Add GCC support to ENQCMD.
[official-gcc.git] / gcc / doc / invoke.texi
blobb722559d31a1009a10d379c19c280af0bd1f63bd
1 @c Copyright (C) 1988-2019 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2019 Free Software Foundation, Inc.
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below).  A copy of the license is
19 included in the gfdl(7) man page.
21 (a) The FSF's Front-Cover Text is:
23      A GNU Manual
25 (b) The FSF's Back-Cover Text is:
27      You have freedom to copy and modify this GNU Manual, like GNU
28      software.  Copies published by the Free Software Foundation raise
29      funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36     [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37     [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38     [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39     [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40     [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41     [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
43 Only the most useful options are listed here; see below for the
44 remainder.  @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking.  The ``overall options'' allow you to stop this
72 process at an intermediate stage.  For example, the @option{-c} option
73 says not to run the linker.  Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
77 Other options are passed on to one or more stages of processing.  Some options
78 control the preprocessor and others the compiler itself.  Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly.  If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++} 
98 instead.  @xref{Invoking G++,,Compiling C++ Programs}, 
99 for information about the differences in behavior between @command{gcc} 
100 and @code{g++} when compiling C++ programs.
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands.  Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments.  For the most part, the order
112 you use doesn't matter.  Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified.  Also,
115 the placement of the @option{-l} option is significant.
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on.  Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}.  This manual documents
122 only one of these two forms, whichever one is not the default.
124 Some options take one or more arguments typically separated either
125 by a space or by the equals sign (@samp{=}) from the option name.
126 Unless documented otherwise, an argument can be either numeric or
127 a string.  Numeric arguments must typically be small unsigned decimal
128 or hexadecimal integers.  Hexadecimal arguments must begin with
129 the @samp{0x} prefix.  Arguments to options that specify a size
130 threshold of some sort may be arbitrarily large decimal or hexadecimal
131 integers followed by a byte size suffix designating a multiple of bytes
132 such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
133 @code{MB} and @code{MiB} for megabyte and mebibyte, @code{GB} and
134 @code{GiB} for gigabyte and gigibyte, and so on.  Such arguments are
135 designated by @var{byte-size} in the following text.  Refer to the NIST,
136 IEC, and other relevant national and international standards for the full
137 listing and explanation of the binary and decimal byte size prefixes.
139 @c man end
141 @xref{Option Index}, for an index to GCC's options.
143 @menu
144 * Option Summary::      Brief list of all options, without explanations.
145 * Overall Options::     Controlling the kind of output:
146                         an executable, object files, assembler files,
147                         or preprocessed source.
148 * Invoking G++::        Compiling C++ programs.
149 * C Dialect Options::   Controlling the variant of C language compiled.
150 * C++ Dialect Options:: Variations on C++.
151 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
152                         and Objective-C++.
153 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
154                         be formatted.
155 * Warning Options::     How picky should the compiler be?
156 * Debugging Options::   Producing debuggable code.
157 * Optimize Options::    How much optimization?
158 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
159 * Preprocessor Options:: Controlling header files and macro definitions.
160                          Also, getting dependency information for Make.
161 * Assembler Options::   Passing options to the assembler.
162 * Link Options::        Specifying libraries and so on.
163 * Directory Options::   Where to find header files and libraries.
164                         Where to find the compiler executable files.
165 * Code Gen Options::    Specifying conventions for function calls, data layout
166                         and register usage.
167 * Developer Options::   Printing GCC configuration info, statistics, and
168                         debugging dumps.
169 * Submodel Options::    Target-specific options, such as compiling for a
170                         specific processor variant.
171 * Spec Files::          How to pass switches to sub-processes.
172 * Environment Variables:: Env vars that affect GCC.
173 * Precompiled Headers:: Compiling a header once, and using it many times.
174 @end menu
176 @c man begin OPTIONS
178 @node Option Summary
179 @section Option Summary
181 Here is a summary of all the options, grouped by type.  Explanations are
182 in the following sections.
184 @table @emph
185 @item Overall Options
186 @xref{Overall Options,,Options Controlling the Kind of Output}.
187 @gccoptlist{-c  -S  -E  -o @var{file}  -x @var{language}  @gol
188 -v  -###  --help@r{[}=@var{class}@r{[},@dots{}@r{]]}  --target-help  --version @gol
189 -pass-exit-codes  -pipe  -specs=@var{file}  -wrapper  @gol
190 @@@var{file}  -ffile-prefix-map=@var{old}=@var{new}  @gol
191 -fplugin=@var{file}  -fplugin-arg-@var{name}=@var{arg}  @gol
192 -fdump-ada-spec@r{[}-slim@r{]}  -fada-spec-parent=@var{unit}  -fdump-go-spec=@var{file}}
194 @item C Language Options
195 @xref{C Dialect Options,,Options Controlling C Dialect}.
196 @gccoptlist{-ansi  -std=@var{standard}  -fgnu89-inline @gol
197 -fpermitted-flt-eval-methods=@var{standard} @gol
198 -aux-info @var{filename}  -fallow-parameterless-variadic-functions @gol
199 -fno-asm  -fno-builtin  -fno-builtin-@var{function}  -fgimple@gol
200 -fhosted  -ffreestanding @gol
201 -fopenacc  -fopenacc-dim=@var{geom} @gol
202 -fopenmp  -fopenmp-simd @gol
203 -fms-extensions  -fplan9-extensions  -fsso-struct=@var{endianness} @gol
204 -fallow-single-precision  -fcond-mismatch  -flax-vector-conversions @gol
205 -fsigned-bitfields  -fsigned-char @gol
206 -funsigned-bitfields  -funsigned-char}
208 @item C++ Language Options
209 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
210 @gccoptlist{-fabi-version=@var{n}  -fno-access-control @gol
211 -faligned-new=@var{n}  -fargs-in-order=@var{n}  -fchar8_t  -fcheck-new @gol
212 -fconstexpr-depth=@var{n}  -fconstexpr-loop-limit=@var{n} @gol
213 -fconstexpr-ops-limit=@var{n} -fno-elide-constructors @gol
214 -fno-enforce-eh-specs @gol
215 -fno-gnu-keywords @gol
216 -fno-implicit-templates @gol
217 -fno-implicit-inline-templates @gol
218 -fno-implement-inlines  -fms-extensions @gol
219 -fnew-inheriting-ctors @gol
220 -fnew-ttp-matching @gol
221 -fno-nonansi-builtins  -fnothrow-opt  -fno-operator-names @gol
222 -fno-optional-diags  -fpermissive @gol
223 -fno-pretty-templates @gol
224 -frepo  -fno-rtti  -fsized-deallocation @gol
225 -ftemplate-backtrace-limit=@var{n} @gol
226 -ftemplate-depth=@var{n} @gol
227 -fno-threadsafe-statics  -fuse-cxa-atexit @gol
228 -fno-weak  -nostdinc++ @gol
229 -fvisibility-inlines-hidden @gol
230 -fvisibility-ms-compat @gol
231 -fext-numeric-literals @gol
232 -Wabi=@var{n}  -Wabi-tag  -Wconversion-null  -Wctor-dtor-privacy @gol
233 -Wdelete-non-virtual-dtor  -Wdeprecated-copy  -Wdeprecated-copy-dtor @gol
234 -Wliteral-suffix @gol
235 -Wmultiple-inheritance  -Wno-init-list-lifetime @gol
236 -Wnamespaces  -Wnarrowing @gol
237 -Wpessimizing-move  -Wredundant-move @gol
238 -Wnoexcept  -Wnoexcept-type  -Wclass-memaccess @gol
239 -Wnon-virtual-dtor  -Wreorder  -Wregister @gol
240 -Weffc++  -Wstrict-null-sentinel  -Wtemplates @gol
241 -Wno-non-template-friend  -Wold-style-cast @gol
242 -Woverloaded-virtual  -Wno-pmf-conversions @gol
243 -Wno-class-conversion  -Wno-terminate @gol
244 -Wsign-promo  -Wvirtual-inheritance}
246 @item Objective-C and Objective-C++ Language Options
247 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
248 Objective-C and Objective-C++ Dialects}.
249 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
250 -fgnu-runtime  -fnext-runtime @gol
251 -fno-nil-receivers @gol
252 -fobjc-abi-version=@var{n} @gol
253 -fobjc-call-cxx-cdtors @gol
254 -fobjc-direct-dispatch @gol
255 -fobjc-exceptions @gol
256 -fobjc-gc @gol
257 -fobjc-nilcheck @gol
258 -fobjc-std=objc1 @gol
259 -fno-local-ivars @gol
260 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
261 -freplace-objc-classes @gol
262 -fzero-link @gol
263 -gen-decls @gol
264 -Wassign-intercept @gol
265 -Wno-protocol  -Wselector @gol
266 -Wstrict-selector-match @gol
267 -Wundeclared-selector}
269 @item Diagnostic Message Formatting Options
270 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
271 @gccoptlist{-fmessage-length=@var{n}  @gol
272 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]}  @gol
273 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]}  @gol
274 -fdiagnostics-format=@r{[}text@r{|}json@r{]}  @gol
275 -fno-diagnostics-show-option  -fno-diagnostics-show-caret @gol
276 -fno-diagnostics-show-labels  -fno-diagnostics-show-line-numbers @gol
277 -fdiagnostics-minimum-margin-width=@var{width} @gol
278 -fdiagnostics-parseable-fixits  -fdiagnostics-generate-patch @gol
279 -fdiagnostics-show-template-tree  -fno-elide-type @gol
280 -fno-show-column}
282 @item Warning Options
283 @xref{Warning Options,,Options to Request or Suppress Warnings}.
284 @gccoptlist{-fsyntax-only  -fmax-errors=@var{n}  -Wpedantic @gol
285 -pedantic-errors @gol
286 -w  -Wextra  -Wall  -Waddress  -Waddress-of-packed-member @gol
287 -Waggregate-return  -Waligned-new @gol
288 -Walloc-zero  -Walloc-size-larger-than=@var{byte-size} @gol
289 -Walloca  -Walloca-larger-than=@var{byte-size} @gol
290 -Wno-aggressive-loop-optimizations  -Warray-bounds  -Warray-bounds=@var{n} @gol
291 -Wno-attributes  -Wattribute-alias=@var{n}  @gol
292 -Wbool-compare  -Wbool-operation @gol
293 -Wno-builtin-declaration-mismatch @gol
294 -Wno-builtin-macro-redefined  -Wc90-c99-compat  -Wc99-c11-compat @gol
295 -Wc++-compat  -Wc++11-compat  -Wc++14-compat  -Wc++17-compat  @gol
296 -Wcast-align  -Wcast-align=strict  -Wcast-function-type  -Wcast-qual  @gol
297 -Wchar-subscripts  -Wcatch-value  -Wcatch-value=@var{n} @gol
298 -Wclobbered  -Wcomment  -Wconditionally-supported @gol
299 -Wconversion  -Wcoverage-mismatch  -Wno-cpp  -Wdangling-else  -Wdate-time @gol
300 -Wdelete-incomplete @gol
301 -Wno-attribute-warning @gol
302 -Wno-deprecated  -Wno-deprecated-declarations  -Wno-designated-init @gol
303 -Wdisabled-optimization @gol
304 -Wno-discarded-qualifiers  -Wno-discarded-array-qualifiers @gol
305 -Wno-div-by-zero  -Wdouble-promotion @gol
306 -Wduplicated-branches  -Wduplicated-cond @gol
307 -Wempty-body  -Wenum-compare  -Wno-endif-labels  -Wexpansion-to-defined @gol
308 -Werror  -Werror=*  -Wextra-semi  -Wfatal-errors @gol
309 -Wfloat-equal  -Wformat  -Wformat=2 @gol
310 -Wno-format-contains-nul  -Wno-format-extra-args  @gol
311 -Wformat-nonliteral  -Wformat-overflow=@var{n} @gol
312 -Wformat-security  -Wformat-signedness  -Wformat-truncation=@var{n} @gol
313 -Wformat-y2k  -Wframe-address @gol
314 -Wframe-larger-than=@var{byte-size}  -Wno-free-nonheap-object @gol
315 -Wjump-misses-init @gol
316 -Whsa  -Wif-not-aligned @gol
317 -Wignored-qualifiers  -Wignored-attributes  -Wincompatible-pointer-types @gol
318 -Wimplicit  -Wimplicit-fallthrough  -Wimplicit-fallthrough=@var{n} @gol
319 -Wimplicit-function-declaration  -Wimplicit-int @gol
320 -Winit-self  -Winline  -Wno-int-conversion  -Wint-in-bool-context @gol
321 -Wno-int-to-pointer-cast  -Winvalid-memory-model  -Wno-invalid-offsetof @gol
322 -Winvalid-pch  -Wlarger-than=@var{byte-size} @gol
323 -Wlogical-op  -Wlogical-not-parentheses  -Wlong-long @gol
324 -Wmain  -Wmaybe-uninitialized  -Wmemset-elt-size  -Wmemset-transposed-args @gol
325 -Wmisleading-indentation  -Wmissing-attributes  -Wmissing-braces @gol
326 -Wmissing-field-initializers  -Wmissing-format-attribute @gol
327 -Wmissing-include-dirs  -Wmissing-noreturn  -Wmissing-profile @gol
328 -Wno-multichar  -Wmultistatement-macros  -Wnonnull  -Wnonnull-compare @gol
329 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
330 -Wnull-dereference  -Wodr  -Wno-overflow  -Wopenmp-simd  @gol
331 -Woverride-init-side-effects  -Woverlength-strings @gol
332 -Wpacked  -Wpacked-bitfield-compat -Wpacked-not-aligned  -Wpadded @gol
333 -Wparentheses  -Wno-pedantic-ms-format @gol
334 -Wplacement-new  -Wplacement-new=@var{n} @gol
335 -Wpointer-arith  -Wpointer-compare  -Wno-pointer-to-int-cast @gol
336 -Wno-pragmas  -Wno-prio-ctor-dtor  -Wredundant-decls @gol
337 -Wrestrict  -Wno-return-local-addr @gol
338 -Wreturn-type  -Wsequence-point  -Wshadow  -Wno-shadow-ivar @gol
339 -Wshadow=global,  -Wshadow=local,  -Wshadow=compatible-local @gol
340 -Wshift-overflow  -Wshift-overflow=@var{n} @gol
341 -Wshift-count-negative  -Wshift-count-overflow  -Wshift-negative-value @gol
342 -Wsign-compare  -Wsign-conversion  -Wfloat-conversion @gol
343 -Wno-scalar-storage-order  -Wsizeof-pointer-div @gol
344 -Wsizeof-pointer-memaccess  -Wsizeof-array-argument @gol
345 -Wstack-protector  -Wstack-usage=@var{byte-size}  -Wstrict-aliasing @gol
346 -Wstrict-aliasing=n  -Wstrict-overflow  -Wstrict-overflow=@var{n} @gol
347 -Wstringop-overflow=@var{n}  -Wstringop-truncation  -Wsubobject-linkage @gol
348 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]} @gol
349 -Wsuggest-final-types @gol  -Wsuggest-final-methods  -Wsuggest-override @gol
350 -Wswitch  -Wswitch-bool  -Wswitch-default  -Wswitch-enum @gol
351 -Wswitch-unreachable  -Wsync-nand @gol
352 -Wsystem-headers  -Wtautological-compare  -Wtrampolines  -Wtrigraphs @gol
353 -Wtype-limits  -Wundef @gol
354 -Wuninitialized  -Wunknown-pragmas @gol
355 -Wunsuffixed-float-constants  -Wunused  -Wunused-function @gol
356 -Wunused-label  -Wunused-local-typedefs  -Wunused-macros @gol
357 -Wunused-parameter  -Wno-unused-result @gol
358 -Wunused-value  -Wunused-variable @gol
359 -Wunused-const-variable  -Wunused-const-variable=@var{n} @gol
360 -Wunused-but-set-parameter  -Wunused-but-set-variable @gol
361 -Wuseless-cast  -Wvariadic-macros  -Wvector-operation-performance @gol
362 -Wvla  -Wvla-larger-than=@var{byte-size}  -Wvolatile-register-var @gol
363 -Wwrite-strings @gol
364 -Wzero-as-null-pointer-constant}
366 @item C and Objective-C-only Warning Options
367 @gccoptlist{-Wbad-function-cast  -Wmissing-declarations @gol
368 -Wmissing-parameter-type  -Wmissing-prototypes  -Wnested-externs @gol
369 -Wold-style-declaration  -Wold-style-definition @gol
370 -Wstrict-prototypes  -Wtraditional  -Wtraditional-conversion @gol
371 -Wdeclaration-after-statement  -Wpointer-sign}
373 @item Debugging Options
374 @xref{Debugging Options,,Options for Debugging Your Program}.
375 @gccoptlist{-g  -g@var{level}  -gdwarf  -gdwarf-@var{version} @gol
376 -ggdb  -grecord-gcc-switches  -gno-record-gcc-switches @gol
377 -gstabs  -gstabs+  -gstrict-dwarf  -gno-strict-dwarf @gol
378 -gas-loc-support  -gno-as-loc-support @gol
379 -gas-locview-support  -gno-as-locview-support @gol
380 -gcolumn-info  -gno-column-info @gol
381 -gstatement-frontiers  -gno-statement-frontiers @gol
382 -gvariable-location-views  -gno-variable-location-views @gol
383 -ginternal-reset-location-views  -gno-internal-reset-location-views @gol
384 -ginline-points  -gno-inline-points @gol
385 -gvms  -gxcoff  -gxcoff+  -gz@r{[}=@var{type}@r{]} @gol
386 -gsplit-dwarf  -gdescribe-dies  -gno-describe-dies @gol
387 -fdebug-prefix-map=@var{old}=@var{new}  -fdebug-types-section @gol
388 -fno-eliminate-unused-debug-types @gol
389 -femit-struct-debug-baseonly  -femit-struct-debug-reduced @gol
390 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
391 -feliminate-unused-debug-symbols  -femit-class-debug-always @gol
392 -fno-merge-debug-strings  -fno-dwarf2-cfi-asm @gol
393 -fvar-tracking  -fvar-tracking-assignments}
395 @item Optimization Options
396 @xref{Optimize Options,,Options that Control Optimization}.
397 @gccoptlist{-faggressive-loop-optimizations @gol
398 -falign-functions[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
399 -falign-jumps[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
400 -falign-labels[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
401 -falign-loops[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
402 -fassociative-math  -fauto-profile  -fauto-profile[=@var{path}] @gol
403 -fauto-inc-dec  -fbranch-probabilities @gol
404 -fbranch-target-load-optimize  -fbranch-target-load-optimize2 @gol
405 -fbtr-bb-exclusive  -fcaller-saves @gol
406 -fcombine-stack-adjustments  -fconserve-stack @gol
407 -fcompare-elim  -fcprop-registers  -fcrossjumping @gol
408 -fcse-follow-jumps  -fcse-skip-blocks  -fcx-fortran-rules @gol
409 -fcx-limited-range @gol
410 -fdata-sections  -fdce  -fdelayed-branch @gol
411 -fdelete-null-pointer-checks  -fdevirtualize  -fdevirtualize-speculatively @gol
412 -fdevirtualize-at-ltrans  -fdse @gol
413 -fearly-inlining  -fipa-sra  -fexpensive-optimizations  -ffat-lto-objects @gol
414 -ffast-math  -ffinite-math-only  -ffloat-store  -fexcess-precision=@var{style} @gol
415 -fforward-propagate  -ffp-contract=@var{style}  -ffunction-sections @gol
416 -fgcse  -fgcse-after-reload  -fgcse-las  -fgcse-lm  -fgraphite-identity @gol
417 -fgcse-sm  -fhoist-adjacent-loads  -fif-conversion @gol
418 -fif-conversion2  -findirect-inlining @gol
419 -finline-functions  -finline-functions-called-once  -finline-limit=@var{n} @gol
420 -finline-small-functions  -fipa-cp  -fipa-cp-clone @gol
421 -fipa-bit-cp  -fipa-vrp  -fipa-pta  -fipa-profile  -fipa-pure-const @gol
422 -fipa-reference  -fipa-reference-addressable @gol
423 -fipa-stack-alignment  -fipa-icf  -fira-algorithm=@var{algorithm} @gol
424 -flive-patching=@var{level} @gol
425 -fira-region=@var{region}  -fira-hoist-pressure @gol
426 -fira-loop-pressure  -fno-ira-share-save-slots @gol
427 -fno-ira-share-spill-slots @gol
428 -fisolate-erroneous-paths-dereference  -fisolate-erroneous-paths-attribute @gol
429 -fivopts  -fkeep-inline-functions  -fkeep-static-functions @gol
430 -fkeep-static-consts  -flimit-function-alignment  -flive-range-shrinkage @gol
431 -floop-block  -floop-interchange  -floop-strip-mine @gol
432 -floop-unroll-and-jam  -floop-nest-optimize @gol
433 -floop-parallelize-all  -flra-remat  -flto  -flto-compression-level @gol
434 -flto-partition=@var{alg}  -fmerge-all-constants @gol
435 -fmerge-constants  -fmodulo-sched  -fmodulo-sched-allow-regmoves @gol
436 -fmove-loop-invariants  -fno-branch-count-reg @gol
437 -fno-defer-pop  -fno-fp-int-builtin-inexact  -fno-function-cse @gol
438 -fno-guess-branch-probability  -fno-inline  -fno-math-errno  -fno-peephole @gol
439 -fno-peephole2  -fno-printf-return-value  -fno-sched-interblock @gol
440 -fno-sched-spec  -fno-signed-zeros @gol
441 -fno-toplevel-reorder  -fno-trapping-math  -fno-zero-initialized-in-bss @gol
442 -fomit-frame-pointer  -foptimize-sibling-calls @gol
443 -fpartial-inlining  -fpeel-loops  -fpredictive-commoning @gol
444 -fprefetch-loop-arrays @gol
445 -fprofile-correction @gol
446 -fprofile-use  -fprofile-use=@var{path}  -fprofile-values @gol
447 -fprofile-reorder-functions @gol
448 -freciprocal-math  -free  -frename-registers  -freorder-blocks @gol
449 -freorder-blocks-algorithm=@var{algorithm} @gol
450 -freorder-blocks-and-partition  -freorder-functions @gol
451 -frerun-cse-after-loop  -freschedule-modulo-scheduled-loops @gol
452 -frounding-math  -fsave-optimization-record @gol
453 -fsched2-use-superblocks  -fsched-pressure @gol
454 -fsched-spec-load  -fsched-spec-load-dangerous @gol
455 -fsched-stalled-insns-dep[=@var{n}]  -fsched-stalled-insns[=@var{n}] @gol
456 -fsched-group-heuristic  -fsched-critical-path-heuristic @gol
457 -fsched-spec-insn-heuristic  -fsched-rank-heuristic @gol
458 -fsched-last-insn-heuristic  -fsched-dep-count-heuristic @gol
459 -fschedule-fusion @gol
460 -fschedule-insns  -fschedule-insns2  -fsection-anchors @gol
461 -fselective-scheduling  -fselective-scheduling2 @gol
462 -fsel-sched-pipelining  -fsel-sched-pipelining-outer-loops @gol
463 -fsemantic-interposition  -fshrink-wrap  -fshrink-wrap-separate @gol
464 -fsignaling-nans @gol
465 -fsingle-precision-constant  -fsplit-ivs-in-unroller  -fsplit-loops@gol
466 -fsplit-paths @gol
467 -fsplit-wide-types  -fssa-backprop  -fssa-phiopt @gol
468 -fstdarg-opt  -fstore-merging  -fstrict-aliasing @gol
469 -fthread-jumps  -ftracer  -ftree-bit-ccp @gol
470 -ftree-builtin-call-dce  -ftree-ccp  -ftree-ch @gol
471 -ftree-coalesce-vars  -ftree-copy-prop  -ftree-dce  -ftree-dominator-opts @gol
472 -ftree-dse  -ftree-forwprop  -ftree-fre  -fcode-hoisting @gol
473 -ftree-loop-if-convert  -ftree-loop-im @gol
474 -ftree-phiprop  -ftree-loop-distribution  -ftree-loop-distribute-patterns @gol
475 -ftree-loop-ivcanon  -ftree-loop-linear  -ftree-loop-optimize @gol
476 -ftree-loop-vectorize @gol
477 -ftree-parallelize-loops=@var{n}  -ftree-pre  -ftree-partial-pre  -ftree-pta @gol
478 -ftree-reassoc  -ftree-scev-cprop  -ftree-sink  -ftree-slsr  -ftree-sra @gol
479 -ftree-switch-conversion  -ftree-tail-merge @gol
480 -ftree-ter  -ftree-vectorize  -ftree-vrp  -funconstrained-commons @gol
481 -funit-at-a-time  -funroll-all-loops  -funroll-loops @gol
482 -funsafe-math-optimizations  -funswitch-loops @gol
483 -fipa-ra  -fvariable-expansion-in-unroller  -fvect-cost-model  -fvpt @gol
484 -fweb  -fwhole-program  -fwpa  -fuse-linker-plugin @gol
485 --param @var{name}=@var{value}
486 -O  -O0  -O1  -O2  -O3  -Os  -Ofast  -Og}
488 @item Program Instrumentation Options
489 @xref{Instrumentation Options,,Program Instrumentation Options}.
490 @gccoptlist{-p  -pg  -fprofile-arcs  --coverage  -ftest-coverage @gol
491 -fprofile-abs-path @gol
492 -fprofile-dir=@var{path}  -fprofile-generate  -fprofile-generate=@var{path} @gol
493 -fprofile-update=@var{method}  -fprofile-filter-files=@var{regex} @gol
494 -fprofile-exclude-files=@var{regex} @gol
495 -fsanitize=@var{style}  -fsanitize-recover  -fsanitize-recover=@var{style} @gol
496 -fasan-shadow-offset=@var{number}  -fsanitize-sections=@var{s1},@var{s2},... @gol
497 -fsanitize-undefined-trap-on-error  -fbounds-check @gol
498 -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]} @gol
499 -fstack-protector  -fstack-protector-all  -fstack-protector-strong @gol
500 -fstack-protector-explicit  -fstack-check @gol
501 -fstack-limit-register=@var{reg}  -fstack-limit-symbol=@var{sym} @gol
502 -fno-stack-limit  -fsplit-stack @gol
503 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
504 -fvtv-counts  -fvtv-debug @gol
505 -finstrument-functions @gol
506 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
507 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
509 @item Preprocessor Options
510 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
511 @gccoptlist{-A@var{question}=@var{answer} @gol
512 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
513 -C  -CC  -D@var{macro}@r{[}=@var{defn}@r{]} @gol
514 -dD  -dI  -dM  -dN  -dU @gol
515 -fdebug-cpp  -fdirectives-only  -fdollars-in-identifiers  @gol
516 -fexec-charset=@var{charset}  -fextended-identifiers  @gol
517 -finput-charset=@var{charset}  -fmacro-prefix-map=@var{old}=@var{new}  @gol
518 -fno-canonical-system-headers  -fpch-deps  -fpch-preprocess  @gol
519 -fpreprocessed  -ftabstop=@var{width}  -ftrack-macro-expansion  @gol
520 -fwide-exec-charset=@var{charset}  -fworking-directory @gol
521 -H  -imacros @var{file}  -include @var{file} @gol
522 -M  -MD  -MF  -MG  -MM  -MMD  -MP  -MQ  -MT @gol
523 -no-integrated-cpp  -P  -pthread  -remap @gol
524 -traditional  -traditional-cpp  -trigraphs @gol
525 -U@var{macro}  -undef  @gol
526 -Wp,@var{option}  -Xpreprocessor @var{option}}
528 @item Assembler Options
529 @xref{Assembler Options,,Passing Options to the Assembler}.
530 @gccoptlist{-Wa,@var{option}  -Xassembler @var{option}}
532 @item Linker Options
533 @xref{Link Options,,Options for Linking}.
534 @gccoptlist{@var{object-file-name}  -fuse-ld=@var{linker}  -l@var{library} @gol
535 -nostartfiles  -nodefaultlibs  -nolibc  -nostdlib @gol
536 -e @var{entry}  --entry=@var{entry} @gol
537 -pie  -pthread  -r  -rdynamic @gol
538 -s  -static  -static-pie  -static-libgcc  -static-libstdc++ @gol
539 -static-libasan  -static-libtsan  -static-liblsan  -static-libubsan @gol
540 -shared  -shared-libgcc  -symbolic @gol
541 -T @var{script}  -Wl,@var{option}  -Xlinker @var{option} @gol
542 -u @var{symbol}  -z @var{keyword}}
544 @item Directory Options
545 @xref{Directory Options,,Options for Directory Search}.
546 @gccoptlist{-B@var{prefix}  -I@var{dir}  -I- @gol
547 -idirafter @var{dir} @gol
548 -imacros @var{file}  -imultilib @var{dir} @gol
549 -iplugindir=@var{dir}  -iprefix @var{file} @gol
550 -iquote @var{dir}  -isysroot @var{dir}  -isystem @var{dir} @gol
551 -iwithprefix @var{dir}  -iwithprefixbefore @var{dir}  @gol
552 -L@var{dir}  -no-canonical-prefixes  --no-sysroot-suffix @gol
553 -nostdinc  -nostdinc++  --sysroot=@var{dir}}
555 @item Code Generation Options
556 @xref{Code Gen Options,,Options for Code Generation Conventions}.
557 @gccoptlist{-fcall-saved-@var{reg}  -fcall-used-@var{reg} @gol
558 -ffixed-@var{reg}  -fexceptions @gol
559 -fnon-call-exceptions  -fdelete-dead-exceptions  -funwind-tables @gol
560 -fasynchronous-unwind-tables @gol
561 -fno-gnu-unique @gol
562 -finhibit-size-directive  -fno-common  -fno-ident @gol
563 -fpcc-struct-return  -fpic  -fPIC  -fpie  -fPIE  -fno-plt @gol
564 -fno-jump-tables @gol
565 -frecord-gcc-switches @gol
566 -freg-struct-return  -fshort-enums  -fshort-wchar @gol
567 -fverbose-asm  -fpack-struct[=@var{n}]  @gol
568 -fleading-underscore  -ftls-model=@var{model} @gol
569 -fstack-reuse=@var{reuse_level} @gol
570 -ftrampolines  -ftrapv  -fwrapv @gol
571 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
572 -fstrict-volatile-bitfields  -fsync-libcalls}
574 @item Developer Options
575 @xref{Developer Options,,GCC Developer Options}.
576 @gccoptlist{-d@var{letters}  -dumpspecs  -dumpmachine  -dumpversion @gol
577 -dumpfullversion  -fchecking  -fchecking=@var{n}  -fdbg-cnt-list @gol
578 -fdbg-cnt=@var{counter-value-list} @gol
579 -fdisable-ipa-@var{pass_name} @gol
580 -fdisable-rtl-@var{pass_name} @gol
581 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
582 -fdisable-tree-@var{pass_name} @gol
583 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
584 -fdump-debug  -fdump-earlydebug @gol
585 -fdump-noaddr  -fdump-unnumbered  -fdump-unnumbered-links @gol
586 -fdump-final-insns@r{[}=@var{file}@r{]} @gol
587 -fdump-ipa-all  -fdump-ipa-cgraph  -fdump-ipa-inline @gol
588 -fdump-lang-all @gol
589 -fdump-lang-@var{switch} @gol
590 -fdump-lang-@var{switch}-@var{options} @gol
591 -fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
592 -fdump-passes @gol
593 -fdump-rtl-@var{pass}  -fdump-rtl-@var{pass}=@var{filename} @gol
594 -fdump-statistics @gol
595 -fdump-tree-all @gol
596 -fdump-tree-@var{switch} @gol
597 -fdump-tree-@var{switch}-@var{options} @gol
598 -fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
599 -fcompare-debug@r{[}=@var{opts}@r{]}  -fcompare-debug-second @gol
600 -fenable-@var{kind}-@var{pass} @gol
601 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
602 -fira-verbose=@var{n} @gol
603 -flto-report  -flto-report-wpa  -fmem-report-wpa @gol
604 -fmem-report  -fpre-ipa-mem-report  -fpost-ipa-mem-report @gol
605 -fopt-info  -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
606 -fprofile-report @gol
607 -frandom-seed=@var{string}  -fsched-verbose=@var{n} @gol
608 -fsel-sched-verbose  -fsel-sched-dump-cfg  -fsel-sched-pipelining-verbose @gol
609 -fstats  -fstack-usage  -ftime-report  -ftime-report-details @gol
610 -fvar-tracking-assignments-toggle  -gtoggle @gol
611 -print-file-name=@var{library}  -print-libgcc-file-name @gol
612 -print-multi-directory  -print-multi-lib  -print-multi-os-directory @gol
613 -print-prog-name=@var{program}  -print-search-dirs  -Q @gol
614 -print-sysroot  -print-sysroot-headers-suffix @gol
615 -save-temps  -save-temps=cwd  -save-temps=obj  -time@r{[}=@var{file}@r{]}}
617 @item Machine-Dependent Options
618 @xref{Submodel Options,,Machine-Dependent Options}.
619 @c This list is ordered alphanumerically by subsection name.
620 @c Try and put the significant identifier (CPU or system) first,
621 @c so users have a clue at guessing where the ones they want will be.
623 @emph{AArch64 Options}
624 @gccoptlist{-mabi=@var{name}  -mbig-endian  -mlittle-endian @gol
625 -mgeneral-regs-only @gol
626 -mcmodel=tiny  -mcmodel=small  -mcmodel=large @gol
627 -mstrict-align  -mno-strict-align @gol
628 -momit-leaf-frame-pointer @gol
629 -mtls-dialect=desc  -mtls-dialect=traditional @gol
630 -mtls-size=@var{size} @gol
631 -mfix-cortex-a53-835769  -mfix-cortex-a53-843419 @gol
632 -mlow-precision-recip-sqrt  -mlow-precision-sqrt  -mlow-precision-div @gol
633 -mpc-relative-literal-loads @gol
634 -msign-return-address=@var{scope} @gol
635 -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}]|@var{bti} @gol
636 -march=@var{name}  -mcpu=@var{name}  -mtune=@var{name}  @gol
637 -moverride=@var{string}  -mverbose-cost-dump @gol
638 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{sysreg} @gol
639 -mstack-protector-guard-offset=@var{offset} -mtrack-speculation }
641 @emph{Adapteva Epiphany Options}
642 @gccoptlist{-mhalf-reg-file  -mprefer-short-insn-regs @gol
643 -mbranch-cost=@var{num}  -mcmove  -mnops=@var{num}  -msoft-cmpsf @gol
644 -msplit-lohi  -mpost-inc  -mpost-modify  -mstack-offset=@var{num} @gol
645 -mround-nearest  -mlong-calls  -mshort-calls  -msmall16 @gol
646 -mfp-mode=@var{mode}  -mvect-double  -max-vect-align=@var{num} @gol
647 -msplit-vecmove-early  -m1reg-@var{reg}}
649 @emph{AMD GCN Options}
650 @gccoptlist{-march=@var{gpu} -mtune=@var{gpu} -mstack-size=@var{bytes}}
652 @emph{ARC Options}
653 @gccoptlist{-mbarrel-shifter  -mjli-always @gol
654 -mcpu=@var{cpu}  -mA6  -mARC600  -mA7  -mARC700 @gol
655 -mdpfp  -mdpfp-compact  -mdpfp-fast  -mno-dpfp-lrsr @gol
656 -mea  -mno-mpy  -mmul32x16  -mmul64  -matomic @gol
657 -mnorm  -mspfp  -mspfp-compact  -mspfp-fast  -msimd  -msoft-float  -mswap @gol
658 -mcrc  -mdsp-packa  -mdvbf  -mlock  -mmac-d16  -mmac-24  -mrtsc  -mswape @gol
659 -mtelephony  -mxy  -misize  -mannotate-align  -marclinux  -marclinux_prof @gol
660 -mlong-calls  -mmedium-calls  -msdata  -mirq-ctrl-saved @gol
661 -mrgf-banked-regs  -mlpc-width=@var{width}  -G @var{num} @gol
662 -mvolatile-cache  -mtp-regno=@var{regno} @gol
663 -malign-call  -mauto-modify-reg  -mbbit-peephole  -mno-brcc @gol
664 -mcase-vector-pcrel  -mcompact-casesi  -mno-cond-exec  -mearly-cbranchsi @gol
665 -mexpand-adddi  -mindexed-loads  -mlra  -mlra-priority-none @gol
666 -mlra-priority-compact mlra-priority-noncompact  -mmillicode @gol
667 -mmixed-code  -mq-class  -mRcq  -mRcw  -msize-level=@var{level} @gol
668 -mtune=@var{cpu}  -mmultcost=@var{num}  -mcode-density-frame @gol
669 -munalign-prob-threshold=@var{probability}  -mmpy-option=@var{multo} @gol
670 -mdiv-rem  -mcode-density  -mll64  -mfpu=@var{fpu}  -mrf16  -mbranch-index}
672 @emph{ARM Options}
673 @gccoptlist{-mapcs-frame  -mno-apcs-frame @gol
674 -mabi=@var{name} @gol
675 -mapcs-stack-check  -mno-apcs-stack-check @gol
676 -mapcs-reentrant  -mno-apcs-reentrant @gol
677 -mgeneral-regs-only @gol
678 -msched-prolog  -mno-sched-prolog @gol
679 -mlittle-endian  -mbig-endian @gol
680 -mbe8  -mbe32 @gol
681 -mfloat-abi=@var{name} @gol
682 -mfp16-format=@var{name}
683 -mthumb-interwork  -mno-thumb-interwork @gol
684 -mcpu=@var{name}  -march=@var{name}  -mfpu=@var{name}  @gol
685 -mtune=@var{name}  -mprint-tune-info @gol
686 -mstructure-size-boundary=@var{n} @gol
687 -mabort-on-noreturn @gol
688 -mlong-calls  -mno-long-calls @gol
689 -msingle-pic-base  -mno-single-pic-base @gol
690 -mpic-register=@var{reg} @gol
691 -mnop-fun-dllimport @gol
692 -mpoke-function-name @gol
693 -mthumb  -marm  -mflip-thumb @gol
694 -mtpcs-frame  -mtpcs-leaf-frame @gol
695 -mcaller-super-interworking  -mcallee-super-interworking @gol
696 -mtp=@var{name}  -mtls-dialect=@var{dialect} @gol
697 -mword-relocations @gol
698 -mfix-cortex-m3-ldrd @gol
699 -munaligned-access @gol
700 -mneon-for-64bits @gol
701 -mslow-flash-data @gol
702 -masm-syntax-unified @gol
703 -mrestrict-it @gol
704 -mverbose-cost-dump @gol
705 -mpure-code @gol
706 -mcmse}
708 @emph{AVR Options}
709 @gccoptlist{-mmcu=@var{mcu}  -mabsdata  -maccumulate-args @gol
710 -mbranch-cost=@var{cost} @gol
711 -mcall-prologues  -mgas-isr-prologues  -mint8 @gol
712 -mn_flash=@var{size}  -mno-interrupts @gol
713 -mmain-is-OS_task  -mrelax  -mrmw  -mstrict-X  -mtiny-stack @gol
714 -mfract-convert-truncate @gol
715 -mshort-calls  -nodevicelib @gol
716 -Waddr-space-convert  -Wmisspelled-isr}
718 @emph{Blackfin Options}
719 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
720 -msim  -momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer @gol
721 -mspecld-anomaly  -mno-specld-anomaly  -mcsync-anomaly  -mno-csync-anomaly @gol
722 -mlow-64k  -mno-low64k  -mstack-check-l1  -mid-shared-library @gol
723 -mno-id-shared-library  -mshared-library-id=@var{n} @gol
724 -mleaf-id-shared-library  -mno-leaf-id-shared-library @gol
725 -msep-data  -mno-sep-data  -mlong-calls  -mno-long-calls @gol
726 -mfast-fp  -minline-plt  -mmulticore  -mcorea  -mcoreb  -msdram @gol
727 -micplb}
729 @emph{C6X Options}
730 @gccoptlist{-mbig-endian  -mlittle-endian  -march=@var{cpu} @gol
731 -msim  -msdata=@var{sdata-type}}
733 @emph{CRIS Options}
734 @gccoptlist{-mcpu=@var{cpu}  -march=@var{cpu}  -mtune=@var{cpu} @gol
735 -mmax-stack-frame=@var{n}  -melinux-stacksize=@var{n} @gol
736 -metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects @gol
737 -mstack-align  -mdata-align  -mconst-align @gol
738 -m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue  -mno-gotplt @gol
739 -melf  -maout  -melinux  -mlinux  -sim  -sim2 @gol
740 -mmul-bug-workaround  -mno-mul-bug-workaround}
742 @emph{CR16 Options}
743 @gccoptlist{-mmac @gol
744 -mcr16cplus  -mcr16c @gol
745 -msim  -mint32  -mbit-ops
746 -mdata-model=@var{model}}
748 @emph{C-SKY Options}
749 @gccoptlist{-march=@var{arch}  -mcpu=@var{cpu} @gol
750 -mbig-endian  -EB  -mlittle-endian  -EL @gol
751 -mhard-float  -msoft-float  -mfpu=@var{fpu}  -mdouble-float  -mfdivdu @gol
752 -melrw  -mistack  -mmp  -mcp  -mcache  -msecurity  -mtrust @gol
753 -mdsp  -medsp  -mvdsp @gol
754 -mdiv  -msmart  -mhigh-registers  -manchor @gol
755 -mpushpop  -mmultiple-stld  -mconstpool  -mstack-size  -mccrt @gol
756 -mbranch-cost=@var{n}  -mcse-cc  -msched-prolog}
758 @emph{Darwin Options}
759 @gccoptlist{-all_load  -allowable_client  -arch  -arch_errors_fatal @gol
760 -arch_only  -bind_at_load  -bundle  -bundle_loader @gol
761 -client_name  -compatibility_version  -current_version @gol
762 -dead_strip @gol
763 -dependency-file  -dylib_file  -dylinker_install_name @gol
764 -dynamic  -dynamiclib  -exported_symbols_list @gol
765 -filelist  -flat_namespace  -force_cpusubtype_ALL @gol
766 -force_flat_namespace  -headerpad_max_install_names @gol
767 -iframework @gol
768 -image_base  -init  -install_name  -keep_private_externs @gol
769 -multi_module  -multiply_defined  -multiply_defined_unused @gol
770 -noall_load   -no_dead_strip_inits_and_terms @gol
771 -nofixprebinding  -nomultidefs  -noprebind  -noseglinkedit @gol
772 -pagezero_size  -prebind  -prebind_all_twolevel_modules @gol
773 -private_bundle  -read_only_relocs  -sectalign @gol
774 -sectobjectsymbols  -whyload  -seg1addr @gol
775 -sectcreate  -sectobjectsymbols  -sectorder @gol
776 -segaddr  -segs_read_only_addr  -segs_read_write_addr @gol
777 -seg_addr_table  -seg_addr_table_filename  -seglinkedit @gol
778 -segprot  -segs_read_only_addr  -segs_read_write_addr @gol
779 -single_module  -static  -sub_library  -sub_umbrella @gol
780 -twolevel_namespace  -umbrella  -undefined @gol
781 -unexported_symbols_list  -weak_reference_mismatches @gol
782 -whatsloaded  -F  -gused  -gfull  -mmacosx-version-min=@var{version} @gol
783 -mkernel  -mone-byte-bool}
785 @emph{DEC Alpha Options}
786 @gccoptlist{-mno-fp-regs  -msoft-float @gol
787 -mieee  -mieee-with-inexact  -mieee-conformant @gol
788 -mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode} @gol
789 -mtrap-precision=@var{mode}  -mbuild-constants @gol
790 -mcpu=@var{cpu-type}  -mtune=@var{cpu-type} @gol
791 -mbwx  -mmax  -mfix  -mcix @gol
792 -mfloat-vax  -mfloat-ieee @gol
793 -mexplicit-relocs  -msmall-data  -mlarge-data @gol
794 -msmall-text  -mlarge-text @gol
795 -mmemory-latency=@var{time}}
797 @emph{FR30 Options}
798 @gccoptlist{-msmall-model  -mno-lsim}
800 @emph{FT32 Options}
801 @gccoptlist{-msim  -mlra  -mnodiv  -mft32b  -mcompress  -mnopm}
803 @emph{FRV Options}
804 @gccoptlist{-mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 @gol
805 -mhard-float  -msoft-float @gol
806 -malloc-cc  -mfixed-cc  -mdword  -mno-dword @gol
807 -mdouble  -mno-double @gol
808 -mmedia  -mno-media  -mmuladd  -mno-muladd @gol
809 -mfdpic  -minline-plt  -mgprel-ro  -multilib-library-pic @gol
810 -mlinked-fp  -mlong-calls  -malign-labels @gol
811 -mlibrary-pic  -macc-4  -macc-8 @gol
812 -mpack  -mno-pack  -mno-eflags  -mcond-move  -mno-cond-move @gol
813 -moptimize-membar  -mno-optimize-membar @gol
814 -mscc  -mno-scc  -mcond-exec  -mno-cond-exec @gol
815 -mvliw-branch  -mno-vliw-branch @gol
816 -mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec @gol
817 -mno-nested-cond-exec  -mtomcat-stats @gol
818 -mTLS  -mtls @gol
819 -mcpu=@var{cpu}}
821 @emph{GNU/Linux Options}
822 @gccoptlist{-mglibc  -muclibc  -mmusl  -mbionic  -mandroid @gol
823 -tno-android-cc  -tno-android-ld}
825 @emph{H8/300 Options}
826 @gccoptlist{-mrelax  -mh  -ms  -mn  -mexr  -mno-exr  -mint32  -malign-300}
828 @emph{HPPA Options}
829 @gccoptlist{-march=@var{architecture-type} @gol
830 -mcaller-copies  -mdisable-fpregs  -mdisable-indexing @gol
831 -mfast-indirect-calls  -mgas  -mgnu-ld   -mhp-ld @gol
832 -mfixed-range=@var{register-range} @gol
833 -mjump-in-delay  -mlinker-opt  -mlong-calls @gol
834 -mlong-load-store  -mno-disable-fpregs @gol
835 -mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas @gol
836 -mno-jump-in-delay  -mno-long-load-store @gol
837 -mno-portable-runtime  -mno-soft-float @gol
838 -mno-space-regs  -msoft-float  -mpa-risc-1-0 @gol
839 -mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime @gol
840 -mschedule=@var{cpu-type}  -mspace-regs  -msio  -mwsio @gol
841 -munix=@var{unix-std}  -nolibdld  -static  -threads}
843 @emph{IA-64 Options}
844 @gccoptlist{-mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic @gol
845 -mvolatile-asm-stop  -mregister-names  -msdata  -mno-sdata @gol
846 -mconstant-gp  -mauto-pic  -mfused-madd @gol
847 -minline-float-divide-min-latency @gol
848 -minline-float-divide-max-throughput @gol
849 -mno-inline-float-divide @gol
850 -minline-int-divide-min-latency @gol
851 -minline-int-divide-max-throughput  @gol
852 -mno-inline-int-divide @gol
853 -minline-sqrt-min-latency  -minline-sqrt-max-throughput @gol
854 -mno-inline-sqrt @gol
855 -mdwarf2-asm  -mearly-stop-bits @gol
856 -mfixed-range=@var{register-range}  -mtls-size=@var{tls-size} @gol
857 -mtune=@var{cpu-type}  -milp32  -mlp64 @gol
858 -msched-br-data-spec  -msched-ar-data-spec  -msched-control-spec @gol
859 -msched-br-in-data-spec  -msched-ar-in-data-spec  -msched-in-control-spec @gol
860 -msched-spec-ldc  -msched-spec-control-ldc @gol
861 -msched-prefer-non-data-spec-insns  -msched-prefer-non-control-spec-insns @gol
862 -msched-stop-bits-after-every-cycle  -msched-count-spec-in-critical-path @gol
863 -msel-sched-dont-check-control-spec  -msched-fp-mem-deps-zero-cost @gol
864 -msched-max-memory-insns-hard-limit  -msched-max-memory-insns=@var{max-insns}}
866 @emph{LM32 Options}
867 @gccoptlist{-mbarrel-shift-enabled  -mdivide-enabled  -mmultiply-enabled @gol
868 -msign-extend-enabled  -muser-enabled}
870 @emph{M32R/D Options}
871 @gccoptlist{-m32r2  -m32rx  -m32r @gol
872 -mdebug @gol
873 -malign-loops  -mno-align-loops @gol
874 -missue-rate=@var{number} @gol
875 -mbranch-cost=@var{number} @gol
876 -mmodel=@var{code-size-model-type} @gol
877 -msdata=@var{sdata-type} @gol
878 -mno-flush-func  -mflush-func=@var{name} @gol
879 -mno-flush-trap  -mflush-trap=@var{number} @gol
880 -G @var{num}}
882 @emph{M32C Options}
883 @gccoptlist{-mcpu=@var{cpu}  -msim  -memregs=@var{number}}
885 @emph{M680x0 Options}
886 @gccoptlist{-march=@var{arch}  -mcpu=@var{cpu}  -mtune=@var{tune} @gol
887 -m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 @gol
888 -m68060  -mcpu32  -m5200  -m5206e  -m528x  -m5307  -m5407 @gol
889 -mcfv4e  -mbitfield  -mno-bitfield  -mc68000  -mc68020 @gol
890 -mnobitfield  -mrtd  -mno-rtd  -mdiv  -mno-div  -mshort @gol
891 -mno-short  -mhard-float  -m68881  -msoft-float  -mpcrel @gol
892 -malign-int  -mstrict-align  -msep-data  -mno-sep-data @gol
893 -mshared-library-id=n  -mid-shared-library  -mno-id-shared-library @gol
894 -mxgot  -mno-xgot  -mlong-jump-table-offsets}
896 @emph{MCore Options}
897 @gccoptlist{-mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates @gol
898 -mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields @gol
899 -m4byte-functions  -mno-4byte-functions  -mcallgraph-data @gol
900 -mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim @gol
901 -mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment}
903 @emph{MeP Options}
904 @gccoptlist{-mabsdiff  -mall-opts  -maverage  -mbased=@var{n}  -mbitops @gol
905 -mc=@var{n}  -mclip  -mconfig=@var{name}  -mcop  -mcop32  -mcop64  -mivc2 @gol
906 -mdc  -mdiv  -meb  -mel  -mio-volatile  -ml  -mleadz  -mm  -mminmax @gol
907 -mmult  -mno-opts  -mrepeat  -ms  -msatur  -msdram  -msim  -msimnovec  -mtf @gol
908 -mtiny=@var{n}}
910 @emph{MicroBlaze Options}
911 @gccoptlist{-msoft-float  -mhard-float  -msmall-divides  -mcpu=@var{cpu} @gol
912 -mmemcpy  -mxl-soft-mul  -mxl-soft-div  -mxl-barrel-shift @gol
913 -mxl-pattern-compare  -mxl-stack-check  -mxl-gp-opt  -mno-clearbss @gol
914 -mxl-multiply-high  -mxl-float-convert  -mxl-float-sqrt @gol
915 -mbig-endian  -mlittle-endian  -mxl-reorder  -mxl-mode-@var{app-model} @gol
916 -mpic-data-is-text-relative}
918 @emph{MIPS Options}
919 @gccoptlist{-EL  -EB  -march=@var{arch}  -mtune=@var{arch} @gol
920 -mips1  -mips2  -mips3  -mips4  -mips32  -mips32r2  -mips32r3  -mips32r5 @gol
921 -mips32r6  -mips64  -mips64r2  -mips64r3  -mips64r5  -mips64r6 @gol
922 -mips16  -mno-mips16  -mflip-mips16 @gol
923 -minterlink-compressed  -mno-interlink-compressed @gol
924 -minterlink-mips16  -mno-interlink-mips16 @gol
925 -mabi=@var{abi}  -mabicalls  -mno-abicalls @gol
926 -mshared  -mno-shared  -mplt  -mno-plt  -mxgot  -mno-xgot @gol
927 -mgp32  -mgp64  -mfp32  -mfpxx  -mfp64  -mhard-float  -msoft-float @gol
928 -mno-float  -msingle-float  -mdouble-float @gol
929 -modd-spreg  -mno-odd-spreg @gol
930 -mabs=@var{mode}  -mnan=@var{encoding} @gol
931 -mdsp  -mno-dsp  -mdspr2  -mno-dspr2 @gol
932 -mmcu  -mmno-mcu @gol
933 -meva  -mno-eva @gol
934 -mvirt  -mno-virt @gol
935 -mxpa  -mno-xpa @gol
936 -mcrc  -mno-crc @gol
937 -mginv  -mno-ginv @gol
938 -mmicromips  -mno-micromips @gol
939 -mmsa  -mno-msa @gol
940 -mloongson-mmi  -mno-loongson-mmi @gol
941 -mloongson-ext  -mno-loongson-ext @gol
942 -mloongson-ext2  -mno-loongson-ext2 @gol
943 -mfpu=@var{fpu-type} @gol
944 -msmartmips  -mno-smartmips @gol
945 -mpaired-single  -mno-paired-single  -mdmx  -mno-mdmx @gol
946 -mips3d  -mno-mips3d  -mmt  -mno-mt  -mllsc  -mno-llsc @gol
947 -mlong64  -mlong32  -msym32  -mno-sym32 @gol
948 -G@var{num}  -mlocal-sdata  -mno-local-sdata @gol
949 -mextern-sdata  -mno-extern-sdata  -mgpopt  -mno-gopt @gol
950 -membedded-data  -mno-embedded-data @gol
951 -muninit-const-in-rodata  -mno-uninit-const-in-rodata @gol
952 -mcode-readable=@var{setting} @gol
953 -msplit-addresses  -mno-split-addresses @gol
954 -mexplicit-relocs  -mno-explicit-relocs @gol
955 -mcheck-zero-division  -mno-check-zero-division @gol
956 -mdivide-traps  -mdivide-breaks @gol
957 -mload-store-pairs  -mno-load-store-pairs @gol
958 -mmemcpy  -mno-memcpy  -mlong-calls  -mno-long-calls @gol
959 -mmad  -mno-mad  -mimadd  -mno-imadd  -mfused-madd  -mno-fused-madd  -nocpp @gol
960 -mfix-24k  -mno-fix-24k @gol
961 -mfix-r4000  -mno-fix-r4000  -mfix-r4400  -mno-fix-r4400 @gol
962 -mfix-r5900  -mno-fix-r5900 @gol
963 -mfix-r10000  -mno-fix-r10000  -mfix-rm7000  -mno-fix-rm7000 @gol
964 -mfix-vr4120  -mno-fix-vr4120 @gol
965 -mfix-vr4130  -mno-fix-vr4130  -mfix-sb1  -mno-fix-sb1 @gol
966 -mflush-func=@var{func}  -mno-flush-func @gol
967 -mbranch-cost=@var{num}  -mbranch-likely  -mno-branch-likely @gol
968 -mcompact-branches=@var{policy} @gol
969 -mfp-exceptions  -mno-fp-exceptions @gol
970 -mvr4130-align  -mno-vr4130-align  -msynci  -mno-synci @gol
971 -mlxc1-sxc1  -mno-lxc1-sxc1  -mmadd4  -mno-madd4 @gol
972 -mrelax-pic-calls  -mno-relax-pic-calls  -mmcount-ra-address @gol
973 -mframe-header-opt  -mno-frame-header-opt}
975 @emph{MMIX Options}
976 @gccoptlist{-mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu @gol
977 -mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols @gol
978 -melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses @gol
979 -mno-base-addresses  -msingle-exit  -mno-single-exit}
981 @emph{MN10300 Options}
982 @gccoptlist{-mmult-bug  -mno-mult-bug @gol
983 -mno-am33  -mam33  -mam33-2  -mam34 @gol
984 -mtune=@var{cpu-type} @gol
985 -mreturn-pointer-on-d0 @gol
986 -mno-crt0  -mrelax  -mliw  -msetlb}
988 @emph{Moxie Options}
989 @gccoptlist{-meb  -mel  -mmul.x  -mno-crt0}
991 @emph{MSP430 Options}
992 @gccoptlist{-msim  -masm-hex  -mmcu=  -mcpu=  -mlarge  -msmall  -mrelax @gol
993 -mwarn-mcu @gol
994 -mcode-region=  -mdata-region= @gol
995 -msilicon-errata=  -msilicon-errata-warn= @gol
996 -mhwmult=  -minrt}
998 @emph{NDS32 Options}
999 @gccoptlist{-mbig-endian  -mlittle-endian @gol
1000 -mreduced-regs  -mfull-regs @gol
1001 -mcmov  -mno-cmov @gol
1002 -mext-perf  -mno-ext-perf @gol
1003 -mext-perf2  -mno-ext-perf2 @gol
1004 -mext-string  -mno-ext-string @gol
1005 -mv3push  -mno-v3push @gol
1006 -m16bit  -mno-16bit @gol
1007 -misr-vector-size=@var{num} @gol
1008 -mcache-block-size=@var{num} @gol
1009 -march=@var{arch} @gol
1010 -mcmodel=@var{code-model} @gol
1011 -mctor-dtor  -mrelax}
1013 @emph{Nios II Options}
1014 @gccoptlist{-G @var{num}  -mgpopt=@var{option}  -mgpopt  -mno-gpopt @gol
1015 -mgprel-sec=@var{regexp}  -mr0rel-sec=@var{regexp} @gol
1016 -mel  -meb @gol
1017 -mno-bypass-cache  -mbypass-cache @gol
1018 -mno-cache-volatile  -mcache-volatile @gol
1019 -mno-fast-sw-div  -mfast-sw-div @gol
1020 -mhw-mul  -mno-hw-mul  -mhw-mulx  -mno-hw-mulx  -mno-hw-div  -mhw-div @gol
1021 -mcustom-@var{insn}=@var{N}  -mno-custom-@var{insn} @gol
1022 -mcustom-fpu-cfg=@var{name} @gol
1023 -mhal  -msmallc  -msys-crt0=@var{name}  -msys-lib=@var{name} @gol
1024 -march=@var{arch}  -mbmx  -mno-bmx  -mcdx  -mno-cdx}
1026 @emph{Nvidia PTX Options}
1027 @gccoptlist{-m32  -m64  -mmainkernel  -moptimize}
1029 @emph{OpenRISC Options}
1030 @gccoptlist{-mboard=@var{name}  -mnewlib  -mhard-mul  -mhard-div @gol
1031 -msoft-mul  -msoft-div @gol
1032 -mcmov  -mror  -msext  -msfimm  -mshftimm}
1034 @emph{PDP-11 Options}
1035 @gccoptlist{-mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 @gol
1036 -mint32  -mno-int16  -mint16  -mno-int32 @gol
1037 -msplit  -munix-asm  -mdec-asm  -mgnu-asm  -mlra}
1039 @emph{picoChip Options}
1040 @gccoptlist{-mae=@var{ae_type}  -mvliw-lookahead=@var{N} @gol
1041 -msymbol-as-address  -mno-inefficient-warnings}
1043 @emph{PowerPC Options}
1044 See RS/6000 and PowerPC Options.
1046 @emph{RISC-V Options}
1047 @gccoptlist{-mbranch-cost=@var{N-instruction} @gol
1048 -mplt  -mno-plt @gol
1049 -mabi=@var{ABI-string} @gol
1050 -mfdiv  -mno-fdiv @gol
1051 -mdiv  -mno-div @gol
1052 -march=@var{ISA-string} @gol
1053 -mtune=@var{processor-string} @gol
1054 -mpreferred-stack-boundary=@var{num} @gol
1055 -msmall-data-limit=@var{N-bytes} @gol
1056 -msave-restore  -mno-save-restore @gol
1057 -mstrict-align  -mno-strict-align @gol
1058 -mcmodel=medlow  -mcmodel=medany @gol
1059 -mexplicit-relocs  -mno-explicit-relocs @gol
1060 -mrelax  -mno-relax @gol
1061 -mriscv-attribute  -mmo-riscv-attribute}
1063 @emph{RL78 Options}
1064 @gccoptlist{-msim  -mmul=none  -mmul=g13  -mmul=g14  -mallregs @gol
1065 -mcpu=g10  -mcpu=g13  -mcpu=g14  -mg10  -mg13  -mg14 @gol
1066 -m64bit-doubles  -m32bit-doubles  -msave-mduc-in-interrupts}
1068 @emph{RS/6000 and PowerPC Options}
1069 @gccoptlist{-mcpu=@var{cpu-type} @gol
1070 -mtune=@var{cpu-type} @gol
1071 -mcmodel=@var{code-model} @gol
1072 -mpowerpc64 @gol
1073 -maltivec  -mno-altivec @gol
1074 -mpowerpc-gpopt  -mno-powerpc-gpopt @gol
1075 -mpowerpc-gfxopt  -mno-powerpc-gfxopt @gol
1076 -mmfcrf  -mno-mfcrf  -mpopcntb  -mno-popcntb  -mpopcntd  -mno-popcntd @gol
1077 -mfprnd  -mno-fprnd @gol
1078 -mcmpb  -mno-cmpb  -mmfpgpr  -mno-mfpgpr  -mhard-dfp  -mno-hard-dfp @gol
1079 -mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc @gol
1080 -m64  -m32  -mxl-compat  -mno-xl-compat  -mpe @gol
1081 -malign-power  -malign-natural @gol
1082 -msoft-float  -mhard-float  -mmultiple  -mno-multiple @gol
1083 -mupdate  -mno-update @gol
1084 -mavoid-indexed-addresses  -mno-avoid-indexed-addresses @gol
1085 -mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align @gol
1086 -mstrict-align  -mno-strict-align  -mrelocatable @gol
1087 -mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib @gol
1088 -mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian @gol
1089 -mdynamic-no-pic  -mswdiv  -msingle-pic-base @gol
1090 -mprioritize-restricted-insns=@var{priority} @gol
1091 -msched-costly-dep=@var{dependence_type} @gol
1092 -minsert-sched-nops=@var{scheme} @gol
1093 -mcall-aixdesc  -mcall-eabi  -mcall-freebsd  @gol
1094 -mcall-linux  -mcall-netbsd  -mcall-openbsd  @gol
1095 -mcall-sysv  -mcall-sysv-eabi  -mcall-sysv-noeabi @gol
1096 -mtraceback=@var{traceback_type} @gol
1097 -maix-struct-return  -msvr4-struct-return @gol
1098 -mabi=@var{abi-type}  -msecure-plt  -mbss-plt @gol
1099 -mlongcall  -mno-longcall  -mpltseq  -mno-pltseq  @gol
1100 -mblock-move-inline-limit=@var{num} @gol
1101 -mblock-compare-inline-limit=@var{num} @gol
1102 -mblock-compare-inline-loop-limit=@var{num} @gol
1103 -mstring-compare-inline-limit=@var{num} @gol
1104 -misel  -mno-isel @gol
1105 -mvrsave  -mno-vrsave @gol
1106 -mmulhw  -mno-mulhw @gol
1107 -mdlmzb  -mno-dlmzb @gol
1108 -mprototype  -mno-prototype @gol
1109 -msim  -mmvme  -mads  -myellowknife  -memb  -msdata @gol
1110 -msdata=@var{opt}  -mreadonly-in-sdata  -mvxworks  -G @var{num} @gol
1111 -mrecip  -mrecip=@var{opt}  -mno-recip  -mrecip-precision @gol
1112 -mno-recip-precision @gol
1113 -mveclibabi=@var{type}  -mfriz  -mno-friz @gol
1114 -mpointers-to-nested-functions  -mno-pointers-to-nested-functions @gol
1115 -msave-toc-indirect  -mno-save-toc-indirect @gol
1116 -mpower8-fusion  -mno-mpower8-fusion  -mpower8-vector  -mno-power8-vector @gol
1117 -mcrypto  -mno-crypto  -mhtm  -mno-htm @gol
1118 -mquad-memory  -mno-quad-memory @gol
1119 -mquad-memory-atomic  -mno-quad-memory-atomic @gol
1120 -mcompat-align-parm  -mno-compat-align-parm @gol
1121 -mfloat128  -mno-float128  -mfloat128-hardware  -mno-float128-hardware @gol
1122 -mgnu-attribute  -mno-gnu-attribute @gol
1123 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1124 -mstack-protector-guard-offset=@var{offset} -mpcrel -mno-pcrel}
1126 @emph{RX Options}
1127 @gccoptlist{-m64bit-doubles  -m32bit-doubles  -fpu  -nofpu@gol
1128 -mcpu=@gol
1129 -mbig-endian-data  -mlittle-endian-data @gol
1130 -msmall-data @gol
1131 -msim  -mno-sim@gol
1132 -mas100-syntax  -mno-as100-syntax@gol
1133 -mrelax@gol
1134 -mmax-constant-size=@gol
1135 -mint-register=@gol
1136 -mpid@gol
1137 -mallow-string-insns  -mno-allow-string-insns@gol
1138 -mjsr@gol
1139 -mno-warn-multiple-fast-interrupts@gol
1140 -msave-acc-in-interrupts}
1142 @emph{S/390 and zSeries Options}
1143 @gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
1144 -mhard-float  -msoft-float  -mhard-dfp  -mno-hard-dfp @gol
1145 -mlong-double-64  -mlong-double-128 @gol
1146 -mbackchain  -mno-backchain  -mpacked-stack  -mno-packed-stack @gol
1147 -msmall-exec  -mno-small-exec  -mmvcle  -mno-mvcle @gol
1148 -m64  -m31  -mdebug  -mno-debug  -mesa  -mzarch @gol
1149 -mhtm  -mvx  -mzvector @gol
1150 -mtpf-trace  -mno-tpf-trace  -mfused-madd  -mno-fused-madd @gol
1151 -mwarn-framesize  -mwarn-dynamicstack  -mstack-size  -mstack-guard @gol
1152 -mhotpatch=@var{halfwords},@var{halfwords}}
1154 @emph{Score Options}
1155 @gccoptlist{-meb  -mel @gol
1156 -mnhwloop @gol
1157 -muls @gol
1158 -mmac @gol
1159 -mscore5  -mscore5u  -mscore7  -mscore7d}
1161 @emph{SH Options}
1162 @gccoptlist{-m1  -m2  -m2e @gol
1163 -m2a-nofpu  -m2a-single-only  -m2a-single  -m2a @gol
1164 -m3  -m3e @gol
1165 -m4-nofpu  -m4-single-only  -m4-single  -m4 @gol
1166 -m4a-nofpu  -m4a-single-only  -m4a-single  -m4a  -m4al @gol
1167 -mb  -ml  -mdalign  -mrelax @gol
1168 -mbigtable  -mfmovd  -mrenesas  -mno-renesas  -mnomacsave @gol
1169 -mieee  -mno-ieee  -mbitops  -misize  -minline-ic_invalidate  -mpadstruct @gol
1170 -mprefergot  -musermode  -multcost=@var{number}  -mdiv=@var{strategy} @gol
1171 -mdivsi3_libfunc=@var{name}  -mfixed-range=@var{register-range} @gol
1172 -maccumulate-outgoing-args @gol
1173 -matomic-model=@var{atomic-model} @gol
1174 -mbranch-cost=@var{num}  -mzdcbranch  -mno-zdcbranch @gol
1175 -mcbranch-force-delay-slot @gol
1176 -mfused-madd  -mno-fused-madd  -mfsca  -mno-fsca  -mfsrra  -mno-fsrra @gol
1177 -mpretend-cmove  -mtas}
1179 @emph{Solaris 2 Options}
1180 @gccoptlist{-mclear-hwcap  -mno-clear-hwcap  -mimpure-text  -mno-impure-text @gol
1181 -pthreads}
1183 @emph{SPARC Options}
1184 @gccoptlist{-mcpu=@var{cpu-type} @gol
1185 -mtune=@var{cpu-type} @gol
1186 -mcmodel=@var{code-model} @gol
1187 -mmemory-model=@var{mem-model} @gol
1188 -m32  -m64  -mapp-regs  -mno-app-regs @gol
1189 -mfaster-structs  -mno-faster-structs  -mflat  -mno-flat @gol
1190 -mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
1191 -mhard-quad-float  -msoft-quad-float @gol
1192 -mstack-bias  -mno-stack-bias @gol
1193 -mstd-struct-return  -mno-std-struct-return @gol
1194 -munaligned-doubles  -mno-unaligned-doubles @gol
1195 -muser-mode  -mno-user-mode @gol
1196 -mv8plus  -mno-v8plus  -mvis  -mno-vis @gol
1197 -mvis2  -mno-vis2  -mvis3  -mno-vis3 @gol
1198 -mvis4  -mno-vis4  -mvis4b  -mno-vis4b @gol
1199 -mcbcond  -mno-cbcond  -mfmaf  -mno-fmaf  -mfsmuld  -mno-fsmuld  @gol
1200 -mpopc  -mno-popc  -msubxc  -mno-subxc @gol
1201 -mfix-at697f  -mfix-ut699  -mfix-ut700  -mfix-gr712rc @gol
1202 -mlra  -mno-lra}
1204 @emph{SPU Options}
1205 @gccoptlist{-mwarn-reloc  -merror-reloc @gol
1206 -msafe-dma  -munsafe-dma @gol
1207 -mbranch-hints @gol
1208 -msmall-mem  -mlarge-mem  -mstdmain @gol
1209 -mfixed-range=@var{register-range} @gol
1210 -mea32  -mea64 @gol
1211 -maddress-space-conversion  -mno-address-space-conversion @gol
1212 -mcache-size=@var{cache-size} @gol
1213 -matomic-updates  -mno-atomic-updates}
1215 @emph{System V Options}
1216 @gccoptlist{-Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}}
1218 @emph{TILE-Gx Options}
1219 @gccoptlist{-mcpu=CPU  -m32  -m64  -mbig-endian  -mlittle-endian @gol
1220 -mcmodel=@var{code-model}}
1222 @emph{TILEPro Options}
1223 @gccoptlist{-mcpu=@var{cpu}  -m32}
1225 @emph{V850 Options}
1226 @gccoptlist{-mlong-calls  -mno-long-calls  -mep  -mno-ep @gol
1227 -mprolog-function  -mno-prolog-function  -mspace @gol
1228 -mtda=@var{n}  -msda=@var{n}  -mzda=@var{n} @gol
1229 -mapp-regs  -mno-app-regs @gol
1230 -mdisable-callt  -mno-disable-callt @gol
1231 -mv850e2v3  -mv850e2  -mv850e1  -mv850es @gol
1232 -mv850e  -mv850  -mv850e3v5 @gol
1233 -mloop @gol
1234 -mrelax @gol
1235 -mlong-jumps @gol
1236 -msoft-float @gol
1237 -mhard-float @gol
1238 -mgcc-abi @gol
1239 -mrh850-abi @gol
1240 -mbig-switch}
1242 @emph{VAX Options}
1243 @gccoptlist{-mg  -mgnu  -munix}
1245 @emph{Visium Options}
1246 @gccoptlist{-mdebug  -msim  -mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
1247 -mcpu=@var{cpu-type}  -mtune=@var{cpu-type}  -msv-mode  -muser-mode}
1249 @emph{VMS Options}
1250 @gccoptlist{-mvms-return-codes  -mdebug-main=@var{prefix}  -mmalloc64 @gol
1251 -mpointer-size=@var{size}}
1253 @emph{VxWorks Options}
1254 @gccoptlist{-mrtp  -non-static  -Bstatic  -Bdynamic @gol
1255 -Xbind-lazy  -Xbind-now}
1257 @emph{x86 Options}
1258 @gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
1259 -mtune-ctrl=@var{feature-list}  -mdump-tune-features  -mno-default @gol
1260 -mfpmath=@var{unit} @gol
1261 -masm=@var{dialect}  -mno-fancy-math-387 @gol
1262 -mno-fp-ret-in-387  -m80387  -mhard-float  -msoft-float @gol
1263 -mno-wide-multiply  -mrtd  -malign-double @gol
1264 -mpreferred-stack-boundary=@var{num} @gol
1265 -mincoming-stack-boundary=@var{num} @gol
1266 -mcld  -mcx16  -msahf  -mmovbe  -mcrc32 @gol
1267 -mrecip  -mrecip=@var{opt} @gol
1268 -mvzeroupper  -mprefer-avx128  -mprefer-vector-width=@var{opt} @gol
1269 -mmmx  -msse  -msse2  -msse3  -mssse3  -msse4.1  -msse4.2  -msse4  -mavx @gol
1270 -mavx2  -mavx512f  -mavx512pf  -mavx512er  -mavx512cd  -mavx512vl @gol
1271 -mavx512bw  -mavx512dq  -mavx512ifma  -mavx512vbmi  -msha  -maes @gol
1272 -mpclmul  -mfsgsbase  -mrdrnd  -mf16c  -mfma  -mpconfig  -mwbnoinvd  @gol
1273 -mptwrite  -mprefetchwt1  -mclflushopt  -mclwb  -mxsavec  -mxsaves @gol
1274 -msse4a  -m3dnow  -m3dnowa  -mpopcnt  -mabm  -mbmi  -mtbm  -mfma4  -mxop @gol
1275 -madx  -mlzcnt  -mbmi2  -mfxsr  -mxsave  -mxsaveopt  -mrtm  -mhle  -mlwp @gol
1276 -mmwaitx  -mclzero  -mpku  -mthreads  -mgfni  -mvaes  -mwaitpkg @gol
1277 -mshstk -mmanual-endbr -mforce-indirect-call  -mavx512vbmi2 -mavx512bf16 -menqcmd @gol
1278 -mvpclmulqdq  -mavx512bitalg  -mmovdiri  -mmovdir64b  -mavx512vpopcntdq @gol
1279 -mavx5124fmaps  -mavx512vnni  -mavx5124vnniw  -mprfchw  -mrdpid @gol
1280 -mrdseed  -msgx @gol
1281 -mcldemote  -mms-bitfields  -mno-align-stringops  -minline-all-stringops @gol
1282 -minline-stringops-dynamically  -mstringop-strategy=@var{alg} @gol
1283 -mmemcpy-strategy=@var{strategy}  -mmemset-strategy=@var{strategy} @gol
1284 -mpush-args  -maccumulate-outgoing-args  -m128bit-long-double @gol
1285 -m96bit-long-double  -mlong-double-64  -mlong-double-80  -mlong-double-128 @gol
1286 -mregparm=@var{num}  -msseregparm @gol
1287 -mveclibabi=@var{type}  -mvect8-ret-in-mem @gol
1288 -mpc32  -mpc64  -mpc80  -mstackrealign @gol
1289 -momit-leaf-frame-pointer  -mno-red-zone  -mno-tls-direct-seg-refs @gol
1290 -mcmodel=@var{code-model}  -mabi=@var{name}  -maddress-mode=@var{mode} @gol
1291 -m32  -m64  -mx32  -m16  -miamcu  -mlarge-data-threshold=@var{num} @gol
1292 -msse2avx  -mfentry  -mrecord-mcount  -mnop-mcount  -m8bit-idiv @gol
1293 -minstrument-return=@var{type} -mfentry-name=@var{name} -mfentry-section=@var{name} @gol
1294 -mavx256-split-unaligned-load  -mavx256-split-unaligned-store @gol
1295 -malign-data=@var{type}  -mstack-protector-guard=@var{guard} @gol
1296 -mstack-protector-guard-reg=@var{reg} @gol
1297 -mstack-protector-guard-offset=@var{offset} @gol
1298 -mstack-protector-guard-symbol=@var{symbol} @gol
1299 -mgeneral-regs-only  -mcall-ms2sysv-xlogues @gol
1300 -mindirect-branch=@var{choice}  -mfunction-return=@var{choice} @gol
1301 -mindirect-branch-register}
1303 @emph{x86 Windows Options}
1304 @gccoptlist{-mconsole  -mcygwin  -mno-cygwin  -mdll @gol
1305 -mnop-fun-dllimport  -mthread @gol
1306 -municode  -mwin32  -mwindows  -fno-set-stack-executable}
1308 @emph{Xstormy16 Options}
1309 @gccoptlist{-msim}
1311 @emph{Xtensa Options}
1312 @gccoptlist{-mconst16  -mno-const16 @gol
1313 -mfused-madd  -mno-fused-madd @gol
1314 -mforce-no-pic @gol
1315 -mserialize-volatile  -mno-serialize-volatile @gol
1316 -mtext-section-literals  -mno-text-section-literals @gol
1317 -mauto-litpools  -mno-auto-litpools @gol
1318 -mtarget-align  -mno-target-align @gol
1319 -mlongcalls  -mno-longcalls}
1321 @emph{zSeries Options}
1322 See S/390 and zSeries Options.
1323 @end table
1326 @node Overall Options
1327 @section Options Controlling the Kind of Output
1329 Compilation can involve up to four stages: preprocessing, compilation
1330 proper, assembly and linking, always in that order.  GCC is capable of
1331 preprocessing and compiling several files either into several
1332 assembler input files, or into one assembler input file; then each
1333 assembler input file produces an object file, and linking combines all
1334 the object files (those newly compiled, and those specified as input)
1335 into an executable file.
1337 @cindex file name suffix
1338 For any given input file, the file name suffix determines what kind of
1339 compilation is done:
1341 @table @gcctabopt
1342 @item @var{file}.c
1343 C source code that must be preprocessed.
1345 @item @var{file}.i
1346 C source code that should not be preprocessed.
1348 @item @var{file}.ii
1349 C++ source code that should not be preprocessed.
1351 @item @var{file}.m
1352 Objective-C source code.  Note that you must link with the @file{libobjc}
1353 library to make an Objective-C program work.
1355 @item @var{file}.mi
1356 Objective-C source code that should not be preprocessed.
1358 @item @var{file}.mm
1359 @itemx @var{file}.M
1360 Objective-C++ source code.  Note that you must link with the @file{libobjc}
1361 library to make an Objective-C++ program work.  Note that @samp{.M} refers
1362 to a literal capital M@.
1364 @item @var{file}.mii
1365 Objective-C++ source code that should not be preprocessed.
1367 @item @var{file}.h
1368 C, C++, Objective-C or Objective-C++ header file to be turned into a
1369 precompiled header (default), or C, C++ header file to be turned into an
1370 Ada spec (via the @option{-fdump-ada-spec} switch).
1372 @item @var{file}.cc
1373 @itemx @var{file}.cp
1374 @itemx @var{file}.cxx
1375 @itemx @var{file}.cpp
1376 @itemx @var{file}.CPP
1377 @itemx @var{file}.c++
1378 @itemx @var{file}.C
1379 C++ source code that must be preprocessed.  Note that in @samp{.cxx},
1380 the last two letters must both be literally @samp{x}.  Likewise,
1381 @samp{.C} refers to a literal capital C@.
1383 @item @var{file}.mm
1384 @itemx @var{file}.M
1385 Objective-C++ source code that must be preprocessed.
1387 @item @var{file}.mii
1388 Objective-C++ source code that should not be preprocessed.
1390 @item @var{file}.hh
1391 @itemx @var{file}.H
1392 @itemx @var{file}.hp
1393 @itemx @var{file}.hxx
1394 @itemx @var{file}.hpp
1395 @itemx @var{file}.HPP
1396 @itemx @var{file}.h++
1397 @itemx @var{file}.tcc
1398 C++ header file to be turned into a precompiled header or Ada spec.
1400 @item @var{file}.f
1401 @itemx @var{file}.for
1402 @itemx @var{file}.ftn
1403 Fixed form Fortran source code that should not be preprocessed.
1405 @item @var{file}.F
1406 @itemx @var{file}.FOR
1407 @itemx @var{file}.fpp
1408 @itemx @var{file}.FPP
1409 @itemx @var{file}.FTN
1410 Fixed form Fortran source code that must be preprocessed (with the traditional
1411 preprocessor).
1413 @item @var{file}.f90
1414 @itemx @var{file}.f95
1415 @itemx @var{file}.f03
1416 @itemx @var{file}.f08
1417 Free form Fortran source code that should not be preprocessed.
1419 @item @var{file}.F90
1420 @itemx @var{file}.F95
1421 @itemx @var{file}.F03
1422 @itemx @var{file}.F08
1423 Free form Fortran source code that must be preprocessed (with the
1424 traditional preprocessor).
1426 @item @var{file}.go
1427 Go source code.
1429 @item @var{file}.brig
1430 BRIG files (binary representation of HSAIL).
1432 @item @var{file}.d
1433 D source code.
1435 @item @var{file}.di
1436 D interface file.
1438 @item @var{file}.dd
1439 D documentation code (Ddoc).
1441 @item @var{file}.ads
1442 Ada source code file that contains a library unit declaration (a
1443 declaration of a package, subprogram, or generic, or a generic
1444 instantiation), or a library unit renaming declaration (a package,
1445 generic, or subprogram renaming declaration).  Such files are also
1446 called @dfn{specs}.
1448 @item @var{file}.adb
1449 Ada source code file containing a library unit body (a subprogram or
1450 package body).  Such files are also called @dfn{bodies}.
1452 @c GCC also knows about some suffixes for languages not yet included:
1453 @c Ratfor:
1454 @c @var{file}.r
1456 @item @var{file}.s
1457 Assembler code.
1459 @item @var{file}.S
1460 @itemx @var{file}.sx
1461 Assembler code that must be preprocessed.
1463 @item @var{other}
1464 An object file to be fed straight into linking.
1465 Any file name with no recognized suffix is treated this way.
1466 @end table
1468 @opindex x
1469 You can specify the input language explicitly with the @option{-x} option:
1471 @table @gcctabopt
1472 @item -x @var{language}
1473 Specify explicitly the @var{language} for the following input files
1474 (rather than letting the compiler choose a default based on the file
1475 name suffix).  This option applies to all following input files until
1476 the next @option{-x} option.  Possible values for @var{language} are:
1477 @smallexample
1478 c  c-header  cpp-output
1479 c++  c++-header  c++-cpp-output
1480 objective-c  objective-c-header  objective-c-cpp-output
1481 objective-c++ objective-c++-header objective-c++-cpp-output
1482 assembler  assembler-with-cpp
1485 f77  f77-cpp-input f95  f95-cpp-input
1487 brig
1488 @end smallexample
1490 @item -x none
1491 Turn off any specification of a language, so that subsequent files are
1492 handled according to their file name suffixes (as they are if @option{-x}
1493 has not been used at all).
1494 @end table
1496 If you only want some of the stages of compilation, you can use
1497 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1498 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1499 @command{gcc} is to stop.  Note that some combinations (for example,
1500 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1502 @table @gcctabopt
1503 @item -c
1504 @opindex c
1505 Compile or assemble the source files, but do not link.  The linking
1506 stage simply is not done.  The ultimate output is in the form of an
1507 object file for each source file.
1509 By default, the object file name for a source file is made by replacing
1510 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1512 Unrecognized input files, not requiring compilation or assembly, are
1513 ignored.
1515 @item -S
1516 @opindex S
1517 Stop after the stage of compilation proper; do not assemble.  The output
1518 is in the form of an assembler code file for each non-assembler input
1519 file specified.
1521 By default, the assembler file name for a source file is made by
1522 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1524 Input files that don't require compilation are ignored.
1526 @item -E
1527 @opindex E
1528 Stop after the preprocessing stage; do not run the compiler proper.  The
1529 output is in the form of preprocessed source code, which is sent to the
1530 standard output.
1532 Input files that don't require preprocessing are ignored.
1534 @cindex output file option
1535 @item -o @var{file}
1536 @opindex o
1537 Place output in file @var{file}.  This applies to whatever
1538 sort of output is being produced, whether it be an executable file,
1539 an object file, an assembler file or preprocessed C code.
1541 If @option{-o} is not specified, the default is to put an executable
1542 file in @file{a.out}, the object file for
1543 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1544 assembler file in @file{@var{source}.s}, a precompiled header file in
1545 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1546 standard output.
1548 @item -v
1549 @opindex v
1550 Print (on standard error output) the commands executed to run the stages
1551 of compilation.  Also print the version number of the compiler driver
1552 program and of the preprocessor and the compiler proper.
1554 @item -###
1555 @opindex ###
1556 Like @option{-v} except the commands are not executed and arguments
1557 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1558 This is useful for shell scripts to capture the driver-generated command lines.
1560 @item --help
1561 @opindex help
1562 Print (on the standard output) a description of the command-line options
1563 understood by @command{gcc}.  If the @option{-v} option is also specified
1564 then @option{--help} is also passed on to the various processes
1565 invoked by @command{gcc}, so that they can display the command-line options
1566 they accept.  If the @option{-Wextra} option has also been specified
1567 (prior to the @option{--help} option), then command-line options that
1568 have no documentation associated with them are also displayed.
1570 @item --target-help
1571 @opindex target-help
1572 Print (on the standard output) a description of target-specific command-line
1573 options for each tool.  For some targets extra target-specific
1574 information may also be printed.
1576 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1577 Print (on the standard output) a description of the command-line
1578 options understood by the compiler that fit into all specified classes
1579 and qualifiers.  These are the supported classes:
1581 @table @asis
1582 @item @samp{optimizers}
1583 Display all of the optimization options supported by the
1584 compiler.
1586 @item @samp{warnings}
1587 Display all of the options controlling warning messages
1588 produced by the compiler.
1590 @item @samp{target}
1591 Display target-specific options.  Unlike the
1592 @option{--target-help} option however, target-specific options of the
1593 linker and assembler are not displayed.  This is because those
1594 tools do not currently support the extended @option{--help=} syntax.
1596 @item @samp{params}
1597 Display the values recognized by the @option{--param}
1598 option.
1600 @item @var{language}
1601 Display the options supported for @var{language}, where
1602 @var{language} is the name of one of the languages supported in this
1603 version of GCC@.
1605 @item @samp{common}
1606 Display the options that are common to all languages.
1607 @end table
1609 These are the supported qualifiers:
1611 @table @asis
1612 @item @samp{undocumented}
1613 Display only those options that are undocumented.
1615 @item @samp{joined}
1616 Display options taking an argument that appears after an equal
1617 sign in the same continuous piece of text, such as:
1618 @samp{--help=target}.
1620 @item @samp{separate}
1621 Display options taking an argument that appears as a separate word
1622 following the original option, such as: @samp{-o output-file}.
1623 @end table
1625 Thus for example to display all the undocumented target-specific
1626 switches supported by the compiler, use:
1628 @smallexample
1629 --help=target,undocumented
1630 @end smallexample
1632 The sense of a qualifier can be inverted by prefixing it with the
1633 @samp{^} character, so for example to display all binary warning
1634 options (i.e., ones that are either on or off and that do not take an
1635 argument) that have a description, use:
1637 @smallexample
1638 --help=warnings,^joined,^undocumented
1639 @end smallexample
1641 The argument to @option{--help=} should not consist solely of inverted
1642 qualifiers.
1644 Combining several classes is possible, although this usually
1645 restricts the output so much that there is nothing to display.  One
1646 case where it does work, however, is when one of the classes is
1647 @var{target}.  For example, to display all the target-specific
1648 optimization options, use:
1650 @smallexample
1651 --help=target,optimizers
1652 @end smallexample
1654 The @option{--help=} option can be repeated on the command line.  Each
1655 successive use displays its requested class of options, skipping
1656 those that have already been displayed.  If @option{--help} is also
1657 specified anywhere on the command line then this takes precedence
1658 over any @option{--help=} option.
1660 If the @option{-Q} option appears on the command line before the
1661 @option{--help=} option, then the descriptive text displayed by
1662 @option{--help=} is changed.  Instead of describing the displayed
1663 options, an indication is given as to whether the option is enabled,
1664 disabled or set to a specific value (assuming that the compiler
1665 knows this at the point where the @option{--help=} option is used).
1667 Here is a truncated example from the ARM port of @command{gcc}:
1669 @smallexample
1670   % gcc -Q -mabi=2 --help=target -c
1671   The following options are target specific:
1672   -mabi=                                2
1673   -mabort-on-noreturn                   [disabled]
1674   -mapcs                                [disabled]
1675 @end smallexample
1677 The output is sensitive to the effects of previous command-line
1678 options, so for example it is possible to find out which optimizations
1679 are enabled at @option{-O2} by using:
1681 @smallexample
1682 -Q -O2 --help=optimizers
1683 @end smallexample
1685 Alternatively you can discover which binary optimizations are enabled
1686 by @option{-O3} by using:
1688 @smallexample
1689 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1690 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1691 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1692 @end smallexample
1694 @item --version
1695 @opindex version
1696 Display the version number and copyrights of the invoked GCC@.
1698 @item -pass-exit-codes
1699 @opindex pass-exit-codes
1700 Normally the @command{gcc} program exits with the code of 1 if any
1701 phase of the compiler returns a non-success return code.  If you specify
1702 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1703 the numerically highest error produced by any phase returning an error
1704 indication.  The C, C++, and Fortran front ends return 4 if an internal
1705 compiler error is encountered.
1707 @item -pipe
1708 @opindex pipe
1709 Use pipes rather than temporary files for communication between the
1710 various stages of compilation.  This fails to work on some systems where
1711 the assembler is unable to read from a pipe; but the GNU assembler has
1712 no trouble.
1714 @item -specs=@var{file}
1715 @opindex specs
1716 Process @var{file} after the compiler reads in the standard @file{specs}
1717 file, in order to override the defaults which the @command{gcc} driver
1718 program uses when determining what switches to pass to @command{cc1},
1719 @command{cc1plus}, @command{as}, @command{ld}, etc.  More than one
1720 @option{-specs=@var{file}} can be specified on the command line, and they
1721 are processed in order, from left to right.  @xref{Spec Files}, for
1722 information about the format of the @var{file}.
1724 @item -wrapper
1725 @opindex wrapper
1726 Invoke all subcommands under a wrapper program.  The name of the
1727 wrapper program and its parameters are passed as a comma separated
1728 list.
1730 @smallexample
1731 gcc -c t.c -wrapper gdb,--args
1732 @end smallexample
1734 @noindent
1735 This invokes all subprograms of @command{gcc} under
1736 @samp{gdb --args}, thus the invocation of @command{cc1} is
1737 @samp{gdb --args cc1 @dots{}}.
1739 @item -ffile-prefix-map=@var{old}=@var{new}
1740 @opindex ffile-prefix-map
1741 When compiling files residing in directory @file{@var{old}}, record
1742 any references to them in the result of the compilation as if the
1743 files resided in directory @file{@var{new}} instead.  Specifying this
1744 option is equivalent to specifying all the individual
1745 @option{-f*-prefix-map} options.  This can be used to make reproducible
1746 builds that are location independent.  See also
1747 @option{-fmacro-prefix-map} and @option{-fdebug-prefix-map}.
1749 @item -fplugin=@var{name}.so
1750 @opindex fplugin
1751 Load the plugin code in file @var{name}.so, assumed to be a
1752 shared object to be dlopen'd by the compiler.  The base name of
1753 the shared object file is used to identify the plugin for the
1754 purposes of argument parsing (See
1755 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1756 Each plugin should define the callback functions specified in the
1757 Plugins API.
1759 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1760 @opindex fplugin-arg
1761 Define an argument called @var{key} with a value of @var{value}
1762 for the plugin called @var{name}.
1764 @item -fdump-ada-spec@r{[}-slim@r{]}
1765 @opindex fdump-ada-spec
1766 For C and C++ source and include files, generate corresponding Ada specs.
1767 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1768 GNAT User's Guide}, which provides detailed documentation on this feature.
1770 @item -fada-spec-parent=@var{unit}
1771 @opindex fada-spec-parent
1772 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1773 Ada specs as child units of parent @var{unit}.
1775 @item -fdump-go-spec=@var{file}
1776 @opindex fdump-go-spec
1777 For input files in any language, generate corresponding Go
1778 declarations in @var{file}.  This generates Go @code{const},
1779 @code{type}, @code{var}, and @code{func} declarations which may be a
1780 useful way to start writing a Go interface to code written in some
1781 other language.
1783 @include @value{srcdir}/../libiberty/at-file.texi
1784 @end table
1786 @node Invoking G++
1787 @section Compiling C++ Programs
1789 @cindex suffixes for C++ source
1790 @cindex C++ source file suffixes
1791 C++ source files conventionally use one of the suffixes @samp{.C},
1792 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1793 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1794 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1795 preprocessed C++ files use the suffix @samp{.ii}.  GCC recognizes
1796 files with these names and compiles them as C++ programs even if you
1797 call the compiler the same way as for compiling C programs (usually
1798 with the name @command{gcc}).
1800 @findex g++
1801 @findex c++
1802 However, the use of @command{gcc} does not add the C++ library.
1803 @command{g++} is a program that calls GCC and automatically specifies linking
1804 against the C++ library.  It treats @samp{.c},
1805 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1806 files unless @option{-x} is used.  This program is also useful when
1807 precompiling a C header file with a @samp{.h} extension for use in C++
1808 compilations.  On many systems, @command{g++} is also installed with
1809 the name @command{c++}.
1811 @cindex invoking @command{g++}
1812 When you compile C++ programs, you may specify many of the same
1813 command-line options that you use for compiling programs in any
1814 language; or command-line options meaningful for C and related
1815 languages; or options that are meaningful only for C++ programs.
1816 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1817 explanations of options for languages related to C@.
1818 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1819 explanations of options that are meaningful only for C++ programs.
1821 @node C Dialect Options
1822 @section Options Controlling C Dialect
1823 @cindex dialect options
1824 @cindex language dialect options
1825 @cindex options, dialect
1827 The following options control the dialect of C (or languages derived
1828 from C, such as C++, Objective-C and Objective-C++) that the compiler
1829 accepts:
1831 @table @gcctabopt
1832 @cindex ANSI support
1833 @cindex ISO support
1834 @item -ansi
1835 @opindex ansi
1836 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1837 equivalent to @option{-std=c++98}.
1839 This turns off certain features of GCC that are incompatible with ISO
1840 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1841 such as the @code{asm} and @code{typeof} keywords, and
1842 predefined macros such as @code{unix} and @code{vax} that identify the
1843 type of system you are using.  It also enables the undesirable and
1844 rarely used ISO trigraph feature.  For the C compiler,
1845 it disables recognition of C++ style @samp{//} comments as well as
1846 the @code{inline} keyword.
1848 The alternate keywords @code{__asm__}, @code{__extension__},
1849 @code{__inline__} and @code{__typeof__} continue to work despite
1850 @option{-ansi}.  You would not want to use them in an ISO C program, of
1851 course, but it is useful to put them in header files that might be included
1852 in compilations done with @option{-ansi}.  Alternate predefined macros
1853 such as @code{__unix__} and @code{__vax__} are also available, with or
1854 without @option{-ansi}.
1856 The @option{-ansi} option does not cause non-ISO programs to be
1857 rejected gratuitously.  For that, @option{-Wpedantic} is required in
1858 addition to @option{-ansi}.  @xref{Warning Options}.
1860 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1861 option is used.  Some header files may notice this macro and refrain
1862 from declaring certain functions or defining certain macros that the
1863 ISO standard doesn't call for; this is to avoid interfering with any
1864 programs that might use these names for other things.
1866 Functions that are normally built in but do not have semantics
1867 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1868 functions when @option{-ansi} is used.  @xref{Other Builtins,,Other
1869 built-in functions provided by GCC}, for details of the functions
1870 affected.
1872 @item -std=
1873 @opindex std
1874 Determine the language standard. @xref{Standards,,Language Standards
1875 Supported by GCC}, for details of these standard versions.  This option
1876 is currently only supported when compiling C or C++.
1878 The compiler can accept several base standards, such as @samp{c90} or
1879 @samp{c++98}, and GNU dialects of those standards, such as
1880 @samp{gnu90} or @samp{gnu++98}.  When a base standard is specified, the
1881 compiler accepts all programs following that standard plus those
1882 using GNU extensions that do not contradict it.  For example,
1883 @option{-std=c90} turns off certain features of GCC that are
1884 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1885 keywords, but not other GNU extensions that do not have a meaning in
1886 ISO C90, such as omitting the middle term of a @code{?:}
1887 expression. On the other hand, when a GNU dialect of a standard is
1888 specified, all features supported by the compiler are enabled, even when
1889 those features change the meaning of the base standard.  As a result, some
1890 strict-conforming programs may be rejected.  The particular standard
1891 is used by @option{-Wpedantic} to identify which features are GNU
1892 extensions given that version of the standard. For example
1893 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1894 comments, while @option{-std=gnu99 -Wpedantic} does not.
1896 A value for this option must be provided; possible values are
1898 @table @samp
1899 @item c90
1900 @itemx c89
1901 @itemx iso9899:1990
1902 Support all ISO C90 programs (certain GNU extensions that conflict
1903 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1905 @item iso9899:199409
1906 ISO C90 as modified in amendment 1.
1908 @item c99
1909 @itemx c9x
1910 @itemx iso9899:1999
1911 @itemx iso9899:199x
1912 ISO C99.  This standard is substantially completely supported, modulo
1913 bugs and floating-point issues
1914 (mainly but not entirely relating to optional C99 features from
1915 Annexes F and G).  See
1916 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information.  The
1917 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1919 @item c11
1920 @itemx c1x
1921 @itemx iso9899:2011
1922 ISO C11, the 2011 revision of the ISO C standard.  This standard is
1923 substantially completely supported, modulo bugs, floating-point issues
1924 (mainly but not entirely relating to optional C11 features from
1925 Annexes F and G) and the optional Annexes K (Bounds-checking
1926 interfaces) and L (Analyzability).  The name @samp{c1x} is deprecated.
1928 @item c17
1929 @itemx c18
1930 @itemx iso9899:2017
1931 @itemx iso9899:2018
1932 ISO C17, the 2017 revision of the ISO C standard
1933 (published in 2018).  This standard is
1934 same as C11 except for corrections of defects (all of which are also
1935 applied with @option{-std=c11}) and a new value of
1936 @code{__STDC_VERSION__}, and so is supported to the same extent as C11.
1938 @item c2x
1939 The next version of the ISO C standard, still under development.  The
1940 support for this version is experimental and incomplete.
1942 @item gnu90
1943 @itemx gnu89
1944 GNU dialect of ISO C90 (including some C99 features).
1946 @item gnu99
1947 @itemx gnu9x
1948 GNU dialect of ISO C99.  The name @samp{gnu9x} is deprecated.
1950 @item gnu11
1951 @itemx gnu1x
1952 GNU dialect of ISO C11.
1953 The name @samp{gnu1x} is deprecated.
1955 @item gnu17
1956 @itemx gnu18
1957 GNU dialect of ISO C17.  This is the default for C code.
1959 @item gnu2x
1960 The next version of the ISO C standard, still under development, plus
1961 GNU extensions.  The support for this version is experimental and
1962 incomplete.
1964 @item c++98
1965 @itemx c++03
1966 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1967 additional defect reports. Same as @option{-ansi} for C++ code.
1969 @item gnu++98
1970 @itemx gnu++03
1971 GNU dialect of @option{-std=c++98}.
1973 @item c++11
1974 @itemx c++0x
1975 The 2011 ISO C++ standard plus amendments.
1976 The name @samp{c++0x} is deprecated.
1978 @item gnu++11
1979 @itemx gnu++0x
1980 GNU dialect of @option{-std=c++11}.
1981 The name @samp{gnu++0x} is deprecated.
1983 @item c++14
1984 @itemx c++1y
1985 The 2014 ISO C++ standard plus amendments.
1986 The name @samp{c++1y} is deprecated.
1988 @item gnu++14
1989 @itemx gnu++1y
1990 GNU dialect of @option{-std=c++14}.
1991 This is the default for C++ code.
1992 The name @samp{gnu++1y} is deprecated.
1994 @item c++17
1995 @itemx c++1z
1996 The 2017 ISO C++ standard plus amendments.
1997 The name @samp{c++1z} is deprecated.
1999 @item gnu++17
2000 @itemx gnu++1z
2001 GNU dialect of @option{-std=c++17}.
2002 The name @samp{gnu++1z} is deprecated.
2004 @item c++2a
2005 The next revision of the ISO C++ standard, tentatively planned for
2006 2020.  Support is highly experimental, and will almost certainly
2007 change in incompatible ways in future releases.
2009 @item gnu++2a
2010 GNU dialect of @option{-std=c++2a}.  Support is highly experimental,
2011 and will almost certainly change in incompatible ways in future
2012 releases.
2013 @end table
2015 @item -fgnu89-inline
2016 @opindex fgnu89-inline
2017 The option @option{-fgnu89-inline} tells GCC to use the traditional
2018 GNU semantics for @code{inline} functions when in C99 mode.
2019 @xref{Inline,,An Inline Function is As Fast As a Macro}.
2020 Using this option is roughly equivalent to adding the
2021 @code{gnu_inline} function attribute to all inline functions
2022 (@pxref{Function Attributes}).
2024 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
2025 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
2026 specifies the default behavior).
2027 This option is not supported in @option{-std=c90} or
2028 @option{-std=gnu90} mode.
2030 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
2031 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
2032 in effect for @code{inline} functions.  @xref{Common Predefined
2033 Macros,,,cpp,The C Preprocessor}.
2035 @item -fpermitted-flt-eval-methods=@var{style}
2036 @opindex fpermitted-flt-eval-methods
2037 @opindex fpermitted-flt-eval-methods=c11
2038 @opindex fpermitted-flt-eval-methods=ts-18661-3
2039 ISO/IEC TS 18661-3 defines new permissible values for
2040 @code{FLT_EVAL_METHOD} that indicate that operations and constants with
2041 a semantic type that is an interchange or extended format should be
2042 evaluated to the precision and range of that type.  These new values are
2043 a superset of those permitted under C99/C11, which does not specify the
2044 meaning of other positive values of @code{FLT_EVAL_METHOD}.  As such, code
2045 conforming to C11 may not have been written expecting the possibility of
2046 the new values.
2048 @option{-fpermitted-flt-eval-methods} specifies whether the compiler
2049 should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
2050 or the extended set of values specified in ISO/IEC TS 18661-3.
2052 @var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
2054 The default when in a standards compliant mode (@option{-std=c11} or similar)
2055 is @option{-fpermitted-flt-eval-methods=c11}.  The default when in a GNU
2056 dialect (@option{-std=gnu11} or similar) is
2057 @option{-fpermitted-flt-eval-methods=ts-18661-3}.
2059 @item -aux-info @var{filename}
2060 @opindex aux-info
2061 Output to the given filename prototyped declarations for all functions
2062 declared and/or defined in a translation unit, including those in header
2063 files.  This option is silently ignored in any language other than C@.
2065 Besides declarations, the file indicates, in comments, the origin of
2066 each declaration (source file and line), whether the declaration was
2067 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
2068 @samp{O} for old, respectively, in the first character after the line
2069 number and the colon), and whether it came from a declaration or a
2070 definition (@samp{C} or @samp{F}, respectively, in the following
2071 character).  In the case of function definitions, a K&R-style list of
2072 arguments followed by their declarations is also provided, inside
2073 comments, after the declaration.
2075 @item -fallow-parameterless-variadic-functions
2076 @opindex fallow-parameterless-variadic-functions
2077 Accept variadic functions without named parameters.
2079 Although it is possible to define such a function, this is not very
2080 useful as it is not possible to read the arguments.  This is only
2081 supported for C as this construct is allowed by C++.
2083 @item -fno-asm
2084 @opindex fno-asm
2085 @opindex fasm
2086 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
2087 keyword, so that code can use these words as identifiers.  You can use
2088 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
2089 instead.  @option{-ansi} implies @option{-fno-asm}.
2091 In C++, this switch only affects the @code{typeof} keyword, since
2092 @code{asm} and @code{inline} are standard keywords.  You may want to
2093 use the @option{-fno-gnu-keywords} flag instead, which has the same
2094 effect.  In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
2095 switch only affects the @code{asm} and @code{typeof} keywords, since
2096 @code{inline} is a standard keyword in ISO C99.
2098 @item -fno-builtin
2099 @itemx -fno-builtin-@var{function}
2100 @opindex fno-builtin
2101 @opindex fbuiltin
2102 @cindex built-in functions
2103 Don't recognize built-in functions that do not begin with
2104 @samp{__builtin_} as prefix.  @xref{Other Builtins,,Other built-in
2105 functions provided by GCC}, for details of the functions affected,
2106 including those which are not built-in functions when @option{-ansi} or
2107 @option{-std} options for strict ISO C conformance are used because they
2108 do not have an ISO standard meaning.
2110 GCC normally generates special code to handle certain built-in functions
2111 more efficiently; for instance, calls to @code{alloca} may become single
2112 instructions which adjust the stack directly, and calls to @code{memcpy}
2113 may become inline copy loops.  The resulting code is often both smaller
2114 and faster, but since the function calls no longer appear as such, you
2115 cannot set a breakpoint on those calls, nor can you change the behavior
2116 of the functions by linking with a different library.  In addition,
2117 when a function is recognized as a built-in function, GCC may use
2118 information about that function to warn about problems with calls to
2119 that function, or to generate more efficient code, even if the
2120 resulting code still contains calls to that function.  For example,
2121 warnings are given with @option{-Wformat} for bad calls to
2122 @code{printf} when @code{printf} is built in and @code{strlen} is
2123 known not to modify global memory.
2125 With the @option{-fno-builtin-@var{function}} option
2126 only the built-in function @var{function} is
2127 disabled.  @var{function} must not begin with @samp{__builtin_}.  If a
2128 function is named that is not built-in in this version of GCC, this
2129 option is ignored.  There is no corresponding
2130 @option{-fbuiltin-@var{function}} option; if you wish to enable
2131 built-in functions selectively when using @option{-fno-builtin} or
2132 @option{-ffreestanding}, you may define macros such as:
2134 @smallexample
2135 #define abs(n)          __builtin_abs ((n))
2136 #define strcpy(d, s)    __builtin_strcpy ((d), (s))
2137 @end smallexample
2139 @item -fgimple
2140 @opindex fgimple
2142 Enable parsing of function definitions marked with @code{__GIMPLE}.
2143 This is an experimental feature that allows unit testing of GIMPLE
2144 passes.
2146 @item -fhosted
2147 @opindex fhosted
2148 @cindex hosted environment
2150 Assert that compilation targets a hosted environment.  This implies
2151 @option{-fbuiltin}.  A hosted environment is one in which the
2152 entire standard library is available, and in which @code{main} has a return
2153 type of @code{int}.  Examples are nearly everything except a kernel.
2154 This is equivalent to @option{-fno-freestanding}.
2156 @item -ffreestanding
2157 @opindex ffreestanding
2158 @cindex hosted environment
2160 Assert that compilation targets a freestanding environment.  This
2161 implies @option{-fno-builtin}.  A freestanding environment
2162 is one in which the standard library may not exist, and program startup may
2163 not necessarily be at @code{main}.  The most obvious example is an OS kernel.
2164 This is equivalent to @option{-fno-hosted}.
2166 @xref{Standards,,Language Standards Supported by GCC}, for details of
2167 freestanding and hosted environments.
2169 @item -fopenacc
2170 @opindex fopenacc
2171 @cindex OpenACC accelerator programming
2172 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2173 @code{!$acc} in Fortran.  When @option{-fopenacc} is specified, the
2174 compiler generates accelerated code according to the OpenACC Application
2175 Programming Interface v2.0 @w{@uref{https://www.openacc.org}}.  This option
2176 implies @option{-pthread}, and thus is only supported on targets that
2177 have support for @option{-pthread}.
2179 @item -fopenacc-dim=@var{geom}
2180 @opindex fopenacc-dim
2181 @cindex OpenACC accelerator programming
2182 Specify default compute dimensions for parallel offload regions that do
2183 not explicitly specify.  The @var{geom} value is a triple of
2184 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'.  A size
2185 can be omitted, to use a target-specific default value.
2187 @item -fopenmp
2188 @opindex fopenmp
2189 @cindex OpenMP parallel
2190 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2191 @code{!$omp} in Fortran.  When @option{-fopenmp} is specified, the
2192 compiler generates parallel code according to the OpenMP Application
2193 Program Interface v4.5 @w{@uref{https://www.openmp.org}}.  This option
2194 implies @option{-pthread}, and thus is only supported on targets that
2195 have support for @option{-pthread}. @option{-fopenmp} implies
2196 @option{-fopenmp-simd}.
2198 @item -fopenmp-simd
2199 @opindex fopenmp-simd
2200 @cindex OpenMP SIMD
2201 @cindex SIMD
2202 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2203 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2204 are ignored.
2206 @item -fgnu-tm
2207 @opindex fgnu-tm
2208 When the option @option{-fgnu-tm} is specified, the compiler
2209 generates code for the Linux variant of Intel's current Transactional
2210 Memory ABI specification document (Revision 1.1, May 6 2009).  This is
2211 an experimental feature whose interface may change in future versions
2212 of GCC, as the official specification changes.  Please note that not
2213 all architectures are supported for this feature.
2215 For more information on GCC's support for transactional memory,
2216 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2217 Transactional Memory Library}.
2219 Note that the transactional memory feature is not supported with
2220 non-call exceptions (@option{-fnon-call-exceptions}).
2222 @item -fms-extensions
2223 @opindex fms-extensions
2224 Accept some non-standard constructs used in Microsoft header files.
2226 In C++ code, this allows member names in structures to be similar
2227 to previous types declarations.
2229 @smallexample
2230 typedef int UOW;
2231 struct ABC @{
2232   UOW UOW;
2234 @end smallexample
2236 Some cases of unnamed fields in structures and unions are only
2237 accepted with this option.  @xref{Unnamed Fields,,Unnamed struct/union
2238 fields within structs/unions}, for details.
2240 Note that this option is off for all targets but x86 
2241 targets using ms-abi.
2243 @item -fplan9-extensions
2244 @opindex fplan9-extensions
2245 Accept some non-standard constructs used in Plan 9 code.
2247 This enables @option{-fms-extensions}, permits passing pointers to
2248 structures with anonymous fields to functions that expect pointers to
2249 elements of the type of the field, and permits referring to anonymous
2250 fields declared using a typedef.  @xref{Unnamed Fields,,Unnamed
2251 struct/union fields within structs/unions}, for details.  This is only
2252 supported for C, not C++.
2254 @item -fcond-mismatch
2255 @opindex fcond-mismatch
2256 Allow conditional expressions with mismatched types in the second and
2257 third arguments.  The value of such an expression is void.  This option
2258 is not supported for C++.
2260 @item -flax-vector-conversions
2261 @opindex flax-vector-conversions
2262 Allow implicit conversions between vectors with differing numbers of
2263 elements and/or incompatible element types.  This option should not be
2264 used for new code.
2266 @item -funsigned-char
2267 @opindex funsigned-char
2268 Let the type @code{char} be unsigned, like @code{unsigned char}.
2270 Each kind of machine has a default for what @code{char} should
2271 be.  It is either like @code{unsigned char} by default or like
2272 @code{signed char} by default.
2274 Ideally, a portable program should always use @code{signed char} or
2275 @code{unsigned char} when it depends on the signedness of an object.
2276 But many programs have been written to use plain @code{char} and
2277 expect it to be signed, or expect it to be unsigned, depending on the
2278 machines they were written for.  This option, and its inverse, let you
2279 make such a program work with the opposite default.
2281 The type @code{char} is always a distinct type from each of
2282 @code{signed char} or @code{unsigned char}, even though its behavior
2283 is always just like one of those two.
2285 @item -fsigned-char
2286 @opindex fsigned-char
2287 Let the type @code{char} be signed, like @code{signed char}.
2289 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2290 the negative form of @option{-funsigned-char}.  Likewise, the option
2291 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2293 @item -fsigned-bitfields
2294 @itemx -funsigned-bitfields
2295 @itemx -fno-signed-bitfields
2296 @itemx -fno-unsigned-bitfields
2297 @opindex fsigned-bitfields
2298 @opindex funsigned-bitfields
2299 @opindex fno-signed-bitfields
2300 @opindex fno-unsigned-bitfields
2301 These options control whether a bit-field is signed or unsigned, when the
2302 declaration does not use either @code{signed} or @code{unsigned}.  By
2303 default, such a bit-field is signed, because this is consistent: the
2304 basic integer types such as @code{int} are signed types.
2306 @item -fsso-struct=@var{endianness}
2307 @opindex fsso-struct
2308 Set the default scalar storage order of structures and unions to the
2309 specified endianness.  The accepted values are @samp{big-endian},
2310 @samp{little-endian} and @samp{native} for the native endianness of
2311 the target (the default).  This option is not supported for C++.
2313 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2314 code that is not binary compatible with code generated without it if the
2315 specified endianness is not the native endianness of the target.
2316 @end table
2318 @node C++ Dialect Options
2319 @section Options Controlling C++ Dialect
2321 @cindex compiler options, C++
2322 @cindex C++ options, command-line
2323 @cindex options, C++
2324 This section describes the command-line options that are only meaningful
2325 for C++ programs.  You can also use most of the GNU compiler options
2326 regardless of what language your program is in.  For example, you
2327 might compile a file @file{firstClass.C} like this:
2329 @smallexample
2330 g++ -g -fstrict-enums -O -c firstClass.C
2331 @end smallexample
2333 @noindent
2334 In this example, only @option{-fstrict-enums} is an option meant
2335 only for C++ programs; you can use the other options with any
2336 language supported by GCC@.
2338 Some options for compiling C programs, such as @option{-std}, are also
2339 relevant for C++ programs.
2340 @xref{C Dialect Options,,Options Controlling C Dialect}.
2342 Here is a list of options that are @emph{only} for compiling C++ programs:
2344 @table @gcctabopt
2346 @item -fabi-version=@var{n}
2347 @opindex fabi-version
2348 Use version @var{n} of the C++ ABI@.  The default is version 0.
2350 Version 0 refers to the version conforming most closely to
2351 the C++ ABI specification.  Therefore, the ABI obtained using version 0
2352 will change in different versions of G++ as ABI bugs are fixed.
2354 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2356 Version 2 is the version of the C++ ABI that first appeared in G++
2357 3.4, and was the default through G++ 4.9.
2359 Version 3 corrects an error in mangling a constant address as a
2360 template argument.
2362 Version 4, which first appeared in G++ 4.5, implements a standard
2363 mangling for vector types.
2365 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2366 attribute const/volatile on function pointer types, decltype of a
2367 plain decl, and use of a function parameter in the declaration of
2368 another parameter.
2370 Version 6, which first appeared in G++ 4.7, corrects the promotion
2371 behavior of C++11 scoped enums and the mangling of template argument
2372 packs, const/static_cast, prefix ++ and --, and a class scope function
2373 used as a template argument.
2375 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2376 builtin type and corrects the mangling of lambdas in default argument
2377 scope.
2379 Version 8, which first appeared in G++ 4.9, corrects the substitution
2380 behavior of function types with function-cv-qualifiers.
2382 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2383 @code{nullptr_t}.
2385 Version 10, which first appeared in G++ 6.1, adds mangling of
2386 attributes that affect type identity, such as ia32 calling convention
2387 attributes (e.g.@: @samp{stdcall}).
2389 Version 11, which first appeared in G++ 7, corrects the mangling of
2390 sizeof... expressions and operator names.  For multiple entities with
2391 the same name within a function, that are declared in different scopes,
2392 the mangling now changes starting with the twelfth occurrence.  It also
2393 implies @option{-fnew-inheriting-ctors}.
2395 Version 12, which first appeared in G++ 8, corrects the calling
2396 conventions for empty classes on the x86_64 target and for classes
2397 with only deleted copy/move constructors.  It accidentally changes the
2398 calling convention for classes with a deleted copy constructor and a
2399 trivial move constructor.
2401 Version 13, which first appeared in G++ 8.2, fixes the accidental
2402 change in version 12.
2404 See also @option{-Wabi}.
2406 @item -fabi-compat-version=@var{n}
2407 @opindex fabi-compat-version
2408 On targets that support strong aliases, G++
2409 works around mangling changes by creating an alias with the correct
2410 mangled name when defining a symbol with an incorrect mangled name.
2411 This switch specifies which ABI version to use for the alias.
2413 With @option{-fabi-version=0} (the default), this defaults to 11 (GCC 7
2414 compatibility).  If another ABI version is explicitly selected, this
2415 defaults to 0.  For compatibility with GCC versions 3.2 through 4.9,
2416 use @option{-fabi-compat-version=2}.
2418 If this option is not provided but @option{-Wabi=@var{n}} is, that
2419 version is used for compatibility aliases.  If this option is provided
2420 along with @option{-Wabi} (without the version), the version from this
2421 option is used for the warning.
2423 @item -fno-access-control
2424 @opindex fno-access-control
2425 @opindex faccess-control
2426 Turn off all access checking.  This switch is mainly useful for working
2427 around bugs in the access control code.
2429 @item -faligned-new
2430 @opindex faligned-new
2431 Enable support for C++17 @code{new} of types that require more
2432 alignment than @code{void* ::operator new(std::size_t)} provides.  A
2433 numeric argument such as @code{-faligned-new=32} can be used to
2434 specify how much alignment (in bytes) is provided by that function,
2435 but few users will need to override the default of
2436 @code{alignof(std::max_align_t)}.
2438 This flag is enabled by default for @option{-std=c++17}.
2440 @item -fchar8_t
2441 @itemx -fno-char8_t
2442 @opindex fchar8_t
2443 @opindex fno-char8_t
2444 Enable support for @code{char8_t} as adopted for C++2a.  This includes
2445 the addition of a new @code{char8_t} fundamental type, changes to the
2446 types of UTF-8 string and character literals, new signatures for
2447 user-defined literals, associated standard library updates, and new
2448 @code{__cpp_char8_t} and @code{__cpp_lib_char8_t} feature test macros.
2450 This option enables functions to be overloaded for ordinary and UTF-8
2451 strings:
2453 @smallexample
2454 int f(const char *);    // #1
2455 int f(const char8_t *); // #2
2456 int v1 = f("text");     // Calls #1
2457 int v2 = f(u8"text");   // Calls #2
2458 @end smallexample
2460 @noindent
2461 and introduces new signatures for user-defined literals:
2463 @smallexample
2464 int operator""_udl1(char8_t);
2465 int v3 = u8'x'_udl1;
2466 int operator""_udl2(const char8_t*, std::size_t);
2467 int v4 = u8"text"_udl2;
2468 template<typename T, T...> int operator""_udl3();
2469 int v5 = u8"text"_udl3;
2470 @end smallexample
2472 @noindent
2473 The change to the types of UTF-8 string and character literals introduces
2474 incompatibilities with ISO C++11 and later standards.  For example, the
2475 following code is well-formed under ISO C++11, but is ill-formed when
2476 @option{-fchar8_t} is specified.
2478 @smallexample
2479 char ca[] = u8"xx";     // error: char-array initialized from wide
2480                         //        string
2481 const char *cp = u8"xx";// error: invalid conversion from
2482                         //        `const char8_t*' to `const char*'
2483 int f(const char*);
2484 auto v = f(u8"xx");     // error: invalid conversion from
2485                         //        `const char8_t*' to `const char*'
2486 std::string s@{u8"xx"@};  // error: no matching function for call to
2487                         //        `std::basic_string<char>::basic_string()'
2488 using namespace std::literals;
2489 s = u8"xx"s;            // error: conversion from
2490                         //        `basic_string<char8_t>' to non-scalar
2491                         //        type `basic_string<char>' requested
2492 @end smallexample
2494 @item -fcheck-new
2495 @opindex fcheck-new
2496 Check that the pointer returned by @code{operator new} is non-null
2497 before attempting to modify the storage allocated.  This check is
2498 normally unnecessary because the C++ standard specifies that
2499 @code{operator new} only returns @code{0} if it is declared
2500 @code{throw()}, in which case the compiler always checks the
2501 return value even without this option.  In all other cases, when
2502 @code{operator new} has a non-empty exception specification, memory
2503 exhaustion is signalled by throwing @code{std::bad_alloc}.  See also
2504 @samp{new (nothrow)}.
2506 @item -fconcepts
2507 @opindex fconcepts
2508 Enable support for the C++ Extensions for Concepts Technical
2509 Specification, ISO 19217 (2015), which allows code like
2511 @smallexample
2512 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2513 template <Addable T> T add (T a, T b) @{ return a + b; @}
2514 @end smallexample
2516 @item -fconstexpr-depth=@var{n}
2517 @opindex fconstexpr-depth
2518 Set the maximum nested evaluation depth for C++11 constexpr functions
2519 to @var{n}.  A limit is needed to detect endless recursion during
2520 constant expression evaluation.  The minimum specified by the standard
2521 is 512.
2523 @item -fconstexpr-loop-limit=@var{n}
2524 @opindex fconstexpr-loop-limit
2525 Set the maximum number of iterations for a loop in C++14 constexpr functions
2526 to @var{n}.  A limit is needed to detect infinite loops during
2527 constant expression evaluation.  The default is 262144 (1<<18).
2529 @item -fconstexpr-ops-limit=@var{n}
2530 @opindex fconstexpr-ops-limit
2531 Set the maximum number of operations during a single constexpr evaluation.
2532 Even when number of iterations of a single loop is limited with the above limit,
2533 if there are several nested loops and each of them has many iterations but still
2534 smaller than the above limit, or if in a body of some loop or even outside
2535 of a loop too many expressions need to be evaluated, the resulting constexpr
2536 evaluation might take too long.
2537 The default is 33554432 (1<<25).
2539 @item -fdeduce-init-list
2540 @opindex fdeduce-init-list
2541 Enable deduction of a template type parameter as
2542 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2544 @smallexample
2545 template <class T> auto forward(T t) -> decltype (realfn (t))
2547   return realfn (t);
2550 void f()
2552   forward(@{1,2@}); // call forward<std::initializer_list<int>>
2554 @end smallexample
2556 This deduction was implemented as a possible extension to the
2557 originally proposed semantics for the C++11 standard, but was not part
2558 of the final standard, so it is disabled by default.  This option is
2559 deprecated, and may be removed in a future version of G++.
2561 @item -fno-elide-constructors
2562 @opindex fno-elide-constructors
2563 @opindex felide-constructors
2564 The C++ standard allows an implementation to omit creating a temporary
2565 that is only used to initialize another object of the same type.
2566 Specifying this option disables that optimization, and forces G++ to
2567 call the copy constructor in all cases.  This option also causes G++
2568 to call trivial member functions which otherwise would be expanded inline.
2570 In C++17, the compiler is required to omit these temporaries, but this
2571 option still affects trivial member functions.
2573 @item -fno-enforce-eh-specs
2574 @opindex fno-enforce-eh-specs
2575 @opindex fenforce-eh-specs
2576 Don't generate code to check for violation of exception specifications
2577 at run time.  This option violates the C++ standard, but may be useful
2578 for reducing code size in production builds, much like defining
2579 @code{NDEBUG}.  This does not give user code permission to throw
2580 exceptions in violation of the exception specifications; the compiler
2581 still optimizes based on the specifications, so throwing an
2582 unexpected exception results in undefined behavior at run time.
2584 @item -fextern-tls-init
2585 @itemx -fno-extern-tls-init
2586 @opindex fextern-tls-init
2587 @opindex fno-extern-tls-init
2588 The C++11 and OpenMP standards allow @code{thread_local} and
2589 @code{threadprivate} variables to have dynamic (runtime)
2590 initialization.  To support this, any use of such a variable goes
2591 through a wrapper function that performs any necessary initialization.
2592 When the use and definition of the variable are in the same
2593 translation unit, this overhead can be optimized away, but when the
2594 use is in a different translation unit there is significant overhead
2595 even if the variable doesn't actually need dynamic initialization.  If
2596 the programmer can be sure that no use of the variable in a
2597 non-defining TU needs to trigger dynamic initialization (either
2598 because the variable is statically initialized, or a use of the
2599 variable in the defining TU will be executed before any uses in
2600 another TU), they can avoid this overhead with the
2601 @option{-fno-extern-tls-init} option.
2603 On targets that support symbol aliases, the default is
2604 @option{-fextern-tls-init}.  On targets that do not support symbol
2605 aliases, the default is @option{-fno-extern-tls-init}.
2607 @item -fno-gnu-keywords
2608 @opindex fno-gnu-keywords
2609 @opindex fgnu-keywords
2610 Do not recognize @code{typeof} as a keyword, so that code can use this
2611 word as an identifier.  You can use the keyword @code{__typeof__} instead.
2612 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2613 @option{-std=c++98}, @option{-std=c++11}, etc.
2615 @item -fno-implicit-templates
2616 @opindex fno-implicit-templates
2617 @opindex fimplicit-templates
2618 Never emit code for non-inline templates that are instantiated
2619 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2620 If you use this option, you must take care to structure your code to
2621 include all the necessary explicit instantiations to avoid getting
2622 undefined symbols at link time.
2623 @xref{Template Instantiation}, for more information.
2625 @item -fno-implicit-inline-templates
2626 @opindex fno-implicit-inline-templates
2627 @opindex fimplicit-inline-templates
2628 Don't emit code for implicit instantiations of inline templates, either.
2629 The default is to handle inlines differently so that compiles with and
2630 without optimization need the same set of explicit instantiations.
2632 @item -fno-implement-inlines
2633 @opindex fno-implement-inlines
2634 @opindex fimplement-inlines
2635 To save space, do not emit out-of-line copies of inline functions
2636 controlled by @code{#pragma implementation}.  This causes linker
2637 errors if these functions are not inlined everywhere they are called.
2639 @item -fms-extensions
2640 @opindex fms-extensions
2641 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2642 int and getting a pointer to member function via non-standard syntax.
2644 @item -fnew-inheriting-ctors
2645 @opindex fnew-inheriting-ctors
2646 Enable the P0136 adjustment to the semantics of C++11 constructor
2647 inheritance.  This is part of C++17 but also considered to be a Defect
2648 Report against C++11 and C++14.  This flag is enabled by default
2649 unless @option{-fabi-version=10} or lower is specified.
2651 @item -fnew-ttp-matching
2652 @opindex fnew-ttp-matching
2653 Enable the P0522 resolution to Core issue 150, template template
2654 parameters and default arguments: this allows a template with default
2655 template arguments as an argument for a template template parameter
2656 with fewer template parameters.  This flag is enabled by default for
2657 @option{-std=c++17}.
2659 @item -fno-nonansi-builtins
2660 @opindex fno-nonansi-builtins
2661 @opindex fnonansi-builtins
2662 Disable built-in declarations of functions that are not mandated by
2663 ANSI/ISO C@.  These include @code{ffs}, @code{alloca}, @code{_exit},
2664 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2666 @item -fnothrow-opt
2667 @opindex fnothrow-opt
2668 Treat a @code{throw()} exception specification as if it were a
2669 @code{noexcept} specification to reduce or eliminate the text size
2670 overhead relative to a function with no exception specification.  If
2671 the function has local variables of types with non-trivial
2672 destructors, the exception specification actually makes the
2673 function smaller because the EH cleanups for those variables can be
2674 optimized away.  The semantic effect is that an exception thrown out of
2675 a function with such an exception specification results in a call
2676 to @code{terminate} rather than @code{unexpected}.
2678 @item -fno-operator-names
2679 @opindex fno-operator-names
2680 @opindex foperator-names
2681 Do not treat the operator name keywords @code{and}, @code{bitand},
2682 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2683 synonyms as keywords.
2685 @item -fno-optional-diags
2686 @opindex fno-optional-diags
2687 @opindex foptional-diags
2688 Disable diagnostics that the standard says a compiler does not need to
2689 issue.  Currently, the only such diagnostic issued by G++ is the one for
2690 a name having multiple meanings within a class.
2692 @item -fpermissive
2693 @opindex fpermissive
2694 Downgrade some diagnostics about nonconformant code from errors to
2695 warnings.  Thus, using @option{-fpermissive} allows some
2696 nonconforming code to compile.
2698 @item -fno-pretty-templates
2699 @opindex fno-pretty-templates
2700 @opindex fpretty-templates
2701 When an error message refers to a specialization of a function
2702 template, the compiler normally prints the signature of the
2703 template followed by the template arguments and any typedefs or
2704 typenames in the signature (e.g.@: @code{void f(T) [with T = int]}
2705 rather than @code{void f(int)}) so that it's clear which template is
2706 involved.  When an error message refers to a specialization of a class
2707 template, the compiler omits any template arguments that match
2708 the default template arguments for that template.  If either of these
2709 behaviors make it harder to understand the error message rather than
2710 easier, you can use @option{-fno-pretty-templates} to disable them.
2712 @item -frepo
2713 @opindex frepo
2714 Enable automatic template instantiation at link time.  This option also
2715 implies @option{-fno-implicit-templates}.  @xref{Template
2716 Instantiation}, for more information.
2718 @item -fno-rtti
2719 @opindex fno-rtti
2720 @opindex frtti
2721 Disable generation of information about every class with virtual
2722 functions for use by the C++ run-time type identification features
2723 (@code{dynamic_cast} and @code{typeid}).  If you don't use those parts
2724 of the language, you can save some space by using this flag.  Note that
2725 exception handling uses the same information, but G++ generates it as
2726 needed. The @code{dynamic_cast} operator can still be used for casts that
2727 do not require run-time type information, i.e.@: casts to @code{void *} or to
2728 unambiguous base classes.
2730 Mixing code compiled with @option{-frtti} with that compiled with
2731 @option{-fno-rtti} may not work.  For example, programs may
2732 fail to link if a class compiled with @option{-fno-rtti} is used as a base 
2733 for a class compiled with @option{-frtti}.  
2735 @item -fsized-deallocation
2736 @opindex fsized-deallocation
2737 Enable the built-in global declarations
2738 @smallexample
2739 void operator delete (void *, std::size_t) noexcept;
2740 void operator delete[] (void *, std::size_t) noexcept;
2741 @end smallexample
2742 as introduced in C++14.  This is useful for user-defined replacement
2743 deallocation functions that, for example, use the size of the object
2744 to make deallocation faster.  Enabled by default under
2745 @option{-std=c++14} and above.  The flag @option{-Wsized-deallocation}
2746 warns about places that might want to add a definition.
2748 @item -fstrict-enums
2749 @opindex fstrict-enums
2750 Allow the compiler to optimize using the assumption that a value of
2751 enumerated type can only be one of the values of the enumeration (as
2752 defined in the C++ standard; basically, a value that can be
2753 represented in the minimum number of bits needed to represent all the
2754 enumerators).  This assumption may not be valid if the program uses a
2755 cast to convert an arbitrary integer value to the enumerated type.
2757 @item -fstrong-eval-order
2758 @opindex fstrong-eval-order
2759 Evaluate member access, array subscripting, and shift expressions in
2760 left-to-right order, and evaluate assignment in right-to-left order,
2761 as adopted for C++17.  Enabled by default with @option{-std=c++17}.
2762 @option{-fstrong-eval-order=some} enables just the ordering of member
2763 access and shift expressions, and is the default without
2764 @option{-std=c++17}.
2766 @item -ftemplate-backtrace-limit=@var{n}
2767 @opindex ftemplate-backtrace-limit
2768 Set the maximum number of template instantiation notes for a single
2769 warning or error to @var{n}.  The default value is 10.
2771 @item -ftemplate-depth=@var{n}
2772 @opindex ftemplate-depth
2773 Set the maximum instantiation depth for template classes to @var{n}.
2774 A limit on the template instantiation depth is needed to detect
2775 endless recursions during template class instantiation.  ANSI/ISO C++
2776 conforming programs must not rely on a maximum depth greater than 17
2777 (changed to 1024 in C++11).  The default value is 900, as the compiler
2778 can run out of stack space before hitting 1024 in some situations.
2780 @item -fno-threadsafe-statics
2781 @opindex fno-threadsafe-statics
2782 @opindex fthreadsafe-statics
2783 Do not emit the extra code to use the routines specified in the C++
2784 ABI for thread-safe initialization of local statics.  You can use this
2785 option to reduce code size slightly in code that doesn't need to be
2786 thread-safe.
2788 @item -fuse-cxa-atexit
2789 @opindex fuse-cxa-atexit
2790 Register destructors for objects with static storage duration with the
2791 @code{__cxa_atexit} function rather than the @code{atexit} function.
2792 This option is required for fully standards-compliant handling of static
2793 destructors, but only works if your C library supports
2794 @code{__cxa_atexit}.
2796 @item -fno-use-cxa-get-exception-ptr
2797 @opindex fno-use-cxa-get-exception-ptr
2798 @opindex fuse-cxa-get-exception-ptr
2799 Don't use the @code{__cxa_get_exception_ptr} runtime routine.  This
2800 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2801 if the runtime routine is not available.
2803 @item -fvisibility-inlines-hidden
2804 @opindex fvisibility-inlines-hidden
2805 This switch declares that the user does not attempt to compare
2806 pointers to inline functions or methods where the addresses of the two functions
2807 are taken in different shared objects.
2809 The effect of this is that GCC may, effectively, mark inline methods with
2810 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2811 appear in the export table of a DSO and do not require a PLT indirection
2812 when used within the DSO@.  Enabling this option can have a dramatic effect
2813 on load and link times of a DSO as it massively reduces the size of the
2814 dynamic export table when the library makes heavy use of templates.
2816 The behavior of this switch is not quite the same as marking the
2817 methods as hidden directly, because it does not affect static variables
2818 local to the function or cause the compiler to deduce that
2819 the function is defined in only one shared object.
2821 You may mark a method as having a visibility explicitly to negate the
2822 effect of the switch for that method.  For example, if you do want to
2823 compare pointers to a particular inline method, you might mark it as
2824 having default visibility.  Marking the enclosing class with explicit
2825 visibility has no effect.
2827 Explicitly instantiated inline methods are unaffected by this option
2828 as their linkage might otherwise cross a shared library boundary.
2829 @xref{Template Instantiation}.
2831 @item -fvisibility-ms-compat
2832 @opindex fvisibility-ms-compat
2833 This flag attempts to use visibility settings to make GCC's C++
2834 linkage model compatible with that of Microsoft Visual Studio.
2836 The flag makes these changes to GCC's linkage model:
2838 @enumerate
2839 @item
2840 It sets the default visibility to @code{hidden}, like
2841 @option{-fvisibility=hidden}.
2843 @item
2844 Types, but not their members, are not hidden by default.
2846 @item
2847 The One Definition Rule is relaxed for types without explicit
2848 visibility specifications that are defined in more than one
2849 shared object: those declarations are permitted if they are
2850 permitted when this option is not used.
2851 @end enumerate
2853 In new code it is better to use @option{-fvisibility=hidden} and
2854 export those classes that are intended to be externally visible.
2855 Unfortunately it is possible for code to rely, perhaps accidentally,
2856 on the Visual Studio behavior.
2858 Among the consequences of these changes are that static data members
2859 of the same type with the same name but defined in different shared
2860 objects are different, so changing one does not change the other;
2861 and that pointers to function members defined in different shared
2862 objects may not compare equal.  When this flag is given, it is a
2863 violation of the ODR to define types with the same name differently.
2865 @item -fno-weak
2866 @opindex fno-weak
2867 @opindex fweak
2868 Do not use weak symbol support, even if it is provided by the linker.
2869 By default, G++ uses weak symbols if they are available.  This
2870 option exists only for testing, and should not be used by end-users;
2871 it results in inferior code and has no benefits.  This option may
2872 be removed in a future release of G++.
2874 @item -nostdinc++
2875 @opindex nostdinc++
2876 Do not search for header files in the standard directories specific to
2877 C++, but do still search the other standard directories.  (This option
2878 is used when building the C++ library.)
2879 @end table
2881 In addition, these optimization, warning, and code generation options
2882 have meanings only for C++ programs:
2884 @table @gcctabopt
2885 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2886 @opindex Wabi
2887 @opindex Wno-abi
2888 Warn when G++ it generates code that is probably not compatible with
2889 the vendor-neutral C++ ABI@.  Since G++ now defaults to updating the
2890 ABI with each major release, normally @option{-Wabi} will warn only if
2891 there is a check added later in a release series for an ABI issue
2892 discovered since the initial release.  @option{-Wabi} will warn about
2893 more things if an older ABI version is selected (with
2894 @option{-fabi-version=@var{n}}).
2896 @option{-Wabi} can also be used with an explicit version number to
2897 warn about compatibility with a particular @option{-fabi-version}
2898 level, e.g.@: @option{-Wabi=2} to warn about changes relative to
2899 @option{-fabi-version=2}.
2901 If an explicit version number is provided and
2902 @option{-fabi-compat-version} is not specified, the version number
2903 from this option is used for compatibility aliases.  If no explicit
2904 version number is provided with this option, but
2905 @option{-fabi-compat-version} is specified, that version number is
2906 used for ABI warnings.
2908 Although an effort has been made to warn about
2909 all such cases, there are probably some cases that are not warned about,
2910 even though G++ is generating incompatible code.  There may also be
2911 cases where warnings are emitted even though the code that is generated
2912 is compatible.
2914 You should rewrite your code to avoid these warnings if you are
2915 concerned about the fact that code generated by G++ may not be binary
2916 compatible with code generated by other compilers.
2918 Known incompatibilities in @option{-fabi-version=2} (which was the
2919 default from GCC 3.4 to 4.9) include:
2921 @itemize @bullet
2923 @item
2924 A template with a non-type template parameter of reference type was
2925 mangled incorrectly:
2926 @smallexample
2927 extern int N;
2928 template <int &> struct S @{@};
2929 void n (S<N>) @{2@}
2930 @end smallexample
2932 This was fixed in @option{-fabi-version=3}.
2934 @item
2935 SIMD vector types declared using @code{__attribute ((vector_size))} were
2936 mangled in a non-standard way that does not allow for overloading of
2937 functions taking vectors of different sizes.
2939 The mangling was changed in @option{-fabi-version=4}.
2941 @item
2942 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2943 qualifiers, and @code{decltype} of a plain declaration was folded away.
2945 These mangling issues were fixed in @option{-fabi-version=5}.
2947 @item
2948 Scoped enumerators passed as arguments to a variadic function are
2949 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2950 On most targets this does not actually affect the parameter passing
2951 ABI, as there is no way to pass an argument smaller than @code{int}.
2953 Also, the ABI changed the mangling of template argument packs,
2954 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2955 a class scope function used as a template argument.
2957 These issues were corrected in @option{-fabi-version=6}.
2959 @item
2960 Lambdas in default argument scope were mangled incorrectly, and the
2961 ABI changed the mangling of @code{nullptr_t}.
2963 These issues were corrected in @option{-fabi-version=7}.
2965 @item
2966 When mangling a function type with function-cv-qualifiers, the
2967 un-qualified function type was incorrectly treated as a substitution
2968 candidate.
2970 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2972 @item
2973 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2974 unaligned accesses.  Note that this did not affect the ABI of a
2975 function with a @code{nullptr_t} parameter, as parameters have a
2976 minimum alignment.
2978 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2980 @item
2981 Target-specific attributes that affect the identity of a type, such as
2982 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2983 did not affect the mangled name, leading to name collisions when
2984 function pointers were used as template arguments.
2986 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2988 @end itemize
2990 It also warns about psABI-related changes.  The known psABI changes at this
2991 point include:
2993 @itemize @bullet
2995 @item
2996 For SysV/x86-64, unions with @code{long double} members are 
2997 passed in memory as specified in psABI.  For example:
2999 @smallexample
3000 union U @{
3001   long double ld;
3002   int i;
3004 @end smallexample
3006 @noindent
3007 @code{union U} is always passed in memory.
3009 @end itemize
3011 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
3012 @opindex Wabi-tag
3013 @opindex Wabi-tag
3014 Warn when a type with an ABI tag is used in a context that does not
3015 have that ABI tag.  See @ref{C++ Attributes} for more information
3016 about ABI tags.
3018 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
3019 @opindex Wctor-dtor-privacy
3020 @opindex Wno-ctor-dtor-privacy
3021 Warn when a class seems unusable because all the constructors or
3022 destructors in that class are private, and it has neither friends nor
3023 public static member functions.  Also warn if there are no non-private
3024 methods, and there's at least one private member function that isn't
3025 a constructor or destructor.
3027 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
3028 @opindex Wdelete-non-virtual-dtor
3029 @opindex Wno-delete-non-virtual-dtor
3030 Warn when @code{delete} is used to destroy an instance of a class that
3031 has virtual functions and non-virtual destructor. It is unsafe to delete
3032 an instance of a derived class through a pointer to a base class if the
3033 base class does not have a virtual destructor.  This warning is enabled
3034 by @option{-Wall}.
3036 @item -Wdeprecated-copy @r{(C++ and Objective-C++ only)}
3037 @opindex Wdeprecated-copy
3038 @opindex Wno-deprecated-copy
3039 Warn that the implicit declaration of a copy constructor or copy
3040 assignment operator is deprecated if the class has a user-provided
3041 copy constructor or copy assignment operator, in C++11 and up.  This
3042 warning is enabled by @option{-Wextra}.  With
3043 @option{-Wdeprecated-copy-dtor}, also deprecate if the class has a
3044 user-provided destructor.
3046 @item -Wno-init-list-lifetime @r{(C++ and Objective-C++ only)}
3047 @opindex Winit-list-lifetime
3048 @opindex Wno-init-list-lifetime
3049 Do not warn about uses of @code{std::initializer_list} that are likely
3050 to result in dangling pointers.  Since the underlying array for an
3051 @code{initializer_list} is handled like a normal C++ temporary object,
3052 it is easy to inadvertently keep a pointer to the array past the end
3053 of the array's lifetime.  For example:
3055 @itemize @bullet
3056 @item
3057 If a function returns a temporary @code{initializer_list}, or a local
3058 @code{initializer_list} variable, the array's lifetime ends at the end
3059 of the return statement, so the value returned has a dangling pointer.
3061 @item
3062 If a new-expression creates an @code{initializer_list}, the array only
3063 lives until the end of the enclosing full-expression, so the
3064 @code{initializer_list} in the heap has a dangling pointer.
3066 @item
3067 When an @code{initializer_list} variable is assigned from a
3068 brace-enclosed initializer list, the temporary array created for the
3069 right side of the assignment only lives until the end of the
3070 full-expression, so at the next statement the @code{initializer_list}
3071 variable has a dangling pointer.
3073 @smallexample
3074 // li's initial underlying array lives as long as li
3075 std::initializer_list<int> li = @{ 1,2,3 @};
3076 // assignment changes li to point to a temporary array
3077 li = @{ 4, 5 @};
3078 // now the temporary is gone and li has a dangling pointer
3079 int i = li.begin()[0] // undefined behavior
3080 @end smallexample
3082 @item
3083 When a list constructor stores the @code{begin} pointer from the
3084 @code{initializer_list} argument, this doesn't extend the lifetime of
3085 the array, so if a class variable is constructed from a temporary
3086 @code{initializer_list}, the pointer is left dangling by the end of
3087 the variable declaration statement.
3089 @end itemize
3091 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
3092 @opindex Wliteral-suffix
3093 @opindex Wno-literal-suffix
3094 Warn when a string or character literal is followed by a ud-suffix which does
3095 not begin with an underscore.  As a conforming extension, GCC treats such
3096 suffixes as separate preprocessing tokens in order to maintain backwards
3097 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
3098 For example:
3100 @smallexample
3101 #define __STDC_FORMAT_MACROS
3102 #include <inttypes.h>
3103 #include <stdio.h>
3105 int main() @{
3106   int64_t i64 = 123;
3107   printf("My int64: %" PRId64"\n", i64);
3109 @end smallexample
3111 In this case, @code{PRId64} is treated as a separate preprocessing token.
3113 Additionally, warn when a user-defined literal operator is declared with
3114 a literal suffix identifier that doesn't begin with an underscore. Literal
3115 suffix identifiers that don't begin with an underscore are reserved for
3116 future standardization.
3118 This warning is enabled by default.
3120 @item -Wlto-type-mismatch
3121 @opindex Wlto-type-mismatch
3122 @opindex Wno-lto-type-mismatch
3124 During the link-time optimization warn about type mismatches in
3125 global declarations from different compilation units.
3126 Requires @option{-flto} to be enabled.  Enabled by default.
3128 @item -Wno-narrowing @r{(C++ and Objective-C++ only)}
3129 @opindex Wnarrowing
3130 @opindex Wno-narrowing
3131 For C++11 and later standards, narrowing conversions are diagnosed by default,
3132 as required by the standard.  A narrowing conversion from a constant produces
3133 an error, and a narrowing conversion from a non-constant produces a warning,
3134 but @option{-Wno-narrowing} suppresses the diagnostic.
3135 Note that this does not affect the meaning of well-formed code;
3136 narrowing conversions are still considered ill-formed in SFINAE contexts.
3138 With @option{-Wnarrowing} in C++98, warn when a narrowing
3139 conversion prohibited by C++11 occurs within
3140 @samp{@{ @}}, e.g.
3142 @smallexample
3143 int i = @{ 2.2 @}; // error: narrowing from double to int
3144 @end smallexample
3146 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
3148 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
3149 @opindex Wnoexcept
3150 @opindex Wno-noexcept
3151 Warn when a noexcept-expression evaluates to false because of a call
3152 to a function that does not have a non-throwing exception
3153 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
3154 the compiler to never throw an exception.
3156 @item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
3157 @opindex Wnoexcept-type
3158 @opindex Wno-noexcept-type
3159 Warn if the C++17 feature making @code{noexcept} part of a function
3160 type changes the mangled name of a symbol relative to C++14.  Enabled
3161 by @option{-Wabi} and @option{-Wc++17-compat}.
3163 As an example:
3165 @smallexample
3166 template <class T> void f(T t) @{ t(); @};
3167 void g() noexcept;
3168 void h() @{ f(g); @} 
3169 @end smallexample
3171 @noindent
3172 In C++14, @code{f} calls @code{f<void(*)()>}, but in
3173 C++17 it calls @code{f<void(*)()noexcept>}.
3175 @item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
3176 @opindex Wclass-memaccess
3177 @opindex Wno-class-memaccess
3178 Warn when the destination of a call to a raw memory function such as
3179 @code{memset} or @code{memcpy} is an object of class type, and when writing
3180 into such an object might bypass the class non-trivial or deleted constructor
3181 or copy assignment, violate const-correctness or encapsulation, or corrupt
3182 virtual table pointers.  Modifying the representation of such objects may
3183 violate invariants maintained by member functions of the class.  For example,
3184 the call to @code{memset} below is undefined because it modifies a non-trivial
3185 class object and is, therefore, diagnosed.  The safe way to either initialize
3186 or clear the storage of objects of such types is by using the appropriate
3187 constructor or assignment operator, if one is available.
3188 @smallexample
3189 std::string str = "abc";
3190 memset (&str, 0, sizeof str);
3191 @end smallexample
3192 The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
3193 Explicitly casting the pointer to the class object to @code{void *} or
3194 to a type that can be safely accessed by the raw memory function suppresses
3195 the warning.
3197 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
3198 @opindex Wnon-virtual-dtor
3199 @opindex Wno-non-virtual-dtor
3200 Warn when a class has virtual functions and an accessible non-virtual
3201 destructor itself or in an accessible polymorphic base class, in which
3202 case it is possible but unsafe to delete an instance of a derived
3203 class through a pointer to the class itself or base class.  This
3204 warning is automatically enabled if @option{-Weffc++} is specified.
3206 @item -Wregister @r{(C++ and Objective-C++ only)}
3207 @opindex Wregister
3208 @opindex Wno-register
3209 Warn on uses of the @code{register} storage class specifier, except
3210 when it is part of the GNU @ref{Explicit Register Variables} extension.
3211 The use of the @code{register} keyword as storage class specifier has
3212 been deprecated in C++11 and removed in C++17.
3213 Enabled by default with @option{-std=c++17}.
3215 @item -Wreorder @r{(C++ and Objective-C++ only)}
3216 @opindex Wreorder
3217 @opindex Wno-reorder
3218 @cindex reordering, warning
3219 @cindex warning for reordering of member initializers
3220 Warn when the order of member initializers given in the code does not
3221 match the order in which they must be executed.  For instance:
3223 @smallexample
3224 struct A @{
3225   int i;
3226   int j;
3227   A(): j (0), i (1) @{ @}
3229 @end smallexample
3231 @noindent
3232 The compiler rearranges the member initializers for @code{i}
3233 and @code{j} to match the declaration order of the members, emitting
3234 a warning to that effect.  This warning is enabled by @option{-Wall}.
3236 @item -Wno-pessimizing-move @r{(C++ and Objective-C++ only)}
3237 @opindex Wpessimizing-move
3238 @opindex Wno-pessimizing-move
3239 This warning warns when a call to @code{std::move} prevents copy
3240 elision.  A typical scenario when copy elision can occur is when returning in
3241 a function with a class return type, when the expression being returned is the
3242 name of a non-volatile automatic object, and is not a function parameter, and
3243 has the same type as the function return type.
3245 @smallexample
3246 struct T @{
3247 @dots{}
3249 T fn()
3251   T t;
3252   @dots{}
3253   return std::move (t);
3255 @end smallexample
3257 But in this example, the @code{std::move} call prevents copy elision.
3259 This warning is enabled by @option{-Wall}.
3261 @item -Wno-redundant-move @r{(C++ and Objective-C++ only)}
3262 @opindex Wredundant-move
3263 @opindex Wno-redundant-move
3264 This warning warns about redundant calls to @code{std::move}; that is, when
3265 a move operation would have been performed even without the @code{std::move}
3266 call.  This happens because the compiler is forced to treat the object as if
3267 it were an rvalue in certain situations such as returning a local variable,
3268 where copy elision isn't applicable.  Consider:
3270 @smallexample
3271 struct T @{
3272 @dots{}
3274 T fn(T t)
3276   @dots{}
3277   return std::move (t);
3279 @end smallexample
3281 Here, the @code{std::move} call is redundant.  Because G++ implements Core
3282 Issue 1579, another example is:
3284 @smallexample
3285 struct T @{ // convertible to U
3286 @dots{}
3288 struct U @{
3289 @dots{}
3291 U fn()
3293   T t;
3294   @dots{}
3295   return std::move (t);
3297 @end smallexample
3298 In this example, copy elision isn't applicable because the type of the
3299 expression being returned and the function return type differ, yet G++
3300 treats the return value as if it were designated by an rvalue.
3302 This warning is enabled by @option{-Wextra}.
3304 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
3305 @opindex fext-numeric-literals
3306 @opindex fno-ext-numeric-literals
3307 Accept imaginary, fixed-point, or machine-defined
3308 literal number suffixes as GNU extensions.
3309 When this option is turned off these suffixes are treated
3310 as C++11 user-defined literal numeric suffixes.
3311 This is on by default for all pre-C++11 dialects and all GNU dialects:
3312 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
3313 @option{-std=gnu++14}.
3314 This option is off by default
3315 for ISO C++11 onwards (@option{-std=c++11}, ...).
3316 @end table
3318 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
3320 @table @gcctabopt
3321 @item -Weffc++ @r{(C++ and Objective-C++ only)}
3322 @opindex Weffc++
3323 @opindex Wno-effc++
3324 Warn about violations of the following style guidelines from Scott Meyers'
3325 @cite{Effective C++} series of books:
3327 @itemize @bullet
3328 @item
3329 Define a copy constructor and an assignment operator for classes
3330 with dynamically-allocated memory.
3332 @item
3333 Prefer initialization to assignment in constructors.
3335 @item
3336 Have @code{operator=} return a reference to @code{*this}.
3338 @item
3339 Don't try to return a reference when you must return an object.
3341 @item
3342 Distinguish between prefix and postfix forms of increment and
3343 decrement operators.
3345 @item
3346 Never overload @code{&&}, @code{||}, or @code{,}.
3348 @end itemize
3350 This option also enables @option{-Wnon-virtual-dtor}, which is also
3351 one of the effective C++ recommendations.  However, the check is
3352 extended to warn about the lack of virtual destructor in accessible
3353 non-polymorphic bases classes too.
3355 When selecting this option, be aware that the standard library
3356 headers do not obey all of these guidelines; use @samp{grep -v}
3357 to filter out those warnings.
3359 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3360 @opindex Wstrict-null-sentinel
3361 @opindex Wno-strict-null-sentinel
3362 Warn about the use of an uncasted @code{NULL} as sentinel.  When
3363 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3364 to @code{__null}.  Although it is a null pointer constant rather than a
3365 null pointer, it is guaranteed to be of the same size as a pointer.
3366 But this use is not portable across different compilers.
3368 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3369 @opindex Wno-non-template-friend
3370 @opindex Wnon-template-friend
3371 Disable warnings when non-template friend functions are declared
3372 within a template.  In very old versions of GCC that predate implementation
3373 of the ISO standard, declarations such as 
3374 @samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3375 could be interpreted as a particular specialization of a template
3376 function; the warning exists to diagnose compatibility problems, 
3377 and is enabled by default.
3379 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3380 @opindex Wold-style-cast
3381 @opindex Wno-old-style-cast
3382 Warn if an old-style (C-style) cast to a non-void type is used within
3383 a C++ program.  The new-style casts (@code{dynamic_cast},
3384 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3385 less vulnerable to unintended effects and much easier to search for.
3387 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3388 @opindex Woverloaded-virtual
3389 @opindex Wno-overloaded-virtual
3390 @cindex overloaded virtual function, warning
3391 @cindex warning for overloaded virtual function
3392 Warn when a function declaration hides virtual functions from a
3393 base class.  For example, in:
3395 @smallexample
3396 struct A @{
3397   virtual void f();
3400 struct B: public A @{
3401   void f(int);
3403 @end smallexample
3405 the @code{A} class version of @code{f} is hidden in @code{B}, and code
3406 like:
3408 @smallexample
3409 B* b;
3410 b->f();
3411 @end smallexample
3413 @noindent
3414 fails to compile.
3416 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3417 @opindex Wno-pmf-conversions
3418 @opindex Wpmf-conversions
3419 Disable the diagnostic for converting a bound pointer to member function
3420 to a plain pointer.
3422 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3423 @opindex Wsign-promo
3424 @opindex Wno-sign-promo
3425 Warn when overload resolution chooses a promotion from unsigned or
3426 enumerated type to a signed type, over a conversion to an unsigned type of
3427 the same size.  Previous versions of G++ tried to preserve
3428 unsignedness, but the standard mandates the current behavior.
3430 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3431 @opindex Wtemplates
3432 @opindex Wno-templates
3433 Warn when a primary template declaration is encountered.  Some coding
3434 rules disallow templates, and this may be used to enforce that rule.
3435 The warning is inactive inside a system header file, such as the STL, so
3436 one can still use the STL.  One may also instantiate or specialize
3437 templates.
3439 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3440 @opindex Wmultiple-inheritance
3441 @opindex Wno-multiple-inheritance
3442 Warn when a class is defined with multiple direct base classes.  Some
3443 coding rules disallow multiple inheritance, and this may be used to
3444 enforce that rule.  The warning is inactive inside a system header file,
3445 such as the STL, so one can still use the STL.  One may also define
3446 classes that indirectly use multiple inheritance.
3448 @item -Wvirtual-inheritance
3449 @opindex Wvirtual-inheritance
3450 @opindex Wno-virtual-inheritance
3451 Warn when a class is defined with a virtual direct base class.  Some
3452 coding rules disallow multiple inheritance, and this may be used to
3453 enforce that rule.  The warning is inactive inside a system header file,
3454 such as the STL, so one can still use the STL.  One may also define
3455 classes that indirectly use virtual inheritance.
3457 @item -Wnamespaces
3458 @opindex Wnamespaces
3459 @opindex Wno-namespaces
3460 Warn when a namespace definition is opened.  Some coding rules disallow
3461 namespaces, and this may be used to enforce that rule.  The warning is
3462 inactive inside a system header file, such as the STL, so one can still
3463 use the STL.  One may also use using directives and qualified names.
3465 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3466 @opindex Wterminate
3467 @opindex Wno-terminate
3468 Disable the warning about a throw-expression that will immediately
3469 result in a call to @code{terminate}.
3471 @item -Wno-class-conversion @r{(C++ and Objective-C++ only)}
3472 @opindex Wno-class-conversion
3473 @opindex Wclass-conversion
3474 Disable the warning about the case when a conversion function converts an
3475 object to the same type, to a base class of that type, or to void; such
3476 a conversion function will never be called.
3477 @end table
3479 @node Objective-C and Objective-C++ Dialect Options
3480 @section Options Controlling Objective-C and Objective-C++ Dialects
3482 @cindex compiler options, Objective-C and Objective-C++
3483 @cindex Objective-C and Objective-C++ options, command-line
3484 @cindex options, Objective-C and Objective-C++
3485 (NOTE: This manual does not describe the Objective-C and Objective-C++
3486 languages themselves.  @xref{Standards,,Language Standards
3487 Supported by GCC}, for references.)
3489 This section describes the command-line options that are only meaningful
3490 for Objective-C and Objective-C++ programs.  You can also use most of
3491 the language-independent GNU compiler options.
3492 For example, you might compile a file @file{some_class.m} like this:
3494 @smallexample
3495 gcc -g -fgnu-runtime -O -c some_class.m
3496 @end smallexample
3498 @noindent
3499 In this example, @option{-fgnu-runtime} is an option meant only for
3500 Objective-C and Objective-C++ programs; you can use the other options with
3501 any language supported by GCC@.
3503 Note that since Objective-C is an extension of the C language, Objective-C
3504 compilations may also use options specific to the C front-end (e.g.,
3505 @option{-Wtraditional}).  Similarly, Objective-C++ compilations may use
3506 C++-specific options (e.g., @option{-Wabi}).
3508 Here is a list of options that are @emph{only} for compiling Objective-C
3509 and Objective-C++ programs:
3511 @table @gcctabopt
3512 @item -fconstant-string-class=@var{class-name}
3513 @opindex fconstant-string-class
3514 Use @var{class-name} as the name of the class to instantiate for each
3515 literal string specified with the syntax @code{@@"@dots{}"}.  The default
3516 class name is @code{NXConstantString} if the GNU runtime is being used, and
3517 @code{NSConstantString} if the NeXT runtime is being used (see below).  The
3518 @option{-fconstant-cfstrings} option, if also present, overrides the
3519 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3520 to be laid out as constant CoreFoundation strings.
3522 @item -fgnu-runtime
3523 @opindex fgnu-runtime
3524 Generate object code compatible with the standard GNU Objective-C
3525 runtime.  This is the default for most types of systems.
3527 @item -fnext-runtime
3528 @opindex fnext-runtime
3529 Generate output compatible with the NeXT runtime.  This is the default
3530 for NeXT-based systems, including Darwin and Mac OS X@.  The macro
3531 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3532 used.
3534 @item -fno-nil-receivers
3535 @opindex fno-nil-receivers
3536 @opindex fnil-receivers
3537 Assume that all Objective-C message dispatches (@code{[receiver
3538 message:arg]}) in this translation unit ensure that the receiver is
3539 not @code{nil}.  This allows for more efficient entry points in the
3540 runtime to be used.  This option is only available in conjunction with
3541 the NeXT runtime and ABI version 0 or 1.
3543 @item -fobjc-abi-version=@var{n}
3544 @opindex fobjc-abi-version
3545 Use version @var{n} of the Objective-C ABI for the selected runtime.
3546 This option is currently supported only for the NeXT runtime.  In that
3547 case, Version 0 is the traditional (32-bit) ABI without support for
3548 properties and other Objective-C 2.0 additions.  Version 1 is the
3549 traditional (32-bit) ABI with support for properties and other
3550 Objective-C 2.0 additions.  Version 2 is the modern (64-bit) ABI.  If
3551 nothing is specified, the default is Version 0 on 32-bit target
3552 machines, and Version 2 on 64-bit target machines.
3554 @item -fobjc-call-cxx-cdtors
3555 @opindex fobjc-call-cxx-cdtors
3556 For each Objective-C class, check if any of its instance variables is a
3557 C++ object with a non-trivial default constructor.  If so, synthesize a
3558 special @code{- (id) .cxx_construct} instance method which runs
3559 non-trivial default constructors on any such instance variables, in order,
3560 and then return @code{self}.  Similarly, check if any instance variable
3561 is a C++ object with a non-trivial destructor, and if so, synthesize a
3562 special @code{- (void) .cxx_destruct} method which runs
3563 all such default destructors, in reverse order.
3565 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3566 methods thusly generated only operate on instance variables
3567 declared in the current Objective-C class, and not those inherited
3568 from superclasses.  It is the responsibility of the Objective-C
3569 runtime to invoke all such methods in an object's inheritance
3570 hierarchy.  The @code{- (id) .cxx_construct} methods are invoked
3571 by the runtime immediately after a new object instance is allocated;
3572 the @code{- (void) .cxx_destruct} methods are invoked immediately
3573 before the runtime deallocates an object instance.
3575 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3576 support for invoking the @code{- (id) .cxx_construct} and
3577 @code{- (void) .cxx_destruct} methods.
3579 @item -fobjc-direct-dispatch
3580 @opindex fobjc-direct-dispatch
3581 Allow fast jumps to the message dispatcher.  On Darwin this is
3582 accomplished via the comm page.
3584 @item -fobjc-exceptions
3585 @opindex fobjc-exceptions
3586 Enable syntactic support for structured exception handling in
3587 Objective-C, similar to what is offered by C++.  This option
3588 is required to use the Objective-C keywords @code{@@try},
3589 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3590 @code{@@synchronized}.  This option is available with both the GNU
3591 runtime and the NeXT runtime (but not available in conjunction with
3592 the NeXT runtime on Mac OS X 10.2 and earlier).
3594 @item -fobjc-gc
3595 @opindex fobjc-gc
3596 Enable garbage collection (GC) in Objective-C and Objective-C++
3597 programs.  This option is only available with the NeXT runtime; the
3598 GNU runtime has a different garbage collection implementation that
3599 does not require special compiler flags.
3601 @item -fobjc-nilcheck
3602 @opindex fobjc-nilcheck
3603 For the NeXT runtime with version 2 of the ABI, check for a nil
3604 receiver in method invocations before doing the actual method call.
3605 This is the default and can be disabled using
3606 @option{-fno-objc-nilcheck}.  Class methods and super calls are never
3607 checked for nil in this way no matter what this flag is set to.
3608 Currently this flag does nothing when the GNU runtime, or an older
3609 version of the NeXT runtime ABI, is used.
3611 @item -fobjc-std=objc1
3612 @opindex fobjc-std
3613 Conform to the language syntax of Objective-C 1.0, the language
3614 recognized by GCC 4.0.  This only affects the Objective-C additions to
3615 the C/C++ language; it does not affect conformance to C/C++ standards,
3616 which is controlled by the separate C/C++ dialect option flags.  When
3617 this option is used with the Objective-C or Objective-C++ compiler,
3618 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3619 This is useful if you need to make sure that your Objective-C code can
3620 be compiled with older versions of GCC@.
3622 @item -freplace-objc-classes
3623 @opindex freplace-objc-classes
3624 Emit a special marker instructing @command{ld(1)} not to statically link in
3625 the resulting object file, and allow @command{dyld(1)} to load it in at
3626 run time instead.  This is used in conjunction with the Fix-and-Continue
3627 debugging mode, where the object file in question may be recompiled and
3628 dynamically reloaded in the course of program execution, without the need
3629 to restart the program itself.  Currently, Fix-and-Continue functionality
3630 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3631 and later.
3633 @item -fzero-link
3634 @opindex fzero-link
3635 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3636 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3637 compile time) with static class references that get initialized at load time,
3638 which improves run-time performance.  Specifying the @option{-fzero-link} flag
3639 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3640 to be retained.  This is useful in Zero-Link debugging mode, since it allows
3641 for individual class implementations to be modified during program execution.
3642 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3643 regardless of command-line options.
3645 @item -fno-local-ivars
3646 @opindex fno-local-ivars
3647 @opindex flocal-ivars
3648 By default instance variables in Objective-C can be accessed as if
3649 they were local variables from within the methods of the class they're
3650 declared in.  This can lead to shadowing between instance variables
3651 and other variables declared either locally inside a class method or
3652 globally with the same name.  Specifying the @option{-fno-local-ivars}
3653 flag disables this behavior thus avoiding variable shadowing issues.
3655 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3656 @opindex fivar-visibility
3657 Set the default instance variable visibility to the specified option
3658 so that instance variables declared outside the scope of any access
3659 modifier directives default to the specified visibility.
3661 @item -gen-decls
3662 @opindex gen-decls
3663 Dump interface declarations for all classes seen in the source file to a
3664 file named @file{@var{sourcename}.decl}.
3666 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3667 @opindex Wassign-intercept
3668 @opindex Wno-assign-intercept
3669 Warn whenever an Objective-C assignment is being intercepted by the
3670 garbage collector.
3672 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3673 @opindex Wno-protocol
3674 @opindex Wprotocol
3675 If a class is declared to implement a protocol, a warning is issued for
3676 every method in the protocol that is not implemented by the class.  The
3677 default behavior is to issue a warning for every method not explicitly
3678 implemented in the class, even if a method implementation is inherited
3679 from the superclass.  If you use the @option{-Wno-protocol} option, then
3680 methods inherited from the superclass are considered to be implemented,
3681 and no warning is issued for them.
3683 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3684 @opindex Wselector
3685 @opindex Wno-selector
3686 Warn if multiple methods of different types for the same selector are
3687 found during compilation.  The check is performed on the list of methods
3688 in the final stage of compilation.  Additionally, a check is performed
3689 for each selector appearing in a @code{@@selector(@dots{})}
3690 expression, and a corresponding method for that selector has been found
3691 during compilation.  Because these checks scan the method table only at
3692 the end of compilation, these warnings are not produced if the final
3693 stage of compilation is not reached, for example because an error is
3694 found during compilation, or because the @option{-fsyntax-only} option is
3695 being used.
3697 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3698 @opindex Wstrict-selector-match
3699 @opindex Wno-strict-selector-match
3700 Warn if multiple methods with differing argument and/or return types are
3701 found for a given selector when attempting to send a message using this
3702 selector to a receiver of type @code{id} or @code{Class}.  When this flag
3703 is off (which is the default behavior), the compiler omits such warnings
3704 if any differences found are confined to types that share the same size
3705 and alignment.
3707 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3708 @opindex Wundeclared-selector
3709 @opindex Wno-undeclared-selector
3710 Warn if a @code{@@selector(@dots{})} expression referring to an
3711 undeclared selector is found.  A selector is considered undeclared if no
3712 method with that name has been declared before the
3713 @code{@@selector(@dots{})} expression, either explicitly in an
3714 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3715 an @code{@@implementation} section.  This option always performs its
3716 checks as soon as a @code{@@selector(@dots{})} expression is found,
3717 while @option{-Wselector} only performs its checks in the final stage of
3718 compilation.  This also enforces the coding style convention
3719 that methods and selectors must be declared before being used.
3721 @item -print-objc-runtime-info
3722 @opindex print-objc-runtime-info
3723 Generate C header describing the largest structure that is passed by
3724 value, if any.
3726 @end table
3728 @node Diagnostic Message Formatting Options
3729 @section Options to Control Diagnostic Messages Formatting
3730 @cindex options to control diagnostics formatting
3731 @cindex diagnostic messages
3732 @cindex message formatting
3734 Traditionally, diagnostic messages have been formatted irrespective of
3735 the output device's aspect (e.g.@: its width, @dots{}).  You can use the
3736 options described below
3737 to control the formatting algorithm for diagnostic messages, 
3738 e.g.@: how many characters per line, how often source location
3739 information should be reported.  Note that some language front ends may not
3740 honor these options.
3742 @table @gcctabopt
3743 @item -fmessage-length=@var{n}
3744 @opindex fmessage-length
3745 Try to format error messages so that they fit on lines of about
3746 @var{n} characters.  If @var{n} is zero, then no line-wrapping is
3747 done; each error message appears on a single line.  This is the
3748 default for all front ends.
3750 Note - this option also affects the display of the @samp{#error} and
3751 @samp{#warning} pre-processor directives, and the @samp{deprecated}
3752 function/type/variable attribute.  It does not however affect the
3753 @samp{pragma GCC warning} and @samp{pragma GCC error} pragmas.
3755 @item -fdiagnostics-show-location=once
3756 @opindex fdiagnostics-show-location
3757 Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
3758 reporter to emit source location information @emph{once}; that is, in
3759 case the message is too long to fit on a single physical line and has to
3760 be wrapped, the source location won't be emitted (as prefix) again,
3761 over and over, in subsequent continuation lines.  This is the default
3762 behavior.
3764 @item -fdiagnostics-show-location=every-line
3765 Only meaningful in line-wrapping mode.  Instructs the diagnostic
3766 messages reporter to emit the same source location information (as
3767 prefix) for physical lines that result from the process of breaking
3768 a message which is too long to fit on a single line.
3770 @item -fdiagnostics-color[=@var{WHEN}]
3771 @itemx -fno-diagnostics-color
3772 @opindex fdiagnostics-color
3773 @cindex highlight, color
3774 @vindex GCC_COLORS @r{environment variable}
3775 Use color in diagnostics.  @var{WHEN} is @samp{never}, @samp{always},
3776 or @samp{auto}.  The default depends on how the compiler has been configured,
3777 it can be any of the above @var{WHEN} options or also @samp{never}
3778 if @env{GCC_COLORS} environment variable isn't present in the environment,
3779 and @samp{auto} otherwise.
3780 @samp{auto} means to use color only when the standard error is a terminal.
3781 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3782 aliases for @option{-fdiagnostics-color=always} and
3783 @option{-fdiagnostics-color=never}, respectively.
3785 The colors are defined by the environment variable @env{GCC_COLORS}.
3786 Its value is a colon-separated list of capabilities and Select Graphic
3787 Rendition (SGR) substrings. SGR commands are interpreted by the
3788 terminal or terminal emulator.  (See the section in the documentation
3789 of your text terminal for permitted values and their meanings as
3790 character attributes.)  These substring values are integers in decimal
3791 representation and can be concatenated with semicolons.
3792 Common values to concatenate include
3793 @samp{1} for bold,
3794 @samp{4} for underline,
3795 @samp{5} for blink,
3796 @samp{7} for inverse,
3797 @samp{39} for default foreground color,
3798 @samp{30} to @samp{37} for foreground colors,
3799 @samp{90} to @samp{97} for 16-color mode foreground colors,
3800 @samp{38;5;0} to @samp{38;5;255}
3801 for 88-color and 256-color modes foreground colors,
3802 @samp{49} for default background color,
3803 @samp{40} to @samp{47} for background colors,
3804 @samp{100} to @samp{107} for 16-color mode background colors,
3805 and @samp{48;5;0} to @samp{48;5;255}
3806 for 88-color and 256-color modes background colors.
3808 The default @env{GCC_COLORS} is
3809 @smallexample
3810 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3811 quote=01:fixit-insert=32:fixit-delete=31:\
3812 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3813 type-diff=01;32
3814 @end smallexample
3815 @noindent
3816 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3817 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3818 @samp{01} is bold, and @samp{31} is red.
3819 Setting @env{GCC_COLORS} to the empty string disables colors.
3820 Supported capabilities are as follows.
3822 @table @code
3823 @item error=
3824 @vindex error GCC_COLORS @r{capability}
3825 SGR substring for error: markers.
3827 @item warning=
3828 @vindex warning GCC_COLORS @r{capability}
3829 SGR substring for warning: markers.
3831 @item note=
3832 @vindex note GCC_COLORS @r{capability}
3833 SGR substring for note: markers.
3835 @item range1=
3836 @vindex range1 GCC_COLORS @r{capability}
3837 SGR substring for first additional range.
3839 @item range2=
3840 @vindex range2 GCC_COLORS @r{capability}
3841 SGR substring for second additional range.
3843 @item locus=
3844 @vindex locus GCC_COLORS @r{capability}
3845 SGR substring for location information, @samp{file:line} or
3846 @samp{file:line:column} etc.
3848 @item quote=
3849 @vindex quote GCC_COLORS @r{capability}
3850 SGR substring for information printed within quotes.
3852 @item fixit-insert=
3853 @vindex fixit-insert GCC_COLORS @r{capability}
3854 SGR substring for fix-it hints suggesting text to
3855 be inserted or replaced.
3857 @item fixit-delete=
3858 @vindex fixit-delete GCC_COLORS @r{capability}
3859 SGR substring for fix-it hints suggesting text to
3860 be deleted.
3862 @item diff-filename=
3863 @vindex diff-filename GCC_COLORS @r{capability}
3864 SGR substring for filename headers within generated patches.
3866 @item diff-hunk=
3867 @vindex diff-hunk GCC_COLORS @r{capability}
3868 SGR substring for the starts of hunks within generated patches.
3870 @item diff-delete=
3871 @vindex diff-delete GCC_COLORS @r{capability}
3872 SGR substring for deleted lines within generated patches.
3874 @item diff-insert=
3875 @vindex diff-insert GCC_COLORS @r{capability}
3876 SGR substring for inserted lines within generated patches.
3878 @item type-diff=
3879 @vindex type-diff GCC_COLORS @r{capability}
3880 SGR substring for highlighting mismatching types within template
3881 arguments in the C++ frontend.
3882 @end table
3884 @item -fno-diagnostics-show-option
3885 @opindex fno-diagnostics-show-option
3886 @opindex fdiagnostics-show-option
3887 By default, each diagnostic emitted includes text indicating the
3888 command-line option that directly controls the diagnostic (if such an
3889 option is known to the diagnostic machinery).  Specifying the
3890 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3892 @item -fno-diagnostics-show-caret
3893 @opindex fno-diagnostics-show-caret
3894 @opindex fdiagnostics-show-caret
3895 By default, each diagnostic emitted includes the original source line
3896 and a caret @samp{^} indicating the column.  This option suppresses this
3897 information.  The source line is truncated to @var{n} characters, if
3898 the @option{-fmessage-length=n} option is given.  When the output is done
3899 to the terminal, the width is limited to the width given by the
3900 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3902 @item -fno-diagnostics-show-labels
3903 @opindex fno-diagnostics-show-labels
3904 @opindex fdiagnostics-show-labels
3905 By default, when printing source code (via @option{-fdiagnostics-show-caret}),
3906 diagnostics can label ranges of source code with pertinent information, such
3907 as the types of expressions:
3909 @smallexample
3910     printf ("foo %s bar", long_i + long_j);
3911                  ~^       ~~~~~~~~~~~~~~~
3912                   |              |
3913                   char *         long int
3914 @end smallexample
3916 This option suppresses the printing of these labels (in the example above,
3917 the vertical bars and the ``char *'' and ``long int'' text).
3919 @item -fno-diagnostics-show-line-numbers
3920 @opindex fno-diagnostics-show-line-numbers
3921 @opindex fdiagnostics-show-line-numbers
3922 By default, when printing source code (via @option{-fdiagnostics-show-caret}),
3923 a left margin is printed, showing line numbers.  This option suppresses this
3924 left margin.
3926 @item -fdiagnostics-minimum-margin-width=@var{width}
3927 @opindex fdiagnostics-minimum-margin-width
3928 This option controls the minimum width of the left margin printed by
3929 @option{-fdiagnostics-show-line-numbers}.  It defaults to 6.
3931 @item -fdiagnostics-parseable-fixits
3932 @opindex fdiagnostics-parseable-fixits
3933 Emit fix-it hints in a machine-parseable format, suitable for consumption
3934 by IDEs.  For each fix-it, a line will be printed after the relevant
3935 diagnostic, starting with the string ``fix-it:''.  For example:
3937 @smallexample
3938 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3939 @end smallexample
3941 The location is expressed as a half-open range, expressed as a count of
3942 bytes, starting at byte 1 for the initial column.  In the above example,
3943 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3944 given string:
3946 @smallexample
3947 00000000011111111112222222222
3948 12345678901234567890123456789
3949   gtk_widget_showall (dlg);
3950   ^^^^^^^^^^^^^^^^^^
3951   gtk_widget_show_all
3952 @end smallexample
3954 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3955 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3956 (e.g. vertical tab as ``\013'').
3958 An empty replacement string indicates that the given range is to be removed.
3959 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3960 be inserted at the given position.
3962 @item -fdiagnostics-generate-patch
3963 @opindex fdiagnostics-generate-patch
3964 Print fix-it hints to stderr in unified diff format, after any diagnostics
3965 are printed.  For example:
3967 @smallexample
3968 --- test.c
3969 +++ test.c
3970 @@ -42,5 +42,5 @@
3972  void show_cb(GtkDialog *dlg)
3973  @{
3974 -  gtk_widget_showall(dlg);
3975 +  gtk_widget_show_all(dlg);
3976  @}
3978 @end smallexample
3980 The diff may or may not be colorized, following the same rules
3981 as for diagnostics (see @option{-fdiagnostics-color}).
3983 @item -fdiagnostics-show-template-tree
3984 @opindex fdiagnostics-show-template-tree
3986 In the C++ frontend, when printing diagnostics showing mismatching
3987 template types, such as:
3989 @smallexample
3990   could not convert 'std::map<int, std::vector<double> >()'
3991     from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3992 @end smallexample
3994 the @option{-fdiagnostics-show-template-tree} flag enables printing a
3995 tree-like structure showing the common and differing parts of the types,
3996 such as:
3998 @smallexample
3999   map<
4000     [...],
4001     vector<
4002       [double != float]>>
4003 @end smallexample
4005 The parts that differ are highlighted with color (``double'' and
4006 ``float'' in this case).
4008 @item -fno-elide-type
4009 @opindex fno-elide-type
4010 @opindex felide-type
4011 By default when the C++ frontend prints diagnostics showing mismatching
4012 template types, common parts of the types are printed as ``[...]'' to
4013 simplify the error message.  For example:
4015 @smallexample
4016   could not convert 'std::map<int, std::vector<double> >()'
4017     from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
4018 @end smallexample
4020 Specifying the @option{-fno-elide-type} flag suppresses that behavior.
4021 This flag also affects the output of the
4022 @option{-fdiagnostics-show-template-tree} flag.
4024 @item -fno-show-column
4025 @opindex fno-show-column
4026 @opindex fshow-column
4027 Do not print column numbers in diagnostics.  This may be necessary if
4028 diagnostics are being scanned by a program that does not understand the
4029 column numbers, such as @command{dejagnu}.
4031 @item -fdiagnostics-format=@var{FORMAT}
4032 @opindex fdiagnostics-format
4033 Select a different format for printing diagnostics.
4034 @var{FORMAT} is @samp{text} or @samp{json}.
4035 The default is @samp{text}.
4037 The @samp{json} format consists of a top-level JSON array containing JSON
4038 objects representing the diagnostics.
4040 The JSON is emitted as one line, without formatting; the examples below
4041 have been formatted for clarity.
4043 Diagnostics can have child diagnostics.  For example, this error and note:
4045 @smallexample
4046 misleading-indentation.c:15:3: warning: this 'if' clause does not
4047   guard... [-Wmisleading-indentation]
4048    15 |   if (flag)
4049       |   ^~
4050 misleading-indentation.c:17:5: note: ...this statement, but the latter
4051   is misleadingly indented as if it were guarded by the 'if'
4052    17 |     y = 2;
4053       |     ^
4054 @end smallexample
4056 @noindent
4057 might be printed in JSON form (after formatting) like this:
4059 @smallexample
4061     @{
4062         "kind": "warning",
4063         "locations": [
4064             @{
4065                 "caret": @{
4066                     "column": 3,
4067                     "file": "misleading-indentation.c",
4068                     "line": 15
4069                 @},
4070                 "finish": @{
4071                     "column": 4,
4072                     "file": "misleading-indentation.c",
4073                     "line": 15
4074                 @}
4075             @}
4076         ],
4077         "message": "this \u2018if\u2019 clause does not guard...",
4078         "option": "-Wmisleading-indentation",
4079         "children": [
4080             @{
4081                 "kind": "note",
4082                 "locations": [
4083                     @{
4084                         "caret": @{
4085                             "column": 5,
4086                             "file": "misleading-indentation.c",
4087                             "line": 17
4088                         @}
4089                     @}
4090                 ],
4091                 "message": "...this statement, but the latter is @dots{}"
4092             @}
4093         ]
4094     @},
4095     @dots{}
4097 @end smallexample
4099 @noindent
4100 where the @code{note} is a child of the @code{warning}.
4102 A diagnostic has a @code{kind}.  If this is @code{warning}, then there is
4103 an @code{option} key describing the command-line option controlling the
4104 warning.
4106 A diagnostic can contain zero or more locations.  Each location has up
4107 to three positions within it: a @code{caret} position and optional
4108 @code{start} and @code{finish} positions.  A location can also have
4109 an optional @code{label} string.  For example, this error:
4111 @smallexample
4112 bad-binary-ops.c:64:23: error: invalid operands to binary + (have 'S' @{aka
4113    'struct s'@} and 'T' @{aka 'struct t'@})
4114    64 |   return callee_4a () + callee_4b ();
4115       |          ~~~~~~~~~~~~ ^ ~~~~~~~~~~~~
4116       |          |              |
4117       |          |              T @{aka struct t@}
4118       |          S @{aka struct s@}
4119 @end smallexample
4121 @noindent
4122 has three locations.  Its primary location is at the ``+'' token at column
4123 23.  It has two secondary locations, describing the left and right-hand sides
4124 of the expression, which have labels.  It might be printed in JSON form as:
4126 @smallexample
4127     @{
4128         "children": [],
4129         "kind": "error",
4130         "locations": [
4131             @{
4132                 "caret": @{
4133                     "column": 23, "file": "bad-binary-ops.c", "line": 64
4134                 @}
4135             @},
4136             @{
4137                 "caret": @{
4138                     "column": 10, "file": "bad-binary-ops.c", "line": 64
4139                 @},
4140                 "finish": @{
4141                     "column": 21, "file": "bad-binary-ops.c", "line": 64
4142                 @},
4143                 "label": "S @{aka struct s@}"
4144             @},
4145             @{
4146                 "caret": @{
4147                     "column": 25, "file": "bad-binary-ops.c", "line": 64
4148                 @},
4149                 "finish": @{
4150                     "column": 36, "file": "bad-binary-ops.c", "line": 64
4151                 @},
4152                 "label": "T @{aka struct t@}"
4153             @}
4154         ],
4155         "message": "invalid operands to binary + @dots{}"
4156     @}
4157 @end smallexample
4159 If a diagnostic contains fix-it hints, it has a @code{fixits} array,
4160 consisting of half-open intervals, similar to the output of
4161 @option{-fdiagnostics-parseable-fixits}.  For example, this diagnostic
4162 with a replacement fix-it hint:
4164 @smallexample
4165 demo.c:8:15: error: 'struct s' has no member named 'colour'; did you
4166   mean 'color'?
4167     8 |   return ptr->colour;
4168       |               ^~~~~~
4169       |               color
4170 @end smallexample
4172 @noindent
4173 might be printed in JSON form as:
4175 @smallexample
4176     @{
4177         "children": [],
4178         "fixits": [
4179             @{
4180                 "next": @{
4181                     "column": 21,
4182                     "file": "demo.c",
4183                     "line": 8
4184                 @},
4185                 "start": @{
4186                     "column": 15,
4187                     "file": "demo.c",
4188                     "line": 8
4189                 @},
4190                 "string": "color"
4191             @}
4192         ],
4193         "kind": "error",
4194         "locations": [
4195             @{
4196                 "caret": @{
4197                     "column": 15,
4198                     "file": "demo.c",
4199                     "line": 8
4200                 @},
4201                 "finish": @{
4202                     "column": 20,
4203                     "file": "demo.c",
4204                     "line": 8
4205                 @}
4206             @}
4207         ],
4208         "message": "\u2018struct s\u2019 has no member named @dots{}"
4209     @}
4210 @end smallexample
4212 @noindent
4213 where the fix-it hint suggests replacing the text from @code{start} up
4214 to but not including @code{next} with @code{string}'s value.  Deletions
4215 are expressed via an empty value for @code{string}, insertions by
4216 having @code{start} equal @code{next}.
4218 @end table
4220 @node Warning Options
4221 @section Options to Request or Suppress Warnings
4222 @cindex options to control warnings
4223 @cindex warning messages
4224 @cindex messages, warning
4225 @cindex suppressing warnings
4227 Warnings are diagnostic messages that report constructions that
4228 are not inherently erroneous but that are risky or suggest there
4229 may have been an error.
4231 The following language-independent options do not enable specific
4232 warnings but control the kinds of diagnostics produced by GCC@.
4234 @table @gcctabopt
4235 @cindex syntax checking
4236 @item -fsyntax-only
4237 @opindex fsyntax-only
4238 Check the code for syntax errors, but don't do anything beyond that.
4240 @item -fmax-errors=@var{n}
4241 @opindex fmax-errors
4242 Limits the maximum number of error messages to @var{n}, at which point
4243 GCC bails out rather than attempting to continue processing the source
4244 code.  If @var{n} is 0 (the default), there is no limit on the number
4245 of error messages produced.  If @option{-Wfatal-errors} is also
4246 specified, then @option{-Wfatal-errors} takes precedence over this
4247 option.
4249 @item -w
4250 @opindex w
4251 Inhibit all warning messages.
4253 @item -Werror
4254 @opindex Werror
4255 @opindex Wno-error
4256 Make all warnings into errors.
4258 @item -Werror=
4259 @opindex Werror=
4260 @opindex Wno-error=
4261 Make the specified warning into an error.  The specifier for a warning
4262 is appended; for example @option{-Werror=switch} turns the warnings
4263 controlled by @option{-Wswitch} into errors.  This switch takes a
4264 negative form, to be used to negate @option{-Werror} for specific
4265 warnings; for example @option{-Wno-error=switch} makes
4266 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
4267 is in effect.
4269 The warning message for each controllable warning includes the
4270 option that controls the warning.  That option can then be used with
4271 @option{-Werror=} and @option{-Wno-error=} as described above.
4272 (Printing of the option in the warning message can be disabled using the
4273 @option{-fno-diagnostics-show-option} flag.)
4275 Note that specifying @option{-Werror=}@var{foo} automatically implies
4276 @option{-W}@var{foo}.  However, @option{-Wno-error=}@var{foo} does not
4277 imply anything.
4279 @item -Wfatal-errors
4280 @opindex Wfatal-errors
4281 @opindex Wno-fatal-errors
4282 This option causes the compiler to abort compilation on the first error
4283 occurred rather than trying to keep going and printing further error
4284 messages.
4286 @end table
4288 You can request many specific warnings with options beginning with
4289 @samp{-W}, for example @option{-Wimplicit} to request warnings on
4290 implicit declarations.  Each of these specific warning options also
4291 has a negative form beginning @samp{-Wno-} to turn off warnings; for
4292 example, @option{-Wno-implicit}.  This manual lists only one of the
4293 two forms, whichever is not the default.  For further
4294 language-specific options also refer to @ref{C++ Dialect Options} and
4295 @ref{Objective-C and Objective-C++ Dialect Options}.
4297 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
4298 options, such as @option{-Wunused}, which may turn on further options,
4299 such as @option{-Wunused-value}. The combined effect of positive and
4300 negative forms is that more specific options have priority over less
4301 specific ones, independently of their position in the command-line. For
4302 options of the same specificity, the last one takes effect. Options
4303 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
4304 as if they appeared at the end of the command-line.
4306 When an unrecognized warning option is requested (e.g.,
4307 @option{-Wunknown-warning}), GCC emits a diagnostic stating
4308 that the option is not recognized.  However, if the @option{-Wno-} form
4309 is used, the behavior is slightly different: no diagnostic is
4310 produced for @option{-Wno-unknown-warning} unless other diagnostics
4311 are being produced.  This allows the use of new @option{-Wno-} options
4312 with old compilers, but if something goes wrong, the compiler
4313 warns that an unrecognized option is present.
4315 @table @gcctabopt
4316 @item -Wpedantic
4317 @itemx -pedantic
4318 @opindex pedantic
4319 @opindex Wpedantic
4320 @opindex Wno-pedantic
4321 Issue all the warnings demanded by strict ISO C and ISO C++;
4322 reject all programs that use forbidden extensions, and some other
4323 programs that do not follow ISO C and ISO C++.  For ISO C, follows the
4324 version of the ISO C standard specified by any @option{-std} option used.
4326 Valid ISO C and ISO C++ programs should compile properly with or without
4327 this option (though a rare few require @option{-ansi} or a
4328 @option{-std} option specifying the required version of ISO C)@.  However,
4329 without this option, certain GNU extensions and traditional C and C++
4330 features are supported as well.  With this option, they are rejected.
4332 @option{-Wpedantic} does not cause warning messages for use of the
4333 alternate keywords whose names begin and end with @samp{__}.  Pedantic
4334 warnings are also disabled in the expression that follows
4335 @code{__extension__}.  However, only system header files should use
4336 these escape routes; application programs should avoid them.
4337 @xref{Alternate Keywords}.
4339 Some users try to use @option{-Wpedantic} to check programs for strict ISO
4340 C conformance.  They soon find that it does not do quite what they want:
4341 it finds some non-ISO practices, but not all---only those for which
4342 ISO C @emph{requires} a diagnostic, and some others for which
4343 diagnostics have been added.
4345 A feature to report any failure to conform to ISO C might be useful in
4346 some instances, but would require considerable additional work and would
4347 be quite different from @option{-Wpedantic}.  We don't have plans to
4348 support such a feature in the near future.
4350 Where the standard specified with @option{-std} represents a GNU
4351 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
4352 corresponding @dfn{base standard}, the version of ISO C on which the GNU
4353 extended dialect is based.  Warnings from @option{-Wpedantic} are given
4354 where they are required by the base standard.  (It does not make sense
4355 for such warnings to be given only for features not in the specified GNU
4356 C dialect, since by definition the GNU dialects of C include all
4357 features the compiler supports with the given option, and there would be
4358 nothing to warn about.)
4360 @item -pedantic-errors
4361 @opindex pedantic-errors
4362 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
4363 requires a diagnostic, in some cases where there is undefined behavior
4364 at compile-time and in some other cases that do not prevent compilation
4365 of programs that are valid according to the standard. This is not
4366 equivalent to @option{-Werror=pedantic}, since there are errors enabled
4367 by this option and not enabled by the latter and vice versa.
4369 @item -Wall
4370 @opindex Wall
4371 @opindex Wno-all
4372 This enables all the warnings about constructions that some users
4373 consider questionable, and that are easy to avoid (or modify to
4374 prevent the warning), even in conjunction with macros.  This also
4375 enables some language-specific warnings described in @ref{C++ Dialect
4376 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
4378 @option{-Wall} turns on the following warning flags:
4380 @gccoptlist{-Waddress   @gol
4381 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)}  @gol
4382 -Wbool-compare  @gol
4383 -Wbool-operation  @gol
4384 -Wc++11-compat  -Wc++14-compat  @gol
4385 -Wcatch-value @r{(C++ and Objective-C++ only)}  @gol
4386 -Wchar-subscripts  @gol
4387 -Wcomment  @gol
4388 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
4389 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
4390 -Wformat   @gol
4391 -Wint-in-bool-context  @gol
4392 -Wimplicit @r{(C and Objective-C only)} @gol
4393 -Wimplicit-int @r{(C and Objective-C only)} @gol
4394 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
4395 -Winit-self @r{(only for C++)} @gol
4396 -Wlogical-not-parentheses @gol
4397 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)}  @gol
4398 -Wmaybe-uninitialized @gol
4399 -Wmemset-elt-size @gol
4400 -Wmemset-transposed-args @gol
4401 -Wmisleading-indentation @r{(only for C/C++)} @gol
4402 -Wmissing-attributes @gol
4403 -Wmissing-braces @r{(only for C/ObjC)} @gol
4404 -Wmultistatement-macros  @gol
4405 -Wnarrowing @r{(only for C++)}  @gol
4406 -Wnonnull  @gol
4407 -Wnonnull-compare  @gol
4408 -Wopenmp-simd @gol
4409 -Wparentheses  @gol
4410 -Wpessimizing-move @r{(only for C++)}  @gol
4411 -Wpointer-sign  @gol
4412 -Wreorder   @gol
4413 -Wrestrict   @gol
4414 -Wreturn-type  @gol
4415 -Wsequence-point  @gol
4416 -Wsign-compare @r{(only in C++)}  @gol
4417 -Wsizeof-pointer-div @gol
4418 -Wsizeof-pointer-memaccess @gol
4419 -Wstrict-aliasing  @gol
4420 -Wstrict-overflow=1  @gol
4421 -Wswitch  @gol
4422 -Wtautological-compare  @gol
4423 -Wtrigraphs  @gol
4424 -Wuninitialized  @gol
4425 -Wunknown-pragmas  @gol
4426 -Wunused-function  @gol
4427 -Wunused-label     @gol
4428 -Wunused-value     @gol
4429 -Wunused-variable  @gol
4430 -Wvolatile-register-var}
4432 Note that some warning flags are not implied by @option{-Wall}.  Some of
4433 them warn about constructions that users generally do not consider
4434 questionable, but which occasionally you might wish to check for;
4435 others warn about constructions that are necessary or hard to avoid in
4436 some cases, and there is no simple way to modify the code to suppress
4437 the warning. Some of them are enabled by @option{-Wextra} but many of
4438 them must be enabled individually.
4440 @item -Wextra
4441 @opindex W
4442 @opindex Wextra
4443 @opindex Wno-extra
4444 This enables some extra warning flags that are not enabled by
4445 @option{-Wall}. (This option used to be called @option{-W}.  The older
4446 name is still supported, but the newer name is more descriptive.)
4448 @gccoptlist{-Wclobbered  @gol
4449 -Wcast-function-type  @gol
4450 -Wdeprecated-copy @r{(C++ only)} @gol
4451 -Wempty-body  @gol
4452 -Wignored-qualifiers @gol
4453 -Wimplicit-fallthrough=3 @gol
4454 -Wmissing-field-initializers  @gol
4455 -Wmissing-parameter-type @r{(C only)}  @gol
4456 -Wold-style-declaration @r{(C only)}  @gol
4457 -Woverride-init  @gol
4458 -Wsign-compare @r{(C only)} @gol
4459 -Wredundant-move @r{(only for C++)}  @gol
4460 -Wtype-limits  @gol
4461 -Wuninitialized  @gol
4462 -Wshift-negative-value @r{(in C++03 and in C99 and newer)}  @gol
4463 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
4464 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}}
4467 The option @option{-Wextra} also prints warning messages for the
4468 following cases:
4470 @itemize @bullet
4472 @item
4473 A pointer is compared against integer zero with @code{<}, @code{<=},
4474 @code{>}, or @code{>=}.
4476 @item
4477 (C++ only) An enumerator and a non-enumerator both appear in a
4478 conditional expression.
4480 @item
4481 (C++ only) Ambiguous virtual bases.
4483 @item
4484 (C++ only) Subscripting an array that has been declared @code{register}.
4486 @item
4487 (C++ only) Taking the address of a variable that has been declared
4488 @code{register}.
4490 @item
4491 (C++ only) A base class is not initialized in the copy constructor
4492 of a derived class.
4494 @end itemize
4496 @item -Wchar-subscripts
4497 @opindex Wchar-subscripts
4498 @opindex Wno-char-subscripts
4499 Warn if an array subscript has type @code{char}.  This is a common cause
4500 of error, as programmers often forget that this type is signed on some
4501 machines.
4502 This warning is enabled by @option{-Wall}.
4504 @item -Wno-coverage-mismatch
4505 @opindex Wno-coverage-mismatch
4506 @opindex Wcoverage-mismatch
4507 Warn if feedback profiles do not match when using the
4508 @option{-fprofile-use} option.
4509 If a source file is changed between compiling with @option{-fprofile-generate}
4510 and with @option{-fprofile-use}, the files with the profile feedback can fail
4511 to match the source file and GCC cannot use the profile feedback
4512 information.  By default, this warning is enabled and is treated as an
4513 error.  @option{-Wno-coverage-mismatch} can be used to disable the
4514 warning or @option{-Wno-error=coverage-mismatch} can be used to
4515 disable the error.  Disabling the error for this warning can result in
4516 poorly optimized code and is useful only in the
4517 case of very minor changes such as bug fixes to an existing code-base.
4518 Completely disabling the warning is not recommended.
4520 @item -Wno-cpp
4521 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
4523 Suppress warning messages emitted by @code{#warning} directives.
4525 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
4526 @opindex Wdouble-promotion
4527 @opindex Wno-double-promotion
4528 Give a warning when a value of type @code{float} is implicitly
4529 promoted to @code{double}.  CPUs with a 32-bit ``single-precision''
4530 floating-point unit implement @code{float} in hardware, but emulate
4531 @code{double} in software.  On such a machine, doing computations
4532 using @code{double} values is much more expensive because of the
4533 overhead required for software emulation.
4535 It is easy to accidentally do computations with @code{double} because
4536 floating-point literals are implicitly of type @code{double}.  For
4537 example, in:
4538 @smallexample
4539 @group
4540 float area(float radius)
4542    return 3.14159 * radius * radius;
4544 @end group
4545 @end smallexample
4546 the compiler performs the entire computation with @code{double}
4547 because the floating-point literal is a @code{double}.
4549 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
4550 @opindex Wduplicate-decl-specifier
4551 @opindex Wno-duplicate-decl-specifier
4552 Warn if a declaration has duplicate @code{const}, @code{volatile},
4553 @code{restrict} or @code{_Atomic} specifier.  This warning is enabled by
4554 @option{-Wall}.
4556 @item -Wformat
4557 @itemx -Wformat=@var{n}
4558 @opindex Wformat
4559 @opindex Wno-format
4560 @opindex ffreestanding
4561 @opindex fno-builtin
4562 @opindex Wformat=
4563 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4564 the arguments supplied have types appropriate to the format string
4565 specified, and that the conversions specified in the format string make
4566 sense.  This includes standard functions, and others specified by format
4567 attributes (@pxref{Function Attributes}), in the @code{printf},
4568 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4569 not in the C standard) families (or other target-specific families).
4570 Which functions are checked without format attributes having been
4571 specified depends on the standard version selected, and such checks of
4572 functions without the attribute specified are disabled by
4573 @option{-ffreestanding} or @option{-fno-builtin}.
4575 The formats are checked against the format features supported by GNU
4576 libc version 2.2.  These include all ISO C90 and C99 features, as well
4577 as features from the Single Unix Specification and some BSD and GNU
4578 extensions.  Other library implementations may not support all these
4579 features; GCC does not support warning about features that go beyond a
4580 particular library's limitations.  However, if @option{-Wpedantic} is used
4581 with @option{-Wformat}, warnings are given about format features not
4582 in the selected standard version (but not for @code{strfmon} formats,
4583 since those are not in any version of the C standard).  @xref{C Dialect
4584 Options,,Options Controlling C Dialect}.
4586 @table @gcctabopt
4587 @item -Wformat=1
4588 @itemx -Wformat
4589 @opindex Wformat
4590 @opindex Wformat=1
4591 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4592 @option{-Wno-format} is equivalent to @option{-Wformat=0}.  Since
4593 @option{-Wformat} also checks for null format arguments for several
4594 functions, @option{-Wformat} also implies @option{-Wnonnull}.  Some
4595 aspects of this level of format checking can be disabled by the
4596 options: @option{-Wno-format-contains-nul},
4597 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4598 @option{-Wformat} is enabled by @option{-Wall}.
4600 @item -Wno-format-contains-nul
4601 @opindex Wno-format-contains-nul
4602 @opindex Wformat-contains-nul
4603 If @option{-Wformat} is specified, do not warn about format strings that
4604 contain NUL bytes.
4606 @item -Wno-format-extra-args
4607 @opindex Wno-format-extra-args
4608 @opindex Wformat-extra-args
4609 If @option{-Wformat} is specified, do not warn about excess arguments to a
4610 @code{printf} or @code{scanf} format function.  The C standard specifies
4611 that such arguments are ignored.
4613 Where the unused arguments lie between used arguments that are
4614 specified with @samp{$} operand number specifications, normally
4615 warnings are still given, since the implementation could not know what
4616 type to pass to @code{va_arg} to skip the unused arguments.  However,
4617 in the case of @code{scanf} formats, this option suppresses the
4618 warning if the unused arguments are all pointers, since the Single
4619 Unix Specification says that such unused arguments are allowed.
4621 @item -Wformat-overflow
4622 @itemx -Wformat-overflow=@var{level}
4623 @opindex Wformat-overflow
4624 @opindex Wno-format-overflow
4625 Warn about calls to formatted input/output functions such as @code{sprintf}
4626 and @code{vsprintf} that might overflow the destination buffer.  When the
4627 exact number of bytes written by a format directive cannot be determined
4628 at compile-time it is estimated based on heuristics that depend on the
4629 @var{level} argument and on optimization.  While enabling optimization
4630 will in most cases improve the accuracy of the warning, it may also
4631 result in false positives.
4633 @table @gcctabopt
4634 @item -Wformat-overflow
4635 @itemx -Wformat-overflow=1
4636 @opindex Wformat-overflow
4637 @opindex Wno-format-overflow
4638 Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4639 employs a conservative approach that warns only about calls that most
4640 likely overflow the buffer.  At this level, numeric arguments to format
4641 directives with unknown values are assumed to have the value of one, and
4642 strings of unknown length to be empty.  Numeric arguments that are known
4643 to be bounded to a subrange of their type, or string arguments whose output
4644 is bounded either by their directive's precision or by a finite set of
4645 string literals, are assumed to take on the value within the range that
4646 results in the most bytes on output.  For example, the call to @code{sprintf}
4647 below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4648 the terminating NUL character (@code{'\0'}) appended by the function
4649 to the destination buffer will be written past its end.  Increasing
4650 the size of the buffer by a single byte is sufficient to avoid the
4651 warning, though it may not be sufficient to avoid the overflow.
4653 @smallexample
4654 void f (int a, int b)
4656   char buf [13];
4657   sprintf (buf, "a = %i, b = %i\n", a, b);
4659 @end smallexample
4661 @item -Wformat-overflow=2
4662 Level @var{2} warns also about calls that might overflow the destination
4663 buffer given an argument of sufficient length or magnitude.  At level
4664 @var{2}, unknown numeric arguments are assumed to have the minimum
4665 representable value for signed types with a precision greater than 1, and
4666 the maximum representable value otherwise.  Unknown string arguments whose
4667 length cannot be assumed to be bounded either by the directive's precision,
4668 or by a finite set of string literals they may evaluate to, or the character
4669 array they may point to, are assumed to be 1 character long.
4671 At level @var{2}, the call in the example above is again diagnosed, but
4672 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4673 @code{%i} directive will write some of its digits beyond the end of
4674 the destination buffer.  To make the call safe regardless of the values
4675 of the two variables, the size of the destination buffer must be increased
4676 to at least 34 bytes.  GCC includes the minimum size of the buffer in
4677 an informational note following the warning.
4679 An alternative to increasing the size of the destination buffer is to
4680 constrain the range of formatted values.  The maximum length of string
4681 arguments can be bounded by specifying the precision in the format
4682 directive.  When numeric arguments of format directives can be assumed
4683 to be bounded by less than the precision of their type, choosing
4684 an appropriate length modifier to the format specifier will reduce
4685 the required buffer size.  For example, if @var{a} and @var{b} in the
4686 example above can be assumed to be within the precision of
4687 the @code{short int} type then using either the @code{%hi} format
4688 directive or casting the argument to @code{short} reduces the maximum
4689 required size of the buffer to 24 bytes.
4691 @smallexample
4692 void f (int a, int b)
4694   char buf [23];
4695   sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4697 @end smallexample
4698 @end table
4700 @item -Wno-format-zero-length
4701 @opindex Wno-format-zero-length
4702 @opindex Wformat-zero-length
4703 If @option{-Wformat} is specified, do not warn about zero-length formats.
4704 The C standard specifies that zero-length formats are allowed.
4707 @item -Wformat=2
4708 @opindex Wformat=2
4709 Enable @option{-Wformat} plus additional format checks.  Currently
4710 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4711 -Wformat-y2k}.
4713 @item -Wformat-nonliteral
4714 @opindex Wformat-nonliteral
4715 @opindex Wno-format-nonliteral
4716 If @option{-Wformat} is specified, also warn if the format string is not a
4717 string literal and so cannot be checked, unless the format function
4718 takes its format arguments as a @code{va_list}.
4720 @item -Wformat-security
4721 @opindex Wformat-security
4722 @opindex Wno-format-security
4723 If @option{-Wformat} is specified, also warn about uses of format
4724 functions that represent possible security problems.  At present, this
4725 warns about calls to @code{printf} and @code{scanf} functions where the
4726 format string is not a string literal and there are no format arguments,
4727 as in @code{printf (foo);}.  This may be a security hole if the format
4728 string came from untrusted input and contains @samp{%n}.  (This is
4729 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4730 in future warnings may be added to @option{-Wformat-security} that are not
4731 included in @option{-Wformat-nonliteral}.)
4733 @item -Wformat-signedness
4734 @opindex Wformat-signedness
4735 @opindex Wno-format-signedness
4736 If @option{-Wformat} is specified, also warn if the format string
4737 requires an unsigned argument and the argument is signed and vice versa.
4739 @item -Wformat-truncation
4740 @itemx -Wformat-truncation=@var{level}
4741 @opindex Wformat-truncation
4742 @opindex Wno-format-truncation
4743 Warn about calls to formatted input/output functions such as @code{snprintf}
4744 and @code{vsnprintf} that might result in output truncation.  When the exact
4745 number of bytes written by a format directive cannot be determined at
4746 compile-time it is estimated based on heuristics that depend on
4747 the @var{level} argument and on optimization.  While enabling optimization
4748 will in most cases improve the accuracy of the warning, it may also result
4749 in false positives.  Except as noted otherwise, the option uses the same
4750 logic @option{-Wformat-overflow}.
4752 @table @gcctabopt
4753 @item -Wformat-truncation
4754 @itemx -Wformat-truncation=1
4755 @opindex Wformat-truncation
4756 @opindex Wno-format-truncation
4757 Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4758 employs a conservative approach that warns only about calls to bounded
4759 functions whose return value is unused and that will most likely result
4760 in output truncation.
4762 @item -Wformat-truncation=2
4763 Level @var{2} warns also about calls to bounded functions whose return
4764 value is used and that might result in truncation given an argument of
4765 sufficient length or magnitude.
4766 @end table
4768 @item -Wformat-y2k
4769 @opindex Wformat-y2k
4770 @opindex Wno-format-y2k
4771 If @option{-Wformat} is specified, also warn about @code{strftime}
4772 formats that may yield only a two-digit year.
4773 @end table
4775 @item -Wnonnull
4776 @opindex Wnonnull
4777 @opindex Wno-nonnull
4778 Warn about passing a null pointer for arguments marked as
4779 requiring a non-null value by the @code{nonnull} function attribute.
4781 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}.  It
4782 can be disabled with the @option{-Wno-nonnull} option.
4784 @item -Wnonnull-compare
4785 @opindex Wnonnull-compare
4786 @opindex Wno-nonnull-compare
4787 Warn when comparing an argument marked with the @code{nonnull}
4788 function attribute against null inside the function.
4790 @option{-Wnonnull-compare} is included in @option{-Wall}.  It
4791 can be disabled with the @option{-Wno-nonnull-compare} option.
4793 @item -Wnull-dereference
4794 @opindex Wnull-dereference
4795 @opindex Wno-null-dereference
4796 Warn if the compiler detects paths that trigger erroneous or
4797 undefined behavior due to dereferencing a null pointer.  This option
4798 is only active when @option{-fdelete-null-pointer-checks} is active,
4799 which is enabled by optimizations in most targets.  The precision of
4800 the warnings depends on the optimization options used.
4802 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4803 @opindex Winit-self
4804 @opindex Wno-init-self
4805 Warn about uninitialized variables that are initialized with themselves.
4806 Note this option can only be used with the @option{-Wuninitialized} option.
4808 For example, GCC warns about @code{i} being uninitialized in the
4809 following snippet only when @option{-Winit-self} has been specified:
4810 @smallexample
4811 @group
4812 int f()
4814   int i = i;
4815   return i;
4817 @end group
4818 @end smallexample
4820 This warning is enabled by @option{-Wall} in C++.
4822 @item -Wimplicit-int @r{(C and Objective-C only)}
4823 @opindex Wimplicit-int
4824 @opindex Wno-implicit-int
4825 Warn when a declaration does not specify a type.
4826 This warning is enabled by @option{-Wall}.
4828 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4829 @opindex Wimplicit-function-declaration
4830 @opindex Wno-implicit-function-declaration
4831 Give a warning whenever a function is used before being declared. In
4832 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4833 enabled by default and it is made into an error by
4834 @option{-pedantic-errors}. This warning is also enabled by
4835 @option{-Wall}.
4837 @item -Wimplicit @r{(C and Objective-C only)}
4838 @opindex Wimplicit
4839 @opindex Wno-implicit
4840 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4841 This warning is enabled by @option{-Wall}.
4843 @item -Wimplicit-fallthrough
4844 @opindex Wimplicit-fallthrough
4845 @opindex Wno-implicit-fallthrough
4846 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4847 and @option{-Wno-implicit-fallthrough} is the same as
4848 @option{-Wimplicit-fallthrough=0}.
4850 @item -Wimplicit-fallthrough=@var{n}
4851 @opindex Wimplicit-fallthrough=
4852 Warn when a switch case falls through.  For example:
4854 @smallexample
4855 @group
4856 switch (cond)
4857   @{
4858   case 1:
4859     a = 1;
4860     break;
4861   case 2:
4862     a = 2;
4863   case 3:
4864     a = 3;
4865     break;
4866   @}
4867 @end group
4868 @end smallexample
4870 This warning does not warn when the last statement of a case cannot
4871 fall through, e.g. when there is a return statement or a call to function
4872 declared with the noreturn attribute.  @option{-Wimplicit-fallthrough=}
4873 also takes into account control flow statements, such as ifs, and only
4874 warns when appropriate.  E.g.@:
4876 @smallexample
4877 @group
4878 switch (cond)
4879   @{
4880   case 1:
4881     if (i > 3) @{
4882       bar (5);
4883       break;
4884     @} else if (i < 1) @{
4885       bar (0);
4886     @} else
4887       return;
4888   default:
4889     @dots{}
4890   @}
4891 @end group
4892 @end smallexample
4894 Since there are occasions where a switch case fall through is desirable,
4895 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4896 to be used along with a null statement to suppress this warning that
4897 would normally occur:
4899 @smallexample
4900 @group
4901 switch (cond)
4902   @{
4903   case 1:
4904     bar (0);
4905     __attribute__ ((fallthrough));
4906   default:
4907     @dots{}
4908   @}
4909 @end group
4910 @end smallexample
4912 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4913 warning using @code{[[fallthrough]];} instead of the GNU attribute.  In C++11
4914 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4915 Instead of these attributes, it is also possible to add a fallthrough comment
4916 to silence the warning.  The whole body of the C or C++ style comment should
4917 match the given regular expressions listed below.  The option argument @var{n}
4918 specifies what kind of comments are accepted:
4920 @itemize @bullet
4922 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4924 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4925 expression, any comment is used as fallthrough comment.
4927 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4928 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4930 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4931 following regular expressions:
4933 @itemize @bullet
4935 @item @code{-fallthrough}
4937 @item @code{@@fallthrough@@}
4939 @item @code{lint -fallthrough[ \t]*}
4941 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4943 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4945 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4947 @end itemize
4949 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4950 following regular expressions:
4952 @itemize @bullet
4954 @item @code{-fallthrough}
4956 @item @code{@@fallthrough@@}
4958 @item @code{lint -fallthrough[ \t]*}
4960 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
4962 @end itemize
4964 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
4965 fallthrough comments, only attributes disable the warning.
4967 @end itemize
4969 The comment needs to be followed after optional whitespace and other comments
4970 by @code{case} or @code{default} keywords or by a user label that precedes some
4971 @code{case} or @code{default} label.
4973 @smallexample
4974 @group
4975 switch (cond)
4976   @{
4977   case 1:
4978     bar (0);
4979     /* FALLTHRU */
4980   default:
4981     @dots{}
4982   @}
4983 @end group
4984 @end smallexample
4986 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
4988 @item -Wif-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
4989 @opindex Wif-not-aligned
4990 @opindex Wno-if-not-aligned
4991 Control if warning triggered by the @code{warn_if_not_aligned} attribute
4992 should be issued.  This is enabled by default.
4993 Use @option{-Wno-if-not-aligned} to disable it.
4995 @item -Wignored-qualifiers @r{(C and C++ only)}
4996 @opindex Wignored-qualifiers
4997 @opindex Wno-ignored-qualifiers
4998 Warn if the return type of a function has a type qualifier
4999 such as @code{const}.  For ISO C such a type qualifier has no effect,
5000 since the value returned by a function is not an lvalue.
5001 For C++, the warning is only emitted for scalar types or @code{void}.
5002 ISO C prohibits qualified @code{void} return types on function
5003 definitions, so such return types always receive a warning
5004 even without this option.
5006 This warning is also enabled by @option{-Wextra}.
5008 @item -Wignored-attributes @r{(C and C++ only)}
5009 @opindex Wignored-attributes
5010 @opindex Wno-ignored-attributes
5011 Warn when an attribute is ignored.  This is different from the
5012 @option{-Wattributes} option in that it warns whenever the compiler decides
5013 to drop an attribute, not that the attribute is either unknown, used in a
5014 wrong place, etc.  This warning is enabled by default.
5016 @item -Wmain
5017 @opindex Wmain
5018 @opindex Wno-main
5019 Warn if the type of @code{main} is suspicious.  @code{main} should be
5020 a function with external linkage, returning int, taking either zero
5021 arguments, two, or three arguments of appropriate types.  This warning
5022 is enabled by default in C++ and is enabled by either @option{-Wall}
5023 or @option{-Wpedantic}.
5025 @item -Wmisleading-indentation @r{(C and C++ only)}
5026 @opindex Wmisleading-indentation
5027 @opindex Wno-misleading-indentation
5028 Warn when the indentation of the code does not reflect the block structure.
5029 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
5030 @code{for} clauses with a guarded statement that does not use braces,
5031 followed by an unguarded statement with the same indentation.
5033 In the following example, the call to ``bar'' is misleadingly indented as
5034 if it were guarded by the ``if'' conditional.
5036 @smallexample
5037   if (some_condition ())
5038     foo ();
5039     bar ();  /* Gotcha: this is not guarded by the "if".  */
5040 @end smallexample
5042 In the case of mixed tabs and spaces, the warning uses the
5043 @option{-ftabstop=} option to determine if the statements line up
5044 (defaulting to 8).
5046 The warning is not issued for code involving multiline preprocessor logic
5047 such as the following example.
5049 @smallexample
5050   if (flagA)
5051     foo (0);
5052 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
5053   if (flagB)
5054 #endif
5055     foo (1);
5056 @end smallexample
5058 The warning is not issued after a @code{#line} directive, since this
5059 typically indicates autogenerated code, and no assumptions can be made
5060 about the layout of the file that the directive references.
5062 This warning is enabled by @option{-Wall} in C and C++.
5064 @item -Wmissing-attributes
5065 @opindex Wmissing-attributes
5066 @opindex Wno-missing-attributes
5067 Warn when a declaration of a function is missing one or more attributes
5068 that a related function is declared with and whose absence may adversely
5069 affect the correctness or efficiency of generated code.  For example,
5070 the warning is issued for declarations of aliases that use attributes
5071 to specify less restrictive requirements than those of their targets.
5072 This typically represents a potential optimization opportunity.
5073 By contrast, the @option{-Wattribute-alias=2} option controls warnings
5074 issued when the alias is more restrictive than the target, which could
5075 lead to incorrect code generation.
5076 Attributes considered include @code{alloc_align}, @code{alloc_size},
5077 @code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
5078 @code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
5079 @code{returns_nonnull}, and @code{returns_twice}.
5081 In C++, the warning is issued when an explicit specialization of a primary
5082 template declared with attribute @code{alloc_align}, @code{alloc_size},
5083 @code{assume_aligned}, @code{format}, @code{format_arg}, @code{malloc},
5084 or @code{nonnull} is declared without it.  Attributes @code{deprecated},
5085 @code{error}, and @code{warning} suppress the warning.
5086 (@pxref{Function Attributes}).
5088 You can use the @code{copy} attribute to apply the same
5089 set of attributes to a declaration as that on another declaration without
5090 explicitly enumerating the attributes. This attribute can be applied
5091 to declarations of functions (@pxref{Common Function Attributes}),
5092 variables (@pxref{Common Variable Attributes}), or types
5093 (@pxref{Common Type Attributes}).
5095 @option{-Wmissing-attributes} is enabled by @option{-Wall}.
5097 For example, since the declaration of the primary function template
5098 below makes use of both attribute @code{malloc} and @code{alloc_size}
5099 the declaration of the explicit specialization of the template is
5100 diagnosed because it is missing one of the attributes.
5102 @smallexample
5103 template <class T>
5104 T* __attribute__ ((malloc, alloc_size (1)))
5105 allocate (size_t);
5107 template <>
5108 void* __attribute__ ((malloc))   // missing alloc_size
5109 allocate<void> (size_t);
5110 @end smallexample
5112 @item -Wmissing-braces
5113 @opindex Wmissing-braces
5114 @opindex Wno-missing-braces
5115 Warn if an aggregate or union initializer is not fully bracketed.  In
5116 the following example, the initializer for @code{a} is not fully
5117 bracketed, but that for @code{b} is fully bracketed.  This warning is
5118 enabled by @option{-Wall} in C.
5120 @smallexample
5121 int a[2][2] = @{ 0, 1, 2, 3 @};
5122 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
5123 @end smallexample
5125 This warning is enabled by @option{-Wall}.
5127 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
5128 @opindex Wmissing-include-dirs
5129 @opindex Wno-missing-include-dirs
5130 Warn if a user-supplied include directory does not exist.
5132 @item -Wmissing-profile
5133 @opindex Wmissing-profile
5134 @opindex Wno-missing-profile
5135 Warn if feedback profiles are missing when using the
5136 @option{-fprofile-use} option.
5137 This option diagnoses those cases where a new function or a new file is added
5138 to the user code between compiling with @option{-fprofile-generate} and with
5139 @option{-fprofile-use}, without regenerating the profiles.  In these cases, the
5140 profile feedback data files do not contain any profile feedback information for
5141 the newly added function or file respectively.  Also, in the case when profile
5142 count data (.gcda) files are removed, GCC cannot use any profile feedback
5143 information.  In all these cases, warnings are issued to inform the user that a
5144 profile generation step is due.  @option{-Wno-missing-profile} can be used to
5145 disable the warning.  Ignoring the warning can result in poorly optimized code.
5146 Completely disabling the warning is not recommended and should be done only
5147 when non-existent profile data is justified.
5149 @item -Wmultistatement-macros
5150 @opindex Wmultistatement-macros
5151 @opindex Wno-multistatement-macros
5152 Warn about unsafe multiple statement macros that appear to be guarded
5153 by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
5154 @code{while}, in which only the first statement is actually guarded after
5155 the macro is expanded.
5157 For example:
5159 @smallexample
5160 #define DOIT x++; y++
5161 if (c)
5162   DOIT;
5163 @end smallexample
5165 will increment @code{y} unconditionally, not just when @code{c} holds.
5166 The can usually be fixed by wrapping the macro in a do-while loop:
5167 @smallexample
5168 #define DOIT do @{ x++; y++; @} while (0)
5169 if (c)
5170   DOIT;
5171 @end smallexample
5173 This warning is enabled by @option{-Wall} in C and C++.
5175 @item -Wparentheses
5176 @opindex Wparentheses
5177 @opindex Wno-parentheses
5178 Warn if parentheses are omitted in certain contexts, such
5179 as when there is an assignment in a context where a truth value
5180 is expected, or when operators are nested whose precedence people
5181 often get confused about.
5183 Also warn if a comparison like @code{x<=y<=z} appears; this is
5184 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
5185 interpretation from that of ordinary mathematical notation.
5187 Also warn for dangerous uses of the GNU extension to
5188 @code{?:} with omitted middle operand. When the condition
5189 in the @code{?}: operator is a boolean expression, the omitted value is
5190 always 1.  Often programmers expect it to be a value computed
5191 inside the conditional expression instead.
5193 For C++ this also warns for some cases of unnecessary parentheses in
5194 declarations, which can indicate an attempt at a function call instead
5195 of a declaration:
5196 @smallexample
5198   // Declares a local variable called mymutex.
5199   std::unique_lock<std::mutex> (mymutex);
5200   // User meant std::unique_lock<std::mutex> lock (mymutex);
5202 @end smallexample
5204 This warning is enabled by @option{-Wall}.
5206 @item -Wsequence-point
5207 @opindex Wsequence-point
5208 @opindex Wno-sequence-point
5209 Warn about code that may have undefined semantics because of violations
5210 of sequence point rules in the C and C++ standards.
5212 The C and C++ standards define the order in which expressions in a C/C++
5213 program are evaluated in terms of @dfn{sequence points}, which represent
5214 a partial ordering between the execution of parts of the program: those
5215 executed before the sequence point, and those executed after it.  These
5216 occur after the evaluation of a full expression (one which is not part
5217 of a larger expression), after the evaluation of the first operand of a
5218 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
5219 function is called (but after the evaluation of its arguments and the
5220 expression denoting the called function), and in certain other places.
5221 Other than as expressed by the sequence point rules, the order of
5222 evaluation of subexpressions of an expression is not specified.  All
5223 these rules describe only a partial order rather than a total order,
5224 since, for example, if two functions are called within one expression
5225 with no sequence point between them, the order in which the functions
5226 are called is not specified.  However, the standards committee have
5227 ruled that function calls do not overlap.
5229 It is not specified when between sequence points modifications to the
5230 values of objects take effect.  Programs whose behavior depends on this
5231 have undefined behavior; the C and C++ standards specify that ``Between
5232 the previous and next sequence point an object shall have its stored
5233 value modified at most once by the evaluation of an expression.
5234 Furthermore, the prior value shall be read only to determine the value
5235 to be stored.''.  If a program breaks these rules, the results on any
5236 particular implementation are entirely unpredictable.
5238 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
5239 = b[n++]} and @code{a[i++] = i;}.  Some more complicated cases are not
5240 diagnosed by this option, and it may give an occasional false positive
5241 result, but in general it has been found fairly effective at detecting
5242 this sort of problem in programs.
5244 The C++17 standard will define the order of evaluation of operands in
5245 more cases: in particular it requires that the right-hand side of an
5246 assignment be evaluated before the left-hand side, so the above
5247 examples are no longer undefined.  But this warning will still warn
5248 about them, to help people avoid writing code that is undefined in C
5249 and earlier revisions of C++.
5251 The standard is worded confusingly, therefore there is some debate
5252 over the precise meaning of the sequence point rules in subtle cases.
5253 Links to discussions of the problem, including proposed formal
5254 definitions, may be found on the GCC readings page, at
5255 @uref{http://gcc.gnu.org/@/readings.html}.
5257 This warning is enabled by @option{-Wall} for C and C++.
5259 @item -Wno-return-local-addr
5260 @opindex Wno-return-local-addr
5261 @opindex Wreturn-local-addr
5262 Do not warn about returning a pointer (or in C++, a reference) to a
5263 variable that goes out of scope after the function returns.
5265 @item -Wreturn-type
5266 @opindex Wreturn-type
5267 @opindex Wno-return-type
5268 Warn whenever a function is defined with a return type that defaults
5269 to @code{int}.  Also warn about any @code{return} statement with no
5270 return value in a function whose return type is not @code{void}
5271 (falling off the end of the function body is considered returning
5272 without a value).
5274 For C only, warn about a @code{return} statement with an expression in a
5275 function whose return type is @code{void}, unless the expression type is
5276 also @code{void}.  As a GNU extension, the latter case is accepted
5277 without a warning unless @option{-Wpedantic} is used.  Attempting
5278 to use the return value of a non-@code{void} function other than @code{main}
5279 that flows off the end by reaching the closing curly brace that terminates
5280 the function is undefined.
5282 Unlike in C, in C++, flowing off the end of a non-@code{void} function other
5283 than @code{main} results in undefined behavior even when the value of
5284 the function is not used.
5286 This warning is enabled by default in C++ and by @option{-Wall} otherwise.
5288 @item -Wshift-count-negative
5289 @opindex Wshift-count-negative
5290 @opindex Wno-shift-count-negative
5291 Warn if shift count is negative. This warning is enabled by default.
5293 @item -Wshift-count-overflow
5294 @opindex Wshift-count-overflow
5295 @opindex Wno-shift-count-overflow
5296 Warn if shift count >= width of type. This warning is enabled by default.
5298 @item -Wshift-negative-value
5299 @opindex Wshift-negative-value
5300 @opindex Wno-shift-negative-value
5301 Warn if left shifting a negative value.  This warning is enabled by
5302 @option{-Wextra} in C99 and C++11 modes (and newer).
5304 @item -Wshift-overflow
5305 @itemx -Wshift-overflow=@var{n}
5306 @opindex Wshift-overflow
5307 @opindex Wno-shift-overflow
5308 Warn about left shift overflows.  This warning is enabled by
5309 default in C99 and C++11 modes (and newer).
5311 @table @gcctabopt
5312 @item -Wshift-overflow=1
5313 This is the warning level of @option{-Wshift-overflow} and is enabled
5314 by default in C99 and C++11 modes (and newer).  This warning level does
5315 not warn about left-shifting 1 into the sign bit.  (However, in C, such
5316 an overflow is still rejected in contexts where an integer constant expression
5317 is required.)  No warning is emitted in C++2A mode (and newer), as signed left
5318 shifts always wrap.
5320 @item -Wshift-overflow=2
5321 This warning level also warns about left-shifting 1 into the sign bit,
5322 unless C++14 mode (or newer) is active.
5323 @end table
5325 @item -Wswitch
5326 @opindex Wswitch
5327 @opindex Wno-switch
5328 Warn whenever a @code{switch} statement has an index of enumerated type
5329 and lacks a @code{case} for one or more of the named codes of that
5330 enumeration.  (The presence of a @code{default} label prevents this
5331 warning.)  @code{case} labels outside the enumeration range also
5332 provoke warnings when this option is used (even if there is a
5333 @code{default} label).
5334 This warning is enabled by @option{-Wall}.
5336 @item -Wswitch-default
5337 @opindex Wswitch-default
5338 @opindex Wno-switch-default
5339 Warn whenever a @code{switch} statement does not have a @code{default}
5340 case.
5342 @item -Wswitch-enum
5343 @opindex Wswitch-enum
5344 @opindex Wno-switch-enum
5345 Warn whenever a @code{switch} statement has an index of enumerated type
5346 and lacks a @code{case} for one or more of the named codes of that
5347 enumeration.  @code{case} labels outside the enumeration range also
5348 provoke warnings when this option is used.  The only difference
5349 between @option{-Wswitch} and this option is that this option gives a
5350 warning about an omitted enumeration code even if there is a
5351 @code{default} label.
5353 @item -Wswitch-bool
5354 @opindex Wswitch-bool
5355 @opindex Wno-switch-bool
5356 Warn whenever a @code{switch} statement has an index of boolean type
5357 and the case values are outside the range of a boolean type.
5358 It is possible to suppress this warning by casting the controlling
5359 expression to a type other than @code{bool}.  For example:
5360 @smallexample
5361 @group
5362 switch ((int) (a == 4))
5363   @{
5364   @dots{}
5365   @}
5366 @end group
5367 @end smallexample
5368 This warning is enabled by default for C and C++ programs.
5370 @item -Wswitch-unreachable
5371 @opindex Wswitch-unreachable
5372 @opindex Wno-switch-unreachable
5373 Warn whenever a @code{switch} statement contains statements between the
5374 controlling expression and the first case label, which will never be
5375 executed.  For example:
5376 @smallexample
5377 @group
5378 switch (cond)
5379   @{
5380    i = 15;
5381   @dots{}
5382    case 5:
5383   @dots{}
5384   @}
5385 @end group
5386 @end smallexample
5387 @option{-Wswitch-unreachable} does not warn if the statement between the
5388 controlling expression and the first case label is just a declaration:
5389 @smallexample
5390 @group
5391 switch (cond)
5392   @{
5393    int i;
5394   @dots{}
5395    case 5:
5396    i = 5;
5397   @dots{}
5398   @}
5399 @end group
5400 @end smallexample
5401 This warning is enabled by default for C and C++ programs.
5403 @item -Wsync-nand @r{(C and C++ only)}
5404 @opindex Wsync-nand
5405 @opindex Wno-sync-nand
5406 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
5407 built-in functions are used.  These functions changed semantics in GCC 4.4.
5409 @item -Wunused-but-set-parameter
5410 @opindex Wunused-but-set-parameter
5411 @opindex Wno-unused-but-set-parameter
5412 Warn whenever a function parameter is assigned to, but otherwise unused
5413 (aside from its declaration).
5415 To suppress this warning use the @code{unused} attribute
5416 (@pxref{Variable Attributes}).
5418 This warning is also enabled by @option{-Wunused} together with
5419 @option{-Wextra}.
5421 @item -Wunused-but-set-variable
5422 @opindex Wunused-but-set-variable
5423 @opindex Wno-unused-but-set-variable
5424 Warn whenever a local variable is assigned to, but otherwise unused
5425 (aside from its declaration).
5426 This warning is enabled by @option{-Wall}.
5428 To suppress this warning use the @code{unused} attribute
5429 (@pxref{Variable Attributes}).
5431 This warning is also enabled by @option{-Wunused}, which is enabled
5432 by @option{-Wall}.
5434 @item -Wunused-function
5435 @opindex Wunused-function
5436 @opindex Wno-unused-function
5437 Warn whenever a static function is declared but not defined or a
5438 non-inline static function is unused.
5439 This warning is enabled by @option{-Wall}.
5441 @item -Wunused-label
5442 @opindex Wunused-label
5443 @opindex Wno-unused-label
5444 Warn whenever a label is declared but not used.
5445 This warning is enabled by @option{-Wall}.
5447 To suppress this warning use the @code{unused} attribute
5448 (@pxref{Variable Attributes}).
5450 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
5451 @opindex Wunused-local-typedefs
5452 @opindex Wno-unused-local-typedefs
5453 Warn when a typedef locally defined in a function is not used.
5454 This warning is enabled by @option{-Wall}.
5456 @item -Wunused-parameter
5457 @opindex Wunused-parameter
5458 @opindex Wno-unused-parameter
5459 Warn whenever a function parameter is unused aside from its declaration.
5461 To suppress this warning use the @code{unused} attribute
5462 (@pxref{Variable Attributes}).
5464 @item -Wno-unused-result
5465 @opindex Wunused-result
5466 @opindex Wno-unused-result
5467 Do not warn if a caller of a function marked with attribute
5468 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
5469 its return value. The default is @option{-Wunused-result}.
5471 @item -Wunused-variable
5472 @opindex Wunused-variable
5473 @opindex Wno-unused-variable
5474 Warn whenever a local or static variable is unused aside from its
5475 declaration. This option implies @option{-Wunused-const-variable=1} for C,
5476 but not for C++. This warning is enabled by @option{-Wall}.
5478 To suppress this warning use the @code{unused} attribute
5479 (@pxref{Variable Attributes}).
5481 @item -Wunused-const-variable
5482 @itemx -Wunused-const-variable=@var{n}
5483 @opindex Wunused-const-variable
5484 @opindex Wno-unused-const-variable
5485 Warn whenever a constant static variable is unused aside from its declaration.
5486 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
5487 for C, but not for C++. In C this declares variable storage, but in C++ this
5488 is not an error since const variables take the place of @code{#define}s.
5490 To suppress this warning use the @code{unused} attribute
5491 (@pxref{Variable Attributes}).
5493 @table @gcctabopt
5494 @item -Wunused-const-variable=1
5495 This is the warning level that is enabled by @option{-Wunused-variable} for
5496 C.  It warns only about unused static const variables defined in the main
5497 compilation unit, but not about static const variables declared in any
5498 header included.
5500 @item -Wunused-const-variable=2
5501 This warning level also warns for unused constant static variables in
5502 headers (excluding system headers).  This is the warning level of
5503 @option{-Wunused-const-variable} and must be explicitly requested since
5504 in C++ this isn't an error and in C it might be harder to clean up all
5505 headers included.
5506 @end table
5508 @item -Wunused-value
5509 @opindex Wunused-value
5510 @opindex Wno-unused-value
5511 Warn whenever a statement computes a result that is explicitly not
5512 used. To suppress this warning cast the unused expression to
5513 @code{void}. This includes an expression-statement or the left-hand
5514 side of a comma expression that contains no side effects. For example,
5515 an expression such as @code{x[i,j]} causes a warning, while
5516 @code{x[(void)i,j]} does not.
5518 This warning is enabled by @option{-Wall}.
5520 @item -Wunused
5521 @opindex Wunused
5522 @opindex Wno-unused
5523 All the above @option{-Wunused} options combined.
5525 In order to get a warning about an unused function parameter, you must
5526 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
5527 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
5529 @item -Wuninitialized
5530 @opindex Wuninitialized
5531 @opindex Wno-uninitialized
5532 Warn if an automatic variable is used without first being initialized
5533 or if a variable may be clobbered by a @code{setjmp} call. In C++,
5534 warn if a non-static reference or non-static @code{const} member
5535 appears in a class without constructors.
5537 If you want to warn about code that uses the uninitialized value of the
5538 variable in its own initializer, use the @option{-Winit-self} option.
5540 These warnings occur for individual uninitialized or clobbered
5541 elements of structure, union or array variables as well as for
5542 variables that are uninitialized or clobbered as a whole.  They do
5543 not occur for variables or elements declared @code{volatile}.  Because
5544 these warnings depend on optimization, the exact variables or elements
5545 for which there are warnings depends on the precise optimization
5546 options and version of GCC used.
5548 Note that there may be no warning about a variable that is used only
5549 to compute a value that itself is never used, because such
5550 computations may be deleted by data flow analysis before the warnings
5551 are printed.
5553 @item -Winvalid-memory-model
5554 @opindex Winvalid-memory-model
5555 @opindex Wno-invalid-memory-model
5556 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
5557 and the C11 atomic generic functions with a memory consistency argument
5558 that is either invalid for the operation or outside the range of values
5559 of the @code{memory_order} enumeration.  For example, since the
5560 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
5561 defined for the relaxed, release, and sequentially consistent memory
5562 orders the following code is diagnosed:
5564 @smallexample
5565 void store (int *i)
5567   __atomic_store_n (i, 0, memory_order_consume);
5569 @end smallexample
5571 @option{-Winvalid-memory-model} is enabled by default.
5573 @item -Wmaybe-uninitialized
5574 @opindex Wmaybe-uninitialized
5575 @opindex Wno-maybe-uninitialized
5576 For an automatic (i.e.@: local) variable, if there exists a path from the
5577 function entry to a use of the variable that is initialized, but there exist
5578 some other paths for which the variable is not initialized, the compiler
5579 emits a warning if it cannot prove the uninitialized paths are not
5580 executed at run time.
5582 These warnings are only possible in optimizing compilation, because otherwise
5583 GCC does not keep track of the state of variables.
5585 These warnings are made optional because GCC may not be able to determine when
5586 the code is correct in spite of appearing to have an error.  Here is one
5587 example of how this can happen:
5589 @smallexample
5590 @group
5592   int x;
5593   switch (y)
5594     @{
5595     case 1: x = 1;
5596       break;
5597     case 2: x = 4;
5598       break;
5599     case 3: x = 5;
5600     @}
5601   foo (x);
5603 @end group
5604 @end smallexample
5606 @noindent
5607 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
5608 always initialized, but GCC doesn't know this. To suppress the
5609 warning, you need to provide a default case with assert(0) or
5610 similar code.
5612 @cindex @code{longjmp} warnings
5613 This option also warns when a non-volatile automatic variable might be
5614 changed by a call to @code{longjmp}.
5615 The compiler sees only the calls to @code{setjmp}.  It cannot know
5616 where @code{longjmp} will be called; in fact, a signal handler could
5617 call it at any point in the code.  As a result, you may get a warning
5618 even when there is in fact no problem because @code{longjmp} cannot
5619 in fact be called at the place that would cause a problem.
5621 Some spurious warnings can be avoided if you declare all the functions
5622 you use that never return as @code{noreturn}.  @xref{Function
5623 Attributes}.
5625 This warning is enabled by @option{-Wall} or @option{-Wextra}.
5627 @item -Wunknown-pragmas
5628 @opindex Wunknown-pragmas
5629 @opindex Wno-unknown-pragmas
5630 @cindex warning for unknown pragmas
5631 @cindex unknown pragmas, warning
5632 @cindex pragmas, warning of unknown
5633 Warn when a @code{#pragma} directive is encountered that is not understood by 
5634 GCC@.  If this command-line option is used, warnings are even issued
5635 for unknown pragmas in system header files.  This is not the case if
5636 the warnings are only enabled by the @option{-Wall} command-line option.
5638 @item -Wno-pragmas
5639 @opindex Wno-pragmas
5640 @opindex Wpragmas
5641 Do not warn about misuses of pragmas, such as incorrect parameters,
5642 invalid syntax, or conflicts between pragmas.  See also
5643 @option{-Wunknown-pragmas}.
5645 @item -Wno-prio-ctor-dtor
5646 @opindex Wno-prio-ctor-dtor
5647 @opindex Wprio-ctor-dtor
5648 Do not warn if a priority from 0 to 100 is used for constructor or destructor.
5649 The use of constructor and destructor attributes allow you to assign a
5650 priority to the constructor/destructor to control its order of execution
5651 before @code{main} is called or after it returns.  The priority values must be
5652 greater than 100 as the compiler reserves priority values between 0--100 for
5653 the implementation.
5655 @item -Wstrict-aliasing
5656 @opindex Wstrict-aliasing
5657 @opindex Wno-strict-aliasing
5658 This option is only active when @option{-fstrict-aliasing} is active.
5659 It warns about code that might break the strict aliasing rules that the
5660 compiler is using for optimization.  The warning does not catch all
5661 cases, but does attempt to catch the more common pitfalls.  It is
5662 included in @option{-Wall}.
5663 It is equivalent to @option{-Wstrict-aliasing=3}
5665 @item -Wstrict-aliasing=n
5666 @opindex Wstrict-aliasing=n
5667 This option is only active when @option{-fstrict-aliasing} is active.
5668 It warns about code that might break the strict aliasing rules that the
5669 compiler is using for optimization.
5670 Higher levels correspond to higher accuracy (fewer false positives).
5671 Higher levels also correspond to more effort, similar to the way @option{-O} 
5672 works.
5673 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5675 Level 1: Most aggressive, quick, least accurate.
5676 Possibly useful when higher levels
5677 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5678 false negatives.  However, it has many false positives.
5679 Warns for all pointer conversions between possibly incompatible types,
5680 even if never dereferenced.  Runs in the front end only.
5682 Level 2: Aggressive, quick, not too precise.
5683 May still have many false positives (not as many as level 1 though),
5684 and few false negatives (but possibly more than level 1).
5685 Unlike level 1, it only warns when an address is taken.  Warns about
5686 incomplete types.  Runs in the front end only.
5688 Level 3 (default for @option{-Wstrict-aliasing}):
5689 Should have very few false positives and few false
5690 negatives.  Slightly slower than levels 1 or 2 when optimization is enabled.
5691 Takes care of the common pun+dereference pattern in the front end:
5692 @code{*(int*)&some_float}.
5693 If optimization is enabled, it also runs in the back end, where it deals
5694 with multiple statement cases using flow-sensitive points-to information.
5695 Only warns when the converted pointer is dereferenced.
5696 Does not warn about incomplete types.
5698 @item -Wstrict-overflow
5699 @itemx -Wstrict-overflow=@var{n}
5700 @opindex Wstrict-overflow
5701 @opindex Wno-strict-overflow
5702 This option is only active when signed overflow is undefined.
5703 It warns about cases where the compiler optimizes based on the
5704 assumption that signed overflow does not occur.  Note that it does not
5705 warn about all cases where the code might overflow: it only warns
5706 about cases where the compiler implements some optimization.  Thus
5707 this warning depends on the optimization level.
5709 An optimization that assumes that signed overflow does not occur is
5710 perfectly safe if the values of the variables involved are such that
5711 overflow never does, in fact, occur.  Therefore this warning can
5712 easily give a false positive: a warning about code that is not
5713 actually a problem.  To help focus on important issues, several
5714 warning levels are defined.  No warnings are issued for the use of
5715 undefined signed overflow when estimating how many iterations a loop
5716 requires, in particular when determining whether a loop will be
5717 executed at all.
5719 @table @gcctabopt
5720 @item -Wstrict-overflow=1
5721 Warn about cases that are both questionable and easy to avoid.  For
5722 example the compiler simplifies
5723 @code{x + 1 > x} to @code{1}.  This level of
5724 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5725 are not, and must be explicitly requested.
5727 @item -Wstrict-overflow=2
5728 Also warn about other cases where a comparison is simplified to a
5729 constant.  For example: @code{abs (x) >= 0}.  This can only be
5730 simplified when signed integer overflow is undefined, because
5731 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5732 zero.  @option{-Wstrict-overflow} (with no level) is the same as
5733 @option{-Wstrict-overflow=2}.
5735 @item -Wstrict-overflow=3
5736 Also warn about other cases where a comparison is simplified.  For
5737 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5739 @item -Wstrict-overflow=4
5740 Also warn about other simplifications not covered by the above cases.
5741 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5743 @item -Wstrict-overflow=5
5744 Also warn about cases where the compiler reduces the magnitude of a
5745 constant involved in a comparison.  For example: @code{x + 2 > y} is
5746 simplified to @code{x + 1 >= y}.  This is reported only at the
5747 highest warning level because this simplification applies to many
5748 comparisons, so this warning level gives a very large number of
5749 false positives.
5750 @end table
5752 @item -Wstringop-overflow
5753 @itemx -Wstringop-overflow=@var{type}
5754 @opindex Wstringop-overflow
5755 @opindex Wno-stringop-overflow
5756 Warn for calls to string manipulation functions such as @code{memcpy} and
5757 @code{strcpy} that are determined to overflow the destination buffer.  The
5758 optional argument is one greater than the type of Object Size Checking to
5759 perform to determine the size of the destination.  @xref{Object Size Checking}.
5760 The argument is meaningful only for functions that operate on character arrays
5761 but not for raw memory functions like @code{memcpy} which always make use
5762 of Object Size type-0.  The option also warns for calls that specify a size
5763 in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5764 The option produces the best results with optimization enabled but can detect
5765 a small subset of simple buffer overflows even without optimization in
5766 calls to the GCC built-in functions like @code{__builtin_memcpy} that
5767 correspond to the standard functions.  In any case, the option warns about
5768 just a subset of buffer overflows detected by the corresponding overflow
5769 checking built-ins.  For example, the option will issue a warning for
5770 the @code{strcpy} call below because it copies at least 5 characters
5771 (the string @code{"blue"} including the terminating NUL) into the buffer
5772 of size 4.
5774 @smallexample
5775 enum Color @{ blue, purple, yellow @};
5776 const char* f (enum Color clr)
5778   static char buf [4];
5779   const char *str;
5780   switch (clr)
5781     @{
5782       case blue: str = "blue"; break;
5783       case purple: str = "purple"; break;
5784       case yellow: str = "yellow"; break;
5785     @}
5787   return strcpy (buf, str);   // warning here
5789 @end smallexample
5791 Option @option{-Wstringop-overflow=2} is enabled by default.
5793 @table @gcctabopt
5794 @item -Wstringop-overflow
5795 @itemx -Wstringop-overflow=1
5796 @opindex Wstringop-overflow
5797 @opindex Wno-stringop-overflow
5798 The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5799 to determine the sizes of destination objects.  This is the default setting
5800 of the option.  At this setting the option will not warn for writes past
5801 the end of subobjects of larger objects accessed by pointers unless the
5802 size of the largest surrounding object is known.  When the destination may
5803 be one of several objects it is assumed to be the largest one of them.  On
5804 Linux systems, when optimization is enabled at this setting the option warns
5805 for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5806 a non-zero value.
5808 @item -Wstringop-overflow=2
5809 The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5810 to determine the sizes of destination objects.  At this setting the option
5811 will warn about overflows when writing to members of the largest complete
5812 objects whose exact size is known.  It will, however, not warn for excessive
5813 writes to the same members of unknown objects referenced by pointers since
5814 they may point to arrays containing unknown numbers of elements.
5816 @item -Wstringop-overflow=3
5817 The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5818 to determine the sizes of destination objects.  At this setting the option
5819 warns about overflowing the smallest object or data member.  This is the
5820 most restrictive setting of the option that may result in warnings for safe
5821 code.
5823 @item -Wstringop-overflow=4
5824 The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5825 to determine the sizes of destination objects.  At this setting the option
5826 will warn about overflowing any data members, and when the destination is
5827 one of several objects it uses the size of the largest of them to decide
5828 whether to issue a warning.  Similarly to @option{-Wstringop-overflow=3} this
5829 setting of the option may result in warnings for benign code.
5830 @end table
5832 @item -Wstringop-truncation
5833 @opindex Wstringop-truncation
5834 @opindex Wno-stringop-truncation
5835 Warn for calls to bounded string manipulation functions such as @code{strncat},
5836 @code{strncpy}, and @code{stpncpy} that may either truncate the copied string
5837 or leave the destination unchanged.
5839 In the following example, the call to @code{strncat} specifies a bound that
5840 is less than the length of the source string.  As a result, the copy of
5841 the source will be truncated and so the call is diagnosed.  To avoid the
5842 warning use @code{bufsize - strlen (buf) - 1)} as the bound.
5844 @smallexample
5845 void append (char *buf, size_t bufsize)
5847   strncat (buf, ".txt", 3);
5849 @end smallexample
5851 As another example, the following call to @code{strncpy} results in copying
5852 to @code{d} just the characters preceding the terminating NUL, without
5853 appending the NUL to the end.  Assuming the result of @code{strncpy} is
5854 necessarily a NUL-terminated string is a common mistake, and so the call
5855 is diagnosed.  To avoid the warning when the result is not expected to be
5856 NUL-terminated, call @code{memcpy} instead.
5858 @smallexample
5859 void copy (char *d, const char *s)
5861   strncpy (d, s, strlen (s));
5863 @end smallexample
5865 In the following example, the call to @code{strncpy} specifies the size
5866 of the destination buffer as the bound.  If the length of the source
5867 string is equal to or greater than this size the result of the copy will
5868 not be NUL-terminated.  Therefore, the call is also diagnosed.  To avoid
5869 the warning, specify @code{sizeof buf - 1} as the bound and set the last
5870 element of the buffer to @code{NUL}.
5872 @smallexample
5873 void copy (const char *s)
5875   char buf[80];
5876   strncpy (buf, s, sizeof buf);
5877   @dots{}
5879 @end smallexample
5881 In situations where a character array is intended to store a sequence
5882 of bytes with no terminating @code{NUL} such an array may be annotated
5883 with attribute @code{nonstring} to avoid this warning.  Such arrays,
5884 however, are not suitable arguments to functions that expect
5885 @code{NUL}-terminated strings.  To help detect accidental misuses of
5886 such arrays GCC issues warnings unless it can prove that the use is
5887 safe.  @xref{Common Variable Attributes}.
5889 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}
5890 @opindex Wsuggest-attribute=
5891 @opindex Wno-suggest-attribute=
5892 Warn for cases where adding an attribute may be beneficial. The
5893 attributes currently supported are listed below.
5895 @table @gcctabopt
5896 @item -Wsuggest-attribute=pure
5897 @itemx -Wsuggest-attribute=const
5898 @itemx -Wsuggest-attribute=noreturn
5899 @itemx -Wmissing-noreturn
5900 @itemx -Wsuggest-attribute=malloc
5901 @opindex Wsuggest-attribute=pure
5902 @opindex Wno-suggest-attribute=pure
5903 @opindex Wsuggest-attribute=const
5904 @opindex Wno-suggest-attribute=const
5905 @opindex Wsuggest-attribute=noreturn
5906 @opindex Wno-suggest-attribute=noreturn
5907 @opindex Wmissing-noreturn
5908 @opindex Wno-missing-noreturn
5909 @opindex Wsuggest-attribute=malloc
5910 @opindex Wno-suggest-attribute=malloc
5912 Warn about functions that might be candidates for attributes
5913 @code{pure}, @code{const} or @code{noreturn} or @code{malloc}. The compiler
5914 only warns for functions visible in other compilation units or (in the case of
5915 @code{pure} and @code{const}) if it cannot prove that the function returns
5916 normally. A function returns normally if it doesn't contain an infinite loop or
5917 return abnormally by throwing, calling @code{abort} or trapping.  This analysis
5918 requires option @option{-fipa-pure-const}, which is enabled by default at
5919 @option{-O} and higher.  Higher optimization levels improve the accuracy
5920 of the analysis.
5922 @item -Wsuggest-attribute=format
5923 @itemx -Wmissing-format-attribute
5924 @opindex Wsuggest-attribute=format
5925 @opindex Wmissing-format-attribute
5926 @opindex Wno-suggest-attribute=format
5927 @opindex Wno-missing-format-attribute
5928 @opindex Wformat
5929 @opindex Wno-format
5931 Warn about function pointers that might be candidates for @code{format}
5932 attributes.  Note these are only possible candidates, not absolute ones.
5933 GCC guesses that function pointers with @code{format} attributes that
5934 are used in assignment, initialization, parameter passing or return
5935 statements should have a corresponding @code{format} attribute in the
5936 resulting type.  I.e.@: the left-hand side of the assignment or
5937 initialization, the type of the parameter variable, or the return type
5938 of the containing function respectively should also have a @code{format}
5939 attribute to avoid the warning.
5941 GCC also warns about function definitions that might be
5942 candidates for @code{format} attributes.  Again, these are only
5943 possible candidates.  GCC guesses that @code{format} attributes
5944 might be appropriate for any function that calls a function like
5945 @code{vprintf} or @code{vscanf}, but this might not always be the
5946 case, and some functions for which @code{format} attributes are
5947 appropriate may not be detected.
5949 @item -Wsuggest-attribute=cold
5950 @opindex Wsuggest-attribute=cold
5951 @opindex Wno-suggest-attribute=cold
5953 Warn about functions that might be candidates for @code{cold} attribute.  This
5954 is based on static detection and generally will only warn about functions which
5955 always leads to a call to another @code{cold} function such as wrappers of
5956 C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
5957 @end table
5959 @item -Wsuggest-final-types
5960 @opindex Wno-suggest-final-types
5961 @opindex Wsuggest-final-types
5962 Warn about types with virtual methods where code quality would be improved
5963 if the type were declared with the C++11 @code{final} specifier, 
5964 or, if possible,
5965 declared in an anonymous namespace. This allows GCC to more aggressively
5966 devirtualize the polymorphic calls. This warning is more effective with link
5967 time optimization, where the information about the class hierarchy graph is
5968 more complete.
5970 @item -Wsuggest-final-methods
5971 @opindex Wno-suggest-final-methods
5972 @opindex Wsuggest-final-methods
5973 Warn about virtual methods where code quality would be improved if the method
5974 were declared with the C++11 @code{final} specifier, 
5975 or, if possible, its type were
5976 declared in an anonymous namespace or with the @code{final} specifier.
5977 This warning is
5978 more effective with link-time optimization, where the information about the
5979 class hierarchy graph is more complete. It is recommended to first consider
5980 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
5981 annotations.
5983 @item -Wsuggest-override
5984 Warn about overriding virtual functions that are not marked with the override
5985 keyword.
5987 @item -Walloc-zero
5988 @opindex Wno-alloc-zero
5989 @opindex Walloc-zero
5990 Warn about calls to allocation functions decorated with attribute
5991 @code{alloc_size} that specify zero bytes, including those to the built-in
5992 forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
5993 @code{malloc}, and @code{realloc}.  Because the behavior of these functions
5994 when called with a zero size differs among implementations (and in the case
5995 of @code{realloc} has been deprecated) relying on it may result in subtle
5996 portability bugs and should be avoided.
5998 @item -Walloc-size-larger-than=@var{byte-size}
5999 @opindex Walloc-size-larger-than=
6000 @opindex Wno-alloc-size-larger-than
6001 Warn about calls to functions decorated with attribute @code{alloc_size}
6002 that attempt to allocate objects larger than the specified number of bytes,
6003 or where the result of the size computation in an integer type with infinite
6004 precision would exceed the value of @samp{PTRDIFF_MAX} on the target.
6005 @option{-Walloc-size-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6006 Warnings controlled by the option can be disabled either by specifying
6007 @var{byte-size} of @samp{SIZE_MAX} or more or by
6008 @option{-Wno-alloc-size-larger-than}.
6009 @xref{Function Attributes}.
6011 @item -Wno-alloc-size-larger-than
6012 @opindex Wno-alloc-size-larger-than
6013 Disable @option{-Walloc-size-larger-than=} warnings.  The option is
6014 equivalent to @option{-Walloc-size-larger-than=}@samp{SIZE_MAX} or
6015 larger.
6017 @item -Walloca
6018 @opindex Wno-alloca
6019 @opindex Walloca
6020 This option warns on all uses of @code{alloca} in the source.
6022 @item -Walloca-larger-than=@var{byte-size}
6023 @opindex Walloca-larger-than=
6024 @opindex Wno-alloca-larger-than
6025 This option warns on calls to @code{alloca} with an integer argument whose
6026 value is either zero, or that is not bounded by a controlling predicate
6027 that limits its value to at most @var{byte-size}.  It also warns for calls
6028 to @code{alloca} where the bound value is unknown.  Arguments of non-integer
6029 types are considered unbounded even if they appear to be constrained to
6030 the expected range.
6032 For example, a bounded case of @code{alloca} could be:
6034 @smallexample
6035 void func (size_t n)
6037   void *p;
6038   if (n <= 1000)
6039     p = alloca (n);
6040   else
6041     p = malloc (n);
6042   f (p);
6044 @end smallexample
6046 In the above example, passing @code{-Walloca-larger-than=1000} would not
6047 issue a warning because the call to @code{alloca} is known to be at most
6048 1000 bytes.  However, if @code{-Walloca-larger-than=500} were passed,
6049 the compiler would emit a warning.
6051 Unbounded uses, on the other hand, are uses of @code{alloca} with no
6052 controlling predicate constraining its integer argument.  For example:
6054 @smallexample
6055 void func ()
6057   void *p = alloca (n);
6058   f (p);
6060 @end smallexample
6062 If @code{-Walloca-larger-than=500} were passed, the above would trigger
6063 a warning, but this time because of the lack of bounds checking.
6065 Note, that even seemingly correct code involving signed integers could
6066 cause a warning:
6068 @smallexample
6069 void func (signed int n)
6071   if (n < 500)
6072     @{
6073       p = alloca (n);
6074       f (p);
6075     @}
6077 @end smallexample
6079 In the above example, @var{n} could be negative, causing a larger than
6080 expected argument to be implicitly cast into the @code{alloca} call.
6082 This option also warns when @code{alloca} is used in a loop.
6084 @option{-Walloca-larger-than=}@samp{PTRDIFF_MAX} is enabled by default
6085 but is usually only effective  when @option{-ftree-vrp} is active (default
6086 for @option{-O2} and above).
6088 See also @option{-Wvla-larger-than=}@samp{byte-size}.
6090 @item -Wno-alloca-larger-than
6091 @opindex Wno-alloca-larger-than
6092 Disable @option{-Walloca-larger-than=} warnings.  The option is
6093 equivalent to @option{-Walloca-larger-than=}@samp{SIZE_MAX} or larger.
6095 @item -Warray-bounds
6096 @itemx -Warray-bounds=@var{n}
6097 @opindex Wno-array-bounds
6098 @opindex Warray-bounds
6099 This option is only active when @option{-ftree-vrp} is active
6100 (default for @option{-O2} and above). It warns about subscripts to arrays
6101 that are always out of bounds. This warning is enabled by @option{-Wall}.
6103 @table @gcctabopt
6104 @item -Warray-bounds=1
6105 This is the warning level of @option{-Warray-bounds} and is enabled
6106 by @option{-Wall}; higher levels are not, and must be explicitly requested.
6108 @item -Warray-bounds=2
6109 This warning level also warns about out of bounds access for
6110 arrays at the end of a struct and for arrays accessed through
6111 pointers. This warning level may give a larger number of
6112 false positives and is deactivated by default.
6113 @end table
6115 @item -Wattribute-alias=@var{n}
6116 @itemx -Wno-attribute-alias
6117 @opindex -Wattribute-alias
6118 @opindex -Wno-attribute-alias
6119 Warn about declarations using the @code{alias} and similar attributes whose
6120 target is incompatible with the type of the alias.
6121 @xref{Function Attributes,,Declaring Attributes of Functions}.
6123 @table @gcctabopt
6124 @item -Wattribute-alias=1
6125 The default warning level of the @option{-Wattribute-alias} option diagnoses
6126 incompatibilities between the type of the alias declaration and that of its
6127 target.  Such incompatibilities are typically indicative of bugs.
6129 @item -Wattribute-alias=2
6131 At this level @option{-Wattribute-alias} also diagnoses cases where
6132 the attributes of the alias declaration are more restrictive than the
6133 attributes applied to its target.  These mismatches can potentially
6134 result in incorrect code generation.  In other cases they may be
6135 benign and could be resolved simply by adding the missing attribute to
6136 the target.  For comparison, see the @option{-Wmissing-attributes}
6137 option, which controls diagnostics when the alias declaration is less
6138 restrictive than the target, rather than more restrictive.
6140 Attributes considered include @code{alloc_align}, @code{alloc_size},
6141 @code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
6142 @code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
6143 @code{returns_nonnull}, and @code{returns_twice}.
6144 @end table
6146 @option{-Wattribute-alias} is equivalent to @option{-Wattribute-alias=1}.
6147 This is the default.  You can disable these warnings with either
6148 @option{-Wno-attribute-alias} or @option{-Wattribute-alias=0}.
6150 @item -Wbool-compare
6151 @opindex Wno-bool-compare
6152 @opindex Wbool-compare
6153 Warn about boolean expression compared with an integer value different from
6154 @code{true}/@code{false}.  For instance, the following comparison is
6155 always false:
6156 @smallexample
6157 int n = 5;
6158 @dots{}
6159 if ((n > 1) == 2) @{ @dots{} @}
6160 @end smallexample
6161 This warning is enabled by @option{-Wall}.
6163 @item -Wbool-operation
6164 @opindex Wno-bool-operation
6165 @opindex Wbool-operation
6166 Warn about suspicious operations on expressions of a boolean type.  For
6167 instance, bitwise negation of a boolean is very likely a bug in the program.
6168 For C, this warning also warns about incrementing or decrementing a boolean,
6169 which rarely makes sense.  (In C++, decrementing a boolean is always invalid.
6170 Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
6172 This warning is enabled by @option{-Wall}.
6174 @item -Wduplicated-branches
6175 @opindex Wno-duplicated-branches
6176 @opindex Wduplicated-branches
6177 Warn when an if-else has identical branches.  This warning detects cases like
6178 @smallexample
6179 if (p != NULL)
6180   return 0;
6181 else
6182   return 0;
6183 @end smallexample
6184 It doesn't warn when both branches contain just a null statement.  This warning
6185 also warn for conditional operators:
6186 @smallexample
6187   int i = x ? *p : *p;
6188 @end smallexample
6190 @item -Wduplicated-cond
6191 @opindex Wno-duplicated-cond
6192 @opindex Wduplicated-cond
6193 Warn about duplicated conditions in an if-else-if chain.  For instance,
6194 warn for the following code:
6195 @smallexample
6196 if (p->q != NULL) @{ @dots{} @}
6197 else if (p->q != NULL) @{ @dots{} @}
6198 @end smallexample
6200 @item -Wframe-address
6201 @opindex Wno-frame-address
6202 @opindex Wframe-address
6203 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
6204 is called with an argument greater than 0.  Such calls may return indeterminate
6205 values or crash the program.  The warning is included in @option{-Wall}.
6207 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
6208 @opindex Wno-discarded-qualifiers
6209 @opindex Wdiscarded-qualifiers
6210 Do not warn if type qualifiers on pointers are being discarded.
6211 Typically, the compiler warns if a @code{const char *} variable is
6212 passed to a function that takes a @code{char *} parameter.  This option
6213 can be used to suppress such a warning.
6215 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
6216 @opindex Wno-discarded-array-qualifiers
6217 @opindex Wdiscarded-array-qualifiers
6218 Do not warn if type qualifiers on arrays which are pointer targets
6219 are being discarded. Typically, the compiler warns if a
6220 @code{const int (*)[]} variable is passed to a function that
6221 takes a @code{int (*)[]} parameter.  This option can be used to
6222 suppress such a warning.
6224 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
6225 @opindex Wno-incompatible-pointer-types
6226 @opindex Wincompatible-pointer-types
6227 Do not warn when there is a conversion between pointers that have incompatible
6228 types.  This warning is for cases not covered by @option{-Wno-pointer-sign},
6229 which warns for pointer argument passing or assignment with different
6230 signedness.
6232 @item -Wno-int-conversion @r{(C and Objective-C only)}
6233 @opindex Wno-int-conversion
6234 @opindex Wint-conversion
6235 Do not warn about incompatible integer to pointer and pointer to integer
6236 conversions.  This warning is about implicit conversions; for explicit
6237 conversions the warnings @option{-Wno-int-to-pointer-cast} and
6238 @option{-Wno-pointer-to-int-cast} may be used.
6240 @item -Wno-div-by-zero
6241 @opindex Wno-div-by-zero
6242 @opindex Wdiv-by-zero
6243 Do not warn about compile-time integer division by zero.  Floating-point
6244 division by zero is not warned about, as it can be a legitimate way of
6245 obtaining infinities and NaNs.
6247 @item -Wsystem-headers
6248 @opindex Wsystem-headers
6249 @opindex Wno-system-headers
6250 @cindex warnings from system headers
6251 @cindex system headers, warnings from
6252 Print warning messages for constructs found in system header files.
6253 Warnings from system headers are normally suppressed, on the assumption
6254 that they usually do not indicate real problems and would only make the
6255 compiler output harder to read.  Using this command-line option tells
6256 GCC to emit warnings from system headers as if they occurred in user
6257 code.  However, note that using @option{-Wall} in conjunction with this
6258 option does @emph{not} warn about unknown pragmas in system
6259 headers---for that, @option{-Wunknown-pragmas} must also be used.
6261 @item -Wtautological-compare
6262 @opindex Wtautological-compare
6263 @opindex Wno-tautological-compare
6264 Warn if a self-comparison always evaluates to true or false.  This
6265 warning detects various mistakes such as:
6266 @smallexample
6267 int i = 1;
6268 @dots{}
6269 if (i > i) @{ @dots{} @}
6270 @end smallexample
6272 This warning also warns about bitwise comparisons that always evaluate
6273 to true or false, for instance:
6274 @smallexample
6275 if ((a & 16) == 10) @{ @dots{} @}
6276 @end smallexample
6277 will always be false.
6279 This warning is enabled by @option{-Wall}.
6281 @item -Wtrampolines
6282 @opindex Wtrampolines
6283 @opindex Wno-trampolines
6284 Warn about trampolines generated for pointers to nested functions.
6285 A trampoline is a small piece of data or code that is created at run
6286 time on the stack when the address of a nested function is taken, and is
6287 used to call the nested function indirectly.  For some targets, it is
6288 made up of data only and thus requires no special treatment.  But, for
6289 most targets, it is made up of code and thus requires the stack to be
6290 made executable in order for the program to work properly.
6292 @item -Wfloat-equal
6293 @opindex Wfloat-equal
6294 @opindex Wno-float-equal
6295 Warn if floating-point values are used in equality comparisons.
6297 The idea behind this is that sometimes it is convenient (for the
6298 programmer) to consider floating-point values as approximations to
6299 infinitely precise real numbers.  If you are doing this, then you need
6300 to compute (by analyzing the code, or in some other way) the maximum or
6301 likely maximum error that the computation introduces, and allow for it
6302 when performing comparisons (and when producing output, but that's a
6303 different problem).  In particular, instead of testing for equality, you
6304 should check to see whether the two values have ranges that overlap; and
6305 this is done with the relational operators, so equality comparisons are
6306 probably mistaken.
6308 @item -Wtraditional @r{(C and Objective-C only)}
6309 @opindex Wtraditional
6310 @opindex Wno-traditional
6311 Warn about certain constructs that behave differently in traditional and
6312 ISO C@.  Also warn about ISO C constructs that have no traditional C
6313 equivalent, and/or problematic constructs that should be avoided.
6315 @itemize @bullet
6316 @item
6317 Macro parameters that appear within string literals in the macro body.
6318 In traditional C macro replacement takes place within string literals,
6319 but in ISO C it does not.
6321 @item
6322 In traditional C, some preprocessor directives did not exist.
6323 Traditional preprocessors only considered a line to be a directive
6324 if the @samp{#} appeared in column 1 on the line.  Therefore
6325 @option{-Wtraditional} warns about directives that traditional C
6326 understands but ignores because the @samp{#} does not appear as the
6327 first character on the line.  It also suggests you hide directives like
6328 @code{#pragma} not understood by traditional C by indenting them.  Some
6329 traditional implementations do not recognize @code{#elif}, so this option
6330 suggests avoiding it altogether.
6332 @item
6333 A function-like macro that appears without arguments.
6335 @item
6336 The unary plus operator.
6338 @item
6339 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
6340 constant suffixes.  (Traditional C does support the @samp{L} suffix on integer
6341 constants.)  Note, these suffixes appear in macros defined in the system
6342 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
6343 Use of these macros in user code might normally lead to spurious
6344 warnings, however GCC's integrated preprocessor has enough context to
6345 avoid warning in these cases.
6347 @item
6348 A function declared external in one block and then used after the end of
6349 the block.
6351 @item
6352 A @code{switch} statement has an operand of type @code{long}.
6354 @item
6355 A non-@code{static} function declaration follows a @code{static} one.
6356 This construct is not accepted by some traditional C compilers.
6358 @item
6359 The ISO type of an integer constant has a different width or
6360 signedness from its traditional type.  This warning is only issued if
6361 the base of the constant is ten.  I.e.@: hexadecimal or octal values, which
6362 typically represent bit patterns, are not warned about.
6364 @item
6365 Usage of ISO string concatenation is detected.
6367 @item
6368 Initialization of automatic aggregates.
6370 @item
6371 Identifier conflicts with labels.  Traditional C lacks a separate
6372 namespace for labels.
6374 @item
6375 Initialization of unions.  If the initializer is zero, the warning is
6376 omitted.  This is done under the assumption that the zero initializer in
6377 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
6378 initializer warnings and relies on default initialization to zero in the
6379 traditional C case.
6381 @item
6382 Conversions by prototypes between fixed/floating-point values and vice
6383 versa.  The absence of these prototypes when compiling with traditional
6384 C causes serious problems.  This is a subset of the possible
6385 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
6387 @item
6388 Use of ISO C style function definitions.  This warning intentionally is
6389 @emph{not} issued for prototype declarations or variadic functions
6390 because these ISO C features appear in your code when using
6391 libiberty's traditional C compatibility macros, @code{PARAMS} and
6392 @code{VPARAMS}.  This warning is also bypassed for nested functions
6393 because that feature is already a GCC extension and thus not relevant to
6394 traditional C compatibility.
6395 @end itemize
6397 @item -Wtraditional-conversion @r{(C and Objective-C only)}
6398 @opindex Wtraditional-conversion
6399 @opindex Wno-traditional-conversion
6400 Warn if a prototype causes a type conversion that is different from what
6401 would happen to the same argument in the absence of a prototype.  This
6402 includes conversions of fixed point to floating and vice versa, and
6403 conversions changing the width or signedness of a fixed-point argument
6404 except when the same as the default promotion.
6406 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
6407 @opindex Wdeclaration-after-statement
6408 @opindex Wno-declaration-after-statement
6409 Warn when a declaration is found after a statement in a block.  This
6410 construct, known from C++, was introduced with ISO C99 and is by default
6411 allowed in GCC@.  It is not supported by ISO C90.  @xref{Mixed Declarations}.
6413 @item -Wshadow
6414 @opindex Wshadow
6415 @opindex Wno-shadow
6416 Warn whenever a local variable or type declaration shadows another
6417 variable, parameter, type, class member (in C++), or instance variable
6418 (in Objective-C) or whenever a built-in function is shadowed. Note
6419 that in C++, the compiler warns if a local variable shadows an
6420 explicit typedef, but not if it shadows a struct/class/enum.
6421 Same as @option{-Wshadow=global}.
6423 @item -Wno-shadow-ivar @r{(Objective-C only)}
6424 @opindex Wno-shadow-ivar
6425 @opindex Wshadow-ivar
6426 Do not warn whenever a local variable shadows an instance variable in an
6427 Objective-C method.
6429 @item -Wshadow=global
6430 @opindex Wshadow=local
6431 The default for @option{-Wshadow}. Warns for any (global) shadowing.
6433 @item -Wshadow=local
6434 @opindex Wshadow=local
6435 Warn when a local variable shadows another local variable or parameter.
6436 This warning is enabled by @option{-Wshadow=global}.
6438 @item -Wshadow=compatible-local
6439 @opindex Wshadow=compatible-local
6440 Warn when a local variable shadows another local variable or parameter
6441 whose type is compatible with that of the shadowing variable. In C++,
6442 type compatibility here means the type of the shadowing variable can be
6443 converted to that of the shadowed variable. The creation of this flag
6444 (in addition to @option{-Wshadow=local}) is based on the idea that when
6445 a local variable shadows another one of incompatible type, it is most
6446 likely intentional, not a bug or typo, as shown in the following example:
6448 @smallexample
6449 @group
6450 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
6452   for (int i = 0; i < N; ++i)
6453   @{
6454     ...
6455   @}
6456   ...
6458 @end group
6459 @end smallexample
6461 Since the two variable @code{i} in the example above have incompatible types,
6462 enabling only @option{-Wshadow=compatible-local} will not emit a warning.
6463 Because their types are incompatible, if a programmer accidentally uses one
6464 in place of the other, type checking will catch that and emit an error or
6465 warning. So not warning (about shadowing) in this case will not lead to
6466 undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
6467 possibly reduce the number of warnings triggered by intentional shadowing.
6469 This warning is enabled by @option{-Wshadow=local}.
6471 @item -Wlarger-than=@var{byte-size}
6472 @opindex Wlarger-than=
6473 @opindex Wlarger-than-@var{byte-size}
6474 Warn whenever an object is defined whose size exceeds @var{byte-size}.
6475 @option{-Wlarger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6476 Warnings controlled by the option can be disabled either by specifying
6477 @var{byte-size} of @samp{SIZE_MAX} or more or by
6478 @option{-Wno-larger-than}.
6480 @item -Wno-larger-than
6481 @opindex Wno-larger-than
6482 Disable @option{-Wlarger-than=} warnings.  The option is equivalent
6483 to @option{-Wlarger-than=}@samp{SIZE_MAX} or larger.
6485 @item -Wframe-larger-than=@var{byte-size}
6486 @opindex Wframe-larger-than=
6487 @opindex Wno-frame-larger-than
6488 Warn if the size of a function frame exceeds @var{byte-size}.
6489 The computation done to determine the stack frame size is approximate
6490 and not conservative.
6491 The actual requirements may be somewhat greater than @var{byte-size}
6492 even if you do not get a warning.  In addition, any space allocated
6493 via @code{alloca}, variable-length arrays, or related constructs
6494 is not included by the compiler when determining
6495 whether or not to issue a warning.
6496 @option{-Wframe-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6497 Warnings controlled by the option can be disabled either by specifying
6498 @var{byte-size} of @samp{SIZE_MAX} or more or by
6499 @option{-Wno-frame-larger-than}.
6501 @item -Wno-frame-larger-than
6502 @opindex Wno-frame-larger-than
6503 Disable @option{-Wframe-larger-than=} warnings.  The option is equivalent
6504 to @option{-Wframe-larger-than=}@samp{SIZE_MAX} or larger.
6506 @item -Wno-free-nonheap-object
6507 @opindex Wno-free-nonheap-object
6508 @opindex Wfree-nonheap-object
6509 Do not warn when attempting to free an object that was not allocated
6510 on the heap.
6512 @item -Wstack-usage=@var{byte-size}
6513 @opindex Wstack-usage
6514 @opindex Wno-stack-usage
6515 Warn if the stack usage of a function might exceed @var{byte-size}.
6516 The computation done to determine the stack usage is conservative.
6517 Any space allocated via @code{alloca}, variable-length arrays, or related
6518 constructs is included by the compiler when determining whether or not to
6519 issue a warning.
6521 The message is in keeping with the output of @option{-fstack-usage}.
6523 @itemize
6524 @item
6525 If the stack usage is fully static but exceeds the specified amount, it's:
6527 @smallexample
6528   warning: stack usage is 1120 bytes
6529 @end smallexample
6530 @item
6531 If the stack usage is (partly) dynamic but bounded, it's:
6533 @smallexample
6534   warning: stack usage might be 1648 bytes
6535 @end smallexample
6536 @item
6537 If the stack usage is (partly) dynamic and not bounded, it's:
6539 @smallexample
6540   warning: stack usage might be unbounded
6541 @end smallexample
6542 @end itemize
6544 @option{-Wstack-usage=}@samp{PTRDIFF_MAX} is enabled by default.
6545 Warnings controlled by the option can be disabled either by specifying
6546 @var{byte-size} of @samp{SIZE_MAX} or more or by
6547 @option{-Wno-stack-usage}.
6549 @item -Wno-stack-usage
6550 @opindex Wno-stack-usage
6551 Disable @option{-Wstack-usage=} warnings.  The option is equivalent
6552 to @option{-Wstack-usage=}@samp{SIZE_MAX} or larger.
6554 @item -Wunsafe-loop-optimizations
6555 @opindex Wunsafe-loop-optimizations
6556 @opindex Wno-unsafe-loop-optimizations
6557 Warn if the loop cannot be optimized because the compiler cannot
6558 assume anything on the bounds of the loop indices.  With
6559 @option{-funsafe-loop-optimizations} warn if the compiler makes
6560 such assumptions.
6562 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
6563 @opindex Wno-pedantic-ms-format
6564 @opindex Wpedantic-ms-format
6565 When used in combination with @option{-Wformat}
6566 and @option{-pedantic} without GNU extensions, this option
6567 disables the warnings about non-ISO @code{printf} / @code{scanf} format
6568 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
6569 which depend on the MS runtime.
6571 @item -Waligned-new
6572 @opindex Waligned-new
6573 @opindex Wno-aligned-new
6574 Warn about a new-expression of a type that requires greater alignment
6575 than the @code{alignof(std::max_align_t)} but uses an allocation
6576 function without an explicit alignment parameter. This option is
6577 enabled by @option{-Wall}.
6579 Normally this only warns about global allocation functions, but
6580 @option{-Waligned-new=all} also warns about class member allocation
6581 functions.
6583 @item -Wplacement-new
6584 @itemx -Wplacement-new=@var{n}
6585 @opindex Wplacement-new
6586 @opindex Wno-placement-new
6587 Warn about placement new expressions with undefined behavior, such as
6588 constructing an object in a buffer that is smaller than the type of
6589 the object.  For example, the placement new expression below is diagnosed
6590 because it attempts to construct an array of 64 integers in a buffer only
6591 64 bytes large.
6592 @smallexample
6593 char buf [64];
6594 new (buf) int[64];
6595 @end smallexample
6596 This warning is enabled by default.
6598 @table @gcctabopt
6599 @item -Wplacement-new=1
6600 This is the default warning level of @option{-Wplacement-new}.  At this
6601 level the warning is not issued for some strictly undefined constructs that
6602 GCC allows as extensions for compatibility with legacy code.  For example,
6603 the following @code{new} expression is not diagnosed at this level even
6604 though it has undefined behavior according to the C++ standard because
6605 it writes past the end of the one-element array.
6606 @smallexample
6607 struct S @{ int n, a[1]; @};
6608 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
6609 new (s->a)int [32]();
6610 @end smallexample
6612 @item -Wplacement-new=2
6613 At this level, in addition to diagnosing all the same constructs as at level
6614 1, a diagnostic is also issued for placement new expressions that construct
6615 an object in the last member of structure whose type is an array of a single
6616 element and whose size is less than the size of the object being constructed.
6617 While the previous example would be diagnosed, the following construct makes
6618 use of the flexible member array extension to avoid the warning at level 2.
6619 @smallexample
6620 struct S @{ int n, a[]; @};
6621 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
6622 new (s->a)int [32]();
6623 @end smallexample
6625 @end table
6627 @item -Wpointer-arith
6628 @opindex Wpointer-arith
6629 @opindex Wno-pointer-arith
6630 Warn about anything that depends on the ``size of'' a function type or
6631 of @code{void}.  GNU C assigns these types a size of 1, for
6632 convenience in calculations with @code{void *} pointers and pointers
6633 to functions.  In C++, warn also when an arithmetic operation involves
6634 @code{NULL}.  This warning is also enabled by @option{-Wpedantic}.
6636 @item -Wpointer-compare
6637 @opindex Wpointer-compare
6638 @opindex Wno-pointer-compare
6639 Warn if a pointer is compared with a zero character constant.  This usually
6640 means that the pointer was meant to be dereferenced.  For example:
6642 @smallexample
6643 const char *p = foo ();
6644 if (p == '\0')
6645   return 42;
6646 @end smallexample
6648 Note that the code above is invalid in C++11.
6650 This warning is enabled by default.
6652 @item -Wtype-limits
6653 @opindex Wtype-limits
6654 @opindex Wno-type-limits
6655 Warn if a comparison is always true or always false due to the limited
6656 range of the data type, but do not warn for constant expressions.  For
6657 example, warn if an unsigned variable is compared against zero with
6658 @code{<} or @code{>=}.  This warning is also enabled by
6659 @option{-Wextra}.
6661 @item -Wabsolute-value @r{(C and Objective-C only)}
6662 @opindex Wabsolute-value
6663 @opindex Wno-absolute-value
6664 Warn for calls to standard functions that compute the absolute value
6665 of an argument when a more appropriate standard function is available.
6666 For example, calling @code{abs(3.14)} triggers the warning because the
6667 appropriate function to call to compute the absolute value of a double
6668 argument is @code{fabs}.  The option also triggers warnings when the
6669 argument in a call to such a function has an unsigned type.  This
6670 warning can be suppressed with an explicit type cast and it is also
6671 enabled by @option{-Wextra}.
6673 @include cppwarnopts.texi
6675 @item -Wbad-function-cast @r{(C and Objective-C only)}
6676 @opindex Wbad-function-cast
6677 @opindex Wno-bad-function-cast
6678 Warn when a function call is cast to a non-matching type.
6679 For example, warn if a call to a function returning an integer type 
6680 is cast to a pointer type.
6682 @item -Wc90-c99-compat @r{(C and Objective-C only)}
6683 @opindex Wc90-c99-compat
6684 @opindex Wno-c90-c99-compat
6685 Warn about features not present in ISO C90, but present in ISO C99.
6686 For instance, warn about use of variable length arrays, @code{long long}
6687 type, @code{bool} type, compound literals, designated initializers, and so
6688 on.  This option is independent of the standards mode.  Warnings are disabled
6689 in the expression that follows @code{__extension__}.
6691 @item -Wc99-c11-compat @r{(C and Objective-C only)}
6692 @opindex Wc99-c11-compat
6693 @opindex Wno-c99-c11-compat
6694 Warn about features not present in ISO C99, but present in ISO C11.
6695 For instance, warn about use of anonymous structures and unions,
6696 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
6697 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
6698 and so on.  This option is independent of the standards mode.  Warnings are
6699 disabled in the expression that follows @code{__extension__}.
6701 @item -Wc++-compat @r{(C and Objective-C only)}
6702 @opindex Wc++-compat
6703 @opindex Wno-c++-compat
6704 Warn about ISO C constructs that are outside of the common subset of
6705 ISO C and ISO C++, e.g.@: request for implicit conversion from
6706 @code{void *} to a pointer to non-@code{void} type.
6708 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
6709 @opindex Wc++11-compat
6710 @opindex Wno-c++11-compat
6711 Warn about C++ constructs whose meaning differs between ISO C++ 1998
6712 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
6713 in ISO C++ 2011.  This warning turns on @option{-Wnarrowing} and is
6714 enabled by @option{-Wall}.
6716 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
6717 @opindex Wc++14-compat
6718 @opindex Wno-c++14-compat
6719 Warn about C++ constructs whose meaning differs between ISO C++ 2011
6720 and ISO C++ 2014.  This warning is enabled by @option{-Wall}.
6722 @item -Wc++17-compat @r{(C++ and Objective-C++ only)}
6723 @opindex Wc++17-compat
6724 @opindex Wno-c++17-compat
6725 Warn about C++ constructs whose meaning differs between ISO C++ 2014
6726 and ISO C++ 2017.  This warning is enabled by @option{-Wall}.
6728 @item -Wcast-qual
6729 @opindex Wcast-qual
6730 @opindex Wno-cast-qual
6731 Warn whenever a pointer is cast so as to remove a type qualifier from
6732 the target type.  For example, warn if a @code{const char *} is cast
6733 to an ordinary @code{char *}.
6735 Also warn when making a cast that introduces a type qualifier in an
6736 unsafe way.  For example, casting @code{char **} to @code{const char **}
6737 is unsafe, as in this example:
6739 @smallexample
6740   /* p is char ** value.  */
6741   const char **q = (const char **) p;
6742   /* Assignment of readonly string to const char * is OK.  */
6743   *q = "string";
6744   /* Now char** pointer points to read-only memory.  */
6745   **p = 'b';
6746 @end smallexample
6748 @item -Wcast-align
6749 @opindex Wcast-align
6750 @opindex Wno-cast-align
6751 Warn whenever a pointer is cast such that the required alignment of the
6752 target is increased.  For example, warn if a @code{char *} is cast to
6753 an @code{int *} on machines where integers can only be accessed at
6754 two- or four-byte boundaries.
6756 @item -Wcast-align=strict
6757 @opindex Wcast-align=strict
6758 Warn whenever a pointer is cast such that the required alignment of the
6759 target is increased.  For example, warn if a @code{char *} is cast to
6760 an @code{int *} regardless of the target machine.
6762 @item -Wcast-function-type
6763 @opindex Wcast-function-type
6764 @opindex Wno-cast-function-type
6765 Warn when a function pointer is cast to an incompatible function pointer.
6766 In a cast involving function types with a variable argument list only
6767 the types of initial arguments that are provided are considered.
6768 Any parameter of pointer-type matches any other pointer-type.  Any benign
6769 differences in integral types are ignored, like @code{int} vs.@: @code{long}
6770 on ILP32 targets.  Likewise type qualifiers are ignored.  The function
6771 type @code{void (*) (void)} is special and matches everything, which can
6772 be used to suppress this warning.
6773 In a cast involving pointer to member types this warning warns whenever
6774 the type cast is changing the pointer to member type.
6775 This warning is enabled by @option{-Wextra}.
6777 @item -Wwrite-strings
6778 @opindex Wwrite-strings
6779 @opindex Wno-write-strings
6780 When compiling C, give string constants the type @code{const
6781 char[@var{length}]} so that copying the address of one into a
6782 non-@code{const} @code{char *} pointer produces a warning.  These
6783 warnings help you find at compile time code that can try to write
6784 into a string constant, but only if you have been very careful about
6785 using @code{const} in declarations and prototypes.  Otherwise, it is
6786 just a nuisance. This is why we did not make @option{-Wall} request
6787 these warnings.
6789 When compiling C++, warn about the deprecated conversion from string
6790 literals to @code{char *}.  This warning is enabled by default for C++
6791 programs.
6793 @item -Wcatch-value
6794 @itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
6795 @opindex Wcatch-value
6796 @opindex Wno-catch-value
6797 Warn about catch handlers that do not catch via reference.
6798 With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
6799 warn about polymorphic class types that are caught by value.
6800 With @option{-Wcatch-value=2} warn about all class types that are caught
6801 by value. With @option{-Wcatch-value=3} warn about all types that are
6802 not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
6804 @item -Wclobbered
6805 @opindex Wclobbered
6806 @opindex Wno-clobbered
6807 Warn for variables that might be changed by @code{longjmp} or
6808 @code{vfork}.  This warning is also enabled by @option{-Wextra}.
6810 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
6811 @opindex Wconditionally-supported
6812 @opindex Wno-conditionally-supported
6813 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
6815 @item -Wconversion
6816 @opindex Wconversion
6817 @opindex Wno-conversion
6818 Warn for implicit conversions that may alter a value. This includes
6819 conversions between real and integer, like @code{abs (x)} when
6820 @code{x} is @code{double}; conversions between signed and unsigned,
6821 like @code{unsigned ui = -1}; and conversions to smaller types, like
6822 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
6823 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
6824 changed by the conversion like in @code{abs (2.0)}.  Warnings about
6825 conversions between signed and unsigned integers can be disabled by
6826 using @option{-Wno-sign-conversion}.
6828 For C++, also warn for confusing overload resolution for user-defined
6829 conversions; and conversions that never use a type conversion
6830 operator: conversions to @code{void}, the same type, a base class or a
6831 reference to them. Warnings about conversions between signed and
6832 unsigned integers are disabled by default in C++ unless
6833 @option{-Wsign-conversion} is explicitly enabled.
6835 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
6836 @opindex Wconversion-null
6837 @opindex Wno-conversion-null
6838 Do not warn for conversions between @code{NULL} and non-pointer
6839 types. @option{-Wconversion-null} is enabled by default.
6841 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
6842 @opindex Wzero-as-null-pointer-constant
6843 @opindex Wno-zero-as-null-pointer-constant
6844 Warn when a literal @samp{0} is used as null pointer constant.  This can
6845 be useful to facilitate the conversion to @code{nullptr} in C++11.
6847 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
6848 @opindex Wsubobject-linkage
6849 @opindex Wno-subobject-linkage
6850 Warn if a class type has a base or a field whose type uses the anonymous
6851 namespace or depends on a type with no linkage.  If a type A depends on
6852 a type B with no or internal linkage, defining it in multiple
6853 translation units would be an ODR violation because the meaning of B
6854 is different in each translation unit.  If A only appears in a single
6855 translation unit, the best way to silence the warning is to give it
6856 internal linkage by putting it in an anonymous namespace as well.  The
6857 compiler doesn't give this warning for types defined in the main .C
6858 file, as those are unlikely to have multiple definitions.
6859 @option{-Wsubobject-linkage} is enabled by default.
6861 @item -Wdangling-else
6862 @opindex Wdangling-else
6863 @opindex Wno-dangling-else
6864 Warn about constructions where there may be confusion to which
6865 @code{if} statement an @code{else} branch belongs.  Here is an example of
6866 such a case:
6868 @smallexample
6869 @group
6871   if (a)
6872     if (b)
6873       foo ();
6874   else
6875     bar ();
6877 @end group
6878 @end smallexample
6880 In C/C++, every @code{else} branch belongs to the innermost possible
6881 @code{if} statement, which in this example is @code{if (b)}.  This is
6882 often not what the programmer expected, as illustrated in the above
6883 example by indentation the programmer chose.  When there is the
6884 potential for this confusion, GCC issues a warning when this flag
6885 is specified.  To eliminate the warning, add explicit braces around
6886 the innermost @code{if} statement so there is no way the @code{else}
6887 can belong to the enclosing @code{if}.  The resulting code
6888 looks like this:
6890 @smallexample
6891 @group
6893   if (a)
6894     @{
6895       if (b)
6896         foo ();
6897       else
6898         bar ();
6899     @}
6901 @end group
6902 @end smallexample
6904 This warning is enabled by @option{-Wparentheses}.
6906 @item -Wdate-time
6907 @opindex Wdate-time
6908 @opindex Wno-date-time
6909 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6910 are encountered as they might prevent bit-wise-identical reproducible
6911 compilations.
6913 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6914 @opindex Wdelete-incomplete
6915 @opindex Wno-delete-incomplete
6916 Warn when deleting a pointer to incomplete type, which may cause
6917 undefined behavior at runtime.  This warning is enabled by default.
6919 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6920 @opindex Wuseless-cast
6921 @opindex Wno-useless-cast
6922 Warn when an expression is casted to its own type.
6924 @item -Wempty-body
6925 @opindex Wempty-body
6926 @opindex Wno-empty-body
6927 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6928 while} statement.  This warning is also enabled by @option{-Wextra}.
6930 @item -Wenum-compare
6931 @opindex Wenum-compare
6932 @opindex Wno-enum-compare
6933 Warn about a comparison between values of different enumerated types.
6934 In C++ enumerated type mismatches in conditional expressions are also
6935 diagnosed and the warning is enabled by default.  In C this warning is 
6936 enabled by @option{-Wall}.
6938 @item -Wextra-semi @r{(C++, Objective-C++ only)}
6939 @opindex Wextra-semi
6940 @opindex Wno-extra-semi
6941 Warn about redundant semicolon after in-class function definition.
6943 @item -Wjump-misses-init @r{(C, Objective-C only)}
6944 @opindex Wjump-misses-init
6945 @opindex Wno-jump-misses-init
6946 Warn if a @code{goto} statement or a @code{switch} statement jumps
6947 forward across the initialization of a variable, or jumps backward to a
6948 label after the variable has been initialized.  This only warns about
6949 variables that are initialized when they are declared.  This warning is
6950 only supported for C and Objective-C; in C++ this sort of branch is an
6951 error in any case.
6953 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}.  It
6954 can be disabled with the @option{-Wno-jump-misses-init} option.
6956 @item -Wsign-compare
6957 @opindex Wsign-compare
6958 @opindex Wno-sign-compare
6959 @cindex warning for comparison of signed and unsigned values
6960 @cindex comparison of signed and unsigned values, warning
6961 @cindex signed and unsigned values, comparison warning
6962 Warn when a comparison between signed and unsigned values could produce
6963 an incorrect result when the signed value is converted to unsigned.
6964 In C++, this warning is also enabled by @option{-Wall}.  In C, it is
6965 also enabled by @option{-Wextra}.
6967 @item -Wsign-conversion
6968 @opindex Wsign-conversion
6969 @opindex Wno-sign-conversion
6970 Warn for implicit conversions that may change the sign of an integer
6971 value, like assigning a signed integer expression to an unsigned
6972 integer variable. An explicit cast silences the warning. In C, this
6973 option is enabled also by @option{-Wconversion}.
6975 @item -Wfloat-conversion
6976 @opindex Wfloat-conversion
6977 @opindex Wno-float-conversion
6978 Warn for implicit conversions that reduce the precision of a real value.
6979 This includes conversions from real to integer, and from higher precision
6980 real to lower precision real values.  This option is also enabled by
6981 @option{-Wconversion}.
6983 @item -Wno-scalar-storage-order
6984 @opindex Wno-scalar-storage-order
6985 @opindex Wscalar-storage-order
6986 Do not warn on suspicious constructs involving reverse scalar storage order.
6988 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
6989 @opindex Wsized-deallocation
6990 @opindex Wno-sized-deallocation
6991 Warn about a definition of an unsized deallocation function
6992 @smallexample
6993 void operator delete (void *) noexcept;
6994 void operator delete[] (void *) noexcept;
6995 @end smallexample
6996 without a definition of the corresponding sized deallocation function
6997 @smallexample
6998 void operator delete (void *, std::size_t) noexcept;
6999 void operator delete[] (void *, std::size_t) noexcept;
7000 @end smallexample
7001 or vice versa.  Enabled by @option{-Wextra} along with
7002 @option{-fsized-deallocation}.
7004 @item -Wsizeof-pointer-div
7005 @opindex Wsizeof-pointer-div
7006 @opindex Wno-sizeof-pointer-div
7007 Warn for suspicious divisions of two sizeof expressions that divide
7008 the pointer size by the element size, which is the usual way to compute
7009 the array size but won't work out correctly with pointers.  This warning
7010 warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
7011 not an array, but a pointer.  This warning is enabled by @option{-Wall}.
7013 @item -Wsizeof-pointer-memaccess
7014 @opindex Wsizeof-pointer-memaccess
7015 @opindex Wno-sizeof-pointer-memaccess
7016 Warn for suspicious length parameters to certain string and memory built-in
7017 functions if the argument uses @code{sizeof}.  This warning triggers for
7018 example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
7019 an array, but a pointer, and suggests a possible fix, or about
7020 @code{memcpy (&foo, ptr, sizeof (&foo));}.  @option{-Wsizeof-pointer-memaccess}
7021 also warns about calls to bounded string copy functions like @code{strncat}
7022 or @code{strncpy} that specify as the bound a @code{sizeof} expression of
7023 the source array.  For example, in the following function the call to
7024 @code{strncat} specifies the size of the source string as the bound.  That
7025 is almost certainly a mistake and so the call is diagnosed.
7026 @smallexample
7027 void make_file (const char *name)
7029   char path[PATH_MAX];
7030   strncpy (path, name, sizeof path - 1);
7031   strncat (path, ".text", sizeof ".text");
7032   @dots{}
7034 @end smallexample
7036 The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
7038 @item -Wsizeof-array-argument
7039 @opindex Wsizeof-array-argument
7040 @opindex Wno-sizeof-array-argument
7041 Warn when the @code{sizeof} operator is applied to a parameter that is
7042 declared as an array in a function definition.  This warning is enabled by
7043 default for C and C++ programs.
7045 @item -Wmemset-elt-size
7046 @opindex Wmemset-elt-size
7047 @opindex Wno-memset-elt-size
7048 Warn for suspicious calls to the @code{memset} built-in function, if the
7049 first argument references an array, and the third argument is a number
7050 equal to the number of elements, but not equal to the size of the array
7051 in memory.  This indicates that the user has omitted a multiplication by
7052 the element size.  This warning is enabled by @option{-Wall}.
7054 @item -Wmemset-transposed-args
7055 @opindex Wmemset-transposed-args
7056 @opindex Wno-memset-transposed-args
7057 Warn for suspicious calls to the @code{memset} built-in function where
7058 the second argument is not zero and the third argument is zero.  For
7059 example, the call @code{memset (buf, sizeof buf, 0)} is diagnosed because
7060 @code{memset (buf, 0, sizeof buf)} was meant instead.  The diagnostic
7061 is only emitted if the third argument is a literal zero.  Otherwise, if
7062 it is an expression that is folded to zero, or a cast of zero to some
7063 type, it is far less likely that the arguments have been mistakenly
7064 transposed and no warning is emitted.  This warning is enabled
7065 by @option{-Wall}.
7067 @item -Waddress
7068 @opindex Waddress
7069 @opindex Wno-address
7070 Warn about suspicious uses of memory addresses. These include using
7071 the address of a function in a conditional expression, such as
7072 @code{void func(void); if (func)}, and comparisons against the memory
7073 address of a string literal, such as @code{if (x == "abc")}.  Such
7074 uses typically indicate a programmer error: the address of a function
7075 always evaluates to true, so their use in a conditional usually
7076 indicate that the programmer forgot the parentheses in a function
7077 call; and comparisons against string literals result in unspecified
7078 behavior and are not portable in C, so they usually indicate that the
7079 programmer intended to use @code{strcmp}.  This warning is enabled by
7080 @option{-Wall}.
7082 @item -Waddress-of-packed-member
7083 @opindex Waddress-of-packed-member
7084 @opindex Wno-address-of-packed-member
7085 Warn when the address of packed member of struct or union is taken,
7086 which usually results in an unaligned pointer value.  This is
7087 enabled by default.
7089 @item -Wlogical-op
7090 @opindex Wlogical-op
7091 @opindex Wno-logical-op
7092 Warn about suspicious uses of logical operators in expressions.
7093 This includes using logical operators in contexts where a
7094 bit-wise operator is likely to be expected.  Also warns when
7095 the operands of a logical operator are the same:
7096 @smallexample
7097 extern int a;
7098 if (a < 0 && a < 0) @{ @dots{} @}
7099 @end smallexample
7101 @item -Wlogical-not-parentheses
7102 @opindex Wlogical-not-parentheses
7103 @opindex Wno-logical-not-parentheses
7104 Warn about logical not used on the left hand side operand of a comparison.
7105 This option does not warn if the right operand is considered to be a boolean
7106 expression.  Its purpose is to detect suspicious code like the following:
7107 @smallexample
7108 int a;
7109 @dots{}
7110 if (!a > 1) @{ @dots{} @}
7111 @end smallexample
7113 It is possible to suppress the warning by wrapping the LHS into
7114 parentheses:
7115 @smallexample
7116 if ((!a) > 1) @{ @dots{} @}
7117 @end smallexample
7119 This warning is enabled by @option{-Wall}.
7121 @item -Waggregate-return
7122 @opindex Waggregate-return
7123 @opindex Wno-aggregate-return
7124 Warn if any functions that return structures or unions are defined or
7125 called.  (In languages where you can return an array, this also elicits
7126 a warning.)
7128 @item -Wno-aggressive-loop-optimizations
7129 @opindex Wno-aggressive-loop-optimizations
7130 @opindex Waggressive-loop-optimizations
7131 Warn if in a loop with constant number of iterations the compiler detects
7132 undefined behavior in some statement during one or more of the iterations.
7134 @item -Wno-attributes
7135 @opindex Wno-attributes
7136 @opindex Wattributes
7137 Do not warn if an unexpected @code{__attribute__} is used, such as
7138 unrecognized attributes, function attributes applied to variables,
7139 etc.  This does not stop errors for incorrect use of supported
7140 attributes.
7142 @item -Wno-builtin-declaration-mismatch
7143 @opindex Wno-builtin-declaration-mismatch
7144 @opindex Wbuiltin-declaration-mismatch
7145 Warn if a built-in function is declared with an incompatible signature
7146 or as a non-function, or when a built-in function declared with a type
7147 that does not include a prototype is called with arguments whose promoted
7148 types do not match those expected by the function.  When @option{-Wextra}
7149 is specified, also warn when a built-in function that takes arguments is
7150 declared without a prototype.  The @option{-Wno-builtin-declaration-mismatch}
7151 warning is enabled by default.  To avoid the warning include the appropriate
7152 header to bring the prototypes of built-in functions into scope.
7154 For example, the call to @code{memset} below is diagnosed by the warning
7155 because the function expects a value of type @code{size_t} as its argument
7156 but the type of @code{32} is @code{int}.  With @option{-Wextra},
7157 the declaration of the function is diagnosed as well.
7158 @smallexample
7159 extern void* memset ();
7160 void f (void *d)
7162   memset (d, '\0', 32);
7164 @end smallexample
7166 @item -Wno-builtin-macro-redefined
7167 @opindex Wno-builtin-macro-redefined
7168 @opindex Wbuiltin-macro-redefined
7169 Do not warn if certain built-in macros are redefined.  This suppresses
7170 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
7171 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
7173 @item -Wstrict-prototypes @r{(C and Objective-C only)}
7174 @opindex Wstrict-prototypes
7175 @opindex Wno-strict-prototypes
7176 Warn if a function is declared or defined without specifying the
7177 argument types.  (An old-style function definition is permitted without
7178 a warning if preceded by a declaration that specifies the argument
7179 types.)
7181 @item -Wold-style-declaration @r{(C and Objective-C only)}
7182 @opindex Wold-style-declaration
7183 @opindex Wno-old-style-declaration
7184 Warn for obsolescent usages, according to the C Standard, in a
7185 declaration. For example, warn if storage-class specifiers like
7186 @code{static} are not the first things in a declaration.  This warning
7187 is also enabled by @option{-Wextra}.
7189 @item -Wold-style-definition @r{(C and Objective-C only)}
7190 @opindex Wold-style-definition
7191 @opindex Wno-old-style-definition
7192 Warn if an old-style function definition is used.  A warning is given
7193 even if there is a previous prototype.
7195 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
7196 @opindex Wmissing-parameter-type
7197 @opindex Wno-missing-parameter-type
7198 A function parameter is declared without a type specifier in K&R-style
7199 functions:
7201 @smallexample
7202 void foo(bar) @{ @}
7203 @end smallexample
7205 This warning is also enabled by @option{-Wextra}.
7207 @item -Wmissing-prototypes @r{(C and Objective-C only)}
7208 @opindex Wmissing-prototypes
7209 @opindex Wno-missing-prototypes
7210 Warn if a global function is defined without a previous prototype
7211 declaration.  This warning is issued even if the definition itself
7212 provides a prototype.  Use this option to detect global functions
7213 that do not have a matching prototype declaration in a header file.
7214 This option is not valid for C++ because all function declarations
7215 provide prototypes and a non-matching declaration declares an
7216 overload rather than conflict with an earlier declaration.
7217 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
7219 @item -Wmissing-declarations
7220 @opindex Wmissing-declarations
7221 @opindex Wno-missing-declarations
7222 Warn if a global function is defined without a previous declaration.
7223 Do so even if the definition itself provides a prototype.
7224 Use this option to detect global functions that are not declared in
7225 header files.  In C, no warnings are issued for functions with previous
7226 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
7227 missing prototypes.  In C++, no warnings are issued for function templates,
7228 or for inline functions, or for functions in anonymous namespaces.
7230 @item -Wmissing-field-initializers
7231 @opindex Wmissing-field-initializers
7232 @opindex Wno-missing-field-initializers
7233 @opindex W
7234 @opindex Wextra
7235 @opindex Wno-extra
7236 Warn if a structure's initializer has some fields missing.  For
7237 example, the following code causes such a warning, because
7238 @code{x.h} is implicitly zero:
7240 @smallexample
7241 struct s @{ int f, g, h; @};
7242 struct s x = @{ 3, 4 @};
7243 @end smallexample
7245 This option does not warn about designated initializers, so the following
7246 modification does not trigger a warning:
7248 @smallexample
7249 struct s @{ int f, g, h; @};
7250 struct s x = @{ .f = 3, .g = 4 @};
7251 @end smallexample
7253 In C this option does not warn about the universal zero initializer
7254 @samp{@{ 0 @}}:
7256 @smallexample
7257 struct s @{ int f, g, h; @};
7258 struct s x = @{ 0 @};
7259 @end smallexample
7261 Likewise, in C++ this option does not warn about the empty @{ @}
7262 initializer, for example:
7264 @smallexample
7265 struct s @{ int f, g, h; @};
7266 s x = @{ @};
7267 @end smallexample
7269 This warning is included in @option{-Wextra}.  To get other @option{-Wextra}
7270 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
7272 @item -Wno-multichar
7273 @opindex Wno-multichar
7274 @opindex Wmultichar
7275 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
7276 Usually they indicate a typo in the user's code, as they have
7277 implementation-defined values, and should not be used in portable code.
7279 @item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
7280 @opindex Wnormalized=
7281 @opindex Wnormalized
7282 @opindex Wno-normalized
7283 @cindex NFC
7284 @cindex NFKC
7285 @cindex character set, input normalization
7286 In ISO C and ISO C++, two identifiers are different if they are
7287 different sequences of characters.  However, sometimes when characters
7288 outside the basic ASCII character set are used, you can have two
7289 different character sequences that look the same.  To avoid confusion,
7290 the ISO 10646 standard sets out some @dfn{normalization rules} which
7291 when applied ensure that two sequences that look the same are turned into
7292 the same sequence.  GCC can warn you if you are using identifiers that
7293 have not been normalized; this option controls that warning.
7295 There are four levels of warning supported by GCC@.  The default is
7296 @option{-Wnormalized=nfc}, which warns about any identifier that is
7297 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}.  NFC is the
7298 recommended form for most uses.  It is equivalent to
7299 @option{-Wnormalized}.
7301 Unfortunately, there are some characters allowed in identifiers by
7302 ISO C and ISO C++ that, when turned into NFC, are not allowed in 
7303 identifiers.  That is, there's no way to use these symbols in portable
7304 ISO C or C++ and have all your identifiers in NFC@.
7305 @option{-Wnormalized=id} suppresses the warning for these characters.
7306 It is hoped that future versions of the standards involved will correct
7307 this, which is why this option is not the default.
7309 You can switch the warning off for all characters by writing
7310 @option{-Wnormalized=none} or @option{-Wno-normalized}.  You should
7311 only do this if you are using some other normalization scheme (like
7312 ``D''), because otherwise you can easily create bugs that are
7313 literally impossible to see.
7315 Some characters in ISO 10646 have distinct meanings but look identical
7316 in some fonts or display methodologies, especially once formatting has
7317 been applied.  For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
7318 LETTER N'', displays just like a regular @code{n} that has been
7319 placed in a superscript.  ISO 10646 defines the @dfn{NFKC}
7320 normalization scheme to convert all these into a standard form as
7321 well, and GCC warns if your code is not in NFKC if you use
7322 @option{-Wnormalized=nfkc}.  This warning is comparable to warning
7323 about every identifier that contains the letter O because it might be
7324 confused with the digit 0, and so is not the default, but may be
7325 useful as a local coding convention if the programming environment 
7326 cannot be fixed to display these characters distinctly.
7328 @item -Wno-attribute-warning
7329 @opindex Wno-attribute-warning
7330 @opindex Wattribute-warning
7331 Do not warn about usage of functions (@pxref{Function Attributes})
7332 declared with @code{warning} attribute.  By default, this warning is
7333 enabled.  @option{-Wno-attribute-warning} can be used to disable the
7334 warning or @option{-Wno-error=attribute-warning} can be used to
7335 disable the error when compiled with @option{-Werror} flag.
7337 @item -Wno-deprecated
7338 @opindex Wno-deprecated
7339 @opindex Wdeprecated
7340 Do not warn about usage of deprecated features.  @xref{Deprecated Features}.
7342 @item -Wno-deprecated-declarations
7343 @opindex Wno-deprecated-declarations
7344 @opindex Wdeprecated-declarations
7345 Do not warn about uses of functions (@pxref{Function Attributes}),
7346 variables (@pxref{Variable Attributes}), and types (@pxref{Type
7347 Attributes}) marked as deprecated by using the @code{deprecated}
7348 attribute.
7350 @item -Wno-overflow
7351 @opindex Wno-overflow
7352 @opindex Woverflow
7353 Do not warn about compile-time overflow in constant expressions.
7355 @item -Wno-odr
7356 @opindex Wno-odr
7357 @opindex Wodr
7358 Warn about One Definition Rule violations during link-time optimization.
7359 Requires @option{-flto-odr-type-merging} to be enabled.  Enabled by default.
7361 @item -Wopenmp-simd
7362 @opindex Wopenmp-simd
7363 @opindex Wno-openmp-simd
7364 Warn if the vectorizer cost model overrides the OpenMP
7365 simd directive set by user.  The @option{-fsimd-cost-model=unlimited}
7366 option can be used to relax the cost model.
7368 @item -Woverride-init @r{(C and Objective-C only)}
7369 @opindex Woverride-init
7370 @opindex Wno-override-init
7371 @opindex W
7372 @opindex Wextra
7373 @opindex Wno-extra
7374 Warn if an initialized field without side effects is overridden when
7375 using designated initializers (@pxref{Designated Inits, , Designated
7376 Initializers}).
7378 This warning is included in @option{-Wextra}.  To get other
7379 @option{-Wextra} warnings without this one, use @option{-Wextra
7380 -Wno-override-init}.
7382 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
7383 @opindex Woverride-init-side-effects
7384 @opindex Wno-override-init-side-effects
7385 Warn if an initialized field with side effects is overridden when
7386 using designated initializers (@pxref{Designated Inits, , Designated
7387 Initializers}).  This warning is enabled by default.
7389 @item -Wpacked
7390 @opindex Wpacked
7391 @opindex Wno-packed
7392 Warn if a structure is given the packed attribute, but the packed
7393 attribute has no effect on the layout or size of the structure.
7394 Such structures may be mis-aligned for little benefit.  For
7395 instance, in this code, the variable @code{f.x} in @code{struct bar}
7396 is misaligned even though @code{struct bar} does not itself
7397 have the packed attribute:
7399 @smallexample
7400 @group
7401 struct foo @{
7402   int x;
7403   char a, b, c, d;
7404 @} __attribute__((packed));
7405 struct bar @{
7406   char z;
7407   struct foo f;
7409 @end group
7410 @end smallexample
7412 @item -Wpacked-bitfield-compat
7413 @opindex Wpacked-bitfield-compat
7414 @opindex Wno-packed-bitfield-compat
7415 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
7416 on bit-fields of type @code{char}.  This has been fixed in GCC 4.4 but
7417 the change can lead to differences in the structure layout.  GCC
7418 informs you when the offset of such a field has changed in GCC 4.4.
7419 For example there is no longer a 4-bit padding between field @code{a}
7420 and @code{b} in this structure:
7422 @smallexample
7423 struct foo
7425   char a:4;
7426   char b:8;
7427 @} __attribute__ ((packed));
7428 @end smallexample
7430 This warning is enabled by default.  Use
7431 @option{-Wno-packed-bitfield-compat} to disable this warning.
7433 @item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
7434 @opindex Wpacked-not-aligned
7435 @opindex Wno-packed-not-aligned
7436 Warn if a structure field with explicitly specified alignment in a
7437 packed struct or union is misaligned.  For example, a warning will
7438 be issued on @code{struct S}, like, @code{warning: alignment 1 of
7439 'struct S' is less than 8}, in this code:
7441 @smallexample
7442 @group
7443 struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
7444 struct __attribute__ ((packed)) S @{
7445   struct S8 s8;
7447 @end group
7448 @end smallexample
7450 This warning is enabled by @option{-Wall}.
7452 @item -Wpadded
7453 @opindex Wpadded
7454 @opindex Wno-padded
7455 Warn if padding is included in a structure, either to align an element
7456 of the structure or to align the whole structure.  Sometimes when this
7457 happens it is possible to rearrange the fields of the structure to
7458 reduce the padding and so make the structure smaller.
7460 @item -Wredundant-decls
7461 @opindex Wredundant-decls
7462 @opindex Wno-redundant-decls
7463 Warn if anything is declared more than once in the same scope, even in
7464 cases where multiple declaration is valid and changes nothing.
7466 @item -Wno-restrict
7467 @opindex Wrestrict
7468 @opindex Wno-restrict
7469 Warn when an object referenced by a @code{restrict}-qualified parameter
7470 (or, in C++, a @code{__restrict}-qualified parameter) is aliased by another
7471 argument, or when copies between such objects overlap.  For example,
7472 the call to the @code{strcpy} function below attempts to truncate the string
7473 by replacing its initial characters with the last four.  However, because
7474 the call writes the terminating NUL into @code{a[4]}, the copies overlap and
7475 the call is diagnosed.
7477 @smallexample
7478 void foo (void)
7480   char a[] = "abcd1234";
7481   strcpy (a, a + 4);
7482   @dots{}
7484 @end smallexample
7485 The @option{-Wrestrict} option detects some instances of simple overlap
7486 even without optimization but works best at @option{-O2} and above.  It
7487 is included in @option{-Wall}.
7489 @item -Wnested-externs @r{(C and Objective-C only)}
7490 @opindex Wnested-externs
7491 @opindex Wno-nested-externs
7492 Warn if an @code{extern} declaration is encountered within a function.
7494 @item -Wno-inherited-variadic-ctor
7495 @opindex Winherited-variadic-ctor
7496 @opindex Wno-inherited-variadic-ctor
7497 Suppress warnings about use of C++11 inheriting constructors when the
7498 base class inherited from has a C variadic constructor; the warning is
7499 on by default because the ellipsis is not inherited.
7501 @item -Winline
7502 @opindex Winline
7503 @opindex Wno-inline
7504 Warn if a function that is declared as inline cannot be inlined.
7505 Even with this option, the compiler does not warn about failures to
7506 inline functions declared in system headers.
7508 The compiler uses a variety of heuristics to determine whether or not
7509 to inline a function.  For example, the compiler takes into account
7510 the size of the function being inlined and the amount of inlining
7511 that has already been done in the current function.  Therefore,
7512 seemingly insignificant changes in the source program can cause the
7513 warnings produced by @option{-Winline} to appear or disappear.
7515 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
7516 @opindex Wno-invalid-offsetof
7517 @opindex Winvalid-offsetof
7518 Suppress warnings from applying the @code{offsetof} macro to a non-POD
7519 type.  According to the 2014 ISO C++ standard, applying @code{offsetof}
7520 to a non-standard-layout type is undefined.  In existing C++ implementations,
7521 however, @code{offsetof} typically gives meaningful results.
7522 This flag is for users who are aware that they are
7523 writing nonportable code and who have deliberately chosen to ignore the
7524 warning about it.
7526 The restrictions on @code{offsetof} may be relaxed in a future version
7527 of the C++ standard.
7529 @item -Wint-in-bool-context
7530 @opindex Wint-in-bool-context
7531 @opindex Wno-int-in-bool-context
7532 Warn for suspicious use of integer values where boolean values are expected,
7533 such as conditional expressions (?:) using non-boolean integer constants in
7534 boolean context, like @code{if (a <= b ? 2 : 3)}.  Or left shifting of signed
7535 integers in boolean context, like @code{for (a = 0; 1 << a; a++);}.  Likewise
7536 for all kinds of multiplications regardless of the data type.
7537 This warning is enabled by @option{-Wall}.
7539 @item -Wno-int-to-pointer-cast
7540 @opindex Wno-int-to-pointer-cast
7541 @opindex Wint-to-pointer-cast
7542 Suppress warnings from casts to pointer type of an integer of a
7543 different size. In C++, casting to a pointer type of smaller size is
7544 an error. @option{Wint-to-pointer-cast} is enabled by default.
7547 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
7548 @opindex Wno-pointer-to-int-cast
7549 @opindex Wpointer-to-int-cast
7550 Suppress warnings from casts from a pointer to an integer type of a
7551 different size.
7553 @item -Winvalid-pch
7554 @opindex Winvalid-pch
7555 @opindex Wno-invalid-pch
7556 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
7557 the search path but cannot be used.
7559 @item -Wlong-long
7560 @opindex Wlong-long
7561 @opindex Wno-long-long
7562 Warn if @code{long long} type is used.  This is enabled by either
7563 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
7564 modes.  To inhibit the warning messages, use @option{-Wno-long-long}.
7566 @item -Wvariadic-macros
7567 @opindex Wvariadic-macros
7568 @opindex Wno-variadic-macros
7569 Warn if variadic macros are used in ISO C90 mode, or if the GNU
7570 alternate syntax is used in ISO C99 mode.  This is enabled by either
7571 @option{-Wpedantic} or @option{-Wtraditional}.  To inhibit the warning
7572 messages, use @option{-Wno-variadic-macros}.
7574 @item -Wvarargs
7575 @opindex Wvarargs
7576 @opindex Wno-varargs
7577 Warn upon questionable usage of the macros used to handle variable
7578 arguments like @code{va_start}.  This is default.  To inhibit the
7579 warning messages, use @option{-Wno-varargs}.
7581 @item -Wvector-operation-performance
7582 @opindex Wvector-operation-performance
7583 @opindex Wno-vector-operation-performance
7584 Warn if vector operation is not implemented via SIMD capabilities of the
7585 architecture.  Mainly useful for the performance tuning.
7586 Vector operation can be implemented @code{piecewise}, which means that the
7587 scalar operation is performed on every vector element; 
7588 @code{in parallel}, which means that the vector operation is implemented
7589 using scalars of wider type, which normally is more performance efficient;
7590 and @code{as a single scalar}, which means that vector fits into a
7591 scalar type.
7593 @item -Wno-virtual-move-assign
7594 @opindex Wvirtual-move-assign
7595 @opindex Wno-virtual-move-assign
7596 Suppress warnings about inheriting from a virtual base with a
7597 non-trivial C++11 move assignment operator.  This is dangerous because
7598 if the virtual base is reachable along more than one path, it is
7599 moved multiple times, which can mean both objects end up in the
7600 moved-from state.  If the move assignment operator is written to avoid
7601 moving from a moved-from object, this warning can be disabled.
7603 @item -Wvla
7604 @opindex Wvla
7605 @opindex Wno-vla
7606 Warn if a variable-length array is used in the code.
7607 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
7608 the variable-length array.
7610 @item -Wvla-larger-than=@var{byte-size}
7611 @opindex Wvla-larger-than=
7612 @opindex Wno-vla-larger-than
7613 If this option is used, the compiler will warn for declarations of
7614 variable-length arrays whose size is either unbounded, or bounded
7615 by an argument that allows the array size to exceed @var{byte-size}
7616 bytes.  This is similar to how @option{-Walloca-larger-than=}@var{byte-size}
7617 works, but with variable-length arrays.
7619 Note that GCC may optimize small variable-length arrays of a known
7620 value into plain arrays, so this warning may not get triggered for
7621 such arrays.
7623 @option{-Wvla-larger-than=}@samp{PTRDIFF_MAX} is enabled by default but
7624 is typically only effective when @option{-ftree-vrp} is active (default
7625 for @option{-O2} and above).
7627 See also @option{-Walloca-larger-than=@var{byte-size}}.
7629 @item -Wno-vla-larger-than
7630 @opindex Wno-vla-larger-than
7631 Disable @option{-Wvla-larger-than=} warnings.  The option is equivalent
7632 to @option{-Wvla-larger-than=}@samp{SIZE_MAX} or larger.
7634 @item -Wvolatile-register-var
7635 @opindex Wvolatile-register-var
7636 @opindex Wno-volatile-register-var
7637 Warn if a register variable is declared volatile.  The volatile
7638 modifier does not inhibit all optimizations that may eliminate reads
7639 and/or writes to register variables.  This warning is enabled by
7640 @option{-Wall}.
7642 @item -Wdisabled-optimization
7643 @opindex Wdisabled-optimization
7644 @opindex Wno-disabled-optimization
7645 Warn if a requested optimization pass is disabled.  This warning does
7646 not generally indicate that there is anything wrong with your code; it
7647 merely indicates that GCC's optimizers are unable to handle the code
7648 effectively.  Often, the problem is that your code is too big or too
7649 complex; GCC refuses to optimize programs when the optimization
7650 itself is likely to take inordinate amounts of time.
7652 @item -Wpointer-sign @r{(C and Objective-C only)}
7653 @opindex Wpointer-sign
7654 @opindex Wno-pointer-sign
7655 Warn for pointer argument passing or assignment with different signedness.
7656 This option is only supported for C and Objective-C@.  It is implied by
7657 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
7658 @option{-Wno-pointer-sign}.
7660 @item -Wstack-protector
7661 @opindex Wstack-protector
7662 @opindex Wno-stack-protector
7663 This option is only active when @option{-fstack-protector} is active.  It
7664 warns about functions that are not protected against stack smashing.
7666 @item -Woverlength-strings
7667 @opindex Woverlength-strings
7668 @opindex Wno-overlength-strings
7669 Warn about string constants that are longer than the ``minimum
7670 maximum'' length specified in the C standard.  Modern compilers
7671 generally allow string constants that are much longer than the
7672 standard's minimum limit, but very portable programs should avoid
7673 using longer strings.
7675 The limit applies @emph{after} string constant concatenation, and does
7676 not count the trailing NUL@.  In C90, the limit was 509 characters; in
7677 C99, it was raised to 4095.  C++98 does not specify a normative
7678 minimum maximum, so we do not diagnose overlength strings in C++@.
7680 This option is implied by @option{-Wpedantic}, and can be disabled with
7681 @option{-Wno-overlength-strings}.
7683 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
7684 @opindex Wunsuffixed-float-constants
7685 @opindex Wno-unsuffixed-float-constants
7687 Issue a warning for any floating constant that does not have
7688 a suffix.  When used together with @option{-Wsystem-headers} it
7689 warns about such constants in system header files.  This can be useful
7690 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
7691 from the decimal floating-point extension to C99.
7693 @item -Wno-designated-init @r{(C and Objective-C only)}
7694 Suppress warnings when a positional initializer is used to initialize
7695 a structure that has been marked with the @code{designated_init}
7696 attribute.
7698 @item -Whsa
7699 Issue a warning when HSAIL cannot be emitted for the compiled function or
7700 OpenMP construct.
7702 @end table
7704 @node Debugging Options
7705 @section Options for Debugging Your Program
7706 @cindex options, debugging
7707 @cindex debugging information options
7709 To tell GCC to emit extra information for use by a debugger, in almost 
7710 all cases you need only to add @option{-g} to your other options.
7712 GCC allows you to use @option{-g} with
7713 @option{-O}.  The shortcuts taken by optimized code may occasionally
7714 be surprising: some variables you declared may not exist
7715 at all; flow of control may briefly move where you did not expect it;
7716 some statements may not be executed because they compute constant
7717 results or their values are already at hand; some statements may
7718 execute in different places because they have been moved out of loops.
7719 Nevertheless it is possible to debug optimized output.  This makes
7720 it reasonable to use the optimizer for programs that might have bugs.
7722 If you are not using some other optimization option, consider
7723 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.  
7724 With no @option{-O} option at all, some compiler passes that collect
7725 information useful for debugging do not run at all, so that
7726 @option{-Og} may result in a better debugging experience.
7728 @table @gcctabopt
7729 @item -g
7730 @opindex g
7731 Produce debugging information in the operating system's native format
7732 (stabs, COFF, XCOFF, or DWARF)@.  GDB can work with this debugging
7733 information.
7735 On most systems that use stabs format, @option{-g} enables use of extra
7736 debugging information that only GDB can use; this extra information
7737 makes debugging work better in GDB but probably makes other debuggers
7738 crash or
7739 refuse to read the program.  If you want to control for certain whether
7740 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
7741 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
7743 @item -ggdb
7744 @opindex ggdb
7745 Produce debugging information for use by GDB@.  This means to use the
7746 most expressive format available (DWARF, stabs, or the native format
7747 if neither of those are supported), including GDB extensions if at all
7748 possible.
7750 @item -gdwarf
7751 @itemx -gdwarf-@var{version}
7752 @opindex gdwarf
7753 Produce debugging information in DWARF format (if that is supported).
7754 The value of @var{version} may be either 2, 3, 4 or 5; the default version
7755 for most targets is 4.  DWARF Version 5 is only experimental.
7757 Note that with DWARF Version 2, some ports require and always
7758 use some non-conflicting DWARF 3 extensions in the unwind tables.
7760 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
7761 for maximum benefit.
7763 GCC no longer supports DWARF Version 1, which is substantially
7764 different than Version 2 and later.  For historical reasons, some
7765 other DWARF-related options such as
7766 @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
7767 in their names, but apply to all currently-supported versions of DWARF.
7769 @item -gstabs
7770 @opindex gstabs
7771 Produce debugging information in stabs format (if that is supported),
7772 without GDB extensions.  This is the format used by DBX on most BSD
7773 systems.  On MIPS, Alpha and System V Release 4 systems this option
7774 produces stabs debugging output that is not understood by DBX@.
7775 On System V Release 4 systems this option requires the GNU assembler.
7777 @item -gstabs+
7778 @opindex gstabs+
7779 Produce debugging information in stabs format (if that is supported),
7780 using GNU extensions understood only by the GNU debugger (GDB)@.  The
7781 use of these extensions is likely to make other debuggers crash or
7782 refuse to read the program.
7784 @item -gxcoff
7785 @opindex gxcoff
7786 Produce debugging information in XCOFF format (if that is supported).
7787 This is the format used by the DBX debugger on IBM RS/6000 systems.
7789 @item -gxcoff+
7790 @opindex gxcoff+
7791 Produce debugging information in XCOFF format (if that is supported),
7792 using GNU extensions understood only by the GNU debugger (GDB)@.  The
7793 use of these extensions is likely to make other debuggers crash or
7794 refuse to read the program, and may cause assemblers other than the GNU
7795 assembler (GAS) to fail with an error.
7797 @item -gvms
7798 @opindex gvms
7799 Produce debugging information in Alpha/VMS debug format (if that is
7800 supported).  This is the format used by DEBUG on Alpha/VMS systems.
7802 @item -g@var{level}
7803 @itemx -ggdb@var{level}
7804 @itemx -gstabs@var{level}
7805 @itemx -gxcoff@var{level}
7806 @itemx -gvms@var{level}
7807 Request debugging information and also use @var{level} to specify how
7808 much information.  The default level is 2.
7810 Level 0 produces no debug information at all.  Thus, @option{-g0} negates
7811 @option{-g}.
7813 Level 1 produces minimal information, enough for making backtraces in
7814 parts of the program that you don't plan to debug.  This includes
7815 descriptions of functions and external variables, and line number
7816 tables, but no information about local variables.
7818 Level 3 includes extra information, such as all the macro definitions
7819 present in the program.  Some debuggers support macro expansion when
7820 you use @option{-g3}.
7822 If you use multiple @option{-g} options, with or without level numbers,
7823 the last such option is the one that is effective.
7825 @option{-gdwarf} does not accept a concatenated debug level, to avoid
7826 confusion with @option{-gdwarf-@var{level}}.
7827 Instead use an additional @option{-g@var{level}} option to change the
7828 debug level for DWARF.
7830 @item -feliminate-unused-debug-symbols
7831 @opindex feliminate-unused-debug-symbols
7832 Produce debugging information in stabs format (if that is supported),
7833 for only symbols that are actually used.
7835 @item -femit-class-debug-always
7836 @opindex femit-class-debug-always
7837 Instead of emitting debugging information for a C++ class in only one
7838 object file, emit it in all object files using the class.  This option
7839 should be used only with debuggers that are unable to handle the way GCC
7840 normally emits debugging information for classes because using this
7841 option increases the size of debugging information by as much as a
7842 factor of two.
7844 @item -fno-merge-debug-strings
7845 @opindex fmerge-debug-strings
7846 @opindex fno-merge-debug-strings
7847 Direct the linker to not merge together strings in the debugging
7848 information that are identical in different object files.  Merging is
7849 not supported by all assemblers or linkers.  Merging decreases the size
7850 of the debug information in the output file at the cost of increasing
7851 link processing time.  Merging is enabled by default.
7853 @item -fdebug-prefix-map=@var{old}=@var{new}
7854 @opindex fdebug-prefix-map
7855 When compiling files residing in directory @file{@var{old}}, record
7856 debugging information describing them as if the files resided in
7857 directory @file{@var{new}} instead.  This can be used to replace a
7858 build-time path with an install-time path in the debug info.  It can
7859 also be used to change an absolute path to a relative path by using
7860 @file{.} for @var{new}.  This can give more reproducible builds, which
7861 are location independent, but may require an extra command to tell GDB
7862 where to find the source files. See also @option{-ffile-prefix-map}.
7864 @item -fvar-tracking
7865 @opindex fvar-tracking
7866 Run variable tracking pass.  It computes where variables are stored at each
7867 position in code.  Better debugging information is then generated
7868 (if the debugging information format supports this information).
7870 It is enabled by default when compiling with optimization (@option{-Os},
7871 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7872 the debug info format supports it.
7874 @item -fvar-tracking-assignments
7875 @opindex fvar-tracking-assignments
7876 @opindex fno-var-tracking-assignments
7877 Annotate assignments to user variables early in the compilation and
7878 attempt to carry the annotations over throughout the compilation all the
7879 way to the end, in an attempt to improve debug information while
7880 optimizing.  Use of @option{-gdwarf-4} is recommended along with it.
7882 It can be enabled even if var-tracking is disabled, in which case
7883 annotations are created and maintained, but discarded at the end.
7884 By default, this flag is enabled together with @option{-fvar-tracking},
7885 except when selective scheduling is enabled.
7887 @item -gsplit-dwarf
7888 @opindex gsplit-dwarf
7889 Separate as much DWARF debugging information as possible into a
7890 separate output file with the extension @file{.dwo}.  This option allows
7891 the build system to avoid linking files with debug information.  To
7892 be useful, this option requires a debugger capable of reading @file{.dwo}
7893 files.
7895 @item -gdescribe-dies
7896 @opindex gdescribe-dies
7897 Add description attributes to some DWARF DIEs that have no name attribute,
7898 such as artificial variables, external references and call site
7899 parameter DIEs.
7901 @item -gpubnames
7902 @opindex gpubnames
7903 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
7905 @item -ggnu-pubnames
7906 @opindex ggnu-pubnames
7907 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
7908 suitable for conversion into a GDB@ index.  This option is only useful
7909 with a linker that can produce GDB@ index version 7.
7911 @item -fdebug-types-section
7912 @opindex fdebug-types-section
7913 @opindex fno-debug-types-section
7914 When using DWARF Version 4 or higher, type DIEs can be put into
7915 their own @code{.debug_types} section instead of making them part of the
7916 @code{.debug_info} section.  It is more efficient to put them in a separate
7917 comdat section since the linker can then remove duplicates.
7918 But not all DWARF consumers support @code{.debug_types} sections yet
7919 and on some objects @code{.debug_types} produces larger instead of smaller
7920 debugging information.
7922 @item -grecord-gcc-switches
7923 @itemx -gno-record-gcc-switches
7924 @opindex grecord-gcc-switches
7925 @opindex gno-record-gcc-switches
7926 This switch causes the command-line options used to invoke the
7927 compiler that may affect code generation to be appended to the
7928 DW_AT_producer attribute in DWARF debugging information.  The options
7929 are concatenated with spaces separating them from each other and from
7930 the compiler version.  
7931 It is enabled by default.
7932 See also @option{-frecord-gcc-switches} for another
7933 way of storing compiler options into the object file.  
7935 @item -gstrict-dwarf
7936 @opindex gstrict-dwarf
7937 Disallow using extensions of later DWARF standard version than selected
7938 with @option{-gdwarf-@var{version}}.  On most targets using non-conflicting
7939 DWARF extensions from later standard versions is allowed.
7941 @item -gno-strict-dwarf
7942 @opindex gno-strict-dwarf
7943 Allow using extensions of later DWARF standard version than selected with
7944 @option{-gdwarf-@var{version}}.
7946 @item -gas-loc-support
7947 @opindex gas-loc-support
7948 Inform the compiler that the assembler supports @code{.loc} directives.
7949 It may then use them for the assembler to generate DWARF2+ line number
7950 tables.
7952 This is generally desirable, because assembler-generated line-number
7953 tables are a lot more compact than those the compiler can generate
7954 itself.
7956 This option will be enabled by default if, at GCC configure time, the
7957 assembler was found to support such directives.
7959 @item -gno-as-loc-support
7960 @opindex gno-as-loc-support
7961 Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
7962 line number tables are to be generated.
7964 @item -gas-locview-support
7965 @opindex gas-locview-support
7966 Inform the compiler that the assembler supports @code{view} assignment
7967 and reset assertion checking in @code{.loc} directives.
7969 This option will be enabled by default if, at GCC configure time, the
7970 assembler was found to support them.
7972 @item -gno-as-locview-support
7973 Force GCC to assign view numbers internally, if
7974 @option{-gvariable-location-views} are explicitly requested.
7976 @item -gcolumn-info
7977 @itemx -gno-column-info
7978 @opindex gcolumn-info
7979 @opindex gno-column-info
7980 Emit location column information into DWARF debugging information, rather
7981 than just file and line.
7982 This option is enabled by default.
7984 @item -gstatement-frontiers
7985 @itemx -gno-statement-frontiers
7986 @opindex gstatement-frontiers
7987 @opindex gno-statement-frontiers
7988 This option causes GCC to create markers in the internal representation
7989 at the beginning of statements, and to keep them roughly in place
7990 throughout compilation, using them to guide the output of @code{is_stmt}
7991 markers in the line number table.  This is enabled by default when
7992 compiling with optimization (@option{-Os}, @option{-O}, @option{-O2},
7993 @dots{}), and outputting DWARF 2 debug information at the normal level.
7995 @item -gvariable-location-views
7996 @itemx -gvariable-location-views=incompat5
7997 @itemx -gno-variable-location-views
7998 @opindex gvariable-location-views
7999 @opindex gvariable-location-views=incompat5
8000 @opindex gno-variable-location-views
8001 Augment variable location lists with progressive view numbers implied
8002 from the line number table.  This enables debug information consumers to
8003 inspect state at certain points of the program, even if no instructions
8004 associated with the corresponding source locations are present at that
8005 point.  If the assembler lacks support for view numbers in line number
8006 tables, this will cause the compiler to emit the line number table,
8007 which generally makes them somewhat less compact.  The augmented line
8008 number tables and location lists are fully backward-compatible, so they
8009 can be consumed by debug information consumers that are not aware of
8010 these augmentations, but they won't derive any benefit from them either.
8012 This is enabled by default when outputting DWARF 2 debug information at
8013 the normal level, as long as there is assembler support,
8014 @option{-fvar-tracking-assignments} is enabled and
8015 @option{-gstrict-dwarf} is not.  When assembler support is not
8016 available, this may still be enabled, but it will force GCC to output
8017 internal line number tables, and if
8018 @option{-ginternal-reset-location-views} is not enabled, that will most
8019 certainly lead to silently mismatching location views.
8021 There is a proposed representation for view numbers that is not backward
8022 compatible with the location list format introduced in DWARF 5, that can
8023 be enabled with @option{-gvariable-location-views=incompat5}.  This
8024 option may be removed in the future, is only provided as a reference
8025 implementation of the proposed representation.  Debug information
8026 consumers are not expected to support this extended format, and they
8027 would be rendered unable to decode location lists using it.
8029 @item -ginternal-reset-location-views
8030 @itemx -gnointernal-reset-location-views
8031 @opindex ginternal-reset-location-views
8032 @opindex gno-internal-reset-location-views
8033 Attempt to determine location views that can be omitted from location
8034 view lists.  This requires the compiler to have very accurate insn
8035 length estimates, which isn't always the case, and it may cause
8036 incorrect view lists to be generated silently when using an assembler
8037 that does not support location view lists.  The GNU assembler will flag
8038 any such error as a @code{view number mismatch}.  This is only enabled
8039 on ports that define a reliable estimation function.
8041 @item -ginline-points
8042 @itemx -gno-inline-points
8043 @opindex ginline-points
8044 @opindex gno-inline-points
8045 Generate extended debug information for inlined functions.  Location
8046 view tracking markers are inserted at inlined entry points, so that
8047 address and view numbers can be computed and output in debug
8048 information.  This can be enabled independently of location views, in
8049 which case the view numbers won't be output, but it can only be enabled
8050 along with statement frontiers, and it is only enabled by default if
8051 location views are enabled.
8053 @item -gz@r{[}=@var{type}@r{]}
8054 @opindex gz
8055 Produce compressed debug sections in DWARF format, if that is supported.
8056 If @var{type} is not given, the default type depends on the capabilities
8057 of the assembler and linker used.  @var{type} may be one of
8058 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
8059 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
8060 compression in traditional GNU format).  If the linker doesn't support
8061 writing compressed debug sections, the option is rejected.  Otherwise,
8062 if the assembler does not support them, @option{-gz} is silently ignored
8063 when producing object files.
8065 @item -femit-struct-debug-baseonly
8066 @opindex femit-struct-debug-baseonly
8067 Emit debug information for struct-like types
8068 only when the base name of the compilation source file
8069 matches the base name of file in which the struct is defined.
8071 This option substantially reduces the size of debugging information,
8072 but at significant potential loss in type information to the debugger.
8073 See @option{-femit-struct-debug-reduced} for a less aggressive option.
8074 See @option{-femit-struct-debug-detailed} for more detailed control.
8076 This option works only with DWARF debug output.
8078 @item -femit-struct-debug-reduced
8079 @opindex femit-struct-debug-reduced
8080 Emit debug information for struct-like types
8081 only when the base name of the compilation source file
8082 matches the base name of file in which the type is defined,
8083 unless the struct is a template or defined in a system header.
8085 This option significantly reduces the size of debugging information,
8086 with some potential loss in type information to the debugger.
8087 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
8088 See @option{-femit-struct-debug-detailed} for more detailed control.
8090 This option works only with DWARF debug output.
8092 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
8093 @opindex femit-struct-debug-detailed
8094 Specify the struct-like types
8095 for which the compiler generates debug information.
8096 The intent is to reduce duplicate struct debug information
8097 between different object files within the same program.
8099 This option is a detailed version of
8100 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
8101 which serves for most needs.
8103 A specification has the syntax@*
8104 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
8106 The optional first word limits the specification to
8107 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
8108 A struct type is used directly when it is the type of a variable, member.
8109 Indirect uses arise through pointers to structs.
8110 That is, when use of an incomplete struct is valid, the use is indirect.
8111 An example is
8112 @samp{struct one direct; struct two * indirect;}.
8114 The optional second word limits the specification to
8115 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
8116 Generic structs are a bit complicated to explain.
8117 For C++, these are non-explicit specializations of template classes,
8118 or non-template classes within the above.
8119 Other programming languages have generics,
8120 but @option{-femit-struct-debug-detailed} does not yet implement them.
8122 The third word specifies the source files for those
8123 structs for which the compiler should emit debug information.
8124 The values @samp{none} and @samp{any} have the normal meaning.
8125 The value @samp{base} means that
8126 the base of name of the file in which the type declaration appears
8127 must match the base of the name of the main compilation file.
8128 In practice, this means that when compiling @file{foo.c}, debug information
8129 is generated for types declared in that file and @file{foo.h},
8130 but not other header files.
8131 The value @samp{sys} means those types satisfying @samp{base}
8132 or declared in system or compiler headers.
8134 You may need to experiment to determine the best settings for your application.
8136 The default is @option{-femit-struct-debug-detailed=all}.
8138 This option works only with DWARF debug output.
8140 @item -fno-dwarf2-cfi-asm
8141 @opindex fdwarf2-cfi-asm
8142 @opindex fno-dwarf2-cfi-asm
8143 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
8144 instead of using GAS @code{.cfi_*} directives.
8146 @item -fno-eliminate-unused-debug-types
8147 @opindex feliminate-unused-debug-types
8148 @opindex fno-eliminate-unused-debug-types
8149 Normally, when producing DWARF output, GCC avoids producing debug symbol 
8150 output for types that are nowhere used in the source file being compiled.
8151 Sometimes it is useful to have GCC emit debugging
8152 information for all types declared in a compilation
8153 unit, regardless of whether or not they are actually used
8154 in that compilation unit, for example 
8155 if, in the debugger, you want to cast a value to a type that is
8156 not actually used in your program (but is declared).  More often,
8157 however, this results in a significant amount of wasted space.
8158 @end table
8160 @node Optimize Options
8161 @section Options That Control Optimization
8162 @cindex optimize options
8163 @cindex options, optimization
8165 These options control various sorts of optimizations.
8167 Without any optimization option, the compiler's goal is to reduce the
8168 cost of compilation and to make debugging produce the expected
8169 results.  Statements are independent: if you stop the program with a
8170 breakpoint between statements, you can then assign a new value to any
8171 variable or change the program counter to any other statement in the
8172 function and get exactly the results you expect from the source
8173 code.
8175 Turning on optimization flags makes the compiler attempt to improve
8176 the performance and/or code size at the expense of compilation time
8177 and possibly the ability to debug the program.
8179 The compiler performs optimization based on the knowledge it has of the
8180 program.  Compiling multiple files at once to a single output file mode allows
8181 the compiler to use information gained from all of the files when compiling
8182 each of them.
8184 Not all optimizations are controlled directly by a flag.  Only
8185 optimizations that have a flag are listed in this section.
8187 Most optimizations are completely disabled at @option{-O0} or if an
8188 @option{-O} level is not set on the command line, even if individual
8189 optimization flags are specified.  Similarly, @option{-Og} suppresses
8190 many optimization passes.
8192 Depending on the target and how GCC was configured, a slightly different
8193 set of optimizations may be enabled at each @option{-O} level than
8194 those listed here.  You can invoke GCC with @option{-Q --help=optimizers}
8195 to find out the exact set of optimizations that are enabled at each level.
8196 @xref{Overall Options}, for examples.
8198 @table @gcctabopt
8199 @item -O
8200 @itemx -O1
8201 @opindex O
8202 @opindex O1
8203 Optimize.  Optimizing compilation takes somewhat more time, and a lot
8204 more memory for a large function.
8206 With @option{-O}, the compiler tries to reduce code size and execution
8207 time, without performing any optimizations that take a great deal of
8208 compilation time.
8210 @c Note that in addition to the default_options_table list in opts.c,
8211 @c several optimization flags default to true but control optimization
8212 @c passes that are explicitly disabled at -O0.
8214 @option{-O} turns on the following optimization flags:
8216 @c Please keep the following list alphabetized.
8217 @gccoptlist{-fauto-inc-dec @gol
8218 -fbranch-count-reg @gol
8219 -fcombine-stack-adjustments @gol
8220 -fcompare-elim @gol
8221 -fcprop-registers @gol
8222 -fdce @gol
8223 -fdefer-pop @gol
8224 -fdelayed-branch @gol
8225 -fdse @gol
8226 -fforward-propagate @gol
8227 -fguess-branch-probability @gol
8228 -fif-conversion @gol
8229 -fif-conversion2 @gol
8230 -finline-functions-called-once @gol
8231 -fipa-profile @gol
8232 -fipa-pure-const @gol
8233 -fipa-reference @gol
8234 -fipa-reference-addressable @gol
8235 -fmerge-constants @gol
8236 -fmove-loop-invariants @gol
8237 -fomit-frame-pointer @gol
8238 -freorder-blocks @gol
8239 -fshrink-wrap @gol
8240 -fshrink-wrap-separate @gol
8241 -fsplit-wide-types @gol
8242 -fssa-backprop @gol
8243 -fssa-phiopt @gol
8244 -ftree-bit-ccp @gol
8245 -ftree-ccp @gol
8246 -ftree-ch @gol
8247 -ftree-coalesce-vars @gol
8248 -ftree-copy-prop @gol
8249 -ftree-dce @gol
8250 -ftree-dominator-opts @gol
8251 -ftree-dse @gol
8252 -ftree-forwprop @gol
8253 -ftree-fre @gol
8254 -ftree-phiprop @gol
8255 -ftree-pta @gol
8256 -ftree-scev-cprop @gol
8257 -ftree-sink @gol
8258 -ftree-slsr @gol
8259 -ftree-sra @gol
8260 -ftree-ter @gol
8261 -funit-at-a-time}
8263 @item -O2
8264 @opindex O2
8265 Optimize even more.  GCC performs nearly all supported optimizations
8266 that do not involve a space-speed tradeoff.
8267 As compared to @option{-O}, this option increases both compilation time
8268 and the performance of the generated code.
8270 @option{-O2} turns on all optimization flags specified by @option{-O}.  It
8271 also turns on the following optimization flags:
8273 @c Please keep the following list alphabetized!
8274 @gccoptlist{-falign-functions  -falign-jumps @gol
8275 -falign-labels  -falign-loops @gol
8276 -fcaller-saves @gol
8277 -fcode-hoisting @gol
8278 -fcrossjumping @gol
8279 -fcse-follow-jumps  -fcse-skip-blocks @gol
8280 -fdelete-null-pointer-checks @gol
8281 -fdevirtualize  -fdevirtualize-speculatively @gol
8282 -fexpensive-optimizations @gol
8283 -fgcse  -fgcse-lm  @gol
8284 -fhoist-adjacent-loads @gol
8285 -finline-small-functions @gol
8286 -findirect-inlining @gol
8287 -fipa-bit-cp  -fipa-cp  -fipa-icf @gol
8288 -fipa-ra  -fipa-sra  -fipa-vrp @gol
8289 -fisolate-erroneous-paths-dereference @gol
8290 -flra-remat @gol
8291 -foptimize-sibling-calls @gol
8292 -foptimize-strlen @gol
8293 -fpartial-inlining @gol
8294 -fpeephole2 @gol
8295 -freorder-blocks-algorithm=stc @gol
8296 -freorder-blocks-and-partition  -freorder-functions @gol
8297 -frerun-cse-after-loop  @gol
8298 -fschedule-insns  -fschedule-insns2 @gol
8299 -fsched-interblock  -fsched-spec @gol
8300 -fstore-merging @gol
8301 -fstrict-aliasing @gol
8302 -fthread-jumps @gol
8303 -ftree-builtin-call-dce @gol
8304 -ftree-pre @gol
8305 -ftree-switch-conversion  -ftree-tail-merge @gol
8306 -ftree-vrp}
8308 Please note the warning under @option{-fgcse} about
8309 invoking @option{-O2} on programs that use computed gotos.
8311 @item -O3
8312 @opindex O3
8313 Optimize yet more.  @option{-O3} turns on all optimizations specified
8314 by @option{-O2} and also turns on the following optimization flags:
8316 @c Please keep the following list alphabetized!
8317 @gccoptlist{-fgcse-after-reload @gol
8318 -finline-functions @gol
8319 -fipa-cp-clone
8320 -floop-interchange @gol
8321 -floop-unroll-and-jam @gol
8322 -fpeel-loops @gol
8323 -fpredictive-commoning @gol
8324 -fsplit-paths @gol
8325 -ftree-loop-distribute-patterns @gol
8326 -ftree-loop-distribution @gol
8327 -ftree-loop-vectorize @gol
8328 -ftree-partial-pre @gol
8329 -ftree-slp-vectorize @gol
8330 -funswitch-loops @gol
8331 -fvect-cost-model @gol
8332 -fversion-loops-for-strides}
8334 @item -O0
8335 @opindex O0
8336 Reduce compilation time and make debugging produce the expected
8337 results.  This is the default.
8339 @item -Os
8340 @opindex Os
8341 Optimize for size.  @option{-Os} enables all @option{-O2} optimizations 
8342 except those that often increase code size:
8344 @gccoptlist{-falign-functions  -falign-jumps @gol
8345 -falign-labels  -falign-loops @gol
8346 -fprefetch-loop-arrays  -freorder-blocks-algorithm=stc}
8348 It also enables @option{-finline-functions}, causes the compiler to tune for
8349 code size rather than execution speed, and performs further optimizations
8350 designed to reduce code size.
8352 @item -Ofast
8353 @opindex Ofast
8354 Disregard strict standards compliance.  @option{-Ofast} enables all
8355 @option{-O3} optimizations.  It also enables optimizations that are not
8356 valid for all standard-compliant programs.
8357 It turns on @option{-ffast-math} and the Fortran-specific
8358 @option{-fstack-arrays}, unless @option{-fmax-stack-var-size} is
8359 specified, and @option{-fno-protect-parens}.
8361 @item -Og
8362 @opindex Og
8363 Optimize debugging experience.  @option{-Og} should be the optimization
8364 level of choice for the standard edit-compile-debug cycle, offering
8365 a reasonable level of optimization while maintaining fast compilation
8366 and a good debugging experience.  It is a better choice than @option{-O0}
8367 for producing debuggable code because some compiler passes
8368 that collect debug information are disabled at @option{-O0}.
8370 Like @option{-O0}, @option{-Og} completely disables a number of 
8371 optimization passes so that individual options controlling them have
8372 no effect.  Otherwise @option{-Og} enables all @option{-O1} 
8373 optimization flags except for those that may interfere with debugging:
8375 @gccoptlist{-fbranch-count-reg  -fdelayed-branch @gol
8376 -fif-conversion  -fif-conversion2  @gol
8377 -finline-functions-called-once @gol
8378 -fmove-loop-invariants  -fssa-phiopt @gol
8379 -ftree-bit-ccp  -ftree-pta  -ftree-sra}
8381 @end table
8383 If you use multiple @option{-O} options, with or without level numbers,
8384 the last such option is the one that is effective.
8386 Options of the form @option{-f@var{flag}} specify machine-independent
8387 flags.  Most flags have both positive and negative forms; the negative
8388 form of @option{-ffoo} is @option{-fno-foo}.  In the table
8389 below, only one of the forms is listed---the one you typically 
8390 use.  You can figure out the other form by either removing @samp{no-}
8391 or adding it.
8393 The following options control specific optimizations.  They are either
8394 activated by @option{-O} options or are related to ones that are.  You
8395 can use the following flags in the rare cases when ``fine-tuning'' of
8396 optimizations to be performed is desired.
8398 @table @gcctabopt
8399 @item -fno-defer-pop
8400 @opindex fno-defer-pop
8401 @opindex fdefer-pop
8402 For machines that must pop arguments after a function call, always pop 
8403 the arguments as soon as each function returns.  
8404 At levels @option{-O1} and higher, @option{-fdefer-pop} is the default;
8405 this allows the compiler to let arguments accumulate on the stack for several
8406 function calls and pop them all at once.
8408 @item -fforward-propagate
8409 @opindex fforward-propagate
8410 Perform a forward propagation pass on RTL@.  The pass tries to combine two
8411 instructions and checks if the result can be simplified.  If loop unrolling
8412 is active, two passes are performed and the second is scheduled after
8413 loop unrolling.
8415 This option is enabled by default at optimization levels @option{-O},
8416 @option{-O2}, @option{-O3}, @option{-Os}.
8418 @item -ffp-contract=@var{style}
8419 @opindex ffp-contract
8420 @option{-ffp-contract=off} disables floating-point expression contraction.
8421 @option{-ffp-contract=fast} enables floating-point expression contraction
8422 such as forming of fused multiply-add operations if the target has
8423 native support for them.
8424 @option{-ffp-contract=on} enables floating-point expression contraction
8425 if allowed by the language standard.  This is currently not implemented
8426 and treated equal to @option{-ffp-contract=off}.
8428 The default is @option{-ffp-contract=fast}.
8430 @item -fomit-frame-pointer
8431 @opindex fomit-frame-pointer
8432 Omit the frame pointer in functions that don't need one.  This avoids the
8433 instructions to save, set up and restore the frame pointer; on many targets
8434 it also makes an extra register available.
8436 On some targets this flag has no effect because the standard calling sequence
8437 always uses a frame pointer, so it cannot be omitted.
8439 Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
8440 is used in all functions.  Several targets always omit the frame pointer in
8441 leaf functions.
8443 Enabled by default at @option{-O} and higher.
8445 @item -foptimize-sibling-calls
8446 @opindex foptimize-sibling-calls
8447 Optimize sibling and tail recursive calls.
8449 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8451 @item -foptimize-strlen
8452 @opindex foptimize-strlen
8453 Optimize various standard C string functions (e.g.@: @code{strlen},
8454 @code{strchr} or @code{strcpy}) and
8455 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
8457 Enabled at levels @option{-O2}, @option{-O3}.
8459 @item -fno-inline
8460 @opindex fno-inline
8461 @opindex finline
8462 Do not expand any functions inline apart from those marked with
8463 the @code{always_inline} attribute.  This is the default when not
8464 optimizing.
8466 Single functions can be exempted from inlining by marking them
8467 with the @code{noinline} attribute.
8469 @item -finline-small-functions
8470 @opindex finline-small-functions
8471 Integrate functions into their callers when their body is smaller than expected
8472 function call code (so overall size of program gets smaller).  The compiler
8473 heuristically decides which functions are simple enough to be worth integrating
8474 in this way.  This inlining applies to all functions, even those not declared
8475 inline.
8477 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8479 @item -findirect-inlining
8480 @opindex findirect-inlining
8481 Inline also indirect calls that are discovered to be known at compile
8482 time thanks to previous inlining.  This option has any effect only
8483 when inlining itself is turned on by the @option{-finline-functions}
8484 or @option{-finline-small-functions} options.
8486 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8488 @item -finline-functions
8489 @opindex finline-functions
8490 Consider all functions for inlining, even if they are not declared inline.
8491 The compiler heuristically decides which functions are worth integrating
8492 in this way.
8494 If all calls to a given function are integrated, and the function is
8495 declared @code{static}, then the function is normally not output as
8496 assembler code in its own right.
8498 Enabled at levels @option{-O3}, @option{-Os}.  Also enabled
8499 by @option{-fprofile-use} and @option{-fauto-profile}.
8501 @item -finline-functions-called-once
8502 @opindex finline-functions-called-once
8503 Consider all @code{static} functions called once for inlining into their
8504 caller even if they are not marked @code{inline}.  If a call to a given
8505 function is integrated, then the function is not output as assembler code
8506 in its own right.
8508 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os},
8509 but not @option{-Og}.
8511 @item -fearly-inlining
8512 @opindex fearly-inlining
8513 Inline functions marked by @code{always_inline} and functions whose body seems
8514 smaller than the function call overhead early before doing
8515 @option{-fprofile-generate} instrumentation and real inlining pass.  Doing so
8516 makes profiling significantly cheaper and usually inlining faster on programs
8517 having large chains of nested wrapper functions.
8519 Enabled by default.
8521 @item -fipa-sra
8522 @opindex fipa-sra
8523 Perform interprocedural scalar replacement of aggregates, removal of
8524 unused parameters and replacement of parameters passed by reference
8525 by parameters passed by value.
8527 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
8529 @item -finline-limit=@var{n}
8530 @opindex finline-limit
8531 By default, GCC limits the size of functions that can be inlined.  This flag
8532 allows coarse control of this limit.  @var{n} is the size of functions that
8533 can be inlined in number of pseudo instructions.
8535 Inlining is actually controlled by a number of parameters, which may be
8536 specified individually by using @option{--param @var{name}=@var{value}}.
8537 The @option{-finline-limit=@var{n}} option sets some of these parameters
8538 as follows:
8540 @table @gcctabopt
8541 @item max-inline-insns-single
8542 is set to @var{n}/2.
8543 @item max-inline-insns-auto
8544 is set to @var{n}/2.
8545 @end table
8547 See below for a documentation of the individual
8548 parameters controlling inlining and for the defaults of these parameters.
8550 @emph{Note:} there may be no value to @option{-finline-limit} that results
8551 in default behavior.
8553 @emph{Note:} pseudo instruction represents, in this particular context, an
8554 abstract measurement of function's size.  In no way does it represent a count
8555 of assembly instructions and as such its exact meaning might change from one
8556 release to an another.
8558 @item -fno-keep-inline-dllexport
8559 @opindex fno-keep-inline-dllexport
8560 @opindex fkeep-inline-dllexport
8561 This is a more fine-grained version of @option{-fkeep-inline-functions},
8562 which applies only to functions that are declared using the @code{dllexport}
8563 attribute or declspec.  @xref{Function Attributes,,Declaring Attributes of
8564 Functions}.
8566 @item -fkeep-inline-functions
8567 @opindex fkeep-inline-functions
8568 In C, emit @code{static} functions that are declared @code{inline}
8569 into the object file, even if the function has been inlined into all
8570 of its callers.  This switch does not affect functions using the
8571 @code{extern inline} extension in GNU C90@.  In C++, emit any and all
8572 inline functions into the object file.
8574 @item -fkeep-static-functions
8575 @opindex fkeep-static-functions
8576 Emit @code{static} functions into the object file, even if the function
8577 is never used.
8579 @item -fkeep-static-consts
8580 @opindex fkeep-static-consts
8581 Emit variables declared @code{static const} when optimization isn't turned
8582 on, even if the variables aren't referenced.
8584 GCC enables this option by default.  If you want to force the compiler to
8585 check if a variable is referenced, regardless of whether or not
8586 optimization is turned on, use the @option{-fno-keep-static-consts} option.
8588 @item -fmerge-constants
8589 @opindex fmerge-constants
8590 Attempt to merge identical constants (string constants and floating-point
8591 constants) across compilation units.
8593 This option is the default for optimized compilation if the assembler and
8594 linker support it.  Use @option{-fno-merge-constants} to inhibit this
8595 behavior.
8597 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8599 @item -fmerge-all-constants
8600 @opindex fmerge-all-constants
8601 Attempt to merge identical constants and identical variables.
8603 This option implies @option{-fmerge-constants}.  In addition to
8604 @option{-fmerge-constants} this considers e.g.@: even constant initialized
8605 arrays or initialized constant variables with integral or floating-point
8606 types.  Languages like C or C++ require each variable, including multiple
8607 instances of the same variable in recursive calls, to have distinct locations,
8608 so using this option results in non-conforming
8609 behavior.
8611 @item -fmodulo-sched
8612 @opindex fmodulo-sched
8613 Perform swing modulo scheduling immediately before the first scheduling
8614 pass.  This pass looks at innermost loops and reorders their
8615 instructions by overlapping different iterations.
8617 @item -fmodulo-sched-allow-regmoves
8618 @opindex fmodulo-sched-allow-regmoves
8619 Perform more aggressive SMS-based modulo scheduling with register moves
8620 allowed.  By setting this flag certain anti-dependences edges are
8621 deleted, which triggers the generation of reg-moves based on the
8622 life-range analysis.  This option is effective only with
8623 @option{-fmodulo-sched} enabled.
8625 @item -fno-branch-count-reg
8626 @opindex fno-branch-count-reg
8627 @opindex fbranch-count-reg
8628 Disable the optimization pass that scans for opportunities to use 
8629 ``decrement and branch'' instructions on a count register instead of
8630 instruction sequences that decrement a register, compare it against zero, and
8631 then branch based upon the result.  This option is only meaningful on
8632 architectures that support such instructions, which include x86, PowerPC,
8633 IA-64 and S/390.  Note that the @option{-fno-branch-count-reg} option
8634 doesn't remove the decrement and branch instructions from the generated
8635 instruction stream introduced by other optimization passes.
8637 The default is @option{-fbranch-count-reg} at @option{-O1} and higher,
8638 except for @option{-Og}.
8640 @item -fno-function-cse
8641 @opindex fno-function-cse
8642 @opindex ffunction-cse
8643 Do not put function addresses in registers; make each instruction that
8644 calls a constant function contain the function's address explicitly.
8646 This option results in less efficient code, but some strange hacks
8647 that alter the assembler output may be confused by the optimizations
8648 performed when this option is not used.
8650 The default is @option{-ffunction-cse}
8652 @item -fno-zero-initialized-in-bss
8653 @opindex fno-zero-initialized-in-bss
8654 @opindex fzero-initialized-in-bss
8655 If the target supports a BSS section, GCC by default puts variables that
8656 are initialized to zero into BSS@.  This can save space in the resulting
8657 code.
8659 This option turns off this behavior because some programs explicitly
8660 rely on variables going to the data section---e.g., so that the
8661 resulting executable can find the beginning of that section and/or make
8662 assumptions based on that.
8664 The default is @option{-fzero-initialized-in-bss}.
8666 @item -fthread-jumps
8667 @opindex fthread-jumps
8668 Perform optimizations that check to see if a jump branches to a
8669 location where another comparison subsumed by the first is found.  If
8670 so, the first branch is redirected to either the destination of the
8671 second branch or a point immediately following it, depending on whether
8672 the condition is known to be true or false.
8674 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8676 @item -fsplit-wide-types
8677 @opindex fsplit-wide-types
8678 When using a type that occupies multiple registers, such as @code{long
8679 long} on a 32-bit system, split the registers apart and allocate them
8680 independently.  This normally generates better code for those types,
8681 but may make debugging more difficult.
8683 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
8684 @option{-Os}.
8686 @item -fcse-follow-jumps
8687 @opindex fcse-follow-jumps
8688 In common subexpression elimination (CSE), scan through jump instructions
8689 when the target of the jump is not reached by any other path.  For
8690 example, when CSE encounters an @code{if} statement with an
8691 @code{else} clause, CSE follows the jump when the condition
8692 tested is false.
8694 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8696 @item -fcse-skip-blocks
8697 @opindex fcse-skip-blocks
8698 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
8699 follow jumps that conditionally skip over blocks.  When CSE
8700 encounters a simple @code{if} statement with no else clause,
8701 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
8702 body of the @code{if}.
8704 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8706 @item -frerun-cse-after-loop
8707 @opindex frerun-cse-after-loop
8708 Re-run common subexpression elimination after loop optimizations are
8709 performed.
8711 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8713 @item -fgcse
8714 @opindex fgcse
8715 Perform a global common subexpression elimination pass.
8716 This pass also performs global constant and copy propagation.
8718 @emph{Note:} When compiling a program using computed gotos, a GCC
8719 extension, you may get better run-time performance if you disable
8720 the global common subexpression elimination pass by adding
8721 @option{-fno-gcse} to the command line.
8723 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8725 @item -fgcse-lm
8726 @opindex fgcse-lm
8727 When @option{-fgcse-lm} is enabled, global common subexpression elimination
8728 attempts to move loads that are only killed by stores into themselves.  This
8729 allows a loop containing a load/store sequence to be changed to a load outside
8730 the loop, and a copy/store within the loop.
8732 Enabled by default when @option{-fgcse} is enabled.
8734 @item -fgcse-sm
8735 @opindex fgcse-sm
8736 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8737 global common subexpression elimination.  This pass attempts to move
8738 stores out of loops.  When used in conjunction with @option{-fgcse-lm},
8739 loops containing a load/store sequence can be changed to a load before
8740 the loop and a store after the loop.
8742 Not enabled at any optimization level.
8744 @item -fgcse-las
8745 @opindex fgcse-las
8746 When @option{-fgcse-las} is enabled, the global common subexpression
8747 elimination pass eliminates redundant loads that come after stores to the
8748 same memory location (both partial and full redundancies).
8750 Not enabled at any optimization level.
8752 @item -fgcse-after-reload
8753 @opindex fgcse-after-reload
8754 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8755 pass is performed after reload.  The purpose of this pass is to clean up
8756 redundant spilling.
8758 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
8760 @item -faggressive-loop-optimizations
8761 @opindex faggressive-loop-optimizations
8762 This option tells the loop optimizer to use language constraints to
8763 derive bounds for the number of iterations of a loop.  This assumes that
8764 loop code does not invoke undefined behavior by for example causing signed
8765 integer overflows or out-of-bound array accesses.  The bounds for the
8766 number of iterations of a loop are used to guide loop unrolling and peeling
8767 and loop exit test optimizations.
8768 This option is enabled by default.
8770 @item -funconstrained-commons
8771 @opindex funconstrained-commons
8772 This option tells the compiler that variables declared in common blocks
8773 (e.g.@: Fortran) may later be overridden with longer trailing arrays. This
8774 prevents certain optimizations that depend on knowing the array bounds.
8776 @item -fcrossjumping
8777 @opindex fcrossjumping
8778 Perform cross-jumping transformation.
8779 This transformation unifies equivalent code and saves code size.  The
8780 resulting code may or may not perform better than without cross-jumping.
8782 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8784 @item -fauto-inc-dec
8785 @opindex fauto-inc-dec
8786 Combine increments or decrements of addresses with memory accesses.
8787 This pass is always skipped on architectures that do not have
8788 instructions to support this.  Enabled by default at @option{-O} and
8789 higher on architectures that support this.
8791 @item -fdce
8792 @opindex fdce
8793 Perform dead code elimination (DCE) on RTL@.
8794 Enabled by default at @option{-O} and higher.
8796 @item -fdse
8797 @opindex fdse
8798 Perform dead store elimination (DSE) on RTL@.
8799 Enabled by default at @option{-O} and higher.
8801 @item -fif-conversion
8802 @opindex fif-conversion
8803 Attempt to transform conditional jumps into branch-less equivalents.  This
8804 includes use of conditional moves, min, max, set flags and abs instructions, and
8805 some tricks doable by standard arithmetics.  The use of conditional execution
8806 on chips where it is available is controlled by @option{-fif-conversion2}.
8808 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
8809 not with @option{-Og}.
8811 @item -fif-conversion2
8812 @opindex fif-conversion2
8813 Use conditional execution (where available) to transform conditional jumps into
8814 branch-less equivalents.
8816 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
8817 not with @option{-Og}.
8819 @item -fdeclone-ctor-dtor
8820 @opindex fdeclone-ctor-dtor
8821 The C++ ABI requires multiple entry points for constructors and
8822 destructors: one for a base subobject, one for a complete object, and
8823 one for a virtual destructor that calls operator delete afterwards.
8824 For a hierarchy with virtual bases, the base and complete variants are
8825 clones, which means two copies of the function.  With this option, the
8826 base and complete variants are changed to be thunks that call a common
8827 implementation.
8829 Enabled by @option{-Os}.
8831 @item -fdelete-null-pointer-checks
8832 @opindex fdelete-null-pointer-checks
8833 Assume that programs cannot safely dereference null pointers, and that
8834 no code or data element resides at address zero.
8835 This option enables simple constant
8836 folding optimizations at all optimization levels.  In addition, other
8837 optimization passes in GCC use this flag to control global dataflow
8838 analyses that eliminate useless checks for null pointers; these assume
8839 that a memory access to address zero always results in a trap, so
8840 that if a pointer is checked after it has already been dereferenced,
8841 it cannot be null.
8843 Note however that in some environments this assumption is not true.
8844 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8845 for programs that depend on that behavior.
8847 This option is enabled by default on most targets.  On Nios II ELF, it
8848 defaults to off.  On AVR, CR16, and MSP430, this option is completely disabled.
8850 Passes that use the dataflow information
8851 are enabled independently at different optimization levels.
8853 @item -fdevirtualize
8854 @opindex fdevirtualize
8855 Attempt to convert calls to virtual functions to direct calls.  This
8856 is done both within a procedure and interprocedurally as part of
8857 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8858 propagation (@option{-fipa-cp}).
8859 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8861 @item -fdevirtualize-speculatively
8862 @opindex fdevirtualize-speculatively
8863 Attempt to convert calls to virtual functions to speculative direct calls.
8864 Based on the analysis of the type inheritance graph, determine for a given call
8865 the set of likely targets. If the set is small, preferably of size 1, change
8866 the call into a conditional deciding between direct and indirect calls.  The
8867 speculative calls enable more optimizations, such as inlining.  When they seem
8868 useless after further optimization, they are converted back into original form.
8870 @item -fdevirtualize-at-ltrans
8871 @opindex fdevirtualize-at-ltrans
8872 Stream extra information needed for aggressive devirtualization when running
8873 the link-time optimizer in local transformation mode.  
8874 This option enables more devirtualization but
8875 significantly increases the size of streamed data. For this reason it is
8876 disabled by default.
8878 @item -fexpensive-optimizations
8879 @opindex fexpensive-optimizations
8880 Perform a number of minor optimizations that are relatively expensive.
8882 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8884 @item -free
8885 @opindex free
8886 Attempt to remove redundant extension instructions.  This is especially
8887 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8888 registers after writing to their lower 32-bit half.
8890 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8891 @option{-O3}, @option{-Os}.
8893 @item -fno-lifetime-dse
8894 @opindex fno-lifetime-dse
8895 @opindex flifetime-dse
8896 In C++ the value of an object is only affected by changes within its
8897 lifetime: when the constructor begins, the object has an indeterminate
8898 value, and any changes during the lifetime of the object are dead when
8899 the object is destroyed.  Normally dead store elimination will take
8900 advantage of this; if your code relies on the value of the object
8901 storage persisting beyond the lifetime of the object, you can use this
8902 flag to disable this optimization.  To preserve stores before the
8903 constructor starts (e.g.@: because your operator new clears the object
8904 storage) but still treat the object as dead after the destructor you,
8905 can use @option{-flifetime-dse=1}.  The default behavior can be
8906 explicitly selected with @option{-flifetime-dse=2}.
8907 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
8909 @item -flive-range-shrinkage
8910 @opindex flive-range-shrinkage
8911 Attempt to decrease register pressure through register live range
8912 shrinkage.  This is helpful for fast processors with small or moderate
8913 size register sets.
8915 @item -fira-algorithm=@var{algorithm}
8916 @opindex fira-algorithm
8917 Use the specified coloring algorithm for the integrated register
8918 allocator.  The @var{algorithm} argument can be @samp{priority}, which
8919 specifies Chow's priority coloring, or @samp{CB}, which specifies
8920 Chaitin-Briggs coloring.  Chaitin-Briggs coloring is not implemented
8921 for all architectures, but for those targets that do support it, it is
8922 the default because it generates better code.
8924 @item -fira-region=@var{region}
8925 @opindex fira-region
8926 Use specified regions for the integrated register allocator.  The
8927 @var{region} argument should be one of the following:
8929 @table @samp
8931 @item all
8932 Use all loops as register allocation regions.
8933 This can give the best results for machines with a small and/or
8934 irregular register set.
8936 @item mixed
8937 Use all loops except for loops with small register pressure 
8938 as the regions.  This value usually gives
8939 the best results in most cases and for most architectures,
8940 and is enabled by default when compiling with optimization for speed
8941 (@option{-O}, @option{-O2}, @dots{}).
8943 @item one
8944 Use all functions as a single region.  
8945 This typically results in the smallest code size, and is enabled by default for
8946 @option{-Os} or @option{-O0}.
8948 @end table
8950 @item -fira-hoist-pressure
8951 @opindex fira-hoist-pressure
8952 Use IRA to evaluate register pressure in the code hoisting pass for
8953 decisions to hoist expressions.  This option usually results in smaller
8954 code, but it can slow the compiler down.
8956 This option is enabled at level @option{-Os} for all targets.
8958 @item -fira-loop-pressure
8959 @opindex fira-loop-pressure
8960 Use IRA to evaluate register pressure in loops for decisions to move
8961 loop invariants.  This option usually results in generation
8962 of faster and smaller code on machines with large register files (>= 32
8963 registers), but it can slow the compiler down.
8965 This option is enabled at level @option{-O3} for some targets.
8967 @item -fno-ira-share-save-slots
8968 @opindex fno-ira-share-save-slots
8969 @opindex fira-share-save-slots
8970 Disable sharing of stack slots used for saving call-used hard
8971 registers living through a call.  Each hard register gets a
8972 separate stack slot, and as a result function stack frames are
8973 larger.
8975 @item -fno-ira-share-spill-slots
8976 @opindex fno-ira-share-spill-slots
8977 @opindex fira-share-spill-slots
8978 Disable sharing of stack slots allocated for pseudo-registers.  Each
8979 pseudo-register that does not get a hard register gets a separate
8980 stack slot, and as a result function stack frames are larger.
8982 @item -flra-remat
8983 @opindex flra-remat
8984 Enable CFG-sensitive rematerialization in LRA.  Instead of loading
8985 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8986 values if it is profitable.
8988 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8990 @item -fdelayed-branch
8991 @opindex fdelayed-branch
8992 If supported for the target machine, attempt to reorder instructions
8993 to exploit instruction slots available after delayed branch
8994 instructions.
8996 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os},
8997 but not at @option{-Og}.
8999 @item -fschedule-insns
9000 @opindex fschedule-insns
9001 If supported for the target machine, attempt to reorder instructions to
9002 eliminate execution stalls due to required data being unavailable.  This
9003 helps machines that have slow floating point or memory load instructions
9004 by allowing other instructions to be issued until the result of the load
9005 or floating-point instruction is required.
9007 Enabled at levels @option{-O2}, @option{-O3}.
9009 @item -fschedule-insns2
9010 @opindex fschedule-insns2
9011 Similar to @option{-fschedule-insns}, but requests an additional pass of
9012 instruction scheduling after register allocation has been done.  This is
9013 especially useful on machines with a relatively small number of
9014 registers and where memory load instructions take more than one cycle.
9016 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9018 @item -fno-sched-interblock
9019 @opindex fno-sched-interblock
9020 @opindex fsched-interblock
9021 Disable instruction scheduling across basic blocks, which
9022 is normally enabled when scheduling before register allocation, i.e.@:
9023 with @option{-fschedule-insns} or at @option{-O2} or higher.
9025 @item -fno-sched-spec
9026 @opindex fno-sched-spec
9027 @opindex fsched-spec
9028 Disable speculative motion of non-load instructions, which
9029 is normally enabled when scheduling before register allocation, i.e.@:
9030 with @option{-fschedule-insns} or at @option{-O2} or higher.
9032 @item -fsched-pressure
9033 @opindex fsched-pressure
9034 Enable register pressure sensitive insn scheduling before register
9035 allocation.  This only makes sense when scheduling before register
9036 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
9037 @option{-O2} or higher.  Usage of this option can improve the
9038 generated code and decrease its size by preventing register pressure
9039 increase above the number of available hard registers and subsequent
9040 spills in register allocation.
9042 @item -fsched-spec-load
9043 @opindex fsched-spec-load
9044 Allow speculative motion of some load instructions.  This only makes
9045 sense when scheduling before register allocation, i.e.@: with
9046 @option{-fschedule-insns} or at @option{-O2} or higher.
9048 @item -fsched-spec-load-dangerous
9049 @opindex fsched-spec-load-dangerous
9050 Allow speculative motion of more load instructions.  This only makes
9051 sense when scheduling before register allocation, i.e.@: with
9052 @option{-fschedule-insns} or at @option{-O2} or higher.
9054 @item -fsched-stalled-insns
9055 @itemx -fsched-stalled-insns=@var{n}
9056 @opindex fsched-stalled-insns
9057 Define how many insns (if any) can be moved prematurely from the queue
9058 of stalled insns into the ready list during the second scheduling pass.
9059 @option{-fno-sched-stalled-insns} means that no insns are moved
9060 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
9061 on how many queued insns can be moved prematurely.
9062 @option{-fsched-stalled-insns} without a value is equivalent to
9063 @option{-fsched-stalled-insns=1}.
9065 @item -fsched-stalled-insns-dep
9066 @itemx -fsched-stalled-insns-dep=@var{n}
9067 @opindex fsched-stalled-insns-dep
9068 Define how many insn groups (cycles) are examined for a dependency
9069 on a stalled insn that is a candidate for premature removal from the queue
9070 of stalled insns.  This has an effect only during the second scheduling pass,
9071 and only if @option{-fsched-stalled-insns} is used.
9072 @option{-fno-sched-stalled-insns-dep} is equivalent to
9073 @option{-fsched-stalled-insns-dep=0}.
9074 @option{-fsched-stalled-insns-dep} without a value is equivalent to
9075 @option{-fsched-stalled-insns-dep=1}.
9077 @item -fsched2-use-superblocks
9078 @opindex fsched2-use-superblocks
9079 When scheduling after register allocation, use superblock scheduling.
9080 This allows motion across basic block boundaries,
9081 resulting in faster schedules.  This option is experimental, as not all machine
9082 descriptions used by GCC model the CPU closely enough to avoid unreliable
9083 results from the algorithm.
9085 This only makes sense when scheduling after register allocation, i.e.@: with
9086 @option{-fschedule-insns2} or at @option{-O2} or higher.
9088 @item -fsched-group-heuristic
9089 @opindex fsched-group-heuristic
9090 Enable the group heuristic in the scheduler.  This heuristic favors
9091 the instruction that belongs to a schedule group.  This is enabled
9092 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
9093 or @option{-fschedule-insns2} or at @option{-O2} or higher.
9095 @item -fsched-critical-path-heuristic
9096 @opindex fsched-critical-path-heuristic
9097 Enable the critical-path heuristic in the scheduler.  This heuristic favors
9098 instructions on the critical path.  This is enabled by default when
9099 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
9100 or @option{-fschedule-insns2} or at @option{-O2} or higher.
9102 @item -fsched-spec-insn-heuristic
9103 @opindex fsched-spec-insn-heuristic
9104 Enable the speculative instruction heuristic in the scheduler.  This
9105 heuristic favors speculative instructions with greater dependency weakness.
9106 This is enabled by default when scheduling is enabled, i.e.@:
9107 with @option{-fschedule-insns} or @option{-fschedule-insns2}
9108 or at @option{-O2} or higher.
9110 @item -fsched-rank-heuristic
9111 @opindex fsched-rank-heuristic
9112 Enable the rank heuristic in the scheduler.  This heuristic favors
9113 the instruction belonging to a basic block with greater size or frequency.
9114 This is enabled by default when scheduling is enabled, i.e.@:
9115 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9116 at @option{-O2} or higher.
9118 @item -fsched-last-insn-heuristic
9119 @opindex fsched-last-insn-heuristic
9120 Enable the last-instruction heuristic in the scheduler.  This heuristic
9121 favors the instruction that is less dependent on the last instruction
9122 scheduled.  This is enabled by default when scheduling is enabled,
9123 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9124 at @option{-O2} or higher.
9126 @item -fsched-dep-count-heuristic
9127 @opindex fsched-dep-count-heuristic
9128 Enable the dependent-count heuristic in the scheduler.  This heuristic
9129 favors the instruction that has more instructions depending on it.
9130 This is enabled by default when scheduling is enabled, i.e.@:
9131 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9132 at @option{-O2} or higher.
9134 @item -freschedule-modulo-scheduled-loops
9135 @opindex freschedule-modulo-scheduled-loops
9136 Modulo scheduling is performed before traditional scheduling.  If a loop
9137 is modulo scheduled, later scheduling passes may change its schedule.  
9138 Use this option to control that behavior.
9140 @item -fselective-scheduling
9141 @opindex fselective-scheduling
9142 Schedule instructions using selective scheduling algorithm.  Selective
9143 scheduling runs instead of the first scheduler pass.
9145 @item -fselective-scheduling2
9146 @opindex fselective-scheduling2
9147 Schedule instructions using selective scheduling algorithm.  Selective
9148 scheduling runs instead of the second scheduler pass.
9150 @item -fsel-sched-pipelining
9151 @opindex fsel-sched-pipelining
9152 Enable software pipelining of innermost loops during selective scheduling.
9153 This option has no effect unless one of @option{-fselective-scheduling} or
9154 @option{-fselective-scheduling2} is turned on.
9156 @item -fsel-sched-pipelining-outer-loops
9157 @opindex fsel-sched-pipelining-outer-loops
9158 When pipelining loops during selective scheduling, also pipeline outer loops.
9159 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
9161 @item -fsemantic-interposition
9162 @opindex fsemantic-interposition
9163 Some object formats, like ELF, allow interposing of symbols by the 
9164 dynamic linker.
9165 This means that for symbols exported from the DSO, the compiler cannot perform
9166 interprocedural propagation, inlining and other optimizations in anticipation
9167 that the function or variable in question may change. While this feature is
9168 useful, for example, to rewrite memory allocation functions by a debugging
9169 implementation, it is expensive in the terms of code quality.
9170 With @option{-fno-semantic-interposition} the compiler assumes that 
9171 if interposition happens for functions the overwriting function will have 
9172 precisely the same semantics (and side effects). 
9173 Similarly if interposition happens
9174 for variables, the constructor of the variable will be the same. The flag
9175 has no effect for functions explicitly declared inline 
9176 (where it is never allowed for interposition to change semantics) 
9177 and for symbols explicitly declared weak.
9179 @item -fshrink-wrap
9180 @opindex fshrink-wrap
9181 Emit function prologues only before parts of the function that need it,
9182 rather than at the top of the function.  This flag is enabled by default at
9183 @option{-O} and higher.
9185 @item -fshrink-wrap-separate
9186 @opindex fshrink-wrap-separate
9187 Shrink-wrap separate parts of the prologue and epilogue separately, so that
9188 those parts are only executed when needed.
9189 This option is on by default, but has no effect unless @option{-fshrink-wrap}
9190 is also turned on and the target supports this.
9192 @item -fcaller-saves
9193 @opindex fcaller-saves
9194 Enable allocation of values to registers that are clobbered by
9195 function calls, by emitting extra instructions to save and restore the
9196 registers around such calls.  Such allocation is done only when it
9197 seems to result in better code.
9199 This option is always enabled by default on certain machines, usually
9200 those which have no call-preserved registers to use instead.
9202 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9204 @item -fcombine-stack-adjustments
9205 @opindex fcombine-stack-adjustments
9206 Tracks stack adjustments (pushes and pops) and stack memory references
9207 and then tries to find ways to combine them.
9209 Enabled by default at @option{-O1} and higher.
9211 @item -fipa-ra
9212 @opindex fipa-ra
9213 Use caller save registers for allocation if those registers are not used by
9214 any called function.  In that case it is not necessary to save and restore
9215 them around calls.  This is only possible if called functions are part of
9216 same compilation unit as current function and they are compiled before it.
9218 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
9219 is disabled if generated code will be instrumented for profiling
9220 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
9221 exactly (this happens on targets that do not expose prologues
9222 and epilogues in RTL).
9224 @item -fconserve-stack
9225 @opindex fconserve-stack
9226 Attempt to minimize stack usage.  The compiler attempts to use less
9227 stack space, even if that makes the program slower.  This option
9228 implies setting the @option{large-stack-frame} parameter to 100
9229 and the @option{large-stack-frame-growth} parameter to 400.
9231 @item -ftree-reassoc
9232 @opindex ftree-reassoc
9233 Perform reassociation on trees.  This flag is enabled by default
9234 at @option{-O} and higher.
9236 @item -fcode-hoisting
9237 @opindex fcode-hoisting
9238 Perform code hoisting.  Code hoisting tries to move the
9239 evaluation of expressions executed on all paths to the function exit
9240 as early as possible.  This is especially useful as a code size
9241 optimization, but it often helps for code speed as well.
9242 This flag is enabled by default at @option{-O2} and higher.
9244 @item -ftree-pre
9245 @opindex ftree-pre
9246 Perform partial redundancy elimination (PRE) on trees.  This flag is
9247 enabled by default at @option{-O2} and @option{-O3}.
9249 @item -ftree-partial-pre
9250 @opindex ftree-partial-pre
9251 Make partial redundancy elimination (PRE) more aggressive.  This flag is
9252 enabled by default at @option{-O3}.
9254 @item -ftree-forwprop
9255 @opindex ftree-forwprop
9256 Perform forward propagation on trees.  This flag is enabled by default
9257 at @option{-O} and higher.
9259 @item -ftree-fre
9260 @opindex ftree-fre
9261 Perform full redundancy elimination (FRE) on trees.  The difference
9262 between FRE and PRE is that FRE only considers expressions
9263 that are computed on all paths leading to the redundant computation.
9264 This analysis is faster than PRE, though it exposes fewer redundancies.
9265 This flag is enabled by default at @option{-O} and higher.
9267 @item -ftree-phiprop
9268 @opindex ftree-phiprop
9269 Perform hoisting of loads from conditional pointers on trees.  This
9270 pass is enabled by default at @option{-O} and higher.
9272 @item -fhoist-adjacent-loads
9273 @opindex fhoist-adjacent-loads
9274 Speculatively hoist loads from both branches of an if-then-else if the
9275 loads are from adjacent locations in the same structure and the target
9276 architecture has a conditional move instruction.  This flag is enabled
9277 by default at @option{-O2} and higher.
9279 @item -ftree-copy-prop
9280 @opindex ftree-copy-prop
9281 Perform copy propagation on trees.  This pass eliminates unnecessary
9282 copy operations.  This flag is enabled by default at @option{-O} and
9283 higher.
9285 @item -fipa-pure-const
9286 @opindex fipa-pure-const
9287 Discover which functions are pure or constant.
9288 Enabled by default at @option{-O} and higher.
9290 @item -fipa-reference
9291 @opindex fipa-reference
9292 Discover which static variables do not escape the
9293 compilation unit.
9294 Enabled by default at @option{-O} and higher.
9296 @item -fipa-reference-addressable
9297 @opindex fipa-reference-addressable
9298 Discover read-only, write-only and non-addressable static variables.
9299 Enabled by default at @option{-O} and higher.
9301 @item -fipa-stack-alignment
9302 @opindex fipa-stack-alignment
9303 Reduce stack alignment on call sites if possible.
9304 Enabled by default.
9306 @item -fipa-pta
9307 @opindex fipa-pta
9308 Perform interprocedural pointer analysis and interprocedural modification
9309 and reference analysis.  This option can cause excessive memory and
9310 compile-time usage on large compilation units.  It is not enabled by
9311 default at any optimization level.
9313 @item -fipa-profile
9314 @opindex fipa-profile
9315 Perform interprocedural profile propagation.  The functions called only from
9316 cold functions are marked as cold. Also functions executed once (such as
9317 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
9318 functions and loop less parts of functions executed once are then optimized for
9319 size.
9320 Enabled by default at @option{-O} and higher.
9322 @item -fipa-cp
9323 @opindex fipa-cp
9324 Perform interprocedural constant propagation.
9325 This optimization analyzes the program to determine when values passed
9326 to functions are constants and then optimizes accordingly.
9327 This optimization can substantially increase performance
9328 if the application has constants passed to functions.
9329 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
9330 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9332 @item -fipa-cp-clone
9333 @opindex fipa-cp-clone
9334 Perform function cloning to make interprocedural constant propagation stronger.
9335 When enabled, interprocedural constant propagation performs function cloning
9336 when externally visible function can be called with constant arguments.
9337 Because this optimization can create multiple copies of functions,
9338 it may significantly increase code size
9339 (see @option{--param ipcp-unit-growth=@var{value}}).
9340 This flag is enabled by default at @option{-O3}.
9341 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9343 @item -fipa-bit-cp
9344 @opindex fipa-bit-cp
9345 When enabled, perform interprocedural bitwise constant
9346 propagation. This flag is enabled by default at @option{-O2} and
9347 by @option{-fprofile-use} and @option{-fauto-profile}.
9348 It requires that @option{-fipa-cp} is enabled.  
9350 @item -fipa-vrp
9351 @opindex fipa-vrp
9352 When enabled, perform interprocedural propagation of value
9353 ranges. This flag is enabled by default at @option{-O2}. It requires
9354 that @option{-fipa-cp} is enabled.
9356 @item -fipa-icf
9357 @opindex fipa-icf
9358 Perform Identical Code Folding for functions and read-only variables.
9359 The optimization reduces code size and may disturb unwind stacks by replacing
9360 a function by equivalent one with a different name. The optimization works
9361 more effectively with link-time optimization enabled.
9363 Although the behavior is similar to the Gold Linker's ICF optimization, GCC ICF
9364 works on different levels and thus the optimizations are not same - there are
9365 equivalences that are found only by GCC and equivalences found only by Gold.
9367 This flag is enabled by default at @option{-O2} and @option{-Os}.
9369 @item -flive-patching=@var{level}
9370 @opindex flive-patching
9371 Control GCC's optimizations to produce output suitable for live-patching.
9373 If the compiler's optimization uses a function's body or information extracted
9374 from its body to optimize/change another function, the latter is called an
9375 impacted function of the former.  If a function is patched, its impacted
9376 functions should be patched too.
9378 The impacted functions are determined by the compiler's interprocedural
9379 optimizations.  For example, a caller is impacted when inlining a function
9380 into its caller,
9381 cloning a function and changing its caller to call this new clone,
9382 or extracting a function's pureness/constness information to optimize
9383 its direct or indirect callers, etc.
9385 Usually, the more IPA optimizations enabled, the larger the number of
9386 impacted functions for each function.  In order to control the number of
9387 impacted functions and more easily compute the list of impacted function,
9388 IPA optimizations can be partially enabled at two different levels.
9390 The @var{level} argument should be one of the following:
9392 @table @samp
9394 @item inline-clone
9396 Only enable inlining and cloning optimizations, which includes inlining,
9397 cloning, interprocedural scalar replacement of aggregates and partial inlining.
9398 As a result, when patching a function, all its callers and its clones'
9399 callers are impacted, therefore need to be patched as well.
9401 @option{-flive-patching=inline-clone} disables the following optimization flags:
9402 @gccoptlist{-fwhole-program  -fipa-pta  -fipa-reference  -fipa-ra @gol
9403 -fipa-icf  -fipa-icf-functions  -fipa-icf-variables @gol
9404 -fipa-bit-cp  -fipa-vrp  -fipa-pure-const  -fipa-reference-addressable @gol
9405 -fipa-stack-alignment}
9407 @item inline-only-static
9409 Only enable inlining of static functions.
9410 As a result, when patching a static function, all its callers are impacted
9411 and so need to be patched as well.
9413 In addition to all the flags that @option{-flive-patching=inline-clone}
9414 disables,
9415 @option{-flive-patching=inline-only-static} disables the following additional
9416 optimization flags:
9417 @gccoptlist{-fipa-cp-clone  -fipa-sra  -fpartial-inlining  -fipa-cp}
9419 @end table
9421 When @option{-flive-patching} is specified without any value, the default value
9422 is @var{inline-clone}.
9424 This flag is disabled by default.
9426 Note that @option{-flive-patching} is not supported with link-time optimization
9427 (@option{-flto}).
9429 @item -fisolate-erroneous-paths-dereference
9430 @opindex fisolate-erroneous-paths-dereference
9431 Detect paths that trigger erroneous or undefined behavior due to
9432 dereferencing a null pointer.  Isolate those paths from the main control
9433 flow and turn the statement with erroneous or undefined behavior into a trap.
9434 This flag is enabled by default at @option{-O2} and higher and depends on
9435 @option{-fdelete-null-pointer-checks} also being enabled.
9437 @item -fisolate-erroneous-paths-attribute
9438 @opindex fisolate-erroneous-paths-attribute
9439 Detect paths that trigger erroneous or undefined behavior due to a null value
9440 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
9441 attribute.  Isolate those paths from the main control flow and turn the
9442 statement with erroneous or undefined behavior into a trap.  This is not
9443 currently enabled, but may be enabled by @option{-O2} in the future.
9445 @item -ftree-sink
9446 @opindex ftree-sink
9447 Perform forward store motion on trees.  This flag is
9448 enabled by default at @option{-O} and higher.
9450 @item -ftree-bit-ccp
9451 @opindex ftree-bit-ccp
9452 Perform sparse conditional bit constant propagation on trees and propagate
9453 pointer alignment information.
9454 This pass only operates on local scalar variables and is enabled by default
9455 at @option{-O1} and higher, except for @option{-Og}.
9456 It requires that @option{-ftree-ccp} is enabled.
9458 @item -ftree-ccp
9459 @opindex ftree-ccp
9460 Perform sparse conditional constant propagation (CCP) on trees.  This
9461 pass only operates on local scalar variables and is enabled by default
9462 at @option{-O} and higher.
9464 @item -fssa-backprop
9465 @opindex fssa-backprop
9466 Propagate information about uses of a value up the definition chain
9467 in order to simplify the definitions.  For example, this pass strips
9468 sign operations if the sign of a value never matters.  The flag is
9469 enabled by default at @option{-O} and higher.
9471 @item -fssa-phiopt
9472 @opindex fssa-phiopt
9473 Perform pattern matching on SSA PHI nodes to optimize conditional
9474 code.  This pass is enabled by default at @option{-O1} and higher,
9475 except for @option{-Og}.
9477 @item -ftree-switch-conversion
9478 @opindex ftree-switch-conversion
9479 Perform conversion of simple initializations in a switch to
9480 initializations from a scalar array.  This flag is enabled by default
9481 at @option{-O2} and higher.
9483 @item -ftree-tail-merge
9484 @opindex ftree-tail-merge
9485 Look for identical code sequences.  When found, replace one with a jump to the
9486 other.  This optimization is known as tail merging or cross jumping.  This flag
9487 is enabled by default at @option{-O2} and higher.  The compilation time
9488 in this pass can
9489 be limited using @option{max-tail-merge-comparisons} parameter and
9490 @option{max-tail-merge-iterations} parameter.
9492 @item -ftree-dce
9493 @opindex ftree-dce
9494 Perform dead code elimination (DCE) on trees.  This flag is enabled by
9495 default at @option{-O} and higher.
9497 @item -ftree-builtin-call-dce
9498 @opindex ftree-builtin-call-dce
9499 Perform conditional dead code elimination (DCE) for calls to built-in functions
9500 that may set @code{errno} but are otherwise free of side effects.  This flag is
9501 enabled by default at @option{-O2} and higher if @option{-Os} is not also
9502 specified.
9504 @item -ftree-dominator-opts
9505 @opindex ftree-dominator-opts
9506 Perform a variety of simple scalar cleanups (constant/copy
9507 propagation, redundancy elimination, range propagation and expression
9508 simplification) based on a dominator tree traversal.  This also
9509 performs jump threading (to reduce jumps to jumps). This flag is
9510 enabled by default at @option{-O} and higher.
9512 @item -ftree-dse
9513 @opindex ftree-dse
9514 Perform dead store elimination (DSE) on trees.  A dead store is a store into
9515 a memory location that is later overwritten by another store without
9516 any intervening loads.  In this case the earlier store can be deleted.  This
9517 flag is enabled by default at @option{-O} and higher.
9519 @item -ftree-ch
9520 @opindex ftree-ch
9521 Perform loop header copying on trees.  This is beneficial since it increases
9522 effectiveness of code motion optimizations.  It also saves one jump.  This flag
9523 is enabled by default at @option{-O} and higher.  It is not enabled
9524 for @option{-Os}, since it usually increases code size.
9526 @item -ftree-loop-optimize
9527 @opindex ftree-loop-optimize
9528 Perform loop optimizations on trees.  This flag is enabled by default
9529 at @option{-O} and higher.
9531 @item -ftree-loop-linear
9532 @itemx -floop-strip-mine
9533 @itemx -floop-block
9534 @opindex ftree-loop-linear
9535 @opindex floop-strip-mine
9536 @opindex floop-block
9537 Perform loop nest optimizations.  Same as
9538 @option{-floop-nest-optimize}.  To use this code transformation, GCC has
9539 to be configured with @option{--with-isl} to enable the Graphite loop
9540 transformation infrastructure.
9542 @item -fgraphite-identity
9543 @opindex fgraphite-identity
9544 Enable the identity transformation for graphite.  For every SCoP we generate
9545 the polyhedral representation and transform it back to gimple.  Using
9546 @option{-fgraphite-identity} we can check the costs or benefits of the
9547 GIMPLE -> GRAPHITE -> GIMPLE transformation.  Some minimal optimizations
9548 are also performed by the code generator isl, like index splitting and
9549 dead code elimination in loops.
9551 @item -floop-nest-optimize
9552 @opindex floop-nest-optimize
9553 Enable the isl based loop nest optimizer.  This is a generic loop nest
9554 optimizer based on the Pluto optimization algorithms.  It calculates a loop
9555 structure optimized for data-locality and parallelism.  This option
9556 is experimental.
9558 @item -floop-parallelize-all
9559 @opindex floop-parallelize-all
9560 Use the Graphite data dependence analysis to identify loops that can
9561 be parallelized.  Parallelize all the loops that can be analyzed to
9562 not contain loop carried dependences without checking that it is
9563 profitable to parallelize the loops.
9565 @item -ftree-coalesce-vars
9566 @opindex ftree-coalesce-vars
9567 While transforming the program out of the SSA representation, attempt to
9568 reduce copying by coalescing versions of different user-defined
9569 variables, instead of just compiler temporaries.  This may severely
9570 limit the ability to debug an optimized program compiled with
9571 @option{-fno-var-tracking-assignments}.  In the negated form, this flag
9572 prevents SSA coalescing of user variables.  This option is enabled by
9573 default if optimization is enabled, and it does very little otherwise.
9575 @item -ftree-loop-if-convert
9576 @opindex ftree-loop-if-convert
9577 Attempt to transform conditional jumps in the innermost loops to
9578 branch-less equivalents.  The intent is to remove control-flow from
9579 the innermost loops in order to improve the ability of the
9580 vectorization pass to handle these loops.  This is enabled by default
9581 if vectorization is enabled.
9583 @item -ftree-loop-distribution
9584 @opindex ftree-loop-distribution
9585 Perform loop distribution.  This flag can improve cache performance on
9586 big loop bodies and allow further loop optimizations, like
9587 parallelization or vectorization, to take place.  For example, the loop
9588 @smallexample
9589 DO I = 1, N
9590   A(I) = B(I) + C
9591   D(I) = E(I) * F
9592 ENDDO
9593 @end smallexample
9594 is transformed to
9595 @smallexample
9596 DO I = 1, N
9597    A(I) = B(I) + C
9598 ENDDO
9599 DO I = 1, N
9600    D(I) = E(I) * F
9601 ENDDO
9602 @end smallexample
9603 This flag is enabled by default at @option{-O3}.
9604 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9606 @item -ftree-loop-distribute-patterns
9607 @opindex ftree-loop-distribute-patterns
9608 Perform loop distribution of patterns that can be code generated with
9609 calls to a library.  This flag is enabled by default at @option{-O3}, and
9610 by @option{-fprofile-use} and @option{-fauto-profile}.
9612 This pass distributes the initialization loops and generates a call to
9613 memset zero.  For example, the loop
9614 @smallexample
9615 DO I = 1, N
9616   A(I) = 0
9617   B(I) = A(I) + I
9618 ENDDO
9619 @end smallexample
9620 is transformed to
9621 @smallexample
9622 DO I = 1, N
9623    A(I) = 0
9624 ENDDO
9625 DO I = 1, N
9626    B(I) = A(I) + I
9627 ENDDO
9628 @end smallexample
9629 and the initialization loop is transformed into a call to memset zero.
9630 This flag is enabled by default at @option{-O3}.
9631 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9633 @item -floop-interchange
9634 @opindex floop-interchange
9635 Perform loop interchange outside of graphite.  This flag can improve cache
9636 performance on loop nest and allow further loop optimizations, like
9637 vectorization, to take place.  For example, the loop
9638 @smallexample
9639 for (int i = 0; i < N; i++)
9640   for (int j = 0; j < N; j++)
9641     for (int k = 0; k < N; k++)
9642       c[i][j] = c[i][j] + a[i][k]*b[k][j];
9643 @end smallexample
9644 is transformed to
9645 @smallexample
9646 for (int i = 0; i < N; i++)
9647   for (int k = 0; k < N; k++)
9648     for (int j = 0; j < N; j++)
9649       c[i][j] = c[i][j] + a[i][k]*b[k][j];
9650 @end smallexample
9651 This flag is enabled by default at @option{-O3}.
9652 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9654 @item -floop-unroll-and-jam
9655 @opindex floop-unroll-and-jam
9656 Apply unroll and jam transformations on feasible loops.  In a loop
9657 nest this unrolls the outer loop by some factor and fuses the resulting
9658 multiple inner loops.  This flag is enabled by default at @option{-O3}.
9659 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9661 @item -ftree-loop-im
9662 @opindex ftree-loop-im
9663 Perform loop invariant motion on trees.  This pass moves only invariants that
9664 are hard to handle at RTL level (function calls, operations that expand to
9665 nontrivial sequences of insns).  With @option{-funswitch-loops} it also moves
9666 operands of conditions that are invariant out of the loop, so that we can use
9667 just trivial invariantness analysis in loop unswitching.  The pass also includes
9668 store motion.
9670 @item -ftree-loop-ivcanon
9671 @opindex ftree-loop-ivcanon
9672 Create a canonical counter for number of iterations in loops for which
9673 determining number of iterations requires complicated analysis.  Later
9674 optimizations then may determine the number easily.  Useful especially
9675 in connection with unrolling.
9677 @item -ftree-scev-cprop
9678 @opindex ftree-scev-cprop
9679 Perform final value replacement.  If a variable is modified in a loop
9680 in such a way that its value when exiting the loop can be determined using
9681 only its initial value and the number of loop iterations, replace uses of
9682 the final value by such a computation, provided it is sufficiently cheap.
9683 This reduces data dependencies and may allow further simplifications.
9684 Enabled by default at @option{-O} and higher.
9686 @item -fivopts
9687 @opindex fivopts
9688 Perform induction variable optimizations (strength reduction, induction
9689 variable merging and induction variable elimination) on trees.
9691 @item -ftree-parallelize-loops=n
9692 @opindex ftree-parallelize-loops
9693 Parallelize loops, i.e., split their iteration space to run in n threads.
9694 This is only possible for loops whose iterations are independent
9695 and can be arbitrarily reordered.  The optimization is only
9696 profitable on multiprocessor machines, for loops that are CPU-intensive,
9697 rather than constrained e.g.@: by memory bandwidth.  This option
9698 implies @option{-pthread}, and thus is only supported on targets
9699 that have support for @option{-pthread}.
9701 @item -ftree-pta
9702 @opindex ftree-pta
9703 Perform function-local points-to analysis on trees.  This flag is
9704 enabled by default at @option{-O1} and higher, except for @option{-Og}.
9706 @item -ftree-sra
9707 @opindex ftree-sra
9708 Perform scalar replacement of aggregates.  This pass replaces structure
9709 references with scalars to prevent committing structures to memory too
9710 early.  This flag is enabled by default at @option{-O1} and higher,
9711 except for @option{-Og}.
9713 @item -fstore-merging
9714 @opindex fstore-merging
9715 Perform merging of narrow stores to consecutive memory addresses.  This pass
9716 merges contiguous stores of immediate values narrower than a word into fewer
9717 wider stores to reduce the number of instructions.  This is enabled by default
9718 at @option{-O2} and higher as well as @option{-Os}.
9720 @item -ftree-ter
9721 @opindex ftree-ter
9722 Perform temporary expression replacement during the SSA->normal phase.  Single
9723 use/single def temporaries are replaced at their use location with their
9724 defining expression.  This results in non-GIMPLE code, but gives the expanders
9725 much more complex trees to work on resulting in better RTL generation.  This is
9726 enabled by default at @option{-O} and higher.
9728 @item -ftree-slsr
9729 @opindex ftree-slsr
9730 Perform straight-line strength reduction on trees.  This recognizes related
9731 expressions involving multiplications and replaces them by less expensive
9732 calculations when possible.  This is enabled by default at @option{-O} and
9733 higher.
9735 @item -ftree-vectorize
9736 @opindex ftree-vectorize
9737 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
9738 and @option{-ftree-slp-vectorize} if not explicitly specified.
9740 @item -ftree-loop-vectorize
9741 @opindex ftree-loop-vectorize
9742 Perform loop vectorization on trees. This flag is enabled by default at
9743 @option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
9744 and @option{-fauto-profile}.
9746 @item -ftree-slp-vectorize
9747 @opindex ftree-slp-vectorize
9748 Perform basic block vectorization on trees. This flag is enabled by default at
9749 @option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
9750 and @option{-fauto-profile}.
9752 @item -fvect-cost-model=@var{model}
9753 @opindex fvect-cost-model
9754 Alter the cost model used for vectorization.  The @var{model} argument
9755 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
9756 With the @samp{unlimited} model the vectorized code-path is assumed
9757 to be profitable while with the @samp{dynamic} model a runtime check
9758 guards the vectorized code-path to enable it only for iteration
9759 counts that will likely execute faster than when executing the original
9760 scalar loop.  The @samp{cheap} model disables vectorization of
9761 loops where doing so would be cost prohibitive for example due to
9762 required runtime checks for data dependence or alignment but otherwise
9763 is equal to the @samp{dynamic} model.
9764 The default cost model depends on other optimization flags and is
9765 either @samp{dynamic} or @samp{cheap}.
9767 @item -fsimd-cost-model=@var{model}
9768 @opindex fsimd-cost-model
9769 Alter the cost model used for vectorization of loops marked with the OpenMP
9770 simd directive.  The @var{model} argument should be one of
9771 @samp{unlimited}, @samp{dynamic}, @samp{cheap}.  All values of @var{model}
9772 have the same meaning as described in @option{-fvect-cost-model} and by
9773 default a cost model defined with @option{-fvect-cost-model} is used.
9775 @item -ftree-vrp
9776 @opindex ftree-vrp
9777 Perform Value Range Propagation on trees.  This is similar to the
9778 constant propagation pass, but instead of values, ranges of values are
9779 propagated.  This allows the optimizers to remove unnecessary range
9780 checks like array bound checks and null pointer checks.  This is
9781 enabled by default at @option{-O2} and higher.  Null pointer check
9782 elimination is only done if @option{-fdelete-null-pointer-checks} is
9783 enabled.
9785 @item -fsplit-paths
9786 @opindex fsplit-paths
9787 Split paths leading to loop backedges.  This can improve dead code
9788 elimination and common subexpression elimination.  This is enabled by
9789 default at @option{-O3} and above.
9791 @item -fsplit-ivs-in-unroller
9792 @opindex fsplit-ivs-in-unroller
9793 Enables expression of values of induction variables in later iterations
9794 of the unrolled loop using the value in the first iteration.  This breaks
9795 long dependency chains, thus improving efficiency of the scheduling passes.
9797 A combination of @option{-fweb} and CSE is often sufficient to obtain the
9798 same effect.  However, that is not reliable in cases where the loop body
9799 is more complicated than a single basic block.  It also does not work at all
9800 on some architectures due to restrictions in the CSE pass.
9802 This optimization is enabled by default.
9804 @item -fvariable-expansion-in-unroller
9805 @opindex fvariable-expansion-in-unroller
9806 With this option, the compiler creates multiple copies of some
9807 local variables when unrolling a loop, which can result in superior code.
9809 @item -fpartial-inlining
9810 @opindex fpartial-inlining
9811 Inline parts of functions.  This option has any effect only
9812 when inlining itself is turned on by the @option{-finline-functions}
9813 or @option{-finline-small-functions} options.
9815 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9817 @item -fpredictive-commoning
9818 @opindex fpredictive-commoning
9819 Perform predictive commoning optimization, i.e., reusing computations
9820 (especially memory loads and stores) performed in previous
9821 iterations of loops.
9823 This option is enabled at level @option{-O3}.
9824 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9826 @item -fprefetch-loop-arrays
9827 @opindex fprefetch-loop-arrays
9828 If supported by the target machine, generate instructions to prefetch
9829 memory to improve the performance of loops that access large arrays.
9831 This option may generate better or worse code; results are highly
9832 dependent on the structure of loops within the source code.
9834 Disabled at level @option{-Os}.
9836 @item -fno-printf-return-value
9837 @opindex fno-printf-return-value
9838 @opindex fprintf-return-value
9839 Do not substitute constants for known return value of formatted output
9840 functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
9841 @code{vsnprintf} (but not @code{printf} of @code{fprintf}).  This
9842 transformation allows GCC to optimize or even eliminate branches based
9843 on the known return value of these functions called with arguments that
9844 are either constant, or whose values are known to be in a range that
9845 makes determining the exact return value possible.  For example, when
9846 @option{-fprintf-return-value} is in effect, both the branch and the
9847 body of the @code{if} statement (but not the call to @code{snprint})
9848 can be optimized away when @code{i} is a 32-bit or smaller integer
9849 because the return value is guaranteed to be at most 8.
9851 @smallexample
9852 char buf[9];
9853 if (snprintf (buf, "%08x", i) >= sizeof buf)
9854   @dots{}
9855 @end smallexample
9857 The @option{-fprintf-return-value} option relies on other optimizations
9858 and yields best results with @option{-O2} and above.  It works in tandem
9859 with the @option{-Wformat-overflow} and @option{-Wformat-truncation}
9860 options.  The @option{-fprintf-return-value} option is enabled by default.
9862 @item -fno-peephole
9863 @itemx -fno-peephole2
9864 @opindex fno-peephole
9865 @opindex fpeephole
9866 @opindex fno-peephole2
9867 @opindex fpeephole2
9868 Disable any machine-specific peephole optimizations.  The difference
9869 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9870 are implemented in the compiler; some targets use one, some use the
9871 other, a few use both.
9873 @option{-fpeephole} is enabled by default.
9874 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9876 @item -fno-guess-branch-probability
9877 @opindex fno-guess-branch-probability
9878 @opindex fguess-branch-probability
9879 Do not guess branch probabilities using heuristics.
9881 GCC uses heuristics to guess branch probabilities if they are
9882 not provided by profiling feedback (@option{-fprofile-arcs}).  These
9883 heuristics are based on the control flow graph.  If some branch probabilities
9884 are specified by @code{__builtin_expect}, then the heuristics are
9885 used to guess branch probabilities for the rest of the control flow graph,
9886 taking the @code{__builtin_expect} info into account.  The interactions
9887 between the heuristics and @code{__builtin_expect} can be complex, and in
9888 some cases, it may be useful to disable the heuristics so that the effects
9889 of @code{__builtin_expect} are easier to understand.
9891 It is also possible to specify expected probability of the expression
9892 with @code{__builtin_expect_with_probability} built-in function.
9894 The default is @option{-fguess-branch-probability} at levels
9895 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9897 @item -freorder-blocks
9898 @opindex freorder-blocks
9899 Reorder basic blocks in the compiled function in order to reduce number of
9900 taken branches and improve code locality.
9902 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9904 @item -freorder-blocks-algorithm=@var{algorithm}
9905 @opindex freorder-blocks-algorithm
9906 Use the specified algorithm for basic block reordering.  The
9907 @var{algorithm} argument can be @samp{simple}, which does not increase
9908 code size (except sometimes due to secondary effects like alignment),
9909 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
9910 put all often executed code together, minimizing the number of branches
9911 executed by making extra copies of code.
9913 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
9914 @samp{stc} at levels @option{-O2}, @option{-O3}.
9916 @item -freorder-blocks-and-partition
9917 @opindex freorder-blocks-and-partition
9918 In addition to reordering basic blocks in the compiled function, in order
9919 to reduce number of taken branches, partitions hot and cold basic blocks
9920 into separate sections of the assembly and @file{.o} files, to improve
9921 paging and cache locality performance.
9923 This optimization is automatically turned off in the presence of
9924 exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
9925 section attribute and on any architecture that does not support named
9926 sections.  When @option{-fsplit-stack} is used this option is not
9927 enabled by default (to avoid linker errors), but may be enabled
9928 explicitly (if using a working linker).
9930 Enabled for x86 at levels @option{-O2}, @option{-O3}, @option{-Os}.
9932 @item -freorder-functions
9933 @opindex freorder-functions
9934 Reorder functions in the object file in order to
9935 improve code locality.  This is implemented by using special
9936 subsections @code{.text.hot} for most frequently executed functions and
9937 @code{.text.unlikely} for unlikely executed functions.  Reordering is done by
9938 the linker so object file format must support named sections and linker must
9939 place them in a reasonable way.
9941 This option isn't effective unless you either provide profile feedback
9942 (see @option{-fprofile-arcs} for details) or manually annotate functions with 
9943 @code{hot} or @code{cold} attributes (@pxref{Common Function Attributes}).
9945 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9947 @item -fstrict-aliasing
9948 @opindex fstrict-aliasing
9949 Allow the compiler to assume the strictest aliasing rules applicable to
9950 the language being compiled.  For C (and C++), this activates
9951 optimizations based on the type of expressions.  In particular, an
9952 object of one type is assumed never to reside at the same address as an
9953 object of a different type, unless the types are almost the same.  For
9954 example, an @code{unsigned int} can alias an @code{int}, but not a
9955 @code{void*} or a @code{double}.  A character type may alias any other
9956 type.
9958 @anchor{Type-punning}Pay special attention to code like this:
9959 @smallexample
9960 union a_union @{
9961   int i;
9962   double d;
9965 int f() @{
9966   union a_union t;
9967   t.d = 3.0;
9968   return t.i;
9970 @end smallexample
9971 The practice of reading from a different union member than the one most
9972 recently written to (called ``type-punning'') is common.  Even with
9973 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9974 is accessed through the union type.  So, the code above works as
9975 expected.  @xref{Structures unions enumerations and bit-fields
9976 implementation}.  However, this code might not:
9977 @smallexample
9978 int f() @{
9979   union a_union t;
9980   int* ip;
9981   t.d = 3.0;
9982   ip = &t.i;
9983   return *ip;
9985 @end smallexample
9987 Similarly, access by taking the address, casting the resulting pointer
9988 and dereferencing the result has undefined behavior, even if the cast
9989 uses a union type, e.g.:
9990 @smallexample
9991 int f() @{
9992   double d = 3.0;
9993   return ((union a_union *) &d)->i;
9995 @end smallexample
9997 The @option{-fstrict-aliasing} option is enabled at levels
9998 @option{-O2}, @option{-O3}, @option{-Os}.
10000 @item -falign-functions
10001 @itemx -falign-functions=@var{n}
10002 @itemx -falign-functions=@var{n}:@var{m}
10003 @itemx -falign-functions=@var{n}:@var{m}:@var{n2}
10004 @itemx -falign-functions=@var{n}:@var{m}:@var{n2}:@var{m2}
10005 @opindex falign-functions
10006 Align the start of functions to the next power-of-two greater than
10007 @var{n}, skipping up to @var{m}-1 bytes.  This ensures that at least
10008 the first @var{m} bytes of the function can be fetched by the CPU
10009 without crossing an @var{n}-byte alignment boundary.
10011 If @var{m} is not specified, it defaults to @var{n}.
10013 Examples: @option{-falign-functions=32} aligns functions to the next
10014 32-byte boundary, @option{-falign-functions=24} aligns to the next
10015 32-byte boundary only if this can be done by skipping 23 bytes or less,
10016 @option{-falign-functions=32:7} aligns to the next
10017 32-byte boundary only if this can be done by skipping 6 bytes or less.
10019 The second pair of @var{n2}:@var{m2} values allows you to specify
10020 a secondary alignment: @option{-falign-functions=64:7:32:3} aligns to
10021 the next 64-byte boundary if this can be done by skipping 6 bytes or less,
10022 otherwise aligns to the next 32-byte boundary if this can be done
10023 by skipping 2 bytes or less.
10024 If @var{m2} is not specified, it defaults to @var{n2}.
10026 Some assemblers only support this flag when @var{n} is a power of two;
10027 in that case, it is rounded up.
10029 @option{-fno-align-functions} and @option{-falign-functions=1} are
10030 equivalent and mean that functions are not aligned.
10032 If @var{n} is not specified or is zero, use a machine-dependent default.
10033 The maximum allowed @var{n} option value is 65536.
10035 Enabled at levels @option{-O2}, @option{-O3}.
10037 @item -flimit-function-alignment
10038 If this option is enabled, the compiler tries to avoid unnecessarily
10039 overaligning functions. It attempts to instruct the assembler to align
10040 by the amount specified by @option{-falign-functions}, but not to
10041 skip more bytes than the size of the function.
10043 @item -falign-labels
10044 @itemx -falign-labels=@var{n}
10045 @itemx -falign-labels=@var{n}:@var{m}
10046 @itemx -falign-labels=@var{n}:@var{m}:@var{n2}
10047 @itemx -falign-labels=@var{n}:@var{m}:@var{n2}:@var{m2}
10048 @opindex falign-labels
10049 Align all branch targets to a power-of-two boundary.
10051 Parameters of this option are analogous to the @option{-falign-functions} option.
10052 @option{-fno-align-labels} and @option{-falign-labels=1} are
10053 equivalent and mean that labels are not aligned.
10055 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
10056 are greater than this value, then their values are used instead.
10058 If @var{n} is not specified or is zero, use a machine-dependent default
10059 which is very likely to be @samp{1}, meaning no alignment.
10060 The maximum allowed @var{n} option value is 65536.
10062 Enabled at levels @option{-O2}, @option{-O3}.
10064 @item -falign-loops
10065 @itemx -falign-loops=@var{n}
10066 @itemx -falign-loops=@var{n}:@var{m}
10067 @itemx -falign-loops=@var{n}:@var{m}:@var{n2}
10068 @itemx -falign-loops=@var{n}:@var{m}:@var{n2}:@var{m2}
10069 @opindex falign-loops
10070 Align loops to a power-of-two boundary.  If the loops are executed
10071 many times, this makes up for any execution of the dummy padding
10072 instructions.
10074 Parameters of this option are analogous to the @option{-falign-functions} option.
10075 @option{-fno-align-loops} and @option{-falign-loops=1} are
10076 equivalent and mean that loops are not aligned.
10077 The maximum allowed @var{n} option value is 65536.
10079 If @var{n} is not specified or is zero, use a machine-dependent default.
10081 Enabled at levels @option{-O2}, @option{-O3}.
10083 @item -falign-jumps
10084 @itemx -falign-jumps=@var{n}
10085 @itemx -falign-jumps=@var{n}:@var{m}
10086 @itemx -falign-jumps=@var{n}:@var{m}:@var{n2}
10087 @itemx -falign-jumps=@var{n}:@var{m}:@var{n2}:@var{m2}
10088 @opindex falign-jumps
10089 Align branch targets to a power-of-two boundary, for branch targets
10090 where the targets can only be reached by jumping.  In this case,
10091 no dummy operations need be executed.
10093 Parameters of this option are analogous to the @option{-falign-functions} option.
10094 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
10095 equivalent and mean that loops are not aligned.
10097 If @var{n} is not specified or is zero, use a machine-dependent default.
10098 The maximum allowed @var{n} option value is 65536.
10100 Enabled at levels @option{-O2}, @option{-O3}.
10102 @item -funit-at-a-time
10103 @opindex funit-at-a-time
10104 This option is left for compatibility reasons. @option{-funit-at-a-time}
10105 has no effect, while @option{-fno-unit-at-a-time} implies
10106 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
10108 Enabled by default.
10110 @item -fno-toplevel-reorder
10111 @opindex fno-toplevel-reorder
10112 @opindex ftoplevel-reorder
10113 Do not reorder top-level functions, variables, and @code{asm}
10114 statements.  Output them in the same order that they appear in the
10115 input file.  When this option is used, unreferenced static variables
10116 are not removed.  This option is intended to support existing code
10117 that relies on a particular ordering.  For new code, it is better to
10118 use attributes when possible.
10120 @option{-ftoplevel-reorder} is the default at @option{-O1} and higher, and
10121 also at @option{-O0} if @option{-fsection-anchors} is explicitly requested.
10122 Additionally @option{-fno-toplevel-reorder} implies
10123 @option{-fno-section-anchors}.
10125 @item -fweb
10126 @opindex fweb
10127 Constructs webs as commonly used for register allocation purposes and assign
10128 each web individual pseudo register.  This allows the register allocation pass
10129 to operate on pseudos directly, but also strengthens several other optimization
10130 passes, such as CSE, loop optimizer and trivial dead code remover.  It can,
10131 however, make debugging impossible, since variables no longer stay in a
10132 ``home register''.
10134 Enabled by default with @option{-funroll-loops}.
10136 @item -fwhole-program
10137 @opindex fwhole-program
10138 Assume that the current compilation unit represents the whole program being
10139 compiled.  All public functions and variables with the exception of @code{main}
10140 and those merged by attribute @code{externally_visible} become static functions
10141 and in effect are optimized more aggressively by interprocedural optimizers.
10143 This option should not be used in combination with @option{-flto}.
10144 Instead relying on a linker plugin should provide safer and more precise
10145 information.
10147 @item -flto[=@var{n}]
10148 @opindex flto
10149 This option runs the standard link-time optimizer.  When invoked
10150 with source code, it generates GIMPLE (one of GCC's internal
10151 representations) and writes it to special ELF sections in the object
10152 file.  When the object files are linked together, all the function
10153 bodies are read from these ELF sections and instantiated as if they
10154 had been part of the same translation unit.
10156 To use the link-time optimizer, @option{-flto} and optimization
10157 options should be specified at compile time and during the final link.
10158 It is recommended that you compile all the files participating in the
10159 same link with the same options and also specify those options at
10160 link time.  
10161 For example:
10163 @smallexample
10164 gcc -c -O2 -flto foo.c
10165 gcc -c -O2 -flto bar.c
10166 gcc -o myprog -flto -O2 foo.o bar.o
10167 @end smallexample
10169 The first two invocations to GCC save a bytecode representation
10170 of GIMPLE into special ELF sections inside @file{foo.o} and
10171 @file{bar.o}.  The final invocation reads the GIMPLE bytecode from
10172 @file{foo.o} and @file{bar.o}, merges the two files into a single
10173 internal image, and compiles the result as usual.  Since both
10174 @file{foo.o} and @file{bar.o} are merged into a single image, this
10175 causes all the interprocedural analyses and optimizations in GCC to
10176 work across the two files as if they were a single one.  This means,
10177 for example, that the inliner is able to inline functions in
10178 @file{bar.o} into functions in @file{foo.o} and vice-versa.
10180 Another (simpler) way to enable link-time optimization is:
10182 @smallexample
10183 gcc -o myprog -flto -O2 foo.c bar.c
10184 @end smallexample
10186 The above generates bytecode for @file{foo.c} and @file{bar.c},
10187 merges them together into a single GIMPLE representation and optimizes
10188 them as usual to produce @file{myprog}.
10190 The important thing to keep in mind is that to enable link-time
10191 optimizations you need to use the GCC driver to perform the link step.
10192 GCC automatically performs link-time optimization if any of the
10193 objects involved were compiled with the @option{-flto} command-line option.  
10194 You can always override
10195 the automatic decision to do link-time optimization
10196 by passing @option{-fno-lto} to the link command.
10198 To make whole program optimization effective, it is necessary to make
10199 certain whole program assumptions.  The compiler needs to know
10200 what functions and variables can be accessed by libraries and runtime
10201 outside of the link-time optimized unit.  When supported by the linker,
10202 the linker plugin (see @option{-fuse-linker-plugin}) passes information
10203 to the compiler about used and externally visible symbols.  When
10204 the linker plugin is not available, @option{-fwhole-program} should be
10205 used to allow the compiler to make these assumptions, which leads
10206 to more aggressive optimization decisions.
10208 When a file is compiled with @option{-flto} without
10209 @option{-fuse-linker-plugin}, the generated object file is larger than
10210 a regular object file because it contains GIMPLE bytecodes and the usual
10211 final code (see @option{-ffat-lto-objects}.  This means that
10212 object files with LTO information can be linked as normal object
10213 files; if @option{-fno-lto} is passed to the linker, no
10214 interprocedural optimizations are applied.  Note that when
10215 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
10216 but you cannot perform a regular, non-LTO link on them.
10218 When producing the final binary, GCC only
10219 applies link-time optimizations to those files that contain bytecode.
10220 Therefore, you can mix and match object files and libraries with
10221 GIMPLE bytecodes and final object code.  GCC automatically selects
10222 which files to optimize in LTO mode and which files to link without
10223 further processing.
10225 Generally, options specified at link time override those
10226 specified at compile time, although in some cases GCC attempts to infer
10227 link-time options from the settings used to compile the input files.
10229 If you do not specify an optimization level option @option{-O} at
10230 link time, then GCC uses the highest optimization level 
10231 used when compiling the object files.  Note that it is generally 
10232 ineffective to specify an optimization level option only at link time and 
10233 not at compile time, for two reasons.  First, compiling without 
10234 optimization suppresses compiler passes that gather information 
10235 needed for effective optimization at link time.  Second, some early
10236 optimization passes can be performed only at compile time and 
10237 not at link time.
10239 There are some code generation flags preserved by GCC when
10240 generating bytecodes, as they need to be used during the final link.
10241 Currently, the following options and their settings are taken from
10242 the first object file that explicitly specifies them: 
10243 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
10244 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
10245 and all the @option{-m} target flags.
10247 Certain ABI-changing flags are required to match in all compilation units,
10248 and trying to override this at link time with a conflicting value
10249 is ignored.  This includes options such as @option{-freg-struct-return}
10250 and @option{-fpcc-struct-return}. 
10252 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
10253 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
10254 are passed through to the link stage and merged conservatively for
10255 conflicting translation units.  Specifically
10256 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
10257 precedence; and for example @option{-ffp-contract=off} takes precedence
10258 over @option{-ffp-contract=fast}.  You can override them at link time.
10260 If LTO encounters objects with C linkage declared with incompatible
10261 types in separate translation units to be linked together (undefined
10262 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
10263 issued.  The behavior is still undefined at run time.  Similar
10264 diagnostics may be raised for other languages.
10266 Another feature of LTO is that it is possible to apply interprocedural
10267 optimizations on files written in different languages:
10269 @smallexample
10270 gcc -c -flto foo.c
10271 g++ -c -flto bar.cc
10272 gfortran -c -flto baz.f90
10273 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
10274 @end smallexample
10276 Notice that the final link is done with @command{g++} to get the C++
10277 runtime libraries and @option{-lgfortran} is added to get the Fortran
10278 runtime libraries.  In general, when mixing languages in LTO mode, you
10279 should use the same link command options as when mixing languages in a
10280 regular (non-LTO) compilation.
10282 If object files containing GIMPLE bytecode are stored in a library archive, say
10283 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
10284 are using a linker with plugin support.  To create static libraries suitable
10285 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
10286 and @command{ranlib}; 
10287 to show the symbols of object files with GIMPLE bytecode, use
10288 @command{gcc-nm}.  Those commands require that @command{ar}, @command{ranlib}
10289 and @command{nm} have been compiled with plugin support.  At link time, use the
10290 flag @option{-fuse-linker-plugin} to ensure that the library participates in
10291 the LTO optimization process:
10293 @smallexample
10294 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
10295 @end smallexample
10297 With the linker plugin enabled, the linker extracts the needed
10298 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
10299 to make them part of the aggregated GIMPLE image to be optimized.
10301 If you are not using a linker with plugin support and/or do not
10302 enable the linker plugin, then the objects inside @file{libfoo.a}
10303 are extracted and linked as usual, but they do not participate
10304 in the LTO optimization process.  In order to make a static library suitable
10305 for both LTO optimization and usual linkage, compile its object files with
10306 @option{-flto} @option{-ffat-lto-objects}.
10308 Link-time optimizations do not require the presence of the whole program to
10309 operate.  If the program does not require any symbols to be exported, it is
10310 possible to combine @option{-flto} and @option{-fwhole-program} to allow
10311 the interprocedural optimizers to use more aggressive assumptions which may
10312 lead to improved optimization opportunities.
10313 Use of @option{-fwhole-program} is not needed when linker plugin is
10314 active (see @option{-fuse-linker-plugin}).
10316 The current implementation of LTO makes no
10317 attempt to generate bytecode that is portable between different
10318 types of hosts.  The bytecode files are versioned and there is a
10319 strict version check, so bytecode files generated in one version of
10320 GCC do not work with an older or newer version of GCC.
10322 Link-time optimization does not work well with generation of debugging
10323 information on systems other than those using a combination of ELF and
10324 DWARF.
10326 If you specify the optional @var{n}, the optimization and code
10327 generation done at link time is executed in parallel using @var{n}
10328 parallel jobs by utilizing an installed @command{make} program.  The
10329 environment variable @env{MAKE} may be used to override the program
10330 used.  The default value for @var{n} is 1.
10332 You can also specify @option{-flto=jobserver} to use GNU make's
10333 job server mode to determine the number of parallel jobs. This
10334 is useful when the Makefile calling GCC is already executing in parallel.
10335 You must prepend a @samp{+} to the command recipe in the parent Makefile
10336 for this to work.  This option likely only works if @env{MAKE} is
10337 GNU make.
10339 @item -flto-partition=@var{alg}
10340 @opindex flto-partition
10341 Specify the partitioning algorithm used by the link-time optimizer.
10342 The value is either @samp{1to1} to specify a partitioning mirroring
10343 the original source files or @samp{balanced} to specify partitioning
10344 into equally sized chunks (whenever possible) or @samp{max} to create
10345 new partition for every symbol where possible.  Specifying @samp{none}
10346 as an algorithm disables partitioning and streaming completely. 
10347 The default value is @samp{balanced}. While @samp{1to1} can be used
10348 as an workaround for various code ordering issues, the @samp{max}
10349 partitioning is intended for internal testing only.
10350 The value @samp{one} specifies that exactly one partition should be
10351 used while the value @samp{none} bypasses partitioning and executes
10352 the link-time optimization step directly from the WPA phase.
10354 @item -flto-odr-type-merging
10355 @opindex flto-odr-type-merging
10356 Enable streaming of mangled types names of C++ types and their unification
10357 at link time.  This increases size of LTO object files, but enables
10358 diagnostics about One Definition Rule violations.
10360 @item -flto-compression-level=@var{n}
10361 @opindex flto-compression-level
10362 This option specifies the level of compression used for intermediate
10363 language written to LTO object files, and is only meaningful in
10364 conjunction with LTO mode (@option{-flto}).  Valid
10365 values are 0 (no compression) to 9 (maximum compression).  Values
10366 outside this range are clamped to either 0 or 9.  If the option is not
10367 given, a default balanced compression setting is used.
10369 @item -fuse-linker-plugin
10370 @opindex fuse-linker-plugin
10371 Enables the use of a linker plugin during link-time optimization.  This
10372 option relies on plugin support in the linker, which is available in gold
10373 or in GNU ld 2.21 or newer.
10375 This option enables the extraction of object files with GIMPLE bytecode out
10376 of library archives. This improves the quality of optimization by exposing
10377 more code to the link-time optimizer.  This information specifies what
10378 symbols can be accessed externally (by non-LTO object or during dynamic
10379 linking).  Resulting code quality improvements on binaries (and shared
10380 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
10381 See @option{-flto} for a description of the effect of this flag and how to
10382 use it.
10384 This option is enabled by default when LTO support in GCC is enabled
10385 and GCC was configured for use with
10386 a linker supporting plugins (GNU ld 2.21 or newer or gold).
10388 @item -ffat-lto-objects
10389 @opindex ffat-lto-objects
10390 Fat LTO objects are object files that contain both the intermediate language
10391 and the object code. This makes them usable for both LTO linking and normal
10392 linking. This option is effective only when compiling with @option{-flto}
10393 and is ignored at link time.
10395 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
10396 requires the complete toolchain to be aware of LTO. It requires a linker with
10397 linker plugin support for basic functionality.  Additionally,
10398 @command{nm}, @command{ar} and @command{ranlib}
10399 need to support linker plugins to allow a full-featured build environment
10400 (capable of building static libraries etc).  GCC provides the @command{gcc-ar},
10401 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
10402 to these tools. With non fat LTO makefiles need to be modified to use them.
10404 Note that modern binutils provide plugin auto-load mechanism.
10405 Installing the linker plugin into @file{$libdir/bfd-plugins} has the same
10406 effect as usage of the command wrappers (@command{gcc-ar}, @command{gcc-nm} and
10407 @command{gcc-ranlib}).
10409 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
10410 support.
10412 @item -fcompare-elim
10413 @opindex fcompare-elim
10414 After register allocation and post-register allocation instruction splitting,
10415 identify arithmetic instructions that compute processor flags similar to a
10416 comparison operation based on that arithmetic.  If possible, eliminate the
10417 explicit comparison operation.
10419 This pass only applies to certain targets that cannot explicitly represent
10420 the comparison operation before register allocation is complete.
10422 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10424 @item -fcprop-registers
10425 @opindex fcprop-registers
10426 After register allocation and post-register allocation instruction splitting,
10427 perform a copy-propagation pass to try to reduce scheduling dependencies
10428 and occasionally eliminate the copy.
10430 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10432 @item -fprofile-correction
10433 @opindex fprofile-correction
10434 Profiles collected using an instrumented binary for multi-threaded programs may
10435 be inconsistent due to missed counter updates. When this option is specified,
10436 GCC uses heuristics to correct or smooth out such inconsistencies. By
10437 default, GCC emits an error message when an inconsistent profile is detected.
10439 This option is enabled by @option{-fauto-profile}.
10441 @item -fprofile-use
10442 @itemx -fprofile-use=@var{path}
10443 @opindex fprofile-use
10444 Enable profile feedback-directed optimizations, 
10445 and the following optimizations, many of which
10446 are generally profitable only with profile feedback available:
10448 @gccoptlist{-fbranch-probabilities  -fprofile-values @gol
10449 -funroll-loops  -fpeel-loops  -ftracer  -fvpt @gol
10450 -finline-functions  -fipa-cp  -fipa-cp-clone  -fipa-bit-cp @gol
10451 -fpredictive-commoning  -fsplit-loops  -funswitch-loops @gol
10452 -fgcse-after-reload  -ftree-loop-vectorize  -ftree-slp-vectorize @gol
10453 -fvect-cost-model=dynamic  -ftree-loop-distribute-patterns @gol
10454 -fprofile-reorder-functions}
10456 Before you can use this option, you must first generate profiling information.
10457 @xref{Instrumentation Options}, for information about the
10458 @option{-fprofile-generate} option.
10460 By default, GCC emits an error message if the feedback profiles do not
10461 match the source code.  This error can be turned into a warning by using
10462 @option{-Wno-error=coverage-mismatch}.  Note this may result in poorly
10463 optimized code.  Additionally, by default, GCC also emits a warning message if
10464 the feedback profiles do not exist (see @option{-Wmissing-profile}).
10466 If @var{path} is specified, GCC looks at the @var{path} to find
10467 the profile feedback data files. See @option{-fprofile-dir}.
10469 @item -fauto-profile
10470 @itemx -fauto-profile=@var{path}
10471 @opindex fauto-profile
10472 Enable sampling-based feedback-directed optimizations, 
10473 and the following optimizations,
10474 many of which are generally profitable only with profile feedback available:
10476 @gccoptlist{-fbranch-probabilities  -fprofile-values @gol
10477 -funroll-loops  -fpeel-loops  -ftracer  -fvpt @gol
10478 -finline-functions  -fipa-cp  -fipa-cp-clone  -fipa-bit-cp @gol
10479 -fpredictive-commoning  -fsplit-loops  -funswitch-loops @gol
10480 -fgcse-after-reload  -ftree-loop-vectorize  -ftree-slp-vectorize @gol
10481 -fvect-cost-model=dynamic  -ftree-loop-distribute-patterns @gol
10482 -fprofile-correction}
10484 @var{path} is the name of a file containing AutoFDO profile information.
10485 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
10487 Producing an AutoFDO profile data file requires running your program
10488 with the @command{perf} utility on a supported GNU/Linux target system.
10489 For more information, see @uref{https://perf.wiki.kernel.org/}.
10491 E.g.
10492 @smallexample
10493 perf record -e br_inst_retired:near_taken -b -o perf.data \
10494     -- your_program
10495 @end smallexample
10497 Then use the @command{create_gcov} tool to convert the raw profile data
10498 to a format that can be used by GCC.@  You must also supply the 
10499 unstripped binary for your program to this tool.  
10500 See @uref{https://github.com/google/autofdo}.
10502 E.g.
10503 @smallexample
10504 create_gcov --binary=your_program.unstripped --profile=perf.data \
10505     --gcov=profile.afdo
10506 @end smallexample
10507 @end table
10509 The following options control compiler behavior regarding floating-point 
10510 arithmetic.  These options trade off between speed and
10511 correctness.  All must be specifically enabled.
10513 @table @gcctabopt
10514 @item -ffloat-store
10515 @opindex ffloat-store
10516 Do not store floating-point variables in registers, and inhibit other
10517 options that might change whether a floating-point value is taken from a
10518 register or memory.
10520 @cindex floating-point precision
10521 This option prevents undesirable excess precision on machines such as
10522 the 68000 where the floating registers (of the 68881) keep more
10523 precision than a @code{double} is supposed to have.  Similarly for the
10524 x86 architecture.  For most programs, the excess precision does only
10525 good, but a few programs rely on the precise definition of IEEE floating
10526 point.  Use @option{-ffloat-store} for such programs, after modifying
10527 them to store all pertinent intermediate computations into variables.
10529 @item -fexcess-precision=@var{style}
10530 @opindex fexcess-precision
10531 This option allows further control over excess precision on machines
10532 where floating-point operations occur in a format with more precision or
10533 range than the IEEE standard and interchange floating-point types.  By
10534 default, @option{-fexcess-precision=fast} is in effect; this means that
10535 operations may be carried out in a wider precision than the types specified
10536 in the source if that would result in faster code, and it is unpredictable
10537 when rounding to the types specified in the source code takes place.
10538 When compiling C, if @option{-fexcess-precision=standard} is specified then
10539 excess precision follows the rules specified in ISO C99; in particular,
10540 both casts and assignments cause values to be rounded to their
10541 semantic types (whereas @option{-ffloat-store} only affects
10542 assignments).  This option is enabled by default for C if a strict
10543 conformance option such as @option{-std=c99} is used.
10544 @option{-ffast-math} enables @option{-fexcess-precision=fast} by default
10545 regardless of whether a strict conformance option is used.
10547 @opindex mfpmath
10548 @option{-fexcess-precision=standard} is not implemented for languages
10549 other than C.  On the x86, it has no effect if @option{-mfpmath=sse}
10550 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
10551 semantics apply without excess precision, and in the latter, rounding
10552 is unpredictable.
10554 @item -ffast-math
10555 @opindex ffast-math
10556 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
10557 @option{-ffinite-math-only}, @option{-fno-rounding-math},
10558 @option{-fno-signaling-nans}, @option{-fcx-limited-range} and
10559 @option{-fexcess-precision=fast}.
10561 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
10563 This option is not turned on by any @option{-O} option besides
10564 @option{-Ofast} since it can result in incorrect output for programs
10565 that depend on an exact implementation of IEEE or ISO rules/specifications
10566 for math functions. It may, however, yield faster code for programs
10567 that do not require the guarantees of these specifications.
10569 @item -fno-math-errno
10570 @opindex fno-math-errno
10571 @opindex fmath-errno
10572 Do not set @code{errno} after calling math functions that are executed
10573 with a single instruction, e.g., @code{sqrt}.  A program that relies on
10574 IEEE exceptions for math error handling may want to use this flag
10575 for speed while maintaining IEEE arithmetic compatibility.
10577 This option is not turned on by any @option{-O} option since
10578 it can result in incorrect output for programs that depend on
10579 an exact implementation of IEEE or ISO rules/specifications for
10580 math functions. It may, however, yield faster code for programs
10581 that do not require the guarantees of these specifications.
10583 The default is @option{-fmath-errno}.
10585 On Darwin systems, the math library never sets @code{errno}.  There is
10586 therefore no reason for the compiler to consider the possibility that
10587 it might, and @option{-fno-math-errno} is the default.
10589 @item -funsafe-math-optimizations
10590 @opindex funsafe-math-optimizations
10592 Allow optimizations for floating-point arithmetic that (a) assume
10593 that arguments and results are valid and (b) may violate IEEE or
10594 ANSI standards.  When used at link time, it may include libraries
10595 or startup files that change the default FPU control word or other
10596 similar optimizations.
10598 This option is not turned on by any @option{-O} option since
10599 it can result in incorrect output for programs that depend on
10600 an exact implementation of IEEE or ISO rules/specifications for
10601 math functions. It may, however, yield faster code for programs
10602 that do not require the guarantees of these specifications.
10603 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
10604 @option{-fassociative-math} and @option{-freciprocal-math}.
10606 The default is @option{-fno-unsafe-math-optimizations}.
10608 @item -fassociative-math
10609 @opindex fassociative-math
10611 Allow re-association of operands in series of floating-point operations.
10612 This violates the ISO C and C++ language standard by possibly changing
10613 computation result.  NOTE: re-ordering may change the sign of zero as
10614 well as ignore NaNs and inhibit or create underflow or overflow (and
10615 thus cannot be used on code that relies on rounding behavior like
10616 @code{(x + 2**52) - 2**52}.  May also reorder floating-point comparisons
10617 and thus may not be used when ordered comparisons are required.
10618 This option requires that both @option{-fno-signed-zeros} and
10619 @option{-fno-trapping-math} be in effect.  Moreover, it doesn't make
10620 much sense with @option{-frounding-math}. For Fortran the option
10621 is automatically enabled when both @option{-fno-signed-zeros} and
10622 @option{-fno-trapping-math} are in effect.
10624 The default is @option{-fno-associative-math}.
10626 @item -freciprocal-math
10627 @opindex freciprocal-math
10629 Allow the reciprocal of a value to be used instead of dividing by
10630 the value if this enables optimizations.  For example @code{x / y}
10631 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
10632 is subject to common subexpression elimination.  Note that this loses
10633 precision and increases the number of flops operating on the value.
10635 The default is @option{-fno-reciprocal-math}.
10637 @item -ffinite-math-only
10638 @opindex ffinite-math-only
10639 Allow optimizations for floating-point arithmetic that assume
10640 that arguments and results are not NaNs or +-Infs.
10642 This option is not turned on by any @option{-O} option since
10643 it can result in incorrect output for programs that depend on
10644 an exact implementation of IEEE or ISO rules/specifications for
10645 math functions. It may, however, yield faster code for programs
10646 that do not require the guarantees of these specifications.
10648 The default is @option{-fno-finite-math-only}.
10650 @item -fno-signed-zeros
10651 @opindex fno-signed-zeros
10652 @opindex fsigned-zeros
10653 Allow optimizations for floating-point arithmetic that ignore the
10654 signedness of zero.  IEEE arithmetic specifies the behavior of
10655 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
10656 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
10657 This option implies that the sign of a zero result isn't significant.
10659 The default is @option{-fsigned-zeros}.
10661 @item -fno-trapping-math
10662 @opindex fno-trapping-math
10663 @opindex ftrapping-math
10664 Compile code assuming that floating-point operations cannot generate
10665 user-visible traps.  These traps include division by zero, overflow,
10666 underflow, inexact result and invalid operation.  This option requires
10667 that @option{-fno-signaling-nans} be in effect.  Setting this option may
10668 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
10670 This option should never be turned on by any @option{-O} option since
10671 it can result in incorrect output for programs that depend on
10672 an exact implementation of IEEE or ISO rules/specifications for
10673 math functions.
10675 The default is @option{-ftrapping-math}.
10677 @item -frounding-math
10678 @opindex frounding-math
10679 Disable transformations and optimizations that assume default floating-point
10680 rounding behavior.  This is round-to-zero for all floating point
10681 to integer conversions, and round-to-nearest for all other arithmetic
10682 truncations.  This option should be specified for programs that change
10683 the FP rounding mode dynamically, or that may be executed with a
10684 non-default rounding mode.  This option disables constant folding of
10685 floating-point expressions at compile time (which may be affected by
10686 rounding mode) and arithmetic transformations that are unsafe in the
10687 presence of sign-dependent rounding modes.
10689 The default is @option{-fno-rounding-math}.
10691 This option is experimental and does not currently guarantee to
10692 disable all GCC optimizations that are affected by rounding mode.
10693 Future versions of GCC may provide finer control of this setting
10694 using C99's @code{FENV_ACCESS} pragma.  This command-line option
10695 will be used to specify the default state for @code{FENV_ACCESS}.
10697 @item -fsignaling-nans
10698 @opindex fsignaling-nans
10699 Compile code assuming that IEEE signaling NaNs may generate user-visible
10700 traps during floating-point operations.  Setting this option disables
10701 optimizations that may change the number of exceptions visible with
10702 signaling NaNs.  This option implies @option{-ftrapping-math}.
10704 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
10705 be defined.
10707 The default is @option{-fno-signaling-nans}.
10709 This option is experimental and does not currently guarantee to
10710 disable all GCC optimizations that affect signaling NaN behavior.
10712 @item -fno-fp-int-builtin-inexact
10713 @opindex fno-fp-int-builtin-inexact
10714 @opindex ffp-int-builtin-inexact
10715 Do not allow the built-in functions @code{ceil}, @code{floor},
10716 @code{round} and @code{trunc}, and their @code{float} and @code{long
10717 double} variants, to generate code that raises the ``inexact''
10718 floating-point exception for noninteger arguments.  ISO C99 and C11
10719 allow these functions to raise the ``inexact'' exception, but ISO/IEC
10720 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
10721 functions to do so.
10723 The default is @option{-ffp-int-builtin-inexact}, allowing the
10724 exception to be raised.  This option does nothing unless
10725 @option{-ftrapping-math} is in effect.
10727 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
10728 generate a call to a library function then the ``inexact'' exception
10729 may be raised if the library implementation does not follow TS 18661.
10731 @item -fsingle-precision-constant
10732 @opindex fsingle-precision-constant
10733 Treat floating-point constants as single precision instead of
10734 implicitly converting them to double-precision constants.
10736 @item -fcx-limited-range
10737 @opindex fcx-limited-range
10738 When enabled, this option states that a range reduction step is not
10739 needed when performing complex division.  Also, there is no checking
10740 whether the result of a complex multiplication or division is @code{NaN
10741 + I*NaN}, with an attempt to rescue the situation in that case.  The
10742 default is @option{-fno-cx-limited-range}, but is enabled by
10743 @option{-ffast-math}.
10745 This option controls the default setting of the ISO C99
10746 @code{CX_LIMITED_RANGE} pragma.  Nevertheless, the option applies to
10747 all languages.
10749 @item -fcx-fortran-rules
10750 @opindex fcx-fortran-rules
10751 Complex multiplication and division follow Fortran rules.  Range
10752 reduction is done as part of complex division, but there is no checking
10753 whether the result of a complex multiplication or division is @code{NaN
10754 + I*NaN}, with an attempt to rescue the situation in that case.
10756 The default is @option{-fno-cx-fortran-rules}.
10758 @end table
10760 The following options control optimizations that may improve
10761 performance, but are not enabled by any @option{-O} options.  This
10762 section includes experimental options that may produce broken code.
10764 @table @gcctabopt
10765 @item -fbranch-probabilities
10766 @opindex fbranch-probabilities
10767 After running a program compiled with @option{-fprofile-arcs}
10768 (@pxref{Instrumentation Options}),
10769 you can compile it a second time using
10770 @option{-fbranch-probabilities}, to improve optimizations based on
10771 the number of times each branch was taken.  When a program
10772 compiled with @option{-fprofile-arcs} exits, it saves arc execution
10773 counts to a file called @file{@var{sourcename}.gcda} for each source
10774 file.  The information in this data file is very dependent on the
10775 structure of the generated code, so you must use the same source code
10776 and the same optimization options for both compilations.
10778 With @option{-fbranch-probabilities}, GCC puts a
10779 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
10780 These can be used to improve optimization.  Currently, they are only
10781 used in one place: in @file{reorg.c}, instead of guessing which path a
10782 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
10783 exactly determine which path is taken more often.
10785 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10787 @item -fprofile-values
10788 @opindex fprofile-values
10789 If combined with @option{-fprofile-arcs}, it adds code so that some
10790 data about values of expressions in the program is gathered.
10792 With @option{-fbranch-probabilities}, it reads back the data gathered
10793 from profiling values of expressions for usage in optimizations.
10795 Enabled by @option{-fprofile-generate}, @option{-fprofile-use}, and
10796 @option{-fauto-profile}.
10798 @item -fprofile-reorder-functions
10799 @opindex fprofile-reorder-functions
10800 Function reordering based on profile instrumentation collects
10801 first time of execution of a function and orders these functions
10802 in ascending order.
10804 Enabled with @option{-fprofile-use}.
10806 @item -fvpt
10807 @opindex fvpt
10808 If combined with @option{-fprofile-arcs}, this option instructs the compiler
10809 to add code to gather information about values of expressions.
10811 With @option{-fbranch-probabilities}, it reads back the data gathered
10812 and actually performs the optimizations based on them.
10813 Currently the optimizations include specialization of division operations
10814 using the knowledge about the value of the denominator.
10816 Enabled with @option{-fprofile-use} and @option{-fauto-profile}.
10818 @item -frename-registers
10819 @opindex frename-registers
10820 Attempt to avoid false dependencies in scheduled code by making use
10821 of registers left over after register allocation.  This optimization
10822 most benefits processors with lots of registers.  Depending on the
10823 debug information format adopted by the target, however, it can
10824 make debugging impossible, since variables no longer stay in
10825 a ``home register''.
10827 Enabled by default with @option{-funroll-loops}.
10829 @item -fschedule-fusion
10830 @opindex fschedule-fusion
10831 Performs a target dependent pass over the instruction stream to schedule
10832 instructions of same type together because target machine can execute them
10833 more efficiently if they are adjacent to each other in the instruction flow.
10835 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10837 @item -ftracer
10838 @opindex ftracer
10839 Perform tail duplication to enlarge superblock size.  This transformation
10840 simplifies the control flow of the function allowing other optimizations to do
10841 a better job.
10843 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10845 @item -funroll-loops
10846 @opindex funroll-loops
10847 Unroll loops whose number of iterations can be determined at compile time or
10848 upon entry to the loop.  @option{-funroll-loops} implies
10849 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10850 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10851 a small constant number of iterations).  This option makes code larger, and may
10852 or may not make it run faster.
10854 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10856 @item -funroll-all-loops
10857 @opindex funroll-all-loops
10858 Unroll all loops, even if their number of iterations is uncertain when
10859 the loop is entered.  This usually makes programs run more slowly.
10860 @option{-funroll-all-loops} implies the same options as
10861 @option{-funroll-loops}.
10863 @item -fpeel-loops
10864 @opindex fpeel-loops
10865 Peels loops for which there is enough information that they do not
10866 roll much (from profile feedback or static analysis).  It also turns on
10867 complete loop peeling (i.e.@: complete removal of loops with small constant
10868 number of iterations).
10870 Enabled by @option{-O3}, @option{-fprofile-use}, and @option{-fauto-profile}.
10872 @item -fmove-loop-invariants
10873 @opindex fmove-loop-invariants
10874 Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
10875 at level @option{-O1} and higher, except for @option{-Og}.
10877 @item -fsplit-loops
10878 @opindex fsplit-loops
10879 Split a loop into two if it contains a condition that's always true
10880 for one side of the iteration space and false for the other.
10882 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10884 @item -funswitch-loops
10885 @opindex funswitch-loops
10886 Move branches with loop invariant conditions out of the loop, with duplicates
10887 of the loop on both branches (modified according to result of the condition).
10889 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10891 @item -fversion-loops-for-strides
10892 @opindex fversion-loops-for-strides
10893 If a loop iterates over an array with a variable stride, create another
10894 version of the loop that assumes the stride is always one.  For example:
10896 @smallexample
10897 for (int i = 0; i < n; ++i)
10898   x[i * stride] = @dots{};
10899 @end smallexample
10901 becomes:
10903 @smallexample
10904 if (stride == 1)
10905   for (int i = 0; i < n; ++i)
10906     x[i] = @dots{};
10907 else
10908   for (int i = 0; i < n; ++i)
10909     x[i * stride] = @dots{};
10910 @end smallexample
10912 This is particularly useful for assumed-shape arrays in Fortran where
10913 (for example) it allows better vectorization assuming contiguous accesses.
10914 This flag is enabled by default at @option{-O3}.
10915 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10917 @item -ffunction-sections
10918 @itemx -fdata-sections
10919 @opindex ffunction-sections
10920 @opindex fdata-sections
10921 Place each function or data item into its own section in the output
10922 file if the target supports arbitrary sections.  The name of the
10923 function or the name of the data item determines the section's name
10924 in the output file.
10926 Use these options on systems where the linker can perform optimizations to
10927 improve locality of reference in the instruction space.  Most systems using the
10928 ELF object format have linkers with such optimizations.  On AIX, the linker
10929 rearranges sections (CSECTs) based on the call graph.  The performance impact
10930 varies.
10932 Together with a linker garbage collection (linker @option{--gc-sections}
10933 option) these options may lead to smaller statically-linked executables (after
10934 stripping).
10936 On ELF/DWARF systems these options do not degenerate the quality of the debug
10937 information.  There could be issues with other object files/debug info formats.
10939 Only use these options when there are significant benefits from doing so.  When
10940 you specify these options, the assembler and linker create larger object and
10941 executable files and are also slower.  These options affect code generation.
10942 They prevent optimizations by the compiler and assembler using relative
10943 locations inside a translation unit since the locations are unknown until
10944 link time.  An example of such an optimization is relaxing calls to short call
10945 instructions.
10947 @item -fbranch-target-load-optimize
10948 @opindex fbranch-target-load-optimize
10949 Perform branch target register load optimization before prologue / epilogue
10950 threading.
10951 The use of target registers can typically be exposed only during reload,
10952 thus hoisting loads out of loops and doing inter-block scheduling needs
10953 a separate optimization pass.
10955 @item -fbranch-target-load-optimize2
10956 @opindex fbranch-target-load-optimize2
10957 Perform branch target register load optimization after prologue / epilogue
10958 threading.
10960 @item -fbtr-bb-exclusive
10961 @opindex fbtr-bb-exclusive
10962 When performing branch target register load optimization, don't reuse
10963 branch target registers within any basic block.
10965 @item -fstdarg-opt
10966 @opindex fstdarg-opt
10967 Optimize the prologue of variadic argument functions with respect to usage of
10968 those arguments.
10970 @item -fsection-anchors
10971 @opindex fsection-anchors
10972 Try to reduce the number of symbolic address calculations by using
10973 shared ``anchor'' symbols to address nearby objects.  This transformation
10974 can help to reduce the number of GOT entries and GOT accesses on some
10975 targets.
10977 For example, the implementation of the following function @code{foo}:
10979 @smallexample
10980 static int a, b, c;
10981 int foo (void) @{ return a + b + c; @}
10982 @end smallexample
10984 @noindent
10985 usually calculates the addresses of all three variables, but if you
10986 compile it with @option{-fsection-anchors}, it accesses the variables
10987 from a common anchor point instead.  The effect is similar to the
10988 following pseudocode (which isn't valid C):
10990 @smallexample
10991 int foo (void)
10993   register int *xr = &x;
10994   return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10996 @end smallexample
10998 Not all targets support this option.
11000 @item --param @var{name}=@var{value}
11001 @opindex param
11002 In some places, GCC uses various constants to control the amount of
11003 optimization that is done.  For example, GCC does not inline functions
11004 that contain more than a certain number of instructions.  You can
11005 control some of these constants on the command line using the
11006 @option{--param} option.
11008 The names of specific parameters, and the meaning of the values, are
11009 tied to the internals of the compiler, and are subject to change
11010 without notice in future releases.
11012 In order to get minimal, maximal and default value of a parameter,
11013 one can use @option{--help=param -Q} options.
11015 In each case, the @var{value} is an integer.  The allowable choices for
11016 @var{name} are:
11018 @table @gcctabopt
11019 @item predictable-branch-outcome
11020 When branch is predicted to be taken with probability lower than this threshold
11021 (in percent), then it is considered well predictable.
11023 @item max-rtl-if-conversion-insns
11024 RTL if-conversion tries to remove conditional branches around a block and
11025 replace them with conditionally executed instructions.  This parameter
11026 gives the maximum number of instructions in a block which should be
11027 considered for if-conversion.  The compiler will
11028 also use other heuristics to decide whether if-conversion is likely to be
11029 profitable.
11031 @item max-rtl-if-conversion-predictable-cost
11032 @itemx max-rtl-if-conversion-unpredictable-cost
11033 RTL if-conversion will try to remove conditional branches around a block
11034 and replace them with conditionally executed instructions.  These parameters
11035 give the maximum permissible cost for the sequence that would be generated
11036 by if-conversion depending on whether the branch is statically determined
11037 to be predictable or not.  The units for this parameter are the same as
11038 those for the GCC internal seq_cost metric.  The compiler will try to
11039 provide a reasonable default for this parameter using the BRANCH_COST
11040 target macro.
11042 @item max-crossjump-edges
11043 The maximum number of incoming edges to consider for cross-jumping.
11044 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
11045 the number of edges incoming to each block.  Increasing values mean
11046 more aggressive optimization, making the compilation time increase with
11047 probably small improvement in executable size.
11049 @item min-crossjump-insns
11050 The minimum number of instructions that must be matched at the end
11051 of two blocks before cross-jumping is performed on them.  This
11052 value is ignored in the case where all instructions in the block being
11053 cross-jumped from are matched.
11055 @item max-grow-copy-bb-insns
11056 The maximum code size expansion factor when copying basic blocks
11057 instead of jumping.  The expansion is relative to a jump instruction.
11059 @item max-goto-duplication-insns
11060 The maximum number of instructions to duplicate to a block that jumps
11061 to a computed goto.  To avoid @math{O(N^2)} behavior in a number of
11062 passes, GCC factors computed gotos early in the compilation process,
11063 and unfactors them as late as possible.  Only computed jumps at the
11064 end of a basic blocks with no more than max-goto-duplication-insns are
11065 unfactored.
11067 @item max-delay-slot-insn-search
11068 The maximum number of instructions to consider when looking for an
11069 instruction to fill a delay slot.  If more than this arbitrary number of
11070 instructions are searched, the time savings from filling the delay slot
11071 are minimal, so stop searching.  Increasing values mean more
11072 aggressive optimization, making the compilation time increase with probably
11073 small improvement in execution time.
11075 @item max-delay-slot-live-search
11076 When trying to fill delay slots, the maximum number of instructions to
11077 consider when searching for a block with valid live register
11078 information.  Increasing this arbitrarily chosen value means more
11079 aggressive optimization, increasing the compilation time.  This parameter
11080 should be removed when the delay slot code is rewritten to maintain the
11081 control-flow graph.
11083 @item max-gcse-memory
11084 The approximate maximum amount of memory that can be allocated in
11085 order to perform the global common subexpression elimination
11086 optimization.  If more memory than specified is required, the
11087 optimization is not done.
11089 @item max-gcse-insertion-ratio
11090 If the ratio of expression insertions to deletions is larger than this value
11091 for any expression, then RTL PRE inserts or removes the expression and thus
11092 leaves partially redundant computations in the instruction stream.
11094 @item max-pending-list-length
11095 The maximum number of pending dependencies scheduling allows
11096 before flushing the current state and starting over.  Large functions
11097 with few branches or calls can create excessively large lists which
11098 needlessly consume memory and resources.
11100 @item max-modulo-backtrack-attempts
11101 The maximum number of backtrack attempts the scheduler should make
11102 when modulo scheduling a loop.  Larger values can exponentially increase
11103 compilation time.
11105 @item max-inline-insns-single
11106 Several parameters control the tree inliner used in GCC@.
11107 This number sets the maximum number of instructions (counted in GCC's
11108 internal representation) in a single function that the tree inliner
11109 considers for inlining.  This only affects functions declared
11110 inline and methods implemented in a class declaration (C++).
11112 @item max-inline-insns-auto
11113 When you use @option{-finline-functions} (included in @option{-O3}),
11114 a lot of functions that would otherwise not be considered for inlining
11115 by the compiler are investigated.  To those functions, a different
11116 (more restrictive) limit compared to functions declared inline can
11117 be applied.
11119 @item max-inline-insns-small
11120 This is bound applied to calls which are considered relevant with
11121 @option{-finline-small-functions}.
11123 @item max-inline-insns-size
11124 This is bound applied to calls which are optimized for size. Small growth
11125 may be desirable to anticipate optimization oppurtunities exposed by inlining.
11127 @item uninlined-function-insns
11128 Number of instructions accounted by inliner for function overhead such as
11129 function prologue and epilogue.
11131 @item uninlined-function-time
11132 Extra time accounted by inliner for function overhead such as time needed to
11133 execute function prologue and epilogue
11135 @item uninlined-thunk-insns
11136 @item uninlined-thunk-time
11137 Same as @option{--param uninlined-function-insns} and
11138 @option{--param uninlined-function-time} but applied to function thunks
11140 @item inline-min-speedup
11141 When estimated performance improvement of caller + callee runtime exceeds this
11142 threshold (in percent), the function can be inlined regardless of the limit on
11143 @option{--param max-inline-insns-single} and @option{--param
11144 max-inline-insns-auto}.
11146 @item large-function-insns
11147 The limit specifying really large functions.  For functions larger than this
11148 limit after inlining, inlining is constrained by
11149 @option{--param large-function-growth}.  This parameter is useful primarily
11150 to avoid extreme compilation time caused by non-linear algorithms used by the
11151 back end.
11153 @item large-function-growth
11154 Specifies maximal growth of large function caused by inlining in percents.
11155 For example, parameter value 100 limits large function growth to 2.0 times
11156 the original size.
11158 @item large-unit-insns
11159 The limit specifying large translation unit.  Growth caused by inlining of
11160 units larger than this limit is limited by @option{--param inline-unit-growth}.
11161 For small units this might be too tight.
11162 For example, consider a unit consisting of function A
11163 that is inline and B that just calls A three times.  If B is small relative to
11164 A, the growth of unit is 300\% and yet such inlining is very sane.  For very
11165 large units consisting of small inlineable functions, however, the overall unit
11166 growth limit is needed to avoid exponential explosion of code size.  Thus for
11167 smaller units, the size is increased to @option{--param large-unit-insns}
11168 before applying @option{--param inline-unit-growth}.
11170 @item inline-unit-growth
11171 Specifies maximal overall growth of the compilation unit caused by inlining.
11172 For example, parameter value 20 limits unit growth to 1.2 times the original
11173 size. Cold functions (either marked cold via an attribute or by profile
11174 feedback) are not accounted into the unit size.
11176 @item ipcp-unit-growth
11177 Specifies maximal overall growth of the compilation unit caused by
11178 interprocedural constant propagation.  For example, parameter value 10 limits
11179 unit growth to 1.1 times the original size.
11181 @item large-stack-frame
11182 The limit specifying large stack frames.  While inlining the algorithm is trying
11183 to not grow past this limit too much.
11185 @item large-stack-frame-growth
11186 Specifies maximal growth of large stack frames caused by inlining in percents.
11187 For example, parameter value 1000 limits large stack frame growth to 11 times
11188 the original size.
11190 @item max-inline-insns-recursive
11191 @itemx max-inline-insns-recursive-auto
11192 Specifies the maximum number of instructions an out-of-line copy of a
11193 self-recursive inline
11194 function can grow into by performing recursive inlining.
11196 @option{--param max-inline-insns-recursive} applies to functions
11197 declared inline.
11198 For functions not declared inline, recursive inlining
11199 happens only when @option{-finline-functions} (included in @option{-O3}) is
11200 enabled; @option{--param max-inline-insns-recursive-auto} applies instead.
11202 @item max-inline-recursive-depth
11203 @itemx max-inline-recursive-depth-auto
11204 Specifies the maximum recursion depth used for recursive inlining.
11206 @option{--param max-inline-recursive-depth} applies to functions
11207 declared inline.  For functions not declared inline, recursive inlining
11208 happens only when @option{-finline-functions} (included in @option{-O3}) is
11209 enabled; @option{--param max-inline-recursive-depth-auto} applies instead.
11211 @item min-inline-recursive-probability
11212 Recursive inlining is profitable only for function having deep recursion
11213 in average and can hurt for function having little recursion depth by
11214 increasing the prologue size or complexity of function body to other
11215 optimizers.
11217 When profile feedback is available (see @option{-fprofile-generate}) the actual
11218 recursion depth can be guessed from the probability that function recurses
11219 via a given call expression.  This parameter limits inlining only to call
11220 expressions whose probability exceeds the given threshold (in percents).
11222 @item early-inlining-insns
11223 Specify growth that the early inliner can make.  In effect it increases
11224 the amount of inlining for code having a large abstraction penalty.
11226 @item max-early-inliner-iterations
11227 Limit of iterations of the early inliner.  This basically bounds
11228 the number of nested indirect calls the early inliner can resolve.
11229 Deeper chains are still handled by late inlining.
11231 @item comdat-sharing-probability
11232 Probability (in percent) that C++ inline function with comdat visibility
11233 are shared across multiple compilation units.
11235 @item profile-func-internal-id
11236 A parameter to control whether to use function internal id in profile
11237 database lookup. If the value is 0, the compiler uses an id that
11238 is based on function assembler name and filename, which makes old profile
11239 data more tolerant to source changes such as function reordering etc.
11241 @item min-vect-loop-bound
11242 The minimum number of iterations under which loops are not vectorized
11243 when @option{-ftree-vectorize} is used.  The number of iterations after
11244 vectorization needs to be greater than the value specified by this option
11245 to allow vectorization.
11247 @item gcse-cost-distance-ratio
11248 Scaling factor in calculation of maximum distance an expression
11249 can be moved by GCSE optimizations.  This is currently supported only in the
11250 code hoisting pass.  The bigger the ratio, the more aggressive code hoisting
11251 is with simple expressions, i.e., the expressions that have cost
11252 less than @option{gcse-unrestricted-cost}.  Specifying 0 disables
11253 hoisting of simple expressions.
11255 @item gcse-unrestricted-cost
11256 Cost, roughly measured as the cost of a single typical machine
11257 instruction, at which GCSE optimizations do not constrain
11258 the distance an expression can travel.  This is currently
11259 supported only in the code hoisting pass.  The lesser the cost,
11260 the more aggressive code hoisting is.  Specifying 0 
11261 allows all expressions to travel unrestricted distances.
11263 @item max-hoist-depth
11264 The depth of search in the dominator tree for expressions to hoist.
11265 This is used to avoid quadratic behavior in hoisting algorithm.
11266 The value of 0 does not limit on the search, but may slow down compilation
11267 of huge functions.
11269 @item max-tail-merge-comparisons
11270 The maximum amount of similar bbs to compare a bb with.  This is used to
11271 avoid quadratic behavior in tree tail merging.
11273 @item max-tail-merge-iterations
11274 The maximum amount of iterations of the pass over the function.  This is used to
11275 limit compilation time in tree tail merging.
11277 @item store-merging-allow-unaligned
11278 Allow the store merging pass to introduce unaligned stores if it is legal to
11279 do so.
11281 @item max-stores-to-merge
11282 The maximum number of stores to attempt to merge into wider stores in the store
11283 merging pass.
11285 @item max-unrolled-insns
11286 The maximum number of instructions that a loop may have to be unrolled.
11287 If a loop is unrolled, this parameter also determines how many times
11288 the loop code is unrolled.
11290 @item max-average-unrolled-insns
11291 The maximum number of instructions biased by probabilities of their execution
11292 that a loop may have to be unrolled.  If a loop is unrolled,
11293 this parameter also determines how many times the loop code is unrolled.
11295 @item max-unroll-times
11296 The maximum number of unrollings of a single loop.
11298 @item max-peeled-insns
11299 The maximum number of instructions that a loop may have to be peeled.
11300 If a loop is peeled, this parameter also determines how many times
11301 the loop code is peeled.
11303 @item max-peel-times
11304 The maximum number of peelings of a single loop.
11306 @item max-peel-branches
11307 The maximum number of branches on the hot path through the peeled sequence.
11309 @item max-completely-peeled-insns
11310 The maximum number of insns of a completely peeled loop.
11312 @item max-completely-peel-times
11313 The maximum number of iterations of a loop to be suitable for complete peeling.
11315 @item max-completely-peel-loop-nest-depth
11316 The maximum depth of a loop nest suitable for complete peeling.
11318 @item max-unswitch-insns
11319 The maximum number of insns of an unswitched loop.
11321 @item max-unswitch-level
11322 The maximum number of branches unswitched in a single loop.
11324 @item lim-expensive
11325 The minimum cost of an expensive expression in the loop invariant motion.
11327 @item iv-consider-all-candidates-bound
11328 Bound on number of candidates for induction variables, below which
11329 all candidates are considered for each use in induction variable
11330 optimizations.  If there are more candidates than this,
11331 only the most relevant ones are considered to avoid quadratic time complexity.
11333 @item iv-max-considered-uses
11334 The induction variable optimizations give up on loops that contain more
11335 induction variable uses.
11337 @item iv-always-prune-cand-set-bound
11338 If the number of candidates in the set is smaller than this value,
11339 always try to remove unnecessary ivs from the set
11340 when adding a new one.
11342 @item avg-loop-niter
11343 Average number of iterations of a loop.
11345 @item dse-max-object-size
11346 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
11347 Larger values may result in larger compilation times.
11349 @item dse-max-alias-queries-per-store
11350 Maximum number of queries into the alias oracle per store.
11351 Larger values result in larger compilation times and may result in more
11352 removed dead stores.
11354 @item scev-max-expr-size
11355 Bound on size of expressions used in the scalar evolutions analyzer.
11356 Large expressions slow the analyzer.
11358 @item scev-max-expr-complexity
11359 Bound on the complexity of the expressions in the scalar evolutions analyzer.
11360 Complex expressions slow the analyzer.
11362 @item max-tree-if-conversion-phi-args
11363 Maximum number of arguments in a PHI supported by TREE if conversion
11364 unless the loop is marked with simd pragma.
11366 @item vect-max-version-for-alignment-checks
11367 The maximum number of run-time checks that can be performed when
11368 doing loop versioning for alignment in the vectorizer.
11370 @item vect-max-version-for-alias-checks
11371 The maximum number of run-time checks that can be performed when
11372 doing loop versioning for alias in the vectorizer.
11374 @item vect-max-peeling-for-alignment
11375 The maximum number of loop peels to enhance access alignment
11376 for vectorizer. Value -1 means no limit.
11378 @item max-iterations-to-track
11379 The maximum number of iterations of a loop the brute-force algorithm
11380 for analysis of the number of iterations of the loop tries to evaluate.
11382 @item hot-bb-count-ws-permille
11383 A basic block profile count is considered hot if it contributes to 
11384 the given permillage (i.e.@: 0...1000) of the entire profiled execution.
11386 @item hot-bb-frequency-fraction
11387 Select fraction of the entry block frequency of executions of basic block in
11388 function given basic block needs to have to be considered hot.
11390 @item max-predicted-iterations
11391 The maximum number of loop iterations we predict statically.  This is useful
11392 in cases where a function contains a single loop with known bound and
11393 another loop with unknown bound.
11394 The known number of iterations is predicted correctly, while
11395 the unknown number of iterations average to roughly 10.  This means that the
11396 loop without bounds appears artificially cold relative to the other one.
11398 @item builtin-expect-probability
11399 Control the probability of the expression having the specified value. This
11400 parameter takes a percentage (i.e.@: 0 ... 100) as input.
11402 @item builtin-string-cmp-inline-length
11403 The maximum length of a constant string for a builtin string cmp call 
11404 eligible for inlining.
11406 @item align-threshold
11408 Select fraction of the maximal frequency of executions of a basic block in
11409 a function to align the basic block.
11411 @item align-loop-iterations
11413 A loop expected to iterate at least the selected number of iterations is
11414 aligned.
11416 @item tracer-dynamic-coverage
11417 @itemx tracer-dynamic-coverage-feedback
11419 This value is used to limit superblock formation once the given percentage of
11420 executed instructions is covered.  This limits unnecessary code size
11421 expansion.
11423 The @option{tracer-dynamic-coverage-feedback} parameter
11424 is used only when profile
11425 feedback is available.  The real profiles (as opposed to statically estimated
11426 ones) are much less balanced allowing the threshold to be larger value.
11428 @item tracer-max-code-growth
11429 Stop tail duplication once code growth has reached given percentage.  This is
11430 a rather artificial limit, as most of the duplicates are eliminated later in
11431 cross jumping, so it may be set to much higher values than is the desired code
11432 growth.
11434 @item tracer-min-branch-ratio
11436 Stop reverse growth when the reverse probability of best edge is less than this
11437 threshold (in percent).
11439 @item tracer-min-branch-probability
11440 @itemx tracer-min-branch-probability-feedback
11442 Stop forward growth if the best edge has probability lower than this
11443 threshold.
11445 Similarly to @option{tracer-dynamic-coverage} two parameters are
11446 provided.  @option{tracer-min-branch-probability-feedback} is used for
11447 compilation with profile feedback and @option{tracer-min-branch-probability}
11448 compilation without.  The value for compilation with profile feedback
11449 needs to be more conservative (higher) in order to make tracer
11450 effective.
11452 @item stack-clash-protection-guard-size
11453 Specify the size of the operating system provided stack guard as
11454 2 raised to @var{num} bytes.  Higher values may reduce the
11455 number of explicit probes, but a value larger than the operating system
11456 provided guard will leave code vulnerable to stack clash style attacks.
11458 @item stack-clash-protection-probe-interval
11459 Stack clash protection involves probing stack space as it is allocated.  This
11460 param controls the maximum distance between probes into the stack as 2 raised
11461 to @var{num} bytes.  Higher values may reduce the number of explicit probes, but a value
11462 larger than the operating system provided guard will leave code vulnerable to
11463 stack clash style attacks.
11465 @item max-cse-path-length
11467 The maximum number of basic blocks on path that CSE considers.
11469 @item max-cse-insns
11470 The maximum number of instructions CSE processes before flushing.
11472 @item ggc-min-expand
11474 GCC uses a garbage collector to manage its own memory allocation.  This
11475 parameter specifies the minimum percentage by which the garbage
11476 collector's heap should be allowed to expand between collections.
11477 Tuning this may improve compilation speed; it has no effect on code
11478 generation.
11480 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
11481 RAM >= 1GB@.  If @code{getrlimit} is available, the notion of ``RAM'' is
11482 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}.  If
11483 GCC is not able to calculate RAM on a particular platform, the lower
11484 bound of 30% is used.  Setting this parameter and
11485 @option{ggc-min-heapsize} to zero causes a full collection to occur at
11486 every opportunity.  This is extremely slow, but can be useful for
11487 debugging.
11489 @item ggc-min-heapsize
11491 Minimum size of the garbage collector's heap before it begins bothering
11492 to collect garbage.  The first collection occurs after the heap expands
11493 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}.  Again,
11494 tuning this may improve compilation speed, and has no effect on code
11495 generation.
11497 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
11498 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
11499 with a lower bound of 4096 (four megabytes) and an upper bound of
11500 131072 (128 megabytes).  If GCC is not able to calculate RAM on a
11501 particular platform, the lower bound is used.  Setting this parameter
11502 very large effectively disables garbage collection.  Setting this
11503 parameter and @option{ggc-min-expand} to zero causes a full collection
11504 to occur at every opportunity.
11506 @item max-reload-search-insns
11507 The maximum number of instruction reload should look backward for equivalent
11508 register.  Increasing values mean more aggressive optimization, making the
11509 compilation time increase with probably slightly better performance.
11511 @item max-cselib-memory-locations
11512 The maximum number of memory locations cselib should take into account.
11513 Increasing values mean more aggressive optimization, making the compilation time
11514 increase with probably slightly better performance.
11516 @item max-sched-ready-insns
11517 The maximum number of instructions ready to be issued the scheduler should
11518 consider at any given time during the first scheduling pass.  Increasing
11519 values mean more thorough searches, making the compilation time increase
11520 with probably little benefit.
11522 @item max-sched-region-blocks
11523 The maximum number of blocks in a region to be considered for
11524 interblock scheduling.
11526 @item max-pipeline-region-blocks
11527 The maximum number of blocks in a region to be considered for
11528 pipelining in the selective scheduler.
11530 @item max-sched-region-insns
11531 The maximum number of insns in a region to be considered for
11532 interblock scheduling.
11534 @item max-pipeline-region-insns
11535 The maximum number of insns in a region to be considered for
11536 pipelining in the selective scheduler.
11538 @item min-spec-prob
11539 The minimum probability (in percents) of reaching a source block
11540 for interblock speculative scheduling.
11542 @item max-sched-extend-regions-iters
11543 The maximum number of iterations through CFG to extend regions.
11544 A value of 0 disables region extensions.
11546 @item max-sched-insn-conflict-delay
11547 The maximum conflict delay for an insn to be considered for speculative motion.
11549 @item sched-spec-prob-cutoff
11550 The minimal probability of speculation success (in percents), so that
11551 speculative insns are scheduled.
11553 @item sched-state-edge-prob-cutoff
11554 The minimum probability an edge must have for the scheduler to save its
11555 state across it.
11557 @item sched-mem-true-dep-cost
11558 Minimal distance (in CPU cycles) between store and load targeting same
11559 memory locations.
11561 @item selsched-max-lookahead
11562 The maximum size of the lookahead window of selective scheduling.  It is a
11563 depth of search for available instructions.
11565 @item selsched-max-sched-times
11566 The maximum number of times that an instruction is scheduled during
11567 selective scheduling.  This is the limit on the number of iterations
11568 through which the instruction may be pipelined.
11570 @item selsched-insns-to-rename
11571 The maximum number of best instructions in the ready list that are considered
11572 for renaming in the selective scheduler.
11574 @item sms-min-sc
11575 The minimum value of stage count that swing modulo scheduler
11576 generates.
11578 @item max-last-value-rtl
11579 The maximum size measured as number of RTLs that can be recorded in an expression
11580 in combiner for a pseudo register as last known value of that register.
11582 @item max-combine-insns
11583 The maximum number of instructions the RTL combiner tries to combine.
11585 @item integer-share-limit
11586 Small integer constants can use a shared data structure, reducing the
11587 compiler's memory usage and increasing its speed.  This sets the maximum
11588 value of a shared integer constant.
11590 @item ssp-buffer-size
11591 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
11592 protection when @option{-fstack-protection} is used.
11594 @item min-size-for-stack-sharing
11595 The minimum size of variables taking part in stack slot sharing when not
11596 optimizing.
11598 @item max-jump-thread-duplication-stmts
11599 Maximum number of statements allowed in a block that needs to be
11600 duplicated when threading jumps.
11602 @item max-fields-for-field-sensitive
11603 Maximum number of fields in a structure treated in
11604 a field sensitive manner during pointer analysis.
11606 @item prefetch-latency
11607 Estimate on average number of instructions that are executed before
11608 prefetch finishes.  The distance prefetched ahead is proportional
11609 to this constant.  Increasing this number may also lead to less
11610 streams being prefetched (see @option{simultaneous-prefetches}).
11612 @item simultaneous-prefetches
11613 Maximum number of prefetches that can run at the same time.
11615 @item l1-cache-line-size
11616 The size of cache line in L1 data cache, in bytes.
11618 @item l1-cache-size
11619 The size of L1 data cache, in kilobytes.
11621 @item l2-cache-size
11622 The size of L2 data cache, in kilobytes.
11624 @item prefetch-dynamic-strides
11625 Whether the loop array prefetch pass should issue software prefetch hints
11626 for strides that are non-constant.  In some cases this may be
11627 beneficial, though the fact the stride is non-constant may make it
11628 hard to predict when there is clear benefit to issuing these hints.
11630 Set to 1 if the prefetch hints should be issued for non-constant
11631 strides.  Set to 0 if prefetch hints should be issued only for strides that
11632 are known to be constant and below @option{prefetch-minimum-stride}.
11634 @item prefetch-minimum-stride
11635 Minimum constant stride, in bytes, to start using prefetch hints for.  If
11636 the stride is less than this threshold, prefetch hints will not be issued.
11638 This setting is useful for processors that have hardware prefetchers, in
11639 which case there may be conflicts between the hardware prefetchers and
11640 the software prefetchers.  If the hardware prefetchers have a maximum
11641 stride they can handle, it should be used here to improve the use of
11642 software prefetchers.
11644 A value of -1 means we don't have a threshold and therefore
11645 prefetch hints can be issued for any constant stride.
11647 This setting is only useful for strides that are known and constant.
11649 @item loop-interchange-max-num-stmts
11650 The maximum number of stmts in a loop to be interchanged.
11652 @item loop-interchange-stride-ratio
11653 The minimum ratio between stride of two loops for interchange to be profitable.
11655 @item min-insn-to-prefetch-ratio
11656 The minimum ratio between the number of instructions and the
11657 number of prefetches to enable prefetching in a loop.
11659 @item prefetch-min-insn-to-mem-ratio
11660 The minimum ratio between the number of instructions and the
11661 number of memory references to enable prefetching in a loop.
11663 @item use-canonical-types
11664 Whether the compiler should use the ``canonical'' type system.
11665 Should always be 1, which uses a more efficient internal
11666 mechanism for comparing types in C++ and Objective-C++.  However, if
11667 bugs in the canonical type system are causing compilation failures,
11668 set this value to 0 to disable canonical types.
11670 @item switch-conversion-max-branch-ratio
11671 Switch initialization conversion refuses to create arrays that are
11672 bigger than @option{switch-conversion-max-branch-ratio} times the number of
11673 branches in the switch.
11675 @item max-partial-antic-length
11676 Maximum length of the partial antic set computed during the tree
11677 partial redundancy elimination optimization (@option{-ftree-pre}) when
11678 optimizing at @option{-O3} and above.  For some sorts of source code
11679 the enhanced partial redundancy elimination optimization can run away,
11680 consuming all of the memory available on the host machine.  This
11681 parameter sets a limit on the length of the sets that are computed,
11682 which prevents the runaway behavior.  Setting a value of 0 for
11683 this parameter allows an unlimited set length.
11685 @item rpo-vn-max-loop-depth
11686 Maximum loop depth that is value-numbered optimistically.
11687 When the limit hits the innermost
11688 @var{rpo-vn-max-loop-depth} loops and the outermost loop in the
11689 loop nest are value-numbered optimistically and the remaining ones not.
11691 @item sccvn-max-alias-queries-per-access
11692 Maximum number of alias-oracle queries we perform when looking for
11693 redundancies for loads and stores.  If this limit is hit the search
11694 is aborted and the load or store is not considered redundant.  The
11695 number of queries is algorithmically limited to the number of
11696 stores on all paths from the load to the function entry.
11698 @item ira-max-loops-num
11699 IRA uses regional register allocation by default.  If a function
11700 contains more loops than the number given by this parameter, only at most
11701 the given number of the most frequently-executed loops form regions
11702 for regional register allocation.
11704 @item ira-max-conflict-table-size 
11705 Although IRA uses a sophisticated algorithm to compress the conflict
11706 table, the table can still require excessive amounts of memory for
11707 huge functions.  If the conflict table for a function could be more
11708 than the size in MB given by this parameter, the register allocator
11709 instead uses a faster, simpler, and lower-quality
11710 algorithm that does not require building a pseudo-register conflict table.  
11712 @item ira-loop-reserved-regs
11713 IRA can be used to evaluate more accurate register pressure in loops
11714 for decisions to move loop invariants (see @option{-O3}).  The number
11715 of available registers reserved for some other purposes is given
11716 by this parameter.  Default of the parameter
11717 is the best found from numerous experiments.
11719 @item lra-inheritance-ebb-probability-cutoff
11720 LRA tries to reuse values reloaded in registers in subsequent insns.
11721 This optimization is called inheritance.  EBB is used as a region to
11722 do this optimization.  The parameter defines a minimal fall-through
11723 edge probability in percentage used to add BB to inheritance EBB in
11724 LRA.  The default value was chosen
11725 from numerous runs of SPEC2000 on x86-64.
11727 @item loop-invariant-max-bbs-in-loop
11728 Loop invariant motion can be very expensive, both in compilation time and
11729 in amount of needed compile-time memory, with very large loops.  Loops
11730 with more basic blocks than this parameter won't have loop invariant
11731 motion optimization performed on them.
11733 @item loop-max-datarefs-for-datadeps
11734 Building data dependencies is expensive for very large loops.  This
11735 parameter limits the number of data references in loops that are
11736 considered for data dependence analysis.  These large loops are no
11737 handled by the optimizations using loop data dependencies.
11739 @item max-vartrack-size
11740 Sets a maximum number of hash table slots to use during variable
11741 tracking dataflow analysis of any function.  If this limit is exceeded
11742 with variable tracking at assignments enabled, analysis for that
11743 function is retried without it, after removing all debug insns from
11744 the function.  If the limit is exceeded even without debug insns, var
11745 tracking analysis is completely disabled for the function.  Setting
11746 the parameter to zero makes it unlimited.
11748 @item max-vartrack-expr-depth
11749 Sets a maximum number of recursion levels when attempting to map
11750 variable names or debug temporaries to value expressions.  This trades
11751 compilation time for more complete debug information.  If this is set too
11752 low, value expressions that are available and could be represented in
11753 debug information may end up not being used; setting this higher may
11754 enable the compiler to find more complex debug expressions, but compile
11755 time and memory use may grow.
11757 @item max-debug-marker-count
11758 Sets a threshold on the number of debug markers (e.g.@: begin stmt
11759 markers) to avoid complexity explosion at inlining or expanding to RTL.
11760 If a function has more such gimple stmts than the set limit, such stmts
11761 will be dropped from the inlined copy of a function, and from its RTL
11762 expansion.
11764 @item min-nondebug-insn-uid
11765 Use uids starting at this parameter for nondebug insns.  The range below
11766 the parameter is reserved exclusively for debug insns created by
11767 @option{-fvar-tracking-assignments}, but debug insns may get
11768 (non-overlapping) uids above it if the reserved range is exhausted.
11770 @item ipa-sra-ptr-growth-factor
11771 IPA-SRA replaces a pointer to an aggregate with one or more new
11772 parameters only when their cumulative size is less or equal to
11773 @option{ipa-sra-ptr-growth-factor} times the size of the original
11774 pointer parameter.
11776 @item sra-max-scalarization-size-Ospeed
11777 @itemx sra-max-scalarization-size-Osize
11778 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
11779 replace scalar parts of aggregates with uses of independent scalar
11780 variables.  These parameters control the maximum size, in storage units,
11781 of aggregate which is considered for replacement when compiling for
11782 speed
11783 (@option{sra-max-scalarization-size-Ospeed}) or size
11784 (@option{sra-max-scalarization-size-Osize}) respectively.
11786 @item tm-max-aggregate-size
11787 When making copies of thread-local variables in a transaction, this
11788 parameter specifies the size in bytes after which variables are
11789 saved with the logging functions as opposed to save/restore code
11790 sequence pairs.  This option only applies when using
11791 @option{-fgnu-tm}.
11793 @item graphite-max-nb-scop-params
11794 To avoid exponential effects in the Graphite loop transforms, the
11795 number of parameters in a Static Control Part (SCoP) is bounded.
11796 A value of zero can be used to lift
11797 the bound.  A variable whose value is unknown at compilation time and
11798 defined outside a SCoP is a parameter of the SCoP.
11800 @item loop-block-tile-size
11801 Loop blocking or strip mining transforms, enabled with
11802 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
11803 loop in the loop nest by a given number of iterations.  The strip
11804 length can be changed using the @option{loop-block-tile-size}
11805 parameter.
11807 @item ipa-cp-value-list-size
11808 IPA-CP attempts to track all possible values and types passed to a function's
11809 parameter in order to propagate them and perform devirtualization.
11810 @option{ipa-cp-value-list-size} is the maximum number of values and types it
11811 stores per one formal parameter of a function.
11813 @item ipa-cp-eval-threshold
11814 IPA-CP calculates its own score of cloning profitability heuristics
11815 and performs those cloning opportunities with scores that exceed
11816 @option{ipa-cp-eval-threshold}.
11818 @item ipa-cp-recursion-penalty
11819 Percentage penalty the recursive functions will receive when they
11820 are evaluated for cloning.
11822 @item ipa-cp-single-call-penalty
11823 Percentage penalty functions containing a single call to another
11824 function will receive when they are evaluated for cloning.
11826 @item ipa-max-agg-items
11827 IPA-CP is also capable to propagate a number of scalar values passed
11828 in an aggregate. @option{ipa-max-agg-items} controls the maximum
11829 number of such values per one parameter.
11831 @item ipa-cp-loop-hint-bonus
11832 When IPA-CP determines that a cloning candidate would make the number
11833 of iterations of a loop known, it adds a bonus of
11834 @option{ipa-cp-loop-hint-bonus} to the profitability score of
11835 the candidate.
11837 @item ipa-cp-array-index-hint-bonus
11838 When IPA-CP determines that a cloning candidate would make the index of
11839 an array access known, it adds a bonus of
11840 @option{ipa-cp-array-index-hint-bonus} to the profitability
11841 score of the candidate.
11843 @item ipa-max-aa-steps
11844 During its analysis of function bodies, IPA-CP employs alias analysis
11845 in order to track values pointed to by function parameters.  In order
11846 not spend too much time analyzing huge functions, it gives up and
11847 consider all memory clobbered after examining
11848 @option{ipa-max-aa-steps} statements modifying memory.
11850 @item lto-partitions
11851 Specify desired number of partitions produced during WHOPR compilation.
11852 The number of partitions should exceed the number of CPUs used for compilation.
11854 @item lto-min-partition
11855 Size of minimal partition for WHOPR (in estimated instructions).
11856 This prevents expenses of splitting very small programs into too many
11857 partitions.
11859 @item lto-max-partition
11860 Size of max partition for WHOPR (in estimated instructions).
11861 to provide an upper bound for individual size of partition.
11862 Meant to be used only with balanced partitioning.
11864 @item lto-max-streaming-parallelism
11865 Maximal number of parallel processes used for LTO streaming.
11867 @item cxx-max-namespaces-for-diagnostic-help
11868 The maximum number of namespaces to consult for suggestions when C++
11869 name lookup fails for an identifier.
11871 @item sink-frequency-threshold
11872 The maximum relative execution frequency (in percents) of the target block
11873 relative to a statement's original block to allow statement sinking of a
11874 statement.  Larger numbers result in more aggressive statement sinking.
11875 A small positive adjustment is applied for
11876 statements with memory operands as those are even more profitable so sink.
11878 @item max-stores-to-sink
11879 The maximum number of conditional store pairs that can be sunk.  Set to 0
11880 if either vectorization (@option{-ftree-vectorize}) or if-conversion
11881 (@option{-ftree-loop-if-convert}) is disabled.
11883 @item allow-store-data-races
11884 Allow optimizers to introduce new data races on stores.
11885 Set to 1 to allow, otherwise to 0.
11887 @item case-values-threshold
11888 The smallest number of different values for which it is best to use a
11889 jump-table instead of a tree of conditional branches.  If the value is
11890 0, use the default for the machine.
11892 @item jump-table-max-growth-ratio-for-size
11893 The maximum code size growth ratio when expanding
11894 into a jump table (in percent).  The parameter is used when
11895 optimizing for size.
11897 @item jump-table-max-growth-ratio-for-speed
11898 The maximum code size growth ratio when expanding
11899 into a jump table (in percent).  The parameter is used when
11900 optimizing for speed.
11902 @item tree-reassoc-width
11903 Set the maximum number of instructions executed in parallel in
11904 reassociated tree. This parameter overrides target dependent
11905 heuristics used by default if has non zero value.
11907 @item sched-pressure-algorithm
11908 Choose between the two available implementations of
11909 @option{-fsched-pressure}.  Algorithm 1 is the original implementation
11910 and is the more likely to prevent instructions from being reordered.
11911 Algorithm 2 was designed to be a compromise between the relatively
11912 conservative approach taken by algorithm 1 and the rather aggressive
11913 approach taken by the default scheduler.  It relies more heavily on
11914 having a regular register file and accurate register pressure classes.
11915 See @file{haifa-sched.c} in the GCC sources for more details.
11917 The default choice depends on the target.
11919 @item max-slsr-cand-scan
11920 Set the maximum number of existing candidates that are considered when
11921 seeking a basis for a new straight-line strength reduction candidate.
11923 @item asan-globals
11924 Enable buffer overflow detection for global objects.  This kind
11925 of protection is enabled by default if you are using
11926 @option{-fsanitize=address} option.
11927 To disable global objects protection use @option{--param asan-globals=0}.
11929 @item asan-stack
11930 Enable buffer overflow detection for stack objects.  This kind of
11931 protection is enabled by default when using @option{-fsanitize=address}.
11932 To disable stack protection use @option{--param asan-stack=0} option.
11934 @item asan-instrument-reads
11935 Enable buffer overflow detection for memory reads.  This kind of
11936 protection is enabled by default when using @option{-fsanitize=address}.
11937 To disable memory reads protection use
11938 @option{--param asan-instrument-reads=0}.
11940 @item asan-instrument-writes
11941 Enable buffer overflow detection for memory writes.  This kind of
11942 protection is enabled by default when using @option{-fsanitize=address}.
11943 To disable memory writes protection use
11944 @option{--param asan-instrument-writes=0} option.
11946 @item asan-memintrin
11947 Enable detection for built-in functions.  This kind of protection
11948 is enabled by default when using @option{-fsanitize=address}.
11949 To disable built-in functions protection use
11950 @option{--param asan-memintrin=0}.
11952 @item asan-use-after-return
11953 Enable detection of use-after-return.  This kind of protection
11954 is enabled by default when using the @option{-fsanitize=address} option.
11955 To disable it use @option{--param asan-use-after-return=0}.
11957 Note: By default the check is disabled at run time.  To enable it,
11958 add @code{detect_stack_use_after_return=1} to the environment variable
11959 @env{ASAN_OPTIONS}.
11961 @item asan-instrumentation-with-call-threshold
11962 If number of memory accesses in function being instrumented
11963 is greater or equal to this number, use callbacks instead of inline checks.
11964 E.g. to disable inline code use
11965 @option{--param asan-instrumentation-with-call-threshold=0}.
11967 @item use-after-scope-direct-emission-threshold
11968 If the size of a local variable in bytes is smaller or equal to this
11969 number, directly poison (or unpoison) shadow memory instead of using
11970 run-time callbacks.
11972 @item max-fsm-thread-path-insns
11973 Maximum number of instructions to copy when duplicating blocks on a
11974 finite state automaton jump thread path.
11976 @item max-fsm-thread-length
11977 Maximum number of basic blocks on a finite state automaton jump thread
11978 path.
11980 @item max-fsm-thread-paths
11981 Maximum number of new jump thread paths to create for a finite state
11982 automaton.
11984 @item parloops-chunk-size
11985 Chunk size of omp schedule for loops parallelized by parloops.
11987 @item parloops-schedule
11988 Schedule type of omp schedule for loops parallelized by parloops (static,
11989 dynamic, guided, auto, runtime).
11991 @item parloops-min-per-thread
11992 The minimum number of iterations per thread of an innermost parallelized
11993 loop for which the parallelized variant is preferred over the single threaded
11994 one.  Note that for a parallelized loop nest the
11995 minimum number of iterations of the outermost loop per thread is two.
11997 @item max-ssa-name-query-depth
11998 Maximum depth of recursion when querying properties of SSA names in things
11999 like fold routines.  One level of recursion corresponds to following a
12000 use-def chain.
12002 @item hsa-gen-debug-stores
12003 Enable emission of special debug stores within HSA kernels which are
12004 then read and reported by libgomp plugin.  Generation of these stores
12005 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
12006 enable it.
12008 @item max-speculative-devirt-maydefs
12009 The maximum number of may-defs we analyze when looking for a must-def
12010 specifying the dynamic type of an object that invokes a virtual call
12011 we may be able to devirtualize speculatively.
12013 @item max-vrp-switch-assertions
12014 The maximum number of assertions to add along the default edge of a switch
12015 statement during VRP.
12017 @item unroll-jam-min-percent
12018 The minimum percentage of memory references that must be optimized
12019 away for the unroll-and-jam transformation to be considered profitable.
12021 @item unroll-jam-max-unroll
12022 The maximum number of times the outer loop should be unrolled by
12023 the unroll-and-jam transformation.
12025 @item max-rtl-if-conversion-unpredictable-cost
12026 Maximum permissible cost for the sequence that would be generated
12027 by the RTL if-conversion pass for a branch that is considered unpredictable.
12029 @item max-variable-expansions-in-unroller
12030 If @option{-fvariable-expansion-in-unroller} is used, the maximum number
12031 of times that an individual variable will be expanded during loop unrolling.
12033 @item tracer-min-branch-probability-feedback
12034 Stop forward growth if the probability of best edge is less than
12035 this threshold (in percent). Used when profile feedback is available.
12037 @item partial-inlining-entry-probability
12038 Maximum probability of the entry BB of split region
12039 (in percent relative to entry BB of the function)
12040 to make partial inlining happen.
12042 @item max-tracked-strlens
12043 Maximum number of strings for which strlen optimization pass will
12044 track string lengths.
12046 @item gcse-after-reload-partial-fraction
12047 The threshold ratio for performing partial redundancy
12048 elimination after reload.
12050 @item gcse-after-reload-critical-fraction
12051 The threshold ratio of critical edges execution count that
12052 permit performing redundancy elimination after reload.
12054 @item max-loop-header-insns
12055 The maximum number of insns in loop header duplicated
12056 by the copy loop headers pass.
12058 @item vect-epilogues-nomask
12059 Enable loop epilogue vectorization using smaller vector size.
12061 @item slp-max-insns-in-bb
12062 Maximum number of instructions in basic block to be
12063 considered for SLP vectorization.
12065 @item avoid-fma-max-bits
12066 Maximum number of bits for which we avoid creating FMAs.
12068 @item sms-loop-average-count-threshold
12069 A threshold on the average loop count considered by the swing modulo scheduler.
12071 @item sms-dfa-history
12072 The number of cycles the swing modulo scheduler considers when checking
12073 conflicts using DFA.
12075 @item hot-bb-count-fraction
12076 Select fraction of the maximal count of repetitions of basic block
12077 in program given basic block needs
12078 to have to be considered hot (used in non-LTO mode)
12080 @item max-inline-insns-recursive-auto
12081 The maximum number of instructions non-inline function
12082 can grow to via recursive inlining.
12084 @item graphite-allow-codegen-errors
12085 Whether codegen errors should be ICEs when @option{-fchecking}.
12087 @item sms-max-ii-factor
12088 A factor for tuning the upper bound that swing modulo scheduler
12089 uses for scheduling a loop.
12091 @item lra-max-considered-reload-pseudos
12092 The max number of reload pseudos which are considered during
12093 spilling a non-reload pseudo.
12095 @item max-pow-sqrt-depth
12096 Maximum depth of sqrt chains to use when synthesizing exponentiation
12097 by a real constant.
12099 @item max-dse-active-local-stores
12100 Maximum number of active local stores in RTL dead store elimination.
12102 @item asan-instrument-allocas
12103 Enable asan allocas/VLAs protection.
12105 @item max-iterations-computation-cost
12106 Bound on the cost of an expression to compute the number of iterations.
12108 @item max-isl-operations
12109 Maximum number of isl operations, 0 means unlimited.
12111 @item graphite-max-arrays-per-scop
12112 Maximum number of arrays per scop.
12114 @item max-vartrack-reverse-op-size
12115 Max. size of loc list for which reverse ops should be added.
12117 @item unlikely-bb-count-fraction
12118 The minimum fraction of profile runs a given basic block execution count
12119 must be not to be considered unlikely.
12121 @item tracer-dynamic-coverage-feedback
12122 The percentage of function, weighted by execution frequency,
12123 that must be covered by trace formation.
12124 Used when profile feedback is available.
12126 @item max-inline-recursive-depth-auto
12127 The maximum depth of recursive inlining for non-inline functions.
12129 @item fsm-scale-path-stmts
12130 Scale factor to apply to the number of statements in a threading path
12131 when comparing to the number of (scaled) blocks.
12133 @item fsm-maximum-phi-arguments
12134 Maximum number of arguments a PHI may have before the FSM threader
12135 will not try to thread through its block.
12137 @item uninit-control-dep-attempts
12138 Maximum number of nested calls to search for control dependencies
12139 during uninitialized variable analysis.
12141 @item indir-call-topn-profile
12142 Track top N target addresses in indirect-call profile.
12144 @item max-once-peeled-insns
12145 The maximum number of insns of a peeled loop that rolls only once.
12147 @item sra-max-scalarization-size-Osize
12148 Maximum size, in storage units, of an aggregate
12149 which should be considered for scalarization when compiling for size.
12151 @item fsm-scale-path-blocks
12152 Scale factor to apply to the number of blocks in a threading path
12153 when comparing to the number of (scaled) statements.
12155 @item sched-autopref-queue-depth
12156 Hardware autoprefetcher scheduler model control flag.
12157 Number of lookahead cycles the model looks into; at '
12158 ' only enable instruction sorting heuristic.
12160 @item loop-versioning-max-inner-insns
12161 The maximum number of instructions that an inner loop can have
12162 before the loop versioning pass considers it too big to copy.
12164 @item loop-versioning-max-outer-insns
12165 The maximum number of instructions that an outer loop can have
12166 before the loop versioning pass considers it too big to copy,
12167 discounting any instructions in inner loops that directly benefit
12168 from versioning.
12170 @end table
12171 @end table
12173 @node Instrumentation Options
12174 @section Program Instrumentation Options
12175 @cindex instrumentation options
12176 @cindex program instrumentation options
12177 @cindex run-time error checking options
12178 @cindex profiling options
12179 @cindex options, program instrumentation
12180 @cindex options, run-time error checking
12181 @cindex options, profiling
12183 GCC supports a number of command-line options that control adding
12184 run-time instrumentation to the code it normally generates.  
12185 For example, one purpose of instrumentation is collect profiling
12186 statistics for use in finding program hot spots, code coverage
12187 analysis, or profile-guided optimizations.
12188 Another class of program instrumentation is adding run-time checking 
12189 to detect programming errors like invalid pointer
12190 dereferences or out-of-bounds array accesses, as well as deliberately
12191 hostile attacks such as stack smashing or C++ vtable hijacking.
12192 There is also a general hook which can be used to implement other
12193 forms of tracing or function-level instrumentation for debug or
12194 program analysis purposes.
12196 @table @gcctabopt
12197 @cindex @command{prof}
12198 @cindex @command{gprof}
12199 @item -p
12200 @itemx -pg
12201 @opindex p
12202 @opindex pg
12203 Generate extra code to write profile information suitable for the
12204 analysis program @command{prof} (for @option{-p}) or @command{gprof}
12205 (for @option{-pg}).  You must use this option when compiling
12206 the source files you want data about, and you must also use it when
12207 linking.
12209 You can use the function attribute @code{no_instrument_function} to
12210 suppress profiling of individual functions when compiling with these options.
12211 @xref{Common Function Attributes}.
12213 @item -fprofile-arcs
12214 @opindex fprofile-arcs
12215 Add code so that program flow @dfn{arcs} are instrumented.  During
12216 execution the program records how many times each branch and call is
12217 executed and how many times it is taken or returns.  On targets that support
12218 constructors with priority support, profiling properly handles constructors,
12219 destructors and C++ constructors (and destructors) of classes which are used
12220 as a type of a global variable.
12222 When the compiled
12223 program exits it saves this data to a file called
12224 @file{@var{auxname}.gcda} for each source file.  The data may be used for
12225 profile-directed optimizations (@option{-fbranch-probabilities}), or for
12226 test coverage analysis (@option{-ftest-coverage}).  Each object file's
12227 @var{auxname} is generated from the name of the output file, if
12228 explicitly specified and it is not the final executable, otherwise it is
12229 the basename of the source file.  In both cases any suffix is removed
12230 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
12231 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
12232 @xref{Cross-profiling}.
12234 @cindex @command{gcov}
12235 @item --coverage
12236 @opindex coverage
12238 This option is used to compile and link code instrumented for coverage
12239 analysis.  The option is a synonym for @option{-fprofile-arcs}
12240 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
12241 linking).  See the documentation for those options for more details.
12243 @itemize
12245 @item
12246 Compile the source files with @option{-fprofile-arcs} plus optimization
12247 and code generation options.  For test coverage analysis, use the
12248 additional @option{-ftest-coverage} option.  You do not need to profile
12249 every source file in a program.
12251 @item
12252 Compile the source files additionally with @option{-fprofile-abs-path}
12253 to create absolute path names in the @file{.gcno} files.  This allows
12254 @command{gcov} to find the correct sources in projects where compilations
12255 occur with different working directories.
12257 @item
12258 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
12259 (the latter implies the former).
12261 @item
12262 Run the program on a representative workload to generate the arc profile
12263 information.  This may be repeated any number of times.  You can run
12264 concurrent instances of your program, and provided that the file system
12265 supports locking, the data files will be correctly updated.  Unless
12266 a strict ISO C dialect option is in effect, @code{fork} calls are
12267 detected and correctly handled without double counting.
12269 @item
12270 For profile-directed optimizations, compile the source files again with
12271 the same optimization and code generation options plus
12272 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
12273 Control Optimization}).
12275 @item
12276 For test coverage analysis, use @command{gcov} to produce human readable
12277 information from the @file{.gcno} and @file{.gcda} files.  Refer to the
12278 @command{gcov} documentation for further information.
12280 @end itemize
12282 With @option{-fprofile-arcs}, for each function of your program GCC
12283 creates a program flow graph, then finds a spanning tree for the graph.
12284 Only arcs that are not on the spanning tree have to be instrumented: the
12285 compiler adds code to count the number of times that these arcs are
12286 executed.  When an arc is the only exit or only entrance to a block, the
12287 instrumentation code can be added to the block; otherwise, a new basic
12288 block must be created to hold the instrumentation code.
12290 @need 2000
12291 @item -ftest-coverage
12292 @opindex ftest-coverage
12293 Produce a notes file that the @command{gcov} code-coverage utility
12294 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
12295 show program coverage.  Each source file's note file is called
12296 @file{@var{auxname}.gcno}.  Refer to the @option{-fprofile-arcs} option
12297 above for a description of @var{auxname} and instructions on how to
12298 generate test coverage data.  Coverage data matches the source files
12299 more closely if you do not optimize.
12301 @item -fprofile-abs-path
12302 @opindex fprofile-abs-path
12303 Automatically convert relative source file names to absolute path names
12304 in the @file{.gcno} files.  This allows @command{gcov} to find the correct
12305 sources in projects where compilations occur with different working
12306 directories.
12308 @item -fprofile-dir=@var{path}
12309 @opindex fprofile-dir
12311 Set the directory to search for the profile data files in to @var{path}.
12312 This option affects only the profile data generated by
12313 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
12314 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
12315 and its related options.  Both absolute and relative paths can be used.
12316 By default, GCC uses the current directory as @var{path}, thus the
12317 profile data file appears in the same directory as the object file.
12318 In order to prevent the file name clashing, if the object file name is
12319 not an absolute path, we mangle the absolute path of the
12320 @file{@var{sourcename}.gcda} file and use it as the file name of a
12321 @file{.gcda} file.
12323 When an executable is run in a massive parallel environment, it is recommended
12324 to save profile to different folders.  That can be done with variables
12325 in @var{path} that are exported during run-time:
12327 @table @gcctabopt
12329 @item %p
12330 process ID.
12332 @item %q@{VAR@}
12333 value of environment variable @var{VAR}
12335 @end table
12337 @item -fprofile-generate
12338 @itemx -fprofile-generate=@var{path}
12339 @opindex fprofile-generate
12341 Enable options usually used for instrumenting application to produce
12342 profile useful for later recompilation with profile feedback based
12343 optimization.  You must use @option{-fprofile-generate} both when
12344 compiling and when linking your program.
12346 The following options are enabled:
12347 @option{-fprofile-arcs}, @option{-fprofile-values},
12348 @option{-finline-functions}, and @option{-fipa-bit-cp}.
12350 If @var{path} is specified, GCC looks at the @var{path} to find
12351 the profile feedback data files. See @option{-fprofile-dir}.
12353 To optimize the program based on the collected profile information, use
12354 @option{-fprofile-use}.  @xref{Optimize Options}, for more information.
12356 @item -fprofile-update=@var{method}
12357 @opindex fprofile-update
12359 Alter the update method for an application instrumented for profile
12360 feedback based optimization.  The @var{method} argument should be one of
12361 @samp{single}, @samp{atomic} or @samp{prefer-atomic}.
12362 The first one is useful for single-threaded applications,
12363 while the second one prevents profile corruption by emitting thread-safe code.
12365 @strong{Warning:} When an application does not properly join all threads
12366 (or creates an detached thread), a profile file can be still corrupted.
12368 Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
12369 when supported by a target, or to @samp{single} otherwise.  The GCC driver
12370 automatically selects @samp{prefer-atomic} when @option{-pthread}
12371 is present in the command line.
12373 @item -fprofile-filter-files=@var{regex}
12374 @opindex fprofile-filter-files
12376 Instrument only functions from files where names match
12377 any regular expression (separated by a semi-colon).
12379 For example, @option{-fprofile-filter-files=main.c;module.*.c} will instrument
12380 only @file{main.c} and all C files starting with 'module'.
12382 @item -fprofile-exclude-files=@var{regex}
12383 @opindex fprofile-exclude-files
12385 Instrument only functions from files where names do not match
12386 all the regular expressions (separated by a semi-colon).
12388 For example, @option{-fprofile-exclude-files=/usr/*} will prevent instrumentation
12389 of all files that are located in @file{/usr/} folder.
12391 @item -fsanitize=address
12392 @opindex fsanitize=address
12393 Enable AddressSanitizer, a fast memory error detector.
12394 Memory access instructions are instrumented to detect
12395 out-of-bounds and use-after-free bugs.
12396 The option enables @option{-fsanitize-address-use-after-scope}.
12397 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
12398 more details.  The run-time behavior can be influenced using the
12399 @env{ASAN_OPTIONS} environment variable.  When set to @code{help=1},
12400 the available options are shown at startup of the instrumented program.  See
12401 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
12402 for a list of supported options.
12403 The option cannot be combined with @option{-fsanitize=thread}.
12405 @item -fsanitize=kernel-address
12406 @opindex fsanitize=kernel-address
12407 Enable AddressSanitizer for Linux kernel.
12408 See @uref{https://github.com/google/kasan/wiki} for more details.
12410 @item -fsanitize=pointer-compare
12411 @opindex fsanitize=pointer-compare
12412 Instrument comparison operation (<, <=, >, >=) with pointer operands.
12413 The option must be combined with either @option{-fsanitize=kernel-address} or
12414 @option{-fsanitize=address}
12415 The option cannot be combined with @option{-fsanitize=thread}.
12416 Note: By default the check is disabled at run time.  To enable it,
12417 add @code{detect_invalid_pointer_pairs=2} to the environment variable
12418 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
12419 invalid operation only when both pointers are non-null.
12421 @item -fsanitize=pointer-subtract
12422 @opindex fsanitize=pointer-subtract
12423 Instrument subtraction with pointer operands.
12424 The option must be combined with either @option{-fsanitize=kernel-address} or
12425 @option{-fsanitize=address}
12426 The option cannot be combined with @option{-fsanitize=thread}.
12427 Note: By default the check is disabled at run time.  To enable it,
12428 add @code{detect_invalid_pointer_pairs=2} to the environment variable
12429 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
12430 invalid operation only when both pointers are non-null.
12432 @item -fsanitize=thread
12433 @opindex fsanitize=thread
12434 Enable ThreadSanitizer, a fast data race detector.
12435 Memory access instructions are instrumented to detect
12436 data race bugs.  See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
12437 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
12438 environment variable; see
12439 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
12440 supported options.
12441 The option cannot be combined with @option{-fsanitize=address},
12442 @option{-fsanitize=leak}.
12444 Note that sanitized atomic builtins cannot throw exceptions when
12445 operating on invalid memory addresses with non-call exceptions
12446 (@option{-fnon-call-exceptions}).
12448 @item -fsanitize=leak
12449 @opindex fsanitize=leak
12450 Enable LeakSanitizer, a memory leak detector.
12451 This option only matters for linking of executables and
12452 the executable is linked against a library that overrides @code{malloc}
12453 and other allocator functions.  See
12454 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
12455 details.  The run-time behavior can be influenced using the
12456 @env{LSAN_OPTIONS} environment variable.
12457 The option cannot be combined with @option{-fsanitize=thread}.
12459 @item -fsanitize=undefined
12460 @opindex fsanitize=undefined
12461 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
12462 Various computations are instrumented to detect undefined behavior
12463 at runtime.  Current suboptions are:
12465 @table @gcctabopt
12467 @item -fsanitize=shift
12468 @opindex fsanitize=shift
12469 This option enables checking that the result of a shift operation is
12470 not undefined.  Note that what exactly is considered undefined differs
12471 slightly between C and C++, as well as between ISO C90 and C99, etc.
12472 This option has two suboptions, @option{-fsanitize=shift-base} and
12473 @option{-fsanitize=shift-exponent}.
12475 @item -fsanitize=shift-exponent
12476 @opindex fsanitize=shift-exponent
12477 This option enables checking that the second argument of a shift operation
12478 is not negative and is smaller than the precision of the promoted first
12479 argument.
12481 @item -fsanitize=shift-base
12482 @opindex fsanitize=shift-base
12483 If the second argument of a shift operation is within range, check that the
12484 result of a shift operation is not undefined.  Note that what exactly is
12485 considered undefined differs slightly between C and C++, as well as between
12486 ISO C90 and C99, etc.
12488 @item -fsanitize=integer-divide-by-zero
12489 @opindex fsanitize=integer-divide-by-zero
12490 Detect integer division by zero as well as @code{INT_MIN / -1} division.
12492 @item -fsanitize=unreachable
12493 @opindex fsanitize=unreachable
12494 With this option, the compiler turns the @code{__builtin_unreachable}
12495 call into a diagnostics message call instead.  When reaching the
12496 @code{__builtin_unreachable} call, the behavior is undefined.
12498 @item -fsanitize=vla-bound
12499 @opindex fsanitize=vla-bound
12500 This option instructs the compiler to check that the size of a variable
12501 length array is positive.
12503 @item -fsanitize=null
12504 @opindex fsanitize=null
12505 This option enables pointer checking.  Particularly, the application
12506 built with this option turned on will issue an error message when it
12507 tries to dereference a NULL pointer, or if a reference (possibly an
12508 rvalue reference) is bound to a NULL pointer, or if a method is invoked
12509 on an object pointed by a NULL pointer.
12511 @item -fsanitize=return
12512 @opindex fsanitize=return
12513 This option enables return statement checking.  Programs
12514 built with this option turned on will issue an error message
12515 when the end of a non-void function is reached without actually
12516 returning a value.  This option works in C++ only.
12518 @item -fsanitize=signed-integer-overflow
12519 @opindex fsanitize=signed-integer-overflow
12520 This option enables signed integer overflow checking.  We check that
12521 the result of @code{+}, @code{*}, and both unary and binary @code{-}
12522 does not overflow in the signed arithmetics.  Note, integer promotion
12523 rules must be taken into account.  That is, the following is not an
12524 overflow:
12525 @smallexample
12526 signed char a = SCHAR_MAX;
12527 a++;
12528 @end smallexample
12530 @item -fsanitize=bounds
12531 @opindex fsanitize=bounds
12532 This option enables instrumentation of array bounds.  Various out of bounds
12533 accesses are detected.  Flexible array members, flexible array member-like
12534 arrays, and initializers of variables with static storage are not instrumented.
12536 @item -fsanitize=bounds-strict
12537 @opindex fsanitize=bounds-strict
12538 This option enables strict instrumentation of array bounds.  Most out of bounds
12539 accesses are detected, including flexible array members and flexible array
12540 member-like arrays.  Initializers of variables with static storage are not
12541 instrumented.
12543 @item -fsanitize=alignment
12544 @opindex fsanitize=alignment
12546 This option enables checking of alignment of pointers when they are
12547 dereferenced, or when a reference is bound to insufficiently aligned target,
12548 or when a method or constructor is invoked on insufficiently aligned object.
12550 @item -fsanitize=object-size
12551 @opindex fsanitize=object-size
12552 This option enables instrumentation of memory references using the
12553 @code{__builtin_object_size} function.  Various out of bounds pointer
12554 accesses are detected.
12556 @item -fsanitize=float-divide-by-zero
12557 @opindex fsanitize=float-divide-by-zero
12558 Detect floating-point division by zero.  Unlike other similar options,
12559 @option{-fsanitize=float-divide-by-zero} is not enabled by
12560 @option{-fsanitize=undefined}, since floating-point division by zero can
12561 be a legitimate way of obtaining infinities and NaNs.
12563 @item -fsanitize=float-cast-overflow
12564 @opindex fsanitize=float-cast-overflow
12565 This option enables floating-point type to integer conversion checking.
12566 We check that the result of the conversion does not overflow.
12567 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
12568 not enabled by @option{-fsanitize=undefined}.
12569 This option does not work well with @code{FE_INVALID} exceptions enabled.
12571 @item -fsanitize=nonnull-attribute
12572 @opindex fsanitize=nonnull-attribute
12574 This option enables instrumentation of calls, checking whether null values
12575 are not passed to arguments marked as requiring a non-null value by the
12576 @code{nonnull} function attribute.
12578 @item -fsanitize=returns-nonnull-attribute
12579 @opindex fsanitize=returns-nonnull-attribute
12581 This option enables instrumentation of return statements in functions
12582 marked with @code{returns_nonnull} function attribute, to detect returning
12583 of null values from such functions.
12585 @item -fsanitize=bool
12586 @opindex fsanitize=bool
12588 This option enables instrumentation of loads from bool.  If a value other
12589 than 0/1 is loaded, a run-time error is issued.
12591 @item -fsanitize=enum
12592 @opindex fsanitize=enum
12594 This option enables instrumentation of loads from an enum type.  If
12595 a value outside the range of values for the enum type is loaded,
12596 a run-time error is issued.
12598 @item -fsanitize=vptr
12599 @opindex fsanitize=vptr
12601 This option enables instrumentation of C++ member function calls, member
12602 accesses and some conversions between pointers to base and derived classes,
12603 to verify the referenced object has the correct dynamic type.
12605 @item -fsanitize=pointer-overflow
12606 @opindex fsanitize=pointer-overflow
12608 This option enables instrumentation of pointer arithmetics.  If the pointer
12609 arithmetics overflows, a run-time error is issued.
12611 @item -fsanitize=builtin
12612 @opindex fsanitize=builtin
12614 This option enables instrumentation of arguments to selected builtin
12615 functions.  If an invalid value is passed to such arguments, a run-time
12616 error is issued.  E.g.@ passing 0 as the argument to @code{__builtin_ctz}
12617 or @code{__builtin_clz} invokes undefined behavior and is diagnosed
12618 by this option.
12620 @end table
12622 While @option{-ftrapv} causes traps for signed overflows to be emitted,
12623 @option{-fsanitize=undefined} gives a diagnostic message.
12624 This currently works only for the C family of languages.
12626 @item -fno-sanitize=all
12627 @opindex fno-sanitize=all
12629 This option disables all previously enabled sanitizers.
12630 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
12631 together.
12633 @item -fasan-shadow-offset=@var{number}
12634 @opindex fasan-shadow-offset
12635 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
12636 It is useful for experimenting with different shadow memory layouts in
12637 Kernel AddressSanitizer.
12639 @item -fsanitize-sections=@var{s1},@var{s2},...
12640 @opindex fsanitize-sections
12641 Sanitize global variables in selected user-defined sections.  @var{si} may
12642 contain wildcards.
12644 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
12645 @opindex fsanitize-recover
12646 @opindex fno-sanitize-recover
12647 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
12648 mentioned in comma-separated list of @var{opts}.  Enabling this option
12649 for a sanitizer component causes it to attempt to continue
12650 running the program as if no error happened.  This means multiple
12651 runtime errors can be reported in a single program run, and the exit
12652 code of the program may indicate success even when errors
12653 have been reported.  The @option{-fno-sanitize-recover=} option
12654 can be used to alter
12655 this behavior: only the first detected error is reported
12656 and program then exits with a non-zero exit code.
12658 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
12659 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
12660 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
12661 @option{-fsanitize=bounds-strict},
12662 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
12663 For these sanitizers error recovery is turned on by default,
12664 except @option{-fsanitize=address}, for which this feature is experimental.
12665 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
12666 accepted, the former enables recovery for all sanitizers that support it,
12667 the latter disables recovery for all sanitizers that support it.
12669 Even if a recovery mode is turned on the compiler side, it needs to be also
12670 enabled on the runtime library side, otherwise the failures are still fatal.
12671 The runtime library defaults to @code{halt_on_error=0} for
12672 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
12673 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
12674 setting the @code{halt_on_error} flag in the corresponding environment variable.
12676 Syntax without an explicit @var{opts} parameter is deprecated.  It is
12677 equivalent to specifying an @var{opts} list of:
12679 @smallexample
12680 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
12681 @end smallexample
12683 @item -fsanitize-address-use-after-scope
12684 @opindex fsanitize-address-use-after-scope
12685 Enable sanitization of local variables to detect use-after-scope bugs.
12686 The option sets @option{-fstack-reuse} to @samp{none}.
12688 @item -fsanitize-undefined-trap-on-error
12689 @opindex fsanitize-undefined-trap-on-error
12690 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
12691 report undefined behavior using @code{__builtin_trap} rather than
12692 a @code{libubsan} library routine.  The advantage of this is that the
12693 @code{libubsan} library is not needed and is not linked in, so this
12694 is usable even in freestanding environments.
12696 @item -fsanitize-coverage=trace-pc
12697 @opindex fsanitize-coverage=trace-pc
12698 Enable coverage-guided fuzzing code instrumentation.
12699 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
12701 @item -fsanitize-coverage=trace-cmp
12702 @opindex fsanitize-coverage=trace-cmp
12703 Enable dataflow guided fuzzing code instrumentation.
12704 Inserts a call to @code{__sanitizer_cov_trace_cmp1},
12705 @code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
12706 @code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
12707 variable or @code{__sanitizer_cov_trace_const_cmp1},
12708 @code{__sanitizer_cov_trace_const_cmp2},
12709 @code{__sanitizer_cov_trace_const_cmp4} or
12710 @code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
12711 operand constant, @code{__sanitizer_cov_trace_cmpf} or
12712 @code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
12713 @code{__sanitizer_cov_trace_switch} for switch statements.
12715 @item -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]}
12716 @opindex fcf-protection
12717 Enable code instrumentation of control-flow transfers to increase
12718 program security by checking that target addresses of control-flow
12719 transfer instructions (such as indirect function call, function return,
12720 indirect jump) are valid.  This prevents diverting the flow of control
12721 to an unexpected target.  This is intended to protect against such
12722 threats as Return-oriented Programming (ROP), and similarly
12723 call/jmp-oriented programming (COP/JOP).
12725 The value @code{branch} tells the compiler to implement checking of
12726 validity of control-flow transfer at the point of indirect branch
12727 instructions, i.e.@: call/jmp instructions.  The value @code{return}
12728 implements checking of validity at the point of returning from a
12729 function.  The value @code{full} is an alias for specifying both
12730 @code{branch} and @code{return}. The value @code{none} turns off
12731 instrumentation.
12733 The macro @code{__CET__} is defined when @option{-fcf-protection} is
12734 used.  The first bit of @code{__CET__} is set to 1 for the value
12735 @code{branch} and the second bit of @code{__CET__} is set to 1 for
12736 the @code{return}.
12738 You can also use the @code{nocf_check} attribute to identify
12739 which functions and calls should be skipped from instrumentation
12740 (@pxref{Function Attributes}).
12742 Currently the x86 GNU/Linux target provides an implementation based
12743 on Intel Control-flow Enforcement Technology (CET).
12745 @item -fstack-protector
12746 @opindex fstack-protector
12747 Emit extra code to check for buffer overflows, such as stack smashing
12748 attacks.  This is done by adding a guard variable to functions with
12749 vulnerable objects.  This includes functions that call @code{alloca}, and
12750 functions with buffers larger than 8 bytes.  The guards are initialized
12751 when a function is entered and then checked when the function exits.
12752 If a guard check fails, an error message is printed and the program exits.
12754 @item -fstack-protector-all
12755 @opindex fstack-protector-all
12756 Like @option{-fstack-protector} except that all functions are protected.
12758 @item -fstack-protector-strong
12759 @opindex fstack-protector-strong
12760 Like @option{-fstack-protector} but includes additional functions to
12761 be protected --- those that have local array definitions, or have
12762 references to local frame addresses.
12764 @item -fstack-protector-explicit
12765 @opindex fstack-protector-explicit
12766 Like @option{-fstack-protector} but only protects those functions which
12767 have the @code{stack_protect} attribute.
12769 @item -fstack-check
12770 @opindex fstack-check
12771 Generate code to verify that you do not go beyond the boundary of the
12772 stack.  You should specify this flag if you are running in an
12773 environment with multiple threads, but you only rarely need to specify it in
12774 a single-threaded environment since stack overflow is automatically
12775 detected on nearly all systems if there is only one stack.
12777 Note that this switch does not actually cause checking to be done; the
12778 operating system or the language runtime must do that.  The switch causes
12779 generation of code to ensure that they see the stack being extended.
12781 You can additionally specify a string parameter: @samp{no} means no
12782 checking, @samp{generic} means force the use of old-style checking,
12783 @samp{specific} means use the best checking method and is equivalent
12784 to bare @option{-fstack-check}.
12786 Old-style checking is a generic mechanism that requires no specific
12787 target support in the compiler but comes with the following drawbacks:
12789 @enumerate
12790 @item
12791 Modified allocation strategy for large objects: they are always
12792 allocated dynamically if their size exceeds a fixed threshold.  Note this
12793 may change the semantics of some code.
12795 @item
12796 Fixed limit on the size of the static frame of functions: when it is
12797 topped by a particular function, stack checking is not reliable and
12798 a warning is issued by the compiler.
12800 @item
12801 Inefficiency: because of both the modified allocation strategy and the
12802 generic implementation, code performance is hampered.
12803 @end enumerate
12805 Note that old-style stack checking is also the fallback method for
12806 @samp{specific} if no target support has been added in the compiler.
12808 @samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
12809 and stack overflows.  @samp{specific} is an excellent choice when compiling
12810 Ada code.  It is not generally sufficient to protect against stack-clash
12811 attacks.  To protect against those you want @samp{-fstack-clash-protection}.
12813 @item -fstack-clash-protection
12814 @opindex fstack-clash-protection
12815 Generate code to prevent stack clash style attacks.  When this option is
12816 enabled, the compiler will only allocate one page of stack space at a time
12817 and each page is accessed immediately after allocation.  Thus, it prevents
12818 allocations from jumping over any stack guard page provided by the
12819 operating system.
12821 Most targets do not fully support stack clash protection.  However, on
12822 those targets @option{-fstack-clash-protection} will protect dynamic stack
12823 allocations.  @option{-fstack-clash-protection} may also provide limited
12824 protection for static stack allocations if the target supports
12825 @option{-fstack-check=specific}.
12827 @item -fstack-limit-register=@var{reg}
12828 @itemx -fstack-limit-symbol=@var{sym}
12829 @itemx -fno-stack-limit
12830 @opindex fstack-limit-register
12831 @opindex fstack-limit-symbol
12832 @opindex fno-stack-limit
12833 Generate code to ensure that the stack does not grow beyond a certain value,
12834 either the value of a register or the address of a symbol.  If a larger
12835 stack is required, a signal is raised at run time.  For most targets,
12836 the signal is raised before the stack overruns the boundary, so
12837 it is possible to catch the signal without taking special precautions.
12839 For instance, if the stack starts at absolute address @samp{0x80000000}
12840 and grows downwards, you can use the flags
12841 @option{-fstack-limit-symbol=__stack_limit} and
12842 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
12843 of 128KB@.  Note that this may only work with the GNU linker.
12845 You can locally override stack limit checking by using the
12846 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
12848 @item -fsplit-stack
12849 @opindex fsplit-stack
12850 Generate code to automatically split the stack before it overflows.
12851 The resulting program has a discontiguous stack which can only
12852 overflow if the program is unable to allocate any more memory.  This
12853 is most useful when running threaded programs, as it is no longer
12854 necessary to calculate a good stack size to use for each thread.  This
12855 is currently only implemented for the x86 targets running
12856 GNU/Linux.
12858 When code compiled with @option{-fsplit-stack} calls code compiled
12859 without @option{-fsplit-stack}, there may not be much stack space
12860 available for the latter code to run.  If compiling all code,
12861 including library code, with @option{-fsplit-stack} is not an option,
12862 then the linker can fix up these calls so that the code compiled
12863 without @option{-fsplit-stack} always has a large stack.  Support for
12864 this is implemented in the gold linker in GNU binutils release 2.21
12865 and later.
12867 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
12868 @opindex fvtable-verify
12869 This option is only available when compiling C++ code.
12870 It turns on (or off, if using @option{-fvtable-verify=none}) the security
12871 feature that verifies at run time, for every virtual call, that
12872 the vtable pointer through which the call is made is valid for the type of
12873 the object, and has not been corrupted or overwritten.  If an invalid vtable
12874 pointer is detected at run time, an error is reported and execution of the
12875 program is immediately halted.
12877 This option causes run-time data structures to be built at program startup,
12878 which are used for verifying the vtable pointers.  
12879 The options @samp{std} and @samp{preinit}
12880 control the timing of when these data structures are built.  In both cases the
12881 data structures are built before execution reaches @code{main}.  Using
12882 @option{-fvtable-verify=std} causes the data structures to be built after
12883 shared libraries have been loaded and initialized.
12884 @option{-fvtable-verify=preinit} causes them to be built before shared
12885 libraries have been loaded and initialized.
12887 If this option appears multiple times in the command line with different
12888 values specified, @samp{none} takes highest priority over both @samp{std} and
12889 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
12891 @item -fvtv-debug
12892 @opindex fvtv-debug
12893 When used in conjunction with @option{-fvtable-verify=std} or 
12894 @option{-fvtable-verify=preinit}, causes debug versions of the 
12895 runtime functions for the vtable verification feature to be called.  
12896 This flag also causes the compiler to log information about which 
12897 vtable pointers it finds for each class.
12898 This information is written to a file named @file{vtv_set_ptr_data.log} 
12899 in the directory named by the environment variable @env{VTV_LOGS_DIR} 
12900 if that is defined or the current working directory otherwise.
12902 Note:  This feature @emph{appends} data to the log file. If you want a fresh log
12903 file, be sure to delete any existing one.
12905 @item -fvtv-counts
12906 @opindex fvtv-counts
12907 This is a debugging flag.  When used in conjunction with
12908 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
12909 causes the compiler to keep track of the total number of virtual calls
12910 it encounters and the number of verifications it inserts.  It also
12911 counts the number of calls to certain run-time library functions
12912 that it inserts and logs this information for each compilation unit.
12913 The compiler writes this information to a file named
12914 @file{vtv_count_data.log} in the directory named by the environment
12915 variable @env{VTV_LOGS_DIR} if that is defined or the current working
12916 directory otherwise.  It also counts the size of the vtable pointer sets
12917 for each class, and writes this information to @file{vtv_class_set_sizes.log}
12918 in the same directory.
12920 Note:  This feature @emph{appends} data to the log files.  To get fresh log
12921 files, be sure to delete any existing ones.
12923 @item -finstrument-functions
12924 @opindex finstrument-functions
12925 Generate instrumentation calls for entry and exit to functions.  Just
12926 after function entry and just before function exit, the following
12927 profiling functions are called with the address of the current
12928 function and its call site.  (On some platforms,
12929 @code{__builtin_return_address} does not work beyond the current
12930 function, so the call site information may not be available to the
12931 profiling functions otherwise.)
12933 @smallexample
12934 void __cyg_profile_func_enter (void *this_fn,
12935                                void *call_site);
12936 void __cyg_profile_func_exit  (void *this_fn,
12937                                void *call_site);
12938 @end smallexample
12940 The first argument is the address of the start of the current function,
12941 which may be looked up exactly in the symbol table.
12943 This instrumentation is also done for functions expanded inline in other
12944 functions.  The profiling calls indicate where, conceptually, the
12945 inline function is entered and exited.  This means that addressable
12946 versions of such functions must be available.  If all your uses of a
12947 function are expanded inline, this may mean an additional expansion of
12948 code size.  If you use @code{extern inline} in your C code, an
12949 addressable version of such functions must be provided.  (This is
12950 normally the case anyway, but if you get lucky and the optimizer always
12951 expands the functions inline, you might have gotten away without
12952 providing static copies.)
12954 A function may be given the attribute @code{no_instrument_function}, in
12955 which case this instrumentation is not done.  This can be used, for
12956 example, for the profiling functions listed above, high-priority
12957 interrupt routines, and any functions from which the profiling functions
12958 cannot safely be called (perhaps signal handlers, if the profiling
12959 routines generate output or allocate memory).
12960 @xref{Common Function Attributes}.
12962 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
12963 @opindex finstrument-functions-exclude-file-list
12965 Set the list of functions that are excluded from instrumentation (see
12966 the description of @option{-finstrument-functions}).  If the file that
12967 contains a function definition matches with one of @var{file}, then
12968 that function is not instrumented.  The match is done on substrings:
12969 if the @var{file} parameter is a substring of the file name, it is
12970 considered to be a match.
12972 For example:
12974 @smallexample
12975 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
12976 @end smallexample
12978 @noindent
12979 excludes any inline function defined in files whose pathnames
12980 contain @file{/bits/stl} or @file{include/sys}.
12982 If, for some reason, you want to include letter @samp{,} in one of
12983 @var{sym}, write @samp{\,}. For example,
12984 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
12985 (note the single quote surrounding the option).
12987 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
12988 @opindex finstrument-functions-exclude-function-list
12990 This is similar to @option{-finstrument-functions-exclude-file-list},
12991 but this option sets the list of function names to be excluded from
12992 instrumentation.  The function name to be matched is its user-visible
12993 name, such as @code{vector<int> blah(const vector<int> &)}, not the
12994 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}).  The
12995 match is done on substrings: if the @var{sym} parameter is a substring
12996 of the function name, it is considered to be a match.  For C99 and C++
12997 extended identifiers, the function name must be given in UTF-8, not
12998 using universal character names.
13000 @item -fpatchable-function-entry=@var{N}[,@var{M}]
13001 @opindex fpatchable-function-entry
13002 Generate @var{N} NOPs right at the beginning
13003 of each function, with the function entry point before the @var{M}th NOP.
13004 If @var{M} is omitted, it defaults to @code{0} so the
13005 function entry points to the address just at the first NOP.
13006 The NOP instructions reserve extra space which can be used to patch in
13007 any desired instrumentation at run time, provided that the code segment
13008 is writable.  The amount of space is controllable indirectly via
13009 the number of NOPs; the NOP instruction used corresponds to the instruction
13010 emitted by the internal GCC back-end interface @code{gen_nop}.  This behavior
13011 is target-specific and may also depend on the architecture variant and/or
13012 other compilation options.
13014 For run-time identification, the starting addresses of these areas,
13015 which correspond to their respective function entries minus @var{M},
13016 are additionally collected in the @code{__patchable_function_entries}
13017 section of the resulting binary.
13019 Note that the value of @code{__attribute__ ((patchable_function_entry
13020 (N,M)))} takes precedence over command-line option
13021 @option{-fpatchable-function-entry=N,M}.  This can be used to increase
13022 the area size or to remove it completely on a single function.
13023 If @code{N=0}, no pad location is recorded.
13025 The NOP instructions are inserted at---and maybe before, depending on
13026 @var{M}---the function entry address, even before the prologue.
13028 @end table
13031 @node Preprocessor Options
13032 @section Options Controlling the Preprocessor
13033 @cindex preprocessor options
13034 @cindex options, preprocessor
13036 These options control the C preprocessor, which is run on each C source
13037 file before actual compilation.
13039 If you use the @option{-E} option, nothing is done except preprocessing.
13040 Some of these options make sense only together with @option{-E} because
13041 they cause the preprocessor output to be unsuitable for actual
13042 compilation.
13044 In addition to the options listed here, there are a number of options 
13045 to control search paths for include files documented in 
13046 @ref{Directory Options}.  
13047 Options to control preprocessor diagnostics are listed in 
13048 @ref{Warning Options}.
13050 @table @gcctabopt
13051 @include cppopts.texi
13053 @item -Wp,@var{option}
13054 @opindex Wp
13055 You can use @option{-Wp,@var{option}} to bypass the compiler driver
13056 and pass @var{option} directly through to the preprocessor.  If
13057 @var{option} contains commas, it is split into multiple options at the
13058 commas.  However, many options are modified, translated or interpreted
13059 by the compiler driver before being passed to the preprocessor, and
13060 @option{-Wp} forcibly bypasses this phase.  The preprocessor's direct
13061 interface is undocumented and subject to change, so whenever possible
13062 you should avoid using @option{-Wp} and let the driver handle the
13063 options instead.
13065 @item -Xpreprocessor @var{option}
13066 @opindex Xpreprocessor
13067 Pass @var{option} as an option to the preprocessor.  You can use this to
13068 supply system-specific preprocessor options that GCC does not 
13069 recognize.
13071 If you want to pass an option that takes an argument, you must use
13072 @option{-Xpreprocessor} twice, once for the option and once for the argument.
13074 @item -no-integrated-cpp
13075 @opindex no-integrated-cpp
13076 Perform preprocessing as a separate pass before compilation.
13077 By default, GCC performs preprocessing as an integrated part of
13078 input tokenization and parsing.
13079 If this option is provided, the appropriate language front end
13080 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
13081 and Objective-C, respectively) is instead invoked twice,
13082 once for preprocessing only and once for actual compilation
13083 of the preprocessed input.
13084 This option may be useful in conjunction with the @option{-B} or
13085 @option{-wrapper} options to specify an alternate preprocessor or
13086 perform additional processing of the program source between
13087 normal preprocessing and compilation.
13089 @end table
13091 @node Assembler Options
13092 @section Passing Options to the Assembler
13094 @c prevent bad page break with this line
13095 You can pass options to the assembler.
13097 @table @gcctabopt
13098 @item -Wa,@var{option}
13099 @opindex Wa
13100 Pass @var{option} as an option to the assembler.  If @var{option}
13101 contains commas, it is split into multiple options at the commas.
13103 @item -Xassembler @var{option}
13104 @opindex Xassembler
13105 Pass @var{option} as an option to the assembler.  You can use this to
13106 supply system-specific assembler options that GCC does not
13107 recognize.
13109 If you want to pass an option that takes an argument, you must use
13110 @option{-Xassembler} twice, once for the option and once for the argument.
13112 @end table
13114 @node Link Options
13115 @section Options for Linking
13116 @cindex link options
13117 @cindex options, linking
13119 These options come into play when the compiler links object files into
13120 an executable output file.  They are meaningless if the compiler is
13121 not doing a link step.
13123 @table @gcctabopt
13124 @cindex file names
13125 @item @var{object-file-name}
13126 A file name that does not end in a special recognized suffix is
13127 considered to name an object file or library.  (Object files are
13128 distinguished from libraries by the linker according to the file
13129 contents.)  If linking is done, these object files are used as input
13130 to the linker.
13132 @item -c
13133 @itemx -S
13134 @itemx -E
13135 @opindex c
13136 @opindex S
13137 @opindex E
13138 If any of these options is used, then the linker is not run, and
13139 object file names should not be used as arguments.  @xref{Overall
13140 Options}.
13142 @item -flinker-output=@var{type}
13143 @opindex flinker-output
13144 This option controls code generation of the link time optimizer.  By
13145 default the linker output is automatically determined by the linker
13146 plugin.  For debugging the compiler and if incremental linking with a 
13147 non-LTO object file is desired, it may be useful to control the type
13148 manually.
13150 If @var{type} is @samp{exec} code generation produces a static
13151 binary. In this case @option{-fpic} and @option{-fpie} are both
13152 disabled.
13154 If @var{type} is @samp{dyn} code generation produces a shared
13155 library.  In this case @option{-fpic} or @option{-fPIC} is preserved,
13156 but not enabled automatically.  This allows to build shared libraries
13157 without position independent code on architectures where this is
13158 possible, i.e.@: on x86.
13160 If @var{type} is @samp{pie} code generation produces an @option{-fpie}
13161 executable. This results in similar optimizations as @samp{exec}
13162 except that @option{-fpie} is not disabled if specified at compilation
13163 time.
13165 If @var{type} is @samp{rel} the compiler assumes that incremental linking is
13166 done.  The sections containing intermediate code for link-time optimization are
13167 merged, pre-optimized, and output to the resulting object file. In addition, if
13168 @option{-ffat-lto-objects} is specified the binary code is produced for future
13169 non-LTO linking. The object file produced by incremental linking will be smaller
13170 than a static library produced from the same object files.  At link time the
13171 result of incremental linking will also load faster to compiler than a static
13172 library assuming that the majority of objects in the library are used.
13174 Finally @samp{nolto-rel} configures the compiler for incremental linking where
13175 code generation is forced, a final binary is produced and the intermediate
13176 code for later link-time optimization is stripped. When multiple object files
13177 are linked together the resulting code will be optimized better than with
13178 link-time optimizations disabled (for example, cross-module inlining will
13179 happen), most of benefits of whole program optimizations are however lost. 
13181 During the incremental link (by @option{-r}) the linker plugin will default to
13182 @option{rel}. With current interfaces to GNU Binutils it is however not
13183 possible to incrementally link LTO objects and non-LTO objects into a single
13184 mixed object file.  In the case any of object files in incremental link cannot
13185 be used for link-time optimization the linker plugin will issue a warning and
13186 use @samp{nolto-rel}. To maintain the whole program optimization it is
13187 recommended to link such objects into static library instead. Alternatively it
13188 is possible to use H.J. Lu's binutils with support for mixed objects.
13190 @item -fuse-ld=bfd
13191 @opindex fuse-ld=bfd
13192 Use the @command{bfd} linker instead of the default linker.
13194 @item -fuse-ld=gold
13195 @opindex fuse-ld=gold
13196 Use the @command{gold} linker instead of the default linker.
13198 @item -fuse-ld=lld
13199 @opindex fuse-ld=lld
13200 Use the LLVM @command{lld} linker instead of the default linker.
13202 @cindex Libraries
13203 @item -l@var{library}
13204 @itemx -l @var{library}
13205 @opindex l
13206 Search the library named @var{library} when linking.  (The second
13207 alternative with the library as a separate argument is only for
13208 POSIX compliance and is not recommended.)
13210 The @option{-l} option is passed directly to the linker by GCC.  Refer
13211 to your linker documentation for exact details.  The general
13212 description below applies to the GNU linker.  
13214 The linker searches a standard list of directories for the library.
13215 The directories searched include several standard system directories
13216 plus any that you specify with @option{-L}.
13218 Static libraries are archives of object files, and have file names
13219 like @file{lib@var{library}.a}.  Some targets also support shared
13220 libraries, which typically have names like @file{lib@var{library}.so}.
13221 If both static and shared libraries are found, the linker gives
13222 preference to linking with the shared library unless the
13223 @option{-static} option is used.
13225 It makes a difference where in the command you write this option; the
13226 linker searches and processes libraries and object files in the order they
13227 are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
13228 after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
13229 to functions in @samp{z}, those functions may not be loaded.
13231 @item -lobjc
13232 @opindex lobjc
13233 You need this special case of the @option{-l} option in order to
13234 link an Objective-C or Objective-C++ program.
13236 @item -nostartfiles
13237 @opindex nostartfiles
13238 Do not use the standard system startup files when linking.
13239 The standard system libraries are used normally, unless @option{-nostdlib},
13240 @option{-nolibc}, or @option{-nodefaultlibs} is used.
13242 @item -nodefaultlibs
13243 @opindex nodefaultlibs
13244 Do not use the standard system libraries when linking.
13245 Only the libraries you specify are passed to the linker, and options
13246 specifying linkage of the system libraries, such as @option{-static-libgcc}
13247 or @option{-shared-libgcc}, are ignored.  
13248 The standard startup files are used normally, unless @option{-nostartfiles}
13249 is used.  
13251 The compiler may generate calls to @code{memcmp},
13252 @code{memset}, @code{memcpy} and @code{memmove}.
13253 These entries are usually resolved by entries in
13254 libc.  These entry points should be supplied through some other
13255 mechanism when this option is specified.
13257 @item -nolibc
13258 @opindex nolibc
13259 Do not use the C library or system libraries tightly coupled with it when
13260 linking.  Still link with the startup files, @file{libgcc} or toolchain
13261 provided language support libraries such as @file{libgnat}, @file{libgfortran}
13262 or @file{libstdc++} unless options preventing their inclusion are used as
13263 well.  This typically removes @option{-lc} from the link command line, as well
13264 as system libraries that normally go with it and become meaningless when
13265 absence of a C library is assumed, for example @option{-lpthread} or
13266 @option{-lm} in some configurations.  This is intended for bare-board
13267 targets when there is indeed no C library available.
13269 @item -nostdlib
13270 @opindex nostdlib
13271 Do not use the standard system startup files or libraries when linking.
13272 No startup files and only the libraries you specify are passed to
13273 the linker, and options specifying linkage of the system libraries, such as
13274 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
13276 The compiler may generate calls to @code{memcmp}, @code{memset},
13277 @code{memcpy} and @code{memmove}.
13278 These entries are usually resolved by entries in
13279 libc.  These entry points should be supplied through some other
13280 mechanism when this option is specified.
13282 @cindex @option{-lgcc}, use with @option{-nostdlib}
13283 @cindex @option{-nostdlib} and unresolved references
13284 @cindex unresolved references and @option{-nostdlib}
13285 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
13286 @cindex @option{-nodefaultlibs} and unresolved references
13287 @cindex unresolved references and @option{-nodefaultlibs}
13288 One of the standard libraries bypassed by @option{-nostdlib} and
13289 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
13290 which GCC uses to overcome shortcomings of particular machines, or special
13291 needs for some languages.
13292 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
13293 Collection (GCC) Internals},
13294 for more discussion of @file{libgcc.a}.)
13295 In most cases, you need @file{libgcc.a} even when you want to avoid
13296 other standard libraries.  In other words, when you specify @option{-nostdlib}
13297 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
13298 This ensures that you have no unresolved references to internal GCC
13299 library subroutines.
13300 (An example of such an internal subroutine is @code{__main}, used to ensure C++
13301 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
13302 GNU Compiler Collection (GCC) Internals}.)
13304 @item -e @var{entry}
13305 @itemx --entry=@var{entry}
13306 @opindex e
13307 @opindex entry
13309 Specify that the program entry point is @var{entry}.  The argument is
13310 interpreted by the linker; the GNU linker accepts either a symbol name
13311 or an address.
13313 @item -pie
13314 @opindex pie
13315 Produce a dynamically linked position independent executable on targets
13316 that support it.  For predictable results, you must also specify the same
13317 set of options used for compilation (@option{-fpie}, @option{-fPIE},
13318 or model suboptions) when you specify this linker option.
13320 @item -no-pie
13321 @opindex no-pie
13322 Don't produce a dynamically linked position independent executable.
13324 @item -static-pie
13325 @opindex static-pie
13326 Produce a static position independent executable on targets that support
13327 it.  A static position independent executable is similar to a static
13328 executable, but can be loaded at any address without a dynamic linker.
13329 For predictable results, you must also specify the same set of options
13330 used for compilation (@option{-fpie}, @option{-fPIE}, or model
13331 suboptions) when you specify this linker option.
13333 @item -pthread
13334 @opindex pthread
13335 Link with the POSIX threads library.  This option is supported on 
13336 GNU/Linux targets, most other Unix derivatives, and also on 
13337 x86 Cygwin and MinGW targets.  On some targets this option also sets 
13338 flags for the preprocessor, so it should be used consistently for both
13339 compilation and linking.
13341 @item -r
13342 @opindex r
13343 Produce a relocatable object as output.  This is also known as partial
13344 linking.
13346 @item -rdynamic
13347 @opindex rdynamic
13348 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
13349 that support it. This instructs the linker to add all symbols, not
13350 only used ones, to the dynamic symbol table. This option is needed
13351 for some uses of @code{dlopen} or to allow obtaining backtraces
13352 from within a program.
13354 @item -s
13355 @opindex s
13356 Remove all symbol table and relocation information from the executable.
13358 @item -static
13359 @opindex static
13360 On systems that support dynamic linking, this overrides @option{-pie}
13361 and prevents linking with the shared libraries.  On other systems, this
13362 option has no effect.
13364 @item -shared
13365 @opindex shared
13366 Produce a shared object which can then be linked with other objects to
13367 form an executable.  Not all systems support this option.  For predictable
13368 results, you must also specify the same set of options used for compilation
13369 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
13370 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
13371 needs to build supplementary stub code for constructors to work.  On
13372 multi-libbed systems, @samp{gcc -shared} must select the correct support
13373 libraries to link against.  Failing to supply the correct flags may lead
13374 to subtle defects.  Supplying them in cases where they are not necessary
13375 is innocuous.}
13377 @item -shared-libgcc
13378 @itemx -static-libgcc
13379 @opindex shared-libgcc
13380 @opindex static-libgcc
13381 On systems that provide @file{libgcc} as a shared library, these options
13382 force the use of either the shared or static version, respectively.
13383 If no shared version of @file{libgcc} was built when the compiler was
13384 configured, these options have no effect.
13386 There are several situations in which an application should use the
13387 shared @file{libgcc} instead of the static version.  The most common
13388 of these is when the application wishes to throw and catch exceptions
13389 across different shared libraries.  In that case, each of the libraries
13390 as well as the application itself should use the shared @file{libgcc}.
13392 Therefore, the G++ driver automatically adds @option{-shared-libgcc}
13393 whenever you build a shared library or a main executable, because C++
13394 programs typically use exceptions, so this is the right thing to do.
13396 If, instead, you use the GCC driver to create shared libraries, you may
13397 find that they are not always linked with the shared @file{libgcc}.
13398 If GCC finds, at its configuration time, that you have a non-GNU linker
13399 or a GNU linker that does not support option @option{--eh-frame-hdr},
13400 it links the shared version of @file{libgcc} into shared libraries
13401 by default.  Otherwise, it takes advantage of the linker and optimizes
13402 away the linking with the shared version of @file{libgcc}, linking with
13403 the static version of libgcc by default.  This allows exceptions to
13404 propagate through such shared libraries, without incurring relocation
13405 costs at library load time.
13407 However, if a library or main executable is supposed to throw or catch
13408 exceptions, you must link it using the G++ driver, or using the option
13409 @option{-shared-libgcc}, such that it is linked with the shared
13410 @file{libgcc}.
13412 @item -static-libasan
13413 @opindex static-libasan
13414 When the @option{-fsanitize=address} option is used to link a program,
13415 the GCC driver automatically links against @option{libasan}.  If
13416 @file{libasan} is available as a shared library, and the @option{-static}
13417 option is not used, then this links against the shared version of
13418 @file{libasan}.  The @option{-static-libasan} option directs the GCC
13419 driver to link @file{libasan} statically, without necessarily linking
13420 other libraries statically.
13422 @item -static-libtsan
13423 @opindex static-libtsan
13424 When the @option{-fsanitize=thread} option is used to link a program,
13425 the GCC driver automatically links against @option{libtsan}.  If
13426 @file{libtsan} is available as a shared library, and the @option{-static}
13427 option is not used, then this links against the shared version of
13428 @file{libtsan}.  The @option{-static-libtsan} option directs the GCC
13429 driver to link @file{libtsan} statically, without necessarily linking
13430 other libraries statically.
13432 @item -static-liblsan
13433 @opindex static-liblsan
13434 When the @option{-fsanitize=leak} option is used to link a program,
13435 the GCC driver automatically links against @option{liblsan}.  If
13436 @file{liblsan} is available as a shared library, and the @option{-static}
13437 option is not used, then this links against the shared version of
13438 @file{liblsan}.  The @option{-static-liblsan} option directs the GCC
13439 driver to link @file{liblsan} statically, without necessarily linking
13440 other libraries statically.
13442 @item -static-libubsan
13443 @opindex static-libubsan
13444 When the @option{-fsanitize=undefined} option is used to link a program,
13445 the GCC driver automatically links against @option{libubsan}.  If
13446 @file{libubsan} is available as a shared library, and the @option{-static}
13447 option is not used, then this links against the shared version of
13448 @file{libubsan}.  The @option{-static-libubsan} option directs the GCC
13449 driver to link @file{libubsan} statically, without necessarily linking
13450 other libraries statically.
13452 @item -static-libstdc++
13453 @opindex static-libstdc++
13454 When the @command{g++} program is used to link a C++ program, it
13455 normally automatically links against @option{libstdc++}.  If
13456 @file{libstdc++} is available as a shared library, and the
13457 @option{-static} option is not used, then this links against the
13458 shared version of @file{libstdc++}.  That is normally fine.  However, it
13459 is sometimes useful to freeze the version of @file{libstdc++} used by
13460 the program without going all the way to a fully static link.  The
13461 @option{-static-libstdc++} option directs the @command{g++} driver to
13462 link @file{libstdc++} statically, without necessarily linking other
13463 libraries statically.
13465 @item -symbolic
13466 @opindex symbolic
13467 Bind references to global symbols when building a shared object.  Warn
13468 about any unresolved references (unless overridden by the link editor
13469 option @option{-Xlinker -z -Xlinker defs}).  Only a few systems support
13470 this option.
13472 @item -T @var{script}
13473 @opindex T
13474 @cindex linker script
13475 Use @var{script} as the linker script.  This option is supported by most
13476 systems using the GNU linker.  On some targets, such as bare-board
13477 targets without an operating system, the @option{-T} option may be required
13478 when linking to avoid references to undefined symbols.
13480 @item -Xlinker @var{option}
13481 @opindex Xlinker
13482 Pass @var{option} as an option to the linker.  You can use this to
13483 supply system-specific linker options that GCC does not recognize.
13485 If you want to pass an option that takes a separate argument, you must use
13486 @option{-Xlinker} twice, once for the option and once for the argument.
13487 For example, to pass @option{-assert definitions}, you must write
13488 @option{-Xlinker -assert -Xlinker definitions}.  It does not work to write
13489 @option{-Xlinker "-assert definitions"}, because this passes the entire
13490 string as a single argument, which is not what the linker expects.
13492 When using the GNU linker, it is usually more convenient to pass
13493 arguments to linker options using the @option{@var{option}=@var{value}}
13494 syntax than as separate arguments.  For example, you can specify
13495 @option{-Xlinker -Map=output.map} rather than
13496 @option{-Xlinker -Map -Xlinker output.map}.  Other linkers may not support
13497 this syntax for command-line options.
13499 @item -Wl,@var{option}
13500 @opindex Wl
13501 Pass @var{option} as an option to the linker.  If @var{option} contains
13502 commas, it is split into multiple options at the commas.  You can use this
13503 syntax to pass an argument to the option.
13504 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
13505 linker.  When using the GNU linker, you can also get the same effect with
13506 @option{-Wl,-Map=output.map}.
13508 @item -u @var{symbol}
13509 @opindex u
13510 Pretend the symbol @var{symbol} is undefined, to force linking of
13511 library modules to define it.  You can use @option{-u} multiple times with
13512 different symbols to force loading of additional library modules.
13514 @item -z @var{keyword}
13515 @opindex z
13516 @option{-z} is passed directly on to the linker along with the keyword
13517 @var{keyword}. See the section in the documentation of your linker for
13518 permitted values and their meanings.
13519 @end table
13521 @node Directory Options
13522 @section Options for Directory Search
13523 @cindex directory options
13524 @cindex options, directory search
13525 @cindex search path
13527 These options specify directories to search for header files, for
13528 libraries and for parts of the compiler:
13530 @table @gcctabopt
13531 @include cppdiropts.texi
13533 @item -iplugindir=@var{dir}
13534 @opindex iplugindir=
13535 Set the directory to search for plugins that are passed
13536 by @option{-fplugin=@var{name}} instead of
13537 @option{-fplugin=@var{path}/@var{name}.so}.  This option is not meant
13538 to be used by the user, but only passed by the driver.
13540 @item -L@var{dir}
13541 @opindex L
13542 Add directory @var{dir} to the list of directories to be searched
13543 for @option{-l}.
13545 @item -B@var{prefix}
13546 @opindex B
13547 This option specifies where to find the executables, libraries,
13548 include files, and data files of the compiler itself.
13550 The compiler driver program runs one or more of the subprograms
13551 @command{cpp}, @command{cc1}, @command{as} and @command{ld}.  It tries
13552 @var{prefix} as a prefix for each program it tries to run, both with and
13553 without @samp{@var{machine}/@var{version}/} for the corresponding target
13554 machine and compiler version.
13556 For each subprogram to be run, the compiler driver first tries the
13557 @option{-B} prefix, if any.  If that name is not found, or if @option{-B}
13558 is not specified, the driver tries two standard prefixes, 
13559 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}.  If neither of
13560 those results in a file name that is found, the unmodified program
13561 name is searched for using the directories specified in your
13562 @env{PATH} environment variable.
13564 The compiler checks to see if the path provided by @option{-B}
13565 refers to a directory, and if necessary it adds a directory
13566 separator character at the end of the path.
13568 @option{-B} prefixes that effectively specify directory names also apply
13569 to libraries in the linker, because the compiler translates these
13570 options into @option{-L} options for the linker.  They also apply to
13571 include files in the preprocessor, because the compiler translates these
13572 options into @option{-isystem} options for the preprocessor.  In this case,
13573 the compiler appends @samp{include} to the prefix.
13575 The runtime support file @file{libgcc.a} can also be searched for using
13576 the @option{-B} prefix, if needed.  If it is not found there, the two
13577 standard prefixes above are tried, and that is all.  The file is left
13578 out of the link if it is not found by those means.
13580 Another way to specify a prefix much like the @option{-B} prefix is to use
13581 the environment variable @env{GCC_EXEC_PREFIX}.  @xref{Environment
13582 Variables}.
13584 As a special kludge, if the path provided by @option{-B} is
13585 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
13586 9, then it is replaced by @file{[dir/]include}.  This is to help
13587 with boot-strapping the compiler.
13589 @item -no-canonical-prefixes
13590 @opindex no-canonical-prefixes
13591 Do not expand any symbolic links, resolve references to @samp{/../}
13592 or @samp{/./}, or make the path absolute when generating a relative
13593 prefix.
13595 @item --sysroot=@var{dir}
13596 @opindex sysroot
13597 Use @var{dir} as the logical root directory for headers and libraries.
13598 For example, if the compiler normally searches for headers in
13599 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
13600 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
13602 If you use both this option and the @option{-isysroot} option, then
13603 the @option{--sysroot} option applies to libraries, but the
13604 @option{-isysroot} option applies to header files.
13606 The GNU linker (beginning with version 2.16) has the necessary support
13607 for this option.  If your linker does not support this option, the
13608 header file aspect of @option{--sysroot} still works, but the
13609 library aspect does not.
13611 @item --no-sysroot-suffix
13612 @opindex no-sysroot-suffix
13613 For some targets, a suffix is added to the root directory specified
13614 with @option{--sysroot}, depending on the other options used, so that
13615 headers may for example be found in
13616 @file{@var{dir}/@var{suffix}/usr/include} instead of
13617 @file{@var{dir}/usr/include}.  This option disables the addition of
13618 such a suffix.
13620 @end table
13622 @node Code Gen Options
13623 @section Options for Code Generation Conventions
13624 @cindex code generation conventions
13625 @cindex options, code generation
13626 @cindex run-time options
13628 These machine-independent options control the interface conventions
13629 used in code generation.
13631 Most of them have both positive and negative forms; the negative form
13632 of @option{-ffoo} is @option{-fno-foo}.  In the table below, only
13633 one of the forms is listed---the one that is not the default.  You
13634 can figure out the other form by either removing @samp{no-} or adding
13637 @table @gcctabopt
13638 @item -fstack-reuse=@var{reuse-level}
13639 @opindex fstack_reuse
13640 This option controls stack space reuse for user declared local/auto variables
13641 and compiler generated temporaries.  @var{reuse_level} can be @samp{all},
13642 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
13643 local variables and temporaries, @samp{named_vars} enables the reuse only for
13644 user defined local variables with names, and @samp{none} disables stack reuse
13645 completely. The default value is @samp{all}. The option is needed when the
13646 program extends the lifetime of a scoped local variable or a compiler generated
13647 temporary beyond the end point defined by the language.  When a lifetime of
13648 a variable ends, and if the variable lives in memory, the optimizing compiler
13649 has the freedom to reuse its stack space with other temporaries or scoped
13650 local variables whose live range does not overlap with it. Legacy code extending
13651 local lifetime is likely to break with the stack reuse optimization.
13653 For example,
13655 @smallexample
13656    int *p;
13657    @{
13658      int local1;
13660      p = &local1;
13661      local1 = 10;
13662      ....
13663    @}
13664    @{
13665       int local2;
13666       local2 = 20;
13667       ...
13668    @}
13670    if (*p == 10)  // out of scope use of local1
13671      @{
13673      @}
13674 @end smallexample
13676 Another example:
13677 @smallexample
13679    struct A
13680    @{
13681        A(int k) : i(k), j(k) @{ @}
13682        int i;
13683        int j;
13684    @};
13686    A *ap;
13688    void foo(const A& ar)
13689    @{
13690       ap = &ar;
13691    @}
13693    void bar()
13694    @{
13695       foo(A(10)); // temp object's lifetime ends when foo returns
13697       @{
13698         A a(20);
13699         ....
13700       @}
13701       ap->i+= 10;  // ap references out of scope temp whose space
13702                    // is reused with a. What is the value of ap->i?
13703    @}
13705 @end smallexample
13707 The lifetime of a compiler generated temporary is well defined by the C++
13708 standard. When a lifetime of a temporary ends, and if the temporary lives
13709 in memory, the optimizing compiler has the freedom to reuse its stack
13710 space with other temporaries or scoped local variables whose live range
13711 does not overlap with it. However some of the legacy code relies on
13712 the behavior of older compilers in which temporaries' stack space is
13713 not reused, the aggressive stack reuse can lead to runtime errors. This
13714 option is used to control the temporary stack reuse optimization.
13716 @item -ftrapv
13717 @opindex ftrapv
13718 This option generates traps for signed overflow on addition, subtraction,
13719 multiplication operations.
13720 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
13721 @option{-ftrapv} @option{-fwrapv} on the command-line results in
13722 @option{-fwrapv} being effective.  Note that only active options override, so
13723 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
13724 results in @option{-ftrapv} being effective.
13726 @item -fwrapv
13727 @opindex fwrapv
13728 This option instructs the compiler to assume that signed arithmetic
13729 overflow of addition, subtraction and multiplication wraps around
13730 using twos-complement representation.  This flag enables some optimizations
13731 and disables others.
13732 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
13733 @option{-ftrapv} @option{-fwrapv} on the command-line results in
13734 @option{-fwrapv} being effective.  Note that only active options override, so
13735 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
13736 results in @option{-ftrapv} being effective.
13738 @item -fwrapv-pointer
13739 @opindex fwrapv-pointer
13740 This option instructs the compiler to assume that pointer arithmetic
13741 overflow on addition and subtraction wraps around using twos-complement
13742 representation.  This flag disables some optimizations which assume
13743 pointer overflow is invalid.
13745 @item -fstrict-overflow
13746 @opindex fstrict-overflow
13747 This option implies @option{-fno-wrapv} @option{-fno-wrapv-pointer} and when
13748 negated implies @option{-fwrapv} @option{-fwrapv-pointer}.
13750 @item -fexceptions
13751 @opindex fexceptions
13752 Enable exception handling.  Generates extra code needed to propagate
13753 exceptions.  For some targets, this implies GCC generates frame
13754 unwind information for all functions, which can produce significant data
13755 size overhead, although it does not affect execution.  If you do not
13756 specify this option, GCC enables it by default for languages like
13757 C++ that normally require exception handling, and disables it for
13758 languages like C that do not normally require it.  However, you may need
13759 to enable this option when compiling C code that needs to interoperate
13760 properly with exception handlers written in C++.  You may also wish to
13761 disable this option if you are compiling older C++ programs that don't
13762 use exception handling.
13764 @item -fnon-call-exceptions
13765 @opindex fnon-call-exceptions
13766 Generate code that allows trapping instructions to throw exceptions.
13767 Note that this requires platform-specific runtime support that does
13768 not exist everywhere.  Moreover, it only allows @emph{trapping}
13769 instructions to throw exceptions, i.e.@: memory references or floating-point
13770 instructions.  It does not allow exceptions to be thrown from
13771 arbitrary signal handlers such as @code{SIGALRM}.
13773 @item -fdelete-dead-exceptions
13774 @opindex fdelete-dead-exceptions
13775 Consider that instructions that may throw exceptions but don't otherwise
13776 contribute to the execution of the program can be optimized away.
13777 This option is enabled by default for the Ada front end, as permitted by
13778 the Ada language specification.
13779 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
13781 @item -funwind-tables
13782 @opindex funwind-tables
13783 Similar to @option{-fexceptions}, except that it just generates any needed
13784 static data, but does not affect the generated code in any other way.
13785 You normally do not need to enable this option; instead, a language processor
13786 that needs this handling enables it on your behalf.
13788 @item -fasynchronous-unwind-tables
13789 @opindex fasynchronous-unwind-tables
13790 Generate unwind table in DWARF format, if supported by target machine.  The
13791 table is exact at each instruction boundary, so it can be used for stack
13792 unwinding from asynchronous events (such as debugger or garbage collector).
13794 @item -fno-gnu-unique
13795 @opindex fno-gnu-unique
13796 @opindex fgnu-unique
13797 On systems with recent GNU assembler and C library, the C++ compiler
13798 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
13799 of template static data members and static local variables in inline
13800 functions are unique even in the presence of @code{RTLD_LOCAL}; this
13801 is necessary to avoid problems with a library used by two different
13802 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
13803 therefore disagreeing with the other one about the binding of the
13804 symbol.  But this causes @code{dlclose} to be ignored for affected
13805 DSOs; if your program relies on reinitialization of a DSO via
13806 @code{dlclose} and @code{dlopen}, you can use
13807 @option{-fno-gnu-unique}.
13809 @item -fpcc-struct-return
13810 @opindex fpcc-struct-return
13811 Return ``short'' @code{struct} and @code{union} values in memory like
13812 longer ones, rather than in registers.  This convention is less
13813 efficient, but it has the advantage of allowing intercallability between
13814 GCC-compiled files and files compiled with other compilers, particularly
13815 the Portable C Compiler (pcc).
13817 The precise convention for returning structures in memory depends
13818 on the target configuration macros.
13820 Short structures and unions are those whose size and alignment match
13821 that of some integer type.
13823 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
13824 switch is not binary compatible with code compiled with the
13825 @option{-freg-struct-return} switch.
13826 Use it to conform to a non-default application binary interface.
13828 @item -freg-struct-return
13829 @opindex freg-struct-return
13830 Return @code{struct} and @code{union} values in registers when possible.
13831 This is more efficient for small structures than
13832 @option{-fpcc-struct-return}.
13834 If you specify neither @option{-fpcc-struct-return} nor
13835 @option{-freg-struct-return}, GCC defaults to whichever convention is
13836 standard for the target.  If there is no standard convention, GCC
13837 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
13838 the principal compiler.  In those cases, we can choose the standard, and
13839 we chose the more efficient register return alternative.
13841 @strong{Warning:} code compiled with the @option{-freg-struct-return}
13842 switch is not binary compatible with code compiled with the
13843 @option{-fpcc-struct-return} switch.
13844 Use it to conform to a non-default application binary interface.
13846 @item -fshort-enums
13847 @opindex fshort-enums
13848 Allocate to an @code{enum} type only as many bytes as it needs for the
13849 declared range of possible values.  Specifically, the @code{enum} type
13850 is equivalent to the smallest integer type that has enough room.
13852 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
13853 code that is not binary compatible with code generated without that switch.
13854 Use it to conform to a non-default application binary interface.
13856 @item -fshort-wchar
13857 @opindex fshort-wchar
13858 Override the underlying type for @code{wchar_t} to be @code{short
13859 unsigned int} instead of the default for the target.  This option is
13860 useful for building programs to run under WINE@.
13862 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
13863 code that is not binary compatible with code generated without that switch.
13864 Use it to conform to a non-default application binary interface.
13866 @item -fno-common
13867 @opindex fno-common
13868 @opindex fcommon
13869 @cindex tentative definitions
13870 In C code, this option controls the placement of global variables 
13871 defined without an initializer, known as @dfn{tentative definitions} 
13872 in the C standard.  Tentative definitions are distinct from declarations 
13873 of a variable with the @code{extern} keyword, which do not allocate storage.
13875 Unix C compilers have traditionally allocated storage for
13876 uninitialized global variables in a common block.  This allows the
13877 linker to resolve all tentative definitions of the same variable
13878 in different compilation units to the same object, or to a non-tentative
13879 definition.  
13880 This is the behavior specified by @option{-fcommon}, and is the default for 
13881 GCC on most targets.  
13882 On the other hand, this behavior is not required by ISO
13883 C, and on some targets may carry a speed or code size penalty on
13884 variable references.
13886 The @option{-fno-common} option specifies that the compiler should instead
13887 place uninitialized global variables in the BSS section of the object file.
13888 This inhibits the merging of tentative definitions by the linker so
13889 you get a multiple-definition error if the same 
13890 variable is defined in more than one compilation unit.
13891 Compiling with @option{-fno-common} is useful on targets for which
13892 it provides better performance, or if you wish to verify that the
13893 program will work on other systems that always treat uninitialized
13894 variable definitions this way.
13896 @item -fno-ident
13897 @opindex fno-ident
13898 @opindex fident
13899 Ignore the @code{#ident} directive.
13901 @item -finhibit-size-directive
13902 @opindex finhibit-size-directive
13903 Don't output a @code{.size} assembler directive, or anything else that
13904 would cause trouble if the function is split in the middle, and the
13905 two halves are placed at locations far apart in memory.  This option is
13906 used when compiling @file{crtstuff.c}; you should not need to use it
13907 for anything else.
13909 @item -fverbose-asm
13910 @opindex fverbose-asm
13911 Put extra commentary information in the generated assembly code to
13912 make it more readable.  This option is generally only of use to those
13913 who actually need to read the generated assembly code (perhaps while
13914 debugging the compiler itself).
13916 @option{-fno-verbose-asm}, the default, causes the
13917 extra information to be omitted and is useful when comparing two assembler
13918 files.
13920 The added comments include:
13922 @itemize @bullet
13924 @item
13925 information on the compiler version and command-line options,
13927 @item
13928 the source code lines associated with the assembly instructions,
13929 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
13931 @item
13932 hints on which high-level expressions correspond to
13933 the various assembly instruction operands.
13935 @end itemize
13937 For example, given this C source file:
13939 @smallexample
13940 int test (int n)
13942   int i;
13943   int total = 0;
13945   for (i = 0; i < n; i++)
13946     total += i * i;
13948   return total;
13950 @end smallexample
13952 compiling to (x86_64) assembly via @option{-S} and emitting the result
13953 direct to stdout via @option{-o} @option{-}
13955 @smallexample
13956 gcc -S test.c -fverbose-asm -Os -o -
13957 @end smallexample
13959 gives output similar to this:
13961 @smallexample
13962         .file   "test.c"
13963 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
13964   [...snip...]
13965 # options passed:
13966   [...snip...]
13968         .text
13969         .globl  test
13970         .type   test, @@function
13971 test:
13972 .LFB0:
13973         .cfi_startproc
13974 # test.c:4:   int total = 0;
13975         xorl    %eax, %eax      # <retval>
13976 # test.c:6:   for (i = 0; i < n; i++)
13977         xorl    %edx, %edx      # i
13978 .L2:
13979 # test.c:6:   for (i = 0; i < n; i++)
13980         cmpl    %edi, %edx      # n, i
13981         jge     .L5     #,
13982 # test.c:7:     total += i * i;
13983         movl    %edx, %ecx      # i, tmp92
13984         imull   %edx, %ecx      # i, tmp92
13985 # test.c:6:   for (i = 0; i < n; i++)
13986         incl    %edx    # i
13987 # test.c:7:     total += i * i;
13988         addl    %ecx, %eax      # tmp92, <retval>
13989         jmp     .L2     #
13990 .L5:
13991 # test.c:10: @}
13992         ret
13993         .cfi_endproc
13994 .LFE0:
13995         .size   test, .-test
13996         .ident  "GCC: (GNU) 7.0.0 20160809 (experimental)"
13997         .section        .note.GNU-stack,"",@@progbits
13998 @end smallexample
14000 The comments are intended for humans rather than machines and hence the
14001 precise format of the comments is subject to change.
14003 @item -frecord-gcc-switches
14004 @opindex frecord-gcc-switches
14005 This switch causes the command line used to invoke the
14006 compiler to be recorded into the object file that is being created.
14007 This switch is only implemented on some targets and the exact format
14008 of the recording is target and binary file format dependent, but it
14009 usually takes the form of a section containing ASCII text.  This
14010 switch is related to the @option{-fverbose-asm} switch, but that
14011 switch only records information in the assembler output file as
14012 comments, so it never reaches the object file.
14013 See also @option{-grecord-gcc-switches} for another
14014 way of storing compiler options into the object file.
14016 @item -fpic
14017 @opindex fpic
14018 @cindex global offset table
14019 @cindex PIC
14020 Generate position-independent code (PIC) suitable for use in a shared
14021 library, if supported for the target machine.  Such code accesses all
14022 constant addresses through a global offset table (GOT)@.  The dynamic
14023 loader resolves the GOT entries when the program starts (the dynamic
14024 loader is not part of GCC; it is part of the operating system).  If
14025 the GOT size for the linked executable exceeds a machine-specific
14026 maximum size, you get an error message from the linker indicating that
14027 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
14028 instead.  (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
14029 on the m68k and RS/6000.  The x86 has no such limit.)
14031 Position-independent code requires special support, and therefore works
14032 only on certain machines.  For the x86, GCC supports PIC for System V
14033 but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
14034 position-independent.
14036 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
14037 are defined to 1.
14039 @item -fPIC
14040 @opindex fPIC
14041 If supported for the target machine, emit position-independent code,
14042 suitable for dynamic linking and avoiding any limit on the size of the
14043 global offset table.  This option makes a difference on AArch64, m68k,
14044 PowerPC and SPARC@.
14046 Position-independent code requires special support, and therefore works
14047 only on certain machines.
14049 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
14050 are defined to 2.
14052 @item -fpie
14053 @itemx -fPIE
14054 @opindex fpie
14055 @opindex fPIE
14056 These options are similar to @option{-fpic} and @option{-fPIC}, but the
14057 generated position-independent code can be only linked into executables.
14058 Usually these options are used to compile code that will be linked using
14059 the @option{-pie} GCC option.
14061 @option{-fpie} and @option{-fPIE} both define the macros
14062 @code{__pie__} and @code{__PIE__}.  The macros have the value 1
14063 for @option{-fpie} and 2 for @option{-fPIE}.
14065 @item -fno-plt
14066 @opindex fno-plt
14067 @opindex fplt
14068 Do not use the PLT for external function calls in position-independent code.
14069 Instead, load the callee address at call sites from the GOT and branch to it.
14070 This leads to more efficient code by eliminating PLT stubs and exposing
14071 GOT loads to optimizations.  On architectures such as 32-bit x86 where
14072 PLT stubs expect the GOT pointer in a specific register, this gives more
14073 register allocation freedom to the compiler.
14074 Lazy binding requires use of the PLT; 
14075 with @option{-fno-plt} all external symbols are resolved at load time.
14077 Alternatively, the function attribute @code{noplt} can be used to avoid calls
14078 through the PLT for specific external functions.
14080 In position-dependent code, a few targets also convert calls to
14081 functions that are marked to not use the PLT to use the GOT instead.
14083 @item -fno-jump-tables
14084 @opindex fno-jump-tables
14085 @opindex fjump-tables
14086 Do not use jump tables for switch statements even where it would be
14087 more efficient than other code generation strategies.  This option is
14088 of use in conjunction with @option{-fpic} or @option{-fPIC} for
14089 building code that forms part of a dynamic linker and cannot
14090 reference the address of a jump table.  On some targets, jump tables
14091 do not require a GOT and this option is not needed.
14093 @item -ffixed-@var{reg}
14094 @opindex ffixed
14095 Treat the register named @var{reg} as a fixed register; generated code
14096 should never refer to it (except perhaps as a stack pointer, frame
14097 pointer or in some other fixed role).
14099 @var{reg} must be the name of a register.  The register names accepted
14100 are machine-specific and are defined in the @code{REGISTER_NAMES}
14101 macro in the machine description macro file.
14103 This flag does not have a negative form, because it specifies a
14104 three-way choice.
14106 @item -fcall-used-@var{reg}
14107 @opindex fcall-used
14108 Treat the register named @var{reg} as an allocable register that is
14109 clobbered by function calls.  It may be allocated for temporaries or
14110 variables that do not live across a call.  Functions compiled this way
14111 do not save and restore the register @var{reg}.
14113 It is an error to use this flag with the frame pointer or stack pointer.
14114 Use of this flag for other registers that have fixed pervasive roles in
14115 the machine's execution model produces disastrous results.
14117 This flag does not have a negative form, because it specifies a
14118 three-way choice.
14120 @item -fcall-saved-@var{reg}
14121 @opindex fcall-saved
14122 Treat the register named @var{reg} as an allocable register saved by
14123 functions.  It may be allocated even for temporaries or variables that
14124 live across a call.  Functions compiled this way save and restore
14125 the register @var{reg} if they use it.
14127 It is an error to use this flag with the frame pointer or stack pointer.
14128 Use of this flag for other registers that have fixed pervasive roles in
14129 the machine's execution model produces disastrous results.
14131 A different sort of disaster results from the use of this flag for
14132 a register in which function values may be returned.
14134 This flag does not have a negative form, because it specifies a
14135 three-way choice.
14137 @item -fpack-struct[=@var{n}]
14138 @opindex fpack-struct
14139 Without a value specified, pack all structure members together without
14140 holes.  When a value is specified (which must be a small power of two), pack
14141 structure members according to this value, representing the maximum
14142 alignment (that is, objects with default alignment requirements larger than
14143 this are output potentially unaligned at the next fitting location.
14145 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
14146 code that is not binary compatible with code generated without that switch.
14147 Additionally, it makes the code suboptimal.
14148 Use it to conform to a non-default application binary interface.
14150 @item -fleading-underscore
14151 @opindex fleading-underscore
14152 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
14153 change the way C symbols are represented in the object file.  One use
14154 is to help link with legacy assembly code.
14156 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
14157 generate code that is not binary compatible with code generated without that
14158 switch.  Use it to conform to a non-default application binary interface.
14159 Not all targets provide complete support for this switch.
14161 @item -ftls-model=@var{model}
14162 @opindex ftls-model
14163 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
14164 The @var{model} argument should be one of @samp{global-dynamic},
14165 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
14166 Note that the choice is subject to optimization: the compiler may use
14167 a more efficient model for symbols not visible outside of the translation
14168 unit, or if @option{-fpic} is not given on the command line.
14170 The default without @option{-fpic} is @samp{initial-exec}; with
14171 @option{-fpic} the default is @samp{global-dynamic}.
14173 @item -ftrampolines
14174 @opindex ftrampolines
14175 For targets that normally need trampolines for nested functions, always
14176 generate them instead of using descriptors.  Otherwise, for targets that
14177 do not need them, like for example HP-PA or IA-64, do nothing.
14179 A trampoline is a small piece of code that is created at run time on the
14180 stack when the address of a nested function is taken, and is used to call
14181 the nested function indirectly.  Therefore, it requires the stack to be
14182 made executable in order for the program to work properly.
14184 @option{-fno-trampolines} is enabled by default on a language by language
14185 basis to let the compiler avoid generating them, if it computes that this
14186 is safe, and replace them with descriptors.  Descriptors are made up of data
14187 only, but the generated code must be prepared to deal with them.  As of this
14188 writing, @option{-fno-trampolines} is enabled by default only for Ada.
14190 Moreover, code compiled with @option{-ftrampolines} and code compiled with
14191 @option{-fno-trampolines} are not binary compatible if nested functions are
14192 present.  This option must therefore be used on a program-wide basis and be
14193 manipulated with extreme care.
14195 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
14196 @opindex fvisibility
14197 Set the default ELF image symbol visibility to the specified option---all
14198 symbols are marked with this unless overridden within the code.
14199 Using this feature can very substantially improve linking and
14200 load times of shared object libraries, produce more optimized
14201 code, provide near-perfect API export and prevent symbol clashes.
14202 It is @strong{strongly} recommended that you use this in any shared objects
14203 you distribute.
14205 Despite the nomenclature, @samp{default} always means public; i.e.,
14206 available to be linked against from outside the shared object.
14207 @samp{protected} and @samp{internal} are pretty useless in real-world
14208 usage so the only other commonly used option is @samp{hidden}.
14209 The default if @option{-fvisibility} isn't specified is
14210 @samp{default}, i.e., make every symbol public.
14212 A good explanation of the benefits offered by ensuring ELF
14213 symbols have the correct visibility is given by ``How To Write
14214 Shared Libraries'' by Ulrich Drepper (which can be found at
14215 @w{@uref{https://www.akkadia.org/drepper/}})---however a superior
14216 solution made possible by this option to marking things hidden when
14217 the default is public is to make the default hidden and mark things
14218 public.  This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
14219 and @code{__attribute__ ((visibility("default")))} instead of
14220 @code{__declspec(dllexport)} you get almost identical semantics with
14221 identical syntax.  This is a great boon to those working with
14222 cross-platform projects.
14224 For those adding visibility support to existing code, you may find
14225 @code{#pragma GCC visibility} of use.  This works by you enclosing
14226 the declarations you wish to set visibility for with (for example)
14227 @code{#pragma GCC visibility push(hidden)} and
14228 @code{#pragma GCC visibility pop}.
14229 Bear in mind that symbol visibility should be viewed @strong{as
14230 part of the API interface contract} and thus all new code should
14231 always specify visibility when it is not the default; i.e., declarations
14232 only for use within the local DSO should @strong{always} be marked explicitly
14233 as hidden as so to avoid PLT indirection overheads---making this
14234 abundantly clear also aids readability and self-documentation of the code.
14235 Note that due to ISO C++ specification requirements, @code{operator new} and
14236 @code{operator delete} must always be of default visibility.
14238 Be aware that headers from outside your project, in particular system
14239 headers and headers from any other library you use, may not be
14240 expecting to be compiled with visibility other than the default.  You
14241 may need to explicitly say @code{#pragma GCC visibility push(default)}
14242 before including any such headers.
14244 @code{extern} declarations are not affected by @option{-fvisibility}, so
14245 a lot of code can be recompiled with @option{-fvisibility=hidden} with
14246 no modifications.  However, this means that calls to @code{extern}
14247 functions with no explicit visibility use the PLT, so it is more
14248 effective to use @code{__attribute ((visibility))} and/or
14249 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
14250 declarations should be treated as hidden.
14252 Note that @option{-fvisibility} does affect C++ vague linkage
14253 entities. This means that, for instance, an exception class that is
14254 be thrown between DSOs must be explicitly marked with default
14255 visibility so that the @samp{type_info} nodes are unified between
14256 the DSOs.
14258 An overview of these techniques, their benefits and how to use them
14259 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
14261 @item -fstrict-volatile-bitfields
14262 @opindex fstrict-volatile-bitfields
14263 This option should be used if accesses to volatile bit-fields (or other
14264 structure fields, although the compiler usually honors those types
14265 anyway) should use a single access of the width of the
14266 field's type, aligned to a natural alignment if possible.  For
14267 example, targets with memory-mapped peripheral registers might require
14268 all such accesses to be 16 bits wide; with this flag you can
14269 declare all peripheral bit-fields as @code{unsigned short} (assuming short
14270 is 16 bits on these targets) to force GCC to use 16-bit accesses
14271 instead of, perhaps, a more efficient 32-bit access.
14273 If this option is disabled, the compiler uses the most efficient
14274 instruction.  In the previous example, that might be a 32-bit load
14275 instruction, even though that accesses bytes that do not contain
14276 any portion of the bit-field, or memory-mapped registers unrelated to
14277 the one being updated.
14279 In some cases, such as when the @code{packed} attribute is applied to a 
14280 structure field, it may not be possible to access the field with a single
14281 read or write that is correctly aligned for the target machine.  In this
14282 case GCC falls back to generating multiple accesses rather than code that 
14283 will fault or truncate the result at run time.
14285 Note:  Due to restrictions of the C/C++11 memory model, write accesses are
14286 not allowed to touch non bit-field members.  It is therefore recommended
14287 to define all bits of the field's type as bit-field members.
14289 The default value of this option is determined by the application binary
14290 interface for the target processor.
14292 @item -fsync-libcalls
14293 @opindex fsync-libcalls
14294 This option controls whether any out-of-line instance of the @code{__sync}
14295 family of functions may be used to implement the C++11 @code{__atomic}
14296 family of functions.
14298 The default value of this option is enabled, thus the only useful form
14299 of the option is @option{-fno-sync-libcalls}.  This option is used in
14300 the implementation of the @file{libatomic} runtime library.
14302 @end table
14304 @node Developer Options
14305 @section GCC Developer Options
14306 @cindex developer options
14307 @cindex debugging GCC
14308 @cindex debug dump options
14309 @cindex dump options
14310 @cindex compilation statistics
14312 This section describes command-line options that are primarily of
14313 interest to GCC developers, including options to support compiler
14314 testing and investigation of compiler bugs and compile-time
14315 performance problems.  This includes options that produce debug dumps
14316 at various points in the compilation; that print statistics such as
14317 memory use and execution time; and that print information about GCC's
14318 configuration, such as where it searches for libraries.  You should
14319 rarely need to use any of these options for ordinary compilation and
14320 linking tasks.
14322 Many developer options that cause GCC to dump output to a file take an
14323 optional @samp{=@var{filename}} suffix. You can specify @samp{stdout}
14324 or @samp{-} to dump to standard output, and @samp{stderr} for standard
14325 error.
14327 If @samp{=@var{filename}} is omitted, a default dump file name is
14328 constructed by concatenating the base dump file name, a pass number,
14329 phase letter, and pass name.  The base dump file name is the name of
14330 output file produced by the compiler if explicitly specified and not
14331 an executable; otherwise it is the source file name.
14332 The pass number is determined by the order passes are registered with
14333 the compiler's pass manager. 
14334 This is generally the same as the order of execution, but passes
14335 registered by plugins, target-specific passes, or passes that are
14336 otherwise registered late are numbered higher than the pass named
14337 @samp{final}, even if they are executed earlier.  The phase letter is
14338 one of @samp{i} (inter-procedural analysis), @samp{l}
14339 (language-specific), @samp{r} (RTL), or @samp{t} (tree). 
14340 The files are created in the directory of the output file. 
14342 @table @gcctabopt
14344 @item -d@var{letters}
14345 @itemx -fdump-rtl-@var{pass}
14346 @itemx -fdump-rtl-@var{pass}=@var{filename}
14347 @opindex d
14348 @opindex fdump-rtl-@var{pass}
14349 Says to make debugging dumps during compilation at times specified by
14350 @var{letters}.  This is used for debugging the RTL-based passes of the
14351 compiler.
14353 Some @option{-d@var{letters}} switches have different meaning when
14354 @option{-E} is used for preprocessing.  @xref{Preprocessor Options},
14355 for information about preprocessor-specific dump options.
14357 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
14358 @option{-d} option @var{letters}.  Here are the possible
14359 letters for use in @var{pass} and @var{letters}, and their meanings:
14361 @table @gcctabopt
14363 @item -fdump-rtl-alignments
14364 @opindex fdump-rtl-alignments
14365 Dump after branch alignments have been computed.
14367 @item -fdump-rtl-asmcons
14368 @opindex fdump-rtl-asmcons
14369 Dump after fixing rtl statements that have unsatisfied in/out constraints.
14371 @item -fdump-rtl-auto_inc_dec
14372 @opindex fdump-rtl-auto_inc_dec
14373 Dump after auto-inc-dec discovery.  This pass is only run on
14374 architectures that have auto inc or auto dec instructions.
14376 @item -fdump-rtl-barriers
14377 @opindex fdump-rtl-barriers
14378 Dump after cleaning up the barrier instructions.
14380 @item -fdump-rtl-bbpart
14381 @opindex fdump-rtl-bbpart
14382 Dump after partitioning hot and cold basic blocks.
14384 @item -fdump-rtl-bbro
14385 @opindex fdump-rtl-bbro
14386 Dump after block reordering.
14388 @item -fdump-rtl-btl1
14389 @itemx -fdump-rtl-btl2
14390 @opindex fdump-rtl-btl2
14391 @opindex fdump-rtl-btl2
14392 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
14393 after the two branch
14394 target load optimization passes.
14396 @item -fdump-rtl-bypass
14397 @opindex fdump-rtl-bypass
14398 Dump after jump bypassing and control flow optimizations.
14400 @item -fdump-rtl-combine
14401 @opindex fdump-rtl-combine
14402 Dump after the RTL instruction combination pass.
14404 @item -fdump-rtl-compgotos
14405 @opindex fdump-rtl-compgotos
14406 Dump after duplicating the computed gotos.
14408 @item -fdump-rtl-ce1
14409 @itemx -fdump-rtl-ce2
14410 @itemx -fdump-rtl-ce3
14411 @opindex fdump-rtl-ce1
14412 @opindex fdump-rtl-ce2
14413 @opindex fdump-rtl-ce3
14414 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
14415 @option{-fdump-rtl-ce3} enable dumping after the three
14416 if conversion passes.
14418 @item -fdump-rtl-cprop_hardreg
14419 @opindex fdump-rtl-cprop_hardreg
14420 Dump after hard register copy propagation.
14422 @item -fdump-rtl-csa
14423 @opindex fdump-rtl-csa
14424 Dump after combining stack adjustments.
14426 @item -fdump-rtl-cse1
14427 @itemx -fdump-rtl-cse2
14428 @opindex fdump-rtl-cse1
14429 @opindex fdump-rtl-cse2
14430 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
14431 the two common subexpression elimination passes.
14433 @item -fdump-rtl-dce
14434 @opindex fdump-rtl-dce
14435 Dump after the standalone dead code elimination passes.
14437 @item -fdump-rtl-dbr
14438 @opindex fdump-rtl-dbr
14439 Dump after delayed branch scheduling.
14441 @item -fdump-rtl-dce1
14442 @itemx -fdump-rtl-dce2
14443 @opindex fdump-rtl-dce1
14444 @opindex fdump-rtl-dce2
14445 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
14446 the two dead store elimination passes.
14448 @item -fdump-rtl-eh
14449 @opindex fdump-rtl-eh
14450 Dump after finalization of EH handling code.
14452 @item -fdump-rtl-eh_ranges
14453 @opindex fdump-rtl-eh_ranges
14454 Dump after conversion of EH handling range regions.
14456 @item -fdump-rtl-expand
14457 @opindex fdump-rtl-expand
14458 Dump after RTL generation.
14460 @item -fdump-rtl-fwprop1
14461 @itemx -fdump-rtl-fwprop2
14462 @opindex fdump-rtl-fwprop1
14463 @opindex fdump-rtl-fwprop2
14464 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
14465 dumping after the two forward propagation passes.
14467 @item -fdump-rtl-gcse1
14468 @itemx -fdump-rtl-gcse2
14469 @opindex fdump-rtl-gcse1
14470 @opindex fdump-rtl-gcse2
14471 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
14472 after global common subexpression elimination.
14474 @item -fdump-rtl-init-regs
14475 @opindex fdump-rtl-init-regs
14476 Dump after the initialization of the registers.
14478 @item -fdump-rtl-initvals
14479 @opindex fdump-rtl-initvals
14480 Dump after the computation of the initial value sets.
14482 @item -fdump-rtl-into_cfglayout
14483 @opindex fdump-rtl-into_cfglayout
14484 Dump after converting to cfglayout mode.
14486 @item -fdump-rtl-ira
14487 @opindex fdump-rtl-ira
14488 Dump after iterated register allocation.
14490 @item -fdump-rtl-jump
14491 @opindex fdump-rtl-jump
14492 Dump after the second jump optimization.
14494 @item -fdump-rtl-loop2
14495 @opindex fdump-rtl-loop2
14496 @option{-fdump-rtl-loop2} enables dumping after the rtl
14497 loop optimization passes.
14499 @item -fdump-rtl-mach
14500 @opindex fdump-rtl-mach
14501 Dump after performing the machine dependent reorganization pass, if that
14502 pass exists.
14504 @item -fdump-rtl-mode_sw
14505 @opindex fdump-rtl-mode_sw
14506 Dump after removing redundant mode switches.
14508 @item -fdump-rtl-rnreg
14509 @opindex fdump-rtl-rnreg
14510 Dump after register renumbering.
14512 @item -fdump-rtl-outof_cfglayout
14513 @opindex fdump-rtl-outof_cfglayout
14514 Dump after converting from cfglayout mode.
14516 @item -fdump-rtl-peephole2
14517 @opindex fdump-rtl-peephole2
14518 Dump after the peephole pass.
14520 @item -fdump-rtl-postreload
14521 @opindex fdump-rtl-postreload
14522 Dump after post-reload optimizations.
14524 @item -fdump-rtl-pro_and_epilogue
14525 @opindex fdump-rtl-pro_and_epilogue
14526 Dump after generating the function prologues and epilogues.
14528 @item -fdump-rtl-sched1
14529 @itemx -fdump-rtl-sched2
14530 @opindex fdump-rtl-sched1
14531 @opindex fdump-rtl-sched2
14532 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
14533 after the basic block scheduling passes.
14535 @item -fdump-rtl-ree
14536 @opindex fdump-rtl-ree
14537 Dump after sign/zero extension elimination.
14539 @item -fdump-rtl-seqabstr
14540 @opindex fdump-rtl-seqabstr
14541 Dump after common sequence discovery.
14543 @item -fdump-rtl-shorten
14544 @opindex fdump-rtl-shorten
14545 Dump after shortening branches.
14547 @item -fdump-rtl-sibling
14548 @opindex fdump-rtl-sibling
14549 Dump after sibling call optimizations.
14551 @item -fdump-rtl-split1
14552 @itemx -fdump-rtl-split2
14553 @itemx -fdump-rtl-split3
14554 @itemx -fdump-rtl-split4
14555 @itemx -fdump-rtl-split5
14556 @opindex fdump-rtl-split1
14557 @opindex fdump-rtl-split2
14558 @opindex fdump-rtl-split3
14559 @opindex fdump-rtl-split4
14560 @opindex fdump-rtl-split5
14561 These options enable dumping after five rounds of
14562 instruction splitting.
14564 @item -fdump-rtl-sms
14565 @opindex fdump-rtl-sms
14566 Dump after modulo scheduling.  This pass is only run on some
14567 architectures.
14569 @item -fdump-rtl-stack
14570 @opindex fdump-rtl-stack
14571 Dump after conversion from GCC's ``flat register file'' registers to the
14572 x87's stack-like registers.  This pass is only run on x86 variants.
14574 @item -fdump-rtl-subreg1
14575 @itemx -fdump-rtl-subreg2
14576 @opindex fdump-rtl-subreg1
14577 @opindex fdump-rtl-subreg2
14578 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
14579 the two subreg expansion passes.
14581 @item -fdump-rtl-unshare
14582 @opindex fdump-rtl-unshare
14583 Dump after all rtl has been unshared.
14585 @item -fdump-rtl-vartrack
14586 @opindex fdump-rtl-vartrack
14587 Dump after variable tracking.
14589 @item -fdump-rtl-vregs
14590 @opindex fdump-rtl-vregs
14591 Dump after converting virtual registers to hard registers.
14593 @item -fdump-rtl-web
14594 @opindex fdump-rtl-web
14595 Dump after live range splitting.
14597 @item -fdump-rtl-regclass
14598 @itemx -fdump-rtl-subregs_of_mode_init
14599 @itemx -fdump-rtl-subregs_of_mode_finish
14600 @itemx -fdump-rtl-dfinit
14601 @itemx -fdump-rtl-dfinish
14602 @opindex fdump-rtl-regclass
14603 @opindex fdump-rtl-subregs_of_mode_init
14604 @opindex fdump-rtl-subregs_of_mode_finish
14605 @opindex fdump-rtl-dfinit
14606 @opindex fdump-rtl-dfinish
14607 These dumps are defined but always produce empty files.
14609 @item -da
14610 @itemx -fdump-rtl-all
14611 @opindex da
14612 @opindex fdump-rtl-all
14613 Produce all the dumps listed above.
14615 @item -dA
14616 @opindex dA
14617 Annotate the assembler output with miscellaneous debugging information.
14619 @item -dD
14620 @opindex dD
14621 Dump all macro definitions, at the end of preprocessing, in addition to
14622 normal output.
14624 @item -dH
14625 @opindex dH
14626 Produce a core dump whenever an error occurs.
14628 @item -dp
14629 @opindex dp
14630 Annotate the assembler output with a comment indicating which
14631 pattern and alternative is used.  The length and cost of each instruction are
14632 also printed.
14634 @item -dP
14635 @opindex dP
14636 Dump the RTL in the assembler output as a comment before each instruction.
14637 Also turns on @option{-dp} annotation.
14639 @item -dx
14640 @opindex dx
14641 Just generate RTL for a function instead of compiling it.  Usually used
14642 with @option{-fdump-rtl-expand}.
14643 @end table
14645 @item -fdump-debug
14646 @opindex fdump-debug
14647 Dump debugging information generated during the debug
14648 generation phase.
14650 @item -fdump-earlydebug
14651 @opindex fdump-earlydebug
14652 Dump debugging information generated during the early debug
14653 generation phase.
14655 @item -fdump-noaddr
14656 @opindex fdump-noaddr
14657 When doing debugging dumps, suppress address output.  This makes it more
14658 feasible to use diff on debugging dumps for compiler invocations with
14659 different compiler binaries and/or different
14660 text / bss / data / heap / stack / dso start locations.
14662 @item -freport-bug
14663 @opindex freport-bug
14664 Collect and dump debug information into a temporary file if an
14665 internal compiler error (ICE) occurs.
14667 @item -fdump-unnumbered
14668 @opindex fdump-unnumbered
14669 When doing debugging dumps, suppress instruction numbers and address output.
14670 This makes it more feasible to use diff on debugging dumps for compiler
14671 invocations with different options, in particular with and without
14672 @option{-g}.
14674 @item -fdump-unnumbered-links
14675 @opindex fdump-unnumbered-links
14676 When doing debugging dumps (see @option{-d} option above), suppress
14677 instruction numbers for the links to the previous and next instructions
14678 in a sequence.
14680 @item -fdump-ipa-@var{switch}
14681 @itemx -fdump-ipa-@var{switch}-@var{options}
14682 @opindex fdump-ipa
14683 Control the dumping at various stages of inter-procedural analysis
14684 language tree to a file.  The file name is generated by appending a
14685 switch specific suffix to the source file name, and the file is created
14686 in the same directory as the output file.  The following dumps are
14687 possible:
14689 @table @samp
14690 @item all
14691 Enables all inter-procedural analysis dumps.
14693 @item cgraph
14694 Dumps information about call-graph optimization, unused function removal,
14695 and inlining decisions.
14697 @item inline
14698 Dump after function inlining.
14700 @end table
14702 Additionally, the options @option{-optimized}, @option{-missed},
14703 @option{-note}, and @option{-all} can be provided, with the same meaning
14704 as for @option{-fopt-info}, defaulting to @option{-optimized}.
14706 For example, @option{-fdump-ipa-inline-optimized-missed} will emit
14707 information on callsites that were inlined, along with callsites
14708 that were not inlined.
14710 By default, the dump will contain messages about successful
14711 optimizations (equivalent to @option{-optimized}) together with
14712 low-level details about the analysis.
14714 @item -fdump-lang-all
14715 @itemx -fdump-lang-@var{switch}
14716 @itemx -fdump-lang-@var{switch}-@var{options}
14717 @itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
14718 @opindex fdump-lang-all
14719 @opindex fdump-lang
14720 Control the dumping of language-specific information.  The @var{options}
14721 and @var{filename} portions behave as described in the
14722 @option{-fdump-tree} option.  The following @var{switch} values are
14723 accepted:
14725 @table @samp
14726 @item all
14728 Enable all language-specific dumps.
14730 @item class
14731 Dump class hierarchy information.  Virtual table information is emitted
14732 unless '@option{slim}' is specified.  This option is applicable to C++ only.
14734 @item raw
14735 Dump the raw internal tree data.  This option is applicable to C++ only.
14737 @end table
14739 @item -fdump-passes
14740 @opindex fdump-passes
14741 Print on @file{stderr} the list of optimization passes that are turned
14742 on and off by the current command-line options.
14744 @item -fdump-statistics-@var{option}
14745 @opindex fdump-statistics
14746 Enable and control dumping of pass statistics in a separate file.  The
14747 file name is generated by appending a suffix ending in
14748 @samp{.statistics} to the source file name, and the file is created in
14749 the same directory as the output file.  If the @samp{-@var{option}}
14750 form is used, @samp{-stats} causes counters to be summed over the
14751 whole compilation unit while @samp{-details} dumps every event as
14752 the passes generate them.  The default with no option is to sum
14753 counters for each function compiled.
14755 @item -fdump-tree-all
14756 @itemx -fdump-tree-@var{switch}
14757 @itemx -fdump-tree-@var{switch}-@var{options}
14758 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
14759 @opindex fdump-tree-all
14760 @opindex fdump-tree
14761 Control the dumping at various stages of processing the intermediate
14762 language tree to a file.  If the @samp{-@var{options}}
14763 form is used, @var{options} is a list of @samp{-} separated options
14764 which control the details of the dump.  Not all options are applicable
14765 to all dumps; those that are not meaningful are ignored.  The
14766 following options are available
14768 @table @samp
14769 @item address
14770 Print the address of each node.  Usually this is not meaningful as it
14771 changes according to the environment and source file.  Its primary use
14772 is for tying up a dump file with a debug environment.
14773 @item asmname
14774 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
14775 in the dump instead of @code{DECL_NAME}.  Its primary use is ease of
14776 use working backward from mangled names in the assembly file.
14777 @item slim
14778 When dumping front-end intermediate representations, inhibit dumping
14779 of members of a scope or body of a function merely because that scope
14780 has been reached.  Only dump such items when they are directly reachable
14781 by some other path.
14783 When dumping pretty-printed trees, this option inhibits dumping the
14784 bodies of control structures.
14786 When dumping RTL, print the RTL in slim (condensed) form instead of
14787 the default LISP-like representation.
14788 @item raw
14789 Print a raw representation of the tree.  By default, trees are
14790 pretty-printed into a C-like representation.
14791 @item details
14792 Enable more detailed dumps (not honored by every dump option). Also
14793 include information from the optimization passes.
14794 @item stats
14795 Enable dumping various statistics about the pass (not honored by every dump
14796 option).
14797 @item blocks
14798 Enable showing basic block boundaries (disabled in raw dumps).
14799 @item graph
14800 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
14801 dump a representation of the control flow graph suitable for viewing with
14802 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}.  Each function in
14803 the file is pretty-printed as a subgraph, so that GraphViz can render them
14804 all in a single plot.
14806 This option currently only works for RTL dumps, and the RTL is always
14807 dumped in slim form.
14808 @item vops
14809 Enable showing virtual operands for every statement.
14810 @item lineno
14811 Enable showing line numbers for statements.
14812 @item uid
14813 Enable showing the unique ID (@code{DECL_UID}) for each variable.
14814 @item verbose
14815 Enable showing the tree dump for each statement.
14816 @item eh
14817 Enable showing the EH region number holding each statement.
14818 @item scev
14819 Enable showing scalar evolution analysis details.
14820 @item optimized
14821 Enable showing optimization information (only available in certain
14822 passes).
14823 @item missed
14824 Enable showing missed optimization information (only available in certain
14825 passes).
14826 @item note
14827 Enable other detailed optimization information (only available in
14828 certain passes).
14829 @item all
14830 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
14831 and @option{lineno}.
14832 @item optall
14833 Turn on all optimization options, i.e., @option{optimized},
14834 @option{missed}, and @option{note}.
14835 @end table
14837 To determine what tree dumps are available or find the dump for a pass
14838 of interest follow the steps below.
14840 @enumerate
14841 @item
14842 Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
14843 look for a code that corresponds to the pass you are interested in.
14844 For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
14845 @code{tree-vrp2} correspond to the three Value Range Propagation passes.
14846 The number at the end distinguishes distinct invocations of the same pass.
14847 @item
14848 To enable the creation of the dump file, append the pass code to
14849 the @option{-fdump-} option prefix and invoke GCC with it.  For example,
14850 to enable the dump from the Early Value Range Propagation pass, invoke
14851 GCC with the @option{-fdump-tree-evrp} option.  Optionally, you may
14852 specify the name of the dump file.  If you don't specify one, GCC
14853 creates as described below.
14854 @item
14855 Find the pass dump in a file whose name is composed of three components
14856 separated by a period: the name of the source file GCC was invoked to
14857 compile, a numeric suffix indicating the pass number followed by the
14858 letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
14859 and finally the pass code.  For example, the Early VRP pass dump might
14860 be in a file named @file{myfile.c.038t.evrp} in the current working
14861 directory.  Note that the numeric codes are not stable and may change
14862 from one version of GCC to another.
14863 @end enumerate
14865 @item -fopt-info
14866 @itemx -fopt-info-@var{options}
14867 @itemx -fopt-info-@var{options}=@var{filename}
14868 @opindex fopt-info
14869 Controls optimization dumps from various optimization passes. If the
14870 @samp{-@var{options}} form is used, @var{options} is a list of
14871 @samp{-} separated option keywords to select the dump details and
14872 optimizations.  
14874 The @var{options} can be divided into three groups:
14875 @enumerate
14876 @item
14877 options describing what kinds of messages should be emitted,
14878 @item
14879 options describing the verbosity of the dump, and
14880 @item
14881 options describing which optimizations should be included.
14882 @end enumerate
14883 The options from each group can be freely mixed as they are
14884 non-overlapping. However, in case of any conflicts,
14885 the later options override the earlier options on the command
14886 line. 
14888 The following options control which kinds of messages should be emitted:
14890 @table @samp
14891 @item optimized
14892 Print information when an optimization is successfully applied. It is
14893 up to a pass to decide which information is relevant. For example, the
14894 vectorizer passes print the source location of loops which are
14895 successfully vectorized.
14896 @item missed
14897 Print information about missed optimizations. Individual passes
14898 control which information to include in the output. 
14899 @item note
14900 Print verbose information about optimizations, such as certain
14901 transformations, more detailed messages about decisions etc.
14902 @item all
14903 Print detailed optimization information. This includes
14904 @samp{optimized}, @samp{missed}, and @samp{note}.
14905 @end table
14907 The following option controls the dump verbosity:
14909 @table @samp
14910 @item internals
14911 By default, only ``high-level'' messages are emitted. This option enables
14912 additional, more detailed, messages, which are likely to only be of interest
14913 to GCC developers.
14914 @end table
14916 One or more of the following option keywords can be used to describe a
14917 group of optimizations:
14919 @table @samp
14920 @item ipa
14921 Enable dumps from all interprocedural optimizations.
14922 @item loop
14923 Enable dumps from all loop optimizations.
14924 @item inline
14925 Enable dumps from all inlining optimizations.
14926 @item omp
14927 Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
14928 @item vec
14929 Enable dumps from all vectorization optimizations.
14930 @item optall
14931 Enable dumps from all optimizations. This is a superset of
14932 the optimization groups listed above.
14933 @end table
14935 If @var{options} is
14936 omitted, it defaults to @samp{optimized-optall}, which means to dump messages
14937 about successful optimizations from all the passes, omitting messages
14938 that are treated as ``internals''.
14940 If the @var{filename} is provided, then the dumps from all the
14941 applicable optimizations are concatenated into the @var{filename}.
14942 Otherwise the dump is output onto @file{stderr}. Though multiple
14943 @option{-fopt-info} options are accepted, only one of them can include
14944 a @var{filename}. If other filenames are provided then all but the
14945 first such option are ignored.
14947 Note that the output @var{filename} is overwritten
14948 in case of multiple translation units. If a combined output from
14949 multiple translation units is desired, @file{stderr} should be used
14950 instead.
14952 In the following example, the optimization info is output to
14953 @file{stderr}:
14955 @smallexample
14956 gcc -O3 -fopt-info
14957 @end smallexample
14959 This example:
14960 @smallexample
14961 gcc -O3 -fopt-info-missed=missed.all
14962 @end smallexample
14964 @noindent
14965 outputs missed optimization report from all the passes into
14966 @file{missed.all}, and this one:
14968 @smallexample
14969 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
14970 @end smallexample
14972 @noindent
14973 prints information about missed optimization opportunities from
14974 vectorization passes on @file{stderr}.  
14975 Note that @option{-fopt-info-vec-missed} is equivalent to 
14976 @option{-fopt-info-missed-vec}.  The order of the optimization group
14977 names and message types listed after @option{-fopt-info} does not matter.
14979 As another example,
14980 @smallexample
14981 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
14982 @end smallexample
14984 @noindent
14985 outputs information about missed optimizations as well as
14986 optimized locations from all the inlining passes into
14987 @file{inline.txt}.
14989 Finally, consider:
14991 @smallexample
14992 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
14993 @end smallexample
14995 @noindent
14996 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
14997 in conflict since only one output file is allowed. In this case, only
14998 the first option takes effect and the subsequent options are
14999 ignored. Thus only @file{vec.miss} is produced which contains
15000 dumps from the vectorizer about missed opportunities.
15002 @item -fsave-optimization-record
15003 @opindex fsave-optimization-record
15004 Write a SRCFILE.opt-record.json.gz file detailing what optimizations
15005 were performed, for those optimizations that support @option{-fopt-info}.
15007 This option is experimental and the format of the data within the
15008 compressed JSON file is subject to change.
15010 It is roughly equivalent to a machine-readable version of
15011 @option{-fopt-info-all}, as a collection of messages with source file,
15012 line number and column number, with the following additional data for
15013 each message:
15015 @itemize @bullet
15017 @item
15018 the execution count of the code being optimized, along with metadata about
15019 whether this was from actual profile data, or just an estimate, allowing
15020 consumers to prioritize messages by code hotness,
15022 @item
15023 the function name of the code being optimized, where applicable,
15025 @item
15026 the ``inlining chain'' for the code being optimized, so that when
15027 a function is inlined into several different places (which might
15028 themselves be inlined), the reader can distinguish between the copies,
15030 @item
15031 objects identifying those parts of the message that refer to expressions,
15032 statements or symbol-table nodes, which of these categories they are, and,
15033 when available, their source code location,
15035 @item
15036 the GCC pass that emitted the message, and
15038 @item
15039 the location in GCC's own code from which the message was emitted
15041 @end itemize
15043 Additionally, some messages are logically nested within other
15044 messages, reflecting implementation details of the optimization
15045 passes.
15047 @item -fsched-verbose=@var{n}
15048 @opindex fsched-verbose
15049 On targets that use instruction scheduling, this option controls the
15050 amount of debugging output the scheduler prints to the dump files.
15052 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
15053 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
15054 For @var{n} greater than one, it also output basic block probabilities,
15055 detailed ready list information and unit/insn info.  For @var{n} greater
15056 than two, it includes RTL at abort point, control-flow and regions info.
15057 And for @var{n} over four, @option{-fsched-verbose} also includes
15058 dependence info.
15062 @item -fenable-@var{kind}-@var{pass}
15063 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
15064 @opindex fdisable-
15065 @opindex fenable-
15067 This is a set of options that are used to explicitly disable/enable
15068 optimization passes.  These options are intended for use for debugging GCC.
15069 Compiler users should use regular options for enabling/disabling
15070 passes instead.
15072 @table @gcctabopt
15074 @item -fdisable-ipa-@var{pass}
15075 Disable IPA pass @var{pass}. @var{pass} is the pass name.  If the same pass is
15076 statically invoked in the compiler multiple times, the pass name should be
15077 appended with a sequential number starting from 1.
15079 @item -fdisable-rtl-@var{pass}
15080 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
15081 Disable RTL pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
15082 statically invoked in the compiler multiple times, the pass name should be
15083 appended with a sequential number starting from 1.  @var{range-list} is a 
15084 comma-separated list of function ranges or assembler names.  Each range is a number
15085 pair separated by a colon.  The range is inclusive in both ends.  If the range
15086 is trivial, the number pair can be simplified as a single number.  If the
15087 function's call graph node's @var{uid} falls within one of the specified ranges,
15088 the @var{pass} is disabled for that function.  The @var{uid} is shown in the
15089 function header of a dump file, and the pass names can be dumped by using
15090 option @option{-fdump-passes}.
15092 @item -fdisable-tree-@var{pass}
15093 @itemx -fdisable-tree-@var{pass}=@var{range-list}
15094 Disable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description of
15095 option arguments.
15097 @item -fenable-ipa-@var{pass}
15098 Enable IPA pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
15099 statically invoked in the compiler multiple times, the pass name should be
15100 appended with a sequential number starting from 1.
15102 @item -fenable-rtl-@var{pass}
15103 @itemx -fenable-rtl-@var{pass}=@var{range-list}
15104 Enable RTL pass @var{pass}.  See @option{-fdisable-rtl} for option argument
15105 description and examples.
15107 @item -fenable-tree-@var{pass}
15108 @itemx -fenable-tree-@var{pass}=@var{range-list}
15109 Enable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description
15110 of option arguments.
15112 @end table
15114 Here are some examples showing uses of these options.
15116 @smallexample
15118 # disable ccp1 for all functions
15119    -fdisable-tree-ccp1
15120 # disable complete unroll for function whose cgraph node uid is 1
15121    -fenable-tree-cunroll=1
15122 # disable gcse2 for functions at the following ranges [1,1],
15123 # [300,400], and [400,1000]
15124 # disable gcse2 for functions foo and foo2
15125    -fdisable-rtl-gcse2=foo,foo2
15126 # disable early inlining
15127    -fdisable-tree-einline
15128 # disable ipa inlining
15129    -fdisable-ipa-inline
15130 # enable tree full unroll
15131    -fenable-tree-unroll
15133 @end smallexample
15135 @item -fchecking
15136 @itemx -fchecking=@var{n}
15137 @opindex fchecking
15138 @opindex fno-checking
15139 Enable internal consistency checking.  The default depends on
15140 the compiler configuration.  @option{-fchecking=2} enables further
15141 internal consistency checking that might affect code generation.
15143 @item -frandom-seed=@var{string}
15144 @opindex frandom-seed
15145 This option provides a seed that GCC uses in place of
15146 random numbers in generating certain symbol names
15147 that have to be different in every compiled file.  It is also used to
15148 place unique stamps in coverage data files and the object files that
15149 produce them.  You can use the @option{-frandom-seed} option to produce
15150 reproducibly identical object files.
15152 The @var{string} can either be a number (decimal, octal or hex) or an
15153 arbitrary string (in which case it's converted to a number by
15154 computing CRC32).
15156 The @var{string} should be different for every file you compile.
15158 @item -save-temps
15159 @itemx -save-temps=cwd
15160 @opindex save-temps
15161 Store the usual ``temporary'' intermediate files permanently; place them
15162 in the current directory and name them based on the source file.  Thus,
15163 compiling @file{foo.c} with @option{-c -save-temps} produces files
15164 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}.  This creates a
15165 preprocessed @file{foo.i} output file even though the compiler now
15166 normally uses an integrated preprocessor.
15168 When used in combination with the @option{-x} command-line option,
15169 @option{-save-temps} is sensible enough to avoid over writing an
15170 input source file with the same extension as an intermediate file.
15171 The corresponding intermediate file may be obtained by renaming the
15172 source file before using @option{-save-temps}.
15174 If you invoke GCC in parallel, compiling several different source
15175 files that share a common base name in different subdirectories or the
15176 same source file compiled for multiple output destinations, it is
15177 likely that the different parallel compilers will interfere with each
15178 other, and overwrite the temporary files.  For instance:
15180 @smallexample
15181 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
15182 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
15183 @end smallexample
15185 may result in @file{foo.i} and @file{foo.o} being written to
15186 simultaneously by both compilers.
15188 @item -save-temps=obj
15189 @opindex save-temps=obj
15190 Store the usual ``temporary'' intermediate files permanently.  If the
15191 @option{-o} option is used, the temporary files are based on the
15192 object file.  If the @option{-o} option is not used, the
15193 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
15195 For example:
15197 @smallexample
15198 gcc -save-temps=obj -c foo.c
15199 gcc -save-temps=obj -c bar.c -o dir/xbar.o
15200 gcc -save-temps=obj foobar.c -o dir2/yfoobar
15201 @end smallexample
15203 @noindent
15204 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
15205 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
15206 @file{dir2/yfoobar.o}.
15208 @item -time@r{[}=@var{file}@r{]}
15209 @opindex time
15210 Report the CPU time taken by each subprocess in the compilation
15211 sequence.  For C source files, this is the compiler proper and assembler
15212 (plus the linker if linking is done).
15214 Without the specification of an output file, the output looks like this:
15216 @smallexample
15217 # cc1 0.12 0.01
15218 # as 0.00 0.01
15219 @end smallexample
15221 The first number on each line is the ``user time'', that is time spent
15222 executing the program itself.  The second number is ``system time'',
15223 time spent executing operating system routines on behalf of the program.
15224 Both numbers are in seconds.
15226 With the specification of an output file, the output is appended to the
15227 named file, and it looks like this:
15229 @smallexample
15230 0.12 0.01 cc1 @var{options}
15231 0.00 0.01 as @var{options}
15232 @end smallexample
15234 The ``user time'' and the ``system time'' are moved before the program
15235 name, and the options passed to the program are displayed, so that one
15236 can later tell what file was being compiled, and with which options.
15238 @item -fdump-final-insns@r{[}=@var{file}@r{]}
15239 @opindex fdump-final-insns
15240 Dump the final internal representation (RTL) to @var{file}.  If the
15241 optional argument is omitted (or if @var{file} is @code{.}), the name
15242 of the dump file is determined by appending @code{.gkd} to the
15243 compilation output file name.
15245 @item -fcompare-debug@r{[}=@var{opts}@r{]}
15246 @opindex fcompare-debug
15247 @opindex fno-compare-debug
15248 If no error occurs during compilation, run the compiler a second time,
15249 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
15250 passed to the second compilation.  Dump the final internal
15251 representation in both compilations, and print an error if they differ.
15253 If the equal sign is omitted, the default @option{-gtoggle} is used.
15255 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
15256 and nonzero, implicitly enables @option{-fcompare-debug}.  If
15257 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
15258 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
15259 is used.
15261 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
15262 is equivalent to @option{-fno-compare-debug}, which disables the dumping
15263 of the final representation and the second compilation, preventing even
15264 @env{GCC_COMPARE_DEBUG} from taking effect.
15266 To verify full coverage during @option{-fcompare-debug} testing, set
15267 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
15268 which GCC rejects as an invalid option in any actual compilation
15269 (rather than preprocessing, assembly or linking).  To get just a
15270 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
15271 not overridden} will do.
15273 @item -fcompare-debug-second
15274 @opindex fcompare-debug-second
15275 This option is implicitly passed to the compiler for the second
15276 compilation requested by @option{-fcompare-debug}, along with options to
15277 silence warnings, and omitting other options that would cause the compiler
15278 to produce output to files or to standard output as a side effect.  Dump
15279 files and preserved temporary files are renamed so as to contain the
15280 @code{.gk} additional extension during the second compilation, to avoid
15281 overwriting those generated by the first.
15283 When this option is passed to the compiler driver, it causes the
15284 @emph{first} compilation to be skipped, which makes it useful for little
15285 other than debugging the compiler proper.
15287 @item -gtoggle
15288 @opindex gtoggle
15289 Turn off generation of debug info, if leaving out this option
15290 generates it, or turn it on at level 2 otherwise.  The position of this
15291 argument in the command line does not matter; it takes effect after all
15292 other options are processed, and it does so only once, no matter how
15293 many times it is given.  This is mainly intended to be used with
15294 @option{-fcompare-debug}.
15296 @item -fvar-tracking-assignments-toggle
15297 @opindex fvar-tracking-assignments-toggle
15298 @opindex fno-var-tracking-assignments-toggle
15299 Toggle @option{-fvar-tracking-assignments}, in the same way that
15300 @option{-gtoggle} toggles @option{-g}.
15302 @item -Q
15303 @opindex Q
15304 Makes the compiler print out each function name as it is compiled, and
15305 print some statistics about each pass when it finishes.
15307 @item -ftime-report
15308 @opindex ftime-report
15309 Makes the compiler print some statistics about the time consumed by each
15310 pass when it finishes.
15312 @item -ftime-report-details
15313 @opindex ftime-report-details
15314 Record the time consumed by infrastructure parts separately for each pass.
15316 @item -fira-verbose=@var{n}
15317 @opindex fira-verbose
15318 Control the verbosity of the dump file for the integrated register allocator.
15319 The default value is 5.  If the value @var{n} is greater or equal to 10,
15320 the dump output is sent to stderr using the same format as @var{n} minus 10.
15322 @item -flto-report
15323 @opindex flto-report
15324 Prints a report with internal details on the workings of the link-time
15325 optimizer.  The contents of this report vary from version to version.
15326 It is meant to be useful to GCC developers when processing object
15327 files in LTO mode (via @option{-flto}).
15329 Disabled by default.
15331 @item -flto-report-wpa
15332 @opindex flto-report-wpa
15333 Like @option{-flto-report}, but only print for the WPA phase of Link
15334 Time Optimization.
15336 @item -fmem-report
15337 @opindex fmem-report
15338 Makes the compiler print some statistics about permanent memory
15339 allocation when it finishes.
15341 @item -fmem-report-wpa
15342 @opindex fmem-report-wpa
15343 Makes the compiler print some statistics about permanent memory
15344 allocation for the WPA phase only.
15346 @item -fpre-ipa-mem-report
15347 @opindex fpre-ipa-mem-report
15348 @item -fpost-ipa-mem-report
15349 @opindex fpost-ipa-mem-report
15350 Makes the compiler print some statistics about permanent memory
15351 allocation before or after interprocedural optimization.
15353 @item -fprofile-report
15354 @opindex fprofile-report
15355 Makes the compiler print some statistics about consistency of the
15356 (estimated) profile and effect of individual passes.
15358 @item -fstack-usage
15359 @opindex fstack-usage
15360 Makes the compiler output stack usage information for the program, on a
15361 per-function basis.  The filename for the dump is made by appending
15362 @file{.su} to the @var{auxname}.  @var{auxname} is generated from the name of
15363 the output file, if explicitly specified and it is not an executable,
15364 otherwise it is the basename of the source file.  An entry is made up
15365 of three fields:
15367 @itemize
15368 @item
15369 The name of the function.
15370 @item
15371 A number of bytes.
15372 @item
15373 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
15374 @end itemize
15376 The qualifier @code{static} means that the function manipulates the stack
15377 statically: a fixed number of bytes are allocated for the frame on function
15378 entry and released on function exit; no stack adjustments are otherwise made
15379 in the function.  The second field is this fixed number of bytes.
15381 The qualifier @code{dynamic} means that the function manipulates the stack
15382 dynamically: in addition to the static allocation described above, stack
15383 adjustments are made in the body of the function, for example to push/pop
15384 arguments around function calls.  If the qualifier @code{bounded} is also
15385 present, the amount of these adjustments is bounded at compile time and
15386 the second field is an upper bound of the total amount of stack used by
15387 the function.  If it is not present, the amount of these adjustments is
15388 not bounded at compile time and the second field only represents the
15389 bounded part.
15391 @item -fstats
15392 @opindex fstats
15393 Emit statistics about front-end processing at the end of the compilation.
15394 This option is supported only by the C++ front end, and
15395 the information is generally only useful to the G++ development team.
15397 @item -fdbg-cnt-list
15398 @opindex fdbg-cnt-list
15399 Print the name and the counter upper bound for all debug counters.
15402 @item -fdbg-cnt=@var{counter-value-list}
15403 @opindex fdbg-cnt
15404 Set the internal debug counter lower and upper bound.  @var{counter-value-list}
15405 is a comma-separated list of @var{name}:@var{lower_bound}:@var{upper_bound}
15406 tuples which sets the lower and the upper bound of each debug
15407 counter @var{name}.  The @var{lower_bound} is optional and is zero
15408 initialized if not set.
15409 All debug counters have the initial upper bound of @code{UINT_MAX};
15410 thus @code{dbg_cnt} returns true always unless the upper bound
15411 is set by this option.
15412 For example, with @option{-fdbg-cnt=dce:2:4,tail_call:10},
15413 @code{dbg_cnt(dce)} returns true only for third and fourth invocation.
15414 For @code{dbg_cnt(tail_call)} true is returned for first 10 invocations.
15416 @item -print-file-name=@var{library}
15417 @opindex print-file-name
15418 Print the full absolute name of the library file @var{library} that
15419 would be used when linking---and don't do anything else.  With this
15420 option, GCC does not compile or link anything; it just prints the
15421 file name.
15423 @item -print-multi-directory
15424 @opindex print-multi-directory
15425 Print the directory name corresponding to the multilib selected by any
15426 other switches present in the command line.  This directory is supposed
15427 to exist in @env{GCC_EXEC_PREFIX}.
15429 @item -print-multi-lib
15430 @opindex print-multi-lib
15431 Print the mapping from multilib directory names to compiler switches
15432 that enable them.  The directory name is separated from the switches by
15433 @samp{;}, and each switch starts with an @samp{@@} instead of the
15434 @samp{-}, without spaces between multiple switches.  This is supposed to
15435 ease shell processing.
15437 @item -print-multi-os-directory
15438 @opindex print-multi-os-directory
15439 Print the path to OS libraries for the selected
15440 multilib, relative to some @file{lib} subdirectory.  If OS libraries are
15441 present in the @file{lib} subdirectory and no multilibs are used, this is
15442 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
15443 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
15444 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
15445 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
15447 @item -print-multiarch
15448 @opindex print-multiarch
15449 Print the path to OS libraries for the selected multiarch,
15450 relative to some @file{lib} subdirectory.
15452 @item -print-prog-name=@var{program}
15453 @opindex print-prog-name
15454 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
15456 @item -print-libgcc-file-name
15457 @opindex print-libgcc-file-name
15458 Same as @option{-print-file-name=libgcc.a}.
15460 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
15461 but you do want to link with @file{libgcc.a}.  You can do:
15463 @smallexample
15464 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
15465 @end smallexample
15467 @item -print-search-dirs
15468 @opindex print-search-dirs
15469 Print the name of the configured installation directory and a list of
15470 program and library directories @command{gcc} searches---and don't do anything else.
15472 This is useful when @command{gcc} prints the error message
15473 @samp{installation problem, cannot exec cpp0: No such file or directory}.
15474 To resolve this you either need to put @file{cpp0} and the other compiler
15475 components where @command{gcc} expects to find them, or you can set the environment
15476 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
15477 Don't forget the trailing @samp{/}.
15478 @xref{Environment Variables}.
15480 @item -print-sysroot
15481 @opindex print-sysroot
15482 Print the target sysroot directory that is used during
15483 compilation.  This is the target sysroot specified either at configure
15484 time or using the @option{--sysroot} option, possibly with an extra
15485 suffix that depends on compilation options.  If no target sysroot is
15486 specified, the option prints nothing.
15488 @item -print-sysroot-headers-suffix
15489 @opindex print-sysroot-headers-suffix
15490 Print the suffix added to the target sysroot when searching for
15491 headers, or give an error if the compiler is not configured with such
15492 a suffix---and don't do anything else.
15494 @item -dumpmachine
15495 @opindex dumpmachine
15496 Print the compiler's target machine (for example,
15497 @samp{i686-pc-linux-gnu})---and don't do anything else.
15499 @item -dumpversion
15500 @opindex dumpversion
15501 Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
15502 anything else.  This is the compiler version used in filesystem paths and
15503 specs. Depending on how the compiler has been configured it can be just
15504 a single number (major version), two numbers separated by a dot (major and
15505 minor version) or three numbers separated by dots (major, minor and patchlevel
15506 version).
15508 @item -dumpfullversion
15509 @opindex dumpfullversion
15510 Print the full compiler version---and don't do anything else. The output is
15511 always three numbers separated by dots, major, minor and patchlevel version.
15513 @item -dumpspecs
15514 @opindex dumpspecs
15515 Print the compiler's built-in specs---and don't do anything else.  (This
15516 is used when GCC itself is being built.)  @xref{Spec Files}.
15517 @end table
15519 @node Submodel Options
15520 @section Machine-Dependent Options
15521 @cindex submodel options
15522 @cindex specifying hardware config
15523 @cindex hardware models and configurations, specifying
15524 @cindex target-dependent options
15525 @cindex machine-dependent options
15527 Each target machine supported by GCC can have its own options---for
15528 example, to allow you to compile for a particular processor variant or
15529 ABI, or to control optimizations specific to that machine.  By
15530 convention, the names of machine-specific options start with
15531 @samp{-m}.
15533 Some configurations of the compiler also support additional target-specific
15534 options, usually for compatibility with other compilers on the same
15535 platform.
15537 @c This list is ordered alphanumerically by subsection name.
15538 @c It should be the same order and spelling as these options are listed
15539 @c in Machine Dependent Options
15541 @menu
15542 * AArch64 Options::
15543 * Adapteva Epiphany Options::
15544 * AMD GCN Options::
15545 * ARC Options::
15546 * ARM Options::
15547 * AVR Options::
15548 * Blackfin Options::
15549 * C6X Options::
15550 * CRIS Options::
15551 * CR16 Options::
15552 * C-SKY Options::
15553 * Darwin Options::
15554 * DEC Alpha Options::
15555 * FR30 Options::
15556 * FT32 Options::
15557 * FRV Options::
15558 * GNU/Linux Options::
15559 * H8/300 Options::
15560 * HPPA Options::
15561 * IA-64 Options::
15562 * LM32 Options::
15563 * M32C Options::
15564 * M32R/D Options::
15565 * M680x0 Options::
15566 * MCore Options::
15567 * MeP Options::
15568 * MicroBlaze Options::
15569 * MIPS Options::
15570 * MMIX Options::
15571 * MN10300 Options::
15572 * Moxie Options::
15573 * MSP430 Options::
15574 * NDS32 Options::
15575 * Nios II Options::
15576 * Nvidia PTX Options::
15577 * OpenRISC Options::
15578 * PDP-11 Options::
15579 * picoChip Options::
15580 * PowerPC Options::
15581 * RISC-V Options::
15582 * RL78 Options::
15583 * RS/6000 and PowerPC Options::
15584 * RX Options::
15585 * S/390 and zSeries Options::
15586 * Score Options::
15587 * SH Options::
15588 * Solaris 2 Options::
15589 * SPARC Options::
15590 * SPU Options::
15591 * System V Options::
15592 * TILE-Gx Options::
15593 * TILEPro Options::
15594 * V850 Options::
15595 * VAX Options::
15596 * Visium Options::
15597 * VMS Options::
15598 * VxWorks Options::
15599 * x86 Options::
15600 * x86 Windows Options::
15601 * Xstormy16 Options::
15602 * Xtensa Options::
15603 * zSeries Options::
15604 @end menu
15606 @node AArch64 Options
15607 @subsection AArch64 Options
15608 @cindex AArch64 Options
15610 These options are defined for AArch64 implementations:
15612 @table @gcctabopt
15614 @item -mabi=@var{name}
15615 @opindex mabi
15616 Generate code for the specified data model.  Permissible values
15617 are @samp{ilp32} for SysV-like data model where int, long int and pointers
15618 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
15619 but long int and pointers are 64 bits.
15621 The default depends on the specific target configuration.  Note that
15622 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
15623 entire program with the same ABI, and link with a compatible set of libraries.
15625 @item -mbig-endian
15626 @opindex mbig-endian
15627 Generate big-endian code.  This is the default when GCC is configured for an
15628 @samp{aarch64_be-*-*} target.
15630 @item -mgeneral-regs-only
15631 @opindex mgeneral-regs-only
15632 Generate code which uses only the general-purpose registers.  This will prevent
15633 the compiler from using floating-point and Advanced SIMD registers but will not
15634 impose any restrictions on the assembler.
15636 @item -mlittle-endian
15637 @opindex mlittle-endian
15638 Generate little-endian code.  This is the default when GCC is configured for an
15639 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
15641 @item -mcmodel=tiny
15642 @opindex mcmodel=tiny
15643 Generate code for the tiny code model.  The program and its statically defined
15644 symbols must be within 1MB of each other.  Programs can be statically or
15645 dynamically linked.
15647 @item -mcmodel=small
15648 @opindex mcmodel=small
15649 Generate code for the small code model.  The program and its statically defined
15650 symbols must be within 4GB of each other.  Programs can be statically or
15651 dynamically linked.  This is the default code model.
15653 @item -mcmodel=large
15654 @opindex mcmodel=large
15655 Generate code for the large code model.  This makes no assumptions about
15656 addresses and sizes of sections.  Programs can be statically linked only.
15658 @item -mstrict-align
15659 @itemx -mno-strict-align
15660 @opindex mstrict-align
15661 @opindex mno-strict-align
15662 Avoid or allow generating memory accesses that may not be aligned on a natural
15663 object boundary as described in the architecture specification.
15665 @item -momit-leaf-frame-pointer
15666 @itemx -mno-omit-leaf-frame-pointer
15667 @opindex momit-leaf-frame-pointer
15668 @opindex mno-omit-leaf-frame-pointer
15669 Omit or keep the frame pointer in leaf functions.  The former behavior is the
15670 default.
15672 @item -mstack-protector-guard=@var{guard}
15673 @itemx -mstack-protector-guard-reg=@var{reg}
15674 @itemx -mstack-protector-guard-offset=@var{offset}
15675 @opindex mstack-protector-guard
15676 @opindex mstack-protector-guard-reg
15677 @opindex mstack-protector-guard-offset
15678 Generate stack protection code using canary at @var{guard}.  Supported
15679 locations are @samp{global} for a global canary or @samp{sysreg} for a
15680 canary in an appropriate system register.
15682 With the latter choice the options
15683 @option{-mstack-protector-guard-reg=@var{reg}} and
15684 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
15685 which system register to use as base register for reading the canary,
15686 and from what offset from that base register. There is no default
15687 register or offset as this is entirely for use within the Linux
15688 kernel.
15690 @item -mstack-protector-guard=@var{guard}
15691 @itemx -mstack-protector-guard-reg=@var{reg}
15692 @itemx -mstack-protector-guard-offset=@var{offset}
15693 @opindex mstack-protector-guard
15694 @opindex mstack-protector-guard-reg
15695 @opindex mstack-protector-guard-offset
15696 Generate stack protection code using canary at @var{guard}.  Supported
15697 locations are @samp{global} for a global canary or @samp{sysreg} for a
15698 canary in an appropriate system register.
15700 With the latter choice the options
15701 @option{-mstack-protector-guard-reg=@var{reg}} and
15702 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
15703 which system register to use as base register for reading the canary,
15704 and from what offset from that base register. There is no default
15705 register or offset as this is entirely for use within the Linux
15706 kernel.
15708 @item -mtls-dialect=desc
15709 @opindex mtls-dialect=desc
15710 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
15711 of TLS variables.  This is the default.
15713 @item -mtls-dialect=traditional
15714 @opindex mtls-dialect=traditional
15715 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
15716 of TLS variables.
15718 @item -mtls-size=@var{size}
15719 @opindex mtls-size
15720 Specify bit size of immediate TLS offsets.  Valid values are 12, 24, 32, 48.
15721 This option requires binutils 2.26 or newer.
15723 @item -mfix-cortex-a53-835769
15724 @itemx -mno-fix-cortex-a53-835769
15725 @opindex mfix-cortex-a53-835769
15726 @opindex mno-fix-cortex-a53-835769
15727 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
15728 This involves inserting a NOP instruction between memory instructions and
15729 64-bit integer multiply-accumulate instructions.
15731 @item -mfix-cortex-a53-843419
15732 @itemx -mno-fix-cortex-a53-843419
15733 @opindex mfix-cortex-a53-843419
15734 @opindex mno-fix-cortex-a53-843419
15735 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
15736 This erratum workaround is made at link time and this will only pass the
15737 corresponding flag to the linker.
15739 @item -mlow-precision-recip-sqrt
15740 @itemx -mno-low-precision-recip-sqrt
15741 @opindex mlow-precision-recip-sqrt
15742 @opindex mno-low-precision-recip-sqrt
15743 Enable or disable the reciprocal square root approximation.
15744 This option only has an effect if @option{-ffast-math} or
15745 @option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
15746 precision of reciprocal square root results to about 16 bits for
15747 single precision and to 32 bits for double precision.
15749 @item -mlow-precision-sqrt
15750 @itemx -mno-low-precision-sqrt
15751 @opindex mlow-precision-sqrt
15752 @opindex mno-low-precision-sqrt
15753 Enable or disable the square root approximation.
15754 This option only has an effect if @option{-ffast-math} or
15755 @option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
15756 precision of square root results to about 16 bits for
15757 single precision and to 32 bits for double precision.
15758 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
15760 @item -mlow-precision-div
15761 @itemx -mno-low-precision-div
15762 @opindex mlow-precision-div
15763 @opindex mno-low-precision-div
15764 Enable or disable the division approximation.
15765 This option only has an effect if @option{-ffast-math} or
15766 @option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
15767 precision of division results to about 16 bits for
15768 single precision and to 32 bits for double precision.
15770 @item -mtrack-speculation
15771 @itemx -mno-track-speculation
15772 Enable or disable generation of additional code to track speculative
15773 execution through conditional branches.  The tracking state can then
15774 be used by the compiler when expanding calls to
15775 @code{__builtin_speculation_safe_copy} to permit a more efficient code
15776 sequence to be generated.
15778 @item -march=@var{name}
15779 @opindex march
15780 Specify the name of the target architecture and, optionally, one or
15781 more feature modifiers.  This option has the form
15782 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
15784 The permissible values for @var{arch} are @samp{armv8-a},
15785 @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a}, @samp{armv8.4-a},
15786 @samp{armv8.5-a} or @var{native}.
15788 The value @samp{armv8.5-a} implies @samp{armv8.4-a} and enables compiler
15789 support for the ARMv8.5-A architecture extensions.
15791 The value @samp{armv8.4-a} implies @samp{armv8.3-a} and enables compiler
15792 support for the ARMv8.4-A architecture extensions.
15794 The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
15795 support for the ARMv8.3-A architecture extensions.
15797 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
15798 support for the ARMv8.2-A architecture extensions.
15800 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
15801 support for the ARMv8.1-A architecture extension.  In particular, it
15802 enables the @samp{+crc}, @samp{+lse}, and @samp{+rdma} features.
15804 The value @samp{native} is available on native AArch64 GNU/Linux and
15805 causes the compiler to pick the architecture of the host system.  This
15806 option has no effect if the compiler is unable to recognize the
15807 architecture of the host system,
15809 The permissible values for @var{feature} are listed in the sub-section
15810 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
15811 Feature Modifiers}.  Where conflicting feature modifiers are
15812 specified, the right-most feature is used.
15814 GCC uses @var{name} to determine what kind of instructions it can emit
15815 when generating assembly code.  If @option{-march} is specified
15816 without either of @option{-mtune} or @option{-mcpu} also being
15817 specified, the code is tuned to perform well across a range of target
15818 processors implementing the target architecture.
15820 @item -mtune=@var{name}
15821 @opindex mtune
15822 Specify the name of the target processor for which GCC should tune the
15823 performance of the code.  Permissible values for this option are:
15824 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
15825 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
15826 @samp{cortex-a76}, @samp{ares}, @samp{exynos-m1}, @samp{emag}, @samp{falkor},
15827 @samp{neoverse-e1},@samp{neoverse-n1},@samp{qdf24xx}, @samp{saphira},
15828 @samp{phecda}, @samp{xgene1}, @samp{vulcan}, @samp{octeontx},
15829 @samp{octeontx81},  @samp{octeontx83}, @samp{thunderx}, @samp{thunderxt88},
15830 @samp{thunderxt88p1}, @samp{thunderxt81}, @samp{tsv110},
15831 @samp{thunderxt83}, @samp{thunderx2t99},
15832 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15833 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
15834 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}
15835 @samp{native}.
15837 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15838 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
15839 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55} specify that GCC
15840 should tune for a big.LITTLE system.
15842 Additionally on native AArch64 GNU/Linux systems the value
15843 @samp{native} tunes performance to the host system.  This option has no effect
15844 if the compiler is unable to recognize the processor of the host system.
15846 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
15847 are specified, the code is tuned to perform well across a range
15848 of target processors.
15850 This option cannot be suffixed by feature modifiers.
15852 @item -mcpu=@var{name}
15853 @opindex mcpu
15854 Specify the name of the target processor, optionally suffixed by one
15855 or more feature modifiers.  This option has the form
15856 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
15857 the permissible values for @var{cpu} are the same as those available
15858 for @option{-mtune}.  The permissible values for @var{feature} are
15859 documented in the sub-section on
15860 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
15861 Feature Modifiers}.  Where conflicting feature modifiers are
15862 specified, the right-most feature is used.
15864 GCC uses @var{name} to determine what kind of instructions it can emit when
15865 generating assembly code (as if by @option{-march}) and to determine
15866 the target processor for which to tune for performance (as if
15867 by @option{-mtune}).  Where this option is used in conjunction
15868 with @option{-march} or @option{-mtune}, those options take precedence
15869 over the appropriate part of this option.
15871 @item -moverride=@var{string}
15872 @opindex moverride
15873 Override tuning decisions made by the back-end in response to a
15874 @option{-mtune=} switch.  The syntax, semantics, and accepted values
15875 for @var{string} in this option are not guaranteed to be consistent
15876 across releases.
15878 This option is only intended to be useful when developing GCC.
15880 @item -mverbose-cost-dump
15881 @opindex mverbose-cost-dump
15882 Enable verbose cost model dumping in the debug dump files.  This option is
15883 provided for use in debugging the compiler.
15885 @item -mpc-relative-literal-loads
15886 @itemx -mno-pc-relative-literal-loads
15887 @opindex mpc-relative-literal-loads
15888 @opindex mno-pc-relative-literal-loads
15889 Enable or disable PC-relative literal loads.  With this option literal pools are
15890 accessed using a single instruction and emitted after each function.  This
15891 limits the maximum size of functions to 1MB.  This is enabled by default for
15892 @option{-mcmodel=tiny}.
15894 @item -msign-return-address=@var{scope}
15895 @opindex msign-return-address
15896 Select the function scope on which return address signing will be applied.
15897 Permissible values are @samp{none}, which disables return address signing,
15898 @samp{non-leaf}, which enables pointer signing for functions which are not leaf
15899 functions, and @samp{all}, which enables pointer signing for all functions.  The
15900 default value is @samp{none}. This option has been deprecated by
15901 -mbranch-protection.
15903 @item -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}]|@var{bti}
15904 @opindex mbranch-protection
15905 Select the branch protection features to use.
15906 @samp{none} is the default and turns off all types of branch protection.
15907 @samp{standard} turns on all types of branch protection features.  If a feature
15908 has additional tuning options, then @samp{standard} sets it to its standard
15909 level.
15910 @samp{pac-ret[+@var{leaf}]} turns on return address signing to its standard
15911 level: signing functions that save the return address to memory (non-leaf
15912 functions will practically always do this) using the a-key.  The optional
15913 argument @samp{leaf} can be used to extend the signing to include leaf
15914 functions.
15915 @samp{bti} turns on branch target identification mechanism.
15917 @item -msve-vector-bits=@var{bits}
15918 @opindex msve-vector-bits
15919 Specify the number of bits in an SVE vector register.  This option only has
15920 an effect when SVE is enabled.
15922 GCC supports two forms of SVE code generation: ``vector-length
15923 agnostic'' output that works with any size of vector register and
15924 ``vector-length specific'' output that allows GCC to make assumptions
15925 about the vector length when it is useful for optimization reasons.
15926 The possible values of @samp{bits} are: @samp{scalable}, @samp{128},
15927 @samp{256}, @samp{512}, @samp{1024} and @samp{2048}.
15928 Specifying @samp{scalable} selects vector-length agnostic
15929 output.  At present @samp{-msve-vector-bits=128} also generates vector-length
15930 agnostic output.  All other values generate vector-length specific code.
15931 The behavior of these values may change in future releases and no value except
15932 @samp{scalable} should be relied on for producing code that is portable across
15933 different hardware SVE vector lengths.
15935 The default is @samp{-msve-vector-bits=scalable}, which produces
15936 vector-length agnostic code.
15937 @end table
15939 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
15940 @anchor{aarch64-feature-modifiers}
15941 @cindex @option{-march} feature modifiers
15942 @cindex @option{-mcpu} feature modifiers
15943 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
15944 the following and their inverses @option{no@var{feature}}:
15946 @table @samp
15947 @item crc
15948 Enable CRC extension.  This is on by default for
15949 @option{-march=armv8.1-a}.
15950 @item crypto
15951 Enable Crypto extension.  This also enables Advanced SIMD and floating-point
15952 instructions.
15953 @item fp
15954 Enable floating-point instructions.  This is on by default for all possible
15955 values for options @option{-march} and @option{-mcpu}.
15956 @item simd
15957 Enable Advanced SIMD instructions.  This also enables floating-point
15958 instructions.  This is on by default for all possible values for options
15959 @option{-march} and @option{-mcpu}.
15960 @item sve
15961 Enable Scalable Vector Extension instructions.  This also enables Advanced
15962 SIMD and floating-point instructions.
15963 @item lse
15964 Enable Large System Extension instructions.  This is on by default for
15965 @option{-march=armv8.1-a}.
15966 @item rdma
15967 Enable Round Double Multiply Accumulate instructions.  This is on by default
15968 for @option{-march=armv8.1-a}.
15969 @item fp16
15970 Enable FP16 extension.  This also enables floating-point instructions.
15971 @item fp16fml
15972 Enable FP16 fmla extension.  This also enables FP16 extensions and
15973 floating-point instructions. This option is enabled by default for @option{-march=armv8.4-a}. Use of this option with architectures prior to Armv8.2-A is not supported.
15975 @item rcpc
15976 Enable the RcPc extension.  This does not change code generation from GCC,
15977 but is passed on to the assembler, enabling inline asm statements to use
15978 instructions from the RcPc extension.
15979 @item dotprod
15980 Enable the Dot Product extension.  This also enables Advanced SIMD instructions.
15981 @item aes
15982 Enable the Armv8-a aes and pmull crypto extension.  This also enables Advanced
15983 SIMD instructions.
15984 @item sha2
15985 Enable the Armv8-a sha2 crypto extension.  This also enables Advanced SIMD instructions.
15986 @item sha3
15987 Enable the sha512 and sha3 crypto extension.  This also enables Advanced SIMD
15988 instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
15989 @item sm4
15990 Enable the sm3 and sm4 crypto extension.  This also enables Advanced SIMD instructions.
15991 Use of this option with architectures prior to Armv8.2-A is not supported.
15992 @item profile
15993 Enable the Statistical Profiling extension.  This option is only to enable the
15994 extension at the assembler level and does not affect code generation.
15995 @item rng
15996 Enable the Armv8.5-a Random Number instructions.  This option is only to
15997 enable the extension at the assembler level and does not affect code
15998 generation.
15999 @item memtag
16000 Enable the Armv8.5-a Memory Tagging Extensions.  This option is only to
16001 enable the extension at the assembler level and does not affect code
16002 generation.
16003 @item sb
16004 Enable the Armv8-a Speculation Barrier instruction.  This option is only to
16005 enable the extension at the assembler level and does not affect code
16006 generation.  This option is enabled by default for @option{-march=armv8.5-a}.
16007 @item ssbs
16008 Enable the Armv8-a Speculative Store Bypass Safe instruction.  This option
16009 is only to enable the extension at the assembler level and does not affect code
16010 generation.  This option is enabled by default for @option{-march=armv8.5-a}.
16011 @item predres
16012 Enable the Armv8-a Execution and Data Prediction Restriction instructions.
16013 This option is only to enable the extension at the assembler level and does
16014 not affect code generation.  This option is enabled by default for
16015 @item sve2
16016 Enable the Armv8-a Scalable Vector Extension 2.  This also enables SVE
16017 instructions.
16018 @item bitperm
16019 Enable SVE2 bitperm instructions.  This also enables SVE2 instructions.
16020 @item sve2-sm4
16021 Enable SVE2 sm4 instructions.  This also enables SVE2 instructions.
16022 @item sve2-aes
16023 Enable SVE2 aes instructions.  This also enables SVE2 instructions.
16024 @item sve2-sha3
16025 Enable SVE2 sha3 instructions.  This also enables SVE2 instructions.
16026 @option{-march=armv8.5-a}.
16028 @end table
16030 Feature @option{crypto} implies @option{aes}, @option{sha2}, and @option{simd},
16031 which implies @option{fp}.
16032 Conversely, @option{nofp} implies @option{nosimd}, which implies
16033 @option{nocrypto}, @option{noaes} and @option{nosha2}.
16035 @node Adapteva Epiphany Options
16036 @subsection Adapteva Epiphany Options
16038 These @samp{-m} options are defined for Adapteva Epiphany:
16040 @table @gcctabopt
16041 @item -mhalf-reg-file
16042 @opindex mhalf-reg-file
16043 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
16044 That allows code to run on hardware variants that lack these registers.
16046 @item -mprefer-short-insn-regs
16047 @opindex mprefer-short-insn-regs
16048 Preferentially allocate registers that allow short instruction generation.
16049 This can result in increased instruction count, so this may either reduce or
16050 increase overall code size.
16052 @item -mbranch-cost=@var{num}
16053 @opindex mbranch-cost
16054 Set the cost of branches to roughly @var{num} ``simple'' instructions.
16055 This cost is only a heuristic and is not guaranteed to produce
16056 consistent results across releases.
16058 @item -mcmove
16059 @opindex mcmove
16060 Enable the generation of conditional moves.
16062 @item -mnops=@var{num}
16063 @opindex mnops
16064 Emit @var{num} NOPs before every other generated instruction.
16066 @item -mno-soft-cmpsf
16067 @opindex mno-soft-cmpsf
16068 @opindex msoft-cmpsf
16069 For single-precision floating-point comparisons, emit an @code{fsub} instruction
16070 and test the flags.  This is faster than a software comparison, but can
16071 get incorrect results in the presence of NaNs, or when two different small
16072 numbers are compared such that their difference is calculated as zero.
16073 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
16074 software comparisons.
16076 @item -mstack-offset=@var{num}
16077 @opindex mstack-offset
16078 Set the offset between the top of the stack and the stack pointer.
16079 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
16080 can be used by leaf functions without stack allocation.
16081 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
16082 Note also that this option changes the ABI; compiling a program with a
16083 different stack offset than the libraries have been compiled with
16084 generally does not work.
16085 This option can be useful if you want to evaluate if a different stack
16086 offset would give you better code, but to actually use a different stack
16087 offset to build working programs, it is recommended to configure the
16088 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
16090 @item -mno-round-nearest
16091 @opindex mno-round-nearest
16092 @opindex mround-nearest
16093 Make the scheduler assume that the rounding mode has been set to
16094 truncating.  The default is @option{-mround-nearest}.
16096 @item -mlong-calls
16097 @opindex mlong-calls
16098 If not otherwise specified by an attribute, assume all calls might be beyond
16099 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
16100 function address into a register before performing a (otherwise direct) call.
16101 This is the default.
16103 @item -mshort-calls
16104 @opindex short-calls
16105 If not otherwise specified by an attribute, assume all direct calls are
16106 in the range of the @code{b} / @code{bl} instructions, so use these instructions
16107 for direct calls.  The default is @option{-mlong-calls}.
16109 @item -msmall16
16110 @opindex msmall16
16111 Assume addresses can be loaded as 16-bit unsigned values.  This does not
16112 apply to function addresses for which @option{-mlong-calls} semantics
16113 are in effect.
16115 @item -mfp-mode=@var{mode}
16116 @opindex mfp-mode
16117 Set the prevailing mode of the floating-point unit.
16118 This determines the floating-point mode that is provided and expected
16119 at function call and return time.  Making this mode match the mode you
16120 predominantly need at function start can make your programs smaller and
16121 faster by avoiding unnecessary mode switches.
16123 @var{mode} can be set to one the following values:
16125 @table @samp
16126 @item caller
16127 Any mode at function entry is valid, and retained or restored when
16128 the function returns, and when it calls other functions.
16129 This mode is useful for compiling libraries or other compilation units
16130 you might want to incorporate into different programs with different
16131 prevailing FPU modes, and the convenience of being able to use a single
16132 object file outweighs the size and speed overhead for any extra
16133 mode switching that might be needed, compared with what would be needed
16134 with a more specific choice of prevailing FPU mode.
16136 @item truncate
16137 This is the mode used for floating-point calculations with
16138 truncating (i.e.@: round towards zero) rounding mode.  That includes
16139 conversion from floating point to integer.
16141 @item round-nearest
16142 This is the mode used for floating-point calculations with
16143 round-to-nearest-or-even rounding mode.
16145 @item int
16146 This is the mode used to perform integer calculations in the FPU, e.g.@:
16147 integer multiply, or integer multiply-and-accumulate.
16148 @end table
16150 The default is @option{-mfp-mode=caller}
16152 @item -mno-split-lohi
16153 @itemx -mno-postinc
16154 @itemx -mno-postmodify
16155 @opindex mno-split-lohi
16156 @opindex msplit-lohi
16157 @opindex mno-postinc
16158 @opindex mpostinc
16159 @opindex mno-postmodify
16160 @opindex mpostmodify
16161 Code generation tweaks that disable, respectively, splitting of 32-bit
16162 loads, generation of post-increment addresses, and generation of
16163 post-modify addresses.  The defaults are @option{msplit-lohi},
16164 @option{-mpost-inc}, and @option{-mpost-modify}.
16166 @item -mnovect-double
16167 @opindex mno-vect-double
16168 @opindex mvect-double
16169 Change the preferred SIMD mode to SImode.  The default is
16170 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
16172 @item -max-vect-align=@var{num}
16173 @opindex max-vect-align
16174 The maximum alignment for SIMD vector mode types.
16175 @var{num} may be 4 or 8.  The default is 8.
16176 Note that this is an ABI change, even though many library function
16177 interfaces are unaffected if they don't use SIMD vector modes
16178 in places that affect size and/or alignment of relevant types.
16180 @item -msplit-vecmove-early
16181 @opindex msplit-vecmove-early
16182 Split vector moves into single word moves before reload.  In theory this
16183 can give better register allocation, but so far the reverse seems to be
16184 generally the case.
16186 @item -m1reg-@var{reg}
16187 @opindex m1reg-
16188 Specify a register to hold the constant @minus{}1, which makes loading small negative
16189 constants and certain bitmasks faster.
16190 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
16191 which specify use of that register as a fixed register,
16192 and @samp{none}, which means that no register is used for this
16193 purpose.  The default is @option{-m1reg-none}.
16195 @end table
16197 @node AMD GCN Options
16198 @subsection AMD GCN Options
16199 @cindex AMD GCN Options
16201 These options are defined specifically for the AMD GCN port.
16203 @table @gcctabopt
16205 @item -march=@var{gpu}
16206 @opindex march
16207 @itemx -mtune=@var{gpu}
16208 @opindex mtune
16209 Set architecture type or tuning for @var{gpu}. Supported values for @var{gpu}
16212 @table @samp
16213 @opindex fiji
16214 @item fiji
16215 Compile for GCN3 Fiji devices (gfx803).
16217 @item gfx900
16218 Compile for GCN5 Vega 10 devices (gfx900).
16220 @end table
16222 @item -mstack-size=@var{bytes}
16223 @opindex mstack-size
16224 Specify how many @var{bytes} of stack space will be requested for each GPU
16225 thread (wave-front).  Beware that there may be many threads and limited memory
16226 available.  The size of the stack allocation may also have an impact on
16227 run-time performance.  The default is 32KB when using OpenACC or OpenMP, and
16228 1MB otherwise.
16230 @end table
16232 @node ARC Options
16233 @subsection ARC Options
16234 @cindex ARC options
16236 The following options control the architecture variant for which code
16237 is being compiled:
16239 @c architecture variants
16240 @table @gcctabopt
16242 @item -mbarrel-shifter
16243 @opindex mbarrel-shifter
16244 Generate instructions supported by barrel shifter.  This is the default
16245 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
16247 @item -mjli-always
16248 @opindex mjli-alawys
16249 Force to call a function using jli_s instruction.  This option is
16250 valid only for ARCv2 architecture.
16252 @item -mcpu=@var{cpu}
16253 @opindex mcpu
16254 Set architecture type, register usage, and instruction scheduling
16255 parameters for @var{cpu}.  There are also shortcut alias options
16256 available for backward compatibility and convenience.  Supported
16257 values for @var{cpu} are
16259 @table @samp
16260 @opindex mA6
16261 @opindex mARC600
16262 @item arc600
16263 Compile for ARC600.  Aliases: @option{-mA6}, @option{-mARC600}.
16265 @item arc601
16266 @opindex mARC601
16267 Compile for ARC601.  Alias: @option{-mARC601}.
16269 @item arc700
16270 @opindex mA7
16271 @opindex mARC700
16272 Compile for ARC700.  Aliases: @option{-mA7}, @option{-mARC700}.
16273 This is the default when configured with @option{--with-cpu=arc700}@.
16275 @item arcem
16276 Compile for ARC EM.
16278 @item archs
16279 Compile for ARC HS.
16281 @item em
16282 Compile for ARC EM CPU with no hardware extensions.
16284 @item em4
16285 Compile for ARC EM4 CPU.
16287 @item em4_dmips
16288 Compile for ARC EM4 DMIPS CPU.
16290 @item em4_fpus
16291 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
16292 extension.
16294 @item em4_fpuda
16295 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
16296 double assist instructions.
16298 @item hs
16299 Compile for ARC HS CPU with no hardware extensions except the atomic
16300 instructions.
16302 @item hs34
16303 Compile for ARC HS34 CPU.
16305 @item hs38
16306 Compile for ARC HS38 CPU.
16308 @item hs38_linux
16309 Compile for ARC HS38 CPU with all hardware extensions on.
16311 @item arc600_norm
16312 Compile for ARC 600 CPU with @code{norm} instructions enabled.
16314 @item arc600_mul32x16
16315 Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply 
16316 instructions enabled.
16318 @item arc600_mul64
16319 Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family 
16320 instructions enabled.
16322 @item arc601_norm
16323 Compile for ARC 601 CPU with @code{norm} instructions enabled.
16325 @item arc601_mul32x16
16326 Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
16327 instructions enabled.
16329 @item arc601_mul64
16330 Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
16331 instructions enabled.
16333 @item nps400
16334 Compile for ARC 700 on NPS400 chip.
16336 @item em_mini
16337 Compile for ARC EM minimalist configuration featuring reduced register
16338 set.
16340 @end table
16342 @item -mdpfp
16343 @opindex mdpfp
16344 @itemx -mdpfp-compact
16345 @opindex mdpfp-compact
16346 Generate double-precision FPX instructions, tuned for the compact
16347 implementation.
16349 @item -mdpfp-fast
16350 @opindex mdpfp-fast
16351 Generate double-precision FPX instructions, tuned for the fast
16352 implementation.
16354 @item -mno-dpfp-lrsr
16355 @opindex mno-dpfp-lrsr
16356 Disable @code{lr} and @code{sr} instructions from using FPX extension
16357 aux registers.
16359 @item -mea
16360 @opindex mea
16361 Generate extended arithmetic instructions.  Currently only
16362 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
16363 supported.  This is always enabled for @option{-mcpu=ARC700}.
16365 @item -mno-mpy
16366 @opindex mno-mpy
16367 @opindex mmpy
16368 Do not generate @code{mpy}-family instructions for ARC700.  This option is
16369 deprecated.
16371 @item -mmul32x16
16372 @opindex mmul32x16
16373 Generate 32x16-bit multiply and multiply-accumulate instructions.
16375 @item -mmul64
16376 @opindex mmul64
16377 Generate @code{mul64} and @code{mulu64} instructions.  
16378 Only valid for @option{-mcpu=ARC600}.
16380 @item -mnorm
16381 @opindex mnorm
16382 Generate @code{norm} instructions.  This is the default if @option{-mcpu=ARC700}
16383 is in effect.
16385 @item -mspfp
16386 @opindex mspfp
16387 @itemx -mspfp-compact
16388 @opindex mspfp-compact
16389 Generate single-precision FPX instructions, tuned for the compact
16390 implementation.
16392 @item -mspfp-fast
16393 @opindex mspfp-fast
16394 Generate single-precision FPX instructions, tuned for the fast
16395 implementation.
16397 @item -msimd
16398 @opindex msimd
16399 Enable generation of ARC SIMD instructions via target-specific
16400 builtins.  Only valid for @option{-mcpu=ARC700}.
16402 @item -msoft-float
16403 @opindex msoft-float
16404 This option ignored; it is provided for compatibility purposes only.
16405 Software floating-point code is emitted by default, and this default
16406 can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
16407 @option{-mspfp-fast} for single precision, and @option{-mdpfp},
16408 @option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
16410 @item -mswap
16411 @opindex mswap
16412 Generate @code{swap} instructions.
16414 @item -matomic
16415 @opindex matomic
16416 This enables use of the locked load/store conditional extension to implement
16417 atomic memory built-in functions.  Not available for ARC 6xx or ARC
16418 EM cores.
16420 @item -mdiv-rem
16421 @opindex mdiv-rem
16422 Enable @code{div} and @code{rem} instructions for ARCv2 cores.
16424 @item -mcode-density
16425 @opindex mcode-density
16426 Enable code density instructions for ARC EM.  
16427 This option is on by default for ARC HS.
16429 @item -mll64
16430 @opindex mll64
16431 Enable double load/store operations for ARC HS cores.
16433 @item -mtp-regno=@var{regno}
16434 @opindex mtp-regno
16435 Specify thread pointer register number.
16437 @item -mmpy-option=@var{multo}
16438 @opindex mmpy-option
16439 Compile ARCv2 code with a multiplier design option.  You can specify 
16440 the option using either a string or numeric value for @var{multo}.  
16441 @samp{wlh1} is the default value.  The recognized values are:
16443 @table @samp
16444 @item 0
16445 @itemx none
16446 No multiplier available.
16448 @item 1
16449 @itemx w
16450 16x16 multiplier, fully pipelined.
16451 The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
16453 @item 2
16454 @itemx wlh1
16455 32x32 multiplier, fully
16456 pipelined (1 stage).  The following instructions are additionally
16457 enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16459 @item 3
16460 @itemx wlh2
16461 32x32 multiplier, fully pipelined
16462 (2 stages).  The following instructions are additionally enabled: @code{mpy},
16463 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16465 @item 4
16466 @itemx wlh3
16467 Two 16x16 multipliers, blocking,
16468 sequential.  The following instructions are additionally enabled: @code{mpy},
16469 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16471 @item 5
16472 @itemx wlh4
16473 One 16x16 multiplier, blocking,
16474 sequential.  The following instructions are additionally enabled: @code{mpy},
16475 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16477 @item 6
16478 @itemx wlh5
16479 One 32x4 multiplier, blocking,
16480 sequential.  The following instructions are additionally enabled: @code{mpy},
16481 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16483 @item 7
16484 @itemx plus_dmpy
16485 ARC HS SIMD support.
16487 @item 8
16488 @itemx plus_macd
16489 ARC HS SIMD support.
16491 @item 9
16492 @itemx plus_qmacw
16493 ARC HS SIMD support.
16495 @end table
16497 This option is only available for ARCv2 cores@.
16499 @item -mfpu=@var{fpu}
16500 @opindex mfpu
16501 Enables support for specific floating-point hardware extensions for ARCv2
16502 cores.  Supported values for @var{fpu} are:
16504 @table @samp
16506 @item fpus
16507 Enables support for single-precision floating-point hardware
16508 extensions@.
16510 @item fpud
16511 Enables support for double-precision floating-point hardware
16512 extensions.  The single-precision floating-point extension is also
16513 enabled.  Not available for ARC EM@.
16515 @item fpuda
16516 Enables support for double-precision floating-point hardware
16517 extensions using double-precision assist instructions.  The single-precision
16518 floating-point extension is also enabled.  This option is
16519 only available for ARC EM@.
16521 @item fpuda_div
16522 Enables support for double-precision floating-point hardware
16523 extensions using double-precision assist instructions.
16524 The single-precision floating-point, square-root, and divide 
16525 extensions are also enabled.  This option is
16526 only available for ARC EM@.
16528 @item fpuda_fma
16529 Enables support for double-precision floating-point hardware
16530 extensions using double-precision assist instructions.
16531 The single-precision floating-point and fused multiply and add 
16532 hardware extensions are also enabled.  This option is
16533 only available for ARC EM@.
16535 @item fpuda_all
16536 Enables support for double-precision floating-point hardware
16537 extensions using double-precision assist instructions.
16538 All single-precision floating-point hardware extensions are also
16539 enabled.  This option is only available for ARC EM@.
16541 @item fpus_div
16542 Enables support for single-precision floating-point, square-root and divide 
16543 hardware extensions@.
16545 @item fpud_div
16546 Enables support for double-precision floating-point, square-root and divide 
16547 hardware extensions.  This option
16548 includes option @samp{fpus_div}. Not available for ARC EM@.
16550 @item fpus_fma
16551 Enables support for single-precision floating-point and 
16552 fused multiply and add hardware extensions@.
16554 @item fpud_fma
16555 Enables support for double-precision floating-point and 
16556 fused multiply and add hardware extensions.  This option
16557 includes option @samp{fpus_fma}.  Not available for ARC EM@.
16559 @item fpus_all
16560 Enables support for all single-precision floating-point hardware
16561 extensions@.
16563 @item fpud_all
16564 Enables support for all single- and double-precision floating-point
16565 hardware extensions.  Not available for ARC EM@.
16567 @end table
16569 @item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
16570 @opindex mirq-ctrl-saved
16571 Specifies general-purposes registers that the processor automatically
16572 saves/restores on interrupt entry and exit.  @var{register-range} is
16573 specified as two registers separated by a dash.  The register range
16574 always starts with @code{r0}, the upper limit is @code{fp} register.
16575 @var{blink} and @var{lp_count} are optional.  This option is only
16576 valid for ARC EM and ARC HS cores.
16578 @item -mrgf-banked-regs=@var{number}
16579 @opindex mrgf-banked-regs
16580 Specifies the number of registers replicated in second register bank
16581 on entry to fast interrupt.  Fast interrupts are interrupts with the
16582 highest priority level P0.  These interrupts save only PC and STATUS32
16583 registers to avoid memory transactions during interrupt entry and exit
16584 sequences.  Use this option when you are using fast interrupts in an
16585 ARC V2 family processor.  Permitted values are 4, 8, 16, and 32.
16587 @item -mlpc-width=@var{width}
16588 @opindex mlpc-width
16589 Specify the width of the @code{lp_count} register.  Valid values for
16590 @var{width} are 8, 16, 20, 24, 28 and 32 bits.  The default width is
16591 fixed to 32 bits.  If the width is less than 32, the compiler does not
16592 attempt to transform loops in your program to use the zero-delay loop
16593 mechanism unless it is known that the @code{lp_count} register can
16594 hold the required loop-counter value.  Depending on the width
16595 specified, the compiler and run-time library might continue to use the
16596 loop mechanism for various needs.  This option defines macro
16597 @code{__ARC_LPC_WIDTH__} with the value of @var{width}.
16599 @item -mrf16
16600 @opindex mrf16
16601 This option instructs the compiler to generate code for a 16-entry
16602 register file.  This option defines the @code{__ARC_RF16__}
16603 preprocessor macro.
16605 @item -mbranch-index
16606 @opindex mbranch-index
16607 Enable use of @code{bi} or @code{bih} instructions to implement jump
16608 tables.
16610 @end table
16612 The following options are passed through to the assembler, and also
16613 define preprocessor macro symbols.
16615 @c Flags used by the assembler, but for which we define preprocessor
16616 @c macro symbols as well.
16617 @table @gcctabopt
16618 @item -mdsp-packa
16619 @opindex mdsp-packa
16620 Passed down to the assembler to enable the DSP Pack A extensions.
16621 Also sets the preprocessor symbol @code{__Xdsp_packa}.  This option is
16622 deprecated.
16624 @item -mdvbf
16625 @opindex mdvbf
16626 Passed down to the assembler to enable the dual Viterbi butterfly
16627 extension.  Also sets the preprocessor symbol @code{__Xdvbf}.  This
16628 option is deprecated.
16630 @c ARC700 4.10 extension instruction
16631 @item -mlock
16632 @opindex mlock
16633 Passed down to the assembler to enable the locked load/store
16634 conditional extension.  Also sets the preprocessor symbol
16635 @code{__Xlock}.
16637 @item -mmac-d16
16638 @opindex mmac-d16
16639 Passed down to the assembler.  Also sets the preprocessor symbol
16640 @code{__Xxmac_d16}.  This option is deprecated.
16642 @item -mmac-24
16643 @opindex mmac-24
16644 Passed down to the assembler.  Also sets the preprocessor symbol
16645 @code{__Xxmac_24}.  This option is deprecated.
16647 @c ARC700 4.10 extension instruction
16648 @item -mrtsc
16649 @opindex mrtsc
16650 Passed down to the assembler to enable the 64-bit time-stamp counter
16651 extension instruction.  Also sets the preprocessor symbol
16652 @code{__Xrtsc}.  This option is deprecated.
16654 @c ARC700 4.10 extension instruction
16655 @item -mswape
16656 @opindex mswape
16657 Passed down to the assembler to enable the swap byte ordering
16658 extension instruction.  Also sets the preprocessor symbol
16659 @code{__Xswape}.
16661 @item -mtelephony
16662 @opindex mtelephony
16663 Passed down to the assembler to enable dual- and single-operand
16664 instructions for telephony.  Also sets the preprocessor symbol
16665 @code{__Xtelephony}.  This option is deprecated.
16667 @item -mxy
16668 @opindex mxy
16669 Passed down to the assembler to enable the XY memory extension.  Also
16670 sets the preprocessor symbol @code{__Xxy}.
16672 @end table
16674 The following options control how the assembly code is annotated:
16676 @c Assembly annotation options
16677 @table @gcctabopt
16678 @item -misize
16679 @opindex misize
16680 Annotate assembler instructions with estimated addresses.
16682 @item -mannotate-align
16683 @opindex mannotate-align
16684 Explain what alignment considerations lead to the decision to make an
16685 instruction short or long.
16687 @end table
16689 The following options are passed through to the linker:
16691 @c options passed through to the linker
16692 @table @gcctabopt
16693 @item -marclinux
16694 @opindex marclinux
16695 Passed through to the linker, to specify use of the @code{arclinux} emulation.
16696 This option is enabled by default in tool chains built for
16697 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
16698 when profiling is not requested.
16700 @item -marclinux_prof
16701 @opindex marclinux_prof
16702 Passed through to the linker, to specify use of the
16703 @code{arclinux_prof} emulation.  This option is enabled by default in
16704 tool chains built for @w{@code{arc-linux-uclibc}} and
16705 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
16707 @end table
16709 The following options control the semantics of generated code:
16711 @c semantically relevant code generation options
16712 @table @gcctabopt
16713 @item -mlong-calls
16714 @opindex mlong-calls
16715 Generate calls as register indirect calls, thus providing access
16716 to the full 32-bit address range.
16718 @item -mmedium-calls
16719 @opindex mmedium-calls
16720 Don't use less than 25-bit addressing range for calls, which is the
16721 offset available for an unconditional branch-and-link
16722 instruction.  Conditional execution of function calls is suppressed, to
16723 allow use of the 25-bit range, rather than the 21-bit range with
16724 conditional branch-and-link.  This is the default for tool chains built
16725 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
16727 @item -G @var{num}
16728 @opindex G
16729 Put definitions of externally-visible data in a small data section if
16730 that data is no bigger than @var{num} bytes.  The default value of
16731 @var{num} is 4 for any ARC configuration, or 8 when we have double
16732 load/store operations.
16734 @item -mno-sdata
16735 @opindex mno-sdata
16736 @opindex msdata
16737 Do not generate sdata references.  This is the default for tool chains
16738 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
16739 targets.
16741 @item -mvolatile-cache
16742 @opindex mvolatile-cache
16743 Use ordinarily cached memory accesses for volatile references.  This is the
16744 default.
16746 @item -mno-volatile-cache
16747 @opindex mno-volatile-cache
16748 @opindex mvolatile-cache
16749 Enable cache bypass for volatile references.
16751 @end table
16753 The following options fine tune code generation:
16754 @c code generation tuning options
16755 @table @gcctabopt
16756 @item -malign-call
16757 @opindex malign-call
16758 Do alignment optimizations for call instructions.
16760 @item -mauto-modify-reg
16761 @opindex mauto-modify-reg
16762 Enable the use of pre/post modify with register displacement.
16764 @item -mbbit-peephole
16765 @opindex mbbit-peephole
16766 Enable bbit peephole2.
16768 @item -mno-brcc
16769 @opindex mno-brcc
16770 This option disables a target-specific pass in @file{arc_reorg} to
16771 generate compare-and-branch (@code{br@var{cc}}) instructions.  
16772 It has no effect on
16773 generation of these instructions driven by the combiner pass.
16775 @item -mcase-vector-pcrel
16776 @opindex mcase-vector-pcrel
16777 Use PC-relative switch case tables to enable case table shortening.
16778 This is the default for @option{-Os}.
16780 @item -mcompact-casesi
16781 @opindex mcompact-casesi
16782 Enable compact @code{casesi} pattern.  This is the default for @option{-Os},
16783 and only available for ARCv1 cores.  This option is deprecated.
16785 @item -mno-cond-exec
16786 @opindex mno-cond-exec
16787 Disable the ARCompact-specific pass to generate conditional 
16788 execution instructions.
16790 Due to delay slot scheduling and interactions between operand numbers,
16791 literal sizes, instruction lengths, and the support for conditional execution,
16792 the target-independent pass to generate conditional execution is often lacking,
16793 so the ARC port has kept a special pass around that tries to find more
16794 conditional execution generation opportunities after register allocation,
16795 branch shortening, and delay slot scheduling have been done.  This pass
16796 generally, but not always, improves performance and code size, at the cost of
16797 extra compilation time, which is why there is an option to switch it off.
16798 If you have a problem with call instructions exceeding their allowable
16799 offset range because they are conditionalized, you should consider using
16800 @option{-mmedium-calls} instead.
16802 @item -mearly-cbranchsi
16803 @opindex mearly-cbranchsi
16804 Enable pre-reload use of the @code{cbranchsi} pattern.
16806 @item -mexpand-adddi
16807 @opindex mexpand-adddi
16808 Expand @code{adddi3} and @code{subdi3} at RTL generation time into
16809 @code{add.f}, @code{adc} etc.  This option is deprecated.
16811 @item -mindexed-loads
16812 @opindex mindexed-loads
16813 Enable the use of indexed loads.  This can be problematic because some
16814 optimizers then assume that indexed stores exist, which is not
16815 the case.
16817 @item -mlra
16818 @opindex mlra
16819 Enable Local Register Allocation.  This is still experimental for ARC,
16820 so by default the compiler uses standard reload
16821 (i.e.@: @option{-mno-lra}).
16823 @item -mlra-priority-none
16824 @opindex mlra-priority-none
16825 Don't indicate any priority for target registers.
16827 @item -mlra-priority-compact
16828 @opindex mlra-priority-compact
16829 Indicate target register priority for r0..r3 / r12..r15.
16831 @item -mlra-priority-noncompact
16832 @opindex mlra-priority-noncompact
16833 Reduce target register priority for r0..r3 / r12..r15.
16835 @item -mmillicode
16836 @opindex mmillicode
16837 When optimizing for size (using @option{-Os}), prologues and epilogues
16838 that have to save or restore a large number of registers are often
16839 shortened by using call to a special function in libgcc; this is
16840 referred to as a @emph{millicode} call.  As these calls can pose
16841 performance issues, and/or cause linking issues when linking in a
16842 nonstandard way, this option is provided to turn on or off millicode
16843 call generation.
16845 @item -mcode-density-frame
16846 @opindex mcode-density-frame
16847 This option enable the compiler to emit @code{enter} and @code{leave}
16848 instructions.  These instructions are only valid for CPUs with
16849 code-density feature.
16851 @item -mmixed-code
16852 @opindex mmixed-code
16853 Tweak register allocation to help 16-bit instruction generation.
16854 This generally has the effect of decreasing the average instruction size
16855 while increasing the instruction count.
16857 @item -mq-class
16858 @opindex mq-class
16859 Enable @samp{q} instruction alternatives.
16860 This is the default for @option{-Os}.
16862 @item -mRcq
16863 @opindex mRcq
16864 Enable @samp{Rcq} constraint handling.  
16865 Most short code generation depends on this.
16866 This is the default.
16868 @item -mRcw
16869 @opindex mRcw
16870 Enable @samp{Rcw} constraint handling.  
16871 Most ccfsm condexec mostly depends on this.
16872 This is the default.
16874 @item -msize-level=@var{level}
16875 @opindex msize-level
16876 Fine-tune size optimization with regards to instruction lengths and alignment.
16877 The recognized values for @var{level} are:
16878 @table @samp
16879 @item 0
16880 No size optimization.  This level is deprecated and treated like @samp{1}.
16882 @item 1
16883 Short instructions are used opportunistically.
16885 @item 2
16886 In addition, alignment of loops and of code after barriers are dropped.
16888 @item 3
16889 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
16891 @end table
16893 This defaults to @samp{3} when @option{-Os} is in effect.  Otherwise,
16894 the behavior when this is not set is equivalent to level @samp{1}.
16896 @item -mtune=@var{cpu}
16897 @opindex mtune
16898 Set instruction scheduling parameters for @var{cpu}, overriding any implied
16899 by @option{-mcpu=}.
16901 Supported values for @var{cpu} are
16903 @table @samp
16904 @item ARC600
16905 Tune for ARC600 CPU.
16907 @item ARC601
16908 Tune for ARC601 CPU.
16910 @item ARC700
16911 Tune for ARC700 CPU with standard multiplier block.
16913 @item ARC700-xmac
16914 Tune for ARC700 CPU with XMAC block.
16916 @item ARC725D
16917 Tune for ARC725D CPU.
16919 @item ARC750D
16920 Tune for ARC750D CPU.
16922 @end table
16924 @item -mmultcost=@var{num}
16925 @opindex mmultcost
16926 Cost to assume for a multiply instruction, with @samp{4} being equal to a
16927 normal instruction.
16929 @item -munalign-prob-threshold=@var{probability}
16930 @opindex munalign-prob-threshold
16931 Set probability threshold for unaligning branches.
16932 When tuning for @samp{ARC700} and optimizing for speed, branches without
16933 filled delay slot are preferably emitted unaligned and long, unless
16934 profiling indicates that the probability for the branch to be taken
16935 is below @var{probability}.  @xref{Cross-profiling}.
16936 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
16938 @end table
16940 The following options are maintained for backward compatibility, but
16941 are now deprecated and will be removed in a future release:
16943 @c Deprecated options
16944 @table @gcctabopt
16946 @item -margonaut
16947 @opindex margonaut
16948 Obsolete FPX.
16950 @item -mbig-endian
16951 @opindex mbig-endian
16952 @itemx -EB
16953 @opindex EB
16954 Compile code for big-endian targets.  Use of these options is now
16955 deprecated.  Big-endian code is supported by configuring GCC to build
16956 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
16957 for which big endian is the default.
16959 @item -mlittle-endian
16960 @opindex mlittle-endian
16961 @itemx -EL
16962 @opindex EL
16963 Compile code for little-endian targets.  Use of these options is now
16964 deprecated.  Little-endian code is supported by configuring GCC to build 
16965 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
16966 for which little endian is the default.
16968 @item -mbarrel_shifter
16969 @opindex mbarrel_shifter
16970 Replaced by @option{-mbarrel-shifter}.
16972 @item -mdpfp_compact
16973 @opindex mdpfp_compact
16974 Replaced by @option{-mdpfp-compact}.
16976 @item -mdpfp_fast
16977 @opindex mdpfp_fast
16978 Replaced by @option{-mdpfp-fast}.
16980 @item -mdsp_packa
16981 @opindex mdsp_packa
16982 Replaced by @option{-mdsp-packa}.
16984 @item -mEA
16985 @opindex mEA
16986 Replaced by @option{-mea}.
16988 @item -mmac_24
16989 @opindex mmac_24
16990 Replaced by @option{-mmac-24}.
16992 @item -mmac_d16
16993 @opindex mmac_d16
16994 Replaced by @option{-mmac-d16}.
16996 @item -mspfp_compact
16997 @opindex mspfp_compact
16998 Replaced by @option{-mspfp-compact}.
17000 @item -mspfp_fast
17001 @opindex mspfp_fast
17002 Replaced by @option{-mspfp-fast}.
17004 @item -mtune=@var{cpu}
17005 @opindex mtune
17006 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
17007 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
17008 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
17010 @item -multcost=@var{num}
17011 @opindex multcost
17012 Replaced by @option{-mmultcost}.
17014 @end table
17016 @node ARM Options
17017 @subsection ARM Options
17018 @cindex ARM options
17020 These @samp{-m} options are defined for the ARM port:
17022 @table @gcctabopt
17023 @item -mabi=@var{name}
17024 @opindex mabi
17025 Generate code for the specified ABI@.  Permissible values are: @samp{apcs-gnu},
17026 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
17028 @item -mapcs-frame
17029 @opindex mapcs-frame
17030 Generate a stack frame that is compliant with the ARM Procedure Call
17031 Standard for all functions, even if this is not strictly necessary for
17032 correct execution of the code.  Specifying @option{-fomit-frame-pointer}
17033 with this option causes the stack frames not to be generated for
17034 leaf functions.  The default is @option{-mno-apcs-frame}.
17035 This option is deprecated.
17037 @item -mapcs
17038 @opindex mapcs
17039 This is a synonym for @option{-mapcs-frame} and is deprecated.
17041 @ignore
17042 @c not currently implemented
17043 @item -mapcs-stack-check
17044 @opindex mapcs-stack-check
17045 Generate code to check the amount of stack space available upon entry to
17046 every function (that actually uses some stack space).  If there is
17047 insufficient space available then either the function
17048 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
17049 called, depending upon the amount of stack space required.  The runtime
17050 system is required to provide these functions.  The default is
17051 @option{-mno-apcs-stack-check}, since this produces smaller code.
17053 @c not currently implemented
17054 @item -mapcs-reentrant
17055 @opindex mapcs-reentrant
17056 Generate reentrant, position-independent code.  The default is
17057 @option{-mno-apcs-reentrant}.
17058 @end ignore
17060 @item -mthumb-interwork
17061 @opindex mthumb-interwork
17062 Generate code that supports calling between the ARM and Thumb
17063 instruction sets.  Without this option, on pre-v5 architectures, the
17064 two instruction sets cannot be reliably used inside one program.  The
17065 default is @option{-mno-thumb-interwork}, since slightly larger code
17066 is generated when @option{-mthumb-interwork} is specified.  In AAPCS
17067 configurations this option is meaningless.
17069 @item -mno-sched-prolog
17070 @opindex mno-sched-prolog
17071 @opindex msched-prolog
17072 Prevent the reordering of instructions in the function prologue, or the
17073 merging of those instruction with the instructions in the function's
17074 body.  This means that all functions start with a recognizable set
17075 of instructions (or in fact one of a choice from a small set of
17076 different function prologues), and this information can be used to
17077 locate the start of functions inside an executable piece of code.  The
17078 default is @option{-msched-prolog}.
17080 @item -mfloat-abi=@var{name}
17081 @opindex mfloat-abi
17082 Specifies which floating-point ABI to use.  Permissible values
17083 are: @samp{soft}, @samp{softfp} and @samp{hard}.
17085 Specifying @samp{soft} causes GCC to generate output containing
17086 library calls for floating-point operations.
17087 @samp{softfp} allows the generation of code using hardware floating-point
17088 instructions, but still uses the soft-float calling conventions.
17089 @samp{hard} allows generation of floating-point instructions
17090 and uses FPU-specific calling conventions.
17092 The default depends on the specific target configuration.  Note that
17093 the hard-float and soft-float ABIs are not link-compatible; you must
17094 compile your entire program with the same ABI, and link with a
17095 compatible set of libraries.
17097 @item -mgeneral-regs-only
17098 @opindex mgeneral-regs-only
17099 Generate code which uses only the general-purpose registers.  This will prevent
17100 the compiler from using floating-point and Advanced SIMD registers but will not
17101 impose any restrictions on the assembler.
17103 @item -mlittle-endian
17104 @opindex mlittle-endian
17105 Generate code for a processor running in little-endian mode.  This is
17106 the default for all standard configurations.
17108 @item -mbig-endian
17109 @opindex mbig-endian
17110 Generate code for a processor running in big-endian mode; the default is
17111 to compile code for a little-endian processor.
17113 @item -mbe8
17114 @itemx -mbe32
17115 @opindex mbe8
17116 When linking a big-endian image select between BE8 and BE32 formats.
17117 The option has no effect for little-endian images and is ignored.  The
17118 default is dependent on the selected target architecture.  For ARMv6
17119 and later architectures the default is BE8, for older architectures
17120 the default is BE32.  BE32 format has been deprecated by ARM.
17122 @item -march=@var{name}@r{[}+extension@dots{}@r{]}
17123 @opindex march
17124 This specifies the name of the target ARM architecture.  GCC uses this
17125 name to determine what kind of instructions it can emit when generating
17126 assembly code.  This option can be used in conjunction with or instead
17127 of the @option{-mcpu=} option.
17129 Permissible names are:
17130 @samp{armv4t},
17131 @samp{armv5t}, @samp{armv5te},
17132 @samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
17133 @samp{armv6z}, @samp{armv6zk},
17134 @samp{armv7}, @samp{armv7-a}, @samp{armv7ve}, 
17135 @samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
17136 @samp{armv8.4-a},
17137 @samp{armv8.5-a},
17138 @samp{armv7-r},
17139 @samp{armv8-r},
17140 @samp{armv6-m}, @samp{armv6s-m},
17141 @samp{armv7-m}, @samp{armv7e-m},
17142 @samp{armv8-m.base}, @samp{armv8-m.main},
17143 @samp{iwmmxt} and @samp{iwmmxt2}.
17145 Additionally, the following architectures, which lack support for the
17146 Thumb execution state, are recognized but support is deprecated: @samp{armv4}.
17148 Many of the architectures support extensions.  These can be added by
17149 appending @samp{+@var{extension}} to the architecture name.  Extension
17150 options are processed in order and capabilities accumulate.  An extension
17151 will also enable any necessary base extensions
17152 upon which it depends.  For example, the @samp{+crypto} extension
17153 will always enable the @samp{+simd} extension.  The exception to the
17154 additive construction is for extensions that are prefixed with
17155 @samp{+no@dots{}}: these extensions disable the specified option and
17156 any other extensions that may depend on the presence of that
17157 extension.
17159 For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
17160 writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
17161 entirely disabled by the @samp{+nofp} option that follows it.
17163 Most extension names are generically named, but have an effect that is
17164 dependent upon the architecture to which it is applied.  For example,
17165 the @samp{+simd} option can be applied to both @samp{armv7-a} and
17166 @samp{armv8-a} architectures, but will enable the original ARMv7-A
17167 Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
17168 variant for @samp{armv8-a}.
17170 The table below lists the supported extensions for each architecture.
17171 Architectures not mentioned do not support any extensions.
17173 @table @samp
17174 @item armv5te
17175 @itemx armv6
17176 @itemx armv6j
17177 @itemx armv6k
17178 @itemx armv6kz
17179 @itemx armv6t2
17180 @itemx armv6z
17181 @itemx armv6zk
17182 @table @samp
17183 @item +fp
17184 The VFPv2 floating-point instructions.  The extension @samp{+vfpv2} can be
17185 used as an alias for this extension.
17187 @item +nofp
17188 Disable the floating-point instructions.
17189 @end table
17191 @item armv7
17192 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
17193 @table @samp
17194 @item +fp
17195 The VFPv3 floating-point instructions, with 16 double-precision
17196 registers.  The extension @samp{+vfpv3-d16} can be used as an alias
17197 for this extension.  Note that floating-point is not supported by the
17198 base ARMv7-M architecture, but is compatible with both the ARMv7-A and
17199 ARMv7-R architectures.
17201 @item +nofp
17202 Disable the floating-point instructions.
17203 @end table
17205 @item armv7-a
17206 @table @samp
17207 @item +mp
17208 The multiprocessing extension.
17210 @item +sec
17211 The security extension.
17213 @item +fp
17214 The VFPv3 floating-point instructions, with 16 double-precision
17215 registers.  The extension @samp{+vfpv3-d16} can be used as an alias
17216 for this extension.
17218 @item +simd
17219 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
17220 The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
17221 for this extension.
17223 @item +vfpv3
17224 The VFPv3 floating-point instructions, with 32 double-precision
17225 registers.
17227 @item +vfpv3-d16-fp16
17228 The VFPv3 floating-point instructions, with 16 double-precision
17229 registers and the half-precision floating-point conversion operations.
17231 @item +vfpv3-fp16
17232 The VFPv3 floating-point instructions, with 32 double-precision
17233 registers and the half-precision floating-point conversion operations.
17235 @item +vfpv4-d16
17236 The VFPv4 floating-point instructions, with 16 double-precision
17237 registers.
17239 @item +vfpv4
17240 The VFPv4 floating-point instructions, with 32 double-precision
17241 registers.
17243 @item +neon-fp16
17244 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
17245 the half-precision floating-point conversion operations.
17247 @item +neon-vfpv4
17248 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
17250 @item +nosimd
17251 Disable the Advanced SIMD instructions (does not disable floating point).
17253 @item +nofp
17254 Disable the floating-point and Advanced SIMD instructions.
17255 @end table
17257 @item armv7ve
17258 The extended version of the ARMv7-A architecture with support for
17259 virtualization.
17260 @table @samp
17261 @item +fp
17262 The VFPv4 floating-point instructions, with 16 double-precision registers.
17263 The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
17265 @item +simd
17266 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.  The
17267 extension @samp{+neon-vfpv4} can be used as an alias for this extension.
17269 @item +vfpv3-d16
17270 The VFPv3 floating-point instructions, with 16 double-precision
17271 registers.
17273 @item +vfpv3
17274 The VFPv3 floating-point instructions, with 32 double-precision
17275 registers.
17277 @item +vfpv3-d16-fp16
17278 The VFPv3 floating-point instructions, with 16 double-precision
17279 registers and the half-precision floating-point conversion operations.
17281 @item +vfpv3-fp16
17282 The VFPv3 floating-point instructions, with 32 double-precision
17283 registers and the half-precision floating-point conversion operations.
17285 @item +vfpv4-d16
17286 The VFPv4 floating-point instructions, with 16 double-precision
17287 registers.
17289 @item +vfpv4
17290 The VFPv4 floating-point instructions, with 32 double-precision
17291 registers.
17293 @item +neon
17294 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
17295 The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
17297 @item +neon-fp16
17298 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
17299 the half-precision floating-point conversion operations.
17301 @item +nosimd
17302 Disable the Advanced SIMD instructions (does not disable floating point).
17304 @item +nofp
17305 Disable the floating-point and Advanced SIMD instructions.
17306 @end table
17308 @item armv8-a
17309 @table @samp
17310 @item +crc
17311 The Cyclic Redundancy Check (CRC) instructions.
17312 @item +simd
17313 The ARMv8-A Advanced SIMD and floating-point instructions.
17314 @item +crypto
17315 The cryptographic instructions.
17316 @item +nocrypto
17317 Disable the cryptographic instructions.
17318 @item +nofp
17319 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17320 @item +sb
17321 Speculation Barrier Instruction.
17322 @item +predres
17323 Execution and Data Prediction Restriction Instructions.
17324 @end table
17326 @item armv8.1-a
17327 @table @samp
17328 @item +simd
17329 The ARMv8.1-A Advanced SIMD and floating-point instructions.
17331 @item +crypto
17332 The cryptographic instructions.  This also enables the Advanced SIMD and
17333 floating-point instructions.
17335 @item +nocrypto
17336 Disable the cryptographic instructions.
17338 @item +nofp
17339 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17341 @item +sb
17342 Speculation Barrier Instruction.
17344 @item +predres
17345 Execution and Data Prediction Restriction Instructions.
17346 @end table
17348 @item armv8.2-a
17349 @itemx armv8.3-a
17350 @table @samp
17351 @item +fp16
17352 The half-precision floating-point data processing instructions.
17353 This also enables the Advanced SIMD and floating-point instructions.
17355 @item +fp16fml
17356 The half-precision floating-point fmla extension.  This also enables
17357 the half-precision floating-point extension and Advanced SIMD and
17358 floating-point instructions.
17360 @item +simd
17361 The ARMv8.1-A Advanced SIMD and floating-point instructions.
17363 @item +crypto
17364 The cryptographic instructions.  This also enables the Advanced SIMD and
17365 floating-point instructions.
17367 @item +dotprod
17368 Enable the Dot Product extension.  This also enables Advanced SIMD instructions.
17370 @item +nocrypto
17371 Disable the cryptographic extension.
17373 @item +nofp
17374 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17376 @item +sb
17377 Speculation Barrier Instruction.
17379 @item +predres
17380 Execution and Data Prediction Restriction Instructions.
17381 @end table
17383 @item armv8.4-a
17384 @table @samp
17385 @item +fp16
17386 The half-precision floating-point data processing instructions.
17387 This also enables the Advanced SIMD and floating-point instructions as well
17388 as the Dot Product extension and the half-precision floating-point fmla
17389 extension.
17391 @item +simd
17392 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
17393 Dot Product extension.
17395 @item +crypto
17396 The cryptographic instructions.  This also enables the Advanced SIMD and
17397 floating-point instructions as well as the Dot Product extension.
17399 @item +nocrypto
17400 Disable the cryptographic extension.
17402 @item +nofp
17403 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17405 @item +sb
17406 Speculation Barrier Instruction.
17408 @item +predres
17409 Execution and Data Prediction Restriction Instructions.
17410 @end table
17412 @item armv8.5-a
17413 @table @samp
17414 @item +fp16
17415 The half-precision floating-point data processing instructions.
17416 This also enables the Advanced SIMD and floating-point instructions as well
17417 as the Dot Product extension and the half-precision floating-point fmla
17418 extension.
17420 @item +simd
17421 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
17422 Dot Product extension.
17424 @item +crypto
17425 The cryptographic instructions.  This also enables the Advanced SIMD and
17426 floating-point instructions as well as the Dot Product extension.
17428 @item +nocrypto
17429 Disable the cryptographic extension.
17431 @item +nofp
17432 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17433 @end table
17435 @item armv7-r
17436 @table @samp
17437 @item +fp.sp
17438 The single-precision VFPv3 floating-point instructions.  The extension
17439 @samp{+vfpv3xd} can be used as an alias for this extension.
17441 @item +fp
17442 The VFPv3 floating-point instructions with 16 double-precision registers.
17443 The extension +vfpv3-d16 can be used as an alias for this extension.
17445 @item +vfpv3xd-d16-fp16
17446 The single-precision VFPv3 floating-point instructions with 16 double-precision
17447 registers and the half-precision floating-point conversion operations.
17449 @item +vfpv3-d16-fp16
17450 The VFPv3 floating-point instructions with 16 double-precision
17451 registers and the half-precision floating-point conversion operations.
17453 @item +nofp
17454 Disable the floating-point extension.
17456 @item +idiv
17457 The ARM-state integer division instructions.
17459 @item +noidiv
17460 Disable the ARM-state integer division extension.
17461 @end table
17463 @item armv7e-m
17464 @table @samp
17465 @item +fp
17466 The single-precision VFPv4 floating-point instructions.
17468 @item +fpv5
17469 The single-precision FPv5 floating-point instructions.
17471 @item +fp.dp
17472 The single- and double-precision FPv5 floating-point instructions.
17474 @item +nofp
17475 Disable the floating-point extensions.
17476 @end table
17478 @item  armv8-m.main
17479 @table @samp
17480 @item +dsp
17481 The DSP instructions.
17483 @item +nodsp
17484 Disable the DSP extension.
17486 @item +fp
17487 The single-precision floating-point instructions.
17489 @item +fp.dp
17490 The single- and double-precision floating-point instructions.
17492 @item +nofp
17493 Disable the floating-point extension.
17494 @end table
17496 @item armv8-r
17497 @table @samp
17498 @item +crc
17499 The Cyclic Redundancy Check (CRC) instructions.
17500 @item +fp.sp
17501 The single-precision FPv5 floating-point instructions.
17502 @item +simd
17503 The ARMv8-A Advanced SIMD and floating-point instructions.
17504 @item +crypto
17505 The cryptographic instructions.
17506 @item +nocrypto
17507 Disable the cryptographic instructions.
17508 @item +nofp
17509 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17510 @end table
17512 @end table
17514 @option{-march=native} causes the compiler to auto-detect the architecture
17515 of the build computer.  At present, this feature is only supported on
17516 GNU/Linux, and not all architectures are recognized.  If the auto-detect
17517 is unsuccessful the option has no effect.
17519 @item -mtune=@var{name}
17520 @opindex mtune
17521 This option specifies the name of the target ARM processor for
17522 which GCC should tune the performance of the code.
17523 For some ARM implementations better performance can be obtained by using
17524 this option.
17525 Permissible names are: @samp{arm7tdmi}, @samp{arm7tdmi-s}, @samp{arm710t},
17526 @samp{arm720t}, @samp{arm740t}, @samp{strongarm}, @samp{strongarm110},
17527 @samp{strongarm1100}, 0@samp{strongarm1110}, @samp{arm8}, @samp{arm810},
17528 @samp{arm9}, @samp{arm9e}, @samp{arm920}, @samp{arm920t}, @samp{arm922t},
17529 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm926ej-s},
17530 @samp{arm940t}, @samp{arm9tdmi}, @samp{arm10tdmi}, @samp{arm1020t},
17531 @samp{arm1026ej-s}, @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
17532 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
17533 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
17534 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
17535 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
17536 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
17537 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
17538 @samp{cortex-a76}, @samp{ares}, @samp{cortex-r4}, @samp{cortex-r4f},
17539 @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52},
17540 @samp{cortex-m0}, @samp{cortex-m0plus}, @samp{cortex-m1}, @samp{cortex-m3},
17541 @samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m23}, @samp{cortex-m33},
17542 @samp{cortex-m1.small-multiply}, @samp{cortex-m0.small-multiply},
17543 @samp{cortex-m0plus.small-multiply}, @samp{exynos-m1}, @samp{marvell-pj4},
17544 @samp{neoverse-n1}, @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2},
17545 @samp{ep9312}, @samp{fa526}, @samp{fa626}, @samp{fa606te}, @samp{fa626te},
17546 @samp{fmp626}, @samp{fa726te}, @samp{xgene1}.
17548 Additionally, this option can specify that GCC should tune the performance
17549 of the code for a big.LITTLE system.  Permissible names are:
17550 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
17551 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
17552 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
17553 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}.
17555 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
17556 performance for a blend of processors within architecture @var{arch}.
17557 The aim is to generate code that run well on the current most popular
17558 processors, balancing between optimizations that benefit some CPUs in the
17559 range, and avoiding performance pitfalls of other CPUs.  The effects of
17560 this option may change in future GCC versions as CPU models come and go.
17562 @option{-mtune} permits the same extension options as @option{-mcpu}, but
17563 the extension options do not affect the tuning of the generated code.
17565 @option{-mtune=native} causes the compiler to auto-detect the CPU
17566 of the build computer.  At present, this feature is only supported on
17567 GNU/Linux, and not all architectures are recognized.  If the auto-detect is
17568 unsuccessful the option has no effect.
17570 @item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
17571 @opindex mcpu
17572 This specifies the name of the target ARM processor.  GCC uses this name
17573 to derive the name of the target ARM architecture (as if specified
17574 by @option{-march}) and the ARM processor type for which to tune for
17575 performance (as if specified by @option{-mtune}).  Where this option
17576 is used in conjunction with @option{-march} or @option{-mtune},
17577 those options take precedence over the appropriate part of this option.
17579 Many of the supported CPUs implement optional architectural
17580 extensions.  Where this is so the architectural extensions are
17581 normally enabled by default.  If implementations that lack the
17582 extension exist, then the extension syntax can be used to disable
17583 those extensions that have been omitted.  For floating-point and
17584 Advanced SIMD (Neon) instructions, the settings of the options
17585 @option{-mfloat-abi} and @option{-mfpu} must also be considered:
17586 floating-point and Advanced SIMD instructions will only be used if
17587 @option{-mfloat-abi} is not set to @samp{soft}; and any setting of
17588 @option{-mfpu} other than @samp{auto} will override the available
17589 floating-point and SIMD extension instructions.
17591 For example, @samp{cortex-a9} can be found in three major
17592 configurations: integer only, with just a floating-point unit or with
17593 floating-point and Advanced SIMD.  The default is to enable all the
17594 instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
17595 be used to disable just the SIMD or both the SIMD and floating-point
17596 instructions respectively.
17598 Permissible names for this option are the same as those for
17599 @option{-mtune}.
17601 The following extension options are common to the listed CPUs:
17603 @table @samp
17604 @item +nodsp
17605 Disable the DSP instructions on @samp{cortex-m33}.
17607 @item  +nofp
17608 Disables the floating-point instructions on @samp{arm9e},
17609 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
17610 @samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
17611 @samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
17612 @samp{cortex-m4}, @samp{cortex-m7} and @samp{cortex-m33}.
17613 Disables the floating-point and SIMD instructions on
17614 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
17615 @samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
17616 @samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
17617 @samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
17618 @samp{cortex-a53} and @samp{cortex-a55}.
17620 @item +nofp.dp
17621 Disables the double-precision component of the floating-point instructions
17622 on @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52} and
17623 @samp{cortex-m7}.
17625 @item +nosimd
17626 Disables the SIMD (but not floating-point) instructions on
17627 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
17628 and @samp{cortex-a9}.
17630 @item +crypto
17631 Enables the cryptographic instructions on @samp{cortex-a32},
17632 @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
17633 @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
17634 @samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
17635 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
17636 @samp{cortex-a75.cortex-a55}.
17637 @end table
17639 Additionally the @samp{generic-armv7-a} pseudo target defaults to
17640 VFPv3 with 16 double-precision registers.  It supports the following
17641 extension options: @samp{mp}, @samp{sec}, @samp{vfpv3-d16},
17642 @samp{vfpv3}, @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16},
17643 @samp{vfpv4-d16}, @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3},
17644 @samp{neon-fp16}, @samp{neon-vfpv4}.  The meanings are the same as for
17645 the extensions to @option{-march=armv7-a}.
17647 @option{-mcpu=generic-@var{arch}} is also permissible, and is
17648 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
17649 See @option{-mtune} for more information.
17651 @option{-mcpu=native} causes the compiler to auto-detect the CPU
17652 of the build computer.  At present, this feature is only supported on
17653 GNU/Linux, and not all architectures are recognized.  If the auto-detect
17654 is unsuccessful the option has no effect.
17656 @item -mfpu=@var{name}
17657 @opindex mfpu
17658 This specifies what floating-point hardware (or hardware emulation) is
17659 available on the target.  Permissible names are: @samp{auto}, @samp{vfpv2},
17660 @samp{vfpv3},
17661 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
17662 @samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
17663 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
17664 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
17665 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
17666 Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
17667 is an alias for @samp{vfpv2}.
17669 The setting @samp{auto} is the default and is special.  It causes the
17670 compiler to select the floating-point and Advanced SIMD instructions
17671 based on the settings of @option{-mcpu} and @option{-march}.
17673 If the selected floating-point hardware includes the NEON extension
17674 (e.g.@: @option{-mfpu=neon}), note that floating-point
17675 operations are not generated by GCC's auto-vectorization pass unless
17676 @option{-funsafe-math-optimizations} is also specified.  This is
17677 because NEON hardware does not fully implement the IEEE 754 standard for
17678 floating-point arithmetic (in particular denormal values are treated as
17679 zero), so the use of NEON instructions may lead to a loss of precision.
17681 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
17683 @item -mfp16-format=@var{name}
17684 @opindex mfp16-format
17685 Specify the format of the @code{__fp16} half-precision floating-point type.
17686 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
17687 the default is @samp{none}, in which case the @code{__fp16} type is not
17688 defined.  @xref{Half-Precision}, for more information.
17690 @item -mstructure-size-boundary=@var{n}
17691 @opindex mstructure-size-boundary
17692 The sizes of all structures and unions are rounded up to a multiple
17693 of the number of bits set by this option.  Permissible values are 8, 32
17694 and 64.  The default value varies for different toolchains.  For the COFF
17695 targeted toolchain the default value is 8.  A value of 64 is only allowed
17696 if the underlying ABI supports it.
17698 Specifying a larger number can produce faster, more efficient code, but
17699 can also increase the size of the program.  Different values are potentially
17700 incompatible.  Code compiled with one value cannot necessarily expect to
17701 work with code or libraries compiled with another value, if they exchange
17702 information using structures or unions.
17704 This option is deprecated.
17706 @item -mabort-on-noreturn
17707 @opindex mabort-on-noreturn
17708 Generate a call to the function @code{abort} at the end of a
17709 @code{noreturn} function.  It is executed if the function tries to
17710 return.
17712 @item -mlong-calls
17713 @itemx -mno-long-calls
17714 @opindex mlong-calls
17715 @opindex mno-long-calls
17716 Tells the compiler to perform function calls by first loading the
17717 address of the function into a register and then performing a subroutine
17718 call on this register.  This switch is needed if the target function
17719 lies outside of the 64-megabyte addressing range of the offset-based
17720 version of subroutine call instruction.
17722 Even if this switch is enabled, not all function calls are turned
17723 into long calls.  The heuristic is that static functions, functions
17724 that have the @code{short_call} attribute, functions that are inside
17725 the scope of a @code{#pragma no_long_calls} directive, and functions whose
17726 definitions have already been compiled within the current compilation
17727 unit are not turned into long calls.  The exceptions to this rule are
17728 that weak function definitions, functions with the @code{long_call}
17729 attribute or the @code{section} attribute, and functions that are within
17730 the scope of a @code{#pragma long_calls} directive are always
17731 turned into long calls.
17733 This feature is not enabled by default.  Specifying
17734 @option{-mno-long-calls} restores the default behavior, as does
17735 placing the function calls within the scope of a @code{#pragma
17736 long_calls_off} directive.  Note these switches have no effect on how
17737 the compiler generates code to handle function calls via function
17738 pointers.
17740 @item -msingle-pic-base
17741 @opindex msingle-pic-base
17742 Treat the register used for PIC addressing as read-only, rather than
17743 loading it in the prologue for each function.  The runtime system is
17744 responsible for initializing this register with an appropriate value
17745 before execution begins.
17747 @item -mpic-register=@var{reg}
17748 @opindex mpic-register
17749 Specify the register to be used for PIC addressing.
17750 For standard PIC base case, the default is any suitable register
17751 determined by compiler.  For single PIC base case, the default is
17752 @samp{R9} if target is EABI based or stack-checking is enabled,
17753 otherwise the default is @samp{R10}.
17755 @item -mpic-data-is-text-relative
17756 @opindex mpic-data-is-text-relative
17757 Assume that the displacement between the text and data segments is fixed
17758 at static link time.  This permits using PC-relative addressing
17759 operations to access data known to be in the data segment.  For
17760 non-VxWorks RTP targets, this option is enabled by default.  When
17761 disabled on such targets, it will enable @option{-msingle-pic-base} by
17762 default.
17764 @item -mpoke-function-name
17765 @opindex mpoke-function-name
17766 Write the name of each function into the text section, directly
17767 preceding the function prologue.  The generated code is similar to this:
17769 @smallexample
17770      t0
17771          .ascii "arm_poke_function_name", 0
17772          .align
17773      t1
17774          .word 0xff000000 + (t1 - t0)
17775      arm_poke_function_name
17776          mov     ip, sp
17777          stmfd   sp!, @{fp, ip, lr, pc@}
17778          sub     fp, ip, #4
17779 @end smallexample
17781 When performing a stack backtrace, code can inspect the value of
17782 @code{pc} stored at @code{fp + 0}.  If the trace function then looks at
17783 location @code{pc - 12} and the top 8 bits are set, then we know that
17784 there is a function name embedded immediately preceding this location
17785 and has length @code{((pc[-3]) & 0xff000000)}.
17787 @item -mthumb
17788 @itemx -marm
17789 @opindex marm
17790 @opindex mthumb
17792 Select between generating code that executes in ARM and Thumb
17793 states.  The default for most configurations is to generate code
17794 that executes in ARM state, but the default can be changed by
17795 configuring GCC with the @option{--with-mode=}@var{state}
17796 configure option.
17798 You can also override the ARM and Thumb mode for each function
17799 by using the @code{target("thumb")} and @code{target("arm")} function attributes
17800 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
17802 @item -mflip-thumb 
17803 @opindex mflip-thumb
17804 Switch ARM/Thumb modes on alternating functions.
17805 This option is provided for regression testing of mixed Thumb/ARM code
17806 generation, and is not intended for ordinary use in compiling code.
17808 @item -mtpcs-frame
17809 @opindex mtpcs-frame
17810 Generate a stack frame that is compliant with the Thumb Procedure Call
17811 Standard for all non-leaf functions.  (A leaf function is one that does
17812 not call any other functions.)  The default is @option{-mno-tpcs-frame}.
17814 @item -mtpcs-leaf-frame
17815 @opindex mtpcs-leaf-frame
17816 Generate a stack frame that is compliant with the Thumb Procedure Call
17817 Standard for all leaf functions.  (A leaf function is one that does
17818 not call any other functions.)  The default is @option{-mno-apcs-leaf-frame}.
17820 @item -mcallee-super-interworking
17821 @opindex mcallee-super-interworking
17822 Gives all externally visible functions in the file being compiled an ARM
17823 instruction set header which switches to Thumb mode before executing the
17824 rest of the function.  This allows these functions to be called from
17825 non-interworking code.  This option is not valid in AAPCS configurations
17826 because interworking is enabled by default.
17828 @item -mcaller-super-interworking
17829 @opindex mcaller-super-interworking
17830 Allows calls via function pointers (including virtual functions) to
17831 execute correctly regardless of whether the target code has been
17832 compiled for interworking or not.  There is a small overhead in the cost
17833 of executing a function pointer if this option is enabled.  This option
17834 is not valid in AAPCS configurations because interworking is enabled
17835 by default.
17837 @item -mtp=@var{name}
17838 @opindex mtp
17839 Specify the access model for the thread local storage pointer.  The valid
17840 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
17841 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
17842 (supported in the arm6k architecture), and @samp{auto}, which uses the
17843 best available method for the selected processor.  The default setting is
17844 @samp{auto}.
17846 @item -mtls-dialect=@var{dialect}
17847 @opindex mtls-dialect
17848 Specify the dialect to use for accessing thread local storage.  Two
17849 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}.  The
17850 @samp{gnu} dialect selects the original GNU scheme for supporting
17851 local and global dynamic TLS models.  The @samp{gnu2} dialect
17852 selects the GNU descriptor scheme, which provides better performance
17853 for shared libraries.  The GNU descriptor scheme is compatible with
17854 the original scheme, but does require new assembler, linker and
17855 library support.  Initial and local exec TLS models are unaffected by
17856 this option and always use the original scheme.
17858 @item -mword-relocations
17859 @opindex mword-relocations
17860 Only generate absolute relocations on word-sized values (i.e.@: R_ARM_ABS32).
17861 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
17862 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
17863 is specified. This option conflicts with @option{-mslow-flash-data}.
17865 @item -mfix-cortex-m3-ldrd
17866 @opindex mfix-cortex-m3-ldrd
17867 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
17868 with overlapping destination and base registers are used.  This option avoids
17869 generating these instructions.  This option is enabled by default when
17870 @option{-mcpu=cortex-m3} is specified.
17872 @item -munaligned-access
17873 @itemx -mno-unaligned-access
17874 @opindex munaligned-access
17875 @opindex mno-unaligned-access
17876 Enables (or disables) reading and writing of 16- and 32- bit values
17877 from addresses that are not 16- or 32- bit aligned.  By default
17878 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
17879 ARMv8-M Baseline architectures, and enabled for all other
17880 architectures.  If unaligned access is not enabled then words in packed
17881 data structures are accessed a byte at a time.
17883 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
17884 generated object file to either true or false, depending upon the
17885 setting of this option.  If unaligned access is enabled then the
17886 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
17887 defined.
17889 @item -mneon-for-64bits
17890 @opindex mneon-for-64bits
17891 Enables using Neon to handle scalar 64-bits operations. This is
17892 disabled by default since the cost of moving data from core registers
17893 to Neon is high.
17895 @item -mslow-flash-data
17896 @opindex mslow-flash-data
17897 Assume loading data from flash is slower than fetching instruction.
17898 Therefore literal load is minimized for better performance.
17899 This option is only supported when compiling for ARMv7 M-profile and
17900 off by default. It conflicts with @option{-mword-relocations}.
17902 @item -masm-syntax-unified
17903 @opindex masm-syntax-unified
17904 Assume inline assembler is using unified asm syntax.  The default is
17905 currently off which implies divided syntax.  This option has no impact
17906 on Thumb2. However, this may change in future releases of GCC.
17907 Divided syntax should be considered deprecated.
17909 @item -mrestrict-it
17910 @opindex mrestrict-it
17911 Restricts generation of IT blocks to conform to the rules of ARMv8-A.
17912 IT blocks can only contain a single 16-bit instruction from a select
17913 set of instructions. This option is on by default for ARMv8-A Thumb mode.
17915 @item -mprint-tune-info
17916 @opindex mprint-tune-info
17917 Print CPU tuning information as comment in assembler file.  This is
17918 an option used only for regression testing of the compiler and not
17919 intended for ordinary use in compiling code.  This option is disabled
17920 by default.
17922 @item -mverbose-cost-dump
17923 @opindex mverbose-cost-dump
17924 Enable verbose cost model dumping in the debug dump files.  This option is
17925 provided for use in debugging the compiler.
17927 @item -mpure-code
17928 @opindex mpure-code
17929 Do not allow constant data to be placed in code sections.
17930 Additionally, when compiling for ELF object format give all text sections the
17931 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}.  This option
17932 is only available when generating non-pic code for M-profile targets with the
17933 MOVT instruction.
17935 @item -mcmse
17936 @opindex mcmse
17937 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
17938 Development Tools Engineering Specification", which can be found on
17939 @url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
17940 @end table
17942 @node AVR Options
17943 @subsection AVR Options
17944 @cindex AVR Options
17946 These options are defined for AVR implementations:
17948 @table @gcctabopt
17949 @item -mmcu=@var{mcu}
17950 @opindex mmcu
17951 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
17953 The default for this option is@tie{}@samp{avr2}.
17955 GCC supports the following AVR devices and ISAs:
17957 @include avr-mmcu.texi
17959 @item -mabsdata
17960 @opindex mabsdata
17962 Assume that all data in static storage can be accessed by LDS / STS
17963 instructions.  This option has only an effect on reduced Tiny devices like
17964 ATtiny40.  See also the @code{absdata}
17965 @ref{AVR Variable Attributes,variable attribute}.
17967 @item -maccumulate-args
17968 @opindex maccumulate-args
17969 Accumulate outgoing function arguments and acquire/release the needed
17970 stack space for outgoing function arguments once in function
17971 prologue/epilogue.  Without this option, outgoing arguments are pushed
17972 before calling a function and popped afterwards.
17974 Popping the arguments after the function call can be expensive on
17975 AVR so that accumulating the stack space might lead to smaller
17976 executables because arguments need not be removed from the
17977 stack after such a function call.
17979 This option can lead to reduced code size for functions that perform
17980 several calls to functions that get their arguments on the stack like
17981 calls to printf-like functions.
17983 @item -mbranch-cost=@var{cost}
17984 @opindex mbranch-cost
17985 Set the branch costs for conditional branch instructions to
17986 @var{cost}.  Reasonable values for @var{cost} are small, non-negative
17987 integers. The default branch cost is 0.
17989 @item -mcall-prologues
17990 @opindex mcall-prologues
17991 Functions prologues/epilogues are expanded as calls to appropriate
17992 subroutines.  Code size is smaller.
17994 @item -mgas-isr-prologues
17995 @opindex mgas-isr-prologues
17996 Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
17997 instruction supported by GNU Binutils.
17998 If this option is on, the feature can still be disabled for individual
17999 ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
18000 function attribute.  This feature is activated per default
18001 if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
18002 and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
18004 @item -mint8
18005 @opindex mint8
18006 Assume @code{int} to be 8-bit integer.  This affects the sizes of all types: a
18007 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
18008 and @code{long long} is 4 bytes.  Please note that this option does not
18009 conform to the C standards, but it results in smaller code
18010 size.
18012 @item -mmain-is-OS_task
18013 @opindex mmain-is-OS_task
18014 Do not save registers in @code{main}.  The effect is the same like
18015 attaching attribute @ref{AVR Function Attributes,,@code{OS_task}}
18016 to @code{main}. It is activated per default if optimization is on.
18018 @item -mn-flash=@var{num}
18019 @opindex mn-flash
18020 Assume that the flash memory has a size of 
18021 @var{num} times 64@tie{}KiB.
18023 @item -mno-interrupts
18024 @opindex mno-interrupts
18025 Generated code is not compatible with hardware interrupts.
18026 Code size is smaller.
18028 @item -mrelax
18029 @opindex mrelax
18030 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
18031 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
18032 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
18033 the assembler's command line and the @option{--relax} option to the
18034 linker's command line.
18036 Jump relaxing is performed by the linker because jump offsets are not
18037 known before code is located. Therefore, the assembler code generated by the
18038 compiler is the same, but the instructions in the executable may
18039 differ from instructions in the assembler code.
18041 Relaxing must be turned on if linker stubs are needed, see the
18042 section on @code{EIND} and linker stubs below.
18044 @item -mrmw
18045 @opindex mrmw
18046 Assume that the device supports the Read-Modify-Write
18047 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
18049 @item -mshort-calls
18050 @opindex mshort-calls
18052 Assume that @code{RJMP} and @code{RCALL} can target the whole
18053 program memory.
18055 This option is used internally for multilib selection.  It is
18056 not an optimization option, and you don't need to set it by hand.
18058 @item -msp8
18059 @opindex msp8
18060 Treat the stack pointer register as an 8-bit register,
18061 i.e.@: assume the high byte of the stack pointer is zero.
18062 In general, you don't need to set this option by hand.
18064 This option is used internally by the compiler to select and
18065 build multilibs for architectures @code{avr2} and @code{avr25}.
18066 These architectures mix devices with and without @code{SPH}.
18067 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
18068 the compiler driver adds or removes this option from the compiler
18069 proper's command line, because the compiler then knows if the device
18070 or architecture has an 8-bit stack pointer and thus no @code{SPH}
18071 register or not.
18073 @item -mstrict-X
18074 @opindex mstrict-X
18075 Use address register @code{X} in a way proposed by the hardware.  This means
18076 that @code{X} is only used in indirect, post-increment or
18077 pre-decrement addressing.
18079 Without this option, the @code{X} register may be used in the same way
18080 as @code{Y} or @code{Z} which then is emulated by additional
18081 instructions.  
18082 For example, loading a value with @code{X+const} addressing with a
18083 small non-negative @code{const < 64} to a register @var{Rn} is
18084 performed as
18086 @example
18087 adiw r26, const   ; X += const
18088 ld   @var{Rn}, X        ; @var{Rn} = *X
18089 sbiw r26, const   ; X -= const
18090 @end example
18092 @item -mtiny-stack
18093 @opindex mtiny-stack
18094 Only change the lower 8@tie{}bits of the stack pointer.
18096 @item -mfract-convert-truncate
18097 @opindex mfract-convert-truncate
18098 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
18100 @item -nodevicelib
18101 @opindex nodevicelib
18102 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
18104 @item -Waddr-space-convert
18105 @opindex Waddr-space-convert
18106 @opindex Wno-addr-space-convert
18107 Warn about conversions between address spaces in the case where the
18108 resulting address space is not contained in the incoming address space.
18110 @item -Wmisspelled-isr
18111 @opindex Wmisspelled-isr
18112 @opindex Wno-misspelled-isr
18113 Warn if the ISR is misspelled, i.e.@: without __vector prefix.
18114 Enabled by default.
18115 @end table
18117 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
18118 @cindex @code{EIND}
18119 Pointers in the implementation are 16@tie{}bits wide.
18120 The address of a function or label is represented as word address so
18121 that indirect jumps and calls can target any code address in the
18122 range of 64@tie{}Ki words.
18124 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
18125 bytes of program memory space, there is a special function register called
18126 @code{EIND} that serves as most significant part of the target address
18127 when @code{EICALL} or @code{EIJMP} instructions are used.
18129 Indirect jumps and calls on these devices are handled as follows by
18130 the compiler and are subject to some limitations:
18132 @itemize @bullet
18134 @item
18135 The compiler never sets @code{EIND}.
18137 @item
18138 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
18139 instructions or might read @code{EIND} directly in order to emulate an
18140 indirect call/jump by means of a @code{RET} instruction.
18142 @item
18143 The compiler assumes that @code{EIND} never changes during the startup
18144 code or during the application. In particular, @code{EIND} is not
18145 saved/restored in function or interrupt service routine
18146 prologue/epilogue.
18148 @item
18149 For indirect calls to functions and computed goto, the linker
18150 generates @emph{stubs}. Stubs are jump pads sometimes also called
18151 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
18152 The stub contains a direct jump to the desired address.
18154 @item
18155 Linker relaxation must be turned on so that the linker generates
18156 the stubs correctly in all situations. See the compiler option
18157 @option{-mrelax} and the linker option @option{--relax}.
18158 There are corner cases where the linker is supposed to generate stubs
18159 but aborts without relaxation and without a helpful error message.
18161 @item
18162 The default linker script is arranged for code with @code{EIND = 0}.
18163 If code is supposed to work for a setup with @code{EIND != 0}, a custom
18164 linker script has to be used in order to place the sections whose
18165 name start with @code{.trampolines} into the segment where @code{EIND}
18166 points to.
18168 @item
18169 The startup code from libgcc never sets @code{EIND}.
18170 Notice that startup code is a blend of code from libgcc and AVR-LibC.
18171 For the impact of AVR-LibC on @code{EIND}, see the
18172 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
18174 @item
18175 It is legitimate for user-specific startup code to set up @code{EIND}
18176 early, for example by means of initialization code located in
18177 section @code{.init3}. Such code runs prior to general startup code
18178 that initializes RAM and calls constructors, but after the bit
18179 of startup code from AVR-LibC that sets @code{EIND} to the segment
18180 where the vector table is located.
18181 @example
18182 #include <avr/io.h>
18184 static void
18185 __attribute__((section(".init3"),naked,used,no_instrument_function))
18186 init3_set_eind (void)
18188   __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
18189                   "out %i0,r24" :: "n" (&EIND) : "r24","memory");
18191 @end example
18193 @noindent
18194 The @code{__trampolines_start} symbol is defined in the linker script.
18196 @item
18197 Stubs are generated automatically by the linker if
18198 the following two conditions are met:
18199 @itemize @minus
18201 @item The address of a label is taken by means of the @code{gs} modifier
18202 (short for @emph{generate stubs}) like so:
18203 @example
18204 LDI r24, lo8(gs(@var{func}))
18205 LDI r25, hi8(gs(@var{func}))
18206 @end example
18207 @item The final location of that label is in a code segment
18208 @emph{outside} the segment where the stubs are located.
18209 @end itemize
18211 @item
18212 The compiler emits such @code{gs} modifiers for code labels in the
18213 following situations:
18214 @itemize @minus
18215 @item Taking address of a function or code label.
18216 @item Computed goto.
18217 @item If prologue-save function is used, see @option{-mcall-prologues}
18218 command-line option.
18219 @item Switch/case dispatch tables. If you do not want such dispatch
18220 tables you can specify the @option{-fno-jump-tables} command-line option.
18221 @item C and C++ constructors/destructors called during startup/shutdown.
18222 @item If the tools hit a @code{gs()} modifier explained above.
18223 @end itemize
18225 @item
18226 Jumping to non-symbolic addresses like so is @emph{not} supported:
18228 @example
18229 int main (void)
18231     /* Call function at word address 0x2 */
18232     return ((int(*)(void)) 0x2)();
18234 @end example
18236 Instead, a stub has to be set up, i.e.@: the function has to be called
18237 through a symbol (@code{func_4} in the example):
18239 @example
18240 int main (void)
18242     extern int func_4 (void);
18244     /* Call function at byte address 0x4 */
18245     return func_4();
18247 @end example
18249 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
18250 Alternatively, @code{func_4} can be defined in the linker script.
18251 @end itemize
18253 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
18254 @cindex @code{RAMPD}
18255 @cindex @code{RAMPX}
18256 @cindex @code{RAMPY}
18257 @cindex @code{RAMPZ}
18258 Some AVR devices support memories larger than the 64@tie{}KiB range
18259 that can be accessed with 16-bit pointers.  To access memory locations
18260 outside this 64@tie{}KiB range, the content of a @code{RAMP}
18261 register is used as high part of the address:
18262 The @code{X}, @code{Y}, @code{Z} address register is concatenated
18263 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
18264 register, respectively, to get a wide address. Similarly,
18265 @code{RAMPD} is used together with direct addressing.
18267 @itemize
18268 @item
18269 The startup code initializes the @code{RAMP} special function
18270 registers with zero.
18272 @item
18273 If a @ref{AVR Named Address Spaces,named address space} other than
18274 generic or @code{__flash} is used, then @code{RAMPZ} is set
18275 as needed before the operation.
18277 @item
18278 If the device supports RAM larger than 64@tie{}KiB and the compiler
18279 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
18280 is reset to zero after the operation.
18282 @item
18283 If the device comes with a specific @code{RAMP} register, the ISR
18284 prologue/epilogue saves/restores that SFR and initializes it with
18285 zero in case the ISR code might (implicitly) use it.
18287 @item
18288 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
18289 If you use inline assembler to read from locations outside the
18290 16-bit address range and change one of the @code{RAMP} registers,
18291 you must reset it to zero after the access.
18293 @end itemize
18295 @subsubsection AVR Built-in Macros
18297 GCC defines several built-in macros so that the user code can test
18298 for the presence or absence of features.  Almost any of the following
18299 built-in macros are deduced from device capabilities and thus
18300 triggered by the @option{-mmcu=} command-line option.
18302 For even more AVR-specific built-in macros see
18303 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
18305 @table @code
18307 @item __AVR_ARCH__
18308 Build-in macro that resolves to a decimal number that identifies the
18309 architecture and depends on the @option{-mmcu=@var{mcu}} option.
18310 Possible values are:
18312 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
18313 @code{4}, @code{5}, @code{51}, @code{6}
18315 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
18316 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
18318 respectively and
18320 @code{100},
18321 @code{102}, @code{103}, @code{104},
18322 @code{105}, @code{106}, @code{107}
18324 for @var{mcu}=@code{avrtiny},
18325 @code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
18326 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
18327 If @var{mcu} specifies a device, this built-in macro is set
18328 accordingly. For example, with @option{-mmcu=atmega8} the macro is
18329 defined to @code{4}.
18331 @item __AVR_@var{Device}__
18332 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
18333 the device's name. For example, @option{-mmcu=atmega8} defines the
18334 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
18335 @code{__AVR_ATtiny261A__}, etc.
18337 The built-in macros' names follow
18338 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
18339 the device name as from the AVR user manual. The difference between
18340 @var{Device} in the built-in macro and @var{device} in
18341 @option{-mmcu=@var{device}} is that the latter is always lowercase.
18343 If @var{device} is not a device but only a core architecture like
18344 @samp{avr51}, this macro is not defined.
18346 @item __AVR_DEVICE_NAME__
18347 Setting @option{-mmcu=@var{device}} defines this built-in macro to
18348 the device's name. For example, with @option{-mmcu=atmega8} the macro
18349 is defined to @code{atmega8}.
18351 If @var{device} is not a device but only a core architecture like
18352 @samp{avr51}, this macro is not defined.
18354 @item __AVR_XMEGA__
18355 The device / architecture belongs to the XMEGA family of devices.
18357 @item __AVR_HAVE_ELPM__
18358 The device has the @code{ELPM} instruction.
18360 @item __AVR_HAVE_ELPMX__
18361 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
18362 R@var{n},Z+} instructions.
18364 @item __AVR_HAVE_MOVW__
18365 The device has the @code{MOVW} instruction to perform 16-bit
18366 register-register moves.
18368 @item __AVR_HAVE_LPMX__
18369 The device has the @code{LPM R@var{n},Z} and
18370 @code{LPM R@var{n},Z+} instructions.
18372 @item __AVR_HAVE_MUL__
18373 The device has a hardware multiplier. 
18375 @item __AVR_HAVE_JMP_CALL__
18376 The device has the @code{JMP} and @code{CALL} instructions.
18377 This is the case for devices with more than 8@tie{}KiB of program
18378 memory.
18380 @item __AVR_HAVE_EIJMP_EICALL__
18381 @itemx __AVR_3_BYTE_PC__
18382 The device has the @code{EIJMP} and @code{EICALL} instructions.
18383 This is the case for devices with more than 128@tie{}KiB of program memory.
18384 This also means that the program counter
18385 (PC) is 3@tie{}bytes wide.
18387 @item __AVR_2_BYTE_PC__
18388 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
18389 with up to 128@tie{}KiB of program memory.
18391 @item __AVR_HAVE_8BIT_SP__
18392 @itemx __AVR_HAVE_16BIT_SP__
18393 The stack pointer (SP) register is treated as 8-bit respectively
18394 16-bit register by the compiler.
18395 The definition of these macros is affected by @option{-mtiny-stack}.
18397 @item __AVR_HAVE_SPH__
18398 @itemx __AVR_SP8__
18399 The device has the SPH (high part of stack pointer) special function
18400 register or has an 8-bit stack pointer, respectively.
18401 The definition of these macros is affected by @option{-mmcu=} and
18402 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
18403 by @option{-msp8}.
18405 @item __AVR_HAVE_RAMPD__
18406 @itemx __AVR_HAVE_RAMPX__
18407 @itemx __AVR_HAVE_RAMPY__
18408 @itemx __AVR_HAVE_RAMPZ__
18409 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
18410 @code{RAMPZ} special function register, respectively.
18412 @item __NO_INTERRUPTS__
18413 This macro reflects the @option{-mno-interrupts} command-line option.
18415 @item __AVR_ERRATA_SKIP__
18416 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
18417 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
18418 instructions because of a hardware erratum.  Skip instructions are
18419 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
18420 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
18421 set.
18423 @item __AVR_ISA_RMW__
18424 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
18426 @item __AVR_SFR_OFFSET__=@var{offset}
18427 Instructions that can address I/O special function registers directly
18428 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
18429 address as if addressed by an instruction to access RAM like @code{LD}
18430 or @code{STS}. This offset depends on the device architecture and has
18431 to be subtracted from the RAM address in order to get the
18432 respective I/O@tie{}address.
18434 @item __AVR_SHORT_CALLS__
18435 The @option{-mshort-calls} command line option is set.
18437 @item __AVR_PM_BASE_ADDRESS__=@var{addr}
18438 Some devices support reading from flash memory by means of @code{LD*}
18439 instructions.  The flash memory is seen in the data address space
18440 at an offset of @code{__AVR_PM_BASE_ADDRESS__}.  If this macro
18441 is not defined, this feature is not available.  If defined,
18442 the address space is linear and there is no need to put
18443 @code{.rodata} into RAM.  This is handled by the default linker
18444 description file, and is currently available for
18445 @code{avrtiny} and @code{avrxmega3}.  Even more convenient,
18446 there is no need to use address spaces like @code{__flash} or
18447 features like attribute @code{progmem} and @code{pgm_read_*}.
18449 @item __WITH_AVRLIBC__
18450 The compiler is configured to be used together with AVR-Libc.
18451 See the @option{--with-avrlibc} configure option.
18453 @end table
18455 @node Blackfin Options
18456 @subsection Blackfin Options
18457 @cindex Blackfin Options
18459 @table @gcctabopt
18460 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
18461 @opindex mcpu=
18462 Specifies the name of the target Blackfin processor.  Currently, @var{cpu}
18463 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
18464 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
18465 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
18466 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
18467 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
18468 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
18469 @samp{bf561}, @samp{bf592}.
18471 The optional @var{sirevision} specifies the silicon revision of the target
18472 Blackfin processor.  Any workarounds available for the targeted silicon revision
18473 are enabled.  If @var{sirevision} is @samp{none}, no workarounds are enabled.
18474 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
18475 are enabled.  The @code{__SILICON_REVISION__} macro is defined to two
18476 hexadecimal digits representing the major and minor numbers in the silicon
18477 revision.  If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
18478 is not defined.  If @var{sirevision} is @samp{any}, the
18479 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
18480 If this optional @var{sirevision} is not used, GCC assumes the latest known
18481 silicon revision of the targeted Blackfin processor.
18483 GCC defines a preprocessor macro for the specified @var{cpu}.
18484 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
18485 provided by libgloss to be linked in if @option{-msim} is not given.
18487 Without this option, @samp{bf532} is used as the processor by default.
18489 Note that support for @samp{bf561} is incomplete.  For @samp{bf561},
18490 only the preprocessor macro is defined.
18492 @item -msim
18493 @opindex msim
18494 Specifies that the program will be run on the simulator.  This causes
18495 the simulator BSP provided by libgloss to be linked in.  This option
18496 has effect only for @samp{bfin-elf} toolchain.
18497 Certain other options, such as @option{-mid-shared-library} and
18498 @option{-mfdpic}, imply @option{-msim}.
18500 @item -momit-leaf-frame-pointer
18501 @opindex momit-leaf-frame-pointer
18502 Don't keep the frame pointer in a register for leaf functions.  This
18503 avoids the instructions to save, set up and restore frame pointers and
18504 makes an extra register available in leaf functions.
18506 @item -mspecld-anomaly
18507 @opindex mspecld-anomaly
18508 When enabled, the compiler ensures that the generated code does not
18509 contain speculative loads after jump instructions. If this option is used,
18510 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
18512 @item -mno-specld-anomaly
18513 @opindex mno-specld-anomaly
18514 @opindex mspecld-anomaly
18515 Don't generate extra code to prevent speculative loads from occurring.
18517 @item -mcsync-anomaly
18518 @opindex mcsync-anomaly
18519 When enabled, the compiler ensures that the generated code does not
18520 contain CSYNC or SSYNC instructions too soon after conditional branches.
18521 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
18523 @item -mno-csync-anomaly
18524 @opindex mno-csync-anomaly
18525 @opindex mcsync-anomaly
18526 Don't generate extra code to prevent CSYNC or SSYNC instructions from
18527 occurring too soon after a conditional branch.
18529 @item -mlow64k
18530 @opindex mlow64k
18531 When enabled, the compiler is free to take advantage of the knowledge that
18532 the entire program fits into the low 64k of memory.
18534 @item -mno-low64k
18535 @opindex mno-low64k
18536 Assume that the program is arbitrarily large.  This is the default.
18538 @item -mstack-check-l1
18539 @opindex mstack-check-l1
18540 Do stack checking using information placed into L1 scratchpad memory by the
18541 uClinux kernel.
18543 @item -mid-shared-library
18544 @opindex mid-shared-library
18545 Generate code that supports shared libraries via the library ID method.
18546 This allows for execute in place and shared libraries in an environment
18547 without virtual memory management.  This option implies @option{-fPIC}.
18548 With a @samp{bfin-elf} target, this option implies @option{-msim}.
18550 @item -mno-id-shared-library
18551 @opindex mno-id-shared-library
18552 @opindex mid-shared-library
18553 Generate code that doesn't assume ID-based shared libraries are being used.
18554 This is the default.
18556 @item -mleaf-id-shared-library
18557 @opindex mleaf-id-shared-library
18558 Generate code that supports shared libraries via the library ID method,
18559 but assumes that this library or executable won't link against any other
18560 ID shared libraries.  That allows the compiler to use faster code for jumps
18561 and calls.
18563 @item -mno-leaf-id-shared-library
18564 @opindex mno-leaf-id-shared-library
18565 @opindex mleaf-id-shared-library
18566 Do not assume that the code being compiled won't link against any ID shared
18567 libraries.  Slower code is generated for jump and call insns.
18569 @item -mshared-library-id=n
18570 @opindex mshared-library-id
18571 Specifies the identification number of the ID-based shared library being
18572 compiled.  Specifying a value of 0 generates more compact code; specifying
18573 other values forces the allocation of that number to the current
18574 library but is no more space- or time-efficient than omitting this option.
18576 @item -msep-data
18577 @opindex msep-data
18578 Generate code that allows the data segment to be located in a different
18579 area of memory from the text segment.  This allows for execute in place in
18580 an environment without virtual memory management by eliminating relocations
18581 against the text section.
18583 @item -mno-sep-data
18584 @opindex mno-sep-data
18585 @opindex msep-data
18586 Generate code that assumes that the data segment follows the text segment.
18587 This is the default.
18589 @item -mlong-calls
18590 @itemx -mno-long-calls
18591 @opindex mlong-calls
18592 @opindex mno-long-calls
18593 Tells the compiler to perform function calls by first loading the
18594 address of the function into a register and then performing a subroutine
18595 call on this register.  This switch is needed if the target function
18596 lies outside of the 24-bit addressing range of the offset-based
18597 version of subroutine call instruction.
18599 This feature is not enabled by default.  Specifying
18600 @option{-mno-long-calls} restores the default behavior.  Note these
18601 switches have no effect on how the compiler generates code to handle
18602 function calls via function pointers.
18604 @item -mfast-fp
18605 @opindex mfast-fp
18606 Link with the fast floating-point library. This library relaxes some of
18607 the IEEE floating-point standard's rules for checking inputs against
18608 Not-a-Number (NAN), in the interest of performance.
18610 @item -minline-plt
18611 @opindex minline-plt
18612 Enable inlining of PLT entries in function calls to functions that are
18613 not known to bind locally.  It has no effect without @option{-mfdpic}.
18615 @item -mmulticore
18616 @opindex mmulticore
18617 Build a standalone application for multicore Blackfin processors. 
18618 This option causes proper start files and link scripts supporting 
18619 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}. 
18620 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}. 
18622 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
18623 selects the one-application-per-core programming model.  Without
18624 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
18625 programming model is used. In this model, the main function of Core B
18626 should be named as @code{coreb_main}.
18628 If this option is not used, the single-core application programming
18629 model is used.
18631 @item -mcorea
18632 @opindex mcorea
18633 Build a standalone application for Core A of BF561 when using
18634 the one-application-per-core programming model. Proper start files
18635 and link scripts are used to support Core A, and the macro
18636 @code{__BFIN_COREA} is defined.
18637 This option can only be used in conjunction with @option{-mmulticore}.
18639 @item -mcoreb
18640 @opindex mcoreb
18641 Build a standalone application for Core B of BF561 when using
18642 the one-application-per-core programming model. Proper start files
18643 and link scripts are used to support Core B, and the macro
18644 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
18645 should be used instead of @code{main}. 
18646 This option can only be used in conjunction with @option{-mmulticore}.
18648 @item -msdram
18649 @opindex msdram
18650 Build a standalone application for SDRAM. Proper start files and
18651 link scripts are used to put the application into SDRAM, and the macro
18652 @code{__BFIN_SDRAM} is defined.
18653 The loader should initialize SDRAM before loading the application.
18655 @item -micplb
18656 @opindex micplb
18657 Assume that ICPLBs are enabled at run time.  This has an effect on certain
18658 anomaly workarounds.  For Linux targets, the default is to assume ICPLBs
18659 are enabled; for standalone applications the default is off.
18660 @end table
18662 @node C6X Options
18663 @subsection C6X Options
18664 @cindex C6X Options
18666 @table @gcctabopt
18667 @item -march=@var{name}
18668 @opindex march
18669 This specifies the name of the target architecture.  GCC uses this
18670 name to determine what kind of instructions it can emit when generating
18671 assembly code.  Permissible names are: @samp{c62x},
18672 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
18674 @item -mbig-endian
18675 @opindex mbig-endian
18676 Generate code for a big-endian target.
18678 @item -mlittle-endian
18679 @opindex mlittle-endian
18680 Generate code for a little-endian target.  This is the default.
18682 @item -msim
18683 @opindex msim
18684 Choose startup files and linker script suitable for the simulator.
18686 @item -msdata=default
18687 @opindex msdata=default
18688 Put small global and static data in the @code{.neardata} section,
18689 which is pointed to by register @code{B14}.  Put small uninitialized
18690 global and static data in the @code{.bss} section, which is adjacent
18691 to the @code{.neardata} section.  Put small read-only data into the
18692 @code{.rodata} section.  The corresponding sections used for large
18693 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
18695 @item -msdata=all
18696 @opindex msdata=all
18697 Put all data, not just small objects, into the sections reserved for
18698 small data, and use addressing relative to the @code{B14} register to
18699 access them.
18701 @item -msdata=none
18702 @opindex msdata=none
18703 Make no use of the sections reserved for small data, and use absolute
18704 addresses to access all data.  Put all initialized global and static
18705 data in the @code{.fardata} section, and all uninitialized data in the
18706 @code{.far} section.  Put all constant data into the @code{.const}
18707 section.
18708 @end table
18710 @node CRIS Options
18711 @subsection CRIS Options
18712 @cindex CRIS Options
18714 These options are defined specifically for the CRIS ports.
18716 @table @gcctabopt
18717 @item -march=@var{architecture-type}
18718 @itemx -mcpu=@var{architecture-type}
18719 @opindex march
18720 @opindex mcpu
18721 Generate code for the specified architecture.  The choices for
18722 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
18723 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
18724 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
18725 @samp{v10}.
18727 @item -mtune=@var{architecture-type}
18728 @opindex mtune
18729 Tune to @var{architecture-type} everything applicable about the generated
18730 code, except for the ABI and the set of available instructions.  The
18731 choices for @var{architecture-type} are the same as for
18732 @option{-march=@var{architecture-type}}.
18734 @item -mmax-stack-frame=@var{n}
18735 @opindex mmax-stack-frame
18736 Warn when the stack frame of a function exceeds @var{n} bytes.
18738 @item -metrax4
18739 @itemx -metrax100
18740 @opindex metrax4
18741 @opindex metrax100
18742 The options @option{-metrax4} and @option{-metrax100} are synonyms for
18743 @option{-march=v3} and @option{-march=v8} respectively.
18745 @item -mmul-bug-workaround
18746 @itemx -mno-mul-bug-workaround
18747 @opindex mmul-bug-workaround
18748 @opindex mno-mul-bug-workaround
18749 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
18750 models where it applies.  This option is active by default.
18752 @item -mpdebug
18753 @opindex mpdebug
18754 Enable CRIS-specific verbose debug-related information in the assembly
18755 code.  This option also has the effect of turning off the @samp{#NO_APP}
18756 formatted-code indicator to the assembler at the beginning of the
18757 assembly file.
18759 @item -mcc-init
18760 @opindex mcc-init
18761 Do not use condition-code results from previous instruction; always emit
18762 compare and test instructions before use of condition codes.
18764 @item -mno-side-effects
18765 @opindex mno-side-effects
18766 @opindex mside-effects
18767 Do not emit instructions with side effects in addressing modes other than
18768 post-increment.
18770 @item -mstack-align
18771 @itemx -mno-stack-align
18772 @itemx -mdata-align
18773 @itemx -mno-data-align
18774 @itemx -mconst-align
18775 @itemx -mno-const-align
18776 @opindex mstack-align
18777 @opindex mno-stack-align
18778 @opindex mdata-align
18779 @opindex mno-data-align
18780 @opindex mconst-align
18781 @opindex mno-const-align
18782 These options (@samp{no-} options) arrange (eliminate arrangements) for the
18783 stack frame, individual data and constants to be aligned for the maximum
18784 single data access size for the chosen CPU model.  The default is to
18785 arrange for 32-bit alignment.  ABI details such as structure layout are
18786 not affected by these options.
18788 @item -m32-bit
18789 @itemx -m16-bit
18790 @itemx -m8-bit
18791 @opindex m32-bit
18792 @opindex m16-bit
18793 @opindex m8-bit
18794 Similar to the stack- data- and const-align options above, these options
18795 arrange for stack frame, writable data and constants to all be 32-bit,
18796 16-bit or 8-bit aligned.  The default is 32-bit alignment.
18798 @item -mno-prologue-epilogue
18799 @itemx -mprologue-epilogue
18800 @opindex mno-prologue-epilogue
18801 @opindex mprologue-epilogue
18802 With @option{-mno-prologue-epilogue}, the normal function prologue and
18803 epilogue which set up the stack frame are omitted and no return
18804 instructions or return sequences are generated in the code.  Use this
18805 option only together with visual inspection of the compiled code: no
18806 warnings or errors are generated when call-saved registers must be saved,
18807 or storage for local variables needs to be allocated.
18809 @item -mno-gotplt
18810 @itemx -mgotplt
18811 @opindex mno-gotplt
18812 @opindex mgotplt
18813 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
18814 instruction sequences that load addresses for functions from the PLT part
18815 of the GOT rather than (traditional on other architectures) calls to the
18816 PLT@.  The default is @option{-mgotplt}.
18818 @item -melf
18819 @opindex melf
18820 Legacy no-op option only recognized with the cris-axis-elf and
18821 cris-axis-linux-gnu targets.
18823 @item -mlinux
18824 @opindex mlinux
18825 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
18827 @item -sim
18828 @opindex sim
18829 This option, recognized for the cris-axis-elf, arranges
18830 to link with input-output functions from a simulator library.  Code,
18831 initialized data and zero-initialized data are allocated consecutively.
18833 @item -sim2
18834 @opindex sim2
18835 Like @option{-sim}, but pass linker options to locate initialized data at
18836 0x40000000 and zero-initialized data at 0x80000000.
18837 @end table
18839 @node CR16 Options
18840 @subsection CR16 Options
18841 @cindex CR16 Options
18843 These options are defined specifically for the CR16 ports.
18845 @table @gcctabopt
18847 @item -mmac
18848 @opindex mmac
18849 Enable the use of multiply-accumulate instructions. Disabled by default.
18851 @item -mcr16cplus
18852 @itemx -mcr16c
18853 @opindex mcr16cplus
18854 @opindex mcr16c
18855 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture 
18856 is default.
18858 @item -msim
18859 @opindex msim
18860 Links the library libsim.a which is in compatible with simulator. Applicable
18861 to ELF compiler only.
18863 @item -mint32
18864 @opindex mint32
18865 Choose integer type as 32-bit wide.
18867 @item -mbit-ops
18868 @opindex mbit-ops
18869 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
18871 @item -mdata-model=@var{model}
18872 @opindex mdata-model
18873 Choose a data model. The choices for @var{model} are @samp{near},
18874 @samp{far} or @samp{medium}. @samp{medium} is default.
18875 However, @samp{far} is not valid with @option{-mcr16c}, as the
18876 CR16C architecture does not support the far data model.
18877 @end table
18879 @node C-SKY Options
18880 @subsection C-SKY Options
18881 @cindex C-SKY Options
18883 GCC supports these options when compiling for C-SKY V2 processors.
18885 @table @gcctabopt
18887 @item -march=@var{arch}
18888 @opindex march=
18889 Specify the C-SKY target architecture.  Valid values for @var{arch} are:
18890 @samp{ck801}, @samp{ck802}, @samp{ck803}, @samp{ck807}, and @samp{ck810}.
18891 The default is @samp{ck810}.
18893 @item -mcpu=@var{cpu}
18894 @opindex mcpu=
18895 Specify the C-SKY target processor.  Valid values for @var{cpu} are:
18896 @samp{ck801}, @samp{ck801t},
18897 @samp{ck802}, @samp{ck802t}, @samp{ck802j},
18898 @samp{ck803}, @samp{ck803h}, @samp{ck803t}, @samp{ck803ht},
18899 @samp{ck803f}, @samp{ck803fh}, @samp{ck803e}, @samp{ck803eh},
18900 @samp{ck803et}, @samp{ck803eht}, @samp{ck803ef}, @samp{ck803efh},
18901 @samp{ck803ft}, @samp{ck803eft}, @samp{ck803efht}, @samp{ck803r1},
18902 @samp{ck803hr1}, @samp{ck803tr1}, @samp{ck803htr1}, @samp{ck803fr1},
18903 @samp{ck803fhr1}, @samp{ck803er1}, @samp{ck803ehr1}, @samp{ck803etr1},
18904 @samp{ck803ehtr1}, @samp{ck803efr1}, @samp{ck803efhr1}, @samp{ck803ftr1},
18905 @samp{ck803eftr1}, @samp{ck803efhtr1},
18906 @samp{ck803s}, @samp{ck803st}, @samp{ck803se}, @samp{ck803sf},
18907 @samp{ck803sef}, @samp{ck803seft},
18908 @samp{ck807e}, @samp{ck807ef}, @samp{ck807}, @samp{ck807f},
18909 @samp{ck810e}, @samp{ck810et}, @samp{ck810ef}, @samp{ck810eft},
18910 @samp{ck810}, @samp{ck810v}, @samp{ck810f}, @samp{ck810t}, @samp{ck810fv},
18911 @samp{ck810tv}, @samp{ck810ft}, and @samp{ck810ftv}.
18913 @item -mbig-endian
18914 @opindex mbig-endian
18915 @itemx -EB
18916 @opindex EB
18917 @itemx -mlittle-endian
18918 @opindex mlittle-endian
18919 @itemx -EL
18920 @opindex EL
18922 Select big- or little-endian code.  The default is little-endian.
18924 @item -mhard-float
18925 @opindex mhard-float
18926 @itemx -msoft-float
18927 @opindex msoft-float
18929 Select hardware or software floating-point implementations.
18930 The default is soft float.
18932 @item -mdouble-float
18933 @itemx -mno-double-float
18934 @opindex mdouble-float
18935 When @option{-mhard-float} is in effect, enable generation of
18936 double-precision float instructions.  This is the default except
18937 when compiling for CK803.
18939 @item -mfdivdu
18940 @itemx -mno-fdivdu
18941 @opindex mfdivdu
18942 When @option{-mhard-float} is in effect, enable generation of
18943 @code{frecipd}, @code{fsqrtd}, and @code{fdivd} instructions.
18944 This is the default except when compiling for CK803.
18946 @item -mfpu=@var{fpu}
18947 @opindex mfpu=
18948 Select the floating-point processor.  This option can only be used with
18949 @option{-mhard-float}.
18950 Values for @var{fpu} are
18951 @samp{fpv2_sf} (equivalent to @samp{-mno-double-float -mno-fdivdu}),
18952 @samp{fpv2} (@samp{-mdouble-float -mno-divdu}), and
18953 @samp{fpv2_divd} (@samp{-mdouble-float -mdivdu}).
18955 @item -melrw
18956 @itemx -mno-elrw
18957 @opindex melrw
18958 Enable the extended @code{lrw} instruction.  This option defaults to on
18959 for CK801 and off otherwise.
18961 @item -mistack
18962 @itemx -mno-istack
18963 @opindex mistack
18964 Enable interrupt stack instructions; the default is off.
18966 The @option{-mistack} option is required to handle the
18967 @code{interrupt} and @code{isr} function attributes
18968 (@pxref{C-SKY Function Attributes}).
18970 @item -mmp
18971 @opindex mmp
18972 Enable multiprocessor instructions; the default is off.
18974 @item -mcp
18975 @opindex mcp
18976 Enable coprocessor instructions; the default is off.
18978 @item -mcache
18979 @opindex mcache
18980 Enable coprocessor instructions; the default is off.
18982 @item -msecurity
18983 @opindex msecurity
18984 Enable C-SKY security instructions; the default is off.
18986 @item -mtrust
18987 @opindex mtrust
18988 Enable C-SKY trust instructions; the default is off.
18990 @item -mdsp
18991 @opindex mdsp
18992 @itemx -medsp
18993 @opindex medsp
18994 @itemx -mvdsp
18995 @opindex mvdsp
18996 Enable C-SKY DSP, Enhanced DSP, or Vector DSP instructions, respectively.
18997 All of these options default to off.
18999 @item -mdiv
19000 @itemx -mno-div
19001 @opindex mdiv
19002 Generate divide instructions.  Default is off.
19004 @item -msmart
19005 @itemx -mno-smart
19006 @opindex msmart
19007 Generate code for Smart Mode, using only registers numbered 0-7 to allow
19008 use of 16-bit instructions.  This option is ignored for CK801 where this
19009 is the required behavior, and it defaults to on for CK802.
19010 For other targets, the default is off.
19012 @item -mhigh-registers
19013 @itemx -mno-high-registers
19014 @opindex mhigh-registers
19015 Generate code using the high registers numbered 16-31.  This option
19016 is not supported on CK801, CK802, or CK803, and is enabled by default
19017 for other processors.
19019 @item -manchor
19020 @itemx -mno-anchor
19021 @opindex manchor
19022 Generate code using global anchor symbol addresses.
19024 @item -mpushpop
19025 @itemx -mno-pushpop
19026 @opindex mpushpop
19027 Generate code using @code{push} and @code{pop} instructions.  This option
19028 defaults to on.
19030 @item -mmultiple-stld
19031 @itemx -mstm
19032 @itemx -mno-multiple-stld
19033 @itemx -mno-stm
19034 @opindex mmultiple-stld
19035 Generate code using @code{stm} and @code{ldm} instructions.  This option
19036 isn't supported on CK801 but is enabled by default on other processors.
19038 @item -mconstpool
19039 @itemx -mno-constpool
19040 @opindex mconstpool
19041 Create constant pools in the compiler instead of deferring it to the
19042 assembler.  This option is the default and required for correct code
19043 generation on CK801 and CK802, and is optional on other processors.
19045 @item -mstack-size
19046 @item -mno-stack-size
19047 @opindex mstack-size
19048 Emit @code{.stack_size} directives for each function in the assembly
19049 output.  This option defaults to off.
19051 @item -mccrt
19052 @itemx -mno-ccrt
19053 @opindex mccrt
19054 Generate code for the C-SKY compiler runtime instead of libgcc.  This
19055 option defaults to off.
19057 @item -mbranch-cost=@var{n}
19058 @opindex mbranch-cost=
19059 Set the branch costs to roughly @code{n} instructions.  The default is 1.
19061 @item -msched-prolog
19062 @itemx -mno-sched-prolog
19063 @opindex msched-prolog
19064 Permit scheduling of function prologue and epilogue sequences.  Using
19065 this option can result in code that is not compliant with the C-SKY V2 ABI
19066 prologue requirements and that cannot be debugged or backtraced.
19067 It is disabled by default.
19069 @end table
19071 @node Darwin Options
19072 @subsection Darwin Options
19073 @cindex Darwin options
19075 These options are defined for all architectures running the Darwin operating
19076 system.
19078 FSF GCC on Darwin does not create ``fat'' object files; it creates
19079 an object file for the single architecture that GCC was built to
19080 target.  Apple's GCC on Darwin does create ``fat'' files if multiple
19081 @option{-arch} options are used; it does so by running the compiler or
19082 linker multiple times and joining the results together with
19083 @file{lipo}.
19085 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
19086 @samp{i686}) is determined by the flags that specify the ISA
19087 that GCC is targeting, like @option{-mcpu} or @option{-march}.  The
19088 @option{-force_cpusubtype_ALL} option can be used to override this.
19090 The Darwin tools vary in their behavior when presented with an ISA
19091 mismatch.  The assembler, @file{as}, only permits instructions to
19092 be used that are valid for the subtype of the file it is generating,
19093 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
19094 The linker for shared libraries, @file{/usr/bin/libtool}, fails
19095 and prints an error if asked to create a shared library with a less
19096 restrictive subtype than its input files (for instance, trying to put
19097 a @samp{ppc970} object file in a @samp{ppc7400} library).  The linker
19098 for executables, @command{ld}, quietly gives the executable the most
19099 restrictive subtype of any of its input files.
19101 @table @gcctabopt
19102 @item -F@var{dir}
19103 @opindex F
19104 Add the framework directory @var{dir} to the head of the list of
19105 directories to be searched for header files.  These directories are
19106 interleaved with those specified by @option{-I} options and are
19107 scanned in a left-to-right order.
19109 A framework directory is a directory with frameworks in it.  A
19110 framework is a directory with a @file{Headers} and/or
19111 @file{PrivateHeaders} directory contained directly in it that ends
19112 in @file{.framework}.  The name of a framework is the name of this
19113 directory excluding the @file{.framework}.  Headers associated with
19114 the framework are found in one of those two directories, with
19115 @file{Headers} being searched first.  A subframework is a framework
19116 directory that is in a framework's @file{Frameworks} directory.
19117 Includes of subframework headers can only appear in a header of a
19118 framework that contains the subframework, or in a sibling subframework
19119 header.  Two subframeworks are siblings if they occur in the same
19120 framework.  A subframework should not have the same name as a
19121 framework; a warning is issued if this is violated.  Currently a
19122 subframework cannot have subframeworks; in the future, the mechanism
19123 may be extended to support this.  The standard frameworks can be found
19124 in @file{/System/Library/Frameworks} and
19125 @file{/Library/Frameworks}.  An example include looks like
19126 @code{#include <Framework/header.h>}, where @file{Framework} denotes
19127 the name of the framework and @file{header.h} is found in the
19128 @file{PrivateHeaders} or @file{Headers} directory.
19130 @item -iframework@var{dir}
19131 @opindex iframework
19132 Like @option{-F} except the directory is a treated as a system
19133 directory.  The main difference between this @option{-iframework} and
19134 @option{-F} is that with @option{-iframework} the compiler does not
19135 warn about constructs contained within header files found via
19136 @var{dir}.  This option is valid only for the C family of languages.
19138 @item -gused
19139 @opindex gused
19140 Emit debugging information for symbols that are used.  For stabs
19141 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
19142 This is by default ON@.
19144 @item -gfull
19145 @opindex gfull
19146 Emit debugging information for all symbols and types.
19148 @item -mmacosx-version-min=@var{version}
19149 The earliest version of MacOS X that this executable will run on
19150 is @var{version}.  Typical values of @var{version} include @code{10.1},
19151 @code{10.2}, and @code{10.3.9}.
19153 If the compiler was built to use the system's headers by default,
19154 then the default for this option is the system version on which the
19155 compiler is running, otherwise the default is to make choices that
19156 are compatible with as many systems and code bases as possible.
19158 @item -mkernel
19159 @opindex mkernel
19160 Enable kernel development mode.  The @option{-mkernel} option sets
19161 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
19162 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
19163 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
19164 applicable.  This mode also sets @option{-mno-altivec},
19165 @option{-msoft-float}, @option{-fno-builtin} and
19166 @option{-mlong-branch} for PowerPC targets.
19168 @item -mone-byte-bool
19169 @opindex mone-byte-bool
19170 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
19171 By default @code{sizeof(bool)} is @code{4} when compiling for
19172 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
19173 option has no effect on x86.
19175 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
19176 to generate code that is not binary compatible with code generated
19177 without that switch.  Using this switch may require recompiling all
19178 other modules in a program, including system libraries.  Use this
19179 switch to conform to a non-default data model.
19181 @item -mfix-and-continue
19182 @itemx -ffix-and-continue
19183 @itemx -findirect-data
19184 @opindex mfix-and-continue
19185 @opindex ffix-and-continue
19186 @opindex findirect-data
19187 Generate code suitable for fast turnaround development, such as to
19188 allow GDB to dynamically load @file{.o} files into already-running
19189 programs.  @option{-findirect-data} and @option{-ffix-and-continue}
19190 are provided for backwards compatibility.
19192 @item -all_load
19193 @opindex all_load
19194 Loads all members of static archive libraries.
19195 See man ld(1) for more information.
19197 @item -arch_errors_fatal
19198 @opindex arch_errors_fatal
19199 Cause the errors having to do with files that have the wrong architecture
19200 to be fatal.
19202 @item -bind_at_load
19203 @opindex bind_at_load
19204 Causes the output file to be marked such that the dynamic linker will
19205 bind all undefined references when the file is loaded or launched.
19207 @item -bundle
19208 @opindex bundle
19209 Produce a Mach-o bundle format file.
19210 See man ld(1) for more information.
19212 @item -bundle_loader @var{executable}
19213 @opindex bundle_loader
19214 This option specifies the @var{executable} that will load the build
19215 output file being linked.  See man ld(1) for more information.
19217 @item -dynamiclib
19218 @opindex dynamiclib
19219 When passed this option, GCC produces a dynamic library instead of
19220 an executable when linking, using the Darwin @file{libtool} command.
19222 @item -force_cpusubtype_ALL
19223 @opindex force_cpusubtype_ALL
19224 This causes GCC's output file to have the @samp{ALL} subtype, instead of
19225 one controlled by the @option{-mcpu} or @option{-march} option.
19227 @item -allowable_client  @var{client_name}
19228 @itemx -client_name
19229 @itemx -compatibility_version
19230 @itemx -current_version
19231 @itemx -dead_strip
19232 @itemx -dependency-file
19233 @itemx -dylib_file
19234 @itemx -dylinker_install_name
19235 @itemx -dynamic
19236 @itemx -exported_symbols_list
19237 @itemx -filelist
19238 @need 800
19239 @itemx -flat_namespace
19240 @itemx -force_flat_namespace
19241 @itemx -headerpad_max_install_names
19242 @itemx -image_base
19243 @itemx -init
19244 @itemx -install_name
19245 @itemx -keep_private_externs
19246 @itemx -multi_module
19247 @itemx -multiply_defined
19248 @itemx -multiply_defined_unused
19249 @need 800
19250 @itemx -noall_load
19251 @itemx -no_dead_strip_inits_and_terms
19252 @itemx -nofixprebinding
19253 @itemx -nomultidefs
19254 @itemx -noprebind
19255 @itemx -noseglinkedit
19256 @itemx -pagezero_size
19257 @itemx -prebind
19258 @itemx -prebind_all_twolevel_modules
19259 @itemx -private_bundle
19260 @need 800
19261 @itemx -read_only_relocs
19262 @itemx -sectalign
19263 @itemx -sectobjectsymbols
19264 @itemx -whyload
19265 @itemx -seg1addr
19266 @itemx -sectcreate
19267 @itemx -sectobjectsymbols
19268 @itemx -sectorder
19269 @itemx -segaddr
19270 @itemx -segs_read_only_addr
19271 @need 800
19272 @itemx -segs_read_write_addr
19273 @itemx -seg_addr_table
19274 @itemx -seg_addr_table_filename
19275 @itemx -seglinkedit
19276 @itemx -segprot
19277 @itemx -segs_read_only_addr
19278 @itemx -segs_read_write_addr
19279 @itemx -single_module
19280 @itemx -static
19281 @itemx -sub_library
19282 @need 800
19283 @itemx -sub_umbrella
19284 @itemx -twolevel_namespace
19285 @itemx -umbrella
19286 @itemx -undefined
19287 @itemx -unexported_symbols_list
19288 @itemx -weak_reference_mismatches
19289 @itemx -whatsloaded
19290 @opindex allowable_client
19291 @opindex client_name
19292 @opindex compatibility_version
19293 @opindex current_version
19294 @opindex dead_strip
19295 @opindex dependency-file
19296 @opindex dylib_file
19297 @opindex dylinker_install_name
19298 @opindex dynamic
19299 @opindex exported_symbols_list
19300 @opindex filelist
19301 @opindex flat_namespace
19302 @opindex force_flat_namespace
19303 @opindex headerpad_max_install_names
19304 @opindex image_base
19305 @opindex init
19306 @opindex install_name
19307 @opindex keep_private_externs
19308 @opindex multi_module
19309 @opindex multiply_defined
19310 @opindex multiply_defined_unused
19311 @opindex noall_load
19312 @opindex no_dead_strip_inits_and_terms
19313 @opindex nofixprebinding
19314 @opindex nomultidefs
19315 @opindex noprebind
19316 @opindex noseglinkedit
19317 @opindex pagezero_size
19318 @opindex prebind
19319 @opindex prebind_all_twolevel_modules
19320 @opindex private_bundle
19321 @opindex read_only_relocs
19322 @opindex sectalign
19323 @opindex sectobjectsymbols
19324 @opindex whyload
19325 @opindex seg1addr
19326 @opindex sectcreate
19327 @opindex sectobjectsymbols
19328 @opindex sectorder
19329 @opindex segaddr
19330 @opindex segs_read_only_addr
19331 @opindex segs_read_write_addr
19332 @opindex seg_addr_table
19333 @opindex seg_addr_table_filename
19334 @opindex seglinkedit
19335 @opindex segprot
19336 @opindex segs_read_only_addr
19337 @opindex segs_read_write_addr
19338 @opindex single_module
19339 @opindex static
19340 @opindex sub_library
19341 @opindex sub_umbrella
19342 @opindex twolevel_namespace
19343 @opindex umbrella
19344 @opindex undefined
19345 @opindex unexported_symbols_list
19346 @opindex weak_reference_mismatches
19347 @opindex whatsloaded
19348 These options are passed to the Darwin linker.  The Darwin linker man page
19349 describes them in detail.
19350 @end table
19352 @node DEC Alpha Options
19353 @subsection DEC Alpha Options
19355 These @samp{-m} options are defined for the DEC Alpha implementations:
19357 @table @gcctabopt
19358 @item -mno-soft-float
19359 @itemx -msoft-float
19360 @opindex mno-soft-float
19361 @opindex msoft-float
19362 Use (do not use) the hardware floating-point instructions for
19363 floating-point operations.  When @option{-msoft-float} is specified,
19364 functions in @file{libgcc.a} are used to perform floating-point
19365 operations.  Unless they are replaced by routines that emulate the
19366 floating-point operations, or compiled in such a way as to call such
19367 emulations routines, these routines issue floating-point
19368 operations.   If you are compiling for an Alpha without floating-point
19369 operations, you must ensure that the library is built so as not to call
19370 them.
19372 Note that Alpha implementations without floating-point operations are
19373 required to have floating-point registers.
19375 @item -mfp-reg
19376 @itemx -mno-fp-regs
19377 @opindex mfp-reg
19378 @opindex mno-fp-regs
19379 Generate code that uses (does not use) the floating-point register set.
19380 @option{-mno-fp-regs} implies @option{-msoft-float}.  If the floating-point
19381 register set is not used, floating-point operands are passed in integer
19382 registers as if they were integers and floating-point results are passed
19383 in @code{$0} instead of @code{$f0}.  This is a non-standard calling sequence,
19384 so any function with a floating-point argument or return value called by code
19385 compiled with @option{-mno-fp-regs} must also be compiled with that
19386 option.
19388 A typical use of this option is building a kernel that does not use,
19389 and hence need not save and restore, any floating-point registers.
19391 @item -mieee
19392 @opindex mieee
19393 The Alpha architecture implements floating-point hardware optimized for
19394 maximum performance.  It is mostly compliant with the IEEE floating-point
19395 standard.  However, for full compliance, software assistance is
19396 required.  This option generates code fully IEEE-compliant code
19397 @emph{except} that the @var{inexact-flag} is not maintained (see below).
19398 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
19399 defined during compilation.  The resulting code is less efficient but is
19400 able to correctly support denormalized numbers and exceptional IEEE
19401 values such as not-a-number and plus/minus infinity.  Other Alpha
19402 compilers call this option @option{-ieee_with_no_inexact}.
19404 @item -mieee-with-inexact
19405 @opindex mieee-with-inexact
19406 This is like @option{-mieee} except the generated code also maintains
19407 the IEEE @var{inexact-flag}.  Turning on this option causes the
19408 generated code to implement fully-compliant IEEE math.  In addition to
19409 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
19410 macro.  On some Alpha implementations the resulting code may execute
19411 significantly slower than the code generated by default.  Since there is
19412 very little code that depends on the @var{inexact-flag}, you should
19413 normally not specify this option.  Other Alpha compilers call this
19414 option @option{-ieee_with_inexact}.
19416 @item -mfp-trap-mode=@var{trap-mode}
19417 @opindex mfp-trap-mode
19418 This option controls what floating-point related traps are enabled.
19419 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
19420 The trap mode can be set to one of four values:
19422 @table @samp
19423 @item n
19424 This is the default (normal) setting.  The only traps that are enabled
19425 are the ones that cannot be disabled in software (e.g., division by zero
19426 trap).
19428 @item u
19429 In addition to the traps enabled by @samp{n}, underflow traps are enabled
19430 as well.
19432 @item su
19433 Like @samp{u}, but the instructions are marked to be safe for software
19434 completion (see Alpha architecture manual for details).
19436 @item sui
19437 Like @samp{su}, but inexact traps are enabled as well.
19438 @end table
19440 @item -mfp-rounding-mode=@var{rounding-mode}
19441 @opindex mfp-rounding-mode
19442 Selects the IEEE rounding mode.  Other Alpha compilers call this option
19443 @option{-fprm @var{rounding-mode}}.  The @var{rounding-mode} can be one
19446 @table @samp
19447 @item n
19448 Normal IEEE rounding mode.  Floating-point numbers are rounded towards
19449 the nearest machine number or towards the even machine number in case
19450 of a tie.
19452 @item m
19453 Round towards minus infinity.
19455 @item c
19456 Chopped rounding mode.  Floating-point numbers are rounded towards zero.
19458 @item d
19459 Dynamic rounding mode.  A field in the floating-point control register
19460 (@var{fpcr}, see Alpha architecture reference manual) controls the
19461 rounding mode in effect.  The C library initializes this register for
19462 rounding towards plus infinity.  Thus, unless your program modifies the
19463 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
19464 @end table
19466 @item -mtrap-precision=@var{trap-precision}
19467 @opindex mtrap-precision
19468 In the Alpha architecture, floating-point traps are imprecise.  This
19469 means without software assistance it is impossible to recover from a
19470 floating trap and program execution normally needs to be terminated.
19471 GCC can generate code that can assist operating system trap handlers
19472 in determining the exact location that caused a floating-point trap.
19473 Depending on the requirements of an application, different levels of
19474 precisions can be selected:
19476 @table @samp
19477 @item p
19478 Program precision.  This option is the default and means a trap handler
19479 can only identify which program caused a floating-point exception.
19481 @item f
19482 Function precision.  The trap handler can determine the function that
19483 caused a floating-point exception.
19485 @item i
19486 Instruction precision.  The trap handler can determine the exact
19487 instruction that caused a floating-point exception.
19488 @end table
19490 Other Alpha compilers provide the equivalent options called
19491 @option{-scope_safe} and @option{-resumption_safe}.
19493 @item -mieee-conformant
19494 @opindex mieee-conformant
19495 This option marks the generated code as IEEE conformant.  You must not
19496 use this option unless you also specify @option{-mtrap-precision=i} and either
19497 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}.  Its only effect
19498 is to emit the line @samp{.eflag 48} in the function prologue of the
19499 generated assembly file.
19501 @item -mbuild-constants
19502 @opindex mbuild-constants
19503 Normally GCC examines a 32- or 64-bit integer constant to
19504 see if it can construct it from smaller constants in two or three
19505 instructions.  If it cannot, it outputs the constant as a literal and
19506 generates code to load it from the data segment at run time.
19508 Use this option to require GCC to construct @emph{all} integer constants
19509 using code, even if it takes more instructions (the maximum is six).
19511 You typically use this option to build a shared library dynamic
19512 loader.  Itself a shared library, it must relocate itself in memory
19513 before it can find the variables and constants in its own data segment.
19515 @item -mbwx
19516 @itemx -mno-bwx
19517 @itemx -mcix
19518 @itemx -mno-cix
19519 @itemx -mfix
19520 @itemx -mno-fix
19521 @itemx -mmax
19522 @itemx -mno-max
19523 @opindex mbwx
19524 @opindex mno-bwx
19525 @opindex mcix
19526 @opindex mno-cix
19527 @opindex mfix
19528 @opindex mno-fix
19529 @opindex mmax
19530 @opindex mno-max
19531 Indicate whether GCC should generate code to use the optional BWX,
19532 CIX, FIX and MAX instruction sets.  The default is to use the instruction
19533 sets supported by the CPU type specified via @option{-mcpu=} option or that
19534 of the CPU on which GCC was built if none is specified.
19536 @item -mfloat-vax
19537 @itemx -mfloat-ieee
19538 @opindex mfloat-vax
19539 @opindex mfloat-ieee
19540 Generate code that uses (does not use) VAX F and G floating-point
19541 arithmetic instead of IEEE single and double precision.
19543 @item -mexplicit-relocs
19544 @itemx -mno-explicit-relocs
19545 @opindex mexplicit-relocs
19546 @opindex mno-explicit-relocs
19547 Older Alpha assemblers provided no way to generate symbol relocations
19548 except via assembler macros.  Use of these macros does not allow
19549 optimal instruction scheduling.  GNU binutils as of version 2.12
19550 supports a new syntax that allows the compiler to explicitly mark
19551 which relocations should apply to which instructions.  This option
19552 is mostly useful for debugging, as GCC detects the capabilities of
19553 the assembler when it is built and sets the default accordingly.
19555 @item -msmall-data
19556 @itemx -mlarge-data
19557 @opindex msmall-data
19558 @opindex mlarge-data
19559 When @option{-mexplicit-relocs} is in effect, static data is
19560 accessed via @dfn{gp-relative} relocations.  When @option{-msmall-data}
19561 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
19562 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
19563 16-bit relocations off of the @code{$gp} register.  This limits the
19564 size of the small data area to 64KB, but allows the variables to be
19565 directly accessed via a single instruction.
19567 The default is @option{-mlarge-data}.  With this option the data area
19568 is limited to just below 2GB@.  Programs that require more than 2GB of
19569 data must use @code{malloc} or @code{mmap} to allocate the data in the
19570 heap instead of in the program's data segment.
19572 When generating code for shared libraries, @option{-fpic} implies
19573 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
19575 @item -msmall-text
19576 @itemx -mlarge-text
19577 @opindex msmall-text
19578 @opindex mlarge-text
19579 When @option{-msmall-text} is used, the compiler assumes that the
19580 code of the entire program (or shared library) fits in 4MB, and is
19581 thus reachable with a branch instruction.  When @option{-msmall-data}
19582 is used, the compiler can assume that all local symbols share the
19583 same @code{$gp} value, and thus reduce the number of instructions
19584 required for a function call from 4 to 1.
19586 The default is @option{-mlarge-text}.
19588 @item -mcpu=@var{cpu_type}
19589 @opindex mcpu
19590 Set the instruction set and instruction scheduling parameters for
19591 machine type @var{cpu_type}.  You can specify either the @samp{EV}
19592 style name or the corresponding chip number.  GCC supports scheduling
19593 parameters for the EV4, EV5 and EV6 family of processors and
19594 chooses the default values for the instruction set from the processor
19595 you specify.  If you do not specify a processor type, GCC defaults
19596 to the processor on which the compiler was built.
19598 Supported values for @var{cpu_type} are
19600 @table @samp
19601 @item ev4
19602 @itemx ev45
19603 @itemx 21064
19604 Schedules as an EV4 and has no instruction set extensions.
19606 @item ev5
19607 @itemx 21164
19608 Schedules as an EV5 and has no instruction set extensions.
19610 @item ev56
19611 @itemx 21164a
19612 Schedules as an EV5 and supports the BWX extension.
19614 @item pca56
19615 @itemx 21164pc
19616 @itemx 21164PC
19617 Schedules as an EV5 and supports the BWX and MAX extensions.
19619 @item ev6
19620 @itemx 21264
19621 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
19623 @item ev67
19624 @itemx 21264a
19625 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
19626 @end table
19628 Native toolchains also support the value @samp{native},
19629 which selects the best architecture option for the host processor.
19630 @option{-mcpu=native} has no effect if GCC does not recognize
19631 the processor.
19633 @item -mtune=@var{cpu_type}
19634 @opindex mtune
19635 Set only the instruction scheduling parameters for machine type
19636 @var{cpu_type}.  The instruction set is not changed.
19638 Native toolchains also support the value @samp{native},
19639 which selects the best architecture option for the host processor.
19640 @option{-mtune=native} has no effect if GCC does not recognize
19641 the processor.
19643 @item -mmemory-latency=@var{time}
19644 @opindex mmemory-latency
19645 Sets the latency the scheduler should assume for typical memory
19646 references as seen by the application.  This number is highly
19647 dependent on the memory access patterns used by the application
19648 and the size of the external cache on the machine.
19650 Valid options for @var{time} are
19652 @table @samp
19653 @item @var{number}
19654 A decimal number representing clock cycles.
19656 @item L1
19657 @itemx L2
19658 @itemx L3
19659 @itemx main
19660 The compiler contains estimates of the number of clock cycles for
19661 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
19662 (also called Dcache, Scache, and Bcache), as well as to main memory.
19663 Note that L3 is only valid for EV5.
19665 @end table
19666 @end table
19668 @node FR30 Options
19669 @subsection FR30 Options
19670 @cindex FR30 Options
19672 These options are defined specifically for the FR30 port.
19674 @table @gcctabopt
19676 @item -msmall-model
19677 @opindex msmall-model
19678 Use the small address space model.  This can produce smaller code, but
19679 it does assume that all symbolic values and addresses fit into a
19680 20-bit range.
19682 @item -mno-lsim
19683 @opindex mno-lsim
19684 Assume that runtime support has been provided and so there is no need
19685 to include the simulator library (@file{libsim.a}) on the linker
19686 command line.
19688 @end table
19690 @node FT32 Options
19691 @subsection FT32 Options
19692 @cindex FT32 Options
19694 These options are defined specifically for the FT32 port.
19696 @table @gcctabopt
19698 @item -msim
19699 @opindex msim
19700 Specifies that the program will be run on the simulator.  This causes
19701 an alternate runtime startup and library to be linked.
19702 You must not use this option when generating programs that will run on
19703 real hardware; you must provide your own runtime library for whatever
19704 I/O functions are needed.
19706 @item -mlra
19707 @opindex mlra
19708 Enable Local Register Allocation.  This is still experimental for FT32,
19709 so by default the compiler uses standard reload.
19711 @item -mnodiv
19712 @opindex mnodiv
19713 Do not use div and mod instructions.
19715 @item -mft32b
19716 @opindex mft32b
19717 Enable use of the extended instructions of the FT32B processor.
19719 @item -mcompress
19720 @opindex mcompress
19721 Compress all code using the Ft32B code compression scheme.
19723 @item -mnopm
19724 @opindex  mnopm
19725 Do not generate code that reads program memory.
19727 @end table
19729 @node FRV Options
19730 @subsection FRV Options
19731 @cindex FRV Options
19733 @table @gcctabopt
19734 @item -mgpr-32
19735 @opindex mgpr-32
19737 Only use the first 32 general-purpose registers.
19739 @item -mgpr-64
19740 @opindex mgpr-64
19742 Use all 64 general-purpose registers.
19744 @item -mfpr-32
19745 @opindex mfpr-32
19747 Use only the first 32 floating-point registers.
19749 @item -mfpr-64
19750 @opindex mfpr-64
19752 Use all 64 floating-point registers.
19754 @item -mhard-float
19755 @opindex mhard-float
19757 Use hardware instructions for floating-point operations.
19759 @item -msoft-float
19760 @opindex msoft-float
19762 Use library routines for floating-point operations.
19764 @item -malloc-cc
19765 @opindex malloc-cc
19767 Dynamically allocate condition code registers.
19769 @item -mfixed-cc
19770 @opindex mfixed-cc
19772 Do not try to dynamically allocate condition code registers, only
19773 use @code{icc0} and @code{fcc0}.
19775 @item -mdword
19776 @opindex mdword
19778 Change ABI to use double word insns.
19780 @item -mno-dword
19781 @opindex mno-dword
19782 @opindex mdword
19784 Do not use double word instructions.
19786 @item -mdouble
19787 @opindex mdouble
19789 Use floating-point double instructions.
19791 @item -mno-double
19792 @opindex mno-double
19794 Do not use floating-point double instructions.
19796 @item -mmedia
19797 @opindex mmedia
19799 Use media instructions.
19801 @item -mno-media
19802 @opindex mno-media
19804 Do not use media instructions.
19806 @item -mmuladd
19807 @opindex mmuladd
19809 Use multiply and add/subtract instructions.
19811 @item -mno-muladd
19812 @opindex mno-muladd
19814 Do not use multiply and add/subtract instructions.
19816 @item -mfdpic
19817 @opindex mfdpic
19819 Select the FDPIC ABI, which uses function descriptors to represent
19820 pointers to functions.  Without any PIC/PIE-related options, it
19821 implies @option{-fPIE}.  With @option{-fpic} or @option{-fpie}, it
19822 assumes GOT entries and small data are within a 12-bit range from the
19823 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
19824 are computed with 32 bits.
19825 With a @samp{bfin-elf} target, this option implies @option{-msim}.
19827 @item -minline-plt
19828 @opindex minline-plt
19830 Enable inlining of PLT entries in function calls to functions that are
19831 not known to bind locally.  It has no effect without @option{-mfdpic}.
19832 It's enabled by default if optimizing for speed and compiling for
19833 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
19834 optimization option such as @option{-O3} or above is present in the
19835 command line.
19837 @item -mTLS
19838 @opindex mTLS
19840 Assume a large TLS segment when generating thread-local code.
19842 @item -mtls
19843 @opindex mtls
19845 Do not assume a large TLS segment when generating thread-local code.
19847 @item -mgprel-ro
19848 @opindex mgprel-ro
19850 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
19851 that is known to be in read-only sections.  It's enabled by default,
19852 except for @option{-fpic} or @option{-fpie}: even though it may help
19853 make the global offset table smaller, it trades 1 instruction for 4.
19854 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
19855 one of which may be shared by multiple symbols, and it avoids the need
19856 for a GOT entry for the referenced symbol, so it's more likely to be a
19857 win.  If it is not, @option{-mno-gprel-ro} can be used to disable it.
19859 @item -multilib-library-pic
19860 @opindex multilib-library-pic
19862 Link with the (library, not FD) pic libraries.  It's implied by
19863 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
19864 @option{-fpic} without @option{-mfdpic}.  You should never have to use
19865 it explicitly.
19867 @item -mlinked-fp
19868 @opindex mlinked-fp
19870 Follow the EABI requirement of always creating a frame pointer whenever
19871 a stack frame is allocated.  This option is enabled by default and can
19872 be disabled with @option{-mno-linked-fp}.
19874 @item -mlong-calls
19875 @opindex mlong-calls
19877 Use indirect addressing to call functions outside the current
19878 compilation unit.  This allows the functions to be placed anywhere
19879 within the 32-bit address space.
19881 @item -malign-labels
19882 @opindex malign-labels
19884 Try to align labels to an 8-byte boundary by inserting NOPs into the
19885 previous packet.  This option only has an effect when VLIW packing
19886 is enabled.  It doesn't create new packets; it merely adds NOPs to
19887 existing ones.
19889 @item -mlibrary-pic
19890 @opindex mlibrary-pic
19892 Generate position-independent EABI code.
19894 @item -macc-4
19895 @opindex macc-4
19897 Use only the first four media accumulator registers.
19899 @item -macc-8
19900 @opindex macc-8
19902 Use all eight media accumulator registers.
19904 @item -mpack
19905 @opindex mpack
19907 Pack VLIW instructions.
19909 @item -mno-pack
19910 @opindex mno-pack
19912 Do not pack VLIW instructions.
19914 @item -mno-eflags
19915 @opindex mno-eflags
19917 Do not mark ABI switches in e_flags.
19919 @item -mcond-move
19920 @opindex mcond-move
19922 Enable the use of conditional-move instructions (default).
19924 This switch is mainly for debugging the compiler and will likely be removed
19925 in a future version.
19927 @item -mno-cond-move
19928 @opindex mno-cond-move
19930 Disable the use of conditional-move instructions.
19932 This switch is mainly for debugging the compiler and will likely be removed
19933 in a future version.
19935 @item -mscc
19936 @opindex mscc
19938 Enable the use of conditional set instructions (default).
19940 This switch is mainly for debugging the compiler and will likely be removed
19941 in a future version.
19943 @item -mno-scc
19944 @opindex mno-scc
19946 Disable the use of conditional set instructions.
19948 This switch is mainly for debugging the compiler and will likely be removed
19949 in a future version.
19951 @item -mcond-exec
19952 @opindex mcond-exec
19954 Enable the use of conditional execution (default).
19956 This switch is mainly for debugging the compiler and will likely be removed
19957 in a future version.
19959 @item -mno-cond-exec
19960 @opindex mno-cond-exec
19962 Disable the use of conditional execution.
19964 This switch is mainly for debugging the compiler and will likely be removed
19965 in a future version.
19967 @item -mvliw-branch
19968 @opindex mvliw-branch
19970 Run a pass to pack branches into VLIW instructions (default).
19972 This switch is mainly for debugging the compiler and will likely be removed
19973 in a future version.
19975 @item -mno-vliw-branch
19976 @opindex mno-vliw-branch
19978 Do not run a pass to pack branches into VLIW instructions.
19980 This switch is mainly for debugging the compiler and will likely be removed
19981 in a future version.
19983 @item -mmulti-cond-exec
19984 @opindex mmulti-cond-exec
19986 Enable optimization of @code{&&} and @code{||} in conditional execution
19987 (default).
19989 This switch is mainly for debugging the compiler and will likely be removed
19990 in a future version.
19992 @item -mno-multi-cond-exec
19993 @opindex mno-multi-cond-exec
19995 Disable optimization of @code{&&} and @code{||} in conditional execution.
19997 This switch is mainly for debugging the compiler and will likely be removed
19998 in a future version.
20000 @item -mnested-cond-exec
20001 @opindex mnested-cond-exec
20003 Enable nested conditional execution optimizations (default).
20005 This switch is mainly for debugging the compiler and will likely be removed
20006 in a future version.
20008 @item -mno-nested-cond-exec
20009 @opindex mno-nested-cond-exec
20011 Disable nested conditional execution optimizations.
20013 This switch is mainly for debugging the compiler and will likely be removed
20014 in a future version.
20016 @item -moptimize-membar
20017 @opindex moptimize-membar
20019 This switch removes redundant @code{membar} instructions from the
20020 compiler-generated code.  It is enabled by default.
20022 @item -mno-optimize-membar
20023 @opindex mno-optimize-membar
20024 @opindex moptimize-membar
20026 This switch disables the automatic removal of redundant @code{membar}
20027 instructions from the generated code.
20029 @item -mtomcat-stats
20030 @opindex mtomcat-stats
20032 Cause gas to print out tomcat statistics.
20034 @item -mcpu=@var{cpu}
20035 @opindex mcpu
20037 Select the processor type for which to generate code.  Possible values are
20038 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
20039 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
20041 @end table
20043 @node GNU/Linux Options
20044 @subsection GNU/Linux Options
20046 These @samp{-m} options are defined for GNU/Linux targets:
20048 @table @gcctabopt
20049 @item -mglibc
20050 @opindex mglibc
20051 Use the GNU C library.  This is the default except
20052 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
20053 @samp{*-*-linux-*android*} targets.
20055 @item -muclibc
20056 @opindex muclibc
20057 Use uClibc C library.  This is the default on
20058 @samp{*-*-linux-*uclibc*} targets.
20060 @item -mmusl
20061 @opindex mmusl
20062 Use the musl C library.  This is the default on
20063 @samp{*-*-linux-*musl*} targets.
20065 @item -mbionic
20066 @opindex mbionic
20067 Use Bionic C library.  This is the default on
20068 @samp{*-*-linux-*android*} targets.
20070 @item -mandroid
20071 @opindex mandroid
20072 Compile code compatible with Android platform.  This is the default on
20073 @samp{*-*-linux-*android*} targets.
20075 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
20076 @option{-fno-exceptions} and @option{-fno-rtti} by default.  When linking,
20077 this option makes the GCC driver pass Android-specific options to the linker.
20078 Finally, this option causes the preprocessor macro @code{__ANDROID__}
20079 to be defined.
20081 @item -tno-android-cc
20082 @opindex tno-android-cc
20083 Disable compilation effects of @option{-mandroid}, i.e., do not enable
20084 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
20085 @option{-fno-rtti} by default.
20087 @item -tno-android-ld
20088 @opindex tno-android-ld
20089 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
20090 linking options to the linker.
20092 @end table
20094 @node H8/300 Options
20095 @subsection H8/300 Options
20097 These @samp{-m} options are defined for the H8/300 implementations:
20099 @table @gcctabopt
20100 @item -mrelax
20101 @opindex mrelax
20102 Shorten some address references at link time, when possible; uses the
20103 linker option @option{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
20104 ld, Using ld}, for a fuller description.
20106 @item -mh
20107 @opindex mh
20108 Generate code for the H8/300H@.
20110 @item -ms
20111 @opindex ms
20112 Generate code for the H8S@.
20114 @item -mn
20115 @opindex mn
20116 Generate code for the H8S and H8/300H in the normal mode.  This switch
20117 must be used either with @option{-mh} or @option{-ms}.
20119 @item -ms2600
20120 @opindex ms2600
20121 Generate code for the H8S/2600.  This switch must be used with @option{-ms}.
20123 @item -mexr
20124 @opindex mexr
20125 Extended registers are stored on stack before execution of function
20126 with monitor attribute. Default option is @option{-mexr}.
20127 This option is valid only for H8S targets.
20129 @item -mno-exr
20130 @opindex mno-exr
20131 @opindex mexr
20132 Extended registers are not stored on stack before execution of function 
20133 with monitor attribute. Default option is @option{-mno-exr}. 
20134 This option is valid only for H8S targets.
20136 @item -mint32
20137 @opindex mint32
20138 Make @code{int} data 32 bits by default.
20140 @item -malign-300
20141 @opindex malign-300
20142 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
20143 The default for the H8/300H and H8S is to align longs and floats on
20144 4-byte boundaries.
20145 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
20146 This option has no effect on the H8/300.
20147 @end table
20149 @node HPPA Options
20150 @subsection HPPA Options
20151 @cindex HPPA Options
20153 These @samp{-m} options are defined for the HPPA family of computers:
20155 @table @gcctabopt
20156 @item -march=@var{architecture-type}
20157 @opindex march
20158 Generate code for the specified architecture.  The choices for
20159 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
20160 1.1, and @samp{2.0} for PA 2.0 processors.  Refer to
20161 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
20162 architecture option for your machine.  Code compiled for lower numbered
20163 architectures runs on higher numbered architectures, but not the
20164 other way around.
20166 @item -mpa-risc-1-0
20167 @itemx -mpa-risc-1-1
20168 @itemx -mpa-risc-2-0
20169 @opindex mpa-risc-1-0
20170 @opindex mpa-risc-1-1
20171 @opindex mpa-risc-2-0
20172 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
20174 @item -mcaller-copies
20175 @opindex mcaller-copies
20176 The caller copies function arguments passed by hidden reference.  This
20177 option should be used with care as it is not compatible with the default
20178 32-bit runtime.  However, only aggregates larger than eight bytes are
20179 passed by hidden reference and the option provides better compatibility
20180 with OpenMP.
20182 @item -mjump-in-delay
20183 @opindex mjump-in-delay
20184 This option is ignored and provided for compatibility purposes only.
20186 @item -mdisable-fpregs
20187 @opindex mdisable-fpregs
20188 Prevent floating-point registers from being used in any manner.  This is
20189 necessary for compiling kernels that perform lazy context switching of
20190 floating-point registers.  If you use this option and attempt to perform
20191 floating-point operations, the compiler aborts.
20193 @item -mdisable-indexing
20194 @opindex mdisable-indexing
20195 Prevent the compiler from using indexing address modes.  This avoids some
20196 rather obscure problems when compiling MIG generated code under MACH@.
20198 @item -mno-space-regs
20199 @opindex mno-space-regs
20200 @opindex mspace-regs
20201 Generate code that assumes the target has no space registers.  This allows
20202 GCC to generate faster indirect calls and use unscaled index address modes.
20204 Such code is suitable for level 0 PA systems and kernels.
20206 @item -mfast-indirect-calls
20207 @opindex mfast-indirect-calls
20208 Generate code that assumes calls never cross space boundaries.  This
20209 allows GCC to emit code that performs faster indirect calls.
20211 This option does not work in the presence of shared libraries or nested
20212 functions.
20214 @item -mfixed-range=@var{register-range}
20215 @opindex mfixed-range
20216 Generate code treating the given register range as fixed registers.
20217 A fixed register is one that the register allocator cannot use.  This is
20218 useful when compiling kernel code.  A register range is specified as
20219 two registers separated by a dash.  Multiple register ranges can be
20220 specified separated by a comma.
20222 @item -mlong-load-store
20223 @opindex mlong-load-store
20224 Generate 3-instruction load and store sequences as sometimes required by
20225 the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
20226 the HP compilers.
20228 @item -mportable-runtime
20229 @opindex mportable-runtime
20230 Use the portable calling conventions proposed by HP for ELF systems.
20232 @item -mgas
20233 @opindex mgas
20234 Enable the use of assembler directives only GAS understands.
20236 @item -mschedule=@var{cpu-type}
20237 @opindex mschedule
20238 Schedule code according to the constraints for the machine type
20239 @var{cpu-type}.  The choices for @var{cpu-type} are @samp{700}
20240 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}.  Refer
20241 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
20242 proper scheduling option for your machine.  The default scheduling is
20243 @samp{8000}.
20245 @item -mlinker-opt
20246 @opindex mlinker-opt
20247 Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
20248 debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
20249 linkers in which they give bogus error messages when linking some programs.
20251 @item -msoft-float
20252 @opindex msoft-float
20253 Generate output containing library calls for floating point.
20254 @strong{Warning:} the requisite libraries are not available for all HPPA
20255 targets.  Normally the facilities of the machine's usual C compiler are
20256 used, but this cannot be done directly in cross-compilation.  You must make
20257 your own arrangements to provide suitable library functions for
20258 cross-compilation.
20260 @option{-msoft-float} changes the calling convention in the output file;
20261 therefore, it is only useful if you compile @emph{all} of a program with
20262 this option.  In particular, you need to compile @file{libgcc.a}, the
20263 library that comes with GCC, with @option{-msoft-float} in order for
20264 this to work.
20266 @item -msio
20267 @opindex msio
20268 Generate the predefine, @code{_SIO}, for server IO@.  The default is
20269 @option{-mwsio}.  This generates the predefines, @code{__hp9000s700},
20270 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@.  These
20271 options are available under HP-UX and HI-UX@.
20273 @item -mgnu-ld
20274 @opindex mgnu-ld
20275 Use options specific to GNU @command{ld}.
20276 This passes @option{-shared} to @command{ld} when
20277 building a shared library.  It is the default when GCC is configured,
20278 explicitly or implicitly, with the GNU linker.  This option does not
20279 affect which @command{ld} is called; it only changes what parameters
20280 are passed to that @command{ld}.
20281 The @command{ld} that is called is determined by the
20282 @option{--with-ld} configure option, GCC's program search path, and
20283 finally by the user's @env{PATH}.  The linker used by GCC can be printed
20284 using @samp{which `gcc -print-prog-name=ld`}.  This option is only available
20285 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
20287 @item -mhp-ld
20288 @opindex mhp-ld
20289 Use options specific to HP @command{ld}.
20290 This passes @option{-b} to @command{ld} when building
20291 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
20292 links.  It is the default when GCC is configured, explicitly or
20293 implicitly, with the HP linker.  This option does not affect
20294 which @command{ld} is called; it only changes what parameters are passed to that
20295 @command{ld}.
20296 The @command{ld} that is called is determined by the @option{--with-ld}
20297 configure option, GCC's program search path, and finally by the user's
20298 @env{PATH}.  The linker used by GCC can be printed using @samp{which
20299 `gcc -print-prog-name=ld`}.  This option is only available on the 64-bit
20300 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
20302 @item -mlong-calls
20303 @opindex mno-long-calls
20304 @opindex mlong-calls
20305 Generate code that uses long call sequences.  This ensures that a call
20306 is always able to reach linker generated stubs.  The default is to generate
20307 long calls only when the distance from the call site to the beginning
20308 of the function or translation unit, as the case may be, exceeds a
20309 predefined limit set by the branch type being used.  The limits for
20310 normal calls are 7,600,000 and 240,000 bytes, respectively for the
20311 PA 2.0 and PA 1.X architectures.  Sibcalls are always limited at
20312 240,000 bytes.
20314 Distances are measured from the beginning of functions when using the
20315 @option{-ffunction-sections} option, or when using the @option{-mgas}
20316 and @option{-mno-portable-runtime} options together under HP-UX with
20317 the SOM linker.
20319 It is normally not desirable to use this option as it degrades
20320 performance.  However, it may be useful in large applications,
20321 particularly when partial linking is used to build the application.
20323 The types of long calls used depends on the capabilities of the
20324 assembler and linker, and the type of code being generated.  The
20325 impact on systems that support long absolute calls, and long pic
20326 symbol-difference or pc-relative calls should be relatively small.
20327 However, an indirect call is used on 32-bit ELF systems in pic code
20328 and it is quite long.
20330 @item -munix=@var{unix-std}
20331 @opindex march
20332 Generate compiler predefines and select a startfile for the specified
20333 UNIX standard.  The choices for @var{unix-std} are @samp{93}, @samp{95}
20334 and @samp{98}.  @samp{93} is supported on all HP-UX versions.  @samp{95}
20335 is available on HP-UX 10.10 and later.  @samp{98} is available on HP-UX
20336 11.11 and later.  The default values are @samp{93} for HP-UX 10.00,
20337 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
20338 and later.
20340 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
20341 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
20342 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
20343 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
20344 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
20345 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
20347 It is @emph{important} to note that this option changes the interfaces
20348 for various library routines.  It also affects the operational behavior
20349 of the C library.  Thus, @emph{extreme} care is needed in using this
20350 option.
20352 Library code that is intended to operate with more than one UNIX
20353 standard must test, set and restore the variable @code{__xpg4_extended_mask}
20354 as appropriate.  Most GNU software doesn't provide this capability.
20356 @item -nolibdld
20357 @opindex nolibdld
20358 Suppress the generation of link options to search libdld.sl when the
20359 @option{-static} option is specified on HP-UX 10 and later.
20361 @item -static
20362 @opindex static
20363 The HP-UX implementation of setlocale in libc has a dependency on
20364 libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
20365 when the @option{-static} option is specified, special link options
20366 are needed to resolve this dependency.
20368 On HP-UX 10 and later, the GCC driver adds the necessary options to
20369 link with libdld.sl when the @option{-static} option is specified.
20370 This causes the resulting binary to be dynamic.  On the 64-bit port,
20371 the linkers generate dynamic binaries by default in any case.  The
20372 @option{-nolibdld} option can be used to prevent the GCC driver from
20373 adding these link options.
20375 @item -threads
20376 @opindex threads
20377 Add support for multithreading with the @dfn{dce thread} library
20378 under HP-UX@.  This option sets flags for both the preprocessor and
20379 linker.
20380 @end table
20382 @node IA-64 Options
20383 @subsection IA-64 Options
20384 @cindex IA-64 Options
20386 These are the @samp{-m} options defined for the Intel IA-64 architecture.
20388 @table @gcctabopt
20389 @item -mbig-endian
20390 @opindex mbig-endian
20391 Generate code for a big-endian target.  This is the default for HP-UX@.
20393 @item -mlittle-endian
20394 @opindex mlittle-endian
20395 Generate code for a little-endian target.  This is the default for AIX5
20396 and GNU/Linux.
20398 @item -mgnu-as
20399 @itemx -mno-gnu-as
20400 @opindex mgnu-as
20401 @opindex mno-gnu-as
20402 Generate (or don't) code for the GNU assembler.  This is the default.
20403 @c Also, this is the default if the configure option @option{--with-gnu-as}
20404 @c is used.
20406 @item -mgnu-ld
20407 @itemx -mno-gnu-ld
20408 @opindex mgnu-ld
20409 @opindex mno-gnu-ld
20410 Generate (or don't) code for the GNU linker.  This is the default.
20411 @c Also, this is the default if the configure option @option{--with-gnu-ld}
20412 @c is used.
20414 @item -mno-pic
20415 @opindex mno-pic
20416 Generate code that does not use a global pointer register.  The result
20417 is not position independent code, and violates the IA-64 ABI@.
20419 @item -mvolatile-asm-stop
20420 @itemx -mno-volatile-asm-stop
20421 @opindex mvolatile-asm-stop
20422 @opindex mno-volatile-asm-stop
20423 Generate (or don't) a stop bit immediately before and after volatile asm
20424 statements.
20426 @item -mregister-names
20427 @itemx -mno-register-names
20428 @opindex mregister-names
20429 @opindex mno-register-names
20430 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
20431 the stacked registers.  This may make assembler output more readable.
20433 @item -mno-sdata
20434 @itemx -msdata
20435 @opindex mno-sdata
20436 @opindex msdata
20437 Disable (or enable) optimizations that use the small data section.  This may
20438 be useful for working around optimizer bugs.
20440 @item -mconstant-gp
20441 @opindex mconstant-gp
20442 Generate code that uses a single constant global pointer value.  This is
20443 useful when compiling kernel code.
20445 @item -mauto-pic
20446 @opindex mauto-pic
20447 Generate code that is self-relocatable.  This implies @option{-mconstant-gp}.
20448 This is useful when compiling firmware code.
20450 @item -minline-float-divide-min-latency
20451 @opindex minline-float-divide-min-latency
20452 Generate code for inline divides of floating-point values
20453 using the minimum latency algorithm.
20455 @item -minline-float-divide-max-throughput
20456 @opindex minline-float-divide-max-throughput
20457 Generate code for inline divides of floating-point values
20458 using the maximum throughput algorithm.
20460 @item -mno-inline-float-divide
20461 @opindex mno-inline-float-divide
20462 Do not generate inline code for divides of floating-point values.
20464 @item -minline-int-divide-min-latency
20465 @opindex minline-int-divide-min-latency
20466 Generate code for inline divides of integer values
20467 using the minimum latency algorithm.
20469 @item -minline-int-divide-max-throughput
20470 @opindex minline-int-divide-max-throughput
20471 Generate code for inline divides of integer values
20472 using the maximum throughput algorithm.
20474 @item -mno-inline-int-divide
20475 @opindex mno-inline-int-divide
20476 @opindex minline-int-divide
20477 Do not generate inline code for divides of integer values.
20479 @item -minline-sqrt-min-latency
20480 @opindex minline-sqrt-min-latency
20481 Generate code for inline square roots
20482 using the minimum latency algorithm.
20484 @item -minline-sqrt-max-throughput
20485 @opindex minline-sqrt-max-throughput
20486 Generate code for inline square roots
20487 using the maximum throughput algorithm.
20489 @item -mno-inline-sqrt
20490 @opindex mno-inline-sqrt
20491 Do not generate inline code for @code{sqrt}.
20493 @item -mfused-madd
20494 @itemx -mno-fused-madd
20495 @opindex mfused-madd
20496 @opindex mno-fused-madd
20497 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
20498 instructions.  The default is to use these instructions.
20500 @item -mno-dwarf2-asm
20501 @itemx -mdwarf2-asm
20502 @opindex mno-dwarf2-asm
20503 @opindex mdwarf2-asm
20504 Don't (or do) generate assembler code for the DWARF line number debugging
20505 info.  This may be useful when not using the GNU assembler.
20507 @item -mearly-stop-bits
20508 @itemx -mno-early-stop-bits
20509 @opindex mearly-stop-bits
20510 @opindex mno-early-stop-bits
20511 Allow stop bits to be placed earlier than immediately preceding the
20512 instruction that triggered the stop bit.  This can improve instruction
20513 scheduling, but does not always do so.
20515 @item -mfixed-range=@var{register-range}
20516 @opindex mfixed-range
20517 Generate code treating the given register range as fixed registers.
20518 A fixed register is one that the register allocator cannot use.  This is
20519 useful when compiling kernel code.  A register range is specified as
20520 two registers separated by a dash.  Multiple register ranges can be
20521 specified separated by a comma.
20523 @item -mtls-size=@var{tls-size}
20524 @opindex mtls-size
20525 Specify bit size of immediate TLS offsets.  Valid values are 14, 22, and
20528 @item -mtune=@var{cpu-type}
20529 @opindex mtune
20530 Tune the instruction scheduling for a particular CPU, Valid values are
20531 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
20532 and @samp{mckinley}.
20534 @item -milp32
20535 @itemx -mlp64
20536 @opindex milp32
20537 @opindex mlp64
20538 Generate code for a 32-bit or 64-bit environment.
20539 The 32-bit environment sets int, long and pointer to 32 bits.
20540 The 64-bit environment sets int to 32 bits and long and pointer
20541 to 64 bits.  These are HP-UX specific flags.
20543 @item -mno-sched-br-data-spec
20544 @itemx -msched-br-data-spec
20545 @opindex mno-sched-br-data-spec
20546 @opindex msched-br-data-spec
20547 (Dis/En)able data speculative scheduling before reload.
20548 This results in generation of @code{ld.a} instructions and
20549 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
20550 The default setting is disabled.
20552 @item -msched-ar-data-spec
20553 @itemx -mno-sched-ar-data-spec
20554 @opindex msched-ar-data-spec
20555 @opindex mno-sched-ar-data-spec
20556 (En/Dis)able data speculative scheduling after reload.
20557 This results in generation of @code{ld.a} instructions and
20558 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
20559 The default setting is enabled.
20561 @item -mno-sched-control-spec
20562 @itemx -msched-control-spec
20563 @opindex mno-sched-control-spec
20564 @opindex msched-control-spec
20565 (Dis/En)able control speculative scheduling.  This feature is
20566 available only during region scheduling (i.e.@: before reload).
20567 This results in generation of the @code{ld.s} instructions and
20568 the corresponding check instructions @code{chk.s}.
20569 The default setting is disabled.
20571 @item -msched-br-in-data-spec
20572 @itemx -mno-sched-br-in-data-spec
20573 @opindex msched-br-in-data-spec
20574 @opindex mno-sched-br-in-data-spec
20575 (En/Dis)able speculative scheduling of the instructions that
20576 are dependent on the data speculative loads before reload.
20577 This is effective only with @option{-msched-br-data-spec} enabled.
20578 The default setting is enabled.
20580 @item -msched-ar-in-data-spec
20581 @itemx -mno-sched-ar-in-data-spec
20582 @opindex msched-ar-in-data-spec
20583 @opindex mno-sched-ar-in-data-spec
20584 (En/Dis)able speculative scheduling of the instructions that
20585 are dependent on the data speculative loads after reload.
20586 This is effective only with @option{-msched-ar-data-spec} enabled.
20587 The default setting is enabled.
20589 @item -msched-in-control-spec
20590 @itemx -mno-sched-in-control-spec
20591 @opindex msched-in-control-spec
20592 @opindex mno-sched-in-control-spec
20593 (En/Dis)able speculative scheduling of the instructions that
20594 are dependent on the control speculative loads.
20595 This is effective only with @option{-msched-control-spec} enabled.
20596 The default setting is enabled.
20598 @item -mno-sched-prefer-non-data-spec-insns
20599 @itemx -msched-prefer-non-data-spec-insns
20600 @opindex mno-sched-prefer-non-data-spec-insns
20601 @opindex msched-prefer-non-data-spec-insns
20602 If enabled, data-speculative instructions are chosen for schedule
20603 only if there are no other choices at the moment.  This makes
20604 the use of the data speculation much more conservative.
20605 The default setting is disabled.
20607 @item -mno-sched-prefer-non-control-spec-insns
20608 @itemx -msched-prefer-non-control-spec-insns
20609 @opindex mno-sched-prefer-non-control-spec-insns
20610 @opindex msched-prefer-non-control-spec-insns
20611 If enabled, control-speculative instructions are chosen for schedule
20612 only if there are no other choices at the moment.  This makes
20613 the use of the control speculation much more conservative.
20614 The default setting is disabled.
20616 @item -mno-sched-count-spec-in-critical-path
20617 @itemx -msched-count-spec-in-critical-path
20618 @opindex mno-sched-count-spec-in-critical-path
20619 @opindex msched-count-spec-in-critical-path
20620 If enabled, speculative dependencies are considered during
20621 computation of the instructions priorities.  This makes the use of the
20622 speculation a bit more conservative.
20623 The default setting is disabled.
20625 @item -msched-spec-ldc
20626 @opindex msched-spec-ldc
20627 Use a simple data speculation check.  This option is on by default.
20629 @item -msched-control-spec-ldc
20630 @opindex msched-spec-ldc
20631 Use a simple check for control speculation.  This option is on by default.
20633 @item -msched-stop-bits-after-every-cycle
20634 @opindex msched-stop-bits-after-every-cycle
20635 Place a stop bit after every cycle when scheduling.  This option is on
20636 by default.
20638 @item -msched-fp-mem-deps-zero-cost
20639 @opindex msched-fp-mem-deps-zero-cost
20640 Assume that floating-point stores and loads are not likely to cause a conflict
20641 when placed into the same instruction group.  This option is disabled by
20642 default.
20644 @item -msel-sched-dont-check-control-spec
20645 @opindex msel-sched-dont-check-control-spec
20646 Generate checks for control speculation in selective scheduling.
20647 This flag is disabled by default.
20649 @item -msched-max-memory-insns=@var{max-insns}
20650 @opindex msched-max-memory-insns
20651 Limit on the number of memory insns per instruction group, giving lower
20652 priority to subsequent memory insns attempting to schedule in the same
20653 instruction group. Frequently useful to prevent cache bank conflicts.
20654 The default value is 1.
20656 @item -msched-max-memory-insns-hard-limit
20657 @opindex msched-max-memory-insns-hard-limit
20658 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
20659 disallowing more than that number in an instruction group.
20660 Otherwise, the limit is ``soft'', meaning that non-memory operations
20661 are preferred when the limit is reached, but memory operations may still
20662 be scheduled.
20664 @end table
20666 @node LM32 Options
20667 @subsection LM32 Options
20668 @cindex LM32 options
20670 These @option{-m} options are defined for the LatticeMico32 architecture:
20672 @table @gcctabopt
20673 @item -mbarrel-shift-enabled
20674 @opindex mbarrel-shift-enabled
20675 Enable barrel-shift instructions.
20677 @item -mdivide-enabled
20678 @opindex mdivide-enabled
20679 Enable divide and modulus instructions.
20681 @item -mmultiply-enabled
20682 @opindex multiply-enabled
20683 Enable multiply instructions.
20685 @item -msign-extend-enabled
20686 @opindex msign-extend-enabled
20687 Enable sign extend instructions.
20689 @item -muser-enabled
20690 @opindex muser-enabled
20691 Enable user-defined instructions.
20693 @end table
20695 @node M32C Options
20696 @subsection M32C Options
20697 @cindex M32C options
20699 @table @gcctabopt
20700 @item -mcpu=@var{name}
20701 @opindex mcpu=
20702 Select the CPU for which code is generated.  @var{name} may be one of
20703 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
20704 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
20705 the M32C/80 series.
20707 @item -msim
20708 @opindex msim
20709 Specifies that the program will be run on the simulator.  This causes
20710 an alternate runtime library to be linked in which supports, for
20711 example, file I/O@.  You must not use this option when generating
20712 programs that will run on real hardware; you must provide your own
20713 runtime library for whatever I/O functions are needed.
20715 @item -memregs=@var{number}
20716 @opindex memregs=
20717 Specifies the number of memory-based pseudo-registers GCC uses
20718 during code generation.  These pseudo-registers are used like real
20719 registers, so there is a tradeoff between GCC's ability to fit the
20720 code into available registers, and the performance penalty of using
20721 memory instead of registers.  Note that all modules in a program must
20722 be compiled with the same value for this option.  Because of that, you
20723 must not use this option with GCC's default runtime libraries.
20725 @end table
20727 @node M32R/D Options
20728 @subsection M32R/D Options
20729 @cindex M32R/D options
20731 These @option{-m} options are defined for Renesas M32R/D architectures:
20733 @table @gcctabopt
20734 @item -m32r2
20735 @opindex m32r2
20736 Generate code for the M32R/2@.
20738 @item -m32rx
20739 @opindex m32rx
20740 Generate code for the M32R/X@.
20742 @item -m32r
20743 @opindex m32r
20744 Generate code for the M32R@.  This is the default.
20746 @item -mmodel=small
20747 @opindex mmodel=small
20748 Assume all objects live in the lower 16MB of memory (so that their addresses
20749 can be loaded with the @code{ld24} instruction), and assume all subroutines
20750 are reachable with the @code{bl} instruction.
20751 This is the default.
20753 The addressability of a particular object can be set with the
20754 @code{model} attribute.
20756 @item -mmodel=medium
20757 @opindex mmodel=medium
20758 Assume objects may be anywhere in the 32-bit address space (the compiler
20759 generates @code{seth/add3} instructions to load their addresses), and
20760 assume all subroutines are reachable with the @code{bl} instruction.
20762 @item -mmodel=large
20763 @opindex mmodel=large
20764 Assume objects may be anywhere in the 32-bit address space (the compiler
20765 generates @code{seth/add3} instructions to load their addresses), and
20766 assume subroutines may not be reachable with the @code{bl} instruction
20767 (the compiler generates the much slower @code{seth/add3/jl}
20768 instruction sequence).
20770 @item -msdata=none
20771 @opindex msdata=none
20772 Disable use of the small data area.  Variables are put into
20773 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
20774 @code{section} attribute has been specified).
20775 This is the default.
20777 The small data area consists of sections @code{.sdata} and @code{.sbss}.
20778 Objects may be explicitly put in the small data area with the
20779 @code{section} attribute using one of these sections.
20781 @item -msdata=sdata
20782 @opindex msdata=sdata
20783 Put small global and static data in the small data area, but do not
20784 generate special code to reference them.
20786 @item -msdata=use
20787 @opindex msdata=use
20788 Put small global and static data in the small data area, and generate
20789 special instructions to reference them.
20791 @item -G @var{num}
20792 @opindex G
20793 @cindex smaller data references
20794 Put global and static objects less than or equal to @var{num} bytes
20795 into the small data or BSS sections instead of the normal data or BSS
20796 sections.  The default value of @var{num} is 8.
20797 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
20798 for this option to have any effect.
20800 All modules should be compiled with the same @option{-G @var{num}} value.
20801 Compiling with different values of @var{num} may or may not work; if it
20802 doesn't the linker gives an error message---incorrect code is not
20803 generated.
20805 @item -mdebug
20806 @opindex mdebug
20807 Makes the M32R-specific code in the compiler display some statistics
20808 that might help in debugging programs.
20810 @item -malign-loops
20811 @opindex malign-loops
20812 Align all loops to a 32-byte boundary.
20814 @item -mno-align-loops
20815 @opindex mno-align-loops
20816 Do not enforce a 32-byte alignment for loops.  This is the default.
20818 @item -missue-rate=@var{number}
20819 @opindex missue-rate=@var{number}
20820 Issue @var{number} instructions per cycle.  @var{number} can only be 1
20821 or 2.
20823 @item -mbranch-cost=@var{number}
20824 @opindex mbranch-cost=@var{number}
20825 @var{number} can only be 1 or 2.  If it is 1 then branches are
20826 preferred over conditional code, if it is 2, then the opposite applies.
20828 @item -mflush-trap=@var{number}
20829 @opindex mflush-trap=@var{number}
20830 Specifies the trap number to use to flush the cache.  The default is
20831 12.  Valid numbers are between 0 and 15 inclusive.
20833 @item -mno-flush-trap
20834 @opindex mno-flush-trap
20835 Specifies that the cache cannot be flushed by using a trap.
20837 @item -mflush-func=@var{name}
20838 @opindex mflush-func=@var{name}
20839 Specifies the name of the operating system function to call to flush
20840 the cache.  The default is @samp{_flush_cache}, but a function call
20841 is only used if a trap is not available.
20843 @item -mno-flush-func
20844 @opindex mno-flush-func
20845 Indicates that there is no OS function for flushing the cache.
20847 @end table
20849 @node M680x0 Options
20850 @subsection M680x0 Options
20851 @cindex M680x0 options
20853 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
20854 The default settings depend on which architecture was selected when
20855 the compiler was configured; the defaults for the most common choices
20856 are given below.
20858 @table @gcctabopt
20859 @item -march=@var{arch}
20860 @opindex march
20861 Generate code for a specific M680x0 or ColdFire instruction set
20862 architecture.  Permissible values of @var{arch} for M680x0
20863 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
20864 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}.  ColdFire
20865 architectures are selected according to Freescale's ISA classification
20866 and the permissible values are: @samp{isaa}, @samp{isaaplus},
20867 @samp{isab} and @samp{isac}.
20869 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
20870 code for a ColdFire target.  The @var{arch} in this macro is one of the
20871 @option{-march} arguments given above.
20873 When used together, @option{-march} and @option{-mtune} select code
20874 that runs on a family of similar processors but that is optimized
20875 for a particular microarchitecture.
20877 @item -mcpu=@var{cpu}
20878 @opindex mcpu
20879 Generate code for a specific M680x0 or ColdFire processor.
20880 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
20881 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
20882 and @samp{cpu32}.  The ColdFire @var{cpu}s are given by the table
20883 below, which also classifies the CPUs into families:
20885 @multitable @columnfractions 0.20 0.80
20886 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
20887 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
20888 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
20889 @item @samp{5206e} @tab @samp{5206e}
20890 @item @samp{5208} @tab @samp{5207} @samp{5208}
20891 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
20892 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
20893 @item @samp{5216} @tab @samp{5214} @samp{5216}
20894 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
20895 @item @samp{5225} @tab @samp{5224} @samp{5225}
20896 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
20897 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
20898 @item @samp{5249} @tab @samp{5249}
20899 @item @samp{5250} @tab @samp{5250}
20900 @item @samp{5271} @tab @samp{5270} @samp{5271}
20901 @item @samp{5272} @tab @samp{5272}
20902 @item @samp{5275} @tab @samp{5274} @samp{5275}
20903 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
20904 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
20905 @item @samp{5307} @tab @samp{5307}
20906 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
20907 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
20908 @item @samp{5407} @tab @samp{5407}
20909 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
20910 @end multitable
20912 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
20913 @var{arch} is compatible with @var{cpu}.  Other combinations of
20914 @option{-mcpu} and @option{-march} are rejected.
20916 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
20917 @var{cpu} is selected.  It also defines @code{__mcf_family_@var{family}},
20918 where the value of @var{family} is given by the table above.
20920 @item -mtune=@var{tune}
20921 @opindex mtune
20922 Tune the code for a particular microarchitecture within the
20923 constraints set by @option{-march} and @option{-mcpu}.
20924 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
20925 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
20926 and @samp{cpu32}.  The ColdFire microarchitectures
20927 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
20929 You can also use @option{-mtune=68020-40} for code that needs
20930 to run relatively well on 68020, 68030 and 68040 targets.
20931 @option{-mtune=68020-60} is similar but includes 68060 targets
20932 as well.  These two options select the same tuning decisions as
20933 @option{-m68020-40} and @option{-m68020-60} respectively.
20935 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
20936 when tuning for 680x0 architecture @var{arch}.  It also defines
20937 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
20938 option is used.  If GCC is tuning for a range of architectures,
20939 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
20940 it defines the macros for every architecture in the range.
20942 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
20943 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
20944 of the arguments given above.
20946 @item -m68000
20947 @itemx -mc68000
20948 @opindex m68000
20949 @opindex mc68000
20950 Generate output for a 68000.  This is the default
20951 when the compiler is configured for 68000-based systems.
20952 It is equivalent to @option{-march=68000}.
20954 Use this option for microcontrollers with a 68000 or EC000 core,
20955 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
20957 @item -m68010
20958 @opindex m68010
20959 Generate output for a 68010.  This is the default
20960 when the compiler is configured for 68010-based systems.
20961 It is equivalent to @option{-march=68010}.
20963 @item -m68020
20964 @itemx -mc68020
20965 @opindex m68020
20966 @opindex mc68020
20967 Generate output for a 68020.  This is the default
20968 when the compiler is configured for 68020-based systems.
20969 It is equivalent to @option{-march=68020}.
20971 @item -m68030
20972 @opindex m68030
20973 Generate output for a 68030.  This is the default when the compiler is
20974 configured for 68030-based systems.  It is equivalent to
20975 @option{-march=68030}.
20977 @item -m68040
20978 @opindex m68040
20979 Generate output for a 68040.  This is the default when the compiler is
20980 configured for 68040-based systems.  It is equivalent to
20981 @option{-march=68040}.
20983 This option inhibits the use of 68881/68882 instructions that have to be
20984 emulated by software on the 68040.  Use this option if your 68040 does not
20985 have code to emulate those instructions.
20987 @item -m68060
20988 @opindex m68060
20989 Generate output for a 68060.  This is the default when the compiler is
20990 configured for 68060-based systems.  It is equivalent to
20991 @option{-march=68060}.
20993 This option inhibits the use of 68020 and 68881/68882 instructions that
20994 have to be emulated by software on the 68060.  Use this option if your 68060
20995 does not have code to emulate those instructions.
20997 @item -mcpu32
20998 @opindex mcpu32
20999 Generate output for a CPU32.  This is the default
21000 when the compiler is configured for CPU32-based systems.
21001 It is equivalent to @option{-march=cpu32}.
21003 Use this option for microcontrollers with a
21004 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
21005 68336, 68340, 68341, 68349 and 68360.
21007 @item -m5200
21008 @opindex m5200
21009 Generate output for a 520X ColdFire CPU@.  This is the default
21010 when the compiler is configured for 520X-based systems.
21011 It is equivalent to @option{-mcpu=5206}, and is now deprecated
21012 in favor of that option.
21014 Use this option for microcontroller with a 5200 core, including
21015 the MCF5202, MCF5203, MCF5204 and MCF5206.
21017 @item -m5206e
21018 @opindex m5206e
21019 Generate output for a 5206e ColdFire CPU@.  The option is now
21020 deprecated in favor of the equivalent @option{-mcpu=5206e}.
21022 @item -m528x
21023 @opindex m528x
21024 Generate output for a member of the ColdFire 528X family.
21025 The option is now deprecated in favor of the equivalent
21026 @option{-mcpu=528x}.
21028 @item -m5307
21029 @opindex m5307
21030 Generate output for a ColdFire 5307 CPU@.  The option is now deprecated
21031 in favor of the equivalent @option{-mcpu=5307}.
21033 @item -m5407
21034 @opindex m5407
21035 Generate output for a ColdFire 5407 CPU@.  The option is now deprecated
21036 in favor of the equivalent @option{-mcpu=5407}.
21038 @item -mcfv4e
21039 @opindex mcfv4e
21040 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
21041 This includes use of hardware floating-point instructions.
21042 The option is equivalent to @option{-mcpu=547x}, and is now
21043 deprecated in favor of that option.
21045 @item -m68020-40
21046 @opindex m68020-40
21047 Generate output for a 68040, without using any of the new instructions.
21048 This results in code that can run relatively efficiently on either a
21049 68020/68881 or a 68030 or a 68040.  The generated code does use the
21050 68881 instructions that are emulated on the 68040.
21052 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
21054 @item -m68020-60
21055 @opindex m68020-60
21056 Generate output for a 68060, without using any of the new instructions.
21057 This results in code that can run relatively efficiently on either a
21058 68020/68881 or a 68030 or a 68040.  The generated code does use the
21059 68881 instructions that are emulated on the 68060.
21061 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
21063 @item -mhard-float
21064 @itemx -m68881
21065 @opindex mhard-float
21066 @opindex m68881
21067 Generate floating-point instructions.  This is the default for 68020
21068 and above, and for ColdFire devices that have an FPU@.  It defines the
21069 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
21070 on ColdFire targets.
21072 @item -msoft-float
21073 @opindex msoft-float
21074 Do not generate floating-point instructions; use library calls instead.
21075 This is the default for 68000, 68010, and 68832 targets.  It is also
21076 the default for ColdFire devices that have no FPU.
21078 @item -mdiv
21079 @itemx -mno-div
21080 @opindex mdiv
21081 @opindex mno-div
21082 Generate (do not generate) ColdFire hardware divide and remainder
21083 instructions.  If @option{-march} is used without @option{-mcpu},
21084 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
21085 architectures.  Otherwise, the default is taken from the target CPU
21086 (either the default CPU, or the one specified by @option{-mcpu}).  For
21087 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
21088 @option{-mcpu=5206e}.
21090 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
21092 @item -mshort
21093 @opindex mshort
21094 Consider type @code{int} to be 16 bits wide, like @code{short int}.
21095 Additionally, parameters passed on the stack are also aligned to a
21096 16-bit boundary even on targets whose API mandates promotion to 32-bit.
21098 @item -mno-short
21099 @opindex mno-short
21100 Do not consider type @code{int} to be 16 bits wide.  This is the default.
21102 @item -mnobitfield
21103 @itemx -mno-bitfield
21104 @opindex mnobitfield
21105 @opindex mno-bitfield
21106 Do not use the bit-field instructions.  The @option{-m68000}, @option{-mcpu32}
21107 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
21109 @item -mbitfield
21110 @opindex mbitfield
21111 Do use the bit-field instructions.  The @option{-m68020} option implies
21112 @option{-mbitfield}.  This is the default if you use a configuration
21113 designed for a 68020.
21115 @item -mrtd
21116 @opindex mrtd
21117 Use a different function-calling convention, in which functions
21118 that take a fixed number of arguments return with the @code{rtd}
21119 instruction, which pops their arguments while returning.  This
21120 saves one instruction in the caller since there is no need to pop
21121 the arguments there.
21123 This calling convention is incompatible with the one normally
21124 used on Unix, so you cannot use it if you need to call libraries
21125 compiled with the Unix compiler.
21127 Also, you must provide function prototypes for all functions that
21128 take variable numbers of arguments (including @code{printf});
21129 otherwise incorrect code is generated for calls to those
21130 functions.
21132 In addition, seriously incorrect code results if you call a
21133 function with too many arguments.  (Normally, extra arguments are
21134 harmlessly ignored.)
21136 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
21137 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
21139 The default is @option{-mno-rtd}.
21141 @item -malign-int
21142 @itemx -mno-align-int
21143 @opindex malign-int
21144 @opindex mno-align-int
21145 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
21146 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
21147 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
21148 Aligning variables on 32-bit boundaries produces code that runs somewhat
21149 faster on processors with 32-bit busses at the expense of more memory.
21151 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
21152 aligns structures containing the above types differently than
21153 most published application binary interface specifications for the m68k.
21155 @item -mpcrel
21156 @opindex mpcrel
21157 Use the pc-relative addressing mode of the 68000 directly, instead of
21158 using a global offset table.  At present, this option implies @option{-fpic},
21159 allowing at most a 16-bit offset for pc-relative addressing.  @option{-fPIC} is
21160 not presently supported with @option{-mpcrel}, though this could be supported for
21161 68020 and higher processors.
21163 @item -mno-strict-align
21164 @itemx -mstrict-align
21165 @opindex mno-strict-align
21166 @opindex mstrict-align
21167 Do not (do) assume that unaligned memory references are handled by
21168 the system.
21170 @item -msep-data
21171 Generate code that allows the data segment to be located in a different
21172 area of memory from the text segment.  This allows for execute-in-place in
21173 an environment without virtual memory management.  This option implies
21174 @option{-fPIC}.
21176 @item -mno-sep-data
21177 Generate code that assumes that the data segment follows the text segment.
21178 This is the default.
21180 @item -mid-shared-library
21181 Generate code that supports shared libraries via the library ID method.
21182 This allows for execute-in-place and shared libraries in an environment
21183 without virtual memory management.  This option implies @option{-fPIC}.
21185 @item -mno-id-shared-library
21186 Generate code that doesn't assume ID-based shared libraries are being used.
21187 This is the default.
21189 @item -mshared-library-id=n
21190 Specifies the identification number of the ID-based shared library being
21191 compiled.  Specifying a value of 0 generates more compact code; specifying
21192 other values forces the allocation of that number to the current
21193 library, but is no more space- or time-efficient than omitting this option.
21195 @item -mxgot
21196 @itemx -mno-xgot
21197 @opindex mxgot
21198 @opindex mno-xgot
21199 When generating position-independent code for ColdFire, generate code
21200 that works if the GOT has more than 8192 entries.  This code is
21201 larger and slower than code generated without this option.  On M680x0
21202 processors, this option is not needed; @option{-fPIC} suffices.
21204 GCC normally uses a single instruction to load values from the GOT@.
21205 While this is relatively efficient, it only works if the GOT
21206 is smaller than about 64k.  Anything larger causes the linker
21207 to report an error such as:
21209 @cindex relocation truncated to fit (ColdFire)
21210 @smallexample
21211 relocation truncated to fit: R_68K_GOT16O foobar
21212 @end smallexample
21214 If this happens, you should recompile your code with @option{-mxgot}.
21215 It should then work with very large GOTs.  However, code generated with
21216 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
21217 the value of a global symbol.
21219 Note that some linkers, including newer versions of the GNU linker,
21220 can create multiple GOTs and sort GOT entries.  If you have such a linker,
21221 you should only need to use @option{-mxgot} when compiling a single
21222 object file that accesses more than 8192 GOT entries.  Very few do.
21224 These options have no effect unless GCC is generating
21225 position-independent code.
21227 @item -mlong-jump-table-offsets
21228 @opindex mlong-jump-table-offsets
21229 Use 32-bit offsets in @code{switch} tables.  The default is to use
21230 16-bit offsets.
21232 @end table
21234 @node MCore Options
21235 @subsection MCore Options
21236 @cindex MCore options
21238 These are the @samp{-m} options defined for the Motorola M*Core
21239 processors.
21241 @table @gcctabopt
21243 @item -mhardlit
21244 @itemx -mno-hardlit
21245 @opindex mhardlit
21246 @opindex mno-hardlit
21247 Inline constants into the code stream if it can be done in two
21248 instructions or less.
21250 @item -mdiv
21251 @itemx -mno-div
21252 @opindex mdiv
21253 @opindex mno-div
21254 Use the divide instruction.  (Enabled by default).
21256 @item -mrelax-immediate
21257 @itemx -mno-relax-immediate
21258 @opindex mrelax-immediate
21259 @opindex mno-relax-immediate
21260 Allow arbitrary-sized immediates in bit operations.
21262 @item -mwide-bitfields
21263 @itemx -mno-wide-bitfields
21264 @opindex mwide-bitfields
21265 @opindex mno-wide-bitfields
21266 Always treat bit-fields as @code{int}-sized.
21268 @item -m4byte-functions
21269 @itemx -mno-4byte-functions
21270 @opindex m4byte-functions
21271 @opindex mno-4byte-functions
21272 Force all functions to be aligned to a 4-byte boundary.
21274 @item -mcallgraph-data
21275 @itemx -mno-callgraph-data
21276 @opindex mcallgraph-data
21277 @opindex mno-callgraph-data
21278 Emit callgraph information.
21280 @item -mslow-bytes
21281 @itemx -mno-slow-bytes
21282 @opindex mslow-bytes
21283 @opindex mno-slow-bytes
21284 Prefer word access when reading byte quantities.
21286 @item -mlittle-endian
21287 @itemx -mbig-endian
21288 @opindex mlittle-endian
21289 @opindex mbig-endian
21290 Generate code for a little-endian target.
21292 @item -m210
21293 @itemx -m340
21294 @opindex m210
21295 @opindex m340
21296 Generate code for the 210 processor.
21298 @item -mno-lsim
21299 @opindex mno-lsim
21300 Assume that runtime support has been provided and so omit the
21301 simulator library (@file{libsim.a)} from the linker command line.
21303 @item -mstack-increment=@var{size}
21304 @opindex mstack-increment
21305 Set the maximum amount for a single stack increment operation.  Large
21306 values can increase the speed of programs that contain functions
21307 that need a large amount of stack space, but they can also trigger a
21308 segmentation fault if the stack is extended too much.  The default
21309 value is 0x1000.
21311 @end table
21313 @node MeP Options
21314 @subsection MeP Options
21315 @cindex MeP options
21317 @table @gcctabopt
21319 @item -mabsdiff
21320 @opindex mabsdiff
21321 Enables the @code{abs} instruction, which is the absolute difference
21322 between two registers.
21324 @item -mall-opts
21325 @opindex mall-opts
21326 Enables all the optional instructions---average, multiply, divide, bit
21327 operations, leading zero, absolute difference, min/max, clip, and
21328 saturation.
21331 @item -maverage
21332 @opindex maverage
21333 Enables the @code{ave} instruction, which computes the average of two
21334 registers.
21336 @item -mbased=@var{n}
21337 @opindex mbased=
21338 Variables of size @var{n} bytes or smaller are placed in the
21339 @code{.based} section by default.  Based variables use the @code{$tp}
21340 register as a base register, and there is a 128-byte limit to the
21341 @code{.based} section.
21343 @item -mbitops
21344 @opindex mbitops
21345 Enables the bit operation instructions---bit test (@code{btstm}), set
21346 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
21347 test-and-set (@code{tas}).
21349 @item -mc=@var{name}
21350 @opindex mc=
21351 Selects which section constant data is placed in.  @var{name} may
21352 be @samp{tiny}, @samp{near}, or @samp{far}.
21354 @item -mclip
21355 @opindex mclip
21356 Enables the @code{clip} instruction.  Note that @option{-mclip} is not
21357 useful unless you also provide @option{-mminmax}.
21359 @item -mconfig=@var{name}
21360 @opindex mconfig=
21361 Selects one of the built-in core configurations.  Each MeP chip has
21362 one or more modules in it; each module has a core CPU and a variety of
21363 coprocessors, optional instructions, and peripherals.  The
21364 @code{MeP-Integrator} tool, not part of GCC, provides these
21365 configurations through this option; using this option is the same as
21366 using all the corresponding command-line options.  The default
21367 configuration is @samp{default}.
21369 @item -mcop
21370 @opindex mcop
21371 Enables the coprocessor instructions.  By default, this is a 32-bit
21372 coprocessor.  Note that the coprocessor is normally enabled via the
21373 @option{-mconfig=} option.
21375 @item -mcop32
21376 @opindex mcop32
21377 Enables the 32-bit coprocessor's instructions.
21379 @item -mcop64
21380 @opindex mcop64
21381 Enables the 64-bit coprocessor's instructions.
21383 @item -mivc2
21384 @opindex mivc2
21385 Enables IVC2 scheduling.  IVC2 is a 64-bit VLIW coprocessor.
21387 @item -mdc
21388 @opindex mdc
21389 Causes constant variables to be placed in the @code{.near} section.
21391 @item -mdiv
21392 @opindex mdiv
21393 Enables the @code{div} and @code{divu} instructions.
21395 @item -meb
21396 @opindex meb
21397 Generate big-endian code.
21399 @item -mel
21400 @opindex mel
21401 Generate little-endian code.
21403 @item -mio-volatile
21404 @opindex mio-volatile
21405 Tells the compiler that any variable marked with the @code{io}
21406 attribute is to be considered volatile.
21408 @item -ml
21409 @opindex ml
21410 Causes variables to be assigned to the @code{.far} section by default.
21412 @item -mleadz
21413 @opindex mleadz
21414 Enables the @code{leadz} (leading zero) instruction.
21416 @item -mm
21417 @opindex mm
21418 Causes variables to be assigned to the @code{.near} section by default.
21420 @item -mminmax
21421 @opindex mminmax
21422 Enables the @code{min} and @code{max} instructions.
21424 @item -mmult
21425 @opindex mmult
21426 Enables the multiplication and multiply-accumulate instructions.
21428 @item -mno-opts
21429 @opindex mno-opts
21430 Disables all the optional instructions enabled by @option{-mall-opts}.
21432 @item -mrepeat
21433 @opindex mrepeat
21434 Enables the @code{repeat} and @code{erepeat} instructions, used for
21435 low-overhead looping.
21437 @item -ms
21438 @opindex ms
21439 Causes all variables to default to the @code{.tiny} section.  Note
21440 that there is a 65536-byte limit to this section.  Accesses to these
21441 variables use the @code{%gp} base register.
21443 @item -msatur
21444 @opindex msatur
21445 Enables the saturation instructions.  Note that the compiler does not
21446 currently generate these itself, but this option is included for
21447 compatibility with other tools, like @code{as}.
21449 @item -msdram
21450 @opindex msdram
21451 Link the SDRAM-based runtime instead of the default ROM-based runtime.
21453 @item -msim
21454 @opindex msim
21455 Link the simulator run-time libraries.
21457 @item -msimnovec
21458 @opindex msimnovec
21459 Link the simulator runtime libraries, excluding built-in support
21460 for reset and exception vectors and tables.
21462 @item -mtf
21463 @opindex mtf
21464 Causes all functions to default to the @code{.far} section.  Without
21465 this option, functions default to the @code{.near} section.
21467 @item -mtiny=@var{n}
21468 @opindex mtiny=
21469 Variables that are @var{n} bytes or smaller are allocated to the
21470 @code{.tiny} section.  These variables use the @code{$gp} base
21471 register.  The default for this option is 4, but note that there's a
21472 65536-byte limit to the @code{.tiny} section.
21474 @end table
21476 @node MicroBlaze Options
21477 @subsection MicroBlaze Options
21478 @cindex MicroBlaze Options
21480 @table @gcctabopt
21482 @item -msoft-float
21483 @opindex msoft-float
21484 Use software emulation for floating point (default).
21486 @item -mhard-float
21487 @opindex mhard-float
21488 Use hardware floating-point instructions.
21490 @item -mmemcpy
21491 @opindex mmemcpy
21492 Do not optimize block moves, use @code{memcpy}.
21494 @item -mno-clearbss
21495 @opindex mno-clearbss
21496 This option is deprecated.  Use @option{-fno-zero-initialized-in-bss} instead.
21498 @item -mcpu=@var{cpu-type}
21499 @opindex mcpu=
21500 Use features of, and schedule code for, the given CPU.
21501 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
21502 where @var{X} is a major version, @var{YY} is the minor version, and
21503 @var{Z} is compatibility code.  Example values are @samp{v3.00.a},
21504 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v6.00.a}.
21506 @item -mxl-soft-mul
21507 @opindex mxl-soft-mul
21508 Use software multiply emulation (default).
21510 @item -mxl-soft-div
21511 @opindex mxl-soft-div
21512 Use software emulation for divides (default).
21514 @item -mxl-barrel-shift
21515 @opindex mxl-barrel-shift
21516 Use the hardware barrel shifter.
21518 @item -mxl-pattern-compare
21519 @opindex mxl-pattern-compare
21520 Use pattern compare instructions.
21522 @item -msmall-divides
21523 @opindex msmall-divides
21524 Use table lookup optimization for small signed integer divisions.
21526 @item -mxl-stack-check
21527 @opindex mxl-stack-check
21528 This option is deprecated.  Use @option{-fstack-check} instead.
21530 @item -mxl-gp-opt
21531 @opindex mxl-gp-opt
21532 Use GP-relative @code{.sdata}/@code{.sbss} sections.
21534 @item -mxl-multiply-high
21535 @opindex mxl-multiply-high
21536 Use multiply high instructions for high part of 32x32 multiply.
21538 @item -mxl-float-convert
21539 @opindex mxl-float-convert
21540 Use hardware floating-point conversion instructions.
21542 @item -mxl-float-sqrt
21543 @opindex mxl-float-sqrt
21544 Use hardware floating-point square root instruction.
21546 @item -mbig-endian
21547 @opindex mbig-endian
21548 Generate code for a big-endian target.
21550 @item -mlittle-endian
21551 @opindex mlittle-endian
21552 Generate code for a little-endian target.
21554 @item -mxl-reorder
21555 @opindex mxl-reorder
21556 Use reorder instructions (swap and byte reversed load/store).
21558 @item -mxl-mode-@var{app-model}
21559 Select application model @var{app-model}.  Valid models are
21560 @table @samp
21561 @item executable
21562 normal executable (default), uses startup code @file{crt0.o}.
21564 @item -mpic-data-is-text-relative
21565 @opindex mpic-data-is-text-relative
21566 Assume that the displacement between the text and data segments is fixed
21567 at static link time.  This allows data to be referenced by offset from start of
21568 text address instead of GOT since PC-relative addressing is not supported.
21570 @item xmdstub
21571 for use with Xilinx Microprocessor Debugger (XMD) based
21572 software intrusive debug agent called xmdstub. This uses startup file
21573 @file{crt1.o} and sets the start address of the program to 0x800.
21575 @item bootstrap
21576 for applications that are loaded using a bootloader.
21577 This model uses startup file @file{crt2.o} which does not contain a processor
21578 reset vector handler. This is suitable for transferring control on a
21579 processor reset to the bootloader rather than the application.
21581 @item novectors
21582 for applications that do not require any of the
21583 MicroBlaze vectors. This option may be useful for applications running
21584 within a monitoring application. This model uses @file{crt3.o} as a startup file.
21585 @end table
21587 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
21588 @option{-mxl-mode-@var{app-model}}.
21590 @end table
21592 @node MIPS Options
21593 @subsection MIPS Options
21594 @cindex MIPS options
21596 @table @gcctabopt
21598 @item -EB
21599 @opindex EB
21600 Generate big-endian code.
21602 @item -EL
21603 @opindex EL
21604 Generate little-endian code.  This is the default for @samp{mips*el-*-*}
21605 configurations.
21607 @item -march=@var{arch}
21608 @opindex march
21609 Generate code that runs on @var{arch}, which can be the name of a
21610 generic MIPS ISA, or the name of a particular processor.
21611 The ISA names are:
21612 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
21613 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
21614 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
21615 @samp{mips64r5} and @samp{mips64r6}.
21616 The processor names are:
21617 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
21618 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
21619 @samp{5kc}, @samp{5kf},
21620 @samp{20kc},
21621 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
21622 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
21623 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
21624 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
21625 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
21626 @samp{i6400}, @samp{i6500},
21627 @samp{interaptiv},
21628 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a}, @samp{gs464},
21629 @samp{gs464e}, @samp{gs264e},
21630 @samp{m4k},
21631 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
21632 @samp{m5100}, @samp{m5101},
21633 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
21634 @samp{orion},
21635 @samp{p5600}, @samp{p6600},
21636 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
21637 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r5900},
21638 @samp{r6000}, @samp{r8000},
21639 @samp{rm7000}, @samp{rm9000},
21640 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
21641 @samp{sb1},
21642 @samp{sr71000},
21643 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
21644 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
21645 @samp{xlr} and @samp{xlp}.
21646 The special value @samp{from-abi} selects the
21647 most compatible architecture for the selected ABI (that is,
21648 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
21650 The native Linux/GNU toolchain also supports the value @samp{native},
21651 which selects the best architecture option for the host processor.
21652 @option{-march=native} has no effect if GCC does not recognize
21653 the processor.
21655 In processor names, a final @samp{000} can be abbreviated as @samp{k}
21656 (for example, @option{-march=r2k}).  Prefixes are optional, and
21657 @samp{vr} may be written @samp{r}.
21659 Names of the form @samp{@var{n}f2_1} refer to processors with
21660 FPUs clocked at half the rate of the core, names of the form
21661 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
21662 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
21663 processors with FPUs clocked a ratio of 3:2 with respect to the core.
21664 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
21665 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
21666 accepted as synonyms for @samp{@var{n}f1_1}.
21668 GCC defines two macros based on the value of this option.  The first
21669 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
21670 a string.  The second has the form @code{_MIPS_ARCH_@var{foo}},
21671 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
21672 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
21673 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
21675 Note that the @code{_MIPS_ARCH} macro uses the processor names given
21676 above.  In other words, it has the full prefix and does not
21677 abbreviate @samp{000} as @samp{k}.  In the case of @samp{from-abi},
21678 the macro names the resolved architecture (either @code{"mips1"} or
21679 @code{"mips3"}).  It names the default architecture when no
21680 @option{-march} option is given.
21682 @item -mtune=@var{arch}
21683 @opindex mtune
21684 Optimize for @var{arch}.  Among other things, this option controls
21685 the way instructions are scheduled, and the perceived cost of arithmetic
21686 operations.  The list of @var{arch} values is the same as for
21687 @option{-march}.
21689 When this option is not used, GCC optimizes for the processor
21690 specified by @option{-march}.  By using @option{-march} and
21691 @option{-mtune} together, it is possible to generate code that
21692 runs on a family of processors, but optimize the code for one
21693 particular member of that family.
21695 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
21696 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
21697 @option{-march} ones described above.
21699 @item -mips1
21700 @opindex mips1
21701 Equivalent to @option{-march=mips1}.
21703 @item -mips2
21704 @opindex mips2
21705 Equivalent to @option{-march=mips2}.
21707 @item -mips3
21708 @opindex mips3
21709 Equivalent to @option{-march=mips3}.
21711 @item -mips4
21712 @opindex mips4
21713 Equivalent to @option{-march=mips4}.
21715 @item -mips32
21716 @opindex mips32
21717 Equivalent to @option{-march=mips32}.
21719 @item -mips32r3
21720 @opindex mips32r3
21721 Equivalent to @option{-march=mips32r3}.
21723 @item -mips32r5
21724 @opindex mips32r5
21725 Equivalent to @option{-march=mips32r5}.
21727 @item -mips32r6
21728 @opindex mips32r6
21729 Equivalent to @option{-march=mips32r6}.
21731 @item -mips64
21732 @opindex mips64
21733 Equivalent to @option{-march=mips64}.
21735 @item -mips64r2
21736 @opindex mips64r2
21737 Equivalent to @option{-march=mips64r2}.
21739 @item -mips64r3
21740 @opindex mips64r3
21741 Equivalent to @option{-march=mips64r3}.
21743 @item -mips64r5
21744 @opindex mips64r5
21745 Equivalent to @option{-march=mips64r5}.
21747 @item -mips64r6
21748 @opindex mips64r6
21749 Equivalent to @option{-march=mips64r6}.
21751 @item -mips16
21752 @itemx -mno-mips16
21753 @opindex mips16
21754 @opindex mno-mips16
21755 Generate (do not generate) MIPS16 code.  If GCC is targeting a
21756 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
21758 MIPS16 code generation can also be controlled on a per-function basis
21759 by means of @code{mips16} and @code{nomips16} attributes.
21760 @xref{Function Attributes}, for more information.
21762 @item -mflip-mips16
21763 @opindex mflip-mips16
21764 Generate MIPS16 code on alternating functions.  This option is provided
21765 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
21766 not intended for ordinary use in compiling user code.
21768 @item -minterlink-compressed
21769 @itemx -mno-interlink-compressed
21770 @opindex minterlink-compressed
21771 @opindex mno-interlink-compressed
21772 Require (do not require) that code using the standard (uncompressed) MIPS ISA
21773 be link-compatible with MIPS16 and microMIPS code, and vice versa.
21775 For example, code using the standard ISA encoding cannot jump directly
21776 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
21777 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
21778 knows that the target of the jump is not compressed.
21780 @item -minterlink-mips16
21781 @itemx -mno-interlink-mips16
21782 @opindex minterlink-mips16
21783 @opindex mno-interlink-mips16
21784 Aliases of @option{-minterlink-compressed} and
21785 @option{-mno-interlink-compressed}.  These options predate the microMIPS ASE
21786 and are retained for backwards compatibility.
21788 @item -mabi=32
21789 @itemx -mabi=o64
21790 @itemx -mabi=n32
21791 @itemx -mabi=64
21792 @itemx -mabi=eabi
21793 @opindex mabi=32
21794 @opindex mabi=o64
21795 @opindex mabi=n32
21796 @opindex mabi=64
21797 @opindex mabi=eabi
21798 Generate code for the given ABI@.
21800 Note that the EABI has a 32-bit and a 64-bit variant.  GCC normally
21801 generates 64-bit code when you select a 64-bit architecture, but you
21802 can use @option{-mgp32} to get 32-bit code instead.
21804 For information about the O64 ABI, see
21805 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
21807 GCC supports a variant of the o32 ABI in which floating-point registers
21808 are 64 rather than 32 bits wide.  You can select this combination with
21809 @option{-mabi=32} @option{-mfp64}.  This ABI relies on the @code{mthc1}
21810 and @code{mfhc1} instructions and is therefore only supported for
21811 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
21813 The register assignments for arguments and return values remain the
21814 same, but each scalar value is passed in a single 64-bit register
21815 rather than a pair of 32-bit registers.  For example, scalar
21816 floating-point values are returned in @samp{$f0} only, not a
21817 @samp{$f0}/@samp{$f1} pair.  The set of call-saved registers also
21818 remains the same in that the even-numbered double-precision registers
21819 are saved.
21821 Two additional variants of the o32 ABI are supported to enable
21822 a transition from 32-bit to 64-bit registers.  These are FPXX
21823 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
21824 The FPXX extension mandates that all code must execute correctly
21825 when run using 32-bit or 64-bit registers.  The code can be interlinked
21826 with either FP32 or FP64, but not both.
21827 The FP64A extension is similar to the FP64 extension but forbids the
21828 use of odd-numbered single-precision registers.  This can be used
21829 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
21830 processors and allows both FP32 and FP64A code to interlink and
21831 run in the same process without changing FPU modes.
21833 @item -mabicalls
21834 @itemx -mno-abicalls
21835 @opindex mabicalls
21836 @opindex mno-abicalls
21837 Generate (do not generate) code that is suitable for SVR4-style
21838 dynamic objects.  @option{-mabicalls} is the default for SVR4-based
21839 systems.
21841 @item -mshared
21842 @itemx -mno-shared
21843 Generate (do not generate) code that is fully position-independent,
21844 and that can therefore be linked into shared libraries.  This option
21845 only affects @option{-mabicalls}.
21847 All @option{-mabicalls} code has traditionally been position-independent,
21848 regardless of options like @option{-fPIC} and @option{-fpic}.  However,
21849 as an extension, the GNU toolchain allows executables to use absolute
21850 accesses for locally-binding symbols.  It can also use shorter GP
21851 initialization sequences and generate direct calls to locally-defined
21852 functions.  This mode is selected by @option{-mno-shared}.
21854 @option{-mno-shared} depends on binutils 2.16 or higher and generates
21855 objects that can only be linked by the GNU linker.  However, the option
21856 does not affect the ABI of the final executable; it only affects the ABI
21857 of relocatable objects.  Using @option{-mno-shared} generally makes
21858 executables both smaller and quicker.
21860 @option{-mshared} is the default.
21862 @item -mplt
21863 @itemx -mno-plt
21864 @opindex mplt
21865 @opindex mno-plt
21866 Assume (do not assume) that the static and dynamic linkers
21867 support PLTs and copy relocations.  This option only affects
21868 @option{-mno-shared -mabicalls}.  For the n64 ABI, this option
21869 has no effect without @option{-msym32}.
21871 You can make @option{-mplt} the default by configuring
21872 GCC with @option{--with-mips-plt}.  The default is
21873 @option{-mno-plt} otherwise.
21875 @item -mxgot
21876 @itemx -mno-xgot
21877 @opindex mxgot
21878 @opindex mno-xgot
21879 Lift (do not lift) the usual restrictions on the size of the global
21880 offset table.
21882 GCC normally uses a single instruction to load values from the GOT@.
21883 While this is relatively efficient, it only works if the GOT
21884 is smaller than about 64k.  Anything larger causes the linker
21885 to report an error such as:
21887 @cindex relocation truncated to fit (MIPS)
21888 @smallexample
21889 relocation truncated to fit: R_MIPS_GOT16 foobar
21890 @end smallexample
21892 If this happens, you should recompile your code with @option{-mxgot}.
21893 This works with very large GOTs, although the code is also
21894 less efficient, since it takes three instructions to fetch the
21895 value of a global symbol.
21897 Note that some linkers can create multiple GOTs.  If you have such a
21898 linker, you should only need to use @option{-mxgot} when a single object
21899 file accesses more than 64k's worth of GOT entries.  Very few do.
21901 These options have no effect unless GCC is generating position
21902 independent code.
21904 @item -mgp32
21905 @opindex mgp32
21906 Assume that general-purpose registers are 32 bits wide.
21908 @item -mgp64
21909 @opindex mgp64
21910 Assume that general-purpose registers are 64 bits wide.
21912 @item -mfp32
21913 @opindex mfp32
21914 Assume that floating-point registers are 32 bits wide.
21916 @item -mfp64
21917 @opindex mfp64
21918 Assume that floating-point registers are 64 bits wide.
21920 @item -mfpxx
21921 @opindex mfpxx
21922 Do not assume the width of floating-point registers.
21924 @item -mhard-float
21925 @opindex mhard-float
21926 Use floating-point coprocessor instructions.
21928 @item -msoft-float
21929 @opindex msoft-float
21930 Do not use floating-point coprocessor instructions.  Implement
21931 floating-point calculations using library calls instead.
21933 @item -mno-float
21934 @opindex mno-float
21935 Equivalent to @option{-msoft-float}, but additionally asserts that the
21936 program being compiled does not perform any floating-point operations.
21937 This option is presently supported only by some bare-metal MIPS
21938 configurations, where it may select a special set of libraries
21939 that lack all floating-point support (including, for example, the
21940 floating-point @code{printf} formats).  
21941 If code compiled with @option{-mno-float} accidentally contains
21942 floating-point operations, it is likely to suffer a link-time
21943 or run-time failure.
21945 @item -msingle-float
21946 @opindex msingle-float
21947 Assume that the floating-point coprocessor only supports single-precision
21948 operations.
21950 @item -mdouble-float
21951 @opindex mdouble-float
21952 Assume that the floating-point coprocessor supports double-precision
21953 operations.  This is the default.
21955 @item -modd-spreg
21956 @itemx -mno-odd-spreg
21957 @opindex modd-spreg
21958 @opindex mno-odd-spreg
21959 Enable the use of odd-numbered single-precision floating-point registers
21960 for the o32 ABI.  This is the default for processors that are known to
21961 support these registers.  When using the o32 FPXX ABI, @option{-mno-odd-spreg}
21962 is set by default.
21964 @item -mabs=2008
21965 @itemx -mabs=legacy
21966 @opindex mabs=2008
21967 @opindex mabs=legacy
21968 These options control the treatment of the special not-a-number (NaN)
21969 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
21970 @code{neg.@i{fmt}} machine instructions.
21972 By default or when @option{-mabs=legacy} is used the legacy
21973 treatment is selected.  In this case these instructions are considered
21974 arithmetic and avoided where correct operation is required and the
21975 input operand might be a NaN.  A longer sequence of instructions that
21976 manipulate the sign bit of floating-point datum manually is used
21977 instead unless the @option{-ffinite-math-only} option has also been
21978 specified.
21980 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment.  In
21981 this case these instructions are considered non-arithmetic and therefore
21982 operating correctly in all cases, including in particular where the
21983 input operand is a NaN.  These instructions are therefore always used
21984 for the respective operations.
21986 @item -mnan=2008
21987 @itemx -mnan=legacy
21988 @opindex mnan=2008
21989 @opindex mnan=legacy
21990 These options control the encoding of the special not-a-number (NaN)
21991 IEEE 754 floating-point data.
21993 The @option{-mnan=legacy} option selects the legacy encoding.  In this
21994 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
21995 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
21996 by the first bit of their trailing significand field being 1.
21998 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding.  In
21999 this case qNaNs are denoted by the first bit of their trailing
22000 significand field being 1, whereas sNaNs are denoted by the first bit of
22001 their trailing significand field being 0.
22003 The default is @option{-mnan=legacy} unless GCC has been configured with
22004 @option{--with-nan=2008}.
22006 @item -mllsc
22007 @itemx -mno-llsc
22008 @opindex mllsc
22009 @opindex mno-llsc
22010 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
22011 implement atomic memory built-in functions.  When neither option is
22012 specified, GCC uses the instructions if the target architecture
22013 supports them.
22015 @option{-mllsc} is useful if the runtime environment can emulate the
22016 instructions and @option{-mno-llsc} can be useful when compiling for
22017 nonstandard ISAs.  You can make either option the default by
22018 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
22019 respectively.  @option{--with-llsc} is the default for some
22020 configurations; see the installation documentation for details.
22022 @item -mdsp
22023 @itemx -mno-dsp
22024 @opindex mdsp
22025 @opindex mno-dsp
22026 Use (do not use) revision 1 of the MIPS DSP ASE@.
22027 @xref{MIPS DSP Built-in Functions}.  This option defines the
22028 preprocessor macro @code{__mips_dsp}.  It also defines
22029 @code{__mips_dsp_rev} to 1.
22031 @item -mdspr2
22032 @itemx -mno-dspr2
22033 @opindex mdspr2
22034 @opindex mno-dspr2
22035 Use (do not use) revision 2 of the MIPS DSP ASE@.
22036 @xref{MIPS DSP Built-in Functions}.  This option defines the
22037 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
22038 It also defines @code{__mips_dsp_rev} to 2.
22040 @item -msmartmips
22041 @itemx -mno-smartmips
22042 @opindex msmartmips
22043 @opindex mno-smartmips
22044 Use (do not use) the MIPS SmartMIPS ASE.
22046 @item -mpaired-single
22047 @itemx -mno-paired-single
22048 @opindex mpaired-single
22049 @opindex mno-paired-single
22050 Use (do not use) paired-single floating-point instructions.
22051 @xref{MIPS Paired-Single Support}.  This option requires
22052 hardware floating-point support to be enabled.
22054 @item -mdmx
22055 @itemx -mno-mdmx
22056 @opindex mdmx
22057 @opindex mno-mdmx
22058 Use (do not use) MIPS Digital Media Extension instructions.
22059 This option can only be used when generating 64-bit code and requires
22060 hardware floating-point support to be enabled.
22062 @item -mips3d
22063 @itemx -mno-mips3d
22064 @opindex mips3d
22065 @opindex mno-mips3d
22066 Use (do not use) the MIPS-3D ASE@.  @xref{MIPS-3D Built-in Functions}.
22067 The option @option{-mips3d} implies @option{-mpaired-single}.
22069 @item -mmicromips
22070 @itemx -mno-micromips
22071 @opindex mmicromips
22072 @opindex mno-mmicromips
22073 Generate (do not generate) microMIPS code.
22075 MicroMIPS code generation can also be controlled on a per-function basis
22076 by means of @code{micromips} and @code{nomicromips} attributes.
22077 @xref{Function Attributes}, for more information.
22079 @item -mmt
22080 @itemx -mno-mt
22081 @opindex mmt
22082 @opindex mno-mt
22083 Use (do not use) MT Multithreading instructions.
22085 @item -mmcu
22086 @itemx -mno-mcu
22087 @opindex mmcu
22088 @opindex mno-mcu
22089 Use (do not use) the MIPS MCU ASE instructions.
22091 @item -meva
22092 @itemx -mno-eva
22093 @opindex meva
22094 @opindex mno-eva
22095 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
22097 @item -mvirt
22098 @itemx -mno-virt
22099 @opindex mvirt
22100 @opindex mno-virt
22101 Use (do not use) the MIPS Virtualization (VZ) instructions.
22103 @item -mxpa
22104 @itemx -mno-xpa
22105 @opindex mxpa
22106 @opindex mno-xpa
22107 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
22109 @item -mcrc
22110 @itemx -mno-crc
22111 @opindex mcrc
22112 @opindex mno-crc
22113 Use (do not use) the MIPS Cyclic Redundancy Check (CRC) instructions.
22115 @item -mginv
22116 @itemx -mno-ginv
22117 @opindex mginv
22118 @opindex mno-ginv
22119 Use (do not use) the MIPS Global INValidate (GINV) instructions.
22121 @item -mloongson-mmi
22122 @itemx -mno-loongson-mmi
22123 @opindex mloongson-mmi
22124 @opindex mno-loongson-mmi
22125 Use (do not use) the MIPS Loongson MultiMedia extensions Instructions (MMI).
22127 @item -mloongson-ext
22128 @itemx -mno-loongson-ext
22129 @opindex mloongson-ext
22130 @opindex mno-loongson-ext
22131 Use (do not use) the MIPS Loongson EXTensions (EXT) instructions.
22133 @item -mloongson-ext2
22134 @itemx -mno-loongson-ext2
22135 @opindex mloongson-ext2
22136 @opindex mno-loongson-ext2
22137 Use (do not use) the MIPS Loongson EXTensions r2 (EXT2) instructions.
22139 @item -mlong64
22140 @opindex mlong64
22141 Force @code{long} types to be 64 bits wide.  See @option{-mlong32} for
22142 an explanation of the default and the way that the pointer size is
22143 determined.
22145 @item -mlong32
22146 @opindex mlong32
22147 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
22149 The default size of @code{int}s, @code{long}s and pointers depends on
22150 the ABI@.  All the supported ABIs use 32-bit @code{int}s.  The n64 ABI
22151 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
22152 32-bit @code{long}s.  Pointers are the same size as @code{long}s,
22153 or the same size as integer registers, whichever is smaller.
22155 @item -msym32
22156 @itemx -mno-sym32
22157 @opindex msym32
22158 @opindex mno-sym32
22159 Assume (do not assume) that all symbols have 32-bit values, regardless
22160 of the selected ABI@.  This option is useful in combination with
22161 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
22162 to generate shorter and faster references to symbolic addresses.
22164 @item -G @var{num}
22165 @opindex G
22166 Put definitions of externally-visible data in a small data section
22167 if that data is no bigger than @var{num} bytes.  GCC can then generate
22168 more efficient accesses to the data; see @option{-mgpopt} for details.
22170 The default @option{-G} option depends on the configuration.
22172 @item -mlocal-sdata
22173 @itemx -mno-local-sdata
22174 @opindex mlocal-sdata
22175 @opindex mno-local-sdata
22176 Extend (do not extend) the @option{-G} behavior to local data too,
22177 such as to static variables in C@.  @option{-mlocal-sdata} is the
22178 default for all configurations.
22180 If the linker complains that an application is using too much small data,
22181 you might want to try rebuilding the less performance-critical parts with
22182 @option{-mno-local-sdata}.  You might also want to build large
22183 libraries with @option{-mno-local-sdata}, so that the libraries leave
22184 more room for the main program.
22186 @item -mextern-sdata
22187 @itemx -mno-extern-sdata
22188 @opindex mextern-sdata
22189 @opindex mno-extern-sdata
22190 Assume (do not assume) that externally-defined data is in
22191 a small data section if the size of that data is within the @option{-G} limit.
22192 @option{-mextern-sdata} is the default for all configurations.
22194 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
22195 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
22196 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
22197 is placed in a small data section.  If @var{Var} is defined by another
22198 module, you must either compile that module with a high-enough
22199 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
22200 definition.  If @var{Var} is common, you must link the application
22201 with a high-enough @option{-G} setting.
22203 The easiest way of satisfying these restrictions is to compile
22204 and link every module with the same @option{-G} option.  However,
22205 you may wish to build a library that supports several different
22206 small data limits.  You can do this by compiling the library with
22207 the highest supported @option{-G} setting and additionally using
22208 @option{-mno-extern-sdata} to stop the library from making assumptions
22209 about externally-defined data.
22211 @item -mgpopt
22212 @itemx -mno-gpopt
22213 @opindex mgpopt
22214 @opindex mno-gpopt
22215 Use (do not use) GP-relative accesses for symbols that are known to be
22216 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
22217 @option{-mextern-sdata}.  @option{-mgpopt} is the default for all
22218 configurations.
22220 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
22221 might not hold the value of @code{_gp}.  For example, if the code is
22222 part of a library that might be used in a boot monitor, programs that
22223 call boot monitor routines pass an unknown value in @code{$gp}.
22224 (In such situations, the boot monitor itself is usually compiled
22225 with @option{-G0}.)
22227 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
22228 @option{-mno-extern-sdata}.
22230 @item -membedded-data
22231 @itemx -mno-embedded-data
22232 @opindex membedded-data
22233 @opindex mno-embedded-data
22234 Allocate variables to the read-only data section first if possible, then
22235 next in the small data section if possible, otherwise in data.  This gives
22236 slightly slower code than the default, but reduces the amount of RAM required
22237 when executing, and thus may be preferred for some embedded systems.
22239 @item -muninit-const-in-rodata
22240 @itemx -mno-uninit-const-in-rodata
22241 @opindex muninit-const-in-rodata
22242 @opindex mno-uninit-const-in-rodata
22243 Put uninitialized @code{const} variables in the read-only data section.
22244 This option is only meaningful in conjunction with @option{-membedded-data}.
22246 @item -mcode-readable=@var{setting}
22247 @opindex mcode-readable
22248 Specify whether GCC may generate code that reads from executable sections.
22249 There are three possible settings:
22251 @table @gcctabopt
22252 @item -mcode-readable=yes
22253 Instructions may freely access executable sections.  This is the
22254 default setting.
22256 @item -mcode-readable=pcrel
22257 MIPS16 PC-relative load instructions can access executable sections,
22258 but other instructions must not do so.  This option is useful on 4KSc
22259 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
22260 It is also useful on processors that can be configured to have a dual
22261 instruction/data SRAM interface and that, like the M4K, automatically
22262 redirect PC-relative loads to the instruction RAM.
22264 @item -mcode-readable=no
22265 Instructions must not access executable sections.  This option can be
22266 useful on targets that are configured to have a dual instruction/data
22267 SRAM interface but that (unlike the M4K) do not automatically redirect
22268 PC-relative loads to the instruction RAM.
22269 @end table
22271 @item -msplit-addresses
22272 @itemx -mno-split-addresses
22273 @opindex msplit-addresses
22274 @opindex mno-split-addresses
22275 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
22276 relocation operators.  This option has been superseded by
22277 @option{-mexplicit-relocs} but is retained for backwards compatibility.
22279 @item -mexplicit-relocs
22280 @itemx -mno-explicit-relocs
22281 @opindex mexplicit-relocs
22282 @opindex mno-explicit-relocs
22283 Use (do not use) assembler relocation operators when dealing with symbolic
22284 addresses.  The alternative, selected by @option{-mno-explicit-relocs},
22285 is to use assembler macros instead.
22287 @option{-mexplicit-relocs} is the default if GCC was configured
22288 to use an assembler that supports relocation operators.
22290 @item -mcheck-zero-division
22291 @itemx -mno-check-zero-division
22292 @opindex mcheck-zero-division
22293 @opindex mno-check-zero-division
22294 Trap (do not trap) on integer division by zero.
22296 The default is @option{-mcheck-zero-division}.
22298 @item -mdivide-traps
22299 @itemx -mdivide-breaks
22300 @opindex mdivide-traps
22301 @opindex mdivide-breaks
22302 MIPS systems check for division by zero by generating either a
22303 conditional trap or a break instruction.  Using traps results in
22304 smaller code, but is only supported on MIPS II and later.  Also, some
22305 versions of the Linux kernel have a bug that prevents trap from
22306 generating the proper signal (@code{SIGFPE}).  Use @option{-mdivide-traps} to
22307 allow conditional traps on architectures that support them and
22308 @option{-mdivide-breaks} to force the use of breaks.
22310 The default is usually @option{-mdivide-traps}, but this can be
22311 overridden at configure time using @option{--with-divide=breaks}.
22312 Divide-by-zero checks can be completely disabled using
22313 @option{-mno-check-zero-division}.
22315 @item -mload-store-pairs
22316 @itemx -mno-load-store-pairs
22317 @opindex mload-store-pairs
22318 @opindex mno-load-store-pairs
22319 Enable (disable) an optimization that pairs consecutive load or store
22320 instructions to enable load/store bonding.  This option is enabled by
22321 default but only takes effect when the selected architecture is known
22322 to support bonding.
22324 @item -mmemcpy
22325 @itemx -mno-memcpy
22326 @opindex mmemcpy
22327 @opindex mno-memcpy
22328 Force (do not force) the use of @code{memcpy} for non-trivial block
22329 moves.  The default is @option{-mno-memcpy}, which allows GCC to inline
22330 most constant-sized copies.
22332 @item -mlong-calls
22333 @itemx -mno-long-calls
22334 @opindex mlong-calls
22335 @opindex mno-long-calls
22336 Disable (do not disable) use of the @code{jal} instruction.  Calling
22337 functions using @code{jal} is more efficient but requires the caller
22338 and callee to be in the same 256 megabyte segment.
22340 This option has no effect on abicalls code.  The default is
22341 @option{-mno-long-calls}.
22343 @item -mmad
22344 @itemx -mno-mad
22345 @opindex mmad
22346 @opindex mno-mad
22347 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
22348 instructions, as provided by the R4650 ISA@.
22350 @item -mimadd
22351 @itemx -mno-imadd
22352 @opindex mimadd
22353 @opindex mno-imadd
22354 Enable (disable) use of the @code{madd} and @code{msub} integer
22355 instructions.  The default is @option{-mimadd} on architectures
22356 that support @code{madd} and @code{msub} except for the 74k 
22357 architecture where it was found to generate slower code.
22359 @item -mfused-madd
22360 @itemx -mno-fused-madd
22361 @opindex mfused-madd
22362 @opindex mno-fused-madd
22363 Enable (disable) use of the floating-point multiply-accumulate
22364 instructions, when they are available.  The default is
22365 @option{-mfused-madd}.
22367 On the R8000 CPU when multiply-accumulate instructions are used,
22368 the intermediate product is calculated to infinite precision
22369 and is not subject to the FCSR Flush to Zero bit.  This may be
22370 undesirable in some circumstances.  On other processors the result
22371 is numerically identical to the equivalent computation using
22372 separate multiply, add, subtract and negate instructions.
22374 @item -nocpp
22375 @opindex nocpp
22376 Tell the MIPS assembler to not run its preprocessor over user
22377 assembler files (with a @samp{.s} suffix) when assembling them.
22379 @item -mfix-24k
22380 @itemx -mno-fix-24k
22381 @opindex mfix-24k
22382 @opindex mno-fix-24k
22383 Work around the 24K E48 (lost data on stores during refill) errata.
22384 The workarounds are implemented by the assembler rather than by GCC@.
22386 @item -mfix-r4000
22387 @itemx -mno-fix-r4000
22388 @opindex mfix-r4000
22389 @opindex mno-fix-r4000
22390 Work around certain R4000 CPU errata:
22391 @itemize @minus
22392 @item
22393 A double-word or a variable shift may give an incorrect result if executed
22394 immediately after starting an integer division.
22395 @item
22396 A double-word or a variable shift may give an incorrect result if executed
22397 while an integer multiplication is in progress.
22398 @item
22399 An integer division may give an incorrect result if started in a delay slot
22400 of a taken branch or a jump.
22401 @end itemize
22403 @item -mfix-r4400
22404 @itemx -mno-fix-r4400
22405 @opindex mfix-r4400
22406 @opindex mno-fix-r4400
22407 Work around certain R4400 CPU errata:
22408 @itemize @minus
22409 @item
22410 A double-word or a variable shift may give an incorrect result if executed
22411 immediately after starting an integer division.
22412 @end itemize
22414 @item -mfix-r10000
22415 @itemx -mno-fix-r10000
22416 @opindex mfix-r10000
22417 @opindex mno-fix-r10000
22418 Work around certain R10000 errata:
22419 @itemize @minus
22420 @item
22421 @code{ll}/@code{sc} sequences may not behave atomically on revisions
22422 prior to 3.0.  They may deadlock on revisions 2.6 and earlier.
22423 @end itemize
22425 This option can only be used if the target architecture supports
22426 branch-likely instructions.  @option{-mfix-r10000} is the default when
22427 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
22428 otherwise.
22430 @item -mfix-r5900
22431 @itemx -mno-fix-r5900
22432 @opindex mfix-r5900
22433 Do not attempt to schedule the preceding instruction into the delay slot
22434 of a branch instruction placed at the end of a short loop of six
22435 instructions or fewer and always schedule a @code{nop} instruction there
22436 instead.  The short loop bug under certain conditions causes loops to
22437 execute only once or twice, due to a hardware bug in the R5900 chip.  The
22438 workaround is implemented by the assembler rather than by GCC@.
22440 @item -mfix-rm7000
22441 @itemx -mno-fix-rm7000
22442 @opindex mfix-rm7000
22443 Work around the RM7000 @code{dmult}/@code{dmultu} errata.  The
22444 workarounds are implemented by the assembler rather than by GCC@.
22446 @item -mfix-vr4120
22447 @itemx -mno-fix-vr4120
22448 @opindex mfix-vr4120
22449 Work around certain VR4120 errata:
22450 @itemize @minus
22451 @item
22452 @code{dmultu} does not always produce the correct result.
22453 @item
22454 @code{div} and @code{ddiv} do not always produce the correct result if one
22455 of the operands is negative.
22456 @end itemize
22457 The workarounds for the division errata rely on special functions in
22458 @file{libgcc.a}.  At present, these functions are only provided by
22459 the @code{mips64vr*-elf} configurations.
22461 Other VR4120 errata require a NOP to be inserted between certain pairs of
22462 instructions.  These errata are handled by the assembler, not by GCC itself.
22464 @item -mfix-vr4130
22465 @opindex mfix-vr4130
22466 Work around the VR4130 @code{mflo}/@code{mfhi} errata.  The
22467 workarounds are implemented by the assembler rather than by GCC,
22468 although GCC avoids using @code{mflo} and @code{mfhi} if the
22469 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
22470 instructions are available instead.
22472 @item -mfix-sb1
22473 @itemx -mno-fix-sb1
22474 @opindex mfix-sb1
22475 Work around certain SB-1 CPU core errata.
22476 (This flag currently works around the SB-1 revision 2
22477 ``F1'' and ``F2'' floating-point errata.)
22479 @item -mr10k-cache-barrier=@var{setting}
22480 @opindex mr10k-cache-barrier
22481 Specify whether GCC should insert cache barriers to avoid the
22482 side effects of speculation on R10K processors.
22484 In common with many processors, the R10K tries to predict the outcome
22485 of a conditional branch and speculatively executes instructions from
22486 the ``taken'' branch.  It later aborts these instructions if the
22487 predicted outcome is wrong.  However, on the R10K, even aborted
22488 instructions can have side effects.
22490 This problem only affects kernel stores and, depending on the system,
22491 kernel loads.  As an example, a speculatively-executed store may load
22492 the target memory into cache and mark the cache line as dirty, even if
22493 the store itself is later aborted.  If a DMA operation writes to the
22494 same area of memory before the ``dirty'' line is flushed, the cached
22495 data overwrites the DMA-ed data.  See the R10K processor manual
22496 for a full description, including other potential problems.
22498 One workaround is to insert cache barrier instructions before every memory
22499 access that might be speculatively executed and that might have side
22500 effects even if aborted.  @option{-mr10k-cache-barrier=@var{setting}}
22501 controls GCC's implementation of this workaround.  It assumes that
22502 aborted accesses to any byte in the following regions does not have
22503 side effects:
22505 @enumerate
22506 @item
22507 the memory occupied by the current function's stack frame;
22509 @item
22510 the memory occupied by an incoming stack argument;
22512 @item
22513 the memory occupied by an object with a link-time-constant address.
22514 @end enumerate
22516 It is the kernel's responsibility to ensure that speculative
22517 accesses to these regions are indeed safe.
22519 If the input program contains a function declaration such as:
22521 @smallexample
22522 void foo (void);
22523 @end smallexample
22525 then the implementation of @code{foo} must allow @code{j foo} and
22526 @code{jal foo} to be executed speculatively.  GCC honors this
22527 restriction for functions it compiles itself.  It expects non-GCC
22528 functions (such as hand-written assembly code) to do the same.
22530 The option has three forms:
22532 @table @gcctabopt
22533 @item -mr10k-cache-barrier=load-store
22534 Insert a cache barrier before a load or store that might be
22535 speculatively executed and that might have side effects even
22536 if aborted.
22538 @item -mr10k-cache-barrier=store
22539 Insert a cache barrier before a store that might be speculatively
22540 executed and that might have side effects even if aborted.
22542 @item -mr10k-cache-barrier=none
22543 Disable the insertion of cache barriers.  This is the default setting.
22544 @end table
22546 @item -mflush-func=@var{func}
22547 @itemx -mno-flush-func
22548 @opindex mflush-func
22549 Specifies the function to call to flush the I and D caches, or to not
22550 call any such function.  If called, the function must take the same
22551 arguments as the common @code{_flush_func}, that is, the address of the
22552 memory range for which the cache is being flushed, the size of the
22553 memory range, and the number 3 (to flush both caches).  The default
22554 depends on the target GCC was configured for, but commonly is either
22555 @code{_flush_func} or @code{__cpu_flush}.
22557 @item mbranch-cost=@var{num}
22558 @opindex mbranch-cost
22559 Set the cost of branches to roughly @var{num} ``simple'' instructions.
22560 This cost is only a heuristic and is not guaranteed to produce
22561 consistent results across releases.  A zero cost redundantly selects
22562 the default, which is based on the @option{-mtune} setting.
22564 @item -mbranch-likely
22565 @itemx -mno-branch-likely
22566 @opindex mbranch-likely
22567 @opindex mno-branch-likely
22568 Enable or disable use of Branch Likely instructions, regardless of the
22569 default for the selected architecture.  By default, Branch Likely
22570 instructions may be generated if they are supported by the selected
22571 architecture.  An exception is for the MIPS32 and MIPS64 architectures
22572 and processors that implement those architectures; for those, Branch
22573 Likely instructions are not be generated by default because the MIPS32
22574 and MIPS64 architectures specifically deprecate their use.
22576 @item -mcompact-branches=never
22577 @itemx -mcompact-branches=optimal
22578 @itemx -mcompact-branches=always
22579 @opindex mcompact-branches=never
22580 @opindex mcompact-branches=optimal
22581 @opindex mcompact-branches=always
22582 These options control which form of branches will be generated.  The
22583 default is @option{-mcompact-branches=optimal}.
22585 The @option{-mcompact-branches=never} option ensures that compact branch
22586 instructions will never be generated.
22588 The @option{-mcompact-branches=always} option ensures that a compact
22589 branch instruction will be generated if available.  If a compact branch
22590 instruction is not available, a delay slot form of the branch will be
22591 used instead.
22593 This option is supported from MIPS Release 6 onwards.
22595 The @option{-mcompact-branches=optimal} option will cause a delay slot
22596 branch to be used if one is available in the current ISA and the delay
22597 slot is successfully filled.  If the delay slot is not filled, a compact
22598 branch will be chosen if one is available.
22600 @item -mfp-exceptions
22601 @itemx -mno-fp-exceptions
22602 @opindex mfp-exceptions
22603 Specifies whether FP exceptions are enabled.  This affects how
22604 FP instructions are scheduled for some processors.
22605 The default is that FP exceptions are
22606 enabled.
22608 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
22609 64-bit code, then we can use both FP pipes.  Otherwise, we can only use one
22610 FP pipe.
22612 @item -mvr4130-align
22613 @itemx -mno-vr4130-align
22614 @opindex mvr4130-align
22615 The VR4130 pipeline is two-way superscalar, but can only issue two
22616 instructions together if the first one is 8-byte aligned.  When this
22617 option is enabled, GCC aligns pairs of instructions that it
22618 thinks should execute in parallel.
22620 This option only has an effect when optimizing for the VR4130.
22621 It normally makes code faster, but at the expense of making it bigger.
22622 It is enabled by default at optimization level @option{-O3}.
22624 @item -msynci
22625 @itemx -mno-synci
22626 @opindex msynci
22627 Enable (disable) generation of @code{synci} instructions on
22628 architectures that support it.  The @code{synci} instructions (if
22629 enabled) are generated when @code{__builtin___clear_cache} is
22630 compiled.
22632 This option defaults to @option{-mno-synci}, but the default can be
22633 overridden by configuring GCC with @option{--with-synci}.
22635 When compiling code for single processor systems, it is generally safe
22636 to use @code{synci}.  However, on many multi-core (SMP) systems, it
22637 does not invalidate the instruction caches on all cores and may lead
22638 to undefined behavior.
22640 @item -mrelax-pic-calls
22641 @itemx -mno-relax-pic-calls
22642 @opindex mrelax-pic-calls
22643 Try to turn PIC calls that are normally dispatched via register
22644 @code{$25} into direct calls.  This is only possible if the linker can
22645 resolve the destination at link time and if the destination is within
22646 range for a direct call.
22648 @option{-mrelax-pic-calls} is the default if GCC was configured to use
22649 an assembler and a linker that support the @code{.reloc} assembly
22650 directive and @option{-mexplicit-relocs} is in effect.  With
22651 @option{-mno-explicit-relocs}, this optimization can be performed by the
22652 assembler and the linker alone without help from the compiler.
22654 @item -mmcount-ra-address
22655 @itemx -mno-mcount-ra-address
22656 @opindex mmcount-ra-address
22657 @opindex mno-mcount-ra-address
22658 Emit (do not emit) code that allows @code{_mcount} to modify the
22659 calling function's return address.  When enabled, this option extends
22660 the usual @code{_mcount} interface with a new @var{ra-address}
22661 parameter, which has type @code{intptr_t *} and is passed in register
22662 @code{$12}.  @code{_mcount} can then modify the return address by
22663 doing both of the following:
22664 @itemize
22665 @item
22666 Returning the new address in register @code{$31}.
22667 @item
22668 Storing the new address in @code{*@var{ra-address}},
22669 if @var{ra-address} is nonnull.
22670 @end itemize
22672 The default is @option{-mno-mcount-ra-address}.
22674 @item -mframe-header-opt
22675 @itemx -mno-frame-header-opt
22676 @opindex mframe-header-opt
22677 Enable (disable) frame header optimization in the o32 ABI.  When using the
22678 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
22679 function to write out register arguments.  When enabled, this optimization
22680 will suppress the allocation of the frame header if it can be determined that
22681 it is unused.
22683 This optimization is off by default at all optimization levels.
22685 @item -mlxc1-sxc1
22686 @itemx -mno-lxc1-sxc1
22687 @opindex mlxc1-sxc1
22688 When applicable, enable (disable) the generation of @code{lwxc1},
22689 @code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions.  Enabled by default.
22691 @item -mmadd4
22692 @itemx -mno-madd4
22693 @opindex mmadd4
22694 When applicable, enable (disable) the generation of 4-operand @code{madd.s},
22695 @code{madd.d} and related instructions.  Enabled by default.
22697 @end table
22699 @node MMIX Options
22700 @subsection MMIX Options
22701 @cindex MMIX Options
22703 These options are defined for the MMIX:
22705 @table @gcctabopt
22706 @item -mlibfuncs
22707 @itemx -mno-libfuncs
22708 @opindex mlibfuncs
22709 @opindex mno-libfuncs
22710 Specify that intrinsic library functions are being compiled, passing all
22711 values in registers, no matter the size.
22713 @item -mepsilon
22714 @itemx -mno-epsilon
22715 @opindex mepsilon
22716 @opindex mno-epsilon
22717 Generate floating-point comparison instructions that compare with respect
22718 to the @code{rE} epsilon register.
22720 @item -mabi=mmixware
22721 @itemx -mabi=gnu
22722 @opindex mabi=mmixware
22723 @opindex mabi=gnu
22724 Generate code that passes function parameters and return values that (in
22725 the called function) are seen as registers @code{$0} and up, as opposed to
22726 the GNU ABI which uses global registers @code{$231} and up.
22728 @item -mzero-extend
22729 @itemx -mno-zero-extend
22730 @opindex mzero-extend
22731 @opindex mno-zero-extend
22732 When reading data from memory in sizes shorter than 64 bits, use (do not
22733 use) zero-extending load instructions by default, rather than
22734 sign-extending ones.
22736 @item -mknuthdiv
22737 @itemx -mno-knuthdiv
22738 @opindex mknuthdiv
22739 @opindex mno-knuthdiv
22740 Make the result of a division yielding a remainder have the same sign as
22741 the divisor.  With the default, @option{-mno-knuthdiv}, the sign of the
22742 remainder follows the sign of the dividend.  Both methods are
22743 arithmetically valid, the latter being almost exclusively used.
22745 @item -mtoplevel-symbols
22746 @itemx -mno-toplevel-symbols
22747 @opindex mtoplevel-symbols
22748 @opindex mno-toplevel-symbols
22749 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
22750 code can be used with the @code{PREFIX} assembly directive.
22752 @item -melf
22753 @opindex melf
22754 Generate an executable in the ELF format, rather than the default
22755 @samp{mmo} format used by the @command{mmix} simulator.
22757 @item -mbranch-predict
22758 @itemx -mno-branch-predict
22759 @opindex mbranch-predict
22760 @opindex mno-branch-predict
22761 Use (do not use) the probable-branch instructions, when static branch
22762 prediction indicates a probable branch.
22764 @item -mbase-addresses
22765 @itemx -mno-base-addresses
22766 @opindex mbase-addresses
22767 @opindex mno-base-addresses
22768 Generate (do not generate) code that uses @emph{base addresses}.  Using a
22769 base address automatically generates a request (handled by the assembler
22770 and the linker) for a constant to be set up in a global register.  The
22771 register is used for one or more base address requests within the range 0
22772 to 255 from the value held in the register.  The generally leads to short
22773 and fast code, but the number of different data items that can be
22774 addressed is limited.  This means that a program that uses lots of static
22775 data may require @option{-mno-base-addresses}.
22777 @item -msingle-exit
22778 @itemx -mno-single-exit
22779 @opindex msingle-exit
22780 @opindex mno-single-exit
22781 Force (do not force) generated code to have a single exit point in each
22782 function.
22783 @end table
22785 @node MN10300 Options
22786 @subsection MN10300 Options
22787 @cindex MN10300 options
22789 These @option{-m} options are defined for Matsushita MN10300 architectures:
22791 @table @gcctabopt
22792 @item -mmult-bug
22793 @opindex mmult-bug
22794 Generate code to avoid bugs in the multiply instructions for the MN10300
22795 processors.  This is the default.
22797 @item -mno-mult-bug
22798 @opindex mno-mult-bug
22799 Do not generate code to avoid bugs in the multiply instructions for the
22800 MN10300 processors.
22802 @item -mam33
22803 @opindex mam33
22804 Generate code using features specific to the AM33 processor.
22806 @item -mno-am33
22807 @opindex mno-am33
22808 Do not generate code using features specific to the AM33 processor.  This
22809 is the default.
22811 @item -mam33-2
22812 @opindex mam33-2
22813 Generate code using features specific to the AM33/2.0 processor.
22815 @item -mam34
22816 @opindex mam34
22817 Generate code using features specific to the AM34 processor.
22819 @item -mtune=@var{cpu-type}
22820 @opindex mtune
22821 Use the timing characteristics of the indicated CPU type when
22822 scheduling instructions.  This does not change the targeted processor
22823 type.  The CPU type must be one of @samp{mn10300}, @samp{am33},
22824 @samp{am33-2} or @samp{am34}.
22826 @item -mreturn-pointer-on-d0
22827 @opindex mreturn-pointer-on-d0
22828 When generating a function that returns a pointer, return the pointer
22829 in both @code{a0} and @code{d0}.  Otherwise, the pointer is returned
22830 only in @code{a0}, and attempts to call such functions without a prototype
22831 result in errors.  Note that this option is on by default; use
22832 @option{-mno-return-pointer-on-d0} to disable it.
22834 @item -mno-crt0
22835 @opindex mno-crt0
22836 Do not link in the C run-time initialization object file.
22838 @item -mrelax
22839 @opindex mrelax
22840 Indicate to the linker that it should perform a relaxation optimization pass
22841 to shorten branches, calls and absolute memory addresses.  This option only
22842 has an effect when used on the command line for the final link step.
22844 This option makes symbolic debugging impossible.
22846 @item -mliw
22847 @opindex mliw
22848 Allow the compiler to generate @emph{Long Instruction Word}
22849 instructions if the target is the @samp{AM33} or later.  This is the
22850 default.  This option defines the preprocessor macro @code{__LIW__}.
22852 @item -mno-liw
22853 @opindex mno-liw
22854 Do not allow the compiler to generate @emph{Long Instruction Word}
22855 instructions.  This option defines the preprocessor macro
22856 @code{__NO_LIW__}.
22858 @item -msetlb
22859 @opindex msetlb
22860 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
22861 instructions if the target is the @samp{AM33} or later.  This is the
22862 default.  This option defines the preprocessor macro @code{__SETLB__}.
22864 @item -mno-setlb
22865 @opindex mno-setlb
22866 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
22867 instructions.  This option defines the preprocessor macro
22868 @code{__NO_SETLB__}.
22870 @end table
22872 @node Moxie Options
22873 @subsection Moxie Options
22874 @cindex Moxie Options
22876 @table @gcctabopt
22878 @item -meb
22879 @opindex meb
22880 Generate big-endian code.  This is the default for @samp{moxie-*-*}
22881 configurations.
22883 @item -mel
22884 @opindex mel
22885 Generate little-endian code.
22887 @item -mmul.x
22888 @opindex mmul.x
22889 Generate mul.x and umul.x instructions.  This is the default for
22890 @samp{moxiebox-*-*} configurations.
22892 @item -mno-crt0
22893 @opindex mno-crt0
22894 Do not link in the C run-time initialization object file.
22896 @end table
22898 @node MSP430 Options
22899 @subsection MSP430 Options
22900 @cindex MSP430 Options
22902 These options are defined for the MSP430:
22904 @table @gcctabopt
22906 @item -masm-hex
22907 @opindex masm-hex
22908 Force assembly output to always use hex constants.  Normally such
22909 constants are signed decimals, but this option is available for
22910 testsuite and/or aesthetic purposes.
22912 @item -mmcu=
22913 @opindex mmcu=
22914 Select the MCU to target.  This is used to create a C preprocessor
22915 symbol based upon the MCU name, converted to upper case and pre- and
22916 post-fixed with @samp{__}.  This in turn is used by the
22917 @file{msp430.h} header file to select an MCU-specific supplementary
22918 header file.
22920 The option also sets the ISA to use.  If the MCU name is one that is
22921 known to only support the 430 ISA then that is selected, otherwise the
22922 430X ISA is selected.  A generic MCU name of @samp{msp430} can also be
22923 used to select the 430 ISA.  Similarly the generic @samp{msp430x} MCU
22924 name selects the 430X ISA.
22926 In addition an MCU-specific linker script is added to the linker
22927 command line.  The script's name is the name of the MCU with
22928 @file{.ld} appended.  Thus specifying @option{-mmcu=xxx} on the @command{gcc}
22929 command line defines the C preprocessor symbol @code{__XXX__} and
22930 cause the linker to search for a script called @file{xxx.ld}.
22932 This option is also passed on to the assembler.
22934 @item -mwarn-mcu
22935 @itemx -mno-warn-mcu
22936 @opindex mwarn-mcu
22937 @opindex mno-warn-mcu
22938 This option enables or disables warnings about conflicts between the
22939 MCU name specified by the @option{-mmcu} option and the ISA set by the
22940 @option{-mcpu} option and/or the hardware multiply support set by the
22941 @option{-mhwmult} option.  It also toggles warnings about unrecognized
22942 MCU names.  This option is on by default.
22944 @item -mcpu=
22945 @opindex mcpu=
22946 Specifies the ISA to use.  Accepted values are @samp{msp430},
22947 @samp{msp430x} and @samp{msp430xv2}.  This option is deprecated.  The
22948 @option{-mmcu=} option should be used to select the ISA.
22950 @item -msim
22951 @opindex msim
22952 Link to the simulator runtime libraries and linker script.  Overrides
22953 any scripts that would be selected by the @option{-mmcu=} option.
22955 @item -mlarge
22956 @opindex mlarge
22957 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
22959 @item -msmall
22960 @opindex msmall
22961 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
22963 @item -mrelax
22964 @opindex mrelax
22965 This option is passed to the assembler and linker, and allows the
22966 linker to perform certain optimizations that cannot be done until
22967 the final link.
22969 @item mhwmult=
22970 @opindex mhwmult=
22971 Describes the type of hardware multiply supported by the target.
22972 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
22973 for the original 16-bit-only multiply supported by early MCUs.
22974 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
22975 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
22976 A value of @samp{auto} can also be given.  This tells GCC to deduce
22977 the hardware multiply support based upon the MCU name provided by the
22978 @option{-mmcu} option.  If no @option{-mmcu} option is specified or if
22979 the MCU name is not recognized then no hardware multiply support is
22980 assumed.  @code{auto} is the default setting.
22982 Hardware multiplies are normally performed by calling a library
22983 routine.  This saves space in the generated code.  When compiling at
22984 @option{-O3} or higher however the hardware multiplier is invoked
22985 inline.  This makes for bigger, but faster code.
22987 The hardware multiply routines disable interrupts whilst running and
22988 restore the previous interrupt state when they finish.  This makes
22989 them safe to use inside interrupt handlers as well as in normal code.
22991 @item -minrt
22992 @opindex minrt
22993 Enable the use of a minimum runtime environment - no static
22994 initializers or constructors.  This is intended for memory-constrained
22995 devices.  The compiler includes special symbols in some objects
22996 that tell the linker and runtime which code fragments are required.
22998 @item -mcode-region=
22999 @itemx -mdata-region=
23000 @opindex mcode-region
23001 @opindex mdata-region
23002 These options tell the compiler where to place functions and data that
23003 do not have one of the @code{lower}, @code{upper}, @code{either} or
23004 @code{section} attributes.  Possible values are @code{lower},
23005 @code{upper}, @code{either} or @code{any}.  The first three behave
23006 like the corresponding attribute.  The fourth possible value -
23007 @code{any} - is the default.  It leaves placement entirely up to the
23008 linker script and how it assigns the standard sections
23009 (@code{.text}, @code{.data}, etc) to the memory regions.
23011 @item -msilicon-errata=
23012 @opindex msilicon-errata
23013 This option passes on a request to assembler to enable the fixes for
23014 the named silicon errata.
23016 @item -msilicon-errata-warn=
23017 @opindex msilicon-errata-warn
23018 This option passes on a request to the assembler to enable warning
23019 messages when a silicon errata might need to be applied.
23021 @end table
23023 @node NDS32 Options
23024 @subsection NDS32 Options
23025 @cindex NDS32 Options
23027 These options are defined for NDS32 implementations:
23029 @table @gcctabopt
23031 @item -mbig-endian
23032 @opindex mbig-endian
23033 Generate code in big-endian mode.
23035 @item -mlittle-endian
23036 @opindex mlittle-endian
23037 Generate code in little-endian mode.
23039 @item -mreduced-regs
23040 @opindex mreduced-regs
23041 Use reduced-set registers for register allocation.
23043 @item -mfull-regs
23044 @opindex mfull-regs
23045 Use full-set registers for register allocation.
23047 @item -mcmov
23048 @opindex mcmov
23049 Generate conditional move instructions.
23051 @item -mno-cmov
23052 @opindex mno-cmov
23053 Do not generate conditional move instructions.
23055 @item -mext-perf
23056 @opindex mext-perf
23057 Generate performance extension instructions.
23059 @item -mno-ext-perf
23060 @opindex mno-ext-perf
23061 Do not generate performance extension instructions.
23063 @item -mext-perf2
23064 @opindex mext-perf2
23065 Generate performance extension 2 instructions.
23067 @item -mno-ext-perf2
23068 @opindex mno-ext-perf2
23069 Do not generate performance extension 2 instructions.
23071 @item -mext-string
23072 @opindex mext-string
23073 Generate string extension instructions.
23075 @item -mno-ext-string
23076 @opindex mno-ext-string
23077 Do not generate string extension instructions.
23079 @item -mv3push
23080 @opindex mv3push
23081 Generate v3 push25/pop25 instructions.
23083 @item -mno-v3push
23084 @opindex mno-v3push
23085 Do not generate v3 push25/pop25 instructions.
23087 @item -m16-bit
23088 @opindex m16-bit
23089 Generate 16-bit instructions.
23091 @item -mno-16-bit
23092 @opindex mno-16-bit
23093 Do not generate 16-bit instructions.
23095 @item -misr-vector-size=@var{num}
23096 @opindex misr-vector-size
23097 Specify the size of each interrupt vector, which must be 4 or 16.
23099 @item -mcache-block-size=@var{num}
23100 @opindex mcache-block-size
23101 Specify the size of each cache block,
23102 which must be a power of 2 between 4 and 512.
23104 @item -march=@var{arch}
23105 @opindex march
23106 Specify the name of the target architecture.
23108 @item -mcmodel=@var{code-model}
23109 @opindex mcmodel
23110 Set the code model to one of
23111 @table @asis
23112 @item @samp{small}
23113 All the data and read-only data segments must be within 512KB addressing space.
23114 The text segment must be within 16MB addressing space.
23115 @item @samp{medium}
23116 The data segment must be within 512KB while the read-only data segment can be
23117 within 4GB addressing space.  The text segment should be still within 16MB
23118 addressing space.
23119 @item @samp{large}
23120 All the text and data segments can be within 4GB addressing space.
23121 @end table
23123 @item -mctor-dtor
23124 @opindex mctor-dtor
23125 Enable constructor/destructor feature.
23127 @item -mrelax
23128 @opindex mrelax
23129 Guide linker to relax instructions.
23131 @end table
23133 @node Nios II Options
23134 @subsection Nios II Options
23135 @cindex Nios II options
23136 @cindex Altera Nios II options
23138 These are the options defined for the Altera Nios II processor.
23140 @table @gcctabopt
23142 @item -G @var{num}
23143 @opindex G
23144 @cindex smaller data references
23145 Put global and static objects less than or equal to @var{num} bytes
23146 into the small data or BSS sections instead of the normal data or BSS
23147 sections.  The default value of @var{num} is 8.
23149 @item -mgpopt=@var{option}
23150 @itemx -mgpopt
23151 @itemx -mno-gpopt
23152 @opindex mgpopt
23153 @opindex mno-gpopt
23154 Generate (do not generate) GP-relative accesses.  The following 
23155 @var{option} names are recognized:
23157 @table @samp
23159 @item none
23160 Do not generate GP-relative accesses.
23162 @item local
23163 Generate GP-relative accesses for small data objects that are not 
23164 external, weak, or uninitialized common symbols.  
23165 Also use GP-relative addressing for objects that
23166 have been explicitly placed in a small data section via a @code{section}
23167 attribute.
23169 @item global
23170 As for @samp{local}, but also generate GP-relative accesses for
23171 small data objects that are external, weak, or common.  If you use this option,
23172 you must ensure that all parts of your program (including libraries) are
23173 compiled with the same @option{-G} setting.
23175 @item data
23176 Generate GP-relative accesses for all data objects in the program.  If you
23177 use this option, the entire data and BSS segments
23178 of your program must fit in 64K of memory and you must use an appropriate
23179 linker script to allocate them within the addressable range of the
23180 global pointer.
23182 @item all
23183 Generate GP-relative addresses for function pointers as well as data
23184 pointers.  If you use this option, the entire text, data, and BSS segments
23185 of your program must fit in 64K of memory and you must use an appropriate
23186 linker script to allocate them within the addressable range of the
23187 global pointer.
23189 @end table
23191 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
23192 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
23194 The default is @option{-mgpopt} except when @option{-fpic} or
23195 @option{-fPIC} is specified to generate position-independent code.
23196 Note that the Nios II ABI does not permit GP-relative accesses from
23197 shared libraries.
23199 You may need to specify @option{-mno-gpopt} explicitly when building
23200 programs that include large amounts of small data, including large
23201 GOT data sections.  In this case, the 16-bit offset for GP-relative
23202 addressing may not be large enough to allow access to the entire 
23203 small data section.
23205 @item -mgprel-sec=@var{regexp}
23206 @opindex mgprel-sec
23207 This option specifies additional section names that can be accessed via
23208 GP-relative addressing.  It is most useful in conjunction with 
23209 @code{section} attributes on variable declarations 
23210 (@pxref{Common Variable Attributes}) and a custom linker script.  
23211 The @var{regexp} is a POSIX Extended Regular Expression.
23213 This option does not affect the behavior of the @option{-G} option, and 
23214 the specified sections are in addition to the standard @code{.sdata}
23215 and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
23217 @item -mr0rel-sec=@var{regexp}
23218 @opindex mr0rel-sec
23219 This option specifies names of sections that can be accessed via a 
23220 16-bit offset from @code{r0}; that is, in the low 32K or high 32K 
23221 of the 32-bit address space.  It is most useful in conjunction with 
23222 @code{section} attributes on variable declarations 
23223 (@pxref{Common Variable Attributes}) and a custom linker script.  
23224 The @var{regexp} is a POSIX Extended Regular Expression.
23226 In contrast to the use of GP-relative addressing for small data, 
23227 zero-based addressing is never generated by default and there are no 
23228 conventional section names used in standard linker scripts for sections
23229 in the low or high areas of memory.
23231 @item -mel
23232 @itemx -meb
23233 @opindex mel
23234 @opindex meb
23235 Generate little-endian (default) or big-endian (experimental) code,
23236 respectively.
23238 @item -march=@var{arch}
23239 @opindex march
23240 This specifies the name of the target Nios II architecture.  GCC uses this
23241 name to determine what kind of instructions it can emit when generating
23242 assembly code.  Permissible names are: @samp{r1}, @samp{r2}.
23244 The preprocessor macro @code{__nios2_arch__} is available to programs,
23245 with value 1 or 2, indicating the targeted ISA level.
23247 @item -mbypass-cache
23248 @itemx -mno-bypass-cache
23249 @opindex mno-bypass-cache
23250 @opindex mbypass-cache
23251 Force all load and store instructions to always bypass cache by 
23252 using I/O variants of the instructions. The default is not to
23253 bypass the cache.
23255 @item -mno-cache-volatile 
23256 @itemx -mcache-volatile       
23257 @opindex mcache-volatile 
23258 @opindex mno-cache-volatile
23259 Volatile memory access bypass the cache using the I/O variants of 
23260 the load and store instructions. The default is not to bypass the cache.
23262 @item -mno-fast-sw-div
23263 @itemx -mfast-sw-div
23264 @opindex mno-fast-sw-div
23265 @opindex mfast-sw-div
23266 Do not use table-based fast divide for small numbers. The default 
23267 is to use the fast divide at @option{-O3} and above.
23269 @item -mno-hw-mul
23270 @itemx -mhw-mul
23271 @itemx -mno-hw-mulx
23272 @itemx -mhw-mulx
23273 @itemx -mno-hw-div
23274 @itemx -mhw-div
23275 @opindex mno-hw-mul
23276 @opindex mhw-mul
23277 @opindex mno-hw-mulx
23278 @opindex mhw-mulx
23279 @opindex mno-hw-div
23280 @opindex mhw-div
23281 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of 
23282 instructions by the compiler. The default is to emit @code{mul}
23283 and not emit @code{div} and @code{mulx}.
23285 @item -mbmx
23286 @itemx -mno-bmx
23287 @itemx -mcdx
23288 @itemx -mno-cdx
23289 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
23290 CDX (code density) instructions.  Enabling these instructions also
23291 requires @option{-march=r2}.  Since these instructions are optional
23292 extensions to the R2 architecture, the default is not to emit them.
23294 @item -mcustom-@var{insn}=@var{N}
23295 @itemx -mno-custom-@var{insn}
23296 @opindex mcustom-@var{insn}
23297 @opindex mno-custom-@var{insn}
23298 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
23299 custom instruction with encoding @var{N} when generating code that uses 
23300 @var{insn}.  For example, @option{-mcustom-fadds=253} generates custom
23301 instruction 253 for single-precision floating-point add operations instead
23302 of the default behavior of using a library call.
23304 The following values of @var{insn} are supported.  Except as otherwise
23305 noted, floating-point operations are expected to be implemented with
23306 normal IEEE 754 semantics and correspond directly to the C operators or the
23307 equivalent GCC built-in functions (@pxref{Other Builtins}).
23309 Single-precision floating point:
23310 @table @asis
23312 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
23313 Binary arithmetic operations.
23315 @item @samp{fnegs}
23316 Unary negation.
23318 @item @samp{fabss}
23319 Unary absolute value.
23321 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
23322 Comparison operations.
23324 @item @samp{fmins}, @samp{fmaxs}
23325 Floating-point minimum and maximum.  These instructions are only
23326 generated if @option{-ffinite-math-only} is specified.
23328 @item @samp{fsqrts}
23329 Unary square root operation.
23331 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
23332 Floating-point trigonometric and exponential functions.  These instructions
23333 are only generated if @option{-funsafe-math-optimizations} is also specified.
23335 @end table
23337 Double-precision floating point:
23338 @table @asis
23340 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
23341 Binary arithmetic operations.
23343 @item @samp{fnegd}
23344 Unary negation.
23346 @item @samp{fabsd}
23347 Unary absolute value.
23349 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
23350 Comparison operations.
23352 @item @samp{fmind}, @samp{fmaxd}
23353 Double-precision minimum and maximum.  These instructions are only
23354 generated if @option{-ffinite-math-only} is specified.
23356 @item @samp{fsqrtd}
23357 Unary square root operation.
23359 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
23360 Double-precision trigonometric and exponential functions.  These instructions
23361 are only generated if @option{-funsafe-math-optimizations} is also specified.
23363 @end table
23365 Conversions:
23366 @table @asis
23367 @item @samp{fextsd}
23368 Conversion from single precision to double precision.
23370 @item @samp{ftruncds}
23371 Conversion from double precision to single precision.
23373 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
23374 Conversion from floating point to signed or unsigned integer types, with
23375 truncation towards zero.
23377 @item @samp{round}
23378 Conversion from single-precision floating point to signed integer,
23379 rounding to the nearest integer and ties away from zero.
23380 This corresponds to the @code{__builtin_lroundf} function when
23381 @option{-fno-math-errno} is used.
23383 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
23384 Conversion from signed or unsigned integer types to floating-point types.
23386 @end table
23388 In addition, all of the following transfer instructions for internal
23389 registers X and Y must be provided to use any of the double-precision
23390 floating-point instructions.  Custom instructions taking two
23391 double-precision source operands expect the first operand in the
23392 64-bit register X.  The other operand (or only operand of a unary
23393 operation) is given to the custom arithmetic instruction with the
23394 least significant half in source register @var{src1} and the most
23395 significant half in @var{src2}.  A custom instruction that returns a
23396 double-precision result returns the most significant 32 bits in the
23397 destination register and the other half in 32-bit register Y.  
23398 GCC automatically generates the necessary code sequences to write
23399 register X and/or read register Y when double-precision floating-point
23400 instructions are used.
23402 @table @asis
23404 @item @samp{fwrx}
23405 Write @var{src1} into the least significant half of X and @var{src2} into
23406 the most significant half of X.
23408 @item @samp{fwry}
23409 Write @var{src1} into Y.
23411 @item @samp{frdxhi}, @samp{frdxlo}
23412 Read the most or least (respectively) significant half of X and store it in
23413 @var{dest}.
23415 @item @samp{frdy}
23416 Read the value of Y and store it into @var{dest}.
23417 @end table
23419 Note that you can gain more local control over generation of Nios II custom
23420 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
23421 and @code{target("no-custom-@var{insn}")} function attributes
23422 (@pxref{Function Attributes})
23423 or pragmas (@pxref{Function Specific Option Pragmas}).
23425 @item -mcustom-fpu-cfg=@var{name}
23426 @opindex mcustom-fpu-cfg
23428 This option enables a predefined, named set of custom instruction encodings
23429 (see @option{-mcustom-@var{insn}} above).  
23430 Currently, the following sets are defined:
23432 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
23433 @gccoptlist{-mcustom-fmuls=252 @gol
23434 -mcustom-fadds=253 @gol
23435 -mcustom-fsubs=254 @gol
23436 -fsingle-precision-constant}
23438 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
23439 @gccoptlist{-mcustom-fmuls=252 @gol
23440 -mcustom-fadds=253 @gol
23441 -mcustom-fsubs=254 @gol
23442 -mcustom-fdivs=255 @gol
23443 -fsingle-precision-constant}
23445 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
23446 @gccoptlist{-mcustom-floatus=243 @gol
23447 -mcustom-fixsi=244 @gol
23448 -mcustom-floatis=245 @gol
23449 -mcustom-fcmpgts=246 @gol
23450 -mcustom-fcmples=249 @gol
23451 -mcustom-fcmpeqs=250 @gol
23452 -mcustom-fcmpnes=251 @gol
23453 -mcustom-fmuls=252 @gol
23454 -mcustom-fadds=253 @gol
23455 -mcustom-fsubs=254 @gol
23456 -mcustom-fdivs=255 @gol
23457 -fsingle-precision-constant}
23459 Custom instruction assignments given by individual
23460 @option{-mcustom-@var{insn}=} options override those given by
23461 @option{-mcustom-fpu-cfg=}, regardless of the
23462 order of the options on the command line.
23464 Note that you can gain more local control over selection of a FPU
23465 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
23466 function attribute (@pxref{Function Attributes})
23467 or pragma (@pxref{Function Specific Option Pragmas}).
23469 @end table
23471 These additional @samp{-m} options are available for the Altera Nios II
23472 ELF (bare-metal) target:
23474 @table @gcctabopt
23476 @item -mhal
23477 @opindex mhal
23478 Link with HAL BSP.  This suppresses linking with the GCC-provided C runtime
23479 startup and termination code, and is typically used in conjunction with
23480 @option{-msys-crt0=} to specify the location of the alternate startup code
23481 provided by the HAL BSP.
23483 @item -msmallc
23484 @opindex msmallc
23485 Link with a limited version of the C library, @option{-lsmallc}, rather than
23486 Newlib.
23488 @item -msys-crt0=@var{startfile}
23489 @opindex msys-crt0
23490 @var{startfile} is the file name of the startfile (crt0) to use 
23491 when linking.  This option is only useful in conjunction with @option{-mhal}.
23493 @item -msys-lib=@var{systemlib}
23494 @opindex msys-lib
23495 @var{systemlib} is the library name of the library that provides
23496 low-level system calls required by the C library,
23497 e.g.@: @code{read} and @code{write}.
23498 This option is typically used to link with a library provided by a HAL BSP.
23500 @end table
23502 @node Nvidia PTX Options
23503 @subsection Nvidia PTX Options
23504 @cindex Nvidia PTX options
23505 @cindex nvptx options
23507 These options are defined for Nvidia PTX:
23509 @table @gcctabopt
23511 @item -m32
23512 @itemx -m64
23513 @opindex m32
23514 @opindex m64
23515 Generate code for 32-bit or 64-bit ABI.
23517 @item -misa=@var{ISA-string}
23518 @opindex march
23519 Generate code for given the specified PTX ISA (e.g.@: @samp{sm_35}).  ISA
23520 strings must be lower-case.  Valid ISA strings include @samp{sm_30} and
23521 @samp{sm_35}.  The default ISA is sm_30.
23523 @item -mmainkernel
23524 @opindex mmainkernel
23525 Link in code for a __main kernel.  This is for stand-alone instead of
23526 offloading execution.
23528 @item -moptimize
23529 @opindex moptimize
23530 Apply partitioned execution optimizations.  This is the default when any
23531 level of optimization is selected.
23533 @item -msoft-stack
23534 @opindex msoft-stack
23535 Generate code that does not use @code{.local} memory
23536 directly for stack storage. Instead, a per-warp stack pointer is
23537 maintained explicitly. This enables variable-length stack allocation (with
23538 variable-length arrays or @code{alloca}), and when global memory is used for
23539 underlying storage, makes it possible to access automatic variables from other
23540 threads, or with atomic instructions. This code generation variant is used
23541 for OpenMP offloading, but the option is exposed on its own for the purpose
23542 of testing the compiler; to generate code suitable for linking into programs
23543 using OpenMP offloading, use option @option{-mgomp}.
23545 @item -muniform-simt
23546 @opindex muniform-simt
23547 Switch to code generation variant that allows to execute all threads in each
23548 warp, while maintaining memory state and side effects as if only one thread
23549 in each warp was active outside of OpenMP SIMD regions.  All atomic operations
23550 and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
23551 current lane index equals the master lane index), and the register being
23552 assigned is copied via a shuffle instruction from the master lane.  Outside of
23553 SIMD regions lane 0 is the master; inside, each thread sees itself as the
23554 master.  Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
23555 all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
23556 regions).  Each thread can bitwise-and the bitmask at position @code{tid.y}
23557 with current lane index to compute the master lane index.
23559 @item -mgomp
23560 @opindex mgomp
23561 Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
23562 @option{-muniform-simt} options, and selects corresponding multilib variant.
23564 @end table
23566 @node OpenRISC Options
23567 @subsection OpenRISC Options
23568 @cindex OpenRISC Options
23570 These options are defined for OpenRISC:
23572 @table @gcctabopt
23574 @item -mboard=@var{name}
23575 @opindex mboard
23576 Configure a board specific runtime.  This will be passed to the linker for
23577 newlib board library linking.  The default is @code{or1ksim}.
23579 @item -mnewlib
23580 @opindex mnewlib
23581 For compatibility, it's always newlib for elf now.
23583 @item -mhard-div
23584 @opindex mhard-div
23585 Generate code for hardware which supports divide instructions.  This is the
23586 default.
23588 @item -mhard-mul
23589 @opindex mhard-mul
23590 Generate code for hardware which supports multiply instructions.  This is the
23591 default.
23593 @item -mcmov
23594 @opindex mcmov
23595 Generate code for hardware which supports the conditional move (@code{l.cmov})
23596 instruction.
23598 @item -mror
23599 @opindex mror
23600 Generate code for hardware which supports rotate right instructions.
23602 @item -msext
23603 @opindex msext
23604 Generate code for hardware which supports sign-extension instructions.
23606 @item -msfimm
23607 @opindex msfimm
23608 Generate code for hardware which supports set flag immediate (@code{l.sf*i})
23609 instructions.
23611 @item -mshftimm
23612 @opindex mshftimm
23613 Generate code for hardware which supports shift immediate related instructions
23614 (i.e. @code{l.srai}, @code{l.srli}, @code{l.slli}, @code{1.rori}).  Note, to
23615 enable generation of the @code{l.rori} instruction the @option{-mror} flag must
23616 also be specified.
23618 @item -msoft-div
23619 @opindex msoft-div
23620 Generate code for hardware which requires divide instruction emulation.
23622 @item -msoft-mul
23623 @opindex msoft-mul
23624 Generate code for hardware which requires multiply instruction emulation.
23626 @end table
23628 @node PDP-11 Options
23629 @subsection PDP-11 Options
23630 @cindex PDP-11 Options
23632 These options are defined for the PDP-11:
23634 @table @gcctabopt
23635 @item -mfpu
23636 @opindex mfpu
23637 Use hardware FPP floating point.  This is the default.  (FIS floating
23638 point on the PDP-11/40 is not supported.)  Implies -m45.
23640 @item -msoft-float
23641 @opindex msoft-float
23642 Do not use hardware floating point.
23644 @item -mac0
23645 @opindex mac0
23646 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
23648 @item -mno-ac0
23649 @opindex mno-ac0
23650 Return floating-point results in memory.  This is the default.
23652 @item -m40
23653 @opindex m40
23654 Generate code for a PDP-11/40.  Implies -msoft-float -mno-split.
23656 @item -m45
23657 @opindex m45
23658 Generate code for a PDP-11/45.  This is the default.
23660 @item -m10
23661 @opindex m10
23662 Generate code for a PDP-11/10.  Implies -msoft-float -mno-split.
23664 @item -mint16
23665 @itemx -mno-int32
23666 @opindex mint16
23667 @opindex mno-int32
23668 Use 16-bit @code{int}.  This is the default.
23670 @item -mint32
23671 @itemx -mno-int16
23672 @opindex mint32
23673 @opindex mno-int16
23674 Use 32-bit @code{int}.
23676 @item -msplit
23677 @opindex msplit
23678 Target has split instruction and data space.  Implies -m45.
23680 @item -munix-asm
23681 @opindex munix-asm
23682 Use Unix assembler syntax.
23684 @item -mdec-asm
23685 @opindex mdec-asm
23686 Use DEC assembler syntax.
23688 @item -mgnu-asm
23689 @opindex mgnu-asm
23690 Use GNU assembler syntax.  This is the default.
23692 @item -mlra
23693 @opindex mlra
23694 Use the new LRA register allocator.  By default, the old ``reload''
23695 allocator is used.
23696 @end table
23698 @node picoChip Options
23699 @subsection picoChip Options
23700 @cindex picoChip options
23702 These @samp{-m} options are defined for picoChip implementations:
23704 @table @gcctabopt
23706 @item -mae=@var{ae_type}
23707 @opindex mcpu
23708 Set the instruction set, register set, and instruction scheduling
23709 parameters for array element type @var{ae_type}.  Supported values
23710 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
23712 @option{-mae=ANY} selects a completely generic AE type.  Code
23713 generated with this option runs on any of the other AE types.  The
23714 code is not as efficient as it would be if compiled for a specific
23715 AE type, and some types of operation (e.g., multiplication) do not
23716 work properly on all types of AE.
23718 @option{-mae=MUL} selects a MUL AE type.  This is the most useful AE type
23719 for compiled code, and is the default.
23721 @option{-mae=MAC} selects a DSP-style MAC AE.  Code compiled with this
23722 option may suffer from poor performance of byte (char) manipulation,
23723 since the DSP AE does not provide hardware support for byte load/stores.
23725 @item -msymbol-as-address
23726 Enable the compiler to directly use a symbol name as an address in a
23727 load/store instruction, without first loading it into a
23728 register.  Typically, the use of this option generates larger
23729 programs, which run faster than when the option isn't used.  However, the
23730 results vary from program to program, so it is left as a user option,
23731 rather than being permanently enabled.
23733 @item -mno-inefficient-warnings
23734 Disables warnings about the generation of inefficient code.  These
23735 warnings can be generated, for example, when compiling code that
23736 performs byte-level memory operations on the MAC AE type.  The MAC AE has
23737 no hardware support for byte-level memory operations, so all byte
23738 load/stores must be synthesized from word load/store operations.  This is
23739 inefficient and a warning is generated to indicate
23740 that you should rewrite the code to avoid byte operations, or to target
23741 an AE type that has the necessary hardware support.  This option disables
23742 these warnings.
23744 @end table
23746 @node PowerPC Options
23747 @subsection PowerPC Options
23748 @cindex PowerPC options
23750 These are listed under @xref{RS/6000 and PowerPC Options}.
23752 @node RISC-V Options
23753 @subsection RISC-V Options
23754 @cindex RISC-V Options
23756 These command-line options are defined for RISC-V targets:
23758 @table @gcctabopt
23759 @item -mbranch-cost=@var{n}
23760 @opindex mbranch-cost
23761 Set the cost of branches to roughly @var{n} instructions.
23763 @item -mplt
23764 @itemx -mno-plt
23765 @opindex plt
23766 When generating PIC code, do or don't allow the use of PLTs. Ignored for
23767 non-PIC.  The default is @option{-mplt}.
23769 @item -mabi=@var{ABI-string}
23770 @opindex mabi
23771 Specify integer and floating-point calling convention.  @var{ABI-string}
23772 contains two parts: the size of integer types and the registers used for
23773 floating-point types.  For example @samp{-march=rv64ifd -mabi=lp64d} means that
23774 @samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
23775 32-bit), and that floating-point values up to 64 bits wide are passed in F
23776 registers.  Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
23777 allows the compiler to generate code that uses the F and D extensions but only
23778 allows floating-point values up to 32 bits long to be passed in registers; or
23779 @samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
23780 passed in registers.
23782 The default for this argument is system dependent, users who want a specific
23783 calling convention should specify one explicitly.  The valid calling
23784 conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
23785 @samp{lp64f}, and @samp{lp64d}.  Some calling conventions are impossible to
23786 implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
23787 invalid because the ABI requires 64-bit values be passed in F registers, but F
23788 registers are only 32 bits wide.  There is also the @samp{ilp32e} ABI that can
23789 only be used with the @samp{rv32e} architecture.  This ABI is not well
23790 specified at present, and is subject to change.
23792 @item -mfdiv
23793 @itemx -mno-fdiv
23794 @opindex mfdiv
23795 Do or don't use hardware floating-point divide and square root instructions.
23796 This requires the F or D extensions for floating-point registers.  The default
23797 is to use them if the specified architecture has these instructions.
23799 @item -mdiv
23800 @itemx -mno-div
23801 @opindex mdiv
23802 Do or don't use hardware instructions for integer division.  This requires the
23803 M extension.  The default is to use them if the specified architecture has
23804 these instructions.
23806 @item -march=@var{ISA-string}
23807 @opindex march
23808 Generate code for given RISC-V ISA (e.g.@: @samp{rv64im}).  ISA strings must be
23809 lower-case.  Examples include @samp{rv64i}, @samp{rv32g}, @samp{rv32e}, and
23810 @samp{rv32imaf}.
23812 @item -mtune=@var{processor-string}
23813 @opindex mtune
23814 Optimize the output for the given processor, specified by microarchitecture
23815 name.  Permissible values for this option are: @samp{rocket},
23816 @samp{sifive-3-series}, @samp{sifive-5-series}, @samp{sifive-7-series},
23817 and @samp{size}.
23819 When @option{-mtune=} is not specified, the default is @samp{rocket}.
23821 The @samp{size} choice is not intended for use by end-users.  This is used
23822 when @option{-Os} is specified.  It overrides the instruction cost info
23823 provided by @option{-mtune=}, but does not override the pipeline info.  This
23824 helps reduce code size while still giving good performance.
23826 @item -mpreferred-stack-boundary=@var{num}
23827 @opindex mpreferred-stack-boundary
23828 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
23829 byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
23830 the default is 4 (16 bytes or 128-bits).
23832 @strong{Warning:} If you use this switch, then you must build all modules with
23833 the same value, including any libraries.  This includes the system libraries
23834 and startup modules.
23836 @item -msmall-data-limit=@var{n}
23837 @opindex msmall-data-limit
23838 Put global and static data smaller than @var{n} bytes into a special section
23839 (on some targets).
23841 @item -msave-restore
23842 @itemx -mno-save-restore
23843 @opindex msave-restore
23844 Do or don't use smaller but slower prologue and epilogue code that uses
23845 library function calls.  The default is to use fast inline prologues and
23846 epilogues.
23848 @item -mstrict-align
23849 @itemx -mno-strict-align
23850 @opindex mstrict-align
23851 Do not or do generate unaligned memory accesses.  The default is set depending
23852 on whether the processor we are optimizing for supports fast unaligned access
23853 or not.
23855 @item -mcmodel=medlow
23856 @opindex mcmodel=medlow
23857 Generate code for the medium-low code model. The program and its statically
23858 defined symbols must lie within a single 2 GiB address range and must lie
23859 between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
23860 statically or dynamically linked. This is the default code model.
23862 @item -mcmodel=medany
23863 @opindex mcmodel=medany
23864 Generate code for the medium-any code model. The program and its statically
23865 defined symbols must be within any single 2 GiB address range. Programs can be
23866 statically or dynamically linked.
23868 @item -mexplicit-relocs
23869 @itemx -mno-exlicit-relocs
23870 Use or do not use assembler relocation operators when dealing with symbolic
23871 addresses.  The alternative is to use assembler macros instead, which may
23872 limit optimization.
23874 @item -mrelax
23875 @itemx -mno-relax
23876 Take advantage of linker relaxations to reduce the number of instructions
23877 required to materialize symbol addresses. The default is to take advantage of
23878 linker relaxations.
23880 @item -memit-attribute
23881 @itemx -mno-emit-attribute
23882 Emit (do not emit) RISC-V attribute to record extra information into ELF
23883 objects.  This feature requires at least binutils 2.32.
23884 @end table
23886 @node RL78 Options
23887 @subsection RL78 Options
23888 @cindex RL78 Options
23890 @table @gcctabopt
23892 @item -msim
23893 @opindex msim
23894 Links in additional target libraries to support operation within a
23895 simulator.
23897 @item -mmul=none
23898 @itemx -mmul=g10
23899 @itemx -mmul=g13
23900 @itemx -mmul=g14
23901 @itemx -mmul=rl78
23902 @opindex mmul
23903 Specifies the type of hardware multiplication and division support to
23904 be used.  The simplest is @code{none}, which uses software for both
23905 multiplication and division.  This is the default.  The @code{g13}
23906 value is for the hardware multiply/divide peripheral found on the
23907 RL78/G13 (S2 core) targets.  The @code{g14} value selects the use of
23908 the multiplication and division instructions supported by the RL78/G14
23909 (S3 core) parts.  The value @code{rl78} is an alias for @code{g14} and
23910 the value @code{mg10} is an alias for @code{none}.
23912 In addition a C preprocessor macro is defined, based upon the setting
23913 of this option.  Possible values are: @code{__RL78_MUL_NONE__},
23914 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
23916 @item -mcpu=g10
23917 @itemx -mcpu=g13
23918 @itemx -mcpu=g14
23919 @itemx -mcpu=rl78
23920 @opindex mcpu
23921 Specifies the RL78 core to target.  The default is the G14 core, also
23922 known as an S3 core or just RL78.  The G13 or S2 core does not have
23923 multiply or divide instructions, instead it uses a hardware peripheral
23924 for these operations.  The G10 or S1 core does not have register
23925 banks, so it uses a different calling convention.
23927 If this option is set it also selects the type of hardware multiply
23928 support to use, unless this is overridden by an explicit
23929 @option{-mmul=none} option on the command line.  Thus specifying
23930 @option{-mcpu=g13} enables the use of the G13 hardware multiply
23931 peripheral and specifying @option{-mcpu=g10} disables the use of
23932 hardware multiplications altogether.
23934 Note, although the RL78/G14 core is the default target, specifying
23935 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
23936 change the behavior of the toolchain since it also enables G14
23937 hardware multiply support.  If these options are not specified on the
23938 command line then software multiplication routines will be used even
23939 though the code targets the RL78 core.  This is for backwards
23940 compatibility with older toolchains which did not have hardware
23941 multiply and divide support.
23943 In addition a C preprocessor macro is defined, based upon the setting
23944 of this option.  Possible values are: @code{__RL78_G10__},
23945 @code{__RL78_G13__} or @code{__RL78_G14__}.
23947 @item -mg10
23948 @itemx -mg13
23949 @itemx -mg14
23950 @itemx -mrl78
23951 @opindex mg10
23952 @opindex mg13
23953 @opindex mg14
23954 @opindex mrl78
23955 These are aliases for the corresponding @option{-mcpu=} option.  They
23956 are provided for backwards compatibility.
23958 @item -mallregs
23959 @opindex mallregs
23960 Allow the compiler to use all of the available registers.  By default
23961 registers @code{r24..r31} are reserved for use in interrupt handlers.
23962 With this option enabled these registers can be used in ordinary
23963 functions as well.
23965 @item -m64bit-doubles
23966 @itemx -m32bit-doubles
23967 @opindex m64bit-doubles
23968 @opindex m32bit-doubles
23969 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
23970 or 32 bits (@option{-m32bit-doubles}) in size.  The default is
23971 @option{-m32bit-doubles}.
23973 @item -msave-mduc-in-interrupts
23974 @itemx -mno-save-mduc-in-interrupts
23975 @opindex msave-mduc-in-interrupts
23976 @opindex mno-save-mduc-in-interrupts
23977 Specifies that interrupt handler functions should preserve the
23978 MDUC registers.  This is only necessary if normal code might use
23979 the MDUC registers, for example because it performs multiplication
23980 and division operations.  The default is to ignore the MDUC registers
23981 as this makes the interrupt handlers faster.  The target option -mg13
23982 needs to be passed for this to work as this feature is only available
23983 on the G13 target (S2 core).  The MDUC registers will only be saved
23984 if the interrupt handler performs a multiplication or division
23985 operation or it calls another function.
23987 @end table
23989 @node RS/6000 and PowerPC Options
23990 @subsection IBM RS/6000 and PowerPC Options
23991 @cindex RS/6000 and PowerPC Options
23992 @cindex IBM RS/6000 and PowerPC Options
23994 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
23995 @table @gcctabopt
23996 @item -mpowerpc-gpopt
23997 @itemx -mno-powerpc-gpopt
23998 @itemx -mpowerpc-gfxopt
23999 @itemx -mno-powerpc-gfxopt
24000 @need 800
24001 @itemx -mpowerpc64
24002 @itemx -mno-powerpc64
24003 @itemx -mmfcrf
24004 @itemx -mno-mfcrf
24005 @itemx -mpopcntb
24006 @itemx -mno-popcntb
24007 @itemx -mpopcntd
24008 @itemx -mno-popcntd
24009 @itemx -mfprnd
24010 @itemx -mno-fprnd
24011 @need 800
24012 @itemx -mcmpb
24013 @itemx -mno-cmpb
24014 @itemx -mmfpgpr
24015 @itemx -mno-mfpgpr
24016 @itemx -mhard-dfp
24017 @itemx -mno-hard-dfp
24018 @opindex mpowerpc-gpopt
24019 @opindex mno-powerpc-gpopt
24020 @opindex mpowerpc-gfxopt
24021 @opindex mno-powerpc-gfxopt
24022 @opindex mpowerpc64
24023 @opindex mno-powerpc64
24024 @opindex mmfcrf
24025 @opindex mno-mfcrf
24026 @opindex mpopcntb
24027 @opindex mno-popcntb
24028 @opindex mpopcntd
24029 @opindex mno-popcntd
24030 @opindex mfprnd
24031 @opindex mno-fprnd
24032 @opindex mcmpb
24033 @opindex mno-cmpb
24034 @opindex mmfpgpr
24035 @opindex mno-mfpgpr
24036 @opindex mhard-dfp
24037 @opindex mno-hard-dfp
24038 You use these options to specify which instructions are available on the
24039 processor you are using.  The default value of these options is
24040 determined when configuring GCC@.  Specifying the
24041 @option{-mcpu=@var{cpu_type}} overrides the specification of these
24042 options.  We recommend you use the @option{-mcpu=@var{cpu_type}} option
24043 rather than the options listed above.
24045 Specifying @option{-mpowerpc-gpopt} allows
24046 GCC to use the optional PowerPC architecture instructions in the
24047 General Purpose group, including floating-point square root.  Specifying
24048 @option{-mpowerpc-gfxopt} allows GCC to
24049 use the optional PowerPC architecture instructions in the Graphics
24050 group, including floating-point select.
24052 The @option{-mmfcrf} option allows GCC to generate the move from
24053 condition register field instruction implemented on the POWER4
24054 processor and other processors that support the PowerPC V2.01
24055 architecture.
24056 The @option{-mpopcntb} option allows GCC to generate the popcount and
24057 double-precision FP reciprocal estimate instruction implemented on the
24058 POWER5 processor and other processors that support the PowerPC V2.02
24059 architecture.
24060 The @option{-mpopcntd} option allows GCC to generate the popcount
24061 instruction implemented on the POWER7 processor and other processors
24062 that support the PowerPC V2.06 architecture.
24063 The @option{-mfprnd} option allows GCC to generate the FP round to
24064 integer instructions implemented on the POWER5+ processor and other
24065 processors that support the PowerPC V2.03 architecture.
24066 The @option{-mcmpb} option allows GCC to generate the compare bytes
24067 instruction implemented on the POWER6 processor and other processors
24068 that support the PowerPC V2.05 architecture.
24069 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
24070 general-purpose register instructions implemented on the POWER6X
24071 processor and other processors that support the extended PowerPC V2.05
24072 architecture.
24073 The @option{-mhard-dfp} option allows GCC to generate the decimal
24074 floating-point instructions implemented on some POWER processors.
24076 The @option{-mpowerpc64} option allows GCC to generate the additional
24077 64-bit instructions that are found in the full PowerPC64 architecture
24078 and to treat GPRs as 64-bit, doubleword quantities.  GCC defaults to
24079 @option{-mno-powerpc64}.
24081 @item -mcpu=@var{cpu_type}
24082 @opindex mcpu
24083 Set architecture type, register usage, and
24084 instruction scheduling parameters for machine type @var{cpu_type}.
24085 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
24086 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
24087 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
24088 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
24089 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
24090 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
24091 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
24092 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
24093 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
24094 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
24095 @samp{power9}, @samp{future}, @samp{powerpc}, @samp{powerpc64},
24096 @samp{powerpc64le}, @samp{rs64}, and @samp{native}.
24098 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
24099 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
24100 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
24101 architecture machine types, with an appropriate, generic processor
24102 model assumed for scheduling purposes.
24104 Specifying @samp{native} as cpu type detects and selects the
24105 architecture option that corresponds to the host processor of the
24106 system performing the compilation.
24107 @option{-mcpu=native} has no effect if GCC does not recognize the
24108 processor.
24110 The other options specify a specific processor.  Code generated under
24111 those options runs best on that processor, and may not run at all on
24112 others.
24114 The @option{-mcpu} options automatically enable or disable the
24115 following options:
24117 @gccoptlist{-maltivec  -mfprnd  -mhard-float  -mmfcrf  -mmultiple @gol
24118 -mpopcntb  -mpopcntd  -mpowerpc64 @gol
24119 -mpowerpc-gpopt  -mpowerpc-gfxopt @gol
24120 -mmulhw  -mdlmzb  -mmfpgpr  -mvsx @gol
24121 -mcrypto  -mhtm  -mpower8-fusion  -mpower8-vector @gol
24122 -mquad-memory  -mquad-memory-atomic  -mfloat128  -mfloat128-hardware}
24124 The particular options set for any particular CPU varies between
24125 compiler versions, depending on what setting seems to produce optimal
24126 code for that CPU; it doesn't necessarily reflect the actual hardware's
24127 capabilities.  If you wish to set an individual option to a particular
24128 value, you may specify it after the @option{-mcpu} option, like
24129 @option{-mcpu=970 -mno-altivec}.
24131 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
24132 not enabled or disabled by the @option{-mcpu} option at present because
24133 AIX does not have full support for these options.  You may still
24134 enable or disable them individually if you're sure it'll work in your
24135 environment.
24137 @item -mtune=@var{cpu_type}
24138 @opindex mtune
24139 Set the instruction scheduling parameters for machine type
24140 @var{cpu_type}, but do not set the architecture type or register usage,
24141 as @option{-mcpu=@var{cpu_type}} does.  The same
24142 values for @var{cpu_type} are used for @option{-mtune} as for
24143 @option{-mcpu}.  If both are specified, the code generated uses the
24144 architecture and registers set by @option{-mcpu}, but the
24145 scheduling parameters set by @option{-mtune}.
24147 @item -mcmodel=small
24148 @opindex mcmodel=small
24149 Generate PowerPC64 code for the small model: The TOC is limited to
24150 64k.
24152 @item -mcmodel=medium
24153 @opindex mcmodel=medium
24154 Generate PowerPC64 code for the medium model: The TOC and other static
24155 data may be up to a total of 4G in size.  This is the default for 64-bit
24156 Linux.
24158 @item -mcmodel=large
24159 @opindex mcmodel=large
24160 Generate PowerPC64 code for the large model: The TOC may be up to 4G
24161 in size.  Other data and code is only limited by the 64-bit address
24162 space.
24164 @item -maltivec
24165 @itemx -mno-altivec
24166 @opindex maltivec
24167 @opindex mno-altivec
24168 Generate code that uses (does not use) AltiVec instructions, and also
24169 enable the use of built-in functions that allow more direct access to
24170 the AltiVec instruction set.  You may also need to set
24171 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
24172 enhancements.
24174 When @option{-maltivec} is used, the element order for AltiVec intrinsics
24175 such as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert} 
24176 match array element order corresponding to the endianness of the
24177 target.  That is, element zero identifies the leftmost element in a
24178 vector register when targeting a big-endian platform, and identifies
24179 the rightmost element in a vector register when targeting a
24180 little-endian platform.
24182 @item -mvrsave
24183 @itemx -mno-vrsave
24184 @opindex mvrsave
24185 @opindex mno-vrsave
24186 Generate VRSAVE instructions when generating AltiVec code.
24188 @item -msecure-plt
24189 @opindex msecure-plt
24190 Generate code that allows @command{ld} and @command{ld.so}
24191 to build executables and shared
24192 libraries with non-executable @code{.plt} and @code{.got} sections.
24193 This is a PowerPC
24194 32-bit SYSV ABI option.
24196 @item -mbss-plt
24197 @opindex mbss-plt
24198 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
24199 fills in, and
24200 requires @code{.plt} and @code{.got}
24201 sections that are both writable and executable.
24202 This is a PowerPC 32-bit SYSV ABI option.
24204 @item -misel
24205 @itemx -mno-isel
24206 @opindex misel
24207 @opindex mno-isel
24208 This switch enables or disables the generation of ISEL instructions.
24210 @item -mvsx
24211 @itemx -mno-vsx
24212 @opindex mvsx
24213 @opindex mno-vsx
24214 Generate code that uses (does not use) vector/scalar (VSX)
24215 instructions, and also enable the use of built-in functions that allow
24216 more direct access to the VSX instruction set.
24218 @item -mcrypto
24219 @itemx -mno-crypto
24220 @opindex mcrypto
24221 @opindex mno-crypto
24222 Enable the use (disable) of the built-in functions that allow direct
24223 access to the cryptographic instructions that were added in version
24224 2.07 of the PowerPC ISA.
24226 @item -mhtm
24227 @itemx -mno-htm
24228 @opindex mhtm
24229 @opindex mno-htm
24230 Enable (disable) the use of the built-in functions that allow direct
24231 access to the Hardware Transactional Memory (HTM) instructions that
24232 were added in version 2.07 of the PowerPC ISA.
24234 @item -mpower8-fusion
24235 @itemx -mno-power8-fusion
24236 @opindex mpower8-fusion
24237 @opindex mno-power8-fusion
24238 Generate code that keeps (does not keeps) some integer operations
24239 adjacent so that the instructions can be fused together on power8 and
24240 later processors.
24242 @item -mpower8-vector
24243 @itemx -mno-power8-vector
24244 @opindex mpower8-vector
24245 @opindex mno-power8-vector
24246 Generate code that uses (does not use) the vector and scalar
24247 instructions that were added in version 2.07 of the PowerPC ISA.  Also
24248 enable the use of built-in functions that allow more direct access to
24249 the vector instructions.
24251 @item -mquad-memory
24252 @itemx -mno-quad-memory
24253 @opindex mquad-memory
24254 @opindex mno-quad-memory
24255 Generate code that uses (does not use) the non-atomic quad word memory
24256 instructions.  The @option{-mquad-memory} option requires use of
24257 64-bit mode.
24259 @item -mquad-memory-atomic
24260 @itemx -mno-quad-memory-atomic
24261 @opindex mquad-memory-atomic
24262 @opindex mno-quad-memory-atomic
24263 Generate code that uses (does not use) the atomic quad word memory
24264 instructions.  The @option{-mquad-memory-atomic} option requires use of
24265 64-bit mode.
24267 @item -mfloat128
24268 @itemx -mno-float128
24269 @opindex mfloat128
24270 @opindex mno-float128
24271 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
24272 and use either software emulation for IEEE 128-bit floating point or
24273 hardware instructions.
24275 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7},
24276 @option{-mcpu=power8}), or @option{-mcpu=power9} must be enabled to
24277 use the IEEE 128-bit floating point support.  The IEEE 128-bit
24278 floating point support only works on PowerPC Linux systems.
24280 The default for @option{-mfloat128} is enabled on PowerPC Linux
24281 systems using the VSX instruction set, and disabled on other systems.
24283 If you use the ISA 3.0 instruction set (@option{-mpower9-vector} or
24284 @option{-mcpu=power9}) on a 64-bit system, the IEEE 128-bit floating
24285 point support will also enable the generation of ISA 3.0 IEEE 128-bit
24286 floating point instructions.  Otherwise, if you do not specify to
24287 generate ISA 3.0 instructions or you are targeting a 32-bit big endian
24288 system, IEEE 128-bit floating point will be done with software
24289 emulation.
24291 @item -mfloat128-hardware
24292 @itemx -mno-float128-hardware
24293 @opindex mfloat128-hardware
24294 @opindex mno-float128-hardware
24295 Enable/disable using ISA 3.0 hardware instructions to support the
24296 @var{__float128} data type.
24298 The default for @option{-mfloat128-hardware} is enabled on PowerPC
24299 Linux systems using the ISA 3.0 instruction set, and disabled on other
24300 systems.
24302 @item -m32
24303 @itemx -m64
24304 @opindex m32
24305 @opindex m64
24306 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
24307 targets (including GNU/Linux).  The 32-bit environment sets int, long
24308 and pointer to 32 bits and generates code that runs on any PowerPC
24309 variant.  The 64-bit environment sets int to 32 bits and long and
24310 pointer to 64 bits, and generates code for PowerPC64, as for
24311 @option{-mpowerpc64}.
24313 @item -mfull-toc
24314 @itemx -mno-fp-in-toc
24315 @itemx -mno-sum-in-toc
24316 @itemx -mminimal-toc
24317 @opindex mfull-toc
24318 @opindex mno-fp-in-toc
24319 @opindex mno-sum-in-toc
24320 @opindex mminimal-toc
24321 Modify generation of the TOC (Table Of Contents), which is created for
24322 every executable file.  The @option{-mfull-toc} option is selected by
24323 default.  In that case, GCC allocates at least one TOC entry for
24324 each unique non-automatic variable reference in your program.  GCC
24325 also places floating-point constants in the TOC@.  However, only
24326 16,384 entries are available in the TOC@.
24328 If you receive a linker error message that saying you have overflowed
24329 the available TOC space, you can reduce the amount of TOC space used
24330 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
24331 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
24332 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
24333 generate code to calculate the sum of an address and a constant at
24334 run time instead of putting that sum into the TOC@.  You may specify one
24335 or both of these options.  Each causes GCC to produce very slightly
24336 slower and larger code at the expense of conserving TOC space.
24338 If you still run out of space in the TOC even when you specify both of
24339 these options, specify @option{-mminimal-toc} instead.  This option causes
24340 GCC to make only one TOC entry for every file.  When you specify this
24341 option, GCC produces code that is slower and larger but which
24342 uses extremely little TOC space.  You may wish to use this option
24343 only on files that contain less frequently-executed code.
24345 @item -maix64
24346 @itemx -maix32
24347 @opindex maix64
24348 @opindex maix32
24349 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
24350 @code{long} type, and the infrastructure needed to support them.
24351 Specifying @option{-maix64} implies @option{-mpowerpc64},
24352 while @option{-maix32} disables the 64-bit ABI and
24353 implies @option{-mno-powerpc64}.  GCC defaults to @option{-maix32}.
24355 @item -mxl-compat
24356 @itemx -mno-xl-compat
24357 @opindex mxl-compat
24358 @opindex mno-xl-compat
24359 Produce code that conforms more closely to IBM XL compiler semantics
24360 when using AIX-compatible ABI@.  Pass floating-point arguments to
24361 prototyped functions beyond the register save area (RSA) on the stack
24362 in addition to argument FPRs.  Do not assume that most significant
24363 double in 128-bit long double value is properly rounded when comparing
24364 values and converting to double.  Use XL symbol names for long double
24365 support routines.
24367 The AIX calling convention was extended but not initially documented to
24368 handle an obscure K&R C case of calling a function that takes the
24369 address of its arguments with fewer arguments than declared.  IBM XL
24370 compilers access floating-point arguments that do not fit in the
24371 RSA from the stack when a subroutine is compiled without
24372 optimization.  Because always storing floating-point arguments on the
24373 stack is inefficient and rarely needed, this option is not enabled by
24374 default and only is necessary when calling subroutines compiled by IBM
24375 XL compilers without optimization.
24377 @item -mpe
24378 @opindex mpe
24379 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@.  Link an
24380 application written to use message passing with special startup code to
24381 enable the application to run.  The system must have PE installed in the
24382 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
24383 must be overridden with the @option{-specs=} option to specify the
24384 appropriate directory location.  The Parallel Environment does not
24385 support threads, so the @option{-mpe} option and the @option{-pthread}
24386 option are incompatible.
24388 @item -malign-natural
24389 @itemx -malign-power
24390 @opindex malign-natural
24391 @opindex malign-power
24392 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
24393 @option{-malign-natural} overrides the ABI-defined alignment of larger
24394 types, such as floating-point doubles, on their natural size-based boundary.
24395 The option @option{-malign-power} instructs GCC to follow the ABI-specified
24396 alignment rules.  GCC defaults to the standard alignment defined in the ABI@.
24398 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
24399 is not supported.
24401 @item -msoft-float
24402 @itemx -mhard-float
24403 @opindex msoft-float
24404 @opindex mhard-float
24405 Generate code that does not use (uses) the floating-point register set.
24406 Software floating-point emulation is provided if you use the
24407 @option{-msoft-float} option, and pass the option to GCC when linking.
24409 @item -mmultiple
24410 @itemx -mno-multiple
24411 @opindex mmultiple
24412 @opindex mno-multiple
24413 Generate code that uses (does not use) the load multiple word
24414 instructions and the store multiple word instructions.  These
24415 instructions are generated by default on POWER systems, and not
24416 generated on PowerPC systems.  Do not use @option{-mmultiple} on little-endian
24417 PowerPC systems, since those instructions do not work when the
24418 processor is in little-endian mode.  The exceptions are PPC740 and
24419 PPC750 which permit these instructions in little-endian mode.
24421 @item -mupdate
24422 @itemx -mno-update
24423 @opindex mupdate
24424 @opindex mno-update
24425 Generate code that uses (does not use) the load or store instructions
24426 that update the base register to the address of the calculated memory
24427 location.  These instructions are generated by default.  If you use
24428 @option{-mno-update}, there is a small window between the time that the
24429 stack pointer is updated and the address of the previous frame is
24430 stored, which means code that walks the stack frame across interrupts or
24431 signals may get corrupted data.
24433 @item -mavoid-indexed-addresses
24434 @itemx -mno-avoid-indexed-addresses
24435 @opindex mavoid-indexed-addresses
24436 @opindex mno-avoid-indexed-addresses
24437 Generate code that tries to avoid (not avoid) the use of indexed load
24438 or store instructions. These instructions can incur a performance
24439 penalty on Power6 processors in certain situations, such as when
24440 stepping through large arrays that cross a 16M boundary.  This option
24441 is enabled by default when targeting Power6 and disabled otherwise.
24443 @item -mfused-madd
24444 @itemx -mno-fused-madd
24445 @opindex mfused-madd
24446 @opindex mno-fused-madd
24447 Generate code that uses (does not use) the floating-point multiply and
24448 accumulate instructions.  These instructions are generated by default
24449 if hardware floating point is used.  The machine-dependent
24450 @option{-mfused-madd} option is now mapped to the machine-independent
24451 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
24452 mapped to @option{-ffp-contract=off}.
24454 @item -mmulhw
24455 @itemx -mno-mulhw
24456 @opindex mmulhw
24457 @opindex mno-mulhw
24458 Generate code that uses (does not use) the half-word multiply and
24459 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
24460 These instructions are generated by default when targeting those
24461 processors.
24463 @item -mdlmzb
24464 @itemx -mno-dlmzb
24465 @opindex mdlmzb
24466 @opindex mno-dlmzb
24467 Generate code that uses (does not use) the string-search @samp{dlmzb}
24468 instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
24469 generated by default when targeting those processors.
24471 @item -mno-bit-align
24472 @itemx -mbit-align
24473 @opindex mno-bit-align
24474 @opindex mbit-align
24475 On System V.4 and embedded PowerPC systems do not (do) force structures
24476 and unions that contain bit-fields to be aligned to the base type of the
24477 bit-field.
24479 For example, by default a structure containing nothing but 8
24480 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
24481 boundary and has a size of 4 bytes.  By using @option{-mno-bit-align},
24482 the structure is aligned to a 1-byte boundary and is 1 byte in
24483 size.
24485 @item -mno-strict-align
24486 @itemx -mstrict-align
24487 @opindex mno-strict-align
24488 @opindex mstrict-align
24489 On System V.4 and embedded PowerPC systems do not (do) assume that
24490 unaligned memory references are handled by the system.
24492 @item -mrelocatable
24493 @itemx -mno-relocatable
24494 @opindex mrelocatable
24495 @opindex mno-relocatable
24496 Generate code that allows (does not allow) a static executable to be
24497 relocated to a different address at run time.  A simple embedded
24498 PowerPC system loader should relocate the entire contents of
24499 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
24500 a table of 32-bit addresses generated by this option.  For this to
24501 work, all objects linked together must be compiled with
24502 @option{-mrelocatable} or @option{-mrelocatable-lib}.
24503 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
24505 @item -mrelocatable-lib
24506 @itemx -mno-relocatable-lib
24507 @opindex mrelocatable-lib
24508 @opindex mno-relocatable-lib
24509 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
24510 @code{.fixup} section to allow static executables to be relocated at
24511 run time, but @option{-mrelocatable-lib} does not use the smaller stack
24512 alignment of @option{-mrelocatable}.  Objects compiled with
24513 @option{-mrelocatable-lib} may be linked with objects compiled with
24514 any combination of the @option{-mrelocatable} options.
24516 @item -mno-toc
24517 @itemx -mtoc
24518 @opindex mno-toc
24519 @opindex mtoc
24520 On System V.4 and embedded PowerPC systems do not (do) assume that
24521 register 2 contains a pointer to a global area pointing to the addresses
24522 used in the program.
24524 @item -mlittle
24525 @itemx -mlittle-endian
24526 @opindex mlittle
24527 @opindex mlittle-endian
24528 On System V.4 and embedded PowerPC systems compile code for the
24529 processor in little-endian mode.  The @option{-mlittle-endian} option is
24530 the same as @option{-mlittle}.
24532 @item -mbig
24533 @itemx -mbig-endian
24534 @opindex mbig
24535 @opindex mbig-endian
24536 On System V.4 and embedded PowerPC systems compile code for the
24537 processor in big-endian mode.  The @option{-mbig-endian} option is
24538 the same as @option{-mbig}.
24540 @item -mdynamic-no-pic
24541 @opindex mdynamic-no-pic
24542 On Darwin and Mac OS X systems, compile code so that it is not
24543 relocatable, but that its external references are relocatable.  The
24544 resulting code is suitable for applications, but not shared
24545 libraries.
24547 @item -msingle-pic-base
24548 @opindex msingle-pic-base
24549 Treat the register used for PIC addressing as read-only, rather than
24550 loading it in the prologue for each function.  The runtime system is
24551 responsible for initializing this register with an appropriate value
24552 before execution begins.
24554 @item -mprioritize-restricted-insns=@var{priority}
24555 @opindex mprioritize-restricted-insns
24556 This option controls the priority that is assigned to
24557 dispatch-slot restricted instructions during the second scheduling
24558 pass.  The argument @var{priority} takes the value @samp{0}, @samp{1},
24559 or @samp{2} to assign no, highest, or second-highest (respectively) 
24560 priority to dispatch-slot restricted
24561 instructions.
24563 @item -msched-costly-dep=@var{dependence_type}
24564 @opindex msched-costly-dep
24565 This option controls which dependences are considered costly
24566 by the target during instruction scheduling.  The argument
24567 @var{dependence_type} takes one of the following values:
24569 @table @asis
24570 @item @samp{no}
24571 No dependence is costly.
24573 @item @samp{all}
24574 All dependences are costly.
24576 @item @samp{true_store_to_load}
24577 A true dependence from store to load is costly.
24579 @item @samp{store_to_load}
24580 Any dependence from store to load is costly.
24582 @item @var{number}
24583 Any dependence for which the latency is greater than or equal to 
24584 @var{number} is costly.
24585 @end table
24587 @item -minsert-sched-nops=@var{scheme}
24588 @opindex minsert-sched-nops
24589 This option controls which NOP insertion scheme is used during
24590 the second scheduling pass.  The argument @var{scheme} takes one of the
24591 following values:
24593 @table @asis
24594 @item @samp{no}
24595 Don't insert NOPs.
24597 @item @samp{pad}
24598 Pad with NOPs any dispatch group that has vacant issue slots,
24599 according to the scheduler's grouping.
24601 @item @samp{regroup_exact}
24602 Insert NOPs to force costly dependent insns into
24603 separate groups.  Insert exactly as many NOPs as needed to force an insn
24604 to a new group, according to the estimated processor grouping.
24606 @item @var{number}
24607 Insert NOPs to force costly dependent insns into
24608 separate groups.  Insert @var{number} NOPs to force an insn to a new group.
24609 @end table
24611 @item -mcall-sysv
24612 @opindex mcall-sysv
24613 On System V.4 and embedded PowerPC systems compile code using calling
24614 conventions that adhere to the March 1995 draft of the System V
24615 Application Binary Interface, PowerPC processor supplement.  This is the
24616 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
24618 @item -mcall-sysv-eabi
24619 @itemx -mcall-eabi
24620 @opindex mcall-sysv-eabi
24621 @opindex mcall-eabi
24622 Specify both @option{-mcall-sysv} and @option{-meabi} options.
24624 @item -mcall-sysv-noeabi
24625 @opindex mcall-sysv-noeabi
24626 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
24628 @item -mcall-aixdesc
24629 @opindex m
24630 On System V.4 and embedded PowerPC systems compile code for the AIX
24631 operating system.
24633 @item -mcall-linux
24634 @opindex mcall-linux
24635 On System V.4 and embedded PowerPC systems compile code for the
24636 Linux-based GNU system.
24638 @item -mcall-freebsd
24639 @opindex mcall-freebsd
24640 On System V.4 and embedded PowerPC systems compile code for the
24641 FreeBSD operating system.
24643 @item -mcall-netbsd
24644 @opindex mcall-netbsd
24645 On System V.4 and embedded PowerPC systems compile code for the
24646 NetBSD operating system.
24648 @item -mcall-openbsd
24649 @opindex mcall-netbsd
24650 On System V.4 and embedded PowerPC systems compile code for the
24651 OpenBSD operating system.
24653 @item -mtraceback=@var{traceback_type}
24654 @opindex mtraceback
24655 Select the type of traceback table. Valid values for @var{traceback_type}
24656 are @samp{full}, @samp{part}, and @samp{no}.
24658 @item -maix-struct-return
24659 @opindex maix-struct-return
24660 Return all structures in memory (as specified by the AIX ABI)@.
24662 @item -msvr4-struct-return
24663 @opindex msvr4-struct-return
24664 Return structures smaller than 8 bytes in registers (as specified by the
24665 SVR4 ABI)@.
24667 @item -mabi=@var{abi-type}
24668 @opindex mabi
24669 Extend the current ABI with a particular extension, or remove such extension.
24670 Valid values are @samp{altivec}, @samp{no-altivec},
24671 @samp{ibmlongdouble}, @samp{ieeelongdouble},
24672 @samp{elfv1}, @samp{elfv2}@.
24674 @item -mabi=ibmlongdouble
24675 @opindex mabi=ibmlongdouble
24676 Change the current ABI to use IBM extended-precision long double.
24677 This is not likely to work if your system defaults to using IEEE
24678 extended-precision long double.  If you change the long double type
24679 from IEEE extended-precision, the compiler will issue a warning unless
24680 you use the @option{-Wno-psabi} option.  Requires @option{-mlong-double-128}
24681 to be enabled.
24683 @item -mabi=ieeelongdouble
24684 @opindex mabi=ieeelongdouble
24685 Change the current ABI to use IEEE extended-precision long double.
24686 This is not likely to work if your system defaults to using IBM
24687 extended-precision long double.  If you change the long double type
24688 from IBM extended-precision, the compiler will issue a warning unless
24689 you use the @option{-Wno-psabi} option.  Requires @option{-mlong-double-128}
24690 to be enabled.
24692 @item -mabi=elfv1
24693 @opindex mabi=elfv1
24694 Change the current ABI to use the ELFv1 ABI.
24695 This is the default ABI for big-endian PowerPC 64-bit Linux.
24696 Overriding the default ABI requires special system support and is
24697 likely to fail in spectacular ways.
24699 @item -mabi=elfv2
24700 @opindex mabi=elfv2
24701 Change the current ABI to use the ELFv2 ABI.
24702 This is the default ABI for little-endian PowerPC 64-bit Linux.
24703 Overriding the default ABI requires special system support and is
24704 likely to fail in spectacular ways.
24706 @item -mgnu-attribute
24707 @itemx -mno-gnu-attribute
24708 @opindex mgnu-attribute
24709 @opindex mno-gnu-attribute
24710 Emit .gnu_attribute assembly directives to set tag/value pairs in a
24711 .gnu.attributes section that specify ABI variations in function
24712 parameters or return values.
24714 @item -mprototype
24715 @itemx -mno-prototype
24716 @opindex mprototype
24717 @opindex mno-prototype
24718 On System V.4 and embedded PowerPC systems assume that all calls to
24719 variable argument functions are properly prototyped.  Otherwise, the
24720 compiler must insert an instruction before every non-prototyped call to
24721 set or clear bit 6 of the condition code register (@code{CR}) to
24722 indicate whether floating-point values are passed in the floating-point
24723 registers in case the function takes variable arguments.  With
24724 @option{-mprototype}, only calls to prototyped variable argument functions
24725 set or clear the bit.
24727 @item -msim
24728 @opindex msim
24729 On embedded PowerPC systems, assume that the startup module is called
24730 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
24731 @file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}
24732 configurations.
24734 @item -mmvme
24735 @opindex mmvme
24736 On embedded PowerPC systems, assume that the startup module is called
24737 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
24738 @file{libc.a}.
24740 @item -mads
24741 @opindex mads
24742 On embedded PowerPC systems, assume that the startup module is called
24743 @file{crt0.o} and the standard C libraries are @file{libads.a} and
24744 @file{libc.a}.
24746 @item -myellowknife
24747 @opindex myellowknife
24748 On embedded PowerPC systems, assume that the startup module is called
24749 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
24750 @file{libc.a}.
24752 @item -mvxworks
24753 @opindex mvxworks
24754 On System V.4 and embedded PowerPC systems, specify that you are
24755 compiling for a VxWorks system.
24757 @item -memb
24758 @opindex memb
24759 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
24760 header to indicate that @samp{eabi} extended relocations are used.
24762 @item -meabi
24763 @itemx -mno-eabi
24764 @opindex meabi
24765 @opindex mno-eabi
24766 On System V.4 and embedded PowerPC systems do (do not) adhere to the
24767 Embedded Applications Binary Interface (EABI), which is a set of
24768 modifications to the System V.4 specifications.  Selecting @option{-meabi}
24769 means that the stack is aligned to an 8-byte boundary, a function
24770 @code{__eabi} is called from @code{main} to set up the EABI
24771 environment, and the @option{-msdata} option can use both @code{r2} and
24772 @code{r13} to point to two separate small data areas.  Selecting
24773 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
24774 no EABI initialization function is called from @code{main}, and the
24775 @option{-msdata} option only uses @code{r13} to point to a single
24776 small data area.  The @option{-meabi} option is on by default if you
24777 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
24779 @item -msdata=eabi
24780 @opindex msdata=eabi
24781 On System V.4 and embedded PowerPC systems, put small initialized
24782 @code{const} global and static data in the @code{.sdata2} section, which
24783 is pointed to by register @code{r2}.  Put small initialized
24784 non-@code{const} global and static data in the @code{.sdata} section,
24785 which is pointed to by register @code{r13}.  Put small uninitialized
24786 global and static data in the @code{.sbss} section, which is adjacent to
24787 the @code{.sdata} section.  The @option{-msdata=eabi} option is
24788 incompatible with the @option{-mrelocatable} option.  The
24789 @option{-msdata=eabi} option also sets the @option{-memb} option.
24791 @item -msdata=sysv
24792 @opindex msdata=sysv
24793 On System V.4 and embedded PowerPC systems, put small global and static
24794 data in the @code{.sdata} section, which is pointed to by register
24795 @code{r13}.  Put small uninitialized global and static data in the
24796 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
24797 The @option{-msdata=sysv} option is incompatible with the
24798 @option{-mrelocatable} option.
24800 @item -msdata=default
24801 @itemx -msdata
24802 @opindex msdata=default
24803 @opindex msdata
24804 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
24805 compile code the same as @option{-msdata=eabi}, otherwise compile code the
24806 same as @option{-msdata=sysv}.
24808 @item -msdata=data
24809 @opindex msdata=data
24810 On System V.4 and embedded PowerPC systems, put small global
24811 data in the @code{.sdata} section.  Put small uninitialized global
24812 data in the @code{.sbss} section.  Do not use register @code{r13}
24813 to address small data however.  This is the default behavior unless
24814 other @option{-msdata} options are used.
24816 @item -msdata=none
24817 @itemx -mno-sdata
24818 @opindex msdata=none
24819 @opindex mno-sdata
24820 On embedded PowerPC systems, put all initialized global and static data
24821 in the @code{.data} section, and all uninitialized data in the
24822 @code{.bss} section.
24824 @item -mreadonly-in-sdata
24825 @opindex mreadonly-in-sdata
24826 @opindex mno-readonly-in-sdata
24827 Put read-only objects in the @code{.sdata} section as well.  This is the
24828 default.
24830 @item -mblock-move-inline-limit=@var{num}
24831 @opindex mblock-move-inline-limit
24832 Inline all block moves (such as calls to @code{memcpy} or structure
24833 copies) less than or equal to @var{num} bytes.  The minimum value for
24834 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
24835 targets.  The default value is target-specific.
24837 @item -mblock-compare-inline-limit=@var{num}
24838 @opindex mblock-compare-inline-limit
24839 Generate non-looping inline code for all block compares (such as calls
24840 to @code{memcmp} or structure compares) less than or equal to @var{num}
24841 bytes. If @var{num} is 0, all inline expansion (non-loop and loop) of
24842 block compare is disabled. The default value is target-specific.
24844 @item -mblock-compare-inline-loop-limit=@var{num}
24845 @opindex mblock-compare-inline-loop-limit
24846 Generate an inline expansion using loop code for all block compares that
24847 are less than or equal to @var{num} bytes, but greater than the limit
24848 for non-loop inline block compare expansion. If the block length is not
24849 constant, at most @var{num} bytes will be compared before @code{memcmp}
24850 is called to compare the remainder of the block. The default value is
24851 target-specific.
24853 @item -mstring-compare-inline-limit=@var{num}
24854 @opindex mstring-compare-inline-limit
24855 Compare at most @var{num} string bytes with inline code.
24856 If the difference or end of string is not found at the
24857 end of the inline compare a call to @code{strcmp} or @code{strncmp} will
24858 take care of the rest of the comparison. The default is 64 bytes.
24860 @item -G @var{num}
24861 @opindex G
24862 @cindex smaller data references (PowerPC)
24863 @cindex .sdata/.sdata2 references (PowerPC)
24864 On embedded PowerPC systems, put global and static items less than or
24865 equal to @var{num} bytes into the small data or BSS sections instead of
24866 the normal data or BSS section.  By default, @var{num} is 8.  The
24867 @option{-G @var{num}} switch is also passed to the linker.
24868 All modules should be compiled with the same @option{-G @var{num}} value.
24870 @item -mregnames
24871 @itemx -mno-regnames
24872 @opindex mregnames
24873 @opindex mno-regnames
24874 On System V.4 and embedded PowerPC systems do (do not) emit register
24875 names in the assembly language output using symbolic forms.
24877 @item -mlongcall
24878 @itemx -mno-longcall
24879 @opindex mlongcall
24880 @opindex mno-longcall
24881 By default assume that all calls are far away so that a longer and more
24882 expensive calling sequence is required.  This is required for calls
24883 farther than 32 megabytes (33,554,432 bytes) from the current location.
24884 A short call is generated if the compiler knows
24885 the call cannot be that far away.  This setting can be overridden by
24886 the @code{shortcall} function attribute, or by @code{#pragma
24887 longcall(0)}.
24889 Some linkers are capable of detecting out-of-range calls and generating
24890 glue code on the fly.  On these systems, long calls are unnecessary and
24891 generate slower code.  As of this writing, the AIX linker can do this,
24892 as can the GNU linker for PowerPC/64.  It is planned to add this feature
24893 to the GNU linker for 32-bit PowerPC systems as well.
24895 On PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU linkers,
24896 GCC can generate long calls using an inline PLT call sequence (see
24897 @option{-mpltseq}).  PowerPC with @option{-mbss-plt} and PowerPC64
24898 ELFv1 (big-endian) do not support inline PLT calls.
24900 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
24901 callee, L42}, plus a @dfn{branch island} (glue code).  The two target
24902 addresses represent the callee and the branch island.  The
24903 Darwin/PPC linker prefers the first address and generates a @code{bl
24904 callee} if the PPC @code{bl} instruction reaches the callee directly;
24905 otherwise, the linker generates @code{bl L42} to call the branch
24906 island.  The branch island is appended to the body of the
24907 calling function; it computes the full 32-bit address of the callee
24908 and jumps to it.
24910 On Mach-O (Darwin) systems, this option directs the compiler emit to
24911 the glue for every direct call, and the Darwin linker decides whether
24912 to use or discard it.
24914 In the future, GCC may ignore all longcall specifications
24915 when the linker is known to generate glue.
24917 @item -mpltseq
24918 @itemx -mno-pltseq
24919 @opindex mpltseq
24920 @opindex mno-pltseq
24921 Implement (do not implement) -fno-plt and long calls using an inline
24922 PLT call sequence that supports lazy linking and long calls to
24923 functions in dlopen'd shared libraries.  Inline PLT calls are only
24924 supported on PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU
24925 linkers, and are enabled by default if the support is detected when
24926 configuring GCC, and, in the case of 32-bit PowerPC, if GCC is
24927 configured with @option{--enable-secureplt}.  @option{-mpltseq} code
24928 and @option{-mbss-plt} 32-bit PowerPC relocatable objects may not be
24929 linked together.
24931 @item -mtls-markers
24932 @itemx -mno-tls-markers
24933 @opindex mtls-markers
24934 @opindex mno-tls-markers
24935 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
24936 specifying the function argument.  The relocation allows the linker to
24937 reliably associate function call with argument setup instructions for
24938 TLS optimization, which in turn allows GCC to better schedule the
24939 sequence.
24941 @item -mrecip
24942 @itemx -mno-recip
24943 @opindex mrecip
24944 This option enables use of the reciprocal estimate and
24945 reciprocal square root estimate instructions with additional
24946 Newton-Raphson steps to increase precision instead of doing a divide or
24947 square root and divide for floating-point arguments.  You should use
24948 the @option{-ffast-math} option when using @option{-mrecip} (or at
24949 least @option{-funsafe-math-optimizations},
24950 @option{-ffinite-math-only}, @option{-freciprocal-math} and
24951 @option{-fno-trapping-math}).  Note that while the throughput of the
24952 sequence is generally higher than the throughput of the non-reciprocal
24953 instruction, the precision of the sequence can be decreased by up to 2
24954 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
24955 roots.
24957 @item -mrecip=@var{opt}
24958 @opindex mrecip=opt
24959 This option controls which reciprocal estimate instructions
24960 may be used.  @var{opt} is a comma-separated list of options, which may
24961 be preceded by a @code{!} to invert the option:
24963 @table @samp
24965 @item all
24966 Enable all estimate instructions.
24968 @item default 
24969 Enable the default instructions, equivalent to @option{-mrecip}.
24971 @item none 
24972 Disable all estimate instructions, equivalent to @option{-mno-recip}.
24974 @item div 
24975 Enable the reciprocal approximation instructions for both 
24976 single and double precision.
24978 @item divf 
24979 Enable the single-precision reciprocal approximation instructions.
24981 @item divd 
24982 Enable the double-precision reciprocal approximation instructions.
24984 @item rsqrt 
24985 Enable the reciprocal square root approximation instructions for both
24986 single and double precision.
24988 @item rsqrtf 
24989 Enable the single-precision reciprocal square root approximation instructions.
24991 @item rsqrtd 
24992 Enable the double-precision reciprocal square root approximation instructions.
24994 @end table
24996 So, for example, @option{-mrecip=all,!rsqrtd} enables
24997 all of the reciprocal estimate instructions, except for the
24998 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
24999 which handle the double-precision reciprocal square root calculations.
25001 @item -mrecip-precision
25002 @itemx -mno-recip-precision
25003 @opindex mrecip-precision
25004 Assume (do not assume) that the reciprocal estimate instructions
25005 provide higher-precision estimates than is mandated by the PowerPC
25006 ABI.  Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
25007 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
25008 The double-precision square root estimate instructions are not generated by
25009 default on low-precision machines, since they do not provide an
25010 estimate that converges after three steps.
25012 @item -mveclibabi=@var{type}
25013 @opindex mveclibabi
25014 Specifies the ABI type to use for vectorizing intrinsics using an
25015 external library.  The only type supported at present is @samp{mass},
25016 which specifies to use IBM's Mathematical Acceleration Subsystem
25017 (MASS) libraries for vectorizing intrinsics using external libraries.
25018 GCC currently emits calls to @code{acosd2}, @code{acosf4},
25019 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
25020 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
25021 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
25022 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
25023 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
25024 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
25025 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
25026 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
25027 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
25028 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
25029 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
25030 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
25031 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
25032 for power7.  Both @option{-ftree-vectorize} and
25033 @option{-funsafe-math-optimizations} must also be enabled.  The MASS
25034 libraries must be specified at link time.
25036 @item -mfriz
25037 @itemx -mno-friz
25038 @opindex mfriz
25039 Generate (do not generate) the @code{friz} instruction when the
25040 @option{-funsafe-math-optimizations} option is used to optimize
25041 rounding of floating-point values to 64-bit integer and back to floating
25042 point.  The @code{friz} instruction does not return the same value if
25043 the floating-point number is too large to fit in an integer.
25045 @item -mpointers-to-nested-functions
25046 @itemx -mno-pointers-to-nested-functions
25047 @opindex mpointers-to-nested-functions
25048 Generate (do not generate) code to load up the static chain register
25049 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
25050 systems where a function pointer points to a 3-word descriptor giving
25051 the function address, TOC value to be loaded in register @code{r2}, and
25052 static chain value to be loaded in register @code{r11}.  The
25053 @option{-mpointers-to-nested-functions} is on by default.  You cannot
25054 call through pointers to nested functions or pointers
25055 to functions compiled in other languages that use the static chain if
25056 you use @option{-mno-pointers-to-nested-functions}.
25058 @item -msave-toc-indirect
25059 @itemx -mno-save-toc-indirect
25060 @opindex msave-toc-indirect
25061 Generate (do not generate) code to save the TOC value in the reserved
25062 stack location in the function prologue if the function calls through
25063 a pointer on AIX and 64-bit Linux systems.  If the TOC value is not
25064 saved in the prologue, it is saved just before the call through the
25065 pointer.  The @option{-mno-save-toc-indirect} option is the default.
25067 @item -mcompat-align-parm
25068 @itemx -mno-compat-align-parm
25069 @opindex mcompat-align-parm
25070 Generate (do not generate) code to pass structure parameters with a
25071 maximum alignment of 64 bits, for compatibility with older versions
25072 of GCC.
25074 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
25075 structure parameter on a 128-bit boundary when that structure contained
25076 a member requiring 128-bit alignment.  This is corrected in more
25077 recent versions of GCC.  This option may be used to generate code
25078 that is compatible with functions compiled with older versions of
25079 GCC.
25081 The @option{-mno-compat-align-parm} option is the default.
25083 @item -mstack-protector-guard=@var{guard}
25084 @itemx -mstack-protector-guard-reg=@var{reg}
25085 @itemx -mstack-protector-guard-offset=@var{offset}
25086 @itemx -mstack-protector-guard-symbol=@var{symbol}
25087 @opindex mstack-protector-guard
25088 @opindex mstack-protector-guard-reg
25089 @opindex mstack-protector-guard-offset
25090 @opindex mstack-protector-guard-symbol
25091 Generate stack protection code using canary at @var{guard}.  Supported
25092 locations are @samp{global} for global canary or @samp{tls} for per-thread
25093 canary in the TLS block (the default with GNU libc version 2.4 or later).
25095 With the latter choice the options
25096 @option{-mstack-protector-guard-reg=@var{reg}} and
25097 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
25098 which register to use as base register for reading the canary, and from what
25099 offset from that base register. The default for those is as specified in the
25100 relevant ABI.  @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
25101 the offset with a symbol reference to a canary in the TLS block.
25103 @item -mpcrel
25104 @itemx -mno-pcrel
25105 @opindex mpcrel
25106 @opindex mno-pcrel
25107 Generate (do not generate) pc-relative addressing when the option
25108 @option{-mcpu=future} is used.
25109 @end table
25111 @node RX Options
25112 @subsection RX Options
25113 @cindex RX Options
25115 These command-line options are defined for RX targets:
25117 @table @gcctabopt
25118 @item -m64bit-doubles
25119 @itemx -m32bit-doubles
25120 @opindex m64bit-doubles
25121 @opindex m32bit-doubles
25122 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
25123 or 32 bits (@option{-m32bit-doubles}) in size.  The default is
25124 @option{-m32bit-doubles}.  @emph{Note} RX floating-point hardware only
25125 works on 32-bit values, which is why the default is
25126 @option{-m32bit-doubles}.
25128 @item -fpu
25129 @itemx -nofpu
25130 @opindex fpu
25131 @opindex nofpu
25132 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
25133 floating-point hardware.  The default is enabled for the RX600
25134 series and disabled for the RX200 series.
25136 Floating-point instructions are only generated for 32-bit floating-point 
25137 values, however, so the FPU hardware is not used for doubles if the
25138 @option{-m64bit-doubles} option is used.
25140 @emph{Note} If the @option{-fpu} option is enabled then
25141 @option{-funsafe-math-optimizations} is also enabled automatically.
25142 This is because the RX FPU instructions are themselves unsafe.
25144 @item -mcpu=@var{name}
25145 @opindex mcpu
25146 Selects the type of RX CPU to be targeted.  Currently three types are
25147 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
25148 the specific @samp{RX610} CPU.  The default is @samp{RX600}.
25150 The only difference between @samp{RX600} and @samp{RX610} is that the
25151 @samp{RX610} does not support the @code{MVTIPL} instruction.
25153 The @samp{RX200} series does not have a hardware floating-point unit
25154 and so @option{-nofpu} is enabled by default when this type is
25155 selected.
25157 @item -mbig-endian-data
25158 @itemx -mlittle-endian-data
25159 @opindex mbig-endian-data
25160 @opindex mlittle-endian-data
25161 Store data (but not code) in the big-endian format.  The default is
25162 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
25163 format.
25165 @item -msmall-data-limit=@var{N}
25166 @opindex msmall-data-limit
25167 Specifies the maximum size in bytes of global and static variables
25168 which can be placed into the small data area.  Using the small data
25169 area can lead to smaller and faster code, but the size of area is
25170 limited and it is up to the programmer to ensure that the area does
25171 not overflow.  Also when the small data area is used one of the RX's
25172 registers (usually @code{r13}) is reserved for use pointing to this
25173 area, so it is no longer available for use by the compiler.  This
25174 could result in slower and/or larger code if variables are pushed onto
25175 the stack instead of being held in this register.
25177 Note, common variables (variables that have not been initialized) and
25178 constants are not placed into the small data area as they are assigned
25179 to other sections in the output executable.
25181 The default value is zero, which disables this feature.  Note, this
25182 feature is not enabled by default with higher optimization levels
25183 (@option{-O2} etc) because of the potentially detrimental effects of
25184 reserving a register.  It is up to the programmer to experiment and
25185 discover whether this feature is of benefit to their program.  See the
25186 description of the @option{-mpid} option for a description of how the
25187 actual register to hold the small data area pointer is chosen.
25189 @item -msim
25190 @itemx -mno-sim
25191 @opindex msim
25192 @opindex mno-sim
25193 Use the simulator runtime.  The default is to use the libgloss
25194 board-specific runtime.
25196 @item -mas100-syntax
25197 @itemx -mno-as100-syntax
25198 @opindex mas100-syntax
25199 @opindex mno-as100-syntax
25200 When generating assembler output use a syntax that is compatible with
25201 Renesas's AS100 assembler.  This syntax can also be handled by the GAS
25202 assembler, but it has some restrictions so it is not generated by default.
25204 @item -mmax-constant-size=@var{N}
25205 @opindex mmax-constant-size
25206 Specifies the maximum size, in bytes, of a constant that can be used as
25207 an operand in a RX instruction.  Although the RX instruction set does
25208 allow constants of up to 4 bytes in length to be used in instructions,
25209 a longer value equates to a longer instruction.  Thus in some
25210 circumstances it can be beneficial to restrict the size of constants
25211 that are used in instructions.  Constants that are too big are instead
25212 placed into a constant pool and referenced via register indirection.
25214 The value @var{N} can be between 0 and 4.  A value of 0 (the default)
25215 or 4 means that constants of any size are allowed.
25217 @item -mrelax
25218 @opindex mrelax
25219 Enable linker relaxation.  Linker relaxation is a process whereby the
25220 linker attempts to reduce the size of a program by finding shorter
25221 versions of various instructions.  Disabled by default.
25223 @item -mint-register=@var{N}
25224 @opindex mint-register
25225 Specify the number of registers to reserve for fast interrupt handler
25226 functions.  The value @var{N} can be between 0 and 4.  A value of 1
25227 means that register @code{r13} is reserved for the exclusive use
25228 of fast interrupt handlers.  A value of 2 reserves @code{r13} and
25229 @code{r12}.  A value of 3 reserves @code{r13}, @code{r12} and
25230 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
25231 A value of 0, the default, does not reserve any registers.
25233 @item -msave-acc-in-interrupts
25234 @opindex msave-acc-in-interrupts
25235 Specifies that interrupt handler functions should preserve the
25236 accumulator register.  This is only necessary if normal code might use
25237 the accumulator register, for example because it performs 64-bit
25238 multiplications.  The default is to ignore the accumulator as this
25239 makes the interrupt handlers faster.
25241 @item -mpid
25242 @itemx -mno-pid
25243 @opindex mpid
25244 @opindex mno-pid
25245 Enables the generation of position independent data.  When enabled any
25246 access to constant data is done via an offset from a base address
25247 held in a register.  This allows the location of constant data to be
25248 determined at run time without requiring the executable to be
25249 relocated, which is a benefit to embedded applications with tight
25250 memory constraints.  Data that can be modified is not affected by this
25251 option.
25253 Note, using this feature reserves a register, usually @code{r13}, for
25254 the constant data base address.  This can result in slower and/or
25255 larger code, especially in complicated functions.
25257 The actual register chosen to hold the constant data base address
25258 depends upon whether the @option{-msmall-data-limit} and/or the
25259 @option{-mint-register} command-line options are enabled.  Starting
25260 with register @code{r13} and proceeding downwards, registers are
25261 allocated first to satisfy the requirements of @option{-mint-register},
25262 then @option{-mpid} and finally @option{-msmall-data-limit}.  Thus it
25263 is possible for the small data area register to be @code{r8} if both
25264 @option{-mint-register=4} and @option{-mpid} are specified on the
25265 command line.
25267 By default this feature is not enabled.  The default can be restored
25268 via the @option{-mno-pid} command-line option.
25270 @item -mno-warn-multiple-fast-interrupts
25271 @itemx -mwarn-multiple-fast-interrupts
25272 @opindex mno-warn-multiple-fast-interrupts
25273 @opindex mwarn-multiple-fast-interrupts
25274 Prevents GCC from issuing a warning message if it finds more than one
25275 fast interrupt handler when it is compiling a file.  The default is to
25276 issue a warning for each extra fast interrupt handler found, as the RX
25277 only supports one such interrupt.
25279 @item -mallow-string-insns
25280 @itemx -mno-allow-string-insns
25281 @opindex mallow-string-insns
25282 @opindex mno-allow-string-insns
25283 Enables or disables the use of the string manipulation instructions
25284 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
25285 @code{SWHILE} and also the @code{RMPA} instruction.  These
25286 instructions may prefetch data, which is not safe to do if accessing
25287 an I/O register.  (See section 12.2.7 of the RX62N Group User's Manual
25288 for more information).
25290 The default is to allow these instructions, but it is not possible for
25291 GCC to reliably detect all circumstances where a string instruction
25292 might be used to access an I/O register, so their use cannot be
25293 disabled automatically.  Instead it is reliant upon the programmer to
25294 use the @option{-mno-allow-string-insns} option if their program
25295 accesses I/O space.
25297 When the instructions are enabled GCC defines the C preprocessor
25298 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
25299 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
25301 @item -mjsr
25302 @itemx -mno-jsr
25303 @opindex mjsr
25304 @opindex mno-jsr
25305 Use only (or not only) @code{JSR} instructions to access functions.
25306 This option can be used when code size exceeds the range of @code{BSR}
25307 instructions.  Note that @option{-mno-jsr} does not mean to not use
25308 @code{JSR} but instead means that any type of branch may be used.
25309 @end table
25311 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
25312 has special significance to the RX port when used with the
25313 @code{interrupt} function attribute.  This attribute indicates a
25314 function intended to process fast interrupts.  GCC ensures
25315 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
25316 and/or @code{r13} and only provided that the normal use of the
25317 corresponding registers have been restricted via the
25318 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
25319 options.
25321 @node S/390 and zSeries Options
25322 @subsection S/390 and zSeries Options
25323 @cindex S/390 and zSeries Options
25325 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
25327 @table @gcctabopt
25328 @item -mhard-float
25329 @itemx -msoft-float
25330 @opindex mhard-float
25331 @opindex msoft-float
25332 Use (do not use) the hardware floating-point instructions and registers
25333 for floating-point operations.  When @option{-msoft-float} is specified,
25334 functions in @file{libgcc.a} are used to perform floating-point
25335 operations.  When @option{-mhard-float} is specified, the compiler
25336 generates IEEE floating-point instructions.  This is the default.
25338 @item -mhard-dfp
25339 @itemx -mno-hard-dfp
25340 @opindex mhard-dfp
25341 @opindex mno-hard-dfp
25342 Use (do not use) the hardware decimal-floating-point instructions for
25343 decimal-floating-point operations.  When @option{-mno-hard-dfp} is
25344 specified, functions in @file{libgcc.a} are used to perform
25345 decimal-floating-point operations.  When @option{-mhard-dfp} is
25346 specified, the compiler generates decimal-floating-point hardware
25347 instructions.  This is the default for @option{-march=z9-ec} or higher.
25349 @item -mlong-double-64
25350 @itemx -mlong-double-128
25351 @opindex mlong-double-64
25352 @opindex mlong-double-128
25353 These switches control the size of @code{long double} type. A size
25354 of 64 bits makes the @code{long double} type equivalent to the @code{double}
25355 type. This is the default.
25357 @item -mbackchain
25358 @itemx -mno-backchain
25359 @opindex mbackchain
25360 @opindex mno-backchain
25361 Store (do not store) the address of the caller's frame as backchain pointer
25362 into the callee's stack frame.
25363 A backchain may be needed to allow debugging using tools that do not understand
25364 DWARF call frame information.
25365 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
25366 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
25367 the backchain is placed into the topmost word of the 96/160 byte register
25368 save area.
25370 In general, code compiled with @option{-mbackchain} is call-compatible with
25371 code compiled with @option{-mmo-backchain}; however, use of the backchain
25372 for debugging purposes usually requires that the whole binary is built with
25373 @option{-mbackchain}.  Note that the combination of @option{-mbackchain},
25374 @option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
25375 to build a linux kernel use @option{-msoft-float}.
25377 The default is to not maintain the backchain.
25379 @item -mpacked-stack
25380 @itemx -mno-packed-stack
25381 @opindex mpacked-stack
25382 @opindex mno-packed-stack
25383 Use (do not use) the packed stack layout.  When @option{-mno-packed-stack} is
25384 specified, the compiler uses the all fields of the 96/160 byte register save
25385 area only for their default purpose; unused fields still take up stack space.
25386 When @option{-mpacked-stack} is specified, register save slots are densely
25387 packed at the top of the register save area; unused space is reused for other
25388 purposes, allowing for more efficient use of the available stack space.
25389 However, when @option{-mbackchain} is also in effect, the topmost word of
25390 the save area is always used to store the backchain, and the return address
25391 register is always saved two words below the backchain.
25393 As long as the stack frame backchain is not used, code generated with
25394 @option{-mpacked-stack} is call-compatible with code generated with
25395 @option{-mno-packed-stack}.  Note that some non-FSF releases of GCC 2.95 for
25396 S/390 or zSeries generated code that uses the stack frame backchain at run
25397 time, not just for debugging purposes.  Such code is not call-compatible
25398 with code compiled with @option{-mpacked-stack}.  Also, note that the
25399 combination of @option{-mbackchain},
25400 @option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
25401 to build a linux kernel use @option{-msoft-float}.
25403 The default is to not use the packed stack layout.
25405 @item -msmall-exec
25406 @itemx -mno-small-exec
25407 @opindex msmall-exec
25408 @opindex mno-small-exec
25409 Generate (or do not generate) code using the @code{bras} instruction
25410 to do subroutine calls.
25411 This only works reliably if the total executable size does not
25412 exceed 64k.  The default is to use the @code{basr} instruction instead,
25413 which does not have this limitation.
25415 @item -m64
25416 @itemx -m31
25417 @opindex m64
25418 @opindex m31
25419 When @option{-m31} is specified, generate code compliant to the
25420 GNU/Linux for S/390 ABI@.  When @option{-m64} is specified, generate
25421 code compliant to the GNU/Linux for zSeries ABI@.  This allows GCC in
25422 particular to generate 64-bit instructions.  For the @samp{s390}
25423 targets, the default is @option{-m31}, while the @samp{s390x}
25424 targets default to @option{-m64}.
25426 @item -mzarch
25427 @itemx -mesa
25428 @opindex mzarch
25429 @opindex mesa
25430 When @option{-mzarch} is specified, generate code using the
25431 instructions available on z/Architecture.
25432 When @option{-mesa} is specified, generate code using the
25433 instructions available on ESA/390.  Note that @option{-mesa} is
25434 not possible with @option{-m64}.
25435 When generating code compliant to the GNU/Linux for S/390 ABI,
25436 the default is @option{-mesa}.  When generating code compliant
25437 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
25439 @item -mhtm
25440 @itemx -mno-htm
25441 @opindex mhtm
25442 @opindex mno-htm
25443 The @option{-mhtm} option enables a set of builtins making use of
25444 instructions available with the transactional execution facility
25445 introduced with the IBM zEnterprise EC12 machine generation
25446 @ref{S/390 System z Built-in Functions}.
25447 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
25449 @item -mvx
25450 @itemx -mno-vx
25451 @opindex mvx
25452 @opindex mno-vx
25453 When @option{-mvx} is specified, generate code using the instructions
25454 available with the vector extension facility introduced with the IBM
25455 z13 machine generation.
25456 This option changes the ABI for some vector type values with regard to
25457 alignment and calling conventions.  In case vector type values are
25458 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
25459 command will be added to mark the resulting binary with the ABI used.
25460 @option{-mvx} is enabled by default when using @option{-march=z13}.
25462 @item -mzvector
25463 @itemx -mno-zvector
25464 @opindex mzvector
25465 @opindex mno-zvector
25466 The @option{-mzvector} option enables vector language extensions and
25467 builtins using instructions available with the vector extension
25468 facility introduced with the IBM z13 machine generation.
25469 This option adds support for @samp{vector} to be used as a keyword to
25470 define vector type variables and arguments.  @samp{vector} is only
25471 available when GNU extensions are enabled.  It will not be expanded
25472 when requesting strict standard compliance e.g.@: with @option{-std=c99}.
25473 In addition to the GCC low-level builtins @option{-mzvector} enables
25474 a set of builtins added for compatibility with AltiVec-style
25475 implementations like Power and Cell.  In order to make use of these
25476 builtins the header file @file{vecintrin.h} needs to be included.
25477 @option{-mzvector} is disabled by default.
25479 @item -mmvcle
25480 @itemx -mno-mvcle
25481 @opindex mmvcle
25482 @opindex mno-mvcle
25483 Generate (or do not generate) code using the @code{mvcle} instruction
25484 to perform block moves.  When @option{-mno-mvcle} is specified,
25485 use a @code{mvc} loop instead.  This is the default unless optimizing for
25486 size.
25488 @item -mdebug
25489 @itemx -mno-debug
25490 @opindex mdebug
25491 @opindex mno-debug
25492 Print (or do not print) additional debug information when compiling.
25493 The default is to not print debug information.
25495 @item -march=@var{cpu-type}
25496 @opindex march
25497 Generate code that runs on @var{cpu-type}, which is the name of a
25498 system representing a certain processor type.  Possible values for
25499 @var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
25500 @samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
25501 @samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11},
25502 @samp{z14}/@samp{arch12}, and @samp{native}.
25504 The default is @option{-march=z900}.
25506 Specifying @samp{native} as cpu type can be used to select the best
25507 architecture option for the host processor.
25508 @option{-march=native} has no effect if GCC does not recognize the
25509 processor.
25511 @item -mtune=@var{cpu-type}
25512 @opindex mtune
25513 Tune to @var{cpu-type} everything applicable about the generated code,
25514 except for the ABI and the set of available instructions.
25515 The list of @var{cpu-type} values is the same as for @option{-march}.
25516 The default is the value used for @option{-march}.
25518 @item -mtpf-trace
25519 @itemx -mno-tpf-trace
25520 @opindex mtpf-trace
25521 @opindex mno-tpf-trace
25522 Generate code that adds (does not add) in TPF OS specific branches to trace
25523 routines in the operating system.  This option is off by default, even
25524 when compiling for the TPF OS@.
25526 @item -mfused-madd
25527 @itemx -mno-fused-madd
25528 @opindex mfused-madd
25529 @opindex mno-fused-madd
25530 Generate code that uses (does not use) the floating-point multiply and
25531 accumulate instructions.  These instructions are generated by default if
25532 hardware floating point is used.
25534 @item -mwarn-framesize=@var{framesize}
25535 @opindex mwarn-framesize
25536 Emit a warning if the current function exceeds the given frame size.  Because
25537 this is a compile-time check it doesn't need to be a real problem when the program
25538 runs.  It is intended to identify functions that most probably cause
25539 a stack overflow.  It is useful to be used in an environment with limited stack
25540 size e.g.@: the linux kernel.
25542 @item -mwarn-dynamicstack
25543 @opindex mwarn-dynamicstack
25544 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
25545 arrays.  This is generally a bad idea with a limited stack size.
25547 @item -mstack-guard=@var{stack-guard}
25548 @itemx -mstack-size=@var{stack-size}
25549 @opindex mstack-guard
25550 @opindex mstack-size
25551 If these options are provided the S/390 back end emits additional instructions in
25552 the function prologue that trigger a trap if the stack size is @var{stack-guard}
25553 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
25554 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
25555 the frame size of the compiled function is chosen.
25556 These options are intended to be used to help debugging stack overflow problems.
25557 The additionally emitted code causes only little overhead and hence can also be
25558 used in production-like systems without greater performance degradation.  The given
25559 values have to be exact powers of 2 and @var{stack-size} has to be greater than
25560 @var{stack-guard} without exceeding 64k.
25561 In order to be efficient the extra code makes the assumption that the stack starts
25562 at an address aligned to the value given by @var{stack-size}.
25563 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
25565 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
25566 @opindex mhotpatch
25567 If the hotpatch option is enabled, a ``hot-patching'' function
25568 prologue is generated for all functions in the compilation unit.
25569 The funtion label is prepended with the given number of two-byte
25570 NOP instructions (@var{pre-halfwords}, maximum 1000000).  After
25571 the label, 2 * @var{post-halfwords} bytes are appended, using the
25572 largest NOP like instructions the architecture allows (maximum
25573 1000000).
25575 If both arguments are zero, hotpatching is disabled.
25577 This option can be overridden for individual functions with the
25578 @code{hotpatch} attribute.
25579 @end table
25581 @node Score Options
25582 @subsection Score Options
25583 @cindex Score Options
25585 These options are defined for Score implementations:
25587 @table @gcctabopt
25588 @item -meb
25589 @opindex meb
25590 Compile code for big-endian mode.  This is the default.
25592 @item -mel
25593 @opindex mel
25594 Compile code for little-endian mode.
25596 @item -mnhwloop
25597 @opindex mnhwloop
25598 Disable generation of @code{bcnz} instructions.
25600 @item -muls
25601 @opindex muls
25602 Enable generation of unaligned load and store instructions.
25604 @item -mmac
25605 @opindex mmac
25606 Enable the use of multiply-accumulate instructions. Disabled by default.
25608 @item -mscore5
25609 @opindex mscore5
25610 Specify the SCORE5 as the target architecture.
25612 @item -mscore5u
25613 @opindex mscore5u
25614 Specify the SCORE5U of the target architecture.
25616 @item -mscore7
25617 @opindex mscore7
25618 Specify the SCORE7 as the target architecture. This is the default.
25620 @item -mscore7d
25621 @opindex mscore7d
25622 Specify the SCORE7D as the target architecture.
25623 @end table
25625 @node SH Options
25626 @subsection SH Options
25628 These @samp{-m} options are defined for the SH implementations:
25630 @table @gcctabopt
25631 @item -m1
25632 @opindex m1
25633 Generate code for the SH1.
25635 @item -m2
25636 @opindex m2
25637 Generate code for the SH2.
25639 @item -m2e
25640 Generate code for the SH2e.
25642 @item -m2a-nofpu
25643 @opindex m2a-nofpu
25644 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
25645 that the floating-point unit is not used.
25647 @item -m2a-single-only
25648 @opindex m2a-single-only
25649 Generate code for the SH2a-FPU, in such a way that no double-precision
25650 floating-point operations are used.
25652 @item -m2a-single
25653 @opindex m2a-single
25654 Generate code for the SH2a-FPU assuming the floating-point unit is in
25655 single-precision mode by default.
25657 @item -m2a
25658 @opindex m2a
25659 Generate code for the SH2a-FPU assuming the floating-point unit is in
25660 double-precision mode by default.
25662 @item -m3
25663 @opindex m3
25664 Generate code for the SH3.
25666 @item -m3e
25667 @opindex m3e
25668 Generate code for the SH3e.
25670 @item -m4-nofpu
25671 @opindex m4-nofpu
25672 Generate code for the SH4 without a floating-point unit.
25674 @item -m4-single-only
25675 @opindex m4-single-only
25676 Generate code for the SH4 with a floating-point unit that only
25677 supports single-precision arithmetic.
25679 @item -m4-single
25680 @opindex m4-single
25681 Generate code for the SH4 assuming the floating-point unit is in
25682 single-precision mode by default.
25684 @item -m4
25685 @opindex m4
25686 Generate code for the SH4.
25688 @item -m4-100
25689 @opindex m4-100
25690 Generate code for SH4-100.
25692 @item -m4-100-nofpu
25693 @opindex m4-100-nofpu
25694 Generate code for SH4-100 in such a way that the
25695 floating-point unit is not used.
25697 @item -m4-100-single
25698 @opindex m4-100-single
25699 Generate code for SH4-100 assuming the floating-point unit is in
25700 single-precision mode by default.
25702 @item -m4-100-single-only
25703 @opindex m4-100-single-only
25704 Generate code for SH4-100 in such a way that no double-precision
25705 floating-point operations are used.
25707 @item -m4-200
25708 @opindex m4-200
25709 Generate code for SH4-200.
25711 @item -m4-200-nofpu
25712 @opindex m4-200-nofpu
25713 Generate code for SH4-200 without in such a way that the
25714 floating-point unit is not used.
25716 @item -m4-200-single
25717 @opindex m4-200-single
25718 Generate code for SH4-200 assuming the floating-point unit is in
25719 single-precision mode by default.
25721 @item -m4-200-single-only
25722 @opindex m4-200-single-only
25723 Generate code for SH4-200 in such a way that no double-precision
25724 floating-point operations are used.
25726 @item -m4-300
25727 @opindex m4-300
25728 Generate code for SH4-300.
25730 @item -m4-300-nofpu
25731 @opindex m4-300-nofpu
25732 Generate code for SH4-300 without in such a way that the
25733 floating-point unit is not used.
25735 @item -m4-300-single
25736 @opindex m4-300-single
25737 Generate code for SH4-300 in such a way that no double-precision
25738 floating-point operations are used.
25740 @item -m4-300-single-only
25741 @opindex m4-300-single-only
25742 Generate code for SH4-300 in such a way that no double-precision
25743 floating-point operations are used.
25745 @item -m4-340
25746 @opindex m4-340
25747 Generate code for SH4-340 (no MMU, no FPU).
25749 @item -m4-500
25750 @opindex m4-500
25751 Generate code for SH4-500 (no FPU).  Passes @option{-isa=sh4-nofpu} to the
25752 assembler.
25754 @item -m4a-nofpu
25755 @opindex m4a-nofpu
25756 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
25757 floating-point unit is not used.
25759 @item -m4a-single-only
25760 @opindex m4a-single-only
25761 Generate code for the SH4a, in such a way that no double-precision
25762 floating-point operations are used.
25764 @item -m4a-single
25765 @opindex m4a-single
25766 Generate code for the SH4a assuming the floating-point unit is in
25767 single-precision mode by default.
25769 @item -m4a
25770 @opindex m4a
25771 Generate code for the SH4a.
25773 @item -m4al
25774 @opindex m4al
25775 Same as @option{-m4a-nofpu}, except that it implicitly passes
25776 @option{-dsp} to the assembler.  GCC doesn't generate any DSP
25777 instructions at the moment.
25779 @item -mb
25780 @opindex mb
25781 Compile code for the processor in big-endian mode.
25783 @item -ml
25784 @opindex ml
25785 Compile code for the processor in little-endian mode.
25787 @item -mdalign
25788 @opindex mdalign
25789 Align doubles at 64-bit boundaries.  Note that this changes the calling
25790 conventions, and thus some functions from the standard C library do
25791 not work unless you recompile it first with @option{-mdalign}.
25793 @item -mrelax
25794 @opindex mrelax
25795 Shorten some address references at link time, when possible; uses the
25796 linker option @option{-relax}.
25798 @item -mbigtable
25799 @opindex mbigtable
25800 Use 32-bit offsets in @code{switch} tables.  The default is to use
25801 16-bit offsets.
25803 @item -mbitops
25804 @opindex mbitops
25805 Enable the use of bit manipulation instructions on SH2A.
25807 @item -mfmovd
25808 @opindex mfmovd
25809 Enable the use of the instruction @code{fmovd}.  Check @option{-mdalign} for
25810 alignment constraints.
25812 @item -mrenesas
25813 @opindex mrenesas
25814 Comply with the calling conventions defined by Renesas.
25816 @item -mno-renesas
25817 @opindex mno-renesas
25818 Comply with the calling conventions defined for GCC before the Renesas
25819 conventions were available.  This option is the default for all
25820 targets of the SH toolchain.
25822 @item -mnomacsave
25823 @opindex mnomacsave
25824 Mark the @code{MAC} register as call-clobbered, even if
25825 @option{-mrenesas} is given.
25827 @item -mieee
25828 @itemx -mno-ieee
25829 @opindex mieee
25830 @opindex mno-ieee
25831 Control the IEEE compliance of floating-point comparisons, which affects the
25832 handling of cases where the result of a comparison is unordered.  By default
25833 @option{-mieee} is implicitly enabled.  If @option{-ffinite-math-only} is
25834 enabled @option{-mno-ieee} is implicitly set, which results in faster
25835 floating-point greater-equal and less-equal comparisons.  The implicit settings
25836 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
25838 @item -minline-ic_invalidate
25839 @opindex minline-ic_invalidate
25840 Inline code to invalidate instruction cache entries after setting up
25841 nested function trampolines.
25842 This option has no effect if @option{-musermode} is in effect and the selected
25843 code generation option (e.g.@: @option{-m4}) does not allow the use of the @code{icbi}
25844 instruction.
25845 If the selected code generation option does not allow the use of the @code{icbi}
25846 instruction, and @option{-musermode} is not in effect, the inlined code
25847 manipulates the instruction cache address array directly with an associative
25848 write.  This not only requires privileged mode at run time, but it also
25849 fails if the cache line had been mapped via the TLB and has become unmapped.
25851 @item -misize
25852 @opindex misize
25853 Dump instruction size and location in the assembly code.
25855 @item -mpadstruct
25856 @opindex mpadstruct
25857 This option is deprecated.  It pads structures to multiple of 4 bytes,
25858 which is incompatible with the SH ABI@.
25860 @item -matomic-model=@var{model}
25861 @opindex matomic-model=@var{model}
25862 Sets the model of atomic operations and additional parameters as a comma
25863 separated list.  For details on the atomic built-in functions see
25864 @ref{__atomic Builtins}.  The following models and parameters are supported:
25866 @table @samp
25868 @item none
25869 Disable compiler generated atomic sequences and emit library calls for atomic
25870 operations.  This is the default if the target is not @code{sh*-*-linux*}.
25872 @item soft-gusa
25873 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
25874 built-in functions.  The generated atomic sequences require additional support
25875 from the interrupt/exception handling code of the system and are only suitable
25876 for SH3* and SH4* single-core systems.  This option is enabled by default when
25877 the target is @code{sh*-*-linux*} and SH3* or SH4*.  When the target is SH4A,
25878 this option also partially utilizes the hardware atomic instructions
25879 @code{movli.l} and @code{movco.l} to create more efficient code, unless
25880 @samp{strict} is specified.  
25882 @item soft-tcb
25883 Generate software atomic sequences that use a variable in the thread control
25884 block.  This is a variation of the gUSA sequences which can also be used on
25885 SH1* and SH2* targets.  The generated atomic sequences require additional
25886 support from the interrupt/exception handling code of the system and are only
25887 suitable for single-core systems.  When using this model, the @samp{gbr-offset=}
25888 parameter has to be specified as well.
25890 @item soft-imask
25891 Generate software atomic sequences that temporarily disable interrupts by
25892 setting @code{SR.IMASK = 1111}.  This model works only when the program runs
25893 in privileged mode and is only suitable for single-core systems.  Additional
25894 support from the interrupt/exception handling code of the system is not
25895 required.  This model is enabled by default when the target is
25896 @code{sh*-*-linux*} and SH1* or SH2*.
25898 @item hard-llcs
25899 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
25900 instructions only.  This is only available on SH4A and is suitable for
25901 multi-core systems.  Since the hardware instructions support only 32 bit atomic
25902 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
25903 Code compiled with this option is also compatible with other software
25904 atomic model interrupt/exception handling systems if executed on an SH4A
25905 system.  Additional support from the interrupt/exception handling code of the
25906 system is not required for this model.
25908 @item gbr-offset=
25909 This parameter specifies the offset in bytes of the variable in the thread
25910 control block structure that should be used by the generated atomic sequences
25911 when the @samp{soft-tcb} model has been selected.  For other models this
25912 parameter is ignored.  The specified value must be an integer multiple of four
25913 and in the range 0-1020.
25915 @item strict
25916 This parameter prevents mixed usage of multiple atomic models, even if they
25917 are compatible, and makes the compiler generate atomic sequences of the
25918 specified model only.
25920 @end table
25922 @item -mtas
25923 @opindex mtas
25924 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
25925 Notice that depending on the particular hardware and software configuration
25926 this can degrade overall performance due to the operand cache line flushes
25927 that are implied by the @code{tas.b} instruction.  On multi-core SH4A
25928 processors the @code{tas.b} instruction must be used with caution since it
25929 can result in data corruption for certain cache configurations.
25931 @item -mprefergot
25932 @opindex mprefergot
25933 When generating position-independent code, emit function calls using
25934 the Global Offset Table instead of the Procedure Linkage Table.
25936 @item -musermode
25937 @itemx -mno-usermode
25938 @opindex musermode
25939 @opindex mno-usermode
25940 Don't allow (allow) the compiler generating privileged mode code.  Specifying
25941 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
25942 inlined code would not work in user mode.  @option{-musermode} is the default
25943 when the target is @code{sh*-*-linux*}.  If the target is SH1* or SH2*
25944 @option{-musermode} has no effect, since there is no user mode.
25946 @item -multcost=@var{number}
25947 @opindex multcost=@var{number}
25948 Set the cost to assume for a multiply insn.
25950 @item -mdiv=@var{strategy}
25951 @opindex mdiv=@var{strategy}
25952 Set the division strategy to be used for integer division operations.
25953 @var{strategy} can be one of: 
25955 @table @samp
25957 @item call-div1
25958 Calls a library function that uses the single-step division instruction
25959 @code{div1} to perform the operation.  Division by zero calculates an
25960 unspecified result and does not trap.  This is the default except for SH4,
25961 SH2A and SHcompact.
25963 @item call-fp
25964 Calls a library function that performs the operation in double precision
25965 floating point.  Division by zero causes a floating-point exception.  This is
25966 the default for SHcompact with FPU.  Specifying this for targets that do not
25967 have a double precision FPU defaults to @code{call-div1}.
25969 @item call-table
25970 Calls a library function that uses a lookup table for small divisors and
25971 the @code{div1} instruction with case distinction for larger divisors.  Division
25972 by zero calculates an unspecified result and does not trap.  This is the default
25973 for SH4.  Specifying this for targets that do not have dynamic shift
25974 instructions defaults to @code{call-div1}.
25976 @end table
25978 When a division strategy has not been specified the default strategy is
25979 selected based on the current target.  For SH2A the default strategy is to
25980 use the @code{divs} and @code{divu} instructions instead of library function
25981 calls.
25983 @item -maccumulate-outgoing-args
25984 @opindex maccumulate-outgoing-args
25985 Reserve space once for outgoing arguments in the function prologue rather
25986 than around each call.  Generally beneficial for performance and size.  Also
25987 needed for unwinding to avoid changing the stack frame around conditional code.
25989 @item -mdivsi3_libfunc=@var{name}
25990 @opindex mdivsi3_libfunc=@var{name}
25991 Set the name of the library function used for 32-bit signed division to
25992 @var{name}.
25993 This only affects the name used in the @samp{call} division strategies, and
25994 the compiler still expects the same sets of input/output/clobbered registers as
25995 if this option were not present.
25997 @item -mfixed-range=@var{register-range}
25998 @opindex mfixed-range
25999 Generate code treating the given register range as fixed registers.
26000 A fixed register is one that the register allocator cannot use.  This is
26001 useful when compiling kernel code.  A register range is specified as
26002 two registers separated by a dash.  Multiple register ranges can be
26003 specified separated by a comma.
26005 @item -mbranch-cost=@var{num}
26006 @opindex mbranch-cost=@var{num}
26007 Assume @var{num} to be the cost for a branch instruction.  Higher numbers
26008 make the compiler try to generate more branch-free code if possible.  
26009 If not specified the value is selected depending on the processor type that
26010 is being compiled for.
26012 @item -mzdcbranch
26013 @itemx -mno-zdcbranch
26014 @opindex mzdcbranch
26015 @opindex mno-zdcbranch
26016 Assume (do not assume) that zero displacement conditional branch instructions
26017 @code{bt} and @code{bf} are fast.  If @option{-mzdcbranch} is specified, the
26018 compiler prefers zero displacement branch code sequences.  This is
26019 enabled by default when generating code for SH4 and SH4A.  It can be explicitly
26020 disabled by specifying @option{-mno-zdcbranch}.
26022 @item -mcbranch-force-delay-slot
26023 @opindex mcbranch-force-delay-slot
26024 Force the usage of delay slots for conditional branches, which stuffs the delay
26025 slot with a @code{nop} if a suitable instruction cannot be found.  By default
26026 this option is disabled.  It can be enabled to work around hardware bugs as
26027 found in the original SH7055.
26029 @item -mfused-madd
26030 @itemx -mno-fused-madd
26031 @opindex mfused-madd
26032 @opindex mno-fused-madd
26033 Generate code that uses (does not use) the floating-point multiply and
26034 accumulate instructions.  These instructions are generated by default
26035 if hardware floating point is used.  The machine-dependent
26036 @option{-mfused-madd} option is now mapped to the machine-independent
26037 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
26038 mapped to @option{-ffp-contract=off}.
26040 @item -mfsca
26041 @itemx -mno-fsca
26042 @opindex mfsca
26043 @opindex mno-fsca
26044 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
26045 and cosine approximations.  The option @option{-mfsca} must be used in
26046 combination with @option{-funsafe-math-optimizations}.  It is enabled by default
26047 when generating code for SH4A.  Using @option{-mno-fsca} disables sine and cosine
26048 approximations even if @option{-funsafe-math-optimizations} is in effect.
26050 @item -mfsrra
26051 @itemx -mno-fsrra
26052 @opindex mfsrra
26053 @opindex mno-fsrra
26054 Allow or disallow the compiler to emit the @code{fsrra} instruction for
26055 reciprocal square root approximations.  The option @option{-mfsrra} must be used
26056 in combination with @option{-funsafe-math-optimizations} and
26057 @option{-ffinite-math-only}.  It is enabled by default when generating code for
26058 SH4A.  Using @option{-mno-fsrra} disables reciprocal square root approximations
26059 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
26060 in effect.
26062 @item -mpretend-cmove
26063 @opindex mpretend-cmove
26064 Prefer zero-displacement conditional branches for conditional move instruction
26065 patterns.  This can result in faster code on the SH4 processor.
26067 @item -mfdpic
26068 @opindex fdpic
26069 Generate code using the FDPIC ABI.
26071 @end table
26073 @node Solaris 2 Options
26074 @subsection Solaris 2 Options
26075 @cindex Solaris 2 options
26077 These @samp{-m} options are supported on Solaris 2:
26079 @table @gcctabopt
26080 @item -mclear-hwcap
26081 @opindex mclear-hwcap
26082 @option{-mclear-hwcap} tells the compiler to remove the hardware
26083 capabilities generated by the Solaris assembler.  This is only necessary
26084 when object files use ISA extensions not supported by the current
26085 machine, but check at runtime whether or not to use them.
26087 @item -mimpure-text
26088 @opindex mimpure-text
26089 @option{-mimpure-text}, used in addition to @option{-shared}, tells
26090 the compiler to not pass @option{-z text} to the linker when linking a
26091 shared object.  Using this option, you can link position-dependent
26092 code into a shared object.
26094 @option{-mimpure-text} suppresses the ``relocations remain against
26095 allocatable but non-writable sections'' linker error message.
26096 However, the necessary relocations trigger copy-on-write, and the
26097 shared object is not actually shared across processes.  Instead of
26098 using @option{-mimpure-text}, you should compile all source code with
26099 @option{-fpic} or @option{-fPIC}.
26101 @end table
26103 These switches are supported in addition to the above on Solaris 2:
26105 @table @gcctabopt
26106 @item -pthreads
26107 @opindex pthreads
26108 This is a synonym for @option{-pthread}.
26109 @end table
26111 @node SPARC Options
26112 @subsection SPARC Options
26113 @cindex SPARC options
26115 These @samp{-m} options are supported on the SPARC:
26117 @table @gcctabopt
26118 @item -mno-app-regs
26119 @itemx -mapp-regs
26120 @opindex mno-app-regs
26121 @opindex mapp-regs
26122 Specify @option{-mapp-regs} to generate output using the global registers
26123 2 through 4, which the SPARC SVR4 ABI reserves for applications.  Like the
26124 global register 1, each global register 2 through 4 is then treated as an
26125 allocable register that is clobbered by function calls.  This is the default.
26127 To be fully SVR4 ABI-compliant at the cost of some performance loss,
26128 specify @option{-mno-app-regs}.  You should compile libraries and system
26129 software with this option.
26131 @item -mflat
26132 @itemx -mno-flat
26133 @opindex mflat
26134 @opindex mno-flat
26135 With @option{-mflat}, the compiler does not generate save/restore instructions
26136 and uses a ``flat'' or single register window model.  This model is compatible
26137 with the regular register window model.  The local registers and the input
26138 registers (0--5) are still treated as ``call-saved'' registers and are
26139 saved on the stack as needed.
26141 With @option{-mno-flat} (the default), the compiler generates save/restore
26142 instructions (except for leaf functions).  This is the normal operating mode.
26144 @item -mfpu
26145 @itemx -mhard-float
26146 @opindex mfpu
26147 @opindex mhard-float
26148 Generate output containing floating-point instructions.  This is the
26149 default.
26151 @item -mno-fpu
26152 @itemx -msoft-float
26153 @opindex mno-fpu
26154 @opindex msoft-float
26155 Generate output containing library calls for floating point.
26156 @strong{Warning:} the requisite libraries are not available for all SPARC
26157 targets.  Normally the facilities of the machine's usual C compiler are
26158 used, but this cannot be done directly in cross-compilation.  You must make
26159 your own arrangements to provide suitable library functions for
26160 cross-compilation.  The embedded targets @samp{sparc-*-aout} and
26161 @samp{sparclite-*-*} do provide software floating-point support.
26163 @option{-msoft-float} changes the calling convention in the output file;
26164 therefore, it is only useful if you compile @emph{all} of a program with
26165 this option.  In particular, you need to compile @file{libgcc.a}, the
26166 library that comes with GCC, with @option{-msoft-float} in order for
26167 this to work.
26169 @item -mhard-quad-float
26170 @opindex mhard-quad-float
26171 Generate output containing quad-word (long double) floating-point
26172 instructions.
26174 @item -msoft-quad-float
26175 @opindex msoft-quad-float
26176 Generate output containing library calls for quad-word (long double)
26177 floating-point instructions.  The functions called are those specified
26178 in the SPARC ABI@.  This is the default.
26180 As of this writing, there are no SPARC implementations that have hardware
26181 support for the quad-word floating-point instructions.  They all invoke
26182 a trap handler for one of these instructions, and then the trap handler
26183 emulates the effect of the instruction.  Because of the trap handler overhead,
26184 this is much slower than calling the ABI library routines.  Thus the
26185 @option{-msoft-quad-float} option is the default.
26187 @item -mno-unaligned-doubles
26188 @itemx -munaligned-doubles
26189 @opindex mno-unaligned-doubles
26190 @opindex munaligned-doubles
26191 Assume that doubles have 8-byte alignment.  This is the default.
26193 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
26194 alignment only if they are contained in another type, or if they have an
26195 absolute address.  Otherwise, it assumes they have 4-byte alignment.
26196 Specifying this option avoids some rare compatibility problems with code
26197 generated by other compilers.  It is not the default because it results
26198 in a performance loss, especially for floating-point code.
26200 @item -muser-mode
26201 @itemx -mno-user-mode
26202 @opindex muser-mode
26203 @opindex mno-user-mode
26204 Do not generate code that can only run in supervisor mode.  This is relevant
26205 only for the @code{casa} instruction emitted for the LEON3 processor.  This
26206 is the default.
26208 @item -mfaster-structs
26209 @itemx -mno-faster-structs
26210 @opindex mfaster-structs
26211 @opindex mno-faster-structs
26212 With @option{-mfaster-structs}, the compiler assumes that structures
26213 should have 8-byte alignment.  This enables the use of pairs of
26214 @code{ldd} and @code{std} instructions for copies in structure
26215 assignment, in place of twice as many @code{ld} and @code{st} pairs.
26216 However, the use of this changed alignment directly violates the SPARC
26217 ABI@.  Thus, it's intended only for use on targets where the developer
26218 acknowledges that their resulting code is not directly in line with
26219 the rules of the ABI@.
26221 @item -mstd-struct-return
26222 @itemx -mno-std-struct-return
26223 @opindex mstd-struct-return
26224 @opindex mno-std-struct-return
26225 With @option{-mstd-struct-return}, the compiler generates checking code
26226 in functions returning structures or unions to detect size mismatches
26227 between the two sides of function calls, as per the 32-bit ABI@.
26229 The default is @option{-mno-std-struct-return}.  This option has no effect
26230 in 64-bit mode.
26232 @item -mlra
26233 @itemx -mno-lra
26234 @opindex mlra
26235 @opindex mno-lra
26236 Enable Local Register Allocation.  This is the default for SPARC since GCC 7
26237 so @option{-mno-lra} needs to be passed to get old Reload.
26239 @item -mcpu=@var{cpu_type}
26240 @opindex mcpu
26241 Set the instruction set, register set, and instruction scheduling parameters
26242 for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
26243 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
26244 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
26245 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
26246 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
26247 @samp{niagara3}, @samp{niagara4}, @samp{niagara7} and @samp{m8}.
26249 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
26250 which selects the best architecture option for the host processor.
26251 @option{-mcpu=native} has no effect if GCC does not recognize
26252 the processor.
26254 Default instruction scheduling parameters are used for values that select
26255 an architecture and not an implementation.  These are @samp{v7}, @samp{v8},
26256 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
26258 Here is a list of each supported architecture and their supported
26259 implementations.
26261 @table @asis
26262 @item v7
26263 cypress, leon3v7
26265 @item v8
26266 supersparc, hypersparc, leon, leon3
26268 @item sparclite
26269 f930, f934, sparclite86x
26271 @item sparclet
26272 tsc701
26274 @item v9
26275 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
26276 niagara7, m8
26277 @end table
26279 By default (unless configured otherwise), GCC generates code for the V7
26280 variant of the SPARC architecture.  With @option{-mcpu=cypress}, the compiler
26281 additionally optimizes it for the Cypress CY7C602 chip, as used in the
26282 SPARCStation/SPARCServer 3xx series.  This is also appropriate for the older
26283 SPARCStation 1, 2, IPX etc.
26285 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
26286 architecture.  The only difference from V7 code is that the compiler emits
26287 the integer multiply and integer divide instructions which exist in SPARC-V8
26288 but not in SPARC-V7.  With @option{-mcpu=supersparc}, the compiler additionally
26289 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
26290 2000 series.
26292 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
26293 the SPARC architecture.  This adds the integer multiply, integer divide step
26294 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
26295 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
26296 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@.  With
26297 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
26298 MB86934 chip, which is the more recent SPARClite with FPU@.
26300 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
26301 the SPARC architecture.  This adds the integer multiply, multiply/accumulate,
26302 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
26303 but not in SPARC-V7.  With @option{-mcpu=tsc701}, the compiler additionally
26304 optimizes it for the TEMIC SPARClet chip.
26306 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
26307 architecture.  This adds 64-bit integer and floating-point move instructions,
26308 3 additional floating-point condition code registers and conditional move
26309 instructions.  With @option{-mcpu=ultrasparc}, the compiler additionally
26310 optimizes it for the Sun UltraSPARC I/II/IIi chips.  With
26311 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
26312 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips.  With
26313 @option{-mcpu=niagara}, the compiler additionally optimizes it for
26314 Sun UltraSPARC T1 chips.  With @option{-mcpu=niagara2}, the compiler
26315 additionally optimizes it for Sun UltraSPARC T2 chips. With
26316 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
26317 UltraSPARC T3 chips.  With @option{-mcpu=niagara4}, the compiler
26318 additionally optimizes it for Sun UltraSPARC T4 chips.  With
26319 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
26320 Oracle SPARC M7 chips.  With @option{-mcpu=m8}, the compiler
26321 additionally optimizes it for Oracle M8 chips.
26323 @item -mtune=@var{cpu_type}
26324 @opindex mtune
26325 Set the instruction scheduling parameters for machine type
26326 @var{cpu_type}, but do not set the instruction set or register set that the
26327 option @option{-mcpu=@var{cpu_type}} does.
26329 The same values for @option{-mcpu=@var{cpu_type}} can be used for
26330 @option{-mtune=@var{cpu_type}}, but the only useful values are those
26331 that select a particular CPU implementation.  Those are
26332 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
26333 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
26334 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
26335 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
26336 @samp{niagara4}, @samp{niagara7} and @samp{m8}.  With native Solaris
26337 and GNU/Linux toolchains, @samp{native} can also be used.
26339 @item -mv8plus
26340 @itemx -mno-v8plus
26341 @opindex mv8plus
26342 @opindex mno-v8plus
26343 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@.  The
26344 difference from the V8 ABI is that the global and out registers are
26345 considered 64 bits wide.  This is enabled by default on Solaris in 32-bit
26346 mode for all SPARC-V9 processors.
26348 @item -mvis
26349 @itemx -mno-vis
26350 @opindex mvis
26351 @opindex mno-vis
26352 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
26353 Visual Instruction Set extensions.  The default is @option{-mno-vis}.
26355 @item -mvis2
26356 @itemx -mno-vis2
26357 @opindex mvis2
26358 @opindex mno-vis2
26359 With @option{-mvis2}, GCC generates code that takes advantage of
26360 version 2.0 of the UltraSPARC Visual Instruction Set extensions.  The
26361 default is @option{-mvis2} when targeting a cpu that supports such
26362 instructions, such as UltraSPARC-III and later.  Setting @option{-mvis2}
26363 also sets @option{-mvis}.
26365 @item -mvis3
26366 @itemx -mno-vis3
26367 @opindex mvis3
26368 @opindex mno-vis3
26369 With @option{-mvis3}, GCC generates code that takes advantage of
26370 version 3.0 of the UltraSPARC Visual Instruction Set extensions.  The
26371 default is @option{-mvis3} when targeting a cpu that supports such
26372 instructions, such as niagara-3 and later.  Setting @option{-mvis3}
26373 also sets @option{-mvis2} and @option{-mvis}.
26375 @item -mvis4
26376 @itemx -mno-vis4
26377 @opindex mvis4
26378 @opindex mno-vis4
26379 With @option{-mvis4}, GCC generates code that takes advantage of
26380 version 4.0 of the UltraSPARC Visual Instruction Set extensions.  The
26381 default is @option{-mvis4} when targeting a cpu that supports such
26382 instructions, such as niagara-7 and later.  Setting @option{-mvis4}
26383 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
26385 @item -mvis4b
26386 @itemx -mno-vis4b
26387 @opindex mvis4b
26388 @opindex mno-vis4b
26389 With @option{-mvis4b}, GCC generates code that takes advantage of
26390 version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
26391 the additional VIS instructions introduced in the Oracle SPARC
26392 Architecture 2017.  The default is @option{-mvis4b} when targeting a
26393 cpu that supports such instructions, such as m8 and later.  Setting
26394 @option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
26395 @option{-mvis2} and @option{-mvis}.
26397 @item -mcbcond
26398 @itemx -mno-cbcond
26399 @opindex mcbcond
26400 @opindex mno-cbcond
26401 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
26402 Compare-and-Branch-on-Condition instructions.  The default is @option{-mcbcond}
26403 when targeting a CPU that supports such instructions, such as Niagara-4 and
26404 later.
26406 @item -mfmaf
26407 @itemx -mno-fmaf
26408 @opindex mfmaf
26409 @opindex mno-fmaf
26410 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
26411 Fused Multiply-Add Floating-point instructions.  The default is @option{-mfmaf}
26412 when targeting a CPU that supports such instructions, such as Niagara-3 and
26413 later.
26415 @item -mfsmuld
26416 @itemx -mno-fsmuld
26417 @opindex mfsmuld
26418 @opindex mno-fsmuld
26419 With @option{-mfsmuld}, GCC generates code that takes advantage of the
26420 Floating-point Multiply Single to Double (FsMULd) instruction.  The default is
26421 @option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
26422 or V9 with FPU except @option{-mcpu=leon}.
26424 @item -mpopc
26425 @itemx -mno-popc
26426 @opindex mpopc
26427 @opindex mno-popc
26428 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
26429 Population Count instruction.  The default is @option{-mpopc}
26430 when targeting a CPU that supports such an instruction, such as Niagara-2 and
26431 later.
26433 @item -msubxc
26434 @itemx -mno-subxc
26435 @opindex msubxc
26436 @opindex mno-subxc
26437 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
26438 Subtract-Extended-with-Carry instruction.  The default is @option{-msubxc}
26439 when targeting a CPU that supports such an instruction, such as Niagara-7 and
26440 later.
26442 @item -mfix-at697f
26443 @opindex mfix-at697f
26444 Enable the documented workaround for the single erratum of the Atmel AT697F
26445 processor (which corresponds to erratum #13 of the AT697E processor).
26447 @item -mfix-ut699
26448 @opindex mfix-ut699
26449 Enable the documented workarounds for the floating-point errata and the data
26450 cache nullify errata of the UT699 processor.
26452 @item -mfix-ut700
26453 @opindex mfix-ut700
26454 Enable the documented workaround for the back-to-back store errata of
26455 the UT699E/UT700 processor.
26457 @item -mfix-gr712rc
26458 @opindex mfix-gr712rc
26459 Enable the documented workaround for the back-to-back store errata of
26460 the GR712RC processor.
26461 @end table
26463 These @samp{-m} options are supported in addition to the above
26464 on SPARC-V9 processors in 64-bit environments:
26466 @table @gcctabopt
26467 @item -m32
26468 @itemx -m64
26469 @opindex m32
26470 @opindex m64
26471 Generate code for a 32-bit or 64-bit environment.
26472 The 32-bit environment sets int, long and pointer to 32 bits.
26473 The 64-bit environment sets int to 32 bits and long and pointer
26474 to 64 bits.
26476 @item -mcmodel=@var{which}
26477 @opindex mcmodel
26478 Set the code model to one of
26480 @table @samp
26481 @item medlow
26482 The Medium/Low code model: 64-bit addresses, programs
26483 must be linked in the low 32 bits of memory.  Programs can be statically
26484 or dynamically linked.
26486 @item medmid
26487 The Medium/Middle code model: 64-bit addresses, programs
26488 must be linked in the low 44 bits of memory, the text and data segments must
26489 be less than 2GB in size and the data segment must be located within 2GB of
26490 the text segment.
26492 @item medany
26493 The Medium/Anywhere code model: 64-bit addresses, programs
26494 may be linked anywhere in memory, the text and data segments must be less
26495 than 2GB in size and the data segment must be located within 2GB of the
26496 text segment.
26498 @item embmedany
26499 The Medium/Anywhere code model for embedded systems:
26500 64-bit addresses, the text and data segments must be less than 2GB in
26501 size, both starting anywhere in memory (determined at link time).  The
26502 global register %g4 points to the base of the data segment.  Programs
26503 are statically linked and PIC is not supported.
26504 @end table
26506 @item -mmemory-model=@var{mem-model}
26507 @opindex mmemory-model
26508 Set the memory model in force on the processor to one of
26510 @table @samp
26511 @item default
26512 The default memory model for the processor and operating system.
26514 @item rmo
26515 Relaxed Memory Order
26517 @item pso
26518 Partial Store Order
26520 @item tso
26521 Total Store Order
26523 @item sc
26524 Sequential Consistency
26525 @end table
26527 These memory models are formally defined in Appendix D of the SPARC-V9
26528 architecture manual, as set in the processor's @code{PSTATE.MM} field.
26530 @item -mstack-bias
26531 @itemx -mno-stack-bias
26532 @opindex mstack-bias
26533 @opindex mno-stack-bias
26534 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
26535 frame pointer if present, are offset by @minus{}2047 which must be added back
26536 when making stack frame references.  This is the default in 64-bit mode.
26537 Otherwise, assume no such offset is present.
26538 @end table
26540 @node SPU Options
26541 @subsection SPU Options
26542 @cindex SPU options
26544 These @samp{-m} options are supported on the SPU:
26546 @table @gcctabopt
26547 @item -mwarn-reloc
26548 @itemx -merror-reloc
26549 @opindex mwarn-reloc
26550 @opindex merror-reloc
26552 The loader for SPU does not handle dynamic relocations.  By default, GCC
26553 gives an error when it generates code that requires a dynamic
26554 relocation.  @option{-mno-error-reloc} disables the error,
26555 @option{-mwarn-reloc} generates a warning instead.
26557 @item -msafe-dma
26558 @itemx -munsafe-dma
26559 @opindex msafe-dma
26560 @opindex munsafe-dma
26562 Instructions that initiate or test completion of DMA must not be
26563 reordered with respect to loads and stores of the memory that is being
26564 accessed.
26565 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
26566 memory accesses, but that can lead to inefficient code in places where the
26567 memory is known to not change.  Rather than mark the memory as volatile,
26568 you can use @option{-msafe-dma} to tell the compiler to treat
26569 the DMA instructions as potentially affecting all memory.  
26571 @item -mbranch-hints
26572 @opindex mbranch-hints
26574 By default, GCC generates a branch hint instruction to avoid
26575 pipeline stalls for always-taken or probably-taken branches.  A hint
26576 is not generated closer than 8 instructions away from its branch.
26577 There is little reason to disable them, except for debugging purposes,
26578 or to make an object a little bit smaller.
26580 @item -msmall-mem
26581 @itemx -mlarge-mem
26582 @opindex msmall-mem
26583 @opindex mlarge-mem
26585 By default, GCC generates code assuming that addresses are never larger
26586 than 18 bits.  With @option{-mlarge-mem} code is generated that assumes
26587 a full 32-bit address.
26589 @item -mstdmain
26590 @opindex mstdmain
26592 By default, GCC links against startup code that assumes the SPU-style
26593 main function interface (which has an unconventional parameter list).
26594 With @option{-mstdmain}, GCC links your program against startup
26595 code that assumes a C99-style interface to @code{main}, including a
26596 local copy of @code{argv} strings.
26598 @item -mfixed-range=@var{register-range}
26599 @opindex mfixed-range
26600 Generate code treating the given register range as fixed registers.
26601 A fixed register is one that the register allocator cannot use.  This is
26602 useful when compiling kernel code.  A register range is specified as
26603 two registers separated by a dash.  Multiple register ranges can be
26604 specified separated by a comma.
26606 @item -mea32
26607 @itemx -mea64
26608 @opindex mea32
26609 @opindex mea64
26610 Compile code assuming that pointers to the PPU address space accessed
26611 via the @code{__ea} named address space qualifier are either 32 or 64
26612 bits wide.  The default is 32 bits.  As this is an ABI-changing option,
26613 all object code in an executable must be compiled with the same setting.
26615 @item -maddress-space-conversion
26616 @itemx -mno-address-space-conversion
26617 @opindex maddress-space-conversion
26618 @opindex mno-address-space-conversion
26619 Allow/disallow treating the @code{__ea} address space as superset
26620 of the generic address space.  This enables explicit type casts
26621 between @code{__ea} and generic pointer as well as implicit
26622 conversions of generic pointers to @code{__ea} pointers.  The
26623 default is to allow address space pointer conversions.
26625 @item -mcache-size=@var{cache-size}
26626 @opindex mcache-size
26627 This option controls the version of libgcc that the compiler links to an
26628 executable and selects a software-managed cache for accessing variables
26629 in the @code{__ea} address space with a particular cache size.  Possible
26630 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
26631 and @samp{128}.  The default cache size is 64KB.
26633 @item -matomic-updates
26634 @itemx -mno-atomic-updates
26635 @opindex matomic-updates
26636 @opindex mno-atomic-updates
26637 This option controls the version of libgcc that the compiler links to an
26638 executable and selects whether atomic updates to the software-managed
26639 cache of PPU-side variables are used.  If you use atomic updates, changes
26640 to a PPU variable from SPU code using the @code{__ea} named address space
26641 qualifier do not interfere with changes to other PPU variables residing
26642 in the same cache line from PPU code.  If you do not use atomic updates,
26643 such interference may occur; however, writing back cache lines is
26644 more efficient.  The default behavior is to use atomic updates.
26646 @item -mdual-nops
26647 @itemx -mdual-nops=@var{n}
26648 @opindex mdual-nops
26649 By default, GCC inserts NOPs to increase dual issue when it expects
26650 it to increase performance.  @var{n} can be a value from 0 to 10.  A
26651 smaller @var{n} inserts fewer NOPs.  10 is the default, 0 is the
26652 same as @option{-mno-dual-nops}.  Disabled with @option{-Os}.
26654 @item -mhint-max-nops=@var{n}
26655 @opindex mhint-max-nops
26656 Maximum number of NOPs to insert for a branch hint.  A branch hint must
26657 be at least 8 instructions away from the branch it is affecting.  GCC
26658 inserts up to @var{n} NOPs to enforce this, otherwise it does not
26659 generate the branch hint.
26661 @item -mhint-max-distance=@var{n}
26662 @opindex mhint-max-distance
26663 The encoding of the branch hint instruction limits the hint to be within
26664 256 instructions of the branch it is affecting.  By default, GCC makes
26665 sure it is within 125.
26667 @item -msafe-hints
26668 @opindex msafe-hints
26669 Work around a hardware bug that causes the SPU to stall indefinitely.
26670 By default, GCC inserts the @code{hbrp} instruction to make sure
26671 this stall won't happen.
26673 @end table
26675 @node System V Options
26676 @subsection Options for System V
26678 These additional options are available on System V Release 4 for
26679 compatibility with other compilers on those systems:
26681 @table @gcctabopt
26682 @item -G
26683 @opindex G
26684 Create a shared object.
26685 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
26687 @item -Qy
26688 @opindex Qy
26689 Identify the versions of each tool used by the compiler, in a
26690 @code{.ident} assembler directive in the output.
26692 @item -Qn
26693 @opindex Qn
26694 Refrain from adding @code{.ident} directives to the output file (this is
26695 the default).
26697 @item -YP,@var{dirs}
26698 @opindex YP
26699 Search the directories @var{dirs}, and no others, for libraries
26700 specified with @option{-l}.
26702 @item -Ym,@var{dir}
26703 @opindex Ym
26704 Look in the directory @var{dir} to find the M4 preprocessor.
26705 The assembler uses this option.
26706 @c This is supposed to go with a -Yd for predefined M4 macro files, but
26707 @c the generic assembler that comes with Solaris takes just -Ym.
26708 @end table
26710 @node TILE-Gx Options
26711 @subsection TILE-Gx Options
26712 @cindex TILE-Gx options
26714 These @samp{-m} options are supported on the TILE-Gx:
26716 @table @gcctabopt
26717 @item -mcmodel=small
26718 @opindex mcmodel=small
26719 Generate code for the small model.  The distance for direct calls is
26720 limited to 500M in either direction.  PC-relative addresses are 32
26721 bits.  Absolute addresses support the full address range.
26723 @item -mcmodel=large
26724 @opindex mcmodel=large
26725 Generate code for the large model.  There is no limitation on call
26726 distance, pc-relative addresses, or absolute addresses.
26728 @item -mcpu=@var{name}
26729 @opindex mcpu
26730 Selects the type of CPU to be targeted.  Currently the only supported
26731 type is @samp{tilegx}.
26733 @item -m32
26734 @itemx -m64
26735 @opindex m32
26736 @opindex m64
26737 Generate code for a 32-bit or 64-bit environment.  The 32-bit
26738 environment sets int, long, and pointer to 32 bits.  The 64-bit
26739 environment sets int to 32 bits and long and pointer to 64 bits.
26741 @item -mbig-endian
26742 @itemx -mlittle-endian
26743 @opindex mbig-endian
26744 @opindex mlittle-endian
26745 Generate code in big/little endian mode, respectively.
26746 @end table
26748 @node TILEPro Options
26749 @subsection TILEPro Options
26750 @cindex TILEPro options
26752 These @samp{-m} options are supported on the TILEPro:
26754 @table @gcctabopt
26755 @item -mcpu=@var{name}
26756 @opindex mcpu
26757 Selects the type of CPU to be targeted.  Currently the only supported
26758 type is @samp{tilepro}.
26760 @item -m32
26761 @opindex m32
26762 Generate code for a 32-bit environment, which sets int, long, and
26763 pointer to 32 bits.  This is the only supported behavior so the flag
26764 is essentially ignored.
26765 @end table
26767 @node V850 Options
26768 @subsection V850 Options
26769 @cindex V850 Options
26771 These @samp{-m} options are defined for V850 implementations:
26773 @table @gcctabopt
26774 @item -mlong-calls
26775 @itemx -mno-long-calls
26776 @opindex mlong-calls
26777 @opindex mno-long-calls
26778 Treat all calls as being far away (near).  If calls are assumed to be
26779 far away, the compiler always loads the function's address into a
26780 register, and calls indirect through the pointer.
26782 @item -mno-ep
26783 @itemx -mep
26784 @opindex mno-ep
26785 @opindex mep
26786 Do not optimize (do optimize) basic blocks that use the same index
26787 pointer 4 or more times to copy pointer into the @code{ep} register, and
26788 use the shorter @code{sld} and @code{sst} instructions.  The @option{-mep}
26789 option is on by default if you optimize.
26791 @item -mno-prolog-function
26792 @itemx -mprolog-function
26793 @opindex mno-prolog-function
26794 @opindex mprolog-function
26795 Do not use (do use) external functions to save and restore registers
26796 at the prologue and epilogue of a function.  The external functions
26797 are slower, but use less code space if more than one function saves
26798 the same number of registers.  The @option{-mprolog-function} option
26799 is on by default if you optimize.
26801 @item -mspace
26802 @opindex mspace
26803 Try to make the code as small as possible.  At present, this just turns
26804 on the @option{-mep} and @option{-mprolog-function} options.
26806 @item -mtda=@var{n}
26807 @opindex mtda
26808 Put static or global variables whose size is @var{n} bytes or less into
26809 the tiny data area that register @code{ep} points to.  The tiny data
26810 area can hold up to 256 bytes in total (128 bytes for byte references).
26812 @item -msda=@var{n}
26813 @opindex msda
26814 Put static or global variables whose size is @var{n} bytes or less into
26815 the small data area that register @code{gp} points to.  The small data
26816 area can hold up to 64 kilobytes.
26818 @item -mzda=@var{n}
26819 @opindex mzda
26820 Put static or global variables whose size is @var{n} bytes or less into
26821 the first 32 kilobytes of memory.
26823 @item -mv850
26824 @opindex mv850
26825 Specify that the target processor is the V850.
26827 @item -mv850e3v5
26828 @opindex mv850e3v5
26829 Specify that the target processor is the V850E3V5.  The preprocessor
26830 constant @code{__v850e3v5__} is defined if this option is used.
26832 @item -mv850e2v4
26833 @opindex mv850e2v4
26834 Specify that the target processor is the V850E3V5.  This is an alias for
26835 the @option{-mv850e3v5} option.
26837 @item -mv850e2v3
26838 @opindex mv850e2v3
26839 Specify that the target processor is the V850E2V3.  The preprocessor
26840 constant @code{__v850e2v3__} is defined if this option is used.
26842 @item -mv850e2
26843 @opindex mv850e2
26844 Specify that the target processor is the V850E2.  The preprocessor
26845 constant @code{__v850e2__} is defined if this option is used.
26847 @item -mv850e1
26848 @opindex mv850e1
26849 Specify that the target processor is the V850E1.  The preprocessor
26850 constants @code{__v850e1__} and @code{__v850e__} are defined if
26851 this option is used.
26853 @item -mv850es
26854 @opindex mv850es
26855 Specify that the target processor is the V850ES.  This is an alias for
26856 the @option{-mv850e1} option.
26858 @item -mv850e
26859 @opindex mv850e
26860 Specify that the target processor is the V850E@.  The preprocessor
26861 constant @code{__v850e__} is defined if this option is used.
26863 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
26864 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
26865 are defined then a default target processor is chosen and the
26866 relevant @samp{__v850*__} preprocessor constant is defined.
26868 The preprocessor constants @code{__v850} and @code{__v851__} are always
26869 defined, regardless of which processor variant is the target.
26871 @item -mdisable-callt
26872 @itemx -mno-disable-callt
26873 @opindex mdisable-callt
26874 @opindex mno-disable-callt
26875 This option suppresses generation of the @code{CALLT} instruction for the
26876 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
26877 architecture.
26879 This option is enabled by default when the RH850 ABI is
26880 in use (see @option{-mrh850-abi}), and disabled by default when the
26881 GCC ABI is in use.  If @code{CALLT} instructions are being generated
26882 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
26884 @item -mrelax
26885 @itemx -mno-relax
26886 @opindex mrelax
26887 @opindex mno-relax
26888 Pass on (or do not pass on) the @option{-mrelax} command-line option
26889 to the assembler.
26891 @item -mlong-jumps
26892 @itemx -mno-long-jumps
26893 @opindex mlong-jumps
26894 @opindex mno-long-jumps
26895 Disable (or re-enable) the generation of PC-relative jump instructions.
26897 @item -msoft-float
26898 @itemx -mhard-float
26899 @opindex msoft-float
26900 @opindex mhard-float
26901 Disable (or re-enable) the generation of hardware floating point
26902 instructions.  This option is only significant when the target
26903 architecture is @samp{V850E2V3} or higher.  If hardware floating point
26904 instructions are being generated then the C preprocessor symbol
26905 @code{__FPU_OK__} is defined, otherwise the symbol
26906 @code{__NO_FPU__} is defined.
26908 @item -mloop
26909 @opindex mloop
26910 Enables the use of the e3v5 LOOP instruction.  The use of this
26911 instruction is not enabled by default when the e3v5 architecture is
26912 selected because its use is still experimental.
26914 @item -mrh850-abi
26915 @itemx -mghs
26916 @opindex mrh850-abi
26917 @opindex mghs
26918 Enables support for the RH850 version of the V850 ABI.  This is the
26919 default.  With this version of the ABI the following rules apply:
26921 @itemize
26922 @item
26923 Integer sized structures and unions are returned via a memory pointer
26924 rather than a register.
26926 @item
26927 Large structures and unions (more than 8 bytes in size) are passed by
26928 value.
26930 @item
26931 Functions are aligned to 16-bit boundaries.
26933 @item
26934 The @option{-m8byte-align} command-line option is supported.
26936 @item
26937 The @option{-mdisable-callt} command-line option is enabled by
26938 default.  The @option{-mno-disable-callt} command-line option is not
26939 supported.
26940 @end itemize
26942 When this version of the ABI is enabled the C preprocessor symbol
26943 @code{__V850_RH850_ABI__} is defined.
26945 @item -mgcc-abi
26946 @opindex mgcc-abi
26947 Enables support for the old GCC version of the V850 ABI.  With this
26948 version of the ABI the following rules apply:
26950 @itemize
26951 @item
26952 Integer sized structures and unions are returned in register @code{r10}.
26954 @item
26955 Large structures and unions (more than 8 bytes in size) are passed by
26956 reference.
26958 @item
26959 Functions are aligned to 32-bit boundaries, unless optimizing for
26960 size.
26962 @item
26963 The @option{-m8byte-align} command-line option is not supported.
26965 @item
26966 The @option{-mdisable-callt} command-line option is supported but not
26967 enabled by default.
26968 @end itemize
26970 When this version of the ABI is enabled the C preprocessor symbol
26971 @code{__V850_GCC_ABI__} is defined.
26973 @item -m8byte-align
26974 @itemx -mno-8byte-align
26975 @opindex m8byte-align
26976 @opindex mno-8byte-align
26977 Enables support for @code{double} and @code{long long} types to be
26978 aligned on 8-byte boundaries.  The default is to restrict the
26979 alignment of all objects to at most 4-bytes.  When
26980 @option{-m8byte-align} is in effect the C preprocessor symbol
26981 @code{__V850_8BYTE_ALIGN__} is defined.
26983 @item -mbig-switch
26984 @opindex mbig-switch
26985 Generate code suitable for big switch tables.  Use this option only if
26986 the assembler/linker complain about out of range branches within a switch
26987 table.
26989 @item -mapp-regs
26990 @opindex mapp-regs
26991 This option causes r2 and r5 to be used in the code generated by
26992 the compiler.  This setting is the default.
26994 @item -mno-app-regs
26995 @opindex mno-app-regs
26996 This option causes r2 and r5 to be treated as fixed registers.
26998 @end table
27000 @node VAX Options
27001 @subsection VAX Options
27002 @cindex VAX options
27004 These @samp{-m} options are defined for the VAX:
27006 @table @gcctabopt
27007 @item -munix
27008 @opindex munix
27009 Do not output certain jump instructions (@code{aobleq} and so on)
27010 that the Unix assembler for the VAX cannot handle across long
27011 ranges.
27013 @item -mgnu
27014 @opindex mgnu
27015 Do output those jump instructions, on the assumption that the
27016 GNU assembler is being used.
27018 @item -mg
27019 @opindex mg
27020 Output code for G-format floating-point numbers instead of D-format.
27021 @end table
27023 @node Visium Options
27024 @subsection Visium Options
27025 @cindex Visium options
27027 @table @gcctabopt
27029 @item -mdebug
27030 @opindex mdebug
27031 A program which performs file I/O and is destined to run on an MCM target
27032 should be linked with this option.  It causes the libraries libc.a and
27033 libdebug.a to be linked.  The program should be run on the target under
27034 the control of the GDB remote debugging stub.
27036 @item -msim
27037 @opindex msim
27038 A program which performs file I/O and is destined to run on the simulator
27039 should be linked with option.  This causes libraries libc.a and libsim.a to
27040 be linked.
27042 @item -mfpu
27043 @itemx -mhard-float
27044 @opindex mfpu
27045 @opindex mhard-float
27046 Generate code containing floating-point instructions.  This is the
27047 default.
27049 @item -mno-fpu
27050 @itemx -msoft-float
27051 @opindex mno-fpu
27052 @opindex msoft-float
27053 Generate code containing library calls for floating-point.
27055 @option{-msoft-float} changes the calling convention in the output file;
27056 therefore, it is only useful if you compile @emph{all} of a program with
27057 this option.  In particular, you need to compile @file{libgcc.a}, the
27058 library that comes with GCC, with @option{-msoft-float} in order for
27059 this to work.
27061 @item -mcpu=@var{cpu_type}
27062 @opindex mcpu
27063 Set the instruction set, register set, and instruction scheduling parameters
27064 for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
27065 @samp{mcm}, @samp{gr5} and @samp{gr6}.
27067 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
27069 By default (unless configured otherwise), GCC generates code for the GR5
27070 variant of the Visium architecture.  
27072 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
27073 architecture.  The only difference from GR5 code is that the compiler will
27074 generate block move instructions.
27076 @item -mtune=@var{cpu_type}
27077 @opindex mtune
27078 Set the instruction scheduling parameters for machine type @var{cpu_type},
27079 but do not set the instruction set or register set that the option
27080 @option{-mcpu=@var{cpu_type}} would.
27082 @item -msv-mode
27083 @opindex msv-mode
27084 Generate code for the supervisor mode, where there are no restrictions on
27085 the access to general registers.  This is the default.
27087 @item -muser-mode
27088 @opindex muser-mode
27089 Generate code for the user mode, where the access to some general registers
27090 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
27091 mode; on the GR6, only registers r29 to r31 are affected.
27092 @end table
27094 @node VMS Options
27095 @subsection VMS Options
27097 These @samp{-m} options are defined for the VMS implementations:
27099 @table @gcctabopt
27100 @item -mvms-return-codes
27101 @opindex mvms-return-codes
27102 Return VMS condition codes from @code{main}. The default is to return POSIX-style
27103 condition (e.g.@: error) codes.
27105 @item -mdebug-main=@var{prefix}
27106 @opindex mdebug-main=@var{prefix}
27107 Flag the first routine whose name starts with @var{prefix} as the main
27108 routine for the debugger.
27110 @item -mmalloc64
27111 @opindex mmalloc64
27112 Default to 64-bit memory allocation routines.
27114 @item -mpointer-size=@var{size}
27115 @opindex mpointer-size=@var{size}
27116 Set the default size of pointers. Possible options for @var{size} are
27117 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
27118 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
27119 The later option disables @code{pragma pointer_size}.
27120 @end table
27122 @node VxWorks Options
27123 @subsection VxWorks Options
27124 @cindex VxWorks Options
27126 The options in this section are defined for all VxWorks targets.
27127 Options specific to the target hardware are listed with the other
27128 options for that target.
27130 @table @gcctabopt
27131 @item -mrtp
27132 @opindex mrtp
27133 GCC can generate code for both VxWorks kernels and real time processes
27134 (RTPs).  This option switches from the former to the latter.  It also
27135 defines the preprocessor macro @code{__RTP__}.
27137 @item -non-static
27138 @opindex non-static
27139 Link an RTP executable against shared libraries rather than static
27140 libraries.  The options @option{-static} and @option{-shared} can
27141 also be used for RTPs (@pxref{Link Options}); @option{-static}
27142 is the default.
27144 @item -Bstatic
27145 @itemx -Bdynamic
27146 @opindex Bstatic
27147 @opindex Bdynamic
27148 These options are passed down to the linker.  They are defined for
27149 compatibility with Diab.
27151 @item -Xbind-lazy
27152 @opindex Xbind-lazy
27153 Enable lazy binding of function calls.  This option is equivalent to
27154 @option{-Wl,-z,now} and is defined for compatibility with Diab.
27156 @item -Xbind-now
27157 @opindex Xbind-now
27158 Disable lazy binding of function calls.  This option is the default and
27159 is defined for compatibility with Diab.
27160 @end table
27162 @node x86 Options
27163 @subsection x86 Options
27164 @cindex x86 Options
27166 These @samp{-m} options are defined for the x86 family of computers.
27168 @table @gcctabopt
27170 @item -march=@var{cpu-type}
27171 @opindex march
27172 Generate instructions for the machine type @var{cpu-type}.  In contrast to
27173 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code 
27174 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
27175 to generate code that may not run at all on processors other than the one
27176 indicated.  Specifying @option{-march=@var{cpu-type}} implies 
27177 @option{-mtune=@var{cpu-type}}.
27179 The choices for @var{cpu-type} are:
27181 @table @samp
27182 @item native
27183 This selects the CPU to generate code for at compilation time by determining
27184 the processor type of the compiling machine.  Using @option{-march=native}
27185 enables all instruction subsets supported by the local machine (hence
27186 the result might not run on different machines).  Using @option{-mtune=native}
27187 produces code optimized for the local machine under the constraints
27188 of the selected instruction set.  
27190 @item x86-64
27191 A generic CPU with 64-bit extensions.
27193 @item i386
27194 Original Intel i386 CPU@.
27196 @item i486
27197 Intel i486 CPU@.  (No scheduling is implemented for this chip.)
27199 @item i586
27200 @itemx pentium
27201 Intel Pentium CPU with no MMX support.
27203 @item lakemont
27204 Intel Lakemont MCU, based on Intel Pentium CPU.
27206 @item pentium-mmx
27207 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
27209 @item pentiumpro
27210 Intel Pentium Pro CPU@.
27212 @item i686
27213 When used with @option{-march}, the Pentium Pro
27214 instruction set is used, so the code runs on all i686 family chips.
27215 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
27217 @item pentium2
27218 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
27219 support.
27221 @item pentium3
27222 @itemx pentium3m
27223 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
27224 set support.
27226 @item pentium-m
27227 Intel Pentium M; low-power version of Intel Pentium III CPU
27228 with MMX, SSE and SSE2 instruction set support.  Used by Centrino notebooks.
27230 @item pentium4
27231 @itemx pentium4m
27232 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
27234 @item prescott
27235 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
27236 set support.
27238 @item nocona
27239 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
27240 SSE2 and SSE3 instruction set support.
27242 @item core2
27243 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
27244 instruction set support.
27246 @item nehalem
27247 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27248 SSE4.1, SSE4.2 and POPCNT instruction set support.
27250 @item westmere
27251 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27252 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
27254 @item sandybridge
27255 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27256 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
27258 @item ivybridge
27259 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27260 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
27261 instruction set support.
27263 @item haswell
27264 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27265 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27266 BMI, BMI2 and F16C instruction set support.
27268 @item broadwell
27269 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27270 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27271 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
27273 @item skylake
27274 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27275 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27276 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
27277 XSAVES instruction set support.
27279 @item bonnell
27280 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
27281 instruction set support.
27283 @item silvermont
27284 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27285 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
27287 @item goldmont
27288 Intel Goldmont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27289 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT and FSGSBASE
27290 instruction set support.
27292 @item goldmont-plus
27293 Intel Goldmont Plus CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27294 SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE,
27295 PTWRITE, RDPID, SGX and UMIP instruction set support.
27297 @item tremont
27298 Intel Tremont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27299 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE, PTWRITE,
27300 RDPID, SGX, UMIP, GFNI-SSE, CLWB and ENCLV instruction set support.
27302 @item knl
27303 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27304 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27305 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
27306 AVX512CD instruction set support.
27308 @item knm
27309 Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27310 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27311 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
27312 AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.
27314 @item skylake-avx512
27315 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27316 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27317 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
27318 CLWB, AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
27320 @item cannonlake
27321 Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27322 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27323 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27324 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27325 AVX512IFMA, SHA and UMIP instruction set support.
27327 @item icelake-client
27328 Intel Icelake Client CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27329 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27330 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27331 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27332 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
27333 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES instruction set support.
27335 @item icelake-server
27336 Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27337 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27338 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27339 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27340 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
27341 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES, PCONFIG and WBNOINVD instruction
27342 set support.
27344 @item cascadelake
27345 Intel Cascadelake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27346 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
27347 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, CLWB,
27348 AVX512VL, AVX512BW, AVX512DQ, AVX512CD and AVX512VNNI instruction set support.
27350 @item k6
27351 AMD K6 CPU with MMX instruction set support.
27353 @item k6-2
27354 @itemx k6-3
27355 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
27357 @item athlon
27358 @itemx athlon-tbird
27359 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
27360 support.
27362 @item athlon-4
27363 @itemx athlon-xp
27364 @itemx athlon-mp
27365 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
27366 instruction set support.
27368 @item k8
27369 @itemx opteron
27370 @itemx athlon64
27371 @itemx athlon-fx
27372 Processors based on the AMD K8 core with x86-64 instruction set support,
27373 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
27374 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
27375 instruction set extensions.)
27377 @item k8-sse3
27378 @itemx opteron-sse3
27379 @itemx athlon64-sse3
27380 Improved versions of AMD K8 cores with SSE3 instruction set support.
27382 @item amdfam10
27383 @itemx barcelona
27384 CPUs based on AMD Family 10h cores with x86-64 instruction set support.  (This
27385 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
27386 instruction set extensions.)
27388 @item bdver1
27389 CPUs based on AMD Family 15h cores with x86-64 instruction set support.  (This
27390 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
27391 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
27392 @item bdver2
27393 AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
27394 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
27395 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set 
27396 extensions.)
27397 @item bdver3
27398 AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
27399 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES, 
27400 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 
27401 64-bit instruction set extensions.
27402 @item bdver4
27403 AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
27404 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP, 
27405 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, 
27406 SSE4.2, ABM and 64-bit instruction set extensions.
27408 @item znver1
27409 AMD Family 17h core based CPUs with x86-64 instruction set support.  (This
27410 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
27411 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
27412 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
27413 instruction set extensions.
27414 @item znver2
27415 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
27416 supersets BMI, BMI2, ,CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
27417 MWAITX, SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
27418 SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
27419 instruction set extensions.)
27422 @item btver1
27423 CPUs based on AMD Family 14h cores with x86-64 instruction set support.  (This
27424 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
27425 instruction set extensions.)
27427 @item btver2
27428 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
27429 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
27430 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
27432 @item winchip-c6
27433 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
27434 set support.
27436 @item winchip2
27437 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
27438 instruction set support.
27440 @item c3
27441 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
27442 (No scheduling is implemented for this chip.)
27444 @item c3-2
27445 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
27446 (No scheduling is implemented for this chip.)
27448 @item c7
27449 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
27450 (No scheduling is implemented for this chip.)
27452 @item samuel-2
27453 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
27454 (No scheduling is implemented for this chip.)
27456 @item nehemiah
27457 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
27458 (No scheduling is implemented for this chip.)
27460 @item esther
27461 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
27462 (No scheduling is implemented for this chip.)
27464 @item eden-x2
27465 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
27466 (No scheduling is implemented for this chip.)
27468 @item eden-x4
27469 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
27470 AVX and AVX2 instruction set support.
27471 (No scheduling is implemented for this chip.)
27473 @item nano
27474 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27475 instruction set support.
27476 (No scheduling is implemented for this chip.)
27478 @item nano-1000
27479 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27480 instruction set support.
27481 (No scheduling is implemented for this chip.)
27483 @item nano-2000
27484 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27485 instruction set support.
27486 (No scheduling is implemented for this chip.)
27488 @item nano-3000
27489 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27490 instruction set support.
27491 (No scheduling is implemented for this chip.)
27493 @item nano-x2
27494 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27495 instruction set support.
27496 (No scheduling is implemented for this chip.)
27498 @item nano-x4
27499 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27500 instruction set support.
27501 (No scheduling is implemented for this chip.)
27503 @item geode
27504 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
27505 @end table
27507 @item -mtune=@var{cpu-type}
27508 @opindex mtune
27509 Tune to @var{cpu-type} everything applicable about the generated code, except
27510 for the ABI and the set of available instructions.  
27511 While picking a specific @var{cpu-type} schedules things appropriately
27512 for that particular chip, the compiler does not generate any code that
27513 cannot run on the default machine type unless you use a
27514 @option{-march=@var{cpu-type}} option.
27515 For example, if GCC is configured for i686-pc-linux-gnu
27516 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
27517 but still runs on i686 machines.
27519 The choices for @var{cpu-type} are the same as for @option{-march}.
27520 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
27522 @table @samp
27523 @item generic
27524 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
27525 If you know the CPU on which your code will run, then you should use
27526 the corresponding @option{-mtune} or @option{-march} option instead of
27527 @option{-mtune=generic}.  But, if you do not know exactly what CPU users
27528 of your application will have, then you should use this option.
27530 As new processors are deployed in the marketplace, the behavior of this
27531 option will change.  Therefore, if you upgrade to a newer version of
27532 GCC, code generation controlled by this option will change to reflect
27533 the processors
27534 that are most common at the time that version of GCC is released.
27536 There is no @option{-march=generic} option because @option{-march}
27537 indicates the instruction set the compiler can use, and there is no
27538 generic instruction set applicable to all processors.  In contrast,
27539 @option{-mtune} indicates the processor (or, in this case, collection of
27540 processors) for which the code is optimized.
27542 @item intel
27543 Produce code optimized for the most current Intel processors, which are
27544 Haswell and Silvermont for this version of GCC.  If you know the CPU
27545 on which your code will run, then you should use the corresponding
27546 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
27547 But, if you want your application performs better on both Haswell and
27548 Silvermont, then you should use this option.
27550 As new Intel processors are deployed in the marketplace, the behavior of
27551 this option will change.  Therefore, if you upgrade to a newer version of
27552 GCC, code generation controlled by this option will change to reflect
27553 the most current Intel processors at the time that version of GCC is
27554 released.
27556 There is no @option{-march=intel} option because @option{-march} indicates
27557 the instruction set the compiler can use, and there is no common
27558 instruction set applicable to all processors.  In contrast,
27559 @option{-mtune} indicates the processor (or, in this case, collection of
27560 processors) for which the code is optimized.
27561 @end table
27563 @item -mcpu=@var{cpu-type}
27564 @opindex mcpu
27565 A deprecated synonym for @option{-mtune}.
27567 @item -mfpmath=@var{unit}
27568 @opindex mfpmath
27569 Generate floating-point arithmetic for selected unit @var{unit}.  The choices
27570 for @var{unit} are:
27572 @table @samp
27573 @item 387
27574 Use the standard 387 floating-point coprocessor present on the majority of chips and
27575 emulated otherwise.  Code compiled with this option runs almost everywhere.
27576 The temporary results are computed in 80-bit precision instead of the precision
27577 specified by the type, resulting in slightly different results compared to most
27578 of other chips.  See @option{-ffloat-store} for more detailed description.
27580 This is the default choice for non-Darwin x86-32 targets.
27582 @item sse
27583 Use scalar floating-point instructions present in the SSE instruction set.
27584 This instruction set is supported by Pentium III and newer chips,
27585 and in the AMD line
27586 by Athlon-4, Athlon XP and Athlon MP chips.  The earlier version of the SSE
27587 instruction set supports only single-precision arithmetic, thus the double and
27588 extended-precision arithmetic are still done using 387.  A later version, present
27589 only in Pentium 4 and AMD x86-64 chips, supports double-precision
27590 arithmetic too.
27592 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
27593 or @option{-msse2} switches to enable SSE extensions and make this option
27594 effective.  For the x86-64 compiler, these extensions are enabled by default.
27596 The resulting code should be considerably faster in the majority of cases and avoid
27597 the numerical instability problems of 387 code, but may break some existing
27598 code that expects temporaries to be 80 bits.
27600 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
27601 and the default choice for x86-32 targets with the SSE2 instruction set
27602 when @option{-ffast-math} is enabled.
27604 @item sse,387
27605 @itemx sse+387
27606 @itemx both
27607 Attempt to utilize both instruction sets at once.  This effectively doubles the
27608 amount of available registers, and on chips with separate execution units for
27609 387 and SSE the execution resources too.  Use this option with care, as it is
27610 still experimental, because the GCC register allocator does not model separate
27611 functional units well, resulting in unstable performance.
27612 @end table
27614 @item -masm=@var{dialect}
27615 @opindex masm=@var{dialect}
27616 Output assembly instructions using selected @var{dialect}.  Also affects
27617 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
27618 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
27619 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
27620 not support @samp{intel}.
27622 @item -mieee-fp
27623 @itemx -mno-ieee-fp
27624 @opindex mieee-fp
27625 @opindex mno-ieee-fp
27626 Control whether or not the compiler uses IEEE floating-point
27627 comparisons.  These correctly handle the case where the result of a
27628 comparison is unordered.
27630 @item -m80387
27631 @itemx -mhard-float
27632 @opindex 80387
27633 @opindex mhard-float
27634 Generate output containing 80387 instructions for floating point.
27636 @item -mno-80387
27637 @itemx -msoft-float
27638 @opindex no-80387
27639 @opindex msoft-float
27640 Generate output containing library calls for floating point.
27642 @strong{Warning:} the requisite libraries are not part of GCC@.
27643 Normally the facilities of the machine's usual C compiler are used, but
27644 this cannot be done directly in cross-compilation.  You must make your
27645 own arrangements to provide suitable library functions for
27646 cross-compilation.
27648 On machines where a function returns floating-point results in the 80387
27649 register stack, some floating-point opcodes may be emitted even if
27650 @option{-msoft-float} is used.
27652 @item -mno-fp-ret-in-387
27653 @opindex mno-fp-ret-in-387
27654 @opindex mfp-ret-in-387
27655 Do not use the FPU registers for return values of functions.
27657 The usual calling convention has functions return values of types
27658 @code{float} and @code{double} in an FPU register, even if there
27659 is no FPU@.  The idea is that the operating system should emulate
27660 an FPU@.
27662 The option @option{-mno-fp-ret-in-387} causes such values to be returned
27663 in ordinary CPU registers instead.
27665 @item -mno-fancy-math-387
27666 @opindex mno-fancy-math-387
27667 @opindex mfancy-math-387
27668 Some 387 emulators do not support the @code{sin}, @code{cos} and
27669 @code{sqrt} instructions for the 387.  Specify this option to avoid
27670 generating those instructions.
27671 This option is overridden when @option{-march}
27672 indicates that the target CPU always has an FPU and so the
27673 instruction does not need emulation.  These
27674 instructions are not generated unless you also use the
27675 @option{-funsafe-math-optimizations} switch.
27677 @item -malign-double
27678 @itemx -mno-align-double
27679 @opindex malign-double
27680 @opindex mno-align-double
27681 Control whether GCC aligns @code{double}, @code{long double}, and
27682 @code{long long} variables on a two-word boundary or a one-word
27683 boundary.  Aligning @code{double} variables on a two-word boundary
27684 produces code that runs somewhat faster on a Pentium at the
27685 expense of more memory.
27687 On x86-64, @option{-malign-double} is enabled by default.
27689 @strong{Warning:} if you use the @option{-malign-double} switch,
27690 structures containing the above types are aligned differently than
27691 the published application binary interface specifications for the x86-32
27692 and are not binary compatible with structures in code compiled
27693 without that switch.
27695 @item -m96bit-long-double
27696 @itemx -m128bit-long-double
27697 @opindex m96bit-long-double
27698 @opindex m128bit-long-double
27699 These switches control the size of @code{long double} type.  The x86-32
27700 application binary interface specifies the size to be 96 bits,
27701 so @option{-m96bit-long-double} is the default in 32-bit mode.
27703 Modern architectures (Pentium and newer) prefer @code{long double}
27704 to be aligned to an 8- or 16-byte boundary.  In arrays or structures
27705 conforming to the ABI, this is not possible.  So specifying
27706 @option{-m128bit-long-double} aligns @code{long double}
27707 to a 16-byte boundary by padding the @code{long double} with an additional
27708 32-bit zero.
27710 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
27711 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
27713 Notice that neither of these options enable any extra precision over the x87
27714 standard of 80 bits for a @code{long double}.
27716 @strong{Warning:} if you override the default value for your target ABI, this
27717 changes the size of 
27718 structures and arrays containing @code{long double} variables,
27719 as well as modifying the function calling convention for functions taking
27720 @code{long double}.  Hence they are not binary-compatible
27721 with code compiled without that switch.
27723 @item -mlong-double-64
27724 @itemx -mlong-double-80
27725 @itemx -mlong-double-128
27726 @opindex mlong-double-64
27727 @opindex mlong-double-80
27728 @opindex mlong-double-128
27729 These switches control the size of @code{long double} type. A size
27730 of 64 bits makes the @code{long double} type equivalent to the @code{double}
27731 type. This is the default for 32-bit Bionic C library.  A size
27732 of 128 bits makes the @code{long double} type equivalent to the
27733 @code{__float128} type. This is the default for 64-bit Bionic C library.
27735 @strong{Warning:} if you override the default value for your target ABI, this
27736 changes the size of
27737 structures and arrays containing @code{long double} variables,
27738 as well as modifying the function calling convention for functions taking
27739 @code{long double}.  Hence they are not binary-compatible
27740 with code compiled without that switch.
27742 @item -malign-data=@var{type}
27743 @opindex malign-data
27744 Control how GCC aligns variables.  Supported values for @var{type} are
27745 @samp{compat} uses increased alignment value compatible uses GCC 4.8
27746 and earlier, @samp{abi} uses alignment value as specified by the
27747 psABI, and @samp{cacheline} uses increased alignment value to match
27748 the cache line size.  @samp{compat} is the default.
27750 @item -mlarge-data-threshold=@var{threshold}
27751 @opindex mlarge-data-threshold
27752 When @option{-mcmodel=medium} is specified, data objects larger than
27753 @var{threshold} are placed in the large data section.  This value must be the
27754 same across all objects linked into the binary, and defaults to 65535.
27756 @item -mrtd
27757 @opindex mrtd
27758 Use a different function-calling convention, in which functions that
27759 take a fixed number of arguments return with the @code{ret @var{num}}
27760 instruction, which pops their arguments while returning.  This saves one
27761 instruction in the caller since there is no need to pop the arguments
27762 there.
27764 You can specify that an individual function is called with this calling
27765 sequence with the function attribute @code{stdcall}.  You can also
27766 override the @option{-mrtd} option by using the function attribute
27767 @code{cdecl}.  @xref{Function Attributes}.
27769 @strong{Warning:} this calling convention is incompatible with the one
27770 normally used on Unix, so you cannot use it if you need to call
27771 libraries compiled with the Unix compiler.
27773 Also, you must provide function prototypes for all functions that
27774 take variable numbers of arguments (including @code{printf});
27775 otherwise incorrect code is generated for calls to those
27776 functions.
27778 In addition, seriously incorrect code results if you call a
27779 function with too many arguments.  (Normally, extra arguments are
27780 harmlessly ignored.)
27782 @item -mregparm=@var{num}
27783 @opindex mregparm
27784 Control how many registers are used to pass integer arguments.  By
27785 default, no registers are used to pass arguments, and at most 3
27786 registers can be used.  You can control this behavior for a specific
27787 function by using the function attribute @code{regparm}.
27788 @xref{Function Attributes}.
27790 @strong{Warning:} if you use this switch, and
27791 @var{num} is nonzero, then you must build all modules with the same
27792 value, including any libraries.  This includes the system libraries and
27793 startup modules.
27795 @item -msseregparm
27796 @opindex msseregparm
27797 Use SSE register passing conventions for float and double arguments
27798 and return values.  You can control this behavior for a specific
27799 function by using the function attribute @code{sseregparm}.
27800 @xref{Function Attributes}.
27802 @strong{Warning:} if you use this switch then you must build all
27803 modules with the same value, including any libraries.  This includes
27804 the system libraries and startup modules.
27806 @item -mvect8-ret-in-mem
27807 @opindex mvect8-ret-in-mem
27808 Return 8-byte vectors in memory instead of MMX registers.  This is the
27809 default on VxWorks to match the ABI of the Sun Studio compilers until
27810 version 12.  @emph{Only} use this option if you need to remain
27811 compatible with existing code produced by those previous compiler
27812 versions or older versions of GCC@.
27814 @item -mpc32
27815 @itemx -mpc64
27816 @itemx -mpc80
27817 @opindex mpc32
27818 @opindex mpc64
27819 @opindex mpc80
27821 Set 80387 floating-point precision to 32, 64 or 80 bits.  When @option{-mpc32}
27822 is specified, the significands of results of floating-point operations are
27823 rounded to 24 bits (single precision); @option{-mpc64} rounds the
27824 significands of results of floating-point operations to 53 bits (double
27825 precision) and @option{-mpc80} rounds the significands of results of
27826 floating-point operations to 64 bits (extended double precision), which is
27827 the default.  When this option is used, floating-point operations in higher
27828 precisions are not available to the programmer without setting the FPU
27829 control word explicitly.
27831 Setting the rounding of floating-point operations to less than the default
27832 80 bits can speed some programs by 2% or more.  Note that some mathematical
27833 libraries assume that extended-precision (80-bit) floating-point operations
27834 are enabled by default; routines in such libraries could suffer significant
27835 loss of accuracy, typically through so-called ``catastrophic cancellation'',
27836 when this option is used to set the precision to less than extended precision.
27838 @item -mstackrealign
27839 @opindex mstackrealign
27840 Realign the stack at entry.  On the x86, the @option{-mstackrealign}
27841 option generates an alternate prologue and epilogue that realigns the
27842 run-time stack if necessary.  This supports mixing legacy codes that keep
27843 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
27844 SSE compatibility.  See also the attribute @code{force_align_arg_pointer},
27845 applicable to individual functions.
27847 @item -mpreferred-stack-boundary=@var{num}
27848 @opindex mpreferred-stack-boundary
27849 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
27850 byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
27851 the default is 4 (16 bytes or 128 bits).
27853 @strong{Warning:} When generating code for the x86-64 architecture with
27854 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
27855 used to keep the stack boundary aligned to 8 byte boundary.  Since
27856 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
27857 intended to be used in controlled environment where stack space is
27858 important limitation.  This option leads to wrong code when functions
27859 compiled with 16 byte stack alignment (such as functions from a standard
27860 library) are called with misaligned stack.  In this case, SSE
27861 instructions may lead to misaligned memory access traps.  In addition,
27862 variable arguments are handled incorrectly for 16 byte aligned
27863 objects (including x87 long double and __int128), leading to wrong
27864 results.  You must build all modules with
27865 @option{-mpreferred-stack-boundary=3}, including any libraries.  This
27866 includes the system libraries and startup modules.
27868 @item -mincoming-stack-boundary=@var{num}
27869 @opindex mincoming-stack-boundary
27870 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
27871 boundary.  If @option{-mincoming-stack-boundary} is not specified,
27872 the one specified by @option{-mpreferred-stack-boundary} is used.
27874 On Pentium and Pentium Pro, @code{double} and @code{long double} values
27875 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
27876 suffer significant run time performance penalties.  On Pentium III, the
27877 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
27878 properly if it is not 16-byte aligned.
27880 To ensure proper alignment of this values on the stack, the stack boundary
27881 must be as aligned as that required by any value stored on the stack.
27882 Further, every function must be generated such that it keeps the stack
27883 aligned.  Thus calling a function compiled with a higher preferred
27884 stack boundary from a function compiled with a lower preferred stack
27885 boundary most likely misaligns the stack.  It is recommended that
27886 libraries that use callbacks always use the default setting.
27888 This extra alignment does consume extra stack space, and generally
27889 increases code size.  Code that is sensitive to stack space usage, such
27890 as embedded systems and operating system kernels, may want to reduce the
27891 preferred alignment to @option{-mpreferred-stack-boundary=2}.
27893 @need 200
27894 @item -mmmx
27895 @opindex mmmx
27896 @need 200
27897 @itemx -msse
27898 @opindex msse
27899 @need 200
27900 @itemx -msse2
27901 @opindex msse2
27902 @need 200
27903 @itemx -msse3
27904 @opindex msse3
27905 @need 200
27906 @itemx -mssse3
27907 @opindex mssse3
27908 @need 200
27909 @itemx -msse4
27910 @opindex msse4
27911 @need 200
27912 @itemx -msse4a
27913 @opindex msse4a
27914 @need 200
27915 @itemx -msse4.1
27916 @opindex msse4.1
27917 @need 200
27918 @itemx -msse4.2
27919 @opindex msse4.2
27920 @need 200
27921 @itemx -mavx
27922 @opindex mavx
27923 @need 200
27924 @itemx -mavx2
27925 @opindex mavx2
27926 @need 200
27927 @itemx -mavx512f
27928 @opindex mavx512f
27929 @need 200
27930 @itemx -mavx512pf
27931 @opindex mavx512pf
27932 @need 200
27933 @itemx -mavx512er
27934 @opindex mavx512er
27935 @need 200
27936 @itemx -mavx512cd
27937 @opindex mavx512cd
27938 @need 200
27939 @itemx -mavx512vl
27940 @opindex mavx512vl
27941 @need 200
27942 @itemx -mavx512bw
27943 @opindex mavx512bw
27944 @need 200
27945 @itemx -mavx512dq
27946 @opindex mavx512dq
27947 @need 200
27948 @itemx -mavx512ifma
27949 @opindex mavx512ifma
27950 @need 200
27951 @itemx -mavx512vbmi
27952 @opindex mavx512vbmi
27953 @need 200
27954 @itemx -msha
27955 @opindex msha
27956 @need 200
27957 @itemx -maes
27958 @opindex maes
27959 @need 200
27960 @itemx -mpclmul
27961 @opindex mpclmul
27962 @need 200
27963 @itemx -mclflushopt
27964 @opindex mclflushopt
27965 @need 200
27966 @itemx -mclwb
27967 @opindex mclwb
27968 @need 200
27969 @itemx -mfsgsbase
27970 @opindex mfsgsbase
27971 @need 200
27972 @itemx -mptwrite
27973 @opindex mptwrite
27974 @need 200
27975 @itemx -mrdrnd
27976 @opindex mrdrnd
27977 @need 200
27978 @itemx -mf16c
27979 @opindex mf16c
27980 @need 200
27981 @itemx -mfma
27982 @opindex mfma
27983 @need 200
27984 @itemx -mpconfig
27985 @opindex mpconfig
27986 @need 200
27987 @itemx -mwbnoinvd
27988 @opindex mwbnoinvd
27989 @need 200
27990 @itemx -mfma4
27991 @opindex mfma4
27992 @need 200
27993 @itemx -mprfchw
27994 @opindex mprfchw
27995 @need 200
27996 @itemx -mrdpid
27997 @opindex mrdpid
27998 @need 200
27999 @itemx -mprefetchwt1
28000 @opindex mprefetchwt1
28001 @need 200
28002 @itemx -mrdseed
28003 @opindex mrdseed
28004 @need 200
28005 @itemx -msgx
28006 @opindex msgx
28007 @need 200
28008 @itemx -mxop
28009 @opindex mxop
28010 @need 200
28011 @itemx -mlwp
28012 @opindex mlwp
28013 @need 200
28014 @itemx -m3dnow
28015 @opindex m3dnow
28016 @need 200
28017 @itemx -m3dnowa
28018 @opindex m3dnowa
28019 @need 200
28020 @itemx -mpopcnt
28021 @opindex mpopcnt
28022 @need 200
28023 @itemx -mabm
28024 @opindex mabm
28025 @need 200
28026 @itemx -madx
28027 @opindex madx
28028 @need 200
28029 @itemx -mbmi
28030 @opindex mbmi
28031 @need 200
28032 @itemx -mbmi2
28033 @opindex mbmi2
28034 @need 200
28035 @itemx -mlzcnt
28036 @opindex mlzcnt
28037 @need 200
28038 @itemx -mfxsr
28039 @opindex mfxsr
28040 @need 200
28041 @itemx -mxsave
28042 @opindex mxsave
28043 @need 200
28044 @itemx -mxsaveopt
28045 @opindex mxsaveopt
28046 @need 200
28047 @itemx -mxsavec
28048 @opindex mxsavec
28049 @need 200
28050 @itemx -mxsaves
28051 @opindex mxsaves
28052 @need 200
28053 @itemx -mrtm
28054 @opindex mrtm
28055 @need 200
28056 @itemx -mhle
28057 @opindex mhle
28058 @need 200
28059 @itemx -mtbm
28060 @opindex mtbm
28061 @need 200
28062 @itemx -mmwaitx
28063 @opindex mmwaitx
28064 @need 200
28065 @itemx -mclzero
28066 @opindex mclzero
28067 @need 200
28068 @itemx -mpku
28069 @opindex mpku
28070 @need 200
28071 @itemx -mavx512vbmi2
28072 @opindex mavx512vbmi2
28073 @need 200
28074 @itemx -mavx512bf16
28075 @opindex mavx512bf16
28076 @need 200
28077 @itemx -mgfni
28078 @opindex mgfni
28079 @need 200
28080 @itemx -mvaes
28081 @opindex mvaes
28082 @need 200
28083 @itemx -mwaitpkg
28084 @opindex mwaitpkg
28085 @need 200
28086 @itemx -mvpclmulqdq
28087 @opindex mvpclmulqdq
28088 @need 200
28089 @itemx -mavx512bitalg
28090 @opindex mavx512bitalg
28091 @need 200
28092 @itemx -mmovdiri
28093 @opindex mmovdiri
28094 @need 200
28095 @itemx -mmovdir64b
28096 @opindex mmovdir64b
28097 @need 200
28098 @itemx -menqcmd
28099 @opindex menqcmd
28100 @need 200
28101 @itemx -mavx512vpopcntdq
28102 @opindex mavx512vpopcntdq
28103 @need 200
28104 @itemx -mavx5124fmaps
28105 @opindex mavx5124fmaps
28106 @need 200
28107 @itemx -mavx512vnni
28108 @opindex mavx512vnni
28109 @need 200
28110 @itemx -mavx5124vnniw
28111 @opindex mavx5124vnniw
28112 @need 200
28113 @itemx -mcldemote
28114 @opindex mcldemote
28115 These switches enable the use of instructions in the MMX, SSE,
28116 SSE2, SSE3, SSSE3, SSE4, SSE4A, SSE4.1, SSE4.2, AVX, AVX2, AVX512F, AVX512PF,
28117 AVX512ER, AVX512CD, AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, SHA,
28118 AES, PCLMUL, CLFLUSHOPT, CLWB, FSGSBASE, PTWRITE, RDRND, F16C, FMA, PCONFIG,
28119 WBNOINVD, FMA4, PREFETCHW, RDPID, PREFETCHWT1, RDSEED, SGX, XOP, LWP,
28120 3DNow!@:, enhanced 3DNow!@:, POPCNT, ABM, ADX, BMI, BMI2, LZCNT, FXSR, XSAVE,
28121 XSAVEOPT, XSAVEC, XSAVES, RTM, HLE, TBM, MWAITX, CLZERO, PKU, AVX512VBMI2,
28122 GFNI, VAES, WAITPKG, VPCLMULQDQ, AVX512BITALG, MOVDIRI, MOVDIR64B, AVX512BF16,
28123 ENQCMD, AVX512VPOPCNTDQ, AVX5124FMAPS, AVX512VNNI, AVX5124VNNIW, or CLDEMOTE
28124 extended instruction sets.  Each has a corresponding @option{-mno-} option to
28125 disable use of these instructions.
28127 These extensions are also available as built-in functions: see
28128 @ref{x86 Built-in Functions}, for details of the functions enabled and
28129 disabled by these switches.
28131 To generate SSE/SSE2 instructions automatically from floating-point
28132 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
28134 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
28135 generates new AVX instructions or AVX equivalence for all SSEx instructions
28136 when needed.
28138 These options enable GCC to use these extended instructions in
28139 generated code, even without @option{-mfpmath=sse}.  Applications that
28140 perform run-time CPU detection must compile separate files for each
28141 supported architecture, using the appropriate flags.  In particular,
28142 the file containing the CPU detection code should be compiled without
28143 these options.
28145 @item -mdump-tune-features
28146 @opindex mdump-tune-features
28147 This option instructs GCC to dump the names of the x86 performance 
28148 tuning features and default settings. The names can be used in 
28149 @option{-mtune-ctrl=@var{feature-list}}.
28151 @item -mtune-ctrl=@var{feature-list}
28152 @opindex mtune-ctrl=@var{feature-list}
28153 This option is used to do fine grain control of x86 code generation features.
28154 @var{feature-list} is a comma separated list of @var{feature} names. See also
28155 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
28156 on if it is not preceded with @samp{^}, otherwise, it is turned off. 
28157 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
28158 developers. Using it may lead to code paths not covered by testing and can
28159 potentially result in compiler ICEs or runtime errors.
28161 @item -mno-default
28162 @opindex mno-default
28163 This option instructs GCC to turn off all tunable features. See also 
28164 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
28166 @item -mcld
28167 @opindex mcld
28168 This option instructs GCC to emit a @code{cld} instruction in the prologue
28169 of functions that use string instructions.  String instructions depend on
28170 the DF flag to select between autoincrement or autodecrement mode.  While the
28171 ABI specifies the DF flag to be cleared on function entry, some operating
28172 systems violate this specification by not clearing the DF flag in their
28173 exception dispatchers.  The exception handler can be invoked with the DF flag
28174 set, which leads to wrong direction mode when string instructions are used.
28175 This option can be enabled by default on 32-bit x86 targets by configuring
28176 GCC with the @option{--enable-cld} configure option.  Generation of @code{cld}
28177 instructions can be suppressed with the @option{-mno-cld} compiler option
28178 in this case.
28180 @item -mvzeroupper
28181 @opindex mvzeroupper
28182 This option instructs GCC to emit a @code{vzeroupper} instruction
28183 before a transfer of control flow out of the function to minimize
28184 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
28185 intrinsics.
28187 @item -mprefer-avx128
28188 @opindex mprefer-avx128
28189 This option instructs GCC to use 128-bit AVX instructions instead of
28190 256-bit AVX instructions in the auto-vectorizer.
28192 @item -mprefer-vector-width=@var{opt}
28193 @opindex mprefer-vector-width
28194 This option instructs GCC to use @var{opt}-bit vector width in instructions
28195 instead of default on the selected platform.
28197 @table @samp
28198 @item none
28199 No extra limitations applied to GCC other than defined by the selected platform.
28201 @item 128
28202 Prefer 128-bit vector width for instructions.
28204 @item 256
28205 Prefer 256-bit vector width for instructions.
28207 @item 512
28208 Prefer 512-bit vector width for instructions.
28209 @end table
28211 @item -mcx16
28212 @opindex mcx16
28213 This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
28214 code to implement compare-and-exchange operations on 16-byte aligned 128-bit
28215 objects.  This is useful for atomic updates of data structures exceeding one
28216 machine word in size.  The compiler uses this instruction to implement
28217 @ref{__sync Builtins}.  However, for @ref{__atomic Builtins} operating on
28218 128-bit integers, a library call is always used.
28220 @item -msahf
28221 @opindex msahf
28222 This option enables generation of @code{SAHF} instructions in 64-bit code.
28223 Early Intel Pentium 4 CPUs with Intel 64 support,
28224 prior to the introduction of Pentium 4 G1 step in December 2005,
28225 lacked the @code{LAHF} and @code{SAHF} instructions
28226 which are supported by AMD64.
28227 These are load and store instructions, respectively, for certain status flags.
28228 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
28229 @code{drem}, and @code{remainder} built-in functions;
28230 see @ref{Other Builtins} for details.
28232 @item -mmovbe
28233 @opindex mmovbe
28234 This option enables use of the @code{movbe} instruction to implement
28235 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
28237 @item -mshstk
28238 @opindex mshstk
28239 The @option{-mshstk} option enables shadow stack built-in functions
28240 from x86 Control-flow Enforcement Technology (CET).
28242 @item -mcrc32
28243 @opindex mcrc32
28244 This option enables built-in functions @code{__builtin_ia32_crc32qi},
28245 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
28246 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
28248 @item -mrecip
28249 @opindex mrecip
28250 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
28251 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
28252 with an additional Newton-Raphson step
28253 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
28254 (and their vectorized
28255 variants) for single-precision floating-point arguments.  These instructions
28256 are generated only when @option{-funsafe-math-optimizations} is enabled
28257 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
28258 Note that while the throughput of the sequence is higher than the throughput
28259 of the non-reciprocal instruction, the precision of the sequence can be
28260 decreased by up to 2 ulp (i.e.@: the inverse of 1.0 equals 0.99999994).
28262 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
28263 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
28264 combination), and doesn't need @option{-mrecip}.
28266 Also note that GCC emits the above sequence with additional Newton-Raphson step
28267 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
28268 already with @option{-ffast-math} (or the above option combination), and
28269 doesn't need @option{-mrecip}.
28271 @item -mrecip=@var{opt}
28272 @opindex mrecip=opt
28273 This option controls which reciprocal estimate instructions
28274 may be used.  @var{opt} is a comma-separated list of options, which may
28275 be preceded by a @samp{!} to invert the option:
28277 @table @samp
28278 @item all
28279 Enable all estimate instructions.
28281 @item default
28282 Enable the default instructions, equivalent to @option{-mrecip}.
28284 @item none
28285 Disable all estimate instructions, equivalent to @option{-mno-recip}.
28287 @item div
28288 Enable the approximation for scalar division.
28290 @item vec-div
28291 Enable the approximation for vectorized division.
28293 @item sqrt
28294 Enable the approximation for scalar square root.
28296 @item vec-sqrt
28297 Enable the approximation for vectorized square root.
28298 @end table
28300 So, for example, @option{-mrecip=all,!sqrt} enables
28301 all of the reciprocal approximations, except for square root.
28303 @item -mveclibabi=@var{type}
28304 @opindex mveclibabi
28305 Specifies the ABI type to use for vectorizing intrinsics using an
28306 external library.  Supported values for @var{type} are @samp{svml} 
28307 for the Intel short
28308 vector math library and @samp{acml} for the AMD math core library.
28309 To use this option, both @option{-ftree-vectorize} and
28310 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML 
28311 ABI-compatible library must be specified at link time.
28313 GCC currently emits calls to @code{vmldExp2},
28314 @code{vmldLn2}, @code{vmldLog102}, @code{vmldPow2},
28315 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
28316 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
28317 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
28318 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4},
28319 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
28320 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
28321 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
28322 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
28323 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
28324 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
28325 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
28326 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
28327 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
28328 when @option{-mveclibabi=acml} is used.  
28330 @item -mabi=@var{name}
28331 @opindex mabi
28332 Generate code for the specified calling convention.  Permissible values
28333 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
28334 @samp{ms} for the Microsoft ABI.  The default is to use the Microsoft
28335 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
28336 You can control this behavior for specific functions by
28337 using the function attributes @code{ms_abi} and @code{sysv_abi}.
28338 @xref{Function Attributes}.
28340 @item -mforce-indirect-call
28341 @opindex mforce-indirect-call
28342 Force all calls to functions to be indirect. This is useful
28343 when using Intel Processor Trace where it generates more precise timing
28344 information for function calls.
28346 @item -mmanual-endbr
28347 @opindex mmanual-endbr
28348 Insert ENDBR instruction at function entry only via the @code{cf_check}
28349 function attribute. This is useful when used with the option
28350 @option{-fcf-protection=branch} to control ENDBR insertion at the
28351 function entry.
28353 @item -mcall-ms2sysv-xlogues
28354 @opindex mcall-ms2sysv-xlogues
28355 @opindex mno-call-ms2sysv-xlogues
28356 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
28357 System V ABI function must consider RSI, RDI and XMM6-15 as clobbered.  By
28358 default, the code for saving and restoring these registers is emitted inline,
28359 resulting in fairly lengthy prologues and epilogues.  Using
28360 @option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
28361 use stubs in the static portion of libgcc to perform these saves and restores,
28362 thus reducing function size at the cost of a few extra instructions.
28364 @item -mtls-dialect=@var{type}
28365 @opindex mtls-dialect
28366 Generate code to access thread-local storage using the @samp{gnu} or
28367 @samp{gnu2} conventions.  @samp{gnu} is the conservative default;
28368 @samp{gnu2} is more efficient, but it may add compile- and run-time
28369 requirements that cannot be satisfied on all systems.
28371 @item -mpush-args
28372 @itemx -mno-push-args
28373 @opindex mpush-args
28374 @opindex mno-push-args
28375 Use PUSH operations to store outgoing parameters.  This method is shorter
28376 and usually equally fast as method using SUB/MOV operations and is enabled
28377 by default.  In some cases disabling it may improve performance because of
28378 improved scheduling and reduced dependencies.
28380 @item -maccumulate-outgoing-args
28381 @opindex maccumulate-outgoing-args
28382 If enabled, the maximum amount of space required for outgoing arguments is
28383 computed in the function prologue.  This is faster on most modern CPUs
28384 because of reduced dependencies, improved scheduling and reduced stack usage
28385 when the preferred stack boundary is not equal to 2.  The drawback is a notable
28386 increase in code size.  This switch implies @option{-mno-push-args}.
28388 @item -mthreads
28389 @opindex mthreads
28390 Support thread-safe exception handling on MinGW.  Programs that rely
28391 on thread-safe exception handling must compile and link all code with the
28392 @option{-mthreads} option.  When compiling, @option{-mthreads} defines
28393 @option{-D_MT}; when linking, it links in a special thread helper library
28394 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
28396 @item -mms-bitfields
28397 @itemx -mno-ms-bitfields
28398 @opindex mms-bitfields
28399 @opindex mno-ms-bitfields
28401 Enable/disable bit-field layout compatible with the native Microsoft
28402 Windows compiler.  
28404 If @code{packed} is used on a structure, or if bit-fields are used,
28405 it may be that the Microsoft ABI lays out the structure differently
28406 than the way GCC normally does.  Particularly when moving packed
28407 data between functions compiled with GCC and the native Microsoft compiler
28408 (either via function call or as data in a file), it may be necessary to access
28409 either format.
28411 This option is enabled by default for Microsoft Windows
28412 targets.  This behavior can also be controlled locally by use of variable
28413 or type attributes.  For more information, see @ref{x86 Variable Attributes}
28414 and @ref{x86 Type Attributes}.
28416 The Microsoft structure layout algorithm is fairly simple with the exception
28417 of the bit-field packing.  
28418 The padding and alignment of members of structures and whether a bit-field 
28419 can straddle a storage-unit boundary are determine by these rules:
28421 @enumerate
28422 @item Structure members are stored sequentially in the order in which they are
28423 declared: the first member has the lowest memory address and the last member
28424 the highest.
28426 @item Every data object has an alignment requirement.  The alignment requirement
28427 for all data except structures, unions, and arrays is either the size of the
28428 object or the current packing size (specified with either the
28429 @code{aligned} attribute or the @code{pack} pragma),
28430 whichever is less.  For structures, unions, and arrays,
28431 the alignment requirement is the largest alignment requirement of its members.
28432 Every object is allocated an offset so that:
28434 @smallexample
28435 offset % alignment_requirement == 0
28436 @end smallexample
28438 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
28439 unit if the integral types are the same size and if the next bit-field fits
28440 into the current allocation unit without crossing the boundary imposed by the
28441 common alignment requirements of the bit-fields.
28442 @end enumerate
28444 MSVC interprets zero-length bit-fields in the following ways:
28446 @enumerate
28447 @item If a zero-length bit-field is inserted between two bit-fields that
28448 are normally coalesced, the bit-fields are not coalesced.
28450 For example:
28452 @smallexample
28453 struct
28454  @{
28455    unsigned long bf_1 : 12;
28456    unsigned long : 0;
28457    unsigned long bf_2 : 12;
28458  @} t1;
28459 @end smallexample
28461 @noindent
28462 The size of @code{t1} is 8 bytes with the zero-length bit-field.  If the
28463 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
28465 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
28466 alignment of the zero-length bit-field is greater than the member that follows it,
28467 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
28469 For example:
28471 @smallexample
28472 struct
28473  @{
28474    char foo : 4;
28475    short : 0;
28476    char bar;
28477  @} t2;
28479 struct
28480  @{
28481    char foo : 4;
28482    short : 0;
28483    double bar;
28484  @} t3;
28485 @end smallexample
28487 @noindent
28488 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
28489 Accordingly, the size of @code{t2} is 4.  For @code{t3}, the zero-length
28490 bit-field does not affect the alignment of @code{bar} or, as a result, the size
28491 of the structure.
28493 Taking this into account, it is important to note the following:
28495 @enumerate
28496 @item If a zero-length bit-field follows a normal bit-field, the type of the
28497 zero-length bit-field may affect the alignment of the structure as whole. For
28498 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
28499 normal bit-field, and is of type short.
28501 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
28502 still affect the alignment of the structure:
28504 @smallexample
28505 struct
28506  @{
28507    char foo : 6;
28508    long : 0;
28509  @} t4;
28510 @end smallexample
28512 @noindent
28513 Here, @code{t4} takes up 4 bytes.
28514 @end enumerate
28516 @item Zero-length bit-fields following non-bit-field members are ignored:
28518 @smallexample
28519 struct
28520  @{
28521    char foo;
28522    long : 0;
28523    char bar;
28524  @} t5;
28525 @end smallexample
28527 @noindent
28528 Here, @code{t5} takes up 2 bytes.
28529 @end enumerate
28532 @item -mno-align-stringops
28533 @opindex mno-align-stringops
28534 @opindex malign-stringops
28535 Do not align the destination of inlined string operations.  This switch reduces
28536 code size and improves performance in case the destination is already aligned,
28537 but GCC doesn't know about it.
28539 @item -minline-all-stringops
28540 @opindex minline-all-stringops
28541 By default GCC inlines string operations only when the destination is 
28542 known to be aligned to least a 4-byte boundary.  
28543 This enables more inlining and increases code
28544 size, but may improve performance of code that depends on fast
28545 @code{memcpy} and @code{memset} for short lengths.
28546 The option enables inline expansion of @code{strlen} for all
28547 pointer alignments.
28549 @item -minline-stringops-dynamically
28550 @opindex minline-stringops-dynamically
28551 For string operations of unknown size, use run-time checks with
28552 inline code for small blocks and a library call for large blocks.
28554 @item -mstringop-strategy=@var{alg}
28555 @opindex mstringop-strategy=@var{alg}
28556 Override the internal decision heuristic for the particular algorithm to use
28557 for inlining string operations.  The allowed values for @var{alg} are:
28559 @table @samp
28560 @item rep_byte
28561 @itemx rep_4byte
28562 @itemx rep_8byte
28563 Expand using i386 @code{rep} prefix of the specified size.
28565 @item byte_loop
28566 @itemx loop
28567 @itemx unrolled_loop
28568 Expand into an inline loop.
28570 @item libcall
28571 Always use a library call.
28572 @end table
28574 @item -mmemcpy-strategy=@var{strategy}
28575 @opindex mmemcpy-strategy=@var{strategy}
28576 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
28577 should be inlined and what inline algorithm to use when the expected size
28578 of the copy operation is known. @var{strategy} 
28579 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets. 
28580 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
28581 the max byte size with which inline algorithm @var{alg} is allowed.  For the last
28582 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
28583 in the list must be specified in increasing order.  The minimal byte size for 
28584 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the 
28585 preceding range.
28587 @item -mmemset-strategy=@var{strategy}
28588 @opindex mmemset-strategy=@var{strategy}
28589 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
28590 @code{__builtin_memset} expansion.
28592 @item -momit-leaf-frame-pointer
28593 @opindex momit-leaf-frame-pointer
28594 Don't keep the frame pointer in a register for leaf functions.  This
28595 avoids the instructions to save, set up, and restore frame pointers and
28596 makes an extra register available in leaf functions.  The option
28597 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
28598 which might make debugging harder.
28600 @item -mtls-direct-seg-refs
28601 @itemx -mno-tls-direct-seg-refs
28602 @opindex mtls-direct-seg-refs
28603 Controls whether TLS variables may be accessed with offsets from the
28604 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
28605 or whether the thread base pointer must be added.  Whether or not this
28606 is valid depends on the operating system, and whether it maps the
28607 segment to cover the entire TLS area.
28609 For systems that use the GNU C Library, the default is on.
28611 @item -msse2avx
28612 @itemx -mno-sse2avx
28613 @opindex msse2avx
28614 Specify that the assembler should encode SSE instructions with VEX
28615 prefix.  The option @option{-mavx} turns this on by default.
28617 @item -mfentry
28618 @itemx -mno-fentry
28619 @opindex mfentry
28620 If profiling is active (@option{-pg}), put the profiling
28621 counter call before the prologue.
28622 Note: On x86 architectures the attribute @code{ms_hook_prologue}
28623 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
28625 @item -mrecord-mcount
28626 @itemx -mno-record-mcount
28627 @opindex mrecord-mcount
28628 If profiling is active (@option{-pg}), generate a __mcount_loc section
28629 that contains pointers to each profiling call. This is useful for
28630 automatically patching and out calls.
28632 @item -mnop-mcount
28633 @itemx -mno-nop-mcount
28634 @opindex mnop-mcount
28635 If profiling is active (@option{-pg}), generate the calls to
28636 the profiling functions as NOPs. This is useful when they
28637 should be patched in later dynamically. This is likely only
28638 useful together with @option{-mrecord-mcount}.
28640 @item -minstrument-return=@var{type}
28641 @opindex minstrument-return
28642 Instrument function exit in -pg -mfentry instrumented functions with
28643 call to specified function. This only instruments true returns ending
28644 with ret, but not sibling calls ending with jump. Valid types
28645 are @var{none} to not instrument, @var{call} to generate a call to __return__,
28646 or @var{nop5} to generate a 5 byte nop.
28648 @item -mrecord-return
28649 @itemx -mno-record-return
28650 @opindex mrecord-return
28651 Generate a __return_loc section pointing to all return instrumentation code.
28653 @item -mfentry-name=@var{name}
28654 @opindex mfentry-name
28655 Set name of __fentry__ symbol called at function entry for -pg -mfentry functions.
28657 @item -mfentry-section=@var{name}
28658 @opindex mfentry-section
28659 Set name of section to record -mrecord-mcount calls (default __mcount_loc).
28661 @item -mskip-rax-setup
28662 @itemx -mno-skip-rax-setup
28663 @opindex mskip-rax-setup
28664 When generating code for the x86-64 architecture with SSE extensions
28665 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
28666 register when there are no variable arguments passed in vector registers.
28668 @strong{Warning:} Since RAX register is used to avoid unnecessarily
28669 saving vector registers on stack when passing variable arguments, the
28670 impacts of this option are callees may waste some stack space,
28671 misbehave or jump to a random location.  GCC 4.4 or newer don't have
28672 those issues, regardless the RAX register value.
28674 @item -m8bit-idiv
28675 @itemx -mno-8bit-idiv
28676 @opindex m8bit-idiv
28677 On some processors, like Intel Atom, 8-bit unsigned integer divide is
28678 much faster than 32-bit/64-bit integer divide.  This option generates a
28679 run-time check.  If both dividend and divisor are within range of 0
28680 to 255, 8-bit unsigned integer divide is used instead of
28681 32-bit/64-bit integer divide.
28683 @item -mavx256-split-unaligned-load
28684 @itemx -mavx256-split-unaligned-store
28685 @opindex mavx256-split-unaligned-load
28686 @opindex mavx256-split-unaligned-store
28687 Split 32-byte AVX unaligned load and store.
28689 @item -mstack-protector-guard=@var{guard}
28690 @itemx -mstack-protector-guard-reg=@var{reg}
28691 @itemx -mstack-protector-guard-offset=@var{offset}
28692 @opindex mstack-protector-guard
28693 @opindex mstack-protector-guard-reg
28694 @opindex mstack-protector-guard-offset
28695 Generate stack protection code using canary at @var{guard}.  Supported
28696 locations are @samp{global} for global canary or @samp{tls} for per-thread
28697 canary in the TLS block (the default).  This option has effect only when
28698 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
28700 With the latter choice the options
28701 @option{-mstack-protector-guard-reg=@var{reg}} and
28702 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
28703 which segment register (@code{%fs} or @code{%gs}) to use as base register
28704 for reading the canary, and from what offset from that base register.
28705 The default for those is as specified in the relevant ABI.
28707 @item -mgeneral-regs-only
28708 @opindex mgeneral-regs-only
28709 Generate code that uses only the general-purpose registers.  This
28710 prevents the compiler from using floating-point, vector, mask and bound
28711 registers.
28713 @item -mindirect-branch=@var{choice}
28714 @opindex mindirect-branch
28715 Convert indirect call and jump with @var{choice}.  The default is
28716 @samp{keep}, which keeps indirect call and jump unmodified.
28717 @samp{thunk} converts indirect call and jump to call and return thunk.
28718 @samp{thunk-inline} converts indirect call and jump to inlined call
28719 and return thunk.  @samp{thunk-extern} converts indirect call and jump
28720 to external call and return thunk provided in a separate object file.
28721 You can control this behavior for a specific function by using the
28722 function attribute @code{indirect_branch}.  @xref{Function Attributes}.
28724 Note that @option{-mcmodel=large} is incompatible with
28725 @option{-mindirect-branch=thunk} and
28726 @option{-mindirect-branch=thunk-extern} since the thunk function may
28727 not be reachable in the large code model.
28729 Note that @option{-mindirect-branch=thunk-extern} is incompatible with
28730 @option{-fcf-protection=branch} since the external thunk cannot be modified
28731 to disable control-flow check.
28733 @item -mfunction-return=@var{choice}
28734 @opindex mfunction-return
28735 Convert function return with @var{choice}.  The default is @samp{keep},
28736 which keeps function return unmodified.  @samp{thunk} converts function
28737 return to call and return thunk.  @samp{thunk-inline} converts function
28738 return to inlined call and return thunk.  @samp{thunk-extern} converts
28739 function return to external call and return thunk provided in a separate
28740 object file.  You can control this behavior for a specific function by
28741 using the function attribute @code{function_return}.
28742 @xref{Function Attributes}.
28744 Note that @option{-mcmodel=large} is incompatible with
28745 @option{-mfunction-return=thunk} and
28746 @option{-mfunction-return=thunk-extern} since the thunk function may
28747 not be reachable in the large code model.
28750 @item -mindirect-branch-register
28751 @opindex mindirect-branch-register
28752 Force indirect call and jump via register.
28754 @end table
28756 These @samp{-m} switches are supported in addition to the above
28757 on x86-64 processors in 64-bit environments.
28759 @table @gcctabopt
28760 @item -m32
28761 @itemx -m64
28762 @itemx -mx32
28763 @itemx -m16
28764 @itemx -miamcu
28765 @opindex m32
28766 @opindex m64
28767 @opindex mx32
28768 @opindex m16
28769 @opindex miamcu
28770 Generate code for a 16-bit, 32-bit or 64-bit environment.
28771 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
28772 to 32 bits, and
28773 generates code that runs on any i386 system.
28775 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
28776 types to 64 bits, and generates code for the x86-64 architecture.
28777 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
28778 and @option{-mdynamic-no-pic} options.
28780 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
28781 to 32 bits, and
28782 generates code for the x86-64 architecture.
28784 The @option{-m16} option is the same as @option{-m32}, except for that
28785 it outputs the @code{.code16gcc} assembly directive at the beginning of
28786 the assembly output so that the binary can run in 16-bit mode.
28788 The @option{-miamcu} option generates code which conforms to Intel MCU
28789 psABI.  It requires the @option{-m32} option to be turned on.
28791 @item -mno-red-zone
28792 @opindex mno-red-zone
28793 @opindex mred-zone
28794 Do not use a so-called ``red zone'' for x86-64 code.  The red zone is mandated
28795 by the x86-64 ABI; it is a 128-byte area beyond the location of the
28796 stack pointer that is not modified by signal or interrupt handlers
28797 and therefore can be used for temporary data without adjusting the stack
28798 pointer.  The flag @option{-mno-red-zone} disables this red zone.
28800 @item -mcmodel=small
28801 @opindex mcmodel=small
28802 Generate code for the small code model: the program and its symbols must
28803 be linked in the lower 2 GB of the address space.  Pointers are 64 bits.
28804 Programs can be statically or dynamically linked.  This is the default
28805 code model.
28807 @item -mcmodel=kernel
28808 @opindex mcmodel=kernel
28809 Generate code for the kernel code model.  The kernel runs in the
28810 negative 2 GB of the address space.
28811 This model has to be used for Linux kernel code.
28813 @item -mcmodel=medium
28814 @opindex mcmodel=medium
28815 Generate code for the medium model: the program is linked in the lower 2
28816 GB of the address space.  Small symbols are also placed there.  Symbols
28817 with sizes larger than @option{-mlarge-data-threshold} are put into
28818 large data or BSS sections and can be located above 2GB.  Programs can
28819 be statically or dynamically linked.
28821 @item -mcmodel=large
28822 @opindex mcmodel=large
28823 Generate code for the large model.  This model makes no assumptions
28824 about addresses and sizes of sections.
28826 @item -maddress-mode=long
28827 @opindex maddress-mode=long
28828 Generate code for long address mode.  This is only supported for 64-bit
28829 and x32 environments.  It is the default address mode for 64-bit
28830 environments.
28832 @item -maddress-mode=short
28833 @opindex maddress-mode=short
28834 Generate code for short address mode.  This is only supported for 32-bit
28835 and x32 environments.  It is the default address mode for 32-bit and
28836 x32 environments.
28837 @end table
28839 @node x86 Windows Options
28840 @subsection x86 Windows Options
28841 @cindex x86 Windows Options
28842 @cindex Windows Options for x86
28844 These additional options are available for Microsoft Windows targets:
28846 @table @gcctabopt
28847 @item -mconsole
28848 @opindex mconsole
28849 This option
28850 specifies that a console application is to be generated, by
28851 instructing the linker to set the PE header subsystem type
28852 required for console applications.
28853 This option is available for Cygwin and MinGW targets and is
28854 enabled by default on those targets.
28856 @item -mdll
28857 @opindex mdll
28858 This option is available for Cygwin and MinGW targets.  It
28859 specifies that a DLL---a dynamic link library---is to be
28860 generated, enabling the selection of the required runtime
28861 startup object and entry point.
28863 @item -mnop-fun-dllimport
28864 @opindex mnop-fun-dllimport
28865 This option is available for Cygwin and MinGW targets.  It
28866 specifies that the @code{dllimport} attribute should be ignored.
28868 @item -mthread
28869 @opindex mthread
28870 This option is available for MinGW targets. It specifies
28871 that MinGW-specific thread support is to be used.
28873 @item -municode
28874 @opindex municode
28875 This option is available for MinGW-w64 targets.  It causes
28876 the @code{UNICODE} preprocessor macro to be predefined, and
28877 chooses Unicode-capable runtime startup code.
28879 @item -mwin32
28880 @opindex mwin32
28881 This option is available for Cygwin and MinGW targets.  It
28882 specifies that the typical Microsoft Windows predefined macros are to
28883 be set in the pre-processor, but does not influence the choice
28884 of runtime library/startup code.
28886 @item -mwindows
28887 @opindex mwindows
28888 This option is available for Cygwin and MinGW targets.  It
28889 specifies that a GUI application is to be generated by
28890 instructing the linker to set the PE header subsystem type
28891 appropriately.
28893 @item -fno-set-stack-executable
28894 @opindex fno-set-stack-executable
28895 @opindex fset-stack-executable
28896 This option is available for MinGW targets. It specifies that
28897 the executable flag for the stack used by nested functions isn't
28898 set. This is necessary for binaries running in kernel mode of
28899 Microsoft Windows, as there the User32 API, which is used to set executable
28900 privileges, isn't available.
28902 @item -fwritable-relocated-rdata
28903 @opindex fno-writable-relocated-rdata
28904 @opindex fwritable-relocated-rdata
28905 This option is available for MinGW and Cygwin targets.  It specifies
28906 that relocated-data in read-only section is put into the @code{.data}
28907 section.  This is a necessary for older runtimes not supporting
28908 modification of @code{.rdata} sections for pseudo-relocation.
28910 @item -mpe-aligned-commons
28911 @opindex mpe-aligned-commons
28912 This option is available for Cygwin and MinGW targets.  It
28913 specifies that the GNU extension to the PE file format that
28914 permits the correct alignment of COMMON variables should be
28915 used when generating code.  It is enabled by default if
28916 GCC detects that the target assembler found during configuration
28917 supports the feature.
28918 @end table
28920 See also under @ref{x86 Options} for standard options.
28922 @node Xstormy16 Options
28923 @subsection Xstormy16 Options
28924 @cindex Xstormy16 Options
28926 These options are defined for Xstormy16:
28928 @table @gcctabopt
28929 @item -msim
28930 @opindex msim
28931 Choose startup files and linker script suitable for the simulator.
28932 @end table
28934 @node Xtensa Options
28935 @subsection Xtensa Options
28936 @cindex Xtensa Options
28938 These options are supported for Xtensa targets:
28940 @table @gcctabopt
28941 @item -mconst16
28942 @itemx -mno-const16
28943 @opindex mconst16
28944 @opindex mno-const16
28945 Enable or disable use of @code{CONST16} instructions for loading
28946 constant values.  The @code{CONST16} instruction is currently not a
28947 standard option from Tensilica.  When enabled, @code{CONST16}
28948 instructions are always used in place of the standard @code{L32R}
28949 instructions.  The use of @code{CONST16} is enabled by default only if
28950 the @code{L32R} instruction is not available.
28952 @item -mfused-madd
28953 @itemx -mno-fused-madd
28954 @opindex mfused-madd
28955 @opindex mno-fused-madd
28956 Enable or disable use of fused multiply/add and multiply/subtract
28957 instructions in the floating-point option.  This has no effect if the
28958 floating-point option is not also enabled.  Disabling fused multiply/add
28959 and multiply/subtract instructions forces the compiler to use separate
28960 instructions for the multiply and add/subtract operations.  This may be
28961 desirable in some cases where strict IEEE 754-compliant results are
28962 required: the fused multiply add/subtract instructions do not round the
28963 intermediate result, thereby producing results with @emph{more} bits of
28964 precision than specified by the IEEE standard.  Disabling fused multiply
28965 add/subtract instructions also ensures that the program output is not
28966 sensitive to the compiler's ability to combine multiply and add/subtract
28967 operations.
28969 @item -mserialize-volatile
28970 @itemx -mno-serialize-volatile
28971 @opindex mserialize-volatile
28972 @opindex mno-serialize-volatile
28973 When this option is enabled, GCC inserts @code{MEMW} instructions before
28974 @code{volatile} memory references to guarantee sequential consistency.
28975 The default is @option{-mserialize-volatile}.  Use
28976 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
28978 @item -mforce-no-pic
28979 @opindex mforce-no-pic
28980 For targets, like GNU/Linux, where all user-mode Xtensa code must be
28981 position-independent code (PIC), this option disables PIC for compiling
28982 kernel code.
28984 @item -mtext-section-literals
28985 @itemx -mno-text-section-literals
28986 @opindex mtext-section-literals
28987 @opindex mno-text-section-literals
28988 These options control the treatment of literal pools.  The default is
28989 @option{-mno-text-section-literals}, which places literals in a separate
28990 section in the output file.  This allows the literal pool to be placed
28991 in a data RAM/ROM, and it also allows the linker to combine literal
28992 pools from separate object files to remove redundant literals and
28993 improve code size.  With @option{-mtext-section-literals}, the literals
28994 are interspersed in the text section in order to keep them as close as
28995 possible to their references.  This may be necessary for large assembly
28996 files.  Literals for each function are placed right before that function.
28998 @item -mauto-litpools
28999 @itemx -mno-auto-litpools
29000 @opindex mauto-litpools
29001 @opindex mno-auto-litpools
29002 These options control the treatment of literal pools.  The default is
29003 @option{-mno-auto-litpools}, which places literals in a separate
29004 section in the output file unless @option{-mtext-section-literals} is
29005 used.  With @option{-mauto-litpools} the literals are interspersed in
29006 the text section by the assembler.  Compiler does not produce explicit
29007 @code{.literal} directives and loads literals into registers with
29008 @code{MOVI} instructions instead of @code{L32R} to let the assembler
29009 do relaxation and place literals as necessary.  This option allows
29010 assembler to create several literal pools per function and assemble
29011 very big functions, which may not be possible with
29012 @option{-mtext-section-literals}.
29014 @item -mtarget-align
29015 @itemx -mno-target-align
29016 @opindex mtarget-align
29017 @opindex mno-target-align
29018 When this option is enabled, GCC instructs the assembler to
29019 automatically align instructions to reduce branch penalties at the
29020 expense of some code density.  The assembler attempts to widen density
29021 instructions to align branch targets and the instructions following call
29022 instructions.  If there are not enough preceding safe density
29023 instructions to align a target, no widening is performed.  The
29024 default is @option{-mtarget-align}.  These options do not affect the
29025 treatment of auto-aligned instructions like @code{LOOP}, which the
29026 assembler always aligns, either by widening density instructions or
29027 by inserting NOP instructions.
29029 @item -mlongcalls
29030 @itemx -mno-longcalls
29031 @opindex mlongcalls
29032 @opindex mno-longcalls
29033 When this option is enabled, GCC instructs the assembler to translate
29034 direct calls to indirect calls unless it can determine that the target
29035 of a direct call is in the range allowed by the call instruction.  This
29036 translation typically occurs for calls to functions in other source
29037 files.  Specifically, the assembler translates a direct @code{CALL}
29038 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
29039 The default is @option{-mno-longcalls}.  This option should be used in
29040 programs where the call target can potentially be out of range.  This
29041 option is implemented in the assembler, not the compiler, so the
29042 assembly code generated by GCC still shows direct call
29043 instructions---look at the disassembled object code to see the actual
29044 instructions.  Note that the assembler uses an indirect call for
29045 every cross-file call, not just those that really are out of range.
29046 @end table
29048 @node zSeries Options
29049 @subsection zSeries Options
29050 @cindex zSeries options
29052 These are listed under @xref{S/390 and zSeries Options}.
29055 @c man end
29057 @node Spec Files
29058 @section Specifying Subprocesses and the Switches to Pass to Them
29059 @cindex Spec Files
29061 @command{gcc} is a driver program.  It performs its job by invoking a
29062 sequence of other programs to do the work of compiling, assembling and
29063 linking.  GCC interprets its command-line parameters and uses these to
29064 deduce which programs it should invoke, and which command-line options
29065 it ought to place on their command lines.  This behavior is controlled
29066 by @dfn{spec strings}.  In most cases there is one spec string for each
29067 program that GCC can invoke, but a few programs have multiple spec
29068 strings to control their behavior.  The spec strings built into GCC can
29069 be overridden by using the @option{-specs=} command-line switch to specify
29070 a spec file.
29072 @dfn{Spec files} are plain-text files that are used to construct spec
29073 strings.  They consist of a sequence of directives separated by blank
29074 lines.  The type of directive is determined by the first non-whitespace
29075 character on the line, which can be one of the following:
29077 @table @code
29078 @item %@var{command}
29079 Issues a @var{command} to the spec file processor.  The commands that can
29080 appear here are:
29082 @table @code
29083 @item %include <@var{file}>
29084 @cindex @code{%include}
29085 Search for @var{file} and insert its text at the current point in the
29086 specs file.
29088 @item %include_noerr <@var{file}>
29089 @cindex @code{%include_noerr}
29090 Just like @samp{%include}, but do not generate an error message if the include
29091 file cannot be found.
29093 @item %rename @var{old_name} @var{new_name}
29094 @cindex @code{%rename}
29095 Rename the spec string @var{old_name} to @var{new_name}.
29097 @end table
29099 @item *[@var{spec_name}]:
29100 This tells the compiler to create, override or delete the named spec
29101 string.  All lines after this directive up to the next directive or
29102 blank line are considered to be the text for the spec string.  If this
29103 results in an empty string then the spec is deleted.  (Or, if the
29104 spec did not exist, then nothing happens.)  Otherwise, if the spec
29105 does not currently exist a new spec is created.  If the spec does
29106 exist then its contents are overridden by the text of this
29107 directive, unless the first character of that text is the @samp{+}
29108 character, in which case the text is appended to the spec.
29110 @item [@var{suffix}]:
29111 Creates a new @samp{[@var{suffix}] spec} pair.  All lines after this directive
29112 and up to the next directive or blank line are considered to make up the
29113 spec string for the indicated suffix.  When the compiler encounters an
29114 input file with the named suffix, it processes the spec string in
29115 order to work out how to compile that file.  For example:
29117 @smallexample
29118 .ZZ:
29119 z-compile -input %i
29120 @end smallexample
29122 This says that any input file whose name ends in @samp{.ZZ} should be
29123 passed to the program @samp{z-compile}, which should be invoked with the
29124 command-line switch @option{-input} and with the result of performing the
29125 @samp{%i} substitution.  (See below.)
29127 As an alternative to providing a spec string, the text following a
29128 suffix directive can be one of the following:
29130 @table @code
29131 @item @@@var{language}
29132 This says that the suffix is an alias for a known @var{language}.  This is
29133 similar to using the @option{-x} command-line switch to GCC to specify a
29134 language explicitly.  For example:
29136 @smallexample
29137 .ZZ:
29138 @@c++
29139 @end smallexample
29141 Says that .ZZ files are, in fact, C++ source files.
29143 @item #@var{name}
29144 This causes an error messages saying:
29146 @smallexample
29147 @var{name} compiler not installed on this system.
29148 @end smallexample
29149 @end table
29151 GCC already has an extensive list of suffixes built into it.
29152 This directive adds an entry to the end of the list of suffixes, but
29153 since the list is searched from the end backwards, it is effectively
29154 possible to override earlier entries using this technique.
29156 @end table
29158 GCC has the following spec strings built into it.  Spec files can
29159 override these strings or create their own.  Note that individual
29160 targets can also add their own spec strings to this list.
29162 @smallexample
29163 asm          Options to pass to the assembler
29164 asm_final    Options to pass to the assembler post-processor
29165 cpp          Options to pass to the C preprocessor
29166 cc1          Options to pass to the C compiler
29167 cc1plus      Options to pass to the C++ compiler
29168 endfile      Object files to include at the end of the link
29169 link         Options to pass to the linker
29170 lib          Libraries to include on the command line to the linker
29171 libgcc       Decides which GCC support library to pass to the linker
29172 linker       Sets the name of the linker
29173 predefines   Defines to be passed to the C preprocessor
29174 signed_char  Defines to pass to CPP to say whether @code{char} is signed
29175              by default
29176 startfile    Object files to include at the start of the link
29177 @end smallexample
29179 Here is a small example of a spec file:
29181 @smallexample
29182 %rename lib                 old_lib
29184 *lib:
29185 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
29186 @end smallexample
29188 This example renames the spec called @samp{lib} to @samp{old_lib} and
29189 then overrides the previous definition of @samp{lib} with a new one.
29190 The new definition adds in some extra command-line options before
29191 including the text of the old definition.
29193 @dfn{Spec strings} are a list of command-line options to be passed to their
29194 corresponding program.  In addition, the spec strings can contain
29195 @samp{%}-prefixed sequences to substitute variable text or to
29196 conditionally insert text into the command line.  Using these constructs
29197 it is possible to generate quite complex command lines.
29199 Here is a table of all defined @samp{%}-sequences for spec
29200 strings.  Note that spaces are not generated automatically around the
29201 results of expanding these sequences.  Therefore you can concatenate them
29202 together or combine them with constant text in a single argument.
29204 @table @code
29205 @item %%
29206 Substitute one @samp{%} into the program name or argument.
29208 @item %i
29209 Substitute the name of the input file being processed.
29211 @item %b
29212 Substitute the basename of the input file being processed.
29213 This is the substring up to (and not including) the last period
29214 and not including the directory.
29216 @item %B
29217 This is the same as @samp{%b}, but include the file suffix (text after
29218 the last period).
29220 @item %d
29221 Marks the argument containing or following the @samp{%d} as a
29222 temporary file name, so that that file is deleted if GCC exits
29223 successfully.  Unlike @samp{%g}, this contributes no text to the
29224 argument.
29226 @item %g@var{suffix}
29227 Substitute a file name that has suffix @var{suffix} and is chosen
29228 once per compilation, and mark the argument in the same way as
29229 @samp{%d}.  To reduce exposure to denial-of-service attacks, the file
29230 name is now chosen in a way that is hard to predict even when previously
29231 chosen file names are known.  For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
29232 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}.  @var{suffix} matches
29233 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
29234 treated exactly as if @samp{%O} had been preprocessed.  Previously, @samp{%g}
29235 was simply substituted with a file name chosen once per compilation,
29236 without regard to any appended suffix (which was therefore treated
29237 just like ordinary text), making such attacks more likely to succeed.
29239 @item %u@var{suffix}
29240 Like @samp{%g}, but generates a new temporary file name
29241 each time it appears instead of once per compilation.
29243 @item %U@var{suffix}
29244 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
29245 new one if there is no such last file name.  In the absence of any
29246 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
29247 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
29248 involves the generation of two distinct file names, one
29249 for each @samp{%g.s} and another for each @samp{%U.s}.  Previously, @samp{%U} was
29250 simply substituted with a file name chosen for the previous @samp{%u},
29251 without regard to any appended suffix.
29253 @item %j@var{suffix}
29254 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
29255 writable, and if @option{-save-temps} is not used; 
29256 otherwise, substitute the name
29257 of a temporary file, just like @samp{%u}.  This temporary file is not
29258 meant for communication between processes, but rather as a junk
29259 disposal mechanism.
29261 @item %|@var{suffix}
29262 @itemx %m@var{suffix}
29263 Like @samp{%g}, except if @option{-pipe} is in effect.  In that case
29264 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
29265 all.  These are the two most common ways to instruct a program that it
29266 should read from standard input or write to standard output.  If you
29267 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
29268 construct: see for example @file{f/lang-specs.h}.
29270 @item %.@var{SUFFIX}
29271 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
29272 when it is subsequently output with @samp{%*}.  @var{SUFFIX} is
29273 terminated by the next space or %.
29275 @item %w
29276 Marks the argument containing or following the @samp{%w} as the
29277 designated output file of this compilation.  This puts the argument
29278 into the sequence of arguments that @samp{%o} substitutes.
29280 @item %o
29281 Substitutes the names of all the output files, with spaces
29282 automatically placed around them.  You should write spaces
29283 around the @samp{%o} as well or the results are undefined.
29284 @samp{%o} is for use in the specs for running the linker.
29285 Input files whose names have no recognized suffix are not compiled
29286 at all, but they are included among the output files, so they are
29287 linked.
29289 @item %O
29290 Substitutes the suffix for object files.  Note that this is
29291 handled specially when it immediately follows @samp{%g, %u, or %U},
29292 because of the need for those to form complete file names.  The
29293 handling is such that @samp{%O} is treated exactly as if it had already
29294 been substituted, except that @samp{%g, %u, and %U} do not currently
29295 support additional @var{suffix} characters following @samp{%O} as they do
29296 following, for example, @samp{.o}.
29298 @item %p
29299 Substitutes the standard macro predefinitions for the
29300 current target machine.  Use this when running @command{cpp}.
29302 @item %P
29303 Like @samp{%p}, but puts @samp{__} before and after the name of each
29304 predefined macro, except for macros that start with @samp{__} or with
29305 @samp{_@var{L}}, where @var{L} is an uppercase letter.  This is for ISO
29308 @item %I
29309 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
29310 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
29311 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
29312 and @option{-imultilib} as necessary.
29314 @item %s
29315 Current argument is the name of a library or startup file of some sort.
29316 Search for that file in a standard list of directories and substitute
29317 the full name found.  The current working directory is included in the
29318 list of directories scanned.
29320 @item %T
29321 Current argument is the name of a linker script.  Search for that file
29322 in the current list of directories to scan for libraries. If the file
29323 is located insert a @option{--script} option into the command line
29324 followed by the full path name found.  If the file is not found then
29325 generate an error message.  Note: the current working directory is not
29326 searched.
29328 @item %e@var{str}
29329 Print @var{str} as an error message.  @var{str} is terminated by a newline.
29330 Use this when inconsistent options are detected.
29332 @item %(@var{name})
29333 Substitute the contents of spec string @var{name} at this point.
29335 @item %x@{@var{option}@}
29336 Accumulate an option for @samp{%X}.
29338 @item %X
29339 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
29340 spec string.
29342 @item %Y
29343 Output the accumulated assembler options specified by @option{-Wa}.
29345 @item %Z
29346 Output the accumulated preprocessor options specified by @option{-Wp}.
29348 @item %a
29349 Process the @code{asm} spec.  This is used to compute the
29350 switches to be passed to the assembler.
29352 @item %A
29353 Process the @code{asm_final} spec.  This is a spec string for
29354 passing switches to an assembler post-processor, if such a program is
29355 needed.
29357 @item %l
29358 Process the @code{link} spec.  This is the spec for computing the
29359 command line passed to the linker.  Typically it makes use of the
29360 @samp{%L %G %S %D and %E} sequences.
29362 @item %D
29363 Dump out a @option{-L} option for each directory that GCC believes might
29364 contain startup files.  If the target supports multilibs then the
29365 current multilib directory is prepended to each of these paths.
29367 @item %L
29368 Process the @code{lib} spec.  This is a spec string for deciding which
29369 libraries are included on the command line to the linker.
29371 @item %G
29372 Process the @code{libgcc} spec.  This is a spec string for deciding
29373 which GCC support library is included on the command line to the linker.
29375 @item %S
29376 Process the @code{startfile} spec.  This is a spec for deciding which
29377 object files are the first ones passed to the linker.  Typically
29378 this might be a file named @file{crt0.o}.
29380 @item %E
29381 Process the @code{endfile} spec.  This is a spec string that specifies
29382 the last object files that are passed to the linker.
29384 @item %C
29385 Process the @code{cpp} spec.  This is used to construct the arguments
29386 to be passed to the C preprocessor.
29388 @item %1
29389 Process the @code{cc1} spec.  This is used to construct the options to be
29390 passed to the actual C compiler (@command{cc1}).
29392 @item %2
29393 Process the @code{cc1plus} spec.  This is used to construct the options to be
29394 passed to the actual C++ compiler (@command{cc1plus}).
29396 @item %*
29397 Substitute the variable part of a matched option.  See below.
29398 Note that each comma in the substituted string is replaced by
29399 a single space.
29401 @item %<S
29402 Remove all occurrences of @code{-S} from the command line.  Note---this
29403 command is position dependent.  @samp{%} commands in the spec string
29404 before this one see @code{-S}, @samp{%} commands in the spec string
29405 after this one do not.
29407 @item %:@var{function}(@var{args})
29408 Call the named function @var{function}, passing it @var{args}.
29409 @var{args} is first processed as a nested spec string, then split
29410 into an argument vector in the usual fashion.  The function returns
29411 a string which is processed as if it had appeared literally as part
29412 of the current spec.
29414 The following built-in spec functions are provided:
29416 @table @code
29417 @item @code{getenv}
29418 The @code{getenv} spec function takes two arguments: an environment
29419 variable name and a string.  If the environment variable is not
29420 defined, a fatal error is issued.  Otherwise, the return value is the
29421 value of the environment variable concatenated with the string.  For
29422 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
29424 @smallexample
29425 %:getenv(TOPDIR /include)
29426 @end smallexample
29428 expands to @file{/path/to/top/include}.
29430 @item @code{if-exists}
29431 The @code{if-exists} spec function takes one argument, an absolute
29432 pathname to a file.  If the file exists, @code{if-exists} returns the
29433 pathname.  Here is a small example of its usage:
29435 @smallexample
29436 *startfile:
29437 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
29438 @end smallexample
29440 @item @code{if-exists-else}
29441 The @code{if-exists-else} spec function is similar to the @code{if-exists}
29442 spec function, except that it takes two arguments.  The first argument is
29443 an absolute pathname to a file.  If the file exists, @code{if-exists-else}
29444 returns the pathname.  If it does not exist, it returns the second argument.
29445 This way, @code{if-exists-else} can be used to select one file or another,
29446 based on the existence of the first.  Here is a small example of its usage:
29448 @smallexample
29449 *startfile:
29450 crt0%O%s %:if-exists(crti%O%s) \
29451 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
29452 @end smallexample
29454 @item @code{replace-outfile}
29455 The @code{replace-outfile} spec function takes two arguments.  It looks for the
29456 first argument in the outfiles array and replaces it with the second argument.  Here
29457 is a small example of its usage:
29459 @smallexample
29460 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
29461 @end smallexample
29463 @item @code{remove-outfile}
29464 The @code{remove-outfile} spec function takes one argument.  It looks for the
29465 first argument in the outfiles array and removes it.  Here is a small example
29466 its usage:
29468 @smallexample
29469 %:remove-outfile(-lm)
29470 @end smallexample
29472 @item @code{pass-through-libs}
29473 The @code{pass-through-libs} spec function takes any number of arguments.  It
29474 finds any @option{-l} options and any non-options ending in @file{.a} (which it
29475 assumes are the names of linker input library archive files) and returns a
29476 result containing all the found arguments each prepended by
29477 @option{-plugin-opt=-pass-through=} and joined by spaces.  This list is
29478 intended to be passed to the LTO linker plugin.
29480 @smallexample
29481 %:pass-through-libs(%G %L %G)
29482 @end smallexample
29484 @item @code{print-asm-header}
29485 The @code{print-asm-header} function takes no arguments and simply
29486 prints a banner like:
29488 @smallexample
29489 Assembler options
29490 =================
29492 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
29493 @end smallexample
29495 It is used to separate compiler options from assembler options
29496 in the @option{--target-help} output.
29497 @end table
29499 @item %@{S@}
29500 Substitutes the @code{-S} switch, if that switch is given to GCC@.
29501 If that switch is not specified, this substitutes nothing.  Note that
29502 the leading dash is omitted when specifying this option, and it is
29503 automatically inserted if the substitution is performed.  Thus the spec
29504 string @samp{%@{foo@}} matches the command-line option @option{-foo}
29505 and outputs the command-line option @option{-foo}.
29507 @item %W@{S@}
29508 Like %@{@code{S}@} but mark last argument supplied within as a file to be
29509 deleted on failure.
29511 @item %@{S*@}
29512 Substitutes all the switches specified to GCC whose names start
29513 with @code{-S}, but which also take an argument.  This is used for
29514 switches like @option{-o}, @option{-D}, @option{-I}, etc.
29515 GCC considers @option{-o foo} as being
29516 one switch whose name starts with @samp{o}.  %@{o*@} substitutes this
29517 text, including the space.  Thus two arguments are generated.
29519 @item %@{S*&T*@}
29520 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
29521 (the order of @code{S} and @code{T} in the spec is not significant).
29522 There can be any number of ampersand-separated variables; for each the
29523 wild card is optional.  Useful for CPP as @samp{%@{D*&U*&A*@}}.
29525 @item %@{S:X@}
29526 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
29528 @item %@{!S:X@}
29529 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
29531 @item %@{S*:X@}
29532 Substitutes @code{X} if one or more switches whose names start with
29533 @code{-S} are specified to GCC@.  Normally @code{X} is substituted only
29534 once, no matter how many such switches appeared.  However, if @code{%*}
29535 appears somewhere in @code{X}, then @code{X} is substituted once
29536 for each matching switch, with the @code{%*} replaced by the part of
29537 that switch matching the @code{*}.
29539 If @code{%*} appears as the last part of a spec sequence then a space
29540 is added after the end of the last substitution.  If there is more
29541 text in the sequence, however, then a space is not generated.  This
29542 allows the @code{%*} substitution to be used as part of a larger
29543 string.  For example, a spec string like this:
29545 @smallexample
29546 %@{mcu=*:--script=%*/memory.ld@}
29547 @end smallexample
29549 @noindent
29550 when matching an option like @option{-mcu=newchip} produces:
29552 @smallexample
29553 --script=newchip/memory.ld
29554 @end smallexample
29556 @item %@{.S:X@}
29557 Substitutes @code{X}, if processing a file with suffix @code{S}.
29559 @item %@{!.S:X@}
29560 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
29562 @item %@{,S:X@}
29563 Substitutes @code{X}, if processing a file for language @code{S}.
29565 @item %@{!,S:X@}
29566 Substitutes @code{X}, if not processing a file for language @code{S}.
29568 @item %@{S|P:X@}
29569 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
29570 GCC@.  This may be combined with @samp{!}, @samp{.}, @samp{,}, and
29571 @code{*} sequences as well, although they have a stronger binding than
29572 the @samp{|}.  If @code{%*} appears in @code{X}, all of the
29573 alternatives must be starred, and only the first matching alternative
29574 is substituted.
29576 For example, a spec string like this:
29578 @smallexample
29579 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
29580 @end smallexample
29582 @noindent
29583 outputs the following command-line options from the following input
29584 command-line options:
29586 @smallexample
29587 fred.c        -foo -baz
29588 jim.d         -bar -boggle
29589 -d fred.c     -foo -baz -boggle
29590 -d jim.d      -bar -baz -boggle
29591 @end smallexample
29593 @item %@{S:X; T:Y; :D@}
29595 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
29596 given to GCC, substitutes @code{Y}; else substitutes @code{D}.  There can
29597 be as many clauses as you need.  This may be combined with @code{.},
29598 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
29601 @end table
29603 The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
29604 or similar construct can use a backslash to ignore the special meaning
29605 of the character following it, thus allowing literal matching of a
29606 character that is otherwise specially treated.  For example,
29607 @samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
29608 @option{-std=iso9899:1999} option is given.
29610 The conditional text @code{X} in a @samp{%@{S:X@}} or similar
29611 construct may contain other nested @samp{%} constructs or spaces, or
29612 even newlines.  They are processed as usual, as described above.
29613 Trailing white space in @code{X} is ignored.  White space may also
29614 appear anywhere on the left side of the colon in these constructs,
29615 except between @code{.} or @code{*} and the corresponding word.
29617 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
29618 handled specifically in these constructs.  If another value of
29619 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
29620 @option{-W} switch is found later in the command line, the earlier
29621 switch value is ignored, except with @{@code{S}*@} where @code{S} is
29622 just one letter, which passes all matching options.
29624 The character @samp{|} at the beginning of the predicate text is used to
29625 indicate that a command should be piped to the following command, but
29626 only if @option{-pipe} is specified.
29628 It is built into GCC which switches take arguments and which do not.
29629 (You might think it would be useful to generalize this to allow each
29630 compiler's spec to say which switches take arguments.  But this cannot
29631 be done in a consistent fashion.  GCC cannot even decide which input
29632 files have been specified without knowing which switches take arguments,
29633 and it must know which input files to compile in order to tell which
29634 compilers to run).
29636 GCC also knows implicitly that arguments starting in @option{-l} are to be
29637 treated as compiler output files, and passed to the linker in their
29638 proper position among the other output files.
29640 @node Environment Variables
29641 @section Environment Variables Affecting GCC
29642 @cindex environment variables
29644 @c man begin ENVIRONMENT
29645 This section describes several environment variables that affect how GCC
29646 operates.  Some of them work by specifying directories or prefixes to use
29647 when searching for various kinds of files.  Some are used to specify other
29648 aspects of the compilation environment.
29650 Note that you can also specify places to search using options such as
29651 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}).  These
29652 take precedence over places specified using environment variables, which
29653 in turn take precedence over those specified by the configuration of GCC@.
29654 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
29655 GNU Compiler Collection (GCC) Internals}.
29657 @table @env
29658 @item LANG
29659 @itemx LC_CTYPE
29660 @c @itemx LC_COLLATE
29661 @itemx LC_MESSAGES
29662 @c @itemx LC_MONETARY
29663 @c @itemx LC_NUMERIC
29664 @c @itemx LC_TIME
29665 @itemx LC_ALL
29666 @findex LANG
29667 @findex LC_CTYPE
29668 @c @findex LC_COLLATE
29669 @findex LC_MESSAGES
29670 @c @findex LC_MONETARY
29671 @c @findex LC_NUMERIC
29672 @c @findex LC_TIME
29673 @findex LC_ALL
29674 @cindex locale
29675 These environment variables control the way that GCC uses
29676 localization information which allows GCC to work with different
29677 national conventions.  GCC inspects the locale categories
29678 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
29679 so.  These locale categories can be set to any value supported by your
29680 installation.  A typical value is @samp{en_GB.UTF-8} for English in the United
29681 Kingdom encoded in UTF-8.
29683 The @env{LC_CTYPE} environment variable specifies character
29684 classification.  GCC uses it to determine the character boundaries in
29685 a string; this is needed for some multibyte encodings that contain quote
29686 and escape characters that are otherwise interpreted as a string
29687 end or escape.
29689 The @env{LC_MESSAGES} environment variable specifies the language to
29690 use in diagnostic messages.
29692 If the @env{LC_ALL} environment variable is set, it overrides the value
29693 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
29694 and @env{LC_MESSAGES} default to the value of the @env{LANG}
29695 environment variable.  If none of these variables are set, GCC
29696 defaults to traditional C English behavior.
29698 @item TMPDIR
29699 @findex TMPDIR
29700 If @env{TMPDIR} is set, it specifies the directory to use for temporary
29701 files.  GCC uses temporary files to hold the output of one stage of
29702 compilation which is to be used as input to the next stage: for example,
29703 the output of the preprocessor, which is the input to the compiler
29704 proper.
29706 @item GCC_COMPARE_DEBUG
29707 @findex GCC_COMPARE_DEBUG
29708 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
29709 @option{-fcompare-debug} to the compiler driver.  See the documentation
29710 of this option for more details.
29712 @item GCC_EXEC_PREFIX
29713 @findex GCC_EXEC_PREFIX
29714 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
29715 names of the subprograms executed by the compiler.  No slash is added
29716 when this prefix is combined with the name of a subprogram, but you can
29717 specify a prefix that ends with a slash if you wish.
29719 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
29720 an appropriate prefix to use based on the pathname it is invoked with.
29722 If GCC cannot find the subprogram using the specified prefix, it
29723 tries looking in the usual places for the subprogram.
29725 The default value of @env{GCC_EXEC_PREFIX} is
29726 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
29727 the installed compiler. In many cases @var{prefix} is the value
29728 of @code{prefix} when you ran the @file{configure} script.
29730 Other prefixes specified with @option{-B} take precedence over this prefix.
29732 This prefix is also used for finding files such as @file{crt0.o} that are
29733 used for linking.
29735 In addition, the prefix is used in an unusual way in finding the
29736 directories to search for header files.  For each of the standard
29737 directories whose name normally begins with @samp{/usr/local/lib/gcc}
29738 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
29739 replacing that beginning with the specified prefix to produce an
29740 alternate directory name.  Thus, with @option{-Bfoo/}, GCC searches
29741 @file{foo/bar} just before it searches the standard directory 
29742 @file{/usr/local/lib/bar}.
29743 If a standard directory begins with the configured
29744 @var{prefix} then the value of @var{prefix} is replaced by
29745 @env{GCC_EXEC_PREFIX} when looking for header files.
29747 @item COMPILER_PATH
29748 @findex COMPILER_PATH
29749 The value of @env{COMPILER_PATH} is a colon-separated list of
29750 directories, much like @env{PATH}.  GCC tries the directories thus
29751 specified when searching for subprograms, if it cannot find the
29752 subprograms using @env{GCC_EXEC_PREFIX}.
29754 @item LIBRARY_PATH
29755 @findex LIBRARY_PATH
29756 The value of @env{LIBRARY_PATH} is a colon-separated list of
29757 directories, much like @env{PATH}.  When configured as a native compiler,
29758 GCC tries the directories thus specified when searching for special
29759 linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}.  Linking
29760 using GCC also uses these directories when searching for ordinary
29761 libraries for the @option{-l} option (but directories specified with
29762 @option{-L} come first).
29764 @item LANG
29765 @findex LANG
29766 @cindex locale definition
29767 This variable is used to pass locale information to the compiler.  One way in
29768 which this information is used is to determine the character set to be used
29769 when character literals, string literals and comments are parsed in C and C++.
29770 When the compiler is configured to allow multibyte characters,
29771 the following values for @env{LANG} are recognized:
29773 @table @samp
29774 @item C-JIS
29775 Recognize JIS characters.
29776 @item C-SJIS
29777 Recognize SJIS characters.
29778 @item C-EUCJP
29779 Recognize EUCJP characters.
29780 @end table
29782 If @env{LANG} is not defined, or if it has some other value, then the
29783 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
29784 recognize and translate multibyte characters.
29785 @end table
29787 @noindent
29788 Some additional environment variables affect the behavior of the
29789 preprocessor.
29791 @include cppenv.texi
29793 @c man end
29795 @node Precompiled Headers
29796 @section Using Precompiled Headers
29797 @cindex precompiled headers
29798 @cindex speed of compilation
29800 Often large projects have many header files that are included in every
29801 source file.  The time the compiler takes to process these header files
29802 over and over again can account for nearly all of the time required to
29803 build the project.  To make builds faster, GCC allows you to
29804 @dfn{precompile} a header file.
29806 To create a precompiled header file, simply compile it as you would any
29807 other file, if necessary using the @option{-x} option to make the driver
29808 treat it as a C or C++ header file.  You may want to use a
29809 tool like @command{make} to keep the precompiled header up-to-date when
29810 the headers it contains change.
29812 A precompiled header file is searched for when @code{#include} is
29813 seen in the compilation.  As it searches for the included file
29814 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
29815 compiler looks for a precompiled header in each directory just before it
29816 looks for the include file in that directory.  The name searched for is
29817 the name specified in the @code{#include} with @samp{.gch} appended.  If
29818 the precompiled header file cannot be used, it is ignored.
29820 For instance, if you have @code{#include "all.h"}, and you have
29821 @file{all.h.gch} in the same directory as @file{all.h}, then the
29822 precompiled header file is used if possible, and the original
29823 header is used otherwise.
29825 Alternatively, you might decide to put the precompiled header file in a
29826 directory and use @option{-I} to ensure that directory is searched
29827 before (or instead of) the directory containing the original header.
29828 Then, if you want to check that the precompiled header file is always
29829 used, you can put a file of the same name as the original header in this
29830 directory containing an @code{#error} command.
29832 This also works with @option{-include}.  So yet another way to use
29833 precompiled headers, good for projects not designed with precompiled
29834 header files in mind, is to simply take most of the header files used by
29835 a project, include them from another header file, precompile that header
29836 file, and @option{-include} the precompiled header.  If the header files
29837 have guards against multiple inclusion, they are skipped because
29838 they've already been included (in the precompiled header).
29840 If you need to precompile the same header file for different
29841 languages, targets, or compiler options, you can instead make a
29842 @emph{directory} named like @file{all.h.gch}, and put each precompiled
29843 header in the directory, perhaps using @option{-o}.  It doesn't matter
29844 what you call the files in the directory; every precompiled header in
29845 the directory is considered.  The first precompiled header
29846 encountered in the directory that is valid for this compilation is
29847 used; they're searched in no particular order.
29849 There are many other possibilities, limited only by your imagination,
29850 good sense, and the constraints of your build system.
29852 A precompiled header file can be used only when these conditions apply:
29854 @itemize
29855 @item
29856 Only one precompiled header can be used in a particular compilation.
29858 @item
29859 A precompiled header cannot be used once the first C token is seen.  You
29860 can have preprocessor directives before a precompiled header; you cannot
29861 include a precompiled header from inside another header.
29863 @item
29864 The precompiled header file must be produced for the same language as
29865 the current compilation.  You cannot use a C precompiled header for a C++
29866 compilation.
29868 @item
29869 The precompiled header file must have been produced by the same compiler
29870 binary as the current compilation is using.
29872 @item
29873 Any macros defined before the precompiled header is included must
29874 either be defined in the same way as when the precompiled header was
29875 generated, or must not affect the precompiled header, which usually
29876 means that they don't appear in the precompiled header at all.
29878 The @option{-D} option is one way to define a macro before a
29879 precompiled header is included; using a @code{#define} can also do it.
29880 There are also some options that define macros implicitly, like
29881 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
29882 defined this way.
29884 @item If debugging information is output when using the precompiled
29885 header, using @option{-g} or similar, the same kind of debugging information
29886 must have been output when building the precompiled header.  However,
29887 a precompiled header built using @option{-g} can be used in a compilation
29888 when no debugging information is being output.
29890 @item The same @option{-m} options must generally be used when building
29891 and using the precompiled header.  @xref{Submodel Options},
29892 for any cases where this rule is relaxed.
29894 @item Each of the following options must be the same when building and using
29895 the precompiled header:
29897 @gccoptlist{-fexceptions}
29899 @item
29900 Some other command-line options starting with @option{-f},
29901 @option{-p}, or @option{-O} must be defined in the same way as when
29902 the precompiled header was generated.  At present, it's not clear
29903 which options are safe to change and which are not; the safest choice
29904 is to use exactly the same options when generating and using the
29905 precompiled header.  The following are known to be safe:
29907 @gccoptlist{-fmessage-length=  -fpreprocessed  -fsched-interblock @gol
29908 -fsched-spec  -fsched-spec-load  -fsched-spec-load-dangerous @gol
29909 -fsched-verbose=@var{number}  -fschedule-insns  -fvisibility= @gol
29910 -pedantic-errors}
29912 @end itemize
29914 For all of these except the last, the compiler automatically
29915 ignores the precompiled header if the conditions aren't met.  If you
29916 find an option combination that doesn't work and doesn't cause the
29917 precompiled header to be ignored, please consider filing a bug report,
29918 see @ref{Bugs}.
29920 If you do use differing options when generating and using the
29921 precompiled header, the actual behavior is a mixture of the
29922 behavior for the options.  For instance, if you use @option{-g} to
29923 generate the precompiled header but not when using it, you may or may
29924 not get debugging information for routines in the precompiled header.