Update LOCAL_PATCHES after libsanitizer merge.
[official-gcc.git] / gcc / ada / checks.adb
blob61768865ce140e55d42433508e8598f401d1e542
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- C H E C K S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Casing; use Casing;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Eval_Fat; use Eval_Fat;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Ch2; use Exp_Ch2;
34 with Exp_Ch4; use Exp_Ch4;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Util; use Exp_Util;
37 with Expander; use Expander;
38 with Freeze; use Freeze;
39 with Lib; use Lib;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Output; use Output;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Eval; use Sem_Eval;
53 with Sem_Res; use Sem_Res;
54 with Sem_Util; use Sem_Util;
55 with Sem_Warn; use Sem_Warn;
56 with Sinfo; use Sinfo;
57 with Sinput; use Sinput;
58 with Snames; use Snames;
59 with Sprint; use Sprint;
60 with Stand; use Stand;
61 with Stringt; use Stringt;
62 with Targparm; use Targparm;
63 with Tbuild; use Tbuild;
64 with Ttypes; use Ttypes;
65 with Validsw; use Validsw;
67 package body Checks is
69 -- General note: many of these routines are concerned with generating
70 -- checking code to make sure that constraint error is raised at runtime.
71 -- Clearly this code is only needed if the expander is active, since
72 -- otherwise we will not be generating code or going into the runtime
73 -- execution anyway.
75 -- We therefore disconnect most of these checks if the expander is
76 -- inactive. This has the additional benefit that we do not need to
77 -- worry about the tree being messed up by previous errors (since errors
78 -- turn off expansion anyway).
80 -- There are a few exceptions to the above rule. For instance routines
81 -- such as Apply_Scalar_Range_Check that do not insert any code can be
82 -- safely called even when the Expander is inactive (but Errors_Detected
83 -- is 0). The benefit of executing this code when expansion is off, is
84 -- the ability to emit constraint error warning for static expressions
85 -- even when we are not generating code.
87 -- The above is modified in gnatprove mode to ensure that proper check
88 -- flags are always placed, even if expansion is off.
90 -------------------------------------
91 -- Suppression of Redundant Checks --
92 -------------------------------------
94 -- This unit implements a limited circuit for removal of redundant
95 -- checks. The processing is based on a tracing of simple sequential
96 -- flow. For any sequence of statements, we save expressions that are
97 -- marked to be checked, and then if the same expression appears later
98 -- with the same check, then under certain circumstances, the second
99 -- check can be suppressed.
101 -- Basically, we can suppress the check if we know for certain that
102 -- the previous expression has been elaborated (together with its
103 -- check), and we know that the exception frame is the same, and that
104 -- nothing has happened to change the result of the exception.
106 -- Let us examine each of these three conditions in turn to describe
107 -- how we ensure that this condition is met.
109 -- First, we need to know for certain that the previous expression has
110 -- been executed. This is done principally by the mechanism of calling
111 -- Conditional_Statements_Begin at the start of any statement sequence
112 -- and Conditional_Statements_End at the end. The End call causes all
113 -- checks remembered since the Begin call to be discarded. This does
114 -- miss a few cases, notably the case of a nested BEGIN-END block with
115 -- no exception handlers. But the important thing is to be conservative.
116 -- The other protection is that all checks are discarded if a label
117 -- is encountered, since then the assumption of sequential execution
118 -- is violated, and we don't know enough about the flow.
120 -- Second, we need to know that the exception frame is the same. We
121 -- do this by killing all remembered checks when we enter a new frame.
122 -- Again, that's over-conservative, but generally the cases we can help
123 -- with are pretty local anyway (like the body of a loop for example).
125 -- Third, we must be sure to forget any checks which are no longer valid.
126 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
127 -- used to note any changes to local variables. We only attempt to deal
128 -- with checks involving local variables, so we do not need to worry
129 -- about global variables. Second, a call to any non-global procedure
130 -- causes us to abandon all stored checks, since such a all may affect
131 -- the values of any local variables.
133 -- The following define the data structures used to deal with remembering
134 -- checks so that redundant checks can be eliminated as described above.
136 -- Right now, the only expressions that we deal with are of the form of
137 -- simple local objects (either declared locally, or IN parameters) or
138 -- such objects plus/minus a compile time known constant. We can do
139 -- more later on if it seems worthwhile, but this catches many simple
140 -- cases in practice.
142 -- The following record type reflects a single saved check. An entry
143 -- is made in the stack of saved checks if and only if the expression
144 -- has been elaborated with the indicated checks.
146 type Saved_Check is record
147 Killed : Boolean;
148 -- Set True if entry is killed by Kill_Checks
150 Entity : Entity_Id;
151 -- The entity involved in the expression that is checked
153 Offset : Uint;
154 -- A compile time value indicating the result of adding or
155 -- subtracting a compile time value. This value is to be
156 -- added to the value of the Entity. A value of zero is
157 -- used for the case of a simple entity reference.
159 Check_Type : Character;
160 -- This is set to 'R' for a range check (in which case Target_Type
161 -- is set to the target type for the range check) or to 'O' for an
162 -- overflow check (in which case Target_Type is set to Empty).
164 Target_Type : Entity_Id;
165 -- Used only if Do_Range_Check is set. Records the target type for
166 -- the check. We need this, because a check is a duplicate only if
167 -- it has the same target type (or more accurately one with a
168 -- range that is smaller or equal to the stored target type of a
169 -- saved check).
170 end record;
172 -- The following table keeps track of saved checks. Rather than use an
173 -- extensible table, we just use a table of fixed size, and we discard
174 -- any saved checks that do not fit. That's very unlikely to happen and
175 -- this is only an optimization in any case.
177 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
178 -- Array of saved checks
180 Num_Saved_Checks : Nat := 0;
181 -- Number of saved checks
183 -- The following stack keeps track of statement ranges. It is treated
184 -- as a stack. When Conditional_Statements_Begin is called, an entry
185 -- is pushed onto this stack containing the value of Num_Saved_Checks
186 -- at the time of the call. Then when Conditional_Statements_End is
187 -- called, this value is popped off and used to reset Num_Saved_Checks.
189 -- Note: again, this is a fixed length stack with a size that should
190 -- always be fine. If the value of the stack pointer goes above the
191 -- limit, then we just forget all saved checks.
193 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
194 Saved_Checks_TOS : Nat := 0;
196 -----------------------
197 -- Local Subprograms --
198 -----------------------
200 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
201 -- Used to apply arithmetic overflow checks for all cases except operators
202 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
203 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
204 -- signed integer arithmetic operator (but not an if or case expression).
205 -- It is also called for types other than signed integers.
207 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
208 -- Used to apply arithmetic overflow checks for the case where the overflow
209 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
210 -- arithmetic op (which includes the case of if and case expressions). Note
211 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
212 -- we have work to do even if overflow checking is suppressed.
214 procedure Apply_Division_Check
215 (N : Node_Id;
216 Rlo : Uint;
217 Rhi : Uint;
218 ROK : Boolean);
219 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
220 -- division checks as required if the Do_Division_Check flag is set.
221 -- Rlo and Rhi give the possible range of the right operand, these values
222 -- can be referenced and trusted only if ROK is set True.
224 procedure Apply_Float_Conversion_Check
225 (Ck_Node : Node_Id;
226 Target_Typ : Entity_Id);
227 -- The checks on a conversion from a floating-point type to an integer
228 -- type are delicate. They have to be performed before conversion, they
229 -- have to raise an exception when the operand is a NaN, and rounding must
230 -- be taken into account to determine the safe bounds of the operand.
232 procedure Apply_Selected_Length_Checks
233 (Ck_Node : Node_Id;
234 Target_Typ : Entity_Id;
235 Source_Typ : Entity_Id;
236 Do_Static : Boolean);
237 -- This is the subprogram that does all the work for Apply_Length_Check
238 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
239 -- described for the above routines. The Do_Static flag indicates that
240 -- only a static check is to be done.
242 procedure Apply_Selected_Range_Checks
243 (Ck_Node : Node_Id;
244 Target_Typ : Entity_Id;
245 Source_Typ : Entity_Id;
246 Do_Static : Boolean);
247 -- This is the subprogram that does all the work for Apply_Range_Check.
248 -- Expr, Target_Typ and Source_Typ are as described for the above
249 -- routine. The Do_Static flag indicates that only a static check is
250 -- to be done.
252 type Check_Type is new Check_Id range Access_Check .. Division_Check;
253 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
254 -- This function is used to see if an access or division by zero check is
255 -- needed. The check is to be applied to a single variable appearing in the
256 -- source, and N is the node for the reference. If N is not of this form,
257 -- True is returned with no further processing. If N is of the right form,
258 -- then further processing determines if the given Check is needed.
260 -- The particular circuit is to see if we have the case of a check that is
261 -- not needed because it appears in the right operand of a short circuited
262 -- conditional where the left operand guards the check. For example:
264 -- if Var = 0 or else Q / Var > 12 then
265 -- ...
266 -- end if;
268 -- In this example, the division check is not required. At the same time
269 -- we can issue warnings for suspicious use of non-short-circuited forms,
270 -- such as:
272 -- if Var = 0 or Q / Var > 12 then
273 -- ...
274 -- end if;
276 procedure Find_Check
277 (Expr : Node_Id;
278 Check_Type : Character;
279 Target_Type : Entity_Id;
280 Entry_OK : out Boolean;
281 Check_Num : out Nat;
282 Ent : out Entity_Id;
283 Ofs : out Uint);
284 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
285 -- to see if a check is of the form for optimization, and if so, to see
286 -- if it has already been performed. Expr is the expression to check,
287 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
288 -- Target_Type is the target type for a range check, and Empty for an
289 -- overflow check. If the entry is not of the form for optimization,
290 -- then Entry_OK is set to False, and the remaining out parameters
291 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
292 -- entity and offset from the expression. Check_Num is the number of
293 -- a matching saved entry in Saved_Checks, or zero if no such entry
294 -- is located.
296 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
297 -- If a discriminal is used in constraining a prival, Return reference
298 -- to the discriminal of the protected body (which renames the parameter
299 -- of the enclosing protected operation). This clumsy transformation is
300 -- needed because privals are created too late and their actual subtypes
301 -- are not available when analysing the bodies of the protected operations.
302 -- This function is called whenever the bound is an entity and the scope
303 -- indicates a protected operation. If the bound is an in-parameter of
304 -- a protected operation that is not a prival, the function returns the
305 -- bound itself.
306 -- To be cleaned up???
308 function Guard_Access
309 (Cond : Node_Id;
310 Loc : Source_Ptr;
311 Ck_Node : Node_Id) return Node_Id;
312 -- In the access type case, guard the test with a test to ensure
313 -- that the access value is non-null, since the checks do not
314 -- not apply to null access values.
316 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
317 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
318 -- Constraint_Error node.
320 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
321 -- Returns True if node N is for an arithmetic operation with signed
322 -- integer operands. This includes unary and binary operators, and also
323 -- if and case expression nodes where the dependent expressions are of
324 -- a signed integer type. These are the kinds of nodes for which special
325 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
327 function Range_Or_Validity_Checks_Suppressed
328 (Expr : Node_Id) return Boolean;
329 -- Returns True if either range or validity checks or both are suppressed
330 -- for the type of the given expression, or, if the expression is the name
331 -- of an entity, if these checks are suppressed for the entity.
333 function Selected_Length_Checks
334 (Ck_Node : Node_Id;
335 Target_Typ : Entity_Id;
336 Source_Typ : Entity_Id;
337 Warn_Node : Node_Id) return Check_Result;
338 -- Like Apply_Selected_Length_Checks, except it doesn't modify
339 -- anything, just returns a list of nodes as described in the spec of
340 -- this package for the Range_Check function.
341 -- ??? In fact it does construct the test and insert it into the tree,
342 -- and insert actions in various ways (calling Insert_Action directly
343 -- in particular) so we do not call it in GNATprove mode, contrary to
344 -- Selected_Range_Checks.
346 function Selected_Range_Checks
347 (Ck_Node : Node_Id;
348 Target_Typ : Entity_Id;
349 Source_Typ : Entity_Id;
350 Warn_Node : Node_Id) return Check_Result;
351 -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
352 -- just returns a list of nodes as described in the spec of this package
353 -- for the Range_Check function.
355 ------------------------------
356 -- Access_Checks_Suppressed --
357 ------------------------------
359 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
360 begin
361 if Present (E) and then Checks_May_Be_Suppressed (E) then
362 return Is_Check_Suppressed (E, Access_Check);
363 else
364 return Scope_Suppress.Suppress (Access_Check);
365 end if;
366 end Access_Checks_Suppressed;
368 -------------------------------------
369 -- Accessibility_Checks_Suppressed --
370 -------------------------------------
372 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
373 begin
374 if Present (E) and then Checks_May_Be_Suppressed (E) then
375 return Is_Check_Suppressed (E, Accessibility_Check);
376 else
377 return Scope_Suppress.Suppress (Accessibility_Check);
378 end if;
379 end Accessibility_Checks_Suppressed;
381 -----------------------------
382 -- Activate_Division_Check --
383 -----------------------------
385 procedure Activate_Division_Check (N : Node_Id) is
386 begin
387 Set_Do_Division_Check (N, True);
388 Possible_Local_Raise (N, Standard_Constraint_Error);
389 end Activate_Division_Check;
391 -----------------------------
392 -- Activate_Overflow_Check --
393 -----------------------------
395 procedure Activate_Overflow_Check (N : Node_Id) is
396 Typ : constant Entity_Id := Etype (N);
398 begin
399 -- Floating-point case. If Etype is not set (this can happen when we
400 -- activate a check on a node that has not yet been analyzed), then
401 -- we assume we do not have a floating-point type (as per our spec).
403 if Present (Typ) and then Is_Floating_Point_Type (Typ) then
405 -- Ignore call if we have no automatic overflow checks on the target
406 -- and Check_Float_Overflow mode is not set. These are the cases in
407 -- which we expect to generate infinities and NaN's with no check.
409 if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
410 return;
412 -- Ignore for unary operations ("+", "-", abs) since these can never
413 -- result in overflow for floating-point cases.
415 elsif Nkind (N) in N_Unary_Op then
416 return;
418 -- Otherwise we will set the flag
420 else
421 null;
422 end if;
424 -- Discrete case
426 else
427 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
428 -- for zero-divide is a divide check, not an overflow check).
430 if Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
431 return;
432 end if;
433 end if;
435 -- Fall through for cases where we do set the flag
437 Set_Do_Overflow_Check (N, True);
438 Possible_Local_Raise (N, Standard_Constraint_Error);
439 end Activate_Overflow_Check;
441 --------------------------
442 -- Activate_Range_Check --
443 --------------------------
445 procedure Activate_Range_Check (N : Node_Id) is
446 begin
447 Set_Do_Range_Check (N, True);
448 Possible_Local_Raise (N, Standard_Constraint_Error);
449 end Activate_Range_Check;
451 ---------------------------------
452 -- Alignment_Checks_Suppressed --
453 ---------------------------------
455 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
456 begin
457 if Present (E) and then Checks_May_Be_Suppressed (E) then
458 return Is_Check_Suppressed (E, Alignment_Check);
459 else
460 return Scope_Suppress.Suppress (Alignment_Check);
461 end if;
462 end Alignment_Checks_Suppressed;
464 ----------------------------------
465 -- Allocation_Checks_Suppressed --
466 ----------------------------------
468 -- Note: at the current time there are no calls to this function, because
469 -- the relevant check is in the run-time, so it is not a check that the
470 -- compiler can suppress anyway, but we still have to recognize the check
471 -- name Allocation_Check since it is part of the standard.
473 function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
474 begin
475 if Present (E) and then Checks_May_Be_Suppressed (E) then
476 return Is_Check_Suppressed (E, Allocation_Check);
477 else
478 return Scope_Suppress.Suppress (Allocation_Check);
479 end if;
480 end Allocation_Checks_Suppressed;
482 -------------------------
483 -- Append_Range_Checks --
484 -------------------------
486 procedure Append_Range_Checks
487 (Checks : Check_Result;
488 Stmts : List_Id;
489 Suppress_Typ : Entity_Id;
490 Static_Sloc : Source_Ptr;
491 Flag_Node : Node_Id)
493 Checks_On : constant Boolean :=
494 not Index_Checks_Suppressed (Suppress_Typ)
495 or else
496 not Range_Checks_Suppressed (Suppress_Typ);
498 Internal_Flag_Node : constant Node_Id := Flag_Node;
499 Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
501 begin
502 -- For now we just return if Checks_On is false, however this should be
503 -- enhanced to check for an always True value in the condition and to
504 -- generate a compilation warning???
506 if not Checks_On then
507 return;
508 end if;
510 for J in 1 .. 2 loop
511 exit when No (Checks (J));
513 if Nkind (Checks (J)) = N_Raise_Constraint_Error
514 and then Present (Condition (Checks (J)))
515 then
516 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
517 Append_To (Stmts, Checks (J));
518 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
519 end if;
521 else
522 Append_To
523 (Stmts,
524 Make_Raise_Constraint_Error (Internal_Static_Sloc,
525 Reason => CE_Range_Check_Failed));
526 end if;
527 end loop;
528 end Append_Range_Checks;
530 ------------------------
531 -- Apply_Access_Check --
532 ------------------------
534 procedure Apply_Access_Check (N : Node_Id) is
535 P : constant Node_Id := Prefix (N);
537 begin
538 -- We do not need checks if we are not generating code (i.e. the
539 -- expander is not active). This is not just an optimization, there
540 -- are cases (e.g. with pragma Debug) where generating the checks
541 -- can cause real trouble).
543 if not Expander_Active then
544 return;
545 end if;
547 -- No check if short circuiting makes check unnecessary
549 if not Check_Needed (P, Access_Check) then
550 return;
551 end if;
553 -- No check if accessing the Offset_To_Top component of a dispatch
554 -- table. They are safe by construction.
556 if Tagged_Type_Expansion
557 and then Present (Etype (P))
558 and then RTU_Loaded (Ada_Tags)
559 and then RTE_Available (RE_Offset_To_Top_Ptr)
560 and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
561 then
562 return;
563 end if;
565 -- Otherwise go ahead and install the check
567 Install_Null_Excluding_Check (P);
568 end Apply_Access_Check;
570 -------------------------------
571 -- Apply_Accessibility_Check --
572 -------------------------------
574 procedure Apply_Accessibility_Check
575 (N : Node_Id;
576 Typ : Entity_Id;
577 Insert_Node : Node_Id)
579 Loc : constant Source_Ptr := Sloc (N);
580 Param_Ent : Entity_Id := Param_Entity (N);
581 Param_Level : Node_Id;
582 Type_Level : Node_Id;
584 begin
585 if Ada_Version >= Ada_2012
586 and then not Present (Param_Ent)
587 and then Is_Entity_Name (N)
588 and then Ekind_In (Entity (N), E_Constant, E_Variable)
589 and then Present (Effective_Extra_Accessibility (Entity (N)))
590 then
591 Param_Ent := Entity (N);
592 while Present (Renamed_Object (Param_Ent)) loop
594 -- Renamed_Object must return an Entity_Name here
595 -- because of preceding "Present (E_E_A (...))" test.
597 Param_Ent := Entity (Renamed_Object (Param_Ent));
598 end loop;
599 end if;
601 if Inside_A_Generic then
602 return;
604 -- Only apply the run-time check if the access parameter has an
605 -- associated extra access level parameter and when the level of the
606 -- type is less deep than the level of the access parameter, and
607 -- accessibility checks are not suppressed.
609 elsif Present (Param_Ent)
610 and then Present (Extra_Accessibility (Param_Ent))
611 and then UI_Gt (Object_Access_Level (N),
612 Deepest_Type_Access_Level (Typ))
613 and then not Accessibility_Checks_Suppressed (Param_Ent)
614 and then not Accessibility_Checks_Suppressed (Typ)
615 then
616 Param_Level :=
617 New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
619 Type_Level :=
620 Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
622 -- Raise Program_Error if the accessibility level of the access
623 -- parameter is deeper than the level of the target access type.
625 Insert_Action (Insert_Node,
626 Make_Raise_Program_Error (Loc,
627 Condition =>
628 Make_Op_Gt (Loc,
629 Left_Opnd => Param_Level,
630 Right_Opnd => Type_Level),
631 Reason => PE_Accessibility_Check_Failed));
633 Analyze_And_Resolve (N);
634 end if;
635 end Apply_Accessibility_Check;
637 --------------------------------
638 -- Apply_Address_Clause_Check --
639 --------------------------------
641 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
642 pragma Assert (Nkind (N) = N_Freeze_Entity);
644 AC : constant Node_Id := Address_Clause (E);
645 Loc : constant Source_Ptr := Sloc (AC);
646 Typ : constant Entity_Id := Etype (E);
648 Expr : Node_Id;
649 -- Address expression (not necessarily the same as Aexp, for example
650 -- when Aexp is a reference to a constant, in which case Expr gets
651 -- reset to reference the value expression of the constant).
653 begin
654 -- See if alignment check needed. Note that we never need a check if the
655 -- maximum alignment is one, since the check will always succeed.
657 -- Note: we do not check for checks suppressed here, since that check
658 -- was done in Sem_Ch13 when the address clause was processed. We are
659 -- only called if checks were not suppressed. The reason for this is
660 -- that we have to delay the call to Apply_Alignment_Check till freeze
661 -- time (so that all types etc are elaborated), but we have to check
662 -- the status of check suppressing at the point of the address clause.
664 if No (AC)
665 or else not Check_Address_Alignment (AC)
666 or else Maximum_Alignment = 1
667 then
668 return;
669 end if;
671 -- Obtain expression from address clause
673 Expr := Address_Value (Expression (AC));
675 -- See if we know that Expr has an acceptable value at compile time. If
676 -- it hasn't or we don't know, we defer issuing the warning until the
677 -- end of the compilation to take into account back end annotations.
679 if Compile_Time_Known_Value (Expr)
680 and then (Known_Alignment (E) or else Known_Alignment (Typ))
681 then
682 declare
683 AL : Uint := Alignment (Typ);
685 begin
686 -- The object alignment might be more restrictive than the type
687 -- alignment.
689 if Known_Alignment (E) then
690 AL := Alignment (E);
691 end if;
693 if Expr_Value (Expr) mod AL = 0 then
694 return;
695 end if;
696 end;
698 -- If the expression has the form X'Address, then we can find out if the
699 -- object X has an alignment that is compatible with the object E. If it
700 -- hasn't or we don't know, we defer issuing the warning until the end
701 -- of the compilation to take into account back end annotations.
703 elsif Nkind (Expr) = N_Attribute_Reference
704 and then Attribute_Name (Expr) = Name_Address
705 and then
706 Has_Compatible_Alignment (E, Prefix (Expr), False) = Known_Compatible
707 then
708 return;
709 end if;
711 -- Here we do not know if the value is acceptable. Strictly we don't
712 -- have to do anything, since if the alignment is bad, we have an
713 -- erroneous program. However we are allowed to check for erroneous
714 -- conditions and we decide to do this by default if the check is not
715 -- suppressed.
717 -- However, don't do the check if elaboration code is unwanted
719 if Restriction_Active (No_Elaboration_Code) then
720 return;
722 -- Generate a check to raise PE if alignment may be inappropriate
724 else
725 -- If the original expression is a non-static constant, use the name
726 -- of the constant itself rather than duplicating its initialization
727 -- expression, which was extracted above.
729 -- Note: Expr is empty if the address-clause is applied to in-mode
730 -- actuals (allowed by 13.1(22)).
732 if not Present (Expr)
733 or else
734 (Is_Entity_Name (Expression (AC))
735 and then Ekind (Entity (Expression (AC))) = E_Constant
736 and then Nkind (Parent (Entity (Expression (AC)))) =
737 N_Object_Declaration)
738 then
739 Expr := New_Copy_Tree (Expression (AC));
740 else
741 Remove_Side_Effects (Expr);
742 end if;
744 if No (Actions (N)) then
745 Set_Actions (N, New_List);
746 end if;
748 Prepend_To (Actions (N),
749 Make_Raise_Program_Error (Loc,
750 Condition =>
751 Make_Op_Ne (Loc,
752 Left_Opnd =>
753 Make_Op_Mod (Loc,
754 Left_Opnd =>
755 Unchecked_Convert_To
756 (RTE (RE_Integer_Address), Expr),
757 Right_Opnd =>
758 Make_Attribute_Reference (Loc,
759 Prefix => New_Occurrence_Of (E, Loc),
760 Attribute_Name => Name_Alignment)),
761 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
762 Reason => PE_Misaligned_Address_Value));
764 Warning_Msg := No_Error_Msg;
765 Analyze (First (Actions (N)), Suppress => All_Checks);
767 -- If the above raise action generated a warning message (for example
768 -- from Warn_On_Non_Local_Exception mode with the active restriction
769 -- No_Exception_Propagation).
771 if Warning_Msg /= No_Error_Msg then
773 -- If the expression has a known at compile time value, then
774 -- once we know the alignment of the type, we can check if the
775 -- exception will be raised or not, and if not, we don't need
776 -- the warning so we will kill the warning later on.
778 if Compile_Time_Known_Value (Expr) then
779 Alignment_Warnings.Append
780 ((E => E, A => Expr_Value (Expr), W => Warning_Msg));
782 -- Add explanation of the warning generated by the check
784 else
785 Error_Msg_N
786 ("\address value may be incompatible with alignment of "
787 & "object?X?", AC);
788 end if;
789 end if;
791 return;
792 end if;
794 exception
796 -- If we have some missing run time component in configurable run time
797 -- mode then just skip the check (it is not required in any case).
799 when RE_Not_Available =>
800 return;
801 end Apply_Address_Clause_Check;
803 -------------------------------------
804 -- Apply_Arithmetic_Overflow_Check --
805 -------------------------------------
807 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
808 begin
809 -- Use old routine in almost all cases (the only case we are treating
810 -- specially is the case of a signed integer arithmetic op with the
811 -- overflow checking mode set to MINIMIZED or ELIMINATED).
813 if Overflow_Check_Mode = Strict
814 or else not Is_Signed_Integer_Arithmetic_Op (N)
815 then
816 Apply_Arithmetic_Overflow_Strict (N);
818 -- Otherwise use the new routine for the case of a signed integer
819 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
820 -- mode is MINIMIZED or ELIMINATED.
822 else
823 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
824 end if;
825 end Apply_Arithmetic_Overflow_Check;
827 --------------------------------------
828 -- Apply_Arithmetic_Overflow_Strict --
829 --------------------------------------
831 -- This routine is called only if the type is an integer type and an
832 -- arithmetic overflow check may be needed for op (add, subtract, or
833 -- multiply). This check is performed if Backend_Overflow_Checks_On_Target
834 -- is not enabled and Do_Overflow_Check is set. In this case we expand the
835 -- operation into a more complex sequence of tests that ensures that
836 -- overflow is properly caught.
838 -- This is used in CHECKED modes. It is identical to the code for this
839 -- cases before the big overflow earthquake, thus ensuring that in this
840 -- modes we have compatible behavior (and reliability) to what was there
841 -- before. It is also called for types other than signed integers, and if
842 -- the Do_Overflow_Check flag is off.
844 -- Note: we also call this routine if we decide in the MINIMIZED case
845 -- to give up and just generate an overflow check without any fuss.
847 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
848 Loc : constant Source_Ptr := Sloc (N);
849 Typ : constant Entity_Id := Etype (N);
850 Rtyp : constant Entity_Id := Root_Type (Typ);
852 begin
853 -- Nothing to do if Do_Overflow_Check not set or overflow checks
854 -- suppressed.
856 if not Do_Overflow_Check (N) then
857 return;
858 end if;
860 -- An interesting special case. If the arithmetic operation appears as
861 -- the operand of a type conversion:
863 -- type1 (x op y)
865 -- and all the following conditions apply:
867 -- arithmetic operation is for a signed integer type
868 -- target type type1 is a static integer subtype
869 -- range of x and y are both included in the range of type1
870 -- range of x op y is included in the range of type1
871 -- size of type1 is at least twice the result size of op
873 -- then we don't do an overflow check in any case. Instead, we transform
874 -- the operation so that we end up with:
876 -- type1 (type1 (x) op type1 (y))
878 -- This avoids intermediate overflow before the conversion. It is
879 -- explicitly permitted by RM 3.5.4(24):
881 -- For the execution of a predefined operation of a signed integer
882 -- type, the implementation need not raise Constraint_Error if the
883 -- result is outside the base range of the type, so long as the
884 -- correct result is produced.
886 -- It's hard to imagine that any programmer counts on the exception
887 -- being raised in this case, and in any case it's wrong coding to
888 -- have this expectation, given the RM permission. Furthermore, other
889 -- Ada compilers do allow such out of range results.
891 -- Note that we do this transformation even if overflow checking is
892 -- off, since this is precisely about giving the "right" result and
893 -- avoiding the need for an overflow check.
895 -- Note: this circuit is partially redundant with respect to the similar
896 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
897 -- with cases that do not come through here. We still need the following
898 -- processing even with the Exp_Ch4 code in place, since we want to be
899 -- sure not to generate the arithmetic overflow check in these cases
900 -- (Exp_Ch4 would have a hard time removing them once generated).
902 if Is_Signed_Integer_Type (Typ)
903 and then Nkind (Parent (N)) = N_Type_Conversion
904 then
905 Conversion_Optimization : declare
906 Target_Type : constant Entity_Id :=
907 Base_Type (Entity (Subtype_Mark (Parent (N))));
909 Llo, Lhi : Uint;
910 Rlo, Rhi : Uint;
911 LOK, ROK : Boolean;
913 Vlo : Uint;
914 Vhi : Uint;
915 VOK : Boolean;
917 Tlo : Uint;
918 Thi : Uint;
920 begin
921 if Is_Integer_Type (Target_Type)
922 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
923 then
924 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
925 Thi := Expr_Value (Type_High_Bound (Target_Type));
927 Determine_Range
928 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
929 Determine_Range
930 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
932 if (LOK and ROK)
933 and then Tlo <= Llo and then Lhi <= Thi
934 and then Tlo <= Rlo and then Rhi <= Thi
935 then
936 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
938 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
939 Rewrite (Left_Opnd (N),
940 Make_Type_Conversion (Loc,
941 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
942 Expression => Relocate_Node (Left_Opnd (N))));
944 Rewrite (Right_Opnd (N),
945 Make_Type_Conversion (Loc,
946 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
947 Expression => Relocate_Node (Right_Opnd (N))));
949 -- Rewrite the conversion operand so that the original
950 -- node is retained, in order to avoid the warning for
951 -- redundant conversions in Resolve_Type_Conversion.
953 Rewrite (N, Relocate_Node (N));
955 Set_Etype (N, Target_Type);
957 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
958 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
960 -- Given that the target type is twice the size of the
961 -- source type, overflow is now impossible, so we can
962 -- safely kill the overflow check and return.
964 Set_Do_Overflow_Check (N, False);
965 return;
966 end if;
967 end if;
968 end if;
969 end Conversion_Optimization;
970 end if;
972 -- Now see if an overflow check is required
974 declare
975 Siz : constant Int := UI_To_Int (Esize (Rtyp));
976 Dsiz : constant Int := Siz * 2;
977 Opnod : Node_Id;
978 Ctyp : Entity_Id;
979 Opnd : Node_Id;
980 Cent : RE_Id;
982 begin
983 -- Skip check if back end does overflow checks, or the overflow flag
984 -- is not set anyway, or we are not doing code expansion, or the
985 -- parent node is a type conversion whose operand is an arithmetic
986 -- operation on signed integers on which the expander can promote
987 -- later the operands to type Integer (see Expand_N_Type_Conversion).
989 if Backend_Overflow_Checks_On_Target
990 or else not Do_Overflow_Check (N)
991 or else not Expander_Active
992 or else (Present (Parent (N))
993 and then Nkind (Parent (N)) = N_Type_Conversion
994 and then Integer_Promotion_Possible (Parent (N)))
995 then
996 return;
997 end if;
999 -- Otherwise, generate the full general code for front end overflow
1000 -- detection, which works by doing arithmetic in a larger type:
1002 -- x op y
1004 -- is expanded into
1006 -- Typ (Checktyp (x) op Checktyp (y));
1008 -- where Typ is the type of the original expression, and Checktyp is
1009 -- an integer type of sufficient length to hold the largest possible
1010 -- result.
1012 -- If the size of check type exceeds the size of Long_Long_Integer,
1013 -- we use a different approach, expanding to:
1015 -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
1017 -- where xxx is Add, Multiply or Subtract as appropriate
1019 -- Find check type if one exists
1021 if Dsiz <= Standard_Integer_Size then
1022 Ctyp := Standard_Integer;
1024 elsif Dsiz <= Standard_Long_Long_Integer_Size then
1025 Ctyp := Standard_Long_Long_Integer;
1027 -- No check type exists, use runtime call
1029 else
1030 if Nkind (N) = N_Op_Add then
1031 Cent := RE_Add_With_Ovflo_Check;
1033 elsif Nkind (N) = N_Op_Multiply then
1034 Cent := RE_Multiply_With_Ovflo_Check;
1036 else
1037 pragma Assert (Nkind (N) = N_Op_Subtract);
1038 Cent := RE_Subtract_With_Ovflo_Check;
1039 end if;
1041 Rewrite (N,
1042 OK_Convert_To (Typ,
1043 Make_Function_Call (Loc,
1044 Name => New_Occurrence_Of (RTE (Cent), Loc),
1045 Parameter_Associations => New_List (
1046 OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
1047 OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
1049 Analyze_And_Resolve (N, Typ);
1050 return;
1051 end if;
1053 -- If we fall through, we have the case where we do the arithmetic
1054 -- in the next higher type and get the check by conversion. In these
1055 -- cases Ctyp is set to the type to be used as the check type.
1057 Opnod := Relocate_Node (N);
1059 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
1061 Analyze (Opnd);
1062 Set_Etype (Opnd, Ctyp);
1063 Set_Analyzed (Opnd, True);
1064 Set_Left_Opnd (Opnod, Opnd);
1066 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
1068 Analyze (Opnd);
1069 Set_Etype (Opnd, Ctyp);
1070 Set_Analyzed (Opnd, True);
1071 Set_Right_Opnd (Opnod, Opnd);
1073 -- The type of the operation changes to the base type of the check
1074 -- type, and we reset the overflow check indication, since clearly no
1075 -- overflow is possible now that we are using a double length type.
1076 -- We also set the Analyzed flag to avoid a recursive attempt to
1077 -- expand the node.
1079 Set_Etype (Opnod, Base_Type (Ctyp));
1080 Set_Do_Overflow_Check (Opnod, False);
1081 Set_Analyzed (Opnod, True);
1083 -- Now build the outer conversion
1085 Opnd := OK_Convert_To (Typ, Opnod);
1086 Analyze (Opnd);
1087 Set_Etype (Opnd, Typ);
1089 -- In the discrete type case, we directly generate the range check
1090 -- for the outer operand. This range check will implement the
1091 -- required overflow check.
1093 if Is_Discrete_Type (Typ) then
1094 Rewrite (N, Opnd);
1095 Generate_Range_Check
1096 (Expression (N), Typ, CE_Overflow_Check_Failed);
1098 -- For other types, we enable overflow checking on the conversion,
1099 -- after setting the node as analyzed to prevent recursive attempts
1100 -- to expand the conversion node.
1102 else
1103 Set_Analyzed (Opnd, True);
1104 Enable_Overflow_Check (Opnd);
1105 Rewrite (N, Opnd);
1106 end if;
1108 exception
1109 when RE_Not_Available =>
1110 return;
1111 end;
1112 end Apply_Arithmetic_Overflow_Strict;
1114 ----------------------------------------------------
1115 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1116 ----------------------------------------------------
1118 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1119 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
1121 Loc : constant Source_Ptr := Sloc (Op);
1122 P : constant Node_Id := Parent (Op);
1124 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1125 -- Operands and results are of this type when we convert
1127 Result_Type : constant Entity_Id := Etype (Op);
1128 -- Original result type
1130 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1131 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1133 Lo, Hi : Uint;
1134 -- Ranges of values for result
1136 begin
1137 -- Nothing to do if our parent is one of the following:
1139 -- Another signed integer arithmetic op
1140 -- A membership operation
1141 -- A comparison operation
1143 -- In all these cases, we will process at the higher level (and then
1144 -- this node will be processed during the downwards recursion that
1145 -- is part of the processing in Minimize_Eliminate_Overflows).
1147 if Is_Signed_Integer_Arithmetic_Op (P)
1148 or else Nkind (P) in N_Membership_Test
1149 or else Nkind (P) in N_Op_Compare
1151 -- This is also true for an alternative in a case expression
1153 or else Nkind (P) = N_Case_Expression_Alternative
1155 -- This is also true for a range operand in a membership test
1157 or else (Nkind (P) = N_Range
1158 and then Nkind (Parent (P)) in N_Membership_Test)
1159 then
1160 -- If_Expressions and Case_Expressions are treated as arithmetic
1161 -- ops, but if they appear in an assignment or similar contexts
1162 -- there is no overflow check that starts from that parent node,
1163 -- so apply check now.
1165 if Nkind_In (P, N_If_Expression, N_Case_Expression)
1166 and then not Is_Signed_Integer_Arithmetic_Op (Parent (P))
1167 then
1168 null;
1169 else
1170 return;
1171 end if;
1172 end if;
1174 -- Otherwise, we have a top level arithmetic operation node, and this
1175 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1176 -- modes. This is the case where we tell the machinery not to move into
1177 -- Bignum mode at this top level (of course the top level operation
1178 -- will still be in Bignum mode if either of its operands are of type
1179 -- Bignum).
1181 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
1183 -- That call may but does not necessarily change the result type of Op.
1184 -- It is the job of this routine to undo such changes, so that at the
1185 -- top level, we have the proper type. This "undoing" is a point at
1186 -- which a final overflow check may be applied.
1188 -- If the result type was not fiddled we are all set. We go to base
1189 -- types here because things may have been rewritten to generate the
1190 -- base type of the operand types.
1192 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
1193 return;
1195 -- Bignum case
1197 elsif Is_RTE (Etype (Op), RE_Bignum) then
1199 -- We need a sequence that looks like:
1201 -- Rnn : Result_Type;
1203 -- declare
1204 -- M : Mark_Id := SS_Mark;
1205 -- begin
1206 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
1207 -- SS_Release (M);
1208 -- end;
1210 -- This block is inserted (using Insert_Actions), and then the node
1211 -- is replaced with a reference to Rnn.
1213 -- If our parent is a conversion node then there is no point in
1214 -- generating a conversion to Result_Type. Instead, we let the parent
1215 -- handle this. Note that this special case is not just about
1216 -- optimization. Consider
1218 -- A,B,C : Integer;
1219 -- ...
1220 -- X := Long_Long_Integer'Base (A * (B ** C));
1222 -- Now the product may fit in Long_Long_Integer but not in Integer.
1223 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1224 -- overflow exception for this intermediate value.
1226 declare
1227 Blk : constant Node_Id := Make_Bignum_Block (Loc);
1228 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1229 RHS : Node_Id;
1231 Rtype : Entity_Id;
1233 begin
1234 RHS := Convert_From_Bignum (Op);
1236 if Nkind (P) /= N_Type_Conversion then
1237 Convert_To_And_Rewrite (Result_Type, RHS);
1238 Rtype := Result_Type;
1240 -- Interesting question, do we need a check on that conversion
1241 -- operation. Answer, not if we know the result is in range.
1242 -- At the moment we are not taking advantage of this. To be
1243 -- looked at later ???
1245 else
1246 Rtype := LLIB;
1247 end if;
1249 Insert_Before
1250 (First (Statements (Handled_Statement_Sequence (Blk))),
1251 Make_Assignment_Statement (Loc,
1252 Name => New_Occurrence_Of (Rnn, Loc),
1253 Expression => RHS));
1255 Insert_Actions (Op, New_List (
1256 Make_Object_Declaration (Loc,
1257 Defining_Identifier => Rnn,
1258 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1259 Blk));
1261 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1262 Analyze_And_Resolve (Op);
1263 end;
1265 -- Here we know the result is Long_Long_Integer'Base, or that it has
1266 -- been rewritten because the parent operation is a conversion. See
1267 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
1269 else
1270 pragma Assert
1271 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
1273 -- All we need to do here is to convert the result to the proper
1274 -- result type. As explained above for the Bignum case, we can
1275 -- omit this if our parent is a type conversion.
1277 if Nkind (P) /= N_Type_Conversion then
1278 Convert_To_And_Rewrite (Result_Type, Op);
1279 end if;
1281 Analyze_And_Resolve (Op);
1282 end if;
1283 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
1285 ----------------------------
1286 -- Apply_Constraint_Check --
1287 ----------------------------
1289 procedure Apply_Constraint_Check
1290 (N : Node_Id;
1291 Typ : Entity_Id;
1292 No_Sliding : Boolean := False)
1294 Desig_Typ : Entity_Id;
1296 begin
1297 -- No checks inside a generic (check the instantiations)
1299 if Inside_A_Generic then
1300 return;
1301 end if;
1303 -- Apply required constraint checks
1305 if Is_Scalar_Type (Typ) then
1306 Apply_Scalar_Range_Check (N, Typ);
1308 elsif Is_Array_Type (Typ) then
1310 -- A useful optimization: an aggregate with only an others clause
1311 -- always has the right bounds.
1313 if Nkind (N) = N_Aggregate
1314 and then No (Expressions (N))
1315 and then Nkind
1316 (First (Choices (First (Component_Associations (N)))))
1317 = N_Others_Choice
1318 then
1319 return;
1320 end if;
1322 if Is_Constrained (Typ) then
1323 Apply_Length_Check (N, Typ);
1325 if No_Sliding then
1326 Apply_Range_Check (N, Typ);
1327 end if;
1328 else
1329 Apply_Range_Check (N, Typ);
1330 end if;
1332 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
1333 and then Has_Discriminants (Base_Type (Typ))
1334 and then Is_Constrained (Typ)
1335 then
1336 Apply_Discriminant_Check (N, Typ);
1338 elsif Is_Access_Type (Typ) then
1340 Desig_Typ := Designated_Type (Typ);
1342 -- No checks necessary if expression statically null
1344 if Known_Null (N) then
1345 if Can_Never_Be_Null (Typ) then
1346 Install_Null_Excluding_Check (N);
1347 end if;
1349 -- No sliding possible on access to arrays
1351 elsif Is_Array_Type (Desig_Typ) then
1352 if Is_Constrained (Desig_Typ) then
1353 Apply_Length_Check (N, Typ);
1354 end if;
1356 Apply_Range_Check (N, Typ);
1358 -- Do not install a discriminant check for a constrained subtype
1359 -- created for an unconstrained nominal type because the subtype
1360 -- has the correct constraints by construction.
1362 elsif Has_Discriminants (Base_Type (Desig_Typ))
1363 and then Is_Constrained (Desig_Typ)
1364 and then not Is_Constr_Subt_For_U_Nominal (Desig_Typ)
1365 then
1366 Apply_Discriminant_Check (N, Typ);
1367 end if;
1369 -- Apply the 2005 Null_Excluding check. Note that we do not apply
1370 -- this check if the constraint node is illegal, as shown by having
1371 -- an error posted. This additional guard prevents cascaded errors
1372 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1374 if Can_Never_Be_Null (Typ)
1375 and then not Can_Never_Be_Null (Etype (N))
1376 and then not Error_Posted (N)
1377 then
1378 Install_Null_Excluding_Check (N);
1379 end if;
1380 end if;
1381 end Apply_Constraint_Check;
1383 ------------------------------
1384 -- Apply_Discriminant_Check --
1385 ------------------------------
1387 procedure Apply_Discriminant_Check
1388 (N : Node_Id;
1389 Typ : Entity_Id;
1390 Lhs : Node_Id := Empty)
1392 Loc : constant Source_Ptr := Sloc (N);
1393 Do_Access : constant Boolean := Is_Access_Type (Typ);
1394 S_Typ : Entity_Id := Etype (N);
1395 Cond : Node_Id;
1396 T_Typ : Entity_Id;
1398 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1399 -- A heap object with an indefinite subtype is constrained by its
1400 -- initial value, and assigning to it requires a constraint_check.
1401 -- The target may be an explicit dereference, or a renaming of one.
1403 function Is_Aliased_Unconstrained_Component return Boolean;
1404 -- It is possible for an aliased component to have a nominal
1405 -- unconstrained subtype (through instantiation). If this is a
1406 -- discriminated component assigned in the expansion of an aggregate
1407 -- in an initialization, the check must be suppressed. This unusual
1408 -- situation requires a predicate of its own.
1410 ----------------------------------
1411 -- Denotes_Explicit_Dereference --
1412 ----------------------------------
1414 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1415 begin
1416 return
1417 Nkind (Obj) = N_Explicit_Dereference
1418 or else
1419 (Is_Entity_Name (Obj)
1420 and then Present (Renamed_Object (Entity (Obj)))
1421 and then Nkind (Renamed_Object (Entity (Obj))) =
1422 N_Explicit_Dereference);
1423 end Denotes_Explicit_Dereference;
1425 ----------------------------------------
1426 -- Is_Aliased_Unconstrained_Component --
1427 ----------------------------------------
1429 function Is_Aliased_Unconstrained_Component return Boolean is
1430 Comp : Entity_Id;
1431 Pref : Node_Id;
1433 begin
1434 if Nkind (Lhs) /= N_Selected_Component then
1435 return False;
1436 else
1437 Comp := Entity (Selector_Name (Lhs));
1438 Pref := Prefix (Lhs);
1439 end if;
1441 if Ekind (Comp) /= E_Component
1442 or else not Is_Aliased (Comp)
1443 then
1444 return False;
1445 end if;
1447 return not Comes_From_Source (Pref)
1448 and then In_Instance
1449 and then not Is_Constrained (Etype (Comp));
1450 end Is_Aliased_Unconstrained_Component;
1452 -- Start of processing for Apply_Discriminant_Check
1454 begin
1455 if Do_Access then
1456 T_Typ := Designated_Type (Typ);
1457 else
1458 T_Typ := Typ;
1459 end if;
1461 -- If the expression is a function call that returns a limited object
1462 -- it cannot be copied. It is not clear how to perform the proper
1463 -- discriminant check in this case because the discriminant value must
1464 -- be retrieved from the constructed object itself.
1466 if Nkind (N) = N_Function_Call
1467 and then Is_Limited_Type (Typ)
1468 and then Is_Entity_Name (Name (N))
1469 and then Returns_By_Ref (Entity (Name (N)))
1470 then
1471 return;
1472 end if;
1474 -- Only apply checks when generating code and discriminant checks are
1475 -- not suppressed. In GNATprove mode, we do not apply the checks, but we
1476 -- still analyze the expression to possibly issue errors on SPARK code
1477 -- when a run-time error can be detected at compile time.
1479 if not GNATprove_Mode then
1480 if not Expander_Active
1481 or else Discriminant_Checks_Suppressed (T_Typ)
1482 then
1483 return;
1484 end if;
1485 end if;
1487 -- No discriminant checks necessary for an access when expression is
1488 -- statically Null. This is not only an optimization, it is fundamental
1489 -- because otherwise discriminant checks may be generated in init procs
1490 -- for types containing an access to a not-yet-frozen record, causing a
1491 -- deadly forward reference.
1493 -- Also, if the expression is of an access type whose designated type is
1494 -- incomplete, then the access value must be null and we suppress the
1495 -- check.
1497 if Known_Null (N) then
1498 return;
1500 elsif Is_Access_Type (S_Typ) then
1501 S_Typ := Designated_Type (S_Typ);
1503 if Ekind (S_Typ) = E_Incomplete_Type then
1504 return;
1505 end if;
1506 end if;
1508 -- If an assignment target is present, then we need to generate the
1509 -- actual subtype if the target is a parameter or aliased object with
1510 -- an unconstrained nominal subtype.
1512 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1513 -- subtype to the parameter and dereference cases, since other aliased
1514 -- objects are unconstrained (unless the nominal subtype is explicitly
1515 -- constrained).
1517 if Present (Lhs)
1518 and then (Present (Param_Entity (Lhs))
1519 or else (Ada_Version < Ada_2005
1520 and then not Is_Constrained (T_Typ)
1521 and then Is_Aliased_View (Lhs)
1522 and then not Is_Aliased_Unconstrained_Component)
1523 or else (Ada_Version >= Ada_2005
1524 and then not Is_Constrained (T_Typ)
1525 and then Denotes_Explicit_Dereference (Lhs)
1526 and then Nkind (Original_Node (Lhs)) /=
1527 N_Function_Call))
1528 then
1529 T_Typ := Get_Actual_Subtype (Lhs);
1530 end if;
1532 -- Nothing to do if the type is unconstrained (this is the case where
1533 -- the actual subtype in the RM sense of N is unconstrained and no check
1534 -- is required).
1536 if not Is_Constrained (T_Typ) then
1537 return;
1539 -- Ada 2005: nothing to do if the type is one for which there is a
1540 -- partial view that is constrained.
1542 elsif Ada_Version >= Ada_2005
1543 and then Object_Type_Has_Constrained_Partial_View
1544 (Typ => Base_Type (T_Typ),
1545 Scop => Current_Scope)
1546 then
1547 return;
1548 end if;
1550 -- Nothing to do if the type is an Unchecked_Union
1552 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1553 return;
1554 end if;
1556 -- Suppress checks if the subtypes are the same. The check must be
1557 -- preserved in an assignment to a formal, because the constraint is
1558 -- given by the actual.
1560 if Nkind (Original_Node (N)) /= N_Allocator
1561 and then (No (Lhs)
1562 or else not Is_Entity_Name (Lhs)
1563 or else No (Param_Entity (Lhs)))
1564 then
1565 if (Etype (N) = Typ
1566 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1567 and then not Is_Aliased_View (Lhs)
1568 then
1569 return;
1570 end if;
1572 -- We can also eliminate checks on allocators with a subtype mark that
1573 -- coincides with the context type. The context type may be a subtype
1574 -- without a constraint (common case, a generic actual).
1576 elsif Nkind (Original_Node (N)) = N_Allocator
1577 and then Is_Entity_Name (Expression (Original_Node (N)))
1578 then
1579 declare
1580 Alloc_Typ : constant Entity_Id :=
1581 Entity (Expression (Original_Node (N)));
1583 begin
1584 if Alloc_Typ = T_Typ
1585 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1586 and then Is_Entity_Name (
1587 Subtype_Indication (Parent (T_Typ)))
1588 and then Alloc_Typ = Base_Type (T_Typ))
1590 then
1591 return;
1592 end if;
1593 end;
1594 end if;
1596 -- See if we have a case where the types are both constrained, and all
1597 -- the constraints are constants. In this case, we can do the check
1598 -- successfully at compile time.
1600 -- We skip this check for the case where the node is rewritten as
1601 -- an allocator, because it already carries the context subtype,
1602 -- and extracting the discriminants from the aggregate is messy.
1604 if Is_Constrained (S_Typ)
1605 and then Nkind (Original_Node (N)) /= N_Allocator
1606 then
1607 declare
1608 DconT : Elmt_Id;
1609 Discr : Entity_Id;
1610 DconS : Elmt_Id;
1611 ItemS : Node_Id;
1612 ItemT : Node_Id;
1614 begin
1615 -- S_Typ may not have discriminants in the case where it is a
1616 -- private type completed by a default discriminated type. In that
1617 -- case, we need to get the constraints from the underlying type.
1618 -- If the underlying type is unconstrained (i.e. has no default
1619 -- discriminants) no check is needed.
1621 if Has_Discriminants (S_Typ) then
1622 Discr := First_Discriminant (S_Typ);
1623 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1625 else
1626 Discr := First_Discriminant (Underlying_Type (S_Typ));
1627 DconS :=
1628 First_Elmt
1629 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1631 if No (DconS) then
1632 return;
1633 end if;
1635 -- A further optimization: if T_Typ is derived from S_Typ
1636 -- without imposing a constraint, no check is needed.
1638 if Nkind (Original_Node (Parent (T_Typ))) =
1639 N_Full_Type_Declaration
1640 then
1641 declare
1642 Type_Def : constant Node_Id :=
1643 Type_Definition (Original_Node (Parent (T_Typ)));
1644 begin
1645 if Nkind (Type_Def) = N_Derived_Type_Definition
1646 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1647 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1648 then
1649 return;
1650 end if;
1651 end;
1652 end if;
1653 end if;
1655 -- Constraint may appear in full view of type
1657 if Ekind (T_Typ) = E_Private_Subtype
1658 and then Present (Full_View (T_Typ))
1659 then
1660 DconT :=
1661 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
1662 else
1663 DconT :=
1664 First_Elmt (Discriminant_Constraint (T_Typ));
1665 end if;
1667 while Present (Discr) loop
1668 ItemS := Node (DconS);
1669 ItemT := Node (DconT);
1671 -- For a discriminated component type constrained by the
1672 -- current instance of an enclosing type, there is no
1673 -- applicable discriminant check.
1675 if Nkind (ItemT) = N_Attribute_Reference
1676 and then Is_Access_Type (Etype (ItemT))
1677 and then Is_Entity_Name (Prefix (ItemT))
1678 and then Is_Type (Entity (Prefix (ItemT)))
1679 then
1680 return;
1681 end if;
1683 -- If the expressions for the discriminants are identical
1684 -- and it is side-effect free (for now just an entity),
1685 -- this may be a shared constraint, e.g. from a subtype
1686 -- without a constraint introduced as a generic actual.
1687 -- Examine other discriminants if any.
1689 if ItemS = ItemT
1690 and then Is_Entity_Name (ItemS)
1691 then
1692 null;
1694 elsif not Is_OK_Static_Expression (ItemS)
1695 or else not Is_OK_Static_Expression (ItemT)
1696 then
1697 exit;
1699 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
1700 if Do_Access then -- needs run-time check.
1701 exit;
1702 else
1703 Apply_Compile_Time_Constraint_Error
1704 (N, "incorrect value for discriminant&??",
1705 CE_Discriminant_Check_Failed, Ent => Discr);
1706 return;
1707 end if;
1708 end if;
1710 Next_Elmt (DconS);
1711 Next_Elmt (DconT);
1712 Next_Discriminant (Discr);
1713 end loop;
1715 if No (Discr) then
1716 return;
1717 end if;
1718 end;
1719 end if;
1721 -- In GNATprove mode, we do not apply the checks
1723 if GNATprove_Mode then
1724 return;
1725 end if;
1727 -- Here we need a discriminant check. First build the expression
1728 -- for the comparisons of the discriminants:
1730 -- (n.disc1 /= typ.disc1) or else
1731 -- (n.disc2 /= typ.disc2) or else
1732 -- ...
1733 -- (n.discn /= typ.discn)
1735 Cond := Build_Discriminant_Checks (N, T_Typ);
1737 -- If Lhs is set and is a parameter, then the condition is guarded by:
1738 -- lhs'constrained and then (condition built above)
1740 if Present (Param_Entity (Lhs)) then
1741 Cond :=
1742 Make_And_Then (Loc,
1743 Left_Opnd =>
1744 Make_Attribute_Reference (Loc,
1745 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1746 Attribute_Name => Name_Constrained),
1747 Right_Opnd => Cond);
1748 end if;
1750 if Do_Access then
1751 Cond := Guard_Access (Cond, Loc, N);
1752 end if;
1754 Insert_Action (N,
1755 Make_Raise_Constraint_Error (Loc,
1756 Condition => Cond,
1757 Reason => CE_Discriminant_Check_Failed));
1758 end Apply_Discriminant_Check;
1760 -------------------------
1761 -- Apply_Divide_Checks --
1762 -------------------------
1764 procedure Apply_Divide_Checks (N : Node_Id) is
1765 Loc : constant Source_Ptr := Sloc (N);
1766 Typ : constant Entity_Id := Etype (N);
1767 Left : constant Node_Id := Left_Opnd (N);
1768 Right : constant Node_Id := Right_Opnd (N);
1770 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
1771 -- Current overflow checking mode
1773 LLB : Uint;
1774 Llo : Uint;
1775 Lhi : Uint;
1776 LOK : Boolean;
1777 Rlo : Uint;
1778 Rhi : Uint;
1779 ROK : Boolean;
1781 pragma Warnings (Off, Lhi);
1782 -- Don't actually use this value
1784 begin
1785 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1786 -- operating on signed integer types, then the only thing this routine
1787 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1788 -- procedure will (possibly later on during recursive downward calls),
1789 -- ensure that any needed overflow/division checks are properly applied.
1791 if Mode in Minimized_Or_Eliminated
1792 and then Is_Signed_Integer_Type (Typ)
1793 then
1794 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1795 return;
1796 end if;
1798 -- Proceed here in SUPPRESSED or CHECKED modes
1800 if Expander_Active
1801 and then not Backend_Divide_Checks_On_Target
1802 and then Check_Needed (Right, Division_Check)
1803 then
1804 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
1806 -- Deal with division check
1808 if Do_Division_Check (N)
1809 and then not Division_Checks_Suppressed (Typ)
1810 then
1811 Apply_Division_Check (N, Rlo, Rhi, ROK);
1812 end if;
1814 -- Deal with overflow check
1816 if Do_Overflow_Check (N)
1817 and then not Overflow_Checks_Suppressed (Etype (N))
1818 then
1819 Set_Do_Overflow_Check (N, False);
1821 -- Test for extremely annoying case of xxx'First divided by -1
1822 -- for division of signed integer types (only overflow case).
1824 if Nkind (N) = N_Op_Divide
1825 and then Is_Signed_Integer_Type (Typ)
1826 then
1827 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
1828 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1830 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
1831 and then
1832 ((not LOK) or else (Llo = LLB))
1833 then
1834 -- Ensure that expressions are not evaluated twice (once
1835 -- for their runtime checks and once for their regular
1836 -- computation).
1838 Force_Evaluation (Left, Mode => Strict);
1839 Force_Evaluation (Right, Mode => Strict);
1841 Insert_Action (N,
1842 Make_Raise_Constraint_Error (Loc,
1843 Condition =>
1844 Make_And_Then (Loc,
1845 Left_Opnd =>
1846 Make_Op_Eq (Loc,
1847 Left_Opnd =>
1848 Duplicate_Subexpr_Move_Checks (Left),
1849 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
1851 Right_Opnd =>
1852 Make_Op_Eq (Loc,
1853 Left_Opnd => Duplicate_Subexpr (Right),
1854 Right_Opnd => Make_Integer_Literal (Loc, -1))),
1856 Reason => CE_Overflow_Check_Failed));
1857 end if;
1858 end if;
1859 end if;
1860 end if;
1861 end Apply_Divide_Checks;
1863 --------------------------
1864 -- Apply_Division_Check --
1865 --------------------------
1867 procedure Apply_Division_Check
1868 (N : Node_Id;
1869 Rlo : Uint;
1870 Rhi : Uint;
1871 ROK : Boolean)
1873 pragma Assert (Do_Division_Check (N));
1875 Loc : constant Source_Ptr := Sloc (N);
1876 Right : constant Node_Id := Right_Opnd (N);
1877 Opnd : Node_Id;
1879 begin
1880 if Expander_Active
1881 and then not Backend_Divide_Checks_On_Target
1882 and then Check_Needed (Right, Division_Check)
1884 -- See if division by zero possible, and if so generate test. This
1885 -- part of the test is not controlled by the -gnato switch, since it
1886 -- is a Division_Check and not an Overflow_Check.
1888 and then Do_Division_Check (N)
1889 then
1890 Set_Do_Division_Check (N, False);
1892 if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
1893 if Is_Floating_Point_Type (Etype (N)) then
1894 Opnd := Make_Real_Literal (Loc, Ureal_0);
1895 else
1896 Opnd := Make_Integer_Literal (Loc, 0);
1897 end if;
1899 Insert_Action (N,
1900 Make_Raise_Constraint_Error (Loc,
1901 Condition =>
1902 Make_Op_Eq (Loc,
1903 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1904 Right_Opnd => Opnd),
1905 Reason => CE_Divide_By_Zero));
1906 end if;
1907 end if;
1908 end Apply_Division_Check;
1910 ----------------------------------
1911 -- Apply_Float_Conversion_Check --
1912 ----------------------------------
1914 -- Let F and I be the source and target types of the conversion. The RM
1915 -- specifies that a floating-point value X is rounded to the nearest
1916 -- integer, with halfway cases being rounded away from zero. The rounded
1917 -- value of X is checked against I'Range.
1919 -- The catch in the above paragraph is that there is no good way to know
1920 -- whether the round-to-integer operation resulted in overflow. A remedy is
1921 -- to perform a range check in the floating-point domain instead, however:
1923 -- (1) The bounds may not be known at compile time
1924 -- (2) The check must take into account rounding or truncation.
1925 -- (3) The range of type I may not be exactly representable in F.
1926 -- (4) For the rounding case, The end-points I'First - 0.5 and
1927 -- I'Last + 0.5 may or may not be in range, depending on the
1928 -- sign of I'First and I'Last.
1929 -- (5) X may be a NaN, which will fail any comparison
1931 -- The following steps correctly convert X with rounding:
1933 -- (1) If either I'First or I'Last is not known at compile time, use
1934 -- I'Base instead of I in the next three steps and perform a
1935 -- regular range check against I'Range after conversion.
1936 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1937 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
1938 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1939 -- In other words, take one of the closest floating-point numbers
1940 -- (which is an integer value) to I'First, and see if it is in
1941 -- range or not.
1942 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1943 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
1944 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
1945 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1946 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1948 -- For the truncating case, replace steps (2) and (3) as follows:
1949 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1950 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1951 -- Lo_OK be True.
1952 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1953 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1954 -- Hi_OK be True.
1956 procedure Apply_Float_Conversion_Check
1957 (Ck_Node : Node_Id;
1958 Target_Typ : Entity_Id)
1960 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1961 HB : constant Node_Id := Type_High_Bound (Target_Typ);
1962 Loc : constant Source_Ptr := Sloc (Ck_Node);
1963 Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
1964 Target_Base : constant Entity_Id :=
1965 Implementation_Base_Type (Target_Typ);
1967 Par : constant Node_Id := Parent (Ck_Node);
1968 pragma Assert (Nkind (Par) = N_Type_Conversion);
1969 -- Parent of check node, must be a type conversion
1971 Truncate : constant Boolean := Float_Truncate (Par);
1972 Max_Bound : constant Uint :=
1973 UI_Expon
1974 (Machine_Radix_Value (Expr_Type),
1975 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
1977 -- Largest bound, so bound plus or minus half is a machine number of F
1979 Ifirst, Ilast : Uint;
1980 -- Bounds of integer type
1982 Lo, Hi : Ureal;
1983 -- Bounds to check in floating-point domain
1985 Lo_OK, Hi_OK : Boolean;
1986 -- True iff Lo resp. Hi belongs to I'Range
1988 Lo_Chk, Hi_Chk : Node_Id;
1989 -- Expressions that are False iff check fails
1991 Reason : RT_Exception_Code;
1993 begin
1994 -- We do not need checks if we are not generating code (i.e. the full
1995 -- expander is not active). In SPARK mode, we specifically don't want
1996 -- the frontend to expand these checks, which are dealt with directly
1997 -- in the formal verification backend.
1999 if not Expander_Active then
2000 return;
2001 end if;
2003 if not Compile_Time_Known_Value (LB)
2004 or not Compile_Time_Known_Value (HB)
2005 then
2006 declare
2007 -- First check that the value falls in the range of the base type,
2008 -- to prevent overflow during conversion and then perform a
2009 -- regular range check against the (dynamic) bounds.
2011 pragma Assert (Target_Base /= Target_Typ);
2013 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
2015 begin
2016 Apply_Float_Conversion_Check (Ck_Node, Target_Base);
2017 Set_Etype (Temp, Target_Base);
2019 Insert_Action (Parent (Par),
2020 Make_Object_Declaration (Loc,
2021 Defining_Identifier => Temp,
2022 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
2023 Expression => New_Copy_Tree (Par)),
2024 Suppress => All_Checks);
2026 Insert_Action (Par,
2027 Make_Raise_Constraint_Error (Loc,
2028 Condition =>
2029 Make_Not_In (Loc,
2030 Left_Opnd => New_Occurrence_Of (Temp, Loc),
2031 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
2032 Reason => CE_Range_Check_Failed));
2033 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
2035 return;
2036 end;
2037 end if;
2039 -- Get the (static) bounds of the target type
2041 Ifirst := Expr_Value (LB);
2042 Ilast := Expr_Value (HB);
2044 -- A simple optimization: if the expression is a universal literal,
2045 -- we can do the comparison with the bounds and the conversion to
2046 -- an integer type statically. The range checks are unchanged.
2048 if Nkind (Ck_Node) = N_Real_Literal
2049 and then Etype (Ck_Node) = Universal_Real
2050 and then Is_Integer_Type (Target_Typ)
2051 and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
2052 then
2053 declare
2054 Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
2056 begin
2057 if Int_Val <= Ilast and then Int_Val >= Ifirst then
2059 -- Conversion is safe
2061 Rewrite (Parent (Ck_Node),
2062 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
2063 Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
2064 return;
2065 end if;
2066 end;
2067 end if;
2069 -- Check against lower bound
2071 if Truncate and then Ifirst > 0 then
2072 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2073 Lo_OK := False;
2075 elsif Truncate then
2076 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2077 Lo_OK := True;
2079 elsif abs (Ifirst) < Max_Bound then
2080 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2081 Lo_OK := (Ifirst > 0);
2083 else
2084 Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
2085 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2086 end if;
2088 if Lo_OK then
2090 -- Lo_Chk := (X >= Lo)
2092 Lo_Chk := Make_Op_Ge (Loc,
2093 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2094 Right_Opnd => Make_Real_Literal (Loc, Lo));
2096 else
2097 -- Lo_Chk := (X > Lo)
2099 Lo_Chk := Make_Op_Gt (Loc,
2100 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2101 Right_Opnd => Make_Real_Literal (Loc, Lo));
2102 end if;
2104 -- Check against higher bound
2106 if Truncate and then Ilast < 0 then
2107 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
2108 Hi_OK := False;
2110 elsif Truncate then
2111 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2112 Hi_OK := True;
2114 elsif abs (Ilast) < Max_Bound then
2115 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2116 Hi_OK := (Ilast < 0);
2117 else
2118 Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
2119 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2120 end if;
2122 if Hi_OK then
2124 -- Hi_Chk := (X <= Hi)
2126 Hi_Chk := Make_Op_Le (Loc,
2127 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2128 Right_Opnd => Make_Real_Literal (Loc, Hi));
2130 else
2131 -- Hi_Chk := (X < Hi)
2133 Hi_Chk := Make_Op_Lt (Loc,
2134 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
2135 Right_Opnd => Make_Real_Literal (Loc, Hi));
2136 end if;
2138 -- If the bounds of the target type are the same as those of the base
2139 -- type, the check is an overflow check as a range check is not
2140 -- performed in these cases.
2142 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2143 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2144 then
2145 Reason := CE_Overflow_Check_Failed;
2146 else
2147 Reason := CE_Range_Check_Failed;
2148 end if;
2150 -- Raise CE if either conditions does not hold
2152 Insert_Action (Ck_Node,
2153 Make_Raise_Constraint_Error (Loc,
2154 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
2155 Reason => Reason));
2156 end Apply_Float_Conversion_Check;
2158 ------------------------
2159 -- Apply_Length_Check --
2160 ------------------------
2162 procedure Apply_Length_Check
2163 (Ck_Node : Node_Id;
2164 Target_Typ : Entity_Id;
2165 Source_Typ : Entity_Id := Empty)
2167 begin
2168 Apply_Selected_Length_Checks
2169 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2170 end Apply_Length_Check;
2172 -------------------------------------
2173 -- Apply_Parameter_Aliasing_Checks --
2174 -------------------------------------
2176 procedure Apply_Parameter_Aliasing_Checks
2177 (Call : Node_Id;
2178 Subp : Entity_Id)
2180 Loc : constant Source_Ptr := Sloc (Call);
2182 function May_Cause_Aliasing
2183 (Formal_1 : Entity_Id;
2184 Formal_2 : Entity_Id) return Boolean;
2185 -- Determine whether two formal parameters can alias each other
2186 -- depending on their modes.
2188 function Original_Actual (N : Node_Id) return Node_Id;
2189 -- The expander may replace an actual with a temporary for the sake of
2190 -- side effect removal. The temporary may hide a potential aliasing as
2191 -- it does not share the address of the actual. This routine attempts
2192 -- to retrieve the original actual.
2194 procedure Overlap_Check
2195 (Actual_1 : Node_Id;
2196 Actual_2 : Node_Id;
2197 Formal_1 : Entity_Id;
2198 Formal_2 : Entity_Id;
2199 Check : in out Node_Id);
2200 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2201 -- If detailed exception messages are enabled, the check is augmented to
2202 -- provide information about the names of the corresponding formals. See
2203 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2204 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2205 -- Check contains all and-ed simple tests generated so far or remains
2206 -- unchanged in the case of detailed exception messaged.
2208 ------------------------
2209 -- May_Cause_Aliasing --
2210 ------------------------
2212 function May_Cause_Aliasing
2213 (Formal_1 : Entity_Id;
2214 Formal_2 : Entity_Id) return Boolean
2216 begin
2217 -- The following combination cannot lead to aliasing
2219 -- Formal 1 Formal 2
2220 -- IN IN
2222 if Ekind (Formal_1) = E_In_Parameter
2223 and then
2224 Ekind (Formal_2) = E_In_Parameter
2225 then
2226 return False;
2228 -- The following combinations may lead to aliasing
2230 -- Formal 1 Formal 2
2231 -- IN OUT
2232 -- IN IN OUT
2233 -- OUT IN
2234 -- OUT IN OUT
2235 -- OUT OUT
2237 else
2238 return True;
2239 end if;
2240 end May_Cause_Aliasing;
2242 ---------------------
2243 -- Original_Actual --
2244 ---------------------
2246 function Original_Actual (N : Node_Id) return Node_Id is
2247 begin
2248 if Nkind (N) = N_Type_Conversion then
2249 return Expression (N);
2251 -- The expander created a temporary to capture the result of a type
2252 -- conversion where the expression is the real actual.
2254 elsif Nkind (N) = N_Identifier
2255 and then Present (Original_Node (N))
2256 and then Nkind (Original_Node (N)) = N_Type_Conversion
2257 then
2258 return Expression (Original_Node (N));
2259 end if;
2261 return N;
2262 end Original_Actual;
2264 -------------------
2265 -- Overlap_Check --
2266 -------------------
2268 procedure Overlap_Check
2269 (Actual_1 : Node_Id;
2270 Actual_2 : Node_Id;
2271 Formal_1 : Entity_Id;
2272 Formal_2 : Entity_Id;
2273 Check : in out Node_Id)
2275 Cond : Node_Id;
2276 ID_Casing : constant Casing_Type :=
2277 Identifier_Casing (Source_Index (Current_Sem_Unit));
2279 begin
2280 -- Generate:
2281 -- Actual_1'Overlaps_Storage (Actual_2)
2283 Cond :=
2284 Make_Attribute_Reference (Loc,
2285 Prefix => New_Copy_Tree (Original_Actual (Actual_1)),
2286 Attribute_Name => Name_Overlaps_Storage,
2287 Expressions =>
2288 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2290 -- Generate the following check when detailed exception messages are
2291 -- enabled:
2293 -- if Actual_1'Overlaps_Storage (Actual_2) then
2294 -- raise Program_Error with <detailed message>;
2295 -- end if;
2297 if Exception_Extra_Info then
2298 Start_String;
2300 -- Do not generate location information for internal calls
2302 if Comes_From_Source (Call) then
2303 Store_String_Chars (Build_Location_String (Loc));
2304 Store_String_Char (' ');
2305 end if;
2307 Store_String_Chars ("aliased parameters, actuals for """);
2309 Get_Name_String (Chars (Formal_1));
2310 Set_Casing (ID_Casing);
2311 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2313 Store_String_Chars (""" and """);
2315 Get_Name_String (Chars (Formal_2));
2316 Set_Casing (ID_Casing);
2317 Store_String_Chars (Name_Buffer (1 .. Name_Len));
2319 Store_String_Chars (""" overlap");
2321 Insert_Action (Call,
2322 Make_If_Statement (Loc,
2323 Condition => Cond,
2324 Then_Statements => New_List (
2325 Make_Raise_Statement (Loc,
2326 Name =>
2327 New_Occurrence_Of (Standard_Program_Error, Loc),
2328 Expression => Make_String_Literal (Loc, End_String)))));
2330 -- Create a sequence of overlapping checks by and-ing them all
2331 -- together.
2333 else
2334 if No (Check) then
2335 Check := Cond;
2336 else
2337 Check :=
2338 Make_And_Then (Loc,
2339 Left_Opnd => Check,
2340 Right_Opnd => Cond);
2341 end if;
2342 end if;
2343 end Overlap_Check;
2345 -- Local variables
2347 Actual_1 : Node_Id;
2348 Actual_2 : Node_Id;
2349 Check : Node_Id;
2350 Formal_1 : Entity_Id;
2351 Formal_2 : Entity_Id;
2352 Orig_Act_1 : Node_Id;
2353 Orig_Act_2 : Node_Id;
2355 -- Start of processing for Apply_Parameter_Aliasing_Checks
2357 begin
2358 Check := Empty;
2360 Actual_1 := First_Actual (Call);
2361 Formal_1 := First_Formal (Subp);
2362 while Present (Actual_1) and then Present (Formal_1) loop
2363 Orig_Act_1 := Original_Actual (Actual_1);
2365 -- Ensure that the actual is an object that is not passed by value.
2366 -- Elementary types are always passed by value, therefore actuals of
2367 -- such types cannot lead to aliasing. An aggregate is an object in
2368 -- Ada 2012, but an actual that is an aggregate cannot overlap with
2369 -- another actual. A type that is By_Reference (such as an array of
2370 -- controlled types) is not subject to the check because any update
2371 -- will be done in place and a subsequent read will always see the
2372 -- correct value, see RM 6.2 (12/3).
2374 if Nkind (Orig_Act_1) = N_Aggregate
2375 or else (Nkind (Orig_Act_1) = N_Qualified_Expression
2376 and then Nkind (Expression (Orig_Act_1)) = N_Aggregate)
2377 then
2378 null;
2380 elsif Is_Object_Reference (Orig_Act_1)
2381 and then not Is_Elementary_Type (Etype (Orig_Act_1))
2382 and then not Is_By_Reference_Type (Etype (Orig_Act_1))
2383 then
2384 Actual_2 := Next_Actual (Actual_1);
2385 Formal_2 := Next_Formal (Formal_1);
2386 while Present (Actual_2) and then Present (Formal_2) loop
2387 Orig_Act_2 := Original_Actual (Actual_2);
2389 -- The other actual we are testing against must also denote
2390 -- a non pass-by-value object. Generate the check only when
2391 -- the mode of the two formals may lead to aliasing.
2393 if Is_Object_Reference (Orig_Act_2)
2394 and then not Is_Elementary_Type (Etype (Orig_Act_2))
2395 and then May_Cause_Aliasing (Formal_1, Formal_2)
2396 then
2397 Remove_Side_Effects (Actual_1);
2398 Remove_Side_Effects (Actual_2);
2400 Overlap_Check
2401 (Actual_1 => Actual_1,
2402 Actual_2 => Actual_2,
2403 Formal_1 => Formal_1,
2404 Formal_2 => Formal_2,
2405 Check => Check);
2406 end if;
2408 Next_Actual (Actual_2);
2409 Next_Formal (Formal_2);
2410 end loop;
2411 end if;
2413 Next_Actual (Actual_1);
2414 Next_Formal (Formal_1);
2415 end loop;
2417 -- Place a simple check right before the call
2419 if Present (Check) and then not Exception_Extra_Info then
2420 Insert_Action (Call,
2421 Make_Raise_Program_Error (Loc,
2422 Condition => Check,
2423 Reason => PE_Aliased_Parameters));
2424 end if;
2425 end Apply_Parameter_Aliasing_Checks;
2427 -------------------------------------
2428 -- Apply_Parameter_Validity_Checks --
2429 -------------------------------------
2431 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2432 Subp_Decl : Node_Id;
2434 procedure Add_Validity_Check
2435 (Formal : Entity_Id;
2436 Prag_Nam : Name_Id;
2437 For_Result : Boolean := False);
2438 -- Add a single 'Valid[_Scalar] check which verifies the initialization
2439 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
2440 -- Set flag For_Result when to verify the result of a function.
2442 ------------------------
2443 -- Add_Validity_Check --
2444 ------------------------
2446 procedure Add_Validity_Check
2447 (Formal : Entity_Id;
2448 Prag_Nam : Name_Id;
2449 For_Result : Boolean := False)
2451 procedure Build_Pre_Post_Condition (Expr : Node_Id);
2452 -- Create a pre/postcondition pragma that tests expression Expr
2454 ------------------------------
2455 -- Build_Pre_Post_Condition --
2456 ------------------------------
2458 procedure Build_Pre_Post_Condition (Expr : Node_Id) is
2459 Loc : constant Source_Ptr := Sloc (Subp);
2460 Decls : List_Id;
2461 Prag : Node_Id;
2463 begin
2464 Prag :=
2465 Make_Pragma (Loc,
2466 Chars => Prag_Nam,
2467 Pragma_Argument_Associations => New_List (
2468 Make_Pragma_Argument_Association (Loc,
2469 Chars => Name_Check,
2470 Expression => Expr)));
2472 -- Add a message unless exception messages are suppressed
2474 if not Exception_Locations_Suppressed then
2475 Append_To (Pragma_Argument_Associations (Prag),
2476 Make_Pragma_Argument_Association (Loc,
2477 Chars => Name_Message,
2478 Expression =>
2479 Make_String_Literal (Loc,
2480 Strval => "failed "
2481 & Get_Name_String (Prag_Nam)
2482 & " from "
2483 & Build_Location_String (Loc))));
2484 end if;
2486 -- Insert the pragma in the tree
2488 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2489 Add_Global_Declaration (Prag);
2490 Analyze (Prag);
2492 -- PPC pragmas associated with subprogram bodies must be inserted
2493 -- in the declarative part of the body.
2495 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2496 Decls := Declarations (Subp_Decl);
2498 if No (Decls) then
2499 Decls := New_List;
2500 Set_Declarations (Subp_Decl, Decls);
2501 end if;
2503 Prepend_To (Decls, Prag);
2504 Analyze (Prag);
2506 -- For subprogram declarations insert the PPC pragma right after
2507 -- the declarative node.
2509 else
2510 Insert_After_And_Analyze (Subp_Decl, Prag);
2511 end if;
2512 end Build_Pre_Post_Condition;
2514 -- Local variables
2516 Loc : constant Source_Ptr := Sloc (Subp);
2517 Typ : constant Entity_Id := Etype (Formal);
2518 Check : Node_Id;
2519 Nam : Name_Id;
2521 -- Start of processing for Add_Validity_Check
2523 begin
2524 -- For scalars, generate 'Valid test
2526 if Is_Scalar_Type (Typ) then
2527 Nam := Name_Valid;
2529 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2531 elsif Scalar_Part_Present (Typ) then
2532 Nam := Name_Valid_Scalars;
2534 -- No test needed for other cases (no scalars to test)
2536 else
2537 return;
2538 end if;
2540 -- Step 1: Create the expression to verify the validity of the
2541 -- context.
2543 Check := New_Occurrence_Of (Formal, Loc);
2545 -- When processing a function result, use 'Result. Generate
2546 -- Context'Result
2548 if For_Result then
2549 Check :=
2550 Make_Attribute_Reference (Loc,
2551 Prefix => Check,
2552 Attribute_Name => Name_Result);
2553 end if;
2555 -- Generate:
2556 -- Context['Result]'Valid[_Scalars]
2558 Check :=
2559 Make_Attribute_Reference (Loc,
2560 Prefix => Check,
2561 Attribute_Name => Nam);
2563 -- Step 2: Create a pre or post condition pragma
2565 Build_Pre_Post_Condition (Check);
2566 end Add_Validity_Check;
2568 -- Local variables
2570 Formal : Entity_Id;
2571 Subp_Spec : Node_Id;
2573 -- Start of processing for Apply_Parameter_Validity_Checks
2575 begin
2576 -- Extract the subprogram specification and declaration nodes
2578 Subp_Spec := Parent (Subp);
2580 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2581 Subp_Spec := Parent (Subp_Spec);
2582 end if;
2584 Subp_Decl := Parent (Subp_Spec);
2586 if not Comes_From_Source (Subp)
2588 -- Do not process formal subprograms because the corresponding actual
2589 -- will receive the proper checks when the instance is analyzed.
2591 or else Is_Formal_Subprogram (Subp)
2593 -- Do not process imported subprograms since pre and postconditions
2594 -- are never verified on routines coming from a different language.
2596 or else Is_Imported (Subp)
2597 or else Is_Intrinsic_Subprogram (Subp)
2599 -- The PPC pragmas generated by this routine do not correspond to
2600 -- source aspects, therefore they cannot be applied to abstract
2601 -- subprograms.
2603 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
2605 -- Do not consider subprogram renaminds because the renamed entity
2606 -- already has the proper PPC pragmas.
2608 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2610 -- Do not process null procedures because there is no benefit of
2611 -- adding the checks to a no action routine.
2613 or else (Nkind (Subp_Spec) = N_Procedure_Specification
2614 and then Null_Present (Subp_Spec))
2615 then
2616 return;
2617 end if;
2619 -- Inspect all the formals applying aliasing and scalar initialization
2620 -- checks where applicable.
2622 Formal := First_Formal (Subp);
2623 while Present (Formal) loop
2625 -- Generate the following scalar initialization checks for each
2626 -- formal parameter:
2628 -- mode IN - Pre => Formal'Valid[_Scalars]
2629 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2630 -- mode OUT - Post => Formal'Valid[_Scalars]
2632 if Check_Validity_Of_Parameters then
2633 if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
2634 Add_Validity_Check (Formal, Name_Precondition, False);
2635 end if;
2637 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
2638 Add_Validity_Check (Formal, Name_Postcondition, False);
2639 end if;
2640 end if;
2642 Next_Formal (Formal);
2643 end loop;
2645 -- Generate following scalar initialization check for function result:
2647 -- Post => Subp'Result'Valid[_Scalars]
2649 if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
2650 Add_Validity_Check (Subp, Name_Postcondition, True);
2651 end if;
2652 end Apply_Parameter_Validity_Checks;
2654 ---------------------------
2655 -- Apply_Predicate_Check --
2656 ---------------------------
2658 procedure Apply_Predicate_Check
2659 (N : Node_Id;
2660 Typ : Entity_Id;
2661 Fun : Entity_Id := Empty)
2663 S : Entity_Id;
2665 begin
2666 if Predicate_Checks_Suppressed (Empty) then
2667 return;
2669 elsif Predicates_Ignored (Typ) then
2670 return;
2672 elsif Present (Predicate_Function (Typ)) then
2673 S := Current_Scope;
2674 while Present (S) and then not Is_Subprogram (S) loop
2675 S := Scope (S);
2676 end loop;
2678 -- A predicate check does not apply within internally generated
2679 -- subprograms, such as TSS functions.
2681 if Within_Internal_Subprogram then
2682 return;
2684 -- If the check appears within the predicate function itself, it
2685 -- means that the user specified a check whose formal is the
2686 -- predicated subtype itself, rather than some covering type. This
2687 -- is likely to be a common error, and thus deserves a warning.
2689 elsif Present (S) and then S = Predicate_Function (Typ) then
2690 Error_Msg_NE
2691 ("predicate check includes a call to& that requires a "
2692 & "predicate check??", Parent (N), Fun);
2693 Error_Msg_N
2694 ("\this will result in infinite recursion??", Parent (N));
2696 if Is_First_Subtype (Typ) then
2697 Error_Msg_NE
2698 ("\use an explicit subtype of& to carry the predicate",
2699 Parent (N), Typ);
2700 end if;
2702 Insert_Action (N,
2703 Make_Raise_Storage_Error (Sloc (N),
2704 Reason => SE_Infinite_Recursion));
2706 -- Here for normal case of predicate active
2708 else
2709 -- If the type has a static predicate and the expression is known
2710 -- at compile time, see if the expression satisfies the predicate.
2712 Check_Expression_Against_Static_Predicate (N, Typ);
2714 if not Expander_Active then
2715 return;
2716 end if;
2718 -- For an entity of the type, generate a call to the predicate
2719 -- function, unless its type is an actual subtype, which is not
2720 -- visible outside of the enclosing subprogram.
2722 if Is_Entity_Name (N)
2723 and then not Is_Actual_Subtype (Typ)
2724 then
2725 Insert_Action (N,
2726 Make_Predicate_Check
2727 (Typ, New_Occurrence_Of (Entity (N), Sloc (N))));
2729 -- If the expression is not an entity it may have side effects,
2730 -- and the following call will create an object declaration for
2731 -- it. We disable checks during its analysis, to prevent an
2732 -- infinite recursion.
2734 -- If the prefix is an aggregate in an assignment, apply the
2735 -- check to the LHS after assignment, rather than create a
2736 -- redundant temporary. This is only necessary in rare cases
2737 -- of array types (including strings) initialized with an
2738 -- aggregate with an "others" clause, either coming from source
2739 -- or generated by an Initialize_Scalars pragma.
2741 elsif Nkind (N) = N_Aggregate
2742 and then Nkind (Parent (N)) = N_Assignment_Statement
2743 then
2744 Insert_Action_After (Parent (N),
2745 Make_Predicate_Check
2746 (Typ, Duplicate_Subexpr (Name (Parent (N)))));
2748 else
2749 Insert_Action (N,
2750 Make_Predicate_Check
2751 (Typ, Duplicate_Subexpr (N)), Suppress => All_Checks);
2752 end if;
2753 end if;
2754 end if;
2755 end Apply_Predicate_Check;
2757 -----------------------
2758 -- Apply_Range_Check --
2759 -----------------------
2761 procedure Apply_Range_Check
2762 (Ck_Node : Node_Id;
2763 Target_Typ : Entity_Id;
2764 Source_Typ : Entity_Id := Empty)
2766 begin
2767 Apply_Selected_Range_Checks
2768 (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
2769 end Apply_Range_Check;
2771 ------------------------------
2772 -- Apply_Scalar_Range_Check --
2773 ------------------------------
2775 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
2776 -- off if it is already set on.
2778 procedure Apply_Scalar_Range_Check
2779 (Expr : Node_Id;
2780 Target_Typ : Entity_Id;
2781 Source_Typ : Entity_Id := Empty;
2782 Fixed_Int : Boolean := False)
2784 Parnt : constant Node_Id := Parent (Expr);
2785 S_Typ : Entity_Id;
2786 Arr : Node_Id := Empty; -- initialize to prevent warning
2787 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
2789 Is_Subscr_Ref : Boolean;
2790 -- Set true if Expr is a subscript
2792 Is_Unconstrained_Subscr_Ref : Boolean;
2793 -- Set true if Expr is a subscript of an unconstrained array. In this
2794 -- case we do not attempt to do an analysis of the value against the
2795 -- range of the subscript, since we don't know the actual subtype.
2797 Int_Real : Boolean;
2798 -- Set to True if Expr should be regarded as a real value even though
2799 -- the type of Expr might be discrete.
2801 procedure Bad_Value (Warn : Boolean := False);
2802 -- Procedure called if value is determined to be out of range. Warn is
2803 -- True to force a warning instead of an error, even when SPARK_Mode is
2804 -- On.
2806 ---------------
2807 -- Bad_Value --
2808 ---------------
2810 procedure Bad_Value (Warn : Boolean := False) is
2811 begin
2812 Apply_Compile_Time_Constraint_Error
2813 (Expr, "value not in range of}??", CE_Range_Check_Failed,
2814 Ent => Target_Typ,
2815 Typ => Target_Typ,
2816 Warn => Warn);
2817 end Bad_Value;
2819 -- Start of processing for Apply_Scalar_Range_Check
2821 begin
2822 -- Return if check obviously not needed
2825 -- Not needed inside generic
2827 Inside_A_Generic
2829 -- Not needed if previous error
2831 or else Target_Typ = Any_Type
2832 or else Nkind (Expr) = N_Error
2834 -- Not needed for non-scalar type
2836 or else not Is_Scalar_Type (Target_Typ)
2838 -- Not needed if we know node raises CE already
2840 or else Raises_Constraint_Error (Expr)
2841 then
2842 return;
2843 end if;
2845 -- Now, see if checks are suppressed
2847 Is_Subscr_Ref :=
2848 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
2850 if Is_Subscr_Ref then
2851 Arr := Prefix (Parnt);
2852 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
2854 if Is_Access_Type (Arr_Typ) then
2855 Arr_Typ := Designated_Type (Arr_Typ);
2856 end if;
2857 end if;
2859 if not Do_Range_Check (Expr) then
2861 -- Subscript reference. Check for Index_Checks suppressed
2863 if Is_Subscr_Ref then
2865 -- Check array type and its base type
2867 if Index_Checks_Suppressed (Arr_Typ)
2868 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
2869 then
2870 return;
2872 -- Check array itself if it is an entity name
2874 elsif Is_Entity_Name (Arr)
2875 and then Index_Checks_Suppressed (Entity (Arr))
2876 then
2877 return;
2879 -- Check expression itself if it is an entity name
2881 elsif Is_Entity_Name (Expr)
2882 and then Index_Checks_Suppressed (Entity (Expr))
2883 then
2884 return;
2885 end if;
2887 -- All other cases, check for Range_Checks suppressed
2889 else
2890 -- Check target type and its base type
2892 if Range_Checks_Suppressed (Target_Typ)
2893 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
2894 then
2895 return;
2897 -- Check expression itself if it is an entity name
2899 elsif Is_Entity_Name (Expr)
2900 and then Range_Checks_Suppressed (Entity (Expr))
2901 then
2902 return;
2904 -- If Expr is part of an assignment statement, then check left
2905 -- side of assignment if it is an entity name.
2907 elsif Nkind (Parnt) = N_Assignment_Statement
2908 and then Is_Entity_Name (Name (Parnt))
2909 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
2910 then
2911 return;
2912 end if;
2913 end if;
2914 end if;
2916 -- Do not set range checks if they are killed
2918 if Nkind (Expr) = N_Unchecked_Type_Conversion
2919 and then Kill_Range_Check (Expr)
2920 then
2921 return;
2922 end if;
2924 -- Do not set range checks for any values from System.Scalar_Values
2925 -- since the whole idea of such values is to avoid checking them.
2927 if Is_Entity_Name (Expr)
2928 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
2929 then
2930 return;
2931 end if;
2933 -- Now see if we need a check
2935 if No (Source_Typ) then
2936 S_Typ := Etype (Expr);
2937 else
2938 S_Typ := Source_Typ;
2939 end if;
2941 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
2942 return;
2943 end if;
2945 Is_Unconstrained_Subscr_Ref :=
2946 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
2948 -- Special checks for floating-point type
2950 if Is_Floating_Point_Type (S_Typ) then
2952 -- Always do a range check if the source type includes infinities and
2953 -- the target type does not include infinities. We do not do this if
2954 -- range checks are killed.
2955 -- If the expression is a literal and the bounds of the type are
2956 -- static constants it may be possible to optimize the check.
2958 if Has_Infinities (S_Typ)
2959 and then not Has_Infinities (Target_Typ)
2960 then
2961 -- If the expression is a literal and the bounds of the type are
2962 -- static constants it may be possible to optimize the check.
2964 if Nkind (Expr) = N_Real_Literal then
2965 declare
2966 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
2967 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
2969 begin
2970 if Compile_Time_Known_Value (Tlo)
2971 and then Compile_Time_Known_Value (Thi)
2972 and then Expr_Value_R (Expr) >= Expr_Value_R (Tlo)
2973 and then Expr_Value_R (Expr) <= Expr_Value_R (Thi)
2974 then
2975 return;
2976 else
2977 Enable_Range_Check (Expr);
2978 end if;
2979 end;
2981 else
2982 Enable_Range_Check (Expr);
2983 end if;
2984 end if;
2985 end if;
2987 -- Return if we know expression is definitely in the range of the target
2988 -- type as determined by Determine_Range. Right now we only do this for
2989 -- discrete types, and not fixed-point or floating-point types.
2991 -- The additional less-precise tests below catch these cases
2993 -- In GNATprove_Mode, also deal with the case of a conversion from
2994 -- floating-point to integer. It is only possible because analysis
2995 -- in GNATprove rules out the possibility of a NaN or infinite value.
2997 -- Note: skip this if we are given a source_typ, since the point of
2998 -- supplying a Source_Typ is to stop us looking at the expression.
2999 -- We could sharpen this test to be out parameters only ???
3001 if Is_Discrete_Type (Target_Typ)
3002 and then (Is_Discrete_Type (Etype (Expr))
3003 or else (GNATprove_Mode
3004 and then Is_Floating_Point_Type (Etype (Expr))))
3005 and then not Is_Unconstrained_Subscr_Ref
3006 and then No (Source_Typ)
3007 then
3008 declare
3009 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
3010 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
3012 begin
3013 if Compile_Time_Known_Value (Tlo)
3014 and then Compile_Time_Known_Value (Thi)
3015 then
3016 declare
3017 OK : Boolean := False; -- initialize to prevent warning
3018 Hiv : constant Uint := Expr_Value (Thi);
3019 Lov : constant Uint := Expr_Value (Tlo);
3020 Hi : Uint := No_Uint;
3021 Lo : Uint := No_Uint;
3023 begin
3024 -- If range is null, we for sure have a constraint error (we
3025 -- don't even need to look at the value involved, since all
3026 -- possible values will raise CE).
3028 if Lov > Hiv then
3030 -- When SPARK_Mode is On, force a warning instead of
3031 -- an error in that case, as this likely corresponds
3032 -- to deactivated code.
3034 Bad_Value (Warn => SPARK_Mode = On);
3036 -- In GNATprove mode, we enable the range check so that
3037 -- GNATprove will issue a message if it cannot be proved.
3039 if GNATprove_Mode then
3040 Enable_Range_Check (Expr);
3041 end if;
3043 return;
3044 end if;
3046 -- Otherwise determine range of value
3048 if Is_Discrete_Type (Etype (Expr)) then
3049 Determine_Range
3050 (Expr, OK, Lo, Hi, Assume_Valid => True);
3052 -- When converting a float to an integer type, determine the
3053 -- range in real first, and then convert the bounds using
3054 -- UR_To_Uint which correctly rounds away from zero when
3055 -- half way between two integers, as required by normal
3056 -- Ada 95 rounding semantics. It is only possible because
3057 -- analysis in GNATprove rules out the possibility of a NaN
3058 -- or infinite value.
3060 elsif GNATprove_Mode
3061 and then Is_Floating_Point_Type (Etype (Expr))
3062 then
3063 declare
3064 Hir : Ureal;
3065 Lor : Ureal;
3067 begin
3068 Determine_Range_R
3069 (Expr, OK, Lor, Hir, Assume_Valid => True);
3071 if OK then
3072 Lo := UR_To_Uint (Lor);
3073 Hi := UR_To_Uint (Hir);
3074 end if;
3075 end;
3076 end if;
3078 if OK then
3080 -- If definitely in range, all OK
3082 if Lo >= Lov and then Hi <= Hiv then
3083 return;
3085 -- If definitely not in range, warn
3087 elsif Lov > Hi or else Hiv < Lo then
3089 -- Ignore out of range values for System.Priority in
3090 -- CodePeer mode since the actual target compiler may
3091 -- provide a wider range.
3093 if not CodePeer_Mode
3094 or else Target_Typ /= RTE (RE_Priority)
3095 then
3096 Bad_Value;
3097 end if;
3099 return;
3101 -- Otherwise we don't know
3103 else
3104 null;
3105 end if;
3106 end if;
3107 end;
3108 end if;
3109 end;
3110 end if;
3112 Int_Real :=
3113 Is_Floating_Point_Type (S_Typ)
3114 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
3116 -- Check if we can determine at compile time whether Expr is in the
3117 -- range of the target type. Note that if S_Typ is within the bounds
3118 -- of Target_Typ then this must be the case. This check is meaningful
3119 -- only if this is not a conversion between integer and real types.
3121 if not Is_Unconstrained_Subscr_Ref
3122 and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
3123 and then
3124 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
3126 -- Also check if the expression itself is in the range of the
3127 -- target type if it is a known at compile time value. We skip
3128 -- this test if S_Typ is set since for OUT and IN OUT parameters
3129 -- the Expr itself is not relevant to the checking.
3131 or else
3132 (No (Source_Typ)
3133 and then Is_In_Range (Expr, Target_Typ,
3134 Assume_Valid => True,
3135 Fixed_Int => Fixed_Int,
3136 Int_Real => Int_Real)))
3137 then
3138 return;
3140 elsif Is_Out_Of_Range (Expr, Target_Typ,
3141 Assume_Valid => True,
3142 Fixed_Int => Fixed_Int,
3143 Int_Real => Int_Real)
3144 then
3145 Bad_Value;
3146 return;
3148 -- Floating-point case
3149 -- In the floating-point case, we only do range checks if the type is
3150 -- constrained. We definitely do NOT want range checks for unconstrained
3151 -- types, since we want to have infinities, except when
3152 -- Check_Float_Overflow is set.
3154 elsif Is_Floating_Point_Type (S_Typ) then
3155 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
3156 Enable_Range_Check (Expr);
3157 end if;
3159 -- For all other cases we enable a range check unconditionally
3161 else
3162 Enable_Range_Check (Expr);
3163 return;
3164 end if;
3165 end Apply_Scalar_Range_Check;
3167 ----------------------------------
3168 -- Apply_Selected_Length_Checks --
3169 ----------------------------------
3171 procedure Apply_Selected_Length_Checks
3172 (Ck_Node : Node_Id;
3173 Target_Typ : Entity_Id;
3174 Source_Typ : Entity_Id;
3175 Do_Static : Boolean)
3177 Checks_On : constant Boolean :=
3178 not Index_Checks_Suppressed (Target_Typ)
3179 or else
3180 not Length_Checks_Suppressed (Target_Typ);
3182 Loc : constant Source_Ptr := Sloc (Ck_Node);
3184 Cond : Node_Id;
3185 R_Cno : Node_Id;
3186 R_Result : Check_Result;
3188 begin
3189 -- Only apply checks when generating code
3191 -- Note: this means that we lose some useful warnings if the expander
3192 -- is not active.
3194 if not Expander_Active then
3195 return;
3196 end if;
3198 R_Result :=
3199 Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3201 for J in 1 .. 2 loop
3202 R_Cno := R_Result (J);
3203 exit when No (R_Cno);
3205 -- A length check may mention an Itype which is attached to a
3206 -- subsequent node. At the top level in a package this can cause
3207 -- an order-of-elaboration problem, so we make sure that the itype
3208 -- is referenced now.
3210 if Ekind (Current_Scope) = E_Package
3211 and then Is_Compilation_Unit (Current_Scope)
3212 then
3213 Ensure_Defined (Target_Typ, Ck_Node);
3215 if Present (Source_Typ) then
3216 Ensure_Defined (Source_Typ, Ck_Node);
3218 elsif Is_Itype (Etype (Ck_Node)) then
3219 Ensure_Defined (Etype (Ck_Node), Ck_Node);
3220 end if;
3221 end if;
3223 -- If the item is a conditional raise of constraint error, then have
3224 -- a look at what check is being performed and ???
3226 if Nkind (R_Cno) = N_Raise_Constraint_Error
3227 and then Present (Condition (R_Cno))
3228 then
3229 Cond := Condition (R_Cno);
3231 -- Case where node does not now have a dynamic check
3233 if not Has_Dynamic_Length_Check (Ck_Node) then
3235 -- If checks are on, just insert the check
3237 if Checks_On then
3238 Insert_Action (Ck_Node, R_Cno);
3240 if not Do_Static then
3241 Set_Has_Dynamic_Length_Check (Ck_Node);
3242 end if;
3244 -- If checks are off, then analyze the length check after
3245 -- temporarily attaching it to the tree in case the relevant
3246 -- condition can be evaluated at compile time. We still want a
3247 -- compile time warning in this case.
3249 else
3250 Set_Parent (R_Cno, Ck_Node);
3251 Analyze (R_Cno);
3252 end if;
3253 end if;
3255 -- Output a warning if the condition is known to be True
3257 if Is_Entity_Name (Cond)
3258 and then Entity (Cond) = Standard_True
3259 then
3260 Apply_Compile_Time_Constraint_Error
3261 (Ck_Node, "wrong length for array of}??",
3262 CE_Length_Check_Failed,
3263 Ent => Target_Typ,
3264 Typ => Target_Typ);
3266 -- If we were only doing a static check, or if checks are not
3267 -- on, then we want to delete the check, since it is not needed.
3268 -- We do this by replacing the if statement by a null statement
3270 elsif Do_Static or else not Checks_On then
3271 Remove_Warning_Messages (R_Cno);
3272 Rewrite (R_Cno, Make_Null_Statement (Loc));
3273 end if;
3275 else
3276 Install_Static_Check (R_Cno, Loc);
3277 end if;
3278 end loop;
3279 end Apply_Selected_Length_Checks;
3281 ---------------------------------
3282 -- Apply_Selected_Range_Checks --
3283 ---------------------------------
3285 procedure Apply_Selected_Range_Checks
3286 (Ck_Node : Node_Id;
3287 Target_Typ : Entity_Id;
3288 Source_Typ : Entity_Id;
3289 Do_Static : Boolean)
3291 Checks_On : constant Boolean :=
3292 not Index_Checks_Suppressed (Target_Typ)
3293 or else
3294 not Range_Checks_Suppressed (Target_Typ);
3296 Loc : constant Source_Ptr := Sloc (Ck_Node);
3298 Cond : Node_Id;
3299 R_Cno : Node_Id;
3300 R_Result : Check_Result;
3302 begin
3303 -- Only apply checks when generating code. In GNATprove mode, we do not
3304 -- apply the checks, but we still call Selected_Range_Checks to possibly
3305 -- issue errors on SPARK code when a run-time error can be detected at
3306 -- compile time.
3308 if not GNATprove_Mode then
3309 if not Expander_Active or not Checks_On then
3310 return;
3311 end if;
3312 end if;
3314 R_Result :=
3315 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
3317 if GNATprove_Mode then
3318 return;
3319 end if;
3321 for J in 1 .. 2 loop
3322 R_Cno := R_Result (J);
3323 exit when No (R_Cno);
3325 -- The range check requires runtime evaluation. Depending on what its
3326 -- triggering condition is, the check may be converted into a compile
3327 -- time constraint check.
3329 if Nkind (R_Cno) = N_Raise_Constraint_Error
3330 and then Present (Condition (R_Cno))
3331 then
3332 Cond := Condition (R_Cno);
3334 -- Insert the range check before the related context. Note that
3335 -- this action analyses the triggering condition.
3337 Insert_Action (Ck_Node, R_Cno);
3339 -- This old code doesn't make sense, why is the context flagged as
3340 -- requiring dynamic range checks now in the middle of generating
3341 -- them ???
3343 if not Do_Static then
3344 Set_Has_Dynamic_Range_Check (Ck_Node);
3345 end if;
3347 -- The triggering condition evaluates to True, the range check
3348 -- can be converted into a compile time constraint check.
3350 if Is_Entity_Name (Cond)
3351 and then Entity (Cond) = Standard_True
3352 then
3353 -- Since an N_Range is technically not an expression, we have
3354 -- to set one of the bounds to C_E and then just flag the
3355 -- N_Range. The warning message will point to the lower bound
3356 -- and complain about a range, which seems OK.
3358 if Nkind (Ck_Node) = N_Range then
3359 Apply_Compile_Time_Constraint_Error
3360 (Low_Bound (Ck_Node),
3361 "static range out of bounds of}??",
3362 CE_Range_Check_Failed,
3363 Ent => Target_Typ,
3364 Typ => Target_Typ);
3366 Set_Raises_Constraint_Error (Ck_Node);
3368 else
3369 Apply_Compile_Time_Constraint_Error
3370 (Ck_Node,
3371 "static value out of range of}??",
3372 CE_Range_Check_Failed,
3373 Ent => Target_Typ,
3374 Typ => Target_Typ);
3375 end if;
3377 -- If we were only doing a static check, or if checks are not
3378 -- on, then we want to delete the check, since it is not needed.
3379 -- We do this by replacing the if statement by a null statement
3381 elsif Do_Static then
3382 Remove_Warning_Messages (R_Cno);
3383 Rewrite (R_Cno, Make_Null_Statement (Loc));
3384 end if;
3386 -- The range check raises Constraint_Error explicitly
3388 else
3389 Install_Static_Check (R_Cno, Loc);
3390 end if;
3391 end loop;
3392 end Apply_Selected_Range_Checks;
3394 -------------------------------
3395 -- Apply_Static_Length_Check --
3396 -------------------------------
3398 procedure Apply_Static_Length_Check
3399 (Expr : Node_Id;
3400 Target_Typ : Entity_Id;
3401 Source_Typ : Entity_Id := Empty)
3403 begin
3404 Apply_Selected_Length_Checks
3405 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3406 end Apply_Static_Length_Check;
3408 -------------------------------------
3409 -- Apply_Subscript_Validity_Checks --
3410 -------------------------------------
3412 procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
3413 Sub : Node_Id;
3415 begin
3416 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3418 -- Loop through subscripts
3420 Sub := First (Expressions (Expr));
3421 while Present (Sub) loop
3423 -- Check one subscript. Note that we do not worry about enumeration
3424 -- type with holes, since we will convert the value to a Pos value
3425 -- for the subscript, and that convert will do the necessary validity
3426 -- check.
3428 Ensure_Valid (Sub, Holes_OK => True);
3430 -- Move to next subscript
3432 Sub := Next (Sub);
3433 end loop;
3434 end Apply_Subscript_Validity_Checks;
3436 ----------------------------------
3437 -- Apply_Type_Conversion_Checks --
3438 ----------------------------------
3440 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3441 Target_Type : constant Entity_Id := Etype (N);
3442 Target_Base : constant Entity_Id := Base_Type (Target_Type);
3443 Expr : constant Node_Id := Expression (N);
3445 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
3446 -- Note: if Etype (Expr) is a private type without discriminants, its
3447 -- full view might have discriminants with defaults, so we need the
3448 -- full view here to retrieve the constraints.
3450 begin
3451 if Inside_A_Generic then
3452 return;
3454 -- Skip these checks if serious errors detected, there are some nasty
3455 -- situations of incomplete trees that blow things up.
3457 elsif Serious_Errors_Detected > 0 then
3458 return;
3460 -- Never generate discriminant checks for Unchecked_Union types
3462 elsif Present (Expr_Type)
3463 and then Is_Unchecked_Union (Expr_Type)
3464 then
3465 return;
3467 -- Scalar type conversions of the form Target_Type (Expr) require a
3468 -- range check if we cannot be sure that Expr is in the base type of
3469 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3470 -- are not quite the same condition from an implementation point of
3471 -- view, but clearly the second includes the first.
3473 elsif Is_Scalar_Type (Target_Type) then
3474 declare
3475 Conv_OK : constant Boolean := Conversion_OK (N);
3476 -- If the Conversion_OK flag on the type conversion is set and no
3477 -- floating-point type is involved in the type conversion then
3478 -- fixed-point values must be read as integral values.
3480 Float_To_Int : constant Boolean :=
3481 Is_Floating_Point_Type (Expr_Type)
3482 and then Is_Integer_Type (Target_Type);
3484 begin
3485 if not Overflow_Checks_Suppressed (Target_Base)
3486 and then not Overflow_Checks_Suppressed (Target_Type)
3487 and then not
3488 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
3489 and then not Float_To_Int
3490 then
3491 -- A small optimization: the attribute 'Pos applied to an
3492 -- enumeration type has a known range, even though its type is
3493 -- Universal_Integer. So in numeric conversions it is usually
3494 -- within range of the target integer type. Use the static
3495 -- bounds of the base types to check. Disable this optimization
3496 -- in case of a generic formal discrete type, because we don't
3497 -- necessarily know the upper bound yet.
3499 if Nkind (Expr) = N_Attribute_Reference
3500 and then Attribute_Name (Expr) = Name_Pos
3501 and then Is_Enumeration_Type (Etype (Prefix (Expr)))
3502 and then not Is_Generic_Type (Etype (Prefix (Expr)))
3503 and then Is_Integer_Type (Target_Type)
3504 then
3505 declare
3506 Enum_T : constant Entity_Id :=
3507 Root_Type (Etype (Prefix (Expr)));
3508 Int_T : constant Entity_Id := Base_Type (Target_Type);
3509 Last_I : constant Uint :=
3510 Intval (High_Bound (Scalar_Range (Int_T)));
3511 Last_E : Uint;
3513 begin
3514 -- Character types have no explicit literals, so we use
3515 -- the known number of characters in the type.
3517 if Root_Type (Enum_T) = Standard_Character then
3518 Last_E := UI_From_Int (255);
3520 elsif Enum_T = Standard_Wide_Character
3521 or else Enum_T = Standard_Wide_Wide_Character
3522 then
3523 Last_E := UI_From_Int (65535);
3525 else
3526 Last_E :=
3527 Enumeration_Pos
3528 (Entity (High_Bound (Scalar_Range (Enum_T))));
3529 end if;
3531 if Last_E <= Last_I then
3532 null;
3534 else
3535 Activate_Overflow_Check (N);
3536 end if;
3537 end;
3539 else
3540 Activate_Overflow_Check (N);
3541 end if;
3542 end if;
3544 if not Range_Checks_Suppressed (Target_Type)
3545 and then not Range_Checks_Suppressed (Expr_Type)
3546 then
3547 if Float_To_Int
3548 and then not GNATprove_Mode
3549 then
3550 Apply_Float_Conversion_Check (Expr, Target_Type);
3552 else
3553 -- Conversions involving fixed-point types are expanded
3554 -- separately, and do not need a Range_Check flag, except
3555 -- in SPARK_Mode, where the explicit constraint check will
3556 -- not be generated.
3558 if GNATprove_Mode
3559 or else not Is_Fixed_Point_Type (Expr_Type)
3560 then
3561 Apply_Scalar_Range_Check
3562 (Expr, Target_Type, Fixed_Int => Conv_OK);
3564 else
3565 Set_Do_Range_Check (Expression (N), False);
3566 end if;
3568 -- If the target type has predicates, we need to indicate
3569 -- the need for a check, even if Determine_Range finds that
3570 -- the value is within bounds. This may be the case e.g for
3571 -- a division with a constant denominator.
3573 if Has_Predicates (Target_Type) then
3574 Enable_Range_Check (Expr);
3575 end if;
3576 end if;
3577 end if;
3578 end;
3580 elsif Comes_From_Source (N)
3581 and then not Discriminant_Checks_Suppressed (Target_Type)
3582 and then Is_Record_Type (Target_Type)
3583 and then Is_Derived_Type (Target_Type)
3584 and then not Is_Tagged_Type (Target_Type)
3585 and then not Is_Constrained (Target_Type)
3586 and then Present (Stored_Constraint (Target_Type))
3587 then
3588 -- An unconstrained derived type may have inherited discriminant.
3589 -- Build an actual discriminant constraint list using the stored
3590 -- constraint, to verify that the expression of the parent type
3591 -- satisfies the constraints imposed by the (unconstrained) derived
3592 -- type. This applies to value conversions, not to view conversions
3593 -- of tagged types.
3595 declare
3596 Loc : constant Source_Ptr := Sloc (N);
3597 Cond : Node_Id;
3598 Constraint : Elmt_Id;
3599 Discr_Value : Node_Id;
3600 Discr : Entity_Id;
3602 New_Constraints : constant Elist_Id := New_Elmt_List;
3603 Old_Constraints : constant Elist_Id :=
3604 Discriminant_Constraint (Expr_Type);
3606 begin
3607 Constraint := First_Elmt (Stored_Constraint (Target_Type));
3608 while Present (Constraint) loop
3609 Discr_Value := Node (Constraint);
3611 if Is_Entity_Name (Discr_Value)
3612 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3613 then
3614 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3616 if Present (Discr)
3617 and then Scope (Discr) = Base_Type (Expr_Type)
3618 then
3619 -- Parent is constrained by new discriminant. Obtain
3620 -- Value of original discriminant in expression. If the
3621 -- new discriminant has been used to constrain more than
3622 -- one of the stored discriminants, this will provide the
3623 -- required consistency check.
3625 Append_Elmt
3626 (Make_Selected_Component (Loc,
3627 Prefix =>
3628 Duplicate_Subexpr_No_Checks
3629 (Expr, Name_Req => True),
3630 Selector_Name =>
3631 Make_Identifier (Loc, Chars (Discr))),
3632 New_Constraints);
3634 else
3635 -- Discriminant of more remote ancestor ???
3637 return;
3638 end if;
3640 -- Derived type definition has an explicit value for this
3641 -- stored discriminant.
3643 else
3644 Append_Elmt
3645 (Duplicate_Subexpr_No_Checks (Discr_Value),
3646 New_Constraints);
3647 end if;
3649 Next_Elmt (Constraint);
3650 end loop;
3652 -- Use the unconstrained expression type to retrieve the
3653 -- discriminants of the parent, and apply momentarily the
3654 -- discriminant constraint synthesized above.
3656 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3657 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3658 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3660 Insert_Action (N,
3661 Make_Raise_Constraint_Error (Loc,
3662 Condition => Cond,
3663 Reason => CE_Discriminant_Check_Failed));
3664 end;
3666 -- For arrays, checks are set now, but conversions are applied during
3667 -- expansion, to take into accounts changes of representation. The
3668 -- checks become range checks on the base type or length checks on the
3669 -- subtype, depending on whether the target type is unconstrained or
3670 -- constrained. Note that the range check is put on the expression of a
3671 -- type conversion, while the length check is put on the type conversion
3672 -- itself.
3674 elsif Is_Array_Type (Target_Type) then
3675 if Is_Constrained (Target_Type) then
3676 Set_Do_Length_Check (N);
3677 else
3678 Set_Do_Range_Check (Expr);
3679 end if;
3680 end if;
3681 end Apply_Type_Conversion_Checks;
3683 ----------------------------------------------
3684 -- Apply_Universal_Integer_Attribute_Checks --
3685 ----------------------------------------------
3687 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3688 Loc : constant Source_Ptr := Sloc (N);
3689 Typ : constant Entity_Id := Etype (N);
3691 begin
3692 if Inside_A_Generic then
3693 return;
3695 -- Nothing to do if checks are suppressed
3697 elsif Range_Checks_Suppressed (Typ)
3698 and then Overflow_Checks_Suppressed (Typ)
3699 then
3700 return;
3702 -- Nothing to do if the attribute does not come from source. The
3703 -- internal attributes we generate of this type do not need checks,
3704 -- and furthermore the attempt to check them causes some circular
3705 -- elaboration orders when dealing with packed types.
3707 elsif not Comes_From_Source (N) then
3708 return;
3710 -- If the prefix is a selected component that depends on a discriminant
3711 -- the check may improperly expose a discriminant instead of using
3712 -- the bounds of the object itself. Set the type of the attribute to
3713 -- the base type of the context, so that a check will be imposed when
3714 -- needed (e.g. if the node appears as an index).
3716 elsif Nkind (Prefix (N)) = N_Selected_Component
3717 and then Ekind (Typ) = E_Signed_Integer_Subtype
3718 and then Depends_On_Discriminant (Scalar_Range (Typ))
3719 then
3720 Set_Etype (N, Base_Type (Typ));
3722 -- Otherwise, replace the attribute node with a type conversion node
3723 -- whose expression is the attribute, retyped to universal integer, and
3724 -- whose subtype mark is the target type. The call to analyze this
3725 -- conversion will set range and overflow checks as required for proper
3726 -- detection of an out of range value.
3728 else
3729 Set_Etype (N, Universal_Integer);
3730 Set_Analyzed (N, True);
3732 Rewrite (N,
3733 Make_Type_Conversion (Loc,
3734 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3735 Expression => Relocate_Node (N)));
3737 Analyze_And_Resolve (N, Typ);
3738 return;
3739 end if;
3740 end Apply_Universal_Integer_Attribute_Checks;
3742 -------------------------------------
3743 -- Atomic_Synchronization_Disabled --
3744 -------------------------------------
3746 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3747 -- using a bogus check called Atomic_Synchronization. This is to make it
3748 -- more convenient to get exactly the same semantics as [Un]Suppress.
3750 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3751 begin
3752 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3753 -- looks enabled, since it is never disabled.
3755 if Debug_Flag_Dot_E then
3756 return False;
3758 -- If debug flag d.d is set then always return True, i.e. all atomic
3759 -- sync looks disabled, since it always tests True.
3761 elsif Debug_Flag_Dot_D then
3762 return True;
3764 -- If entity present, then check result for that entity
3766 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
3767 return Is_Check_Suppressed (E, Atomic_Synchronization);
3769 -- Otherwise result depends on current scope setting
3771 else
3772 return Scope_Suppress.Suppress (Atomic_Synchronization);
3773 end if;
3774 end Atomic_Synchronization_Disabled;
3776 -------------------------------
3777 -- Build_Discriminant_Checks --
3778 -------------------------------
3780 function Build_Discriminant_Checks
3781 (N : Node_Id;
3782 T_Typ : Entity_Id) return Node_Id
3784 Loc : constant Source_Ptr := Sloc (N);
3785 Cond : Node_Id;
3786 Disc : Elmt_Id;
3787 Disc_Ent : Entity_Id;
3788 Dref : Node_Id;
3789 Dval : Node_Id;
3791 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3793 --------------------------------
3794 -- Aggregate_Discriminant_Val --
3795 --------------------------------
3797 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3798 Assoc : Node_Id;
3800 begin
3801 -- The aggregate has been normalized with named associations. We use
3802 -- the Chars field to locate the discriminant to take into account
3803 -- discriminants in derived types, which carry the same name as those
3804 -- in the parent.
3806 Assoc := First (Component_Associations (N));
3807 while Present (Assoc) loop
3808 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3809 return Expression (Assoc);
3810 else
3811 Next (Assoc);
3812 end if;
3813 end loop;
3815 -- Discriminant must have been found in the loop above
3817 raise Program_Error;
3818 end Aggregate_Discriminant_Val;
3820 -- Start of processing for Build_Discriminant_Checks
3822 begin
3823 -- Loop through discriminants evolving the condition
3825 Cond := Empty;
3826 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
3828 -- For a fully private type, use the discriminants of the parent type
3830 if Is_Private_Type (T_Typ)
3831 and then No (Full_View (T_Typ))
3832 then
3833 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
3834 else
3835 Disc_Ent := First_Discriminant (T_Typ);
3836 end if;
3838 while Present (Disc) loop
3839 Dval := Node (Disc);
3841 if Nkind (Dval) = N_Identifier
3842 and then Ekind (Entity (Dval)) = E_Discriminant
3843 then
3844 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
3845 else
3846 Dval := Duplicate_Subexpr_No_Checks (Dval);
3847 end if;
3849 -- If we have an Unchecked_Union node, we can infer the discriminants
3850 -- of the node.
3852 if Is_Unchecked_Union (Base_Type (T_Typ)) then
3853 Dref := New_Copy (
3854 Get_Discriminant_Value (
3855 First_Discriminant (T_Typ),
3856 T_Typ,
3857 Stored_Constraint (T_Typ)));
3859 elsif Nkind (N) = N_Aggregate then
3860 Dref :=
3861 Duplicate_Subexpr_No_Checks
3862 (Aggregate_Discriminant_Val (Disc_Ent));
3864 else
3865 Dref :=
3866 Make_Selected_Component (Loc,
3867 Prefix =>
3868 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
3869 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
3871 Set_Is_In_Discriminant_Check (Dref);
3872 end if;
3874 Evolve_Or_Else (Cond,
3875 Make_Op_Ne (Loc,
3876 Left_Opnd => Dref,
3877 Right_Opnd => Dval));
3879 Next_Elmt (Disc);
3880 Next_Discriminant (Disc_Ent);
3881 end loop;
3883 return Cond;
3884 end Build_Discriminant_Checks;
3886 ------------------
3887 -- Check_Needed --
3888 ------------------
3890 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
3891 N : Node_Id;
3892 P : Node_Id;
3893 K : Node_Kind;
3894 L : Node_Id;
3895 R : Node_Id;
3897 function Left_Expression (Op : Node_Id) return Node_Id;
3898 -- Return the relevant expression from the left operand of the given
3899 -- short circuit form: this is LO itself, except if LO is a qualified
3900 -- expression, a type conversion, or an expression with actions, in
3901 -- which case this is Left_Expression (Expression (LO)).
3903 ---------------------
3904 -- Left_Expression --
3905 ---------------------
3907 function Left_Expression (Op : Node_Id) return Node_Id is
3908 LE : Node_Id := Left_Opnd (Op);
3909 begin
3910 while Nkind_In (LE, N_Qualified_Expression,
3911 N_Type_Conversion,
3912 N_Expression_With_Actions)
3913 loop
3914 LE := Expression (LE);
3915 end loop;
3917 return LE;
3918 end Left_Expression;
3920 -- Start of processing for Check_Needed
3922 begin
3923 -- Always check if not simple entity
3925 if Nkind (Nod) not in N_Has_Entity
3926 or else not Comes_From_Source (Nod)
3927 then
3928 return True;
3929 end if;
3931 -- Look up tree for short circuit
3933 N := Nod;
3934 loop
3935 P := Parent (N);
3936 K := Nkind (P);
3938 -- Done if out of subexpression (note that we allow generated stuff
3939 -- such as itype declarations in this context, to keep the loop going
3940 -- since we may well have generated such stuff in complex situations.
3941 -- Also done if no parent (probably an error condition, but no point
3942 -- in behaving nasty if we find it).
3944 if No (P)
3945 or else (K not in N_Subexpr and then Comes_From_Source (P))
3946 then
3947 return True;
3949 -- Or/Or Else case, where test is part of the right operand, or is
3950 -- part of one of the actions associated with the right operand, and
3951 -- the left operand is an equality test.
3953 elsif K = N_Op_Or then
3954 exit when N = Right_Opnd (P)
3955 and then Nkind (Left_Expression (P)) = N_Op_Eq;
3957 elsif K = N_Or_Else then
3958 exit when (N = Right_Opnd (P)
3959 or else
3960 (Is_List_Member (N)
3961 and then List_Containing (N) = Actions (P)))
3962 and then Nkind (Left_Expression (P)) = N_Op_Eq;
3964 -- Similar test for the And/And then case, where the left operand
3965 -- is an inequality test.
3967 elsif K = N_Op_And then
3968 exit when N = Right_Opnd (P)
3969 and then Nkind (Left_Expression (P)) = N_Op_Ne;
3971 elsif K = N_And_Then then
3972 exit when (N = Right_Opnd (P)
3973 or else
3974 (Is_List_Member (N)
3975 and then List_Containing (N) = Actions (P)))
3976 and then Nkind (Left_Expression (P)) = N_Op_Ne;
3977 end if;
3979 N := P;
3980 end loop;
3982 -- If we fall through the loop, then we have a conditional with an
3983 -- appropriate test as its left operand, so look further.
3985 L := Left_Expression (P);
3987 -- L is an "=" or "/=" operator: extract its operands
3989 R := Right_Opnd (L);
3990 L := Left_Opnd (L);
3992 -- Left operand of test must match original variable
3994 if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
3995 return True;
3996 end if;
3998 -- Right operand of test must be key value (zero or null)
4000 case Check is
4001 when Access_Check =>
4002 if not Known_Null (R) then
4003 return True;
4004 end if;
4006 when Division_Check =>
4007 if not Compile_Time_Known_Value (R)
4008 or else Expr_Value (R) /= Uint_0
4009 then
4010 return True;
4011 end if;
4013 when others =>
4014 raise Program_Error;
4015 end case;
4017 -- Here we have the optimizable case, warn if not short-circuited
4019 if K = N_Op_And or else K = N_Op_Or then
4020 Error_Msg_Warn := SPARK_Mode /= On;
4022 case Check is
4023 when Access_Check =>
4024 if GNATprove_Mode then
4025 Error_Msg_N
4026 ("Constraint_Error might have been raised (access check)",
4027 Parent (Nod));
4028 else
4029 Error_Msg_N
4030 ("Constraint_Error may be raised (access check)??",
4031 Parent (Nod));
4032 end if;
4034 when Division_Check =>
4035 if GNATprove_Mode then
4036 Error_Msg_N
4037 ("Constraint_Error might have been raised (zero divide)",
4038 Parent (Nod));
4039 else
4040 Error_Msg_N
4041 ("Constraint_Error may be raised (zero divide)??",
4042 Parent (Nod));
4043 end if;
4045 when others =>
4046 raise Program_Error;
4047 end case;
4049 if K = N_Op_And then
4050 Error_Msg_N -- CODEFIX
4051 ("use `AND THEN` instead of AND??", P);
4052 else
4053 Error_Msg_N -- CODEFIX
4054 ("use `OR ELSE` instead of OR??", P);
4055 end if;
4057 -- If not short-circuited, we need the check
4059 return True;
4061 -- If short-circuited, we can omit the check
4063 else
4064 return False;
4065 end if;
4066 end Check_Needed;
4068 -----------------------------------
4069 -- Check_Valid_Lvalue_Subscripts --
4070 -----------------------------------
4072 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
4073 begin
4074 -- Skip this if range checks are suppressed
4076 if Range_Checks_Suppressed (Etype (Expr)) then
4077 return;
4079 -- Only do this check for expressions that come from source. We assume
4080 -- that expander generated assignments explicitly include any necessary
4081 -- checks. Note that this is not just an optimization, it avoids
4082 -- infinite recursions.
4084 elsif not Comes_From_Source (Expr) then
4085 return;
4087 -- For a selected component, check the prefix
4089 elsif Nkind (Expr) = N_Selected_Component then
4090 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4091 return;
4093 -- Case of indexed component
4095 elsif Nkind (Expr) = N_Indexed_Component then
4096 Apply_Subscript_Validity_Checks (Expr);
4098 -- Prefix may itself be or contain an indexed component, and these
4099 -- subscripts need checking as well.
4101 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4102 end if;
4103 end Check_Valid_Lvalue_Subscripts;
4105 ----------------------------------
4106 -- Null_Exclusion_Static_Checks --
4107 ----------------------------------
4109 procedure Null_Exclusion_Static_Checks
4110 (N : Node_Id;
4111 Comp : Node_Id := Empty;
4112 Array_Comp : Boolean := False)
4114 Has_Null : constant Boolean := Has_Null_Exclusion (N);
4115 Kind : constant Node_Kind := Nkind (N);
4116 Error_Nod : Node_Id;
4117 Expr : Node_Id;
4118 Typ : Entity_Id;
4120 begin
4121 pragma Assert
4122 (Nkind_In (Kind, N_Component_Declaration,
4123 N_Discriminant_Specification,
4124 N_Function_Specification,
4125 N_Object_Declaration,
4126 N_Parameter_Specification));
4128 if Kind = N_Function_Specification then
4129 Typ := Etype (Defining_Entity (N));
4130 else
4131 Typ := Etype (Defining_Identifier (N));
4132 end if;
4134 case Kind is
4135 when N_Component_Declaration =>
4136 if Present (Access_Definition (Component_Definition (N))) then
4137 Error_Nod := Component_Definition (N);
4138 else
4139 Error_Nod := Subtype_Indication (Component_Definition (N));
4140 end if;
4142 when N_Discriminant_Specification =>
4143 Error_Nod := Discriminant_Type (N);
4145 when N_Function_Specification =>
4146 Error_Nod := Result_Definition (N);
4148 when N_Object_Declaration =>
4149 Error_Nod := Object_Definition (N);
4151 when N_Parameter_Specification =>
4152 Error_Nod := Parameter_Type (N);
4154 when others =>
4155 raise Program_Error;
4156 end case;
4158 if Has_Null then
4160 -- Enforce legality rule 3.10 (13): A null exclusion can only be
4161 -- applied to an access [sub]type.
4163 if not Is_Access_Type (Typ) then
4164 Error_Msg_N
4165 ("`NOT NULL` allowed only for an access type", Error_Nod);
4167 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
4168 -- be applied to a [sub]type that does not exclude null already.
4170 elsif Can_Never_Be_Null (Typ) and then Comes_From_Source (Typ) then
4171 Error_Msg_NE
4172 ("`NOT NULL` not allowed (& already excludes null)",
4173 Error_Nod, Typ);
4174 end if;
4175 end if;
4177 -- Check that null-excluding objects are always initialized, except for
4178 -- deferred constants, for which the expression will appear in the full
4179 -- declaration.
4181 if Kind = N_Object_Declaration
4182 and then No (Expression (N))
4183 and then not Constant_Present (N)
4184 and then not No_Initialization (N)
4185 then
4186 if Present (Comp) then
4188 -- Specialize the warning message to indicate that we are dealing
4189 -- with an uninitialized composite object that has a defaulted
4190 -- null-excluding component.
4192 Error_Msg_Name_1 := Chars (Defining_Identifier (Comp));
4193 Error_Msg_Name_2 := Chars (Defining_Identifier (N));
4195 Discard_Node
4196 (Compile_Time_Constraint_Error
4197 (N => N,
4198 Msg =>
4199 "(Ada 2005) null-excluding component % of object % must "
4200 & "be initialized??",
4201 Ent => Defining_Identifier (Comp)));
4203 -- This is a case of an array with null-excluding components, so
4204 -- indicate that in the warning.
4206 elsif Array_Comp then
4207 Discard_Node
4208 (Compile_Time_Constraint_Error
4209 (N => N,
4210 Msg =>
4211 "(Ada 2005) null-excluding array components must "
4212 & "be initialized??",
4213 Ent => Defining_Identifier (N)));
4215 -- Normal case of object of a null-excluding access type
4217 else
4218 -- Add an expression that assigns null. This node is needed by
4219 -- Apply_Compile_Time_Constraint_Error, which will replace this
4220 -- with a Constraint_Error node.
4222 Set_Expression (N, Make_Null (Sloc (N)));
4223 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
4225 Apply_Compile_Time_Constraint_Error
4226 (N => Expression (N),
4227 Msg =>
4228 "(Ada 2005) null-excluding objects must be initialized??",
4229 Reason => CE_Null_Not_Allowed);
4230 end if;
4231 end if;
4233 -- Check that a null-excluding component, formal or object is not being
4234 -- assigned a null value. Otherwise generate a warning message and
4235 -- replace Expression (N) by an N_Constraint_Error node.
4237 if Kind /= N_Function_Specification then
4238 Expr := Expression (N);
4240 if Present (Expr) and then Known_Null (Expr) then
4241 case Kind is
4242 when N_Component_Declaration
4243 | N_Discriminant_Specification
4245 Apply_Compile_Time_Constraint_Error
4246 (N => Expr,
4247 Msg =>
4248 "(Ada 2005) null not allowed in null-excluding "
4249 & "components??",
4250 Reason => CE_Null_Not_Allowed);
4252 when N_Object_Declaration =>
4253 Apply_Compile_Time_Constraint_Error
4254 (N => Expr,
4255 Msg =>
4256 "(Ada 2005) null not allowed in null-excluding "
4257 & "objects??",
4258 Reason => CE_Null_Not_Allowed);
4260 when N_Parameter_Specification =>
4261 Apply_Compile_Time_Constraint_Error
4262 (N => Expr,
4263 Msg =>
4264 "(Ada 2005) null not allowed in null-excluding "
4265 & "formals??",
4266 Reason => CE_Null_Not_Allowed);
4268 when others =>
4269 null;
4270 end case;
4271 end if;
4272 end if;
4273 end Null_Exclusion_Static_Checks;
4275 ----------------------------------
4276 -- Conditional_Statements_Begin --
4277 ----------------------------------
4279 procedure Conditional_Statements_Begin is
4280 begin
4281 Saved_Checks_TOS := Saved_Checks_TOS + 1;
4283 -- If stack overflows, kill all checks, that way we know to simply reset
4284 -- the number of saved checks to zero on return. This should never occur
4285 -- in practice.
4287 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4288 Kill_All_Checks;
4290 -- In the normal case, we just make a new stack entry saving the current
4291 -- number of saved checks for a later restore.
4293 else
4294 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4296 if Debug_Flag_CC then
4297 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4298 Num_Saved_Checks);
4299 end if;
4300 end if;
4301 end Conditional_Statements_Begin;
4303 --------------------------------
4304 -- Conditional_Statements_End --
4305 --------------------------------
4307 procedure Conditional_Statements_End is
4308 begin
4309 pragma Assert (Saved_Checks_TOS > 0);
4311 -- If the saved checks stack overflowed, then we killed all checks, so
4312 -- setting the number of saved checks back to zero is correct. This
4313 -- should never occur in practice.
4315 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4316 Num_Saved_Checks := 0;
4318 -- In the normal case, restore the number of saved checks from the top
4319 -- stack entry.
4321 else
4322 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
4324 if Debug_Flag_CC then
4325 w ("Conditional_Statements_End: Num_Saved_Checks = ",
4326 Num_Saved_Checks);
4327 end if;
4328 end if;
4330 Saved_Checks_TOS := Saved_Checks_TOS - 1;
4331 end Conditional_Statements_End;
4333 -------------------------
4334 -- Convert_From_Bignum --
4335 -------------------------
4337 function Convert_From_Bignum (N : Node_Id) return Node_Id is
4338 Loc : constant Source_Ptr := Sloc (N);
4340 begin
4341 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4343 -- Construct call From Bignum
4345 return
4346 Make_Function_Call (Loc,
4347 Name =>
4348 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4349 Parameter_Associations => New_List (Relocate_Node (N)));
4350 end Convert_From_Bignum;
4352 -----------------------
4353 -- Convert_To_Bignum --
4354 -----------------------
4356 function Convert_To_Bignum (N : Node_Id) return Node_Id is
4357 Loc : constant Source_Ptr := Sloc (N);
4359 begin
4360 -- Nothing to do if Bignum already except call Relocate_Node
4362 if Is_RTE (Etype (N), RE_Bignum) then
4363 return Relocate_Node (N);
4365 -- Otherwise construct call to To_Bignum, converting the operand to the
4366 -- required Long_Long_Integer form.
4368 else
4369 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4370 return
4371 Make_Function_Call (Loc,
4372 Name =>
4373 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4374 Parameter_Associations => New_List (
4375 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4376 end if;
4377 end Convert_To_Bignum;
4379 ---------------------
4380 -- Determine_Range --
4381 ---------------------
4383 Cache_Size : constant := 2 ** 10;
4384 type Cache_Index is range 0 .. Cache_Size - 1;
4385 -- Determine size of below cache (power of 2 is more efficient)
4387 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
4388 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
4389 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
4390 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
4391 Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4392 Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
4393 -- The above arrays are used to implement a small direct cache for
4394 -- Determine_Range and Determine_Range_R calls. Because of the way these
4395 -- subprograms recursively traces subexpressions, and because overflow
4396 -- checking calls the routine on the way up the tree, a quadratic behavior
4397 -- can otherwise be encountered in large expressions. The cache entry for
4398 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
4399 -- by checking the actual node value stored there. The Range_Cache_V array
4400 -- records the setting of Assume_Valid for the cache entry.
4402 procedure Determine_Range
4403 (N : Node_Id;
4404 OK : out Boolean;
4405 Lo : out Uint;
4406 Hi : out Uint;
4407 Assume_Valid : Boolean := False)
4409 Typ : Entity_Id := Etype (N);
4410 -- Type to use, may get reset to base type for possibly invalid entity
4412 Lo_Left : Uint;
4413 Hi_Left : Uint;
4414 -- Lo and Hi bounds of left operand
4416 Lo_Right : Uint := No_Uint;
4417 Hi_Right : Uint := No_Uint;
4418 -- Lo and Hi bounds of right (or only) operand
4420 Bound : Node_Id;
4421 -- Temp variable used to hold a bound node
4423 Hbound : Uint;
4424 -- High bound of base type of expression
4426 Lor : Uint;
4427 Hir : Uint;
4428 -- Refined values for low and high bounds, after tightening
4430 OK1 : Boolean;
4431 -- Used in lower level calls to indicate if call succeeded
4433 Cindex : Cache_Index;
4434 -- Used to search cache
4436 Btyp : Entity_Id;
4437 -- Base type
4439 function OK_Operands return Boolean;
4440 -- Used for binary operators. Determines the ranges of the left and
4441 -- right operands, and if they are both OK, returns True, and puts
4442 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4444 -----------------
4445 -- OK_Operands --
4446 -----------------
4448 function OK_Operands return Boolean is
4449 begin
4450 Determine_Range
4451 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
4453 if not OK1 then
4454 return False;
4455 end if;
4457 Determine_Range
4458 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4459 return OK1;
4460 end OK_Operands;
4462 -- Start of processing for Determine_Range
4464 begin
4465 -- Prevent junk warnings by initializing range variables
4467 Lo := No_Uint;
4468 Hi := No_Uint;
4469 Lor := No_Uint;
4470 Hir := No_Uint;
4472 -- For temporary constants internally generated to remove side effects
4473 -- we must use the corresponding expression to determine the range of
4474 -- the expression. But note that the expander can also generate
4475 -- constants in other cases, including deferred constants.
4477 if Is_Entity_Name (N)
4478 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4479 and then Ekind (Entity (N)) = E_Constant
4480 and then Is_Internal_Name (Chars (Entity (N)))
4481 then
4482 if Present (Expression (Parent (Entity (N)))) then
4483 Determine_Range
4484 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
4486 elsif Present (Full_View (Entity (N))) then
4487 Determine_Range
4488 (Expression (Parent (Full_View (Entity (N)))),
4489 OK, Lo, Hi, Assume_Valid);
4491 else
4492 OK := False;
4493 end if;
4494 return;
4495 end if;
4497 -- If type is not defined, we can't determine its range
4499 if No (Typ)
4501 -- We don't deal with anything except discrete types
4503 or else not Is_Discrete_Type (Typ)
4505 -- Don't deal with enumerated types with non-standard representation
4507 or else (Is_Enumeration_Type (Typ)
4508 and then Present (Enum_Pos_To_Rep (Base_Type (Typ))))
4510 -- Ignore type for which an error has been posted, since range in
4511 -- this case may well be a bogosity deriving from the error. Also
4512 -- ignore if error posted on the reference node.
4514 or else Error_Posted (N) or else Error_Posted (Typ)
4515 then
4516 OK := False;
4517 return;
4518 end if;
4520 -- For all other cases, we can determine the range
4522 OK := True;
4524 -- If value is compile time known, then the possible range is the one
4525 -- value that we know this expression definitely has.
4527 if Compile_Time_Known_Value (N) then
4528 Lo := Expr_Value (N);
4529 Hi := Lo;
4530 return;
4531 end if;
4533 -- Return if already in the cache
4535 Cindex := Cache_Index (N mod Cache_Size);
4537 if Determine_Range_Cache_N (Cindex) = N
4538 and then
4539 Determine_Range_Cache_V (Cindex) = Assume_Valid
4540 then
4541 Lo := Determine_Range_Cache_Lo (Cindex);
4542 Hi := Determine_Range_Cache_Hi (Cindex);
4543 return;
4544 end if;
4546 -- Otherwise, start by finding the bounds of the type of the expression,
4547 -- the value cannot be outside this range (if it is, then we have an
4548 -- overflow situation, which is a separate check, we are talking here
4549 -- only about the expression value).
4551 -- First a check, never try to find the bounds of a generic type, since
4552 -- these bounds are always junk values, and it is only valid to look at
4553 -- the bounds in an instance.
4555 if Is_Generic_Type (Typ) then
4556 OK := False;
4557 return;
4558 end if;
4560 -- First step, change to use base type unless we know the value is valid
4562 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
4563 or else Assume_No_Invalid_Values
4564 or else Assume_Valid
4565 then
4566 null;
4567 else
4568 Typ := Underlying_Type (Base_Type (Typ));
4569 end if;
4571 -- Retrieve the base type. Handle the case where the base type is a
4572 -- private enumeration type.
4574 Btyp := Base_Type (Typ);
4576 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
4577 Btyp := Full_View (Btyp);
4578 end if;
4580 -- We use the actual bound unless it is dynamic, in which case use the
4581 -- corresponding base type bound if possible. If we can't get a bound
4582 -- then we figure we can't determine the range (a peculiar case, that
4583 -- perhaps cannot happen, but there is no point in bombing in this
4584 -- optimization circuit.
4586 -- First the low bound
4588 Bound := Type_Low_Bound (Typ);
4590 if Compile_Time_Known_Value (Bound) then
4591 Lo := Expr_Value (Bound);
4593 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
4594 Lo := Expr_Value (Type_Low_Bound (Btyp));
4596 else
4597 OK := False;
4598 return;
4599 end if;
4601 -- Now the high bound
4603 Bound := Type_High_Bound (Typ);
4605 -- We need the high bound of the base type later on, and this should
4606 -- always be compile time known. Again, it is not clear that this
4607 -- can ever be false, but no point in bombing.
4609 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
4610 Hbound := Expr_Value (Type_High_Bound (Btyp));
4611 Hi := Hbound;
4613 else
4614 OK := False;
4615 return;
4616 end if;
4618 -- If we have a static subtype, then that may have a tighter bound so
4619 -- use the upper bound of the subtype instead in this case.
4621 if Compile_Time_Known_Value (Bound) then
4622 Hi := Expr_Value (Bound);
4623 end if;
4625 -- We may be able to refine this value in certain situations. If any
4626 -- refinement is possible, then Lor and Hir are set to possibly tighter
4627 -- bounds, and OK1 is set to True.
4629 case Nkind (N) is
4631 -- For unary plus, result is limited by range of operand
4633 when N_Op_Plus =>
4634 Determine_Range
4635 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
4637 -- For unary minus, determine range of operand, and negate it
4639 when N_Op_Minus =>
4640 Determine_Range
4641 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
4643 if OK1 then
4644 Lor := -Hi_Right;
4645 Hir := -Lo_Right;
4646 end if;
4648 -- For binary addition, get range of each operand and do the
4649 -- addition to get the result range.
4651 when N_Op_Add =>
4652 if OK_Operands then
4653 Lor := Lo_Left + Lo_Right;
4654 Hir := Hi_Left + Hi_Right;
4655 end if;
4657 -- Division is tricky. The only case we consider is where the right
4658 -- operand is a positive constant, and in this case we simply divide
4659 -- the bounds of the left operand
4661 when N_Op_Divide =>
4662 if OK_Operands then
4663 if Lo_Right = Hi_Right
4664 and then Lo_Right > 0
4665 then
4666 Lor := Lo_Left / Lo_Right;
4667 Hir := Hi_Left / Lo_Right;
4668 else
4669 OK1 := False;
4670 end if;
4671 end if;
4673 -- For binary subtraction, get range of each operand and do the worst
4674 -- case subtraction to get the result range.
4676 when N_Op_Subtract =>
4677 if OK_Operands then
4678 Lor := Lo_Left - Hi_Right;
4679 Hir := Hi_Left - Lo_Right;
4680 end if;
4682 -- For MOD, if right operand is a positive constant, then result must
4683 -- be in the allowable range of mod results.
4685 when N_Op_Mod =>
4686 if OK_Operands then
4687 if Lo_Right = Hi_Right
4688 and then Lo_Right /= 0
4689 then
4690 if Lo_Right > 0 then
4691 Lor := Uint_0;
4692 Hir := Lo_Right - 1;
4694 else -- Lo_Right < 0
4695 Lor := Lo_Right + 1;
4696 Hir := Uint_0;
4697 end if;
4699 else
4700 OK1 := False;
4701 end if;
4702 end if;
4704 -- For REM, if right operand is a positive constant, then result must
4705 -- be in the allowable range of mod results.
4707 when N_Op_Rem =>
4708 if OK_Operands then
4709 if Lo_Right = Hi_Right and then Lo_Right /= 0 then
4710 declare
4711 Dval : constant Uint := (abs Lo_Right) - 1;
4713 begin
4714 -- The sign of the result depends on the sign of the
4715 -- dividend (but not on the sign of the divisor, hence
4716 -- the abs operation above).
4718 if Lo_Left < 0 then
4719 Lor := -Dval;
4720 else
4721 Lor := Uint_0;
4722 end if;
4724 if Hi_Left < 0 then
4725 Hir := Uint_0;
4726 else
4727 Hir := Dval;
4728 end if;
4729 end;
4731 else
4732 OK1 := False;
4733 end if;
4734 end if;
4736 -- Attribute reference cases
4738 when N_Attribute_Reference =>
4739 case Attribute_Name (N) is
4741 -- For Pos/Val attributes, we can refine the range using the
4742 -- possible range of values of the attribute expression.
4744 when Name_Pos
4745 | Name_Val
4747 Determine_Range
4748 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
4750 -- For Length attribute, use the bounds of the corresponding
4751 -- index type to refine the range.
4753 when Name_Length =>
4754 declare
4755 Atyp : Entity_Id := Etype (Prefix (N));
4756 Inum : Nat;
4757 Indx : Node_Id;
4759 LL, LU : Uint;
4760 UL, UU : Uint;
4762 begin
4763 if Is_Access_Type (Atyp) then
4764 Atyp := Designated_Type (Atyp);
4765 end if;
4767 -- For string literal, we know exact value
4769 if Ekind (Atyp) = E_String_Literal_Subtype then
4770 OK := True;
4771 Lo := String_Literal_Length (Atyp);
4772 Hi := String_Literal_Length (Atyp);
4773 return;
4774 end if;
4776 -- Otherwise check for expression given
4778 if No (Expressions (N)) then
4779 Inum := 1;
4780 else
4781 Inum :=
4782 UI_To_Int (Expr_Value (First (Expressions (N))));
4783 end if;
4785 Indx := First_Index (Atyp);
4786 for J in 2 .. Inum loop
4787 Indx := Next_Index (Indx);
4788 end loop;
4790 -- If the index type is a formal type or derived from
4791 -- one, the bounds are not static.
4793 if Is_Generic_Type (Root_Type (Etype (Indx))) then
4794 OK := False;
4795 return;
4796 end if;
4798 Determine_Range
4799 (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
4800 Assume_Valid);
4802 if OK1 then
4803 Determine_Range
4804 (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
4805 Assume_Valid);
4807 if OK1 then
4809 -- The maximum value for Length is the biggest
4810 -- possible gap between the values of the bounds.
4811 -- But of course, this value cannot be negative.
4813 Hir := UI_Max (Uint_0, UU - LL + 1);
4815 -- For constrained arrays, the minimum value for
4816 -- Length is taken from the actual value of the
4817 -- bounds, since the index will be exactly of this
4818 -- subtype.
4820 if Is_Constrained (Atyp) then
4821 Lor := UI_Max (Uint_0, UL - LU + 1);
4823 -- For an unconstrained array, the minimum value
4824 -- for length is always zero.
4826 else
4827 Lor := Uint_0;
4828 end if;
4829 end if;
4830 end if;
4831 end;
4833 -- No special handling for other attributes
4834 -- Probably more opportunities exist here???
4836 when others =>
4837 OK1 := False;
4839 end case;
4841 when N_Type_Conversion =>
4843 -- For type conversion from one discrete type to another, we can
4844 -- refine the range using the converted value.
4846 if Is_Discrete_Type (Etype (Expression (N))) then
4847 Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
4849 -- When converting a float to an integer type, determine the range
4850 -- in real first, and then convert the bounds using UR_To_Uint
4851 -- which correctly rounds away from zero when half way between two
4852 -- integers, as required by normal Ada 95 rounding semantics. It
4853 -- is only possible because analysis in GNATprove rules out the
4854 -- possibility of a NaN or infinite value.
4856 elsif GNATprove_Mode
4857 and then Is_Floating_Point_Type (Etype (Expression (N)))
4858 then
4859 declare
4860 Lor_Real, Hir_Real : Ureal;
4861 begin
4862 Determine_Range_R (Expression (N), OK1, Lor_Real, Hir_Real,
4863 Assume_Valid);
4865 if OK1 then
4866 Lor := UR_To_Uint (Lor_Real);
4867 Hir := UR_To_Uint (Hir_Real);
4868 end if;
4869 end;
4871 else
4872 OK1 := False;
4873 end if;
4875 -- Nothing special to do for all other expression kinds
4877 when others =>
4878 OK1 := False;
4879 Lor := No_Uint;
4880 Hir := No_Uint;
4881 end case;
4883 -- At this stage, if OK1 is true, then we know that the actual result of
4884 -- the computed expression is in the range Lor .. Hir. We can use this
4885 -- to restrict the possible range of results.
4887 if OK1 then
4889 -- If the refined value of the low bound is greater than the type
4890 -- low bound, then reset it to the more restrictive value. However,
4891 -- we do NOT do this for the case of a modular type where the
4892 -- possible upper bound on the value is above the base type high
4893 -- bound, because that means the result could wrap.
4895 if Lor > Lo
4896 and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
4897 then
4898 Lo := Lor;
4899 end if;
4901 -- Similarly, if the refined value of the high bound is less than the
4902 -- value so far, then reset it to the more restrictive value. Again,
4903 -- we do not do this if the refined low bound is negative for a
4904 -- modular type, since this would wrap.
4906 if Hir < Hi
4907 and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
4908 then
4909 Hi := Hir;
4910 end if;
4911 end if;
4913 -- Set cache entry for future call and we are all done
4915 Determine_Range_Cache_N (Cindex) := N;
4916 Determine_Range_Cache_V (Cindex) := Assume_Valid;
4917 Determine_Range_Cache_Lo (Cindex) := Lo;
4918 Determine_Range_Cache_Hi (Cindex) := Hi;
4919 return;
4921 -- If any exception occurs, it means that we have some bug in the compiler,
4922 -- possibly triggered by a previous error, or by some unforeseen peculiar
4923 -- occurrence. However, this is only an optimization attempt, so there is
4924 -- really no point in crashing the compiler. Instead we just decide, too
4925 -- bad, we can't figure out a range in this case after all.
4927 exception
4928 when others =>
4930 -- Debug flag K disables this behavior (useful for debugging)
4932 if Debug_Flag_K then
4933 raise;
4934 else
4935 OK := False;
4936 Lo := No_Uint;
4937 Hi := No_Uint;
4938 return;
4939 end if;
4940 end Determine_Range;
4942 -----------------------
4943 -- Determine_Range_R --
4944 -----------------------
4946 procedure Determine_Range_R
4947 (N : Node_Id;
4948 OK : out Boolean;
4949 Lo : out Ureal;
4950 Hi : out Ureal;
4951 Assume_Valid : Boolean := False)
4953 Typ : Entity_Id := Etype (N);
4954 -- Type to use, may get reset to base type for possibly invalid entity
4956 Lo_Left : Ureal;
4957 Hi_Left : Ureal;
4958 -- Lo and Hi bounds of left operand
4960 Lo_Right : Ureal := No_Ureal;
4961 Hi_Right : Ureal := No_Ureal;
4962 -- Lo and Hi bounds of right (or only) operand
4964 Bound : Node_Id;
4965 -- Temp variable used to hold a bound node
4967 Hbound : Ureal;
4968 -- High bound of base type of expression
4970 Lor : Ureal;
4971 Hir : Ureal;
4972 -- Refined values for low and high bounds, after tightening
4974 OK1 : Boolean;
4975 -- Used in lower level calls to indicate if call succeeded
4977 Cindex : Cache_Index;
4978 -- Used to search cache
4980 Btyp : Entity_Id;
4981 -- Base type
4983 function OK_Operands return Boolean;
4984 -- Used for binary operators. Determines the ranges of the left and
4985 -- right operands, and if they are both OK, returns True, and puts
4986 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
4988 function Round_Machine (B : Ureal) return Ureal;
4989 -- B is a real bound. Round it using mode Round_Even.
4991 -----------------
4992 -- OK_Operands --
4993 -----------------
4995 function OK_Operands return Boolean is
4996 begin
4997 Determine_Range_R
4998 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
5000 if not OK1 then
5001 return False;
5002 end if;
5004 Determine_Range_R
5005 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5006 return OK1;
5007 end OK_Operands;
5009 -------------------
5010 -- Round_Machine --
5011 -------------------
5013 function Round_Machine (B : Ureal) return Ureal is
5014 begin
5015 return Machine (Typ, B, Round_Even, N);
5016 end Round_Machine;
5018 -- Start of processing for Determine_Range_R
5020 begin
5021 -- Prevent junk warnings by initializing range variables
5023 Lo := No_Ureal;
5024 Hi := No_Ureal;
5025 Lor := No_Ureal;
5026 Hir := No_Ureal;
5028 -- For temporary constants internally generated to remove side effects
5029 -- we must use the corresponding expression to determine the range of
5030 -- the expression. But note that the expander can also generate
5031 -- constants in other cases, including deferred constants.
5033 if Is_Entity_Name (N)
5034 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
5035 and then Ekind (Entity (N)) = E_Constant
5036 and then Is_Internal_Name (Chars (Entity (N)))
5037 then
5038 if Present (Expression (Parent (Entity (N)))) then
5039 Determine_Range_R
5040 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
5042 elsif Present (Full_View (Entity (N))) then
5043 Determine_Range_R
5044 (Expression (Parent (Full_View (Entity (N)))),
5045 OK, Lo, Hi, Assume_Valid);
5047 else
5048 OK := False;
5049 end if;
5051 return;
5052 end if;
5054 -- If type is not defined, we can't determine its range
5056 if No (Typ)
5058 -- We don't deal with anything except IEEE floating-point types
5060 or else not Is_Floating_Point_Type (Typ)
5061 or else Float_Rep (Typ) /= IEEE_Binary
5063 -- Ignore type for which an error has been posted, since range in
5064 -- this case may well be a bogosity deriving from the error. Also
5065 -- ignore if error posted on the reference node.
5067 or else Error_Posted (N) or else Error_Posted (Typ)
5068 then
5069 OK := False;
5070 return;
5071 end if;
5073 -- For all other cases, we can determine the range
5075 OK := True;
5077 -- If value is compile time known, then the possible range is the one
5078 -- value that we know this expression definitely has.
5080 if Compile_Time_Known_Value (N) then
5081 Lo := Expr_Value_R (N);
5082 Hi := Lo;
5083 return;
5084 end if;
5086 -- Return if already in the cache
5088 Cindex := Cache_Index (N mod Cache_Size);
5090 if Determine_Range_Cache_N (Cindex) = N
5091 and then
5092 Determine_Range_Cache_V (Cindex) = Assume_Valid
5093 then
5094 Lo := Determine_Range_Cache_Lo_R (Cindex);
5095 Hi := Determine_Range_Cache_Hi_R (Cindex);
5096 return;
5097 end if;
5099 -- Otherwise, start by finding the bounds of the type of the expression,
5100 -- the value cannot be outside this range (if it is, then we have an
5101 -- overflow situation, which is a separate check, we are talking here
5102 -- only about the expression value).
5104 -- First a check, never try to find the bounds of a generic type, since
5105 -- these bounds are always junk values, and it is only valid to look at
5106 -- the bounds in an instance.
5108 if Is_Generic_Type (Typ) then
5109 OK := False;
5110 return;
5111 end if;
5113 -- First step, change to use base type unless we know the value is valid
5115 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5116 or else Assume_No_Invalid_Values
5117 or else Assume_Valid
5118 then
5119 null;
5120 else
5121 Typ := Underlying_Type (Base_Type (Typ));
5122 end if;
5124 -- Retrieve the base type. Handle the case where the base type is a
5125 -- private type.
5127 Btyp := Base_Type (Typ);
5129 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5130 Btyp := Full_View (Btyp);
5131 end if;
5133 -- We use the actual bound unless it is dynamic, in which case use the
5134 -- corresponding base type bound if possible. If we can't get a bound
5135 -- then we figure we can't determine the range (a peculiar case, that
5136 -- perhaps cannot happen, but there is no point in bombing in this
5137 -- optimization circuit).
5139 -- First the low bound
5141 Bound := Type_Low_Bound (Typ);
5143 if Compile_Time_Known_Value (Bound) then
5144 Lo := Expr_Value_R (Bound);
5146 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5147 Lo := Expr_Value_R (Type_Low_Bound (Btyp));
5149 else
5150 OK := False;
5151 return;
5152 end if;
5154 -- Now the high bound
5156 Bound := Type_High_Bound (Typ);
5158 -- We need the high bound of the base type later on, and this should
5159 -- always be compile time known. Again, it is not clear that this
5160 -- can ever be false, but no point in bombing.
5162 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5163 Hbound := Expr_Value_R (Type_High_Bound (Btyp));
5164 Hi := Hbound;
5166 else
5167 OK := False;
5168 return;
5169 end if;
5171 -- If we have a static subtype, then that may have a tighter bound so
5172 -- use the upper bound of the subtype instead in this case.
5174 if Compile_Time_Known_Value (Bound) then
5175 Hi := Expr_Value_R (Bound);
5176 end if;
5178 -- We may be able to refine this value in certain situations. If any
5179 -- refinement is possible, then Lor and Hir are set to possibly tighter
5180 -- bounds, and OK1 is set to True.
5182 case Nkind (N) is
5184 -- For unary plus, result is limited by range of operand
5186 when N_Op_Plus =>
5187 Determine_Range_R
5188 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
5190 -- For unary minus, determine range of operand, and negate it
5192 when N_Op_Minus =>
5193 Determine_Range_R
5194 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5196 if OK1 then
5197 Lor := -Hi_Right;
5198 Hir := -Lo_Right;
5199 end if;
5201 -- For binary addition, get range of each operand and do the
5202 -- addition to get the result range.
5204 when N_Op_Add =>
5205 if OK_Operands then
5206 Lor := Round_Machine (Lo_Left + Lo_Right);
5207 Hir := Round_Machine (Hi_Left + Hi_Right);
5208 end if;
5210 -- For binary subtraction, get range of each operand and do the worst
5211 -- case subtraction to get the result range.
5213 when N_Op_Subtract =>
5214 if OK_Operands then
5215 Lor := Round_Machine (Lo_Left - Hi_Right);
5216 Hir := Round_Machine (Hi_Left - Lo_Right);
5217 end if;
5219 -- For multiplication, get range of each operand and do the
5220 -- four multiplications to get the result range.
5222 when N_Op_Multiply =>
5223 if OK_Operands then
5224 declare
5225 M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
5226 M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
5227 M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
5228 M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
5230 begin
5231 Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
5232 Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
5233 end;
5234 end if;
5236 -- For division, consider separately the cases where the right
5237 -- operand is positive or negative. Otherwise, the right operand
5238 -- can be arbitrarily close to zero, so the result is likely to
5239 -- be unbounded in one direction, do not attempt to compute it.
5241 when N_Op_Divide =>
5242 if OK_Operands then
5244 -- Right operand is positive
5246 if Lo_Right > Ureal_0 then
5248 -- If the low bound of the left operand is negative, obtain
5249 -- the overall low bound by dividing it by the smallest
5250 -- value of the right operand, and otherwise by the largest
5251 -- value of the right operand.
5253 if Lo_Left < Ureal_0 then
5254 Lor := Round_Machine (Lo_Left / Lo_Right);
5255 else
5256 Lor := Round_Machine (Lo_Left / Hi_Right);
5257 end if;
5259 -- If the high bound of the left operand is negative, obtain
5260 -- the overall high bound by dividing it by the largest
5261 -- value of the right operand, and otherwise by the
5262 -- smallest value of the right operand.
5264 if Hi_Left < Ureal_0 then
5265 Hir := Round_Machine (Hi_Left / Hi_Right);
5266 else
5267 Hir := Round_Machine (Hi_Left / Lo_Right);
5268 end if;
5270 -- Right operand is negative
5272 elsif Hi_Right < Ureal_0 then
5274 -- If the low bound of the left operand is negative, obtain
5275 -- the overall low bound by dividing it by the largest
5276 -- value of the right operand, and otherwise by the smallest
5277 -- value of the right operand.
5279 if Lo_Left < Ureal_0 then
5280 Lor := Round_Machine (Lo_Left / Hi_Right);
5281 else
5282 Lor := Round_Machine (Lo_Left / Lo_Right);
5283 end if;
5285 -- If the high bound of the left operand is negative, obtain
5286 -- the overall high bound by dividing it by the smallest
5287 -- value of the right operand, and otherwise by the
5288 -- largest value of the right operand.
5290 if Hi_Left < Ureal_0 then
5291 Hir := Round_Machine (Hi_Left / Lo_Right);
5292 else
5293 Hir := Round_Machine (Hi_Left / Hi_Right);
5294 end if;
5296 else
5297 OK1 := False;
5298 end if;
5299 end if;
5301 when N_Type_Conversion =>
5303 -- For type conversion from one floating-point type to another, we
5304 -- can refine the range using the converted value.
5306 if Is_Floating_Point_Type (Etype (Expression (N))) then
5307 Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
5309 -- When converting an integer to a floating-point type, determine
5310 -- the range in integer first, and then convert the bounds.
5312 elsif Is_Discrete_Type (Etype (Expression (N))) then
5313 declare
5314 Hir_Int : Uint;
5315 Lor_Int : Uint;
5317 begin
5318 Determine_Range
5319 (Expression (N), OK1, Lor_Int, Hir_Int, Assume_Valid);
5321 if OK1 then
5322 Lor := Round_Machine (UR_From_Uint (Lor_Int));
5323 Hir := Round_Machine (UR_From_Uint (Hir_Int));
5324 end if;
5325 end;
5327 else
5328 OK1 := False;
5329 end if;
5331 -- Nothing special to do for all other expression kinds
5333 when others =>
5334 OK1 := False;
5335 Lor := No_Ureal;
5336 Hir := No_Ureal;
5337 end case;
5339 -- At this stage, if OK1 is true, then we know that the actual result of
5340 -- the computed expression is in the range Lor .. Hir. We can use this
5341 -- to restrict the possible range of results.
5343 if OK1 then
5345 -- If the refined value of the low bound is greater than the type
5346 -- low bound, then reset it to the more restrictive value.
5348 if Lor > Lo then
5349 Lo := Lor;
5350 end if;
5352 -- Similarly, if the refined value of the high bound is less than the
5353 -- value so far, then reset it to the more restrictive value.
5355 if Hir < Hi then
5356 Hi := Hir;
5357 end if;
5358 end if;
5360 -- Set cache entry for future call and we are all done
5362 Determine_Range_Cache_N (Cindex) := N;
5363 Determine_Range_Cache_V (Cindex) := Assume_Valid;
5364 Determine_Range_Cache_Lo_R (Cindex) := Lo;
5365 Determine_Range_Cache_Hi_R (Cindex) := Hi;
5366 return;
5368 -- If any exception occurs, it means that we have some bug in the compiler,
5369 -- possibly triggered by a previous error, or by some unforeseen peculiar
5370 -- occurrence. However, this is only an optimization attempt, so there is
5371 -- really no point in crashing the compiler. Instead we just decide, too
5372 -- bad, we can't figure out a range in this case after all.
5374 exception
5375 when others =>
5377 -- Debug flag K disables this behavior (useful for debugging)
5379 if Debug_Flag_K then
5380 raise;
5381 else
5382 OK := False;
5383 Lo := No_Ureal;
5384 Hi := No_Ureal;
5385 return;
5386 end if;
5387 end Determine_Range_R;
5389 ------------------------------------
5390 -- Discriminant_Checks_Suppressed --
5391 ------------------------------------
5393 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
5394 begin
5395 if Present (E) then
5396 if Is_Unchecked_Union (E) then
5397 return True;
5398 elsif Checks_May_Be_Suppressed (E) then
5399 return Is_Check_Suppressed (E, Discriminant_Check);
5400 end if;
5401 end if;
5403 return Scope_Suppress.Suppress (Discriminant_Check);
5404 end Discriminant_Checks_Suppressed;
5406 --------------------------------
5407 -- Division_Checks_Suppressed --
5408 --------------------------------
5410 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
5411 begin
5412 if Present (E) and then Checks_May_Be_Suppressed (E) then
5413 return Is_Check_Suppressed (E, Division_Check);
5414 else
5415 return Scope_Suppress.Suppress (Division_Check);
5416 end if;
5417 end Division_Checks_Suppressed;
5419 --------------------------------------
5420 -- Duplicated_Tag_Checks_Suppressed --
5421 --------------------------------------
5423 function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
5424 begin
5425 if Present (E) and then Checks_May_Be_Suppressed (E) then
5426 return Is_Check_Suppressed (E, Duplicated_Tag_Check);
5427 else
5428 return Scope_Suppress.Suppress (Duplicated_Tag_Check);
5429 end if;
5430 end Duplicated_Tag_Checks_Suppressed;
5432 -----------------------------------
5433 -- Elaboration_Checks_Suppressed --
5434 -----------------------------------
5436 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
5437 begin
5438 -- The complication in this routine is that if we are in the dynamic
5439 -- model of elaboration, we also check All_Checks, since All_Checks
5440 -- does not set Elaboration_Check explicitly.
5442 if Present (E) then
5443 if Kill_Elaboration_Checks (E) then
5444 return True;
5446 elsif Checks_May_Be_Suppressed (E) then
5447 if Is_Check_Suppressed (E, Elaboration_Check) then
5448 return True;
5450 elsif Dynamic_Elaboration_Checks then
5451 return Is_Check_Suppressed (E, All_Checks);
5453 else
5454 return False;
5455 end if;
5456 end if;
5457 end if;
5459 if Scope_Suppress.Suppress (Elaboration_Check) then
5460 return True;
5462 elsif Dynamic_Elaboration_Checks then
5463 return Scope_Suppress.Suppress (All_Checks);
5465 else
5466 return False;
5467 end if;
5468 end Elaboration_Checks_Suppressed;
5470 ---------------------------
5471 -- Enable_Overflow_Check --
5472 ---------------------------
5474 procedure Enable_Overflow_Check (N : Node_Id) is
5475 Typ : constant Entity_Id := Base_Type (Etype (N));
5476 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
5477 Chk : Nat;
5478 OK : Boolean;
5479 Ent : Entity_Id;
5480 Ofs : Uint;
5481 Lo : Uint;
5482 Hi : Uint;
5484 Do_Ovflow_Check : Boolean;
5486 begin
5487 if Debug_Flag_CC then
5488 w ("Enable_Overflow_Check for node ", Int (N));
5489 Write_Str (" Source location = ");
5490 wl (Sloc (N));
5491 pg (Union_Id (N));
5492 end if;
5494 -- No check if overflow checks suppressed for type of node
5496 if Overflow_Checks_Suppressed (Etype (N)) then
5497 return;
5499 -- Nothing to do for unsigned integer types, which do not overflow
5501 elsif Is_Modular_Integer_Type (Typ) then
5502 return;
5503 end if;
5505 -- This is the point at which processing for STRICT mode diverges
5506 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
5507 -- probably more extreme that it needs to be, but what is going on here
5508 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
5509 -- to leave the processing for STRICT mode untouched. There were
5510 -- two reasons for this. First it avoided any incompatible change of
5511 -- behavior. Second, it guaranteed that STRICT mode continued to be
5512 -- legacy reliable.
5514 -- The big difference is that in STRICT mode there is a fair amount of
5515 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
5516 -- know that no check is needed. We skip all that in the two new modes,
5517 -- since really overflow checking happens over a whole subtree, and we
5518 -- do the corresponding optimizations later on when applying the checks.
5520 if Mode in Minimized_Or_Eliminated then
5521 if not (Overflow_Checks_Suppressed (Etype (N)))
5522 and then not (Is_Entity_Name (N)
5523 and then Overflow_Checks_Suppressed (Entity (N)))
5524 then
5525 Activate_Overflow_Check (N);
5526 end if;
5528 if Debug_Flag_CC then
5529 w ("Minimized/Eliminated mode");
5530 end if;
5532 return;
5533 end if;
5535 -- Remainder of processing is for STRICT case, and is unchanged from
5536 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
5538 -- Nothing to do if the range of the result is known OK. We skip this
5539 -- for conversions, since the caller already did the check, and in any
5540 -- case the condition for deleting the check for a type conversion is
5541 -- different.
5543 if Nkind (N) /= N_Type_Conversion then
5544 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
5546 -- Note in the test below that we assume that the range is not OK
5547 -- if a bound of the range is equal to that of the type. That's not
5548 -- quite accurate but we do this for the following reasons:
5550 -- a) The way that Determine_Range works, it will typically report
5551 -- the bounds of the value as being equal to the bounds of the
5552 -- type, because it either can't tell anything more precise, or
5553 -- does not think it is worth the effort to be more precise.
5555 -- b) It is very unusual to have a situation in which this would
5556 -- generate an unnecessary overflow check (an example would be
5557 -- a subtype with a range 0 .. Integer'Last - 1 to which the
5558 -- literal value one is added).
5560 -- c) The alternative is a lot of special casing in this routine
5561 -- which would partially duplicate Determine_Range processing.
5563 if OK then
5564 Do_Ovflow_Check := True;
5566 -- Note that the following checks are quite deliberately > and <
5567 -- rather than >= and <= as explained above.
5569 if Lo > Expr_Value (Type_Low_Bound (Typ))
5570 and then
5571 Hi < Expr_Value (Type_High_Bound (Typ))
5572 then
5573 Do_Ovflow_Check := False;
5575 -- Despite the comments above, it is worth dealing specially with
5576 -- division specially. The only case where integer division can
5577 -- overflow is (largest negative number) / (-1). So we will do
5578 -- an extra range analysis to see if this is possible.
5580 elsif Nkind (N) = N_Op_Divide then
5581 Determine_Range
5582 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5584 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
5585 Do_Ovflow_Check := False;
5587 else
5588 Determine_Range
5589 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5591 if OK and then (Lo > Uint_Minus_1
5592 or else
5593 Hi < Uint_Minus_1)
5594 then
5595 Do_Ovflow_Check := False;
5596 end if;
5597 end if;
5598 end if;
5600 -- If no overflow check required, we are done
5602 if not Do_Ovflow_Check then
5603 if Debug_Flag_CC then
5604 w ("No overflow check required");
5605 end if;
5607 return;
5608 end if;
5609 end if;
5610 end if;
5612 -- If not in optimizing mode, set flag and we are done. We are also done
5613 -- (and just set the flag) if the type is not a discrete type, since it
5614 -- is not worth the effort to eliminate checks for other than discrete
5615 -- types. In addition, we take this same path if we have stored the
5616 -- maximum number of checks possible already (a very unlikely situation,
5617 -- but we do not want to blow up).
5619 if Optimization_Level = 0
5620 or else not Is_Discrete_Type (Etype (N))
5621 or else Num_Saved_Checks = Saved_Checks'Last
5622 then
5623 Activate_Overflow_Check (N);
5625 if Debug_Flag_CC then
5626 w ("Optimization off");
5627 end if;
5629 return;
5630 end if;
5632 -- Otherwise evaluate and check the expression
5634 Find_Check
5635 (Expr => N,
5636 Check_Type => 'O',
5637 Target_Type => Empty,
5638 Entry_OK => OK,
5639 Check_Num => Chk,
5640 Ent => Ent,
5641 Ofs => Ofs);
5643 if Debug_Flag_CC then
5644 w ("Called Find_Check");
5645 w (" OK = ", OK);
5647 if OK then
5648 w (" Check_Num = ", Chk);
5649 w (" Ent = ", Int (Ent));
5650 Write_Str (" Ofs = ");
5651 pid (Ofs);
5652 end if;
5653 end if;
5655 -- If check is not of form to optimize, then set flag and we are done
5657 if not OK then
5658 Activate_Overflow_Check (N);
5659 return;
5660 end if;
5662 -- If check is already performed, then return without setting flag
5664 if Chk /= 0 then
5665 if Debug_Flag_CC then
5666 w ("Check suppressed!");
5667 end if;
5669 return;
5670 end if;
5672 -- Here we will make a new entry for the new check
5674 Activate_Overflow_Check (N);
5675 Num_Saved_Checks := Num_Saved_Checks + 1;
5676 Saved_Checks (Num_Saved_Checks) :=
5677 (Killed => False,
5678 Entity => Ent,
5679 Offset => Ofs,
5680 Check_Type => 'O',
5681 Target_Type => Empty);
5683 if Debug_Flag_CC then
5684 w ("Make new entry, check number = ", Num_Saved_Checks);
5685 w (" Entity = ", Int (Ent));
5686 Write_Str (" Offset = ");
5687 pid (Ofs);
5688 w (" Check_Type = O");
5689 w (" Target_Type = Empty");
5690 end if;
5692 -- If we get an exception, then something went wrong, probably because of
5693 -- an error in the structure of the tree due to an incorrect program. Or
5694 -- it may be a bug in the optimization circuit. In either case the safest
5695 -- thing is simply to set the check flag unconditionally.
5697 exception
5698 when others =>
5699 Activate_Overflow_Check (N);
5701 if Debug_Flag_CC then
5702 w (" exception occurred, overflow flag set");
5703 end if;
5705 return;
5706 end Enable_Overflow_Check;
5708 ------------------------
5709 -- Enable_Range_Check --
5710 ------------------------
5712 procedure Enable_Range_Check (N : Node_Id) is
5713 Chk : Nat;
5714 OK : Boolean;
5715 Ent : Entity_Id;
5716 Ofs : Uint;
5717 Ttyp : Entity_Id;
5718 P : Node_Id;
5720 begin
5721 -- Return if unchecked type conversion with range check killed. In this
5722 -- case we never set the flag (that's what Kill_Range_Check is about).
5724 if Nkind (N) = N_Unchecked_Type_Conversion
5725 and then Kill_Range_Check (N)
5726 then
5727 return;
5728 end if;
5730 -- Do not set range check flag if parent is assignment statement or
5731 -- object declaration with Suppress_Assignment_Checks flag set
5733 if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
5734 and then Suppress_Assignment_Checks (Parent (N))
5735 then
5736 return;
5737 end if;
5739 -- Check for various cases where we should suppress the range check
5741 -- No check if range checks suppressed for type of node
5743 if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
5744 return;
5746 -- No check if node is an entity name, and range checks are suppressed
5747 -- for this entity, or for the type of this entity.
5749 elsif Is_Entity_Name (N)
5750 and then (Range_Checks_Suppressed (Entity (N))
5751 or else Range_Checks_Suppressed (Etype (Entity (N))))
5752 then
5753 return;
5755 -- No checks if index of array, and index checks are suppressed for
5756 -- the array object or the type of the array.
5758 elsif Nkind (Parent (N)) = N_Indexed_Component then
5759 declare
5760 Pref : constant Node_Id := Prefix (Parent (N));
5761 begin
5762 if Is_Entity_Name (Pref)
5763 and then Index_Checks_Suppressed (Entity (Pref))
5764 then
5765 return;
5766 elsif Index_Checks_Suppressed (Etype (Pref)) then
5767 return;
5768 end if;
5769 end;
5770 end if;
5772 -- Debug trace output
5774 if Debug_Flag_CC then
5775 w ("Enable_Range_Check for node ", Int (N));
5776 Write_Str (" Source location = ");
5777 wl (Sloc (N));
5778 pg (Union_Id (N));
5779 end if;
5781 -- If not in optimizing mode, set flag and we are done. We are also done
5782 -- (and just set the flag) if the type is not a discrete type, since it
5783 -- is not worth the effort to eliminate checks for other than discrete
5784 -- types. In addition, we take this same path if we have stored the
5785 -- maximum number of checks possible already (a very unlikely situation,
5786 -- but we do not want to blow up).
5788 if Optimization_Level = 0
5789 or else No (Etype (N))
5790 or else not Is_Discrete_Type (Etype (N))
5791 or else Num_Saved_Checks = Saved_Checks'Last
5792 then
5793 Activate_Range_Check (N);
5795 if Debug_Flag_CC then
5796 w ("Optimization off");
5797 end if;
5799 return;
5800 end if;
5802 -- Otherwise find out the target type
5804 P := Parent (N);
5806 -- For assignment, use left side subtype
5808 if Nkind (P) = N_Assignment_Statement
5809 and then Expression (P) = N
5810 then
5811 Ttyp := Etype (Name (P));
5813 -- For indexed component, use subscript subtype
5815 elsif Nkind (P) = N_Indexed_Component then
5816 declare
5817 Atyp : Entity_Id;
5818 Indx : Node_Id;
5819 Subs : Node_Id;
5821 begin
5822 Atyp := Etype (Prefix (P));
5824 if Is_Access_Type (Atyp) then
5825 Atyp := Designated_Type (Atyp);
5827 -- If the prefix is an access to an unconstrained array,
5828 -- perform check unconditionally: it depends on the bounds of
5829 -- an object and we cannot currently recognize whether the test
5830 -- may be redundant.
5832 if not Is_Constrained (Atyp) then
5833 Activate_Range_Check (N);
5834 return;
5835 end if;
5837 -- Ditto if prefix is simply an unconstrained array. We used
5838 -- to think this case was OK, if the prefix was not an explicit
5839 -- dereference, but we have now seen a case where this is not
5840 -- true, so it is safer to just suppress the optimization in this
5841 -- case. The back end is getting better at eliminating redundant
5842 -- checks in any case, so the loss won't be important.
5844 elsif Is_Array_Type (Atyp)
5845 and then not Is_Constrained (Atyp)
5846 then
5847 Activate_Range_Check (N);
5848 return;
5849 end if;
5851 Indx := First_Index (Atyp);
5852 Subs := First (Expressions (P));
5853 loop
5854 if Subs = N then
5855 Ttyp := Etype (Indx);
5856 exit;
5857 end if;
5859 Next_Index (Indx);
5860 Next (Subs);
5861 end loop;
5862 end;
5864 -- For now, ignore all other cases, they are not so interesting
5866 else
5867 if Debug_Flag_CC then
5868 w (" target type not found, flag set");
5869 end if;
5871 Activate_Range_Check (N);
5872 return;
5873 end if;
5875 -- Evaluate and check the expression
5877 Find_Check
5878 (Expr => N,
5879 Check_Type => 'R',
5880 Target_Type => Ttyp,
5881 Entry_OK => OK,
5882 Check_Num => Chk,
5883 Ent => Ent,
5884 Ofs => Ofs);
5886 if Debug_Flag_CC then
5887 w ("Called Find_Check");
5888 w ("Target_Typ = ", Int (Ttyp));
5889 w (" OK = ", OK);
5891 if OK then
5892 w (" Check_Num = ", Chk);
5893 w (" Ent = ", Int (Ent));
5894 Write_Str (" Ofs = ");
5895 pid (Ofs);
5896 end if;
5897 end if;
5899 -- If check is not of form to optimize, then set flag and we are done
5901 if not OK then
5902 if Debug_Flag_CC then
5903 w (" expression not of optimizable type, flag set");
5904 end if;
5906 Activate_Range_Check (N);
5907 return;
5908 end if;
5910 -- If check is already performed, then return without setting flag
5912 if Chk /= 0 then
5913 if Debug_Flag_CC then
5914 w ("Check suppressed!");
5915 end if;
5917 return;
5918 end if;
5920 -- Here we will make a new entry for the new check
5922 Activate_Range_Check (N);
5923 Num_Saved_Checks := Num_Saved_Checks + 1;
5924 Saved_Checks (Num_Saved_Checks) :=
5925 (Killed => False,
5926 Entity => Ent,
5927 Offset => Ofs,
5928 Check_Type => 'R',
5929 Target_Type => Ttyp);
5931 if Debug_Flag_CC then
5932 w ("Make new entry, check number = ", Num_Saved_Checks);
5933 w (" Entity = ", Int (Ent));
5934 Write_Str (" Offset = ");
5935 pid (Ofs);
5936 w (" Check_Type = R");
5937 w (" Target_Type = ", Int (Ttyp));
5938 pg (Union_Id (Ttyp));
5939 end if;
5941 -- If we get an exception, then something went wrong, probably because of
5942 -- an error in the structure of the tree due to an incorrect program. Or
5943 -- it may be a bug in the optimization circuit. In either case the safest
5944 -- thing is simply to set the check flag unconditionally.
5946 exception
5947 when others =>
5948 Activate_Range_Check (N);
5950 if Debug_Flag_CC then
5951 w (" exception occurred, range flag set");
5952 end if;
5954 return;
5955 end Enable_Range_Check;
5957 ------------------
5958 -- Ensure_Valid --
5959 ------------------
5961 procedure Ensure_Valid
5962 (Expr : Node_Id;
5963 Holes_OK : Boolean := False;
5964 Related_Id : Entity_Id := Empty;
5965 Is_Low_Bound : Boolean := False;
5966 Is_High_Bound : Boolean := False)
5968 Typ : constant Entity_Id := Etype (Expr);
5970 begin
5971 -- Ignore call if we are not doing any validity checking
5973 if not Validity_Checks_On then
5974 return;
5976 -- Ignore call if range or validity checks suppressed on entity or type
5978 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
5979 return;
5981 -- No check required if expression is from the expander, we assume the
5982 -- expander will generate whatever checks are needed. Note that this is
5983 -- not just an optimization, it avoids infinite recursions.
5985 -- Unchecked conversions must be checked, unless they are initialized
5986 -- scalar values, as in a component assignment in an init proc.
5988 -- In addition, we force a check if Force_Validity_Checks is set
5990 elsif not Comes_From_Source (Expr)
5991 and then not
5992 (Nkind (Expr) = N_Identifier
5993 and then Present (Renamed_Object (Entity (Expr)))
5994 and then Comes_From_Source (Renamed_Object (Entity (Expr))))
5995 and then not Force_Validity_Checks
5996 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
5997 or else Kill_Range_Check (Expr))
5998 then
5999 return;
6001 -- No check required if expression is known to have valid value
6003 elsif Expr_Known_Valid (Expr) then
6004 return;
6006 -- No check needed within a generated predicate function. Validity
6007 -- of input value will have been checked earlier.
6009 elsif Ekind (Current_Scope) = E_Function
6010 and then Is_Predicate_Function (Current_Scope)
6011 then
6012 return;
6014 -- Ignore case of enumeration with holes where the flag is set not to
6015 -- worry about holes, since no special validity check is needed
6017 elsif Is_Enumeration_Type (Typ)
6018 and then Has_Non_Standard_Rep (Typ)
6019 and then Holes_OK
6020 then
6021 return;
6023 -- No check required on the left-hand side of an assignment
6025 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
6026 and then Expr = Name (Parent (Expr))
6027 then
6028 return;
6030 -- No check on a universal real constant. The context will eventually
6031 -- convert it to a machine number for some target type, or report an
6032 -- illegality.
6034 elsif Nkind (Expr) = N_Real_Literal
6035 and then Etype (Expr) = Universal_Real
6036 then
6037 return;
6039 -- If the expression denotes a component of a packed boolean array,
6040 -- no possible check applies. We ignore the old ACATS chestnuts that
6041 -- involve Boolean range True..True.
6043 -- Note: validity checks are generated for expressions that yield a
6044 -- scalar type, when it is possible to create a value that is outside of
6045 -- the type. If this is a one-bit boolean no such value exists. This is
6046 -- an optimization, and it also prevents compiler blowing up during the
6047 -- elaboration of improperly expanded packed array references.
6049 elsif Nkind (Expr) = N_Indexed_Component
6050 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
6051 and then Root_Type (Etype (Expr)) = Standard_Boolean
6052 then
6053 return;
6055 -- For an expression with actions, we want to insert the validity check
6056 -- on the final Expression.
6058 elsif Nkind (Expr) = N_Expression_With_Actions then
6059 Ensure_Valid (Expression (Expr));
6060 return;
6062 -- An annoying special case. If this is an out parameter of a scalar
6063 -- type, then the value is not going to be accessed, therefore it is
6064 -- inappropriate to do any validity check at the call site.
6066 else
6067 -- Only need to worry about scalar types
6069 if Is_Scalar_Type (Typ) then
6070 declare
6071 P : Node_Id;
6072 N : Node_Id;
6073 E : Entity_Id;
6074 F : Entity_Id;
6075 A : Node_Id;
6076 L : List_Id;
6078 begin
6079 -- Find actual argument (which may be a parameter association)
6080 -- and the parent of the actual argument (the call statement)
6082 N := Expr;
6083 P := Parent (Expr);
6085 if Nkind (P) = N_Parameter_Association then
6086 N := P;
6087 P := Parent (N);
6088 end if;
6090 -- Only need to worry if we are argument of a procedure call
6091 -- since functions don't have out parameters. If this is an
6092 -- indirect or dispatching call, get signature from the
6093 -- subprogram type.
6095 if Nkind (P) = N_Procedure_Call_Statement then
6096 L := Parameter_Associations (P);
6098 if Is_Entity_Name (Name (P)) then
6099 E := Entity (Name (P));
6100 else
6101 pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
6102 E := Etype (Name (P));
6103 end if;
6105 -- Only need to worry if there are indeed actuals, and if
6106 -- this could be a procedure call, otherwise we cannot get a
6107 -- match (either we are not an argument, or the mode of the
6108 -- formal is not OUT). This test also filters out the
6109 -- generic case.
6111 if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
6113 -- This is the loop through parameters, looking for an
6114 -- OUT parameter for which we are the argument.
6116 F := First_Formal (E);
6117 A := First (L);
6118 while Present (F) loop
6119 if Ekind (F) = E_Out_Parameter and then A = N then
6120 return;
6121 end if;
6123 Next_Formal (F);
6124 Next (A);
6125 end loop;
6126 end if;
6127 end if;
6128 end;
6129 end if;
6130 end if;
6132 -- If this is a boolean expression, only its elementary operands need
6133 -- checking: if they are valid, a boolean or short-circuit operation
6134 -- with them will be valid as well.
6136 if Base_Type (Typ) = Standard_Boolean
6137 and then
6138 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
6139 then
6140 return;
6141 end if;
6143 -- If we fall through, a validity check is required
6145 Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);
6147 if Is_Entity_Name (Expr)
6148 and then Safe_To_Capture_Value (Expr, Entity (Expr))
6149 then
6150 Set_Is_Known_Valid (Entity (Expr));
6151 end if;
6152 end Ensure_Valid;
6154 ----------------------
6155 -- Expr_Known_Valid --
6156 ----------------------
6158 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
6159 Typ : constant Entity_Id := Etype (Expr);
6161 begin
6162 -- Non-scalar types are always considered valid, since they never give
6163 -- rise to the issues of erroneous or bounded error behavior that are
6164 -- the concern. In formal reference manual terms the notion of validity
6165 -- only applies to scalar types. Note that even when packed arrays are
6166 -- represented using modular types, they are still arrays semantically,
6167 -- so they are also always valid (in particular, the unused bits can be
6168 -- random rubbish without affecting the validity of the array value).
6170 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
6171 return True;
6173 -- If no validity checking, then everything is considered valid
6175 elsif not Validity_Checks_On then
6176 return True;
6178 -- Floating-point types are considered valid unless floating-point
6179 -- validity checks have been specifically turned on.
6181 elsif Is_Floating_Point_Type (Typ)
6182 and then not Validity_Check_Floating_Point
6183 then
6184 return True;
6186 -- If the expression is the value of an object that is known to be
6187 -- valid, then clearly the expression value itself is valid.
6189 elsif Is_Entity_Name (Expr)
6190 and then Is_Known_Valid (Entity (Expr))
6192 -- Exclude volatile variables
6194 and then not Treat_As_Volatile (Entity (Expr))
6195 then
6196 return True;
6198 -- References to discriminants are always considered valid. The value
6199 -- of a discriminant gets checked when the object is built. Within the
6200 -- record, we consider it valid, and it is important to do so, since
6201 -- otherwise we can try to generate bogus validity checks which
6202 -- reference discriminants out of scope. Discriminants of concurrent
6203 -- types are excluded for the same reason.
6205 elsif Is_Entity_Name (Expr)
6206 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
6207 then
6208 return True;
6210 -- If the type is one for which all values are known valid, then we are
6211 -- sure that the value is valid except in the slightly odd case where
6212 -- the expression is a reference to a variable whose size has been
6213 -- explicitly set to a value greater than the object size.
6215 elsif Is_Known_Valid (Typ) then
6216 if Is_Entity_Name (Expr)
6217 and then Ekind (Entity (Expr)) = E_Variable
6218 and then Esize (Entity (Expr)) > Esize (Typ)
6219 then
6220 return False;
6221 else
6222 return True;
6223 end if;
6225 -- Integer and character literals always have valid values, where
6226 -- appropriate these will be range checked in any case.
6228 elsif Nkind_In (Expr, N_Integer_Literal, N_Character_Literal) then
6229 return True;
6231 -- If we have a type conversion or a qualification of a known valid
6232 -- value, then the result will always be valid.
6234 elsif Nkind_In (Expr, N_Type_Conversion, N_Qualified_Expression) then
6235 return Expr_Known_Valid (Expression (Expr));
6237 -- Case of expression is a non-floating-point operator. In this case we
6238 -- can assume the result is valid the generated code for the operator
6239 -- will include whatever checks are needed (e.g. range checks) to ensure
6240 -- validity. This assumption does not hold for the floating-point case,
6241 -- since floating-point operators can generate Infinite or NaN results
6242 -- which are considered invalid.
6244 -- Historical note: in older versions, the exemption of floating-point
6245 -- types from this assumption was done only in cases where the parent
6246 -- was an assignment, function call or parameter association. Presumably
6247 -- the idea was that in other contexts, the result would be checked
6248 -- elsewhere, but this list of cases was missing tests (at least the
6249 -- N_Object_Declaration case, as shown by a reported missing validity
6250 -- check), and it is not clear why function calls but not procedure
6251 -- calls were tested for. It really seems more accurate and much
6252 -- safer to recognize that expressions which are the result of a
6253 -- floating-point operator can never be assumed to be valid.
6255 elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
6256 return True;
6258 -- The result of a membership test is always valid, since it is true or
6259 -- false, there are no other possibilities.
6261 elsif Nkind (Expr) in N_Membership_Test then
6262 return True;
6264 -- For all other cases, we do not know the expression is valid
6266 else
6267 return False;
6268 end if;
6269 end Expr_Known_Valid;
6271 ----------------
6272 -- Find_Check --
6273 ----------------
6275 procedure Find_Check
6276 (Expr : Node_Id;
6277 Check_Type : Character;
6278 Target_Type : Entity_Id;
6279 Entry_OK : out Boolean;
6280 Check_Num : out Nat;
6281 Ent : out Entity_Id;
6282 Ofs : out Uint)
6284 function Within_Range_Of
6285 (Target_Type : Entity_Id;
6286 Check_Type : Entity_Id) return Boolean;
6287 -- Given a requirement for checking a range against Target_Type, and
6288 -- and a range Check_Type against which a check has already been made,
6289 -- determines if the check against check type is sufficient to ensure
6290 -- that no check against Target_Type is required.
6292 ---------------------
6293 -- Within_Range_Of --
6294 ---------------------
6296 function Within_Range_Of
6297 (Target_Type : Entity_Id;
6298 Check_Type : Entity_Id) return Boolean
6300 begin
6301 if Target_Type = Check_Type then
6302 return True;
6304 else
6305 declare
6306 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
6307 Thi : constant Node_Id := Type_High_Bound (Target_Type);
6308 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
6309 Chi : constant Node_Id := Type_High_Bound (Check_Type);
6311 begin
6312 if (Tlo = Clo
6313 or else (Compile_Time_Known_Value (Tlo)
6314 and then
6315 Compile_Time_Known_Value (Clo)
6316 and then
6317 Expr_Value (Clo) >= Expr_Value (Tlo)))
6318 and then
6319 (Thi = Chi
6320 or else (Compile_Time_Known_Value (Thi)
6321 and then
6322 Compile_Time_Known_Value (Chi)
6323 and then
6324 Expr_Value (Chi) <= Expr_Value (Clo)))
6325 then
6326 return True;
6327 else
6328 return False;
6329 end if;
6330 end;
6331 end if;
6332 end Within_Range_Of;
6334 -- Start of processing for Find_Check
6336 begin
6337 -- Establish default, in case no entry is found
6339 Check_Num := 0;
6341 -- Case of expression is simple entity reference
6343 if Is_Entity_Name (Expr) then
6344 Ent := Entity (Expr);
6345 Ofs := Uint_0;
6347 -- Case of expression is entity + known constant
6349 elsif Nkind (Expr) = N_Op_Add
6350 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6351 and then Is_Entity_Name (Left_Opnd (Expr))
6352 then
6353 Ent := Entity (Left_Opnd (Expr));
6354 Ofs := Expr_Value (Right_Opnd (Expr));
6356 -- Case of expression is entity - known constant
6358 elsif Nkind (Expr) = N_Op_Subtract
6359 and then Compile_Time_Known_Value (Right_Opnd (Expr))
6360 and then Is_Entity_Name (Left_Opnd (Expr))
6361 then
6362 Ent := Entity (Left_Opnd (Expr));
6363 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
6365 -- Any other expression is not of the right form
6367 else
6368 Ent := Empty;
6369 Ofs := Uint_0;
6370 Entry_OK := False;
6371 return;
6372 end if;
6374 -- Come here with expression of appropriate form, check if entity is an
6375 -- appropriate one for our purposes.
6377 if (Ekind (Ent) = E_Variable
6378 or else Is_Constant_Object (Ent))
6379 and then not Is_Library_Level_Entity (Ent)
6380 then
6381 Entry_OK := True;
6382 else
6383 Entry_OK := False;
6384 return;
6385 end if;
6387 -- See if there is matching check already
6389 for J in reverse 1 .. Num_Saved_Checks loop
6390 declare
6391 SC : Saved_Check renames Saved_Checks (J);
6392 begin
6393 if SC.Killed = False
6394 and then SC.Entity = Ent
6395 and then SC.Offset = Ofs
6396 and then SC.Check_Type = Check_Type
6397 and then Within_Range_Of (Target_Type, SC.Target_Type)
6398 then
6399 Check_Num := J;
6400 return;
6401 end if;
6402 end;
6403 end loop;
6405 -- If we fall through entry was not found
6407 return;
6408 end Find_Check;
6410 ---------------------------------
6411 -- Generate_Discriminant_Check --
6412 ---------------------------------
6414 -- Note: the code for this procedure is derived from the
6415 -- Emit_Discriminant_Check Routine in trans.c.
6417 procedure Generate_Discriminant_Check (N : Node_Id) is
6418 Loc : constant Source_Ptr := Sloc (N);
6419 Pref : constant Node_Id := Prefix (N);
6420 Sel : constant Node_Id := Selector_Name (N);
6422 Orig_Comp : constant Entity_Id :=
6423 Original_Record_Component (Entity (Sel));
6424 -- The original component to be checked
6426 Discr_Fct : constant Entity_Id :=
6427 Discriminant_Checking_Func (Orig_Comp);
6428 -- The discriminant checking function
6430 Discr : Entity_Id;
6431 -- One discriminant to be checked in the type
6433 Real_Discr : Entity_Id;
6434 -- Actual discriminant in the call
6436 Pref_Type : Entity_Id;
6437 -- Type of relevant prefix (ignoring private/access stuff)
6439 Args : List_Id;
6440 -- List of arguments for function call
6442 Formal : Entity_Id;
6443 -- Keep track of the formal corresponding to the actual we build for
6444 -- each discriminant, in order to be able to perform the necessary type
6445 -- conversions.
6447 Scomp : Node_Id;
6448 -- Selected component reference for checking function argument
6450 begin
6451 Pref_Type := Etype (Pref);
6453 -- Force evaluation of the prefix, so that it does not get evaluated
6454 -- twice (once for the check, once for the actual reference). Such a
6455 -- double evaluation is always a potential source of inefficiency, and
6456 -- is functionally incorrect in the volatile case, or when the prefix
6457 -- may have side effects. A nonvolatile entity or a component of a
6458 -- nonvolatile entity requires no evaluation.
6460 if Is_Entity_Name (Pref) then
6461 if Treat_As_Volatile (Entity (Pref)) then
6462 Force_Evaluation (Pref, Name_Req => True);
6463 end if;
6465 elsif Treat_As_Volatile (Etype (Pref)) then
6466 Force_Evaluation (Pref, Name_Req => True);
6468 elsif Nkind (Pref) = N_Selected_Component
6469 and then Is_Entity_Name (Prefix (Pref))
6470 then
6471 null;
6473 else
6474 Force_Evaluation (Pref, Name_Req => True);
6475 end if;
6477 -- For a tagged type, use the scope of the original component to
6478 -- obtain the type, because ???
6480 if Is_Tagged_Type (Scope (Orig_Comp)) then
6481 Pref_Type := Scope (Orig_Comp);
6483 -- For an untagged derived type, use the discriminants of the parent
6484 -- which have been renamed in the derivation, possibly by a one-to-many
6485 -- discriminant constraint. For untagged type, initially get the Etype
6486 -- of the prefix
6488 else
6489 if Is_Derived_Type (Pref_Type)
6490 and then Number_Discriminants (Pref_Type) /=
6491 Number_Discriminants (Etype (Base_Type (Pref_Type)))
6492 then
6493 Pref_Type := Etype (Base_Type (Pref_Type));
6494 end if;
6495 end if;
6497 -- We definitely should have a checking function, This routine should
6498 -- not be called if no discriminant checking function is present.
6500 pragma Assert (Present (Discr_Fct));
6502 -- Create the list of the actual parameters for the call. This list
6503 -- is the list of the discriminant fields of the record expression to
6504 -- be discriminant checked.
6506 Args := New_List;
6507 Formal := First_Formal (Discr_Fct);
6508 Discr := First_Discriminant (Pref_Type);
6509 while Present (Discr) loop
6511 -- If we have a corresponding discriminant field, and a parent
6512 -- subtype is present, then we want to use the corresponding
6513 -- discriminant since this is the one with the useful value.
6515 if Present (Corresponding_Discriminant (Discr))
6516 and then Ekind (Pref_Type) = E_Record_Type
6517 and then Present (Parent_Subtype (Pref_Type))
6518 then
6519 Real_Discr := Corresponding_Discriminant (Discr);
6520 else
6521 Real_Discr := Discr;
6522 end if;
6524 -- Construct the reference to the discriminant
6526 Scomp :=
6527 Make_Selected_Component (Loc,
6528 Prefix =>
6529 Unchecked_Convert_To (Pref_Type,
6530 Duplicate_Subexpr (Pref)),
6531 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
6533 -- Manually analyze and resolve this selected component. We really
6534 -- want it just as it appears above, and do not want the expander
6535 -- playing discriminal games etc with this reference. Then we append
6536 -- the argument to the list we are gathering.
6538 Set_Etype (Scomp, Etype (Real_Discr));
6539 Set_Analyzed (Scomp, True);
6540 Append_To (Args, Convert_To (Etype (Formal), Scomp));
6542 Next_Formal_With_Extras (Formal);
6543 Next_Discriminant (Discr);
6544 end loop;
6546 -- Now build and insert the call
6548 Insert_Action (N,
6549 Make_Raise_Constraint_Error (Loc,
6550 Condition =>
6551 Make_Function_Call (Loc,
6552 Name => New_Occurrence_Of (Discr_Fct, Loc),
6553 Parameter_Associations => Args),
6554 Reason => CE_Discriminant_Check_Failed));
6555 end Generate_Discriminant_Check;
6557 ---------------------------
6558 -- Generate_Index_Checks --
6559 ---------------------------
6561 procedure Generate_Index_Checks (N : Node_Id) is
6563 function Entity_Of_Prefix return Entity_Id;
6564 -- Returns the entity of the prefix of N (or Empty if not found)
6566 ----------------------
6567 -- Entity_Of_Prefix --
6568 ----------------------
6570 function Entity_Of_Prefix return Entity_Id is
6571 P : Node_Id;
6573 begin
6574 P := Prefix (N);
6575 while not Is_Entity_Name (P) loop
6576 if not Nkind_In (P, N_Selected_Component,
6577 N_Indexed_Component)
6578 then
6579 return Empty;
6580 end if;
6582 P := Prefix (P);
6583 end loop;
6585 return Entity (P);
6586 end Entity_Of_Prefix;
6588 -- Local variables
6590 Loc : constant Source_Ptr := Sloc (N);
6591 A : constant Node_Id := Prefix (N);
6592 A_Ent : constant Entity_Id := Entity_Of_Prefix;
6593 Sub : Node_Id;
6595 -- Start of processing for Generate_Index_Checks
6597 begin
6598 -- Ignore call if the prefix is not an array since we have a serious
6599 -- error in the sources. Ignore it also if index checks are suppressed
6600 -- for array object or type.
6602 if not Is_Array_Type (Etype (A))
6603 or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
6604 or else Index_Checks_Suppressed (Etype (A))
6605 then
6606 return;
6608 -- The indexed component we are dealing with contains 'Loop_Entry in its
6609 -- prefix. This case arises when analysis has determined that constructs
6610 -- such as
6612 -- Prefix'Loop_Entry (Expr)
6613 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
6615 -- require rewriting for error detection purposes. A side effect of this
6616 -- action is the generation of index checks that mention 'Loop_Entry.
6617 -- Delay the generation of the check until 'Loop_Entry has been properly
6618 -- expanded. This is done in Expand_Loop_Entry_Attributes.
6620 elsif Nkind (Prefix (N)) = N_Attribute_Reference
6621 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
6622 then
6623 return;
6624 end if;
6626 -- Generate a raise of constraint error with the appropriate reason and
6627 -- a condition of the form:
6629 -- Base_Type (Sub) not in Array'Range (Subscript)
6631 -- Note that the reason we generate the conversion to the base type here
6632 -- is that we definitely want the range check to take place, even if it
6633 -- looks like the subtype is OK. Optimization considerations that allow
6634 -- us to omit the check have already been taken into account in the
6635 -- setting of the Do_Range_Check flag earlier on.
6637 Sub := First (Expressions (N));
6639 -- Handle string literals
6641 if Ekind (Etype (A)) = E_String_Literal_Subtype then
6642 if Do_Range_Check (Sub) then
6643 Set_Do_Range_Check (Sub, False);
6645 -- For string literals we obtain the bounds of the string from the
6646 -- associated subtype.
6648 Insert_Action (N,
6649 Make_Raise_Constraint_Error (Loc,
6650 Condition =>
6651 Make_Not_In (Loc,
6652 Left_Opnd =>
6653 Convert_To (Base_Type (Etype (Sub)),
6654 Duplicate_Subexpr_Move_Checks (Sub)),
6655 Right_Opnd =>
6656 Make_Attribute_Reference (Loc,
6657 Prefix => New_Occurrence_Of (Etype (A), Loc),
6658 Attribute_Name => Name_Range)),
6659 Reason => CE_Index_Check_Failed));
6660 end if;
6662 -- General case
6664 else
6665 declare
6666 A_Idx : Node_Id := Empty;
6667 A_Range : Node_Id;
6668 Ind : Nat;
6669 Num : List_Id;
6670 Range_N : Node_Id;
6672 begin
6673 A_Idx := First_Index (Etype (A));
6674 Ind := 1;
6675 while Present (Sub) loop
6676 if Do_Range_Check (Sub) then
6677 Set_Do_Range_Check (Sub, False);
6679 -- Force evaluation except for the case of a simple name of
6680 -- a nonvolatile entity.
6682 if not Is_Entity_Name (Sub)
6683 or else Treat_As_Volatile (Entity (Sub))
6684 then
6685 Force_Evaluation (Sub);
6686 end if;
6688 if Nkind (A_Idx) = N_Range then
6689 A_Range := A_Idx;
6691 elsif Nkind (A_Idx) = N_Identifier
6692 or else Nkind (A_Idx) = N_Expanded_Name
6693 then
6694 A_Range := Scalar_Range (Entity (A_Idx));
6696 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
6697 A_Range := Range_Expression (Constraint (A_Idx));
6698 end if;
6700 -- For array objects with constant bounds we can generate
6701 -- the index check using the bounds of the type of the index
6703 if Present (A_Ent)
6704 and then Ekind (A_Ent) = E_Variable
6705 and then Is_Constant_Bound (Low_Bound (A_Range))
6706 and then Is_Constant_Bound (High_Bound (A_Range))
6707 then
6708 Range_N :=
6709 Make_Attribute_Reference (Loc,
6710 Prefix =>
6711 New_Occurrence_Of (Etype (A_Idx), Loc),
6712 Attribute_Name => Name_Range);
6714 -- For arrays with non-constant bounds we cannot generate
6715 -- the index check using the bounds of the type of the index
6716 -- since it may reference discriminants of some enclosing
6717 -- type. We obtain the bounds directly from the prefix
6718 -- object.
6720 else
6721 if Ind = 1 then
6722 Num := No_List;
6723 else
6724 Num := New_List (Make_Integer_Literal (Loc, Ind));
6725 end if;
6727 Range_N :=
6728 Make_Attribute_Reference (Loc,
6729 Prefix =>
6730 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
6731 Attribute_Name => Name_Range,
6732 Expressions => Num);
6733 end if;
6735 Insert_Action (N,
6736 Make_Raise_Constraint_Error (Loc,
6737 Condition =>
6738 Make_Not_In (Loc,
6739 Left_Opnd =>
6740 Convert_To (Base_Type (Etype (Sub)),
6741 Duplicate_Subexpr_Move_Checks (Sub)),
6742 Right_Opnd => Range_N),
6743 Reason => CE_Index_Check_Failed));
6744 end if;
6746 A_Idx := Next_Index (A_Idx);
6747 Ind := Ind + 1;
6748 Next (Sub);
6749 end loop;
6750 end;
6751 end if;
6752 end Generate_Index_Checks;
6754 --------------------------
6755 -- Generate_Range_Check --
6756 --------------------------
6758 procedure Generate_Range_Check
6759 (N : Node_Id;
6760 Target_Type : Entity_Id;
6761 Reason : RT_Exception_Code)
6763 Loc : constant Source_Ptr := Sloc (N);
6764 Source_Type : constant Entity_Id := Etype (N);
6765 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
6766 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
6768 procedure Convert_And_Check_Range;
6769 -- Convert the conversion operand to the target base type and save in
6770 -- a temporary. Then check the converted value against the range of the
6771 -- target subtype.
6773 -----------------------------
6774 -- Convert_And_Check_Range --
6775 -----------------------------
6777 procedure Convert_And_Check_Range is
6778 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
6779 Conv_Node : Node_Id;
6781 begin
6782 -- For enumeration types with non-standard representation this is a
6783 -- direct conversion from the enumeration type to the target integer
6784 -- type, which is treated by the back end as a normal integer type
6785 -- conversion, treating the enumeration type as an integer, which is
6786 -- exactly what we want. We set Conversion_OK to make sure that the
6787 -- analyzer does not complain about what otherwise might be an
6788 -- illegal conversion.
6790 if Is_Enumeration_Type (Source_Base_Type)
6791 and then Present (Enum_Pos_To_Rep (Source_Base_Type))
6792 and then Is_Integer_Type (Target_Base_Type)
6793 then
6794 Conv_Node :=
6795 OK_Convert_To
6796 (Typ => Target_Base_Type,
6797 Expr => Duplicate_Subexpr (N));
6799 -- Common case
6801 else
6802 Conv_Node :=
6803 Make_Type_Conversion (Loc,
6804 Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
6805 Expression => Duplicate_Subexpr (N));
6806 end if;
6808 -- We make a temporary to hold the value of the converted value
6809 -- (converted to the base type), and then do the test against this
6810 -- temporary. The conversion itself is replaced by an occurrence of
6811 -- Tnn and followed by the explicit range check. Note that checks
6812 -- are suppressed for this code, since we don't want a recursive
6813 -- range check popping up.
6815 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
6816 -- [constraint_error when Tnn not in Target_Type]
6818 Insert_Actions (N, New_List (
6819 Make_Object_Declaration (Loc,
6820 Defining_Identifier => Tnn,
6821 Object_Definition => New_Occurrence_Of (Target_Base_Type, Loc),
6822 Constant_Present => True,
6823 Expression => Conv_Node),
6825 Make_Raise_Constraint_Error (Loc,
6826 Condition =>
6827 Make_Not_In (Loc,
6828 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
6829 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6830 Reason => Reason)),
6831 Suppress => All_Checks);
6833 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
6835 -- Set the type of N, because the declaration for Tnn might not
6836 -- be analyzed yet, as is the case if N appears within a record
6837 -- declaration, as a discriminant constraint or expression.
6839 Set_Etype (N, Target_Base_Type);
6840 end Convert_And_Check_Range;
6842 -- Start of processing for Generate_Range_Check
6844 begin
6845 -- First special case, if the source type is already within the range
6846 -- of the target type, then no check is needed (probably we should have
6847 -- stopped Do_Range_Check from being set in the first place, but better
6848 -- late than never in preventing junk code and junk flag settings.
6850 if In_Subrange_Of (Source_Type, Target_Type)
6852 -- We do NOT apply this if the source node is a literal, since in this
6853 -- case the literal has already been labeled as having the subtype of
6854 -- the target.
6856 and then not
6857 (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
6858 or else
6859 (Is_Entity_Name (N)
6860 and then Ekind (Entity (N)) = E_Enumeration_Literal))
6861 then
6862 Set_Do_Range_Check (N, False);
6863 return;
6864 end if;
6866 -- Here a check is needed. If the expander is not active, or if we are
6867 -- in GNATProve mode, then simply set the Do_Range_Check flag and we
6868 -- are done. In both these cases, we just want to see the range check
6869 -- flag set, we do not want to generate the explicit range check code.
6871 if GNATprove_Mode or else not Expander_Active then
6872 Set_Do_Range_Check (N, True);
6873 return;
6874 end if;
6876 -- Here we will generate an explicit range check, so we don't want to
6877 -- set the Do_Range check flag, since the range check is taken care of
6878 -- by the code we will generate.
6880 Set_Do_Range_Check (N, False);
6882 -- Force evaluation of the node, so that it does not get evaluated twice
6883 -- (once for the check, once for the actual reference). Such a double
6884 -- evaluation is always a potential source of inefficiency, and is
6885 -- functionally incorrect in the volatile case.
6887 -- We skip the evaluation of attribute references because, after these
6888 -- runtime checks are generated, the expander may need to rewrite this
6889 -- node (for example, see Attribute_Max_Size_In_Storage_Elements in
6890 -- Expand_N_Attribute_Reference).
6892 if Nkind (N) /= N_Attribute_Reference
6893 and then (not Is_Entity_Name (N)
6894 or else Treat_As_Volatile (Entity (N)))
6895 then
6896 Force_Evaluation (N, Mode => Strict);
6897 end if;
6899 -- The easiest case is when Source_Base_Type and Target_Base_Type are
6900 -- the same since in this case we can simply do a direct check of the
6901 -- value of N against the bounds of Target_Type.
6903 -- [constraint_error when N not in Target_Type]
6905 -- Note: this is by far the most common case, for example all cases of
6906 -- checks on the RHS of assignments are in this category, but not all
6907 -- cases are like this. Notably conversions can involve two types.
6909 if Source_Base_Type = Target_Base_Type then
6911 -- Insert the explicit range check. Note that we suppress checks for
6912 -- this code, since we don't want a recursive range check popping up.
6914 Insert_Action (N,
6915 Make_Raise_Constraint_Error (Loc,
6916 Condition =>
6917 Make_Not_In (Loc,
6918 Left_Opnd => Duplicate_Subexpr (N),
6919 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
6920 Reason => Reason),
6921 Suppress => All_Checks);
6923 -- Next test for the case where the target type is within the bounds
6924 -- of the base type of the source type, since in this case we can
6925 -- simply convert these bounds to the base type of T to do the test.
6927 -- [constraint_error when N not in
6928 -- Source_Base_Type (Target_Type'First)
6929 -- ..
6930 -- Source_Base_Type(Target_Type'Last))]
6932 -- The conversions will always work and need no check
6934 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
6935 -- of converting from an enumeration value to an integer type, such as
6936 -- occurs for the case of generating a range check on Enum'Val(Exp)
6937 -- (which used to be handled by gigi). This is OK, since the conversion
6938 -- itself does not require a check.
6940 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
6942 -- Insert the explicit range check. Note that we suppress checks for
6943 -- this code, since we don't want a recursive range check popping up.
6945 if Is_Discrete_Type (Source_Base_Type)
6946 and then
6947 Is_Discrete_Type (Target_Base_Type)
6948 then
6949 Insert_Action (N,
6950 Make_Raise_Constraint_Error (Loc,
6951 Condition =>
6952 Make_Not_In (Loc,
6953 Left_Opnd => Duplicate_Subexpr (N),
6955 Right_Opnd =>
6956 Make_Range (Loc,
6957 Low_Bound =>
6958 Unchecked_Convert_To (Source_Base_Type,
6959 Make_Attribute_Reference (Loc,
6960 Prefix =>
6961 New_Occurrence_Of (Target_Type, Loc),
6962 Attribute_Name => Name_First)),
6964 High_Bound =>
6965 Unchecked_Convert_To (Source_Base_Type,
6966 Make_Attribute_Reference (Loc,
6967 Prefix =>
6968 New_Occurrence_Of (Target_Type, Loc),
6969 Attribute_Name => Name_Last)))),
6970 Reason => Reason),
6971 Suppress => All_Checks);
6973 -- For conversions involving at least one type that is not discrete,
6974 -- first convert to target type and then generate the range check.
6975 -- This avoids problems with values that are close to a bound of the
6976 -- target type that would fail a range check when done in a larger
6977 -- source type before converting but would pass if converted with
6978 -- rounding and then checked (such as in float-to-float conversions).
6980 else
6981 Convert_And_Check_Range;
6982 end if;
6984 -- Note that at this stage we now that the Target_Base_Type is not in
6985 -- the range of the Source_Base_Type (since even the Target_Type itself
6986 -- is not in this range). It could still be the case that Source_Type is
6987 -- in range of the target base type since we have not checked that case.
6989 -- If that is the case, we can freely convert the source to the target,
6990 -- and then test the target result against the bounds.
6992 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
6993 Convert_And_Check_Range;
6995 -- At this stage, we know that we have two scalar types, which are
6996 -- directly convertible, and where neither scalar type has a base
6997 -- range that is in the range of the other scalar type.
6999 -- The only way this can happen is with a signed and unsigned type.
7000 -- So test for these two cases:
7002 else
7003 -- Case of the source is unsigned and the target is signed
7005 if Is_Unsigned_Type (Source_Base_Type)
7006 and then not Is_Unsigned_Type (Target_Base_Type)
7007 then
7008 -- If the source is unsigned and the target is signed, then we
7009 -- know that the source is not shorter than the target (otherwise
7010 -- the source base type would be in the target base type range).
7012 -- In other words, the unsigned type is either the same size as
7013 -- the target, or it is larger. It cannot be smaller.
7015 pragma Assert
7016 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
7018 -- We only need to check the low bound if the low bound of the
7019 -- target type is non-negative. If the low bound of the target
7020 -- type is negative, then we know that we will fit fine.
7022 -- If the high bound of the target type is negative, then we
7023 -- know we have a constraint error, since we can't possibly
7024 -- have a negative source.
7026 -- With these two checks out of the way, we can do the check
7027 -- using the source type safely
7029 -- This is definitely the most annoying case.
7031 -- [constraint_error
7032 -- when (Target_Type'First >= 0
7033 -- and then
7034 -- N < Source_Base_Type (Target_Type'First))
7035 -- or else Target_Type'Last < 0
7036 -- or else N > Source_Base_Type (Target_Type'Last)];
7038 -- We turn off all checks since we know that the conversions
7039 -- will work fine, given the guards for negative values.
7041 Insert_Action (N,
7042 Make_Raise_Constraint_Error (Loc,
7043 Condition =>
7044 Make_Or_Else (Loc,
7045 Make_Or_Else (Loc,
7046 Left_Opnd =>
7047 Make_And_Then (Loc,
7048 Left_Opnd => Make_Op_Ge (Loc,
7049 Left_Opnd =>
7050 Make_Attribute_Reference (Loc,
7051 Prefix =>
7052 New_Occurrence_Of (Target_Type, Loc),
7053 Attribute_Name => Name_First),
7054 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7056 Right_Opnd =>
7057 Make_Op_Lt (Loc,
7058 Left_Opnd => Duplicate_Subexpr (N),
7059 Right_Opnd =>
7060 Convert_To (Source_Base_Type,
7061 Make_Attribute_Reference (Loc,
7062 Prefix =>
7063 New_Occurrence_Of (Target_Type, Loc),
7064 Attribute_Name => Name_First)))),
7066 Right_Opnd =>
7067 Make_Op_Lt (Loc,
7068 Left_Opnd =>
7069 Make_Attribute_Reference (Loc,
7070 Prefix => New_Occurrence_Of (Target_Type, Loc),
7071 Attribute_Name => Name_Last),
7072 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
7074 Right_Opnd =>
7075 Make_Op_Gt (Loc,
7076 Left_Opnd => Duplicate_Subexpr (N),
7077 Right_Opnd =>
7078 Convert_To (Source_Base_Type,
7079 Make_Attribute_Reference (Loc,
7080 Prefix => New_Occurrence_Of (Target_Type, Loc),
7081 Attribute_Name => Name_Last)))),
7083 Reason => Reason),
7084 Suppress => All_Checks);
7086 -- Only remaining possibility is that the source is signed and
7087 -- the target is unsigned.
7089 else
7090 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
7091 and then Is_Unsigned_Type (Target_Base_Type));
7093 -- If the source is signed and the target is unsigned, then we
7094 -- know that the target is not shorter than the source (otherwise
7095 -- the target base type would be in the source base type range).
7097 -- In other words, the unsigned type is either the same size as
7098 -- the target, or it is larger. It cannot be smaller.
7100 -- Clearly we have an error if the source value is negative since
7101 -- no unsigned type can have negative values. If the source type
7102 -- is non-negative, then the check can be done using the target
7103 -- type.
7105 -- Tnn : constant Target_Base_Type (N) := Target_Type;
7107 -- [constraint_error
7108 -- when N < 0 or else Tnn not in Target_Type];
7110 -- We turn off all checks for the conversion of N to the target
7111 -- base type, since we generate the explicit check to ensure that
7112 -- the value is non-negative
7114 declare
7115 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
7117 begin
7118 Insert_Actions (N, New_List (
7119 Make_Object_Declaration (Loc,
7120 Defining_Identifier => Tnn,
7121 Object_Definition =>
7122 New_Occurrence_Of (Target_Base_Type, Loc),
7123 Constant_Present => True,
7124 Expression =>
7125 Make_Unchecked_Type_Conversion (Loc,
7126 Subtype_Mark =>
7127 New_Occurrence_Of (Target_Base_Type, Loc),
7128 Expression => Duplicate_Subexpr (N))),
7130 Make_Raise_Constraint_Error (Loc,
7131 Condition =>
7132 Make_Or_Else (Loc,
7133 Left_Opnd =>
7134 Make_Op_Lt (Loc,
7135 Left_Opnd => Duplicate_Subexpr (N),
7136 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7138 Right_Opnd =>
7139 Make_Not_In (Loc,
7140 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
7141 Right_Opnd =>
7142 New_Occurrence_Of (Target_Type, Loc))),
7144 Reason => Reason)),
7145 Suppress => All_Checks);
7147 -- Set the Etype explicitly, because Insert_Actions may have
7148 -- placed the declaration in the freeze list for an enclosing
7149 -- construct, and thus it is not analyzed yet.
7151 Set_Etype (Tnn, Target_Base_Type);
7152 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7153 end;
7154 end if;
7155 end if;
7156 end Generate_Range_Check;
7158 ------------------
7159 -- Get_Check_Id --
7160 ------------------
7162 function Get_Check_Id (N : Name_Id) return Check_Id is
7163 begin
7164 -- For standard check name, we can do a direct computation
7166 if N in First_Check_Name .. Last_Check_Name then
7167 return Check_Id (N - (First_Check_Name - 1));
7169 -- For non-standard names added by pragma Check_Name, search table
7171 else
7172 for J in All_Checks + 1 .. Check_Names.Last loop
7173 if Check_Names.Table (J) = N then
7174 return J;
7175 end if;
7176 end loop;
7177 end if;
7179 -- No matching name found
7181 return No_Check_Id;
7182 end Get_Check_Id;
7184 ---------------------
7185 -- Get_Discriminal --
7186 ---------------------
7188 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
7189 Loc : constant Source_Ptr := Sloc (E);
7190 D : Entity_Id;
7191 Sc : Entity_Id;
7193 begin
7194 -- The bound can be a bona fide parameter of a protected operation,
7195 -- rather than a prival encoded as an in-parameter.
7197 if No (Discriminal_Link (Entity (Bound))) then
7198 return Bound;
7199 end if;
7201 -- Climb the scope stack looking for an enclosing protected type. If
7202 -- we run out of scopes, return the bound itself.
7204 Sc := Scope (E);
7205 while Present (Sc) loop
7206 if Sc = Standard_Standard then
7207 return Bound;
7208 elsif Ekind (Sc) = E_Protected_Type then
7209 exit;
7210 end if;
7212 Sc := Scope (Sc);
7213 end loop;
7215 D := First_Discriminant (Sc);
7216 while Present (D) loop
7217 if Chars (D) = Chars (Bound) then
7218 return New_Occurrence_Of (Discriminal (D), Loc);
7219 end if;
7221 Next_Discriminant (D);
7222 end loop;
7224 return Bound;
7225 end Get_Discriminal;
7227 ----------------------
7228 -- Get_Range_Checks --
7229 ----------------------
7231 function Get_Range_Checks
7232 (Ck_Node : Node_Id;
7233 Target_Typ : Entity_Id;
7234 Source_Typ : Entity_Id := Empty;
7235 Warn_Node : Node_Id := Empty) return Check_Result
7237 begin
7238 return
7239 Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
7240 end Get_Range_Checks;
7242 ------------------
7243 -- Guard_Access --
7244 ------------------
7246 function Guard_Access
7247 (Cond : Node_Id;
7248 Loc : Source_Ptr;
7249 Ck_Node : Node_Id) return Node_Id
7251 begin
7252 if Nkind (Cond) = N_Or_Else then
7253 Set_Paren_Count (Cond, 1);
7254 end if;
7256 if Nkind (Ck_Node) = N_Allocator then
7257 return Cond;
7259 else
7260 return
7261 Make_And_Then (Loc,
7262 Left_Opnd =>
7263 Make_Op_Ne (Loc,
7264 Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
7265 Right_Opnd => Make_Null (Loc)),
7266 Right_Opnd => Cond);
7267 end if;
7268 end Guard_Access;
7270 -----------------------------
7271 -- Index_Checks_Suppressed --
7272 -----------------------------
7274 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
7275 begin
7276 if Present (E) and then Checks_May_Be_Suppressed (E) then
7277 return Is_Check_Suppressed (E, Index_Check);
7278 else
7279 return Scope_Suppress.Suppress (Index_Check);
7280 end if;
7281 end Index_Checks_Suppressed;
7283 ----------------
7284 -- Initialize --
7285 ----------------
7287 procedure Initialize is
7288 begin
7289 for J in Determine_Range_Cache_N'Range loop
7290 Determine_Range_Cache_N (J) := Empty;
7291 end loop;
7293 Check_Names.Init;
7295 for J in Int range 1 .. All_Checks loop
7296 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
7297 end loop;
7298 end Initialize;
7300 -------------------------
7301 -- Insert_Range_Checks --
7302 -------------------------
7304 procedure Insert_Range_Checks
7305 (Checks : Check_Result;
7306 Node : Node_Id;
7307 Suppress_Typ : Entity_Id;
7308 Static_Sloc : Source_Ptr := No_Location;
7309 Flag_Node : Node_Id := Empty;
7310 Do_Before : Boolean := False)
7312 Checks_On : constant Boolean :=
7313 not Index_Checks_Suppressed (Suppress_Typ)
7314 or else
7315 not Range_Checks_Suppressed (Suppress_Typ);
7317 Check_Node : Node_Id;
7318 Internal_Flag_Node : Node_Id := Flag_Node;
7319 Internal_Static_Sloc : Source_Ptr := Static_Sloc;
7321 begin
7322 -- For now we just return if Checks_On is false, however this should be
7323 -- enhanced to check for an always True value in the condition and to
7324 -- generate a compilation warning???
7326 if not Expander_Active or not Checks_On then
7327 return;
7328 end if;
7330 if Static_Sloc = No_Location then
7331 Internal_Static_Sloc := Sloc (Node);
7332 end if;
7334 if No (Flag_Node) then
7335 Internal_Flag_Node := Node;
7336 end if;
7338 for J in 1 .. 2 loop
7339 exit when No (Checks (J));
7341 if Nkind (Checks (J)) = N_Raise_Constraint_Error
7342 and then Present (Condition (Checks (J)))
7343 then
7344 if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
7345 Check_Node := Checks (J);
7346 Mark_Rewrite_Insertion (Check_Node);
7348 if Do_Before then
7349 Insert_Before_And_Analyze (Node, Check_Node);
7350 else
7351 Insert_After_And_Analyze (Node, Check_Node);
7352 end if;
7354 Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
7355 end if;
7357 else
7358 Check_Node :=
7359 Make_Raise_Constraint_Error (Internal_Static_Sloc,
7360 Reason => CE_Range_Check_Failed);
7361 Mark_Rewrite_Insertion (Check_Node);
7363 if Do_Before then
7364 Insert_Before_And_Analyze (Node, Check_Node);
7365 else
7366 Insert_After_And_Analyze (Node, Check_Node);
7367 end if;
7368 end if;
7369 end loop;
7370 end Insert_Range_Checks;
7372 ------------------------
7373 -- Insert_Valid_Check --
7374 ------------------------
7376 procedure Insert_Valid_Check
7377 (Expr : Node_Id;
7378 Related_Id : Entity_Id := Empty;
7379 Is_Low_Bound : Boolean := False;
7380 Is_High_Bound : Boolean := False)
7382 Loc : constant Source_Ptr := Sloc (Expr);
7383 Typ : constant Entity_Id := Etype (Expr);
7384 Exp : Node_Id;
7386 begin
7387 -- Do not insert if checks off, or if not checking validity or if
7388 -- expression is known to be valid.
7390 if not Validity_Checks_On
7391 or else Range_Or_Validity_Checks_Suppressed (Expr)
7392 or else Expr_Known_Valid (Expr)
7393 then
7394 return;
7396 -- Do not insert checks within a predicate function. This will arise
7397 -- if the current unit and the predicate function are being compiled
7398 -- with validity checks enabled.
7400 elsif Present (Predicate_Function (Typ))
7401 and then Current_Scope = Predicate_Function (Typ)
7402 then
7403 return;
7405 -- If the expression is a packed component of a modular type of the
7406 -- right size, the data is always valid.
7408 elsif Nkind (Expr) = N_Selected_Component
7409 and then Present (Component_Clause (Entity (Selector_Name (Expr))))
7410 and then Is_Modular_Integer_Type (Typ)
7411 and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
7412 then
7413 return;
7415 -- Do not generate a validity check when inside a generic unit as this
7416 -- is an expansion activity.
7418 elsif Inside_A_Generic then
7419 return;
7420 end if;
7422 -- If we have a checked conversion, then validity check applies to
7423 -- the expression inside the conversion, not the result, since if
7424 -- the expression inside is valid, then so is the conversion result.
7426 Exp := Expr;
7427 while Nkind (Exp) = N_Type_Conversion loop
7428 Exp := Expression (Exp);
7429 end loop;
7431 -- Do not generate a check for a variable which already validates the
7432 -- value of an assignable object.
7434 if Is_Validation_Variable_Reference (Exp) then
7435 return;
7436 end if;
7438 declare
7439 CE : Node_Id;
7440 PV : Node_Id;
7441 Var_Id : Entity_Id;
7443 begin
7444 -- If the expression denotes an assignable object, capture its value
7445 -- in a variable and replace the original expression by the variable.
7446 -- This approach has several effects:
7448 -- 1) The evaluation of the object results in only one read in the
7449 -- case where the object is atomic or volatile.
7451 -- Var ... := Object; -- read
7453 -- 2) The captured value is the one verified by attribute 'Valid.
7454 -- As a result the object is not evaluated again, which would
7455 -- result in an unwanted read in the case where the object is
7456 -- atomic or volatile.
7458 -- if not Var'Valid then -- OK, no read of Object
7460 -- if not Object'Valid then -- Wrong, extra read of Object
7462 -- 3) The captured value replaces the original object reference.
7463 -- As a result the object is not evaluated again, in the same
7464 -- vein as 2).
7466 -- ... Var ... -- OK, no read of Object
7468 -- ... Object ... -- Wrong, extra read of Object
7470 -- 4) The use of a variable to capture the value of the object
7471 -- allows the propagation of any changes back to the original
7472 -- object.
7474 -- procedure Call (Val : in out ...);
7476 -- Var : ... := Object; -- read Object
7477 -- if not Var'Valid then -- validity check
7478 -- Call (Var); -- modify Var
7479 -- Object := Var; -- update Object
7481 if Is_Variable (Exp) then
7482 Var_Id := Make_Temporary (Loc, 'T', Exp);
7484 -- Because we could be dealing with a transient scope which would
7485 -- cause our object declaration to remain unanalyzed we must do
7486 -- some manual decoration.
7488 Set_Ekind (Var_Id, E_Variable);
7489 Set_Etype (Var_Id, Typ);
7491 Insert_Action (Exp,
7492 Make_Object_Declaration (Loc,
7493 Defining_Identifier => Var_Id,
7494 Object_Definition => New_Occurrence_Of (Typ, Loc),
7495 Expression => New_Copy_Tree (Exp)),
7496 Suppress => Validity_Check);
7498 Set_Validated_Object (Var_Id, New_Copy_Tree (Exp));
7499 Rewrite (Exp, New_Occurrence_Of (Var_Id, Loc));
7500 PV := New_Occurrence_Of (Var_Id, Loc);
7502 -- Copy the Do_Range_Check flag over to the new Exp, so it doesn't
7503 -- get lost. Floating point types are handled elsewhere.
7505 if not Is_Floating_Point_Type (Typ) then
7506 Set_Do_Range_Check (Exp, Do_Range_Check (Original_Node (Exp)));
7507 end if;
7509 -- Otherwise the expression does not denote a variable. Force its
7510 -- evaluation by capturing its value in a constant. Generate:
7512 -- Temp : constant ... := Exp;
7514 else
7515 Force_Evaluation
7516 (Exp => Exp,
7517 Related_Id => Related_Id,
7518 Is_Low_Bound => Is_Low_Bound,
7519 Is_High_Bound => Is_High_Bound);
7521 PV := New_Copy_Tree (Exp);
7522 end if;
7524 -- A rather specialized test. If PV is an analyzed expression which
7525 -- is an indexed component of a packed array that has not been
7526 -- properly expanded, turn off its Analyzed flag to make sure it
7527 -- gets properly reexpanded. If the prefix is an access value,
7528 -- the dereference will be added later.
7530 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
7531 -- an analyze with the old parent pointer. This may point e.g. to
7532 -- a subprogram call, which deactivates this expansion.
7534 if Analyzed (PV)
7535 and then Nkind (PV) = N_Indexed_Component
7536 and then Is_Array_Type (Etype (Prefix (PV)))
7537 and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
7538 then
7539 Set_Analyzed (PV, False);
7540 end if;
7542 -- Build the raise CE node to check for validity. We build a type
7543 -- qualification for the prefix, since it may not be of the form of
7544 -- a name, and we don't care in this context!
7546 CE :=
7547 Make_Raise_Constraint_Error (Loc,
7548 Condition =>
7549 Make_Op_Not (Loc,
7550 Right_Opnd =>
7551 Make_Attribute_Reference (Loc,
7552 Prefix => PV,
7553 Attribute_Name => Name_Valid)),
7554 Reason => CE_Invalid_Data);
7556 -- Insert the validity check. Note that we do this with validity
7557 -- checks turned off, to avoid recursion, we do not want validity
7558 -- checks on the validity checking code itself.
7560 Insert_Action (Expr, CE, Suppress => Validity_Check);
7562 -- If the expression is a reference to an element of a bit-packed
7563 -- array, then it is rewritten as a renaming declaration. If the
7564 -- expression is an actual in a call, it has not been expanded,
7565 -- waiting for the proper point at which to do it. The same happens
7566 -- with renamings, so that we have to force the expansion now. This
7567 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
7568 -- and exp_ch6.adb.
7570 if Is_Entity_Name (Exp)
7571 and then Nkind (Parent (Entity (Exp))) =
7572 N_Object_Renaming_Declaration
7573 then
7574 declare
7575 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
7576 begin
7577 if Nkind (Old_Exp) = N_Indexed_Component
7578 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
7579 then
7580 Expand_Packed_Element_Reference (Old_Exp);
7581 end if;
7582 end;
7583 end if;
7584 end;
7585 end Insert_Valid_Check;
7587 -------------------------------------
7588 -- Is_Signed_Integer_Arithmetic_Op --
7589 -------------------------------------
7591 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
7592 begin
7593 case Nkind (N) is
7594 when N_Op_Abs
7595 | N_Op_Add
7596 | N_Op_Divide
7597 | N_Op_Expon
7598 | N_Op_Minus
7599 | N_Op_Mod
7600 | N_Op_Multiply
7601 | N_Op_Plus
7602 | N_Op_Rem
7603 | N_Op_Subtract
7605 return Is_Signed_Integer_Type (Etype (N));
7607 when N_Case_Expression
7608 | N_If_Expression
7610 return Is_Signed_Integer_Type (Etype (N));
7612 when others =>
7613 return False;
7614 end case;
7615 end Is_Signed_Integer_Arithmetic_Op;
7617 ----------------------------------
7618 -- Install_Null_Excluding_Check --
7619 ----------------------------------
7621 procedure Install_Null_Excluding_Check (N : Node_Id) is
7622 Loc : constant Source_Ptr := Sloc (Parent (N));
7623 Typ : constant Entity_Id := Etype (N);
7625 function Safe_To_Capture_In_Parameter_Value return Boolean;
7626 -- Determines if it is safe to capture Known_Non_Null status for an
7627 -- the entity referenced by node N. The caller ensures that N is indeed
7628 -- an entity name. It is safe to capture the non-null status for an IN
7629 -- parameter when the reference occurs within a declaration that is sure
7630 -- to be executed as part of the declarative region.
7632 procedure Mark_Non_Null;
7633 -- After installation of check, if the node in question is an entity
7634 -- name, then mark this entity as non-null if possible.
7636 function Safe_To_Capture_In_Parameter_Value return Boolean is
7637 E : constant Entity_Id := Entity (N);
7638 S : constant Entity_Id := Current_Scope;
7639 S_Par : Node_Id;
7641 begin
7642 if Ekind (E) /= E_In_Parameter then
7643 return False;
7644 end if;
7646 -- Two initial context checks. We must be inside a subprogram body
7647 -- with declarations and reference must not appear in nested scopes.
7649 if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
7650 or else Scope (E) /= S
7651 then
7652 return False;
7653 end if;
7655 S_Par := Parent (Parent (S));
7657 if Nkind (S_Par) /= N_Subprogram_Body
7658 or else No (Declarations (S_Par))
7659 then
7660 return False;
7661 end if;
7663 declare
7664 N_Decl : Node_Id;
7665 P : Node_Id;
7667 begin
7668 -- Retrieve the declaration node of N (if any). Note that N
7669 -- may be a part of a complex initialization expression.
7671 P := Parent (N);
7672 N_Decl := Empty;
7673 while Present (P) loop
7675 -- If we have a short circuit form, and we are within the right
7676 -- hand expression, we return false, since the right hand side
7677 -- is not guaranteed to be elaborated.
7679 if Nkind (P) in N_Short_Circuit
7680 and then N = Right_Opnd (P)
7681 then
7682 return False;
7683 end if;
7685 -- Similarly, if we are in an if expression and not part of the
7686 -- condition, then we return False, since neither the THEN or
7687 -- ELSE dependent expressions will always be elaborated.
7689 if Nkind (P) = N_If_Expression
7690 and then N /= First (Expressions (P))
7691 then
7692 return False;
7693 end if;
7695 -- If within a case expression, and not part of the expression,
7696 -- then return False, since a particular dependent expression
7697 -- may not always be elaborated
7699 if Nkind (P) = N_Case_Expression
7700 and then N /= Expression (P)
7701 then
7702 return False;
7703 end if;
7705 -- While traversing the parent chain, if node N belongs to a
7706 -- statement, then it may never appear in a declarative region.
7708 if Nkind (P) in N_Statement_Other_Than_Procedure_Call
7709 or else Nkind (P) = N_Procedure_Call_Statement
7710 then
7711 return False;
7712 end if;
7714 -- If we are at a declaration, record it and exit
7716 if Nkind (P) in N_Declaration
7717 and then Nkind (P) not in N_Subprogram_Specification
7718 then
7719 N_Decl := P;
7720 exit;
7721 end if;
7723 P := Parent (P);
7724 end loop;
7726 if No (N_Decl) then
7727 return False;
7728 end if;
7730 return List_Containing (N_Decl) = Declarations (S_Par);
7731 end;
7732 end Safe_To_Capture_In_Parameter_Value;
7734 -------------------
7735 -- Mark_Non_Null --
7736 -------------------
7738 procedure Mark_Non_Null is
7739 begin
7740 -- Only case of interest is if node N is an entity name
7742 if Is_Entity_Name (N) then
7744 -- For sure, we want to clear an indication that this is known to
7745 -- be null, since if we get past this check, it definitely is not.
7747 Set_Is_Known_Null (Entity (N), False);
7749 -- We can mark the entity as known to be non-null if either it is
7750 -- safe to capture the value, or in the case of an IN parameter,
7751 -- which is a constant, if the check we just installed is in the
7752 -- declarative region of the subprogram body. In this latter case,
7753 -- a check is decisive for the rest of the body if the expression
7754 -- is sure to be elaborated, since we know we have to elaborate
7755 -- all declarations before executing the body.
7757 -- Couldn't this always be part of Safe_To_Capture_Value ???
7759 if Safe_To_Capture_Value (N, Entity (N))
7760 or else Safe_To_Capture_In_Parameter_Value
7761 then
7762 Set_Is_Known_Non_Null (Entity (N));
7763 end if;
7764 end if;
7765 end Mark_Non_Null;
7767 -- Start of processing for Install_Null_Excluding_Check
7769 begin
7770 -- No need to add null-excluding checks when the tree may not be fully
7771 -- decorated.
7773 if Serious_Errors_Detected > 0 then
7774 return;
7775 end if;
7777 pragma Assert (Is_Access_Type (Typ));
7779 -- No check inside a generic, check will be emitted in instance
7781 if Inside_A_Generic then
7782 return;
7783 end if;
7785 -- No check needed if known to be non-null
7787 if Known_Non_Null (N) then
7788 return;
7789 end if;
7791 -- If known to be null, here is where we generate a compile time check
7793 if Known_Null (N) then
7795 -- Avoid generating warning message inside init procs. In SPARK mode
7796 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
7797 -- since it will be turned into an error in any case.
7799 if (not Inside_Init_Proc or else SPARK_Mode = On)
7801 -- Do not emit the warning within a conditional expression,
7802 -- where the expression might not be evaluated, and the warning
7803 -- appear as extraneous noise.
7805 and then not Within_Case_Or_If_Expression (N)
7806 then
7807 Apply_Compile_Time_Constraint_Error
7808 (N, "null value not allowed here??", CE_Access_Check_Failed);
7810 -- Remaining cases, where we silently insert the raise
7812 else
7813 Insert_Action (N,
7814 Make_Raise_Constraint_Error (Loc,
7815 Reason => CE_Access_Check_Failed));
7816 end if;
7818 Mark_Non_Null;
7819 return;
7820 end if;
7822 -- If entity is never assigned, for sure a warning is appropriate
7824 if Is_Entity_Name (N) then
7825 Check_Unset_Reference (N);
7826 end if;
7828 -- No check needed if checks are suppressed on the range. Note that we
7829 -- don't set Is_Known_Non_Null in this case (we could legitimately do
7830 -- so, since the program is erroneous, but we don't like to casually
7831 -- propagate such conclusions from erroneosity).
7833 if Access_Checks_Suppressed (Typ) then
7834 return;
7835 end if;
7837 -- No check needed for access to concurrent record types generated by
7838 -- the expander. This is not just an optimization (though it does indeed
7839 -- remove junk checks). It also avoids generation of junk warnings.
7841 if Nkind (N) in N_Has_Chars
7842 and then Chars (N) = Name_uObject
7843 and then Is_Concurrent_Record_Type
7844 (Directly_Designated_Type (Etype (N)))
7845 then
7846 return;
7847 end if;
7849 -- No check needed in interface thunks since the runtime check is
7850 -- already performed at the caller side.
7852 if Is_Thunk (Current_Scope) then
7853 return;
7854 end if;
7856 -- No check needed for the Get_Current_Excep.all.all idiom generated by
7857 -- the expander within exception handlers, since we know that the value
7858 -- can never be null.
7860 -- Is this really the right way to do this? Normally we generate such
7861 -- code in the expander with checks off, and that's how we suppress this
7862 -- kind of junk check ???
7864 if Nkind (N) = N_Function_Call
7865 and then Nkind (Name (N)) = N_Explicit_Dereference
7866 and then Nkind (Prefix (Name (N))) = N_Identifier
7867 and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
7868 then
7869 return;
7870 end if;
7872 -- Otherwise install access check
7874 Insert_Action (N,
7875 Make_Raise_Constraint_Error (Loc,
7876 Condition =>
7877 Make_Op_Eq (Loc,
7878 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
7879 Right_Opnd => Make_Null (Loc)),
7880 Reason => CE_Access_Check_Failed));
7882 Mark_Non_Null;
7883 end Install_Null_Excluding_Check;
7885 -----------------------------------------
7886 -- Install_Primitive_Elaboration_Check --
7887 -----------------------------------------
7889 procedure Install_Primitive_Elaboration_Check (Subp_Body : Node_Id) is
7890 function Within_Compilation_Unit_Instance
7891 (Subp_Id : Entity_Id) return Boolean;
7892 -- Determine whether subprogram Subp_Id appears within an instance which
7893 -- acts as a compilation unit.
7895 --------------------------------------
7896 -- Within_Compilation_Unit_Instance --
7897 --------------------------------------
7899 function Within_Compilation_Unit_Instance
7900 (Subp_Id : Entity_Id) return Boolean
7902 Pack : Entity_Id;
7904 begin
7905 -- Examine the scope chain looking for a compilation-unit-level
7906 -- instance.
7908 Pack := Scope (Subp_Id);
7909 while Present (Pack) and then Pack /= Standard_Standard loop
7910 if Ekind (Pack) = E_Package
7911 and then Is_Generic_Instance (Pack)
7912 and then Nkind (Parent (Unit_Declaration_Node (Pack))) =
7913 N_Compilation_Unit
7914 then
7915 return True;
7916 end if;
7918 Pack := Scope (Pack);
7919 end loop;
7921 return False;
7922 end Within_Compilation_Unit_Instance;
7924 -- Local declarations
7926 Context : constant Node_Id := Parent (Subp_Body);
7927 Loc : constant Source_Ptr := Sloc (Subp_Body);
7928 Subp_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Body);
7929 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
7931 Decls : List_Id;
7932 Flag_Id : Entity_Id;
7933 Set_Ins : Node_Id;
7934 Set_Stmt : Node_Id;
7935 Tag_Typ : Entity_Id;
7937 -- Start of processing for Install_Primitive_Elaboration_Check
7939 begin
7940 -- Do not generate an elaboration check in compilation modes where
7941 -- expansion is not desirable.
7943 if ASIS_Mode or GNATprove_Mode then
7944 return;
7946 -- Do not generate an elaboration check if all checks have been
7947 -- suppressed.
7949 elsif Suppress_Checks then
7950 return;
7952 -- Do not generate an elaboration check if the related subprogram is
7953 -- not subjected to accessibility checks.
7955 elsif Elaboration_Checks_Suppressed (Subp_Id) then
7956 return;
7958 -- Do not generate an elaboration check if such code is not desirable
7960 elsif Restriction_Active (No_Elaboration_Code) then
7961 return;
7963 -- Do not consider subprograms which act as compilation units, because
7964 -- they cannot be the target of a dispatching call.
7966 elsif Nkind (Context) = N_Compilation_Unit then
7967 return;
7969 -- Do not consider anything other than nonabstract library-level source
7970 -- primitives.
7972 elsif not
7973 (Comes_From_Source (Subp_Id)
7974 and then Is_Library_Level_Entity (Subp_Id)
7975 and then Is_Primitive (Subp_Id)
7976 and then not Is_Abstract_Subprogram (Subp_Id))
7977 then
7978 return;
7980 -- Do not consider inlined primitives, because once the body is inlined
7981 -- the reference to the elaboration flag will be out of place and will
7982 -- result in an undefined symbol.
7984 elsif Is_Inlined (Subp_Id) or else Has_Pragma_Inline (Subp_Id) then
7985 return;
7987 -- Do not generate a duplicate elaboration check. This happens only in
7988 -- the case of primitives completed by an expression function, as the
7989 -- corresponding body is apparently analyzed and expanded twice.
7991 elsif Analyzed (Subp_Body) then
7992 return;
7994 -- Do not consider primitives which occur within an instance that acts
7995 -- as a compilation unit. Such an instance defines its spec and body out
7996 -- of order (body is first) within the tree, which causes the reference
7997 -- to the elaboration flag to appear as an undefined symbol.
7999 elsif Within_Compilation_Unit_Instance (Subp_Id) then
8000 return;
8001 end if;
8003 Tag_Typ := Find_Dispatching_Type (Subp_Id);
8005 -- Only tagged primitives may be the target of a dispatching call
8007 if No (Tag_Typ) then
8008 return;
8010 -- Do not consider finalization-related primitives, because they may
8011 -- need to be called while elaboration is taking place.
8013 elsif Is_Controlled (Tag_Typ)
8014 and then Nam_In (Chars (Subp_Id), Name_Adjust,
8015 Name_Finalize,
8016 Name_Initialize)
8017 then
8018 return;
8019 end if;
8021 -- Create the declaration of the elaboration flag. The name carries a
8022 -- unique counter in case of name overloading.
8024 Flag_Id :=
8025 Make_Defining_Identifier (Loc,
8026 Chars => New_External_Name (Chars (Subp_Id), 'E', -1));
8027 Set_Is_Frozen (Flag_Id);
8029 -- Insert the declaration of the elaboration flag in front of the
8030 -- primitive spec and analyze it in the proper context.
8032 Push_Scope (Scope (Subp_Id));
8034 -- Generate:
8035 -- E : Boolean := False;
8037 Insert_Action (Subp_Decl,
8038 Make_Object_Declaration (Loc,
8039 Defining_Identifier => Flag_Id,
8040 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
8041 Expression => New_Occurrence_Of (Standard_False, Loc)));
8042 Pop_Scope;
8044 -- Prevent the compiler from optimizing the elaboration check by killing
8045 -- the current value of the flag and the associated assignment.
8047 Set_Current_Value (Flag_Id, Empty);
8048 Set_Last_Assignment (Flag_Id, Empty);
8050 -- Add a check at the top of the body declarations to ensure that the
8051 -- elaboration flag has been set.
8053 Decls := Declarations (Subp_Body);
8055 if No (Decls) then
8056 Decls := New_List;
8057 Set_Declarations (Subp_Body, Decls);
8058 end if;
8060 -- Generate:
8061 -- if not F then
8062 -- raise Program_Error with "access before elaboration";
8063 -- end if;
8065 Prepend_To (Decls,
8066 Make_Raise_Program_Error (Loc,
8067 Condition =>
8068 Make_Op_Not (Loc,
8069 Right_Opnd => New_Occurrence_Of (Flag_Id, Loc)),
8070 Reason => PE_Access_Before_Elaboration));
8072 Analyze (First (Decls));
8074 -- Set the elaboration flag once the body has been elaborated. Insert
8075 -- the statement after the subprogram stub when the primitive body is
8076 -- a subunit.
8078 if Nkind (Context) = N_Subunit then
8079 Set_Ins := Corresponding_Stub (Context);
8080 else
8081 Set_Ins := Subp_Body;
8082 end if;
8084 -- Generate:
8085 -- E := True;
8087 Set_Stmt :=
8088 Make_Assignment_Statement (Loc,
8089 Name => New_Occurrence_Of (Flag_Id, Loc),
8090 Expression => New_Occurrence_Of (Standard_True, Loc));
8092 -- Mark the assignment statement as elaboration code. This allows the
8093 -- early call region mechanism (see Sem_Elab) to properly ignore such
8094 -- assignments even though they are non-preelaborable code.
8096 Set_Is_Elaboration_Code (Set_Stmt);
8098 Insert_After_And_Analyze (Set_Ins, Set_Stmt);
8099 end Install_Primitive_Elaboration_Check;
8101 --------------------------
8102 -- Install_Static_Check --
8103 --------------------------
8105 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
8106 Stat : constant Boolean := Is_OK_Static_Expression (R_Cno);
8107 Typ : constant Entity_Id := Etype (R_Cno);
8109 begin
8110 Rewrite (R_Cno,
8111 Make_Raise_Constraint_Error (Loc,
8112 Reason => CE_Range_Check_Failed));
8113 Set_Analyzed (R_Cno);
8114 Set_Etype (R_Cno, Typ);
8115 Set_Raises_Constraint_Error (R_Cno);
8116 Set_Is_Static_Expression (R_Cno, Stat);
8118 -- Now deal with possible local raise handling
8120 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
8121 end Install_Static_Check;
8123 -------------------------
8124 -- Is_Check_Suppressed --
8125 -------------------------
8127 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
8128 Ptr : Suppress_Stack_Entry_Ptr;
8130 begin
8131 -- First search the local entity suppress stack. We search this from the
8132 -- top of the stack down so that we get the innermost entry that applies
8133 -- to this case if there are nested entries.
8135 Ptr := Local_Suppress_Stack_Top;
8136 while Ptr /= null loop
8137 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8138 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8139 then
8140 return Ptr.Suppress;
8141 end if;
8143 Ptr := Ptr.Prev;
8144 end loop;
8146 -- Now search the global entity suppress table for a matching entry.
8147 -- We also search this from the top down so that if there are multiple
8148 -- pragmas for the same entity, the last one applies (not clear what
8149 -- or whether the RM specifies this handling, but it seems reasonable).
8151 Ptr := Global_Suppress_Stack_Top;
8152 while Ptr /= null loop
8153 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8154 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8155 then
8156 return Ptr.Suppress;
8157 end if;
8159 Ptr := Ptr.Prev;
8160 end loop;
8162 -- If we did not find a matching entry, then use the normal scope
8163 -- suppress value after all (actually this will be the global setting
8164 -- since it clearly was not overridden at any point). For a predefined
8165 -- check, we test the specific flag. For a user defined check, we check
8166 -- the All_Checks flag. The Overflow flag requires special handling to
8167 -- deal with the General vs Assertion case.
8169 if C = Overflow_Check then
8170 return Overflow_Checks_Suppressed (Empty);
8172 elsif C in Predefined_Check_Id then
8173 return Scope_Suppress.Suppress (C);
8175 else
8176 return Scope_Suppress.Suppress (All_Checks);
8177 end if;
8178 end Is_Check_Suppressed;
8180 ---------------------
8181 -- Kill_All_Checks --
8182 ---------------------
8184 procedure Kill_All_Checks is
8185 begin
8186 if Debug_Flag_CC then
8187 w ("Kill_All_Checks");
8188 end if;
8190 -- We reset the number of saved checks to zero, and also modify all
8191 -- stack entries for statement ranges to indicate that the number of
8192 -- checks at each level is now zero.
8194 Num_Saved_Checks := 0;
8196 -- Note: the Int'Min here avoids any possibility of J being out of
8197 -- range when called from e.g. Conditional_Statements_Begin.
8199 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
8200 Saved_Checks_Stack (J) := 0;
8201 end loop;
8202 end Kill_All_Checks;
8204 -----------------
8205 -- Kill_Checks --
8206 -----------------
8208 procedure Kill_Checks (V : Entity_Id) is
8209 begin
8210 if Debug_Flag_CC then
8211 w ("Kill_Checks for entity", Int (V));
8212 end if;
8214 for J in 1 .. Num_Saved_Checks loop
8215 if Saved_Checks (J).Entity = V then
8216 if Debug_Flag_CC then
8217 w (" Checks killed for saved check ", J);
8218 end if;
8220 Saved_Checks (J).Killed := True;
8221 end if;
8222 end loop;
8223 end Kill_Checks;
8225 ------------------------------
8226 -- Length_Checks_Suppressed --
8227 ------------------------------
8229 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
8230 begin
8231 if Present (E) and then Checks_May_Be_Suppressed (E) then
8232 return Is_Check_Suppressed (E, Length_Check);
8233 else
8234 return Scope_Suppress.Suppress (Length_Check);
8235 end if;
8236 end Length_Checks_Suppressed;
8238 -----------------------
8239 -- Make_Bignum_Block --
8240 -----------------------
8242 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
8243 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
8244 begin
8245 return
8246 Make_Block_Statement (Loc,
8247 Declarations =>
8248 New_List (Build_SS_Mark_Call (Loc, M)),
8249 Handled_Statement_Sequence =>
8250 Make_Handled_Sequence_Of_Statements (Loc,
8251 Statements => New_List (Build_SS_Release_Call (Loc, M))));
8252 end Make_Bignum_Block;
8254 ----------------------------------
8255 -- Minimize_Eliminate_Overflows --
8256 ----------------------------------
8258 -- This is a recursive routine that is called at the top of an expression
8259 -- tree to properly process overflow checking for a whole subtree by making
8260 -- recursive calls to process operands. This processing may involve the use
8261 -- of bignum or long long integer arithmetic, which will change the types
8262 -- of operands and results. That's why we can't do this bottom up (since
8263 -- it would interfere with semantic analysis).
8265 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
8266 -- the operator expansion routines, as well as the expansion routines for
8267 -- if/case expression, do nothing (for the moment) except call the routine
8268 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
8269 -- routine does nothing for non top-level nodes, so at the point where the
8270 -- call is made for the top level node, the entire expression subtree has
8271 -- not been expanded, or processed for overflow. All that has to happen as
8272 -- a result of the top level call to this routine.
8274 -- As noted above, the overflow processing works by making recursive calls
8275 -- for the operands, and figuring out what to do, based on the processing
8276 -- of these operands (e.g. if a bignum operand appears, the parent op has
8277 -- to be done in bignum mode), and the determined ranges of the operands.
8279 -- After possible rewriting of a constituent subexpression node, a call is
8280 -- made to either reexpand the node (if nothing has changed) or reanalyze
8281 -- the node (if it has been modified by the overflow check processing). The
8282 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
8283 -- a recursive call into the whole overflow apparatus, an important rule
8284 -- for this call is that the overflow handling mode must be temporarily set
8285 -- to STRICT.
8287 procedure Minimize_Eliminate_Overflows
8288 (N : Node_Id;
8289 Lo : out Uint;
8290 Hi : out Uint;
8291 Top_Level : Boolean)
8293 Rtyp : constant Entity_Id := Etype (N);
8294 pragma Assert (Is_Signed_Integer_Type (Rtyp));
8295 -- Result type, must be a signed integer type
8297 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
8298 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
8300 Loc : constant Source_Ptr := Sloc (N);
8302 Rlo, Rhi : Uint;
8303 -- Ranges of values for right operand (operator case)
8305 Llo : Uint := No_Uint; -- initialize to prevent warning
8306 Lhi : Uint := No_Uint; -- initialize to prevent warning
8307 -- Ranges of values for left operand (operator case)
8309 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
8310 -- Operands and results are of this type when we convert
8312 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
8313 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
8314 -- Bounds of Long_Long_Integer
8316 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
8317 -- Indicates binary operator case
8319 OK : Boolean;
8320 -- Used in call to Determine_Range
8322 Bignum_Operands : Boolean;
8323 -- Set True if one or more operands is already of type Bignum, meaning
8324 -- that for sure (regardless of Top_Level setting) we are committed to
8325 -- doing the operation in Bignum mode (or in the case of a case or if
8326 -- expression, converting all the dependent expressions to Bignum).
8328 Long_Long_Integer_Operands : Boolean;
8329 -- Set True if one or more operands is already of type Long_Long_Integer
8330 -- which means that if the result is known to be in the result type
8331 -- range, then we must convert such operands back to the result type.
8333 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
8334 -- This is called when we have modified the node and we therefore need
8335 -- to reanalyze it. It is important that we reset the mode to STRICT for
8336 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
8337 -- we would reenter this routine recursively which would not be good.
8338 -- The argument Suppress is set True if we also want to suppress
8339 -- overflow checking for the reexpansion (this is set when we know
8340 -- overflow is not possible). Typ is the type for the reanalysis.
8342 procedure Reexpand (Suppress : Boolean := False);
8343 -- This is like Reanalyze, but does not do the Analyze step, it only
8344 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
8345 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
8346 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
8347 -- Note that skipping reanalysis is not just an optimization, testing
8348 -- has showed up several complex cases in which reanalyzing an already
8349 -- analyzed node causes incorrect behavior.
8351 function In_Result_Range return Boolean;
8352 -- Returns True iff Lo .. Hi are within range of the result type
8354 procedure Max (A : in out Uint; B : Uint);
8355 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
8357 procedure Min (A : in out Uint; B : Uint);
8358 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
8360 ---------------------
8361 -- In_Result_Range --
8362 ---------------------
8364 function In_Result_Range return Boolean is
8365 begin
8366 if Lo = No_Uint or else Hi = No_Uint then
8367 return False;
8369 elsif Is_OK_Static_Subtype (Etype (N)) then
8370 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
8371 and then
8372 Hi <= Expr_Value (Type_High_Bound (Rtyp));
8374 else
8375 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
8376 and then
8377 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
8378 end if;
8379 end In_Result_Range;
8381 ---------
8382 -- Max --
8383 ---------
8385 procedure Max (A : in out Uint; B : Uint) is
8386 begin
8387 if A = No_Uint or else B > A then
8388 A := B;
8389 end if;
8390 end Max;
8392 ---------
8393 -- Min --
8394 ---------
8396 procedure Min (A : in out Uint; B : Uint) is
8397 begin
8398 if A = No_Uint or else B < A then
8399 A := B;
8400 end if;
8401 end Min;
8403 ---------------
8404 -- Reanalyze --
8405 ---------------
8407 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
8408 Svg : constant Overflow_Mode_Type :=
8409 Scope_Suppress.Overflow_Mode_General;
8410 Sva : constant Overflow_Mode_Type :=
8411 Scope_Suppress.Overflow_Mode_Assertions;
8412 Svo : constant Boolean :=
8413 Scope_Suppress.Suppress (Overflow_Check);
8415 begin
8416 Scope_Suppress.Overflow_Mode_General := Strict;
8417 Scope_Suppress.Overflow_Mode_Assertions := Strict;
8419 if Suppress then
8420 Scope_Suppress.Suppress (Overflow_Check) := True;
8421 end if;
8423 Analyze_And_Resolve (N, Typ);
8425 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8426 Scope_Suppress.Overflow_Mode_General := Svg;
8427 Scope_Suppress.Overflow_Mode_Assertions := Sva;
8428 end Reanalyze;
8430 --------------
8431 -- Reexpand --
8432 --------------
8434 procedure Reexpand (Suppress : Boolean := False) is
8435 Svg : constant Overflow_Mode_Type :=
8436 Scope_Suppress.Overflow_Mode_General;
8437 Sva : constant Overflow_Mode_Type :=
8438 Scope_Suppress.Overflow_Mode_Assertions;
8439 Svo : constant Boolean :=
8440 Scope_Suppress.Suppress (Overflow_Check);
8442 begin
8443 Scope_Suppress.Overflow_Mode_General := Strict;
8444 Scope_Suppress.Overflow_Mode_Assertions := Strict;
8445 Set_Analyzed (N, False);
8447 if Suppress then
8448 Scope_Suppress.Suppress (Overflow_Check) := True;
8449 end if;
8451 Expand (N);
8453 Scope_Suppress.Suppress (Overflow_Check) := Svo;
8454 Scope_Suppress.Overflow_Mode_General := Svg;
8455 Scope_Suppress.Overflow_Mode_Assertions := Sva;
8456 end Reexpand;
8458 -- Start of processing for Minimize_Eliminate_Overflows
8460 begin
8461 -- Default initialize Lo and Hi since these are not guaranteed to be
8462 -- set otherwise.
8464 Lo := No_Uint;
8465 Hi := No_Uint;
8467 -- Case where we do not have a signed integer arithmetic operation
8469 if not Is_Signed_Integer_Arithmetic_Op (N) then
8471 -- Use the normal Determine_Range routine to get the range. We
8472 -- don't require operands to be valid, invalid values may result in
8473 -- rubbish results where the result has not been properly checked for
8474 -- overflow, that's fine.
8476 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
8478 -- If Determine_Range did not work (can this in fact happen? Not
8479 -- clear but might as well protect), use type bounds.
8481 if not OK then
8482 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
8483 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
8484 end if;
8486 -- If we don't have a binary operator, all we have to do is to set
8487 -- the Hi/Lo range, so we are done.
8489 return;
8491 -- Processing for if expression
8493 elsif Nkind (N) = N_If_Expression then
8494 declare
8495 Then_DE : constant Node_Id := Next (First (Expressions (N)));
8496 Else_DE : constant Node_Id := Next (Then_DE);
8498 begin
8499 Bignum_Operands := False;
8501 Minimize_Eliminate_Overflows
8502 (Then_DE, Lo, Hi, Top_Level => False);
8504 if Lo = No_Uint then
8505 Bignum_Operands := True;
8506 end if;
8508 Minimize_Eliminate_Overflows
8509 (Else_DE, Rlo, Rhi, Top_Level => False);
8511 if Rlo = No_Uint then
8512 Bignum_Operands := True;
8513 else
8514 Long_Long_Integer_Operands :=
8515 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
8517 Min (Lo, Rlo);
8518 Max (Hi, Rhi);
8519 end if;
8521 -- If at least one of our operands is now Bignum, we must rebuild
8522 -- the if expression to use Bignum operands. We will analyze the
8523 -- rebuilt if expression with overflow checks off, since once we
8524 -- are in bignum mode, we are all done with overflow checks.
8526 if Bignum_Operands then
8527 Rewrite (N,
8528 Make_If_Expression (Loc,
8529 Expressions => New_List (
8530 Remove_Head (Expressions (N)),
8531 Convert_To_Bignum (Then_DE),
8532 Convert_To_Bignum (Else_DE)),
8533 Is_Elsif => Is_Elsif (N)));
8535 Reanalyze (RTE (RE_Bignum), Suppress => True);
8537 -- If we have no Long_Long_Integer operands, then we are in result
8538 -- range, since it means that none of our operands felt the need
8539 -- to worry about overflow (otherwise it would have already been
8540 -- converted to long long integer or bignum). We reexpand to
8541 -- complete the expansion of the if expression (but we do not
8542 -- need to reanalyze).
8544 elsif not Long_Long_Integer_Operands then
8545 Set_Do_Overflow_Check (N, False);
8546 Reexpand;
8548 -- Otherwise convert us to long long integer mode. Note that we
8549 -- don't need any further overflow checking at this level.
8551 else
8552 Convert_To_And_Rewrite (LLIB, Then_DE);
8553 Convert_To_And_Rewrite (LLIB, Else_DE);
8554 Set_Etype (N, LLIB);
8556 -- Now reanalyze with overflow checks off
8558 Set_Do_Overflow_Check (N, False);
8559 Reanalyze (LLIB, Suppress => True);
8560 end if;
8561 end;
8563 return;
8565 -- Here for case expression
8567 elsif Nkind (N) = N_Case_Expression then
8568 Bignum_Operands := False;
8569 Long_Long_Integer_Operands := False;
8571 declare
8572 Alt : Node_Id;
8574 begin
8575 -- Loop through expressions applying recursive call
8577 Alt := First (Alternatives (N));
8578 while Present (Alt) loop
8579 declare
8580 Aexp : constant Node_Id := Expression (Alt);
8582 begin
8583 Minimize_Eliminate_Overflows
8584 (Aexp, Lo, Hi, Top_Level => False);
8586 if Lo = No_Uint then
8587 Bignum_Operands := True;
8588 elsif Etype (Aexp) = LLIB then
8589 Long_Long_Integer_Operands := True;
8590 end if;
8591 end;
8593 Next (Alt);
8594 end loop;
8596 -- If we have no bignum or long long integer operands, it means
8597 -- that none of our dependent expressions could raise overflow.
8598 -- In this case, we simply return with no changes except for
8599 -- resetting the overflow flag, since we are done with overflow
8600 -- checks for this node. We will reexpand to get the needed
8601 -- expansion for the case expression, but we do not need to
8602 -- reanalyze, since nothing has changed.
8604 if not (Bignum_Operands or Long_Long_Integer_Operands) then
8605 Set_Do_Overflow_Check (N, False);
8606 Reexpand (Suppress => True);
8608 -- Otherwise we are going to rebuild the case expression using
8609 -- either bignum or long long integer operands throughout.
8611 else
8612 declare
8613 Rtype : Entity_Id;
8614 pragma Warnings (Off, Rtype);
8615 New_Alts : List_Id;
8616 New_Exp : Node_Id;
8618 begin
8619 New_Alts := New_List;
8620 Alt := First (Alternatives (N));
8621 while Present (Alt) loop
8622 if Bignum_Operands then
8623 New_Exp := Convert_To_Bignum (Expression (Alt));
8624 Rtype := RTE (RE_Bignum);
8625 else
8626 New_Exp := Convert_To (LLIB, Expression (Alt));
8627 Rtype := LLIB;
8628 end if;
8630 Append_To (New_Alts,
8631 Make_Case_Expression_Alternative (Sloc (Alt),
8632 Actions => No_List,
8633 Discrete_Choices => Discrete_Choices (Alt),
8634 Expression => New_Exp));
8636 Next (Alt);
8637 end loop;
8639 Rewrite (N,
8640 Make_Case_Expression (Loc,
8641 Expression => Expression (N),
8642 Alternatives => New_Alts));
8644 Reanalyze (Rtype, Suppress => True);
8645 end;
8646 end if;
8647 end;
8649 return;
8650 end if;
8652 -- If we have an arithmetic operator we make recursive calls on the
8653 -- operands to get the ranges (and to properly process the subtree
8654 -- that lies below us).
8656 Minimize_Eliminate_Overflows
8657 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
8659 if Binary then
8660 Minimize_Eliminate_Overflows
8661 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
8662 end if;
8664 -- Record if we have Long_Long_Integer operands
8666 Long_Long_Integer_Operands :=
8667 Etype (Right_Opnd (N)) = LLIB
8668 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
8670 -- If either operand is a bignum, then result will be a bignum and we
8671 -- don't need to do any range analysis. As previously discussed we could
8672 -- do range analysis in such cases, but it could mean working with giant
8673 -- numbers at compile time for very little gain (the number of cases
8674 -- in which we could slip back from bignum mode is small).
8676 if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
8677 Lo := No_Uint;
8678 Hi := No_Uint;
8679 Bignum_Operands := True;
8681 -- Otherwise compute result range
8683 else
8684 Bignum_Operands := False;
8686 case Nkind (N) is
8688 -- Absolute value
8690 when N_Op_Abs =>
8691 Lo := Uint_0;
8692 Hi := UI_Max (abs Rlo, abs Rhi);
8694 -- Addition
8696 when N_Op_Add =>
8697 Lo := Llo + Rlo;
8698 Hi := Lhi + Rhi;
8700 -- Division
8702 when N_Op_Divide =>
8704 -- If the right operand can only be zero, set 0..0
8706 if Rlo = 0 and then Rhi = 0 then
8707 Lo := Uint_0;
8708 Hi := Uint_0;
8710 -- Possible bounds of division must come from dividing end
8711 -- values of the input ranges (four possibilities), provided
8712 -- zero is not included in the possible values of the right
8713 -- operand.
8715 -- Otherwise, we just consider two intervals of values for
8716 -- the right operand: the interval of negative values (up to
8717 -- -1) and the interval of positive values (starting at 1).
8718 -- Since division by 1 is the identity, and division by -1
8719 -- is negation, we get all possible bounds of division in that
8720 -- case by considering:
8721 -- - all values from the division of end values of input
8722 -- ranges;
8723 -- - the end values of the left operand;
8724 -- - the negation of the end values of the left operand.
8726 else
8727 declare
8728 Mrk : constant Uintp.Save_Mark := Mark;
8729 -- Mark so we can release the RR and Ev values
8731 Ev1 : Uint;
8732 Ev2 : Uint;
8733 Ev3 : Uint;
8734 Ev4 : Uint;
8736 begin
8737 -- Discard extreme values of zero for the divisor, since
8738 -- they will simply result in an exception in any case.
8740 if Rlo = 0 then
8741 Rlo := Uint_1;
8742 elsif Rhi = 0 then
8743 Rhi := -Uint_1;
8744 end if;
8746 -- Compute possible bounds coming from dividing end
8747 -- values of the input ranges.
8749 Ev1 := Llo / Rlo;
8750 Ev2 := Llo / Rhi;
8751 Ev3 := Lhi / Rlo;
8752 Ev4 := Lhi / Rhi;
8754 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8755 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8757 -- If the right operand can be both negative or positive,
8758 -- include the end values of the left operand in the
8759 -- extreme values, as well as their negation.
8761 if Rlo < 0 and then Rhi > 0 then
8762 Ev1 := Llo;
8763 Ev2 := -Llo;
8764 Ev3 := Lhi;
8765 Ev4 := -Lhi;
8767 Min (Lo,
8768 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
8769 Max (Hi,
8770 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
8771 end if;
8773 -- Release the RR and Ev values
8775 Release_And_Save (Mrk, Lo, Hi);
8776 end;
8777 end if;
8779 -- Exponentiation
8781 when N_Op_Expon =>
8783 -- Discard negative values for the exponent, since they will
8784 -- simply result in an exception in any case.
8786 if Rhi < 0 then
8787 Rhi := Uint_0;
8788 elsif Rlo < 0 then
8789 Rlo := Uint_0;
8790 end if;
8792 -- Estimate number of bits in result before we go computing
8793 -- giant useless bounds. Basically the number of bits in the
8794 -- result is the number of bits in the base multiplied by the
8795 -- value of the exponent. If this is big enough that the result
8796 -- definitely won't fit in Long_Long_Integer, switch to bignum
8797 -- mode immediately, and avoid computing giant bounds.
8799 -- The comparison here is approximate, but conservative, it
8800 -- only clicks on cases that are sure to exceed the bounds.
8802 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
8803 Lo := No_Uint;
8804 Hi := No_Uint;
8806 -- If right operand is zero then result is 1
8808 elsif Rhi = 0 then
8809 Lo := Uint_1;
8810 Hi := Uint_1;
8812 else
8813 -- High bound comes either from exponentiation of largest
8814 -- positive value to largest exponent value, or from
8815 -- the exponentiation of most negative value to an
8816 -- even exponent.
8818 declare
8819 Hi1, Hi2 : Uint;
8821 begin
8822 if Lhi > 0 then
8823 Hi1 := Lhi ** Rhi;
8824 else
8825 Hi1 := Uint_0;
8826 end if;
8828 if Llo < 0 then
8829 if Rhi mod 2 = 0 then
8830 Hi2 := Llo ** Rhi;
8831 else
8832 Hi2 := Llo ** (Rhi - 1);
8833 end if;
8834 else
8835 Hi2 := Uint_0;
8836 end if;
8838 Hi := UI_Max (Hi1, Hi2);
8839 end;
8841 -- Result can only be negative if base can be negative
8843 if Llo < 0 then
8844 if Rhi mod 2 = 0 then
8845 Lo := Llo ** (Rhi - 1);
8846 else
8847 Lo := Llo ** Rhi;
8848 end if;
8850 -- Otherwise low bound is minimum ** minimum
8852 else
8853 Lo := Llo ** Rlo;
8854 end if;
8855 end if;
8857 -- Negation
8859 when N_Op_Minus =>
8860 Lo := -Rhi;
8861 Hi := -Rlo;
8863 -- Mod
8865 when N_Op_Mod =>
8866 declare
8867 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8868 -- This is the maximum absolute value of the result
8870 begin
8871 Lo := Uint_0;
8872 Hi := Uint_0;
8874 -- The result depends only on the sign and magnitude of
8875 -- the right operand, it does not depend on the sign or
8876 -- magnitude of the left operand.
8878 if Rlo < 0 then
8879 Lo := -Maxabs;
8880 end if;
8882 if Rhi > 0 then
8883 Hi := Maxabs;
8884 end if;
8885 end;
8887 -- Multiplication
8889 when N_Op_Multiply =>
8891 -- Possible bounds of multiplication must come from multiplying
8892 -- end values of the input ranges (four possibilities).
8894 declare
8895 Mrk : constant Uintp.Save_Mark := Mark;
8896 -- Mark so we can release the Ev values
8898 Ev1 : constant Uint := Llo * Rlo;
8899 Ev2 : constant Uint := Llo * Rhi;
8900 Ev3 : constant Uint := Lhi * Rlo;
8901 Ev4 : constant Uint := Lhi * Rhi;
8903 begin
8904 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
8905 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
8907 -- Release the Ev values
8909 Release_And_Save (Mrk, Lo, Hi);
8910 end;
8912 -- Plus operator (affirmation)
8914 when N_Op_Plus =>
8915 Lo := Rlo;
8916 Hi := Rhi;
8918 -- Remainder
8920 when N_Op_Rem =>
8921 declare
8922 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
8923 -- This is the maximum absolute value of the result. Note
8924 -- that the result range does not depend on the sign of the
8925 -- right operand.
8927 begin
8928 Lo := Uint_0;
8929 Hi := Uint_0;
8931 -- Case of left operand negative, which results in a range
8932 -- of -Maxabs .. 0 for those negative values. If there are
8933 -- no negative values then Lo value of result is always 0.
8935 if Llo < 0 then
8936 Lo := -Maxabs;
8937 end if;
8939 -- Case of left operand positive
8941 if Lhi > 0 then
8942 Hi := Maxabs;
8943 end if;
8944 end;
8946 -- Subtract
8948 when N_Op_Subtract =>
8949 Lo := Llo - Rhi;
8950 Hi := Lhi - Rlo;
8952 -- Nothing else should be possible
8954 when others =>
8955 raise Program_Error;
8956 end case;
8957 end if;
8959 -- Here for the case where we have not rewritten anything (no bignum
8960 -- operands or long long integer operands), and we know the result.
8961 -- If we know we are in the result range, and we do not have Bignum
8962 -- operands or Long_Long_Integer operands, we can just reexpand with
8963 -- overflow checks turned off (since we know we cannot have overflow).
8964 -- As always the reexpansion is required to complete expansion of the
8965 -- operator, but we do not need to reanalyze, and we prevent recursion
8966 -- by suppressing the check.
8968 if not (Bignum_Operands or Long_Long_Integer_Operands)
8969 and then In_Result_Range
8970 then
8971 Set_Do_Overflow_Check (N, False);
8972 Reexpand (Suppress => True);
8973 return;
8975 -- Here we know that we are not in the result range, and in the general
8976 -- case we will move into either the Bignum or Long_Long_Integer domain
8977 -- to compute the result. However, there is one exception. If we are
8978 -- at the top level, and we do not have Bignum or Long_Long_Integer
8979 -- operands, we will have to immediately convert the result back to
8980 -- the result type, so there is no point in Bignum/Long_Long_Integer
8981 -- fiddling.
8983 elsif Top_Level
8984 and then not (Bignum_Operands or Long_Long_Integer_Operands)
8986 -- One further refinement. If we are at the top level, but our parent
8987 -- is a type conversion, then go into bignum or long long integer node
8988 -- since the result will be converted to that type directly without
8989 -- going through the result type, and we may avoid an overflow. This
8990 -- is the case for example of Long_Long_Integer (A ** 4), where A is
8991 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
8992 -- but does not fit in Integer.
8994 and then Nkind (Parent (N)) /= N_Type_Conversion
8995 then
8996 -- Here keep original types, but we need to complete analysis
8998 -- One subtlety. We can't just go ahead and do an analyze operation
8999 -- here because it will cause recursion into the whole MINIMIZED/
9000 -- ELIMINATED overflow processing which is not what we want. Here
9001 -- we are at the top level, and we need a check against the result
9002 -- mode (i.e. we want to use STRICT mode). So do exactly that.
9003 -- Also, we have not modified the node, so this is a case where
9004 -- we need to reexpand, but not reanalyze.
9006 Reexpand;
9007 return;
9009 -- Cases where we do the operation in Bignum mode. This happens either
9010 -- because one of our operands is in Bignum mode already, or because
9011 -- the computed bounds are outside the bounds of Long_Long_Integer,
9012 -- which in some cases can be indicated by Hi and Lo being No_Uint.
9014 -- Note: we could do better here and in some cases switch back from
9015 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
9016 -- 0 .. 1, but the cases are rare and it is not worth the effort.
9017 -- Failing to do this switching back is only an efficiency issue.
9019 elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
9021 -- OK, we are definitely outside the range of Long_Long_Integer. The
9022 -- question is whether to move to Bignum mode, or stay in the domain
9023 -- of Long_Long_Integer, signalling that an overflow check is needed.
9025 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
9026 -- the Bignum business. In ELIMINATED mode, we will normally move
9027 -- into Bignum mode, but there is an exception if neither of our
9028 -- operands is Bignum now, and we are at the top level (Top_Level
9029 -- set True). In this case, there is no point in moving into Bignum
9030 -- mode to prevent overflow if the caller will immediately convert
9031 -- the Bignum value back to LLI with an overflow check. It's more
9032 -- efficient to stay in LLI mode with an overflow check (if needed)
9034 if Check_Mode = Minimized
9035 or else (Top_Level and not Bignum_Operands)
9036 then
9037 if Do_Overflow_Check (N) then
9038 Enable_Overflow_Check (N);
9039 end if;
9041 -- The result now has to be in Long_Long_Integer mode, so adjust
9042 -- the possible range to reflect this. Note these calls also
9043 -- change No_Uint values from the top level case to LLI bounds.
9045 Max (Lo, LLLo);
9046 Min (Hi, LLHi);
9048 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
9050 else
9051 pragma Assert (Check_Mode = Eliminated);
9053 declare
9054 Fent : Entity_Id;
9055 Args : List_Id;
9057 begin
9058 case Nkind (N) is
9059 when N_Op_Abs =>
9060 Fent := RTE (RE_Big_Abs);
9062 when N_Op_Add =>
9063 Fent := RTE (RE_Big_Add);
9065 when N_Op_Divide =>
9066 Fent := RTE (RE_Big_Div);
9068 when N_Op_Expon =>
9069 Fent := RTE (RE_Big_Exp);
9071 when N_Op_Minus =>
9072 Fent := RTE (RE_Big_Neg);
9074 when N_Op_Mod =>
9075 Fent := RTE (RE_Big_Mod);
9077 when N_Op_Multiply =>
9078 Fent := RTE (RE_Big_Mul);
9080 when N_Op_Rem =>
9081 Fent := RTE (RE_Big_Rem);
9083 when N_Op_Subtract =>
9084 Fent := RTE (RE_Big_Sub);
9086 -- Anything else is an internal error, this includes the
9087 -- N_Op_Plus case, since how can plus cause the result
9088 -- to be out of range if the operand is in range?
9090 when others =>
9091 raise Program_Error;
9092 end case;
9094 -- Construct argument list for Bignum call, converting our
9095 -- operands to Bignum form if they are not already there.
9097 Args := New_List;
9099 if Binary then
9100 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
9101 end if;
9103 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
9105 -- Now rewrite the arithmetic operator with a call to the
9106 -- corresponding bignum function.
9108 Rewrite (N,
9109 Make_Function_Call (Loc,
9110 Name => New_Occurrence_Of (Fent, Loc),
9111 Parameter_Associations => Args));
9112 Reanalyze (RTE (RE_Bignum), Suppress => True);
9114 -- Indicate result is Bignum mode
9116 Lo := No_Uint;
9117 Hi := No_Uint;
9118 return;
9119 end;
9120 end if;
9122 -- Otherwise we are in range of Long_Long_Integer, so no overflow
9123 -- check is required, at least not yet.
9125 else
9126 Set_Do_Overflow_Check (N, False);
9127 end if;
9129 -- Here we are not in Bignum territory, but we may have long long
9130 -- integer operands that need special handling. First a special check:
9131 -- If an exponentiation operator exponent is of type Long_Long_Integer,
9132 -- it means we converted it to prevent overflow, but exponentiation
9133 -- requires a Natural right operand, so convert it back to Natural.
9134 -- This conversion may raise an exception which is fine.
9136 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
9137 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
9138 end if;
9140 -- Here we will do the operation in Long_Long_Integer. We do this even
9141 -- if we know an overflow check is required, better to do this in long
9142 -- long integer mode, since we are less likely to overflow.
9144 -- Convert right or only operand to Long_Long_Integer, except that
9145 -- we do not touch the exponentiation right operand.
9147 if Nkind (N) /= N_Op_Expon then
9148 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
9149 end if;
9151 -- Convert left operand to Long_Long_Integer for binary case
9153 if Binary then
9154 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
9155 end if;
9157 -- Reset node to unanalyzed
9159 Set_Analyzed (N, False);
9160 Set_Etype (N, Empty);
9161 Set_Entity (N, Empty);
9163 -- Now analyze this new node. This reanalysis will complete processing
9164 -- for the node. In particular we will complete the expansion of an
9165 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
9166 -- we will complete any division checks (since we have not changed the
9167 -- setting of the Do_Division_Check flag).
9169 -- We do this reanalysis in STRICT mode to avoid recursion into the
9170 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
9172 declare
9173 SG : constant Overflow_Mode_Type :=
9174 Scope_Suppress.Overflow_Mode_General;
9175 SA : constant Overflow_Mode_Type :=
9176 Scope_Suppress.Overflow_Mode_Assertions;
9178 begin
9179 Scope_Suppress.Overflow_Mode_General := Strict;
9180 Scope_Suppress.Overflow_Mode_Assertions := Strict;
9182 if not Do_Overflow_Check (N) then
9183 Reanalyze (LLIB, Suppress => True);
9184 else
9185 Reanalyze (LLIB);
9186 end if;
9188 Scope_Suppress.Overflow_Mode_General := SG;
9189 Scope_Suppress.Overflow_Mode_Assertions := SA;
9190 end;
9191 end Minimize_Eliminate_Overflows;
9193 -------------------------
9194 -- Overflow_Check_Mode --
9195 -------------------------
9197 function Overflow_Check_Mode return Overflow_Mode_Type is
9198 begin
9199 if In_Assertion_Expr = 0 then
9200 return Scope_Suppress.Overflow_Mode_General;
9201 else
9202 return Scope_Suppress.Overflow_Mode_Assertions;
9203 end if;
9204 end Overflow_Check_Mode;
9206 --------------------------------
9207 -- Overflow_Checks_Suppressed --
9208 --------------------------------
9210 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
9211 begin
9212 if Present (E) and then Checks_May_Be_Suppressed (E) then
9213 return Is_Check_Suppressed (E, Overflow_Check);
9214 else
9215 return Scope_Suppress.Suppress (Overflow_Check);
9216 end if;
9217 end Overflow_Checks_Suppressed;
9219 ---------------------------------
9220 -- Predicate_Checks_Suppressed --
9221 ---------------------------------
9223 function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
9224 begin
9225 if Present (E) and then Checks_May_Be_Suppressed (E) then
9226 return Is_Check_Suppressed (E, Predicate_Check);
9227 else
9228 return Scope_Suppress.Suppress (Predicate_Check);
9229 end if;
9230 end Predicate_Checks_Suppressed;
9232 -----------------------------
9233 -- Range_Checks_Suppressed --
9234 -----------------------------
9236 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
9237 begin
9238 if Present (E) then
9239 if Kill_Range_Checks (E) then
9240 return True;
9242 elsif Checks_May_Be_Suppressed (E) then
9243 return Is_Check_Suppressed (E, Range_Check);
9244 end if;
9245 end if;
9247 return Scope_Suppress.Suppress (Range_Check);
9248 end Range_Checks_Suppressed;
9250 -----------------------------------------
9251 -- Range_Or_Validity_Checks_Suppressed --
9252 -----------------------------------------
9254 -- Note: the coding would be simpler here if we simply made appropriate
9255 -- calls to Range/Validity_Checks_Suppressed, but that would result in
9256 -- duplicated checks which we prefer to avoid.
9258 function Range_Or_Validity_Checks_Suppressed
9259 (Expr : Node_Id) return Boolean
9261 begin
9262 -- Immediate return if scope checks suppressed for either check
9264 if Scope_Suppress.Suppress (Range_Check)
9266 Scope_Suppress.Suppress (Validity_Check)
9267 then
9268 return True;
9269 end if;
9271 -- If no expression, that's odd, decide that checks are suppressed,
9272 -- since we don't want anyone trying to do checks in this case, which
9273 -- is most likely the result of some other error.
9275 if No (Expr) then
9276 return True;
9277 end if;
9279 -- Expression is present, so perform suppress checks on type
9281 declare
9282 Typ : constant Entity_Id := Etype (Expr);
9283 begin
9284 if Checks_May_Be_Suppressed (Typ)
9285 and then (Is_Check_Suppressed (Typ, Range_Check)
9286 or else
9287 Is_Check_Suppressed (Typ, Validity_Check))
9288 then
9289 return True;
9290 end if;
9291 end;
9293 -- If expression is an entity name, perform checks on this entity
9295 if Is_Entity_Name (Expr) then
9296 declare
9297 Ent : constant Entity_Id := Entity (Expr);
9298 begin
9299 if Checks_May_Be_Suppressed (Ent) then
9300 return Is_Check_Suppressed (Ent, Range_Check)
9301 or else Is_Check_Suppressed (Ent, Validity_Check);
9302 end if;
9303 end;
9304 end if;
9306 -- If we fall through, no checks suppressed
9308 return False;
9309 end Range_Or_Validity_Checks_Suppressed;
9311 -------------------
9312 -- Remove_Checks --
9313 -------------------
9315 procedure Remove_Checks (Expr : Node_Id) is
9316 function Process (N : Node_Id) return Traverse_Result;
9317 -- Process a single node during the traversal
9319 procedure Traverse is new Traverse_Proc (Process);
9320 -- The traversal procedure itself
9322 -------------
9323 -- Process --
9324 -------------
9326 function Process (N : Node_Id) return Traverse_Result is
9327 begin
9328 if Nkind (N) not in N_Subexpr then
9329 return Skip;
9330 end if;
9332 Set_Do_Range_Check (N, False);
9334 case Nkind (N) is
9335 when N_And_Then =>
9336 Traverse (Left_Opnd (N));
9337 return Skip;
9339 when N_Attribute_Reference =>
9340 Set_Do_Overflow_Check (N, False);
9342 when N_Function_Call =>
9343 Set_Do_Tag_Check (N, False);
9345 when N_Op =>
9346 Set_Do_Overflow_Check (N, False);
9348 case Nkind (N) is
9349 when N_Op_Divide =>
9350 Set_Do_Division_Check (N, False);
9352 when N_Op_And =>
9353 Set_Do_Length_Check (N, False);
9355 when N_Op_Mod =>
9356 Set_Do_Division_Check (N, False);
9358 when N_Op_Or =>
9359 Set_Do_Length_Check (N, False);
9361 when N_Op_Rem =>
9362 Set_Do_Division_Check (N, False);
9364 when N_Op_Xor =>
9365 Set_Do_Length_Check (N, False);
9367 when others =>
9368 null;
9369 end case;
9371 when N_Or_Else =>
9372 Traverse (Left_Opnd (N));
9373 return Skip;
9375 when N_Selected_Component =>
9376 Set_Do_Discriminant_Check (N, False);
9378 when N_Type_Conversion =>
9379 Set_Do_Length_Check (N, False);
9380 Set_Do_Tag_Check (N, False);
9381 Set_Do_Overflow_Check (N, False);
9383 when others =>
9384 null;
9385 end case;
9387 return OK;
9388 end Process;
9390 -- Start of processing for Remove_Checks
9392 begin
9393 Traverse (Expr);
9394 end Remove_Checks;
9396 ----------------------------
9397 -- Selected_Length_Checks --
9398 ----------------------------
9400 function Selected_Length_Checks
9401 (Ck_Node : Node_Id;
9402 Target_Typ : Entity_Id;
9403 Source_Typ : Entity_Id;
9404 Warn_Node : Node_Id) return Check_Result
9406 Loc : constant Source_Ptr := Sloc (Ck_Node);
9407 S_Typ : Entity_Id;
9408 T_Typ : Entity_Id;
9409 Expr_Actual : Node_Id;
9410 Exptyp : Entity_Id;
9411 Cond : Node_Id := Empty;
9412 Do_Access : Boolean := False;
9413 Wnode : Node_Id := Warn_Node;
9414 Ret_Result : Check_Result := (Empty, Empty);
9415 Num_Checks : Natural := 0;
9417 procedure Add_Check (N : Node_Id);
9418 -- Adds the action given to Ret_Result if N is non-Empty
9420 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
9421 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
9422 -- Comments required ???
9424 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
9425 -- True for equal literals and for nodes that denote the same constant
9426 -- entity, even if its value is not a static constant. This includes the
9427 -- case of a discriminal reference within an init proc. Removes some
9428 -- obviously superfluous checks.
9430 function Length_E_Cond
9431 (Exptyp : Entity_Id;
9432 Typ : Entity_Id;
9433 Indx : Nat) return Node_Id;
9434 -- Returns expression to compute:
9435 -- Typ'Length /= Exptyp'Length
9437 function Length_N_Cond
9438 (Expr : Node_Id;
9439 Typ : Entity_Id;
9440 Indx : Nat) return Node_Id;
9441 -- Returns expression to compute:
9442 -- Typ'Length /= Expr'Length
9444 ---------------
9445 -- Add_Check --
9446 ---------------
9448 procedure Add_Check (N : Node_Id) is
9449 begin
9450 if Present (N) then
9452 -- For now, ignore attempt to place more than two checks ???
9453 -- This is really worrisome, are we really discarding checks ???
9455 if Num_Checks = 2 then
9456 return;
9457 end if;
9459 pragma Assert (Num_Checks <= 1);
9460 Num_Checks := Num_Checks + 1;
9461 Ret_Result (Num_Checks) := N;
9462 end if;
9463 end Add_Check;
9465 ------------------
9466 -- Get_E_Length --
9467 ------------------
9469 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
9470 SE : constant Entity_Id := Scope (E);
9471 N : Node_Id;
9472 E1 : Entity_Id := E;
9474 begin
9475 if Ekind (Scope (E)) = E_Record_Type
9476 and then Has_Discriminants (Scope (E))
9477 then
9478 N := Build_Discriminal_Subtype_Of_Component (E);
9480 if Present (N) then
9481 Insert_Action (Ck_Node, N);
9482 E1 := Defining_Identifier (N);
9483 end if;
9484 end if;
9486 if Ekind (E1) = E_String_Literal_Subtype then
9487 return
9488 Make_Integer_Literal (Loc,
9489 Intval => String_Literal_Length (E1));
9491 elsif SE /= Standard_Standard
9492 and then Ekind (Scope (SE)) = E_Protected_Type
9493 and then Has_Discriminants (Scope (SE))
9494 and then Has_Completion (Scope (SE))
9495 and then not Inside_Init_Proc
9496 then
9497 -- If the type whose length is needed is a private component
9498 -- constrained by a discriminant, we must expand the 'Length
9499 -- attribute into an explicit computation, using the discriminal
9500 -- of the current protected operation. This is because the actual
9501 -- type of the prival is constructed after the protected opera-
9502 -- tion has been fully expanded.
9504 declare
9505 Indx_Type : Node_Id;
9506 Lo : Node_Id;
9507 Hi : Node_Id;
9508 Do_Expand : Boolean := False;
9510 begin
9511 Indx_Type := First_Index (E);
9513 for J in 1 .. Indx - 1 loop
9514 Next_Index (Indx_Type);
9515 end loop;
9517 Get_Index_Bounds (Indx_Type, Lo, Hi);
9519 if Nkind (Lo) = N_Identifier
9520 and then Ekind (Entity (Lo)) = E_In_Parameter
9521 then
9522 Lo := Get_Discriminal (E, Lo);
9523 Do_Expand := True;
9524 end if;
9526 if Nkind (Hi) = N_Identifier
9527 and then Ekind (Entity (Hi)) = E_In_Parameter
9528 then
9529 Hi := Get_Discriminal (E, Hi);
9530 Do_Expand := True;
9531 end if;
9533 if Do_Expand then
9534 if not Is_Entity_Name (Lo) then
9535 Lo := Duplicate_Subexpr_No_Checks (Lo);
9536 end if;
9538 if not Is_Entity_Name (Hi) then
9539 Lo := Duplicate_Subexpr_No_Checks (Hi);
9540 end if;
9542 N :=
9543 Make_Op_Add (Loc,
9544 Left_Opnd =>
9545 Make_Op_Subtract (Loc,
9546 Left_Opnd => Hi,
9547 Right_Opnd => Lo),
9549 Right_Opnd => Make_Integer_Literal (Loc, 1));
9550 return N;
9552 else
9553 N :=
9554 Make_Attribute_Reference (Loc,
9555 Attribute_Name => Name_Length,
9556 Prefix =>
9557 New_Occurrence_Of (E1, Loc));
9559 if Indx > 1 then
9560 Set_Expressions (N, New_List (
9561 Make_Integer_Literal (Loc, Indx)));
9562 end if;
9564 return N;
9565 end if;
9566 end;
9568 else
9569 N :=
9570 Make_Attribute_Reference (Loc,
9571 Attribute_Name => Name_Length,
9572 Prefix =>
9573 New_Occurrence_Of (E1, Loc));
9575 if Indx > 1 then
9576 Set_Expressions (N, New_List (
9577 Make_Integer_Literal (Loc, Indx)));
9578 end if;
9580 return N;
9581 end if;
9582 end Get_E_Length;
9584 ------------------
9585 -- Get_N_Length --
9586 ------------------
9588 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
9589 begin
9590 return
9591 Make_Attribute_Reference (Loc,
9592 Attribute_Name => Name_Length,
9593 Prefix =>
9594 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
9595 Expressions => New_List (
9596 Make_Integer_Literal (Loc, Indx)));
9597 end Get_N_Length;
9599 -------------------
9600 -- Length_E_Cond --
9601 -------------------
9603 function Length_E_Cond
9604 (Exptyp : Entity_Id;
9605 Typ : Entity_Id;
9606 Indx : Nat) return Node_Id
9608 begin
9609 return
9610 Make_Op_Ne (Loc,
9611 Left_Opnd => Get_E_Length (Typ, Indx),
9612 Right_Opnd => Get_E_Length (Exptyp, Indx));
9613 end Length_E_Cond;
9615 -------------------
9616 -- Length_N_Cond --
9617 -------------------
9619 function Length_N_Cond
9620 (Expr : Node_Id;
9621 Typ : Entity_Id;
9622 Indx : Nat) return Node_Id
9624 begin
9625 return
9626 Make_Op_Ne (Loc,
9627 Left_Opnd => Get_E_Length (Typ, Indx),
9628 Right_Opnd => Get_N_Length (Expr, Indx));
9629 end Length_N_Cond;
9631 -----------------
9632 -- Same_Bounds --
9633 -----------------
9635 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
9636 begin
9637 return
9638 (Nkind (L) = N_Integer_Literal
9639 and then Nkind (R) = N_Integer_Literal
9640 and then Intval (L) = Intval (R))
9642 or else
9643 (Is_Entity_Name (L)
9644 and then Ekind (Entity (L)) = E_Constant
9645 and then ((Is_Entity_Name (R)
9646 and then Entity (L) = Entity (R))
9647 or else
9648 (Nkind (R) = N_Type_Conversion
9649 and then Is_Entity_Name (Expression (R))
9650 and then Entity (L) = Entity (Expression (R)))))
9652 or else
9653 (Is_Entity_Name (R)
9654 and then Ekind (Entity (R)) = E_Constant
9655 and then Nkind (L) = N_Type_Conversion
9656 and then Is_Entity_Name (Expression (L))
9657 and then Entity (R) = Entity (Expression (L)))
9659 or else
9660 (Is_Entity_Name (L)
9661 and then Is_Entity_Name (R)
9662 and then Entity (L) = Entity (R)
9663 and then Ekind (Entity (L)) = E_In_Parameter
9664 and then Inside_Init_Proc);
9665 end Same_Bounds;
9667 -- Start of processing for Selected_Length_Checks
9669 begin
9670 -- Checks will be applied only when generating code
9672 if not Expander_Active then
9673 return Ret_Result;
9674 end if;
9676 if Target_Typ = Any_Type
9677 or else Target_Typ = Any_Composite
9678 or else Raises_Constraint_Error (Ck_Node)
9679 then
9680 return Ret_Result;
9681 end if;
9683 if No (Wnode) then
9684 Wnode := Ck_Node;
9685 end if;
9687 T_Typ := Target_Typ;
9689 if No (Source_Typ) then
9690 S_Typ := Etype (Ck_Node);
9691 else
9692 S_Typ := Source_Typ;
9693 end if;
9695 if S_Typ = Any_Type or else S_Typ = Any_Composite then
9696 return Ret_Result;
9697 end if;
9699 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
9700 S_Typ := Designated_Type (S_Typ);
9701 T_Typ := Designated_Type (T_Typ);
9702 Do_Access := True;
9704 -- A simple optimization for the null case
9706 if Known_Null (Ck_Node) then
9707 return Ret_Result;
9708 end if;
9709 end if;
9711 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
9712 if Is_Constrained (T_Typ) then
9714 -- The checking code to be generated will freeze the corresponding
9715 -- array type. However, we must freeze the type now, so that the
9716 -- freeze node does not appear within the generated if expression,
9717 -- but ahead of it.
9719 Freeze_Before (Ck_Node, T_Typ);
9721 Expr_Actual := Get_Referenced_Object (Ck_Node);
9722 Exptyp := Get_Actual_Subtype (Ck_Node);
9724 if Is_Access_Type (Exptyp) then
9725 Exptyp := Designated_Type (Exptyp);
9726 end if;
9728 -- String_Literal case. This needs to be handled specially be-
9729 -- cause no index types are available for string literals. The
9730 -- condition is simply:
9732 -- T_Typ'Length = string-literal-length
9734 if Nkind (Expr_Actual) = N_String_Literal
9735 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
9736 then
9737 Cond :=
9738 Make_Op_Ne (Loc,
9739 Left_Opnd => Get_E_Length (T_Typ, 1),
9740 Right_Opnd =>
9741 Make_Integer_Literal (Loc,
9742 Intval =>
9743 String_Literal_Length (Etype (Expr_Actual))));
9745 -- General array case. Here we have a usable actual subtype for
9746 -- the expression, and the condition is built from the two types
9747 -- (Do_Length):
9749 -- T_Typ'Length /= Exptyp'Length or else
9750 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
9751 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
9752 -- ...
9754 elsif Is_Constrained (Exptyp) then
9755 declare
9756 Ndims : constant Nat := Number_Dimensions (T_Typ);
9758 L_Index : Node_Id;
9759 R_Index : Node_Id;
9760 L_Low : Node_Id;
9761 L_High : Node_Id;
9762 R_Low : Node_Id;
9763 R_High : Node_Id;
9764 L_Length : Uint;
9765 R_Length : Uint;
9766 Ref_Node : Node_Id;
9768 begin
9769 -- At the library level, we need to ensure that the type of
9770 -- the object is elaborated before the check itself is
9771 -- emitted. This is only done if the object is in the
9772 -- current compilation unit, otherwise the type is frozen
9773 -- and elaborated in its unit.
9775 if Is_Itype (Exptyp)
9776 and then
9777 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
9778 and then
9779 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
9780 and then In_Open_Scopes (Scope (Exptyp))
9781 then
9782 Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
9783 Set_Itype (Ref_Node, Exptyp);
9784 Insert_Action (Ck_Node, Ref_Node);
9785 end if;
9787 L_Index := First_Index (T_Typ);
9788 R_Index := First_Index (Exptyp);
9790 for Indx in 1 .. Ndims loop
9791 if not (Nkind (L_Index) = N_Raise_Constraint_Error
9792 or else
9793 Nkind (R_Index) = N_Raise_Constraint_Error)
9794 then
9795 Get_Index_Bounds (L_Index, L_Low, L_High);
9796 Get_Index_Bounds (R_Index, R_Low, R_High);
9798 -- Deal with compile time length check. Note that we
9799 -- skip this in the access case, because the access
9800 -- value may be null, so we cannot know statically.
9802 if not Do_Access
9803 and then Compile_Time_Known_Value (L_Low)
9804 and then Compile_Time_Known_Value (L_High)
9805 and then Compile_Time_Known_Value (R_Low)
9806 and then Compile_Time_Known_Value (R_High)
9807 then
9808 if Expr_Value (L_High) >= Expr_Value (L_Low) then
9809 L_Length := Expr_Value (L_High) -
9810 Expr_Value (L_Low) + 1;
9811 else
9812 L_Length := UI_From_Int (0);
9813 end if;
9815 if Expr_Value (R_High) >= Expr_Value (R_Low) then
9816 R_Length := Expr_Value (R_High) -
9817 Expr_Value (R_Low) + 1;
9818 else
9819 R_Length := UI_From_Int (0);
9820 end if;
9822 if L_Length > R_Length then
9823 Add_Check
9824 (Compile_Time_Constraint_Error
9825 (Wnode, "too few elements for}??", T_Typ));
9827 elsif L_Length < R_Length then
9828 Add_Check
9829 (Compile_Time_Constraint_Error
9830 (Wnode, "too many elements for}??", T_Typ));
9831 end if;
9833 -- The comparison for an individual index subtype
9834 -- is omitted if the corresponding index subtypes
9835 -- statically match, since the result is known to
9836 -- be true. Note that this test is worth while even
9837 -- though we do static evaluation, because non-static
9838 -- subtypes can statically match.
9840 elsif not
9841 Subtypes_Statically_Match
9842 (Etype (L_Index), Etype (R_Index))
9844 and then not
9845 (Same_Bounds (L_Low, R_Low)
9846 and then Same_Bounds (L_High, R_High))
9847 then
9848 Evolve_Or_Else
9849 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
9850 end if;
9852 Next (L_Index);
9853 Next (R_Index);
9854 end if;
9855 end loop;
9856 end;
9858 -- Handle cases where we do not get a usable actual subtype that
9859 -- is constrained. This happens for example in the function call
9860 -- and explicit dereference cases. In these cases, we have to get
9861 -- the length or range from the expression itself, making sure we
9862 -- do not evaluate it more than once.
9864 -- Here Ck_Node is the original expression, or more properly the
9865 -- result of applying Duplicate_Expr to the original tree, forcing
9866 -- the result to be a name.
9868 else
9869 declare
9870 Ndims : constant Nat := Number_Dimensions (T_Typ);
9872 begin
9873 -- Build the condition for the explicit dereference case
9875 for Indx in 1 .. Ndims loop
9876 Evolve_Or_Else
9877 (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
9878 end loop;
9879 end;
9880 end if;
9881 end if;
9882 end if;
9884 -- Construct the test and insert into the tree
9886 if Present (Cond) then
9887 if Do_Access then
9888 Cond := Guard_Access (Cond, Loc, Ck_Node);
9889 end if;
9891 Add_Check
9892 (Make_Raise_Constraint_Error (Loc,
9893 Condition => Cond,
9894 Reason => CE_Length_Check_Failed));
9895 end if;
9897 return Ret_Result;
9898 end Selected_Length_Checks;
9900 ---------------------------
9901 -- Selected_Range_Checks --
9902 ---------------------------
9904 function Selected_Range_Checks
9905 (Ck_Node : Node_Id;
9906 Target_Typ : Entity_Id;
9907 Source_Typ : Entity_Id;
9908 Warn_Node : Node_Id) return Check_Result
9910 Loc : constant Source_Ptr := Sloc (Ck_Node);
9911 S_Typ : Entity_Id;
9912 T_Typ : Entity_Id;
9913 Expr_Actual : Node_Id;
9914 Exptyp : Entity_Id;
9915 Cond : Node_Id := Empty;
9916 Do_Access : Boolean := False;
9917 Wnode : Node_Id := Warn_Node;
9918 Ret_Result : Check_Result := (Empty, Empty);
9919 Num_Checks : Natural := 0;
9921 procedure Add_Check (N : Node_Id);
9922 -- Adds the action given to Ret_Result if N is non-Empty
9924 function Discrete_Range_Cond
9925 (Expr : Node_Id;
9926 Typ : Entity_Id) return Node_Id;
9927 -- Returns expression to compute:
9928 -- Low_Bound (Expr) < Typ'First
9929 -- or else
9930 -- High_Bound (Expr) > Typ'Last
9932 function Discrete_Expr_Cond
9933 (Expr : Node_Id;
9934 Typ : Entity_Id) return Node_Id;
9935 -- Returns expression to compute:
9936 -- Expr < Typ'First
9937 -- or else
9938 -- Expr > Typ'Last
9940 function Get_E_First_Or_Last
9941 (Loc : Source_Ptr;
9942 E : Entity_Id;
9943 Indx : Nat;
9944 Nam : Name_Id) return Node_Id;
9945 -- Returns an attribute reference
9946 -- E'First or E'Last
9947 -- with a source location of Loc.
9949 -- Nam is Name_First or Name_Last, according to which attribute is
9950 -- desired. If Indx is non-zero, it is passed as a literal in the
9951 -- Expressions of the attribute reference (identifying the desired
9952 -- array dimension).
9954 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
9955 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
9956 -- Returns expression to compute:
9957 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
9959 function Range_E_Cond
9960 (Exptyp : Entity_Id;
9961 Typ : Entity_Id;
9962 Indx : Nat)
9963 return Node_Id;
9964 -- Returns expression to compute:
9965 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
9967 function Range_Equal_E_Cond
9968 (Exptyp : Entity_Id;
9969 Typ : Entity_Id;
9970 Indx : Nat) return Node_Id;
9971 -- Returns expression to compute:
9972 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
9974 function Range_N_Cond
9975 (Expr : Node_Id;
9976 Typ : Entity_Id;
9977 Indx : Nat) return Node_Id;
9978 -- Return expression to compute:
9979 -- Expr'First < Typ'First or else Expr'Last > Typ'Last
9981 ---------------
9982 -- Add_Check --
9983 ---------------
9985 procedure Add_Check (N : Node_Id) is
9986 begin
9987 if Present (N) then
9989 -- For now, ignore attempt to place more than 2 checks ???
9991 if Num_Checks = 2 then
9992 return;
9993 end if;
9995 pragma Assert (Num_Checks <= 1);
9996 Num_Checks := Num_Checks + 1;
9997 Ret_Result (Num_Checks) := N;
9998 end if;
9999 end Add_Check;
10001 -------------------------
10002 -- Discrete_Expr_Cond --
10003 -------------------------
10005 function Discrete_Expr_Cond
10006 (Expr : Node_Id;
10007 Typ : Entity_Id) return Node_Id
10009 begin
10010 return
10011 Make_Or_Else (Loc,
10012 Left_Opnd =>
10013 Make_Op_Lt (Loc,
10014 Left_Opnd =>
10015 Convert_To (Base_Type (Typ),
10016 Duplicate_Subexpr_No_Checks (Expr)),
10017 Right_Opnd =>
10018 Convert_To (Base_Type (Typ),
10019 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
10021 Right_Opnd =>
10022 Make_Op_Gt (Loc,
10023 Left_Opnd =>
10024 Convert_To (Base_Type (Typ),
10025 Duplicate_Subexpr_No_Checks (Expr)),
10026 Right_Opnd =>
10027 Convert_To
10028 (Base_Type (Typ),
10029 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
10030 end Discrete_Expr_Cond;
10032 -------------------------
10033 -- Discrete_Range_Cond --
10034 -------------------------
10036 function Discrete_Range_Cond
10037 (Expr : Node_Id;
10038 Typ : Entity_Id) return Node_Id
10040 LB : Node_Id := Low_Bound (Expr);
10041 HB : Node_Id := High_Bound (Expr);
10043 Left_Opnd : Node_Id;
10044 Right_Opnd : Node_Id;
10046 begin
10047 if Nkind (LB) = N_Identifier
10048 and then Ekind (Entity (LB)) = E_Discriminant
10049 then
10050 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10051 end if;
10053 Left_Opnd :=
10054 Make_Op_Lt (Loc,
10055 Left_Opnd =>
10056 Convert_To
10057 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
10059 Right_Opnd =>
10060 Convert_To
10061 (Base_Type (Typ),
10062 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
10064 if Nkind (HB) = N_Identifier
10065 and then Ekind (Entity (HB)) = E_Discriminant
10066 then
10067 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10068 end if;
10070 Right_Opnd :=
10071 Make_Op_Gt (Loc,
10072 Left_Opnd =>
10073 Convert_To
10074 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
10076 Right_Opnd =>
10077 Convert_To
10078 (Base_Type (Typ),
10079 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
10081 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
10082 end Discrete_Range_Cond;
10084 -------------------------
10085 -- Get_E_First_Or_Last --
10086 -------------------------
10088 function Get_E_First_Or_Last
10089 (Loc : Source_Ptr;
10090 E : Entity_Id;
10091 Indx : Nat;
10092 Nam : Name_Id) return Node_Id
10094 Exprs : List_Id;
10095 begin
10096 if Indx > 0 then
10097 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
10098 else
10099 Exprs := No_List;
10100 end if;
10102 return Make_Attribute_Reference (Loc,
10103 Prefix => New_Occurrence_Of (E, Loc),
10104 Attribute_Name => Nam,
10105 Expressions => Exprs);
10106 end Get_E_First_Or_Last;
10108 -----------------
10109 -- Get_N_First --
10110 -----------------
10112 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
10113 begin
10114 return
10115 Make_Attribute_Reference (Loc,
10116 Attribute_Name => Name_First,
10117 Prefix =>
10118 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10119 Expressions => New_List (
10120 Make_Integer_Literal (Loc, Indx)));
10121 end Get_N_First;
10123 ----------------
10124 -- Get_N_Last --
10125 ----------------
10127 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
10128 begin
10129 return
10130 Make_Attribute_Reference (Loc,
10131 Attribute_Name => Name_Last,
10132 Prefix =>
10133 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
10134 Expressions => New_List (
10135 Make_Integer_Literal (Loc, Indx)));
10136 end Get_N_Last;
10138 ------------------
10139 -- Range_E_Cond --
10140 ------------------
10142 function Range_E_Cond
10143 (Exptyp : Entity_Id;
10144 Typ : Entity_Id;
10145 Indx : Nat) return Node_Id
10147 begin
10148 return
10149 Make_Or_Else (Loc,
10150 Left_Opnd =>
10151 Make_Op_Lt (Loc,
10152 Left_Opnd =>
10153 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10154 Right_Opnd =>
10155 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10157 Right_Opnd =>
10158 Make_Op_Gt (Loc,
10159 Left_Opnd =>
10160 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10161 Right_Opnd =>
10162 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10163 end Range_E_Cond;
10165 ------------------------
10166 -- Range_Equal_E_Cond --
10167 ------------------------
10169 function Range_Equal_E_Cond
10170 (Exptyp : Entity_Id;
10171 Typ : Entity_Id;
10172 Indx : Nat) return Node_Id
10174 begin
10175 return
10176 Make_Or_Else (Loc,
10177 Left_Opnd =>
10178 Make_Op_Ne (Loc,
10179 Left_Opnd =>
10180 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10181 Right_Opnd =>
10182 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10184 Right_Opnd =>
10185 Make_Op_Ne (Loc,
10186 Left_Opnd =>
10187 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10188 Right_Opnd =>
10189 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10190 end Range_Equal_E_Cond;
10192 ------------------
10193 -- Range_N_Cond --
10194 ------------------
10196 function Range_N_Cond
10197 (Expr : Node_Id;
10198 Typ : Entity_Id;
10199 Indx : Nat) return Node_Id
10201 begin
10202 return
10203 Make_Or_Else (Loc,
10204 Left_Opnd =>
10205 Make_Op_Lt (Loc,
10206 Left_Opnd =>
10207 Get_N_First (Expr, Indx),
10208 Right_Opnd =>
10209 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10211 Right_Opnd =>
10212 Make_Op_Gt (Loc,
10213 Left_Opnd =>
10214 Get_N_Last (Expr, Indx),
10215 Right_Opnd =>
10216 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
10217 end Range_N_Cond;
10219 -- Start of processing for Selected_Range_Checks
10221 begin
10222 -- Checks will be applied only when generating code. In GNATprove mode,
10223 -- we do not apply the checks, but we still call Selected_Range_Checks
10224 -- to possibly issue errors on SPARK code when a run-time error can be
10225 -- detected at compile time.
10227 if not Expander_Active and not GNATprove_Mode then
10228 return Ret_Result;
10229 end if;
10231 if Target_Typ = Any_Type
10232 or else Target_Typ = Any_Composite
10233 or else Raises_Constraint_Error (Ck_Node)
10234 then
10235 return Ret_Result;
10236 end if;
10238 if No (Wnode) then
10239 Wnode := Ck_Node;
10240 end if;
10242 T_Typ := Target_Typ;
10244 if No (Source_Typ) then
10245 S_Typ := Etype (Ck_Node);
10246 else
10247 S_Typ := Source_Typ;
10248 end if;
10250 if S_Typ = Any_Type or else S_Typ = Any_Composite then
10251 return Ret_Result;
10252 end if;
10254 -- The order of evaluating T_Typ before S_Typ seems to be critical
10255 -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
10256 -- in, and since Node can be an N_Range node, it might be invalid.
10257 -- Should there be an assert check somewhere for taking the Etype of
10258 -- an N_Range node ???
10260 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10261 S_Typ := Designated_Type (S_Typ);
10262 T_Typ := Designated_Type (T_Typ);
10263 Do_Access := True;
10265 -- A simple optimization for the null case
10267 if Known_Null (Ck_Node) then
10268 return Ret_Result;
10269 end if;
10270 end if;
10272 -- For an N_Range Node, check for a null range and then if not
10273 -- null generate a range check action.
10275 if Nkind (Ck_Node) = N_Range then
10277 -- There's no point in checking a range against itself
10279 if Ck_Node = Scalar_Range (T_Typ) then
10280 return Ret_Result;
10281 end if;
10283 declare
10284 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
10285 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
10286 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
10287 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
10289 LB : Node_Id := Low_Bound (Ck_Node);
10290 HB : Node_Id := High_Bound (Ck_Node);
10291 Known_LB : Boolean := False;
10292 Known_HB : Boolean := False;
10294 Null_Range : Boolean;
10295 Out_Of_Range_L : Boolean;
10296 Out_Of_Range_H : Boolean;
10298 begin
10299 -- Compute what is known at compile time
10301 if Known_T_LB and Known_T_HB then
10302 if Compile_Time_Known_Value (LB) then
10303 Known_LB := True;
10305 -- There's no point in checking that a bound is within its
10306 -- own range so pretend that it is known in this case. First
10307 -- deal with low bound.
10309 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
10310 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
10311 then
10312 LB := T_LB;
10313 Known_LB := True;
10314 end if;
10316 -- Likewise for the high bound
10318 if Compile_Time_Known_Value (HB) then
10319 Known_HB := True;
10321 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
10322 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
10323 then
10324 HB := T_HB;
10325 Known_HB := True;
10326 end if;
10327 end if;
10329 -- Check for case where everything is static and we can do the
10330 -- check at compile time. This is skipped if we have an access
10331 -- type, since the access value may be null.
10333 -- ??? This code can be improved since you only need to know that
10334 -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
10335 -- compile time to emit pertinent messages.
10337 if Known_T_LB and Known_T_HB and Known_LB and Known_HB
10338 and not Do_Access
10339 then
10340 -- Floating-point case
10342 if Is_Floating_Point_Type (S_Typ) then
10343 Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
10344 Out_Of_Range_L :=
10345 (Expr_Value_R (LB) < Expr_Value_R (T_LB))
10346 or else
10347 (Expr_Value_R (LB) > Expr_Value_R (T_HB));
10349 Out_Of_Range_H :=
10350 (Expr_Value_R (HB) > Expr_Value_R (T_HB))
10351 or else
10352 (Expr_Value_R (HB) < Expr_Value_R (T_LB));
10354 -- Fixed or discrete type case
10356 else
10357 Null_Range := Expr_Value (HB) < Expr_Value (LB);
10358 Out_Of_Range_L :=
10359 (Expr_Value (LB) < Expr_Value (T_LB))
10360 or else
10361 (Expr_Value (LB) > Expr_Value (T_HB));
10363 Out_Of_Range_H :=
10364 (Expr_Value (HB) > Expr_Value (T_HB))
10365 or else
10366 (Expr_Value (HB) < Expr_Value (T_LB));
10367 end if;
10369 if not Null_Range then
10370 if Out_Of_Range_L then
10371 if No (Warn_Node) then
10372 Add_Check
10373 (Compile_Time_Constraint_Error
10374 (Low_Bound (Ck_Node),
10375 "static value out of range of}??", T_Typ));
10377 else
10378 Add_Check
10379 (Compile_Time_Constraint_Error
10380 (Wnode,
10381 "static range out of bounds of}??", T_Typ));
10382 end if;
10383 end if;
10385 if Out_Of_Range_H then
10386 if No (Warn_Node) then
10387 Add_Check
10388 (Compile_Time_Constraint_Error
10389 (High_Bound (Ck_Node),
10390 "static value out of range of}??", T_Typ));
10392 else
10393 Add_Check
10394 (Compile_Time_Constraint_Error
10395 (Wnode,
10396 "static range out of bounds of}??", T_Typ));
10397 end if;
10398 end if;
10399 end if;
10401 else
10402 declare
10403 LB : Node_Id := Low_Bound (Ck_Node);
10404 HB : Node_Id := High_Bound (Ck_Node);
10406 begin
10407 -- If either bound is a discriminant and we are within the
10408 -- record declaration, it is a use of the discriminant in a
10409 -- constraint of a component, and nothing can be checked
10410 -- here. The check will be emitted within the init proc.
10411 -- Before then, the discriminal has no real meaning.
10412 -- Similarly, if the entity is a discriminal, there is no
10413 -- check to perform yet.
10415 -- The same holds within a discriminated synchronized type,
10416 -- where the discriminant may constrain a component or an
10417 -- entry family.
10419 if Nkind (LB) = N_Identifier
10420 and then Denotes_Discriminant (LB, True)
10421 then
10422 if Current_Scope = Scope (Entity (LB))
10423 or else Is_Concurrent_Type (Current_Scope)
10424 or else Ekind (Entity (LB)) /= E_Discriminant
10425 then
10426 return Ret_Result;
10427 else
10428 LB :=
10429 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10430 end if;
10431 end if;
10433 if Nkind (HB) = N_Identifier
10434 and then Denotes_Discriminant (HB, True)
10435 then
10436 if Current_Scope = Scope (Entity (HB))
10437 or else Is_Concurrent_Type (Current_Scope)
10438 or else Ekind (Entity (HB)) /= E_Discriminant
10439 then
10440 return Ret_Result;
10441 else
10442 HB :=
10443 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10444 end if;
10445 end if;
10447 Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
10448 Set_Paren_Count (Cond, 1);
10450 Cond :=
10451 Make_And_Then (Loc,
10452 Left_Opnd =>
10453 Make_Op_Ge (Loc,
10454 Left_Opnd =>
10455 Convert_To (Base_Type (Etype (HB)),
10456 Duplicate_Subexpr_No_Checks (HB)),
10457 Right_Opnd =>
10458 Convert_To (Base_Type (Etype (LB)),
10459 Duplicate_Subexpr_No_Checks (LB))),
10460 Right_Opnd => Cond);
10461 end;
10462 end if;
10463 end;
10465 elsif Is_Scalar_Type (S_Typ) then
10467 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
10468 -- except the above simply sets a flag in the node and lets
10469 -- gigi generate the check base on the Etype of the expression.
10470 -- Sometimes, however we want to do a dynamic check against an
10471 -- arbitrary target type, so we do that here.
10473 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
10474 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10476 -- For literals, we can tell if the constraint error will be
10477 -- raised at compile time, so we never need a dynamic check, but
10478 -- if the exception will be raised, then post the usual warning,
10479 -- and replace the literal with a raise constraint error
10480 -- expression. As usual, skip this for access types
10482 elsif Compile_Time_Known_Value (Ck_Node) and then not Do_Access then
10483 declare
10484 LB : constant Node_Id := Type_Low_Bound (T_Typ);
10485 UB : constant Node_Id := Type_High_Bound (T_Typ);
10487 Out_Of_Range : Boolean;
10488 Static_Bounds : constant Boolean :=
10489 Compile_Time_Known_Value (LB)
10490 and Compile_Time_Known_Value (UB);
10492 begin
10493 -- Following range tests should use Sem_Eval routine ???
10495 if Static_Bounds then
10496 if Is_Floating_Point_Type (S_Typ) then
10497 Out_Of_Range :=
10498 (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
10499 or else
10500 (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
10502 -- Fixed or discrete type
10504 else
10505 Out_Of_Range :=
10506 Expr_Value (Ck_Node) < Expr_Value (LB)
10507 or else
10508 Expr_Value (Ck_Node) > Expr_Value (UB);
10509 end if;
10511 -- Bounds of the type are static and the literal is out of
10512 -- range so output a warning message.
10514 if Out_Of_Range then
10515 if No (Warn_Node) then
10516 Add_Check
10517 (Compile_Time_Constraint_Error
10518 (Ck_Node,
10519 "static value out of range of}??", T_Typ));
10521 else
10522 Add_Check
10523 (Compile_Time_Constraint_Error
10524 (Wnode,
10525 "static value out of range of}??", T_Typ));
10526 end if;
10527 end if;
10529 else
10530 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10531 end if;
10532 end;
10534 -- Here for the case of a non-static expression, we need a runtime
10535 -- check unless the source type range is guaranteed to be in the
10536 -- range of the target type.
10538 else
10539 if not In_Subrange_Of (S_Typ, T_Typ) then
10540 Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
10541 end if;
10542 end if;
10543 end if;
10545 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
10546 if Is_Constrained (T_Typ) then
10548 Expr_Actual := Get_Referenced_Object (Ck_Node);
10549 Exptyp := Get_Actual_Subtype (Expr_Actual);
10551 if Is_Access_Type (Exptyp) then
10552 Exptyp := Designated_Type (Exptyp);
10553 end if;
10555 -- String_Literal case. This needs to be handled specially be-
10556 -- cause no index types are available for string literals. The
10557 -- condition is simply:
10559 -- T_Typ'Length = string-literal-length
10561 if Nkind (Expr_Actual) = N_String_Literal then
10562 null;
10564 -- General array case. Here we have a usable actual subtype for
10565 -- the expression, and the condition is built from the two types
10567 -- T_Typ'First < Exptyp'First or else
10568 -- T_Typ'Last > Exptyp'Last or else
10569 -- T_Typ'First(1) < Exptyp'First(1) or else
10570 -- T_Typ'Last(1) > Exptyp'Last(1) or else
10571 -- ...
10573 elsif Is_Constrained (Exptyp) then
10574 declare
10575 Ndims : constant Nat := Number_Dimensions (T_Typ);
10577 L_Index : Node_Id;
10578 R_Index : Node_Id;
10580 begin
10581 L_Index := First_Index (T_Typ);
10582 R_Index := First_Index (Exptyp);
10584 for Indx in 1 .. Ndims loop
10585 if not (Nkind (L_Index) = N_Raise_Constraint_Error
10586 or else
10587 Nkind (R_Index) = N_Raise_Constraint_Error)
10588 then
10589 -- Deal with compile time length check. Note that we
10590 -- skip this in the access case, because the access
10591 -- value may be null, so we cannot know statically.
10593 if not
10594 Subtypes_Statically_Match
10595 (Etype (L_Index), Etype (R_Index))
10596 then
10597 -- If the target type is constrained then we
10598 -- have to check for exact equality of bounds
10599 -- (required for qualified expressions).
10601 if Is_Constrained (T_Typ) then
10602 Evolve_Or_Else
10603 (Cond,
10604 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
10605 else
10606 Evolve_Or_Else
10607 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
10608 end if;
10609 end if;
10611 Next (L_Index);
10612 Next (R_Index);
10613 end if;
10614 end loop;
10615 end;
10617 -- Handle cases where we do not get a usable actual subtype that
10618 -- is constrained. This happens for example in the function call
10619 -- and explicit dereference cases. In these cases, we have to get
10620 -- the length or range from the expression itself, making sure we
10621 -- do not evaluate it more than once.
10623 -- Here Ck_Node is the original expression, or more properly the
10624 -- result of applying Duplicate_Expr to the original tree,
10625 -- forcing the result to be a name.
10627 else
10628 declare
10629 Ndims : constant Nat := Number_Dimensions (T_Typ);
10631 begin
10632 -- Build the condition for the explicit dereference case
10634 for Indx in 1 .. Ndims loop
10635 Evolve_Or_Else
10636 (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
10637 end loop;
10638 end;
10639 end if;
10641 else
10642 -- For a conversion to an unconstrained array type, generate an
10643 -- Action to check that the bounds of the source value are within
10644 -- the constraints imposed by the target type (RM 4.6(38)). No
10645 -- check is needed for a conversion to an access to unconstrained
10646 -- array type, as 4.6(24.15/2) requires the designated subtypes
10647 -- of the two access types to statically match.
10649 if Nkind (Parent (Ck_Node)) = N_Type_Conversion
10650 and then not Do_Access
10651 then
10652 declare
10653 Opnd_Index : Node_Id;
10654 Targ_Index : Node_Id;
10655 Opnd_Range : Node_Id;
10657 begin
10658 Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
10659 Targ_Index := First_Index (T_Typ);
10660 while Present (Opnd_Index) loop
10662 -- If the index is a range, use its bounds. If it is an
10663 -- entity (as will be the case if it is a named subtype
10664 -- or an itype created for a slice) retrieve its range.
10666 if Is_Entity_Name (Opnd_Index)
10667 and then Is_Type (Entity (Opnd_Index))
10668 then
10669 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
10670 else
10671 Opnd_Range := Opnd_Index;
10672 end if;
10674 if Nkind (Opnd_Range) = N_Range then
10675 if Is_In_Range
10676 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10677 Assume_Valid => True)
10678 and then
10679 Is_In_Range
10680 (High_Bound (Opnd_Range), Etype (Targ_Index),
10681 Assume_Valid => True)
10682 then
10683 null;
10685 -- If null range, no check needed
10687 elsif
10688 Compile_Time_Known_Value (High_Bound (Opnd_Range))
10689 and then
10690 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
10691 and then
10692 Expr_Value (High_Bound (Opnd_Range)) <
10693 Expr_Value (Low_Bound (Opnd_Range))
10694 then
10695 null;
10697 elsif Is_Out_Of_Range
10698 (Low_Bound (Opnd_Range), Etype (Targ_Index),
10699 Assume_Valid => True)
10700 or else
10701 Is_Out_Of_Range
10702 (High_Bound (Opnd_Range), Etype (Targ_Index),
10703 Assume_Valid => True)
10704 then
10705 Add_Check
10706 (Compile_Time_Constraint_Error
10707 (Wnode, "value out of range of}??", T_Typ));
10709 else
10710 Evolve_Or_Else
10711 (Cond,
10712 Discrete_Range_Cond
10713 (Opnd_Range, Etype (Targ_Index)));
10714 end if;
10715 end if;
10717 Next_Index (Opnd_Index);
10718 Next_Index (Targ_Index);
10719 end loop;
10720 end;
10721 end if;
10722 end if;
10723 end if;
10725 -- Construct the test and insert into the tree
10727 if Present (Cond) then
10728 if Do_Access then
10729 Cond := Guard_Access (Cond, Loc, Ck_Node);
10730 end if;
10732 Add_Check
10733 (Make_Raise_Constraint_Error (Loc,
10734 Condition => Cond,
10735 Reason => CE_Range_Check_Failed));
10736 end if;
10738 return Ret_Result;
10739 end Selected_Range_Checks;
10741 -------------------------------
10742 -- Storage_Checks_Suppressed --
10743 -------------------------------
10745 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
10746 begin
10747 if Present (E) and then Checks_May_Be_Suppressed (E) then
10748 return Is_Check_Suppressed (E, Storage_Check);
10749 else
10750 return Scope_Suppress.Suppress (Storage_Check);
10751 end if;
10752 end Storage_Checks_Suppressed;
10754 ---------------------------
10755 -- Tag_Checks_Suppressed --
10756 ---------------------------
10758 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
10759 begin
10760 if Present (E)
10761 and then Checks_May_Be_Suppressed (E)
10762 then
10763 return Is_Check_Suppressed (E, Tag_Check);
10764 else
10765 return Scope_Suppress.Suppress (Tag_Check);
10766 end if;
10767 end Tag_Checks_Suppressed;
10769 ---------------------------------------
10770 -- Validate_Alignment_Check_Warnings --
10771 ---------------------------------------
10773 procedure Validate_Alignment_Check_Warnings is
10774 begin
10775 for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
10776 declare
10777 AWR : Alignment_Warnings_Record
10778 renames Alignment_Warnings.Table (J);
10779 begin
10780 if Known_Alignment (AWR.E)
10781 and then AWR.A mod Alignment (AWR.E) = 0
10782 then
10783 Delete_Warning_And_Continuations (AWR.W);
10784 end if;
10785 end;
10786 end loop;
10787 end Validate_Alignment_Check_Warnings;
10789 --------------------------
10790 -- Validity_Check_Range --
10791 --------------------------
10793 procedure Validity_Check_Range
10794 (N : Node_Id;
10795 Related_Id : Entity_Id := Empty)
10797 begin
10798 if Validity_Checks_On and Validity_Check_Operands then
10799 if Nkind (N) = N_Range then
10800 Ensure_Valid
10801 (Expr => Low_Bound (N),
10802 Related_Id => Related_Id,
10803 Is_Low_Bound => True);
10805 Ensure_Valid
10806 (Expr => High_Bound (N),
10807 Related_Id => Related_Id,
10808 Is_High_Bound => True);
10809 end if;
10810 end if;
10811 end Validity_Check_Range;
10813 --------------------------------
10814 -- Validity_Checks_Suppressed --
10815 --------------------------------
10817 function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
10818 begin
10819 if Present (E) and then Checks_May_Be_Suppressed (E) then
10820 return Is_Check_Suppressed (E, Validity_Check);
10821 else
10822 return Scope_Suppress.Suppress (Validity_Check);
10823 end if;
10824 end Validity_Checks_Suppressed;
10826 end Checks;