 Hi := Hbound;
4371 else
4372 OK := False;
4373 return;
4374 end if;
4376 -- If we have a static subtype, then that may have a tighter bound so
4377 -- use the upper bound of the subtype instead in this case.
4379 if Compile_Time_Known_Value (Bound) then
4380 Hi := Expr_Value (Bound);
4381 end if;
4383 -- We may be able to refine this value in certain situations. If any
4384 -- refinement is possible, then Lor and Hir are set to possibly tighter
4385 -- bounds, and OK1 is set to True.
4387 case Nkind (N) is
4389 -- For unary plus, result is limited by range of operand
4391 when N_Op_Plus =>
4392 Determine_Range
4393 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
4395 -- For unary minus, determine range of operand, and negate it
4397 when N_Op_Minus =>
4398 Determine_Range
4399 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4401 if OK1 then
4402 Lor := -Hi_Right;
4403 Hir := -Lo_Right;
4404 end if;
4406 -- For binary addition, get range of each operand and do the
4407 -- addition to get the result range.
4409 when N_Op_Add =>
4410 if OK_Operands then
4411 Lor := Lo_Left + Lo_Right;
4412 Hir := Hi_Left + Hi_Right;
4413 end if;
4415 -- Division is tricky. The only case we consider is where the right
4416 -- operand is a positive constant, and in this case we simply divide
4417 -- the bounds of the left operand
4419 when N_Op_Divide =>
4420 if OK_Operands then
4421 if Lo_Right = Hi_Right
4422 and then Lo_Right > 0
4423 then
4424 Lor := Lo_Left / Lo_Right;
4425 Hir := Hi_Left / Lo_Right;
4426 else
4427 OK1 := False;
4428 end if;
4429 end if;
4431 -- For binary subtraction, get range of each operand and do the worst
4432 -- case subtraction to get the result range.
4434 when N_Op_Subtract =>
4435 if OK_Operands then
4436 Lor := Lo_Left - Hi_Right;
4437 Hir := Hi_Left - Lo_Right;
4438 end if;
4440 -- For MOD, if right operand is a positive constant, then result must
4441 -- be in the allowable range of mod results.
4443 when N_Op_Mod =>
4444 if OK_Operands then
4445 if Lo_Right = Hi_Right
4446 and then Lo_Right /= 0
4447 then
4448 if Lo_Right > 0 then
4449 Lor := Uint_0;
4450 Hir := Lo_Right - 1;
4452 else -- Lo_Right < 0
4453 Lor := Lo_Right + 1;
4454 Hir := Uint_0;
4455 end if;
4457 else
4458 OK1 := False;
4459 end if;
4460 end if;
4462 -- For REM, if right operand is a positive constant, then result must
4463 -- be in the allowable range of mod results.
4465 when N_Op_Rem =>
4466 if OK_Operands then
4467 if Lo_Right = Hi_Right
4468 and then Lo_Right /= 0
4469 then
4470 declare
4471 Dval : constant Uint := (abs Lo_Right) - 1;
4473 begin
4474 -- The sign of the result depends on the sign of the
4475 -- dividend (but not on the sign of the divisor, hence
4476 -- the abs operation above).
4478 if Lo_Left < 0 then
4479 Lor := -Dval;
4480 else
4481 Lor := Uint_0;
4482 end if;
4484 if Hi_Left < 0 then
4485 Hir := Uint_0;
4486 else
4487 Hir := Dval;
4488 end if;
4489 end;
4491 else
4492 OK1 := False;
4493 end if;
4494 end if;
4496 -- Attribute reference cases
4498 when N_Attribute_Reference =>
4499 case Attribute_Name (N) is
4501 -- For Pos/Val attributes, we can refine the range using the
4502 -- possible range of values of the attribute expression.
4504 when Name_Pos | Name_Val =>
4505 Determine_Range
4506 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
4508 -- For Length attribute, use the bounds of the corresponding
4509 -- index type to refine the range.
4511 when Name_Length =>
4512 declare
4513 Atyp : Entity_Id := Etype (Prefix (N));
4514 Inum : Nat;
4515 Indx : Node_Id;
4517 LL, LU : Uint;
4518 UL, UU : Uint;
4520 begin
4521 if Is_Access_Type (Atyp) then
4522 Atyp := Designated_Type (Atyp);
4523 end if;
4525 -- For string literal, we know exact value
4527 if Ekind (Atyp) = E_String_Literal_Subtype then
4528 OK := True;
4529 Lo := String_Literal_Length (Atyp);
4530 Hi := String_Literal_Length (Atyp);
4531 return;
4532 end if;
4534 -- Otherwise check for expression given
4536 if No (Expressions (N)) then
4537 Inum := 1;
4538 else
4539 Inum :=
4540 UI_To_Int (Expr_Value (First (Expressions (N))));
4541 end if;
4543 Indx := First_Index (Atyp);
4544 for J in 2 .. Inum loop
4545 Indx := Next_Index (Indx);
4546 end loop;
4548 -- If the index type is a formal type or derived from
4549 -- one, the bounds are not static.
4551 if Is_Generic_Type (Root_Type (Etype (Indx))) then
4552 OK := False;
4553 return;
4554 end if;
4556 Determine_Range
4557 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4558 Assume_Valid);
4560 if OK1 then
4561 Determine_Range
4562 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4563 Assume_Valid);
4565 if OK1 then
4567 -- The maximum value for Length is the biggest
4568 -- possible gap between the values of the bounds.
4569 -- But of course, this value cannot be negative.
4571 Hir := UI_Max (Uint_0, UU - LL + 1);
4573 -- For constrained arrays, the minimum value for
4574 -- Length is taken from the actual value of the
4575 -- bounds, since the index will be exactly of this
4576 -- subtype.
4578 if Is_Constrained (Atyp) then
4579 Lor := UI_Max (Uint_0, UL - LU + 1);
4581 -- For an unconstrained array, the minimum value
4582 -- for length is always zero.
4584 else
4585 Lor := Uint_0;
4586 end if;
4587 end if;
4588 end if;
4589 end;
4591 -- No special handling for other attributes
4592 -- Probably more opportunities exist here???
4594 when others =>
4595 OK1 := False;
4597 end case;
4599 -- For type conversion from one discrete type to another, we can
4600 -- refine the range using the converted value.
4602 when N_Type_Conversion =>
4603 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
4605 -- Nothing special to do for all other expression kinds
4607 when others =>
4608 OK1 := False;
4609 Lor := No_Uint;
4610 Hir := No_Uint;
4611 end case;
4613 -- At this stage, if OK1 is true, then we know that the actual result of
4614 -- the computed expression is in the range Lor .. Hir. We can use this
4615 -- to restrict the possible range of results.
4617 if OK1 then
4619 -- If the refined value of the low bound is greater than the type
4620 -- low bound, then reset it to the more restrictive value. However,
4621 -- we do NOT do this for the case of a modular type where the
4622 -- possible upper bound on the value is above the base type high
4623 -- bound, because that means the result could wrap.
4625 if Lor > Lo
4626 and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
4627 then
4628 Lo := Lor;
4629 end if;
4631 -- Similarly, if the refined value of the high bound is less than the
4632 -- value so far, then reset it to the more restrictive value. Again,
4633 -- we do not do this if the refined low bound is negative for a
4634 -- modular type, since this would wrap.
4636 if Hir < Hi
4637 and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
4638 then
4639 Hi := Hir;
4640 end if;
4641 end if;
4643 -- Set cache entry for future call and we are all done
4645 Determine_Range_Cache_N (Cindex) := N;
4646 Determine_Range_Cache_V (Cindex) := Assume_Valid;
4647 Determine_Range_Cache_Lo (Cindex) := Lo;
4648 Determine_Range_Cache_Hi (Cindex) := Hi;
4649 return;
4651 -- If any exception occurs, it means that we have some bug in the compiler,
4652 -- possibly triggered by a previous error, or by some unforeseen peculiar
4653 -- occurrence. However, this is only an optimization attempt, so there is
4654 -- really no point in crashing the compiler. Instead we just decide, too
4655 -- bad, we can't figure out a range in this case after all.
4657 exception
4658 when others =>
4660 -- Debug flag K disables this behavior (useful for debugging)
4662 if Debug_Flag_K then
4663 raise;
4664 else
4665 OK := False;
4666 Lo := No_Uint;
4667 Hi := No_Uint;
4668 return;
4669 end if;
4670 end Determine_Range;
4672 -----------------------
4673 -- Determine_Range_R --
4674 -----------------------
4676 procedure Determine_Range_R
4677 (N : Node_Id;
4678 OK : out Boolean;
4679 Lo : out Ureal;
4680 Hi : out Ureal;
4681 Assume_Valid : Boolean := False)
4683 Typ : Entity_Id := Etype (N);
4684 -- Type to use, may get reset to base type for possibly invalid entity
4686 Lo_Left : Ureal;
4687 Hi_Left : Ureal;
4688 -- Lo and Hi bounds of left operand
4690 Lo_Right : Ureal;
4691 Hi_Right : Ureal;
4692 -- Lo and Hi bounds of right (or only) operand
4694 Bound : Node_Id;
4695 -- Temp variable used to hold a bound node
4697 Hbound : Ureal;
4698 -- High bound of base type of expression
4700 Lor : Ureal;
4701 Hir : Ureal;
4702 -- Refined values for low and high bounds, after tightening
4704 OK1 : Boolean;
4705 -- Used in lower level calls to indicate if call succeeded
4707 Cindex : Cache_Index;
4708 -- Used to search cache
4710 Btyp : Entity_Id;
4711 -- Base type
4713 function OK_Operands return Boolean;
4714 -- Used for binary operators. Determines the ranges of the left and
4715 -- right operands, and if they are both OK, returns True, and puts
4716 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4718 function Round_Machine (B : Ureal) return Ureal;
4719 -- B is a real bound. Round it using mode Round_Even.
4721 -----------------
4722 -- OK_Operands --
4723 -----------------
4725 function OK_Operands return Boolean is
4726 begin
4727 Determine_Range_R
4728 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4730 if not OK1 then
4731 return False;
4732 end if;
4734 Determine_Range_R
4735 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4736 return OK1;
4737 end OK_Operands;
4739 -------------------
4740 -- Round_Machine --
4741 -------------------
4743 function Round_Machine (B : Ureal) return Ureal is
4744 begin
4745 return Machine (Typ, B, Round_Even, N);
4746 end Round_Machine;
4748 -- Start of processing for Determine_Range_R
4750 begin
4751 -- Prevent junk warnings by initializing range variables
4753 Lo := No_Ureal;
4754 Hi := No_Ureal;
4755 Lor := No_Ureal;
4756 Hir := No_Ureal;
4758 -- For temporary constants internally generated to remove side effects
4759 -- we must use the corresponding expression to determine the range of
4760 -- the expression. But note that the expander can also generate
4761 -- constants in other cases, including deferred constants.
4763 if Is_Entity_Name (N)
4764 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4765 and then Ekind (Entity (N)) = E_Constant
4766 and then Is_Internal_Name (Chars (Entity (N)))
4767 then
4768 if Present (Expression (Parent (Entity (N)))) then
4769 Determine_Range_R
4770 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4772 elsif Present (Full_View (Entity (N))) then
4773 Determine_Range_R
4774 (Expression (Parent (Full_View (Entity (N)))),
4775 OK, Lo, Hi, Assume_Valid);
4777 else
4778 OK := False;
4779 end if;
4781 return;
4782 end if;
4784 -- If type is not defined, we can't determine its range
4786 if No (Typ)
4788 -- We don't deal with anything except IEEE floating-point types
4790 or else not Is_Floating_Point_Type (Typ)
4791 or else Float_Rep (Typ) /= IEEE_Binary
4793 -- Ignore type for which an error has been posted, since range in
4794 -- this case may well be a bogosity deriving from the error. Also
4795 -- ignore if error posted on the reference node.
4797 or else Error_Posted (N) or else Error_Posted (Typ)
4798 then
4799 OK := False;
4800 return;
4801 end if;
4803 -- For all other cases, we can determine the range
4805 OK := True;
4807 -- If value is compile time known, then the possible range is the one
4808 -- value that we know this expression definitely has.
4810 if Compile_Time_Known_Value (N) then
4811 Lo := Expr_Value_R (N);
4812 Hi := Lo;
4813 return;
4814 end if;
4816 -- Return if already in the cache
4818 Cindex := Cache_Index (N mod Cache_Size);
4820 if Determine_Range_Cache_N (Cindex) = N
4821 and then
4822 Determine_Range_Cache_V (Cindex) = Assume_Valid
4823 then
4824 Lo := Determine_Range_Cache_Lo_R (Cindex);
4825 Hi := Determine_Range_Cache_Hi_R (Cindex);
4826 return;
4827 end if;
4829 -- Otherwise, start by finding the bounds of the type of the expression,
4830 -- the value cannot be outside this range (if it is, then we have an
4831 -- overflow situation, which is a separate check, we are talking here
4832 -- only about the expression value).
4834 -- First a check, never try to find the bounds of a generic type, since
4835 -- these bounds are always junk values, and it is only valid to look at
4836 -- the bounds in an instance.
4838 if Is_Generic_Type (Typ) then
4839 OK := False;
4840 return;
4841 end if;
4843 -- First step, change to use base type unless we know the value is valid
4845 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4846 or else Assume_No_Invalid_Values
4847 or else Assume_Valid
4848 then
4849 null;
4850 else
4851 Typ := Underlying_Type (Base_Type (Typ));
4852 end if;
4854 -- Retrieve the base type. Handle the case where the base type is a
4855 -- private type.
4857 Btyp := Base_Type (Typ);
4859 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4860 Btyp := Full_View (Btyp);
4861 end if;
4863 -- We use the actual bound unless it is dynamic, in which case use the
4864 -- corresponding base type bound if possible. If we can't get a bound
4865 -- then we figure we can't determine the range (a peculiar case, that
4866 -- perhaps cannot happen, but there is no point in bombing in this
4867 -- optimization circuit).
4869 -- First the low bound
4871 Bound := Type_Low_Bound (Typ);
4873 if Compile_Time_Known_Value (Bound) then
4874 Lo := Expr_Value_R (Bound);
4876 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4877 Lo := Expr_Value_R (Type_Low_Bound (Btyp));
4879 else
4880 OK := False;
4881 return;
4882 end if;
4884 -- Now the high bound
4886 Bound := Type_High_Bound (Typ);
4888 -- We need the high bound of the base type later on, and this should
4889 -- always be compile time known. Again, it is not clear that this
4890 -- can ever be false, but no point in bombing.
4892 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4893 Hbound := Expr_Value_R (Type_High_Bound (Btyp));
4894 Hi := Hbound;
4896 else
4897 OK := False;
4898 return;
4899 end if;
4901 -- If we have a static subtype, then that may have a tighter bound so
4902 -- use the upper bound of the subtype instead in this case.
4904 if Compile_Time_Known_Value (Bound) then
4905 Hi := Expr_Value_R (Bound);
4906 end if;
4908 -- We may be able to refine this value in certain situations. If any
4909 -- refinement is possible, then Lor and Hir are set to possibly tighter
4910 -- bounds, and OK1 is set to True.
4912 case Nkind (N) is
4914 -- For unary plus, result is limited by range of operand
4916 when N_Op_Plus =>
4917 Determine_Range_R
4918 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
4920 -- For unary minus, determine range of operand, and negate it
4922 when N_Op_Minus =>
4923 Determine_Range_R
4924 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4926 if OK1 then
4927 Lor := -Hi_Right;
4928 Hir := -Lo_Right;
4929 end if;
4931 -- For binary addition, get range of each operand and do the
4932 -- addition to get the result range.
4934 when N_Op_Add =>
4935 if OK_Operands then
4936 Lor := Round_Machine (Lo_Left + Lo_Right);
4937 Hir := Round_Machine (Hi_Left + Hi_Right);
4938 end if;
4940 -- For binary subtraction, get range of each operand and do the worst
4941 -- case subtraction to get the result range.
4943 when N_Op_Subtract =>
4944 if OK_Operands then
4945 Lor := Round_Machine (Lo_Left - Hi_Right);
4946 Hir := Round_Machine (Hi_Left - Lo_Right);
4947 end if;
4949 -- For multiplication, get range of each operand and do the
4950 -- four multiplications to get the result range.
4952 when N_Op_Multiply =>
4953 if OK_Operands then
4954 declare
4955 M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
4956 M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
4957 M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
4958 M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
4959 begin
4960 Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
4961 Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
4962 end;
4963 end if;
4965 -- For division, consider separately the cases where the right
4966 -- operand is positive or negative. Otherwise, the right operand
4967 -- can be arbitrarily close to zero, so the result is likely to
4968 -- be unbounded in one direction, do not attempt to compute it.
4970 when N_Op_Divide =>
4971 if OK_Operands then
4973 -- Right operand is positive
4975 if Lo_Right > Ureal_0 then
4977 -- If the low bound of the left operand is negative, obtain
4978 -- the overall low bound by dividing it by the smallest
4979 -- value of the right operand, and otherwise by the largest
4980 -- value of the right operand.
4982 if Lo_Left < Ureal_0 then
4983 Lor := Round_Machine (Lo_Left / Lo_Right);
4984 else
4985 Lor := Round_Machine (Lo_Left / Hi_Right);
4986 end if;
4988 -- If the high bound of the left operand is negative, obtain
4989 -- the overall high bound by dividing it by the largest
4990 -- value of the right operand, and otherwise by the
4991 -- smallest value of the right operand.
4993 if Hi_Left < Ureal_0 then
4994 Hir := Round_Machine (Hi_Left / Hi_Right);
4995 else
4996 Hir := Round_Machine (Hi_Left / Lo_Right);
4997 end if;
4999 -- Right operand is negative
5001 elsif Hi_Right < Ureal_0 then
5003 -- If the low bound of the left operand is negative, obtain
5004 -- the overall low bound by dividing it by the largest
5005 -- value of the right operand, and otherwise by the smallest
5006 -- value of the right operand.
5008 if Lo_Left < Ureal_0 then
5009 Lor := Round_Machine (Lo_Left / Hi_Right);
5010 else
5011 Lor := Round_Machine (Lo_Left / Lo_Right);
5012 end if;
5014 -- If the high bound of the left operand is negative, obtain
5015 -- the overall high bound by dividing it by the smallest
5016 -- value of the right operand, and otherwise by the
5017 -- largest value of the right operand.
5019 if Hi_Left < Ureal_0 then
5020 Hir := Round_Machine (Hi_Left / Lo_Right);
5021 else
5022 Hir := Round_Machine (Hi_Left / Hi_Right);
5023 end if;
5025 else
5026 OK1 := False;
5027 end if;
5028 end if;
5030 -- For type conversion from one floating-point type to another, we
5031 -- can refine the range using the converted value.
5033 when N_Type_Conversion =>
5034 Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
5036 -- Nothing special to do for all other expression kinds
5038 when others =>
5039 OK1 := False;
5040 Lor := No_Ureal;
5041 Hir := No_Ureal;
5042 end case;
5044 -- At this stage, if OK1 is true, then we know that the actual result of
5045 -- the computed expression is in the range Lor .. Hir. We can use this
5046 -- to restrict the possible range of results.
5048 if OK1 then
5050 -- If the refined value of the low bound is greater than the type
5051 -- low bound, then reset it to the more restrictive value.
5053 if Lor > Lo then
5054 Lo := Lor;
5055 end if;
5057 -- Similarly, if the refined value of the high bound is less than the
5058 -- value so far, then reset it to the more restrictive value.
5060 if Hir < Hi then
5061 Hi := Hir;
5062 end if;
5063 end if;
5065 -- Set cache entry for future call and we are all done
5067 Determine_Range_Cache_N (Cindex) := N;
5068 Determine_Range_Cache_V (Cindex) := Assume_Valid;
5069 Determine_Range_Cache_Lo_R (Cindex) := Lo;
5070 Determine_Range_Cache_Hi_R (Cindex) := Hi;
5071 return;
5073 -- If any exception occurs, it means that we have some bug in the compiler,
5074 -- possibly triggered by a previous error, or by some unforeseen peculiar
5075 -- occurrence. However, this is only an optimization attempt, so there is
5076 -- really no point in crashing the compiler. Instead we just decide, too
5077 -- bad, we can't figure out a range in this case after all.
5079 exception
5080 when others =>
5082 -- Debug flag K disables this behavior (useful for debugging)
5084 if Debug_Flag_K then
5085 raise;
5086 else
5087 OK := False;
5088 Lo := No_Ureal;
5089 Hi := No_Ureal;
5090 return;
5091 end if;
5092 end Determine_Range_R;
5094 ------------------------------------
5095 -- Discriminant_Checks_Suppressed --
5096 ------------------------------------
5098 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
5099 begin
5100 if Present (E) then
5101 if Is_Unchecked_Union (E) then
5102 return True;
5103 elsif Checks_May_Be_Suppressed (E) then
5104 return Is_Check_Suppressed (E, Discriminant_Check);
5105 end if;
5106 end if;
5108 return Scope_Suppress.Suppress (Discriminant_Check);
5109 end Discriminant_Checks_Suppressed;
5111 --------------------------------
5112 -- Division_Checks_Suppressed --
5113 --------------------------------
5115 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
5116 begin
5117 if Present (E) and then Checks_May_Be_Suppressed (E) then
5118 return Is_Check_Suppressed (E, Division_Check);
5119 else
5120 return Scope_Suppress.Suppress (Division_Check);
5121 end if;
5122 end Division_Checks_Suppressed;
5124 --------------------------------------
5125 -- Duplicated_Tag_Checks_Suppressed --
5126 --------------------------------------
5128 function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
5129 begin
5130 if Present (E) and then Checks_May_Be_Suppressed (E) then
5131 return Is_Check_Suppressed (E, Duplicated_Tag_Check);
5132 else
5133 return Scope_Suppress.Suppress (Duplicated_Tag_Check);
5134 end if;
5135 end Duplicated_Tag_Checks_Suppressed;
5137 -----------------------------------
5138 -- Elaboration_Checks_Suppressed --
5139 -----------------------------------
5141 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
5142 begin
5143 -- The complication in this routine is that if we are in the dynamic
5144 -- model of elaboration, we also check All_Checks, since All_Checks
5145 -- does not set Elaboration_Check explicitly.
5147 if Present (E) then
5148 if Kill_Elaboration_Checks (E) then
5149 return True;
5151 elsif Checks_May_Be_Suppressed (E) then
5152 if Is_Check_Suppressed (E, Elaboration_Check) then
5153 return True;
5154 elsif Dynamic_Elaboration_Checks then
5155 return Is_Check_Suppressed (E, All_Checks);
5156 else
5157 return False;
5158 end if;
5159 end if;
5160 end if;
5162 if Scope_Suppress.Suppress (Elaboration_Check) then
5163 return True;
5164 elsif Dynamic_Elaboration_Checks then
5165 return Scope_Suppress.Suppress (All_Checks);
5166 else
5167 return False;
5168 end if;
5169 end Elaboration_Checks_Suppressed;
5171 ---------------------------
5172 -- Enable_Overflow_Check --
5173 ---------------------------
5175 procedure Enable_Overflow_Check (N : Node_Id) is
5176 Typ : constant Entity_Id := Base_Type (Etype (N));
5177 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
5178 Chk : Nat;
5179 OK : Boolean;
5180 Ent : Entity_Id;
5181 Ofs : Uint;
5182 Lo : Uint;
5183 Hi : Uint;
5185 Do_Ovflow_Check : Boolean;
5187 begin
5188 if Debug_Flag_CC then
5189 w ("Enable_Overflow_Check for node ", Int (N));
5190 Write_Str (" Source location = ");
5191 wl (Sloc (N));
5192 pg (Union_Id (N));
5193 end if;
5195 -- No check if overflow checks suppressed for type of node
5197 if Overflow_Checks_Suppressed (Etype (N)) then
5198 return;
5200 -- Nothing to do for unsigned integer types, which do not overflow
5202 elsif Is_Modular_Integer_Type (Typ) then
5203 return;
5204 end if;
5206 -- This is the point at which processing for STRICT mode diverges
5207 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
5208 -- probably more extreme that it needs to be, but what is going on here
5209 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
5210 -- to leave the processing for STRICT mode untouched. There were
5211 -- two reasons for this. First it avoided any incompatible change of
5212 -- behavior. Second, it guaranteed that STRICT mode continued to be
5213 -- legacy reliable.
5215 -- The big difference is that in STRICT mode there is a fair amount of
5216 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
5217 -- know that no check is needed. We skip all that in the two new modes,
5218 -- since really overflow checking happens over a whole subtree, and we
5219 -- do the corresponding optimizations later on when applying the checks.
5221 if Mode in Minimized_Or_Eliminated then
5222 if not (Overflow_Checks_Suppressed (Etype (N)))
5223 and then not (Is_Entity_Name (N)
5224 and then Overflow_Checks_Suppressed (Entity (N)))
5225 then
5226 Activate_Overflow_Check (N);
5227 end if;
5229 if Debug_Flag_CC then
5230 w ("Minimized/Eliminated mode");
5231 end if;
5233 return;
5234 end if;
5236 -- Remainder of processing is for STRICT case, and is unchanged from
5237 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
5239 -- Nothing to do if the range of the result is known OK. We skip this
5240 -- for conversions, since the caller already did the check, and in any
5241 -- case the condition for deleting the check for a type conversion is
5242 -- different.
5244 if Nkind (N) /= N_Type_Conversion then
5245 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
5247 -- Note in the test below that we assume that the range is not OK
5248 -- if a bound of the range is equal to that of the type. That's not
5249 -- quite accurate but we do this for the following reasons:
5251 -- a) The way that Determine_Range works, it will typically report
5252 -- the bounds of the value as being equal to the bounds of the
5253 -- type, because it either can't tell anything more precise, or
5254 -- does not think it is worth the effort to be more precise.
5256 -- b) It is very unusual to have a situation in which this would
5257 -- generate an unnecessary overflow check (an example would be
5258 -- a subtype with a range 0 .. Integer'Last - 1 to which the
5259 -- literal value one is added).
5261 -- c) The alternative is a lot of special casing in this routine
5262 -- which would partially duplicate Determine_Range processing.
5264 if OK then
5265 Do_Ovflow_Check := True;
5267 -- Note that the following checks are quite deliberately > and <
5268 -- rather than >= and <= as explained above.
5270 if Lo > Expr_Value (Type_Low_Bound (Typ))
5271 and then
5272 Hi < Expr_Value (Type_High_Bound (Typ))
5273 then
5274 Do_Ovflow_Check := False;
5276 -- Despite the comments above, it is worth dealing specially with
5277 -- division specially. The only case where integer division can
5278 -- overflow is (largest negative number) / (-1). So we will do
5279 -- an extra range analysis to see if this is possible.
5281 elsif Nkind (N) = N_Op_Divide then
5282 Determine_Range
5283 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5285 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
5286 Do_Ovflow_Check := False;
5288 else
5289 Determine_Range
5290 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5292 if OK and then (Lo > Uint_Minus_1
5293 or else
5294 Hi < Uint_Minus_1)
5295 then
5296 Do_Ovflow_Check := False;
5297 end if;
5298 end if;
5299 end if;
5301 -- If no overflow check required, we are done
5303 if not Do_Ovflow_Check then
5304 if Debug_Flag_CC then
5305 w ("No overflow check required");
5306 end if;
5308 return;
5309 end if;
5310 end if;
5311 end if;
5313 -- If not in optimizing mode, set flag and we are done. We are also done
5314 -- (and just set the flag) if the type is not a discrete type, since it
5315 -- is not worth the effort to eliminate checks for other than discrete
5316 -- types. In addition, we take this same path if we have stored the
5317 -- maximum number of checks possible already (a very unlikely situation,
5318 -- but we do not want to blow up).
5320 if Optimization_Level = 0
5321 or else not Is_Discrete_Type (Etype (N))
5322 or else Num_Saved_Checks = Saved_Checks'Last
5323 then
5324 Activate_Overflow_Check (N);
5326 if Debug_Flag_CC then
5327 w ("Optimization off");
5328 end if;
5330 return;
5331 end if;
5333 -- Otherwise evaluate and check the expression
5335 Find_Check
5336 (Expr => N,
5337 Check_Type => 'O',
5338 Target_Type => Empty,
5339 Entry_OK => OK,
5340 Check_Num => Chk,
5341 Ent => Ent,
5342 Ofs => Ofs);
5344 if Debug_Flag_CC then
5345 w ("Called Find_Check");
5346 w (" OK = ", OK);
5348 if OK then
5349 w (" Check_Num = ", Chk);
5350 w (" Ent = ", Int (Ent));
5351 Write_Str (" Ofs = ");
5352 pid (Ofs);
5353 end if;
5354 end if;
5356 -- If check is not of form to optimize, then set flag and we are done
5358 if not OK then
5359 Activate_Overflow_Check (N);
5360 return;
5361 end if;
5363 -- If check is already performed, then return without setting flag
5365 if Chk /= 0 then
5366 if Debug_Flag_CC then
5367 w ("Check suppressed!");
5368 end if;
5370 return;
5371 end if;
5373 -- Here we will make a new entry for the new check
5375 Activate_Overflow_Check (N);
5376 Num_Saved_Checks := Num_Saved_Checks + 1;
5377 Saved_Checks (Num_Saved_Checks) :=
5378 (Killed => False,
5379 Entity => Ent,
5380 Offset => Ofs,
5381 Check_Type => 'O',
5382 Target_Type => Empty);
5384 if Debug_Flag_CC then
5385 w ("Make new entry, check number = ", Num_Saved_Checks);
5386 w (" Entity = ", Int (Ent));
5387 Write_Str (" Offset = ");
5388 pid (Ofs);
5389 w (" Check_Type = O");
5390 w (" Target_Type = Empty");
5391 end if;
5393 -- If we get an exception, then something went wrong, probably because of
5394 -- an error in the structure of the tree due to an incorrect program. Or
5395 -- it may be a bug in the optimization circuit. In either case the safest
5396 -- thing is simply to set the check flag unconditionally.
5398 exception
5399 when others =>
5400 Activate_Overflow_Check (N);
5402 if Debug_Flag_CC then
5403 w (" exception occurred, overflow flag set");
5404 end if;
5406 return;
5407 end Enable_Overflow_Check;
5409 ------------------------
5410 -- Enable_Range_Check --
5411 ------------------------
5413 procedure Enable_Range_Check (N : Node_Id) is
5414 Chk : Nat;
5415 OK : Boolean;
5416 Ent : Entity_Id;
5417 Ofs : Uint;
5418 Ttyp : Entity_Id;
5419 P : Node_Id;
5421 begin
5422 -- Return if unchecked type conversion with range check killed. In this
5423 -- case we never set the flag (that's what Kill_Range_Check is about).
5425 if Nkind (N) = N_Unchecked_Type_Conversion
5426 and then Kill_Range_Check (N)
5427 then
5428 return;
5429 end if;
5431 -- Do not set range check flag if parent is assignment statement or
5432 -- object declaration with Suppress_Assignment_Checks flag set
5434 if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
5435 and then Suppress_Assignment_Checks (Parent (N))
5436 then
5437 return;
5438 end if;
5440 -- Check for various cases where we should suppress the range check
5442 -- No check if range checks suppressed for type of node
5444 if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
5445 return;
5447 -- No check if node is an entity name, and range checks are suppressed
5448 -- for this entity, or for the type of this entity.
5450 elsif Is_Entity_Name (N)
5451 and then (Range_Checks_Suppressed (Entity (N))
5452 or else Range_Checks_Suppressed (Etype (Entity (N))))
5453 then
5454 return;
5456 -- No checks if index of array, and index checks are suppressed for
5457 -- the array object or the type of the array.
5459 elsif Nkind (Parent (N)) = N_Indexed_Component then
5460 declare
5461 Pref : constant Node_Id := Prefix (Parent (N));
5462 begin
5463 if Is_Entity_Name (Pref)
5464 and then Index_Checks_Suppressed (Entity (Pref))
5465 then
5466 return;
5467 elsif Index_Checks_Suppressed (Etype (Pref)) then
5468 return;
5469 end if;
5470 end;
5471 end if;
5473 -- Debug trace output
5475 if Debug_Flag_CC then
5476 w ("Enable_Range_Check for node ", Int (N));
5477 Write_Str (" Source location = ");
5478 wl (Sloc (N));
5479 pg (Union_Id (N));
5480 end if;
5482 -- If not in optimizing mode, set flag and we are done. We are also done
5483 -- (and just set the flag) if the type is not a discrete type, since it
5484 -- is not worth the effort to eliminate checks for other than discrete
5485 -- types. In addition, we take this same path if we have stored the
5486 -- maximum number of checks possible already (a very unlikely situation,
5487 -- but we do not want to blow up).
5489 if Optimization_Level = 0
5490 or else No (Etype (N))
5491 or else not Is_Discrete_Type (Etype (N))
5492 or else Num_Saved_Checks = Saved_Checks'Last
5493 then
5494 Activate_Range_Check (N);
5496 if Debug_Flag_CC then
5497 w ("Optimization off");
5498 end if;
5500 return;
5501 end if;
5503 -- Otherwise find out the target type
5505 P := Parent (N);
5507 -- For assignment, use left side subtype
5509 if Nkind (P) = N_Assignment_Statement
5510 and then Expression (P) = N
5511 then
5512 Ttyp := Etype (Name (P));
5514 -- For indexed component, use subscript subtype
5516 elsif Nkind (P) = N_Indexed_Component then
5517 declare
5518 Atyp : Entity_Id;
5519 Indx : Node_Id;
5520 Subs : Node_Id;
5522 begin
5523 Atyp := Etype (Prefix (P));
5525 if Is_Access_Type (Atyp) then
5526 Atyp := Designated_Type (Atyp);
5528 -- If the prefix is an access to an unconstrained array,
5529 -- perform check unconditionally: it depends on the bounds of
5530 -- an object and we cannot currently recognize whether the test
5531 -- may be redundant.
5533 if not Is_Constrained (Atyp) then
5534 Activate_Range_Check (N);
5535 return;
5536 end if;
5538 -- Ditto if prefix is simply an unconstrained array. We used
5539 -- to think this case was OK, if the prefix was not an explicit
5540 -- dereference, but we have now seen a case where this is not
5541 -- true, so it is safer to just suppress the optimization in this
5542 -- case. The back end is getting better at eliminating redundant
5543 -- checks in any case, so the loss won't be important.
5545 elsif Is_Array_Type (Atyp)
5546 and then not Is_Constrained (Atyp)
5547 then
5548 Activate_Range_Check (N);
5549 return;
5550 end if;
5552 Indx := First_Index (Atyp);
5553 Subs := First (Expressions (P));
5554 loop
5555 if Subs = N then
5556 Ttyp := Etype (Indx);
5557 exit;
5558 end if;
5560 Next_Index (Indx);
5561 Next (Subs);
5562 end loop;
5563 end;
5565 -- For now, ignore all other cases, they are not so interesting
5567 else
5568 if Debug_Flag_CC then
5569 w (" target type not found, flag set");
5570 end if;
5572 Activate_Range_Check (N);
5573 return;
5574 end if;
5576 -- Evaluate and check the expression
5578 Find_Check
5579 (Expr => N,
5580 Check_Type => 'R',
5581 Target_Type => Ttyp,
5582 Entry_OK => OK,
5583 Check_Num => Chk,
5584 Ent => Ent,
5585 Ofs => Ofs);
5587 if Debug_Flag_CC then
5588 w ("Called Find_Check");
5589 w ("Target_Typ = ", Int (Ttyp));
5590 w (" OK = ", OK);
5592 if OK then
5593 w (" Check_Num = ", Chk);
5594 w (" Ent = ", Int (Ent));
5595 Write_Str (" Ofs = ");
5596 pid (Ofs);
5597 end if;
5598 end if;
5600 -- If check is not of form to optimize, then set flag and we are done
5602 if not OK then
5603 if Debug_Flag_CC then
5604 w (" expression not of optimizable type, flag set");
5605 end if;
5607 Activate_Range_Check (N);
5608 return;
5609 end if;
5611 -- If check is already performed, then return without setting flag
5613 if Chk /= 0 then
5614 if Debug_Flag_CC then
5615 w ("Check suppressed!");
5616 end if;
5618 return;
5619 end if;
5621 -- Here we will make a new entry for the new check
5623 Activate_Range_Check (N);
5624 Num_Saved_Checks := Num_Saved_Checks + 1;
5625 Saved_Checks (Num_Saved_Checks) :=
5626 (Killed => False,
5627 Entity => Ent,
5628 Offset => Ofs,
5629 Check_Type => 'R',
5630 Target_Type => Ttyp);
5632 if Debug_Flag_CC then
5633 w ("Make new entry, check number = ", Num_Saved_Checks);
5634 w (" Entity = ", Int (Ent));
5635 Write_Str (" Offset = ");
5636 pid (Ofs);
5637 w (" Check_Type = R");
5638 w (" Target_Type = ", Int (Ttyp));
5639 pg (Union_Id (Ttyp));
5640 end if;
5642 -- If we get an exception, then something went wrong, probably because of
5643 -- an error in the structure of the tree due to an incorrect program. Or
5644 -- it may be a bug in the optimization circuit. In either case the safest
5645 -- thing is simply to set the check flag unconditionally.
5647 exception
5648 when others =>
5649 Activate_Range_Check (N);
5651 if Debug_Flag_CC then
5652 w (" exception occurred, range flag set");
5653 end if;
5655 return;
5656 end Enable_Range_Check;
5658 ------------------
5659 -- Ensure_Valid --
5660 ------------------
5662 procedure Ensure_Valid
5663 (Expr : Node_Id;
5664 Holes_OK : Boolean := False;
5665 Related_Id : Entity_Id := Empty;
5666 Is_Low_Bound : Boolean := False;
5667 Is_High_Bound : Boolean := False)
5669 Typ : constant Entity_Id := Etype (Expr);
5671 begin
5672 -- Ignore call if we are not doing any validity checking
5674 if not Validity_Checks_On then
5675 return;
5677 -- Ignore call if range or validity checks suppressed on entity or type
5679 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
5680 return;
5682 -- No check required if expression is from the expander, we assume the
5683 -- expander will generate whatever checks are needed. Note that this is
5684 -- not just an optimization, it avoids infinite recursions.
5686 -- Unchecked conversions must be checked, unless they are initialized
5687 -- scalar values, as in a component assignment in an init proc.
5689 -- In addition, we force a check if Force_Validity_Checks is set
5691 elsif not Comes_From_Source (Expr)
5692 and then not Force_Validity_Checks
5693 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
5694 or else Kill_Range_Check (Expr))
5695 then
5696 return;
5698 -- No check required if expression is known to have valid value
5700 elsif Expr_Known_Valid (Expr) then
5701 return;
5703 -- Ignore case of enumeration with holes where the flag is set not to
5704 -- worry about holes, since no special validity check is needed
5706 elsif Is_Enumeration_Type (Typ)
5707 and then Has_Non_Standard_Rep (Typ)
5708 and then Holes_OK
5709 then
5710 return;
5712 -- No check required on the left-hand side of an assignment
5714 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
5715 and then Expr = Name (Parent (Expr))
5716 then
5717 return;
5719 -- No check on a universal real constant. The context will eventually
5720 -- convert it to a machine number for some target type, or report an
5721 -- illegality.
5723 elsif Nkind (Expr) = N_Real_Literal
5724 and then Etype (Expr) = Universal_Real
5725 then
5726 return;
5728 -- If the expression denotes a component of a packed boolean array,
5729 -- no possible check applies. We ignore the old ACATS chestnuts that
5730 -- involve Boolean range True..True.
5732 -- Note: validity checks are generated for expressions that yield a
5733 -- scalar type, when it is possible to create a value that is outside of
5734 -- the type. If this is a one-bit boolean no such value exists. This is
5735 -- an optimization, and it also prevents compiler blowing up during the
5736 -- elaboration of improperly expanded packed array references.
5738 elsif Nkind (Expr) = N_Indexed_Component
5739 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
5740 and then Root_Type (Etype (Expr)) = Standard_Boolean
5741 then
5742 return;
5744 -- For an expression with actions, we want to insert the validity check
5745 -- on the final Expression.
5747 elsif Nkind (Expr) = N_Expression_With_Actions then
5748 Ensure_Valid (Expression (Expr));
5749 return;
5751 -- An annoying special case. If this is an out parameter of a scalar
5752 -- type, then the value is not going to be accessed, therefore it is
5753 -- inappropriate to do any validity check at the call site.
5755 else
5756 -- Only need to worry about scalar types
5758 if Is_Scalar_Type (Typ) then
5759 declare
5760 P : Node_Id;
5761 N : Node_Id;
5762 E : Entity_Id;
5763 F : Entity_Id;
5764 A : Node_Id;
5765 L : List_Id;
5767 begin
5768 -- Find actual argument (which may be a parameter association)
5769 -- and the parent of the actual argument (the call statement)
5771 N := Expr;
5772 P := Parent (Expr);
5774 if Nkind (P) = N_Parameter_Association then
5775 N := P;
5776 P := Parent (N);
5777 end if;
5779 -- Only need to worry if we are argument of a procedure call
5780 -- since functions don't have out parameters. If this is an
5781 -- indirect or dispatching call, get signature from the
5782 -- subprogram type.
5784 if Nkind (P) = N_Procedure_Call_Statement then
5785 L := Parameter_Associations (P);
5787 if Is_Entity_Name (Name (P)) then
5788 E := Entity (Name (P));
5789 else
5790 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
5791 E := Etype (Name (P));
5792 end if;
5794 -- Only need to worry if there are indeed actuals, and if
5795 -- this could be a procedure call, otherwise we cannot get a
5796 -- match (either we are not an argument, or the mode of the
5797 -- formal is not OUT). This test also filters out the
5798 -- generic case.
5800 if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
5802 -- This is the loop through parameters, looking for an
5803 -- OUT parameter for which we are the argument.
5805 F := First_Formal (E);
5806 A := First (L);
5807 while Present (F) loop
5808 if Ekind (F) = E_Out_Parameter and then A = N then
5809 return;
5810 end if;
5812 Next_Formal (F);
5813 Next (A);
5814 end loop;
5815 end if;
5816 end if;
5817 end;
5818 end if;
5819 end if;
5821 -- If this is a boolean expression, only its elementary operands need
5822 -- checking: if they are valid, a boolean or short-circuit operation
5823 -- with them will be valid as well.
5825 if Base_Type (Typ) = Standard_Boolean
5826 and then
5827 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
5828 then
5829 return;
5830 end if;
5832 -- If we fall through, a validity check is required
5834 Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);
5836 if Is_Entity_Name (Expr)
5837 and then Safe_To_Capture_Value (Expr, Entity (Expr))
5838 then
5839 Set_Is_Known_Valid (Entity (Expr));
5840 end if;
5841 end Ensure_Valid;
5843 ----------------------
5844 -- Expr_Known_Valid --
5845 ----------------------
5847 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
5848 Typ : constant Entity_Id := Etype (Expr);
5850 begin
5851 -- Non-scalar types are always considered valid, since they never give
5852 -- rise to the issues of erroneous or bounded error behavior that are
5853 -- the concern. In formal reference manual terms the notion of validity
5854 -- only applies to scalar types. Note that even when packed arrays are
5855 -- represented using modular types, they are still arrays semantically,
5856 -- so they are also always valid (in particular, the unused bits can be
5857 -- random rubbish without affecting the validity of the array value).
5859 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
5860 return True;
5862 -- If no validity checking, then everything is considered valid
5864 elsif not Validity_Checks_On then
5865 return True;
5867 -- Floating-point types are considered valid unless floating-point
5868 -- validity checks have been specifically turned on.
5870 elsif Is_Floating_Point_Type (Typ)
5871 and then not Validity_Check_Floating_Point
5872 then
5873 return True;
5875 -- If the expression is the value of an object that is known to be
5876 -- valid, then clearly the expression value itself is valid.
5878 elsif Is_Entity_Name (Expr)
5879 and then Is_Known_Valid (Entity (Expr))
5881 -- Exclude volatile variables
5883 and then not Treat_As_Volatile (Entity (Expr))
5884 then
5885 return True;
5887 -- References to discriminants are always considered valid. The value
5888 -- of a discriminant gets checked when the object is built. Within the
5889 -- record, we consider it valid, and it is important to do so, since
5890 -- otherwise we can try to generate bogus validity checks which
5891 -- reference discriminants out of scope. Discriminants of concurrent
5892 -- types are excluded for the same reason.
5894 elsif Is_Entity_Name (Expr)
5895 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
5896 then
5897 return True;
5899 -- If the type is one for which all values are known valid, then we are
5900 -- sure that the value is valid except in the slightly odd case where
5901 -- the expression is a reference to a variable whose size has been
5902 -- explicitly set to a value greater than the object size.
5904 elsif Is_Known_Valid (Typ) then
5905 if Is_Entity_Name (Expr)
5906 and then Ekind (Entity (Expr)) = E_Variable
5907 and then Esize (Entity (Expr)) > Esize (Typ)
5908 then
5909 return False;
5910 else
5911 return True;
5912 end if;
5914 -- Integer and character literals always have valid values, where
5915 -- appropriate these will be range checked in any case.
5917 elsif Nkind_In (Expr, N_Integer_Literal, N_Character_Literal) then
5918 return True;
5920 -- If we have a type conversion or a qualification of a known valid
5921 -- value, then the result will always be valid.
5923 elsif Nkind_In (Expr, N_Type_Conversion, N_Qualified_Expression) then
5924 return Expr_Known_Valid (Expression (Expr));
5926 -- Case of expression is a non-floating-point operator. In this case we
5927 -- can assume the result is valid the generated code for the operator
5928 -- will include whatever checks are needed (e.g. range checks) to ensure
5929 -- validity. This assumption does not hold for the floating-point case,
5930 -- since floating-point operators can generate Infinite or NaN results
5931 -- which are considered invalid.
5933 -- Historical note: in older versions, the exemption of floating-point
5934 -- types from this assumption was done only in cases where the parent
5935 -- was an assignment, function call or parameter association. Presumably
5936 -- the idea was that in other contexts, the result would be checked
5937 -- elsewhere, but this list of cases was missing tests (at least the
5938 -- N_Object_Declaration case, as shown by a reported missing validity
5939 -- check), and it is not clear why function calls but not procedure
5940 -- calls were tested for. It really seems more accurate and much
5941 -- safer to recognize that expressions which are the result of a
5942 -- floating-point operator can never be assumed to be valid.
5944 elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
5945 return True;
5947 -- The result of a membership test is always valid, since it is true or
5948 -- false, there are no other possibilities.
5950 elsif Nkind (Expr) in N_Membership_Test then
5951 return True;
5953 -- For all other cases, we do not know the expression is valid
5955 else
5956 return False;
5957 end if;
5958 end Expr_Known_Valid;
5960 ----------------
5961 -- Find_Check --
5962 ----------------
5964 procedure Find_Check
5965 (Expr : Node_Id;
5966 Check_Type : Character;
5967 Target_Type : Entity_Id;
5968 Entry_OK : out Boolean;
5969 Check_Num : out Nat;
5970 Ent : out Entity_Id;
5971 Ofs : out Uint)
5973 function Within_Range_Of
5974 (Target_Type : Entity_Id;
5975 Check_Type : Entity_Id) return Boolean;
5976 -- Given a requirement for checking a range against Target_Type, and
5977 -- and a range Check_Type against which a check has already been made,
5978 -- determines if the check against check type is sufficient to ensure
5979 -- that no check against Target_Type is required.
5981 ---------------------
5982 -- Within_Range_Of --
5983 ---------------------
5985 function Within_Range_Of
5986 (Target_Type : Entity_Id;
5987 Check_Type : Entity_Id) return Boolean
5989 begin
5990 if Target_Type = Check_Type then
5991 return True;
5993 else
5994 declare
5995 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
5996 Thi : constant Node_Id := Type_High_Bound (Target_Type);
5997 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
5998 Chi : constant Node_Id := Type_High_Bound (Check_Type);
6000 begin
6001 if (Tlo = Clo
6002 or else (Compile_Time_Known_Value (Tlo)
6003 and then
6004 Compile_Time_Known_Value (Clo)
6005 and then
6006 Expr_Value (Clo) >= Expr_Value (Tlo)))
6007 and then
6008 (Thi = Chi
6009 or else (Compile_Time_Known_Value (Thi)
6010 and then
6011 Compile_Time_Known_Value (Chi)
6012 and then
6013 Expr_Value (Chi) <= Expr_Value (Clo)))
6014 then
6015 return True;
6016 else
6017 return False;
6018 end if;
6019 end;
6020 end if;
6021 end Within_Range_Of;
6023 -- Start of processing for Find_Check
6025 begin
6026 -- Establish default, in case no entry is found
6028 Check_Num := 0;
6030 -- Case of expression is simple entity reference
6032 if Is_Entity_Name (Expr) then
6033 Ent := Entity (Expr);
6034 Ofs := Uint_0;
6036 -- Case of expression is entity + known constant
6038 elsif Nkind (Expr) = N_Op_Add
6039 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6040 and then Is_Entity_Name (Left_Opnd (Expr))
6041 then
6042 Ent := Entity (Left_Opnd (Expr));
6043 Ofs := Expr_Value (Right_Opnd (Expr));
6045 -- Case of expression is entity - known constant
6047 elsif Nkind (Expr) = N_Op_Subtract
6048 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6049 and then Is_Entity_Name (Left_Opnd (Expr))
6050 then
6051 Ent := Entity (Left_Opnd (Expr));
6052 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
6054 -- Any other expression is not of the right form
6056 else
6057 Ent := Empty;
6058 Ofs := Uint_0;
6059 Entry_OK := False;
6060 return;
6061 end if;
6063 -- Come here with expression of appropriate form, check if entity is an
6064 -- appropriate one for our purposes.
6066 if (Ekind (Ent) = E_Variable
6067 or else Is_Constant_Object (Ent))
6068 and then not Is_Library_Level_Entity (Ent)
6069 then
6070 Entry_OK := True;
6071 else
6072 Entry_OK := False;
6073 return;
6074 end if;
6076 -- See if there is matching check already
6078 for J in reverse 1 .. Num_Saved_Checks loop
6079 declare
6080 SC : Saved_Check renames Saved_Checks (J);
6081 begin
6082 if SC.Killed = False
6083 and then SC.Entity = Ent
6084 and then SC.Offset = Ofs
6085 and then SC.Check_Type = Check_Type
6086 and then Within_Range_Of (Target_Type, SC.Target_Type)
6087 then
6088 Check_Num := J;
6089 return;
6090 end if;
6091 end;
6092 end loop;
6094 -- If we fall through entry was not found
6096 return;
6097 end Find_Check;
6099 ---------------------------------
6100 -- Generate_Discriminant_Check --
6101 ---------------------------------
6103 -- Note: the code for this procedure is derived from the
6104 -- Emit_Discriminant_Check Routine in trans.c.
6106 procedure Generate_Discriminant_Check (N : Node_Id) is
6107 Loc : constant Source_Ptr := Sloc (N);
6108 Pref : constant Node_Id := Prefix (N);
6109 Sel : constant Node_Id := Selector_Name (N);
6111 Orig_Comp : constant Entity_Id :=
6112 Original_Record_Component (Entity (Sel));
6113 -- The original component to be checked
6115 Discr_Fct : constant Entity_Id :=
6116 Discriminant_Checking_Func (Orig_Comp);
6117 -- The discriminant checking function
6119 Discr : Entity_Id;
6120 -- One discriminant to be checked in the type
6122 Real_Discr : Entity_Id;
6123 -- Actual discriminant in the call
6125 Pref_Type : Entity_Id;
6126 -- Type of relevant prefix (ignoring private/access stuff)
6128 Args : List_Id;
6129 -- List of arguments for function call
6131 Formal : Entity_Id;
6132 -- Keep track of the formal corresponding to the actual we build for
6133 -- each discriminant, in order to be able to perform the necessary type
6134 -- conversions.
6136 Scomp : Node_Id;
6137 -- Selected component reference for checking function argument
6139 begin
6140 Pref_Type := Etype (Pref);
6142 -- Force evaluation of the prefix, so that it does not get evaluated
6143 -- twice (once for the check, once for the actual reference). Such a
6144 -- double evaluation is always a potential source of inefficiency, and
6145 -- is functionally incorrect in the volatile case, or when the prefix
6146 -- may have side effects. A nonvolatile entity or a component of a
6147 -- nonvolatile entity requires no evaluation.
6149 if Is_Entity_Name (Pref) then
6150 if Treat_As_Volatile (Entity (Pref)) then
6151 Force_Evaluation (Pref, Name_Req => True);
6152 end if;
6154 elsif Treat_As_Volatile (Etype (Pref)) then
6155 Force_Evaluation (Pref, Name_Req => True);
6157 elsif Nkind (Pref) = N_Selected_Component
6158 and then Is_Entity_Name (Prefix (Pref))
6159 then
6160 null;
6162 else
6163 Force_Evaluation (Pref, Name_Req => True);
6164 end if;
6166 -- For a tagged type, use the scope of the original component to
6167 -- obtain the type, because ???
6169 if Is_Tagged_Type (Scope (Orig_Comp)) then
6170 Pref_Type := Scope (Orig_Comp);
6172 -- For an untagged derived type, use the discriminants of the parent
6173 -- which have been renamed in the derivation, possibly by a one-to-many
6174 -- discriminant constraint. For untagged type, initially get the Etype
6175 -- of the prefix
6177 else
6178 if Is_Derived_Type (Pref_Type)
6179 and then Number_Discriminants (Pref_Type) /=
6180 Number_Discriminants (Etype (Base_Type (Pref_Type)))
6181 then
6182 Pref_Type := Etype (Base_Type (Pref_Type));
6183 end if;
6184 end if;
6186 -- We definitely should have a checking function, This routine should
6187 -- not be called if no discriminant checking function is present.
6189 pragma Assert (Present (Discr_Fct));
6191 -- Create the list of the actual parameters for the call. This list
6192 -- is the list of the discriminant fields of the record expression to
6193 -- be discriminant checked.
6195 Args := New_List;
6196 Formal := First_Formal (Discr_Fct);
6197 Discr := First_Discriminant (Pref_Type);
6198 while Present (Discr) loop
6200 -- If we have a corresponding discriminant field, and a parent
6201 -- subtype is present, then we want to use the corresponding
6202 -- discriminant since this is the one with the useful value.
6204 if Present (Corresponding_Discriminant (Discr))
6205 and then Ekind (Pref_Type) = E_Record_Type
6206 and then Present (Parent_Subtype (Pref_Type))
6207 then
6208 Real_Discr := Corresponding_Discriminant (Discr);
6209 else
6210 Real_Discr := Discr;
6211 end if;
6213 -- Construct the reference to the discriminant
6215 Scomp :=
6216 Make_Selected_Component (Loc,
6217 Prefix =>
6218 Unchecked_Convert_To (Pref_Type,
6219 Duplicate_Subexpr (Pref)),
6220 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
6222 -- Manually analyze and resolve this selected component. We really
6223 -- want it just as it appears above, and do not want the expander
6224 -- playing discriminal games etc with this reference. Then we append
6225 -- the argument to the list we are gathering.
6227 Set_Etype (Scomp, Etype (Real_Discr));
6228 Set_Analyzed (Scomp, True);
6229 Append_To (Args, Convert_To (Etype (Formal), Scomp));
6231 Next_Formal_With_Extras (Formal);
6232 Next_Discriminant (Discr);
6233 end loop;
6235 -- Now build and insert the call
6237 Insert_Action (N,
6238 Make_Raise_Constraint_Error (Loc,
6239 Condition =>
6240 Make_Function_Call (Loc,
6241 Name => New_Occurrence_Of (Discr_Fct, Loc),
6242 Parameter_Associations => Args),
6243 Reason => CE_Discriminant_Check_Failed));
6244 end Generate_Discriminant_Check;
6246 ---------------------------
6247 -- Generate_Index_Checks --
6248 ---------------------------
6250 procedure Generate_Index_Checks (N : Node_Id) is
6252 function Entity_Of_Prefix return Entity_Id;
6253 -- Returns the entity of the prefix of N (or Empty if not found)
6255 ----------------------
6256 -- Entity_Of_Prefix --
6257 ----------------------
6259 function Entity_Of_Prefix return Entity_Id is
6260 P : Node_Id;
6262 begin
6263 P := Prefix (N);
6264 while not Is_Entity_Name (P) loop
6265 if not Nkind_In (P, N_Selected_Component,
6266 N_Indexed_Component)
6267 then
6268 return Empty;
6269 end if;
6271 P := Prefix (P);
6272 end loop;
6274 return Entity (P);
6275 end Entity_Of_Prefix;
6277 -- Local variables
6279 Loc : constant Source_Ptr := Sloc (N);
6280 A : constant Node_Id := Prefix (N);
6281 A_Ent : constant Entity_Id := Entity_Of_Prefix;
6282 Sub : Node_Id;
6284 -- Start of processing for Generate_Index_Checks
6286 begin
6287 -- Ignore call if the prefix is not an array since we have a serious
6288 -- error in the sources. Ignore it also if index checks are suppressed
6289 -- for array object or type.
6291 if not Is_Array_Type (Etype (A))
6292 or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
6293 or else Index_Checks_Suppressed (Etype (A))
6294 then
6295 return;
6297 -- The indexed component we are dealing with contains 'Loop_Entry in its
6298 -- prefix. This case arises when analysis has determined that constructs
6299 -- such as
6301 -- Prefix'Loop_Entry (Expr)
6302 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6304 -- require rewriting for error detection purposes. A side effect of this
6305 -- action is the generation of index checks that mention 'Loop_Entry.
6306 -- Delay the generation of the check until 'Loop_Entry has been properly
6307 -- expanded. This is done in Expand_Loop_Entry_Attributes.
6309 elsif Nkind (Prefix (N)) = N_Attribute_Reference
6310 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
6311 then
6312 return;
6313 end if;
6315 -- Generate a raise of constraint error with the appropriate reason and
6316 -- a condition of the form:
6318 -- Base_Type (Sub) not in Array'Range (Subscript)
6320 -- Note that the reason we generate the conversion to the base type here
6321 -- is that we definitely want the range check to take place, even if it
6322 -- looks like the subtype is OK. Optimization considerations that allow
6323 -- us to omit the check have already been taken into account in the
6324 -- setting of the Do_Range_Check flag earlier on.
6326 Sub := First (Expressions (N));
6328 -- Handle string literals
6330 if Ekind (Etype (A)) = E_String_Literal_Subtype then
6331 if Do_Range_Check (Sub) then
6332 Set_Do_Range_Check (Sub, False);
6334 -- For string literals we obtain the bounds of the string from the
6335 -- associated subtype.
6337 Insert_Action (N,
6338 Make_Raise_Constraint_Error (Loc,
6339 Condition =>
6340 Make_Not_In (Loc,
6341 Left_Opnd =>
6342 Convert_To (Base_Type (Etype (Sub)),
6343 Duplicate_Subexpr_Move_Checks (Sub)),
6344 Right_Opnd =>
6345 Make_Attribute_Reference (Loc,
6346 Prefix => New_Occurrence_Of (Etype (A), Loc),
6347 Attribute_Name => Name_Range)),
6348 Reason => CE_Index_Check_Failed));
6349 end if;
6351 -- General case
6353 else
6354 declare
6355 A_Idx : Node_Id := Empty;
6356 A_Range : Node_Id;
6357 Ind : Nat;
6358 Num : List_Id;
6359 Range_N : Node_Id;
6361 begin
6362 A_Idx := First_Index (Etype (A));
6363 Ind := 1;
6364 while Present (Sub) loop
6365 if Do_Range_Check (Sub) then
6366 Set_Do_Range_Check (Sub, False);
6368 -- Force evaluation except for the case of a simple name of
6369 -- a nonvolatile entity.
6371 if not Is_Entity_Name (Sub)
6372 or else Treat_As_Volatile (Entity (Sub))
6373 then
6374 Force_Evaluation (Sub);
6375 end if;
6377 if Nkind (A_Idx) = N_Range then
6378 A_Range := A_Idx;
6380 elsif Nkind (A_Idx) = N_Identifier
6381 or else Nkind (A_Idx) = N_Expanded_Name
6382 then
6383 A_Range := Scalar_Range (Entity (A_Idx));
6385 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
6386 A_Range := Range_Expression (Constraint (A_Idx));
6387 end if;
6389 -- For array objects with constant bounds we can generate
6390 -- the index check using the bounds of the type of the index
6392 if Present (A_Ent)
6393 and then Ekind (A_Ent) = E_Variable
6394 and then Is_Constant_Bound (Low_Bound (A_Range))
6395 and then Is_Constant_Bound (High_Bound (A_Range))
6396 then
6397 Range_N :=
6398 Make_Attribute_Reference (Loc,
6399 Prefix =>
6400 New_Occurrence_Of (Etype (A_Idx), Loc),
6401 Attribute_Name => Name_Range);
6403 -- For arrays with non-constant bounds we cannot generate
6404 -- the index check using the bounds of the type of the index
6405 -- since it may reference discriminants of some enclosing
6406 -- type. We obtain the bounds directly from the prefix
6407 -- object.
6409 else
6410 if Ind = 1 then
6411 Num := No_List;
6412 else
6413 Num := New_List (Make_Integer_Literal (Loc, Ind));
6414 end if;
6416 Range_N :=
6417 Make_Attribute_Reference (Loc,
6418 Prefix =>
6419 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
6420 Attribute_Name => Name_Range,
6421 Expressions => Num);
6422 end if;
6424 Insert_Action (N,
6425 Make_Raise_Constraint_Error (Loc,
6426 Condition =>
6427 Make_Not_In (Loc,
6428 Left_Opnd =>
6429 Convert_To (Base_Type (Etype (Sub)),
6430 Duplicate_Subexpr_Move_Checks (Sub)),
6431 Right_Opnd => Range_N),
6432 Reason => CE_Index_Check_Failed));
6433 end if;
6435 A_Idx := Next_Index (A_Idx);
6436 Ind := Ind + 1;
6437 Next (Sub);
6438 end loop;
6439 end;
6440 end if;
6441 end Generate_Index_Checks;
6443 --------------------------
6444 -- Generate_Range_Check --
6445 --------------------------
6447 procedure Generate_Range_Check
6448 (N : Node_Id;
6449 Target_Type : Entity_Id;
6450 Reason : RT_Exception_Code)
6452 Loc : constant Source_Ptr := Sloc (N);
6453 Source_Type : constant Entity_Id := Etype (N);
6454 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
6455 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
6457 procedure Convert_And_Check_Range;
6458 -- Convert the conversion operand to the target base type and save in
6459 -- a temporary. Then check the converted value against the range of the
6460 -- target subtype.
6462 -----------------------------
6463 -- Convert_And_Check_Range --
6464 -----------------------------
6466 procedure Convert_And_Check_Range is
6467 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
6469 begin
6470 -- We make a temporary to hold the value of the converted value
6471 -- (converted to the base type), and then do the test against this
6472 -- temporary. The conversion itself is replaced by an occurrence of
6473 -- Tnn and followed by the explicit range check. Note that checks
6474 -- are suppressed for this code, since we don't want a recursive
6475 -- range check popping up.
6477 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
6478 -- [constraint_error when Tnn not in Target_Type]
6480 Insert_Actions (N, New_List (
6481 Make_Object_Declaration (Loc,
6482 Defining_Identifier => Tnn,
6483 Object_Definition => New_Occurrence_Of (Target_Base_Type, Loc),
6484 Constant_Present => True,
6485 Expression =>
6486 Make_Type_Conversion (Loc,
6487 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
6488 Expression => Duplicate_Subexpr (N))),
6490 Make_Raise_Constraint_Error (Loc,
6491 Condition =>
6492 Make_Not_In (Loc,
6493 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6494 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6495 Reason => Reason)),
6496 Suppress => All_Checks);
6498 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6500 -- Set the type of N, because the declaration for Tnn might not
6501 -- be analyzed yet, as is the case if N appears within a record
6502 -- declaration, as a discriminant constraint or expression.
6504 Set_Etype (N, Target_Base_Type);
6505 end Convert_And_Check_Range;
6507 -- Start of processing for Generate_Range_Check
6509 begin
6510 -- First special case, if the source type is already within the range
6511 -- of the target type, then no check is needed (probably we should have
6512 -- stopped Do_Range_Check from being set in the first place, but better
6513 -- late than never in preventing junk code and junk flag settings.
6515 if In_Subrange_Of (Source_Type, Target_Type)
6517 -- We do NOT apply this if the source node is a literal, since in this
6518 -- case the literal has already been labeled as having the subtype of
6519 -- the target.
6521 and then not
6522 (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
6523 or else
6524 (Is_Entity_Name (N)
6525 and then Ekind (Entity (N)) = E_Enumeration_Literal))
6526 then
6527 Set_Do_Range_Check (N, False);
6528 return;
6529 end if;
6531 -- Here a check is needed. If the expander is not active, or if we are
6532 -- in GNATProve mode, then simply set the Do_Range_Check flag and we
6533 -- are done. In both these cases, we just want to see the range check
6534 -- flag set, we do not want to generate the explicit range check code.
6536 if GNATprove_Mode or else not Expander_Active then
6537 Set_Do_Range_Check (N, True);
6538 return;
6539 end if;
6541 -- Here we will generate an explicit range check, so we don't want to
6542 -- set the Do_Range check flag, since the range check is taken care of
6543 -- by the code we will generate.
6545 Set_Do_Range_Check (N, False);
6547 -- Force evaluation of the node, so that it does not get evaluated twice
6548 -- (once for the check, once for the actual reference). Such a double
6549 -- evaluation is always a potential source of inefficiency, and is
6550 -- functionally incorrect in the volatile case.
6552 if not Is_Entity_Name (N) or else Treat_As_Volatile (Entity (N)) then
6553 Force_Evaluation (N);
6554 end if;
6556 -- The easiest case is when Source_Base_Type and Target_Base_Type are
6557 -- the same since in this case we can simply do a direct check of the
6558 -- value of N against the bounds of Target_Type.
6560 -- [constraint_error when N not in Target_Type]
6562 -- Note: this is by far the most common case, for example all cases of
6563 -- checks on the RHS of assignments are in this category, but not all
6564 -- cases are like this. Notably conversions can involve two types.
6566 if Source_Base_Type = Target_Base_Type then
6568 -- Insert the explicit range check. Note that we suppress checks for
6569 -- this code, since we don't want a recursive range check popping up.
6571 Insert_Action (N,
6572 Make_Raise_Constraint_Error (Loc,
6573 Condition =>
6574 Make_Not_In (Loc,
6575 Left_Opnd => Duplicate_Subexpr (N),
6576 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6577 Reason => Reason),
6578 Suppress => All_Checks);
6580 -- Next test for the case where the target type is within the bounds
6581 -- of the base type of the source type, since in this case we can
6582 -- simply convert these bounds to the base type of T to do the test.
6584 -- [constraint_error when N not in
6585 -- Source_Base_Type (Target_Type'First)
6586 -- ..
6587 -- Source_Base_Type(Target_Type'Last))]
6589 -- The conversions will always work and need no check
6591 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
6592 -- of converting from an enumeration value to an integer type, such as
6593 -- occurs for the case of generating a range check on Enum'Val(Exp)
6594 -- (which used to be handled by gigi). This is OK, since the conversion
6595 -- itself does not require a check.
6597 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
6599 -- Insert the explicit range check. Note that we suppress checks for
6600 -- this code, since we don't want a recursive range check popping up.
6602 if Is_Discrete_Type (Source_Base_Type)
6603 and then
6604 Is_Discrete_Type (Target_Base_Type)
6605 then
6606 Insert_Action (N,
6607 Make_Raise_Constraint_Error (Loc,
6608 Condition =>
6609 Make_Not_In (Loc,
6610 Left_Opnd => Duplicate_Subexpr (N),
6612 Right_Opnd =>
6613 Make_Range (Loc,
6614 Low_Bound =>
6615 Unchecked_Convert_To (Source_Base_Type,
6616 Make_Attribute_Reference (Loc,
6617 Prefix =>
6618 New_Occurrence_Of (Target_Type, Loc),
6619 Attribute_Name => Name_First)),
6621 High_Bound =>
6622 Unchecked_Convert_To (Source_Base_Type,
6623 Make_Attribute_Reference (Loc,
6624 Prefix =>
6625 New_Occurrence_Of (Target_Type, Loc),
6626 Attribute_Name => Name_Last)))),
6627 Reason => Reason),
6628 Suppress => All_Checks);
6630 -- For conversions involving at least one type that is not discrete,
6631 -- first convert to target type and then generate the range check.
6632 -- This avoids problems with values that are close to a bound of the
6633 -- target type that would fail a range check when done in a larger
6634 -- source type before converting but would pass if converted with
6635 -- rounding and then checked (such as in float-to-float conversions).
6637 else
6638 Convert_And_Check_Range;
6639 end if;
6641 -- Note that at this stage we now that the Target_Base_Type is not in
6642 -- the range of the Source_Base_Type (since even the Target_Type itself
6643 -- is not in this range). It could still be the case that Source_Type is
6644 -- in range of the target base type since we have not checked that case.
6646 -- If that is the case, we can freely convert the source to the target,
6647 -- and then test the target result against the bounds.
6649 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
6650 Convert_And_Check_Range;
6652 -- At this stage, we know that we have two scalar types, which are
6653 -- directly convertible, and where neither scalar type has a base
6654 -- range that is in the range of the other scalar type.
6656 -- The only way this can happen is with a signed and unsigned type.
6657 -- So test for these two cases:
6659 else
6660 -- Case of the source is unsigned and the target is signed
6662 if Is_Unsigned_Type (Source_Base_Type)
6663 and then not Is_Unsigned_Type (Target_Base_Type)
6664 then
6665 -- If the source is unsigned and the target is signed, then we
6666 -- know that the source is not shorter than the target (otherwise
6667 -- the source base type would be in the target base type range).
6669 -- In other words, the unsigned type is either the same size as
6670 -- the target, or it is larger. It cannot be smaller.
6672 pragma Assert
6673 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
6675 -- We only need to check the low bound if the low bound of the
6676 -- target type is non-negative. If the low bound of the target
6677 -- type is negative, then we know that we will fit fine.
6679 -- If the high bound of the target type is negative, then we
6680 -- know we have a constraint error, since we can't possibly
6681 -- have a negative source.
6683 -- With these two checks out of the way, we can do the check
6684 -- using the source type safely
6686 -- This is definitely the most annoying case.
6688 -- [constraint_error
6689 -- when (Target_Type'First >= 0
6690 -- and then
6691 -- N < Source_Base_Type (Target_Type'First))
6692 -- or else Target_Type'Last < 0
6693 -- or else N > Source_Base_Type (Target_Type'Last)];
6695 -- We turn off all checks since we know that the conversions
6696 -- will work fine, given the guards for negative values.
6698 Insert_Action (N,
6699 Make_Raise_Constraint_Error (Loc,
6700 Condition =>
6701 Make_Or_Else (Loc,
6702 Make_Or_Else (Loc,
6703 Left_Opnd =>
6704 Make_And_Then (Loc,
6705 Left_Opnd => Make_Op_Ge (Loc,
6706 Left_Opnd =>
6707 Make_Attribute_Reference (Loc,
6708 Prefix =>
6709 New_Occurrence_Of (Target_Type, Loc),
6710 Attribute_Name => Name_First),
6711 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
6713 Right_Opnd =>
6714 Make_Op_Lt (Loc,
6715 Left_Opnd => Duplicate_Subexpr (N),
6716 Right_Opnd =>
6717 Convert_To (Source_Base_Type,
6718 Make_Attribute_Reference (Loc,
6719 Prefix =>
6720 New_Occurrence_Of (Target_Type, Loc),
6721 Attribute_Name => Name_First)))),
6723 Right_Opnd =>
6724 Make_Op_Lt (Loc,
6725 Left_Opnd =>
6726 Make_Attribute_Reference (Loc,
6727 Prefix => New_Occurrence_Of (Target_Type, Loc),
6728 Attribute_Name => Name_Last),
6729 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
6731 Right_Opnd =>
6732 Make_Op_Gt (Loc,
6733 Left_Opnd => Duplicate_Subexpr (N),
6734 Right_Opnd =>
6735 Convert_To (Source_Base_Type,
6736 Make_Attribute_Reference (Loc,
6737 Prefix => New_Occurrence_Of (Target_Type, Loc),
6738 Attribute_Name => Name_Last)))),
6740 Reason => Reason),
6741 Suppress => All_Checks);
6743 -- Only remaining possibility is that the source is signed and
6744 -- the target is unsigned.
6746 else
6747 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
6748 and then Is_Unsigned_Type (Target_Base_Type));
6750 -- If the source is signed and the target is unsigned, then we
6751 -- know that the target is not shorter than the source (otherwise
6752 -- the target base type would be in the source base type range).
6754 -- In other words, the unsigned type is either the same size as
6755 -- the target, or it is larger. It cannot be smaller.
6757 -- Clearly we have an error if the source value is negative since
6758 -- no unsigned type can have negative values. If the source type
6759 -- is non-negative, then the check can be done using the target
6760 -- type.
6762 -- Tnn : constant Target_Base_Type (N) := Target_Type;
6764 -- [constraint_error
6765 -- when N < 0 or else Tnn not in Target_Type];
6767 -- We turn off all checks for the conversion of N to the target
6768 -- base type, since we generate the explicit check to ensure that
6769 -- the value is non-negative
6771 declare
6772 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
6774 begin
6775 Insert_Actions (N, New_List (
6776 Make_Object_Declaration (Loc,
6777 Defining_Identifier => Tnn,
6778 Object_Definition =>
6779 New_Occurrence_Of (Target_Base_Type, Loc),
6780 Constant_Present => True,
6781 Expression =>
6782 Make_Unchecked_Type_Conversion (Loc,
6783 Subtype_Mark =>
6784 New_Occurrence_Of (Target_Base_Type, Loc),
6785 Expression => Duplicate_Subexpr (N))),
6787 Make_Raise_Constraint_Error (Loc,
6788 Condition =>
6789 Make_Or_Else (Loc,
6790 Left_Opnd =>
6791 Make_Op_Lt (Loc,
6792 Left_Opnd => Duplicate_Subexpr (N),
6793 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
6795 Right_Opnd =>
6796 Make_Not_In (Loc,
6797 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6798 Right_Opnd =>
6799 New_Occurrence_Of (Target_Type, Loc))),
6801 Reason => Reason)),
6802 Suppress => All_Checks);
6804 -- Set the Etype explicitly, because Insert_Actions may have
6805 -- placed the declaration in the freeze list for an enclosing
6806 -- construct, and thus it is not analyzed yet.
6808 Set_Etype (Tnn, Target_Base_Type);
6809 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6810 end;
6811 end if;
6812 end if;
6813 end Generate_Range_Check;
6815 ------------------
6816 -- Get_Check_Id --
6817 ------------------
6819 function Get_Check_Id (N : Name_Id) return Check_Id is
6820 begin
6821 -- For standard check name, we can do a direct computation
6823 if N in First_Check_Name .. Last_Check_Name then
6824 return Check_Id (N - (First_Check_Name - 1));
6826 -- For non-standard names added by pragma Check_Name, search table
6828 else
6829 for J in All_Checks + 1 .. Check_Names.Last loop
6830 if Check_Names.Table (J) = N then
6831 return J;
6832 end if;
6833 end loop;
6834 end if;
6836 -- No matching name found
6838 return No_Check_Id;
6839 end Get_Check_Id;
6841 ---------------------
6842 -- Get_Discriminal --
6843 ---------------------
6845 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
6846 Loc : constant Source_Ptr := Sloc (E);
6847 D : Entity_Id;
6848 Sc : Entity_Id;
6850 begin
6851 -- The bound can be a bona fide parameter of a protected operation,
6852 -- rather than a prival encoded as an in-parameter.
6854 if No (Discriminal_Link (Entity (Bound))) then
6855 return Bound;
6856 end if;
6858 -- Climb the scope stack looking for an enclosing protected type. If
6859 -- we run out of scopes, return the bound itself.
6861 Sc := Scope (E);
6862 while Present (Sc) loop
6863 if Sc = Standard_Standard then
6864 return Bound;
6865 elsif Ekind (Sc) = E_Protected_Type then
6866 exit;
6867 end if;
6869 Sc := Scope (Sc);
6870 end loop;
6872 D := First_Discriminant (Sc);
6873 while Present (D) loop
6874 if Chars (D) = Chars (Bound) then
6875 return New_Occurrence_Of (Discriminal (D), Loc);
6876 end if;
6878 Next_Discriminant (D);
6879 end loop;
6881 return Bound;
6882 end Get_Discriminal;
6884 ----------------------
6885 -- Get_Range_Checks --
6886 ----------------------
6888 function Get_Range_Checks
6889 (Ck_Node : Node_Id;
6890 Target_Typ : Entity_Id;
6891 Source_Typ : Entity_Id := Empty;
6892 Warn_Node : Node_Id := Empty) return Check_Result
6894 begin
6895 return
6896 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
6897 end Get_Range_Checks;
6899 ------------------
6900 -- Guard_Access --
6901 ------------------
6903 function Guard_Access
6904 (Cond : Node_Id;
6905 Loc : Source_Ptr;
6906 Ck_Node : Node_Id) return Node_Id
6908 begin
6909 if Nkind (Cond) = N_Or_Else then
6910 Set_Paren_Count (Cond, 1);
6911 end if;
6913 if Nkind (Ck_Node) = N_Allocator then
6914 return Cond;
6916 else
6917 return
6918 Make_And_Then (Loc,
6919 Left_Opnd =>
6920 Make_Op_Ne (Loc,
6921 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
6922 Right_Opnd => Make_Null (Loc)),
6923 Right_Opnd => Cond);
6924 end if;
6925 end Guard_Access;
6927 -----------------------------
6928 -- Index_Checks_Suppressed --
6929 -----------------------------
6931 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
6932 begin
6933 if Present (E) and then Checks_May_Be_Suppressed (E) then
6934 return Is_Check_Suppressed (E, Index_Check);
6935 else
6936 return Scope_Suppress.Suppress (Index_Check);
6937 end if;
6938 end Index_Checks_Suppressed;
6940 ----------------
6941 -- Initialize --
6942 ----------------
6944 procedure Initialize is
6945 begin
6946 for J in Determine_Range_Cache_N'Range loop
6947 Determine_Range_Cache_N (J) := Empty;
6948 end loop;
6950 Check_Names.Init;
6952 for J in Int range 1 .. All_Checks loop
6953 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
6954 end loop;
6955 end Initialize;
6957 -------------------------
6958 -- Insert_Range_Checks --
6959 -------------------------
6961 procedure Insert_Range_Checks
6962 (Checks : Check_Result;
6963 Node : Node_Id;
6964 Suppress_Typ : Entity_Id;
6965 Static_Sloc : Source_Ptr := No_Location;
6966 Flag_Node : Node_Id := Empty;
6967 Do_Before : Boolean := False)
6969 Internal_Flag_Node : Node_Id := Flag_Node;
6970 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
6972 Check_Node : Node_Id;
6973 Checks_On : constant Boolean :=
6974 (not Index_Checks_Suppressed (Suppress_Typ))
6975 or else (not Range_Checks_Suppressed (Suppress_Typ));
6977 begin
6978 -- For now we just return if Checks_On is false, however this should be
6979 -- enhanced to check for an always True value in the condition and to
6980 -- generate a compilation warning???
6982 if not Expander_Active or not Checks_On then
6983 return;
6984 end if;
6986 if Static_Sloc = No_Location then
6987 Internal_Static_Sloc := Sloc (Node);
6988 end if;
6990 if No (Flag_Node) then
6991 Internal_Flag_Node := Node;
6992 end if;
6994 for J in 1 .. 2 loop
6995 exit when No (Checks (J));
6997 if Nkind (Checks (J)) = N_Raise_Constraint_Error
6998 and then Present (Condition (Checks (J)))
6999 then
7000 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
7001 Check_Node := Checks (J);
7002 Mark_Rewrite_Insertion (Check_Node);
7004 if Do_Before then
7005 Insert_Before_And_Analyze (Node, Check_Node);
7006 else
7007 Insert_After_And_Analyze (Node, Check_Node);
7008 end if;
7010 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
7011 end if;
7013 else
7014 Check_Node :=
7015 Make_Raise_Constraint_Error (Internal_Static_Sloc,
7016 Reason => CE_Range_Check_Failed);
7017 Mark_Rewrite_Insertion (Check_Node);
7019 if Do_Before then
7020 Insert_Before_And_Analyze (Node, Check_Node);
7021 else
7022 Insert_After_And_Analyze (Node, Check_Node);
7023 end if;
7024 end if;
7025 end loop;
7026 end Insert_Range_Checks;
7028 ------------------------
7029 -- Insert_Valid_Check --
7030 ------------------------
7032 procedure Insert_Valid_Check
7033 (Expr : Node_Id;
7034 Related_Id : Entity_Id := Empty;
7035 Is_Low_Bound : Boolean := False;
7036 Is_High_Bound : Boolean := False)
7038 Loc : constant Source_Ptr := Sloc (Expr);
7039 Typ : constant Entity_Id := Etype (Expr);
7040 Exp : Node_Id;
7042 begin
7043 -- Do not insert if checks off, or if not checking validity or if
7044 -- expression is known to be valid.
7046 if not Validity_Checks_On
7047 or else Range_Or_Validity_Checks_Suppressed (Expr)
7048 or else Expr_Known_Valid (Expr)
7049 then
7050 return;
7051 end if;
7053 -- Do not insert checks within a predicate function. This will arise
7054 -- if the current unit and the predicate function are being compiled
7055 -- with validity checks enabled.
7057 if Present (Predicate_Function (Typ))
7058 and then Current_Scope = Predicate_Function (Typ)
7059 then
7060 return;
7061 end if;
7063 -- If the expression is a packed component of a modular type of the
7064 -- right size, the data is always valid.
7066 if Nkind (Expr) = N_Selected_Component
7067 and then Present (Component_Clause (Entity (Selector_Name (Expr))))
7068 and then Is_Modular_Integer_Type (Typ)
7069 and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
7070 then
7071 return;
7072 end if;
7074 -- If we have a checked conversion, then validity check applies to
7075 -- the expression inside the conversion, not the result, since if
7076 -- the expression inside is valid, then so is the conversion result.
7078 Exp := Expr;
7079 while Nkind (Exp) = N_Type_Conversion loop
7080 Exp := Expression (Exp);
7081 end loop;
7083 -- We are about to insert the validity check for Exp. We save and
7084 -- reset the Do_Range_Check flag over this validity check, and then
7085 -- put it back for the final original reference (Exp may be rewritten).
7087 declare
7088 DRC : constant Boolean := Do_Range_Check (Exp);
7089 PV : Node_Id;
7090 CE : Node_Id;
7092 begin
7093 Set_Do_Range_Check (Exp, False);
7095 -- Force evaluation to avoid multiple reads for atomic/volatile
7097 -- Note: we set Name_Req to False. We used to set it to True, with
7098 -- the thinking that a name is required as the prefix of the 'Valid
7099 -- call, but in fact the check that the prefix of an attribute is
7100 -- a name is in the parser, and we just don't require it here.
7101 -- Moreover, when we set Name_Req to True, that interfered with the
7102 -- checking for Volatile, since we couldn't just capture the value.
7104 if Is_Entity_Name (Exp)
7105 and then Is_Volatile (Entity (Exp))
7106 then
7107 -- Same reasoning as above for setting Name_Req to False
7109 Force_Evaluation (Exp, Name_Req => False);
7110 end if;
7112 -- Build the prefix for the 'Valid call
7114 PV :=
7115 Duplicate_Subexpr_No_Checks
7116 (Exp => Exp,
7117 Name_Req => False,
7118 Related_Id => Related_Id,
7119 Is_Low_Bound => Is_Low_Bound,
7120 Is_High_Bound => Is_High_Bound);
7122 -- A rather specialized test. If PV is an analyzed expression which
7123 -- is an indexed component of a packed array that has not been
7124 -- properly expanded, turn off its Analyzed flag to make sure it
7125 -- gets properly reexpanded. If the prefix is an access value,
7126 -- the dereference will be added later.
7128 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
7129 -- an analyze with the old parent pointer. This may point e.g. to
7130 -- a subprogram call, which deactivates this expansion.
7132 if Analyzed (PV)
7133 and then Nkind (PV) = N_Indexed_Component
7134 and then Is_Array_Type (Etype (Prefix (PV)))
7135 and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
7136 then
7137 Set_Analyzed (PV, False);
7138 end if;
7140 -- Build the raise CE node to check for validity. We build a type
7141 -- qualification for the prefix, since it may not be of the form of
7142 -- a name, and we don't care in this context!
7144 CE :=
7145 Make_Raise_Constraint_Error (Loc,
7146 Condition =>
7147 Make_Op_Not (Loc,
7148 Right_Opnd =>
7149 Make_Attribute_Reference (Loc,
7150 Prefix => PV,
7151 Attribute_Name => Name_Valid)),
7152 Reason => CE_Invalid_Data);
7154 -- Insert the validity check. Note that we do this with validity
7155 -- checks turned off, to avoid recursion, we do not want validity
7156 -- checks on the validity checking code itself.
7158 Insert_Action (Expr, CE, Suppress => Validity_Check);
7160 -- If the expression is a reference to an element of a bit-packed
7161 -- array, then it is rewritten as a renaming declaration. If the
7162 -- expression is an actual in a call, it has not been expanded,
7163 -- waiting for the proper point at which to do it. The same happens
7164 -- with renamings, so that we have to force the expansion now. This
7165 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7166 -- and exp_ch6.adb.
7168 if Is_Entity_Name (Exp)
7169 and then Nkind (Parent (Entity (Exp))) =
7170 N_Object_Renaming_Declaration
7171 then
7172 declare
7173 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
7174 begin
7175 if Nkind (Old_Exp) = N_Indexed_Component
7176 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
7177 then
7178 Expand_Packed_Element_Reference (Old_Exp);
7179 end if;
7180 end;
7181 end if;
7183 -- Put back the Do_Range_Check flag on the resulting (possibly
7184 -- rewritten) expression.
7186 -- Note: it might be thought that a validity check is not required
7187 -- when a range check is present, but that's not the case, because
7188 -- the back end is allowed to assume for the range check that the
7189 -- operand is within its declared range (an assumption that validity
7190 -- checking is all about NOT assuming).
7192 -- Note: no need to worry about Possible_Local_Raise here, it will
7193 -- already have been called if original node has Do_Range_Check set.
7195 Set_Do_Range_Check (Exp, DRC);
7196 end;
7197 end Insert_Valid_Check;
7199 -------------------------------------
7200 -- Is_Signed_Integer_Arithmetic_Op --
7201 -------------------------------------
7203 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
7204 begin
7205 case Nkind (N) is
7206 when N_Op_Abs | N_Op_Add | N_Op_Divide | N_Op_Expon |
7207 N_Op_Minus | N_Op_Mod | N_Op_Multiply | N_Op_Plus |
7208 N_Op_Rem | N_Op_Subtract =>
7209 return Is_Signed_Integer_Type (Etype (N));
7211 when N_If_Expression | N_Case_Expression =>
7212 return Is_Signed_Integer_Type (Etype (N));
7214 when others =>
7215 return False;
7216 end case;
7217 end Is_Signed_Integer_Arithmetic_Op;
7219 ----------------------------------
7220 -- Install_Null_Excluding_Check --
7221 ----------------------------------
7223 procedure Install_Null_Excluding_Check (N : Node_Id) is
7224 Loc : constant Source_Ptr := Sloc (Parent (N));
7225 Typ : constant Entity_Id := Etype (N);
7227 function Safe_To_Capture_In_Parameter_Value return Boolean;
7228 -- Determines if it is safe to capture Known_Non_Null status for an
7229 -- the entity referenced by node N. The caller ensures that N is indeed
7230 -- an entity name. It is safe to capture the non-null status for an IN
7231 -- parameter when the reference occurs within a declaration that is sure
7232 -- to be executed as part of the declarative region.
7234 procedure Mark_Non_Null;
7235 -- After installation of check, if the node in question is an entity
7236 -- name, then mark this entity as non-null if possible.
7238 function Safe_To_Capture_In_Parameter_Value return Boolean is
7239 E : constant Entity_Id := Entity (N);
7240 S : constant Entity_Id := Current_Scope;
7241 S_Par : Node_Id;
7243 begin
7244 if Ekind (E) /= E_In_Parameter then
7245 return False;
7246 end if;
7248 -- Two initial context checks. We must be inside a subprogram body
7249 -- with declarations and reference must not appear in nested scopes.
7251 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
7252 or else Scope (E) /= S
7253 then
7254 return False;
7255 end if;
7257 S_Par := Parent (Parent (S));
7259 if Nkind (S_Par) /= N_Subprogram_Body
7260 or else No (Declarations (S_Par))
7261 then
7262 return False;
7263 end if;
7265 declare
7266 N_Decl : Node_Id;
7267 P : Node_Id;
7269 begin
7270 -- Retrieve the declaration node of N (if any). Note that N
7271 -- may be a part of a complex initialization expression.
7273 P := Parent (N);
7274 N_Decl := Empty;
7275 while Present (P) loop
7277 -- If we have a short circuit form, and we are within the right
7278 -- hand expression, we return false, since the right hand side
7279 -- is not guaranteed to be elaborated.
7281 if Nkind (P) in N_Short_Circuit
7282 and then N = Right_Opnd (P)
7283 then
7284 return False;
7285 end if;
7287 -- Similarly, if we are in an if expression and not part of the
7288 -- condition, then we return False, since neither the THEN or
7289 -- ELSE dependent expressions will always be elaborated.
7291 if Nkind (P) = N_If_Expression
7292 and then N /= First (Expressions (P))
7293 then
7294 return False;
7295 end if;
7297 -- If within a case expression, and not part of the expression,
7298 -- then return False, since a particular dependent expression
7299 -- may not always be elaborated
7301 if Nkind (P) = N_Case_Expression
7302 and then N /= Expression (P)
7303 then
7304 return False;
7305 end if;
7307 -- While traversing the parent chain, if node N belongs to a
7308 -- statement, then it may never appear in a declarative region.
7310 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
7311 or else Nkind (P) = N_Procedure_Call_Statement
7312 then
7313 return False;
7314 end if;
7316 -- If we are at a declaration, record it and exit
7318 if Nkind (P) in N_Declaration
7319 and then Nkind (P) not in N_Subprogram_Specification
7320 then
7321 N_Decl := P;
7322 exit;
7323 end if;
7325 P := Parent (P);
7326 end loop;
7328 if No (N_Decl) then
7329 return False;
7330 end if;
7332 return List_Containing (N_Decl) = Declarations (S_Par);
7333 end;
7334 end Safe_To_Capture_In_Parameter_Value;
7336 -------------------
7337 -- Mark_Non_Null --
7338 -------------------
7340 procedure Mark_Non_Null is
7341 begin
7342 -- Only case of interest is if node N is an entity name
7344 if Is_Entity_Name (N) then
7346 -- For sure, we want to clear an indication that this is known to
7347 -- be null, since if we get past this check, it definitely is not.
7349 Set_Is_Known_Null (Entity (N), False);
7351 -- We can mark the entity as known to be non-null if either it is
7352 -- safe to capture the value, or in the case of an IN parameter,
7353 -- which is a constant, if the check we just installed is in the
7354 -- declarative region of the subprogram body. In this latter case,
7355 -- a check is decisive for the rest of the body if the expression
7356 -- is sure to be elaborated, since we know we have to elaborate
7357 -- all declarations before executing the body.
7359 -- Couldn't this always be part of Safe_To_Capture_Value ???
7361 if Safe_To_Capture_Value (N, Entity (N))
7362 or else Safe_To_Capture_In_Parameter_Value
7363 then
7364 Set_Is_Known_Non_Null (Entity (N));
7365 end if;
7366 end if;
7367 end Mark_Non_Null;
7369 -- Start of processing for Install_Null_Excluding_Check
7371 begin
7372 pragma Assert (Is_Access_Type (Typ));
7374 -- No check inside a generic, check will be emitted in instance
7376 if Inside_A_Generic then
7377 return;
7378 end if;
7380 -- No check needed if known to be non-null
7382 if Known_Non_Null (N) then
7383 return;
7384 end if;
7386 -- If known to be null, here is where we generate a compile time check
7388 if Known_Null (N) then
7390 -- Avoid generating warning message inside init procs. In SPARK mode
7391 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
7392 -- since it will be turned into an error in any case.
7394 if (not Inside_Init_Proc or else SPARK_Mode = On)
7396 -- Do not emit the warning within a conditional expression,
7397 -- where the expression might not be evaluated, and the warning
7398 -- appear as extraneous noise.
7400 and then not Within_Case_Or_If_Expression (N)
7401 then
7402 Apply_Compile_Time_Constraint_Error
7403 (N, "null value not allowed here??", CE_Access_Check_Failed);
7405 -- Remaining cases, where we silently insert the raise
7407 else
7408 Insert_Action (N,
7409 Make_Raise_Constraint_Error (Loc,
7410 Reason => CE_Access_Check_Failed));
7411 end if;
7413 Mark_Non_Null;
7414 return;
7415 end if;
7417 -- If entity is never assigned, for sure a warning is appropriate
7419 if Is_Entity_Name (N) then
7420 Check_Unset_Reference (N);
7421 end if;
7423 -- No check needed if checks are suppressed on the range. Note that we
7424 -- don't set Is_Known_Non_Null in this case (we could legitimately do
7425 -- so, since the program is erroneous, but we don't like to casually
7426 -- propagate such conclusions from erroneosity).
7428 if Access_Checks_Suppressed (Typ) then
7429 return;
7430 end if;
7432 -- No check needed for access to concurrent record types generated by
7433 -- the expander. This is not just an optimization (though it does indeed
7434 -- remove junk checks). It also avoids generation of junk warnings.
7436 if Nkind (N) in N_Has_Chars
7437 and then Chars (N) = Name_uObject
7438 and then Is_Concurrent_Record_Type
7439 (Directly_Designated_Type (Etype (N)))
7440 then
7441 return;
7442 end if;
7444 -- No check needed in interface thunks since the runtime check is
7445 -- already performed at the caller side.
7447 if Is_Thunk (Current_Scope) then
7448 return;
7449 end if;
7451 -- No check needed for the Get_Current_Excep.all.all idiom generated by
7452 -- the expander within exception handlers, since we know that the value
7453 -- can never be null.
7455 -- Is this really the right way to do this? Normally we generate such
7456 -- code in the expander with checks off, and that's how we suppress this
7457 -- kind of junk check ???
7459 if Nkind (N) = N_Function_Call
7460 and then Nkind (Name (N)) = N_Explicit_Dereference
7461 and then Nkind (Prefix (Name (N))) = N_Identifier
7462 and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
7463 then
7464 return;
7465 end if;
7467 -- Otherwise install access check
7469 Insert_Action (N,
7470 Make_Raise_Constraint_Error (Loc,
7471 Condition =>
7472 Make_Op_Eq (Loc,
7473 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
7474 Right_Opnd => Make_Null (Loc)),
7475 Reason => CE_Access_Check_Failed));
7477 Mark_Non_Null;
7478 end Install_Null_Excluding_Check;
7480 --------------------------
7481 -- Install_Static_Check --
7482 --------------------------
7484 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
7485 Stat : constant Boolean := Is_OK_Static_Expression (R_Cno);
7486 Typ : constant Entity_Id := Etype (R_Cno);
7488 begin
7489 Rewrite (R_Cno,
7490 Make_Raise_Constraint_Error (Loc,
7491 Reason => CE_Range_Check_Failed));
7492 Set_Analyzed (R_Cno);
7493 Set_Etype (R_Cno, Typ);
7494 Set_Raises_Constraint_Error (R_Cno);
7495 Set_Is_Static_Expression (R_Cno, Stat);
7497 -- Now deal with possible local raise handling
7499 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
7500 end Install_Static_Check;
7502 -------------------------
7503 -- Is_Check_Suppressed --
7504 -------------------------
7506 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
7507 Ptr : Suppress_Stack_Entry_Ptr;
7509 begin
7510 -- First search the local entity suppress stack. We search this from the
7511 -- top of the stack down so that we get the innermost entry that applies
7512 -- to this case if there are nested entries.
7514 Ptr := Local_Suppress_Stack_Top;
7515 while Ptr /= null loop
7516 if (Ptr.Entity = Empty or else Ptr.Entity = E)
7517 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
7518 then
7519 return Ptr.Suppress;
7520 end if;
7522 Ptr := Ptr.Prev;
7523 end loop;
7525 -- Now search the global entity suppress table for a matching entry.
7526 -- We also search this from the top down so that if there are multiple
7527 -- pragmas for the same entity, the last one applies (not clear what
7528 -- or whether the RM specifies this handling, but it seems reasonable).
7530 Ptr := Global_Suppress_Stack_Top;
7531 while Ptr /= null loop
7532 if (Ptr.Entity = Empty or else Ptr.Entity = E)
7533 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
7534 then
7535 return Ptr.Suppress;
7536 end if;
7538 Ptr := Ptr.Prev;
7539 end loop;
7541 -- If we did not find a matching entry, then use the normal scope
7542 -- suppress value after all (actually this will be the global setting
7543 -- since it clearly was not overridden at any point). For a predefined
7544 -- check, we test the specific flag. For a user defined check, we check
7545 -- the All_Checks flag. The Overflow flag requires special handling to
7546 -- deal with the General vs Assertion case
7548 if C = Overflow_Check then
7549 return Overflow_Checks_Suppressed (Empty);
7550 elsif C in Predefined_Check_Id then
7551 return Scope_Suppress.Suppress (C);
7552 else
7553 return Scope_Suppress.Suppress (All_Checks);
7554 end if;
7555 end Is_Check_Suppressed;
7557 ---------------------
7558 -- Kill_All_Checks --
7559 ---------------------
7561 procedure Kill_All_Checks is
7562 begin
7563 if Debug_Flag_CC then
7564 w ("Kill_All_Checks");
7565 end if;
7567 -- We reset the number of saved checks to zero, and also modify all
7568 -- stack entries for statement ranges to indicate that the number of
7569 -- checks at each level is now zero.
7571 Num_Saved_Checks := 0;
7573 -- Note: the Int'Min here avoids any possibility of J being out of
7574 -- range when called from e.g. Conditional_Statements_Begin.
7576 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
7577 Saved_Checks_Stack (J) := 0;
7578 end loop;
7579 end Kill_All_Checks;
7581 -----------------
7582 -- Kill_Checks --
7583 -----------------
7585 procedure Kill_Checks (V : Entity_Id) is
7586 begin
7587 if Debug_Flag_CC then
7588 w ("Kill_Checks for entity", Int (V));
7589 end if;
7591 for J in 1 .. Num_Saved_Checks loop
7592 if Saved_Checks (J).Entity = V then
7593 if Debug_Flag_CC then
7594 w (" Checks killed for saved check ", J);
7595 end if;
7597 Saved_Checks (J).Killed := True;
7598 end if;
7599 end loop;
7600 end Kill_Checks;
7602 ------------------------------
7603 -- Length_Checks_Suppressed --
7604 ------------------------------
7606 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
7607 begin
7608 if Present (E) and then Checks_May_Be_Suppressed (E) then
7609 return Is_Check_Suppressed (E, Length_Check);
7610 else
7611 return Scope_Suppress.Suppress (Length_Check);
7612 end if;
7613 end Length_Checks_Suppressed;
7615 -----------------------
7616 -- Make_Bignum_Block --
7617 -----------------------
7619 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
7620 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
7621 begin
7622 return
7623 Make_Block_Statement (Loc,
7624 Declarations =>
7625 New_List (Build_SS_Mark_Call (Loc, M)),
7626 Handled_Statement_Sequence =>
7627 Make_Handled_Sequence_Of_Statements (Loc,
7628 Statements => New_List (Build_SS_Release_Call (Loc, M))));
7629 end Make_Bignum_Block;
7631 ----------------------------------
7632 -- Minimize_Eliminate_Overflows --
7633 ----------------------------------
7635 -- This is a recursive routine that is called at the top of an expression
7636 -- tree to properly process overflow checking for a whole subtree by making
7637 -- recursive calls to process operands. This processing may involve the use
7638 -- of bignum or long long integer arithmetic, which will change the types
7639 -- of operands and results. That's why we can't do this bottom up (since
7640 -- it would interfere with semantic analysis).
7642 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
7643 -- the operator expansion routines, as well as the expansion routines for
7644 -- if/case expression, do nothing (for the moment) except call the routine
7645 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
7646 -- routine does nothing for non top-level nodes, so at the point where the
7647 -- call is made for the top level node, the entire expression subtree has
7648 -- not been expanded, or processed for overflow. All that has to happen as
7649 -- a result of the top level call to this routine.
7651 -- As noted above, the overflow processing works by making recursive calls
7652 -- for the operands, and figuring out what to do, based on the processing
7653 -- of these operands (e.g. if a bignum operand appears, the parent op has
7654 -- to be done in bignum mode), and the determined ranges of the operands.
7656 -- After possible rewriting of a constituent subexpression node, a call is
7657 -- made to either reexpand the node (if nothing has changed) or reanalyze
7658 -- the node (if it has been modified by the overflow check processing). The
7659 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
7660 -- a recursive call into the whole overflow apparatus, an important rule
7661 -- for this call is that the overflow handling mode must be temporarily set
7662 -- to STRICT.
7664 procedure Minimize_Eliminate_Overflows
7665 (N : Node_Id;
7666 Lo : out Uint;
7667 Hi : out Uint;
7668 Top_Level : Boolean)
7670 Rtyp : constant Entity_Id := Etype (N);
7671 pragma Assert (Is_Signed_Integer_Type (Rtyp));
7672 -- Result type, must be a signed integer type
7674 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
7675 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
7677 Loc : constant Source_Ptr := Sloc (N);
7679 Rlo, Rhi : Uint;
7680 -- Ranges of values for right operand (operator case)
7682 Llo, Lhi : Uint;
7683 -- Ranges of values for left operand (operator case)
7685 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
7686 -- Operands and results are of this type when we convert
7688 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
7689 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
7690 -- Bounds of Long_Long_Integer
7692 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
7693 -- Indicates binary operator case
7695 OK : Boolean;
7696 -- Used in call to Determine_Range
7698 Bignum_Operands : Boolean;
7699 -- Set True if one or more operands is already of type Bignum, meaning
7700 -- that for sure (regardless of Top_Level setting) we are committed to
7701 -- doing the operation in Bignum mode (or in the case of a case or if
7702 -- expression, converting all the dependent expressions to Bignum).
7704 Long_Long_Integer_Operands : Boolean;
7705 -- Set True if one or more operands is already of type Long_Long_Integer
7706 -- which means that if the result is known to be in the result type
7707 -- range, then we must convert such operands back to the result type.
7709 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
7710 -- This is called when we have modified the node and we therefore need
7711 -- to reanalyze it. It is important that we reset the mode to STRICT for
7712 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
7713 -- we would reenter this routine recursively which would not be good.
7714 -- The argument Suppress is set True if we also want to suppress
7715 -- overflow checking for the reexpansion (this is set when we know
7716 -- overflow is not possible). Typ is the type for the reanalysis.
7718 procedure Reexpand (Suppress : Boolean := False);
7719 -- This is like Reanalyze, but does not do the Analyze step, it only
7720 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
7721 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
7722 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
7723 -- Note that skipping reanalysis is not just an optimization, testing
7724 -- has showed up several complex cases in which reanalyzing an already
7725 -- analyzed node causes incorrect behavior.
7727 function In_Result_Range return Boolean;
7728 -- Returns True iff Lo .. Hi are within range of the result type
7730 procedure Max (A : in out Uint; B : Uint);
7731 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
7733 procedure Min (A : in out Uint; B : Uint);
7734 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
7736 ---------------------
7737 -- In_Result_Range --
7738 ---------------------
7740 function In_Result_Range return Boolean is
7741 begin
7742 if Lo = No_Uint or else Hi = No_Uint then
7743 return False;
7745 elsif Is_OK_Static_Subtype (Etype (N)) then
7746 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
7747 and then
7748 Hi <= Expr_Value (Type_High_Bound (Rtyp));
7750 else
7751 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
7752 and then
7753 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
7754 end if;
7755 end In_Result_Range;
7757 ---------
7758 -- Max --
7759 ---------
7761 procedure Max (A : in out Uint; B : Uint) is
7762 begin
7763 if A = No_Uint or else B > A then
7764 A := B;
7765 end if;
7766 end Max;
7768 ---------
7769 -- Min --
7770 ---------
7772 procedure Min (A : in out Uint; B : Uint) is
7773 begin
7774 if A = No_Uint or else B < A then
7775 A := B;
7776 end if;
7777 end Min;
7779 ---------------
7780 -- Reanalyze --
7781 ---------------
7783 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
7784 Svg : constant Overflow_Mode_Type :=
7785 Scope_Suppress.Overflow_Mode_General;
7786 Sva : constant Overflow_Mode_Type :=
7787 Scope_Suppress.Overflow_Mode_Assertions;
7788 Svo : constant Boolean :=
7789 Scope_Suppress.Suppress (Overflow_Check);
7791 begin
7792 Scope_Suppress.Overflow_Mode_General := Strict;
7793 Scope_Suppress.Overflow_Mode_Assertions := Strict;
7795 if Suppress then
7796 Scope_Suppress.Suppress (Overflow_Check) := True;
7797 end if;
7799 Analyze_And_Resolve (N, Typ);
7801 Scope_Suppress.Suppress (Overflow_Check) := Svo;
7802 Scope_Suppress.Overflow_Mode_General := Svg;
7803 Scope_Suppress.Overflow_Mode_Assertions := Sva;
7804 end Reanalyze;
7806 --------------
7807 -- Reexpand --
7808 --------------
7810 procedure Reexpand (Suppress : Boolean := False) is
7811 Svg : constant Overflow_Mode_Type :=
7812 Scope_Suppress.Overflow_Mode_General;
7813 Sva : constant Overflow_Mode_Type :=
7814 Scope_Suppress.Overflow_Mode_Assertions;
7815 Svo : constant Boolean :=
7816 Scope_Suppress.Suppress (Overflow_Check);
7818 begin
7819 Scope_Suppress.Overflow_Mode_General := Strict;
7820 Scope_Suppress.Overflow_Mode_Assertions := Strict;
7821 Set_Analyzed (N, False);
7823 if Suppress then
7824 Scope_Suppress.Suppress (Overflow_Check) := True;
7825 end if;
7827 Expand (N);
7829 Scope_Suppress.Suppress (Overflow_Check) := Svo;
7830 Scope_Suppress.Overflow_Mode_General := Svg;
7831 Scope_Suppress.Overflow_Mode_Assertions := Sva;
7832 end Reexpand;
7834 -- Start of processing for Minimize_Eliminate_Overflows
7836 begin
7837 -- Case where we do not have a signed integer arithmetic operation
7839 if not Is_Signed_Integer_Arithmetic_Op (N) then
7841 -- Use the normal Determine_Range routine to get the range. We
7842 -- don't require operands to be valid, invalid values may result in
7843 -- rubbish results where the result has not been properly checked for
7844 -- overflow, that's fine.
7846 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
7848 -- If Determine_Range did not work (can this in fact happen? Not
7849 -- clear but might as well protect), use type bounds.
7851 if not OK then
7852 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
7853 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
7854 end if;
7856 -- If we don't have a binary operator, all we have to do is to set
7857 -- the Hi/Lo range, so we are done.
7859 return;
7861 -- Processing for if expression
7863 elsif Nkind (N) = N_If_Expression then
7864 declare
7865 Then_DE : constant Node_Id := Next (First (Expressions (N)));
7866 Else_DE : constant Node_Id := Next (Then_DE);
7868 begin
7869 Bignum_Operands := False;
7871 Minimize_Eliminate_Overflows
7872 (Then_DE, Lo, Hi, Top_Level => False);
7874 if Lo = No_Uint then
7875 Bignum_Operands := True;
7876 end if;
7878 Minimize_Eliminate_Overflows
7879 (Else_DE, Rlo, Rhi, Top_Level => False);
7881 if Rlo = No_Uint then
7882 Bignum_Operands := True;
7883 else
7884 Long_Long_Integer_Operands :=
7885 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
7887 Min (Lo, Rlo);
7888 Max (Hi, Rhi);
7889 end if;
7891 -- If at least one of our operands is now Bignum, we must rebuild
7892 -- the if expression to use Bignum operands. We will analyze the
7893 -- rebuilt if expression with overflow checks off, since once we
7894 -- are in bignum mode, we are all done with overflow checks.
7896 if Bignum_Operands then
7897 Rewrite (N,
7898 Make_If_Expression (Loc,
7899 Expressions => New_List (
7900 Remove_Head (Expressions (N)),
7901 Convert_To_Bignum (Then_DE),
7902 Convert_To_Bignum (Else_DE)),
7903 Is_Elsif => Is_Elsif (N)));
7905 Reanalyze (RTE (RE_Bignum), Suppress => True);
7907 -- If we have no Long_Long_Integer operands, then we are in result
7908 -- range, since it means that none of our operands felt the need
7909 -- to worry about overflow (otherwise it would have already been
7910 -- converted to long long integer or bignum). We reexpand to
7911 -- complete the expansion of the if expression (but we do not
7912 -- need to reanalyze).
7914 elsif not Long_Long_Integer_Operands then
7915 Set_Do_Overflow_Check (N, False);
7916 Reexpand;
7918 -- Otherwise convert us to long long integer mode. Note that we
7919 -- don't need any further overflow checking at this level.
7921 else
7922 Convert_To_And_Rewrite (LLIB, Then_DE);
7923 Convert_To_And_Rewrite (LLIB, Else_DE);
7924 Set_Etype (N, LLIB);
7926 -- Now reanalyze with overflow checks off
7928 Set_Do_Overflow_Check (N, False);
7929 Reanalyze (LLIB, Suppress => True);
7930 end if;
7931 end;
7933 return;
7935 -- Here for case expression
7937 elsif Nkind (N) = N_Case_Expression then
7938 Bignum_Operands := False;
7939 Long_Long_Integer_Operands := False;
7941 declare
7942 Alt : Node_Id;
7944 begin
7945 -- Loop through expressions applying recursive call
7947 Alt := First (Alternatives (N));
7948 while Present (Alt) loop
7949 declare
7950 Aexp : constant Node_Id := Expression (Alt);
7952 begin
7953 Minimize_Eliminate_Overflows
7954 (Aexp, Lo, Hi, Top_Level => False);
7956 if Lo = No_Uint then
7957 Bignum_Operands := True;
7958 elsif Etype (Aexp) = LLIB then
7959 Long_Long_Integer_Operands := True;
7960 end if;
7961 end;
7963 Next (Alt);
7964 end loop;
7966 -- If we have no bignum or long long integer operands, it means
7967 -- that none of our dependent expressions could raise overflow.
7968 -- In this case, we simply return with no changes except for
7969 -- resetting the overflow flag, since we are done with overflow
7970 -- checks for this node. We will reexpand to get the needed
7971 -- expansion for the case expression, but we do not need to
7972 -- reanalyze, since nothing has changed.
7974 if not (Bignum_Operands or Long_Long_Integer_Operands) then
7975 Set_Do_Overflow_Check (N, False);
7976 Reexpand (Suppress => True);
7978 -- Otherwise we are going to rebuild the case expression using
7979 -- either bignum or long long integer operands throughout.
7981 else
7982 declare
7983 Rtype : Entity_Id;
7984 New_Alts : List_Id;
7985 New_Exp : Node_Id;
7987 begin
7988 New_Alts := New_List;
7989 Alt := First (Alternatives (N));
7990 while Present (Alt) loop
7991 if Bignum_Operands then
7992 New_Exp := Convert_To_Bignum (Expression (Alt));
7993 Rtype := RTE (RE_Bignum);
7994 else
7995 New_Exp := Convert_To (LLIB, Expression (Alt));
7996 Rtype := LLIB;
7997 end if;
7999 Append_To (New_Alts,
8000 Make_Case_Expression_Alternative (Sloc (Alt),
8001 Actions => No_List,
8002 Discrete_Choices => Discrete_Choices (Alt),
8003 Expression => New_Exp));
8005 Next (Alt);
8006 end loop;
8008 Rewrite (N,
8009 Make_Case_Expression (Loc,
8010 Expression => Expression (N),
8011 Alternatives => New_Alts));
8013 Reanalyze (Rtype, Suppress => True);
8014 end;
8015 end if;
8016 end;
8018 return;
8019 end if;
8021 -- If we have an arithmetic operator we make recursive calls on the
8022 -- operands to get the ranges (and to properly process the subtree
8023 -- that lies below us).
8025 Minimize_Eliminate_Overflows
8026 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
8028 if Binary then
8029 Minimize_Eliminate_Overflows
8030 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
8031 end if;
8033 -- Record if we have Long_Long_Integer operands
8035 Long_Long_Integer_Operands :=
8036 Etype (Right_Opnd (N)) = LLIB
8037 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
8039 -- If either operand is a bignum, then result will be a bignum and we
8040 -- don't need to do any range analysis. As previously discussed we could
8041 -- do range analysis in such cases, but it could mean working with giant
8042 -- numbers at compile time for very little gain (the number of cases
8043 -- in which we could slip back from bignum mode is small).
8045 if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
8046 Lo := No_Uint;
8047 Hi := No_Uint;
8048 Bignum_Operands := True;
8050 -- Otherwise compute result range
8052 else
8053 Bignum_Operands := False;
8055 case Nkind (N) is
8057 -- Absolute value
8059 when N_Op_Abs =>
8060 Lo := Uint_0;
8061 Hi := UI_Max (abs Rlo, abs Rhi);
8063 -- Addition
8065 when N_Op_Add =>
8066 Lo := Llo + Rlo;
8067 Hi := Lhi + Rhi;
8069 -- Division
8071 when N_Op_Divide =>
8073 -- If the right operand can only be zero, set 0..0
8075 if Rlo = 0 and then Rhi = 0 then
8076 Lo := Uint_0;
8077 Hi := Uint_0;
8079 -- Possible bounds of division must come from dividing end
8080 -- values of the input ranges (four possibilities), provided
8081 -- zero is not included in the possible values of the right
8082 -- operand.
8084 -- Otherwise, we just consider two intervals of values for
8085 -- the right operand: the interval of negative values (up to
8086 -- -1) and the interval of positive values (starting at 1).
8087 -- Since division by 1 is the identity, and division by -1
8088 -- is negation, we get all possible bounds of division in that
8089 -- case by considering:
8090 -- - all values from the division of end values of input
8091 -- ranges;
8092 -- - the end values of the left operand;
8093 -- - the negation of the end values of the left operand.
8095 else
8096 declare
8097 Mrk : constant Uintp.Save_Mark := Mark;
8098 -- Mark so we can release the RR and Ev values
8100 Ev1 : Uint;
8101 Ev2 : Uint;
8102 Ev3 : Uint;
8103 Ev4 : Uint;
8105 begin
8106 -- Discard extreme values of zero for the divisor, since
8107 -- they will simply result in an exception in any case.
8109 if Rlo = 0 then
8110 Rlo := Uint_1;
8111 elsif Rhi = 0 then
8112 Rhi := -Uint_1;
8113 end if;
8115 -- Compute possible bounds coming from dividing end
8116 -- values of the input ranges.
8118 Ev1 := Llo / Rlo;
8119 Ev2 := Llo / Rhi;
8120 Ev3 := Lhi / Rlo;
8121 Ev4 := Lhi / Rhi;
8123 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8124 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8126 -- If the right operand can be both negative or positive,
8127 -- include the end values of the left operand in the
8128 -- extreme values, as well as their negation.
8130 if Rlo < 0 and then Rhi > 0 then
8131 Ev1 := Llo;
8132 Ev2 := -Llo;
8133 Ev3 := Lhi;
8134 Ev4 := -Lhi;
8136 Min (Lo,
8137 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
8138 Max (Hi,
8139 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
8140 end if;
8142 -- Release the RR and Ev values
8144 Release_And_Save (Mrk, Lo, Hi);
8145 end;
8146 end if;
8148 -- Exponentiation
8150 when N_Op_Expon =>
8152 -- Discard negative values for the exponent, since they will
8153 -- simply result in an exception in any case.
8155 if Rhi < 0 then
8156 Rhi := Uint_0;
8157 elsif Rlo < 0 then
8158 Rlo := Uint_0;
8159 end if;
8161 -- Estimate number of bits in result before we go computing
8162 -- giant useless bounds. Basically the number of bits in the
8163 -- result is the number of bits in the base multiplied by the
8164 -- value of the exponent. If this is big enough that the result
8165 -- definitely won't fit in Long_Long_Integer, switch to bignum
8166 -- mode immediately, and avoid computing giant bounds.
8168 -- The comparison here is approximate, but conservative, it
8169 -- only clicks on cases that are sure to exceed the bounds.
8171 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
8172 Lo := No_Uint;
8173 Hi := No_Uint;
8175 -- If right operand is zero then result is 1
8177 elsif Rhi = 0 then
8178 Lo := Uint_1;
8179 Hi := Uint_1;
8181 else
8182 -- High bound comes either from exponentiation of largest
8183 -- positive value to largest exponent value, or from
8184 -- the exponentiation of most negative value to an
8185 -- even exponent.
8187 declare
8188 Hi1, Hi2 : Uint;
8190 begin
8191 if Lhi > 0 then
8192 Hi1 := Lhi ** Rhi;
8193 else
8194 Hi1 := Uint_0;
8195 end if;
8197 if Llo < 0 then
8198 if Rhi mod 2 = 0 then
8199 Hi2 := Llo ** Rhi;
8200 else
8201 Hi2 := Llo ** (Rhi - 1);
8202 end if;
8203 else
8204 Hi2 := Uint_0;
8205 end if;
8207 Hi := UI_Max (Hi1, Hi2);
8208 end;
8210 -- Result can only be negative if base can be negative
8212 if Llo < 0 then
8213 if Rhi mod 2 = 0 then
8214 Lo := Llo ** (Rhi - 1);
8215 else
8216 Lo := Llo ** Rhi;
8217 end if;
8219 -- Otherwise low bound is minimum ** minimum
8221 else
8222 Lo := Llo ** Rlo;
8223 end if;
8224 end if;
8226 -- Negation
8228 when N_Op_Minus =>
8229 Lo := -Rhi;
8230 Hi := -Rlo;
8232 -- Mod
8234 when N_Op_Mod =>
8235 declare
8236 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8237 -- This is the maximum absolute value of the result
8239 begin
8240 Lo := Uint_0;
8241 Hi := Uint_0;
8243 -- The result depends only on the sign and magnitude of
8244 -- the right operand, it does not depend on the sign or
8245 -- magnitude of the left operand.
8247 if Rlo < 0 then
8248 Lo := -Maxabs;
8249 end if;
8251 if Rhi > 0 then
8252 Hi := Maxabs;
8253 end if;
8254 end;
8256 -- Multiplication
8258 when N_Op_Multiply =>
8260 -- Possible bounds of multiplication must come from multiplying
8261 -- end values of the input ranges (four possibilities).
8263 declare
8264 Mrk : constant Uintp.Save_Mark := Mark;
8265 -- Mark so we can release the Ev values
8267 Ev1 : constant Uint := Llo * Rlo;
8268 Ev2 : constant Uint := Llo * Rhi;
8269 Ev3 : constant Uint := Lhi * Rlo;
8270 Ev4 : constant Uint := Lhi * Rhi;
8272 begin
8273 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8274 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8276 -- Release the Ev values
8278 Release_And_Save (Mrk, Lo, Hi);
8279 end;
8281 -- Plus operator (affirmation)
8283 when N_Op_Plus =>
8284 Lo := Rlo;
8285 Hi := Rhi;
8287 -- Remainder
8289 when N_Op_Rem =>
8290 declare
8291 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8292 -- This is the maximum absolute value of the result. Note
8293 -- that the result range does not depend on the sign of the
8294 -- right operand.
8296 begin
8297 Lo := Uint_0;
8298 Hi := Uint_0;
8300 -- Case of left operand negative, which results in a range
8301 -- of -Maxabs .. 0 for those negative values. If there are
8302 -- no negative values then Lo value of result is always 0.
8304 if Llo < 0 then
8305 Lo := -Maxabs;
8306 end if;
8308 -- Case of left operand positive
8310 if Lhi > 0 then
8311 Hi := Maxabs;
8312 end if;
8313 end;
8315 -- Subtract
8317 when N_Op_Subtract =>
8318 Lo := Llo - Rhi;
8319 Hi := Lhi - Rlo;
8321 -- Nothing else should be possible
8323 when others =>
8324 raise Program_Error;
8325 end case;
8326 end if;
8328 -- Here for the case where we have not rewritten anything (no bignum
8329 -- operands or long long integer operands), and we know the result.
8330 -- If we know we are in the result range, and we do not have Bignum
8331 -- operands or Long_Long_Integer operands, we can just reexpand with
8332 -- overflow checks turned off (since we know we cannot have overflow).
8333 -- As always the reexpansion is required to complete expansion of the
8334 -- operator, but we do not need to reanalyze, and we prevent recursion
8335 -- by suppressing the check.
8337 if not (Bignum_Operands or Long_Long_Integer_Operands)
8338 and then In_Result_Range
8339 then
8340 Set_Do_Overflow_Check (N, False);
8341 Reexpand (Suppress => True);
8342 return;
8344 -- Here we know that we are not in the result range, and in the general
8345 -- case we will move into either the Bignum or Long_Long_Integer domain
8346 -- to compute the result. However, there is one exception. If we are
8347 -- at the top level, and we do not have Bignum or Long_Long_Integer
8348 -- operands, we will have to immediately convert the result back to
8349 -- the result type, so there is no point in Bignum/Long_Long_Integer
8350 -- fiddling.
8352 elsif Top_Level
8353 and then not (Bignum_Operands or Long_Long_Integer_Operands)
8355 -- One further refinement. If we are at the top level, but our parent
8356 -- is a type conversion, then go into bignum or long long integer node
8357 -- since the result will be converted to that type directly without
8358 -- going through the result type, and we may avoid an overflow. This
8359 -- is the case for example of Long_Long_Integer (A ** 4), where A is
8360 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
8361 -- but does not fit in Integer.
8363 and then Nkind (Parent (N)) /= N_Type_Conversion
8364 then
8365 -- Here keep original types, but we need to complete analysis
8367 -- One subtlety. We can't just go ahead and do an analyze operation
8368 -- here because it will cause recursion into the whole MINIMIZED/
8369 -- ELIMINATED overflow processing which is not what we want. Here
8370 -- we are at the top level, and we need a check against the result
8371 -- mode (i.e. we want to use STRICT mode). So do exactly that.
8372 -- Also, we have not modified the node, so this is a case where
8373 -- we need to reexpand, but not reanalyze.
8375 Reexpand;
8376 return;
8378 -- Cases where we do the operation in Bignum mode. This happens either
8379 -- because one of our operands is in Bignum mode already, or because
8380 -- the computed bounds are outside the bounds of Long_Long_Integer,
8381 -- which in some cases can be indicated by Hi and Lo being No_Uint.
8383 -- Note: we could do better here and in some cases switch back from
8384 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
8385 -- 0 .. 1, but the cases are rare and it is not worth the effort.
8386 -- Failing to do this switching back is only an efficiency issue.
8388 elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
8390 -- OK, we are definitely outside the range of Long_Long_Integer. The
8391 -- question is whether to move to Bignum mode, or stay in the domain
8392 -- of Long_Long_Integer, signalling that an overflow check is needed.
8394 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
8395 -- the Bignum business. In ELIMINATED mode, we will normally move
8396 -- into Bignum mode, but there is an exception if neither of our
8397 -- operands is Bignum now, and we are at the top level (Top_Level
8398 -- set True). In this case, there is no point in moving into Bignum
8399 -- mode to prevent overflow if the caller will immediately convert
8400 -- the Bignum value back to LLI with an overflow check. It's more
8401 -- efficient to stay in LLI mode with an overflow check (if needed)
8403 if Check_Mode = Minimized
8404 or else (Top_Level and not Bignum_Operands)
8405 then
8406 if Do_Overflow_Check (N) then
8407 Enable_Overflow_Check (N);
8408 end if;
8410 -- The result now has to be in Long_Long_Integer mode, so adjust
8411 -- the possible range to reflect this. Note these calls also
8412 -- change No_Uint values from the top level case to LLI bounds.
8414 Max (Lo, LLLo);
8415 Min (Hi, LLHi);
8417 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
8419 else
8420 pragma Assert (Check_Mode = Eliminated);
8422 declare
8423 Fent : Entity_Id;
8424 Args : List_Id;
8426 begin
8427 case Nkind (N) is
8428 when N_Op_Abs =>
8429 Fent := RTE (RE_Big_Abs);
8431 when N_Op_Add =>
8432 Fent := RTE (RE_Big_Add);
8434 when N_Op_Divide =>
8435 Fent := RTE (RE_Big_Div);
8437 when N_Op_Expon =>
8438 Fent := RTE (RE_Big_Exp);
8440 when N_Op_Minus =>
8441 Fent := RTE (RE_Big_Neg);
8443 when N_Op_Mod =>
8444 Fent := RTE (RE_Big_Mod);
8446 when N_Op_Multiply =>
8447 Fent := RTE (RE_Big_Mul);
8449 when N_Op_Rem =>
8450 Fent := RTE (RE_Big_Rem);
8452 when N_Op_Subtract =>
8453 Fent := RTE (RE_Big_Sub);
8455 -- Anything else is an internal error, this includes the
8456 -- N_Op_Plus case, since how can plus cause the result
8457 -- to be out of range if the operand is in range?
8459 when others =>
8460 raise Program_Error;
8461 end case;
8463 -- Construct argument list for Bignum call, converting our
8464 -- operands to Bignum form if they are not already there.
8466 Args := New_List;
8468 if Binary then
8469 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
8470 end if;
8472 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
8474 -- Now rewrite the arithmetic operator with a call to the
8475 -- corresponding bignum function.
8477 Rewrite (N,
8478 Make_Function_Call (Loc,
8479 Name => New_Occurrence_Of (Fent, Loc),
8480 Parameter_Associations => Args));
8481 Reanalyze (RTE (RE_Bignum), Suppress => True);
8483 -- Indicate result is Bignum mode
8485 Lo := No_Uint;
8486 Hi := No_Uint;
8487 return;
8488 end;
8489 end if;
8491 -- Otherwise we are in range of Long_Long_Integer, so no overflow
8492 -- check is required, at least not yet.
8494 else
8495 Set_Do_Overflow_Check (N, False);
8496 end if;
8498 -- Here we are not in Bignum territory, but we may have long long
8499 -- integer operands that need special handling. First a special check:
8500 -- If an exponentiation operator exponent is of type Long_Long_Integer,
8501 -- it means we converted it to prevent overflow, but exponentiation
8502 -- requires a Natural right operand, so convert it back to Natural.
8503 -- This conversion may raise an exception which is fine.
8505 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
8506 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
8507 end if;
8509 -- Here we will do the operation in Long_Long_Integer. We do this even
8510 -- if we know an overflow check is required, better to do this in long
8511 -- long integer mode, since we are less likely to overflow.
8513 -- Convert right or only operand to Long_Long_Integer, except that
8514 -- we do not touch the exponentiation right operand.
8516 if Nkind (N) /= N_Op_Expon then
8517 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
8518 end if;
8520 -- Convert left operand to Long_Long_Integer for binary case
8522 if Binary then
8523 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
8524 end if;
8526 -- Reset node to unanalyzed
8528 Set_Analyzed (N, False);
8529 Set_Etype (N, Empty);
8530 Set_Entity (N, Empty);
8532 -- Now analyze this new node. This reanalysis will complete processing
8533 -- for the node. In particular we will complete the expansion of an
8534 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
8535 -- we will complete any division checks (since we have not changed the
8536 -- setting of the Do_Division_Check flag).
8538 -- We do this reanalysis in STRICT mode to avoid recursion into the
8539 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
8541 declare
8542 SG : constant Overflow_Mode_Type :=
8543 Scope_Suppress.Overflow_Mode_General;
8544 SA : constant Overflow_Mode_Type :=
8545 Scope_Suppress.Overflow_Mode_Assertions;
8547 begin
8548 Scope_Suppress.Overflow_Mode_General := Strict;
8549 Scope_Suppress.Overflow_Mode_Assertions := Strict;
8551 if not Do_Overflow_Check (N) then
8552 Reanalyze (LLIB, Suppress => True);
8553 else
8554 Reanalyze (LLIB);
8555 end if;
8557 Scope_Suppress.Overflow_Mode_General := SG;
8558 Scope_Suppress.Overflow_Mode_Assertions := SA;
8559 end;
8560 end Minimize_Eliminate_Overflows;
8562 -------------------------
8563 -- Overflow_Check_Mode --
8564 -------------------------
8566 function Overflow_Check_Mode return Overflow_Mode_Type is
8567 begin
8568 if In_Assertion_Expr = 0 then
8569 return Scope_Suppress.Overflow_Mode_General;
8570 else
8571 return Scope_Suppress.Overflow_Mode_Assertions;
8572 end if;
8573 end Overflow_Check_Mode;
8575 --------------------------------
8576 -- Overflow_Checks_Suppressed --
8577 --------------------------------
8579 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
8580 begin
8581 if Present (E) and then Checks_May_Be_Suppressed (E) then
8582 return Is_Check_Suppressed (E, Overflow_Check);
8583 else
8584 return Scope_Suppress.Suppress (Overflow_Check);
8585 end if;
8586 end Overflow_Checks_Suppressed;
8588 ---------------------------------
8589 -- Predicate_Checks_Suppressed --
8590 ---------------------------------
8592 function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
8593 begin
8594 if Present (E) and then Checks_May_Be_Suppressed (E) then
8595 return Is_Check_Suppressed (E, Predicate_Check);
8596 else
8597 return Scope_Suppress.Suppress (Predicate_Check);
8598 end if;
8599 end Predicate_Checks_Suppressed;
8601 -----------------------------
8602 -- Range_Checks_Suppressed --
8603 -----------------------------
8605 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
8606 begin
8607 if Present (E) then
8608 if Kill_Range_Checks (E) then
8609 return True;
8611 elsif Checks_May_Be_Suppressed (E) then
8612 return Is_Check_Suppressed (E, Range_Check);
8613 end if;
8614 end if;
8616 return Scope_Suppress.Suppress (Range_Check);
8617 end Range_Checks_Suppressed;
8619 -----------------------------------------
8620 -- Range_Or_Validity_Checks_Suppressed --
8621 -----------------------------------------
8623 -- Note: the coding would be simpler here if we simply made appropriate
8624 -- calls to Range/Validity_Checks_Suppressed, but that would result in
8625 -- duplicated checks which we prefer to avoid.
8627 function Range_Or_Validity_Checks_Suppressed
8628 (Expr : Node_Id) return Boolean
8630 begin
8631 -- Immediate return if scope checks suppressed for either check
8633 if Scope_Suppress.Suppress (Range_Check)
8635 Scope_Suppress.Suppress (Validity_Check)
8636 then
8637 return True;
8638 end if;
8640 -- If no expression, that's odd, decide that checks are suppressed,
8641 -- since we don't want anyone trying to do checks in this case, which
8642 -- is most likely the result of some other error.
8644 if No (Expr) then
8645 return True;
8646 end if;
8648 -- Expression is present, so perform suppress checks on type
8650 declare
8651 Typ : constant Entity_Id := Etype (Expr);
8652 begin
8653 if Checks_May_Be_Suppressed (Typ)
8654 and then (Is_Check_Suppressed (Typ, Range_Check)
8655 or else
8656 Is_Check_Suppressed (Typ, Validity_Check))
8657 then
8658 return True;
8659 end if;
8660 end;
8662 -- If expression is an entity name, perform checks on this entity
8664 if Is_Entity_Name (Expr) then
8665 declare
8666 Ent : constant Entity_Id := Entity (Expr);
8667 begin
8668 if Checks_May_Be_Suppressed (Ent) then
8669 return Is_Check_Suppressed (Ent, Range_Check)
8670 or else Is_Check_Suppressed (Ent, Validity_Check);
8671 end if;
8672 end;
8673 end if;
8675 -- If we fall through, no checks suppressed
8677 return False;
8678 end Range_Or_Validity_Checks_Suppressed;
8680 -------------------
8681 -- Remove_Checks --
8682 -------------------
8684 procedure Remove_Checks (Expr : Node_Id) is
8685 function Process (N : Node_Id) return Traverse_Result;
8686 -- Process a single node during the traversal
8688 procedure Traverse is new Traverse_Proc (Process);
8689 -- The traversal procedure itself
8691 -------------
8692 -- Process --
8693 -------------
8695 function Process (N : Node_Id) return Traverse_Result is
8696 begin
8697 if Nkind (N) not in N_Subexpr then
8698 return Skip;
8699 end if;
8701 Set_Do_Range_Check (N, False);
8703 case Nkind (N) is
8704 when N_And_Then =>
8705 Traverse (Left_Opnd (N));
8706 return Skip;
8708 when N_Attribute_Reference =>
8709 Set_Do_Overflow_Check (N, False);
8711 when N_Function_Call =>
8712 Set_Do_Tag_Check (N, False);
8714 when N_Op =>
8715 Set_Do_Overflow_Check (N, False);
8717 case Nkind (N) is
8718 when N_Op_Divide =>
8719 Set_Do_Division_Check (N, False);
8721 when N_Op_And =>
8722 Set_Do_Length_Check (N, False);
8724 when N_Op_Mod =>
8725 Set_Do_Division_Check (N, False);
8727 when N_Op_Or =>
8728 Set_Do_Length_Check (N, False);
8730 when N_Op_Rem =>
8731 Set_Do_Division_Check (N, False);
8733 when N_Op_Xor =>
8734 Set_Do_Length_Check (N, False);
8736 when others =>
8737 null;
8738 end case;
8740 when N_Or_Else =>
8741 Traverse (Left_Opnd (N));
8742 return Skip;
8744 when N_Selected_Component =>
8745 Set_Do_Discriminant_Check (N, False);
8747 when N_Type_Conversion =>
8748 Set_Do_Length_Check (N, False);
8749 Set_Do_Tag_Check (N, False);
8750 Set_Do_Overflow_Check (N, False);
8752 when others =>
8753 null;
8754 end case;
8756 return OK;
8757 end Process;
8759 -- Start of processing for Remove_Checks
8761 begin
8762 Traverse (Expr);
8763 end Remove_Checks;
8765 ----------------------------
8766 -- Selected_Length_Checks --
8767 ----------------------------
8769 function Selected_Length_Checks
8770 (Ck_Node : Node_Id;
8771 Target_Typ : Entity_Id;
8772 Source_Typ : Entity_Id;
8773 Warn_Node : Node_Id) return Check_Result
8775 Loc : constant Source_Ptr := Sloc (Ck_Node);
8776 S_Typ : Entity_Id;
8777 T_Typ : Entity_Id;
8778 Expr_Actual : Node_Id;
8779 Exptyp : Entity_Id;
8780 Cond : Node_Id := Empty;
8781 Do_Access : Boolean := False;
8782 Wnode : Node_Id := Warn_Node;
8783 Ret_Result : Check_Result := (Empty, Empty);
8784 Num_Checks : Natural := 0;
8786 procedure Add_Check (N : Node_Id);
8787 -- Adds the action given to Ret_Result if N is non-Empty
8789 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
8790 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
8791 -- Comments required ???
8793 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
8794 -- True for equal literals and for nodes that denote the same constant
8795 -- entity, even if its value is not a static constant. This includes the
8796 -- case of a discriminal reference within an init proc. Removes some
8797 -- obviously superfluous checks.
8799 function Length_E_Cond
8800 (Exptyp : Entity_Id;
8801 Typ : Entity_Id;
8802 Indx : Nat) return Node_Id;
8803 -- Returns expression to compute:
8804 -- Typ'Length /= Exptyp'Length
8806 function Length_N_Cond
8807 (Expr : Node_Id;
8808 Typ : Entity_Id;
8809 Indx : Nat) return Node_Id;
8810 -- Returns expression to compute:
8811 -- Typ'Length /= Expr'Length
8813 ---------------
8814 -- Add_Check --
8815 ---------------
8817 procedure Add_Check (N : Node_Id) is
8818 begin
8819 if Present (N) then
8821 -- For now, ignore attempt to place more than two checks ???
8822 -- This is really worrisome, are we really discarding checks ???
8824 if Num_Checks = 2 then
8825 return;
8826 end if;
8828 pragma Assert (Num_Checks <= 1);
8829 Num_Checks := Num_Checks + 1;
8830 Ret_Result (Num_Checks) := N;
8831 end if;
8832 end Add_Check;
8834 ------------------
8835 -- Get_E_Length --
8836 ------------------
8838 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
8839 SE : constant Entity_Id := Scope (E);
8840 N : Node_Id;
8841 E1 : Entity_Id := E;
8843 begin
8844 if Ekind (Scope (E)) = E_Record_Type
8845 and then Has_Discriminants (Scope (E))
8846 then
8847 N := Build_Discriminal_Subtype_Of_Component (E);
8849 if Present (N) then
8850 Insert_Action (Ck_Node, N);
8851 E1 := Defining_Identifier (N);
8852 end if;
8853 end if;
8855 if Ekind (E1) = E_String_Literal_Subtype then
8856 return
8857 Make_Integer_Literal (Loc,
8858 Intval => String_Literal_Length (E1));
8860 elsif SE /= Standard_Standard
8861 and then Ekind (Scope (SE)) = E_Protected_Type
8862 and then Has_Discriminants (Scope (SE))
8863 and then Has_Completion (Scope (SE))
8864 and then not Inside_Init_Proc
8865 then
8866 -- If the type whose length is needed is a private component
8867 -- constrained by a discriminant, we must expand the 'Length
8868 -- attribute into an explicit computation, using the discriminal
8869 -- of the current protected operation. This is because the actual
8870 -- type of the prival is constructed after the protected opera-
8871 -- tion has been fully expanded.
8873 declare
8874 Indx_Type : Node_Id;
8875 Lo : Node_Id;
8876 Hi : Node_Id;
8877 Do_Expand : Boolean := False;
8879 begin
8880 Indx_Type := First_Index (E);
8882 for J in 1 .. Indx - 1 loop
8883 Next_Index (Indx_Type);
8884 end loop;
8886 Get_Index_Bounds (Indx_Type, Lo, Hi);
8888 if Nkind (Lo) = N_Identifier
8889 and then Ekind (Entity (Lo)) = E_In_Parameter
8890 then
8891 Lo := Get_Discriminal (E, Lo);
8892 Do_Expand := True;
8893 end if;
8895 if Nkind (Hi) = N_Identifier
8896 and then Ekind (Entity (Hi)) = E_In_Parameter
8897 then
8898 Hi := Get_Discriminal (E, Hi);
8899 Do_Expand := True;
8900 end if;
8902 if Do_Expand then
8903 if not Is_Entity_Name (Lo) then
8904 Lo := Duplicate_Subexpr_No_Checks (Lo);
8905 end if;
8907 if not Is_Entity_Name (Hi) then
8908 Lo := Duplicate_Subexpr_No_Checks (Hi);
8909 end if;
8911 N :=
8912 Make_Op_Add (Loc,
8913 Left_Opnd =>
8914 Make_Op_Subtract (Loc,
8915 Left_Opnd => Hi,
8916 Right_Opnd => Lo),
8918 Right_Opnd => Make_Integer_Literal (Loc, 1));
8919 return N;
8921 else
8922 N :=
8923 Make_Attribute_Reference (Loc,
8924 Attribute_Name => Name_Length,
8925 Prefix =>
8926 New_Occurrence_Of (E1, Loc));
8928 if Indx > 1 then
8929 Set_Expressions (N, New_List (
8930 Make_Integer_Literal (Loc, Indx)));
8931 end if;
8933 return N;
8934 end if;
8935 end;
8937 else
8938 N :=
8939 Make_Attribute_Reference (Loc,
8940 Attribute_Name => Name_Length,
8941 Prefix =>
8942 New_Occurrence_Of (E1, Loc));
8944 if Indx > 1 then
8945 Set_Expressions (N, New_List (
8946 Make_Integer_Literal (Loc, Indx)));
8947 end if;
8949 return N;
8950 end if;
8951 end Get_E_Length;
8953 ------------------
8954 -- Get_N_Length --
8955 ------------------
8957 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
8958 begin
8959 return
8960 Make_Attribute_Reference (Loc,
8961 Attribute_Name => Name_Length,
8962 Prefix =>
8963 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
8964 Expressions => New_List (
8965 Make_Integer_Literal (Loc, Indx)));
8966 end Get_N_Length;
8968 -------------------
8969 -- Length_E_Cond --
8970 -------------------
8972 function Length_E_Cond
8973 (Exptyp : Entity_Id;
8974 Typ : Entity_Id;
8975 Indx : Nat) return Node_Id
8977 begin
8978 return
8979 Make_Op_Ne (Loc,
8980 Left_Opnd => Get_E_Length (Typ, Indx),
8981 Right_Opnd => Get_E_Length (Exptyp, Indx));
8982 end Length_E_Cond;
8984 -------------------
8985 -- Length_N_Cond --
8986 -------------------
8988 function Length_N_Cond
8989 (Expr : Node_Id;
8990 Typ : Entity_Id;
8991 Indx : Nat) return Node_Id
8993 begin
8994 return
8995 Make_Op_Ne (Loc,
8996 Left_Opnd => Get_E_Length (Typ, Indx),
8997 Right_Opnd => Get_N_Length (Expr, Indx));
8998 end Length_N_Cond;
9000 -----------------
9001 -- Same_Bounds --
9002 -----------------
9004 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
9005 begin
9006 return
9007 (Nkind (L) = N_Integer_Literal
9008 and then Nkind (R) = N_Integer_Literal
9009 and then Intval (L) = Intval (R))
9011 or else
9012 (Is_Entity_Name (L)
9013 and then Ekind (Entity (L)) = E_Constant
9014 and then ((Is_Entity_Name (R)
9015 and then Entity (L) = Entity (R))
9016 or else
9017 (Nkind (R) = N_Type_Conversion
9018 and then Is_Entity_Name (Expression (R))
9019 and then Entity (L) = Entity (Expression (R)))))
9021 or else
9022 (Is_Entity_Name (R)
9023 and then Ekind (Entity (R)) = E_Constant
9024 and then Nkind (L) = N_Type_Conversion
9025 and then Is_Entity_Name (Expression (L))
9026 and then Entity (R) = Entity (Expression (L)))
9028 or else
9029 (Is_Entity_Name (L)
9030 and then Is_Entity_Name (R)
9031 and then Entity (L) = Entity (R)
9032 and then Ekind (Entity (L)) = E_In_Parameter
9033 and then Inside_Init_Proc);
9034 end Same_Bounds;
9036 -- Start of processing for Selected_Length_Checks
9038 begin
9039 if not Expander_Active then
9040 return Ret_Result;
9041 end if;
9043 if Target_Typ = Any_Type
9044 or else Target_Typ = Any_Composite
9045 or else Raises_Constraint_Error (Ck_Node)
9046 then
9047 return Ret_Result;
9048 end if;
9050 if No (Wnode) then
9051 Wnode := Ck_Node;
9052 end if;
9054 T_Typ := Target_Typ;
9056 if No (Source_Typ) then
9057 S_Typ := Etype (Ck_Node);
9058 else
9059 S_Typ := Source_Typ;
9060 end if;
9062 if S_Typ = Any_Type or else S_Typ = Any_Composite then
9063 return Ret_Result;
9064 end if;
9066 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
9067 S_Typ := Designated_Type (S_Typ);
9068 T_Typ := Designated_Type (T_Typ);
9069 Do_Access := True;
9071 -- A simple optimization for the null case
9073 if Known_Null (Ck_Node) then
9074 return Ret_Result;
9075 end if;
9076 end if;
9078 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9079 if Is_Constrained (T_Typ) then
9081 -- The checking code to be generated will freeze the corresponding
9082 -- array type. However, we must freeze the type now, so that the
9083 -- freeze node does not appear within the generated if expression,
9084 -- but ahead of it.
9086 Freeze_Before (Ck_Node, T_Typ);
9088 Expr_Actual := Get_Referenced_Object (Ck_Node);
9089 Exptyp := Get_Actual_Subtype (Ck_Node);
9091 if Is_Access_Type (Exptyp) then
9092 Exptyp := Designated_Type (Exptyp);
9093 end if;
9095 -- String_Literal case. This needs to be handled specially be-
9096 -- cause no index types are available for string literals. The
9097 -- condition is simply:
9099 -- T_Typ'Length = string-literal-length
9101 if Nkind (Expr_Actual) = N_String_Literal
9102 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
9103 then
9104 Cond :=
9105 Make_Op_Ne (Loc,
9106 Left_Opnd => Get_E_Length (T_Typ, 1),
9107 Right_Opnd =>
9108 Make_Integer_Literal (Loc,
9109 Intval =>
9110 String_Literal_Length (Etype (Expr_Actual))));
9112 -- General array case. Here we have a usable actual subtype for
9113 -- the expression, and the condition is built from the two types
9114 -- (Do_Length):
9116 -- T_Typ'Length /= Exptyp'Length or else
9117 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
9118 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
9119 -- ...
9121 elsif Is_Constrained (Exptyp) then
9122 declare
9123 Ndims : constant Nat := Number_Dimensions (T_Typ);
9125 L_Index : Node_Id;
9126 R_Index : Node_Id;
9127 L_Low : Node_Id;
9128 L_High : Node_Id;
9129 R_Low : Node_Id;
9130 R_High : Node_Id;
9131 L_Length : Uint;
9132 R_Length : Uint;
9133 Ref_Node : Node_Id;
9135 begin
9136 -- At the library level, we need to ensure that the type of
9137 -- the object is elaborated before the check itself is
9138 -- emitted. This is only done if the object is in the
9139 -- current compilation unit, otherwise the type is frozen
9140 -- and elaborated in its unit.
9142 if Is_Itype (Exptyp)
9143 and then
9144 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
9145 and then
9146 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
9147 and then In_Open_Scopes (Scope (Exptyp))
9148 then
9149 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
9150 Set_Itype (Ref_Node, Exptyp);
9151 Insert_Action (Ck_Node, Ref_Node);
9152 end if;
9154 L_Index := First_Index (T_Typ);
9155 R_Index := First_Index (Exptyp);
9157 for Indx in 1 .. Ndims loop
9158 if not (Nkind (L_Index) = N_Raise_Constraint_Error
9159 or else
9160 Nkind (R_Index) = N_Raise_Constraint_Error)
9161 then
9162 Get_Index_Bounds (L_Index, L_Low, L_High);
9163 Get_Index_Bounds (R_Index, R_Low, R_High);
9165 -- Deal with compile time length check. Note that we
9166 -- skip this in the access case, because the access
9167 -- value may be null, so we cannot know statically.
9169 if not Do_Access
9170 and then Compile_Time_Known_Value (L_Low)
9171 and then Compile_Time_Known_Value (L_High)
9172 and then Compile_Time_Known_Value (R_Low)
9173 and then Compile_Time_Known_Value (R_High)
9174 then
9175 if Expr_Value (L_High) >= Expr_Value (L_Low) then
9176 L_Length := Expr_Value (L_High) -
9177 Expr_Value (L_Low) + 1;
9178 else
9179 L_Length := UI_From_Int (0);
9180 end if;
9182 if Expr_Value (R_High) >= Expr_Value (R_Low) then
9183 R_Length := Expr_Value (R_High) -
9184 Expr_Value (R_Low) + 1;
9185 else
9186 R_Length := UI_From_Int (0);
9187 end if;
9189 if L_Length > R_Length then
9190 Add_Check
9191 (Compile_Time_Constraint_Error
9192 (Wnode, "too few elements for}??", T_Typ));
9194 elsif L_Length < R_Length then
9195 Add_Check
9196 (Compile_Time_Constraint_Error
9197 (Wnode, "too many elements for}??", T_Typ));
9198 end if;
9200 -- The comparison for an individual index subtype
9201 -- is omitted if the corresponding index subtypes
9202 -- statically match, since the result is known to
9203 -- be true. Note that this test is worth while even
9204 -- though we do static evaluation, because non-static
9205 -- subtypes can statically match.
9207 elsif not
9208 Subtypes_Statically_Match
9209 (Etype (L_Index), Etype (R_Index))
9211 and then not
9212 (Same_Bounds (L_Low, R_Low)
9213 and then Same_Bounds (L_High, R_High))
9214 then
9215 Evolve_Or_Else
9216 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
9217 end if;
9219 Next (L_Index);
9220 Next (R_Index);
9221 end if;
9222 end loop;
9223 end;
9225 -- Handle cases where we do not get a usable actual subtype that
9226 -- is constrained. This happens for example in the function call
9227 -- and explicit dereference cases. In these cases, we have to get
9228 -- the length or range from the expression itself, making sure we
9229 -- do not evaluate it more than once.
9231 -- Here Ck_Node is the original expression, or more properly the
9232 -- result of applying Duplicate_Expr to the original tree, forcing
9233 -- the result to be a name.
9235 else
9236 declare
9237 Ndims : constant Nat := Number_Dimensions (T_Typ);
9239 begin
9240 -- Build the condition for the explicit dereference case
9242 for Indx in 1 .. Ndims loop
9243 Evolve_Or_Else
9244 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
9245 end loop;
9246 end;
9247 end if;
9248 end if;
9249 end if;
9251 -- Construct the test and insert into the tree
9253 if Present (Cond) then
9254 if Do_Access then
9255 Cond := Guard_Access (Cond, Loc, Ck_Node);
9256 end if;
9258 Add_Check
9259 (Make_Raise_Constraint_Error (Loc,
9260 Condition => Cond,
9261 Reason => CE_Length_Check_Failed));
9262 end if;
9264 return Ret_Result;
9265 end Selected_Length_Checks;
9267 ---------------------------
9268 -- Selected_Range_Checks --
9269 ---------------------------
9271 function Selected_Range_Checks
9272 (Ck_Node : Node_Id;
9273 Target_Typ : Entity_Id;
9274 Source_Typ : Entity_Id;
9275 Warn_Node : Node_Id) return Check_Result
9277 Loc : constant Source_Ptr := Sloc (Ck_Node);
9278 S_Typ : Entity_Id;
9279 T_Typ : Entity_Id;
9280 Expr_Actual : Node_Id;
9281 Exptyp : Entity_Id;
9282 Cond : Node_Id := Empty;
9283 Do_Access : Boolean := False;
9284 Wnode : Node_Id := Warn_Node;
9285 Ret_Result : Check_Result := (Empty, Empty);
9286 Num_Checks : Integer := 0;
9288 procedure Add_Check (N : Node_Id);
9289 -- Adds the action given to Ret_Result if N is non-Empty
9291 function Discrete_Range_Cond
9292 (Expr : Node_Id;
9293 Typ : Entity_Id) return Node_Id;
9294 -- Returns expression to compute:
9295 -- Low_Bound (Expr) < Typ'First
9296 -- or else
9297 -- High_Bound (Expr) > Typ'Last
9299 function Discrete_Expr_Cond
9300 (Expr : Node_Id;
9301 Typ : Entity_Id) return Node_Id;
9302 -- Returns expression to compute:
9303 -- Expr < Typ'First
9304 -- or else
9305 -- Expr > Typ'Last
9307 function Get_E_First_Or_Last
9308 (Loc : Source_Ptr;
9309 E : Entity_Id;
9310 Indx : Nat;
9311 Nam : Name_Id) return Node_Id;
9312 -- Returns an attribute reference
9313 -- E'First or E'Last
9314 -- with a source location of Loc.
9316 -- Nam is Name_First or Name_Last, according to which attribute is
9317 -- desired. If Indx is non-zero, it is passed as a literal in the
9318 -- Expressions of the attribute reference (identifying the desired
9319 -- array dimension).
9321 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
9322 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
9323 -- Returns expression to compute:
9324 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
9326 function Range_E_Cond
9327 (Exptyp : Entity_Id;
9328 Typ : Entity_Id;
9329 Indx : Nat)
9330 return Node_Id;
9331 -- Returns expression to compute:
9332 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
9334 function Range_Equal_E_Cond
9335 (Exptyp : Entity_Id;
9336 Typ : Entity_Id;
9337 Indx : Nat) return Node_Id;
9338 -- Returns expression to compute:
9339 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
9341 function Range_N_Cond
9342 (Expr : Node_Id;
9343 Typ : Entity_Id;
9344 Indx : Nat) return Node_Id;
9345 -- Return expression to compute:
9346 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
9348 ---------------
9349 -- Add_Check --
9350 ---------------
9352 procedure Add_Check (N : Node_Id) is
9353 begin
9354 if Present (N) then
9356 -- For now, ignore attempt to place more than 2 checks ???
9358 if Num_Checks = 2 then
9359 return;
9360 end if;
9362 pragma Assert (Num_Checks <= 1);
9363 Num_Checks := Num_Checks + 1;
9364 Ret_Result (Num_Checks) := N;
9365 end if;
9366 end Add_Check;
9368 -------------------------
9369 -- Discrete_Expr_Cond --
9370 -------------------------
9372 function Discrete_Expr_Cond
9373 (Expr : Node_Id;
9374 Typ : Entity_Id) return Node_Id
9376 begin
9377 return
9378 Make_Or_Else (Loc,
9379 Left_Opnd =>
9380 Make_Op_Lt (Loc,
9381 Left_Opnd =>
9382 Convert_To (Base_Type (Typ),
9383 Duplicate_Subexpr_No_Checks (Expr)),
9384 Right_Opnd =>
9385 Convert_To (Base_Type (Typ),
9386 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
9388 Right_Opnd =>
9389 Make_Op_Gt (Loc,
9390 Left_Opnd =>
9391 Convert_To (Base_Type (Typ),
9392 Duplicate_Subexpr_No_Checks (Expr)),
9393 Right_Opnd =>
9394 Convert_To
9395 (Base_Type (Typ),
9396 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
9397 end Discrete_Expr_Cond;
9399 -------------------------
9400 -- Discrete_Range_Cond --
9401 -------------------------
9403 function Discrete_Range_Cond
9404 (Expr : Node_Id;
9405 Typ : Entity_Id) return Node_Id
9407 LB : Node_Id := Low_Bound (Expr);
9408 HB : Node_Id := High_Bound (Expr);
9410 Left_Opnd : Node_Id;
9411 Right_Opnd : Node_Id;
9413 begin
9414 if Nkind (LB) = N_Identifier
9415 and then Ekind (Entity (LB)) = E_Discriminant
9416 then
9417 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
9418 end if;
9420 Left_Opnd :=
9421 Make_Op_Lt (Loc,
9422 Left_Opnd =>
9423 Convert_To
9424 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
9426 Right_Opnd =>
9427 Convert_To
9428 (Base_Type (Typ),
9429 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
9431 if Nkind (HB) = N_Identifier
9432 and then Ekind (Entity (HB)) = E_Discriminant
9433 then
9434 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
9435 end if;
9437 Right_Opnd :=
9438 Make_Op_Gt (Loc,
9439 Left_Opnd =>
9440 Convert_To
9441 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
9443 Right_Opnd =>
9444 Convert_To
9445 (Base_Type (Typ),
9446 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
9448 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
9449 end Discrete_Range_Cond;
9451 -------------------------
9452 -- Get_E_First_Or_Last --
9453 -------------------------
9455 function Get_E_First_Or_Last
9456 (Loc : Source_Ptr;
9457 E : Entity_Id;
9458 Indx : Nat;
9459 Nam : Name_Id) return Node_Id
9461 Exprs : List_Id;
9462 begin
9463 if Indx > 0 then
9464 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
9465 else
9466 Exprs := No_List;
9467 end if;
9469 return Make_Attribute_Reference (Loc,
9470 Prefix => New_Occurrence_Of (E, Loc),
9471 Attribute_Name => Nam,
9472 Expressions => Exprs);
9473 end Get_E_First_Or_Last;
9475 -----------------
9476 -- Get_N_First --
9477 -----------------
9479 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
9480 begin
9481 return
9482 Make_Attribute_Reference (Loc,
9483 Attribute_Name => Name_First,
9484 Prefix =>
9485 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
9486 Expressions => New_List (
9487 Make_Integer_Literal (Loc, Indx)));
9488 end Get_N_First;
9490 ----------------
9491 -- Get_N_Last --
9492 ----------------
9494 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
9495 begin
9496 return
9497 Make_Attribute_Reference (Loc,
9498 Attribute_Name => Name_Last,
9499 Prefix =>
9500 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
9501 Expressions => New_List (
9502 Make_Integer_Literal (Loc, Indx)));
9503 end Get_N_Last;
9505 ------------------
9506 -- Range_E_Cond --
9507 ------------------
9509 function Range_E_Cond
9510 (Exptyp : Entity_Id;
9511 Typ : Entity_Id;
9512 Indx : Nat) return Node_Id
9514 begin
9515 return
9516 Make_Or_Else (Loc,
9517 Left_Opnd =>
9518 Make_Op_Lt (Loc,
9519 Left_Opnd =>
9520 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
9521 Right_Opnd =>
9522 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
9524 Right_Opnd =>
9525 Make_Op_Gt (Loc,
9526 Left_Opnd =>
9527 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
9528 Right_Opnd =>
9529 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
9530 end Range_E_Cond;
9532 ------------------------
9533 -- Range_Equal_E_Cond --
9534 ------------------------
9536 function Range_Equal_E_Cond
9537 (Exptyp : Entity_Id;
9538 Typ : Entity_Id;
9539 Indx : Nat) return Node_Id
9541 begin
9542 return
9543 Make_Or_Else (Loc,
9544 Left_Opnd =>
9545 Make_Op_Ne (Loc,
9546 Left_Opnd =>
9547 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
9548 Right_Opnd =>
9549 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
9551 Right_Opnd =>
9552 Make_Op_Ne (Loc,
9553 Left_Opnd =>
9554 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
9555 Right_Opnd =>
9556 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
9557 end Range_Equal_E_Cond;
9559 ------------------
9560 -- Range_N_Cond --
9561 ------------------
9563 function Range_N_Cond
9564 (Expr : Node_Id;
9565 Typ : Entity_Id;
9566 Indx : Nat) return Node_Id
9568 begin
9569 return
9570 Make_Or_Else (Loc,
9571 Left_Opnd =>
9572 Make_Op_Lt (Loc,
9573 Left_Opnd =>
9574 Get_N_First (Expr, Indx),
9575 Right_Opnd =>
9576 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
9578 Right_Opnd =>
9579 Make_Op_Gt (Loc,
9580 Left_Opnd =>
9581 Get_N_Last (Expr, Indx),
9582 Right_Opnd =>
9583 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
9584 end Range_N_Cond;
9586 -- Start of processing for Selected_Range_Checks
9588 begin
9589 if not Expander_Active then
9590 return Ret_Result;
9591 end if;
9593 if Target_Typ = Any_Type
9594 or else Target_Typ = Any_Composite
9595 or else Raises_Constraint_Error (Ck_Node)
9596 then
9597 return Ret_Result;
9598 end if;
9600 if No (Wnode) then
9601 Wnode := Ck_Node;
9602 end if;
9604 T_Typ := Target_Typ;
9606 if No (Source_Typ) then
9607 S_Typ := Etype (Ck_Node);
9608 else
9609 S_Typ := Source_Typ;
9610 end if;
9612 if S_Typ = Any_Type or else S_Typ = Any_Composite then
9613 return Ret_Result;
9614 end if;
9616 -- The order of evaluating T_Typ before S_Typ seems to be critical
9617 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
9618 -- in, and since Node can be an N_Range node, it might be invalid.
9619 -- Should there be an assert check somewhere for taking the Etype of
9620 -- an N_Range node ???
9622 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
9623 S_Typ := Designated_Type (S_Typ);
9624 T_Typ := Designated_Type (T_Typ);
9625 Do_Access := True;
9627 -- A simple optimization for the null case
9629 if Known_Null (Ck_Node) then
9630 return Ret_Result;
9631 end if;
9632 end if;
9634 -- For an N_Range Node, check for a null range and then if not
9635 -- null generate a range check action.
9637 if Nkind (Ck_Node) = N_Range then
9639 -- There's no point in checking a range against itself
9641 if Ck_Node = Scalar_Range (T_Typ) then
9642 return Ret_Result;
9643 end if;
9645 declare
9646 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
9647 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
9648 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
9649 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
9651 LB : Node_Id := Low_Bound (Ck_Node);
9652 HB : Node_Id := High_Bound (Ck_Node);
9653 Known_LB : Boolean;
9654 Known_HB : Boolean;
9656 Null_Range : Boolean;
9657 Out_Of_Range_L : Boolean;
9658 Out_Of_Range_H : Boolean;
9660 begin
9661 -- Compute what is known at compile time
9663 if Known_T_LB and Known_T_HB then
9664 if Compile_Time_Known_Value (LB) then
9665 Known_LB := True;
9667 -- There's no point in checking that a bound is within its
9668 -- own range so pretend that it is known in this case. First
9669 -- deal with low bound.
9671 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
9672 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
9673 then
9674 LB := T_LB;
9675 Known_LB := True;
9677 else
9678 Known_LB := False;
9679 end if;
9681 -- Likewise for the high bound
9683 if Compile_Time_Known_Value (HB) then
9684 Known_HB := True;
9686 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
9687 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
9688 then
9689 HB := T_HB;
9690 Known_HB := True;
9691 else
9692 Known_HB := False;
9693 end if;
9694 end if;
9696 -- Check for case where everything is static and we can do the
9697 -- check at compile time. This is skipped if we have an access
9698 -- type, since the access value may be null.
9700 -- ??? This code can be improved since you only need to know that
9701 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
9702 -- compile time to emit pertinent messages.
9704 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
9705 and not Do_Access
9706 then
9707 -- Floating-point case
9709 if Is_Floating_Point_Type (S_Typ) then
9710 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
9711 Out_Of_Range_L :=
9712 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
9713 or else
9714 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
9716 Out_Of_Range_H :=
9717 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
9718 or else
9719 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
9721 -- Fixed or discrete type case
9723 else
9724 Null_Range := Expr_Value (HB) < Expr_Value (LB);
9725 Out_Of_Range_L :=
9726 (Expr_Value (LB) < Expr_Value (T_LB))
9727 or else
9728 (Expr_Value (LB) > Expr_Value (T_HB));
9730 Out_Of_Range_H :=
9731 (Expr_Value (HB) > Expr_Value (T_HB))
9732 or else
9733 (Expr_Value (HB) < Expr_Value (T_LB));
9734 end if;
9736 if not Null_Range then
9737 if Out_Of_Range_L then
9738 if No (Warn_Node) then
9739 Add_Check
9740 (Compile_Time_Constraint_Error
9741 (Low_Bound (Ck_Node),
9742 "static value out of range of}??", T_Typ));
9744 else
9745 Add_Check
9746 (Compile_Time_Constraint_Error
9747 (Wnode,
9748 "static range out of bounds of}??", T_Typ));
9749 end if;
9750 end if;
9752 if Out_Of_Range_H then
9753 if No (Warn_Node) then
9754 Add_Check
9755 (Compile_Time_Constraint_Error
9756 (High_Bound (Ck_Node),
9757 "static value out of range of}??", T_Typ));
9759 else
9760 Add_Check
9761 (Compile_Time_Constraint_Error
9762 (Wnode,
9763 "static range out of bounds of}??", T_Typ));
9764 end if;
9765 end if;
9766 end if;
9768 else
9769 declare
9770 LB : Node_Id := Low_Bound (Ck_Node);
9771 HB : Node_Id := High_Bound (Ck_Node);
9773 begin
9774 -- If either bound is a discriminant and we are within the
9775 -- record declaration, it is a use of the discriminant in a
9776 -- constraint of a component, and nothing can be checked
9777 -- here. The check will be emitted within the init proc.
9778 -- Before then, the discriminal has no real meaning.
9779 -- Similarly, if the entity is a discriminal, there is no
9780 -- check to perform yet.
9782 -- The same holds within a discriminated synchronized type,
9783 -- where the discriminant may constrain a component or an
9784 -- entry family.
9786 if Nkind (LB) = N_Identifier
9787 and then Denotes_Discriminant (LB, True)
9788 then
9789 if Current_Scope = Scope (Entity (LB))
9790 or else Is_Concurrent_Type (Current_Scope)
9791 or else Ekind (Entity (LB)) /= E_Discriminant
9792 then
9793 return Ret_Result;
9794 else
9795 LB :=
9796 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
9797 end if;
9798 end if;
9800 if Nkind (HB) = N_Identifier
9801 and then Denotes_Discriminant (HB, True)
9802 then
9803 if Current_Scope = Scope (Entity (HB))
9804 or else Is_Concurrent_Type (Current_Scope)
9805 or else Ekind (Entity (HB)) /= E_Discriminant
9806 then
9807 return Ret_Result;
9808 else
9809 HB :=
9810 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
9811 end if;
9812 end if;
9814 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
9815 Set_Paren_Count (Cond, 1);
9817 Cond :=
9818 Make_And_Then (Loc,
9819 Left_Opnd =>
9820 Make_Op_Ge (Loc,
9821 Left_Opnd =>
9822 Convert_To (Base_Type (Etype (HB)),
9823 Duplicate_Subexpr_No_Checks (HB)),
9824 Right_Opnd =>
9825 Convert_To (Base_Type (Etype (LB)),
9826 Duplicate_Subexpr_No_Checks (LB))),
9827 Right_Opnd => Cond);
9828 end;
9829 end if;
9830 end;
9832 elsif Is_Scalar_Type (S_Typ) then
9834 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
9835 -- except the above simply sets a flag in the node and lets
9836 -- gigi generate the check base on the Etype of the expression.
9837 -- Sometimes, however we want to do a dynamic check against an
9838 -- arbitrary target type, so we do that here.
9840 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
9841 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9843 -- For literals, we can tell if the constraint error will be
9844 -- raised at compile time, so we never need a dynamic check, but
9845 -- if the exception will be raised, then post the usual warning,
9846 -- and replace the literal with a raise constraint error
9847 -- expression. As usual, skip this for access types
9849 elsif Compile_Time_Known_Value (Ck_Node) and then not Do_Access then
9850 declare
9851 LB : constant Node_Id := Type_Low_Bound (T_Typ);
9852 UB : constant Node_Id := Type_High_Bound (T_Typ);
9854 Out_Of_Range : Boolean;
9855 Static_Bounds : constant Boolean :=
9856 Compile_Time_Known_Value (LB)
9857 and Compile_Time_Known_Value (UB);
9859 begin
9860 -- Following range tests should use Sem_Eval routine ???
9862 if Static_Bounds then
9863 if Is_Floating_Point_Type (S_Typ) then
9864 Out_Of_Range :=
9865 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
9866 or else
9867 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
9869 -- Fixed or discrete type
9871 else
9872 Out_Of_Range :=
9873 Expr_Value (Ck_Node) < Expr_Value (LB)
9874 or else
9875 Expr_Value (Ck_Node) > Expr_Value (UB);
9876 end if;
9878 -- Bounds of the type are static and the literal is out of
9879 -- range so output a warning message.
9881 if Out_Of_Range then
9882 if No (Warn_Node) then
9883 Add_Check
9884 (Compile_Time_Constraint_Error
9885 (Ck_Node,
9886 "static value out of range of}??", T_Typ));
9888 else
9889 Add_Check
9890 (Compile_Time_Constraint_Error
9891 (Wnode,
9892 "static value out of range of}??", T_Typ));
9893 end if;
9894 end if;
9896 else
9897 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9898 end if;
9899 end;
9901 -- Here for the case of a non-static expression, we need a runtime
9902 -- check unless the source type range is guaranteed to be in the
9903 -- range of the target type.
9905 else
9906 if not In_Subrange_Of (S_Typ, T_Typ) then
9907 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
9908 end if;
9909 end if;
9910 end if;
9912 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9913 if Is_Constrained (T_Typ) then
9915 Expr_Actual := Get_Referenced_Object (Ck_Node);
9916 Exptyp := Get_Actual_Subtype (Expr_Actual);
9918 if Is_Access_Type (Exptyp) then
9919 Exptyp := Designated_Type (Exptyp);
9920 end if;
9922 -- String_Literal case. This needs to be handled specially be-
9923 -- cause no index types are available for string literals. The
9924 -- condition is simply:
9926 -- T_Typ'Length = string-literal-length
9928 if Nkind (Expr_Actual) = N_String_Literal then
9929 null;
9931 -- General array case. Here we have a usable actual subtype for
9932 -- the expression, and the condition is built from the two types
9934 -- T_Typ'First < Exptyp'First or else
9935 -- T_Typ'Last > Exptyp'Last or else
9936 -- T_Typ'First(1) < Exptyp'First(1) or else
9937 -- T_Typ'Last(1) > Exptyp'Last(1) or else
9938 -- ...
9940 elsif Is_Constrained (Exptyp) then
9941 declare
9942 Ndims : constant Nat := Number_Dimensions (T_Typ);
9944 L_Index : Node_Id;
9945 R_Index : Node_Id;
9947 begin
9948 L_Index := First_Index (T_Typ);
9949 R_Index := First_Index (Exptyp);
9951 for Indx in 1 .. Ndims loop
9952 if not (Nkind (L_Index) = N_Raise_Constraint_Error
9953 or else
9954 Nkind (R_Index) = N_Raise_Constraint_Error)
9955 then
9956 -- Deal with compile time length check. Note that we
9957 -- skip this in the access case, because the access
9958 -- value may be null, so we cannot know statically.
9960 if not
9961 Subtypes_Statically_Match
9962 (Etype (L_Index), Etype (R_Index))
9963 then
9964 -- If the target type is constrained then we
9965 -- have to check for exact equality of bounds
9966 -- (required for qualified expressions).
9968 if Is_Constrained (T_Typ) then
9969 Evolve_Or_Else
9970 (Cond,
9971 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
9972 else
9973 Evolve_Or_Else
9974 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
9975 end if;
9976 end if;
9978 Next (L_Index);
9979 Next (R_Index);
9980 end if;
9981 end loop;
9982 end;
9984 -- Handle cases where we do not get a usable actual subtype that
9985 -- is constrained. This happens for example in the function call
9986 -- and explicit dereference cases. In these cases, we have to get
9987 -- the length or range from the expression itself, making sure we
9988 -- do not evaluate it more than once.
9990 -- Here Ck_Node is the original expression, or more properly the
9991 -- result of applying Duplicate_Expr to the original tree,
9992 -- forcing the result to be a name.
9994 else
9995 declare
9996 Ndims : constant Nat := Number_Dimensions (T_Typ);
9998 begin
9999 -- Build the condition for the explicit dereference case
10001 for Indx in 1 .. Ndims loop
10002 Evolve_Or_Else
10003 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
10004 end loop;
10005 end;
10006 end if;
10008 else
10009 -- For a conversion to an unconstrained array type, generate an
10010 -- Action to check that the bounds of the source value are within
10011 -- the constraints imposed by the target type (RM 4.6(38)). No
10012 -- check is needed for a conversion to an access to unconstrained
10013 -- array type, as 4.6(24.15/2) requires the designated subtypes
10014 -- of the two access types to statically match.
10016 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
10017 and then not Do_Access
10018 then
10019 declare
10020 Opnd_Index : Node_Id;
10021 Targ_Index : Node_Id;
10022 Opnd_Range : Node_Id;
10024 begin
10025 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
10026 Targ_Index := First_Index (T_Typ);
10027 while Present (Opnd_Index) loop
10029 -- If the index is a range, use its bounds. If it is an
10030 -- entity (as will be the case if it is a named subtype
10031 -- or an itype created for a slice) retrieve its range.
10033 if Is_Entity_Name (Opnd_Index)
10034 and then Is_Type (Entity (Opnd_Index))
10035 then
10036 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
10037 else
10038 Opnd_Range := Opnd_Index;
10039 end if;
10041 if Nkind (Opnd_Range) = N_Range then
10042 if Is_In_Range
10043 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10044 Assume_Valid => True)
10045 and then
10046 Is_In_Range
10047 (High_Bound (Opnd_Range), Etype (Targ_Index),
10048 Assume_Valid => True)
10049 then
10050 null;
10052 -- If null range, no check needed
10054 elsif
10055 Compile_Time_Known_Value (High_Bound (Opnd_Range))
10056 and then
10057 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
10058 and then
10059 Expr_Value (High_Bound (Opnd_Range)) <
10060 Expr_Value (Low_Bound (Opnd_Range))
10061 then
10062 null;
10064 elsif Is_Out_Of_Range
10065 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10066 Assume_Valid => True)
10067 or else
10068 Is_Out_Of_Range
10069 (High_Bound (Opnd_Range), Etype (Targ_Index),
10070 Assume_Valid => True)
10071 then
10072 Add_Check
10073 (Compile_Time_Constraint_Error
10074 (Wnode, "value out of range of}??", T_Typ));
10076 else
10077 Evolve_Or_Else
10078 (Cond,
10079 Discrete_Range_Cond
10080 (Opnd_Range, Etype (Targ_Index)));
10081 end if;
10082 end if;
10084 Next_Index (Opnd_Index);
10085 Next_Index (Targ_Index);
10086 end loop;
10087 end;
10088 end if;
10089 end if;
10090 end if;
10092 -- Construct the test and insert into the tree
10094 if Present (Cond) then
10095 if Do_Access then
10096 Cond := Guard_Access (Cond, Loc, Ck_Node);
10097 end if;
10099 Add_Check
10100 (Make_Raise_Constraint_Error (Loc,
10101 Condition => Cond,
10102 Reason => CE_Range_Check_Failed));
10103 end if;
10105 return Ret_Result;
10106 end Selected_Range_Checks;
10108 -------------------------------
10109 -- Storage_Checks_Suppressed --
10110 -------------------------------
10112 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
10113 begin
10114 if Present (E) and then Checks_May_Be_Suppressed (E) then
10115 return Is_Check_Suppressed (E, Storage_Check);
10116 else
10117 return Scope_Suppress.Suppress (Storage_Check);
10118 end if;
10119 end Storage_Checks_Suppressed;
10121 ---------------------------
10122 -- Tag_Checks_Suppressed --
10123 ---------------------------
10125 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
10126 begin
10127 if Present (E)
10128 and then Checks_May_Be_Suppressed (E)
10129 then
10130 return Is_Check_Suppressed (E, Tag_Check);
10131 else
10132 return Scope_Suppress.Suppress (Tag_Check);
10133 end if;
10134 end Tag_Checks_Suppressed;
10136 ---------------------------------------
10137 -- Validate_Alignment_Check_Warnings --
10138 ---------------------------------------
10140 procedure Validate_Alignment_Check_Warnings is
10141 begin
10142 for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
10143 declare
10144 AWR : Alignment_Warnings_Record
10145 renames Alignment_Warnings.Table (J);
10146 begin
10147 if Known_Alignment (AWR.E)
10148 and then AWR.A mod Alignment (AWR.E) = 0
10149 then
10150 Delete_Warning_And_Continuations (AWR.W);
10151 end if;
10152 end;
10153 end loop;
10154 end Validate_Alignment_Check_Warnings;
10156 --------------------------
10157 -- Validity_Check_Range --
10158 --------------------------
10160 procedure Validity_Check_Range
10161 (N : Node_Id;
10162 Related_Id : Entity_Id := Empty)
10164 begin
10165 if Validity_Checks_On and Validity_Check_Operands then
10166 if Nkind (N) = N_Range then
10167 Ensure_Valid
10168 (Expr => Low_Bound (N),
10169 Related_Id => Related_Id,
10170 Is_Low_Bound => True);
10172 Ensure_Valid
10173 (Expr => High_Bound (N),
10174 Related_Id => Related_Id,
10175 Is_High_Bound => True);
10176 end if;
10177 end if;
10178 end Validity_Check_Range;
10180 --------------------------------
10181 -- Validity_Checks_Suppressed --
10182 --------------------------------
10184 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
10185 begin
10186 if Present (E) and then Checks_May_Be_Suppressed (E) then
10187 return Is_Check_Suppressed (E, Validity_Check);
10188 else
10189 return Scope_Suppress.Suppress (Validity_Check);
10190 end if;
10191 end Validity_Checks_Suppressed;
10193 end Checks;